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Abstract 
In the recent decades, super-resolution microscopy substantially contributed to the investigation of 

subcellular structures. A prominent example is the molecular organization of the synapse which is 

known to be vital for neuronal signal transmission. Synapses contain a plethora of different proteins 

which interact in fine-tuned mechanisms on molecular level to provide synaptic function. The 

observation of those proteins at nanoscale resolution thus provides important information on 

synaptic mechanisms. 

To identify different synaptic proteins they need to be marked with a label, which can be used for 

detection in microscopy. Commonly, antibodies are used in immunofluorescence microscopy to 

specifically detect target antigens. However in recent studies, antibodies have been shown to exhibit 

several drawbacks in super-resolution imaging, primarily imposed by their comparable large size and 

divalent nature.  

In contrast, small probes such as nanobodies gain increasing interest in the field of molecular imaging 

as they bypass several drawbacks of antibodies. Nanobodies are single-domain binders derived from 

an antibody subtype devoid of the light chain. They show high thermodynamic stability and can be 

produced in scalable amounts using bacterial expression systems. 

 

In this project, I selected and characterized two novel nanobodies binding with high affinity and 

specificity two neuronal SNARE proteins, SNAP-25 and syntaxin 1A. The nanobodies were 

subsequently used in immunofluorescence microscopy to investigate the organization of these 

proteins in super-resolution. 

 

I found that the obtained fluorescence image using nanobodies significantly differs from the stainings 

observed if primary and secondary antibodies are used. Furthermore, the obtained nanobodies show 

several advantages over conventional antibodies including increased tissue penetration, detection of 

more epitopes and the absence of artificial clustering effects. 

Taking together the findings, I conclude that nanobodies are versatile tools for super-resolution 

microscopy to study small but complex biological structures such as synapses. The small size and 

biochemical properties of nanobodies direct the fluorophore in direct proximity to the antigen. This 

eventually also increases the attainable resolution and thus to the amount of detail observed in 

microscopy. 
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Zusammenfassung (German Abstract) 
Die Entwicklung von hochauflösender Fluoreszenzmikroskopie hat in den vergangenen Jahrzehnten 

substanziell zur Erforschung subzellulärer Strukturen beigetragen. Als ein bekanntes Beispiel kann 

hier die molekulare Organisation der neuronalen Synapse angeführt werden, deren Integrität für die 

neuronale Reizweiterleitung unerlässlich ist. Synapsen enthalten eine Vielzahl unterschiedlicher 

Proteine, die auf molekularer Ebene in fein abgestimmten Mechanismen interagieren, um die 

synaptische Funktion zu gewährleisten. Die hochauflösende Untersuchung solcher Proteine im 

Nanometer-Bereich kann daher wertvolle Informationen über synaptische Mechanismen  liefern. 

 

Es ist dabei unerlässlich, jene synaptischen Proteine mit einer Markierung zu versehen, um sie in 

mikroskopische Studien zu identifizieren. Üblicherweise werden hierzu Antikörper genutzt um mittels 

Immunfluoreszenzmikroskopie gezielt zelluläre Antigene zu untersuchen. In jüngsten Studien wurde 

jedoch gezeigt, dass einige Eigenschaften von Antikörpern von Nachteil für die hochauflösende 

Fluoreszenzmikroskopie sind. Hierzu zählen unter anderem ihre vergleichsweise große räumliche 

Ausdehnung und das zweiwertige Binden ihrer Antigene. 

Einen Gegensatz hierzu bilden minimale Sonden, wie beispielweise Nanokörper, da sie nicht die 

genannten Nachteile von Antikörpern aufweisen. Nanokörper stellen Einzeldomänenfragmente dar, 

die aus einem speziellen Antikörper-Subtyp ohne leichte Ketten isoliert wurden. Sie zeichnen sich 

insbesondere durch hohe thermodynamische Stabilität aus und können in skalierbaren Mengen aus 

bakteriellen Expressionssystemen isoliert werden. 

 

Im Rahmen dieses Projektes wurden zwei neue Nanokörper  beschrieben, die spezifisch und mit 

hoher Affinität an die beiden synaptische SNARE Proteine SNAP-25 und syntaxin 1A binden. Die 

Nanokörper wurden anschließend genutzt, um diese Proteine mittels hochauflösender 

Fluoreszenzmikroskopie zu untersuchen. 

 

Es zeigte sich, dass die mikroskopische Beobachtung mittels Nanokörpern signifikant von jenen 

abweicht, die mittels primären und sekundären Antikörpern gemacht wurden. Des Weiteren weisen 

die Nanokörper mehrere Vorteile gegenüber konventionellen Antikörpern auf. Hierzu zählen 

beispielweise eine erhöhte Gewebepenetration, eine erhöhte Dichte von detektierten Antigenen und 

die Vermeidung artifizieller Clusterbildung. 

Zusammenfassend lässt sich schlussfolgern, dass Nanokörper vielseitige Werkzeuge sind, um mittels 

mikroskopischer Methoden kleine and komplexe biologische Strukturen, wie beispielsweise 

Synapsen, zu untersuchen.  Nanokörper tragen daher durch die erhöhte Präzision in abbildenden 

Verfahren schlussendlich auch zu einer Verbesserung der Auflösung bei. 
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1. Introduction 
 

1.1 Basic Concepts of Light Microscopy 
Visualization of cellular processes using different microscopy techniques has been a central element 

of biology throughout the previous centuries. By microscopic observation of both biological 

structures and dynamic molecular interactions, researchers are able to gain detailed information on 

cellular and subcellular organization. Furthermore, live-imaging experiments allow to monitor cellular 

processes and to reveal fundamental principles of cellular biology.  

When using any kind of microscopy technique, the maximum achievable resolution is an important 

parameter. Resolution in microscopy is defined as the minimum distance at, which two objects are 

still detectable as two individual entities. Hence in biology, a better resolution enables a more 

detailed visualization of molecular organization and consequently allows for a better understanding 

of the biological processes.  

In 1957, confocal microscopy was introduced, which is based on point illumination of the 

specimen [1]. An adjustable pinhole is used to prevent the unfocused light from reaching the 

detector thus increasing the axial resolution. The sample is scanned pixel by pixel to reconstruct the 

image digitally. 

In fluorescence light microscopy, molecular targets or cellular compartments need to be tagged with 

fluorescent molecules, i.e. molecules emitting fluorescence at a defined spectrum of the visible light. 

This allows parallel visualization of multiple targets by spectral separation of the fluorophores as 

individual excitation and detection channels are used for independent detection of the individual 

channels. To obtain a sharp image, the background in each detection channel needs to be kept to a 

minimum.  

The emitted signal distribution of a single fluorophore can be described by the point spread function 

(PSF). It mathematically shows how the fluorescent signal generates the image composed of single 

emitters. For this reason, the PSF is also used to determine the optical resolution of the microscopy 

setup. The width of the PSF at its half maximum (full width at half maximum, FWHM) is commonly 

referred to as the attainable resolution for the microscopy setup. However, the maximum resolution 

of optical microscopy setups was found to be limited due to the physical properties of the light used 

for illumination. 
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In 1873, Ernst Abbe postulated a limit for the maximum attainable resolution of optical microscopy 

setups [2]. He defined the numerical aperture (𝑁𝑁𝑁𝑁) as a dimensionless constant for a microscopy 

setup as shown in Equation 1. The 𝑁𝑁𝑁𝑁 is proportional to the sine of the half-angle 𝜃𝜃 under which the 

excitation light exits and enters the objective and to the refractory index 𝑛𝑛 between the objective 

and the specimen [3]. 

 

𝑁𝑁𝑁𝑁 = 𝑛𝑛 sin𝜃𝜃 

Equation 1: Formula to determine the Numerical Aperture (𝑁𝑁𝑁𝑁). The refractory index 𝑛𝑛 depends on the 
immersion medium between the specimen and the objective. 𝜃𝜃 represents the half-angle under which the light 
exits and enters the objective. 
 

 

For technical reasons, the maximum value for the half-angle 𝜃𝜃 is limited to around 70° whereas 𝑛𝑛 

depends on the kind of refractory medium used. By using specific immersion oils, the refraction index 

can be increased to 𝑛𝑛 =1.52 which results in a maximum 𝑁𝑁𝑁𝑁 of 1.45 for oil immersion objectives 

typically used in optic microscopy [4]. 

Abbe demonstrated that the resolution of optical microscopy correlates with the 𝑁𝑁𝑁𝑁 as well as with 

the wavelength of the light used for illumination of the specimen as shown in Equation 2. As 𝑁𝑁𝑁𝑁 is a 

fixed value given by the technicality, the attainable resolution of the setup therefore ultimately 

depends solely on the wavelength of the light. If the visible spectrum of light (roughly ranging 

between 400 and 700 nm) is used for illumination, practically a maximum resolution ∆𝑥𝑥 of around 

200 nm can be achieved, depending on the wavelength used. 

 

∆𝑥𝑥 =
𝜆𝜆

2 𝑁𝑁𝑁𝑁
 

Equation 2: Formula by Ernst Abbe to determine the attainable planar resolution. The minimum distance 
between two points to be resolved as two different entities (∆𝑥𝑥) is given by the wavelength of the illumination 
light 𝜆𝜆 divided by 2 times the 𝑁𝑁𝑁𝑁 defined above. 
 

 

This phenomenon is referred to as diffraction limit and defined the maximum resolution 

(i.e. ~200 nm) of optical microscopy setups for more than a century. However, a few decades ago 

this paradigm was shifted by the introduction of microscopy techniques bypassing the diffraction 

limit and thus termed super-resolution microscopy. 
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1.2 Super-Resolution Microscopy Techniques 
Several methods have described to overcome the diffraction barrier to increase the resolution and as 

a consequence the amount of detail observed in a specimen.  

The concept of Structured Illumination Microscopy (SIM) was introduced already in 1963 and since 

has been used to image biological samples below the diffraction limit introduced by Abbe [5,6]. 

Technically, the illumination of the specimen with a defined pattern causes interference, which 

contains additional structural information [5]. This information can mathematically be extracted from 

the SIM image using Fourier-transformation to construct a super-resolution image. Modern SIM 

setups are capable of modulating the illumination pattern in space doubling the attainable resolution 

in all the dimensions [5].  

Alternatively, super-resolution can be achieved by modulation of the fluorescent signal. Stimulated 

Emission-Depletion (STED) microscopy uses a depletion laser to “quench” the fluorescence in a 

defined area. Pointillistic methods such as photoactivated localization microscopy (PALM) or 

stochastic optical reconstruction microscopy (STORM) are based on the localization of single 

fluorophores. 

More recent approaches combine different imaging techniques to further improve the attainable 

resolution and achieve nanometer precision. Due to the constant improvements of optical super-

resolution microscopy techniques, the attainable resolution in biology virtually approaches the 

dimension of molecular assemblies [7].  

 

1.2.1 STED-Microscopy 
In 1994, Stefan Hell and coworkers published a method termed STED microscopy to increase the 

resolution of light microscopy setups below the diffraction limit [8]. Technically this is achieved by 

superimposing the excitation beam with a donut-like shaped depletion beam. The alignment of the 

excitation and depletion beams effectively results in a fluorescent spot with a smaller PSF compared 

to diffraction-limited spots. The donut-shaped depletion beam only allows fluorescent photons to be 

detected in the center where the depletion beam has an intensity of zero. This reduces the size of 

the PSF, which in turn allows objects in closer  proximity to be separated [8,9]. A schematic view of 

the STED principle is shown in Figure 1. 

Mathematically this effect can be described adding an additional term into Abbe’s formula describing 

the effect of the depletion laser as depicted in Equation 3. By using high-energy depletion lasers the 

PSF can theoretically approach infinitesimal values setting no limit to the resolution [10]. However, as 

the resolution ∆𝑥𝑥 scales only with the square root of the depletion laser power (see Equation 3), the 

limit is given by the laser intensity, which can be damaging biological samples at too high intensities.  
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∆𝑥𝑥 =
𝜆𝜆

2 𝑁𝑁𝑁𝑁 �1 + 𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠

 

Equation 3: Formula by Stefan Hell to determine the attainable resolution in STED microscopy. Abbe’s formula 
was complemented with a term describing the STED effect where 𝐼𝐼 describes the intensity of the depletion 
laser and 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 represents a characteristic saturation intensity of each fluorophore. As a consequence, increasing 
values for 𝐼𝐼 reduce the term ∆𝑥𝑥, which deduces a gain in resolution [11]. 
 

 

Only after several years, the STED technology was successfully implemented into biology. Only in 

2006, individual synaptic vesicles with an approximate diameter of 40 nm were for the first time 

resolved under a fluorescent microscope [11]. In subsequent years the spatial resolution of STED 

microscopes was improved even further after introduction of technical innovations such as 

time-gated depletion [12,13]. Modern STED setups are capable of achieving resolution of less than 

20 nm in multiple detection channels simultaneously [14]. Notably, the application of super-

resolution microscopy increasingly requires optimization and adjustment of sample preparation to 

exploit the full potential of this rapid progressing technology.  

 

 
Figure 1: Schematic illustration of the STED-principle. A donut-shaped laser beam (orange) is used to partially 
deplete the emitted fluorescence created by the excitation beam (blue). That results in a sub-diffraction 
fluorescence signal (green) increasing the resolution of the microscope. Analyzing the PSF in the effective 
fluorescent spot the actual resolution can be measured by determining the FWHM, in this case 66 nm (bottom 
right panel). Modified from Willig et al., Nature, 2006 
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1.2.2 STORM / PALM  
In addition to STED microscopy, also other super-resolution technologies such as STORM and PALM 

have been developed to overcome the diffraction limit defined by Abbe depicted 

in Equation 2 [15,16]. Those methods are based on repeated stochastic emission of fluorophores, 

followed by reconstruction of the image in silico. In each image only a small subset of fluorophores is 

in an ‘on’-state emitting fluorescence whereas the majority of fluorophores resides in an ‘off’-state.  

The density of fluorophores plays an important role as the method relies on the separation of 

individual fluorophores with diffraction-limited microscopy. By using a common epifluorescence 

microscopy setup, several thousand images are recorded, which capture a differential set of 

fluorophores in the ‘on’-state. Commonly specific dyes are used for this method, which are designed 

for fast switches between a fluorescent and a dark state [17].  

A Gaussian fit it used to map the fluorescence signals determining the actual position of each 

fluorophore by mathematic reconstruction. The distance between two emitting molecules has to be 

higher than the diffraction limit of 200 nm to allow spatial separation and filtering of the fluorescent 

signals. Hence the attainable resolution depends on the density of fluorophores and the precision of 

localization. The latter correlates with the square root of the number of detected photons and can be 

increased by recording a higher number of images if the fluorophores withstand the long imaging 

protocol [18]. This way in biological samples, a resolution of a few nanometers can be obtained in [9].  

 

1.2.3 Other Approaches for Sub-Diffraction Imaging 
Apart from light microscopy also other microscopy techniques exist which provide similar or yet even 

higher resolution. Electron microscopy (EM) and scanning probe microscopy were used long before 

the invention of fluorescence super-resolution methods to investigate molecular organization down 

to atomic detail by measuring biophysical interactions [19,20]. Notably, these techniques require 

harsh and sophisticated treatments of the sample and thus require rather inflexible staining protocol, 

which may limit their application in biology. For instance unlike in IF microscopy, live-cell imaging 

cannot be performed in EM due to the strong fixation required. 

Conventional EM experiments use strong fixatives such as glutaraldehyde to preserve the 

ultrastructure of the sample and osmium tetroxide to increase the contrast of the image. This way of 

fixation has been reported to impair the detection of target molecules due to interference with the 

molecular organization in the sample [21,22]. 
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The problem imposed by fixation with glutaraldehyde has been addressed by cryofixation freezing 

the sample within milliseconds and thus preserving its ultrastructure [23,24]. Recent correlative 

imaging techniques combine EM with light microscopy to detect multiple targets while maintaining 

the high spatial resolution of EM [25,26]. 

Another recent concept of super-resolution microscopy combines the advantages of STED and 

STORM. The fluorophore is excited with a local intensity minimum of light which reduced the number 

of photons required for signal localization [27]. With this approach termed MinFlux (deviated from 

‘minimal emission fluxes’), samples can be imaged with ~1 nanometer precision [27]. 

 

In addition to correlated microscopy approaches, STED microscopy has also been combined with 

mass spectrometry to reveal the biochemical composition of the sample [28,29]. An atomic map of 

the sample is generated by nano-secondary-ion mass spectrometry (nanoSIMS) also identifying 

different isotopes. The secondary ion beam is generated by focusing a primary ion beam (typically 

cesium ions) on the sample to break atomic bonds and sputter away individual atoms. That beam is 

subsequently analyzed by mass spectrometry, using either time-of-flight measurement or magnetic 

detectors. The individual atoms in the beam are identified and their determined localization is used 

to construct an image of the sample [30]. However, the lateral resolution of this technology in 

biological samples (100-200 nm) is lower than resolution obtained in super-resolution 

techniques [30]. Hence, a correlated approach combining nanoSIMS and STED microscopy is used to 

obtain information on localization and molecular identity of multiple targets [28,30] 

 

Recently, also another technology was developed to achieve super-resolution bypassing the 

necessity of expensive microscopic setups. Instead of optically magnifying the specimen, the sample 

is submitted to an expansion process, thus terming the technology expansion microscopy [31]. 

Briefly, the fluorophores of the affinity probes are covalently linked to a polymer network after 

conventional immunostaining [32]. After digestion of the sample, this network is physically expanded 

enhancing the resolution by separating individual fluorophores in space. After that, the sample can 

be imaged using a standard confocal microscope achieving super-resolution due to the expansion 

process. Expansion factors of up to 10-fold on a routine basis of even 20-fold if using more complex 

protocols have been reported, generating a resolution of 25 nm [33,34].  

 

Taken together, fluorescence microscopy techniques and particular super-resolution approaches are 

important methods to investigate biological samples. Yet to detect specific target molecules such as 

proteins in microscopy, they need to be specifically marked for visualization.  
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1.3 Labelling Tools used in Fluorescence Microscopy  
Proteins are known to play a major part in maintaining cellular integrity, including processes such as 

catalytic activity, molecular transport, signaling cascades, metabolism and cell adhesion. 

Consequently various proteins of interest (POI) are in the focus of many researches employing 

fluorescence microscopy. Most proteins are not able to emit a fluorescent signal by themselves and 

thus need to be marked with a label to study their localization and organization in a cellular context. 

Most commonly either a recombinant protein tag or an organic dye molecule coupled to a specific 

affinity probe is used to introduce fluorescence.  

 

1.3.1 Detection of Proteins via Recombinant Tags 
On DNA level different variants of the (enhanced) green fluorescent protein (GFP/EGFP) or other 

fluorescent proteins can be added as a recombinant fusion tag to the POI [35]. This way the POI can 

be observed or followed under a fluorescence microscope to study its cellular localizations. Today, 

after 23 years that the GFP was presented to the scientific community, thousands of laboratories 

around the world use it together with several dozens of modified fluorescent proteins that cover the 

whole visual spectrum. 

As an alternative to already fluorescent proteins, also other recombinant tags such as the HALO, CLIP 

or SNAP-tag can be fused to the POI. These engineered enzymes acquired their fluorescence by 

adding a modified fluorophore that it can be recognized as the substrate for these enzymes, whereas 

the enzyme activity results in the covalent binding of the fluorophore to itself. Today, several 

modified fluorophores, both cell-permeable and cell-impermeable, as well as and different colors 

allow these system to be very flexible to follow  fusion proteins in living cells with different 

colors  [36].  

To introduce such modified protein constructs into cells, transient or stable transfection is required, 

which is commonly associated with overexpression of the fusion protein. This may result in 

mislocalization of the protein induced by the recombinant tag or impair the actual function and 

interactions of the POI [37]. Additionally, if the cell-type used for the transfection also expresses the 

POI endogenously, this protein will not be fluorescent and thus not be detected under a fluorescent 

microscope, which might exacerbate the conclusions.  

Recent gene technologies can overcome these limitations by using molecular toolkits to directly edit 

the cellular genome. Specific genes can for instance be modified using the clustered regularly 

interspaced short palindromic repeats (CRISPR)/ CRISPR-associated 9 (Cas9) - system in cell 

cultures [38]. Due to direct modification of the endogenous protein, artifacts caused by 

overexpression can be omitted. 
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In conclusion, the addition of recombinant tags to the POI is a straight forward approach and 

requires relatively little effort to study protein organization in fluorescence microscopy. The 

CRISPR/Cas9-system is very promising to reduce overexpression of the target protein, however it is 

still in development and few labs worldwide are using it routinely. Fusion chimeras expressed at 

endogenous levels with this technology might create transport, activation or localization problems. 

Moreover, genome editing or overexpression of protein fusion constructs so far cannot be applied on 

human pathology samples or biopsies. Therefore, many applications and scientists still rely in affinity 

probes as an alternative detection method. 

 

1.3.2 Affinity-Based Detection 
The interaction and affinity of proteins is an alternative way to visualize the target POI, which can be 

used for indirect labeling based on detection with specific affinity probes.  

For instance the specific binding of natural toxins to cellular proteins can be exploited for molecular 

marking. The cholera and pertussis toxins interfere with cellular signaling by binding to specific 

domains of G-protein coupled receptors. This interaction can be used to employ fluorescently labeled 

toxins in vitro for binding assays using fluorescence microscopy [39]. 

Another prominent example is the fungus toxin phalloidin, which binds and stabilizes filamentous 

actin molecules [40]. Fluorescently labeled derivatives of phalloidin are widely used in fluorescence 

microscopy to visualize intracellular actin filaments [40].  

The specific binding between molecules is not limited to the detection of protein-protein 

interactions, but can also be used to detect lipids or even ion concentrations. 

The pleckstrin homology domain binds to phosphatidylinositol in various cellular signaling pathways 

mediating signal transduction [41]. Fluorescently labeled pleckstrin homology domains have been 

used to monitor the intercellular pools of different phosphoinositide pools in microscopy [42]. 

Yet the number of known natural ligands binding strongly to specific proteins is limited, hence only a 

minor subset of POI can be studied by this method. Therefore antibodies, evolved to detect a 

plethora of different targets, are commonly raised to specifically bind target antigens for indirect 

detection in microscopy.  

Upon immunization with a target antigen, animals present peptides of the antigen on their major 

histocompatibility complexes (MHC), which generates an immune response [43]. Due to genetic 

recombination and somatic hypermutation antibodies are created binding to the antigen.  These 

molecules can be purified and subsequently used for the specific detection of POI in biological 

samples. 

https://en.wikipedia.org/wiki/Phosphatidylinositol
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The implementation of antibodies into fluorescence microscopy constituted the concept of 

immunofluorescence (IF) microscopy, which is up to now a common technique used in many 

laboratories. Commonly, the immunoglobulin gamma (IgG) antibodies used for IF are raised by 

animal immunization. When extracted from the serum and selected to bind a specific antigen, usually 

a plethora of IgG molecules is obtained that bind different epitopes of the same antigen. Such 

preparations are thus referred to as affinity-purified polyclonal antibodies.  

In contrast, monoclonal antibodies are typically produced by single B-cells, producing a defined type 

of antibody, which were fused with an immortalized cell line. This procedure allows the creation of 

hybridoma cell lines that are able to be maintained growing while secreting one defined type of IgG 

molecules [44]. Consequently, monoclonal antibodies bind to their target antigen at one defined 

epitope, although the exact localization or sequence of the epitope is not always known. In IF 

microscopy, the POI is conventionally detected indirectly using a two-step antibody detection 

procedure. Antigen-specific primary antibodies are used to bind the POI and these are subsequently 

detected by secondary antibodies that carry enzymatic or fluorescent labels.  

Secondary antibodies are mostly polyclonal, which results in signal amplification due to the binding 

of multiple secondary antibodies per primary antibody. This system provides high flexibility as 

differentially conjugated secondary antibodies can easily be substituted without requiring the use of 

a different primary antibody.  
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1.4 Affinity Probes in Microscopy 
Due to their capability to detect virtually any cellular target, affinity probes gained a high popularity 

in molecular imaging approaches. Apart from conventional antibodies, also alternative probes with 

different biochemical properties have been developed. These alternative affinity probes are typically 

selected from comprehensive libraries generated from animal immune repertoires or by synthetic 

design to perform in vitro screenings and to identify specific binders to a desired target molecule. 

 

1.4.1 Antibodies 
Most immune systems of animals possess different isotypes of immunoglobulins performing 

different functions. The immunoglobulin gamma (IgG) is the most frequently antibody isotype used 

for immunostaining methodologies. At the molecular level, IgG molecules are composed of two 

identical heavy and two identical light chains, which are linked by disulfide bridges (see Figure 2A). 

Moreover, the heavy chains are also interlinked by two disulfide bridges resulting in a divalent 

affinity probe with a molecular weight (MW) of around 150 kDa and a spatial extent of 

approximately 10 nm [43]. The antibody heavy chain is composed of a conserved and a variable part, 

referred to as CH1-CH3 and VH-domain, respectively (see Figure 2C). Similarly, the light chain is also 

composed of a constant (CL) and a variable (VL) domain.  

The variable domains generally have a rather conserved sequence apart from three complementary 

determining regions (CDRs) on each chain. These regions are highly variable in amino acid 

composition and ultimately define the binding properties of the IgG molecule. 

In the animal immune system, those CDR loops are assembled by somatic recombination and 

hypermutation upon immune cell maturation, creating a highly specific affinity molecule. Although 

the constant part of the IgG molecule (Fc) is not involved in antigen recognition, it participates in the 

mediation of the immune response in the animal. For stainings in IF microscopy, typically full IgG 

molecules are used. However, some features of full IgG molecules such as their bivalent binding, 

polyclonal nature and their large size can affect the accuracy of biological stainings [45,46].  
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1.4.2 Small Probes 
As an alternative to full antibodies, smaller probes exist that can be used for specific target detection. 

One possibility is to engineer conventional antibodies by removing the domains not involved in 

epitope detection, thus reducing the size of the molecule.  

Enzymes such as papain or pepsin can be used to cleave off the Fc-domain generating Fab- and 

F(ab)2-fragments, respectively as shown in Figure 2C. Fab-fragments are monovalent affinity probes 

accounting for about one third of the IgG original size [47]. However, the production of antibody 

fragments is relatively expensive as large quantities of purified IgG molecules are required as a 

starting material. 

Alternatively, both variable domains (VH and VL) of the antibody can be expressed as a recombinant 

protein fused together with an amino acid linker sequence. This procedure has been established 

already three decades ago, which allowed the generation of monovalent affinity probes termed 

single-chain variable fragments (scFvs, depicted in Figure 2C), which are commonly produced in 

bacteria [48]. Due to convenient modification in the expression host, scFvs can be engineered for 

various applications in molecular imaging approaches [45,46].  

Yet, scFvs require a defined molecular conformation to mimic their adjoined localization in IgG 

antibodies and to acquire functionality. As the two domains of the scFv are naturally not linked but 

artificially fused, this has been observed to be a challenge in the generation of functional scFvs [49]. 

In 1993, two new classes of IgG antibodies were discovered in camelids [50]. They were described as 

IgG2 and IgG3, possessing a long and short hinge region, respectively. But in contrast to the classical 

IgG1 molecules, those IgG2 and IgG3 antibodies lack their light chains (see Figure 2B) and thus were 

termed heavy chain antibodies. Due to the absence of the light chains, the variable domains of the 

heavy chain antibody (VHH-domain) solely mediate the interaction with the target antigen. Isolated 

VHH domains, also-called nanobodies, have been used as a new versatile class of affinity molecules in 

the last years [51]. In contrast to scFvs, they do not require the introduction of a linker sequence and 

thus can readily be produced in bacteria without losing their binding specificity.  
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Figure 2: Affinity probes derived from immunoglobulin scaffolds. A: Conventional IgG1 antibodies are 
composed of two heavy and two light chains linked by disulfide bridges. Their constant domains (CH1-3 and CL) 
primarily serve as a scaffold and mediator for immune response, whereas the variable domains VH and VL 
determine the antigen specificity and form the paratope. B: Novel classes of IgG antibodies devoid of the light 
chains were discovered by Hamers-Casterman et al. in 1993 [50]. In contrast to IgG1 antibodies, epitope 
binding is mediated by the heavy chain only thus terming them heavy chain antibodies. C: F(ab)2-fragments, 
Fab-fragments and single chain variable fragments (scFvs) are obtained by enzymatic cleavage or recombinant 
expression of the antibody domains. In contrast, VHH-fragments or nanobodies are derived from heavy-chain 
IgG antibodies and thus consist of a single domain. D: Ribbon cartoon model of a nanobody. The rigid scaffold is 
colored in blue pointing out the intramolecular disulfide bridge colored in yellow. The three CDR regions used 
for antigen detection are indicated by arrowheads. It can be seen that the CDR3 region (red arrowhead) forms 
an extended loop increasing interaction surface and allowing penetration into binding pockets. Structural 
information was obtained from the Protein Data Bank, accession number 1i3v. 
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Apart from affinity probes based on IgG scaffolds, also other small probes have been developed to be 

used as specific affinity molecules [52]. Figure 3 and Table 1 illustrate a selection of small probes 

commonly used in molecular biology. In addition to the probes depicted here, many other classes of 

probes have been described in the literature [46,52]. Analogous to nanobodies, those small probes 

are typically composed of a stable backbone scaffold and a variable region, providing affinity to the 

target antigen. In contrast to conventional antibodies, they often are capable of withstanding 

extreme pH and temperature conditions due to their compact and stable scaffold [53,54].  

The principle of many small probes is based on molecular interactions found in nature. By 

randomizing a particular region of the probe, a variable region is generated while an overall rigid 

scaffold structure is maintained. Prominent examples for such probes are affibodies derived from the 

prokaryotic protein A, which binds to IgG molecules in nature (see Table 1 and Figure 3). 

Alternatively, the scaffold of affinity probes can be completely designed artificially as in the example 

of alphabodies [55,56]. Three short alpha-helices align laterally and hereby form the alphabody. The 

binding specificity is obtained by variable regions in two of the helices as also shown in Figure 3 and 

Table 1.  

In addition to molecules based on protein scaffolds, assemblies of nucleic acids can be also used as 

affinity probes. Short stretches of DNA or RNA, commonly known as aptamers, were shown to bind a 

target antigen with high specificity [57,58]. However, the use of aptamers faces several challenges as 

they are highly negatively charged, rapidly degraded and their scaffold organization may be sensitive 

to pH and salt concentrations in the medium [57]. Still, the use of aptamers also follows the trend to 

minimize the size of the affinity probe used to detect specific target proteins. 
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Table 1: Characteristics of selected affinity probes commonly used in molecular biology. The probes are either 
derived from full IgG antibodies (blue), alternative protein scaffolds (green) or nucleotide-based scaffolds 
(orange). The dissociation constant KD of all listed affinity probes can be found in the nanomolar range 
comparable to the affinity values obtained for conventional IgG antibodies (kD = 10-7-10-9M). aa = amino acids, 
bp = base pairs MW [kDa] = molecular weight in kilo Dalton. Modified from Maidorn et al., Biochem J, 2016 

Name [reference] Composition Origin Sequence 
length 

Ø MW 
[kDa] Ø Size S-S 

bridges 

IgG antibodies [44] 2 Heavy chains &        
2 light chains 

Immunization / 
hybridomas ≈1450 aa ≈150 10 nm ≥4 

Fab-fragments [45] Truncated heavy 
chain + light chain 

IgG, cleaved by 
papain ≈450 aa ≈50 5 nm ≥2 

Single chain variable 
fragments (scFvs) 

[46] 

VH + VL domain 
of IgG antibody 

Recombinant 
variable IgG 

domains 
≈220 aa ≈25 3 nm ≥1 

VHH fragments/ 
Nanobodies [51] 

Variable domain 
of heavy chain 

antibody 

Camelidae heavy 
chain IgG subtype 70-110 aa ≈15 2 nm ≤2 

Affibody [53] α-helical 
structure 

Staphylococcus 
aureus protein A ≈58 aa ≈6 ≈2 nm 0 

Affitin [59] Sac7d (DNA-
binding protein) 

Sulfolobus 
acidocaldarius ≈66 aa ≈7 ≈2 nm 0 

Alphabody [55,56] 3 α-helices Artificial peptides 70-120aa ≈10 3 nm 0 

DARPIN  [60] 3-5 Ankyrin 
repeats 

Membrane 
adaptor protein ≈160 aa ≈15-18 2 nm 0 

Monobody [61] 7 β-sheets Human 
fibronectin ≈90 aa ≈10 2 nm 0 

Aptamers [58] Strands of  
DNA or RNA 

Synthetic 
sequence 15-60 bp 5-15 3-5 nm - 

 

 

 
Figure 3: Examples of small affinity probes for specific target detection. Residues typically mediating the 
interaction to the antigen are colored in red; the constant scaffold of the molecule is shown in grey. An 
overview on the characteristic of the probes is provided in Table 1.  Exemplary sequences were obtained from 
the Protein Data Bank (affibody: 2KZI; affitin: 4CJ1; alphabody: 4OE8; DARPIN: 4YDW; monobody: 5DC9; 
nanobody: 3K1K; aptamer: 4R8I). Modified from Maidorn et al., Biochem J, 2016 
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1.4.3 In vitro Selection Techniques 
The development of new affinity probes is usually based on screening complex libraries with a 

shuffled composition of amino acid residues in their variable region (see Figure 3, red color). The 

candidates, which show affinity to the target antigen, are subsequently identified from typically 

several million different molecules. Most commonly, the screening procedure is carried out using 

molecular display techniques such as phage display [62], yeast display [63] or ribosome display [64]. 

Those techniques link the biochemical properties of the expressed affinity probe to its genotype, 

allowing the identification of molecules with a defined sequence identity. The libraries used for 

screening require careful preparations to increase the chance of positive selection due to the 

presence of a high number of different molecules, commonly referred to as diversity.  

Libraries for molecular display can be created in different ways. So-called naïve libraries are created 

from RNA preparations resembling sequences of variable IgG domains of a non-immunized animal. 

However, the existing IgG repertoire might not contain any specific binder to the POI, which may 

result in negative results during the screening procedure [65]. Libraries containing probes derived 

from IgG scaffolds, such as scFvs or nanobodies, are therefore typically created after immunization of 

the animal. This results in a pre-selection of affinity probes due to the immune response of the 

animal facilitation the later screening procedure [66,67]. 

 

To introduce a high diversity into the sequence composition of libraries or to modify the conserved 

scaffold of the probe, the variable regions can alternatively also be created synthetically. This can be 

used to increase solubility of the molecule or to mimic the scaffold of other species to avoid 

degradation in live experiments [51,68]. 

By permuting the arrangement of amino acids, which mediate the binding a plethora of sequence 

combinations may be created, which may not have been present in the animal. In addition to 

modulation of the variable regions, also the scaffold of the molecule can be modified to increase its 

stability. Synthetic libraries of nanobodies have been created, which use an improved molecular 

scaffold to optimize the solubility and stability of the probe [51]. Those libraries are often used by 

companies, which offer the service to screen for custom nanobodies while bypassing the laborious 

time-costly process of immunization and de novo library generation [69]. Synthetic libraries have 

been reported to achieve a diversity of up to 4 × 1010 different sequences, albeit the design of such 

libraries is an expensive and sophisticated procedure [70,71]. 

The molecular screening of either library reveals those candidates, which show affinity to the POI. 

After the screening procedure, the identified probes need to be validated further to test their 

applicability in experimental procedures. As most molecular display techniques are set up in vitro, 

the selected affinity probes might still cross-react with other proteins present in cells or other 
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biological samples. Various methods are used to validate the binding of the probe, including enzyme-

linked immunosorbent assays (ELISA), affinity chromatography, immunoblotting and IF [67,72–74]. 

After confirming both affinity and specificity for a defined target protein, the new probes can be 

implemented in molecular and cell biology approaches. 

Although synthetic libraries can achieve a higher diversity of different molecules, immune libraries 

contain already a larger proportion of specific probes, which were per-selected by the animal 

immune system. This facilitates the selection and results in higher number of positive binders after 

the screening procedure. Nanobodies identified from camelid immune libraries therefore gain 

increasing attention as molecular tools. 

 

1.4.4 Nanobodies 
Although nanobodies are derived from antibodies, the molecular composition of their scaffold 

typically differs from its VH counterpart found in IgG1 antibodies.  

First, the nanobody scaffold shows an increased solubility compared to VH-domains of conventional 

antibodies, as the hydrophobic amino acids usually mediating the interaction with the light chain are 

replaced by more hydrophilic residues [51].  

Second, nanobodies commonly possess a very robust scaffold due to an intramolecular disulfide 

bridge, which contributes to the structural integrity of the molecule [23, 24]. They retain their 

function even during or after elongated exposure to high temperatures of up to 90 °C [76]. In 

addition to this, nanobodies also partially refold after denaturation, highlighting the thermodynamic 

stability of those molecules [77]. These biochemical properties essentially facilitate the production 

and handling of nanobodies during experimental applications. 

Third, the CDR3 region was found to be more variable in length in comparison to VH domains, thus 

increasing the interaction surface and generating a flexible loop for penetration in binding 

pockets [74]. It has been proposed that the elongated CDR3 loop of IgG2 and IgG3 antibodies 

constitutes an evolutionary strategy to increase the interaction surface of the affinity molecule with 

the antigen. This way those IgG types may be able to able to compensate the absence of a light 

chain, resulting in affinities of nanobodies comparable to conventional full IgG molecules [78,79].  

Interestingly, nanobodies with very short CDR3 loops have been discovered also exhibiting high 

affinities to their target antigen [80,81]. 

Due to the gain in length and flexibility of the CDR3 region, nanobodies are even capable of detecting 

epitopes with a concave structure like enzymatic pockets or ligand binding sites. Such epitopes are 

typically difficult to access by conventional IgG1 antibodies, which possess a comparable flat 

paratope [82,83]. The CDR3 loop might as well enclose its target antigen, creating a headlock-like 
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interaction also involving the nanobody scaffold, which results in high affinities to the target 

antigen [84]. 

Figure 2D shows a cartoon model of a nanobody indicating the CDR regions and the intramolecular 

disulfide bridge. Due to their composition of a single peptide chain, nanobodies can also readily be 

expressed in bacteria bypassing the need of hybridoma cell lines. The formation of the 

intramolecular disulfide bridge can be promoted by directing the expression of the nanobody to the 

periplasmic space, which provides more oxidizing conditions [81,85]. A more recent strategy to 

increase the efficiency of nanobody production uses bacterial strains, such as SHuffle express® 

(New England Biolabs),  constitutively expressing disulfide bond isomerases in the cytoplasm [86].  

The recombinant expression of nanobodies allows modification such as adding molecular tags for 

purification and site-directed coupling reactions to the molecule. After expression and purification, 

fluorescent molecules can specifically be coupled to different positions of the expressed protein [87]. 

Up to now, custom labeled nanobodies have been used in various biological and medical applications 

including virus neutralization, positron emission tomography and other molecular imaging 

approaches [88–92]. 

 

 

1.5 Comparison of Nanobodies to Conventional Probes 
During the last decades, new affinity probes and particularly nanobodies got increasing attention of 

many researchers. The small size of nanobodies (around 15 kDa) and their monovalent nature 

enables high tissue penetration and improved epitope detection even in protein-dense regions [52]. 

Since nanobodies can readily be produced in bacteria in scalable amounts, the maintenance of hybrid 

cell lines or animals is obsolete for production of the probe. Nanobodies linked to a fluorescent 

reporter or to a biochemical tag have already been used in various approaches including molecular 

imaging [51,80,93,94]. Fusion constructs with GFP can be expressed in cells as so-called intrabodies, 

which target their antigen in vivo. This approach has originally been suggested using full antibodies, 

which however require a complex expression and assembly process exacerbating the procedure [95]. 

Although the overexpression of intrabodies is an efficient and well-established procedure, it confines 

the sensitivity of detection due to high background signal [94]. The removal of background 

fluorescence thus requires the protein to be localized in specific compartment and the use of 

advanced image analysis tools to identify the specific signal of intrabody localization [96]. Intrabodies 

have also been suggested to be a potential tool in medical applications such as gene 

therapies [93,97].  

Nanobodies are generally discussed as efficient therapeutic agents due to their high stability, limited 

cleavage by cellular proteases and low immunogenicity in humans [98,99]. Recently, nanobodies 
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targeting medically relevant targets, such as viral proteins  [90,100,101] have been reported, 

preventing the assembly and propagation of the virus. Their additional high tissue penetration and 

fast clearance from the bloodstream makes nanobodies attractive for selective tumor targeting in 

cancer therapy [102–104]. So far, several clinical studies using commercial nanobodies for therapy 

are conducted or have already been completed [69]. In addition to their use in research, nanobodies 

may therefore also constitute new alternatives of medical treatments in the near future. 

 

In research, nanobodies are already used as an alternative to conventional antibodies. They have 

been demonstrated to be valuable and versatile tools in molecular imaging and particular in super-

resolution microscopy [91,105]. One example is shown in Figure 4 where antibodies or nanobodies 

are used to stain spatially separated microtubules in vitro. In single molecule localization images it 

was found that directly labeled nanobodies reveal a better separation of individual microtubules 

than directly modified antibodies [105]. 

 

 
Figure 4: Smaller labels allow better resolution of microtubules. A: Illustration of different detection strategies 
using primary and labeled secondary antibody (1ary + 2ary), a directly labeled primary antibody (1ary) or 
directly labeled nanobody. B: Scheme of the in vitro microtubule bundling assay to test the resolving power of 
different microtubule labelling strategies. Rhodamine-labelled microtubules are assembled into planar bundles 
with defined spacing formed by the microtubule-bundler GFP–AtMAP65-1. C: Conventional (top) and single 
molecule localization (middle and bottom left) images and representative line scans (bottom right) of in vitro 
microtubule bundles stained with a fluorescently labelled primary anti-a-tubulin antibody (1ary-AF647) or two 
novel tubulin nanobodies (VHH#1 and VHH#2) conjugated to AF647. As shown in the bottom panel, nanobodies 
allow batter separation of individual microtubules. Scale bar represents 1 mm.  
Modified from Mikhaylova et al., Nat Comm, 2015  
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Nanobodies show an improved penetration capability into tissues compared to conventional 

antibodies, which often detect only a subset of their target antigen [72,106]. Also in staining cultured 

cells in IF microscopy, nanobodies provide several advantages. Unlike antibodies, they are 

monovalent probes and therefore cannot induce molecular clustering by binding multiple proteins as 

described in section 1.4. This clustering effect of antibodies is commonly known to create artifacts in 

immunostaining, which might lead to misinterpretation of the data [58,107,108]. 

Classical staining protocols for IF microscopy rely on primary and secondary antibodies for detection. 

This additionally enhances the clustering effect by binding of the secondary antibody as illustrated in 

Figure 5 [108]. When using different antibody species for a staining, intermolecular cross-reactivity or 

limited compatibility of secondary antibodies may impose another level of complication [109]. 

Directly conjugated nanobodies do not require the use of secondary molecules and omit this 

problem.  

It has also been shown in super-resolution that the assembly of an antibody complex delocalizes the 

fluorescent signal from the antigen, as the fluorophore is typically conjugated to the secondary 

antibody [91]. Therefore it is required in super-resolution imaging to direct the fluorophore as close 

to the epitope as possible. Directly conjugated nanobodies can bring the fluorescent moiety as close 

as 2 nm to the epitope, thus preventing delocalization as shown in Figure 5 [110]. From this effect it 

has been concluded that conventional antibodies cannot keep up with technical improvements to 

increase the resolution in microscopy [91,105].  

In addition to its displacement, also the intensity of the fluorescent signal depends on the probe used 

for staining. Commonly used secondary antibodies carry between zero and four fluorophores, 

primarily due to the random chemistry used in their labeling protocols [111]. Thus, the intensity of 

the fluorescent signal underlies a stochastic distribution of secondary antibodies detecting and 

clustering their primary target [111]. Small probes which were coupled to the fluorescent moieties in 

a controlled stoichiometric ratio in turn can provide a more quantitative detection of the POI [112]. 

Taking together these arguments, many researchers suggest that monovalent small probes such as 

nanobodies could provide a valid alternative for antibodies in IF microscopy [92,110,112]. Their good 

performance even in protein-dense environments makes nanobodies valuable tools to study complex 

biological structures such as neuronal synapses. 
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Figure 5: Schematic comparison of antigen detection by antibodies (top) or nanobodies (bottom) on molecular 
level. A piece of membrane with a fictive arrangement of integral membrane proteins is shown. A potassium 
ion channel is shown as an example for a membrane residing target antigen. A: The size of antibodies (green 
molecules, top panel) may impair them from detecting the entirety of antigens in a complex biological sample. 
In contrast, nanobodies (light green molecules, bottom panel) are smaller in size and can even access buried 
epitopes. B: Conventional antibodies might induce cluster formation caused by divalent binding, which can 
result in staining artifacts (top panel). Monovalent probes such as nanobodies do not show this effect due to 
stoichiometric binding of their target antigen (bottom panel). C: Successive binding of primary and secondary 
antibody (each 12-15 nm in size, top panel) delocalizes the fluorophore from the actual position of the target 
antigen. On the other hand, conjugated nanobodies direct the fluorophore in close proximity (around 
2 nm [110]) to the antigen and therefore increasing the attainable resolution (bottom panel). 
The structures of the proteins used for modelling were obtained from the Protein Data Bank (PDB accession 
codes: 1HZH, 3OGO, 3KG2, 2BG9, 4PE5, 2VT4, 4PAS, 2RH1, 1EWK, 3LUT, 1EWK, 2E4U, 3KS9, 4OR2 and 5CM4). 
All elements are displayed in correct relative size scale. The binding interface is highlighted in magenta, and 
fluorescent molecules conjugated with the affinity probes are colored red. Scale bar represents 10 nm. 
Modified from Maidorn et al., Biochem J, 2016 
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1.6 Imaging Approaches to Study the Synaptic Architecture 
Synapses have already been in the focus of research for more than a century [113]. Due to their key 

role as central communication platforms between neurons, maintaining synaptic integrity is the basis 

to ensure the survival of an organism. Hence it has been of major interest to reveal the molecular 

mechanisms, which underlie synaptic function.  

 

In the past, various microscopy techniques have contributed to reveal the synaptic ultrastructure and 

understand functional principles of synapses. The first synaptic subcellular structures were already 

revealed in the 1950s using electron microscopy describing synaptic morphology and 

anatomy [114,115]. Emerging EM techniques provide a detailed view on synaptic ultrastructure 

highlighting characteristic structures such as the postsynaptic density and synaptic vesicle pools 

(see Figure 6) [116,117]. Although modern EM techniques can achieve a spatial resolution as high as 

50 pm allowing to visualize molecular complexes [118], it is difficult to follow a particular POI  due to 

different limitations in the methodology. Nevertheless, immuno-EM has been developed to use gold-

coupled antibodies to detect specific proteins; yet the affinity probes usually detect only a small 

fraction of the antigens [119]. A major reason is the harsh sample preparation required to preserve 

the synaptic ultrastructure for EM. Particularly this includes fixation with high concentrations of 

glutaraldehyde and treatment with osmium tetroxide as stated in section 1.2.3. This creates a dense 

proteinaceous network in, which the epitopes might no longer be accessible for antibodies, thus 

impeding the detection of the target antigen [21,22]. Probes with better tissue penetration might 

overcome this limitation as they can penetrate also into protein-dense regions.  

All in all, EM is still able to reveal major aspects of the synaptic ultrastructure in excellent detail. Yet 

this technology comes to its limits when multiple target antigens should be observed in parallel or 

in vivo imaging is intended. For this, IF microscopy is the method of choice due to the rather easy 

sample preparation, spectral separation of individual fluorescent signals and the possibility of in vivo 

imaging of whole brains [120].  

 

Early IF experiments revealed the accumulation of synaptic proteins, which were found to be 

required for synaptic vesicle fusion. These molecules were termed SNARE proteins, an acronym for 

soluble N-ethylmaleimide-sensitive fusion protein-attachment receptor [121,122]. These 

investigations together with anatomic information from EM studies led to the formation of a model 

describing the regulatory mechanisms of the synapse such as synaptic vesicle fusion [123,124]. Three 

major SNARE proteins in hippocampal synapses are the vesicle-associated protein 2 (VAMP2 or 

synaptobrevin), synaptosomal-associated protein 25 (SNAP-25) and syntaxin 1A (see Figure 6B).  
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Notably, SNARE proteins are not only found in synapses but represent a large family of protein which 

mediates vesicle fusion in various compartments of the cell. This includes protein trafficking at the 

Golgi apparatus as well as fusion events at the plasma membrane or involving endosomes [125]. 

SNARE proteins therefore constitute an important class of molecules in the whole cell, albeit 

neuronal SNAREs mediating synaptic vesicle fusion have been studied most thoroughly. 

The current vision of neurotransmitter release in the nervous system suggests that an action 

potential arriving to a synapse causes voltage-gated calcium channels to open and let calcium 

concentration to rise locally [126]. The detection of calcium by synaptotagmin triggers the 

conformational change in the heteromeric SNARE bundle formed by two alpha helices from SNAP-25 

(palmitoylated to the plasma membrane) and one from each synaptobrevin (anchored to the vesicle) 

and syntaxin 1A (anchored to the plasma membrane). The force resulting from the conformation 

rearrangement in the helix bundle subsequently mediates the fusion of synaptic vesicles at the active 

zone of the plasma membrane causing the release of neurotransmitter [126].  

For maintaining synaptic integrity and function, the cycling and recycling of synaptic vesicles 

constitutes a key mechanism. Hence, a detailed understanding of the individual steps in this complex 

process will allow to describe and modulate overall synaptic activity [124,126,127].  

 

The development of super-resolution techniques such as STED and STORM allowed researchers to 

investigate synaptic structures on molecular level [128–130]. Small structures such as individual 

synaptic vesicles cannot be visualized using conventional fluorescence microscopy techniques due to 

their size of ~40 nm in diameter. Those vesicles were among the first biological structures to be 

observed by emerging super-resolution techniques, constituting a new benchmark for subcellular 

investigations on synaptic physiology [11]. In subsequent years, super-resolution microscopy was 

exploited to map the organization of synaptic proteins [131,132].  

As the positioning and composition of proteins is strongly linked to their intracellular role, these 

studies substantially contribute in understanding the principles of synaptic function [133]. As a 

consequence, the model on synaptic vesicle cycling and synaptic organization became essentially 

more elaborate as illustrated in Figure 6C  [134,135]. Specifically, SNAP-25 and syntaxin 1A were 

observed to form clusters all over the plasma membrane, which are regarded as reserve pools for 

these SNARE proteins [134,135]. In addition different pools of synaptic vesicles have been classified 

depending on their capability of fusion with the membrane upon stimulation [131,136]. However it 

should be noted that most experiments indicating the clustering of molecules were conducted using 

antibodies as affinity probes to detect the POI.  
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Ultimately the observations on synaptic proteins led to a refinement of models on synaptic function 

describing the formation of protein microdomain organization and interaction in high 

detail [126,130,137]. Combining quantitative proteome analysis with imaging, a molecular model of a 

synaptic vesicle has been created, highlighting the relevance to reveal the stoichiometry of cellular 

processes [129]. With the help of super-resolution microscopy, this three-dimensional illustration has 

further been extended in recent years. This resulted in a model mapping the quantitative protein 

distribution of ~60 proteins in an average hippocampal synapse in molecular detail shown in 

Figure 6D [128].  

A vast majority of the aforementioned studies used specific affinity probes to detect and map the 

target proteins in the synapse. Both diffraction-limited and super-resolution microscopy rely on the 

specific detection of endogenous proteins to determine their localization under native conditions. Up 

to now, conventional antibodies are the most common type of affinity probe used in IF microscopy. 

As proteins constitute a major fraction of the synapse, the dense congregation of macromolecules is 

likely to impair the free diffusion of antibodies hampering epitope detection [128]. The clustering 

effect of antibodies and the signal amplification caused by using polyclonal secondary antibodies 

additionally exacerbates the quantitative analysis synapses with conventional or advanced 

microscopy techniques. Taking into account these limitations of antibodies in super-resolution 

microscopy (see also section 1.5), using alternative small, monovalent and directly conjugated probes 

is essential to progress further on the molecular study of synaptic physiology using current 

microscopy. Therefore, nanobodies binding synaptic proteins would be a valuable tool for various 

investigations on synaptic function. 
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Figure 6: Electron micrograph and models describing synaptic organization. A: Electron micrograph depicting 
the presynaptic ultrastructure. EM clearly shows the distribution of subcellular structures such as mitochondria 
(white arrowheads) and synaptic vesicles (black arrowheads). The fusion of synaptic vesicles occurs at the 
active zone (red arrowheads). B: A schematic and simplified model describing the synaptic vesicle cycle. SNARE 
proteins such as VAMP2 on the vesicle (blue) together with SNAP-25 and syntaxin 1A residing on the plasma 
membrane (red and green, respectively) mediate synaptic vesicle fusion events. The vesicles fuse at the active 
zone and the vesicle material is subsequently recycled via endocytosis. C: Refined model of synaptic vesicle 
cycling based on super-resolution microscopy data [11]. The SNARE proteins are present in high copy numbers 
and show cluster formation along the plasma membrane [135]. Different pools of synaptic vesicles have been 
described showing differential response to stimulation [138,139]. D: A 3-dimensional reconstruction of the 
presynapse considering qualitative and quantitative distribution of the 60 most abundant proteins. The model 
was generated based on previous data published by Wilhelm et al. [128]. Modified from Maidorn et al., 
Biochem J, 2016 
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1.7 Aims of the Project 
The molecular organization of synapses has so far primarily been analyzed using conventional 

antibodies. However, these rather large molecules show some limitations when using them in 

today’s super-resolution microscopy, which impair the staining quality and resolution.  

Therefore, the aim of this project was to generate nanobodies as alternative affinity probes to 

investigate the synaptic physiology by super-resolution microscopy. The three major synaptic SNARE 

proteins VAMP2, SNAP-25 and syntaxin 1A were chosen as antigens for the generation of novel 

nanobodies. Up to now, no nanobodies against any of these proteins have been reported in the 

literature. Due to their features beneficial for super-resolution microscopy, such nanobodies would 

be a very attractive tool to reveal the organization of the synaptic SNARE proteins. 

In order to obtain specific nanobodies, it was primarily necessary to establish a standardized protocol 

for the selection and validation of new affinity probes. In addition to the selection of nanobodies 

binding the aforementioned SNARE proteins, this protocol ought to become a general procedure for 

the future selection of nanobodies binding alternative candidates. 
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2. Material and Methods 
 

2.1 Materials and Reagents 
This section lists all commercial equipment specifically used during the project. Information on the 

manufacturer is given for important chemicals and reagents. 

 
2.1.1 General Chemicals 

Generally, all chemicals were purchased from Sigma-Aldrich, St. Louis, MO, USA or VWR, Radnor, PA, 

USA. The following Table 2 only lists all specific chemicals and commercial buffers used in the project. 

In subsequent references to individual chemicals, only the chemical abbreviation and company name 

is given; please refer to Table 2 for further information. 

 

Table 2: Specific chemicals and commercial buffers used in the project 

Component Company Location 
α-select Chemically Competent Cells Bioline Reagents London, UK 
1-Step™ Ultra TMB-ELISA Substrate 
Solution 

Thermo Fisher Scientific Waltham, MA, USA 

Agarose, peqGOLD PeqLab Erlangen, Germany 
Albumin AppliChem Darmstadt, Germany 
Albumin Standard, 2 mg/ml, Pierce™ Thermo Fisher Scientific Waltham, MA, USA 
Ampicillin sodium salt Sigma-Aldrich St. Louis, MO, USA 
Aprotinin Sigma-Aldrich St. Louis, MO, USA 
BE Strep-Tactin® Elution Buffer IBA Göttingen, Germany 
CaCl2 Merck KGaA Darmstadt, Germany 
cOmplete™ His-Tag purification resin Sigma-Aldrich St. Louis, MO, USA 
DMSO (anhydrous, 2 ml aliquots) Thermo Fisher Scientific Waltham, MA, USA 
DNaseI Sigma-Aldrich St. Louis, MO, USA 
Dulbecco’s Modified Eagle’s Medium 
(DMEM) 

Lonza Basel, Switzerland 

Dulbecco’s Phosphate Buffered 
Saline (DPBS) 

Sigma-Aldrich St. Louis, MO, USA 

Ethidium bromide solution 0.025 % Carl Roth Karlsruhe, Germany 
FastAP Thermo Fisher Scientific Waltham, MA, USA 
FastDigest Buffer Thermo Fisher Scientific Waltham, MA, USA 
FastDigest Restriction enzymes Thermo Fisher Scientific Waltham, MA, USA 
Fetal calf serum (FCS) Biochrom Berlin, Germany 

Geneticin, 50 mg/ml 
Gibco / 
Thermo Fisher Scientific 

Waltham, MA, USA 

Glucose Merck KGaA Darmstadt, Germany 
Glycerol VWR Radnor, PA, USA 
Hoechst Solution 20 mM Thermo Fisher Scientific Waltham, MA, USA 
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Horse serum (HS) Biochrom Berlin, Germany 
Hydroxylamine Sigma-Aldrich St. Louis, MO, USA 
Hyperphage M13 K07ΔpIII Progen Heidelberg, Germany 
IPTG VWR Radnor, PA, USA 
Kanamycin sulfate Sigma-Aldrich St. Louis, MO, USA 
L-cysteine Sigma-Aldrich St. Louis, MO, USA 
Leupeptin Sigma-Aldrich St. Louis, MO, USA 
Lysozyme Sigma-Aldrich St. Louis, MO, USA 
MagStrep ‘type3’ XT beads IBA Göttingen, Germany 
MEM (Minimal Essential Media)  Thermo Fisher Scientific Waltham, MA, USA 
MEM non-essential amino acids, 
100x concentrated 

Thermo Fisher Scientific Waltham, MA, USA 

Milk powder Carl Roth Karlsruhe, Germany 
MK13KO7 helper phages New England Biolabs Ipswich, MA, USA 
Neurobasal-A Thermo Fisher Scientific Waltham, MA, USA 
Nuclease-free water Carl Roth Karlsruhe, Germany 
Nucleotide Mix, 100 mM Thermo Fisher Scientific Waltham, MA, USA 
Papain Cell Systems Spich, Germany 
PEG-8000 Sigma-Aldrich St. Louis, MO, USA 
Pepstatin A Sigma-Aldrich St. Louis, MO, USA 
PFA Sigma-Aldrich St. Louis, MO, USA 
Phusion® High-Fidelity DNA 
polymerase 

New England Biolabs Ipswich, MA, USA 

PMSF Sigma-Aldrich St. Louis, MO, USA 
Recovery Medium Lucigen Middleton, WI, USA 
RNAlater® Sigma-Aldrich St. Louis, MO, USA 
RNaseZAP™ Sigma-Aldrich St. Louis, MO, USA 
Sephadex™ G-25 superfine resin GE Healthcare Little Chalfont, UK 

Sodium pyruvate 
Gibco /  
Thermo Fisher Scientific 

Waltham, MA, USA 

Sulphuric acid Carl Roth Karlsruhe, Germany 
T4 DNA ligase Thermo Fisher Scientific Waltham, MA, USA 
T4 DNA ligase buffer Thermo Fisher Scientific Waltham, MA, USA 
TCEP Sigma-Aldrich St. Louis, MO, USA 
Trypsin (for phage display) Sigma-Aldrich St. Louis, MO, USA 
Trypsin inhibitor Sigma-Aldrich St. Louis, MO, USA 
Trypsin/EDTA 170.000 U/l BioWhittaker/Lonza Basel, Switzerland 
Vectors/plasmids  
(see also  Table 12) 

Addgene & 
Clontech Laboratories 

Cambridge, USA 
Mountain View, California, USA 
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2.1.2 Buffers, Solutions and Media 
The following Table 3 contains all self-prepared buffers and solutions used during the project in 

alphabetical order. Generally, all buffers were prepared in deionized water obtained from an 

arium® pro Ultrapure Water System (Sartorius, Göttingen, Germany). The media used for culturing 

bacteria and mammalian cells are depicted in Table 4 and Table 5, respectively.  
 

Table 3: Buffers and solutions 

Buffer / Solution Composition 
A500 50 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic  

acid (HEPES), pH 8.0 
500 mM NaCl 
30 mM ultrapure imidazole 
5 mM MgCl2 
10 % (v/v) glycerol 

Anode buffer 200 mM Tris Base, pH 8.8 
B500 50 mM HEPES, pH 7.5 

500 mM NaCl 
500 mM ultrapure imidazole 
5 mM MgCl2 
5 % (v/v) glycerol 

Cathode buffer 100 mM Tris Base, pH 8.3 
100 mM Tricine 
0.1 % (w/v) sodium dodecyl sulfate (SDS)  

Cell lysis buffer 50 mM Tris/HCl, pH 7.5 
150 mM NaCl 
2 mM ethylenediaminetetraacetic acid (EDTA)  
0.5 % (v/v) IgePAL 
0.5 % (w/v) Sodium deoxycholate  
store at 4 °C 

Enzyme inactivation solution DMEM supplemented with 
10 % (v/v) FCS (Biochrom) 
0.2 mg/ml albumin (AppliChem) 
0.2 mg/ml Trypsin inhibitor (Sigma-Aldrich) 

Hippocampi digestion 
solution 

DMEM supplemented with 
0.5 mg/ml L-cysteine (Sigma-Aldrich) 
100 mM CaCl2 (Merck) 
50 mM EDTA (Merck) 
2.5 U/ml papain (Cell Systems) 

HS-PBS 500 mM NaCl 
4.3 mM Na2HPO4 
2.7 mM KCl 
1.47 mM KH2PO4 
adjusted to pH 7.4 

M9 salt solution (5x) 450 mM Na2HPO4 

110 mM KH2PO4 

90 mM NH4Cl  
45 mM NaCl  

Mowiol solution 100 mM Tris Base, pH 8.5 
23 % (v/v) glycerol 
9 % (v/v) Mowiol 4-88 (Merck) 
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PBS 137 mM NaCl 
4.3 mM Na2HPO4 
2.7 mM KCl 
1.47 mM KH2PO4 
adjusted to pH 7.4 

PBS-BSA PBS supplemented with 3 % (w/v) bovine serum albumin 
fraction V (AppliChem) and sterile- filtered through 0.22 µm 
syringe top filter (Sartorius) 

PBS-T PBS supplemented with 0.2 % (v/v) Tween® 20 
PBS-T/milk 5 % (w/v) milk powder (Carl Roth) in PBS-T 
PBS-Tx PBS supplemented with  

0.1 % (v/v) Triton™-X100 (Sigma-Aldrich) 
SDS-PAGE destaining buffer 50 % (v/v) demineralized H2O 

40 % (v/v) MeOH 
10 % (v/v) glacial acetic acid 

SDS-PAGE gel buffer (10x) 3 M Tris/HCl, pH 8.45 
0.3 % (w/v) SDS 

SDS-PAGE gel staining buffer 1 g Coomassie Brilliant Blue G-250  
in SDS-PAGE destaining buffer 

SDS-PAGE sample buffer (2x) 100 mM Tris/HCl, pH 6.8 
20 % (v/v) glycerol 
4 % (w/v) SDS 
200 mM DTT 
0.02 % (w/v) Coomassie Brilliant Blue R-250 

Sortase buffer 50 mM Tris/HCl, pH 7.5 
150 mM NaCl 
10 mM CaCl2 

TAE buffer 40 mM Tris-(hydroxymethyl)-aminomethan, pH 8.0 
20 mM Acetic acid 
1 mM EDTA 

TBSC 10 mM Tris/HCl, pH 7.4 
137 mM NaCl 
1 mM CaCl2 

TFB1 30 mM potassium acetate   
10 mM CaCl2    
50 mM MnCl2    
100 mM RbCl    
15% (w/v) glycerol 
adjusted to pH 5.8 with acetic acid 
sterile-filtered (0.22 µm filter)   

TFB2 10 mM MOPS  
75 mM CaCl2    
10 mM RbCl    
15% (w/v) glycerol 
adjusted to pH 6.5 with KOH 
sterile-filtered (0.22 µm filter)  

WB transfer buffer 50 mM Tris/HCl 
192 mM glycine 
20 % (v/v) MeOH 
0.04 % (w/v) SDS 

 



32 
 

Table 4: Liquid and solid media used for bacterial cultures. All media were autoclaved and cooled to room 
temperature before use. 
Medium Composition 
2-YT (Yeast Tryptone) 16 g tryptone 

10 g yeast extract 
85 mM NaCl 
in 1 l H2O 

2-YT agar plates 15 g agar in 1 l 2-YT medium 
LB (Lysogeny Broth) 10 g tryptone 

15 g yeast extract 
170 mM NaCl 
in 1 l H2O 

LB agar plates 15 g agar in 1 l LB medium 
100 µg/ml ampicillin sodium salt 
or 
50 µg/ml kanamycin sulfate 

M9 minimal medium  
glucose plates 

15 g agar in 800 ml H2O 
200 ml 5xM9 salt solution 
0.2 % (w/v) glucose 
1 mM MgSO4  
0.1 mM CaCl2  

1 µg thiamine 
SOC (Super Optimal Broth) 20 g tryptone 

5 g yeast extract 
10 mM g NaCl 
2.5 mM KCl 
10 mM MgCl2 
10 mM MgSO4 
20 mM glucose 
in 1 l H2O 

TB (Terrific Broth) 12 g tryptone 
24 g yeast extract 
4 ml (v/v) glycerol 
72 mM K2HPO4 
17 mM KH2PO4 
in 1 l H2O 

Top-agar 0.7 g agar in 100 ml LB medium 
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Table 5: Media for mammalian cell culture 

Cell type Composition Reference 

COS-7  High glucose (4.5 g/l) DMEM with 
4% (w/v) L-glutamine 
10% (v/v) FCS 
100 U/ml penicillin-streptomycin 

[140] 

Glia cells Minimum Essential Medium (MEM) with 
10% HS 
0.6% glucose (w/v) 
1 mM L-glutamine  
100 U/ml penicillin-streptomycin 

[141] 

HEK293 High glucose (4.5 g/l) DMEM with 
4% (w/v) L-glutamine 
10% (v/v) FCS 
100 U/ml penicillin-streptomycin 

[142] 

HEK293-FT High glucose (4.5 g/l) DMEM with 
4% (w/v) L-glutamine 
10% (v/v) FCS 
100 mM MEM non-essential amino acids 
500 µg/ml geneticin 
100 U/ml penicillin-streptomycin 

[142] 

Neuronal maintenance 
medium 

MEM with  
0.6% glucose (w/v)  
1 mM sodium pyruvate 
100 µM putrescine 
30 µM selenium dioxide 
20 µM progesterone 
0.1 mg/ml bovine transferrin 
5 mg/ml insulin 

[141] 

PC-12 DMEM with 
4 mM L-glutamine 
10% HS 
5% FCS  
100 U/ml penicillin-streptomycin 

[143] 
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2.1.3 Molecular Kits 
For quantitative preparation of genetic material as well as for biochemical analyses, several kits were 

used during this project. In Table 6, those kits are listed together with the corresponding 

manufacturer. Unless specified otherwise in section 3, all kits were used according to the 

manufacturer’s instructions. 

Table 6: Commercial kits for molecular biology used in the project 

Kit Purpose Manufacturer 

GeneJET Mini Prep Plasmid isolation from bacteria Thermo Fisher Scientific,  
Waltham, MA, USA 

Novagen® BCA 
Protein Assay 

Quantitative determination of 
protein concentrations 

Merck, Darmstadt, Germany 

NucleoBond® Xtra 
Midi  

Large-scale plasmid isolation from 
bacteria Machery-Nagel, Düren, Germany 

QIAquick® Gel 
Extraction 

Extraction of genetic material from 
agarose gels 

Quiagen, Venlo, Netherlands 

QIAquick® PCR 
purification 

Removal of protein contaminations 
from DNA preparations 

Quiagen, Venlo, Netherlands 

RNeasy® Mini 
RNA isolation from white blood cell 
preparations 

Quiagen, Venlo, Netherlands 

SuperScript™ III One-
Step RT-PCR 

 

Reverse transcription from total RNA 
preparations 

Thermo Fisher Scientific,  
Waltham, MA, USA 

SuperScript™ IV First-
Strand Synthesis 
System 

Reverse transcription from total RNA 
preparations 

Thermo Fisher Scientific,  
Waltham, MA, USA 

 

2.1.4 Antibodies 
The primary and secondary antibodies used in the project are listed in Table 7 and Table 8. 

 

Table 7: Primary antibodies used in IF staining and for comparative studies 

Antibody target 
Clone name / 
product code 

Dilution Source 

Homer-1 160 011 1:100 Synaptic Systems, Göttingen, Germany 

SNAP-25 
clone 71.1 / 

111 011 
1:100 Synaptic Systems, Göttingen, Germany 

SNAP-25 111 002 1:100 Synaptic Systems, Göttingen, Germany 
Synaptophysin 101 004 1:200 Synaptic Systems, Göttingen, Germany 
Syntaxin 1A HPC-1 1:50 Abcam, Cambridge, UK 
Syntaxin 1A 110 302 1:100 Synaptic Systems, Göttingen, Germany 

Syntaxin 1A 
clone 78.2 / 

110 011 
1:100 Synaptic Systems, Göttingen, Germany 



35 
 

Table 8: Fluorescently labeled secondary antibodies used to detect primary antibodies 

Antibody target 
Clone name / 
product code 

Conjugation Dilution Manufacturer 

FLAG-tag / 
DDDDK-tag 

clone M2 DyLight®650 1:500 Abcam, Cambridge, UK 

Guinea pig IgG 706-545-148 Alexa488 1:200 
Jackson ImmunoResearch, 
Newmarket, UK 

HA-tag clone 16B12 DyLight®650 1:500 Abcam, Cambridge, UK 
Mouse IgG 2-0002-005-1 Star580 1:100 Abberior, Göttingen, Germany 
Mouse IgG 715-165-150 Cy3 1:100 Dianova, Hamburg, Germany 
Mouse IgG 50185 atto647N 1:100 Sigma-Aldrich, St. Louis, MO, USA 
Mouse IgG 610-156-121 atto647N 1:100 Rockland, Limerick, PA, USA 
Phage protein 
pVIII 

27-9421-01 HRP 1:5000 GE Healthcare, Little Chalfont, UK 

Rabbit IgG 715-165-152 Cy3 1:100 Dianova, Hamburg, Germany 
Rabbit IgG 611-156-122 atto647N 1:100 Rockland, Limerick, PA, USA 
 

 

Antibodies against SNAP-25 and syntaxin 1A (#111 011 and #110 011, respectively, both from 

SynapticSystems, Göttingen, Germany) were used in PBS containing 3 % BSA at the recommended 

dilution of 1:100 for 1 h. After 3 x 10 minutes washing with PBS, primary antibodies were detected by 

fluorescently labeled secondary antibodies (goat anti guinea pig coupled to AlexaFluor488, Jackson 

ImmunoResearch, #706-545-148; donkey anti rabbit coupled to Cy3, Dianova, #715-165-152; goat 

anti mouse coupled to atto647N, Rockland, #610-156-121) as  described before [144,145]. 

Nanobodies directly conjugated to fluorescent dyes were typically used at a concentration of 

25-50 nM. 

 

 

2.1.5 Purified Proteins 
Purified fractions of alternative members of the SNAP and syntaxin family were commercially 

purchased from Origene™ Technologies, Rockville, MD, USA to test the selected nanobodies for 

cross-reactivity. During the testing procedure protein purity and concentrations were kept identical 

for all variants. Particularly, purified SNAP-23, SNAP-29 and SNAP-47 were used to test cross-

reactivity of S25-Nb10 and syntaxin 1B, syntaxin 2 and syntaxin 3 were used to check for unspecific 

interactions of stx-Nb6.  
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2.1.6 Consumables 
Specific consumables deviating from standard laboratory equipment and their manufacturers are 

listed in Table 9.  

 

Table 9: Specific consumables and equipment used in the project 

Consumable Used for Manufacturer 

48 well glass bottom plates 
High-throughput microscopy 
screens 

Sigma-Aldrich, St. Louis, 
MO, USA 

96-well round bottom plates 
Growing individual colonies 
after panning 

Thermo Fisher Scientific,  
Waltham, MA, USA 

Amersham™ Protean™ Premium 
0.2 µm nitrocellulose membrane 

Western blotting, dot blots 
GE Healthcare, Little 
Chalfont, UK 

Baffled Erlenmeyer flasks  
(2 or 5 liter) 

Growing bacteria cultures 
Carl Roth, Karlsruhe, 
Germany 

Electroporation cuvettes, 
 1 mm gap size 

Library creation by 
electroporation 

BioRad; Hercules, CA, USA 

Glass-Econo columns 
Custom packing of columns for 
chromatography 

BioRad; Hercules, CA, USA 

MagStrep “type3” XT beads 
Antigen immobilization for 
panning 

IBA, Göttingen, Germany 

MaxiSorp® Antigen immobilization in ELISA 
Thermo Fisher Scientific,  
Waltham, MA, USA 

NAP™-10 columns Protein desalting 
GE Healthcare, Little 
Chalfont, UK 

NAP™-5 columns Protein desalting 
GE Healthcare, Little 
Chalfont, UK 

Syringe-top filters 
(0.22 µm and 0.45 µm) 

Sterile-filtration and degassing 
of buffers 

Sartorius, Göttingen, 
Germany 
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2.1.7 Instrumentation / Equipment 
Important laboratory equipment used during the project is listed below. In further descriptions of the 

experimental procedure, only the name for the instrument is used. Please refer to Table 10 for 

further details regarding manufacturer and software for operation. 

 

 

Table 10: Major instrumentation and laboratory equipment used during the project. If applicable, software 
used to operate the device is indicated. More detailed information on the used software can be found in 
Table 11. 

Instrument Manufacturer Software used 

ÄKTApure25 HLPC  
GE Healthcare; Little 
Chalfont, UK 

Unicorn 7.0.2 (GE Healthcare) 

Amersham™ Imager 600 
GE Healthcare; Little 
Chalfont, UK 

AI600 Control 1.2 
(GE Healthcare) 

arium® pro Ultrapure Water 
System 

Sartorius; Göttingen, 
Germany 

- 

Branson Digital Sonifier S-450 
Emerson; St. Louis, MO, 
USA 

- 

Cytation-3 Multi-Mode Reader BioTek; Winooski, VT, USA Gen5 Image+ (BioTek) 

EMCCD camera 
Andor; Belfast, Northern 
Ireland, UK 

Imspector (Abberior) 

Fluorescence excitation laser 
Abberior Instruments 
GmbH 

Imspector (Abberior) 

F-View CCD camera 
Olympus Corporation; 
Shinjuku, Japan 

Cell^P (Olympus Corporation) 

Gene Pulser® II Electroporation 
System 

BioRad; Hercules, CA, USA - 

IXON X3897 camera 
Andor; Belfast, Northern 
Ireland, UK 

NIS-Elements AR 4.60.00 
(Nikon Corporation) 

Leica CM1850 cryotome Leica; Wetzlar, Germany - 
Leica TCS SP5 STED confocal 
microscope 

Leica  Microsystems; 
Wetzlar, Germany 

Leica Application Suite 
Advanced Fluorescence (Leica) 

Mai Tai Titanium Sapphire 
tunable laser 

Spectra-Physics; Mountain 
View, CA, USA 

Leica Application Suite 
Advanced Fluorescence (Leica) 

Mastercycler® Gradient 
Eppendorf AG; Hamburg, 
Germany 

- 

Mastercycler® nexus X2 
Eppendorf AG; Hamburg, 
Germany 

- 

Mini-PROTEAN Tetra Cell BioRad; Hercules, CA, USA - 

Monolith™ NT.115Pico  
NanoTemper; Munich, 
Germany 

MO.Control 
MO.Affinity Analysis 



38 
 

Motor-driven glass-Teflon 
homogenizer  
(17 ml; 0.1–0.15 mm clearance) 

Omnilab; Bremen, 
Germany 

- 

NanoDrop™ Spectrophotometer  
ND-2000C 

Thermo Fisher Scientific; 
Waltham, MA, USA 

ND-2000C V1.0 

NanoDrop™ Spectrophotometer  
ND-1000 

PeqLab; Erlangen, Germany ND-1000 V3.8.1 

Nikon Ti-E Epifluorescence 
microscope 

Nikon Corporation; 
Chiyoda, Tokyo, Japan 

NIS-Elements AR 4.60.00 
(Nikon Corporation) 

Olympus IX71 microscope 
Olympus Corporation; 
Shinjuku, Japan 

Cell^P (Olympus Corporation) 

Olympus IX83 microscope 
Olympus Corporation; 
Shinjuku, Japan 

Imspector (Abberior) 

Pulsed diode lasers 
PicoQuant; Berlin, 
Germany 

Leica Application Suite 
Advanced Fluorescence 
(Leica  Microsystems) 

T3 Thermocycler 
Biometra; Göttingen, 
Germany 

- 

Trans-Blot® Cell BioRad; Hercules, CA, USA - 

Waterbath WNE 14 
Memmert; Schwabach, 
Germany 

- 
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2.1.8 Software 
For evaluation of data as well as for establishment on lab routines, several programs were used. 

Table 11 lists the most important software with reference to their area of application and developer. 

For software already listed in the previous section, additional information on the area of use is given. 

When mentioned in the following sections of the thesis, only the program name will be given. Please 

refer to this section for further details. 

 

Table 11: Software for operation of devices and data analysis 

Program Name Purpose Developer 
Adobe Photoshop CS6 Image processing Adobe Systems, San José, CA, USA 

Adobe Illustrator CS6 
Image processing and figure 
compilation 

Adobe Systems, San José, CA, USA 

ImageJ Image analysis, ROI analyzation 
National Institute of Health, 
Bethesda, MD, USA 

CLC sequence  7 
Protein sequence alignment and 
generation phylogenetic trees 

QUIAGEN Bioinformatics, Venlo, 
Netherlands 

Matlab R2015b 
Image analysis, averaging 
fluorescence signal of synapses 

MathWorks®, Natick, MA, USA 

MarvinSketch 6.2.0 
Visualization of chemical formulas 
and reactions 

ChemAxon, Budapest, Hungary 

DNASTAR 12.3.1.4 
DNA sequence analysis and in silico 
cloning 

DNASTAR, Madison, WI, USA 

PyMol 1.7.4.5 Edu 
Visualization of molecular protein 
models 

Schrödinger Inc., New York, NY, 
USA 

ApE v2.0.47 Plasmid analysis and in silico cloning 
M. Wayne Davis, University of 
Utah, Salt Lake City, USA 

Unicorn 7.0.2 
Writing methods for protein 
purification in ÄKTA-HPLC system 

GE Healthcare, Little Chalfont, UK 
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2.2 Methods and Protocols 
The following sections lists all relevant methods and protocols used and established during the 

project. If applicable, references to the original protocols are given and modifications are indicated. If 

not specified else, all incubation and centrifugation steps were performed at room temperature. 

 

2.2.1 Molecular Cloning / Gene Constructs 
During this project, several vectors were generated for production of recombinant proteins in 

bacteria or for transient transfection into mammalian cell lines for IF experiments. New plasmids 

were designed based on backbones commonly used in the lab, which were originally modified from 

commercial plasmids. The plasmid typically used for large-scale protein production was derived from 

the LacO-pQLinkN-construct [146] and termed pNB666. It was modified to contain an N-terminal 

14xHis-tag as well as a bdSUMO-domain fused to the protein of interest to increase protein solubility 

and expression yield. Moreover, a Twin-Strep-Tag® (tst-tag) was fused to the C-terminus of the 

protein for affinity purification. 

Table 12 gives an overview on the most important plasmids generated and used in this project. 

Additionally, Figure 7 shows exemplary vector maps for bacterial and mammalian plasmids 

highlighting all important features of the respective construct. If the vector was not available already 

in the lab, it was obtained from Addgene, Cambridge, USA or ordered to be synthesized de novo by 

GeneScript, Nanking, China. Proteins of interest (POI) were inserted into the backbone vectors by 

enzymatic restriction and ligation and in later stages of the project by Gibson assembly as described 

below. 
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Table 12: Overview of major backbone plasmids used in the project. The vectors contain conserved regions 
coding for molecular tags to generate a recombinant fusion protein for further processing. The individual 
domains of the fusion proteins are listed in consecutive order. The position for the protein to be inserted is 
highlighted in italics. 

Plasmid 
name 

Features / 
fusion parts 

Purpose 
Origin 
(reference) 

K40 

14x-His-tag 
ZZ-domain 
scSUMO-domain 
POI insert 
tst-tag 

Bacterial expression for large-scale 
production of recombinant proteins  
(construct for restriction cloning) 

LacO-pQLinkN 
[146] 

pNB666 

14x-His-tag 
bdSUMO-domain 
POI insert 
tst-tag 

Bacterial expression for large-scale 
production of recombinant proteins  
(construct for Gibson assembly) 

LacO-pQLinkN 
[146] 

pNB667 

14x-His-tag 
bdSUMO-domain 
POI insert 
tst-tag 
cysteine 

Bacterial expression for large-scale 
production of recombinant proteins with a 
C-terminal cysteine residue  
(construct for Gibson assembly) 

LacO-pQLinkN 
[146] 

pcDNA3.1(+) - 
Mammalian expression under CMV 
promotor 

Addgene 

pEGFP-N1 
POI insert 
EGFP 

Mammalian expression under CMV 
promotor with POI fused to the N-terminus 
of EGFP 

Addgene 

pIRES2-tst-
AcGFP1 

POI insert 
tst-tag 
/ 
AcGFP (not fused) 

Mammalian bi-cistronic vector for 
simultaneous expression of POI and the 
fluorescent protein AcGFP1 (not fused). 
Used for large-scale production of proteins 
in mammalian cells 

Clontech 
Laboratories 

pHen2_rest 

pelB 
POI insert 
9xHis-tag 
myc-tag 
EPEA-tag 
TEV-cleavage site 
phage pIII protein 

Phage display vector for use in restriction 
library. Derived from pHen2 including 
some modifications to facilitate cloning 
and processing of the expressed protein 
(see Figure 9). 

pHen2, kindly 
provided by [73] 

pHen2_ 
Gibson 

pelB 
21 bp region 
mCherry/POI insert 
21 bp region 
TEV-cleavage site 
3xFLAG-tag 
phage pIII protein 

Phage display vector for use in Gibson 
library, modified from pHen2_rest vector 
to increase cloning efficiency  
(see Figure 9). 

pHen2, kindly 
provided by [73] 

pUC19 
Control 
Vector 

only ampicillin 
resistance 

To test transformation efficiency of newly 
prepared competent bacteria 

NEBxpress, 
Ipswich, MA, USA 
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Figure 7: Main vectors for bacterial and mammalian expression systems used in the project. The vector pNB666 
served as a backbone for expression in bacteria using the inducible lac-promotor to drive protein expression. 
For overexpression in mammalian cell lines, the pEGFP-N1 vector was commonly used expressing the protein of 
interest (POI) fused to EGFP at the C-terminus. Sequences coding for the POIs were cloned into the vector using 
restriction and ligation enzymes or Gibson assembly. Alternative expression vectors depicted in Table 12 are 
based on the same backbones with the modifications given in the table. 
 

 

 

Restriction cloning 

Novel plasmids for protein expression were initially generated from the backbone vectors by 

enzymatic restriction cloning. First, the vector backbone was amplified by growing a culture of the 

respective bacterial stock overnight at 37 °C. Plasmids were isolated from the bacteria using GeneJET 

Mini Prep kit (Thermo Fisher Scientific) or NucleoBond® Xtra Midi kit (Machery-Nagel) and 

resuspended in ddH2O. 1.5 µg of the plasmid were mixed with required FastDigest™ restriction 

enzymes (Thermo Fisher Scientific) according to manufacturer’s instructions and incubated in 

1x FastDigest™ Buffer (total volume of 20 µl) for 1 h at 37 °C to linearize the vector. 

The DNA-insert to be cloned into the vector was amplified by PCR using specific primers introducing 

the respective restriction sites for cloning. Primers were generally ordered from Eurofins Genomics 

(Ebersberg, Germany) or Sigma-Aldrich (St. Louis, MO, USA) and used in the PCR reaction at a 

concentration of 5 µM. As a template for amplification, either an existing vector containing the 

fragment of interest or a de novo synthesized stretch of DNA (GeneScript, Nanking, China) was used. 

Nucleotides (pre-mixed, Thermo Fisher Scientific) were added to a final concentration of 4 mM. For 

DNA amplification, Phusion® High-Fidelity polymerase (New England Biolabs) was used according to 
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manufacturer’s instructions (15 sec elongation per 1,000 bp at 72 °C). Typically, 30 amplification 

cycles were performed; an exemplary PCR routine is depicted in Table 13.   

After PCR, both the amplified fragment and the linearized vector were loaded onto a preparative 2 % 

agarose gel (PeqLab) casted with 1xTAE buffer and mixed with Ethidium bromide solution (Carl Roth). 

After running at 90 V, the gel was illuminated by UV-light in an Amersham™ Imager 600 system to 

visualize the DNA-bands. The bands required for cloning were cut from the gel keeping the exposure 

to the UV-light to a minimum to avoid damaging the DNA.  

From the chunks of agarose, DNA was extracted by using the QIAquick® Gel Extraction kit (Quiagen). 

The eluted PCR-amplificate was digested with restriction enzymes as described above. For 

subsequent removal of the restriction enzymes, QIAquick® PCR purification kit (Quiagen) was used. 

Concentrations of the eluted DNA fragment and linearized vector were determined by absorption at 

260 nm in NanoDrop spectrophotometer. 50 ng of linearized vector were mixed with three- or 

seven-fold molar excess of the amplified PCR product. T4 DNA ligase and corresponding buffer (both 

Thermo Fisher Scientific) were added filling the mixtures to a final volume of 20 µl with nuclease-free 

water (Carl Roth). Control ligation was set up without adding PCR product. The ligation reaction was 

incubated overnight at room temperature and transformed into competent Escherichia coli bacteria 

as described below. 

 

 

Table 13: Typical PCR protocol used for DNA amplification. Steps 2-4 were typically repeated 30 times for 
quantitative amplification of the template DNA. 

Step Rationale Temperature Time 
1 double-strand denaturation 98 °C 3 min 
2 denaturation 98 °C 15 sec 
3 annealing 50-70 °C, depending on primers used 20 sec 
4 amplification 72 °C 15 sec per kbp 
5 final amplification 72 °C 5 min 

6 storage 4 °C ∞ 
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Gibson cloning 

During progression of the project, Gibson assembly was introduced as a more efficient and faster 

method for molecular cloning [147]. The enzymes required for Gibson assembly (T5-exonuclease, 

Phusion DNA polymerase, Taq DNA ligase) were produced and kindly provided by Dr. Steffen Frey 

(Nanotag Biotechnologies, Göttingen, Germany) in 2x reaction buffer, subsequently referred to as 

Gibson reaction mix. To generate new constructs, both backbone vector and insert were amplified by 

PCR as described above using specific primer with 21-bp overhangs. The overhangs were carefully 

designed not to form any hairpin or anneal unspecifically to any part of the plasmid sequence. The 

overhangs were designed to have an annealing temperature between 56 and 60 °C to allow specific 

base pairing during incubation. After amplification the PCR products were analyzed in a qualitative 

2 % agarose gel and purified with QIAquick® PCR purification kit (Quiagen) as described above. 

For the Gibson reaction 15 fmol of pure amplified vector were mixed with an equimolar amount of 

insert in a total volume of 2 µl. Another 2 µl of 2x Gibson reaction mix were added to the DNA and 

the reaction was incubated for 30 minutes at 48 °C. 1 µl of the mixture was diluted 1:20 in nuclease-

free water (Carl Roth) and directly transformed into competent bacteria as described below. 

 

2.2.2 Glycerol Stocks 
The ligated plasmids generated for protein expression were transformed into 50 µl DH5α™ 

Escherichia coli bacteria (α-Select Chemically Competent Cells, Bioline) by heat-shock in a water bath. 

Bacteria were thawed on ice, mixed with the ligation reaction and incubated in the water bath at 

42 °C for 35 sec followed by 3 minutes incubation on ice. 500 µl SOC medium were added to the 

bacteria and the transformation mixture was incubated at 37 °C for 1 h. 

After transformation, bacteria were grown overnight at 37 °C on LB-agar plates supplemented with 

either 50 µg/ml carbenicillin (an ampicillin analog) or kanamycin, depending on the gene construct. 

Next day, single colonies were picked and grown in 5 ml LB medium overnight at 37 °C. From those 

cultures, plasmids were isolated using GeneJET Mini Prep (Thermo Fisher Scientific) kit according to 

manufacturer’s instructions. Isolated plasmids were sent for sequencing to confirm successful in-

frame insertion of the DNA fragment. Typically, 1 µg of purified plasmid was sent to SeqLab, 

Göttingen, Germany for sequencing. 

Plasmids with correct insertion of the DNA were transformed into chemical competent E. coli 

expression stains as described above. Generally, NEBxpress bacteria (New England Biolabs) were 

used for cytosolic expression of proteins. For expression of nanobodies, which do require disulfide 

bond formation, SHuffle® express E. coli (New England Biolabs) were used. A culture of the re-

transformed bacteria was grown in LB medium at 37 °C overnight and stored at -80 °C after adding 

glycerol to achieve a final concentration of 40 %. 
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2.2.3 Bacterial Protein Expression and Purification 
Bacteria from the frozen glycerol stock were scraped with a sterile pipet tip and suspended into 

50 ml of LB medium supplemented with respective antibiotic. The culture was grown overnight at 

37 °C, 120 rpm and subsequently diluted 1:100 into Terrific Broth (TB) medium. Generally, 

250 or 500 ml cultures were grown at 30 °C, 120 rpm in baffled Erlenmeyer flasks with a capacity of 

two or five liters, respectively. OD600 was monitored using a NanoDrop™ Spectrophotometer 

(Thermo Fisher Scientific) in disposable plastic cuvettes (Sigma-Aldrich, St. Louis, MO, USA). When 

OD600 was >1, protein expression was induced by adding IPTG to a final concentration of 1 mM. The 

cultures were grown overnight at 25-30 °C, 120 rpm.  

On the next day, bacteria were harvested in centrifuge beakers for 20 minutes at 3200 ×g. The pellet 

was resuspended in lysis buffer (50 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 500 µg/ml 

lysozyme and 100 µg/ml DNaseI [both Sigma-Aldrich], pH 8.0). After incubation on ice for 20 minutes 

to degrade the cell wall and DNA, bacteria were lysed by ultra-sonication applying five times 

five pulses at 95 % with a Branson Digital Sonifier. Subsequently, cell debris was removed by 

centrifugation at 4 °C, 16,000 ×g for >1 h. The crude lysate was handled on ice and processed 

immediately to avoid protein degradation. To further clear the lysate it was filtered through 0.45 µm 

syringe top filter (Sartorius).  

 

For affinity purification of proteins from the lysate, an ÄKTApure25 HPLC system (GE Healthcare) was 

used in combination with different columns as depicted in Table 14. Generally, the lysate was loaded 

into a 50 ml super-loop to apply it on an affinity column for a first purification step. Elution was 

carried out by competitive binding using specific elution buffer (see Table 14). Purity of the eluted 

fractions was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE, see below). To further increase the purity of the eluted protein, polishing steps such as 

ion exchange and size exclusion chromatography were performed using the ÄKTA HPLC system. 

Protocols for HPLC operation were written using Unicorn 7.0.2 (GE Healthcare) and adapted 

individually for each purification step.  

Alternatively, proteins were purified using cOmplete™ His-Tag purification resin equilibrated with 

A500 buffer. Beads were incubated for 1-2 h with the crude bacteria lysate followed by three times 

washing with A500 buffer. For elution of bound proteins, B500 buffer was used. All steps were 

carried out on ice. The eluted protein was immediately desalted into PBS using the ÄKTApure25 HPLC 

to avoid protein precipitation due to high salt and imidazole concentrations. The purified protein was 

analyzed on a SDS-PAGE gel as described below.  
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To avoid any unspecific interaction evoked by the bdSUMO domain, the bdSUMO protease was 

produced as described above and added to cleave the desalted protein. The protease was generally 

incubated with the protein for >1 h at 4 °C. Subsequently, 5-20 µl cOmplete™ His-Tag purification 

resin was added to trap the fragment as well as uncleaved protein and the bdSUMO protease itself. 

After 30 minutes incubation at 4 °C, the supernatant containing the pure and cleaved protein of 

interest was processed. As a final step, all proteins were desalted in to PBS (see above), pH 7.4, snap-

frozen in liquid N2 and stored at -20 °C. 

 

 

Table 14: Compilation of methods and column types used for protein purification using the ÄKTA HPLC system. 
Typical buffer compositions and sample volumes are given. The final conditions for individual protein 
purifications were adjusted and optimized based on the parameters given below. Mostly, columns were 
purchased from GE Healthcare, Little Chalfont, UK (GE).  
Chromato-
graphy type 

Column used 
(manufacturer) Running buffer Elution buffer Sample 

volume 

Affinity  
(Step-tag) 

StrepTrap HP, 5ml 
(GE) 

50 mM HEPES 
150 mM NaCl 
1 mM EDTA 
pH 7.4 

Running buffer + 
7.5 mM desthiobiotin 

10-20 ml 
lysate 

Affinity  
(His-tag) HisTrap HP, 5ml (GE) 

50 mM HEPES 
150 mM NaCl  
30 mM imidazole 
1 mM EDTA 
pH 8.0 

Running buffer with 
500 mM imidazole 10 ml lysate 

Affinity  
(His-tag) 

Protino® Ni-NTA, 5ml 
(Machery-Nagel) 

50 mM HEPES 
150 mM NaCl  
30 mM imidazole  
pH 8.0 

Running buffer with 
500 mM imidazole 

10-20 ml 
lysate 

Anion 
exchange 

HiTrap Q HP 16/10, 
20 ml (GE) 

25 mM Tris/HCl 
50 mM NaCl 
pH 8.0 

25 mM Tris/HCl 
1 M NaCl 
pH 8.0 

5-10 ml 

Cation 
exchange 

HiTrap SP HP 16/10, 
20 ml (GE) PBS, pH 7.4 

PBS 
1 M NaCl 
pH 7.4 

5-10 ml 

Desalting HiTrap desalting, 5ml 
(GE) PBS, pH 7.4 PBS, pH 7.4 1.5 ml 

Desalting HiTrap desalting 26/10 
(GE) PBS, pH 7.4 PBS, pH 7.4 15 ml 

Size 
exclusion 

Superdex™ 75 
increase 10/300 GL 
(GE) 

PBS, pH 7.4 PBS, pH 7.4 500 µl 
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2.2.4 SDS PAGE 
For analysis of the protein fraction during purification, denaturing gel electrophoresis was performed 

as introduced by Schagger and von Jagow in 1987 [148]. The protein samples were mixed with 

2x SDS-PAGE sample buffer and subsequently boiled for 5-10 minutes at 95 °C and loaded on a 10 % 

denaturing Tris/Tricine polyacrylamide gel (see Table 15 for gel composition). The proteins were 

separated by using the Mini-PROTEAN Tetra Cell system for vertical SDS-PAGE generating a 

discontinuous buffer system (for buffer composition see Table 3). The gels were run for 

approximately 15 minutes at 90 V until the proteins entered the separation gel. Afterwards, the 

power was increased to 120 V for another 90 minutes or until the Coomassie Brilliant Blue R-250 was 

running out of the bottom of the gel.  

For visualization of proteins bands, the gel was incubated in SDS-PAGE gel staining buffer (for recipe 

see Table 3) for at least two hours or overnight followed by sequential washing in SDS-PAGE 

destaining buffer until protein bands became visible. The destained gels were imaged in an 

Amersham™ Imager 600 system for documentation. 

 

Table 15: Recipe for casting denaturing SDS-PAGE gels 

 Stacking Gel (1x) Separation Gel (1x) 

SDS-PAGE gel buffer (10x) 375 µl 1.675 ml 

ddH2O 925 µl 570 µl 

NF-Acrylamid/Bis-solution (30 %) 200 µl 1.667 ml 

50 % Glycerol - 1.060 ml 

10 % Ammonium persulfate (APS) 10 µl 25 µl 

Tetramethylethylenediamine (TEMED) 2 µl 3 µl 

 

2.2.5 Preparation of Competent Bacteria 
For several aspects of this project, transformation of competent bacteria was required. Those 

bacteria were amplified from commercially available stocks (see Table 16) and purified according to 

the protocols given below. For transfection of bacteria used for proteins expression, chemically 

competent bacteria were used for economic reason. For generation of phage-display libraries as 

described in section 2.2.15, electrocompetent bacteria were used to maximize the transformation 

efficiency. As the bacteria do not contain a plasmid, they do not possess any resistance against the 

antibiotics commonly used in the lab. Hence, all steps were carried out in sterile conditions if possible 

or after thorough cleaning with 70 % ethanol to avoid any contamination of the competent bacteria. 

Buffers and media used for preparation of the competent bacteria are listed in section 2.1.2. 
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Preparation of chemically competent bacteria 

The protocol for amplification of chemically competent bacteria was adapted from [149]. The stock 

of competent bacteria was streaked onto a LB-agar plate and incubated at 37 °C overnight. The next 

day, a single colony was picked with a sterile pipet tip and used to prepare an overnight liquid culture 

of 2.5 ml in LB medium at 37 °C and 120 rpm. That culture was used to inoculate 250 ml LB medium 

supplemented with 20 mM MgSO4.The culture was grown to OD600 = 0.6 in a baffled Erlenmeyer flask 

and subsequently harvested by centrifugation for 20 minutes at 3,200 ×g. The pellets were 

resuspended and pooled in 100 ml ice-cold TFB1 buffer. All following steps were carried out on 4 °C 

with pre-chilled laboratory equipment and plasticware. After incubation on ice for 5 minutes, 

bacteria were again pelleted for 20 minutes at 3,200 ×g, 4 °C. The pellet was gently resuspended in 

10 ml ice-cold TFB2 buffer avoiding pipetting and vortexing. The bacteria were incubated on ice for 

another 45 minutes and finally aliquoted into pre-cooled reaction tubes. After snap-freezing in liquid 

N2, bacteria were stored at -80 °C for up to 12 months. 

 

Preparation of electrocompetent bacteria 

A 10 ml overnight culture of the bacteria grown in LB at 37 °C, 120 rpm was diluted into 4 x 500 ml LB 

medium and grown in baffled Erlenmeyer flasks until OD600 reached 0.6. At that point, the culture 

was immediately cooled down in an ice-water bath and gently shaken for another 10 minutes. All 

following steps were performed on ice at an ambient temperature of 4 °C with pre-cooled laboratory 

equipment and plasticware.  

The culture was transferred to centrifuge beakers and harvested for 20 minutes at 3,200 ×g, 4 °C. The 

pellet was resuspended in 50 ml ice-cold sterile water by vigorous swirling. After resuspension, the 

culture was added to 500 ml ice-cold water and pelleted again as before. That washing procedure 

was repeated 3 times in total to remove all traces of bacterial medium. At each washing step, the 

pellets from individual beakers were combined to obtain one single pellet after the third washing. 

That pellet was again resuspended in 50 ml ice-cold water and mixed with 450 ml 10 % autoclaved, 

ice-cold glycerol. Next, the culture was pelleted and resuspended in 4 ml 10 % glycerol. From that 

resuspension, 50 µl aliquots were distributed in pre-cooled reaction tubes and immediately snap-

frozen in liquid N2. The aliquots were stored at -80 °C for a maximum of three months. 

To determine the final competency of the bacteria, 10 µg of the pUC19 Control Vector (New England 

Biolabs) were used in an electroporation reaction (see below). Dilution series of the transformed 

bacteria were plated on LB-agar and incubated overnight at 37 °C. The number of colony forming 

units (cfu) indicating the competency of the bacteria was calculated according to Equation 4 

indicated below. Typically, measured values for bacteria competency (colony forming units, cfu) were 

around 10-20 % of the value indicated by the manufacturer, which constitutes sufficient competency. 
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      cfu
µg plasmid

= number of colonies
10 pg

∗ 10
6pg
µg

∗ transformation volume[µl]
µl plated

 

Equation 4: Formula for estimation of colony forming units (cfu) per µg of transfected plasmid. The pUC19 
Control Vector was used in a test electroporation reaction to determine the competency of the amplified 
bacteria. The competency reached at least 10 % of the value indicated by the manufacturer, which reflects a 
good quality for electroporation. 
 

 

Table 16: Overview of competent Escherichia coli bacteria used in the project. Bacteria were purchased from 
manufacturer and subsequently amplified according to the protocols given above to increase the number of 
possible transformations. 
Strain Type Manufacturer 

NEB® Express Chemically competent New England Biolabs, Ipswich, MA, USA 

SHuffle® Express Chemically competent New England Biolabs, Ipswich, MA, USA 

DH5α™ Chemically competent Bioline, London, UK 

TG-1 Electrocompetent Lucigen, Middleton, WI, USA 

 

 

 

2.2.6 Cell-Line Culture and Transfection 
Round Menzel coverslips for cell culture with (15 mm diameter, <100 µm thick) were first cleaned in 

1 M HCl overnight followed by 1 h cleaning with 1 M NaOH. After washing thoroughly with deionized 

H2O, coverslips were stored in 70 % ethanol. Before seeding the cells, coverslips were flamed under 

sterile conditions and coated with 0.1 mg/ml poly-L-lysine (PLL) for 1 h followed by 3 washes with 

sterile H2O for 5 minutes. For this project, COS-7, HEK293 and PC-12 cells were used for IF 

experiments and HEK293-FT cells were used for production of recombinant antigens in mammalian 

cells. All cell lines were cultured in sterile polystyrene petri dishes (Ø 145 mm, CellStar) at 37 °C, 5 % 

CO2. The composition of different media is depicted in Table 5. When the confluence of the petri dish 

reached >80 %, the cell culture was split and seeded on coverslips pre-coated with PLL. For this, cells 

were washed once carefully with sterile PBS (Dulbecco’s PBS, Sigma-Aldrich) before applying 3 ml 

Trypsin/EDTA solution (Lonza) for two minutes to promote detaching of the cells. Trypsin was 

deactivated by adding 10 ml culture medium and cells were suspended into the medium by gentle 

pipetting. After centrifugation at 200 ×g for 4 minutes, the cell pellet was resuspended in 10 ml 

culture medium and seeded into the wells at a dilution of 1:100 – 1:250. Typically, after 12-16 h 

incubation at 37 °C and 5% CO2, seeded cells were transfected with plasmids to induce 

overexpression of proteins.  
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Per well, 1 µg of purified plasmid was mixed with 2 µl of Lipofectamin® 2000 reagent (Thermo Fisher 

Scientific) in 100 µl Opti-MEM™ (Thermo Fisher Scientific) and incubated for 20 minutes at room 

temperature. Afterwards, the mixture was carefully added dropwise onto the cells. The transfected 

cells were incubated for 8-16 h at 37 °C, 5 % CO2 and subsequently used for immunostaining 

experiments or protein purification. 

 

 

2.2.7 Immunostainings 
Cells growing on coverslips were first fixed in 12-well plates by incubation with 

4 % paraformaldehyde (PFA) dissolved in PBS for 45 minutes on an orbital shaker at 100 rpm. After 

fixation, PFA was aspirated and residual aldehyde was quenched by washing for 10 minutes with 

100 mM glycine, pH 7.4. To improve epitope accessibility, cells were permeabilized for 10 minutes 

using PBS-Tx buffer and subsequently blocked with PBS-BSA for 1 h, 100 rpm. All steps were carried 

out in a 12-well plate using 1 ml liquid for each step.  

For immunostaining, the primary antibody or nanobody was diluted accordingly into PBS-BSA and a 

100 µl droplet of that dilution was spotted onto a stripe of parafilm®. The coverslips were incubated 

upside down in a dark humidifying chamber. After 1 h, coverslips were washed 3 times with PBS 

followed by incubation with secondary antibody (if applicable) for 45 minutes as described above. 

After incubation with secondary antibody, the coverslips were washed 3 times with PBS and once 

with HS-PBS to remove unspecific binding. If performed, nuclear staining was conducted at this point 

by adding 1:5,000 Hoechst Solution in one of the washing steps.  

For mounting the samples, coverslips were carefully embedded in 10 µl Mowiol solution on a glass 

slide and dried overnight at room temperature in the dark. The samples were stored at 4 °C until 

imaging. 

 

 

2.2.8 Fluorescence Imaging 
To confirm binding of selected novel affinity probes and to detect their target antigen in biological 

contexts, different types of IF imaging were used. General binding of the probes was detected by 

epifluorescence microscopy. Confocal microscopy was subsequently used to analyze the cellular 

antigen in more detail. For detection of subcellular structures in high detail, STED-microscopy was 

used to achieve super-resolution imaging. 
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Epifluorescence 

For fast evaluation of novel affinity molecules or for high-throughput validation of nanobody 

candidates, a Nikon Ti-E epifluorescence microscope (Nikon Corporation) was used. For imaging, 

either an S plan fluor ELWD 40x 0.6 NA DIC N1 objective or a plan apochromat λ 60x 1.4 NA oil-

immersion objective was used. The microscope was equipped with an HBO-100W lamp and an IXON 

X3897 camera (Andor) and operated with the NIS-Elements AR software, version 4.60.00 (Nikon 

Corporation). 

Alternatively, an inverted epifluorescence Olympus IX71 microscope (Olympus Corporation) 

equipped with a 60x 1.35 NA oil-immersion objective, a 100W mercury lamp and an F-View II CCD 

camera (Olympus Corporation) was used. That system was operated by the Cell^P software (Olympus 

Corporation) and mainly used, if no high-throughput screening of nanobodies was required. 

 

Confocal and STED microscopy 

Confocal and STED images were acquired with a Leica TCS SP5 STED confocal microscope 

(Leica Microsystems) equipped with an HCX plan apochromat 100x 1.4 NA oil-immersion objective, 

operated by the Leica Application Suite Advanced Fluorescence software (Leica Microsystems). The 

fluorophores were excited with pulsed diode lasers (PicoQuant) at their corresponding wavelength. 

For multichannel image acquisition, laser lines were used as follows: Argon laser for excitation at 

488 nm (GFP), Helium-Neon laser for excitation at 543 nm (Cy3, mCherry) and a Helium-Neon laser 

for excitation at 633 nm (atto647N, Cy5, DyLight®650). The detection range was set by adjusting the 

AOTF filters of the microscope in operation software of the microscope. The STED depletion beam 

was generated using a Mai Tai Titanium Sapphire tunable two-photon laser (Spectra-Physics) pulsed 

at 80 MHz and 750 nm with an output power of 1.6 W. 

For confocal and STED images, 16 and 96 line scans were recorded, respectively, at 1,000 Hz scanning 

speed. Typically, images were composed of 1,024 x 1,024 pixels with a pixel size of 60.6 nm for 

confocal and 20.2 nm for STED images. The fluorescence signal was detected using photomultipliers 

for confocal and avalanche photodiodes (APD) for STED operation mode. Exemplary images displayed 

as results as well as corresponding control images were scaled equally. 

 

Multicolor STED microscopy 

For simultaneous detection of several fluorescent channels in STED mode, an inverse 4-channel 

easy3D STED setup (Abberior) was used. The setup was composed of an Olympus IX83 microscope 

body equipped with a plan apochromat 100x 1.4 NA oil-immersion objective (Olympus Corporation) 

and an EMCCD camera (Andor). Fluorescence excitation lasers (Abberior) pulsed at 40 MHz were 

utilized for the excitation lines 488 nm (GFP), 561 nm (Abberior Star580) and 640 nm (atto647N). For 
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depletion of the fluorescence signal of the Star580 and atto647N dyes, a 775 nm STED laser 

(Abberior) pulsed at 40 MHz with an output power of 1.250 W was applied. Both confocal and STED 

signal was detected using APD detectors (Abberior) in predefined channels. The operation of the 

setup and the recording of images were performed with the Imspector software, version 0.14 

(Abberior). 

 

2.2.9 Protein Purification from Mammalian Cell Lines 
For validation of nanobody specificity, antigens were also expressed in mammalian cells to mimic the 

interaction of the nanobodies to their antigens under native conditions. HEK293-FT cells transfected 

with the recombinant protein of interest were grown in round petri dishes (Ø = 145 mm) as 

described above for 24-36 h or until no further increase in confluency could be observed. Per plate, 

700 µl of ice-cold cell lysis buffer freshly supplemented with 1 µg/ml DNAse, 10 µg/ml aprotinin, 

10 µg/ml leupeptin, 1 µg/ml pepstatin A, 100 µM PMSF (all Sigma-Aldrich) and 0.1x Protease 

Inhibitor Cocktail (Roche) were added. The cells were suspended in the dish using a sterile cell 

scraper handling everything on ice. Afterwards, the suspension was transferred to a sterile 1.5 ml 

reaction tube and incubated on ice for 45 minutes with occasional vortexing. Next, cells were 

disrupted by sonication on ice using the Branson Sonifier at 70 % power, 5 pulses of 3 sec each 

followed by another incubation on ice for 15 minutes. Subsequently, cell debris was removed by 

centrifugation for 45 minutes at 4 °C, 16,000 ×g. The supernatant containing the soluble cell lysate 

was snap-frozen in liquid N2, unless it was purified further. 

For purification of tst-tagged recombinant proteins from mammalian cell lysates, StrepTactin® Spin 

Columns (IBA) were used according to instructions of manufacturer. The quality of the purification 

was analyzed by SDS-PAGE as described above. 

 

 
2.2.10 Primary Neuronal Culture  

Primary hippocampal neuron cultures used in this project were cultured according to Kaech and 

Banker [141]. P1-P2 rats were decapitated and the brains were removed. Before starting the 

neuronal culture, glia cells prepared from cortex were seeded directly into 12-well cell culture plates 

in glial medium (see Table 5). To obtain primary neurons, hippocampi were extracted and pooled in 

HBSS (Thermo Fisher Scientific) followed by enzymatic digestion in hippocampi digestion solution 

(see Table 3) for 1 h at room temperature. After washing with Neurobasal-A medium (Thermo Fisher 

Scientific), hippocampi were incubated for 15 minutes with enzyme inactivation solution (for recipe 

see Table 3). After another washing step with Neurobasal-A, cells were dissociated by gentle 

pipetting.  
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Glass coverslips for culturing were cleaned with nitric acid and coated with 1 mg/ml PLL. A few small 

paraffin dots on the coverslips were added to ensure spatial separation of the two cultures. Around 

30,000 neurons were seeded per coverslip to obtain low-density facilitating the analysis of individual 

synapses. Typically, neurons were seeded four days after the glia preparation with the cells facing 

each other. The culture medium was replaced by neuronal maintenance medium and incubated at 

37 °C, 5 % CO2 in a cell culture incubator as described by Kaech et al. [141]. Approximately 12-18 days 

after preparation, neurons on coverslips were used for IF experiments. 

 

2.2.11 Brain Slice Preparation 
Brain slices were prepared from adult (6-8 weeks old) Wistar rats, by perfusion with PBS to remove 

blood, followed by 4 % PFA in PBS for fixation. The brains were removed from the skull and incubated 

in 4 % PFA in PBS at 4 °C overnight. On the following day, the brains were transferred to a solution of 

30 % sucrose in PBS on 4 °C until they sank to the bottom of the solution, before freezing and storing 

them at -80 °C until sectioning. For that, the brains were cut into 30-35 µm thick slices on a Leica 

CM1850 cryotome. 

 

 

2.2.12 Tissue Isolation 
To test the binding specificity of my selected nanobody candidates, I isolated various tissues from an 

adult mouse to perform qualitative binding assays. An adult mouse was anaesthetized and killed by 

CO2 gas and different tissue samples (heart, muscle, liver, testis and brain) were carefully dissected. 

The brain was further dissected to obtain isolated fractions of the hippocampi, cerebellum and 

cortex. All tissues were immediately put in ice-cold PBS supplemented with 1 mM EDTA to block 

protease activity. The tissues were homogenized using a motor-driven glass-Teflon homogenizer 

(17 ml with 0.1–0.15 mm clearance; Omnilab) at 900 rpm, 30 strokes and subsequently directly snap-

frozen in liquid N2. For usage in binding assays, the total protein concentration of each tissue sample 

was determined by Novagen® BCA Protein Assay kit (Merck). 
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2.2.13 Western Blotting 
For testing the nanobody binding specificity in a biochemical context and to compare nanobody 

performance to conventional antibodies, Western blotting was used. Typically, 30-50 µg of 

mammalian cell lysate (see section 2.2.9) were loaded onto a 10 % SDS-PAGE gel (see section 2.2.4) 

and subsequently transferred to a 0.2 µm nitrocellulose membrane by wet Western blotting. For 

that, a Trans-Blot® Cell system (BioRad) filled with WB transfer buffer was used. Transfer to the 

membrane was typically carried out at 400 mA for 2.5 h. The membrane was then blocked for 1 h 

with PBS-T/milk, and subsequently incubated with the directly fluorescently labeled nanobody or a 

primary antibody plus labeled secondary antibody for detection in 5 % milk/PBS-T. The following 

steps were done as described in section 2.2.7. The membrane was finally imaged in an Amersham™ 

Imager 600. 

 

 

2.2.14 Animal Immunization 
 

White blood cell isolation 

To generate a biological repertoire of target-specific antibodies, an alpaca (vicugna pacos) was 

immunized with a mixture of purified protein produced in bacteria. Modified versions of the three 

SNARE proteins SNAP-25, syntaxin 1A and VAMP2 (see Figure 8) were mixed with incomplete 

Freund’s adjuvant and injected into the animal (performed by preclinics GmbH, Potsdam, Germany). 

In total, six injections containing each 300 – 500 µg purified protein were given to the animal at an 

interval of 7 days. 5 days after the last injection, 50 ml of blood were drawn and directly processed 

by preclinics to isolate the white blood cells. A discontinuous Ficoll-gradient was used to separate the 

white blood cells from the serum by ultracentrifugation. Afterwards, the isolated cell preparation 

was mixed with ice-cold RNAlater® and immediately shipped to Göttingen where it was directly 

processed to avoid any degradation of the RNA.  

After several months, the same alpaca was again immunized once with 500 µg of the same mixture 

of proteins to trigger its adaptive immune response. After 5 days, 50 ml blood were taken and 

processed as described before to isolate RNA from the memory B cells. This immune-boost was 

expected to evoke the production of highly specific affinity probes generated by the animal. Due to 

the immunological memory and somatic hypermutation of antibodies, the obtained antibody 

sequences are expected to contain a new set of specific binders [150]. 
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Figure 8: Schematic and cartoon model of recombinant antigens used for immunization. The cysteine moieties 
of wild-type (wt) SNAP-25 were mutated to serine residues to facilitate recombinant production of the full 
protein. Syntaxin 1A and VAMP2 were produced and injected into the animal lacking the hydrophobic 
transmembrane (TM) domain as that domain is not accessible for affinity probes in IF under native conditions. 
The position of the TM domains and the SNARE motifs are marked in grey. Structure models were created with 
PyMOL based on deposited data from the Protein Data Bank. The accession numbers are: 1kil (SNAP-25), 1ez3 
(syntaxin 1A) and 1n7s (VAMP2). 

 

RNA-extraction 

Before starting with the RNA preparation from white blood cells, all surfaces and required lab 

equipment were cleaned with RNaseZAP™ (Sigma-Aldrich). Common disposable plasticware was 

replaced by sterile, RNase-free reaction tubes and pipet tips (STARLAB, Hamburg, Germany) for the 

time of the preparation. 

For isolation of RNA, the RNeasy® Mini kit (Quiagen) was used. To avoid saturation of the columns, a 

total of 10 spin columns were used in each preparation. The optional on-column digestion with 

DNAse described in the manual was performed to avoid contamination of genomic DNA. The 

extracted RNA was dissolved in nuclease-free water and snap-frozen in liquid N2 for complementary 

DNA (cDNA) synthesis and nanobody library preparation. 

 

 

2.2.15 Nanobody Library Construction 
From white blood cell RNA, nanobody sequences were extracted to build recombinant libraries for 

affinity selection of nanobodies. As this was established de novo in the lab, several optimization steps 

were needed. Below the workflow to generate the final libraries used in this project is shown. All PCR 

reactions were set up as described in section 2.2.1 using Phusion® polymerase (New England Biolabs) 

unless specified otherwise. 

Nanobody sequences were either cloned into the target vector by restriction cloning or Gibson 

assembly, resulting in different libraries with different biochemical properties. 
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Restriction library 

20 µg total RNA were reverse-transcribed into cDNA using SuperScript™ III One-Step RT-PCR kit 

(Thermo Fisher Scientific). Instead of random hexamer primers, specific primers annealing to the 

conserved nanobody framework (forward) and hinge region (reverse) were used. As the heavy-chain 

IgG2 and IgG3 subtypes differ in composition of their hinge region, two different reverse primers 

were used simultaneously. Table 17 shows the sequence of the primers used highlighting the sites 

introduces for restriction cloning. The forward primer introduces two different hexameric restriction 

sites (NcoI and PstI) to bypass loss of sequence diversity if one of the restrictions sites also 

coincidentally is present in the nanobody sequence. In contrast, the reverse primers only possess a 

NotI - restriction site, as this enzyme cuts at an octameric palindromic stretch of DNA, which is very 

unlikely to occur elsewhere in the nanobody sequence. The primer sequences were modified from 

Olichon et al. [85].  

The optimal annealing temperature was determined for each amplification attempt by gradient PCR 

(58 – 68 °C annealing) in Mastercycler® Gradient thermocycler and found to be 61 °C for 

Alp_F1+/Alp_R1+ and 65 °C for Alp_F1+/Alp_R2+. After 40 cycles of amplification by PCR, the cDNA 

was purified from a preparative 2 % agarose gel using QIAquick® Gel Extraction kit (Quiagen). The 

eluted DNA was pooled and divided in two tubes where it was either digested with NcoI/NotI or 

PstI/NotI FastDigest restriction enzymes (Thermo Fisher Scientific) for 3 h at 37 °C and subsequently 

cleaned from restriction enzyme using QIAquick® PCR purification kit. 

In parallel, the phagemid vector (see also Figure 9) to generate the restriction library was amplified 

and purified as described in 2.2.1. 50 µg of the purified vector were digested with NcoI/NotI or 

PstI/NotI for 2 h at 37 °C. After that, 2 ml of FastAP /Thermo Fisher Scientific) were added and the 

mixture was incubated for another 2 hour at 37 °C. The digested phagemid was purified in a 

preparative 2 % agarose gel using QIAquick® Gel Extraction kit (Quiagen) and reconstituted in 

nuclease-free water. The vector was mixed with the insert at a molecular ratio of 1:3 and ligated 

overnight using T4 ligase (Thermo Fisher Scientific) as described before. 

 

Table 17: Primers used for generating nanobody library by restriction cloning. Sequences are depicted from 5’ 
to 3’ end. Additional base pairs are added to the 5’ end to facilitate cleavage by restriction enzymes. 
Palindromic sites for restriction are highlighted, complementary regions annealing to the nanobody sequences 
are underlined in red. 
Sequence (5’ to 3’) Name Type Restriction 

attaCCATGGCTGCAGAGKTGCAGCTCGTGGAGTCNGGNGGAGGC Alp_F1+ Forward NcoI / PstI 

attattattcagattattagtGCGGCCGCCACTAWTGGGGTCTTCGCTGTGGTGCG Alp_R1+ Reverse NotI 

attattattcagattattagtGCGGCCGCCACTAGTTTGTGGTTTTGGTGTCTTGGG Alp_R2+ Reverse NotI 
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Gibson library 

In later stages of the project, I decided to generate another nanobody library by Gibson assembly to 

increase cloning efficiency and thus, nanobody diversity. That library was generated from novel RNA 

obtained after boosting the alpaca’s immune response (see above). 20 µg of total RNA were 

transcribed into cDNA using the SuperScript™ IV First-Strand Synthesis System. The primers used 

were adapted from [67] or designed de novo and are depicted in Table 18. In total, a three-step 

nested PCR was performed. In a first step, parts of the variable chain of the overall IgG repertoire 

were amplified using the Call001/Call002 primer set. In a second PCR, overhangs for Gibson assembly 

were introduced to primers specifically binding to the nanobody framework and hinge regions. A 

variety of degenerated primers was used to encounter for biological variety of the genetic code in 

the constant region of the nanobody sequence. As a final step, the sequence repertoire was 

amplified using the primer set Gibson1/Gibson2 (see Table 18) to increase the efficiency of 

subsequent Gibson assembly. An overview on the subsequent PCR steps is shown in Table 19 and 

Figure 13. Between individual steps and after the final PCR, the amplified DNA was purified by 

QIAquick® PCR purification kit (Quiagen). The quality of each amplification step was controlled by 

running 2 µl of the PCR products on a qualitative 2 % agarose gel imaged with an Amersham™ 

Imager 600. Optimal annealing temperatures for nested PCR steps were determined empirically by 

gradient PCR in a Mastercycler® Gradient thermocycler as described above. 

For generation of the Gibson library, the pHen2 phagemid was modified to contain the overhang 

sequences used to amplify the nanobody repertoire. Moreover, the vector size was minimized to 

increase the efficiency of subsequent transformation. The template phagemid used further contains 

the fluorescent protein mCherry at the foreseen position of the nanobody. The expression of the red 

mCherry protein allows to identify colonies without a nanobody insert and hence to monitor cloning 

efficiency. A schematic view of the pHen2_Gibson vector is shown in Figure 9. The vector was 

amplified by PCR (30 cycles, annealing at 55 °C) using the primer set Gib_vec_f/Gib_vec_rv depicted 

in Table 18. The linear PCR product was cut from a preparative 2 % agarose gel using the QIAquick® 

Gel Extraction kit (Quiagen). A total of 1.5 µg amplified pHen2_Gibson vector was mixed with an 

equimolar amount of nanobody PCR product. Cloning of the nanobody sequences into the vector was 

done as described in section 2.2.1, except the ligation mixture was not diluted before transformation 

to maintain high sequence diversity.  
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Figure 9: Vectors generated and used to create phage display libraries. Segments relevant for cloning and 
molecular engineering are highlighted in color and depicted below the vector map. The pHen2_rest vector was 
originally used as a phagemid for generation on nanobody libraries based on restriction cloning. For generation 
of libraries by Gibson assembly, the pHen2_Gibson vector was designed. 
 

 

 

Table 18: Overview of primers used for the generation of nanobody libraries by Gibson assembly. The 
overhangs for Gibson assembly are highlighted in green, complementary regions annealing to the nanobody 
sequences are underlined in red. The nanobody inserts were successively used as a template for the next PCR 
reaction indicated in the rightmost column. 
Sequence (5’ to 3’) Name Type Template 

GTCCTGGCTGCTCTTCTACAAGG Call001 Forward cDNA 

GGTACGTGCTGTTGAACTGTTCC Call002 Reverse cDNA 

TCTGGTGATGCATCTGACAGCGAGGTGCAGCTGSWGGAGTCTGG F1_Gibson Forward product PCR 1 

GTTTTCCCCAGTGGATCCAGAACTAWTAGGGTCTTCGCTGTGGTGC R1_Gibson Reverse product PCR 1 

GTTTTCCCCAGTGGATCCAGAAGTTTGTGGTTTTGGTGTCTTGGG R2_Gibson Reverse product PCR 1 

TCTGGTGATGCATCTGACAGC Gibson_for Forward product PCR 2 

GTTTTCCCCAGTGGATCCAGA Gibson_rev Reverse product PCR 2 

TCTGGATCCACTGGGGAAAAC Gib_vec_f Forward phagemid 

GCTGTCAGATGCATCACCAGA Gib_vec_rv Reverse phagemid 
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Table 19: Nested PCR steps for cDNA amplification to clone into Gibson library. The number of cycles for each 
PCR reaction is given together with the corresponding annealing temperature (Tanneal) optimized for the 
respective primer set. 

Step Rationale Primers used PCR cycles, Tanneal 

1 Amplification of total IgG repertoire Call001 + Call002 8 cycles, 60 °C 

2 Amplification of nanobody sequences and 
introduction of overhangs for Gibson assembly 

F1_Gibson + 
R1_Gibson/R2_Gibson 

3 cycles, 63 °C, 
5 cycles, 68 °C 

3 
Final amplification to increase quality of PCR 
product as long primers from step 2 result in 
low cloning efficiency 

Gibson_for + 
Gibson_rev 

3 cycles, 58 °C, 
15 cycles, 60 °C 

 

 

Both libraries generated by enzymatic restriction cloning and Gibson assembly were cloned into 

electrocompetent E. coli TG-1 bacteria (Lucigen) freshly prepared as described in section 2.2.5. The 

ligation mix was divided into several individual reactions to ensure transformation efficiency and to 

avoid saturation of the bacteria electroporation capacity. Typically, 30-50 transformations using up 

to 100 ng ligated DNA per reaction were carried out to generate one library. The DNA was gently 

mixed on ice with an aliquot of freshly prepared TG-1 bacteria and transferred to an electroporation 

cuvette (BioRad) with a gap size of 1 mm. The optimal conditions for electroporation were 

determined empirically in previously performed test ligations. For the electroporation reactions to 

generate the library, a capacity of 25 µF and a resistance of 400 Ω were used at a voltage of 1.25 kV. 

To monitor the electroporation efficiency, the time constant for each individual reaction was 

monitored. Only reactions resulting in values higher than 9 (instrument scale ranging from 1 to 10) 

were used in subsequent steps (typically, 95 % of all reactions would meet that criterion indication 

successful electroporation).  

Immediately after electroporation, 500 µl Recovery Medium (Lucigen) were added and the culture 

was incubated for 1 h at 37 °C, 500 rpm. Subsequently, all transformation reactions of one library 

were pooled and plated on LB-agar containing 100 µg/ml ampicillin in 16 square bioassay dishes 

(245 x 245 mm, Sigma-Aldrich). Dilution series of the transformed bacteria were plated to estimate 

total colony numbers reflecting library diversity. The bacteria were incubated overnight at 37 °C and 

next day scraped off the agar using LB medium and pelleted for 15 minutes at 4000 ×g. The pellet 

was resuspended in 20 ml LB and glycerol was added to a final concentration of 25 %. Finally, the 

library was aliquoted in 2 ml fractions, snap-frozen in liquid N2 and stored at -80 °C. 
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2.2.16 Phage Display 
To identify those nanobodies, which specifically bind to the target antigen of interest, molecular 

display of the nanobodies on lysogenic M13 phages was established in the laboratory [151]. This 

method directly links the biochemical properties of the expressed nanobody to its genetic code 

encapsulated in the phage. The nanobody is expressed as a fusion protein with the phage minor coat 

protein pIII, which is also used by the phage for infection. Each phage possesses five copies of the pIII 

protein controlling the number of displayed nanobodies. Most steps for phage display were 

determined empirically, however during the progression of this project, also several protocols 

describing similar approaches became available [67,152–154]. 

Generally, the phage display procedure can be divided into 3 parts: Phage production, binding of 

phages to the target protein and finally elution of specifically bound phages. A full cyclic repetition of 

these steps is commonly referred to as one panning round as depicted in Figure 10. To avoid 

contamination of common bacteria used in the lab, especially the competent bacteria stocks, all 

steps involving handling of bioactive phages were carried out in separate rooms or under the fume 

hood. 

 

 

Helper Phage Preparation 

Before starting the actual phage display selection, MK13KO7 Helper Phages (NEB) were amplified for 

further use during panning rounds as described by Lee et al. [154]. An overnight culture of TG-1 E. 

coli bacteria in 5 ml 2-YT medium was diluted 1:100 into 5 ml fresh 2-YT medium and grown at 37 °C 

until OD600 reached ≈ 0.5. A serial dilution of MK13KO7 Helper Phages ranging from 104 to 1012 

phages/ml was prepared in PBS. 10 µl of those dilutions were added to 200 µl TG-1 culture each and 

incubated at 37 °C in a water bath for 30 minutes. Each reaction was carefully mixed with 3 ml top-

agar at 42 °C and poured on 2-YT agar plates. After solidification, plates were incubated overnight 

at 37 °C. Plaques in the top-agar indicated locations of phage-production. One plaque was picked 

with a sterile pipet tip and used to infect a 5 ml culture of TG-1 bacteria at OD600 ≈ 0.5. After 2 h 

at 37 °C, 120 rpm, the culture was expanded to 500 ml 2-YT medium supplemented with 50 µg/ml 

kanamycin and grown overnight in a baffled Erlenmeyer flask at 30 °C, 120 rpm. Next day, the culture 

was pelleted in disposable 50 ml tubes and the supernatant was filtered through 0.45 µg syringe-top 

filters (Sartorius). PEG-8000 was added to a final concentration of 4 % (w/v) to precipitate the phages 

from the supernatant (see below for detailed description). The phage titer was estimated by 

measuring absorbance at 260 nm (A260) and using the empirical Equation 5 postulated by 

Lee et al. [154].  
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phages

ml = A260 ∗ dilution factor ∗ 22.14 ∗ 1010 

Equation 5: Formula to determine the phage titer after precipitation of phage particles. As phages contain a 
substantial amount of DNA, the absorbance at 260 nm (A260) can be used to measure their concentration. The 
multiplier of 22.14 x 1010 is an empirical value determines by Lee et al. [154]. 
 

 

Production of phages 

An aliquot of the frozen library was diluted into 500 ml 2-YT medium supplemented with 4 % glucose 

and 100 µg/ml ampicillin. The culture was grown in a baffled Erlenmeyer flask to OD600 ≈ 0.5 at 37 °C, 

120 rpm. Thereupon, 2 x 1012 helper phages were added to achieve a multiplicity of infection 

(MOI, i.e. ratio of total phages to bacteria) higher than 10, thus maximizing phage infection 

efficiency. For the first round of panning, commercially obtained hyperphages M13 K07ΔpIII were 

used to generate multivalent display of the nanobody. For infections in subsequent panning steps, 

classical MK13KO7 Helper Phages were used, which had been amplified as described above. The 

infected culture was incubated another 45 minutes at 37 °C, 30 rpm. After that, bacteria were 

pelleted in disposable 50 ml tubes for 10 minutes at 3,200 ×g. The bacteria pellet was resuspended in 

500 ml 2-YT medium supplemented with 100 µg/ml ampicillin and 50 µg/ml kanamycin. The culture 

was grown overnight at 30 °C, 120 rpm in a baffled Erlenmeyer flask.  

The next day, bacteria were pelleted again and discarded. To the supernatant containing the phages 

secreted from the bacteria, PEG-8000 was added to a final concentration of 4 % (w/v). The mixture 

was incubated for at least 2 h on ice to precipitate the phages. The phages were pelleted by 

centrifugation for 30 minutes at 4 °C, 3200 ×g in 50 ml tubes and resuspended in ice-cold PBS. After 

pooling all pellets, phages were again precipitated by adding to 4 % PEG-8000 for 1 h on ice in a 

single 50 ml tube to obtain a single phage pellet. After another centrifugation for 30 minutes at 4 °C, 

3200 ×g, the phage pellet was dissolved in 2 ml PBS. To remove insoluble debris, the phages were 

centrifuged for 5 minutes at 3200 ×g without prior adding of PEG. The supernatant containing the 

phages was filtered through a 0.45 µm syringe-top filter (Sartorius) to remove remaining particles. 

The phage titer was estimated by measuring absorbance at 260 nm and using the empirical 

Equation 5 given above. 
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Antigen immobilization 

Purified protein prepared as described in the sections 2.2.3 and 2.2.9 was either immobilized 

unspecifically on MaxiSorp® flat-bottom 96-well plates (Thermo Fisher Scientific) or via the tst-tag on 

MagStrep “type3” XT beads (IBA). Typically, 3 – 10 nmol of antigen per affinity selection were 

immobilized. The amount of antigen was gradually reduced during subsequent pannings to increase 

the stringency of the selection (see also Table 22). For immobilization, the antigen was incubated for 

1 h with the matrix in PBS-T. Unbound protein was removed by washing twice with PBS-T. If the 

antigen was immobilized on plates, free binding sites on the plastic of the plate were blocked with 

PBS-T/milk.  

 

Affinity selection 

Purified phages were incubated with the immobilized antigen for 2 h. Unbound phages were 

removed and the beads/wells were washed with PBS-T. The total number and individual duration of 

the washing steps was increased during subsequent panning rounds, to select for nanobodies with a 

high affinity as shown in Table 22. For selections yielding final nanobody candidates, up to 10 

washing steps with of up to 4 h were performed. To elute bound phages after washing, 100 µg/ml 

trypsin in TBSC were used to disrupt the interaction between the antigen and the affinity molecule by 

enzymatic degradation. Alternatively, the whole phages were eluted specifically from the magnetic 

beads using BE Strep-Tactin® Elution Buffer (IBA). Elution was carried out for 1 h with gentle mixing 

of the reaction. The eluted phages were subsequently used to infect a freshly prepared culture of 

TG-1 bacteria to perform the next panning round. 

 

Reinfection of bacteria culture 

TG-1 bacteria were grown on M9 minimal medium glucose plates without antibiotics for 36 hours at 

37 °C. The minimal medium contains only amino acids essential for the bacteria. This way the 

bacteria are forced to express the genes required for synthesis of proline and other amino acids. 

Those genes are located on the same episome as the F’-pilus of the bacteria, which is required for 

docking and infection of phage particles. Hence, growing the bacteria on M9 minimal medium makes 

them susceptible for phage infection. From the plate a single colony was used to grow a liquid 

culture of TG-1 bacteria in 50 ml 2-YT medium at 37 °C.  

The phages eluted from the affinity selection were added to the TG-1 bacteria and incubated for 1 h 

at 37 °C, 30 rpm. The bacteria were pelleted and resuspended in 1-2 ml of 2-YT medium and 

distributed onto LB-agar plates supplemented with 100 µg/ml ampicillin. Additionally, a serial 

dilution of the infected culture was plated to estimate the total number of infected colonies and 

monitor the progress of selection. The plates were incubated at 37 °C overnight. The following day, 
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bacteria were scraped off the agar using 2-YT medium and diluted into 500 ml 2-YT medium total. 

That culture was supplemented with 4 % glucose and 100 µg/ml ampicillin and grown in a baffled 

Erlenmeyer flask for the next panning round as described above. 

 

 

 

 
Figure 10: Schematic representation of the phage display procedure. Phages were produced by growing the 
library in 2-YT medium overnight infecting the culture with helper phages. Phages displaying different 
nanobodies were purified by precipitation and selected for affinity to an immobilized target antigen. Bound 
phages were eluted and used to infect a new bacteria culture for the next round of affinity selection, a 
procedure also referred to as biopanning. After the final panning round, individual nanobody populations 
displayed on phages were isolated for a subsequent validation procedure. 
 

 

Screening of individual clones by ELISA 

After 2-3 rounds of panning, individual colonies from re-infected TG-1 bacteria were screened by 

soluble fragment ELISA to identify nanobody families. 80 single colonies were picked from plated 

dilution series using sterile pipet tips and dipped into the wells of a 96-well round-bottom plate filled 

with 200 µl 2-YT medium supplemented with 100 µg/ml ampicillin. The remaining wells were used 

for internal controls during subsequent screening procedure. Cultures were grown at 37 °C, 120 rpm 

overnight in a humidifying chamber to avoid evaporation of the medium. On the next day, a 

duplicate of the plate was created using 5 µl bacteria from the overnight cultures. The cultures of the 

original plates were added to 20 % glycerol and frozen at -80 °C for storage. The new plate was 

grown at 37 °C, 120 rpm for 3 h followed by infection with MK13KO7 Helper Phages at a MOI of >10. 

For infection, the plate was incubated 1 h at 37 °C, 30 rpm. Infected cultures were pelleted in the 

plate for 15 minutes at 3,200 ×g. Pellets were resuspended in 200 µl fresh 2-YT medium 

(supplemented with 100 µg/ml ampicillin and 50 µg/ml kanamycin) and phages were produced 

overnight at 30 °C, 120 rpm in a humidifying chamber.  
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On the following day, bacteria were pelleted as before and the supernatant containing the 

monoclonal phages was transferred to a clean 96-well plate. The antigen used during the affinity 

selection was immobilized using a MaxiSorp® flat-bottom 96-well plates (Thermo Fisher Scientific) as 

described above. Free binding sites on the plastic of the plate were blocked carefully by incubation 

with PBS-T/milk overnight to avoid false-positive results due to background binding of the phages. 

Per well, 25 µl of the phage supernatant mixed with 75 µl PBS-T/milk were transferred in the antigen-

coated wells and incubated for 1 h, 100 rpm. The wells were washed 3 times 10 minutes with PBS-T. 

To detect the bound phages, an antibody directed against the phage major coat protein pVIII 

conjugated to horseradish peroxidase (HRP, obtained from GE Healthcare) was used at 1:5000 

dilution in PBS-BSA. After 1 h incubation, 100rpm, wells were washed 3 times for 10 minutes with 

PBS-T. To detect binding, 100 µl of 1-Step™ Ultra TMB-ELISA Substrate Solution (Thermo Fisher 

Scientific) were added to each well. The plate was incubated until dark blue color developed in 

positive control wells. At that point, the reaction was stopped by adding 50 µl of 1 M sulphuric acid 

to each well. The absorbance at 430 nm was read in a Cytation-3 Multi-Mode Reader (BioTek). 

Specific binding of the displayed nanobody was considered if the readout was at least 10-fold over 

the background signal. Positively tested candidates were subjected to a stepwise validation 

procedure to further validate specific binding of the nanobody. 

 

 

2.2.17 Validation and Characterization of Nanobody Candidates 
For positively tested wells, an overnight culture in 5 ml 2-YT medium was grown (37 °C, 120 rpm) 

from the glycerol stock plate stored at -80 °C. The phagemids were extracted using the GeneJET Mini 

Prep kit (Thermo Fisher Scientific) and sent for sequencing (SeqLab, Göttingen). The sequences 

obtained were grouped into families according to their CDR-composition. Identification of the 

conserved nanobody framework was based on consensus data provided in the literature [155]. One 

nanobody sequence of each family was then extracted by PCR and cloned into an expression vector 

(K40 or pNB666, see section 2.2.1) for cytosolic expression of the nanobody in SHuffle® Express 

bacteria. A FLAG-tag was fused to the nanobody to allow detection by secondary antibodies in the 

following validation steps which are depicted in section 3.3.2. 
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Validation in dot blot 

For a first validation step of the nanobody candidates, up to 1 µg of the purified antigens was spotted 

on a 0.2 µm nitrocellulose membrane for a dot blot assay. After blocking for 1 h with PBS-T/milk, the 

membranes were incubated with crude lysate from bacteria overexpressing the nanobody, prepared 

as described in section 2.2.3 for 1 h, 100 rpm. After 3 washes with PBS-T, bound nanobodies were 

detected with a secondary Anti-DDDDK tag antibody conjugated to DyLight®650 (Abcam, clone M2) 

for 1 h, 100 rpm in PBS-BSA. After 3 washes with PBS-T, the signal was detected in Amersham™ 

Imager 600.  

 

Validation in IF 

To test whether selected nanobody candidates do not only bind the native but also the chemically 

fixed antigen, the crude lysate containing the nanobody was incubated on COS-7 cells overexpressing 

the target antigen fused to EGFP (see section 2.2.6). The cells grown on coverslips were fixed, 

quenched permeabilized and blocked as described in section 2.2.7 before incubation. After 3 PBS 

washes, Anti-DDDDK tag antibody conjugated to DyLight®650 (Abcam, clone M2) was used at a 

dilution of 1:500 to detect bound nanobodies. Alternatively, COS-7 cells were directly grown and 

handled on 48-well glass bottom plates and automatically imaged with a Nikon Ti-E epifluorescence 

microscope or Cytation-3 Multi-Mode Reader. If the fluorescent signal of the secondary antibody was 

clearly colocalizing with the EGFP signal without notable background signal, the nanobody was 

identified as a positive candidate. Those candidates were considered to be suitable for IF 

experiments and were expressed again in large scale followed by purification and covalent 

conjugation to a fluorophore.   

 

 

2.2.18 Labelling of Nanobodies 
To exploit their full potential, nanobodies were directly coupled to fluorescent molecules following 

different strategies. Chemically functionalized fluorophores were ordered commercially and coupled 

to the protein adapting the protocols given by the manufacturer. In Table 20, major fluorophores 

used for coupling reactions are shown. Typically, atto647N (Atto-tec) was used for conjugation to 

nanobodies, as that molecule shows a high quantum yield and can also be used for STED-microscopy. 

Dyes were usually delivered lyophilized and dissolved in anhydrous DMSO under protective gas 

atmosphere (N2 or Ar). Aliquots of ~100 nmol dye were frozen at -20 °C until used for labeling 

reactions. The individual strategies for labeling are described below. A schematic overview of the 

underlying reaction mechanisms is depicted in Figure 11. 
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Table 20: Selection of fluorophores used for conjugation to affinity molecules. The commercially obtained 
fluorophores were functionalized with an N-hydroxysuccinimide (NHS) ester or a maleimide group for chemical 
conjugation. 

Fluorophore Functionalization Manufacturer 

Alexa488 Maleimide Thermo Fisher Scientific, Waltham, MA, USA 

Alexa546 Maleimide Thermo Fisher Scientific, Waltham, MA, USA 

Alexa594 Maleimide Thermo Fisher Scientific, Waltham, MA, USA 

Alexa647 NHS-ester Thermo Fisher Scientific, Waltham, MA, USA 

Alexa647 Maleimide Thermo Fisher Scientific, Waltham, MA, USA 

atto488 Maleimide Atto-tec, Siegen, Germany 

atto532 Maleimide Atto-tec, Siegen, Germany 

atto532 NHS-ester Atto-tec, Siegen, Germany 

atto647N NHS-ester Atto-tec, Siegen, Germany 

atto647N Maleimide Atto-tec, Siegen, Germany 

CF647 Maleimide Sigma-Aldrich, St. Louis, MO, USA 

Cy3B Maleimide GE Healthcare, Little Chalfont, UK 

Cy5 Maleimide GE Healthcare, Little Chalfont, UK 

Cy5 NHS-ester GE Healthcare, Little Chalfont, UK 

Star580 Maleimide Abberior, Göttingen, Germany 

Star635P Maleimide Abberior, Göttingen, Germany 

Star635P Maleimide Abberior, Göttingen, Germany 

StarRed Maleimide Abberior, Göttingen, Germany 

 

 

NHS-ester labeling 

This method was used to label nanobodies or antibodies stochastically at exposed lysine residues. 

10-30 nmol purified protein were desalted into PBS and added to 100 mM NaHCO3 using 1 M stock 

solution of pH 8.6 to increase the pH value for activating the lysine reactivity (total volume of 

0.5-1.0 ml). The dye was slowly added in 5-10 -fold molar excess compared to the protein while 

constant stirring. After mixing for 1 h on ice in the dark, the reaction was quenched by adding 20 µl 

freshly prepared 1.5 M hydroxylamine solution, pH 8.5. For separation of labeled protein from free 

dye, the reaction was passed through a 20 cm custom-made gel filtration Ecno-Column® (BioRad) 

packed with Sephadex™ G-25 superfine resin (GE Healthcare) and equilibrated with PBS. Fraction of 

the eluted protein were taken and measured in NanoDrop spectrophotometer for absorption 

at 280 nm and the corresponding wavelength of the dye moiety. The degree of labeling (DOL) was 

calculated according to the Equation 6 given below.  
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The extinction coefficient of the protein εprot was calculated using the online ProtParam tool from 

ExPASy (http://web.expasy.org/protparam/). The extinction coefficient of the fluorophore εmax and 

the factor to correct for its absorbance at 280 nm (CF280) were employed as provided by the 

manufacturer. 

Typically, DOL values greater than 100 % labeling were obtained for NHS-ester labeling indicating the 

presence of more than one dye moiety per nanobody. The labeled nanobody was added to 50 % 

glycerol and stored at -20 °C. 

 

DOL =
A280 ∗  εprot

(A280 − Amax  ∗ CF280) ∗  εmax  

Equation 6: Formula to determine the degree of labeling (DOL). The absorbance of the protein and the dye are 
measured at 280 nm (A280) and its specific wavelength (Amax), respectively. The extinction coefficient εprot was 
calculated using the online ExPASy ProtParam tool (http://web.expasy.org/protparam/). The extinction 
coefficient of the dye εmax and the dye-specific correction factor for absorbance at 280 nm (CF280) were taken 
from the material data sheets of the fluorophores. 
 

Maleimide labeling 

To label nanobodies in a more quantitative way compared to NHS-ester labeling, they were 

expressed in a plasmid adding a C-terminal cysteine residue (see Table 12). These terminal cysteine 

moieties can specifically be attacked by maleimide-functionalized fluorophores. TCEP was added to 

the purified nanobody in 50-fold molar excess to break intermolecular disulfide bridges formed 

during the purification process. After mixing for 30 minutes, unreacted TCEP was removed via 

NAP™-5 or NAP™-10 columns (GE Healthcare) equilibrated with PBS. 10-30 nmol reduced protein 

were used in volume of 0.5-1.0 ml. Maleimide-functionalized dye was slowly added in 3-5-fold molar 

excess and mixed with the protein for 3 h on ice, in the dark. After that, free dye was removed by gel 

filtration as described above. Alternatively, the ÄKTApure25 HLPC system was used for removal of 

free dye loading the labeled sample on a Superdex™ 75 increase 10/300 GL column (GE Healthcare, 

see Table 14). Typically, a DOL of >85 % was obtained after labeling with maleimide-functionalized 

fluorophores. Glycerol was added to final concentration of 50 % and the labeled probe was stored 

at -20 °C. 

 

Sortase A-mediated labeling 

As an alternative way to specifically label expressed nanobodies, enzymatic labeling using sortase-

mediated formation of a covalent bond was performed according to [156]. To generate a substrate 

for sortase A, atto647N was coupled to the amino acid motif leucine-proline-glutamate-threonine-

glycine-glycine, which resulted in a conjugate termed atto647N-LPETGG-NH2 to be detected by the 

http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
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enzyme. The nanobody sequence in turn was modified to express a motif of at least three glycine 

residues at its C-terminus for coupling of the dye conjugate. The enzyme sortase A was expressed 

and purified from bacteria as described before. 40 µM purified nanobody was mixed with 1 mM dye 

conjugate and 80 µM sortase in sortase buffer to drive the reaction towards the coupled protein. The 

reaction was carried out overnight with slow stirring. Free dye was removed using 20 cm custom-

made gel filtration Ecno-Columns® as described above. As the DOL regularly did not exceed 40 %,        

I therefore primarily focused on alternative approaches as also shown in section 3.4.2. 

 

 

 
Figure 11: Different strategies for labeling nanobodies with fluorophores. A: Dye molecules functionalized with 
NHS-ester groups react with lysine residues exposed at the nanobody surface. B: Maleimide-functionalized 
fluorophores specifically react with reduced cysteines added to the C-terminus of the nanobody. C: Enzymatic 
labeling using sortase A detecting a specific amino acid motif added to the fluorophore for subsequent 
site-directed labeling to the nanobody. Comparing the different labeling approaches, I decided to generally 
perform the labeling reaction based on maleimide-functionalized fluorophores (see section 3.4.2).  
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2.2.19 Affinity Measurements 
After successfully passing the validation steps listed above, the final nanobodies were tested for their 

actual affinity to their target antigen. This was done by microscale thermophoresis (MST) in a 

Monolith™ NT.115Pico instrument determining the KD-values of the nanobody-antigen complexes. 

The fluorescence of the directly labeled nanobody was measured in PBS containing 0.05 % 

Tween®20. To determine the affinity, different nanobody samples were mixed with a dilution series 

of the purified antigen in Premium Coated Capillaries to avoid background binding to the capillary 

surface. For operation of the instrument and evaluation of affinity data, the MO.Control and 

MO.Affinity Analysis software (NanoTemper) was used.  

 

2.2.20 Image Analysis and Evaluation 
Generally, microscopy images were analyzed by measuring the intensity of regions of interest (ROI) 

and line scans in ImageJ. The fluorescence intensity was measured in a line scan for each pixel or as 

average of the ROI and normalized according to the maximum value in the line scan or ROI. 

To identify and average the fluorescence of nanobodies and antibodies in synapses as conducted in 

section 3.5.5, the Matlab R2015b software was used. The macro used for the analysis was kindly 

provided by Prof. Dr. Silvio Rizzoli using the first channel for identification and the second channel for 

alignment of synaptic boutons.  

 

2.2.21 Molecular Modelling 
Molecular models of affinity probes and antigens used for affinity screening were based on 

structures from the Protein Data Bank (www.pdb.org). The corresponding accession numbers are 

given in the figure legends. Graphic representations of the model were created using PyMol version 

1.7.4.5 Edu. Secondary structures of the proteins were differentially colored to facilitate the 

visualization of the molecule. 

 

 

 

 

 

  

http://www.pdb.org/
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3. Results 
Fluorescence microscopy is a major technique to analyze the subcellular organization of synaptic 

proteins. The observation of subcellular protein distribution is though limited by the usage of 

conventional antibodies. Especially in super-resolution techniques, antibodies have been reported to 

cause artifacts and impair the resolution. Smaller probes such as nanobodies have in contrast been 

shown to overcome most of the problems caused by antibodies in molecular imaging techniques. 

The rationale of this project was to generate novel nanobodies, which specifically bind synaptic 

proteins for their use in super-resolution microscopy. Using nanobodies for molecular imaging, I 

aimed to detect a higher number of epitopes in the sample, thus increasing imaging accuracy and 

attainable resolution. I successfully identified and characterized two novel probes binding SNAP-25 

and syntaxin 1A with high affinity and specificity.  

I could further show that those probes reveal a subcellular organization in high detail deviating from 

observations made with classical antibodies in super-resolution. Due to their advantages in 

fluorescence imaging, I consider my novel nanobodies to be versatile tools for future studies in the 

field of synaptic physiology. 
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3.1 Establishing the Workflow for Protein Production 
As a first part of this project, I established several protocols for the expression and purification of 

recombinant proteins. The three major neuronal SNARE proteins SNAP-25, syntaxin 1A and VAMP2 

were chosen as POI for generation of new nanobodies. Those antigens were produced in bacteria 

using inducible plasmids commonly used in the laboratory practice. Different plasmids for expression 

were tested to optimize the yield for each protein. After comparing various expression conditions, I 

decided to use the vectors K40 and pNB666 derived from the LacO-pQLinkN-construct for protein 

production in bacteria [146]. 

Moreover, I tested different bacteria media and expression conditions. Quantifying protein yield 

under varying conditions, I decided to produce recombinant proteins in large scale for 8 to 

12 h at 30 °C, 120 rpm in TB medium. Notably, growing the culture in baffled Erlenmeyer flasks 

tremendously increased protein yielded up to 5-fold compared to a culture of the same volume 

grown in plain Erlenmeyer flasks. After establishing the bacteria cultures, different approaches for 

bacteria lysis were tested including alkaline lysis, freeze-thaw cycles, French press and sonication.     

A combination of short sonication pulses at high power and enzymatic digestion of the bacterial cell 

wall and DNA was found to be most efficient.  

Finally, I compared different strategies to purify the recombinant proteins from the crude lysate. 

First, all proteins were purified via their His-tag using affinity resin loaded with Nickel ions. However, 

after several optimizations, that procedure was found to result in rather poor purity of the eluted 

protein, despite using high salt (500 mM NaCl) buffers for washing as shown in Figure 12. Hence I 

decided to introduce an ÄKTApure25 HPLC system in the laboratory for automated and large-scale 

production of proteins. The commercial His-tag affinity columns used with that system improved the 

purity of the eluted protein. Nevertheless proteins purified via a His-tag frequently still required a 

second polishing step to remove remaining contaminants from the elution.  

The best results for protein purity and recovery rate were obtained when immobilizing the protein 

via a recombinant Twin-Strep-Tag® instead of the His-tag. Due to very specific elution using 

d-desthiobiotin, purity rates of >95 % could be obtained on a regular basis. After purification, 

SUMO-protease was added to the expressed protein to cleave off the SUMO domain and to 

reconstitute the protein to its native state. The cleaved SUMO fragment, the SUMO-protease and 

remaining uncleaved protein were immobilized and removed upon binding to His-tag affinity resin. 

The HPLC was also used for fast desalting of the eluted fractions to remove the high salt elution 

buffer and thus to prevent protein precipitation in the course of time. All purifications were 

evaluated by SDS-PAGE to evaluate the protein quality. Exemplary analyses of protein purification 

using different approaches are shown in Figure 12. 
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Figure 12: Compilation of different protein purification strategies. A: Protein purification using commercial pre-
casted columns designed for the ÄKTA HPLC system. HisTrap™ FF columns were used to immobilized proteins 
via a recombinant poly-histidine tag. However, eluted fractions frequently showed some contaminations 
requiring an additional polishing step such as ion-exchange chromatography. Using HiTrap™ Q /SP HP columns 
removed most of the contaminations as shown in the middle panel. Alternatively, proteins were purified via a 
Twin-Strep-Tag® (tst-tag) using StrepTrap™ columns, which resulted in a high degree of protein purity as seen 
in the gel. B: Using affinity resin binding to the His-tag of the protein frequently resulted in impure elution 
fraction of the purified protein and thus required an additional polishing step to remove protein 
contaminations. C: Examples for columns used with the HPLC (left) or custom-packed (right). To avoid protein 
precipitation, pure eluted fraction were pooled and desalted into PBS pH 7.4. cl = crude lysate, 
ft = Flowthrough, w = wash, E1-3 = eluted fractions,  Sp = treated with SUMO-protease, -His = after removal of 
cleaved fragment, ds = after desalting into PBS. 

 

3.2 Creating the Nanobody Libraries for Phage Display 
After purification, the antigens were used to immunize an alpaca to evoke an immune response and 

thus to generate novel affinity molecules. The immunization procedure and extraction of white blood 

cells was carried out by preclinics GmbH, Potsdam, Germany. Briefly, the frozen purified proteins 

(SNAP-25, syntaxin 1A, VAMP2) were shipped to the company and injected to the animal together 

with incomplete Freud’s adjuvant as described in section 2.2.14. After seven weeks, I received a 
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pellet of extracted white blood cells. The isolated blood cells were typically stored and shipped in 

RNAlater® to preserve the RNA.  

In several trial extractions the conditions for the total RNA extraction procedure were optimized to 

minimize degradation and loss of sample quality. Isolation of peripheral B-cells from blood using 

Ficoll-gradient centrifugation rather than lysis of the erythrocytes turned out to yield best results 

(data not shown). For further preparations, the samples were shipped directly on the same day of 

extraction to the lab to minimize the time of transportation. 

To isolate the total RNA from the cells, I used the RNeasy® Mini kit (Quiagen). To avoid diversity loss 

by saturation of the column, I used 8 columns per extraction providing a total capacity of 800 µg 

RNA. After extraction, the RNA was retro-transcribed using initially the SuperScript™ III and later the 

SuperScript™ IV system (Thermo Fisher Scientific). Although it was recommended to use random 

hexamer primers annealing to the RNA for reverse transcription, using directly site-specific primers 

for the IgG sequences significantly improved the cDNA yield about 10-fold. The first nanobody 

libraries were created by direct amplification of the nanobody sequences from IgG2 and IgG3 cDNA 

introducing peripheral restriction sites by PCR (Alp_F1+ and Alp_R1/2+ primers, see Table 17). 

However, in subsequent experiments I realized that this method resulted in a rather low diversity of 

the library and thus in a limited number of specific nanobodies. Therefore I decided to set up a new 

approach omitting the inefficient cloning by restriction enzymes. All IgG heavy variable regions were 

first amplified in a nested PCR reaction (using the Call001 and Call002 primers) followed by specific 

amplification of nanobody sequences (using primers Gibson_F1 and Gibson_R1/2) as described by 

Pardon et al. [67]. At that second amplification step, 21 bp overhangs for Gibson assembly were 

introduced instead of the restriction sites. The phagemid was modified and amplified accordingly to 

allow insertion of the nanobody sequences by Gibson assembly resulting in an up to 20-fold higher 

cloning efficiency.  

In various test reactions it turned out that the quality of TG-1 bacteria as well as the stoichiometric 

ratio of bacteria compared to plasmid concentration is crucial for an efficient electroporation. To 

maximize the efficiency of transformation, competent TG-1 bacteria were thus prepared freshly 

before each library generation. The medium used after electroporation was as well observed to have 

a great impact on the colony number. For the final libraries, I used Recovery Medium (Lucigen) to 

resuspend the electroporated cells, which resulted in a more than 10-fold higher number of colonies 

compared to SOC or LB medium. Table 21 provides an overview on different libraries for phage 

display created by electroporation.  

Additionally, the ionic strength of the electroporation mixture was found to be very critical for the 

transformation. Ligated plasmid DNA therefore needed to be cleared from protein contaminants and 

eluted into pure water to minimize the salt concentration. A maximum of 1.5 µl of the ligation 
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reaction could subsequently be used to electroporate 50 µl of TG-1 bacteria without destroying the 

cells. As each TG-1 aliquot is further capable of internalizing only a limited number of plasmids,            

I empirically determined the best ratio of ligated plasmid versus bacteria not to exceed the 

competency of the bacteria. A maximum of 250 ng ligated plasmid DNA was used per reaction, which 

corresponds to ~150 fmol or 4.5 x 1010 molecules. Consequently, 40-50 individual electroporation 

reactions needed to be performed for each library as depicted in section 2.2.5. 

A common way to determine the diversity is based on counting individual colonies after diluting the 

total library. With that, the diversity of my libraries ranges between 6.5 x 106 clones for restriction-

based and 4.5 x 1011 for Gibson-based cloning as shown in Table 21. 

 

 

Table 21: Overview on different libraries created for nanobody selection by phage display. The primer sets used 
to extract the nanobody sequences from total white blood cell preparations are indicated. To avoid overloading 
of the bacteria, successive electroporation reactions were performed using a maximum of 150 fmol DNA per 
reaction. The library diversity was estimated by counting individual colonies of plated bacteria dilution series 
after electroporation. After optimization the protocol, the amount of input RNA was increased to create the 
restriction-final library used for initial screen by phage display. As no novel nanobody families were revealed 
from the restriction library, I decided to create new libraries using Gibson cloning to maximize cloning 
efficiency and thus the sequence diversity in the library. 

Library name 
RNA 
input 

Primers 
PCR 

cycles 
Competency of 
TG-1 bacteria 

Electro- 
porations 

Apparent 
diversity 

Test conditions 200 ng 
F1 + R1/R2 

Call001/002 
35 3.8 x 108 cfu/µg 3 - 

Mock library 500 ng F1 + R1/R2 40 1.2 x 108 cfu/µg 12 Not tested 
Restriction-

small 
500 ng F1 + R1/R2 40 1.0 x 109 cfu/µg 8 6.5 x 106 

Restriction-
final 

12 µg F1 + R1/R2 40 1.0 x 109 cfu/µg 48 1.12 x 108 

Gibson-1 10 µg 
Call001/002 

F1+R1/2_Gibson 
Gibson_for/rev 

8 
8 
8 

2.5 x 108 cfu/µg 40 4.0 x 107 

Gibson-2 20 µg 
Call001/002 

F1+R1/2_Gibson 
Gibson_for/rev 

8 
8 
8 

1.6 x 109 cfu/µg 40 4.5 x 1011 
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Figure 13: Extraction of nanobody DNA sequences from alpaca IgG antibodies for cloning into phagemid 
vectors. A: Primer sets (black and red arrows) align to conserved elements of the IgG antibodies as described in 
Table 17 and Table 18. Degenerated primers were used to amplify the nanobody sequences in subsequent PCR 
reactions. Overhangs were added to the primers to create sites for enzymatic restriction or complementary 
sequences for Gibson cloning. B: Examples of PCR reaction to amplify the backbone vector (left) and the 
nanobody sequences (middle and right).  
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3.3 Selection of Nanobodies from Phage Display Libraries 
After their sequences had successfully been integrated into a bacterial library, specific nanobodies 

were selected by phage display. The basic principles of this method had been established in the 

laboratory in a previous project using a naïve library of human domain antibodies [65].  

 

3.3.1 Screening for Nanobodies via Phage Display 
A common way for the affinity selection of nanobodies is based on the absorption of antigens to the 

plastic surfaces of tubes or plates based on polar or hydrophobic interactions. Yet, the absorption of 

the protein to the plastic might disrupt its molecular fold and thus the epitope conformation. This 

method is nevertheless commonly used for ELISA assays, which were also used for validation of 

positive binders. However the aim of this project was to select for nanobodies to be used in IF 

studies. Therefore, a more comprehensive validation protocol eliminating affinity molecules, which 

do not bind to the native epitope, needed to be established.  

My first screens of the libraries were entirely carried out in tubes coated with the target antigens as 

described above. I found that the first round of panning is most crucial for the outcome of the screen 

as that step comprises the highest level of competition among displayed nanobodies. To reduce 

stringency in the first panning round, I used hyperphages to infect the initial library [157]. This leads 

to polyvalent display of nanobodies, thus facilitating the binding of phages present in lower copy 

number or having a lower affinity as illustrated in Figure 14. The titer of purified phages was 

measured during panning rounds to monitor the progress of affinity selection.  

 

As expected, the amount of phages decreased after the first panning but increased again as specific 

binders were selected (see Figure 14). Due to amplification of only few genetically different phage 

populations during the panning rounds, the number of new candidates after each screen is typically 

limited, depending on the selection conditions in the panning. To increase the number and also 

select for alternative probes, the conditions of the pannings were modified along with new 

screenings. Particularly, I modified the amount of antigen to bind more phages during the affinity 

selection step. The amount of antigen was still reduced in successive panning rounds to enforce the 

competitive selection procedure as summarized in Table 22. In consecutive screens, the washing 

steps were adjusted to be less stringent allowing also the selection of molecules with lower affinities. 

The time of individual washing steps was further reduced from overnight in the initial screens 

to 10 minutes in the latest screens resulting in identification of yet new nanobody families. 
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After up to three rounds of phage display, 80 clones were picked and tested in a monoclonal 

phage-ELISA assay. A HRP-coupled antibody directed against the major coat protein of the phage was 

used for detection of bound candidates. When the fluorescent readout of the subsequent enzymatic 

reaction described in section 2.2.16 was at least 10-fold over the background signal, binding of tested 

candidates was considered positive. Those positive clones were grown in liquid culture for plasmid 

isolation followed by sequencing. As expected, several redundant sequences were identified, which 

indicates the enrichment of particular phage populations due to specific antigen binding. The 

obtained sequences were grouped into nanobody families according to the composition of their CDR 

regions. If only a single amino acid in CDR1 or CDR2 was different, two nanobody sequences were 

still considered to belong to the same family. However, differences in the composition of the CDR3 

were generally considered a separate family as the CDR3 is known to be an important factor for 

epitope binding [51]. 

 

Each family contained from 4 to 33 clones indicating the amplification of particular sequences. To 

map the CDR regions, the conserved framework sequences of the nanobodies were aligned according 

to Maass et al. [155]. Figure 15 shows exemplary sequences marking the complementary regions 

determining the nanobody specificity. As expected, the framework region is highly conserved among 

all selected nanobodies, regardless of the antigen used for screening. This is in line with observations 

from Maass et al. [155]. Notably, the selected nanobody candidates possess either two or four 

cysteine residues promoting the formation of one or two disulfide bridges. Nanobodies requiring the 

formation of two disulfide bridges were occasionally reported to show low expression yields in 

bacteria and impaired functionality. However these candidates were not discarded at this point as I 

was following a dedicated strategy to validate the nanobody function. 
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Figure 14: Titer of amplified phages during subsequent panning rounds. A: Schematic illustration of phages 
produced upon infection with M13 K07ΔpIII hyperphages for polyvalent display in the first panning round and 
classical MK13K07 helper phages in the subsequent panning rounds. Each phage expresses 5 copies of the 
phage minor coat protein pIII (black ellipse). The nanobody (green triangle) is expressed from a phagemid 
(circle) as a fusion construct together with the pIII protein. Depending on the phage type used, either one or 
five copies of the nanobody are displayed by the phage mediating the affinity selections. B: Phage titer for 
exemplary panning rounds against SNAP-25, syntaxin 1A and VAMP2. An initial decrease of the phage titer 
indicates the elimination on unspecific phages. In the third panning for syntaxin 1A and SNAP-25, the phage 
concentration considerably increased due to selection and amplification of specific phage candidates. Notably, 
the phage titer for panning against VAMP2 did not rise significantly, which indicates that no positive candidate 
was selected and amplified. 
 

 
Figure 15: Sequence alignment of selected nanobody candidates. Three randomly picked sequences per 
antigen are shown out of several hundred. After alignment, the conserved framework as well as the three CDR 
regions can be identified. CDR1 and CDR2 were found to show only little variation in both length and 
composition. In contrast, the CDR3 region typically playing the major part in epitope detection exhibits high 
diversity in different nanobodies. 
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3.3.2 Establishing a Robust Validation Protocol 
As I was aiming to select nanobodies suitable for microscopy, the functionality of selected candidates 

needed to be confirmed not only in phage-ELISA but also under native conditions. Therefore I 

established a routine composed of several validation steps, which allowed me to test the specificity 

and functionality of my candidates under defined conditions in an efficient manner. A flow scheme of 

the selection procedure of nanobodies against SNAP-25 is shown in Figure 16 indicating the 

individual validation steps. Nanobodies against other targets were selected and validated 

accordingly.  

First, one representative candidate of each nanobody family was produced in bacteria and tested in 

immunoblot and IF experiments. Some nanobodies could not be expressed in bacteria even if fused 

to domains improving the solubility of the protein. As large-scale production of nanobodies for 

subsequent experiments was required, those candidates were discarded at that point.  

Second, candidates that could readily be produced in bacteria were tested in a dot blot assay. I found 

that only a subset of the expressible candidates was capable of detecting the native purified antigen 

spotted on a membrane, despite tested positively in ELISA. As before, only those candidates showing 

specific binding to the antigen were considered for the next validation step.  

As a third step, I tested if the nanobodies are also capable of binding their antigen in a cellular 

environment after chemical fixation. In IF stainings, candidates were detected with a secondary 

antibody directed against a recombinant tag fused to the nanobody to facilitate parallel screening. As 

expected, the formaldehyde fixation of the cells impaired the binding capability of some candidates.  

I excluded those candidates from further analyses to only consider nanobodies able to bind to 

antigen fixed with PFA, as I was aiming to use the nanobodies mainly in IF studies on fixed cells.  

To exploit the full potential of nanobodies in microscopy, it is beneficial to directly conjugate them to 

a fluorescent molecule rather than detecting them indirectly with an antibody as performed during 

validation (see section 1.5). As a final validation step, purified nanobodies were thus chemically 

conjugated to a single fluorophore and tested again in IF to rule out unspecific binding caused by the 

labeling procedure. All candidates passing this last validation step were analyzed in MST assays to 

determine the dissociation constant kD indicating the affinity. 

 

A summary of all phage display selections and the resulting new nanobody families is shown in 

Table 22. It can also be seen that the number of functional nanobodies successively decreased during 

subsequent validation steps. In the course of different screens I was thus optimizing the selection 

procedure to maximize the success rate for identification of specific candidates. 
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Figure 16: Flow-scheme for stepwise validation procedure of nanobody candidates. Monoclonal phage ELISA 
was used as a first validation step. The corresponding cartoon represents the fluorescent readout of a 96-well 
plate including negative controls (two rightmost columns). After expression in bacteria, the bacterial lysate was 
used to detect the antigen spotted on a nitrocellulose membrane in a dot blot. Binding was revealed using a 
fluorescently labeled secondary antibody directed against a recombinant FLAG-tag fused to the nanobody.  
Analogously, the candidates were tested on COS-7 cells overexpressing the target antigen fused to EGFP. If 
passing these validation steps, nanobodies were purified adding a recombinant cysteine moiety at their 
C-terminus for direct conjugation to maleimide-activated fluorophores. The functionality of directly labeled 
nanobodies was again confirmed in IF on COS-7 cells overexpressing the antigen. The affinity of the final 
candidates used in subsequent experiments was determined by MST. The figure shows exemplary results of a 
screening for nanobodies binding to SNAP-25.  
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3.3.3 Optimizing the Selection Procedure 
As shown in Table 22, conditions in consecutive screens were adapted to obtain alternative 

candidates after the affinity selection. In later screens the washing conditions were modified as 

intensive washing 10 times for an hour or more dramatically reduced the amount of final candidates. 

Thorough washing was in turn found to favor the selection of nanobodies with a high affinity. As this 

is a feature desired for IF, I decided to keep the number of washings constant but to reduce the time 

to 5 minutes per washing step. 

Another change I introduced was the use of antigen purified from mammalian systems rather than 

from bacteria. I was aiming to select directly for nanobodies capable of binding antigen in a cellular 

context. At the same time candidates only detecting bacterial protein without a proper folding or 

including post-translational modifications should be omitted.  

After implementing the modification, I identified yet novel nanobody families from the restriction 

library, although it had been screened intensively before as can be seen in Table 22. Subsequent 

screens did not reveal any new nanobody families and only few candidates passed all validation steps 

indicating a low success rate of the screening procedure. However it should be noted, that the 

screening and validation procedure as well as the protocol for library generation were constantly 

improved during the project. 

For this reason, I decided to generate a new library for screening based on Gibson assembly to 

increase the chances of selecting candidates suitable for IF microscopy. As expected, I could identify 

yet new nanobodies passing all validation steps due to a higher diversity achieved in the Gibson 

library.  

In addition to establishing a standard validation procedure, I also introduced a protocol for 

automated analysis of multiple candidates. After testing in ELISA, positive candidates were expressed 

in bacteria and directly tested in IF omitting the dot blot at the first place. For this, COS-7 cells were 

grown not on glass coverslips but in glass-bottom 96-well plates for automated analysis using the 

Cytation-3 Multi-Mode Reader or the Nikon Ti-E epifluorescence microscope. The protocol was 

successfully tested by screening the Gibson-2 library for nanobodies binding SNAP-25 as shown in 

Table 22. 

All in all, I established a protocol applicable for parallel validation of multiple candidates after phage 

display selection. The selection itself was further optimized as described above to obtain high-affine 

nanobodies specifically binding to the native target molecule. Applying those procedures, novel 

functional nanobodies for IF can now be routinely identified from a phage display library within 

approximately 2 weeks.  
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Table 22: Compilation of different nanobody families identified via phage display. Each screen included 2-3 
rounds of panning concluding with the isolation and sequencing of individual clones. The amount of antigen 
presented to the phages in succeeding panning rounds was reduced to achieve competitive selection of high-
affinity binders. The number of different nanobody families is indicated for the different validation steps. Only 
if a candidate passed one validation step, it was tested for the next criterion. 

Screen 
Library 

used 

Antigen presented 
in 1st  / 2nd / 3rd 
panning [nmol] 

Immo-
bilization 

Washing 
steps 

Positively validated in 

ELISA 
Dot 
blot 

IF 

SNAP-25        

1 
Restriction

-final 
7   /   7   /   3.5 MaxiSorp® 

10x PBS-T 
2x HS-PBS 

3x PBS 
3 2 none 

2 
Restriction

-final 
7   /   7 MaxiSorp® 

10x PBS-T 
2x PBS 

(overnight) 
2 1 none 

3 
Restriction

-final 
7   /   3.5 

tst-type2 
beads 

10x PBS-T 
2x PBS 

5 2 1 

4 
Restriction

-final 
5.8   /   1.4 

(mammalian) 

tst-
type3XT 

beads 

6x PBS-T 
2x HS-PBS 

2x PBS 
2 2 1 

5 Gibson-1 10   /   5   /   2.5 
tst-

type3XT 
beads 

10x PBS-T 
2x HS-PBS 

2x PBS 
8 7 3 

6 Gibson-2 
30   /   30 

(automated 
screening) 

tst-
type3XT 

beads 
3x PBS 2 2 1 

syntaxin 1A        

1 
Restriction

-final 
5   /   2.7 MaxiSorp® 

10x PBS-T 
3X PBS 

4 2 1 

2 
Restriction

-final 
3.8   /   2.8 

(mammalian) 
tst-type2 

beads 

6x PBS-T 
2x HS-PBS 

2x PBS 
1 1 none 

3 Gibson-1 3   /   3 
tst-

type3XT 
beads 

10x PBS-T 
2x HS-PBS 

2x PBS 
4 1 none 

4 Gibson-2 3   /   3 
tst-

type3XT 
beads 

2x PBS-T 
2x HS-PBS 

8x PBS 
2 2 2 

VAMP2        

1 
Restriction

-final 
13   /   6.5 MaxiSorp® 

10x PBS-T 
3x PBS 

3 1 none 

2 
Restriction

-final 
13   /   13 MaxiSorp® 

5x PBS-T 
2x PBS 

2 1 none 

3 
Restriction

-final 
13   /   6.5 

tst-type2 
beads 

10x PBS-T 
3x PBS 

1 none none 

Total     
39  

(100 %) 
23 

(59 %) 
9 

(23 %) 
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3.4 Final Nanobody Candidates 
Out of all positively validated candidates revealed by different phage display screens, I was aiming to 

select one candidate to use in subsequent super-resolutions studies on synaptic physiology. Thus, the 

successful implementation of nanobody candidates into IF experiments, was the main quality 

criterion for the final candidates. Unless specified else, nanobodies were used in a concentration 

of 50 nM. 

 

3.4.1 Qualitative Selection for Final Candidates 
As indicated before in Table 22, 23 % of all nanobody families passed the final validation step of 

application in IF staining COS-7 cells overexpressing the target antigen. In addition several 

fluorescently labeled nanobodies showed some background staining of non-transfected cells when 

used in stainings. Therefore, I decided to continue the screening process until nanobodies giving a 

specific staining would be selected.  

In the course of consecutive screening, I did not identify any candidate binding VAMP2 in dot blots or 

IF experiments. Moreover, the potential candidates for VAMP2 also repeatedly yielded low signal in 

monoclonal phage ELISA validation screens compared to SNAP-25 and syntaxin 1A. In contrast, 

screens for nanobodies binding SNAP-25 and syntaxin 1A regularly resulted in identification of 

positive hits in ELISA shown in Figure 17. I therefore focused on the characterization of those 

candidates to ultimately obtain a specific nanobody binding with high affinity in biochemical assays 

and IF experiments.  

As the animal was immunized with a combination of antigens, the same library was used to screen 

for both SNAP-25 and syntaxin 1A binding nanobodies. I therefore included both antigens in the dot 

blot validation steps to consider only nanobodies specific to one antigen. Figure 17 shows the 

validation steps for the two final candidates binding SNAP-25 and syntaxin 1A used in further 

experiments. Both nanobodies were selected from the Gibson-2 library and named in consecutive 

order of their selection. Hence, these nanobodies are referred to as S25-Nb10 and stx-Nb6. 

Alternative candidates selected previously either did not pass one of the mentioned validation steps 

or generated non-reproducible results in IF experiments. The validation results of the final 

nanobodies S25-Nb10 and stx-Nb6 are displayed in Figure 17.  
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Figure 17: Validation steps of final candidates used for further experiments. Consecutive screens for VAMP2 
binding nanobodies did not result in any positive candidate. In turn, for both SNAP-25 and syntaxin 1A specific 
nanobodies were obtained. The results of the stepwise validation procedure are shown for the final candidates 
S25-Nb10 and stx-Nb6 used for subsequent experiments. After tested positive in phage ELISA and dot blot, the 
nanobodies were applied in IF using a fluorescently labeled secondary antibody for detection. Subsequently, 
the nanobodies were covalently coupled to atto647N for direct detection of the antigen in IF microscopy. Both 
S25-Nb10 and stx-Nb6 labeled with atto647N selectively bind to COS-7 cells overexpressing the antigen but do 
not stain untransfected cells in proximity revealed by Hoechst-staining. Fluorescence images were recorded 
with Olympus IX71 epifluorescence microscope. Scale bars represent 20 µm. 
 

3.4.2 Conjugation of Nanobodies to Functionalized Fluorophores 
I explored several options to covalently couple fluorescent molecules to purified nanobodies. 

Initially, a 4 amino acid peptide (LPET) was chemically coupled the fluorophore and used as a 

substrate for the enzyme sortase A. As illustrated in Figure 11C, the sortase A covalently binds the 

LPET-peptide via a thioester bond. Subsequently, the activated enzyme hands over the substrate by 

linking it to an N-terminal poly glycine tag added to the target nanobody.  

Unfortunately, the enzymatic reaction mediated by sortase A was found to be rather inefficient 

(DOL = 30-40 %). Increasing the substrate amount several orders of magnitude also did not shift the 

equilibrium substantially to form more conjugated product. As this problem was also reported in the 

literature, I decided to rely on chemical coupling reactions instead [158].  
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A common way is the utilization of fluorophores functionalized with NHS-ester or maleimide groups 

for coupling as described in section 2.2.18. When using NHS-ester chemistry, I observed a partial loss 

of nanobody functionality, presumably caused by blocking of the nanobody paratope after 

attachment of a dye moiety. To compensate for that effect, I added a total of 4 lysine residues to the 

C-terminus of the nanobody stochastically driving the reaction to that position of the nanobody. 

Albeit, after labeling an increased rate of precipitation of the labeled nanobody was observed, 

probably due to increased hydrophobicity of the molecule introduced by the attached fluorophores.  

 

Therefore, I decided to use maleimide-functionalized fluorophores instead, which reacted with a 

cysteine residue added to the C-terminus of the nanobody yielding a stoichiometric labeling ratio of 

the entire sample. Different dyes listed in Table 20 were tested as the labeling efficiency was found 

to depend on the manufacturer to a significant extend. Eventually I decided to use atto647N as the 

default label of the nanobody as a high DOL were obtained in the coupling reactions (> 90 %). 

Furthermore atto647N is known to be a stable molecule with a high quantum yield well suited for 

STED-microscopy [159]. To ensure a high DOL, the functionalized fluorophore was used in 2-3-fold 

molar excess and free dye molecules were subsequently removed by size exclusion chromatography. 

Figure 18 shows an exemplary HPLC run following the protein absorbance at 280 nm and the dye at 

its corresponding wavelength of 647 nm. 

 

 

 

 
Figure 18: Exemplary HPCL run to remove excess of unreacted dye after nanobody labeling. A Superdex™ 75 
increase 10/300 GL column equilibrated with PBS was used for the chromatography. A clean separation of the 
labeled protein (blue and red peak, left) and free dye molecules (red peak, right) was achieved. The smaller 
rightmost peak to the right indicating absorbance at 280 nm is caused by unspecific absorbance of the 
functionalized dye. 
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3.4.3 Affinity Determination of the Nanobodies S25-Nb10 and stx-Nb6 
After identification of nanobodies specifically binding SNAP-25 and syntaxin 1A, I aimed to measure 

their affinity in relation to nanobodies reported in the literature and other affinity probes. Initially, I 

used surface plasmone resonance (SPR) to determine both thermodynamic and kinetic parameters of 

the binding event. A major problem when setting up the measurements was imposed due to long 

incubation times to observe dissociation of the nanobody-antigen complex. A single measurement 

including proper controls lasted around 12 h, frequently resulting in precipitation or degradation of 

the antigen as the measurements could only be performed at room temperature. Moreover, the 

interaction of the nanobody was found to be comparably strong requiring even longer incubation 

times to observe dissociation. In consequence, I could estimate the KD value to be in the nanomolar 

range, but was not able to determine any other parameter with the setup at hand. Therefore I 

decided to use MST as a different approach to determine the affinity of S25-Nb10 and stx-Nb6 to 

their target proteins. 

The fluorescently labeled nanobodies mixed with a dilution series of purified antigen were analyzed 

on a MST Monolith™ NT.115Pico instrument to maximize the sensitivity of the measurement. I used 

Premium Coated Capillaries, which resulted in the lowest level of unspecific binding of my proteins to 

the glass surface. The dissociation constant (KD) of the two nanobodies S25-Nb10 and stx-Nb6 was 

found to be 15.5 ± 3.3 nM and 5.0 ± 1.2 nM, respectively as shown in Figure 19. Unlike in SPR, the 

kinetic parameters of the interactions cannot be determined by MST. However, the rather high 

affinity values obtained for both S25-Nb10 and stx-Nb6 suggest a slow dissociation rate of the 

nanobody from the antigen. 

 

 

 
Figure 19: Affinity analysis of S25-Nb10 and stx-Nb6 by MST. Fluorescently labeled nanobody was mixed with a 
dilution series of its corresponding antigen. FNorm reflects the ratio of fluorescence measured in the hot area 
defined by the MST-pulse divided by initial fluorescence measured in the capillary. As the movement of the 
fluorescent nanobody in the temperature gradient changes upon antigen binding, this value can be used to fit a 
binding curve as a function of the antigen concentration. The resulting dissociation constants (KD) of the two 
nanobodies S25-Nb10 and stx-Nb6 were found to be 15.5 ± 3.3 nM and 5.0 ± 1.2 nM, respectively. 
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3.4.4 Specificity Analysis of S25-Nb10 and stx-Nb6 
Although both nanobodies were shown to bind their target with a high affinity using purified antigen, 

it also needed to be confirmed that they do not cross-react with other proteins on cells. First, I tested 

if the nanobodies also bind to other SNARE proteins of the same family. Equimolar amounts of native 

recombinant protein (purchased from Origene™ Technologies, see also section 2.1.5) were spotted 

on a nitrocellulose membrane without adding reducing or denaturating agents (see Figure 21). Three 

members of the SNAP and syntaxin protein family were chosen out of which two variants share the 

highest level of conservation with SNAP-25 and syntaxin 1A.   

After detection with my fluorescently labeled nanobodies, I could confirm that S25-Nb10 detected 

SNAP-25 but not the related proteins SNAP-23, SNAP-29 and SNAP-47 as sown in Figure 21. Similarly, 

stx-Nb6 bound to syntaxin 1A as expected, but not to syntaxin 1B and syntaxin 2. Notably, the 

nanobody seems to have a weak affinity to syntaxin 3, which shares a certain sequence identity with 

syntaxin 1A. The observed binding rate to syntaxin 3 was in the range of 7 % compared to the 

syntaxin 1A binding and therefore can be considered as a negligible interaction, especially in IF 

methods for microscopy. 

After confirming the binding specificity under native conditions, I tested if the nanobodies are also 

capable of detecting the antigen in a Western blot after denaturating SDS-PAGE. As nanobodies have 

the tendency to prefer structural epitopes (refer to section 1.4.4), they might not detect a denatured 

form of the antigen [51]. To my surprise, both S25-Nb10 and stx-Nb6 were able to detect their 

antigen also after denaturation and transfer to a membrane. 

This feature was used to test if the nanobodies are specific for protein lysates and tissue samples not 

tested during the validation. For this, I performed a Western blot using neuronal and cell-line lysates 

as well as tissue samples isolated from an adult mouse. Equal amounts of total protein were loaded 

on a denaturing SDS-PAGE gel and blotted on a nitrocellulose membrane for detection with 

fluorescently labeled nanobody. As shown in Figure 20, both S25-Nb10 and stx-Nb6 did not reveal 

any bands in tissue samples of cell lysates lacking the expression of SNAP-25 and syntaxin 1A, 

respectively. I therefore conclude that my novel nanobodies S25-Nb10 and stx-Nb6 bind their 

antigens with both high affinity and high specificity also in complex protein lysates even after 

separation with denaturating SDS-PAGE. 

To confirm the specificity of my nanobodies in IF microscopy, I once more used COS-7 cells 

expressing the antigen fused to EGFP detecting it with directly labeled nanobody. I used cells 

transfected with the contrary EGFP fusion construct to rule out binding of the nanobody to EGFP, 

which has not been tested so far. 
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Figure 20: Specificity analysis of S25-Nb10 and stx-Nb6 by Western blotting. A: 5 µg of purified recombinant 
protein, 20 µg of HEK-cell lysate containing overexpressed antigen an 20 µg lysate from primary cultured 
neurons were loaded on a denaturing SDS-PAGE gel and subsequently blotted onto a nitrocellulose membrane.  
Protein concentration was determined using BCA-assay. B: 20 µg of isolated tissue sample (determined via BCA 
assay) were loaded on a denaturing SDS-PAGE gel and blotted as previously. After blocking, all membranes 
were incubated with nanobodies conjugated to atto647N for detection of the target antigen. Since 
recombinant proteins expressed in bacteria or mammalian cell lines possess additional tags, the expected 
molecular weight differs from the native protein as indicated in the schematic representations of the antigens. 
Both S25-Nb10 and stx-Nb6 show a single band in the blot indicating specific detection of their respective 
target antigen while showing no cross-reactivity to other proteins in lysates or tissue samples. 

 

Figure 22 shows that both nanobodies specifically detect cells transfected with their target antigen 

but virtually show no background signal in non-transfected cells or expressing the complementary 

construct. This also confirms that the nanobodies bind to the overexpressed antigen and not the bind 

to EGFP also overexpressed in the cells. This is an important control as EGFP was used as a common 

reporter also in further experiments conducted in this project. In addition to the specific binding of 

the nanobodies, Figure 22 shows a different cellular localization of SNAP-25 and syntaxin 1A. 

Whereas SNAP-25 is distributed all over the cell, the overexpressed syntaxin 1A accumulates in a 

perinuclear region. Previous studies showed that syntaxin 1A accumulates in the endoplasmatic 

reticulum (ER) region if cofactors such as Munc-18 are not present [160,161]. This would explain the 

phenotype observed in cells overexpressing only syntaxin 1A fused to EGFP as in Figure 22. 
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Figure 21: Analysis of cross-reactivity to alternative SNAP and syntaxin variants and sequence alignment. 
Equimolar amount of purified protein were spotted on a nitrocellulose membrane and detected with 
fluorescently labeled nanobodies. A: S25-Nb10 binds specifically to SNAP-25 and only shows minimal cross-
reactivity to SNAP-47 and no binding to SNAP-23 and SNAP-29. B: stx-Nb6 specifically detects syntaxin 1A and 
additionally shows a mild cross-reactivity for syntaxin3. However, as the signal for syntaxin3 made only around 
7 % of the specific signal, this background binding can presumably be neglected in IF experiments. The stx-Nb6 
also shows only minimal binding to syntaxin 1B and syntaxin 2, which can be neglected in IF microscopy.           
C: Sequence alignment of the tested SNAP- (top) and syntaxin-variants (bottom). The level of conservation is 
color-coded while green indicates the highest level of sequence identity. The alignment shows that the 
different SNAP variant share only little sequence identity whereas the tested syntaxin variant are conserved to 
a high level. Still, the stx-Nb6 almost exclusively detects syntaxin 1A indicating binding to a specific epitope. 
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Figure 22: Specificity analysis of S25-Nb10 and stx-Nb6 by IF microscopy. COS-7 cells were transfected with 
SNAP-25 of syntaxin 1A fused to EGFP. Nanobodies conjugated to atto647N were applied at a concentration of 
50 nM to detect the antigens. A: The fluorescence signal from S25-Nb10 overlaps with the fluorescence of the 
SNAP-25-EGFP construct but does not show any binding to syntaxin 1A EGFP. B: Complementarily, stx-Nb6 only 
detects syntaxin 1A-EGFP but not the SNAP-25 fusion protein. These results confirm the specificity of both 
nanobodies for their target antigen, also confirmed by no background signal on non-transfected cells (Hoechst-
staining). Images were recorded with a Nikon Ti-E epifluorescence microscope. Scale bar represents 20 µm. 
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3.4.5 Epitope Mapping 
After the confirmation of the nanobody affinity and specificity, I was interested to identify the region 

within the antigen to which the nanobodies S25-Nb10 and stx-Nb6 bind. Structural methods like 

nuclear magnetic resonance (NMR) or crystallization would deliver the most accurate information as 

also discussed in section 4.4. NMR requires peptides substantially smaller than the full protein which 

is why I first ought to narrow down the region of the epitope. 

To pinpoint that region within the antigen, I generated different truncation constructs from the 

full-length proteins. The separate domains of SNAP-25 and syntaxin 1A that form secondary 

structures were expressed individually in bacteria to perform a qualitative binding analysis on a 

nitrocellulose membrane. After the purification of all truncated variants, the protein concentrations 

were determined using a BCA assay. Equimolar amounts were spotted on a nitrocellulose membrane 

and detected with fluorescently labeled nanobodies. As expected, each nanobody detected the 

recombinant target protein SNAP-25 and syntaxin 1A used as immunogen, ranging from amino acid 

1-206 and 1-264, respectively. Interestingly, both nanobodies detected only one of the truncated 

variants of their target protein while showing no binding to the other regions (see Figure 23). This 

strongly suggests that the epitope of the nanobodies is located within that respective truncated 

domain. 

Notably, S25-Nb10 specifically binds a truncated constructs which contains one of the two SNARE 

domains of SNAP-25. Generally, the SNARE domains are known to form stable helices, which 

presumably create a specific interaction surface for the S25-Nb10 to bind [162]. In turn, stx-Nb6 

binds to a truncation construct containing the N-terminal Habc domain which is involved in 

syntaxin 1A trafficking and clustering [160]. 

 
Figure 23: Mapping the epitope of S25-Nb10 and stx-Nb6. The numbers indicate the amino acid residues from 
the full length protein constituting the truncation construct. A cartoon of the respective truncation construct is 
depicted below the blot. Equimolar concentrations of purified proteins were spotted on a nitrocellulose 
membrane and detected with nanobody conjugated with atto647N. A: S25-Nb10 binds to the full-length 
SNAP-25 as expected (1-206). Additionally, the nanobody detects the SNARE-domain ranging from amino acid 
1-86 indication this domain to contain the epitope for S25-Nb10. B: Similarly, stx-Nb6 detects the full-length 
syntaxin 1A (without the transmembrane domain) from aa 1-264 and a truncated construct from aa 1-112. As 
for SNAP-25, this domain also constitutes the functional SNARE domain or the protein. The images were scaled 
to optimize the signal to noise ratio of the dot blot. 



92 
 

3.5 Comparison of Novel Nanobodies to Conventional Probes in IF 
To exploit the features of my nanobodies and to implement them into IF experiments, I compared 

their performance to full IgG molecules. For comparative studies, I decided to use two monoclonal 

antibodies well established in the field of SNARE protein. 

Particularly, the clone 71.1 and the clone 78.2 (both from Synaptic Systems GmbH), which bind 

SNAP-25 and syntaxin 1A, respectively, were used. I used those antibodies as in classical IF protocols, 

which means detection with a fluorescently labeled secondary antibody. 

 

3.5.1 Test for Epitope Competition  
Before using my nanobodies and antibodies in immunostainings, I tested if both affinity molecules 

compete for the same epitope region as this would influence the result if both antibody and 

nanobody binding the same proteins are used simultaneously.  

According to the manufacturer, the whole SNAP-25 protein was used as antigen for the clone 71.1 

and the epitope is localized in the N-terminal domain between aa 20 and 40. For the case of the 

clone 78.2 the antibody recognized the N-terminal domain of syntaxin 1A and 1B. 

To test if the antibodies compete with my nanobodies for the same epitope, I spotted the purified 

antigens on a nitrocellulose membrane and blocked subsequently with unlabeled nanobody for one 

hour. 

Subsequently, the fluorescently labeled nanobody was incubated with the membrane. As expected, 

the fluorescent signal detected significantly less in the membrane pre-blocked with nanobody 

compared to the unblocked control (see Figure 24A).  

In contrast the binding of the antibodies 71.1 and 78.2 was not impaired after pre-blocking with 

unlabeled nanobody (Figure 24A). Therefore, I concluded that both of my nanobodies do not 

compete with the tested antibodies for the same epitope in the target protein and thus can be used 

together in IF experiments without mutual interference.  

 

Interestingly, syntaxin 1A present endogenously in the neuroendocrine cell line PC12 used in 

following experiments can is only poorly detected by clone 78.1 (data not shown). However it is 

known in the field that the antibody clone HPC-1 is able to detect syntaxin 1A also in PC-12 

cells [163]. 

When performing the assay to test for epitope competition, some impairment of HPC-1 binding was 

observed upon blocking with stx-Nb6, as sown in Figure 24B. Therefore, that antibody was solely 

used for qualitative IF on PC-12 cells and not for comparative studies between general nanobody and 

antibody performance. 
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Figure 24: Dot blot analysis to investigate epitope competition of antibodies and nanobodies. Purified antigen 
was spotted on a nitrocellulose membrane, blocked with unlabeled nanobody and detected with fluorescently 
labeled nanobody (atto647N) or primary + secondary antibody (atto647N). A: The antibody clones 71.1 
and 78.2 detected the antigen independent of prior blocking with unlabeled nanobody indicating binding to a 
different epitope. B: The HPC-1 antibody was found to be impaired by stx-Nb6 indicating epitope overlap of 
these two probes. BSA was immobilized on the membrane as a negative control. Error bar represent standard 
error of the mean (SEM), n = 3. 

 

3.5.2 Comparative Staining in Cell Lines  
Similar to the validation procedure, I first used COS-7 cells transiently expressing the target antigen 

fused to EGFP to perform a comparative staining with the nanobodies and the conventional 

antibodies. Nanobodies were directly coupled to atto647N and primary antibodies were detected 

with a secondary coupled to a Cy3 fluorophore. As shown before, both nanobody and antibody only 

seemed to bind to transfected cells overexpressing the antigen-EGFP construct, but did not show any 

background signal on cells not expressing the EFGP fusion construct (see Figure 17).  

Overall, both antibody and nanobody stainings generally followed the location of the EGFP-signal. 

However the nanobodies seemed to resemble the levels of overexpressed protein more accurately 

than the antibody. This was particularly acute in protein-dense areas like the perinuclear region as 

shown in Figure 25.  

To analyze this effect, I drew a line through the respective area and displayed the fluorescence 

intensity profile of each pixel below the line. As shown in Figure 25, the nanobody signal follows the 

EGFP-fluorescence quite precisely, whereas the antibody fails to follow the EGFP-fluorescence in the 

protein-rich regions. The phenotype was observed for both antigens, albeit slightly less clear for 
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syntaxin 1A. As described in section 3.4.4, syntaxin 1A shows the propensity to accumulate in the ER 

if its interaction partners such as MUNC-18 are not present [160,161]. This explains the massive 

accumulation of syntaxin 1A and the less apparent phenotype in cells expressing SNAP-25.  

To further evaluate this phenotype, the average fluorescence of the whole cell, of the cytoplasm and 

of the perinuclear region was measured and normalized to the EGFP-fluorescence of the 

corresponding region, which indicates the level of expressed protein. Both S25-Nb10 and stx-Nb6 

were found to significantly detect more antigens in the perinuclear region than the corresponding 

antibody. In addition, S25-Nb10 signal in the entire cell overlapped with the EGFP fluorescence 

significantly better than the antibody as shown in Figure 25C. For syntaxin 1A expressing cells, both 

nanobody and antibody followed the EGFP signal outside the perinuclear in somewhat lower extend. 

Presumably, this effect was caused by the accumulation of syntaxin 1A in the ER as mentioned above 

whereas the detected fluorescence in the EGFP channel might be generic autofluorescence of the 

cell, as the overexpressed protein is not present there.  

I conclusion, I hypothesized that the size of a conventional IgG molecule prevents it from entering 

into protein-rich areas and detection of its antigen. 

 

 

 
Figure 25: Binding of nanobodies to COS-7 cells overexpressing the target antigen fused to EGFP. Images were 
recorded in Leica TCS SP5 microscope used in confocal mode. A: The nanobody and EGFP signal show a high 
level of overlap whereas the antibody does not detect its target protein in protein-dense regions. B: Line scans 
were drawn through the perinuclear region revealing the difference in fluorescence signal of the nanobodies 
and antibodies (white bars in A). C: To quantify this effect, average fluorescence of the whole cell (black bar) as 
well as the cytosol (dark-grey bar) and perinuclear region presumably including the ER (light-grey bar) was 
measured. Analysis of the data was done using unpaired t-test, n = 37 for SNAP-25-EGFP and n = 36 for 
syntaxin 1A, ** p < 0.01, *** p < 0.001. Error bars represent SEM, scale bar represents 10 µm. 
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3.5.3 Penetration into Tissue Sections  
To follow up the previous observation that the antibodies might not be able to reach epitopes in 

crowded regions due to their size, I aimed to investigate the ability of antibodies and nanobodies to 

penetrate biological tissue samples. Brain slices of approximately 35 µm thickness were used for 

comparative staining of endogenous SNAP-25 and syntaxin 1A. The secondary antibodies used were 

coupled to atto647N as well as the directly labeled nanobodies to exclude unspecific binding of the 

fluorophore in the tissue. Confocal optical sections of 700 nm thickness were acquired throughout 

the slice.  

When measuring the average fluorescence of each frame, I could clearly observe a decrease of 

antibody signal when imaging deeper into the tissue, depicted in Figure 26. The antibody signal 

increased again when the opposite periphery of the tissue sample was reached. In contrast, the 

average nanobody fluorescence remained relatively constant throughout the whole tissue depth. 

Figure 26 also shows the total fluorescence of each frame while imaging through the sample. It is 

important to keep in mind that due to scattering of light the fluorescent signal will decrease slightly 

when imaging deeper into the tissue sample increasing the distance between the focal plane and the 

objective.  

In control experiments inverting the sample and repeating the imaging procedure, the same effect 

was observed. This implies that the loss in fluorescence signal is caused by the reduced amount of 

light reaching the objective while increasing imaging depth and not by inhomogeneous or incomplete 

staining. All in all, I observed that both S25-Nb10 and stx-Nb6 in contrast to their antibody 

counterpart showed a more continuous staining throughout the entire tissue sample. This adds to 

my hypothesis that indeed antibodies are limited to reach their epitopes by their comparably large 

size and thus may detect only a subset of all epitopes. 
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Figure 26: Tissue penetration of nanobodies and antibodies in thin sections of rat brains. The sample was either 
stained with primary antibody overnight followed by detection with a fluorescently labeled secondary 
nanobody or with directly labeled nanobody overnight. A: Staining for SNAP-25 using either S25-Nb10 
conjugated to atto647N or the antibody clone 71.1 revealed with a secondary antibody conjugated to 
atto647N. B: Comparison of stx-Nb6 conjugated to atto647N and antibody clone 78.2, revealed as in A. 
Samples were imaged in confocal optical section of 700 nm throughout the entire slice covering approximately 
35 µm. For each condition, exemplary images of different depths in the tissue were chosen, indicated by the 
numbers (1)-(3). In deeper regions of the tissue, the fluorescent signal of the antibodies dropped almost to zero 
whereas nanobody fluorescence remained constant throughout the whole brain slice. Scale bars represent 
20 µm.  
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3.5.4 Staining of Endogenous Antigens in PC-12 Cells 
As transient overexpression of proteins may be associated with artifacts, I intended to investigate 

endogenously expressed synaptic proteins in their native context. For this I used a cultured 

pheochromocytoma (PC-12) cell line derived from the adrenal medulla of Rattus norwegicus [164]. 

PC-12 cells originate from the neural crest and thus possess a similar set of proteins associated to 

synaptic vesicle recycling including neuronal SNARE proteins. 

I performed a co-staining of antibody and nanobody as described in section 3.5.2. As expected, I 

observed both classes of affinity molecules to colocalize and primarily stain the plasma membrane 

where SNAP-25 and syntaxin 1A are located under conventional conditions shown in Figure 27. 

Notably, the fluorescence signal of the nanobody was generally lower compared to the antibody 

staining, presumably due to lack of signal amplification by secondary antibody. Analogously to the 

phenotype observed in overexpressing COS-7 cells, the nanobody signal localized to the perinuclear 

region and plasma membrane of the cells, but not to the cytoplasm or nucleus.  

To exclude the possibility that the nanobodies were binding alternative molecules in PC-12 cells, 

which express a variety of other neuronal proteins, I additionally tested both nanobodies and 

antibodies on a Western blot. As also shown in Figure 27, both affinity molecules showed a single 

band in the blot for SNAP-25 and syntaxin 1A. As the molecular weight of that band matched the 

expected weight of the respective antigen, I concluded specific binding of the nanobody and the 

phenotypes in IF experiments to be specific staining. 
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Figure 27: Staining the endogenous levels of SNAP-25 and syntaxin 1A in PC-12 cells. A: Nanobodies S25-Nb10 
and stx-Nb6 directly conjugated to atto647N were used together with antibody clone 71.1 (SNAP-25) and 
HPC-1 (syntaxin 1A) detected with a secondary antibody coupled to Cy3. Both antibodies and nanobodies 
detect the corresponding target residing at the plasma membrane. Furthermore, the nanobodies reveal specific 
structures in the perinuclear region, which the antibodies did not detect. B: The specificity of the affinity 
probes on PC-12 lysate was confirmed by a Western blot loading 50 µg of total cell lysate (determined by BCA 
assay). Membranes were developed with directly conjugated nanobodies (atto647N) or primary antibodies 
(clone 71.1 and HPC-1) detected by a secondary antibody coupled to atto647N. To compensate for the putative 
epitope overlap of stx-Nb6 and HPC-1 (see Figure 24), the cells were first incubated with the HPC-1 primary 
antibody adding the nanobody only together with the secondary antibody. 
 

 

3.5.5 Staining of Endogenous Antigens in Primary Cultures Neurons  
I could demonstrate that my new nanobodies are able to detect a larger set of target proteins within 

the specimen and thus they might provide a more accurate phenotype compared to antibodies while 

perpetuating antigen specificity.  

So far, studying synaptic composition almost exclusively relied on antibodies to detect endogenous 

levels of SNAP-25 and syntaxin 1A due to the lack of alternative probes. Thus, I intended to use my 

new probes in combination with super-resolution microscopy to investigate the distribution of 

neuronal SNAP-25 and syntaxin 1A in more detail. As the synapses represent the major platform for 

those proteins to perform their function, I focused on synaptic boutons for the analysis. Figure 28A 

shows epifluorescence images of neurons stained with directly conjugated nanobody. Both S25-Nb10 

and stx-Nb6 detect their target antigen along the neuron. As expected, the fluorescence signal is 

enriched in synaptic boutons, which were marked using an antibody against the synaptic vesicle 

protein synaptophysin.  



99 
 

As a negative control, I used a GFP-nanobody nanobody in equimolar amount and coupled to the 

same fluorophore (atto647N), which should not bind any protein in a hippocampal culture under the 

same conditions [80]. This control nanobody did not show any staining, excluding unspecific binding 

of the nanobody due to the hydrophobic atto647N moiety. 

Next, I aimed to analyze the synapses more closely using super-resolution microscopy. To identify the 

synaptic regions, antibodies against synaptophysin and Homer-1 were used as markers for the pre- 

and postsynaptic region, respectively. As shown in Figure 28B+C, I observed that the antibodies 

reveal a phenotype suggesting the clustering of syntaxin 1A and to some lower extend also of 

SNAP-25. Those findings are generally in line with the observations previously reported in the 

literature [134,135,165].  

When using my nanobodies to detect SNAP-25 or syntaxin 1A, those clusters were found to be 

substantially smaller and less evident as depicted in Figure 28. Although patterns could still be 

observed in the synaptic regions, the overall distribution of the target antigens seemed to be 

considerably more continuous then observed using antibodies (see Figure 28). That continuity was 

also observed for the entire neurite, whereas both SNAP-25 and syntaxin 1A were still enriched at 

synapses.  
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Figure 28: Comparative staining of primary cultured neurons using antibodies or nanobodies. A: Qualitative 
detection of nanobody binding. Synaptophysin antibody (see Table 7) was used for the identification of 
synaptic boutons. All nanobodies were directly conjugated to atto647N and used in a concentration of 50 nM. 
A GFP nanobody was used as a control to exclude unspecific binding due to the fluorescent label [80]. Both 
S25-Nb10 and stx-Nb6 stain the neuron while being enriched at synapses. Images were recorded with a Nikon 
Ti-E epifluorescence microscope. Scale bar represents 10 µm. B+C: Direct comparison of monoclonal antibody 
and nanobody detecting endogenous SNARE proteins in neurons. The staining with primary and secondary 
antibody results in a spotty pattern of fluorescent signal along the neuron. In contrast, the directly conjugated 
nanobody indicates a more continuous distribution of both SNAP-25 and syntaxin 1A. Both antibody and 
nanobody showed their target protein to be enriched in the synapse, indicated by staining for synaptophysin 
(green) and Homer-1 (magenta). Antibodies were detected using secondary antibodies conjugated to Alexa488 
(synaptophysin), Cy3 (Homer-1) and atto647N (SNAP-25 and syntaxin 1A). Nanobodies were used directly 
conjugated to atto647N. Scale bars represent 2 µm in the large and 500 nm in the zoomed image.  
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For a representative and quantitative analysis of the SNAP-25 and syntaxin 1A distribution in the 

synaptic region, the fluorescent signal of several hundred synapses was averaged. The Homer-1 

signal was used to center the synapse and the synaptophysin signal was used to align the synapse 

horizontally (for detailed description refer to section 2.2.20). The averaged fluorescent signal from 

the nanobody or antibody channel imaged in STED-resolution shows a comparably spotty pattern for 

the antibodies whereas the average nanobody signal indicates a more continuous staining of the 

synapse.  

This is also reflected by a line scan drawn through the center of the averaged analysis shown 

in Figure 29 (white line in Homer-1 panel). The spikes in the graph represent areas with increased 

fluorescence indication cluster formation. 

 

 

 
Figure 29: Synaptic distribution of SNAP-25 and syntaxin 1A revealed by antibodies or nanobodies.                 
A+C: Synapses were identified by the Homer-1 fluorescence signal (blue) and aligned according to 
synaptophysin fluorescence (green). The fluorescence signal in the antibody or nanobody channel was 
averaged and normalized to correct for variation in absolute fluorescence intensity (red). It can be seen that 
the pattern obtained after nanobody staining is considerably more homogenous than using antibodies; 
n > 100 synapses, N = 5 coverslips for all conditions. B+D: A line profile in the center region of the averaged 
synapses was created (white line) analyzing the normalized fluorescence of the antibodies (black) and 
nanobodies (red). The spikes in the profile represent spots of high fluorescence indicating molecular clustering. 
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3.5.6 Imaging SNAP-25 and Syntaxin 1A in Dual Color STED Microscopy  
As my novel nanobodies reveal the organization of SNAP-25 and syntaxin 1A in high detail, I aimed to 

image both proteins simultaneously in super-resolution to analyze their relative localization. To my 

knowledge, until now no study could clearly demonstrate the colocalization of SNAP-25 and 

syntaxin 1A at the synapse, although those proteins are known to interact to promote synaptic 

vesicle fusion with the plasma membrane. The small size of nanobodies was expected to promote 

the detection of epitopes in the protein-dense synaptic region, thus detecting colocalization, which 

might not be observable using conventional antibodies.  

The nanobodies S25-Nb10 and stx-Nb6 were directly coupled to AbberriorStar580 or atto647N to 

stain endogenous SNAP-25 and syntaxin 1A in primary cultured neurons. Figure 30 shows the result 

of the co-staining using both nanobodies coupled to either fluorophore. To identify the synapse, I 

used an antibody against synaptophysin detected with a secondary antibody coupled to Alexa488 

(colored in blue) as described in section 3.5.6. 

The patterns revealed by the nanobody suggest microdomain organization of SNAP-25 and 

syntaxin 1A along the neurite and in the synapse. Although both proteins are known to interact to 

mediate fusion events (see section 1.6), the nanobodies reveal only little colocalization as shown in 

the zoom panel of Figure 30. This is also in line with current observation in the literature using 

antibodies to detect SNAP-25 and syntaxin-1A [166,167]. 

 

 
Figure 30: Dual channel STED microscopy of primary cultured neurons using nanobodies. Both nanobodies 
were directly conjugated to Star580 or atto647N and imaged in STED resolution. An antibody directed against 
synaptophysin was used to identify the synapses (blue signal in the merged panel). The nanobodies show only 
very little colocalization independent of the combination of conjugated fluorophores (red and green signal in 
the zoomed panel). Scale bars represent 1 µm in the overview and 500 nm in the zoom image. 
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4. Discussion 
The rationale of this project was to generate new affinity probes to improve accuracy in imaging 

synaptic proteins with super-resolution microscopy. I successfully identified and characterized two 

novel nanobodies, termed S25-Nb10 and stx-Nb6, which bind with high affinity and specificity to 

SNAP-25 and syntaxin 1A, respectively. As this was the first project that needed the development of 

nanobodies in the laboratory, a major effort was laid in establishing a systematic workflow to screen 

for novel nanobodies. I further developed a standardized validation protocol to confirm the 

specificity of the selected candidates. In the long perspective, novel nanobodies are likely to be used 

for the analysis of various different endogenous synaptic proteins. 

I confirmed nanobodies to be versatile tools in various microscopy approaches due to their flexible 

biochemical properties. This includes scalable expression and modification in recombinant systems, 

high specificity for their target antigen and easy conjugation to various labels including fluorescent 

dyes. By using bacterial expression strains promoting the formation of disulfide bonds, recombinant 

nanobodies could readily be produced in preparative amounts. Although the internal disulfide bridge 

of nanobodies is known to increase the stability of the scaffold, it was shown to be not required for 

nanobody functionality [51,110].  

The general stability of nanobodies was observed during experiments carried out times at room 

temperature, which did not hamper the nanobody binding even if exposed to room temperature 

overnight. I was thus able to readily implement my nanobodies into IF experiments upon conjugation 

to a fluorophore.  

A systematic comparison to conventional antibodies revealed remarkable differences in the observed 

phenotype depending on the type of affinity probe used. The large full IgG molecules were not able 

to detect their antigen in a protein rich environment (see section 3.5.2) and only poorly penetrated 

tissue slices (see section 3.5.3). My new nanobodies on the contrary were able to detect considerably 

more epitopes compared to the antibody as shown in Figure 25. I therefore conclude that the 

molecular properties of the applied probe should be considered carefully to avoid misinterpretation 

of the data. Small probes such as nanobodies can overcome several problems in microscopy caused 

by antibodies and thus provide a more realistic picture of protein distribution. 
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4.1 Library Generation 
The design of a phage display library containing both a high number and a high diversity of nanobody 

candidates is essential for the selection of valuable nanobodies. Naturally, only those sequences 

which were originally present in the library in reasonable numbers can be amplified by phage display. 

Hence, I carefully optimized the procedure and conditions for library generation. 

 

Naïve libraries, which were created from the genetic antibody repertoire without prior immunization, 

are regularly used for affinity probe selection [154]. Although being readily available at low costs, the 

lack of immunization often results in the selection of no or only very weak binders as also observed in 

my previous work [65].  

Alternatively, synthetic libraries have been developed to screen for affinity molecules. Particularly, 

this approach is used for affinity molecules not based on immunoglobulin scaffolds shown 

in Figure 3, thus not allowing immunizations. Synthetic libraries can be designed to have a very high 

number of amino acid combinations in their variable region yielding up to 109 different 

sequences [71,168]. However, generation of such libraries is very expensive and despite the high 

number of different sequences encoded, a high affine probe binding specifically the target antigen 

might not be found. As nanobodies are derived from IgG molecules, I decided to generate the library 

for screening upon immunization of alpacas, which typically triggers a specific immune response. 

 

In successive trial experiments, I observed that the method of white blood cell isolation as well as its 

transportation has a great impact on the quality and quantity of the total extracted cellular RNA. For 

regulatory reasons, all steps involving direct contact with the animal including white blood cell 

isolation were performed by preclinics GmbH (Potsdam, Germany). Originally, the company used a 

protocol lysing the erythrocytes for separation of the lymphocytes with subsequent overnight 

shipping of remaining peripheral blood mononuclear cells. Unfortunately, a very low yield of total 

RNA was obtained from such isolation and shipping procedure. Hence together with the company, I 

optimized the procedure using Ficoll-gradient centrifugation for the separation of the cells followed 

by storage in RNAlater® for protection of the RNA. All together this improved the amount of 

recovered total RNA substantially from an initial yield of 3 µg per 50 ml blood to approximately 

180 µg in the latest RNA preparations. 

Another aspect I modified from conventional protocols was the amplification of the nanobody 

sequences and their cloning into the phagemid. The initial restriction libraries were generated with 

alternative pairs of restriction enzymes to avoid internal cleavage of a nanobody sequence described 

in section 2.2.15 requiring dividing and parallel processing of the samples. Restriction cloning 

furthermore requires relatively long incubation times with multiple enzymes and purification steps 
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via columns. This complex procedure is likely to cause sample decline and thus a potential loss of 

diversity in the library.  

As an efficient alternative to conventional restriction cloning,  I decided to use Gibson assembly and a 

nested PCR approach presented in section 2.2.15 [147]. I optimized the protocol for library 

generation by Gibson assembly using different amounts of RNA as a starting material as shown 

in Table 21. By this I was able to increase the final diversity of the library by several orders of 

magnitude to a final value of 4.5 x 1011 colonies, which is well above the diversity obtained and 

reported elsewhere if using restriction cloning [169,170]. Yet it should be kept in mind that the 

commonly used term ‘library diversity’ does not reflect the real number of different sequences, but is 

an absolute value for the total amount of colonies after transformation. As this estimation does not 

take into account any redundancies, the actual diversity of the libraries is most likely substantially 

lower.  

In another project conducted in the laboratory, my colleagues recently were able to analyze the 

nanobody repertoire of an alpaca by next-generation sequencing. Serial isolation of RNA from 

multiple alpacas repeatedly resulted in the identification of approximately 1.3 x 107 non-redundant 

nanobody sequences. At the same time, the sequencing was performed in a way that 107 sequences 

would not saturate the device capacity. Additionally the reproducibility of the total sequence number 

suggests that the common diversity of an alpaca ranges around 107 different nanobody clones which 

compares to typical diversities of immune libraries [67]. 

When comparing my libraries for phage display, the Gibson library was statistically expected to 

contain more different nanobody sequences than the restriction library due to technical 

improvements explained in section 2.2.15. Hence, the Gibson library also has a greater potential to 

yield valuable nanobodies for IF microscopy. In fact, several new candidates not found in the original 

restriction library were selected from the Gibson libraries. Additionally, the absolute number of 

candidates passing all validation steps was substantially higher in the Gibson libraries as contrasted 

in Table 22.   
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4.2 Selection Procedure by Phage Display 
Similar to the library design, the actual screening and selection procedure of nanobody candidates 

needed to be optimized carefully. As I considered IF microscopy to be the major field of application 

for my nanobodies, I aimed to select nanobodies with a high affinity and a low koff rate upon antigen 

binding. For this, I performed long washing steps ranging from 1 to 12 h in the initial panning rounds 

to be left with high affine binders only. As samples for IF are washed several times to remove 

unspecific binding in conventional protocols, I also performed up to 15 washes during one panning 

round.  

Although several candidates were identified, I realized that such extensive washing might eventually 

also cause the immobilized antigen to dissociate, thus reducing the number of positive candidates. 

Initially, the Strep-Tag® I and II binding Strep-Tactin® (both developed by IBA, Göttingen) were used 

for antigen immobilization. However, the affinity of these tags was found to be in the micromolar 

range and immobilized proteins thus may not withstand harsh washing conditions [171]. Therefore,    

I reduced the number and time of washing steps in subsequent panning rounds as shown in Table 22.  

On top, the tag for immobilization was replaced with a more recently developed twin-Strep-Tag® (tst) 

binding Step-Tactin®XT. This system has been claimed to have a binding affinity in the low nanomolar 

range and thus does not confine as much the affinity of selected nanobodies [171].  

Another advantage of immobilizing the antigen via a specific tag in a controlled orientation instead of 

its adsorption directly to plastic surfaces is the conservation of its native condition. In initial screens,   

I also used MaxiSorp® plates for unspecific antigen immobilization onto the plastic surface. As this 

way of antigen immobilization is known to disrupt the protein structure, most selected candidates 

did not bind the native antigen in IF anymore as can be seen in Table 22. Instead, magnetic MagStrep 

‘type3’ XT beads (IBA) were used for immobilization in solution adjusting the bead volume to the 

amount of antigen used.  

This system further provided the advantage of specific competitive elution by using biotin to release 

the immobilized antigen and bound phages from the solid support. In contrast, the unspecific elution 

performed in the conventional protocol required digestion of the antigen by trypsin to release the 

bound phages. Although the phages are generally considered to withstand trypsin treatment, specific 

elution is preferred as it essentially keeps all phage proteins required for reinfection of bacteria 

intact [154]. Moreover a contamination of the eluate with other proteins unspecifically bound is 

avoided by using a competitive agent such as d-desthiobiotin for specific elution. An even better 

immobilization of the antigen could be achieved via biotinylation or even covalent binding to a 

carrier substrate. However, an additional specific cleavage site for proteases (such as TEV protease or 

thrombin) should be added in that case to perform the specific elution of the antigen together with 

the bound phages. 
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The antigen used for immobilization on the beads was purified from E. coli, although I aimed to use 

the nanobodies to detect their target protein on eukaryotic samples. Moreover, the alpaca had also 

been immunized with proteins produced in bacteria, thus generating an immune response against 

these proteins. The major reason to use a bacterial expression system was the increase in yield of 

purified protein in comparison to cell lines such as HEK293-FT cells. Additionally, modified versions of 

the antigen were used, which lack the transmembrane domain (for syntaxin 1A and VAMP2) or were 

mutated to change the cysteine residues used for palmitoylation to serines (for SNAP-25).  

Besides omitting difficulties associated with protein expression, this way I avoided to generate an 

immune response directed against those parts of the antigen as they would not be accessible for 

nanobodies in later IF experiments. However, by using a prokaryotic expression system also common 

post-translational modifications such as phosphorylation and glycosylation were eliminated, which 

are found in mammalian expression systems. It is known that conventional full length antibodies are 

capable of detecting such modifications allowing direct investigations of their physiological role. 

 

Recently, even nanobodies have been reported to detect different conformational stages of an 

antigen upon binding of GTP as a cofactor [168]. Hence, it is very likely that also nanobodies 

detecting specific modifications in proteins will be reported in the future. Also the target antigens 

used in this project carry several modifications, which might be used as a potential target for 

nanobodies. Particularly, the organization of syntaxin 1A and the interaction with its binding partners 

has been shown to highly depend on site-specific phosphorylation of the protein [172,173]. Similarly, 

post-translational modifications of SNAP-25 have been reported to influence the cellular faith of that 

molecule [174]. More recently, a phosphorylation of SNAP-25 has also been shown to influence the 

synaptic vesicle cycle and neurotransmitter release [175]. Nanobodies against such specific protein 

modifications can presumably be obtained if using antigens derived from eukaryotic cells.  

 

To test if the use of mammalian antigens reveals a significant number of alternative candidates,           

I used antigen purified from HEK293-FT cells during one selection (see Table 22). Although some new 

families were identified, the number of selected candidates did essentially not deviate from the 

number of revealed candidates using bacterial antigen. So far, screening with mammalian antigen 

has only been done on the restriction library. Additional rounds of phage display using mammalian 

antigen to screen the more diverse Gibson library still might reveal a set of novel candidates. Yet,        

I already identified several candidates from the Gibson library using bacterial antigen.  

Typically, two panning rounds were sufficient to obtain 1-6 new nanobody families determined by 

sequencing the candidates tested positive in ELISA. If a third panning round was performed, often a 

single nanobody was found to dominate the ELISA screen suppressing all alternative candidates. 
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Most likely this is caused by a difference in expression efficiency of some candidates leading to a bias 

in phage production representing different candidates.  

Thus, I concluded that two rounds of panning performed as described are sufficient to obtain new 

candidates from an immune library. However, this might not be the case for naïve or synthetic 

libraries as no predisposition for certain antigens is constituted by the animal immune system. 

 

In parallel to the conventional selection procedure using phage display and phagemid libraries for 

panning, an alternative approach to obtain specific nanobodies for multiple targets in parallel was 

developed. Briefly, the approach is based on Illumina® next-generation sequencing of the alpaca RNA 

repertoire rather than cloning it into a vector. Additionally, affinity purified antibodies from the 

serum of the animal are subjected to mass spectrometry. The levels of nanobody-specific peptides 

before and after immunization are analyzed using the sequencing data as an inclusion list. A high 

abundance of specific peptides detected after immunization was considered to indicate the 

nanobody sequences contributing in specific antigen detection.  

The genetic sequences of those nanobodies were ordered for bacterial expression and subsequent 

validation. Although being cost- and labor-intensive, the major advantage of this method is the 

simultaneous nanobody selection against various antigens. Interestingly, some nanobody sequences 

identified via mass spectrometry showed high similarity in their CDR to candidates selected by my 

original phage display experiments.  

During validation, those nanobodies identified with both methods showed binding in dot-blot assays; 

however none of the candidates passed the final validation step using it into IF experiments (data not 

shown). Nevertheless, this observation indicates the high potential of the approach to multiplex the 

selection process compared to conventional phage display. A similar method has recently been 

introduced by Fridy and coworkers using mass spectrometry to identify nanobodies binding different 

epitopes on an antigen [81]. 
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4.3 Developing a Robust Validation Protocol 
After identification of novel nanobody families by either method, they were subjected to a set of 

validation procedures to verify their applicability for future experiments. As the candidates were 

originally selected based on positive signals in the ELISA only, it was required to confirm their 

functionality in biochemical assays and ultimately in IF microscopy. As mentioned above, ELISA 

screens typically rely on unspecific immobilization of the antigen to the wells of the plate. This 

possibly alters the protein conformation causing background binding of the phages or phages might 

bind to epitopes of the antigen that are not exposed under native conditions within a cellular 

environment. Together with the high sensitivity of the assay this might create false positive hits, 

which need to be eliminated in subsequent validation steps. 

Even if clones were tested positively in the phage ELISA, I observed that some candidates cannot be 

expressed in bacteria as a recombinant protein in preparative amounts. It can be speculated that 

such nanobodies impose toxic side-effects on the expression host of are not soluble enough for 

large-scale expression in bacteria. As I was aiming to get a nanobody which can be produced in 

scalable amounts for multiple future applications, the nanobodies showing comparable low 

expression levels were discarded at that point.  

After the expression of the suitable candidates, a new binding test was performed using the antigen 

immobilized on a nitrocellulose membrane as shown in Figure 16. In addition to the intended 

antigen, other purified proteins and BSA were spotted on the same membrane in equimolar amounts 

to serve as a negative control. In ELISA, the nanobodies had only been tested if they bind their 

antigen, but were not checked for binding to alternative antigens as this would exceed the capacity 

of this assay. By testing also other proteins in the dot blot, I could estimate if the nanobody 

candidate is prone to bind also to other SNARE proteins apart from its target antigen. As shown in 

Table 22, more than 40 % of all candidates were discarded at this step, either due to unspecific 

binding or because only a faint signal was detected on its corresponding antigen. I decided to use a 

strict threshold at this level to only continue with few, but promising nanobodies to the next 

laborious validation steps, namely IF experiments and affinity determination. 

 

For the validation via IF microscopy, mammalian cells were transfected, chemically fixed with PFA 

and permeabilized according to conventional immunostaining protocols. However, those treatments 

were reported to interfere with the protein integrity and thus may cause affinity probes to fail in 

antigen binding [176,177]. For the validation on cells fixed with PFA, I avoided to couple every 

candidate to a fluorophore individually for economic reasons. Instead, I initially used a fluorescently 

labeled antibody to detect the DDDDK-tag (FLAG-tag) that was fused to the nanobody upon 

expression. This indirect detection was used to exclude those candidates from further analyses which 
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are not capable of binding to the chemically fixed antigen or could not withstand the IF protocol. As 

the direct conjugation to a fluorophore is a both expensive and time-consuming procedure, only 

those candidates were conjugated to a fluorophore that displayed clear colocalization between the 

FLAG-Antibody signal and the EGFP. 

Only 23 % of initial positive families in ELISA were found to bind the antigen in IF, which highlights 

the importance of introducing several levels of validation including application in microscopy 

(see Table 22).  

 

In a final step I confirmed the binding of the directly labeled nanobody in IF and analyzed the 

background binding to non-transfected cells identified by their Hoechst nuclear staining but negative 

EGFP signal. Occasionally, the direct labeling procedure also caused precipitation of the nanobody, 

particularly if using rather hydrophobic fluorophores such as atto647N [159].  

Additionally, it seems that individual nanobodies have a different chemical behavior when combined 

with a particular fluorophore. As a consequence, some candidates were observed to precipitate after 

the labeling procedure or lose their function (Nanotag Biotechnologies, unpublished data). Yet the 

final goal of the project was to obtain nanobodies which bind their antigen specifically in IF upon 

direct conjugation to fluorophores such as atto647N commonly used for STED microscopy. Although 

several candidates might have passed the final validation, I did not optimize the immunostaining 

protocol for each candidate to turn selected nanobodies into a universal and practicable tool.  

 

A potential way for direct selection of nanobodies applicable for IF is the chemical fixation of the 

antigen to the beads during the panning rounds to mimic the conditions in microscopy experiments. 

Notably, this requires also harsh elution conditions such as tryptic digestion since competitive elution 

will not suffice to release the antigen. In turn, the number of novel selected families is expected to 

decrease as epitopes can be blocked by modifications introduced via aldehyde fixation or are not 

accessible anymore.  

When I performed test experiments using PFA-fixed antigen during the panning round, no nanobody 

family was revealed that had not been identified before. As I already obtained several good binders, 

this approach was not exploited further. However, it could still be a promising screening procedure, 

especially when performing it in 96-well plates using a pipetting robot to achieve a high-throughput 

selection. In such a case, the intermediate validation on a dot blot could be omitted to prevent false-

negative nanobodies from being discarded. For now, all nanobody candidates have been expressed 

and validated individually restricting the number of candidates that can be handled simultaneously. 
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As depicted in section 3.3, no final nanobody binding to VAMP2 could be identified during the 

validation procedure. This may be due to a limited immunogenicity of VAMP2 not evoking a B-cell 

response in the animal, which triggers the production of specific antibodies. A possible explanation 

could be the high conservation of this protein among different species, which prevents its detection 

as a foreign molecule. Alternatively, the immune reaction by the alpaca might have been too low to 

generate a significant amount of specific IgG molecules. 

Notably, the generation of conventional antibodies against VAMP2 has also been observed to be 

challenging resulting in a limited number of commercially available antibodies specific for this 

protein. Moreover, nanobodies typically bind structural epitopes due to their flexible CDR3 loop 

penetrating into binding pockets of the antigen [51,84]. In contrast the fold of VAMP2 is known as a 

rather unstructured protein lacking a tertiary structure and thus might not expose a stable 

conformational epitope as a target for the nanobody [178].  

Therefore the positive hits in ELISA presumably resulted from transient interactions with VAMP2 or 

even from background binding in the assay. None of these candidates was specifically amplified over 

the others during the panning, indicating the lack of a specific affinity to the antigen. SNAP-25 and 

syntaxin 1A on the other hand acquire a more complex tertiary structure as illustrated in Figure 8, 

which can specifically be detected by my selected nanobodies S25-Nb10 and stx-Nb6. 

 

4.4 Characterization of S25-Nb10 and stx-Nb6 
An important parameter of the nanobodies is their affinity as it influences the quality of staining in IF 

experiments. The conditions during SPR measurements caused both precipitation and degradation of 

the antigen due to long incubation times as mentioned in section 3.4.3.  

I initially decided on this method as not only the affinity, indicated by the dissociation constant KD, 

but also the kinetic behavior of the nanobodies could be measured. The kinetic parameters such as 

association (kon) and dissociation (koff) provide additional information on the dynamic behavior. 

Those values can be used to adjust the washing conditions accordingly to minimize the loss of 

nanobody during washing steps.  

I found most nanobodies to exhibit similar values for kon causing the dissociation constant KD to 

directly determine the overall affinity of the probe [81,168]. Hence, a low dissociation constant was 

considered to indicate a strong affinity of my nanobody. To measure the KD value of the nanobody-

antigen complex, MST was finally used as a more reliable and faster method.  

The two nanobodies S25-Nb10 and stx-Nb6 binding SNAP-25 and syntaxin 1A, respectively, passed all 

validation criteria and bind their antigen with high affinity. Their dissociation constants were found to 

be in the low nanomolar range (15.5 ± 3.3 nM for S25-Nb10 and 5.0 ± 1.2 nM for stx-Nb6), which 
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indicates a high affinity of the nanobody comparable to other probes described in the 

literature [84,168]. Those nanobodies were therefore used as final probes for further experiments. 

 

I decided to use the nanobodies in a concentration of 50 nM in immunostainings, which is well above 

the KD value and thus expected to saturate the detection of the epitopes. At the same time this 

concentration of nanobodies was still low enough to prevent unspecific staining in cells not 

expressing EGFP (see Figure 22). This is shown in Figure 28 where a GFP-nanobody also conjugated to 

atto647N was used at equivalent conditions to determine if the fluorophore contributes to 

background binding (negative control).  

 

The sequences of rat syntaxin 1A and SNAP-25 were used for both phage display selection and 

validation experiments. Both proteins are virtually conserved among mammals including homo 

sapiens, mus musculus and rattus norwegicus with occasional deviations of single amino acids. 

Therefore, the species type of the antigen is not expected to influence the result of nanobody 

binding. This is also supported by the fact that both nanobodies detected a single protein in 

immunoblots regardless of the species type as shown in Figure 20. 

Besides these observations, it is a remarkable fact that the nanobodies are at all working in Western 

blots detecting the antigen after denaturing SDS-PAGE as demonstrated in section 3.4.4. Although 

nanobodies detecting linear epitopes have been reported before, the detection of unfolded proteins 

is generally rather untypical for those probes [51,79,84]. A possible explanation could be the 

incomplete denaturation or partial refolding of SNAP-25 and syntaxin 1A during SDS-PAGE. 

Alternatively, the nanobodies might indeed bind to linear or unstructured epitopes, which do not 

require the antigen to acquire a specific conformation.  

To narrow down the region of nanobody binding to the antigen, I generated truncated forms 

covering the antigen sequence piece by piece. As shown in Figure 23, individual domains of the 

antigen seem to be in fact sufficient to mediate nanobody binding. The epitope nanobody S25-Nb10 

was found to localize in the N-terminal domain of SNAP-25 which constitutes one of the two SNARE 

domains of that protein. Generally, those domains are composed of an alpha-helical structure, which 

form intermolecular bundles resulting in a stable helical bundle [162]. As a single SNARE domain is 

not expected to acquire a tertiary structure, the epitope mapping shown in Figure 23 suggests that 

both nanobodies might indeed detect a linear epitope or a helical secondary structure. 

 

If by future NMR analyses the epitope of the nanobody S25-Nb10 can be confirmed to reside within 

the SNARE domain, the nanobody could be an interesting tool to investigate the SNARE complexes. 

By intracellular expression of the nanobodies in neurons, the SNARE complex formation could be 
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impaired due to sequestering of SNAP-25. Alternatively also the ratio of free SNAP-25 compared to 

per-assembled complexes or clusters could be determined if the nanobody is found to only bind free 

SNAP-25. This might be a valuable approach to investigate the dynamics of synaptic vesicle cycling 

and synaptic physiology in more details. A first indication that S25-Nb10 cannot detect SNAP-25 

engaged in a SNARE complex can be inferred from Figure 30 where both nanobodies were imaged in 

dual channel STED microscopy. 

Due to the interaction of SNAP-25 and syntaxin 1A on the plasma membrane to nucleate a SNARE 

complex for vesicle fusion, both proteins are expected in direct proximity [179,180]. The low 

colocalization of SNAP-25 and syntaxin 1A observed in Figure 30 might thus be caused by steric 

hindrance or conformational change in the SNARE bundle which masks the epitope. Similarly, 

antibodies often localize an epitope within the SNARE domain (see section 3.5) and therefore might 

likewise be impaired in binding their antigen in a complex. So far, SNAP-25 and syntaxin 1A have 

been only reported to localize in adjacent domains but not in the same SNARE complex as it would 

be expected [166]. 

Despite the apparent binding specificity for the SNARE domain of SNAP-25 and syntaxin 1A, the 

nanobodies merely detect other closely related SNAP or syntaxin proteins (see section 3.4.4 and 

Figure 21).  The high specificity of S25-Nb10 was expected as SNAP-25 shares only little homology 

with other SNAP proteins (see Figure 21 and Figure 31). On the contrary, currently 16 different 

syntaxin proteins are known in human, most of which show high degree of similarity [181]. I tested 

three syntaxin variants that show the highest level of sequence conservation to syntaxin 1A, 

indicated by the green box in Figure 31. Still the stx-Nb6 shows specificity for syntaxin 1A with little 

cross-reactivity to syntaxin 3 but no reactivity for the phylogenetically close protein syntaxin 1B.  

 

Taking into account that the nanobody might detect a linear part of the protein this narrows down 

the potential position for the epitope drastically. In practice, an amino acid sequence found in both 

syntaxin 1A and syntaxin 3 but not in syntaxin 1B could be a likely position for the nanobody to bind. 

An exemplary region is located in between the amino acid residues 53-59, where syntaxin 1A 

possesses higher sequence similarity to syntaxin 3 than to syntaxin 1B. Interestingly, this region is 

also part of the truncation construct showing nanobody binding in Figure 23. Hence, recombinant 

expression of this peptide to use for dot blot or blocking assays could pinpoint the epitope to a short 

peptide. If that peptide shows binding to the nanobody, it may also be used as a ligand for NMR to 

gain structural information on the interaction between stx-Nb6 and syntaxin 1A.  

 

 



114 
 

In further experiments, the specificity of stx-Nb6 for syntaxin 1A can be used to quantify the ratio 

between cellular levels of endogenous syntaxin 1A and 1B. Despite the high degree of sequence 

conservation in between those molecules, syntaxin 1A and 1B have a different impact on synaptic 

physiology and neuronal survival [182,183]. The nanobody could thus be used as a tool to selectively 

detect endogenous levels of syntaxin 1A as many commercially available antibodies cannot 

distinguish between those two syntaxin variants (see Figure 21 and Figure 31). 

 

Yet my primary focus lies on the application of nanobodies as a versatile tool for super-resolution 

microscopy in fixed samples. High affinity and high specificity were therefore considered to be the 

main criteria to define my nanobodies, regardless of the epitope position. After identification of 

S25-Nb10 and stx-Nb6 as the final candidates, I therefore focused on their implementation in IF 

experiments. 

 

 

 

 
Figure 31: Phylogenetic alignment of the SNAP and syntaxin protein family. During this study, I focused on 
SNAP-25 and syntaxin 1A as two major SNARE proteins present in neuronal synapses. The highlighted syntaxin 
variants were used to analyze the specificity of nanobodies directed against syntaxin 1A. Alignment was 
created with CLC sequence viewer 7. 
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4.5 Labeling of Nanobodies  
Before using my nanobodies for immunostaining, they were conjugated with a fluorophore to allow 

direct detection of the target antigen and to avoid creation of artifacts due to secondary antibodies 

(see section 1.5). As a default fluorophore atto647N was used, which is known for its tendency to 

unspecifically bind to membranes but shows a high quantum yield compared to other fluorophores in 

the far-red range [159].  

I carefully performed control experiments using unspecific nanobodies conjugated to atto647N at the 

same concentration to confirm the negligible level of background fluorescence caused by the dye 

moiety. Atto647N is known to be a preferred dye for STED microscopy and maleimide-functionalized 

fluorophores can efficiently be coupled to the protein. Other functionalized dyes used for coupling 

reactions and listed in Table 20 showed lower (Alexa dyes) or even very poor (Abberior dyes) DOL 

values upon conjugation (data not shown). The labeling efficiency directly influences the quality of 

subsequent immunostainings. Whereas an excess of dye can be removed by size-exclusion 

chromatography (see Figure 18) unreacted nanobody molecules cannot easily be removed after the 

labeling reaction. Contaminations of unconjugated nanobody in an immunostaining should be 

avoided as they will block binding sites of the antigen, which subsequently elude the observation by 

fluorescence microscopy.  

The method used for labeling also drastically influences the DOL and specifications of the conjugated 

nanobody. As already indicated in previous studies, using the enzyme sortase A results in labeling of 

only a minor fraction of the nanobody sample associated with the problems stated in 

section 3.4.2 [65]. In contrast, labeling with NHS-activated fluorophores is commonly used for the 

conjugation nanobodies [81,91]. These dye moieties are attached unspecifically to exposed lysine 

residues of the molecule. If a lysine residue takes part in the epitope detection, the affinity probe 

might lose its binding capability if a fluorophore gets attached to this residue [110]. By adding a poly-

lysine tag to the C-terminus of the nanobody, this effect can be alleviated, but not completely 

resolved [112].  

Attaching multiple fluorophores to a single molecule might also cause self-quenching of the dye 

resulting in a major loss of fluorescence [184]. Furthermore, I observed that conjugating multiple 

hydrophobic fluorophores to the relatively small nanobody is prone to cause precipitation of the 

molecule if stored over longer time. In addition to the hydrophobicity brought in by the dye moiety, 

the solubility of the protein is reduced as the conjugation reaction happens at charged lysine 

residues, which contribute to the solubility. 

Consequently, I decided to use a method combining site specificity and high labeling efficiency for 

conjugating the nanobodies to a fluorophore. By adding an additional cysteine to the C-terminus of 

the nanobody during recombinant expression, a specific reaction site for maleimide activated 
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fluorophores was created. A short linker sequence separated the extra cysteine from the major part 

of the nanobody to prevent interference with the intramolecular formed disulfide bridges. If those 

purified nanobodies were reduced before labeling (see section 2.2.18), routinely a DOL of >90 % was 

obtained, while using only minimal to moderate excess of dye, depending on the manufacturer.  

 

Another major advantage of this labeling approach is the defined stoichiometric ratio of fluorophores 

per nanobody (DOL values reach almost 100 %), which allows direct quantitative analysis of the 

antigen. Nowadays, several research groups are aiming to quantify biological compounds directly 

using modern microscopy techniques [108,185,186].  

If the fluorescence signal of the labeled nanobody is normalized by measuring individual molecules, 

this calibration may be used to estimate the absolute number of antigen in an IF experiment. 

However, this approach requires a very sensitive camera for detection of individual fluorophores.        

I performed a quantitative analysis of GFP molecules using nanobodies conjugated to a single 

atto647N molecule, similar to the approach described by Mi and coworkers [187].  

In addition to a blinking behavior of the dye, the analysis of the detected fluorescence signal turned 

out to be challenging: The possibly emitted fluorescence of a single fluorophore is not given by a 

discrete value but is described by a Gaussian distribution. Hence, the fluorescent signal is blurred out 

if more than five molecules in direct proximity are detected simultaneously. In such a case, the exact 

number of molecules cannot be determined anymore without an error, however an estimation of the 

copy number is still possible. The analysis is further assuming a linear correlation between the 

fluorescent intensity and the number of fluorophores. Although the fluorescence signal generally 

correlates with its concentration, the linearity is lost at very high fluorophore concentrations [188].  

 

Finally, for complex biological samples, a high detection density is required not to miss any epitopes, 

which might be challenging even for small affinity probes such as nanobodies. In my experiments        

I addressed all aspects mentioned above individually generating a reliable fit to count individual GFP 

molecules (data not shown). This underlines the capability of nanobodies to be used in quantitative 

microscopy approaches. Even if they cannot reveal an exact protein copy number in IF experiments, 

nanobodies represent molecular organization substantially better than a conventional staining using 

primary and secondary antibodies. 
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4.6 Comparison of Nanobodies to Classical Affinity Probes 
The limited possibility to use antibodies as a tool for protein quantification is only one difference to 

nanobodies. As pointed out in section 1.5 and supported by my findings in section 3.5, antibodies are 

impaired by their size from penetration deep into complex biological samples as demonstrated 

in section 3.5.3. Consequently, they might not detect all available target epitopes yielding an 

inhomogeneous staining and thus not necessarily reflecting the actual protein distribution in the 

sample [72] as shown in section 3.5.5.  

Typically, biological samples are chemically fixed prior to immunostainings using aldehydes such as 

PFA or glutaraldehyde. However, the fixation is often not completed as the aldehydes may take up to 

several days to achieve complete immobilization of the molecules in the sample [189,190].  

Moreover, the crosslinking induced by the aldehydes can be reversed if the fixation was performed 

only shortly and the sample is left in an aqueous solution. Therefore divalent probes such as 

antibodies might cluster together insufficiently immobilized antigens upon binding. This effect is 

even enhanced by the use of secondary antibodies for detection as the sample is commonly not fixed 

again after application of the primary antibody. Divalent polyclonal antibodies such as secondaries 

can bind multiple primary antibodies, which might thus increase the clustering effects.  

 

Figure 28 shows the difference in phenotype when using primary and secondary antibodies or 

directly conjugated nanobodies to detect endogenous proteins. My data suggest that using 

antibodies not only results in the tendency to observe more bright spots, but might result in omitting 

antigens in between these spots. As a consequence, the IF image does not necessarily represent the 

biological distribution of the antigen. In contrast, nanobodies used in IF experiments generally 

showed a more smooth antigen distribution as shown in section 3.5. 

These effects can merely be seen in confocal microscopy, but they become a major problem in super-

resolution microscopy [91,105]. At a diffraction-limited resolution, the size of antibody clusters is 

expected to be well below the maximum attainable resolution of 200 nm resulting in a similar 

staining pattern compared to nanobodies [91,105]. If using current super-resolution techniques, the 

technically possible resolution is compromised by the size of the antibody as illustrated in Figure 32. 

Modern microscopes for STED and STORM can achieve resolutions in the low nanometer range, 

whereas the size of a single antibody molecule already ranges around 15 nm [12,27,111].  
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In addition to the resulting fluorophore delocalization, the molecular clustering and inhomogeneous 

fluorescent labeling of the secondary antibody are prone to distort the phenotype of antigen 

organization (see section 1.5). In contrast, a monovalent small affinity probe is able to efficiently 

decorate the target antigen resulting in a better resolved staining resembling the antigen distribution 

in super-resolution (represented by blurred red circles in Figure 32A). Although Figure 32 is a 

simplified 2D-projection, it illustrates the problem for one exemplary protein. In a complex biological 

sample, not only special dimensions of the depicted proteins but also the densely packed molecular 

environment needs to be considered as depicted in section 1.6.  

In such an environment, the epitopes of the target antigen might be masked by other proteins and 

thus are not accessible for antibodies. The flexible CDR3 loop of nanobodies (see section 1.4.4) in 

combination with the small size of the probe can be beneficial in such a case.   

However, the missing of epitopes might also happen to nanobodies if the antigen is engaged in a 

multimeric complex as it might be the case for S25-Nb10 where the epitope is located within the 

SNARE domain (see Figure 23). This would also impair nanobodies from accessing the epitope in 

assembled SNARE complexes, which could be an explanation for the low degree of colocalization 

observed in Figure 30. 

 

Despite the increase in resolution achieved by using directly conjugated affinity probes, this 

detection system is to some extend rather inflexible. If an alternative fluorescent label is desired, the 

molecule needs to be labeled de novo with the dye. In contrast, the label in an antibody staining can 

easily be exchanged by using an alternative secondary antibody providing a flexible platform for 

fluorescent labeling. However the conjugation of nanobodies to functionalized dyes can be 

performed with reasonable effort following standard protocols. The conjugation to recombinant tags 

or enzymes is even facilitated as they can directly be fused to the nanobody on DNA level. Along 

these lines, nanobodies might be useful tools to replace secondary antibodies to compensate for 

potential artifacts introduced while performing conventional antibody stainings. 
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Figure 32: Schematic illustration of antibody and nanobody binding to a target antigen. A: Exemplary 
representation of fluorescence signals detected by microscopy. With super-resolution techniques, individual 
fluorophores (blurred red circles) can be localized indicating the arrangement of the target antigen. Notably, 
when using confocal microscopy, the diffraction limit would cause the fluorescent signals to overlap impeding 
conclusions on molecular organization (represented by the dashed grey line). B: A potential molecular 
arrangement of affinity probes resulting in a fluorescence pattern observed in A. Although the detected 
fluorescence pattern resulting from antibody or nanobody staining is different, the molecular organization of 
the antigen (SNAP-25) is still identical. The fluorescence signal resulting from the nanobody resembles the 
molecular organization of the antigen with higher accuracy thus increasing the resolution. 
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The scalability of nanobody production further broadens the possible applications as experiments are 

typically not limited by the amount of affinity probe available. Hybridoma cell lines for the 

production of monoclonal antibodies are cost-intensive and might eventually die or stop the 

secretion of functional antibodies [107]. Although polyclonal antibodies are more easy to produce 

then monoclonal antibodies, they often show high batch variability in binding to their antigen 

resulting in several researches recommending to substitute them [107,191].  

Those antibody characteristics often associated with artifacts in IF experiments are not observed 

when using nanobodies as affinity probes. Their small size and monovalent nature facilitate the 

efficient decoration of cellular epitopes thus providing a higher level of detail than conventional 

affinity probes. If introducing the fluorescent label in a quantitative manner, the microscopy image 

can even be assumed to directly reflect the actual distribution of the antigen. However, the labeling 

of nanobodies requires careful optimization as mentioned above. If only one dye molecule is 

attached per nanobody, the absolute fluorescence signal is essentially lower than observed with 

secondary antibodies, which are known to amplify the signal.  

On the other hand, the high detection rate of the nanobody somewhat compensates for this effect as 

the number of fluorescent molecules is higher compared to conventional antibodies. If the antigen is 

present in plethora, using nanobodies might be even more reliable as the higher fluorescence of 

antibodies is counteracted by their poor penetration capability (see section 3.5.4). During the 

studies, I primarily used one antibody clone for each SNAP-25 and syntaxin 1A for direct comparison 

with my nanobodies. Although it might be interesting to analyze also the performance of other 

antibodies, I chose the clones 71.1 and 78.2 as two very established antibodies in the field 

[128,165,192]. As the aforementioned observations are due to general properties of antibodies, also 

alternative clones are likely to yield the same result.  

I observed significant differences in the fluorescence signal revealed by antibodies or nanobodies in 

both cell lines and primary neuron cultures. The accumulation of overexpressed syntaxin 1A in the ER 

and Golgi if expressed without cofactors has been reported before [193]. This explains the phenotype 

in the EGFP-channel showing high concentration of syntaxin 1A in the perinuclear region as depicted 

in section 3.5.2. Similarly, SNAP-25 was found in higher concentrations at the periphery of the 

nucleus.  

After expression, SNAP-25 is palmitoylated to be anchored into cellular membranes. Enzymes of the 

DHHC family that mediate the palmitoylation of SNAP-25 were reported to predominantly be located 

at the Golgi apparatus, which resembles the structure and location of high SNAP-25-EGFP signal in 

COS-7 cells [194]. The high copy numbers of the overexpressed protein presumably saturate the 

capacity of the cellular palmitoylation machinery and cause the protein to accumulate. In both cases, 
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the antigen is localized in a protein-dense region, where the nanobodies represent the EGFP signal 

significantly better compared to conventional antibodies. 

A similar phenotype could also be observed when staining PC-12 cells with either antibodies or 

nanobodies, shown in section 3.5.4. As those cells originate from the neural crest, they endogenously 

express both SNAP-25 and syntaxin 1A, albeit in lower amount than in an overexpressing 

system [192]. This suggests that at the level of endogenous protein expression, the conventional 

antibodies used in this experiment cannot reliably detect the entirety of present antigens and their 

organization. This is a crucial point particular for the detection of the SNARE proteins SNAP-25 and 

syntaxin 1A in neuronal synapses as they play a major role in synaptic vesicle fusion and 

neurotransmitter release [126]. It is therefore of major interest to analyze the organization of those 

proteins in the highest level of detail possible, which can only partially be done with conventional 

antibodies. 
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4.7 Organization of Synaptic Proteins Revealed by Nanobodies 
Using the nanobodies S25-Nb10 and stx-Nb6 to image primary cultured hippocampal neurons in 

super-resolution, I observed a phenotype deviating from classical observation with antibodies. Both 

target proteins were reported to form clusters all over the neuronal membrane if observed with 

super-resolution microscopy [135,167]. Those assemblies are considered to form clusters of defined 

sizes due to lateral interaction of the SNARE domains [195,196].  

The homophilic interaction between the molecules might compensate the loss in entropy when 

proteins are clustered in one place. It has been debated that the clusters serve as platform to recruit 

SNARE proteins for its complex formation or to participate in maintaining membrane integrity [165]. 

Still, no obvious physiological relevance of the reported clusters was found so far and the role of 

SNARE cluster formation is still under investigation. 

Notably, so far all major microscopic investigation on SNARE protein assembly exclusively either used 

overexpressing proteins tagged with EGFP or primary and secondary antibodies for the detection of 

endogenous SNARE proteins [134,195,197]. Many observations on syntaxin clustering were made in 

PC-12 cells, which are known to resemble the proteome machinery for synaptic vesicle fusion like in 

neurons without readily forming synapses.  

When I used my nanobodies to investigate the distribution and organization of SNAP-25 and 

syntaxin 1A under more native conditions, I found both protein clusters to be less evident compared 

to antibody stainings (see section 3.5.5). Averaging the fluorescence signal of several hundred 

synapses, I could show an average distribution of the SNARE proteins using either of the two affinity 

probes as shown in Figure 29. Upon using nanobodies in IF microscopy, the overall distribution of the 

proteins was found to be substantially more uniformly distributed than observed with 

antibodies [167].  

As the nanobody phenotype differed so drastically from the conventionally observed pattern,               

I carefully performed control experiments to exclude false positive or unspecific binding of the probe. 

The commonly used GFP nanobody was coupled to the same fluorophore (atto647N) and used under 

the same conditions as the S25-Nb10 and stx-Nb6 to stain primary cultured neurons [198]. The 

nanobody did not show any background signal to the neuron indicating that the atto647N moiety 

does not cause any unspecific binding despite its hydrophobic nature. 

Furthermore, the enrichment of SNAP-25 and syntaxin 1A in synapses detected with my nanobodies 

is well in line with the literature and supports the specificity of my probes. The generic detection in 

the neurites is very likely to reflect proteins, which are transported along the cytoskeleton as they 

need to reach the synapse after synthesis in the cell body. Moreover, both specificity and affinity of 

the nanobodies have been tested in various experiments before (see section 3.4.4).  
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Therefore I consider the phenotype revealed by my nanobodies to resemble the distribution of the 

SNARE proteins SNAP-25 and syntaxin 1A in a reasonable and even more native manner. 

The question remains which impact these findings have on the model of SNARE protein organization 

in the synapse. First, my results do not directly contradict the existence of SNAP-25 and syntaxin 1A 

clusters, which might still be organized in microdomains as suggested before [166]. The very high 

average copy number of both proteins per synapse (around 26,600 copies of SNAP-25 and 20,100 

copies of syntaxin 1A) also raises the possibility that even nanobodies cannot detected all antigens in 

the dense protein environment [128]. Notably, some proteins might be extracted due to the 

permeabilization protocol commonly applied in IF stainings. As discussed above, the accessibility of 

the epitope for a specific probe has a major influence on antigen detection. Proteins engaged in a 

closely bundled SNARE complex thus might elude detection from both antibodies and nanobodies. 

  

In either case SNAP-25 and syntaxin 1A do not seem to be localized in an all-or-nothing pattern, 

which is suggested by antibody staining. Together with my previous observations, these findings 

prompt that the observed SNARE cluster formation is at least partially based on antibody artifacts.   

 

Another interesting question would be whether SNAP-25 and syntaxin 1A, which are known to form a 

SNARE bundle upon vesicle fusion also interact while residing in the plasma membrane. Generally, 

both proteins have not been found to colocalize in super-resolution microscopy [135]. More recently 

SNAP-25 and syntaxin 1A were suggested to preassemble into microdomains used for subsequent 

vesicle fusion events [166]. Although this study by Pertsinidis et al. claims a colocalization of SNAP-25 

and syntaxin 1A revealed by super-resolution microscopy, it actually shows only very poor data 

supporting the colocalization.  

Notably, this study was based on results using antibodies as affinity probes to detect the proteins. As 

discussed above, nanobodies could have a great impact on the investigation of SNAP-25 and 

syntaxin 1A colocalization in dual-channel super-resolution microscopy. Thus my nanobodies might 

be valuable tools to reveal possible interaction between those molecules at nanoscale which has not 

been done so far in microscopy. The nanobodies could be further used in several experimental 

approaches such as EM or Expansion Microscopy to investigate the synaptic anatomy and plasticity.  
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4.8 Future Applications for Selected Nanobodies 
The key role of SNAP-25 and syntaxin 1A in synaptic physiology was the major motivation to generate 

nanobodies to study those two proteins. To confirm and pursue my findings in neurons, the 

nanobodies could be used in several alternative approaches. To achieve nanometer resolution 

without encountering photobleaching, small quantum dots (Ø ≈ 7 nm) were already successfully 

coupled to nanobodies [199]. Similar to organic fluorophores, quantum dots show a defined emission 

spectrum while surpassing the brightness of conventional dyes up to 20-fold [200]. The blinking 

behavior and photostability of quantum dots furthermore allows precise localization in super-

resolution microscopy even in 3D [201].  

Combining quantum dots with my nanobodies could be an elegant way to increase the fluorescence 

signal and to investigate cluster assembly in synapses at nanoscale resolution. The conjugation of 

mono-functionalized quantum dots to the nanobodies can be performed analogously to fluorescent 

labeling using chemically functionalized molecules (see section 2.2.18). The valency of the quantum 

dots is an important parameter as multivalent conjugation would result in signal bias similar to the 

case of divalent antibodies as discussed in section 4.6. 

As an alternative, the nanobodies may also be conjugated to colloidal gold for use in electron 

microscopy. EM was one of the first methods to depict the ultrastructure of synapses and is still 

widely used for sub-diffraction imaging [114,115]. However, the use of antibodies in immune-EM is 

often challenging due to harsh sample preparation conditions [202]. Fixation with glutaraldehyde 

links the molecules in the sample to a proteinaceous network impairing the accessibility for 

antibodies [72,203]. The small size of nanobodies after coupling it to colloidal gold particles could 

bypass this problems resulting in a higher detection rate of the antigens revealing a more detailed 

structure. In initial trials, I already successfully coupled the GFP nanobody to mono-functionalized 

colloidal gold particles for future use in EM experiments. By chemically conjugating the nanobodies 

stx-Nb6 and S25-Nb10 to colloidal gold particles,  a tool to improve visualization of synaptic 

structures in EM could be developed. 

 

The nanobodies against SNAP-25 and syntaxin 1A can as well be applied in other correlative and 

molecular imaging techniques. The nanoSIMS technology combining super-resolution microscopy 

and mass spectrometry (see section 1.2.3) could benefit from using small probes for detection. 

Chemical labels for affinity probes have been developed, which allow detection in both nanoSIMS 

and STED microscopy [28,204]. Coupling those labels to nanobodies would unify the benefit of small 

affinity probes with high-resolution imaging at the molecular level. Although establishing the 

nanoSIMS technology is a time and cost-intensive procedure, the implementation of this technology 

may be an important milestone towards atomic mapping of complex biological samples. 
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Also other recently developed techniques such as expansion microscopy may benefit from the use of 

small probes such as nanobodies. As described in section 1.2.3, this technology achieves super-

resolution by physical expansion of the fluorophores in space after labeling. The distance between 

the fluorophore and the epitope plays an important role in this method as it will also be increased 

according to the expansion factor. Due to their spatial organization and their tendency to form 

clusters, antibodies delocalize the fluorophore from the epitope [34]. In contrast, nanobodies could 

be used to direct the fluorophore to the antigen with nanometer precision, thus directly increasing 

the resolution in expansion microscopy.   

 

Apart from descriptive microscopy approaches, nanobodies are also commonly used as reporters and 

regulators in live-cell experiments [80]. Monitoring the synaptic activity upon intracellular expression 

and binding of my nanobodies would be an interesting field of application. After binding of GFP-

tagged nanobodies to the SNARE proteins, the cellular faith and organization of these molecules 

could be studied in vivo. Recently, a new nanobody has been reported, which specifically blocks the 

activity of a vesicular glutamate transporter, which was not possible before [205]. A similar approach 

could be used to block synaptic activity by intracellular expression of my nanobodies. If the epitope 

of these probes is confirmed to localize within the SNARE-domain, they may impair SNARE-mediated 

fusion events thus interfering with synaptic function. 

All in all, the development of novel nanobodies specifically binding SNAP-25 and syntaxin 1A opens a 

wide field of application in neurobiology. I am confident that my novel probes will contribute to 

understand basic mechanisms of synaptic physiology and reveal new insights on subcellular protein 

organization.  
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4.9 Summary and Conclusion 
I demonstrated that small affinity probes such as nanobodies have a great potential for various 

biological and biochemical applications such as IF microscopy and ELISA, respectively. They show 

several advantages in comparison to conventional antibodies including a reduction in size, enhanced 

tissue penetration, the prevention of clustering effects and the increase in localization precision. 

Thus I intended to implement the two nanobodies S25-Nb10 and stx-Nb6 described in this project 

into various applications, including super-resolution imaging. As I showed, the resolution in biology 

and thus the density of information does not only depend on the microscopy setup but also on the 

affinity probe used.  

Notably, in immunocytochemistry and particular in fluorescence microscopy approaches, antibodies 

are still the dominating type of affinity probe.  

On the one hand, antibodies are very well established tools with several hundred targets available, 

which have constantly been used and developed throughout the last decades.  

On the other hand, the selection of novel specific affinity probes is a laborious procedure and 

requires extensive screening and validation procedures. Therefore, antibodies are still a valuable tool 

to specifically mark and detect specific proteins in a complex biological sample. However, it should be 

kept in mind that the (fluorescence) signal detected indicates the position of the fluorophore, which 

does not necessarily reflect the position of the antigen. Thus it is important to consider how the 

applied affinity probes function in molecular interaction with their target protein, especially in 

protein-dense compartments such as the synapse. Researchers are advised to interpret microscopy 

data very carefully and with respect to potential artifacts created by the detection technique. 

A large number of antibodies on the market does not yield reproducible results due to insufficient 

validation or variation in quality during the production of the probe [107,191]. The use of well-

characterized and reliable tools for IF microscopy therefore is of fundamental importance to obtain 

meaningful results in imaging. 

 

Another important aspect, commonly influencing the imaging result, is the treatment of the sample 

prior to the staining procedure. For instance, artifacts in IF microscopy caused due to fixation and 

permeabilization of the sample should be considered and minimized [111]. As each technology has 

specific requirements for sample treatment and handling, a combination of multiple approaches is 

possibly required to complete the picture of neuronal organization and function. The implementation 

of small probes is very likely to take a key role in such future investigations. My two new small and 

versatile nanobodies for super-resolution microscopy should make a major contribution to 

understand synaptic and neuronal physiology. 
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