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Abstract 

Mitochondria are vital organelles that perform fundamental functions such as ATP synthesis 

and  iron-sulfur cluster formation. More than 99% of the mitochondrial proteome is imported 

by dedicated translocation machineries. Proteins destined for the mitochondrial matrix, or the 

inner membrane, are imported by the presequence translocase of the inner membrane (TIM23 

complex). The molecular architecture of the mitochondrial translocation machinery is 

conserved between yeast and human, but most of the functional characterization to date has 

been carried out in S.cerevisiae.  

 

Quantitative mass spectrometry was used to analyze the interactome of the isolated human 

TIM23 complex. A high enrichment of a protein named ROMO1 was found. The upregulation 

of ROMO1 had previously been correlated with high levels of reactive oxygen species (ROS). It 

also plays a role in the regulation of mitochondrial morphology. However, the molecular 

function of ROMO1 is unknown. ROMO1 displays sequence similarity to yeast Mgr2, which is 

a subunit of the TIM23 complex and acts in quality control during import. 

 

Using HEK293T cells as a model system, this study showed, by immunoprecipitation, that 

ROMO1 interacts with TIM21 and TIM23 and is therefore a constituent of the human TIM23 

complex. To study the function of ROMO1, a CRISPR/Cas9-mediated knockout cell line was 

generated, which displays aberrant cristae structure. Biochemical analysis showed that the 

processing of OPA1, a protein involved in mitochondrial morphology, is disturbed. 

Furthermore, steady-state levels of the OPA1 processing protease, YME1L, are reduced. Even 

though ROMO1 couples TIM21 onto TIM23 and affects respiratory chain assembly, general 

protein import is not dependent on ROMO1. However, in vitro import assays showed that the 

import of YME1L is drastically affected in the absence of ROMO1. The molecular reason for 

this import defect seems to be the unusually long targeting sequence of YME1L. Therefore, an 

interesting link between protein import and inner membrane morphology could be established. 
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1. Introduction 

1.1 Compartmentalization of the eukaryotic cell 
 

Eukaryotic cells, in contrast to prokaryotic cells, have the capacity to form complex organisms, 

in part due to differentiation and compartmentalization (Palade, 1964). Organelles equip the 

eukaryotic cell with the ability to spatially and temporally segregate numerous processes, which 

gives them an evolutionary advantage. The presence of membrane-enclosed organelles, in 

particular, enables the division of opposing pathways, making these processes more efficient. 

Moreover, it lets the cell store certain compounds until needed, as well as sequester deleterious 

substances (Lane & Martin, 2010). Additionally, by separating molecules, membranes provide a 

platform for the generation of gradients, which can be used for biochemical processes, such as 

ATP synthesis using a proton gradient in mitochondria.  

 

It is believed that mitochondria could be one of the reasons why eukaryotes were able to increase 

their genome size and thereby their complexity (Friedman & Nunnari, 2014; Lane & Martin, 

2010). Mitochondria developed after engulfment of an a-proteobacterium by a eukaryotic 

progenitor cell (de Duve, 2007). The mitochondrial genome has almost been completely 

transferred to the nucleus (Gray et al., 1999; Taanman, 1999) so that mitochondria depend on 

cytosolic translation and elaborate transport machineries for their biogenesis (Kang et al., 2018; 

Wiedemann & Pfanner, 2017). This study focuses on the human translocation machinery, its 

components, mechanisms and possible interactions with other mitochondrial processes.  

 

1.2 The structure of mitochondria 
 

Mitochondria form a dynamic network that undergoes constant fission and fusion. Due to their 

endosymbiotic origin, mitochondria possess a characteristic morphology as they are double-

membrane bound organelles (Figure 1.1). The outer mitochondrial membrane (OMM) harbors 
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multiple channels and allows the passage of small molecules (Benz, 1994; Krüger et al., 2017). It 

also holds protein import complexes that function in the biogenesis of the mitochondrial 

proteome (Mokranjac & Neupert, 2015). The intermembrane space (IMS), between the outer 

and inner membranes, forms a soluble environment and houses chaperones crucial for protein 

import (Ellenrieder et al., 2015; Rehling et al., 2004). The protein-rich inner mitochondrial 

membrane (IMM) is highly folded and separates the matrix from the IMS. This is a prerequisite 

to establish a proton gradient, which enables ATP synthesis by multi-subunit protein complexes 

of the oxidative phosphorylation (OXPHOS) machinery (Winge, 2012). This proton gradient 

also drives protein import (Dudek et al., 2013). The mitochondrial matrix contains chaperones 

assisting in protein folding but most prominently, it houses the mitochondrial gene expression 

machinery and the mitochondrial genome (Gustafsson et al., 2016; Ott et al., 2016).   

 

 
 
Fig. 1.1 The structure of mitochondria. The four main compartments of mitochondria are outer membrane, inner 
membrane, intermembrane space and matrix. The inner membrane can be subdivided further into inner boundary 
membrane, cristae and crista junctions.  
 
The inner membrane consists of three domains; the inner boundary membrane that lies parallel 

to the outer membrane; cristae, the invaginations that reach inside mitochondria and crista 

junctions, which connect the other two domains (Figure 1.1). Using quantitative 

immunoelectron microscopy, it has been shown that respiratory chain complexes are primarily 

found in cristae, while complexes of the protein import machinery mainly localize to the inner 
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boundary membrane (Vogel et al., 2006). The architecture of the cristae is maintained by the 

MICOS complex at crista junctions and by the FOF1 ATP synthase dimers at regions of high 

crista curvature (Strauss et al., 2008; van der Laan et al., 2012).  

 

1.3 Functions of mitochondria 
 

Mitochondria are best known for their role in energetics and metabolism, including ATP 

production, biosynthesis of amino acids, fatty acids and heme. Furthermore, mitochondria 

accommodate the citric acid cycle and urea cycle and are crucial in calcium signaling, apoptosis 

and iron-sulfur cluster formation (Friedman & Nunnari, 2014; Lill & Mühlenhoff, 2008; Lill et 

al., 2012). Being termed the powerhouses of the cell, the mechanisms of ATP generation by 

oxidative phosphorylation (OXPHOS) have been studied in detail.  

 

1.3.1 The respiratory chain and oxidative phosphorylation 

 

The OXPHOS machinery in the inner mitochondrial membrane consists of five complexes 

(Complexes I-V). Complexes I to IV of the respiratory chain undergo redox reactions which 

establishes a flow of electrons via electron carriers. This flow of electrons leads to a proton 

gradient across the inner membrane, due to the translocation of protons into the IMS by the 

complexes of the respiratory chain. ATP synthase (Complex V) uses this proton gradient to 

produce ATP by rotational catalysis (von Ballmoos et al., 2008; Winge, 2012).  

 

Complex I (NADH:ubiquinone oxidoreductase) passes two electrons from NADH to 

ubiquinone and translocates four protons across the membrane into the IMS. Complex II 

(succinate dehydrogenase) converts succinate to fumarate, transferring two electrons but no 

protons. Complex III (ubiquinol-cytochrome c oxidoreductase) houses the intricate Q cycle, 

facilitating electron transfers between electron carriers that concomitantly pump two protons 

per electron across the membrane. Complex IV (cytochrome c oxidase) marks the final step of 

respiration. Here, molecular oxygen is reduced by four electrons to produce two molecules of 
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water while transferring four protons from the matrix to the IMS (Fernández-Vizarra et al., 

2009; Guo et al., 2018). It has been known for some time that supercomplexes are formed by 

OXPHOS complexes. The most prominent supercomplex consists of complex I, a complex III 

dimer and complex IV. This oligomerization is considered to assist in substrate channeling and 

therefore makes respiration more efficient (Guo et al., 2018; Schägger & Pfeiffer, 2000; Winge, 

2012). 

 

Mitochondria have retained their own genome, as well as gene expression machinery. 13 mostly 

hydrophobic core subunits of the OXPHOS machinery are encoded by the mitochondrial 

genome (complexes I, III, IV and V). These complexes with subunits of dual genetic origin have 

to be assembled in a coordinated manner (Lazarou et al., 2009; Mick et al., 2012; Mick et al., 

2011). The next section will focus on the assembly of the terminal enzyme of the respiratory 

chain, cytochrome c oxidase.  

 

1.3.2 Assembly of cytochrome c oxidase 

 

Human complex IV consists of 14 subunits and has three mitochondrial-encoded subunits that 

form the catalytic core (COX1, 2 and 3). More than 30 vital assembly factors have been identified 

that mediate complex IV biogenesis (Timón-Gómez et al., 2018). It is thought that the complex 

assembles in a modular way, in which certain subcomplexes form before they assemble into the 

holoenzyme. In this model, three modules containing one mitochondrial-encoded subunit each 

assemble independently before a sequential assembly of the intermediates (Vidoni et al., 2017).  

 

Significant research has focused on the biogenesis of COX1 and its role as a seed for further 

complex IV assembly. COX1 associates with a number of maturation and stabilization factors, 

such as SURF1, C12ORF62 (COX14), MITRAC12 (COA3) or MITRAC7, before it associates 

with COX4I-1 and COX5A (Dennerlein et al., 2015; Mick et al., 2012; Richter-Dennerlein et al., 

2016; Stiburek et al., 2005; Szklarczyk et al., 2012). The expression, assembly and metalation of 

COX2 is regulated by factors such as COX16, COX18, COX20, TMEM177, COA6 or SCO1/2, 
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before it forms a subcomplex with COX6C, COX7B, COX7C and COX8A (Aich et al., 2018; 

Lazarou et al., 2009; Lorenzi et al., 2018; Pacheu-Grau et al., 2015; Williams et al., 2004). The 

biogenesis of the COX3 module is the least studied. It is thought to interact with COX6A, 

COX6B and COX7A before it associates with the assembling enzyme (Timón-Gómez et al., 

2018).  

 

1.4 Mitochondrial dynamics and inner membrane maintenance 
 

1.4.1 Mitochondrial dynamics is controlled by GTPases 

 

Proper function of mitochondrial enzymes in the inner membrane, especially the respiratory 

chain, is tightly linked to mitochondrial dynamics. Controlled mitochondrial fusion and fission 

ensures quality control, as well as enables the organelle to adapt to metabolic changes (MacVicar 

& Langer, 2016; Youle & van der Bliek, 2012). Fusion is thought to be necessary for proper 

distribution of mitochondrial DNA and efficient respiration (Hoppins, 2014). Fission, on the 

other hand, separates and segregates dysfunctional mitochondria to assist in their degradation 

(Elgass, et al., 2013).  

 

Fission of the outer membrane is mediated by the GTPase DRP1 (dynamin-related protein 1), 

which is recruited to the outer membrane to initiate division (Otera et al., 2013). The adapter 

proteins MID49 and MID51 aid in its targeting (Losón et al.. 2013; Palmer et al., 2013). The 

antagonists of DRP1 are also GTPases, namely Mitofusins MFN1 and MFN2, which regulate 

outer membrane fusion (Santel & Fuller, 2001). 

 

While the exact molecular machinery mediating inner membrane fission is not known, research 

has focused on the dynamin-like GTPase OPA1, which induces inner membrane fusion. Its 

name is derived from autosomal dominant optic atrophy after it was shown that its mutation 

was the main cause of the disease. It contains a GTP-effector domain and a conserved GTP-

binding domain (Alexander et al., 2000; Delettre et al., 2000). OPA1 is not only connected to 
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mitochondrial morphology, but also to cristae structure as well as to respiration and apoptosis 

(Olichon et al., 2006). Reports show that OPA1 mainly localizes to cristae of the inner 

membrane, most likely involved in curvature formation (Griparic et al., 2004).  

 

It is believed in the field that processing of OPA1 into multiple long and short forms is key to its 

function and to understanding its mechanism regarding mitochondrial cristae organization and 

fusion. At least five forms are present - two long and three short (Anand et al., 2014; Figure 1.2). 

Short and long forms of OPA1 are thought to assemble into oligomeric complexes that maintain 

proper cristae morphology (Frezza et al., 2006; Yamaguchi et al., 2008). Their biogenesis and 

regulation will be discussed in the section below. 

 

1.4.2 OPA1 biogenesis and processing 

 

Alternative splicing leads to at least eight different mRNA OPA1 isoforms, which are expressed 

tissue dependently (Delettre et al., 2001). At the protein level, two forms of long (L)-OPA1 exist, 

both of which are membrane-bound. The two forms differ in the presence of one or two 

proteolytic cleavage sites, named S1 and S2, where one half of L-OPA1 only contains S1 and one 

half contains both (Ishihara et al., 2006; Song et al., 2007; Figure 1.2). S1 and S2 allow proteolysis 

by OMA1 and YME1L respectively (Käser et al., 2003; Song et al., 2007). It has been postulated 

that long and short forms of OPA1 have to be present at almost equimolar amounts to ensure 

proper mitochondrial morphology and dynamics (Wai & Langer, 2016). Different physiological 

conditions lead to a lower or higher expression of both proteases, allowing the mitochondria to 

adapt to these changes.  

 

Both proteases have their active site facing the IMS. OMA1 (zinc metalloprotease overlapping 

with m-AAA protease) contains a catalytic M48 metallopeptidase domain (López-Pelegrín et al., 

2013). Under normal conditions, OMA1 is barely expressed but is activated by oxidative stress 

or loss of membrane potential (Baker et al., 2014; Quiros et al., 2012; Rainbolt et al., 2016; 

Rainbolt et al. 2015; Zhang et al., 2014). This means that only under stress all L-OPA1 forms are 
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converted to S-OPA1 (Anand et al., 2014; Ishihara et al., 2006). In contrast, the ATP-dependent 

protease YME1L (yeast mitochondrial DNA escape 1-like) is active under basal conditions 

(Song et al., 2007). In general, it is thought that a higher expression of S-OPA1 is linked to 

mitochondrial fission and L-OPA1 to fusion (Anand et al., 2014; MacVicar & Langer, 2016). 

This has been demonstrated by the fact that processing of OPA1 is not necessary for fusion, 

since cells lacking OMA1 and YME1L, and therefore only containing membrane-bound L-

OPA1, are able to fuse (Anand et al., 2014; Ishihara et al., 2006; Quiros et al., 2012; Tondera et 

al., 2009). Regarding proper inner membrane morphology, OMA1 is dispensable, while a lack 

of YME1L severely disturbs cristae morphology (Anand et al., 2014; Stiburek et al., 2012).  

 

 
 

 
Fig. 1.2: The processing of OPA1. 8 splice variants form two different membrane bound L-OPA1 forms, which 
can be processed further by OMA1 and YME1L to three soluble S-OPA1 forms. MTS – mitochondrial targeting 
sequence; TM - transmembrane domain.  
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The activity of YME1L has been shown to be modulated by oxidative stress (Rainbolt et al., 

2015), as well as OXPHOS activity (Mishra et al., 2014). Along with a few other proteins, YME1L 

also plays a role in general protein homeostasis and quality control (Rainbolt et al., 2013; 

Stiburek et al., 2012). 

 

1.4.3 Protein quality control  

 

Due to the high abundance of proteins in the inner membrane, tight quality control and 

maintenance is necessary to ensure proper mitochondrial function (Levytskyy et al., 2017). The 

maturation or clearance of damaged or misfolded proteins is performed by proteases, which can 

be subdivided into ATP-independent and ATP-dependent proteases (Wasilewski et al., 2017). 

ATP-independent examples include MPP in the matrix and OMA1 and PARL in the IMS.  

 

ATP-dependent proteases in mitochondria belong to the AAA+ superfamily (AAA stands for 

ATPases Associated with various cellular Activities). Examples include LONP1 or m-AAA 

(Paraplegin and AFG3L2) and i-AAA (YME1L) proteases, which expose their active sites to the 

matrix or the IMS respectively. They also ensure protein homeostasis of inner membrane 

proteins exposed to their respective leaflet (Levytskyy et al., 2017).  

 

AAA metalloproteases are conserved and share common features, most notably an AAA+ 

ATPase domain, with so-called Walker A and B motifs that bind the nucleotide. Moreover, a C-

terminal Zn2+ metalloprotease domain with an HExxH or variant HxxEH motif (Ammelburg et 

al., 2006; Scharfenberg et al., 2015). The catalytic site is formed by the HExxH domain and a 

mutation from E to Q can abolish its activity in YME1L (Graef et al., 2007). The m-AAA protease 

forms a heteromeric, hexameric complex comprised of Paraplegin and AFG3L2, even though 

AFG3L2 can also form a homohexameric complex. Its best described substrate in yeast is the 

ribosomal protein MrpL32 (Nolden et al., 2005). In mammals, the m-AAA protease has been 

shown to degrade the EMRE protein, linked to calcium signaling (König et al., 2016), as well as 

selected respiratory chain proteins (Levytskyy et al., 2017). 
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Fig. 1.3: The hexameric structure of YME1L. The i-AAA protease YME1L forms a homohexameric complex in 
the inner membrane. It has a short soluble N-terminus in the matrix, one transmembrane domain and a large C-
terminus in the IMS. This part holds its catalytic domain. 
 

The i-AAA protease forms a homohexameric complex of YME1L in the inner membrane 

(Figure 1.3). Mature YME1L exposes a short N-terminal domain into the matrix and has only a 

single transmembrane span. Its C-terminus, exposed to the IMS, holds the catalytic AAA+ 

ATPase domain, followed by a zinc metalloprotease domain (Coppola et al., 2000; Shah et al., 

2000; Shi et al., 2016). Recently, it has been shown that this complex further associates with the 

rhomboid protease PARL and SPL2 to form the SPY complex. This 2 MDa complex spatially 

organizes proteolysis and seems to be crucial to ensure YME1L activity during high substrate 

load (Wai et al., 2016). Besides its best described substrate L-OPA1 (see section 1.4.2), known 

YME1L substrates include TIM17A (Rainbolt et al., 2013), TIM23 (Wai et al., 2016) and 

respiratory chain components such as NDUFB6, COX4I-1 and COX2 (Stiburek et al., 2012). 

Furthermore, during stress, such as depolarization or low ATP levels, YME1L and OMA1 

reciprocally control their expression by degradation (Rainbolt et al., 2016). Interestingly, small 

Tims, which are its substrates in yeast, are not degraded by YME1L in human (Baker et al., 2012).  
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It has been hypothesized that YME1L recognizes its substrates by specific motifs, so called 

degrons. A possible recognition signal could be F-h-h-F (h being a hydrophobic amino acid) 

(Shi et al., 2016). Substrates are most likely destabilized as initial unfolding is necessary for 

recognition (Rampello & Glynn, 2017). However, Shi et al. showed that YME1L is also able to 

unfold stable proteins. A recent structural study of yeast Yme1 gave more insights regarding its 

mechanism (Puchades et al., 2017). They showed that Yme1 forms two stacked rings. While the 

protease ring is planar, ATPase domains on top of this planar ring form an asymmetric spiral 

staircase. Coordinated cycles of ATP hydrolysis drive stepwise, processive translocation of the 

unfolded substrate into the proteolytic chamber, where it is progressively degraded.   

 

1.4.4 Mitochondrial reactive oxygen-species signaling  

 

Aberrations in mitochondrial inner membrane morphology have been linked to deleterious 

reactive oxygen species signaling (Ježek et al., 2018). While mitochondrial fragmentation and 

inner membrane aberrations can lead to higher ROS levels, ROS has also been shown to induce 

morphological changes (Brand, 2016; Ježek et al., 2018).  ROS is mainly produced in the electron 

transport chain where electrons are passed on from one complex to the other. However, oxygen 

can undergo side reactions with leaked electrons to produce reactive oxygen species (a 

superoxide anion O2
- radical) instead of water. This charged radical can be interconverted to 

H2O2, which can diffuse freely (Murphy, 2009). Besides complex I and III of the respiratory chain 

that produce ROS on both the matrix as well as IMS side, a number of other metabolic enzymes 

in both the matrix and IMS have been found to be sites of ROS generation (Holmström & Finkel, 

2014).  

 

ROS is involved in multiple signaling pathways. During cellular response to insults, ROS 

activates signaling cascades to protect the cell, especially in conditions of hypoxia or ER stress 

(Chandel et al., 1998; Ježek et al., 2018). Moreover, low levels of ROS are beneficial and necessary 

for intracellular signaling as it mediates (de)phosphorylation and oxidation and reduction of 

signaling components. These processes regulate cell growth, cellular metabolism, immune 
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response, stem cell biology and aging (Holmström & Finkel, 2014; Nemoto et al., 2000; Sena & 

Chandel, 2012). However, ROS production has also been linked to damaged DNA, proteins and 

lipids, as well as cell death and ultimately to the progression of multiple diseases, especially 

cancer (Bae et al., 2011; Sena & Chandel, 2012). 

 

One recently identified protein that is associated with high ROS levels and has been shown to 

be upregulated in various cancers is ROMO1 (Reactive Oxygen Species Modular 1) (Swarnabala 

et al., 2014). ROMO1 was identified in a study using differential-display PCR to monitor up- 

and downregulated genes in tumor tissue. It is a mitochondrial protein found in the inner 

membrane (Chung et al., 2006; Zhao et al., 2009). Its upregulation correlates with increased 

tumor invasiveness and size and decreased patient survival (Chung et al., 2012; Kim et al., 2017; 

Lee et al., 2015; Yu et al., 2014). ROS produced by ROMO1 originates in the electron transport 

chain and leads to DNA damage, as well as aging and replicative senescence of cells. However, 

the generation of ROS signaling by ROMO1 is necessary for proliferation of both cancer and 

normal cells (Na et al., 2008). Knockdown of ROMO1 by siRNA leads to decreased ROS 

production (Chung et al., 2010; Chung et al., 2008; Kim et al., 2014; Lee et al., 2011; Lee et al., 

2009; Shin et al., 2013; Shyamsunder et al., 2015). ROMO1 has been termed an oncomarker and 

is not just related to cancer but also involved in bone-marrow failure, diabetes, heart failure and 

obstructive sleep apnea syndrome (Chen et al., 2017; John et al., 2017; Petrovic et al., 2015; 

Shyamsunder et al., 2015; Ye et al., 2018).  

 

Besides these physiological studies, only a few publications have tried to address the molecular 

function of ROMO1 and surprisingly have revealed strikingly different outcomes. Most recently, 

one study described ROMO1 as forming a virus-related viroporin-like non-selective cation 

channel. This biophysical study showed that ROMO1 can form homooligomers and its 

amphipathic helices can form a pore for cations. Furthermore, bioinformatic modeling revealed 

a hexameric structure of this channel (Lee et al., 2018). Another study looked at a possible 

molecular connection between ROMO1 and mitochondrial morphology (Norton et al., 2014). 

This study found that oxidative stress leads to the formation of ROMO1 complexes at high 

molecular weight. Furthermore, the absence of ROMO1 leads to processing defects of OPA1 
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and concomitantly disturbed cristae structure and impaired respiration. Interestingly, the 

knockdown approach in this study led to increased levels of ROS, which is the opposite of what 

had been published before (i.e. Chung et al., 2008). Nevertheless, ROMO1 seems to be another 

player linking ROS production to mitochondrial morphology. Its exact molecular function 

remains to be elucidated. 

 

1.5 Protein import into mitochondria 
 

The mitochondrial proteome consists of about 1,500 proteins in human (Nunnari & 

Suomalainen, 2012). Only 13 proteins are encoded by mitochondrial DNA and translated within 

mitochondria (Gustafsson et al., 2016; Hällberg & Larsson, 2014; Ott et al., 2016). More than 

99% of the mitochondrial proteome is encoded in the nucleus und translated on cytosolic 

ribosomes. It is thought that protein import into mitochondria occurs post-translationally in 

general (Dudek et al., 2013). However, for a few proteins, evidence exists that their import occurs 

co-translationally (Lesnik et al., 2014; Luk et al., 2005; Yogev et al., 2007). Furthermore, it has 

been shown that signals found both in the 3´ untranslated and coding regions of mRNAs can 

guide cytosolic translating ribosomes close to the outer mitochondrial membrane (Corral-

Debrinski et al., 2000; Garcia et al., 2010; Margeot et al., 2002; 2005). In fact, ribosome have been 

visualized on the surface of mitochondria directly interacting with the protein import machinery 

(Gold et al.,  2017).  

 

Mitochondrial proteins are equipped with targeting signals that guide them to mitochondria 

(Chacinska et al., 2009; Wiedemann & Pfanner, 2017). Targeting of precursors to mitochondria 

is assisted by chaperones to prevent aggregation and misfolding and guide them to the 

mitochondrial outer membrane (Bhangoo et al., 2007; Young et al., 2003; Zara et al., 2009). Once 

in the vicinity of the mitochondrial outer membrane, receptors recognize the targeting signals 

on the precursors and initiate their transport into mitochondria (Abe et al., 2000).  
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The majority of current understanding regarding protein import into mitochondria stems from 

studies using the model organism Saccharomyces cerevisiae. It is strongly believed that the 

general principles regarding protein import, as well as the core translocation machineries are 

conserved from yeast to human (Bauer et al., 1999; Kang et al., 2018). However, recent studies 

have revealed new factors and features, which are unique to metazoan (Kang et al., 2018; Sokol 

et al., 2014). These differences will be highlighted in the following sections. 

 
Fig. 1.4: Schematic overview of major import pathways into mitochondria. Proteins targeted to the inner 
membrane or matrix carry a presequence and are imported via the TOM and the TIM23 complex. Full matrix 
translocation is driven by the PAM complex. Cysteine-rich IMS proteins are imported via TOM and the MIA 
pathway. b-barrel proteins of the outer membrane are inserted using the TOM and the SAM complex. Carrier 
proteins of the inner membrane use the TOM complex to enter mitochondria, then bind chaperones in the IMS 
and are inserted by the TIM22 complex. a-helical proteins of the outer membrane are imported via the MIM 
complex.  

 

1.5.1 Import into the outer membrane 
 

The translocase of the outer membrane (TOM complex) forms the general entry gate into 

mitochondria for almost all mitochondrial proteins (Figure 1.4; Kiebler et al., 1990; Mokranjac 
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& Neupert, 2015). It consists of the receptor proteins Tom20, Tom22 and Tom70, while Tom40 

forms a channel which allows entry into mitochondria (Hill et al., 1998; Hines & Schatz, 1993; 

Hines et al., 1990; Krimmer et al., 2001; Lithgow et al., 1994; Moczko et al., 1992; Schneider et 

al., 1991b; Shiota et al., 2015). The TOM complex can serve as the general import translocase 

since it contains hydrophobic, as well as hydrophilic, regions to accommodate both soluble and 

transmembrane proteins (Esaki et al., 2003; Melin et al., 2014; Shiota et al., 2015). Tom 5, 6 and 

7, the so called small TOMs, mainly act in the stability and assembly of the TOM complex while 

Tom5 also acts as a receptor (Alconada et al., 1995; Dietmeier et al., 1997; Hönlinger et al., 1996). 

Import through the TOM complex is driven by the increasing affinities of the precursors 

towards the IMS, before they are handed over to further machineries to reach their final 

destination (Dudek et al., 2013).  

 

1.5.1.1 The SAM complex 

 

Due to the fact that mitochondria originated from Gram-negative bacteria, they contain mainly 

b-barrel proteins in their outer membrane. Examples include the channel protein VDAC, the 

import channel Tom40, as well as Sam50 which itself is involved in the import of b-barrel 

proteins. The targeting sequence of b-barrel proteins is a b-hairpin consisting of two adjacent 

b-strands, connected by a loop present at the very C-terminus (Jores et al., 2016). Together with 

the two peripheral membrane proteins Sam35 and Sam37, the b-barrel channel Sam50 forms 

the sorting and assembly machinery (SAM complex, Figure 1.4; Wiedemann & Pfanner, 2017). 

Once a b-barrel precursor protein emerges from the TOM complex, small soluble TIM 

chaperones, found in the IMS, bind to its hydrophobic patches to prevent aggregation (Curran 

et al., 2002a; Hoppins & Nargang, 2004; Wiedemann et al., 2004). The insertion of multi-

spanning transmembrane proteins is mediated by Sam50. First, a transmembrane precursor is 

inserted into the lumen of the channel, before the C-terminal b-signal induces the opening of 

the lateral gate for its release. Membrane insertion is then facilitated by membrane thinning to 

aid the translocation of the whole protein (Höhr et al., 2018).  
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In contrast, the mechanism of b-barrel protein biogenesis in human is not as well understood 

(Kang et al., 2018). While Sam50 itself is highly conserved in human (Paschen et al., 2003), 

functional homologs of Sam35 and Sam37 have not been clearly identified. There is evidence 

that Metaxins have taken over their role (Kozjak-Pavlovic et al., 2007). While Metaxin-1 forms 

a complex with Sam50 in human, it has also been shown to play a role in cristae structure 

maintenance and respiratory chain complex assembly (Huynen et al., 2016).  

  

1.5.1.2 Outer a-helical proteins 

 

Besides b-barrel proteins, the proteome of the outer membrane also consists of a-helical 

proteins, i.e. Tom20 and Tom70. These can be divided into three classes: multi-spanning, tail-

anchored with a C-terminal a-helix, and signal-anchored proteins with an N-terminal a-helix 

(Wiedemann & Pfanner, 2017). The insertion of signal-anchored and multispanning proteins is 

mediated by the mitochondrial import (MIM) complex (Figure 1.4; Becker et al., 2008; Dimmer 

et al., 2012), with the help of Tom70 as receptor (Becker et al., 2011). In contrast, no 

translocation machinery for tail-anchored proteins has been identified, but the lipid 

composition is thought to play a crucial role in their targeting (Kemper et al., 2008).  

 

1.5.2 Transport into the intermembrane space via the MIA pathway 

 

Proteins in the intermembrane space, such as the small TIM chaperones often contain 

characteristic cysteine motifs (i.e. Cx3C or Cx9C) that form disulfide bonds (Dudek et al., 2013). 

The import of such proteins is facilitated by the mitochondrial intermembrane space import 

and assembly (MIA) machinery (Figure 1.4), with the key players Mia40 and sulfhydryl oxidase 

Erv1 (known as ALR in human) (Chacinska et al., 2004; Daithankar et al., 2009; Kang et al., 

2018; Rissler et al., 2005). While Mia40 in both yeast and human functions in a similar way, 

human MIA40 is imported via the MIA pathway as it is a soluble intermembrane space protein 

itself. Mia40 in yeast is anchored in the inner membrane with a soluble domain in the IMS and 

is imported via the TIM23 complex (Chacinska et al., 2004; 2008; Hofmann et al., 2005).   
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The sorting signal of MIA substrates comprises of two cysteine residues flanking hydrophobic 

residues and the substrates are kept in reduced form during translocation through the outer 

membrane (Gornicka et al., 2014; Milenkovic et al., 2009; Sideris et al., 2009). Mia40 acts as 

receptor in the intermembrane space and uses a disulfide relay system to stabilize the 

conformation and aid in assembly of the intermembrane space protein (Fischer & Riemer, 

2013). Mia40 displays oxidoreductase activity and oxidizes its substrate and thereby assists in 

the correct formation of its disulfide bonds and folding. After it releases its substrate, Mia40 is 

reoxidized by Erv1/ALR and the electrons flow to molecular oxygen or cytochrome c (Bien et 

al., 2010; Dabir et al., 2007).   

 

1.5.3 The carrier pathway (TIM22 complex) 

 

Metabolite carriers, such as the ADP/ATP carrier or the phosphate carrier, contain six 

transmembrane domains and are part of a large class of multi-spanning inner membrane 

proteins. Their import is carried out by the TIM22 complex (Figure 1.4). In yeast, it consists of 

Tim22, Tim54, Tim18 and Sdh3, while its subunits in human are TIM22, TIM29, TIM10B and 

AGK, showing a large divergence in regard to evolutionary conservation (Kang et al., 2018; 

Wiedemann & Pfanner, 2017). Further TIM22 complex substrates include Tim17, Tim22 and 

Tim23, which contain only four transmembrane domains (Curran et al., 2002b). Carrier 

substrates are targeted to mitochondria by internal, hydrophobic stretches, which interact with 

Hsp70 and Hsp90 in the cytosol (Brix et al., 1999; Chacinska et al., 2009; Young et al., 2003). On 

the mitochondrial surface, the transmembrane proteins interact with several molecules of the 

receptor Tom70, before they are threaded through Tom40 in a loop formation (Wiedemann et 

al., 2001). Tom40 possibly recruits small TIM chaperones in the IMS which deliver the precursor 

protein through the IMS to the TIM22 complex in the inner membrane, protecting them from 

aggregation (Webb et al., 2006). The soluble Tim9-Tim10 complex interacts with carrier 

proteins and binds to inner membrane bound Tim12 to form the Tim9-Tim10-Tim12 

chaperone complex that delivers the precursor protein to the Tim22 complex (Davis et al., 2007; 

Gebert et al., 2008).  
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Tim22 forms a channel that resembles the presequence translocase component, Tim23, as well 

as Tim17, hinting at a common ancestor (Žárský & Dolezal, 2016). The other complex 

constituent, Tim54, recruits the Tim9-Tim10-Tim12 chaperone complex (Wagner et al., 2008). 

Tim18 and Sdh3 form a module that is involved in TIM22 complex assembly. Interestingly, Sdh3 

displays dual localization in both the TIM22 complex, as well as complex II of the respiratory 

chain (Gebert et al., 2011). The insertion of the precursor proteins is mediated by Tim22 forming 

a twin-pore in a membrane potential-dependent manner (Rehling et al., 2003). However, the 

exact mechanism of the lateral release into the inner membrane is unknown.  

 

As implied above, the human TIM22 complex shows the most striking differences to its yeast 

counterpart (Kang et al., 2018). The small TIM chaperone complex TIM9-TIM10A-TIM10B 

exists in human, where TIM10B is the human Tim12. However, TIM10B is a constitutive 

subunit of the TIM22 complex and does not only associate with the translocase as a chaperone 

complex (Kang et al., 2016). Furthermore, no sequence homologs of Tim54 and Tim18 have 

been found (Mühlenbein et al., 2004). However, recently, the human-specific subunit TIM29 

was identified and shown to function in the assembly of the TIM22 complex (Callegari et al., 

2016; Kang et al., 2016). Furthermore, TIM29 is involved in the membrane insertion of TIM22 

substrates and couples TIM22 to the TOM complex (Callegari et al., 2016; Kang et al., 2016). 

The fourth human subunit, AGK, is a lipid kinase that has been implicated in Sengers syndrome. 

However, it also has a kinase-independent function as it stabilizes the TIM22 complex and 

mediates import of a number of carrier proteins (Kang et al., 2017; Vukotic et al., 2017).  

 

1.5.4 The OXA complex 

 

Another pathway into the mitochondrial inner membrane is via the oxidase assembly (OXA) 

translocase, with its main component being Oxa1. This insertion machinery is related to the 

bacterial YidC insertase and mediates protein export from the matrix into the inner membrane 

(Hell et al., 2001). The roles of Oxa1 can be broken down into two major categories. As 

mitochondria have retained their own translation machinery to produce a number of highly 
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hydrophobic proteins, Oxa1, as well as Mba1, directly bind to the mitochondrial ribosome to 

assist the co-translational export of these proteins into the inner membrane (Pfeffer et al., 2015). 

Secondly, Oxa1 is involved in the biogenesis of nuclear-encoded proteins by the so-called 

conservative sorting pathway. This nomenclature stems from the resemblance of this pathway 

to the bacterial export route (Hartl et al., 1986; Rojo et al., 1995). Here, proteins are first 

imported into the matrix via the presequence pathway (see section 1.5.5), before they are again 

exported into the inner membrane by the OXA machinery (Stiller et al., 2016). Furthermore, 

another example is the multispanning inner membrane protein Mdl1. Its hydrophobic N-

terminal domain is first laterally released into the inner membrane by the stop-transfer 

mechanism (1.5.5.8). Then, the rest of the protein is imported into the matrix before it is 

exported again into the inner membrane by the OXA translocase (Bohnert et al., 2010).  

 

1.5.5 Protein translocation by the TIM23 complex 

 

1.5.5.1 Signals mediating import via the TIM23 complex 

 

Up to 70% of mitochondrial proteins carry an N-terminal presequence as a signal (Vögtle et al., 

2009), which targets them to the inner mitochondrial membrane or the matrix. This makes the 

presequence pathway, mediated by the TIM23 complex, by far the most prominent 

mitochondrial import pathway (Figure 1.4). Presequences are usually 15-55 amino acids long, 

even though they significantly vary in length. Shorter presequences and considerably longer 

ones (100-150 amino acids) have also been reported (i.e. Hartmann et al., 2016). Their specific 

characteristic is an amphipathic a-helix with a hydrophobic and a positively charged side, 

usually 12 to 15 amino acids long, which is found at the N-terminal region (von Heijne, 1986; 

Roise et al., 1986). Long presequences have also been predicted to form multiple a-helices and 

even b-sheets (Huang et al., 2009).  

 

Originally, only a small number of presequences had been analyzed. However, global proteomic 

studies of the N-termini of mature mitochondrial proteins in the last decade, have broadened 
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our understanding of presequences throughout species (Calvo et al., 2017; Huang et al., 2009; 

Vaca Jacome et al., 2015; Vögtle et al., 2009). These studies provided a systematic resource and 

revealed the limitations of frequently used prediction programs (i.e. MitoProtII, Claros & 

Vincens, 1996). They could show that the primary amino acid sequence of presequences is not 

conserved. However, they confirmed the general notion of charge distribution (net charge of +3 

to +6) and length (mostly 20-60 amino acids) of both yeast and mammalian presequences (Calvo 

et al., 2017; Vögtle et al., 2009). Furthermore, mature mitochondrial proteins have stable amino 

acids at their processed N-terminus, adhering to the N-end rule from bacteria (Tasaki et al., 

2012).  

 

The information conveyed by the presequence is threefold: its hydrophobic and polar faces are 

recognized by the receptors Tom20 and Tom22 respectively (Saitoh et al., 2007; Yamano et al., 

2008). When cleaved, structural studies have shown that the cleavage site is recognized by the 

processing peptidase MPP in an extended conformation (Taylor et al., 2001). Thirdly, the overall 

positive charge drives the precursor’s translocation into the matrix due to electrophoretic effects 

(Krayl et al., 2007; Martin et al., 1991; Shariff et al., 2004; van der Laan et al., 2007). 

 

Most presequence-containing precursors are soluble proteins and are directed to the matrix. 

However, numerous proteins also contain a hydrophobic sorting signal, either located directly 

C-terminal to the presequence, or in the case of a soluble N-terminal domain, separated by a 

spacer (Chacinska et al., 2009). This anchor of 16-18 amino acids stops the transfer across the 

inner membrane and leads to the lateral release into the membrane (Glick et al., 1992; Rojo et 

al., 1998). Recent studies have found that the adjacent regions of the transmembrane domain 

play an important role, whereby positively charged amino acids on both sides favor sorting 

(Botelho et al., 2011).  

 

A number of unusual targeting signals for TIM23 substrates exist. First of all, some proteins 

contain non-cleavable presequences that target them to the inner membrane or matrix 

(Chacinska et al., 2009). Furthermore, even internal hydrophobic signals, usually following the 

carrier import pathway, have been shown to target proteins along the presequence pathway (i.e. 



 21 

Sym1; Reinhold et al., 2012). Finally, cleavable C-terminal targeting sequences, such as for Mgr2 

(Ieva et al., 2013) and Hmi1 (Lee et al., 1999), have also been detected. 

 

1.5.5.2 Processing of presequence-containing proteins 

 

Upon translocation, presequence processing by the mitochondrial processing peptidase (MPP) 

occurs at a defined cleavage site, with an arginine present at the -2 position (von Heijne et al., 

1989; Schneider et al., 1998). MPP processes most presequences in an extended conformation 

(Taylor et al., 2001). In both yeast and human, this protease is a soluble matrix protein and 

consists of two subunits, Mas1/PMPCB and Mas2/PMPCA (Poveda-Huertes et al., 2017).  

 

A few proteins targeted to the intermembrane space are cleaved a second time by the Imp1 

protease upon their translocation into the inner membrane. This cleavage step releases these 

soluble proteins into the IMS, but a specific cleavage motif has not been identified (Luo et al., 

2006; Schneider et al., 1991a). While the mammalian homologues IMMP1L and IMMP2L have 

been identified, their substrates are not known (Mossmann et al., 2012). 

 

An additional protease which processes proteins after MPP cleavage is Icp55 (Intermediate 

cleaving peptidase 55), which converts destabilizing N-termini from MPP cleavage, into stable 

N-termini by usually removing one amino acid (Vögtle et al., 2009). In human, the protein 

APP3m is thought to be its potential homologue, even though ClpP might also be a candidate 

(Erşahin et al., 2005; Vögtle et al., 2009). Oct 1, with only 12 substrates in yeast, cleaves 8 amino 

acids, most likely also to contribute to their stability (Vögtle et al., 2011). 

 

1.5.5.3 Transport of presequence-containing proteins through the TOM complex 

 

Initial binding of the amphipathic mitochondrial targeting sequence occurs with Tom20 via its 

hydrophobic face. The presequence is then handed over to the cytosolic portion of Tom22, 

which interacts with the positively charged, hydrophilic face (Abe et al., 2000; Brix et al., 1997; 

Yamano et al., 2008). While Tom70 had been described to only interact with substrates of the 
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carrier pathway (1.5.3), recent evidence has shown that a dedicated groove of Tom70 can also 

bind presequences. It could be possible that a subset of presequence-containing proteins also 

uses Tom70 as a receptor (Melin et al., 2015). Both Tom20 and Tom70 function in quality 

control as they allow only proteins destined for mitochondria to enter (Dudek et al., 2013).  

 

Upon recognition of the precursor protein, it is handed over from the Tom20-Tom22 clamp to 

Tom5 (Dietmeier et al., 1997), prior to entry into mitochondria through the protein-conducting 

channel formed by the b-barrel protein Tom40 (Hill et al., 1998; Krimmer et al., 2001). Tom40 

specifically interacts with the precursor protein and therefore actively facilitates its translocation 

through the outer membrane (Melin et al., 2014). The translocation is driven by both 

hydrophilic and hydrophobic interactions along the channel, most likely involving a hand-over 

mechanism with increasing affinity towards the IMS (Komiya et al., 1998). Once the 

presequence reaches the intermembrane space, it interacts again with the IMS domain of Tom22 

to further guide its import (Bolliger et al., 1995; Moczko et al., 1997).  

 

All subunits described above are also present in human and the general principles are conserved 

(Kang et al., 2018). The subunits of the TOM complex are involved in signaling pathways, as 

well as disease, i.e. Parkinson’s disease (Wiedemann & Pfanner, 2017). This illustrates that 

mitochondrial import machineries can act as a sensor of mitochondrial fitness and, being on the 

outer membrane, the TOM complex is highly accessible to regulation by cytosolic factors 

(Harbauer et al., 2014).  

 

1.5.5.4 The organization of the TIM23sort complex  

 

Once presequence-carrying precursors emerge from the TOM complex, they are handed over 

to the translocase of the inner membrane, the TIM23 complex. This complex is present in 

dynamic stages, transporting proteins into the matrix or the inner membrane (Schulz et al., 

2015; Wiedemann & Pfanner, 2017).  The core complex (TIM23core) consists of the three 

essential inner membrane proteins; Tim23, its homolog Tim17, as well as Tim50 (Figure 1.5; 

Dekker et al., 1993; Geissler et al., 2002; Maarse et al., 1994; Mokranjac et al., 2003a; Yamamoto 
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et al., 2002). The C-terminus of Tim23 consists of four transmembrane domains within the 

inner membrane, which form a hydrophilic channel, allowing the precursor protein to pass 

(Truscott et al., 2001). When inactive, this pore is closed, which is mediated by the IMS domain 

of Tim50. In the presence of membrane potential, as well as a propeptide, the channel opens 

(Meinecke et al., 2006). Furthermore, Tim23 consists of a hydrophilic N-terminus, which is 

highly flexible and unstructured (de la Cruz et al., 2010). It not only binds incoming 

presequences, but also interacts with Tim50IMS (Bauer et al., 1996; Geissler et al., 2002; Tamura 

et al., 2009). It has been pointed out that this interaction is essential for proper presequence 

binding (Tamura et al., 2009).  

 

Tim50 has been termed the initial presequence receptor, as it exhibits a large hydrophilic 

domain in the IMS (Figure 1.5; Geissler et al., 2002; Mokranjac et al., 2003a; Yamamoto et al., 

2002). Tim50IMS interacts with Tom22 and is therefore thought to be the first point of contact of 

the TIM23 complex with the presequence (Schulz et al., 2011; Shiota et al., 2011). Furthermore, 

it has two different binding sites for the precursor, a protein-binding domain Tim50PBD and a 

core domain Tim50core (Rahman et al., 2014).  

 

Tim17 is analogous to Tim23 and has been hypothesized to also constitute the channel (Figure 

1.5; Kübrich et al., 1994; Maarse et al., 1994), where its C-terminus is essential in the formation 

of a twin-pore and its N-terminus regulates voltage gating (Martinez-Caballero et al., 2007). The 

exact composition of the pore has been disputed in the field. It has been shown that Tim23 alone 

can form a channel in vitro as well as in vivo (Truscott et al., 2001). However, Tim17 contributes 

to the gating of the channel and has been shown to facilitate inner membrane sorting (Chacinska 

et al., 2005; Meier et al., 2005). Most likely, the channel is composed of a combination of 2 to 3 

subunits of Tim23 and/or Tim17. Interestingly, it has also been hypothesized that the recently 

discovered small subunit, Mgr2, is a constituent of the channel (Schulz et al., 2015).  

 

The small membrane protein Mgr2, possessing two transmembrane domains, couples Tim21 to 

the TIM23 complex and is required for efficient import at elevated temperatures (Figure 1.5; 

Gebert et al., 2012). Mgr2 has a C-terminal targeting sequence whose cleavage is necessary for 
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proper assembly of TIM23 (Ieva et al., 2013). Mgr2 has been shown to act in quality control of 

the lateral release of inner membrane proteins by binding to the stop-transfer signal before 

release (Ieva et al., 2014). While its overexpression delays the inner membrane sorting of these 

proteins, its deletion leads to accelerated and erroneous sorting. 

 

The dynamic subunit Tim21 couples the TIM23 complex to Tom22 of the TOM complex via its 

hydrophilic C-terminus (Albrecht et al., 2006; Chacinska et al., 2005; Shiota et al., 2011). Tim50 

also binds to Tim21 in the absence of a precursor protein (Lytovchenko et al., 2013). 

Furthermore, Tim21 interacts with components of the respiratory chain (Qcr6 of complex III 

and with complex IV; Figure 1.5), placing TIM23 complex in proximity to regions of enhanced 

membrane potential to facilitate translocation. Moreover, this makes the translocase less 

vulnerable to membrane potential changes (van der Laan et al., 2006; Wiedemann et al., 2007).  

 

 
Fig. 1.5: Schematic depiction of the yeast TIM23sort complex. Tim23 and Tim17 form the channel, while Mgr2 
couples Tim21 and indirectly the respiratory chain to the translocase. 

 
The human TIM23 complex has not been studied in comparable molecular detail to its yeast 

counterpart, even though, in recent years, it has also attracted more attention. However, many 

studies have focused on the components involved in disease (Demishtein-Zohary & Azem, 2017; 

Kang et al., 2018; Sokol et al., 2014). In general, it is believed that core features of the yeast TIM23 

complex are preserved in human while molecular details might differ substantially.  

 

Human TIM50, for example, has been claimed to have catalytic phosphatase activity with a so 

far undetermined role (Guo et al., 2004). TIM23 has an ortholog termed TIM23B, which has 

two isoforms TIM23B1 and TIM23B2 (Table 1.1). Their sequence is fairly similar to TIM23, but 
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their function is unknown (Prieto-Ruiz et al., 2018). Furthermore, Tim17 exists as two paralogs, 

TIM17A and TIM17B, where TIM17B has a further two isoforms, TIM17B1 and TIM17B2 

(Figure 1.6; Table 1.1; Bauer et al., 1999). These are also described to be part of three distinct 

translocases, where TIM17B plays a more active role in import (Sinha et al., 2014). TIM17B is 

indispensable, constitutively expressed and has an essential role to maintain mitochondrial 

function, whereas TIM17A is thought to be dispensable, is variably expressed and is related to 

stress (Rainbolt et al., 2013; Sinha et al., 2014).  

 
Table 1.1 Subunits of the TIM23 and PAM complexes in yeast and human 

Fungal components Human components 

Tim23 TIM23/TIM23B 

Tim17 TIM17A, TIM17B 

Tim50 TIM50 

Tim44 TIM44 

Pam18 DNAJC15/DNAJC19 

Pam16 Magmas 

mtHsp70 Mortalin 

Mge1 GrpE 

Pam17  

Tim21 TIM21 

Mgr2  

 

TIM21 has been shown to be highly dynamically associated with the TIM23 complex, where it 

is dispensable for protein import (Mick et al., 2012). On the other hand, it is part of the inner 

membrane complex MITRAC (mitochondrial translation regulation assembly intermediate of 

cytochrome c oxidase), which contains both mitochondrial- as well as nuclear-encoded subunits 

of the respiratory chain complex cytochrome c oxidase. TIM21 shuttles between the translocase 

and MITRAC interacting with both nuclear- and mitochondrial-encoded subunits (Figure 1.6). 

It therefore links protein import to respiratory chain assembly as well as mitochondrial 
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translation regulation (Mick et al., 2012). However, in contrast to yeast, there is no evidence so 

far for direct coupling between the TIM23 complex and the respiratory chain.  

 

 
Fig. 1.6: Schematic depiction of the human TIM23sort complex. TIM17 exists as two paralogs TIM17A/B and 
TIM21 is highly dynamic. Besides the translocase, it also associates with the MITRAC complex, which links protein 
import to complex IV assembly.  

 
1.5.5.5 The organization of the PAM complex  

 

Precursor proteins destined for the mitochondrial matrix rely not only on the membrane 

potential but additionally on the activity of the presequence-associated motor (PAM complex), 

which uses energy derived from ATP hydrolysis for translocation (Schulz et al., 2015). The PAM 

complex consists of mtHsp70 (70-kDa mitochondrial heat shock protein), which is both the 

motor core and a chaperone that drives ATP-dependent translocation into the matrix (Horst et 

al., 1997; Kang et al., 1990; Schneider et al., 1994). The scaffolding protein, Tim44, is peripherally 

associated with the membrane and tethers and recruits Hsp70 to the translocase (Figure 1.7; 

Horst et al., 1993; Kronidou et al., 1994; Maarse et al., 1992).  

 

The J-protein complex of Pam18 and Pam16 supports the function of mtHsp70 (Frazier et al., 

2004; Kozany et al., 2004; Li et al., 2004; Mokranjac et al., 2003b; Truscott et al., 2003). Pam18 

activates mtHsp70 and stimulates its ATP hydrolysis activity, which leads to closure of its 

protein binding pocket (Mokranjac et al., 2003b; Truscott et al., 2003). Pam16 on the other hand 

recruits and strongly interacts with Pam18 (Figure 1.7). It is able to regulate and also inhibit the 

function of Pam18 to stimulate ATP hydrolysis by mtHsp70 (Li et al., 2004).  
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To recycle mtHsp70, ADP is replaced by the nucleotide exchange factor Mge1, which leads to 

the release of the bound preprotein (Laloraya et al., 1994; Miao et al., 1997; Voos et al., 1994). 

Finally, Pam17, another regulatory protein, acts in recruiting Pam18 and Pam16 to the complex 

and facilitates precursor transport (Schiller, 2009; van der Laan et al., 2005). Recently, another 

function of Pam17 has become apparent as it is recruited by Tim50 for a subclass of matrix 

proteins that are hypersensitive to the reduction of membrane potential (Schendzielorz et al., 

2017). 

 

 
Fig. 1.7: Schematic depiction of the TIM23 motor complex. The Tim23 complex consists of Tim23, Tim17, 
Tim50, Tim21 and Mgr2. For the translocation of matrix targeted proteins, it associates with the PAM complex 
consisting of Pam18, Pam16, Tim44, mtHsp70 and Mge1. 

 

It is believed that the components of the import motor are conserved in human even though not 

all players have been identified (Table 1.1; Sokol et al., 2014). Mortalin (human mtHsp70) is an 

ATPase that drives precursor import in the matrix, but is also present in the cytosol and the 

nucleus (Table 1.1; De Mena et al., 2009; Lu et al., 2011; Yaguchi et al., 2007). GrpE and Magmas 

have been described as the human orthologues of Mge1 and Pam16 respectively (Table 1.1; Kang 

et al., 2018), as Magmas also recruits J-proteins to the motor (Sinha et al., 2010). The J-proteins 

DNAJC15 and DNAJC19 have been proposed as Pam18 orthologues, however, only DNAJC15 

can complement Pam18 in yeast and stimulate the activity of mortalin (Schusdziarra et al.,  2013; 
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Sinha et al., 2016). DNAJC19 has also been shown to interact with prohibitins and is involved 

in cardiolipin remodeling, linking the import motor in human to these extensive fields (Richter-

Dennerlein et al., 2014).  

 

1.5.5.6 Transport through the TIM23 complex 

 

Since detailed mechanistic studies of the human TIM23 complex are still missing, the 

subsequent sections focus on advances made in S. cerevisiae. The membrane potential present 

across the inner membrane leads to a negative charge on the matrix side which drives initial 

translocation through the TIM23 complex, since its electrophoretic force acts on the positively 

charged presequence (Martin et al., 1991). As the presequence emerges from the TOM complex 

bound to Tom22IMS, it interacts with high affinity with TIM50IMS (Geissler et al., 2002; Mokranjac 

et al., 2009; Schulz et al., 2011; Yamamoto et al., 2002). In the current model, the amphipathic 

presequence is handed over from the Tim50PBD and Tim50core to the IMS domain of Tim23, with 

which it interacts with low affinity. It is speculated that this reduced affinity allows the 

presequence to enter the channel (Rahman et al., 2014; Waegemann et al., 2015). Here, Tim50 

is able to regulate the channel as its interaction with the presequence and Tim23 are separate 

and exclude each other (Schulz et al., 2011). The highly flexible N-terminal domain of Tim23 in 

the IMS serves multiple functions. By not only interacting with Tim50, but also with Tom22 and 

Tim21 (Bajaj et al., 2014; Tamura et al., 2009), it binds necessary components to keep TOM and 

TIM in tight connection and also allows for flexibility, given the variable nature of presequences. 

The cooperation of all these components facilitates the precursor’s handover from the TOM 

complex into the import channel.  

 

The channel of the TIM23 complex allows the passage of one a-helix, since it is only 

approximately 13Å wide (Schwartz & Matouschek, 1999; Truscott et al., 2001). Once the 

precursor enters the channel, its translocation is not only driven by the membrane potential, but 

also by the presence of matrix-located components, especially Tim44, to which it has a higher 

affinity as compared to Tim23 or Tim50 (Figure 1.7; Marom et al., 2011). The precursor is bound 

by channel-forming Tim23, most likely by interactions with transmembrane domains 1 and 2 
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(Alder et al., 2008; Pareek et al., 2013).  Although Tim17 can also form a channel with Tim23, it 

does not bind the precursor, but is crucial in forming the proper channel structure (Martinez-

Caballero et al., 2007). The precursor then emerges on the matrix side, where its translocation 

is further driven by ATP hydrolysis.  

 

1.5.5.7 Transport by the PAM complex  

 

The PAM complex assists in the translocation of matrix-targeted proteins, as well as inner 

membrane proteins where the stop-transfer signal is not directly adjacent to the presequence 

(Bohnert et al., 2010; Gärtner et al.,  1995). Once the presequence binds to Tim50, its interaction 

with Tim21 weakens leading to its dissociation. In turn, Pam17 is recruited which facilitates the 

PAM-dependent translocation into the matrix (Lytovchenko et al., 2013). The precursor 

emerging from the import channel immediately interacts with components of the PAM 

complex. First, Tim44 interacts with Tim23 and Tim17 to allow tight coupling (Figure 1.7; 

Banerjee et al., 2015; Ting et al., 2014). Tim44 then recruits mtHsp70 to the channel, which binds 

the precursor and undergoes multiple cycles of ATP hydrolysis, leading to release and re-

binding (Kronidou et al., 1994; Liu et al., 2003). For this purpose, mtHsp70 contains a substrate 

binding domain on its C-terminus and a nucleotide binding domain on its N-terminus, which 

is stimulated by J-proteins (Mayer & Bukau, 2005). The exact mechanism of how this vectorial 

movement drives the precursor’s transport into the matrix is not known, however, two models 

exist. 

 

One model is called the Brownian ratchet, or trapping model in which the binding of mtHsp70 

keeps the precursor simply from sliding back through the import channel. Subsequently, by 

Brownian motion, the precursor moves into the matrix until another mtHsp70 binds. 

Numerous mtHsp70 molecules undergoing constant cycles of ATP hydrolysis and ATP binding 

leads to the diffusion of the precursor into the matrix until it is fully translocated (De Los Rios 

et al., 2006). 
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In contrast to the rather passive trapping model, mtHsp70 and its ATP cycle play a much more 

active role in the pulling model. Here, conformational changes of mtHsp70 upon ATP 

hydrolysis exert a pulling force that actively pulls the precursor into the matrix and allows 

another mtHsp70 molecule to bind, which carries on the inward directed force (Voisine et al., 

1999). It is conceivable that a combination of both mechanisms exists, or that the exact 

mechanism depends on the substrate and its characteristics, i.e. how tightly it is folded (Geissler 

et al., 2001; Wiedemann & Pfanner, 2017).  

 

It should be noted that throughout precursor transport into the matrix, the constituents of the 

PAM complex are continuously remodeled. Co-chaperones and other regulatory proteins are 

recruited from a free pool to ensure continuous translocation (Schulz & Rehling, 2014).   

 

1.5.5.8 Transport of inner membrane proteins along the sorting pathway 

 

The translocation of inner membrane proteins containing a hydrophobic stretch after the 

presequence is arrested upon recognition of the sorting signal (Botelho et al., 2011). Currently, 

it is thought that Mgr2 interacts with the sorting signal and acts in quality control for the lateral 

release (Ieva et al., 2014). While it is known that membrane potential is necessary for 

translocation across the inner membrane (van der Laan et al., 2007), it is not entirely clear if it 

is also necessary for sorting (Schulz et al., 2015). Tim21 is thought to position the TIM23 

complex in the vicinity of high membrane potential, however, it dissociates upon the 

presequence entering into the channel and it is not required for lateral sorting (Lytovchenko et 

al., 2013; van der Laan et al., 2006). The current model states that just Tim23 and Tim17 are 

required for sorting, while the newly identified subunit Mgr2 assists in quality control 

(Chacinska et al., 2005; Ieva et al., 2014). However, the exact mechanism of release into the lipid 

bilayer remains to be elucidated. The idea of a putative lateral gate was proposed due to the a-

helices found in the channel components. Mgr2 functions in quality control while Tim17 

facilitates the sorting process (Ieva et al., 2014; Schulz et al., 2015).  
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1.6 Aim of this work  
 

Protein import is crucial for mitochondrial biogenesis and function. While great mechanistic 

advances have been made in yeast it has also become obvious that mechanistic details might vary 

significantly between yeast and metazoan. It is conceivable that further proteins interact with 

the TIM23 complex to facilitate the lateral release or link the translocase to additional processes 

within the inner membrane (Schulz et al., 2015). ROMO1 (Reactive oxygen species modulator 

1) has been described as the putative orthologue of Mgr2 (Kang et al., 2018). However, recent 

publications put ROMO1 in the center of ROS production, changes in inner membrane 

morphology and OPA1 processing (i.e. Chung et al., 2012; Chung et al., 2006; Norton et al., 

2014). A bioinformatic analysis based on sequence analysis of the Tim17 protein family grouped 

ROMO1 and its yeast orthologue Mgr2 with the Tim17 family, indicating involvement in 

protein import into mitochondria for both proteins. Their orthologues are found throughout 

eukaryotes, which gives further evidence of a conserved role (Žárský & Dolezal, 2016). However, 

the role of ROMO1 in protein import has not been addressed experimentally, but could 

potentially provide a link to its observed phenotypes related to cristae structure and ROS 

production.  

 

Mass spectrometric analyses showed that ROMO1 is part of the interactome of TIM21, TIM23 

and TIM50 in HEK293T cells. This study focused on confirming ROMO1 as a TIM23 complex 

constituent and elucidating its mechanistic role on the translocase. Of special interest was 

whether ROMO1 acted in the lateral release similar to Mgr2 or if it had obtained a different 

function. For this purpose, a ROMO1-/- cell line was generated, characterized biochemically and 

used for functional studies. Concomitantly, a transient knockdown approach was used to study 

dynamics at the translocase as well as import and assembly of nuclear-encoded proteins.  

 

Furthermore, this work aimed to put the published results of OPA1 processing and inner 

membrane morphology into context and find their relationship to the TIM23 complex. This was 

done by mechanistic studies focusing on the relation between ROMO1 and OPA1-processing 

protease YME1L. 
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2. Materials and Methods  

2.1 Materials 
 

2.1.1 Chemicals 
 

Standard reagents were used at analytical grade purity and purchased from AppliChem 

(Darmstadt, Germany), Life Technologies (Grand Island, USA), Merck, Novagen and 

Calbiochem (Darmstadt, Germany), Roche (Mannheim, Germany), Roth (Karlsruhe, 

Germany), Serva (Heidelberg, Germany), Sigma-Aldrich (Taufkirchen, Germany), Thermo 

Scientific (Schwerte, Germany). Enzymes were purchased from Roche (Mannheim, Germany) 

and Invitrogen (Darmstadt, Germany). Standard lipids were purchased from Avanti Polar 

Lipids, Inc. (Alabaster, USA). A list of all chemicals used can be found in Table 2.1. 

 
Table 2.1: List of Chemicals 

Chemical Supplier 
[35S]-L-methionine Hartmann Analytic (Braunschweig, 

Germany) 
2-Mercaptoethanol Sigma-Aldrich 
4- Nitro blue tetrazolium chloride Roth 
6-Aminocaproic acid Sigma-Aldrich 
Acetic acid Roth 
Acetone Roth 
Acrylamide/bisacrylamide (37.5:1) solution Roth 
Acrylamide, 2x crystallized Roth 
Agarose NEEO ultra-quality Roth 
Ampicillin AppliChem 
Anti-FLAG M2 Affinity Gel Sigma-Aldrich 
Antimycin A Sigma-Aldrich 
ATP (Adenosine-5´-triphosphate) Roche 
Bis-Tris Buffer grade AppliChem 
Bovine serum albumin (BSA) Sigma-Aldrich 
Bromophenol Blue Merck 
Cardiolipin Avanti 
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Chloroform Roth 
cOmplete, EDTA-free protease inhibitor 
Tablet  

Roche 

Coomassie Brilliant Blue G-250  Serva 
Coomassie Brilliant Blue R-250  Serva 
Copper(II)sulfate pentahydrate Merck 
Creatine kinase Roche 
Creatine phosphate  Roche 
Coomassie Brilliant Blue R-250 Serva 
Cycloheximide Applichem 
Cytochrome c Calbiochem 
Diaminobenzidine Sigma-Aldrich 
Digitonin Calbiochem 
Dipotassium phosphate Roth 
Disodium phosphate Roth 
DMSO (dimethylsulfoxide) Applichem 
EDTA Roth 
EGTA Roth 
Emetine dihydrochloride hydrate Sigma-Aldrich 
Ethanol Roth 
Ethidium Bromide (0.025%) Roth 
Fetal Bovine Serum Biochrom 
GeneJuice Merck 
Glucose Roth 
Glutamine Life Technologies 
Glycerol Sigma-Aldrich 
Glycine Roth 
HEPES  Roth 
Hydrochloric acid, 37% Roth 
Hydrogen peroxide Sigma-Aldrich 
IgG from human serum  Sigma-Aldrich 
IgG protein standard BioRad 
Imidazole Roth 
Lipofectamine RNAiMAX Invitrogen 
Magnesium acetate Merck 
Magnesium chloride Merck 
Magnesium sulfate Applichem 
Malate Sigma-Aldrich 
Mannitol Roth 
Methanol Roth 
Methionine Roth 
MOPS Roth 
NADH Roche 
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N,N-Methylenebisacrylamide,  
2x crystallized 

Serva 

Oligomycin Sigma 
o-phosphoric acid Merck 
Opti-Mem Life Technologies 
OrangeG Sigma-Aldrich 
Oxaloacetic acid Sigma-Aldrich 
Penicillin Streptomycin Life Technologies 
Peptone Roth 
Phenazine methosulfate Sigma 
Phenol Roth 
Phenol-Chloroform Roth 
Phosphatidylcholine Avanti 
Phosphatidylethanolamine Avanti 
Phosphatidylglycerol Avanti 
PMSF Roth 
Potassium chloride Roth 
Potassium cyanide Sigma-Aldrich 
Potassium hydrogen phosphate Merck 
Potassium dihydrogen phosphate Roth 
Protein-A sepharose GE Healthcare 
Proteinase K Roche 
PVDF membrane (Immobilon-P) Merck 
Roti-Quant® reagent Roth 
SDS (sodium dodecyl sulfate) Serva 
SDS marker broad range Biorad 
SDS-PAGE protein standard Serva 
Sodium chloride Roth 
Sodium hydroxide Roth 
Sodium pyruvate Sigma-Aldrich 
Sodium succinate Sigma-Aldrich 
Sucrose Roth 
Tetramethylethylenediamine (TEMED) Roth 
Tetracycline hydrochloride Sigma-Aldrich 
Trehalose Roth 
Tricine Roth 
Trichloroacetic acid Roth 
Triethylamine Roth 
Tris (tris(hydroxymethyl)aminomethane) Roth 
Triton-X-100 Roth 
Tween-20 Roth 
Urea Roth 
Uridine Sigma-Aldrich 
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Valinomycin Sigma-Aldrich 
Yeast extract Roth 
  

2.1.2 Buffers and solutions  
 

Autoclaved deionized water was used unless otherwise stated to prepare buffers and solutions, 

which are given in Table 2.2 in 1x concentration. Where noted, solutions were filtered or 

autoclaved. 

 
Table 2.2: Buffers and solutions 

Buffer Components 
35S-labeling medium DMEM (Dulbecco’s Modified Eagle Medium) 

with or without fetal calf serum, without 
sodium pyruvate, L-Glutamine, L-Methionine 
and L-Cysteine (filtered) 

AVO mix 0.8 mM antimycin, 0.1mM valinomycin, 2mM 
oligomycin in ethanol  

Blotting buffer 20mM Tris, 150mM glycine, 0.02% SDS, 20% 
methanol 

BN anode buffer 50mM Bis-Tris/HCl pH 7.0 
BN cathode buffer 50mM Tricine, pH 7.0, 15mM Bis-Tris, with or 

without 0.02% Coomassie Brilliant Blue G-250 
BN gel buffer 66.67mM 6 -aminocaproic acid, 50mM Bis-

Tris/HCl pH 7.0 
BN sample loading buffer 0.5% Coomassie Brilliant Blue G-250, 50mM 6-

aminocaproic acid, 10mM Bis-Tris, pH 7.0  
BN solubilization buffer 1% Digitonin, 20mM Tris/HCl pH 7.4, 0.1mM 

EDTA, pH 8, 50mM NaCl, 10% Glycerol, 1mM 
PMSF 

Cell culture medium DMEM (Dulbecco’s Modified Eagle Medium) 
supplemented with 10% (v/v) fetal calf serum 
(FCS), 1mM sodium pyruvate, 2 mM L-
Glutamine, 50 μg/ml uridine and with or 
without penicillin streptomycin (filtered) 

Coomassie staining solution 2.5g/L Coomassie Brilliant Blue R-250, 40% 
ethanol, 10% acetic acid  

Coomassie destaining solution 40% ethanol, 10% acetic acid  
Hypertonic buffer 1.25mM Sucrose, 10mM MOPS, pH 7.2 

(filtered) 
Hypotonic buffer 100mM Sucrose, 10mM MOPS, pH 7.2, 1mM 
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EGTA (filtered) 
Lysogeny broth (LB medium) 1% NaCl, 0,5% yeast extract, 1% tryptone 
Import buffer 250mM Sucrose, 5mM magnesium acetate, 

80mM potassium acetate, 5mM methionine, 
10mM sodium succinate, 5mM ATP, 20mM 
Hepes, pH 7.4 

Isolation buffer 75mM Mannitol, 225mM Sucrose, 10mM 
MOPS, pH 7.2, 1mM EGTA (filtered) 

Potassium phosphate buffer, pH 7.4 19% KH2PO4, 81%K2HPO4 

PBS (phosphate-buffered saline) 137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 
1.8mM KH2PO4 with or without 1mM EDTA 
(autoclaved) 

Resolving gel (BN-PAGE) 4-16.5% acrylamide/bisacrylamide (49.5%/3%), 
1x BN gel buffer (see above), 2-30% Glycerol 

Resolving gel (SDS-PAGE) 10-16% acrylamide/bisacrylamide (30%, 
37.5/1), 380mM Tris-HCl pH 8.8, 0.1% SDS 

Resolving gel (Tricine-SDS-PAGE)  10-18% acrylamide/bisacrylamide (49.5%/3%), 
1x Tris-Tricine gel buffer (see below), 0-13% 
glycerol 

Resolving gel (Urea-SDS-PAGE) 30% acrylamide/bisacrylamide (60%/0.8%), 
5.4M urea, 680mM Tris-HCl pH 8.8, 8mM 
NaCl, 0.09% SDS 

Stacking gel (BN-PAGE) 2% acrylamide/bisacrylamide (49.5%/3%), 1x 
BN gel buffer (see above) 

Stacking gel (SDS-PAGE) 5% acrylamide/bisacrylamide (37.5/1), 80mM 
Tris-HCl pH 6.8, 0.1% SDS 

Stacking gel (Tricine-SDS-PAGE) 4% acrylamide/bisacrylamide (49.5%/3%), 1x 
Tris-Tricine gel buffer (see below) 

Stacking gel (Urea-SDS-PAGE) 9% acrylamide/bisacrylamide (60%/0.8%), 3.6 
M urea, 100mM Tris-HCl pH 6.8, 0.12% SDS 

SDS running buffer 25mM Tris, 192mM glycine, 0.1% SDS 

SDS sample buffer 10% glycerol, 2% SDS, 0.01% bromophenol 
blue, 60mM Tris/HCl pH 6.8, 1% beta-
mercaptoethanol 

SEM buffer 250mM sucrose, 1mM EDTA, 10mM EDTA, 
pH 7.2 

TAE buffer 40mM Tris/acetate pH 8.0, 2mM EDTA 
TBS (Tris-buffered saline) 20mM Tris/HCl, pH 7.5, 125mM NaCl 
TBS-T 20mM Tris/HCl, pH 7.5, 125mM NaCl, 0.1% 

Tween-20 
THE-buffer 10mM Hepes, 10mM KCl, 300mM trehalose 

with or without 0.1% BSA (filtered) 
Tris-Tricine anode buffer 0.2M Tris, pH 8.9 
Tris-Tricine cathode buffer 0.1M Tricine, 0.1M Tris, 0.1% SDS, pH 8.25 
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Tris-Tricine gel buffer 1M Tris, 0.1% SDS (autoclaved), pH 8.45 
Urea running buffer 50mM Tris, 192mM glycine, 0.1% SDS 
YPD medium 1% yeast extract, 2% peptone, 2% glucose 

 

2.1.3 Kits and disposables 

 

Commercial kits and disposables are listed in Table 2.3. Manufacturer’s instructions were 

followed regarding usage and storage.  

 
Table 2.3: Kits and disposables 

Product Supplier 
Blotting paper Heinemann Labortechnik 
Complex IV Human Specific Activity Microplate 
Assay Kit 

abcam 

FastDigest restriction enzymes Thermo Scientific 
Flexi® Rabbit Reticulocyte Lysate System Promega 
GeneRuler DNA Ladder Mix Fermentas 
KOD Hot Start DNA Polymerase Novagen 
Microtube 1.5mL and 2mL Sarstedt 
MITOSOXTM Red mitochondrial superoxide 
indicator for live-cell imaging 

Invitrogen 

Pierce® ECL Western Blotting Detection Reagent Thermo Scientific 
Pipette tips 10, 200µL, 1mL Sarstedt 
Precision Blue ProteinTM Standards All Blue (10 – 
250kDa) 

BioRad 

Rapid DNA Ligation Kit Thermo Scientific 
SP6 mMESSAGE mMACHINE® Kit Ambion 
TNT® Quick coupled Transcription/Translation 
system 

Promega 

Unstained SDS-PAGE Protein marker (6.5 – 
200kDa) 

Serva 

Wizard® Plus SV Gel and PCR DNA Purification 
System 

Promega 

Wizard® SV Plus Mini‐Prep DNA Purification Kit Promega 
X-ray films Foma Bohemia (Hradec Kralove, 

Czech Republic) 
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2.1.4 Equipment and instruments 
 

Laboratory equipment and instruments used in this study as well their suppliers are listed in 

Table 2.4.  

 
Table 2.4: Equipment and instruments used 

Instrument Supplier 
5415 R (centrifuge) Eppendorf 
5417 R (centrifuge) Eppendorf 
5424 (centrifuge) Eppendorf 
5804 R (centrifuge) Eppendorf 
Cary 50 Bio UV-Visible Spectrophotometer Varian 
CountessTM automated cell counter Thermo Scientific 
Curix 60 (developing machine) AGFA 
Dounce homogenizer (glass-glass, BBI-8540705) Sartorius 
EPS 601 power supply GE Healthcare 
FACS CantoTM II  BD Biosciences 
Fluorescence scanner FLAG-9000 Fujifilm 
GeneAmp® PCR System 9700 (thermo cycler) Applied Biosystems 
GD-5040 vacuum gel dryer Scie-Plas 
Heraeus®  Biofuge pico (centrifuge) Thermo Scientific 
Heraeus®  Hera cell 150 (incubator) Thermo Scientific 
Heraeus®  Hera safe (sterile hood) Thermo Scientific 
Hoefer SE600 Ruby Blue native system GE Healthcare 
HPTLC Silicagel60 F254 glass plates Merck 
Light microscope Zeiss 
NanoVueTM  Spectrophotometer GE Healthcare 
Potter S (Dounce homogenizer) Sartorius 
Semi Dry Blotting Chamber PEQLAB Biotechnologie 
StormTM 820 Phosphoimager GE Healthcare 
Storage Phosphor screen GE Healthcare 
Synergy H1 microplate reader BioTek 
Thermomixer comfort Eppendorf 
Typhoon FLA 9500 Phosphoimager GE Healthcare 
Universal 320 (centrifuge) Hettich 
Vaccubrand® 2C Gel pump Scie-Plas 
VortexGenie2 Scientific Industries 
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2.1.5 Software 

 

Table 2.5 lists software used for image processing or data analysis and documentation.  

 
Table 2.5: Software used 

Software Producer 
Microsoft Office Microsoft 
Adobe Illustrator CS6 Adobe 
Adobe Photoshop CS6 Adobe 
Genious Pro Biomatters Ltd.  
FiJi/ImageJ OpenSource 
ImageQuant TL GE Healthcare 
DataGraph Visual Data Tools, Inc.  

 

2.1.6 Antibodies 
 

For protein detection, rabbit or mouse monoclonal/polyclonal antisera were used as primary 

antibodies listed in Table 2.6. For detection and amplification of the signal, secondary antibodies 

raised in goat against rabbit or mouse immunoglobulin coupled to HRP (horseradish-

peroxidase) or to an infrared dye were used (Table 2.7).  

 
Table 2.6: Primary antibodies used 

Antibody Source 
Rabbit polyclonal ANTI-AFG3L Sigma, HPA004480 
Mouse monoclonal ANTI-OPA1 BD Biosciences, Cat#612607 
Rabbit polyclonal ANTI-ROMO1 ProteinTech, Cat#24200-1-AP 
Rabbit polyclonal ANTI-SDHA Cell Signaling, #5839 
Rabbit polyclonal ANTI-TIM17A ProteinTech, Cat#11189-1-AP 
Rabbit polyclonal ANTI-YME1L ProteinTech, Cat#11510-1-AP 
Rabbit polyclonal ANTI-ATP5B Home-made 
Rabbit polyclonal ANTI-COX1 Home-made 
Rabbit polyclonal ANTI-COX4I-1 Home-made 
Rabbit polyclonal ANTI-COX6A1 Home-made 
Rabbit polyclonal ANTI-COX6C Home-made 



 40 

Rabbit polyclonal ANTI-FLAG Home-made 
Rabbit polyclonal ANTI-LETM1 Home-made 
Rabbit polyclonal ANTI-MITRAC7 Home-made 
Rabbit polyclonal ANTI-MITRAC12 Home-made 
Rabbit polyclonal ANTI-NDUFA4 Home-made 
Rabbit polyclonal ANTI-NDUFA9 Home-made 
Rabbit polyclonal ANTI-NDUFA10 Home-made 
Rabbit polyclonal ANTI-Rieske Home-made 
Rabbit polyclonal ANTI-TIM21 Home-made 
Rabbit polyclonal ANTI-TIM23 Home-made 
Rabbit polyclonal ANTI-TIM50 Home-made 
Rabbit polyclonal ANTI-TOM70 Home-made 
Rabbit polyclonal ANTI-VDAC Home-made 
Rabbit polyclonal ANTI-Aco1 Home-made 
Rabbit polyclonal ANTI-Mgr2 Home-made 
Rabbit polyclonal ANTI-Pcp1 Home-made* 
Rabbit polyclonal ANTI-Tim23 Home-made 
Rabbit polyclonal ANTI-Tim50 Home-made 
Rabbit polyclonal ANTI-Ups2 Home-made* 
Rabbit polyclonal ANTI-Yme1 Home-made* 
Rabbit polyclonal ANTI-Yta10 Home-made* 
Rabbit polyclonal ANTI-Yta12 Home-made* 

*kind gift by Thomas Langer, Cologne 

 
Table 2.7: Secondary antibodies used 

Antibody Source 
Goat anti-rabbit HRP Dianova, Hamburg, Germany 
Goat anti-mouse HRP Dianova, Hamburg, Germany 
Goat anti-rabbit IR880 LI-COR, Lincoln, NE, USA 
Goat anti-mouse IR880  LI-COR, Lincoln, NE, USA 

 

2.1.7 Cell lines 

 

Cell lines used in this study are listed in Table 2.8. 

 
Table 2.8: Cell lines used 

Cell line Source 
HEK293-Flp-In T-Rex WT ThermoFisher Scientific, R78007 
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HEK293-Flp-In T-Rex ROMO1-/- This study 
HEK293-Flp-In T-Rex ROMO1-/- + 
ROMO1 

This study 

HEK293-Flp-In T-Rex-ROMO1FLAG This study 
HEK293-Flp-In T-Rex-TIM21FLAG (Mick et al., 2012) 
HEK293-Flp-In T-Rex-TIM23FLAG (Mick et al., 2012) 

 

2.1.8 Microorganisms 

 

The Saccharomyces cerevisiae strain YPH499 was used as wild-type strain. Genotype: MATa 

ura3-52 lys2-801amber ade2-101ochre trp1-D63 his3-D200 leu2-D1 (Sikorski & Hieter, 1989). 

The Saccharomyces cerevisiae strain mgr2D was used. Genotype: MAT1 ura3-52 lys2801amber 

ade2-101ochre trp1-D63 his3-D200 leu2-D1 mgr2::KANMX6 (Gebert et al., 2012). 

E. coli strain XL1-Blue from Stratagene was used for cloning. Genotype: recA1 endA1 gyrA96 

thi-1 hsdR17 supE44 relA1 lac [F’ proAB laclqZDM15 Tn10 (Tetr)]. 

 

2.1.9 Oligonucleotides and plasmids 

 

All plasmids used were propagated in E. coli XL1 Blue and are listed in Table 2.9. Cloning was 

performed as described in section 2.2.2.7. 

 
Table 2.9: Plasmids used 

Plasmid name Purpose Features Marker Reference 
pOG44 Flp-

Recombinase 
Expression 
Vector 

CMV promoter Ampicillin 
(Amp) 

Thermo 
Fisher 
Scientific 

pcDNA5/FRT/TO Genomic 
integration 
vector for 
tetracycline-
inducible 
expression of 

CMV promoter Amp, 
Hygromycin 

Thermo 
Fisher 
Scientific 
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proteins in 
mammalian 
cells 

pTNT Vector for in 
vitro 
transcription 
and 
translation 

SP6, T7 promoter Amp Promega 

pGEM4Z Vector for in 
vitro 
transcription 
and 
translation 

SP6, T7 promoter Amp Promega 

pGEM4 Vector for in 
vitro 
transcription 
and 
translation 

SP6, T7 promoter Amp Promega 

pX330 Expression 
vector for 
CRISPR/Cas9-
mediated gene 
editing 

U6 promoter Amp Kind gift of 
Stefan 
Jakobs 
(Göttingen) 

pEGFP-N1 Expression 
vector of 
EGFP used for 
transient 
transfections 

CMV promoter Kanamycin Clonetech 
Laboratories 

pX330-ROMO1-
CRISPR/Cas 

Expression 
vector for 
CRISPR/Cas9-
mediated 
knockout of 
ROMO1 

Guide sequences 
targeting ROMO1 
gene in pX330 

Amp This study 

S02 in vitro 
translation of 
Su9(1-69)-
DHFR 

SP6 promoter, in 
pGEM4x 

Amp (Pfanner et 
al., 1987) 

pcDNA5/FRT/TO-
TIM23FLAG 

tetracycline-
inducible 
expression of 
TIM23FLAG 

TIM23FLAG in 
pcDNA5/FRT/TO 

Amp, 
Hygromycin 

(Mick et al., 
2012) 

pcDNA5/FRT/TO-
TIM21FLAG 

tetracycline-
inducible 

TIM21FLAG in 
pcDNA5/FRT/TO 

Amp, 
Hygromycin 

(Mick et al., 
2012) 
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expression of 
TIM21FLAG 

 

pcDNA5/FRT/TO-
ROMO1FLAG 

tetracycline-
inducible 
expression of 
ROMO1FLAG 

ROMO1FLAG in 
pcDNA5/FRT/TO 

Amp, 
Hygromycin 

This study 
 

pcDNA5/FRT/TO-
ROMO1 

tetracycline-
inducible 
expression of 
ROMO1 

ROMO1 in 
pcDNA5/FRT/TO 

Amp, 
Hygromycin 

This study 
 

OTC in vitro 
transcription 
and 
translation of 
rat OTC 

SP6 promoter Amp (Mick et al., 
2012) 

pOTB7-COX6A1 in vitro 
transcription 
and 
translation of 
COX6A1 

SP6 promoter, 
COX6A1 in 
pOTB7 

Chloramphenicol (Mick et al., 
2012) 

pOTB7-COX4I-1  in vitro 
transcription 
and 
translation of 
COX4I-1 

SP6 promoter, 
COX4I-1 in 
pOTB7 

Chloramphenicol (Mick et al., 
2012) 

pGEM4-YME1L 
 

in vitro 
transcription 
and 
translation of 
YME1L 

SP6 promoter, 
YME1L in pGEM4 

Amp Kind gift of 
Thomas 
Langer 
(Cologne) 

pGEM4Z-YME1L1-

613 
in vitro 
transcription 
and 
translation of 
YME1L1-613 

SP6 promoter, 
YME1L1-613 in 
pGEM4Z 

Amp This study 
 

pGEM4Z-YME1L1-

529 
in vitro 
transcription 
and 
translation of 
YME1L1-529 

SP6 promoter, 
YME1L1-529 in 
pGEM4Z 

Amp This study 
 

pTNT-YME1L1-395 in vitro 
transcription 
and 

SP6 promoter, 
YME1L1-395 in 
pTNT 

Amp This study 
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translation of 
YME1L1-395 

pTNT-YME1L1-238-
COX6A140-59-
YME1L260-716 

in vitro 
transcription 
and 
translation of 
YME1L1-238-
COX6A140-59-
YME1L260-716 

SP6 promoter, 
YME1L1-238-
COX6A140-59-
YME1L260-716 in 
pTNT 

Amp This study 
 

pTNT-LETM1 in vitro 
transcription 
and 
translation of 
LETM1 

SP6 promoter, 
LETM1 in pTNT 

Amp This study 

pTNT-COQ8A in vitro 
transcription 
and 
translation of 
COQ8A 

SP6 promoter, 
COQ8A in pTNT 

Amp This study 

pTNT-COX6A11-

25-YME1L151-716 
in vitro 
transcription 
and 
translation of 
COX6A11-25-
YME1L151-716 

SP6 promoter, 
COX6A11-25-
YME1L151-716 in 
pTNT 

Amp This study 
 

pTNT-YME1L1-151-
COX6A125-110 

in vitro 
transcription 
and 
translation of 
YME1L1-151-
COX6A125-110 

SP6 promoter, 
YME1L1-151-
COX6A125-110 in 
pTNT 

Amp This study 
 

 

Duplex oligonucleotides (siRNAs) were produced by Eurogentec (Liege, Belgium) and are listed 

in Table 2.10. siRNA transfections were performed as in section 2.2.1.5. 

 
Table 2.10: siRNAs used 

Oligonucleotide Sequence Target/Function/Concentration 
siROMO1 UCU-GUC-CCU-UCC-CAU-

CAA-U 
Sense siRNA for transiently 
silencing ROMO1 (8.25nM) 

siYME1L  UUC-GAU-GGC-AGA-UUG-
GGU-UUC-UGG-A 

Sense siRNA for transiently 
silencing YME1L (33nM) 
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Non-targeting  Non-targeting control siRNA 

 

Oligonucleotides used to generate plasmids for CRISPR/Cas9-mediated gene editing, 

sequencing primers, primers used for cloning or to generate DNA fragments for subsequent 

RNA synthesis were synthesized by Microsynth SEQLAB (Göttingen, Germany) and are listed 

in Table 2.11.  

 
Table 2.11: Oligonucleotides used 

Oligonucleotide Sequence Target/Function 
FR1 CACCGTTCGTGATGGGTT

GCGCCGT 
Guide sequence 1 for CRISPR-Cas9 
targeting ROMO1 

FR2 AAACACGGCGCAACCCAT
CACGAAC 

Complement to guide sequence 1 for 
CRISPR-Cas9 targeting ROMO1 

FR85 GCTACCCACTGATTTTCCT
TC 

Forward primer to amplify genomic 
region of ROMO1 

FR86 TGCTTTATCTCTGTATCCT
GTATCC 

Reverse primer to amplify genomic 
region of ROMO1 

FR88 TATAGTCGACTCATCTCAC
TTCCAACTTTTTCCCC 

Reverse primer to amplify open 
reading frame of YME1L 

FR101 TATAGGTACCATGTTTTCC
TTGTCGAGCACGG 

Forward primer to amplify open 
reading frame of YME1L 

FR102 TATATCTAGACTAAATATG
GTCGGTTCCAAATATAAG
C  

Reverse primer to amplify YME1L1-613 

FR103 TATATCTAGACTACACACT
TCTTCTTTCAGGCCCC 

Reverse primer to amplify YME1L1-529 

FR113 TATAGCGGCCGCCTACAT
CATCATCATTGGAGATTCA
ATTCTCTTCCC 

Reverse primer to amplify YME1L1-395 

FR115 AGGTGAGAGTCAGACGGG
TTCGCCTTAGGG 
 

Reverse primer 1 to amplify YME1L1-

238-COX6A140-59-YME1L260-71 

FR116 AACCCGTCTGACTCTCACC
TTCTTCGTCGC 

Forward primer 2 to amplify YME1L1-

238-COX6A140-59-YME1L260-716 
FR117 TCCGGAAGCGCAGGTACA

CATTCAGCATGC  
Reverse primer 2 to amplify YME1L1-

238-COX6A140-59-YME1L260-716 
FR118 TGTGTACCTGCGCTTCCGG

ACAACAACAGG 
Forward primer 3 to amplify YME1L1-

238-COX6A140-59-YME1L260-716 
FR119 TATAGGTACCATGGCGGT

AGTTGGTGTGTCC  
Forward primer 1 to amplify 
COX6A11-25-YME1L151-716 
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FR124 TATAGTCGACTTATTCATC
TTCGTAGCCAGTTGGA 

Reverse primer 2 to amplify YME1L1-

151-COX6A125-110 
FR125 TATAGGTACCATGGCTGC

CATATTGGGAGACACC 
Forward primer to amplify open 
reading frame of COQ8A 

FR126 TATAGTCGACCTACTGCTG
GGCCTGCCTCTTGC 

Reverse primer to amplify open 
reading frame of COQ8A  

FR127 TATAGGTACCATGGCGTC
CATCTTACTGAGGAGCTG
C 

Forward primer to amplify open 
reading frame of LETM1 

FR128 TATAGTCGACCTAGCTCTT
CACCTCTGCGACCTCC  

Reverse primer to amplify open 
reading frame of LETM1 

FR135 GGCGCCACTCGAAAAACC
CCGAGACTGTAT 

Reverse primer 1 to amplify YME1L1-

151-COX6A125-110 
FR136 TCTCGGGGTTTTTCGAGTG

GCGCCCATA 
Forward primer 2 to amplify YME1L1-

151-COX6A125-110 
FR137 AAAGTTTTAAACGACATA

GGCCGCCCCAG 
Reverse primer 1 to amplify COX6A11-

25-YME1L151-716 
FR138 GCGGCCTATGTCGTTTAA

AACTTTGAAATC 
Forward primer 2 to amplify 
COX6A11-25-YME1L151-716 

priJD189 

 

AGAAGAGAATTCTCGATT
TAGGTGACACTATAGAAT
ACGCCGCCGCCATGGCGT
CCGGAGCGGC 

Forward primer to amplify open 
reading frame of EMRE 

priJD190 ATAAGAGTCGACTTACAT
GTCATCATCATCATCATCC
TC 

Reverse primer to amplify open 
reading frame of EMRE 

SD155 TATAAAGCTTATGCCGGT
GGCCGTGGGTC 

Forward primer to amplify open 
reading frame of ROMO1 

SD156 TATAGGATCCTTACTTGTC
ATCGTCGTCCTTGTAGTCG
CATCGGATGCCCATCCCA
ATG 

Reverse primer to amplify ROMO1FLAG 

SD333 TATAGGATCCTTAGCATCG
GATGCCCATCCCAATG 

Reverse primer to amplify open 
reading frame of ROMO1 
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2.2 Methods 

 

2.2.1 Human cell culture and preparation of mitochondria 

 

2.2.1.1 Cultivation of human cells 

 

Human embryonic kidney cell lines (HEK293-Flp-In T-Rex; HEK293T) were cultured in 

DMEM (Dulbecco’s Modified Eagle Medium) supplemented as described in Table 2.2 under a 

5% CO2 humidified atmosphere at 37°C. To passage the cells, the medium was removed and 

sterile PBS was added to detach the cells. Once detached, an equal volume of medium was added 

and cells were centrifuged at 1500 rpm for 5-10 minutes at room temperature. Containers with 

medium were prepared and the obtained cell pellet was resuspended in a small volume of fresh 

medium. Then, the appropriate amount of cell suspension was added to the container. Cells 

were harvested in PBS as before and centrifuged at 4600 rpm for 15 minutes at 4°C. Obtained 

pellets were frozen or processed right away.  

 

2.2.1.2 Cytosolic inhibition by emetine 

 

To study effects on protein levels upon inhibition of cytosolic translation, cells were seeded into 

containers a day before. Medium was supplemented with 20µg/mL emetine dihydrochloride 

hydrate dissolved in medium for 1-5 hours. Cells were harvested, mitochondria were isolated 

(2.2.1.8) and protein levels were analyzed by SDS-PAGE and immunoblotting (2.2.3.2 and 

2.2.3.8).  

 

2.2.1.3 Generation of stable cell lines 

 

Stable HEK293T cell lines were generated as described previously (Mick et al., 2012). Prior to 

transfection, cells were seeded into wells of a six well plate until confluency of 40-50% was 
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reached. GeneJuice was used as a transfection reagent and the manufacturer’s instructions were 

followed. Briefly, 100µL Opti-Mem and 5µL GeneJuice were mixed and incubated for 5 minutes 

at room temperature. Then 400ng of pcDNA5/FRT/TO plasmid and 1000ng of pOG44 were 

added, mixed and let stand for 20 minutes. Subsequently, 600µL of medium without antibiotics 

were added, to the transfection mix cells were retrieved, medium covering the cells removed and 

the transfection mix applied. After 2-3 hours, 2mL of medium were added. Hygromycin 

(100µg/mL) was applied two to three days later for selection. Single clones were selected and 

expanded and screened for the presence of described proteins by immunoblotting. 

 

2.2.1.4 Generation of knockout cell lines 

 

HEK293T cells lacking ROMO1 were generated using CRISPR/Cas9 genome editing (Ran et al., 

2013). Using the CRISPR Design tool (http://crispr.mit.edu), guide sequences targeting the 

ROMO1 gene were obtained and appropriate oligonucleotides were ordered (Table 2.11). 

100µM of each oligonucleotide (5µL) were mixed with 10µL 5x ligase buffer (Rapid DNA 

Ligation Kit, Thermo Scientific) and 30µL ddH2O and annealed at 95°C for 5 minutes to form a 

duplex. Then, the temperature was decreased by 5°C/min until 20°C were reached. Using the 

restriction enzyme BbsI (Thermo Scientific), the pX330 vector was digested following the 

instructions given and then purified with the Wizard® Plus SV Gel and PCR DNA Purification 

System (Promega). 2µL of the annealed oligonucleotides were ligated into 50ng of the digested 

vector. Following transformation into XL1-Blue E. coli competent cells, plasmid purification 

followed with the Wizard® SV Plus Mini‐Prep DNA Purification Kit (Promega) and the 

successful cloning was analyzed by sequencing.  

 

24 hours prior to transient transfection, HEK293T WT cells were seeded into wells of a six well 

plate. For the transfection reaction 100µL Opti-MEM and 5µL GeneJuice were mixed and 

incubated at room temperature for 5 minutes before 2µg of pX330-ROMO1-CRISPR/Cas and 

400ng of pEGFP-N1 were added and incubated at room temperature for 20 minutes. 

Subsequently, it was mixed with 600µL medium, medium from cells was removed and it was 
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added to the cells drop by drop. After 2-3 hours in 37°C, 2mL of medium were added and 

incubation continued.  

 

Three days after the transfection, cells were harvested using PBS and centrifugation and kept at 

37°C. In collaboration with Sandra Becker of the University Medical Center Göttingen Cell 

Sorting Facility, single GFP-positive cells were sorted by a FACS Vantage SE into a 96 well plate. 

Clones were expanded and screened by immunoblotting for loss of ROMO1. Additionally, 

genomic DNA was extracted (2.2.1.7), the open reading frame was amplified by PCR and 

sequenced.  

 

2.2.1.5 siRNA treatment 

 

One day prior to siRNA treatment, cells were harvested as described above and seeded back to 

ensure exponential growth phase one day later. Approximately 24 hours later, cells were 

harvested and diluted in cell culture medium without antibiotics. Cells were counted using a 

Neubauer chamber. siRNA oligonucleotides were purchased from Eurogentec and 

Lipofectamine RNAiMAX was used as transfection reagent following manufacturer’s 

instructions. Briefly, the transfection mix was prepared given exemplified here for 800,000 cells 

and a final concentration of siRNA of 8.25nM: 20µM siRNA: 3.2µL, Lipofectamine RNAiMAX: 

6.4µL, OptiMem: 1600µL carefully mixed and incubated for 20 minutes. Subsequently, cells 

were added to the mixture, carefully mixed and added to a flask filled with medium (6.4mL – 

volume of cells). Cells were incubated at 37°C under a 5% CO2 humidified atmosphere for 72 

hours.  

 

2.2.1.6 Assessing cell growth 

 

Cell growth was measured by trypan blue exclusion assay. Cells were seeded at an initial number 

of 2 x 105 in wells of a 6 well plate and harvested after one, two or three days. Cell pellet was 

resuspended in PBS, stained with 0.04% trypan blue (Life Technologies) and counted using 
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CountessTM automated cell counter (Thermo Scientific). Three technical and experimental 

replicates were performed. 

 

2.2.1.7 Extraction of genomic DNA 

 

HEK293T ROMO1-/- cells were seeded into wells of a six well plate and harvested upon reaching 

confluence. Cell pellets were resuspended in 400µL TE buffer (10mM Tris, pH 7.4, 1mM EDTA, 

pH 8) and SDS was added to a final concentration of 1%. Subsequently, 50µL proteinase K 

(20mg/mL in TE buffer) were added and the cells were incubated at 800rpm, 37°C, overnight. 

500µL of the lower phase of phenol were added to the clear lysate and the mixture was vortexed 

for one minute followed by centrifugation at 3000rpm for 5 minutes at room temperature. The 

upper phase was carefully transferred into a new tube and 500µL of the lower phase of phenol-

chloroform were added followed by 1 minute of vortexing. Upon a 5-minute centrifugation step 

at 3000rpm, this was repeated. Then, 500µL of chloroform were added, vortexed for one minute, 

centrifuged as before and the upper clear phase was transferred into a new tube. Upon the 

addition of two volumes of cold 100% ethanol and gentle mixing incubation at -80°C overnight 

followed. Precipitated genomic DNA was harvested by centrifugation at maximum speed for 30 

minutes, pellet was dried and resuspended in ddH2O.  

 

2.2.1.8 Isolation of mitochondria I 

 

Mitochondria were isolated similar to as described before (Lazarou et al., 2009; Mick et al., 2012). 

Harvested cells were resuspended in cold THE-buffer (Table 2.2) containing 0.1% BSA and 

transferred into a cooled Dounce homogenizer. To homogenize the cells, the potter passed 

through the solution 30 times at 700U/min. Debris and unopened cells were removed by 

centrifugation at 400 x g for 10 minutes and the supernatant was saved. The pellet was 

resuspended again, homogenized and centrifuged as before. Both supernatants were pooled and 

centrifuged for 7 minutes at 800 x g to remove debris and mitochondria were collected by 

centrifugation at 10,000 x g for 10 minutes. The obtained mitochondrial pellet was resuspended 



 51 

in THE-buffer without BSA and centrifuged at 10,000 x g for 5 minutes. The isolated 

mitochondria were resuspended again and directly used for experiments or shock frozen and 

stored at -80°C.  

 

2.2.1.9 Isolation of mitochondria II 

 

In case isolated mitochondria were used for subsequent import reactions or small amounts of 

cells were used, a different protocol for the isolation of mitochondria was followed based on 

Panov, 2013. Cells were harvested in PBS at 1000 x g for 5 minutes at 4°C. Cells were then 

resuspended in cold isolation buffer (Table 2.2) with 2mM PMSF and centrifuged again. Pellets 

were weighed and cells were incubated in cold hypotonic buffer with 2mM PMSF for 7 minutes 

(5mL/1g cells). Subsequently, cells were gently homogenized 10-15 times in Dounce 

homogenizer (glass-glass) if used for import experiments, otherwise homogenized 25-30 times. 

Cold hypertonic buffer (1.1mL/5mL) was added to homogenized cells before the volume was 

tripled with isolation buffer containing 2mM PMSF and 2mg/mL BSA. Suspension was 

centrifuged at 1000 x g/10min/4°C. The supernatant was again centrifuged and then divided 

into 2mL tubes. After centrifugation at 10,000 x g/10 min/4°C, pellets were resuspended in 

isolation buffer without PMSF and fractions were pooled. After another centrifugation step, 

harvested crude mitochondrial extracts were resuspended in isolation buffer and the protein 

concentration was determined (2.2.3.1). Mitochondria were used directly for experiments, i.e. 

import, or shock frozen and stored at -80°C.  

 

2.2.2 Molecular Biology techniques 

 

2.2.2.1 Cultivation of E. coli 

 

E. coli were grown and cultivated in liquid culture according to standard procedures using LB 

medium (lysogeny broth) (Green & Sambrook, 2012) or on plates (15g/L agar). Ampicillin or 
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Chloramphenicol were used as selection markers at concentrations of 0.1g/L or 0.025g/L 

respectively. For storage of plasmids, 800µL of an E. coli overnight culture with the respective 

plasmid in selective medium were mixed with 200µL sterile 80% glycerol in a cryo vial and 

frozen at -80°C.  

 

2.2.2.2 Transformation of E. coli via heat shock 

 

Competent cells were defrosted on ice and carefully mixed with 100-200ng of plasmid DNA or 

6µL of ligation reaction. After incubation of 30 minutes on ice, cells and DNA were heat shocked 

to 42°C for 50 seconds and subsequently put on ice for 3 minutes. 300µL of warm, antibiotic-

free LB medium were added and the mixture was incubated shaking for one hour at 37°C. 

Transformation mixture was plated on agar plates with the appropriate selection antibiotics and 

incubated at 37°C overnight until single colonies appeared.  

 

2.2.2.3 Isolation of plasmid DNA from E. coli 

 

The Wizard® SV Plus Mini‐Prep DNA Purification Kit by Promega was used to isolate plasmid 

DNA from E. coli. Instructions by the manufacturer were followed. In brief, cells in 3mL of an 

overnight liquid culture were harvested (5000 x g, 5 min) at room temperature and resuspended 

in 250µL resuspension buffer. Cells were lysed by adding 250µL lysis buffer and inverting the 

sample four times. Upon clearance of the lysate, 10µL alkaline protease were added, mixed again 

and incubated for 5 minutes. 350µL neutralization buffer were added, mixed again and 

immediately centrifuged at 16,000 x g for 10 minutes. The cleared lysate was transferred into a 

spin column and centrifuged for 1 min at 16,000 x g. Subsequently, columns were washed by 

centrifugation with 750µL and 250µL of wash solution and briefly dried on air. To elute isolated 

plasmid DNA, 60µL of water were applied onto the filter followed by one minute of incubation. 

Finally, the spin column was centrifuged for one minute at 16,000 x g, the DNA concentration 

was measured and the DNA was stored at -20°C.  
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2.2.2.4 Polymerase chain reaction (PCR)  

 

DNA fragments were amplified using the KOD Hot Start DNA Polymerase kit following the 

instructions given by the manufacturer. The reaction mixture contained 1x KOD reaction 

buffer, cDNA or plasmid as template, 0.2mM dNTPs, 1mM MgSO4, 0.3μM forward and reverse 

primers and 1 unit of KOD DNA polymerase in a total volume of 50µL. PCR conditions were 

2-3 minutes at 95°C followed by 35 cycles of 95°C (10”), annealing for 10 seconds at 48°-55°C 

(depending on primers used) and 15-120 seconds (depending on product size) at 70°C for 

elongation. PCR products were stored at 4°C.  

 

2.2.2.5 Agarose gel electrophoresis 

 

Agarose gel electrophoresis was carried out to confirm the presence of a specific product of the 

correct size after PCR amplification. To cast a 1% agarose gel, dry agarose was dissolved in TAE 

buffer (Table 2.2) under gentle heating and mixing and the solution was left to cool. Ethidium 

bromide was added to a final concentration of 1μg/mL and the gel solidified. 4μL of the PCR 

reaction were mixed with 5μL of 50% glycerol and loaded onto the gel along with DNA ladder 

mix “Gene Ruler” in a separate lane. After the run, DNA fragments were visualized by UV-light.   

 

2.2.2.6 Purification of PCR products 

 

PCR products were purified using the Wizard® Plus SV Gel and PCR DNA Purification System 

following the given instructions. 400μL of membrane-binding buffer were carefully mixed with 

the PCR and transferred to the provided column. If multiple products had formed, the correct 

band was excised from the gel, mixed with membrane binding buffer, heated until dissolved and 

transferred to the provided column. The minicolumn was centrifuged for 1 minute at 13200 

rpm, the flow-through was discarded and 750μL of wash solution were added. After another 

spin, columns were washed again with 250μL wash solution. After centrifugation at 13200 rpm 

for one minute, 5-minute centrifugation at top speed followed. Remaining ethanol was allowed 
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to evaporate by transferring the column to an RNase free tube and incubation at room 

temperature for three minutes. To elute, 50μL nuclease free water were added and incubated for 

two minutes at room temperature. The purified PCR product was collected via spinning at 13200 

rpm for two minutes and DNA was quantified using a NanoVueTM Spectrophotometer.  

 

2.2.2.7 Cloning 

 

To insert purified PCR products into plasmids, standard procedures by Green & Sambrook 

(2012) were followed. Both underwent restriction digest using restriction enzymes (FastDigest; 

Thermo Scientific) in a reaction of 20µL (16µL PCR reaction, 1µL of each enzyme and 1x 

FastDigest buffer). The reaction was incubated for 30 minutes at 37°C under mild agitation 

(450rpm). The digested plasmid further underwent dephosphorylation using 1µL of alkaline 

phosphatase in 1x phosphatase buffer during 45 minutes at 37°C at 450rpm. Following clean-

up just as for PCR reactions (2.2.2.6), digested inserts and plasmids were ligated using the Rapid 

DNA Ligation Kit (Thermo Scientific): 60ng of digested PCR product were mixed with 1.5µL of 

digested vector as well as 1x ligation buffer and 1µL T4 DNA ligase in 20µL. After incubation 

for 30 minutes at 22°C at 450rpm agitation, transformation into 50µL XL1 Blue E. coli cells via 

heat shock followed (2.2.2.2). Upon plasmid isolation from grown colonies (2.2.2.3), cloned 

constructs were tested by restriction digest followed by agarose gel electrophoresis and 

sequencing (SEQLAB, Göttingen, Germany).  

 

2.2.2.8 In vitro mutagenesis 

 

In order to introduce point mutations into purified plasmids, partially overlapping primers 

harboring the desired mutations were designed according to Zheng et al. (2004). PCR was 

performed using the KOD Hot Start DNA Polymerase kit as in section 2.2.2.4 with 10-20ng 

plasmid. PCR conditions were 3 minutes at 95°C followed by 20 cycles of 95°C (20”), annealing 

for 10 seconds at 60°C and 180 seconds at 70°C for elongation. Upon cooling down of the 

reaction to 4°C, 1µL of the enzyme Dpn1 (Thermo Scientific) was added to the whole reaction 
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to digest parental DNA for 60 minutes at 37°C. 5µL of digested plasmid were used for 

subsequent transformation followed by plasmid isolation and sequencing to assess the success 

of the mutagenesis.  

 

2.2.2.9 In vitro mRNA synthesis 

 

Purified PCR products containing an SP6 promoter were used to produce mRNA with the SP6 

mMESSAGE mMACHINE® Kit (Ambion). In a total volume of 20μL, 1μg of purified PCR 

product was mixed with provided 1x NTP/CAP, 1x reaction buffer and 2μL of enzyme mix and 

incubated for 90 minutes at 37°C. Then, 1μL Turbo DNase was added for 15 minutes at 37°C. 

30μL of nuclease free water were added as well as the same volume of LiCl precipitation solution 

(7.5M lithium chloride, 50mM EDTA) to precipitate the RNA. After incubation at -20°C 

overnight, samples were centrifuged for 15 minutes at top speed and the supernatant removed. 

After washing the pellet with 70% ethanol and removal of the ethanol, the pellet was left to dry 

at room temperature. Subsequently, the dried pellet was resuspended in nuclease free water, 

incubated on ice for 30 minutes and the dissolved RNA was quantified using a NanoVueTM 

Spectrophotometer and stored at -80°C. 

 

2.2.2.10 In vitro translation 

 

Protein precursor was transcribed as well as translated in vitro from the plasmid containing its 

open reading frame using the TNT® Quick coupled Transcription/Translation system 

(Promega). 1μg of plasmid was incubated with 50μL of TNT® Quick Master Mix as well as 50μCi 
35S-methionine for 60 to 90 minutes at 30°C under mild agitation. Unlabeled methionine was 

added for one minute before sucrose was added for stabilization and the product was kept on 

ice for further use on the same day.  

 

To synthesize precursor proteins from mRNA, in vitro translation was performed using the 

Flexi® Rabbit Reticulocyte Lysate System (Promega). The manufacturer’s instructions were 
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followed and 200ng of mRNA were incubated in a final volume of 50 μL with 33μL of Flexi® 

Rabbit Reticulocyte Lysate, 1μL of 1mM amino acid mixture without methionine, KCl (70-

120mM), magnesium acetate (0-2mM) as well as 50μCi 35S-methionine for 90 minutes at 30°C 

under mild agitation. Unlabeled methionine was added for one minute before sucrose was added 

for stabilization and the product was kept on ice for further use on the same day.  

 

2.2.3 Protein and protein complex analysis 

 

2.2.3.1 Protein concentration determination 

 

The protein concentration of isolated mitochondria or cells was determined using Roti®-Quant 

(Serva). Using 0, 7.5, 15, 30 and 60μg/μl bovine immunoglobulin, a standard curve was 

established and the mitochondrial or cell suspension was diluted 1:5. 5, 10 and 20μL were added 

to water to give a final volume of 86μL. After adding 1mL of Roti®-Quant reagent (diluted 1:10 

in water), a Cary 50 Bio UV-visible spectrophotometer (Varian) was used to measure the optical 

density at 595nm. The protein concentration of the sample was determined using the calibration 

curve. 

 

2.2.3.2 SDS-PAGE 

 

SDS polyacrylamide gel electrophoresis (SDS-PAGE), similarly to Laemmli (1970), was used to 

separate proteins according to their molecular weight under denaturing conditions. Separating 

gels with 10-16% polyacrylamide concentrations were prepared using 30%/0.8% acrylamide/bis-

acrylamide solution (Roth) along with 386mM Tris/HCl, pH 8.8 and 0.1% SDS. A stacking gel 

containing 4% acrylamide, 80mM Tris/HCl, pH 6.8 and 0.1% SDS was cast on top of the 

resolving gel. APS and TEMED were used for polymerization. SDS sample buffer (Table 2.2) 

was added to samples and they were incubated for 15 minutes at 37°C under mild agitation or 
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at 95°C for 5 minutes. Electrophoretic separation was performed at 30mA/gel in SDS running 

buffer (Table 2.2) in the MINI-Protean II (BioRad) system or in custom-made midi gel systems.  

 

2.2.3.3 Urea-SDS-PAGE 

 

For enhanced detection of proteins of low molecular weight, Urea-SDS-PAGE was performed. 

Resolving gels contained 17% acrylamide (60%/0.8% acrylamide/bis-acrylamide mixture), 

683mM Tris/HCl, pH 8.8, 7.77mM NaCl, 5.4M urea and 0.1% SDS while the stacking gel 

contained 5.4% acrylamide (60%/0.8%), 108mM Tris/HCl, pH 6.8, 3.3M urea and 0.12% SDS. 

APS and TEMED were used for polymerization. The handling of samples was identical as for 

SDS-PAGE (2.2.3.2) and electrophoresis was carried out in Urea running buffer (Table 2.2) at 

35mA/gel.  

 

2.2.3.4 Tricine-SDS-PAGE 

 

For a better resolution of proteins below 15kDa in size as well as a good separation of the whole 

range, Tris-Tricine polyacrylamide gels containing a gradient of 10 – 18% were used, similar to 

Schägger (2006). Resolving gels with 10 and 18% polyacrylamide concentrations were prepared 

using 49.5%/3% acrylamide/bis-acrylamide solution along with 1M Tris/HCl, pH 8.45, 0.1% 

SDS and 13% glycerol for the 18% solution. The gel was cast using a custom-made gradient 

mixer. A stacking gel containing 4% acrylamide, 1M Tris/HCl, pH 8.45 and 0.1% SDS was cast 

on top of the resolving gel. APS and TEMED were used for polymerization. Handling of the 

samples was identical to SDS-PAGE. Electrophoretic separation was carried out in custom-

made midi gel systems at 25mA/gel in Tris-Tricine cathode and anode buffer (Table 2.2). 

 

2.2.3.5 Blue-Native-PAGE 

 

To separate native protein complexes, Blue Native polyacrylamide gel electrophoresis (BN-

PAGE) (Schägger & Jagow, 1991; Wittig et al., 2006)  similar to Dekker et al. (1996) was 
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performed. Resolving gels with an acrylamide gradient of 4-13%, 4-14%, 6-16.5% or 2.5-10% 

were used containing 49.5%/3% acrylamide/bis-acrylamide solution along with 50mM Bis-

Tris/HCl, pH 7.0, 66.67mM 6 -aminocaproic acid and 20% glycerol for the higher percentage 

solution. Gels were cast using a custom-made gradient mixer. The stacking gel contained 3.96% 

or 2.5% acrylamide along with 50mM Bis-Tris/HCl, pH 7.0, 66.67mM 6 -aminocaproic acid. 

APS and TEMED were used for polymerization. Mitochondria were incubated in solubilization 

buffer containing digitonin (Table 2.2) for 20 minutes on ice (1μg protein/1μL buffer) and mixed 

periodically. Then, centrifugation (20,000 x g, 15 min, 4°C) removed insoluble material and the 

supernatant was mixed with BN sample loading buffer (Table 2.2). All running buffers were 

precooled to 4°C and gel loading was performed at 4°C as well. Electrophoretic separation was 

performed in a SE600 Ruby system (Hoefer, GE Healthcare) that maintained a constant 

temperature of 4°C. Using BN cathode buffer containing 0.02% Coomassie Brilliant Blue G-250, 

gels were run at 15mA/gel and 100V for 1-2 hours. Subsequently, the buffer was replaced with 

cathode buffer without Coomassie Brilliant Blue G-250. 

 

2.2.3.6 Coomassie Brilliant Blue staining 

 

Coomassie staining solution (Table 2.2) was used to visualize separated protein bands on 

acrylamide gels or on PVDF membranes. Under mild agitation, membranes were stained for ten 

minutes and gels for at least one hour. Subsequently, the staining solution was exchanged for 

destaining solution (Table 2.2) until proteins became detectable. Methanol was used to entirely 

destain PVDF membranes before western blotting to not interfere with immunodetection.  

 

2.2.3.7 Ponceau-S staining 

 

In order to use secondary antibodies couples to an infrared dye, proteins on PVDF membranes 

were visualized with a Ponceau-S staining solution (0.1% (w/v) Ponceau-S in 5% (w/v) acetic 

acid) shaking for 10 minutes. Destaining occurred by repeated washing with water. 

 



 59 

2.2.3.8 Western blotting and immunodetection 

 

To perform immunodetection using antibodies standard protocols as in Gallagher et al. (2004) 

were used. Semi-dry blotting in PEQLAB chambers was used to transfer proteins separated by 

electrophoresis onto PVDF membranes (Merck). Upon short activation in methanol, the 

membrane was assembled with the gel and filter papers (Heinemann Labortechnik) soaked in 

blotting buffer (Table 2.2). Transfer occurred for 2.5 hours at 25V and 250mA for SDS-PAGE 

and 3 hours, 25V and 400mA for BN-PAGE. Then, the membrane was stained in Coomassie 

Brilliant Blue (2.2.3.6) and destained until protein bands as well as the protein molecular weight 

marker were visible. The membrane was cut in pieces according to the size of proteins, which 

were to be analyzed by immunodetection. Methanol was used to completely destain and activate 

the membrane, followed by incubation in TBS-T (Table 2.2) containing 5% milk powder for at 

least one hour at room temperature under mild agitation. Home-made primary antibodies 

diluted in TBS-T containing 5% milk powder or commercial primary antibodies diluted in TBS-

T (Table 2.6) were applied and incubated at 4°C overnight under mild agitation. Membranes 

were washed in TBS-T briefly once and then three times for 10 minutes before a secondary 

antibody (Table 2.7, diluted 1:5000 or 1:10,000) was applied for one hour at room temperature. 

Following the same washing procedures, the signals were visualized using the Pierce® ECL 

Western Blotting Detection Reagent (Thermo Scientific) on X-ray films. For detection of 

infrared-dye coupled secondary antibodies , the blots were scanned using an FLA-9000 scanner.  

 

2.2.3.9 Digital autoradiography 

 

To analyze and visualize radioactively labeled proteins separated by electrophoresis, gels were 

put in fresh destaining solution for 10 minutes for dehydration. Urea- or Tricine-SDS-PAGE 

gels were blotted as described above. Both membranes and gels were put on two blotting papers 

and gels were covered with a plastic bag on the other side before they were dried using a GD-

5040 vacuum gel dryer and a Vaccubrand® 2C gel pump (Scie-Plas) at 65°C for 2-4 hours. On 

both membranes and gels, the protein size standard was marked with radioactive ink, covered 
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with tape and exposed on storage phosphor screens (GE Healthcare) before signals were 

digitized using a Storm820 scanner. Signals were quantified using ImageQuant TL software (GE 

Healthcare) and rolling ball background subtraction. 

 

2.2.4 Specialized assays 

 

2.2.4.1 Radiolabeled precursor protein import and assembly into mitochondria 

 

Radiolabeled precursor import into mitochondria was performed similar to Lazarou et al. (2009) 

with modifications. Precursor proteins were synthesized in vitro as described in section 2.2.2.10. 

Radiolabeled protein precursors were incubated with freshly isolated mitochondria (2.2.1.9) in 

import buffer (Table 2.2) and 5mM ATP to give a final concentration of 1µg/mL. AVO mix 

(final: 8µM antimycin, 1µM valinomycin and 20µM oligomycin) was added to one reaction to 

dissipate the membrane potential as a negative control. Samples were incubated at 30/37°C at 

450rpm for three minutes and radiolabeled protein precursors (2-10%) were added to start the 

import reaction. Import was stopped at various time points by adding AVO mix and the samples 

were put on ice. Upon import, mitochondria were either treated with 20µg/mL proteinase K for 

10 minutes to remove unimported precursor protein and with 2mM PMSF to inactivate 

proteinase K or directly harvested and washed with SEM-buffer (Table 2.2). Mitochondria were 

pelleted at 20,000 x g for 10 minutes at 4°C, SEM buffer was added, and mitochondria were 

pelleted again. Samples were taken up in SDS sample buffer and analyzed by SDS-PAGE. To 

analyze the incorporation of radiolabeled precursor proteins into mitochondrial protein 

complexes, samples were resuspended in BN solubilization buffer and incubated for 20 minutes 

before the supernatant was obtained by centrifugation at 20,000 x g for 15 minutes and loaded 

onto BN-PAGE (2.2.3.5). Finally, samples were analyzed by digital autoradiography (2.2.3.9) 

using Phosphorimager screens and a Storm 820 scanner (GE Healthcare). Quantifications were 

performed using ImageQuant TL 7.0 software (GE Healthcare) with a rolling ball background 

subtraction.  
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2.2.4.2 Protein stability assay 

 

Stability of freshly imported precursor proteins was assessed as described before (Reinhold et 

al., 2011; Rottgers et al., 2002) with modifications. Import buffer was supplemented with 5mM 

creatine phosphate and 0.1mg/mL creatine kinase and import reactions were carried out as 

described. Upon SEM wash, mitochondria were again resuspended in supplemented import 

buffer and incubated at 37°C at 450rpm and harvested at 4°C at indicated time points. Samples 

were taken up in SDS sample buffer and analyzed by SDS-PAGE and autoradiography. 

Quantifications were performed using ImageQuant TL 7.0 software (GE Healthcare) with a 

rolling ball background subtraction.  

 

2.2.4.3 Co-immunoprecipitation using isolated mitochondria 

 

Co-immunoprecipitations were carried out as described before (Dennerlein et al., 2015) with 

modifications. HEK293T cells containing C-terminally tagged TIM23FLAG or TIM21FLAG under a 

tetracycline inducible promoter were kept in culture (2.2.2.1). 24 hours prior to harvesting, the 

expression of the respective protein was induced by adding tetracycline (final conc. 0.25µg/mL). 

Mitochondria were isolated as described in 2.2.1.8 .and were lysed 15 minutes shaking at 4°C in 

solubilization buffer (50mM Tris/HCl (pH 7.4), 50-150mM NaCl, 10% glycerol, 1mM EDTA, 

1% Digitonin) and protease inhibitor cocktail (Roche). Lysates were cleared by centrifugation 

(8 minutes, 20,000 x g at 4°C) and the supernatant was applied onto equilibrated anti-FLAG M2 

Affinity Gel (Sigma), final concentration 1µg protein/µL. After incubation for 30 minutes at 4°C 

on an overhead rotator, beads were washed in wash buffer (50mM Tris/HCl (pH 7.4), 50-

150mM NaCl, 10% glycerol, 1mM EDTA, 0.1% digitonin, protease inhibitor cocktail) ten times 

by centrifugation for 30 seconds. Bound proteins were eluted with FLAG peptide in 

solubilization buffer without detergent 20 minutes shaking at 4°C. Samples were taken up in 

SDS sample buffer (with 1% b-mercaptoethanol) and analyzed by SDS-PAGE and 

immunoblotting.  
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2.2.4.4 Co-immunoprecipitation following siRNA using cells 

 

HEK293T cells containing C-terminally tagged TIM23FLAG and TIM21FLAG under a tetracycline 

inducible promoter underwent siRNA treatment (2.2.1.5). 24 hours prior to harvesting, the 

expression of the respective protein was induced by adding tetracycline (final conc. 0.25µg/mL). 

72 hours after siRNA application, cells were harvested and resuspended in PBS. Protein 

concentration was determined (2.2.3.1) and cells were lysed for 30 minutes shaking at 4°C in 

solubilization buffer (50mM Tris/HCl (pH 7.4), 150mM NaCl, 10% glycerol, 1mM EDTA, 1% 

Digitonin, 1mM PMSF). Lysates were cleared by centrifugation (15 minutes, 20,000 x g at 4°C) 

and the supernatant was applied onto equilibrated anti-FLAG beads (Sigma). After incubation 

for 60 minutes at 4°C rotating overhead, beads were washed in wash buffer (50mM Tris/HCl 

(pH 7.4), 150mM NaCl, 10% glycerol, 1mM EDTA, 0.1% digitonin, 1mM PMSF) ten times. 

Bound proteins were eluted with FLAG peptide in solubilization buffer without detergent 20 

minutes shaking at 4°C. Samples were taken up in SDS sample buffer and analyzed by SDS-

PAGE and immunoblotting using infrared-dye coupled secondary antibodies. Blots were 

scanned using an FLA-9000 scanner and quantifications were performed using ImageQuant TL 

7.0 software (GE Healthcare) with a rolling ball background subtraction. 

 

2.2.4.5 Cytochrome c oxidase activity and quantification assay 

 

Activity and relative amount of cytochrome c oxidase was analyzed by Complex IV Human 

Specific Activity Microplate Assay Kit (Mitosciences, Abcam) and the manufacturer’s 

instructions were followed. Cells were harvested and resuspended in provided “Solution 1” 

before protein concentration determination (2.2.3.1). The concentration of all samples was 

adjusted to 5µg/µL and 1/10 volume of provided Detergent was added, mixed and incubation 

on ice for 30 minutes followed. Cell lysates were cleared by centrifugation (20 minutes, 16,000 x 

g) and the protein concentration was determined again. Samples were diluted to 15µg/200µL 

and were prepared in triplicates onto the provided plate. After incubation for three hours at 

room temperature, wells were washed three times with Solution 1 and the appropriate amount 
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of diluted cytochrome c in Solution 1 was added. Absorbance at 550nm at 30°C was measured 

for two hours taking measurements every minute using a Synergy H1 microplate reader 

(BioTek). Its decrease correlated to oxidation of cytochrome c and cytochrome c oxidase activity.  

 

To assess the amount of cytochrome c oxidase, wells were incubated with primary antibody 

solution for one hour at room temperature followed by one wash with Solution 1. After 

incubation with secondary antibody solution for one hour at room temperature, wells were 

washed twice with Solution 1 and once with Solution 2 before Developing Solution was added.  

Absorbance at 405nm was measured for 30 minutes at room temperature taking 20 

measurements using a Synergy H1 microplate reader (BioTek). Its increase correlated to the 

relative amount of cytochrome c oxidase.   

 

2.2.4.6 Succinate dehydrogenase activity assay 

 

The assessment of succinate dehydrogenase activity was performed as described in Dudek et al. 

(2016).  Isolated mitochondria were harvested, frozen in liquid nitrogen and thawed on ice twice 

and then resuspended in hypotonic buffer (5mM MgCl2 in 25mM potassium phosphate buffer, 

pH 7.2) to a final concentration of 1mg/mL. Assay buffer (2.5µM rotenone, 10µM antimycin A, 

1mM potassium cyanide, 10 mM sodium succinate in 50mM potassium phosphate buffer, pH 

7.4) was equilibrated to 30°C in a cuvette before lysed mitochondria were added in a dilution of 

1:5 and further incubation at 30°C for 10 minutes followed. Upon blanking, the reaction was 

started by adding 50µM coenzyme Q1 (CoQ1) and following the absorbance at 280nm using a 

Cary 50 Bio UV-visible spectrophotometer (Varian). Succinate dehydrogenase activity was 

analyzed by following the reduction of the ubiquinone analogue CoQ1 upon the oxidation of 

succinate to fumarate taking measurements every second for three minutes.  
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2.2.4.7 Malate dehydrogenase activity assay 

 

This assay is based on Barrie Kitto (1969) and was performed similarly to Dudek et al. (2016). 

Isolated mitochondria were lysed in solubilization buffer (0.5% Triton-X-100 in 0.1M potassium 

phosphate, pH 7.6) to 1mg/mL (final concentration). A Cary 50 Bio UV-visible 

spectrophotometer (Varian) was blanked using 0.1M potassium phosphate, pH 7.6, before 

adding oxaloacetic acid and NADH to a final concentration of 0.2mM and 0.1mM respectively. 

Upon thorough mixing, measurements at 340nm were started and solubilized mitochondria 

were added in a final dilution of 1:40. The disappearance of NADH at 340nm was measured for 

2 minutes taking measurements every second.  

 

2.2.4.8 Reactive oxygen species measurements 

 

Reactive oxygen species were measured using MitoSOXTM Red mitochondrial superoxide 

indicator (Molecular Probes, Invitrogen) and instructions by the manufacturer were followed. 

Cells were seeded a few days in advance in wells of a 6 well plate. One well was treated with 

hydrogen peroxide for one hour as a positive control. A 5mM MitoSOX stock was prepared in 

13µL DMSO and 3µM MitoSOX were added. Cells were incubated at 37°C for 10 minutes, 

washed with PBS, detached with 0.05% Trypsin-EDTA (Gibco), harvested and resuspended in 

PBS before processed by fluorescence-activated cell sorting (FACS CantoTM II, BD Biosciences) 

at Ex/Em 510/580nm.  

 

2.2.4.9 Respiratory chain complexes in gel activity assay 

 

In gel activity assays were performed similar as described before in Wittig et al. (2007). 

Solubilized mitochondria were separated on BN-PAGE (2.2.3.5) and the gel was cut vertically to 

allow for specific complex activity assay. To assess complex I activity, the gel strip was incubated 

in complex I incubation buffer (5mM Tris/HCl, pH 7.4) for ten minutes, then transferred into 

freshly prepared complex I staining solution (5mM Tris/HCl, pH 7.4, 2.5mg/mL NBT (4-Nitro 

blue tetrazolium chloride), 0.1mg/mL NADH) and kept at mild agitation at 30°C for 1-2 hours. 



 65 

To assess complex II activity, the gel strip was incubated in complex II incubation buffer (5mM 

Tris/HCl, pH 7.4) for ten minutes, then transferred into freshly prepared complex II staining 

solution (5mM Tris/HCl, pH 7.4, 2.5mg/mL NBT, 20mM sodium succinate, 0.2mM PMS 

(phenazine methosulfate)) and kept at mild agitation at 30°C for 1-2 hours. To assess complex 

IV activity, the gel strip was incubated in complex IV incubation buffer (50mM potassium 

phosphate buffer, pH 7.4) for ten minutes, then transferred into freshly prepared complex IV 

staining solution (50mM potassium phosphate buffer, pH 7.4, 0.5mg/mL DAB (3,3’ 

diaminobenzidine), 1mg/mL reduced cytochrome c (bovine heart)) and kept at mild agitation 

at 30°C overnight. To assess complex V activity, the gel strip was incubated in complex V 

incubation buffer (35mM Tris, 220mM Glycine, pH 8.3) for thirty minutes, then transferred 

into freshly prepared complex V staining solution (35mM Tris, 220mM Glycine, pH 8.3, 14mM 

magnesium sulfate, 8mM ATP, 0.2% Pb(NO3)2) and kept at mild agitation at 30°C for 1-2 hours. 

When precipitations had appeared, reactions were stopped and Coomassie dye was washed out 

by incubation in SDS running buffer. Then gel stripes were scanned and dried.  

 

2.2.4.10 In vivo radiolabeling of mitochondrial translation products 

 
35S-methionine labeling of mitochondrial-encoded proteins was performed as described 

previously (Chomyn, 1996). HEK293T WT and ROMO1-/- cells were grown in 25cm2 flasks and 

the medium was exchanged for 35S-labeling medium without FCS (Table 2.2) followed by 

incubation for 10 minutes at 37°C twice. Subsequently, 35S-labeling medium with FCS together 

with 100µg/mL emetine dihydrochloride hydrate to inhibit cytosolic translation was added 

followed by incubation for 10 minutes. Then, mitochondrial-encoded proteins were labeled with 

200µCi/mL 35S-methionine for one hour. Cells were harvested at 5000rpm for two minutes, 

washed with PBS and pelleted again. Upon protein concentration determination (2.2.3.1), cells 

were taken up in SDS sample buffer and analyzed by SDS-PAGE and immunoblotting followed 

by digital autoradiography.  
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2.2.4.11 Lipid extraction and thin-layer chromatography 

 

This assay is based on Leray et al. (1987) and Masella & Cantafora (1988). Mitochondria were 

isolated from HEK293T WT and ROMO1-/- cells (2.2.1.8). To extract the lipids, 1mg of 

mitochondria were mixed with 1.5mL chloroform-methanol (2:1; v/v) in a small glass test tube 

and sealed with parafilm before shaking at 1000rpm for one hour at 4°C. After adding 300µL of 

ddH2O, samples were vortexed for one minute and centrifuged at 1000rpm for 5 minutes. Upon 

discarding the upper aqueous phase, the lower solvent phase was washed with 250µL methanol-

water (1:1; v/v). Samples were vortexed and centrifuged as before and the lower solvent phase 

was transferred to a new glass tube. The glass tube was kept in the fume hood overnight to dry. 

The following day, dried extracted lipids were dissolved in 100µL chloroform and stored at -

80°C until further use. 

 

To analyze the composition of the isolated lipids of mitochondria, an HPTLC Silicagel60 F254 

glass plate was used. 3µL of isolated lipids were spotted five times on the plate along with the 

lipid standards cardiolipin, phosphatidylglycerol, phosphatidylcholine and 

phosphatidylethanolamine (Avanti). The plate was put into a TLC chamber filled with the 

solvent phase (chloroform-triethylamine-ethanol-water (30:35:35:7)) and sealed tightly. Upon 

completion of the run, the plate was taken out of the solvent phase and left to dry for 5-8 minutes 

under the fume hood. Subsequently, the plate was submerged into staining solution (10% CuSO4 

in 10% o-phosphoric acid) for 3-5 seconds and incubated at 180°C for 10 minutes until black 

spots became visible.  

 

2.2.4.12 Cycloheximide treatment 

 

To study effects on protein levels upon inhibition of cytosolic translation of yeast cells, YPH499 

yeast cells were grown in YPD medium (Table 2.2). 150µg/mL of cycloheximide dissolved in 

ethanol were added to separate yeast cultures of OD 1. Samples were shaken at 900rpm at 30°C 

and harvested at respective time points by centrifugation at 10,000 x g, 4°C, 5 minutes. To 
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prepare a whole yeast cell extract, cells were resuspended in 1mL ddH2O and 148µL 2M NaOH 

and 12µL 2-mercaptoethanol were added, mixed and incubated for 10 minutes. Then, 160µL 

50% trichloroacetic acid were added, mixed and incubated for 30 minutes on ice. Subsequently, 

the sample was centrifuged for 15 minutes at full speed at 4°C and the cell pellet was resuspended 

in SDS sample buffer and protein levels were analyzed by SDS-PAGE and immunoblotting.   
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3. Results 

3.1 ROMO1 is a constituent of the TIM23 complex 
 

The molecular architecture of the mitochondrial translocation machinery is conserved and has 

been well characterized in yeast (for review, see Chacinska et al., 2009; Dudek et al., 2013; 

Wiedemann & Pfanner, 2017). In recent years, more and more studies have focused on the 

differences between the TIM23 complex of Saccharomyces cerevisiae and Homo sapiens (for 

current review, see Kang et al., 2018). One open question has been whether there are further 

components acting in TIM23-mediated protein import in human. To find new candidate 

proteins, cell lines with genomically integrated C-terminally FLAG-tagged versions of the 

translocase components TIM23, TIM21 and TIM50 were generated. Their expression was 

controlled by a tetracycline inducible promoter and the FLAG octapeptide with the sequence 

DYKDDDDK could be used for affinity purification. Upon differential stable isotope labeling 

with amino acids in cell culture (SILAC; Ong et al., 2002), followed by anti-FLAG 

immunoisolations, the interactome of TIM23FLAG, TIM21FLAG and TIM50FLAG was identified 

using mass spectrometry. Analyses from all three proteins showed a high enrichment of the 

protein ROMO1.  

 

ROMO1, the human orthologue of the yeast TIM23 complex component Mgr2, had been 

hypothesized to play a role in protein import in human. However, its role in the translocase had 

never been addressed experimentally. To validate the results from the mass spectrometric 

analysis, mitochondria containing C-terminally tagged TIM23FLAG were solubilized in digitonin-

containing buffer and interacting proteins were purified using an anti-FLAG affinity gel.  Upon 

elution with FLAG-peptides, both input (total) and eluate were analyzed by SDS-PAGE and 

western blot. ROMO1 was efficiently co-purified with TIM23FLAG, along with known TIM23 

subunits (Figure 3.1A). As expected, TIM21 and TIM50 also co-isolated with TIM23FLAG, while 

other inner membrane proteins associated with the oxidative phosphorylation machinery did 

not. Immunoisolations using C-terminally tagged TIM21FLAG also showed that ROMO1 
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efficiently co-isolated with TIM21FLAG, along with its known interaction partners TIM50, 

TIM23, COX1 and MITRAC12 (Figure 3.1B). TOM70 and Rieske, of the outer and inner 

membrane respectively, served as negative controls. This shows that ROMO1 interacts with 

TIM23 and TIM21 and is therefore a new component of the human TIM23 complex. 

 

A                                                                                  B  

                  
 

Fig. 3.1: ROMO1 interacts with TIM23 and TIM21 of the human TIM23 complex.  
(A) Mitochondria isolated from HEK293T Wild-type (WT) and TIM23FLAG cells were solubilized using digitonin 
and incubated with anti-FLAG beads. Upon elution by FLAG-peptide, interactions partners were analyzed by SDS-
PAGE and western blotting using the indicated antibodies. Eluate: 100%, total: 1.6%. 
(B) Isolated mitochondria of WT and TIM21FLAG cells were analyzed as described in A. Eluate: 100%, total: 1.6%. 

 

3.2 A ROMO1-/- cell line can be used to study its molecular function 
 

3.2.1 Steady state analysis of the ROMO1-/- cell line shows differences in 

mitochondrial protein levels 

 

To investigate the molecular function of ROMO1, a cell line with a knockout (KO) of ROMO1 

was generated using CRISPR/Cas9. The CRISPR/Cas9 system relies on the bacterial Cas9 
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nuclease to be guided by a guide RNA to a specific genomic locus, where it induces a double-

stranded break (Horvath & Barrangou, 2010; Ran et al., 2013). This double-stranded break 

recruits the cell’s DNA repair machinery which is very error-prone. Therefore, the gene is often 

disrupted, preventing protein expression (Ran et al., 2013). 

 

To this end, primers were designed targeting the first exon of the gene. Upon successful cloning 

into the pX330 vector, transient co-transfection of this plasmid along with a GFP-encoding 

plasmid into HEK293T cells, cells were sorted for GFP-positive cells. Following expansion, 

genomic DNA of the knockout clone was isolated for PCR amplification of the open reading 

frame (ORF) of the ROMO1 gene. The presence of an ORF disruption was confirmed by DNA 

sequencing of the PCR product (Figure 3.2). Twelve nucleotides had been deleted. While one 

could hypothesize that this might lead to unstable mRNA, it did not yield a frameshift mutation 

or a direct premature stop codon.  

 

 
 
Fig. 3.2: CRISPR/Cas9 mediated deletion of ROMO1 disrupts its open reading frame.  
Genomic DNA was isolated from WT and ROMO1-/- cells and the coding region of ROMO1 was amplified by PCR 
and sequenced. Knockout cells showed a deletion of 12 nucleotides in the first exon.  

 

Therefore, to assess ROMO1 ablation on the protein level, mitochondria were isolated and 

steady state levels of various inner mitochondrial membrane proteins were analyzed by western 

blot (Figure 3.3A). Antibody probing against ROMO1 confirmed the loss of ROMO1 on a 

protein level and therefore a successful knockout. Levels of translocase components TIM21 and 

TIM50 were not significantly affected. Interestingly, ROMO1-/- mitochondria showed increased 

levels of TIM23 and decreased levels of complex II (SDHA) and complex IV (COX1, COX6A, 
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COX6C) components, while MITRAC components or subunits of complex I (NDUFA4) and 

complex V (ATP5B) were unaffected (Figure 3.3A).  

 

To ensure that phenotypes observed in the ROMO1-/- cell line were specific for the ablation of 

ROMO1, a complemented cell line was generated. To this end, ROMO1-/- cells were stably 

transfected with endogenous ROMO1 under the control of a tetracycline-inducible promotor. 

Upon addition of tetracycline, the expression of ROMO1 could be turned on, leading to 

increased levels of ROMO1 in the knockout background (Figure 3.3B). Additionally, the steady 

state analyses also revealed that the increased levels of TIM23 returned to WT expression levels 

in the complemented ROMO1-/- + ROMO1 cell line. 

 

A                                                                                                          B                                                                                               

 
Fig. 3.3: ROMO1-/- mitochondria show different protein levels.  
(A) Mitochondria isolated from HEK293T WT and ROMO1-/- cells were lysed and analyzed by SDS-PAGE and 
immunoblotting against TIM23 complex, MITRAC and OXPHOS components.  
(B) Lysed mitochondria from HEK293T WT, ROMO1-/- and ROMO1-/- + ROMO1 cells were analyzed by SDS-
PAGE and immunoblotting against ROMO1, TIM23 and TIM50. 

 

3.2.2 ROMO1-/- cells exhibit changes in cell proliferation, mitochondrial inner 

membrane morphology, and OPA1 processing  

 

To further characterize the ROMO1-/- cell line, as well as to verify the specificity of the knockout 

using the ROMO1-/- + ROMO1 complemented cell line, a cell proliferation assay was performed. 
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For this purpose, 200,000 cells of the three cell lines each were seeded and the number of cells 

were counted after two days using trypan blue and an automated cell counter. While ROMO1-/- 

cells grew more than 50% slower than the WT, re-expression of ROMO1 could rescue this 

phenotype to about 80-90% (Figure 3.4).   

 

 
Fig. 3.4: ROMO1-/- cells grow more slowly compared to WT cells.  
Cell proliferation assay of WT, ROMO1-/- and ROMO1-/- cells expressing 
ROMO1 under a tetracycline-inducible promoter using trypan blue and 
automated cell counting. Starting cell number of 200,000 is represented by dashed 
line. (mean ± SEM, n=3) 

 

 

 

It had been published before that knockdown of ROMO1 leads to changes in inner 

mitochondrial membrane morphology, as well as OPA1 processing (Norton et al., 2014). To 

check whether this applied to the new knockout model, transmission electron microscopy was 

carried out in collaboration with Daniel C. Jans and Stefan Jakobs of the Max Planck Institute 

for Biophysical Chemistry in Göttingen, Germany. WT, ROMO1-/- and ROMO1-/- + ROMO1 

cells were fixed with glutaraldehyde and embedded in agarose before sections were analyzed 

using transmission electron microscopy. While the inner mitochondrial membrane of the WT 

cells exhibited proper crista junctions and long cristae, the inner membrane structure of 

ROMO1-/- cells did not show any proper cristae or crista junctions. This phenotype of a disturbed 

inner membrane could be rescued upon expression of ROMO1 in the KO cell line (Figure 3.5A).  

 

Inner membrane morphology is linked to proper processing of OPA1, as its changes can lead to 

IM disturbances (Anand et al., 2014). Due to the observed inner membrane phenotype in 

ROMO1-/- cells, OPA1 processing in isolated mitochondria was checked by western blot. While 

WT mitochondria (lanes 1 and 2; Figure 3.5B) showed all expected five OPA1 forms (2 long and 

3 short), processing of OPA1 was changed in ROMO1 KO cells, as the longest, often denoted a, 

and one of the short forms, often denoted d, were missing (lanes 3 and 4; Figure 3.5B). It could 
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be confirmed that this phenotype was also specific to the ablation of ROMO1 since all five forms 

were present again in the rescue cell line (lanes 5 and 6; Figure 3.5B).  

 

A        

 
 

B 
 

Fig. 3.5: Inner membrane morphology and OPA1 processing 
are changed in ROMO1-/- mitochondria. 
(A) WT, ROMO1-/- and ROMO1-/- cells expressing ROMO1 were 
analyzed by transmission electron microscopy to assess inner 
membrane morphology. Scale bar 500nm. Courtesy of Daniel C. 
Jans and Stefan Jakobs.  
(B) Mitochondria from HEK293T WT, ROMO1-/- and ROMO1-/- 

+ ROMO1 were analyzed by SDS-PAGE and western blot for 
OPA1. 

 

Due to the drastic changes in inner membrane morphology, one could hypothesize that the 

lipids present in the inner membrane might have undergone changes. Therefore, the lipid 

composition of WT and ROMO1-/- mitochondria was analyzed by thin-layer chromatography 

(TLC). Lipids were extracted from isolated mitochondria using chloroform-methanol (2:1; v/v), 

dried and dissolved in chloroform, applied onto a TLC plate and separated by the solvent phase 

(chloroform-triethylamine-ethanol-water (30:35:35:7)). Lipid standards of 

phosphatidylglycerol (PG), phosphatidylethanolamine (PE), cardiolipin (CL) and 

phosphatidylcholine (PC) were applied alongside the samples. After the run, the plate was 

stained in 10% CuSO4 in 10% o-phosphoric acid and dried to visualize the lipids. Comparing 

the running behavior of the lipids extracted from WT and ROMO1-/- mitochondria, no 

difference could be detected (Figure 3.6). It therefore seemed as if the aberrant inner membrane 

morphology did not have major effects on lipid composition. 
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Fig. 3.6: Lipid composition does not change in ROMO1-/- mitochondria.  
Lipids were extracted from WT and ROMO1-/- mitochondria and separated by thin-layer chromatography (TLC). 
Lipid standards were used as control (PG, phosphatidylglycerol; PE, phosphatidylethanolamine; CL, cardiolipin; 
PC, phosphatidylcholine).  

 

3.2.3 ROMO1-/- cells show changes in respiratory chain quantity and activity 

 

It has been reported that changes of the inner membrane morphology can have drastic effects 

on mitochondrial respiration (Cogliati et al., 2013; Stiburek et al., 2012). Since the knockout of 

ROMO1 led to severe changes in cristae structure, as well as a destabilization of certain complex 

II and complex IV proteins, respiratory chain complexes were analyzed by Blue-Native PAGE 

(BN-PAGE). This method allows membrane complexes to stay intact and active due to the mild 

solubilization strategy using the detergent digitonin (Schägger & Jagow, 1991; Wittig et al., 
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2006). It therefore enables a semi-quantitative assessment of OXPHOS complexes. Upon 

mitochondrial isolation from WT and ROMO1-/- cells, solubilized mitochondria were separated 

on BN-PAGE and analyzed by western blot (Figure 3.7). Complex II (succinate dehydrogenase) 

has a molecular weight of about 200kDa and was analyzed using antibodies against its subunit 

SDHA. Here, a slight decrease was detected (lanes 1 and 2; Figure 3.7), which is consistent with 

the reduced steady state levels of SDHA observed in Figure 3.3A. The most drastic respiratory 

complex phenotype from ROMO1-/- mitochondria was seen for complex IV (cytochrome c 

oxidase), which has a molecular weight of about 400kDa, and was detected with antibodies 

against COX1 and COX4I-1 (lanes 5/6 and 11/12; Figure 3.7). Complex I, detected using 

NDUFA9, the monomeric complex III, detected with Rieske, and complex V (ATP5B), were 

only marginally affected. This was similar to the outer membrane protein VDAC. Complex I, 

III and IV form supercomplexes present in the MDa region. The levels of these supercomplexes 

are decreased for both Rieske and COX1 probing most likely since the overall levels of complex 

IV are reduced (Figure 3.7). 

 

Since levels of the mitochondrial-encoded protein COX1 were affected on SDS- and BN-PAGE, 

the efficiency of mitochondrial translation was addressed next. For this purpose, WT and 

ROMO1-/- cells were cultured in methionine-free medium and cytosolic translation was 

inhibited using emetine dihydrochloride hydrate. Emetine binds to the 40S subunit of the 

cytosolic ribosome and inhibits mRNA movement along the ribosome, resulting in inhibited 

protein synthesis (Delves & Roitt, 1998). Since protein biogenesis in the cytosol is stalled, the 

only newly synthesized proteins are mitochondrial-encoded. These were labeled with 

radioactive 35S-methionine for one hour. Subsequently, cells were lysed and the labeled 

mitochondrial translation products were analyzed by SDS-PAGE and autoradiography. 

Comparing the intensities of the autoradiography signals between WT and ROMO1-/- cells, no 

difference could be detected (Figure 3.8) and one could therefore conclude that mitochondrial 

translation is not affected by the absence of ROMO1.  
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Fig. 3.7: Amounts of complex II and IV are reduced in ROMO1-/- mitochondria on BN-PAGE. 
Mitochondria were solubilized in digitonin and membrane complexes were separated on BN-PAGE, followed by 
immunoprobing with the indicated antibodies. CII, complex II; CIV, complex IV; CIII, complex III; RCS, 
Respiratory chain supercomplexes; CV, complex V. 

 

 

 
 
 
Fig. 3.8: Mitochondrial translation efficiency is not 
changed in ROMO1-/- cells.  
Cytosolic translation was inhibited in WT and ROMO1-/- 
cells by addition of emetine dihydrochloride hydrate 
followed by labeling of mitochondrial translation products 
with 35S-methionine for one hour and subsequent analysis by 
SDS-PAGE and autoradiography. 
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While BN-PAGE analysis, followed by western blot had shown decreases in complex II and 

complex IV quantity (Figure 3.7), in-gel activity staining was performed to assess the activity of 

the solubilized OXPHOS complexes (Wittig et al., 2007). To this end, solubilized complexes 

were separated on BN-PAGE, just as before, and gel strips were incubated in buffer containing 

NADH (to measure complex I activity), sodium succinate (complex II activity), reduced 

cytochrome c (complex IV activity) or ATP (complex V). These substrates are converted by the 

respective complexes and the product is visible as precipitations in the gel. The intensity of these 

precipitations can be correlated to complex activity. In-gel activity staining of ROMO1-/- 

mitochondria revealed a severe decrease of complex IV activity compared to WT mitochondria 

(lane 5 and 6; Figure 3.9), while complex II was also affected (lanes 3 and 4). Both complex I and 

complex V showed precipitations of similar intensity for WT and ROMO1-/- mitochondria 

(lanes 1 and 2 and 7 and 8 respectively; Figure 3.9). 

 

 

 

 

 

 
 
Fig. 3.9: In-gel activity staining reveals reduced complex II 
and IV activity in ROMO1-/- mitochondria. 
Isolated WT and ROMO1-/- mitochondria were solubilized in 
digitonin and membrane complexes were separated on BN-
PAGE, followed by in-gel activity staining of oxidative 
phosphorylation complexes I, II, IV and V. Performed with 
technical assistance by Christin Ronsör.  

 

 

 

 

To corroborate the effects of ROMO1 ablation on the respiratory chain, in vitro assays were 

carried out to quantitatively assess the activity of specific complexes. Complex IV Human 

Specific Activity Microplate Assay Kit was used to assess the activity and quantity of complex 

IV. WT and ROMO1-/- cells were solubilized and applied to the provided plate which 
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immunocaptures complex IV. Subsequently, reduced cytochrome c was added, which is 

oxidized by the complex and can be colorimetrically assessed by an absorbance decrease at 

500nm. In a following step, the amount of enzyme complex is measured by addition of an 

antibody, which is conjugated with alkaline phosphatase. The added substrate changes from 

colorless to yellow, which is time dependent and proportional to complex IV quantity and can 

again be assessed colorimetrically. This analysis mirrored the phenotype seen on BN-PAGE 

(Figure 3.7 and 3.9), since both complex IV activity and quantity were about 40-50% reduced 

when ROMO1 was absent (Figure 3.10a). It should be noted that the decrease in activity 

correlates with the decrease in quantity. This most likely means that the activity of complex IV 

remained the same and only the quantity is reduced.  

 

Furthermore, BN-PAGE analysis had revealed a decrease in complex II amount and activity 

(Figures 3.7 and 3.9). Therefore, complex II activity was assessed quantitatively in a cuvette using 

isolated mitochondria from both cell lines. The ubiquinone analogue CoQ1 was used as a 

readout for complex II activity, since its reduction can be followed photometrically at 280nm. 

Due to the oxidation of succinate to fumarate, CoQ1 is reduced, which reflects the activity of 

complex II. As indicated by the BN-PAGE analyses, this quantitative assay revealed that 

complex II activity was reduced by about 40% in ROMO1-/- mitochondria (Figure 3.10B). 

 

In order to validate these specific results, the activity of malate dehydrogenase was measured. 

Malate dehydrogenase (MDH) plays a role in many different metabolic pathways, i.e. the citric 

acid cycle. Its activity reflects the overall, general energy status of the cell. In this assay, oxalacetic 

acid and NADH are converted to malate and NAD. The disappearance of NADH at 340nm can 

be measured using a photometer and is correlated to the MDH activity. In mitochondria lacking 

ROMO1, MDH activity was only minorly affected (Figure 3.10C), which showed that 

respiration in general in mitochondria was not disturbed.  
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A                                                                                  B                                       C   

             
Fig. 3.10: Quantitative respiratory chain analysis of WT and ROMO1-/- cells or mitochondria confirms BN-
PAGE analysis. 
(A) Measurement of enzyme activity and relative amount of cytochrome c oxidase (complex IV) of solubilized and 
immobilized WT and ROMO1-/- cells by Complex IV Human Specific Activity Microplate Assay Kit. 
(B) Enzyme activity of succinate dehydrogenase (complex II) of WT and ROMO1-/- mitochondria was measured 
photometrically. 
(C) Malate dehydrogenase (MDH) activity of solubilized WT and ROMO1-/- mitochondria was measured 
photometrically.  
For all analyses, WT was set to 100% and the mean ± SEM of three independent experiments is shown.  

 

3.2.4 Analysis of reactive oxygen species production hints at secondary effects 

 

To analyze the cellular physiological effects of a knockout of ROMO1, the presence of reactive 

oxygen species (ROS) in whole cells was determined. As its name indicates, the overexpression 

of ROMO1 has been correlated to a high increase in ROS production in many tissues (i.e. Chung 

et al., 2006). However, conflicting evidence has been provided regarding the abolishment of 

ROMO1 and its effects. While most studies reported decreasing ROS with decreasing ROMO1 

expression (i.e. Chung et al., 2008; Lee et al., 2011; Shin et al., 2013; Shyamsunder et al., 2015), 

Norton et al. (2014) reported a two-fold increase in ROS in their knockdown model. The 

abundance of ROS in this new ROMO1 knockout model was assayed by MitoSOXTM Red 

mitochondrial superoxide indicator. This reagent is targeted to mitochondria and is oxidized by 

superoxide present in mitochondria. Upon oxidation, the dye exhibits red fluorescence, which 

can be measured and its intensity can be correlated to ROS production.   
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B 
 
 
 
Fig. 3.11: ROS levels are drastically increased in ROMO1-/- cells. 
(A) Reactive oxygen species production was measured in whole WT and 
ROMO1-/- cells using MitoSOXTM Red mitochondrial superoxide indicator. 
Each dot represents one cell. Forward scatter (FSC-A) is a measure for the size 
of the cells. Emission at 580nm is displayed as PI-A. Higher ROS levels are 
detected by higher emission.  
(B) Percentages of cells present in P2 were normalized to WT and are presented 
as mean ± SEM, n=3. 

 

 

ROMO1-/- cells showed a much higher emission of red fluorescence, which can be seen by the 

higher number of cells in P2 (Figure 3.11A). Quantifications from three independent 

experiments showed a three-fold increase as compared to WT cells (Figure 3.11B). This was very 

surprising and in contrast to almost all published data. Not only in the respect that most studies 

had reported decreasing ROS in the absence of ROMO1, but even Norton et al. (2014) had only 

reported a two-fold increase in ROS in their knockdown model. This could hint at possible 

secondary effects and questioned the suitability of this knockout cell line as a good model to 

study the molecular function of ROMO1. It would be difficult to predict which observed 
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phenotypes were a direct consequence of ROMO1 ablation and which were due to secondary 

effects. Therefore, other possible models to study the molecular function of ROMO1 had to be 

explored. 

 

3.3 Transient depletion of ROMO1 mimics the knockout phenotype 

but does not produce ROS 
 

3.3.1 ROMO1 has a rapid turnover and is required for cell proliferation  

 

The knockout of ROMO1 included the possibility of secondary effects which were not 

necessarily directly linked to the ablation of ROMO1. To explore other models to study the 

phenotypes of ROMO1 depletion, the stability and turnover of ROMO1 was assessed as a first 

step. For this purpose, HEK293T WT cells were treated with emetine dihydrochloride hydrate. 

As described above, emetine inhibits cytosolic protein synthesis (Delves & Roitt, 1998). Since 

protein biogenesis is stopped, the turnover of proteins can be assessed.  

 
Fig. 3.12: Stability assay of mitochondrial proteins using emetine reveals that ROMO1 is quickly degraded. 
HEK293T WT cells were treated with 20μg/μL emetine dihydrochloride hydrate for the indicated time points. Cells 
were harvested, isolated mitochondria were lysed and analyzed by SDS-PAGE and immunoblotting.  

 

Steady state levels of ROMO1 were analyzed alongside a few other mitochondrial proteins. 

ATP5B and TIM50 seemed rather stable, as their levels did not change much, even five hours 

after translation had been inhibited (Figure 3.12). TIM23 started to be degraded after three 
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hours. However, ROMO1 showed the most drastic effects, as already after one hour, ROMO1 

was almost completely degraded (Figure 3.12). This shows that ROMO1 is a very unstable 

protein, with a very fast turnover. Therefore, a more transient knockdown approach might be 

better suited to study the immediate effects of ROMO1 ablation, minimizing the risk of 

secondary effects that a knockout approach might entail.   

 

To verify ROMO1 phenotypes during a transient knockdown (KD), HEK293T WT cells were 

treated with siRNA oligonucleotides specifically targeting ROMO1. Cells were transfected with 

siRNA targeting ROMO1, or control siRNA (non-targeting, siNT), by transient forward 

transfection using Lipofectamine and cells were harvested after 72 hours. Western blot analysis 

of isolated mitochondria revealed that ROMO1 was absent on a protein level, while levels of 

translocase components, such as TIM21, TIM23 and TIM50 did not change (Figure 3.13A). In 

general, effects on the respiratory chain components, COX1, COX4I-1, COX6C of complex IV 

and SDHA of complex II, mirrored what had been observed in ROMO1-/- mitochondria (see 

Figure 3.3). Protein levels of MITRAC12 and the complex V component, ATP5B, did not change 

as before.  

 

A                                                                                        B 

                                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.13: siRomo1 cells mimic phenotypes of ROMO1-/- cell line. 
(A) siRNA oligonucleotides targeting Romo1 or non-targeting control siRNA (NT) were applied onto WT cells for 
72 hours. Mitochondria were isolated, lysed and analyzed by SDS-PAGE and western blot. 
(B) Proliferation assay of cells expressing inducible siRNA resistant ROMO1FLAG (scROMO1FLAG), treated with NT 
siRNA and siRNA against Romo1 in the presence or absence of tetracycline (Tet). Starting cell number of 125,000 
cells represented by dashed line (mean ± SEM, n=3). Courtesy of Sven Dennerlein.  
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To validate our knockdown approach further, cell proliferation upon siRNA treatment was 

assessed. To this end, a cell line expressing siRNA resistant, C-terminally tagged, ROMO1FLAG 

under a tetracycline-inducible promoter (scROMO1FLAG) was produced in collaboration with 

Sven Dennerlein from the University Medical Center Göttingen, Germany. This enables 

verification of whether the observed phenotype is specific to the transient depletion of ROMO1. 

These cells underwent siRNA treatment as before, while one cohort was treated with 

tetracycline, while the other one was not. Cells were counted after 72 hours. Cells treated with 

siRNA targeting ROMO1 without tetracycline administration grew more than 50% slower than 

siNT treated cells, however, re-expression of ROMO1FLAG could rescue this phenotype almost 

completely (Figure 3.13B). Both steady state analysis and cell proliferation assays indicated that 

transient depletion of ROMO1 was a suitable way to study the effects of ROMO1 ablation, since 

the phenotypes between KO and KD were comparable. 

 

3.3.2 Transient depletion of ROMO1 does not lead to increased ROS 

production but mimics respiratory chain phenotypes of ROMO1-/- cells  

 

While initial experiments seemed to validate the knockdown approach as a suitable model to 

study the molecular function of ROMO1, the production of reactive oxygen species had to be 

assessed. ROMO1 was transiently depleted by siRNA as before and MitoSOXTM Red 

mitochondrial superoxide indicator was used, followed by fluorescence emission detection to 

measure ROS. In line with previously published data, siRomo1 cells showed a slight decrease in 

ROS production, evident in window P2 which contains fewer cells (Figure 3.14). This again 

underlines the fact that ROMO1 KD is a more suitable model to study ROMO1 function since 

secondary effects, most likely present in the KO cells, could be avoided.  

 

ROMO1-/- cells had exhibited respiratory chain defects. Most notably, the quantity and activity 

of complex IV were drastically reduced, while the quantity and activity of complex II were 

slightly reduced (Figure 3.7, 3.9 and 3.10). To confirm this phenotype in ROMO1-KD cells, the 

same analyses were performed. Upon siRNA treatment, isolated mitochondria were solubilized 
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in digitonin and membrane complexes were analyzed by BN-PAGE. Probing with SDHA to 

visualize complex II revealed very minor effects upon transient ROMO1 KD (Figure 3.15A) and, 

by far, not as pronounced as in the ROMO1 KO (Figure 3.7). The most drastic effect had been 

seen on complex IV, visualized by antibody probing against COX1 and COX4I-1 (Figure 3.7). 

Although complex IV was not as affected during transient ablation of ROMO1 as was seen with 

the KO, complex IV quantity was still visibly affected, while complex I (detected with 

NDUFA10) showed no alterations (Figure 3.15A). 

 

A 

 

 
B 

 

 
Fig. 3.14: ROS levels are slightly reduced in siRomo1 cells. 
(A) Reactive oxygen species production was measured in whole siNT and 
siRomo1 cells using MitoSOXTM Red mitochondrial superoxide indicator. Each 
dot represents one cell. Forward scatter (FSC-A) is a measure of the size of the 
cells. Emission at 580nm is displayed as PI-A. Higher ROS levels are detected 
by higher emission.  
(B) Percentages of cells present in P2 were normalized to siNT and are 
presented as mean ± SEM, n=3.  
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To assess activity of the respiratory complexes, solubilized complexes were separated on BN-

PAGE and gel strips were incubated in a buffer containing sodium succinate (to measure 

complex II activity), or a buffer containing reduced cytochrome c (to measure complex IV 

activity), just as before. In-gel activity staining of siRomo1 mitochondria revealed a severe 

decrease of complex IV activity, while complex II activity was not affected (Figure 3.15B).  

 

As was performed with ROMO1 knockout cells, the effects of transient ROMO1 ablation on the 

respiratory chain were further assessed by quantitative in vitro assays. Complex II activity was 

again assayed following the reduction of CoQ1. Consistent with the in-gel activity staining 

(Figure 3.15B), complex II activity was not reduced in siRomo1 mitochondria (Figure 3.15C).  

Furthermore, malate dehydrogenase activity did not reveal any changes, confirming that 

respiration in general is not disturbed (Figure 3.15D). Finally, Complex IV Human Specific 

Activity Microplate Assay Kit was again used to assess the activity and quantity of complex IV. 

This analysis mirrored the phenotype seen on BN-PAGE, since both complex IV activity and 

quantity were about 40-50% reduced when ROMO1 was depleted (Figure 3.15E). As observed 

for the KO, the activity of complex IV most likely remained the same upon siRomo1 treatment 

but the quantity in general was reduced. 

 

All in all, it can be concluded that due to the fast turnover rate of ROMO1, transient siRNA 

mediated depletion is a very suitable option to study the molecular function of ROMO1. It 

mirrors the effects on cell proliferation and respiratory chain activity of the knockout model, 

while minimizing possible secondary effects such as high ROS production.  
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Fig. 3.15: OXPHOS complex analysis of siRomo1 mitochondria mimics ROMO1-/- phenotypes. 
(A) Cells underwent siRNA treatment; isolated mitochondria were solubilized in digitonin and membrane 
complexes were separated on BN-PAGE followed by immunoprobing with the indicated antibodies. CII, complex 
II; CIV, complex IV; RSC, Respiratory chain supercomplexes. 
(B) In-gel activity staining of oxidative phosphorylation complexes. Mitochondria were lysed as in A, analyzed by 
BN-PAGE, followed by in-gel activity assays for complexes II and IV.  
(C) Measurement of enzyme activity of succinate dehydrogenase (complex II) of siNT and siRomo1 mitochondria 
(mean ± SEM, n=3).  
(D) Measurement of MDH activity of solubilized siNT and siRomo1 mitochondria (mean ± SEM, n=3).  
(E) Measurement of enzyme activity and relative amount of cytochrome c oxidase (complex IV) of solubilized and 
immobilized siNT and siRomo1 cells (mean ± SEM, n=3).  
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3.4 ROMO1 couples TIM21 onto the translocase while it does not 

affect protein import in general  
 

3.4.1 ROMO1 dynamically interacts with the TIM23 complex  

 

The analyses described above confirmed ROMO1 as a TIM23 constituent, but its role at the 

translocase of the inner membrane had not been defined. In yeast, Mgr2 couples Tim21 and 

Tim23 to one another (Gebert et al., 2012) and due to their high sequence similarity, it seemed 

conceivable that ROMO1 might have a similar function. To this end, HEK293T cells expressing 

tetracycline-inducible C-terminally tagged TIM23FLAG, along with WT cells, were used. WT cells 

were only treated with non-targeting siRNA, while TIM23FLAG underwent both NT and Romo1 

siRNA treatment. Using immunoprecipitation, TIM23FLAG interacting proteins were isolated via 

anti-FLAG beads. Subsequently, the immunoisolations were analyzed by SDS-PAGE and 

western blot and respective bands were quantified. This allowed the assessment of interaction 

changes within the translocase in the absence of ROMO1. The amount of TIM21 copurified with 

TIM23FLAG drastically reduced upon Romo1 knockdown, while the amount of TIM50 copurified 

remained similar (Figure 3.16A). This became more obvious when quantified from three 

independent experiment, where the interaction between TIM23 and TIM21 was decreased by 

45% compared to the siNT treated sample, while the interaction between TIM23 and TIM50 

was barely decreased (Figure 3.16A).  

 

TIM21 has been shown to be a dynamic subunit of the TIM23 complex, since it is also present 

in major assembly intermediates of cytochrome c oxidase (MITRAC) (Mick et al., 2012). When 

immunoisolating the interaction partners of TIM21FLAG upon ROMO1 depletion, just as before, 

we observed a reduction in co-purified TIM23 (Figure 3.16B), confirming that ROMO1 is 

required for TIM23 association with TIM21. In contrast, COX1 or MITRAC12 amounts co-

isolated with TIM21FLAG were only marginally affected upon ROMO1 depletion.  
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Fig. 3.16: ROMO1 couples TIM21 onto TIM23. 
(A) HEK293T WT and TIM23FLAG cells underwent treatment with siRNA oligonucleotides targeting Romo1 or 
non-targeting siRNA (NT) for 72 hours. Cells were solubilized using digitonin and incubated with anti-FLAG 
beads. Upon elution by FLAG-peptide, interaction partners were analyzed by SDS-PAGE and immunoblotting 
using the indicated antibodies. Eluate: 100%, total: 5%.  
(B) HEK293T WT and TIM21FLAG cells were treated as in (A).  
Results are presented as quantification of eluate/total, normalized to efficiency of immunoprecipitation (FLAG 
signal in eluate). Values of siNT were set to 100% (mean ± SEM, n=3). 

 

Taken together, it can be concluded that ROMO1 couples TIM21 onto TIM23, while it does not 

have an effect on the interactions between TIM23 and TIM50. The reverse experiment showed 
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the same, clearly indicating that ROMO1 couples TIM23 onto TIM21, while it is not required 

for the association between TIM21 and COX1 or MITRAC12.  

 

3.4.2 ROMO1 plays a minor role in general protein import  

 

Following these interaction studies, a role of ROMO1 in the TIM23-mediated import of proteins 

into the mitochondrial matrix, as well as the inner membrane was studied. For this purpose, 

open reading frames of various TIM23 import substrates were cloned into expression vectors 

and underwent in vitro transcription and translation in the presence of radioactively-labeled 35S-

methionine. Alternatively, RNA was synthesized, followed by in vitro translation in the presence 

of radioactively-labeled 35S-methionine. These radiolabeled precursor proteins were then 

imported in vitro into freshly isolated, energized mitochondria from siNT and siRomo1 treated 

cells. The reactions were stopped at different time points by the addition of a drug mix 

(antimycin, valinomycin, oligomycin) that dissipates the membrane potential (𝛥𝜓). One sample 

was treated with the same mixture at the beginning to act as an import deficient negative control. 

The reactions were then analyzed by SDS-PAGE and autoradiography. Since these presequence-

bearing proteins are processed, the import efficiency can be assessed by comparing the intensity 

of the accumulated, faster migrating, mature form of the protein. Matrix targeted ornithine 

transcarbamylase (OTC), a protein functioning in the urea cycle, was imported as described 

above. Comparing the intensities of the mature forms, it appeared that OTC import efficiency 

was not affected in the absence of ROMO1 (Figure 3.17A). This was quantified and confirmed 

that the import of OTC was not dependent on ROMO1 (Figure 3.17A). As a second matrix-

targeted model protein, the import of the fusion protein Su9-dihydrofolate reductase (Su9-

DHFR) was assessed in the same way. As for OTC, the import of Su9-DHFR also did not depend 

on ROMO1, as intensities of the mature form of Su9-DHFR were similar between siNT and 

siRomo1 samples (Figure 3.17B).  

 

Since ROMO1 was not required for the import of matrix-targeted proteins, it was assessed if it 

was involved in the sorting and lateral release of membrane targeted proteins. Laterally sorted 



 90 

proteins do not only have a presequence targeting them to mitochondria, but also contain a 

hydrophobic stop-transfer signal, which anchors them to the membrane. This stop-transfer 

signal arrests import in the translocase and leads to lateral release into the membrane. To assess 

the function of ROMO1 in the import of inner membrane targeted proteins, radioactively 

labeled EMRE (Essential mitochondrial Ca2+ uniporter regulator) was used as a substrate. EMRE 

is a small transmembrane protein and a subunit of the mitochondrial Ca2+ uniporter (MCU) 

(König et al., 2016; Sancak et al., 2013). When comparing the intensity of the faster-migrating 

mature form, the import efficiency of EMRE was not affected in the absence of ROMO1 (Figure 

3.18A). As a second transmembrane substrate, the import efficiency of the complex IV 

component, COX6A1, a peripheral late-associating subunit (Lazarou et al., 2009; Mick et al., 

2012) was assessed. The import efficiency of COX6A1 was also not affected in the absence of 

ROMO1 (Figure 3.18B). Quantification confirmed that the import of COX6A1 was not 

dependent on ROMO1 (Figure 3.18B). 

 

A 

              
B 

 

Fig. 3.17: Import of matrix targeted proteins is not dependent 
on ROMO1.  
[35S]OTC (A) and [35S]Su9-DHFR (B) were imported into 
energized HEK293T mitochondria isolated from siNT and 
siRomo1 cells. Import was stopped when indicated and samples 
were treated with proteinase K (PK) where stated. Analysis was 
carried out by SDS-PAGE and autoradiography. Import of siNT 
sample at 20 minutes was set to 100%. The mean ± SEM (n=3) is 
shown. p, precursor; m, mature protein.  
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In contrast to COX6A1, which is a late-stage assembling subunit of complex IV, COX4I-1 

assembles early into complex IV and interacts with the assembly intermediate MITRAC 

(Lazarou et al., 2009; Mick et al., 2012; Nijtmans et al., 1998; Stiburek et al., 2005; Williams et 

al., 2004). Since ROMO1 is involved in the coupling of TIM21, a MITRAC component, to 

TIM23, it seemed conceivable that the import of COX4I-1 may depend on ROMO1. Using the 

same assay as before, radioactively labeled COX4I-1 was imported into ROMO1 depleted 

mitochondria. While quantification of OTC and COX6A1 import showed almost identical 

import efficiency for siNT and siRomo1 mitochondria (Figure 3.17A and 3.18B respectively), 

the efficiency of COX4I-1 import was mildly reduced when ROMO1 was absent (Figure 3.19A). 

 

The previously described experiments assess the import of the presequence-containing 

precursors and the processing of the presequence to yield a mature form. However, they do not 

enable an assessment of lateral release and membrane integration of sorted transmembrane 

proteins. For this purpose, one has to analyze the assembly of selected proteins into complexes 

within the inner membrane. This can be determined by BN-PAGE analyses of solubilized 

mitochondria after the import reaction.  

 

A                                                                                          B    

                              
 
Fig. 3.18: Import of selected inner membrane targeted 
proteins is not dependent on ROMO1. 
[35S]EMRE (A) and [35S]COX6A1 (B) were imported into 
energized HEK293T mitochondria isolated from siNT or 
siRomo1 cells. Import was stopped at 5, 15 or 45 minutes. 
Samples were analyzed by SDS-PAGE and autoradiography. 
Import of siNT sample at 45 minutes was set to 100%. The 
mean ± SEM (n=3) is shown. p, precursor; m, mature 
protein. 
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COX6A1 is a subunit of complex IV which has a molecular weight of approximately 400kDa 

(see Figure 3.7). To assess its release into the inner membrane and integration into complex IV, 

radioactively labeled COX6A1 was imported into siRomo1 mitochondria, as before, and 

analyzed by BN-PAGE and autoradiography. Assembly of COX6A1 into complex IV seemed 

slower in siRomo1 mitochondria. However, the final time point showed very similar intensities 

for siNT and siRomo1 mitochondria (Figure 3.19B). Furthermore, taking into account the 

reduced quantity of complex IV (Figure 3.15A and C), it could be concluded that the lateral 

sorting and assembly of COX6A1 into complex IV was not ROMO1-dependent. Similarly, the 

lateral sorting of COX4I-1 was tested. Unlike COX6A1, the assembly of COX4I-1 into mature 

complex IV occurs via the assembly intermediate MITRAC, at about 200kDa (Mick et al., 2012). 

Upon radioactive import of 45 minutes into siNT and siRomo1 mitochondria and subsequent 

analysis by BN-PAGE, the autoradiography showed the capacity of COX4I-1 to assemble into 

MITRAC was significantly affected in ROMO1-depleted mitochondria (Figure 3.19C). This is 

plausible since COX4I-1 is a protein highly dependent on the efficient handover from the 

translocase to MITRAC (Mick et al., 2012). It could therefore be a functional consequence of 

ROMO1 coupling of TIM21 to TIM23 that COX4I-1 assembly is less efficient in siRomo1 

mitochondria.  

 

In conclusion, ROMO1 couples TIM23 and TIM21 to each other. When assessing the import 

capacity of ROMO1-depleted mitochondria by in vitro import assays, neither of the tested 

matrix-targeted, nor inner membrane targeted, proteins depended on ROMO1 for their import. 

This is in stark contrast to Mgr2 in yeast (Gebert et al., 2012; Ieva et al., 2014). However, the role 

of ROMO1 at the translocase did become apparent when analyzing the assembly of COX4I-1, 

whose import efficiency relies on the ROMO1-dependent coupling of TIM21 to TIM23. 
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Fig. 3.19: Inner membrane sorting efficiency of COX4I-1 is dependent on ROMO1.  
(A) [35S]COX4I-1 was imported into isolated energized mitochondria from siNT and siRomo1 cells. Import was 
stopped when indicated. Samples were analyzed by SDS-PAGE and autoradiography. Import of siNT sample at 45 
minutes was set to 100%. The mean ± SEM (n=3) is shown. p, precursor; m, mature protein. 
[35S]COX6A1 (B) and [35S]COX4A-1 (C) were imported as before. Samples were analyzed by autoradiography 
following BN-PAGE. CIV, complex IV. 
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3.5 ROMO1 is required for the import of the i-AAA protease YME1L  
 

3.5.1 ROMO1 is rapidly degraded by the i-AAA protease YME1L  

 

During the initial functional studies of ROMO1, ROMO1 displayed an unusually fast turnover 

when cytosolic translation was halted by emetine treatment (Figure 3.12). To verify whether this 

was a unique feature, the protein stability of the putative yeast ROMO1 homolog, Mgr2, was 

analyzed in S. cerevisiae, along with other translocase components and the matrix protein 

aconitate hydratase (Aco1). To this end, WT yeast cells were kindly provided by Ridhima 

Gomkale (University Medical Center, Göttingen, Germany) and grown until exponential 

growth phase, treated with the translation inhibitor cycloheximide, harvested and analyzed by 

immunoblotting. Cycloheximide interferes with eukaryotic protein synthesis by inhibiting the 

tRNA/mRNA translocation step, blocking elongation (Schneider-Poetsch et al., 2010). Western 

blot analysis revealed that unlike ROMO1, Mgr2 was not an unstable protein, as its steady state 

levels barely varied within 2 hours (Figure 3.20). Therefore, the rapid turnover of ROMO1 is an 

intriguing feature that warranted further investigation.  

                                                                                         
 
Fig. 3.20: Yeast Mgr2 is a stable protein. 
Yeast WT cells were treated with 0.15μg/μL cycloheximide (CHX) 
for the indicated time points. Cells were harvested, lysed and 
analyzed by SDS-PAGE and immunoblotting. 

 

 

Since ROMO1 is found in the inner membrane, it seemed plausible that ROMO1 is rapidly 

degraded by one of the mitochondrial proteases. Upon siRNA-mediated knockdown of known 

mitochondrial proteases, cells were analyzed by SDS-PAGE and western blot. High levels of 

ROMO1 could be detected in cells depleted for the i-AAA protease YME1L, along with its 

known substrate TIM17A (Figure 3.21; Rainbolt et al., 2013). With further work done in 

collaboration with Thomas MacVicar and Thomas Langer of the Max Planck Institute for Aging 
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in Cologne, Germany, ROMO1 could be established as a newly found substrate of the i-AAA 

protease YME1L in human.  
 

 

 

 

 

Fig. 3.21: ROMO1 accumulates in siYme1l cells.  
HEK293T WT cells were treated with siRNA oligonucleotides against 
Yme1l or non-targeting control siRNA (NT) for 72 hours. Cells were lysed 
and analyzed by SDS-PAGE and western blot. 

 

 

 

3.5.2 YME1L levels are diminished in the absence of ROMO1 
 

YME1L in human is best known for its role in processing of OPA1 (Ishihara et al., 2006; Song 

et al., 2007). Another previous observation in connection with YME1L had been aberrant OPA1 

processing and cristae morphology in ROMO1-/- cells (Figure 3.5). The observed OPA1 

processing was similar to one that had been previously reported in a YME1L knockout in MEF 

cells (Anand et al., 2014). Assessing the protein levels of YME1L by western blot revealed a 

reduction of YME1L protein in ROMO1-/- mitochondria, which was restored in ROMO1-/- + 

ROMO1 mitochondria (Figure 3.22A). TIM23 is a known substrate of YME1L (Wai et al., 2016) 

and while its levels were increased in the absence of ROMO1, they returned to WT levels in 

ROMO1-/- + ROMO1 mitochondria. Interestingly, when assessing YME1L levels in siRomo1 

depleted mitochondria, its levels, along with TIM23 levels, were barely changed (Figure 3.22B). 

This showed that YME1L levels, OPA1 processing and cristae structure seem to be a 

consequence of long-term ROMO1 ablation.  

 

The fast turnover of human ROMO1 had been shown to be specific for human ROMO1 and not 

occur for yeast Mgr2 (Figure 3.20). However, Mgr2 plays a role in the import and processing of 
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the OPA1 ortholog, Mgm1, which has two hydrophobic stretches (Ieva et al., 2014). Lateral 

release of the first hydrophobic segment leads to the formation of long (l)-Mgm1. Transport of 

the first segment into the matrix and lateral release of the second segment leads to processing 

by the rhomboid protease Pcp1 which releases short (s)-Mgm1 into the IMS.  Having a proper 

balance of the long and short form is necessary for proper mitochondrial morphology (Herlan 

et al., 2004). Cells lacking Mgr2 have a higher ratio of l-Mgm1 because the lateral release is 

favored, leading to deregulated mitochondrial morphology (Ieva et al., 2014). In human cells 

lacking ROMO1, the lateral release of proteins in general was not affected (Figure 3.19), but the 

levels of the OPA1 processing protease YME1L were (Figure 3.22A). This hinted at a different 

regulation of OPA1 in human as compared to Mgm1 in yeast. 

 

A                                                                                 B 

                                                 
C 

 
Fig. 3.22: YME1L levels are reduced in ROMO1-/- mitochondria.  
(A) Mitochondria from HEK293T WT, ROMO1-/- cells and 
ROMO1-/- + ROMO1 were analyzed by SDS-PAGE and 
immunoblotting. 
(B) HEK293T WT cells were treated with siRNA oligonucleotides 
against Romo1 or non-targeting control siRNA (NT) for 72 hours. 
Mitochondria were isolated, lysed and analyzed by SDS-PAGE and 
western blot.  
(C) Mitochondria from yeast WT and mgr2𝛥 cells were analyzed 
by SDS-PAGE and western blot. 
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To confirm this, steady state levels of proteases were analyzed by western blot in yeast 

mitochondria lacking Mgr2 (Figure 3.22C). Yeast WT and mgr2D mitochondria were kindly 

provided by Alexander Schendzielorz (University Medical Center, Göttingen, Germany). Levels 

of yeast Yme1 were not affected, which did not seem surprising as its substrates in yeast are quite 

different from human (Levytskyy et al., 2017). Mgm1 is processed by Pcp1 whose levels were 

also not affected, confirming that the change in long-/short-Mgm1 ratio is due to aberrant 

sorting and not processing by Pcp1. Furthermore, levels of m-AAA protease components Yta10 

and Yta12 were not affected, along with Ups2, another protein which might be involved in the 

processing of Mgm1 (Osman et al., 2009). 

 

3.5.3 Import of YME1L is dependent on ROMO1 

 

Since YME1L levels were reduced in ROMO1-/- cells (Figure 3.22A) and ROMO1 is a component 

of the TIM23 complex (Figure 3.1), one could speculate that import of YME1L depends on 

ROMO1. To address this, we used mitochondria from siRomo1 treated cells, since here steady 

state levels of YME1L were barely changed (Figure 3.22B). After synthesizing radioactively 

labeled [35S]YME1L, in vitro import assays into energized isolated mitochondria were carried 

out. Upon analysis by autoradiography, it could be observed that the import efficiency of 

YME1L was drastically reduced in the absence of ROMO1 (Figure 3.23).  

                    
Fig. 3.23: Import of YME1L protein is dependent on ROMO1.  
[35S]YME1L was imported into isolated energized HEK293T mitochondria from siNT or siRomo1 cells. Import 
was stopped at 5, 15 and 45 minutes. Samples were treated with PK and analyzed by autoradiography following 
SDS-PAGE. Import of siNT sample at 45 minutes was set to 100%. The mean ± SEM (n=3) is shown. Lysate, 
radioactively labeled [35S]YME1L in reticulocyte lysate (input);  p, precursor; m, mature protein. 
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Quantification showed that YME1L import is highly dependent on ROMO1, as its import 

efficiency was reduced by 60% in siRomo1 mitochondria (Figure 3.23).  

 
To verify whether the observed lower levels of imported YME1L were directly linked to its 

import and not to its reduced stability, YME1L levels were followed after import for up to 4 

hours. For this purpose, [35S]YME1L was imported as before, mitochondria were re-isolated and 

incubated further in the absence of [35S]YME1L (Chase). Samples were taken at different time 

points and reactions were analyzed by SDS-PAGE and autoradiography. The stability of 

imported YME1L decreased equally for both siNT and siRomo1 samples at the beginning and 

did not significantly change much over the time course of 240 minutes (Figure 3.24). This 

showed that the stability of imported YME1L did not differ between siRNA control and 

siRomo1 treated mitochondria, which might explain the normal YME1L levels after transient 

depletion of ROMO1 (Figure 3.22B).  

 

          
 
Fig. 3.24: YME1L is stable upon import in siRomo1 mitochondria. 
[35S] labeled YME1L was imported into isolated mitochondria from siNT or siRomo1 cells for 45 min (import). 
The reaction was stopped, re-isolated mitochondria were resuspended in import buffer and incubated further 
(chase). Samples were harvested at indicated time points and analyzed by autoradiography following SDS-PAGE. 
Amounts of mature YME1L were plotted against time and the respective amount at 0 min chase was set to 100%. 
The mean ± SEM (n=3) is shown. Lysate, radioactively labeled [35S]YME1L in reticulocyte lysate (initial input); p, 
precursor; m, mature protein. 

 

Taken together, an unexpected link between the mitochondrial protein import machinery and 

the i-AAA protease YME1L was discovered. While ROMO1 is rapidly degraded by YME1L, 

YME1L levels are decreased in the absence of ROMO1, an effect that can be attributed to an 

import defect. However, the molecular reason for this import phenotype needed to be addressed.  
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3.6 ROMO1 plays a role in the import of precursors with long 

presequences  

 

3.6.1 The long C-terminus of YME1L does not impact its import efficiency 

 

Mature YME1L has a very unique topology. Even though its sequence is quite long, it only has 

one transmembrane domain and a very large C-terminus facing the intermembrane space 

(Hartmann et al., 2016; Shi et al., 2016). This is in contrast to the previously used constructs for 

import studies (Figure 3.17-3.19). One could therefore hypothesize that ROMO1 is required for 

efficient import of this long C-terminus. To investigate this and narrow down the molecular 

reason for the observed import defect, C-terminally shortened constructs of YME1L were 

generated, trimming the C-terminus by about 10kDa (Figure 3.25A). A secondary structure 

prediction tool was used to avoid disturbing possible secondary structures. 

 

The C-terminally truncated YME1L constructs were radioactively labeled ([35S]YME1L1-613, 

[35S]YME1L1-529 and [35S]YME1L1-395), imported into siRomo1 mitochondria and analyzed by 

SDS-PAGE and autoradiography. However, despite their truncations, import defects were still 

observed (Figure 3.25 B-D). Import of these constructs still depended on ROMO1 to a similar 

extent as the full length YME1L, suggesting that the large C-terminus is not the molecular reason 

for the observed import defect.  
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D  
Fig. 3.25: C-terminal shortening of YME1L does not abolish 
its import dependence on ROMO1 
(A) Schematic depiction of precursor proteins used in Figures 
3.23/24 and 3.25B-D. The full-length protein (716) was 
truncated C-terminally as indicated. MTS, mitochondrial 
targeting sequence; TM, transmembrane span.   
(B-D) Depicted constructs were imported into isolated 
energized mitochondria from siNT or siRomo1 cells. Import 
was stopped at given time points. Samples were analyzed by 
SDS-PAGE and autoradiography. p, precursor; m, mature 
protein. 

 

3.6.2 Exchanging the transmembrane domain does not alleviate the import 

phenotype of YME1L  

 

Since the transmembrane domain of a protein is usually involved in its lateral release, it seemed 

plausible that the transmembrane domain of YME1L could play a role for its ROMO1-

dependent import. To answer this question, the transmembrane domain of YME1L was 

exchanged with that of COX6A1 (Figure 3.26A). COX6A1 is a precursor protein whose import 

had not been affected by the absence of ROMO1 (Figure 3.18B). Upon synthesis of radioactively 
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labeled [35S]YME1L1-238-COX6A140-59-YME1L260-716, subsequent import into siRomo1 

mitochondria, and analysis by SDS-PAGE and autoradiography, import defects were still 

observed (Figure 3.26B). The clearly visible import defect suggested that the transmembrane 

domain was not the molecular reason for the import defect. 

 

A 

 
B 

 

 
 
Fig. 3.26: The COX6A1 transmembrane domain in YME1L does not abolish its import dependence on 
ROMO1. 
(A) Schematic representation of the precursor used in B. The transmembrane domain (TM) of YME1L was 
exchanged for the transmembrane domain of COX6A1.  
(B) [35S] labeled precursor proteins were imported into energized mitochondria isolated from siNT and siRomo1 
cells, treated with PK and analyzed by autoradiography following SDS-PAGE. p, precursor; m, mature protein.  

 

3.6.3 YME1L is dependent on ROMO1 for its import due to its long 

presequence  

 

Since neither the C-terminus, nor the transmembrane domain of YME1L seemed to be the 

molecular reason for its import dependence on ROMO1, the N-terminus became the focus of 

the investigation. When analyzing the sequence of premature, unprocessed YME1L, a rather 

unusually long mitochondrial targeting sequence/presequence (MTS) was noticed (Hartmann 

et al., 2016). One could therefore hypothesize that this could be the molecular reason for this  
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Fig. 3.27: The presequence of COX6A1 on YME1L abolishes its import dependence on ROMO1. 
(A) Schematic depiction of precursors used in B and C. The mitochondrial targeting sequence (MTS) of COX6A1 
(first 25 amino acids) was fused to the mature part of YME1L (151 to end). The MTS of YME1L (first 151 amino 
acids) was fused to the mature part of COX6A1 (25 to end). TM, transmembrane domain. 
(B and C) [35S] labeled precursor proteins were imported into energized mitochondria isolated from siNT or 
siRomo1 cells. Reactions were stopped at 5, 15 or 45 minutes, samples were treated with PK where indicated and 
analyzed by SDS-PAGE and autoradiography. Import of siNT sample at 45 minutes was set to 100%. The mean ± 
SEM (n=3) is shown. p, precursor; m, mature protein. 
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specific import phenotype of YME1L. To ascertain whether the import of YME1L depended on 

ROMO1 due to its unusually long presequence, the MTS of YME1L and COX6A1 were 

exchanged. For this purpose, the respective presequence was fused onto the mature form of the 

other by overlapping PCR and cloning (Figure 3.27A). COX6A1 has a presequence of 25 amino 

acids, which is in line with the average lengths of 15-55 amino acids (Vögtle et al., 2009). Again 

using in vitro import assays with radioactively-labeled precursor proteins followed by 

quantification, it was observed that the import of COX6A1(MTS) - mature YME1L (COX6A11-

25-YME1L151-716) was no longer dependent on ROMO1, since its import efficiency into siRomo 

mitochondria was at WT levels (Figure 3.27B). Full length COX6A1 did not show any import 

defect in the absence of ROMO1 (Figure 3.18B). In contrast, when the targeting sequence of 

YME1L was fused onto mature COX6A1 (YME1L1-151-COX6A125-110), its import efficiency 

drastically decreased (Figure 3.27C) and resembled the import efficiency of full length YME1L 

in siRomo1 mitochondria (Figure 3.23).  

 

It could therefore be concluded that the drastic import defect of YME1L, observed in siRomo1 

mitochondria, is due to its long presequence. The import defect could be rescued upon 

exchanging the YME1L presequence with the presequence of a protein whose import was not 

affected (COX6A1). Furthermore, the presequence of YME1L could induce an import 

phenotype in a protein that had not shown any dependence on ROMO1 for its import before.  

 

3.6.4 ROMO1 plays a role for the import of precursors with long presequences  

 

To study whether the import dependence of YME1L due to its long presequence was a general 

effect, literature and databases were searched for proteins with similar long presequences. Using 

N-proteome studies (Calvo et al., 2017; Vaca Jacome et al., 2015), as well as UniProt, only five 

proteins were identified as having a presequence of more than 100 amino acids. Two of these 

proteins also had a similar topology to YME1L. LETM1 is a mitochondrial inner membrane 

protein that functions as a proton/calcium antiporter, is involved in the maintenance of 

mitochondrial tubular networks and binds the mitochondrial ribosome (Jiang et al., 2009; Piao 
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et al., 2009; Tamai et al., 2008). COQ8A, or ADCK3, is a large inner membrane protein known 

as an atypical kinase involved in coenzyme Q biosynthesis (Stefely et al., 2015; Wheeler & Jia, 

2015). After synthesizing radioactively-labeled precursor proteins of these two proteins, in vitro 

import assays into ROMO1 depleted mitochondria were performed.  

 

A  

                  
B 

                   
 
Fig. 3.28: Other proteins with long presequences show a mild import dependence on ROMO1. 
(A-B) [35S] labeled precursor proteins were imported into energized mitochondria isolated from siNT or siRomo1 
cells, treated with PK and analyzed by SDS-PAGE and autoradiography. Import of siNT sample at 20 minutes was 
set to 100%. The mean ± SEM (n=3) is shown. p, precursor; m, mature protein. 

 

Analysis by SDS-PAGE, autoradiography and quantifications revealed that the import efficiency 

of LETM1 was reduced by about 30% in siRomo1 mitochondria (Figure 3.28A). The import 

efficiency of COQ8A was reduced by about 20% in siRomo1 mitochondria (Figure 3.28B). 

While this mild import defect did not compare to the one seen for YME1L, significant 
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differences were apparent and this data suggests that both precursors depended on ROMO1 for 

their import.   

 

This data confirmed that the novel subunit ROMO1 of the TIM23 complex plays a specific role 

in the import of the i-AAA protease YME1L, due to its presequence. Furthermore, there is 

evidence that also other proteins with long presequences partly depend on ROMO1 for their 

import. All in all, this reveals the underlying mechanism for the effects of ROMO1 ablation on 

OPA1 processing and mitochondrial inner membrane morphology, which can now be traced 

back to the long presequence of YME1L and its dependence on ROMO1 for efficient import. 
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4. Discussion 

4.1 Functions of ROMO1 as a TIM23 complex component 

 

4.1.1 Human ROMO1, the potential orthologue of Mgr2, is a component of the 

TIM23 complex 

 

The mitochondrion is an organelle of central importance in almost all eukaryotic cells. Its 

functions depend on the biogenesis of its proteins and protein complexes, which is almost 

exclusively dependent on protein import from the cytosol into the correct compartment of the 

mitochondrion. Due to its easy genetic manipulation, the model organism Saccharomyces 

cerevisiae has been used for decades to elucidate the intricate architecture and function of the 

protein import machinery (for recent review, see Wiedemann & Pfanner, 2017). That research 

has provided invaluable insights into the mechanistic details of protein biogenesis in 

mitochondria. However, reports from the last five to ten years have pointed out that many 

mechanistic and structural details are different in metazoans, i.e. Homo sapiens, and therefore 

require separate attention (for a current review, see Kang et al., 2018). This is even more 

interesting, as many proteins involved in mitochondrial protein import are associated with 

environmental responses, cancer and other diseases (Demishtein-Zohary & Azem, 2017; Kang 

et al., 2018; Sokol et al., 2014), making them even more crucial to study in human.  

 

This study focused on the TIM23 complex present in the inner membrane of mitochondria, 

which is responsible for the import of up to 70% of all mitochondrial proteins. The most recently 

discovered component of the TIM23 complex has been Mgr2 in yeast (Gebert et al., 2012). It 

had been identified by a SILAC MS analysis of C-terminally tagged Tim21ProtA and further 

confirmed, by affinity purification of Tim23ProtA and Tim21ProtA, to be a subunit of the TIM23 

complex (Gebert et al., 2012). Similarly, a SILAC MS analysis of C-terminally tagged human 
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TIM23FLAG, TIM21FLAG and TIM50FLAG identified Mgr2’s potential orthologue, ROMO1, as an 

interaction partner of all three proteins. This observation was followed up in this study and 

ROMO1 could be confirmed to be a new component of the human TIM23 complex by affinity 

purification of TIM23FLAG and TIM21FLAG (Figure 3.1).  

 

ROMO1 had long been thought to interact with the TIM23 complex in human, especially after 

Žárský & Dolezal (2016) found Tim17 family homology in both Mgr2 and ROMO1 using 

bioinformatical tools. The sequences of Mgr2 and ROMO1 possess only the first two 

transmembrane domains of this family, but orthologues of Mgr2 and ROMO1 are present in 

very diverse groups, suggesting a conserved role, even though their potential functions in 

mitochondria described so far have been very different (Žárský & Dolezal, 2016). While their 

sequences are quite similar, there are also some fundamental differences. Mgr2 contains a C-

terminal targeting sequence, which has a net positive charge and targets Mgr2 to mitochondria. 

This sequence is cleaved by Imp1 and not by MPP, which is necessary for WT levels of Mgr2 

and assembly and function of the TIM23 complex (Ieva et al., 2013). The C-terminal extension 

is absent in human, marking a big difference. However, the mature form of Mgr2 is also partly 

targeted to mitochondria, meaning that weak targeting information is also internally present in 

the protein (Ieva et al., 2013). However, how ROMO1 is targeted to mitochondria could also not 

be resolved in this study. On the other hand, ROMO1 contains two cysteine residues, which are 

highly conserved in metazoan but not present in yeast (Norton et al., 2014).  

 

Despite the evidence presented in this study, it has recently been published that ROMO1 forms 

a cation channel in the inner membrane (Lee et al., 2018). They showed that ROMO1 

oligomerizes in mitochondria and further in vitro approaches, such as reconstitutions in 

artificial membranes and liposomes of synthesized ROMO1, showed that ROMO1 exhibits 

channel function. Furthermore, their data is complemented by computational modeling and 

prediction algorithms. Yeast Mgr2 interacts with precursor proteins in transit and has been 

hypothesized to be part of the presequence translocase channel (Ieva et al., 2014). It is therefore 

possible that ROMO1 could be part of a channel, however, the data presented in this study make 

it more likely to act on the TIM23 complex. The ROMO1 oligomers reported in Lee et al. (2018) 
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could also represent ROMO1 as part of the TIM23 complex. Further 2-D analyses could 

complement this part of their study.  

 

4.1.2 ROMO1 and its involvement in translocase coupling and protein import 

 

The molecular function of Mgr2 has been the subject of recent studies. It was first described as 

a factor, responsible for efficient TOM-TIM23 coupling and for the association of Tim21 and 

the respiratory chain to TIM23 (Gebert et al., 2012). However, a following study gave Mgr2 a 

more active role in precursor sorting, as they showed that it is part of the active translocase, 

whereby it recognizes and interacts with precursors while they are being imported. They called 

Mgr2 a gatekeeper because it acts in quality control of transmembrane proteins by delaying their 

lateral release (Ieva et al., 2014). In general, it should be noted that in mgr2D mitochondria, the 

import motor is just as active as in WT and an import defect of matrix-targeted proteins is only 

detectable after heat shock (Ieva et al., 2014; Schulz & Rehling, 2014). In this case, newly 

imported Pam18 is recruited a lot less efficiently to the translocase, possibly explaining the 

phenotype (Schulz & Rehling, 2014). On the other hand, Mgr2 slows down inner membrane 

sorting, as faster sorting is observed in mgr2D mitochondria and very slow sorting when Mgr2 

is overexpressed (Ieva et al., 2014). In those studies, it is postulated that ROMO1 probably acts 

by a similar mechanism as in yeast and also has a coupling and gatekeeper function.  

 

These hypotheses prompted the presented work to focus on the role of ROMO1 on the 

translocase. Using immunoprecipitations following a knockdown of ROMO1, this study could 

show that ROMO1 is involved in coupling the dynamic subunit TIM21 onto TIM23 (Figure 

3.16), hinting at a similar function as in yeast. However, following experiments addressing the 

involvement in ROMO1 in the import of laterally sorted proteins did not reveal a direct sorting 

defect (Figure 3.18). On the other hand, it needs to be noted that the presented import 

experiments do not directly address the lateral release of proteins. Therefore, assembly studies 

were carried out for COX6A1 and COX4I-1. The coupling function of ROMO1 did become 

apparent when analyzing COX4I-1, which requires the dynamics of TIM21 for its sorting 
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(Figure 3.19; 4.1A). Unfortunately, this study could not address the assembly and lateral release 

of further proteins, which would be of high interest. Import conditions and BN-PAGE protocols 

need to be optimized to test a large range of inner membrane proteins and more systematically 

assess this question. When Mgr2 was abolished in yeast mitochondria, the interaction between 

Tim23 and Tim21 was lost (Gebert et al., 2012), while in siRomo1 mitochondria, it was only 

weakened (Figure 3.16). Therefore, one can conclude that ROMO1 has a weak coupling function 

(Figure 4.1A). On the other hand, this study could not provide any evidence that a deletion of 

ROMO1 speeds up lateral sorting, as seen in mgr2D (Ieva et al., 2014). It therefore seems 

conceivable that ROMO1 does not act in quality control at the human translocase, but has 

acquired further functions.  

 

4.1.3 ROMO1 – part of a specific translocase? 

 

Most published data, as well as the results from this study, hint at a different role of ROMO1 

compared to its yeast counterpart, Mgr2. This does not seem surprising, as a number of other 

subunits of the TIM23 complex also have diversified roles. While the function of the subunits 

TIM50, TIM23, TIM44 and Magmas (Pam16 in yeast) are conserved, other proteins have 

diversified (Kang et al., 2018). Even Magmas has a further function, as it does not just tether J-

proteins to the translocase, but also regulates the distribution of J-proteins (Sinha et al., 2014). 

This diversification becomes more evident when looking at TIM17, as there are two paralogs of 

TIM17, TIM17A and TIM17B, and two isoforms, TIM17B1 and TIM17B2, which show 

diversifications at the C-terminus (Bauer et al., 1999; Sinha et al., 2014). Both paralogs have 

different functions. TIM17B, interacting with DNAJC19, is critical for cell viability, Fe-S cluster 

biogenesis, efficient import and respiration. On the other hand, TIM17A interacts with 

DNAJC15 and seems dispensable for all those functions, having a more supportive role (Sinha 

et al., 2014). However, even this observation is disputed since another study showed that 

TIM17A is involved in protein import (Rainbolt et al., 2013). Furthermore, TIM21 has attained 

a different function, coupling import to mitochondrial translation and assembly of OXPHOS 
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components, something not present in yeast (Mick et al., 2012). It therefore does not seem 

surprising that the function of ROMO1 could also have diversified.  

 

This study showed that the i-AAA protease YME1L depends on ROMO1 for its efficient import 

(Figure 3.23; 4.1B). Interestingly, the reason for this dependency was its unusually long 

presequence of about 150 amino acids (Figure 3.27). Generally, presequences of mitochondrial 

proteins have a length of 15-55 amino acids, although exact predictions, especially for human 

proteins, are still lacking. Even recently published mitochondrial N-proteomic studies could not 

cover a large portion of mitochondrial proteins and also suggested highly unlikely N-termini for 

a number of proteins (Calvo et al., 2017; Vaca Jacome et al., 2015). Nevertheless, the currently 

known number of proteins with a presequence that is longer than 100 amino acids is very low. 

This study tested the import of two proteins, LETM1 (presequence of 115 amino acids) and 

COQ8A (presequence of 160 amino acids) and could show a slight dependence on ROMO1 

(Figure 3.28). This dependence was not as pronounced as for YME1L, however, other tested 

substrates, such as EMRE or COX6A1, showed identical import efficiency compared to WT 

conditions in siRomo1 mitochondria (Figure 3.18). 

 

The idea of specific translocases for specific proteins, or a class of proteins, has been postulated 

a few times. It has been suggested that separate pools of TOM complexes exist and that MIA and 

TIM23 substrates use different TOM complexes for their entry into mitochondria (Gornicka et 

al., 2014). Furthermore, it has been shown that TIM17A is essential for import of oncoproteins 

that do not possess a targeting sequence, such as p53, Erk2 and STAT6 (Sinha et al., 2014). That 

study hypothesized that TIM17A could be part of a specific translocase for proteins without a 

presequence. Similarly, one could conjecture that ROMO1 is possibly part of a specific 

translocase, where ROMO1 is essential for the import of YME1L and possibly other proteins 

with long presequences (Figure 4.1B). This could be reconciled with the observation that no 

other tested substrate depended on ROMO1 for its import as drastically (Figure 3.17 – 3.19). 

Nevertheless, the question remains why YME1L, LETM1 and COQ8A are, to such different 

degrees, dependent on ROMO1. Interestingly, the net positive charge of the presequence of 

COX6A1 is much higher as compared to the net positive charge of the presequences of YME1L 
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and COQ8A. This could mean that these substrates are less attracted by the negative membrane 

potential and therefore need ROMO1 to aid in their import. Obviously, this needs to be 

addressed in more detail with more substrates that have presequences of variable charges. A 

mass-spectrometric study of the mitoproteome of ROMO1-/- cells compared to WT cells could 

help identify further substrates and, complemented by import studies, possibly address the 

dependence of further proteins on ROMO1.  

 

The findings of this study show that it is crucial to study phenomena already studied in yeast in 

mammalian models, since large differences become more and more apparent. Human ROMO1 

is a weak coupling factor of TIM21 onto the translocase, demonstrated by a delayed assembly of 

COX4I-1 into MITRAC (Figure 4.1A). Furthermore, it is possibly part of a specific translocase 

that is specialized for importing YME1L, as well as further substrates with extremely long 

presequences (Figure 4.1B).  

 
Fig. 4.1: ROMO1, a novel subunit of the TIM23 complex.  
(A) ROMO1 couples TIM21 onto TIM23. This becomes evident when studying the MITRAC dependent complex 
IV subunit COX4I-1 which is dependent on proper TIM21 coupling for its assembly. As a result, complex IV 
activity is reduced. 
(B) The import of YME1L is dependent on ROMO1. 
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4.2 ROMO1 and its effects on inner membrane morphology and 

respiratory chain activity  
 

4.2.1 Observed phenotypes in OPA1 processing and cristae structure are 

related to YME1L 

 

The fact that the depletion of ROMO1 has an effect on inner membrane structure had already 

been observed in 2014 (Norton et al., 2014). The curvature of crista junctions is mediated by a 

complex called MICOS (Schorr & van der Laan, 2018). It therefore seems conceivable that there 

could be a connection between ROMO1 and MICOS, or that the absence of ROMO1 affects the 

integrity of this complex. Norton et al. performed an immunoprecipitation experiment using 

the MICOS component MIC60 as a bait and showed ROMO1 to interact with MIC60. They 

therefore concluded that ROMO1 and MICOS form a complex and that ROMO1 is positioned 

at crista junctions. However, their analysis lacked negative controls and the ablation of ROMO1 

did not affect steady state levels of MIC60 and MIC19, as well as MICOS complex integrity, 

shown by gel fractionation (Norton et al., 2014). In ROMO1-/- cells presented in this study, the 

integrity of the MICOS complex was also not affected, based on an immunoprecipitation 

experiment using endogenous MIC60 antibodies (data not shown). One could therefore be 

doubtful about the conclusion that ROMO1 interacts with MICOS and its positioning at crista 

junctions. Since MICOS is involved in various other processes, such as lipid and protein transfer, 

or inner-outer membrane contacts (Schorr & van der Laan, 2018), it is likely that ROMO1 has 

an effect on cristae structure via a different mechanism.  

 

In their study Norton et al. further showed that OPA1 processing is disturbed in the absence of 

ROMO1, leading to changes in inner membrane structure. They therefore conclude that 

ROMO1 is involved in OPA1 processing giving this a higher importance in regard to inner 

membrane structure than its interaction with MICOS. Moreover, ROMO1 displayed many 

high-molecular weight species on non-reducing SDS-PAGE, most likely oxidized forms. They 
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were no longer present in cysteine mutants of ROMO1, leading them to hypothesize that 

ROMO1 functions as a redox switch. As an explanation regarding the disturbed OPA1 

processing, they hypothesized that the redox status of ROMO1 helps to regulate the opening 

and closing of crista junctions and that the Cys-Cys bridges, not present in yeast, help to sense 

oxidative stress and contain it. While this brought some interesting ideas forward, Norton et al. 

could not present a convincing direct molecular link between ROMO1, OPA1 processing and 

inner membrane morphology. Based on data from this study, it seems more likely that ROMO1’s 

function in the TIM23 complex has an effect on OPA1 processing and cristae structure. 

 

Ieva et al. (2014) showed that yeast Mgr2 sits at the lateral gate of the presequence translocase 

and acts in quality control of the lateral release of transmembrane proteins. They exemplified 

their finding by showing that Mgr2 has an influence on the lateral release of Mgm1, the homolog 

of human OPA1. In mgr2D cells, a faster lateral release leads to a higher abundance of long 

Mgm1, causing disturbed mitochondrial morphology. However, in yeast, the level and activity 

of the Mgm1 processing peptidase Pcp1 are not affected. This narrows down the reason for this 

accumulation of long Mgm1 forms to the quality control function of Mgr2 on the translocase. 

Also, in the presented study, levels of Pcp1, along with a number of other mitochondrial 

proteases, were not affected in mgr2D mitochondria (Figure 3.22), complementing the already 

published data that the observed phenotype is the result of defective quality control and not 

processing. 

 

The processing of human OPA1 is much more complex than the processing of Mgm1 

(MacVicar & Langer, 2016; Song et al., 2007), but its regulation follows the same pattern. OPA1 

processing and cristae structure are disturbed in the absence of ROMO1 (Norton et al., 2014; 

this study). It is difficult to assess on the molecular level precisely what isoforms and which 

processing steps are affected. The five bands visible on a gel are a mixture of different splice 

variants and therefore one cannot assign exact bands. For example, the two L-bands represent 

at least 4 long forms (Song et al., 2007). However, this study could show that the ablation of 

ROMO1 leads to a very similar processing defect in OPA1, as shown in a knockout of YME1L 

(Anand et al., 2014). Furthermore, in contrast to Mgr2, ROMO1 has a direct effect on the import 
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and steady state levels of the OPA1 processing protease YME1L (Figure 3.22 and 3.23). The 

reduced levels of YME1L seem to lead to aberrant processing of OPA1 and therefore a disturbed 

cristae structure in ROMO1-/- cells (Figure 3.5; 4.2). Therefore, in stark contrast to yeast, 

ROMO1 does not have a quality control function when it comes to protein sorting. The observed 

changes in OPA1 processing in the absence of ROMO1 are a result of defective processing by 

YME1L following reduced steady state levels caused by its import defect (Figure 4.2).  

 

This in turn shows that the regulation of OPA1 and cristae structure is not only much more 

complex in human than in yeast, but also emphasizes a more intricate regulation by protease 

levels. This is conceivable, as changes in mitochondrial morphology can have drastic effects on 

the cell’s viability and should therefore be tightly regulated. By adjusting the activity of proteases, 

this allows the cells to react more rapidly to different environmental stimuli, an idea already 

brought forward more than 10 years ago (Song et al., 2007). This hypothesis is further supported 

by the fact that ROMO1 is rapidly degraded (Figure 3.12). This also means that steady state 

levels of ROMO1 are tightly regulated allowing translocases to rapidly adjust their efficiency of 

YME1L import and biogenesis.  

 

Most published work regarding ROMO1 has focused on its role in ROS production and cancer 

progression. The effects of ROMO1 ablation on ROS production were not a focus of this study, 

but it can be said that the depletion of ROMO1 can lead to pleiotropic effects. Knockdown 

approaches, including results presented here, led to a very small reduction of ROS (Chung et al., 

2010; Chung et al., 2008; Kim et al., 2014; Lee et al., 2009; Lee et al., 2011; Shin et al., 2013; 

Shyamsunder et al., 2015; Figure 3.14). However, the shRNA mediated knockdown presented 

in Norton et al. (2014) and the knockout cell line presented here, showed a drastic increase in 

ROS production (Figure 3.11). Furthermore, both approaches led to an aberrant inner 

membrane structure. It has been known that ROS production and changes in the mitochondrial 

inner membrane are closely linked. While inner membrane aberrations can lead to higher ROS 

levels, ROS has also been shown to induce morphological changes (Brand, 2016; Ježek et al., 

2018). It therefore seems conceivable that the changed inner membrane architecture leads to 

higher ROS production in ROMO1-/- cells (Figure 4.2B). It would be interesting to assess the 
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inner membrane structure under conditions of ROMO1 overexpression, when ROS levels are 

increased. Unfortunately, this went beyond the scope of this study.  

 

The question of whether siRomo1 mitochondria also display changes in inner membrane 

morphology was not addressed here. In fact, a comprehensive analysis of mitochondria of 

siRomo1 cells by electron microscopy seems very difficult. Unlike in the knockout model, not 

all cells might be depleted of ROMO1 since siRNA treatment is carried out by transient 

transfection. Therefore, observed phenotypes cannot be directly linked to the presence or 

absence of ROMO1. However, steady state levels of YME1L (Figure 3.22), as well as OPA1 

processing (data not shown), were comparable to WT mitochondria in siRomo1 mitochondria. 

These results, together with the lack of significant changes in ROS levels, mean that alterations 

in inner membrane morphology would not be expected. Therefore, a transient depletion of 

ROMO1 leads to slightly decreased levels of ROS, but a permanent depletion leads to defects in 

OPA1 processing, followed by changes in inner membrane morphology and increased ROS 

production (Figure 4.2).  

 

4.2.2 ROMO1 and respiratory chain activity 

 

A connection between ROMO1 and OXPHOS activity was initially addressed by Norton et al. 

(2014). The study showed that ATP levels were unchanged in their ROMO1 KD model and that 

basal respiration was not affected. However, the maximum capacity of the OXPHOS machinery 

was reduced (Norton et al., 2014). The results presented here confirmed that respiration and 

oxidative phosphorylation in general are not affected in the absence of ROMO1. However, a 

decrease in both quantity and activity was observed for complex IV (Figure 3.15). This could be 

explained by the defective coupling of TIM21 to TIM23 in the absence of ROMO1 (Figure 4.1). 

The assembly of complex IV is highly dependent on TIM21, since it recruits the early assembly 

factor MITRAC (Mick et al., 2012). This was shown here by a defective assembly of the complex 

IV subunit, COX4I-1, into MITRAC in the absence of ROMO1 (Figure 3.19; 4.1). The fact that 

the effect on respiration seemed more severe in the KO model as compared to the KD model 
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could be attributed to a stronger coupling defect of TIM21 onto TIM23. Furthermore, one could 

also hypothesize that the majorly disturbed cristae structure could lead to decreased quantity 

and activity of respiratory chain complexes. Due to the changes in inner membrane 

morphology, complexes are not compartmentalized as in WT mitochondria and are therefore 

less efficient, leading to defective respiration (Norton et al., 2014). Finally, increased ROS levels 

could also have a negative effect on the activity of respiratory chain complexes. 

 

 
 
Fig. 4.2: ROMO1 dependent YME1L import defects have pleiotropic effects.  
(A) In WT mitochondria, YME1L is imported in a ROMO1-dependant manner and can properly process OPA1. 
As a result, physiological inner membrane structure keeps ROS levels normal.  
(B) In ROMO1-depleted mitochondria, YME1L is not efficiently imported. As a result, OPA1 does not get properly 
processed leading to aberrant inner membrane structure. This can lead to increases in ROS.  
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4.3 ROMO1 and YME1L seem to be functionally linked 

 

4.3.1 ROMO1 as a new YME1L substrate 

 

An experiment using the cytosolic translational inhibitor emetine showed that ROMO1 has a 

fast turnover in HEK293T cells. This was in contrast to other translocase components, as well as 

the yeast Mgr2 (Figure 3.12 and 3.20). This unusual finding prompted further investigation and 

the data presented here show that ROMO1 is specifically degraded by YME1L. The levels of 

ROMO1 increased dramatically upon transient knockdown of YME1L, along with the known 

substrate TIM17A (Rainbolt et al., 2013). Furthermore, the sequence of ROMO1 displays an F-

G-T-F motif in each of its transmembrane domains. It has been postulated that human YME1L 

recognizes its substrates by the specific recognition signal F-h-h-F, where h is a hydrophobic 

amino acid (Shi et al., 2016). While threonine is not strictly classified as a hydrophobic amino 

acid, the presence of these very similar degron sequences further indicates that ROMO1 is 

indeed degraded by YME1L. Interestingly, regarding other known YME1L substrates, only 

PRELID contains an F-A-A-F sequence, while both TIM23 and TIM17A do not have a similar 

motif in their sequence.  

 

One can only speculate about the mechanism or underlying cause for the observed degradation 

of ROMO1 by YME1L. Overexpression of ROMO1 has been correlated with increased ROS 

production and severe malignancies. One study even named ROMO1 an oncomarker 

(Shyamsunder et al., 2015). It is therefore possible that the fast turnover of ROMO1 acts as a 

protective mechanism to prevent the accumulation of ROMO1. This would also allow the cell 

to downregulate YME1L and regulate OPA1 processing in response to environmental stress. 

However, ROMO1 is a deeply membrane-embedded protein. It would therefore be interesting 

to address the mechanism of how ROMO1 is extracted from the membrane and then degraded.  
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4.3.2 Microdomains might connect different processes within the inner 

mitochondrial membrane 

 

This study showed that YME1L import is dependent on ROMO1 but that it also degrades 

ROMO1. This hints at a self-regulatory or feedback mechanism with yet to be addressed 

implications. It seems reasonable that a tight control of both proteins is necessary since their 

effects on ROS production or mitochondrial morphology can have a huge impact on the whole 

cell or organism.  

 

There is evidence which suggests that Yme1 in yeast is in close proximity to the TIM23 complex 

and possibly even actively plays a role in the translocation of certain proteins (Rainey et al., 

2006). Furthermore, there is also data that YME1L is associated with the human translocase 

(SILAC mass spectrometry data to be published) and therefore in vicinity of ROMO1. However, 

it still remains to be determined if and how ROMO1, or the translocase in general, interact with 

YME1L. For this purpose, immunoprecipitation approaches will have to be optimized, since the 

tagging of both proteins remains difficult and the interaction could be rather transient. 

 

A recent idea in the field concerns the presence of microdomains within the protein-rich inner 

membrane. This seems conceivable since the clustering of proteins and complexes that carry out 

related functions makes these processes more efficient. Known examples include the 

organization of respiratory chain supercomplexes (Letts & Sazanov, 2017), or the MICOS 

complex (Wollweber et al., 2017). Furthermore, the idea of a “proteolysis hub” spatially 

organizing mitochondrial proteases has also been suggested (Wai et al., 2016). This data 

indicates that within the SPY complex (STOML2, PARL, YME1L), the stomatin-like protein, 

STOML2, spatially organizes YME1L and therefore might contribute to YME1L processing 

during high substrate load. Along these lines, it could be possible that YME1L specific 

translocases, containing ROMO1, are localized in close vicinity to the SPY complex, forming a 

microdomain within the inner membrane. This would make the regulation of mitochondrial 

protein import and proteolysis more efficient and easily adaptable during stress and 

environmental influences. Furthermore, OPA1 needs to be processed right after import. It is 



 119 

therefore plausible that YME1L is found in close proximity to the translocase so that it can 

process OPA1 right away.  

 

It has been postulated for some time that the mitochondrial import machinery is integrated into 

multiple processes, as well as integrated into a dynamic network within mitochondria (i.e. 

(Harbauer et al., 2014; Wiedemann & Pfanner, 2017). This study brings further evidence that 

protein biogenesis is linked to quality control and membrane morphology. The fact that the 

translocase and YME1L are functionally linked is present in multiple kingdoms; human YME1L 

degrades TIM23, TIM17A and ROMO1 (Rainbolt et al., 2013; Wai et al., 2016; this study); yeast 

Yme1 degrades the small Tims, Tim9 and Tim10 (Baker et al., 2012) and Tom22 (Wu et al., 

2018); and in plants, the i-AAA protease, FTSH4, degrades essential Tim17-2 (Opalińska et al., 

2018).  

 

In general, it seems feasible that many processes are not separate and independent but rather 

connected functionally, as well as physically. Partly, due to its high abundance (Morgenstern et 

al., 2017), the TIM23 complex can form a hub and it has already been shown to not only interact 

with components of other import pathways (Albrecht et al., 2006; Chacinska et al., 2010; Gold 

et al., 2014; Waegemann et al., 2015),  but also the respiratory chain (van der Laan et al., 2006; 

Wiedemann et al., 2007) and the ADP/ATP carrier (Dienhart & Stuart, 2008; Mehnert et al., 

2014). These interactions make the import process more efficient and link protein import to 

bioenergetics. In human, the presequence translocase is also connected to respiratory chain 

assembly and mitochondrial translation by a complex called MITRAC (Dennerlein et al., 2015; 

Mick et al., 2012; Richter-Dennerlein et al., 2016).  

 

In this thesis, novel evidence is provided that the TIM23 complex is also connected to protein 

processing and quality control in the inner membrane. These networks between different 

mitochondrial processes might be especially valuable to mediate a quick response to stress or 

pathological conditions. The exact implications will have to be addressed by further studies.  
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5. Conclusions and Perspectives 

The presented work has shown that ROMO1 is a constituent of the human TIM23 complex. 

Moreover, a novel ROMO1-/- cell line in HEK293T cells was generated, which can be used for 

further studies of the molecular function of ROMO1. This cell line demonstrated that ROMO1 

ablation affects cell proliferation, mitochondrial inner membrane morphology, OPA1 

processing, as well as respiratory chain activity, especially complex IV. ROMO1 couples TIM21 

to the translocase and its absence affects the assembly of complex IV, most likely explaining the 

observed changes in complex IV quantity and activity.  

 

Following the observation that steady state levels of the i-AAA protease YME1L were decreased 

in ROMO1-/- mitochondria, import studies revealed that the import of YME1L is dependent on 

ROMO1 due to its long presequence. Although a tendency was observed for precursors with a 

long presequence to rely on ROMO1 for import, this study could not satisfactorily resolve this. 

A proteomic study of ROMO1-/- mitochondria could analyze the role of ROMO1 on the 

translocase further. Proteins with a lower expression level would be potential candidates for 

import studies of more substrates with different topologies, different overall lengths and variable 

presequence lengths. This would provide an important insight into the class of proteins that 

require ROMO1 for their import.  

 

ROMO1 was also shown to be an unstable protein, which is degraded by YME1L. It would be 

interesting to characterize the relationship between ROMO1 and YME1L further. SILAC mass 

spectrometry analyses have given the indication that they might interact physically but this 

hasn’t been proven. Addressing if the whole TIM23 complex is part of a bigger network 

connecting protein biogenesis, quality control and inner membrane morphology would add 

further evidence regarding the spatial and functional organization of different processes in 

mitochondria. These networks might be especially important for understanding the 

development of human diseases.   
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