Wirkung einer intermittierenden Parathormon-Therapie auf die Lendenwirbelsäule männlicher Ratten in Abhängigkeit vom Applikationsintervall

INAUGURAL-DISSEMINATION
zur Erlangung des Doktorgrades
der Medizinischen Fakultät der
Georg-August-Universität zu Göttingen

vorgelegt von

Armin Sturm
aus
Göttingen

Göttingen 2018
Dekan: Prof. Dr. rer. nat. H. K. Kroemer
Referent/in: Prof. Dr. Stephan Sehmisch
Ko-Referent/in: PD Dr. Dana Seidlova-Wuttke
Drittreferent/in: Prof. Dr. Martin Oppermann

Datum der mündlichen Prüfung: 29.01.2019
Hiermit erkläre ich, die Dissertation mit dem Titel "Wirkung einer intermittierenden Parathormon-Therapie auf die Lendenwirbelsäule männlicher Ratten in Abhängigkeit vom Applikationsintervall" eigenständig angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben.

Göttingen, den

(Unterschrift)
Inhaltsverzeichnis

Abbildungsverzeichnis... 9

Tabellenverzeichnis.. 10

Abkürzungsverzeichnis.. 12

1 Einleitung... 13

1.1 Einleitung und Fragestellung.. 13

1.2 Grundlagen.. 14

1.2.1 Knochen.. 14

1.2.1.1 Zusammensetzung... 14

1.2.1.2 Struktur.. 14

1.2.1.3 Umbau.. 15

1.2.1.4 Calciumstoffwechsel.. 15

1.2.2 Osteoporose ... 16

1.2.2.1 Definition.. 16

1.2.2.2 Epidemiologie... 16

1.2.2.3 Einteilung... 16

1.2.2.4 Pathogenese... 17

1.2.2.5 Diagnostik.. 18

1.2.2.6 Therapie.. 19

1.2.2.7 Osteoporose beim Mann.. 23

1.2.3 Das Tiermodell „orchiektomierte Ratte“ in der Osteoporoseforschung........ 24

1.2.4 Parathormon.. 25

1.2.4.1 Wirkung... 25

1.2.4.2 Applikationsintervall und anabolic window............................ 26

1.2.4.3 Nebenwirkungen... 26
Material und Methoden

2.1 Versuchstiere und Bedingungen der Tierhaltung

2.2 Versuchsablauf

2.2.1 Orchiektomie

2.2.2 Osteotomie

2.2.3 Behandlung mit Parathormon

2.2.4 Versuchsende und Entnahme der Wirbelkörper

2.3 Biomechanischer Kompressionstest

2.3.1 Vorbereitung

2.3.2 Durchführung

2.3.3 Messparameter

2.3.4 Benutzerspezifische Validierung der Messungen

2.4 Veraschung

2.4.1 Bestimmung des Anteils der organischen und anorganischen Knochensubstanz

2.4.2 Bestimmung des Calcium- und Phosphatgehaltes der Knochensubstanz

2.5 Mikroradiographie

2.5.1 Histologische Aufarbeitung und Anfertigung der Mikroradiographien

2.5.2 Einlesen der Mikroradiographien

2.5.3 Auswertung der Mikroradiographien

2.5.4 Benutzerspezifische Validierung der Messungen

2.5.5 Messparameter der Mikroradiographie

2.6 Flächendetektor-Volumen-Computertomographie (fpVCT)

2.6.1 Prinzip der fpVCT

2.6.2 Scannen der Ratten im Flächendetektor-Volumen-CT

2.6.3 Phantom

2.6.4 Knochendensitometrie

2.6.5 Messparameter der fpVCT

2.7 Statistik
3 Ergebnisse...41
3.1 Körpergewicht und Nahrungsaufnahme der Versuchstiere..41
3.1.1 Körpergewicht..41
3.1.2 Nahrungsaufnahme..42
3.2 Ergebnisse des biomechanischen Kompressionstests...44
3.2.1 Maximalkraft..44
3.2.2 Bruchkraft..45
3.2.3 Steigung..46
3.2.4 Yield load..47
3.2.5 Zusammenfassung der Ergebnisse des biomechanischen Kompressionstests.......................48
3.2.5.1 Durch Orchiektomie induzierte Effekte...48
3.2.5.2 Durch PTH-Gabe induzierte Effekte bei knochengesunden SHAM-Tieren...............48
3.2.5.3 Durch PTH-Gabe bei orchiektomierten Tieren induzierte Effekte.............................48
3.3 Ergebnisse der Mikroradiographien..49
3.3.1 Ventrale Kortikalisdicke..49
3.3.2 Dorsale Kortikalisdicke..50
3.3.3 Kortikalisfläche...51
3.3.4 Knochendichte Kortikalis...52
3.3.5 Knochendichte Trabekel..53
3.3.6 Anzahl der Trabekelkreuzungen..54
3.3.7 Dichte der Trabekelkreuzungen..55
3.3.8 Mittlere Trabekeldicke...56
3.3.9 Zusammenfassung der Ergebnisse der Mikroradiographie..57
3.3.9.1 Durch Orchiektomie induzierte Effekte...57
3.3.9.2 Durch PTH-Gabe induzierte Effekte bei knochengesunden SHAM-Tieren...............57
3.3.9.3 Durch PTH-Gabe bei orchiektomierten Tieren induzierte Effekte.............................57
3.4 Veraschung..58
3.4.1 Masse der Wirbelkörper..58
3.4.2 Organische Masse der Wirbelkörper...59
3.4.3 Anorganische Masse der Wirbelkörper...60
3.4.4 Organischer Massenanteil der Wirbelkörper..61
3.4.5 Anorganischer Massenanteil der Wirbelkörper..62
3.4.6 Dichte der organischen Knochenanteile..63
3.4.7 Dichte der anorganischen Knochenanteile..64
3.4.8 Calciumanteil..65
3.4.9 Phosphatanteil...66
3.4.10 Verhältnis von Calciumanteil zu Phosphatanteil...67
3.4.11 Zusammenfassung der Ergebnisse der Veraschung...68
3.4.11.1 Durch Orchiektomie induzierte Effekte..68
3.4.11.2 Durch PTH-Gabe induzierte Effekte bei knochengesunden SHAM-Tieren..68
3.4.11.3 Durch PTH-Gabe bei orchiektomierten Tieren induzierte Effekte....................68
3.5 Flächendetektor-Volumen-Computertomographie (fpVCT).....................................69
3.5.1 Knochendichte gesamt..69
3.5.2 Volumen der Wirbelkörper...70
3.5.3 Knochendichte der Kortikalis...71
3.5.4 Volumen der Kortikalis...72
3.5.5 Volumenanteil der Kortikalis...73
3.5.6 Knochendichte der Spongiosa...74
3.5.7 Volumen der Spongiosa...75
3.5.8 Volumenanteil der Spongiosa..76
3.5.9 Zusammenfassung der Ergebnisse der fpVCT..77
3.5.9.1 Durch Orchiektomie induzierte Effekte...77
3.5.9.2 Durch PTH-Gabe induzierte Effekte bei knochengesunden SHAM-Tieren....77
3.5.9.3 Durch PTH-Gabe bei orchiektomierten Tieren induzierte Effekte....................77
3.6 Korrelationen der einzelnen Messwerte...78
3.6.1 Korrelation der Parameter des biomechanischen Kompressionstests mit den
Parametern der Veraschung...78
3.6.2 Korrelation der Parameter des biomechanischen Kompressionstest mit den
Parametern der Mikroradiographie..79
3.6.3 Korrelation der Parameter des biomechanischen Kompressionstest mit den
Parametern der fpVCT...80
4 Diskussion

4.1 Durch Orchiektomie induzierte Effekte

4.2 Unter Parathormonbehandlung beobachtete Effekte

4.2.1 Erwartete Wirkung der Parathormonbehandlung aufgrund früherer Publikationen

4.2.2 In Zusammenhang mit Parathormongabe beobachtete Effekte bei knochengesunden SHAM-Tieren

4.2.3 In Zusammenhang mit täglicher Parathormongabe beobachtete Effekte bei orchiektomierten Tieren

4.3 Vergleich der verschiedenen Applikationsintervalle

4.4 Korrelation der biomechanischen Eigenschaften der Wirbelkörper mit den erhobenen histomorphometrischen, volumetrischen und gravimetrischen Messparametern

4.5 Schlussfolgerungen

5 Zusammenfassung

6 Abstract

7 Literaturverzeichnis
Abbildungsverzeichnis

Abbildung 1: Kraft-Weg-Diagramm mit vereinfachter Darstellung des typischen Kurvenverlaufs beim biomechanischen Kompressionstest ... 31
Abbildung 2: Entwicklung des durchschnittlichen Körpergewichts 41
Abbildung 3: Nahrungsaufnahme in Gramm pro Tier und Tag 42
Abbildung 4: Maximalkraft ... 44
Abbildung 5: Bruchkraft ... 45
Abbildung 6: Steigung ... 46
Abbildung 7: yield load .. 47
Abbildung 8: ventrale Kortikalsdicke .. 49
Abbildung 9: dorsale Kortikalsdicke ... 50
Abbildung 10: Kortikalisfläche ... 51
Abbildung 11: Knochendichte Kortikalis ... 52
Abbildung 12: Knochendichte Trabekel ... 53
Abbildung 13: Anzahl der Trabekelkreuzungen ... 54
Abbildung 14: Dichte der Trabekelkreuzungen ... 55
Abbildung 15: Mittlere Trabekeldicke ... 56
Abbildung 16: Masse der Wirbelkörper vor Veraschung ... 58
Abbildung 17: Organische Masse .. 59
Abbildung 18: Anorganische Masse .. 60
Abbildung 19: Organischer Massenanteil ... 61
Abbildung 20: Anorganischer Massenanteil ... 62
Abbildung 21: Dichte der organischen Knochenanteile .. 63
Abbildung 22: Dichte der anorganischen Knochenanteile .. 64
Abbildung 23: Calciumanteil ... 65
Abbildung 24: Phosphatanteil ... 66
Abbildung 25: Verhältnis von Calciumanteil zu Phosphatanteil 67
Abbildung 26: Knochendichte Gesamt ... 69
Abbildung 27: Volumen Wirbelkörper .. 70
Abbildung 28: Knochendichte Kortikalis .. 71
Abbildung 29: Volumen Kortikalis ... 72
Abbildung 30: Volumenanteil Kortikalis .. 73
Abbildung 31: Knochendichte Spongiosa ... 74
Abbildung 32: Volumen Spongiosa ... 75
Abbildung 33: Volumenanteil Spongiosa ... 76
Tabellenverzeichnis

Tabelle 1: Einteilung der Osteoporose...16
Tabelle 2: Faktoren, die zur Entwicklung von Osteoporose beitragen..............17
Tabelle 3: Alters- und geschlechtsabhängige Grenzwerte der Knochendichte........20
Tabelle 4: Spezifische Risikofaktoren zur Indikationsstellung einer spezifischen medikamentösen Osteoporosetherapie...21
Tabelle 5: Mittelwert und Standardabweichung des Körpergewichts der Versuchstiere zu ausgewählten Zeitpunkten des Versuchs...42
Tabelle 6: Mittelwert und Standardabweichung der täglichen Nahrungsaufnahme pro Versuchstier zu ausgewählten Zeitpunkten des Versuchs...43
Tabelle 7: Messwerte für den Parameter „Maximalkraft“....................................44
Tabelle 8: Messwerte für den Parameter „Bruchkraft“..45
Tabelle 9: Messwerte für den Parameter „Steigung“..46
Tabelle 10: Messwerte für den Parameter „yield load“......................................47
Tabelle 11: Messwerte für den Parameter „ventrale Kortikalisdicke“....................49
Tabelle 12: Messwerte für den Parameter „dorsale Kortikalisdicke“.....................50
Tabelle 13: Messwerte für den Parameter „Kortikalisfläche“...............................51
Tabelle 14: Messwerte für den Parameter „Knochendichte Kortikalis“................52
Tabelle 15: Messwerte für den Parameter „Knochendichte Trabekel“.....................53
Tabelle 16: Messwerte für den Parameter „Anzahl Trabekelkreuzungen“...............54
Tabelle 17: Messwerte für den Parameter „Dichte Trabekelkreuzungen“.................55
Tabelle 18: Messwerte für den Parameter „mittlere Trabekeldicke“......................56
Tabelle 19: Messwerte für den Parameter „Masse der Wirbelkörper“....................58
Tabelle 20: Messwerte für den Parameter „Organische Masse“............................59
Tabelle 21: Messwerte für den Parameter „Anorganische Masse“........................60
Tabelle 22: Messwerte für den Parameter „Organischer Massenanteil“................61
Tabelle 23: Messwerte für den Parameter „Anorganischer Massenanteil“...............62
Tabelle 24: Messwerte für den Parameter „Dichte der organischen Knochenanteile“......63
Tabelle 25: Messwerte für den Parameter „Dichte der anorganischen Knochenanteile“64
Tabelle 26: Messwerte für den Parameter „Calciumanteil“..................................65
Tabelle 27: Messwerte für den Parameter „Phosphatanteil“................................66
Tabelle 28: Messwerte für den Parameter „Verhältnis von Calciumanteil zu Phosphatanteil“...67
Tabelle 29: Messwerte für den Parameter „Knochendichte Gesamt“.....................69
Tabelle 30: Messwerte für den Parameter „Volumen Wirbelkörper“......................70
Tabelle 31: Messwerte für den Parameter „Knochendichte Kortikalis“..................71
Tabelle 32: Messwerte für den Parameter „Volumen Kortikalis“..........................72
Tabelle 33: Messwerte für den Parameter „Volumenanteil Kortikalis“...................73
Tabelle 34: Messwerte für den Parameter „Knochendichte Spongiosa“...................74
Tabelle 35: Messwerte für den Parameter „Volumen Spongiosa“.................................75
Tabelle 36: Messwerte für den Parameter „Volumenanteil Spongiosa“.........................76
Tabelle 37: Korrelation der Messwerte der Veraschung mit den Messwerten des
biomechanischen Kompressionstests..78
Tabelle 38: Korrelation der histomorphologischen Parameter der Mikroradiographien
mit den Messwerten des biomechanischen Kompressionstests....................................79
Tabelle 39: Korrelation der Ergebnisse der Untersuchung „fpVCT“ mit den Messwerten
des biomechanischen Kompressionstests..80
Abkürzungsverzeichnis

BMI = Body Mass Index
COPD = chronic obstructive pulmonary disease
DVO = Dachverband Osteologie
DXA = dual-energy x-ray-absorptiometry
et al. = et alii
fpVCT = flat-panel volume computed tomography
HU = Hounsfield Unit
KG = Körpergewicht
LWK = Lendenwirbelkörper
ORX = orchiektomierte Gruppe
ORX PTH = täglich mit Parathormon behandelte orchiektomierte Gruppe
ORX PTH/2d = jeden zweiten Tag mit Parathormon behandelte orchiektomierte Gruppe
PTH = Parathormon
PTH 1-34 = aminoterminales Endfragment, bestehend aus den ersten 34 Aminosäuren des vollständigen Parathormons
PTH 1-84 = vollständiges, aus 84 Aminosäuren bestehendes Parathormon
RANK = Receptor Activator of NF-κB
RANKL = Receptor Activator of NF-κB Ligand
SEM = standard error of the mean (Standardfehler des Mittelwertes)
SHAM = Kontrollgruppe
SHAM PTH = täglich mit Parathormon behandelte Kontrollgruppe
TSH = Thyreoidea-stimulierendes Hormon
WHO = World Health Organization
1 Einleitung

1.1 Einleitung und Fragestellung

Um dem Abbau von Knochen entgegenzuwirken, hat sich als Therapieoption mit nachgewiesener osteoanaboler Wirkung die intermittierende tägliche Applikation von Parathormon vor allem bei Patienten mit hohem Frakturrisiko als wirksam erwiesen. Die vorliegende Arbeit ging der Fragestellung nach, die Wirkung einer intermittierenden Parathormon-Therapie auf die Lendenwirbelsäule männlicher Ratten in Abhängigkeit vom Applikationsintervall zu untersuchen.
1.2 Grundlagen

1.2.1 Knochen

Der Knochen fungiert im menschlichen Organismus einerseits als Calciumreservoir, andererseits bildet er als Skelett die innere Stützstruktur und dient dem Schutz wichtiger Organe (Jundt 2004). Durch Umbau kann sich der Knochen an die äußeren Einflüsse anpassen (Schiebler und Korf 2007).

1.2.1.1 Zusammensetzung

1.2.1.2 Struktur

Die in der vorliegenden Arbeit untersuchten Wirbelkörper weisen den Aufbau von Lamellenknochen auf. Darüber hinaus zeigt sich ein Aufbau, bei dem eine oberflächliche Schicht kompakten Knochens ein schwammartiges Netzwerk feiner Knochenbälkchen umhüllt.

Der kompakte Anteil wird Substantia corticalis oder auch Kortikalis genannt. Die Kortikalis besteht aus Osteonen und Schaltlamellen. Ein Osteon (oder auch Havers-

1.2.1.3 Umbau

1.2.1.4 Calciumstoffwechsel

1.2.2 Osteoporose

1.2.2.1 Definition

„Osteoporose ist eine systemische metabolische Skeletterkrankung, die durch eine niedrige Knochenmasse und eine beeinträchtigte Mikroarchitektur des Knochengewebes gekennzeichnet ist“ (Consensus Development Conference 1993).

1.2.2.2 Epidemiologie

1.2.2.3 Einteilung

Tabelle 1: Einteilung der Osteoporose

<table>
<thead>
<tr>
<th>Ursache</th>
<th>primär / sekundär</th>
</tr>
</thead>
<tbody>
<tr>
<td>Befallmuster</td>
<td>lokalisiert / generalisiert</td>
</tr>
<tr>
<td>Alter und Geschlecht</td>
<td>idiopathischer juveniler Osteoporose, idiopathischer Osteoporose junger Erwachsener, postmenopausaler Osteoporose (Typ I), seniler Osteoporose (Typ II)</td>
</tr>
<tr>
<td>Schweregrad</td>
<td>Osteopenie, präklinische Osteoporose, manifeste Osteoporose</td>
</tr>
<tr>
<td>Metabolismus</td>
<td>high-turnover / low-turnover</td>
</tr>
</tbody>
</table>

1.2.2.4 Pathogenese

Tabelle 2: Faktoren, die zur Entwicklung von Osteoporose beitragen

<table>
<thead>
<tr>
<th>Hypogonadismus</th>
<th>Diabetes Mellitus</th>
<th>anti-androgene Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorexia nervosa</td>
<td>Mangelernährung</td>
<td>Aromatase-Hemmern</td>
</tr>
<tr>
<td>später Menarche</td>
<td>Untergewicht</td>
<td>Protonenpumpenhemmern</td>
</tr>
<tr>
<td>Pubertas tarda</td>
<td>Rauchen</td>
<td>Glucocorticoidtherapie</td>
</tr>
<tr>
<td>Wachstumshormonmangel</td>
<td>Immobilität</td>
<td>Glitazone</td>
</tr>
<tr>
<td>Vitamin-D-Mangel</td>
<td>Epilepsie</td>
<td>Gastrektomien</td>
</tr>
<tr>
<td>Hyperkortisolismus</td>
<td>Rheumatoide Arthritis</td>
<td>Billroth-II-Magenresektionen</td>
</tr>
<tr>
<td>Hyperthyreose</td>
<td>Hyperparathyreoidismus</td>
<td>vermindert Calciumzufuhr</td>
</tr>
</tbody>
</table>

Da in der vorliegenden Arbeit die Wirkung von Parathormon untersucht wird, soll im folgenden auf den primären *Hyperparathyreoidismus* eingegangen werden. Dabei kommt es durch ein Adenom der Nebenschilddrüse zur kontinuierlichen, inadequat erhöhten Parathormon-Sekretion in Relation zur ebenfalls typischerweise erhöhten Calcium-Konzentration im Serum. Das Parathormon bindet an Rezeptoren auf Osteoblasten, welche daraufhin den RANK-Liganden (RANKL = Receptor Activator of NF-κB Ligand) exprimieren und in ihre Plasmamembran integrieren. Dieser RANK-Ligand bindet wiederum an den Rezeptor RANK (Receptor Activator of NF-κB),

1.2.2.5 Diagnostik

In der Altersgruppe Frauen älter als 70 Jahre und Männer älter als 80 Jahre wird generell eine Basisdiagnostik empfohlen, sofern dies für die betreffende Person eine therapeutische Konsequenz hat.

Zur empfohlenen Basisdiagnostik gehören eine Anamnese einschließlich der Erfassung des Sturzrisikos, der klinische Befund, eine DXA-Knochendichtemessung an der Lendenwirbelsäule, dem Schenkelhals und dem proximalen Gesamtfemur und ein Basislabor sowie gegebenenfalls eine bildgebende Diagnostik zur Überprüfung prävalenter Wirbelkörperfrakturen.

Die Knochendichtemessung dient einerseits der Überprüfung, ob nach den Kriterien der WHO (World Health Organization) eine Osteoporose bereits vorliegt (T-Wert ≤ -2,5) oder ob die Kriterien für den Beleg der Wirksamkeit einer Osteoporosetherapie erfüllt sind. Außerdem erfasst die Knochendichtemessung auch das Ausmaß der

Labordiagnostische Untersuchungen dienen einerseits der Differentialdiagnostik sekundärer Osteoporoseformen und anderer Osteopathien wie z.B. Osteomalazie, andererseits dienen sie der Erkennung vorliegender Risikofaktoren.

1.2.2.6 Therapie

Allgemeine therapeutische und prophylaktische Maßnahmen

Indikationsstellung zur spezifischen medikamentösen Therapie der Osteoporose

Tabelle 3: Alters- und geschlechtsabhängige Grenzwerte der Knochendichte.

<table>
<thead>
<tr>
<th>Lebensalter in Jahren</th>
<th>T-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frau</td>
<td>Mann</td>
</tr>
<tr>
<td><60</td>
<td><70</td>
</tr>
<tr>
<td>60-65</td>
<td>70-75</td>
</tr>
<tr>
<td>65-70</td>
<td>75-80</td>
</tr>
<tr>
<td>70-75</td>
<td>80-85</td>
</tr>
<tr>
<td>>75</td>
<td>>85</td>
</tr>
</tbody>
</table>

Quelle: DVO-Leitlinie 2014, die Verwendung erfolgt mit freundlicher Genehmigung des Dachverbandes Osteologie

Das Vorliegen eines der folgenden 3 Risikofaktoren erhöht den Grenzwert um 1.0:
- Glucocorticoidtherapie oral zwischen 2,5 und 7,5 mg/d Prednisolonäquivalent
- Diabetes mellitus Typ 1
- mehr als drei niedrigtraumatische Frakturen in den letzten zehn Jahren als Einzelfallentscheidung (DVO-Leitlinie 2014).

Das Vorliegen eines der in der folgenden Tabelle 4 dargestellten spezifischen Risikofaktoren erhöht dabei den Grenzwert um 0.5, das Vorliegen mehrerer Risikofaktoren erhöht dabei den Grenzwert um 1.0 bis zu einem maximalen Grenzwert von -2.0.
Tabelle 4: Spezifische Risikofaktoren zur Indikationsstellung einer spezifischen medikamentösen Osteoporosetherapie.

<table>
<thead>
<tr>
<th>Allgemeine Risiken</th>
<th>Krankheiten</th>
<th>Medikamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichtvertebrale Frakturen nach dem 50.Lebensjahr</td>
<td>Subklinischer Hyperkortisolismus</td>
<td>Antiandrogene Therapie</td>
</tr>
<tr>
<td>Singuläre Wirbelkörperfraktur I.Grades</td>
<td>Primärer Hyperparathyreoidismus</td>
<td>Aromatasehemmer</td>
</tr>
<tr>
<td>Proximale Femurfraktur eines Elternteils</td>
<td>Wachstumshormonmangel / Hypophyseninsuffizienz</td>
<td>Orale Glucocorticoide</td>
</tr>
<tr>
<td>Multiple Stürze</td>
<td>TSH-Werte < 0,3 mU/l</td>
<td>Hohe Dosen inhalativer Glucocorticoide</td>
</tr>
<tr>
<td>Immobilität</td>
<td>Diabetes Mellitus Typ 1</td>
<td>Chronische Einnahme von Protonenpumpeninhibitoren</td>
</tr>
<tr>
<td>Fortgesetzter Nikotinkonsum</td>
<td>Rheumatoide Arthritis</td>
<td></td>
</tr>
<tr>
<td>Abnahme der Knochendichte am Gesamtfemur >5% in 2 Jahren</td>
<td>Billroth-II-Operation, Gastrektomie</td>
<td></td>
</tr>
<tr>
<td>Erhöhte Knochenumbauparameter (Einzelfallentscheidung)</td>
<td>Epilepsie</td>
<td></td>
</tr>
<tr>
<td>Erhöhtes Hochsensitives C-reaktives Protein</td>
<td>Hypogonadismus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COPD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herzinsuffizienz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zöliakie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spondylitis Ankylosans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperthyreose</td>
<td></td>
</tr>
</tbody>
</table>

Zugelassene Präparate zur spezifischen medikamentösen Therapie der Osteoporose beim Mann

Da in der vorliegenden Arbeit in Form von Teriparatid ein Parathormon-Analogon untersucht wurde, wird im Abschnitt 1.2.4 ausführlicher auf diese Wirkstoffgruppe eingegangen.

1.2.2.7 Osteoporose beim Mann

Wie bereits erwähnt, sind deutlich mehr Frauen von Osteoporose betroffen als Männer, deshalb überwiegt auch der Anteil an Studien, die sich mit weiblichen Probanden beschäftigen. Umgekehrt befassen sich deutlich weniger Probandenstudien und tierexperimentelle Studien mit der Osteoporose beim männlichen Geschlecht.

Die Pathogenese der Osteoporose beim Mann ist ein multifaktorielles Geschehen, welches bisher noch unzureichend erforscht ist.

Welche Rolle die männlichen Sexualhormone bei der Entstehung von Osteoporose spielen, ist zurzeit noch Gegenstand der Forschung. Östrogenmangel ist als wesentlicher Grund für die Entstehung der postmenopausalen Osteoporose ausgemacht worden. Beim Mann lässt sich jedoch nicht in demselben Maße wie bei Frauen eine Abnahme des Testosteronspiegels mit zunehmendem Lebensalter feststellen. Studien, darunter
1.2.3 Das Tiermodell „orchiektomierte Ratte“ in der Osteoporoseforschung

Das in der vorliegenden Versuchsreihe verwendete Tiermodell mit orchiektomierten Ratten stellt eine etablierte und anerkannte Methode in der Osteoporoseforschung dar und findet weitgehend Verwendung, da es analog zur ovariektomierten Ratte auch bei männlichen Ratten nach einer Orchiektomie zum Verlust von Knochensubstanz kommt (Schot und Schuurs 1990). Die Verwendung von adulten Tieren folgt dabei Erkenntnissen von Wink und Felts, die nahe legen, dass diese zur Untersuchung eines orchiektomie-induzierten Knochenmasseverlusts eher geeignet sind als juvenile Tiere (Wink und Felts 1980).

Als Nachteil des Rattentiermodells muss angeführt werden, dass sich der kortikale Aufbau der Rattenknochen insbesondere durch das stark verminderte Vorkommen von Havers-Kanälen vom Menschen unterscheidet (Jowsey 1966; Singh et al. 1974). Dennoch wird das Rattentiermodell als geeignet für die Osteoporoseforschung betrachtet (Lelovas et al. 2008).

1.2.4 Parathormon

1.2.4.1 Wirkung

Wie bereits im Vorangegangenen erläutert (siehe 1.2.1.4 und 1.2.2.4), führt eine kontinuierliche Expression von Parathormon zum Beispiel im Rahmen eines primären Hyperparathyreoidismus über eine Osteoblasten-Vorläuferzellen-vermittelte Stimulation der Osteoklasten zum Anstieg der Knochenresorption und trägt so zur Entstehung von Osteoporose bei (Christiansen 2001).

amerikanischen Studie mit 1637 Probanden eine Senkung des Frakturrisikos
demonstriert werden (Neer et al. 2001; Prevrhal et al. 2009).

1.2.4.2 Applikationsintervall und anabolic window

Eine Abfolge von knochenaufbauenden Effekten mit ansteigenden
Knochenaufbaumarkern und eine Phase des Knochenabbaus mit ansteigenden
Knochenresorptionsmarkern hat zu der Vorstellung des anabolic window geführt,
während der die osteoanabolen Effekte der intermittierenden Parathormonbehandlung
überwiegen und es in der Gesamtbilanz zum Knochenaufbau kommt (Girotra et al.
2006).

Am Menschen konnte in einer relativ kleinen Studie an 30 postmenopausalen Frauen als
Effekt einer einzelnen Applikation von Teriparatid ein unmittelbarer transierter Anstieg
osteokataboler Parameter beobachtet werden, gefolgt von einem Anstieg der
osteoanabolen Parameter, der länger als eine Woche anhielt (Shiraki et al. 2013).

Der Verlauf der Knochenaufbaumarker und der Knochenresorptionsmarker scheint
abhängig vom Applikationsintervall zu sein, da unterschiedliche Verläufe für die
einmalige (Shiraki et al. 2013), tägliche (Glover et al. 2009) und wöchentliche Gabe von

Sowohl für die tägliche Gabe (Neer et al. 2001) als auch für die wöchentliche Gabe von
Parathormon (Nakamura et al. 2012) konnte eine Senkung des Frakturrisikos
demonstriert werden, wobei bisher die wöchentliche Gabe vorwiegend auf den
japanischen Sprachraum beschränkt bleibt, während in Europa und den USA nur die
tägliche Gabe zugelassen ist.

1.2.4.3 Nebenwirkungen

Übelkeit und Kopfschmerzen sind die am häufigsten beschriebenen Nebenwirkungen
einer Behandlung mit Teriparatid. So berichteten von 552 Frauen, welche eine tägliche
Dosierung von 40 μg/kg erhielten, 18% über Übelkeit und 13% über Kopfschmerzen,
während in der Placebo-Gruppe jeweils nur 8% über die genannten Symptome
berichteten (Neer et al. 2001).

Weitere unerwünschte Nebenwirkungen umfassten Schwindel und Wadenkrämpfe
(Neer et al. 2001).

Da die physiologische Wirkung von Parathormon die Bereitstellung von Calcium
beinhaltet, liegt es nahe, dass bei der pharmakologischen Verwendung von Parathormon
die Gefahr der Hyperkalzämie und Hyperkalzurie besteht (Cipriani et al. 2012).

Eine transiente Hyperkalzämie wird häufig wenige Stunden nach Injektion von
Teriparatid beobachtet (Neer et al. 2001). Diese milde Hyperkalzämie ist in der Regel

1.3 Ziel der Arbeit

Ziel der vorliegenden Arbeit war es, die Wirkung einer intermittierenden Parathormon-Therapie auf die Lendenwirbelsäule in einem Osteoporose-Tiermodell männlicher Ratten in Abhängigkeit vom Applikationsintervall zu untersuchen.

Zurzeit ist für die Therapie mit Parathormon eine tägliche subkutane Injektion des Medikaments vorgesehen. In der vorliegenden Arbeit wurde untersucht, ob auch eine Injektion alle zwei Tage einen ausreichenden therapeutischen Effekt erzielen kann. Durch eine Reduktion des Applikationsintervalls könnten möglicherweise die Nebenwirkungsrate und sicherlich die Kosten einer Behandlung mit Teriparatid gesenkt werden.
2 Material und Methoden

2.1 Versuchstiere und Bedingungen der Tierhaltung

2.2 Versuchsablauf

2.2.1 Orchiekтомie

Die Orchiekтомie der männlichen Ratten erfolgte unter einer Narkose mit intraperitoneal appliziertem Ketamin (60 mg/kg KG, Medistar, Holzwickede, Deutschland) und Xylazin (8 mg/kg KG, Riemser, Greifswald, Deutschland). Zunächst wurde jede Ratte Kohlenstoffdioxid-Gas ausgesetzt und darauf folgend bei eingetretener Bewusstlosigkeit durch die intraperitoneale Injektion der o.g. Substanz narkotisiert. Den Versuchstieren wurden 1ml Blut per retroorbitaler Punktion entnommen, wovon 300μl Serum zur Bestimmung der Testosteronkonzentration dienten. Die Ergebnisse der Blutuntersuchung waren Bestandteil der Arbeit von Thomas Brandsch (Brandsch 2011).

2.2.2 Osteotomie
Zwölf Wochen nach erfolgter Orchiektomie wurden alle Tiere einer bilateralen metaphysären Osteotomie der Tibia unterzogen (Stuermer et al. 2010). Die knöcherne Heilung nach dieser Osteotomie wurde im Rahmen einer weiteren Dissertationsschrift untersucht (Brandsch 2011), ebenfalls wurden die Ergebnisse für eine wissenschaftliche Publikation in einer Fachzeitschrift genutzt (Komrakova et al. 2011). Die Narkose erfolgte erneut unter CO₂-Sedierung mit intraperitoneal injiziertem 60 mg/kg KG, Medistar, Holzwiede, Deutschland) und Xylazin (8 mg/kg KG, Riemser, Greifswald, Deutschland). Außerdem erhielten die Versuchstiere subkutan einmalig postoperativ Decentan (5mg/kg KG, Merck, Darmstadt, Deutschland) und zur perioperativen Analgesie Rimadyl (4mg/kg KG s.c., Pfizer, Karlsruhe, Deutschland). Perioperativ verstarben weitere 6 Tiere an Narkosekomplikationen. Zur Untersuchung des neu formierten Kallus wurden den Tieren fluoreszierende Farbstoffe injiziert (Rahn 1976): am dreizehnten postoperativen Tag Xylenol Orange (90 mg/kg KG, Best. Nr. 1.08677, Merck, Darmstadt, Deutschland), am 18. Tag Calcein Grün (10 mg/kg KG, Best. Nr. 1.02315, Merck, Darmstadt, Deutschland) und Alizarin Rot (30 mg/kg KG, Best. Nr. 1.01010, Merck, Darmstadt, Deutschland) am 22. und 24. Tag. Fünf Wochen nach der Operation wurde eine Stunde vor der Dekapitation der Tiere noch Tetracyclin (25 mg/kg KG, Best. Nr. 58346, Merck, Darmstadt, Deutschland) injiziert. Alle Injektionen fanden subkutan statt. Die Analyse dieser polychromen Fluoreszenzmarkierung war ebenfalls Bestandteil der Arbeit von Thomas Brandsch (Brandsch 2011).

2.2.3 Behandlung mit Parathormon
Nach der Osteotomie wurden die Ratten in fünf Gruppen mit jeweils mindestens zehn Tieren aufgeteilt. Eine Kontrollgruppe (SHAM) und eine orchiektomierte Gruppe (ORX) erhielten täglich 0,9% NaCl-Lösung. Eine Kontrollgruppe (SHAM PTH) sowie eine weitere orchiektomierte Gruppe (ORX PTH) erhielten täglich Parathormon in einer Dosis von 40 µg/kg Körpergewicht (KG). Eine letzte Gruppe von orchiektomierten Versuchstieren (ORX PTH/2d) erhielt jeden zweiten Tag Parathormon in einer Dosis von 40 µg/kg KG.
2.2.4 Versuchsende und Entnahme der Wirbelkörper

2.3 Biomechanischer Kompressionstest

Der mechanische Kompressionstest an ganzen Wirbelkörpern dient der biomechanischen Untersuchung und zeigt dabei, welche Kraft aufgebracht werden muss, um den Wirbelkörper elastisch oder plastisch zu verformen. Die dabei gemessenen Parameter ermöglichen Aussagen über die tatsächlichen biomechanischen Eigenschaften der Wirbelkörper und geben somit Anhalt für die antiosteoporotische Potenz der untersuchten Wirkstoffregime (Erren 2009; Sehmisch et al. 2009b).

2.3.1 Vorbereitung

Drei Stunden vor Testbeginn wurden die zu untersuchenden 4. Lendenwirbelkörper (LWK) der Ratten des Tierversuchs bei Raumtemperatur aufgetaut und mit 0,9% Kochsalzlösung feucht gehalten. Danach wurden die LWK in einer Bruchvorrichtung fixiert, um dorso-ventrales so wie laterales Verrutschen unter axialer Kompression zu verhindern. Dazu wurde das Corpus vertebrae des LWK mit seiner Deckplatte auf der schrägen Fläche der oben genannten Bruchvorrichtung platziert. Sodann wurde der Processus spinosus mit einer arretierbaren Schleuse festgehalten.
2.3.2 Durchführung
Zunächst näherte sich der Stempel der Zwick-Testmaschine dem LWK, bis er Kontakt zur Bodenplatte des LWK erhielt und eine Vorkraft von 1 N aufgebaut war. Nachdem der Prüfer die korrekte Stellung von Wirbelkörper und Stempel visuell kontrolliert und optimiert hatte, begann die Kompressionsphase. Der sich mit einer Geschwindigkeit von 50 mm/min abwärts bewegende Stempel komprimierte das Corpus vertebrae, wobei alle 0,1 mm die aufgewendete Kraft von der Zwick-Testmaschine mit einer relativen Genauigkeit von 0,2-0,4% im Testbereich von 2 – 500 N ermittelt und mithilfe der „testXpert“-Software vom Computer eingelesen wurde. Vorgegebenes Testende war das Erreichen von 3 mm Kompressionsstrecke.

2.3.3 Messparameter

Abbildung 1: Kraft-Weg-Diagramm mit vereinfachter Darstellung des typischen Kurvenverlaufs beim biomechanischen Kompressionstest (modifizierte Abbildung nach Sehmisch et al. 2008, die Verwendung erfolgt mit freundlicher Genehmigung des Georg Thieme Verlags)
Beim biomechanischen Kompressionstest handelt es sich aus Sicht der Werkstoffprüfkunde um einen Druckversuch. Analog zu einem Zugversuch, bei dem der Prüfkörper in die Einspannvorrichtungen der Zugprüfmaschine bieungsfrei eingesetzt und durch eine steigende Zugkraft so lange gedehnt wird, bis der Bruch eintritt, wird beim Druckversuch die Kraft in entgegengesetzter, stauchender Richtung ausgeübt. Zunächst verformt sich die Probe elastisch (federnd) und reversibel, nach Entlastung stellt sich der ursprüngliche Zustand des Prüfkörpers wieder ein. Über die elastische Verformung hinaus einwirkende, größere Kräfte bewirken eine plastische (bleibende) und irreversible Verformung des Prüfkörpers (Weißbach 2010), siehe Abbildung 1.

Maximalkraft

Bei der Maximalkraft handelt es sich um den höchsten Kraftwert, der während eines einzelnen Bruchversuchs gemessen wurde. Die Maximalkraft ist messtechnisch einfach abzulesen, sie entspricht jedoch nicht der Kraft, bei der der Knochen bricht (siehe Bruchkraft) (Stürmer et al. 2006). In einem Zugversuch ließe sich anhand der Maximalkraft die Gleichmaßdehnung bestimmen. Gleichmaßdehnung bedeutet, dass bis zum Erreichen der Maximalkraft am Prüfkörper keine Einschnürung entsteht, stattdessen dehnt sich der Prüfkörper gleichmäßig (Weißbach 2010). Diese Gleichmaßdehnung lässt sich jedoch nicht auf den Druckversuch übertragen, da hier reibungsbedingt keine Gleichmaßstauchung vorliegt.

Steigung

Im anfänglich annähernd linear verlaufenden Abschnitt des Kraft-Weg-Graphen wird die Steigung des Graphen bestimmt. Während dieser Phase des Bruchversuchs wird der Wirbelkörper elastisch verformt (Sehmisch et al. 2009b). Sie entspricht der Steifigkeit der Wirbelkörper und wird in N/mm angegeben. Steifigkeit beschreibt den Widerstand eines Körpers gegen elastische Verformungen im linearen Bereich.

Bruchkraft

Die Bruchkraft (oder auch Bruchlast) definiert sich durch den Kraftabfall, der auftritt, wenn das Maximum der Kraft überschritten ist, bei der sich der Wirbelkörper noch elastisch verformt. Sie wurde im wieder abfallenden Abschnitt des Kraft-Weg-Graphen jenseits seines Scheitelpunktes bestimmt als der Punkt, an dem die relative Kraftabnahme im Vergleich zum unmittelbar vorherigen Messwert stark zunimmt (Stürmer et al. 2006; Erren 2009).
yield load

Die *yield load*, auch Elastizitätsgrenze genannt, bezeichnet den Kraftwert, ab dem die elastische Verformung des Wirbelkörpers in plastische Verformung übergeht. Bestimmt wurde die *yield load* als der Punkt, ab dem der Kraft-Weg-Graph nicht mehr linear verläuft und seine Steigung abflacht. Sie wird definiert als der Punkt, an dem der Kraft-Weg-Graph den Bereich der doppelten Standardabweichung der Regressionsgraden verlässt (Stürmer et al. 2006; Sehmisch et al. 2009b).

2.3.4 Benutzerspezifische Validierung der Messungen

2.4 Veraschung

2.4.1 Bestimmung des Anteils der organischen und anorganischen Knochensubstanz

2.4.2 Bestimmung des Calcium- und Phosphatgehaltes der Knochensubstanz

Zunächst mussten die mit einem Mörser zerstoßenen Glührückstände per Säureaufschluss mit Zitronensäure-Citrat-Puffer (pH 3,0) suspendiert werden (Knappwost und Matouschek 1967). Dazu wurden 50 mg genau abgewogen und mit 200 ml Zitronensäure-Citrat-Puffer pH 3,0 versetzt. Diese Lösung wurde in einem Rundkolben mit Rückflusskühler zum Sieden gebracht und unter Rückfluss drei Stunden sieden gelassen, so dass die Lösung nach dem Säureaufschluss klar war und keine Opaleszenz zeigte. Die Aufschlusslösung wurde in einen Messkolben überführt und dort auf 1000 ml aufgefüllt. Anschließend wurden 5 ml aus dem 1000 ml Messkolben in einen 100 ml Messkolben überführt und dort auf 100 ml aufgefüllt, um die Lösung 1:20 zu verdünnen.

Die Bestimmung des Calciumgehaltes erfolgte durch Flammatomabsorptionspektroskopie (DIN EN ISO 7980:2000) nach Zugabe von Lanthanchlorid als Matrix-Modifier mit Luft-Acetylen-Flamme im Zerstäuber des Atomabsorptionspektrometers (FIAS 4100, Perkin-Elmer, Rodgau, Deutschland), wobei die Extinktion der durch Calcium verursachten Flammfärbung bei einer Wellenlänge von 422,7 nm bestimmt wurde. Dazu wurde zunächst das Atomabsorptionsspektrometer mit einer Verdünnungsreihe mit bekannten Calciumkonzentration (0.1, 0.2, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0 mg /L) geeicht. Im Anschluss wurde je 5 ml der 1:20 verdünnten Aufschlusslösung der einzelnen Versuchstiere in das Autosampler-Rack pipettiert und die Extinktion gemessen. Das Atomabsorptionsspektrometer konnte nun anhand der vorherigen Eichung mit der Verdünnungsreihe die Calciumkonzentration in mg / L errechnen und als Messwert ausgeben.

(Spektralphotometer DM4, Zeiss, Deutschland) ermittelt wurde, wobei destilliertes Wasser als Blindprobe diente. Mithilfe einer Abgleichgeraden, die durch Messung der Extinktion einer Verdünnungsreihe einer Phosphat-Standardlösung im Konzentrationsintervall 0,0 bis 5,0 mg/l bestimmt wurde, konnte der Phosphatgehalt der Proben berechnet werden.

2.5 Mikroradiographie

Die Analyse der Mikroradiographien dient der morphologischen Charakterisierung der untersuchten Wirbelkörper, wobei unter anderem die Anzahl der Trabekel und die Dicke der Kortikalis bestimmt werden können. Diese Parameter geben indirekt Aufschluss über die biomechanischen Eigenschaften der untersuchten Wirbelkörper.

2.5.1 Histologische Aufarbeitung und Anfertigung der Mikroradiographien

Die präparierten ersten Lendenwirbelkörper der Versuchstiere wurden zunächst in einer aufsteigend konzentrierten Alkoholreihe entwässert und entfettet, wobei sie jeweils sieben Tage zunächst in 40% Alkohol, dann in 70, 80 und schließlich 100% Alkohol lagerten. Nach einer weiteren Einlagerung in einer Mischung aus zur einen Hälfte 100% Ethanol und zur anderen Hälfte Methylmethacrylat folgte die definitive Einbettung und Aushärtung drei Wochen in einem Gemisch aus 1000 ml Methylmethacrylat, 200 ml Dibutylphthtalat und 29 g Benzoylperoxid. Um Schnittpräparate in der Sagittalebene der Wirbelkörper zu erhalten, wurden die ausgehärteten Kunststoffblöcke mit einer speziellen Innenlochsäge (Leica SP 1600 Sägemikrotom, Leica Biosystems Nussloch GmbH, Nussloch, Deutschland) in 150 (+/- 20) µm dicke Schichten getrennt. Unter Verwendung eines langsamen Industriefilms (Kodak Professional Film, INDUSTREX SR45 Film, Eastman Kodak Company, Rochester, USA) wurden die Schnittpräparate mit einer Belichtungszeit von 6 Minuten bei einer Röhrenspannung von 40 kV und einer Stromstärke von 0,3 mA im Faxitron Röntgengerät (Faxitron Cabinet X-ray Systems Model 43855A, Hewlett Packard, San Diego, USA) geröntgt. Die entstandenen Mikroradiographien wurden fixiert, staubfrei getrocknet, beschriftet und archiviert.

2.5.2 Einlesen der Mikroradiographien

unter Verwendung des 1,0er Objektivs mit einem 10,0er Okular (zusammen 10-fache Vergrößerung) und mit einer konstanten Belichtungszeit von 600 ms eingelesen und auf einem Rechner (Intel Pentium 4, 2,6 GHz) mithilfe einer Software (Leica Quantimet QWin 2003, Leica Microsystems GmbH, Wetzlar, Deutschland) ausgewertet.

2.5.3 Auswertung der Mikroradiographien

2.5.4 Benutzerspezifische Validierung der Messungen

Um den Einfluss benutzerspezifischer Lerneffekte und Ungenaugkeiten zu minimieren, erfolgte zunächst eine Validierung der Messgenauigkeit. Dazu untersuchte der Benutzer an fünf verschiedenen Tagen immer wieder dieselben fünf zuvor randomisierte ausgewählten Sagittalschnitte von fünf verschiedenen Lendenwirbelkörpern, wobei für keinen Messparameter die akzeptierte Schwankungsbreite von 5% überschritten wurde.

2.5.5 Messparameter der Mikroradiographie

Kortikalisdicke ventral: Anhand des arithmetischen Mittels der zehn Vektoren wird die durchschnittliche Dicke von Periost zu Endost der ventral gelegenen Kortikalisanteile ermittelt

Kortikalisdicke dorsal: Das arithmetische Mittel der zehn Vektoren ergibt die durchschnittliche Dicke von Periost zu Endost der dorsal gelegenen Kortikalisanteile

Kortikalisfläche: Fläche, die von Periost und Endost eingerahmt wird

Knochendichte Kortikalis: Anteil der Kortikalisfläche, der nach Graudetektion als Knochen erkannt wird in Prozent

Knochendichte Trabekel: Anteil der Trabekelfläche, der nach Graudetektion als Knochen erkannt wird in Prozent

Anzahl Trabekelkreuzungen: absolute Anzahl der Kreuzungspunkte von Trabekelarmen innerhalb der Trabekelfläche

Dichte Trabekelkreuzungen: mittlere Anzahl der Kreuzungspunkte von Trabekelarmen pro mm²; gemessen nur innerhalb der Trabekelfläche

mittlere Trabekeldicke: durchschnittliche Dicke aller erfassten Trabekel

2.6 Flächendetektor-Volumen-Computertomographie (fpVCT)

Die Analyse der durch die fpVCT gewonnenen Daten ermöglichen im Unterschied zu den Daten der Mikroradiographie auch eine Bestimmung volumetrischer Parameter.

2.6.1 Prinzip der fpVCT

Bei der Flächendetektor-Volumen-Computertomographie (Englisch: flat-panel volume computed tomography, kurz: fpVCT) handelt es sich um eine Weiterentwicklung der Computertomographie, bei der anstelle der zur Zeit im klinischen Gebrauch üblichen Mehrzeildetektoren Flächendetektoren zum Einsatz kommen, die eine hohe Ortsauflösung ermöglichen. Diese liegt mit 3,6 LP/mm (Linienpaare/mm) im Submillimeterbereich und ist geeignet für die experimentelle Anwendung im Rahmen der Osteoporoseforschung zur Abbildung und Messung von Knochenstruktur und
Knochendichte (Sehmisch et al. 2009a; Sehmisch et al. 2009c). Ergänzt wird diese Technik durch Volumen-Rendering-Verfahren, wie sie bereits auch an „konventionellen“, im klinischen Alltag gebräuchlichen CT-Geräten verwendet werden und welche die Entwicklung aus dem früheren Schichtbildgebungsverfahren in ein Volumenbildgebungsverfahren befördert haben (Valencia et al. 2006). Bei dem in der vorliegenden Arbeit verwendeten CT-Gerät handelt es sich um denselben Prototyp der Firma General Electrics Global Research (Niskayuna, USA), der auch von Valencia et al. 2006 verwendet wurde. Bestandteile sind eine modifizierte, zirkuläre CT-Gantry und zwei Flächendetektoren aus amorphem Silizium, je 20,5 x 20,5 cm² mit einer Matrix aus 1024x1024 Detektoelementen, welche wiederum je 200x200 µm² groß sind (Valencia et al. 2006).

2.6.2 Scannen der Ratten im Flächendetektor-Volumen-Computertomographen

Im fpVCT (Prototyp der Firma General Electrics Global Research, Niskayuna, USA) wurden die Rattenwirbelsäulen einzeln gescannt, wobei 80 kV (Härte der Strahlung), 100 mA (Menge der Röntgenquanten) und 8 s Rotationszeit als Scanparameter gewählt wurden.

2.6.3 Phantom

Das zur Kalibrierung verwendete Phantom wurde bei jeder Aufnahme mitgescannt. Es war mit drei Kammern ausgestattet, die Hydroxylapatit enthielten, ein knochenähnliches Material mit bekannter Massendichte. Mithilfe des Phantoms konnte man den beim Scannen ermittelten Hounsfield-Werten eine Massendichte zuordnen und so absolute Dichtewerte in mg/cm³ errechnen (Klüver 2007; Grüger 2014).

2.6.4 Knochendensitometrie

Die Wirbelsäulenscans wurden an einer Workstation (Advantage Windows 4.2, General Electric Health Care, Milwaukee, USA) mit dem Volume Viewer (Voxtool 3.0.64u) im Volume Rendering Modus (Layout Presets: RatB Density) bearbeitet. Der zweite Lendenwirbelkörper wurde ohne die knöchernen Fortsätze über die „Region Cut“-Funktion aus der restlichen Wirbelsäule ausgeschnitten. Durch die „Threshold“-Funktion wurde ein unterer Schwellenwert von 160 festgelegt. Mithilfe einer „Erode“-

Nun konnten aus dem Histogramm für jeden Messbereich getrennt der Mittelwert, die Standardabweichung, das Maximum und das Minimum der Strahlenschwächung sowie das Volumen abgelesen werden (Klüver 2007; Grüger 2014).

2.6.5 Messparameter der fpVCT

Knochendichte gesamt: Die durch den gesamten Wirbelkörper verursachte Strahlenschwächung wurde als CT-Zahl gesamt in Hounsfieldunits (HU) gemessen. Diese wurden zur besseren Vergleichbarkeit in die Knochendichte (mg/mm\(^3\)) umgerechnet (Vergleiche Grüger 2014).

Knochendichte Kortikalis: Analog der Knochendichte gesamt wurde die durch den kortikalen Anteil des Wirbelkörpers verursachte Strahlenschwächung in Hounsfieldunits (HU) gemessen und in die Knochendichte (mg/mm\(^3\)) umgerechnet.

Knochendichte Spongiosa: Analog der Knochendichte gesamt wurde die durch den trabekulären Anteil des Wirbelkörpers verursachte Strahlenschwächung in Hounsfieldunits (HU) gemessen und in die Knochendichte (mg/mm\(^3\)) umgerechnet.

Volumen Wirbelkörper: Volumen des gesamten Wirbelkörpers, angegeben in Kubikzentimern (cm\(^3\)).

Volumen Kortikalis: Volumen der kortikalen Anteile des Wirbelkörpers, angegeben in Kubikzentimern (cm\(^3\)).

Volumen Spongiosa: Volumen der trabekulären Anteile des Wirbelkörpers, angegeben in Kubikzentimern (cm\(^3\)).

Volumenanteil Kortikalis: Volumenanteil der Kortikalis am Gesamtvolumen der Wirbelkörper, angegeben in Prozent (%).
Volumenanteil Spongiosa: Volumenanteil der trabekulären Knochenanteile am Gesamtvolumen der Wirbelkörper, angegeben in Prozent (%).

2.7 Statistik

Zur statistischen Auswertung der ermittelten Messwerte wurde die Software GraphPad Prism (Version 4.00, April 2003, GraphPad Software Inc., La Jolla, USA) benutzt. Dabei wurden zunächst das arithmetische Mittel, die Standardabweichung und der Standardfehler des Mittelwertes (SEM) für jede Versuchsgruppe getrennt bestimmt. Um statistisch signifikante Unterschiede zwischen den Versuchsgruppen zu ermitteln, wurde eine einfache Varianzanalyse (one-way ANOVA) durchgeführt. Als post-hoc Test diente ein Tukey-Kramer Test zur Verifizierung der vorher ermittelten Signifikanzen. Zur Auswertung wurde das Signifikanzniveau mit $\alpha < 0,05$ festgelegt. Mithilfe einer Pearson-Korrelation wurden die statistischen Zusammenhänge zwischen den Messwerten des biomechanischen Kompressionstests und den Messwerten der Veraschung, der fpVCT und der Mikroradiographie untersucht. Der dabei ermittelte Korrelationskoeffizient „r“ ist ein Maß für den Grad eines linearen Zusammenhanges und nimmt Werte zwischen +1 und -1 an. Für die vorliegende Arbeit wird definiert, dass bei Werten zwischen 0,2 und 0,5 oder -0,5 und -0,2 von einer schwachen Korrelation auszugehen ist. Werte zwischen 0,5 und 0,8 sowie zwischen -0,8 und -0,5 sind Ausdruck einer mittelstarken Korrelation. Liegt der Korrelationskoeffizient zwischen 0,8 und 1 beziehungsweise zwischen -1 und -0,8, kann eine hohe bis perfekte (für $r = +1$ oder -1) Korrelation angenommen werden.
3 Ergebnisse

3.1 Körpergewicht und Nahrungsaufnahme der Versuchstiere

3.1.1 Körpergewicht

Das Körpergewicht der orchiektomierten Ratten (ORX, ORX PTH und ORX PTH/2d) war im Vergleich mit SHAM und SHAM PTH ab der achten Versuchswoche bis zum Versuchsende geringer. Ab der zweiten bis zur achten Versuchswoche zeichnete sich dieser Trend bereits ab, so dass hier zwischen SHAM und allen orchiektomierten Gruppen (ORX, ORX PTH und ORX PTH/2d) sowie zwischen SHAM PTH und den ORX-Gruppen ORX und ORX PTH/2d signifikante Unterschiede bestanden. Das Körpergewicht der orchiektomierten Tiere verringerte sich in der ersten Woche nach der Orchiektomie, um in den folgenden Wochen wieder ungefähr auf das Ausgangsniveau anzusteigen. Das Körpergewicht der SHAM-Tiere stieg hingegen bis zur Osteotomie ab.

Abbildung 2: Entwicklung des durchschnittlichen Körpergewichts in Gramm (g), aufgeteilt nach Versuchsgruppen. (*) Zwischen allen SHAM-Gruppen und allen ORX-Gruppen sind die Unterschiede signifikant. (♯) SHAM und alle ORX-Gruppen unterscheiden sich signifikant. Außerdem unterscheidet sich SHAM PTH signifikant von ORX und ORX PTH/2d (p<0,05).

Tabelle 5: Mittelwert und Standardabweichung des Körpergewichts der Versuchstiere zu ausgewählten Zeitpunkten des Versuchs.

<table>
<thead>
<tr>
<th></th>
<th>Versuchsbeginn</th>
<th>Osteotomie</th>
<th>Versuchsende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAM</td>
<td>664,8 ± 62,2</td>
<td>719,8 ± 83,2</td>
<td>710,2 ± 78,7</td>
</tr>
<tr>
<td>ORX</td>
<td>609,8 ± 52,2</td>
<td>610,7 ± 58,8</td>
<td>603,3 ± 64,4</td>
</tr>
<tr>
<td>SHAM PTH</td>
<td>639,5 ± 81,9</td>
<td>650,6 ± 98,2</td>
<td>602,9 ± 74,3</td>
</tr>
<tr>
<td>ORX PTH</td>
<td>631,9 ± 55,3</td>
<td>698,4 ± 64,5</td>
<td>684,5 ± 64,5</td>
</tr>
<tr>
<td>ORX PTH/2d</td>
<td>601,1 ± 54,7</td>
<td>598,0 ± 68,7</td>
<td>586,7 ± 68,6</td>
</tr>
</tbody>
</table>

3.1.2 Nahrungsaufnahme

Abbildung 3: Nahrungsaufnahme in Gramm pro Tier und Tag, aufgeteilt nach Versuchsgruppen. (* Alle SHAM-Gruppen und alle ORX-Gruppen unterscheiden sich signifikant. (#) Zwischen ORX und allen anderen Gruppen sind die Unterschiede signifikant. (+) Zwischen SHAM und allen anderen Gruppen sind die Unterschiede signifikant (p<0,05).

In den ersten drei Wochen nahm die Nahrungszufuhr aller Ratten deutlich zu, gefolgt von einem signifikanten Rückgang der Nahrungsaufnahme in der vierten Woche. Im weiteren Verlauf blieb die tägliche Aufnahme von Futter konstant bis zum Zeitpunkt der
Osteotomie in der 13. Versuchswoche, innerhalb derer die Nahrungsaufnahme signifikant verringert war. In der folgenden Woche normalisierte sich der Futterkonsum der Ratten und blieb bis zum Ende des Versuchs ohne signifikante Veränderungen.

In den ersten acht Versuchswochen ergaben sich noch keine klaren und dauerhaften Unterschiede zwischen den einzelnen Versuchsgruppen. Mit zunehmender Versuchsdauer nahmen die orchiektomierten Tiere (ORX, ORX PTH und ORX PTH/2d), verglichen SHAM und SHAM PTH, signifikant weniger Nahrung zu sich. Die Behandlung mit PTH zeigte keinen Einfluss auf die tägliche Nahrungsaufnahme (Abbildung 3, Tabelle 6).

Tabelle 6: Mittelwert und Standardabweichung der täglichen Nahrungsaufnahme pro Versuchstier zu ausgewählten Zeitpunkten des Versuchs.

<table>
<thead>
<tr>
<th>Versuchsbeginn</th>
<th>Osteotomie</th>
<th>Versuchsende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAM</td>
<td>21,7 ± 1,16</td>
<td>31,8 ± 4,45</td>
</tr>
<tr>
<td>ORX</td>
<td>22,2 ± 1,39</td>
<td>27,4 ± 1,53</td>
</tr>
<tr>
<td>SHAM PTH</td>
<td>22,2 ± 1,48</td>
<td>22,4 ± 1,79</td>
</tr>
<tr>
<td>ORX PTH</td>
<td>13,9 ± 1,56</td>
<td>26,0 ± 2,57</td>
</tr>
<tr>
<td>ORX PTH/2d</td>
<td>21,0 ± 6,18</td>
<td>28,3 ± 8,19</td>
</tr>
</tbody>
</table>
3.2 Ergebnisse des biomechanischen Kompressionstests

3.2.1 Maximalkraft

Sowohl bei knochengesunden SHAM-Tieren als auch bei orchiektomierten Tieren konnte unter täglicher PTH-Gabe eine signifikant erhöhte Maximalkraft festgestellt werden (SHAM PTH zeigt signifikant höhere Werte als SHAM, ORX PTH zeigt signifikant höhere Werte als ORX). Auch die PTH-Gabe alle zwei Tage steigerte die Maximalkraft, der Unterschied zwischen ORX PTH/2d und ORX ist jedoch nicht signifikant. Die Orchiektomie hatte keinen signifikanten Effekt auf die Maximalkraft (kein signifikanter Unterschied zwischen SHAM und ORX). ORX PTH hatte im Vergleich mit SHAM signifikant höhere Messwerte und SHAM PTH zeigte signifikant höhere Werte als ORX, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 4, Tabelle 7).

Abbildung 4: Maximalkraft (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.

Tabelle 7: Messwerte für den Parameter „Maximalkraft“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Maximalkraft [N]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>252,4 ± 52,15</td>
<td>254,4 ± 45,79</td>
<td>337,7 ± 84,28</td>
<td>378,4 ± 37,21</td>
<td>317,5 ± 53,36</td>
</tr>
</tbody>
</table>
3.2.2 Bruchkraft

Bei knochengesunden SHAM-Tieren und bei orchiektomierten Tieren konnte unter täglicher PTH-Gabe eine signifikant erhöhte Bruchkraft festgestellt werden (SHAM PTH zeigt signifikant höhere Werte als SHAM, ORX PTH zeigt signifikant höhere Werte als ORX). Auch die PTH-Gabe alle zwei Tage steigerte die Bruchkraft, der Unterschied zwischen ORX PTH/2d und ORX ist jedoch nicht signifikant. Die Orchiektomie hatte keinen signifikanten Effekt auf die Bruchkraft (kein signifikanter Unterschied zwischen SHAM und ORX). ORX PTH hatte im Vergleich mit SHAM signifikant höhere Messwerte und SHAM PTH zeigte signifikant höhere Werte als ORX, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 5, Tabelle 8).

Abbildung 5: Bruchkraft (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p<0,05). n≥10 pro Gruppe.

Bei knochengesunden SHAM-Tieren und bei orchiektomierten Tieren konnte unter täglicher PTH-Gabe eine signifikant erhöhte Bruchkraft festgestellt werden (SHAM PTH zeigt signifikant höhere Werte als SHAM, ORX PTH zeigt signifikant höhere Werte als ORX). Auch die PTH-Gabe alle zwei Tage steigerte die Bruchkraft, der Unterschied zwischen ORX PTH/2d und ORX ist jedoch nicht signifikant. Die Orchiektomie hatte keinen signifikanten Effekt auf die Bruchkraft (kein signifikanter Unterschied zwischen SHAM und ORX). ORX PTH hatte im Vergleich mit SHAM signifikant höhere Messwerte und SHAM PTH zeigte signifikant höhere Werte als ORX, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 5, Tabelle 8).

Tabelle 8: Messwerte für den Parameter „Bruchkraft“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruchkraft [N]</td>
<td>242,3 ± 15,82</td>
<td>248,6 ± 13,05</td>
<td>331,1 ± 24,99</td>
<td>372,1 ± 11,17</td>
<td>311,6 ± 15,64</td>
</tr>
</tbody>
</table>
3.2.3 Steigung

Die im Säulendiagramm (Abbildung 6) dargestellten Messwerte für den Parameter Steigung zeigen in der Varianzanalyse keine statistisch signifikanten Unterschiede (p<0,05) (Tabelle 9), tendenziell hatten jedoch alle mit PTH behandelten Gruppen höhere Messwerte als alle unbehandelten Gruppen.

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steigung [N/mm]</td>
<td>182,8 ± 74,45</td>
<td>194,4 ± 92,85</td>
<td>263,5 ± 102,9</td>
<td>247,1 ± 63,36</td>
<td>219,8 ± 73,22</td>
</tr>
</tbody>
</table>

Abbildung 6: Steigung (Mittelwerte und SEM). Die Mittelwerte unterscheiden sich nicht signifikant (p<0,05). n≥10 pro Gruppe.
Bei knochengesunden SHAM-Tieren und bei orchiektomierten Tieren konnte unter täglicher PTH-Gabe eine signifikant erhöhte *yield load* festgestellt werden (SHAM PTH zeigt signifikant höhere Werte als SHAM, ORX PTH zeigt signifikant höhere Werte als ORX). Auch die PTH-Gabe alle zwei Tage steigerte die *yield load*, der Unterschied zwischen ORX PTH/2d und ORX ist jedoch nicht signifikant. Die Orchiektomie hatte keinen signifikanten Effekt auf die *yield load* (kein signifikanter Unterschied zwischen SHAM und ORX). ORX PTH hatte im Vergleich mit SHAM signifikant höhere Messwerte und SHAM PTH zeigte signifikant höhere Werte als ORX und ORX PTH/2d, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 7, Tabelle 10).

Tabelle 10: Messwerte für den Parameter „yield load“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Load [N]</td>
<td>232,2 ± 50,86</td>
<td>238,8 ± 53,85</td>
<td>323,8 ± 101,9</td>
<td>375,5 ± 38,07</td>
<td>296,8 ± 59,47</td>
</tr>
</tbody>
</table>
3.2.5 Zusammenfassung der Ergebnisse des biomechanischen Kompressionstests

3.2.5.1 Durch Orchiektomie induzierte Effekte
Die Orchiektomie bewirkte bei keinem Parameter des biomechanischen Kompressionstests einen signifikanten Unterschied (ein signifikanter Unterschied zwischen ORX und SHAM ließ sich nicht feststellen (Abbildung 4-7).

3.2.5.2 Durch PTH-Gabe induzierte Effekte bei knochengesunden SHAM-Tieren

3.2.5.3 Durch PTH-Gabe bei orchiektomierten Tieren induzierte Effekte
3.3 Ergebnisse der Mikroradiographien

3.3.1 Ventrale Kortikalsdicke

Die Orchiektomie hatte keinen signifikanten Effekt auf die ventrale Kortikalsdicke (kein signifikanter Unterschied zwischen SHAM und ORX). Die tägliche PTH-Gabe steigerte sowohl bei orchiektomierten Gruppen als auch bei Kontrollgruppen die ventrale Kortikalsdicke (ORX PTH ist größer im Vergleich zu ORX, SHAM PTH ist größer im Vergleich zu SHAM). Auch die PTH-Gabe alle zwei Tage steigerte signifikant die ventrale Kortikalsdicke (ORX PTH/2d ist größer im Vergleich zu ORX). SHAM PTH hatte im Vergleich mit ORX signifikant höhere Messwerte, der Vergleich dieser Gruppen ist jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 8, Tabelle 11).

Abbildung 8: ventrale Kortikalsdicke (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.

Die Orchiektomie hatte keinen signifikanten Effekt auf die ventrale Kortikalsdicke (kein signifikanter Unterschied zwischen SHAM und ORX). Die tägliche PTH-Gabe steigerte sowohl bei orchiektomierten Gruppen als auch bei Kontrollgruppen die ventrale Kortikalsdicke (ORX PTH ist größer im Vergleich zu ORX, SHAM PTH ist größer im Vergleich zu SHAM). Auch die PTH-Gabe alle zwei Tage steigerte signifikant die ventrale Kortikalsdicke (ORX PTH/2d ist größer im Vergleich zu ORX). SHAM PTH hatte im Vergleich mit ORX signifikant höhere Messwerte, der Vergleich dieser Gruppen ist jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 8, Tabelle 11).

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>ventrale Kortikalsdicke [mm]</td>
<td>0,43 ± 0,14</td>
<td>0,41 ± 0,07</td>
<td>0,54 ± 0,18</td>
<td>0,55 ± 0,09</td>
<td>0,52 ± 0,14</td>
</tr>
</tbody>
</table>
3.3.2 Dorsale Kortikalsdicke

Die Orchiektomie hatte keinen signifikanten Effekt auf die dorsale Kortikalsdicke (kein signifikanter Unterschied zwischen SHAM und ORX). Die tägliche PTH-Gabe steigerte bei Kontrollgruppen die dorsale Kortikalsdicke (SHAM PTH ist größer im Vergleich zu SHAM). Bei orchiektomierten Gruppen steigerte die PTH-Gabe alle zwei Tage signifikant die dorsale Kortikalsdicke (ORX PTH/2d ist größer im Vergleich zu ORX), für die tägliche Gabe zeigten sich ebenfalls höhere Messwerte für ORX PTH im Vergleich mit ORX, der Unterschied ist jedoch nicht signifikant. Außerdem hatten SHAM PTH im Vergleich mit ORX, ORX PTH im Vergleich mit SHAM und ORX PTH/2d im Vergleich mit SHAM signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 9, Tabelle 12).

Tabelle 12: Messwerte für den Parameter „dorsale Kortikalsdicke“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>dorsale Kortikalsdicke [mm]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,36 ± 0,08</td>
<td>0,38 ± 0,05</td>
<td>0,44 ± 0,11</td>
<td>0,49 ± 0,10</td>
<td>0,46 ± 0,06</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 9: Dorsale Kortikalsdicke (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.
3.3.3 Kortikalisfläche

Die Orchiektomie hatte keinen signifikanten Effekt auf die Kortikalisfläche (kein signifikanter Unterschied zwischen SHAM und „ORX). Die tägliche PTH-Gabe steigerte sowohl bei orchiektomierten Gruppen als auch bei Kontrollgruppen die Kortikalisfläche (ORX PTH ist größer im Vergleich zu ORX, SHAM PTH ist größer im Vergleich zu SHAM). Auch die PTH-Gabe alle zwei Tage steigerte signifikant die Kortikalisfläche (ORX PTH/2d ist größer im Vergleich zu ORX). Außerdem hatten SHAM PTH im Vergleich mit ORX und ORX PTH, und ORX PTH/2d im Vergleich mit SHAM signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 10, Tabelle 13).

Abbildung 10: Kortikalisfläche (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p<0,05). n≥10 pro Gruppe.

Die Orchiektomie hatte keinen signifikanten Effekt auf die Kortikalisfläche (kein signifikanter Unterschied zwischen SHAM und „ORX). Die tägliche PTH-Gabe steigerte sowohl bei orchiektomierten Gruppen als auch bei Kontrollgruppen die Kortikalisfläche (ORX PTH ist größer im Vergleich zu ORX, SHAM PTH ist größer im Vergleich zu SHAM). Auch die PTH-Gabe alle zwei Tage steigerte signifikant die Kortikalisfläche (ORX PTH/2d ist größer im Vergleich zu ORX). Außerdem hatten SHAM PTH im Vergleich mit ORX und ORX PTH, und ORX PTH/2d im Vergleich mit SHAM signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 10, Tabelle 13).

<table>
<thead>
<tr>
<th>Kortikalisfläche [mm²]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,32 ± 2,64</td>
<td>6,93 ± 1,21</td>
<td>8,66 ± 2,37</td>
<td>10,65 ± 1,12</td>
<td>9,21 ± 1,57</td>
<td></td>
</tr>
</tbody>
</table>
3.3.4 Knochendichte Kortikalis

Die Orchiektomie hatte keinen signifikanten Effekt auf die Knochendichte der Kortikalis (kein signifikanter Unterschied zwischen SHAM und ORX). Die tägliche PTH-Gabe steigerte sowohl bei orchiektomierten Gruppen als auch bei Kontrollgruppen die Knochendichte der Kortikalis (ORX PTH ist größer im Vergleich zu ORX, SHAM PTH ist größer im Vergleich zu SHAM). Auch die PTH-Gabe alle zwei Tage steigerte die Knochendichte der Kortikalis, der Unterschied zwischen ORX PTH/2d und ORX ist jedoch nicht signifikant. Außerdem hatten ORX PTH und ORX PTH/2d jeweils im Vergleich mit SHAM signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 11, Tabelle 14).

Tabelle 14: Messwerte für den Parameter „Knochendichte Kortikalis“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Knochendichte Kortikalis [%]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91,65 ± 3,10</td>
<td>92,52 ± 2,60</td>
<td>95,28 ± 2,38</td>
<td>94,50 ± 2,63</td>
<td>94,04 ± 1,58</td>
</tr>
</tbody>
</table>
3.3.5 Knochendichte Trabekel

Die Orchiektomie hatte keinen signifikanten Effekt auf die Knochendichte der Trabekel (kein signifikanter Unterschied zwischen SHAM und ORX). Die tägliche PTH-Gabe steigerte sowohl bei orchiektomierten Gruppen als auch bei Kontrollgruppen die Knochendichte der Trabekel (ORX PTH ist größer im Vergleich zu ORX, SHAM PTH ist größer im Vergleich zu SHAM). Auch die PTH-Gabe alle zwei Tage steigerte signifikant die Kortikalisfläche (ORX PTH/2d ist größer im Vergleich zu ORX). Die tägliche Applikation von PTH zeigt signifikant höhere Messwerte als die Gabe jeden zweiten Tag (ORX PTH ist signifikant erhöht im Vergleich zu ORX PTH/2d). Außerdem hatten SHAM PTH im Vergleich mit ORX und ORX PTH/2d, und ORX PTH im Vergleich mit SHAM signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 12, Tabelle 15).

Abbildung 12: Knochendichte Trabekel (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.

Die Orchiektomie hatte keinen signifikanten Effekt auf die Knochendichte der Trabekel (kein signifikanter Unterschied zwischen SHAM und ORX). Die tägliche PTH-Gabe steigerte sowohl bei orchiektomierten Gruppen als auch bei Kontrollgruppen die Knochendichte der Trabekel (ORX PTH ist größer im Vergleich zu ORX, SHAM PTH ist größer im Vergleich zu SHAM). Auch die PTH-Gabe alle zwei Tage steigerte signifikant die Kortikalisfläche (ORX PTH/2d ist größer im Vergleich zu ORX). Die tägliche Applikation von PTH zeigt signifikant höhere Messwerte als die Gabe jeden zweiten Tag (ORX PTH ist signifikant erhöht im Vergleich zu ORX PTH/2d). Außerdem hatten SHAM PTH im Vergleich mit ORX und ORX PTH/2d, und ORX PTH im Vergleich mit SHAM signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 12, Tabelle 15).

Tabelle 15: Messwerte für den Parameter „Knochendichte Trabekel“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Knochendichte</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabekel [%]</td>
<td>43,89 ± 8,64</td>
<td>41,39 ± 7,04</td>
<td>56,93 ± 7,39</td>
<td>58,46 ± 8,60</td>
<td>49,77 ± 7,28</td>
</tr>
</tbody>
</table>
3.3.6 Anzahl der Trabekelkreuzungen

Die Orchiektomie senkte bei unbehandelten Tieren signifikant die Anzahl der Trabekelkreuzungen (SHAM ist größer als ORX). Die PTH-Gabe hatte keinen signifikanten Effekt. SHAM zeigt auch im Vergleich mit ORX PTH und ORX PTH/2d signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 13, Tabelle 16).

Abbildung 13: Anzahl der Trabekelkreuzungen (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.

Die Orchiektomie senkte bei unbehandelten Tieren signifikant die Anzahl der Trabekelkreuzungen (SHAM ist größer als ORX). Die PTH-Gabe hatte keinen signifikanten Effekt. SHAM zeigt auch im Vergleich mit ORX PTH und ORX PTH/2d signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 13, Tabelle 16).

Tabelle 16: Messwerte für den Parameter „Anzahl Trabekelkreuzungen“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Trabekelkreuzungen</td>
<td>110,3 ± 21,80</td>
<td>86,79 ± 18,49</td>
<td>91,77 ± 18,83</td>
<td>96,95 ± 20,39</td>
<td>84,00 ± 17,39</td>
</tr>
</tbody>
</table>
3.3.7 Dichte der Trabekelkreuzungen

Die Orchiektomie senkte bei unbehandelten Tieren signifikant die Dichte der Trabekelkreuzungen (SHAM zeigt signifikante höhere Messergebnisse als ORX). Die tägliche PTH-Gabe hatte keinen signifikanten Effekt bei SHAM-Tieren. Bei orchiektomierten Tieren nahm die Dichte der Trabekelkreuzungen unter täglicher Gabe von PTH signifikant zu (ORX PTH zeigt signifikant höhere Messwerte als ORX). Die tägliche Gabe ist der Gabe jeden zweiten Tag überlegen (ORX PTH ist signifikant erhöht im Vergleich zu ORX PTH/2d) (Abbildung 14, Tabelle 17).

Tabelle 17: Messwerte für den Parameter „Dichte Trabekelkreuzungen“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Dichte Trabekelkreuzungen [1/mm²]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,42 ± 1,27</td>
<td>3,18 ± 0,63</td>
<td>4,28 ± 2,04</td>
<td>3,93 ± 0,913</td>
<td>3,38 ± 0,62</td>
</tr>
</tbody>
</table>

Abbildung 14: Dichte der Trabekelkreuzungen (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.

Die Orchiektomie senkte bei unbehandelten Tieren signifikant die Dichte der Trabekelkreuzungen (SHAM zeigt signifikante höhere Messergebnisse als ORX). Die tägliche PTH-Gabe hatte keinen signifikanten Effekt bei SHAM-Tieren. Bei orchiektomierten Tieren nahm die Dichte der Trabekelkreuzungen unter täglicher Gabe von PTH signifikant zu (ORX PTH zeigt signifikant höhere Messwerte als ORX). Die tägliche Gabe ist der Gabe jeden zweiten Tag überlegen (ORX PTH ist signifikant erhöht im Vergleich zu ORX PTH/2d) (Abbildung 14, Tabelle 17).
3.3.8 Mittlere Trabekeldicke

Die Orchietomie hatte keinen signifikanten Effekt auf die mittlere Trabekeldicke (kein signifikanter Unterschied zwischen SHAM und ORX). Die tägliche PTH-Gabe steigerte sowohl bei orchiektomierten Gruppen als auch bei Kontrollgruppen die mittlere Trabekeldicke (ORX PTH ist größer im Vergleich zu ORX, SHAM PTH ist größer im Vergleich zu SHAM). Auch die PTH-Gabe alle zwei Tage steigerte die mittlere Trabekeldicke, der Unterschied ist jedoch nicht signifikant (ORX PTH/2d ist nicht signifikant größer im Vergleich zu ORX). SHAM PTH hatte im Vergleich mit ORX signifikant höhere Messwerte, und ORX PTH hatte im Vergleich mit SHAM signifikant höhere Messwerte, der Vergleich dieser Gruppen ist jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 15, Tabelle 18).

Abbildung 15: Mittlere Trabekeldicke (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p<0,05). n≥10 pro Gruppe.

Tabelle 18: Messwerte für den Parameter „mittlere Trabekeldicke“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittlere Trabekeldicke [µm]</td>
<td>5,74 ± 0,58</td>
<td>5,77 ± 0,69</td>
<td>7,18 ± 0,70</td>
<td>7,25 ± 1,51</td>
<td>6,46 ± 0,73</td>
</tr>
</tbody>
</table>
3.3.9 Zusammenfassung der Ergebnisse der Mikroradiographie

3.3.9.1 Durch Orchiektomie induzierte Effekte

Die Orchiektomie senkte bei unbehandelten Tieren signifikant die Anzahl und die Dichte der Trabekelkreuzungen. Die übrigen Parameter ventrale und dorsale Kortikalisdicke, Knochendichte der Trabekel, Knochendichte der Kortikalis, Kortikalisfläche und mittlere Trabekeldicke blieben durch die Orchiektomie ohne signifikanten Unterschied.

3.3.9.2 Durch PTH-Gabe induzierte Effekte bei knochengesunden SHAM-Tieren

Durch PTH-Gabe zeigten sich deutliche Effekte an der Kortikalis und an der Spongiosa. An der Kortikalis ließen sich folgende Effekte beobachten: die ventrale und die dorsale Kortikalis waren unter täglicher PTH-Gabe dicker, die Kortikalisfläche und die Knochendichte der Kortikalis waren signifikant größer.

An der Spongiosa ließen sich folgende Effekte beobachten: die Knochendichte der trabekulären Knochenanteile („Knochendichte Trabekel“) und die mittlere Trabekeldicke waren unter PTH-Gabe größer. Auf die Anzahl und Dichte der Trabekelkreuzungen hatte die PTH-Gabe keinen signifikanten Effekt.

3.3.9.3 Durch PTH-Gabe bei orchiektomierten Tieren induzierte Effekte

An der Kortikalis ließen sich folgende Effekte beobachten: die ventrale Kortikalis war sowohl unter täglicher PTH-Gabe und auch unter PTH-Gabe im zweitäglichen Intervall dicker. Auch die Kortikalisfläche war sowohl unter täglicher PTH-Gabe als auch unter PTH-Gabe im zweitäglichen Intervall signifikant größer. Die dorsale Kortikalis war unter PTH-Gabe im zweitäglichen Intervall dicker, bei täglicher PTH-Gabe war der Unterschied nicht mehr signifikant. Die Knochendichte der Kortikalis war unter täglicher PTH-Gabe größer, bei zweitäglicher Applikationsintervall zeigte sich jedoch nur eine nicht signifikante Tendenz.

An der Spongiosa ließen sich folgende Effekte beobachten: die Knochendichte der trabekulären Knochenanteile („Knochendichte Trabekel“) und die mittlere Trabekeldicke waren unter PTH-Gabe sowohl für das tägliche als auch für das zweitägliche Applikationsintervall größer. Auf die Anzahl der Trabekelkreuzungen hatte die PTH-Gabe keinen wesentlichen Einfluss. Für die Dichte der Trabekelkreuzungen zeigten sich unterschiedliche Effekte für orchiektomierte Tiere und für SHAM-Tiere. Für orchiektomierte Tiere konnte unter täglicher PTH-Gabe eine signifikant höhere Dichte der Trabekelkreuzungen gezeigt werden, dies traf auf die Gabe an jedem zweiten Tag nicht zu. Bei SHAM-Tieren konnte kein wesentlicher Effekt der PTH-Gabe festgestellt werden.
3.4 Veraschung

3.4.1 Masse der Wirbelkörper

Die Orchiektomie hatte keinen signifikanten Effekt auf die Masse der Wirbelkörper (kein signifikanter Unterschied zwischen SHAM und ORX). Die tägliche PTH-Gabe steigerte bei der Kontrollgruppe die Masse der Wirbelkörper (SHAM PTH ist größer im Vergleich zu SHAM). Bei orchiektomierten Tieren hatte die PTH-Gabe keinen signifikanten Effekt (ORX PTH/2d und ORX PTH sind jeweils nicht signifikant größer im Vergleich zu ORX). SHAM PTH hatte im Vergleich mit ORX, ORX PTH/2d und ORX PTH signifikant höhere Messwerte, der Vergleich dieser Gruppen ist jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 16, Tabelle 19).

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse [mg]</td>
<td>419,4 ± 55,1</td>
<td>375,5 ± 25,0</td>
<td>444,4 ± 90,1</td>
<td>550,7 ± 133,2</td>
<td>394,6 ± 56,1</td>
</tr>
</tbody>
</table>

Abbildung 16: Masse der Wirbelkörper vor Veraschung (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.
3.4.2 Organische Masse der Wirbelkörper

Die Orchiektomie hatte keinen signifikanten Effekt auf die organische Masse (kein signifikanter Unterschied zwischen SHAM und ORX). Die PTH-Gabe hatte keinen signifikanten Effekt (ORX PTH/2d und ORX PTH zeigen jeweils keine signifikanten Unterschiede im Vergleich zu ORX, zwischen SHAM PTH und SHAM lassen sich keine signifikanten Unterschiede feststellen). SHAM PTH ist signifikant größer als die Versuchsgruppen ORX und ORX PTH/2d, der Vergleich dieser Gruppen ist jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 17, Tabelle 20).

Tabelle 20: Messwerte für den Parameter „Organische Masse“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Organische Masse [mg]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>270,1 ± 36,04</td>
<td>245,7 ± 18,45</td>
<td>268,3 ± 46,56</td>
<td>307,4 ± 61,57</td>
<td>247,8 ± 36,24</td>
</tr>
</tbody>
</table>

Abbildung 17: Organische Masse (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥8 pro Gruppe.
3.4.3 Anorganische Masse der Wirbelkörper

Sowohl bei knochengesunden SHAM-Tieren als auch bei orchiektomierten Tieren konnte unter täglicher PTH-Gabe eine signifikant erhöhte anorganische Masse festgestellt werden (SHAM PTH zeigt signifikant höhere Werte als SHAM, ORX PTH zeigt signifikant höhere Werte als ORX). Auch die PTH-Gabe alle zwei Tage steigerte die anorganische Masse, der Unterschied zwischen ORX PTH/2d und ORX ist signifikant. Die orchiektomierten unbehandelten Tiere (ORX) hatten eine signifikant niedrigere anorganische Masse im Vergleich zur Kontrollgruppe (SHAM). SHAM PTH hatte im Vergleich mit ORX, ORX PTH und ORX PTH/2d signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant. Zusammengefasst weist SHAM PTH eine signifikant höhere anorganische Masse auf als alle anderen Versuchsgruppen. ORX weist eine signifikant niedrigere anorganische Masse auf als alle anderen Versuchsgruppen (Abbildung 18, Tabelle 21).

Abbildung 18: Anorganische Masse (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p<0,05). n≥8 pro Gruppe.

Sowohl bei knochengesunden SHAM-Tieren als auch bei orchiektomierten Tieren konnte unter täglicher PTH-Gabe eine signifikant erhöhte anorganische Masse festgestellt werden (SHAM PTH zeigt signifikant höhere Werte als SHAM, ORX PTH zeigt signifikant höhere Werte als ORX). Auch die PTH-Gabe alle zwei Tage steigerte die anorganische Masse, der Unterschied zwischen ORX PTH/2d und ORX ist signifikant. Die orchiektomierten unbehandelten Tiere (ORX) hatten eine signifikant niedrigere anorganische Masse im Vergleich zur Kontrollgruppe (SHAM). SHAM PTH hatte im Vergleich mit ORX, ORX PTH und ORX PTH/2d signifikant höhere Messwerte, die Vergleiche dieser Gruppen sind jedoch für die Interpretation der Ergebnisse irrelevant. Zusammengefasst weist SHAM PTH eine signifikant höhere anorganische Masse auf als alle anderen Versuchsgruppen. ORX weist eine signifikant niedrigere anorganische Masse auf als alle anderen Versuchsgruppen (Abbildung 18, Tabelle 21).

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorganische Masse [mg]</td>
<td>149,2 ± 21,98</td>
<td>120,0 ± 16,82</td>
<td>154,1 ± 10,73</td>
<td>181,2 ± 13,60</td>
<td>146,7 ± 21,49</td>
</tr>
</tbody>
</table>
3.4.4 Organischer Massenanteil der Wirbelkörper

Abbildung 19: Organischer Massenanteil (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p<0,05). n≥8 pro Gruppe.

<table>
<thead>
<tr>
<th>Organischer Massenanteil [%]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>64,45 ± 2,05</td>
<td>66,17 ± 2,41</td>
<td>63,18 ± 3,15</td>
<td>62,51 ± 3,77</td>
<td>62,79 ± 1,63</td>
<td></td>
</tr>
</tbody>
</table>

61
3.4.5 Anorganischer Massenanteil der Wirbelkörper

Abbildung 20: Anorganischer Massenanteil (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥8 pro Gruppe.

<table>
<thead>
<tr>
<th>Anorganischer Massenanteil [%]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,55 ± 2,05</td>
<td>32,06 ± 4,68</td>
<td>36,82 ± 3,15</td>
<td>37,49 ± 3,77</td>
<td>37,21 ± 1,63</td>
<td></td>
</tr>
</tbody>
</table>
3.4.6 Dichte der organischen Knochenanteile

Es ergeben sich keine signifikanten Unterschiede (p<0,05) zwischen den Messwerten der einzelnen Versuchsgruppen (Abbildung 21, Tabelle 24). Weder durch Orchiektomie noch durch PTH-Gabe ließ sich ein Effekt beobachten.

Abbildung 21: Dichte der organischen Knochenanteile (Mittelwerte und SEM). Die Mittelwerte unterscheiden sich nicht signifikant (p<0,05). n≥8 pro Gruppe.

Tabelle 24: Messwerte für den Parameter „Dichte der organischen Knochenanteile“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Dichte der organischen Knochenanteile [mg / mm³]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,15 ± 0,21</td>
<td>1,24 ± 0,22</td>
<td>1,43 ± 0,33</td>
<td>1,29 ± 0,26</td>
<td>1,17 ± 0,09</td>
</tr>
</tbody>
</table>
3.4.7 Dichte der anorganischen Knochenanteile

Die Orchietomie hatte keinen signifikanten Effekt. Die Mittelwerte von SHAM sind zwar größer als die von ORX, der Unterschied zwischen SHAM und ORX ist jedoch nicht signifikant. Die tägliche PTH-Gabe steigerte bei orchiektomierten Gruppen die Dichte der anorganischen Knochenanteile (ORX PTH > ORX). Auch die PTH-Gabe alle zwei Tage erhöhte die Dichte der anorganischen Knochenanteile, der Unterschied ist jedoch nicht signifikant (ORX PTH/2d ist nicht signifikant größer im Vergleich zu ORX). ORX PTH zeigt signifikant höhere Messwerte im Vergleich mit ORX PTH/2d. Es ist kein signifikanter Unterschied zwischen SHAM PTH und SHAM erkennbar. SHAM PTH hatte im Vergleich mit ORX signifikant höhere Messwerte, und ORX PTH hatte im Vergleich mit SHAM signifikant höhere Messwerte, der Vergleich dieser Gruppen ist jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 22, Tabelle 25).

Abbildung 22: Dichte der anorganischen Knochenanteile (Mittelwerte und SEM), (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥8 pro Gruppe.

Die Orchietomie hatte keinen signifikanten Effekt. Die Mittelwerte von SHAM sind zwar größer als die von ORX, der Unterschied zwischen SHAM und ORX ist jedoch nicht signifikant. Die tägliche PTH-Gabe steigerte bei orchiektomierten Gruppen die Dichte der anorganischen Knochenanteile (ORX PTH > ORX). Auch die PTH-Gabe alle zwei Tage erhöhte die Dichte der anorganischen Knochenanteile, der Unterschied ist jedoch nicht signifikant (ORX PTH/2d ist nicht signifikant größer im Vergleich zu ORX). ORX PTH zeigt signifikant höhere Messwerte im Vergleich mit ORX PTH/2d. Es ist kein signifikanter Unterschied zwischen SHAM PTH und SHAM erkennbar. SHAM PTH hatte im Vergleich mit ORX signifikant höhere Messwerte, und ORX PTH hatte im Vergleich mit SHAM signifikant höhere Messwerte, der Vergleich dieser Gruppen ist jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 22, Tabelle 25).

Tabelle 25: Messwerte für den Parameter „Dichte der anorganischen Knochenanteile“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichte der anorganischen Knochenanteile [mg / mm³]</td>
<td>0,64 ± 0,11</td>
<td>0,58 ± 0,13</td>
<td>0,81 ± 0,14</td>
<td>0,76 ± 0,06</td>
<td>0,68 ± 0,03</td>
</tr>
</tbody>
</table>

64
Für den Parameter „Calciumanteil“ ergeben sich keine signifikanten Unterschiede (p<0,05) zwischen den Messwerten der einzelnen Versuchsgruppen (Abbildung 23, Tabelle 26).

Tabelle 26: Messwerte für den Parameter „Calciumanteil“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Calciumanteil [%]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29,62 ± 12,25</td>
<td>35,12 ± 5,82</td>
<td>30,19 ± 7,81</td>
<td>35,50 ± 3,34</td>
<td>28,44 ± 10,22</td>
</tr>
</tbody>
</table>

Abbildung 23: Calciumanteil (Mittelwerte und SEM). Die Mittelwerte unterscheiden sich nicht signifikant (p<0,05). n>7 pro Gruppe.
3.4.9 Phosphatanteil

Die ermittelten Messwerte zeigen keine signifikanten Unterschiede (p<0,05) zwischen den einzelnen Versuchsgruppen in Bezug auf den Parameter „Phosphatanteil“ (Abbildung 24, Tabelle 27).

<table>
<thead>
<tr>
<th>Phosphatanteil [%]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,09 ± 12,72</td>
<td>41,46 ± 5,54</td>
<td>38,23 ± 6,25</td>
<td>45,70 ± 4,85</td>
<td>37,25 ± 10,90</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 24: Phosphatanteil (Mittelwerte und SEM). Die Mittelwerte unterscheiden sich nicht signifikant (p<0,05). n≥6 pro Gruppe.
3.4.10 Verhältnis von Calciumanteil zu Phosphatanteil

Für den Parameter „Verhältnis von Calciumanteil zu Phosphatanteil“ zeigen sich keine signifikanten Unterschiede (p<0,05) zwischen den einzelnen Versuchsgruppen (Abbildung 25, Tabelle 28).

<table>
<thead>
<tr>
<th>Verhältnis von Calciumanteil zu Phosphatanteil</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,82 ± 0,25</td>
<td>1,96 ± 0,15</td>
<td>1,81 ± 0,21</td>
<td>1,88 ± 0,20</td>
<td>1,78 ± 0,17</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 25: Verhältnis von Calciumanteil zu Phosphatanteil (Mittelwerte und SEM). Die Mittelwerte unterscheiden sich nicht signifikant (p<0,05). n≥6 pro Gruppe.
3.4.11 Zusammenfassung der Ergebnisse der Veraschung

3.4.11.1 Durch Orchiektomie induzierte Effekte

Die orchiektomierten unbehandelten Tiere (ORX) wiesen eine signifikant niedrigere anorganische Masse im Vergleich zur Kontrollgruppe (SHAM) auf. Dazu passend zeigten sich für ORX niedrigere Mittelwerte des anorganischen Knochenanteils, der Unterschied ist jedoch nicht signifikant. Die übrigen Parameter organische Masse, organischer Massenanteil, Gesamtmasse der Wirbelkörper, Calcium- und Phosphattanteil, Verhältnis von Calciumanteil zu Phosphatanteil, Dichte der organismen Knochenanteile und Dichte der anorganischen Knochenanteile blieben durch die Orchiektomie ohne signifikanten Unterschied.

3.4.11.2 Durch PTH-Gabe induzierte Effekte bei knochengesunden SHAM-Tieren

Die tägliche PTH-Gabe steigerte bei der Kontrollgruppe die Gesamtmasse der Wirbelkörper und die anorganische Masse der Wirbelkörper signifikant. Größere Messwerte konnten auch für die Dichte der anorganischen Knochenanteile der täglich behandelten Tiere festgestellt werden, der Unterschied ist jedoch nicht signifikant.

3.4.11.3 Durch PTH-Gabe bei orchiektomierten Tieren induzierte Effekte

Die tägliche PTH-Gabe steigerte bei orchiektomierten Gruppen die Dichte der anorganischen Knochenanteile, die anorganische Masse und den anorganischen Massenanteil. Auch die PTH-Gabe alle zwei Tage steigerte den anorganischen Massenanteil und erhöhte die anorganische Masse signifikant. Ebenfalls gesteigert war die Dichte der anorganischen Knochenanteile, der Unterschied zu den unbehandelten orchiektomierten Tieren ist jedoch nicht signifikant.

Anders als die tägliche PTH-Gabe führte die Applikation an jedem zweiten Tag zur signifikanten Abnahme des organischen Massenanteils.

Tabelle 29: Messwerte für den Parameter „Knochendichte Gesamt“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Knochendichte gesamt [mg/mm³]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400,93 ± 50,75</td>
<td>386,04 ± 47,98</td>
<td>450,69 ± 65,96</td>
<td>461,52 ± 49,79</td>
<td>424,97 ± 51,95</td>
</tr>
</tbody>
</table>
3.5.2 Volumen der Wirbelkörper

Es können keine signifikanten Unterschiede zwischen den Volumina der Wirbelkörper der einzelnen Gruppen nachgewiesen werden (Abbildung 27, Tabelle 30).

<table>
<thead>
<tr>
<th>Volumen Wirbelkörper [cm³]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,24 ± 0,05</td>
<td>0,21 ± 0,04</td>
<td>0,20 ± 0,04</td>
<td>0,24 ± 0,01</td>
<td>0,22 ± 0,03</td>
</tr>
</tbody>
</table>

Abbildung 27: Volumen Wirbelkörper (Mittelwerte und SEM). Die Mittelwerte unterscheiden sich nicht signifikant (p< 0,05). n≥10 pro Gruppe.
3.5.3 Knochendichte der Kortikalis

Abbildung 28: Knochendichte Kortikalis (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p<0,05). n≥10 pro Gruppe.

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knochendichte Kortikalis</td>
<td>462,54 ± 46,35</td>
<td>451,37 ± 43,15</td>
<td>494,36 ± 58,02</td>
<td>509,93 ± 47,82</td>
<td>477,09 ± 47,92</td>
</tr>
</tbody>
</table>
3.5.4 Volumen der Kortikalis

Die Orchiektomie hatte keinen signifikanten Effekt auf das Volumen der Kortikalis (kein signifikanter Unterschied zwischen SHAM und ORX). Die PTH-Gabe hatte keinen signifikanten Effekt (ORX PTH/2d und ORX PTH zeigen jeweils keine signifikanten Unterschiede im Vergleich zu ORX, zwischen SHAM PTH und SHAM lassen sich keine signifikanten Unterschiede feststellen). Die tägliche Applikation von PTH zeigt keinen signifikanten Unterschied zur Gabe jeden zweiten Tag (ORX PTH im Vergleich zu ORX PTH/2d). SHAM PTH ist signifikant größer als die Versuchsgruppen ORX, ORX PTH und ORX PTH/2d, der Vergleich dieser Gruppen ist jedoch für die Interpretation der Ergebnisse irrelevant (Abbildung 29, Tabelle 32).

Abbildung 29: Volumen Kortikalis (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.

Tabelle 32: Messwerte für den Parameter „Volumen Kortikalis“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Volumen Kortikalis [cm³]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,17 ± 0,03</td>
<td>0,15 ± 0,02</td>
<td>0,16 ± 0,03</td>
<td>0,20 ± 0,01</td>
<td>0,17 ± 0,02</td>
</tr>
</tbody>
</table>

Abbildung 30: Volumenanteil Kortikalis (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p<0,05). n≥10 pro Gruppe.

Tabelle 33: Messwerte für den Parameter „Volumenanteil Kortikalis“ in Prozent (%). Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Volumenanteil Kortikalis [%]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAM</td>
<td>72,45 ± 3,92</td>
<td>69,37 ± 3,82</td>
<td>82,55 ± 5,61</td>
<td>82,61 ± 2,61</td>
<td>78,09 ± 3,28</td>
</tr>
</tbody>
</table>
3.5.6 Knochendichte der Spongiosa

Die Knochendichte der Spongiosa unterscheidet sich nicht signifikant zwischen den einzelnen Versuchsgruppen (Abbildung 31, Tabelle 34).

Tabelle 34: Messwerte für den Parameter „Knochendichte Spongiosa“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Knochendichte Spongiosa</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>238,59 ± 37,45</td>
<td>237,29 ± 37,22</td>
<td>241,84 ± 39,76</td>
<td>237,10 ± 38,07</td>
<td>239,40 ± 36,24</td>
</tr>
</tbody>
</table>

Abbildung 31: Knochendichte Spongiosa (Mittelwerte und SEM). Die Mittelwerte unterscheiden sich nicht signifikant (p < 0,05). n≥10 pro Gruppe.

Die Knochendichte der Spongiosa unterscheidet sich nicht signifikant zwischen den einzelnen Versuchsgruppen (Abbildung 31, Tabelle 34).
3.5.7 Volumen der Spongiosa

Abbildung 32: Volumen Spongiosa (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.

Tabelle 35: Messwerte für den Parameter „Volumen Spongiosa“. Angegeben sind Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th></th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen Spongiosa [cm³]</td>
<td>0,07 ± 0,02</td>
<td>0,07 ± 0,02</td>
<td>0,04 ± 0,02</td>
<td>0,04 ± 0,01</td>
<td>0,04 ± 0,01</td>
</tr>
</tbody>
</table>

75
3.5.8 Volumenanteil der Spongiosa

Abbildung 33: Volumenanteil Spongiosa (Mittelwerte und SEM). (abc) Die Mittelwerte mit verschiedenen Buchstaben unterscheiden sich signifikant (p< 0,05). n≥10 pro Gruppe.

<table>
<thead>
<tr>
<th>Volumenanteil Spongiosa [%]</th>
<th>SHAM</th>
<th>ORX</th>
<th>ORX PTH</th>
<th>SHAM PTH</th>
<th>ORX PTH/2d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27,36 ± 4,04</td>
<td>30,62 ± 3,83</td>
<td>17,18 ± 5,91</td>
<td>16,92 ± 2,83</td>
<td>21,73 ± 3,35</td>
</tr>
</tbody>
</table>
3.5.9 Zusammenfassung der Ergebnisse der fpVCT

3.5.9.1 Durch Orchiektomie induzierte Effekte

Die Orchiektomie hatte keinen signifikanten Effekt auf die Parameter der fpVCT (kein signifikanter Unterschied zwischen SHAM und ORX).

3.5.9.2 Durch PTH-Gabe induzierte Effekte bei knochengesunden SHAM-Tieren

3.5.9.3 Durch PTH-Gabe bei orchiektomierten Tieren induzierte Effekte

3.6 Korrelationen der einzelnen Messwerte

Um statistische Zusammenhänge aufzudecken, werden die Messwerte des biomechanischen Kompressionstests im folgenden Abschnitt mit den Messwerten der drei anderen Methoden korreliert.

3.6.1 Korrelation der Parameter des biomechanischen Kompressionstests mit den Parametern der Veraschung

*Tabelle 37: Korrelation der Messwerte der Veraschung mit den Messwerten des biomechanischen Kompressionstests. Angegeben wird der Korrelationskoeffizient „r“ nach Pearson. Fettgedruckte Werte sind signifikant. Die ermittelten Signifikanzen werden entsprechend ihrem zugehörigen p wie folgt markiert: p<0,05 = *, p<0,01 = **, p<0,001 = ***.

<table>
<thead>
<tr>
<th></th>
<th>Bruchkraft</th>
<th>Maximalkraft</th>
<th>Steigung</th>
<th>yield load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse der Wirbelkörper</td>
<td>0,17</td>
<td>0,17</td>
<td>-0,01</td>
<td>0,24</td>
</tr>
<tr>
<td>Masse organisch</td>
<td>0,24</td>
<td>0,22</td>
<td>0,04</td>
<td>0,22</td>
</tr>
<tr>
<td>Massenanteil organisch</td>
<td>0,08</td>
<td>0,07</td>
<td>-0,11</td>
<td>0,12</td>
</tr>
<tr>
<td>Masse anorganisch</td>
<td>0,17</td>
<td>0,17</td>
<td>0,09</td>
<td>0,10</td>
</tr>
<tr>
<td>Massenanteil anorganisch</td>
<td>-0,08</td>
<td>-0,07</td>
<td>0,11</td>
<td>-0,12</td>
</tr>
<tr>
<td>Calciumanteil</td>
<td>-0,03</td>
<td>-0,03</td>
<td>-0,09</td>
<td>-0,05</td>
</tr>
<tr>
<td>Phosphatanteil</td>
<td>0,05</td>
<td>0,05</td>
<td>0,13</td>
<td>0,05</td>
</tr>
<tr>
<td>Calcium/Phosphat-Verhältnis</td>
<td>-0,22</td>
<td>-0,22</td>
<td>-0,16</td>
<td>-0,22</td>
</tr>
</tbody>
</table>

Es konnte keine signifikante Korrelation zwischen den Parametern der Veraschung und des Kompressionstests festgestellt werden (Tabelle 37).
3.6.2 Korrelation der Parameter des biomechanischen Kompressionstests mit den Parametern der Mikroradiographie

p<0,05 = *, p<0,01 = **, p<0,001 = ***.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bruchkraft</th>
<th>Maximalkraft</th>
<th>Steigung</th>
<th>yield load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventrale Kortikalisdicke</td>
<td>0,53***</td>
<td>0,53***</td>
<td>0,37**</td>
<td>0,50***</td>
</tr>
<tr>
<td>Dorsale Kortikalisdicke</td>
<td>0,20</td>
<td>0,20</td>
<td>0,34**</td>
<td>0,40**</td>
</tr>
<tr>
<td>Kortikalisfläche</td>
<td>0,54***</td>
<td>0,54***</td>
<td>0,30**</td>
<td>0,49***</td>
</tr>
<tr>
<td>Knochendichte Kortikalis</td>
<td>0,39**</td>
<td>0,37**</td>
<td>0,21</td>
<td>0,36**</td>
</tr>
<tr>
<td>Knochendichte Trabekel</td>
<td>0,63***</td>
<td>0,62***</td>
<td>0,40**</td>
<td>0,61***</td>
</tr>
<tr>
<td>Anzahl Trabekelkreuzungen</td>
<td>-0,08</td>
<td>-0,07</td>
<td>-0,10</td>
<td>-0,07</td>
</tr>
<tr>
<td>absolut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichte Trabekelkreuzungen</td>
<td>0,03</td>
<td>0,03</td>
<td>-0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>mittlere Trabekeldicke</td>
<td>0,54***</td>
<td>0,53***</td>
<td>0,38**</td>
<td>0,52***</td>
</tr>
</tbody>
</table>

Die ventrale Kortikalisdicke, die gesamte Kortikalisfläche, die trabekuläre Knochendichte und die mittlere Trabekeldicke zeigen Messwerte, die mittelstark mit der Bruchkraft positiv korrelieren. Die kortikale Knochendichte korreliert positiv mit dem Parameter „Bruchkraft“, der Korrelationskoeffizient „r“ von 0,3922 spricht jedoch für eine nur schwache Korrelation.

Ventrale Kortikalisdicke, die gesamte Kortikalisfläche, die trabekuläre Knochendichte und die mittlere Trabekeldicke korrelieren mittelstark positiv mit der Maximalkraft, während die kortikale Knochendichte eine weniger starke, aber dennoch positive Korrelation mit der Maximalkraft aufweist.

Der Parameter Steigung korreliert schwach positiv mit der ventralen und der dorsalen Kortikalisdicke, der Kortikalisfläche, der trabekulären Knochendichte und der mittleren Trabekeldicke.

3.6.3 Korrelation der Parameter des biomechanischen Kompressionstests mit den Parametern der fpVCT

Tabelle 39: Korrelation der Ergebnisse der Untersuchung „fpVCT“ mit den Messwerten des biomechanischen Kompressionstests. Angegeben wird der Korrelationskoeffizient „r“ nach Pearson. Fettgedruckte Werte sind signifikant. Die ermittelten Signifikanzen werden entsprechend ihrem zugehörigen p wie folgt markiert: $p<0.05 = ^{*}$, $p<0.01 = ^{**}$, $p<0.001 = ^{***}$.

<table>
<thead>
<tr>
<th></th>
<th>Bruchkraft</th>
<th>Maximalkraft</th>
<th>Steigung</th>
<th>yield load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knochendichte gesamt</td>
<td>0,61***</td>
<td>0,60***</td>
<td>0,31*</td>
<td>0,61***</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirbelkörper</td>
<td>0.09</td>
<td>0.08</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Knochendichte Kortikalis</td>
<td>0,61***</td>
<td>0,60***</td>
<td>0,32*</td>
<td>0,61***</td>
</tr>
<tr>
<td>Volumen Kortikalis</td>
<td>0,38**</td>
<td>0,38**</td>
<td>0,14</td>
<td>0,36**</td>
</tr>
<tr>
<td>Volumenanteil Kortikalis</td>
<td>0,58***</td>
<td>0,58***</td>
<td>0,27*</td>
<td>0,57***</td>
</tr>
<tr>
<td>Knochendichte Spongiosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongiosa</td>
<td>-0,03</td>
<td>-0,03</td>
<td>-0,06</td>
<td>-0,02</td>
</tr>
<tr>
<td>Volumen Spongiosa</td>
<td>-0,41**</td>
<td>-0,42**</td>
<td>-0,17</td>
<td>-0,43**</td>
</tr>
<tr>
<td>Volumenanteil Spongiosa</td>
<td>-0,58***</td>
<td>-0,58***</td>
<td>-0,28*</td>
<td>-0,57***</td>
</tr>
</tbody>
</table>

Der „Knochendichte gesamt“, „Knochendichte Kortikalis“ sowie kortikaler Volumenanteil korrelieren schwach positiv mit der Steigung. Der Volumenanteil der Spongiosa korreliert schwach negativ mit der Steigung.

4 Diskussion

Ziel der vorliegenden Arbeit war es, die Wirkung einer intermittierenden Parathormon-Therapie auf die Knochenqualität und -quantität der Lendenwirbelsäule in einem Osteoporose-Tiermodell männlicher Ratten in Abhängigkeit vom Applikationsintervall zu untersuchen.

4.1 Durch Orchiektomie induzierte Effekte

Der Versuchsaufbau sollte unter anderem eine Osteoporose-ähnliche Minderung der Knochenqualität durch Orchiektomie induzieren. Wird die Definition von Osteoporose (Consensus Development Conference 1993) auf das tierexperimentelle Rattenmodell übertragen, so müssten die nicht mit Parathormon behandelten orchiektomierten Tiere (ORX) - im Vergleich zu den nicht mit Parathormon behandelten knochengesunden Tieren (SHAM) - eine niedrigere Knochenmasse und eine beeinträchtigte Mikroarchitektur des Knochengerüstes aufweisen.

Ein Vergleich der Messwerte der Veraschung zeigte eine signifikant niedrigere anorganische Masse der orchiektomierten Gruppe ORX im Vergleich zur

Zusammengefasst ist festzuhalten, dass die Osteoporose-ähnlichen Veränderungen, die an den Lendenwirbelkörpern der orchiektomierten Tiere festgestellt werden konnten, in einer veränderten Mikroarchitektur mit vermindert Trabekelanzahl und Trabekeldichte und einer niedrigeren anorganischen Masse bestanden. Dies entsprach auch teilweise den Erwartungen vor Auswertung des Experimentes. Entgegen der

Führt man die Untersuchungsergebnisse der Lendenwirbelkörper, Femora und Tibia zusammen, kann angenommen werden, dass bei den vorliegenden Versuchstieren durch Orchietomie eine Osteoporose-ähnliche Minderung der Knochenqualität induziert wurde.

4.2 Unter Parathormonbehandlung beobachtete Effekte

4.2.1 Erwartete Wirkung der Parathormonbehandlung aufgrund früherer Publikationen

Die erwartete Wirkung der Behandlung mit Parathormon (PTH) war eine Steigerung der Knochenmasse und damit auch der Bruchfestigkeit der Wirbelkörper behandelner Tiere. Auf histomorphometrischer Ebene in Mikroradiographie und fpVCT war vor allem eine Zunahme der trabekulären Strukturen zu erwarten.

Diese Annahmen beruhten vorwiegend auf Studien an weiblichen Ratten, nicht jedoch an männlichen Tieren, zu denen, wie bereits in der Einleitung beschrieben, insgesamt weniger Publikationen im Zusammenhang mit dem Thema Osteoporose veröffentlicht worden sind.

4.2.2 In Zusammenhang mit Parathormongabe beobachtete Effekte bei knochengesunden SHAM-Tieren

Die knochengesunden Tiere (SHAM) dienten im vorliegenden Versuchsaufbau als Kontrollgruppe. SHAM-Tiere, die mit Parathormon behandelt wurden (SHAM PTH), sollten den Effekt von Parathormon auf gesunde Individuen ohne Osteoporose simulieren und dienten als Kontroll- und Vergleichsgruppe, um die Wirkung von PTH auf gesunde männliche Ratten zu untersuchen und mit der Wirkung auf orchiektomierte Tiere zu vergleichen.

Fasst man zusammen, so war der Effekt einer Parathormonbehandlung bei knochengesunden Tieren eine Verbesserung der biomechanischen Eigenschaften und eine Zunahme der Knochendichte und Gesamtknochenmasse.

Bei der Veraschung zeigte sich eine signifikante Zunahme der Gesamtmasse und der anorganischen Masse der Wirbelkörper. Passend zu diesen Ergebnissen konnte auch an den Femora derselben Versuchstiere eine Zunahme der anorganischen Knochenbestandteile unter PTH-Gabe festgestellt werden (Tezval et al. 2011).

Auf histomorphometrischer Ebene zeigte sich sowohl in der Mikroradiographie als auch in der fpVCT eine Zunahme der Kortikalis. Bezüglich der trabekulären Knochenanteile zeigte die Mikroradiographie zwar eine größere Knochendichte der Trabekel und eine größere mittlere Trabekeldicke, die Ergebnisse der fpVCT scheinen dem jedoch auf den ersten Blick zu widersprechen, da sie eine Verminderung der trabekulären Knochenanteile zeigen. Dieser scheinbare Widerspruch lässt sich nicht abschließend bewerten oder widerlegen. Zur Klärung dieses Widerspruchs können folgende Erklärungsansätze herangezogen werden:

B: Die Ergebnisse beider Untersuchungen sind in Einklang zu bringen, wenn die Parathormonbehandlung zwar zu dickeren, knochendichteren Trabekeln führt, welche
insgesamt jedoch ein geringeres absolutes Volumen ausmachen. Der verminderte trabekuläre Volumenanteil kann als Nebeneffekt einer deutlichen Zunahme des kortikalen Volumenanteils, bedingt durch eine vor allem endostale Verdickung der Kortikalis, gedeutet werden.

In diesem Zusammenhang sind die Femora und Tibiae der im Rahmen der vorliegenden Arbeit untersuchten Ratten zu betrachten. Die Tibiae wurden wie die Lendenwirbelkörper per Mikroradiographie und fpVCT untersucht, es wurden jedoch keine unmittelbar vergleichbaren Parameter erhoben.

An den Femora bestätigt sich in den Mikroradiographien die endostale Verdickung der Kortikalis, gemessen wurde dort im subtrochanteren Bereich (Tezval et al. 2011). Eine fpVCT der Femora erfolgte nicht.

Führt man die Untersuchungsergebnisse der Lendenwirbelkörper und Femora zusammen, kann aus Sicht des Autors angenommen werden, dass es sich bei den Ergebnissen der verschiedenen Verfahren um einen Scheinwiderspruch handelt.

Die unter der PTH-Behandlung beobachteten Veränderungen der kortikalen und trabekulären Knochenstruktur korrelieren mit den verbesserten biomechanischen Eigenschaften der Wirbelkörper von SHAM PTH (siehe Unterkapitel Korrelation).

In Einklang mit diesen Ergebnissen zeigen auch die Untersuchungen an den Femora und Tibiae der gleichen Ratten aus der vorliegenden Arbeit einen deutlichen osteoanabolen Effekt und eine verbesserte Knochenbruchheilung für SHAM PTH (Brandsch 2011; Komrakova et al. 2011; Tezval et al. 2011).

Aus diesen Beobachtungen lässt sich die Annahme herleiten, dass die Behandlung mit Parathormon auch bei knochengesunden menschlichen Individuen an der
Lendenwirbelsäule sowohl an der Kortikalis als auch im trabekulären Knochen osteoanabol wirkt und über diese Wirkung eine Verbesserung der biomechanischen Eigenschaften der Wirbelkörper erzielen kann. Diese Erkenntnis kann beispielsweise relevant sein für die Raumfahrt und für die Behandlung und Prävention des durch Immobilität induzierten Knochenabbaus (Cavanagh et al. 2005).

Bei der Übertragung auf den Menschen muss jedoch in Betracht gezogen werden, dass sich der Aufbau der Rattenknochen insbesondere durch das stark verminderte Vorkommen von Havers-Kanälen in der Kortikalis vom Menschen unterscheidet, wodurch sich eine veränderte Wirkung ergeben kann (Jowsey 1966; Singh et al. 1974).

4.2.3 In Zusammenhang mit täglicher Parathormongabe beobachtete Effekte bei orchiektomierten Tieren

Die Messwerte der Gruppe der orchiektomierten Tiere (ORX) wurden mit den Messwerten der täglich mit PTH behandelten orchiektomierten Tiergruppe (ORX PTH) verglichen, um Aussagen über den Effekt der PTH-Gabe auf orchiektomierte Tiere treffen.

Die tägliche Behandlung mit PTH zeigte bei den orchiektomierten Tieren im biomechanischen Kompressionstest eine ähnliche Verbesserung der biomechanischen Eigenschaften, wie sie bereits bei den knochengesunden Tieren beobachtet wurde. Auch bei den ORX waren unter Parathormongabe die Parameter Bruchkraft, Maximalkraft und yield load deutlich höher.

Bei der Veraschung zeigte ORX PTH eine signifikant höhere anorganische Masse, einen signifikant höheren anorganischen Massenanteil und eine signifikant größere Dichte der anorganischen Knochenanteile als die Vergleichsgruppe ORX.

Diese Veränderungen konnten auch an den Femora derselben Versuchstiere reproduziert werden (Tezval et al. 2011). In einer Untersuchung an weiblichen ovariectomierten Ratten war ebenfalls eine Zunahme der anorganischen Knochenbestandteile unter PTH-Gabe zu beobachten (Stewart et al. 2000), die Ergebnisse dieser Studie sind jedoch nur bedingt übertragbar auf die vorliegende Untersuchung, da es Unterschiede hinsichtlich Geschlecht und skeletaler Lokalisation gibt. Verascht wurde hier der Radius der Ratten.

Die Analyse der Mikroradiographie zeigte, dass die Parathormongabe bei ORX analog zu SHAM eine Zunahme der kortikalen Parameter bewirkte. Die ventrale Kortikalsdicke, die Kortikalsfläche und die Knochendichte der Kortikalis waren bei ORX PTH im Vergleich zu ORX signifikant erhöht. Bei SHAM war zusätzlich die dorsale Kortikalsdicke nach PTH-Gabe größer. Bei den ORX-Gruppen ließ sich dieser Effekt nicht beobachten, wenngleich in der Darstellung als Balkendiagramm ein solcher Trend auch für ORX PTH zu erkennen ist. Ebenso zeigten die trabekulären Parameter unter PTH-Gabe signifikante Veränderungen. So war die Knochendichte der Trabekel,
die Dichte der Trabekelkreuzungen und die mittlere Trabekeldicke bei ORX PTH größer als bei unbehandelten ORX. Lediglich die absolute Anzahl der Trabekelkreuzungen wies keine signifikanten Veränderungen auf.

Die im Rahmen der Mikroradiographie beobachteten positiven Effekte auf die histomorphometrischen Parameter der Kortikalis bestätigten sich auch in den Ergebnissen der fpVCT. Im Gegensatz zu den Ergebnissen der Mikroradiographie, bei denen eine Steigerung der trabekulären Parameter beobachtet werden konnte, zeigte sich in der fpVCT eine Verminderung der trabekulären Parameter. Der daraus resultierende Scheinwiderspruch wurde auch an den knochengesunden SHAM-Tieren beobachtet und bereits unter 4.2.2 ausführlich diskutiert. Dieser scheinbare Widerspruch lässt sich nicht abschließend bewerten oder widerlegen.

In Einklang mit den Ergebnissen der vorliegenden Arbeit zeigten auch andere Publikationen eine Verbesserung kortikaler und trabekulärer Parameter unter PTH-Gabe, sowohl im männlichen Rattenmodell an orchiektomierten Ratten (Martín-Fernández et al. 2014) als auch am Menschen im Rahmen des Fracture Prevention Trial of postmenopausal Women with Osteoporosis (Jiang et al. 2003).

Somit zeigte die tägliche Parathormonbehandlung bei den orchiektomierten Tieren sehr ähnliche Effekte wie bei den knochengesunden Tieren. Es zeigte sich eine Verbesserung der biomechanischen Eigenschaften und eine Zunahme der Knochendichte und Gesamtknochenmasse.

4.3 Vergleich der verschiedenen Applikationsintervalle

Beim biomechanischen Kompressionstest zeigten sich keine signifikanten Unterschiede im Vergleich von ORX PTH/2d mit ORX und mit ORX PTH.

Analog zu den Effekten der täglichen PTH-Gabe steigerte auch die PTH-Gabe jeden zweiten Tag den anorganischen Massenanteil und erhöhte die anorganische Masse signifikant. Anders als bei ORX PTH zeigte ORX PTH /2d im Vergleich mit ORX eine signifikante Abnahme des organischen Massenanteils, für ORX PTH ergab sich nur eine nicht signifikante Abnahme der Messwerte.

Beim Vergleich der histomorphometrischen Parameter von ORX PTH/2d und ORX zeigten sich Veränderungen osteoanaboler Natur an der Kortikalis zugunsten von ORX...
PTH/2d, was sich vor allem in einer insgesamt dickeren Kortikalis sowie einer größeren radiologisch gemessenen Knochendichte des gesamten Wirbelkörpers äußert, wobei Letzteres durch eine größere Knochendichte der kortikalen und nicht der trabekulären Anteile bedingt ist.

Beim Vergleich der histomorphometrischen Parameter von ORX PTH/2d und ORX PTH zeigten sich bei der Mikroradiographie eine größere Knochendichte der Trabekel von ORX PTH, bei den übrigen Parametern unterscheiden sich die Gruppen nicht signifikant voneinander. In den Messungen der fpVCT zeigte sich ebenfalls für ORX PTH eine größere Knochendichte der gesamten Wirbelkörper gegenüber ORX PTH/2d. Keine signifikanten Unterschiede zeigten sich in den übrigen Messwerten.

Es konnten somit zwar einerseits keine signifikanten Unterschiede zwischen ORX PTH und ORX PTH /2d bezüglich der meisten Parameter, ausgenommen der größeren Knochendichte auf histomorphometrischer Ebene für ORX PTH, festgestellt werden, andererseits war die Wirkung der täglichen Applikation von Parathormon ausreichend osteoanabol, um auch die biomechanischen Eigenschaften der Rattenwirbelkörper im Vergleich zu ORX signifikant zu verbessern. Im Gegensatz dazu konnte bei der zweitäglichen Applikationsweise im Vergleich mit den unbehandelten orchiektomierten Tieren keine Verbesserung der biomechanischen Eigenschaften beobachtet werden.

Eine weitere japanische Studie an 30 postmenopausalen Frauen, die eine einmalige Gabe von PTH erhielten, zeigte zunächst eine kurze osteokatabole Phase mit einem Anstieg der Knochenresorptionsparameter im Blut und einen Abfall der Knochenaufbauparameter am ersten Tag nach PTH-Gabe. Im Anschluss daran war eine länger währende osteoanabole Phase mit Abfall der Knochenresorptionsparameter und Anstieg der Knochenaufbauparameter zu beobachten. Diese osteoanabole Phase währte mindestens eine Woche und wird im englischen Sprachgebrauch anabolic window genannt (Shiraki et al. 2013). Diese Studie deutet mitunter darauf hin, dass, neben dem bereits bewährten Therapieregime einer täglichen PTH-Gabe, auch längere Applikationsintervalle eine effektive medikamentöse Behandlung der Osteoporose ermöglichen können, eine genauere Beurteilung kann jedoch nur nach weiterer Erforschung verschiedener Applikationsintervalle im direkten Vergleich erfolgen, um das anabolic window der intermittierenden Parathormongabe optimal für osteoanabale therapeutische Zwecke nutzen zu können.
4.4 Korrelation der biomechanischen Eigenschaften der Wirbelkörper mit den erhobenen histomorphometrischen, volumetrischen und gravimetrischen Messparametern

Um statistische Zusammenhänge aufzudecken, wurden die Messwerte des biomechanischen Kompressionsversuchs mit den Messwerten der drei anderen Versuchsreihen korreliert. Ziel dabei war es, den Einfluss der einzelnen Größen auf die mechanische Stabilität zu untersuchen.

Dabei zeigte sich keine signifikante Korrelation zwischen den Parametern der Veraschung und des Kompressionstests.

Zusammengefasst sind demnach Wirbelkörper bei Druckbelastung stabiler, wenn sie über eine dicke Kortikalis mit hoher Knochendichte verfügen und wenn die einzelnen Trabekel der Spongiosa ebenfalls dicker sind und über eine hohe Knochendichte verfügen. Da die dickere Kortikalis in der vorliegenden Versuchsreihe vorwiegend über endostale Aufbauprozesse entsteht (Tezval et al. 2011), resultiert der gestiegene Volumenanteil der Kortikalis, der sich positiv auf die Gesamstabilität auswirkt, in einem verminderten Volumenanteil der Spongiosa.

Auch die kortikale Knochendichte trägt zur biomechanischen Qualität der Wirbelkörper bei, was sich mit den Erkenntnissen vorangegangener Forschungsarbeiten deckt (Andresen et al. 1998).

Hingegen konnte speziell für die Wirbelkörper von Ratten unter dem Osteoporosesimulationsmodell der ovariektomierten Ratte ein überwiegender Einfluss der kortikalen Komponente auf die Gesamtstabilität gezeigt werden. Dieses wurde auf den ovariektomiebedingten Abbau der trabekulären Strukturen zurückgeführt (Ito et al. 2002). Dass diese Annahme auch auf die orchiektomierte männliche Ratte übertragbar ist, wird durch die vorliegende Forschungsarbeit unterstrichen.

Abschließend ist festzustellen, dass die tägliche Parathormongabe sowohl bei orchiektomierten Ratten als auch bei knochengesunden SHAM-Tieren auf fast alle oben genannten Parameter, die einen günstigen Einfluss auf die biomechanische Stabilität der Lendenwirbelkörper der Versuchstiere hatten, einen positiven Effekt erzielte.

Die Behandlung mit Parathormon an jedem zweiten Tag zeigte nur hinsichtlich der für die Stabilität relevanten Parameter Kortikalisdicke und der mittleren Trabekeldicke einen positiven Effekt.
4.5 Schlussfolgerungen

In der vorliegenden Arbeit wurde die Wirkung einer intermittierenden Parathormon-Therapie auf die Knochenqualität und -quantität der Lendenwirbelsäule in einem Osteoporose-Tiermodell männlicher Ratten in Abhängigkeit vom Applikationsintervall untersucht.

Die bisher vorwiegend an weiblichen Tieren erforschte osteoanabole Wirksamkeit einer intermittierenden Parathormonbehandlung ließ sich auch für männliche Ratten bestätigen.

Es konnte gezeigt werden, dass eine tägliche Parathormongabe über eine Zunahme der kortikalen und der trabekulären Knochendichte, über eine dickere und anteilig voluminösere Kortikalis und über im Durchschnitt dickere Trabekel die Bruchfestigkeit der Lendenwirbelkörper männlicher Ratten im Tierversuch verbessert. Dies trifft sowohl für knochengesunde als auch für orchiektomisierte Ratten zu.

Beim Vergleich der Applikationsintervalle wies die Gabe von PTH alle 2 Tage, verglichen mit der täglichen Applikation, eine unterlegene Wirkung auf, da keine Verbesserung der biomechanischen Parameter im Vergleich zu unbehandelten Tieren belegt werden konnte. Anhand der vorliegenden Studie ist deshalb - unter Vorbehalt des Rattentiermodells - auch weiterhin das tägliche Applikationsintervall zu empfehlen.

Die erhobenen Daten und die gewonnenen Erkenntnisse über die Wirkungsweise von Parathormon machen dessen Einsatz interessant für weitere Forschungsfelder. Aufgrund der gesteigerten trabekulären und endostalen Aufbauprozesse ist eine Verwendung zur Optimierung der Implantat-Einheilung, beispielsweise bei zementfreien Endoprothesen, aussichtsreich und bereits Gegenstand aktueller Untersuchungen (Tao et al. 2015).

Ein viel versprechendes Forschungsfeld stellt der Einsatz von Parathormon zur Verbesserung der Transplantat-Einheilung dar, beispielsweise zur Optimierung der ossären Integration nach vorderem Kreuzbandersatz (Bi et al. 2014).

5 Zusammenfassung

Zur Zeit ist für die Therapie mit Parathormon eine tägliche subkutane Injektion des Medikaments vorgesehen und bereits zugelassen. In der vorliegenden Arbeit wurde untersucht, ob auch eine Injektion alle zwei Tage einen ausreichenden therapeutischen Effekt erzielen kann, mit dem Ziel, durch eine Reduktion des Applikationsintervalls die Nebenwirkungsrate und die Kosten einer Behandlung mit Teriparatid zu senken.

Um die Wirkung der intermittierenden Parathormon-Therapie auf die Lendenwirbelsäule in einem Osteoporose-Tiermodell männlicher Ratten in Abhängigkeit vom Applikationsintervall zu untersuchen, wurden von 72 Sprague-Dawley-Ratten im Alter von 8 Monaten 48 orchiektomiert. Postoperativ wurden die Tiere in zwei Kontrollgruppen (SHAM) und drei Testgruppen (ORX) unterteilt. In den folgenden 12 Wochen entwickelten die orchiektomierten Ratten eine in Teilen einer Osteoporose ähnliche Minderung der Knochenqualität und -quantität an der Lendenwirbelsäule.

In der vorliegenden Studie zeigte die Applikation von PTH alle zwei Tage insbesondere im Vergleich mit der täglichen Applikation eine unterlegene Wirkung, da keine Verbesserung der biomechanischen Parameter im Vergleich zu unbehandelten ORX-Tieren belegt werden konnte. Auf Basis dieser Daten ist das tägliche Applikationsintervall - unter dem Vorbehalt des Rattentiermodells - auch weiterhin zu empfehlen.
6 Abstract

Currently, teriparatide, a recombinant form of parathyroid hormone (PTH), is usually applied once daily as a subcutaneous injection for therapeutical purposes in the treatment of osteoporosis. Object of this study was to determine, whether the application every second day can still maintain a sufficient therapeutical effect while diminishing adverse side-effects and costs.

In order to study the effects of an intermittent application of PTH on the lumbar spine in a rat animal model, 48 out of 72 eight-month-old Sprague-Dawley rats were orchiectomized. After surgery, the animals were divided into three test groups (ORX) and two control groups (SHAM). During the following 12 weeks, the orchiectomized rats developed a quantitative and qualitative loss of bone in the lumbar spine, partly resembling human osteoporosis.

Twelve weeks after the beginning of the experiment, standardized osteotomies of the proximal tibial metaphysis were performed with following plate osteosynthesis. Analysis of the fracture healing after these osteotomies was part of a different doctoral thesis (Brandsch 2011).

Following the osteotomies, one test group and one control group were treated once daily with an subcutaneous injection of 40 µg/kg bodyweight teriparatide and another test group was treated every second day with an subcutaneous injection of 40 µg/kg bodyweight teriparatide for the next 5 weeks up to the end of the experiment. Then, all animals were sacrificed by decapitation and lumbar vertebrae were collected for further examination by biomechanical testing, ashing, microradiography and flat-panel volume computer tomography. For each group and test, at least ten animals were analyzed except for ashing, where at least six animals could be analyzed. The results for each parameter of the biomechanical compression test were correlated with the data of the other tests to uncover statistical connections.

The osteoanabolic effects of the intermittent treatment with PTH which so far have been predominantly demonstrated in female test subjects could be confirmed for male rats as well.

The daily administration of PTH showed to improve cortical and trabecular bone density, cortical thickness, cortical volume fraction and mean trabecular thickness, all leading to an increased fracture strength of the lumbar vertebrae of the analyzed male rats. The effects could be demonstrated for orchiectomized as well as for control animals.

The present study has shown inferior effects of the prolonged application interval every second day in comparison to the daily administration, because compared with the untreated test group (ORX), no significant improvement of the biomechanical
parameters could be observed for the prolonged application interval in contrast to the daily administration.

Considering the data of this study, with regard to the given restrictions resulting from animal models, the daily administration should be the preferred choice.
7 Literaturverzeichnis

Bartl R: Osteoporose: Prävention, Diagnostik, Therapie. Georg Thieme Verlag, Stuttgart 2010

Mosekilde L, Mosekilde L (1986): Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7, 207–212
Mosekilde L, Søgaard CH, Danielsen CC, Tørring O (1991): The anabolic effects of human parathyroid hormone (hPTH) on rat vertebral body mass are also reflected in the quality of bone, assessed by biomechanical testing: a comparison study between hPTH-(1-34) and hPTH-(1-84). Endocrinology 129, 421–428

Oxlund H, Ejersted C, Andreassen TT, Tørring O, Nilsson MH (1993): Parathyroid hormone (1-34) and (1-84) stimulate cortical bone formation both from periosteum and endosteum. Calcif Tissue Int 53, 394–399

Platzer W: Taschenatlas Anatomie, Band 1: Bewegungsapparat. Band 1; 11. Auflage; Georg Thieme Verlag, Stuttgart 2013

Schiebler T, Korf H: Anatomie. 10. Auflage; Verlag Steinkopf bei Springer, Darmstadt 2007

103

Silbernagl S, Despopoulos A: Taschenatlas Physiologie. 6. Auflage; Georg Thieme Verlag, Stuttgart 2003

Stewart AF, Cain RL, Burr DB, Jacob D, Turner CH, Hock JM (2000): Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1-34, parathyroid hormone-related protein 1-36, and SDZ-parathyroid hormone 893. J Bone Miner Res 15, 1517–1525

Weißbach W: Werkstoffkunde: Strukturen, Eigenschaften, Prüfung. 17. Auflage; Vieweg+Teubner Verlag, Wiesbaden 2010

Danksagung

Mein Dank gilt Prof. Dr. med. Wolfgang Lehmann, Direktor der Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, für die Ermöglichung dieses Projektes in seiner Abteilung.

Ebenfalls danke ich Prof. Dr. med. Klaus Michael Stürmer, unter dem ich diese Arbeit begonnen hatte, für die lehrreiche Zeit in seiner Abteilung.

Zu besonderem Dank verpflichtet bin ich meinem Doktorvater Prof. Dr. med. Stephan Sehmisch für die Unterstützung und Hilfe bei auftretenden Problemen und deren Lösung sowie die Korrektur dieser Arbeit.

Frau Prof. Dr. med. Ewa Stürmer möchte ich für die Unterstützung während des experimentellen Abschnittes dieser Arbeit danken, ebenso den Mitarbeitern des Labors Dr. rer. nat. Marina Komrakova, Annette Witt und Ramona Castro-Machguth.

Außerdem danke ich Christian Dullin für die Bereitstellung des fpVCT sowie Dr. med. Ulrich Schmelz für die Bereitstellung seiner Räumlichkeiten zur Veraschung und für die Unterstützung bei den Laboranalysen.
Lebenslauf

Ich, Armin Sturm, wurde am 06.07.1984 in Göttingen als Sohn des Studiendirektors Reinhard Sturm und der Oberstudienrätin Ulrike Sturm geboren.

Den Ersten Abschnitt der Ärztlichen Prüfung absolvierte ich 2006 mit der Note 1,5. Den Zweiten Abschnitt der Ärztlichen Prüfung absolvierte ich 2010, ebenfalls mit der Note 1,5 (Gesamtnote 1,5).

2011 begann ich die Weiterbildung zum Orthopäden und Unfallchirurgen in der Abteilung Orthopädie und Unfallchirurgie der Universitätsmedizin Göttingen (Klinikdirektor Prof. Dr. med. K. M. Stürmer). Im Rahmen der Common-Trunk-Weiterbildung absolvierte 2012 ich eine sechsmonatige intensivmedizinische Weiterbildungszeit auf der Intensivstation der Klinik für Anästhesiologie der Universitätsmedizin Göttingen (Klinikdirektor Prof. Dr. med. M. Quintel).

Seit dem 01.01.2014 bin ich als Assistensarzt in der Universitätsklinik für Orthopädie und Unfallchirurgie des Pius-Hospitals Oldenburg (Klinikdirektor Prof. Dr. med. D. Lazovic) tätig.