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Abstract

Using the viewpoint of principal bundles on hyperkdhler reductions, we recover the
results of Gocho and Nakajima [[GN92|] and give insights into the role that the quater-
nions play. We define a framework for dimensional reduction of gauge theories and
show that the Haydys-Witten equations are dimensionally reduced Spin(7)-instantons.
We extend the Nahm transform to data close to a solution satisfying the ordinary
boundary conditions. Using generalized Seiberg-Witten, we show that G,-Monopoles
on A2 X and solutions of the Haydys-Witten equations on R x X for X an oriented Rie-
mannian 4-manifold are related to solutions of generalized Seiber-Witten equations
with target the moduli space of Bogomolny monopoles and Nahm equations respec-
tively. Applying the Nahm transform we derive a relation between G,-Monopoles and
solutions of the Haydys-Witten equations. Finally we hint how this can be extended
via the extended Nahm transform.
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Chapter 1

Introduction

The origin of gauge theories lies in the Maxwell equations [Max65], the foundation of
classical electromagnetism. Changing the structure group to the non-abelian group
SU(2), we arrive at the anti self-duality equations which allowed Donaldson to make his
groundbreaking advances in the theory of smooth structures of 4-manifolds [Don83].

Equations of these types can be derived on a larger class of manifolds if we restrict
the holonomy of the underlying space. Similar to the anti self-duality equations, or
Instanton equations as they are sometimes called in physics, we can define interesting
gauge theoretic equations on manifolds with holonomy in e.g. SO(4), SU(3), G,, and
Spin(7) [DS11a; Hay15b].

A different branch of gauge theory developed with the discovery of the Seiberg-
Witten equations [SWo4b; |SWo4a], which trade a more complicated equation for a sim-
pler (abelian) gauge group U(1). It turned out that many of the results of the anti
self-duality equations are also obtainable by these equations, and often much simpler
to obtain.

Rather than just a connection, the Seiber-Witten equations accommodate a connec-
tion and a spinor, a section of the spin bundle. Generalized Seiberg-Witten theory replaces
the spin bundle by a more complicated fiber bundle and allows to unify many gauge
theories under this construction [Taugg; Pido4]. The typical fiber of these bundles has
to be a hyperkdhler manifold with a rotating Sp(1)-action. It turns out that the solution
spaces of certain gauge theoretic equations have just these properties [Hay15a].

In Chapter |2l we introduce the necessary background material to understand the
following chapters. The following Chapter [3| we investigate hyperédhler reductions.
These will play an important role in the final construction. Out approach is to work
on the involved principal bundles, which allows us to recover the results of Gocho and
Nakajima [GN92|] and also a small novelty. The approach (which is very different to
the one in [GN92]) also highlights the role the quaternions play in the construction.

Chapter [4] introduces the gauge theories that we will use in the rest of this work.
In Chapter |5| we give a framework for dimensional reductions of gauge theories and



apply this to construct all the well known reductions of the anti self-duality equations
and Spin(7)-instantons. As a new result we show that the Haydys-Witten equations
are a dimensional reduction of Spin(7)-instantons. We discuss some of the reduced
equations in Chapter [6| with the focus being the Nahm equations and Bogomolny
equations.

The Nahm transform relates solutions of the Nahm equations and Bogomolny
equations, and we will recall the construction and show that it can be extended to a
small neighborhood of the solution space of the equations in Chapter [7} In Chapter
we will use generalized Seiberg-Witten to relate solutions of the Haydys-Witten equa-
tions to solutions of the Nahm equations and similarly solutions of the G.-Monopole
equations to solutions of the Bogomolny equations. Combining this with the results
of Chapter [7] allows is to define a map that relates G,-Monopoles to solutions of the
Haydys-Witten equations.

The last chapter, Chapter [g} briefly discusses how our results could be extended
to a larger class of solutions and some interesting differences to the classical Nahm
transform. Finally we mention interesting further research opportunities.



Chapter 2

Background Material

2.1 Algebraic Structures

2.1.1  Normed Division Algebras

Definition 2.1 (Quaternions). Let H be the 4-dimensional real vector space spanned
by 1,1,j, k. H is the skew-field of quaternions if we define the multiplication via

i2 =32 =1% =ijk = —1. (2.1)

Definition 2.2 (Quaternionic Vectorspace). A vector space V over the skew-field H is
called a quaternionic vector space.

Remark 2.3 (Complex Structures). An equivalent way of defining a quaternionic vector
space is by requiring a real vector space V to carry a complex structure I and an
anti-linear real structure J,

,JeEnd(V), I*’=-1, J?=1, IJ=-JL (2.2)

Definition 2.4 (Octonions). Let O to be the 8-dimensional real vector space spanned
by the basis
{1,6],62,...,67}, (23)

and furnish it with a bilinear multiplication O ®g O — O defined by the following
diagram

10



€]
€2 A ez

€3 €5 €6

in the sense that for every oriented triple (ei, ej, ex) lying on an oriented curve, we
require the quaternionic relations to hold,

2 _ 2 _ 2 _ _
ef =ej = e = eigjex = —1. (2.4)

We call the division algebra O the octonions. Given an octonion a = a,1+ ZZ=1 a;e; €0,
we write

7
Re(a) = apl, Im(a) = Z aiei, a = Re(a) —Im(a). (2.5)
i=1

Remark 2.5. There are many different (but equivalent) ways to define the octonionic
multiplication by distributing the symbols e; on the triangle above (in a consistent
way). Our choice is not the most common, but it is essential that we make this very
choice for chapter [5.2.7,8.3.1land [8.3.3 It is not completely clear to the author where
this freedom of choice has its origin. However chapter and show that it is
closely related to the choice of self-dual vs. anti self-dual connections.

Remark 2.6. e The standard scalar product on R® can be described via octonions
by
(a,b)rs = Re(ab), a,beO. (2.6)

e The octonions O are a normed division algebra but are neither commutative nor
associative. The former is no surprise, since we see that we have copies of IH
laying in O, e.g. for every directed line in the diagram above. To see the latter,
pick three e; not living in the same copy of H, e.g.

(e1e3)eg = —ezeg = —ey # e4 = —ejes = ej(ezeq). (2.7)

11



2.1.2 Linear Algebra

In this section we will define some notation and prove a few easy facts that are hard
to find a reference for.

Notation 2.7. Let M be a manifold and G — M a Lie group acting on M. For & € g and
x € M, we denote by

d
KéeT(TM), K&=—

dt’t:o (eXP<t£>X)r (2.8)

the corresponding fundamental vector fields.

Definition 2.8. Let M be a manifold and G —~ M a group acting on M. Let w €
QK(M, V) be a form with values in some vector bundle V — M. We denote by

Lw e g’ Qr QT (M,V), (2.9)
the form defined by (zw, &) = 1xew for & € g.

Lemma 2.9. Let V be an n-dimensional oriented euclidean vector space and V.= U@ W as an
oriented orthogonal sum, where dim U = m. Let p,q € N such that p+ q €1{0,...,n}. Then
we may express the Hodge operator x\, via xy and x\ with respect to the bigrading of APT9V
as follows

xv|ava = (=1) P9y |Ap @ *w A (2.10)

Proof. Letey, ..., em be an orthonormal and oriented basis of U, and ey 41,...,en of W.
A basis of APV is given by e; A e where I {1,...,m}, [I|=pand Jc {m+1,...,n},
IJ| = q, where we define for I = {iy,...,1p}

€] = €i; A ... A €i,. (2.11)

We calculate
*v(er Aey) =sgn(L],I])er A eje (2.12)
(x*u ®@*w)(er A ej) =sgn(LI°)sgn(],]¢)erc A eje, (2.13)

where I¢ is the complement of I in {1,...,m} and similarly for J. If T = {iy,...,1,}
and I¢ = {ip+1,...im}, then (I,I°) denotes the permutation sending k — 1. Since
(IuI®)n(JuJ°) = &, we have

sgn(L,1°) sgn(J,J¢) = sgn(L 15, 7,J¢) = (—1)TH"Isgn(1,7,1¢, 7¢), (2.14)

which shows the claim. [ |

12



Notation 2.10. Let M be a oriented Riemannian manifold and w € Q(M) a form on M.
We will be often looking at the maps

QM) > 0M), 1 wan, (2.15)
and
OM) - QM), 1= *(wAn), (2.16)
so we fix the notation
Flw): (M) — Q(M), F(w)() = w A, (2.17)
and
G(w): QM) = Q(M), G(w)(n) = (w A ). (2.18)

Lemma 2.11. Let (V,1,j,k) and (W, 1, ], K) be two quaternionic vector spaces. Let oc: V — W
be a quaternionic linear and 3: V — W be elementary quaternionic antilinear, i.e. there is a
a € {i,j, k} with

B(av) = AB(v), B(bv) = —BB(v) VveV,b #a. (2.19)
Fixing any one of the complex structures, we can decompose the forms into bidegrees,

AF(V)= @ ARVEALV. (2.20)
p+q=k

Then
1. o respects this decomposition for all a € {i,j, k},

2. B respects this decomposition for a. For b # a it swaps the indices, i.e. if n € ARIW,
then p*n e AJPV.

Proof. This follows immediately from an easy calculation. [

Corollary 2.12. In the setting of the last Lemma, let y: V — W be quaternionic antilinear, i.e.
in the span of elementary quaternionic antilinearity for all three structures. Then vy fixes A9
for all structures a € {i,j, k}.

Lemma 2.13. Let (V,1,j,k) be a 4-dimensional quaternionic vector space. If n € ATV for all
ae{ijk}, thenne A2V

Proof. Note that A2V ®g C is given by wi < AY'V, i.e. itis the orthogonal complement
of wq in AYTV. Since wy L wy, for a # b, and n is in A1V for all complex structures
a, the claim follows. |

13



2.1.3 Groups

In this section we will recall the definitions of groups that play an important role in
this work. Furthermore, we will mention some connections between these groups and
discuss characterizations that will become important later on.

Definition 2.14 (O(n),SO(n), U(n),SU(n), Sp(n)). As always, define the classical ma-
trix groups as

O(n) = {AeGl(n,R) | A*A =1} < Gl(n,R) (2.21)
SO(n) ={A € O(n) |detA =1} c O(n) (2.22)
Un) ={AeGl(n,C) | A*A =1} < Gl(n,C) (2.23)
SUn) ={AeU(n) | detA =1} c U(n) (2.24)
Sp(n) ={AeGl(n,H) | A*A =1} < Gl(n, H). (2.25)

Definition 2.15 (Spin(n)). For n > 2, denote by Spin(n) the universal cover of SO(n).

Remark 2.16. We are particularly interested in Spin(7). The following description will
become handy later on,

Spin(7) = {A € SO(8) | 3B € SO(7),Va,b € O : (Ba)(Ab) = A(ab)}, (2.26)

where B acts on the imaginary part of the Octonions. The map to SO(7) is in this
notation given by
A — B. (2.27)

This uses the triality of SO(7), for a justification see [Yokog].

Definition 2.17 (G,). Define G, to be the octonionic automorphism group of O, that
is the real automorphisms of O that respect the multiplication

G, = Auto(0) = {@; Autg(0) | ¢(a-b) = ¢(a) - @(b),Ya,b e o}. (2.28)

Remark 2.18. We can realize these groups as subgroups of SO(n), for certain n € IN.
We are interested here in

e 11: SU(2) — SO(4), < : Z ) — ( tégi tgzi ),Where



e 13: SU(3) — SO(6), similar to ty,
o 11: G, C 50(7)/ © — PIo O(p|lrn0-

e (5: Spin(7) < SO(8), using (2.26).

For 14, realize that the multiplicativity of G, implies that ¢(1) = 1 and via ¢(a) = ¢(a)
we conclude that ¢ is an isometry with respect to the standard scalar product on RR8.
Hence ¢ € O(ImO), and since G, is connected, even ¢ € SO(ImO).

Remark 2.19. e Note that SU(2) = Sp(1) with some choice of H =~ C?2.

e We can give alternative characterizations of the above groups as stabilizers of
certain objects. This is discussed in detail in Proposition [2.28|

Notation 2.20. For a manifold M and a basis of one-forms dx! we use the notation
dxtrizete — dxlt AL A dxte (2.29)
If M = R¥, then e' denote the canonical basis of one-forms.

Definition 2.21 (Hyperkéhler structure forms). The following 2-forms on R*,

w) =e'? 4¢3, wh =e'd —e??, wh =e't 4 e%3, (2.30)

are called the hyperkiihler structure forms.

Definition 2.22 (Hypo structure forms). The following forms on R> are called the hypo
structure forms.

/ 23, 45 / 24 35 / 25, 34
n=e, nNy=e7+e", np=e"—¢e"7, n3=e +e". (2.31)

Definition 2.23 (SU(3) structure forms). The following forms on IR®

W = —e'2 43 46, QF — —e35 4 146 _ o236 _ (245 (2.32)

are called SU(3) structure forms.

Definition 2.24 (G, structure form). The following form on R’

@ = e123 _ o145 _ o167 _ p246 | (257 _ ;347 _ ;356 (2.33)

is called the G,-structure form.

Remark 2.25. Our choice of octonionic multiplication induces the signs in this structure
form.

15



Definition 2.26 (Spin(7) structure form). The following form on R®

@ — 1234 _ 1256 _ 1278 _ 1357 | 1368 _ 1458 _ 1467

e
_ 2358 _ 2367 | 2457 _ 2468 _ ;3456 _ 3478 | 5678

(2.34)
(2.35)

is the Spin(7)-structure form.
Remark 2.27. Note that we have the following relation between these structure forms.
e If w/, w), w} are hyperkdhler structure forms on R?, then
n' =e’, N, =w}, 1e{1,2,3}. (2.36)
form hypo structure forms on R> = R@®R*.
e Ifn/, n} are hypo structure forms on R>, then
w' =—e® An'+1) (2.37)
Q'=e® Anh—n'Am} (2.38)
are SU(3) structure forms of R® = R@R5. From Lemma

xew’ = —x51 +e° A *51] (2.39)

x6 Q) = %515 — % A x50 AMS). (2.40)

e If w’, Q" are SU(3) structure forms on R®, then

/

o' =—e A +0Q (2.41)

is a G, structure form on R” = R@®R®. By Lemma [2.9 we also get

P =479 = —xg w —e® A %6Q. (2.42)
o If ¢’ is the G, structure form on IR’, then
® =e® Ao + %79’ (2.43)

is the Spin(7) structure form. Note that 7 is induced by the metric arising from
G, c SO(7).

Proposition 2.28. We can characterize the groups above as follows

1. SU(2) = SO(4) N S(w}) N S(w)) N S(w})
2. SU(2) = SO(5) n S(') N S(1}) N S(nh) N S(n})
3. SU(3) =~ SO(6) n S(w') N S(QY),

16



4.

5.

G. = GI(7) n S(¢'),

Spin(7) ~ G1(8) n S(©’).

where S(—) is the stabilizer of a form.

Proof. The proof of all these facts are similar.

Ad 1.

Ad 2.
Ad 3.

Ad 4.

Ad 5.

Note that SU(2) = Sp(1) and the latter is the stabilizer of
(== m:HxH-H, (% Y)u = xy. (2.44)

With the identification H =~ R* via xo + ix7 +jx2 + kx3 < (x0,%1,%2,%3) (and
ToR* =~ IR*) this implies after a short calculation that

<X/y>IH = <le>]R - iw’i(x,y) - ]w; (le) - kw@(x,y), (245)

is stabilized, where (—, —) is the canonical scalar product on R*. This shows
the claim.

Follows immediately from 1.

A similar argument as in 1 shows that the stabilizer of (—, —)¢ (which is U(3)) is
the intersection of SO(6) with the stabilizer of w’. Stabilizing Q' is then equiva-
lent to stabilizing the determinant A3° form, which is given by Q' + JQ’, where
J is the almost complex structure induced by SO(6) and w'. This is equivalent to
stabilizing Q’.

The octonionic multiplication is given by
a-b=(ab)rs+axb, a,beO. (2.46)
Furthermore ¢’ is the 3-form given by
¢'(xy,2) = (xy x2), (2.47)

so stabilizing ¢’ is equivalent to stabilizing x in SO(7). But stabilizing ¢ auto-
matically implies stabilizing (—, —), because

6(—,—)vol =1_@ AL_@ A @. (2.48)

See e.g. [Sal89g, Lemma 12.2].

Corollary 2.29. We have the following relation between the groups.

1.

Spin(7) n (SO(1) x SO(7)) =~ G,

17



N

. G, (SO(1) x SO(6)) = SU(3)

3. G, (SO(3) x SO(4)) =~ SO(4)

A

. SU(3) ~ (SO(1) x SO(5)) = SU(2)

. SU(2) n (SO(1) x SO(4)) = SU(2)

%

where we embed the left most groups according to Remark [2.18]

Proof. This follows immediately from Proposition and Remark except for|3},
which can be found in e.g. [[Yokog]. [ |
2.1.4 Representations

To understand manifolds of special holonomies, we need to understand some of the
representations of these groups. Luckily most of the groups we are interested in are
simply connected, so representations of their Lie Algebras are in one-to-one corre-
spondence with the representations of the groups. Unfortunately it is very hard to
find references for representations of real Lie Algebras, so we need to introduce some
notation.

Notation 2.30. Let all Lie Algebras be semi-simple, unless otherwise mentioned.

Definition 2.31 (Lie Algebra representation). A Lie Algebra representation of a Lie Alge-
bra g on a vector space V is a Lie algebra homomorphism

p: g — gl(V). (2.49)
e If gis a real Lie Algebra and V a real vector space, we call the representation real.

o If g is a real Lie Algebra, V is a complex vector space and p: g — glc(V) is
R-linear, we call the representation complex.

e If g is a real Lie Algebra, V is a quaternionic vector space and p: g — gl (V) is
R-linear, we call the representation quaternionic.

e If g is a complex Lie Algebra, V is a complex vector space and p: g — glc(V) is
C-linear, we call the representation complex linear.

¢ A representation of any of the types above is called irreducible if it has no non-
trivial subrepresentations of the same type.

Remark 2.32. The theory of semi simple Lie Algebras generally works with complex
Lie Algebras and complex linear representations. So there are three steps to identify
these with representations of Lie Groups.
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1. Relate complex linear representations of the complexification of a Lie Algebra to
complex representations of the underlying real Lie Algebra.

2. Relate complex representations to real representations.

3. Relate representations of Lie Algebras to representations of the corresponding
Lie group.

We begin with

Lemma 2.33. [Halo3| Proposition 4.6] Let g be a real Lie Algebra. There isa 1 — 1 correspon-
dence of (finite dimensional) complex representations of g and (finite dimensional) complex
linear representations of g&. The correspondence respects irreducibility.

Proof. The correspondence is given by complex linear extension,
x4ty = p(x) +ip(y), (2.50)
and restriction onto the real Lie Algebra. [

For the second step of Remark we use a theorem from Onishchik [Oniog]. Let
us first introduce some notation.

Definition 2.34. e Let p: g — gl(V) be a real representation. Denote by p¢ the
induced complex representation of p on V&€ = V@1V.

e Let p: g — gl(W) be a complex presentation. Then denote by pr the real repre-
sentation that is induced by forgetting the complex structure of W.

e Let p: g — gl(W) be a complex representation with invariant real structure. Then
W = V€ for some real vector space V and p induces a representation on V. We
denote this representation by [W].

Proposition 2.35. [Oniog, Theorem §8.1]
Any irreducible real representation p: g — gl(V) of a real Lie algebra g satisfies precisely
one of the following two conditions:

1. pC is an irreducible complex representation;

2. p = pl, where o is an irreducible complex representation admitting no invariant real
structures.

Conwversely, any real representation p satisfying[1] or[2] is irreducible.

Remark 2.36. We may turn this around and say that given any irreducible complex
representation p: g — glc(V), where n = dim¢ V, one of two things can happen. Ei-
ther it has an invariant real structure, which gives a irreducible representation of real
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dimension n; or it remains irreducible if we forget the complex structure, resulting in
a an irreducible real representation of dimension 2n.

There are sophisticated techniques discussed in [Oniog] to see which of the two
categories a representation belongs to. Being only interested in low dimensional ex-
amples, we will use an ad-hoc approach here.

Remark 2.37. The last step of Remark [2.32|concerns the first fundamental group. Again,
there are more sophisticated methods to understand which representations factor
through the projection, but we will only work with the most naive approach; a repre-
sentation factors through if and only if the deck transformation group acts trivially on
it.

On the other hand any (irreducible) representation of the quotient clearly induces
a (irreducible) representation of the total space, so we get all possible representations.

The representations of SU(2)

Because SU(2) is simply connected, the representations of SU(2) agree with the com-
plex linear representations of sl(2,C). These are characterized by the highest weight
and given by symmetric powers of the tautological representation.

As su(2) representations, it follows immediately that S'C? has a real structure if
and only if i is even. This gives the following real representations

Highest Weight Name Origin Dimension

0 R  [S°C?] 1
2 su(2)  [S2C?) 3
1 Ci S'C% 4
4 —  [s'C?] 5

Representations of SO(4)

We know that SO(4) has the double cover SU(2) x SU(2). The irreducible complex
representations of SU(2) are given by S'C?. Hence the irreducible complex represen-
tations of SU(2) x SU(2) are given by

sY = stCc?@SIC?. (2.51)

Figure 2.1: The Coxeter-Dynkin Diagram of so(4, C).

O O

These representations factor through SO(4) if and only if (—1,—1) € SU(2) x SU(2)
acts trivially, which is true if either both i and j are even, or both are odd. If both i and
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j is even, then both components have a real structure, so also the tensor product. If
both are odd, then both sides have a quaternionic structure and their tensor products
give a real structure. Hence the irreducible real representations of SO(4) are given by

{[SY]]i+j mod2=0}. (2.52)

For notational simplicity, we will drop the [—] and simply denote them by SY. The
lowest dimensions are given by

Highest Weight Name Origin Dimension

(0,0) R S00 1
(2,0) A2 §20 3
(0,2) A% 502 3
(1,1) R* S 4
(4,0) — §40 5
(0,4) — §04 5
(3,1 — 31 8
(1,3) — S13 8
(2,2) — s 9

Representations of SU(3)
Again, SU(3) is simply connected. Actually all SU(n) are, by the fibration

SU(n — 1) — SU(n) — SU(n) / SU(n —1) =821, (2.53)

So again, complex representations of SU(3) are equal to complex linear represen-
tations of sl(3,C).

Figure 2.2: The Coxeter-Dynkin Diagram of s((3,C).

In this case we have a new phenomenon. Since we have an outer automorphism
of the group (swapping the two nodes in Figure , we have two distinct irreducible
representations of every dimension as long as the highest weight is not of type (n,n),
n € INy. These representations are dual to each other, hence as representations of
SU(3) they are conjugated. Since these do not possess a real structure, we forget the
complex structure, which identifies these as real representations.
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Table 2.1: Some Irreducible Representations of SU(3)

Highest Weight Name Dimension

(0,0) R 1
(1,0) or (0,1) Ci 6

(1,1) su(3) 8
2,0)0r (0,2)  — 12

The representations of G,

The representations of G, are all equipped with an invariant real structure, and since
G, is simply connected, representations are in correspondence with representations of

5.

Figure 2.3: The Coxeter-Dynkin Diagram of ¢S.

Table 2.2: Some Irreducible Real Representations of G..

Highest Weight Name Dimension Description

(0,0) R 1 trivial representation
(1,0) 0 7 action of G, on Im(O)
(o,1) 92 14 the adjoint representation
(2,0) S§u 27

(1,1) — 64

(3,0) — 77

(0,2) — 77

Lemma 2.38. If we restrict the group to SO(4) < G, then we have the following decomposition
of the G,-representation p,

uw=520@s" (2.54)
Proof. See the proof of [Yokog, Theorem 1.10.1], but instead of the described map use
@:Sp(1)+ xSp(1)-: G, (m+ aes) = pmp + qapes. (2.55)

(see the reference for the notation; we swapped Sp(1)+ with Sp(1)_ to get S?° instead
of $°2). Then the representations are $?° and S'!" where the ismorphism of the second
is given by H — H, x — x. u

Remark 2.39. The identifiaction x — X will haunt us later on, but it is necessary beacuse
we want to work with anti self-dual instantons.
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The representations of Spin(7)

The representations of Spin(7) can again be read off the Coxeter-Dynkin diagram B3.
For details, see [Halo3; |Varo1].

Table 2.3: Some Irreducible Real Representations of Spin(7).

Highest Weight Name Dimension Description

(0,0,0) R 1 trivial representation
(1,0,0) R’ 7 representation from SO(7)
(0,1,0) Ss 8 spin representation

(0,0,1) spin(7) 21 the adjoint representation

Figure 2.4: The Coxeter-Dynkin Diagram of so(7,C).

2.2 Manifolds of Special Holonomy

2.2.1  Hyperkidhler structure

Definition 2.40 (Hyperkihler structure). A 4-dimensional oriented Riemannian mani-
fold M is said to have a hyperkihler structure if its holonomy group reduces to Sp(1)
SO(4). The structure is called an integrable hyperkihler structure if the Levi-Civita con-
nection reduces too.

Proposition 2.41 (Description by local forms). Let M be a 4-dimensional oriented Rieman-
nian manifold and

3
F = {(w1,wz,w3) € (/\ZTXv M)eB | Ip € Frso(M)y : p*wi = w’l} (2.56)

be the admissible bundle of w', w’, and w%. Then a hyperkihler structure is equivalent to a
section

(w1, w2, w3) €T(F), (2.57)

and it is integrable if and only if the sections are parallel.

Proof. This follows immediately from the holonomy theorem (see e.g. [Bauog, Satz

5.3]) and Proposition [ ]

Lemma 2.42 (Hitchin). Let M be an oriented Riemannian manifold with hyperkihler struc-
ture (w1, w2, w3). Then the structure is integrable if and only if

dwi = dwy = dwz = 0. (258)
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Notation 2.43. In the following /\} will denote a j-dimensional subspace of the i-th
exterior product of TV M.

Proposition 2.44 (A" of a hyperkdhler manifold). Let M be a 4-dimensional hyperkihler
manifold. Then

Space  Decomposition  Isomorphic to by x
A°TVM A9 ATYM
ATTYM Al ASTYM
A2TYM 3AZ A3

where Ay = R are the trivial representations, A} = Cg is the realified tautological representa-
tion and A3 = su(2) is the adjoint representation.

Proof. A'TYM = A} = C§ follows immediately by restricting SO(4) ~ R* to SU(2) —
SO(4). Furthermore

A’TYM = A2R* = A2 @ A2 (2:59)
as SO(4) representations. It is then a tedious but simple calculation to show that
A% =~ 3R and A? = su(2) as SU(2) representations. First note that SU(2) is simply

connected, so that we can equivalently work with the its Lie Algebra su(2).
We use the usual orthogonal basis of A%

fl =el? +e34, fzi =el3 1%, fi = el +e23. (2.60)

Here e = et A el and e',...,e* is the dual of the standard basis e, ..., es of R*. If we
identify C]%{ with R?, we have the identification

€1<—><;>, 62<—><é>, €3<—><(1)>, €4<—><?>. (2.61)

Using the standard basis of su(2) given by

i 0 0 1 0 1
u1_<0 _1>/ 'LLZ—(_] O>, 1'L3_<‘L 0)/ (2'62)

the representation p of su(2) on R* =~ C§ is given by left multiplication of the above
matrices. A quick inspection shows that the dual representation X — —p(X)T has
exactly the same matrices (with respect to the dual basis) and hence the induced rep-
resentation A2p" acts by

<2 s o R A - 4
wl| o0 0 0 U 0 —2f3  2f2
wl| o0 0 0 wy | =213 0 2f1
uz | 0 0 0 uz | =212 2fL 0
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which shows that the representation on A% is trivial and the isomorphism induced

by fl — u;, f2 — —uy and 2 — uj gives an su(2)-module isomorphisms between
su(2) and A2.

u

Proposition 2.45 (Description of the various representations). We have the following
description of the various representations of proposition (2.44)

3

A = ﬂ ker(F(wy)) (2.63)
i=1

3AT = (1) @ (w2) @ (w3) (2.64)

Proof. The second assertion follows immediately from the proof of proposition (2.44).
To see the first, note that wedging with w; gives a SU(2)-map 3A @A — A7, and a
quick check shows that w; A w; # 0, so the kernel of the map is of dimension 5. This
shows the first assertion. [

2.2.2 Hypo structure

Definition 2.46 (Hypo structure). A 5-dimensional oriented Riemannian manifold M
possesses a hypo structure, if the structure group of the frame bundle reduces to
t2: SU(2) — SO(5). If, in addition, the Levi-Civita connection reduces, we say that
M possesses an integrable hypo structure.

Proposition 2.47 (Descritpion by local forms). Let M be a 5-dimensional oriented Rieman-
nian manifold and let

®
Fx = {(n,m,ﬂz,ﬂs) e MTYM)POTYM ‘ Ip € Frso(M) : E*E :ﬂn/{ } (2.65)
be the admissible subbundle to the hypo structure forms. Then a hypo structure on M is given

by a sections
(M, wi, wy, w3) € T(F) (2.66)

and it is integrable if and only if all sections are parallel.

Proof. This follows from the holonomy theorem (see e.g. [Bauog| Satz 5.3]) and Propo-
sition [ ]

Proposition 2.48 (A* of a hypo manifold). Let M be a manifold with a hypo structure.
Then the exterior powers of the cotangent bundle decompose as follows

Space  Decomposition  Isomorphic to by *

A°TYM A9 ASTYM
ATTYM AlA] ATYM
APTYM AF@3ATDA2 ASTYM
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(2.67)

where A = R are the trivial representations, A, = Cé are the realified tautological represen-
tations and A2 = su(2) is the adjoint representation.

Proposition 2.49 (Description of the various representations). We have the following
description of the representations of proposition [2.48]

A= ()

A} = ker(ty:|a1)

AG = im(F(n)|a1)

3A% = (w1) u (W) L (w3)

A% = ker(F(n2)|a2) nker(F(n2)| a2) nker(F(n3)| 2) N ker(F(n)| )

Proof. This is can be checked by calculating with the hypo structure forms on R> and
realizing that all maps above are SU(2)-equivariant. n

2.2.3 SU(3) structure

Definition 2.50. A 6-dimensional oriented Riemannian manifold M possesses a SU(3)-
structure if the structure group of the frame bundle reduces to t3: SU(3) — SO(6). If,
in addition, the Levi-Civita connection reduces, we say that M possesses an integrable
SU(3)-structure.

Proposition 2.51. Let M be a 6-dimensional oriented Riemannian manifold and let

2TV 3TV p*(,U = w,/
Fo =4 (0,0) e PTYMOAPTYM | 3peFrgo(M): ; (2.68)
P Q=0
be the corresponding admissible bundle. A SU(3) structure on M is a pair of sections
(w, Q) el(F), (2.69)
and it is integrable if and only if the sections are parallel.

Proof. This follows from the holonomy theorem (see e.g. [Bauog), Satz 5.3]) and Propo-
sition [ |

Proposition 2.52 (A° of a SU(3) manifold). Let M be a 6-dimensional SU(3)-manifold.
Then

Space Decomposition  Isomorphic to by x

A°TYM A9 APTYM
ATTYM Al ASTYM
ATTYM ATDAZDAS ATYM

ASTYM 2A3DAZD A3,
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(2.70)

where the representations of the decomposition are uniquely determined by their dimensions

(compare to Table[2.1).

Proof. See e.g. [Xuo08, section 2.1.1]. [

2.2.4 G, structure

Definition 2.53. A 7-dimensional oriented Riemannian manifold M possesses a G,-
structure if the structure group of the frame bundle reduced to u: G, — SO(7). If,
in addition, the Levi-Civita connection reduces, we say that M possesses an integrable
G,-structure.

Proposition 2.54. Let M be a 7-dimensional oriented Riemannian manifold and let
Tx = {q) e A’TYM | 3p € Frso(M) : p* o = <P'} (2.71)
be the corresponding admissible bundle. A G, structure on M is section
¢ eT(F), (2.72)
and it is integrable if and only if the section is parallel.

Proof. This follows from the holonomy theorem (see e.g. [Bauog, Satz 5.3]) and Propo-
sition |

Lemma 2.55. A section ¢ € I'(F) is parallel if and only if ¢ is closed and co-closed.

Proposition 2.56 (A" of a G, manifold). Let M be a 7-dimensional G,-manifold. Then

Space  Decomposition  Isomorphic to by *

ASTVM A9 ATVM
ATTYM Al ASTYM
AZTVM A2 AL, ASTYM
ATYM ATDASDAS, ATYM

where the representations of the decomposition are uniquely determined by their dimensions

(compare to Table[2.2).
Proof. See e.g. [Bry87l. [
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Proposition 2.57. Let M be a 7-dimensional G,-manifold. Then

A =im(G($)[a1) = Eig (G(9)|r2;2) (2.73)
Al = ker(F($)|x2) = Eig (G(@)|a2; —T) (2.74)
AT = (o) (2.75)
A2 =im(G(e)|a1) (2.76)
A37 = ker(F(¢)|as) nker(F()|3) (2.77)

where the representations of the decomposition are uniquely determined by their dimensions
(compare to Table[2.2).

Proposition 2.58. There is a G,-structure on A3 X of a 4-dimensional Riemannian manfiold.
If X is an anti self-dual Einstein manifold, then an integrable G,-structure can be defined on
A2 X. These structures reduce algebraically to SO(4).

Proof. See [Sal89, Theorem 11.10]. [ |

2.2.5 Spin(7) structure

Definition 2.59. An 8-dimensional oriented Riemannian manifold M is said to posses a
Spin(7)-structure if the structure group of the frame bundle reduced to t5: Spin(7) —
SO(8). If, in addition, the Levi-Civita connection reduces, we say that M possesses an
integrable Spin(7)-structure.

Proposition 2.60. Let M be a 8-dimensional oriented Riemannian manifold and let
Ty = {@ e A“TYM ‘ Ip € Frgo(M) : p*© = @'} (2.78)
be the corresponding admissible bundle. A Spin(7) structure on M is section
©el(F), (2.79)

and it is integrable if and only if the section is parallel.

Proof. This follows from the holonomy theorem (see e.g. [Bauog, Satz 5.3]) and Propo-
sition |

Lemma 2.61. A section © € I'(F) is parallel if and only if © is closed.

Proposition 2.62 (A* of a Spin(7) manifold). Let M be a 7-dimensional Spin(7)-manifold.
Then

Space Decomposition Isomorphic to by *
A'TYM A9 ASTYM
ATTYM Al A TYM
A2TYM AZ @ A3, ASTYM
ASTYM AFD A3 ASTYM

ATYM ATOAI DAL, DAL —
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Proof. See e.g. [Bry87]. n

Proposition 2.63. Let M be a 8-dimensional Spin(7)-manifold. Then

A% = Eig (G(0)|A2;3) (2.80)
A3y = Eig (G(0)[x2; —1) (2.81)
A§ =1m(G(©)|a1) (2.82)
Nig = ker(F(©)[x3) (2.83)
At = (©) (2.84)
A3s = Big (xspa;—1) (2.85)

Proof. See [Bry87] for a justification and a description of the remaining spaces (which
we are not interested in here). [ |

2.2.6 Connection of Holonomies

Corollary 2.64. If we apply the above to the holonomy groups of manifolds, we get the follow-
ing facts.

o An 8-manifold with (integrable) Spin(7) holonomy and a global parallel non-vanishing
vector field has (integrable) holonomy in G,.

o A 7-manifold with (integrable) G, holonomy and a global parallel non-vanishing vector
field has (integrable) holonomy in SU(3).

o A 6-manifold with (integrable) SU(3) holonomy and a global parallel non-vanishing
vector field has (integrable) holonomy in SU(2).

Proof. Apply the holonomy principle and use Corollary n

Remark 2.65. We can also formulate this the following way. If R x M is a Spin(7)-
manifold, then M is a G, manifold. If R x M is a G,-manifold, then M is a SU(3)
manifold. If R x M is a SU(3) manifold, then M is a manifold with hypo structure.
Finally if R x M is a manifold with hypo structure, then M is a SU(2) manifold.

Remark 2.66. We will be interested in an additional case. Assume we have manifold
M with (integrable) Spin(7)-structure, which has an free and proper action by SO(3),
such that the quotient is flat (in the sense of the induced submersion by the Rieman-
nian submersion). This means that the quotient is locally a Riemannian product and
by the decomposition theorem of de Rham and Wu, this means the distribution in-
duced by the action of SO(3) in TM is invariant under the action of the holonomy
group. Via parallel transport we can restrict the discussion to a single tangent space.
As discussed in Lemma and thereafter, the decomposition of T,M for holon-
omy groups
SU(2) c G, < Spin(7) (2.86)
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decomposes into dimensions 4 + 1+ 1+ 1+ 1, whereas the decomposition for
SO(4) < G, < Spin(7) (2.87)

is into dimensions 4 + 3 + 1.

This shows that a SO(3) action cannot achieve the former, and it can only achieve
the latter if we act on the “the three extra dimensions of G, over SO(4)” (otherwise
this would imply the existence of a parallel vector field on SO(3)).
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Chapter 3

Hyperkahler Reduction

3.1 Introduction

The Hyperkéhler Reduction is a cousin of the Symplectic Reduction applicable to the
setting where the starting manifold M is hyperkéhler and the involved data, the action
of an auxiliary group G and the moment map y, respect this structure. It is well known,
that this implies that the final manifold, the quotient of a preimage of a central regular
value of u by G, also is a hyperkdhler manifold. This however is not all that is special
about the hyperkéhler reduction.

In their paper [GN92] T. Gocho and H. Nakajima find some interesting relations
between various geometrical quantities involved in this construction. The paper uses
calculations in the tangent bundle to show these relations.

We will present a different approach in this work by lifting the calculation onto
the involved principal bundles. Although quite a bit longer than the original work,
it highlights the role the quaternionic structure plays in the construction. The length
can be partly attributed to the need to introduce basic notions in this setting, e.g.
the section [3.4.5| Riemannian Submersions which recovers the fundamentals of O’Neill’s
theory in the principal bundle setting.

The aim of this chapter is to show that these relations can be derived fundamentally
from the structure of quaternionic matrices, when embedded into real matrices. It does
so, by first deriving equation (3.68), which does not need the involved quaternionic
structures. Then this equation is compared to the quaternionic world , and this
comparison yields all the relations that we long for. It then just remains to decipher
the implied relations for the quaternionic components.

The section [3.2| Definitions recalls the basic notions involved in hyperkéhler geom-
etry and in particular in a hyperkahler reduction. Of utmost importance to the next
sections are the notions of reduction and extension of principal bundles. Further it
describes a recipe to compare forms on the manifolds and the involved principal bun-
dles.
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Section [3.3| Setting first discusses the tangent bundle of M and how its quaternionic
structure behaves with respect to the reduction. This structure allows for various
reductions of the principal bundle of frames of M. These bundles lie at the heart of
the construction in this work.

The following section inspects the involved forms with respect to the bundles dis-
cussed. Concretely we will trace the reductions of the Levi-Civita connection and
tautological form starting from the principal bundle of frames of M all the way to the
principal bundle of frames of the quotient N. A quick excursion is made in this sec-
tion, explaining the fundamentals of Riemannian Submersions in the principal bundle
language.

The last section [3.5| Final Results uses the preceding work to recover the results of
Gocho and Nakajima, and show a small novelty. It is this section where the relation
between the quaternionic structure and the results is investigated.

3.2 Definitions

Let us define some standard notions. Throughout this chapter , let M be a smooth
oriented Riemannian manifold of dimension 4m € IN, and G a smooth Lie group of
dimension k € IN.

Notation 3.1. By Frso(M) we denote the principal bundle of orthonormal frames on M,
Frso(M) = {p: R*™ — TyM : p is an oriented orthogonal isomorphism }.
Notation 3.2. By M € Q' (Frso (M), R*™) we denote the soldering form of Frso(M)
0)'(£) =p~ ' oDmy (£), peFrso(M), &€ T,Frso(M),
where 7: Frso (M) — M is the projection.
Let ¢ € Q'(Frso(M),so(4m))S0¢™
Then ¢ satisfies

e Rjp = Ady-1 0g, for all g € SO(4m),

denote the Levi-Civita connection of (M, g).

e (K%)= ¢ for all £ € so(4m), where K¢ is the fundamental vector field to the lie
algebra element &, i.e.

& —
Ki= g5 (Pexp(te))

e dO+ ¢ A0 =0,ie. ¢ has zero torsion.

Definition 3.3 (Hyperkédhler Manifold). A Riemannian manifold (M, g) with a triple
of almost complex structures I, ], K,

LJ,K: TM — TM, 12 =72 =K? = —idtm,
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which satisfy the quaternionic relation I] = K and are compatible with the metric,
9(= =) = 9(I=1=) = g(J—=, ] =) = g(K—,K=),

is called a hyperkdhler manifold (hk-manifold) if the two-forms corresponding to I, ]
and K are closed, i.e.

de = O, wA(—, —) = Q(A_; _)/ A€ {Ir ]1 K}

Proposition 3.4 (Alternative Characterization). (M*™, g) is a hyperkiihler manifold if and
only if the structure group of Frso (M) reduces to Sp(m) and the Levi-Civita connection on
Frso (M) reduces to a connection on

Frsp(M) = {p: H™ — T,M : p is a H-linear isomorphism},
i.e. the horizontal subspaces are tangent to the submanifold Frs,(M) < Frso(M).

Note that in the dual formulation the condition on the horizontal subspaces is that
@ reduces to a connection on Frs,(M). Precisely this means that j*¢ is a connection
on Frs, (M), where j: Frs, (M) — Frso(M).

Definition 3.5 (Hyperkdhler Action). We say a group G acts hyperkdhler on a hy-
perkéhler manifold (M, g,,],K), if G acts on M and this action preserves the metric g
and the hyperkahler structures I, ] and X, i.e.

hwa =wa VAe{L] K}, Rhg =g, (3.1)

for all h € G. (In this case we used a right action of G on M, but this definition does
not require so).

Definition 3.6 (tri-hamiltonian action). A hyperkéhler action of G on M is called a
tri-hamiltonian action, if G-equivariant moment maps

Hr, 1y, ks M — g* (3-2)

exist, i.e.
ua(x.h) = Adf—1opa(x)  VxeM, VheG, VAe{l] K}, (3.3)
(&,dua(n)) = wa(K5m)  VneTM, VEeg, VAe{lJ] K. (3-4)

The moment maps of a tri-hamiltonian action are also often considered together as
amap u = (ur, uy, k) M - R3® g*.
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3.2.1 Reduction and Extensions

Let m: P — M be a principal bundle with structure group G. A reduction of P is a
principal bundle Q — M with structure group H and maps

A H— G, f:Q - P, (3.5)

a Lie homomorphism and a smooth map respectively, such that the following diagram
commutes.

fxA
QxH PxG
Q 4 P
M

The vertical maps above are the group actions on the principal bundles. An extension
of P is a principal bundle Q — M of structure group H with maps A: G — H and
f: P — Q, such that P is a reduction of Q.

Given a connection ¢” on P, then there is a unique connection $Q on Q such that

'F*(I)Q = 7\* O d)Pr (36)

where A, is the derivative of A (see e.g. [Bauog, Satz 4.1]). In this sense, a connection
is always extendable. If two connections satisfy the equation above, we say that ¢
extends to d)Q and ¢ reduces to ¢P.

On Q the situation is somewhat more complicated. We will only discuss the situa-
tion for the simplest case where f = i and A are the inclusions.

Proposition 3.7 (Reduction of a connection). If g = b @ f as H-representations, i.e. f C g
is a vector space complement of b < g, with the property that

Adu(f) =, (3.7)

then pr, oi*$" is a connection on Q, where the projection is with respect to the decomposition
given above.

Proof. The only thing to note is, that the condition Ady (f) < f (together with Ady(h) <
h) implies that pr, commutes with Ady, for all h € H. The necessary conditions are
then easily checked. n
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Definition 3.8. We say that ¢ reduces to Q when the horizontal subspaces are tangent
to the subbundle Q < P. In the dual formulation this is true if and only if the pulled
back connection takes values in the Lie algebra b, so that no projection is necessary.

Note that a projected connection as in the lemma above can be extended back to
P. This will however yield a different connection if the original one was not reducible.
This also implies that there are in general multiple connections on P that project onto
a given connection on Q.

Remark 3.9. Let t: Q — Frso(M) denote a reduction of the frame bundle. We call the
pull back 89 of 6M to Q again soldering form of Q. Since the diagram

Q t FT‘50<M)

M

commutes, we have that forallpe Q and £ € T,Q

0R(&) = (*0™)p (&) = 011 (8) = up) ™" © (DAM) () 0 Dy (£) (3-8)
= p) " o (D™ 0 1))p(E) = up) "' 0 (DAY, (), (3.9)

so that 88 = (p) ' o DnY. In this sense the construction is natural.

3.2.2 The Correspondence of Forms

Having a principal bundle of frames Frg (M) (or any reduction of it) over a manifold
M induces a correspondence between certain forms on the base manifold and the
bundle. We will use this correspondence to compare our approach and the one taken
in [GNo2].

Lemma 3.10 (Correspondence of forms). There is a one-to-one correspondence between
horizontal, equivariant and gl(4m)-valued one-forms on the principal bundle of frames, and
(global) sections of the vector bundle T*M ® End(TM).

Remark 3.11. Note that this is a special case of the correspondence between represen-
tation valued forms on a principal bundle and forms with values in associated vector
bundles on the base. In the presence of the soldering form, we can give a simple
explicit description.

Proof. Let w be a horizontal and equivariant one-form on the principal bundle. We
induce the wanted section as follows. If x e M and &,n € TyM, let p € Frgi (M) be any
frame in the fiber of 7t over x. Define

s(w)(&m) = pw(£)6(A), (3.10)
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where 0 is the solder form of Frgi(M) and & and 7 are lifts of & and 1 to p € Frg1(M),
i.e. Dn(§) = & and Dn(fi) = n. This is well defined, because for a different choice of
lifts £ and 1, the differences AZ = £ — & and An = 7 —q are vertical, but w and 6 are
both horizontal forms. A different choice of frame q = p.g € Frgi(M), leads to the
calculation

qw(£)0() = qw(Z)q~ () = p.gw(E)(p.9)~' () = pgw(Z)g 'p~" () (3.11)
=pAdg(w(£))8(fi) = pw(DRy-1€)6(7i) = pw(&)6()
= pw(&)0(7),

where we have used the equivariance of w, Ryw = Adgq w, and the fact that DRy
maps lifts into lifts, since mo Ry = 7 and therefore Dto DRy = D for all g € Gl(m).
By abuse of notation 17 denotes a lift to both q and p in TFrgi(m).

Note that we have only needed G1(m) for the fact that Adg(&) = g&g~', so this will
be true for all principal bundles in this work, if we adjust the vector bundle in which
the sections are taken.

The inverse map, sending a section to a form on the principal bundle is defined by

w(s)(&) =p~'s(Dn(&))p, (3.12)

where p € Frgi(M) is some frame, & € T,Frgi(M) and s € T(T*M ® End(TM)) is the
section. This form is clearly a horizontal gl(m)-valued one-form. It is also equivariant
because

REw(s)(E) = (pg) 's(DmoDRy(£))pg = g~ 'p~'s(Dn(£))pg (3.13)
= Adg-1 w(s)(§).

It is easy to show that these two maps are inverse of each other, which concludes
the proof. [

Definition 3.12 (Corresponding forms). As denoted in the proof above, the section of
T*M ®End(TM) corresponding to w is denoted by s(w), and the form corresponding
to a section s by w(s).

Note that this result remains true for reductions of the basis bundle, if we adjust
the vector bundle in which the sections are taken. For example, the above mentioned
forms on Frso (M) correspond to sections in T*M ® so(TM) and the forms on Frs, (M)
to sections of T*M ® sp(TM).

Example 3.13 (Difference form). A well known example of this correspondence is be-
tween the difference form of two connections on a principal bundle, and the difference
tensor of the two associated covariant derivatives. This follows immediately from
equation (3.38).



3.3 Setting

We will recover the results from [GN9g2] for principal bundles.

Let (M, g) be an Riemannian manifold of dimension 4m € IN, and let M — G be
a tri-hamiltonian action of G on M. Let k € IN be the dimension of the Lie group G.
We denote the momentum map by p: M — R*® g*. We assume that 0 € R3® g*
is a regular value of p. This implies that G acts on the submanifold p~'(0), because
equation (3.3) guarantees that for x € p='(0), i.e. pa(x) = 0 for all A, we have

ua (x.h) = Adj, opa(x) =0, Vhe G, (3.14)

and hence x.h € p=1(0).
We assume further that this action is free and proper, so that the quotient n='(0)/G
is a Hausdorff space, and define N := u=1(0)/G.

We will show that N also is a hyperkdhler manifold, and that the second funda-
mental form of u='(0) in M is given by the Hessian of 1, compare [GNg2|] and [Hit+87].

3.3.1 The Splitting of TM

The tri-hamiltonian action M — G splits the vector bundle TM over u=1(0), i.e. the
ambient bundle

FTM, (3.15)
in the following way.
Proposition 3.14. If x € p=1(0), we have
TM =T (0) @ Tap 1 (0)" = He @g@Ten ™' (0)7, (3.16)

where g < TxM is defined by the fundamental vector fields, i.e. the image of K: g — I'(TM),
and H, is the orthogonal complement to g in Tu~1(0) with respect to the metric g. All direct
sums are orthogonal.

Then Hy is a quaternionic subspace of TcM and

Tow ' (0) = Ig® gD Kg. (3.17)
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Proof. If &£ € g and n € Ty~ '(0) then n is tangent to a level set of p, i.e. du(n) =0,
which implies for A € {I, ], K}

Q(AK(S,H) = wA(Kaln) = <E»/dFLA(n)> =0, (318)

hence AKE € Tu=1(0)" for all A.

Furthermore the sets Ig, Jg and Kg have a trivial intersection. Indeed, assume &,n €
g with 1€ = Jn. Then K& = 1 but since K& is in Tu™'(0)+,n = & = 0.

Since the codimension of 1~'(0) in M is 3k, where k = dim G = dim g, we see that

Tu ' (0)" = Ig® Jg @ Kg. (3.19)

Finally, I,] and K let the orthogonal complement of Hy invariant and are orthogo-
nal, so they also let H, invariant.
[ |

We conclude that TM splits over u='(0) into two quaternionic sub-bundles
T™ =H®g®r H. (3.20)

Notice that while the first bundle has a quaternionic structure, the second one has a
quaternionic and a real structure. This will become important later on.

The metric g of M induces a metric on H. Since M — G is hyperkdhler and g
is G-invariant it furnishes N with a Riemannian metric. Similarly the quaternionic
structure on M induces one on H (because of the quaternionic decomposition above),
which in turn induces one on N compatible with the metric. This reduces the principal
bundle of orthogonal frames on N to the structure group Sp(n) (n = m —k, 4n is the
dimension of N). We will show later that the connection of N reduces so that N is
indeed a hyperkéhler manifold.

3.3.2 The Principal Bundles

Similar to the vector bundle TM, we may depict the splitting in the principal bundle
setting. Fix a splitting

R*™ = R"M @ R*@R3* = H*@ H* (3.21)

Now we can ask frames p: R*™ — T, M to respect various degrees of the structure.
Let x € u=1(0).

e p: R*™ — T, M with no condition at all. These frames are in the pull back of the
frame bundle Frso (M) to p='(0), denoted by t*Frso(M).



e p: R*™ — T,M with p(R*™ @®R¥) = Tu=1(0), frames adapted to the submanifold
n=1(0) = M. This is a principal bundle whose structure group is SO(4n + k) x
SO(3k), corresponding to the possible rotations of the frame in Tu~'(0) and
Tu='1(0)*. We denote it by

Frso(™'(0),M) = {peFrso(M):  im(plgenes) =T ')}, (3.22)

e p: R @®RF — T,u~'(0). These frames can be identified with frames of u='(0).
We denote them with Frso (1='(0)).

e p: R @RF - T,u'(0) with p(R*™) = H,. These frames are frames of pu='(0)
adapted to the fibration m: p='(0) — N. The principal bundle of these have
structure group SO(4n) x SO(k) corresponding to the rotations in the fiber and
its orthogonal complement. We denote the bundle by

Frso(N,u '(0)) = {p e Frso(n '(0)) :  im(p|gan) = Hy}, (323)

e p: R*™ — H,. The principal bundle of these frames can be identified with the
pull back of Frso (N) to n=1(0) (note that we know already that N is a Riemannian
manifold). We denote it by m*Frso (N).

We may restrict the principal bundles above to quaternionic frames where it makes
sense. Fix
H™ = H" @ H* (3-24)

respecting (3.21). This induces the following bundles, where all frames are H-linear.
e p: H™ — T, M are the frames that make up the pull back of
Frsp(M) = {p € Frso(M) : p is H-linear} (3-25)

to u=1(0). It is naturally a reduction of 1*Frso(M) to quaternionic frames, has
structure group Sp(m) and will be denoted by t*Frs,(M).

e p: H™ - TuM with p(H™) = Hy and p(IH*) = g ® H respecting both the quater-
nionic and real structure. We denote this principal bundle with structure group
Sp(n) x SO(k) by

Frsp(N,M) = {p € *Frsp (M) : im(p|pn) = Hy, im(p|px) = g @ H} (3.26)

The frames are adapted to the quaternionic splitting of TM = Hy ® g®H and
respect the real structure of the second, p(Re(IH*)) = Re(g® H) = g, so in par-
ticular (because I, ], K are orthogonal) respect the splitting Tu™'(0) @ Tu™'(0)*.
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e p: H™ — H, are the frames of the pulled back bundle Frs,(N) to u='(0) and is
denoted by m*Frs, (N).

There are plenty of natural maps between these bundles. We will be using the
following.

o Reductions to quaternionic frames, denoted by i: Some of the real frame bundles can
be reduced to quaternionic frames, which induces maps from the quaternionic
world to the real world. This is obviously the case for Frs,(M) — Frso(M),
Frsp(N) — Frso(N) and their pull backs to p='(0). Finally this is also the case
for Frs,(N,M) — Frso(n~'(0), M), because a quaternionic frame that respects
the splitting Tep ™' (0) @ Tyt ™! (0)+, automatically respects the quaternionic split-
ting Hy ® g® H, as can be seen by applying one of the complex structures to
T,p~'(0)*. In other words, (SO(4n + k) x SO(3k)) N Sp(m) = Sp(n) x SO(k).

o Reduction to more structured frames, denoted by j: Some of the bundles are simply
restrictions of other bundles to frames respecting more structures. This is the
case for

Ffso(}l_] (0),M) — *Frso(M), Frso(N, Tl 0)) — Frgo(p._1 0))  (3.27)

and
Frsp(N,M) — *Frs,(M). (3.28)

o Induced maps by pull backs, also denoted by j: There are of course canonical maps
*Frso(M) — Frso(M) and similar for 7: p=1(0) — N and the quaternionic bun-
dles.

e Restrictions of frames, denoted by k: Some bundles allow natural projections to
other bundles by restricting the frame to a subspace of its domain. This is the
case for

Frso(n™'(0),M) = Frso(n™'(0)), Frso(N,u '(0)) — m*Frso(N) (3-29)
and

Frsp(N, M) — *Frs, (N), Frsp(N, M) — Frso (N, u™'(0)). (3.30)

The aforementioned bundles are depicted in the following diagram.
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3.4 The Induced Connections

In this section we will start with the Levi Civita connection on Frso(M) and chase it
through the diagram. This will show that N is indeed a hyperkihler manifold and
recover the results from [GNo2].

3.4.1 Forms on Frs,(M)

Starting with the solder form 6™R and the Levi Civita connection @™R on Frso (M),
we first induce the forms M and M on Frg, (M), by pulling back with is,

MH _ % MR

eM,H‘I _ iTeM,]R’ o)

S
H“e

Since M is a hyperkdhler-manifold, ™H is a connection on Frs,(M) satisfying the
pulled back structure equation

doMH L pMH gMH _ o

As remarked in (3.9) M is again the soldering form of Frs,(M), hence M is

a torsion free connection on Frs,(M).

3.4.2 Forms on *Frso(M) and *Frs,(M)

The solder forms and connection forms on Frso (M) and Frs, (M) further induce con-
nections on the ambient principal bundles *Frs, (M) and (*Frso(M) which we will
denote by $R,8R and $™,8H with the obvious choice. The ¢ are connections, since
we do not change the fibers of the principal bundle (although some may be discarded).
It is also a torsion free connection, since the structural equation d 0 + ¢ A 6 = 0 survives
the pull back and by using remark (3.9), the pulled back solder forms are natural

05 (&) =p 'oDAF(E),  O4(m)=q " o DAY (),

where p € *Frso(M), £ € T, 1*Frso(M) and q € *Frs, (M), n € Tq*Frsp (M).

3.4.3 Forms on Frso(n='(0), M)
The next step is to transfer these forms to the principal bundle
Frso(k™'(0),M) = {p € *Frso (M) : im(p|gan+x) = T (0)},

which has structure group SO(4n + k) x SO(3k).
Different to before is that Frso(n~'(0), M) is in general not horizontal in the ambi-
ent bundle, hence we need to project in order to get a connection.
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Lemma allows us to define connections on the adapted frame bundles given
by Frso(r™'(0), M) and Frs, (N, M). With the inclusion
. A 0
i: SO(4n + k) x SO(3k) — SO(4m), (A,B) — < 0 B ) ,

we get the Lie algebra decomposition (as vector spaces)
s0(4m) = so(4n + k) D so(3k) B,

where

P o {( _Oct g ) eﬁo(4m):CeMat(4n+k,3k)}.

If A € im(i) and & € §, then Ada(§) = AEA™! € §, hence we have a connection

R =pr_, (4 t)Bso(3K) ojR*dR on Frso(n='(0),M). This connection naturally decom-
poses into two equivariant one-forms ¢} and ¢} with values in s0(4n + k) and so(3k)
respectively.

We can go ahead and extend @R back to 1*Frso(M), which gives us a connection
®'R. The difference form

R = pR _ p/R (3.31)

is a equivariant horizontal one form, hence the pull back

= Rl = R pR — R (3.32)

is also.

The induced connection @R is torsion free, since 6K, the pull back of the solder
form, is again the solder form on Frso (p~'(0), N). We pull back the structure equation
dbR + ¢R A OR =0 to get

dOR + (R*@R) A OR = R + (R + ) A 8RR = 0. (3.33)

Since 6R has values in R*"*¥, we can split the equation into the following two equa-
tions

déR + R A B8R =, (3.34)
™ AON =0, (3-35)

which shows that @R is indeed torsion free.
7R splits naturally into two forms with values in the top right matrices and bottom

left matrices. Let TR denote the one that has values in the bottom left. Hence we have
the splitting
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o R _(Ryt
gk = ( AN ) (3:30
Using lemma (3.10) to identify TR with a (2,1)-tensor on u='(0), via

s(TR)(&,m) = pTR(E)6R (M), (3-37)

where p is a frame in F(u='(0), M) and &, are lifts (compare lemma (3.10)).

Proposition 3.15 (Second fundamental form). s(tR) is the second fundamental form of

w=1(0) in M.

Proof. In the next subsection we will show that ¢R is the pull back of the Levi Civita
connection on Frso (1~ '(0)). The covariant derivative of a connection ¢ with soldering
form 0 is given by

ViX = p(t8(X) + @(1)8(Xyp)), (3.38)

where t and X are lifts of the tangent vector t and vector field X to a frame p (see
e.g. [BCo4, p. 6.4], but note that this book has a very unusual sign convention for the
second fundamental form). Hence the second fundamental form is given by

(X, Y) = VXY = vk Oy = p(8*oR(R) — pR(%))R(Y) (330)

= p(5* @R (X) — R (X))BR (V) = p (X8 (V). (3-40)

Here we have used that X and Y are tangent to 1~ '(0) and hence ¢$X(X,,)0R(Y,) = 0.
Note that II is symmetric, because ™ A §R = 0, by equation (3.35). Since the sec-

ond fundamental form is only defined for tangent vectors to u='(0) and takes values
orthogonal to =1 (0), we have to restrict T® to TR as described above. [

Proposition 3.16 (Second fundamental form as Hessian). Let f: M — V be a smooth
map, where M is a Riemannian manifold and V a vector space. Assume further, that 0 € V is
a reqular value. Df: TM — V identifies every fiber of the bundle T~ (0)* with V, and under
this identification the negative of the Hessian matrix of f equals the second fundamental form
of ~1(0) in M.

Proof. The first claim is just the dimension formula for a linear map,
Df,: TF1(0)@ T (0)F -V, (3.41)

which has kernel Tf~'(0). Note that the second equality only holds for vector fields
tangent to f~'(0), since the second fundamental form is only defined for these. Let X
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and Y be vector fields tangent to f~'(0). Then

Hess(f)(X,Y) = X(Yf) — Df(VX'Y) (3.42)

= X(Df(Y)) — DF(VE ©y) —DFII(X, V)
=0 =0

— —DFfII(X,Y)

In this sense, T is associated with the —Hess(yt) by the two aforementioned propo-

sitions.

3.4.4 Forms on Frso(n=1(0))

Recall that the torsion free connection @R decomposes into two one forms ¢$X and ¢X.
R with values in so(4n + k) induces a connection on Frso (1t~'(0)), because

SR((DKR) ™ (0)) =0, (3.43)
REQT = ¢F  Vge O(3k) € O(4m), (3-44)

which is true because DkR: so(4n + k) @ s0(3k) — so(4n + k) is the projection. It allows
us to define

o*'Om) = oRA),  Ae (DKY), (M), (3-45)

ie. kI]R*(pﬁf1 ©) = R, Since the solder form on p~'(0) pulled back to F(u='(0), M) is
the form 6R, we get the equation

daor 'OR (pu”(o) AQHTOR _ ¢ (3.46)

and see that @* ' (©) is the unique Levi Civita connection on p~'(0).

3.4.5 Riemannian Submersions

The next step involves understanding Riemannian submersions on the level of frame
bundles. Since there is no exposition of this known to the author, we will describe it
in a general setting, and apply it to the reduction afterwards.

Let us at this point recall the basics of the Riemannian submersion theory of
O’Neill [O'N66]. A Riemannian submersion 1: M™ — BY is a smooth map between
two Riemannian manifolds such that 7t is a submersion and D7y |, : Hy — T (x)Bisa
isometry for all x € M, where H, is the orthogonal complement of ker(Dm) < T,M.

To such a Riemannian submersion we may associate two important (2, 1)-tensor
fields on M,
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TxY = HVR VY + VR HY (3-47)
AxY = HVM VY + VWL 3y, (3-48)

where J{ and V are the horizontal and vertical projection in TM, respectively. T is
known to be the second fundamental form of each fiber (if vertical vector fields are
plugged in), whereas A is related to the obstruction to integrability of the horizontal
distribution on M. An important fact is that

1
AxY = EV (X, Y1, (3-49)

for horizontal vector fields X and Y. If the Riemannian submersion 7: M — B should
also happen to be a principal bundle, and we fix the connection corresponding to the
horizontal subspaces, then 2AxY = —R(X,Y), where R(X,Y) is the curvature of the
connection, if we identify the vertical tangent space with the Lie algebra as usual.

In the world of principal bundles this can be expressed the following way. Let
Fr(M) be the principal bundle of frames and Fr(B, M) the reduction to adapted frames
on M. Here a frame is adapted if it respects the splitting of TM into horizontal and
vertical parts, i.e.

Fr(B,M) = {p € Fr(M) : im(p|Rv) is horizontal}. (3.50)

Then a pull back of the Levi Civita connection ¢ on Fr(M) and the solder form 6
gives, after a suitable projection, a connection 1y on Fr(B, M) with structure equation

A0+ P A0 +T A0 =0, (3.51)

where 0 is the pull back of the solder form, { the projected connection and t =
i*¢ — 1, where i: Fr(B, M) — Fr(M) is the inclusion. We see that t is an obstruction
to the integrability of the horizontal distribution, because for a product manifold M =
M; x M, we have the commutative diagram

Fr(M)
FT(M]) FT(M],Mz) FT‘(Mz)
M, M M



and the connection on Fr(M) reduces to a connection on Fr(Mj, M;), which is the sum
of the connections pulled back from Fr(M;). On the other hand, from the construction
of the last section, we also know that 7 is related to the second fundamental forms of
the fibers.

The notion of horizontal and vertical projection extends to horizontal forms on
Fr(B,M), via

() = T(HD7(E)) (3-52)

(&) = (VD7 (§)), (353)
where 7' is the principal bundle map of Fr(B, M) and the over line is a lift with respect
to that map. It is easy to see that this is well defined for a horizontal form, since it
does not depend on the choice of lift. Note also that by definition T = 1, + 7,. The
following proposition is the main result of this section.

Proposition 3.17 (O’Neill on Principal Bundles). T, corresponds to T and v, corresponds
to A.

Proof. Note that T is described by the difference of the connection on Fr(M) and the
connection on Fr(B, M). The connection on Fr(M) gives rise to the covariant derivative
VM, and the connection on Fr(B,M) to V. As we have shown before, the connection
extended from V splits into two connections which are the Levi Civita connection on
the fibers and the horizontal submanifolds, if they exist. Even if they do not, a quick
inspection of equation , using the matrix form of the reduced connection, shows
that

VeX = HVYX (3-54)
if £ and X are horizontal and
@HY = VV;VLY, (3.55)
if 1 and Y are vertical. The unique extension of this to Fr(M) gives the connection
VyZ:=HVI'HZ +VV'vz, (3-56)

for x an arbitrary tangent vector and Z an arbitrary vector field on M. This can be
verified by showing that the above is indeed a covariant derivative on M and that
it restricts to V if both x and Z are vertical, or both are horizontal. The latter is
immediately clear, the former some simple calculations.
We see now, that
VN'Z = HVNHZ + HVFHZ + HV VZ + HVLVZ (3-57)
+ VI HZ + VYL HZ + VL VZ + VY VZ
=AZ+TZ+VyZ,
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hence the difference of connections indeed gives A + T. Finally, notice that if x is
horizontal then T vanishes, as does t,. If on the other hand x is vertical, then A
vanishes, as does Ty,. [ |

The principal bundle of frames Fr(B) of B can be pulled back to M via . The Levi
Civita connection ¢® on Fr(B) can also be pulled back to a connection ¢ on 7*Fr(B)
together with the structure equation

b+0srd=0, (358)

where 05 is the pull back of the solder form 05 on Fr(B). If we pull this solder form into
Fr(B, M), we get a form 0%, where the obvious restriction map is used k: Fr(B,M) —
*Fr(B). A calculation similar to that in remark (3.9) shows that 6} agrees with the
part of &', that has values in RP. If we split 0’ into two parts, 8; and 6, with values
in R® and R™~°, and v into ¥y and ¥, with values in so(b) and so(m — b), then the
structural equation (3.51) of {» decomposes into

do; +P1 A0 +TAB2=0 (3-59)

do, +1Pr A0 +T A0 =0. (3.60)
If we restrict the first equation to m-horizontal vectors, the last term vanishes and we

see that \; is the Levi Civita connection pulled back from B. Such a restriction also
turns t into 1, and we get the formula

K P + 1t = 1*Pm, (3.61)
on Fr(B,M), if we restrict to vectors lifted from B. This is the recovery of O’Neill’s
formula for the connections [O’'N66, Lemma 3.4].

3.4.6 Forms on Frso(N, u='(0))

Applying the last section to the reduction Frso (N, 1= '(0)) of Frso(p='(0)) on u=1(0),
we get the equation

j%?*(p“q(o) =P+ + 7T, (3.62)

where 1 is the pull back of the Levi Civita connection on N.

3.4.7 Forms on Frs,(N, M)

Now we will do a similar construction on the quaternionic side of the reduction for
Frsp(N, M) As with Frso(n='(0), M), Frs, (N, M) will in general not be horizontal in
*Frsp(M). Using Proposition we construct a connection @ with the decomposi-
tion

sp(m) = sp(n) ®o(k) D, (3-63)
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induced by an inclusion of Sp(n) x SO(k) in Sp(m) as described in the beginning. As
before, the obvious choice of complement will satisfy the necessary condition (3.7).

We get the projected connection form @* which decomposes into two equivariant
one-forms ¢! and ¢i! with values in sp(n) and so(k) respectively and a difference
form T with

O+ o5+ T =i oM. (3.64)

3.5 Final Result

3.5.1 Preparation

Let us recall the connections of the real reductions. On Frso(p~'(0),M) we have
equation (3.32)

OR + R + R = R*pR, (3.65)

where R is the pull back of the Levi Civita connection on M. ¢R is the pull back
of the Levi-Civita connection of u='(0), which in turn decomposes on Frso (N, 1='(0))
according to equation (3.62).

The connection {7 + 1, on Frso (N, u~1(0)) can be extended back to a connection
P17 4+ 12 on Frso(u~'(0)), so that we have

1+ P2 +7 = o (), (3.66)

where 7' is defined by this equation (and hence the pull back of it is v.) So if we pull
back this equation to Frso(p~'(0), M), we get

KR* Dy + kR P, + KR = 9k, (3.67)

and combining this with (3.65)

KDy 15D + 1T+ 07 + T = 5o, (3.68)

Since i5R = ¢!, we can identify the right hand side of the equation above and of
(3.64) if we pull back by i3,

i3 (R + R +R52 1 R o) = g gl (5:69)

To understand which terms correspond, it is a good idea to visualize where the
different forms take their values. If we identify H™ with R*™ such that a +1ib + jc + kd
gets mapped to (a,b,c,d) (a,b,c,d € R™), we identify n x n quaternionic matrices
A + 1B +jC + kD with 4n x 4n real matrices of the form
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A -B -C -D
poA D¢ (3.70)
C D A -B
D -C B A

If we use a frame p € Frs, (N, M) to identify *(TM) with R*™, we see that both
sides of the equations take values in matrices of the form

M; —M}
(Mz M, ) (3.71)

where M is a 4n x 4n, M, a 4k x 4n and M3 a 4k x 4k block matrix of the type given
above. Using the quaternionic splitting, we can decompose the M; into A;, B;, C; and
D;. Note that in M3 only Az (the diagonal) is non vanishing, because of the inclusion
SO(k) — Sp(k), A — A+1iA +jA + kA,

The components of the matrices M; are of course only defined up to the choice
of frame p € Frs, (N, M). However, two different frames differ by a matrix in Sp(n) x
SO(k), which leaves the components of M3 and the component-rows of M, invariant.
M; and the columns of M; get transformed by conjugation with a H-linear matrix.

Define the matrix M} to be the first k rows of M, M% to be the other 3k rows and
M! as A3, (M%)t = (B3, C3,D3) and M3 as the matrix M3 without the first k columns
and first k rows. Hence we may write as

t t
My —(M3)" —(M3)
M} M —(m3)
M3 M3 M3

Starting with the right hand side of the equation 1) d)%H takes values M;, d)Hz{
in M3 and tH the remaining M; matrix. On the left hand side, { takes values in the
My, ¥z in ML, ¥ in M}, % in M3 and TR in the remaining M2 and M2 matrices.
3.5.2 The Results

The equations (3.69) and the following analysis of the previous section allows us to
recover some of the results from [GNg2]. First we see that

B =T = Ky = ¢l (3.72)

because both sides take values in M;. If we pull back the Levi-Civita connection on
Frso(N) to Frs,(N, M) via Frs,(N), we get ¢! because of this equation. Hence the

50



pull back to Frs,, (N) takes values in IH-linear matrices, in other words the connection
reduces to one on Frs,(N). This shows that N is indeed a hyperkahler manifold.

A more constructive argument can be given by noting that the Levi-Civita con-
nection on M is G-invariant, for the canonical choice of extension of the G action to
Frso(M). This remains true for ¢! and a careful examination shows that it can be
pushed down to Frs, (N).

If we continue with M3, we see that for & € g, II(+, £), which is described by M% =0,
vanishes.

The fact that M3 is only non-vanishing on the diagonal, gives a connection between
the covariant derivative on the fibers of m: p='(0) — N, and the normal derivative
of u=1(0) described by ¢F, ie. DY := prTu,1(o)LV7g/lY, for £ € Tu='(0) and Y €

M(u=1(0), Tu™! (O)L) (see e.g. [KN6g, p. VII]). Precisely, we have for all A € {I,], K}
VEX = dpt oD (AKY), Vg meg, (3-73)

where V¥ is the connection on the fiber.

Let us now focus on M,. From proposition we know that M3 and M3 give
the second fundamental form and from proposition we know that M} is A +T,
the O’Neill tensors. Hence

(Ag JETa;(') (Ag JETa)>(I ) (Ag JETa))(I ) (Ag ;Z Ta)()K')
) £ (s, J- ' (&, K-
Ma(&) =p'o III(E,,) II](E,, ) e Wek) |
(&, ) (g, 1) (&, ) (& K

(3-74)

where TI* is the second fundamental form of p='(0) <> M projected onto Ag c
Tu='(0)" and p € Frsp(N,M) is a frame (restricted in a suitable way). Using the
form of the matrix, we get the following results (recall the notation *(TM) =
H® g ®r H).

If £ € H and - € H, then the first row of M, becomes —%R(E, ‘), ..., where R is the
curvature of p='(0) — N as discussed before. This yields that for all §,m € H,

—5R(&m) =1 (g, In) = I (&, Jn) = II*(&, Kn). (3.75)

Here II' = du! o II. Note that this in particular implies that R is hyperholomorphic, i.e.
of type (1,1) with respect to all complex structures (on N, viewing R as a two form on
N).

If £ e gand - € H, then the first row becomes T;- = vaq(o)-, ..., where V* ' (0) ig
the Levi-Civita connection on p~'(0) and V is the vertical projection in Tpu='(0) from
7: w1 (0) — N. This can be described as the negative of the Weingarten map We (-) of
the fibers of . Hence we get for all £€ g,neH,

—We(n) = I'(g, In) =T (&, Jn) = II(&, Kn).
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However, since II is symmetric, II(§,:) = 0, hence the Weingarten map of the fibers
vanish, in other words, the fibers are totally geodesic.

If £ € Hand - € g, the discussion needs to be carried out in —M}. Using the formula
for A and T (and that II(¢, ) = 0), we see that

pryovh Ox—o, (3.76)

for all £ € Hand X € T'(u='(0), g), which is already clear from Wx (&) = 0. Both & and -
in g again yield that the second fundamental forms of the fibers of 7 vanish.
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Chapter 4

Gauge Theories

All of the theories mentioned in this chapters are vast fields in mathematics. This
chapter only tries to give the absolute minimum of definitions needed to follow the
next chapters.

4.1 (Anti) Self-Duality Equations

Definition 4.1. Let M be a 4-manifold with SO(4)-holonomy (i.e. Riemannian and

oriented), P S M a principal G bundle on M and let A € C(P) be a connection. A is
called an anti self-dual connection, if

m (FA) = 0, (4.1)

and a self-dual instanton if m_(F*) = 0, where 7t are the (orthogonal) projections onto

Q?*(M,Ad(P)) = Q% (M, Ad(P)) ® Q2 (M, Ad(P)). (4.2)
Remark 4.2. Since

mp=@+%)  and  mo= (- (43)

a connection A is anti self-dual if and only if FA + «FA = 0, and self-dual if and only if
FA — xFA = 0.

4.2 Spin (7)-Instantons

Spin(7)-instantons are a close relative of instantons on 4-manifolds, as can bee seen by
the next definition.

Definition 4.3. Let M be a 8-manifold with Spin(7)-holonomy, P S Ma principal G
bundle on M and let A € C(P) be a connection. A is called a Spin(7)-instanton if

77 (FA) =0, (4-4)
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where 717 is the (orthogonal) projection onto
0*(M,Ad(P)) = 03(M, Ad(P)) ® Q3; (M, Ad(P)). (4-5)

Remark 4.4. Since
1
7 = 5(1 +G(9)) (4.6)

a connection A is a Spin(7)-instanton if and only if

A+ %@ AFA) = 0. (4.7)

4.3 Generalized Seiberg-Witten Theory

Generalized Seiberg-Witten Theory is a generalization of Seiberg-Witten theory to allow
for targets other than H. The fundamental idea is to replace the fibers of the spin-
bundles with a more complicated hyperkédhler manifold M. Detailed analysis shows
that the hyperkdhler manifold has to have a trihamiltonian action by a group G and
a rotating action. This allows to define a Seiberg-Witten theory with target M. For
brevity we will not explain any details of this theory unless they are needed for the
following. The interested reader is referred to [Pido4} Cal1io; Hay15a].

The first simplification is that we are only looking at rotating actions that factor
through SO(3). As such we can define the involved principal bundles as a direct
product. Furthermore, we won't explain how to define the non-linear generalized
Dirac operator Z,, but will only give an equivalent criteria to Z,u = 0 for a spinor u
and a connection a.

Definition 4.5. Let X be an oriented Riemannian 4-manifold and let Q — X be a
principal G bundle. Let P, — X be the principal SO(3)-bundle of frames in A% X and
fix the Levi-Civita connection on it. Assume further that M is a hyperkédhler manifold
which has a trihamiltonian action by G with moment map u: M — ImH® g and a
rotating action which factors through SU(2) — SO(3). The generalized Seiberg-Witten
equations for a pair (a,u) € €(Q) x €* (P, xx Q,M)¢*50B) are given by

Du=0, pou = F¢. (4.8)

Remark 4.6. As mentioned we will only give an equivalent criteria for the first equation,
without defining Z,u. For the second equation notice that pou: Q — ImH® g is
G x SO(3)-equivariant and as such gives a section of the associated vector bundle
ALXT ®Ad(Q) = 0% (X, Ad(Q))-

For the first equation, notice that a € €(Q) together with the Levi-Civita connection
on P, defines a connection @ on Py xx Q — X. Interpreting this connection as a
horizontal subspace, we can restrict Du: T(,, qy(P+ xx Q) — T p,q)M to this subspace.
Horizontal lifting identifies this space with T, )X at the corresponding point x =
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7(p,q). The base point p € P, defines a quaternionic structure on TxM, by defining
any base of T,M that induces p on /\iTXM as quaternionic. Now

Dyu: TeM = Ty M (4-9)

is a linear map between two quaternionic vector spaces and we define Z,u = 0 if
and only if Dyu has no quaternionic linear part for all x € X. Such a map is called
aholomorphic.

Remark 4.7. Notice that a linear map f between quaternionic vector spaces (V,I;,12,13)
and (W, J1,]2,]3) has no quaternionic part if and only if the projection onto the quater-
nionic linear part vanishes. This projection is given by some multiple of f — (f —
> 3_, 1ifJ;). Since this map itself is quaternionic linear, it suffices to check this van-
ishing for a quaternionic base; in our case it suffices to check this on a single vector
& e TyM. Using a quaternionic base e, ..., e3 of TyM, the condition becomes

3
Du(&) — ) ILiDu(&) =0, (4.10)
i=1

where ~ denotes the horizontal lift. Finally, to horizontally lift a vector, we can also lift
it arbitrarily and remove the vertical part, i.e.

g =%—K®, (4.11)

where @ is the connection on P4 xx Q and & some lift of &. Using that u is SO(3) x G-
equivariant (technically anti-equivariant) we get

Dyu(€) = (Du(E— K'Y 0))gy = (Du@) + Kpt™) (4.12)
where (-)py denotes the quaternionic projection.

Remark 4.8. Note finally, that if M is H™ or an affine space over H", then there are
two fundamental H structures on M, one by left multiplication of i,j,k € H and one
by right multiplication by (—i, —j, —k). We will call the first a left-left structure (if X
was a quaternionic vector space, then the first left indicates that the multiplication
on X would be from the left), and the second a left-right structure. Decomposing
Du = Dug + iDuy +jDu; + kDusz we arrive at the signs

Duo(eo) + Duq(er) + Duz(e2) + Dus(es)
Duwy (eo) — Du0(€1) — Du3<€2) + Du2(63>
left-left structure: 1
Du;(ep) + Duz(e1) — Dup(ez) — Duyg(e3) (4-13)
Dug(eo) — Du2(€1) + Duy (62) - Duo(e3)
Duo(eo) — D‘LL] (61) — Duz(ez) — DU.3(€3)
. Dui(eo) + Dug(e1) — Duz(ez) + Duy(e3)
left-right structure: .1
& Du;(ep) + Dus(eq) + Dup(ez) — Duqg(es) (4-14)
DLL3(60) — Du2(61) + Duy (62) + Duo(eg)

for the projection (4.10).
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Chapter 5

Dimensional Reduction

5.1 Dimensional Reduction of a Gauge Theory

5.1.1 Motivation

There are many different concepts of reductions in Gauge Theory. The one we are
considering here is the following. Assume we have a gauge theory on a base manifold
X, with target M. Now if G is a Lie group which acts on X, such that X/G is again a
smooth manifold, then we want to reduce the gauge theory X — M to one X/G — M.
In this section we will discuss this construction in detail. The next section shows
how this can be used to show that Haydys-Witten equations are invariant Spin(7)-
instantons.

5.1.2 Formulation
Throughout this section, let X be a smooth manifold, G a Lie group and m: P — X a
principal G-bundle.
Definition 5.1 (Reductions). Let H be a Lie group.
e We call (X, H) a reducing pair if H acts on the right of X, X/H is a smooth manifold
and X — X/H is a principal H-bundle.

e Let (X,H) be a reducing pair. If the action of H lifts to a right action on P by
bundle automorphisms, such that P/H is a smooth manifold and P — P/H is a
principal H-bundle, then we call (X, P,H) a reducing triple.

Remark 5.2 (Reducing Triples and Pull Backs). A reducing triple (X, P, H) is given by a
pullback diagram

p 1, p/H

F |s (5.1)

X —s X/H
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of principal bundles.

Notation 5.3 (Maps, Connections and Horizontal Forms of a Reducing Triple). Given
a reducing triple (X, P,H), we denote the projections of the various principal bundles
by

P, p/H

lﬂ ln (5-2)

X —2 5 X/H

The connections on X — X/H and P/H — X/H are denoted by C(X) and C(P/H)
respectively. Since “connections on P” is ambiguous, we will index those with the
projection map, so connections on P — X are denoted by C.(P) and connections on
P — P/H by Cp:(P).

If we talk about a horizontal form w on X this means that (yw = 0. We denote
those by Qp(X) and similarly for P/H. On P we have to distinguish between g and b
horizontal, we denote those by Q4 and Qj respectively.

Remark 5.4 (Reducing Connections). Given a reducing triple (X, P, H), we are interested
in the H-invariant connections. Since the G and H actions on P commute, Ry, is a G-
equivariant map for every h € H, hence for every & € g, K& is Ry, related. This implies
that that the induced action

TP +—~H, h+— DRy, (5.3)

leaves the subbundle g = TP invariant in a way so that it induces an action g — H
which is trivial.

Definition 5.5 (Invariant Connection). Let (X,P,H) be a reducing triple. Define an
action

via the trivial action g ~~ H and the induced action Q(P) — H by pullback.
H-invariant connections CH(P) = C(P) = Q'(P, )€ are connections invariant under
this action.

Remark 5.6. In later chapters, we sometimes are interested in describing gauge theories
in such a situation, even if they are not H-invariant. This is also often called reduction in
the literature (sometimes compactification in physics). To avoid using the term reduction
again, we will call this description of a gauge theory in differential equation form. The
examples will show why this could be considered a fitting name.

Example 5.7 (Invariant Connections on IR?). H-invariant connections CH(P) can be ob-
tained by pullback of connections C(P/H). Not all invariant connections are of this
type though.
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Consider for example X = R?, H = R acting by translation on the second factor

Ru(x,y)=(xy+h) (x,y)eX heH, (5-5)

and P = S'. Then (X, P, H) is a reducing triple with the canonical lift of H to P. Since
X/H =R and P/H =S' — R, connections C(P/H) are one forms iQ' (R) with values in
u(1) = iR.
Hence pulled back connections from C(P/H) are all of the form
A = i(fopr)dx fe C*(X/H), pr: X — X/H. (5.6)
On the other hand, if we identify C.(P) =~ iQ'(X), H-invariant connections are
given by
B=i(fopr)dx+gdy, fe C®(X/H), ge C*(X)", (5.7)
so that pr*C(P/H) < CH(P) is an honest subspace.
A natural question is what the quotient (as affine spaces) of invariant connections
by pulled back connections is. The next proposition investigates this question. Note

that in the example above, the two spaces differed by a smooth function €% (X/H) =
¢ (R).

Proposition 5.8 (SES of affine spaces for a reducing triple). Let (X,P,H) be a reducing
triple. Then there is a canonical short exact sequence of affine spaces

¥ L
0 — C(P/H) — 2 eH(P) —2— C®(P,Hom(h, )" — 0

( ( (

G pr* GxH t
0 — Ql(P/H,9)" —— Q}(P,g)""" — C®(P,Hom(p,g))**" — 0

Here the transitive and free action of the G-equivariant and horizontal one forms on the spaces
of connections is the usual (by addition) and C*(P,Hom(b,g)) """ is considered an affine
space over itself.

For completeness, let us recall the lefff| actions on the various spaces. If w is in either of
QL(P/H,9)¢, C(P/H) or €IL(P), then the action of g € G is given by

g.w = Adg Rjw. (5.9)

For w e Q;(P,g)GXH

, the action of (g, h) € G x H is given by
(g,h).w = Adg RGR} w, (5.10)
and on ¢ € C*(P,Hom(p,g)) " the action of (g,h) € G x H is given by

(g,h).¢ = Adg o(RyR} @) 0 Ady—1 . (5.11)

1See remark
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Remark 5.9 (SES of affine spaces). Exact sequences of affine spaces are defined through
exact sequences of the underlying vector subspaces.

Remark 5.10 (Left Actions and Right Actions). It is important to keep track of right
and left actions, unfortunately this can be cumbersome at times. Take for example a
G-equivariant k-form w € Q*(P, g)G. The right action P — G induces a right action on
AKTP and a left action on A*TPV. The left action G —~ g by Ad induces a right action
via g — Adg-1. So w: AKTP — g, is G-equivariant with respect to these right actions.
If we view w € (Q*(P)® 9)¢, then it is invariant under the left action DRy ® Ad4 and
(DRY ® Adg)w = Adg REw.

Proof. Let us first focus on the lower row of (5.8). We show that the maps are well-
defined. The first map pr* is just the usual identification of forms on the base manifold
and H-invariant forms on the bundle. Since pr is also G-equivariant (this is how we
defined the G-action on P/H), the pullback of a G-invariant form is still G-invariant.

If we Ql(P, g)G “M we define ¢ = tyw. It is obviously a smooth function on P with
values in h¥ ® g = Hom(}, g), we only need to check the invariance. To show that note
that the fundamental vector fields Ky are H-equivariant

KAW1E Z DRLKE heH,Eeh, (5.12)

and since G and H commute, every diffeomorphism Ry is H-equivariant, which implies
that Kf, is R4 related for every £ e h and g € G,

Kf oRy =DRgoKf,  heH&eh. (5.13)

Now for (g,h) e GxH,pePand &€eb

* Dk Adh_1 &
(Rth(P)p Adh*‘ (E,) = @Ppgh Adh*‘ (E,) = wpgh(KH |pgh)

5.12)
Wpgh (DRh|pgK1§|‘p9> = (DRﬁw)pg(Kmpg)

) (5.13)
= wpg(Kmpg) = wpg(DRg’mep) (5-14)

Adgr wp(Kilp) = Adg1 0p(8),

H

so that Adg (R’;R";ch)p Ady -1 (&) = @p (&) as claimed.

The injectivity of pr* follows immediately from the usual identification of forms
on the base and horizontal H-invariant forms on the total space, because pr* restricted
to its image

. GxH
im(pr*) = Qg ; (P, ) (5.15)

is invertible. This image also implies that im(pr) = ker(ty) which leaves us to show
that v, is surjective. We will show this in

The upper row in follows by similar arguments. The well-definedness follows
by exactly the same calculation and the injectivity of the lower row’s pr* implies the
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injectivity upstairs. The image of pr* are simply h-horizontal connections which shows
the exactness in the middle and the surjectivity of , will be shown in [ ]

Example 5.11 (Transitive action). Before we work out the general case, let us look at an
example where we have a transitive action X «—~ H, so that X/H = {}. In this case a
connection

TP~ g@®h—g (5.16)

is determined by the map h — g € ¢* (P,Hom(p,g))*" ~ Hom(b,g). This agrees

with the statement, since any pulled back connection is the trivial connection (because
Q' ({*}) = 0). A closer look shows that we have a splitting of the short exact sequence,
because there is a unique choice in connection X — X/H.

Proposition 5.12 (Splitting of Lower Row). In the situation of Proposition (5.8), if we fix a
connection B € C(X), then the lower row of splits.

In particular this implies that v, on the lower row is surjective.

If X — X/H is a Riemannian submersion , then there is a canonical choice for B given by
the orthogonal complement of the vertical subspaces of TX.

Proof. We use the following commuting diagram,

0 0
id
g g
P
@ .7
0 h - TP T(P/H) —— 0 (5.17)
id

0 b X T(X/H) — 0

0 0

of vector bundles on P (we omitted the pull back symbols on some of the bundles),
where any row and column is a short exact sequence of H-equivariant, respectively
G-equivariant, vector bundles.

Now B € €(X) induces via pull back a G-invariant connection in Ggr( P), which gives
a G-invariant and H-equivariant splitting of the top row. This defines

% j (5.18)

h — TP
n*B“’

in the above diagram. We will show that
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)G><H and

1. pom*BeQl(P,g
2. ty(@ om*B) = @ € C*(P,Hom(p,g))*",
which will show the claim.

Ad 1. We calculate

RIRE (00 7°B) = (RiR} o) o (RGRE'B) (5.19)
= Ady-1 09 0 Adp o Ady-1 ont*B (5.20)
= Adg-109on"B, (5.21)

which is the required behavior under the action. Note that it is important here
that B is G-invariant.

Ad 2. This follows immediately from the fact that 7*B is a projection onto h = TP, so
LhT[*B = ldh

Notation 5.13. To simplify the notation, we will also denote the pull back of B (7*B)
with B in the following.

Proposition 5.14 (Splitting of Upper Row). If we fix connections B € C(X) and C € C(P/H)
the upper row of proposition splits.

In particular this implies that v, on the upper row is surjective.
Proof. This follows immediately from Proposition (5.12) and the fact that the top row

is affine over the bottom row, i.e. C € €(P/H) identifies C(P/H) = Q;(P/H,g)G and its

pull back identifies €} (P) = Q! (P, )¢ " ]

Theorem 5.15 (The Curvature of the Reduction). Let (X,P,H) be a reducing triple, B €
C(X) and C € C(P/H) and with respect to their splitting let

A= (a,¢)=prfa+eoBeCP/H)®C*(P,Hom(h, )M, (5.22)
Then the curvature of A satisfies the following identity
FAzpr*Fa—i—da(pXB—i—(podB—i—%[(poB/\(poB], (5.23)

Proof. If A is a connection and w an equivariant and horizontal 1-form, then the cur-
vature of A + w is given by

FATO — FA L daw + %[w A wl. (5.24)
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which follows immediately from the defining equation FA* = dA + J[A A A]. Using
this for w = B o ¢, we get

1
A :pr*Fa—l—da((poB)—l—E[(poB/\ ¢ o B] (5.25)
o 1
=pr*F“+da(p/\B—i—(podB—irz[(poB/\(poB], (5.26)

where we used that dB = dB, because the G representation of § is trivial (compare to
Remark [5.4). [ |

Remark 5.16. Note that this equation holds not only on P, but also on X, where
FA, priFe € Q?(X, Ad(P)) and ¢ € I'(Hom(h, Ad(P))) (recall that B is also pulled back
from X).

Corollary 5.17. If in the setting of theorem ¢ € Q1 (P,Hom(b, g))G “Mis a Lie algebra
homomorphism, then

FA = pr*F® + dq @ AB+@oFB, (5.27)

Remark 5.18. In the setting of theorem (5.15) the summands of (5.23), live on differ-
ent subspaces of the tangent space. Indeed, let us split TX = £® 6, where & is the
complementary distribution of h < TX defined by B. Then

APTX = A2E@ERH DAY, (5.28)

and we can now associate the terms to the different subspaces,

o 1
FAzpr*Fa+da(p/\B+(podB+§[(poB/\(poB]. (5.29)
A2E E®h ATh

The term ¢ o dB is problematic since a priori it does not belong to any one of these
spaces. To combat this in the examples we will assume that we have a trivial bundle
X — X/H, which allows us to simply use the Maurer-Cartan form of the Lie Group H
as the connection B. But then dB = —%[B A B], so ¢ o dB € A2b.

5.2 Examples

Let us explore how to work with these equations by applying them to some well-
known examples, i.e. reductions of the anti self-duality equations. After that we
will use these to reduce Spin(7)-instantons to G,-monopoles and the Haydys-Witten
equations. The former is mentioned in [DS11b|], whereas the latter is a new result.
As mentioned in Remark we may interpret these equations on P and X. If the
bundle X — X/H is trivial, we may even interpret the equation on X/H. To simplify the
notation, we will simply write F¢ instead of pr* F¢, no matter where we consider the
equations.
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5.2.1 Bogomolny Equations

Let G be some Lie group and (H x X, P,H) a reducing triple consisting of a oriented
Riemannian 3-dimensional manifold X, a principal G-bundle P — H x X and a 1-
dimensional abelian Lie Group H acting on itself, and by isometries on H x X. Use
the Maurer Cartan form of H as the connection B. We reduce the anti self-duality
equations (see Definition on H x X

*FA +FA = 0. (5.30)

By the construction, A € C(P) splits into a connection a € C(P/H) and a Higgs field ¢ €
I'(X,Hom(h, Ad(g))) (for notational consistency, we denote the Higgs field by ¢ instead
of ¢). Here we have used that Ad(h) is trivial, because H is abelian. Since § is also
one-dimensional, we get ¢ € I'(X/H, Ad(g)) (the orientation makes this identification
unique). Using the formula for the curvature, we get

FA=F*+dy.d A B, (5.31)

since dB = 0 by the Maurer Cartan formula and A2 = 0. The fact that the underlying
manifold is given by H x X, we can decompose the equation

ATV (H x X) VX @ A?TYX

| <

ATV (H x X) TVX @ A?TvX

lle

lle

Using Lemma [2.9| we see that the anti self-duality equations give two equations,
B A (x3(F%) —dad) =0 (5.32)
and
—x3dqd +F* = 0. (5-33)
One quickly realizes that these are the same equation, which on X is given by

F¢ = x3dqd. (5-34)

These are the so called Bogomolny equations on X.

5.2.2 Hitchin System

Similar to the last example, pick the reducing triple (H x X,P,H), where H is a two
dimensional abelian Lie group, and X is an (oriented) 2-dimensional manifold.
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APTV(HxX) = A?pY @ hVT'X @ A?TYX
| ==
— T

APTV(HxX) = A?pY @ HhYRTYX @ A?TYX

This results in three equations

1
*Fa+§[(poB/\(poB]=O, (5-35)
F‘W—*%[(poB/\(poB]zo, (5-36)
*dq® A B+dag A B =0, (5-37)

of which the first two are the same. With the identification

O = @ +igpy, (5-38)

the first becomes F = %[CD, ®*], and the last D;® = 0. These are the so called Hitchin
Equations on X.

5.2.3 Nahm Equations

Similar to the last example, pick the reducing triple (H x X, P,H), where H is a three
dimensional abelian Lie group, and X is an (oriented) one-dimensional Riemannian
manifold. Then a connection A € C(P) induces a connection a € C(P/H) and a Higgs
field. Picking a basis of h (that is oriented and orthonormal with respect to the struc-
ture of H x X) we identify h =~ R3 and decompose

® = (¢1,92,03) € '(X,Hom(h, Ad(P))) = R*" @T'(X, Ad(P)). (5.39)

Let dh', dh? and dh3® denote the left invariant one forms induced by the choice of
basis above, and t denote the coordinate of X with respect to some chart. Using for the
connection B the Maurer Cartan form (so that dB = 0), the curvature yields

o 1
FAzda(pAB—FE[(poB/\(poB] (5.40)
3 3
_ a j 1 i j
=Y Vepjdt A dh + 3 > [@,95]dht A dh (5.41)
j=1 1,j=1
3 . . .
=dta () Vedh |+ > [ei, @j]dht A dh (5.42)
j=1 1<i<j<3
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where we have used that A%& = 0, i.e. there is no curvature on a 1-dimensional mani-
fold.
The anti self duality equations then give two sets of identical equations, given by

Vei + 92, 93] =0 (5.43)
—Ve2 + @1, 03] =0 (5-44)
V%3 +[@1,92] =0 (5-45)

on X. These are the Nahm equations.

5.2.4 Rotationally Invariant Nahm Equations

Similar to the last example, we may write R*\ {0} = R>° x SU(2) and take the (left)
action of SU(2) on itself to reduce the SU(2) invariant anti self duality equations to
R>°. This time a € ¢(P/SU(2)) and

@ € T(R”°, Hom(su(2), g)) =~ su(2)” @ ¢* (R”°,g). (5.46)

Using the Pauli matrices as a basis for su(2), we can decompose ¢ in components
91,92, 93 € €° (R<,g). For B we take the trivial connection given by the Maurer
Cartan form of SU(2),

3
B=) od®dd, (5-47)
j=1

where o are the Pauli matrices and do’ are the left invariant one forms dual to the left
invariant vector fields defined by the Pauli matrices. The formula for the curvature
now gives

o 1
FAZda(pAB-F(pOdB-i-E[(pOBA(pOB] (5.48)

3
= Z V“(p]-dx] Ado) + Z (2ei5k 0k + [@1, 95]) dot A do’ (5.49)

j=1 i<j

where we used the Maurer Cartan equation for the expression dB. A similar calcula-
tion as for the ordinary Nahm equations give

Ve1 4291+ [@2,93] =0 (5.50)
V%%, — 202+ [@1,93] =0 (5.51)
V&3 4293+ [@1,92] =0. (5.52)

These are the rotational (or perturbed) version of the Nahm Equations.
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5.2.5 ADHM Equations

In this example we consider a reducing triple (H, P, H), where H acts on itself and is
an oriented Riemannian Lie Group. Then the equations dictate
FA

[¢poB,@oB]. (5-53)

N =

Note in particular, that
¢ € T({pt}, Hom(R*, g)) = R*” @y, (5.54)

that is, ¢ can be identified with four elements in g, given by four matrices if G is a
matrix Lie Group. The equation for the curvature now implies

0=+FA+FA = 3 J[oi,@]*(dhi andhy)+ > [, 9j]dhi A dh; (5.55)

1<i<j<4 I<i<j<4

which is equivalent to

0=1[@1,92]+ [03, 94] 0= [@3,94]+ [@1,02] (5.56)
0=[e1, 03] —[92, 04] 0 =[@2,04] — [@1, 03] (557)
0=[@1,94] + 92, 93] 0=[@2, 03]+ [®1, Q4] (5-58)

where we can see that every equation is given twice, so that we may reduce this to the
system

0=[@1,02] + [@3, 94] (5-59)
0=[@1,93] — [92,04] (5.60)
0=1[@1,9a4]+ [02, 93] (5.61)

which are the so called ADHM Equations.

Remark 5.19. This system is often given on R?, where additional boundary conditions
guarantee that it can be extended to S*.

5.2.6 G,Monopoles

Let us reduce the Spin(7)-instantons by one dimension. Recall the Spin(7) instanton

equation (Definition
*(@ AFA) = —FA, (5.62)

Let (H x X,P,H) be a reducing triple consisting of a Spin(7)-manifold H x X of
dimension 8, a principal G-bundle P — H x X and a one-dimensional abelian Lie
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Group H acting on itself, and by isometries on H x X. Again let B be the Maurer
Cartan form of H. Recall that by Corollary X is a G,-manifold and

@ =dh Ao+, (5.63)

where h is the coordinate of H, describes the connection of the canonical forms. By
splitting the bundle A2TY (H x X) and analyzing the map

*(OA—)=*dhA@Ar—)+*1A-—) (5.64)
o Bo

the following diagram arises (Where we use dimH = 1),

APTVHxX) = TYX @ A?TYX

/ /N /o
OA— oo Bo oo Bo
V4 VY \

ASTY (H x X) 0 @ A TX @ A°TYX

¥ <

APTVHxX) = TYX @ A?TVX

lle

This decomposition agrees with the splitting into £ ® h ® A%E in (5.28). Using the
formula for the curvature, we get

A= F* +dodAB, (5.65)
-
EA2TVX eTVvX

where we identify ¢ € T'(X, Ad(P)), just like in the case of Bogomolny Monopoles.
Using the observations above, we see that the Spin(7)-instanton equation decomposes
into two sets of equations, given by

—dad A dh = *Bo(FY) = x(h A F?) (5.66)
and
—F% = %00 (F*) + *Bo(dad A dh) = x(dh A @ A FY) + (b A dad A dh). (5.67)
The former equation is equivalently given by
FA A = *7dad, (5.68)

which is the G,-monopole equation. The second equation is also equivalent to this
equation. To see this notice that by Lemma

*(dh A @ AFY) + (P Adad A dh) =*7(@ AFY) — %7 (P A dad). (5.69)
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We decompose
APTYX = A2@ AL, (5.70)

by the G,-structure (compare Proposition [2.56), and denote the projections by F¢ =
F$ +F{,. Then we know that

*7(@ AFY) = 2FF —Fiy, (5.71)
by the eigenspace decomposition and hence
FO+ (@ A FY) = 3FS. (5.72)
So the equation is equivalent to

G()(dad) = 3F%, (5.73)

which in turn is equivalent to G()?(F®) = 3F¢. To see that the latter holds, notice that
G()?: A2 — A?is a G,-map. By Schur’s lemma it will be a multiple on all irreducible
components. Because wedging with { maps into A®, which is 7-dimensional and irre-
ducible, the AZ, components gets mapped to 0. Now applying G(?) to any element
in A2 shows the result.

5.2.7 Haydys-Witten Equations

For the Haydys-Witten equations we proceed similar as for the G,-monopoles. There
are two different cases. If we have an action by R3, then we arrive at the Haydys-
Witten equations on a manifold with hypo structure. If we have an action by SO(3)
then we arrive at the (perturbed) Haydys-Witten equations on a manifold with SO(4)
structure. We will do the calculation for a SO(3) action, the R? action can be derived
from this.

Since the Higgs field for the Haydys-Witten equations is called B o Y3, pioi €
Q2% (Ad(P)), we will denote the connection by B is this secion.

Let (X x H, P, H) be a reducing triple consisting of a 8-dimensional Spin(7)-manifold
X, a principal G-bundle P — X and the three-dimensional Lie Group SO(3) acting on X
and P by isometries. Again let B be the Maurer Cartan form of H. Recall that by Corol-
lary X is a SO(4)-manifold and splitting the bundle A*TY (H x X) and analyzing
the map

H(OA—)=+MA QA=) +*(A-) (5.74)
o Bo

the following picture arises. Starting from the Spin(7)-instantons, we decompose the
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forms in a local frame

@ =dh'2 —dh' A w; —dh? A wy —dh® A w3, (5.75)

P = dx®®”8 —dh?3 A wy —dh3 A wy — dh'? A w; (5.76)

@=nre+V (5.77)

=nAdh'? 4+ (=dh'? A w3 —dh3! A W,y — dh?3 A wy) (5.78)
3 X2

+ (1) A (dh" A w7 + dh? A Wz + dh3 A w3) + dx°78. (5-79)

X1 &0

The conundrum here is that the quotient by H has to be chosen the way to satisfy
the conditions outlined in Remark For the case of an action of R3, we can split
up the action by reducing step by step (reducing by a copy of R in every step) splitting
of the expected directions. The calculations remain true but are more cumbersome.

A’TV(Hx X) = /\Zhv @ HVRTYX @ A?TYX

o el S,
/\4 kz OCO\,LX/
APTY(H x X) = /\3TVX &) /\Zhv ATVX @ pY

APTV(HxX) = A?pY @ hVRTYX @ A?TYX

Let us study the maps a little closer.

ATTVX 2 R@S"! (5.80)

APTVX = S22 @ s?2 s (5.81)

ASTVX = $20psP2 st (5.82)

ATVX =2 R@Ss" (5.83)

hY @TX=h" Dh” ®S" (5.84)

A2V @AMTVX = A%hY @AY @S, (5.85)
bv®Tngszo®SZO®s11 2820@)53]@8]] (586)
/\Zhv ®/\4TVX ~ SZO@SZO®8H ~ 320@531 @S”. (5.87)
(5.88)
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Now note that h¥ =~ $2°, so that A?h" =~ S2°. We identify

A2 = hY, w; <> 2dht, hY =~ A%pY,dht o dni¥, (5.89)

where (ijk) is a even permutation of (123). The factor 2 is necessary to identify these
as Lie algebras (note that A% carries a Lie algebra structure for a Riemannian mani-
fold induced by identification with skew symmetric endomorphisms of TM). We also
identify S'" in A2TVX and h¥ ® TVX by

NAd® < f1 = dh! A dx® +dh? A dx” + dh3 A dxd. (5.90)
nAdx® o f; = —dh! A dx® —dh? A dx8 + dh3 A dx’. (5.91)
nAadx’ o f3= dh' A dx® —dh? A dx® — dh3 A dxC. (5.92)
nAdx® o f4 = —dh! A dx” + dh? A dx® — dh3 A dx°. (5.93)

We claim, that under these identifications the maps G(«;) = *(«; A —) are given by

G(O(o) G(O(]) G(O(z) G(O(g,)
A2V L —1
hY @TYX  prgx —idgsr +2idgn  —idg20 +3idgn
A2TVX -2 Prgao -2 idszo + idsn idszo — idsoz

where  is the inclusion, pr is the projection onto a factor and «id the action on said
space with the given factor «.
Let us justify these claims.

Ad G(«p): First

G(axo)|pzgv: S = S @S T @S (5.94)

By Schur’s Lemma G(o) can only map into the $2° components. We calculate explic-
itly, that G(oq) is the isomorphism of the $?° components given by the identification
above. Indeed,

G(xo)(*3dh') =1 A dht. (5.95)

Similarly,

G(xo)|pvervx: S @S @s! — s%°, (5.96)

we conclude that the kernel of G(a) includes $S3! and S'" components. Again a direct
computation shows that n A dh' gets mapped to x3dh'.
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Ad G(o1): Let us now look at G(«y).
G(o1)[pzpy 1 S2° — S B2 @S', (5.97)

has its image in S?°. We calculate that
G(ar)|azgv (*3dh") = —wy, (5:98)

which shows that G(e) is just twice the negative of the identification of the two $2°
components.

G(ar)|p2rvx(wi) = — %3 dh?, (5.99)
so is the negative of the projection up to the identification.
Finally
G(a1)[pv@Tvx, (5.100)

if follows immediately that S2° gets mapped to 0, because of the n factor. For S3' @S'!,
it is fastest to realize that Fa; preserves the components of f;. So the map decomposes
into three 3-dimensional maps which can be easily diagonalized. Each one of the
three has two eigenvalues given by 2, —1 where —1 comes with multiplicity 2. For
dimensional reasons G(«;) then has to act as described in the table.

Ad G(O(z): -
G(a2)|azrvx(wi) = —m A *3dh’. (5.101)

The basis of S'! has been chosen so that G(«;) is the identity. Furthermore we calculate

G(a2)|pvgrvx(n A *3dht) = —w; (5.102)
and .
G(a2)|pveTvx(fi) = 3n A dx', (5.103)
verifying the claim.
Ad G(az):
Glas): S @S2 @S - s20 @502 @S, (5.104)

and these are the eigenspaces of the map to the eigenvalues 1, —1,0. Indeed, if w € S'!,
then G(a3)(w) = 0, since a3 has the factor n. If w € $2° or S°2, then by Lemma

G(a3) () = (o3 A V) = %4 A 530 = 5400, (5.105)

and $2° and S°? are the eigenspaces to the eigenvalues 1 and —1 of *4 respectively.
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The Equations in A%hY  The equations in A%p" is given by

1

—590 [BAB]—=[@poB A @oB] =xg(axo A (da@ A B)) +xg(cy A F), (5.106)

N —

where the first term comes from the Maurer-Cartan equations for ¢ o dB.
We know that G(ot1)(F*) = —F$ up to the identification, i.e.

*g(or A FY) = —F¢ ;dh? —F§ ,dh®! —F$ 5dh'2. (5.107)

From the table G(«o) is the projection onto the S2° component of d,¢ A B, which
is given by

2
prexo(dae A B) = Z Vipin A dht, (5.108)
i=1
so that
xg(xo A (da@ A B)) = VE@1dh? + V§@adh®! + V§esdh'2, (5.109)

As before, the Maurer-Cartan equations yield a 2B and finally

1 ~ < .
—E[@ oBA@oB]=— Z [@i, @;]dhY (5.110)
1<i<j<3
This gives

0=[@1,02] —F; 3 +Vies (5.111)
0= w2, 93] —F{ 1 +Vies (5.112)
0=[p3,¢1] —Ff,+ Vi (5.113)

which is equivalent to
FS — VSB — 2B — o(B, B) = 0. (5.114)

The Equations in h¥ @ TV X:

0 =~ 1 ~ ~ ~ ~ O ~
—da(p/\B=*8((Xo/\*((pO[B/\B]-I-[(pOBA(pOB])-FO(] /\(da(p/\B)—sz/\F“)

2
(5.115)
Here we have three equations, in §20, 831 and S'! of dimension 3, 8 and 4. Let

us first focus on the equation in $3'. Looking at the table we see that only G(o) has
values in S3', so the equation becomes

— Prgsi (da(P }D\ B) = G(“]) O Prgsi (da(P /O\ B)/ (5-116)
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which is trivially satisfied as G(«1) acts with eigenvalue —1 on S3'. Now let us turn
to the equation in $2°. G(o;) contributes nothing to this equation, G(wy) is simply the
inclusion and G(«;) acts by multiplication of —1. Hence the equation becomes

o = 1 < = 1 ~ ~
Prao <da(p A B+ +t3@o0 [BAB]+ 2[(;) oB A @oB]— F‘1> =0 (5.117)
Now we already now that prg, F¢ = F§,
prszo(da(P A B) = VVB, (5.118)

and

%(pO[B/\E]-F%[(pOE/\(pOB]ZZB-i-O'(B,B), (5.119)

which shows that the equation is equivalent to (5.114).
Finally let us look at the equation in S'". The equation is given by

0 = pron (da(p AB+2dap A B+ F“) = prgi (3da(p AB+ Fa) ) (5.120)
This gives the same equation as (5.136).

The Equations in A2TVX:

—F* = *g(oq A (E(po [B,B] + i[(poB A (poB]) +ox Ada@ A B+ a3 A Fa> (5.121)
Again there are three components, $2°, S°? and S'! of dimension 3, 3 and 4. The S°?

component is given by

—F% = G(a3)(F) = —F<, (5.122)
again a tautology. The S?° component is
—F¢ =—@[BAB]—[poB A @oB]—2prgn <da(p A E) +F¢ (5.123)
or
0= —-2B —20(B,B) —2V{yB + 2F§. (5.124)

Finally the S component is given by

—F§ =3prgn (da(p A E) . (5.125)
Now it is easy to see that
8 .
F§ =) Fimadxh (5.126)
i=5
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Identifying S'! with S1" = TVX via vy, this gives tyFe.
Now using the basis fy, ... fs, we see that

4
o0 ~ 1 o0 =~
Pron (dae A B) = 3 3 fify (dao A B) (5.127)
i=1
f
- 3‘ (Ve@1 + VS@2 + VE3) (5.128)
f
+ 5 (V801 = Vie2 + Vie3) (5129)
f
T f (Vo1 — V&2 —Vies3) (5.130)
f
+§4(—V9<P1 + Vg, —Vies3). (5.131)

Mapping this over yields

G(x2) oprgn <da(p A E) = nAd®(Véer+ Ve +Vies) (5.132)
+nAdx® (—VE8p1 — VEes + Vee3) (5.133)
+MA dx’ (Vo1 —Vip2—Vies) (5-134)
+n/\dx8(—V§1(P1 +VEp2—Vies). (5.135)

We will denote this with —5$B (the notation will be explained in section [6.3). Then
the equation is
tyF* —8%B = 0. (5.136)

Putting this together shows that we have the perturbed Haydys-Witten equations,

F®—89¢B =0 (5.137)
F$ —VyB—2B—0(B,B) =0. (5.138)

If we simplify this to an action by R? so that dB = 0, then the resulting equations are
given by the Haydys-Witten equations

WF*—89B =0 (5.139)
F$ —VYB—o0(B,B) =0. (5.140)

Remark 5.20. If we simplify the action to be R3, then by Corollary the underlying
manifold has a hypo structure. In this case, the A2 representation decomposes into
three trivial representations (compare to Proposition and the second equation
decouples into the three Nahm equations with the additional term F§.
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Chapter 6

Dimensionally Reduced Gauge
Theories

In this chapter we will collect known facts about the dimensionally reduced equations
that we need later on. Most of this chapter can be found scattered through the litera-
ture. We will introduce a common notation and make consistent choices where they
are needed to formulate the results in Chapter

6.1 Nahm Equations

Throughout this section, fix a Lie Group G with an Ad-invariant scalar product (—, —)
on the Lie Algebra g.
6.1.1 The Equations
Definition 6.1. A Nahm datum is a quadruple of maps
Ti:I=(-1,1) >y, ie{0,1,2,3}. (6.1)
Remark 6.2. Sometimes it will be convenient to combine these to
T:1-HQ®g, (6-2)
where Re(T) = To.
Notation 6.3. We introduce the following notation,
WN =€*([H®g) and Un=¢*(Im(H)®g"). (6.3)
Definition 6.4. A Nahm datum satisfies the Nahm Equations if

3
1
Tt [ToTil+5 3 el =0  ie{1,2,3). (6.4)

)k:1
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Define the map
un: W — Un,  (To, Tr, T2, T3) — (Nq, N2, N3), (6.5)
where N; = Ni(Tp, Ty, T2, T3) are the three Nahm equations.

Remark 6.5. From the reduction theory, we know that Ty is a connection and Ty, T,, T3
are sections of the adjoint bundle. Using this we can write the equations as

1

2,
s

M e

dTOTi + Eijk[Tj/Tk] =0 ie{1,2,3}. (66)

1

~
I

Remark 6.6. The gauge group of the bundle Gn = €% (I, G) (from now on just G in this
section) acts on both sections and connections in a natural way given by

g.To = Adg To + (971 )*wg, Ti.g = Adgq Ty, (67)

where wg is the Maurer Cartan form of G. For a matrix group the action is given by
g.To = gTog™" —gg™".
Since [—, —| is Ad-equivariant and dg.1,9.Ti = Adg d7,T; by the standard formulas,

un(9.T) = Adg opn (T). (6.8)

The equivariance of pn shows that the kernel of uy is invariant; so the gauge group
acts on solutions of the Nahm Equations.

Remark 6.7. The gauge group can be used to eliminate the connection completely from
the problem. The trick is to choose a special gauge which is called temporal gauge
(sometimes Weyl gauge; technically we are looking at a slice of the gauge action). In
the case of the matrix group this can be easily seen by requiring g.To = 0 and solving
the linear ordinary differential equation

g=gTo, g(0) =go€ey, (6.9)

on I. For general G, one can use parallel translation to achieve the same. Then the
Nahm equations become

T] + [Tz,Tg] =0
T, +[T3,T1] =0 (6.10)
T3+ [Ty, T2] =0

and the only remaining action of the gauge group is via constant gauges (i.e. by
choosing a different initial condition go).
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6.1.2 Boundary Conditions

From now on fix G = U(k), for k € IN.

Definition 6.8. Fix k € IN. Let p1, p2, p3 € g determine an irreducible representation of
su(2). We say that a solution to the Nahm Equations satisfies the boundary conditions
NCy if,

e TpissmoothonI=[-1,1],

o fori#0andt—1,[[(t—1)T; —pi] € O(t—1), and

o fori#0and t — —1, [[(t+1)Ti —pil]| € O(t +1).

It may seem strange that the choice of p; is not denoted for the boundary conditions
NCy (e.g. NCP). It is however true, that all irreducible representations of su(2) in u(k)
are conjugated. Hence given two different irreducible representations p, p’, we can pick
an element g € G from g(—1) = 1 to g(1) = u, where u € U(k) conjugates Ad, p = p’.
Then the adjoint action Ady maps solutions with p at the right boundary to solutions
with p’ at the right boundary. This shows that the actual choice of representation is
not important.

This observation also shows that we have to restrict to a smaller gauge group if we
want the boundary conditions to be invariant under the gauge action.

Definition 6.9. Define the space of framed gauge transformations as the space

Go={9e91l9—11€0(t=1),lg—1]€0(t+1}, (6.11)
where the first requirement is for t — 1 and the second one for t — —1.

Proposition 6.10. The space G acts on solutions of the Nahm equations satisfying the bound-
ary conditions NCy for k € IN.

Proof. We will only show the claim for t = 1 and a fixed i € {1, 2, 3}, the other cases are
similar. The boundary condition NCy is equivalent to

Pi
t—1
The condition on g € G is that g(t) = 1+ c(t), where ||c(t)|| € O(t — 1). Without loss of
generality we may assume ||c(t)| < 1, so that

g '(t)= ) (—c(t) (6.13)

kENo

Ti(t) = +bi(t), [bi[l € O(1). (6.12)

Therefore the action of g on T; is given by

' i 1 t))pi —c(t))*
Adg Ti(t) _ tpl1 i [CEt)/ ;)1] T ( + C( ))ptZ];;z( C( )) N gbi(t)g*1 6.14)
- _V_' g ~Y—
I=11=0(1) I—1=0(t—1) I=11=0(1)
|
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6.1.3 The Moduli Space

Notation 6.11. Denote by Fy the subspace of Wy that satisfies the boundary conditions
NCy for some k € N (F§, if we want to fix the k € IN). Further fix the notation

VN = €% (T,u(k))4. (6.15)

Definition 6.12. Fix k € N. With Ny we denote the intersection of iy (0) with Fy,
i.e. solutions of the Nahm equations for G = U(k), subject to the boundary condition
NCx. The framed gauge group Gy acts freely on this space, and the quotient is a 4k
dimensional hyperkahler manifold [AH88|] denoted by

Ny = Ni/Go. (6.16)

Remark 6.13. The Nahm equations have a close relative, the self-dual Nahm equations.
In the literature, these are often also simply called Nahm equations. The modification
is changing the orientation of R* i.e. swapping anti self-dual instantons with anti-self
dual instantons. Section|[5.2.3/shows that the corresponding Nahm equations are given

by

3

1
Z eik[T, Tl =0, 1e{1,2,3}. (6.17)
jk=1

We define everything else similarly to the regular Nahm equations and denote the
space by N](f) = N](f)/go. Note that N](f) ~ Ny by mapping (To, T1, T2, T3) — (To, T1, = T2, T3).

Lemma 6.14. Fn is an affine space over Vy.

Proof. The boundary condition ensures that the difference of two solutions T; — T is
bounded for 1 € {1, 2, 3}, hence extensible to the closed interval. [ |

Proposition 6.15. Let ¢ = (Tp, Ty, T2, T3) € N1(<S) . Then the space TCNis) consists of quadru-
ples (to, t1,t2,t3) where
ti:T—u(k), ie{0,1,2,3}, (6.18)

that satisfy the linearized (self dual) Nahm equations

0=‘.£1 -l-[to,T]] [To,t1]i[t2,T3]i
0 =t + [to, T2] + [To, t2] £ [t3, T1] £ [T3, t1] (6.19)
0 =t3+ [to, T3] + [To, t3] + [t1, T2] +

where the upper sign is for the case of Ny, the lower sign for the case of N1(<S)

Proof. The condition of Nf) is that the Nahm equations are satisfied. This is described
via the linearized Nahm equations (6.19). [ |
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Remark 6.16. To pass form N](f) to N1(<S)/ we quotient out the gauge group Go. In order

to describe the space T[C]Nl(f) force Nl(f), we need to pick an orthogonal complement

in TCN](j) to the infinitesimal generators of Go —~ N](f).

Definition 6.17. Define a metric on N](j) via

3
((to, t1,t2,t3),(s0,81,82,83)) = L Z (ti, sq) dt, (6.20)
i=0

where (t;) and (s;) are tangent vectors as in proposition (6.15) and (t,s) on u(k) is
given by —1 tr(ts).

Remark 6.18. Note that (t,s) = —7 tr(ts) is almost the negative of the Killing form, the
difference being the normalization and the fact that it is not zero on il € u(k). Notice
that this implies that ad4 is skew-symmetric with respect to (—, —) for all g € u(k).

)

Lemma 6.19. The induced action of the gauge group G on the tangent space TN &S is given by

g.(to,h,tz, t3) = (Adg to,Adg t1,Adg tz,Adg tg). (6.21)

Proof. We need to simply differentiate the map g: Nx — Ny for a fixed g € G. Since g
acts linear on Ty, T, and T3 and affine linear on Ty, these formulas follow immediately.

[
Proposition 6.20. The metric is invariant under the gauge action Gy — N](f).
Proof. This follows immediately since the Killing form is Ad-invariant. |
Lemma 6.21. The infinitesimal action of the Lie Algebra of o,
Lie(So) = {£€ T(TLAA(P)) | &(~1) = 0 = &(1) (6.22)
on NI is given by
K& = (=dp,&,[E,T], [6, T2, [£, Ts)). (6.23)

Proof. Note that the exponential map Lie(Go) — Go is given by
&:1—u(k) — exp(§): I > U(k), exp(E) = expyy) & (6.24)
Then acting by gs = exp(s&) on Ty and differentiating yields

_dgs g d(gs-To)|  _ o7 1, dE
at 9s = s o ETo — To& e (6.25)

sS=

gs-TO = 9sT095_]

a similar, but simpler, calculation gives

d(gs-Ti)
dt

= [Ev Ti]r i€ {]/2/ 3} (626)
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Proposition 6.22. A tangent vector (to,t1,t2,t3) toc = (To, Ty, T2, T3) € N](f) is orthogonal

to the infinitesimal generators of Go — N](f) with respect to the metric (6.20) if and only if

3

0= J'E() + Z[Ti, ti]. (627)
i=0

Proof. By the last Lemma, the orthogonality is equivalent to

3

0=— L (to,d&) dt + J > (& Tty dt (6.28)

Lico

Using the fact that & vanishes at the boundary, we can use partial integration to show
that

J (to, d&) dt = —J (to, &) dt. (6.29)
I I
Recalling that the Killing form (and also multiples of it) are ad-skew-symmetric,
(adx y,z) = — (y,ady z), we see that the orthogonality is equivalent to
. 3
0= J (to, &) dt +J > ([T, 1], &) dt (6.30)
I Tico
which is satisfied for all & if and only if
. 3
0=to+ Z[Ti, ti]. (631)
i=0
This shows the claim. [ |

Definition 6.23. Let to, t1,t2,t3: €% (L, u(k)). Then we define
t = to + ity +jta + kt3 € €* (Lu(k) ® H) (6.32)
Combining the last two propositions, we get

Proposition 6.24. Let ¢ = (Tp,T1,T2,T3) € N](f). Identify T[C]N,(Cs) with the orthogonal
complement of the infinitesimal generators of Go — N\ in TN, This identifies T[C]N](f)
with quadruples (to, t1,t2, t3) where

ti:I—u(k), 1€{0,1,2,3}, (6.33)

that satisfy the quaternionic ordinary differential equation

t+ady, t+ady, (t(—1)) + adr, (t(—j)) + adT, (t(—k)) = 0 for Ny, (6.34)
t+ady, t —adr, (it) — ad, (jt) — ad, (kt) = 0 for Ni. (6.35)
(6.36)
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Proof. The above equation is just the combination of the linearized Nahm equations
(6.19) and the orthogonality condition (6.27). [ |

Corollary 6.25. There are complex structures on Ny given by left multiplication of 1,j, k, and
on N} by right multiplication of —i, —j, —k.

Proof. The equations above are invariant under the given multiplications. For the
integrability see e.g. [AHS88]. u
6.1.4 Actions on the Moduli Space
Definition 6.26. Define an action R3 —~ Wy by
(r1,72,73).(To, T, T2, T3) = (To, Ty +1ir L, T 4+ irpQ, T3 + irsl). (6.37)

Proposition 6.27. The action given by

1. maps solutions of the Nahm equations to solutions of the Nahm equations,

2. respects the boundary conditions NCy,

3. commutes with the gauge action of G,

4. leaves g, wy, wy and wy invariant.
Put together, the action induces an action R3 —~ N](f) which is hyperkihler.

Proof. Ad 1. The action does not change the differentials T; and the added terms are in
the center of u(k), so they also do not change the brackets [—, —|.

Ad 2. Satisfaction of the boundary condition at t = 1 is equivalent to

b; = tfii] +by; by e0(1),je{1,2,3) (6.38)

But then ¢; + irj1 satisfies it with b; —ir;1 e O(1).

Ad 3. Forje({1,2,3}, (r1,72,13) € R3, g€ Go we have
g.(r.T;) = g(Tj +irjl)g~ " = g.Tj +irj1 = 1.(g.Ty). (6.39)

Ad 4. The definition of the metric is independent of the base point (To, Ty, T2, T3). Pre-
cisely, the induced action on the tangent bundle is trivial.

|
Definition 6.28. Define an action SO(3) —~ Wy by
3 3 3
B.(To, T1, T2, T3) = (To, Z by;T;, Z by;Tj, Z b3;Tj), (6.40)
j=1 j=1 j=T1

where B = (bij>i,j € 50(3)
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Proposition 6.29. The action given by maps solutions of the Nahm equations to solu-
tions of the Nahm equations.

Proof. Let (To, Ty, T2, T3) be a solution of the Nahm equations. We may write the Nahm
equations as

0 = Im(T) + [To, Im(T)] + %Im((lm )2). (6.41)

The last term is the definition of the cross product on R? (up to [—,—], which is
bilinear). Since
R3 x R3 - RR3, (v, w) »> v x w. (6.42)

is SO(3)-equivariant (use the definition (v, w,v x w) € SO(3)), the Nahm equations are
SO(3) equivariant,
un (BT) = Bun(T), (6.43)

which shows the claim. |

Remark 6.30. A quick inspection shows that the action of SO(3) does not respect the
boundary conditions. Hence we define a modified action, that does.

Definition 6.31. Define an action SO(3) —~ Wy by

3 3 3
B.(To, Ty, T, T3) = P! ~(TO/Z by;T;, Z ba; Ty, Z b3;Ty), (6.44)
=1 =1 =1

where B = (bjj)i,; € SO(3) and P € U(k) =~ Const(I, U(k)) is defined as follows. Denote
by p: su(2) — u(k) the irreducible representation of the boundary condition NCy. This
uniquely corresponds to a group homomorphism

¢: SU(2) — U(k), (6.45)

because 71 (SU(2)) = 1. Now pick a P € SU(2) covering B € SO(3) with respect to the
isomorphism su(2) ~ R3 induced by mapping the canonical basis of R? to the Pauli
matrices o1,03,03, and let P = ¢(P).

Remark 6.32. P is only defined up to +1, but since the action of the gauge group factors
through the center of the group, the action above is well defined.

Proposition 6.33. The modified action given by
1. maps solutions of the Nahm equations to solutions of the Nahm equations,
2. respects the boundary conditions NCy,
3. induces a well defined action on the quotient Ny.

4. leaves g invariant,
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5.

rotates 1, J, K.

Proof.Ad 1. Because the action of B preserves the Nahm equations as does the action

Ad 2.

Ad 3.

Ad 4.

Ad 5.

of P, this follows immediately.

Let ¢: SU(2) — U(k) be the exponentiation of p: su(2) — u(k). Let further ¢ de-
note the conjugation on both SU(2) and U(k), i.e. cq(h) = ghg™'. Then because
¢ is a group homomorphism @ o cgy = cy(g) © @ for all g € SU(2). Differentiating
this equation at 1 € SU(2) gives

poAdg = Dyp oDycg = Dy(pocy) (6.46)
= D1(Cy(q) © @) = Dicy(g) © D16 = Adyq) ©p. (6.47)
Now let P be the lift of B € SO(3) to SU(2), then this calculation implies that
poAdp_ = Adp-1 op.
The action on the boundary condition is given by mapping

i1 o) (6.48)

T, =
Yot —1

to

~ > Adp- 23:1 bi;p;

T = Adp-] (Z bijTj) = (t _]] ) + O(]) (649)
j=1

Because p is linear and the calculation above holds, we have

3 3
Adpq (Z bij pj) = pOAdf)q (Z bi]' 0']') = p(Gj) = Pj- (650)
j=1

j=1

Let B € SO(3) be a matrix and P € U(k) a choice as in the definition of the action.
We have to show that the induced action is well defined on the equivalence
classes Ny. Hence let [(Ty, T)] be an equivalence class of solutions to the Nahm
equations with boundary NCy, k € IN, and let g € Gy be an admissible gauge.
We have to show that

[(P,B)-(9-(To, T))] = [(P, B).(To, T)]- (6.51)

For this define g’ = Adp g~' € Gp and recall that the action of g commutes with
the action of B € SO(3), hence

g'.(P,B).(g.(To, T)) = ¢'.P.g.(To, BT) = P.(To, BT) = (P, B).(To, T). (6.52)

This is immediately clear because the scalar product on R* ~ H is SO(3) —
SO(4) invariant.

This is obvious as the action of B € SO(3) is simply the rotating action on H and
the action of P € €% (I, U(k)) leaves I, | and K invariant.
[
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6.1.5 As a Hyperkihler Reduction

The Nahm equations can also be described (formally) as a hyperkéhler reduction. The
formal part about it is that it involves infinite dimensional manifolds, and so some
analytic work has to be done to make it precise. For these details see e.g. [Bieo§].

Proposition 6.34. The action of G5 — N](f) is trihamiltonian and the corresponding moment

map is given by J_ru(Ns): Fn — Un (again, the upper sign is for Ny, the lower for N3). Thus

N‘(f) is a formal hyperkihler reduction of the affine space Fy.

Proof. We already know that the action of the gauge group is hyperkéhler, so the only
remaining thing to show is that

dpl¥(—)(8) = ) (KE, =) VE e Lie(§), VA € {1,],K}. (6.53)

We will show this as an example for dugs). Let X = (so, 81,2, s3) be a tangent vector at
(To,T1, T2, T3) € Nl(f), then

dugs)(x) =81 + [s0, T1] + [To,s1] £ [s2, T3] £ [T2, s3]. (6.54)

and

~

g(I(S)Ka, X) = 1 (FI& Tl s0) + (Fd1,&,81) + (—[& T3], 52) + ([&, T2], s3) dt (6.55)

= : <E, idTOS1 =+ [So,T]] + [Sz,Tg,] + [Tz, 83]> dt (6.56)
=, (& Edpui (X)) dt = =duj(X)(&). (6.57)
|

Remark 6.35. The canonical connection on un~'(0) — Ny can be described as follows.
Since the action of Gy is free, for every point (To, T1, T2, T3) € un ' (0) we have a pulled
back metric

<Erﬂ>(Ti) = g(K(ET.L)/K?Ti)) (658)

on Lie(9o). Let S(r,) denote the self-adjoint operator between the fixed scalar product
on Lie(9p) and this induced one, i.e.

<S(Ti)£’n>st = (&M (1 (6.59)

for all &,n € Lie(50) and (Ti) € u~'(0). We see that the inverse of S,) describes the
connection form A of the canonical connection,

<A(Ti)(ti),n>st =9 ((ti)le”if]”), (6.60)

for all (Tl) € },LN*1 (0), (ti) € T(Ti) P'N71 (O) andn € L1e(90)
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Proposition 6.36. The operator

4
S(ry = —df, — Y_adf, (6.61)
i=1
where q
dr, = a + adr, (6.62)
satisfies
<S(T‘1)E’n>st = (&M (1 (6.63)

for all &,m € Lie(So) and (T;) € u='(0). Furthermore it is G-equivariant, i.e.
Adg—1 oSg(Ti)E = S(Ti) Adg—1 & (664)

for all & € Lie(G). If we restrict to boundary conditions that makes Sty a well defined
endomorphism, then the one form A of the canonical connection is given by

(Amy(tm)_ =g ((t), kS, (6.65)

for all (Ti) € un~1(0), (ti) € Tryun " (0) and n € Lie(So).

Proof. For the boundary conditions and the fact that S (v, is invertible, see [Bieo8|]. S,
satisfies the equation (6.63) because

&y = 9Ky Kir) (6.66)
4
= J (dr,& drm) + > ([T, &), [T,m]) dt (6.67)
j=0
_ J << 5 —ad;, —2adr, o Zad2 ) 3 n> (6.68)
The G-equivariance is a cumbersome but straight-forward calculation. [

6.2 Bogomolny Equations

6.2.1 The Equations

The Bogomolny equations can be studied for arbitrary 3-manifolds and principal bun-
dles on them. We are however only interested in the Bogomolny equations on R? here.
Thus any bundle can then be trivialized and the connection be interpreted as a form
on the base. The choice of trivialization is not important after passing to gauge equiv-
alence classes; a different choice of trivialization is given by gauging the Bogomolny
datum of the first trivialization.
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Definition 6.37. A Bogomolny datum is a pair (¢,A) € €* (R3,g) x Q'(R3, g) for some
Lie Algebra g.

Remark 6.38. Sometimes it will be convenient to combine these to
AR > H®g, (6.69)

where Re(A) = ¢ and we identified Q' (R3) with ¢* (1R3)3 via evaluation on the vector
fields induced by the canonical basis of R3.

Notation 6.39. We introduce the following notation,
Wp =¢* (R} H®g) and Up=¢*(R?}Im(H)®g"). (6.70)
Definition 6.40. A Bogomolny datum satisfies the Bogomolny Equations if
FA = xdad. (6.71)

Define the map
up: We — Up, (d,A) = F* —xdad. (6.72)

Remark 6.41. From the reduction theory, we know that A is a connection and ¢ is a
sections of the adjoint bundle. This allows us to define an action of the gauge group
Gg = €% (R3,G) (from now on just § in this section) on the Bogomolny data by

gA=AdgA—-g*wg, g.¢ = Adg ¢. (6.73)
For matrix groups this is given by g.A = AdgoA —gg~'.
By standard formulas for the gauge action we have g.F* = Adg F* and dg.a(g.9) =
Adg dad, so the Bogomolny equations are G-equivariant,

ug(9-A) = Adgoug(A), (6.74)

hence the preimage of 0 is invariant; so the gauge group acts on solutions of the
Bogomolny equations.

6.2.2 Boundary Conditions

From now on fix G = SU(2), for k € N and let r = y/x? +y2 + z% denote the radial
euclidean distance on R3.

Definition 6.42. We say a pair (¢, A) satisfies the boundary conditions for k € IN
(satisfies BCy) if for r — oo we have the following asymptotics

ol =15 +0(72), (675)
alpl = 0(2), (6.76)
ldad] = O(2). 677)
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Remark 6.43. 1. Taubes has shown (unpublished) that it suffices to require ||¢| — 1
as r — oo if (¢, A) satisfy the Bogomolny equations using techniques from [JT80].

2. k € N is implied by the other conditions, if we let k € ¢* (R3). The second
condition implies that k is constant, and there are multiple ways to see that k is
an integer, the most descriptive are

e Since ||¢|| — 1, there is a R > 0 such that ¢ has no zeroes outside of the
ball of radius R centered at the origin. Then x — H%H when restricted to
sphere of radius bigger than R gives a smooth map from 52 — 52, k is just
the negative of the degree of this map.

e By gauging the vector field ¢ on R3 to an analytic solution (this can be
achieved locally, see [JT80], we see that ¢ has isolated zeroes. These are
invariant under gauging. Using the theorem of Poincaré-Hopf, we can cal-
culate the Euler characteristic of R without the complement of a large ball
by counting multiplicities of the zeroes of the vector field ¢. This is related
to k € IN by the winding of ¢ at infinity (see [AFG75]).

e On the complement U of the large ball we can interpret x — m as a reduc-
tion of the principal SU(2) bundle, i.e. a SU(2)-equivariant map

Plu — SU(2)/U(1) = S2. (6.78)

Hence ¢ defines an U(1)-bundle Q which is characterized by ¢;(Q) = k.
The adjoint bundle of the original (trivial) bundle P then splits into two
lines bundles of degree k and —k.

3. The value of ||$|| when r — oo is arbitrary. Physically speaking it is the mass of
the monopole, but the moduli spaces are the same for every choice of mass.

While the gauge group is leaving the boundary conditions BCy invariant, we still
introduce a partial framing at infinity.

Definition 6.44. Define the reduced gauge group to be
So={ge 5| lim g(x,0,0) =1} (6.79)

Remark 6.45. As mentioned, any SU(2)-monopole reduces to a U(1)-monopole on a
sphere at infinity (i.e. on the complement of a ball large enough). The induced data (the
projected connection and induced Higgs field) satisfy the U(1)-monopole equation
(dA = xd¢). The equivalence class of such reductions to the fixed U(1)-monopole has
a U(1)-action (acting by constant gauges). However, since monopole connections are
irreducible, it only fixes the SU(2)-connection if it is in the center of SU(2), hence only
+1 extend to monopole morphisms.
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As always with framing, instead of framing the gauges, we can also add a fiber at
one point. For this picture we can fix a reduction to a U(1)-monopole as above. The
resulting space then is a U(1)/{£1} bundle over the former quotient. This picture is
more cumbersome to denote but has more geometrical insights. In particular it allows
us to define a rotating action. To see how to switch between these pictures, see [AHS8S].

6.2.3 The Moduli Space

Notation 6.46. Denote by Fg the subspace of W5 that satisfies the boundary conditions
BCy for some k € N (F§ if we want to fix the k € IN).

Definition 6.47. Fix k € N. With My we denote the space of solutions to the Bogo-
molny equations for G = SU(2), subject to the boundary condition BCy. The framed
gauge group Go acts freely on this space, and the quotient is a 4k dimensional hy-
perkdhler manifold [AH88] denoted by

My = My/So. (6.80)

Remark 6.48. Just as in the Nahm case, we can define the self dual version of the
Bogomolny equations. The reduction theory shows that these are given by

FA 4+ xdad =0, (6.81)

and similarly to the Nahm case they correspond to a change of orientation of R*. We
define everything else similarly to the regular Bogomolny equations and denote the
space by M, = M3 /Go. Note that Mj =~ My by mapping (¢, A) — (=, A).

Lemma 6.49. Fg is an affine space over
Ve = H® {fe L*(R%,g) | fe O )}, (6.82)
where we understand all 1.2 as smooth square integrable functions.

Proof. Being in O(r~2) ensures that the boundary condition of ¢ is not changed. W

Note that we could let MS) be an affine space over the larger vector space, where
we do not restrict to (smooth) L? functions. However, Taubes has shown [JT80] that
it suffices to take L? sections to describe the tangent space. We sometimes inter-
pret Vg as given in the Lemma, other times it is more convenient to think about
Vg = L?(IR3,5u(2)) ®Q!, (R3,5u(2)), with the correct boundary behavior, as in the next
proposition.

Proposition 6.50. Let A € M](f). Then the space TAMS) consists of pairs (P, a) € Vg that
satisfy the linearized (self dual) Bogomolny equations
*daa+ dap +[a,$] =0. (6.83)

Aguain, the upper sign is for the case of My, the lower sign for Mff).
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Proof. Note that

datca(d+eb) = dad + e(daw + [a, d]) + O(e?), (6.84)
so that the linearization *F* + da ¢ is given by the term of the proposition. [

Definition 6.51. Define the usual metric for bundle valued forms on MS), ie.

3
(A,B) — J S (Ai,By) volgs (6.85)
R* 20
where A and B are tangent vectors as in Proposition (6.50) and (—, —) on su(2) is given
by —7 tr(ts).
Lemma 6.52. The induced action of the gauge group G on the tangent space TM](:) is given

by
g.-($, a) = (Adgp,Adg a). (6.86)

Proof. See Lemma [
Proposition 6.53. The metric is invariant under the gauge action Gy — M](f).

Proof. This follows immediately since the Killing form is Ad-invariant. n

Lemma 6.54. The infinitesimal action of the Lie Algebra of o,

Lie(So) = {£ € TR, Ad(P)) | 2]l € 0"} (6.87)

on M1(<S) is given by
K& = ([& 9], —dag). (6.88)
Proof. See the proof of Lemma [ ]

Proposition 6.55. A tangent vector (P, a) toc = ($,A) € M](:) is orthogonal to the compactly

supported infinitesimal generators of Go — Ml(f) with respect to the metric (6.20) if and only

if
xdaxa+[dp,P] =0 (6.89)

Proof. We want g(K¢, (,A)) = 0, hence

0= | (=dat @)+ (£, 0], ) volr, (690
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and

| tanea - Z (AAE(@1), a(@1)) volgs G
- ; Z (018, ai) + ([Aq, £], a;) volgs (6.92)
— [grade-a+ 3 ([Av &l a0 volgs (6.93)
- ; div(£a) — &diva— Y (& [Aq, ai]) volgs, (6.94)

where a; = a(0;) and we used the vector calculus identity grad ¢ - a + £ diva = div(&a),
and by the theorem of Stokes, [div(&a)volg: vanishes (we assume & has compact
support here). But then

(K, (7)) = |

]R3

<div a-+ Z[Ai' ai] + [d, V], £> volgs, (6.95)
which together with xda * a = diva + ) ;[Ai, ai] shows the claim. [ |

Proposition 6.56. Let ¢ = (b, A) € M§. Identify T[C]Mgf) with the orthogonal complement
of the infinitesimal generators of Go —~ M) in TeM\®). This identifies T[C]Jv[](f) with pairs
a = (\p, a) € Vg that satisfy the quaternionic ordinary differential equation

[6,a] + V7 (a(=1)) + V2 (a(—)) + V3 (a(—k)) = 0 for My, (6.96)
[6,a] = VT (iA) — V2 (ja) — V5 (kA) =0 for M. (6.97)
Proof. We see that the system
xda *a+ [¢p, ] =0 (6.98)
xdaaF dap F [(1, d)] =0 (6.99)
is in coordinates given by
Viar +V53az +Vias + [d, 9] =0 (6.100)
Viaz —Via FVMp + [b,a1] =0 (6.101)
Via — Va3 FV2Y £ [d,a] =0 (6.102)
Via —Via ¥V £[d,a3] =0 (6.103)
Sorting this we get
aj az as P
T Al a3 Al @ ta
va +V +V +[¢, =0, 6.10
(I I 2| 1y 3 a [b ta, ] (6.104)
az —aj U tas
which shows the claim (for M multiply the last three equations by —1). [
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Corollary 6.57. There are complex structures on My given by left multiplication of i,j, k and
on M3, given by right multiplication of —i, —j, —k.

Proof. The equations above are invariant under these multiplications. For the integra-

bility see e.g. [AHS88]. n

6.2.4 Actions on the Moduli Space

Definition 6.58. Define an action R3 —~ pg~'(0) by pulling back the function { and
form A along the translation by r € R3.

Proposition 6.59. The action given by Definition

1. maps solutions of the Bogomolny equations to solutions of the Nahm equations,

2. respects the boundary conditions BCy,

3. commutes with the gauge action of G,

4. leaves g, wy, wy and wy invariant.
Put together, the action of Definition induces an action R3 —~ M](f) which is hyperkihler.
Proof. All these follow immediately. |
Proposition 6.60. The action SU(2) — SO(3) —~ R3 induces a rotating (left) action on M1(<S)-

Proof. Map B € SU(2) to B = (bij)i; € SO(3) and let it act as denoted. If we write
A =Y 7_, Aidx}, then the transformation of the connection becomes

3 3
BA=) A;oB 'd(x'oB™")=) A;oB 'd(x;oB") (6.105)

i=1 i=1

3 3
= > AioB ldxbl = ) AjoB dxbyi, (6.106)
i,j=1 1,j=1
so that
3

Ax — Z briAjio0 B! (6107)

i=1

under the action. The action on ¢ is simply given by pull back, B.¢p = ¢ oB~!. The
chain rule implies that

3 3
él(B.Ak) = Z bii0iAx 0 B! and 61(]3(1)) = Z b1i0id o B~'. (6108)

i=1 i=1
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This shows that the equations are equivariant under this action. It follows immediately
that the boundary conditions are satisfied (here it is necessary to use the geometrical
boundary description). It is also easy to see that the action commutes with the gauge
action and leaves g invariant (because the matrix is in SO(3)). Finally, it induces the
usual rotating action on the flat quaternionic space Vg. n

6.2.5 As a Hyperkihler Reduction

The Bogomolny equations can also be described (formally) as a hyperkéhler reduction.
The formal part is similar to the Nahm equations.

Proposition 6.61. The action of Gg — Mf) is trihamiltonian and the corresponding moment

map is given by ug): Fg — Ug. Thus Mff) is a formal hyperkihler reduction of Fg.

Proof. We already know that the action of the gauge group is hyperkéhler, so the only
remaining thing to show is that

<a, du§>(—)> — (K&, =) VEeLie(§),VA € {1 ],K}. (6.109)

We will show this as an example for dugs). Let X = (s1, 52,83, 54) be a tangent vector at
(b,A) € M](:) and & compactly supported, then

Al (X) = V553 — V552 F Viso + [, 51]. (6.110)

With Fubini’s theorem we obtain

N

g(I0KE, X) = | (£V1'E,50) + (£[E, b] 51) + (VAE s2) + (~VEE s3)dt  (6.111)

J

= | (& £[d,s1] F Viso+ Vis3 — Visy)dt (6.112)
JI
_ <g,du§5)(x)> dt = <a,dp§s)(x)>. (6.113)
JI
[

6.3 Haydys-Witten Instantons

Let M be a 5-manifold with (not necessarily integrable) SO(4) structure. Then the
alternating product bundles of M split as

ATYM 2 A @A} = AYTYM, (6.114)

AMT'M = A2 OAZOAS = A3TVM (6.115)
A}’s representation is trivial, hence it is the trivial bundle, so we may pick a trivializing
section n € T(Al), and denote by Y the dual of this section. Then F(n) is a map iden-
tifying A} =~ Aj. A quick inspection shows that G(n): A> — A? has the eigenspaces
AZ2,A% and A3 corresponding to the eigenvalues 1, —1 and 0 respectively.
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Definition 6.62. Let P — M be a principal G-bundle and let
(A,B) € C(P) x Q2 (P,Ad(P)).

Then the Haydys-Witten equation are given by

wFAr =381B (6.116)
F} = V{B + o(B,B), (6.117)
(6.118)

where §% = prgi; oV and o is induced by [—, —]5u(2) ® [, —]g: (AT ®9)® - A2 ®g.

Remark 6.63. V2B lives in TYM ® A2 ® g, and since in terms of SO(4)-representations
(STT@®S)®5%° =~ S31 @S @S2, we have a projection onto S'!. See [Hay15b] for an
explicit description of the map.

Similarly we can describe o as the projection onto the $2° component of $2° ® $2° ~
540 P 520 @ 500,
Remark 6.64. If M has a hypo structure (again not necessarily integrable), then B de-
composes into three sections of the adjoint bundle and the similarities to the Nahm
equations are striking.

Remark 6.65. As mentioned, vy identifies A7 and A}. Hence the first equation speci-
fies F;', whereas the second equations specifies F}'. This is similar to other monopole
equations. The corresponding instantons would be given by F)* = 0 = F}.

Remark 6.66. Mazzeo and Witten study possible boundary conditions of the Haydys-
Witten equations [MW13]. Of particular interest are the same boundary conditions we
will introduce in Theorem only not on an interval, but on a half line. Further-
more, they consider knots embedded into the boundary and require more complicated
conditions on the knot to make a connection to Khovanov homology.

6.4 G,-Monopoles

Let M be a 7-manifold with (not necessarily integrable) G, structure, P — M a princi-
pal G-bundle and denote the coassociative form of M by . Then the alternating product
bundle of M decompose as described in Proposition [2.56}

Definition 6.67 (G, Monopoles). A pair (A,¢) € C(P) x '(Ad(P)) is called a G,-
monopole if
FAAD = xdad. (6.119)

Remark 6.68. Recall that A2 is the image of G() restricted to A'. Hence up to this
identification the equations are given by F2* = da ¢. The associated instanton equations
are given by F4* = 0.
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Remark 6.69. Oliveira discusses some possible boundary conditions for G,-Monopoles
for examples that fit to our setting in [Oli14]. He considers the boundary condition
where lim,_,||¢| < o exists for a G,-monopole on A2 X of a 4-manifold, where r is
the distance to the zero-section. In addition the existence of a limiting bundle with
limiting connection is required. The boundary conditions we are interested in imply
these but require more. In the case of Bogomolny equations, these conditions are
actually equivalent (see the discussion in Remark [6.43), but this uses the satisfaction
of the Bogomolny equations. It is unclear to the author if this can be extended to our
case.
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Chapter 7

An Extended Nahm Transform

In this chapter we will generalize the Nahm Transform. The Nahm Transform relates
a Bogomolny datum (see Definition [6.37) to a Nahm datum (see Definition [6.1). Re-
calling that both spaces are (formal) hyperkihler reductions of affine spaces, we can

picture this as follows,
Ug Un
Fg Fn

MBOQNMTMN ahm

where Fg and Fy are (affine) flat (infinite dimensional) quaternionic vector spaces and
the p; are the moment maps. We have in addition used here that the Nahm Transform
respects the gauge equivalence class and hyperkéahler structure (see e.g. [Nakg1]). The
first remark is that the very definition of the Nahm Transform is a transform between
the spaces Fg and Fy, which later is shown to respect the gauge classes, and so is well
defined on the quotients. Hence we get a transform

Fg o' (0) < un'(0) = Fy (7.1)

between solutions of the Bogomolny equations and solutions of the Nahm equations
(the boundary conditions are encoded in the spaces F;). We will show that the Nahm
Transform is extendable to a tubular neighborhood of u;='(0) < F;. This means that
we relate Bogomolny Data and Nahm Data that satisfy the usual boundary conditions,
but satisfy the equations with a small error.

For this we only have to show that the construction remains well defined for small
deviations of solutions. In particular we need to show that the boundary conditions
remain satisfied. On the other hand we want to show that a small deviation of a
solution induces a small deviation on the other side.
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In the first section we will define the necessary notions and in the second section
we show that the construction of the Nahm Transform remains valid for small de-
viations. In the third section we give an approximation of the error term after the
transformation and in the last section we will show that the boundary conditions re-
main satisfied under the small deviations. To show the approximation, we have to give
a new elementary proof of the Nahm Transform (of the equation part) without using
a choice of a complex structure as e.g. in [Don84|] and [Nakg1]. This makes the proof
shorter and gives a straight forward calculation to verify the equations. Furthermore
it highlights that the transform in both directions are virtually identical.

Another possibility to work with this problem would be to define a tubular neigh-
borhood of 1~'(0) = F. This would allow to have a well defined projection onto p='(0).
In a very similar setting Gaio defined such a projection and moreover a way of map-
ping p~'(0) back into the tubular neighborhood, given a direction and a ¢ [Gaigg].
Then adiabatic scaling is used to ensure that the solution of the equations is in this
tubular neighborhood. A similar construction would solve the given problem but it
seems unclear on how to generalize the results of [Gaigg] to this infinite dimensional
setting.

There has been work on defining a tubular neighborhood for the Nahm equations,
using a gradient flow in an equivariant setting with cutting and projecting. It is unclear
if such a definition will have the required properties to construct an inverse map.

We are interested in right hand errors here, i.e. we don’t require a datum to be
close to a solution to the equations, but rather that the equations are approximately
satisfied. Of course the former implies the latter.

The proof of the boundary conditions in this section follows closely the steps of
[Nakog1] and [Hit83]].

7.1 Notions

Let G be a Lie Group and fix an Ad-invariant scalar product on its Lie Algebra g.

Definition 7.1. A generalized Nahm datum is an element in (To, Ty, T2, T3) € Fn,

un(To, T1, T2, T3) = € Un. (7.2)

Definition 7.2. A generalized Bogomolny datum is an element in (A, $) € Fg,

ug(A,d) =ne Ug. (7-3)

7.2 An Extension of the Nahm Transform

The construction of the extended Nahm Transform is formally equivalent to the usual
one. We define the same operator and use the same construction to produce the
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transformed datum. For this to work we only have to make sure that the index of
the operator does not change and the kernel remains trivial on the larger class of
connections.

Since we will be using the Weitzenbock formulas later on, we also prove those in
this section.

7.2.1 Nahm to Bogomolny

Definition 7.3 (Nahm Dirac Operator). Let (To, Ty, T2, T3) be a generalized Nahm da-
tum and V — I the associated bundle. For every x € R3, define

2 HOW)A(L,V) - HRL2(L,V) (7-4)
3
D, = Ig® Ve +

)

(cj ®(Ty —ixs1y)), (7.5)
1

where Vi = 0¢ + Tp is the connection induced by Ty and cl; are the Clifford multipli-
cation on the spin bundle of R3, S = H. The tensor product of H =~ C? and V is over
C.

Lemma 7.4. The adjoint operator of Px is given by

3
.@: = -Ig®V¢+ Z (Cl)' @(T] — in]lv)) . (76)
j=1
Proof. We see that
(y®Tk)* = —cy ® — Ty = cl; ®Tx, (7.7)
and
(C]j ®iXk)* = — Clj @ — iXk = Clj ®1Xk, (78)

so that the second summand of % is self dual. V; is a U(k) connection and as such
compatible with a metric from V. Using this with the vanishing of the sections on the
boundary gives

A @ V)" = -1 ® V¢ (7.9)

via integration by parts. n

Proposition 7.5 (Weitzenbock Formula). Let (To, T1, T2, T3) be a generalized Nahm datum,

with
T+ [To, T+ [T2, T3] =mi, (7.10)
T2+ [To, T2] + [T3, 1] = m2, (7.11)
T3 + [To, Ts] + [T1, T2] = ms. (7.12)
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Then

j=1

3
—@:-@x =1g® (vat + Z(T] — in)*(T]' — in)) — Cln,
where
3
Cln = Z N1 Cli .
j=1
Proof. Define the abbreviating notation
Dy =de +T+X,

where d; = 1Ty ® V4,

3 3
T= Z Clj ®T) and X = —'LZ Cl)' ®X)‘ﬂv.
j=1 j=1

Then by Lemma [7.4| we know that 2 = —d + T + X. We see that

DD, = —dF — AT —Tdy — Xdy + Tdy + T2 + TX + Xd¢ + XT + X2

= —d? — dT+ T? + TX + XT + X?

We now inspect the terms. Starting with

3
AT =) djQV.Ty,
j=1
and continue with

3 3
X2 = — Z Cli Clj @Xin = ]].Cz ® Z Xiz — Z Cli Clj ®X1Xj,

ij=1 i=1 i#j

=0

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)
(7.18)

(7.19)

(7.20)

where the second term vanishes because the cl; anticommute. For XT + TX realize that
cl; ®Tj and cl; ®x; anticommute if 1 # j, so that the corresponding terms of TX and XT

cancel. Only the diagonal terms survive, i.e.

3
XT+TX =2lg® ) Tpx;.
j=1

Finally we need to look at

3 3
TZ = Z Cli Clj ®T1Tj = —1].]H ® Z sz + Z Cli Clj ®T1Tj .

ij=1 j=1 i#j
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For the second term we continue

Z Cli Clj ®T1Tj = Z Cli Clj ®(T1T] — Tj Tl) (723)
1#j 1<i<j<3
= —cly @[Tz, T3] —cly @[Tg, T]] — C13 @[T1 , Tz]. (7.24)

We conclude that

3
(T+X)? (Z xF + 2iTyx; — f)) +L (7.25)
j=1
3
Z —1%)*(T; —ix;) | +L, (7.26)
j=1
where L is defined by (7.24),
—L=cli ®[T2, T3] + cl, ®[T3, 1] + clz3 ®[Tq, T2]. (7.27)
This shows that
3
-@;:-@x =Ixp® vat + Z(Tj — iX)')*(Tj — in) —d{T+L. (7.28)
j=1

Plugging in the Nahm equations (7.10) through (7.12) shows that

3
L—dT=-) dj®n;, (7.29)
j=1
which completes the proof. n
We recover the Weitzenbock formula in [Nakg1] by letting n; = 0.

Corollary 7.6. The L? kernel of the family 9, vanishes for an approximate solution of the
Bogomolny equations.
ker 7y = {0}. (7.30)

Proof. Using the Weitzenbock formula for 0 = s®@e € I(S®E), we see that right hand
side is a positive operator if we assume n to be small enough. So %0 = 0 if and only
if [s®el| = 0. |

Corollary 7.7. We have,
dimker ; = dim coker 7, = ind %, (7.31)

where ind is the index of the differential operator.
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Theorem 7.8 ([Hit83]). For any generalized Nahm datum, we have
ind 7y = 2. (7.32)

Remark 7.9. The L?-kernel of 2, gives a 2-dimensional subspace in Ex, ¢ H®L?(1,V)
for every x € R3. This may be interpreted as a 2-dimensional subbundle of the infinite
dimensional trivial bundle

Ec L%, S®V)— R (7-33)

Definition 7.10. Denote by my: L*(I, S® V) — Ex the orthogonal projection with re-
spect to the L2 scalar product and by t: E — L?(I, S®V) the inclusion. Define the
connection on E by

da: T(R?,E) 5 T(LLA(LS®V)) S (1,141, S®V)) 5 I'(R3,E). (7.34)
Further define the endomorphism of E by

@:T(R3,E) » T(R%E), s~ m(its) ke{l,23}. (7.35)

7.2.2 Bogomolny to Nahm

Definition 7.11 (Bogomolny Dirac Operator). Let (A, $) be a generalized Bogomolny
datum and E — R3 the associated bundle. For every t € I = (—1,1), define

Dar=9a+(p—1it): T(S®E) > T(SKE) (7.36)
where S — R? is the spin bundle of R3.
Lemma 7.12. The formal adjoint of Pa + is given by
Dap=Ia—(d—it). (7.37)
Proof. Note that Z, is self-adjoint, and ¢ —it e u(S®E). [ |

Proposition 7.13 (Weitzenbock Formula). Let (A, ) be a generalized Bogomolny datum,
with

«FA—dap=m, m=m,mzm3)e Q' (R g). (7.38)

The Bogomolny Dirac operator satisfies the following Weitzenbock formula

DD =VV-1s®(d — itl)? — cly, (7.39)
where
3
cly = Z nicli. (7-40)
i=1
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Proof. Let{ = ¢ — itl for this proof. By definition
DhDap = DiIa + T (1s @) — (1s @) DA — 1s @ V2. (7.41)

Using the Weitzenbock formula of Z, we see that
1 1
DrDn = V*V + 7 Sc —1—2%, (7.42)

where
H(sQe) = Z clicly s®@F* (e, el)e, (7.43)
ij
(e*) are standard coordinates and via Ad(P) — End(E) we identify F*(e',e)) = F}
with an endomorphism of E. cl; is a short notation for cl.: and V is the connection on
S ®E induced by the Levi Civita connection and V 5. Since R3 is flat, Sc = 0 and we
get

DA (s®@Pe) = clV (s @pe) (7-44)
=cl (VLcs Q@Wbe+sQVa [we}) (7-45)
= Zs®@ype+cl (s@ ([dAtl)]e+1])VAe>) (7.46)
=1s@W(Za(s®e)) +cl(s@[da]e), (7.47)
(7-48)
so that
ZA(ls @¥) — (Is @) Za = cl(ls @ da). (7-49)
Note that dal = dad = *FA —n, hence
s ®dad)(s®e) = cl (lls ® ((Fiy —m3)e’ + (FA5 —mi)e’ (7.50)
+ (5 —m2)e?) ) (s@e) (7.51)
=c3s®@FYe+clis®@F5e+cas@F5e (7.52)
3
- nicli(s®e). (7.53)
i=1

On the other hand, we can calculate that

%%(s@e) =) dicdjs@Ffe=—clzs@FYe+crs®@Fse—cis®Fse,  (7.54)
i<]

where we have used that cly, cl,, clz is multiplication by —i,—j, —k € H. Therefore
these terms cancel and we end up with

3

DiDap = VYV —1s® (¢ —ith)* — ¥ micl. (7.55)
i=1

n
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We recover the Weitzenbock formula in [Nakg1] by letting n; = 0.

Remark 7.14. Note that the spin bundle of R3, S — R?, is the trivial bundle H. As
such, we can identify T(R3,S®E) ~ H®I'(IR3,E). In this identification, the Dirac
operator now becomes

Da = cloVA, (7.56)

and the Weitzenbdck Formula becomes
3
DarDar =1 ® (VAVA — 1 ® (¢ — itll)z — Zm cly. (7.57)
i=1

This shows that in this identification and withn; = 0, Dr +Za,¢ (hence also its inverse)
commutes with cl;. This is the essential fact to show that the transformed datum
satisfies the equations.

Corollary 7.15. The L? kernel of the family D . vanishes for an approximate solution of the
Bogomolny equations.
ker Za ¢ = {0). (7.58)

Proof. Using the Weitzenbock formula for 0 = s®e € I'(S®E), we see that right hand
side is a positive operator if we assume n to be small enough (i.e. cl,: W12 — [2
is small enough in the corresponding operator norm) depending on A and ¢. So
PDa0 =01if and only if |[s®el[{2 = 0. |

Corollary 7.16. We have,
dimker 75 ; = dimcoker Za; = ind Za , (7.59)
where ind is the index of the differential operator.
Theorem 7.17 (Callias [Cal78||). For any generalized Bogomolny datum we have
ind YA+ = k. (7.60)

Remark 7.18. The L?-kernel of Za ¢ gives a k-dimensional subspace in V; < L2(R3, S®
E) for every t € (—1,1) = I. This may be interpreted as a k-dimensional subbundle of
the infinite dimensional trivial bundle

Vcl?(R3S®E) - L (7.61)

Definition 7.19. Denote by m,: L2(R3, S® E) — V; the orthogonal projection with re-
spect to the L2 scalar product and by t: V — L?(R3,S®E) the inclusion. Define the
connection on V by

Ve T(LV) S TR, SQE)) S (L L2(R3, S®E)) 5 (L V). (7.62)
Further define three endomorphisms of V by

Te:T(LV) —>T(LV), s — m(ixys). (7.63)
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7.3 Error Approximation

Let us begin by some general remarks. First off, note that the orthogonal projection
onto the kernel of 7, . along the image of 7, (/« (Where we drop the subscript) is
given by

n=1-2(2*92) ' 2*. (7.64)

This implies immediately that the image of & is in the kernel of m, indeed,
(V) = D — D(D* D) D*Dp = Dp — D = 0. (7.65)

Both the Bogomolny equations and the Nahm equations are vector bundle en-
domorphism valued. To show that they are satisfied, we pick an arbitrary element
P € ker 7%, apply the equation and show that the result is zero. Plugging in the def-
initions of the transformed data, we see that the last step of the equation is applying
the projection 7, so we use two tricks to drop terms. First, anything in the image of
vanishes, because of the calculation above, and second whenever Z* gets applied to
1, the term vanishes.

It then turns out that we merely have to calculate some commutators, to apply
the facts above. The final step uses the Weitzenbock formula that we have shown for
the generalized Laplacian Z*%. The important part about these is that they commute
with the Clifford multiplications cl;.

7.3.1 Nahm to Bogomolny

Theorem 7.20. If (To, Ty, T2, T3) satisfy the Nahm equations, then the transformed datum
(da, ¢) satisfies the Bogomolny Equations.

Proof. Recall the Bogomolny equations
FA = xdad. (7.66)
In coordinates we may write this as
s =Vie,  Fh=Vid,  Fh=Vid. (7.67)

Let 1 € ker ;. Then we can apply the equations to { to get

(Vi) —[VE, ViTb =0 (7.68)
(V3d)p — [V5, ViTb =0 (7.69)
(V3d)b — [V, VL =o. (7.70)

Plugging in the definitions and using
(VI = VT (6(1)) — (VT b), (7:71)
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we arrive to the equivalent form of the first equations
n(Orm(ity)) — n(itr()) — m(0rm(03)) + m(d37(d20)) = 0.
It suffices to show that
o1(it) — itr(01P) — d2m(03) + 03m(02)) € ker .
Using the fact that m = 1 — 2, (27 2x) "' 2, we end up with

— (D DE D) DE () + D (DE D) DE(010)
b 2D TE D) DE(O30) — 03D (T D)) TE (D).

Now permuting ¥, with the other operators, we calculate
[.@X, 8]] = Clj RN, [.@X, it] =1i.
Using these brackets we arrive at

cly ®UZE D)7 D (i) — i(PE D)~ DE (1)
— cy @2 2) 7 D (030) + b3 ®U(ZE D) DE(020)

Next up we use the commutators with Z*
(25,651 = @i, [2%,it] = —,
to get modulo ker Z;

(cly L) (ZE D)~ + (2F 2,) 7 (cly @1y )P
+ (Clz ®1\/)(9:@x)7] (C13 ®ﬂv)1|) — (C13 ®ﬂv)(@:@,()f] (Clz ®1\/)1D

modim %,.

(7.72)

(7.73)

(7.74)
(7.75)

(7.76)

(7.77)

(7.78)

(7.79)
(7.80)

Note that we have not used that (To, Ty, T2, T3) satisfy the Nahm equations yet. Only

now do we need the fact, that

(@*9)71 =1s®G,

(7.81)

where G is the Greens Operator of the right rand side of the Weitzenbock formula

for vanishing error n. We arrive at

((cly +cly +clacls —clzcly) @y ) (25 2x) ',

2 Cl] - Cl] — Cl] =0

(7.82)

which finishes the proof. To prove the other equations, cyclically permute 1,2 and 3 in

this proof.
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Corollary 7.21. For a generalized Nahm datum (To, Tq, T2, T3) with the error term satisfying
llcly|| < [|Gol| ™" (in the operator norm from W'-2 to W'2), the transformed error term is given

by
Ecli +cli E+cly Ecly —cl3 Ecl,
Pr—>mo | Echb+clE+clzEcly —clyEcls | P (783)
Eclz +cl3 E+cly Ecly, —clr Ecly

where .
E= <Z(Go cln)“> Go, (7.84)
n=1

Go is the Greens operator of
3
In® | Vive+ ) (T —ix)*(T — ix)) (7.85)
j=1
and for a section P € T(R3, E).

Proof. Let now un(To, Ty, T2, T3) = n. We have shown, that the Weitzenbock formula
is given by

3
@z@X = ]]-IH® (vat + Z(T) — in)*(Tj — in)) — Cln . (786)
=1

Let us denote this by Go~' — cl,,, where G, (the Greens operator) commutes with the
Clifford multiplication. We derive an expression of the Green operator G of Z; %, in
terms of the Green operator Gy. . We see then, that

DDy = Go (1 —Gocly), (7.87)

so that for ||cl,|| < [[Goll™",

G=(1-Gocly)~ Go—<ZG0cl )Go:GoJrE, (7.88)

where G is the Greens operator of 7} %, and E is defined by the equation above. By
looking at equations (7.79) and (7.80), we see that the error term’s first component is
given by

n((E cli +clyE+cl Ecls —cl3 E Clz)l])). (7.89)
The others follow similarly. [
Corollary 7.22. If ||cl, || < ||Go|| ™" (in the operator norm from W2 to W'-2), the transformed

error term npog is in O(r—*).
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Proof. Let us denote the operator (7.85) by X. Then XGy = 1, and we see that |[Xy|| >
Cr?|[ || by the definition of X for r large enough and some constant C (compare to
argument for equation (7.126)). Using this for } = Go shows that

Cr?(|Gob||* < [XGow||* = [[w]|*. (7.90)

We conclude that ||Go|| = O(r=2). This implies that E = O(r~*), which implies the
claim (note that nnanm is independent of x € IR3). [ |

Corollary 7.23. The first order term of the error map nn — np is given by
ne () = —47(Gonn Go), (7.91)
for a section P € T(IR3, E).

Proof. Let nn = en, and compare coefficients by powers of . [

7.3.2 Bogomolny to Nahm

Notation 7.24. For brevity we denote the Bogomolny Dirac Operator by just &, instead
of Za .+ in this section.

Theorem 7.25. Let (A, ) satisfy the Bogomolny equations. Then the transformed datum
(V,T;) satisfies the Nahm equations.

Proof. Let us show the first Nahm equation.
ViTi + [Tz, T3] = 0. (7.92)

Take a \ € ker Z* (i.e a section of the vector bundle) and calculate

(ViT1) (W) = V(Tip) — iV = n(dni(ixgp) — ixim(dpd)). (7.93)

[T2, T3] (W) = 7m(ixom(ixz ) — ixzm(ixp)). (7.94)

So to show the equation, it suffices to show that

deri(ixgp) — ixym(dep) — ixam(ixa ) — ixam(ixa ) € kerm. (7.95)

We calculate
orm(ixi ) — ix (o) = o (ixi b — 2(2* 2) 7' %) (ix10) (7.96)
— 1 (0 = 2(2* D)7 7*) () (7.97)

=i 2(2*D) ' D% (0)) — . D(2* D) D* (i), (7.98)
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Similarly

ixpm(ix3P) — ixzm(ixa) = (7.99)
3 2(2* D) ' D% (ix20) — 2 2(2* D) 2% (ix3)). (7.100)

By a calculation, we see that

VA(Ixb) = d(ix1) AP + i VAP (7.101)
hence
.@A(bqll)) =1icly P+ ix1 240, (7.102)
so that
[P, i3] = icl, (7.103)
and similarly
[-@A,t/ 64[] =1 (7104)
Hence
1 2(2*2) ' 2% (o)) = —icy (2% D) ' 2% () mod im . (7.105)

Applying this to all leaves us modulo the image of Z with
+U(2*2) ' D*(ix19) —ici (2% 2) ' D* (0:)) (7.106)
+1ic2 (2% 2) ' D (ixaW) — icl3(2* 2) 7 2F (ixab). (7.107)
Then using the commutators with the adjoint
[@/}-k\,tr at] =—i [9/'*\,’(/ lXJ] = iClj/ (7108)
we can permute 2% with the arguments to get by using that { € ker 7%,
—(7*2) b~ (7¥2) 7 (7.109)
—c(2*2)7 3 + 13 (27 2) 7 cda . (7.110)

Note that we have not used that (A, ) satisfy the Bogomolny equations yet. Only now
do we need the fact, that
(2*2)7! =15 ®G, (7.111)

where G is the Greens Operator of the right rand side of the Weitzenbock formula
for vanishing error n. The import part is that (2*2)~' commutes with the Clifford
multiplication, so that

(—cly —cly —clyclz +clzcly) (2% 2) ' = 0, (7.112)
because cl, cl3 = —cly and clz cl; = cly. This shows the first Nahm equation. To prove
the others, cyclically permute 1,2 and 3 in the proof above. [
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Corollary 7.26. For a generalized Bogomolny datum (A, ¢) with error term satisfying ||cly, || <
|Go|| (in the operatornorm from W12 to W:2), the transformed error term is given by

—Ecly —cyE—clp Eclz +cl3 Ecl,
P—mo | —Ecl, —cl, E—cl3Ecl; +cly Eclz | ¥ (7.113)
—Eclz —cl3E—cly Ecly +cls Ecly

where .
E= (Z(Go Cln)“) Go, (7.114)
n=1

Go is the Greens operator of

Iy @ (V) = (¢ —itl)?) (7.115)
and for a section P € T(L, V).
Proof. The proof is identical to the Nahm case. n

Corollary 7.27. If ||cl, || < [|Gol|™" (in the operatornorm from W2 to W'2), then the trans-
formed error term N aqhm 1S bounded on 1.

Proof. This follows from the same argument as in the Nahm case, ||GoW|| > Ct?|||| so

that |Go|| < &, hence E is bounded. |

Corollary 7.28. The first order term of the error map ng — nn is given by

N () = 4n(Gone Gow) (7.116)
for a section P € T'(L, V).

Proof. Let ng = en, and compare coefficients by powers of «. [

7.4 Boundary Conditions

The idea of the proof of the boundary conditions is identical for both directions. First
an approximation operator is introduced that has the same boundary behavior as the
Dirac operator. Then it is shown that the kernel of this new operator is close to the
original one, in the sense that the boundary behavior of the elements in the kernel
is sufficiently the same. Finally explicit solutions in the kernel of the approximating
operator are given and it is shown that those have the correct boundary behavior.

We have to modify these proofs in two steps. We define the same approximating
operator but have to show that the additional term cl,, in the Weitzenbock formulas
still allow to show that the elements in the kernel are close. For this only need the
asymptotic of the Weitzenbock formulas, which is unchanged by the modifications.

This is justified in equations (7.126) and (7.147).
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The second step is that we need to make sure that the solutions of the approxi-
mated operator still have the correct boundary behavior (this uses satisfaction of the
equations). Again it turns out that we merely need an asymptotic satisfaction of the
equations, i.e. the transformed error has to be n € O(r~2) in the Bogomolny equations
and n € O(1y) for t - —1 and n € O(1y) for t — 1 in the Nahm equations.

Since these poofs use a vast amount of details, we will not reproduce them com-
pletely here but rather give a overview of the important steps and show where adjust-

ments have to be made.

7.4.1 Nahm to Bogomolny
We closely follow [Hit83] in this section.

Theorem 7.29. Let (To, Ty, T2, T3) be an approximate solution to the Nahm equations of charge
k € IN, so that the transformed error term satisfies fj € O(r=2). Then the transformed datum
(A, d) satisfies the boundary conditions BCy.

Proof. We use C as a generic constant in this proof. As SU(2)-representations we have
the following decomposition.

HRV=S' @Sk ~skpsk—2. (7.117)

Close to the boundary,
T = % +b(t), (7.118)
with b smooth. The action of T = }_; cl; ®p; can be understood via the Casimir oper-

ator to be multiplication by 15 on S* and =L-% on S*~2. Let us approximate Z by

3
1 1
0 .
@X :Il]H@at"‘ <t—i—] +t—]> T—l]=E1 Cl] ®X]]1V (7119)

Then 2, — 22 = A is a smooth operator on I independent of x € R3,
3 . .
A=]11H®TO+ZC15®<T]—QJ—pJ), (7.120)

. 1T+t 1-—t
j=1

so the index of 22 and %y are equal. We can give explicit solutions in ker;(22)*
g (t) = (2 — 1) T ety (7.121)

To explain this, fix x € R? for a second up to a scalar, i.e. x = ru for a unitary quater-

nion u € R?® >~ ImH. Identifying su(2) =~ ImH, u generates a copy U(1) = SU(2) which
decomposes the representations S* and S*~2 into one-dimensional weight spaces,

Sk = Vk@kaz@' : -@V,k (7.122)

S 2 = Vi 2 ®Viea @ ®Voki2 (7.123)
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Now let vy be the highest (lowest) weight of S*, which implies that it is fixed in H® V
by the action of —ir Z)- cl; ®u;ly. Since (—i Zj cl; ®ujllv)2 = 1, we see that

3
(Z cly ®xj1v) vy = t+r1vy, (7.124)

for r = ||x||. Now we can see that

2t

0 * N 1 1 .
(2y) Qi(t)< t271+r+7t+1+7t71+ir g+(t) =0. (7.125)

For big enough r there is a ¢; > 0 such that ||Tj —ix;|| > cj|xj|, which together with
the Weitzenbock formula implies that for ||x|| >,

(Dxb, Zi) = (12 = [icly ) [W]? = Cr?[[w]?, (7.126)

for C > 0 and r big enough, where we have used that n is independent of x € R3. This
implies

(DX, TH) = (Dx — AN, (D — AN) = C*2|[]|?, (7.127)
if |x|| = r for r big enough. Hence, ker 20 = 0 for |x| big enough. Let Gy be the
Greens Operator of 22, i.e.

@SGO =1 —mp, 60@,? =1 (7.128)
with 7ty the orthogonal projection onto ker((22)*). Hence we have
IWI2 — Imowl? > Cr2[[Gowll?, (7.120)
which implies that ||Gol| € O(r~"), and then ||G}|| € O(r~"). If ¥ € ker Z*, then
b — b = G3Z5% = G3(Z* — A*)p = —G3A™p, (7.130)

so that [[Y —me| < ngl)H. This shows that the elements in kernel of Z* can be
approximated to order r—' by elements in the kernel of Z;.

[Hit83] now goes on to shows that the solutions of 7, which can be expressed
by g+, satisfy the boundary conditions which implies the satisfaction of the boundary
conditions of the elements in the kernel of 2*. Notice that our %, is identical to
the one in [Hit83]. The only part where the equations come into play is shortly after
equation [Hit83, Equation (2.13)], where ||[F*|| € O(r~2) needs to imply ||dad| € O(r72),
which is true because of the assumption | € O(r=2) on the transformed error term. M

Corollary 7.30. If ||cl, || < [|Go| ™" and 27 2, is a positive operator, then the extended Nahm
transform from Nahm to Bogomolny is well defined.

Proof. This follows by Theorem and Corollary [ ]

19, is called A(x) in Hitchin’s notation, 22 is denoted by Ag(x) and defined shortly after [Hit83)
Theorem 2.8]. The relation between our definitions is i%x = A(x). Note also that Hitchin defines A(x) for
x € IR%, but restricts it to x € R? after [Hit83, Equation (2.10)]. Finally note that Hitchin uses the interval
I=(0,2).
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7.4.2 Bogomolny to Nahm

We follow closely the description in Nakajima’s paper [Nakg1]. Similarly to this work
C is used as a generic constant.

Theorem 7.31. Let (A, &) be an approximate solution to the Nahm equations of charge k € IN
and let the transformed error term satisfy #i € O(y) for t > =1 and § € O(Ly) for t — 1.
Then the transformed datum satisfies the boundary conditions NCy.

Proof. Define
@A,t =9 + (d) — it): F(S@E) — F(S@E) (7.131)

and use the index theorem of Callias (see Theorem to see that this operator has
index k. The Weitzenbock formula shows that

Dh D = ViV —1s®(d—itl)? —cly,, (7.132)

which is a positive operator if ||cl, || is small enough in the operator norm from W'+ to
2. Hence ker;» D . is k-dimensional. This defines a subbundle of the trivial vector
bundle

Vc3(R3,S®E) -1 (7.133)

by letting Vi = ker;. 7% ;. Nakajima shows [Nak91] that the boundary conditions
assure that we can find an assymptotic gauge that the bundle E decomposes into
L@®L* the sum of two line bundles (the eigenspaces of ¢ for eigenvalues i and —i)
with L = O(k) (k € N from the boundary conditions). He goes on showing, that in this

gauge

_ (A% O -2
A= ( 0 A, ) +0(77), (7.134)
and using this for the operator implies that
B; 0 _
DAn = ( 0 B >+O(r %), (7.135)
2
where
(0 +t—1+K52) 197
By = 19+ 2 i (0 A% k—2 (7136)
TIAL (0 —t+1-55%)
I RIGER TR 19Dx
= (T ) e
(7.138)

see page 4 of [Nakg1]. We take 73 , = diag(B, B,) as the approximating operator, but
we need to explain the notation first. Notice that the Spin bundle of R3\ {0} = R* x 52
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is isomorphic to the Spin bundle of 52, which decomposes into ST and S~ and @;\iw
are the Dirac operators of G2 twisted by Ax. Ay is the connection induced by A on
the line bundle L. The matrix acts on the decomposition

SE=L*®STOL*®S ®LST@L®S™ (7-139)
=0(-k—1)@DO0(—k+1)DO(k—1)®O(k+1). (7.140)

This time we won't be able to give a explicit basis in ker(Z3 )*, but we can give a
approximation in the following sense. Focusing on the boundary conditions att — —1,
we define a k-dimensional space of functions close to ker(Z3 ,)* by

o o

00,0) = x(ne T (7140

0

—

for f € HO(CPP',O(k — 1)) (recall that O(k — 1) has a k-dimensional space of holomor-
phic sections), and x(r) a cut-off function which is 0 on [0,R] and 1 on [R + 1,0) for
some R > 0. Here r is the coordinate on R* and 6 on S2. Direct calculations show that

k=2
2

|@;“\,t1b]5®E < Ce MHDR(R 4+ 17) (7.142)

for C independent of R and t. In this sense it is an approximate solution to ker((Z3 ;)*)
for large R. A solution ¢ of the equation

D5 Dane =1s® (v*AvA —(p—it)? - cln) ¢ = D5 b (7.143)

then gives an element in ker 73 | as Y — Za,t@. We will show, that the boundary
behavior of this element is dominated by 1, but first we argue that such a ¢ exists
(uniquely). The equation

1s ® (VXVA — (p—it)* — Cln) ©—Zxb=0 (7.144)

is the Euler Lagrange equation of the functional

1 1 .
S(@) = 5IVaelts + 51(¢ —i)elf: — (@, cln @) 12 — (@, ZR 1) 2 - (7.145)

This is a strictly convex function, which is also differentiable and coercive (see [JT80,
Proposition IV.4.1]). By methods of variational calculus (see e.g. [JT80, Proposition
VI.8.5]), it has a unique minimum S(¢) < S(0) = 0. Therefore

1Zn0llF2 = IVa@lf2 + (& — i)ellf2 =2 (0, cly @12 <2(@, ZX ¥) 2. (7.146)
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For t sufficiently close to —1, we can estimate all these terms from below against the
L2 norm of o, i.e.

10+ Vel < C(IVaeliz + (¢ —ielf: = 2(e,cly @) = CllZaellfz,  (7.147)

for details on how to estimate the first two terms see [Nakg1, Equations (2.4) and
(2.5)]. But then we can restrict t to a smaller neighborhood of —1, so that it is satisfied
also with our error term (cl,, @, @) < |cly|l[@]|? (independent of ¢). Once we have
established this equations, we can apply this to equation (7.146), to get

- Cup 1

1Za 0l Aol 125 it < 702 7ClIZa 0l 0T (7.148)

or |[Zao|2 < 1% +t Cl|Zx (Wl 2. From a direct calculation, we see that

124 llz = €O+ 02l 2, (7.149)

which shows that || Za 192 < C(1 + t)[|W];2, so the boundary behavior close to
t — —1 is dominated by . It remains to show, that the action of T; on { has the
correct boundary conditions. This is shown in [Nakg1, Lemma 2.6] where Nakajima
shows that the action of T; on f € HO(CIP',O(k — 1)) is a multiple of a k-dimensional
irreducible su(2) representation. The multiplicity is then fixed by satisfaction of the
Nahm equations, where we need that the transformed error fj is in O(¢%5) for t — 1

and in O({7) for t > —1, because then for T; = {2 4+ b; with b; € €* (I, g) G€{1,2,3)
1 e 1 1 e 1
+ Z El]k (t p1+ Z Pj, pk ti (7150)
+ 1
]k:] ]k=1
for t - —1 and similarly for t — 1. [ |

Corollary 7.32. If ||cl, || < [|[Gol|™" and Da DA is a positive operator, then the extended

Nahm transform form Bogomolny to Nahm is well defined.
Proof. This follows by Theorem and Corollary [ ]

7.5 Behavior with Respect to Conformal Maps

Recall, that the anti self-duality equations are conformally invariant.

Proposition 7.33. The ASD equations are conformally invariant. Let

p—" P
l |
M, g) —— (Mg
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with h a G-equivariant map and f an orientation preserving conformal map. Then A € C(P’)q
implies h*A € C(P)asq-

Proof. See e.g. [Bauog, Satz 7.7]. |

Remark 7.34. Note that if f*g’ = u?g for a function u, then

*g|Ax = unk *u2g | Ak,

so in particular for n = 4, k = 2 we have *4[,2 = *,24/12. By Liouville’s theorem the
conformal maps on R* can be decomposed into

e homothetic transformations
e isometries
e special transformations (reflections and an inversion on a sphere)

It seems natural to expect that Bogomolny monopoles and the Nahm equations are
well behaved under these transformations respecting the decomposition of the dimen-
sional reduction. We will show that this is true and also that the Nahm transform is
equivariant with respect to those. It turns out that we already discussed the isome-
tries, which are a combination of the IR? and SO(3) actions on the solutions of Nahm
and Bogomolny. Homothetic transformations are given by

fo: R* 5 R, x — ex, (7.151)

and the special transformations do not respect the decomposition of the dimensional
reductions.

Proposition 7.35. When we apply the homothety f to the Nahm equations, the interval gets
scaled to 1. We have MNahm ~ J(Nahm

Proof. Define

e 1 (1t
e - (4). (7.152)
Then we calculate
T+ 18T+ 5 Zsuk TETE] | (et) = (7.153)
:
= T+ [To, T Zsuk T, T] | (t)=0. (7.154)

This gives a map from solutions to the Nahm equations on I to solutions on I¢ =
el = (—¢,¢).
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Mapping the gauge transformations, via

1
geenm — Ghetm g (t) = g(b), (7.155)
shows that
1 t _ 1. _ 13

geTg (1) = gs(t)ETO(E)ge I(t) _ggs(t)gs ](t) = (gTo)" (t) (7.156)

and similarly
geT¢ = (gTi)" (7.157)
This shoes that the map projects down onto a map of the quotients and we have shown
the isomorphism. (The inverse is Ti(x) = €T (ex))). [ |

Proposition 7.36. When we apply the homothety f to the Bogomolny equations, R3 gets
stretched by e. We have ME°9 = MPBo9

Proof. The argument is similar with

Aizf’gAx:A%Xodf% :%A%x. (7.158)
and

0°(x) = (10)(x) = o 1x) (7159)

Then this implies
f*%‘FQ = :—ZF’?X (7.160)
fdaex = “dao, (7161

and in particular
A= ;7F1;X = ;—2 *g da@i, = %gdwi, (7.162)

so it maps solutions to solutions.
The boundary conditions are satisfied trivially, since

lim [[¢°]| = lim [[| = 1. (7.163)
With gauging
290, .=l o)
we have
geA® = (gA)%,  ge0 = (90)° (7.165)

The boundary condition remains satisfied because

lim ge(x,y,2) = lim g(x,y,2) = 1. (7.166)
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Proposition 7.37. The Nahm transform maps

Nahm — M%og' (7.167)
i.e. it commutes with stretching.
Proof. Recall the operator
3
Dy =12 ®@ Vi + (Z 0} ®Tj — ix;j0; ®Ilv) (7.168)
j=1
WAL, C2QV) — L2(,C?®V) (7.169)

where V is the U(k) vector bundle of the Nahm equations. Also recall the definition
of the 2-dimensional sub bundle as

Ex =kerZ; c L*(LC*Q®V) . (7.170)
We see that
Dy = e9Dx. (7.171)
This implies that
ker((Z5)*) = ker 2% (7.172)
ie.
Ef =fiE. (7.173)
Further
Px =P (7.174)
which implies that
. 1.1 1
(dj)x = dac = px Ed = Epgd = E(dA)§~ (7.175)
and similarly
. t X
b(x) =pxic = o(2), (7.176)
where we used the identification
1
L2(15,V) = L*(LV), (7.177)

that swallows a factor 1.
For the reverse notice that the inverse of an equivariant map is automatically equiv-
ariant. ]

Proposition 7.38. The Nahm transform is equivariant with respect to the R3-actions.
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Proof. Again looking at the operator
3
D =12 @V + Z%’@Tj —ixjo5 Ly |, (7.178)
j=1

we notice that if we act by y € R3 on T; and use these matrices to define the operator,
then

3
DY =1c®@Vi+ | ) 05QT —i(xj — ;)05 @y | = Dxy. (7.179)
j=1

This shows that the Bogomolny data is simply shifted by y, which agrees with the
action. For the reverse notice that the inverse of an equivariant map is automatically
equivariant. |

Proposition 7.39. The Nahm transform is equivariant with respect to the SO(3)-actions
Proof. Again looking at the operator
3
Dy =12 @V + Z 0;®T; —ixjo; @1y |, (7.180)
j=1
it now is convenient to denote T = iT; +jT> + kT3 and X = ix; + jx2 + kx3, so that
Dx =12 @V —T+R®ily. (7.181)

We notice that if we act by q € Sp(1) on Tj and use these to define the operator (without
the regauging that is necessary only for the boundary conditions), we see that

23 =1c®V — qTq +X®ily = qPgxqa.- (7.182)

For a matrix B € 7t(q) € SO(3) this reads
Dy = BDg-1,. (7.183)
Now the argument is the same as in Proposition[7.37](compare to equation (7.171)). H

Proposition 7.40. The extended Nahm Transform maps gauge equivalence classes to gauge
equivalence classes

Proof. This is true in much greater generality, see e.g. [Jaro4, Lemma 1] [

2Technically speaking, there is a canonical isomorphism between the transformed bundles of two
gauge equivalent connections induced by the gauge transformation of the original connections — and the
connections agree under this isomorphism. Since all bundles are trivializable, these isomorphisms are
indistinguishable from gauge transformation of the trivial bundle. See also the details in [Jaro4].
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7.6 Summary

Let us summarize the results of this chapter. We noticed that we can extend the Nahm
transform to an open neighborhood U = Fy of un ' (0) < Fn, and similarly to an open
neighborhood of pg~'(0) = Fg. This is true because the conditions in Corollary
and Corollary are open and satisfied on p='(0). We have also shown that the
extended Nahm transform is SO(3) x R3-equivariant, commutes with homotheties
and maps gauge equivalence classes to gauge equivalence classes.

An interesting question is if it can be extended to a even larger class of data, than
what Corollary and Corollary suggest. This seems possible for two reasons.
First, the derived properties in these corollaries are actually stronger than needed
for the Nahm transform, and secondly we only used the property to have a handy
expression of the Greens operator. It seems unlikely that it can be extended to all
of Fg/Fn though, as that would change the topology of the bundles involved in the
transformation (compare to Remark [8.72).
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Chapter 8

Identification of Gauge Theories

In this chapter we will use the collected knowledge to formulate a relation between cer-
tain gauge theories. We will start by describing a construction that allows to identify
gauge theories of dimensions less than four with gauges theories between dimensional
four and eight. We shall then apply this construction to the examples of gauge theo-
ries we have discussed; relating solutions of the Nahm equations to solutions of the
Haydys-Witten equations and solutions of the Bogomolny equations to G,-Monopoles.
Finally we will use the results of Chapter [7]to lift the relation of the Nahm equations
to the Bogomolny equations to a relation of the Haydys-Witten equations to the G,-
Monopole equations.

8.1 Prelude

Lemma 8.1. Let M and N be two manifolds and V a finite dimensional vector space. Then
€* (N, V) has a natural vector space structure. Using this structure, the exponential law
holds, i.e.

€% (M,E€P(N,V)) =€ (M xN,V). (8.1)

Proof. See [KM9g7, Lemma 27.17]. [ |
Lemma 8.2. Let E — M be a smooth vector bundle on a manifold M, and let
s: R* — T'(E), (8.2)

be a family of sections. Then s is smooth if and only if §: R* x M — E is smooth with
8(x, m) = s(x)(m).

Proof. This is a slight generalization of [KMg7, Lemma 30.8] that follows from [KMg7,
Corollary 4.16]. [ |

Corollary 8.3. Let E — M be a vector bundle and pri, E — R* x M its pull back. Then
¢* (R*,T(M,E)) = T(R* x M, pr* E). (8.3)
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Proof. All the hard analytic work is already done, we need to just check the algebra.
A section in the pullback of E to R* x M is given by a smooth map R¥ x M — E
that makes a commutative diagram with n: E — M and pr,,: R* x M — M. But if
s € €° (R*,T(M,E)), then o §(x,p) = ni(s(x)(p)) = p = pry(x,p) for every (x,p) €
R¥ x M and similarly the other way around. n

Notation 8.4. We will call maps that intertwine G-actions G-equivariant, no matter if
it is between left actions, right actions or mixed actions.

Proposition 8.5. Let Q — X be a principal H bundle and p: H — GI(V) a representation of
H. Let further P be a reduction of Q to a principal G-bundle, with respect to \: G — H and
P —Q.

Then the vector bundles

E:QXHV and F:PXGV, (84)

are canonically isomorphic, where the second bundle uses the induced representation G —
GI(V) given by po A.
In particular the forms with values in these bundles can be canonically identified.

QX(X,E) = Q%(X,F), Vk € Np. (8.5)

Proof. Define the vector bundle map

F—E, [p,v] = [L(p),v] (8.6)

and notice that it is fiberwise an isomorphism, hence an isomorphism of vector bun-
dles. The other claims follow immediately.
|

Remark 8.6. While the last proposition was easy to prove, it is not very descriptive
how the identification works. The key to the construction are equivariant extensions.
The reverse map E — F is constructed by picking a representative of [q,v], such that
q € (P). Let us discuss the forms for the example with k = 0.

Then sections of the bundle associated to E are given by maps

wQ-V, u is H-equivariant. (8.7)

Similarly sections of F are G-equivariant maps P — V.

If u: Q — Vis H-equivariant, then u’: P - Q — V is G-equivariant. If v: P — Vis
G-equivariant, we may extend v H-equivariantly to Q. For q € Q, pick pe Pand he H
with ph = q and define v/(q) = h=Tv(p).

e V' is well defined. If ¢ = p1h; = p2h,, then p; = pzhzhfl and hzhf] € G, hence
vi(q) = Tav(pr) = uv(p2hohy ) = hyThahe " Tv(pz) = vh(q).  (8:8)
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e V' is H-equivariant. Indeed, if g € Q, h,h/ € H and p € P with q = ph then

V(gh') =v/(phi') = W'~ ThV(p) = W V(q). (8.9)

Lemma 8.7. Let (M, g) be an n-dimensional Riemannian manifold and ¢ € R>°. Then g and
e2g are two metrics on M, and the induced Hodge stars are related by

*glae = €M x 2y Ak (8.10)
Proof. Use the formula
w A+ = (w,n) vol w,n e QX(M), (8.11)

which uniquely determines the Hodge Star operator. Also note that

volg = e vol,ag, (8.12)

and restricted to k-forms on M,
(= =)erg = €= =g (8.13)
[ |

Lemma 8.8. Let X,Y be two manifolds and P — X and Q — Y two principal G-bundles.
Then there is a bijection between G-equivariant maps u: P — Q and maps t: X — Y such that
u*Q = P.

Proof. First a G-equivariant map P — Q is equivalent to the following commuting
square.

L}

X T

<+— O

u
By general categorial considerations, such a square is equivalent to a morphism
P — 1*Q of G-principal bundles over X. Finally every morphism of principal bundles
is an isomorphism. [ |

Remark 8.9. The last Lemma in particular implies that if we have a G-equivariant map
P — Q, then P is the pull back of Q by a map 1. Now if 1t is homotopic to v, then
the pulled back bundles are isomorphic, the inverse is however only true if Q is con-
tractible. So we can have different homotopy classes of maps : X — Y.

Notation 8.10. Just like chapter We will use the notation where an indexed Lie Alge-
bra means vanishing on the corresponding fundamental vector fields. E.g. w € Q(M),
(with G —~ M) satisfies 1z = 0.
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8.2 General Construction

8.2.1 Reduction of Gauge Theories on Vector Bundles

Let E — X be a vector bundle and 7p: P — E a principal G-bundle on E. Denote by Q
a principal H-bundle to which E is associated via a representation p: H — End(V).
Since E deformation retracts to X, P comes from a bundle on X, P = n{ Px, where
Px — Xis a principal G-bundle.
On the other hand there is a one-to-one correspondence between equivariant bun-
dles on the total space Q x V and regular bundles on the base space so that P — E
corresponds to a H-equivariant bundle P — Q x V.

Lemma 8.11. The bundle P comes from a H-equivariant bundle on Q.

Proof. Notice that we have the commutative box, where all principal bundles on top
and are pull backs of Px.

\ O\
X 4= >
< (0)
/

b b
<_H
[e >l > s
Ty
Q Px E

N
/
> ——
&

[ |
Corollary 8.12. As H-equivariant principal G-bundles P ~ Px x V.
Proof. By definition we have
P =mhPx = {(p,(a) | 75, (p) = mo(a,v) = af, (8.14)
and we have maps
P—Px xV, (p, (q/v)) = (p,\)), (815)
and
Pxx V=P, (p,v) = (p, (715, (p),V))- (8.16)

These are obviously inverse diffeomorphisms and if we equip Px x V with the bundle
structure induced by

PxxV—->QxV,  (pv)—m (p), (8.17)
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and
(p,v).g=(pgv)  VY(p,v)ePxxV,VgeG, (8.18)

these maps become isomorphisms of principal G-bundles. Finally we see that the
identifying maps are H-equivariant for the action

(p,v).h = (ph,hTw), (8.19)
because s, and mq is H-equivariant. |

Proposition 8.13. In the notation above,

F(E,Ad(P)) = ¢* (V,T(Q,Ad(Px)))". (8.20)

Proof.
M(E,Ad(P)) = € (P,g)® = €* (P,g) """ (8.21)
~ % (Px x V,0) M 2 e (v, " (ﬁx,g)G)H. (8.22)

In the last step, the H-invariancy becomes an H-equivariancy in the following sense.
For every s € €* (V,T(Q, Ad(lsx)))H and v € V,h € H we have

s(hv) = s(v) o Ry 1. (8.23)
[ |
Corollary 8.14. If E is the trivial vector bundle, then
r'(E,Ad(P)) =~ ¢% (V,I'(X,Ad(Px))). (8.24)
Proof. This follows immediately from H = 1 and Q = X, so that also Px = Px. [ |

Proposition 8.15. In the same setting of the last proposition, let W be some G-space (G-
representation, or an arbitrary space with G-action and k = 0 in the following). Then

K . A H
Qk(P,W)° =~ [@ ¢ (v, ARty ®Q‘(PX,W)G) ] (8.25)
i=0 b

Proof. We calculate

QF(P,W)° = kP, wW), M = QF(Px x v, W) (8.26)

(8.27)
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We continute the calculation

GxH

QX(P,W)¢ =T (Px x V,AM(TVPx®TV V) ®@W), (8.28)
~ {@ P (V, T(PX, ATV Px @ ARV Y) )H] (8.29)
b
) o H
~ [@ c® (v,/\k yv ®Q‘(PX,W)G> ] . (8.30)
i=0 b
The action of H on V is identical to the induced action of H on T,,V under the (canonical)
identification T,V =~ V. [ |
Corollary 8.16. o If E is trivial, then the last proposition becomes
G s ; i G
o*P,wW)¢ = Pe” (v, ARV ® Qt(Py, W) ) (8.31)
i=0

o If wis a form on E with values in the associated bundle F = P x g W (for a vector G-space
W), then an inspection shows that the g-horizontality commutes with the construction.
We get

QX(E,F) l@c@o (V,A*"'vv @ 04(Q,F)) 1 , (8.32)
b

i=0

where F is the bundle associated to Px and W.

e If wis a form on E horizontal w.r.t. E — X, then w lives in the last summand of the last
proposition. We get

QF(E, ), = €% (v, Q*(Q, ﬁ)b)H (8.33)

Remark 8.17. Let us look at the last proposition for the special case of Q' (P, g)G for a
moment. The proposition tells us that

Q'(P,g)° = [coo (v,vv ® ¢ (ﬁx,g)G)H @er (v,Ql (ﬁx,g)G>H] . (8.34)

To realize this splitting, we start with a G-equivariant one form A € Q'(P, g) S and pull
it back to P. Since P >~ Px x V, we can decompose the pull back by restricting to TPx
and TV. Since V acts on P by the above decomposition, the second restriction may be
identified with wyn§A, where 7: P — P. This corresponds to the restriction of A to
the vertical subbundle.

Finally we use [8.1]to identify the two components. We may write symbolically

A~ (c,a) = (WrEA, mEA|rp ). (8:35)
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Proposition 8.18. In the notation of the Remark above, if A € C(P) is a connection on P, then
a is a family of connections on Px, i.e.

aee” (V,e(Px) . (8.36)

Proof. We have already established that a takes values in the G-equivariant 1-forms on
Px with values in g. What is left to show is that

ga(v) =id, YveV. (8.37)

For this, note that if X and Y are two G-spaces, f: X — Y is a G-map, W is some
G-representation and w € Q' (Y, W)G, then

(g(Fw), ) (8) = () (KS) = i (DIxKS) = weis) (Kiy)) = (F*(qw)) (E),  (8:38)

i.e. as maps X — Hom (g, w)€, tg(f*w) agrees with f*(i;w). Now notice that P — P
(as a pull back map) is G-equivariant, as is the identification P ~ Px x V. Finally,
the action of G on Px x V is only on the first component, so the restriction to TPx is
G-equivariant. This shows, that

tga(v) = gA = idg (8.39)

at every p € Px. [ ]

8.2.2 Compensation through bigger Structure Groups

The last section allowed us to identify the connection on P with smooth maps into
various section spaces of bundles on Q. We can get rid of the smooth maps part if we
enlarge the structure groups of the involved bundles.

Definition 8.19. Note that Px =~ Q xx Px as principal G bundles. Now denote by
G = €% (V,G). Then we can interpret G as the subgroup of constant maps in G, and
define P’ to be the fiber extension of Px, P’ = Px x g §. Similarly we extend Py to P’ by
the map

idy xconstg: Hx G —> HxG. (8.40)

It is easy to see that
P~ QxxP. (8.41)

Remark 8.20. Note that H has a nontrivial action on § by composition. This implies that
Q xx P’ has the structure group H x §. Of course the subgroup G < § is a pointwise
stabilizer of the H action.

Proposition 8.21. For any G-space W, we have

gxH

e (v,e” (13><,w)G)H ~ ¢® (P, e% (V,W)) (8.42)
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Proof. Starting at the right side, we can apply Proposition [8.5| to see that

GxH GxH

e® (P,e (V,W))”"" = ¢® (Py, e® (v, W), (8-43)

where the action of G < €% (V, G) is via the inclusion.
Using Lemma 8.1/ twice, we see that the right hand side of the last equation is given

. H
by ¢* (V, ¢® (Px, 9) G) , showing the equality. [ |

Proposition 8.22. We may generalize the last proposition to the statement

. A H R .

¢ (v, ARty ®Q1(PX,W)G) ~ QY P, ARTIVY @ €% (V, W))SH (8.44)

Proof. The proof is similar to the last proposition, but we use Lemma instead of

Lemma [ |

Corollary 8.23.
A H A

[ (V, (e (Px,g)G> ~ ¢% (P, Lie(S))SXH. (8.45)

Proof. Proposition for W = g. [ ]
Proposition 8.24.

e (v,e(Px)) " = e(P)" (8.46)

Remark 8.25. It may be tempting to try to prove this with a small extension of Propo-
sition to forms that are not horizontal. Note however that this is impossible, since
it is unclear what the forms values on fundamental vector fields of the bigger group
(the vertical vector fields of the extension) are supposed to be.

However, in this case we can overcome this gap, by knowing what the values of the
extended form on vertical vector fields has to be. What is left, is a choice of splitting
into vertical and horizontal vector fields. That can be accomplished by either using the
connections themselves or by choosing any fixed connection and showing invariancy
under this choice. We follow the first path.

Proof. Let us begin with a smooth map A € €% (V, €(Px)) " Using the fact that we can
extend any connection from Py to P’ (this extension is also H-equivariant), we have a
map

A

C(Px) — c(P"), (8.47)

inducing an element

Aee® (v,eP)". (8.48)
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Via Lemma we identify this with an element in QF (15’ ,EP (V x V,g))9*H as follows.
First note that Lie(§) = €% (V, g) and

e (V,Q" (P, Lie(9)))"" = €® (V, & (rt, Frai(P), U®e® (V, ) "5 (8.49)
~ € (5, Frai(P), U®E™ (V x V, ) S5 (8.50)
~ Q'(P,e* (V xV,g))"H, (8.51)

where Gl ~ U is the representation associated to 75, TP’ and n*];,FrGI(P’ ) the Gl-bundle
of frames (compare to chapter 3). The diagonal map A: V — V x V yields an element

Ale QNP e* (V,g)9 M, (8.52)

Let us show that A’ € €(P)". We only need to show that A has the correct values
on fundamental vector fields of G. Let & € Lie(G). Then for allve V,

A'(E)(v) = AW)(KE)(v) = E(v), (8.53)

because A(v) is a connection on P/, hence A(v)(K%) = & for any v.
For the other way around, start with a connection A’ € €(P)™ and identify it with

amap A e ¢ (V,Q (P, g))gNH. Then using the reduction map i: Px — P/, which is H-
and equivariant with respect to G — G, g — ¢4, we can pull back this to

GxH

Aee® (V,Q'(Px,g)) (8.54)

We claim that this takes values in the space of connections. Indeed, if & € g, then
A()(Kg) = A(v)(Di(Kg)) = A(v)(Kg") = ce(v) = &, (8.55)

where we have used that the G-equivariant map i maps fundamental vector fields to
fundamental vectorfields, i.e.

Di(Kg) =Kg*,  cg =Du(&). (8.56)

Finally let us remark how to see that these maps are inverse of each other. Recall
that if we extend a connection A(v) to A(v), then the latter is characterized by

A(v) =i*A(v), YveV. (8.57)
Hence if we start with A, map it to A’ and then back to

B(v) = i*A'(v) = i*A(v))(v) = A(v). (8.58)
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Remark 8.26. Notice that we have used the inclusion G — €% (V, G) by constant maps
here, but this can be generalized somewhat. The only problematic step is the reverse
step of Proposition Here we can patch the theorem by requiring the inclusion
G — € (V,G) be as constant maps on a large open subset U < V; then the resulting
one forms in €% (V, Q! (ISX)G)H will only be a connection for v € U.

We are interested in another class of inclusions here. Take some function f € €% (V)
and integrate the Lie Algebra map

g3&m— Efe € (V,g) = Lie(9), (8.59)

to a map of Lie groups (if 711 (G) # 0, this is not unique). This gives a homomorphism
G — G. If we assume that f # 0 on all of V and that f is H-invariant (so that G = Gis a
pointwise H-stable) then the induced form in Propositionwill not be a connection,
but +A will be (compare to equation (8.55))

AW)(Kg) = AW)(Di(Kg)) = AWv)(Kg") = (f&)(v) = f(v)E. (8.60)

This way the theorem will remain true with this modification.

Remark 8.27. Note that we can use Proposition and to transform the gauge
group G(P) = €* (P,G)€ to

e (p,G)7", (8.61)
which is the gauge group of P’ restricted to gauges that lift the identity gauge on Q.
We trace the action on the data to see how it acts on the other side in the following
proposition.

Proposition 8.28. Let A € C(P) be a connection on P, ¢ € T(Ad(P)) be a section of the
adjoint bundle and g € G(P) a gauge. Let (a,c) € C(P)" x €= (P/, vV ®Lie(9))9NH and
b e e” (P, Lie(S))SXH be the transformed data. Then the transformation of A.g and ¢.g is
given by

(Adgfl a+ g*ug,Adgq REC) (8.62)
and

Adgr b, (8.63)

where § is the transformed gauge (see the last remark).

Proof. The proof consists mainly of going through the steps and seeing how the action
of the gauge group is modified. The interesting step is for the connection A € C(P),
where g € §(P) acts by

A.g= Adg—1 A+ g*ug. (864)

When we split the pull back of A to P into the components (c,a) as in (8:35), we see
that
a.g=Adg-1 a+g*uc, c.g=Adgc, (8.65)
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since tyg*ug = 0 (on the identification with Px x V). This remains true on P, just the
equations are true for every v € V. In the compensation step we enlarge the group of
gauges, but using Proposition [8.5| (for the slight generalization from vector bundles to
fiber bundles), we see that the gauge group of the extended bundle is isomorphic to
the original gauge group. n

8.3 Examples

We will now apply the theory to two examples, starting with the Haydys-Witten equa-
tions. The general idea to apply this construction is a 3-step procedure. The first step
is to assume that the frame bundle of the underlying 5-dimensional manifold reduces
algebraically to SO(4) and split the equations via the representation theory. The next
step is to assume that the SO(4)-structure comes from an underlying 4-dimensional
manifold; i.e. we are on a vector bundle of a 4-manifold. This is used to describe the
data of the equations as living on the underlying manifold. Finally we use section|[8.2.2]
to enlarge the gauge group and describe the equations as generalized Seiberg-Witten
equations with infinite dimensional targets.

8.3.1 Haydys-Witten Instantons

Assume M = R x X, X Riemannian, oriented 4-manifold, P SMa principal G-bundle,

and Y = 0, the canonical vector field along R. Assume further that (A,B) € C(P) x
Q? (Ad(P)) is a solution to the Haydys-Witten equations

wFA =8B =0 e Q'(Ad(P)), (8.66)

F} — VB —0(B,B) =0 € Q2 (Ad(P)). (8.67)

The first step is not required for Haydys-Witten instantons, since they are already

defined on a manifold with SO(4)-structure. For the second step, let Px — X denote

the principal G-bundle which induces P as in section
Then using Proposition and we can associate A with a pair

(a,¢) € € (R, C(Px)) x €* (IR, ¢ (Px,g)G) (8.68)

and similarly B € Q% (Ad(P)) with an element

bee” (R,Q3(X,Ad(Px)). (8.69)

Lemma 8.29. The Haydys-Witten equations in differential equations form (compare Remark][s.6)
are given by

a=(d$)"b+dac, e ¢ (R, Q'(X, Ad(Px))) (8.70)

b =TF%—o(b,b) —[c,b], e ¢ (R, Q% (Ad(Px))) . (8.71)
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. SO(3)
X f+ (X) x ]R S0(3) P
G > so@3) = JG
x A
P, (X) Px R x X

Figure 8.1: Involved principal bundles for Haydys-Witten Instantons

Proof. See [Hay15b]. [

In the last step we may compensate by the bigger structure group of P’. Note that
we make use of the fact that the H action on § is trivial in this example, so that the
structure group is simply given by § x H. Using Proposition and we may
identify a with an element in C(P’), b with an element in Q2% (Ad(P)) and ¢ with an
element in I'(X, Ad(P’)). The following relates the 5d-Haydys Witten equations on M
with solutions of the generalized Seiberg-Witten equations.

We worked on M = R x X for simplicity so far, but in order to get the Nahm moduli
space as a target space we have to modify this to M = I x X. Of course the following
theorem remains true for R x X if we modify the space W5 to be ¢ (R, g® H).

Theorem 8.30. A pair
(A,B) € C(P) x Q2 (Ad(P)) (8.72)
satisfies the Haydys-Witten equations

WwFA — 8B =0 e Q'(Ad(P)), (8.73)
FA-V{B—0o(B,B)=0  Q2(Ad(P)). (8.74)

if and only if the associated triple (associated as explained in equations (8.68) and (8.69))

aeC(P) (8.75)
b e 0% (Ad(P)) (8.76)
c e (X, Ad(P")) (8.77)

satisfy the generalized Seiberg-Witten equations with target Wy, i.e.

Du=0, unou = Fg, (8.78)
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SO(3)x§

where w =c+b e € (P, xx P/,WyN) and

1y + [uo,m] + [uz,ug]
unow= | Uy + [ug,uz] + [uz, uq] (8.79)
U3z + [up, usz] + [ug, uz]

and P = Q (compare to diagram in Lemma is the principal SO(3)-bundle associated to
AZX.

Proof. First we will show that pou = F$ if and only if the second equation of the
Haydys-Witten equations in differential equation form holds. For that recall that our
identification is

Uy =c, b = (uy,uz,u3). (8.80)

Using the identification A2 ~ ImIH, we see that in some frame f of P, (induced by
dX of FTSO ( )) i.e.

fl = a2+ a3t 2= dx" - ax? 2 = + a3, (8.81)
we have ,
b=> wf, (8.82)
i=1
and we calculate
o(b,b) = ([uz,uz], [uz, wi], [wr, uz]), (8.83)
and
[c,b] = ([wo, wi], [wo, uz], [wo, uz]). (8.84)

so that uy ou = b + o(b, b) + [c, b]. This shows the equivalence of the second equations.
For the first equations, we will again use local coordinates. In such, we have

4 3
a= Z aidxt, b= Z bifl; (8.85)
i=1 i=1
and so
3 _ 3 _
dqc = dc+[a,c] = Z (Gic + [ai, c])dx" = ZV{lcdx‘ (8.86)
i= i=1
4 .
a=> apdxt (8.87)
i=1

About (d)*. Note that d¢ = 7y odq: Q' — Q2, hence

(d)* = (myoda)* = dfom* =dfomy (8.88)
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and
df = —xdq *.

So we may calculate,
—dib =*dq *b =*de(dt A b)
= *(dt A [V?m dx"3 4 V9bydx2* + Vb dx3'2 + Vb, dx‘”zD
+ *(dt A [—v;ﬂbzdx”“ + Vb dx213 — Vb dx3 + vgbzdx‘”ﬂ)
+ *(dt A [V$b3dx‘23 +V9b3dx2™ + Vibsd3' + vgbgdx“zﬂ)
=% [(vgm — V5by 4+ V§b3)dx'?3 + (V§by + V§by + Vibs)dx?3*
+ (V91 + Vaby — VIb3)dx3* + (Vib; — Vb, — vgbs)dx‘”z]
= —(V$by + Vby + Vib3)dx! + (V§by + V§by — VEb3z)dx?
—(V§by — V&by — VSb3)dx3 + (V§by — VSbs + V§bsz)dx?*
So we see that

V?uo + Vglu + Vguz + fou3
Vg’uo — V?Uq — Vf‘luz + Vgug,
VSuo + Viu —Viuz — Vius
Viuo —Viu + Viuy — Viug

(d%)*b + dac =

Using the formulas from Lemma we know that

a;

2

Dfu = dju+ Ky = dju+ [aj,u] — 8 = Viu—
0

o O O
~

hence

(d$)*b+dac—a=Dfu—IDSu—JDgu—KD%u,

(8.89)

(8.90)
(8.91)
(8.92)
(8.93)
(8.94)

(8.95)

(8-96)
(8.97)

(8.98)

(8.99)

(8.100)

for a left — left structure, where we multiplied the last three equations in (8.98) with

1

Theorem 8.31. If we use the octonionic structure given by —¢’ (compare Definition [2.24)), we

get the same theorem but with Wy, as target instead of Wy .

Proof. ¢’ — —¢' can be realized by inverting the coordinates e', e? and e of the G,-
structure. This changes the orientation of A%, which implies that o(b,b) gets mul-
tiplied by —1. Comparing with the last proof, we see that this gives the equations

1See also the footnote of Theoremﬁ
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F$ = pi, ou. The change of orientation also removes the ”—" from equation (8.89), so
that the second equation is equivalent to

V?uo — Vglu — Vguz — fou3
VSuo + Viu + Viuz — VSus
Vguo — folu + V?uz + V‘Zlu3
Viuo +Viur — Viuy + Viuz

(d3)*b+dac = (8.101)

which are the correct signs for the left — right structure of generalized Seiberg-Witten
with target WY, (without multiplying the equations by —1). n

Remark 8.32. Note that the action of SO(3) is exactly the rotating action on Wy (com-
pare to (6.40)). Once we include the boundary conditions, we equip Wn with the
action of (6.44), which also agrees with the given action, up to gauging by an element.

Remark 8.33. This theorem works in both ways provided we start with some bundle
P — M = I x X. Under certain conditions we can use a solution to the generalized
Seiberg-Witten equations to induce a bundle on M.

Lemma 8.34. Let (a,u) be a solution to generalized Seiberg-Witten with target Wy and
principal bundle P' — X. If there is a reduction Px — P’ to a principal G-bundle then the
solution induces a solution of the Haydys-Witten equations on the bundle pr¥§ Px — M.

Proof. This follows immediately from the proof of the theorem. Note that the existence
of the reduction is the only obstruction of transforming the bundle P’ to P. n

There are two interesting settings when such a reduction is given. For a more
discussions on this see also section

Lemma 8.35. Such a reduction to a principal G-bundle are given if

o The bundle P’ is trivial,

~1
o The aholomorphic spinor u takes values in u](j ) (0) € Wn.

Proof. The first example is trivial, whereas the second uses the different possible de-
scriptions of the Nahm equations. As explained in Remark there are two different
ways of describing the moduli space of Nahm equations as quotients. The descrip-
tion with the structure group G is a reduction of the description with structure group
€*(I,G). The G-equivariant map u: P. xx P’ — Wy (or, since there is no action of
SO(3) on Wy here u: P — Wy) induces a map from Q = P, to the associated bun-
dle of Wy. We can use this map to pull back the reduction to the structure group G
back and have a reduction of P’ to a principal G-bundle on Q. Note that one has to
be careful with the boundary conditions for this reduction, we have to allow different
irreducible representations for the different ends of the interval. |
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Notation 8.36. Denote by M?,,,, the moduli space of solutions of the Haydys-Witten
equations on a principal bundle P. Denote by MZ/S'VV\\;N the moduli space of solutions
to the generalized Seiberg-Witten equations on the bundle P’ with target Wy (see e.g.

[Pidog]).
Proposition 8.37. In the setting of this section,
MPw = MO, (8.102)

Proof. In Proposition it was shown the identification respects gauge equivalence

classes. Note that ¢* (P/, S)SNH is the gauge group of the given generalized Seiberg
Witten system (see [Cal1i0, Lemma 3.1.12]). |

Theorem 8.38. In the setting of this section let G = U(k) and let (A, B) be a solution of the
Haydys-Witten equations on P. We say that (A,B) satisfies the boundary conditions of type
ke N, if

1. |[uyA| is bounded when t — +1 (t is the coordinate of 1) for the pull back of A to
PPy xI (everywhere on Px)

2. [[(t=1)B—p[ € Ot —1) for t — 1, where B € ¢* (P,A2" ®g) is the pull back of
B and p € T(Hom(AZ,Ad g)) is induced by an irreducible representation A2" @ g =~
su(2)” ®g of su(2).

3. Similarly ||(t+1)B —p| € O(t+1) for t — —1.

Then these boundary conditions are invariant under the reduced gauge group where we require
that g € G(P) = €* (P, G)€ is such that the pull back § to P satisfies ||g —1|| € O(t — 1) for
t—land|g—1| € O(t+1) for t — —1. Then the moduli space of solutions to the Haydys
Witten equations subject to the boundary conditions of type k € N gauged by the reduced gauge
group is isomorphic to the solutions of the generalized Seiberg-Witten equations with target FY,,
]§I’Fk

Miw = M (8.103)
Proof. Note that we have chosen the boundary conditions so that the boundary condi-
tions of the Nahm equations are satisfied. It remains to remark that the gauge group
Go of the Nahm equations can be achieved by Remark where we can pick f to be
(e.g) —x? +1. [ ]

Theorem 8.39. Restrict M}y, to solutions such that A has no self-dual curvature, i.e. F} =0,
and call that space MYy, ... Then

Miw » = {u: Py — Ni| wis SO(3)-equivariant and aholomorphic) (8.104)
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Proof. Note that the requirement on the curvature implies that the reduced Seiberg-
Witten equations are satisfied, i.e.

Dau=0 and pou=0. (8.105)

Noticing that the image is now the total space of a hyperkahler reduction bundle,
we can identify the maps by Lemma and Haydys [Hay12, Proposition 4.5] has
shown that solutions of these are in correspondence with aholomorphic maps to the
quotient. |

Remark 8.40. The last theorem implies that u: P’ — p~'(0) carries the complete infor-
mation of the solution to the generalized Seiberg-Witten equations. We can recover
a as follows. First we note that u induces a SO(3)-equivariant t: P — N so that
P, = w*u~'(0). The unique connection that satisfies the equations is then given by
(the negative of) the pull back of the connection induced by the Riemannian submer-
sion p=1(0) — N. Alternatively we can use Lemma to see that the pulled back
connection is indeed anti self-dual, because the curvature of the connection of a hy-
perkdhler reduction is of type (1,1) with respect to all complex structures (compare
chapter 2).

Theorem 8.41. Assume that u: Py — Ny is a SO(3)-equivariant map. Then there is a bundle
P’ — P, and a connection a on it such that (a,\) satisfy the reduced generalized Seiberg-
Witten equations. Furthermore, if there is a reduction P — P’ to the structure group G, then
this induces a solution of the Haydys Witten equations on the induced bundle P — X x 1
without self-dual curvature.

Proof. This follows from the last Remark and Lemma m [ ]

Remark 8.42. There is a stronger statement than [Hay12, Proposition 4.5]. The con-
nection exists for all u: Px — Fy given that a certain equations (which specializes to
Pt = 0 on n~'(0)) is satisfied and pou is small enough [Pid17]. It can also be shown
that the connection if the image of u meets no points which have a nontrivial Gy stabi-
lizer. For this case it suffices to know u in order to reconstruct the solution (a,u). This
is the justification for only transforming u in our construction.

8.3.2 Construction of Examples

We can use this to construct classes of examples of solutions to the Haydys Witten
equations.

Example 8.43. Let X be a 4-dimensional manifold. Then every u: P, — Ny, SO(3)
equivariant and aholomorphic such that a reduction (as in Lemma exists induces
a solution of the Haydys Witten equations. If P, is trivial (i.e. X has a not necessarily
integrable hyperkahler structure, compare to Proposition then every aholomor-
phic map X — Ny induces a solution of the Haydys-Witten equations.
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Example 8.44. Given any 4-dimensional manifold X, the map u: P, — Ny given by
u = constgps, the constant map to the unique spherical symmetric solution (of fixed
mass 1), known as the BPS-monopole (given by T; = 0 for all 0 < i < 3) [Prays].

Example 8.45. If X is a quaternionic 4-manifold, then any constant map X — Ny pro-
duces an example.

Instead of putting the spinor first, we can also start with the connection.

Example 8.46. Given any a € €% (I, C(Px)) such that for every t € I Fi(t) =0,ie. a(t)
is a self-dual connection, and a u € €% (13’ ,1u1(0)) with Zau = 0, where @ is the
connection associated via Proposition Then this data induces a solution to the
Haydys-Witten equations.

Example 8.47. As an example of the last class, take a to be the constant map to a anti
self-dual connection, and u d-aholomorphic.

8.3.3 G, Monopoles

Let M be a 7 manifold with (not necessarily integrable) G,-structure ¢ and 1 the
associated and coassociated form respectively ({p = x7¢) and P — M a principal G-
bundle. Assume further that (A, ¢) € C(P) x I'(Ad(P)) is a solution of the G,-monopole
equations, i.e.

P A FA = xdad. (8.106)

For the first step assume that M has a (not necessarily integrable) SO(4) < G,
structure.

X X
l 0(3) /
P, (X) Px AZ(X)
\ ls
X

Figure 8.2: Involved principal bundles for G,-Monopoles

Lemma 8.48. The G, monopole equations split to the following two sets of equations, given
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with respect to a frame in the reduced SO(4)-frame bundle,

FPy — Fas —Foy = Vo, (8.107)
—F5 — Fls + F5y = V49, (8.108)
Fly —Fiy —Fos = V4o, (8.109)
and
Fi5 + Fs + F§y = V0, (8.110)
—Flu —F +Fjs = VO, (8.111)
FY —Foy —F55 = V&b, (8.112)
—Fs + F)s —Fy = V7. (8.113)

Proof. Recall that the defining form of the G, structure is given by

@ = e123 _ 145 _ o167 _ o246 | 0257 _ o347 _ (356 (8.114)
Now the reduction to SO(4) restricts to frames given by frames on X which are
lifted to frames on A2 X. By reordering, we may assume that e;, e, and e3 span the
fiber of the vector bundle, whereas e4 through e; span the base. This agrees with the
associative form above.
The reduction SO(4) — G, splits the Grassmann bundles of M further. We arrive at
the representations

Space | G,-representation ‘ SO(4)-representation
Al /\17 SZO P ST 1
A2 AS@ AL, (S2°@S™) @ (so(4) @ S3T)

/\3 /\?@/\%@/\%7 (SOO)G_)(SZO@SH)@(SOO@SH@SZZ®S4O@S31)

To see this, note that the way SO(4) c G, is embedded, immediately implies that
= S' @S2°. The rest of the claims is applying the Glebsch-Gordan decomposition
to S3u and Ay Recall the definition of the G,-equivariant map

G(): A° > A", w > * (P A w). (8.115)

Then G() is in particular a SO(4)-equivariant map and as such respects the de-
composition into SO(4)-representations, i.e. G(1) identifies the $?° and S'! represen-
tations in A' and A? (note that s0(4) also contains a $?°, however since f is a G, map,
it’s image is in A2 when restricted to AT).

We have arranged the frames such that e, e? and e span $2° and the other et span
S'!. Using the explicit form of ¢’ we can calculate how G() acts. The condition that
(A1) is a G,-monopole is equivalent to

GW)(FM) = dae. (8.116)
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If we write FA = 3", ;<7 F{je!, we arrive at the equations

F)s —Fis —Fg = Vit (8.117)
—Fs —Fis +F = V3o (8.118)
Fiy —Fiy —Fls = Vb, (8.119)
for the $2° representation and
Fis + Fls + 3y = V3o (8.120)
—Fiy —F +Fs = V& (8.121)
Fiy —F —Fis = Vio (8.122)
—Fle +F25 —F5u = V7o (8.123)
for the S' representation in this frame. [

We can now, in order to pursue step 2, assume that M =~ A2 X for some 4-manifold
X. Using Proposition to identify A € C(P) with

. y . sO(3
(a,c) € |€® (Ai,G(PX))SO(3) x A2 ®@e® (/\i,@oo (Px,g)G) ) (8.124)
50(3)
and Proposition [8.15] to identify ¢ € I'(M, Ad(P)) with
N G\ SO0(3)
beg® (Ai,c:oo (Px, g) ) ) (8.125)

we arrive at the following equations.

Lemma 8.49. The G,-monopole equations in differential equations form (compare to Re-
mark [5.6) are given by

*F¢ —d°b = F¢ (8.126)
and
O01as + 02a¢ + 03a7 = Vib+Vic) +Vica + Vics (8.127)
—01a4 — 02a7 + d3ag = ng—vg’(h —V?Cz —|—VgC3 (8.128)
01ay — 02aq — 0305 = Vb + Ve — Vic, — Vices (8.129)
—01ag + 02a5 — dz3a4 = V%b—VgC] -‘rVng —V2C3, (8.130)
where we interpret c € € (PX, Q' (AL, g)) , as a connection on the trivial G-bundle on
the fibers of A2 and b € €* (Px, €* (AZ, g))so(z‘)X © 4s a section of the corresponding adjoint

bundle.
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Proof. We have to choose local representatives of the connections. Let s: E > U — P be
a local section of P. This is equivalent to a smooth map U — Px that commutes with
the projections Px — X and E — X. Using Q — Q x V — E, we can turn this map into
a map from Q > pr, (7' (U)) — Px. A quick inspection shows that it commutes with
the projections to X, hence it defines a section pr, (7~ '(U)) — Px.

Tracing A through the construction we see that if we lift the frame e; to the bundle
P, then

) . ifie{1,2,3
Ale') = “ 1 bel } (8.131)
a; ifie{4,56,7}
This can be used to see that
F5 ifi,j €{1,2,3}.
F§ = (Fg ifi,je{4,5,6,7). (8.132)
&aj — astL + [Ci, (lj] = (91(11' — V].aci ifie{1,2,3},j€{4,5,6,7}.
Using this, we identify the first three equations with
*F¢ —F$ = db = pugou = F¢, (8.133)
whereas the last four equations become
O01as + 02a¢ + 03a7 —Vsc) — Ve, — Vies = Vib (8.134)
—01a4 — 02a7 + 03a6 + Vic1 + Vicy, — Vges = Vib (8.135)
01a7 — 02a4 — 0305 — V%C] + VE’CZ + VgC3 = ng (8136)
—01a6 + 02a5 — 03a4 + VEc) —VSca + Vics = Vb (8.137)
[ |

In the last step we may use Proposition to identify a with a connection on P/,

ae 6(15’)55)((33;). (8.138)

For b, we use Proposition to identify b with an element in

e® (P, Lie(§)) 7% =~ e® (P, xx P, € (A2, q)) 750 (8.139)
Similarly we may identify ¢ with an element in
A2 @e® (P, xx P, e® (A2, g))T500) (8.140)
Putting this together, we get map
w=(bc)ec® (Py xx P, H@e® (A2,4))""%°, (8.141)

where we identified H ~ R® AZ.
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Theorem 8.50. The pair (A, $) is a G, monopole if and only if the associated pair (a,u) is a
solution to the generalized Seiberg Witten equations with target Wg, given by

Du=0, and pugou = F¢, (8.142)

where pug: Wg — Up is the moment map of the Bogomolny equations. The Dirac operator is
defined via the Levi-Civita connection on Py and a € C(P’ ):(?((33))

Proof. Finally we have to see that this is indeed the generalized Dirac operator acting
on u. For this note that the action of g € § on € (A%, g) ® H if given by (compare

Lemma [6.54).

d(g-A) d(g-¢)

s [E,A] = dE, P [& @] (8.143)
Taking a frame as before,
0
Dfu = du+KY =0 019, 8
jusout ke =dutlaul=4 o, o (8.144)
83 (lj
so that the equations (8.127) through (8.130) become
b C1 C2 C3
—Cq b c3 —C2
=Djg D& D¢ D% . .
0 N I +Ds es + Dg b + D7 o (8.145)
—C3 C2 —C1 b
If we multiply the last three equations by —1P} we get
0=%qu=Dju—IDiu—JD¢u—KD%u, (8.146)
for a left — left structure, which agrees with Corollary |

Theorem 8.51. The pair (A, ) is a G, monopole with G,-structure given by —¢' if and
only if (a,u) is a solution to the generalized Seiberg Witten equations with target H®
¢* (A2, g), given by

Dqu =0, and pugou = Fg, (8.147)
where uy,: Wy — Ug is the moment map of self-dual Bogomolny monopoles. The dirac operator

SO(3)
s0(3) °

2This is an artifact of how we embedd SO(4) in G; see Remark

is defined via the Levi-Civita connection on P and a € C(P’)
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Remark 8.52. Note that this agrees with how ¢’ becomes —¢’, i.e. by mapping et — —e?,
for i € {1,2,3}. This changes the orientation of R3 < R*, which turns the anti self-dual
monopoles into self-dual monopoles.

The proof is similar, except that the last three equations need not be multiplied
with —1 (for the Dirac operator). The signs agree with Corollary to give a left —
right structure.

Just as for the Haydys-Witten equations, the only obstruction of reversing this

construction is the existence of a reduction.

Lemma 8.53. Let (a,u) be a solution to generalized Seiberg-Witten with target Wg and
principal bundle P’ — P,. If there is a reduction Px — P’ to a principal G-bundle then
the solution induces a solution of the G,-Monopole equations on the bundle pr Px — M.

See the discussion in section about the existence of such reductions.

Proof. The proof is identical to the Haydys-Witten case, except that the bundle is an
honest bundle on top of P.. Since the principal bundle of the hyperkahler reduction
of the Bogomolny monopoles is SO(3)-equivariant, and u is SO(3)-equivariant, the
bundle P’ — P, is SO(3)- equivariant. The reduction to Px is (because of our choice
of embedding of G — §) even SO(3)-invariant, so corresponds to a bundle on the base
X. |
Notation 8.54. Denote by Mg, the moduli space of G,-instantons on a principal bundle
P. Denote by Mgg\\//vvg the moduli space of solutions to the generalized Seiberg-Witten
equations on the bundle P’ with target Wy (see e.g. [Pido4]).

Proposition 8.55. In the setting of this section,
ME, = M ene. (8.148)
Proof. The proof is identical to the case of the Haydys-Witten equations. [

Theorem 8.56. In the setting of this section let G = SU(2) and let (A, ) be a solution of
the G,-monopole equations on P. We say that (A, §) satisfies the boundary conditions of type
ke N, if for v — oo (where 1 denotes the radial distance to the zero section of A%)

1. b =1—- £ +0(r2)
2. d|[b|| = O(r—2)
3. [ldeb] = O(r2),

where ¢ € €% (ISX,Q‘(Ai,g))SO(s)XG and b € €* (Px,€® (/\i,g))soG)XG is interpreted

as in Lemma Furthermore, we require that there is a U(1)-bundle R — AZ defined
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on the complement of some compact set on the fibers of A% and with a fixed reduction of the
Bogomolny data (compare to the boundary conditions of Bogomolny monopoles.
Then solutions to the G,-monopole equations subject to the boundary conditions of type
k € IN gauged by the reduced gauge group is isomorphic to the solutions of the generalized
Seiberg-Witten equations with target F§,
P/ Fk
ME, = M g\i- (8.149)
Proof. Again we have chosen the boundary conditions so that the boundary conditions
of the Bogomolny equations are satisfied. It remains to remark that the gauge group
Go of the Bogomolny equations can be achieved by Remark where we can pick f
to be ”1?” smoothed around 0. [ |

Theorem 8.57. Restrict Mg to solutions such that the transformed data given by a €

A

€* (AL, G(PX))H has no self-dual curvature, i.e. Fi(v) = 0 for every v € A2, and call that
space M§_ ... Then
M]éz,r =~ {u: P4 — Ny| u is aholomorphic} (8.150)

Proof. The proof is identical to the case of the Haydys Witten equations. n

Remark 8.58. We like to find a better description of Mg_ .. Notice that for a manifold
with SO(4) < G, holonomy, the bundle TYM decomposes into $?° @ S'". We can
compute

APTVM = A?2S20 s s AZs!! (8.151)
=SP@ (S @S') ®so(4), (8.152)
and compare this to
APTYM = (S @S @ (s0(4) @S, (8.153)
|22 g2

arising from the decomposition of the G,-representations. Then the identity map

SP@(SP@s ) @so(4) > (S @S @ (s0(4) @S, (8.154)
is given by
(a,b,c,d, e) — (\1&((1 —d),c, \]ﬁ(a +d),e,b), (8.155)

with respect to these decompositions. To see this notice that by the Lemma of Schur it
is only unclear how the S?° are mapped (so(4) =~ S2° @ S°2).

The first $2° in the source is given by A% (e!,e?,e3) = (e!?,e23,e3!), the second
one by A% (e?, e, €6, e”) = (e? + €%, e% — %7, e + €°°). In the target the first $?° is
given by

(€23 — 5 — ¢ e31 _ 46 | 57 12 47 _ (56 (8.156)
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(compare to equations (8.117) through (8.119); this depends on the choice of G, struc-
ture) which explains the a — d component. The other follows by completing %(1, —1)

to a ONB of IR2. So the condition on FA € A2TYM is that

Fos = —Flase, (8.157)

where 7,3 is the projection onto the $S?° « u component and 14,3+ the projection onto
SZO c g2.

Theorem 8.59. Assume that u: P — My is a SO(3)-equivariant map. Then there is a
bundle P’ — P, and a connection a on it such that (a,w) satisfy the reduced generalized
Seiberg-Witten equations. Furthermore, if there is a reduction P — P’ to the structure group
G, then this induces a solution of the G,-monopole equations on the induced bundle P — A% X
without self-dual curvature.

Proof. The proof is identical to the case of Haydys-Witten equations. Note that the
pulled back bundle is SO(3)-equivariant. [ |

8.3.4 Construction of Examples

Similar to the case of the Haydys Witten equations, we can construct examples from
this.

Example 8.60. Let X be a 4-dimensional manifold. Then every u: P, — My, SO(3)
equivariant and aholomorphic such that a reduction exists induces a solution of the
G.-monopole equations. If P, is trivial (i.e. X has a not necessarily integrable hy-
perkéhler structure) then every aholomorphic map X — M induces a solution of the
G,-monopole equations.

Example 8.61. Given any 4-dimensional manifold X, the map u: P, — M given by
u = constgps, the constant map to the unique spherical symmetric solution (of fixed
mass 1), known as the BPS-monopole [Pra7s].

Example 8.62. If X is a quaternionic 4-manifold, then any constant map X — My pro-
duces an example.

Instead of putting the spinor first, we can also start with the connection.

0(3) a(t)
such that forevery te IF 7 =0,

. s
Example 8.63. Given any a € ¢* (/\i, G(PX)50(3))
i.e. a(t) is a self-dual connection, and a €° (P/, p=1(0)) with Z5u = 0, where a is the
connection associated via Proposition Then this data induces a solution to the
G,-monopole equations.
Example 8.64. As an example of the last class, choose d € C(Px) and pull it back to

SO(3)

Px. Then this is a connection a € (‘Z(ISX)EUB)

and hence we can use the constant map
A2 — a as our connection.
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8.4 Adiabatic scaling

If we want to look at the general picture, i.e. the identification of the moduli spaces
with generalized Seiberg-Witten with target Fg n, then the question arises how we can
make sure that our solutions are approximate solutions (in the sense of Definitions
and[7.2). The idea is to use adiabatic scaling, i.e. changing the metric on the underlying
manifold X by g — ¢2g. Having a SO(4) = G,,SO(4) = SO(5) reduction then results
in different conformal weights on the equations

Dqut =0 ouf = e?Ff. (8.158)

Example 8.65. o For G, monopoles we have SO(4) = G, which gives A" ~ A ® AL,
which (being S'! and $2°) have weights 1 and 2.

Hence adiabatic scaling stretches A} doubly, so M£°9 is the new target.

e On SO(4)  SO(5) we want the same phenomenon, so
NS @A (8.159)

we set the scaling on Al to have weight 2 and then MNh™ ig the new target.

We have shown that the Nahm transform commutes with these scalings in Propo-

sition [7.38§

8.5 A Transform Between G.-Monopoles and solutions of the
Haydys-Witten Equations

Theorem 8.66. Let X be a 4-dimensional Riemannian manifold. Then for any ii: P — MK
(: Py — N*) we define a transformed spinor v: P, — MK — N* (v: P, — Nk — M¥).
Now restrict M, . (Myyy ) to spinors w such that

1. All i: P — M (: Py — N) belong to a (SO(3)-equivariant) homotopy class.
2. W*u1(0) has a reduction.
3. For the transformed maps v, v*u=1(0) has a reduction.

Notice that if there is a reduction for one of the i, then there is one for all of them, and similar
with the v, since the transformation of a homotopy class remains a homotopy class. Then we
have maps

Ity . s PIVE . (8.160)
These maps are inverses of each other, showing
Iy = PIME, L (8.161)
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Proof. The claim follows from Theorem and together with Proposition [7.39|
and the fact that the Nahm transform is - up to a constant factor - a hyperkahler
isometry [Nakgi, Theorem 6.5]. The latter ensures that a aholomorphic map gets
mapped to a aholomorphic map. The former two theorems identify the solutions with
equivariant maps P, — My /Ny and the Proposition ensures that the transformed data
is still SO(3)-equivariant.

The Nahm transform between M /Ny is always injective, the injectivity can only
break if there are multiple connections that make 1 to a aholomorphic map. This is
true if and only if i meets a nondiscrete stabilizer of Go. |

Example 8.67. Take X a Riemannian 4-manifold. The homotopy class of the map P, —
My /N mapping to the BPS-monopole satisfies the requirements of the last theorem,
because the pull back is trivial and the transformed class contains the BPS-monopole.

Example 8.68. If we let X = R*, then P, is trivial and hence any two maps : PL —
My /Ny are homotopic. Furthermore the reduction always exist and we get

Miw,r = ME, (8.162)

Example 8.69. If X is a quaternionic 4-manfiold, then any aholomorphic map X — Ny
(My) such that the reduction exists gives riseto a transformed X — M (Ny). If the
reduction exists, we get a transform as in the last example.

Theorem 8.70. Let X be a compact 4-dimensional Riemannian manifold and Px — X a prin-
cipal U(k)-bundle. Then there is a open neighborhood pn~"(0) < U < FX, such that we have
a map

SN%S0(3) >9§>«SO(3)

uee® (PJr xx P/, U) —vee® (P+ X X R’[{)],Flg , (8.163)

/

where R[v
AY

)18 the pull back of the principal bundle FX, — FX,/So, by the transformed projection

v

V.

Proof. The action of Gy is free and proper on FY because of the framing (see e.g.
[MV81]). Given a u: P/ — FK,, we apply the generalized Nahm transform to define
the transformed map v: P; — FE /G and pull back the bundle F§ along it to define the
transformed bundle. [

Of course the map can also be formulated in the other direction with the very same
ideas.

Theorem 8.71. Let X be a compact 4-dimensional Riemannian manifold and Px — X a prin-
cipal SU(2)-bundle. Then there is a open neighborhood ug~'(0) = U < FX such that we have
a map

)9gx50(3) )95”*150(3)

ue€” (PL xx P, U —veeg®r (P+ X x R/[{,],F{i, , (8.164)
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where Ry is the pull back of the principal bundle F§ — FX /S0, by the transformed projection

v

V.

Remark 8.72. The space F§ is contractible and as such F§ — F§/Go is a classifying
bundle for §o. However since we did not extend the Nahm transform to all of F’g,
not all maps u are necessarily homotopic, so again we can have images in different
bundles.

Remark 8.73. Notice that Theorem and Theorem give extensions of the maps
defined in Theorem [8.66l

Remark 8.74. The transform described in Theorem|[8.70/and Theorem [8.71]also describes
how the spinors are transformed in Theorem Since the neighborhood U retracts
to 1=1(0), the involved bundles agree. As such it seems to be the natural extension of
the transform. What remains to discuss is how the connections enter the transform.
Since I have not arrived at a satisfactory answer for that, it will be discussed in the
Outlook chapter.

Remark 8.75. The fact that we have found a transform of our topological data (the
involved bundles) is rather remarkable, since the Nahm transform does not have such
a feature, all involved bundles are trivial(lizable).

Remark 8.76. It may be tempting to try to use adiabatic scaling to make sure that the
data is in the neighborhood U; however, this also scales the Nahm data, so that ¢ =
¢2 (compare (7.171)) hence ||G§|| = L[ Gol| so that the defining condition (compare

Corollary and[7.32).
lelrg || < [|Goll ™" (8.165)

remains unchanged under adiabatic scaling. It seems this should be fixable by finding
another requirement as discussed in section
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Chapter 9
Outlook

9.1 About the Connections

We have only explained how to transform the spinors in Theorem 8.70/and and not
described how to transform the connection. There is a formula [Pid17] guaranteeing
the existence of a unique connection for any spinor u with image sufficiently close to
1= 1(0) such that

Dau = 0. (9.1)

This agrees with the theme that the spinor already carries all the information of the
solution, as it is the case for spinors with values in po! (0). However, this time we have
to check by hand that the second equation of the generalized Seiberg-Witten equations
are satisfied, i.e.

pou = F¢. (9-2)

We have done a substantial step towards that goal by giving an explicit formula for
the transformed error in Corollary and This gives an explicit map Un < Usg,
which may be associated with the normal bundles of p~'(0) c Fg /N (see Proposition
[3.16). This suggests that it might be best to first try to show that the linearized versions
of Corollary and of the error map satisfies a linearized version of the second
equations.

9.2 About the Boundary Conditions and Other Remarks

The boundary conditions we chose in this work were dictated by the fact that we
wanted to use the Nahm transform. However it would be interesting to understand
how the conditions in [MW13] translate to boundary conditions on the space of Nahm
data. In particular it would be interesting to understand how the knot topology can
be understood in this framework.

147



While there is a blank check principal bundle reduction in the case of the Nahm
equations in Lemma the author is unaware of such a reduction for the case of
Bogomolny equations.

It seems interesting to take a closer look at the topology of the involved bundles in
the transform defined via Theorem [8.66] (and extended by Theorem and [8.71). In
particular it would be interesting to find an explicit example for which the transformed
data consists of multiple (different) bundles.

Another question that arose while working on this is if the Nahm transform can
be lifted to dimensions 5 and 7 without the necessity of the intermediate step to gen-
eralized Seiberg-Witten. For this note that a 5-dimensional manifold with holonomy
in SO(4) (even O(4)) is spin, as is a 7-dimensional manifold with holonomy in G,. It
is possible to copy the definitions to this setting, but many analytic questions would
need addressing (the index, positivity, ... of the operators). Also the proof of the trans-
form fails because of cross-terms in the general setting. This could maybe be addressed
by requiring certain invariance of the involved data.

For the Examples and it seems interesting to understand the space of
aholomorphic maps from a 4-dimensional quaternionic manifold to the spaces My
and Mg.

It might also be interesting to look at the physical implications of the mentioned
transform, even though the author’s knowledge does not suffice to make an informed
judgment.
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