
Generalized Seiberg-Witten and the
Nahm Transform

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades
Doctor rerum naturalium

der Georg-August-Universität Göttingen

im Promotionsprogramm Mathematical Sciences
der Georg-August University School of Science (GAUSS)

vorgelegt von

Robin Raymond
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Abstract

Using the viewpoint of principal bundles on hyperkähler reductions, we recover the
results of Gocho and Nakajima [GN92] and give insights into the role that the quater-
nions play. We define a framework for dimensional reduction of gauge theories and
show that the Haydys-Witten equations are dimensionally reduced Spinp7q-instantons.
We extend the Nahm transform to data close to a solution satisfying the ordinary
boundary conditions. Using generalized Seiberg-Witten, we show that G2-Monopoles
on Λ2`X and solutions of the Haydys-Witten equations on RˆX for X an oriented Rie-
mannian 4-manifold are related to solutions of generalized Seiber-Witten equations
with target the moduli space of Bogomolny monopoles and Nahm equations respec-
tively. Applying the Nahm transform we derive a relation between G2-Monopoles and
solutions of the Haydys-Witten equations. Finally we hint how this can be extended
via the extended Nahm transform.
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Chapter 1

Introduction

The origin of gauge theories lies in the Maxwell equations [Max65], the foundation of
classical electromagnetism. Changing the structure group to the non-abelian group
SUp2q, we arrive at the anti self-duality equations which allowed Donaldson to make his
groundbreaking advances in the theory of smooth structures of 4-manifolds [Don83].

Equations of these types can be derived on a larger class of manifolds if we restrict
the holonomy of the underlying space. Similar to the anti self-duality equations, or
Instanton equations as they are sometimes called in physics, we can define interesting
gauge theoretic equations on manifolds with holonomy in e.g. SOp4q, SUp3q, G2, and
Spinp7q [DS11a; Hay15b].

A different branch of gauge theory developed with the discovery of the Seiberg-
Witten equations [SW94b; SW94a], which trade a more complicated equation for a sim-
pler (abelian) gauge group Up1q. It turned out that many of the results of the anti
self-duality equations are also obtainable by these equations, and often much simpler
to obtain.

Rather than just a connection, the Seiber-Witten equations accommodate a connec-
tion and a spinor, a section of the spin bundle. Generalized Seiberg-Witten theory replaces
the spin bundle by a more complicated fiber bundle and allows to unify many gauge
theories under this construction [Tau99; Pid04]. The typical fiber of these bundles has
to be a hyperkähler manifold with a rotating Spp1q-action. It turns out that the solution
spaces of certain gauge theoretic equations have just these properties [Hay15a].

In Chapter 2 we introduce the necessary background material to understand the
following chapters. The following Chapter 3 we investigate hyperähler reductions.
These will play an important role in the final construction. Out approach is to work
on the involved principal bundles, which allows us to recover the results of Gocho and
Nakajima [GN92] and also a small novelty. The approach (which is very different to
the one in [GN92]) also highlights the role the quaternions play in the construction.

Chapter 4 introduces the gauge theories that we will use in the rest of this work.
In Chapter 5 we give a framework for dimensional reductions of gauge theories and
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apply this to construct all the well known reductions of the anti self-duality equations
and Spinp7q-instantons. As a new result we show that the Haydys-Witten equations
are a dimensional reduction of Spinp7q-instantons. We discuss some of the reduced
equations in Chapter 6, with the focus being the Nahm equations and Bogomolny
equations.

The Nahm transform relates solutions of the Nahm equations and Bogomolny
equations, and we will recall the construction and show that it can be extended to a
small neighborhood of the solution space of the equations in Chapter 7. In Chapter 8

we will use generalized Seiberg-Witten to relate solutions of the Haydys-Witten equa-
tions to solutions of the Nahm equations and similarly solutions of the G2-Monopole
equations to solutions of the Bogomolny equations. Combining this with the results
of Chapter 7 allows is to define a map that relates G2-Monopoles to solutions of the
Haydys-Witten equations.

The last chapter, Chapter 9, briefly discusses how our results could be extended
to a larger class of solutions and some interesting differences to the classical Nahm
transform. Finally we mention interesting further research opportunities.
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Chapter 2

Background Material

2.1 Algebraic Structures

2.1.1 Normed Division Algebras

Definition 2.1 (Quaternions). Let H be the 4-dimensional real vector space spanned
by 1, i, j,k. H is the skew-field of quaternions if we define the multiplication via

i2 “ j2 “ k2 “ ijk “ ´1. (2.1)

Definition 2.2 (Quaternionic Vectorspace). A vector space V over the skew-field H is
called a quaternionic vector space.

Remark 2.3 (Complex Structures). An equivalent way of defining a quaternionic vector
space is by requiring a real vector space V to carry a complex structure I and an
anti-linear real structure J,

I, J P EndpVq, I2 “ ´1, J2 “ 1, IJ “ ´JI. (2.2)

Definition 2.4 (Octonions). Let O to be the 8-dimensional real vector space spanned
by the basis

{1, e1, e2, . . . , e7}, (2.3)

and furnish it with a bilinear multiplication ObR O Ñ O defined by the following
diagram

10



e3 e5 e6

e7

e1

e2

e4

in the sense that for every oriented triple pei, ej, ekq lying on an oriented curve, we
require the quaternionic relations to hold,

e2i “ e
2
j “ e

2
k “ eiejek “ ´1. (2.4)

We call the division algebra O the octonions. Given an octonion a “ ao1`
∑7
i“1 aiei P O,

we write

Repaq “ a01, Impaq “
7∑
i“1

aiei, ā “ Repaq ´ Impaq. (2.5)

Remark 2.5. There are many different (but equivalent) ways to define the octonionic
multiplication by distributing the symbols ei on the triangle above (in a consistent
way). Our choice is not the most common, but it is essential that we make this very
choice for chapter 5.2.7, 8.3.1 and 8.3.3. It is not completely clear to the author where
this freedom of choice has its origin. However chapter 8.3.1 and 8.3.3 show that it is
closely related to the choice of self-dual vs. anti self-dual connections.

Remark 2.6. ‚ The standard scalar product on R8 can be described via octonions
by

〈a,b〉R8 “ Repab̄q, a,b P O. (2.6)

‚ The octonions O are a normed division algebra but are neither commutative nor
associative. The former is no surprise, since we see that we have copies of H

laying in O, e.g. for every directed line in the diagram above. To see the latter,
pick three ei not living in the same copy of H, e.g.

pe1e3qe6 “ ´e2e6 “ ´e4 ‰ e4 “ ´e1e5 “ e1pe3e6q. (2.7)

11



2.1.2 Linear Algebra

In this section we will define some notation and prove a few easy facts that are hard
to find a reference for.

Notation 2.7. Let M be a manifold and G ñ M a Lie group acting on M. For ξ P g and
x PM, we denote by

Kξ P ΓpTMq, Kξx “
d

dt

∣∣∣
t“0

(
expptξqx

)
, (2.8)

the corresponding fundamental vector fields.

Definition 2.8. Let M be a manifold and G ñ M a group acting on M. Let ω P

ΩkpM,Vq be a form with values in some vector bundle V ÑM. We denote by

ιgω P g_bR Ω
k´1pM,Vq, (2.9)

the form defined by 〈ιgω, ξ〉 “ ιKξω for ξ P g.

Lemma 2.9. Let V be an n-dimensional oriented euclidean vector space and V “ U‘W as an
oriented orthogonal sum, where dimU “ m. Let p,q P N0 such that p` q P {0, . . . ,n}. Then
we may express the Hodge operator ‹V via ‹U and ‹W with respect to the bigrading of Λp`qV
as follows

‹V |Λp,q “ p´1qpm´pqq ‹U |Λp b‹W |Λq . (2.10)

Proof. Let e1, . . . , em be an orthonormal and oriented basis of U, and em`1, . . . , en ofW.
A basis of Λp,qV is given by eI^ eJ where I Ă {1, . . . ,m}, |I| “ p and J Ă {m` 1, . . . ,n},
|J| “ q, where we define for I “ {i1, . . . , ip}

eI “ ei1 ^ . . .^ eip . (2.11)

We calculate

‹VpeI^ eJq “ sgnpI, J, Ic, JcqeIc ^ eJc (2.12)

p‹Ub‹WqpeI^ eJq “ sgnpI, Icq sgnpJ, JcqeIc ^ eJc , (2.13)

where Ic is the complement of I in {1, . . . ,m} and similarly for J. If I “ {i1, . . . , ip}
and Ic “

{
ip`1, . . . im

}
, then pI, Icq denotes the permutation sending k Ñ ik. Since

pIY Icq X pJY Jcq “ H, we have

sgnpI, Icq sgnpJ, Jcq “ sgnpI, Ic, J, Jcq “ p´1q|J|¨|I
c| sgnpI, J, Ic, Jcq, (2.14)

which shows the claim. �
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Notation 2.10. Let M be a oriented Riemannian manifold and ω P ΩpMq a form on M.
We will be often looking at the maps

ΩpMq Ñ ΩpMq, η ÞÑ ω^ η, (2.15)

and
ΩpMq Ñ ΩpMq, η ÞÑ ‹pω^ ηq, (2.16)

so we fix the notation

Fpωq : ΩpMq Ñ ΩpMq, Fpωqpηq “ ω^ η, (2.17)

and
Gpωq : ΩpMq Ñ ΩpMq,Gpωqpηq “ ‹pω^ ηq. (2.18)

Lemma 2.11. Let pV , i, j,kq and pW, I, J,Kq be two quaternionic vector spaces. Let α : V ÑW

be a quaternionic linear and β : V Ñ W be elementary quaternionic antilinear, i.e. there is a
a P {i, j,k} with

βpavq “ Aβpvq, βpbvq “ ´Bβpvq @v P V ,b ‰ a. (2.19)

Fixing any one of the complex structures, we can decompose the forms into bidegrees,

ΛkpVq –
⊕

p`q“k

ΛpaV bΛ
q
aV . (2.20)

Then

1. α respects this decomposition for all a P {i, j,k},

2. β respects this decomposition for a. For b ‰ a it swaps the indices, i.e. if η P Λp,q
A W,

then β˚η P Λq,p
a V .

Proof. This follows immediately from an easy calculation. �

Corollary 2.12. In the setting of the last Lemma, let γ : V ÑW be quaternionic antilinear, i.e.
in the span of elementary quaternionic antilinearity for all three structures. Then γ fixes Λq,q

a

for all structures a P {i, j,k}.

Lemma 2.13. Let pV , i, j,kq be a 4-dimensional quaternionic vector space. If η P Λ1,1
a V for all

a P {i, j,k}, then η P Λ2´V

Proof. Note that Λ2´VbR C is given byωKa Ă Λ
1,1
a V , i.e. it is the orthogonal complement

of ωa in Λ1,1
a V . Since ωa K ωb for a ‰ b, and η is in Λ1,1V for all complex structures

a, the claim follows. �
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2.1.3 Groups

In this section we will recall the definitions of groups that play an important role in
this work. Furthermore, we will mention some connections between these groups and
discuss characterizations that will become important later on.

Definition 2.14 (Opnq, SOpnq, Upnq, SUpnq, Sppnq). As always, define the classical ma-
trix groups as

Opnq “
{
A P Glpn, Rq | AtA “ 1

}
Ă Glpn, Rq (2.21)

SOpnq “ {A P Opnq | detA “ 1} Ă Opnq (2.22)

Upnq “ {A P Glpn, Cq | A˚A “ 1} Ă Glpn, Cq (2.23)

SUpnq “ {A P Upnq | detA “ 1} Ă Upnq (2.24)

Sppnq “ {A P Glpn, Hq | A˚A “ 1} Ă Glpn, Hq. (2.25)

Definition 2.15 (Spinpnq). For n ą 2, denote by Spinpnq the universal cover of SOpnq.

Remark 2.16. We are particularly interested in Spinp7q. The following description will
become handy later on,

Spinp7q “ {A P SOp8q | DB P SOp7q,@a,b P O : pBaqpAbq “ Apabq} , (2.26)

where B acts on the imaginary part of the Octonions. The map to SOp7q is in this
notation given by

A ÞÑ B. (2.27)

This uses the triality of SOp7q, for a justification see [Yok09].

Definition 2.17 (G2). Define G2 to be the octonionic automorphism group of O, that
is the real automorphisms of O that respect the multiplication

G2 “ AutOpOq “
{
ϕ : AutRpOq | ϕpa ¨ bq “ ϕpaq ¨ϕpbq,@a,b P O

}
. (2.28)

Remark 2.18. We can realize these groups as subgroups of SOpnq, for certain n P N.
We are interested here in

‚ ι1 : SUp2q ãÑ SOp4q,

(
a b

c d

)
ÞÑ

(
ιpaq ιpbq

ιpbq ιpaq

)
, where

ιpaq “

(
Repaq ´ Impaq
Impaq Repaq

)
,

‚ ι2 : SUp2q ãÑ SOp5q, A ÞÑ

(
1 0

0 ι1A

)
,
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‚ ι3 : SUp3q ãÑ SOp6q, similar to ι1,

‚ ι4 : G2 Ă SOp7q, ϕ ÞÑ prIm O ˝ϕ|Im O.

‚ ι5 : Spinp7q Ă SOp8q, using (2.26).

For ι4, realize that the multiplicativity of G2 implies that ϕp1q “ 1 and via ϕpaq “ ϕpaq
we conclude that ϕ is an isometry with respect to the standard scalar product on R8.
Hence ϕ P OpIm Oq, and since G2 is connected, even ϕ P SOpIm Oq.

Remark 2.19. ‚ Note that SUp2q “ Spp1q with some choice of H – C2.

‚ We can give alternative characterizations of the above groups as stabilizers of
certain objects. This is discussed in detail in Proposition 2.28.

Notation 2.20. For a manifold M and a basis of one-forms dxi we use the notation

dxi1i2...ik “ dxi1 ^ . . .^ dxik . (2.29)

If M “ Rk, then ei denote the canonical basis of one-forms.

Definition 2.21 (Hyperkähler structure forms). The following 2-forms on R4,

ω11 “ e
12` e34, ω12 “ e

13´ e24, ω13 “ e
14` e23, (2.30)

are called the hyperkähler structure forms.

Definition 2.22 (Hypo structure forms). The following forms on R5 are called the hypo
structure forms.

η1 “ e1, η11 “ e
23` e45, η12 “ e

24´ e35, η13 “ e
25` e34. (2.31)

Definition 2.23 (SUp3q structure forms). The following forms on R6

ω1 “ ´e12` e34` e56, Ω1 “ ´e135` e146´ e236´ e245, (2.32)

are called SUp3q structure forms.

Definition 2.24 (G2 structure form). The following form on R7

ϕ1 “ e123´ e145´ e167´ e246` e257´ e347´ e356 (2.33)

is called the G2-structure form.

Remark 2.25. Our choice of octonionic multiplication induces the signs in this structure
form.
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Definition 2.26 (Spinp7q structure form). The following form on R8

Θ1 “ e1234´ e1256´ e1278´ e1357` e1368´ e1458´ e1467 (2.34)

´e2358´ e2367` e2457´ e2468´ e3456´ e3478` e5678 (2.35)

is the Spinp7q-structure form.

Remark 2.27. Note that we have the following relation between these structure forms.

‚ If ω11,ω12,ω13 are hyperkähler structure forms on R4, then

η1 “ e0, η1i “ ω
1
i, i P {1, 2, 3} . (2.36)

form hypo structure forms on R5 “ R‘R4.

‚ If η1, η1i are hypo structure forms on R5, then

ω1 “ ´e0^ η1` η11 (2.37)

Ω1 “ e0^ η12´ η
1^ η13 (2.38)

are SUp3q structure forms of R6 “ R‘R5. From Lemma 2.9

‹6ω
1 “ ´‹5 η

1` e0^‹5η
1
1 (2.39)

‹6Ω
1 “ ‹5η

1
2´ e

0^‹5pη
1^ η13q. (2.40)

‚ If ω1,Ω1 are SUp3q structure forms on R6, then

ϕ1 “ ´e0^ω1`Ω1 (2.41)

is a G2 structure form on R7 “ R‘R6. By Lemma 2.9 we also get

ψ1 “ ‹7ϕ
1 “ ´‹6ω´ e

0^‹6Ω. (2.42)

‚ If ϕ1 is the G2 structure form on R7, then

Θ1 “ e0^ϕ1`‹7ϕ
1 (2.43)

is the Spinp7q structure form. Note that ‹7 is induced by the metric arising from
G2 Ă SOp7q.

Proposition 2.28. We can characterize the groups above as follows

1. SUp2q – SOp4q X Spω11q X Spω12q X Spω13q

2. SUp2q – SOp5q X Spη1q X Spη11q X Spη12q X Spη13q

3. SUp3q – SOp6q X Spω1q X SpΩ1q,
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4. G2 – Glp7q X Spϕ1q,

5. Spinp7q – Glp8q X SpΘ1q.

where Sp´q is the stabilizer of a form.

Proof. The proof of all these facts are similar.

Ad 1. Note that SUp2q – Spp1q and the latter is the stabilizer of

〈´,´〉H : HˆH Ñ H, 〈x,y〉H “ xȳ. (2.44)

With the identification H – R4 via x0 ` ix1 ` jx2 ` kx3 Ø px0, x1, x2, x3q (and
TaR4 – R4) this implies after a short calculation that

〈x,y〉H “ 〈x,y〉R´ iω
1
ipx,yq ´ jω1jpx,yq ´ kω1kpx,yq, (2.45)

is stabilized, where 〈´,´〉R is the canonical scalar product on R4. This shows
the claim.

Ad 2. Follows immediately from 1.

Ad 3. A similar argument as in 1 shows that the stabilizer of 〈´,´〉C (which is Up3q) is
the intersection of SOp6q with the stabilizer of ω1. Stabilizing Ω1 is then equiva-
lent to stabilizing the determinant Λ3,0 form, which is given by Ω1 ` JΩ1, where
J is the almost complex structure induced by SOp6q and ω1. This is equivalent to
stabilizing Ω1.

Ad 4. The octonionic multiplication is given by

a ¨ b “ 〈a,b〉R8 ` aˆ b, a,b P O. (2.46)

Furthermore ϕ1 is the 3-form given by

ϕ1px,y, zq “ 〈x,yˆ z〉 , (2.47)

so stabilizing ϕ1 is equivalent to stabilizing ˆ in SOp7q. But stabilizing ϕ auto-
matically implies stabilizing 〈´,´〉, because

6 〈´,´〉vol “ ι´ϕ^ ι´ϕ^ϕ. (2.48)

Ad 5. See e.g. [Sal89, Lemma 12.2].

�

Corollary 2.29. We have the following relation between the groups.

1. Spinp7q X
(
SOp1q ˆ SOp7q

)
– G2
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2. G2X
(
SOp1q ˆ SOp6q

)
– SUp3q

3. G2X pSOp3q ˆ SOp4qq – SOp4q

4. SUp3q X
(
SOp1q ˆ SOp5q

)
– SUp2q

5. SUp2q X
(
SOp1q ˆ SOp4q

)
– SUp2q

where we embed the left most groups according to Remark 2.18.

Proof. This follows immediately from Proposition 2.28 and Remark 2.27, except for 3.,
which can be found in e.g. [Yok09]. �

2.1.4 Representations

To understand manifolds of special holonomies, we need to understand some of the
representations of these groups. Luckily most of the groups we are interested in are
simply connected, so representations of their Lie Algebras are in one-to-one corre-
spondence with the representations of the groups. Unfortunately it is very hard to
find references for representations of real Lie Algebras, so we need to introduce some
notation.

Notation 2.30. Let all Lie Algebras be semi-simple, unless otherwise mentioned.

Definition 2.31 (Lie Algebra representation). A Lie Algebra representation of a Lie Alge-
bra g on a vector space V is a Lie algebra homomorphism

ρ : gÑ glpVq. (2.49)

‚ If g is a real Lie Algebra and V a real vector space, we call the representation real.

‚ If g is a real Lie Algebra, V is a complex vector space and ρ : g Ñ glCpVq is
R-linear, we call the representation complex.

‚ If g is a real Lie Algebra, V is a quaternionic vector space and ρ : g Ñ glHpVq is
R-linear, we call the representation quaternionic.

‚ If g is a complex Lie Algebra, V is a complex vector space and ρ : g Ñ glCpVq is
C-linear, we call the representation complex linear.

‚ A representation of any of the types above is called irreducible if it has no non-
trivial subrepresentations of the same type.

Remark 2.32. The theory of semi simple Lie Algebras generally works with complex
Lie Algebras and complex linear representations. So there are three steps to identify
these with representations of Lie Groups.
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1. Relate complex linear representations of the complexification of a Lie Algebra to
complex representations of the underlying real Lie Algebra.

2. Relate complex representations to real representations.

3. Relate representations of Lie Algebras to representations of the corresponding
Lie group.

We begin with 1.

Lemma 2.33. [Hal03, Proposition 4.6] Let g be a real Lie Algebra. There is a 1´ 1 correspon-
dence of (finite dimensional) complex representations of g and (finite dimensional) complex
linear representations of gC. The correspondence respects irreducibility.

Proof. The correspondence is given by complex linear extension,

x` iy ÞÑ ρpxq ` iρpyq, (2.50)

and restriction onto the real Lie Algebra. �

For the second step of Remark 2.32 we use a theorem from Onishchik [Oni04]. Let
us first introduce some notation.

Definition 2.34. ‚ Let ρ : g Ñ glpVq be a real representation. Denote by ρC the
induced complex representation of ρ on VC “ V ‘ iV .

‚ Let ρ : g Ñ glpWq be a complex presentation. Then denote by ρR the real repre-
sentation that is induced by forgetting the complex structure of W.

‚ Let ρ : gÑ glpWq be a complex representation with invariant real structure. Then
W “ VC for some real vector space V and ρ induces a representation on V . We
denote this representation by rWs.

Proposition 2.35. [Oni04, Theorem §8.1]
Any irreducible real representation ρ : g Ñ glpVq of a real Lie algebra g satisfies precisely

one of the following two conditions:

1. ρC is an irreducible complex representation;

2. ρ “ ρ1R, where ρ1 is an irreducible complex representation admitting no invariant real
structures.

Conversely, any real representation ρ satisfying 1. or 2. is irreducible.

Remark 2.36. We may turn this around and say that given any irreducible complex
representation ρ : g Ñ glCpVq, where n “ dimC V , one of two things can happen. Ei-
ther it has an invariant real structure, which gives a irreducible representation of real
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dimension n; or it remains irreducible if we forget the complex structure, resulting in
a an irreducible real representation of dimension 2n.

There are sophisticated techniques discussed in [Oni04] to see which of the two
categories a representation belongs to. Being only interested in low dimensional ex-
amples, we will use an ad-hoc approach here.

Remark 2.37. The last step of Remark 2.32 concerns the first fundamental group. Again,
there are more sophisticated methods to understand which representations factor
through the projection, but we will only work with the most naive approach; a repre-
sentation factors through if and only if the deck transformation group acts trivially on
it.

On the other hand any (irreducible) representation of the quotient clearly induces
a (irreducible) representation of the total space, so we get all possible representations.

The representations of SUp2q

Because SUp2q is simply connected, the representations of SUp2q agree with the com-
plex linear representations of slp2, Cq. These are characterized by the highest weight
and given by symmetric powers of the tautological representation.

As sup2q representations, it follows immediately that SiC2 has a real structure if
and only if i is even. This gives the following real representations

Highest Weight Name Origin Dimension

0 R rS0C2s 1

2 sup2q rS2C2s 3

1 C2R S1C2R 4

4 — rS4C2s 5

Representations of SOp4q

We know that SOp4q has the double cover SUp2q ˆ SUp2q. The irreducible complex
representations of SUp2q are given by SiC2. Hence the irreducible complex represen-
tations of SUp2q ˆ SUp2q are given by

Sij “ SiC2b SjC2. (2.51)

Figure 2.1: The Coxeter–Dynkin Diagram of sop4, Cq.

These representations factor through SOp4q if and only if p´1,´1q P SUp2qˆSUp2q
acts trivially, which is true if either both i and j are even, or both are odd. If both i and
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j is even, then both components have a real structure, so also the tensor product. If
both are odd, then both sides have a quaternionic structure and their tensor products
give a real structure. Hence the irreducible real representations of SOp4q are given by{

rSijs | i` j mod 2 “ 0
}

. (2.52)

For notational simplicity, we will drop the r´s and simply denote them by Sij. The
lowest dimensions are given by

Highest Weight Name Origin Dimension

p0, 0q R S00 1

p2, 0q Λ2` S20 3

p0, 2q Λ2´ S02 3

p1, 1q R4 S11 4

p4, 0q — S40 5

p0, 4q — S04 5

p3, 1q — S31 8

p1, 3q — S13 8

p2, 2q — S22 9

Representations of SUp3q

Again, SUp3q is simply connected. Actually all SUpnq are, by the fibration

SUpn´ 1q Ñ SUpnq Ñ SUpnq
/

SUpn´ 1q – S2n´1. (2.53)

So again, complex representations of SUp3q are equal to complex linear represen-
tations of slp3, Cq.

Figure 2.2: The Coxeter–Dynkin Diagram of slp3, Cq.

In this case we have a new phenomenon. Since we have an outer automorphism
of the group (swapping the two nodes in Figure 2.2), we have two distinct irreducible
representations of every dimension as long as the highest weight is not of type pn,nq,
n P N0. These representations are dual to each other, hence as representations of
SUp3q they are conjugated. Since these do not possess a real structure, we forget the
complex structure, which identifies these as real representations.
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Table 2.1: Some Irreducible Representations of SUp3q

Highest Weight Name Dimension

p0, 0q R 1

p1, 0q or p0, 1q C3R 6

p1, 1q sup3q 8

p2, 0q or p0, 2q — 12

The representations of G2

The representations of G2 are all equipped with an invariant real structure, and since
G2 is simply connected, representations are in correspondence with representations of
gC2 .

Figure 2.3: The Coxeter–Dynkin Diagram of gC
2 .

Table 2.2: Some Irreducible Real Representations of G2.

Highest Weight Name Dimension Description

(0,0) R 1 trivial representation
(1,0) µ 7 action of G2 on ImpOq
(0,1) g2 14 the adjoint representation
(2,0) S20µ 27

(1,1) — 64

(3,0) — 77

(0,2) — 77

Lemma 2.38. If we restrict the group to SOp4q Ă G2 then we have the following decomposition
of the G2-representation µ,

µ “ S20‘ S11 (2.54)

Proof. See the proof of [Yok09, Theorem 1.10.1], but instead of the described map use

ϕ : Spp1q`ˆ Spp1q´ : Gγ2 , pm` ae4q “ pmp̄` qap̄e4. (2.55)

(see the reference for the notation; we swapped Spp1q` with Spp1q´ to get S20 instead
of S02). Then the representations are S20 and S11 where the ismorphism of the second
is given by H Ñ H, x ÞÑ x̄. �

Remark 2.39. The identifiaction x ÞÑ x̄ will haunt us later on, but it is necessary beacuse
we want to work with anti self-dual instantons.
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The representations of Spinp7q

The representations of Spinp7q can again be read off the Coxeter-Dynkin diagram B3.
For details, see [Hal03; Var01].

Table 2.3: Some Irreducible Real Representations of Spinp7q.

Highest Weight Name Dimension Description

(0,0,0) R 1 trivial representation
(1,0,0) R7 7 representation from SOp7q
(0,1,0) S8 8 spin representation
(0,0,1) spinp7q 21 the adjoint representation

Figure 2.4: The Coxeter–Dynkin Diagram of sop7, Cq.

2.2 Manifolds of Special Holonomy

2.2.1 Hyperkähler structure

Definition 2.40 (Hyperkähler structure). A 4-dimensional oriented Riemannian mani-
fold M is said to have a hyperkähler structure if its holonomy group reduces to Spp1q Ă
SOp4q. The structure is called an integrable hyperkähler structure if the Levi-Civita con-
nection reduces too.

Proposition 2.41 (Description by local forms). Let M be a 4-dimensional oriented Rieman-
nian manifold and

F “
{
pω1,ω2,ω3q P

(
Λ2T_x M

)‘3
| Dp P FrSOpMqx : p˚ωi “ ω

1
i

}
(2.56)

be the admissible bundle of ω11,ω12 and ω13. Then a hyperkähler structure is equivalent to a
section

pω1,ω2,ω3q P ΓpFq, (2.57)

and it is integrable if and only if the sections are parallel.

Proof. This follows immediately from the holonomy theorem (see e.g. [Bau09, Satz
5.3]) and Proposition 2.28. �

Lemma 2.42 (Hitchin). Let M be an oriented Riemannian manifold with hyperkähler struc-
ture pω1,ω2,ω3q. Then the structure is integrable if and only if

dω1 “ dω2 “ dω3 “ 0. (2.58)
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Notation 2.43. In the following Λij will denote a j-dimensional subspace of the i-th
exterior product of T_M.

Proposition 2.44 (Λ¨ of a hyperkähler manifold). Let M be a 4-dimensional hyperkähler
manifold. Then

Space Decomposition Isomorphic to by ‹

Λ0T_M Λ01 Λ4T_M

Λ1T_M Λ14 Λ3T_M

Λ2T_M 3Λ21‘Λ
2
3

where Λ1̈ “ R are the trivial representations, Λ14 “ C2R is the realified tautological representa-
tion and Λ23 “ sup2q is the adjoint representation.

Proof. Λ1T_M “ Λ14 “ C2R follows immediately by restricting SOp4q ñ R4 to SUp2q ãÑ

SOp4q. Furthermore
Λ2T_M “ Λ2R4 “ Λ2`‘Λ

2
´ (2.59)

as SOp4q representations. It is then a tedious but simple calculation to show that
Λ2` – 3R and Λ2´ – sup2q as SUp2q representations. First note that SUp2q is simply
connected, so that we can equivalently work with the its Lie Algebra sup2q.

We use the usual orthogonal basis of Λ2˘

f1˘ “ e
12˘ e34, f2˘ “ e

13¯ e24, f3˘ “ e
14˘ e23. (2.60)

Here eij “ ei^ ej and e1, . . . , e4 is the dual of the standard basis e1, . . . , e4 of R4. If we
identify C2R with R4, we have the identification

e1 Ø

(
1

0

)
, e2 Ø

(
i

0

)
, e3 Ø

(
0

1

)
, e4 Ø

(
0

i

)
. (2.61)

Using the standard basis of sup2q given by

u1 “

(
i 0

0 ´i

)
, u2 “

(
0 1

´1 0

)
, u3 “

(
0 i

i 0

)
, (2.62)

the representation ρ of sup2q on R4 – C2R is given by left multiplication of the above
matrices. A quick inspection shows that the dual representation X ÞÑ ´ρpXqT has
exactly the same matrices (with respect to the dual basis) and hence the induced rep-
resentation Λ2ρ_ acts by

¨ f1` f2` f3`
u1 0 0 0

u2 0 0 0

u3 0 0 0

¨ f1´ f2´ f3´
u1 0 ´2f3´ 2f2´
u2 ´2f3´ 0 2f1´
u3 ´2f2´ 2f1´ 0
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which shows that the representation on Λ2` is trivial and the isomorphism induced
by f1´ ÞÑ u1, f2´ ÞÑ ´u2 and f3´ ÞÑ u3 gives an sup2q-module isomorphisms between
sup2q and Λ2´.

�

Proposition 2.45 (Description of the various representations). We have the following
description of the various representations of proposition (2.44)

Λ23 “

3⋂
i“1

kerpFpωiqq (2.63)

3Λ21 “ 〈ω1〉‘ 〈ω2〉‘ 〈ω3〉 (2.64)

Proof. The second assertion follows immediately from the proof of proposition (2.44).
To see the first, note that wedging with ωi gives a SUp2q-map 3Λ21 ‘Λ

2
3 Ñ Λ41, and a

quick check shows that ωi ^ωi ‰ 0, so the kernel of the map is of dimension 5. This
shows the first assertion. �

2.2.2 Hypo structure

Definition 2.46 (Hypo structure). A 5-dimensional oriented Riemannian manifold M
possesses a hypo structure, if the structure group of the frame bundle reduces to
ι2 : SUp2q ãÑ SOp5q. If, in addition, the Levi-Civita connection reduces, we say that
M possesses an integrable hypo structure.

Proposition 2.47 (Descritpion by local forms). Let M be a 5-dimensional oriented Rieman-
nian manifold and let

Fx “

{
pη,η1,η2,η3q P pΛ2T_x Mq

‘3‘ T_x M
∣∣∣ Dp P FrSOpMq :

p˚η “ η1,
p˚ηi “ η

1
i

}
(2.65)

be the admissible subbundle to the hypo structure forms. Then a hypo structure on M is given
by a sections

pη,ω1,ω2,ω3q P ΓpFq (2.66)

and it is integrable if and only if all sections are parallel.

Proof. This follows from the holonomy theorem (see e.g. [Bau09, Satz 5.3]) and Propo-
sition 2.28. �

Proposition 2.48 (Λ¨ of a hypo manifold). Let M be a manifold with a hypo structure.
Then the exterior powers of the cotangent bundle decompose as follows

Space Decomposition Isomorphic to by ‹

Λ0T_M Λ01 Λ5T_M

Λ1T_M Λ11‘Λ
1
4 Λ4T_M

Λ2T_M Λ24‘ 3Λ
2
1‘Λ

2
´ Λ3T_M
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(2.67)

where Λ1̈ “ R are the trivial representations, Λ4̈ “ C2R are the realified tautological represen-
tations and Λ2´ “ sup2q is the adjoint representation.

Proposition 2.49 (Description of the various representations). We have the following
description of the representations of proposition 2.48

Λ11 “ 〈η〉
Λ14 “ kerpιη7 |Λ1q

Λ24 “ impFpηq|Λ1q

3Λ21 “ 〈ω1〉\ 〈ω2〉\ 〈ω3〉
Λ2´ “ kerpFpη2q|Λ2q X kerpFpη2q|Λ2q X kerpFpη3q|Λ2q X kerpFpηq|Λ2q

Proof. This is can be checked by calculating with the hypo structure forms on R5 and
realizing that all maps above are SUp2q-equivariant. �

2.2.3 SUp3q structure

Definition 2.50. A 6-dimensional oriented Riemannian manifold M possesses a SUp3q-
structure if the structure group of the frame bundle reduces to ι3 : SUp3q ãÑ SOp6q. If,
in addition, the Levi-Civita connection reduces, we say that M possesses an integrable
SUp3q-structure.

Proposition 2.51. Let M be a 6-dimensional oriented Riemannian manifold and let

Fx “

{
pω,Ωq P Λ2T_x M‘Λ3T_x M

∣∣∣ Dp P FrSOpMq :
p˚ω “ ω1,
p˚Ω “ Ω1

}
(2.68)

be the corresponding admissible bundle. A SUp3q structure on M is a pair of sections

pω,Ωq P ΓpFq, (2.69)

and it is integrable if and only if the sections are parallel.

Proof. This follows from the holonomy theorem (see e.g. [Bau09, Satz 5.3]) and Propo-
sition 2.28. �

Proposition 2.52 (Λ¨ of a SUp3q manifold). Let M be a 6-dimensional SUp3q-manifold.
Then

Space Decomposition Isomorphic to by ‹

Λ0T_M Λ01 Λ6T_M

Λ1T_M Λ16 Λ5T_M

Λ2T_M Λ21‘Λ
2
6‘Λ

2
8 Λ4T_M

Λ3T_M 2Λ31‘Λ
3
6‘Λ

3
12
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(2.70)

where the representations of the decomposition are uniquely determined by their dimensions
(compare to Table 2.1).

Proof. See e.g. [Xu08, section 2.1.1]. �

2.2.4 G2 structure

Definition 2.53. A 7-dimensional oriented Riemannian manifold M possesses a G2-
structure if the structure group of the frame bundle reduced to ι4 : G2 ãÑ SOp7q. If,
in addition, the Levi-Civita connection reduces, we say that M possesses an integrable
G2-structure.

Proposition 2.54. Let M be a 7-dimensional oriented Riemannian manifold and let

Fx “
{
ϕ P Λ3T_x M

∣∣∣ Dp P FrSOpMq : p
˚ϕ “ ϕ1

}
(2.71)

be the corresponding admissible bundle. A G2 structure on M is section

ϕ P ΓpFq, (2.72)

and it is integrable if and only if the section is parallel.

Proof. This follows from the holonomy theorem (see e.g. [Bau09, Satz 5.3]) and Propo-
sition 2.28. �

Lemma 2.55. A section ϕ P ΓpFq is parallel if and only if ϕ is closed and co-closed.

Proposition 2.56 (Λ¨ of a G2 manifold). Let M be a 7-dimensional G2-manifold. Then

Space Decomposition Isomorphic to by ‹

Λ0T_M Λ01 Λ7T_M

Λ1T_M Λ17 Λ6T_M

Λ2T_M Λ27‘Λ
2
14 Λ5T_M

Λ3T_M Λ31‘Λ
3
7‘Λ

3
27 Λ4T_M

where the representations of the decomposition are uniquely determined by their dimensions
(compare to Table 2.2).

Proof. See e.g. [Bry87]. �
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Proposition 2.57. Let M be a 7-dimensional G2-manifold. Then

Λ27 “ impGpψq|Λ1q “ Eig (Gpϕq|Λ2 ; 2) (2.73)

Λ214 “ kerpFpψq|Λ2q “ Eig (Gpϕq|Λ2 ;´1) (2.74)

Λ31 “ 〈ϕ〉 (2.75)

Λ37 “ impGpϕq|Λ1q (2.76)

Λ327 “ kerpFpϕq|Λ3q X kerpFpψq|Λ3q (2.77)

where the representations of the decomposition are uniquely determined by their dimensions
(compare to Table 2.2).

Proposition 2.58. There is a G2-structure on Λ2`X of a 4-dimensional Riemannian manfiold.
If X is an anti self-dual Einstein manifold, then an integrable G2-structure can be defined on
Λ2`X. These structures reduce algebraically to SOp4q.

Proof. See [Sal89, Theorem 11.10]. �

2.2.5 Spinp7q structure

Definition 2.59. An 8-dimensional oriented Riemannian manifoldM is said to posses a
Spinp7q-structure if the structure group of the frame bundle reduced to ι5 : Spinp7q ãÑ

SOp8q. If, in addition, the Levi-Civita connection reduces, we say that M possesses an
integrable Spinp7q-structure.

Proposition 2.60. Let M be a 8-dimensional oriented Riemannian manifold and let

Fx “
{
Θ P Λ4T_x M

∣∣∣ Dp P FrSOpMq : p
˚Θ “ Θ1

}
(2.78)

be the corresponding admissible bundle. A Spinp7q structure on M is section

Θ P ΓpFq, (2.79)

and it is integrable if and only if the section is parallel.

Proof. This follows from the holonomy theorem (see e.g. [Bau09, Satz 5.3]) and Propo-
sition 2.28. �

Lemma 2.61. A section Θ P ΓpFq is parallel if and only if Θ is closed.

Proposition 2.62 (Λ¨ of a Spinp7q manifold). Let M be a 7-dimensional Spinp7q-manifold.
Then

Space Decomposition Isomorphic to by ‹

Λ0T_M Λ01 Λ8T_M

Λ1T_M Λ18 Λ7T_M

Λ2T_M Λ27‘Λ
2
21 Λ6T_M

Λ3T_M Λ38‘Λ
3
48 Λ5T_M

Λ4T_M Λ41‘Λ
4
7‘Λ

4
27‘Λ

4
35 —
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Proof. See e.g. [Bry87]. �

Proposition 2.63. Let M be a 8-dimensional Spinp7q-manifold. Then

Λ27 “ Eig (GpΘq|Λ2 ; 3) (2.80)

Λ221 “ Eig (GpΘq|Λ2 ;´1) (2.81)

Λ38 “ impGpΘq|Λ1q (2.82)

Λ348 “ kerpFpΘq|Λ3q (2.83)

Λ41 “ 〈Θ〉 (2.84)

Λ435 “ Eig (‹8|Λ4 ;´1) (2.85)

Proof. See [Bry87] for a justification and a description of the remaining spaces (which
we are not interested in here). �

2.2.6 Connection of Holonomies

Corollary 2.64. If we apply the above to the holonomy groups of manifolds, we get the follow-
ing facts.

‚ An 8-manifold with (integrable) Spinp7q holonomy and a global parallel non-vanishing
vector field has (integrable) holonomy in G2.

‚ A 7-manifold with (integrable) G2 holonomy and a global parallel non-vanishing vector
field has (integrable) holonomy in SUp3q.

‚ A 6-manifold with (integrable) SUp3q holonomy and a global parallel non-vanishing
vector field has (integrable) holonomy in SUp2q.

Proof. Apply the holonomy principle and use Corollary 2.29. �

Remark 2.65. We can also formulate this the following way. If RˆM is a Spinp7q-
manifold, then M is a G2 manifold. If RˆM is a G2-manifold, then M is a SUp3q
manifold. If RˆM is a SUp3q manifold, then M is a manifold with hypo structure.
Finally if RˆM is a manifold with hypo structure, then M is a SUp2q manifold.

Remark 2.66. We will be interested in an additional case. Assume we have manifold
M with (integrable) Spinp7q-structure, which has an free and proper action by SOp3q,
such that the quotient is flat (in the sense of the induced submersion by the Rieman-
nian submersion). This means that the quotient is locally a Riemannian product and
by the decomposition theorem of de Rham and Wu, this means the distribution in-
duced by the action of SOp3q in TM is invariant under the action of the holonomy
group. Via parallel transport we can restrict the discussion to a single tangent space.

As discussed in Lemma 2.38 and thereafter, the decomposition of TpM for holon-
omy groups

SUp2q Ă G2 Ă Spinp7q (2.86)
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decomposes into dimensions 4` 1` 1` 1` 1, whereas the decomposition for

SOp4q Ă G2 Ă Spinp7q (2.87)

is into dimensions 4` 3` 1.
This shows that a SOp3q action cannot achieve the former, and it can only achieve

the latter if we act on the “the three extra dimensions of G2 over SOp4q” (otherwise
this would imply the existence of a parallel vector field on SOp3q).
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Chapter 3

Hyperkähler Reduction

3.1 Introduction

The Hyperkähler Reduction is a cousin of the Symplectic Reduction applicable to the
setting where the starting manifold M is hyperkähler and the involved data, the action
of an auxiliary group G and the moment map µ, respect this structure. It is well known,
that this implies that the final manifold, the quotient of a preimage of a central regular
value of µ by G, also is a hyperkähler manifold. This however is not all that is special
about the hyperkähler reduction.

In their paper [GN92] T. Gocho and H. Nakajima find some interesting relations
between various geometrical quantities involved in this construction. The paper uses
calculations in the tangent bundle to show these relations.

We will present a different approach in this work by lifting the calculation onto
the involved principal bundles. Although quite a bit longer than the original work,
it highlights the role the quaternionic structure plays in the construction. The length
can be partly attributed to the need to introduce basic notions in this setting, e.g.
the section 3.4.5 Riemannian Submersions which recovers the fundamentals of O’Neill’s
theory in the principal bundle setting.

The aim of this chapter is to show that these relations can be derived fundamentally
from the structure of quaternionic matrices, when embedded into real matrices. It does
so, by first deriving equation (3.68), which does not need the involved quaternionic
structures. Then this equation is compared to the quaternionic world (3.69), and this
comparison yields all the relations that we long for. It then just remains to decipher
the implied relations for the quaternionic components.

The section 3.2 Definitions recalls the basic notions involved in hyperkähler geom-
etry and in particular in a hyperkähler reduction. Of utmost importance to the next
sections are the notions of reduction and extension of principal bundles. Further it
describes a recipe to compare forms on the manifolds and the involved principal bun-
dles.
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Section 3.3 Setting first discusses the tangent bundle of M and how its quaternionic
structure behaves with respect to the reduction. This structure allows for various
reductions of the principal bundle of frames of M. These bundles lie at the heart of
the construction in this work.

The following section inspects the involved forms with respect to the bundles dis-
cussed. Concretely we will trace the reductions of the Levi-Civita connection and
tautological form starting from the principal bundle of frames of M all the way to the
principal bundle of frames of the quotient N. A quick excursion is made in this sec-
tion, explaining the fundamentals of Riemannian Submersions in the principal bundle
language.

The last section 3.5 Final Results uses the preceding work to recover the results of
Gocho and Nakajima, and show a small novelty. It is this section where the relation
between the quaternionic structure and the results is investigated.

3.2 Definitions

Let us define some standard notions. Throughout this chapter , let M be a smooth
oriented Riemannian manifold of dimension 4m P N, and G a smooth Lie group of
dimension k P N.

Notation 3.1. By FrSOpMq we denote the principal bundle of orthonormal frames on M,

FrSOpMq “
{
p : R4m Ñ TxM : p is an oriented orthogonal isomorphism

}
.

Notation 3.2. By θM P Ω1pFrSOpMq, R4mq we denote the soldering form of FrSOpMq

θMp pξq “ p
´1 ˝Dπppξq, p P FrSOpMq, ξ P TpFrSOpMq,

where π : FrSOpMq ÑM is the projection.

Let ϕ P Ω1pFrSOpMq, sop4mqq
SOp4mq denote the Levi-Civita connection of pM,gq.

Then ϕ satisfies

‚ R˚gϕ “ Adg´1 ˝ϕ, for all g P SOp4mq,

‚ ϕpKξq “ ξ for all ξ P sop4mq, where Kξ is the fundamental vector field to the lie
algebra element ξ, i.e.

Kξp “
d

d t

∣∣∣∣
t“0

pp expptξqq,

‚ dθ`ϕ^ θ “ 0, i.e. ϕ has zero torsion.

Definition 3.3 (Hyperkähler Manifold). A Riemannian manifold pM,gq with a triple
of almost complex structures I, J,K,

I, J,K : TMÑ TM, I2 “ J2 “ K2 “ ´ idTM,
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which satisfy the quaternionic relation IJ “ K and are compatible with the metric,

gp´,´q “ gpI´, I´q “ gpJ´, J´q “ gpK´,K´q,

is called a hyperkähler manifold (hk-manifold) if the two-forms corresponding to I, J
and K are closed, i.e.

dωA “ 0, ωAp´,´q “ gpA´,´q, A P {I, J,K} .

Proposition 3.4 (Alternative Characterization). pM4m,gq is a hyperkähler manifold if and
only if the structure group of FrSOpMq reduces to Sppmq and the Levi-Civita connection on
FrSOpMq reduces to a connection on

FrSppMq “
{
p : Hm Ñ TxM : p is a H-linear isomorphism

}
,

i.e. the horizontal subspaces are tangent to the submanifold FrSppMq Ă FrSOpMq.

Note that in the dual formulation the condition on the horizontal subspaces is that
ϕ reduces to a connection on FrSppMq. Precisely this means that j˚ϕ is a connection
on FrSppMq, where j : FrSppMq Ñ FrSOpMq.

Definition 3.5 (Hyperkähler Action). We say a group G acts hyperkähler on a hy-
perkähler manifold pM,g, I, J,Kq, if G acts on M and this action preserves the metric g
and the hyperkähler structures I, J and K, i.e.

R˚hωA “ ωA @A P {I, J,K} , R˚hg “ g, (3.1)

for all h P G. (In this case we used a right action of G on M, but this definition does
not require so).

Definition 3.6 (tri-hamiltonian action). A hyperkähler action of G on M is called a
tri-hamiltonian action, if G-equivariant moment maps

µI,µJ,µK : MÑ g˚ (3.2)

exist, i.e.

µApx.hq “ Ad˚h´1 ˝µApxq @x PM, @h P G, @A P {I, J,K} , (3.3)

〈ξ, dµApηq〉 “ ωApKξ,ηq @η P TM, @ξ P g, @A P {I, J,K} . (3.4)

The moment maps of a tri-hamiltonian action are also often considered together as
a map µ “ pµI,µJ,µKq : MÑ R3b g˚.
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3.2.1 Reduction and Extensions

Let π : P Ñ M be a principal bundle with structure group G. A reduction of P is a
principal bundle QÑM with structure group H and maps

λ : HÑ G, f : QÑ P, (3.5)

a Lie homomorphism and a smooth map respectively, such that the following diagram
commutes.

QˆH PˆG

Q P

M

fˆ λ

f

The vertical maps above are the group actions on the principal bundles. An extension
of P is a principal bundle Q̃ Ñ M of structure group H̃ with maps λ̃ : G Ñ H̃ and
f̃ : PÑ Q̃, such that P is a reduction of Q̃.

Given a connection φP on P, then there is a unique connection φQ̃ on Q̃ such that

f̃˚φQ̃ “ λ̃˚ ˝φ
P, (3.6)

where λ̃˚ is the derivative of λ̃ (see e.g. [Bau09, Satz 4.1]). In this sense, a connection
is always extendable. If two connections satisfy the equation above, we say that φP

extends to φQ̃ and φQ̃ reduces to φP.
On Q the situation is somewhat more complicated. We will only discuss the situa-

tion for the simplest case where f “ i and λ are the inclusions.

Proposition 3.7 (Reduction of a connection). If g “ h‘ f as H-representations, i.e. f Ă g

is a vector space complement of h Ă g, with the property that

AdHpfq Ă f, (3.7)

then prh ˝i
˚φP is a connection on Q, where the projection is with respect to the decomposition

given above.

Proof. The only thing to note is, that the condition AdHpfq Ă f (together with AdHphq Ă
h) implies that prh commutes with Adh for all h P H. The necessary conditions are
then easily checked. �
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Definition 3.8. We say that ϕ reduces to Q when the horizontal subspaces are tangent
to the subbundle Q Ă P. In the dual formulation this is true if and only if the pulled
back connection takes values in the Lie algebra h, so that no projection is necessary.

Note that a projected connection as in the lemma above can be extended back to
P. This will however yield a different connection if the original one was not reducible.
This also implies that there are in general multiple connections on P that project onto
a given connection on Q.

Remark 3.9. Let ι : Q Ñ FrSOpMq denote a reduction of the frame bundle. We call the
pull back θQ of θM to Q again soldering form of Q. Since the diagram

Q FrSOpMq

M

πQ

ι

πM

commutes, we have that for all p P Q and ξ P TpQ

θQp pξq “ pι
˚θMqppξq “ θ

M
ιppqpξq “ ιppq

´1
˝ pDπMqιppq ˝Dιppξq (3.8)

“ ιppq
´1
˝ pDpπM ˝ ιqqppξq “ ιppq

´1
˝ pDπQqppξq, (3.9)

so that θQp “ ιppq
´1
˝Dπ

Q
p . In this sense the construction is natural.

3.2.2 The Correspondence of Forms

Having a principal bundle of frames FrGlpMq (or any reduction of it) over a manifold
M induces a correspondence between certain forms on the base manifold and the
bundle. We will use this correspondence to compare our approach and the one taken
in [GN92].

Lemma 3.10 (Correspondence of forms). There is a one-to-one correspondence between
horizontal, equivariant and glp4mq-valued one-forms on the principal bundle of frames, and
(global) sections of the vector bundle T˚Mb EndpTMq.

Remark 3.11. Note that this is a special case of the correspondence between represen-
tation valued forms on a principal bundle and forms with values in associated vector
bundles on the base. In the presence of the soldering form, we can give a simple
explicit description.

Proof. Let ω be a horizontal and equivariant one-form on the principal bundle. We
induce the wanted section as follows. If x PM and ξ,η P TxM, let p P FrGlpMq be any
frame in the fiber of π over x. Define

spωqpξ,ηq “ pωpξ̄qθpη̄q, (3.10)
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where θ is the solder form of FrGlpMq and ξ̄ and η̄ are lifts of ξ and η to p P FrGlpMq,
i.e. Dπpξ̄q “ ξ and Dπpη̄q “ η. This is well defined, because for a different choice of
lifts ξ̃ and η̃, the differences ∆ξ “ ξ̃´ ξ̄ and ∆η “ η̃´ η̄ are vertical, but ω and θ are
both horizontal forms. A different choice of frame q “ p.g P FrGlpMq, leads to the
calculation

qωpξ̄qθpη̄q “ qωpξ̄qq´1pηq “ p.gωpξ̄qpp.gq´1pηq “ pgωpξ̄qg´1p´1pηq (3.11)

“ pAdgpωpξ̄qqθpη̄q “ pωpDRg´1 ξ̄qθpη̄q “ pωpξ̃qθpη̄q

“ pωpξ̄qθpη̄q,

where we have used the equivariance of ω, R˚gω “ Adg´1 ω, and the fact that DRg
maps lifts into lifts, since π ˝ Rg “ π and therefore Dπ ˝DRg “ Dπ for all g P Glpmq.
By abuse of notation η denotes a lift to both q and p in TFrGlpmq.

Note that we have only needed Glpmq for the fact that Adgpξq “ gξg´1, so this will
be true for all principal bundles in this work, if we adjust the vector bundle in which
the sections are taken.

The inverse map, sending a section to a form on the principal bundle is defined by

ωpsqpξq “ p´1spDπpξqqp, (3.12)

where p P FrGlpMq is some frame, ξ P TpFrGlpMq and s P ΓpT˚Mb EndpTMqq is the
section. This form is clearly a horizontal glpmq-valued one-form. It is also equivariant
because

R˚gωpsqpξq “ ppgq
´1
spDπ ˝DRgpξqqpg “ g

´1p´1spDπpξqqpg (3.13)

“ Adg´1 ωpsqpξq.

It is easy to show that these two maps are inverse of each other, which concludes
the proof. �

Definition 3.12 (Corresponding forms). As denoted in the proof above, the section of
T˚Mb EndpTMq corresponding to ω is denoted by spωq, and the form corresponding
to a section s by ωpsq.

Note that this result remains true for reductions of the basis bundle, if we adjust
the vector bundle in which the sections are taken. For example, the above mentioned
forms on FrSOpMq correspond to sections in T˚Mb sopTMq and the forms on FrSppMq
to sections of T˚Mb sppTMq.

Example 3.13 (Difference form). A well known example of this correspondence is be-
tween the difference form of two connections on a principal bundle, and the difference
tensor of the two associated covariant derivatives. This follows immediately from
equation (3.38).
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3.3 Setting

We will recover the results from [GN92] for principal bundles.
Let pM,gq be an Riemannian manifold of dimension 4m P N, and let M ð G be

a tri-hamiltonian action of G on M. Let k P N be the dimension of the Lie group G.
We denote the momentum map by µ : M Ñ R3 b g˚. We assume that 0 P R3 b g˚

is a regular value of µ. This implies that G acts on the submanifold µ´1p0q, because
equation (3.3) guarantees that for x P µ´1p0q, i.e. µApxq “ 0 for all A, we have

µApx.hq “ Ad˚h ˝µApxq “ 0, @h P G, (3.14)

and hence x.h P µ´1p0q.
We assume further that this action is free and proper, so that the quotient µ´1p0q{G

is a Hausdorff space, and define N :“ µ´1p0q{G.

µ´1p0q M

N

π

ι

We will show that N also is a hyperkähler manifold, and that the second funda-
mental form of µ´1p0q inM is given by the Hessian of µ, compare [GN92] and [Hit+87].

3.3.1 The Splitting of TM

The tri-hamiltonian action M ð G splits the vector bundle TM over µ´1p0q, i.e. the
ambient bundle

ι˚TM, (3.15)

in the following way.

Proposition 3.14. If x P µ´1p0q, we have

TxM “ Txµ
´1p0q ‘ Txµ

´1p0q
K
“ Hx‘ g‘ Txµ

´1p0q
K, (3.16)

where g Ă TxM is defined by the fundamental vector fields, i.e. the image of K : g Ñ ΓpTMq,
and Hx is the orthogonal complement to g in Tµ´1p0q with respect to the metric g. All direct
sums are orthogonal.

Then Hx is a quaternionic subspace of TxM and

Txµ
´1p0qK “ Ig‘ Jg‘Kg. (3.17)
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Proof. If ξ P g and η P Txµ
´1p0q then η is tangent to a level set of µ, i.e. dµpηq “ 0,

which implies for A P {I, J,K}

gpAKξ,ηq “ ωApKξ,ηq “ 〈ξ, dµApηq〉 “ 0, (3.18)

hence AKξ P Tµ´1p0qK for all A.
Furthermore the sets Ig, Jg and Kg have a trivial intersection. Indeed, assume ξ,η P

g with Iξ “ Jη. Then Kξ “ η but since Kξ is in Tµ´1p0qK, η “ ξ “ 0.
Since the codimension of µ´1p0q in M is 3k, where k “ dimG “ dim g, we see that

Txµ
´1p0q

K
“ Ig‘ Jg‘Kg. (3.19)

Finally, I, J and K let the orthogonal complement of Hx invariant and are orthogo-
nal, so they also let Hx invariant.

�

We conclude that TM splits over µ´1p0q into two quaternionic sub-bundles

TM “ H‘ gbR H. (3.20)

Notice that while the first bundle has a quaternionic structure, the second one has a
quaternionic and a real structure. This will become important later on.

The metric g of M induces a metric on H. Since M ð G is hyperkähler and g

is G-invariant it furnishes N with a Riemannian metric. Similarly the quaternionic
structure on M induces one on H (because of the quaternionic decomposition above),
which in turn induces one on N compatible with the metric. This reduces the principal
bundle of orthogonal frames on N to the structure group Sppnq (n “ m´ k, 4n is the
dimension of N). We will show later that the connection of N reduces so that N is
indeed a hyperkähler manifold.

3.3.2 The Principal Bundles

Similar to the vector bundle TM, we may depict the splitting in the principal bundle
setting. Fix a splitting

R4m “ R4n‘Rk‘R3k “ Hn‘Hk (3.21)

Now we can ask frames p : R4m Ñ TxM to respect various degrees of the structure.
Let x P µ´1p0q.

‚ p : R4m Ñ TxM with no condition at all. These frames are in the pull back of the
frame bundle FrSOpMq to µ´1p0q, denoted by ι˚FrSOpMq.
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‚ p : R4m Ñ TxM with ppR4n‘Rkq “ Tµ´1p0q, frames adapted to the submanifold
µ´1p0q Ă M. This is a principal bundle whose structure group is SOp4n` kq ˆ
SOp3kq, corresponding to the possible rotations of the frame in Tµ´1p0q and
Tµ´1p0q

K. We denote it by

FrSOpµ
´1p0q,Mq “

{
p P FrSOpMq : impp|R4n`kq “ Tµ

´1p0q
}

, (3.22)

‚ p : R4n ‘Rk Ñ Txµ
´1p0q. These frames can be identified with frames of µ´1p0q.

We denote them with FrSOpµ´1p0qq.

‚ p : R4n ‘Rk Ñ Txµ
´1p0q with ppR4nq “ Hx. These frames are frames of µ´1p0q

adapted to the fibration π : µ´1p0q Ñ N. The principal bundle of these have
structure group SOp4nq ˆ SOpkq corresponding to the rotations in the fiber and
its orthogonal complement. We denote the bundle by

FrSOpN,µ´1p0qq “
{
p P FrSOpµ

´1p0qq : impp|R4nq “ Hx
}

, (3.23)

‚ p : R4n Ñ Hx. The principal bundle of these frames can be identified with the
pull back of FrSOpNq to µ´1p0q (note that we know already thatN is a Riemannian
manifold). We denote it by π˚FrSOpNq.

We may restrict the principal bundles above to quaternionic frames where it makes
sense. Fix

Hm “ Hn‘Hk (3.24)

respecting (3.21). This induces the following bundles, where all frames are H-linear.

‚ p : Hm Ñ TxM are the frames that make up the pull back of

FrSppMq “
{
p P FrSOpMq : p is H-linear

}
(3.25)

to µ´1p0q. It is naturally a reduction of ι˚FrSOpMq to quaternionic frames, has
structure group Sppmq and will be denoted by ι˚FrSppMq.

‚ p : Hm Ñ TxM with ppHnq “ Hx and ppHkq “ gbH respecting both the quater-
nionic and real structure. We denote this principal bundle with structure group
Sppnq ˆ SOpkq by

FrSppN,Mq “
{
p P ι˚FrSppMq : impp|Hnq “ Hx, impp|Hkq “ gbH

}
(3.26)

The frames are adapted to the quaternionic splitting of TxM “ Hx ‘ gbH and
respect the real structure of the second, ppRepHkqq “ RepgbHq “ g, so in par-
ticular (because I, J,K are orthogonal) respect the splitting Tµ´1p0q ‘ Tµ´1p0qK.
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‚ p : Hn Ñ Hx are the frames of the pulled back bundle FrSppNq to µ´1p0q and is
denoted by π˚FrSppNq.

There are plenty of natural maps between these bundles. We will be using the
following.

‚ Reductions to quaternionic frames, denoted by i: Some of the real frame bundles can
be reduced to quaternionic frames, which induces maps from the quaternionic
world to the real world. This is obviously the case for FrSppMq Ñ FrSOpMq,
FrSppNq Ñ FrSOpNq and their pull backs to µ´1p0q. Finally this is also the case
for FrSppN,Mq Ñ FrSOpµ

´1p0q,Mq, because a quaternionic frame that respects
the splitting Txµ´1p0q ‘ Txµ´1p0qK, automatically respects the quaternionic split-
ting Hx ‘ gbH, as can be seen by applying one of the complex structures to
Txµ

´1p0qK. In other words, pSOp4n` kq ˆ SOp3kqq X Sppmq – Sppnq ˆ SOpkq.

‚ Reduction to more structured frames, denoted by j: Some of the bundles are simply
restrictions of other bundles to frames respecting more structures. This is the
case for

FrSOpµ
´1p0q,Mq Ñ ι˚FrSOpMq, FrSOpN,µ´1p0qq Ñ FrSOpµ

´1p0qq (3.27)

and
FrSppN,Mq Ñ ι˚FrSppMq. (3.28)

‚ Induced maps by pull backs, also denoted by j: There are of course canonical maps
ι˚FrSOpMq Ñ FrSOpMq and similar for π : µ´1p0q Ñ N and the quaternionic bun-
dles.

‚ Restrictions of frames, denoted by k: Some bundles allow natural projections to
other bundles by restricting the frame to a subspace of its domain. This is the
case for

FrSOpµ
´1p0q,Mq Ñ FrSOpµ

´1p0qq, FrSOpN,µ´1p0qq Ñ π˚FrSOpNq (3.29)

and

FrSppN,Mq Ñ π˚FrSppNq, FrSppN,Mq Ñ FrSOpN,µ´1p0qq. (3.30)

The aforementioned bundles are depicted in the following diagram.
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π
˚
F
r S
O
pN
q

F
r S
O
pN

,µ
´
1
p0
qq

F
r S
O
pµ
´
1
p0
qq

F
r S
O
pµ
´
1
p0
q,
M
q

ι˚
F
r S
O
pM
q

F
r S
O
pM
q

π
˚
F
r S
p
pN
q

F
r S
p
pN

,M
q

ι˚
F
r S
p
pM
q

F
r S
p
pM
q

F
r S
O
pN
q

F
r S
p
pN
q

µ
´
1
p0
q

M

N

π

ι

π
H M

π
R M

π̂
R

π̃
R

π̃
H

π̂
H

π
R Nπ̄

R

π
H N

jH 4

i5

jR 4

π̄
H

k
R 1

jR 3
k

R 2

π
µ

π
1

i4

jR 2
jR 1

i3
i2

i1
k

jH 2
k

H 1
jH 1
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3.4 The Induced Connections

In this section we will start with the Levi Civita connection on FrSOpMq and chase it
through the diagram. This will show that N is indeed a hyperkähler manifold and
recover the results from [GN92].

3.4.1 Forms on FrSppMq

Starting with the solder form θM,R and the Levi Civita connection ϕM,R on FrSOpMq,
we first induce the forms θM,H and ϕM,H on FrSppMq, by pulling back with i1,

θM,H “ i˚1θ
M,R, ϕM,H “ i˚1ϕ

M,R.

Since M is a hyperkähler-manifold, ϕM,H is a connection on FrSppMq satisfying the
pulled back structure equation

d θM,H`ϕM,H^ θM,H “ 0.

As remarked in (3.9) θM,H is again the soldering form of FrSppMq, hence ϕM,H is
a torsion free connection on FrSppMq.

3.4.2 Forms on ι˚FrSOpMq and ι˚FrSppMq

The solder forms and connection forms on FrSOpMq and FrSppMq further induce con-
nections on the ambient principal bundles ι˚FrSppMq and ι˚FrSOpMq which we will
denote by ϕ̂R, θ̂R and ϕ̂H, θ̂H with the obvious choice. The ϕ̂ are connections, since
we do not change the fibers of the principal bundle (although some may be discarded).
It is also a torsion free connection, since the structural equation d θ`ϕ^θ “ 0 survives
the pull back and by using remark (3.9), the pulled back solder forms are natural

θ̂R
p pξq “ p

´1 ˝Dπ̂R
p pξq, θ̂H

q pηq “ q
´1 ˝Dπ̂H

q pηq,

where p P ι˚FrSOpMq, ξ P Tpι˚FrSOpMq and q P ι˚FrSppMq, η P Tqι˚FrSppMq.

3.4.3 Forms on FrSOpµ´1p0q,Mq

The next step is to transfer these forms to the principal bundle

FrSOpµ
´1p0q,Mq “

{
p P ι˚FrSOpMq : impp|R4n`kq “ Tµ

´1p0q
}

,

which has structure group SOp4n` kq ˆ SOp3kq.
Different to before is that FrSOpµ´1p0q,Mq is in general not horizontal in the ambi-

ent bundle, hence we need to project in order to get a connection.
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Lemma (3.7) allows us to define connections on the adapted frame bundles given
by FrSOpµ´1p0q,Mq and FrSppN,Mq. With the inclusion

i : SOp4n` kq ˆ SOp3kq Ñ SOp4mq, pA,Bq ÞÑ

(
A 0

0 B

)
,

we get the Lie algebra decomposition (as vector spaces)

sop4mq “ sop4n` kq ‘ sop3kq ‘ f,

where

f “

{(
0 C

´Ct 0

)
P sop4mq : C P Matp4n` k, 3kq

}
.

If A P impiq and ξ P f, then AdApξq “ AξA´1 P f, hence we have a connection
ϕ̃R “ prsop4n`kq‘sop3kq ˝j

R˚
2 ϕ̂R on FrSOpµ´1p0q,Mq. This connection naturally decom-

poses into two equivariant one-forms φR
1 and φR

2 with values in sop4n` kq and sop3kq

respectively.
We can go ahead and extend ϕ̃R back to ι˚FrSOpMq, which gives us a connection

ϕ̂1R. The difference form

τ̂R “ ϕ̂R´ ϕ̂1R, (3.31)

is a equivariant horizontal one form, hence the pull back

τR “ jR˚2 τ̂R “ jR˚2 ϕ̂R´ ϕ̃R (3.32)

is also.
The induced connection ϕ̃R is torsion free, since θ̃R, the pull back of the solder

form, is again the solder form on FrSOpµ´1p0q,Nq. We pull back the structure equation
dθ̂R` ϕ̂R^ θ̂R “ 0 to get

dθ̃R` pjR˚2 ϕ̂Rq ^ θ̃R “ dθ̃R` pϕ̃R` τRq ^ θ̃R “ 0. (3.33)

Since θ̃R has values in R4n`k, we can split the equation into the following two equa-
tions

dθ̃R` ϕ̃R^ θ̃R “ 0, (3.34)

τR^ θ̃R “ 0, (3.35)

which shows that ϕ̃R is indeed torsion free.
τR splits naturally into two forms with values in the top right matrices and bottom

left matrices. Let τR
1 denote the one that has values in the bottom left. Hence we have

the splitting
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jR˚2 ϕ̂R “

(
φR
1 ´pτR

1 q
t

τR
1 φR

2

)
. (3.36)

Using lemma (3.10) to identify τR
1 with a p2, 1q-tensor on µ´1p0q, via

spτR
1 qpξ,ηq “ pτR

1 pξ̄qθ̃
Rpη̄q, (3.37)

where p is a frame in Fpµ´1p0q,Mq and ξ̄, η̄ are lifts (compare lemma (3.10)).

Proposition 3.15 (Second fundamental form). spτR
1 q is the second fundamental form of

µ´1p0q in M.

Proof. In the next subsection we will show that φR
1 is the pull back of the Levi Civita

connection on FrSOpµ´1p0qq. The covariant derivative of a connection ϕ with soldering
form θ is given by

∇tX “ ppt̄θpX̄q `ϕpt̄qθpX̄pqq, (3.38)

where t̄ and X̄ are lifts of the tangent vector t and vector field X to a frame p (see
e.g. [BC64, p. 6.4], but note that this book has a very unusual sign convention for the
second fundamental form). Hence the second fundamental form is given by

IIpX, Yq “ ∇MX Y ´∇
µ´1p0q
X Y “ ppjR˚2 ϕ̂RpX̄q ´φR

1 pX̄qqθ̃
RpȲq (3.39)

“ ppjR˚2 ϕ̂RpX̄q ´ ϕ̃RpX̄qqθ̃RpȲq “ pτRpX̄pqθ̃
RpȲpq. (3.40)

Here we have used that X and Y are tangent to µ´1p0q and hence φR
2 pX̄pqθ̃

RpȲpq “ 0.
Note that II is symmetric, because τR ^ θ̃R “ 0, by equation (3.35). Since the sec-
ond fundamental form is only defined for tangent vectors to µ´1p0q and takes values
orthogonal to µ´1p0q, we have to restrict τR to τR

1 as described above. �

Proposition 3.16 (Second fundamental form as Hessian). Let f : M Ñ V be a smooth
map, where M is a Riemannian manifold and V a vector space. Assume further, that 0 P V is
a regular value. Df : TMÑ V identifies every fiber of the bundle Tf´1p0qK with V , and under
this identification the negative of the Hessian matrix of f equals the second fundamental form
of f´1p0q in M.

Proof. The first claim is just the dimension formula for a linear map,

Dfp : Tf
´1p0q ‘ Tf´1p0q

K
Ñ V , (3.41)

which has kernel Tf´1p0q. Note that the second equality only holds for vector fields
tangent to f´1p0q, since the second fundamental form is only defined for these. Let X
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and Y be vector fields tangent to f´1p0q. Then

HesspfqpX, Yq “ XpYfq ´Dfp∇MX Yq (3.42)

“ XpDfpYq︸ ︷︷ ︸
“0

q ´Dfp∇µ
´1p0q
X Yq︸ ︷︷ ︸
“0

´Df IIpX, Yq

“ ´Df IIpX, Yq

�

In this sense, τR
1 is associated with the ´Hesspµq by the two aforementioned propo-

sitions.

3.4.4 Forms on FrSOpµ´1p0qq

Recall that the torsion free connection ϕ̃R decomposes into two one forms φR
1 and φR

2 .
φR
1 with values in sop4n` kq induces a connection on FrSOpµ´1p0qq, because

φR
1 ppDk

R
1 q
´1
p0qq “ 0, (3.43)

R˚gφ
R
1 “ φ

R
1 @g P Op3kq Ă Op4mq, (3.44)

which is true because DkR
1 : sop4n` kq‘ sop3kq Ñ sop4n` kq is the projection. It allows

us to define

ϕµ
´1p0qpηq “ φR

1 pη̃q, η̃ P pDkR
1 q
´1

q pηq, (3.45)

i.e. kR˚
1 ϕµ

´1p0q “ φR
1 . Since the solder form on µ´1p0q pulled back to Fpµ´1p0q,Mq is

the form θ̃R, we get the equation

dθµ
´1p0q,R`ϕµ

´1p0q^ θµ
´1p0q,R “ 0, (3.46)

and see that ϕµ´1p0q is the unique Levi Civita connection on µ´1p0q.

3.4.5 Riemannian Submersions

The next step involves understanding Riemannian submersions on the level of frame
bundles. Since there is no exposition of this known to the author, we will describe it
in a general setting, and apply it to the reduction afterwards.

Let us at this point recall the basics of the Riemannian submersion theory of
O’Neill [O’N66]. A Riemannian submersion π : Mm Ñ Bb is a smooth map between
two Riemannian manifolds such that π is a submersion and Dπx|Hx : Hx Ñ TπpxqB is a
isometry for all x PM, where Hx is the orthogonal complement of kerpDπq Ă TxM.

To such a Riemannian submersion we may associate two important p2, 1q-tensor
fields on M,
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TXY “H∇MVXVY `V∇MVXHY (3.47)

AXY “H∇MHXVY `V∇MHXHY, (3.48)

where H and V are the horizontal and vertical projection in TM, respectively. T is
known to be the second fundamental form of each fiber (if vertical vector fields are
plugged in), whereas A is related to the obstruction to integrability of the horizontal
distribution on M. An important fact is that

AXY “
1

2
V [X, Y] , (3.49)

for horizontal vector fields X and Y. If the Riemannian submersion π : M Ñ B should
also happen to be a principal bundle, and we fix the connection corresponding to the
horizontal subspaces, then 2AXY “ ´RpX, Yq, where RpX, Yq is the curvature of the
connection, if we identify the vertical tangent space with the Lie algebra as usual.

In the world of principal bundles this can be expressed the following way. Let
FrpMq be the principal bundle of frames and FrpB,Mq the reduction to adapted frames
on M. Here a frame is adapted if it respects the splitting of TM into horizontal and
vertical parts, i.e.

FrpB,Mq “ {p P FrpMq : impp|Rbq is horizontal} . (3.50)

Then a pull back of the Levi Civita connection φ on FrpMq and the solder form θ

gives, after a suitable projection, a connection ψ on FrpB,Mq with structure equation

dθ1`ψ^ θ1` τ^ θ1 “ 0, (3.51)

where θ1 is the pull back of the solder form, ψ the projected connection and τ “

i˚φ´ψ, where i : FrpB,Mq Ñ FrpMq is the inclusion. We see that τ is an obstruction
to the integrability of the horizontal distribution, because for a product manifold M “

M1ˆM2 we have the commutative diagram

FrpMq

FrpM1q FrpM1,M2q FrpM2q

M1 M M2
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and the connection on FrpMq reduces to a connection on FrpM1,M2q, which is the sum
of the connections pulled back from FrpMiq. On the other hand, from the construction
of the last section, we also know that τ is related to the second fundamental forms of
the fibers.

The notion of horizontal and vertical projection extends to horizontal forms on
FrpB,Mq, via

τhpξq “ τpHDπ1pξqq (3.52)

τvpξq “ τpVDπ1pξqq, (3.53)

where π1 is the principal bundle map of FrpB,Mq and the over line is a lift with respect
to that map. It is easy to see that this is well defined for a horizontal form, since it
does not depend on the choice of lift. Note also that by definition τ “ τh ` τv. The
following proposition is the main result of this section.

Proposition 3.17 (O’Neill on Principal Bundles). τv corresponds to T and τh corresponds
to A.

Proof. Note that τ is described by the difference of the connection on FrpMq and the
connection on FrpB,Mq. The connection on FrpMq gives rise to the covariant derivative
∇M, and the connection on FrpB,Mq to ∇̃. As we have shown before, the connection
extended from ∇̃ splits into two connections which are the Levi Civita connection on
the fibers and the horizontal submanifolds, if they exist. Even if they do not, a quick
inspection of equation (3.38), using the matrix form of the reduced connection, shows
that

∇̃ξX “H∇Mξ X (3.54)

if ξ and X are horizontal and

∇̃ηY “ V∇Mη Y, (3.55)

if η and Y are vertical. The unique extension of this to FrpMq gives the connection

∇̂χZ :“H∇Mχ HZ`V∇Mχ VZ, (3.56)

for χ an arbitrary tangent vector and Z an arbitrary vector field on M. This can be
verified by showing that the above is indeed a covariant derivative on M and that
it restricts to ∇̃ if both χ and Z are vertical, or both are horizontal. The latter is
immediately clear, the former some simple calculations.

We see now, that

∇Mχ Z “H∇MHχHZ`H∇MVχHZ`H∇MHχVZ`H∇MVχVZ (3.57)

`V∇MHχHZ`V∇MVχHZ`V∇MHχVZ`V∇MVχVZ

“ AχZ` TχZ` ∇̂χZ,
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hence the difference of connections indeed gives A` T . Finally, notice that if χ is
horizontal then T vanishes, as does τv. If on the other hand χ is vertical, then A

vanishes, as does τh. �

The principal bundle of frames FrpBq of B can be pulled back to M via π. The Levi
Civita connection φB on FrpBq can also be pulled back to a connection φ̃ on π˚FrpBq
together with the structure equation

φ̃` θ̃B^ φ̃ “ 0, (3.58)

where θ̃B is the pull back of the solder form θB on FrpBq. If we pull this solder form into
FrpB,Mq, we get a form θ1B, where the obvious restriction map is used k : FrpB,Mq Ñ
π˚FrpBq. A calculation similar to that in remark (3.9) shows that θ1B agrees with the
part of θ1, that has values in Rb. If we split θ1 into two parts, θ1 and θ2 with values
in Rb and Rm´b, and ψ into ψ1 and ψ2 with values in sopbq and sopm´ bq, then the
structural equation (3.51) of ψ decomposes into

dθ1`ψ1^ θ1` τ^ θ2 “ 0 (3.59)

dθ2`ψ2^ θ2` τ^ θ1 “ 0. (3.60)

If we restrict the first equation to π-horizontal vectors, the last term vanishes and we
see that ψ1 is the Levi Civita connection pulled back from B. Such a restriction also
turns τ into τh and we get the formula

k˚π˚φB` τh “ i
˚φM, (3.61)

on FrpB,Mq, if we restrict to vectors lifted from B. This is the recovery of O’Neill’s
formula for the connections [O’N66, Lemma 3.4].

3.4.6 Forms on FrSOpN,µ´1p0qq

Applying the last section to the reduction FrSOpN,µ´1p0qq of FrSOpµ´1p0qq on µ´1p0q,
we get the equation

jR˚3 ϕµ
´1p0q “ ψ1`ψ2` τ

1, (3.62)

where ψ1 is the pull back of the Levi Civita connection on N.

3.4.7 Forms on FrSppN,Mq

Now we will do a similar construction on the quaternionic side of the reduction for
FrSppN,Mq As with FrSOpµ´1p0q,Mq, FrSppN,Mq will in general not be horizontal in
ι˚FrSppMq. Using Proposition 3.7, we construct a connection ϕ̃H with the decomposi-
tion

sppmq “ sppnq ‘ opkq ‘ f, (3.63)
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induced by an inclusion of Sppnq ˆSOpkq in Sppmq as described in the beginning. As
before, the obvious choice of complement will satisfy the necessary condition (3.7).

We get the projected connection form ϕ̃H which decomposes into two equivariant
one-forms φH

1 and φH
2 with values in sppnq and sopkq respectively and a difference

form τH with

φH
1 `φ

H
2 ` τ

H “ jH˚2 ϕ̂H. (3.64)

3.5 Final Result

3.5.1 Preparation

Let us recall the connections of the real reductions. On FrSOpµ
´1p0q,Mq we have

equation (3.32)

φR
1 `φ

R
2 ` τ

R “ jR˚2 ϕ̂R, (3.65)

where ϕ̂R is the pull back of the Levi Civita connection on M. φR
1 is the pull back

of the Levi-Civita connection of µ´1p0q, which in turn decomposes on FrSOpN,µ´1p0qq
according to equation (3.62).

The connection ψ1 `ψ2 on FrSOpN,µ´1p0qq can be extended back to a connection
ψ̃1` ψ̃2 on FrSOpµ´1p0qq, so that we have

ψ̃1` ψ̃2` τ̃
1 “ ϕµ

´1p0q, (3.66)

where τ̃1 is defined by this equation (and hence the pull back of it is τ1.) So if we pull
back this equation to FrSOpµ´1p0q,Mq, we get

kR˚
1 ψ̃1` k

R˚
1 ψ̃2` k

R˚
1 τ̃1 “ φR

1 , (3.67)

and combining this with (3.65)

kR˚
1 ψ̃1` k

R˚
1 ψ̃2` k

R˚
1 τ̃1`φR

2 ` τ
R “ jR˚2 ϕ̂R. (3.68)

Since i˚3ϕ̂
R “ ϕ̂H, we can identify the right hand side of the equation above and of

(3.64) if we pull back by i3,

i˚3

(
kR˚
1 ψ̃1` k

R˚
1 ψ̃2` k

R˚
1 τ̃1`φR

2 ` τ
R
)
“ φH

1 `φ
H
2 ` τ

H. (3.69)

To understand which terms correspond, it is a good idea to visualize where the
different forms take their values. If we identify Hn with R4n such that a` ib` jc` kd
gets mapped to pa,b, c,dq (a,b, c,d P Rn), we identify nˆ n quaternionic matrices
A` iB` jC` kD with 4nˆ 4n real matrices of the form
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A ´B ´C ´D

B A ´D C

C D A ´B

D ´C B A

 . (3.70)

If we use a frame p P FrSppN,Mq to identify ι˚pTMq with R4m, we see that both
sides of the equations take values in matrices of the form(

M1 ´Mt
2

M2 M3

)
, (3.71)

where M1 is a 4nˆ 4n, M2 a 4kˆ 4n and M3 a 4kˆ 4k block matrix of the type given
above. Using the quaternionic splitting, we can decompose the Mi into Ai,Bi,Ci and
Di. Note that in M3 only A3 (the diagonal) is non vanishing, because of the inclusion
SOpkq ãÑ Sppkq, A ÞÑ A` iA` jA` kA.

The components of the matrices Mi are of course only defined up to the choice
of frame p P FrSppN,Mq. However, two different frames differ by a matrix in Sppnq ˆ
SOpkq, which leaves the components of M3 and the component-rows of M2 invariant.
M1 and the columns of M2 get transformed by conjugation with a H-linear matrix.

Define the matrix M1
2 to be the first k rows of M2, M2

2 to be the other 3k rows and
M1
3 as A3, pM2

3q
t
“ pB3,C3,D3q and M3

3 as the matrix M3 without the first k columns
and first k rows. Hence we may write (3.71) as

M1 ´pM1
2q
t
´pM2

2q
t

M1
2 M1

3 ´pM2
3q
t

M2
2 M2

3 M3
3

 .

Starting with the right hand side of the equation (3.69), φH
1 takes values M1, φH

2

in M3 and τH the remaining M2 matrix. On the left hand side, ψ̃1 takes values in the
M1, ψ̃2 in M1

3, τ̃1 in M1
2, φR

2 in M3
3 and τR in the remaining M2

2 and M2
3 matrices.

3.5.2 The Results

The equations (3.69) and the following analysis of the previous section allows us to
recover some of the results from [GN92]. First we see that

i˚3k
R˚
1 ψ̃1 “ φ

H
1 ñ k˚ψ1 “ φ

H
1 , (3.72)

because both sides take values in M1. If we pull back the Levi-Civita connection on
FrSOpNq to FrSppN,Mq via FrSppNq, we get φH

1 because of this equation. Hence the
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pull back to FrSppNq takes values in H-linear matrices, in other words the connection
reduces to one on FrSppNq. This shows that N is indeed a hyperkähler manifold.

A more constructive argument can be given by noting that the Levi-Civita con-
nection on M is G-invariant, for the canonical choice of extension of the G action to
FrSOpMq. This remains true for φH

1 and a careful examination shows that it can be
pushed down to FrSppNq.

If we continue with M3, we see that for ξ P g, IIp¨, ξq, which is described by M2
3 “ 0,

vanishes.
The fact that M3 is only non-vanishing on the diagonal, gives a connection between

the covariant derivative on the fibers of π : µ´1p0q Ñ N, and the normal derivative
of µ´1p0q described by φR

2 , i.e. DξY :“ pr
Tµ´1p0q

K∇Mξ Y, for ξ P Tµ´1p0q and Y P

Γpµ´1p0q, Tµ´1p0qKq (see e.g. [KN69, p. VII]). Precisely, we have for all A P {I, J,K}

∇F
ξX “ dµ

A ˝DξpAK
ηq, @ξ,η P g, (3.73)

where ∇F is the connection on the fiber.
Let us now focus on M2. From proposition p3.15q we know that M2

2 and M2
3 give

the second fundamental form and from proposition p3.17q we know that M1
2 is A` T ,

the O’Neill tensors. Hence

M2pξq “ p
´1 ˝


pAξ` Tξqp¨q pAξ` TξqpI¨q pAξ` TξqpJ¨q pAξ` TξqpK¨q

IIIpξ, ¨q IIIpξ, I¨q IIIpξ, J¨q IIIpξ,K¨q
IIJpξ, ¨q IIJpξ, I¨q IIJpξ, J¨q IIJpξ,K¨q
IIKpξ, ¨q IIKpξ, I¨q IIKpξ, J¨q IIKpξ,K¨q

 ˝ p,

(3.74)

where IIA is the second fundamental form of µ´1p0q ãÑ M projected onto Ag Ă

Tµ´1p0q
K and p P FrSppN,Mq is a frame (restricted in a suitable way). Using the

form (3.70) of the matrix, we get the following results (recall the notation ι˚pTMq “
H‘ gbR H).

If ξ P H and ¨ P H, then the first row of M2 becomes ´12Rpξ, ¨q, . . ., where R is the
curvature of µ´1p0q Ñ N as discussed before. This yields that for all ξ,η P H,

´
1

2
Rpξ,ηq “ IIIpξ, Iηq “ IIJpξ, Jηq “ IIKpξ,Kηq. (3.75)

Here III “ dµI ˝ II. Note that this in particular implies that R is hyperholomorphic, i.e.
of type p1, 1q with respect to all complex structures (on N, viewing R as a two form on
N).

If ξ P g and ¨ P H, then the first row becomes Tξ¨ “ V∇µ
´1p0q
ξ ¨, . . ., where ∇µ´1p0q is

the Levi-Civita connection on µ´1p0q and V is the vertical projection in Tµ´1p0q from
π : µ´1p0q Ñ N. This can be described as the negative of the Weingarten map Wξp¨q of
the fibers of π. Hence we get for all ξ P g,η P H,

´Wξpηq “ IIIpξ, Iηq “ IIJpξ, Jηq “ IIKpξ,Kηq.
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However, since II is symmetric, IIpξ, ¨q “ 0, hence the Weingarten map of the fibers
vanish, in other words, the fibers are totally geodesic.

If ξ P H and ¨ P g, the discussion needs to be carried out in ´Mt
2. Using the formula

for A and T (and that IIpξ, ¨q “ 0), we see that

prH ˝∇
µ´1p0q
ξ X “ 0, (3.76)

for all ξ P H and X P Γpµ´1p0q, gq, which is already clear from WXpξq “ 0. Both ξ and ¨
in g again yield that the second fundamental forms of the fibers of π vanish.
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Chapter 4

Gauge Theories

All of the theories mentioned in this chapters are vast fields in mathematics. This
chapter only tries to give the absolute minimum of definitions needed to follow the
next chapters.

4.1 (Anti) Self-Duality Equations

Definition 4.1. Let M be a 4-manifold with SOp4q-holonomy (i.e. Riemannian and
oriented), P G

Ñ M a principal G bundle on M and let A P CpPq be a connection. A is
called an anti self-dual connection, if

π`pF
Aq “ 0, (4.1)

and a self-dual instanton if π´pFAq “ 0, where π˘ are the (orthogonal) projections onto

Ω2pM, AdpPqq – Ω2`pM, AdpPqq ‘Ω2´pM, AdpPqq. (4.2)

Remark 4.2. Since

π` “
1

2
p1`‹q and π´ “

1

2
p1´‹q (4.3)

a connection A is anti self-dual if and only if FA`‹FA “ 0, and self-dual if and only if
FA´‹FA “ 0.

4.2 Spin (7)-Instantons

Spinp7q-instantons are a close relative of instantons on 4-manifolds, as can bee seen by
the next definition.

Definition 4.3. Let M be a 8-manifold with Spinp7q-holonomy, P G
Ñ M a principal G

bundle on M and let A P CpPq be a connection. A is called a Spinp7q-instanton if

π7pF
Aq “ 0, (4.4)
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where π7 is the (orthogonal) projection onto

Ω2pM, AdpPqq – Ω27pM, AdpPqq ‘Ω221pM, AdpPqq. (4.5)

Remark 4.4. Since

π7 “
1

2
p1`GpΘqq (4.6)

a connection A is a Spinp7q-instanton if and only if

FA`‹pΘ^ FAq “ 0. (4.7)

4.3 Generalized Seiberg-Witten Theory

Generalized Seiberg-Witten Theory is a generalization of Seiberg-Witten theory to allow
for targets other than H. The fundamental idea is to replace the fibers of the spin-
bundles with a more complicated hyperkähler manifold M. Detailed analysis shows
that the hyperkähler manifold has to have a trihamiltonian action by a group G and
a rotating action. This allows to define a Seiberg-Witten theory with target M. For
brevity we will not explain any details of this theory unless they are needed for the
following. The interested reader is referred to [Pid04; Cal10; Hay15a].

The first simplification is that we are only looking at rotating actions that factor
through SOp3q. As such we can define the involved principal bundles as a direct
product. Furthermore, we won’t explain how to define the non-linear generalized
Dirac operator Da, but will only give an equivalent criteria to Dau “ 0 for a spinor u
and a connection a.

Definition 4.5. Let X be an oriented Riemannian 4-manifold and let Q Ñ X be a
principal G bundle. Let P` Ñ X be the principal SOp3q-bundle of frames in Λ2`X and
fix the Levi-Civita connection on it. Assume further that M is a hyperkähler manifold
which has a trihamiltonian action by G with moment map µ : M Ñ Im Hb g and a
rotating action which factors through SUp2q Ñ SOp3q. The generalized Seiberg-Witten
equations for a pair pa,uq P CpQq ˆ C8 (P`ˆXQ,M)GˆSOp3q are given by

Dau “ 0, µ ˝ u “ Fa`. (4.8)

Remark 4.6. As mentioned we will only give an equivalent criteria for the first equation,
without defining Dau. For the second equation notice that µ ˝ u : Q Ñ Im Hb g is
Gˆ SOp3q-equivariant and as such gives a section of the associated vector bundle
Λ2`X

_
bAdpQq “ Ω2`pX, AdpQqq.

For the first equation, notice that a P CpQq together with the Levi-Civita connection
on P` defines a connection â on P` ˆX Q Ñ X. Interpreting this connection as a
horizontal subspace, we can restrict Du : Tpp,qqpP` ˆXQq Ñ Tupp,qqM to this subspace.
Horizontal lifting identifies this space with Tπpp,qqX at the corresponding point x “
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πpp,qq. The base point p P P` defines a quaternionic structure on TxM, by defining
any base of TxM that induces p on Λ2`TxM as quaternionic. Now

Dxu : TxMÑ Tupp,qqM (4.9)

is a linear map between two quaternionic vector spaces and we define Dau “ 0 if
and only if Dxu has no quaternionic linear part for all x P X. Such a map is called
aholomorphic.
Remark 4.7. Notice that a linear map f between quaternionic vector spaces pV , I1, I2, I3q
and pW, J1, J2, J3q has no quaternionic part if and only if the projection onto the quater-
nionic linear part vanishes. This projection is given by some multiple of f ÞÑ pf´∑3
i“1 IifJiq. Since this map itself is quaternionic linear, it suffices to check this van-

ishing for a quaternionic base; in our case it suffices to check this on a single vector
ξ P TxM. Using a quaternionic base e0, . . . , e3 of TxM, the condition becomes

Dupẽ0q ´

3∑
i“1

IiDupẽiq “ 0, (4.10)

where ˜̈ denotes the horizontal lift. Finally, to horizontally lift a vector, we can also lift
it arbitrarily and remove the vertical part, i.e.

ξ̃ “ ξ̄´Kâpξ̄q, (4.11)

where â is the connection on P`ˆXQ and ξ̄ some lift of ξ. Using that u is SOp3q ˆG-
equivariant (technically anti-equivariant) we get

Dxupξq “
(
Dupξ̄´K

âpξ̄q
P`ˆXQ

q
)

H
“
(
Dupξ̄q `K

âpξ̄q
M

)
H

, (4.12)

where p¨qH denotes the quaternionic projection.
Remark 4.8. Note finally, that if M is Hn or an affine space over Hn, then there are
two fundamental H structures on M, one by left multiplication of i, j,k P H and one
by right multiplication by p´i,´j,´kq. We will call the first a left–left structure (if X
was a quaternionic vector space, then the first left indicates that the multiplication
on X would be from the left), and the second a left–right structure. Decomposing
Du “ Du0` iDu1` jDu2` kDu3 we arrive at the signs

left–left structure:


Du0pe0q `Du1pe1q `Du2pe2q `Du3pe3q

Du1pe0q ´Du0pe1q ´Du3pe2q `Du2pe3q

Du2pe0q `Du3pe1q ´Du0pe2q ´Du1pe3q

Du3pe0q ´Du2pe1q `Du1pe2q ´Du0pe3q

(4.13)

left–right structure:


Du0pe0q ´Du1pe1q ´Du2pe2q ´Du3pe3q

Du1pe0q `Du0pe1q ´Du3pe2q `Du2pe3q

Du2pe0q `Du3pe1q `Du0pe2q ´Du1pe3q

Du3pe0q ´Du2pe1q `Du1pe2q `Du0pe3q

(4.14)

for the projection (4.10).
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Chapter 5

Dimensional Reduction

5.1 Dimensional Reduction of a Gauge Theory

5.1.1 Motivation

There are many different concepts of reductions in Gauge Theory. The one we are
considering here is the following. Assume we have a gauge theory on a base manifold
X, with target M. Now if G is a Lie group which acts on X, such that X{G is again a
smooth manifold, then we want to reduce the gauge theory XÑM to one X{GÑM.
In this section we will discuss this construction in detail. The next section shows
how this can be used to show that Haydys-Witten equations are invariant Spinp7q-
instantons.

5.1.2 Formulation

Throughout this section, let X be a smooth manifold, G a Lie group and π : P Ñ X a
principal G-bundle.

Definition 5.1 (Reductions). Let H be a Lie group.

‚ We call pX,Hq a reducing pair if H acts on the right of X, X{H is a smooth manifold
and XÑ X{H is a principal H-bundle.

‚ Let pX,Hq be a reducing pair. If the action of H lifts to a right action on P by
bundle automorphisms, such that P{H is a smooth manifold and P Ñ P{H is a
principal H-bundle, then we call pX,P,Hq a reducing triple.

Remark 5.2 (Reducing Triples and Pull Backs). A reducing triple pX,P,Hq is given by a
pullback diagram

P P{H

X X{H

H

G G

H

(5.1)
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of principal bundles.

Notation 5.3 (Maps, Connections and Horizontal Forms of a Reducing Triple). Given
a reducing triple pX,P,Hq, we denote the projections of the various principal bundles
by

P P{H

X X{H

pr

π π̌

p̌r

(5.2)

The connections on X Ñ X{H and P{H Ñ X{H are denoted by CpXq and CpP{Hq

respectively. Since “connections on P” is ambiguous, we will index those with the
projection map, so connections on P Ñ X are denoted by CπpPq and connections on
PÑ P{H by CprpPq.

If we talk about a horizontal form ω on X this means that ιhω “ 0. We denote
those by ΩhpXq and similarly for P{H. On P we have to distinguish between g and h

horizontal, we denote those by Ωg and Ωh respectively.

Remark 5.4 (Reducing Connections). Given a reducing triple pX,P,Hq, we are interested
in the H-invariant connections. Since the G and H actions on P commute, Rh is a G-
equivariant map for every h P H, hence for every ξ P g, KξG is Rh related. This implies
that that the induced action

TP ð H, h ÞÑ DRh, (5.3)

leaves the subbundle g Ă TP invariant in a way so that it induces an action g ð H

which is trivial.

Definition 5.5 (Invariant Connection). Let pX,P,Hq be a reducing triple. Define an
action

Ω1pP, gq ð H, (5.4)

via the trivial action g ð H and the induced action ΩpPq ð H by pullback.
H-invariant connections CHπ pPq Ă CπpPq Ă Ω

1pP, gqG are connections invariant under
this action.

Remark 5.6. In later chapters, we sometimes are interested in describing gauge theories
in such a situation, even if they are not H-invariant. This is also often called reduction in
the literature (sometimes compactification in physics). To avoid using the term reduction
again, we will call this description of a gauge theory in differential equation form. The
examples will show why this could be considered a fitting name.

Example 5.7 (Invariant Connections on R2). H-invariant connections CHπ pPq can be ob-
tained by pullback of connections CpP{Hq. Not all invariant connections are of this
type though.
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Consider for example X “ R2, H “ R acting by translation on the second factor

Rhpx,yq “ px,y` hq px,yq P X,h P H, (5.5)

and P “ S1. Then pX,P,Hq is a reducing triple with the canonical lift of H to P. Since
X{H “ R and P{H “ S1 Ñ R, connections CpP{Hq are one forms iΩ1pRq with values in
up1q – iR.

Hence pulled back connections from CpP{Hq are all of the form

A “ ipf ˝ p̌rqdx f P C8pX{Hq, p̌r : XÑ X{H. (5.6)

On the other hand, if we identify CπpPq – iΩ1pXq, H-invariant connections are
given by

B “ ipf ˝ p̌rqdx` gdy, f P C8pX{Hq, g P C8pXqH, (5.7)

so that p̂r˚CpP{Hq Ă CHπ pPq is an honest subspace.

A natural question is what the quotient (as affine spaces) of invariant connections
by pulled back connections is. The next proposition investigates this question. Note
that in the example above, the two spaces differed by a smooth function C8 (X{H) “

C8 (R).

Proposition 5.8 (SES of affine spaces for a reducing triple). Let pX,P,Hq be a reducing
triple. Then there is a canonical short exact sequence of affine spaces

0 CpP{Hq CHπ pPq C8pP, Homph, gqqGˆH 0

0 Ω1gpP{H, gqG Ω1gpP, gqGˆH C8pP, Homph, gqqGˆH 0

pr˚ ιh

pr˚ ιh

(5.8)

Here the transitive and free action of the G-equivariant and horizontal one forms on the spaces
of connections is the usual (by addition) and C8pP, Homph, gqqGˆH is considered an affine
space over itself.

For completeness, let us recall the left1 actions on the various spaces. If ω is in either of
Ω1gpP{H, gqG, CpP{Hq or CHπ pPq, then the action of g P G is given by

g.ω “ Adg R˚gω. (5.9)

For ω P Ω1gpP, gqGˆH, the action of pg,hq P GˆH is given by

pg,hq.ω “ Adg R˚gR
˚
hω, (5.10)

and on ϕ P C8pP, Homph, gqqGˆH the action of pg,hq P GˆH is given by

pg,hq.ϕ “ Adg ˝pR˚gR
˚
hϕq ˝Adh´1 . (5.11)

1See remark 5.10
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Remark 5.9 (SES of affine spaces). Exact sequences of affine spaces are defined through
exact sequences of the underlying vector subspaces.

Remark 5.10 (Left Actions and Right Actions). It is important to keep track of right
and left actions, unfortunately this can be cumbersome at times. Take for example a
G-equivariant k-form ω P ΩkpP, gqG. The right action P ð G induces a right action on
ΛkTP and a left action on ΛkTP_. The left action G ñ g by Ad induces a right action
via g ÞÑ Adg´1 . So ω : ΛkTP Ñ g, is G-equivariant with respect to these right actions.
If we view ω P pΩkpPq b gq

G, then it is invariant under the left action DR_g bAdg and
pDR_g bAdgqω “ Adg R˚gω.

Proof. Let us first focus on the lower row of (5.8). We show that the maps are well-
defined. The first map pr˚ is just the usual identification of forms on the base manifold
and H-invariant forms on the bundle. Since pr is also G-equivariant (this is how we
defined the G-action on P{H), the pullback of a G-invariant form is still G-invariant.

If ω P Ω1gpP, gqGˆH, we define ϕ “ ιhω. It is obviously a smooth function on P with
values in h_b g “ Homph, gq, we only need to check the invariance. To show that note
that the fundamental vector fields KH are H-equivariant

K
Ad

h´1
ξ

H “ DRhK
ξ
H h P H, ξ P h, (5.12)

and since G and H commute, every diffeomorphism Rg is H-equivariant, which implies
that KξH is Rg related for every ξ P h and g P G,

KξH ˝ Rg “ DRg ˝K
ξ
H h P H, ξ P h. (5.13)

Now for pg,hq P GˆH, p P P and ξ P h

pR˚gR
˚
hϕqpAdh´1pξq “ ϕpghAdh´1pξq “ ωpghpK

Ad
h´1

ξ

H |pghq

(5.12)
“ ωpgh

(
DRh|pgK

ξ
H|pg

)
“ pDR˚hωqpgpK

ξ
H|pgq

(5.10)
“ ωpgpK

ξ
H|pgq

(5.13)
“ ωpgpDRg|pK

ξ
H|pq (5.14)

(5.10)
“ Adg´1 ωppK

ξ
H|pq “ Adg´1 ϕppξq,

so that Adg pR˚gR˚hϕqpAdh´1pξq “ ϕppξq as claimed.
The injectivity of pr˚ follows immediately from the usual identification of forms

on the base and horizontal H-invariant forms on the total space, because pr˚ restricted
to its image

imppr˚q “ Ω1g,hpP, gqGˆH (5.15)

is invertible. This image also implies that impprq “ kerpιhq which leaves us to show
that ιh is surjective. We will show this in 5.12.

The upper row in (5.8) follows by similar arguments. The well-definedness follows
by exactly the same calculation and the injectivity of the lower row’s pr˚ implies the
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injectivity upstairs. The image of pr˚ are simply h-horizontal connections which shows
the exactness in the middle and the surjectivity of ιh will be shown in 5.14. �

Example 5.11 (Transitive action). Before we work out the general case, let us look at an
example where we have a transitive action X ð H, so that X{H “ {˚}. In this case a
connection

TP – g‘ hÑ g (5.16)

is determined by the map h Ñ g P C8 (P, Homph, gq)GˆH – Homph, gq. This agrees
with the statement, since any pulled back connection is the trivial connection (because
Ω1p{˚}q “ 0). A closer look shows that we have a splitting of the short exact sequence,
because there is a unique choice in connection XÑ X{H.

Proposition 5.12 (Splitting of Lower Row). In the situation of Proposition (5.8), if we fix a
connection B P CpXq, then the lower row of (5.8) splits.

In particular this implies that ιh on the lower row is surjective.
If X Ñ X{H is a Riemannian submersion , then there is a canonical choice for B given by

the orthogonal complement of the vertical subspaces of TX.

Proof. We use the following commuting diagram,

0 0

g g

0 h TP TpP{Hq 0

0 h TX TpX{Hq 0

0 0

id

id

ϕ

(5.17)

of vector bundles on P (we omitted the pull back symbols on some of the bundles),
where any row and column is a short exact sequence of H-equivariant, respectively
G-equivariant, vector bundles.

Now B P CpXq induces via pull back a G-invariant connection in CGprpPq, which gives
a G-invariant and H-equivariant splitting of the top row. This defines

g

h TP

ϕ

π˚B

(5.18)

in the above diagram. We will show that

60



1. ϕ ˝ π˚B P Ω1gpP, gqGˆH and

2. ιhpϕ ˝ π˚Bq “ ϕ P C8pP, Homph, gqqGˆH,

which will show the claim.

Ad 1. We calculate

R˚gR
˚
hpϕ ˝ π

˚Bq “ pR˚gR
˚
hϕq ˝ pR

˚
gR
˚
hπ
˚Bq (5.19)

“ Adg´1 ˝ϕ ˝Adh ˝Adh´1 ˝π
˚B (5.20)

“ Adg´1 ˝ϕ ˝ π
˚B, (5.21)

which is the required behavior under the action. Note that it is important here
that B is G-invariant.

Ad 2. This follows immediately from the fact that π˚B is a projection onto h Ă TP, so
ιhπ

˚B “ idh.

�

Notation 5.13. To simplify the notation, we will also denote the pull back of B (π˚B)
with B in the following.

Proposition 5.14 (Splitting of Upper Row). If we fix connections B P CpXq and C P CpP{Hq
the upper row of proposition (5.8) splits.

In particular this implies that ιh on the upper row is surjective.

Proof. This follows immediately from Proposition (5.12) and the fact that the top row
is affine over the bottom row, i.e. C P CpP{Hq identifies CpP{Hq – Ω1gpP{H, gqG and its
pull back identifies CHπ pPq – Ω

1
gpP, gqGˆH �

Theorem 5.15 (The Curvature of the Reduction). Let pX,P,Hq be a reducing triple, B P
CpXq and C P CpP{Hq and with respect to their splitting let

A “ pa,ϕq “ pr˚ a`ϕ ˝B P CpP{Hq ‘C8pP, Homph, gqqGˆH. (5.22)

Then the curvature of A satisfies the following identity

FA “ pr˚ Fa` daϕ
˝
^ B`ϕ ˝ dB`

1

2
rϕ ˝B^ϕ ˝Bs, (5.23)

Proof. If A is a connection and ω an equivariant and horizontal 1-form, then the cur-
vature of A`ω is given by

FA`ω “ FA` dAω`
1

2
rω^ωs. (5.24)
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which follows immediately from the defining equation FA “ dA` 1
2 rA^As. Using

this for ω “ B ˝ϕ, we get

FA “ pr˚ Fa` dapϕ ˝Bq `
1

2
rϕ ˝B^ϕ ˝Bs (5.25)

“ pr˚ Fa` daϕ
˝
^ B`ϕ ˝ dB`

1

2
rϕ ˝B^ϕ ˝Bs, (5.26)

where we used that daB “ dB, because the G representation of h is trivial (compare to
Remark 5.4). �

Remark 5.16. Note that this equation holds not only on P, but also on X, where
FA, p̌r˚Fa P Ω2pX, AdpPqq and ϕ P ΓpHomph, AdpPqqq (recall that B is also pulled back
from X).

Corollary 5.17. If in the setting of theorem (5.15) ϕ P Ω1pP, Homph, gqqGˆH is a Lie algebra
homomorphism, then

FA “ pr˚ Fa` daϕ
˝
^ B`ϕ ˝ FB. (5.27)

Remark 5.18. In the setting of theorem (5.15) the summands of (5.23), live on differ-
ent subspaces of the tangent space. Indeed, let us split TX “ ξ‘ h, where ξ is the
complementary distribution of h Ă TX defined by B. Then

Λ2TX “ Λ2ξ‘ ξb h‘Λ2h, (5.28)

and we can now associate the terms to the different subspaces,

FA “ pr˚ Fa︸ ︷︷ ︸
Λ2ξ

`daϕ
˝
^ B︸ ︷︷ ︸

ξbh

`ϕ ˝ dB`
1

2
rϕ ˝B^ϕ ˝Bs︸ ︷︷ ︸

Λ2h

. (5.29)

The term ϕ ˝ dB is problematic since a priori it does not belong to any one of these
spaces. To combat this in the examples we will assume that we have a trivial bundle
XÑ X{H, which allows us to simply use the Maurer-Cartan form of the Lie Group H
as the connection B. But then dB “ ´12 rB^Bs, so ϕ ˝ dB P Λ2h.

5.2 Examples

Let us explore how to work with these equations by applying them to some well-
known examples, i.e. reductions of the anti self-duality equations. After that we
will use these to reduce Spinp7q-instantons to G2-monopoles and the Haydys-Witten
equations. The former is mentioned in [DS11b], whereas the latter is a new result.
As mentioned in Remark 5.16, we may interpret these equations on P and X. If the
bundle XÑ X{H is trivial, we may even interpret the equation on X{H. To simplify the
notation, we will simply write Fa instead of pr˚ Fa, no matter where we consider the
equations.
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5.2.1 Bogomolny Equations

Let G be some Lie group and pHˆ X,P,Hq a reducing triple consisting of a oriented
Riemannian 3-dimensional manifold X, a principal G-bundle P Ñ H ˆ X and a 1-
dimensional abelian Lie Group H acting on itself, and by isometries on Hˆ X. Use
the Maurer Cartan form of H as the connection B. We reduce the anti self-duality
equations (see Definition 4.1) on HˆX

‹4F
A` FA “ 0. (5.30)

By the construction, A P CpPq splits into a connection a P CpP{Hq and a Higgs field φ P
ΓpX, Homph, Adpgqqq (for notational consistency, we denote the Higgs field by φ instead
of ϕ). Here we have used that Adphq is trivial, because H is abelian. Since h is also
one-dimensional, we get φ P ΓpX{H, Adpgqq (the orientation makes this identification
unique). Using the formula for the curvature, we get

FA “ Fa` daφ^B, (5.31)

since dB “ 0 by the Maurer Cartan formula and Λ2h “ 0. The fact that the underlying
manifold is given by HˆX, we can decompose the equation

Λ2T_pHˆXq – T_X ‘ Λ2T_X

Λ2T_pHˆXq – T_X ‘ Λ2T_X

‹

Using Lemma 2.9 we see that the anti self-duality equations give two equations,

B^ p‹3pF
aq ´ daφq “ 0 (5.32)

and
´‹3 daφ` F

a “ 0. (5.33)

One quickly realizes that these are the same equation, which on X is given by

Fa “ ‹3daφ. (5.34)

These are the so called Bogomolny equations on X.

5.2.2 Hitchin System

Similar to the last example, pick the reducing triple pHˆ X,P,Hq, where H is a two
dimensional abelian Lie group, and X is an (oriented) 2-dimensional manifold.
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Λ2T_pHˆXq – Λ2h_ ‘ h_b T_X ‘ Λ2T_X

Λ2T_pHˆXq – Λ2h_ ‘ h_b T_X ‘ Λ2T_X

‹

This results in three equations

‹Fa`
1

2
rϕ ˝B^ϕ ˝Bs “ 0, (5.35)

Fa`‹
1

2
rϕ ˝B^ϕ ˝Bs “ 0, (5.36)

‹daϕ
˝
^ B` daϕ

˝
^ B “ 0, (5.37)

of which the first two are the same. With the identification

Φ “ ϕ1` iϕ2, (5.38)

the first becomes F “ i
2 rΦ,Φ˚s, and the last Dz̄Φ “ 0. These are the so called Hitchin

Equations on X.

5.2.3 Nahm Equations

Similar to the last example, pick the reducing triple pHˆ X,P,Hq, where H is a three
dimensional abelian Lie group, and X is an (oriented) one-dimensional Riemannian
manifold. Then a connection A P CpPq induces a connection a P CpP{Hq and a Higgs
field. Picking a basis of h (that is oriented and orthonormal with respect to the struc-
ture of HˆX) we identify h – R3 and decompose

ϕ “ pϕ1,ϕ2,ϕ3q P ΓpX, Homph, AdpPqqq – R3
_
b ΓpX, AdpPqq. (5.39)

Let dh1, dh2 and dh3 denote the left invariant one forms induced by the choice of
basis above, and t denote the coordinate of X with respect to some chart. Using for the
connection B the Maurer Cartan form (so that dB “ 0), the curvature yields

FA “ daϕ
˝
^ B`

1

2
rϕ ˝B^ϕ ˝Bs (5.40)

“

3∑
j“1

∇aϕjdt^ dhj`
1

2

3∑
i,j“1

rϕi,ϕjsdhi^ dhj (5.41)

“ dt^

 3∑
j“1

∇aϕjdhj
` ∑

1ďiăjď3

rϕi,ϕjsdhi^ dhj (5.42)
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where we have used that Λ2ξ “ 0, i.e. there is no curvature on a 1-dimensional mani-
fold.

The anti self duality equations then give two sets of identical equations, given by

∇aϕ1` rϕ2,ϕ3s “ 0 (5.43)

´∇aϕ2` rϕ1,ϕ3s “ 0 (5.44)

∇aϕ3` rϕ1,ϕ2s “ 0 (5.45)

on X. These are the Nahm equations.

5.2.4 Rotationally Invariant Nahm Equations

Similar to the last example, we may write R4\ {0} – Rą0 ˆ SUp2q and take the (left)
action of SUp2q on itself to reduce the SUp2q invariant anti self duality equations to
Rą0. This time a P CpP{SUp2qq and

ϕ P ΓpRą0, Hompsup2q, gqq – sup2q
_
b C8

(
Rą0, g

)
. (5.46)

Using the Pauli matrices as a basis for sup2q, we can decompose ϕ in components
ϕ1,ϕ2,ϕ3 P C8

(
Ră0, g

)
. For B we take the trivial connection given by the Maurer

Cartan form of SUp2q,

B “

3∑
j“1

σjb dσj, (5.47)

where σj are the Pauli matrices and dσj are the left invariant one forms dual to the left
invariant vector fields defined by the Pauli matrices. The formula for the curvature
now gives

FA “ daϕ
˝
^ B`ϕ ˝ dB`

1

2
rϕ ˝B^ϕ ˝Bs (5.48)

“

3∑
j“1

∇aϕjdx1^ dσj`
∑
iăj

(
2εijkϕk` rϕi,ϕjs

)
dσi^ dσj (5.49)

where we used the Maurer Cartan equation for the expression dB. A similar calcula-
tion as for the ordinary Nahm equations give

∇aϕ1` 2ϕ1` rϕ2,ϕ3s “ 0 (5.50)

´∇aϕ2´ 2ϕ2` rϕ1,ϕ3s “ 0 (5.51)

∇aϕ3` 2ϕ3` rϕ1,ϕ2s “ 0. (5.52)

These are the rotational (or perturbed) version of the Nahm Equations.
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5.2.5 ADHM Equations

In this example we consider a reducing triple pH,P,Hq, where H acts on itself and is
an oriented Riemannian Lie Group. Then the equations dictate

FA “
1

2
rϕ ˝B,ϕ ˝Bs. (5.53)

Note in particular, that

ϕ P Γp{pt} , HompR4, gqq – R4
_
b g, (5.54)

that is, ϕ can be identified with four elements in g, given by four matrices if G is a
matrix Lie Group. The equation for the curvature now implies

0 “ ‹FA` FA “
∑

1ďiăjď4

rϕi,ϕjs ‹ pdhi^ dhjq `
∑

1ďiăjď4

rϕi,ϕjsdhi^ dhj (5.55)

which is equivalent to

0 “ rϕ1,ϕ2s ` rϕ3,ϕ4s 0 “ rϕ3,ϕ4s ` rϕ1,ϕ2s (5.56)

0 “ rϕ1,ϕ3s ´ rϕ2,ϕ4s 0 “ rϕ2,ϕ4s ´ rϕ1,ϕ3s (5.57)

0 “ rϕ1,ϕ4s ` rϕ2,ϕ3s 0 “ rϕ2,ϕ3s ` rϕ1,ϕ4s (5.58)

where we can see that every equation is given twice, so that we may reduce this to the
system

0 “ rϕ1,ϕ2s ` rϕ3,ϕ4s (5.59)

0 “ rϕ1,ϕ3s ´ rϕ2,ϕ4s (5.60)

0 “ rϕ1,ϕ4s ` rϕ2,ϕ3s (5.61)

which are the so called ADHM Equations.

Remark 5.19. This system is often given on R4, where additional boundary conditions
guarantee that it can be extended to S4.

5.2.6 G2Monopoles

Let us reduce the Spinp7q-instantons by one dimension. Recall the Spinp7q instanton
equation (Definition 4.3)

‹pΘ^ FAq “ ´FA. (5.62)

Let pHˆ X,P,Hq be a reducing triple consisting of a Spinp7q-manifold Hˆ X of
dimension 8, a principal G-bundle P Ñ H ˆ X and a one-dimensional abelian Lie
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Group H acting on itself, and by isometries on Hˆ X. Again let B be the Maurer
Cartan form of H. Recall that by Corollary 2.64, X is a G2-manifold and

Θ “ dh^ϕ`ψ, (5.63)

where h is the coordinate of H, describes the connection of the canonical forms. By
splitting the bundle Λ2T_pHˆXq and analyzing the map

‹pΘ^´q “ ‹pdh^ϕ^´︸ ︷︷ ︸
α0

q ` ‹pψ^´︸ ︷︷ ︸
β0

q (5.64)

the following diagram arises (where we use dimH “ 1),

Λ2T_pHˆXq – T_X ‘ Λ2T_X

Λ6T_pHˆXq – 0 ‘ Λ5T_X ‘ Λ6T_X

Λ2T_pHˆXq – T_X ‘ Λ2T_X

Θ^´ β0 β0α0 α0

‹

This decomposition agrees with the splitting into ξb h‘Λ2ξ in (5.28). Using the
formula for the curvature, we get

FA “ Fa︸︷︷︸
PΛ2T_X

`daφ^B︸ ︷︷ ︸
PT_X

, (5.65)

where we identify φ P ΓpX, AdpPqq, just like in the case of Bogomolny Monopoles.
Using the observations above, we see that the Spinp7q-instanton equation decomposes
into two sets of equations, given by

´daφ^ dh “ ‹β0pF
Aq “ ‹pψ^ Faq (5.66)

and

´Fa “ ‹α0pF
aq ` ‹β0pdaφ^ dhq “ ‹pdh^ϕ^ F

aq ` ‹pψ^ daφ^ dhq. (5.67)

The former equation is equivalently given by

FA^ψ “ ‹7daφ, (5.68)

which is the G2-monopole equation. The second equation is also equivalent to this
equation. To see this notice that by Lemma 2.9

‹pdh^ϕ^ Faq ` ‹pψ^ daφ^ dhq “ ‹7pϕ^ F
aq ´ ‹7pψ^ daφq. (5.69)
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We decompose
Λ2T_X – Λ27‘Λ

2
14, (5.70)

by the G2-structure (compare Proposition 2.56), and denote the projections by Fa “
Fa7 ` F

a
14. Then we know that

‹7pϕ^ F
aq “ 2Fa7 ´ F

a
14, (5.71)

by the eigenspace decomposition and hence

Fa`‹pϕ^ Faq “ 3Fa7 . (5.72)

So the equation is equivalent to

Gpψqpdaφq “ 3F
a
7 , (5.73)

which in turn is equivalent to Gpψq2pFaq “ 3Fa7 . To see that the latter holds, notice that
Gpψq2 : Λ2 Ñ Λ2 is a G2-map. By Schur’s lemma it will be a multiple on all irreducible
components. Because wedging with ψ maps into Λ6, which is 7-dimensional and irre-
ducible, the Λ214 components gets mapped to 0. Now applying Gpψ2q to any element
in Λ27 shows the result.

5.2.7 Haydys-Witten Equations

For the Haydys-Witten equations we proceed similar as for the G2-monopoles. There
are two different cases. If we have an action by R3, then we arrive at the Haydys-
Witten equations on a manifold with hypo structure. If we have an action by SOp3q
then we arrive at the (perturbed) Haydys-Witten equations on a manifold with SOp4q
structure. We will do the calculation for a SOp3q action, the R3 action can be derived
from this.

Since the Higgs field for the Haydys-Witten equations is called B
loc
“
∑3
i“1ϕiσi P

Ω2`pAdpPqq, we will denote the connection by B̃ is this secion.
Let pXˆH,P,Hq be a reducing triple consisting of a 8-dimensional Spinp7q-manifold

X, a principal G-bundle PÑ X and the three-dimensional Lie Group SOp3q acting on X
and P by isometries. Again let B̃ be the Maurer Cartan form of H. Recall that by Corol-
lary 2.64, X is a SOp4q-manifold and splitting the bundle Λ2T_pHˆ Xq and analyzing
the map

‹pΘ^´q “ ‹pη^ϕ^´︸ ︷︷ ︸
α0

q ` ‹pψ^´︸ ︷︷ ︸
β0

q (5.74)

the following picture arises. Starting from the Spinp7q-instantons, we decompose the
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forms in a local frame

ϕ “ dh123´ dh1^ω1´ dh
2^ω2´ dh

3^ω3, (5.75)

ψ “ dx5678´ dh23^ω1´ dh
31^ω2´ dh

12^ω3 (5.76)

Θ “ η^ϕ`ψ (5.77)

“ η^ dh123︸ ︷︷ ︸
α3

`p´dh12^ω3´ dh
31^ω2´ dh

23^ω1q︸ ︷︷ ︸
α2

(5.78)

` p´ηq ^ pdh1^ω1` dh
2^ω2` dh

3^ω3q︸ ︷︷ ︸
α1

`dx5678︸ ︷︷ ︸
α0

. (5.79)

The conundrum here is that the quotient by H has to be chosen the way to satisfy
the conditions outlined in Remark 2.66. For the case of an action of R3, we can split
up the action by reducing step by step (reducing by a copy of R in every step) splitting
of the expected directions. The calculations remain true but are more cumbersome.

Λ2T_pHˆXq – Λ2h_ ‘ h_b T_X ‘ Λ2T_X

Λ6T_pHˆXq – Λ3T_X ‘ Λ2h_bΛ4T_X ‘ h_

Λ2T_pHˆXq – Λ2h_ ‘ h_b T_X ‘ Λ2T_X

Θ^´ α3 α1α1 α1
α2

α2

α0

α0

‹

Let us study the maps a little closer.

Λ1T_X – R‘ S11 (5.80)

Λ2T_X – S20‘ S02‘ S11 (5.81)

Λ3T_X – S20‘ S02‘ S11 (5.82)

Λ4T_X – R‘ S11 (5.83)

h_b T_X – h_‘ h_b S11 (5.84)

Λ2h_bΛ4T_X – Λ2h_‘Λ2h_b S11. (5.85)

h_b T_X – S20‘ S20b S11 – S20‘ S31‘ S11 (5.86)

Λ2h_bΛ4T_X – S20‘ S20b S11 – S20‘ S31‘ S11. (5.87)

(5.88)
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Now note that h_ – S20, so that Λ2h_ – S20. We identify

Λ2` – h_,ωi Ø 2dhi, h_ – Λ2h_,dhi Ø dhjk, (5.89)

where pijkq is a even permutation of p123q. The factor 2 is necessary to identify these
as Lie algebras (note that Λ2` carries a Lie algebra structure for a Riemannian mani-
fold induced by identification with skew symmetric endomorphisms of TM). We also
identify S11 in Λ2T_X and h_b T_X by

η^ dx5 Ø f1 “ dh1^ dx6` dh2^ dx7` dh3^ dx8. (5.90)

η^ dx6 Ø f2 “ ´dh
1^ dx5´ dh2^ dx8` dh3^ dx7. (5.91)

η^ dx7 Ø f3 “ dh1^ dx8´ dh2^ dx5´ dh3^ dx6. (5.92)

η^ dx8 Ø f4 “ ´dh
1^ dx7` dh2^ dx6´ dh3^ dx5. (5.93)

We claim, that under these identifications the maps Gpαiq “ ‹pαi^´q are given by

Gpα0q Gpα1q Gpα2q Gpα3q

Λ2h_ ι ´ι

h_b T_X prS20 ´ idS31 `2 idS11 ´ idS20 `3 idS11
Λ2T_X ´2prS20 ´2 idS20 ` idS11 idS20 ´ idS02

where ι is the inclusion, pr is the projection onto a factor and α id the action on said
space with the given factor α.

Let us justify these claims.

Ad Gpα0q: First
Gpα0q|Λ2h_ : S

20 Ñ S20‘ S31‘ S11 (5.94)

By Schur’s Lemma Gpα0q can only map into the S20 components. We calculate explic-
itly, that Gpα1q is the isomorphism of the S20 components given by the identification
above. Indeed,

Gpα0qp‹3dh
iq “ η^ dhi. (5.95)

Similarly,

Gpα0q|h_bT_X : S
20‘ S31‘ S11 Ñ S20, (5.96)

we conclude that the kernel of Gpα0q includes S31 and S11 components. Again a direct
computation shows that η^ dhi gets mapped to ‹3dhi.
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Ad Gpα1q: Let us now look at Gpα1q.

Gpα1q|Λ2h_ : S
20 Ñ S20‘ S02‘ S11, (5.97)

has its image in S20. We calculate that

Gpα1q|Λ2h_p‹3dh
iq “ ´ωi, (5.98)

which shows that Gpα1q is just twice the negative of the identification of the two S20

components.

Gpα1q|Λ2T_Xpωiq “ ´ ‹3 dh
i, (5.99)

so is the negative of the projection up to the identification.
Finally

Gpα1q|h_bT_X, (5.100)

if follows immediately that S20 gets mapped to 0, because of the η factor. For S31‘S11,
it is fastest to realize that Fα1 preserves the components of fi. So the map decomposes
into three 3-dimensional maps which can be easily diagonalized. Each one of the
three has two eigenvalues given by 2,´1 where ´1 comes with multiplicity 2. For
dimensional reasons Gpα1q then has to act as described in the table.

Ad Gpα2q:
Gpα2q|Λ2T_Xpωiq “ ´η^‹3dh

i. (5.101)

The basis of S11 has been chosen so that Gpα2q is the identity. Furthermore we calculate

Gpα2q|h_bT_Xpη^‹3dh
iq “ ´ωi (5.102)

and
Gpα2q|h_bT_Xpfiq “ 3η^ dx

i, (5.103)

verifying the claim.

Ad Gpα3q:
Gpα3q : S

20‘ S02‘ S11 Ñ S20‘ S02‘ S11, (5.104)

and these are the eigenspaces of the map to the eigenvalues 1,´1, 0. Indeed, if ω P S11,
then Gpα3qpωq “ 0, since α3 has the factor η. If ω P S20 or S02, then by Lemma 2.9

Gpα3qpωq “ ‹pα3^ωq “ ‹4α^‹4ω “ ‹4ω, (5.105)

and S20 and S02 are the eigenspaces to the eigenvalues 1 and ´1 of ‹4 respectively.
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The Equations in Λ2h_ The equations in Λ2h_ is given by

´
1

2
ϕ ˝ rB̃^ B̃s ´

1

2
rϕ ˝ B̃^ϕ ˝ B̃s “ ‹8pα0^ pdaϕ

˝
^ B̃qq ` ‹8pα1^ F

aq, (5.106)

where the first term comes from the Maurer-Cartan equations for ϕ ˝ dB̃.
We know that Gpα1qpFaq “ ´Fa` up to the identification, i.e.

‹8pα1^ F
aq “ ´Fa`,1dh

23´ Fa`,2dh
31´ Fa`,3dh

12. (5.107)

From the table Gpα0q is the projection onto the S20 component of daϕ
˝
^ B̃, which

is given by

prS20pdaϕ
˝
^ B̃q “

2∑
i“1

∇4ϕi η^ dhi, (5.108)

so that

‹8pα0^ pdaϕ
˝
^ B̃qq “ ∇a4ϕ1dh23`∇a4ϕ2dh31`∇a4ϕ3dh12. (5.109)

As before, the Maurer-Cartan equations yield a 2B and finally

´
1

2
rϕ ˝ B̃^ϕ ˝ B̃s “ ´

∑
1ďiăjď3

rϕi,ϕjsdhij (5.110)

This gives

0 “ rϕ1,ϕ2s ´ Fa`,3`∇a4ϕ3 (5.111)

0 “ rϕ2,ϕ3s ´ Fa`,1`∇a4ϕ1 (5.112)

0 “ rϕ3,ϕ1s ´ Fa`,2`∇a4ϕ2 (5.113)

which is equivalent to
Fa`´∇aYB´ 2B´ σpB,Bq “ 0. (5.114)

The Equations in h_b T_X:

´daϕ
˝
^ B̃ “ ‹8

(
α0^

1

2

(
ϕ ˝ rB̃^ B̃s ` rϕ ˝ B̃^ϕ ˝ B̃s

)
`α1^ pdaϕ

˝
^ B̃q `α2^ F

a
)

(5.115)
Here we have three equations, in S20, S31 and S11 of dimension 3, 8 and 4. Let

us first focus on the equation in S31. Looking at the table we see that only Gpα1q has
values in S31, so the equation becomes

´prS31
(
daϕ

˝
^ B̃

)
“ Gpα1q ˝ prS31pdaϕ

˝
^ B̃q, (5.116)
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which is trivially satisfied as Gpα1q acts with eigenvalue ´1 on S31. Now let us turn
to the equation in S20. Gpα1q contributes nothing to this equation, Gpα0q is simply the
inclusion and Gpα2q acts by multiplication of ´1. Hence the equation becomes

prS20
(
daϕ

˝
^ B̃``

1

2
ϕ ˝ rB̃^ B̃s `

1

2
rϕ ˝ B̃^ϕ ˝ B̃s ´ Fa

)
“ 0 (5.117)

Now we already now that prS20 F
a “ Fa`,

prS20pdaϕ
˝
^ B̃q “ ∇aYB, (5.118)

and

1

2
ϕ ˝ rB̃^ B̃s `

1

2
rϕ ˝ B̃^ϕ ˝ B̃s “ 2B` σpB,Bq, (5.119)

which shows that the equation is equivalent to (5.114).
Finally let us look at the equation in S11. The equation is given by

0 “ prS11
(
daϕ

˝
^ B̃` 2daϕ

˝
^ B̃` Fa

)
“ prS11

(
3daϕ

˝
^ B̃` Fa

)
. (5.120)

This gives the same equation as (5.136).

The Equations in Λ2T_X:

´Fa “ ‹8

(
α1^

(1
2
ϕ ˝ rB̃, B̃s `

1

2
rϕ ˝ B̃^ϕ ˝ B̃s

)
`α2^ daϕ

˝
^ B̃`α3^ F

a
)

(5.121)

Again there are three components, S20, S02 and S11 of dimension 3, 3 and 4. The S02

component is given by
´Fa´ “ Gpα3qpF

a
´q “ ´F

a
´, (5.122)

again a tautology. The S20 component is

´Fa` “ ´ϕrB̃^ B̃s ´ rϕ ˝ B̃^ϕ ˝ B̃s ´ 2prS20
(
daϕ

˝
^ B̃

)
` Fa` (5.123)

or
0 “ ´2B´ 2σpB,Bq ´ 2∇aYB` 2Fa`. (5.124)

Finally the S11 component is given by

´Fa4 “ 3prS11
(
daϕ

˝
^ B̃

)
. (5.125)

Now it is easy to see that

Fa4 “

8∑
i“5

Fa1iη^ dx
i. (5.126)
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Identifying S11 with S11 Ă T_X via ιY , this gives ιYFa.
Now using the basis f1, . . . f4, we see that

prS11
(
daϕ

˝
^ B̃

)
“
1

3

4∑
i“1

fif
_
i

(
daϕ

˝
^ B̃

)
(5.127)

“
f1
3
(∇a6ϕ1`∇a7ϕ2`∇a8ϕ3) (5.128)

`
f2
3
(´∇a5ϕ1´∇a8ϕ2`∇a7ϕ3) (5.129)

`
f3
3
(∇a8ϕ1´∇a5ϕ2´∇a6ϕ3) (5.130)

`
f4
3
(´∇a7ϕ1`∇a6ϕ2´∇a5ϕ3) . (5.131)

Mapping this over yields

Gpα2q ˝ prS11
(
daϕ

˝
^ B̃

)
“ η^ dx5 (∇a6ϕ1`∇a7ϕ2`∇a8ϕ3) (5.132)

` η^ dx6 (´∇a5ϕ1´∇a8ϕ2`∇a7ϕ3) (5.133)

` η^ dx7 (∇a8ϕ1´∇a5ϕ2´∇a6ϕ3) (5.134)

` η^ dx8 (´∇a7ϕ1`∇a6ϕ2´∇a5ϕ3) . (5.135)

We will denote this with ´δa`B (the notation will be explained in section 6.3). Then
the equation is

ιYF
a´ δa`B “ 0. (5.136)

Putting this together shows that we have the perturbed Haydys-Witten equations,

ιYF
a´ δa`B “ 0 (5.137)

Fa`´∇aYB´ 2B´ σpB,Bq “ 0. (5.138)

If we simplify this to an action by R3 so that dB̃ “ 0, then the resulting equations are
given by the Haydys-Witten equations

ιYF
a´ δa`B “ 0 (5.139)

Fa`´∇aYB´ σpB,Bq “ 0. (5.140)

Remark 5.20. If we simplify the action to be R3, then by Corollary 2.64 the underlying
manifold has a hypo structure. In this case, the Λ2` representation decomposes into
three trivial representations (compare to Proposition 2.44) and the second equation
decouples into the three Nahm equations with the additional term Fa`.
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Chapter 6

Dimensionally Reduced Gauge
Theories

In this chapter we will collect known facts about the dimensionally reduced equations
that we need later on. Most of this chapter can be found scattered through the litera-
ture. We will introduce a common notation and make consistent choices where they
are needed to formulate the results in Chapter 8.

6.1 Nahm Equations

Throughout this section, fix a Lie Group G with an Ad-invariant scalar product 〈´,´〉
on the Lie Algebra g.

6.1.1 The Equations

Definition 6.1. A Nahm datum is a quadruple of maps

Ti : I “ p´1, 1q Ñ g, i P {0, 1, 2, 3} . (6.1)

Remark 6.2. Sometimes it will be convenient to combine these to

T : IÑ Hb g, (6.2)

where RepTq “ T0.

Notation 6.3. We introduce the following notation,

WN “ C8 (I, Hb g) and UN “ C8 (I, ImpHq b g_) . (6.3)

Definition 6.4. A Nahm datum satisfies the Nahm Equations if

9Ti` rT0, Tis `
1

2

3∑
j,k“1

εijkrTj, Tks “ 0 i P {1, 2, 3} . (6.4)
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Define the map

µN : WN Ñ UN, pT0, T1, T2, T3q ÞÑ pN1,N2,N3q, (6.5)

where Ni “ NipT0, T1, T2, T3q are the three Nahm equations.

Remark 6.5. From the reduction theory, we know that T0 is a connection and T1, T2, T3
are sections of the adjoint bundle. Using this we can write the equations as

dT0Ti`
1

2

3∑
j,k“1

εijkrTj, Tks “ 0 i P {1, 2, 3} . (6.6)

Remark 6.6. The gauge group of the bundle GN “ C8 (I,G) (from now on just G in this
section) acts on both sections and connections in a natural way given by

g.T0 “ Adg T0` pg´1q‹ωG, Ti.g “ Adg´1 Ti, (6.7)

where ωG is the Maurer Cartan form of G. For a matrix group the action is given by
g.T0 “ gT0g´1´ 9gg´1.

Since r´,´s is Ad-equivariant and dg.T0g.Ti “ Adg dT0Ti by the standard formulas,

µNpg.Tq “ Adg ˝µNpTq. (6.8)

The equivariance of µN shows that the kernel of µN is invariant; so the gauge group
acts on solutions of the Nahm Equations.

Remark 6.7. The gauge group can be used to eliminate the connection completely from
the problem. The trick is to choose a special gauge which is called temporal gauge
(sometimes Weyl gauge; technically we are looking at a slice of the gauge action). In
the case of the matrix group this can be easily seen by requiring g.T0 “ 0 and solving
the linear ordinary differential equation

9g “ gT0, gp0q “ g0 P g, (6.9)

on I. For general G, one can use parallel translation to achieve the same. Then the
Nahm equations become 

9T1` rT2, T3s “ 0
9T2` rT3, T1s “ 0
9T3` rT1, T2s “ 0

(6.10)

and the only remaining action of the gauge group is via constant gauges (i.e. by
choosing a different initial condition g0).
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6.1.2 Boundary Conditions

From now on fix G “ Upkq, for k P N.

Definition 6.8. Fix k P N. Let ρ1, ρ2, ρ3 P g determine an irreducible representation of
sup2q. We say that a solution to the Nahm Equations satisfies the boundary conditions
NCk if,

‚ T0 is smooth on I “ r´1, 1s,

‚ for i ‰ 0 and tÑ 1, ‖pt´ 1qTi´ ρi‖ P Opt´ 1q, and

‚ for i ‰ 0 and tÑ´1, ‖pt` 1qTi´ ρi‖ P Opt` 1q.

It may seem strange that the choice of ρi is not denoted for the boundary conditions
NCk (e.g. NCρk). It is however true, that all irreducible representations of sup2q in upkq

are conjugated. Hence given two different irreducible representations ρ, ρ1, we can pick
an element g P G from gp´1q “ 1 to gp1q “ u, where u P Upkq conjugates Adu ρ “ ρ1.
Then the adjoint action Adg maps solutions with ρ at the right boundary to solutions
with ρ1 at the right boundary. This shows that the actual choice of representation is
not important.

This observation also shows that we have to restrict to a smaller gauge group if we
want the boundary conditions to be invariant under the gauge action.

Definition 6.9. Define the space of framed gauge transformations as the space

G0 “
{
g P G | ‖g´ 1‖ P Opt´ 1q, ‖g´ 1‖ P Opt` 1q

}
, (6.11)

where the first requirement is for tÑ 1 and the second one for tÑ´1.

Proposition 6.10. The space G0 acts on solutions of the Nahm equations satisfying the bound-
ary conditions NCk for k P N.

Proof. We will only show the claim for t “ 1 and a fixed i P {1, 2, 3}, the other cases are
similar. The boundary condition NCk is equivalent to

Tiptq “
ρi
t´ 1

` biptq, ‖bi‖ P Op1q. (6.12)

The condition on g P G0 is that gptq “ 1` cptq, where ‖cptq‖ P Opt´ 1q. Without loss of
generality we may assume ‖cptq‖ ă 1, so that

g´1ptq “
∑
kPN0

p´cptqqk. (6.13)

Therefore the action of g on Ti is given by

Adg Tiptq “
ρi
t´ 1

`
rcptq, ρis
t´ 1︸ ︷︷ ︸

‖´‖“Op1q

`
p1` cptqqρi

∑
kě2p´cptqq

k

t´ 1︸ ︷︷ ︸
‖´‖“Opt´1q

`gbiptqg
´1︸ ︷︷ ︸

‖´‖“Op1q

(6.14)

�
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6.1.3 The Moduli Space

Notation 6.11. Denote by FN the subspace ofWN that satisfies the boundary conditions
NCk for some k P N (FkN if we want to fix the k P N). Further fix the notation

VN “ C8
(
I, upkq

)4 . (6.15)

Definition 6.12. Fix k P N. With Nk we denote the intersection of µ´1N p0q with FN,
i.e. solutions of the Nahm equations for G “ Upkq, subject to the boundary condition
NCk. The framed gauge group G0 acts freely on this space, and the quotient is a 4k
dimensional hyperkähler manifold [AH88] denoted by

Nk “ Nk{G0. (6.16)

Remark 6.13. The Nahm equations have a close relative, the self-dual Nahm equations.
In the literature, these are often also simply called Nahm equations. The modification
is changing the orientation of R4 i.e. swapping anti self-dual instantons with anti-self
dual instantons. Section 5.2.3 shows that the corresponding Nahm equations are given
by

∇tTi´
1

2

3∑
j,k“1

εijkrTj, Tks “ 0, i P {1, 2, 3} . (6.17)

We define everything else similarly to the regular Nahm equations and denote the
space by N

psq
k “ N

psq
k {G0. Note thatNpsqk – Nk by mapping pT0, T1, T2, T3q Ñ pT0, T1,´T2, T3q.

Lemma 6.14. FN is an affine space over VN.

Proof. The boundary condition ensures that the difference of two solutions Ti ´ T̃i is
bounded for i P {1, 2, 3}, hence extensible to the closed interval. �

Proposition 6.15. Let c “ pT0, T1, T2, T3q P N
psq
k . Then the space TcN

psq
k consists of quadru-

ples pt0, t1, t2, t3q where
ti : IÑ upkq, i P {0, 1, 2, 3}, (6.18)

that satisfy the linearized (self dual) Nahm equations
0 “ 9t1` rt0, T1s ` rT0, t1s ˘ rt2, T3s ˘ rT2, t3s

0 “ 9t2` rt0, T2s ` rT0, t2s ˘ rt3, T1s ˘ rT3, t1s

0 “ 9t3` rt0, T3s ` rT0, t3s ˘ rt1, T2s ˘ rT1, t2s,

(6.19)

where the upper sign is for the case of Nk, the lower sign for the case of Npsqk .

Proof. The condition of Npsqk is that the Nahm equations are satisfied. This is described
via the linearized Nahm equations (6.19). �
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Remark 6.16. To pass form N
psq
k to N

psq
k , we quotient out the gauge group G0. In order

to describe the space TrcsN
psq
k for c P Npsqk , we need to pick an orthogonal complement

in TcN
psq
k to the infinitesimal generators of G0 ñ N

psq
k .

Definition 6.17. Define a metric on Npsqk via

〈pt0, t1, t2, t3q, ps0, s1, s2, s3q〉 “
∫
I

3∑
i“0

〈ti, si〉dt, (6.20)

where ptiq and psiq are tangent vectors as in proposition (6.15) and 〈t, s〉 on upkq is
given by ´12 trptsq.

Remark 6.18. Note that 〈t, s〉 “ ´12 trptsq is almost the negative of the Killing form, the
difference being the normalization and the fact that it is not zero on i1 P upkq. Notice
that this implies that adg is skew-symmetric with respect to 〈´,´〉 for all g P upkq.

Lemma 6.19. The induced action of the gauge group G on the tangent space TNpsqk is given by

g.pt0, t1, t2, t3q “ pAdg t0, Adg t1, Adg t2, Adg t3q. (6.21)

Proof. We need to simply differentiate the map g : Nk Ñ Nk for a fixed g P G. Since g
acts linear on T1, T2 and T3 and affine linear on T0, these formulas follow immediately.

�

Proposition 6.20. The metric is invariant under the gauge action G0 ñ N
psq
k .

Proof. This follows immediately since the Killing form is Ad-invariant. �

Lemma 6.21. The infinitesimal action of the Lie Algebra of G0,

LiepG0q “
{
ξ P ΓpI, AdpPqq | ξp´1q “ 0 “ ξp1q

}
(6.22)

on Npsqk is given by
Kξ “ p´dT0ξ, rξ, T1s, rξ, T2s, rξ, T3sq. (6.23)

Proof. Note that the exponential map LiepG0q Ñ G0 is given by

ξ : IÑ upkq ÞÑ exppξq : IÑ Upkq, exppξq “ expUpkq ˝ξ. (6.24)

Then acting by gs “ exppsξq on T0 and differentiating yields

gs.T0 “ gsT0g´1s ´
dgs

dt
g´1s ñ

dpgs.T0q
ds

∣∣∣∣
s“0

“ ξT0´ T0ξ´
dξ

dt
. (6.25)

a similar, but simpler, calculation gives

dpgs.Tiq
dt

“ rξ, Tis, i P {1, 2, 3}. (6.26)

�
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Proposition 6.22. A tangent vector pt0, t1, t2, t3q to c “ pT0, T1, T2, T3q P N
psq
k is orthogonal

to the infinitesimal generators of G0 ñ N
psq
k with respect to the metric (6.20) if and only if

0 “ 9t0`

3∑
i“0

rTi, tis. (6.27)

Proof. By the last Lemma, the orthogonality is equivalent to

0 “ ´

∫
I

〈t0,dξ〉dt`
∫
I

3∑
i“0

〈rξ, Tis, ti〉dt (6.28)

Using the fact that ξ vanishes at the boundary, we can use partial integration to show
that ∫

I

〈t0,dξ〉dt “ ´
∫
I

〈
9t0, ξ

〉
dt. (6.29)

Recalling that the Killing form (and also multiples of it) are ad-skew-symmetric,
〈adx y, z〉 “ ´ 〈y, adx z〉, we see that the orthogonality is equivalent to

0 “

∫
I

〈
9t0, ξ

〉
dt`

∫
I

3∑
i“0

〈rTi, tis, ξ〉dt (6.30)

which is satisfied for all ξ if and only if

0 “ 9t0`

3∑
i“0

rTi, tis. (6.31)

This shows the claim. �

Definition 6.23. Let t0, t1, t2, t3 : C8
(
I, upkq

)
. Then we define

t “ t0` it1` jt2` kt3 P C8
(
I, upkq bH

)
(6.32)

Combining the last two propositions, we get

Proposition 6.24. Let c “ pT0, T1, T2, T3q P N
psq
k . Identify TrcsN

psq
k with the orthogonal

complement of the infinitesimal generators of G0 ñ N
psq
k in TcN

psq
k . This identifies TrcsN

psq
k

with quadruples pt0, t1, t2, t3q where

ti : IÑ upkq, i P {0, 1, 2, 3}, (6.33)

that satisfy the quaternionic ordinary differential equation

9t` adT0 t` adT1ptp´iqq ` adT2ptp´jqq ` adT3ptp´kqq “ 0 for Nk, (6.34)
9t` adT0 t´ adT1pitq ´ adT2pjtq ´ adT3pktq “ 0 for Nsk. (6.35)

(6.36)
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Proof. The above equation is just the combination of the linearized Nahm equations
(6.19) and the orthogonality condition (6.27). �

Corollary 6.25. There are complex structures on Nk given by left multiplication of i, j,k, and
on Nsk by right multiplication of ´i,´j,´k.

Proof. The equations above are invariant under the given multiplications. For the
integrability see e.g. [AH88]. �

6.1.4 Actions on the Moduli Space

Definition 6.26. Define an action R3 ñ WN by

pr1, r2, r3q.pT0, T1, T2, T3q “ pT0, T1` ir11, T2` ir21, T3` ir31q. (6.37)

Proposition 6.27. The action given by (6.37)

1. maps solutions of the Nahm equations to solutions of the Nahm equations,

2. respects the boundary conditions NCk,

3. commutes with the gauge action of G,

4. leaves g,ωI,ωJ and ωK invariant.

Put together, the action (6.37) induces an action R3 ñ N
psq
k which is hyperkähler.

Proof.Ad 1. The action does not change the differentials 9Ti and the added terms are in
the center of upkq, so they also do not change the brackets r´,´s.

Ad 2. Satisfaction of the boundary condition at t “ 1 is equivalent to

φj “
ρj

t´ 1
` bj; bj P Op1q, j P {1, 2, 3}. (6.38)

But then φj` irj1 satisfies it with bj´ irj1 P Op1q.

Ad 3. For j P {1, 2, 3}, pr1, r2, r3q P R3, g P G0 we have

g.pr.Tjq “ gpTj` irj1qg´1 “ g.Tj` irj1 “ r.pg.Tjq. (6.39)

Ad 4. The definition of the metric is independent of the base point pT0, T1, T2, T3q. Pre-
cisely, the induced action on the tangent bundle is trivial.

�

Definition 6.28. Define an action SOp3q ñ WN by

B.pT0, T1, T2, T3q “ pT0,
3∑
j“1

b1jTj,
3∑
j“1

b2jTj,
3∑
j“1

b3jTjq, (6.40)

where B “ pbijqi,j P SOp3q.
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Proposition 6.29. The action given by (6.40) maps solutions of the Nahm equations to solu-
tions of the Nahm equations.

Proof. Let pT0, T1, T2, T3q be a solution of the Nahm equations. We may write the Nahm
equations as

0 “ Imp 9Tq ` rT0, ImpTqs `
1

2
ImppIm Tq2q. (6.41)

The last term is the definition of the cross product on R3 (up to r´,´s, which is
bilinear). Since

R3ˆR3 Ñ R3, pv,wq ÞÑ vˆw. (6.42)

is SOp3q-equivariant (use the definition pv,w, vˆwq P SOp3q), the Nahm equations are
SOp3q equivariant,

µNpBTq “ BµNpTq, (6.43)

which shows the claim. �

Remark 6.30. A quick inspection shows that the action of SOp3q does not respect the
boundary conditions. Hence we define a modified action, that does.

Definition 6.31. Define an action SOp3q ñ WN by

B.pT0, T1, T2, T3q “ P´1.pT0,
3∑
j“1

b1jTj,
3∑
j“1

b2jTj,
3∑
j“1

b3jTjq, (6.44)

where B “ pbijqi,j P SOp3q and P P Upkq – ConstpI, Upkqq is defined as follows. Denote
by ρ : sup2q Ñ upkq the irreducible representation of the boundary condition NCk. This
uniquely corresponds to a group homomorphism

ϕ : SUp2q Ñ Upkq, (6.45)

because π1pSUp2qq “ 1. Now pick a P̃ P SUp2q covering B P SOp3q with respect to the
isomorphism sup2q – R3 induced by mapping the canonical basis of R3 to the Pauli
matrices σ1,σ2,σ3, and let P “ ϕpP̃q.

Remark 6.32. P is only defined up to ˘1, but since the action of the gauge group factors
through the center of the group, the action above is well defined.

Proposition 6.33. The modified action given by (6.44)

1. maps solutions of the Nahm equations to solutions of the Nahm equations,

2. respects the boundary conditions NCk,

3. induces a well defined action on the quotient Nk.

4. leaves g invariant,
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5. rotates I, J, K.

Proof.Ad 1. Because the action of B preserves the Nahm equations as does the action
of P, this follows immediately.

Ad 2. Let ϕ : SUp2q Ñ Upkq be the exponentiation of ρ : sup2q Ñ upkq. Let further c de-
note the conjugation on both SUp2q and Upkq, i.e. cgphq “ ghg´1. Then because
ϕ is a group homomorphism ϕ ˝ cg “ cϕpgq ˝ϕ for all g P SUp2q. Differentiating
this equation at 1 P SUp2q gives

ρ ˝Adg “ D1ϕ ˝D1cg “ D1pϕ ˝ cgq (6.46)
!
“ D1pcϕpgq ˝ϕq “ D1cϕpgq ˝D1ϕ “ Adϕpgq ˝ρ. (6.47)

Now let P̃ be the lift of B P SOp3q to SUp2q, then this calculation implies that
ρ ˝AdP̃´1 “ AdP´1 ˝ρ.

The action on the boundary condition is given by mapping

Ti “
ρi
t´ 1

`Op1q (6.48)

to

T̃i “ AdP´1

 3∑
j“1

bijTj

 “ AdP´1
(∑3

j“1 bijρj

)
t´ 1

`Op1q. (6.49)

Because ρ is linear and the calculation above holds, we have

AdP´1

 3∑
j“1

bijρj

 “ ρ ˝AdP̃´1

 3∑
j“1

bijσj

 “ ρpσjq “ ρj. (6.50)

Ad 3. Let B P SOp3q be a matrix and P P Upkq a choice as in the definition of the action.
We have to show that the induced action is well defined on the equivalence
classes Nk. Hence let rpT0,~Tqs be an equivalence class of solutions to the Nahm
equations with boundary NCk, k P N, and let g P G0 be an admissible gauge.
We have to show that

rpP,Bq.pg.pT0,~Tqqs “ rpP,Bq.pT0,~Tqs. (6.51)

For this define g1 “ AdP g´1 P G0 and recall that the action of g commutes with
the action of B P SOp3q, hence

g1.pP,Bq.pg.pT0,~Tqq “ g1.P.g.pT0,B~Tq “ P.pT0,B~Tq “ pP,Bq.pT0,~Tq. (6.52)

Ad 4. This is immediately clear because the scalar product on R4 – H is SOp3q ãÑ

SOp4q invariant.

Ad 5. This is obvious as the action of B P SOp3q is simply the rotating action on H and
the action of P P C8 (I, Upkq) leaves I, J and K invariant.

�
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6.1.5 As a Hyperkähler Reduction

The Nahm equations can also be described (formally) as a hyperkähler reduction. The
formal part about it is that it involves infinite dimensional manifolds, and so some
analytic work has to be done to make it precise. For these details see e.g. [Bie08].

Proposition 6.34. The action of GN ñ N
psq
k is trihamiltonian and the corresponding moment

map is given by ˘µpsqN : FN Ñ UN (again, the upper sign is for Nk, the lower for Nsk). Thus
N
psq
k is a formal hyperkähler reduction of the affine space FN.

Proof. We already know that the action of the gauge group is hyperkähler, so the only
remaining thing to show is that

dµ
psq
A p´qpξq “ ω

psq
A pK

ξ,´q @ξ P LiepGq,@A P {I, J,K} . (6.53)

We will show this as an example for dµpsqI . Let X “ ps0, s1, s2, s3q be a tangent vector at
pT0, T1, T2, T3q P N

psq
k , then

dµ
psq
I pXq “ 9s1` rs0, T1s ` rT0, s1s ˘ rs2, T3s ˘ rT2, s3s. (6.54)

and

gpIpsqKξ,Xq “
∫
I

〈¯rξ, T1s, s0〉` 〈¯dT0ξ, s1〉` 〈´rξ, T3s, s2〉` 〈rξ, T2s, s3〉dt (6.55)

“

∫
I

〈ξ,˘dT0s1˘ rs0, T1s ` rs2, T3s ` rT2, s3s〉dt (6.56)

“

∫
I

〈ξ,˘dµsIpXq〉dt “ ˘dµsIpXqpξq. (6.57)

�

Remark 6.35. The canonical connection on µN´1p0q Ñ Nk can be described as follows.
Since the action of G0 is free, for every point pT0, T1, T2, T3q P µN´1p0q we have a pulled
back metric

〈ξ,η〉pTiq “ gpK
ξ
pTiq

,Kη
pTiq
q (6.58)

on LiepG0q. Let SpTiq denote the self-adjoint operator between the fixed scalar product
on LiepG0q and this induced one, i.e.〈

SpTiqξ,η
〉
st
“ 〈ξ,η〉pTiq (6.59)

for all ξ,η P LiepG0q and pTiq P µ´1p0q. We see that the inverse of SpTiq describes the
connection form A of the canonical connection,〈

ApTiqptiq,η
〉
st
“ g

(
ptiq,KSpTiq

´1η
)

, (6.60)

for all pTiq P µN´1p0q, ptiq P TpTiqµN
´1p0q and η P LiepG0q.
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Proposition 6.36. The operator

SpTiq “ ´d
2
T0
´

4∑
i“1

ad2Ti (6.61)

where
dT0 “

d

dt
` adT0 (6.62)

satisfies 〈
SpTiqξ,η

〉
st
“ 〈ξ,η〉pTiq (6.63)

for all ξ,η P LiepG0q and pTiq P µ´1p0q. Furthermore it is G-equivariant, i.e.

Adg´1 ˝SgpTiqξ “ SpTiqAdg´1 ξ (6.64)

for all ξ P LiepGq. If we restrict to boundary conditions that makes SpTiq a well defined
endomorphism, then the one form A of the canonical connection is given by〈

ApTiqptiq,η
〉
st
“ g

(
ptiq,KSpTiq

´1η
)

, (6.65)

for all pTiq P µN´1p0q, ptiq P TpTiqµN
´1p0q and η P LiepG0q.

Proof. For the boundary conditions and the fact that SpTiq is invertible, see [Bie08]. SpTiq
satisfies the equation (6.63) because

〈ξ,η〉pTiq “ gpK
ξ
pTiq

,Kη
pTiq
q (6.66)

“

∫
I

〈dT0ξ,dT0η〉`
4∑
j“0

〈
rTj, ξs, rTj,ηs

〉
dt (6.67)

“

∫
I

〈(
´
d2

dt2
´ ad 9T0

´2 adT0 ˝
d

dt
´

4∑
i“0

ad2Ti

)
ξ,η

〉
dt. (6.68)

The G-equivariance is a cumbersome but straight-forward calculation. �

6.2 Bogomolny Equations

6.2.1 The Equations

The Bogomolny equations can be studied for arbitrary 3-manifolds and principal bun-
dles on them. We are however only interested in the Bogomolny equations on R3 here.
Thus any bundle can then be trivialized and the connection be interpreted as a form
on the base. The choice of trivialization is not important after passing to gauge equiv-
alence classes; a different choice of trivialization is given by gauging the Bogomolny
datum of the first trivialization.

85



Definition 6.37. A Bogomolny datum is a pair pφ,Aq P C8
(
R3, g

)
ˆΩ1pR3, gq for some

Lie Algebra g.

Remark 6.38. Sometimes it will be convenient to combine these to

A : R3 Ñ Hb g, (6.69)

where RepAq “ φ and we identifiedΩ1pR3qwith C8
(
R3
)3 via evaluation on the vector

fields induced by the canonical basis of R3.

Notation 6.39. We introduce the following notation,

WB “ C8
(
R3, Hb g

)
and UB “ C8

(
R3, ImpHq b g_

)
. (6.70)

Definition 6.40. A Bogomolny datum satisfies the Bogomolny Equations if

FA “ ‹dAφ. (6.71)

Define the map
µB : WB Ñ UB, pφ,Aq ÞÑ FA´‹dAφ. (6.72)

Remark 6.41. From the reduction theory, we know that A is a connection and φ is a
sections of the adjoint bundle. This allows us to define an action of the gauge group
GB “ C8

(
R3,G

)
(from now on just G in this section) on the Bogomolny data by

g.A “ AdgA´ g˚ωG, g.φ “ Adgφ. (6.73)

For matrix groups this is given by g.A “ Adg ˝A´ 9gg´1.
By standard formulas for the gauge action we have g.FA “ Adg FA and dg.Apg.φq “

Adg dAφ, so the Bogomolny equations are G-equivariant,

µBpg.Aq “ Adg ˝µBpAq, (6.74)

hence the preimage of 0 is invariant; so the gauge group acts on solutions of the
Bogomolny equations.

6.2.2 Boundary Conditions

From now on fix G “ SUp2q, for k P N and let r “
√
x2` y2` z2 denote the radial

euclidean distance on R3.

Definition 6.42. We say a pair pφ,Aq satisfies the boundary conditions for k P N

(satisfies BCk) if for rÑ8 we have the following asymptotics

‖φ‖ “ 1´ k

2r
`Opr´2q, (6.75)

d‖φ‖ “ Opr´2q, (6.76)

‖dAφ‖ “ Opr´2q. (6.77)
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Remark 6.43. 1. Taubes has shown (unpublished) that it suffices to require ‖φ‖Ñ 1

as rÑ8 if pφ,Aq satisfy the Bogomolny equations using techniques from [JT80].

2. k P N is implied by the other conditions, if we let k P C8
(
R3
)
. The second

condition implies that k is constant, and there are multiple ways to see that k is
an integer, the most descriptive are

‚ Since ‖φ‖ Ñ 1, there is a R ą 0 such that φ has no zeroes outside of the
ball of radius R centered at the origin. Then x Ñ φ

‖φ‖ when restricted to
sphere of radius bigger than R gives a smooth map from S2 Ñ S2, k is just
the negative of the degree of this map.

‚ By gauging the vector field φ on R3 to an analytic solution (this can be
achieved locally, see [JT80], we see that φ has isolated zeroes. These are
invariant under gauging. Using the theorem of Poincaré-Hopf, we can cal-
culate the Euler characteristic of R3 without the complement of a large ball
by counting multiplicities of the zeroes of the vector field φ. This is related
to k P N by the winding of φ at infinity (see [AFG75]).

‚ On the complement U of the large ball we can interpret xÑ φ
‖φ‖ as a reduc-

tion of the principal SUp2q bundle, i.e. a SUp2q-equivariant map

P|U Ñ SUp2q{Up1q – S2. (6.78)

Hence φ defines an Up1q-bundle Q which is characterized by c1pQq “ k.
The adjoint bundle of the original (trivial) bundle P then splits into two
lines bundles of degree k and ´k.

3. The value of ‖φ‖ when r Ñ 8 is arbitrary. Physically speaking it is the mass of
the monopole, but the moduli spaces are the same for every choice of mass.

While the gauge group is leaving the boundary conditions BCk invariant, we still
introduce a partial framing at infinity.

Definition 6.44. Define the reduced gauge group to be

G0 “
{
g P GB | lim

xÑ8
gpx, 0, 0q “ 1

}
(6.79)

Remark 6.45. As mentioned, any SUp2q-monopole reduces to a Up1q-monopole on a
sphere at infinity (i.e. on the complement of a ball large enough). The induced data (the
projected connection and induced Higgs field) satisfy the Up1q-monopole equation
(dA “ ‹dφ). The equivalence class of such reductions to the fixed Up1q-monopole has
a Up1q-action (acting by constant gauges). However, since monopole connections are
irreducible, it only fixes the SUp2q-connection if it is in the center of SUp2q, hence only
˘1 extend to monopole morphisms.
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As always with framing, instead of framing the gauges, we can also add a fiber at
one point. For this picture we can fix a reduction to a Up1q-monopole as above. The
resulting space then is a Up1q{{˘1} bundle over the former quotient. This picture is
more cumbersome to denote but has more geometrical insights. In particular it allows
us to define a rotating action. To see how to switch between these pictures, see [AH88].

6.2.3 The Moduli Space

Notation 6.46. Denote by FB the subspace of WB that satisfies the boundary conditions
BCk for some k P N (FkB if we want to fix the k P N).

Definition 6.47. Fix k P N. With Mk we denote the space of solutions to the Bogo-
molny equations for G “ SUp2q, subject to the boundary condition BCk. The framed
gauge group G0 acts freely on this space, and the quotient is a 4k dimensional hy-
perkähler manifold [AH88] denoted by

Mk “Mk{G0. (6.80)

Remark 6.48. Just as in the Nahm case, we can define the self dual version of the
Bogomolny equations. The reduction theory shows that these are given by

FA`‹dAφ “ 0, (6.81)

and similarly to the Nahm case they correspond to a change of orientation of R4. We
define everything else similarly to the regular Bogomolny equations and denote the
space by Ms

k “M
s
k{G0. Note that Ms

k –Mk by mapping pφ,Aq Ñ p´φ,Aq.

Lemma 6.49. FB is an affine space over

VB “ Hb
{
f P L2pR3, gq | f P Opr´2q

}
, (6.82)

where we understand all L2 as smooth square integrable functions.

Proof. Being in Opr´2q ensures that the boundary condition of φ is not changed. �

Note that we could let Mpsq
k be an affine space over the larger vector space, where

we do not restrict to (smooth) L2 functions. However, Taubes has shown [JT80] that
it suffices to take L2 sections to describe the tangent space. We sometimes inter-
pret VB as given in the Lemma, other times it is more convenient to think about
VB “ L

2pR3, sup2qq‘Ω1
L2
pR3, sup2qq, with the correct boundary behavior, as in the next

proposition.

Proposition 6.50. Let A P M
psq
k . Then the space TAM

psq
k consists of pairs pψ,aq P VB that

satisfy the linearized (self dual) Bogomolny equations

‹dAa˘ dAψ˘ ra,φs “ 0. (6.83)

Again, the upper sign is for the case of Mk, the lower sign for Mpsq
k .
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Proof. Note that

dA`εapφ` εψq “ dAφ` εpdAψ` ra,φsq `Opε2q, (6.84)

so that the linearization ‹FA˘ dAφ is given by the term of the proposition. �

Definition 6.51. Define the usual metric for bundle valued forms on Mpsq
k , i.e.

〈A, B〉 “
∫

R3

3∑
i“0

〈Ai, Bi〉volR3 (6.85)

where A and B are tangent vectors as in Proposition (6.50) and 〈´,´〉 on sup2q is given
by ´12 trptsq.

Lemma 6.52. The induced action of the gauge group G on the tangent space TMpsq
k is given

by
g.pψ,aq “ pAdgψ, Adg aq. (6.86)

Proof. See Lemma 6.19. �

Proposition 6.53. The metric is invariant under the gauge action G0 ñ M
psq
k .

Proof. This follows immediately since the Killing form is Ad-invariant. �

Lemma 6.54. The infinitesimal action of the Lie Algebra of G0,

LiepG0q “
{
ξ P ΓpR3, AdpPqq | ‖ξ‖ P Opr´1q

}
(6.87)

on Mpsq
k is given by

Kξ “ prξ,φs,´dAξq. (6.88)

Proof. See the proof of Lemma 6.21. �

Proposition 6.55. A tangent vector pψ,aq to c “ pφ,Aq PMpsq
k is orthogonal to the compactly

supported infinitesimal generators of G0 ñ M
psq
k with respect to the metric (6.20) if and only

if
‹dA ‹ a` rφ,ψs “ 0 (6.89)

Proof. We want gpKξ, pψ,Aqq “ 0, hence

0 “

∫
R3
〈´dAξ,a〉` 〈rξ,φs,ψ〉volR3 , (6.90)
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and ∫
R3
〈dAξ,a〉 “

∫∑
i

〈dAξpBiq,apBiq〉volR3 (6.91)

“

∫∑
i

〈Biξ,ai〉` 〈rAi, ξs,ai〉volR3 (6.92)

“

∫
grad ξ ¨ a`

∑
i

〈rAi, ξs,ai〉volR3 (6.93)

“

∫
divpξaq ´ ξdiva´

∑
i

〈ξ, rAi,ais〉volR3 , (6.94)

where ai “ apBiq and we used the vector calculus identity grad ξ ¨a`ξdiva “ divpξaq,
and by the theorem of Stokes,

∫
divpξaqvolR3 vanishes (we assume ξ has compact

support here). But then

gpKξ, pψ,Aqq “
∫

R3

〈
diva`

∑
i

rAi,ais ` rφ,ψs, ξ

〉
volR3 , (6.95)

which together with ‹dA ‹ a “ diva`
∑
irAi,ais shows the claim. �

Proposition 6.56. Let c “ pφ,Aq P Ms
k. Identify TrcsM

psq
k with the orthogonal complement

of the infinitesimal generators of G0 ñ M
psq
k in TcM

psq
k . This identifies TrcsM

psq
k with pairs

a “ pψ,aq P VB that satisfy the quaternionic ordinary differential equation

rφ, as `∇A1 pap´iqq `∇A2 pap´jqq `∇A3 pap´kqq “ 0 for Mk, (6.96)

rφ, as ´∇A1 piAq ´∇A2 pjaq ´∇A3 pkAq “ 0 for Ms
k. (6.97)

Proof. We see that the system

‹dA ‹ a` rφ,ψs “ 0 (6.98)

‹dAa¯ dAψ¯ ra,φs “ 0 (6.99)

is in coordinates given by

∇A1 a1`∇A2 a2`∇A3 a3` rφ,ψs “ 0 (6.100)

∇A2 a3´∇A3 a2¯∇A1 ψ˘ rφ,a1s “ 0 (6.101)

∇A3 a1´∇A1 a3¯∇A2 ψ˘ rφ,a2s “ 0 (6.102)

∇A1 a2´∇A2 a1¯∇A3 ψ˘ rφ,a3s “ 0. (6.103)

Sorting this we get

∇A1


a1

¯ψ

´a3

a2

`∇A2


a2

a3

¯ψ

´a1

`∇A3


a3

´a2

a1

¯ψ

` rφ,


ψ

˘a1

˘a2

˘a3

s “ 0, (6.104)

which shows the claim (for Ms
k multiply the last three equations by ´1). �
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Corollary 6.57. There are complex structures on Mk given by left multiplication of i, j,k and
on Ms

k given by right multiplication of ´i,´j,´k.

Proof. The equations above are invariant under these multiplications. For the integra-
bility see e.g. [AH88]. �

6.2.4 Actions on the Moduli Space

Definition 6.58. Define an action R3 ñ µB
´1p0q by pulling back the function ψ and

form A along the translation by r P R3.

Proposition 6.59. The action given by Definition 6.58

1. maps solutions of the Bogomolny equations to solutions of the Nahm equations,

2. respects the boundary conditions BCk,

3. commutes with the gauge action of G,

4. leaves g,ωI,ωJ and ωK invariant.

Put together, the action of Definition 6.58 induces an action R3 ñ M
psq
k which is hyperkähler.

Proof. All these follow immediately. �

Proposition 6.60. The action SUp2q Ñ SOp3q ñ R3 induces a rotating (left) action on M
psq
k .

Proof. Map B̂ P SUp2q to B “ pbijqi,j P SOp3q and let it act as denoted. If we write
A “

∑3
i“1Aidx

i, then the transformation of the connection becomes

B.A “
3∑
i“1

Ai ˝B
´1dpxi ˝B´1q “

3∑
i“1

Ai ˝B
´1dpxi ˝B

tq (6.105)

“

3∑
i,j“1

Ai ˝B
´1dxjb

t
ij “

3∑
i,j“1

Ai ˝B
´1dxjbji, (6.106)

so that

Ak ÞÑ

3∑
i“1

bkiAi ˝B
´1 (6.107)

under the action. The action on ϕ is simply given by pull back, B.φ “ φ ˝ B´1. The
chain rule implies that

BlpB.Akq “
3∑
i“1

bliBlAk ˝B
´1 and BlpB.φq “

3∑
i“1

bliBiφ ˝B
´1. (6.108)
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This shows that the equations are equivariant under this action. It follows immediately
that the boundary conditions are satisfied (here it is necessary to use the geometrical
boundary description). It is also easy to see that the action commutes with the gauge
action and leaves g invariant (because the matrix is in SOp3q). Finally, it induces the
usual rotating action on the flat quaternionic space VB. �

6.2.5 As a Hyperkähler Reduction

The Bogomolny equations can also be described (formally) as a hyperkähler reduction.
The formal part is similar to the Nahm equations.

Proposition 6.61. The action of GB ñ M
psq
k is trihamiltonian and the corresponding moment

map is given by µpsqB : FB Ñ UB. Thus Mpsq
k is a formal hyperkähler reduction of FB.

Proof. We already know that the action of the gauge group is hyperkähler, so the only
remaining thing to show is that〈

ξ,dµpsqA p´q
〉
“ ω

psq
A pK

ξ,´q @ξ P LiepGq,@A P {I, J,K} . (6.109)

We will show this as an example for dµpsqI . Let X “ ps1, s2, s3, s4q be a tangent vector at
pφ,Aq PMpsq

k and ξ compactly supported, then

dµ
psq
I pXq “ ∇

A
2 s3´∇A3 s2¯∇A1 s0˘ rφ, s1s. (6.110)

With Fubini’s theorem we obtain

gpIpsqKξ,Xq “
∫
I

〈
˘∇A1 ξ, s0

〉
` 〈˘rξ,φs, s1〉`

〈
∇A3 ξ, s2

〉
`
〈
´∇A2 ξ, s3

〉
dt (6.111)

“

∫
I

〈
ξ,˘rφ, s1s ¯∇A1 s0`∇A2 s3´∇A3 s2

〉
dt (6.112)

“

∫
I

〈
ξ,dµpsqI pXq

〉
dt “

〈
ξ,dµpsqI pXq

〉
. (6.113)

�

6.3 Haydys-Witten Instantons

Let M be a 5-manifold with (not necessarily integrable) SOp4q structure. Then the
alternating product bundles of M split as

Λ1T_M – Λ14‘Λ
1
1 – Λ

4T_M, (6.114)

Λ2T_M – Λ2`‘Λ
2
´‘Λ

2
4 – Λ

3T_M (6.115)

Λ11’s representation is trivial, hence it is the trivial bundle, so we may pick a trivializing
section η P ΓpΛ11q, and denote by Y the dual of this section. Then Fpηq is a map iden-
tifying Λ14 – Λ24. A quick inspection shows that Gpηq : Λ2 Ñ Λ2 has the eigenspaces
Λ2`,Λ2´ and Λ24 corresponding to the eigenvalues 1,´1 and 0 respectively.
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Definition 6.62. Let PÑM be a principal G-bundle and let

pA,Bq P CpPq ˆΩ2`pP, AdpPqq.

Then the Haydys-Witten equation are given by

ιYF
A “ δ`AB (6.116)

FA` “ ∇AY B` σpB,Bq, (6.117)

(6.118)

where δ`A “ prS11 ˝∇
A and σ is induced by r´,´ssup2qbr´,´sg : pΛ2`b gq

⊗2

Ñ Λ2`b g.

Remark 6.63. ∇AB lives in T_MbΛ2`b g, and since in terms of SOp4q-representations
pS11‘ S00qb S20 – S31‘ S11‘ S20, we have a projection onto S11. See [Hay15b] for an
explicit description of the map.

Similarly we can describe σ as the projection onto the S20 component of S20bS20 –
S40‘ S20‘ S00.

Remark 6.64. If M has a hypo structure (again not necessarily integrable), then B de-
composes into three sections of the adjoint bundle and the similarities to the Nahm
equations are striking.

Remark 6.65. As mentioned, ιY identifies Λ24 and Λ14. Hence the first equation speci-
fies FA4 , whereas the second equations specifies FA` . This is similar to other monopole
equations. The corresponding instantons would be given by FA4 “ 0 “ F

A
` .

Remark 6.66. Mazzeo and Witten study possible boundary conditions of the Haydys-
Witten equations [MW13]. Of particular interest are the same boundary conditions we
will introduce in Theorem 8.38, only not on an interval, but on a half line. Further-
more, they consider knots embedded into the boundary and require more complicated
conditions on the knot to make a connection to Khovanov homology.

6.4 G2-Monopoles

Let M be a 7-manifold with (not necessarily integrable) G2 structure, P ÑM a princi-
pal G-bundle and denote the coassociative form of M by ψ. Then the alternating product
bundle of M decompose as described in Proposition 2.56.

Definition 6.67 (G2 Monopoles). A pair pA,φq P CpPq ˆ ΓpAdpPqq is called a G2-
monopole if

FA^ψ “ ‹dAφ. (6.119)

Remark 6.68. Recall that Λ27 is the image of Gpψq restricted to Λ1. Hence up to this
identification the equations are given by FA7 “ dAφ. The associated instanton equations
are given by FA7 “ 0.
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Remark 6.69. Oliveira discusses some possible boundary conditions for G2-Monopoles
for examples that fit to our setting in [Oli14]. He considers the boundary condition
where limrÑ8‖φ‖ ă 8 exists for a G2-monopole on Λ2`X of a 4-manifold, where r is
the distance to the zero-section. In addition the existence of a limiting bundle with
limiting connection is required. The boundary conditions we are interested in imply
these but require more. In the case of Bogomolny equations, these conditions are
actually equivalent (see the discussion in Remark 6.43), but this uses the satisfaction
of the Bogomolny equations. It is unclear to the author if this can be extended to our
case.
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Chapter 7

An Extended Nahm Transform

In this chapter we will generalize the Nahm Transform. The Nahm Transform relates
a Bogomolny datum (see Definition 6.37) to a Nahm datum (see Definition 6.1). Re-
calling that both spaces are (formal) hyperkähler reductions of affine spaces, we can
picture this as follows,

UB UN

FB FN

MBog MNahm

µB µN

NahmTr.

where FB and FN are (affine) flat (infinite dimensional) quaternionic vector spaces and
the µi are the moment maps. We have in addition used here that the Nahm Transform
respects the gauge equivalence class and hyperkähler structure (see e.g. [Nak91]). The
first remark is that the very definition of the Nahm Transform is a transform between
the spaces FB and FN, which later is shown to respect the gauge classes, and so is well
defined on the quotients. Hence we get a transform

FB Ą µB
´1p0q Ø µN

´1p0q Ă FN (7.1)

between solutions of the Bogomolny equations and solutions of the Nahm equations
(the boundary conditions are encoded in the spaces Fi). We will show that the Nahm
Transform is extendable to a tubular neighborhood of µi´1p0q Ă Fi. This means that
we relate Bogomolny Data and Nahm Data that satisfy the usual boundary conditions,
but satisfy the equations with a small error.

For this we only have to show that the construction remains well defined for small
deviations of solutions. In particular we need to show that the boundary conditions
remain satisfied. On the other hand we want to show that a small deviation of a
solution induces a small deviation on the other side.
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In the first section we will define the necessary notions and in the second section
we show that the construction of the Nahm Transform remains valid for small de-
viations. In the third section we give an approximation of the error term after the
transformation and in the last section we will show that the boundary conditions re-
main satisfied under the small deviations. To show the approximation, we have to give
a new elementary proof of the Nahm Transform (of the equation part) without using
a choice of a complex structure as e.g. in [Don84] and [Nak91]. This makes the proof
shorter and gives a straight forward calculation to verify the equations. Furthermore
it highlights that the transform in both directions are virtually identical.

Another possibility to work with this problem would be to define a tubular neigh-
borhood of µ´1p0q Ă F. This would allow to have a well defined projection onto µ´1p0q.
In a very similar setting Gaio defined such a projection and moreover a way of map-
ping µ´1p0q back into the tubular neighborhood, given a direction and a ε [Gai99].
Then adiabatic scaling is used to ensure that the solution of the equations is in this
tubular neighborhood. A similar construction would solve the given problem but it
seems unclear on how to generalize the results of [Gai99] to this infinite dimensional
setting.

There has been work on defining a tubular neighborhood for the Nahm equations,
using a gradient flow in an equivariant setting with cutting and projecting. It is unclear
if such a definition will have the required properties to construct an inverse map.

We are interested in right hand errors here, i.e. we don’t require a datum to be
close to a solution to the equations, but rather that the equations are approximately
satisfied. Of course the former implies the latter.

The proof of the boundary conditions in this section follows closely the steps of
[Nak91] and [Hit83].

7.1 Notions

Let G be a Lie Group and fix an Ad-invariant scalar product on its Lie Algebra g.

Definition 7.1. A generalized Nahm datum is an element in pT0, T1, T2, T3q P FN,

µNpT0, T1, T2, T3q “ η P UN. (7.2)

Definition 7.2. A generalized Bogomolny datum is an element in pA,φq P FB,

µBpA,φq “ η P UB. (7.3)

7.2 An Extension of the Nahm Transform

The construction of the extended Nahm Transform is formally equivalent to the usual
one. We define the same operator and use the same construction to produce the
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transformed datum. For this to work we only have to make sure that the index of
the operator does not change and the kernel remains trivial on the larger class of
connections.

Since we will be using the Weitzenböck formulas later on, we also prove those in
this section.

7.2.1 Nahm to Bogomolny

Definition 7.3 (Nahm Dirac Operator). Let pT0, T1, T2, T3q be a generalized Nahm da-
tum and V Ñ I the associated bundle. For every x P R3, define

Dx : HbW1,2
0 pI,Vq Ñ Hb L2pI,Vq (7.4)

Dx “ 1Hb∇t`
3∑
j“1

(
cljbpTj´ ixj1Vq

)
, (7.5)

where ∇t “ Bt ` T0 is the connection induced by T0 and clj are the Clifford multipli-
cation on the spin bundle of R3, S “ H. The tensor product of H – C2 and V is over
C.

Lemma 7.4. The adjoint operator of DX is given by

D˚
x “ ´1Hb∇t`

3∑
j“1

(
cljbpTj´ ixj1Vq

)
. (7.6)

Proof. We see that
pcljbTkq˚ “ ´ cljb´ Tk “ cljbTk, (7.7)

and
pcljbixkq˚ “ ´ cljb´ ixk “ cljbixk, (7.8)

so that the second summand of Dx is self dual. ∇t is a Upkq connection and as such
compatible with a metric from V . Using this with the vanishing of the sections on the
boundary gives

p1Hb∇tq˚ “ ´1Hb∇t (7.9)

via integration by parts. �

Proposition 7.5 (Weitzenböck Formula). Let pT0, T1, T2, T3q be a generalized Nahm datum,
with

9T1` rT0, T1s ` rT2, T3s “ η1, (7.10)
9T2` rT0, T2s ` rT3, T1s “ η2, (7.11)
9T3` rT0, T3s ` rT1, T2s “ η3. (7.12)
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Then

D˚
xDx “ 1Hb

∇˚t∇t` 3∑
j“1

pTj´ ixjq
˚pTj´ ixjq

´ clη, (7.13)

where

clη “
3∑
j“1

ηi cli . (7.14)

Proof. Define the abbreviating notation

Dx “ dt` T `X, (7.15)

where dt “ 1Hb∇t,

T “

3∑
j“1

cljbTj and X “ ´i

3∑
j“1

cljbxj1V . (7.16)

Then by Lemma 7.4 we know that D˚
x “ ´dt` T `X. We see that

D˚
xDx “ ´d

2
t ´ dtT ´ Tdt´Xdt` Tdt` T

2` TX`Xdt`XT `X
2 (7.17)

“ ´d2t ´ dtT ` T
2` TX`XT `X2 (7.18)

We now inspect the terms. Starting with

dtT “

3∑
j“1

cljb∇tTj, (7.19)

and continue with

X2 “ ´

3∑
i,j“1

cli cljbxixj “ 1C2 b

3∑
i“1

x2i ´
∑
i‰j

cli cljbxixj︸ ︷︷ ︸
“0

, (7.20)

where the second term vanishes because the cli anticommute. For XT ` TX realize that
cljbTj and clibxi anticommute if i ‰ j, so that the corresponding terms of TX and XT
cancel. Only the diagonal terms survive, i.e.

XT ` TX “ 2i1Hb

3∑
j“1

Tjxj. (7.21)

Finally we need to look at

T2 “

3∑
i,j“1

cli cljbTiTj “ ´1Hb

3∑
j“1

T2j `
∑
i‰j

cli cljbTiTj. (7.22)
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For the second term we continue∑
i‰j

cli cljbTiTj “
∑

1ďiăjď3

cli cljbpTiTj´ TjTiq (7.23)

“ ´ cl1brT2, T3s ´ cl2brT3, T1s ´ cl3brT1, T2s. (7.24)

We conclude that

pT `Xq2 “ 1C2 b

 3∑
j“1

px2j ` 2iTjxj´ T
2
j q

` L (7.25)

“ 1C2 b

 3∑
j“1

pTj´ ixjq
˚pTj´ ixjq

` L, (7.26)

where L is defined by (7.24),

´L “ cl1brT2, T3s ` cl2brT3, T1s ` cl3brT1, T2s. (7.27)

This shows that

D˚
xDx “ 1Hb

∇˚t∇t` 3∑
j“1

pTj´ ixjq
˚pTj´ ixjq

´ dtT ` L. (7.28)

Plugging in the Nahm equations (7.10) through (7.12) shows that

L´ dtT “ ´

3∑
j“1

cljbηj, (7.29)

which completes the proof. �

We recover the Weitzenböck formula in [Nak91] by letting ηj “ 0.

Corollary 7.6. The L2 kernel of the family Dx vanishes for an approximate solution of the
Bogomolny equations.

ker Dx “ {0}. (7.30)

Proof. Using the Weitzenböck formula for σ “ sb e P ΓpSb Eq, we see that right hand
side is a positive operator if we assume η to be small enough. So Dxσ “ 0 if and only
if ‖sb e‖ “ 0. �

Corollary 7.7. We have,

dim ker D˚
x “ dim coker Dx “ ind Dx, (7.31)

where ind is the index of the differential operator.
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Theorem 7.8 ([Hit83]). For any generalized Nahm datum, we have

ind Dx “ 2. (7.32)

Remark 7.9. The L2-kernel of Dx gives a 2-dimensional subspace in Ex Ă Hb L2pI,Vq
for every x P R3. This may be interpreted as a 2-dimensional subbundle of the infinite
dimensional trivial bundle

E Ă L2pI,Sb Vq Ñ R3. (7.33)

Definition 7.10. Denote by πx : L2pI,Sb Vq Ñ Ex the orthogonal projection with re-
spect to the L2 scalar product and by ι : E Ñ L2pI,Sb Vq the inclusion. Define the
connection on E by

dA : ΓpR3,Eq ι−Ñ ΓpI,L2pI,Sb Vqq d−Ñ ΓpI,L2pI,Sb Vqq π−Ñ ΓpR3,Eq. (7.34)

Further define the endomorphism of E by

ϕ : ΓpR3,Eq Ñ ΓpR3,Eq, s ÞÑ πpitsq k P {1, 2, 3} . (7.35)

7.2.2 Bogomolny to Nahm

Definition 7.11 (Bogomolny Dirac Operator). Let pA,φq be a generalized Bogomolny
datum and EÑ R3 the associated bundle. For every t P I “ p´1, 1q, define

DA,t “ DA` pφ´ itq : ΓpSb Eq Ñ ΓpSb Eq (7.36)

where SÑ R3 is the spin bundle of R3.

Lemma 7.12. The formal adjoint of DA,t is given by

D‹
A,t “ DA´ pφ´ itq. (7.37)

Proof. Note that DA is self-adjoint, and φ´ it P upSb Eq. �

Proposition 7.13 (Weitzenböck Formula). Let pA,φq be a generalized Bogomolny datum,
with

‹FA´ dAϕ “ η, η “ pη1,η2,η3q P Ω1pR3, gq. (7.38)

The Bogomolny Dirac operator satisfies the following Weitzenböck formula

D˚
A,tDA,t “ ∇˚∇´ 1Sb pφ´ it1q

2´ clη, (7.39)

where

clη “
3∑
i“1

ηi cli . (7.40)
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Proof. Let ψ “ φ´ it1 for this proof. By definition

D˚
A,tDA,t “ D˚

ADA`D˚
A (1Sbψ)´ (1Sbψ)DA´ 1Sbψ

2. (7.41)

Using the Weitzenböck formula of DA, we see that

D˚
ADA “ ∇˚∇`

1

4
Sc`

1

2
R, (7.42)

where
Rpsb eq “

∑
i,j

cli clj sb FApei, ejqe, (7.43)

peiq are standard coordinates and via AdpPq Ñ EndpEq we identify FApei, ejq “ FAij
with an endomorphism of E. cli is a short notation for clei and ∇ is the connection on
Sb E induced by the Levi Civita connection and ∇A. Since R3 is flat, Sc “ 0 and we
get

DA (sbψe) “ cl∇ (sbψe) (7.44)

“ cl
(
∇LCsbψe` sb∇A

[
ψe
])

(7.45)

“ Dsbψe` cl
(
sb

(
rdAψse`ψ∇Ae

))
(7.46)

“ 1Sbψ
(
DApsb eq

)
` clpsb rdAψseq, (7.47)

(7.48)

so that
DAp1Sbψq ´ p1SbψqDA “ clp1Sb dAψq. (7.49)

Note that dAψ “ dAφ “ ‹FA´ η, hence

clp1Sb dAψqpsb eq “ cl
(

1Sb
(
pFA12´ η3qe

3` pFA23´ η1qe
1 (7.50)

` pFA31´ η2qe
2
))
psb eq (7.51)

“ cl3 sb FA12e` cl1 sb FA23e` cl2 sb FA31e (7.52)

´

3∑
i“1

ηi clipsb eq. (7.53)

On the other hand, we can calculate that
1

2
Rpsb eq “

∑
iăj

cli clj sb FAije “ ´ cl3 sb FA12e` cl2 sb FA13e´ cl1 sb FA23e, (7.54)

where we have used that cl1, cl2, cl3 is multiplication by ´i,´j,´k P H. Therefore
these terms cancel and we end up with

D˚
A,tDA,t “ ∇˚∇´ 1Sb pφ´ it1q

2
´

3∑
i“1

ηi cli . (7.55)

�
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We recover the Weitzenböck formula in [Nak91] by letting ηj “ 0.

Remark 7.14. Note that the spin bundle of R3, S Ñ R3, is the trivial bundle H. As
such, we can identify ΓpR3,Sb Eq – Hb ΓpR3,Eq. In this identification, the Dirac
operator now becomes

DA “ cl ˝∇A, (7.56)

and the Weitzenböck Formula becomes

D˚
A,tDA,t “ 1Hb p∇Aq˚∇A´ 1Hb pφ´ it1q

2
´

3∑
i“1

ηi cli . (7.57)

This shows that in this identification and with ηi “ 0, D˚
A,tDA,t (hence also its inverse)

commutes with cli. This is the essential fact to show that the transformed datum
satisfies the equations.

Corollary 7.15. The L2 kernel of the family DA,t vanishes for an approximate solution of the
Bogomolny equations.

ker DA,t “ {0}. (7.58)

Proof. Using the Weitzenböck formula for σ “ sb e P ΓpSb Eq, we see that right hand
side is a positive operator if we assume η to be small enough (i.e. clη : W1,2 Ñ L2

is small enough in the corresponding operator norm) depending on A and φ. So
DA,tσ “ 0 if and only if ‖sb e‖L2 “ 0. �

Corollary 7.16. We have,

dim ker D˚
A,t “ dim coker DA,t “ ind DA,t, (7.59)

where ind is the index of the differential operator.

Theorem 7.17 (Callias [Cal78]). For any generalized Bogomolny datum we have

ind DA,t “ k. (7.60)

Remark 7.18. The L2-kernel of DA,t gives a k-dimensional subspace in Vt Ă L2pR3,Sb
Eq for every t P p´1, 1q “ I. This may be interpreted as a k-dimensional subbundle of
the infinite dimensional trivial bundle

V Ă L2pR3,Sb Eq Ñ I. (7.61)

Definition 7.19. Denote by πt : L2pR3,Sb Eq Ñ Vt the orthogonal projection with re-
spect to the L2 scalar product and by ι : V Ñ L2pR3,Sb Eq the inclusion. Define the
connection on V by

∇t : ΓpI,Vq
ι−Ñ ΓpI,L2pR3,Sb Eqq d−Ñ ΓpI,L2pR3,Sb Eqq π−Ñ ΓpI,Vq. (7.62)

Further define three endomorphisms of V by

Tk : ΓpI,Vq Ñ ΓpI,Vq, s ÞÑ πpixksq. (7.63)
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7.3 Error Approximation

Let us begin by some general remarks. First off, note that the orthogonal projection
onto the kernel of D˚

A,t{x along the image of DA,t{x (where we drop the subscript) is
given by

π “ 1´DpD˚Dq´1D˚. (7.64)

This implies immediately that the image of D is in the kernel of π, indeed,

πpDψq “ Dψ´DpD˚Dq´1D˚Dψ “ Dψ´Dψ “ 0. (7.65)

Both the Bogomolny equations and the Nahm equations are vector bundle en-
domorphism valued. To show that they are satisfied, we pick an arbitrary element
ψ P ker D˚, apply the equation and show that the result is zero. Plugging in the def-
initions of the transformed data, we see that the last step of the equation is applying
the projection π, so we use two tricks to drop terms. First, anything in the image of D

vanishes, because of the calculation above, and second whenever D˚ gets applied to
ψ, the term vanishes.

It then turns out that we merely have to calculate some commutators, to apply
the facts above. The final step uses the Weitzenböck formula that we have shown for
the generalized Laplacian D˚D . The important part about these is that they commute
with the Clifford multiplications cli.

7.3.1 Nahm to Bogomolny

Theorem 7.20. If pT0, T1, T2, T3q satisfy the Nahm equations, then the transformed datum
pdA,φq satisfies the Bogomolny Equations.

Proof. Recall the Bogomolny equations

FA “ ‹dAφ. (7.66)

In coordinates we may write this as

FA23 “ ∇A1 φ, FA31 “ ∇A2 φ, FA12 “ ∇A3 φ. (7.67)

Let ψ P ker D˚
x . Then we can apply the equations to ψ to get

p∇A1 φqψ´ r∇A2 ,∇A3 sψ “ 0 (7.68)

p∇A2 φqψ´ r∇A3 ,∇A1 sψ “ 0 (7.69)

p∇A3 φqψ´ r∇A1 ,∇A2 sψ “ 0. (7.70)

Plugging in the definitions and using

p∇A1 φqψ “ ∇A1 pφpψqq ´φp∇A1 ψq, (7.71)

103



we arrive to the equivalent form of the first equations

πpB1πpitψqq ´ πpitπpB1ψqq ´ πpB2πpB3ψqq ` πpB3πpB2ψqq “ 0. (7.72)

It suffices to show that

B1πpitψq ´ itπpB1ψq ´ B2πpB3ψq ` B3πpB2ψq P kerπ. (7.73)

Using the fact that π “ 1´DxpD˚
xDxq´1D˚

x , we end up with

´B1DxpD
˚
xDxq

´1D˚
x pitψq ` itDxpD

˚
xDxq

´1D˚
x pB1ψq (7.74)

`B2DxpD
˚
xDxq

´1D˚
x pB3ψq ´ B3DxpD

˚
xDxq

´1D˚
x pB2ψq. (7.75)

Now permuting Dx with the other operators, we calculate

rDx, Bjs “ cljbi, rDx, its “ i. (7.76)

Using these brackets we arrive at

cl1bipD˚
xDxq´1D˚

x pitψq ´ ipD
˚
xDxq´1D˚

x pB1ψq

´ cl2bipD˚
xDxq´1D˚

x pB3ψq ` cl3bipD˚
xDxq´1D˚

x pB2ψq
mod im Dx. (7.77)

Next up we use the commutators with D˚

rD˚
x , Bjs “ cljbi, rD˚

x , its “ ´i, (7.78)

to get modulo ker D˚
x

pcl1b1VqpD
˚
xDxq

´1ψ` pD˚
xDxq

´1pcl1b1Vqψ (7.79)

` pcl2b1VqpD
˚
xDxq

´1pcl3b1Vqψ´ pcl3b1VqpD
˚
xDxq

´1pcl2b1Vqψ. (7.80)

Note that we have not used that pT0, T1, T2, T3q satisfy the Nahm equations yet. Only
now do we need the fact, that

pD˚Dq´1 “ 1SbG, (7.81)

where G is the Greens Operator of the right rand side of the Weitzenböck formula 7.5
for vanishing error η. We arrive at(

pcl1` cl1` cl2 cl3´ cl3 cl2q︸ ︷︷ ︸
2 cl1´ cl1´ cl1“0

b1V
)
pD˚
xDxq

´1ψ, (7.82)

which finishes the proof. To prove the other equations, cyclically permute 1, 2 and 3 in
this proof. �
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Corollary 7.21. For a generalized Nahm datum pT0, T1, T2, T3q with the error term satisfying
‖clη‖ ă ‖G0‖´1 (in the operator norm fromW1,2 toW1,2), the transformed error term is given
by

ψ ÞÑ π ˝

E cl1` cl1 E` cl2 E cl3´ cl3 E cl2
E cl2` cl2 E` cl3 E cl1´ cl1 E cl3
E cl3` cl3 E` cl1 E cl2´ cl2 E cl1

ψ (7.83)

where

E “

(
8∑
n“1

pG0 clηqn
)
G0, (7.84)

G0 is the Greens operator of

1Hb

∇˚t∇t` 3∑
j“1

pTj´ ixjq
˚pTj´ ixjq

 (7.85)

and for a section ψ P ΓpR3,Eq.

Proof. Let now µNpT0, T1, T2, T3q “ η. We have shown, that the Weitzenböck formula
is given by

D˚
xDx “ 1Hb

∇˚t∇t` 3∑
j“1

pTj´ ixjq
˚pTj´ ixjq

´ clη . (7.86)

Let us denote this by G0´1 ´ clη, where G0 (the Greens operator) commutes with the
Clifford multiplication. We derive an expression of the Green operator G of D˚

xDx in
terms of the Green operator G0. . We see then, that

D˚
xDx “ G0

´1p1´G0 clηq, (7.87)

so that for ‖clη‖ ă ‖G0‖´1,

G “ p1´G0 clηq
´1
G0 “

(
8∑
n“0

pG0 clηqn
)
G0 “ G0` E, (7.88)

where G is the Greens operator of D˚
xDx and E is defined by the equation above. By

looking at equations (7.79) and (7.80), we see that the error term’s first component is
given by

π
((
E cl1` cl1 E` cl2 E cl3´ cl3 E cl2

)
ψ
)

. (7.89)

The others follow similarly. �

Corollary 7.22. If ‖clη‖ ă ‖G0‖´1 (in the operator norm fromW1,2 toW1,2), the transformed
error term ηBog is in Opr´4q.
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Proof. Let us denote the operator (7.85) by X. Then XG0 “ 1, and we see that ‖Xψ‖ ě
Cr2‖ψ‖ by the definition of X for r large enough and some constant C (compare to
argument for equation (7.126)). Using this for ψ “ G0ψ shows that

Cr2‖G0ψ‖2 ď ‖XG0ψ‖2 “ ‖ψ‖2. (7.90)

We conclude that ‖G0‖ “ Opr´2q. This implies that E “ Opr´4q, which implies the
claim (note that ηNahm is independent of x P R3). �

Corollary 7.23. The first order term of the error map ηN Ñ ηB is given by

ηBpψq “ ´4πpG0ηNG0ψq, (7.91)

for a section ψ P ΓpR3,Eq.

Proof. Let ηN “ εη, and compare coefficients by powers of ε. �

7.3.2 Bogomolny to Nahm

Notation 7.24. For brevity we denote the Bogomolny Dirac Operator by just D , instead
of DA,t in this section.

Theorem 7.25. Let pA,φq satisfy the Bogomolny equations. Then the transformed datum
p∇t, Tjq satisfies the Nahm equations.

Proof. Let us show the first Nahm equation.

∇tT1` rT2, T3s “ 0. (7.92)

Take a ψ P ker D˚ (i.e a section of the vector bundle) and calculate

p∇tT1qpψq “ ∇pT1ψq ´ T1∇tψ “ π
(
Btπpix1ψq ´ ix1πpBtψq

)
. (7.93)

rT2, T3spψq “ π
(
ix2πpix3ψq ´ ix3πpix2ψq

)
. (7.94)

So to show the equation, it suffices to show that

Btπpix1ψq ´ ix1πpBtψq ´ ix2πpix3ψq ´ ix3πpix2ψq P kerπ. (7.95)

We calculate

Btπpix1ψq ´ ix1πpBtψq “ Btpix1ψ´DpD˚Dq´1D˚qpix1ψq (7.96)

´ ix1pBtψ´DpD˚Dq´1D˚qpBtψq (7.97)

“ ix1DpD
˚Dq´1D˚pBtψq ´ BtDpD

˚Dq´1D˚pix1ψq. (7.98)
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Similarly

ix2πpix3ψq ´ ix3πpix2ψq “ (7.99)

ix3DpD
˚Dq´1D˚pix2ψq ´ ix2DpD

˚Dq´1D˚pix3ψq. (7.100)

By a calculation, we see that

∇Apix1ψq “ dpix1q ^ψ` ix1∇Aψ (7.101)

hence
DApix1ψq “ i cl1ψ` ix1DAψ, (7.102)

so that
rDA,t, ixjs “ i clj, (7.103)

and similarly
rDA,t, Bts “ i. (7.104)

Hence

ix1DpD
˚Dq´1D˚pBtψq “ ´i cl1pD˚Dq´1D˚pBtψq mod im D . (7.105)

Applying this to all leaves us modulo the image of D with

` ipD˚Dq´1D˚pix1ψq ´ i cl1pD˚Dq´1D˚pBtψq (7.106)

` i cl2pD˚Dq´1D˚pix3ψq ´ i cl3pD˚Dq´1D˚pix2ψq. (7.107)

Then using the commutators with the adjoint

rD˚
A,t, Bts “ ´i rD˚

A,t, ixjs “ i clj, (7.108)

we can permute D˚ with the arguments to get by using that ψ P ker D˚,

´ pD˚Dq´1 cl1ψ´ cl1pD˚Dq´1ψ (7.109)

´ cl2pD˚Dq´1 cl3ψ` cl3pD˚Dq´1 cl2ψ. (7.110)

Note that we have not used that pA,φq satisfy the Bogomolny equations yet. Only now
do we need the fact, that

pD˚Dq´1 “ 1SbG, (7.111)

where G is the Greens Operator of the right rand side of the Weitzenböck formula 7.13

for vanishing error η. The import part is that pD˚Dq´1 commutes with the Clifford
multiplication, so that

p´ cl1´ cl1´ cl2 cl3` cl3 cl2qpD˚Dq´1ψ “ 0, (7.112)

because cl2 cl3 “ ´ cl1 and cl3 cl2 “ cl1. This shows the first Nahm equation. To prove
the others, cyclically permute 1, 2 and 3 in the proof above. �
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Corollary 7.26. For a generalized Bogomolny datum pA,φqwith error term satisfying ‖clη‖ ă
‖G0‖ (in the operatornorm from W1,2 to W1,2), the transformed error term is given by

ψ ÞÑ π ˝

´E cl1´ cl1 E´ cl2 E cl3` cl3 E cl2
´E cl2´ cl2 E´ cl3 E cl1` cl1 E cl3
´E cl3´ cl3 E´ cl1 E cl2` cl2 E cl1

ψ (7.113)

where

E “

(
8∑
n“1

pG0 clηqn
)
G0, (7.114)

G0 is the Greens operator of

1Hb
(
p∇Aq˚∇A´ pφ´ it1q2

)
(7.115)

and for a section ψ P ΓpI,Vq.

Proof. The proof is identical to the Nahm case. �

Corollary 7.27. If ‖clη‖ ă ‖G0‖´1 (in the operatornorm from W1,2 to W1,2), then the trans-
formed error term ηNahm is bounded on I.

Proof. This follows from the same argument as in the Nahm case, ‖G0ψ‖ ě Ct2‖ψ‖ so
that ‖G0‖ ď 1

Ct2
, hence E is bounded. �

Corollary 7.28. The first order term of the error map ηB Ñ ηN is given by

ηNpψq “ 4πpG0ηBG0ψq (7.116)

for a section ψ P ΓpI,Vq.

Proof. Let ηB “ εη, and compare coefficients by powers of ε. �

7.4 Boundary Conditions

The idea of the proof of the boundary conditions is identical for both directions. First
an approximation operator is introduced that has the same boundary behavior as the
Dirac operator. Then it is shown that the kernel of this new operator is close to the
original one, in the sense that the boundary behavior of the elements in the kernel
is sufficiently the same. Finally explicit solutions in the kernel of the approximating
operator are given and it is shown that those have the correct boundary behavior.

We have to modify these proofs in two steps. We define the same approximating
operator but have to show that the additional term clη in the Weitzenböck formulas
still allow to show that the elements in the kernel are close. For this only need the
asymptotic of the Weitzenböck formulas, which is unchanged by the modifications.
This is justified in equations (7.126) and (7.147).
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The second step is that we need to make sure that the solutions of the approxi-
mated operator still have the correct boundary behavior (this uses satisfaction of the
equations). Again it turns out that we merely need an asymptotic satisfaction of the
equations, i.e. the transformed error has to be η P Opr´2q in the Bogomolny equations
and η P Op 1t`1q for tÑ´1 and η P Op 1t´1q for tÑ 1 in the Nahm equations.

Since these poofs use a vast amount of details, we will not reproduce them com-
pletely here but rather give a overview of the important steps and show where adjust-
ments have to be made.

7.4.1 Nahm to Bogomolny

We closely follow [Hit83] in this section.

Theorem 7.29. Let pT0, T1, T2, T3q be an approximate solution to the Nahm equations of charge
k P N, so that the transformed error term satisfies η̃ P Opr´2q. Then the transformed datum
pA,φq satisfies the boundary conditions BCk.

Proof. We use C as a generic constant in this proof. As SUp2q-representations we have
the following decomposition.

Hb V – S1b Sk´1 – Sk‘ Sk´2. (7.117)

Close to the boundary,
Tj “

ρj

1´ t
` bptq, (7.118)

with b smooth. The action of T “
∑
j cljbρj can be understood via the Casimir oper-

ator to be multiplication by 1´k
2 on Sk and ´1´k

2 on Sk´2. Let us approximate Dx by

D0x “ 1HbBt`

(
1

t` 1
`

1

t´ 1

)
T ´ i

3∑
j“1

cljbxj1V . (7.119)

Then Dx´D0x “ A is a smooth operator on I independent of x P R3,

A “ 1Hb T0`

3∑
j“1

cljb
(
Tj´

ρj

1` t
´

ρj

1´ t

)
, (7.120)

so the index of D0x and Dx are equal. We can give explicit solutions in kerL2pD0x q˚

g˘ptq “ pt
2´ 1q

k´1
2 e˘rpt´1qv˘. (7.121)

To explain this, fix x P R3 for a second up to a scalar, i.e. x “ ru for a unitary quater-
nion u P R3 – Im H. Identifying sup2q – Im H, u generates a copy Up1q Ă SUp2qwhich
decomposes the representations Sk and Sk´2 into one-dimensional weight spaces,

Sk “ Vk‘ Vk´2‘ ¨ ¨ ¨ ‘ V´k (7.122)

Sk´2 “ Vk´2‘ Vk´4‘ ¨ ¨ ¨ ‘ V´k`2 (7.123)
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Now let v˘ be the highest (lowest) weight of Sk, which implies that it is fixed in HbV

by the action of ´ir
∑
j cljbuj1V . Since p´i

∑
j cljbuj1Vq2 “ 1, we see that 3∑

j“1

cljbxj1V

 v˘ “ ˘rv˘, (7.124)

for r “ ‖x‖. Now we can see that

pD0x q
˚g˘ptq “

(
´

2t

t2´ 1
¯ r`

1

t` 1
`

1

t´ 1
`˘r

)
g˘ptq “ 0. (7.125)

For big enough r there is a cj ą 0 such that ‖Tj´ ixj‖ ě cj‖xj‖, which together with
the Weitzenböck formula implies that for ‖x‖ ě r,

〈Dxψ, Dxψ〉 ě pr2´ ‖clη‖q‖ψ‖2 ě Cr2‖ψ‖2, (7.126)

for C ą 0 and r big enough, where we have used that η is independent of x P R3. This
implies 〈

D0xψ, D0xψ
〉
“ 〈pDx´Aqψ, pDx´Aqψ〉 ě C2r2‖ψ‖2, (7.127)

if ‖x‖ ě r for r big enough. Hence, ker D0x “ 0 for ‖x‖ big enough. Let G0 be the
Greens Operator of D0x , i.e.

D0xG0 “ 1´ π0, G0D
0
x “ 1 (7.128)

with π0 the orthogonal projection onto ker
(
pD0x q

˚
)
. Hence we have

‖ψ‖2´ ‖π0ψ‖2 ě Cr2‖G0ψ‖2, (7.129)

which implies that ‖G0‖ P Opr´1q, and then ‖G˚0‖ P Opr´1q. If ψ P ker D˚, then

ψ´ π0ψ “ G
˚
0D

˚
0ψ “ G

˚
0pD

˚´A˚qψ “ ´G˚0A
˚ψ, (7.130)

so that ‖ψ´ π0ψ‖ ď C̃
r ‖ψ‖. This shows that the elements in kernel of D˚ can be

approximated to order r´1 by elements in the kernel of D˚
0 .

[Hit83] now goes on to shows that the solutions of D˚
0 , which can be expressed

by g˘, satisfy the boundary conditions which implies the satisfaction of the boundary
conditions of the elements in the kernel of D˚. Notice that our D0 is identical1 to
the one in [Hit83]. The only part where the equations come into play is shortly after
equation [Hit83, Equation (2.13)], where ‖FA‖ P Opr´2q needs to imply ‖dAφ‖ P Opr´2q,
which is true because of the assumption η̃ P Opr´2q on the transformed error term. �

Corollary 7.30. If ‖clη‖ ă ‖G0‖´1 and D˚
xDx is a positive operator, then the extended Nahm

transform from Nahm to Bogomolny is well defined.

Proof. This follows by Theorem 7.29 and Corollary 7.21. �
1Dx is called ∆pxq in Hitchin’s notation, D0x is denoted by ∆0pxq and defined shortly after [Hit83,

Theorem 2.8]. The relation between our definitions is iDx “ ∆pxq. Note also that Hitchin defines ∆pxq for
x P R4, but restricts it to x P R3 after [Hit83, Equation (2.10)]. Finally note that Hitchin uses the interval
I “ p0, 2q.
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7.4.2 Bogomolny to Nahm

We follow closely the description in Nakajima’s paper [Nak91]. Similarly to this work
C is used as a generic constant.

Theorem 7.31. Let pA,φq be an approximate solution to the Nahm equations of charge k P N

and let the transformed error term satisfy η̃ P Op 1t`1q for tÑ ´1 and η̃ P Op 1t´1q for tÑ 1.
Then the transformed datum satisfies the boundary conditions NCk.

Proof. Define

DA,t “ DA` pφ´ itq : ΓpSb Eq Ñ ΓpSb Eq (7.131)

and use the index theorem of Callias (see Theorem 7.17) to see that this operator has
index k. The Weitzenböck formula shows that

D˚
A,tDA,t “ ∇˚∇´ 1Sb pφ´ it1q

2´ clη, (7.132)

which is a positive operator if ‖clη‖ is small enough in the operator norm from W1,2 to
L2. Hence kerL2 D˚

A,t is k-dimensional. This defines a subbundle of the trivial vector
bundle

V Ă L2pR3,Sb Eq Ñ I (7.133)

by letting Vt “ kerL2 D˚
A,t. Nakajima shows [Nak91] that the boundary conditions

assure that we can find an assymptotic gauge that the bundle E decomposes into
L‘ L˚ the sum of two line bundles (the eigenspaces of φ for eigenvalues i and ´i)
with L “ Opkq (k P N from the boundary conditions). He goes on showing, that in this
gauge

A “

(
A˚8 0

0 A8

)
`Opr´2q, (7.134)

and using this for the operator implies that

D˚
A,t “

(
B1 0

0 B2

)
`Opr´2q, (7.135)

where

B1 “

(
i
(
Br` t´ 1`

k`2
2r

)
1
rD

´

A˚8
1
rD

`

A˚8
´i
(
Br´ t` 1´

k´2
2r

) ) (7.136)

B2 “

(
i
(
Br` t` 1´

k´2
2r

)
1
rD

´
A8

1
rD

`
A8

´i
(
Br´ t´ 1`

k`2
2r

) ) , (7.137)

(7.138)

see page 4 of [Nak91]. We take D0A,t “ diagpB1,B2q as the approximating operator, but
we need to explain the notation first. Notice that the Spin bundle of R3\ {0} “ R`ˆ S2
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is isomorphic to the Spin bundle of S2, which decomposes into S` and S´ and D˘
A8

are the Dirac operators of S2 twisted by A8. A8 is the connection induced by A on
the line bundle L. The matrix acts on the decomposition

Sb E “ L˚bS`‘ L˚bS´‘ LbS`‘ L‘S´ (7.139)

“ Op´k´ 1q ‘Op´k` 1q ‘Opk´ 1q ‘Opk` 1q. (7.140)

This time we won’t be able to give a explicit basis in kerpD0A,tq
˚, but we can give a

approximation in the following sense. Focusing on the boundary conditions at tÑ´1,
we define a k-dimensional space of functions close to kerpD0A,tq

˚ by

ψpr, θq “ χprqe´pt`1qrr
k´2
2


0

0

fpθq

0

 , (7.141)

for f P H0pCP1,Opk´ 1qq (recall that Opk´ 1q has a k-dimensional space of holomor-
phic sections), and χprq a cut-off function which is 0 on r0,Rs and 1 on rR` 1,8q for
some R ą 0. Here r is the coordinate on R` and θ on S2. Direct calculations show that

∣∣D˚
A,tψ

∣∣
SbE

ď Ce´pt`1qRpR` 1q
k´2
2 (7.142)

for C independent of R and t. In this sense it is an approximate solution to kerppD0A,tq
˚q

for large R. A solution ϕ of the equation

D˚
A,tDA,tϕ “ 1Sb

(
∇˚A∇A´ (φ´ it)2´ clη

)
ϕ “ D˚

A,tψ (7.143)

then gives an element in ker D˚
A,t as ψ´DA,tϕ. We will show, that the boundary

behavior of this element is dominated by ψ, but first we argue that such a ϕ exists
(uniquely). The equation

1Sb
(
∇˚A∇A´ (φ´ it)2´ clη

)
ϕ´D˚

A,tψ “ 0 (7.144)

is the Euler Lagrange equation of the functional

Spϕq “
1

2
‖∇Aϕ‖2L2 `

1

2
‖pφ´ itqϕ‖2L2 ´ 〈ϕ, clηϕ〉L2 ´

〈
ϕ, D˚

A,tψ
〉
L2

. (7.145)

This is a strictly convex function, which is also differentiable and coercive (see [JT80,
Proposition IV.4.1]). By methods of variational calculus (see e.g. [JT80, Proposition
VI.8.5]), it has a unique minimum Spϕq ď Sp0q “ 0. Therefore

‖DA,tϕ‖2L2 “ ‖∇Aϕ‖
2
L2 ` ‖pφ´ itqϕ‖

2
L2 ´ 2 〈ϕ, clηϕ〉L2 ď 2

〈
ϕ, D˚

A,tψ
〉
L2

. (7.146)

112



For t sufficiently close to ´1, we can estimate all these terms from below against the
L2 norm of ϕ, i.e.

‖p1` tqϕ‖2L2 ď C
(
‖∇Aϕ‖2L2 ` ‖pφ´ itqϕ‖

2
L2 ´ 2 〈ϕ, clηϕ〉

)
“ C‖DA,tϕ‖2L2 , (7.147)

for details on how to estimate the first two terms see [Nak91, Equations (2.4) and
(2.5)]. But then we can restrict t to a smaller neighborhood of ´1, so that it is satisfied
also with our error term 〈clηϕ,ϕ〉 ď ‖clη‖‖ϕ‖2 (independent of ϕ). Once we have
established this equations, we can apply this to equation (7.146), to get

‖DA,tϕ‖4L2
(7.146)
ď 4‖ϕ‖2L2‖D

˚
A,tψ‖2L2

(7.147)
ď

1

p1` tq2
C‖DA,tϕ‖2L2‖D

˚
A,tψ‖2L2 , (7.148)

or ‖DA,tϕ‖L2 ď 1
1`tC‖D

˚
A,tψ‖L2 . From a direct calculation, we see that

‖D˚
A,tψ‖L2 “ Cp1` tq2‖ψ‖L2 , (7.149)

which shows that ‖DA,tϕ‖L2 ď Cp1 ` tq‖ψ‖L2 , so the boundary behavior close to
t Ñ ´1 is dominated by ψ. It remains to show, that the action of Ti on ψ has the
correct boundary conditions. This is shown in [Nak91, Lemma 2.6] where Nakajima
shows that the action of Ti on f P H0pCP1,Opk´ 1qq is a multiple of a k-dimensional
irreducible sup2q representation. The multiplicity is then fixed by satisfaction of the
Nahm equations, where we need that the transformed error η̃ is in Op 1t´1q for t Ñ 1

and in Op 1t`1q for tÑ´1, because then for Tj “
ρj
1`t `bj with bj P C8

(
I, g
)

(j P {1, 2, 3})

∇tTi`
1

2

3∑
j,k“1

εijkrTj, Tks “
1

pt` 1q2
pρi`

1

2

3∑
j,k“1

rρj, ρksq `O

(
1

t` 1

)
(7.150)

for tÑ´1 and similarly for tÑ 1. �

Corollary 7.32. If ‖clη‖ ă ‖G0‖´1 and D˚
A,tDA,t is a positive operator, then the extended

Nahm transform form Bogomolny to Nahm is well defined.

Proof. This follows by Theorem 7.31 and Corollary 7.26. �

7.5 Behavior with Respect to Conformal Maps

Recall, that the anti self-duality equations are conformally invariant.

Proposition 7.33. The ASD equations are conformally invariant. Let

P P1

pM,gq pM1g1q

h

f
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with h a G-equivariant map and f an orientation preserving conformal map. Then A P CpP1qasd
implies h˚A P CpPqasd.

Proof. See e.g. [Bau09, Satz 7.7]. �

Remark 7.34. Note that if f˚g1 “ u2g for a function u, then

‹g|Λk “ u
n´2k ‹u2g |Λk ,

so in particular for n “ 4, k “ 2 we have ‹g|Λ2 “ ‹u2g|Λ2 . By Liouville’s theorem the
conformal maps on R4 can be decomposed into

‚ homothetic transformations

‚ isometries

‚ special transformations (reflections and an inversion on a sphere)

It seems natural to expect that Bogomolny monopoles and the Nahm equations are
well behaved under these transformations respecting the decomposition of the dimen-
sional reduction. We will show that this is true and also that the Nahm transform is
equivariant with respect to those. It turns out that we already discussed the isome-
tries, which are a combination of the R3 and SOp3q actions on the solutions of Nahm
and Bogomolny. Homothetic transformations are given by

fε : R4 Ñ R4, x ÞÑ εx, (7.151)

and the special transformations do not respect the decomposition of the dimensional
reductions.

Proposition 7.35. When we apply the homothety f to the Nahm equations, the interval gets
scaled to εI. We have MNahm –MNahm

ε

Proof. Define

Tεi ptq “
1

ε
Ti

(
t

ε

)
. (7.152)

Then we calculate  9Tεi ` rT
ε
0 , Tεi s `

1

2

∑
jk

εijkrT
ε
i , Tεj s

 pεtq “ (7.153)

1

ε2

 9Ti` rT0, Tis `
1

2

∑
jk

εijkrTi, Tjs

 ptq “ 0. (7.154)

This gives a map from solutions to the Nahm equations on I to solutions on Iε “
εI “ p´ε, εq.
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Mapping the gauge transformations, via

GNahmε Ñ GNahm, gεptq “ gp
1

ε
tq, (7.155)

shows that

gεT
ε
0 ptq “ gεptq

1

ε
T0p

t

ε
qgε

´1ptq ´
1

ε
9gεptqgε

´1ptq “ (gT0)
ε
ptq (7.156)

and similarly
gεT

ε
i “ pgTiq

ε. (7.157)

This shoes that the map projects down onto a map of the quotients and we have shown
the isomorphism. (The inverse is Tipxq “ εTεi pεxqq). �

Proposition 7.36. When we apply the homothety f to the Bogomolny equations, R3 gets
stretched by ε. We have MBog

ε –MBog

Proof. The argument is similar with

Aεx “ f
˚
1
ε

Ax “ A 1
εx
˝ df 1

ε
“
1

ε
A 1
εx

. (7.158)

and
ϕεpxq “ pf˚1

ε

ϕqpxq “ ϕp
1

ε
xq. (7.159)

Then this implies

f˚1
ε

FAx “
1

ε2
FA1
εx

(7.160)

f˚1
ε

dAϕx “
1

ε
dAϕ 1

εx
(7.161)

and in particular

FA
ε

x “
1

ε2
FA1
εx
“
1

ε2
‹g dAϕ 1

εx
“ ‹ 1

ε2
gdAϕ

ε
x, (7.162)

so it maps solutions to solutions.
The boundary conditions are satisfied trivially, since

lim
rÑ8
‖φε‖ “ lim

rÑ8
‖φ‖ “ 1. (7.163)

With gauging

GBogε Ñ GBog, gε “ gp
1

ε
xq. (7.164)

we have
gεA

ε “ pgAqε, gεϕ “ pgϕq
ε. (7.165)

The boundary condition remains satisfied because

lim
rÑ8

gεpx,y, zq “ lim
rÑ8

gpx,y, zq “ 1. (7.166)

�
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Proposition 7.37. The Nahm transform maps

Mε
Nahm ÑMε

Bog, (7.167)

i.e. it commutes with stretching.

Proof. Recall the operator

Dx “ 1C2 b∇t`

 3∑
j“1

σjb Tj´ ixjσjb 1V

 (7.168)

: W1,2
0 pI, C2b Vq Ñ L2pI, C2b Vq (7.169)

where V is the Upkq vector bundle of the Nahm equations. Also recall the definition
of the 2-dimensional sub bundle as

Ex “ ker D˚
x Ă L

2pI, C2b Vq
x

. (7.170)

We see that
Dεx “ εD x

ε
. (7.171)

This implies that
kerppDεxq

˚q “ ker D˚
x
ε

(7.172)

i.e.
Eε “ f˚1

ε

E. (7.173)

Further
pεx “ p xε (7.174)

which implies that

pdεAqx “ dAεx “ p xε
1

ε
d “

1

ε
p x
ε
d “

1

ε
pdAq x

ε
. (7.175)

and similarly

φεpxq “ p x
ε
i
t

ε
“ φp

x

ε
q, (7.176)

where we used the identification

L2pIε,Vq
¨ 1ε
Ñ L2pI,Vq, (7.177)

that swallows a factor 1ε .
For the reverse notice that the inverse of an equivariant map is automatically equiv-

ariant. �

Proposition 7.38. The Nahm transform is equivariant with respect to the R3-actions.
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Proof. Again looking at the operator

Dx “ 1C2 b∇t`

 3∑
j“1

σjb Tj´ ixjσjb 1V

 , (7.178)

we notice that if we act by y P R3 on Tj and use these matrices to define the operator,
then

Dyx “ 1Cb∇t`

 3∑
j“1

σjb Tj´ ipxj´ yjqσjb 1V

 “ Dx´y. (7.179)

This shows that the Bogomolny data is simply shifted by y, which agrees with the
action. For the reverse notice that the inverse of an equivariant map is automatically
equivariant. �

Proposition 7.39. The Nahm transform is equivariant with respect to the SOp3q-actions

Proof. Again looking at the operator

Dx “ 1C2 b∇t`

 3∑
j“1

σjb Tj´ ixjσjb 1V

 , (7.180)

it now is convenient to denote ~T “ iT1` jT2` kT3 and ~x “ ix1` jx2` kx3, so that

Dx “ 1C2 b∇t´ ~T `~xb i1V . (7.181)

We notice that if we act by q P Spp1q on Tj and use these to define the operator (without
the regauging that is necessary only for the boundary conditions), we see that

Dqx “ 1Cb∇t´ q~Tq̄`~xb i1V “ qDq̄xqq̄. (7.182)

For a matrix B P πpqq P SOp3q this reads

Dx “ BDB´1x. (7.183)

Now the argument is the same as in Proposition 7.37 (compare to equation (7.171)). �

Proposition 7.40. The extended Nahm Transform maps gauge equivalence classes to gauge
equivalence classes.2

Proof. This is true in much greater generality, see e.g. [Jar04, Lemma 1] �
2Technically speaking, there is a canonical isomorphism between the transformed bundles of two

gauge equivalent connections induced by the gauge transformation of the original connections – and the
connections agree under this isomorphism. Since all bundles are trivializable, these isomorphisms are
indistinguishable from gauge transformation of the trivial bundle. See also the details in [Jar04].
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7.6 Summary

Let us summarize the results of this chapter. We noticed that we can extend the Nahm
transform to an open neighborhood U Ă FN of µN´1p0q Ă FN, and similarly to an open
neighborhood of µB´1p0q Ă FB. This is true because the conditions in Corollary 7.30

and Corollary 7.32 are open and satisfied on µ´1p0q. We have also shown that the
extended Nahm transform is SOp3q ˙R3-equivariant, commutes with homotheties
and maps gauge equivalence classes to gauge equivalence classes.

An interesting question is if it can be extended to a even larger class of data, than
what Corollary 7.30 and Corollary 7.32 suggest. This seems possible for two reasons.
First, the derived properties in these corollaries are actually stronger than needed
for the Nahm transform, and secondly we only used the property to have a handy
expression of the Greens operator. It seems unlikely that it can be extended to all
of FB{FN though, as that would change the topology of the bundles involved in the
transformation (compare to Remark 8.72).

118



Chapter 8

Identification of Gauge Theories

In this chapter we will use the collected knowledge to formulate a relation between cer-
tain gauge theories. We will start by describing a construction that allows to identify
gauge theories of dimensions less than four with gauges theories between dimensional
four and eight. We shall then apply this construction to the examples of gauge theo-
ries we have discussed; relating solutions of the Nahm equations to solutions of the
Haydys-Witten equations and solutions of the Bogomolny equations to G2-Monopoles.
Finally we will use the results of Chapter 7 to lift the relation of the Nahm equations
to the Bogomolny equations to a relation of the Haydys-Witten equations to the G2-
Monopole equations.

8.1 Prelude

Lemma 8.1. Let M and N be two manifolds and V a finite dimensional vector space. Then
C8 (N,V) has a natural vector space structure. Using this structure, the exponential law
holds, i.e.

C8 (M,C8 (N,V)) – C8 (MˆN,V) . (8.1)

Proof. See [KM97, Lemma 27.17]. �

Lemma 8.2. Let EÑM be a smooth vector bundle on a manifold M, and let

s : Rk Ñ ΓpEq, (8.2)

be a family of sections. Then s is smooth if and only if ŝ : Rk ˆM Ñ E is smooth with
ŝpx,mq “ spxqpmq.

Proof. This is a slight generalization of [KM97, Lemma 30.8] that follows from [KM97,
Corollary 4.16]. �

Corollary 8.3. Let EÑM be a vector bundle and pr˚M EÑ RkˆM its pull back. Then

C8
(
Rk, ΓpM,Eq

)
– ΓpRkˆM, pr˚ Eq. (8.3)
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Proof. All the hard analytic work is already done, we need to just check the algebra.
A section in the pullback of E to Rk ˆM is given by a smooth map Rk ˆM Ñ E

that makes a commutative diagram with π : E Ñ M and prM : Rk ˆM Ñ M. But if
s P C8

(
Rk, ΓpM,Eq

)
, then π ˝ ŝpx,pq “ πpspxqppqq “ p “ prMpx,pq for every px,pq P

RkˆM and similarly the other way around. �

Notation 8.4. We will call maps that intertwine G-actions G-equivariant, no matter if
it is between left actions, right actions or mixed actions.

Proposition 8.5. Let Q Ñ X be a principal H bundle and ρ : H Ñ GlpVq a representation of
H. Let further P be a reduction of Q to a principal G-bundle, with respect to λ : G Ñ H and
ι : PÑ Q.

Then the vector bundles

E “ QˆH V and F “ PˆG V , (8.4)

are canonically isomorphic, where the second bundle uses the induced representation G Ñ

GlpVq given by ρ ˝ λ.
In particular the forms with values in these bundles can be canonically identified.

ΩkpX,Eq – ΩkpX, Fq, @k P N0. (8.5)

Proof. Define the vector bundle map

FÑ E, rp, vs ÞÑ rιppq, vs (8.6)

and notice that it is fiberwise an isomorphism, hence an isomorphism of vector bun-
dles. The other claims follow immediately.

�

Remark 8.6. While the last proposition was easy to prove, it is not very descriptive
how the identification works. The key to the construction are equivariant extensions.
The reverse map E Ñ F is constructed by picking a representative of rq, vs, such that
q P ιpPq. Let us discuss the forms for the example with k “ 0.

Then sections of the bundle associated to E are given by maps

u : QÑ V , u is H-equivariant. (8.7)

Similarly sections of F are G-equivariant maps PÑ V .
If u : Q Ñ V is H-equivariant, then u1 : P Ñ Q Ñ V is G-equivariant. If v : P Ñ V is

G-equivariant, we may extend v H-equivariantly to Q. For q P Q, pick p P P and h P H
with ph “ q and define v1pqq “ h´1vppq.

‚ v1 is well defined. If q “ p1h1 “ p2h2, then p1 “ p2h2h´11 and h2h´11 P G, hence

v11pqq “ h1vpp1q “ h1vpp2h2h
´1
1 q “ h

´1
1 h1h2

´1vpp2q “ v
1
2pqq. (8.8)
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‚ v1 is H-equivariant. Indeed, if q P Q, h,h1 P H and p P P with q “ ph then

v1pqh1q “ v1pphh1q “ h1
´1
h´1v1ppq “ h1

´1
v1pqq. (8.9)

Lemma 8.7. Let pM,gq be an n-dimensional Riemannian manifold and ε P Rą0. Then g and
ε2g are two metrics on M, and the induced Hodge stars are related by

‹g|Λk “ ε
n´2k ‹ε2g |Λk . (8.10)

Proof. Use the formula

ω^‹η “ 〈ω,η〉vol ω,η P ΩkpMq, (8.11)

which uniquely determines the Hodge Star operator. Also note that

volg “ εn volε2g, (8.12)

and restricted to k-forms on M,

〈´,´〉ε2g “ ε
2k 〈´,´〉g . (8.13)

�

Lemma 8.8. Let X, Y be two manifolds and P Ñ X and Q Ñ Y two principal G-bundles.
Then there is a bijection between G-equivariant maps u : PÑ Q and maps ǔ : XÑ Y such that
ǔ˚Q – P.

Proof. First a G-equivariant map P Ñ Q is equivalent to the following commuting
square.

P Q

X Y

u

ǔ

By general categorial considerations, such a square is equivalent to a morphism
P Ñ ǔ˚Q of G-principal bundles over X. Finally every morphism of principal bundles
is an isomorphism. �

Remark 8.9. The last Lemma in particular implies that if we have a G-equivariant map
P Ñ Q, then P is the pull back of Q by a map ǔ. Now if ǔ is homotopic to v̌, then
the pulled back bundles are isomorphic, the inverse is however only true if Q is con-
tractible. So we can have different homotopy classes of maps ǔ : XÑ Y.

Notation 8.10. Just like chapter 5 we will use the notation where an indexed Lie Alge-
bra means vanishing on the corresponding fundamental vector fields. E.g. ω P ΩpMqg
(with G ñ M) satisfies ιgω “ 0.
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8.2 General Construction

8.2.1 Reduction of Gauge Theories on Vector Bundles

Let EÑ X be a vector bundle and πP : P Ñ E a principal G-bundle on E. Denote by Q
a principal H-bundle to which E is associated via a representation ρ : HÑ EndpVq.

Since E deformation retracts to X, P comes from a bundle on X, P – π˚EPX, where
PX Ñ X is a principal G-bundle.

On the other hand there is a one-to-one correspondence between equivariant bun-
dles on the total space Qˆ V and regular bundles on the base space so that P Ñ E

corresponds to a H-equivariant bundle P̂Ñ Qˆ V .

Lemma 8.11. The bundle P̂ comes from a H-equivariant bundle on Q.

Proof. Notice that we have the commutative box, where all principal bundles on top
and are pull backs of PX.

P̂

P̂X Qˆ V P

Q PX E

X

G
H

G

H

G

H
G

H

�

Corollary 8.12. As H-equivariant principal G-bundles P̂ – P̂Xˆ V .

Proof. By definition we have

P̂ “ π˚QP̂X “
{
pp, pq, vqq | πP̂Xppq “ πQpq, vq “ q

}
, (8.14)

and we have maps
P̂Ñ P̂Xˆ V , pp, pq, vqq ÞÑ pp, vq, (8.15)

and
P̂Xˆ V Ñ P̂, pp, vq ÞÑ pp, pπP̂Xppq, vqq. (8.16)

These are obviously inverse diffeomorphisms and if we equip P̂XˆV with the bundle
structure induced by

P̂Xˆ V Ñ Qˆ V , pp, vq ÞÑ πP̂Xppq, (8.17)
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and
pp, vq.g “ pp.g, vq @pp, vq P P̂Xˆ V ,@g P G, (8.18)

these maps become isomorphisms of principal G-bundles. Finally we see that the
identifying maps are H-equivariant for the action

pp, vq.h “ pp.h,h´1.vq, (8.19)

because πP̂X and πQ is H-equivariant. �

Proposition 8.13. In the notation above,

ΓpE, AdpPqq – C8
(
V , ΓpQ, AdpP̂Xqq

)H . (8.20)

Proof.

ΓpE, AdpPqq – C8 (P, g)G – C8
(
P̂, g
)GˆH (8.21)

– C8
(
P̂Xˆ V , g

)GˆH
– C8

(
V ,C8

(
P̂X, g

)G)H . (8.22)

In the last step, the H-invariancy becomes an H-equivariancy in the following sense.
For every s P C8

(
V , ΓpQ, AdpP̂Xqq

)H and v P V ,h P H we have

sphvq “ spvq ˝ Rh´1 . (8.23)

�

Corollary 8.14. If E is the trivial vector bundle, then

ΓpE, AdpPqq – C8 (V , ΓpX, AdpPXqq) . (8.24)

Proof. This follows immediately from H “ 1 and Q “ X, so that also PX “ P̂X. �

Proposition 8.15. In the same setting of the last proposition, let W be some G-space (G-
representation, or an arbitrary space with G-action and k “ 0 in the following). Then

ΩkpP,WqG –

[
k⊕
i“0

C8
(
V ,Λk´iV_bΩipP̂X,WqG

)H]
h

(8.25)

Proof. We calculate

ΩkpP,WqG – ΩkpP̂,WqGˆHh – ΩkpP̂Xˆ V ,WqGˆHh (8.26)

(8.27)
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We continute the calculation

ΩkpP,WqG – ΓpP̂Xˆ V ,ΛkpT_P̂X‘ T_Vq bWq
GˆH

h (8.28)

–

[
k⊕
i“0

C8
(
V , ΓpP̂X,ΛiT_P̂XbΛk´iV_qG

)H]
h

(8.29)

–

[
k⊕
i“0

C8
(
V ,Λk´iV_bΩipP̂X,WqG

)H]
h

. (8.30)

The action ofH on V is identical to the induced action ofH on TvV under the (canonical)
identification TvV – V . �

Corollary 8.16. ‚ If E is trivial, then the last proposition becomes

ΩkpP,WqG –
k⊕
i“0

C8
(
V ,Λk´iV_bΩipP̂X,WqG

)
(8.31)

‚ Ifω is a form on E with values in the associated bundle F “ PˆGW (for a vector G-space
W), then an inspection shows that the g-horizontality commutes with the construction.
We get

ΩkpE, Fq –

[
k⊕
i“0

C8
(
V ,Λk´iV_bΩipQ, F̂q

)H]
h

, (8.32)

where F̂ is the bundle associated to P̂X and W.

‚ If ω is a form on E horizontal w.r.t. EÑ X, then ω lives in the last summand of the last
proposition. We get

ΩkpE, Fqhor – C8
(
V ,ΩkpQ, F̂qh

)H
(8.33)

Remark 8.17. Let us look at the last proposition for the special case of Ω1pP, gqG for a
moment. The proposition tells us that

Ω1pP, gqG –
[
C8
(
V ,V_b C8

(
P̂X, g

)G)H
‘ C8

(
V ,Ω1pP̂X, gqG

)H]
h

. (8.34)

To realize this splitting, we start with a G-equivariant one form A P Ω1pP, gqG and pull
it back to P̂. Since P̂ – P̂X ˆ V , we can decompose the pull back by restricting to TP̂X
and TV . Since V acts on P̂ by the above decomposition, the second restriction may be
identified with ιVπ˚P̂A, where πP̂ : P̂ Ñ P. This corresponds to the restriction of A to
the vertical subbundle.

Finally we use 8.1 to identify the two components. We may write symbolically

A „ pc,aq “ pιVπ˚P̂A, π˚
P̂
A|TP̂Xq. (8.35)
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Proposition 8.18. In the notation of the Remark above, if A P CpPq is a connection on P, then
a is a family of connections on P̂X, i.e.

a P C8
(
V ,CpP̂Xq

)H . (8.36)

Proof. We have already established that a takes values in the G-equivariant 1-forms on
P̂X with values in g. What is left to show is that

ιgapvq “ idg @v P V . (8.37)

For this, note that if X and Y are two G-spaces, f : X Ñ Y is a G-map, W is some
G-representation and ω P Ω1pY,WqG, then

pιgpf
˚ωqxqpξq “ pf

˚ωqxpK
ξ
xq “ ωfpxqpDfxK

ξ
xq “ ωfpxqpK

ξ
fpxq
q “ pf˚pιgωqqxpξq, (8.38)

i.e. as maps X Ñ Hom pg,WqG, ιgpf˚ωq agrees with f˚pιgωq. Now notice that P̂ Ñ P

(as a pull back map) is G-equivariant, as is the identification P̂ – P̂X ˆ V . Finally,
the action of G on P̂X ˆ V is only on the first component, so the restriction to TP̂X is
G-equivariant. This shows, that

ιgapvq “ ιgA “ idg (8.39)

at every p̂ P P̂X. �

8.2.2 Compensation through bigger Structure Groups

The last section allowed us to identify the connection on P with smooth maps into
various section spaces of bundles on Q. We can get rid of the smooth maps part if we
enlarge the structure groups of the involved bundles.

Definition 8.19. Note that P̂X – QˆX PX as principal G bundles. Now denote by
G “ C8 (V ,G). Then we can interpret G as the subgroup of constant maps in G, and
define P1 to be the fiber extension of PX, P1 “ PXˆG G. Similarly we extend P̂X to P̂1 by
the map

idHˆconstG : HˆGÑ H˙ G. (8.40)

It is easy to see that
P̂1 – QˆX P

1. (8.41)

Remark 8.20. Note that H has a nontrivial action on G by composition. This implies that
QˆX P

1 has the structure group H˙ G. Of course the subgroup G Ă G is a pointwise
stabilizer of the H action.

Proposition 8.21. For any G-space W, we have

C8
(
V ,C8

(
P̂X,W

)G)H
– C8

(
P̂1,C8 (V ,W)

)G¸H . (8.42)
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Proof. Starting at the right side, we can apply Proposition 8.5 to see that

C8
(
P̂1,C8 (V ,W)

)G¸H
“ C8

(
P̂X,C8 (V ,W)

)GˆH , (8.43)

where the action of G Ă C8 (V ,G) is via the inclusion.
Using Lemma 8.1 twice, we see that the right hand side of the last equation is given

by C8
(
V ,C8

(
P̂X, g

)G)H, showing the equality. �

Proposition 8.22. We may generalize the last proposition to the statement

C8
(
V ,Λk´iV_bΩipP̂X,WqG

)H
– ΩipP̂1,Λk´iV_b C8 (V ,W)qG¸H. (8.44)

Proof. The proof is similar to the last proposition, but we use Lemma 8.2 instead of
Lemma 8.1. �

Corollary 8.23.

C8
(
V ,C8

(
P̂X, g

)G)H
– C8

(
P̂1, LiepGq

)G¸H . (8.45)

Proof. Proposition 8.21 for W “ g. �

Proposition 8.24.
C8
(
V ,CpP̂Xq

)H
– CpP̂1q

H (8.46)

Remark 8.25. It may be tempting to try to prove this with a small extension of Propo-
sition 8.5 to forms that are not horizontal. Note however that this is impossible, since
it is unclear what the forms values on fundamental vector fields of the bigger group
(the vertical vector fields of the extension) are supposed to be.

However, in this case we can overcome this gap, by knowing what the values of the
extended form on vertical vector fields has to be. What is left, is a choice of splitting
into vertical and horizontal vector fields. That can be accomplished by either using the
connections themselves or by choosing any fixed connection and showing invariancy
under this choice. We follow the first path.

Proof. Let us begin with a smooth map A P C8
(
V ,CpP̂Xq

)H. Using the fact that we can
extend any connection from P̂X to P̂1 (this extension is also H-equivariant), we have a
map

CpP̂Xq Ñ CpP̂1q, (8.47)

inducing an element
Â P C8

(
V ,CpP̂1q

)H . (8.48)

126



Via Lemma 8.1, we identify this with an element inΩ1pP̂1,C8 (V ˆ V , g)qG¸H as follows.
First note that LiepGq “ C8 (V , g) and

C8
(
V ,Ω1pP̂1, LiepGqq

)H
– C8

(
V ,C8

(
π˚
P̂1
FrGlpP

1q,Ub C8 (V , g)
))GlˆpG¸Hq (8.49)

– C8
(
π˚
P̂1
FrGlpP

1q,Ub C8 (V ˆ V , g)
)GlˆpG¸Hq (8.50)

– Ω1pP̂1,C8 (V ˆ V , g)qG¸H, (8.51)

where Gl ñ U is the representation associated to π˚
P̂1
TP1 and π˚

P̂1
FrGlpP

1q the Gl-bundle
of frames (compare to chapter 3). The diagonal map ∆ : V Ñ V ˆ V yields an element

A1 P Ω1pP̂1,C8 (V , g)qG¸H. (8.52)

Let us show that A1 P CpP̂1qH. We only need to show that A has the correct values
on fundamental vector fields of G. Let ξ P LiepGq. Then for all v P V ,

A1pξqpvq “ ÂpvqpKξqpvq “ ξpvq, (8.53)

because Âpvq is a connection on P̂1, hence ÂpvqpKξq “ ξ for any v.
For the other way around, start with a connection A1 P CpP̂1qH and identify it with

a map Ã P C8
(
V ,Ω1pP̂1, gq

)G¸H. Then using the reduction map i : P̂X Ñ P̂1, which is H-
and equivariant with respect to GÑ G, g ÞÑ cg, we can pull back this to

A P C8
(
V ,Ω1pP̂X, gq

)GˆH . (8.54)

We claim that this takes values in the space of connections. Indeed, if ξ P g, then

ApvqpKξGq “ ÃpvqpDipK
ξ
Gqq “ ÃpvqpK

cξ
G q “ cξpvq “ ξ, (8.55)

where we have used that the G-equivariant map i maps fundamental vector fields to
fundamental vectorfields, i.e.

DipKξGq “ K
cξ
G , cξ “ Dιpξq. (8.56)

Finally let us remark how to see that these maps are inverse of each other. Recall
that if we extend a connection Apvq to Ãpvq, then the latter is characterized by

Apvq “ i˚Ãpvq, @v P V . (8.57)

Hence if we start with A, map it to A1 and then back to

Bpvq “ i˚A1pvq “ pi˚Ãpvqqpvq “ Apvq. (8.58)

�
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Remark 8.26. Notice that we have used the inclusion G ãÑ C8 (V ,G) by constant maps
here, but this can be generalized somewhat. The only problematic step is the reverse
step of Proposition 8.24. Here we can patch the theorem by requiring the inclusion
G Ñ C8 (V ,G) be as constant maps on a large open subset U Ă V ; then the resulting
one forms in C8

(
V ,Ω1pP̂XqG

)H will only be a connection for v P U.
We are interested in another class of inclusions here. Take some function f P C8 (V)

and integrate the Lie Algebra map

g Q ξ ÞÑ ξf P C8 (V , g) “ LiepGq, (8.59)

to a map of Lie groups (if π1pGq ‰ 0, this is not unique). This gives a homomorphism
GÑ G. If we assume that f ‰ 0 on all of V and that f is H-invariant (so that G Ă G is a
pointwise H-stable) then the induced form in Proposition 8.24 will not be a connection,
but 1fA will be (compare to equation (8.55))

ApvqpKξGq “ ÃpvqpDipK
ξ
Gqq “ ÃpvqpK

fξ
G q “ pfξqpvq “ fpvqξ. (8.60)

This way the theorem will remain true with this modification.

Remark 8.27. Note that we can use Proposition 8.15 and 8.21 to transform the gauge
group GpPq “ C8 (P,G)G to

C8
(
P̂1,G

)G¸H , (8.61)

which is the gauge group of P̂1 restricted to gauges that lift the identity gauge on Q.
We trace the action on the data to see how it acts on the other side in the following
proposition.

Proposition 8.28. Let A P CpPq be a connection on P, φ P ΓpAdpPqq be a section of the
adjoint bundle and g P GpPq a gauge. Let pa, cq P CpP̂1qH ˆ C8

(
P̂1,V_b LiepGq

)G¸H and
b P C8

(
P̂1, LiepGq

)GˆH be the transformed data. Then the transformation of A.g and φ.g is
given by

pAdg̃´1 a` g̃
˚µG, Adg̃´1 R

˚
g̃cq (8.62)

and
Adg̃´1 b, (8.63)

where g̃ is the transformed gauge (see the last remark).

Proof. The proof consists mainly of going through the steps and seeing how the action
of the gauge group is modified. The interesting step is for the connection A P CpPq,
where g P GpPq acts by

A.g “ Adg´1 A` g
˚µG. (8.64)

When we split the pull back of A to P̂ into the components pc,aq as in (8.35), we see
that

a.g “ Adg´1 a` g
˚µG, c.g “ Adg´1 c, (8.65)
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since ιVg˚µG “ 0 (on the identification with P̂X ˆ V). This remains true on P̂, just the
equations are true for every v P V . In the compensation step we enlarge the group of
gauges, but using Proposition 8.5 (for the slight generalization from vector bundles to
fiber bundles), we see that the gauge group of the extended bundle is isomorphic to
the original gauge group. �

8.3 Examples

We will now apply the theory to two examples, starting with the Haydys-Witten equa-
tions. The general idea to apply this construction is a 3-step procedure. The first step
is to assume that the frame bundle of the underlying 5-dimensional manifold reduces
algebraically to SOp4q and split the equations via the representation theory. The next
step is to assume that the SOp4q-structure comes from an underlying 4-dimensional
manifold; i.e. we are on a vector bundle of a 4-manifold. This is used to describe the
data of the equations as living on the underlying manifold. Finally we use section 8.2.2
to enlarge the gauge group and describe the equations as generalized Seiberg-Witten
equations with infinite dimensional targets.

8.3.1 Haydys-Witten Instantons

Assume M “ RˆX, X Riemannian, oriented 4-manifold, P G
ÑM a principal G-bundle,

and Y “ Bt the canonical vector field along R. Assume further that pA,Bq P CpPq ˆ

Ω2`pAdpPqq is a solution to the Haydys-Witten equations

ιYF
A´ δA`B “ 0 P Ω1pAdpPqq, (8.66)

FA` ´∇AY B´ σpB,Bq “ 0 P Ω2`pAdpPqq. (8.67)

The first step is not required for Haydys-Witten instantons, since they are already
defined on a manifold with SOp4q-structure. For the second step, let PX Ñ X denote
the principal G-bundle which induces P as in section 8.2.1.

Then using Proposition 8.15 and 8.18, we can associate A with a pair

pa, cq P C8 (R,CpPXq)ˆ C8
(

R,C8 (PX, g)G
)

(8.68)

and similarly B P Ω2`pAdpPqq with an element

b P C8
(
R,Ω2`pX, AdpPXq

)
. (8.69)

Lemma 8.29. The Haydys-Witten equations in differential equations form (compare Remark 5.6)
are given by

9a “
(
da`
)˚
b` dac, P C8

(
R,Ω1pX, AdpPXqq

)
(8.70)

9b “ Fa`´ σpb,bq ´ rc,bs, P C8
(
R,Ω2`pAdpPXqq

)
. (8.71)
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P̂

P̂X P`pXq ˆR P

P`pXq PX RˆX

X
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SOp3q

G

SOp3q
G

SOp3q
G

SOp3q

Figure 8.1: Involved principal bundles for Haydys-Witten Instantons

Proof. See [Hay15b]. �

In the last step we may compensate by the bigger structure group of P1. Note that
we make use of the fact that the H action on G is trivial in this example, so that the
structure group is simply given by GˆH. Using Proposition 8.21 and 8.24 we may
identify a with an element in CpP1q, b with an element in Ω2`pAdpPqq and c with an
element in ΓpX, AdpP1qq. The following relates the 5d-Haydys Witten equations on M
with solutions of the generalized Seiberg-Witten equations.

We worked onM “ RˆX for simplicity so far, but in order to get the Nahm moduli
space as a target space we have to modify this to M “ Iˆ X. Of course the following
theorem remains true for RˆX if we modify the space WB to be C8 (R, gbH).

Theorem 8.30. A pair

pA,Bq P CpPq ˆΩ2`pAdpPqq (8.72)

satisfies the Haydys-Witten equations

ιYF
A´ δA`B “ 0 P Ω1pAdpPqq, (8.73)

FA` ´∇AY B´ σpB,Bq “ 0 P Ω2`pAdpPqq. (8.74)

if and only if the associated triple (associated as explained in equations (8.68) and (8.69))

a P CpP1q (8.75)

b P Ω2`pAdpP1qq (8.76)

c P ΓpX, AdpP1qq (8.77)

satisfy the generalized Seiberg-Witten equations with target WN, i.e.

Dau “ 0, µN ˝ u “ F
a
`, (8.78)
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where u “ c` b P C8 (P`ˆX P
1,WN)

SOp3qˆG and

µN ˝ u “

 9u1` ru0,u1s ` ru2,u3s
9u2` ru0,u2s ` ru3,u1s
9u3` ru0,u3s ` ru1,u2s

 (8.79)

and P` “ Q (compare to diagram in Lemma 8.11) is the principal SOp3q-bundle associated to
Λ2`X.

Proof. First we will show that µ ˝ u “ Fa` if and only if the second equation of the
Haydys-Witten equations in differential equation form holds. For that recall that our
identification is

u0 “ c, b “ pu1,u2,u3q. (8.80)

Using the identification Λ2` – Im H, we see that in some frame f` of P` (induced by
dxi of FrSOp4qpXq), i.e.

f1` “ dx
12` dx34 f2` “ dx

13´ dx24 f3` “ dx
14` dx23, (8.81)

we have

b “

3∑
i“1

uif
i
`, (8.82)

and we calculate
σpb,bq “ pru2,u3s, ru3,u1s, ru1,u2sq, (8.83)

and
rc,bs “ pru0,u1s, ru0,u2s, ru0,u3sq. (8.84)

so that µN ˝u “ 9b`σpb,bq`rc,bs. This shows the equivalence of the second equations.
For the first equations, we will again use local coordinates. In such, we have

a “

4∑
i“1

aidx
i, b “

3∑
i“1

bif
i
`; (8.85)

and so

dac “ dc` ra, cs “
3∑
i“1

pBic` rai, csqdxi “
3∑
i“1

∇ai cdxi (8.86)

9a “

4∑
i“1

9aidx
i (8.87)

About pd`a q˚. Note that da` “ π` ˝ da : Ω1 Ñ Ω2`, hence

pd`a q
˚ “ pπ` ˝ daq

˚ “ d˚a ˝ π
˚
` “ d

˚
a ˝ π` (8.88)
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and
d˚a “ ´‹ da ‹ . (8.89)

So we may calculate,

´d˚ab “ ‹da ‹ b “ ‹dapdt^ bq (8.90)

“ ‹

(
dt^

[
∇a1b1dx134`∇a2b1dx234`∇a3b1dx312`∇a4b1dx412

])
(8.91)

`‹

(
dt^

[
´∇a1b2dx124`∇a2b2dx213´∇a3b2dx324`∇a4b2dx413

])
(8.92)

`‹

(
dt^

[
∇a1b3dx123`∇a2b3dx214`∇a3b3dx314`∇a4b3dx423

])
(8.93)

“ ‹4

[
p∇a3b1´∇a2b2`∇a1b3qdx123` p∇a2b1`∇a3b2`∇a4b3qdx234 (8.94)

` p∇a1b1`∇a4b2´∇a3b3qdx341` p∇a4b1´∇a1b2´∇a2b3qdx412
]

(8.95)

“ ´p∇a2b1`∇a3b2`∇a4b3qdx1` p∇a1b1`∇a4b2´∇a3b3qdx2 (8.96)

´ p∇a4b1´∇a1b2´∇a2b3qdx3` p∇a3b1´∇a2b2`∇a1b3qdx4 (8.97)

So we see that

pda`q
˚b` dac “


∇a1u0`∇a2u1`∇a3u2`∇a4u3
∇a2u0´∇a1u1´∇a4u2`∇a3u3
∇a3u0`∇a4u1´∇a1u2´∇a2u3
∇a4u0´∇a3u1`∇a2u2´∇a1u3

 (8.98)

Using the formulas from Lemma 6.21, we know that

Daj u “ Bju`K
aj
u “ Bju` raj,us ´


9aj

0

0

0

 “ ∇aj u´


9aj

0

0

0

 , (8.99)

hence

pda`q
˚b` dac´ 9a “ Da4u´ ID

a
5u´ JD

a
6u´KD

a
7u, (8.100)

for a left – left structure, where we multiplied the last three equations in (8.98) with
´11. �

Theorem 8.31. If we use the octonionic structure given by ´ϕ1 (compare Definition 2.24), we
get the same theorem but with Ws

N as target instead of WN.

Proof. φ1 Ñ ´φ1 can be realized by inverting the coordinates e1, e2 and e3 of the G2-
structure. This changes the orientation of Λ2`, which implies that σpb,bq gets mul-
tiplied by ´1. Comparing with the last proof, we see that this gives the equations

1See also the footnote of Theorem 8.50
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Fa` “ µ
s
N ˝ u. The change of orientation also removes the ”´” from equation (8.89), so

that the second equation is equivalent to

pda`q
˚b` dac “


∇a1u0´∇a2u1´∇a3u2´∇a4u3
∇a2u0`∇a1u1`∇a4u2´∇a3u3
∇a3u0´∇a4u1`∇a1u2`∇a2u3
∇a4u0`∇a3u1´∇a2u2`∇a1u3

 (8.101)

which are the correct signs for the left – right structure of generalized Seiberg-Witten
with target Ws

N (without multiplying the equations by ´1). �

Remark 8.32. Note that the action of SOp3q is exactly the rotating action on WN (com-
pare to (6.40)). Once we include the boundary conditions, we equip WN with the
action of (6.44), which also agrees with the given action, up to gauging by an element.

Remark 8.33. This theorem works in both ways provided we start with some bundle
P Ñ M “ Iˆ X. Under certain conditions we can use a solution to the generalized
Seiberg-Witten equations to induce a bundle on M.

Lemma 8.34. Let pa,uq be a solution to generalized Seiberg-Witten with target WN and
principal bundle P1 Ñ X. If there is a reduction PX Ñ P1 to a principal G-bundle then the
solution induces a solution of the Haydys-Witten equations on the bundle pr˚X PX ÑM.

Proof. This follows immediately from the proof of the theorem. Note that the existence
of the reduction is the only obstruction of transforming the bundle P1 to P. �

There are two interesting settings when such a reduction is given. For a more
discussions on this see also section 9.2.

Lemma 8.35. Such a reduction to a principal G-bundle are given if

‚ The bundle P1 is trivial,

‚ The aholomorphic spinor u takes values in µpsqN
´1
p0q ĂWN.

Proof. The first example is trivial, whereas the second uses the different possible de-
scriptions of the Nahm equations. As explained in Remark 6.6, there are two different
ways of describing the moduli space of Nahm equations as quotients. The descrip-
tion with the structure group G is a reduction of the description with structure group
C8 (I,G). The G-equivariant map u : P` ˆX P

1 Ñ WN (or, since there is no action of
SOp3q on WN here u : P1 Ñ WN) induces a map from Q “ P` to the associated bun-
dle of WN. We can use this map to pull back the reduction to the structure group G
back and have a reduction of P̂1 to a principal G-bundle on Q. Note that one has to
be careful with the boundary conditions for this reduction, we have to allow different
irreducible representations for the different ends of the interval. �
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Notation 8.36. Denote by MP
HW the moduli space of solutions of the Haydys-Witten

equations on a principal bundle P. Denote by MP̂1,WN

gSW the moduli space of solutions
to the generalized Seiberg-Witten equations on the bundle P̂1 with target WN (see e.g.
[Pid04]).

Proposition 8.37. In the setting of this section,

MP
HW –MP̂1,WN

gSW . (8.102)

Proof. In Proposition 8.28 it was shown the identification respects gauge equivalence
classes. Note that C8

(
P̂1,G

)G¸H is the gauge group of the given generalized Seiberg
Witten system (see [Cal10, Lemma 3.1.12]). �

Theorem 8.38. In the setting of this section let G “ Upkq and let pA,Bq be a solution of the
Haydys-Witten equations on P. We say that pA,Bq satisfies the boundary conditions of type
k P N, if

1. ‖ιIÂ‖ is bounded when t Ñ ˘1 (t is the coordinate of I) for the pull back of A to
P̂ – P̂Xˆ I (everywhere on P̂X)

2. ‖pt´ 1qB̂´ ρ‖ P Opt´ 1q for t Ñ 1, where B̂ P C8
(
P̂,Λ2`

_
b g
)

is the pull back of
B and ρ P ΓpHompΛ2`, Ad gqq is induced by an irreducible representation Λ2`

_
b g –

sup2q
_
b g of sup2q.

3. Similarly ‖pt` 1qB̂´ ρ‖ P Opt` 1q for tÑ´1.

Then these boundary conditions are invariant under the reduced gauge group where we require
that g P GpPq “ C8 (P,G)G is such that the pull back ĝ to P̂ satisfies ‖g´ 1‖ P Opt´ 1q for
t Ñ 1 and ‖g´ 1‖ P Opt` 1q for t Ñ ´1. Then the moduli space of solutions to the Haydys
Witten equations subject to the boundary conditions of type k P N gauged by the reduced gauge
group is isomorphic to the solutions of the generalized Seiberg-Witten equations with target FkN,

Mk
HW –M

P̂1,FkN
gSW (8.103)

Proof. Note that we have chosen the boundary conditions so that the boundary condi-
tions of the Nahm equations are satisfied. It remains to remark that the gauge group
G0 of the Nahm equations can be achieved by Remark 8.26, where we can pick f to be
(e.g.) ´x2` 1. �

Theorem 8.39. Restrict Mk
HW to solutions such that A has no self-dual curvature, i.e. FA` “ 0,

and call that space Mk
HW,r. Then

Mk
HW,r – {u : P` Ñ Nk| u is SOp3q-equivariant and aholomorphic} (8.104)
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Proof. Note that the requirement on the curvature implies that the reduced Seiberg-
Witten equations are satisfied, i.e.

Dau “ 0 and µ ˝ u “ 0. (8.105)

Noticing that the image is now the total space of a hyperkähler reduction bundle,
we can identify the maps by Lemma 8.8, and Haydys [Hay12, Proposition 4.5] has
shown that solutions of these are in correspondence with aholomorphic maps to the
quotient. �

Remark 8.40. The last theorem implies that u : P̂1 Ñ µ´1p0q carries the complete infor-
mation of the solution to the generalized Seiberg-Witten equations. We can recover
a as follows. First we note that u induces a SOp3q-equivariant ǔ : P` Ñ N so that
P` – ǔ˚µ´1p0q. The unique connection that satisfies the equations is then given by
(the negative of) the pull back of the connection induced by the Riemannian submer-
sion µ´1p0q Ñ N. Alternatively we can use Lemma 2.13 to see that the pulled back
connection is indeed anti self-dual, because the curvature of the connection of a hy-
perkähler reduction is of type p1, 1q with respect to all complex structures (compare
chapter 2).

Theorem 8.41. Assume that u : P` Ñ Nk is a SOp3q-equivariant map. Then there is a bundle
P̂1 Ñ P` and a connection a on it such that pa,uq satisfy the reduced generalized Seiberg-
Witten equations. Furthermore, if there is a reduction P̂ Ñ P̂1 to the structure group G, then
this induces a solution of the Haydys Witten equations on the induced bundle P Ñ Xˆ I

without self-dual curvature.

Proof. This follows from the last Remark and Lemma 8.34. �

Remark 8.42. There is a stronger statement than [Hay12, Proposition 4.5]. The con-
nection exists for all u : P̂X Ñ FN given that a certain equations (which specializes to
D ǔ “ 0 on µ´1p0q) is satisfied and µ ˝ u is small enough [Pid17]. It can also be shown
that the connection if the image of u meets no points which have a nontrivial G0 stabi-
lizer. For this case it suffices to know u in order to reconstruct the solution pa,uq. This
is the justification for only transforming u in our construction.

8.3.2 Construction of Examples

We can use this to construct classes of examples of solutions to the Haydys Witten
equations.

Example 8.43. Let X be a 4-dimensional manifold. Then every u : P` Ñ Nk, SOp3q
equivariant and aholomorphic such that a reduction (as in Lemma 8.34) exists induces
a solution of the Haydys Witten equations. If P` is trivial (i.e. X has a not necessarily
integrable hyperkähler structure, compare to Proposition 2.44) then every aholomor-
phic map XÑ Nk induces a solution of the Haydys-Witten equations.
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Example 8.44. Given any 4-dimensional manifold X, the map u : P` Ñ Nk given by
u “ constBPS, the constant map to the unique spherical symmetric solution (of fixed
mass 1), known as the BPS-monopole (given by Ti “ 0 for all 0 ď i ď 3) [Pra75].

Example 8.45. If X is a quaternionic 4-manifold, then any constant map X Ñ Nk pro-
duces an example.

Instead of putting the spinor first, we can also start with the connection.

Example 8.46. Given any a P C8
(
I,CpP̂Xq

)
such that for every t P I Faptq` “ 0, i.e. aptq

is a self-dual connection, and a u P C8
(
P̂1,µ´1p0q

)
with Dãu “ 0, where ã is the

connection associated via Proposition 8.24. Then this data induces a solution to the
Haydys-Witten equations.

Example 8.47. As an example of the last class, take a to be the constant map to a anti
self-dual connection, and u ã-aholomorphic.

8.3.3 G2 Monopoles

Let M be a 7 manifold with (not necessarily integrable) G2-structure ϕ and ψ the
associated and coassociated form respectively (ψ “ ‹7ϕ) and P Ñ M a principal G-
bundle. Assume further that pA,φq P CpPq ˆ ΓpAdpPqq is a solution of the G2-monopole
equations, i.e.

ψ^ FA “ ‹dAφ. (8.106)

For the first step assume that M has a (not necessarily integrable) SOp4q Ă G2

structure.

P̂

P̂X P`pXq ˆΛ
2
` P

P`pXq PX Λ2`pXq

X

G
SOp3q

G

SOp3q
G

SOp3q
G

SOp3q

Figure 8.2: Involved principal bundles for G2-Monopoles

Lemma 8.48. The G2 monopole equations split to the following two sets of equations, given
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with respect to a frame in the reduced SOp4q-frame bundle,

FA23´ F
A
45´ F

A
67 “ ∇A1 φ, (8.107)

´FA13´ F
A
46` F

A
57 “ ∇A2 φ, (8.108)

FA12´ F
A
47´ F

A
56 “ ∇A3 φ, (8.109)

and

FA15` F
A
26` F

A
37 “ ∇A4 φ, (8.110)

´FA14´ F
A
27` F

A
36 “ ∇A5 φ, (8.111)

FA17´ F
A
24´ F

A
35 “ ∇A6 φ, (8.112)

´FA16` F
A
25´ F

A
34 “ ∇A7 φ. (8.113)

Proof. Recall that the defining form of the G2 structure is given by

ϕ1 “ e123´ e145´ e167´ e246` e257´ e347´ e356. (8.114)

Now the reduction to SOp4q restricts to frames given by frames on X which are
lifted to frames on Λ2`X. By reordering, we may assume that e1, e2 and e3 span the
fiber of the vector bundle, whereas e4 through e7 span the base. This agrees with the
associative form above.

The reduction SOp4q ãÑ G2 splits the Grassmann bundles of M further. We arrive at
the representations

Space G2-representation SOp4q-representation
Λ1 Λ17 S20‘ S11

Λ2 Λ27‘Λ
2
14

(
S20‘ S11

)
‘
(
sop4q ‘ S31

)
Λ3 Λ31‘Λ

3
7‘Λ

3
27

(
S00
)
‘
(
S20‘ S11

)
‘
(
S00‘ S11‘ S22‘ S40‘ S31

)
To see this, note that the way SOp4q Ă G2 is embedded, immediately implies that

µ – S11 ‘ S20. The rest of the claims is applying the Glebsch-Gordan decomposition
to S20µ and Λ2µ. Recall the definition of the G2-equivariant map

Gpψq : Λ¨ Ñ Λ¨, ω ÞÑ ‹
(
ψ^ω

)
. (8.115)

Then Gpψq is in particular a SOp4q-equivariant map and as such respects the de-
composition into SOp4q-representations, i.e. Gpψq identifies the S20 and S11 represen-
tations in Λ1 and Λ2 (note that sop4q also contains a S20, however since β is a G2 map,
it’s image is in Λ27 when restricted to Λ1).

We have arranged the frames such that e1, e2 and e3 span S20 and the other ei span
S11. Using the explicit form of ϕ1 we can calculate how Gpψq acts. The condition that
pA,ψq is a G2-monopole is equivalent to

GpψqpFAq “ dAϕ. (8.116)
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If we write FA “
∑
1ďiăjď7 F

A
ije
ij, we arrive at the equations

FA23´ F
A
45´ F

A
67 “ ∇A1 φ (8.117)

´FA13´ F
A
46` F

A
57 “ ∇A2 φ (8.118)

FA12´ F
A
47´ F

A
56 “ ∇A3 φ, (8.119)

for the S20 representation and

FA15` F
A
26` F

A
37 “ ∇A4 φ (8.120)

´FA14´ F
A
27` F

A
36 “ ∇A5 φ (8.121)

FA17´ F
A
24´ F

A
35 “ ∇A6 φ (8.122)

´FA16` F
A
25´ F

A
34 “ ∇A7 φ (8.123)

for the S11 representation in this frame. �

We can now, in order to pursue step 2, assume that M – Λ2`X for some 4-manifold
X. Using Proposition 8.18 to identify A P CpPq with

pa, cq P
[
C8
(
Λ2`,CpP̂Xq

)SOp3q
ˆΛ2`

_
b C8

(
Λ2`,C8

(
P̂X, g

)G)SOp3q
]
sop3q

(8.124)

and Proposition 8.15 to identify φ P ΓpM, AdpPqq with

b P C8
(
Λ2`,C8

(
P̂X, g

)G)SOp3q
, (8.125)

we arrive at the following equations.

Lemma 8.49. The G2-monopole equations in differential equations form (compare to Re-
mark 5.6) are given by

‹Fc´ dcb “ Fa` (8.126)

and

B1a5`B2a6`B3a7 “ ∇a4b`∇a5c1`∇a6c2`∇a7c3 (8.127)

´B1a4´B2a7`B3a6 “ ∇a5b´∇a4c1´∇a7c2`∇a6c3 (8.128)

B1a7´B2a4´B3a5 “ ∇a6b`∇a7c1´∇a4c2´∇a5c3 (8.129)

´B1a6`B2a5´B3a4 “ ∇a7b´∇a6c1`∇a5c2´∇a4c3, (8.130)

where we interpret c P C8
(
P̂X,Ω1pΛ2`, gq

)GˆSOp3q, as a connection on the trivial G-bundle on
the fibers of Λ2` and b P C8

(
P̂X,C8

(
Λ2`, g

))SOp3qˆG as a section of the corresponding adjoint
bundle.
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Proof. We have to choose local representatives of the connections. Let s : E Ą UÑ P be
a local section of P. This is equivalent to a smooth map U Ñ PX that commutes with
the projections PX Ñ X and EÑ X. Using Q ãÑ Qˆ V Ñ E, we can turn this map into
a map from Q Ą pr1pπ

´1pUqq Ñ PX. A quick inspection shows that it commutes with
the projections to X, hence it defines a section pr1pπ

´1pUqq Ñ P̂X.
Tracing A through the construction we see that if we lift the frame ei to the bundle

P, then

Apeiq “

{
ci if i P {1, 2, 3}

ai if i P {4, 5, 6, 7}
(8.131)

This can be used to see that

FAij “


Fcij if i, j P {1, 2, 3}.

Faij if i, j P {4, 5, 6, 7}.

Biaj´Bjci` rci,ajs “ Biaj´∇aj ci if i P {1, 2, 3} , j P {4, 5, 6, 7}.

(8.132)

Using this, we identify the first three equations with

‹Fc´ Fa` “ d
cb ô µB ˝ u “ F

a
`, (8.133)

whereas the last four equations become

B1a5`B2a6`B3a7´∇a5c1´∇a6c2´∇a7c3 “ ∇a4b (8.134)

´B1a4´B2a7`B3a6`∇a4c1`∇a7c2´∇a6c3 “ ∇a5b (8.135)

B1a7´B2a4´B3a5´∇a7c1`∇a4c2`∇a5c3 “ ∇a6b (8.136)

´B1a6`B2a5´B3a4`∇a6c1´∇a5c2`∇a4c3 “ ∇a7b (8.137)

�

In the last step we may use Proposition 8.24 to identify a with a connection on P̂1,

a P CpP̂1q
SOp3q
sop3q

. (8.138)

For b, we use Proposition 8.21 to identify b with an element in

C8
(
P̂1, LiepGq

)G¸SOp3q
– C8

(
P`ˆX P

1,C8
(
Λ2`, g

))G¸SOp3q (8.139)

Similarly we may identify c with an element in

Λ2`b C8
(
P`ˆX P

1,C8
(
Λ2`, g

))G¸SOp3q . (8.140)

Putting this together, we get map

u “ pb, cq P C8
(
P`ˆX P

1, Hb C8
(
Λ2`, g

))G¸SOp3q , (8.141)

where we identified H – RbΛ2`.
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Theorem 8.50. The pair pA,φq is a G2 monopole if and only if the associated pair pa,uq is a
solution to the generalized Seiberg Witten equations with target WB, given by

Dau “ 0, and µB ˝ u “ F
a
`, (8.142)

where µB : WB Ñ UB is the moment map of the Bogomolny equations. The Dirac operator is
defined via the Levi-Civita connection on P` and a P CpP̂1qSOp3q

sop3q
.

Proof. Finally we have to see that this is indeed the generalized Dirac operator acting
on u. For this note that the action of g P G on C8

(
Λ2`,g

)
bH if given by (compare

Lemma 6.54).
dpg.Aq
ds

“ rξ,As ´ dξ,
dpg.ϕq
ds

“ rξ,ϕs. (8.143)

Taking a frame as before,

Daj u “ Bju`K
aj
u “ Bju` raj,us ´


0

B1aj

B2aj

B3aj

 , (8.144)

so that the equations (8.127) through (8.130) become

0 “ Da4


b

´c1

´c2

´c3

`Da5


c1

b

´c3

c2

`Da6


c2

c3

b

´c1

`Da7


c3

´c2

c1

b

 . (8.145)

If we multiply the last three equations by ´12, we get

0 “ Dau “ D
a
4u´ ID

a
5u´ JD

a
6u´KD

a
7u, (8.146)

for a left – left structure, which agrees with Corollary 6.57. �

Theorem 8.51. The pair pA,φq is a G2 monopole with G2-structure given by ´φ1 if and
only if pa,uq is a solution to the generalized Seiberg Witten equations with target Hb

C8
(
Λ2`, g

)
, given by

Dau “ 0, and µsB ˝ u “ F
a
`, (8.147)

where µsB : WB Ñ UB is the moment map of self-dual Bogomolny monopoles. The dirac operator
is defined via the Levi-Civita connection on P` and a P CpP̂1qSOp3q

sop3q
.

2This is an artifact of how we embedd SOp4q in G2; see Remark 2.39.

140



Remark 8.52. Note that this agrees with how φ1 becomes´φ1, i.e. by mapping ei Ñ´ei,
for i P {1, 2, 3}. This changes the orientation of R3 Ă R4, which turns the anti self-dual
monopoles into self-dual monopoles.

The proof is similar, except that the last three equations need not be multiplied
with ´1 (for the Dirac operator). The signs agree with Corollary 6.57 to give a left –
right structure.

Just as for the Haydys-Witten equations, the only obstruction of reversing this
construction is the existence of a reduction.

Lemma 8.53. Let pa,uq be a solution to generalized Seiberg-Witten with target WB and
principal bundle P̂1 Ñ P`. If there is a reduction P̂X Ñ P̂1 to a principal G-bundle then
the solution induces a solution of the G2-Monopole equations on the bundle pr˚X PX ÑM.

See the discussion in section 9.2 about the existence of such reductions.

Proof. The proof is identical to the Haydys-Witten case, except that the bundle is an
honest bundle on top of P`. Since the principal bundle of the hyperkähler reduction
of the Bogomolny monopoles is SOp3q-equivariant, and u is SOp3q-equivariant, the
bundle P̂1 Ñ P` is SOp3q- equivariant. The reduction to P̂X is (because of our choice
of embedding of GÑ G) even SOp3q-invariant, so corresponds to a bundle on the base
X. �

Notation 8.54. Denote by MP
G2

the moduli space of G2-instantons on a principal bundle

P. Denote by MP̂1,WB

gSW the moduli space of solutions to the generalized Seiberg-Witten
equations on the bundle P̂1 with target WB (see e.g. [Pid04]).

Proposition 8.55. In the setting of this section,

MP
G2
–MP̂1,WB

gSW . (8.148)

Proof. The proof is identical to the case of the Haydys-Witten equations. �

Theorem 8.56. In the setting of this section let G “ SUp2q and let pA,φq be a solution of
the G2-monopole equations on P. We say that pA,φq satisfies the boundary conditions of type
k P N, if for rÑ8 (where r denotes the radial distance to the zero section of Λ2`)

1. ‖b‖ “ 1´ k
2r `Opr´2q

2. d‖b‖ “ Opr´2q

3. ‖dcb‖ “ Opr´2q,

where c P C8
(
P̂X,Ω1pΛ2`, gq

)SOp3qˆG and b P C8
(
P̂X,C8

(
Λ2`, g

))SOp3qˆG is interpreted
as in Lemma 8.49. Furthermore, we require that there is a Up1q-bundle R Ñ Λ2` defined
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on the complement of some compact set on the fibers of Λ2` and with a fixed reduction of the
Bogomolny data (compare to the boundary conditions of Bogomolny monopoles.

Then solutions to the G2-monopole equations subject to the boundary conditions of type
k P N gauged by the reduced gauge group is isomorphic to the solutions of the generalized
Seiberg-Witten equations with target FkB,

Mk
G2
–M

P̂1,FkB
gSW . (8.149)

Proof. Again we have chosen the boundary conditions so that the boundary conditions
of the Bogomolny equations are satisfied. It remains to remark that the gauge group
G0 of the Bogomolny equations can be achieved by Remark 8.26, where we can pick f
to be 1

‖x‖ smoothed around 0. �

Theorem 8.57. Restrict Mk
G2

to solutions such that the transformed data given by a P

C8
(
Λ2`,CpP̂Xq

)H has no self-dual curvature, i.e. Fapvq` “ 0 for every v P Λ2`, and call that
space Mk

G2,r. Then
Mk

G2,r – {u : P` Ñ Nk| u is aholomorphic} (8.150)

Proof. The proof is identical to the case of the Haydys Witten equations. �

Remark 8.58. We like to find a better description of Mk
G2,r. Notice that for a manifold

with SOp4q Ă G2 holonomy, the bundle T_M decomposes into S20 ‘ S11. We can
compute

Λ2T_M “ Λ2S20‘ S20b S11‘Λ2S11 (8.151)

“ S20‘
(
S13‘ S11

)
‘ sop4q, (8.152)

and compare this to

Λ2T_M “
(
S20‘ S11

)︸ ︷︷ ︸
µ

‘
(
sop4q ‘ S31

)︸ ︷︷ ︸
g2

, (8.153)

arising from the decomposition of the G2-representations. Then the identity map

S20‘
(
S13‘ S11

)
‘ sop4q Ñ

(
S20‘ S11

)
‘
(
sop4q ‘ S31

)
, (8.154)

is given by

pa,b, c,d, eq Ñ p
1√
2
pa´ dq, c,

1√
2
pa` dq, e,bq, (8.155)

with respect to these decompositions. To see this notice that by the Lemma of Schur it
is only unclear how the S20 are mapped (sop4q – S20‘ S02).

The first S20 in the source is given by Λ2
〈
e1, e2, e3

〉
“
〈
e12, e23, e31

〉
, the second

one by Λ2`
〈
e4, e5, e6, e7

〉
“
〈
e45` e67, e46´ e57, e47` e56

〉
. In the target the first S20 is

given by 〈
e23´ e45´ e67, e31´ e46` e57, e12´ e47´ e56

〉
, (8.156)

142



(compare to equations (8.117) through (8.119); this depends on the choice of G2 struc-
ture) which explains the a´ d component. The other follows by completing 1√

2
p1,´1q

to a ONB of R2. So the condition on FA P Λ2T_M is that

FA7,3 “ ´F
A
14,3`, (8.157)

where 7, 3 is the projection onto the S20 Ă µ component and 14, 3` the projection onto
S20 Ă g2.

Theorem 8.59. Assume that u : P` Ñ Mk is a SOp3q-equivariant map. Then there is a
bundle P̂1 Ñ P` and a connection a on it such that pa,uq satisfy the reduced generalized
Seiberg-Witten equations. Furthermore, if there is a reduction P̂ Ñ P̂1 to the structure group
G, then this induces a solution of the G2-monopole equations on the induced bundle PÑ Λ2`X

without self-dual curvature.

Proof. The proof is identical to the case of Haydys-Witten equations. Note that the
pulled back bundle is SOp3q-equivariant. �

8.3.4 Construction of Examples

Similar to the case of the Haydys Witten equations, we can construct examples from
this.

Example 8.60. Let X be a 4-dimensional manifold. Then every u : P` Ñ Mk, SOp3q
equivariant and aholomorphic such that a reduction exists induces a solution of the
G2-monopole equations. If P` is trivial (i.e. X has a not necessarily integrable hy-
perkähler structure) then every aholomorphic map XÑ Mk induces a solution of the
G2-monopole equations.

Example 8.61. Given any 4-dimensional manifold X, the map u : P` Ñ Mk given by
u “ constBPS, the constant map to the unique spherical symmetric solution (of fixed
mass 1), known as the BPS-monopole [Pra75].

Example 8.62. If X is a quaternionic 4-manifold, then any constant map X Ñ Mk pro-
duces an example.

Instead of putting the spinor first, we can also start with the connection.

Example 8.63. Given any a P C8
(
Λ2`,CpP̂Xqsop3q

)SOp3q
such that for every t P I Faptq` “ 0,

i.e. aptq is a self-dual connection, and a C8
(
P̂1,µ´1p0q

)
with Dãu “ 0, where ã is the

connection associated via Proposition 8.24. Then this data induces a solution to the
G2-monopole equations.

Example 8.64. As an example of the last class, choose ǎ P CpPXq and pull it back to
P̂X. Then this is a connection a P CpP̂Xq

SOp3q
sop3q

and hence we can use the constant map
Λ2` Ñ a as our connection.
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8.4 Adiabatic scaling

If we want to look at the general picture, i.e. the identification of the moduli spaces
with generalized Seiberg-Witten with target FB{N, then the question arises how we can
make sure that our solutions are approximate solutions (in the sense of Definitions 7.1
and 7.2). The idea is to use adiabatic scaling, i.e. changing the metric on the underlying
manifold X by g ÞÑ ε´2g. Having a SOp4q Ă G2, SOp4q Ă SOp5q reduction then results
in different conformal weights on the equations

Dau
ε “ 0 µ ˝ uε “ ε2F`a . (8.158)

Example 8.65. ‚ For G2 monopoles we have SOp4q Ă G2 which gives Λ1 – Λ14‘Λ
1
3,

which (being S11 and S20) have weights 1 and 2.

Hence adiabatic scaling stretches Λ13 doubly, so MBog
ε is the new target.

‚ On SOp4q Ă SOp5q we want the same phenomenon, so

Λ14‘Λ
1
1. (8.159)

we set the scaling on Λ11 to have weight 2 and then MNahm
ε is the new target.

We have shown that the Nahm transform commutes with these scalings in Propo-
sition 7.38.

8.5 A Transform Between G2-Monopoles and solutions of the
Haydys-Witten Equations

Theorem 8.66. Let X be a 4-dimensional Riemannian manifold. Then for any ǔ : P` Ñ Mk

(ǔ : P` Ñ Nk) we define a transformed spinor v̌ : P` Ñ Mk Ñ Nk (v̌ : P` Ñ Nk Ñ Mk).
Now restrict Mk

G2,r (Mk
HW,r) to spinors u such that

1. All ǔ : P` ÑM (ǔ : P` Ñ N) belong to a (SOp3q-equivariant) homotopy class.

2. ǔ˚µ´1p0q has a reduction.

3. For the transformed maps v̌, v̌˚µ´1p0q has a reduction.

Notice that if there is a reduction for one of the ǔ, then there is one for all of them, and similar
with the v̌, since the transformation of a homotopy class remains a homotopy class. Then we
have maps

rǔsMk
HW,r Ô rv̌sMk

G2,r. (8.160)

These maps are inverses of each other, showing

rǔsMk
HW,r –

rv̌sMk
G2,r. (8.161)
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Proof. The claim follows from Theorem 8.39 and 8.57 together with Proposition 7.39

and the fact that the Nahm transform is - up to a constant factor - a hyperkähler
isometry [Nak91, Theorem 6.5]. The latter ensures that a aholomorphic map gets
mapped to a aholomorphic map. The former two theorems identify the solutions with
equivariant maps P` ÑMk{Nk and the Proposition ensures that the transformed data
is still SOp3q-equivariant.

The Nahm transform between Mk{Nk is always injective, the injectivity can only
break if there are multiple connections that make ǔ to a aholomorphic map. This is
true if and only if ǔ meets a nondiscrete stabilizer of G0. �

Example 8.67. Take X a Riemannian 4-manifold. The homotopy class of the map P` Ñ
Mk{Nk mapping to the BPS-monopole satisfies the requirements of the last theorem,
because the pull back is trivial and the transformed class contains the BPS-monopole.

Example 8.68. If we let X “ R4, then P` is trivial and hence any two maps ǔ : P` Ñ
Mk{Nk are homotopic. Furthermore the reduction always exist and we get

Mk
HW,r –Mk

G2,r, (8.162)

Example 8.69. If X is a quaternionic 4-manfiold, then any aholomorphic map X Ñ Nk
(Mk) such that the reduction exists gives riseto a transformed X Ñ Mk (Nk). If the
reduction exists, we get a transform as in the last example.

Theorem 8.70. Let X be a compact 4-dimensional Riemannian manifold and PX Ñ X a prin-
cipal Upkq-bundle. Then there is a open neighborhood µN´1p0q Ă U Ă FkN such that we have
a map

u P C8
(
P`ˆX P

1,U
)GN0 ¸SOp3q

Ñ v P C8
(
P`ˆX R

1
rv̌s, F

k
B

)GB0¸SOp3q
, (8.163)

where R1
rv̌s

is the pull back of the principal bundle FkN Ñ FkN{G0, by the transformed projection
v̌.

Proof. The action of G0 is free and proper on FkN because of the framing (see e.g.
[MV81]). Given a u : P̂1 Ñ FkN, we apply the generalized Nahm transform to define
the transformed map v̌ : P` Ñ FkB{G0 and pull back the bundle FkB along it to define the
transformed bundle. �

Of course the map can also be formulated in the other direction with the very same
ideas.

Theorem 8.71. Let X be a compact 4-dimensional Riemannian manifold and PX Ñ X a prin-
cipal SUp2q-bundle. Then there is a open neighborhood µB´1p0q Ă U Ă FkB such that we have
a map

u P C8
(
P`ˆX P

1,U
)GB0¸SOp3q

Ñ v P C8
(
P`ˆX R

1
rv̌s, F

k
N

)GN0 ¸SOp3q
, (8.164)
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where R1
rv̌s

is the pull back of the principal bundle FkB Ñ FkB{G0, by the transformed projection
v̌.

Remark 8.72. The space FkB is contractible and as such FkB Ñ FkB{G0 is a classifying
bundle for G0. However since we did not extend the Nahm transform to all of FkB,
not all maps u are necessarily homotopic, so again we can have images in different
bundles.

Remark 8.73. Notice that Theorem 8.70 and Theorem 8.71 give extensions of the maps
defined in Theorem 8.66.

Remark 8.74. The transform described in Theorem 8.70 and Theorem 8.71 also describes
how the spinors are transformed in Theorem 8.66. Since the neighborhood U retracts
to µ´1p0q, the involved bundles agree. As such it seems to be the natural extension of
the transform. What remains to discuss is how the connections enter the transform.
Since I have not arrived at a satisfactory answer for that, it will be discussed in the
Outlook chapter.

Remark 8.75. The fact that we have found a transform of our topological data (the
involved bundles) is rather remarkable, since the Nahm transform does not have such
a feature, all involved bundles are trivial(lizable).

Remark 8.76. It may be tempting to try to use adiabatic scaling to make sure that the
data is in the neighborhood U; however, this also scales the Nahm data, so that Dε “

εD (compare (7.171)) hence ‖Gε0‖ “
1
ε2
‖G0‖ so that the defining condition (compare

Corollary 7.30 and 7.32).
‖clFa`‖ ă ‖G0‖

´1 (8.165)

remains unchanged under adiabatic scaling. It seems this should be fixable by finding
another requirement as discussed in section 7.6.
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Chapter 9

Outlook

9.1 About the Connections

We have only explained how to transform the spinors in Theorem 8.70 and 8.71 and not
described how to transform the connection. There is a formula [Pid17] guaranteeing
the existence of a unique connection for any spinor u with image sufficiently close to
µ´1p0q such that

Dau “ 0. (9.1)

This agrees with the theme that the spinor already carries all the information of the
solution, as it is the case for spinors with values in µ´1p0q. However, this time we have
to check by hand that the second equation of the generalized Seiberg-Witten equations
are satisfied, i.e.

µ ˝ u “ Fa`. (9.2)

We have done a substantial step towards that goal by giving an explicit formula for
the transformed error in Corollary 7.21 and 7.26. This gives an explicit map UN Ô UB,
which may be associated with the normal bundles of µ´1p0q Ă FB{N (see Proposition
3.16). This suggests that it might be best to first try to show that the linearized versions
of Corollary 7.23 and 7.28 of the error map satisfies a linearized version of the second
equations.

9.2 About the Boundary Conditions and Other Remarks

The boundary conditions we chose in this work were dictated by the fact that we
wanted to use the Nahm transform. However it would be interesting to understand
how the conditions in [MW13] translate to boundary conditions on the space of Nahm
data. In particular it would be interesting to understand how the knot topology can
be understood in this framework.
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While there is a blank check principal bundle reduction in the case of the Nahm
equations in Lemma 8.35, the author is unaware of such a reduction for the case of
Bogomolny equations.

It seems interesting to take a closer look at the topology of the involved bundles in
the transform defined via Theorem 8.66 (and extended by Theorem 8.70 and 8.71). In
particular it would be interesting to find an explicit example for which the transformed
data consists of multiple (different) bundles.

Another question that arose while working on this is if the Nahm transform can
be lifted to dimensions 5 and 7 without the necessity of the intermediate step to gen-
eralized Seiberg-Witten. For this note that a 5-dimensional manifold with holonomy
in SOp4q (even Op4q) is spin, as is a 7-dimensional manifold with holonomy in G2. It
is possible to copy the definitions to this setting, but many analytic questions would
need addressing (the index, positivity, ... of the operators). Also the proof of the trans-
form fails because of cross-terms in the general setting. This could maybe be addressed
by requiring certain invariance of the involved data.

For the Examples 8.43 and 8.60 it seems interesting to understand the space of
aholomorphic maps from a 4-dimensional quaternionic manifold to the spaces MN

and MB.
It might also be interesting to look at the physical implications of the mentioned

transform, even though the author’s knowledge does not suffice to make an informed
judgment.
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