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Cover figure: Model of the planet and moon transits for the three transits of Kepler-
1625-b. This figure is adapted from Fig. 4 in Rodenbeck et al. (2018) (Fig. 2.4 in this
thesis).
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Summary

One of the next big steps forwards for exoplanet science is the detection of moons around
extrasolar planets. In this thesis I develop methods to detect and characterize these moons
around extrasolar planets, with a focus on the moon candidate around the exoplanet
Kepler-1625 b. The main part of this thesis is formed by two papers about the exomoon
candidate around Kepler-1625 b and a short chapter about a new exomoon indicator we
developed. The three topics and the main results are described shortly below.

In Chapter 2, we study the extrasolar planet Kepler-1625 b, for which the discovery
of a moon candidate has been announced recently. We assess the reliability of this claim
by performing an injection-retrieval experiment, where we inject model light curves with
and without a moon signal into parts of the original Kepler-1625 light curve. We find that
we can recover around 40 percent of the injected moons. However, we also find that we
recover moons in around 10 percent of the light curves where no moon was injected. This
is a high false-positive rate, considering that the survey that found the moon candidate
looked at hundreds of stars. We also analyze the original light curve ourself, and find
marginal evidence in favor of the existence of the moon.

In Chapter 3, we return to the moon candidate around Kepler-1625 b after an addi-
tional transit has been observed by the Hubble space telescope, and the moon parameters
have been refined by the original discoverers. We perform an analysis of both the light
curve detrended by the original discoverers of the moon candidate as well as our own
detrending of the light curve. The analysis is improved compared to the first paper: The
detrending of the light curve is done simultaneously to the model fit and the planet-moon
model light curve model is refined. We find significant evidence in favor of the moon
hypothesis. However, we notice that the resulting best fit to the light curve differs from
the best fit in the paper of the original discoverers. We also find a different parameter
distribution. This leads us to advising caution, since we would assume that a physical
moon signature in the data would lead to roughly the same results independently of the
exact detrending method used.

In Chapter 4, we find that the transit timing and duration shift is not as good an in-
dicator for detecting exomoons as previously thought. We find however a possible other
exomoon indicator: When planet and moon transit overlap, the observed transit depth in-
creases. This increase follows a periodic pattern, determined by the length of the moon
and planet period. We test this indicator on synthetic light curves and determine that this
indicator can detect moon of Earth size for bright stars using Kepler-like telescopes.

The results of the previous chapters are discussed in Chapter 5. We also test machine
learning using a simple test system, showing that machine learning might be able to detect
Earth-sized exomoons.
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Zusammenfassung
Eines der nächsten großen Ziele für die Exoplanetenwissenschaft ist die Entdeckung eines
eines Mondes um einen extrasolaren Planeten. In dieser Dissertation entwickele ich Meth-
oden, um diese Monde zu entdecken und zu charakterisieren. Dabei liegt ein besonderer
Fokus auf dem Mondkandidaten um den Exoplaneten Kepler-1625 b. Den Hauptteil
dieser Dissertation bilden zwei Paper zu diesem Exomondkandidaten sowie ein kurzes
Kapitel zu einem neuen Exomondindikator, den wir entwickelt haben. Diese Themen und
die Ergebnisse sind im folgenden kurz zusammengefasst.

Kapitel 2 widmet sich dem postulierten Mondkandiaten um den extrasolaren Plan-
eten Kepler-1625 b. Wir testen die Verlässlichkeit dieses Fundes, indem wir Transitsig-
nale von Planeten mit und ohne Mond in Teile der Lichtkurve injizieren, die zuvor keine
Transitsignale aufwiesen. Wir finden in ca. 40% der Lichtkurven, in die ein zusätzliches
Mondsignal injiziert wurde, einen Mond. Allerdings finden wir auch in ca. 10% der Fälle,
in denen kein Mondsignal injiziert wurde, einen Mond. Dies ist eine hohe Falsch-Positiv-
Rate, wenn wir uns vor Augen führen, dass bei hunderten von extrasolaren Planeten nach
Monden gesucht wurde. Wir analysieren auch die ursprüngliche Lichtkurve von Kepler-
1625 und finden, dass die Mondhypothese leicht bevorzugt wird.

In Kapitel 3 kehren wir zum Mondkandidaten um Kepler-1625 b zurück, nachdem
ein weiterer Transit vom Hubble-Teleskop beobachtet wurde. Wir suchen sowohl in der
Lichtkurve, die von den Entdeckern des Mondkandidaten bereitgestellt wurde, als auch
in der Lichtkurve, die wir selber bereinigt haben, nach der Existenz eines Mondes. Im
Gegensatz zum ersten Paper wird nun gleichzeitig der Langzeittrend und die Transitpa-
rameter gefittet. Die Analysen beider Lichtkurven zeigen sehr starke statistische Anzei-
chen für die Existenz eines Mondes. Allerdings finden wir andere am besten passende
Modellichtkurven und eine andere Parameterverteilung als in dem Paper der Entdecker.
Aus diesem Grund raten wir zur Vorsicht, da wir erwarten würden, dass ähnliche Analy-
sen der Beobachtung eines echen Mondes zu ähnlichen Ergebnissen kommen sollten.

In Kapitel 4 untersuchen wir den Effekt, den der Mondtransit auf den kombinierten
Planeten- und Mondtransit hat. Es stellt sich heraus, dass die vorhergesagte Verschiebung
des Zeitpunktes des Transits und die Veränderung der Transitdauer durch die Bewegung
des Planten um den Planet-Mond-Schwerpunkt kein guter Indikator für die Existenz eines
Exomondes ist, da der Effekt teilweise durch einen gegenläufigen Effekt des Mondtransits
auf den gemessenen Transitzeitpunkt und -dauer ausgeglichen wird. Wir stellen einen
neuen Exomondindikator vor: Je nach Planet-Mond-Geometrie ändert sich die Tran-
sittiefe über eine Reihe von Transits. Diese Veränderung könnte für erdgroße Monde
beobachtet werden.

In Kapitel 5 werden die Ergebnisse der vorangehenden Kapitel diskutiert. Außerdem
erfolgt ein Ausblick, mit einem Schwerpunkt auf der Benutzung von maschinellem Ler-
nen, um Exomondkandidaten effizient zu finden.
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Preamble

Parts of this thesis has the form of a cumulative thesis (“Kumulative Dissertation”) as
specified in the GAUSS Promotionsordnung, § 10 (3). Chapters 2 and 3 are reproductions
of the following papers:

Paper I: Revisiting the exomoon candidate signal around Kepler-1625 b: Rodenbeck, K.,
Heller, R, Hippke, M., Gizon, L. 2018, Astronomy & Astrophysics, 617, A49

Paper II: An alternative interpretation of the exomoon candidate signal in the combined Ke-
pler and Hubble data of Kepler-1625: Heller, R., Rodenbeck, K., Bruno, G. 2019,
Astronomy & Astrophysics, 624, A95
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1 Introduction

Up to this date, thousands of extrasolar planets (planets around stars other than our sun,
commonly called exoplanets) have been discovered, with some of these planets being as
small as our Earth. At the same time, we know of over 170 moons in our Solar System,
with the largest moon, Ganymede, having a radius almost half that of Earth. It is not un-
reasonable to assume that at least some exoplanets have moons of their own (commonly
called exomoons), even if we do not know anything about the possible size of these exo-
moons. One might conclude that the exomoon community is tantalizingly close to the first
undisputed discovery of an exomoon. Indeed, recently an exomoon candidate has been
announced by Teachey et al. (2018) around the exoplanet Kepler-1625 b. This candidate
is not yet confirmed and its existence is an ongoing topic of debate (Teachey and Kipping
2018, Rodenbeck et al. 2018, Heller et al. 2019) as well as the main topic of this thesis.
In this chapter I give a short introduction into exoplanets, exomoons, their properties, and
the main methods used to detect them.

1.1 Exoplanets

1.1.1 Overview
Exoplanetary science, the study of exoplanets, is one of the youngest subfields of astro-
physics, with the first discovery of an exoplanet less than 30 years ago. The first exo-
planet orbiting a main-sequence star was discovered in 1995 around 51 Pegasi (Mayor
and Queloz 1995). It has a mass of at least1 half that of Jupiter and orbits its star every
4 days. Since then almost 4 000 exoplanets have been found and confirmed, with another
2 500 candidates waiting to be confirmed or rejected as exoplanets.

Mayor et al. (2011) estimate that around 50% of all stars have at least one planet,
rising to about 70% for G and F stars (i.e. sun-like or a bit more massive). Petigura
et al. (2013) determined that around a quarter of sun-like stars have a planet with a radius
between 1 and 2 Earth radii (R⊕) orbiting with a period between 5 and 100 days.

Most of the planets discovered so far have periods between 1 and 100 days, with a
radius between 1 and 4 Earth radii (see Fig. 1.1). This means that most of the discov-
ered exoplanets have a size smaller than Neptune, which, without accurate mass measure-
ments, makes it difficult to determine if those planets are upscaled Earth analogues (super-
Earths) or downscaled Neptune analogues (mini-Neptune). Many of the giant planets
confirmed as exoplanets so far are roughly Jupiter-sized planets, close to their host star,
with orbital period of only a few days. These objects, named Hot Jupiters, form a distinct

1The radial velocity method used to detect it can only yield a lower bound on the mass, see Sec. 1.1.2.2.
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Figure 1.1: Radius over orbital period of the confirmed exoplanets for which both values
are know, and whose period is smaller than 1000 d. The Hot Jupiters (planets with large
radii at very short periods) form a distinct sub-group separated from the other exoplan-
ets. The other exoplanets mostly have radii between 1 and 4 R⊕, making them so-called
super-Earths or mini-Neptunes. Data taken from http://exoplanetarchive.ipac.
caltech.edu.

sub-group in the period-radius diagram (and indeed in all other diagrams relating size and
distance to the star) and have no equivalent in our Solar System, presenting a new class
of planets that we did not know existed before the discovery of the first exoplanet.

1.1.2 Detection Methods

There are two main methods how exoplanets are detected and characterized: The so-called
transit method and the so-called radial velocity (RV) method.

1.1.2.1 The Transit Method

The transit method works by detecting the dimming of a star when an exoplanet belonging
to that star passes in front of the star. By fitting a transit model to the observed dimming,
we can determine some of the planet’s parameters. The profile of this dimming depends
on the distance of the exoplanet to the star’s center, projected along our line-of-sight over
time, the ratio of the planet’s and star’s radius rp and the limb-darkening profile (stars
appear less bright towards the edge of the observed disk) of the star (Mandel and Agol
2002). The planet’s projected distance zb to the star’s center is determined by the planet’s
orbit around its host star. The parameter zb is often expressed in units of stellar radii R?

and for circular orbits is given by
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1.1 Exoplanets

Figure 1.2: Schematic diagram showing a planetary transit. In the top part the orbital
configuration of the star and planet is shown. On the left from the top (face-on) and on
the right from the observers point of view (edge-on). The bottom part shows the resulting
transit, as well as the orbital configurations corresponding to certain points during the
transit. For clarity, limb-darkening is neglected in this figure.

zb

(
t,

ab

R?

, b, Pb, t0,b

)
=

√(
ab

R?

sin
2π(t − t0,b)

Pb

)2

+

(
b cos

2π(t − t0,b)
Pb

)2

, (1.1)

where Pb is the orbital period of the planet, ab the semi-major axis of the planet, t0,b the
midpoint of one of the transits and b the so-called impact factor, the smallest distance of
the planet to the star’s center in units of the stellar radius R?. Planets only cause a transit
if they are in front of the star, not behind (although the secondary transits caused by the
blocking of star light reflected on the planet can yield information about the exoplanets
atmosphere), which has to be taken into account when calculating the transit light curve
from zb. Fig. 1.2 shows the relation between an exoplanet’s orbit and the resulting transit
light curve.
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Figure 1.3: Diagram of the geometry determining from which angles observers can see a
transit of the planet (grey body) in front of the star (yellow body).

If a dimming of a star is caused by a transit it will happen again and again always after
one orbital period Pb. The periodicity of this dimming is one of the major indicators that
the dimming is in fact caused by an orbiting planet and not some other astrophysical or
instrumental effect.

Using the transit method we can only detect transits for which the orbital configuration
is such that the planet is in front of the star during at least one point of the orbit, i.e. zb(t) <
1 + rp at some time t, where rp is the ratio between the star’s radius R? and the planet’s
radius Rp. Fig. 1.3 shows from which angle α above and below the planet’s orbital plane
a transit can be observed. The angle α can be calculated as α = sin−1

[(
1 + rp

)
R?/ab

]
.

Assuming the direction from which a potential observer looks at the star is distributed
uniformily, the probability of being able to observe a transit is given by

PTr =
1
2

∫ α

−α

cosθdθ =
(1 + rp)R?

ab
.

For a Jupiter-sized planet in a 3.7 d orbit around a Sun-sized star this would mean a 10 %
probability of observing a transit of this planet. For an Earth-sized planet in a 1 year orbit
this probability drops to 0.5 %. For a derivation of this probability taking into account the
eccentricity of the planet’s orbit see Barnes (2007).

The discrepancy between the expected transit time and the observed transit time (tran-
sit timing variation, TTV) can be used to detect non-transiting planets (see e.g. Ballard
et al. 2011) and determine the mass of the other planets in the same planetary system (see
e.g. Gillon et al. 2017).

The Kepler space telescope (Borucki et al. 2010), using the transit method, has con-
ducted the largest search for exoplanets to this date: It observed brightness variations of
200 000 stars for 4 years from 2009 to 2013 (Twicken et al. 2016).
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Figure 1.4: Schematic overview on how planets are detected using the radial velocity
(RV) variations of the host star. The star orbits the star-planet barycenter, changing its
velocity towards the observer. This causes a red- or blue-shift of the emitted light.

1.1.2.2 The Radial Velocity Method

The radial velocity (RV) method works by measuring a star’s velocity along our line-
of-sight. Just as the planet is gravitationally attracted to the star, the star is attracted
to the planet with the same force. Due to the star’s much higher mass, the resulting
acceleration and velocity is much smaller than that acting on the planet. This velocity
variation of the star can be detected by measuring the red- and blue-shift of the star’s light
(see Fig. 1.4). This red- and blue-shift, known as Doppler shift, is detected by measuring
the shift of the absorption lines in the stellar spectrum. The RV method is sensitive only
to movement of the target star towards and away from the observer. This means that
the RV method becomes less and less sensitive to the movement of the star due to the
planet as the inclination i, the angle between an observer’s line-of-sight and the planet’s
orbital plane, grows. If the orbital plane of the planet is perpendicular to the line-of-sight,
the RV method can not detect any movement of the star due to the planet’s gravitational
attraction at all. Since the inclination of the planet is not known and only one part of the
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stellar velocity can be measured by the RV method, it can only provide a minimum mass
of a planet, often denoted Mp sin i.

The amplitude K of a RV signal caused by a planet in a circular orbit is given by (e.g.
Cumming et al. 1999)

K =

(
2πG
Pb

)1/3 Mp sin i(
M? + Mp

)2/3 , (1.2)

where Pb is the orbital period of the planet, G is the gravitational constant and M? the
star’s mass. For Jupiter in its orbit around the Sun the expected amplitude, assuming
i = 0, is 12.5 m/s and for the Earth it is 0.09 m/s.

While the first exoplanet has been found through RV measurements, the largest part
of exoplanets detected so far were found by the transit method. This is due to the fact that
the transit method uses photometry, which means that we can observe many stars at once
using cameras, like the Kepler space telescope did.

1.2 Exomoons
Moons are natural satellites around planets and dwarf-planets. Exomoons are moons
around extrasolar planets.

Despite there being 20 times as many moons as planets in our Solar System, there
has not been one confirmed exomoon yet. Exomoons might play an important part in the
search for habitable bodies around stars other than the Sun (Williams et al. 1997, Zollinger
et al. 2017), since the habitable zone around a host star is expanded outwards if the moon
is heated by tidal interactions with its planet (Reynolds et al. 1987, Dobos et al. 2017).

1.2.1 Moons in our Solar System
Our Solar System has 175 moons2 distributed around six of its eight planets. Most of
these moons orbit around the two biggest gas giants Jupiter (79) and Saturn (53), with
the two smaller gas planets having 27 (Uranus) and 13 (Neptune) moons. Earth has one
moon, the Moon, and Mars has two small moons. Additionally, many of the dwarf planets
have moons.

The first moons discovered aside from our own Moon were the four largest moons
of Jupiter. They were observed in 1610 by Galileo Galilei, and are called, ordered by
distance to Jupiter, Io, Europa, Ganymede and Callisto. These so-called Galilean moons
have radii between 1560 and 2630 km and orbit Jupiter with periods between 1.7 and 17 d.
The largest moon of our Solar System is Ganymede, the third of the Galilean moons, with
a radius of about 2630 km, followed closely by Titan, the largest moon of Saturn, with
around 2570 km.

The moons in the Solar System have formed through different processes. Some were
formed in the tidal debris disks of the gas planets (e.g. the Galilean moons, see Crida and
Charnoz (2012)), some were captured (e.g. Triton, a moon of Neptune, see Agnor and
Hamilton (2006)). Earth’s Moon may have been formed by an impact of a Mars-sized
body early in Earth’s history (Cameron and Ward 1976).

2https://solarsystem.nasa.gov/moons/in-depth/
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1.2 Exomoons

1.2.2 Moons as Tracers of Formation History

With the discovery of the Hot Jupiters and the planet distribution that Kepler revealed,
as well as the discovery and characterization of multi-planet systems, it has become clear
that extrasolar planetary systems can have completely different structures compared to our
Solar System. The moon distribution outside the Solar System might also be completely
different from the one in the Solar System, especially around planets for which we do
not have equivalents in the Solar System (Hot Jupiters, Warm Neptunes). The existence
or non-existence of moons around certain planet types can give valuable insight into the
formation history of their host systems.

A detailed history of the formation and evolution of the moons in the Solar System can
help constrain planetary formation and evolution models. Canup and Ward (2002), Heller
et al. (2015) use the composition of the Galilean moons to constrain the temperature
distribution in the disk formed around the early Jupiter due to accretion. Similar studies
would be possible for extrasolar systems once exomoons are detected. Namouni (2010)
conclude that moons around gas giants might not survive the migration inwards, which is
one of the main scenarios for the formation of Hot Jupiters. A detection of moons around
Hot Jupiters could help to exclude the migration model as a formation model.

1.2.3 Habitability of Moons

Exomoons present a possible place where life might develop, given the right conditions
(for a review on habitability of exomoons see Heller et al. (2014)). Extrapolating from the
bodies in the Solar System where life might develop, there might even be more habitable
exomoons than exoplanets.

The most important condition for life is the presence of liquid water. This requires
an energy source to keep the water liquid over long periods of time. For planets the most
important source of energy is their star’s radiation. The region around a star where the
star’s radiation keeps water liquid is called the Habitable Zone (HZ). In the Solar System,
Earth is the only planet with large quantities of liquid water, with 70 % of its surface
covered in water. Moons can be tidally heated by interaction with their parent planet,
which can extend the region around the star where liquid water is possible (Reynolds
et al. 1987, Dobos et al. 2017). Four moons in the Solar System might harbor large
bodies of liquid water: Europa, Enceladus, Ganymede and Callisto. Europa, under a
10 km layer of ice, has a layer of liquid water between 10 and 100 km deep. The energy
to maintain this ocean comes from the tidal interaction with Jupiter. Enceladus might
contain localized pockets of a subsurface liquid water. Ganymede and Callisto might
also posses oceans with a depth of around 300 km (Spohn and Schubert 2003). The
evidence for subsurface water on Europa and Enceladus are plumes of water ice they
eject. Measurements of Ganymede’s and Callisto’s density and moment of inertia are in
agreement with subsurface oceans.

Another important requirement for life is a source of energy usable by organisms. The
most commonly used source for energy for organisms on Earth is photosynthesis. This
would require moons in the habitable zone around its star to have an atmosphere to enable
exposure to sun light. Williams et al. (1997) find that for a moon in the HZ this requires
a moon mass larger than 0.1 M⊕ (which is roughly the mass of Mars) and the presence of
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a magnetic field to protect the moon from particles in the planet’s magnetosphere. Titan
is unique among the moons in the Solar System in that it has a dense atmosphere, which
has even a stronger pressure than Earth at ground level. Its atmosphere is dominated by
nitrogen with 98%, with most of the rest made up of methane and hydrogen (Coustenis
et al. 2007); it is also so dense that very little light reaches the ground. Titan does not lay
in the HZ. At a temperature of around 100 K, life on Titan can not be based on water, but
instead would have to be on the basis of hydrocarbons. Life on moons with subsurface
oceans like Europa could extract energy from volcanic vents, similar to some organisms
on Earth’s ocean floor.

The occurrence rate of moons massive enough to hold an atmosphere enabling photo-
synthesis is unknown (and in fact zero in the Solar System). It might be possible that more
massive moons form around super-Jovian exoplanets (planets more massive than Jupiter)
and brown dwarfs (although it would be a matter of definition if those bodies would be
counted as moons or planets). Even though there are models how such massive moons
might be formed (Heller et al. 2014, Williams 2013), in the end only detections of such
bodies can give us an estimate on the occurrence rate of massive moons.

Moons might also play a role in the habitability of their planets, since they can help
stabilizing the obliquity of the planet, as is the case for Earth (Laskar et al. 1993).

1.2.4 Detection and Characterization Methods
There are various ways how an exomoon could be detected (for a review see Heller
2018b).

Using transit photometry, there are two effects caused by the existence of a moon:
Firstly, the effect of the moon on the planetary transit, and secondly, the transit of the
moon itself in front of the star.

The planet and moon orbit their combined center of mass, the barycenter, both with
the same period Ps, but with very different semi-major axes. The ratio between these two
semi-major axes is determined by the mass ratio of planet and moon.

This movement of the planet around the barycenter affects the transit shape and posi-
tion (see Fig. 1.5): The planet can be ahead or behind in its orbit around the star, compared
to the barycenter, causing a shift in the transit midpoint (Sartoretti and Schneider 1999),
called the transit timing variation (TTV), and the planet can be faster or slower compared
to the barycenter’s movement around the star, causing a longer or shorter transit duration
(Kipping 2009), called the transit duration variation (TDV). Due to the geometry of the
planet’s orbit around the barycenter, the TTV and TDV curves caused by a moon are si-
nusoidal for a moon with a circular orbit, and are offset relative to each other by a phase
difference of 90◦.

Heller et al. (2016b) propose to search for exomoons signatures in the TTV-TDV
parameter space: The TTVs and TDVs for a series of transits, plotted against each other,
form an ellipse in the TTV-TDV space if they are caused by the presence of an exomoon.
This is due to the 90◦ phase shift mentioned above. In Chapter 4 we re-evaluate this
detection method.

The moon can also have its own transit in front of the star (but does not have to,
depending on the orbital configuration, see Martin et al. (2019)). Just like for a planetary
transit, the depth of the transit is determined by the size of the moon. Due to the moon’s
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Figure 1.5: Schematic overview how the movement of planet and moon affect the shape
and timing of the planet and moon transit. The left half shows a configuration that causes
maximal TTV: The planet is left of the planet-moon barycenter, meaning its transit (blue)
is shifted backwards compared to a undisturbed transit (dashed line). The moon’s transit
(red) happens earlier compared to the barycenter. The right half shows a configuration
causing maximal TDV: The planet and moon transit happen simultaneously, but due to
the planet’s slower velocity, its transit is prolonged, compared to the undisturbed one.
The moon’s transit is shorter than the undisturbed one, due to its higher velocity.

movement around the planet-moon barycenter, the transit shape is distorted compared to
the shape one would expect from the barycenter’s orbital speed. The same rules as for the
planet’s shift apply, but more exaggerated: Depending on the orbital phase of the moon
around the barycenter, a TTV or TDV is caused, but at a much higher amplitude than for
the planet. For moons with shorter periods comparable to the transit duration, the transit
shape of the moon can drastically alter. It is for example possible that the moon causes
two transits per barycenter orbit, if the moon’s total velocity becomes negative compared
to the orbital movement of the planet-moon system.

Heller (2014), Heller et al. (2016b) suggest to search for exomoon signatures in the
phase-folded transit light curves (where the flux level is not plotted against time, but
against the orbital phase of the planet). In the presence of a moon, the average light curve
on each side of the planet transit shows a small drop in brightness which is related to the
moon’s size and semi-major axis (which the authors call Orbital Sampling Effect, OSE).
In a similar approach, Simon et al. (2012) suggest that the scatter of the phase folded light
curve on the sides of the transit increases in the presence of a moon.

Both of these effects can be combined into a complete dynamical photometric model,
comprising of both the planetary and the moon transit (Kipping 2011, Rodenbeck et al.
2018). The same general idea as for a single planet transit applies: The projected dis-
tances of the planet (zp) and moon (zs) to the stars center at a given time are calculated,
and together with the radius ratios rp and rs and a limb-darkening profile the relative dim-
ming is calculated. The projected distance to the star’s center is composed of the projected
distance of the planet-moon barycenter (zb, the same as for an undisturbed planet) and the
projected distance due to the orbital configuration of planet and moon. Finally, the possi-
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bility of an occultation (the planet being in front of the moon as seen from the observer,
or vice-versa) needs to be taken into account.

The radial velocity method can not be used directly to detect exomoons: If the distance
between the planet and moon is much smaller than the distance between the planet-moon
system and the star, the combined gravitational force of a planet and moon on their star
is very close to the gravitational force of a planet with the combined mass of the previous
planet and moon. However, the passing of the moon in front of the star can cause a
variation in the measured radial velocity (the so-called Rossiter-McLaughlin effect), just
like the passing of the planet can (Zhuang et al. 2012). If a planet can be directly imaged,
it might be possible to detect the motion of the planet around the planet-moon barycenter
with Doppler measurements (Vanderburg et al. 2018a).

While there are many difficulties trying to detect an exomoon, there is one big advan-
tage compared to the search for exoplanets: We know that exomoons orbit their planets.
This massively reduces the amount of light curves that have to be searched (only those
with a detected planet), and also reduces the regions in a light curve where a moon signal
may be found. The maximum distance a moon can be separated from its planet is propor-
tional to the distance from the planet at which the force of the star on the moon and the
centripetal force due to the planets orbit around the star equal the force of the planet on
the moon. This distance is called the Hill radius RHill.

The Hill radius depends on the distance between a star and its planet ab and their mass
ratio Mp/M?:

RHill = ab

(
Mp

3M?

)1/3

. (1.3)

A moon’s orbit is stable up to a certain fraction η of the Hill radius from 0.5 for
prograde moons and up to 1 for retrograde moons (Domingos et al. 2006). This means
that the maximum time tHill that a moon transit can be separated from the planet transit is
given by

tHill = η
RHill

vorbit
= η

Pb

2π

(
Mp

3M?

)1/3

. (1.4)

For a hypothetical Earth transit in front of the sun as seen from an outside observer
and with η = 0.5, this results in a 0.3 d window each side of the transit where a possible
moon signal might occur. This time window grows to 23.5 d for a Jupiter transit.

1.2.5 Surveys and Searches so far
The first search for planetary satellites was performed by Brown et al. (2001) using Hub-
ble photometry of four planetary transits of HD 209458. They exclude the existence of
moons larger than 1.2 R⊕ around that planet at a 3σ level.

The Hunt for Exomoons with Kepler (HEK, Kipping et al. (2012)) survey searches
for the most promising candidates for the detection of exomoons among the exoplanet
candidates observed with the Kepler space telescope. Due to the limitations of the Kepler
data (cadence, photometric precision), HEK focuses on very large moons (compared to
the moons in the Solar System) of more than 0.1 M⊕. The HEK survey also tries to
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Figure 1.6: The four transits that have been observed of Kepler-1625 b, the host planet of
the most recent exomoon candidate. The first three transits (a, b, and c) were observed
by the Kepler space telescope. The last transit (d) was observed by the Hubble space
telescope. For details see Chapter 3 and Fig. 3.2. The used light curves are taken from the
published data of Teachey and Kipping (2018)

estimated the frequency of moons around exoplanets: In Teachey et al. (2018) the authors
constrain the occurrence rate of a Galilean moon system around planets between 0.1 and
1 au from the star to under 39% (at a 95% confidence).

1.2.6 The Exomoon Candidate around Kepler-1625 b

In Teachey et al. (2018) the authors claimed to have found evidence of a Neptune-sized
exomoon around the Jupiter-sized exoplanet Kepler-1625 b. The Kepler space telescope
captured three transits in the light curve, with the resulting orbital period of 287 d, which
equates to a quite large Hill-stable region around the planet. The authors later presented
a detailed analysis of the system (Teachey and Kipping 2018), with an additional transit,
observed by the Hubble space telescope (see Fig. 1.6). The moon has a period of 22+17

−9 d
and a semi-major axis of 0.98+0.14

−0.13 au. They find a mass ratio of moon and planet of
0.0141+0.0048

−0.0039, constraining it only weakly. One of the key findings is that the Hubble
transit was 78 min to early, if the orbital period of the planet is only fitted using the
Kepler transits. This may have been caused by the planet being disturbed by the moon
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(TTV) during one of the transits, although also other causes for this shift are possible, like
the existence of another planet in the system.

1.3 Data Sources for Exoplanet and Exomoon Studies

The detection of exoplanets requires long-term observations of many stars, especially
when using photometric data. This is due to the low probability of a single star to show
signs of a planetary companion (see Sec. 1.1.2.1). Most of the exoplanet science con-
ducted nowadays is based on data taken by the Kepler Space Telescope. Kepler was
launched in 2009 and searched for transiting planets in front of 200 000 stars during its
main observation campaign from 2009 to 2013 (Borucki et al. 2010, Twicken et al. 2016).
It has discovered about 4 700 exoplanet candidates.

Both NASA and ESA have lined up several future space missions to study and detect
exoplanets. Already launched, with the first scientific results published as of the writing of
this theses, is NASA’s Transiting Exoplanet Survey Satellite (TESS, Ricker et al. (2015)).
TESS is an so-called all-sky survey, planned to cover 85% of the sky in its survey. The
drawback of this plan is that TESS will observe parts of the sky for only a few weeks each.
ESA’s CHEOPS space mission (CHaracterising ExOPlanet Satellite, Broeg et al. (2013))
is scheduled to launch in fall 2019. It will observe transits of known exoplanet around
bright stars with a high sampling rate of 1 minute. Simon et al. (2015) find that CHEOPS
might be able to detect Earth-sized moons around Neptune sized planets with a 85%
success rate. PLATO (PLAnetary Transits and Oscillations of stars, Rauer et al. (2014))
is another ESA space mission to search for exoplanets and will be launched around 2026.
One of PLATO’s main goals is to accurately characterize a huge number of planetary
systems, including the interior composition of the planets. PLATO might also be able to
detect large moons around the brightest observed stars 3.

Once a exoplanet is detected, follow-up observations can be conducted by more pow-
erful telescopes like the Hubble Space Telescope.

1.4 Content of this Thesis

The main part of this thesis is formed by two papers, which have been reproduced in
Chapters 2 and 3, as well as a short chapter on a new exomoon indicator (Chapter 4).

In Rodenbeck et al. (2018) (Chapter 2), we perform an independent analysis of the
available Kepler light curve of Kepler-1625 b, around which a exomoon candidate was
discovered (Teachey et al. 2018). We also test the significance of this result by injecting
model transits of a Kepler-1626 b-like planet system with and without moon into the
out-of-transit light curve of Kepler-1625 b and rerun our analysis.

In Heller et al. (2019) (Chapter 3), we perform further analysis of Kepler-1625 b after
another transit has been observed by the Hubble Space Telescope, using both the Hubble
light curve published by Teachey and Kipping (2018) and our own version of it, which
we independently extract and detrend.

3see the PLATO Definitions Study Report, http://sci.esa.int/jump.cfm?oid=59252
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1.4 Content of this Thesis

In Chapter 4, we investigate the variations in the transit parameters caused by the ex-
istence of a moon. We propose the apparent planetary radius variation as a new exomoon
indicator.

In Chapter 5 I discuss a few additional points relating to the two papers that form the
main part of the thesis. I also present first results of using machine learning to detect
exomoons.
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Abstract
Context: Transit photometry of the Jupiter-sized exoplanet candidate Kepler-1625 b has
recently been interpreted as showing hints of a moon. This exomoon, the first of its kind,
would be as large as Neptune and unlike any moon we know from the solar system.
Aims: We aim to clarify whether the exomoon-like signal is indeed caused by a large ob-
ject in orbit around Kepler-1625 b, or whether it is caused by stellar or instrumental noise
or by the data detrending procedure.
Methods: To prepare the transit data for model fitting, we explore several detrending pro-
cedures using second-, third-, and fourth-order polynomials and an implementation of the
Cosine Filtering with Autocorrelation Minimization (CoFiAM). We then supply a light
curve simulator with the co-planar orbital dynamics of the system and fit the resulting
planet-moon transit light curves to the Kepler data. We employ the Bayesian information
criterion (BIC) to assess whether a single planet or a planet-moon system is a more likely
interpretation of the light curve variations. We carry out a blind hare-and-hounds exercise
using many noise realizations by injecting simulated transits into different out-of-transit
parts of the original Kepler-1625 light curve: (1) 100 sequences with three synthetic tran-
sits of a Kepler-1625 b-like Jupiter-size planet and (2) 100 sequences with three synthetic
transits of a Kepler-1625 b-like planet with a Neptune-sized moon.
Results: The statistical significance and characteristics of the exomoon-like signal strongly
depend on the detrending method (polynomials versus cosines), the data chosen for de-

∗This chapter reproduces the article Revisiting the exomoon candidate signal around Kepler-1625 b by
K. Rodenbeck, R. Heller, L. Gizon and M. Hippke, published in Astronomy and Astrophysics 617, A49
(2018), reproduced with permission c© ESO. Contributions: KR contributed to the analysis of the simulated
light curves, to the interpretation of the results, and to the writing of the article.

27



2 Paper I: Revisiting the exomoon candidate signal around Kepler-1625 b

trending, and the treatment of gaps in the light curve. Our injection-retrieval experiment
shows evidence of moons in about 10 % of those light curves that do not contain an in-
jected moon. Strikingly, many of these false-positive moons resemble the exomoon can-
didate, that is, a Neptune-sized moon at about 20 Jupiter radii from the planet. We recover
between about one third and one half of the injected moons, depending on the detrending
method, with radii and orbital distances broadly corresponding to the injected values.
Conclusion: A ∆BIC of −4.9 for the CoFiAM-based detrending is indicative of an ex-
omoon in the three transits of Kepler-1625 b. This solution, however, is only one out
of many and we find very different solutions depending on the details of the detrend-
ing method. We find it concerning that the detrending is so clearly key to the exomoon
interpretation of the available data of Kepler-1625 b. Further high-accuracy transit obser-
vations may overcome the effects of red noise but the required amount of additional data
might be large.

2.1 Introduction
Where are they? – With about 180 moons discovered around the eight solar system plan-
ets and over 3,500 planets confirmed beyond the solar system, an exomoon detection
could be imminent. While many methods have indeed been proposed to search for moons
around extrasolar planets (Sartoretti and Schneider 1999, Han and Han 2002, Cabrera, J.
and Schneider, J. 2007, Moskovitz et al. 2009, Kipping 2009, Simon et al. 2010, Peters
and Turner 2013, Heller 2014, Ben-Jaffel and Ballester 2014, Agol et al. 2015, Forgan
2017, Vanderburg et al. 2018b)1, only a few dedicated surveys have actually been carried
out (Szabó et al. 2013, Kipping et al. 2013b,a, 2014, Hippke 2015, Kipping et al. 2015,
Lecavelier des Etangs et al. 2017, Teachey et al. 2018), one of which is the “Hunt for
Exomoons with Kepler” (HEK for short; Kipping et al. 2012).

In the latest report of the HEK team, Teachey et al. (2018) find evidence for an ex-
omoon candidate around the roughly Jupiter-sized exoplanet candidate Kepler-1625 b,
which they provisionally refer to as Kepler-1625 b-i. Kepler-1625 is a slightly evolved
G-type star with a mass of M? = 1.079+0.100

−0.138 M� (M� being the solar mass), a radius
of R? = 1.793+0.263

−0.488 R� (with R� as the solar radius), and an effective temperature of
Teff,? = 5548+83

−72 K (Mathur et al. 2017). Its Kepler magnitude of 15.756 makes it a
relatively dim Kepler target.2 The challenge of this tentative detection is in the noise
properties of the data, which are affected by the systematic noise of the Kepler space
telescope and by the astrophysical variability of the star. Although the exomoon signal
did show up both around the ingress/egress regions of the phase-folded transits (known
as the orbital sampling effect; Heller 2014, Heller et al. 2016a) generated by Teachey
et al. (2018) and in the sequence of the three individual transits, it could easily have been
produced by systematic errors or stellar variability, as pointed out in the discovery paper.

The noise properties also dictate a minimum size for an exomoon detected around
a given star and with a given instrument. In the case of Kepler-1625, we calculate the
root-mean-square of the noise level to be roughly 700 ppm. As a consequence, any moon
would have to be at least about

√
700 ppm × 1.793 R� ≈ 5.2 R⊕ (R⊕ being the Earth’s

1For reviews see Heller et al. (2014) and Heller (2017).
2NASA Exoplanet Archive: https://exoplanetarchive.ipac.caltech.edu
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2.1 Introduction

Figure 2.1: Kepler light curve of Kepler-1625. Left: Simple Aperture Photometry (SAP)
flux. Right: Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) flux.
The top panels show the entire light curves, respectively. The second, third, and fourth
rows illustrate zooms into transits 2, 4, and 5 of Kepler-1625 b, respectively. These transits
were shifted to the panel center and ±10 d of data are shown around the transit mid-
points. Some examples of jumps and gaps in the light curve are shown. Time is given as
a Barycentric Kepler Julian Date.
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radius) in size, about 30% larger than Neptune, in order to significantly overcome the
noise floor in a single transit. The three observed transits lower this threshold by a factor of√

3, suggesting a minimum moon radius of ≈ 3 R⊕. In fact, the proposed moon candidate
is as large as Neptune, making this system distinct from any planet-moon system known
in the solar system (Heller 2018a).

Here we present a detailed study of the three publicly available transits of Kepler-
1625 b. Our aim is to test whether the planet-with-moon hypothesis is favored over the
planet-only hypothesis.

First we develop a model to simulate photometric transits of a planet with a moon
(see Sect. 2.2.2.2). Then we implement a detrending method following Teachey et al.
(2018) and explore alternative detrending functions. Subsequently, we detrend the origi-
nal Kepler-1625 light curve, determine the most likely moon parameters, and assess if the
planet-with-moon hypothesis is favored over the planet-only hypothesis. Finally, we per-
form a blind injection-retrieval test. To preserve the noise properties of the Kepler-1625
light curve, we inject planet-with-moon and planet-only transits into out-of-transit parts
of the Kepler-1625 light curve.

2.2 Methods

The main challenge in fitting a parameterized, noiseless model to observed data is the
removal of noise on timescales similar or larger than the timescales of the effect to be
searched for; at the same time, the structure of the effect must be untouched, an approach
sometimes referred to as “pre-whitening” of the data (Aigrain and Irwin 2004). The aim
of this approach is to remove unwanted variations in the data caused by, for example,
stellar activity, systematic errors, or instrumental effects. This approach bears the risk of
both removing actual signal from the data and of introducing new systematic variability.
The discovery and refutal of the exoplanet interpretation of variability in the stellar radial
velocities of αCentauri B serves as a warning example (Dumusque et al. 2012, Rajpaul
et al. 2016). Recently developed Gaussian process frameworks, in which the systematics
are modeled simultaneously with stellar variability, could be an alternative method (Gib-
son et al. 2012). This has become particularly important for the extended Kepler mission
(K2) that is now working with degraded pointing accuracy (Aigrain et al. 2015).

That being said, Teachey et al. (2018) applied a pre-whitening technique to both the
Simple Aperture Photometry (SAP) flux and the Pre-search Data Conditioning (PDCSAP)
flux of Kepler-1625 to determine whether a planet-only or a planet-moon model is more
likely to have caused the observed Kepler data. In the following, we develop a detrending
and model fitting procedure that is based on the method applied by Teachey et al. (2018),
and then we test alternative detrending methods.

During Kepler’s primary mission, the star Kepler-1625 has been monitored for 3.5
years in total, and five transits could have been observed. This sequence of transits can
be labeled as transits 1, 2, 3, 4, and 5. Due to gaps in the data, however, only three
transits have been covered, which correspond to transits 2, 4, and 5 in this sequence.
Figure 2.1 shows the actual data discussed here. The entire SAP (left) and PDCSAP
(right) light curves are shown in the top panels, and close-up inspections of the observed
transit 2, 4, and 5 are shown in the remaining panels. The time system used throughout
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the article is the Barycentric Kepler Julian Date (BKJD), unless marked as relative to a
transit midpoint.

A key pitfall of any pre-whitening or detrending method is the unwanted removal of
signal or injection of systematic noise, the latter potentially mimicking signal. In our
case of an exomoon search, we know that the putative signal would be restricted to a
time-window around the planetary mid-transit, which is compatible with the orbital Hill
stability of the moon. This criterion defines a possible window length that we should
exclude from our detrending procedures. For a planet of ten Jupiter masses in a 287 d
orbit around a 1.1 M� star (as per Teachey et al. 2018), this window is about 3.25 days
either side of the transit midpoint (see Appendix 2.A).

Although this window length is astrophysically plausible to protect possible exomoon
signals, many other choices are similarly plausible, but they result in significantly dif-
ferent detrendings. Figure 2.2 illustrates the effect on the detrended light curve if two
different windows around the midpoint of the planetary transit (here transit 5) are ex-
cluded from the fitting. We chose a fourth-order polynomial detrending function and a
7.5 d (blue symbols) or a 4 d (orange symbols) region around the midpoint to be excluded
from the detrending, mainly for illustrative purposes. In particular, with the latter choice,
we produce a moon-like signal around the planetary transit similar to the moon signal that
appears in transit 5 in Teachey et al. (2018). For the former choice, however, this signal
does not appear in the detrended light curve.

Teachey et al. (2018) use the Cosine Filtering with Autocorrelation Minimization
(CoFiAM) detrending algorithm to detrend both the SAP and PDCSAP flux around the
three transits of Kepler-1625 b. CoFiAM fits a series of cosines to the light curve, exclud-
ing a specific region around the transit. CoFiAM preserves the signal of interest by using
only cosines with a period longer than a given threshold and therefore avoids the injection
of artificial signals with periods shorter than this threshold. Teachey et al. (2018) also test
polynomial detrending functions but report that this removes the possible exomoon signal.
We choose to reimplement the CoFiAM algorithm as our primary detrending algorithm
so as to remain as close as possible in our analysis to the work in Teachey et al. (2018).
In our injection-retrieval test, we also use polynomials of second, third, and fourth-order
for detrending. While low-order polynomials cannot generally fit the light curve as well
as the series of cosines, the risk of injecting artificial signals may be reduced.

2.2.1 Trigonometric detrending
We implement the CoFiAM detrending algorithm as per the descriptions given by Kipping
et al. (2013b) and Teachey et al. (2018). In the following, we refer to this reimplementa-
tion as trigonometric detrending as opposed to polynomial functions that we test as well
(see Sect. 2.2.4.4).

The light curves around each transit are detrended independently. For each transit,
we start by using the entire SAP flux of the corresponding quarter. We use the SAP
flux instead of the PDCSAP flux to reproduce the methodology of Teachey et al. (2018)
as closely as possible. The authors argue that the use of SAP flux avoids the injection of
additional signals into the light curve that might have the shape of a moon signal. First, we
remove outliers using a running median with a window length of 20 h and a threshold of
three times the local standard deviation with the same window length. In order to achieve
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Figure 2.2: Example of how the detrending procedure alone can produce an exomoon-like
transit signal around a planetary transit. We use ‘transit 5’ of Kepler-1625 b as an exam-
ple. Top: Gray dots indicate the Kepler PDCSAP flux. The lines show a fourth-order
polynomial fit for which we exclude 7.5 d (blue) or 4 d (orange) of data around the mid-
point (dashed parts), respectively. Center: Dots show the detrended light curve derived
from the blue polynomial fit in the top panel. The blue line illustrates a planet-only transit
model. Bottom: Dots visualize the detrended light curve using the orange polynomial fit
from the top panel. We note the additional moon-like transit feature caused by the over-
shooting of the orange polynomial in the top panel. The orange line shows a planet-moon
transit model with moon parameters as in Table 2.1 (see Fig. 2.4 for transit dynamics). As
an alternative interpretation, the blue detrending function filters out an actually existing
moon signature while the orange detrending fit preserves the moon signal.
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Figure 2.3: Left: Kepler SAP flux around the transits used for the trigonometric detrend-
ing, our reimplementation of the CoFiAM algorithm. The data points denoted by open
circles around the transits are excluded from the detrending fit. The black line shows the
resulting light curve trend without the transit. Right: Detrended transit light curves as
calculated by the trigonometric detrending.

a fast convergence of our detrending and transit fitting procedures, we initially estimate
the transit midpoints and durations by eye and identify data anomalies: for example, gaps
and jumps (e.g. the jump 2 d prior to transit 2 and the gap 4 d after transit 4, see Fig. 2.1).

Jumps in the light curve can have different origins. The jumps highlighted around
transit 2 in Fig. 2.1 are caused by a reaction wheel zero crossing event; the jump 5 d after
transit 4 is caused by a change in temperature after a break in the data collection. Follow-
ing Teachey et al. (2018), who ignore data points beyond gaps and other anomalous events
for detrending, we cut the light curve around any of the transits as soon as it encounters
the first anomaly, leaving us with a light curve of a total duration D around each transit
(see top left panel in Fig. 2.3). In Sect. 2.2.4.4, we investigate the effect of including data
beyond gaps. The detrending is then applied in two passes, using the first pass to get ac-
curate transit parameters. In particular, we determine the duration (tT) between the start of
the planetary transit ingress and the end of the transit egress (Seager and Mallén-Ornelas
2003) and the second pass to generate the detrended light curve.

First pass: Using the estimated transit midpoints and durations, we calculate the time
window (tc, see top left panel in Fig. 2.3) around a given transit midpoint to be cut from
the detrending fit as tc = ftctT, where the factor ftc , relating the time cut around the transit
to the transit duration, is an input parameter for the detrending algorithm. Specifically, tc
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denotes the total length of time around the transit excluded from the detrending. We fit
the detrending function,

Gk(t, #»a ,
#»
b ) = a0 +

k∑
l=1

al cos
(
l
2π
2D

t
)

+ bl sin
(
l
2π
2D

t
)
, (2.1)

to the light curve (excluding the region tc around the transit) by minimizing the χ2 between
the light curve and Gk(t, #»a ,

#»
b ), where #»a = (a0, a1, ..., ak) and

#»
b = (b1, b2, ..., bk)

are the free model parameters to be fitted. The parameter k is a number between 1 and
kmax = round(2D/tp), where tp = ftptT is the timescale below which we want to preserve
possible signals. ftp is an input parameter to the detrending algorithm. For each k, we
divide the light curve by Gk, giving us the detrended light curves Fk. We calculate the
first-order autocorrelation according to the Durbin and Watson (1950) test statistic for
each Fk (excluding again the region around the transit). For each transit, we select the Fk

with the lowest autocorrelation Fk
min and combine these Fk

min around each transit into our
detrended light curve F. We fit the planet-only transit model to the detrended light curve
F and compute the updated transit midpoints and duration tT.

Second pass: The second pass repeats the steps of the first pass, but using the updated
transit midpoints and durations as input. The resulting detrended light curve F is then
used for our model fits with the ultimate goal being to assess whether or not an exomoon
is a likely interpretation of the light curve signatures. We estimate the noise around each
transit by taking the variance of F, excluding the transit region.

Figure 2.3 shows the detrending function as well as the detrended light curve for
ftc = 2.2 and ftp = 4.4, corresponding to tc = 1.6 d and tp = 3.1 d.

2.2.2 Transit model
We construct two transit models, one of which contains a planet only and one of which
contains a planet with one moon. We denote the planet-only model as M0 (the index
referring to the number of moons) and the planet-moon model asM1. We do not consider
models with more than one moon.

2.2.2.1 Planet-only model

M0 assumes a circular orbit of the planet around its star. Given the period of that orbit
(P) and the ratio between stellar radius and the orbital semi-major axis (R?/a), the sky-
projected apparent distance to the star center relative to the stellar radius can be calculated
as

z =

√[
a

R?

sin
(
2π(t − t0)

P

)]2

+

[
b cos

(
2π(t − t0)

P

)]2

, (2.2)

where b is the transit impact parameter and t0 is the time of the transit midpoint. We
use the python implementation of the Mandel and Agol (2002) analytic transit model by
Ian Crossfield3 to calculate the transit light curve based on the planet-to-star radius ratio

3Available at http://www.astro.ucla.edu/~ianc/files as python.py.
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Figure 2.4: Left: Example of a simulated planet-moon transit light curve for transits
2, 4, and 5 using the nominal parameterization given in Table 2.1. The relative flux is
the difference to the out-of-transit model flux and is given in parts per thousand (ppt).
Right: Visualization of the orbital configurations during transits 2 (left column), 4 (center
column), and 5 (right column). Labels 1-5 in the light curves refer to configurations 1-5
(see labels along the vertical axis). An animated version of this figure is available online.

(rp = Rp/R?) and based on a quadratic limb-darkening law parametrized by the limb-
darkening parameters q1 and q2 as given in Kipping (2013). We call this model light
curve with zero moons F0.

2.2.2.2 Planet-moon model

In our planet-moon model, we assume a circular orbit of the local planet-moon barycenter
around the star with an orbital period PB, a semimajor axis aB, and a barycentric transit
midpoint time t0,B. The projected distance of the barycenter to the star center relative to
the stellar radius is calculated in the same way as in Eq. 2.2. The planet and moon are
assumed to be on circular orbits around their common center of mass with their relative
distances to the barycenter determined by the ratio of their masses Mp and Ms to the total
mass Mp + Ms. The individual orbits of both the planet and the moon are defined by the
total distance between the two objects aps, the planet mass Mp, the moon mass Ms and by
the time of the planet-moon conjunction t0,s, that is, the time at which the moon is directly
in front of the planet as seen from an observer on Earth.

This model is degenerate in terms of the sense of orbital motion of the moon. In
other words, a given planet-moon transit light curve can be produced by both a prograde
and a retrograde moon (Lewis and Fujii 2014, Heller and Albrecht 2014). We restrict
ourselves to prograde moons. The planet mass is set to a nominal ten Jupiter masses, as
suggested by Teachey et al. (2018) and in agreement with the estimates of Heller (2018a).
This constraint simplifies the interpretation of the results substantially since the moon
parameters are then unaffected by the planetary parameters. The moon mass is assumed
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Table 2.1: Nominal parameterization of the planet-moon model to reproduce the transit
shape suggested by Teachey et al. (2018). The no-moon model uses the same parameter
set (excluding the moon parameters), except that R? and aB are combined into a single
parameter R?/aB.

Parameter Nominal Value Description
rp 0.06 planet-to-star radius ratio
aB 0.9 au circumstellar semimajor axis of the

planet-moon barycenter
b 0.1 planetary transit impact parameter

t0,B 61.51 d transit midpoint of the planet-moon
barycenter

PB 287.35 d circumstellar orbital period of the
planet-moon barycenter

R? 1.8 R� stellar radius
q1 0.6 first limb darkening coefficient
q2 0.2 second limb darkening coefficient
rs 0.02 moon-to-star radius ratio
as 1871 RJ orbital semimajor axis of the planet-

moon binary
t0,s 1.86 d time of planet-moon conjunction

to be much smaller than that of the planet. In fact, for a roughly Neptune-mass moon
around a planet of ten Jupiter masses, we expect a TTV amplitude of 3 to 4 minutes and
a TDV amplitude of 6 to 7 minutes, roughly speaking. Therefore, we simplify our model
and set Ms = 0, which means that aps is equal to the distance between the moon and the
planet-moon barycenter, as. The moon is assumed to have a coplanar orbit around the
planet and, thus, to have the same transit impact parameter as the planet.

With these assumptions, the projected distance of the planet center to the star center
relative to the stellar radius zp is equal to that of the barycenter zB. The projected distance
of the moon center to the star center relative to the stellar radius zs is given by

z2
s =

[
aB

R?

sin
(
2π(t − t0,B)

PB

)
+

aps

R?

sin
(
2π(t − t0,s)

Ps

)]2

+

[
b cos

(
2π(t − t0,B)

PB

)]2

, (2.3)

where Ps is the orbital period of the moon calculated from the fixed masses and aps.
We calculate the transit light curves of both bodies and combine them into the total

model light curve, which we call F1. We use the limb-darkening parameter transforma-
tion from Kipping (2013). For computational efficiency, we do not consider planet-moon
occultations. For the planet-moon system of interest, occultations would only occur dur-
ing about half of the transits (assuming a random moon phase) even if the moon orbital
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plane were perfectly parallel to the line of sight. Such an occultation would take about
1.5 h and would only affect 5-10 % of the total moon signal duration.

In Table 2.1 we give an overview of our nominal parameterization of the planet-moon
model. In Fig. 2.4 we show the orbital dynamics of the planet and moon during transits
2, 4, and 5 using the nominal parameters in Table 2.1. This nominal parameterization
was chosen to generate a model light curve that is reasonably close to the preferred model
light curve found in Teachey et al. (2018), but it does not represent our most likely model
fit to the data.

2.2.2.3 Finding the posterior probability distribution

We use the Markov Chain Monte Carlo (MCMC) implementation Emcee (Foreman-Mackey
et al. 2013) to estimate the posterior probability distribution of the parameters for model
M(i) (M0 orM1). For this purpose, we need to formulate the probability density of a light
curve as well as the prior of the parameters.

All three transits taken together, we have a total of N detrended flux measurements
(see Sect. 2.2.1). Given a set of parameters

#»
θ , model Mi produces a model light curve

Fi(t,
#»
θ ). We assume that the noise is uncorrelated (see Appendix 2.B) and Gaussian with

a standard deviation σ j at time t j. This simplifies the joint probability density to a product
of the individual probabilities. The joint probability density function of the detrended flux
F(t) is given by

p(F|
#»
θ ,Mi) =

N∏
j=1

1√
2πσ2

j

exp

−
(
F(t j) − Fi(t j,

#»
θ )

)2

2σ2
j

 . (2.4)

The noise dispersion σ j has a fixed value for each transit.
Table 2.2 shows the parameter ranges that we explore. A prior is placed on the stellar

mass according to the mass of 1.079+0.100
−0.138 M� determined by Mathur et al. (2017). The

stellar mass for a given parameter set is determined from the system’s total mass using PB

and aB and subtracting the fixed planet mass of ten Jupiter masses.
A total of 100 walkers are initiated with randomly chosen parameters close to the

estimated transit parameters. For the sake of fast computational performance, the walkers
are initially separated into groups of 16 for the planet-only model and 24 for the planet-
moon model (twice the number of parameters plus 2, respectively), temporarily adding
walkers to fill the last group. To transform the initially flat distribution of walkers into
a distribution according to the likelihood function, the walkers have to go through a so-
called burn-in phase, the resulting model fits of which are discarded. We chose a burn-in
phase for the walkers of 500 steps in both groups. Afterwards, we discard the temporarily
added walkers, merge the walkers back together, and perform a second burn-in phase of
2 200 steps with a length determined by visual inspection. Finally, we initiate the main
MCMC run with a total of 8 000 steps.

We run the MCMC code on the detrended light curve using both the planet-only and
the planet-moon models.
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Table 2.2: Parameter ranges explored with our planet-moon model. The ranges of the
no-moon model parameters are the same for the shared parameter and are propagated to
the derived parameter R?/a.

Min. Value Parameter Max. Value
0 ≤ rp ≤ 0.1

0.2 au ≤ aB ≤ 2 au
0 ≤ b ≤ 1

−PB/2 ≤ t0,B ≤ PB/2
270 d ≤ PB ≤ 300 d

0 ≤ R? ≤ 4.3 R�
0 ≤ q1 ≤ 1
0 ≤ q1 ≤ 1
0 ≤ rs ≤ rp

0 ≤ as ≤ RHill/2
−Ps/2 ≤ t0,s ≤ Ps/2

2.2.3 Model selection
We use the Bayesian information criterion (BIC) to evaluate how well a model describes
the observations in relation to the number of model parameters and data points. The BIC
of a given modelMi with mi parameters is defined by Schwarz (1978) as

BIC(Mi|F) = mi ln N − 2 ln p(F|
#»
θ max,Mi), (2.5)

where
#»
θ max is the set of parameters that maximizes the probability density function

p(F|
#»
θ ,Mi) for a given the light curve F and modelMi.

The difference of the BICs between two models gives an indication as to which model
is more likely. In particular, ∆BIC(M1,M0) ≡ BIC(M1) − BIC(M0) < 0 if model
M1 is more likely. We consider ∆BIC < 6 (or ∆BIC > 6) as strong evidence in favor
of (or against) modelM1 (see, e.g., Kass and Raftery 1995).

The best-fitting set of parameters derived from our MCMC runs (
#»
θ max) is then used to

calculate ∆BIC(M1,M0). For our calculations, we only use those parts of the light curve
around the transits that could potentially be affected by a moon (3.25 d on each side of
the transits, determined by the Hill radius RHill and the orbital velocity of the planet-moon
barycenter; see Appendix 2.A).

2.2.4 Injection-retrieval test
In order to estimate the likelihood of an exomoon feature to be due to either a real moon or
due to noise, we perform several injection-retrieval experiments. One of us (MH) injected
two cases of transits into the out-of-transit parts of the original PDCSAP Kepler flux. In
one case, a sequence of three planet-only transits (similar to the sequence of real transits
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2, 4, and 5) was injected, where the planet was chosen to have a radius of 11 R⊕. In
another case, a sequence of three transits of a planet-with-moon system, with properties
similar to the proposed Jupiter-Neptune system, was injected. Author KR then applied
the Baysian framework described above in order to evaluate the planet-only versus the
planet-with-moon hypotheses, and in order to characterize the planet and (if present) its
moon. As an important trait of our experiment, the author KR did not know which of the
light curves contained only a planet and which contained also a moon.

2.2.4.1 Transit injections into light curves

For the injection part, we use PyOSE (Heller et al. 2016a,b) to create synthetic planet and
moon ensemble transits. This code numerically integrates the non-occulted areas of the
stellar disk to calculate the instantaneous flux of the star, which makes it a computationally
slow procedure. We therefore use the analytical model described Sect. 2.2.2 for the
retrieval part. In our model, the moon’s orbit is defined by its eccentricity (es, fixed at
0), as, its orbital inclination with respect to the circumstellar orbit (is, fixed at 90◦), the
longitude of the ascending node, the argument of the periapsis, and the planetary impact
parameter (b, fixed at zero). Due to the small TTV and TDV amplitudes compared to the
29.4 min exposure of the Kepler long cadence data, we neglect the planet’s motion around
the planet/moon barycenter (although PyOSE can model this dynamical effect as well) and
assume that the moon orbits the center of the planet.

Our numerical code creates a spherical limb-darkened star on a two-dimensional grid
of floating-point values. The sky-projected shapes of both the planet and the moon are
modeled as black circles. The spatial resolution of the simulation is chosen to be a few
million pixels so that the resulting light curve has a numerical error of < 1 ppm, which is
negligible compared to the ≈ 700 ppm noise level of the Kepler light curve. The initial
temporal resolution of our model is equivalent to 1 000 steps per planetary transit duration,
which we then downsample to the observed 29.4 min cadence. The creation of one such
light curve of a planet with a moon takes about one minute on a modern desktop computer.

We create a set of 100 such transit simulations of the planet-moon ensemble, where
the two bodies move consistently during and between transits. All orbits are modeled
to be co-planar and mutual planet-moon occultations are also included. For each transit
sequence, the initial orbital phase of the planet-moon system is chosen randomly.

With PB = 287.378949 d and Ps = 2.20833 d, the moon advances by ≈ 0.13 in phase
between each subsequent planetary transit (PB/Ps ≈ 130.13). During a planetary transit,
the moon advances by ≈ 0.36 rad in phase (the planetary transit duration is 0.7869 ±
0.0084 d).

We also create a set of 100 such transits that only have a transiting planet without a
moon. In these cases, the planetary radius was increased slightly to match the average
transit depth of planet and moon.

2.2.4.2 Testing the model-selection algorithm on synthetic light curves with white
noise only

As a first validation of our injection-retrieval experiment and our implementation of the
Bayesian statistical framework, we generate a new set of white noise light curves to test
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Figure 2.5: Difference between the BIC of the planet-moon model and the no-moon model
for 2 000 artificial white noise light curves at different noise levels, injected with simulated
transits. On the left (100× 10 light curves), a planet and moon transit was injected, on the
right (100×10 light curves), only the planet. Each light curve consists of three consecutive
transits. Each column is sorted by the ∆BIC. The ∆BIC threshold, over which a planet-
moon or planet-only system is clearly preferred is ±6 with the state of systems with a
∆BIC between those values considered to be ambiguous.

only the model comparison part of our pipeline without any effects that could possibly
arise from imperfect detrending. Any effects that we would see in our experiments with
the real Kepler-1625 light curve but not in the synthetic light curves with noise only could
then be attributed to the imperfect detrending of the time-correlated (red) noise.

The author MH generated 200 synthetic light curves with ten different levels of white
noise, respectively, ranging from root mean squares of 250 ppm to 700 ppm in steps of
50 ppm. This results in a total of 2 000 synthetic light curves. The method described in
Sect. 2.2.4.1 was used to inject three transits of a planet only into 100 light curves per
noise level and three transits of a planet with a moon into the remaining 100 light curves
per noise level. The initial orbital phases were randomly chosen and are different from
the ones used to generate the light curves in Sect. 2.2.4.3. The author MH delivered these
light curves to the author KR without revealing their specific contents. The author KR
then ran our model selection algorithm to find the ∆BIC for each of the 2 000 systems.
After the ∆BICs were found, MH revealed the planet-only or the planet-moon nature of
each light curve.

Figure 2.5 shows the resulting ∆BICs for each of the 2 000 light curves, separated into
the planet-only (left panel) and planet-moon injected systems (right panel) and sorted by
the respective white noise level (along the abscissa). Each vertical column contains 100
light curves, respectively. For a noise level of 250 ppm, for example, our algorithm finds
no false positive moons in the planet-only data, that is, no system with a ∆BIC < −6,
while 1 case remains ambiguous (−6 < ∆BIC < 6) and the other 99 cases are correctly
identified as containing no moons. In the case of an injected planet-moon system instead,
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Figure 2.6: Distribution of the median likelihood Rs and as for all the runs for the different
noise levels, with the runs injecting planet and moon on the top and runs injecting only
a planet in the bottom. The ∆BIC of the planet-moon model compared to the no-moon
model for all runs is indicated by the color. Generally, runs with a low ∆BIC (indicating
the presence of a moon) also are in the vicinity of the injected parameter.

the algorithm correctly retrieves the moon in 100 % of the synthetic light curves, that is,
∆BIC < −6 for all systems.

More generally, for the simulated planet-only systems, the false positive rate is 0 %
throughout all noise levels. Occasionally a system is flagged as ambiguous, but overall
the algorithm consistently classifies planet-only systems correctly as having no moon.
Referring to the injected planet-moon system (right panel), our false negative rate rises
steadily with increasing noise level. In fact, it reaches parity with the true positive rate
between about 650 ppm and 700 ppm.

In Fig. 2.6, we present as and Rs for each of the maximum-likelihood fits shown in
Fig. 2.5. Each panel in Fig. 2.6 refers to one white noise level, that is, to one column
in Fig. 2.5 of either the planet-only or the planet-moon injected system. In the case of
an injected planet only (upper panels), the most likely values of as are distributed almost
randomly over the range of values that we explore. On the other hand, Rs is constrained to
a small range from about 1.5 R⊕ at 250 ppm to roughly 3 R⊕ at 700 ppm with the standard
variation naturally increasing with the noise level.

The lower part of Fig. 2.6 shows the outcome of our planet-moon injection-retrievals
from the synthetic light curves with white noise only. The correct parameters are generally
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recovered at all noise levels. In fact, we either recover the moon with a similar radius and
orbital separation as the injection values (symbolized by blue points) or we find the moon
to have very different radius and orbit while also rejecting the hypothesis of its presence
in the first place (symbolized by red points). The distribution of these false negatives
in the as-Rs plane resembles the distribution of the true negatives in the corresponding
no-moon cases. The ambiguous runs with a ∆BIC around zero still mostly recover the
injected moon parameters. This is especially clear for the 700 ppm level, with 50 %
more ambiguous runs than true positives, where most of the runs still recover the injected
parameters.

2.2.4.3 Transit injection into real out-of-transit data

We inject synthetic transits into the Kepler-1625 PDCSAP data prior to our own detrend-
ing (see Sect. 2.2.4.1). We use the PDCSAP flux instead of SAP flux because (1) it was
easier for us to automate the anomaly detection and (2) PDCSAP flux has been cleaned
of common systematics. Since the PDC pipeline removes many of the jumps in the data,
we can focus on a single type of anomaly, that is, gaps. Gaps are relatively easy to detect
in an automated way, removing the requirement of visual inspection of each light curve.
For the injection, we select out-of-transit parts of the Kepler-1625 light curve that have at
least 50 d of mostly uninterrupted data (25 d to both sides of the designated time of transit
injection), but accept the presence of occasional gaps with durations of up to several days
during the injection process.

The set of 200 synthetic light curves was provided by MH to KR for blind retrieval
without any disclosure as to which of the sequences have a moon. The time of mid-transit
was communicated with a precision of 0.1 days to avoid the requirement of a pre-stage
transit search. This is justified because the original transits of Kepler-1625 b have already
been detected, and the transits are visible by eye and do not necessarily need computer-
based searches. We provide the 200 datasets to the community for reproducibility4 and
encourage further blind retrievals.

2.2.4.4 Detrending of the transit-injected light curves

The detrending procedure for our injection-retrieval experiment differs from the one used
to detrend the original light curve around the Kepler-1625 b transits (see Sect. 2.2.1) in
two respects.

First, we test the effect of the detrending function. In addition to the trigonometric
function, we detrend the light curve by polynomials of second, third, and fourth order.

In addition, we test if the inclusion or exclusion of data beyond any gaps in the light
curve affects the detrending. In one variation of our detrending procedure, we use the
entire ± 25 d of data (excluding any data within tc) around a transit midpoint. In another
variation, we restrict the detrending to the data up to the nearest gap (if present) on both
sides of the transit.

To avoid the requirement of time-consuming visual inspections of each light curve,
we construct an automatic rule to determine the presence of gaps, which are the most
disruptive kind of artifact to our detrending procedure. We define a gap as an interruption

4Available on Zenodo, [10.5281/zenodo.1202034], Hippke (2018)
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Table 2.3: Definition of the detrending identifiers in relation to the respective detrending
functions that we explored in our transit injection-retrieval experiment of the Kepler-1625
data. We define a gap as any empty parts in the light curve that show more than 12 h be-
tween consecutive data points. The trigonometric function refers to our reimplementation
of the CoFiAM algorithm. P2 to P4 refer to polynomials of second to fourth order. T
refers to our trigonometric detrending. G stands for the inclusion of data beyond gaps, N
stands for the exclusion of data beyond gaps.

Identifier Detrending Function Reject Data Beyond Gap?
P2/G 2nd order polynomial yes
P2/N 2nd order polynomial no
P3/G 3rd order polynomial yes
P3/N 3rd order polynomial no
P4/G 4th order polynomial yes
P4/N 4th order polynomial no
T/G trigonometric yes
T/N trigonometric no

of the data of more than half a day. Whenever we do detect a gap, we cut another 12 h at
both the beginning and the end of the gap, since our visual inspection of the data showed
that many gaps are preceded or followed by anomalous trends (see e.g. the gap 4 d after
transit 4 in Fig. 2.1).

We ignore any data points within tc around the transit midpoint (see Sect. 2.2.1). If
a gap starts within an interval [tc/2, tc/2 + 12 h] around the transit midpoint, then we
lift our constraint of dismissing a 12 h interval around gaps and use all the data within
[tc/2, tc/2 + 12 h] plus any data up to 12 h around the next gap.

If all these cuts result in no data points for the detrending procedure to one side of one
of the three transits in a sequence, then we ignore the entire sequence for our injection-
retrieval experiment. This is the case for 40 out of the 200 artificially injected light curves.
This high loss rate of our experimental data is a natural outcome of the gap distribution in
the original Kepler-1625 light curve. We exclude these 40 light curves for all variations of
the detrending procedure that we investigate. All things combined, these constraints pro-
duce synthetic light curves with gap characteristics similar to the original Kepler-1625 b
transits (see Fig. 2.3), that is, we allow the simulation of light curves with gaps close
to but not ranging into the transits. The four detrending functions and our two ways of
treating gaps yield a total of eight different detrending methods that we investigate (see
Table 2.3).

43



2 Paper I: Revisiting the exomoon candidate signal around Kepler-1625 b

−4

−2

0

2
Transit 2

t0,B = 636.20 d

MCMC Fitted Model

Detrended SAP Flux

-36 -24 -12 t0,B 12 24 36

−1
0
1

−4

−2

0

2
Transit 4

t0,B = 1211.00 d

-36 -24 -12 t0,B 12 24 36

−1
0
1re

la
ti

ve
fl

u
x

[p
p

t]

−4

−2

0

2
Transit 5

t0,B = 1498.36 d

-36 -24 -12 t0,B 12 24 36

time from transit midpoint t0,B [h]

−1
0
1

Light Curve Detrending and Fitting

Figure 2.7: The observed second, fourth, and fifth transits of Kepler 1625 b. Black dots
refer to our detrended light curve from the trigonometric detrending procedure, and or-
ange curves are the model light curves generated using the 100 best fitting parameter sets
of the MCMC run. The ∆BIC, calculated from the most likely parameters, is −4.954.
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Figure 2.8: Posterior probability distribution of the moon parameters generated by the
MCMC algorithm for the light curve detrended by the trigonometric detrending. The
black vertical lines show the median of the posterior distribution, the black horizontal
lines indicate the 1σ range around the median. The red vertical lines show the point of
maximum likelihood. The locations of the Galilean moons are included in the lower-left
panel for comparison.
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2.3 Results

2.3.1 Analysis of the original Kepler-1625 b transits
Our first result is a reproduction of a detrended transit light curve of Kepler-1625 b that
has the same morphology and moon characterization as the one proposed by Teachey
et al. (2018) and that has a negative ∆BIC. We explore the variation of the free parameters
of our trigonometric detrending procedure, ftp and ftc , and identify such a detrended light
curve for ftp = 4.4 and ftc = 2.2. Figure 2.7 shows the resulting light curve.

In Fig. 2.8, we show the results of our MCMC analysis of this particular light curve,
which yields a moon with as = 16.3+5.0

−1.9 RJ and Rs = 2.87+0.61
−0.94 R⊕. While both the moon

radius and semimajor axis are well constrained, the distribution of the initial planet-moon
orbital conjunction (t0,s) fills out almost the entire allowed parameter range from −1/2 Ps

to +1/2 Ps. The planetary radius is 0.863+0.072
−0.051 RJ, the stellar radius is R? = 1.57+0.11

−0.09 R�,
and the density is ρ? = 0.26+0.04

−0.05 ρ�.
The point of maximum likelihood in the resulting MCMC distribution is at as =

14.7 RJ, Rs = 3.4 R⊕, R? = 1.57 R�, ρ? = 0.23 ρ� and Rp = 8.63 RJ. The ∆BIC(M1,M0)
we found is -4.954, indicating moderate evidence in favor of an exomoon being in the
light curve.

2.3.2 Injection-retrieval experiment

Figure 2.9: Difference between the BIC of the planet-moon model and the no-moon model
using different detrending methods for 160 light curves, generated using the PDCSAP
flux of Kepler 1625, injected with three simulated transits. On the left (80 light curves), a
planet and moon transit was injected, on the right (80 light curves), only the planet. Each
light curve consists of three consecutive transits. Each row of eight detrending methods
uses the same light curve. The rows are sorted by their mean ∆BIC, with black lines
indicating the ∆BIC = {−6, 0, 6} positions for the mean ∆BIC per row.

In Fig. 2.9, we show the ∆BIC for the 160 simulated Kepler light curves that were not
rejected by our detrending method due to gaps very close to a transit. The left panel shows
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Figure 2.10: Distribution of the median likelihood Rs and as for the transits injected into
different parts of the Kepler-1625 light curve, using different detrending methods. The
∆BIC of the planet-only model compared to the planet-moon model is indicated by the
symbol color. The values of the moon semimajor axis (abscissa) and radius (ordinate)
suggested by Teachey et al. (2018) are indicated with thin, gray lines in each sub-panel.

our results for the analysis of planet-only injections and the right panel refers to planet-
moon injections. The tables in the panel headers list the true negative, false positive, true
positive, and false positive rates as well as the rates of ambiguous cases. With “positive”
(“negative”), we here refer to the detection (non-detection) of a moon.

In particular, we find the true negative rate (left panel, ∆BIC ≥ 6) to be between 65 %
and 87.5 % and the true positive rate (right panel, ∆BIC ≤ − 6) to be between 31.25 %
and 46.25 % depending on the detrending method, respectively.

The rates of false classifications is between 8.75 % and 17.5 % for the injected planet-
only systems with a falsely detected moon (false positives) and between 30 % and 41.25 %
for the injected planet-moon systems with a failed moon recovery (false negatives).

The rates of classification as a planet-moon system depend significantly on the treat-
ment of gaps during the detrending procedure. Whenever the light curve is cut at a gap, the
detection rates for a moon increase – both for the false positives and for the true positives.
Among all the detrending methods, this effect is especially strong for the trigonometric
detrending. The false positive rate increases by almost a factor of two from 8.75 % (T/N)
to 16.25 % (T/G) and the true positive rate increases by 15 % to 46.25 %. The effect
on the true negative rate is strongest for the trigonometric detrending, decreasing from
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87.5 % when the light curve is not cut at gaps (T/N) to 72.5 % if the light curve is cut
(T/G). The false negative rate for the second-order polynomial detrending decreases from
41.25 % (P2/N) to 30 % (P2/G) when gaps are cut, while the false negative rates of the
other detrending methods remain almost unaffected.

Of all the light curves with an injected planet only, 21.25 % have an ambiguous clas-
sification with at least one of the detrending methods showing a negative ∆BIC and a
different method showing a positive ∆BIC above the threshold. For the light curves with
an injected planet-moon system, there are 18.75 % with ambiguous classification and an-
other 18.75 % of the injected planet-moon systems are classified unanimously as true
positives by all detrending methods.

Figure 2.10 shows the distribution of the retrieved moon parameters as and Rs as well
as the corresponding ∆BIC (see color scale) for each of the detrending methods.

For the light curves with an injected planet-moon system (lower set of panels), the
maximum likelihood values of as and Rs of the true positives (blue) generally cluster
around the injected parameters. In particular, we find that the moon turns out to be more
likely (deeper-blue dots) when it is fitted to have a larger radius. The parameters of the
false positives (blue dots in the upper set of panels) are more widely spread out, with
moon radii ranging between 2 and 5 R⊕ and the moon semimajor axes spread out through
essentially the entire parameter range that we explored. The clustering of median as at
around 100 RJ is an artifact of taking the median over a very unlocalized distribution along
as. For the polynomial detrending methods, there are a certain number of what one could
refer to as mischaracterized true positives. In these cases, the ∆BIC-based planet-only
versus planet-moon classification is correct but the maximum likelihood values are very
different from the injected ones.

The correctly identified planet-only systems show a similar distribution of as and Rs

as in our experiment with white noise only and a 700 ppm amplitude (Fig. 2.5).
Most surprisingly, and potentially most worryingly, the false positives (blue dots in

the upper set of panels in Fig. 2.10) cluster around the values of the moon parameters
found by Teachey et al. (2018), in particular if the light curve is cut at the first gap.

2.4 Discussion

In this article, we compare several detrending methods of the light curve of Kepler-1625,
some of which were used by Teachey et al. (2018) in their characterization of the exomoon
candidate around Kepler-1625 b. However, we do not perform an exhaustive survey of
all available detrending methods; for example we leave out Gaussian processes (Aigrain
et al. 2016).

We show that the sequential detrending and fitting procedure of transit light curves
is prone to introducing features that can be misinterpreted as signal, in our case as an
exomoon. This “pre-whitening” method of the data must therefore be used with caution.
Our investigations of a polynomial-based fitting and of a trigonometric detrending pro-
cedure show that the resulting best-fit model depends strongly on the specific detrending
function; for example, on the order of the polynomial or on the minimum timescale (or
wavelength) of a cosine. This is crucial for any search of secondary effects in the transit
light curves – caused by moons, rings, evaporating atmospheres and so on – and is in
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stark contrast to a claim by Aizawa et al. (2017), who stated that neither the choice of
the detrending function nor the choice of the detrending window of the light curve would
have a significant effect on the result. We find that this might be true at the level of visual
inspection by eye but not at the level of 100 ppm or below. Part of the difference between
our findings and those of Aizawa et al. (2017) could be in the different timescales we in-
vestigate. While they considered the effect of stellar flairs on timescales of less than a day,
much less than the two-day transit duration of their specific target, our procedure operates
on various timescales of up to several weeks. Moreover, we develop a dynamical moon
model to fit multiple transits, whereas Aizawa et al. (2017) study only a single transit.

Since the actual presence and the putative orbital position of a hypothetical exomoon
around Kepler-1625 b is unknown a priori, it is unclear how much of the light curve would
need to be protected from (or neglected for) the pre-fit detrending process in order to avoid
a detrending of a possible moon signal itself. In turn, we show that in the case of Kepler-
1625, different choices for this protected timescale around the transit yield different con-
fidences and different solutions for a planet-moon system. We find that the previously
announced solution by Teachey et al. (2018) is only one of many possibilities with similar
likelihoods (specifically: BIC). This suggests, but by no means proves, that all of these
solutions could, in fact, be due to red noise artifacts (e.g. stellar or instrumental) rather
than indicative of a moon signal.

Our finding of higher true positive rate compared to a false positive rate from injection-
retrieval experiments could be interpreted as moderate evidence in favor of a genuine
exomoon. This interpretation, however, depends on the number of transiting planets and
planet candidates around stars with similar noise characteristics that were included in the
Teachey et al. (2018) search. Broadly speaking, if more than a handful of similar targets
are studied, the probability of at least one false positive detection becomes quite likely.

2.5 Conclusions

We investigated the detrending of the transit light curve of Kepler-1625 b with a method
very similar to the one used by Teachey et al. (2018) and then applied a Bayesian frame-
work with MCMC modeling to search for a moon. Our finding of a ∆BIC of −4.954
favors the planet-moon over the planet-only hypothesis. Although significant, this tenta-
tive detection fails to cross the threshold of −6, which we would consider strong evidence
of a moon. Our ∆BIC value would certainly change if we were to include the additional
data from the high-precision transit observations executed in October 2017 with the Hub-
ble Space Telescope (Teachey et al. 2018) in our analysis. Moreover, by varying the free
parameters of our detrending procedure, we also find completely different solutions for a
planet-moon system, that is, different planet-moon orbital configurations during transits
and different moon radii or planet-moon orbital semimajor axes.

As an extension to this validation of the previously published work, we performed 200
injection-retrieval experiments into the original out-of-transit parts of the Kepler light
curve. We also extended the previous work by exploring different detrending methods,
such as second-, third-, and fourth-order polynomials as well as trigonometric methods,
and find false-positive rates between 8.75 % and 16.25 %, depending on the method. Sur-
prisingly, we find that the moon radius and planet-moon distances of these false positives
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are very similar to the ones measured by Teachey et al. (2018). In other words, in 8.75 %
to 16.25 % of the light curves that contained an artificially injected planet only, we find a
moon that is about as large as Neptune and orbits Kepler-1625 b at about 20 RJ.

To summarize, we find tentative statistical evidence for a moon in this particular Ke-
pler light curve of Kepler-1625, but we also show that a significant fraction of similar
light curves, which contained a planet only, would nevertheless indicate a moon with
properties similar to the candidate Kepler-1625 b-i. Clearly, stellar and systematic red
noise components are the ultimate barrier to an unambiguous exomoon detection around
Kepler-1625 b and follow-up observations have the potential of solving this riddle based
on the framework that we present.

Of all the detrending methods we investigated, the trigonometric method, which is
very similar to the CoFiAM method of Teachey et al. (2018), can produce the highest true
positive rate. At the same time, however, this method also ranks among those producing
the highest false positive rates as well. To conclude, we recommend that any future ex-
omoon candidate be detrended with as many different detrending methods as possible to
evaluate the robustness of the classification.
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Appendix

2.A Effect of the window length on the Bayesian infor-
mation criterion

Given the constraint of orbital stability, a moon can only possibly orbit its planet within
the planet’s Hill sphere. Therefore, transits may only occur within a certain time interval
around the midpoint of the planetary transit. This time tHill can be calculated as

tHill =
ηRHill

vorbit
= η

P
2π

√
Mp

3M?

, (2.6)

where vorbit is the orbital velocity of the planet-moon system around the star, Mp and M?

the planet and star mass, P the orbital period of the planet-moon system, and RHill is the
Hill radius of the planet. η is a factor between 0 and 1, which has been numerically
determined for prograde moons (η ≈ 0.5) and for retrograde moons (η ≈ 1), details
depending on the orbital eccentricities (Domingos et al. 2006). We focus on prograde
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Figure 2.11: Detrending for different cutout times tc and base length D, color coded by
the resulting ∆BIC using a second- and fourth-order polynomial function. While some
of the detrending models corresponding to a large negative ∆BIC are clearly the result of
incorrect detrending, it is much less clear for many other detrending models.
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moons and choose η = 0.5. For a 10 MJ planet in a 287 d orbit around a 1.1 M� star the
Hill time is tHill = 3.25 d.

As shown in Fig. 2.2, the length of the light curve, which is neglected for the poly-
nomial fit has a strong effect on the resulting detrended light curve. Figure 2.11 shows
the effect that different cutout times tc and detrending base lines D can have on whether a
moon is detected or not.

2.B Autocorrelation of detrended light curves
The autocorrelations of the detrended light curves are shown in Fig. 2.12. For all three
transits, the autocorrelation is close to zero, except for the zero-lag component. This
suggests that it is reasonable to model the noise covariance matrix as a diagonal matrix
(see Sect. 2.2.2.3).

0.0

0.5

1.0 Transit 2

0.0

0.5

1.0

au
to

co
rre

la
tio

n Transit 4

0 5 10 15 20
time lag [h]

0.0

0.5

1.0 Transit 5

Figure 2.12: The autocorrelation of the difference between the detrended light curve and
the best fitting model.
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Abstract

Context: Kepler and Hubble photometry of a total of four transits by the Jupiter-sized
exoplanet Kepler-1625 b have recently been interpreted to show evidence of a Neptune-
sized exomoon. The key arguments were an apparent drop in stellar brightness after the
planet’s October 2017 transit seen with Hubble and its 77.8 min early arrival compared to
a strictly periodic orbit.
Aims: The profound implications of this first possible exomoon detection and the physical
oddity of the proposed moon, i.e., its giant radius prompt us to examine the planet-only
hypothesis for the data and to investigate the reliability of the Bayesian information crite-
rion (BIC) used for detection.
Methods: We combined Kepler’s Pre-search Data Conditioning Simple Aperture Pho-
tometry (PDCSAP) with the previously published Hubble light curve. In an alternative
approach, we performed a synchronous polynomial detrending and fitting of the Kepler

∗This chapter reproduces the article An alternative interpretation of the exomoon candidate signal in
the combined Kepler and Hubble data of Kepler-1625 by R. Heller, K. Rodenbeck, G. Bruno, published
in Astronomy and Astrophysics 624, A95 (2019), reproduced with permission c© ESO. Contributions: RH
wrote the manuscript, proposed Figs. 3.2 - 3.4, generated Fig. 3.5, and guided the work. KR derived the star-
planet-moon orbital simulations and the respective statistics and generated Figs. 3.2 - 3.4. GB performed
the light curve extraction from the WFC3 Hubble data and generated Fig. 3.1. All authors contributed
equally to the interpretation of the data.
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data combined with our own extraction of the Hubble photometry. We generated five mil-
lion parallel-tempering Markov chain Monte Carlo (PTMCMC) realizations of the data
with both a planet-only model and a planet-moon model, and compute the BIC difference
(∆BIC) between the most likely models, respectively.
Results: The ∆BIC values of −44.5 (using previously published Hubble data) and −31.0
(using our own detrending) yield strong statistical evidence in favor of an exomoon. Most
of our orbital realizations, however, are very different from the best-fit solutions, suggest-
ing that the likelihood function that best describes the data is non-Gaussian. We measure
a 73.7 min early arrival of Kepler-1625 b for its Hubble transit at the 3σ level. This de-
viation could be caused by a 1 d data gap near the first Kepler transit, stellar activity, or
unknown systematics, all of which affect the detrending. The radial velocity amplitude of
a possible unseen hot Jupiter causing the Kepler-1625 b transit timing variation could be
approximately 100 m s−1.
Conclusions: Although we find a similar solution to the planet-moon model to that pre-
viously proposed, careful consideration of its statistical evidence leads us to believe that
this is not a secure exomoon detection. Unknown systematic errors in the Kepler/Hubble
data make the ∆BIC an unreliable metric for an exomoon search around Kepler-1625 b,
allowing for alternative interpretations of the signal.

3.1 Introduction

The recent discovery of an exomoon candidate around the transiting Jupiter-sized object
Kepler-1625 b orbiting a slightly evolved solar mass star (Teachey et al. 2018) came as a
surprise to the exoplanet community. This Neptune-sized exomoon, if confirmed, would
be unlike any moon in the solar system, it would have an estimated mass that exceeds the
total mass of all moons and rocky planets of the solar system combined. It is currently
unclear how such a giant moon could have formed (Heller 2018a).

Rodenbeck et al. (2018) revisited the three transits obtained with the Kepler space
telescope between 2009 and 2013 and found marginal statistical evidence for the proposed
exomoon. Their transit injection-retrieval tests into the out-of-transit Kepler data of the
host star also suggested that the exomoon could well be a false positive. A solution to the
exomoon question was supposed to arrive with the new Hubble data of an October 2017
transit of Kepler-1625 b (Teachey and Kipping 2018).

The new evidence for the large exomoon by Teachey and Kipping (2018), however,
remains controversial. On the one hand, the Hubble transit light curve indeed shows
a significant decrease in stellar brightness that can be attributed to the previously sug-
gested moon. Perhaps more importantly, the transit of Kepler-1625 b occurred 77.8 min
earlier than expected from a sequence of strictly periodic transits, which is in very good
agreement with the proposed transit of the exomoon candidate, which occurred before the
planetary transit. On the other hand, an upgrade of Kepler’s Science Operations Center
pipeline from version 9.0 to version 9.3 caused the exomoon signal that was presented in
the Simple Aperture Photometry (SAP) measurements in the discovery paper (Teachey
et al. 2018) to essentially vanish in the SAP flux used in the new study of Teachey and
Kipping (2018). This inconsistency, combined with the findings of Rodenbeck et al.
(2018) that demonstrate that the characterization and statistical evidence for this exo-
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moon candidate depend strongly on the methods used for data detrending, led us to revisit
the exomoon interpretation in light of the new Hubble data.

Here we address two questions. How unique is the proposed orbital solution of the
planet-moon system derived with the Bayesian information criterion (BIC)? What could
be the reason for the observed 77.8 min difference in the planetary transit timing other
than an exomoon?

3.2 Methods

Our first goal was to fit the combined Kepler and Hubble data with our planet-moon tran-
sit model (Rodenbeck et al. 2018) and to derive the statistical likelihood for the data to
represent the model. In brief, we first model the orbital dynamics of the star-planet-moon
system using a nested approach, in which the planet-moon orbit is Keplerian and unper-
turbed by the stellar gravity. The transit model consists of two black circles, one for the
planet and one for the moon, that pass in front of the limb-darkened stellar disk. The
resulting variations in the stellar brightness are computed using Ian Crossfield’s python
code of the Mandel and Agol (2002) analytic transit model.1 The entire model contains 16
free parameters and it features three major updates compared to Rodenbeck et al. (2018):
(1) Planet-moon occultations are now correctly simulated, (2) the planet’s motion around
the local planet-moon barycenter is taken into account, and (3) inclinations between the
circumstellar orbit of the planet-moon barycenter and the planet-moon orbit are now in-
cluded.

We used the emcee code2 of Foreman-Mackey et al. (2013) to generate Markov chain
Monte Carlo (MCMC) realizations of our planet-only model (M0) and planet-moon model
(M1) and to derive posterior probability distributions of the set of model parameters (

#»
θ ).

We tested both a standard MCMC sampling with 100 walkers and a parallel-tempering
ensemble MCMC (PTMCMC) with five temperatures, each of which has 100 walkers. As
we find a better convergence rate for the PTMCMC sampling, we use it in the following.
Moreover, PTMCMC can sample both the parameter space at large and in regions with
tight peaks of the likelihood function. The PTMCMC sampling is allowed to walk five
million steps.

The resulting model light curves are referred to as Fi(t,
#»
θ ), where t are the time stamps

of the data points from Kepler and Hubble (N measurements in total), for which time-
uncorrelated standard deviations σ j at times t j are assumed, following the suggestion of
Teachey and Kipping (2018). This simplifies the joint probability density of the observed
(and detrended) flux measurements (F(t)) to the product of the individual probabilities for
each data point,

p(F|
#»
θ ,Mi) =

N∏
j=1

1√
2πσ2

j

exp

−
(
F(t j) − Fi(t j,

#»
θ )

)2

2σ2
j

 . (3.1)

1Available at www.astro.ucla.edu/∼ianc/files
2Available at http://dfm.io/emcee/current/user/pt
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We then determined the set of parameters (
#»
θ max) that maximizes the joint probability den-

sity function (p(F|
#»
θ max,Mi)) for a given light curve F(t j) and modelMi and calculated

the BIC (Schwarz 1978)

BIC(Mi|F) = mi ln N − 2 ln p(F|
#»
θ max,Mi) . (3.2)

The advantage of the BIC in comparison to χ2 minimization, for example, is in its relation
to the number of model parameters (mi) and data points. The more free parameters in the
model, the stronger the weight of the first penalty term in Eq. (3.2), thereby mitigating
the effects of overfitting. Details of the actual computer code implementation or transit
simulations aside, this Bayesian framework is essentially what the Hunt for Exomoons
with Kepler survey used to identify and rank exomoon candidates (Kipping et al. 2012),
which ultimately led to the detection of the exomoon candidate around Kepler-1625 b
after its first detection via the orbital sampling effect (Heller 2014, Heller et al. 2016a).

3.2.1 Data preparation
In a first step, we used Kepler’s Pre-search Data Conditioning Simple Aperture Photome-
try (PDCSAP) and the Hubble Wide Field Camera 3 (WFC3) light curve as published by
Teachey and Kipping (2018) based on their quadratic detrending. Then we executed our
PTMCMC fitting and derived the ∆BIC values and the posterior parameter distributions.

3.2.1.1 Extraction of the Hubble light curve

In a second step, we did our own extraction of the Hubble light curve including an expo-
nential ramp correction for each Hubble orbit. Then we performed the systematic trend
correction together with the transit fit of a planet-moon model. Our own detrending of the
light curves is not a separate step, but it is integral to the fitting procedure. For each calcu-
lation of the likelihood, we find the best fitting detrending curve by dividing the observed
light curve by the transit model and by fitting a third-order polynomial to the resulting
light curve. Then we remove the trend from the original light curve by dividing it through
the best-fit detrending polynomial and evaluate the likelihood. We also performed a test
in which the detrending parameters were free PTMCMC model parameters and found
similar results for the parameter distributions but at a much higher computational cost.
We note that the resulting maximum likelihood is (and must be) the same by definition if
the PTMCMC sampling converges.

Kepler-1625 was observed by Hubble under the GO program 15149 (PI Teachey). The
observations were secured from October 28 to 29, 2017, to cover the ∼ 20 hr transit plus
several hours of out-of-transit stellar flux (Teachey and Kipping 2018). The F130N filter
of WFC3 was used to obtain a single direct image of the target, while 232 spectra were
acquired with the G141 grism spanning a wavelength range from 1.1 to 1.7 µm. Due to
the faintness of the target, it was observed in staring mode (e.g. Berta et al. 2012, Wilkins
et al. 2014) unlike the most recent observations of brighter exoplanet host stars, which
were monitored in spatial scanning mode (McCullough and MacKenty 2012). Hence, in-
stead of using the IMA files as an intermediate product, we analyzed the FLT files, which
are the final output of the calwfc3 pipeline of Hubble and allow a finer manipulation of
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the exposures during consecutive nondestructive reads. Each FLT file contains measure-
ments between about 100 and 300 electrons per second, with exposure times of about 291
seconds.

We used the centroid of the stellar image to calculate the wavelength calibration,
adopting the relations of Pirzkal et al. (2016). For each spectroscopic frame, we first
rejected the pixels flagged by calwfc3 as “bad detector pixels”, pixels with unstable re-
sponse, and those with uncertain flux value (Data Quality condition 4, 32, or 512). Then
we corrected each frame with the flat field file available on the Space Telescope Science
Institute (STScI) website3 by following the prescription of the WFC3 online manual. We
performed the background subtraction on a column-by-column basis. Due to a number
of contaminant stars in the observation field (Fig. 3.1, top panel), we carefully selected a
region on the detector that was as close as possible to the spectrum of Kepler-1625, close
to row 150 in spatial dimension, and far from any contaminant. For each column on the
detector, we applied a 5σ clipping to reject the outliers and then calculated the median
background flux value in that column. Following STScI prescriptions, we also removed
pixels with an electron-per-second count larger than 5. An example for the background
behavior is shown in the bottom panel of Fig. 3.1.

We inspected each frame with the image registration package (Baker and Matthews
2001) to search drifts in both axes of the detector with respect to the very last frame,
and then extracted the spectrum of Kepler-1625 by performing optimal extraction (Horne
1986) on the detector rows containing the stellar flux. This procedure automatically re-
moves bad pixels and cosmic rays from the frames by correcting them with a smoothing
function. We started the extraction with an aperture of a few pixels centered on the peak of
the stellar trace and gradually increased its extension by one pixel per side on the spatial
direction until the flux dispersion reached a minimum.

We performed another outlier rejection by stacking all the one-dimensional spectra
along the time axis. We computed a median-filtered version of the stellar flux at each
wavelength bin and performed a 3σ clipping between the computed flux and the median
filter. Finally, we summed the stellar flux across all wavelength bins from 1.115 to 1.645
µm to obtain the band-integrated stellar flux corresponding to each exposure.

Before performing the PTMCMC optimization, we removed the first Hubble orbit
from the data set and the first data point of each Hubble orbit, as they are affected by
stronger instrumental effects than the other observations (Deming et al. 2013) and cannot
be corrected with the same systematics model. We also removed the last point of the 12th,
13th, and 14th Hubble orbit since they were affected by the passage of the South Atlantic
Anomaly (as highlighted in the proposal file, available on the STScI website).

3.2.2 Proposed unseen planet
3.2.2.1 Mass-orbit constraints for a close-in planet

According to Teachey et al. (2018), the 2017 Hubble transit of Kepler-1625 b occurred
about 77.8 min earlier than predicted, an effect that could be astrophysical in nature and
is referred to as a transit timing variation (TTV). As proposed by Teachey et al. (2018),

3www.stsci.edu/hst/wfc3/analysis/grism_obs/calibrations/
wfc3_g141.html
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Figure 3.1: Top: Example of a WFC3 exposure of Kepler-1625. The abscissa shows the
column pixel prior to wavelength calibration. The yellow box indicates the region used
for background estimation. The spectrum of Kepler-1625 is at the center of the frame,
around row 150 in the spatial direction, while several contaminant sources are evident
in other regions of the detector. The color bar illustrates the measured charge values.
Bottom: Background value measured across the rows of the same frame.

this TTV could either be interpreted as evidence for an exomoon or it could indicate
the presence of a hitherto unseen additional planet. Various planetary configurations can
cause the observed TTV effect such as an inner planet or an outer planet. At this point, no
stellar radial velocity measurements of Kepler-1625 exist that could be used to search for
additional nontransiting planets in this system.

In the following, we focus on the possibility of an inner planet with a much smaller
orbital period than Kepler-1625 b simply because it would have interesting observational
consequences. We use the approximation of Agol et al. (2005) for the TTV amplitude (δt)
due to a close inner planet, which would impose a periodic variation on the position of
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Figure 3.2: Orbital solutions for Kepler-1625 b and its suspected exomoon based on the
combined Kepler and Hubble data. (a,b,c) Kepler PDCSAP flux and (d) the quadratic
detrending of the Hubble data from Teachey and Kipping (2018). The blue curves show
1 000 realizations of our PTMCMC fitting of a planet-moon model. Our most likely
solution (red line) is very similar to the one found by Teachey and Kipping (2018), but
differs significantly from the one initially found by Teachey et al. (2018). (e,f,g) Kepler
PDCSAP flux and (h) our own detrending of the Hubble light curve (in parallel to the
fitting). The ingress and egress of the model moon are denoted with arrows and labels in
panel h as an example.

the star, and solve their expression for the mass of the inner planet (Mp,in) as a function of
its orbital semimajor axis (ap,in),

Mp,in = δt M?

ap,out

ap,in Pp,out
, (3.3)

where aout = 0.87 AU is the semimajor axis of Kepler-1625 b. The validity of this ex-
pression is restricted to coplanar systems without significant planet-planet interaction and
with aout�ain, so that TTVs are only caused by the reflex motion of the star around its
barycenter with the inner planet.

As we show in Sect. 3.3.2, the proposed inner planet could be a hot Jupiter. The
transits of a Jupiter-sized planet, however, would be visible in the Kepler data. As a
consequence, we can estimate the minimum orbital inclination (i) between Kepler-1625 b
and the suspected planet to prevent the latter from showing transits. This angle is given
as per i = arctan(R?/ap,in) and we use R? = 1.793+0.263

−0.488 R� (Mathur et al. 2017).

3.2.2.2 Orbital stability

We can exclude certain masses and orbital semimajor axes for an unseen inner planet
based on the criterion of mutual Hill stability. This instability region depends to some
extent on the unknown mass of Kepler-1625 b. Mass estimates can be derived from a
star-planet-moon model, but these estimates are irrelevant if the observed TTVs are due
to an unseen planetary perturber. Hence, we assume a nominal Jupiter mass (MJup) for
Kepler-1625 b.
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Figure 3.3: Differential likelihood distribution between the most likely planet-moon
model and the other solutions using 106 steps of our PTMCMC fitting procedure. Left:
Results from fitting our planet-moon transit model to the original data from Teachey and
Kipping (2018). Right: Results from fitting our planet-moon transit model to our own
detrending of the Kepler and WFC3 data. In both panels the most likely model is located
at 0 along the abscissa by definition. In both cases the models do not converge to the
best-fit solution, suggesting that the best-fit solution could in fact be an outlier.

The Hill sphere of a planet with an orbital semimajor axis ap around a star with mass
M? can be estimated as RH = ap(Mp/[3M?])1/3, which suggests RH = 125 RJup for
Kepler-1625 b. We calculate the Hill radius of the proposed inner planet accordingly, and
identify the region in the mass-semimajor axis diagram of the inner planet that would lead
to an overlap of the Hill spheres and therefore to orbital instability.

3.3 Results

3.3.1 PTMCMC sampling and ∆BIC

Regarding the combined data set of the Kepler and Hubble data as detrended by Teachey
and Kipping (2018), we find a ∆BIC of −44.5 between the most likely planet-only and
the most likely planet-moon solution. A combination of the Kepler and Hubble light
curves based on our own extraction of the WFC3 data yields a ∆BIC of −31.0. Formally
speaking, both of these two values can be interpreted as strong statistical evidence for
an exomoon interpretation. The two values are very different, however, which suggests
that the detrending of the Hubble data has a significant effect on the exomoon interpreta-
tion. In other words, this illustrates that the systematics are not well-modeled and poorly
understood.

In Fig. 3.2a-d, we show our results for the PTMCMC fitting of our planet-moon model
to the four transits of Kepler-1625 b including the Hubble data as extracted and detrended
by Teachey and Kipping (2018) using a quadratic fit. Although our most likely solution
shows some resemblance to the one proposed by Teachey and Kipping (2018), we find
that several aspects are different. As an example, the second Kepler transit (Fig. 3.2b)
is fitted best without a significant photometric moon signature, that is to say, the moon
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Figure 3.4: Posterior distributions of a parallel tempering ensemble MCMC sampling of
the combined Kepler and WFC3 data with our planet-moon model. Top: Results for the
original data from Teachey and Kipping (2018). Bottom: Results for our own detrending
of the Kepler and WFC3 data. In both figures, scatter plots are shown with black dots
above the diagonal, and projected histograms are shown as colored pixels below the di-
agonal. The most likely parameters are denoted with an orange point in the scatter plots.
Histograms of the moon-to-star radius ratio rs, scaled semimajor axis of the planet-moon
system (aps/R?), satellite orbital period (Ps), satellite orbital phase (ϕ), moon-to-planet
mass ratio ( fM), orbital inclination of the satellite with respect to our line of sight (is), and
the orientation of the ascending node of the satellite orbit (Ωs) are shown on the diagonal.
Median values and standard deviations are indicated with error bars in the histograms.
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does not pass in front of the stellar disk4, whereas the corresponding best-fit model of
Teachey and Kipping (2018) shows a clear dip prior to the planetary transit (see their
Fig. 4). What is more, most of our orbital solutions (blue lines) differ substantially from
the most likely solution (red line). In other words, the orbital solutions do not converge
and various planet-moon orbital configuration are compatible with the data, though with
lower likelihood.

In Fig. 3.2e-h, we illustrate our results for the PTMCMC fitting of our planet-moon
model to the four transits of Kepler-1625 b including our own extraction and detrending
of the Hubble transit. Again, the orbital solutions (blue lines) do not converge. A compar-
ison of panels d and h shows that the different extraction and detrending methods do have
a significant effect on the individual flux measurements, in line with the findings of Ro-
denbeck et al. (2018). Although the time of the proposed exomoon transit is roughly the
same in both panels, we find that the best-fit solution for the data detrended with our own
reduction procedure does not contain the moon egress (panel h), whereas the best-fit so-
lution of the data detrended by Teachey and Kipping (2018) does contain the moon egress
(panel d). A similar fragility of this particular moon egress has been noted by Teachey
and Kipping (2018) as they explored different detrending functions (see their Fig. 3).

Our Fig. 3.3 illustrates the distribution of the differential likelihood for the planet-
moon model between the most likely model parameter set (

#»
θ max) and the parameter sets

(
#»
θ ′) found after five million steps of our PTMCMC fitting procedure, p(

#»
θ ′|F,M1) −

p(
#»
θ max|F,M1). For the combined Kepler and Hubble data detrended by Teachey and

Kipping (2018) (left panel) and for our own Hubble data extraction and detrending (right
panel), we find that most model solutions cluster around a differential likelihood that
is very different from the most likely solution, suggesting that the most likely model
is, in some sense, a statistical outlier. We initially detected this feature after approxi-
mately the first one hundred thousand PTMCMC fits. Hence, we increased the number
of PTMCMC samplings to half a million and finally to five million to make sure that we
sample any potentially narrow peaks of the likelihood function near the best-fit model at
p(

#»
θ ′|F,M1) − p(

#»
θ max|F,M1) = 0 with sufficient accuracy. We find, however, that this

behavior of the differential likelihood distribution clustering far from the best-fit solution
persists, irrespective of the available computing power devoted to the sampling.

Figure 3.4 shows the posterior distributions of the moon parameters of our planet-
moon model. The top panel refers to our PTMCMC fitting of the combined Kepler and
Hubble data (Hubble data as detrended and published by Teachey and Kipping 2018), and
the bottom panel shows our PTMCMC fitting of the Kepler data combined with our own
extraction and detrending of the Hubble light curve. The respective median values and
standard deviations are noted in the upper right corners of each subpanel and summarized
in Table 3.1.

A comparison between the upper and lower corner plots in Fig. 3.4 reveals that the dif-
ferent detrending and fitting techniques have a significant effect on the resulting posterior
distributions, in particular for is and Ωs, the two angles that parameterize the orientation
of the moon orbit. At the same time, however, the most likely values (red dots above
the plot diagonal) and median values (blue crosses below the plot diagonal) of the seven
parameters shown are well within the 1σ tolerance.

4Martin et al. (2019) estimate that failed exomoon transits should actually be quite common for mis-
aligned planet-moon systems, such as the one proposed by Teachey and Kipping (2018).
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Table 3.1: Results of our PTMCMC fitting procedure
to the combined Kepler and Hubble data. The Hubble
data was either based on the photometry extracted by
Teachey and Kipping (2018, TK18b, central column) or
based on our own extraction (right column).

TK18b HST photometry our HST photometry

rs [%] 1.9+0.5
−0.5 1.6+0.5

−0.5

aps [R?] 2.9+1.3
−0.6 2.9+1.5

−1.0

Ps [d] 27+15
−13 29+17

−15

ϕ [rad] 3.3+2.0
−2.3 3.2+2.2

−2.2

fM [%] 1.9+1.6
−0.8 2.0+1.7

−1.0

is [rad] −0.2+2.4
−2.3 −0.1+2.3

−2.2

Ωs [rad] −0.1+2.1
−2.1 −0.2+2.0

−1.8

Notes. Figure 3.4 illustrates quite clearly that the poste-
rior distributions are not normally distributed and often not
even representative of skewed normal distributions. The con-
fidence intervals stated in this table have thus to be taken with
care.

The following features can be observed in both panels of Fig. 3.4. The moon-to-star
radius ratio (Col. 1, leftmost) shows an approximately normal distribution, whereas the
scaled planet-moon orbital semimajor axis (Col. 2) shows a more complicated, skewed
distribution. The solutions for the orbital period of the exomoon candidate (Col. 3) show
a comb-like structure owing to the discrete number of completed moon orbits that would
fit a given value of the moon’s initial orbital phase (Col. 4), which is essentially uncon-
strained. The moon-to-planet mass ratio (Col. 5) then shows a skewed normal distribution
with a tail of large moon masses. Our results for the inclination is between the satellite
orbit (around the planet) and the line of sight, and for the longitude of the ascending node
of the moon orbit are shown in Cols. 6 and 7. The preference of is being either near 0 or
near ±π (the latter is equivalent to a near-coplanar retrograde moon orbit) illustrates the
well-known degeneracy of the prograde/retrograde solutions available from light curve
analyses (Lewis and Fujii 2014, Heller and Albrecht 2014).

3.3.2 Transit timing variations

Next we consider the possibility of the transits being caused by a planet only. Neglecting
the Hubble transit, our PTMCMC sampling of the three Kepler transits with our planet-
only transit model gives an orbital period of P = 287.3776 ± 0.0024 d and an initial
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Figure 3.5: Mass estimate for the potential inner planet around Kepler-1625 based on the
observed TTV of 73.728 min. The thin pale blue fan around the solid curve shows the 1σ
tolerance fan of ±2.016 min. Values for semimajor axes > 0.1 AU are poor approxima-
tions and thus shown with a dashed line. Black points show masses and semimajor axes of
all planets from exoplanet.eu (as of 26 October 2018) around stars with masses between
0.75 M� and 1.25 M�. A conservative estimate of a dynamically unstable region for the
suspected inner planet, where its Hill sphere would touch the Hill sphere of Kepler-1625 b
with an assumed mass of 1 MJup, is shaded in pale red. RV amplitudes and minimum or-
bital inclination with respect to Kepler-1625 b are noted along the curve for the planetary
mass estimate.

transit midpoint at t0 = 61.4528 ± 0.0092 d in units of the Barycentric Kepler Julian Day
(BKJD), which is equal to BJD − 2, 454, 833.0 d. The resulting transit time of the 2017
Hubble transit is 3222.6059 ± 0.0182 d.

Our planet-only model for the 2017 Hubble transit gives a transit midpoint at 3222.5547±
0.0014 d, which is 73.728(±2.016) min earlier than the predicted transit midpoint. This
is in agreement with the measurements of Teachey and Kipping (2018), who found that
the Hubble transit occurred 77.8 min earlier than predicted. This observed early transit of
Kepler-1625 b has a formal ∼ 3σ significance. We note, however, that this 3σ deviation
is mostly dictated by the first transit observed with Kepler (see Fig. S12 in Teachey et al.
2018). We also note that this transit was preceded by a ∼ 1 d observational gap in the light
curve, about 0.5 d prior to the transit, which might affect the local detrending of the data
and the determination of the transit mid-point of a planet-only model. Moreover, with
most of the TTV effect being due to the large deviation from the linear ephemeris of the
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first transit, stellar (or any other systematic) variability could have a large (but unknown)
effect on the error bars that go into the calculations.

In Fig. 3.5 we show the mass of an unseen inner planet that is required to cause the
observed 73.7 min TTV amplitude from our PTMCMC fit as a function of its unknown
orbital semimajor axis. The mass drops from 5.8 MJup at 0.03 AU to 1.8 MJup at 0.1 AU.
Values beyond 0.1 AU cannot be assumed to fulfill the approximations made for Eq. (3.3)
and are therefore shown with a dashed line. The actual TTV amplitude of Kepler-1625 b
could even be higher than the ∼ 73 min that we determined for the Hubble transit, and thus
the mass estimates shown for a possible unknown inner planet serve as lower boundaries.

The resulting radial velocity amplitudes of the star of 923 m s−1 (at 0.03 AU) and
151 m s−1 (at 0.1 AU), respectively, are indicated along the curve. Even if the approxi-
mations for a coplanar, close-in planet were not entirely fulfilled, our results suggest that
RV observations of Kepler-1625 with a high-resolution spectrograph attached to a very
large (8 m class) ground-based telescope could potentially reveal an unseen planet caus-
ing the observed TTV of Kepler-1625 b. Also shown along the curve in Fig. 3.5 are the
respective minimum orbital inclinations (rounded mean values shown) between Kepler-
1625 b and the suspected close-in planet required to prevent Kepler-1625 b from transiting
the star. The exact values are i = 7.8+1.1

−2.0 degrees at 0.03 AU and i = 2.4+0.3
−0.6 degrees at

0.1 AU.
The pale red shaded region is excluded from a dynamical point of view since this is

where the planetary Hill spheres would overlap. The extent of this region is a conservative
estimate because it assumes a mass of 1 MJup for Kepler-1625 b and neglects any chaotic
effects induced by additional planets in the system or planet-planet cross tides etc. The
true range of unstable orbits is probably larger. The black dots show all available exo-
planet masses and semimajor axes from the Exoplanet Encyclopaedia, which illustrates
that the suspected planet could be more massive than most of the known hot Jupiters.

3.4 Conclusions

With a ∆BIC of −44.5 (using published Hubble data of Teachey and Kipping 2018) or
−31.0 (using our own Hubble extraction and detrending) between the most likely planet-
only model and the most likely planet-moon model, we find strong statistical evidence for
a roughly Neptune-sized exomoon. In both cases of the data detrending, the most likely
orbital solution of the planet-moon system, however, is very different from most of the
other orbital realizations of our PTMCMC modeling and the most likely solutions do not
seem to converge. In other words, the most likely solution appears to be an outlier in the
distribution of possible solutions and small changes to the data can have great effects on
the most likely orbital solution found for the planet-moon system. As an example, we find
that the two different detrending methods that we explored produce different interpreta-
tions of the transit observed with Hubble: in one case our PTMCMC sampling finds the
egress of the moon in the light curve, in the other case it does not (Fig. 3.2).

Moreover, the likelihood of this best-fit orbital solution is very different from the like-
lihoods of most other solutions from our PTMCMC modeling. We tested both a standard
MCMC sampling and a parallel-tempering MCMC (Foreman-Mackey et al. 2013); the
latter is supposed to explore both the parameter space at large and the tight peaks of the
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likelihood function in detail. Our finding of the nonconvergence could imply that the like-
lihood function that best describes the data is non-Gaussian. Alternatively, with the BIC
being an asymptotic criterion that requires a large sample size by definition (Stevenson
et al. 2012), our findings suggest that the available data volume is simply too small for the
BIC to be formally applicable. We conclude that the ∆BIC is an unreliable metric for an
exomoon detection for this data set of only four transits and possibly for other data sets
of Kepler as well.

One solution to evaluating whether the BIC or an alternative information criterion
such as the Akaike information criterion (AIC; Akaike 1974) or the deviance information
criterion (DIC; Spiegelhalter et al. 2002) is more suitable for assessing the likelihoods of a
planet-only model and of a planet-moon model could be injection-retrieval experiments of
synthetic transits (Heller et al. 2016b, Rodenbeck et al. 2018). Such an analysis, however,
goes beyond the scope of this paper.

We also observe the TTV effect discovered by Teachey and Kipping (2018). If the
early arrival of Kepler-1625 b for its late-2017 transit was caused by an inner planet rather
than by an exomoon, then the planet would be a super-Jovian mass hot Jupiter, the exact
mass limit depending on the assumed orbital semimajor axis. For example, the resulting
stellar radial velocity amplitude would be about 900 m s−1 for a 5.8 MJup planet at 0.03 AU
and about 150 m s−1 for a 1.8 MJup planet at 0.1 AU. From the absence of a transit signature
of this hypothetical planet in the four years of Kepler data, we conclude that it would need
to have an orbital inclination of at least i = 7.8+1.1

−2.0 (if it were at 0.03 AU) or i = 2.4+0.3
−0.6

degrees (if it were at 0.1 AU). If its inclination is not close to 90◦, at which point its effect
on the stellar RV amplitude would vanish, then the hypothesis of an unseen inner planet
causing the Kepler-1625 TTV could be observationally testable.

Ground-based photometric observations are hardly practicable to answer the question
of this exomoon candidate because continuous in- and near-transit monitoring of the tar-
get is required over at least two days. Current and near-future space-based exoplanet
missions, on the other hand, will likely not be able to deliver the signal-to-noise ratios
required to validate or reject the exomoon hypothesis. With a Gaia G-band magnitude
of mG = 15.76 (Gaia Collaboration et al. 2016, 2018) the star is rather faint in the visi-
ble regime of the electromagnetic spectrum and the possible moon transits are therefore
beyond the sensitivity limits of the TESS, CHEOPS, and PLATO missions. 2MASS ob-
servations suggest that Kepler-1625 is somewhat brighter in the near-infrared (Cutri et al.
2003), such that the James Webb Space Telescope (launch currently scheduled for early
2021) should be able to detect the transit of the proposed Neptune-sized moon, for exam-
ple via photometric time series obtained with the NIRCam imaging instrument.

All things combined, the fragility of the proposed photometric exomoon signature
with respect to the detrending methods, the unknown systematics in both the Kepler and
the Hubble data, the absence of a proper assessment of the stellar variability of Kepler-
1625, the faintness of the star (and the resulting photometric noise floor), the previously
stated coincidence of the proposed moon’s properties with those of false positives (Ro-
denbeck et al. 2018), the existence of at least one plausible alternative explanation for
the observed TTV effect of Kepler-1625 b, and the serious doubts that we have about the
∆BIC as a reliable metric at least for this particular data set lead us to conclude that the
proposed moon around Kepler-1625 b might not be real. We find that the exomoon hy-
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3.4 Conclusions

pothesis heavily relies on a chain of delicate assumptions, all of which need to be further
investigated.

A similar point was raised by Teachey and Kipping (2018), and our analysis is an
independent attempt to shed some light on the “unknown unknowns” referred to by the
authors. For the time being, we take the position that the first exomoon has yet to be
detected as the likelihood of an exomoon around Kepler-1625 b cannot be assessed with
the methods used and data currently available.
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4 Detection of Exomoons using Transit
Variations

4.1 Observable Transit Variations

Applying the full detection and characterization method used in Chapters 2 and 3 to many
transiting exoplanets to find moons would be prohibitively expensive with respect to used
computational resources and needed human oversight and interpretation.

Consequently we turned our interest to possible ways to detect exomoons using sim-
pler and less resource-intensive methods. In the following I will describe a new method
to possibly detect exomoons, derived from the already developed method of using transit
timing and duration variation to search for exomoons.

Kipping (2009) proposes to use the variation of the midpoint and duration in the tran-
sits of a system to detect exomoons (called transit timing variation, TTV and transit du-
ration variation, TDV). When searching for TTVs and TDVs, the duration and midpoint
of each transit are fitted individually. The midpoint and duration of each transit is then
compared to the midpoint and duration from a global fit over all transits in the light curve.

The idea of TTVs and TDVs as exomoon indicator is based on the idea that the planet
moves periodically around the planet-moon barycenter. Specifically, the TTV and TDV
variations are phase-shifted to each other, which leads Heller et al. (2016b) to suggest
to look for an ellipse-like pattern in the TTV-TDV space of a system. However, this
approach ignores the contribution of the moon transit to the total light curve. The moon
transit generally has a different midpoint and duration compared to the planet transit,
stemming from the orbital orientation of the two bodies. If the planet and moon transit
overlap, this leads to an overall transit shape that can not be described by the planet-only
transit model. When trying to fit that light curve with the planet-only model, one will
generally not recover the true midpoint and duration of the planet transit, but slightly
different ones.

Szabó et al. (2006) explore the effect a moon transit has on the photometric center of
the combined transit, which is defined as

∑
i ti∆mi/

∑
i ∆mi, where ti are the times at which

the light curve is measured and ∆mi the relative dimming of the light curve at that time.
Simon et al. (2007) derive from this a photometric TTV, which they call TTVp. Following
that notation, we refer to the TTV and TDV due to the movement around the planet-moon
barycenter as TTVb and TDVb and the TTV and TDV due to the existence of a moon
transit as TTVp and TDVp.

If the planet and moon transits are close together, the depth of the transit also changes.
If the planet-only model is fitted to the light curve, this results in a larger fitted planet-
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to-star radius ratio. We refer to the variation of this quantity as the planetary radius
variation, PRV.

4.2 Transit Variations for Different Moon Phases

To test this change in the TTV, TDV and PRV, I generate light curves with a single transit
of a Jupiter-sized planet and moon of variable size in a 30 d orbit around a sun-like
star. The moon’s period is Ps = 3.55 d, the same as Europa’s period around Jupiter. I
let the moon phase vary from 0 to 1. For each moon phase I fit a planet-only model
to the light curve, where only the radius ratio r, the transit duration tT and the transit
midpoint tmid are allowed to vary. The other parameters (impact parameter, period and
limb darkening parameters) are kept constant. This is meant to simulate a situation where
the non-changing parameters can be found by fitting the transit model to the global light
curve with multiple transits.

To distinguish between the barycentric and photometric variations, we test three dif-
ferent combinations of moon mass and radius. To only retain the barycentric effect, I set
the moon radius to 0 and the moon mass to 1 M⊕, for the photometric effect I set the
moon mass to 0 and the moon radius to 1 R⊕. Finally, for the combined effect, I set the
moon radius to 1 R⊕ and the moon mass to 1 M⊕. I repeat this test for two different moon
inclinations is = 0 and is = 0.2.

Fig. 4.1 shows the results of this test. The barycentric component of the TTV and TDV
show the sinusoidal variations expected from the circular orbit, and form the an ellipse
in the TTV-TDV space (panel d)) as described in Heller et al. (2016b). However, the
photometric component of the TTV and TDV signals have roughly the same amplitude as
the barycentric component, but have a more complicated shape.

The photometric component of the TTV signal has almost a constant amplitude of
20 s for most of the moon phases except when the moon aligns with the planet. The
sign of the photometric TTV signal changes depending on whether the moon transit takes
place before or after the planetary transit. The photometric TTV shifts the transit in the
opposite direction compared to the barycentric one. This leads to diminished amplitude
of the total TTV signal. The inclination has only an effect when planet and moon are
close conjunction and a occultation occurs at low inclinations.

Outside of conjunctions, the photometric TDV signal depends only on the time dif-
ference between planet transit and moon transit. The further apart planet and moon are,
the larger the TDVp signal is. During conjunctions the transit duration is lowered if the
moon overtakes the planet and raised if the planet overtakes the moon. The occurrence of
a occultation has a strong effect on the TDVp signal. The TTV-TDV ellipse in TTV-TDV
space becomes much more complicated if the photometric TTV and TDV components are
taken into account. The figure traced by the total TTV and TDV signal no longer has any
recognizable features and will also depend on the relative strength of the photometric and
barycentric components.

The PRV signal has only a very small barycentric component, and it only manifests
if the moon is inclined. It is caused by the movement of the planet around the planet-
moon barycenter changing the planet’s impact parameter. Due to the limb-darkening the
planet blocks less light if the impact parameter is higher and appears to have a smaller
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Figure 4.1: Transit parameter variation due to the presence of a Earth-sized moon in 3.55 d
orbit around a Jupiter-sized planet in a 30 d orbit around its star. We separate the effect
due to the planet orbiting the planet-moon barycenter and the effect of the presence of the
moon transit by setting the moon radius to 0 (top of each panel) or the moon mass to 0
(center of each panel). The bottom of each panel shows the combined effect. Panel a)
shows the TTV signal, panel b) the TDV signal and panel c) the PRV signal for different
moon phases. Panel d) shows the TTV and TDV signal in TTV-TDV space.
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radius. The PRV signal of the photometric component depends on the time difference
between planet transit and moon transit. When planet and moon are in conjunction, but
inclined such that no occultation occurs, the two transit curves completely overlap and
form an “effective” transit curve where the blocked area is the combined blocked area
of the two bodies. For the used planet-moon system, the expected PRV signal would

then be
(√

R2
p + R2

s − Rp

)
/R? = 408 ppm, which is the amplitude we observe in Fig. 4.1.

When planet and moon are separated further, this amplitude drops. If a occultation occurs
during transit, the total area where light is blocked is smaller, meaning that the PRV is
also smaller.

4.3 Transit Variations in Observed Transits
Next, we look at the TTV, TDV and PRV signal in light curves with a series of transits. I
generate a synthetic light curve with a length of 2 years. At a planetary orbit of 30 d, this
means there are 24 transits in the total light curve. For each of the transits I fit a planet-
only model as described above. Fig. 4.2 shows two cases: In one, no noise is added
to the generated light curve and the cadence (how often the light curve is measured) is
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Figure 4.2: PRV, TDV and TTV of a series of transits in a simulated light curve over a
time of 2 years. An Earth-sized moon orbits its Jupiter-sized planet in a 3.55 d orbit. The
planets orbit around the sun-like star is 30 d for a total of 24 transits. The moon has either
no inclination (is = 0) or a slight inclination to avoid planet-moon occultation (is = 0).
For each of the three indicators the time series and its autocorrelation is shown. Left:
No noise is added to the light curve. The cadence of observation is 25 s. Right: Noise
corresponding to a mV = 8 sun-like star observed with the Kepler space telescope at a
cadence of 29.4 min.
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set to 25 s. In the other case, an observation of a sun-like star with apparent magnitude
mV = 8 using the Kepler space telescope is simulated. The cadence is 29.4 min, photon
and instrumental noise is added as white noise with an amplitude of 9 ppm (Koch et al.
2010). Additionally, granulation noise is added according to the model in Gilliland et al.
(2011), which models the granulation power spectrum.

Measuring the TTV, TDV and PRV signal in the case of no noise reveals one additional
complication compared to looking at the variation with the moon phase: The moon orbits
its planet multiple times from one transit to the next. This means that the moon phase at
the next transit can be completely different from the last one, depending on the exact ratio
of the barycenter orbit period and the moon orbit period Pb/Ps. If we write this ratio as
the sum of an integer n and the remainder r, Pb/Ps = n+ r, it becomes clear that the moon
phase advances by r from transit to transit. For the used system, r = 0.45, meaning the
moon will advance a bit less than half an orbit every transit.

The means that we do not recover the phase-dependent TTV, TDV, and PRV signal,
but an aliased version thereof, as can be seen very clearly in the noise-less TTV signal.
The TTV and TDV signals are barely visible in the case of added noise, however the
autocorrelation of the TDV signal still shows a sine-like variation. The PRV signal is
clearly visible, independently of whether an occultation occurs or not. Its autocorrelation
indicates a periodicity in the signal around every 10 transits.

In summary, we find that the previously proposed transit timing and duration variation
might not be reliable indicators for the presence of an exomoon. We do propose the
planetary radius variation as an additional exomoon indicator. The biggest source of false
positive exomoon detections using the PRV indicator would most likely be long term
stellar variability, e.g. caused by stellar rotation.
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5 Discussion

In the following I will discuss the results from Chapters 2, 3 and 4. I also discuss two
topics that are not touched upon in the chapters that form the core of this thesis, but are
nevertheless worthwhile to consider in the context of hunting exomoons: I discuss the
interplay between star, planet and moon parameters and how a global model to determine
all of them at the same time can be useful. I also shortly give an outlook how machine
learning might be used as a possible tool for exomoon detection.

5.1 The Exomoon Candidate around Kepler-1625 b
One of the key findings of Rodenbeck et al. (2018) (Chapter 2) is a roughly 10-20%
false positive rate in the detection of exomoons when we inject artificial planet and moon
transits into real light curves of Kepler-1625, compared to a 40% true positive rate (see
Sec. 2.3.2), suggesting a better than even chance to have found a genuine moon once
a detection has been made. This however neglects the occurrence rate of such massive
moons. It stands to reason that massive moons are rare, otherwise the first detection of
an exomoon would probably have happened around one of the brighter stars observed by
Kepler. With a low occurrence rate of massive moons a false positive rate of 10% would
produce much more false positives in total than genuine detections with a true positive
rate of 40%. For smaller moons the ratio of false positive rate and true positive rate will
likely be larger for a given system.

In Sec. 2.2.4.2 we also test our exomoon detection/characterization method on syn-
thetic data using white noise at different noise levels. This test shows no false posi-
tives when a planet without moon is injected. This implies that the false positives in the
injection-retrieval experiment are due to the detrending methods used, non-white noise
components in the light curve or both. A detailed modeling of the Kepler-1625 light curve
might be able to reduce the false positive rate and simultaneously lower the overall noise
level of the light curve. For some of the synthetic light curves in the injection-retrieval ex-
periment, the classification whether it contains a moon depends on the detrending method
used, which also points towards the detrending being one of the possible sources for false
positives.

We find in Heller et al. (2019) (Chapter 3) that the evidence in hugely in favor of the
one-moon hypothesis. However, there are multiple points that leads us to doubt these
results. Teachey and Kipping (2018) describe that the evidence for a moon using only
Kepler photometry almost vanishes compared to the results in Teachey et al. (2018) due
to changes in the Kepler light curve extraction algorithm. Our own best-fit model light
curves also show a different moon signature compared to the best-fitting ones in Teachey
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and Kipping (2018) for the Kepler transits, both when using the light curve where we
detrended the Hubble data ourselves and the detrended light curve provided by Teachey
and Kipping (2018). This suggests that the potential moon signatures in the Kepler light
curve only play a marginal role in determining the likelihood of the presence of the moon.

This leaves two main arguments pointing towards the existence of the moon: The dip
in the Hubble light curve after the main transit and that the Hubble main transit is 78 min
earlier than predicted from the Kepler transits. The possible moon transit in the Hubble
data is cut short by the end of the Hubble observations. In fact, the best-fit model light
curves in Fig. 3.2 show two different possibilities depending on the how the Hubble light
curve is detrended. In one case, the moon transit ends just as the Hubble observation
ends, in the other the moon transit is still ongoing at the end of observation. Teachey and
Kipping (2018) observe a similar effect for different detrending methods. It is not clear
from the Hubble light curve if the flux level returns to a higher level than during the moon
transit afterwards.

The TTV of 78 min might have been caused by a second planet closer to the star, as
described in Sec. 3.3.2. Radial Velocity observations in the future might be able to tell if
a second planet is present and responsible for the observed TTV.

Given the work and analysis needed to validate or refute a single candidate (Teachey
et al. 2018, Teachey and Kipping 2018, Rodenbeck et al. 2018, Heller et al. 2019), a
large number of false positives would be crippling to any effort to find and validate more
candidates.

5.2 Transit Variations as Exomoon Indicators

The ratio of the barycentric and photometric contributions of the TTV signal depends
on the density of the moon: At low densities, the photometric component is stronger,
at high densities the barycentric component. For moons with terrestrial densities (3 −
5 g cm−3), the components almost cancel out (see Fig. 4.1(a)) and the TTV signal caused
by an exomoon might be very hard to observe. In contrast to the TTV and TDV signal,
the PRV signal is always dominated by the photometric component. This means that it
always retains the same shape, independent of the moon’s density, although, of course,
the amplitude depends on the moon’s radius.

If the inclination of the moon is such that occultations can happen during the transit,
the observed TTV, TDV and PRV signal gets a lot more complicated since an occultation
changes the TTV, TDV and PRV signal on an amplitude comparable to the changes out-
side of an occultation, but only in a very small regions of the moon phase. For example,
the PRV signal changes from an almost sine-like signal to a more complex signal. These
more complex shapes make the detection of the variations in an automated way harder.

The existence of the periodic TTV, TDV and PRV signals become only visible once
at least one or two full variation cycles have been observed. This means that this new
exomoon indicator works best in the context of long term transit searches such as Kepler
and PLATO.

Localized features on a star’s surface such as spots or faculae can also cause variations
in the measured exoplanet radius. Hence, any search for moon-induced PRVs needs to
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Figure 5.1: Posterior probability of the stellar density of K2-32. The posterior probability
was obtained using an MCMC algorithm fitting the star’s entire K2 light curve with the
transits of either all four planets (black), the biggest planet (dark gray) or only the new
planet (light gray). The stellar density is mostly constrained by the transits of the biggest
planet, however the the combined fit is still better. The transits of the new planet constrain
the stellar density only lightly.

include the analysis of stellar variations and verify that any candidate signals are not
caused by the star.

5.3 The Star-Planet-Moon Connection
The determination of stellar, planetary and moon parameters are interconnected. By fitting
the transit shape of a planet we can for example calculate its star’s maximum density (see
e.g. Seager and Mallén-Ornelas 2003). In the other direction, accurate values for the
star’s mass and radius from other sources help constrain the transit parameters, mostly by
allowing for a better fit of the impact parameter.

In an upcoming work1 I use the fact that there are multiple planets with transits in the
system to determine the stellar density of K2-32. For a system with only one transiting
planet, the stellar density (which can be used as an alternative to a/R? in a transit fit) is
normally strongly correlated to the impact parameter. However, in a system of multiple
transiting systems, the different transit shapes help in constraining the stellar density (see
Fig. 5.1). The well-defined stellar density in turn helps to constrain the maximum transit
duration for a given period and consequently, the impact parameter of the planets and the
radius ratios of the planets.

A combined fit of exoplanet and exomoon parameters can also help in determining the
mass of the planet and moon, which is not possible with transit fits of a planet only. Kip-
ping (2010) gives an expression for the planet and moon’s density in terms of the observed
transit parameters, which can be applied to the parameter we found for Kepler-1625 b. Us-

1The Transit Least Squares Survey I. Discovery and validation of an Earth-sized planet in the four-planet
system K2-32 near the 1:2:5:7 resonance: Heller, R, Rodenbeck, K, Hippke, M, submitted to A&A. We use
the Transit Least Squares algorithm described in Hippke and Heller (2019) to detect a small exoplanet that
has been missed by the Box Least Squares algorithm and characterize it.
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Figure 5.2: The mass distribution of the exoplanet Kepler-1625 b (left) and of its moon
candidate (right). The distribution is calculated from the posterior parameter distribution
of the MCMC run in Chapter 3.

ing a stellar radius of 1.793 (Mathur et al. 2017), this gives posterior distributions for both
the planet and moon masses (see Fig. 5.2). The moon’s mass is with 95% confidence
smaller than 19.3 M⊕, which is in agreement with a Neptune-sized body. However, the
distribution is heavily skewed towards very light moons and planets, which raises ques-
tions about the physical plausibility of those solutions. The planet mass Mp = 0.44+1.34

−0.30 MJ

is also not very well constrained. Extrapolating from already observed exoplanets, a gas
giant with the radius of Kepler-1625 b is expected to have a mass between 0.15 and 6.3 MJ

(Howard 2013), our result for the mass of Kepler-1625 b is within the expected region.
Using the parameter set with the maximum likelihood, the planet mass is Mp = 3 MJ and
the moon mass Ms = 13 M⊕. This would cause a maximum TTV signal of around 20 min
(Kipping 2009), which is smaller than the 78 min TTV discussed by Teachey and Kipping
(2018).

5.4 Exomoon Detection using Machine Learning
Machine learning has shown great potential in the last few years to quickly and efficiently
sort and classify all kinds of data. Machine learning could be used to find possible moon
candidates in a large number of transit light curves. To test the viability of this approach,
we test machine learning2 on a simple test case: A planet-moon system similar to Kepler-
1625 b, with white noise added.

I generate data sets where two parameter are varied: the radius of the moon Rs and the
amplitude of the white noise we add on top of the light curve. I use a modified version of
the model used in Rodenbeck et al. (2018) to generate the transit light curves, either with

2The following section describes the results of the article Detectability of Exomoon Candidate Signals
Using 1D ConvNet with Total Variation Loss by Alshehhi, R., Rodenbeck, K., Gizon, L. (2019), in prep.
LG proposed the research idea. RA proposed the the Machine Learning algorithm and analyzed the data
and the results. KR prepared the simulated data and the BIC analysis. All authors contributed to the final
manuscript.
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5.4 Exomoon Detection using Machine Learning

parameter value
star radius R? 1 R�
star mass M? 1 M�

limb-darkening (quadratic) q1 = 0.6, q2 = 0.4
planet radius Rp 12 R⊕
planet mass Mp 318 M⊕

barycenter period Pb 287 day
moon radius Rs 0.25 − 4.75 R⊕

moon density ρs 1 ρ⊕
moon semi-major axis aps 20 RJ

moon phase ϕs 0 − 1 (random)

Table 5.1: Star, planet and moon parameters used to generate the data sets of light
curves for machine learning training and testing. The orbital configuration is close to
that of Kepler-1625 b, around which an exomoon candidate signal was found (Teachey
et al. 2018, Teachey and Kipping 2018). The quadratic limb-darkening model uses the
parametrization from Kipping (2013).

a moon or without a moon. The moon’s orbit is not inclined relative to the observer, and
planet-moon occultation was added to the model. For the parameters used see Table 5.1.

In one data set the moon radius is varied between 0.25 and 4.75 R⊕, while the noise
level is fixed at 100 ppm. The moon radius is varied in steps of 0.5 R⊕. For each radius
100 000 realizations of the light curve are generated. The added noise is a different re-
alization for each light curve. The moon phase is chosen randomly for each realization.
1 000 000 light curves without a moon are generated, equal to the total number of light
curves with a moon in this data set.

In a second data set, the moon radius is fixed at 1 R⊕, while the noise level is varied
from 25 ppm to 475 ppm insteps of 50 ppm. As in the first data set, the noise and moon
phase is newly draw for each realization. For each noise level 100 000 light curves with
moons are generated, and 1 000 000 light curves without a moon, but with different noise
levels are generated.

Each subset (each radius and noise level) is divided into two set: the training set
and the test set. For the machine learning a Convolution Neural Network (ConvNet,
Krizhevsky et al. (2012), Liu and Deng (2015)), implemented by Rasha Alshehhi, is used.
The ConvNet is trained on the training set and evaluated on the test set. I perform an
analysis similar to the one in Rodenbeck et al. (2018) in which I try to determine if a moon
is present or not on 100 light curves of each test set. I use the ∆BIC (with a threshold of
0) to decide if a moon is present or not.

The light curves are classified into four categories: True positives, when the algorithm
correctly decides that a moon is present for a light curve containing a moon, true nega-
tives, when the algorithm correctly decides that no moon is present, false positives, when
the algorithm incorrectly finds a moon in a light curve containing no moon and false neg-
atives, when the algorithm incorrectly decides no moon is present even if the light curve
contains a moon.

Fig. 5.3 shows the resulting performance metrics of the ConvNet analysis and my
own “classic” analysis. Both methods have no problem detecting very large moons or an
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Figure 5.3: Performance metrics of the ConvNet algorithm (blue) and my own analysis
using the ∆BIC (orange). Left: The noise level is varied from 25 to 475 ppm, while the
moon radius is kept constant at 1 R⊕. Right: The moon radius is varied from 0.25 to
4.75 R⊕ while the noise level is kept constant at 100 ppm. For the two methods in each
panel the true positive rate (TPR, solid line) and the true negative rate (TNR, dashed line)
is shown.

Earth-sized moon at very low noise levels. My own analysis overall is very conservative
for larger noise levels and smaller moons. The true negative rate stays constantly close to
100 %, while the true positive rate drops to 0 % at a noise level of 275 ppm and a moon
radius of 0.25 R⊕. The ConvNet algorithm shows a very good performance even for high
noise levels. For a noise level between 350 and 500 ppm the true positive rate and true
negative rate is still at 70-90 %.

5.5 Outlook
Kepler-1625 b’s orbit only lasts three-quarters of a year. This means that transits of this
exoplanet can be observed quite frequently, with the next transit being in May 2019. It
will be interesting to see if more observed transits will shift the probabilities for or against
a moon.

In the previous section I described a first attempt to use machine learning as a tool
to detect exomoons. We only tested machine learning in a simple setup, with only one
planet/moon configuration and white noise. To apply exomoon detection using machine
learning on real data, the machine learning setup would need to be trained and tested
with different noise types and generalized to more system configurations (different orbit
configurations, planet sizes, number of observed transits).
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