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Abstract

Proteins are macromolecules that perform multiple functions. They are not rigid molecules,
but instead proteins can change their conformation to perform critical tasks driven by bind-
ing small ligands, by assembling into large macromolecular complexes or by physiological
factors. Characterization of protein conformational change and analyzing transitional
pathways along protein conformational states are essentially tasks for computational biol-
ogy. Here we propose probabilistic models to characterize protein conformational change.
The first model disentangles protein structure into rigid bodies, whereas the second model
proposes the probabilistic network model for the transitions between conformational
states. Our first model is a generative process using Gaussian mixture models to represent
rigid domains, which generated the input structures through spatial transformation. To
estimate our model parameters, we use two approaches: using deterministic Expectation-
Maximization algorithm and stochastic Gibbs sampler. The second model is an elastic way
to expand the application spectrum of our model. The model uses anharmonic springs
that involve the molecular distances that are allowed to break in a stochastic fashion.
The function of the spring potential is inferred from a statistical analysis of a database
of large-scale conformational changes in proteins. In addition we deploy our model in a
webservice, as well as we deposit a precomputed dataset of rigid domains and a selective
dataset of conformational pathway between conformational states. Finally, we employ
graph-based algorithms to solve the problem of a model-free base solution. This work is
not limited to biological applications, but can also be applied to robotics and computer
vision.
This thesis is based on the following publications and manuscripts, respectively:

• Thach Nguyen, Michael Habeck, A probabilistic model for detecting rigid domains
in protein structures, Bioinformatics, Volume 32, Issue 17, 1 September 2016, Pages
i710–i717, https://doi.org/10.1093/bioinformatics/btw442

• Habeck M, Nguyen T. A probabilistic network model for structural transitions in
biomolecules.Proteins. 2018;86:634–643.https://doi.org/10.1002/prot.25490

• Linh Dang, Thach Nguyen, Michael Habeck, and Stephan Waack. A graph-based
algorithm for detecting rigid domains in protein structures. Submitted

• Thach Nguyen, Christian Böhm, Michael Habeck, A computational web server for
segmenting protein structure into rigid bodies, in preparation.
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Chapter 1

Introduction

1.1 Protein structure and protein dynamics

Proteins are biological polymers, which are the building blocks and fundamental units
of all life forms. Fibrous protein such as keratin, collagen create the structure of the cell
and the living organ. Proteins perform most of the critical and vital tasks in living cell.
Enzymes catalyze the biochemical reactions. The immune system uses antibodies to bind
antigens. Hemoglobin and myoglobin store and transport oxygen, rhodopsin senses light,
titin, and other motor protein build animal muscle to generate force. Protein is composed
of 20 different natural amino acids that are encoded in the primary structure. In the native
state, proteins are folded into three-dimensional (3D) structures, each 3D structure called
a conformational state. Protein structure plays an essential role in understanding protein
function. Several experimental methods are used to determine protein structure.
From the 1950s, the first protein structure myoglobin was elucidated by Xray crystal-
lography (Kendrew et al. (1958)). X-ray crystallography is the primary method used to
determine protein structure and has been used to solve more than 80 percent of the protein
structures. The requirement of growing protein crystals, which may alter the structure,
is the main limitation of the technique. In contrast, Nuclear Magnetic Resonant (NMR)
can observe protein structure in their native states in solution (Wüthrich (1976), Wüthrich
(2001)). NMR can capture protein conformational dynamics, however, using NMR to
solve large protein structure and the requirement of a large purified sample are the main
challenges of the method. These experimental methods create a protein database (PDB),
which is an important data source for biologists. The three-dimensional structures of the

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Timescale of dynamic processes in proteins and the experimental methods that
can detect fluctuations on each timescale (Henzler-Wildman and Kern (2007))

protein, which are captured in "snapshots" of Xray crystal image or EM Map may give the
wrong impression that protein structures are rigid. In physiological conditions, proteins
are dynamic and flexible. The internal dynamics of protein structures can be classified
into three main categories, which vary in amplitude and time scale (Voet and Voet (2010)).

• Atomic fluctuations, e.g., the vibration of individual bonds, which has a time scale
from femtosecond (10−15s) to tens of picosecond (10−11s) and with a tiny spatial
amplitude between 0.01 to 1 Å. These fluctuations can be quantified by the crystal-
lography B-factor in Xray data.

• Collective motions are the movement of side-chains; have a longer time scale range
from picosecond (10−11s) to millisecond. These dynamics have a larger amplitude
between 0.1 and less than 5Å.

• Large conformational changes, e.g., enzyme dynamics, referred to as allosteric that
involve higher amplitude movements between 0.5 and several tens Å. The time scale
varies from nanosecond to 103s. In this work, we investigate large conformational
changes.

Protein dynamics are important but difficult to study. Among the three categories, the third
dynamic is the most difficult to observe in both experimental and computational studies.
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NMR is the experimental method that can study these dynamics, but it has limits, as we
mentioned before. The recent rise in the development of Cryogenic Electron Microscopy
(CryoEM) can determine very large protein molecules in different conformational states
(Frank (2002)). It can capture multistate of conformation. FRET (Hanson et al. (2007))
observes protein conformational change in their native state. These experimental methods
provide information about protein dynamics.
Molecular dynamics (MD simulations) is an alternative way to simulate these fluctuations.
MD simulations model the dynamics of proteins by applying physical forces such as
electrostatic or hydrophobic and hydrophilic forces. There are several force fields which
are well configurated for MD simulations. However, studying large conformational
changes beyond a microsecond is still challenging because of computational cost. Figure
1.1 summarizes the entire spectrum of protein dynamics and methods used to study these
dynamics.

1.2 Models for conformational change

1.2.1 Protein domains

The structure of proteins is organized into four levels. The primary structure consists of
the list of amino acids. The second level, called secondary structure to classify protein
structure into structural segments: alpha-helix, beta-sheet, and random coil. The third
and fourth levels are tertiary structure, and quaternary structure refers to the whole
structure of the polypeptide chain of a protein engaged in more complex interaction. In
the tertiary structure, proteins consist of domains. Although protein domain has been a
general concept in biology, there are several definitions of domain(Ponting and Russell
(2002)). Protein domains can be defined on the sequence level using sequence comparison
methods and correspond to evolutionary conserved parts of proteins. One of the first
protein domains in the sequence database Pfam (Sonnhammer et al. (1997)) originally
classified proteins into families. It can also elucidate the sequential protein domain using
multiple alignments by the hidden Markov model. Protein domains can also be defined
on the structural level. Under the structural definition, domains are compact, globular
units of proteins that exist and fold independently. This is more robust because structure is
more conserved than sequence. The SCOP (Structural Classification of Proteins database
(Murzin et al. (1995))) and CATH (Class, Architecture, Topology, and Homologous (Orengo
et al. (1997))) are two protein classifications that classified protein structure into several
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Figure 1.2: Comparison of Pyruvate phosphate dikinase (PPDK) domain from SCOP,
CATH, and our structural domains. Left: SCOP domain notation SCOPID: 8037995,
8037992, 8037990. Middle: CATH domain notation, CATH Code: 3.30.1490.20. Our rigid
domains for two conformations PDBID: 1KC7(A) and 2R82(A)

categories mostly by their folding type. The classifications are based on the secondary
structure, such as mainly alpha-helix, mainly beta-sheet, the mixture of alpha-helix and
beta-sheet, and categorize by folding type in semi automatical way with less consideration
for domain identification. Besides, domains from SCOP and CATH are diverse. In some
situations, for example, PPDK in Figure 1.2 below, domains from SCOP and CATH are
different. Our domain is identified if there is a significant change in internal distance of two
conformations. Therefore our model requires a minimum of two protein conformations,
which have a large conformational change. The domain identification relies on analyzing
the different distance matrix (Nichols et al. (1995)). The difference distance matrix is
independent of the heterogeneous coordinate. To extend for multiple structures, we use
difference distance matrix (DDM) which is defined as

∆nn′ =
1

M

∑

m

|dmnn′ − dnn′ | .

Where dmnn′ is the distance between atom n and n′ in conformation m, dnn′ is the average
distance over M conformations. Rigid domains correspond to patches in which ∆nn′ is
close to zero because the internal structure does not change.
In Figure 1.2, we compare our domains with SCOP and CATH in large protein PPDK.
Our domains in this example are similar to domains from SCOP. SCOP and CATH often
identify domains as globular subsets from a single structure. However, in another example,
Adenylate Kinase, Figure 1.3 shows our structure domain disagree with domain from
SCOP and CATH. CATH and SCOP usually consider small proteins as single-domain
proteins. Identifying dynamic domains is essential for understanding the biological
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Figure 1.3: Comparison of Adenylate Kinase (AdK) domain from SCOP, CATH, and our
structural domains. Left and Middle: Our domain notion PDBID: 4AKE(A) and 1AKE(A).
Right: SCOP and CATH domain, SCOP ID: 8058333, CATH Code: 3.40.50.300

process, such as studying the macromolecule interaction, active site identification. One
example of a protein domain is the conformational change of chaperonin GroEL/GroES in
Figure 1.4. The chaperonin supports the proper folding of nascent polypeptide. Figures
from left to right shows GroEL with GroES and GroEL without GroES (holo and apo form).
Those allosteric conformational changes happen with GroES binding. Each GroEL chain
is composed of three domains, the Apical, Intermedia, and Equatorial domain (Xu et al.

(1997)). These domain structures can be viewed as rigid blocks when we consider their
internal structure.

1.2.2 Computational methods and structural database

One of the first attempts was made by Gerstein and coworkers to discover the protein con-
formational change and classify them into hinge and shear motion (Gerstein et al. (1994)).
Their works developed into algorithms and databases; one of them is the Rigidfinder
(Abyzov et al. (2010)), which defined the rigidity criterion for small segmentations,
using dynamic programming to expand the rigidity condition to discover the rigid
domain. However, the program uses the cutoff threshold, which is not easily estimated in
general. The other algorithms are StoneHinge(Keating et al. (2009)), FlexOracle (Flores
and Gerstein (2007)) which use the energy minimization to determine the cutting point
of segmentation. Their works published as Molecular Motion Database (MolmovDB)
contain many trajectories of conformation changes (Gerstein and Krebs (1998)). Dyndom
(Hayward and Berendsen (1998)) focuses on determining the protein structure domain
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Figure 1.4: Allostery in GroEL/GroES from Xu et al. (1997). Bottom, the structure of
two conformations GroeEL color by domain. Red: Apical, Blue: Intermediate, Green:
Equatorial
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and the hinge axis. This method uses K-mean to cluster the rotational vector and use the
quality assessment to tune the number of clusters. Over the years, Dyndom database has
assembled computational results from its user uploads. The dataset consists of pairwise
structures of proteins in different conformational states, which gives us reliable data to
test our algorithm. However, Dyndom has high redundancy, and the algorithm supports
only a pair of structures are the limitation of this method. Other works for identifying
the rigid regions in proteins such as Hingefind(Wriggers and Schulten (1997)), identifies
and characterizes domain movements. Hingfind partitions two input structures into
subsets and determines the best-fit Root Mean Square Deviation (RMSD) use Kabsch’s
algorithm (Kabsch (1976)). Recently Spectrus (Ponzoni et al. (2015)) used the spectral
cluster to analyze the variance distance matrices in order to determine rigid parts of
protein structures. The more ambitious problem is disentangling rigid bodies from a
single structure by using normal mode analysis for a single structure firstly proposed in
Hinsen (1998) and using elastic network model HingeProt (Emekli et al. (2008))). However,
it is unclear when the mode spectrum spreads into more than two modes.
Those works give an overview of determining protein rigid and hinge position. However,
none of these works proposes a model for protein conformational changes, which are
essential for quality assessment as well as to determine the fitness of new data to the
model. To study large conformational change, in my thesis, I proposed two probabilistic
models that cover the whole spectrum of protein dynamics. The first model is the rigid
domain model provides a coarse grained view of large scale dynamics in terms of rigid
body movements. The second model is the adaptive network model in principle allows
for full flexibility but tries to preserve the initial structure as much as possible.

1.2.3 Probabilistic model and Bayesian Inference

Our approach uses probabilistic models for conformational changes in protein. The input
data of our model is experimental three-dimensional structures X . We model using
probability distributions a set of parameter θ. The model use probability to quantify the
uncertainty of our assumption. We use Bayesian statistics to infer the model parameters
from the data. We employ Bayes rule for data X and model parameter θ:

p(θ|X) =
p(θ)× p(X|θ)

p(X)
(1.1)
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In this equation, the posterior distribution p(θ|X) is the distribution of parameters given
the data. p(X|θ) is the likelihood which quantifies the fitness of data given model parame-
ters. The prior distribution p(θ) is a distribution of the parameters without the data. The
constant p(X) is the marginal likelihood or "model evidence".
From 18th century Bayesian statistic is a controversial view of probability. Classical or fre-
quentist view probability as repeatable events. Baysian statistic quantifies the uncertainty
of the event or degree of our belief (Bishop (2006)). Under the classical view, the model
parameter is fixed; therefore, the likelihood p(X|θ) is the function of data X . In contrast,
there is only a single dataset under the Bayesian, and the likelihood is the function of
parameter θ. The convenience of the Bayesian method is that we can cooperate with prior
distributions. In practice, the prior distribution is selected in the conjugate form of the
likelihood for mathematical convenience.
To infer the model parameters θ, we use two algorithms. The first approach uses Expecta-
tion Maximization (EM) (Dempster et al. (1977), Hirsch and Habeck (2008)) to estimate the
model parameter in a deterministic way analytically. To find out the maximum of likeli-
hood p(X|θ) with given data X , EM perform expectation step (E step) and maximization
step (M step) iteratively.
The second approach employs Gibbs sampling (Geman and Geman (1984), Nguyen and
Habeck (2016)) to sample the model parameters stochastically. The Bayesian infer the
model parameter θ use data X , likelihood p(X|θ) by including a prior p(θ) over the pa-
rameters. To estimate a set of model parameter θ : (θ1, θ2...θn), Gibbs sampler generates a
Markov chain by sampling each parameter given the other parameters. An overview of
the Gibbs sampler is presented in Algorithm 1.

Algorithm 1 Gibbs sampler
Require: Data X , number of Gibbs sampling iterations niter

Initialize θ : (θ1, θ2...θn)

for i = 1, . . . , niter do

Sample θ1 given (X , θ2, θ3 ..)
Sample θ2 given (X , θ1, θ3 ..) ...

end for

return θ
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1.2.4 Gaussian Mixture Model for protein conformational change

In our models, the protein structures are the ensembles of M three dimensional structures
with length N : X is an array size (MxNx3). The input coordinates are selected by the
coordinate of carbon alpha (Cα). To avoid the heterogeneous structure, we superimpose
all structures with one reference using Kabsch algorithm (Kabsch (1976)). Our first model
is a generative model to generate the input structures from the target structures by the
structural transformation.

Xmn ≃ RmkYkn + tmk if zn = k . (1.2)

The rotation matrix Rmk size (3x3) and the translation vector tmk transform positions of
the kth domain Yk to the mth structure Xm with latent parameter zn = k. In the update
version, we reduce the number of parameter by a single target structure Y . Model in
equation (1.2) above is only approximately. We model it by the Gaussian distribution with
mean RmkYkn + tmk and standard deviation σk:

p(Xmn|Ykn, Rmk, tmk, σk, Znk = 1) = N (RmkYkn + tmk, σ
2
k) (1.3)

where N (µ, σ2) indicates three-dimensional spherical Gaussian distribution has the mean
µ and the standard deviation σ.
The single Gaussian distribution can not characterize complicated data, which are spread
into different modes. To expand the capability of a Gaussian distribution, we use the
Gaussian Mixture Model (GMM), which is a combination of Gaussian distributions.

GMM(Xmn|θ) =
K
∑

k=1

wkN (Xmn|µk, σ
2
k) (1.4)

Where θ is the set of model parameter, wk is the weight of the k-th distribution which
satisfies

∑K
k=1wk = 1. There are two challenges when using GMM. First, before using

GMM, we have to specify the number of its component K. Second, both two methods EM
and Gibbs sampler we use to estimate the model parameters depends on the initial step.
We address the solution for these problems in Chapter 2.

The mixture model is not limited only to Gaussian distributions; in general, it can construct
the model from other distributions. For example, in the second model, we introduce a
two-component mixture of generalized lognormal distributions. The flexibility of the
mixture model gives us a powerful tool to characterize complicated data.
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1.2.5 Model for structural transitions

The rigid body model we introduce above delineates protein ensembles into conserved
parts. To describe the full conformational pathway from limit experimental conformations,
we can use MD Simulations (Karplus (2002), Karplus and Kuriyan (2005)). However,
as we mentioned before high computational cost is the main drawback of this method.
Alternative method is using Gaussian Network Model (GNM) (Tirion (1996), Haliloglu
et al. (1997)). GNM models the macromolecule as an elastic spring network to study the
conformational change. First we study the interatomic distances r in each conformational
state. The GNM assume that the difference distance follow a Gaussian distribution.
Because the distance as well as distance ratio is non-negative, we can expand the Gaussian
distribution into the generalized lognormal distribution (GLN):

GLN(r; ρ, λ, β) =
β

2Γ(1/β)λ r
exp

{

− | ln(r/ρ)|β/λβ
}

(1.5)

GLN has three positive parameters ρ, λ, and β. β controls the shape of the distribution,
log ρ is the mean, median and mode. The scale parameter λ determine the variance of the
distribution var(ln r) = Γ(3/β)

Γ(1/β) λ
2. Using Bayesian inference, we can infer the parameter

ρ, λ, and β from data {ri} = {r1, . . . , rn}. Using the Jeffrey prior, the posterior distribution
is:

Pr(ρ, λ, β | {ri}) ∝
βn−1

ρ λn+1 Γ(1/β)n
exp

{

−
n
∑

i=1

| ln ri − ln ρ|β/λβ

}

. (1.6)

The network model for the structural transition is describe detail in Chapter 5.

1.3 Synopsis

This thesis consists of several chapters that propose different models of protein confor-
mational change. We begin with the first probabilistic model for segmenting protein
conformational change into rigid bodies (Chapter 2). Chapter 3 is our computational web
server, as well as a published dataset in the real application. In Chapter 5, we introduce
our probabilistic network model for structure transition in biomolecules. Chapter 4, we
introduce a new approach for model-free based on graph algorithms collaborate with Linh
Dang and Prof Stephan Waack. We discuss our results, and finally, we conclude this thesis
in Chapter 6, summarize our achievement, and give an outlook for our future research.



Chapter 2

Probabilistic model for detecting

rigid domains in protein structures

This chapter is the first research result from my Ph.D. study. Here we present a primitive
probabilistic model for segmenting ensemble protein into a set of small rigid bodies. This
chapter was published in Bioinformatics journal 2016. Cited as: Nguyen and Habeck 2016.

Own contribution:

• Concept and implementation of the algorithm and the code.

• Construct parser for the Dyndom dataset for test.

• All figures, tables.

• Manuscript in parts.
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Abstract

Motivation: Large-scale conformational changes in proteins are implicated in many important bio-

logical functions. These structural transitions can often be rationalized in terms of relative move-

ments of rigid domains. There is a need for objective and automated methods that identify rigid do-

mains in sets of protein structures showing alternative conformational states.

Results: We present a probabilistic model for detecting rigid-body movements in protein struc-

tures. Our model aims to approximate alternative conformational states by a few structural parts

that are rigidly transformed under the action of a rotation and a translation. By using Bayesian in-

ference and Markov chain Monte Carlo sampling, we estimate all parameters of the model, includ-

ing a segmentation of the protein into rigid domains, the structures of the domains themselves,

and the rigid transformations that generate the observed structures. We find that our Gibbs sam-

pling algorithm can also estimate the optimal number of rigid domains with high efficiency and ac-

curacy. We assess the power of our method on several thousand entries of the DynDom database

and discuss applications to various complex biomolecular systems.

Availability and Implementation: The Python source code for protein ensemble analysis is avail-

able at: https://github.com/thachnguyen/motion_detection

Contact: mhabeck@gwdg.de

1 Introduction

The function of many biomolecular machines involves internal

structural dynamics. Under physiological conditions, multiple con-

formational states are typically explored, some of which might fa-

cilitate structural transitions that are relevant for the biomolecule’s

function. There is a hierarchy of conformational changes in proteins,

ranging from smaller internal adaptations to large-scale global re-

arrangements of entire domains (Henzler-Wildman et al., 2007).

Large-scale conformational changes are often implicated in inter-

actions with other molecules. Therefore, to gain a deeper under-

standing of many cellular processes, it is crucial to detect and

rationalize these structural transitions.

Many large-scale conformational changes in proteins can be

described as rigid-body movements (Gerstein et al., 1994). Several

computational methods for detecting rigid domains in protein struc-

tures have been proposed. DynDom (Hayward et al., 1997;

Hayward and Berendsen, 1998) is a method for automated segmen-

tation into rigid domains based on an analysis of pairs of alternative

structures. A 3D version of the original 1D version has been de-

veloped (Poornam et al., 2009). A database with automated as well

as user-curated segmentations provides a rich resource for studying

conformational changes in proteins (Lee et al., 2003). MolMovDB

also provides a large collection of conformational changes and

morphs between alternative conformational states (Flores et al.,

2006). Spectrus (Ponzoni et al., 2015) is a recent method for detect-

ing rigid domains, and has been shown to be highly efficient and ac-

curate in challenging analyses involving large assemblies.

Most existing methods for finding rigid domains rely on an ana-

lysis of the difference distance matrix or the matrix of distance fluctu-

ations observed in alternative protein structures (e.g. (Abyzov et al.,

2010) or (Ponzoni et al., 2015)). A shortcoming of these methods is

that they often lack a statistical framework for parameter inference,

which makes it difficult, if not impossible to assess parameter uncer-

tainties or to compare alternative models quantitatively. Moreover,

most methods depend on algorithmic parameters, whose impact is

not always intuitively clear, and for which it is difficult to find param-

eter settings that work for a diverse range of structures.

Here we introduce a probabilistic model to detect rigid domains

in protein structures showing multiple conformational states. The

model explicitly implements the notion that movements in protein

structures can be rationalized in terms of rigid-body motions. We

develop an efficient Markov chain Monte Carlo algorithm to esti-

mate the model parameters within a Bayesian framework (Jaynes,

VC The Author 2016. Published by Oxford University Press. i710
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2003). The algorithm estimates the three-dimensional structures of

the rigid domains as well as their location. For a particular choice of

the prior probability over the segmentation variables, we obtain a

Gaussian mixture model for protein ensembles (Hirsch and Habeck,

2008). We also demonstrate that our sampling algorithm can be

used to detect the number of rigid domains in a data-driven fashion,

circumventing the need to choose the number of rigid domains be-

forehand. We test our algorithm by running it in an automated

mode on more than 3000 entries from the DynDom database and

observe high agreement for most examples. Finally, we present an

in-depth analysis of various examples of conformational changes in

large biomolecular assemblies.

2 Methods

We assume that we are given M experimental protein structures rep-

resented by N atom positions Xmn. The N � 3 matrix Xm stores all

atom positions that are used for the detection of rigid domains.

Typically, we use Ca positions to represent a structure, in which

caseN equals the size of the protein.

2.1 Gaussian mixture model for the detection of rigid

motions in biomolecules

Our goal is to find K rigid domains (1 � K � N) into which the

structures can be decomposed. The segmentation of the structures

into rigid domains is encoded as a binary N�K matrix

Z 2 f0;1gN�K satisfying
X

k
Znk ¼ 1, i.e. the nth position can be as-

signed to exactly one domain k only, indicated by Znk¼1.

Alternatively we can represent the segmentation using an integer-

valuedN-dimensional vector z 2 f1; . . . ;KgN, where zn indicates the

index of the domain to which the nth position has been assigned (i.e.

Znzn ¼ 1).

The structure of each of the K rigid domains is represented by a

N � 3 matrix Yk. We assume that the structure ensemble X is gener-

ated by rigid transformations of the domains

Xmn ’ RmkYkn þ tmk if zn ¼ k: (1)

Rigid transformations involve a global rotation and translation

of the domain. The transformed domains are patched together to

build the full structure Xm (see Fig. 1). That is, the rotation matrix

Rmk and the translation vector tmk map positions of the kth domain

Yk onto themth structure Xm whenever zn¼k.

Model (1) holds only approximately. We account for deviations

due to experimental errors or shortcomings of the model by assum-

ing a Gaussian error model, where each domain has its own error

parameter rk:

pðXmnjYk;Rmk; tmk;rk;Znk ¼ 1Þ ¼ NðRmkYkn þ tmk; r
2
kÞ (2)

where Nðl;r2Þ indicates three-dimensional spherical Gaussian dis-

tribution centered at l with a standard deviation r.

The complete likelihood of the entire structure ensemble is

pðXjY;R; t;r;ZÞ ¼
Y

k

ð2pr2kÞ
�3MNk=2e�

P

nznkD
2
nk=2r

2
k (3)

where we introduced

D
2
nk ¼

X

M

m¼1

jjXmn � RmkYkn � tmkjj
2; Nk ¼

X

n

Znk (4)

and denote sets of parameters of the same kind collectively by

R ¼ fRmk jm ¼ 1; . . . ;M;k ¼ 1; . . . ;Kg; Y ¼ fYk jk ¼ 1; . . . ;Kg, etc.

Bayesian inference allows us to incorporate prior information

about meaningful segmentations. The simplest assumption is that zn
are independent variables that follow a categorical distribution with

event probabilities wk 2 ½0; 1�;
X

k
wk ¼ 1. That is, Nwk is the size

of the kth rigid domain. For this, prior we have

pðZjwÞ ¼
Y

n

X

k

Znk ¼ 1

" #

Y

k

wZnk

k (5)

where ½�� is the Iverson bracket (i.e. ½A� ¼ 1 if statement A is

true, ½A� ¼ 0 if statement A is false). For prior (5), it is possible to

sum over all possible segmentations analytically. We recover the

mixture model for protein ensembles, which we proposed previously

(Hirsch and Habeck, 2008)

pðXjY;R; t;r;wÞ ¼
Y

N

n¼1

X

K

k¼1

wk

Y

M

m¼1

e�D
2
mnk=2r

2
k

ð2pr2kÞ
3=2

(6)

where Dmnk ¼ jjXmn � RmkYkn � tmkjj.

The assumption of independent segmentation variables is not

realistic for protein structures, for which, we expect that rigid do-

mains span multiple successive positions. Prior (5) ignores the fact

that the atom positions come in a meaningful order, and would

equally apply to structure ensembles in which the atom positions

were scrambled. The information about the order of atom positions

can be encoded in an alternative prior over the segmentation labels zn

pðznþ1jzn;wÞ ¼ w ½znþ1 ¼ zn� þ
1�w

K� 1
½znþ1 6¼ zn� : (7)

Prior (7) imposes sequential correlations between successive seg-

mentation variables: With probability w 2 ½0;1�, the assignment of

the next position is identical to the label of the current position.

Fig. 1. Generative model for detecting rigid domains in proteins.

Conformational changes in Adenylate kinase (AdK) can be described as the

rigid movement of three domains (for details see Section 3.1): Y1 (NMP), Y2

(LID) and Y3 (CORE) highlighted in blue, green and red, respectively.

Structural regions shown in white correspond to positions that are not part of

the rigid domain. The experimental structures X1 (PDB code 4ake(A)) and X2

(PDB code 1ake(B)) show the open and the closed state of AdK. These struc-

tures can be generated by rigidly transforming the domains Yk by applying a

rotation matrix Rmk and adding a translation vector tmk

A probabilistic model for detecting rigid domains in protein structures i711
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With probability 1�w, the label of the next position is randomly

chosen among the K – 1 alternative labels.

2.2 Gibbs sampler for probabilistic segmentation into

rigid domains

To find meaningful segmentations of the structure ensemble, we

have to estimate all unknown model parameters h ¼ ðY;R; t; r;wÞ

where w denotes a probability vector in case of prior (5) and a scalar

in case of prior (7). Parameter estimation can be achieved by

Markov chain Monte Carlo techniques (Neal, 1993).

We use a Gibbs sampler (Geman and Geman, 1984) for param-

eter estimation. In case of prior (5), the Gibbs sampler can be viewed

as a stochastic version of the previously published expectation maxi-

mization algorithm [12]. To facilitate the use of a Gibbs sampler, we

choose conjugate prior probabilities for the unknown parameters h.

The translation parameters tmk and the positions of the rigid do-

mains Ykn follow three-dimensional spherical Gaussians:

pðtmkjlt;rtÞ ¼ N ðlt; r
2
t Þ; pðYknjlY ;rYÞ ¼ NðlY ;r

2
YÞ : (8)

We do not estimate the hyperparameters lt;rt;lY ;rY but fix

them to reasonable values: lt ¼ lY ¼ 0, and rt ¼ rY ¼ 10 (all in Å).

The choices for lt and lY are plausible because the structures have

been centered. The choices for r could be refined by using, for ex-

ample, the radius of gyration, but our tests showed that the results

are not sensitive to the exact choice. The prior distribution of the ro-

tation matrices is uniform over SO(3) (Habeck, 2009). The inverse

variances (precisions) of the rigid domains are assumed to follow a

Gamma distribution:

r�2
k � Gðar;brÞ (9)

where Gða;bÞ indicates a Gamma distribution with shape parameter

a>0 and scale b>0. Again, we fix the hyperparameters

ar ¼ br ¼ 1=10, i.e. the expected diversity of the kth domain

is rk � 1 a priori.

The Gibbs sampler cycles over groups of parameters that are

updated conjointly, while the other parameters are kept fixed. To im-

plement the Gibbs sampler, we have to work out the conditional pos-

terior distributions. The translations follow Gaussian distributions

tmk � Nðlmk; r
2
mkÞ (10)

where

1

r2mk

¼
Nk

r2k
þ

1

r2t

lmk ¼ r2mk

1

r2k

X

n

znkðXmn �RmkYknÞ þ
lt
r2t

 !

The conformations of the rigid domains are sampled from

Gaussian distributions

Ykn � Nðlkn;r
2
knÞ (11)

where

1

r2kn
¼

M

r2k
þ

1

r2Y

lkn ¼ r2kn
1

r2k

X

m

RT
mkðXmn � tmkÞ þ

lY

r2Y

 !

The rotation matrices follow a matrix von Mises–Fisher distribu-

tion and are sampled using the algorithm from the following equa-

tion (Habeck, 2009):

Rmk � exp trðAT
mkRmkÞ (12)

where

Amk ¼
1

r2k

X

n

znkYknðXmk � tmkÞ
T :

Sampling of the noise levels rk is achieved by simulating a

Gamma distribution

r�2
k � Gðak;bkÞ (13)

where

ak ¼
3Nk

2
þ ar; bk ¼

1

2

X

n

znkD
2
nk þ br:

To update the segmentation parameters zn, we first collect the

contributions from the data and introduce the (unnormalized) likeli-

hood factors contributing to the probability of atom n being as-

signed to the kth domain

Lnk ¼ r�3M
k e�D

2
nk=2r

2
k :

The conditional posterior of the assignment variables depends

on the choice of the prior. For the first prior (Eq. (5)) with independ-

ent segmentation variables, we have

zn �
Y

k

p
½zn¼k�
nk ; pnk ¼

wkLnk
X

k0

wk0Lnk0
: (14)

For the second prior (Eq. (7)) with sequential coupling between

the segmentation variables, we have

zn �
Y

k

q
½zn¼k�
nk (15)

where the probabilities

qnk ¼
Lnk ðð1�wÞ½k 6¼ zn�1� þ ðK� 1Þw ½k ¼ zn�1�Þ

X

k0

Lnk0 ðð1�wÞ½k0 6¼ zn�1� þ ðK� 1Þw ½k0 ¼ zn�1�Þ

depend on the previous assignment except for the first position

(q1k ¼ L1k=
X

k0
L1k0 ).

In case of prior (5), w are the component weights of the mixture

model (6). We assume a conjugate Dirichlet prior with a single con-

centration parameter a, and set a ¼ 1=K if not stated otherwise. The

conditional posterior probability follows a Dirichlet distribution:

wk � DðaþNkÞ /
X

k

wk ¼ 1

" #

Y

k

wNkþa�1
k : (16)

For the second prior (7), w, the probability that two successive

atoms belong to the same rigid domain, is a scalar. We assume a

Beta prior, Bða;1� aÞ, with parameters chosen such that hwi ¼ a is

close to one, reflecting the fact that in protein structures, we typic-

ally have, only few rigid domains stretching over large segments. We

let a ¼ 0:95 in our tests based on the second prior. The conditional

posterior distribution is again a Beta distribution:

w � BðQþ a;N �Q� aÞ / wQþa�1ð1�wÞN�Q�a�1 (17)

where Q ¼
X

n>1
½zn ¼ zn�1� is the number of times successive pos-

itions that are assigned to the same rigid segment.

2.3 Initialization of the Gibbs sampler

Similar to expectation maximization, the Gibbs sampler is only

guaranteed to converge locally. Therefore, its success depends

i712 T.Nguyen and M.Habeck
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strongly on the initial values for the model parameters. We initialize

the model parameters as follows. We compute the average Gram

matrix,
X

m

XmX
T
m=M, across all members of the ensemble and use a

metric embedding algorithm [7] to compute an initial estimate of Yk

based on the first three eigenvectors with largest eigenvalues.

The initial segmentation for given K is found by using spectral

clustering (Uw et al., 2001; Von Luxburg, 2007). To obtain an

atom-by-atom similarity matrix that can be used for spectral cluster-

ing, we transform the matrix of distance fluctuations by using an ex-

ponential transform similar to (Ponzoni et al., 2015).

An overview of the Gibbs sampler is presented in Algorithm 1.

2.4 Comparison of segmentations

There are two major difficulties that complicate the comparison of

alternative segmentations. First, the segmentation labels can switch

without changing the structure of the segmentation. Second, two

segmentations can involve a different number of rigid domains.

Our first approach to compare two segmentations z and z0 based

on K and K0 rigid domains first aims to establish a correspondence be-

tween the segmentation labels by using a linear assignment algorithm.

To do so, we compute a K� K0 matrix of overlaps between the labels

Okk0 ¼
X

n

½zn ¼ k� ½z0n ¼ k0� :

We then run the Hungarian method (Kuhn, 1955) on the

cost matrix �Okk0 to find a list of corresponding segmentation labels

ðk;k0Þ that maximize the overlap of both segmentations. The aver-

age overlap of both segmentations is

oðz; z0Þ ¼
1

N

X

ðk;k0Þ

Okk0 (18)

where oðz; z0Þ 2 ½0; 1�.

A simple alternative to the linear assignment approach is to com-

pare alternative segmentations by using a label forgetting represen-

tation based on a binary N�N matrix B(z) (Adametz and Roth,

2011; McCullagh and Yang, 2008)

Bnn0 ðzÞ ¼ ½zn ¼ zn0 � : (19)

It is possible to recover the segmentation from B by calculating

the connected components of the undirected graph whose adjacency

matrix is B. If z and z0 encode two segmentations (possibly obtained

for a different number of components K and K0), we use the follow-

ing metric to assess their dissimilarity:

dðz; z0Þ ¼
2

NðN � 1Þ

X

n< n0

jBnn0 ðzÞ � Bnn0 ðz
0Þj (20)

where N is the number of atom positions (the length of the protein

in case of Ca atoms). Segmentation error (20) is the average

Hamming distance of the upper diagonal of B and B0. The expected

segmentation error for two random segmentations is 1/2. The two

comparison metrics, oðz; z0Þ and dðz; z0Þ, are highly anti-correlated: a

high overlap oðz; z0Þ typically entails a small segmentation error

dðz; z0Þ.

2.5 Practical issues

We use Ca positions to represent protein conformational states but

other choices would also be possible. The segmentation model has

been implemented in Python and is based on numpy, scipy and the

CSB library (Kalev et al., 2012). In cases where the protein se-

quences are not identical due to mutations, or because atom records

are missing in the PDB file, we use Clustal W (Larkin et al., 2007) to

align the sequences. The analysis is then restricted to amino acids

for which structural information is available for all conformational

states (gap-less columns in the alignment). We typically run the

Gibbs sampler (Algorithm 1) multiple times and select the simula-

tion achieving highest posterior probability.

3 Results and discussion

3.1 Segmentation into rigid domains by Gibbs sampling

To illustrate our segmentation algorithm, we first analyze Adenylate

kinase (AdK) for which many experimental and theoretical results

about conformational changes are available. AdK catalyzes the

interconversion of adenine nucleotides and is composed of three

structural domains. Two smaller domains, NMP (residues 30–60)

and LID (residues 115–160), are inserted into the largest domain

(CORE). AdK binds ATP and AMP and converts them into two

ADP molecules. The binding is facilitated by a closure of the LID

and NMP binding domains.

To identify the rigid domains in AdK, we use an open

conformation (PDB code 4ake) and a closed structure (PDB code

1ake). We set K¼3 and run the Gibbs sampler for both priors using

niter ¼ 1000. Figure 2(A–C) shows the resulting segmentation ob-

tained with both priors. For comparison, we also show the differ-

ence distance matrix jd1ake
nn0 � d4ake

nn0 j. Both segmentations highly agree

with each other. The domain boundaries found with prior (5) are

CORE: 1–31, 72–117, 160–214, NMP: 31–71 and LID: 118-159.

The domain boundaries found with prior (7) are CORE: 1–29, 73–

116, 168–214, NMP: 30–71, LID: 117–167. The LID domain is

slightly larger with the second prior due to the enforcement of se-

quential correlations.

The Gibbs sampler converges rapidly as indicated by the evolu-

tion of the log likelihood (Fig. 2D and E). Within 50 Gibbs sampling

iterations, the posterior mode has been found. Based on this finding,

we set niter ¼ 500 in the remainder of the paper. Figure 2F shows the

posterior histogram of the sequential coupling probability of the se-

cond prior (7). The coupling probability w scatters about an average

value of 0.98.

3.2 Estimating the optimal number of rigid domains

In general, the number of rigid domains is unknown. Strategies to es-

timate the optimal number of domains in a data-driven fashion such

as the Bayesian information criterion (BIC) (Schwarz, 1978) or

cross-validation (Stone, 1974) are difficult to apply in our context.

Algorithm 1. Gibbs sampler for probabilistic segmentation of

protein structures into rigid domains.

Require: Ensemble of M protein structures Xm of length N,

the number of Gibbs sampling iterations niter
Initialize z;Y;R; t;r, and w

for i ¼ 1; . . . ;niter do

Sample R given z, Y, t, w, r using Eq. (12)

Sample Y given z, R, t, w, r using Eq. (11)

Sample r given z, Y, R, t, w using Eq. (13)

Sample w given z, Y, R, t, r using Eq. (16) or (17)

Sample z given Y, R, t, w, r using Eq. (14) of (15)

Sample t given z, Y, R, w, r using Eq. (10)

end for

return z;Y;R; t; r;w

A probabilistic model for detecting rigid domains in protein structures i713
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BIC assumes that the model parameters are independent, which is

certainly not true for our segmentation model. Moreover, BIC is

based on an approximation that is only valid if the number of data

is much larger than the number of model parameters. This assump-

tion is also violated in our application.

Cross-validation assumes that the data can be partitioned into

more or less independent sets of data points that can then serve as

training data and test data. This is not easily possible for protein

structures, which show strong correlations between atomic pos-

itions. Figure 3A shows the results of 10-fold cross-validation for

AdK. Both training and test error are almost indistinguishable and

continue to decay as we increase the number of domains. Although

the largest improvement in the test error is for K¼3, it is not clear

how to choose the optimal K based on a cross-validation analysis.

Many statistical methods for choosing the number of clusters

have been proposed. The gap statistic (Tibshirani et al., 2001) for

example, estimates the number of clusters based on within-cluster

dispersion. The silhouette score (Rousseeuw, 1987) compares the

distances between each cluster member and intra-cluster distances.

Practical tests show that both methods work poorly for our model.

Figure 3B shows the average silhouette score as a function of K. We

observe a small preference for the correct number of rigid domains.

However, K¼2 scores almost equally high, whereas K¼4 is pre-

ferred less. Inspection of the AdK structures and of the different dis-

tance matrix (Fig. 2C) shows that rather the opposite behavior

would be desirable.

Bayesian inference provides a natural and powerful framework

for model comparison (Jaynes, 2003; MacKay, 2003). Model selec-

tion is based on marginal likelihoods or model evidences. For the

rigid domain detection problem, the relevant marginal likelihood is

pðXjKÞ, i.e. the probability of the experimental protein ensemble

assuming K rigid domains obtained by summing and integrating

over all segmentation and model parameters.

A B C

D E F

Fig. 2. Segmentation analysis of Adenylate kinase. (A) Segmentation based on prior (5) using the label forgetting representation (upper diagonal matrix). The seg-

mentation found in the literature is shown in gray below the diagonal. (B) Label forgetting representation of the segmentation found with prior (7). (C) Difference

distance matrix between open and closed conformation of AdK (shown is the exponentially transformed absolute deviation between the distances to improve

the visibility). (D and E) Evolution of the log likelihood during Gibbs sampling for both priors (D: first prior (Eq. (5)), E: second prior (Eq. 7)). (F) Estimated probabil-

ity w that two successive domain assignments zn ; znþ1 are identical

A B

C D

Fig. 3. Estimation of the number of rigid domains for AdK. (A) Results of 10-

fold cross-validation based on random partitions of atoms into 10 disjoint

sets. The training and test errors are defined as the negative logarithm of the

likelihood. The value for the training set is further divided by 10� 1 ¼ 9 to ac-

count for differences in the number of data points used to evaluate both

errors. (B) Analysis based on the silhouette score. The silhouette score is

defined for every atom position. Shown is the average score over all atoms

versus the number of rigid domains K (for K¼1 it is not possible to define the

silhouette score). (C) Log evidence estimated from five parallel tempering

simulations at K ¼ 1; . . . ; 5. (D) Result of prior parallel tempering in which the

concentration parameter a serves as a temperature-like parameter. Shown is

the number of populated domains for which Nk ¼
X

n
Znk > 0
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Unfortunately, it is highly challenging to compute pðXjKÞ. One

possibility is to use advanced sampling algorithms such as annealed

importance sampling (Neal, 2001) or parallel tempering (Geyer,

1991; Swendsen and Wang, 1986) to estimate pðXjKÞ. But the

choice of the temperature schedule is highly non-trivial for mixture

models. Moreover, even if we could find a good schedule, running

parallel tempering simulations on an entire database of protein con-

formational changes is not practical. Nonetheless, we have esti-

mated pðXjKÞ for K ranging between 1 and 5 for AdK using five

parallel tempering simulations (Fig. 3C). These simulations are time

consuming and involve several rounds of optimizing the temperature

schedule until good swapping rates are obtained. The evidence

clearly prefers K¼3, consistent with the segmentation found in the

literature.

A more efficient way of selecting the optimal number of domains

is the ‘overfitting’ approach by van Havre et al. (2015). The idea is

to work with a large number of components K, preferably much

larger than the actual number of components that the data require,

and to control the complexity of the model by the hyperparameter a,

the concentration parameter of the component weights wk. For large

a, we enforce that all domains have more or less the same length N/

K, because we know from Eq. (16) that

hwki ¼
Nk þ a

N þ Ka
!

a!1 1

K
:

As we let a ! 0, the weights are allowed to deviate from the

average value 1=K. For small a, the model will start to switch off un-

used components by letting wk ! 0.

van Havre et al. (2015) propose to use ‘prior parallel tempering’

(PPT) with a serving as a temperature-like parameter. Here, we

explored the use of PPT for segmenting AdK using a model with a

maximum of K¼10 rigid domains. The concentration parameter a

varies between a ¼ 104 and a ¼ 10�2. Figure 3D shows the results

of PPT. At small a, the model only populates three domains, consist-

ent with the literature. For larger a, it populates up to seven do-

mains. Therefore, PPT seems to be capable of estimating the optimal

number of rigid domains without the need to evaluate marginal like-

lihoods. However, since PPT still requires substantial computational

resources, we will now investigate a shortcut to achieve automated

segmentations of similar quality.

3.3 Gibbs sampling detects the optimal number of rigid

domains

Instead of using PPT with annealing of the prior distribution over

the component weights, we found that simply running a Gibbs sam-

pler with a large number of rigid domains achieves a similar effect of

populating only a small fraction of all K domains.

Let us illustrate this again for Adenylate kinase. We set K¼10

and run the Gibbs sampler for both choices of the prior probability.

Figure 4A and B shows that with both priors, Eqs (5) and (7), the

Gibbs sampler converges to the correct segmentation. Let us con-

trast the performance of the Gibbs samplers with the result obtained

by expectation maximization (Hirsch and Habeck, 2008).

Expectation maximization fails to find a parsimonious segmentation

(Fig. 4C). The Gibbs samplers can switch off domains by not popu-

lating them (Nk¼0), whereas expectation maximization tends to

use almost all domains resulting in a scattered segmentation.

The evolution of the segmentation error is shown in Figure 4D.

Both Gibbs samplers achieve a similar segmentation accuracy com-

pared with the reference found in the literature, whereas the segmen-

tation found by expectation maximization is considerably worse.

3.4 Large-scale benchmark

To assess the quality of our probabilistic segmentation algorithms in

a systematic way, we ran both Gibbs samplers on more than 3000

examples from the DynDom database (Hayward et al., 1997). Each

entry comprises a pair of protein structures showing a varying de-

gree of conformational heterogeneity. The entries were downloaded

and processed automatically using a Python script. For each entry,

we ran 500 iterations of Gibbs sampling based on the prior prob-

ability (5) and (7) and a maximum of 10 components (K¼10).

Before starting the Gibbs samplers, the structures were centered and

superimposed onto their average structure. The last 50 segmenta-

tions generated with the Gibbs sampler were used to assess the qual-

ity of the segmentation in terms of the overlap (18) and the

segmentation error (20).

Figure 5 shows histograms of the segmentation overlap and of

the segmentation error averaged over the last 50 segmentations

sampled with the Gibbs samplers. We observe a good agreement be-

tween the DynDom segmentation and the Bayesian segmentation for

most cases. The median segmentation overlap is 90% and 87% for

both priors (Eqs (5) and (7)), respectively. The median segmentation

errors are 0.13 and 0.15 for both priors. Expectation maximization,

in comparison, achieves a significantly lower segmentation accuracy

with 43% median overlap and 0.39 median segmentation error. The

second prior performs slightly worse than the first prior, which

might be due to sequential couplings that are too strong in some

cases, as it was already indicated by the tests on AdK.

There are a few cases where we observe a large disagreement be-

tween the segmentation found by DynDom and our rigid domain de-

composition. Some of these discrepancies can be explained by the

fact that DynDom tends to prefer a rather small number of rigid do-

mains even for large protein structures. For example, the worst over-

lap between the segmentation based on the first prior (5) and

DynDom is achieved for Apo RB69 DNA Polymerase (PDB codes

A B

C D

Fig. 4. Segmentation analysis of Adenylate kinase with K¼10 rigid domains.

(A and B) Label forgetting representation of the segmentation averaged over

posterior samples generated with the Gibbs sampler using prior (5) and (7),

respectively. (C) Segmentation found with expectation maximization. (D)

Evolution of the segmentation error dðz; z 0Þ [Eq. (20)] during Gibbs sampling

for both priors (“Gibbs 1” and “Gibbs 2”) and expectation maximization

(‘EM’)

A probabilistic model for detecting rigid domains in protein structures i715
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1ih7(A) and 1ig9(A)). DynDom finds three rigid domains for this

pair of structures, whereas our Gibbs sampler selects a segmentation

based on six or seven rigid domains, consistent with the Spectrus ana-

lysis. A similar case is multidrug transporter AcrB (PDB codes

4dx7(A), 4dx7(B)) showing the largest disagreement between the

DynDom analysis and the Gibbs sampler using the second prior.

DynDom finds only two rigid domains, whereas the Gibbs sampler

prefers seven or eight domains, which is again supported by Spectrus.

3.5 Applications to large-scale structural transitions

Finally, we evaluate our algorithm on proteins of variable size, rang-

ing from small proteins to large assemblies. Figure 6 and Table 1

summarize the segmentation analysis for each example.

Pyruvate phosphate dikinase (PPDK) is a large enzyme that is

composed of four domains and contains two remotely located reac-

tion centers (Lim et al., 2007). We applied our Gibbs samplers to

two structures of PPDK and compared the results to the annotation

found in the literature (Lim et al., 2007) as well as to the segmenta-

tion found by DynDom and Spectrus. The Spectrus score peaks at

K¼3, which is very similar to our segmentations. DynDom identi-

fies only two rigid domains and fails to identify the additional do-

mains. Our second large-scale example is T7 RNA polymerase (T7

RNAP), which is involved in the initiation and elongation of RNA

transcripts. The segmentation estimated by the Gibbs samplers is

consistent with the annotation in the literature (Theis et al., 2004)

and the DynDom analysis. Spectrus identifies only two domains in

the T7 RNAP structures. Our third example of a large assembly is

the chaperonin GroEL, which provides a suitable environment for

protein folding and prevents aggregation. For this example, all

methods agree quite well.

We also analyzed two medium-sized proteins. For Aspartate

aminotransferase (AST), again all methods highly agree with each

other. Alcohol dehydrogenase (AhD) is an enzyme that decomposes

alcohol into the aldehyde. This chemical action is performed by

interactions between the catalytic domain of one subunit and the

coenzyme-binding domain. Our Gibbs samplers detect two large do-

mains in AhD, whose location is similar to the DynDom segmenta-

tion. The Spectrus clustering score peaks at K¼3 for the AhD

structures, introducing one additional domain in comparison with

our and DynDom’s result. Spectrus’ segmentation at K¼2 scores

less well, but is more consistent with the segmentation found by

DynDom and the Gibbs samplers.

A B

C D

Fig. 5. Large-scale benchmark on > 3000 entries from the DynDom database.

(A and C) Segmentation overlap for Gibbs sampling with prior (5) and (7), re-

spectively. (B and D) Segmentation errors for Gibbs sampling with prior 1

and 2. Median values are indicated as dashed vertical lines. The light gray

histograms are the results obtained with expectation maximization

Fig. 6. Analysis of several proteins involved in large-scale conformational

changes. Large assemblies: Pyruvate phosphate dikinase, T7 RNA polymer-

ase and GroEL. Medium-sized proteins: Aspartate aminotransferase and alco-

hol dehydrogenase. Small protein: HIV-1 protease. Shown are the domains

found by various methods and in the literature, where corresponding do-

mains are shown in the same color

Table 1. Proteins involved in large-scale conformational

transitions

Protein name PDB Code Chain ID Size N K

Large assemblies

PPDK 1kc7 A

2r82 A 872 4

T7 RNA polymerase 1qln A 842 5

1msw D

GroEL 1aon A 524 3

1aon H

Medium-sized proteins

Aspartate aminotransferase (AST) 9aat A 401 3

1ama A

Alcohol dehydrogenase (AdH) 1adg A 374 3

2ohx A

Small proteins

HIV-1 protease 3hvp A 99 2

4hvp A
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Finally, we analyzed a small protein (HIV-1 protease). For this

example, Spectrus introduced a large number of domains: the qual-

ity score peaks at K¼5. We observed a similar behavior for other

small proteins, which might indicate that the Spectrus clustering

score might deteriorate for small systems. Our result is consistent

with the DynDom analysis and detects two major domains.

4 Conclusions

We introduce a generative model for large-scale conformational

changes in proteins. A Bayesian framework allows us to estimate the

model parameters efficiently, which makes our domain detection ap-

proach suited for large-scale applications. The results are consistent

with segmentations found by alternative approaches for the detec-

tion of rigid domains such as DynDom (Hayward et al., 1997;

Hayward and Berendsen, 1998) and Spectrus (Ponzoni et al., 2015).

An important parameter of any segmentation approach is the num-

ber of rigid domains. In our previous implementation based on ex-

pectation maximization (Hirsch and Habeck, 2008), we had to set

this parameter manually. Here we show that it is possible to esti-

mate the number of rigid domains in a data-driven fashion by using

Gibbs sampling.

Our approach has various practical and conceptual advantages

over existing approaches. First, it is based on an intuitive model,

which implements the idea that structural transitions can be decom-

posed into the translation and rotation of rigid domains relative to

each other. Our model is a generative model and could, therefore,

also be used to sample new or intermediate conformational states.

This opens new avenues for applications in structural refinement or

modeling of protein structures based on the experimental data.

Second, we provide a clean and objective framework for parameter

inference, which separates model parameters from algorithmic par-

ameters. In addition to parameter estimates, we also provide an as-

sessment of parameter uncertainties. Third, it is possible to

incorporate prior knowledge, for example, about the location of

hinges. Finally, symmetric oligomers constitute an important class

of oligomeric proteins. The current model does not take internal

symmetries into account but models either individual chains or the

entire assembly. In a future extension of our model, we will support

the decomposition of symmetric assemblies by taking into account

the symmetry group.
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Chapter 3

PRISM Server: a webserver of

Probabilistic RIgid Segmentation

Model for segmenting protein

structure

This chapter is the implementation of previous work to the webservice. Here we present a
modified probabilistic model for segmenting ensemble protein into a set of small rigid
bodies, a precomputed dataset of segmented protein was introduced. This manuscript is
in preparation.

Own contribution:

• Concept and implementation of the algorithm and the code.

• Construct the Dyndom dataset for test

• All figures, tables

• Manuscript
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Chapter summary

Motivation: We present PRISM server, a computational web and a dataset of protein
structures segmented into rigid bodies. Currently two algorithms the Expectation
Maximization (EM) and stochastic Gibbs sampler are implemented.
Availability: : The web server is freely available at http://prism.stochastik.math.uni-
goettingen.de.

Introduction

Proteins are elastic life machines that perform critical tasks at the molecular level of living
cells. Those protein structures are observed in different conformational states. To support
the understanding of protein structure, we implemented a computational web by our
previous work (Nguyen and Habeck (2016), Nguyen and Habeck (2020) in preparation).
We believe the webserver and precomputed dataset of protein rigid bodies will support
us in understanding the biological process from underlying structural data.

System and Methods

Computational webserver workflow

PRISM Server is a user-friendly webserver for computational tasks segmenting protein
into rigid bodies. We use both Biopython parser (Cock et al. (2009)) and CSB utilizing
function (Kalev et al. (2012)) and to retrieve and preprocess the protein structures. The
entire ensembles aligned by Clustal Omega (Sievers et al. (2011)), an average estimation is
used to process missing structure. The computational work use one of two approaches
the Gibbs sampler and the expectation maximization run on server side.

The result is exported into an interactive JSMol session, which is supported by most web
browsers, user can modify the view and store it into the local machine, the result example
is shown in Figure 3.1. The server is built with the modern Django web framework, using
JSON and SQLlite database, the applications are written in Python.
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11/6/2019 Your result

localhost:8000/compute/ 1/1

Your computational results
Jsmol live session

You can rotate, change view or save your result.

Your rigid segmentation and statistic results are shown below

Reference: Nguyen, T. and Habeck, M., 2016. A probabilistic model for
detecting rigid domains in protein structures. Bioinformatics, 32(17),
pp.i710-i717.

Figure 3.1: Detail about the result interface, the top left panel shown the segmentation by
color, the lower left showed the average difference distance matrices of entire ensembles
and the segmentation encoding matrix

Precomputed dataset

A precomputed data set is deposited at the same address. We acquire and cluster protein
structure by using 95% sequential similarity cutoff threshold, the protein identification list
from Blastclust (Altschul et al. (1997)). To reduce the redundancy of protein ensembles, we
cluster the protein structure by running the DBSCAN algorithms (Ester et al. (1996)) using
RMSD as a distance metric, and our refined result contains 2660 entries.

Conclusion and future work

We develop the PRISM webserver and dataset for segmenting protein ensembles into rigid
bodies. Using our algorithms, users can extract the flex region, hinges, and rigid region
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of proteins. We plan to add the database connection to another accessible bioinformatics
database, enabling the automated updating of our database. Integrate our structural
model with the sequential information, as well as constructing the transitional pathway
from different conformational states.

Acknowledgments and Funding

This work has been supported by Deutsche Forschungsgemeinschaft (DFG) SFB 860/TP
B09.
Conflict of Interest: none declared.



Bibliography

Abyzov, A., Bjornson, R., Felipe, M., and Gerstein, M. (2010). PROTEINS: Structure, Func-
tion, and Bioinformatics, 78(2), 309–324.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman,
D. J. (1997). Nucleic acids research, 25(17), 3389–3402.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Journal of statistical
mechanics: theory and experiment, 2008(10), P10008.

Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I.,
Hamelryck, T., Kauff, F., Wilczynski, B., et al. (2009). Bioinformatics, 25(11), 1422–1423.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). J. R. Stat. Soc. B, 39, 1–38.

Emekli, U., Schneidman-Duhovny, D., Wolfson, H. J., Nussinov, R., and Haliloglu, T.
(2008). Proteins: Structure, Function, and Bioinformatics, 70(4), 1219–1227.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages
226–231.

Flores, S. C. and Gerstein, M. B. (2007). BMC bioinformatics, 8(1), 215.

Frank, J. (2002). Annu Rev Biophys Biomol Struct, 31, 303–319.

Geman, S. and Geman, D. (1984). IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, PAMI-6(6), 721–741.

Gerstein, M. and Krebs, W. (1998). Nucleic acids research, 26(18), 4280–4290.

Gerstein, M., Lesk, A. M., and Chothia, C. (1994). Biochemistry, 33(22), 6739–6749.

Haliloglu, T., Bahar, I., and Erman, B. (1997). Physical review letters, 79(16), 3090.

Hanson, J. A., Duderstadt, K., Watkins, L. P., Bhattacharyya, S., Brokaw, J., Chu, J. W.,
and Yang, H. (2007). Proc Natl Acad Sci USA, 104, 18055–18060.

Hayward, S. and Berendsen, H. J. (1998). Proteins Structure Function and Genetics, 30(2),
144–154.

27



28 BIBLIOGRAPHY

Henzler-Wildman, K. and Kern, D. (2007). Nature, 450, 964–972.

Hinsen, K. (1998). Proteins: Structure, Function, and Bioinformatics, 33(3), 417–429.

Hirsch, M. and Habeck, M. (2008). Bioinformatics, 24, 2184–2192.

Hrabe, T., Li, Z., Sedova, M., Rotkiewicz, P., Jaroszewski, L., and Godzik, A. (2015). Nu-
cleic acids research, 44(D1), D423–D428.

Kabsch, W. (1976). Acta Cryst., A32, 922–923.

Kalev, I., Mechelke, M., Kopec, K. O., Holder, T., Carstens, S., and Habeck, M. (2012).
Bioinformatics, 28(22), 2996–2997.

Karplus, M. (2002). Molecular dynamics simulations of biomolecules.

Karplus, M. and Kuriyan, J. (2005). Proceedings of the National Academy of Sciences, 102(19),
6679–6685.

Keating, K. S., Flores, S. C., Gerstein, M. B., and Kuhn, L. A. (2009). Protein Science, 18(2),
359–371.

Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R., Wyckoff, H., and Phillips, D. C.
(1958). Nature, 181(4610), 662–666.

Monzon, A. M., Juritz, E., Fornasari, M. S., and Parisi, G. (2013). Bioinformatics, 29(19),
2512–2514.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995). J. Mol. Biol., 247,
536–540.

Nguyen, T. and Habeck, M. (2016). Bioinformatics, 32(17), i710–i717.

Nguyen, T. and Habeck, M. (2020). in preparation.

Nichols, W. L., Rose, G. D., Ten Eyck, L. F., and Zimm, B. H. (1995). Proteins: Structure,
Function, and Bioinformatics, 23(1), 38–48.

Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B., and Thornton, J. M.
(1997). Structure, 5(8), 1093–1109.

Ponting, C. P. and Russell, R. R. (2002). Annual review of biophysics and biomolecular struc-
ture, 31(1), 45–71.

Ponzoni, L., Polles, G., Carnevale, V., and Micheletti, C. (2015). Structure, 23(8), 1516–
1525.

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam,
H., Remmert, M., Söding, J., et al. (2011). Molecular systems biology, 7(1), 539.

Sonnhammer, E. L., Eddy, S. R., and Durbin, R. (1997). Proteins: Structure, Function, and
Bioinformatics, 28(3), 405–420.

Tauchert, M. J., Fourmann, J.-B., Lührmann, R., and Ficner, R. (2017). Elife, 6.

Tirion, M. M. (1996). Physical review letters, 77(9), 1905.



BIBLIOGRAPHY 29

Traag, V. A., Van Dooren, P., and Nesterov, Y. (2011). Physical Review E, 84(1), 016114.

Voet, D. and Voet, J. G. (2010). Biochemistry. John Wiley & Sons.

Von Luxburg, U. (2007). Statistics and computing, 17(4), 395–416.

Wriggers, W. and Schulten, K. (1997). Proteins Structure Function and Genetics, 29(1), 1–14.

Wüthrich, K. (1976). NMR in biological research: peptides and proteins. North-Holland
Amsterdam.

Wüthrich, K. (2001). Nature Structural & Molecular Biology, 8(11), 923.

Xu, Z., Horwich, A. L., and Sigler, P. B. (1997). Nature, 388(6644), 741–750.



30 BIBLIOGRAPHY



Chapter 4

A graph-based algorithm for

detecting rigid domains in protein

structures

We develop a new domain segmentation algorithm that is capable of analyzing the
entire structure database efficiently. This method does not require the choice of
protein-dependent tuning parameters, such as the number of rigid domains. Graph
clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the
associated line graph.
Cited as: Dang et al. 2020. (submitted)

Own contribution:

• Support the implementation of the algorithm.

• Construct the Dyndom dataset and code for test.

• Figure 3.

• Manuscript in parts.
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Abstract

Motivation: Conformational transitions are implicated in the biological function of many proteins. Structural

changes in proteins can be described approximately as the relative movement of rigid domains against

each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms

that are capable of analysing the entire structure database efficiently and do not require the choice of

protein-dependent tuning parameters such as the number of rigid domains.

Results: We develop a graph-based method for detecting rigid domains in proteins. Structural information

from multiple conformational states is represented by a graph whose nodes correspond to amino acids.

Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line

graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative

methods, our approach does not require knowledge about the number of rigid domains. Moreover, we

identified default values for the algorithmic parameters that are suitable for a large number of conformational

ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on

various challenging systems whose structural transitions have been studied extensively.

Availability: The Python source code is available at https://github.com/dtklinh/Protein-Rigid-Domains-

Estimation

Contact: ldang1@gwdg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are molecular machines that are involved in a large variety
of biological processes. Protein function is often driven by large-scale
structural transitions (Henzler-Wildman and Kern, 2007). Experimental
methods for biomolecular structure determination such as X-ray
crystallography, NMR and cryo-electron microscopy have been used
to determine thousands of atomic structures of proteins in different
conformational states. A powerful approach to understand structural
transitions in proteins is to decompose structures of different states into
rigid domains and classify protein movements by hinge and shear motions
of these structural domains (Gerstein et al., 1994).

Given the large number of available protein structures, we need
computational methods that identify structurally conserved domains in

a set of alternative structures in an automated fashion with minimal user
intervention. For example, one could use the software to study molecular
dynamics trajectories at the level of rigid domains to gain an understanding
of large-scale movements, or identify important active sites located at the
interface between rigid domains.

A number of computational methods for detecting rigid domains
in protein structures have been developed. Dyndom (Hayward and
Berendsen, 1998) identifies rigid domains by clustering a set of rotation
vectors. Hingefind (Wriggers and Schulten, 1997) focuses on the detection
of hinge residues, which are detected via differences in bending angles.
RigidFinder (Abyzov et al., 2010) finds rigid domains via a dynamic
programming algorithm that optimizes the rigidity of structural segments
extracted from two conformational states. These methods are limited
to two input structures and require the selection of a cutoff parameter
(Abyzov et al., 2010), which can impact the results quite strongly. Spectrus

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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(Ponzoni et al., 2015) applies spectral clustering to distance fluctuations
and supports multiple input structures. However, the number of clusters
relies on a quality score, which sometimes gives ambiguous results.
Probabilistic approaches (Hirsch and Habeck, 2008; Nguyen and Habeck,
2016) segment protein structures into rigid domains as part of a generative
probabilistic model. The model parameters, including the segmentation,
are inferred with expectation maximization or Gibbs sampling. However,
choosing the initial parameters as well as the number of rigid segments
is still a critical issue, because both algorithms explore parameter space
only locally, and can therefore require many restarts from different initial
conditions.

A more ambitious goal is to predict rigid domains from a single
structure by, for example, molecular dynamic simulation or an elastic
network model that can both be used to generate a set of alternative
conformational states. HingeProt (Emekli et al., 2008) and Domain Finder
(Hinsen, 1998) use an elastic network model to predict hinge residues
by analyzing the correlation between selected pairs of eigenvectors of
the correlation matrix. However, in general it is unclear which modes
contribute most strongly to the movement, in particular if a conformational
change involves multiple modes. FlexOracle (Flores and Gerstein, 2007)
finds hinge positions by identifying split points with minimal energetic
impact.

Despite the rich literature on methods for rigid-domain detection in
protein structures, there is still a need for algorithms that are robust,
reliable, able to handle high-throughput data and yet do not require
extensive parameter tunning. Here, we introduce a graph-based method
that infers a binary labeling that encodes if pairs of amino acids belong to
identical or different rigid domains. Our algorithm proceeds in two stages:
First, we construct a protein graph based on spatial proximity, which we
cluster using the Louvain algorithm to obtain a coarse-grained graph of
reduced size. Second, edges in the reduced graph are labeled by applying
a line graph transformation along with the general Viterbi algorithm. We
benchmark our algorithm on 487 entries of the DynDom database and find
a high agreement with the reference segmentation. In addition, we also
present a detailed analysis of various proteins that show a large variety of
conformational transitions and compare our results to other methods.

2 Methods

We organize the Methods section as the following. First of all, we present
a toy example and a motivation behind our method. Secondly, we describe
crucial parts and techniques we use to build up the algorithm. And last but
not least we present the final algorithm.

2.1 Toy example and a motivation

The crucial shortcoming of several existing methods such as (Ponzoni
et al., 2015; Hayward et al., 1997; Nguyen and Habeck, 2016) comes
from the requirement of prior knowledge of how many rigid domains in
the target protein which is not always available (illustrated by Figure 1A).
To overcome that, we present another approach (Figure 1B) which we
binarily label edges instead of vertices. If a graph belongs to exponential
models (the value of a function defined on a graph is the product of its
functions defined on vertices and edges), its label could be inferred by
general Viterbi algorithm (Dong et al., 2014) which is heuristically able to
find the most probable labels. However, we are only interested in edges’
labels. Thus, we utilize the trick of line graph transformation illustrated in
Figure 2 (Evans and Lambiotte, 2010). Instead of directly calculating the
labels of edges in the protein graph, we calculate the vertices’ label of its
corresponding line graph whose vertices are edges of the protein graph by
the mean of general Viterbi algorithm (Dong et al., 2014).

Fig. 1. Illustration the workflows of two different approaches. Panel(A) From left to right:

protein conformations; a protein graph; given the number of rigid domains (number of

colors), the algorithm produces the segmentation. Panel(B) From left to right: protein

conformations; a protein graph; an algorithm estimating edges’ labels (+1/-1: two incident

vertices belong to the same domain/different domains); final segmentation by removing the

negative edges.

2.2 Notations

Our algorithm aims to infer a rigid-domain segmentation from M > 1

conformational states of a protein π. Each conformational state is encoded
by a N × 3 matrix X ∈ R

N×3 whose rows are the 3D coordinates of
representative atoms (typically Cα atoms), i.e. Xm,n is the position of
the n-th atom in the m-th conformation. Every conformational state gives
rise to a symmetric N ×N distance matrix D(m):

D
(m)
k,l

:= ‖Xm,k −Xm,l‖ (k, l = 1, 2, . . . , N), (1)

where ‖ · ‖ denotes the Euclidian norm.
We encode the conformational variability across all M structures Xm

through a protein graph

PGπ =
(

Aπ , Eπ
)

(2)

whose verticesAπ are the atoms
{

1, 2, . . . , N
}

. An edge between atoms
k, l is introduced if and only if

max
m=1,2,...,M

D
(m)
k,l
≤ δ . (3)

We ran tests with δ = 7.5, 10.5 and 13.5 Å. To decide if a subsetA ⊆ Aπ

is rigid, we use the criterion

RMSD
(

A
)

:= max
m,m′=1,2,...,M

RMSDA

(

Xm, Xm′

)

< 3.5Å (4)

where RMSDA

(

Xm, Xm′

)

is the root mean square deviation (RMSD)
(Kabsch, 1976) between conformations Xm and Xm′ reduced to atoms
inA.

2.3 Coarse graining of the protein graph

Rigid domains form densely connected subsets of nodes in the protein
graph.

Due to the quadratic growth of the vertices in line graph, it is
computationally infeasible to work directly on the protein graph. To reduce
the size of the protein graph, we run the Louvain algorithm (Blondel et al.,
2008; Traag et al., 2011; Traag, 2015) that partitions the nodes Aπ into
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Fig. 2. Our graph-based workflow of a toy example. (A) Protein graph derived from protein states. (B) Line graph derived from the protein graph. (C) Label of line graph estimated via

general Viterbi algorithm. (D) Corresponding edges’ labels in the protein graph. (E) The final segmentation is achieved by removing the negative edges in the protein graph.

communities. The parameters of the Louvain algorithm are chosen such
that the communities

• are small enough to include, with a few exceptions, amino acids that
are part of the same rigid domain (i.e. criterion (4) is met for every
community);

• are large enough to make the MAP prediction (10) feasible.

If Cπ is a partition found by the Louvain algorithm, the coarse-grained

graph

CGπ =
(

Cπ ,Vπ
)

(5)

links two communities c1 and c2 by an undirected edge (c1, c2) ∈ Vπ if
at least one pair of amino acids a1 ∈ c1, a2 ∈ c2 is linked in the protein
graph: (a1, a2) ∈ Eπ . Obviously, the coarse-grained graph CGπ .

The mean variance of all distances between two communities c1 and
c2 defined by

mean-varD
(

c1, c2
)

:=

1

|c1||c2|(M − 1)

∑

a1∈c1

∑

a2∈c2

M
∑

m=1

(

D
(m)
a1,a2

−
1

M

M
∑

m′=1

D
(m′)
a1,a2

)2

(6)

is a key quantity of our method.

2.4 Outlier detection

Our assumption is that the bigger the mean variance between two vertices
in the coarse-grained graph is, the more likely they belong to different
domains. However, it is not obvious how to define that mapping which
is independently valid across proteins. To overcome that issue, we
hypothesize that the values of mean variance among vertices which belong
to same domain follow a certain distribution and the ones from different
domains are the outliers. In this specific study, the outliers are always the
ones whose values are bigger than the rest. However, the set of outliers
could be relaxed by enlarging it toward the highest value of data points in
the assumed distribution. The outliers detection method described in the
following plays an important role to define functions on vertices and edges
in the line graph.

We use 11 predicates

outlierµ,D

(

xi

)

∈ {−1,+1} (µ = 1, . . . , 11, i = 1, . . . , k)

to detect outliers in a set D = {x1, . . . , xk} of k real-valued data points
where

outlierµ,D
(

xi

)

= −1

indicates that xi is an outlier in D according to the µ-th criterion, whereas
outlierµ,D

(

xi

)

= +1 indicates the opposite.
The first outlier predicate is a robust variant of the Z-score (Iglewicz

and Hoaglin, 1993) defined by

Z̃i := 0.6745
xi −MED

MAD
(7)

where MED is the sample median and MAD the sample median absolute
deviation ofD. A shortcoming of the standardZ-score is that it is based on
the sample mean and variance of D which are not robust against outliers.
Following Iglewicz and Hoaglin (1993) we define

outlier1,D
(

xi

)

= −1 :⇐⇒
∣

∣Z̃i

∣

∣ > 3.5. (8)

For µ = 2, 3, . . . , 11, we set

outlierµ,D

(

xi

)

= −1 :⇐⇒ xi is in the top 5(µ− 1)% of D. (9)

Thus, outlier models with larger index µ will detect a growing set of
outliers.

2.5 A short introduction into CRFs

Let us consider a graph G = (V,N ) whose nodes we call sites and V =

{1, 2, . . . ,m} without loss of generality. Sites are labeled by elements of
the finite set B. Words of length ℓ over the finite alphabet O are called
observations.N is the set of edges in the site graph G. The neighborhood
Ni ⊆ V of site i ∈ V consists of all sites j ∈ V, j 6= i that are
linked to i by an edge inN . Obviously i 6∈ Ni. For every label sequence
y ∈ Bm and subset I ⊆ V , yI denotes the partial labeling of sites in I:
yI := {(i, yi) | i ∈ I}.

A pair (X,Y ) composed of a random observation X ∈ Oℓ and a
random label sequence Y ∈ Bm realizes a feature-based exponential
model if the conditional probability p (y | x ) of all pairs (x,y) is

p (y | x ) =
1

Z(x)
exp





c
∑

γ=1

∑

|I|=γ

Ψ(γ)(yI ,x)



 ,

where

Z(x) :=
∑

y′∈Bm

exp





c
∑

γ=1

∑

|I|=γ

Ψ(γ)(y′
I ,x)



 .

∑

|I|=γ denotes a sum over all cliques I of size γ in G; c is the maximum

clique size. For every clique size γ ≤ c, the function Ψ(γ)(yI ,x) is the
feature of cliques of size γ. Under very weak assumptions feature-based
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exponential models coincide with the class of conditional random fields

where at every site i the label is conditionally independent of the labels
outsideNi given the observation and the labels ofNi.

The labeling problem is solved by computing a labeling sequence

y∗ := argmax
y∈Bm

p (y | x ) (10)

that achieves maximum posterior probability (MAP prediction). In general,
MAP prediction isNP-hard. This is even true if only site and edge features
are considered as in our segmentation model (Section 2.6). In particular,
the variant of the Viterbi algorithm devised by Dong et al. (2014) has
an exponential running time. Only if the underlying site graph is small
enough, it can be used within a feasible time bound. We therefore introduce
a coarse-graining step to reduce the size of the protein graph. The coarse-
grained protein graph serves as a site graph for our CRF-based rigid domain
prediction.

2.6 CRF-based prediction of rigid domains

Our CRF-based prediction algorithm for rigid domains is best understood
as a recursive procedure RDP-CRF where each recursive call refers to a
specific feature-based exponential model. Every RDP-CRF call receives
a site graph G = (V,N ) such that RMSD

(

V
)

≥ 3.5Å and an outlier
model index µ as inputs and tries to expand a list RD of pairwise disjoint
subsets of amino acids inA. Initially, RD is empty.

The initial site graph is the line graph

line-graph
(

CGπ
)

=
(

Vπ ,Nπ

)

(11)

of the coarse-grained graph CGπ defined in (5). The edges of the coarse-
grained graph CGπ become the nodes of the line graph Vπ and will be
called sites in the following. Two different sites v1 = (c11, c12) and
v2 = (c21, c22) are linked by (v1, v2) ∈ Nπ if and only if c11 = c21 and
(c12, c22) 6∈ Vπ . The initial outlier model index is set to µ = 1. Thus, the
initial call of RDP-CRF is RDP-CRF

(

line-graph
(

CGπ
)

, 1
)

. After
termination, RD forms a preliminary segmentation into rigid domains. A
postprocessing step (Subsection 2.7) produces our final prediction.

For every recursive call of RDP-CRF, the input site graph

G =
(

V,N
)

(12)

equals line-graph
(

CG
)

where

CG =
(

C,V
)

(13)

is the connected subgraph of the coarse-grained graph CGπ ,
where line-graph

(

CG
)

is obtained from CG in the same way as
line-graph

(

CGπ
)

is calculated from CGπ . Consequently, the input site
graphG is a subgraph of the initial site graph line-graph

(

CGπ
)

defined in
Eq. (11). Using Eq. (6), we define site observations and edge observations
for every site in Vπ and every edge inNπ (see Eq. (5)):

• Site observations: For every site v = (c1, c2) ∈ Vπ , let

xv := mean-varD
(

c1, c2
)

(14)

be the observation at site v.
• Edge observations: For every edge e = (v1, v2) ∈ Nπ , where v1 =

(c1, c) and v2 = (c, c2) and (c1, c2) is not an edge of the coarse-
grained graph CGπ , let

xe := mean-varD
(

c1, c2
)

(15)

be the observation at edge e.

Site and edge observations do not change during a recursive call of
RDP-CRF.

Let G =
(

V,N
)

= line-graph
(

CG
)

be any input site graph where
CG =

(

C,V
)

is a connected subgraph of the coarse-grained graph CGπ
(see Eqs. (12) and (13)), and let µ be any outlier model index (see Eqs.
(8) and (9)). Let us discuss what happens when callingRDP-CRF

(

G, µ
)

.

Step 1: The feature-based exponential model associated with this call is
computed as follows. Based on Eqs. (14) and (15) two sets of real-valued
data points Dsites

G and D
edges
G are extracted: Dsites

G = {xv : v ∈ V} and

D
edges
G = {xe : e ∈ N}. We introduce for every edge e ∈ N and every

node v ∈ V ξe := outlier
µ,D

edges
G

(

xe

)

and ξv := outlierµ,Dsites
G

(

xv

)

.

We call ξv the local label of site v.
On the other hand, the global label of site v is its predicted label.
The following features determine the conditions under which equality

and inequality of local labels ξv and global labelsyv (v ∈ N ) are rewarded
or penalized. For every site v ∈ V and every label yv ∈ {+1,−1}, the
site feature Ψ

(1)
µ (yv ,x) is defined by

Ψ
(1)
µ (yv ,x) := yvξv . (16)

Equality of local and global labels is rewarded, differences are penalized.
For every edge e =

(

v1, v2
)

∈ N , every yv1 ∈ {+1,−1} and every

yv2 ∈ {+1,−1}, the feature Ψ(2)
µ (yv1 , yv2 ,x) is defined by Eqs. (17–

19), where a distinction regarding the possible values of ξe, ξv1 and ξv2
is made.

Case "Two values among ξe, ξv1 , ξv2 are equal to −1." Then equality
of the local labels and the labels at sites v1 and v2 is rewarded, whereas
inequality is penalized:

Ψ
(2)
µ (yv1 , yv2 ,x) :=

{

+1 if yv1ξv1 + yv2ξv2 = 2;

−1 otherwise.
(17)

Case "ξv1 = ξv2 = +1" seems to indicate that the three endpoints of
v1 and v2 (which are in fact incident edges of the protein graph) belong
to the same rigid component. But the node shared by the two edges may
be part of a hinge region between two rigid components. This is likely to
occur if ξe = −1, in which case we have to decide to which component
the hinge node belongs. This decision is based on a comparison of xv1

and xv2 where no decision can be made, if xv1 = xv2 :

Ψ
(2)
µ (yv1 , yv2 ,x) :=



































+1 if yv1 = −1, yv2 = +1, ξe = −1 and xv1 > xv2 ;

+1 if yv1 = +1, yv2 = −1, ξe = −1 and xv1 < xv2 ;

+1 if yv1 = yv2 = +1 and ξe = +1;

0 if yv1yv2 = −1, ξe = −1 and xv1 = xv2 ;

−1 otherwise.

(18)

For any other combination of ξv1 , ξv2 and ξe we set

Ψ
(2)
µ (yv1 , yv2 ,x) ≡ 0. (19)

Step 2: The Viterbi algorithm by Dong et al. (2014) is run on the
feature-based exponential model that we computed in Step 1.

Step 3:

• If no site of G is labeled −1 by the Viterbi algorithm, and if µ < 11,
we call RDP-CRF

(

G, µ + 1
)

, and the control flow returns to the
calling procedure;
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• If no site of G is labeled −1 by the Viterbi algorithm, and if µ = 11,
we add

⋃

c∈C c to RD, and the control flow returns to the calling
procedure;

• All sites of G labeled −1 by the Viterbi algorithm are removed from
the edge set of CG =

(

C,V
)

resulting in CG′ =
(

C,V ′
)

;
• If CG′ is still connected, we call RDP-CRF

(

line-graph
(

CG′
)

, 1
)

and the control flow returns to the calling procedure.
• If CG′ =

(

C,V ′
)

decomposes into d connected components CG′δ =
(

Cδ ,V
′
δ

)

where δ = 1, 2, . . . , d, then, for all δ = 1, 2, . . . , d,

−
⋃

c∈Cδ
c is added to RD, if

RMSD
(

⋃

c∈Cδ

c
)

< 3.5Å

− RDP-CRF
(

line-graph
(

CG′δ
)

, 1
)

is called, if

RMSD
(

⋃

c∈Cδ

c
)

≥ 3.5Å

Step 4: The control flow returns to the calling procedure.

After termination of the initial call RDP-CRF
(

line-graph
(

CGπ
)

, 1
)

,
it may happen that list RD is too fragmented to encode a reasonable
segmentation. More precisely, some of rigid domains are partitioned by
list elements. The reason is that the outlier detection outlierµ,Dsites

G
used

in Eqs. (17–19) is sometimes too permissive, in particular if µ > 1 and
Dsites

G is small. Therefore, we run the merging algorithm described in the
next subsection as postprocessing step on list RD.

2.7 Finalizing the rigid domain segmentation

Let pRD be the list of all unordered pairs {D,D′} of different elements
D and D′ in RD. If RD changes, pRD changes accordingly.

Merging Algorithm

val← max
D,D′∈pRD

RMSD
(

D
)

+RMSD
(

D′
)

RMSD
(

D∪D′
)

while val > 1 do

{D∗,D′
∗} ← argmax

{D,D′}∈pRD

RMSD
(

D
)

+RMSD
(

D′
)

RMSD
(

D∪D′
)

D∗ ← D∗ ∪ D′
∗

Remove D′
∗ from RD

val← max
{D,D′}∈pRD

RMSD
(

D
)

+RMSD
(

D′
)

RMSD
(

D∪D′
)

After termination of the Merging Algorithm RD is returned as our rigid
domain prediction.

3 Results

Our graph-based method aims to segment protein conformations into rigid
domains without knowing the number of domains. To achieve this goal,
the algorithm assigns a binary label to spatially close pairs of amino acids
indicating if both amino acids belong to the same or different rigid domains.
Our algorithm proceeds in multiple steps. First, a graph is built from
protein conformations where nodes correspond to amino acids. Second,
a community detection algorithm reduces the protein graph by merging
amino acid vertices that are members of the same community. This step
amplifies the signal and reduces the computational complexity of the
subsequent steps. Third, the reduced graph is converted to a line graph
whose vertices are the edges of the reduced graph. An edge is added to
the line graph whenever the original pairs of edges share a vertex and the
other two vertices are not linked in the original graph. Fourth, the general

Viterbi algorithm computes the most probable binary labeling of the line
graph based on a scoring function. By back tracing the line graph labeling
we obtain a labeling of the reduced graph resulting in a segmentation of
the protein conformations into rigid domains. In the final step, we check
if the RMSD of each rigid domain exceeds a threshold, in which case
we recursively run the algorithm on the subgraph corresponding to that
domain. To validate our algorithm, we first segment conformations of
Adelynate Kinase (ADK). We then perform a benchmark on 487 proteins
from the DynDom database. Finally, we compare our method with other
domain segmentation algorithms on a number of test cases ranging from
medium to large scale conformational changes.

3.1 Rigid segmentation of Adenylate Kinase

We first run our algorithm for rigid domain segmentation on Adenylate
Kinase (ADK) for which multiple experimental structures showing
different conformations are available (Müller et al., 1996). ADK catalyzes
the interconversion of adenine nucleotides and is composed of three rigid
domains. By closing the NMP-binding domain and the LID domain onto
the CORE domain, ADK binds ATP and AMP which are converted to two
ADP molecules. The PDB codes of ADK open and closed conformations
are 4ake & 1ake respectively. ADK is composed of 214 amino acids which
constitute the vertices of the initial protein graph.

To build the protein graph from those two states, we used δ = 7.5 Å
as cutoff.

Figure 3 illustrates the workflow of our algorithm and intermediate
results for ADK using default values for the algorithm parameters. Panel
3A shows ADK’s protein graph in which each vertex is an amino acid;
the construction of edges linking spatially close amino acids is described
in Methods. Amino acids are grouped by running the Louvain domain
detection algorithm (Traag et al., 2011) and merged into vertices of a
coarse-grained graph. In the case of ADK, the protein graph comprising
214 vertices is transformed to a coarse-grained graph composed of 20
vertices (Figure 3B). In the next step, we construct the line graph of
the coarse-grained graph (Figure 3C). We then run the general Viterbi
algorithm (Dong et al., 2014) on a scoring function defined on the line
graph. This results in a binary labeling of the line graph (Figure 3D)
or, equivalently, a labeling of the coarse-grained graph. Based on this
labeling our method splits the coarse-grained graph into three disconnected
subgraphs (Figure 3E). Finally, we map the unconnected subgraphs back
to the protein graph to obtain a segmentation of ADK into three rigid
domains (Figure 3F). Our segmentation agrees strongly with the domain
boundaries defined in the literature (Whitford et al., 2007), which we color-
coded in Figure 3G for visual comparison. Our segmentation deviates
from the literature annotation only in the hinge regions. This discrepancy
is due to the ambiguous membership of amino acids in the hinge region
which tend to be merged with amino acids from different domains in the
coarse-graining step.

Unlike DynDom, our method could work with multiple conformational
states. To study this feature, we ran our algorithm again but on 100 ADK
conformations generated by morphing between the open and closed state
(Habeck and Nguyen, 2018). The algorithm produces a similar results as
before.

One of the advantage of our method is that it allows users to integrate
a prior knowledge to improve the segmentation. For example, in the above
default parameters setting, our method misclassified fifteen amino acids
of NMP-binding and LID domain to the core domain. Yet with some prior
knowledge about the rigid domains, we could integrate this information
to enhance the estimation. For example, suppose we are given the ADK’s
segmentation calculated from Spectrus (Ponzoni et al., 2015) with K = 4

(the number of rigid domains). We could integrate this prior knowledge
(named the prior label) to our model as following. The weights of edges
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Fig. 3. Graph-based segmentation of ADK into rigid domains. (A) Protein graph constructed from 100 ADK conformations. (B) Reduced graph obtained by coarse graining the protein

graph. (C) Line graph of the reduced graph. (D) Line graph with binary vertex labels (black: -1, white: +1) obtained with the general Viterbi algorithm. (E) The injective relation between

edges of the reduced graph and vertices of the line graph allows us to also label the edges of the reduced graph. Edges having negative labels are removed resulting in three disconnected

subgraphs. (F) Segmented protein graph derived from disconnected subgraphs in the reduced graph. (G) ADK graph with domain annotation from literature encoded by colors.

Fig. 4. Histogram of the error and the overlap evaluated on 487 proteins in the DynDom

database.

in the protein graph whose vertices belong to different domains according
to the prior label will be shrunk by the factor of α < 1. In this study,
we choose α = 0.75. This setting helps the coarse-graining process to
reduce the error of inconsistency (mentioned in the Discussion section) and
thus improve the performance. For the evaluation, we ran our graph-based
method on the new setting and figured out that there were only five amino
acids misclassified from LID domain to the core domain. Thus even with
an imperfect prior knowledge, this could significantly improve the result.

3.2 Rigid segmentation benchmark

We benchmarked our method on the DynDom database (Lee et al., 2003)
reduced to those pairs of proteins whose overall RMSD exceeds 5 Å.
Moreover, we removed domains that span less than ten amino acids.
To evaluate our method, we use the segmentation error and overlap
defined by Nguyen and Habeck (2016). The overlap counts the number
of matches between two segmentations after solving a low-dimensional
linear assignment problem that maximizes the agreement between the two
labelings. The error assesses how often two segmentations disagree on
whether a pair of amino acids belongs to the same domain. Although both
metrics differ in the details, they are highly anti-correlated.

Figure 4 shows histograms of the error and overlap between our and
DynDom’s segmentation evaluated on 487 proteins based on an edge
cutoff value of 7.5 Å. The median error is 0.038 and the median overlap

0.972. The error and overlap histograms are highly skewed to small and
large values, respectively. For approximately 30% of the examples, our
method reaches a near perfect agreement with the annotation provided by
DynDom (overlap≥ 0.99). In only a few cases our method fails to produce
a reasonable segmentation due to errors in the coarse-graining step and/or
an indistinguishable signal derived from the mean variance.

Despite of the disagreements between our method and DynDom, our
segmentation sometimes seems to be more reasonable. We investigate
the open and closed state of human importin subunit beta-1 (PDB code
3lww, chain A & C) as an example. According to Dyndom, this protein
has three rigid domains (Figure 5A) whose RMSDs are 6.843, 4.321,
and 2.106(Å) respectively. We notice that the first domain of DynDom
(darkgreen) is small, fragmented and has relative big RMSD. The second
domain (darkred) has a significant portion intertwined with the third
domain (darkblue). On the other hand, our segmentation suggests two
separate domains whose RMSDs are 2.228 and 1.003(Å) (Figure 5B),
which are much smaller than those in DynDom. In short, this example
shows that the segmentation suggested by our model is more reasonable
than one from DynDom.

To study the impact of the edge cutoff used in the definition of the
protein graph, we ran experiments with varying cutoff values. Table 1
reports the mean and median of the overlap and error obtained with
different edge cutoff values. The overlap seems to be largely unaffected
by the specific choice of the cutoff, whereas the error drops slightly with
larger cutoffs. Two possible explanations come to our mind. First, a larger
cutoff results in protein graphs with more connections between amino acid
vertices. Denser graphs seem to be more suitable to coarse graining with
the Louvain method (see Figure S1 and the Discussion for a demonstration
of this claim). Second, also the coarse-grained graph will be denser with
larger cutoff values, which seems to improve the scoring of the line graph.
However, because denser graphs result in larger line graphs, we need to
restrict the cutoff to smaller values to tame the computational costs of the
Viterbi algorithm.

3.3 Analysis of various structural transitions

We ran our method on various proteins studied in Nguyen and Habeck
(2016) showing different types and scales of conformational changes.
Table 2 provides the protein name, size and PDB code; Figure 6 shows
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(A)

(B)

Fig. 5. Protein graph of human importin subunit beta-1 protein. (A) Segmentation suggested

by DynDom: three rigid domains colored by dark green, red and blue. (B) Segmentation

estimated by our method: two rigid domains colored by light green and blue.

Table 1. Performance of the graph-based algorithm for different edge cutoffs evaluated on

the DynDom benchmark.

Cutoff
Metric Median

overlap
Mean

overlap
Median

error
Mean
error

7.5 Å 0.972 0.924 0.038 0.086
10.5 Å 0.977 0.924 0.034 0.083
13.5 Å 0.972 0.926 0.033 0.081

a summary of the segmentation analysis. First, we study and compare
the performance of our algorithm (graph-based method) to other methods
by analyzing protein complexes that undergo large-scale conformational
changes.

Pyruvate phosphate dikinase (PPDK) is a large biomolecular complex
that catalyzes the reversible conversion of PEP, AMP, and Pi to pyruvate
and ATP (Lim et al., 2007). We apply our graph-based method to two
PPDK structures and compare the segmentation to the annotation found
in the literature (Lim et al., 2007) and by other methods such as Spectrus,
DynDom as well as Nguyen and Habeck (2016) . Our segmentation agrees
strongly with the segmentation provided by DynDom, but fails to detect
the additional domain reported in the literature and by Nguyen and Habeck
(2016). Typically, our method produces a fewer number of domains than
reported in the literature, because we only take changes in a few structural
snapshots into account and no additional experimental information. For
K = 3, Spectrus agrees strongly with the segmentation found by our
graph-based approach except for the first domain, which is significantly
larger according to Spectrus.

T7 RNA polymerase is involved in the initiation and elongation of
RNA transcription. Our segmentation is highly consistent with the results
from DynDon, Nguyen and Habeck (2016) and the anotation from the
literature (Theis et al., 2004). Spectrus fails to identify the refolding loop
inserted in the N-terminal domain.

The chaperonin GroEL (Boisvert et al., 1996) provides a shielded
environment to assist protein folding and prevent aggregation. For this
example, all methods provide very similar segmentation results.

We also benchmark our method on proteins undergoing medium-
scale structural transitions. Aspartate aminotransferase (AST) is an
enzyme involved in amino acid metabolism that catalyzes the reversible
transfer of an α-amino group between aspartate and glutamate (Karmen
et al., 1955). For this example, we find a high agreement between
our method and other segmentations. Another example is the enzyme
Alcohol dehydrogenase (AhD) that decomposes alcohol into aldehyde.
Our graph-based segmentation agrees strongly with the result from
DynDom. Spectrus achieves its maximum score for K = 3 domains,
but introduces an additional domain compared to the other methods. For
K = 2, the score is lower, but Spectrus’ segmentation is more consistent
to DynDom and our result.

4 Discussion

Our results demonstrate that segmentation of protein conformations into
rigid domains can be achieved with a graph-based algorithm that solves the
rigid segmentation problem with an edge-labeling strategy. Let us discuss
the key features of the algorithm and the impact of algorithmic parameters.
To measure the efficiency of the graph construction and coarse graining,
we use a metric that we call inconsistency error. The inconsistency error
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Table 2. Proteins in different scale conformational changes involved in the assessment

Protein PDB code chain ID size

PPDK
1kc7 A

872
2r82 A

T7 RNA polymerase
1qln A

842
1msw D

GroEL
1aon A

524
1aon H

Aspatate aminotransferase
9aat A

401
1ama A

Alcohol dehydrogenase
1adg A

374
2ohx A

Fig. 6. Analysis of several proteins undergoing conformational changes on a variety

of scales. Large-scale conformational changes: pyruvate phosphate dikinase, T7 RNA

polymerase, GroEL. Medium-scale conformational changes: Aspartate aminotransferase,

Alcohol dehydrogenase. For each protein, the segmentation found by different methods and

in the literature are shown. Same color means same domain.

quantifies the heterogeneity of clusters weighted by their size. Let G =

(V, E) be a graph composed of N = |V| vertices vi ∈ V with labels σi

and C = {Ck} a partition of the vertices into clusters Ck ⊂ V obtained by
coarse graining. We define the inconsistency error of the coarse graining

procedure as error(C|G) = 2
∑

Ck∈C
|Ck|
N

∑
i<j∈Ck

|σi 6=σj |

|Ck| (|Ck|−1)
which is

the average number of labeling mismatches within each cluster weighted
by cluster size.

We first study different ways to construct a protein graph from multiple
conformations. There are many reasonable options for constructing a
protein graph. For example, one possibility is to create an edge if the
distance between two vertices is smaller than a cutoff in at least one
conformation, and to assign as a weight the number of such conformations.
Another possibility (detailed in Methods) is to create an edge if its distance

is smaller than the cutoff in all conformations, and to weight the edge by the
reciprocal exponentiated variance computed over all conformations (such
that low-variance edges have a weight close to one and large-variance edges
are assigned small weights). Supplementary Figure S1 demonstrates that
the second graph construction rule consistently outperforms the first rule
based on the inconsistency error. We therefore used the second rule in our
benchmark calculations. In addition, we tested different values of the edge
cutoff distance and noticed a minor, but not significant improvement of
the inconsistency error for larger cutoff values.

We also studied various options for the coarse-graining step. In all
tests, we used the Louvain algorithm for fitting Potts models (Traag et al.,
2011) for coarse graining. The resolution parameter was adjusted so as
to produce about 20 clusters of medium size. Too large clusters risk to
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merge amino acids from hinge regions and thus the inconsistency error
is expected to increase. Too small clusters will tend to show a smaller
inconsistency error at the cost of lowering the significance of the mean
variance between two clusters. Large graphs will pose a computational
challenge in the Viterbi step, because the number of vertices of the line
graph grows quadratically with the number of vertices in the original graph.
By using our coarse-graining strategy, we save computational resources
and enhance the signal as shown in Supplementary Information (see second
section and Supplementary Figure S2).

Moreover, we run our algorithm on Lysozyme (BLAKE et al., 1965),
an enzyme contributing to the innate immune system, to investigate if this
graph-based algorithm could produce a reasonable segmentation given
several actual conformations. In this study, we use 100 conformations
of Lysozyme whose PDB codes can be found at the Supplementary. Our
algorithm suggests two domains whose RMSD are 1.638 and 4.873 (Å)
respectively (Supplementary Figure S3).

To avoid duplication of features involving vertices and edges, we
modify the construction of the line graph by discarding an edge if its two
end vertices are connected as well. That way, features extracted from edges
add new information. Finally, we use a merging routine with heuristic
criteria to merge two domains. One may ask if we could skip the labeling
step (Viterbi algorithm) and apply the merging routine directly to the
clusters found by coarse graining. This simplified version of our algorithm
achieves good results on proteins showing a large-scale movement, but fails
on more subtle cases. Overall, post-processing via the merging procedure
compensates for segmentation errors involving small fragments.

The running time of our algorithm depends on the size of the protein,
the density of the protein graph, and the rigidity of the conformational
change. Supplementary Figure S4 shows the relationship between protein
size and the running time of our graph-based segmentation algorithm.
We note that the running time for proteins smaller than 800 amino acids
grows slowly in a linear fashion. For the larger proteins, it seems to
grow quadratically. There are a few outlier proteins whose running time is
significantly longer than for proteins of similar size. In these problematic
cases, the signal derived from the mean-variance metric fails to distinguish
the labels of vertices and edges in the line graph.

5 Conclusion

We present a new algorithm to characterize structural transitions in
proteins. Our graph-based algorithm constructs a graph from a set of
protein conformations and detects rigid domains via an edge labeling
strategy. A key feature is that the number of rigid domains is determined
automatically.

Yet the algorithm allows users to relax the rigid definition of
domains, thus resulting to the increase or decrease number of rigid
domains. Segmentations produced by our algorithm agree strongly with
segmentations found by other methods such as DynDom (Hayward and
Berendsen, 1998; Hayward et al., 1997) and Spectrus (Ponzoni et al., 2015)
on various medium to large scale structural transitions.

Our approach has several advantages over other rigid segmentation
methods. First, there is no limitation on the number of protein
conformations. In fact, a larger number of conformations should result
in a better signal and thereby a superior performance of the algorithm.
Second, by using the graph-based model along with a binary labeling of
edges, we overcome the need to choose the number of rigid domains, which
is necessary for many of the existing methods. Moreover, our method
performs well with default parameter settings, which saves the user from
parameter tweaking. Finally, our graph-based framework is quite flexible
by allowing us to integrate into the scoring function additional information
such as the location of hinges.
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42 CHAPTER 4. A GRAPH-BASED FOR RIGID DOMAIN

4.1 Support Information



1 Inconsistency error of reduced graph

Figure S1: Histogram of inconsistency’s error from graph construction type I
and II and their various cutoff values respectively.

1



Figure S2: AUC based on the mean-variance of vertices and edges. (A) The
blue histogram shows the AUC obtained with the vertex features separating
positive from negative vertex labels in the protein graph. The red histogram
indicates the performance of the vertex features derived from the coarse-grained
graph. (B) AUC for separating positive and negative edge labels based on the
edge features derived from the protein graph (blue histogram) and the coarse-
grained graph (red histogram).

2 Signal enhancement by coarse graining

As in Methods and Discussion, let G = (V, E) denote a graph and LG = (LV,LE)
the line graph derived from G. For each vertex v∗ ≡ (v0, v1) ∈ LV (v0, v1 ∈ V),
we evaluate the mean-variance mean-var

(

v∗
)

≡ mean-var
(

v0, v1
)

using Eq. (10)
in Methods. The label of v∗ is σv∗ = +1 if σv0

= σv1
and −1 otherwise. For each

edge e∗ ≡ (vl, vm, vr) ∈ LE (vl, vm, vr ∈ V; (vl, vm), (vm, vr) ∈ E , (vl, vr) /∈ E),
its mean-variance mean-var

(

v∗
)

≡ mean-var
(

vl, vr
)

is calculated as above. The
label of an edge in the line graph is σe∗ = +1 if σvl

= σvr
, and −1 otherwise.

The performance of the CRF scoring function depends on how well it can
separate positive and negative vertices and edges in the line graph. We try to
classify vertex and edge labels by thresholding the mean-variance. We assess
the classification power of the mean-variance features by using the area under
the ROC curve (AUC) before and after coarse graining the protein graph. We
evaluate and compare the performance of the mean-variance features for both
vertices and edges of the line graph derived from the protein graph and the
coarse-grained graph.

Figures S2.A and S2.B indicate that the mean-variance feature of both ver-
tices and edges produces significantly better classification results for the coarse-
grained graph compared to the protein graph. Therefore, the coarse-graining
step increases the information represented by the mean-variance feature.

2



3 Lysozyme protein

Figure S3: Segmentation of lysozyme protein by our graph-based method. The
RMSDs of two resulting domains are 1.638 and 4.873 (Å) respectively.

3.1 PDB codes used in the study

2X0G B 3G43 B 3G43 C 3G43 A 3G43 D 1K90 F 2K61 A 5WSV A 5WSV C
5DBR A 2BE6 A 1S26 F 1S26 E 1S26 D 4OVN E 1SK6 E 1Y0V M 1Y0V L
1Y0V K 1Y0V J 1Y0V I 1Y0V H 2F3Z A 1K93 D 3OXQ A 3OXQ B 3OXQ C
3OXQ D 3BXL A 2F3Y A 1XFZ P 1XFZ Q 1XFZ R 1XFZ S 1XFZ T 1XFY P
1XFU R 1K93 F 1K93 E 1XFZ O 2DFS D 2DFS F 2DFS B 2DFS N 2DFS P
2DFS R 1XFW O 1XFU S 1LVC D 1XFU Q 1LVC F 1XFU T 1XFU O 1XFW T
1XFW Q 1XFW P 1XFW S 1XFW R 3EWV A 1XFU P 2VAY A 1XFX O
1XFX T 2BE6 B 1XFX S 1XFX P 1XFX Q 1XFX R 4R8G H 1XFV O 1OOJ A
1XFV T 1LVC E 1AHR A 1XFV P 1XFV Q 1XFV R 1XFV S 1QX7 M 1QX7 B
1QX7 R 4DCK B 1QX5 D 1XFY T 1XFY S 1XFY R 1XFY Q 1MUX A 1XFY O
1QX5 R 1QX5 T 1QX5 Y 5HIT A 1QX5 B 1PK0 E 1PK0 D 1PK0 F 1QX5 I
1QX5 J 1QX5 K

3



4 Running time

Figure S4: Protein size versus running time (measured in seconds) evaluated
for 487 proteins selected from the DynDom database.

4



Chapter 5

A probabilistic network model for

structural transitions in biomolecules

This chapter introduces the probabilistic network model for structural transitions in
proteins. Here we present a probabilistic model for structural transitions in protein
conformational states. This chapter was published in Protein journal 2018. Cited as:
Habeck and Nguyen 2018.

Own contribution:

• Concept and implementation part of the algorithm and the code.

• Construct the Dyndom dataset, the validation data from (Sfriso et al., 2013) for test.

• Figures 3, 4.

• Manuscript in parts and the support information.
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Abstract

Biological macromolecules often undergo large conformational rearrangements during a functional

cycle. To simulate these structural transitions with full atomic detail typically demands extensive

computational resources. Moreover, it is unclear how to incorporate, in a principled way, additional

experimental information that could guide the structural transition. This article develops a probabil-

istic model for conformational transitions in biomolecules. The model can be viewed as a network

of anharmonic springs that break, if the experimental data support the rupture of bonds. Hamilto-

nian Monte Carlo in internal coordinates is used to infer structural transitions from experimental

data, thereby sampling large conformational transitions without distorting the structure. The model

is benchmarked on a large set of conformational transitions. Moreover, we demonstrate the use of

the probabilistic network model for integrative modeling of macromolecular complexes based on

data from crosslinking followed by mass spectrometry.

K E YWORD S

Bayesian statistics, conformational change, crosslinking/mass spectrometry, Markov chain Monte

Carlo, network model, protein structure, structural modeling

1 | INTRODUCTION

Biological function is often linked to conformational changes in the

interacting molecules.1 These structural transitions occur on many dif-

ferent time and length scales, ranging from fast reorientations of side

chains to large conformational transitions involving the collective

movement of entire domains.2

It is challenging to study functional transitions in biomolecules

experimentally. X-ray crystallography, the major method to elucidate

the structure of biomolecules,3 provides a rather static picture of a bio-

molecule in an artificial crystal environment. NMR has the potential to

reveal not only the structure but also dynamics, but faces problems

when looking at large systems.

Recently, cryo-electron microscopy (cryo-EM) has emerged as a

powerful high-resolution method for biomolecular structure determina-

tion (for example, Refs.4,5). In addition to measuring structural data at

atomic or near-atomic resolution, cryo-EM can also provide information

about structural dynamics in the form of multistate reconstructions.6–8

Other methods such as FRET9 can characterize the native state ensem-

ble explored by large biomolecules.

Although all of these experimental methods can reveal information

both on the structure and the dynamics of a biomolecule, we often

need to complement experimental data with simulations. Molecular

dynamics (MD) can reliably probe and predict conformational dynamics

in biomolecules,10,11 but becomes very costly when studying large-

scale rearrangements implicated in cellular processes.

Standard applications of MD simulate the dynamics ab initio with-

out any additional data. Alternatively, experimental data can be com-

bined with a computational model to study a conformational transition.

There is a long tradition of coarse-grained network models that have

been used as a computationally feasible alternative to atomistic molec-

ular dynamics simulations.12 The G�o model,13 for example, was among

the first models to study protein folding.

The Gaussian network model (GNM) has been proposed to predict

the internal dynamics of biological macromolecules14,15 from a single

structural snapshot. It was shown that GNMs can reproduce the local

dynamics of proteins as measured by crystallographic B-factors16 and

NMR order parameters.17 A further improvement was achieved by the

anisotropic network model (ANM).18

Although elastic network models (ENMs) such as GNM and ANM

can to some extent predict the local dynamics, they are less suited to

describe large-scale conformational changes in proteins.12 The reason

for this limitation is that ENMs can only capture harmonic motions

about a single ground-state but large-scale conformational changes are

634 | VC 2018Wiley Periodicals, Inc. wileyonlinelibrary.com/journal/prot Proteins. 2018;86:634–643.
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anharmonic and can often only be triggered by cracking the bonds of

the elastic network.19 Recently, Kurkcuoglu et al.20 have proposed an

iterative clustering and ENM construction procedure that aims to cir-

cumvent the problem and allows for sampling of larger scale structural

transitions.

The “crack resistance” of ENMs is less problematic, if experimental

data about the alternative conformational state can guide the simula-

tion and eventually trigger the rupture of network bonds. For example,

ENMs have been combined with experimental data from cryo-EM or

SAXS to sample conformational changes in proteins.21 But closed-to-

open transitions still pose a challenge.22 Another powerful extension is

the deformable elastic network (DEN) by Schr€oder et al.23 which was

developed mainly to fit biomolecules flexibly into cryo-EM maps. DEN

adapts the contact distance in the course of flexible fitting.

Network models have also been used to predict transition paths

between two conformational states. The plastic network model pro-

posed by Maragakis and Karplus24 can find transition paths between

two conformational states and predict intermediate structures. A limita-

tion of the plastic network model is that it requires an explicit represen-

tation of the target structure. But often, the target state is only

characterized implicitly and incompletely by structural data.

All of the above methods have their strength and weaknesses. The

most important limitation is that as the models become more complex,

we often have to set a number of algorithmic parameters. Therefore, it

is desirable to develop a more principled approach that estimates these

parameters from the experimental data and known structures.

In this article, we develop a probabilistic network model derived

from statistics of protein structures and conformational transitions. The

model can be used to find minimally invasive conformational changes

that allow for the fitting of experimental data that show an alternative

structural state. Our goal is mainly to predict the final structure rather

than generating a meaningful transition path. The model is based on a

statistical analysis of a large set of conformational changes as well as

experimental and theoretical ensembles. Rather than using harmonic

springs the analysis suggests the use of anharmonic springs derived

from heavy-tailed distance distributions that can be fitted with a gener-

alized lognormal distribution. In addition to using anharmonic springs,

the model allows for the rupture of contacts during the conformational

transition. The rupture of springs can be simulated efficiently and adap-

tively as the conformational switch progresses. We demonstrate the

efficiency and accuracy of our model on a benchmark of conforma-

tional transitions.25 Finally, we combine our network model with cross-

linking restraints to predict alternative conformational states from

sparse data observed with crosslinking followed by mass spectrometry.

2 | MATERIALS AND METHODS

2.1 | The generalized lognormal distribution

To construct a probabilistic model for conformational changes in pro-

teins, let us first study the distribution of interatomic distances in pro-

tein structures that do not undergo a substantial structural transition.

The ANM imposes a harmonic potential between Ca atoms that are in

contact.18 Therefore, the ANM assumes that differences in Ca distan-

ces follow a Gaussian distribution. However, because distances are

intrinsically positive quantities, it is more adequate to consider differen-

ces in the logarithms of the distances (or equivalently the logarithm of

the ratio of both distances) rather than differences in the distances

themselves.26 If the log distance ratios are assumed to follow a Gaus-

sian distribution, the model for distance fluctuations is the lognormal

distribution.

Here, we will consider a more general family of distance distribu-

tions that includes the lognormal distribution as a special case. The

generalized lognormal distribution is defined as

GLNðr;q;k;bÞ5 b

2Cð1=bÞ k r exp f2jln ðr=qÞjb=kbg (1)

where r � 0 is a non-negative variable such as a distance or a ratio of

two distances and C is the Gamma function. GLN has three positive

parameters q, k, and b. The logarithm of q is the mode, mean and

median of the distribution of ln r. The shape parameter b controls the

fatness of the tails of the distribution. For b � 1, GLN shows increas-

ingly heavy tails. Important special cases are the lognormal distribution

(b52) and the log-Laplace distribution (b51). Due to the heavier tails

for b<2, the generalized lognormal distribution can accommodate

occasional outliers and thereby allows for more robust modeling in

comparison with the lognormal distribution. The variance of ln r

depends on the scale parameter k and the shape of the distribution:

varðln rÞ5 Cð3=bÞ
Cð1=bÞ k

2.

The parameters q, k, and b of the generalized lognormal distribu-

tion (Equation 1) can be inferred from n observations frig5fr1; . . . ; rng
in a straightforward way. Assuming a Jeffreys’ prior (that is, a uniform

prior distribution in log space) for the strictly positive parameters q, k,

and b, the full posterior probability is:

Pr ðq; k;b j frigÞ /
bn21

qkn11 Cð1=bÞn
exp 2

X

n

i51

jln ri2lnqjb=kb
( )

: (2)

Because ln q is the median of ln r; q̂5exp fmedianðln r1; . . . ; ln rnÞg
is a stable estimator for q. The sample variance of ln ri is an estimator

for Cð3=bÞ
Cð1=bÞ k

2. Therefore, assuming that we know the shape parameter

b, we can estimate the scale by k̂
2
5

Cð1=bÞ
Cð3=bÞ varfln rig. If we plug these

two estimators into the posterior distribution (Equation 2), we obtain a

probability that depends only on b. This distribution can be maximized

numerically to obtain an estimate of the shape parameter b̂ from which

an estimate of the scale parameter k̂5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varfln rig Cð1=b̂Þ
Cð3=b̂Þ

r

is obtained.

2.2 | Two-component mixture of generalized

lognormal distributions

Distance changes observed in biological macromolecules that undergo

structural transitions can be roughly divided into two classes: small-

amplitude fluctuations due to thermal motions and larger scale

transitions that are often involved in the biological function. The dis-

tance distribution can therefore be described approximately by a

two-component mixture model. One component accounts for the
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small-amplitude fluctuations, whereas the other component models

large-scale variations in the distances due to the conformational

change.

Let us denote the proportion of contacts that are preserved during

the conformational change by w 2 ½0;1�. The two-component mixture

model for a distance r is

Pr ðrjk1;k0; q1;q0;b1;b0;wÞ5wGLNðr; q1; k1;b1Þ
1ð12wÞGLNðr; q0;k0;b0Þ

(3)

where k1 and k0 measure the amplitudes of the distance fluctuations.

The first component, GLNðr;q1; k1;b1Þ, models the distance fluctua-

tions in preserved contacts, whereas the second component describes

large-amplitude fluctuations due to the conformational change (that is,

k1 � k0).

To learn the mixture model (Equation 3) from observed distances,

we use a Gibbs sampler27 which is commonly used to fit mixture mod-

els.28 The Gibbs sampler uses the identity p11p25
X

z2f0;1g
pz1 p

12z
2 which

is valid for every pair of positive numbers p1, p2. Applied to the general-

ized lognormal mixture (Equation 3) we have

Pr ðrja0;a1;wÞ5
X

z2f0;1g
wzð12wÞ12z ½GLNðrja1Þ�z ½GLNðrja0Þ�12z (4)

where the parameters of the GLN have been collected into

ai5ðqi;ki;biÞ, i50, 1. This means that we can simulate the two-

component mixture by stochastically switching on (z51) and off (z50)

network bonds. In a Gibbs sampling approach, the sum in Equation 4 is

not calculated analytically but evaluated stochastically by sampling a

binary indicator zij 2 f0;1g for every distance rij that defines a bond

between residues i and j.

2.3 | The DynDom database

The DynDom database29 has been created on the basis of the method

by Hayward and Berendsen,30 which decomposes protein structures

into rigid domains. DynDom automatically detects rigid domains by

comparing two conformational states of a protein. We analyzed 450

examples from the DynDom database which show a conformational

change larger than 5 Å and involve rigid domains larger than 100 amino

acids.

2.4 | Inferential structure determination

Inferential structure determination (ISD)31,32 is a fully probabilistic

method for biomolecular structure determination from experimental

data D. ISD implements a Bayesian approach that solves a structure

determination problem by sampling conformations u from its poste-

rior probability distribution Pr ðujD; I Þ (I is the background information

that encodes all modeling assumptions, u are the conformational

degrees of freedom). According to Bayes’s theorem we can decom-

pose the posterior distribution into a product of the likelihood func-

tion LðuÞ5Pr ðDju; I Þ, which is the probability of the data given a

candidate structure parameterized by u, and the prior probability

PrðujI Þ:

Pr ðujD; I Þ / Pr ðDju; I ÞPr ðujI Þ : (5)

Typically, we choose a Boltzmann distribution for the prior32:

Pr ðujI Þ51
Z
exp f2EphysðuÞg (6)

where EphysðuÞ is a nonbonded force field, a linearly ramped Lennard-

Jones potential,33 and Z the partition function. Structures are repre-

sented with full atomic detail.

When sampling structural transitions, we assume that an atomic

resolution structure of at least one conformational state is available.

This structure will be encoded using a probabilistic network model. The

second conformational state is the target state, which we would like to

reach when starting from the first structure. In the morphing scenario,

a full-atom structure of the target state is given. However, of higher

practical relevance is a situation in which only sparse or low-resolution

data about the target state are available.

Let us first consider the morphing scenario. The target state will be

modeled by positional restraints. Let yi denote the Cartesian coordi-

nates of the i-th atom of the target structure, the probability of gener-

ating this position from our model u is a three-dimensional spherical

Gaussian

Pr ðyiju;r; IÞ5
1

ð2pr2Þ3=2
exp 2

1
2r2

|yi2xiðuÞ|2
� �

(7)

where xiðuÞ is the position of the i-th atom in the model parameterized

by the conformational degrees of freedom u. The standard deviation r

assesses by how much we can deviate from the target structure. The

complete likelihood function derived from the target structure is simply

the product of probabilities (Equation 7):

LtargetðuÞ5
Y

i

Pr ðyiju; IÞ5ð2pr2Þ23N=2exp 2
1

2r2

X

N

i51

|yi2xiðuÞ|2
( )

(8)

The likelihood is effectively based on the RMSD between the

model and the target structure. The standard deviation r is directly

related to the RMSD:

hRMSD2i5
�

1
N

X

i

|yi2xiðuÞ|2
�

53r2:

By setting r to a fixed value, the simulation aims for a particular

RMSD to the target structure (RMSD �
ffiffiffi

3
p

r). However, it is also pos-

sible to estimate r in the course of the simulation.34

As a second application, we also considered crosslinking data as

input. The observation of a crosslink between atoms i and j is a binary

event cij51 that we model by using a logistic function:

Pr ðcij51ju;a; IÞ5 1
11exp fa ð|xiðuÞ2xjðuÞ|2rcÞg

(9)

where rc is the maximum extension of the crosslinker and a is the

steepness of the logistic function. The logistic function has a sigmoidal

shape and approaches a maximum crosslinking probability of one for

distances smaller than rc. For distances exceeding the length of the

crosslinker, the crosslinking probability gradually drops to zero. The

likelihood function resulting from a set of crosslinks is
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log LxlinksðuÞ52
X

i;j

log ð11exp fa ð|xiðuÞ2xjðuÞ|2rcÞgÞ (10)

where the sum runs over all pairs of atoms for which a crosslink has

been detected.

Structural samples are drawn from the posterior distribution (Equa-

tion 5) by using a Markov chain Monte Carlo algorithm.35 We use

Hybrid Monte Carlo, also known as Hamiltonian Monte Carlo36,37 in

internal coordinates, that is, u are the main-chain and side-chain torsion

angles which parameterize the Cartesian coordinates. Sampling of the

conformational degrees of freedom is followed by sampling the other

model parameters for a fixed structure. Most importantly, these are the

network bonds zij and, in principle, also other unknown quantities such

as the standard deviation r as well as the parameters of the general-

ized lognormal components a0, a1. In the following, however, ai were

set to values suggested by an analysis of a database of conformational

transitions.

3 | RESULTS AND DISCUSSION

3.1 | Small-scale distance fluctuations follow a

generalized lognormal distribution

To develop a probabilistic model for proteins that undergo large con-

formational changes, let us first study the Ca distance fluctuations

within parts that do not change their internal structure substantially

and behave approximately as rigid domains. The DynDom database29

offers a collection of pairs of protein structures that show two distinct

conformational states. DynDom contains >3000 conformational

changes of varying magnitude. Here, we consider all pairs of structures

that differ by >5 Å Ca RMSD a large-scale conformational change. For

all 450 pairs that satisfy this criterion, intradomain distances were com-

puted for both conformational states and compared with each other.

As explained in Methods, we used log distance ratios rather than dis-

tance differences to compare alternative conformational states.

Figure 1A shows a particular example that is representative of the

whole set of pairs of structures involved in a large-scale conformational

change. GroEL undergoes a domain closure motion during its functional

cycle. The apo and holo conformation of GroEL (PDB codes 1oel and

1aon) exhibit an overall RMSD of �12 Å between both conformational

states. Figure 1A shows the distribution of the log ratios of Ca distan-

ces that are below 10 Å in both conformations. The distribution is cen-

tered at zero and approximately symmetric. Its shape can be modeled

quite accurately with a generalized lognormal distribution. The esti-

mated parameters for GroEL are q̂51:0; k̂50:04, and b̂50:76. Most

intradomain distances do not change significantly during the domain

closure movement, which is indicated by the central peak at zero. Only

a small fraction of intradomain distances changes significantly during

the structural transition and contribute to the tails of the distribution.

We find similar distributions of log distance ratios for NMR ensem-

bles and molecular dynamics trajectories. Figures 1B,C show the

FIGURE 1 Empirical distributions of distance ratios in rigid domains and various structure ensembles (filled histograms) in comparison to
fitted generalized lognormal models (black lines; parameter estimates are given in the figure legends). (A) Intradomain distances in GroEL
derived by a comparison of the apo and holo conformation. (B) Distribution of log distance ratios in a standard NMR ensemble of adenylate
kinase (PDB code 1p4s). (C) Distribution of log distance ratios in an ensemble of ubiquitin obtained with NMR ensemble refinement (PDB
code 2k39). (D) Log distance ratios for an MD trajectory of adenylate kinase38 (the trajectory is part of the MDAnalysis package39) [Color
figure can be viewed at wileyonlinelibrary.com]
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distributions of a standard NMR ensemble of adenylate kinase (PDB

code 1p4s) and an ensemble of ubiquitin obtained by ensemble

refinement (PDB code 2k39). The log distance ratios of both NMR

ensembles can also be modeled quite accurately with the general-

ized lognormal distribution. Again the shape parameter b is smaller

than one, indicating that the distribution of log distance ratios has

heavier tails than the lognormal and even the log-Laplace distribu-

tion. Similar to the structures obtained with ensemble refinement,

distance fluctuations in the simulated trajectory (Figure 1D) show a

scale parameter b close to one, and can therefore be modeled with

a log-Laplace distribution.

We fitted the generalized lognormal model to all log ratios of intra-

domain distances extracted from 450 large-scale conformational transi-

tions in DynDom. This analysis shows that the parameters of the

generalized lognormal distribution vary from case to case (see Figure

2A-C). The average values of all three parameters are q51.0, k50.03,

and b50.78. If we pool the distance ratios extracted from all 450

structural transitions (shown in Figure 2D), we obtain similar estimates:

q51.0, k50.02, and b50.63. To simplify the calculation of restraints,

we will use the log-Laplace distribution to describe distance fluctua-

tions (that is, we fix the shape parameters to b51). We then obtain

q51. and k50.04, as optimal fit of the pooled set of distance

fluctuations.

To summarize, NMR ensembles, MD trajectories and rigid domains

of protein undergoing large-scale conformational changes all show sim-

ilar distance fluctuations. To assess these fluctuations, it is more

adequate to model the distribution of log distance ratios rather than

distance differences. The generalized lognormal model (Equation 1) is

flexible enough to capture the distribution of small-amplitude distance

fluctuations.

3.2 | Adaptive network model

Large-scale conformational transitions can approximately be described

as rigid-body movements.2 During a domain movement contacts within

the rigid domains are mostly preserved, whereas contacts between dif-

ferent domains break. To model the rupture of bonds, we studied the

distribution of the log distance ratios between Ca atoms that belong to

different rigid domains. The interdomain log distance ratios are typically

skewed depending on the direction of the conformational change

(closed-to-open or open-to-closed). However, if we pool all interdo-

main log distance ratios from the 450 large-scale transitions, we

observe a zero-centered heavy-tailed distribution that can be approxi-

mated with a generalized lognormal distribution (the estimated shape

parameter is b50.85).

Based on our previous findings, we chose log-Laplace models to

describe intradomain and interdomain distance fluctuations. We fixed

the shape parameter b51, even though the database analysis sug-

gested a smaller value, corresponding to a model with heavier tails than

the log-Laplace distribution. Our choice was motivated by its simplicity,

since it results in a restraining potential that does not require the evalu-

ation of fractional powers (see Equation 1). Moreover, tests with b<1

indicated that the exact choice of b does not have a significant impact

on the final model.

FIGURE 2 Analysis of 450 conformational transitions extracted from the DynDom database. Estimated parameters of the generalized
lognormal model: mode q (A), logarithm of the scale parameters k (B), and shape parameters b (C). Panel (D) shows a histogram of the
pooled log distance ratios from all 450 examples [Color figure can be viewed at wileyonlinelibrary.com]
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We can now devise a dynamic network model that allows for the

rupture and formation of network bonds by means of a two-

component mixture model. If a protein undergoes large conformational

changes such as the opening of a domain, some contacts derived from

the reference structure will be broken. We do not know which contacts

will be lost during the structural transition. For every contact between

Ca atoms from residues i and j, we therefore introduce a binary vari-

able zij 2 f0;1g which indicates, if the bond is formed (zij51) or broken

(zij50). The parameter w 2 ½0;1� quantifies the probability that a bond

remains intact during a conformational change, such that without any

additional structural information, zij follows a Bernoulli distribution

Pr ðzijjwÞ5wzij ð12wÞ12zij ; zij 2 f0;1g : (11)

Our analysis of the 450 transitions from DynDom suggests w �
0.92.

Given a reference structure u that defines the network the condi-

tional posterior probability for the formation of bonds is:

Pr ðzijju;wÞ / ½wGLNðrij; rijðuÞ; k1;1Þ�zij ½ð12wÞGLNðrij; rijðuÞ; k0;1Þ�12zij

(12)

where i, j are pairs of amino acids whose Ca distances rij are smaller

than 10 Å, and rij(u) is the distance in the model parameterized by

the conformational degrees of freedom u. The posterior probability

(Equation 12) follows by multiplying the prior probability of the

bond variables (Equation 11) with the likelihood (Equation 4). Our

analysis of the DynDom entries yielded k1 � 0.04 and k0 � 0.2:

the amplitude of distance fluctuations of preserved contacts is five

times smaller than the amplitude of distance fluctuations in broken

contacts. We sample the bond variables zij during the simulation of

the structural transition by generating binary variables according to

probability (Equation 12).

3.3 | Sampling conformational transitions

Given a configuration of the bond variables zij, the network imposes

restraints on the conformational degrees of freedom. The restraining

potential resulting from the network is:

EnetworkðuÞ5
X

ði;jÞ

zij

k1
1
12zij

k0

� �

jln ½rijðuÞ=rij� j : (13)

If a bond is switched on (zij51), the network restraint pulls with a

force constant of 1/k1525. If the bond is switched off, the pulling

force is five times weaker 1/k055.

As a first application of the network model, we considered the sim-

ulation of structural transitions for which an atomic resolution structure

of the target state is known. To guide the simulation toward the target

state, we used positional restraints (Equation 8 in Methods). The condi-

tional posterior distribution over the conformational degrees of free-

dom is:

Pr ðujzij; IÞ / exp f2EtargetðuÞ2EnetworkðuÞ2EphysðuÞg (14)

where EtargetðuÞ52log LtargetðuÞ.
The algorithm for generating structural transitions iterates over the

following updates (where t denotes an iteration index):

uðt11Þ �Pr ðujzðtÞ
ij
; IÞ

z
ðt11Þ
ij

�Pr ðzijjuðt11Þ; IÞ

wðt11Þ �w

X

ði;jÞ
zij21

ð12wÞ

X

ði;jÞ
ð12zijÞ21

(15)

The first update samples all conformational degrees of freedom u

by using Hybrid/Hamiltonian Monte Carlo.36,37 In the second update,

network bonds are switched on or off by sampling the indicators zij

from Bernoulli distributions. In the last step, the fraction of preserved

network bonds w is sampled from a Beta distribution.

We simulated 94 conformational transitions studied by Sfriso

et al.25 to assess the accuracy of the Gibbs sampler (Equation 15). The

benchmark contains examples of varying degree of difficulty including

several closed-to-open transitions, which pose problems to standard

flexible fitting applications. For each pair of structures, we derived an

initial network model and used positional restraints (Equation 8) to

encode the information about the target structure. By running the

Gibbs sampler (Equation 15), we generated stochastic morphs between

the initial and the target structure (details about running times, memory

consumption and the final RMSD can be found in the Supporting

Information).

For all of the 94 transitions, our Gibbs sampler generated a final

model that was closer than 2 Å to the target state. Figure 3A shows

the RMSDs between the final structures and the target structure. On

average the RMSD to the target state is 0.7 60.3 Å.

During the simulation of a structural transition, network bonds can

break and form again. This is exemplified for the transition in 50-nucleo-

tidase (50-NTase). The fraction of the preserved network bonds w

decreases to 86%; after the target state has been reached, 98% of the

bonds are recovered. By decreasing w our network model allows for

the transient rupture of bonds.

We also studied the transition path generated during the morphing

simulation. For 50-NTase an atomic resolution structure of an interme-

diate state is available (PDB code 1oi8, chain A). Figure 3C shows the

evolution of the RMSD of the sampled structure to the initial, the inter-

mediate and the target state. The conformational change is sampled

within the first 200 iterations of Gibbs sampling; structural changes

sampled in later steps are smaller adaptations. During the structural

transition simulated with the Gibbs sampler, conformations are gener-

ated that are close to the intermediate structure (the minimum RMSD

for the forward simulation is 3.1 Å, for the reverse simulation the small-

est RMSD is 1.9 Å).

In Figure 3D, we show a projection of the transition paths onto

two collective variables: the domain opening angle v1 and the tilt angle

v2.40 The transitions sampled with our network model are similar to

those reported by Krug et al.41 and resemble the transition path

sampled by GOdMD42 (see Supporting Information for more details).

Moreover, the opening and tilt angles of the experimental structures lie

in close vicinity of the transition paths. Because the intermediate struc-

tures are sampled in torsion angle space, they are stereochemically

intact and free of clashes. This is also reflected by the PROSA score43

(Figure 3E), which does not deviate substantially from the value

achieved by the initial structure.
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More examples of transition paths and a comparison to high-

resolution structures of intermediate states are discussed in the Sup-

porting Information, which also includes movies showing the forward

and reverse transition of adenylate kinase and GroEL.

3.4 | Flexible fitting with crosslinking restraints

As an integrative modeling application of the adaptive network model,

we studied the use of data from crosslinking/mass spectrometry (XL-

MS) for modeling conformational changes. XL-MS is a powerful

method to characterize the structure of large assemblies and provides

useful distance information that is complementary to other structural

data obtained, for example, with cryo-electron microscopy. Here, we

consider crosslinking data to model an alternative conformational state

that has not been characterized by high-resolution structure determina-

tion methods. This application is highly relevant for modeling large

assemblies whose subunits undergo large conformational changes

upon complex formation.

Crosslinking data provide only sparse distance information, which

in its own right is not sufficient to build a complete model of the alter-

native conformational state. Therefore, we combine the crosslinking

restraints with an adaptive network model encoding the local structure

of the rigid domains. The domain boundaries are not known and will be

determined implicitly by breaking some of the network bonds.

We ran Xwalk44 to predict crosslinking data for the closed confor-

mation of GroEL (PDB code 1xck) and derived an adaptive network

model based on the open conformation (PDB code 1aon). Xwalk identi-

fies a total of 395 lysine-lysine crosslinks for the closed conformation

FIGURE 3 Simulation results for a benchmark of 94 structural transitions (light blue: forward transition, dark blue: reverse transition). (A)
Ca RMSD between the final structure after 5000 steps of Gibbs sampling and the target state. (B) Evolution of the percentage of intact
bonds during Gibbs sampling of the conformational change of 50-NTase. (C) RMSD to the initial (blue lines), target (green lines) and an inter-
mediate structure of 50-NTase (red lines). The RMSDs of the forward transition (1hp1 ! 1hpu) are shown in light colors, the reverse transi-
tion (1hpu ! 1hp1) is shown in dark colors. (D) Projection of the forward and reverse paths onto the domain opening and tilt angles. Black
dots indicate the values of the collective variables found in the experimental structures. (E) Evolution of the PROSA z scores during the for-
ward and backward transition of 50-Ntase [Color figure can be viewed at wileyonlinelibrary.com]

640 | HABECK AND NGUYEN



of GroEL. Most crosslinks are consistent with the open conformation,

but a fraction of 79 crosslinks is violated. We incorporated all crosslinks

into the model by using a likelihood based on a logistic model, which

defines restraints between the Ca atoms of the crosslinked lysines and

uses a threshold distance of rc534 Å to assess the probability that a

contact is formed in the model structure. The steepness of the logistic

function a was set to a value of 100 Å–1.

We ran the Gibbs sampler to generate a structural transition that

minimizes the number of violated crosslinks, but still maintains the

integrity of the structure. After � 320 sampling steps, the number of

violations dropped to zero (Figure 4A). The initial RMSD to the target

structure is 13.4 Å. Within the first 200 steps of Gibbs sampling the

RMSD to the target structure drops to � 3 Å, while the RMSD to the

initial structure increases to 13.6 Å. The final structure is shown in

FIGURE 4 Crosslink based modeling of GroEL. (A) Number of violated crosslinks. (B) Evolution of the RMSD to the initial and the target
structure during flexible fitting against the crosslinks. (C) Final structure obtained with the network model shown as colored cartoon, target
structure (1xck) shown as gray ribbon [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Crosslink based modeling of DNA damage-binding protein 1. (A) Superposition of the final crosslink based model (shown in
colored cartoon representation) and the crystal structure (shown as gray ribbon). The bottom row shows close-ups of the interface between
the three beta-propellers. Contacts that will be broken during the conformational transition are highlighted as red dashed lines. Panel (B)
shows the initial structure, which was used to derive the adaptive network. Panel (C) shows the model obtained with Gibbs sampling. The
initial contacts are heavily violated in the model structure
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Figure 4C. If we switch off the network model and fit against the cross-

links only, the number of violated crosslinks will also be reduced to

zero, first achieving a similar RMSD to the target structure. But as the

simulation continues, the structure will partially unfold such that the

RMSD increases to � 10 Å over a period of 104 Gibbs sampling itera-

tions. The simulation with adaptive network restraints, on the other

hand, remains stable with an RMSD of � 3 Å over the entire

simulation.

As a second example illustrating the use of the adaptive network

model, we modeled DNA damage-binding protein 1 (DDB1). DDB1

consists of three beta-propellers and has a total size of 1105 amino

acids. The conformational transition involves a rotation of one beta-

propeller relative to the other two beta-propellers. We used Xwalk to

generate 394 intramolecular crosslinks for DDB1 in complex with DNA

damage-binding protein 2 (PDB code 3ei3, chain A). The simulation

started from the structure of the DDB1-CUL4A ubiquitin ligase

machinery (PDB code 2hye, chain A). The RMSD between the initial

and the target structure is 14.5 Å. In the initial structure, 32 crosslinks

are violated. These crosslinks guide the simulation toward a model that

satisfies all crosslinks and has an RMSD of � 2.5 Å to the target struc-

ture (see Figure 5). During the conformational transition, 10 contacts

are switched off driven by the crosslinks by setting the corresponding

zij variables to zero. These contacts are located in the interface

between the three b-propellers and detected automatically by our

Gibbs sampling algorithm (see Figure 5).

4 | CONCLUSION

This article introduces a probabilistic network model that can be com-

bined with experimental data to infer large conformational transitions

in biomolecules. Our model is particularly suited to effectively sample

conformational transitions when knowledge about the location of hinge

regions and rigid domains is missing. Our adaptive network model is

based on a statistical analysis of distance ratios in rigid domains, which

can be described by a generalized lognormal distribution. We demon-

strate that the network model can be combined with sparse experi-

mental data such as crosslinking information detected with mass

spectrometry. In the future, we plan to combine the probabilistic net-

work model with various types of experimental data from solution scat-

tering, nuclear magnetic resonance, and cryo-electron microscopy.
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Running times and computational resources

We ran the 94 morphing simulations on a high throughput cluster (HPC)1 where each

node is a Ivy-Bridge Intel E5-2670 v2 2.5GHz processor with 64 GB memory. We sim-

ulated 5000 Gibbs sampling iterations for each morphing task. To sample a conforma-

tional transition, much fewer Gibbs sampling iterations (∼ 200 iterations) are required

(see Fig. 3 in manuscript). The running times, memory usage, initial and final RMSD

are summarized in Supplementary Table S1.

Transition Size

(AA)

CPU

time

(s)

Avg

memory

(MB)

Initial

RMSD

(Å)

Final

RMSD (Å)

1ysy A → 2ahm D 71 652.87 54.51 7.73 1.01

2ahm D → 1ysy A 71 1243.74 69.78 7.73 0.89

1szv A → 1vet B 91 838.47 71.3 6.31 1.02

1vet B → 1szv A 91 1784.59 96.32 6.31 0.79

1l5e B → 1l5b A 101 682.32 60.78 6.52 0.52

1l5b A → 1l5e B 101 808.26 63.72 6.52 0.55

1wrp R → 3wrp A 108 706.67 61.33 1.98 0.46

3wrp A → 1wrp R 108 760.08 62.74 1.98 0.53

1https://www.gwdg.de/application-services/high-performance-computing
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1xfr A → 2fjy A 123 832.1 73.57 5.27 0.71

2fjy A → 1xfr A 123 1775.8 96.86 5.27 0.9

1e7x A → 1dzs B 129 806.11 68.37 3.4 0.69

1dzs B → 1e7x A 129 1064.5 68.9 3.4 0.6

1cfd A → 1cfc A 148 2237.67 120.81 5.21 0.33

1cfc A → 1cfd A 148 2520.83 120.79 5.21 0.34

1hd2 A → 1oc3 C 158 1086.58 86.92 8.56 0.76

1oc3 C → 1hd2 A 158 1134.79 86.47 8.56 0.73

2gja B → 1rfl A 162 2512.23 152.04 8.73 1.03

1rfl A → 2gja B 162 1103.06 92.05 8.73 1.39

1r3e A → 1ze1 D 169 1823.95 154.31 1.53 0.92

1ze1 D → 1r3e A 169 2062.04 133.78 1.53 0.96

1ybj A → 1dk0 B 173 1123.31 93.68 5.64 0.99

1dk0 B → 1ybj A 173 2435.46 125.75 5.64 0.88

1aje A → 1ees A 174 2799.43 182.67 6.75 1.24

1ees A → 1aje A 174 2545.91 144.22 6.75 1.51

1cbu B → 1c9k B 180 1165.33 89.65 3.11 0.62

1c9k B → 1cbu B 180 1107.19 91.32 3.11 0.55

1ex6 A → 1ex7 A 186 1232.52 96.29 3.64 0.42

1ex7 A → 1ex6 A 186 1388.97 96.85 3.64 0.43

1s2h A → 1go4 D 190 1315.2 105.79 4.93 1.02

1go4 D → 1s2h A 190 3587.34 179.48 4.93 0.93

1bcc E → 2bcc E 196 1263.48 98.75 7.45 0.63

2bcc E → 1bcc E 196 1227.62 98.75 7.45 0.73

2rh5 A → 2rgx A 202 1349.35 104.29 5.85 0.55

2rgx A → 2rh5 A 202 1259.65 104.38 5.85 0.54

4ake A → 1ake B 214 1527.12 109.95 7.14 0.56

1ake B → 4ake A 214 1349.17 106.12 7.14 0.63

1ggg A → 1wdn A 220 1624.13 112.31 5.34 0.65

1wdn A → 1ggg A 220 1369.03 109.18 5.34 0.63

2lao A → 1lst A 238 1707.31 115.12 4.7 0.39

1lst A → 2lao A 238 1448.57 114.31 4.7 0.35

3pjr A → 1qhh B 261 1813.44 135.3 8.31 0.64

2



1qhh B → 3pjr A 261 1929.56 128.72 8.31 0.55

1urp D → 2dri A 271 2292.07 147.4 4.2 0.36

2dri A → 1urp D 271 2096.51 129.76 4.2 0.38

1ram B → 1lei A 273 1916.94 133.83 3.07 0.47

1lei A → 1ram B 273 2168.85 132.73 3.07 0.46

5at1 C → 8atc C 310 2166.19 146.9 2.36 0.68

8atc C → 5at1 C 310 2485.8 145.75 2.36 0.68

1ckm A → 1ckm B 317 2227.09 159.69 3.49 0.52

1ckm B → 1ckm A 317 2115.98 151.3 3.49 0.53

3dap B → 1dap A 320 2228.18 169.47 4.28 0.41

1dap A → 3dap B 320 2019.66 146.78 4.28 0.38

1eyk A → 1nuz A 327 2283.2 188.2 4.54 0.76

1nuz A → 1eyk A 327 2203.42 150.46 4.54 0.82

1bp5 B → 1a8e A 329 2299.09 187.58 6.78 0.45

1a8e A → 1bp5 B 329 2289.36 153.91 6.78 0.47

1jqj A → 2pol A 366 2495.64 204.34 2.05 0.74

2pol A → 1jqj A 366 2404.76 169.51 2.05 0.78

1omp A → 1anf A 370 2606.05 203.76 3.77 0.48

1anf A → 1omp A 370 2503.97 170.32 3.77 0.4

8adh A → 6adh B 374 2514.05 215.74 1.35 0.7

6adh B → 8adh A 374 2545.7 219.51 1.35 0.63

9aat A → 1ama A 401 2735.77 237.72 1.66 0.48

1ama A → 9aat A 401 2814.81 242.44 1.66 0.51

1ux5 A → 1y64 B 411 2714.49 252.58 10.33 0.73

1y64 B → 1ux5 A 411 2779.33 257.7 10.33 1.51

1qf5 A → 1hoo B 431 3964.11 287.62 2.17 0.68

1hoo B → 1qf5 A 431 2952.76 256.8 2.17 0.74

1yyo → 1yyw 438 1733.47 114.92 17.46 0.59

1yyw → 1yyo 438 1706.23 119.44 17.46 0.56

1bnc A → 1dv2 B 452 3130.23 207.14 3.92 0.48

1dv2 B → 1bnc A 452 2976.04 274.85 3.92 0.56

1rkm A → 2rkm A 517 3777.25 298.17 3.08 0.42

2rkm A → 1rkm A 517 3598.92 332.81 3.08 0.38
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1sx4 G → 1oel F 524 3478.49 247.78 12.39 0.78

1oel F → 1sx4 G 524 3296.45 323 12.39 0.83

1hp1 A → 1hpu C 525 3710.32 279.07 10.01 0.41

1hpu C → 1hp1 A 525 3356.42 246.47 10.01 0.49

2hmi A → 3hvt A 556 3664.31 282.81 3.45 1.43

3hvt A → 2hmi A 556 3672.59 266.81 3.45 1.32

1i7d A → 1d6m A 620 4234.92 299.65 3.4 0.61

1d6m A → 1i7d A 620 4207.54 421.49 3.4 0.58

8ohm A → 1cu1 B 645 2964.66 195.97 4.49 0.6

1cu1 B → 8ohm A 645 2951.66 227.06 4.49 0.6

1lfg A → 1lfh A 691 4814.59 399.16 6.43 0.56

1lfh A → 1lfg A 691 4711.94 488.74 6.43 0.58

1qvi A → 1kk8 A 837 5185.55 647.53 27.4 1.14

1kk8 A → 1qvi A 837 5317.37 594.08 27.4 1.89

1q9x B → 1q9y A 899 6244.06 764.38 5.43 0.48

1q9y A → 1q9x B 899 6323.5 664.86 5.43 0.47

1ih7 A → 1ig9 A 903 6169.42 808.31 6.49 0.57

1ig9 A → 1ih7 A 903 6303.24 731.22 6.49 0.56

1su4 A → 1iwo A 994 6445.33 768.81 13.97 1.15

1iwo A → 1su4 A 994 6445.56 928.44 13.97 1.21

Table S1: running times, memory usage and final RMSD for

all 94 morphing simulations.
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Figure S1: Forward and reverse transition in adenylate kinase. (A) The forward path-

way connecting the open state (blue circle, PDB code 4ake) with the closed state (blue

square, PDB code 1ake) is shown in blue, the reverse transition is indicated by cyan ar-

rows. The pathways were projected onto the LID-CORE and NMP-CORE angle. Black

circles indicate experimental structures. The blue and cyan circles mark intermediate

structures (PDB entries 2ak2 and 2bbw). Panels (B) and (C) show the evolution of the

global RMSD during the forward and reverse transition between our generated struc-

tures and the intermediate structures from PDB entries 2ak2 and 2bbw.

Detailed analysis of conformational transitions

Because structural transitions follow paths in a very high dimensional space, it is a non-

trivial task to compare the transition paths generated by our Gibbs sampling algorithm

with other pathways reported in the literature. We projected the transitions onto various

reaction coordinates such intra-domain angles as well as principal components. We

studied four examples in more detail.

Adenylate kinase

Adenylate kinase (AdK) is a phosphotransferase that catalyzes the reaction converting

ATP and AMP into 2 ADP molecules. AdK is composed of three domains: NMP binding

domain (residues 30-60), LID (residues 115-160) and the CORE domain (residues 1-

5



30, 61-114, and 161-214). Figure S1 presents the conformational change between the

open (PDB code 4ake, chain A) and the closed state (PDB code 1ake, chain B). This

large-scale structural transition can be captured by two intra-domain angles θNMP and

θLID (Beckstein et al., 2009). The NMP-CORE angle θNMP is the angle between the

centers of mass of two segments L115-V125 and L35-A55 relative to I90-G100 based

on Cα positions. The LID-CORE angle θLID is the angle between the centers of mass

based on Cα positions of segments I179-E185 and V125-L153 relative to L115-V125.

The forward and reverse transitions generated by our Gibbs sampler follow different

pathways. Visual comparison with the analysis by Seyler et al. (2015) reveals that our

transition path is close to the path generated by GOdMD (Sfriso et al., 2013) in that the

LID-CORE angle changes first and is followed by a transition in the NMP-CORE angle.

Our reverse transition is close to the pathway generated with ANMPathway (Das et al.,

2014). Among 45 experimental structures of AdK deposited in the PDB, we identified

several structures that are close to our transition paths in angular space. The closest

intermediate structures based on global RMSD are PDB entries 2bbw (chain A) and

2ak2 (chain A).

GroEL

To illustrate the transition path between the T state (PDB code 1oel, chain F) and R”

state (PDB code 1sx4, chain G) in GroEL, we used a reaction coordinate (RC) similar

to the one defined by Zheng and Wen (2017). We defined the reacion coordinate RCS

to measure the movement of some domain S as follows:

RCS = (δXSδXS,obs)/|δXS,obs|
2 (1)

where δXS is the displacement vector from the center of mass of domain S in the ini-

tial structure to the center of mass of domain S in the intermediate structure. Figure

S2 shows the movement of the Apical (A) and Intermediate (I) domain relative to the

Equatorial (E) domain measured by RCAE and RCIE.

5’-nucleotidase

Escherichia coli 5’-nucleotidase (5’-NTase) is an enzyme composed of an N-terminal

domain (residues 26-351) and a C-terminal domain (residues 365-550) that move rela-

tive to each other. To elucidate the transition pathway of 5’-NTase, we used two angles

6
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Figure S2: Analysis of the transition path of the T state (green circle) and R” state

(yellow square) in GroEL. To visualize the transition, we used two reaction coordinates,

RCIE and RCAE, where the A, I, and E domain were defined as in Xu et al. (1997) and

computed by using equation 1. The black dots indicate experimental structures from

the following PDB entries 4aaq (chains B, C), 4ab2 (chains A, B), 4aar (chains B, C),

4aau (chains B, C, J, K), 4pko (chains A, D, L, M), 3wvl (chains G, J), 1pf9 (chains A,

D), 1sx4 (chain J), 2eu1 (chain F), 2c7e (chains L, M), 1xck (chain B), 1mnf (chain I).
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χ1 (domain opening angle) and χ2 (tilt angle) defined by Knöfel and Sträter (2001) and

Krug et al. (2016). Figure S3 shows the evolution of χ1 and χ2 during the transition

paths generated with our Gibbs sampler and highlights that the generated paths find

an experimentally characterized intermediate state (PDB code 1oi8). For comparison,

we also show the transition path for the forward direction generated with GOdMD by

Sfriso et al. (2013), which steps through a similar sequence of collective variables (the

GOdMD simulation for the reverse direction failed, producing a final structure with an

RMSD of ∼7 Å to the target).

Ribonuclease III

Ribonuclease III (RNase III) is a ribonuclease that plays an important role in RNA pro-

cessing. RNase III recognizes and cleaves dsRNA at several target locations to create

mature RNAs (Gan et al., 2005). We investigated the transition path of RNase III and

compared our results with pathways generated by Orellana et al. (2016). We used prin-

cipal component analysis (PCA) to project the transition path onto the first two principal

components (PCs).

Figure S4 shows the forward and reverse transition starting from non-catalytic complex

(PDB code 1yyo) and targeting the pre-catalytic complex (PDB code 1yyw). The forward

transition comes close to the inactive dsRNA-bound state (PDB entries 1yyk, 2nue).

The reverse transition comes close to the Mg2+ bound catalytic state (PDB entries

4m30, 4mz2).

Supplementary movies

Our supplementary movies show forward and reverse transitions in cartoon represen-

tation generated by Pymol (DeLano, 2002).

• Movies Adk forward.avi and Adk reverse.avi show the forward and reverse tran-

sition in Adenylate kinase wher NMP, LID and CORE domain are colored in red,

green and blue. Structures were superimposed onto the CORE domain.

• Movies Groel forward.avi and Groel reverse.avi show the forward and reverse

transition in GroEL where the Apical, Intermediate and Equatorial domain are col-

9
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Figure S4: Conformational transition in RNase III starting from the non-catalytic com-

plex (PDB code 1yyo) and targeting the pre-catalytic complex (PDB code 1yyw).
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ored in red, green and blue. Structures were superimposed onto the Equatorial

domain.
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Chapter 6

Discussion and Conclusion

6.1 Probabilistic model characterizes protein conformational

change

In this thesis, we propose two probabilistic models that characterize protein conforma-
tional change. The first model segments proteins into rigid bodies, whereas the second
model characterizes the protein in a more flexible way using an elastical network of
contacts, which are preserved or break controlled by the experimental data from different
conformational states. In the first model, we have developed a Gaussian mixture model
that segments the protein structures into rigid bodies. The generative model parameters
are sampled by a Gibbs sampler from the structure. However, this model requires us
to set the number of rigid domains K, which we initially set to a relatively large value
K = 10, the precise number of rigid bodies is determined by dropping the empty clusters.
Unlike the other methods which usually support only pairs of structures, our first model
supports multiple structures. We compare our results with others by focusing on particular
examples. A stringent benchmark based on the Dyndom database was implemented. We
evaluate the first result with more than 3000 original entries from Dyndom. In later work,
we process around 400 entries, which show significant conformational changes. To get
rid of the label switching problem, we transform the discrete label into label forgetting
matrices. The evaluation against Dyndom achieves score based on the overlap (92%) and
segmentation error (12%).
In our improved model (in preparation), we use fewer parameters while achieving better
performance and more robust program. The initial conditions we obtain from the commu-
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nity detection algorithm (the Louvain methods) (Blondel et al. (2008),Traag et al. (2011))
outperformed the results from the spectral clustering (Von Luxburg (2007)). In previous
work, a problem of algorithms such as expectation-maximization and Gibbs sampling is
that they only find local optima such that the quality of the segmentation strongly depends
on the initial parameters. Here we try to find an efficient way of finding proper initial
parameters based on the community detection algorithms of the Louvain methods.

6.1.1 Scope of our model

Our first model and the improved version often characterize the rigidity of proteins. How-
ever, the model is not a universal fit for all protein conformational changes. Our rigid
model was derived from the structural fluctuations. It cannot detect the rigid domain if
the amplitude of conformational change is too small. Intrinsically, our model alone cannot
work with a single structure. An example of DEAH Box helicase shows the limitation of
the rigid domain model. The DEAH-box helicase Prp43 is a motor protein that unwinds is
a critical player in pre-mRNA splicing as well as the maturation of rRNAs. We analyzed
four conformations from Tauchert et al. (2017): ctPrp43DN.ADP complex structure (PDB:
5D0U), ctPrp43DN.U7.ADP.BeF3(PDB: 5LTA), ctPrp43DN.ADP.BeF3(PDB: 5LTJ) and ct-
Prp43DN.ADP.BeF3 (PDB: 5LTK) the first 60 residues are disordered therefore discarded.
Figure 6.1 shows that our result agrees with the result from literature in the location of
the first three domains RecA1, RecA2, and WH. The last two domains Ratchetlike and
OB, show minimal conformational change. Therefore they are merged into one big rigid
domain by our approach. In this example, we can only compare our results with Spectrus,
which required manual tuning of their quality score; our model solved this example
automatically. Moreover, other methods do not support more than two input structures.
Our result is in closer agreement with the literature than Spectrus’s result.
To solve the small fluctuation problem, one could generate the full ensemble using molec-
ular dynamic simulation or a Gaussian network model, which requires less computational
cost.
Another limitation of our model is that it cannot characterize protein conformational
changes in fibrous proteins. In this example, elongate filaments are segmented into a
large number of tiny rigid bodies that are overfitting our model. We take a close look at
Calmodulin. Calmodulin is a Calcium ion binding protein. Because of its size, NMR has
been used to determine most of the Calmodulin structures. In our database, Calmodulin
has 288 entries. From literature, Camodulin consists of 2 domains, the C-Terminal and N
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Figure 6.1: Structure of DEAH-box helicase Prp43 and segmentation set (left to right) from
literature, Spectrus (Manually selected K = 3 based on quality score), and our method
PRISM

terminal domain, which are well separated by a hinge in the middle of alpha-helix. Our
model describes precisely two domains for pairs of input structure: 1CFC chain A and
1CFD chain A the Calcium free form. The small RMSD between the rigid domain shows
that the model fits the structure well. However, the rigid model cannot characterize the
rigid domain within the 1CLL chain A the Calcium-binding conformation, which indicates
high RMSD between domains (See Figure 6.2). Our model generates four rigid domains
with all conformation of the Calmodulin family. The two extra segmentation satisfies
the mechanical transformation, which has small RMSD. The third problem is the model
cannot characterize well for continuous conformational change. For example, when we
process two input structures with several intermedia conformational, our model cannot
well separate between rigid bodies. The example of doughnut shape like exportin CRM1
protein (Chromosome region maintenance 1) in two conformations the compact 3GB8(A)
and extended 3GJX(A). Our model detects more segments that are fragmented into several
small segments than the result from literature. Figure 6.3 show the heterogeneous struc-
ture of CRM1 entries with smooth distance transition. Those proteins can be characterized
into a random coil or random filament. For these elastic conformational change, we
propose the probabilistic network model for structural transition in biomolecules. Our
model implements anharmonic spring that allows us to break or preserve with sampling
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Figure 6.2: Our model describes three conformational structures of Calmodulin with PDB
(chain) (A): 1CFC(A), (B): 1CFD(A), (C): 1CLL(A). Structures are colored by segmentation
domain obtained with from pairs of PDB(chain): 1CFC(A), 1CFD(A). Root mean square
deviation (RMSD) of two conformations A versus B: 5.2 Å. RMSD between the first
segments: 0.39 Å. RMSD of second segments 0.44 Å shows the model fit two conformations.
Root mean square deviation (RMSD) of two conformations A versus C: 14.02 Å. RMSD
between the first segments: 4.45 Å. RMSD of second segments 4.59 Å, show the model
does not fit the third conformation. (D) Structures of 1CLL(A) are colored by our model
for all three conformations

from experimental data. The probabilistic model generates the entire ensembles from one
structure to the target structure. Our network model cooperates with crosslinking data to
predict the conformational change in the large protein.
Our models require two or more structures. In case only one structure is available, we can
use the Gaussian network model to generate the full ensemble of protein.

6.2 Webserver and computed dataset

We implement our model as a web service. We ran our program on the entire protein
database. Protein clusters are derived from BlastClust (Altschul et al. (1997)) based on
sequence similarity of greater than 95 %. Some webservers have similar functions as ours.
Dyndom has two web implementations, the 1D and 3D versions, but supports only two
input structures. The Molmov server and dataset by Gerstein (Gerstein and Krebs (1998))
and the recent Pdbflex (Hrabe et al. (2015)) extract the flexibility of protein and generate
the morphing ensemble between conformations. However, it is unclear which regions are
rigid and hinge parts. The Spectrus server (Ponzoni et al. (2015)) support multiple input
structures, but the server requires human intervention ambiguous quality scores, which is
heuristic and in some example, the smaller quality score gets better results, see examples in
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Figure 6.3: (A), (B) Structures of CRM1 3GB8(A) and 3GJX(A) are colored by the rigid
domain from our model. (C) the pairwise RMSD of 13 entries, (D) The average different
distance matrix of each entry with the average distance matrix
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Chapter 2. Besides, sequential alignment is not integrated into the webserver. The Codnas
database (Monzon et al. (2013)) classifies protein conformations into a hierarchy, integrates
diverse information from the experimental condition, but no domain information is given.
Together with the rigid body information, our data set integrate the experimental condition
data from Codnas to enrich the protein supplemental information.

6.3 A graph-based algorithm for detecting rigid domains in pro-

tein structures

Along with the probabilistic models above, we implement an alternative approach to
detect the rigid bodies in protein structure. The new algorithms use graph-based. In
this approach, the protein ensemble is presented as a weighted graph. To employing the
Viterbi algorithm, we reduce the size of the protein graph by graph clustering method. Our
test results show that two methods are close performance, which gives us more options to
solve the problem.

6.4 Summary

The goal of this thesis was to develop a probabilistic model that characterizes protein
conformational change and applies Bayesian methods to infer model parameters from
data. The interpretation of the model allows for new insights into protein structures. In
the first part of this thesis, we introduce probabilistic models for protein conformational
changes. The model segments protein conformational changes into rigid bodies. The
algorithm for estimating the model parameter was introduced and improved in follow
up work. We implemented a webserver and published a dataset for benchmarking other
algorithms. We introduce a new algorithm to characterize structural transitions in proteins
using a graph-based approach. We construct a graph from a set of protein conformations
and detect rigid domains via an edge labeling strategy. In the second part of the thesis, we
propose the probabilistic network model for simulating conformational transitions. Two
models are opposite application, but they cover a large spectrum of protein dynamics. In
the general case, we can use our two models as a meta-model or hybrid model, which
supports two particular problems. The first model supports mechanical transformation
rigid bodies, and the second model is more flexible.
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6.5 Outlook

The probabilistic model we propose can be expanded by incorporating various prior
information as the potential of the Bayesian framework. We can integrate more physio-
logical information such as solvent accessible surface area (SASA), charged information,
temperature, or hydrophobic effects. In case we have enough data, a useful pattern can
use to detect the rigid part of a protein. Our first rigid segmentation model is purely
inferred from conformational change. Therefore the rigid segmentation result is nothing
than numeric value as other model parameters. We can categorize the rigid domain into
hierarchy structure. We can incorporate the segmentation with chemical properties and
extract the underlying biological information such as ligand-binding sites or chemical
agents.
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