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I 

“Wisdom comes out of dialogue. 

You have to develop a capacity to expose your own ignorance 

so that they may discover their own wisdom.” 

John Goodenough 



II 

Table of contents 

1. Summary ....................................................................................................................................... 1 

2. Introduction ................................................................................................................................... 3 

2.1. Antibiotic synthesis and resistance in the soil microbiome .................................................... 3 

2.2. Antibiotic resistance crisis and the influence of land use practices ....................................... 6 

2.3. Candidatus Udaeobacter’s relevance for the soil bacterial resistome ................................ 10 

2.4. The Biodiversity Exploratories research project .................................................................. 11 

2.5. Aim of the thesis .................................................................................................................. 13 

2.6. Literature .............................................................................................................................. 14 

3. Distribution of Medically Relevant Antibiotic Resistance Genes and Mobile Genetic
Elements in Soils of Temperate Forests and Grasslands Varying in Land Use ................ 20 

3.1. Supplemental information for chapter three ........................................................................ 39 

4. Discovery of Novel Antibiotic Resistance Determinants in Forest and Grassland Soil
Metagenomes ............................................................................................................................ 54 

4.1. Supplemental information for chapter four .......................................................................... 66 

5. Globally abundant Candidatus Udaeobacter benefits from release of antibiotics in soil
and potentially performs trace gas scavenging .................................................................... 69 

5.1. Supplemental information for chapter five ......................................................................... 102 

6. Discussion ................................................................................................................................ 119 

6.1. Anthropogenic and natural effectors of the soil resistome ................................................ 120 

6.2. Novel sulfonamide and tetracycline resistance genes from forest and grassland soils .... 124 

6.3. Antibiotic resistance properties and lifestyle features of Ca. Udaeobacter ....................... 128 

6.4. Literature ............................................................................................................................ 133 

7. Appendix ................................................................................................................................... 140 

7.1. Declaration of plagiarism ................................................................................................... 140 

7.2. Danksagung ....................................................................................................................... 141 

7.3. Curriculum Vitae of Inka Marie Willms ............................................................................... 143 



1 

1. Summary

Nowadays, bacterial infections pose a serious risk for human health again, due to multi-resistant 

pathogens insensitive to antibiotic treatment. Some of the antibiotic resistance genes (ARGs) carried 

by these pathogens were most likely acquired through horizontal gene transfer (HGT), as this is a more 

efficient means to adapt to exposition to antibiotics than the invention of protective mechanisms by 

mutational changes. Many of the ARGs, identified in human pathogens, are believed to originate from 

microorganisms colonizing soil, where antibiotic synthesis and resistance development have co-

evolved for millions of years, leading to an inconceivable variety of resistance genes, also termed the 

soil resistome. Due to knowledge gaps in this field, the soil resistome was investigated in three different 

work packages within this thesis. 

First, anthropogenic effectors influencing the distribution of medically relevant ARGs and 

mobile genetic elements (MGEs) in 300 different soils with divergent land use history were analyzed. 

In this context, it was determined that, except for the considered beta-lactamase genes, all target ARGs 

and MGEs were more frequently detected in grassland soils which are in closer proximity to human 

activities than the investigated forest soils. The macrolide resistance gene mefA and the sulfonamide 

resistance gene sul2 showed higher abundances in grassland soils that experienced organic 

fertilization. To potentially reduce the influence of organic fertilizers, which can originate from animals 

treated with antimicrobial compounds, it was proposed that the frequent veterinary utilization of 

macrolide preparations with long elimination half-lives should be limited and the prescription range of 

veterinary utilized sulfonamides reconsidered. However, the input of veterinary antibiotics, ARGs and 

antibiotic-resistant bacteria into the soil microbial community may be limited best, by reducing factory 

farming. This would decrease the infection frequency of livestock and thereby the amount of utilized 

antibiotics. Besides a significant effect of organic fertilization on mefA and sul2, the abundance of the 

aminoglycoside resistance gene aac(6’)‐lb increased with mowing frequency in grassland soil and a 

positive correlation between the beta-lactamase gene blaIMP‐12 and fungal diversity was detected in 

beech forest soil. 

In the second work package, parts of the so far unexplored variety of resistances against 

tetracyclines and the synthetic sulfonamides were investigated using function-based screenings of 
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grassland and forest soil metagenomic libraries. Thereby, four major facilitator superfamily (MFS) efflux 

pumps conferring tetracycline resistance and four dihydropteroate synthases (DHPS) conferring 

sulfonamide resistance, were identified. The DHPS genes were detected in metagenomic libraries from 

forest soils without a history of antibiotic exposure. They support the hypothesis that resistance genes 

against synthetic antibiotics naturally occur in complex microbial communities and are most likely 

caused by mutational changes which confer resistance as a side effect. This confirms that the soil 

resistome is a probable source of resistance mechanisms against novel synthetic or semisynthetic 

antibiotics and underlines the necessity for further screenings with respect to genes conferring 

resistance against critically important antibiotics. 

Throughout the third work package, a globally abundant soil verrucomicrobial genus, 

Candidatus Udaeobacter, was analyzed as the composition of the bacterial community is considered 

the primary determinant of the composition of the soil resistome. Thereby, it was found that these largely 

unexplored soil bacteria show multi-resistance and benefit from the release of antibiotics in soil. A 

metagenome assembled genome (MAG) from a Ca. Udaeobacter representative that showed 

increased growth upon antibiotics release, was analyzed in terms of features explaining this observed 

behavior as well as its global distribution in soil. In this context, vitamin and amino acid transporter as 

well as several vitamin salvage pathways were detected. This indicates that Ca. Udaeobacter efficiently 

utilizes nutrients which are released by other soil bacteria as a consequence of antibiotic-driven cell 

lysis. Furthermore, a variety of different ARGs are encoded on the investigated MAG, including several 

multidrug and macrolide resistance pumps as well as beta-lactam resistance genes. Considering the 

globally high abundance of Ca. Udaeobacter in soil, its ARG repertoire constitutes a huge fraction of 

the soil resistome. Components of this repertoire can potentially be mobilized and transferred to 

clinically relevant strains. These mobilization events may be fostered by environmental antibiotic 

pollution, especially as Ca. Udaeobacter shows increased growth upon antibiotic exposure which 

further increases the proportion of the respective ARGs in the resistome. The MAG further indicated 

that these bacteria are able to perform hydrogen scavenging and are protected against acidic conditions 

which also may have contributed to the dissemination of Ca. Udaeobacter in soils worldwide. 
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2. Introduction

2.1. Antibiotic synthesis and resistance in the soil microbiome 

Soil is “the most complicated biomaterial on the planet” (Surette and Wright 2017; Young and Crawford 

2004). It is characterized by spatially and temporally fluctuating conditions including changes in soil 

moisture, oxygen saturation, pH, salinity, temperature, accessible nitrogen or organic carbon 

concentration (Fierer 2017; Heuer and Smalla 2012). This high variability across small spatial scales 

causes the formation of innumerable microhabitats with divergent living conditions, explaining the 

tremendous microbial diversity in soil. In fact, estimates of the bacterial species number per gram of 

soil range between 103 to 105 whereas the bacterial cell count can exceed 1010 (Gans, Wolinsky, and 

Dunbar 2005; Heuer and Smalla 2012; Schloss and Handelsman 2006; Roesch et al. 2007). As a 

consequence of this dense colonization by a diverse prokaryotic community, different bacterial taxa 

compete with each other for living space and limited resources (Hibbing et al. 2010). Since competition 

is a strong selection pressure, the involved players must constantly adapt to their neighbors, producing 

a continuously evolving, highly interdependent soil bacterial community (Hibbing et al. 2010). In this 

context, survival strategies such as biofilm production, motility or toxin excretion can be advantageous 

to prevail in many different microhabitats or to conquer specific environmental niches.  

Regarding toxin excretion, synthesis of antibiotics is of special interest, as these microbial 

secondary metabolites have become important compounds with respect to the treatment of bacterial 

infections throughout the past century. They are synthesized not only by bacteria but also by fungi which 

further increase the selection pressure and the need for adaptation within the soil bacterial community. 

Besides Penicillium, the fungal genus which synthesizes the first discovered natural antibiotic (penicillin) 

(Houbraken, Frisvad, and Samson 2011; Fleming 1929), Actinobacteria, and in particular the genus 

Streptomyces, are notorious for the vast variety of antibiotic classes they produce. For example, 

S. clavuligerus is known to synthesize different cephalosporins which belong to the beta-lactam

antibiotics, S. aureofaciens produces tetracycline and Saccharopolyspora erythraea, formerly known 

as Streptomyces erythreae, synthesizes the macrolide erythromycin (de Lima Procópio et al. 2012). 
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Different antibiotic classes are characterized by distinct modes of action, allowing their 

producers to kill rivals (bactericidal) or to inhibit their growth (bacteriostatic). Βeta-lactam antibiotics for 

instance target the bacterial cell wall. In this context, the antibiotic binds to penicillin-binding proteins 

(PBPs). These enzymes represent transpeptidases which are responsible for the 4–3 cross-linkages 

between N -acetylmuramic acids, one of the two major building blocks of peptidoglycan (Macheboeuf 

et al. 2006). Since cell-growth is achieved through a balance between transpeptidases and autolysins, 

the binding of beta-lactam antibiotics to PBPs causes an imbalance in this interactive process and 

consequently cell lysis (Cho, Uehara, and Bernhardt 2014; Finch and Roger 2010). In contrast to beta-

lactam antibiotics, tetracyclines and macrolides function bacteriostatic by inhibiting protein synthesis. 

Tetracyclines interact with the 30S ribosomal subunit and prevent aminoacyl-tRNAs from binding to the 

A-site of the ribosome, whereas macrolides block the exit path of the growing peptide chain, located on

the 50S ribosomal subunit (Finch and Roger 2010). These compounds probably only make up a small 

part of the various antibiotics that are naturally produced in soil. However, new compounds are rarely 

discovered nowadays, probably because they are synthesized by uncultivatable species, making the 

screening process more complicated, labor-intensive and thereby unprofitable (Ling et al. 2015). 

Soil bacterial communities can adapt to selective pressure, generated by antibiotic production 

via development of defense mechanisms encoded on antibiotic resistance genes (ARGs). Considering 

that this co-evolution has been taking place for millions of years, soil bacteria have had plenty of time 

to evolve an inconceivable variety of ARGs, the so-called soil bacterial resistome, which still conceals 

a vast array of unknown resistance mechanisms. In fact, novel ARGs are frequently discovered within 

soils by functional screenings based on metagenomic DNA or via bioinformatic analysis of metagenomic 

data (Lau et al. 2017; Arango-Argoty et al. 2018; Berglund et al. 2019). The corresponding resistance 

mechanisms either comprise intrinsic properties, allowing a general response to toxic molecules, or are 

received through horizontal gene transfer (HGT) and typically target specific antibiotics which is termed 

acquired resistance (Surette and Wright 2017). Intrinsic features constitute permeability barriers of the 

cell envelope which restrict antimicrobial access to target sites (e.g. the outer membrane of gram-

negative bacteria), broad spectrum efflux pumps, chromosomally encoded antibiotic degradation 

mechanisms and the upregulation of mutational changes throughout the complete chromosome 

(Surette and Wright 2017; Zgurskaya, Löpez, and Gnanakaran 2015). Acquired resistance mechanisms 
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include the expression of alternative target proteins, enzymes which degrade the antimicrobial agent 

and compound specific efflux pumps (Surette and Wright 2017; van Hoek et al. 2011). These resistance 

mechanisms are often encoded on mobile genetic elements (MGEs) which enable transmission via 

HGT throughout bacterial communities. Intrinsic resistance genes can also become acquired ARGs 

through integration into MGEs, referred to as gene mobilization (Bengtsson-Palme, Kristiansson, and 

Larsson 2018; Hall et al. 2017). A recent example for this phenomenon is the novel mobile sulfonamide 

resistance gene sul4 that encodes an alternative dihydropteroate synthase and was detected within a 

class 1 integron (Razavi et al. 2017). The difference between intrinsic and acquired resistance 

mechanisms and the role of MGEs is depicted in Figure 1. 

Three types of MGEs, known to be relevant with respect to the spread of ARGs, are conjugative 

plasmids, transposons and integrons. A well-known group of conjugative broad-host range plasmids 

are the members of the incompatibility group 1, also called IncP-1 plasmids. These plasmids can spread 

amongst virtually all gram-negative bacterial phyla and have also been detected in some gram-positive 

species (Popowska and Krawczyk-Balska 2013, Musovic et al. 2006). They are broadly distributed 

throughout all sorts of environments, including hospitals, wastewater treatment plants, manure as well 

as soil. They can encode a large variety of different accessory genes, including diverse families of ARGs 

(Popowska and Krawczyk-Balska 2013). Interactions between different types of MGEs can increase 

the efficiency of HGT (Dionisio, Zilhão, and Gama 2019). For instance, the IncP-1 plasmids pTB11 and 

pSP21 encode the transposon Tn402 which contains a class 1 integron, carrying aminoglycoside 

resistance genes (Popowska and Krawczyk-Balska 2013; Schlüter et al. 2007). Transposons are 

elements, which can translocate DNA between plasmids and chromosomes, via transposases and 

terminal inverted repeat regions (Partridge et al. 2018). Integrons are immobile, except when integrated 

into a transposon or plasmid. They capture gene cassettes into an attachment site downstream of a 

promoter with the action of an encoded integrase (Partridge et al. 2018). 

In general, MGEs allow by far more efficient adaptation to environmental challenges than the invention 

of novel resistance mechanisms via mutational changes (Jain et al. 2003; Hermisson and Pennings 

2005; Heuer and Smalla 2012). 
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Figure 1 The intrinsic and acquired antibiotic resistomes. Intrinsic mechanisms, include drug permeability, 

efflux, degradation, and upregulation of genomic mutation. Acquired resistance includes altered targets, drug 

inactivation and efflux. The latter were mostly received through horizontal gene transfer from other species and 

genera. Adapted from Surette and Wright, 2017. 

 

2.2. Antibiotic resistance crisis and the influence of land use practices 

Nowadays, we are in an antibiotic resistance crisis as antibiotic-resistant bacteria (ARBs) have become 

a medical priority problem. Infections that were treatable in the past cause acute problems today and, 

in increasing numbers, even death. In fact, it is estimated that ARBs are responsible for 670,000 

infections in Europe per year, whereof 33,000 lead to the patient’s death (Cassini et al. 2019). 

Furthermore, they are the cause for 870,000 years under disability adjusted conditions and lead in 
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Europe to health care associated costs of 1.5 billion Euro, yearly (Cassini et al. 2019, Antoñanzas and 

Goossens 2019). Bacterial pathogens are often not only drug resistant but can contain MGEs stocked 

with several different resistance mechanisms, rendering them multidrug resistant (MDR) (Partridge et 

al. 2018). Examples for bacteria that are frequently MDR are the ESKAPEE pathogens 

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli (Santajit and Indrawattana 2016; 

Partridge et al. 2018). Another name that should be mentioned in this context is MDR 

Clostridium difficile which can cause infections of the gastro-intestinal tract as a consequence of an 

imbalance in the intestinal microflora, due to antibiotic treatment (Spigaglia, Mastrantonio, and Barbanti 

2018). The ESKAPEE pathogens as well as C. difficile are notorious with respect to globally occurring 

nosocomial (hospital acquired) infections which are extremely difficult to treat and therefore a serious 

threat to human health. 

Even though the highest density of ARGs is prevalent in bacteria from clinical settings (Surette 

and Wright 2017), the true origin of the respective genes is in most cases still unclear. As outlined 

above, the soil bacterial resistome comprises an inconceivably large variety of resistance genes which 

is very likely the origin of many pathogen encoded ARGs. This theory is supported by the mentioned 

fact that intrinsic resistance mechanisms can be mobilized and acquisition of ARGs through HGT is by 

far more efficient than the invention of novel resistance mechanisms via mutational changes. In fact, it 

has been discovered that specific ARGs which are encoded by known human pathogens, such as 

K. pneumoniae or Salmonella typhimurium, show 100% identity to genes of soil bacteria (Forsberg et 

al. 2012). Furthermore, evidence suggests that ARGs can be transferred from harmless soil bacteria to 

hazardous pathogens via HGT events (Forsberg et al. 2012; Pärnänen et al. 2016). Therefore, it can 

be concluded that ARGs and ARBs can spread to humans through direct or indirect contact with the 

soil microbial community (EMA 2018; Forsberg et al. 2012; Canteón 2009). These circumstances 

underline the importance of the in depth study of the soil resistome in order to identify unknown 

resistance mechanisms that may become problematic in the future. 

The occurrence of MDR pathogens is closely linked to human use of antibiotics since the middle 

of the 20th century (Surette and Wright 2017). An accumulation of ARGs in MGEs and their efficient 

spread over species borders probably occurs much more frequently nowadays because of the selection 
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pressure, established through anthropogenic antibiotic pollution (Bengtsson-Palme, Kristiansson, and 

Larsson 2018). Particularly relevant in this regard is the treatment of livestock in agriculture, a practice 

that is quite common, due to the prevalent factory farming and the associated higher infection risk of 

farm animals. A major fraction of all human diseases develops in animals (van Doorn 2014) that are 

potentially colonized by bacteria which have evolved resistance mechanisms as a result of continuous 

antibiotic exposure. Humans can pick up these antibiotic resistant pathogens via the food chain and fall 

sick with hard-to-treat infections. An example for such a food-borne infection is campylobacteriosis, a 

gastro-intestinal disease that is caused by Campylobacter species which are very frequently resistant 

to fluoroquinolones (EFSA and ECDC 2019) (bacteriocidal antibiotics that inhibit DNA replication). 

Another reason why antibiotic treatment of livestock is problematic is the large proportion of antibiotics 

that are excreted functionally by the treated animals. Consequently, manure is often enriched with the 

active compounds as well as with bacteria that have developed resistance against these harmful 

substances (Berendsen et al. 2015). When manure is applied as organic fertilizer, an increase in the 

abundance of medically relevant ARGs and MGEs within the soil microbial community can occur 

(Graham et al. 2016; Jechalke et al. 2014; Binh et al. 2007). Additionally, antibiotics, ARBs and ARGs 

can disseminate throughout the environment via surface water run offs, dust and migrating wild animals 

(Allen et al. 2010). This leads to a circulation of ARGs between soil, human and livestock, driven by the 

evolutionary pressure established through antibiotic application or pollution (Figure 2). 
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Figure 2. The role of the environment in the recruitment of antibiotic resistance genes (ARGs) to human 
pathogens. This takes place in four major steps: (1) emergence of novel resistance factors in the environment, (2) 

mobilization onto mobile genetic elements, (3) transfer of ARGs to human pathogens, and (4) dissemination of 

ARGs into the human microbiome. The arrow widths approximately mirror the estimated frequency of each event. 

Adapted from Bengtsson-Palme, Kristiansson, and Larsson 2018. 

 

To find ways to counteract the dissemination of ARGs, it is necessary to consider the 

contribution of a variety of parameters, many of which are presently still elusive. For example, detailed 

information on the overall contribution of land use types and intensities that influence the development 

and transmission of ARGs in soil microbiomes need to be evaluated. Currently, most studies that 

address this issue focus on a small number of study plots, or set up microcosms from just one or two 
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soils, and simulate land use by e.g. spiking manure with antibiotics. However, data from various soil 

sites over a large spatial scale with a variety of realistic land use histories is still lacking. This would 

allow a deeper understanding of the effect of different land use types and intensities on the abundance 

and transmission of ARGs and MGEs throughout soil ecosystems which could be, together with data 

on other environmental resistomes, useful for the development of approaches to overcome the antibiotic 

resistance crisis. 

 

2.3. Candidatus Udaeobacter’s relevance for the soil bacterial resistome 

A metagenomic survey conducted by Forsberg et al. (2014) indicates that bacterial community 

composition is the primary determinant of ARG content in soil. Understanding how different bacterial 

species are involved in shaping soil resistomes requires knowledge about their lifestyle, genetic content 

and global abundance. Nevertheless, soil microbiomes are very challenging to study and even referred 

to as a black box (Tiedje et al. 1999; Cortois and De Deyn 2012). The interdependence within the soil 

microbial community and the diverse abiotic conditions in soil ecosystems are important reasons why 

the majority of soil bacteria are still uncultivated. Furthermore, due to soil microdiversity, assigning 

metagenomic data precisely to distinct species is very complex and bioinformatically challenging. 

It is estimated that only 1% of microbial soil species have been cultivated so far (Gans, 

Wolinsky, and Dunbar 2005; Pedrós-Alió and Manrubia 2016). One example for an uncultivatable soil 

bacterial genus is Candidatus Udaeobacter (Brewer et al. 2016). Even though soil bacterial 

communities are commonly very diverse in response to parameters like oxygen availability, soil texture, 

soil moisture and pH (Kaiser et al. 2016; Delgado-Baquerizo et al. 2018), Ca. Udaeobacter was found 

to be amongst the 2% of bacterial phylotypes accounting for almost half of the soil bacterial communities 

globally (Delgado-Baquerizo et al. 2018). However, bacteria of the respective phylum (Verrucomicrobia) 

have long been excluded from studies uncovering the composition of soil microbial communities, due 

to primer-template mismatches (Bergmann et al. 2011). Therefore, only very limited information about 

the distribution of these bacteria is available. Nonetheless, based on a recently published metagenome 

assembled genome (MAG) from Ca. Udaeobacter copiosus (Brewer et al. 2016), insights into the 

genetic content and possible lifestyle features were revealed. The MAG indicated that Ca. Udaeobacter 

copiosus exhibits auxotrophies for many putative vitamin and costly amino acid synthesis pathways. 
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Furthermore, the complete genome of this species is estimated to encode approximately 2.81 Mbp 

(Brewer et al. 2016). Typically, ubiquitous soil bacteria encode for larger genomes enabling flexibility 

toward rapidly changing conditions within their complex habitat (Barberán et al. 2014; Konstantinidis 

and Tiedje 2004). However, Ca. Udaeobacter seems to compensate for its limited genetic content with 

efficient uptake mechanisms comprising a high density of encoded peptide and amino acid transporters 

(Brewer et al. 2016). Hence, this species probably favors uptake of essential metabolites over synthesis. 

Being dependent on extracellular metabolites in a densely colonized ecosystem such as soil (Fierer 

2017), likely entails increased influx and therefore vulnerability to toxic agents secreted by 

microorganisms competing for scarce nutrients (Leisner, Jørgensen, and Middelboe 2016). Therefore, 

a strategy for protection against harmful substances becomes advantageous and has potentially 

contributed to the evolutionary success of Ca. Udaeobacter. This theory is supported by the enrichment 

of beta-lactam resistance genes, identified through functional metagenomic screening, within the 

phylum Verrucomicrobia (Forsberg et al. 2014). However, the actual response of Ca. Udaeobacter to 

antibiotics release has so far not been studied and therefore remains unclear. If the propagated 

hypothesis about its antibiotic resistance properties holds true, Ca. Udaeobacter is an important player 

to consider when analyzing the abundance and spread of ARGs due to its high occurence in soils 

globally. 

 

2.4. The Biodiversity Exploratories research project 

To evaluate the interconnectedness between different species, the influence of biodiversity on 

ecosystem processes and the effects of land use change on biodiversity, three large scale research 

sites, termed Biodiversity Exploratories, were established in 2006. They serve as study regions for 

scientific working groups covering various research fields such as microbiology, zoology and botany, 

and therefore allow comprehensive interdisciplinary research (Fischer et al. 2010). The UNESCO 

Biosphere Reserve Schorfheide-Chorin in Brandenburg, the National Park Hainich and surrounding 

areas (Hainich-Dün) in Thuringia and the UNESCO Biosphere Reserve Schwäbische-Alb in Baden-

Württemberg, constitute the three exploratories which are distributed on a north-east to south-west 

gradient (Figure 3) (Fischer et al. 2010). The Schorheide-Chorin exploratory comprises a postglacial 

landscape with many wetlands, the hilly Hainich-Dün exploratory is characterized by the largest 
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contiguous deciduous forest in Germany, and the Schwäbische Alb contains sub-montane to montane 

plateaus and a higher proportion of grasslands than forests (Fischer et al. 2010; BEO 2019).  

 

Figure 3 Locations, landscapes and sample plots of the three Biodiversity Exploratories. The figure was 

generated by the coordination office of the Biodiversity Exploratories (BEO). 

All three exploratories have unique features that distinguish them from each other and together 

reflect a variety of different landscapes, soil parameters as well as land use types and intensities. Each 

exploratory is subdivided into 50 grassland (50 m x 50 m) and 50 forest (100 m x 100 m) experimental 

plots (EPs). The ten most intensively studied grassland and forest EPs of each exploratory are further 

referred to as very intensive plots (VIPs). Since 2008, a soil sampling campaign has taken place in all 

exploratories every three years, which enables comparability of the research results from the 

participating scientific groups. In this context, 14 soil cores from the upper mineral soil were collected 
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at each EP along two 20 m (grassland EPs) or 40 m transects (forest EPs) (Solly et al. 2014). 

Furthermore, the landowners of the grassland EPs are interviewed annually about the kind and number 

of grazing animals, mowing frequencies as well as about the type, amount and frequency of fertilizer 

application (Vogt et al. 2019). Characteristics like the predominant tree species and management type 

of the forest EPs are determined, as well. The evaluated information is standardized and available to 

all participating researchers. This enables a multidisciplinary data interpretation and underlines the 

advantages of the Biodiversity Exploratories. 

 
2.5. Aim of the thesis 

This work was aimed at identifying previously unknown ARGs as well as gaining a deeper 

understanding on the factors that influence the transmission and accumulation of ARGs in the soil 

microbiome. In this context, a major focus is the globally abundant soil bacterial genus 

Ca. Udaeobacter, which potentially affects soil resistomes worldwide. 

Three projects, comprising an array of appropriate molecular methods, were designed to 

address the mentioned objectives. In the first project, the occurrence and abundance of medically 

relevant ARGs and MGEs was determined in soil DNA from 300 forest and grassland plots via 

quantitative real-time PCR. The corresponding data were evaluated with respect to correlations with 

land use types and intensities as well as plot characteristics such as pH, water content or dominant tree 

species. In the second project, functional screenings of forest and grassland soil metagenomic libraries 

were conducted to identify novel ARGs. Importantly, besides natural antibiotics also synthetic 

antimicrobials were used as selective compounds during screening. The third project was focused on 

Ca. Udaeobacter and its response to antibiotics release. In this context, lifestyle characteristics of this 

largely unexplored verrucomicrobial genus were evaluated in terms of antibiotic resistance and other 

specific strategies that potentially have contributed to its high and widespread occurrence in soils and 

thus have influenced the global soil resistance pattern. 
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Abstract: Antibiotic-resistant pathogens claim the lives of thousands of people each year and
are currently considered as one of the most serious threats to public health. Apart from clinical
environments, soil ecosystems also represent a major source of antibiotic resistance determinants,
which can potentially disseminate across distinct microbial habitats and be acquired by human
pathogens via horizontal gene transfer. Therefore, it is of global importance to retrieve comprehensive
information on environmental factors, contributing to an accumulation of antibiotic resistance genes
and mobile genetic elements in these ecosystems. Here, medically relevant antibiotic resistance genes,
class 1 integrons and IncP-1 plasmids were quantified via real time quantitative PCR in soils derived
from temperate grasslands and forests, varying in land use over a large spatial scale. The generated
dataset allowed an analysis, decoupled from regional influences, and enabled the identification of
land use practices and soil characteristics elevating the abundance of antibiotic resistance genes and
mobile genetic elements. In grassland soils, the abundance of the macrolide resistance gene mefA as
well as the sulfonamide resistance gene sul2 was positively correlated with organic fertilization and
the abundance of aac(6′)-lb, conferring resistance to different aminoglycosides, increased with mowing
frequency. With respect to forest soils, the beta-lactam resistance gene blaIMP-12 was significantly
correlated with fungal diversity which might be due to the fact that different fungal species can
produce beta-lactams. Furthermore, except blaIMP-5 and blaIMP-12, the analyzed antibiotic resistance
genes as well as IncP-1 plasmids and class-1 integrons were detected less frequently in forest soils
than in soils derived from grassland that are commonly in closer proximity to human activities.

Keywords: antibiotic resistance genes; mobile genetic elements; land use; fertilization; mowing;
horizontal gene transfer; forest; grassland; class 1 integrons; IncP-1 plasmids
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1. Introduction

Bacterial infections are still a major concern for human health due to the increasing number of
antibiotic-resistant pathogens. According to a recent review on antimicrobial resistance, the number of
deaths from infections with antibiotic-resistant bacteria (ARBs) might even exceed those from cancer in
2050 [1]. To counteract this prediction, a reduction of antibiotic use to a minimum is necessary. However,
antibacterial preparations are still widely overused globally and sufficient knowledge on the various
products is frequently lacking [2–4]. In recent years, efforts have been made to control the spread of
antibiotic resistance genes (ARGs) by agencies such as the World Health Organization (WHO), the
European Union agency for Disease Prevention and Control (ECDC), the European Medicines Agency
(EMA) and the European Food Safety Authority (EFSA) [5]. In this context, the WHO published a report
on critically important antibiotics for human medicine, based on which risk management strategies
for antimicrobial use in food-producing animals can be formulated [6]. This is of high importance
as a major fraction of all human diseases develop in animals [7], potentially harboring bacteria that
acquired resistance as a result of exposure to antibiotics. Some of these bacteria pose risks to public
health as they might cause difficult to treat infections [8]. Therefore, the European Union banned the
use of antibiotic growth promoters in agriculture in 2006 [9], allowing antibiotic application only for
veterinary purposes. Nevertheless, it remains questionable whether this is sufficient to significantly
limit the spread of ARBs and ARGs, as veterinary antibiotics are widely used due to prevalent factory
farming and the associated higher infection risk of farm animals [10,11].

Although high densities of ARGs can be found in bacteria from clinical settings, the original
sources of the respective genes remain largely unknown. ARGs and ARBs can potentially spread to
humans through direct or indirect contact with the soil microbial community [12–14], which comprises
numerous antibiotic producers but also bacteria which evolved resistance mechanisms against these
harmful substances. This co-evolution resulted in an inconceivably large variety of resistance genes [15].
Moreover, the selection pressure, established through anthropogenic antibiotic pollution, can even
increase the ARG abundance in soil [15–17]. Antibiotic pollution of soil is partly due to agricultural
land use practices such as application of organic fertilizers (e.g., manure) [17–19]. Through antibiotic
treatment of livestock, a selection pressure is established which leads to a higher proportion of resistant
bacteria in the gut microbial community of the animals [20]. Additionally, antibiotics are to a large
extent eliminated functionally through feces and accumulate in manure [21]. As a consequence, ARGs
harbored by bacteria in organic fertilizers as well as the antibiotics themselves potentially cause the
pronounced development of resistance genes in soil [22,23]. These ARGs can be encoded on mobile
genetic elements (MGEs) such as IncP-1 plasmids or class 1 integrons and potentially spread to human
pathogens via horizontal gene transfer (HGT) [24].

Many studies on the distribution of ARGs in non-clinical environments were focused on grassland
soils. In contrast, almost no comprehensive surveys on antibiotic resistance profiles of forest soils
are available [25], even though they provide information about the natural abundance and spread of
resistance genes in habitats with comparably low anthropogenic influence. As grasslands are often
affected by agricultural land use and typically in closer proximity to human activities than forests,
direct comparisons between resistomes derived from these ecosystems are necessary to predict possible
consequences of anthropogenic impacts. Furthermore, forest soil resistomes are of great interest, as
effects of environmental parameters can be analyzed in natural settings. These parameters include
the diversity of fungi, some of which are known to produce antibiotics such as penicillin [26], and
dominant tree species as it has been shown that they can shape soil microbial communities [27,28].

Here, 150 grassland and 150 forest soil samples from three geographic regions in Germany, located
up to 700 km apart, were analyzed for the abundance of medically relevant ARGs. In addition,
class 1 integrons and IncP-1 plasmids, which can contribute to the spread of antibiotic resistance,
were quantified. With respect to the analyzed grassland plots, land use comprises livestock grazing,
fertilization as well as mowing, and the forest plots harbor different dominant broad-leaved and
coniferous tree species.
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Our comprehensive dataset allowed an analysis, decoupled from regional influences, and enabled
the identification of general land use practices and soil properties increasing the abundance of ARGs
and MGEs over a large spatial scale. Additionally, the study was conducted in Germany, a country,
which prohibits antibiotic growth promotion in agriculture. This allowed gaining information about
potential impacts of antibiotics, used for veterinary purposes but not as growth promoters, on the ARG
and MGE abundance level in soil.

2. Materials and Methods

2.1. Sampling, Soil Characteristics and DNA Extraction

Samples from the upper mineral soil (0–10 cm without the organic layer) were derived from
300 experimental plots of the Biodiversity Exploratories Schorfheide-Chorin (northeastern Germany),
Hainich-Dün (central Germany), and Schwäbische Alb (southwestern Germany) [29] in May 2017,
as described by Solly et al. [30]. Each study region covers the land use types grassland and forest.
Grassland plots are 50 m × 50 m and forest plots are 100 m × 100 m in size. The pH of each soil was
determined as described by Solly et al. [30]. Furthermore, soil moisture was assessed daily at ten
cm below surface with the ML2X soil Humidity Probe (Delta-T Devices, Ltd., Cambridge, UK) and
the mean with respect to measurements in May 2017 was calculated. Information about organic and
mineral fertilization in grasslands were derived as described by Vogt et al. [31], based on interviews
with the land users. Nitrogen contents of mineral fertilizer were directly determined according to
manufacturer specifications, and for organic fertilizer calculated by conversion factors according to the
amount and type of slurry or manure. Furthermore, mowing frequency equates to the number of cuts
per year and grazing intensity is composed of the number and type of livestock multiplied with the
grazing days on a hectare. Based on these three grassland management compounds a Land Use Index
(LUI) was developed by Blüthgen et al. [32] to reflect the management intensity with respect to the
study plots. Detailed information on soil characteristics and land use is given in Table S1.

Microbial community DNA was isolated from the 300 soil samples by using the DNeasy PowerSoil
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. DNA concentrations
were determined using a NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies,
Wilmington, NC, USA) as recommended by the manufacturer. Additionally, for real time quantitative
PCR (qPCR) DNA concentrations were determined in quadruplicate by using the Microplate reader
Synergy2 (BioTek, Winooski, VT, USA) and the QuantiFluor dsDNA System (Promega, Mannheim,
Germany) following the manufacturer’s instructions. Outliers were detected and discarded via the
Dixon’s Q-test [33].

2.2. Soil Fungal Diversity

The assessment of fungal diversity was based on the internal transcripted spacer (ITS)
region 2. We amplified fungal ITS DNA by using proofreading Kapa Hifi polymerase (Kapa
Biosystems, Boston, MA, USA) and the primers fITS7 (5′-GTGARTCATCGAATCTTTG-3′) [34] and
ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [35] which contained Illumina adapter sequences. The PCR
reactions were initiated at 95 ◦C (3 min) followed by 30 cycles of 98 ◦C (20 s), 56 ◦C (20 s) and 72 ◦C (20 s),
and ended with incubation at 72 ◦C for 5 min. Each PCR reaction was carried out in triplicate and the
created amplicons were checked by gel electrophoresis and purified with an Agencourt AMPure XP kit
(Beckman Coulter, Krefeld, Germany). Illumina Nextera XT Indices were added in an additional PCR
and subsequently products were purified with AMPure beads (Beckmann Coulter, Vienna, Austria).
Libraries were quantified by performing PicoGreen assays (Molecular Probes, Eugene, OR, USA) and
pooled to provide equimolar representation. Fragment sizes and quality of the libraries were checked
using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Sequencing was carried
out using an Illumina MiSeq sequencer (Illumina Inc., San Diego, CA, USA) in paired-end mode and
the MiSeq Reagent kit v3.
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Fungal amplicon sequencing data processing was carried out using a customized bioinformatics
pipeline, mainly based on MOTHUR [36] and OBITools [37]. Prior to running this pipeline, Illumina
adaptors, indices and primer sequences were removed by the software provided by Illumina. The
resulting paired-end reads were merged with a minimum overlap of 20 bp using PandaSeq [38].
Subsequently, sequences shorter than 200 bp and those containing ambiguous nucleotides or
homopolymers were removed. The average quality trimming parameter was set to Phred score
22. Potential chimeric reads were detected and removed from each sample using the UCHIME
algorithm [39]. De-replicated reads were clustered into operational taxonomic units (OTUs) using
the vsearch algorithm [40]. Afterwards, OTU-representative sequences were taxonomically assigned
based on reference sequences provided by the Unite.v7.2 database [41]. Only OTUs affiliated to
Fungi were used for further analysis. Singleton, doubleton and tripleton sequences were discarded.
Remaining representative sequences were additionally checked with ITSx [42] to finally exclude
non-ITS2 sequences from the dataset.

The datasets were rarefied to the smallest number of sequences per sample (12,532) using the
package phyloseq [43] in R version 3.5.3 [44]. This resulted in a total of 36,655 fungal OTUs in 300 soil
samples. Based on this final OTU matrix, the fungal Shannon H’ diversity index was calculated using
the R package vegan [45].

2.3. Quantification of 16S rRNA Genes, IncP-1 Plasmids and Class 1 Integrons

All quantifications were conducted with an iQ5 real-time PCR detection system (Bio-Rad,
Hercules, CA, USA). Quantification of 16S rRNA genes was performed by using 12 ng template
DNA, 0.4 µM of the primers BACT1369F (5′-CGGTGAATACGTTCYCGG-3′) and PROK1492R
(5′-GGWTA CCTTGTTACGACTT-3′), and 0.2µM of the TaqMan probe TM1389F ([FAM] 5′-CTTGTACA
CACCGCCCGTC-3′ [TAM]) [46]. A DNA fragment obtained via PCR using the BACT1369F
and PROK1492R primer set was cloned into the vector pCR4-TOPO (Thermo Fisher Scientific,
Braunschweig, Germany), as recommended by the manufacturer, to serve as standard. To quantify
IncP-1 plasmids 18 ng template DNA, 0.4 µM of each of the primers F (5′-TCATCGACAACGAC
TACAACG-3′), R (5′-TTCTTCTTGCCCTTCGCCAG-3′), Fz (5′-TCGTGGATAACGACTACAACG-3′),
Rge (5′-TTYTTCYTGCCCTTGGCCAG-3′), and Rd (5′-TTCTTGACTCCCTTCGCCAG-3′), and 0.2 µM
of the TaqMan probe P ([Fam] 5′-TCAGYTCRTTGCGYTGCAGGTTCTCVAT-3′ [Tam]) were used [47].
The pCR2.1-TOPO vector (Thermo Fisher Scientific) comprising an insert, amplified with the F
and R primers targeting the korB gene of the RP4 plasmid [48], served as standard throughout
quantification. The class 1 integron-integrase gene intI1 was quantified using 18.5 ng template
DNA, 0.4 µM of each of the primers intI1-LC1 (5′-GCCTTGATGTTACCCGAGAG-3′) and intI1-LC5
(5′-GATCGGTCGAATGCGTGT-3′), and 0.2 µM of the intI1-probe ([FAM] 5′-ATTCCTGGCC
GTGGTTCTGGGTTTT-3′ [BHQ1]) [49]. Quantification of 16S rRNA genes, IncP-1 plasmids and
class 1 integrons was conducted using the QuantiNova Probe PCR Kit. The cycler program for the
quantification of these three targets started with an initial activation step at 95 ◦C for 2 min followed by
40 cycles of denaturation at 95 ◦C for 6 sec and a combined annealing and extension step at 60 ◦C for 6 s.
To get comparable results from all reaction plates of the class 1 integron quantifications, four selected
DNA samples were included into each of the plates, based on which the base lines were standardized.

2.4. Detection of Antibiotic Resistance Genes via qPCR Array

Comprehensive qPCR arrays including a total of 84 ARGs were performed based on DNA,
extracted from a subset of collected soil samples. These soil samples were derived from grassland
(AEG8, AEG21, HEG7, HEG21 SEG32, and SEG43) and forest (AEW2, AEW7, HEW3, HEW5, and
SEW6) experimental plots located in the Schwäbische Alb, Hainich-Dün, and Schorfheide-Chorin
exploratory. We selected the experimental plots as they cover different land use types and intensities as
well as variations in soil properties (e.g., soil pH). Quantification of ARGs was conducted by using the
Antibiotic Resistance Genes qPCR Array for microbial DNA testing (BAID-1901Z, QIAGEN). This array
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allows the quantification of 84 different ARGs in a single qPCR run (primers and probes are supplied
in each well of the qPCR array). More precisely, five aminoglycoside, 57 β-lactam, 14 erythromycin,
five macrolide, two tetracycline and two vancomycin resistance genes were analyzed. Each reaction
mixture (final volume, 25 µL) contained 12.5 µL 2× microbial qPCR master mix (QIAGEN), 6.5 µL
microbial DNA-free water, and 12 ng template DNA. A control reaction plate was set up with 10 mM
Tris buffer instead of template DNA. The following cycling conditions were used: 95 ◦C for 10 min and
40 cycles of 95 ◦C for 15 s and combined annealing and extension at 60 ◦C for 2 min. Based on the
threshold cycle (CT) values of all detected genes, seven ARGs were selected for quantification in soil
samples of all 300 experimental plots.

2.5. Quantification of ARGs in Soils Derived from 300 Study Plots

The aminoglycoside resistance genes aac(6′)-Ib and aacC1, the β-lactam resistance genes blaIMP-12

and blaIMP-5, the macrolide-lincosamide-streptogramin B (MLS) resistance gene ermB, the macrolide
resistance gene mefA as well as the tetracycline resistance gene tetA were quantified based on soil
DNA derived from all 300 experimental plots by using a customized qPCR array kit (QIAGEN). Each
customized qPCR array contained quantification reactions of the seven selected ARGs in 11 different
soil DNA samples and a negative control. Positive control reactions were included to test for the
presence of inhibitors. The reaction mixture (final volume, 25 µL) contained 12.5 µL 2 × microbial
qPCR master mix (QIAGEN) and 25 ng template DNA. In case of negative controls, buffer was added
instead of DNA. The cycling conditions were the same as for the qPCR arrays mentioned above.

The reactions were standardized by adjusting the baseline manually to the level of the 12 positive
control reactions in each array across all qPCR runs.

Besides the seven ARGs that were selected based on comprehensive qPCR arrays, we quantified
the sulfonamide resistance gene sul2. For the quantification of sul2, the QuantiNova SYBR
Green PCR Kit (Qiagen), 19 ng template DNA, and 0.7 µM of each of the primers sul2-forward
(5′-TCATCTGCCAAACTCGTCGTTA-3′) and sul2-reverse (5′-GTCAAAGAACGCCGCAATGT-3′) [50,51]
were used. Results of the quantifications from different reaction plates were standardized by including
four selected samples into each plate, based on which the baseline was adjusted. The cycler program
comprised an initial activation step at 95 ◦C for 10 min followed by 40 cycles of 95 ◦C for 5 s and a
combined annealing and extension step at 60 ◦C for 10 s. A melting curve analysis was conducted to
determine the specificity of amplification during PCR. Reactions with aberrant melting curves were
designated as not accessible (NA).

2.6. Statistical Analysis

With respect to all conducted quantification reactions, samples that did not exceed the baseline
before the 37th cycle, were regarded as non-detects as described by Hu et al. and Zhao et al. [52,53].

The abundance and occurrence of IncP-1 plasmids, class 1 integrons and the eight selected ARGs
were analyzed with R. In order to identify soil characteristics as well as land use practices affecting the
quantified genes, two regression approaches were carried out:

(1) A binomial regression approach to analyze the distribution of positive quantifications against
non-detects. In this context, the original CT values were transformed into binary data. More precisely,
CT values < 37 were replaced with a one and CT values ≥ 37 with a zero.

(2) A left censored regression analysis was performed with the tobit function of the R package
AER [54] to address the differential relative gene abundance in all sample plots without having to
substitute or discard non-detects. For this purpose, ∆CT values were calculated as follows:

CT(Re f erence Gene) −CT(Target Gene) = ∆CT (1)

where CT values from the 16S rRNA gene quantifications served as CT(Reference Gene). The ∆CT values
of all target sequences are listed in Table S2. They were used for tobit regression analysis, where large
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∆CT values indicate high gene abundance. Furthermore, the lowest ∆CT value of a positive reaction
reduced by 0.01 was assigned to quantifications of specific genes, which resulted in non-detects. The
non-detect ∆CT value was used as left limit for the censored dependent variable in the tobit formula.
In case of all tobit models, a Gaussian distribution was applied.

For the statistical analysis, independent variables were scaled and centered with the basic scale
function of R and checked for collinearity with the basic R function rcorr and the corrplot function of
the R package corrplot [55]. Afterwards, it was tested whether specific genes occur notably more often
in grassland than in forest soil. In this context, the occurrence (binomial model) or relative abundance
(tobit model) of the respective genes, which showed less than 80% non-detects (80% censoring), were
modeled against the two independent variables forest (1 or 0) and exploratory (Schorfheide-Chorin,
Hainich-Dün or Schwäbische Alb). The 2∆CT values of targets that were less than 80% censored (IncP-1
plasmids, class 1 integrons, mefA, aac(6′)-Ib, sul2, tetA, blaIMP-12 and blaIMP-5) were visualized with
the cenboxplot function of the NADA package [56] with a range of 1.5 for forests, grasslands and
each exploratory. When insufficient numbers of uncensored observations were available to estimate
the distribution below the censoring threshold in the respective area (mefA, aac(6′)-lb, tetA and class
1 integrons in forest plots), the boxplot function of basic R was utilized which does not allow an
estimation for the censored values. The highest censoring threshold of all candidate genes was
indicated with a horizontal red line. Everything below this line was calculated based on the proportion
of censored data and the values of uncensored data with cenros of NADA.

When targets were less than 70% censored in grassland plots, the impact of agricultural land use
such as mowing, fertilization, and grazing was analyzed. This analysis comprised the LUI. The pH
or the mean soil moisture in %, determined in May 2017, was added as independent variable in the
models for the grassland soils to account for the different soil characteristics of the 300 experimental
plots, because they turned out to be the best soil descriptors for the analyzed genes. Due to variable
collinearity, only one of these two parameters was chosen, based on quality comparisons of the
respective gene models. In the first step, only one land use variable along with the pH or the soil
moisture was modeled at a time, to evade the influence of collinearity between the different land
use practices onto the model output. Based on these preliminary models, final models were derived,
containing the most influential land use variables.

Regarding forest soils, the influence of the tree type and the fungal Shannon diversity on the
abundance and occurrence of the two β-lactamase genes was statistically analyzed.

The residuals of all tobit models were tested for normality and constant variance with
quantile-quantile plots and residual plots. Furthermore, in order to compare the influence of variable
exchange on model quality, the McFadden’s pseudo-R2 [57] was determined for all generated models.
With respect to the final models for analysis of land use effects in grassland or forest, either the binomial
or tobit approach was supposed to construct a model with an R2 of at least 0.1. Furthermore, the
two approaches were supposed to reveal the same correlation (positive or negative) and yield similar
p-values. When final models explained less than 10% of the variance with respect to the dependent
variable for both approaches (binomial and tobit) or only the binomial approach was applicable due to
too high censoring, no conclusions with respect to the impact of land use were drawn.

3. Results

3.1. Selection of Targets for ARG Quantification in Forest and Grassland Soils

A total of 84 ARGs were quantified in a subset of soil samples derived from three different
geographic regions in Germany (Hainich-Dün, Schorfheide-Chorin and Schwäbische Alb). This subset
covers beech and spruce forest soils as well as grassland soils affected by different land use intensities.
The very low CT values and detection frequencies with respect to the majority of the 84 ARGs restricted
the selection of targets for qPCR-based analysis comprising DNA extracted from each of the 300
experimental plots. The aminoglycoside resistance genes aac(6′)-Ib and aacC1, the beta-lactam resistance
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genes blaIMP-12 and blaIMP-5, the MLS resistance gene ermB, the macrolide resistance gene mefA and
the tetracycline resistance gene tetA, were chosen for this analysis, which allowed the identification
of factors significantly shaping forest and grassland soil resistomes. The analyzed factors comprise
land use practices (fertilization, grazing and mowing) as well as dominant tree species and soil fungal
diversity. Furthermore, besides resistances to representatives of the mentioned antibiotic classes, the
sulfonamide resistance gene sul2 was considered.

3.2. IncP-1 Plasmids, mefA and sul2 Are More Abundant in Grassland than in Forest Soils

In order to identify differences in occurrence and relative abundance of the selected ARGs, IncP-1
plasmids as well as class 1 integrons between forest and grassland soils, statistical analysis was carried
out. Binomial generalized linear models revealed that the occurrence of aac(6′)−lb, mefA, sul2, tetA,
IncP-1 plasmids and class 1 integrons was significantly negatively correlated with forest soils (p-values:
4.29 × 10−6, 4.62 × 10−11, 1.81 × 10−6, 0.00145, 2.27 × 10−15 and 0.00159, respectively; estimates: −4.7632,
−4.01039, −1.5767, −3.2825, −2.2824 and −3.2585, respectively; R2: 0.39, 0.33, 0.09, 0.20, 0.21 and 0.17,
respectively). This trend could be validated for mefA, sul2 and the IncP-1 plasmids by modelling their
relative abundances based on censored tobit models. Again, a statistically significant negative impact
of forest soils on mefA, sul2 and IncP-1 plasmid abundance could be determined (p-values: 7.85 × 10−14,
3.08 × 10−7 and <2 × 10−16, respectively; estimates: −5.45, −5.56 and −3.74, respectively; R2: 0.19, 0.06,
and 0.09, respectively). Due to a very low abundance of aac(6′)-lb, tetA and class 1 integrons in forest
soils, increasing the proportional number of censored samples to over 80%, statistical analysis was
restricted to binomial generalized models with respect to these genes.

Both, the occurrence and relative abundance, of the two β-lactamase genes blaIMP-12 and blaIMP-5

did not significantly differ between grassland and forest soils. This was revealed by the binomial
model approach (p-values: 0.79 and 0.78, respectively; estimate: 0.06 and 0.08, respectively; R2: 0.05
and 0.1, respectively) and the tobit models (p-values: 0.98 and 0.7, respectively; estimate: 0.01 and
−0.17, respectively; R2: 0.03 and 0.06, respectively). The relative abundance of the quantified ARGs
and MGEs in forest and grassland soils is depicted in censored boxplots (Figure 1). As ermB and aacC1
were only detected in 13 and 5 of the 300 soil samples, respectively, they could not be considered in the
statistical analysis.
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represent Schwäbische-Alb, Hainich-Dün and Schorfheide-Chorin grassland soils, respectively, 
whereas AF, HF and SF represent Schwäbische-Alb, Hainich-Dün and Schorfheide-Chorin forest 
soils, respectively.  
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diversity compared to other considered forest sites (p-values: 7 × 10−5 and 4.6 × 10−3; estimate: 2.13 and 
0.65; R2: 0.17) (Table 1). The tobit approach, modelling the relative abundance of this gene, supports 
this finding (p-values: 7.4 × 10−6 and 2.4 × 10−3; estimate: 2.75 and 0.73; R2: 0.09). With respect to blaIMP-

5 the same trend could be detected, but the model quality is below the quality threshold (Table S3). 
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could be identified which impacts the abundance of these genes. 

Figure 1. Censored boxplots depicting 2∆CT values of quantified antibiotic resistance genes and mobile
genetic elements. The red horizontal line indicates the highest censoring threshold. Everything below
this line was estimated. The whiskers represent 1.5 times the outer quartile range. AG, HG and
SG represent Schwäbische-Alb, Hainich-Dün and Schorfheide-Chorin grassland soils, respectively,
whereas AF, HF and SF represent Schwäbische-Alb, Hainich-Dün and Schorfheide-Chorin forest
soils, respectively.

3.3. Land Use Practices in Grassland Affect the Abundances of aac(6′)-lb, mefA and sul2

With respect to the occurrence and relative abundance of aac(6′)-lb, mefA and sul2 in grassland
soils, statistically significant correlations with land use were identified (Table 1). The occurrence of
aac(6′)-lb is positively correlated with the mowing frequency and soil pH (p-values: 0.03 and 7.4 × 10−7;
estimate: 0.45 and 1.74; R2: 0.21). This trend could be validated with the tobit model focusing on the
relative gene abundance (p-values: 0.044 and 1.5 × 10−7; estimate 0.37 and 1.65; R2: 0.12). Furthermore,
the occurrence of mefA is positively influenced by nitrogen input from organic fertilizers and negatively
influenced by the soil moisture content (p-values: 9.4 × 10−4 and 3 × 10−3, estimate: 1.14 and −0.68;
R2: 0.24), which was again validated by the tobit model (p-values: 3.9 × 10−3 and 9.2 × 10−5; estimate:
0.64 and −1.01; R2: 0.11). The occurrence and relative abundance of the sul2 gene is also significantly
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more pronounced in grassland soils, which experienced high nitrogen input from organic fertilizers
(binomial model: p-value: 0.01; estimate: 0.53; R2: 0.1; tobit model: p-value: 2.2 × 10−3; estimate: 1.6;
R2: 0.08).

Table 1. Final regression models of the occurrence (binomial model: A) or relative abundance (tobit
model: B) of antibiotic resistance genes. At least one of the two models was supposed to explain ≥ 10%
of the variance (R2) and p values < 0.05 were considered significant (highlighted in bold). The outer left
column lists the dependent (shown in bold) and independent variables of each model (also intercept is
considered with respect to each model). The models below the dashed bar focus on blaIMP-12 in forest
soils and the other models focus on aac(6′)-lb, mefA and sul2 in grassland soils. Est. is the abbreviation
for estimate, Moisture for soil moisture, Shan-H for fungal diversity as assessed by Shannon index, Df
stands for degrees of freedom and Null/Resid. for the null or residual deviance, respectively.

A B

p Est. R2 Df Null/Resid. p Est. R2 Df Null/Resid.

aac(6′)-lb 0.21 143 191.3/152 0.12 142 333.7/292.7
Intercept 3.8 × 10−7

−12.29 <2 × 10−16
−31.49

Mowing 0.03 0.45 4.4 × 10−2 0.37
pH 7.4 × 10−7 1.74 1.5 × 10−7 1.65

mefA 0.24 140 198.6/163 0.11 141 198.6/178.5
Intercept 0.02 0.52 <2 × 10−16

−18.81
Mowing 0.13 0.33 8.1 × 10−2 0.41
Org. N 9.4 × 10−4 1.14 3.9 × 10−3 0.64
Moisture 3.0 × 10−3 −0.68 9.2 × 10−5 −1.01

sul2 0.1 140 182.5/171.6 0.08 140 182.5/177.9
Intercept 9.3 × 10−4

−0.62 <2 × 10−16
−22.18

Org. N 0.01 0.53 2.2 × 10−3 1.60
Moisture 0.10 −0.37 8.9 × 10−2 −1.14

blaIMP-12 0.17 133 188.5/155.6 0.09 132 417.1/380.7
Intercept 8.4 × 10−4

−1.64 <2 × 10−16
−21.93

Beech 7.0 × 10−5 2.13 7.4 × 10−6 2.75
Shan-H 4.6 × 10−3 0.65 2.4 × 10−3 0.73

With respect to tetA and class 1 integrons, statistical analysis was restricted to binomial models
(Table S3) as both genes were over 70% censored in grassland samples. Only the binomial model
comprising the LUI indicated a significantly positive correlation with the gene occurrence of tetA
(p-value: 0.03; estimate: 0.48; R2: 0.11). Moreover, the class 1 integrons seem to be affected by a number
of land use variables. The occurrence of these MGEs was positively correlated with grazing and
negatively correlated with mowing, fertilization, mineral N input, organic N input and LUI.

When analyzing IncP-1 plasmids as well as bla-IMP12 and bla-IMP5 in grassland soils, none of the
two approaches (binomial and tobit model approach) revealed a statistically significant influence of a
land use variable with a sufficient R2 (Table S3).

3.4. The Abundance of blaIMP-12 Increases with Fungal Diversity in Forest Soil

The gene blaIMP-12 could be detected more frequently in beech forest and at sites with a high fungal
diversity compared to other considered forest sites (p-values: 7 × 10−5 and 4.6 × 10−3; estimate: 2.13 and
0.65; R2: 0.17) (Table 1). The tobit approach, modelling the relative abundance of this gene, supports
this finding (p-values: 7.4 × 10−6 and 2.4 × 10−3; estimate: 2.75 and 0.73; R2: 0.09). With respect
to blaIMP-5 the same trend could be detected, but the model quality is below the quality threshold
(Table S3). In general, blaIMP-12 and blaIMP-5 were the only analyzed genes, which were not significantly
more abundant in grassland than in forest soils. Regarding the grassland soils, no environmental
parameter could be identified which impacts the abundance of these genes.
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4. Discussion

In this study, a general difference between grassland and forest soils with respect to the occurrence
of selected ARGs and MGEs was visible. All selected ARGs, except the two β-lactamase genes blaIMP-12

and blaIMP-5, as well as IncP-1 plasmids and class 1 integrons were more frequently detected in grassland
than in forest soils (Figure 1). This might partly be due to differences in soil bacterial community
composition between forest and grassland, which were detected in a previous study comprising
all analyzed experimental plots [58]. In accordance with this theory, Forsberg et al. [59] identified
bacterial community composition as a major determinant of antibiotic resistance gene content based
on metagenomic analysis of agricultural and grassland soil. The lower pH in forest soils (Table S1)
potentially contributes to variations in ARG as well as MGE abundance as this abiotic parameter
has previously been shown to be a key driver of soil bacterial community composition [58,60,61].
This assumption is supported by the identified significant positive correlation between pH and the
abundance of the aac(6′)-lb gene in grassland soil. Another possible explanation for the identified
differences between forest and grassland ecosystems might be proximity to anthropogenic activities
with respect to grassland sites, which comprise the use of antibiotics in human and veterinary medicine
as well as associated ARBs, ARGs and MGEs [62]. When the two ecosystems were analyzed separately,
we determined a statistically sound relationship between land use and the abundance of the medically
relevant ARGs mefA, sul2 and aac(6′)-lb in grassland soil. Additionally, it was possible to identify
factors controlling the abundance of the β-lactamase gene blaIMP-12 in forest soil (Table 2).

Table 2. Summary of factors significantly affecting target antibiotic resistance genes and mobile genetic
elements in soil ecosystems analyzed in this study. Targets showing increased occurrence as well as
relative abundance in grassland compared to forest soil are depicted. Furthermore, factors significantly
influencing the occurrence as well as relative abundance of targets in grassland (mowing frequency and
organic nitrogen input) or forest soil (fungal diversity and beech as dominant tree species) are depicted.

Target

Occurrence and Relative
Abundance Significantly
Increased in Grassland

Compared to Forest Soil

Factors Significantly
Influencing Target

Occurrence and Relative
Abundance in Grassland Soil

Factors Significantly
Influencing Target

Occurrence and Relative
Abundance in Forest Soil

IncP-1 Yes - -
aac(6′)-lb Further analysis required * Mowing frequency and pH -

mefA Yes Organic nitrogen input -

sul2 Yes Organic nitrogen input and
soil moisture -

blaIMP-12 No - Fungal diversity and beech
as dominant tree species

* Due to a very low abundance of aac(6′)-lb in forest soils, increasing the proportional number of censored samples
to over 80%, statistical analysis was restricted to binomial generalized models with respect to these genes. “-”
indicates that no influential factor was identified.

4.1. sul2 and mefA

Both, the occurrence as well as the relative abundance of sul2 and mefA were affected by
organic fertilizer application in grassland. The sulfonamide resistance gene sul2 encodes an
alternative dihydropteroate synthase and is often located on small promiscuous plasmids of the IncQ
incompatibility group [63,64]. These plasmids allow the dissemination of sul2 among gram-positive
and gram-negative bacterial hosts [65]. They have already been identified in a variety of different
species including the pathogenic Enterobacteriaceae Salmonella enterica [66], Klebsiella pneumoniae [67]
and Escherichia coli, isolated from German cattle [68]. Based on communications with veterinarians
working in the study regions, it was confirmed that sulfonamides together with trimethoprim are
frequently used to treat cattle, as the authorization for corresponding pharmaceutical preparations
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have a broad spectrum, including infections of the gastrointestinal tract, the urinary- and reproductive
system as well as the skin, joints and hoof.

The quantified resistance gene mefA encodes an efflux protein of the major facilitator superfamily
class which extrudes 14- and 15-membered macrolides (e.g., erythromycin or tulathromycin) out of the
bacterial cell [69]. It has originally been identified in Streptococcus pyogenes, which causes infections
of the upper respiratory tract and the skin as well as a variety of systemic infections in humans [70],
but also in the pathogen Streptococcus pneumoniae [71]. In fact, mefA can be carried by conjugative
transposons like Tn1207.3, which enable its spread among different streptococcal species [72,73].
Despite the recent categorization of macrolides as critically important in veterinary medicine according
to the World Organization for Animal Health (OIE) [74], especially tulathromycin is still frequently
applied for bovine respiratory diseases of calves and young cattle [75], which was confirmed by the
contacted veterinarians. When several animals from a group of calves purchased from different sources
fall ill, it is also common to treat the entire group. This procedure is called metaphylactic treatment.
Organic cattle farms usually forego metaphylactic applications with tulathromycin, but individual
treatments of calves with respiratory diseases are still conducted when necessary. A reason for the
frequent application of tulathromycin is its functionality against mycoplasma species, one of the major
causative agents for respiratory infections in calves [76]. As these bacteria lack a cell wall, they are
intrinsically resistant against β-lactam antibiotics. Tulathromycin has to be administered only once
due to a consistently high drug-level over longer times. It has an elimination half time in cattle of
approximately 90 h, which is far higher than that of erythromycin (3–16 h) [75,77]. Macrolides with
longer elimination half times are suspected to promote higher resistance development due to longer
exposure of bacteria to sub-inhibitory drug concentrations [78]. Therefore, the frequent usage of
tulathromycin in bovine agriculture could promote the resistance development of different Streptococci
species within animal microbiomes.

As Streptococci species are also part of the gastrointestinal microbiome in cattle [79], resistant strains
in manure, which is frequently applied as organic fertilizer with respect to the analyzed grassland
plots, could get in contact with the soil microbiome, whereby HGT events can potentially take place.
This might also be the case for bacteria in manure harboring the sul2 gene, especially as this ARG is
known to be frequently encoded by Enterobacteriaceae. It has been shown in a microcosm study by
Hu et al. [52], that application of manure, which has not been treated with antibiotics, increases the
ARG abundance in soil notably. However, as only 50% of the tulathromycin, 17.9% of sulfadimethoxine
and 11–37% of sulfamethazine, used for treatment, are eliminated functionally by cattle [80,81], it
seems probable, that besides ARB along with their ARGs also the antibiotics themselves are transferred
to the soil through organic fertilization. Thus, besides other manure constituents, this antibiotic input
into soil could also increase the mefA and sul2 abundance due to selective pressure.

4.2. aac(6′)-lb

The gene aac(6′)-lbconfers resistance to different aminoglycosides and is of clinical importance as it
is predominantly harbored by MGEs of gram-negative bacteria [82]. Importantly, mutations in this gene
can lead to resistance toward representatives of a second class of antibiotics, the fluoroquinolones [82–84].

According to contacted veterinarians, aminoglycosides are not very often used to treat cattle
present in the analyzed study region. However, they are sometimes byproducts of antimicrobial
preparations to treat acute udder diseases and to prevent udder infections during dry period. As all
lactating cows from conventional dairy farms go through the about six weeks lasting dry period before
each calving, it is a considerable factor that could influence cattle resistomes notably [85]. Apart from
the aminoglycosides, fluoroquinolones are also used to treat febrile udder diseases of cattle. As the
WHO declared them as critically important antimicrobials, it is required that fluoroquinolones are only
used when susceptibility testing identifies the drug as only treatment option [86]. Since febrile udder
diseases are very serious and, if not treated effectively, usually lead to death, animals often receive
fluoroquinolones before the result of the susceptibility test is available [87,88]. This inevitably leads to
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the treatment of some bacterial infections with fluoroquinolones that would have been sensitive to
other antimicrobial agents.

Although aac(6′)-lb was not correlated with nitrogen input from organic fertilizers, manure could
contribute to transfer of fluoroquinolones and aminoglycosides into soils, as surface water run-offs,
dust or wild animals could distribute the antibiotics or ARB into different areas [62,89–91]. This
might partly explain the frequent detection of aac(6′)-lb in grassland soils with and without history of
organic fertilization.

With respect to the applied land use practices in grasslands of the study region, a clear correlation
between mowing and the abundance of the aac(6′)-lb gene could be identified. Plants have been shown
to be a potential reservoir of ARB, due to uptake and accumulation of antibiotics [92,93]. Hence,
mowing could increase the contact between antibiotic-resistant endophytes and the soil community,
and thereby promote HGT, which would explain the positive influence of the mowing frequency
on ARG abundance in soil. In addition, mowing might induce changes in release of potentially
toxic aromatic compounds from degradation processes as well as plant exudates such as specialized
antimicrobial compounds (e.g., phytoalexins and flavonoids) and signaling molecules, which could
increase expression of antibiotic resistance in soil [94,95].

4.3. blaIMP-12, blaIMP-5 and MGEs

The IMP enzymes represent broad-spectrum metallo-β-lactamases, rapidly spreading globally
among the gram-negative bacteria including Enterobacteriaceae, Pseudomonas and Acinetobacter species
as they are mainly encoded on class 1 integrons within transferable plasmids [96–100]. The β-lactamase
blaIMP-12 was originally identified in a clinical Pseudomonas putida isolate and its preferred substrates
include aminopenicillins, cephalosporins and carbapenems [98].

β-Lactam antibiotics (penicillins, aminopenicillins and cephalosporins of the first to fourth
generation) are the most commonly applied substances in veterinary medicine, which was also
confirmed for the study regions based on communication with veterinarians. They are applied against
mastitis, during the beginning of the dry period of dairy cows and are a first treatment option for
a series of different infections, including the respiratory tract, the digestive tract and the urinary
and reproductive system of cattle. However, despite their frequent use in veterinary medicine, no
statistically sound difference in blaIMP-12 and blaIMP-5 abundance between grassland and forest plots
was identified. An explanation for this observation could be their fast hydrolytic degradation which
can take place, depending on the soil moisture, within hours to a few days [101,102]. The rapid
β-lactam hydrolysis and the concordant loss in selective pressure could promote the development of
sensitive strains due to e.g., the loss of resistance plasmids [103]. This might be the reason for similar
blaIMP-12 and blaIMP-5 abundances in forest as well as grassland soil and potentially explains why land
use practices showed no clear effect on the distribution of these genes. Nevertheless, it is also possible
that both genes efficiently spread across distinct ecosystems, as they were detected as part of mobile
genetic elements [98,104], and protect phylogenetically diverse bacteria against the lethal effect of
several beta lactam antibiotics which are naturally produced by soil microorganisms.

Strikingly, the blaIMP-12 gene showed a significant positive correlation with beech forest plots
as well as soil fungal diversity. This is most probably due to the connectedness between soil fungal
communities and tree species [105]. Furthermore, as penicillins and cephalosporins are synthesized by
the filamentous fungi Penicillium rubens [106,107] and Acremonium chysogenum (priorily Cephalosporium
acremonium) [108,109], it is not surprising, that the soil fungal community has a significant impact on
blaIMP-12 abundance. It is possible that soil fungi intensify the synthesis of β-lactams to compete for
scarce resources or to receive access to nutrients released due to lysis of sensitive bacteria when fungal
diversity in soil increases. This potentially explains the pronounced occurrence and abundance of
blaIMP-12 in soils with a higher fungal diversity.

An effect of land use practices on the abundance of IncP-1 plasmids, class 1 integrons and
tetA, which would explain their pronounced occurrence in grassland sites was not found. The
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IncP-1 plasmids have been shown to encode a variety of different ARGs and heavy metal resistance
genes [110–112]. Therefore, several environmental parameters can potentially impact their occurrence
in soil. With respect to class 1 integrons and the tetracycline efflux pump-encoding gene tetA, we could
not untangle statistically sound correlations between their abundance and land use practices as they
were only detected in a small fraction of the analyzed soils.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/2/150/s1,
Table S1: Plot characteristics and soil properties of all 300 experimental plots, Table S2: ∆Ct values of all analyzed
target sequences in the 300 experimental plots, Table S3: Preliminary binomial (A) or tobit regression models (B).
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3.1. Supplemental information for chapter three 

 

Table S1: Plot characteristics and soil properties of all 300 experimental plots. 

 

Table S2: ΔCt values of all analyzed target sequences in the 300  experimental plots. The non‐detect 

ΔCT values are marked in grey. 

 

Table S3: Preliminary binomial (A) or tobit regression models (B). 
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Table S1: Plot characteristics and soil properties of all 300 experimental plots. Graz., Mow., Fert., LUI, Org. N 

and Min. N represent grazing, mowing, the general fertilization frequency, the land use intensity index as 

described in Blüthgen et al. (2012), the organic nitrogen input from organic fertilizers and the nitrogen input 

from mineral fertilizers from the years 2006‐2016. Tree describes the dominant tree type and Moist. the mean 

soil moisture in May 2017. Shannon H represents fungal diversity as assessed by Shannon index. 

Plot ID  Graz.  Mow.    Fert.  Org. N  Min. N  LUI  Tree  pH  Moist. 
Shannon 

H 

SEG1  0.0  2.0 1.9  0.0 64.4 2.0 NA 7.5 44.1  4.6 

SEG2  0.4  1.5 1.8  52.0 63.5 1.9 NA 7.5 49.0  4.5 

SEG3  0.5  1.7 1.8  0.0 52.9 2.0 NA 7.6 50.2  4.4 

SEG4  0.3  0.7 0.0  18.1 1.8 1.0 NA 7.5 24.7  4.7 

SEG5  0.1  1.1 0.0  11.1 6.8 1.1 NA 7.6 39.0  4.2 

SEG6  1.7  0.4 0.0  0.0 6.8 1.4 NA 5.5 36.7  3.9 

SEG7  2.6  0.1 0.0  0.0 0.0 1.7 NA 7.5 32.8  4.1 

SEG8  0.8  1.0 0.6  9.5 0.0 1.5 NA 7.5 29.2  3.9 

SEG9  2.9  0.2 0.0  0.0 0.0 1.8 NA 6.6 55.6  4.6 

SEG10  0.6  1.4 1.8  0.0 52.9 2.0 NA 7.5 43.9  4.4 

SEG11  0.6  1.2 1.8  0.0 59.7 1.9 NA 7.5 34.5  4.6 

SEG12  0.0  2.0 1.9  0.0 64.4 2.0 NA 7.5 51.7  4.5 

SEG13  0.2  1.8 0.6  8.9 25.2 1.6 NA 5.5 20.0  4.2 

SEG14  0.6  0.7 0.0  44.2 7.7 1.2 NA 7.5 51.8  4.3 

SEG15  0.0  1.3 0.0  32.0 7.3 1.2 NA 7.5 52.2  4.6 

SEG16  1.0  0.7 0.0  0.0 0.0 1.3 NA 7.4 39.1  4.5 

SEG17  0.8  1.1 0.0  3.9 0.0 1.4 NA 5.4 34.5  4.5 

SEG18  0.0  1.8 0.0  32.5 7.7 1.3 NA 4.9 26.2  3.6 

SEG19  0.8  0.6 0.0  0.0 6.8 1.2 NA 7.5 43.4  4.8 

SEG20  2.2  0.3 0.0  0.0 0.0 1.6 NA 6.4 20.9  4.5 

SEG21  2.6  0.1 0.0  19.1 0.0 1.6 NA 5.3 20.9  4.5 

SEG22  2.8  0.0 0.0  3.5 0.0 1.7 NA 7.5 39.7  4.6 

SEG23  0.0  2.1 1.0  23.7 0.0 1.8 NA 5.2 35.2  3.8 

SEG24  0.0  1.2 0.0  18.5 0.0 1.1 NA 7.5 54.5  4.4 

SEG25  0.0  2.0 0.0  0.0 0.0 1.4 NA 6.5 48.6  4.6 

SEG26  0.0  2.0 1.0  22.3 0.0 1.7 NA 7.2 41.2  4.6 

SEG27  0.0  1.1 0.0  0.0 0.0 1.0 NA 6.1 26.1  4.3 

SEG28  0.0  1.3 0.0  0.0 0.0 1.2 NA 7.5 52.6  4.2 

SEG29  0.1  0.8 0.0  0.0 0.0 0.9 NA 7.6 53.8  4.7 

SEG30  0.0  1.7 0.0  0.0 0.0 1.3 NA 7.0 27.1  3.7 

SEG31  0.0  1.7 0.0  0.0 0.0 1.3 NA 6.0 31.4  3.7 

SEG32  0.0  1.7 0.0  0.0 0.0 1.3 NA 5.7 14.6  4.1 

SEG33  2.1  0.3 0.9  18.3 12.0 1.8 NA 5.7 33.8  4.1 

SEG34  1.2  0.5 1.6  27.5 23.1 1.8 NA 5.8 29.5  4.3 

SEG35  1.0  0.7 1.6  33.5 29.9 1.8 NA 6.2 27.3  3.8 

SEG36  2.1  0.1 0.0  6.0 6.8 1.5 NA 6.3 28.4  4.6 

SEG37  2.7  0.2 0.0  17.3 6.4 1.7 NA 4.7 15.2  4.1 

SEG38  4.3  0.9 0.0  4.5 0.0 2.3 NA 5.2 13.5  4.0 

SEG39  0.8  0.7 0.2  6.7 12.0 1.3 NA 7.4 29.6  4.1 

SEG40  4.1  0.0 0.0  6.7 6.4 2.0 NA 6.1 22.8  3.7 

SEG41  4.1  0.2 0.0  32.0 4.6 2.1 NA 6.1 24.4  4.4 

SEG42  5.2  0.0 2.2  23.5 2.7 2.7 NA 5.0 18.2  4.3 

SEG43  2.5  0.0 1.8  6.8 0.0 2.1 NA 6.5 24.7  4.6 

SEG44  2.1  0.0 0.3  0.0 0.0 1.5 NA 5.5 24.5  4.5 

SEG45  1.8  0.0 0.0  9.8 0.0 1.3 NA 5.9 19.7  4.6 

SEG46  4.4  0.1 0.0  0.0 0.0 2.1 NA 7.1 20.9  4.5 
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Plot ID  Graz.  Mow.    Fert.  Org. N  Min. N  LUI  Tree  pH  Moist. 
Shannon 

H 

SEG47  2.3  0.2 0.0  0.0 0.0 1.6 NA 5.7 28.7  4.6 

SEG48  3.0  0.1 0.0  0.0 0.0 1.7 NA 6.7 18.4  4.4 

SEG49  2.7  0  0  0  0 1.6 NA 6.4 NA  4.2 

SEG50  2.1  0  0  2.2 0 1.5 NA 5.4 11.2  4.4 

SEW1  NA  NA NA  NA NA NA Pine 3.6 11.9  3.9 

SEW2  NA  NA NA  NA NA NA Pine 3.5 10.5  4.5 

SEW3  NA  NA NA  NA NA NA Pine 3.4 15.3  4 

SEW4  NA  NA NA  NA NA NA Pine 3.5 18.1  3.5 

SEW5  NA  NA NA  NA NA NA Beech 3.4 14.2  3.4 

SEW6  NA  NA NA  NA NA NA Beech 3.7 15.8  4.1 

SEW7  NA  NA NA  NA NA NA Beech 3.8 17.9  4.3 

SEW8  NA  NA NA  NA NA NA Beech 3.4 12.8  4.2 

SEW9  NA  NA NA  NA NA NA Beech 3.5 17.8  3.4 

SEW10  NA  NA NA  NA NA NA Pine 3.7 10.2  3.8 

SEW11  NA  NA NA  NA NA NA Pine 3.7 15.2  3.9 

SEW12  NA  NA NA  NA NA NA Pine 3.5 9.2  3.1 

SEW13  NA  NA NA  NA NA NA Pine 3.3 17.3  4.2 

SEW14  NA  NA NA  NA NA NA Pine 3.4 NA  4.1 

SEW15  NA  NA NA  NA NA NA Pine 3.7 10.4  3.9 

SEW16  NA  NA NA  NA NA NA Pine 3.6 13.2  3.4 

SEW17  NA  NA NA  NA NA NA Pine 3.3 15.0  3.1 

SEW18  NA  NA NA  NA NA NA Pine 3.3 10.4  3.5 

SEW19  NA  NA NA  NA NA NA Pine 3.6 11.8  3 

SEW20  NA  NA NA  NA NA NA Pine 3.6 10.6  4.2 

SEW21  NA  NA NA  NA NA NA Pine 3.3 10.8  4 

SEW22  NA  NA NA  NA NA NA Oak 3.6 17.2  4.4 

SEW23  NA  NA NA  NA NA NA Oak 3.5 14.5  3.9 

SEW24  NA  NA NA  NA NA NA Oak 3.7 18.5  4.4 

SEW25  NA  NA NA  NA NA NA Oak 3.7 15.4  4.3 

SEW26  NA  NA NA  NA NA NA Oak 3.7 14.1  4.3 

SEW27  NA  NA NA  NA NA NA Oak 3.4 15.6  4.1 

SEW28  NA  NA NA  NA NA NA Oak 3.5 14.8  4.2 

SEW29  NA  NA NA  NA NA NA Pine 3.3 12.1  3.8 

SEW30  NA  NA NA  NA NA NA Pine 3.4 13.9  3.3 

SEW31  NA  NA NA  NA NA NA Pine 3.4 NA  4.1 

SEW32  NA  NA NA  NA NA NA Pine 3.5 11.7  3.9 

SEW33  NA  NA NA  NA NA NA Pine 3.4 11.8  3.1 

SEW34  NA  NA NA  NA NA NA Pine 3.5 15.9  2.9 

SEW35  NA  NA NA  NA NA NA Beech 3.6 11.9  4.1 

SEW36  NA  NA NA  NA NA NA Beech 3.3 13.2  3.4 

SEW37  NA  NA NA  NA NA NA Beech 3.6 17.0  4 

SEW38  NA  NA NA  NA NA NA Beech 3.4 15.9  3.9 

SEW39  NA  NA NA  NA NA NA Beech 3.7 11.7  4.1 

SEW40  NA  NA NA  NA NA NA Beech 3.8 16.7  4.5 

SEW41  NA  NA NA  NA NA NA Beech 3.8 18.5  4.3 

SEW42  NA  NA NA  NA NA NA Beech 3.8 16.1  4.3 

SEW43  NA  NA NA  NA NA NA Beech 3.7 NA  3.7 

SEW44  NA  NA NA  NA NA NA Beech 3.7 20.1  3.9 

SEW45  NA  NA NA  NA NA NA Beech 3.7 15.9  3.9 

SEW46  NA  NA NA  NA NA NA Beech 3.5 13.9  3.7 

SEW47  NA  NA NA  NA NA NA Beech 3.5 10.0  3.9 

Table S1 continued:
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Plot ID  Graz.  Mow.    Fert.  Org. N  Min. N  LUI  Tree  pH  Moist. 
Shannon 

H 

SEW48  NA  NA NA  NA NA NA Beech 3.7 16.4  4.2 

SEW49  NA  NA NA  NA NA NA Beech 3.5 12.6  4 

SEW50  NA  NA NA  NA NA NA Beech 3.7 NA  3.9 

HEG1  0.3  2.3 5.4  34.5 101 2.8 NA 6.6 41.4  3.4 

HEG2  0.1  2.2 3.7  0  106 2.5 NA 7.3 20.6  4.6 

HEG3  0.1  2.8 4.3  0  97.9 2.7 NA 7.3 25.8  4.6 

HEG4  0.7  1.7 2.9  8  42 2.3 NA 6.5 26.4  5 

HEG5  0.9  2  3.5  17.5 64.1 2.5 NA 7.2 35.9  4.6 

HEG6  0.4  1.5 1.9  68.7 0 2 NA 5.9 NA  4.4 

HEG7  2.4  0.2 0  7.6 0 1.6 NA 7 28.1  4.7 

HEG8  1.8  0.1 0  15.6 0 1.4 NA 7 32.6  4.7 

HEG9  0.6  0.1 0  0  0 0.8 NA 7.1 32.9  4.7 

HEG10  0.2  1.1 1.2  48.2 0 1.6 NA 6.5 33.0  3.8 

HEG11  0.2  1  0.9  48.2 0 1.4 NA 7.3 25.8  3 

HEG12  7.3  0.3 1.3  0  28.5 3 NA 7 30.6  4.2 

HEG13  0.4  2.5 0.3  8.8 5.5 1.8 NA 7.2 29.1  4.1 

HEG14  0.4  1.2 3.3  60.6 50.5 2.2 NA 6.4 27.7  3.6 

HEG15  0.3  1.2 3.1  19.3 61.9 2.2 NA 7.1 23.4  4.2 

HEG16  1.3  0  0  0  0 1.1 NA 6.8 35.7  4.4 

HEG17  0.4  0.1 0  0  0 0.7 NA 6.9 32.7  3.4 

HEG18  0.4  0.2 0  0  0 0.8 NA 7.4 28.5  4.5 

HEG19  0.4  0  0  0  0 0.7 NA 6.6 36.9  3.6 

HEG20  0.8  0.1 0  0  0 1 NA 5.5 29.0  1.9 

HEG21  0.5  0.1 0  0  0 0.8 NA 7.3 31.2  4 

HEG22  0.3  1.7 0.2  0  0 1.5 NA 6.9 19.0  4.5 

HEG23  0.7  1.1 0  8  0 1.3 NA 7.3 34.4  3.4 

HEG24  1.2  1.1 0  0  0 1.5 NA 6.8 30.0  4.7 

HEG25  1.4  0.6 0  0  0 1.4 NA 7.3 21.4  3.2 

HEG26  0  1.2 0.6  25.8 4.6 1.3 NA 7.4 31.7  4.3 

HEG27  0.1  1.2 2  0  44.7 1.8 NA 7.2 28.4  4 

HEG28  0.1  1.5 1.4  2  38.4 1.7 NA 7.3 36.8  3.3 

HEG29  0.3  1.6 1.2  2  39.9 1.7 NA 7.2 35.0  4.3 

HEG30  0.2  2.6 3.1  10.5 65 2.4 NA 7.2 30.3  4 

HEG31  0.5  1.3 1.9  0  49.6 1.9 NA 7.2 30.6  2.6 

HEG32  1.1  1  1.9  0  42 2 NA 5.6 28.8  4 

HEG33  1  1.2 1.2  0  34.4 1.8 NA 5.3 23.6  4.1 

HEG34  0.4  1.5 2.2  68.8 0 2 NA 7 37.2  4.1 

HEG35  1.6  1  2.1  55 13.7 2.2 NA 7 24.5  4.5 

HEG36  0.6  1.3 3.2  34.5 57.3 2.3 NA 7.3 27.9  3.9 

HEG37  0.6  1.6 3.6  24.2 53 2.4 NA 7.3 16.3  4.3 

HEG38  3.2  0.2 0  0  0 1.9 NA 7.3 NA  3.6 

HEG39  1.2  0.4 0  0  0 1.3 NA 6.5 35.9  4.8 

HEG40  2.6  0  0  0  0 1.6 NA 6.6 32.6  4.3 

HEG41  0.8  0.1 0  0  0 1 NA 7.2 22.3  4.3 

HEG42  0.4  0  0  2.6 0 0.7 NA 7.2 40.3  3.4 

HEG43  0.6  0.4 0  15.8 0 1 NA 7.1 33.9  4.1 

HEG44  0.5  0.3 0  10.5 0 0.9 NA 7.1 26.3  3.5 

HEG45  0.5  0.1 0  0  0 0.8 NA 7 35.9  2.9 

HEG46  0.6  0.3 0  0  0 0.9 NA 7.4 20.8  4.1 

HEG47  0.8  1.2 0.3  0  0 1.5 NA 7.2 29.5  3.5 

HEG48  0.7  1.2 0.3  0  0 1.5 NA 7 NA  3.4 
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Plot ID  Graz.  Mow.    Fert.  Org. N  Min. N  LUI  Tree  pH  Moist. 
Shannon 

H 

HEG49  0.2  1.4 1.2  43.3 0 1.7 NA 6.7 31.5  4.1 

HEG50  0.3  1  1.5  40.7 0 1.7 NA 6.9 33.2  3.7 

HEW1  NA  NA NA  NA NA NA Spruce 6.2 30.0  4 

HEW3  NA  NA NA  NA NA NA Spruce 5.1 15.0  4.3 

HEW4  NA  NA NA  NA NA NA Beech 6.1 33.8  4.9 

HEW5  NA  NA NA  NA NA NA Beech 5.3 33.3  3.1 

HEW6  NA  NA NA  NA NA NA Beech 4.4 30.0  4.2 

HEW7  NA  NA NA  NA NA NA Beech 4.1 44.2  4.3 

HEW8  NA  NA NA  NA NA NA Beech 5.7 NA  3.9 

HEW9  NA  NA NA  NA NA NA Beech 4.4 36.2  3.2 

HEW10  NA  NA NA  NA NA NA Beech 4.9 NA  4.4 

HEW11  NA  NA NA  NA NA NA Beech 4.9 NA  4.6 

HEW12  NA  NA NA  NA NA NA Beech 4.1 25.9  4.6 

HEW13  NA  NA NA  NA NA NA Spruce 6.8 31.2  3.9 

HEW14  NA  NA NA  NA NA NA Beech 5.1 37.5  2.7 

HEW15  NA  NA NA  NA NA NA Beech 4 30.7  4.5 

HEW16  NA  NA NA  NA NA NA Beech 4.9 NA  4.9 

HEW17  NA  NA NA  NA NA NA Beech 3.9 27.4  3.9 

HEW18  NA  NA NA  NA NA NA Beech 5.6 30.2  4.8 

HEW19  NA  NA NA  NA NA NA Beech 4.6 34.0  4.5 

HEW20  NA  NA NA  NA NA NA Beech 6.7 36.1  4.5 

HEW21  NA  NA NA  NA NA NA Beech 6.3 48.3  4.2 

HEW22  NA  NA NA  NA NA NA Beech 4.8 34.5  4.1 

HEW23  NA  NA NA  NA NA NA Beech 4.7 33.6  4 

HEW24  NA  NA NA  NA NA NA Beech 4 32.8  4 

HEW25  NA  NA NA  NA NA NA Beech 4.7 33.0  4.7 

HEW26  NA  NA NA  NA NA NA Beech 4.3 29.4  4.2 

HEW27  NA  NA NA  NA NA NA Beech 6 42.7  4.6 

HEW28  NA  NA NA  NA NA NA Beech 6.2 41.3  3.8 

HEW29  NA  NA NA  NA NA NA Beech 4.1 NA  4.5 

HEW30  NA  NA NA  NA NA NA Beech 4.1 25.4  3.2 

HEW31  NA  NA NA  NA NA NA Beech 4.1 28.3  4.6 

HEW32  NA  NA NA  NA NA NA Beech 3.9 26.0  4.2 

HEW33  NA  NA NA  NA NA NA Beech 4.8 37.1  4.4 

HEW34  NA  NA NA  NA NA NA Beech 4.7 29.5  4.8 

HEW35  NA  NA NA  NA NA NA Beech 4.4 33.1  4.5 

HEW36  NA  NA NA  NA NA NA Beech 4.7 45.6  4.3 

HEW37  NA  NA NA  NA NA NA Beech 4.4 31.6  4.2 

HEW38  NA  NA NA  NA NA NA Beech 5.4 33.2  4.2 

HEW39  NA  NA NA  NA NA NA Beech 4.5 32.5  4.6 

HEW40  NA  NA NA  NA NA NA Beech 5.4 38.2  4.7 

HEW41  NA  NA NA  NA NA NA Beech 4.6 NA  4.3 

HEW42  NA  NA NA  NA NA NA Beech 4.2 31.2  4.6 

HEW43  NA  NA NA  NA NA NA Beech 6.7 42.6  4.9 

HEW44  NA  NA NA  NA NA NA Beech 5.4 38.7  4.2 

HEW45  NA  NA NA  NA NA NA Beech 7.2 NA  3.6 

HEW46  NA  NA NA  NA NA NA Beech 4.2 27.1  4.1 

HEW47  NA  NA NA  NA NA NA Beech 4.9 34.4  4.5 

HEW48  NA  NA NA  NA NA NA Beech 4.4 NA  4.4 

HEW49  NA  NA NA  NA NA NA Beech 4.1 29.4  4 

HEW50  NA  NA NA  NA NA NA Beech 4.8 31.4  3.8 
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Plot ID  Graz.  Mow.    Fert.  Org. N  Min. N  LUI  Tree  pH  Moist. 
Shannon 

H 

HEW51  NA  NA NA  NA NA NA Spruce 6.6 41.5  3.6 

AEG1  0  2  1.8  29.3 49.5 2 NA 6.8 21.6  4.3 

AEG2  0  2.8 8.3  142.7 62.7 3.3 NA 6.9 34.4  4.6 

AEG3  0.1  2  1.1  41.7 26.1 1.8 NA 6.1 35.6  4.2 

AEG4  0.7  1  1.4  42.5 39.9 1.8 NA 5.3 43.0  4.6 

AEG5  0.7  0.9 1.7  8.9 54.4 1.8 NA 6.3 38.7  4.4 

AEG6  2.2  1  1.7  19.9 32.3 2.2 NA 6 34.8  4.3 

AEG7  0.3  0  0  0  0 0.5 NA 7.3 32.3  2.4 

AEG8  0.7  0.9 0  0  0 1.3 NA 6.6 30.4  4.6 

AEG9  0.5  0  0  0  0 0.7 NA 6.6 31.9  3.4 

AEG10  0  1  0  10.2 2.7 1 NA 5.9 35.3  4.2 

AEG11  0  2.8 1.7  18.7 29.4 2.1 NA 5.4 37.4  3.9 

AEG12  0  2.1 2.4  42.3 39.5 2.1 NA 6.6 30.0  4.6 

AEG13  0  2  2.5  42.3 29.4 2.1 NA 6.3 35.1  4.7 

AEG14  0  2  3.6  55.1 35.5 2.4 NA 6.6 29.6  4.6 

AEG15  0  2.9 6.1  139.3 25 3 NA 5.7 43.4  3.8 

AEG16  0.9  1.2 0.6  24.5 0 1.6 NA 6 34.5  4.5 

AEG17  0  2.2 1.6  45.2 2.7 2 NA 6.9 38.9  4.2 

AEG18  0  2.6 4.2  104.6 25 2.6 NA 6.9 31.9  3.8 

AEG19  2.8  0.7 1.3  0  28.6 2.2 NA 5.8 36.8  4.7 

AEG20  1.5  0  0.5  0  13.6 1.4 NA 6.7 42.4  4.9 

AEG21  6.2  0.4 5.2  98 1.4 3.5 NA 5.8 32.9  4.5 

AEG22  0.3  1  0.4  7  0 1.3 NA 5.7 36.9  4.1 

AEG23  0  1.8 0.4  11.2 0 1.5 NA 7.1 42.8  3.6 

AEG24  1  2.1 2.3  87.3 0 2.3 NA 6.1 39.9  4.4 

AEG25  0.4  0  0.1  0  0 0.8 NA 7.2 36.7  3.6 

AEG26  2  0  0  9.6 0 1.4 NA 6.8 NA  4 

AEG27  1.2  0  0  0  9.1 1.1 NA 6 30.5  2.2 

AEG28  0.8  0  0  0  0 0.9 NA 6.1 26.1  3 

AEG29  0.7  1.1 0.4  48.5 0 1.5 NA 5.9 15.4  4.4 

AEG30  1.3  0.8 0.3  0  18.6 1.6 NA 6.6 38.5  4.7 

AEG31  1.1  0.7 0  0  4.6 1.4 NA 6.7 36.1  4.8 

AEG32  0.5  0  0  0  9.1 0.7 NA 5.4 42.6  4.5 

AEG33  1.2  0  0  0  0 1.1 NA 6 42.6  4.3 

AEG34  1  0.5 0  13.2 3.6 1.3 NA 6.3 37.3  3.9 

AEG35  0  2.1 1.4  18.5 29.1 1.9 NA 5.3 39.1  4.1 

AEG36  0  2  1.7  9.4 42.6 1.9 NA 6 41.2  4 

AEG37  0.1  2  1.7  35.4 47.6 1.9 NA 6.3 38.7  3.7 

AEG38  0  2  0.3  9.3 3.6 1.5 NA 5.6 46.9  4 

AEG39  0  2  1.9  29.9 29.5 2 NA 6 33.1  4.8 

AEG40  0.2  2.4 1.8  44.2 12.7 2.1 NA 6.9 34.1  3 

AEG41  0.1  2.3 4.7  95.8 19.7 2.7 NA 6.3 28.8  4.8 

AEG42  1.2  1.6 2  49 2.7 2.2 NA 7.1 32.7  4.9 

AEG43  1  0.9 0.8  29.8 0 1.7 NA 6.9 33.1  4.5 

AEG44  2.5  0  0  0  0 1.6 NA 7.3 38.4  4.6 

AEG45  0  2.3 0.1  9.8 0 1.6 NA 5.4 NA  4.5 

AEG46  2.4  0  0  0  0 1.5 NA 6 42.2  4.5 

AEG47  0.7  0  0  9.6 0 0.8 NA 7.5 29.4  4 

AEG48  0.4  0  0  9.6 0 0.7 NA 7.6 27.1  4.2 

AEG49  1  0  0  9.6 0 1 NA 6 36.3  3.9 

AEG50  0  2  2.1  69 12.5 2 NA 6 33.8  4.6 
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H 

AEW1  NA  NA NA  NA NA NA Spruce 3.3 38.7  3.6 

AEW2  NA  NA NA  NA NA NA Spruce 4.8 23.4  4.5 

AEW3  NA  NA NA  NA NA NA Spruce 5.6 34.6  4.1 

AEW4  NA  NA NA  NA NA NA Beech 6.8 38.7  3.6 

AEW5  NA  NA NA  NA NA NA Beech 4.5 NA  3.6 

AEW6  NA  NA NA  NA NA NA Beech 5.6 39.9  4.1 

AEW7  NA  NA NA  NA NA NA Beech 5 41.6  2.8 

AEW8  NA  NA NA  NA NA NA Beech 6.4 42.9  3 

AEW9  NA  NA NA  NA NA NA Beech 6.1 27.5  3.1 

AEW10  NA  NA NA  NA NA NA Spruce 4.6 30.9  3.1 

AEW11  NA  NA NA  NA NA NA Spruce 3.4 27.8  3.3 

AEW12  NA  NA NA  NA NA NA Spruce 4.5 32.0  4.4 

AEW13  NA  NA NA  NA NA NA Spruce 5.2 40.7  4 

AEW14  NA  NA NA  NA NA NA Spruce 4.8 38.9  4.6 

AEW15  NA  NA NA  NA NA NA Beech 6.4 36.7  4.1 

AEW16  NA  NA NA  NA NA NA Beech 6.4 30.1  3.7 

AEW17  NA  NA NA  NA NA NA Beech 6.5 42.6  4.1 

AEW18  NA  NA NA  NA NA NA Beech 4.7 30.3  4.4 

AEW19  NA  NA NA  NA NA NA Beech 5.1 32.0  4 

AEW20  NA  NA NA  NA NA NA Beech 6.6 40.5  3.8 

AEW21  NA  NA NA  NA NA NA Beech 6.3 28.8  5.3 

AEW22  NA  NA NA  NA NA NA Beech 6.3 40.7  4 

AEW23  NA  NA NA  NA NA NA Beech 5.6 20.5  3.9 

AEW24  NA  NA NA  NA NA NA Beech 5.3 NA  4.6 

AEW25  NA  NA NA  NA NA NA Beech 5.1 31.1  3.9 

AEW26  NA  NA NA  NA NA NA Beech 5.1 39.4  3.8 

AEW27  NA  NA NA  NA NA NA Beech 4.6 39.5  4 

AEW28  NA  NA NA  NA NA NA Beech 4.7 33.4  4.2 

AEW29  NA  NA NA  NA NA NA Beech 4.4 34.3  4.3 

AEW30  NA  NA NA  NA NA NA Beech 5.8 39.6  4.4 

AEW31  NA  NA NA  NA NA NA Spruce 5.6 33.6  3.9 

AEW32  NA  NA NA  NA NA NA Spruce 6.9 13.4  3.8 

AEW33  NA  NA NA  NA NA NA Spruce 5.8 26.6  3.9 

AEW34  NA  NA NA  NA NA NA Spruce 4.9 29.5  4.4 

AEW35  NA  NA NA  NA NA NA Beech 5.5 39.2  4.7 

AEW36  NA  NA NA  NA NA NA Beech 6 29.4  4.5 

AEW37  NA  NA NA  NA NA NA Beech 5.2 37.9  3.9 

AEW38  NA  NA NA  NA NA NA Beech 6.9 31.9  4.3 

AEW39  NA  NA NA  NA NA NA Beech 5.2 31.5  4.4 

AEW40  NA  NA NA  NA NA NA Beech 5.3 35.4  4.5 

AEW41  NA  NA NA  NA NA NA Beech 5.7 38.6  4.1 

AEW42  NA  NA NA  NA NA NA Beech 6.5 21.7  4.7 

AEW43  NA  NA NA  NA NA NA Beech 5.1 38.0  5 

AEW44  NA  NA NA  NA NA NA Beech 6 NA  3.7 

AEW45  NA  NA NA  NA NA NA Beech 5.8 26.5  4.4 

AEW46  NA  NA NA  NA NA NA Beech 5.5 35.4  3.9 

AEW47  NA  NA NA  NA NA NA Beech 5.2 NA  4 

AEW48  NA  NA NA  NA NA NA Beech 5.8 31.6  4.2 

AEW49  NA  NA NA  NA NA NA Beech 6.3 20.7  4.7 

AEW50  NA  NA NA  NA NA NA Beech 5.9 27.0  3.2 
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Table S2: ∆Ct values of all analyzed target sequences in the 300 experimental plots. The non‐detect ∆CT values 

are marked in grey.

Plot 

ID 
IncP‐1. 

Class  1 

integrons.   

aac(6’)‐

lb 
aacC1    blaIMP‐12  blaIMP‐5  ermB  mefA  tetA  sul2 

SEG1  ‐17  ‐20.51  ‐18.89  ‐19.58 ‐20 ‐19.39 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG2  ‐14.5  ‐20.51  ‐18.18  ‐19.58 ‐20 ‐17.43 ‐19.12 ‐19.04  ‐19.92 ‐20.31

SEG3  ‐15.5  ‐20.51  ‐18.31  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.51  ‐19.92 ‐20.31

SEG4  ‐16.5  ‐20.51  ‐18.05  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG5  ‐19.81  NA ‐18.28  ‐19.58 ‐16.77 ‐18.16 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG6  ‐15.8  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG7  ‐17.7  ‐20.51  ‐19.93  ‐19.58 ‐17.81 ‐17.24 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG8  ‐18.7  ‐20.51  ‐18.21  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.98  ‐19.92 ‐20.31

SEG9  ‐18  ‐20.51  ‐19.92  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG10  ‐17.1  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG11  ‐18.4  ‐20.51  ‐18.92  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG12  ‐15.7  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐14.67

SEG13  ‐16.3  ‐18.1 ‐19.93  ‐19.58 ‐18.21 ‐20.13 ‐20.02 ‐16.5  ‐19.92 ‐14.65

SEG14  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.95 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐16.79

SEG15  ‐15.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG16  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG17  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 NA

SEG18  ‐14.1  ‐20.51  ‐17.29  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐14.18

SEG19  ‐18.1  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG20  ‐15.7  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG21  ‐16.1  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐18.72 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG22  ‐19.81  ‐20.51  ‐17.64  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG23  ‐19.81  NA ‐19.93  ‐19.58 ‐19.17 ‐20.13 ‐20.02 ‐16.98  ‐19.92 ‐20.31

SEG24  ‐19.81  ‐20.51  ‐18.12  ‐19.58 ‐18.9 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG25  ‐15.9  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG26  ‐16.8  ‐20.51  ‐17.95  ‐19.58 ‐18.66 ‐20.13 ‐20.02 ‐19.22  ‐19.92 ‐17.6

SEG27  ‐17.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG28  ‐17.4  ‐20.51  ‐16.91  ‐19.58 ‐18.65 ‐18.44 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG29  ‐17.4  NA ‐16.96  ‐19.58 ‐17.73 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEG30  ‐16  ‐20.51  ‐19.93  ‐19.58 ‐17.84 ‐20.13 ‐20.02 ‐19.43  ‐18.08 ‐20.31

SEG31  ‐18.8  ‐20.51  ‐19.93  ‐19.58 ‐18.66 ‐20.13 ‐20.02 ‐18.57  ‐19.92 ‐20.31

SEG32  ‐18.4  NA ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.65  ‐19.92 ‐20.31

SEG33  ‐15.2  ‐20.51  ‐19.93  ‐19.58 ‐17.45 ‐18.22 ‐20.02 ‐18.34  ‐19.16 ‐17.3

SEG34  ‐16.6  ‐20.5 ‐19.93  ‐19.58 ‐18.55 ‐18.72 ‐20.02 ‐17.17  ‐19.92 ‐20.31

SEG35  ‐15.4  ‐20.51  ‐19.93  ‐19.58 ‐18.36 ‐20.13 ‐20.02 ‐17.71  ‐17.4 ‐20.31

SEG36  ‐16.4  NA ‐19.93  ‐19.58 ‐19.38 ‐20.13 ‐20.02 ‐19.43  ‐19.37 ‐18.7

SEG37  ‐10.2  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐15.64  ‐19.92 ‐20.31

SEG38  ‐15.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐19.04 ‐20.02 ‐18.31  ‐19.92 ‐18.3

SEG39  ‐19.81  ‐18.7 ‐19.93  ‐19.58 ‐18.36 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐15.9

SEG40  ‐19.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐16.78  ‐19.82 ‐17.8

SEG41  ‐13.6  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.04  ‐18.31 ‐16.9

SEG42  ‐14.3  ‐20.51  ‐19.93  ‐19.58 ‐19.05 ‐20.13 ‐20.02 ‐14.52  ‐19.92 ‐20.31

SEG43  ‐18  ‐20.51  ‐18.57  ‐19.58 ‐16.17 ‐18.74 ‐20.02 ‐14.76  ‐16.66 ‐14.5

SEG44  ‐15.1  ‐20.51  ‐19.93  ‐19.58 ‐17.08 ‐20.13 ‐20.02 ‐13.64  ‐19.92 ‐16.8

SEG45  ‐15.5  ‐20.51  ‐19.93  ‐19.58 ‐16.38 ‐20.13 ‐20.02 ‐14.17  ‐19.92 ‐13.6

SEG46  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.66 ‐20.13 ‐20.02 ‐18.65  ‐18.57 ‐16.6

SEG47  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.67 ‐19.01 ‐20.02 ‐19.42  ‐19.83 ‐20.31

SEG48  NA  ‐20.51  ‐19.93  ‐19.58 ‐18.29 ‐20.13 ‐20.02 ‐18  ‐18.14 ‐20.31

SEG49  ‐15.5  ‐19.2 ‐19.5  ‐19.58 ‐18.76 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐17.2

SEG50  ‐15.8  ‐20.51  ‐19.93  ‐19.58 ‐17.86 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW1  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31
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Table S2 continued: 

Plot ID  IncP‐1. 
Class  1 

integrons.   

aac(6’)‐

lb 
aacC1    blaIMP‐12  blaIMP‐5  ermB  mefA  tetA  sul2 

SEW2  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW3  ‐19.81  NA ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW4  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW5  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW6  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW7  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐19.78 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW8  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW9  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW10  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW11  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐18.2

SEW12  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW13  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW14  ‐16.7  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW15  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐17

SEW16  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW17  ‐18.1  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW18  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW19  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW20  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW21  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW22  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW23  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW24  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐19.58 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW25  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.55 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW26  ‐17.5  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW27  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW28  ‐16.6  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW29  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW30  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW31  ‐18.7  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW32  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW33  ‐19.81  ‐19.9  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW34  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW35  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐16.1

SEW36  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW37  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW38  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW39  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW40  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.76  ‐19.92 ‐20.31

SEW41  ‐17.8  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.01 ‐19.43  ‐19.92 ‐20.31

SEW42  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐19.29 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW43  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.87 ‐19.05 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW44  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW45  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.08 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW46  ‐19.81  NA ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐18

SEW47  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW48  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

SEW49  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

SEW50  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG1  ‐19.4  ‐20.51  NA  ‐19.58 ‐19.43 ‐18.77 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG2  ‐18.4  ‐20.51  ‐19.93  ‐19.58 ‐19.38 ‐18.54 ‐20.02 ‐19.43  ‐19.92 ‐19.6
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integrons.   

aac(6’)‐
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aacC1    blaIMP‐12  blaIMP‐5  ermB  mefA  tetA  sul2 

HEG3  ‐18.6  ‐20.51  ‐17.54  ‐18.87 ‐17.24 ‐18.01 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG4  ‐16.3  ‐18.2  ‐19.01  ‐19.58 ‐17.36 ‐17.34 ‐20.02 ‐16.71  ‐19.92 ‐15.9

HEG5  ‐19.81  ‐17.7  ‐18.69  ‐19.58 ‐16.89 ‐20.13 ‐20.02 ‐17.16  ‐17.84 ‐16.4

HEG6  ‐17.6  ‐14.5  ‐19.43  ‐19.58 ‐19.03 ‐17.07 ‐14.09 ‐13.64  ‐15.73 ‐8.6

HEG7  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐17.44 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG8  ‐19.81  ‐20.51  ‐16.75  ‐19.58 ‐17.65 ‐17.8 ‐20.02 ‐19.43  ‐19.92 ‐18.8

HEG9  ‐13.7  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.02  ‐19.92 ‐20.1

HEG10  ‐16.1  ‐20.51  ‐18.82  ‐19.58 ‐17.36 ‐20.13 ‐20.02 ‐17.59  ‐19.92 ‐17

HEG11  ‐16.9  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐15.95  ‐19.92 ‐20.31

HEG12  ‐16.9  ‐20.51  ‐18.48  ‐18.83 ‐20 ‐16.63 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG13  ‐17.6  ‐20.51  ‐17.76  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.23  ‐19.92 ‐16

HEG14  ‐16.2  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐16.67  ‐19.92 ‐20.31

HEG15  ‐16.4  ‐20.51  ‐18.78  ‐19.58 ‐15.81 ‐20.13 ‐20.02 ‐19.43  ‐18.48 ‐18.9

HEG16  ‐19.81  ‐20.51  ‐19.04  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG17  ‐16.4  ‐20.51  ‐18.09  ‐19.58 ‐19.38 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG18  ‐17.6  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG19  ‐17.6  ‐20.51  ‐19.93  ‐19.58 ‐18.43 ‐16.81 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG20  ‐14.3  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG21  ‐19.81  ‐17.4  ‐19.93  ‐19.13 ‐20 ‐18.28 ‐17.42 ‐16.54  ‐18.25 ‐14.6

HEG22  ‐18.2  ‐20.51  ‐17.57  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.05  ‐19.92 ‐20.31

HEG23  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.35 ‐20.13 ‐20.02 ‐17.75  ‐19.1 ‐20.31

HEG24  ‐16.3  ‐20.51  ‐18.46  ‐19.58 ‐16.46 ‐18.23 ‐20.02 ‐18.42  ‐19.92 ‐20.31

HEG25  NA  ‐20.51  ‐19.49  ‐19.57 ‐20 ‐20.13 ‐19.64 ‐19.07  ‐19.92 ‐20.31

HEG26  ‐18.6  NA ‐18.4  ‐19.58 ‐18.81 ‐20.13 ‐20.02 ‐17.16  ‐19.92 ‐20.31

HEG27  ‐16.7  ‐20.51  ‐19.75  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG28  ‐15.2  ‐20.51  ‐18.74  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐14.97  ‐17.8 ‐20.31

HEG29  ‐17.7  ‐20.51  ‐18.58  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.2  ‐19.92 ‐20.31

HEG30  NA  ‐20.51  ‐18.84  ‐19.58 ‐12.86 ‐17.48 ‐20.02 ‐16.16  ‐18.57 ‐20.31

HEG31  NA  ‐19 ‐17.03  ‐19.58 ‐16.37 ‐20.13 ‐20.02 ‐16.57  ‐19.92 ‐20.31

HEG32  ‐18.5  NA ‐19.93  ‐19.58 ‐14.87 ‐17.26 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG33  ‐12.5  ‐15.6  ‐19.93  ‐19.58 ‐16.68 ‐14.58 ‐17.62 ‐15.3  ‐19.92 ‐15.4

HEG34  ‐19.81  ‐17.9  ‐17.35  ‐19.58 ‐19.2 ‐19.01 ‐17.55 ‐16.03  ‐19.57 ‐12.7

HEG35  ‐15.9  ‐16.3  ‐18.59  ‐19.58 ‐20 ‐20.13 ‐16.45 ‐14.38  ‐16.34 ‐10.2

HEG36  ‐17.3  ‐15.9  ‐17.9  ‐19.58 ‐20 ‐20.13 ‐17.12 ‐15.82  ‐16.96 ‐13.8

HEG37  ‐15.1  ‐15.3  ‐18.64  ‐18.66 ‐17.88 ‐16.74 ‐17.87 ‐15.35  ‐18.74 ‐13.8

HEG38  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.17 ‐20.13 ‐20.02 ‐18.49  ‐19.92 ‐20.31

HEG39  ‐19.81  ‐20.51  ‐18.05  ‐19.58 ‐17.67 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG40  ‐19.81  ‐20.51  ‐18.86  ‐19.58 ‐20 ‐20.13 ‐18.25 ‐19.43  ‐19.92 ‐15.2

HEG41  NA  ‐20.51  ‐19.93  ‐19.58 ‐15.14 ‐16.69 ‐20.02 ‐19.43  ‐19.92 ‐16.7

HEG42  ‐16.7  ‐20.51  ‐19.93  ‐19.58 ‐18.68 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG43  ‐15.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.73  ‐19.92 ‐16.5

HEG44  ‐17.5  NA ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.67  ‐19.92 ‐20.31

HEG45  ‐17.6  ‐20.51  ‐17.21  ‐19.58 ‐20 ‐18.86 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG46  NA  ‐20.51  ‐17.92  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEG47  NA  NA ‐18.72  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.17  ‐19.92 ‐20.31

HEG48  ‐17.5  ‐20.51  ‐18.05  ‐19.58 ‐16.14 ‐20.13 ‐20.02 ‐17.98  ‐19.92 ‐20.31

HEG49  ‐16.3  ‐20.51  ‐18.19  ‐19.58 ‐18.61 ‐20.13 ‐20.02 ‐15.66  ‐19.92 ‐20.31

HEG50  ‐19.81  ‐20.51  ‐17.63  ‐19.58 ‐17.41 ‐16.69 ‐20.02 ‐17.61  ‐19.92 ‐20.31

HEW1  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.82 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW2  ‐15.7  ‐20.51  ‐19.93  ‐19.58 ‐19.95 ‐20.12 ‐20.02 ‐19.43  ‐19.92 ‐20.3

HEW3  ‐18.6  ‐20.51  ‐17.54  ‐18.87 ‐17.24 ‐18.01 ‐20.02 ‐19.43  ‐19.92 ‐20.31
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HEW4  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐16.91 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW5  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW6  NA  ‐20.51  ‐19.93  ‐19.58 ‐18.29 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW7  ‐18.3  ‐20.51  ‐19.93  ‐19.58 ‐19.23 ‐19.78 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW8  NA  ‐20.51  ‐19.93  ‐19.58 ‐16.11 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW9  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐19.04 ‐19.99 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW10  ‐17.2  ‐20.51  ‐19.93  ‐19.58 ‐17.99 ‐19.47 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW11  NA  ‐20.51  ‐19.93  ‐19.58 ‐16.88 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW12  ‐19.4  ‐20.51  ‐19.93  ‐19.58 ‐17.46 ‐16.38 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW13  ‐16.9  ‐20.51  ‐19.93  ‐19.58 ‐16.87 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW14  ‐18.2  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW15  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW16  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐16.13 ‐17.66 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW17  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐19.79 ‐17.43 ‐20.02 ‐19.43  ‐19.92 ‐17.3

HEW18  ‐19.81  NA ‐19.93  ‐19.58 ‐17.64 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW19  NA  ‐20.51  ‐19.93  ‐19.58 ‐17.29 ‐18.16 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW20  ‐19.81  NA ‐19.93  ‐19.58 ‐18.23 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW21  ‐18.4  ‐20.51  ‐19.93  ‐19.58 ‐17.45 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW22  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW23  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.84 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW24  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.91 ‐20.31

HEW25  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW26  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.41 ‐19.15 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW27  ‐16.8  ‐20.51  ‐19.93  ‐19.58 ‐18.59 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW28  ‐17  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW29  ‐18.4  ‐20.51  ‐19.93  ‐19.58 ‐17.28 ‐17.79 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW30  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.81 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW31  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐16.72 ‐17.8 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW32  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW33  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐15.84 ‐19.1 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW34  NA  ‐20.51  ‐19.93  ‐19.58 ‐18.33 ‐16.77 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW35  NA  ‐20.51  ‐19.93  ‐19.58 ‐17.64 ‐19.63 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW36  NA  ‐20.51  ‐19.93  ‐19.58 ‐16.54 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW37  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐16.33 ‐19.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW38  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐16.73 ‐17.15 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW39  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐16.39 ‐17.34 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW40  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.01 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW41  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐16.29 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW42  NA  ‐20.51  ‐19.93  ‐19.58 ‐18.68 ‐19.9 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW43  ‐19  ‐20.51  ‐19.93  ‐19.58 ‐18.88 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW44  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW45  ‐18.1  ‐20.51  ‐19.93  ‐19.58 ‐18.76 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐17.9

HEW46  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW47  ‐16.6  ‐20.51  ‐19.93  ‐19.58 ‐16.2 ‐18.47 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW48  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.73 ‐18.07 ‐20.02 ‐19.43  ‐19.92 NA

HEW49  ‐19.8  ‐20.51  ‐19.93  ‐19.58 ‐15.8 ‐20.13 ‐20.02 ‐19.43  ‐19.92 NA

HEW50  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.71 ‐19.36 ‐20.02 ‐19.43  ‐19.92 ‐20.31

HEW51  ‐17.7  ‐20.51  ‐19.38  ‐19.58 ‐20 ‐19.54 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG1  ‐19.81  ‐19.7  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.51  ‐19.92 ‐20.31

AEG2  ‐17.5  ‐17.1  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.26  ‐19.92 ‐15.3

AEG3  ‐16.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31
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Table S2 continued 

Plot ID  IncP‐1. 
Class  1 

integrons.   

aac(6’)‐

lb 
aacC1    blaIMP‐12  blaIMP‐5  ermB  mefA  tetA  sul2 

AEG4  ‐14.3  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.88  ‐19.92 ‐15.5

AEG5  ‐16.6  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐17.5

AEG6  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG7  ‐15.5  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG8  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐16.7

AEG9  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐15.23  ‐19.92 ‐20.31

AEG10  ‐18.1  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG11  ‐18.6  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.06  ‐19.92 ‐20.31

AEG12  ‐18.1  ‐20.51  ‐19.93  ‐19.58 ‐18.6 ‐20.13 ‐20.02 ‐16.94  ‐19.92 ‐17.1

AEG13  ‐17.1  ‐20.51  ‐19.93  ‐19.58 ‐16.5 ‐20.13 ‐20.02 ‐16.42  ‐19.92 ‐20.31

AEG14  ‐17.6  ‐18.6  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐16.94  ‐19.92 ‐20.31

AEG15  NA  ‐20.51  ‐19.93  ‐19.58 ‐17.52 ‐20.13 ‐20.02 ‐17.99  ‐19.92 ‐16.8

AEG16  NA  ‐20.51  ‐19.93  ‐19.58 ‐16.98 ‐20.13 ‐20.02 ‐17.36  ‐19.92 ‐20.31

AEG17  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐19.14 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG18  ‐17.9  ‐20.51  ‐19.58  ‐19.58 ‐19.2 ‐20.13 ‐20.02 ‐16.77  ‐19.92 ‐20.31

AEG19  ‐15.9  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.63  ‐19.92 ‐20.31

AEG20  ‐16.1  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG21  ‐19.3  ‐20.51  ‐19.93  ‐19.58 ‐18.87 ‐20.13 ‐20.02 ‐18.18  ‐19.92 ‐16.2

AEG22  ‐19.81  ‐15 ‐19.93  ‐19.58 ‐19.79 ‐20.13 ‐16.73 ‐19.38  ‐16.57 ‐9.4

AEG23  ‐17.3  ‐17.5  ‐18.23  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG24  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐15.93  ‐18.86 ‐17.3

AEG25  ‐15.8  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG26  ‐18.5  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG27  ‐16.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐18.41 ‐20.02 ‐19.43  ‐19.92 ‐17.8

AEG28  ‐15.7  ‐20.51  ‐19.93  ‐19.58 ‐19.53 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG29  ‐16  NA ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG30  ‐17.8  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG31  NA  ‐20.51  ‐19.93  ‐19.58 ‐19.29 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG32  ‐12.4  ‐20.51  ‐19.93  ‐19.58 ‐16.59 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG33  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.15  ‐19.92 ‐20.31

AEG34  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.58  ‐19.92 ‐20.31

AEG35  ‐18.7  NA ‐19.93  ‐19.58 ‐15.18 ‐20.13 ‐20.02 ‐16.76  ‐19.92 ‐16.3

AEG36  ‐14.2  ‐20.51  ‐19.93  ‐19.58 ‐18.73 ‐20.13 ‐20.02 ‐17.45  ‐19.92 ‐15.3

AEG37  ‐18.7  ‐20.51  ‐19.93  ‐19.58 ‐18.46 ‐20.13 ‐20.02 ‐13.68  ‐19.92 ‐14.1

AEG38  ‐14  ‐20.51  ‐19.93  ‐19.58 ‐17.45 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG39  ‐17.4  ‐20.51  ‐19.93  ‐19.58 ‐17.38 ‐20.13 ‐20.02 ‐14.32  ‐19.92 ‐20.31

AEG40  ‐19.81  ‐14.8  ‐18.92  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐16.8  ‐16.48 ‐10.6

AEG41  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐17.41  ‐19.92 ‐20.31

AEG42  ‐19.81  ‐20.51  ‐17.16  ‐19.58 ‐19.06 ‐20.13 ‐20.02 ‐19.09  ‐19.92 ‐20.31

AEG43  ‐14.3  ‐16 ‐18.02  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.59  ‐19.92 ‐17

AEG44  ‐17.1  ‐20.51  ‐19.93  ‐19.58 ‐17.88 ‐20.13 ‐20.02 ‐17.34  ‐19.92 ‐20.31

AEG45  ‐16.8  ‐20.51  NA  ‐19.58 ‐16.1 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG46  ‐16.9  ‐20.51  NA  ‐19.58 ‐18.08 ‐20.13 ‐20.02 ‐19.15  ‐19.92 ‐20.31

AEG47  ‐14.2  ‐20.51  NA  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG48  ‐12.3  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEG49  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.5  ‐19.92 ‐20.31

AEG50  ‐19.81  NA ‐19.93  ‐19.58 ‐17.15 ‐20.13 ‐20.02 ‐18.5  ‐19.92 ‐16.3

AEW1  ‐19.81  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

AEW2  ‐19.81  NA ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW3  ‐19.81  NA ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW4  ‐19.81  ‐20.51  NA  ‐19.58 ‐18.75 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐18.2
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Table S2 continued:   

Plot ID  IncP‐1. 
Class  1 

integrons.   

aac(6’)‐

lb 
aacC1    blaIMP‐12  blaIMP‐5  ermB  mefA  tetA  sul2 

AEW5  NA  ‐20.51  NA  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW6  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐19.4 ‐20.02 ‐19.43  ‐19.92 ‐17.4

AEW7  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW8  NA  ‐20.51  ‐19.93  ‐19.58 ‐17.23 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW9  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.3 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW10  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW11  ‐16.4  ‐20.51  NA  NA NA NA NA NA  NA ‐20.31

AEW12  ‐18.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW13  ‐18  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.06  ‐19.92 ‐20.31

AEW14  ‐17.1  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐18.8

AEW15  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW16  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐16.3 ‐20.02 ‐19.43  ‐19.92 ‐16.3

AEW17  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW18  NA  ‐20.51  ‐19.93  ‐19.58 ‐18.78 ‐18.83 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW19  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.03 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW20  ‐17.7  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW21  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.6 ‐19.37 ‐20.02 ‐19.43  ‐19.92 ‐18.2

AEW22  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐16.5

AEW23  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐19.26 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW24  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW25  ‐17.7  ‐20.51  ‐19.93  ‐19.58 ‐16.82 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW26  NA  ‐20.51  ‐19.93  ‐19.58 ‐16.23 ‐19.14 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW27  NA  ‐20.51  ‐19.93  ‐19.58 ‐18.73 ‐19.28 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW28  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐19.79 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW29  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.75 ‐18.9 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW30  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.94 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW31  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐18.22  ‐19.92 ‐20.31

AEW32  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW33  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐16.1

AEW34  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW35  NA  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW36  NA  ‐20.51  ‐19.93  ‐19.58 ‐18.41 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW37  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐14.99 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW38  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐18.56 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW39  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW40  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.11 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW41  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW42  ‐17.4  ‐20.51  ‐19.93  ‐19.58 ‐20 ‐20.13 ‐17.01 ‐19.43  ‐19.92 ‐20.31

AEW43  ‐16.7  ‐20.51  ‐19.93  ‐19.58 ‐15.21 ‐16.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW44  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐14.79 ‐18.74 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW45  ‐16.2  ‐20.51  ‐19.93  ‐19.58 ‐18.08 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW46  ‐9.3  ‐20.51  ‐19.93  ‐19.58 ‐17.23 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW47  ‐18.3  ‐20.51  ‐19.93  ‐19.58 ‐18.37 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW48  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.81 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW49  ‐19.81  ‐20.51  ‐19.93  ‐19.58 ‐17.18 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31

AEW50  ‐17.6  ‐20.51  NA  ‐19.58 ‐20 ‐20.13 ‐20.02 ‐19.43  ‐19.92 ‐20.31
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Table  S3:  Preliminary  binomial  (A)  or  tobit  regression models  (B).  The  left  column  describes  the model 

components  including  dependent  variables  (the  target  ARG,  class  1  integrons  or  IncP‐1  plasmids),  fixed 

independent variables (pH, soil moisture or Shannon index) and interchanging independent variables (grazing, 

mowing, fertilization, organic N, mineral N and LUI with respect to grassland data and beech, pine, spruce and 

oak with respect to forest data). Significant effects (p‐value < 0.05) are highlighted in orange. 

A  B 

aac(6ʹ)‐Ib with pH  p  Estimate R2 p Estimate  R2

Grazing  0.84  ‐0.04  0.18  0.557  ‐0.11  0.11 

Mowing  0.03  0.45  0.21  0.0435  0.37  0.12 

Fertilization  0.08  0.35  0.21  0.281  0.19  0.12 

Organic N  0.43  0.15  0.18  0.459  0.14  0.11 

Mineral N  0.58  0.11  0.21  0.882  ‐0.03  0.11 

LUI  0.02  0.49  0.21  0.13  0.28  0.12 

mefA with soil moisture 

Grazing  0.91  ‐0.02  0.07  0.49  ‐0.16  0.07 

Mowing  5.1E‐04  0.69  0.14  5.6E‐04  0.75  0.09 

Fertilization  4.4E‐04  0.94  0.17  3.4E‐05  0.82  0.11 

Organic N  6.3E‐05  1.32  0.20  3.3E‐05  0.83  0.10 

Mineral N  0.45  0.13  0.07  0.14  0.32  0.07 

LUI  4.4E‐05  0.87  0.17  2.2E‐05  0.90  0.10 

sul2 with soil moisture 

Grazing  0.47  0.13  0.05  0.772  0.17  0.05 

Mowing  0.29  0.12  0.06  0.06  1.09  0.06 

Fertilization  0.02  0.43  0.09  0.01  1.38  0.08 

Organic N  0.01  0.53  0.10  2.2E‐03  1.60  0.08 

Mineral N  0.11  0.28  0.06  0.16  0.78  0.06 

LUI  3.9E‐03  0.54  0.10  3.6E‐03  1.65  0.07 

tetA with soil moisture 

Grazing  0.23  0.24  0.09

Mowing  0.75  0.07  0.08

Fertilization  0.16  0.29  0.10

Organic N  0.38  0.19  0.09

Mineral N  0.17  0.44  0.09

LUI  0.03  0.48  0.11

Class  1  integrons  with  soil 

Grazing  0.03  ‐1.06  0.17

Mowing  3.8E‐03  0.77  0.18

Fertilization  1.7E‐03  0.68  0.19

Organic N  0.02  0.47  0.14

Mineral N  0.02  0.49  0.14

LUI  0.03  0.54  0.14

IncP‐1 plasmids with pH 

Grazing  0.59  ‐0.11  0.01  0.82  ‐0.05  0.01 

Mowing  0.44  0.16  0.02  0.23  ‐0.26  0.02 

Fertilization  0.25  0.29  0.03  0.61  ‐0.11  0.02 

Organic N  0.45  ‐0.16  0.02  0.22  ‐0.28  0.02 

Mineral N  0.01  0.80  0.07  0.16  0.30  0.02 

LUI  0.51  0.14  0.02  0.23  ‐0.26  0.02 
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Table S3 continued: 

A  B

blaIMP‐12 with soil moisture  p  Estimate  R2 p  Estimate  R2 

Grazing  0.78  ‐0.05  0.04  0.50  ‐0.17  0.06 

Mowing  0.26  0.20  0.05  0.16  0.33  0.06 

Fertilization  0.10  0.29  0.06  0.06  0.43  0.08 

Organic N  0.45  0.13  0.05  0.79  0.06  0.06 

Mineral N  0.11  0.51  0.04  0.21  0.29  0.06 

LUI  0.10  0.28  0.06  0.09  0.40  0.07 

blaIMP‐5 with soil moisture 

Grazing  0.25  0.22  0.05 0.26  0.39  0.05 

Mowing  0.89  ‐0.03  0.04 0.84  ‐0.07  0.04 

Fertilization  0.32  0.19  0.07 0.32  0.35  0.07 

Organic N  0.26  ‐0.30  0.05 0.21  ‐0.55  0.05 

Mineral N  0.02  0.42  0.07 0.04  0.65  0.06 

LUI  0.14  0.30  0.06 0.17  0.48  0.05 

blaIMP‐12 with Shannon index

Beech  7.0E‐05  2.13  0.17  7.4E‐06  2.75  0.09 

Pine  0.99  ‐17.40  0.14  0.99  ‐13.18  0.07 

Spruce  0.04  ‐1.43  0.09  0.02  ‐1.95  0.04 

Oak  0.16  ‐1.21  0.08  0.09  ‐1.90  0.04 

blaIMP‐5 with Shannon index

Beech  0.03  1.70  0.09  0.01  2.28  0.07 

Pine  0.99  ‐16.10  0.08  0.99  ‐11.94  0.06 

Spruce  0.48  ‐0.56  0.05  0.30  ‐1.07  0.04 

Oak  0.99  ‐16.56  0.08  1.00  ‐12.37  0.06 
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Discovery of Novel Antibiotic
Resistance Determinants in Forest
and Grassland Soil Metagenomes
Inka Marie Willms1, Aysha Kamran2, Nils Frederik Aßmann1, Denis Krone1,
Simon Henning Bolz1, Fabian Fiedler1 and Heiko Nacke1*

1 Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology
and Genetics, Georg-August University, Göttingen, Germany, 2 Department of General Microbiology, Institute of Microbiology
and Genetics, Georg-August University, Göttingen, Germany

Soil represents a significant reservoir of antibiotic resistance genes (ARGs), which
can potentially spread across distinct ecosystems and be acquired by pathogens
threatening human as well as animal health. Currently, information on the identity
and diversity of these genes, enabling anticipation of possible future resistance
development in clinical environments and the livestock sector, is lacking. In this
study, we applied functional metagenomics to discover novel sulfonamide as well as
tetracycline resistance genes in soils derived from forest and grassland. Screening of
soil metagenomic libraries revealed a total of eight so far unknown ARGs. The recovered
genes originate from phylogenetically diverse soil bacteria (e.g., Actinobacteria,
Chloroflexi, or Proteobacteria) and encode proteins with a minimum identity of 46%
to other antibiotic resistance determinants. In particular forest soil ecosystems have so
far been neglected in studies focusing on antibiotic resistance. Here, we detected for
the first time non-mobile dihydropteroate synthase (DHPS) genes conferring resistance
to sulfonamides in forest soil with no history of exposure to these synthetic drugs. In
total, three sulfonamide resistant DHPSs, differing in taxonomic origin, were discovered
in beech or pine forest soil. This indicates that sulfonamide resistance naturally occurs
in forest-resident soil bacterial communities. Besides forest soil-derived sulfonamide
resistance proteins, we also identified a DHPS affiliated to Chloroflexi in grassland soil.
This enzyme and the other recovered DHPSs confer reduced susceptibility toward
sulfamethazine, which is widely used in food animal production. With respect to
tetracycline resistance, four efflux proteins affiliated to the major facilitator superfamily
(MFS) were identified. Noteworthy, one of these proteins also conferred reduced
susceptibility toward lincomycin.

Keywords: soil metagenome, functional metagenomics, antibiotic resistance, dihydropteroate synthase,
tetracycline resistance, sulfonamide resistance

INTRODUCTION

Pathogenic bacteria resistant to multiple classes of antibiotics pose risks to public health and are
considered as one of the major global challenges within the 21st century. Some of the antibiotic
resistance genes (ARGs) carried by these bacteria have been traced to soil origins (Forsberg
et al., 2012) and can potentially spread via e.g., groundwater or wildlife (Davies and Davies, 2010).
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Nevertheless, in contrast to clinical pathogens, bacterial
communities inhabiting complex environments such as
soil have been rarely considered within studies focusing
on antibiotic resistance (Walsh, 2013b). To assess risks of
environmental resistomes and develop strategies to tackle
antibiotic resistance, an improved knowledge on the ecology of
resistance determinants including their origins, diversity and
underlying resistance mechanisms is urgently required (Allen
et al., 2009; Wang et al., 2017).

Among Earth’s microbial habitats, soil harbors the highest
diversity of prokaryotes including numerous multi-resistant
bacteria (Delmont et al., 2011; Walsh and Duffy, 2013; Nesme and
Simonet, 2015). The synthesis of antibiotics likely evolved in this
habitat and promoted the development of different antimicrobial
compound-specific resistance mechanisms (D’Costa et al., 2007;
Walsh, 2013a). Previously unknown soil-derived ARGs were
recovered from both, pristine and intensively managed sites,
by function-based screening of metagenomic libraries (Allen
et al., 2009; Perron et al., 2015; Lau et al., 2017). In
contrast to sequence-based metagenomic library screening, this
culture-independent approach is not based on conserved DNA
regions and therefore allows the identification of entirely novel
target genes (Nacke and Daniel, 2014; Cheng et al., 2017).
For instance, a so far unknown peptide-associated macrolide
resistance mechanism was uncovered by coupling function-
based metagenomic library screening and high-resolution
proteomics analysis (Lau et al., 2017). Besides dependence
on conserved DNA regions, the fact that various resistance
genes show high levels of similarity to genes encoding
other cellular functions (Martínez, 2008; Perron et al., 2015)
represents another limitation of sequence-based resistome
analysis. An illustrative example are efflux pumps of the
resistance-nodulation-division (RND) superfamily, which can
confer antibiotic resistance, but can also transport proteins
involved in cell division and nodulation, or both (Piddock, 2006;
Perron et al., 2015).

In this study, we used function-based metagenomic
library screening to identify so far unknown tetracycline
and sulfonamide resistance genes in forest and grassland
soil. Due to an excellent therapeutic index, few side effects,
oral administration and low cost, tetracyclines belong to the
most widely used classes of broad spectrum antibiotics in
clinic (Thaker et al., 2010; Wang et al., 2017). After more
than 60 years of excessive tetracycline usage, tetracycline
resistance became one of the most abundant antibiotic
resistances among clinical and commensal microbes (Wang
et al., 2017). Another class of antibiotics, sulfonamides, is
also commonly prescribed to people suffering from infections
(Landers et al., 2012).

ARGs present in forests and grasslands, belonging to the
most abundant terrestrial ecosystems worldwide, might become
clinically relevant as they can potentially spread via lateral
gene transfer. Here, we report the identification of four novel
tetracycline and four previously unknown sulfonamide resistance
genes derived from these ecosystems. Most of the proteins
encoded by the novel ARGs showed low identity to already
known antibiotic resistance determinants.

MATERIALS AND METHODS

Site Description, Soil Sampling, and
Metagenomic Library Construction
Soil samples were derived from forest and grassland sites of
the German Biodiversity Exploratories Schorfheide-Chorin and
Schwäbische Alb (Fischer et al., 2010). The land use intensity
index (LUI) (Blüthgen et al., 2012) was calculated for all grassland
sites. To account for interannual variation in management
practices, the LUI was calculated from 2006 to 2008 (sampling
year) (Table 1). LUI allows separate analysis of the intensity of
grazing (calculated by considering numbers of grazing cattle,
horses, or sheep, and duration of grazing with respect to each
site), the mowing frequency, and the intensity of fertilization.
Forest plots were dominated by European beech (Fagus sylvatica)
or Scots pine (Pinus sylvestris) (Table 1).

The collection of the samples was performed previously
as described by Nacke et al. (2011a). Descriptions of the
soil characteristics are provided in Table 2. Total microbial
community DNA was isolated from collected soil by employing
the PowerSoil DNA isolation kit (MoBio Laboratories, Carlsbad,
CA, United States) and metagenomic libraries, named AEG2,
AEG3, and SEG8 were generated as described by Nacke et al.
(2011b). The metagenomic libraries AEW9, SEG6, SEW2, and
SEW5 were previously constructed (Nacke et al., 2011b). Names
of constructed metagenomic libraries refer to the designation of
the samples from which the libraries were derived.

Antibiotic Resistance Screening and
Sequence Analysis
The function-based screening was based on the ability of
metagenomic library-bearing Escherichia coli clones to form
colonies on LB agar medium containing 50 mg/L kanamycin,
which selects for the screening vector pCR-XL-TOPO (Thermo
Fisher Scientific, Braunschweig, Germany), and 5 mg/L
tetracycline or 250 mg/L sulfamethoxazole. Colonies formed
after incubation for 1–3 days at 37◦C under aerobic conditions
were picked for further study.

The recombinant plasmids derived from positive clones
were sequenced by Microsynth Seqlab (Göttingen, Germany)
using Sanger sequencing technology. All plasmid inserts were
taxonomically classified using the software KAIJU (Menzel et al.,
2016). An initial prediction of ORFs located on the inserts
was performed by employing the ORF finder tool provided
by the National Center for Biotechnology Information (NCBI)
and the Artemis program (Rutherford et al., 2000; Wheeler
et al., 2003). The results were verified and improved manually
by e.g., GC frame plot and ribosome-binding site analysis.
Subsequently, blast (Altschul et al., 1990) search against the NCBI
non-redundant protein sequence database was performed. In
addition, Resfams (Gibson et al., 2015), a recently generated
database of protein families and associated profile hidden
Markov models, representing all major ARG classes, was used
for sequence comparisons. Blast searches against the ACLAME
database (Leplae et al., 2010) version 0.4 and the Gypsy database
(Llorens et al., 2011) release 2.0 were performed to identify
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TABLE 1 | Characteristics of the study sites.

Site Land use Management Treatment Tree species LUI (grazing, mowing, fertilization)

AEG2 Grassland Meadow Fertilized NA 0.00, 2.07, 1.27

AEG3 Grassland Meadow Fertilized NA 0.00, 2.76, 2.06

AEW9 Forest Unmanaged forest NA Beech NA

SEG6 Grassland Mown pasture Non-fertilized NA 0.29, 1.38, 0.00

SEG8 Grassland Pasture Non-fertilized NA 0.14, 0.69, 0.00

SEW2 Forest Age class forest NA Pine NA

SEW5 Forest Age class forest NA Beech NA

The table lists the sites, land use, management type, treatment, dominant tree species, and LUI, land use index (calculated for 2006–2008) for grassland samples.
AEG/AEW: sites located in the Biodiversity Exploratory Schwäbische Alb; SEG/SEW: sites located in the Biodiversity Exploratory Schorfheide-Chorin.

TABLE 2 | Basic properties of soil samples.

Sample Soil type pH OC (g kg−1) Total N (g kg−1) C:N ratio

AEG2 Leptosol 6.9 72.3 7.2 10.1

AEG3 Leptosol 6.3 53.7 5.2 10.4

AEW9 Leptosol 6.4 60.0 4.5 13.4

SEG6 Histosol 5.2 284.1 23.9 11.9

SEG8 Gleysol 7.4 73.2 7.1 10.4

SEW2 Cambisol 3.5 17.0 1.0 16.7

SEW5 Cambisol 3.1 29.6 1.6 18.3

AEG/AEW: soil samples derived from the Biodiversity Exploratory Schwäbische Alb; SEG/SEW: soil samples derived from the Biodiversity Exploratory Schorfheide-Chorin.

mobile genetic elements. Moreover, the IS finder (database from
2018-09-11) (Siguier et al., 2006) was employed for identification
of bacterial insertion sequences.

A neighbor-joining phylogenetic tree was constructed in
MEGA (version 7.0) (Kumar et al., 2016) based on a ClustalW
(Thompson et al., 1994) alignment of dihydropteroate synthase
(DHPS) sequences. A total number of 1,000 bootstrap samplings
were carried out to test the tree topology. Branches corresponding
to partitions reproduced in less than 50% bootstrap replicates
were collapsed. The evolutionary distances were computed using
the number of differences method.

Subcloning of ORFs Potentially Encoding
Antibiotic Resistance
To verify if candidate ORFs encode antibiotic resistance,
they were subcloned into vector pCR4-TOPO (Thermo Fisher
Scientific) and subsequently introduced into E. coli TOP10. Two
insert sequences (corresponding plasmids, pLAEG3_tet01 and
pLSEG6_tet01) encoded proteins with similarity to members of
the TetR family of regulators. In this case, the gene encoding
the regulator as well as the potential ARG were subcloned
together. In a first step, PCR was performed for amplification
of candidate ORFs (including sequences potentially comprising
promoters) from plasmid DNA. PCR primers are listed in
Table 3. The PCR reaction mixture (50 µl) contained 10 µl 5-fold
Phusion GC buffer, 200 µM of each of the four deoxynucleoside
triphosphates, 5% DMSO, 0.2 µM of each primer, 1 U of
Phusion HF DNA polymerase (Thermo Fisher Scientific), and
approximately 20 ng of plasmid DNA. The following thermal
cycling scheme was used: initial denaturation at 98◦C for 1 min,
20 cycles of denaturation at 98◦C for 1 min, annealing for

45 s (annealing temperatures, see Table 3), and extension at
72◦C for 30 s per kb, followed by a final extension period
at 72◦C for 5 min. PCR products were purified using the
QIAquick PCR purification kit (Qiagen, Hilden, Germany)
according to the instructions of the manufacturer. Subsequently,
a deoxyadenosine was added to the 3′ termini of the DNA as
described by Nacke et al. (2011b) to facilitate cloning by the TA
method. The DNA was then purified using the QIAquick PCR
purification kit (Qiagen) and inserted into vector pCR4-TOPO
(Thermo Fisher Scientific) as described by the manufacturer.
Transformation of resulting vectors into E. coliTOP10 chemically
competent cells was performed according to the protocol of
the manufacturer.

Antibiotic Susceptibility Analysis
Antibiotic susceptibility assays were conducted by using the 2-
fold serial microtiter broth dilution method by considering
the Clinical and Laboratory Standards Institute (CLSI)
guidelines document M100-S24 (2014) and the MICs were
recorded after 20 h of incubation at 37◦C. The antibiotics
cefotaxime, chloramphenicol, erythromycin, gentamicin,
lincomycin, rifampicin, sulfadiazine, sulfamethoxazole,
sulfamethazine, sulfisoxazole, tetracycline, and tylosin were
considered. All assays were performed in duplicate. In
addition, the susceptibility to different sulfonamides was
further analyzed by spotting serial dilutions of cultures
with starting OD600 of 0.5 onto Iso-Sensitest agar (Thermo
Fisher Scientific) supplemented with sulfamethoxazole,
sulfamethazine, sulfisoxazole or sulfadiazine. E. coli TOP10
carrying vector pCR4-TOPO (Thermo Fisher Scientific) was
used as control.
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TABLE 3 | Primer sets designed in this study and corresponding templates.

Template Oligonucleotide Sequence (5′ to 3′) Annealing temperature (◦C)

pLAEG2_dhps01 AEG2_dhps01_for_150 GATACCCTAACGTACTACCGC 55

AEG2_dhps01_rev TCAGCGCGGATTCGTTC 55

pLAEW9_dhps01 AEW9_dhps01_for_150 CCTGATCGGTCAGGTCCTTA 55

AEW9_dhps01_rev TTACGCCGTTTGGCCC 55

pLSEW2_dhps01 SEW2_dhps01_for_150 CCGCCCGCCGTGTG 60

SEW2_dhps01_rev TTATGAAGCGGCGATAGCAGTAATAAC 60

pLSEW5_dhps01 SEW5_dhps01_for_104 GGTCATCGCGACAAAGGGTG 60

SEW5_dhps01_rev CTATACAGGCCGTCCAGCTGC 60

pLAEG3_tet01 AEG3_tet01b_for CTATTGCTTGACGCGATCG 55

AEG3_tet01a_rev CTATTCCGCCGGCTCAG 55

pLSEG6_tet01 SEG6_tet01b_for TTATCCTCGACGCGCCTTG 60

SEG6_tet01a_rev TCAGCCCGGAGCCAAGG 60

pLSEG8_tet01 SEG8_tet01_for_150 GGATTTGGAACAGACATATAGTG 55

SEG8_tet01_rev TTACCGGTTCCCCACTG 55

pLSEG8_tet02 SEG8_tet02_for_150 TTTAAGAGAATTTTCAGGATAAAG 50

SEG8_tet02_rev TTAACCATGCTTTGTCAG 50

Accession Numbers
The insert sequences of the plasmids carried by metagenomic
library clones showing decreased susceptibility to
sulfamethoxazole or tetracycline have been submitted to
GenBank under accession numbers MK159018 to MK159025.

RESULTS AND DISCUSSION

In order to discover so far unknown ARGs in environmental
resistomes, soil metagenomic libraries were subjected to
function-based screening. As sequence information is not
required before screening, this is the only strategy that bears
the potential to discover entirely novel ARGs (Simon and
Daniel, 2009). In addition, it is selective for full-length genes
and functional gene products. The soil used for construction of
metagenomic libraries was derived from forest and grassland
varying in land use history. Fertilized and non-fertilized
grassland sites as well as pristine and age class forest sites,
harboring different dominant tree species, were considered
(Table 1). This enabled the identification of ARGs in soils from
hardly as well as intensively managed ecosystems.

Metagenomic libraries contained approximately 39,800–
559,000 clones (Table 4). The quality of the libraries was
controlled by determining the average insert sizes and the
percentage of insert-bearing E. coli clones. The average insert
sizes of metagenomic DNA-containing plasmids ranged from 2.6
to 6.0 kb and the frequency of clones carrying plasmid inserts was
at least 73% (Table 4).

Novel ARGs Derived From
Phylogenetically Divergent Soil Bacteria
The soil-derived metagenomic libraries were screened for
resistance against tetracycline and sulfamethoxazole using
selective agar medium. We recovered eight positive E. coli
clones, harboring plasmids listed in Table 4, from functional

screens. The entire inserts of these plasmids were sequenced
and taxonomically classified, which revealed in all cases a
bacterial origin (Supplementary Table S1). Some of the
insert sequences are affiliated to Gram-negative bacterial
phyla including Bacteroidetes and Proteobacteria whereas
others belong to Actinobacteria (Supplementary Table S1).
Noteworthy, one of the insert sequences was affiliated to the
poorly characterized candidate phylum Zixibacteria.

Forsberg et al. (2014) reported that bacterial phyla, which
were abundant in soil samples as determined by 16S rRNA gene
sequencing, were also well-represented among taxa inferred from
antibiotic resistance-conferring metagenomic library inserts
derived from the same samples. Previously, we detected
Proteobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi
among the dominant phyla in soils of our study sites via
pyrosequencing of 16S rRNA genes (Kaiser et al., 2016).
These phyla were also covered by the antibiotic resistance-
conferring inserts described in this study (see Supplementary
Table S1). Despite their high-GC content and predicted
transcriptional incompatibilities with E. coli, also Actinobacteria
were represented with respect to inserts of positive clones
reported here and by Forsberg et al. (2014). The taxonomic
origins of our resistance-conferring inserts show that the
metagenomic library host E. coli allows identification of ARGs
carried by phylogenetically divergent soil bacteria.

Forest Soil Not Exposed to Synthetic
Drugs Harbors Sulfonamide-Resistant
DHPSs
Sulfonamides are synthetic antimicrobial compounds targeting
the folic acid pathway enzyme DHPS. Although all forest
sites analyzed in this study exhibit no history of exposure
to these synthetic compounds, three genes, AEW9_dhps01,
SEW2_dhps01, and SEW5_dhps01, conferring sulfonamide
resistance, were recovered from beech or pine forest soil
(Tables 1, 5 and Figure 1). Furthermore, with respect to both
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TABLE 4 | Characterization of soil metagenomic libraries and designation of plasmids harbored by positive clones.

Library Number of clones Average insert size (kb) Insert frequency (%) Estimated library size (Gb) Plasmids of positive clones

AEG2 115965 3.6 73 0.30 pLAEG2_dhps01

AEG3 40095 5.8 85 0.20 pLAEG3_tet01

AEW9∗ 100950 2.6 89 0.23 pLAEW9_dhps01

SEG6∗ 39825 6.0 91 0.22 pLSEG6_tet01

SEG8 559000 4.8 86 2.30 pLSEG8_tet01-02

SEW2∗ 135240 5.7 95 0.73 pLSEW2_dhps01

SEW5∗ 166040 4.0 95 0.63 pLSEW5_dhps01

AEG/AEW: metagenomic libraries derived from the Biodiversity Exploratory Schwäbische Alb; SEG/SEW: metagenomic libraries derived from the Biodiversity Exploratory
Schorfheide-Chorin. ∗Previously generated libraries. Names of constructed metagenomic libraries refer to the designation of the samples from which the libraries were
derived (see Table 2).

forest sites (SEW2 and SEW5) located in the Schorfheide-
Chorin exploratory (Northeastern Germany), as well as the
forest site (AEW9) located in the Schwäbische Alb exploratory
(Southwestern Germany), to our knowledge soils were not
exposed to chemicals that resemble sulfonamides in their
molecular structure. Especially, in case of the site AEW9 it is

unlikely that such chemicals were spread, as this site belongs
to an unmanaged beech forest. Resistance to sulfonamides
is commonly mediated by the mobile DHPS-encoding genes
sul1, sul2, or sul3 (Sköld, 2000; Perreten and Boerlin, 2003),
which have been detected in various environments such as
shrimp ponds, swine farm wastewater and manured soil

TABLE 5 | Proteins encoded by genes associated with antibiotic resistance and their observed sequence identities.

Plasmid Gene No. of encoded
amino acids

Closest similar
non-hypothetical
protein, accession no.
(no. of encoded amino
acids), organism

E-value Percent identity to
the closest similar

protein (Blast)

Percent identity to the
closest similar protein
(ClustalW alignment)

pLAEG2_dhps01 AEG2_dhps01 286 Dihydropteroate synthase,
WP_116719066 (292),
Anaerolineaeles bacterium

3e-151 213/282 (76%) 74%

pLAEW9_dhps01 AEW9_dhps01 273 Sulfonamide-resistant
dihydropteroate synthase
Sul3, WP_106052391
(263), Victivallales

1e-73 123/264 (47%) 46%

pLSEW2_dhps01 SEW2_dhps01 269 Dihydropteroate synthase,
OGQ04760 (263),
Deltaproteobacteria
bacterium

3e-77 140/270 (52%) 52%

pLSEW5_dhps01 SEW5_dhps01 271 Dihydropteroate synthase,
OJU07522 (270),
Alphaproteobacteria
bacterium 64-11

3e-99 159/259 (61%) 58%

pLAEG3_tet01 AEG3_tet01a 403 MFS transporter, AIA16595
(403), uncultured bacterium

0.0 398/403 (99%) 98%

AEG3_tet01b 230 Bacterial regulatory protein
of tetR family, AIA16695
(190), uncultured bacterium

2e-127 179/190 (94%) 94%

pLSEG6_tet01 SEG6_tet01a 408 MFS transporter,
WP_078811785 (418),
Prosthecobacter debontii

2e-128 200/383 (52%) 49%

SEG6_tet01b 197 TetR family transcriptional
regulator, PZN78209 (205),
Proteobacteria bacterium

4e-63 109/194 (56%) 54%

pLSEG8_tet01 SEG8_tet01 432 MFS transporter,
WP075350247 (408),
Algoriphagus marinus

3e-174 250/402 (62%) 61%

pLSEG8_tet02 SEG8_tet02 405 Tetracycline resistance MFS
efflux pump, AIA16766
(418), uncultured bacterium

0.0 272/402 (68%) 67%
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FIGURE 1 | Resistance against sulfonamide antibiotics mediated by SEW2_dhps01, SEW5_dhps01, AEW9_dhps01, and AEG2_dhps01. Five microliters of serially
diluted E. coli TOP10 cultures with starting OD600 of 0.5 were spotted onto Iso-Sensitest agar plates supplemented with 1000 mg/L sulfamethazine (+ SMZ),
250 mg/L sulfamethoxazole (+ SMX), 250 mg/L sulfadiazine (+ SDZ) or 500 mg/L sulfisoxazole (+ SOX). Iso-Sensitest agar plates with no sulfonamide added
(control) were also included. E. coli TOP10 cultures carrying the cloning vector pCR4-TOPO, pCR4_SEW2_dhps01, pCR4_SEW5_dhps01, pCR4_AEW9_dhps01 or
pCR4_AEG2_dhps01 were considered.

(Phuong Hoa et al., 2008; Wang et al., 2014), but also in clinical
isolates (Grape et al., 2003). To our knowledge, we report
here for the first time the presence of functional non-mobile
sulfonamide-resistant DHPSs in forest soil ecosystems. The
deduced gene products of AEW9_dhps01, SEW2_dhps01, and
SEW5_dhps01 showed only 46 to 58% amino acid sequence
identities to the closest known DHPSs over the full length
proteins (Table 5). Furthermore, AEW9_dhps01 harbors the
alternative start codon GTG (all other detected dhps genes
harbored the start codon ATG).

Phylogenetic analysis revealed that SEW2_DHPS01 exhibits
homology with a putative DHPS affiliated to Deltaproteobacteria
(Figure 2). Nevertheless, it has so far not been analyzed if
this putative enzyme represents a functional DHPS, which can
confer resistance to sulfonamides. In contrast to SEW2_DHPS01,
AEW9_DHPS01 showed low identity (46%) to a DHPS with
confirmed sulfonamide resistance, but branched separately
from this enzyme affiliated to the Lentisphaerae (family
Victivallales), in a phylogenetic tree (Figure 2). The remaining
sulfonamide resistance-conferring enzyme identified in forest
soil, SEW5_DHPS01, was most similar (58% identity) to a
DHPS from Alphaproteobacteria. Strikingly, no mobile genetic
elements were predicted with respect to the inserts comprising
AEW9_dhps01, SEW2_dhps01, and SEW5_dhps01. This indicates
that different bacterial phyla colonizing forest soil ecosystems
harbor DHPSs, which are naturally insensitive to the inhibitory

effects of sulfonamides. Furthermore, our results show that
forest soil-derived DHPSs can provide high-level resistance in
E. coli TOP10 (Figures 1, 3) and therefore potentially also
in clinically relevant Enterobacteriaceae. As sulfonamides are
used to treat gastrointestinal or urinary infections in human
and belong to the most commonly sold and administered
veterinary antibiotics (De Briyne et al., 2014; Santman-Berends
et al., 2014), mobilization and spread of so far unknown
genes conferring resistance to these synthetic compounds would
have severe consequences, especially for the animal sector. In
particular, SEW2_DHPS01 and SEW5_DHPS01 exhibited high-
level resistance toward sulfamethazine (Figure 1), which is widely
used in food animal production (Lau et al., 2017).

Discovery of a Grassland Soil-Derived
DHPS Affiliated to Chloroflexi
Recently, a fourth mobile sulfonamide resistance gene (sul4),
encoding a DHPS phylogenetically related to representatives of
the phylum Chloroflexi, has been discovered in polluted Indian
river sediment (Razavi et al., 2017). This gene is flanked by
an ISCR element, which is known to be involved in horizontal
gene transfer (Razavi et al., 2017). In this study, we identified
an enzyme (AEG2_DHPS01) with reduced susceptibility toward
sulfonamides (Figure 1 and Table 6), showing similarity
to DHPSs from Chloroflexi, in a fertilized grassland soil.
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FIGURE 2 | Neighbor-joining phylogenetic tree based on amino acid sequences of SEW2_DHPS01, SEW5_DHPS01, AEW9_DHPS01, AEG2_DHPS01 and other
bacterial DHPSs. Besides DHPSs identified in this study, their closest related reference database entries, the mobile sulfonamide-resistant Sul1, Sul2, Sul3 and Sul4,
and further DHPSs were considered. Bootstrap values based on 1,000 replicates are shown at the branching points. Branches are annotated with the identified
taxon name and accession number in parentheses. The green segment indicates DHPSs belonging to Chloroflexi. Pseudom., Pseudomonas; bac., bacterium.

AEG2_DHPS01 shares 76% sequence identity with a DHPS
from a member of the Anaerolineae (Table 5) and clusters with
different Chloroflexi DHPSs including Sul4 in a phylogenetic
tree (Figure 2).

As sul4 is flanked by a partial folK ORF, it might have been
decontextualized from a set of chromosomal genes involved in
folate synthesis (Razavi et al., 2017). Nevertheless, Razavi et al.
(2017) pointed out that further investigations on Chloroflexi
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could provide additional hints about the original host of sul4
and how it has been decontextualized. With respect to the insert
carrying AEG2_dhps01, no genes potentially involved in folate
synthesis were identified. Instead, AEG2_dhps01 is flanked by
an ORF encoding a putative gene product with low similarity
(23% identity) to a primosomal protein N′ (replication factor
Y) – superfamily 2 helicase from an Anaerolineae bacterium
(Supplementary Table S2). It is possible that this gene product
can contribute to horizontal gene transfer between Chloroflexi
and other bacterial taxa as helicases play a major role in
replication, recombination, and repair of nucleic acid substrates
(Flechsig et al., 2011; Byrd and Raney, 2012). Besides the potential
helicase gene, AEG2_dhps01 is flanked by an ORF encoding a
gene product with similarity to a hypothetical protein of an
Anaerolineales bacterium.

Taxonomic analysis of the complete insert carrying
AEG2_dhps01 confirmed that its original host belongs to
the Chloroflexi (Supplementary Table S1). Thus, besides Sul4,
AEG2_DHPS01 represents the so far only identified DHPS
showing reduced susceptibility toward sulfonamides (Table 6),
which is affiliated to the Chloroflexi. In order to analyze if
sulfonamide resistance is a common characteristic of Chloroflexi,
isolates belonging to this phylum should be analyzed with respect
to susceptibility toward synthetic drugs in future surveys. Apart
from sulfonamides, no decreased susceptibility toward other
tested antibiotics was detected with respect to E. coli TOP10
carrying the subcloned dhps genes (Figure 3 and Table 6).

An Efflux Protein Conferring Reduced
Tetracycline and Lincomycin
Susceptibility
We identified four plasmids, pLAEG3_tet01, pLSEG6_tet01,
pLSEG8_tet01, and pLSEG8_tet02, conferring efflux-mediated
tetracycline resistance. All of these plasmids encode gene
products with similarity to major facilitator superfamily (MFS)
efflux proteins (Table 5). MFS efflux systems are widely
distributed in both Gram-positive and Gram-negative bacteria
(Sun et al., 2014). Accordingly, Wang et al. (2017) reported that
21 out of 24 tetracycline resistance genes, identified by functional

FIGURE 3 | Antibiotic susceptibility profiles of E. coli TOP10 carrying
soil-derived genes involved in antibiotic resistance. The genes were subcloned
into plasmid vector pCR4-TOPO. MICs of antibiotics were determined using
the broth microdilution method and are presented as fold increase relative to
those for E. coli TOP10 carrying the cloning vector pCR4-TOPO. CAX,
cefotaxime; CHL, chloramphenicol; ERY, erythromycin; GEN, gentamicin; LIN,
lincomycin; RIF, rifampicin; SDZ, sulfadiazine; SMX, sulfamethoxazole; SMZ,
sulfamethazine; SOX, sulfisoxazole; TET, tetracycline; TYL, tylosin.

metagenomics in Chinese soils, were affiliated to the MFS. The
proteins encoded by these 21 genes showed identities ≥78% to

TABLE 6 | Antibiotic susceptibility of plasmid-carrying E. coli clones.

Plasmid Minimal inhibitory concentration (µg/ml)

CAX CHL ERY GEN LIN RIF SDZ SMX SMZ SOX TET TYL

Cloning vector <0.125 2 1024 4 512 8 15.625 7.8125 62.5 15.625 1 512

pCR4_AEG2_dhps01 <0.125 2 1024 4 512 8 62.5 31.25 500 62.5 1 512

pCR4_AEW9_dhps01 <0.125 2 1024 4 512 8 125 500 250 1000 1 512

pCR4_SEW2_dhps01 <0.125 2 1024 4 512 8 500 500 >1000 1000 1 512

pCR4_SEW5_dhps01 <0.125 2 1024 4 512 8 >1000 500 >1000 1000 1 512

pCR4_AEG3_tet01ab <0.125 2 1024 4 2048 8 15.625 7.8125 62.5 15.625 2 512

pCR4_SEG6_tet01ab <0.125 2 1024 4 512 8 15.625 7.8125 62.5 15.625 2 512

pCR4_SEG8_tet01 <0.125 2 1024 4 512 8 15.625 7.8125 62.5 15.625 8 512

pCR4_SEG8_tet02 <0.125 2 1024 4 512 8 15.625 7.8125 62.5 15.625 2 512

CAX, cefotaxime; CHL, chloramphenicol; ERY, erythromycin; GEN, gentamicin; LIN, lincomycin; RIF, rifampicin; SDZ, sulfadiazine; SMX, sulfamethoxazole; SMZ,
sulfamethazine; SOX, sulfisoxazole; TET, tetracycline; TYL, tylosin. Bold values indicate an increase in minimal inhibitory concentration compared to the control strain
carrying the cloning vector pCR4-TOPO.
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the closest related reference database entries (Wang et al., 2017).
In contrast, three out of four MFS representatives identified in
this study shared≤67% identity with their closest related proteins
(Table 5). Besides an MFS representative, two insert sequences
(corresponding plasmids, pLAEG3_tet01 and pLSEG6_tet01)
encoded proteins with similarity to members of the TetR family
of regulators (Table 5). These regulators are associated with
antibiotic resistance and are known to control expression of MFS
members (Cuthbertson and Nodwell, 2013). Noteworthy, the
insert of plasmid pLtetSEG8_02 encodes a protein with similarity
to an endonuclease (Supplementary Table S2), which might
contribute to horizontal gene transfer.

McGarvey et al. (2012) identified a tetracycline-resistant
metagenomic library clone, harboring a MFS representative,
with reduced susceptibility toward rifampicin. Here, no
resistance toward rifampicin was detected with respect to
recombinant MFS producing E. coli clones (Figure 3).
Nevertheless, the tetracycline-resistant clone carrying plasmid
pCR4_AEG3_tet01ab showed reduced susceptibility toward
lincomycin (Figure 3 and Table 6). The gene product
AEG3_Tet01a encoded by this plasmid shows 98% identity to
a soil-derived MFS from an uncultured bacterium (Table 5),
which confers resistance to chloramphenicol. So far, it
has not been analyzed if this chloramphenicol resistance
mediating MFS identified by Forsberg et al. (2014) also encodes
lincomycin resistance.

CONCLUSION

Our findings highlight the vast potential of functional
metagenomics for the discovery of so far unknown antibiotic
resistance determinants in environmental resistomes. We
recovered several soil-derived target genes and proteins with
low similarity to reference database entries from hardly as well
as intensively managed forest and grassland, indicating that
the resistance reservoir of the uncultured microbial majority
is far from being extensively explored. As we detected here
for the first time non-mobile DHPSs conferring resistance to
sulfonamides in forest soil with no history of exposure to these
synthetic drugs, it is possible that this characteristic naturally
occurs in complex bacterial communities. Most of the detected
antibiotic resistance determinants were not flanked by potential
mobile genetic elements. Nevertheless, the recent finding of a
fourth mobile sulfonamide resistance gene indicates ongoing
forces that introduce, mobilize and maintain antibiotic resistance
determinants in bacterial communities (Razavi et al., 2017).
Considering, that several ARGs reported here conferred high-
level resistance to non-pathogenic E. coli, it can be assumed
that this could also be the case with respect to clinically

relevant Enterobacteriaceae. In order to predict the emergence of
antibiotic resistance, an extensive knowledge on environmental
resistomes will be required, which might also direct the design of
novel antibiotics that are less susceptible to resistance.
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4.1. Supplemental information for chapter four 

Table S1. Taxonomic classification of plasmid inserts from positive clones. 

Table S2. Open reading frames potentially involved in lateral gene transfer identified on plasmids and 

description of corresponding gene products and their observed sequence identities. 
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Table S1. Taxonomic classification of plasmid inserts from positive clones. 

Plasmid Taxonomic classification of insert 

pLAEG2_dhps01 

Cellular organisms; Bacteria; Terrabacteria group; Chloroflexi; unclassified 

Chloroflexi; unclassified Chloroflexi (miscellaneous); Chloroflexi bacterium 

OLB14 

pLAEW9_dhps01 

Cellular organisms; Bacteria; Terrabacteria group; Actinobacteria; 

Actinobacteria; Micrococcales; Microbacteriaceae; Microbacterium; 

Microbacterium sp. 

pLSEW2_dhps01 

Cellular organisms; Bacteria; unclassified Bacteria; Bacteria candidate phyla; 

candidate division Zixibacteria; candidate division Zixibacteria bacterium 

SM23_81 

pLSEW5_dhps01 
Cellular organisms; Bacteria; Proteobacteria; Alphaproteobacteria; 

Rhizobiales; Rhodobiaceae; Parvibaculum; Parvibaculum lavamentivorans 

pLAEG3_tet01 Cellular organisms; Bacteria; environmental samples; uncultured bacterium 

pLSEG6_tet01 

Cellular organisms; Bacteria; Terrabacteria group; Actinobacteria; 

Actinobacteria; Corynebacteriales; Mycobacteriaceae; Mycobacterium; 

Mycobacterium rhodesiae 

pLSEG8_tet01 Cellular organisms; Bacteria 

pLSEG8_tet02 
Cellular organisms; Bacteria; FCB group; Bacteroidetes/Chlorobi group; 

Bacteroidetes; Chitinophagia; Chitinophagales 
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Table S2. Open reading frames potentially involved in lateral gene transfer identified on plasmids and description of corresponding gene products and their 

observed sequence identities. 

Plasmid ORF# No. of encoded 

amino acids 

Closest similar protein potentially involved in lateral gene transfer, 
accession no. (no. of encoded amino acids), organism 

E value Percent identity to the 

closest similar 

bacterial protein 

pLAEG2_dhps01 18 445 Primosomal protein N’ – superfamily II helicase, RCK75038 (471), 
Anaerolineae bacterium 1e-40 118/429 (28%) 

pLSEG8_tet02 40 123 Endonuclease domain-containing protein, WP_068706482 (129), 
Paludibacter jiangxiensis 4e-35 57/115 (50%) 
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Abstract 

Verrucomicrobia affiliated to Candidatus Udaeobacter belong to the most abundant soil bacteria 

worldwide. Although the synthesis of antibiotics presumably evolved in soil and environmental pollution 

with antimicrobials increases, the impact of these complex molecules on Ca. Udaeobacter remains to 

be elucidated. In this study, we demonstrate that Ca. Udaeobacter representatives residing in grassland 

as well as forest soil ecosystems show multiresistance and even take advantage of antibiotics release. 

Soils treated with up to six different antibiotics exhibited a higher Ca. Udaeobacter abundance than 

corresponding controls after three, eight and twenty days of incubation. In this context, we provide 

evidence that Ca. Udaeobacter utilizes nutrients which are released due to antibiotic-driven lysis of 

other soil microbes and thereby reduces energetically expensive synthesis of required biomolecules. 

Moreover, genomic analysis revealed the presence of genes conferring resistance to multiple classes 

of antibiotics and indicates that Ca. Udaeobacter representatives most likely oxidize the trace gas H2 to 

generate energy. This energy might be required for long-term persistence in terrestrial habitats, as 

already suggested for other dominant soil bacteria. Our study illustrates for the first time that globally 

abundant Ca. Udaeobacter benefits from release of antibiotics, which confers advantages over other 

soil bacteria and represents a so far overlooked fundamental lifestyle feature of this poorly characterized 

verrucomicrobial group. Furthermore, our study suggests that Ca. Udaeobacter representatives can 

utilize H2 as an alternative electron donor. 

 

Importance  

Soil bacteria have been investigated for more than a century, but one of the most dominant terrestrial 

groups on Earth, Candidatus Udaeobacter, remains elusive and largely unexplored. Its natural habitat 

is considered as a major reservoir of antibiotics, which directly or indirectly impact phylogenetically 

diverse microorganisms. Here, we found that Ca. Udaeobacter representatives exhibit multi-resistance 

and not only evade harmful effects of antimicrobials, but even benefit from antibiotic pressure in soil. 

Therefore, Ca. Udaeobacter evidently affects the composition of soil resistomes worldwide and might 

represent a winner of rising environmental pollution with antimicrobials. In addition, our study indicates 

that Ca. Udaeobacter representatives utilize H2 and thereby contribute to global hydrogen cycling. The 
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here reported findings provide insights into elementary lifestyle features of Ca. Udaeobacter, potentially 

contributing to its successful global dissemination.  
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Introduction 

 

Candidatus Udaeobacter representatives are encountered across soil ecosystems globally (1). 

Nevertheless, currently it is largely unknown, how these verrucomicrobial organisms became 

successful terrestrial colonizers. No Ca. Udaeobacter cultures, which would allow detailed physiological 

analyses, are available. Moreover, Verrucomicrobia have been under-recognized in many studies on 

soil bacterial communities since commonly used PCR primers widely exclude their 16S rRNA genes 

during amplification (2). So far, the effects of antibiotics, which can be lethal, growth-inhibiting, but also 

beneficial for microbial taxa, have not been analyzed with respect to Ca. Udaeobacter. 

A recently published metagenome-assembled genome (MAG) of Ca. Udaeobacter copiosus indicates 

that this phylotype exhibits auxotrophies for numerous putative vitamin and costly amino acid synthesis 

pathways (1). It is hypothesized that essential metabolites, Ca. Udaeobacter copiosus appears 

incapable of synthesizing, are taken up from the environment, as the MAG is enriched with amino acid 

transporter and protease genes (1). Being dependent on extracellular metabolites in a densely 

colonized habitat like soil might entail increased influx and thus vulnerability to toxic agents secreted by 

microorganisms competing for scarce nutrients (3). Therefore, an efficient strategy for protection 

against harmful substances such as antibiotics seems likely and potentially contributed to the successful 

global dissemination of Ca. Udaeobacter. This theory is supported by an enriched abundance of beta-

lactamase genes within the phylum Verrucomicrobia, identified through function-based screening of soil 

metagenomic libraries (4). 

In this study, for the first time, impacts of antibiotics on the ubiquitous soil bacterium Ca. Udaeobacter, 

a member of the Chthoniobacterales, were investigated. To enable robust assessment of its response 

to antibiotic treatment in a microcosm experiment, topsoil samples from forests and grasslands of two 

different geographic regions were considered. We monitored the abundance of Ca. Udaeobacter 

relative to other bacterial taxa during microcosm incubation via amplicon sequencing of 16S rRNA 

genes. Since primers specifically targeting this poorly characterized verrucomicrobial group are not 

available, we designed and evaluated oligonucleotides, which we subsequently used for qPCR-based 

estimation of its absolute 16S rRNA gene abundance in microcosm samples. Furthermore, a MAG of 

Ca. Udaeobacter was reconstructed from metagenomic sequences in order to identify antibiotic 
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resistance genes (ARGs) and additional characteristics potentially contributing to its dominance in soil 

ecosystems. 

We hypothesized that the abundance of Ca. Udaeobacter representatives is not reduced by an elevated 

concentration of the broad-spectrum antibiotic amoxicillin, as it has been indicated that beta-lactamases 

are enriched within Verrucomicrobia (4). Taking into account that numerous antimicrobial compounds 

are produced and released in soil, we further hypothesized that these globally abundant bacteria are 

not solely resistant to a single class of antibiotics but exhibit multi-drug resistance. 

 

Results 

 

Antibiotics evoke elevated Ca. Udaeobacter relative abundance 

A microcosm experiment was performed to investigate how antibiotics release affects soil bacteria 

representing Ca. Udaeobacter. For this experiment, initial concentrations of 77 antibiotics were 

determined in all considered forest and grassland soil samples derived from two geographic regions 

(Hainich-Dün and Schwäbische Alb, Germany) (Table S1). Except chlortetracycline (0.011 mg/kg in 

forest sample AEW2), which was not applied during the microcosm experiment, each of the 

antimicrobial compounds exhibited a concentration below the detection limit (Table S2). Soils were 

treated with one antibiotic (amoxicillin), three antibiotics (amoxicillin, oxytetracycline and sulfadiazine) 

and six antibiotics (amoxicillin, oxytetracycline, sulfadiazine, trimethoprim, tylosin and ciprofloxacin) in 

high as well as low concentration (corresponding controls, not treated with antibiotics, were also 

considered). Subsequently, we assessed the relative abundances of bacterial taxonomic groups in soil 

microcosms via 16S rRNA gene-based high-throughput amplicon sequencing over a period of 20 days. 

Prior to antibiotic treatment, strong variations of Ca. Udaeobacter relative abundances between the 

microcosm samples were determined. For example, the relative abundance of Ca. Udaeobacter 

accounted for approximately 15% in beech forest soil from the Schwäbische Alb (sample AEW7), 

whereas only about 3% of the bacterial community in a grassland soil from the Hainich-Dün region 

(sample HEG7) represented Ca. Udaeobacter (Figure S1).  

Strikingly, grassland as well as forest soil microcosms treated with antibiotics exhibited significantly 

higher relative abundances of Ca. Udaeobacter than corresponding controls (p-value < 2 e-16) (Fig. 1, 
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Fig. S1). This pattern was detected when a single antibiotic was added, but also when three or six 

antibiotics were applied in both, high and low concentration (Table S3). After three days of incubation, 

the treatment with six antibiotics in high concentration led to the most pronounced rise of 

Ca. Udaeobacter relative abundance (~50-100%). Furthermore, the treatment with one antibiotic and 

three antibiotics in high concentration evoked a similar increase in Ca. Udaeobacter relative abundance 

after three days of incubation (~50-80%) (Fig. 1). With increasing days of incubation we determined a 

statistically significant reduction of the antibiotic treatment effect on Ca. Udaeobacter relative 

abundance (p-value < 2 e-16). 

 

 
 

Figure 1. Increase in relative abundance of Ca. Udaeobacter upon antibiotic treatment across grassland 
and forest soil microcosms. To determine the increase in Ca. Udaeobacter relative abundance, samples treated 

with antibiotics were compared with corresponding controls. The increase in abundance relative to these controls 

is depicted. Abbreviations: Amoxi L, treatment with amoxicillin in low concentration; 3L, treatment with three 

antibiotics in low concentration; 6L, treatment with six antibiotics in low concentration; Amoxi H, treatment with 

amoxicillin in high concentration; 3H, treatment with three antibiotics in high concentration; 6H, treatment with six 

antibiotics in high concentration. Standard errors are indicated by vertical bars. Barplots depicting abundances of 

Ca. Udaeobacter relative to other bacterial groups with respect to the single samples analyzed in this study are 

presented in Fig. S1. 
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First primer pair for targeted detection of Ca. Udaeobacter 

To verify if the abundance of Ca. Udaeobacter remains stable or even rises upon antibiotic treatment, 

we designed and evaluated a primer pair (UDBAC_F/UDBAC_R) for targeted detection of this 

verrucomicrobial group. An in silico analysis indicated that the primer pair covers approximately 97.14% 

of the Ca. Udaeobacter 16S rRNA gene sequences deposited in the SILVA SSU database (release 

132). Within the evaluation process, the primer pair was used to generate amplicons based on DNA 

extracted from soils used to prepare the microcosms, as well as corresponding samples, incubated for 

three days after treatment with six antibiotics in high concentration. These amplicons were subsequently 

subjected to high-throughput sequencing and, as expected, the generated data revealed a high 

preference of the UDBAC primers for Ca. Udaeobacter. Its relative abundance accounted for 99.0 ± 0.4 

and 98.9 ± 0.4% of the amplicon sequences derived from untreated and treated forest soils, 

respectively, of both geographic regions (Fig. 2). Furthermore, with respect to Schwäbische Alb 

grassland soils, 96.2 ± 3 (untreated soils) and 95.6 ± 3.9% (treated soils) of the generated amplicons 

represented Ca. Udaeobacter (Fig. 2). The major fraction of amplicon sequences, derived from Hainich-

Dün grassland soils (untreated soil, 79.4 ± 1%; treated soil, 84.8 ± 0.9%), was also assigned to 

Ca. Udaeobacter (Fig. 2), but mainly due to a higher proportion of detected uncultured 

Verrucomicrobiaceae, its relative abundance was lower in Hainich-Dün grassland soils compared to the 

other considered soils. Based on this analysis, we utilized the UDBAC primers for targeted detection 

and quantification of Ca. Udaeobacter 16S rRNA genes in microcosm samples. 
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Figure 2. Relative 16S rRNA gene abundance of bacterial groups detected with the UDBAC primer pair 

designed in this study. Grassland and forest soils used for microcosm preparation were considered (A). In 

addition, samples incubated for three days upon treatment with six different antibiotics in high concentration (B) 

were considered. “Others”: bacterial groups showing less than 1% relative abundance. 
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Ca. Udaeobacter benefits from antibiotics release in soil  

The increase of Ca. Udaeobacter abundance upon antibiotic treatment, as assessed by amplicon 

sequencing-based analysis, was verified via qPCR in combination with the UDBAC primers described 

above. This verification revealed a statistically significant rise (p-value 1.84 e-7) of 16S rRNA gene 

abundance in soil microcosms incubated for three days upon antibiotic treatment (Fig. 3, Table S3). 

Since we found during our primer evaluation that mainly Ca. Udaeobacter is covered by the UDBAC 

primers in these microcosms, the rise of 16S rRNA gene abundance is to a high degree evoked by this 

verrucomicrobial group. Furthermore, similar to the amplicon sequencing-based analysis, the qPCR 

data also showed that the effect of antibiotic treatment on Ca. Udaeobacter abundance decreased in 

the course of the microcosm experiment. 

Within our qPCR-based verification, soils from both geographic regions, treated with six different 

antibiotics in high concentration, and corresponding controls were analyzed. In this way, we could prove 

that even after extensive release of multiple classes of antibiotics, Ca. Udaeobacter abundance showed 

no decline in forest as well as grassland soil. Moreover, our target soil bacterial group even takes 

advantage of antibiotics release since its 16S rRNA gene abundance was significantly higher in treated 

compared to control microcosms with respect to the amplicon sequencing as well as the qPCR-based 

data.  
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Figure 3. UDBAC primer pair-based determination of 16S rRNA gene abundance via qPCR. The 16S rRNA 

genes were quantified with respect to a grassland soil from each geographic region (samples AEG16 and HEG7) 

as well as a forest soil from each geographic region (samples AEW7 and HEW5). Untreated control samples 

(“Control”) and samples treated with six different antibiotics in high concentration (“Treatment”) were considered. 

 
 

Ca. Udaeobacter sp. MAG harbors several antibiotic resistance genes  

Soil-derived shotgun metagenomic sequencing data, including Oxford Nanopore and Illumina MiSeq 

reads, was generated to assemble a MAG of a Ca. Udaeobacter representative. In this context, we 

selected a forest soil sample (AEW3), extracted cells from the soil matrix, and subsequently sequenced 
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DNA isolated from these cells. A forest soil sample was selected, as a Ca. Udaeobacter MAG from a 

grassland soil has already been reported (1). Additionally, several other verrucomicrobial MAGs were 

recently isolated from grassland soils (5). To extend the knowledge on verrucomicrobial 

representatives, we focused on genomic features of a Ca. Udaeobacter species inhabiting forest soil. 

We assembled a 3.22 Mbp MAG comprising 145 scaffolds with an average GC content of 55.2% and 

an average length of 22.22 kbp (size of the longest scaffold, 92.97 kbp). It exhibited a 31-fold average 

Illumina MiSeq read coverage and a 64.6-fold average Oxford Nanopore read coverage. 3,341 open 

reading frames (ORFs), one partially complete 16S rRNA gene (1,139 bp), located on a contig with a 

33.7-fold average Illumina MiSeq read coverage, one 5S rRNA gene and 38 tRNA genes are encoded 

by this MAG. The Illumina MiSeq contig coverage indicates that the 16S rRNA gene occurs once in the 

genome, which is consistent with previous findings (6) and further validates its correct assignment to 

the genome bin. The 16S rRNA gene shows 98.83% identity to amplicon sequence variant 6 (ASV 6) 

(query coverage: 100%), which is the fourth most abundant ASV in all microcosm samples and 

increases significantly upon antibiotic treatment (p-value of 1.68 e-6). Overall, domain-specific single-

copy housekeeping gene analysis predicted 87.3% genome bin completeness with a potential 

contamination of 3.7%. This estimation of completeness and contamination is categorized as 

substantially complete with low contamination (7). The affiliation of the here assembled genome bin to 

Ca. Udaeobacter was validated based on phylogenetic analysis of the nucleotide sequence of 16S 

rRNA genes  as well as the occurrence and amino acid sequence of 120 marker genes. Regarding the 

16S rRNA gene, our MAG clusters together with the ribosomal clone DA101, affiliated to 

Ca. Udaeobacter, and is clearly phylogenetically distinct from Chthoniobacter and Xiphinematobacter, 

which also represent Chthoniobacterales (Fig. 4). 

Furthermore, the phylogenetic analysis based on the occurrence and amino acid sequence of 120 

marker gene sequences of all Chthoniobacterales used for phylogenetic analysis (Table S4), assigned 

our MAG together with Ca. Udaeobacter copiosus to the GTDB genus AV55 (Fig. 5). As the 16S rRNA 

gene of our MAG is a representative of the genus Ca. Udaeobacter (Fig. 4) and 

Ca. Udaeobacter copiosus also clusters in the GTDB genus AV55 (Fig. 5), AV55 most likely represents 

the genus Ca. Udaeobacter. The closest relative of our MAG is, based on FastANI analysis, AV55 

sp003218915.1 with an average nucleotide identity (ANI) of 90% over 74.6% of the genome. These 
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values are below the ANI species threshold (8) and therefore the here assembled MAG represents a 

novel species within Ca. Udaeobacter, which we designate Ca. Udaeobacter sp. in this manuscript. 

 

 

Figure 4. Phylogenetic analysis based on 16S rRNA gene sequences of verrucomicrobial representatives. 
The 16S rRNA gene sequence of the here assembled Ca. Udaeobacter sp. MAG is highlighted with a red diamond 

and clusters together with the ribosomal clone DA101, affiliated to Ca. Udaeobacter. Besides the 16S rRNA gene 

sequence of the MAG assembled in this study, the 16S rRNA gene sequences of 22 other verrucomicrobial 

representatives were considered. The tree was rooted on the 16S rRNA gene sequence of Escherichia coli K-12 

MG 1655 (NC_000913.3:4035531-4037072). Red, blue and purple colored branches indicate the verrucomicrobial 

classes Verrucomicrobiae, Methylacidiphilae and Opitutae, respectively. Accession numbers are given in 

parentheses. Bootstrap values based on 500 replicates are shown at the branching points and the bar represents 

0.05 changes per nucleotide position. All positions with less than 90% site coverage were eliminated. 

Abbreviations: Ca. Xiphinematobac., Candidatus Xiphinematobacter; Roseib., Roseibacillus. 
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Figure 5. Phylogenetic tree based on the occurrence and amino acid sequence of 120 marker genes from 
Chthoniobacterales. MAGs available at GTDB as well as the Ca. Udaeobacter copiosus and the here assembled 

MAG were considered. The neighbor-joining tree was rooted on Escherichia coli UMN026 marker gene sequences. 

Red colored branches indicate the verrucomicrobial genus AV55 classified by GTDB and the red diamond 

highlights the here assembled Ca. Udaeobacter sp. MAG. Bootstrap values ≥ 50 calculated based on 500 iterations 

are shown at the branching points and the bar represents 0.05 changes per amino acid position. All positions with 

less than 90% site coverage were eliminated. 

 

Our MAG enabled insights into the ARG and MGE repertoire of Ca. Udaeobacter (Table S5). Based on 

our analysis, 55 potential ARGs and 14 MGEs were identified. Highly abundant are genes coding for 

multidrug resistance mechanisms, especially subunits of resistance nodulation division (RND) MdtABC 

multidrug efflux systems and multidrug ABC transporters. On contig 74, a complete mdtABC efflux 
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system is encoded including the two RND pump genes mdtB and mdtC as well as the periplasmatic 

adaptor protein gene mdtA (Fig. 6). 

 

Figure 6. Genes potentially encoding a complete mdtABC multidrug efflux pump carried by contig 74 of 

the here reported Ca. Udaeobacter sp. MAG. An excerpt of the contig from 5,400 to 13,800 bp is depicted (total 

contig length: 16,800 bp). 

 

Furthermore, the draft genome is enriched with genes coding for macrolide efflux pump subunits as two 

MacA periplasmatic adaptor, four MacB-like periplasmic core domain and five inner membrane ATP 

transporter (MacB) genes are present. On contig 99, a MacB efflux pump subunit including its 

periplasmic adaptor protein and an outer membrane secretion protein HlyD are encoded. Additionally, 

the organism seems to be well protected from beta-lactam antibiotics, due to six encoded beta-

lactamases. Regarding MGEs, the MAG harbors five XerC and two XerD tyrosine recombinase as well 

as five insertion sequence family transposase genes. A co-location of ARGs and MGEs was not 

detected as the space between the only ARG (putative chloramphenicol resistance gene) and MGE 

(xerC, encoding a tyrosine recombinase), located on one contig, is 81.675 kbps. 

We also analyzed Ca. Udaeobacter sp. for the production of secondary metabolites such as antibiotics 

and identified a potential phosphonate synthesis cluster. From this cluster, only four percent of the 

genes show similarity to the known and validated thioplatensimycin biosynthetic gene cluster from 

Streptomyces platensis. Besides this, four gene clusters were identified which are potentially involved 

in terpene, arylpolyene and ladderane, and phosphonate synthesis. However, this similarity comprised 
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only 18%, 16%, 8% and 15% of the respective genes in the corresponding clusters and these clusters 

have not been confirmed to produce a synthesis product.  

 

Ca. Udaeobacter sp. MAG reveals potential H2-based energy generation   

Regarding the central metabolism encoded by the Ca. Udaeobacter sp. MAG, only one glycolysis gene 

is missing (the phosphoglycerate kinase gene), the pentose phosphate pathway is completely encoded 

and the TCA cycle includes the glyoxylate bypass enzymes. The here identified species can probably 

oxidize hydrogen aerobically with a small and large subunit of a Ni-Fe-S hydrogenase and an additional 

soluble hydrogenase, which has so far not been reported with respect to Ca. Udaeobacter. Regarding 

vitamin biosynthesis, vitamin B12 (cobalamin) is most likely imported from outside of the cell indicated 

by five encoded vitamin B12 import ATP-binding proteins (BtuD) and two B12 transporter proteins (BtuB) 

and further converted into its active form via the completely encoded adenosylcobalamin salvage 

pathway. The pathway for vitamin B9 (tetrahydrofolate) biosynthesis is only partially encoded as the 

tetrahydrofolate reductase is missing. However, Ca. Udaeobacter is probably capable to salvage it from 

5,10-methenyltetrahydrofolate as the respective pathway is completely encoded. Furthermore, a 

salvage pathway to generate thiamine (vitamin B1) from its degradation product and a partially complete 

pathway to synthesize vitamin B6 (four genes required for 3-amino-1-hydroxyacetone-1-phosphate 

synthesis from D-erythrose-4-phosphate are missing) are present in the assembled MAG. 

A copper/zinc superoxide dismutase and a catalase-peroxidase gene potentially allow protection from 

reactive oxygen species. Furthermore, Ca. Udaeobacter sp. encodes for arginine dependent acid 

resistance and the biosynthesis of cadaverine from L-lysine, which protect against acidic conditions. 

Regarding proteinogenic amino acid biosynthesis, Ca. Udaeobacter sp. encodes complete synthesis 

pathways for glycine, alanine, aspartate, glutamate, glutamine, methionine and threonine. The 

synthesis pathways for asparagine (1/4 enzymes missing), leucine (1/3 enzymes missing), cysteine 

(1/2 enzymes missing), isoleucine (3/5 enzymes missing), arginine (3/8 enzymes missing), 

phenylalanine (2/3 enzymes missing), tryptophan (1/12 enzymes missing), proline (2/3 enzymes 

missing), serine (2/3 enzymes missing) and valine (3/4 enzymes missing) are incomplete. The amino 

acid synthesis pathways for histidine, lysine and tyrosine could not be identified. However, genes for 
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two putative amino acid permeases (YdhG), which are predicted to be importers for H+ and an undefined 

amino acid, as well as for three serine/threonine exchangers (SteT) which pump out threonine into the 

periplasm in exchange for serine, were detected. 

 

Discussion  

 

The here reported experiments clearly demonstrate that Ca. Udaeobacter representatives show multi-

resistance and even benefit from the release of antibiotics in soil. This pattern was consistently detected 

although we considered samples from distinct ecosystems (beech forest, spruce forest, meadows, and 

pastures) of two different geographic regions. Besides the MAG reported in this study (estimated size, 

~3.67 Mbp; derived from a forest soil), another relatively small MAG (estimated size, ~2.81 Mbp; derived 

from a prairie soil) of a Ca. Udaeobacter representative (Ca. Udaeobacter copiosus), which indicates 

multiple amino acid and vitamin auxotrophies, has been described (1, 9). Ubiquitous soil bacteria are 

generally known to have larger genomes in order to cope with the highly variable and rapidly changing 

environmental conditions in their terrestrial habitat (1, 10–12). According to Brewer et al. (1), 

Ca. Udaeobacter copiosus might undergo streamlining processes to reduce the metabolic expense for 

synthesizing costly amino acids and vitamins, which are potentially acquired from the soil environment. 

The here assembled MAG of Ca. Udaeobacter sp. is missing enzymes of 13 amino acid synthesis 

pathways. On the other hand, 7 amino acid synthesis pathways are completely encoded. Nevertheless, 

it remains questionable, whether the missing enzymes of the respective biosynthetic pathways infer an 

amino acid auxotrophy, as Price et al. (13) have shown, that many missing enzymes from amino acid 

synthesis pathways can be filled and are predicted due to knowledge gaps in this field. However, the 

detected amino acid permeases and serine/threonine exchangers imply a dependency on extracellular 

amino acids or at least advantages of amino acid uptake for the growth of the Ca. Udaeobacter 

representative described in this study. Regarding vitamin biosynthesis, Ca. Udaeobacter sp. encodes 

salvage pathways for vitamin B1, B12 and B9, as well as transporter proteins for the import of vitamin 

B12. These indications, together with our experimental findings, showing that the abundance of 

Ca. Udaeobacter strongly increased in microcosms treated with antibiotics, points to an efficient 

utilization of nutrients from soil (e.g. vitamins and amino acids) upon release of antimicrobial 
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substances. In this context, a scavenging lifestyle of antibiotic resistant cheater cells, proposed by 

Leisner, et al. (3), for environmental bacteria residing in nutrient-deprived habitats, appears quite likely 

with respect to members of Ca. Udaeobacter. This would explain the strong increase of 

Ca. Udaeobacter abundance in coniferous and deciduous forest as well as grassland soil microcosms, 

treated with antibiotics. Notably, the treatment of soil with one and three antibiotics in high concentration 

evoked a similar increase in Ca. Udaeobacter abundance after three days of incubation (Fig. 1 and Fig. 

S1). This might be due to the fact that in both cases only one bactericidal antibiotic (amoxicillin) was 

applied, which in contrast to bacteriostatic antibiotics kills bacteria. When a second bactericidal 

antibiotic was added (ciprofloxacin), a stronger increase in Ca. Udaeobacter abundance could be 

identified after an incubation period of three days. This observation supports our theory that 

Ca. Udaeobacter acquires nutrients released from cells, which are killed and consequently lysed by 

antimicrobial compounds. With respect to treatment of soil with antibiotics in low concentration, a similar 

pattern was observed after a period of eight days. Moreover, it can be assumed that the treatment 

effect, inducing elevated Ca. Udaeobacter abundance, declined after prolonged incubation, as added 

antibiotics are degraded and therefore antimicrobial-driven cell lysis decreased over time. 

For protection against the variety of antimicrobials, released by antibiotic producers, and to maintain 

efficient scavenging in soil, multi-resistance can be considered as elementary feature of cheater cells, 

taking advantage of lysed cells. Accordingly, the Ca. Udaeobacter sp. MAG reported in this study 

encodes many multi-drug efflux pumps (mostly MdtABC efflux system and ABC transporter subunits), 

macrolide efflux pumps (MacB ABC transporter subunits), and beta-lactam as well as other resistance 

genes (Table S5). This finding is supported by Forsberg et al. (4), who reported an enrichment of beta-

lactam resistance genes within Verrucomicrobia. With respect to Ca. Udaeobacter, its ARG repertoire 

in combination with efficient uptake of nutrients, released by antimicrobial-driven cell lysis, potentially 

enables the proposed scavenging lifestyle and confers advantages over other soil bacteria upon 

antibiotics release. 

As we could only identify few putative genes associated with secondary metabolite biosynthesis 

encoded in the Ca. Udaeobacter sp. MAG, it seems unlikely that Ca. Udaeobacter representatives 

produce different antibiotics, which require large polyketide and nonribosomal peptide biosynthetic gene 

clusters. This theory is supported by potential genome streamlining and the so far described relatively 
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small Ca. Udaeobacter genomes. It seems much more plausible that Ca. Udaeobacter obtains nutrients 

from cell lysis evoked by antibiotic producers without high energetic cost associated with the synthesis 

of antimicrobial compounds. 

Regarding the central metabolism, the encoded glyoxylate bypass might be advantageous with respect 

to bactericidal antibiotics as it provides a means against oxidative stress. Bactericidal drugs cause a 

higher production of NADH through the TCA cycle which results in a higher proportion of superoxide, 

formed as a consequence of respiratory chain oxidation driven by oxygen and the conversion of NADH 

to NAD+ (14, 15). Superoxides on the other hand cause iron leaching from iron-sulfur clusters and iron 

participates in the conversion of superoxide to hydroxyl radicals in the Fenton reaction (14). Hydroxyl 

radicals are extremely toxic and damage cellular proteins, lipids and DNA which leads to cell death and 

lysis (14). Bypassing the complete TCA cycle by the glyoxylate shunt reduces NADH production and 

causes a reduced sensitivity towards bactericidal antibiotics (16). Ca. Udaeobacter encodes for two 

enzymes (A copper/zinc superoxide dismutase and a catalase-peroxidase) that convert superoxide to 

oxygen, which might also have a positive effect on the sensitivity towards bactericidal antibiotics. 

Another potential feature of Ca. Udaeobacter sp. is the aerobic oxidation of hydrogen indicated by 

genes for an Ni-Fe-S hydrogenase enzyme complex and an additional soluble hydrogenase. Thus, 

Ca. Udaeobacter sp. probably has the ability to scavenge atmospheric H2 for energy production. This 

feature has been observed for Acidobacteria as well and was proposed as “general mechanism for 

dominant soil phyla to generate the maintenance energy required for long-term survival” (17). As 

approximately 30% of the world’s soils are acidic (18), the acid resistance mechanisms (biosynthetic 

arginine decarboxylase and putative lysine decarboxylase) that were detected in the here assembled 

MAG might contribute to the global dissemination of Ca. Udaeobacter. These mechanisms could 

increase the tolerance against acidic conditions, for example in some forest soils, and provide an 

advantage over other soil bacteria. 

Our study illustrates that a group of ubiquitous soil bacteria, Ca. Udaeobacter, thrives upon release of 

multiple classes of antibiotics. These bacteria evade growth-inhibiting and lethal effects of 

antimicrobials, supporting our hypotheses, and, importantly, even take advantage of antibiotic pressure. 

Thus, steadily increasing global antibiotic consumption and an associated rising environmental pollution 

with antimicrobials might be advantageous for Ca. Udaeobacter representatives. Furthermore, we 
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found that a representative of Ca. Udaeobacter encodes enzymes for hydrogen oxidation, supporting 

the hypothesis that trace gas scavenging might be a general mechanism of ubiquitous soil bacteria, to 

generate energy for a stable maintenance in soil. To more specifically target this verrucomicrobial group 

in future studies, the 16S rRNA gene-based primer pair described here will be valuable. For example, 

insights into the Ca. Udaeobacter phylotype composition in various soil ecosystems can be gained via 

sequencing of amplicons generated using the UDBAC primers. Another important step with respect to 

the analysis of Ca. Udaeobacter will be the cultivation of representatives belonging to this dominant 

group of soil bacteria. For instance, cultivates could be used to analyze potential hydrogenase activity 

of Ca. Udaeobacter. Moreover, the findings presented in our study indicate that application of antibiotics 

can contribute to a successful enrichment of Ca. Udaeobacter representatives. 

Materials and Methods 

Sampling and soil characteristics 

Soil samples (the upper 10 cm of the mineral soil) were derived from plots of the German Biodiversity 

Exploratories Hainich-Dün (central Germany) and Schwäbische Alb (southwestern Germany) (19) in 

May 2017, as described by Solly et al. (20). Each study region covers the land use types forest and 

grassland. Grassland plots are 50 m × 50 m and forest plots are 100 m × 100 m in size. Detailed 

information on land use, dominant tree species and fertilization for every plot is provided in Table S1. 

The gravimetric water content of the soil was determined by drying 10 g at 105°C for 24 h. The pH of 

each soil was determined as described by Solly et al. (20). For soil incubations, water contents of fresh 

soil samples were adjusted with deionized water to 60% water holding capacity (WHC) as the optimum 

water content for carbon mineralization usually falls in this range (21). The total WHC (equal to 100% 

WHC) was determined in the laboratory by means of disturbed soil samples. Fifteen g of fresh soil was 

filled in 10 cm high funnels which were placed in deionized water overnight until the soil was saturated 

with water by capillary rise. After the soil samples have been drained on sand for several hours, the soil 

was oven-dried at 105°C to a constant weight and the soil water content at total WHC was determined. 

Taking into account the water contents of fresh soil samples, the amount of water that had to be added 

to the incubated samples to reach 60% WHC was then calculated. 
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All soils for the microcosm experiment were chromatographically analyzed for residues of 77 different 

antibiotics by JenaBios company (Jena, Germany) (Table S2). 

 

Microcosm incubations 

The water content of soil derived from the selected plots was adjusted to 60% of its water holding 

capacity and subsamples were frozen at -80°C in order to enable analysis of soil bacterial communities 

at the beginning of the microcosm experiment. Subsequently, the soil was treated with six antibiotics, 

three antibiotics or one antibiotic in high and low concentration. This procedure was performed in 

triplicate. The concentrations of the used antibiotics were selected based on previous microcosm 

experiments (22–26). Concentrations of 10 and 100 mg/kg soil of amoxicillin (Sigma-Aldrich, Steinheim, 

Germany), oxytetracycline dihydrate (Sigma-Aldrich), sulfadiazine (Sigma-Aldrich), trimethoprim 

(Sigma-Aldrich) and tylosin tartrate (Sigma-Aldrich), as well as concentrations of 5 and 50 mg/kg soil of 

ciprofloxacin (Sigma-Aldrich) were used for treatment with six different antibiotics. For the treatment 

with three antibiotics (amoxicillin, oxytetracycline dihydrate and sulfadiazine) or one antibiotic 

(amoxicillin), we also used concentrations of 10 and 100 mg/kg soil. Due to insufficient solubility in 

water, all antibiotics, except tylosin, were spiked onto soil in solid form. Tylosin was dissolved in sterile 

H2O prior to soil treatment. Organic solvents were avoided as they can potentially impact soil microbial 

communities (23). The antibiotics were distributed in soil by vigorous mixing. Subsequently, microcosms 

containing 10 g of soil were prepared in 100 ml bulk flasks and incubated in the dark at 20°C. Flasks 

containing 10 g of soil, which was not treated with antibiotics, served as control (set up in duplicate). 

The microcosms were aerated every third day to ensure oxygen supply and the water content was 

ascertained to be stable via regular weighing. After 3, 8 and 20 days, samples were taken (1.25 g) and 

stored at -80°C for subsequent analysis.  

 

DNA extraction and sequencing of 16S rRNA gene amplicons 

Soil microbial community DNA was isolated from a total of 628 microcosm samples by using the DNeasy 

PowerSoil Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Subsequently, 

the DNA concentration was measured by employing the Qubit dsDNA Broad-Range Assay Kit (Thermo 
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Fisher Scientific, Braunschweig, Germany) and a Qubit 3.0 Fluorometer (Thermo Fisher Scientific) 

following the manufacturer’s instructions. 

The V3-V4 region of the 16S rRNA genes was amplified by PCR, using the extracted DNA from the 628 

microcosm samples and the primer pair Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 (27) with 

modifications for Illumina MiSeq sequencing described by Schneider et al. (28). Each PCR reaction 

(50 µl) contained 10 µl 5 x Phusion GC buffer (Thermo Fisher Scientific), 25 ng template DNA, 0.2 µM 

of each primer, 0.2 mM of each deoxynucleoside triphosphate, 0.15 mM MgCl2 and 1 U Phusion High-

Fidelity DNA Polymerase (Thermo Fisher Scientific). PCR reactions were initiated at 98°C for 1 min, 

followed by 25 cycles of 98°C for 45 s, 66°C for 45 s and 72°C for 30 s. The reaction ended with a final 

elongation step at 72°C for 5 min. 

Amplicons were purified with a magnetic bead purification by the automated work station Janus 

(PerkinElmer, Downers Grove, IL, USA) with a bead (MagSi-NGSPREP Plus – Magnetic Beads, 

Steinbrenner, Wiesenach, Germany) to sample ratio of 1:1. Subsequently, indexes were added at both 

ends of the amplicons as described by Schneider et al. (28). Sequencing of the V3-V4 region of the 

16S rRNA genes was carried out using an Illumina MiSeq sequencer in paired-end mode and the MiSeq 

Reagent Kit v3 (600 cycles). 

 

Amplicon sequence data processing and statistical analysis 

The raw sequences were demultiplexed and sequencing adapters clipped by employing the data 

analysis software CASAVA (Illumina, San Diego, CA, USA). PEAR v.0.9.10 (29) was used for merging 

of paired-end reads, and sequences with a lower quality score than 20 or with unresolved bases were 

removed by applying the split_library_fastq.py script provided by QIIME 1.9.1 (30). Remaining forward 

and reverse primer sequences were removed using cutadapt 1.10 (31) with default settings. Reads ≥ 

380 bp were clustered into amplicon sequence variants (ASVs) (32) with the UNOISE2 algorithm (33) 

of USEARCH (34), which includes sequence error correction and de-novo chimera removal. Additional 

chimera removal was conducted via UCHIME (35) using the SILVA SSU database (36) (release 132) 

as reference. Subsequently, all quality-filtered sequences were mapped on the ASVs to determine the 

respective read abundance. For taxonomic classification, the ASVs were blasted against the SILVA 

SSU database (release 132) using the QIIME script parallel_assign_taxonomy_blast.py. Extrinsic 
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domain ASVs, mitochondria, chloroplasts and unclassified ASVs were removed by employing the 

QIIME script filter_otu_table.py. Datasets rarefied via QIIME script single_rarefaction.py to 10,000 

sequences per sample were utilized for linear mixed effect regression analysis. 

The effect of antibiotic treatment on Ca. Udaeobacter was statistically analyzed using linear mixed effect 

models, constructed with the R version 3.5.3 (37) and the R library lme4 (38). In this context, the 

logarithm of the abundance of Ca. Udaeobacter served as response variable, the concentration of 

antibiotics for treatment and the days of incubation as fixed effects, and the microcosm ID as well as 

the sample plot ID represented nested random effects. Furthermore, six additional models were 

constructed to test for significance of each treatment variation (treatment with one antibiotic, three 

antibiotics and six antibiotics in high and low concentration), whereat each of the six treatments served 

as independent fixed effect along with the days of incubation and the nested random effects. The 

residuals were tested for normality and constant variance with quantile-quantile plots and residual plots 

using the diagnostics plots function in R. Independent variables were selected by considering 

collinearity, significance and explanatory power based on p-values, R2m and R2c, calculated with the 

lmerTest library (39) and the r.squaredGLMM function of the MuMIn library (40). The p-values of the 

fixed and random effects were calculated with the Satterthwaite’s method and the Chi square test of 

the anova function, respectively. All model formulas, sample sizes, corresponding p-values, estimates, 

degrees of freedom and R2 of the conducted linear regressions are listed in Table S3.  

 

Design and evaluation of Ca. Udaeobacter-specific primers 

Primers for targeted detection of bacteria belonging to Ca. Udaeobacter were designed based on the 

16S rRNA gene of the verrucomicrobial phylotype DA101 (41) using primer blast (42). An in silico PCR 

analysis was conducted using TestPrime 1.0 and the SILVA SSU database (27,36) (release 132) as 

reference to evaluate the specificity of designed primers. The primer pair comprising UDBAC_F (5′-

CCAGAAGAGGAAGAGACGGC-3′) and UDBAC_R (5′-GTCCTCAAGCACGGCAGTAT-3′) was used 

for further validation of specificity via multiplex sequencing. In this context, MiSeq overhangs described 

by Schneider et al. (28) were attached to each primer and amplicons for MiSeq sequencing were 

produced via PCR. 
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Each PCR reaction (50 µl) was set up in triplicate and contained 10 µl 5 x Phusion HF buffer (Thermo 

Fisher Scientific), 25 ng template DNA, 0.2 µM of each primer, 0.2 mM of each deoxynucleoside 

triphosphate, 1 mM MgCl2 and 1 U Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific). 

DNA extracted from all soils used for microcosm preparation and samples incubated for three days 

upon treatment with six antibiotics in high concentration served as templates within the PCR. The cycler 

program started with an initial denaturation at 98°C for 1 min followed by 25 cycles of denaturation for 

10 s at 98°C, annealing at 58°C for 30 s and elongation at 72°C for 10 s. The final elongation step was 

carried out at 72°C for 5 min. Generated amplicons were purified and indexed as described above. 

Sequencing was carried out using an Illumina MiSeq sequencer in paired-end mode and the MiSeq 

Reagent Kit v3 (600 cycles). 

Bioinformatic processing of the raw data was performed as described above, except that reads shorter 

than 113 bp and longer than 153 bp were discarded with cutadapt 1.10. 

 

Quantification of Ca. Udaeobacter 16S rRNA genes 

Quantitative real-time PCR (qPCR) using primer pair UDBAC was conducted to estimate the absolute 

abundance of Ca. Udaeobacter 16S rRNA genes in microcosms. In a first step, a DNA fragment 

obtained via PCR using the UDBAC primer set was cloned into vector pCR4-TOPO (Thermo Fisher 

Scientific) as recommended by the manufacturer, to serve as standard for qPCR. To confirm that a 

partial Ca. Udaeobacter 16S rRNA gene has been cloned into this vector, the insert sequence was 

determined by Microsynth Seqlab (Göttingen, Germany) using Sanger sequencing technology. The 16S 

rRNA genes of Ca. Udaeobacter representatives were quantified using an icycler iQ5 (Bio-Rad, 

Hercules, CA, USA), with the QuantiNova SYBR Green PCR kit (Qiagen). Each reaction had a final 

volume of 20 µl with 10 µl of 2 x QuantiNova SYBR Green RT-PCR Master Mix, 0.7 µM of each primer 

and 12.5 ng DNA template. DNA from untreated control samples and samples treated with six different 

antibiotics in high concentration served as template. The amplification was conducted as recommended 

by the manufacturer with an initial activation step at 95°C for 2min, followed by 40 cycles of denaturation 

at 95°C for 5 s and combined annealing and extension at 60°C for 10 s. Subsequently, melting curve 

analysis was conducted to ensure specific amplification. 



 

 

92 

 

Scatterplots depicting the 16S rRNA gene abundance of Ca. Udaeobacter per ng DNA in response to 

antibiotic treatment and sampling days were produced by employing R. In this context, a smoothed 

curve was generated using the loess.smooth function. The effect of the antibiotic treatment on the 

absolute 16S rRNA gene abundance after three days of incubation was statistically analyzed with a 

linear mixed effect model, as described above, whereat the logarithm of the 16S rRNA gene copies per 

ng DNA served as response variable, the antibiotic treatment as fixed effect and the sample plot ID as 

random effect. 

 

Cell extraction, sequencing and hybrid assembly of a Ca. Udaeobacter MAG 

A frozen (−20°C) forest soil sample (AEW3) was chosen as target for Ca. Udaeobacter genome bin 

assembly. Cells were extracted from the soil matrix prior to DNA extraction and sequencing. For this 

purpose, 100 g frozen soil was added to 200 ml MES buffer (pH 5.5), supplemented with 0.24 M NH4Cl 

and 100 mg/kg amoxicillin. Subsequently, the suspension was vigorously mixed with a hand mixer for 

eight minutes. After an incubation of 20 h at 160 rpm and 20°C, mixing was repeated and soil particles 

were separated from the dissociated cells by centrifugation at 1,000 × g for 10 min at 4°C. Afterwards, 

the cells in the supernatant were pelleted at 10,000 × g for 30 min at 4°C and resuspended in 10 ml 

MES buffer. The cell suspension was pipetted onto 10 ml OptiPrepTM Density Gradient Medium (Sigma-

Aldrich) (1.32 g/ml iodixanol) for a density gradient centrifugation at 3,000 × g for 90 min at 4°C. In this 

way, the living cells were separated from dead cell particles and other (in-)organic contaminants. A thin 

layer above the OptiPrep layer, containing the living cells, was carefully transferred into a new vial and 

washed twice with 8 ml MES buffer at 10,000 × g for 30 min at 4°C. Finally, the cell suspension was 

pelleted at 10,000 × g for 1 h at 4°C, resuspended in 500 µl MES buffer and stored at 4°C. High 

molecular weight DNA was isolated with the MasterPure Complete DNA & RNA Purification Kit (Biozym, 

Hessisch Oldendorf, Germany) following the instructions in the manual. Quality of isolated DNA was 

initially checked by agarose gel electrophoresis and validated by using an Agilent Bioanalyzer 2100 and 

an Agilent DNA 12000 Kit as recommended by the manufacturer (Agilent Technologies, Waldbronn, 

Germany). Purity of the isolated DNA was checked with a Nanodrop ND-1000 (PeqLab Erlangen, 

Germany) and subsequently the concentration was determined using the Qubit® dsDNA HS Assay Kit 

(Life Technologies GmbH, Darmstadt, Germany) and a Qubit 3.0 Fluorometer (Thermo Fisher 
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Scientific). Illumina shotgun libraries were prepared using the Nextera DNA Sample Preparation Kit and 

subsequently sequenced on a MiSeq system with the reagent kit v3 with 600 cycles (Illumina, San 

Diego, CA, USA). With respect to Oxford Nanopore sequencing, 1.5 µg DNA was used for library 

preparation using the Ligation Sequencing Kit 1D (SQK-LSK109). Sequencing was performed for 72 h 

on a MinION device Mk1B using a SpotON Flow Cell R9.4.1, resulting in 16.5 million reads. Low-quality 

MiSeq reads and sequencing adapters were trimmed by employing trimmomatic version 0.36 in paired-

end mode (43). After sequencing and trimmomatic-based quality filtering, 40.8 million MiSeq reads with 

an average length and paired-end insert size of 222 and 330.5 bp, respectively, were available for 

further processing. 

Assembly was conducted by HybridSPades (44) in meta mode with automatically assessed kmer 

lengths. The resulting contigs were binned into MAGs with MaxBin2 (45) and checked for completeness 

and contamination with CheckM v1.0.12 (7). The received MAG was reassembled with HybridSPades 

using automatically assessed kmer lengths and the assembly was revaluated with CheckM and 

QualiMap v.2.2.1 (46, 47). 

Open Reading Frames (ORFs) were predicted and annotated using PROKKA version 1.13.4 (48). The 

relative abundance of an ASV, closely related to the PROKKA annotated 16S rRNA gene in the 

assembled MAG, was tested for significant rise in relative abundance upon antibiotic treatment over the 

time course of the microcosm experiment with a linear mixed model, where the ASV abundance served 

as response variable, the concentration of antibiotics for treatment and the days of incubation as fixed 

effects, and the microcosm ID as well as the sample plot ID represented nested random effects (Table 

S3). Subsequently, the MAG was analyzed in terms of energy metabolism, amino acid auxotrophies 

and environmental stress response via the PathoLogic (49) component of the Pathway Tools software 

(50) version 23.5 and the MetaCyc database (51). The encoded proteins were screened for annotated 

ARGs and MGEs. In addition, putatively novel resistance mechanisms were identified with deepARG 

(52) using a minimal sequence identity of 30% and a probability of over 90% as thresholds. Additional 

MGEs were identified via DIAMOND blastx (-e 0.00001 --id 50 --subject-cover 50) against the MGE 

database of nanoARG (53). Furthermore, the MAG was screened for secondary metabolite biosynthesis 

clusters via antiSMASH 5.1 (54).  
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Phylogenetic analysis  

A phylogenetic tree was constructed using MEGA X (55) based on 16S rRNA gene sequences of the 

here assembled MAG and other verrucomicrobial representatives. A total of 23 nucleotide sequences 

were aligned with MUSCLE (56) and the tree was calculated with 500 iterations by using the Maximum 

Likelihood method and the Tamura-Nei model (57). Furthermore, the partial deletion option with a site 

coverage cutoff of 90% was used and the tree was rooted with the 16S rRNA gene sequence of 

Escherichia coli K-12 MG1655. 

The phylogenetic relation of the here assembled MAG to other draft genomes stored in the GTDB 

database (58) as well as Ca. Udaeobacter copiosus was calculated based on the occurrence and amino 

acid sequence of 120 marker genes. The marker gene sequences identified by GTDB-tk (59) of all 

Chthoniobacterales included in the analysis (Table S4), were aligned with MUSCLE and used for 

calculation of a phylogenetic tree with 500 iterations by using the Neighbor-Joining Method (60). 

Evolutionary distances were computed using the JTT matrix-based method (61) and the partial deletion 

option with a site coverage cutoff of 90% was applied. Finally, the tree was rooted based on the 16S 

rRNA gene sequence of E. coli UMN026 (GCA_000026325.2). 

Additionally, the closest relative of our MAG was identified via FastANI based on whole-genome 

average nucleotide identity (62). 

 

Data availability 

The 16S rRNA gene-based amplicon sequencing data generated in this study were deposited in the 

Sequence Read Archive (SRA) of the NCBI under the accession number SRP226057 (bioproject 

accession: PRJNA576637). The Ca. Udaeobacter sp. genome bin is publicly available at the NCBI 

under bioproject accession number PRJNA605948 (SUB6956007). Raw sequences from which the 

Ca. Udaeobacter sp. genome bin was assembled are availiable at the SRA under accession number 

SRP249494 (bioproject accession: PRJNA605948). 
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5.1. Supplemental information for chapter five 

 
Figure S1. Relative abundance of Ca. Udaeobacter and other bacterial groups for all soil 

microcosms. 

 

Table S1. Description of plot characteristics and properties of the soils used to set up the 

microcosms and for cell extraction. 

 

Table S2. List of antibiotics that have been chromatographically analyzed for residues in all 

grassland and forest soils used for the microcosm experiment. 

 

Table S3. Model formulas and results from linear mixed model regression analysis. 

 

Table S4. Attributes of all Chthoniobacterales MAGs used to construct the Neighbor-joining tree. 

 

Table S5: Antibiotic resistance genes (ARGs) and mobile genetic elements (MGE) encoded in the 

MAG of Ca. Udaeobacter sp. 
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Figure S1. Relative abundance of Ca. Udaeobacter and other bacterial groups for all soil microcosms. Untreated control samples, “C”, as well as samples 
treated with antibiotics in high or low concentration, “T”, were analyzed. Others: bacterial groups accounting for < 2% relative abundance. Results are presented as 
mean of replicates. With respect to all of the four forest soil samples, treatment with one antibiotic, three antibiotics and six antibiotics in high as well as low 
concentration was performed. Four of the seven grassland soil samples were also subjected to this antibiotic treatment procedure. In addition, the remaining three 
grassland soil samples (AEG16, AEG21 and HEG21) were treated with three antibiotics and six antibiotics in high as well as low concentration to further verify the 
effect of antibiotics release on Ca. Udaeobacter. 
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Figure S1. continued 



 

 

105 

 

 
 
Figure S1. continued 
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Figure S1. continued 
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Figure S1. continued 
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Figure S1. continued 
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Table S1. Description of plot characteristics and properties of the soils used to set up the microcosms 
and for cell extraction. Pasture: grassland with grazing livestock, meadow: grassland without grazing 
livestock. AEW3 is not used for the set up of the microcosms but for cell extraction. 

Plot ID Exploratory Plot characteristics LUI/SMI pH % 
water 

C:N 
ratio 

HEG4 HAI Mown, fertilized meadow 2.1 6.5 35.8 10.7 
HEG7 HAI Pasture 1.7 7 25.2 9.5 
HEG21 HAI Mown pasture 0.7 7.3 26.5 10.4 
HEW3 HAI Spruce forest 0.5 5.1 39.8 16.5 
HEW5 HAI Beech forest 0.2 5.3 52.5 13.1 
AEG2 ALB Mown, fertilized meadow 3.1 6.9 59.7 9.5 
AEG8 ALB Mown pasture 1.3 6.6 70.4 10.9 
AEG16 ALB Mown, fertilized pasture 1.7 6.0 54.7 10.2 
AEG21 ALB Mown, fertilized pasture 3.9 5.8 52.9 10.0 
AEW2 ALB Spruce forest 0.6 4.8 38.3 13.9 
AEW7 ALB Beech forest 0.2 5.0 64.9 12.9 
AEW3 Alb Spruce forest 0.5 5.6 52.7 13.6 

Abbreviations: HAI, exploratory Hainich-Dün; ALB, exploratory Schwäbische Alb; LUI, land use intensity index; 
SMI, silvicultural management index, % water, gravimetric water content; C:N ratio, organic carbon divided by 
total N. 
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Table S2. List of antibiotics that have been chromatographically analyzed for residues in all 
grassland and forest soils used for the microcosm experiment. 

Tested antibiotics Detection limit (mg/kg 
soil) 

Soil sample  
(concentration of antibiotic) 

Sulfonamides   
Acetylsulfadiazine <0.001 - 
Acetylsulfadimethoxine <0.001 - 
Acetylsulfamethazine <0.001 - 
Acetylsulfadoxine <0.001 - 
Acetylsulfamerazine <0.001 - 
Acetylsulfamethoxazole <0.001 - 
Acetylsulfathiazole <0.001 - 
Sulfadiazine <0.001 - 
Sulfadimethoxine <0.001 - 
Sulfamethazine <0.001 - 
Sulfadoxine <0.001 - 
Sulfamerazine <0.001 - 
Sulfamethoxazole <0.001 - 
Sulfathiazole <0.001 - 
Penicillins   
Amoxicillin <0.01 - 
Ampicillin <0.01 - 
Benzylpenicillin <0.01 - 
Cloxacillin <0.01 - 
Dicloxacillin <0.01 - 
Oxacillin <0.01 - 
Penethamate <0.01 - 
Penicillin V <0.01 - 
Aminoglycosides   
Apramycin <0.01 - 
Clindamycin <0.01 - 
Gentamycin C1a <0.05 - 
Lincomycin <0.01 - 
Neomycin <0.01 - 
Spectinomycin <0.05 - 
Streptomycin <0.01 - 
Polypeptides   
Bacitracin A <0.01 - 
Collistin <0.03 - 
Nafcillin <0.01 - 
Nisin <0.01 - 
Cephalosporins   
Cefadroxil <0.01 - 
Cefapirin <0.01 - 
Cefazolin <0.01 - 
Cefquinome <0.01 - 
Ceftiofur <0.01 - 
Cefuroxime <0.01 - 
Cephalexin <0.01 - 
Amphenicols   
Chloramphenicol <0.001 - 
Florfenicol <0.001 - 

Only soil samples exhibiting antibiotic concentrations above the detection limits are listed. 
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Table S2. continued 

Tested antibiotics Detection limit (mg/kg 
soil) 

Soil sample  
(concentration of antibiotic) 

Thiamphenicol <0.001 - 
Tetracyclines 
Chlortetracycline <0.01 AEW2 (0.011 mg/kg) 
Demeclocycline <0.003 - 
Doxycycline <0.01 - 
Iso-Chlortetracycline <0.01 - 
Meclocycline <0.01 - 
Metacycline <0.01 - 
Oxytetracycline <0.01 - 
Tetracycline <0.01 - 
Quinolones 
Ciprofloxacin <0.001 - 
Danofloxacin <0.01 - 
Difloxacin <0.01 - 
Enrofloxacin <0.01 - 
Marbofloxacin <0.01 - 
Ofloxacin <0.01 - 
Sarafloxacin <0.01 - 
Macrolides 
Clarithromycin <0.01 - 
Erythromycin <0.01 - 
Flavomycin <0.01 - 
Ivermectin B1a <0.05 - 
Natamycin <0.01 - 
Oleandromycin <0.01 - 
Spiramycin S-I <0.05 - 
Spiramycin S-II <0.01 - 
Spiramycin S-III <0.01 - 
Tilmicosin <0.01 - 
Tylosin <0.05 - 
Nitroimidazoles 
Metronidazole <0.01 - 
Ronidazole <0.01 - 
Additional antibiotics 
Imipenem <0.01 - 
Tiamulin <0.001 - 
Trimethoprim <0.01 - 
Tylvalosin <0.01 - 
Valnemulin <0.01 - 
Virginamycin <0.01 - 

Only soil samples exhibiting antibiotic concentrations above the detection limits are listed. 
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Table S3. Model formulas and results from linear mixed model regression analysis. The relative abundance of Ca. Udaeobacter, ASV 6 upon antibiotic 
treatment and the rise in absolute 16S rRNA gene abundance per ng DNA upon antibiotics release after 3 days of incubation, assessed via qPCR, was analyzed. 

Abbreviations: p, p-value ; treat., antibiotic treatment; Df, degrees of freedom; Est., estimates; N, sample size. 

Model formula N R2m/ R2c 
p 
treat. 

Df 
treat. 

Est. 
treat. p day 

Df 
day 

Est. 
day 

lmer(log(Ca. Udaeobacter)~Concentr+Days+(1|plotID/sampleID)) 606 0.04/ 0.96 < 2 e-16 190 6.0 e-4 < 2 e-16 403 -0.01
lmer(log(Ca. Udaeobacter)~SixAntib.High+Days+(1|plotID/sampleID) 83 0.15/ 0.96 < 2 e-16 38 9.8 e-4 1.8 e-4 66 -0.01
lmer(log(Ca. Udaeobacter)~SixAntib.Low+Days+(1|plotID/sampleID) 79 0.06/ 0.96 1.4 e-13 66 0.01 6.9 e-4 66 -0.01
lmer(log(Ca. Udaeobacter)~ThreeAntib.High+Days+(1|plotID/sampleID) 87 0.08/ 0.95 < 2 e-16 74 1.4 e-3 7.4 e-4 74 -0.01
lmer(log(Ca. Udaeobacter)~ThreeAntib.Low+Days+(1|plotID/sampleID) 88 0.04/ 0.96 8.4 e-14 75 0.01 9.9 e-4 75 -0.01
lmer(log(Ca. Udaeobacter)~OneAntib.High+Days+(1|plotID/sampleID) 65 0.1/ 0.97 1.67 e-11 25 4.5 e-3 2.5 e-5 50 -0.01
lmer(log(Ca. Udaeobacter)~OneAntib.Low+Days+(1|plotID/sampleID) 66 0.04/ 0.96 4.22 e-7 53 0.02 3.0 e-5 52 -0.01
lmer(ASV 6~Concentr+Days+(1|plotID/sampleID)) 606 0.02/0.90 1.68 e-6 593 0.04 < 2 e-16 593 -1.73
lmer(log(16S rRNA genes per ng DNA after 3 days)~Concentr+(1| plotID)) 30 0.02/ 0.90 1.84 e-7 23 1.6 e-3 NA. NA NA 
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Table S4. Attributes of all Chthoniobacterales MAGs used to construct the Neighbor-joining tree. The yellow highlighted MAGs cluster together with the here assembled 
MAG of Ca. Udaeobacter sp. 

GBK assembly 
accession GTDB Phylogeny starting with the family Compl. Cont. Size in 

Mbp GC 

GCA_003221405.1 f__UBA10450;g__AV69;s__AV69 sp003221405 66.6% 2.0% 1.94 55.4% 
GCA_003218375.1 f__UBA10450;g__AV80;s__AV80 sp003218375 100.0% 2.7% 3.96 58.8% 
GCA_003218735.1 f__UBA10450;g__AV55;s__AV55 sp003218735 72.0% 2.6% 1.49 54.5% 
GCA_003218615.1 f__UBA10450;g__AV55;s__AV55 sp003218615 88.3% 0.5% 2.29 55.3% 
GCA_003219225.1 f__UBA10450;g__AV17;s__AV17 sp003219225 70.5% 0.7% 2.04 58.4% 
GCA_003219215.1 f__UBA10450;g__AV40;s__AV40 sp003219215 90.8% 1.7% 2.33 55.3% 
GCA_003219095.1 f__UBA10450;g__AV69;s__AV69 sp003219095 71.4% 3.2% 2.38 55.1% 
GCA_003244145.1 f__UBA10450;g__AV80;s__AV80 sp003244145 92.9% 5.1% 3.63 58.4% 
GCF_001613545.1 f__Terrimicrobiaceae;g__Terrimicrobium;s__Terrimicrobium sacchariphilum 100.0% 2.7% 4.75 60.2% 
GCA_003219465.1 f__UBA10450;g__AV55;s__AV55 sp003219465 89.1% 6.6% 4.19 55.2% 
GCA_003134785.1 f__UBA10450;g__AV80;s__AV80 sp003134785 100.0% 3.4% 4.39 57.8% 
GCA_003218885.1 f__UBA10450;g__AV55;s__AV55 sp003218885 88.0% 2.4% 2.30 55.4% 
GCF_000173075.1 f__Chthoniobacteraceae;g__Chthoniobacter;s__Chthoniobacter flavus 97.3% 2.9% 7.85 61.1% 
GCA_003221295.1 f__UBA10450;g__AV69;s__AV69 sp003221295 90.2% 3.7% 2.98 55.3% 
GCA_003219175.1 f__UBA10450;g__AV69;s__AV69 sp003219175 98.0% 5.7% 3.24 55.0% 
GCA_003220155.1 f__UBA10450;g__AV69;s__AV69 sp003220155 96.3% 3.0% 3.35 55.3% 
GCA_003167555.1 f__UBA10450;g__AV80;s__AV80 sp003167555 100.0% 3.4% 4.20 58.5% 
GCA_003219195.1 f__UBA10450;g__UBA10450;s__UBA10450 sp003219195 95.3% 2.2% 2.82 55.8% 
GCA_003219925.1 f__UBA10450;g__AV69;s__AV69 sp003219925 81.2% 3.0% 2.10 55.3% 
GCA_003219355.1 f__UBA10450;g__AV55;s__AV55 sp003219355 88.4% 6.4% 2.23 54.5% 
GCA_003445855.1 f__UBA10450;g__UBA10450;s__UBA10450 sp003445855 78.0% 1.7% 2.10 55.9% 
GCA_003219995.1 f__UBA10450;g__UBA10450;s__UBA10450 sp003219995 82.6% 2.5% 2.10 55.3% 
GCA_003221375.1 f__UBA10450;g__AV55;s__AV55 sp003221375 73.9% 1.4% 2.17 54.1% 
GCA_003218535.1 f__UBA10450;g__AV55;s__AV55 sp003218535 92.6% 4.4% 2.69 54.5% 
GCA_003167365.1 f__UBA10450;g__Palsa-1382;s__Palsa-1382 sp003167365 100.0% 1.4% 3.13 55.2% 
GCA_003219495.1 f__UBA10450;g__AV40;s__AV40 sp003219495 72.9% 1.5% 2.11 56.3% 
GCA_003218305.1 f__UBA10450;g__AV80;s__AV80 sp003218305 92.9% 4.6% 3.60 59.0% 
GCA_003169695.1 f__UBA10450;g__AV80;s__AV80 sp003169695 99.7% 4.7% 4.14 57.2% 
GCA_001897195.1 f__Terrimicrobiaceae;g__Terrimicrobium;s__Terrimicrobium sp001897195 96.6% 3.8% 5.06 60.8% 
GCA_003219125.1 f__UBA10450;g__AV69;s__AV69 sp003219125 92.3% 4.6% 3.20 55.0% 
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Table S4 continued: 
GBK assembly 
accession GTDB Phylogeny starting with the family Compl. Cont. Size in 

Mbp GC 

GCA_003219435.1 f__UBA10450;g__AV55;s__AV55 sp003219435 86.4% 2.4% 2.73 55.2% 
GCA_003220055.1 f__UBA10450;g__AV40;s__AV40 sp003220055 81.8% 0.2% 2.08 55.5% 
GCA_003219335.1 f__UBA10450;g__AV55;s__AV55 sp003219335 83.0% 4.1% 3.71 55.0% 
GCA_002290555.1 f__Terrimicrobiaceae;g__UBA967;s__UBA967 sp002290555 81.1% 0.2% 1.82 56.6% 
GCA_003136515.1 f__UBA6821;g__UBA6821;s__UBA6821 sp003136515 85.1% 4.1% 2.36 53.2% 
GCA_002298145.1 f__Chthoniobacteraceae;g__UBA695;s__UBA695 sp002298145 92.6% 0.7% 4.11 60.5% 
GCA_003218415.1 f__UBA10450;g__AV55;s__AV55 sp003218415 83.7% 3.4% 2.05 55.3% 
GCA_003219005.1 f__UBA10450;g__AV55;s__AV55 sp003219005 87.8% 1.1% 2.69 55.2% 
GCA_003218975.1 f__UBA10450;g__AV55;s__AV55 sp003218975 98.0% 2.9% 3.06 55.1% 
GCA_003218785.1 f__UBA10450;g__AV55;s__AV55 sp003218785 85.6% 0.7% 2.78 54.9% 
GCA_003218705.1 f__UBA10450;g__AV40;s__AV40 sp003218705 76.5% 0.8% 1.70 55.4% 
GCA_003218945.1 f__UBA10450;g__AV55;s__AV55 sp003218945 87.8% 3.1% 2.80 55.0% 
GCA_003219265.1 f__UBA10450;g__AV133;s__AV133 sp003219265 78.4% 1.4% 2.09 56.2% 
GCA_003218135.1 f__UBA10450;g__AV55;s__AV55 sp003218135 91.2% 3.7% 2.75 54.9% 
GCA_003169975.1 f__UBA10450;g__Palsa-1392;s__Palsa-1392 sp003169975 100.0% 2.7% 4.47 59.9% 
GCF_001318295.1 f__Xiphinematobacteraceae;g__Xiphinematobacter;s__Xiphinematobacter sp001318295 89.9% 0.0% 0.92 47.7% 
GCA_003244125.1 f__UBA10450;g__AV69;s__AV69 sp003244125 66.0% 2.3% 2.50 58.7% 
GCA_003217965.1 f__UBA10450;g__AV69;s__AV69 sp003217965 90.3% 3.7% 2.64 55.2% 
GCA_003218475.1 f__UBA10450;g__AV55;s__AV55 sp003218475 94.7% 3.6% 3.16 54.8% 
GCA_003134765.1 f__UBA10450;g__AV80;s__AV80 sp003134765 96.0% 2.7% 4.05 58.7% 
GCA_003221195.1 f__UBA10450;g__AV55;s__AV55 sp003221195 89.6% 4.1% 3.10 54.3% 
GCA_003218345.1 f__UBA10450;g__AV55;s__AV55 sp003218345 82.5% 3.2% 2.39 54.5% 
GCA_003218915.1 f__UBA10450;g__AV55;s__AV55 sp003218915 88.7% 3.3% 2.91 54.6% 
GCA_003220075.1 f__UBA10450;g__AV69;s__AV69 sp003220075 87.4% 4.5% 2.79 55.2% 
GCA_003176035.1 f__Xiphinematobacteraceae;g__PSRL01;s__PSRL01 sp003176035 70.4% 3.4% 1.92 48.5% 
GCF_003054655.1 f__Terrimicrobiaceae;g__Terrimicrobium;s__Terrimicrobium sp003054655 100.0% 2.0% 4.75 60.7% 
GCA_003218265.1 f__UBA10450;g__AV55;s__AV55 sp003218265 66.6% 2.2% 2.25 55.0% 
GCA_003218815.1 f__UBA10450;g__AV55;s__AV55 sp003218815 77.1% 2.3% 1.85 54.6% 
GCA_003218395.1 f__UBA10450;g__AV55;s__AV55 sp003218395 90.7% 4.4% 2.95 54.9% 
GCA_003219695.1 f__UBA10450;g__AV55;s__AV55 sp003219695 92.8% 3.4% 3.14 55.6% 
GCA_003219115.1 f__UBA10450;g__AV69;s__AV69 sp003219115 82.4% 1.0% 2.67 55.3% 
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Table S4 continued: 
GBK assembly 
accession GTDB Phylogeny starting with the family Compl. Cont. Size in 

Mbp GC 

GCA_003219395.1 f__UBA10450;g__AV55;s__AV55 sp003219395 69.3% 2.2% 2.82 54.5% 
GCA_003219415.1 f__UBA10450;g__AV55;s__AV55 sp003219415 97.8% 3.2% 3.62 54.4% 
GCA_003217875.1 f__UBA10450;g__AV55;s__AV55 sp003217875 86.8% 2.1% 2.45 54.6% 
GCA_003220005.1 f__UBA10450;g__AV55;s__AV55 sp003220005 82.4% 0.7% 2.53 55.0% 
GCA_002396485.1 f__Terrimicrobiaceae;g__UBA967;s__UBA967 sp002396485 98.7% 0.0% 2.77 56.2% 
GCA_003217835.1 f__UBA10450;g__AV55;s__AV55 sp003217835 74.3% 0.7% 1.75 54.6% 
GCA_003218525.1 f__UBA10450;g__AV69;s__AV69 sp003218525 78.0% 3.5% 2.43 55.3% 
GCA_002452515.1 f__UBA6821;g__UBA6821;s__UBA6821 sp002452515 90.2% 1.4% 2.35 54.0% 
GCA_003219945.1 f__UBA10450;g__AV55;s__AV55 sp003219945 81.5% 2.3% 2.24 54.9% 
GCA_003218755.1 f__UBA10450;g__AV55;s__AV55 sp003218755 88.5% 3.2% 2.63 54.9% 
GCA_003217895.1 f__UBA10450;g__AV55;s__AV55 sp003217895 94.3% 2.7% 2.74 55.0% 
2651869889 (IMG 
Taxon ID) 

not listed in the GTDB database (ncbi taxonomy: Chthoniobacteraceae; Candidatus 
Udaeobacter; Candidatus Udaeobacter copiosus) 80.0% 4.0% 2.66 54.3% 

Abbreviations: Compl, completeness estimated by Checkm; Cont, contamination estimated by Checkm; GC, GC content 
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Table S5: Antibiotic resistance genes (ARGs) and mobile genetic elements (MGE) encoded in the MAG of Ca. Udaeobacter sp. 
Detection 
strategy 

Contig/ 
scaffold Annotation Product 

deepARG predicted 
resistance 

deepARG 1 rlmN Dual-specificity RNA methyltransferase RlmN Phenicol 
Prokka annotation 1 xerC_1 Tyrosine recombinase XerC  
Prokka annotation 3 xerC_2 Tyrosine recombinase XerC  
deepARG 5 Udaeo2_04600 multi-drug exprt ATP binding/permease protein Multidrug 

deepARG 6 phoP Alkaline phosphatase synthesis transcriptional regulatory  
protein PhoP Glycopeptide 

Prokka annotation 6 ybhF_1 putative multidrug ABC transporter ATP-binding protein YbhF  
Prokka annotation 6 ybhR putative multidrug ABC transporter permease YbhR  
Prokka annotation 7 Udaeo2_06040 Beta-lactamase  
deepARG 8 mdtA_1 multidrug resistance protein MdtA multidrug 
Prokka annotation 8 mdtC_1 Multidrug resistance protein MdtC  
Prokka annotation 9 fabl Enoyl-[acyl-carrier-protein] reductase [NADH] Fabl  
deepARG 11 macA_1 macrolide export protein MLS 
Prokka annotation 11 yknY_1 putative ABC transporter ATP-binding protein YknY  
Prokka annotation 11 macB_1 Macrolide export ATP-binding/permease protein MacB  
deepARG 11 rsmA ribosomal RNA small subunit methyltransferase A Aminoglycoside 
deepARG 12 ybhF_2 multidrug ABC transporter ATP-binding protein Bacitracin 
deepARG 14 czcR Transcriptional activator protein Glycopeptide 
Prokka annotation 14 macA_2 Macrolide export protein MacA  
deepARG 17 nreC Oxygen regulatory protein NreC Unclassified 
deepARG 19 kdpD sensor protein Unclassified 
Prokka annotation 21 mdtA_2 Multidrug resistance protein MdtA  
Prokka annotation 22 Udaeo2_12270 Beta-lactamase superfamily domain protein  
Diamond 23 Udaeo2_12390 IS5 family transposase IS1355  
Prokka annotation 27 Udaeo2_13820 IS110 family transposase ISGme8  
Prokka annotation 28 mdtA_3 Multidrug resistance protein MdtA  
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Table S5 continued: 
Detection 
strategy 

Contig/ 
scaffold Annotation Product 

deepARG predicted 
resistance 

deepARG 28 ybal Putative cation/proton antiporterl YbaL Fosmidomycin 
Prokka annotation 30 vanB Vancomycin B-type resistance protein VanB 
deepARG 40 spoVD Stage V sporulation protein D Beta-lactam 
Diamond 42 xerD_1 Tyrosine recombinase XerD 
deepARG 46 bepE Efflux pump membrane transporter Multidrug 
deepARG 46 srpA Solvent efflux pump periplasmatic linker SrpA Multidrug 
Prokka annotation 49 Udaeo2_20030 IS110 family transposase ISGme8 
Diamond 49 Udaeo2_20040 IS3 family transposase ISStau1 
Diamond 61 xerD_2 Tyrosine recombinase XerD 
Prokka annotation 64 Udaeo2_23300 Beta-lactamase 
Prokka annotation 69 macB_2 Macrolide export ATP-binding/permease protein MacB 
Prokka annotation 69 macB_3 Macrolide export ATP-binding/permease protein MacB 
deepARG 69 Udaeo2_24310 Putative multidrug export ATP-binding/permease protein Multidrug 
Prokka annotation 74 mdtA_4 Multidrug resistance protein MdtA 
Prokka annotation 74 mdtB_1 Multidrug resistance protein MdtB 
Prokka annotation 74 mdtB_2 Multidrug resistance protein MdtB 
Prokka annotation 74 mdtC_2 Multidrug resistance protein MdtC 
Prokka annotation 78 xerC_3 Tyrosine recombinase XerC 
Prokka annotation 80 xerC_4 Tyrosine recombinase XerC 
Prokka annotation 89 lnrL Linearmycin resistance ATP-binding protein 
Prokka annotation 89 lnrN Linearmycin resistance permease protein LnrN 
deepARG 89 syrM1 HTH-type transcriptional regulator SyrM 1 
deepARG 92 Udaeo2_28300 Putative multidrug export ATP-binding/permease protein Multidrug 
Diamond 94 recA Protein RecA 
deepARG 98 tcrA Transcriptional regulatory protein Glycopeptide 

Table S5 continued: 
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Detection 
strategy 

Contig/ 
scaffold Annotation Product 

deepARG predicted 
resistance 

Prokka annotation 99 Udaeo2_29330 macB: subunit of efflux pump conferring antibiotic resistance 
Prokka annotation 99 Udaeo2_29350 macB-like periplasmic core domain protein 
Prokka annotation 99 yknY_4 putative ABC transporter ATP-binding protein YknY 
Prokka annotation 99 Udaeo2_29370 HlyD family secretion protein 
Prokka annotation 106 mdtA_5 Multidrug resistance protein MdtA 
Prokka annotation 106 mdtC_3 Multidrug resistance protein MdtC 
Prokka annotation 109 Udaeo2_30640 Metallo-beta-lactamase superfamily protein 
Prokka annotation 110 macB_4 Macrolide export ATP-binding/permease protein MacB 
Prokka annotation 110 Udaeo2_30740 MacB-like periplasmatic core domain protein 
Prokka annotation 110 Udaeo2_30700 MacB-like periplasmatic core domain protein 
Prokka annotation 110 Udaeo2_30690 MacB-like periplasmatic core domain protein 
Prokka annotation 110 Udaeo2_30660 macB: subunit of efflux pump conferring antibiotic resistance 
Prokka annotation 110 Udaeo2_30670 macB: subunit of efflux pump conferring antibiotic resistance 
deepARG 112 stp Multidrug resistance protein Stp Tetracenomycin_C 
deepARG 116 blaP Beta-lactamase Beta-lactam 
deepARG 125 Udaeo2_32650 Metallo-beta-lactamase superfamily protein Beta-lactam 
Prokka annotation 131 Udaeo2_33250 Transposase IS116/IS110/IS902 family protein 
Diamond 132 xerC_5 Tyrosine recombinase XerC 
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6. Discussion 
 

Before antibiotics were discovered, bacterial infections were difficult to treat and often ended with the 

death of the patient. Due to the current antibiotic resistance crisis, notorious diseases that finally 

became treatable with the discovery of antibiotics in the 20th century, such as tuberculosis (caused by 

Mycobacterium tuberculosis), diphtheria (caused by Corynebacterium diphtheriae), typhoid fever 

(caused by Salmonella enterica serovar Typhi) or leprosy (caused by Mycobacterium leprae), can today 

become problematic again. In fact, infections with antibiotic resistant strains of all mentioned bacteria 

have already been reported (predominantly with respect to developing countries) (Zignol et al. 2016; 

Mina et al. 2011; Zaki and Karande 2011; Cambau et al. 2018). Especially nosocomial infections with 

multidrug resistant (MDR) pathogens occur frequently and pose a serious threat to human health 

(Santajit and Indrawattana 2016; Partridge et al. 2018; Spigaglia, Mastrantonio, and Barbanti 2018). In 

future, this development may worsen considerably, if antibiotic misuse and environmental pollution with 

antimicrobials is not properly addressed. As a matter of fact, predictions suggest that we may even find 

ourselves in a post-antibiotic era where common bacterial infections can no longer be treated 

adequately (Runcie 2015; Reardon 2014). 

The soil bacterial resistome is most likely the origin of many pathogen encoded antibiotic 

resistance genes (ARGs), due to the circulation of ARGs between soil, human and livestock, fostered 

by the evolutionary pressure from antibiotic application and pollution (Bengtsson-Palme, Kristiansson, 

and Larsson 2018). However, a comprehensive understanding about properties and factors influencing 

the soil resistome which possibly affect the development of antibiotic resistant pathogens, is still lacking. 

To improve this fragmentary knowledge, three different aspects with respect to the soil resistome were 

addressed in this thesis. First, information on how human practices and existing soil characteristics 

affect the soil resistome was gathered. On this account, medically relevant ARGs and mobile genetic 

elements (MGEs) were quantified in soil DNA from 300 forest and grassland sample plots from the 

Biodiversity Exploratories. Second, knowledge about the still widely untapped variety of ARGs within 

the soil resistome was extended via functional screenings of grassland and forest soil metagenomic 

libraries. As previous findings indicate that the soil bacterial community represents the major driver for 

the soil ARG content (Forsberg et al. 2014), the third research focus was placed on a globally abundant 



 

 

120 

 

but so far poorly characterized soil bacterial genus designated Candidatus Udaeobacter. In this context, 

the response of Ca. Udaeobacter towards antibiotic exposure was investigated to gain knowledge about 

the resistance properties of these organisms. 

6.1.  Anthropogenic and natural effectors of the soil resistome 

The aminoglycoside resistance genes aac(6′)-Ib and aacC1, the beta-lactamase genes blaIMP-12 and   

blaIMP-5, the MLS (macrolide, lincosamide and streptogramin) resistance gene ermB, the macrolide 

resistance gene mefA, the tetracycline resistance gene tetA as well as IncP-1 plasmids and class 1 

integrons were quantified based on grassland and forest soil DNA from all 300 EPs of the Biodiversity 

Exploratories. Land use practices and soil features that influence the abundance of these target ARGs 

and MGEs were identified with a combination of two statistical analyses. First, binomial regression 

analysis was conducted to determine parameters influencing the occurrence of the mentioned targets. 

For this purpose, CT values (the number of cycles within a real-time quantitative PCR reaction required 

for the fluorescent signal to cross a fixed threshold) were transformed into binary data. More precisely, 

non-detects (CT values ≥ 37) and detects (CT values < 37) were represented by “0” and “1”, respectively. 

Additionally, left censored regression analyses were carried out to estimate shifts in the abundance of 

the selected targets without having to substitute or discard non-detects. 

This combined statistical approach enabled the acquisition of valid results, despite low 

detection frequencies. This is due to the left censored regression approach which addresses the issue 

of non-detects in real-time quantitative PCR data, also referred to as censored values. In many studies, 

non-detects are substituted or discarded, to be able to use the remaining abundance data (Karkman et 

al. 2016; Dungan, Strausbaugh, and Leytem 2019). However, this can lead to false conclusions, as 

non-detects do not imply that the target sequence does not occur or is present at similar levels in all 

samples. It merely implies that its concentration lies below the detection threshold and is, thus, not 

measurable (McCall et al. 2014). Deleting non-detects, can also notably falsify statistical outcomes, as 

the proportion of censored values and uncensored values is a statistically important information (Helsel 

2011). In fact, ignoring data points from non-detects has led to severe consequences in the past. For 

instance, NASA statisticians failed to include censored data in their analysis on the correlation between 

temperature and O-ring (component of the rocket booster necessary for sealing in gas) failure, which 
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contributed to the death of seven people (Helsel 2011; Rogers et al. 1986). However, as non-detects 

were addressed properly in the present study, the results on land use practices and soil properties, 

affecting the abundance of medically relevant ARGs and MGEs in soil are robust and provide reliable 

information about effectors of the soil resistome. Due to the fact that three different geographic regions 

(located up to 700 km apart) were considered, the determined effectors potentially do not solely apply 

to specific environments, but rather influence the soil resistome in general. The identified effectors 

include land use type (grassland or forest), nitrogen input from organic fertilization, mowing frequency, 

soil pH and water content, forest soil fungal diversity as well as dominant tree type in forests. 

It was found that the abundance of all target ARGs and MGEs, except the two beta-lactamase 

genes, were significantly elevated in grassland soils in comparison to forest soils. This may be explained 

by a higher pH (Chapter 3.2 Table S1), and a concomitant shift in microbial community composition in 

grassland soils, which is considered, as stated previously, the primary driver of the soil resistome 

(Forsberg et al. 2014). However, the closer proximity of grasslands to anthropogenic activities, including 

the use of antibiotics in human and veterinary medicine, could also play an important role. This 

assumption is supported by the significantly positive impact of organic nitrogen input through organic 

fertilization on the abundances of mefA and sul2, identified in this thesis. The abundances of these 

resistance genes are most likely increased in organically fertilized soils, as elevated amounts of 

antibiotic resistant bacteria (ARBs) and ARGs in manure, caused by selective pressure within the 

gastro-intestinal system of treated livestock, get in contact with the soil microbial community 

(DeFrancesco et al. 2004). In fact, livestock waste contains more (pig and chicken manure) or similar 

(cattle manure) amounts of ARGs in comparison to hospital waste (Figure 4) (He et al. 2020). To 

decrease this excessive ARG concentration in livestock manure, treatment processes, such as 

anaerobic digestion, have previously proven effective (He et al. 2020; Sun et al. 2016) and should 

therefore be applied more regularly. 
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Figure 4 Abundance of selected ARGs in different livestock wastes versus hospital and municipal waste. 
The figure was adopted from He et al. 2020. Further information regarding the depicted genes can be derived from 
tables S2 and S5 of the same study. 

Abbreviations: tet, tetracycline resistance genes; sul, sulfonamide resistance genes; erm, MLS resistance genes; 

fca, fluoroquinolone resistance genes, bla, β-lactam resistance genes. 

 

Another important aspect is that applied antibiotic substances are, to a large extent, excreted 

functionally by treated animals, accumulate in manure and thus potentially establish a selective 

pressure. This promotes the acquisition and maintenance of resistance mechanisms with respect to the 

soil microbiome (Berendsen et al. 2015; Holman, Yang, and Alexander 2019; United States 

Pharmacopeial Convention. 2007). To receive indications about veterinary practices which may be 

problematic in terms of accumulation of medically relevant ARGs in the soil resistome, a survey was 

conducted with German veterinarians dealing with commonly applied antibiotic substances for the 

treatment of livestock. In this context, evidence indicating that the mefA abundance in soil may be 

influenced by the application of tulathromycin, used for treatment of bovine respiratory diseases in 

calves and young cattle, was gathered. The long elimination half-life of this antibiotic appears 

particularly problematic, as it implies that it persists for longer times in subinhibitory concentrations in 

the system of the treated animal, which is suspected to promote the development of antibiotic resistance 

(Blondeau 2005). Additionally, metaphylactic treatment, where an entire group of newly purchased 

calves is treated when one animal falls sick, is common practice in German conventional cattle farms 

and probably contributes notably to the amount of utilized tulathromycin. It is therefore reasonable to 

investigate resistance development upon treatment with antibiotics exhibiting long elimination half-lives 

more deeply in the future, likely leading to further restrictions for the usage of these antibiotics. 
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The elevated abundance of sul2 in organically fertilized soils may be linked to the wide 

prescription range for sulfonamide antibiotics, as this leads to the application of these substances 

against a huge variety of different conditions in cattle. Sulfonamide resistances usually apply to all 

substances of this antibiotic family (Werckenthin and Schwarz 2003). Therefore, it is advisable to 

reconsider the prescription range for a selection of these substances in order to prevent the 

development of sulfonamide resistant human pathogens. Generally, the input of veterinary antibiotics, 

ARGs and ARBs into the soil microbial community could be limited best by decreasing the practice of 

factory farming which is associated with a higher risk of infection and thus a more frequent application 

of antibiotics (Anomaly 2015; Pluhar 2010). Furthermore, less factory farming would additionally 

decrease the amount of produced manure which is applied onto fields. At the same time, this would 

limit changes in the soil microbial community which could potentially be evoked through contact with 

the gut microbial bacteria of untreated animals (Udikovic-Kolic et al. 2014). 

With respect to the abundance of the aminoglycoside resistance gene aac(6’)-lb, we 

determined a positive correlation with mowing frequency. A possible explanation for this correlation 

could be the uptake and accumulation of antibiotics by plants and the resulting development of resistant 

endophytes that may come into contact with the soil microbial community when plants are cut 

(Lillenberg et al. 2010; Hu, Zhou, and Luo 2010). Additionally, plants can release toxic aromatic 

compounds, root exudates, signaling molecules and antimicrobial substances upon mowing, which 

possibly induce elevated expression of ARGs by the soil microbial community (Alonso, Sanchez, and 

Martinez 2001; Yergeau et al. 2014). Antibiotic substances, distributed in the environment via surface 

water run offs, dust or wild animals, may also be involved in resistance development in areas which are 

not directly exposed to manure, and could therefore contribute to an increase in the abundance of 

aac(6’)-lb and other ARGs (Allen et al. 2010).  

Looking at the forest samples, it was determined that the beta-lactamase gene blaIMP-12 is more 

abundant at sites with beech trees and a high fungal diversity. The gene product of blaIMP-12 is an 

enzyme that cleaves aminopenicillins, carbapenems and cephalosporins (Docquier et al. 2003), the 

latter being synthesized by the filamentous fungus Acremonium chrysogenum (Burton and Abraham 

1951; Pöggeler, Hoff, and Kück 2008). The natural synthesis of antibiotics by soil fungi as a means to 

take up nutrients from lysed bacterial cells when many competitors for resources are on site, evidently 
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contributes to an increased blaIMP-12 abundance. Furthermore, the connectedness between the soil 

fungal community and the dominant tree species (Goldmann et al. 2015) is indicated, as both, beech 

trees and a high fungal diversity, affect blaIMP-12 abundance. 

In summary, this study investigates how abundances of genes conferring antibiotic resistance 

vary between soils affected by different land use types and practices. This includes antibiotics, such as 

aminoglycosides, macrolides, aminopenicillins, carbapenems and cephalosporins, all classified as 

critically important antibiotics for human health, as well as tetracyclines and sulfonamides, classified as 

highly important for human health (World Health Organisation 2019). In future studies, genes conferring 

resistances to further critically important antibiotics, such as glycopeptides (e.g. vancomycin) or 

phosphonic acid antibiotics (e.g. fosfomycin), should be investigated comprehensively. Glycopeptide 

and phosphonic acid antibiotics are generally not authorized in veterinary medicine for food producing 

animals in Germany (Silley and Stephan 2017), yet their abundance may still be elevated due to organic 

fertilization. The integration of intestinal bacteria of untreated livestock through application of manure 

into the soil microbiome has previously been shown to increase the abundance of genes conferring 

resistance against a variety of antibiotics, including vancomycin (Udikovic-Kolic et al. 2014; Hu et al. 

2016). Furthermore, antibiotic treatment of livestock with a specific antibiotic could still elevate the 

abundance of genes conferring resistances against other antimicrobials, as MGEs, such as the IncP-1 

plasmids can accumulate ARGs of many different classes (Popowska and Krawczyk-Balska 2013). In 

the light of our findings, the mentioned effect is particularly relevant since the abundance of the 

quantified IncP-1 plasmids and class 1 integrons was significantly elevated in grasslands. 

6.2.  Novel sulfonamide and tetracycline resistance genes from forest and 

grassland soils 

Function-based metagenomic screenings are still the only means to identify entirely novel classes of 

genes and do not depend on prior information about related gene products, as it is the case for 

sequence-based approaches (Simon and Daniel 2011). Therefore, forest and grassland soil 

metagenomic libraries from sampling sites of the Schorfheide-Chorin and Schwäbische-Alb 

exploratories were subjected to function-based screenings for novel sulfonamide and tetracycline 

resistance genes. Four sulfonamide and four tetracycline resistance determinants showing only 46-
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76% identity to known proteins from a variety of different taxa were identified. The respective range of 

taxa includes dominant gram-negative and gram-positive phyla (Proteobacteria, Bacteroidetes and 

Actinobacteria) previously detected in soils of the sampling sites by Kaiser et al. (2016). This underlines 

the efficiency of Escherichia coli as host for expression of ARGs from distinct origins. Nevertheless, a 

different expression host could potentially lead to the identification of some specific candidates that 

cannot be expressed by E. coli. The gram-positive Bacillus subtilis would be a promising candidate, as 

it is an established heterologous expression host (Cui et al. 2018) and belongs to the phylum of the 

Firmicutes, which includes the human pathogenic species Staphylococcus aureus and 

Clostridium difficile. Even though Forsberg et al. (2014) previously found that E. coli can express ARGs 

from Firmicutes, it remains doubtful that all possible resistance determinants can be found when 

functional screenings are performed exclusively with this species. Thus, considering other expression 

strains during metagenomic library screening potentially contributes to the development of a more 

holistic picture of the unexplored parts of the soil resistome. 

The identified tetracycline resistance genes all code for major facilitator superfamily (MFS) 

efflux pumps which are mostly monomeric transporters that can extrude harmful substances out of the 

bacterial cell (Pasqua et al. 2019). Another study, in which soil metagenomic libraries were screened 

for tetracycline resistance genes, also identified MFS pumps as main resistance determinants (Wang 

et al. 2017). Together with our findings this indicates that these efflux pumps are a common tetracycline 

resistance mechanism in soil microbial communities in general. This is not surprising, as MFS pumps 

are the most abundant and diverse group of transporters throughout all domains of life (Du et al. 2018). 

They function not only as drug efflux pumps but are also extremely versatile due to a wide range of 

different substrates (Pasqua et al. 2019). MFS pumps can confer resistance against different classes 

of antibiotics and, due to their frequent occurrence on plasmids, may even spread throughout microbial 

communities via horizontal gene transfer (HGT) (Pasqua et al. 2019; Xian-Zhi and Nikaido 2009; Shi et 

al. 2018). Furthermore, specific MFS pumps can extrude several antibiotics out of the bacterial cell and 

are therefore classified as multidrug efflux (MDR) pumps (Du et al. 2018). Nevertheless, in this thesis, 

cross-resistance could only be observed for one candidate gene, where a fourfold increase in the 

minimal inhibitory concentration of lincomycin was measured. Other than that, the identified MFS 

transporters are tetracycline-specific which does not necessarily imply that they confer resistance to all 
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antibiotics of the tetracycline class. In fact, (semi-)synthetic substances, such as tigecycline, 

omadacycline and eravacycline were recently designed and are functional against strains, resistant to 

other tetracycline representatives (Grossman 2016). Due to the recurrent tetracycline resistance of 

human pathogens, these (semi-)synthetic substances are mostly applied in the clinical frame nowadays 

(Grossman 2016). Hence, the effectivity of the here discovered MFS pumps against these tetracyclines 

is of interest and would provide information regarding their medical relevance. Furthermore, functional 

screenings for novel resistances towards the new (semi-)synthetic tetracycline substances in soil 

metagenomic libraries may provide information about further potentially clinically relevant ARGs of the 

future. One example for such a medically relevant resistance determinant with environmental origin is 

a flavin-dependent monooxygenase, encoded by tetX, which degrades tetracyclines, including 

tigecycline (Moore, Hughes, and Wright 2005). Notably, tetX was first discovered on transposons, 

harbored by Bacteroides fragilis, which is a commensal bacterium of the human colon (Speer, Bedzyk, 

and Salyers 1991; Huang, Lee, and Mazmanian 2011). However, highly homologous genes are 

encoded by bacteria colonizing soil (Cytophaga hutchinsonii, Streptomyces coelicolor, and 

Streptomyces avermitilis) which indicates that tetX evolved in this habitat and has potentially been 

mobilized (Yang et al. 2004).  

All four sulfonamide resistance genes, identified in this study, encode a dihydropteroate 

synthase (DHPS). DHPSs catalyze the synthesis reaction from para-aminobenzoic acid (pABA) and 

dihydropteroate diphosphate to dihydropteroic acid in the folic acid synthesis pathway (Bermingham 

and Derrick 2002). Sulfonamides are synthetic antibiotics which competitively inhibit DHPSs because 

they are structural analogues of pABA (Sammes and Taylor 1990). Since folic acid is a coenzyme for 

synthesis reactions of purines, pyrimidines, and methionine, sulfonamides lead to the impairment of 

vital metabolic functions, such as DNA synthesis (Tibbetts and Appling 2010; Revuelta et al. 2018; 

Maddison, Watson, and Elliott 2008). Resistance against these antibiotic substances develops relatively 

fast and is mostly conferred through alternative DHPS variants (Sköld 2000). So far, four DHPS variants 

(sul1-4) are known to confer acquired sulfonamide resistance (Jiang et al. 2019). They are encoded on 

mobilizable or conjugative plasmids of different incompatibility groups and class 1 integrons (Jiang et 

al. 2019). Previous findings suggest that sul1-2, sul3 and sul4 were decontextualized by mobilizing the 

corresponding chromosomally encoded DHPS gene (folP) from Rhodobiaceae, Leptospiraceae and 
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Chloroflexi, respectively (Sánchez-Osuna et al. 2019; Razavi et al. 2017). The mobilization events most 

likely took place upon selective pressure established through pollution with antimicrobials, as shown for 

sul4 (Razavi et al. 2017). Interestingly, the resistance of the folP variants which potentially represent 

the origin of sul1-3, is suspected to predate the discovery of antibiotics, suggesting that bacterial pan-

genomes also encode for resistance mechanisms against synthetic antibiotics, prior to their discovery 

and application (Sánchez-Osuna et al. 2019). Sánchez-Osuna et al. (2019) explain this observation 

with other fitness benefits that are provided by the mutational changes which confer resistance as a 

side effect. The here reported findings substantiate this theory, as non-mobile sulfonamide resistance 

genes with distinct phylogenetic relation were identified in metagenomic DNA from forest soil without 

history of exposure to these synthetic drugs (Chapter 4 Figure 2, chapter 4.1 Table S1). This further 

underlines the relevance of functional screenings for genes conferring resistance against synthetic or 

semi-synthetic antimicrobial substances in soil metagenomic libraries. In addition to tigecycline, the 

synthetic fluoroquinolones or semi-synthetic derivates of chloramphenicol (e.g. florfenicol) would be a 

logical choice for screening agents, as corresponding resistances against these critically important 

antibiotics are especially relevant (World Health Organisation 2019). 

The inserts, harboring one MFS pump and one DHPS, encode potential gene products which 

show similarity to an endonuclease and a superfamily 2 helicase, respectively. It is possible that these 

gene products contribute to HGT, yet the evidence is vague and requires further investigations. To 

receive more stable evidence for possible mobilization of the resistance determinants, it would, 

therefore, be reasonable to perform functional screenings with fosmid or cosmid vectors, in addition to 

plasmid libraries. These vectors can integrate much larger DNA fragments (up to ~ 40 kb), rendering 

the investigation of genes flanking ARGs for evidence of mobilization more promising (Taupp, Mewis, 

and Hallam 2011). Furthermore, large-insert metagenomic libraries would provide an opportunity to 

identify resistance determinants which cannot be detected by applying functional screenings of plasmid 

libraries. One reason for this is that regulator genes often control the expression of the resistant 

phenotype and can easily be lost in plasmid libraries, possibly rendering ARGs dysfunctional 

(Depardieu et al. 2007; Du et al. 2018). Furthermore, multimeric resistance determinants which are 

encoded by more than one open reading frame, like MDR pumps of the resistance nodulation division 

(RND) superfamily, could potentially be identified more frequently (Du et al. 2018). 
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6.3. Antibiotic resistance properties and lifestyle features of 

Ca. Udaeobacter 

As Forsberg et al. (2014) determined that the composition of the soil resistome correlates with the 

taxonomic structure of the corresponding microbial community, in this study, a globally abundant soil 

verrucomicrobial genus was analyzed to deepen our understanding of this correlation. The respective 

genus, Ca. Udaeobacter, can make up more than 30% of 16S rRNA gene sequences present in soil, 

with particularly high abundances in grassland soils (Figure 5) (Brewer et al. 2016). 

 

Figure 5 relative 16S rRNA gene abundance of the major five bacterial phylotypes across >1000 soils. 
Ca. Udaeobacter representatives sharing 99%16S rRNA gene sequence identity with the ribosomal clone “DA101” 

are colored blue and labeled as DA101. Other taxa are indicated in grey. Taxa are listed on the x axis in decreasing 

order of their median value (mid-line of each box). The upper and lower edge of the box represent the 25th and 75th 

percentiles, respectively and the whiskers indicate the range of points, excluding outliers. The figure was adapted 

from Brewer et al. (2016). Information on considered data sets from previously published studies are provided in 

Supplementary Table 1 of Brewer et al. (2016) and in the respective references in the publication. 

 

In general, Verrucomicrobia have long been under-recognized in studies dealing with the 

composition of soil microbial communities, as the majority of commonly used PCR primers do not match 
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their 16S rRNA genes during amplification (Bergmann et al. 2011). This, and the fact that no isolate is 

available for detailed physiological analysis, are the reasons for the limited amount of information about 

this bacterial genus. Current knowledge is primarily based on a single reconstructed genome of a 

phylotype termed Ca. Udaeobacter copiosus (Brewer et al. 2016). Conspicuously, this genome is, 

based on the current state of studies, unusually small (estimated size, ~2.81 Mbp) in comparison to 

other cosmopolitan soil bacteria (Brewer et al. 2016). It was therefore hypothesized that 

Ca. Udaeobacter species might have undergone genome streamlining whereby they have reduced 

energetically expensive metabolic pathways to increase efficiency for a life dependent on extracellular 

metabolites (Brewer et al. 2016). 

Our investigation has provided more specific information regarding the previously proposed 

lifestyle of Ca. Udaeobacter species. We found that representatives of Ca. Udaeobacter benefit from 

release of antibiotics in soil, as they are multi-resistant and most likely utilize nutrients released by 

antibiotic-  driven cell lysis, without having to bear the metabolic cost of antibiotic synthesis themselves. 

Bacteria, pursuing such a scavenging 

lifestyle are designated as antibiotic-resistant 

cheater cells (Figure 6) (Leisner, Jørgensen, 

and Middelboe 2016). With respect to 

Ca. Udaeobacter this hypothetical lifestyle is 

supported by significant growth of bacteria 

belonging to this genus, as a response to 

treatment of soil with highly concentrated 

mixtures of up to six different antibiotics. 

Moreover, amino acid permeases and serine/threonine exchangers, vitamin B1, B12 and B9 salvage 

pathways and vitamin B12 importer proteins were identified upon investigation of a MAG derived from 

a representative of Ca. Udaeobacter, (referred to as Ca. Udaeobacter sp. in the following), which shows 

increased abundance after antibiotic treatment. These salvage pathways and transporter proteins 

support the hypothesis that Ca. Udaeobacter benefits from nutrients (e.g. vitamins and amino acids) 

released from antibiotic-driven cell lysis. Furthermore, several ARGs were detected, providing 

protection against released antibiotics. Especially MDR pumps, macrolide efflux pumps and beta-

Figure 6 Overview of nutritional effect by antibiotic‐

driven predation on antibiotic‐resistant cheater cells. 
The figure was adapted from Leisner et al. (2016). 
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lactam resistance genes are enriched in the genome of this organism (Chapter 5.1 Table S5). This 

finding is consistent with results of Forsberg et al. (2014), according to which soil-dwelling 

Verrucomicrobia encode a variety of beta-lactam resistance genes. Another protective mechanism 

against antibiotics, encoded by the MAG, constitutes the glyoxylate bypass, copper/zinc superoxide 

dismutase and the catalase-peroxidase as means against oxidative stress caused by bactericidal 

antibiotics (Chapter 5) (Kohanski et al. 2007; Vinogradov and Grivennikova 2016; Ahn et al. 2016). The 

glyoxylate bypass also enables Ca. Udaeobacter to grow exclusively on substrates such as acetate, 

fatty acids, or ketogenic amino acids by skipping the oxidative decarboxylation steps of the TCA cycle 

(Dolan and Welch 2018) and thereby contributes to survival in the highly variable soil environment. 

Other features, which potentially contribute to survival in soils globally, are the biosynthetic arginine 

decarboxylase and putative lysine decarboxylase, conferring protection against acidic conditions. 

These two mechanisms may explain why the microcosms with acidic forest soils harbored a higher 

Ca. Udaeobacter abundance than those based on neutral grassland soils (Chapter 5.1 Figure S1 and 

Table S1). Contrary to this finding, Brewer et al. (2016) previously reported that Ca. Udaeobacter occurs 

in higher abundance in grassland than in forest soils (Brewer et al. 2016). Therefore, it would be 

interesting to analyze this trend more carefully in the future. This will be possible through the use of the 

quantitative real-time PCR primers, specifically targeting Ca. Udaeobacter, designed and validated in 

this study. 

A further probable lifestyle feature of Ca. Udaeobacter sp., is the aerobic oxidization of 

atmospheric H2 to sustain electron input into the respiratory chain at nutrient deprived conditions. This 

was found in the here reported MAG, and may also contribute to the high abundance of the 

corresponding genus in soils globally. In this context, Ca. Udaeobacter sp. encodes two machineries, 

a membrane bound NiFeS-hydrogenase, consisting of a small and large subunit, which is coupled to 

electron transport chains, and a soluble cytoplasmic bidirectional NAD-reducing hydrogenase (Friedrich 

and Schwartz 1993; Greening et al. 2016) (Chapter 5). It was recently validated that H2 scavenging is 

performed by several soil-dwelling species of Actinobacteria (Greening, Constant, et al. 2015). In 

addition, this has also been described for verrucomicrobial methanotrophs colonizing geothermally 

influenced surface soils (Carere et al. 2017). Based on the identification of membrane bound NiFe-

hydrogenases encoded by genomes of a variety of different soil bacteria it was hypothesized, that H2-
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oxidation is a widely distributed attribute of soil-dwelling prokaryotes (Greening et al. 2015). However, 

until now the here provided information is, to our knowledge, the first evidence linking hydrogenase 

genes specifically to the genus Ca. Udaeobacter.  

The 16S rRNA gene coverage of Ca. Udaeobacter sp. indicates that a single gene copy is 

present in the genome, which is consistent with previous predictions (Brewer et al. 2016; Větrovský and 

Baldrian 2013). Hence, the high fraction of Ca. Udaeobacter 16S rRNA genes in soil seems to derive 

from a high cell density instead of a high 16S rRNA gene copy number per cell. This is particularly 

relevant with respect to the global soil resistome as it consequently can be assumed that a high 

proportion of ARGs is encoded by Ca. Udaeobacter representatives. Even if the true average genome 

size of Ca. Udaeobacter representatives lies somewhere between ~ 2.81 Mbp 

(Ca. Udaeobacter copiosus) and ~3.67 Mbp (Ca. Udaeobacter sp.), the size difference compared to the 

estimated average genome size of soil bacteria (4.74 Mbp) (Brewer et al. 2016) does not relativize the 

here assumed huge proportion of Ca. Udaeobacter ARGs in the global soil resistome. In fact, 

Ca. Udaeobacter relative abundance is frequently more than two times higher than of other phylotypes 

and can even increase 100-fold upon addition of antibiotics (Chapter 5.1 Figure S1 and Table S3; 

Figure 5).  

Regarding the clinical relevance of ARGs carried by Ca. Udaeobacter, no resistance gene of 

pathogenic bacteria with a phylogenetic relation to this genus has been identified so far. However, 

absence of evidence does not mean evidence of absence. In fact, even though the ARGs encoded by 

Ca. Udaeobacter sp. are not encoded in synteny with MGEs, mobilization upon environmental antibiotic 

pollution and spread to pathogenic strains is possible, as it was likely the case for sul1-4 (Chapter 6.2) 

(Sánchez-Osuna et al. 2019; Razavi et al. 2017). Moreover, our results indicate that proximity to 

antibiotic usage entails a higher abundance of IncP-1 plasmids and class 1 integrons (Chapter 4 and 

6.1), increasing the chance for gene mobilization. Additionally, antibiotics release in soil lead to a 

significant increase in Ca. Udaeobacter abundance in our microcosm experiment, suggesting that these 

organisms likely represent winners of antimicrobial pollution. Taken together, antibiotic pollution of the 

soil environment leads to a high probability for mobilization of ARGs from Ca. Udaeobacter species, 

underlining the importance for in-depth studies of these organisms along with their resistance genes. 

Overall, the here presented lifestyle features along with the designed real-time quantitative PCR primers 
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will be valuable for future investigations and may contribute to the successful development of a 

cultivation approach for members of this genus. 
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