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1 Introduction

Modular forms first appeared in the theory of elliptic integrals and quadratic forms
in the nineteenth century. Since then they occupy a central role in number theory
and have numerous applications not only within the scope of number theory, but
also in other fields of mathematics, or even in string theory. A prominent example
is Taylor and Wiles’s proof of Fermat’s Last Theorem.

In the classical sense, modular forms are complex analytical functions f : H =
{z € C|Im(z) > 0} — C with a certain transformation behavior under a subgroup
" of SLy(Z) that is given by

az +b
cz+d

a b
102 = () = g = () e
where x is a character on I' and k is the weight of f. Furthermore, we require that
f satisfies the growth condition f(z + iy) <« y=" + y” for some fixed v.
A classic example is the theta series. We consider a positive, integral quadratic

form
q(z1,. .. Z Qs + Z QijTiT;

i#]

with corresponding matrix () = (¢;;) and let

0@Q.2) = ) e(5ale)?)

xeZ™

for e(x) := exp(2miz). Let N denote the level of @), which is the smallest integer
such that NQ~! is integral and has even diagonal entries. Then, 6(Q, z) is a
modular form of weight % with respect to the group

To(N) = { (i Z) € SLy(Z) | ¢ = O(modN)}

) _ %3 detQ (—1)m2_1cdetQ>

> if m is even and < y

and the quadratic character X(

if m is odd. Since 0(Q, z) = 0(Q, z + 1) we obtaln a Fourier extension

0(Q.2) = > r(n,Q)e(nz)

nz=0

where r(n,Q) = {x € Z™ | q(xr) = n} counts the number of representations of
n by the quadratic form g. Now, one of the main advantages of modular forms
comes into play. The space of modular forms of given weight k& on I' is finite and
algorithmically computable. In this way, we can approximate 6(Q), z) by another,



well-understood modular form and eventually obtain an asymptotic formula for
r(Q,n).

The theory of modular forms took a giant leap forward in 1937 when Hecke [25]
introduced averaging operators that give essential arithmetic information on the
underlying modular form. As a consequence, Hecke could interpret the Fourier
coefficients of a SLy(Z) cusp formEL that is a simultaneous eigenform of all Hecke
operators, as eigenvalues of these operators. Later, this theory was extended to
I'o(N) and characters by Atkin and Lehner [3]. For a “Hecke eigenform” of I'y(N),
the Dirichlet series L(f,s) = >}, -, a(n)n™® can be expressed as an Euler product

[ 1@ =Xp)p~ + x@p* ) (1)

p

where k is the weight of f and y its character. Using Mellin inversion, Hecke
proved that L(f,s) can be continued to a holomorphic function on the whole
complex plane and satisfies a functional equation relating L(f,s) to L(g,k — s)
where g(z) = 2Ff(=2). The work of Hecke was later simplified by his student
Petersson who introduced an inner product with respect to which Hecke’s operators
are normal. A direct consequence of this property is the existence of a basis of
Hecke eigenforms for the space of cusp forms.

Around the same time another direction was pursued by Siegel [55]. Inspired
by the quantitative theory of representing quadratic forms by quadratic forms, he
generalized the notion of modular forms to matrices of higher dimension. For two
positive integral quadratic forms in m and n variables given by matrices () and
2T he studied the number of representations

r(@Q.T)) = #{X € Myn(2) | ;XTQX -},
His starting point was a generalized upper half space
H,={Z=X+iYeM,(C)|Z" =2 Y >0}
and a generalized theta series
0Q.2)= Y e(;XTQXZ), ZeH,.
XEMpn(Z)

Just as its one-dimensional counterpart, it satisfies 0(Q, —Z ') = (det Q)'0(Q, Z).
Furthermore, as 0(Q, Z) = 0(Q, Z + S) for any symmetric, integer n x n matrix
S, this series admits a Fourier expansion

0(Q.2) = >, r(Q,T)e(tr TZ)

TeS,

YA cusp form is a modular form that satisfies f(x + iy) < yfg for z + iy € H. In terms of Fourier
expansions this means that the zeroth term a(0) vanishes.



where S,, denotes all n x n positive semi-definite, half-integer matrices with even
diagonal. With this in mind, Siegel considered holomorphic functions F' : H,, — C
that satisfy

F(MZ) = F((AZ + B)(CZ + D)) = (det(CZ + D))*x(M)F(Z2)

for M = <C D

A B) in a subgroup I' of Sp,, (Z) and a character y on I'. Recall that

SPon(Z) = {M € SLyn(Z) | MT J3uM = Jo}  for Jy, = <I _[") :

For n > 2 such a function is automatically holomorphic at the cusps as shown later
by Koecher [39]. Nowadays, they are called Siegel modular forms and for example,
0(Q, Z) transforms with respect to the group

n A B
(N = { (C D) € Spy, (Z) | C = o(modN)}
and the quadratic character

- (CE52)

As we have already seen for 6(Q, Z), a Siegel modular form F with respect to

Fén)(N) possesses a Fourier expansion F(Z) = > ;s A(T)e(trTZ). We say that
F' is a cusp form, if F' vanishes at all cusps. In terms of Fourier expansion, this
implies that the coefficients (at every cusp) vanish unless T is positive definite.

In comparison to classical modular forms, both the theory of Hecke operators and
L-functions become substantially more complex. For n = 2 there still exists a basis
of Hecke eigenform for the space of cusp forms. However, it is no longer possible
to express every Fourier coefficients in terms of Hecke eigenvalues. In addition,
the Fourier coefficients are attached to matrices instead of integers which makes
embedding them in an L-function cumbersome. As a consequence, L-functions are
defined for n > 2 as an Euler product rather than a Dirichlet series over Fourier
coefficients.

Nonetheless, the complexity of Hecke relations makes it difficult to define an
L-function using Hecke eigenvalues. A key difference to classical modular forms
is that Hecke operators at primes T'(p) are no longer sufficient to generate the
associated Hecke algebra. A solution is to consider Satake parameters instead.
These are tuples of n + 1 complex numbers that are constructed using informa-
tion about the Hecke algebra and are closely connected to the roots of the Hecke
polynomial. For n = 1, let y,, 81, denote the roots of the Hecke polynomial

(2)



1 = Ap)X + x(p)p"'X? cf. (I). Then, the Satake parameters (apgy,a1,) are
given by ag, = Bop and ag 01, = Bi1p. Thus, for n = 1 the L-function is given by

H(l —appp ) (1 — agparp )T
p

We generalize the concept above to a Hecke eigenform F' (of level 1) with Satake
parameters (g, ..., nt1,) Dy setting

L(s, F) = H(l —agpp ®) 7! H Z (1 — appiyp- - i pp )t

p r=11<i1<...<i<r

This function is holomorphic for Re(s) sufficiently large and is called the spinor
L-function. For n = 2 Andrianov [I] showed that L(s, F') can be meromorphically
continued to the entire complex plane and proved a functional equation relating
L(s,F) to L(1—s,F).

To evaluate L-functions, a standard technique is to consider families of L-
functions and obtain statistical results on average. This way, many problems
can be treated that are out of reach when specializing to a single L.function. A
classic example for such a family is the set of characters for a given modulus. This
approach enabled Dirichlet to link the problem of counting primes in arithmetic
progression to L-functions of Dirichlet characters. By L(1, x) > 0 for non-trivial x,
it follows that there are infinitely many primes of the form a + nd with (a,d) = 1.
More generally, the existence of a zero-free region of L(s, x) allows us to estimate
the distribution of primes and a larger width of the zero-free region implies more
accurate results.

To study L-functions of modular forms on average, the usual approach is to
sum over a suitable base of the underlying space of cusp forms and consider the
first and second moment on the critical line. For the spinor L-function of degree
two, these moments have been computed by Blomer [6] via a spectral summation
formula in the case of large weight. For this purpose, the moments are twisted
by a harmonic weight that - by a recent breakthrough - itself is the product of
two central L-values. Thus, Blomer actually evaluates a fourth moment. As an
application, various non-vanishing results for central L-values follow.

This dissertation focuses on the level aspect of Siegel modular forms of degree
two with respect to F(()Q)(N ). In the first part we compute a second moment of the
spinor L-function for large prime levels. In the second part, we prove an asymptotic
formula for the Fourier coefficients r(Q, T') of the Siegel theta series for squarefree
level. As a byproduct, we improve previous results for the Fourier coefficients
r(Q,n) of the classical theta series. All estimates are uniform in the level N,
meaning that, for every term, we meticulously keep track of the dependence on N.

Before we go into detail on the specific problems, we present an application that
shows the benefit of uniform bounds in the level. It is conjectured that every



natural number n = 3 (mod8), 5 { n is the sum of three squares of primes. By
current methods this problem is out of reach, but results can be obtained for almost
primes, cf. [3, Section 3.1] and [7]. The main tool is a powerful sieve that filters
out the small primes. The implementation of this sieve requires a good estimate
on the number of representations of n = % 4+ a3 + 23 with x; divisible by a not
too large squarefree number. More precisely, we need an asymptotic formula for
the number of representations

n = dix} + dyx; + d3a3, d; squarefree

that is uniform with respect to the coefficients d;, or in other words, the level of
the quadratic form dz? + d3z3 + d3x3. Altogether, this approach from Blomer
and Briidern yields that every n satisfying the congruence conditions above is
represented by three squares of almost primes. To the authors’ knowledge, the
best result so far is the representation by almost primes that each have at most
106 prime divisors, cf. [13].

1.1 Moments of Spinor L-functions

For the analytical theory of modular forms on congruence subgroups in GLy(Z),
spectral summation formulas such as the Petersson formula are a basic tool. A
primary component is a sum over Kloosterman sums and many applications rely on
a careful estimation of the latter. For Siegel cusp forms, Kitaoka [30] introduced an
analogue to Petersson’s formula that was extended in [I5] to include congruence
subgroups. In this case, however, the off-diagonal terms are very complex and
contain generalized Kloosterman sums that run over matrices in Sp,(Z). So far,
the literature on these sums is limited.

The aim of this part is to evaluate spectral averages of second moments of
spinor L-functions for Siegel congruence groups of large prime level by means of
the Kitaoka-Petersson formula. The core of this computation is the manipulation
of symplectic Kloosterman sums which may be of independent interest.

To state our results, we fix some notation. Let S,gz)(N ) denote the space of

Siegel cusp forms on F(()Q)(N) of weight k. For F.G € S,({?)(N), we define the
(unnormalized) Petersson inner product by

S dXdy
F,G) = F(Z)G(Z) (detY)* ——_. 3
(F.G) -~ (2)G(Z) (detY) et V)7 (3)
Any F € 5,22)(N ) has a Fourier expansion
F(Z) =) ap(T) (det T)> % e(t2(T'2)), (4)

Tes

with Fourier coefficients ap(T"), where . is the set of symmetric, positive definite,
half integral matrices T" with integral diagonal entries. We choose an orthogonal



basis B (V)" of newforms in the sense of [49] in S{”)(N) such that the adeliza-
tion of each element generates an irreducible representation and for each prime
p| N, F is an eigenfunction of the T5(p) operator, cf. (14)).

In the following, N is prime and N = 3 (mod 4) For F € B,iQ)(N)“eW of even
weight k, we let L(s, F') denote the spinor L-function, normalized so that its critical
strip is 0 < Rs < 1. This is a degree 4 L-function. Furthermore, we set

/2 ap 2
W N = T(47T)3_2kf(k —3/2)I'(k — 2) | 7 F(% : (5)

where [ is the 2 x 2 identity matrix. These “harmonic” weights appear naturally in
the Kitaoka-Petersson formula. Due to the non-normalization of the inner product
they implicitly contain a factor of [Spy(Z) : To(N)] = N® in the denominator. On
average, they are of size = N3, i.e. it holds by [I7, p.37] that

> wpy =1+ ONTEB), (6)

2
FeB (N)new

In addition, the weights wp y are related to central values of L-functions. This
remarkable conjecture is due to Bocherer and was recently proven in [20, Theorem

2 & Remark 6]. Let S (N)** T denote the space of newforms orthogonal to

Saito-Kurokawa lifts. For F' e S,iz)(N )2e% T that satisfy wpy # 0, we have by [17,
Theorem 1.12] that

_ L(1/27F)L(1/27F x X*4)
WEN = CTTONSL(1, e, Ad) (M)

where L(s,7r, Ad) denotes the degree 10 adjoint L-function and ¢ is an explicit
constant depending on F', see Lemma [8]

Let ¢1, g2 be two fixed coprime fundamental discriminants (possibly 1) and de-
note by x,, the character which maps x to the Kronecker symbol (%)

Theorem 1. For k = 10 and a prime N = 3 (mod 4) it holds that

D wen L(1/2, F x x¢,)L(1/2, F % xg,) = main term +Oy, g, k(N %),
FeB(? (N)new

(8)

where the main term is the residue at s =t = 0 of the expression and o = %
for kZ > 20 and o = Z—ﬁ for k < 18. In particular, if ¢ = g2 = 1, the main term
equals

;lL(l, X_4)*Pi(log N) 9)

2The assumptions N = 3 (mod 4) is required for local non-archimedean computations in [I7] and Section
The cited results from [I7] hold for squarefree N with prime divisors p = 3 (mod 4).

10



for a certain monic polynomial Py of degree 3 depending on k.
If 1,0 € {1, —4}, the main term equals

2L(1, x-4)"P2(log N) (10)

for a certain monic polynomial Py of degree 2 depending on qi,qs and k.
If q1, qo are two coprime integers different from 1 and -4, the main term equals

4L(1> Xq1)L(17 Xf4q1)L(17 qu)L(la Xf4q2)L(1> Xq1Q2)' (11)

In view of Bocherer’s conjecture, Theorem [I] even evaluates a fourth moment of
central values and a degree 16 L-function.

For large weights and the full modular group, i.e. N = 1, Blomer [6] shows a very
similar result and the proof of Theorem [1| is based on his work. While obtaining
a uniform estimate in weight k& and level N is principally possible, this requires
however a Petersson formula for newforms. In the GL(2) case, such a formula
is well-known and derived by first constructing an explicit orthogonal basis of
oldforms and then, applying Mébius inversion to sieve these forms out, cf. [42].

The main difficulty of proving Theorem [I] is treating the off-diagonal contribu-
tion in the Kitaoka-Petersson formula. This term is a sum over Bessel functions
and symplectic Kloosterman sums whose “moduli” run over integral 2-by-2 ma-
trices with all entries divisible by N. Consequently, we decompose each Klooster-
man sum into two parts, separating a Kloosterman sum of modulus N I that is
straightforward to handle. After applying Poisson summation, we see that the
sum vanishes unless a specific congruence condition is fulfilled. In this way, only
matrices in GOy(Z) = R - O(2) n Maty(Z) survive as possible moduli for the
remaining Kloosterman sums. This corresponds to the case of large weight in [6]
and the remaining term can be computed in exactly the same way. In contrast
to Blomer, who uses special features of Bessel functions, we manipulate symplec-
tic exponential sums and evaluate congruences. Hence, this work can be seen
as a non-archimedean version of [6], where the analysis of oscillatory integrals is
replaced - in disguise - by its p-adic analogue.

The contribution of Saito-Kurokawa lifts to the left hand side of is very
small. If f is the elliptic modular newform corresponding to the lift F', then wgn
is related to central L-values of f, i.e. by [I7, Theorem 3.12] we have that

3(2m) T(2k —4) L(1/2,f x x_4)

WEN T TNST(2k — 1) L(3/2, /)L(L, £, Ad)’ (12)

Applying simply the convexity bound for central L-values, we see that the contri-
bution of the O(N) Saito-Kurokawa lifts is O(N~%/4*¢).

Let B (N)""T denote a basis of S (N)"™T with the same properties as in
Theorem . By applying @, Cauchy-Schwarz and 7 we getﬂ

3We use the superscript T for the space orthogonal to Saito-Kurokawa lifts since conjecturally the
associated local representations are tempered everywhere.

11



Corollary 2. For k > 10 and a sufficiently large prime N = 3 (mod4), it holds
that

Z 1 N N3
L(1 Ad log N)2

FeB? (N)rew:T (1,75, Ad) — (log NV)
wp, N#0

In particular, if L(1,7;, Ad) has no zeros in |s —1| « N~¢, then N3¢ forms
Fe B,(f)(]\/')neW’T satisfy wpn # 0 and thus L(1/2, F)L(1/2, F x x_4) # 0.

Moreover, we get the following quadruple non-vanishing result:

Corollary 3. Let g1 and gy be any two coprime fundamental discriminants and
let N be sufficiently large. Then, there exists F' € S,EQ)(N)”W’T such that

L(1/2, F)L(1/2, F x x—4)L(1/2, F x x4, ) L(1/2, F x x4,) # 0.

1.2 Representation of integers by quadratic forms

A positive integral mxm matrix ) with even diagonal entries gives rise to a
quadratic form ¢(z) = %xTQx. It is one of the classical tasks of number theory
to study which numbers n are represented by ¢ or more precisely to count the
number of solutions

r(g,n) = #{x e Z™|q(x) = n}.

The first general result is due to Tartakowsky [58] who showed in 1929 by means
of the Hardy-Littlewood method for m > 5 that r(q,n) = 1 if n is sufficiently large
and locally represented by ¢ meaning that for all primes p there exists a p-adic
solution z, € (Z,)™ of n = q(z,).

For m = 4 the situation becomes more subtle. Even though z? + 32 + 722 + Tw?
represents every n locally, it fails over the integers to represent numbers of the form
37%k for k € Z. To eliminate this case, Tartakowsky makes the stronger assumption
that n is primitively locally represented by ¢ which means that there is a p-adic
solution z, of ¢(z,) = n for all primes such that at least one entry of z, is a unit
in Z,. With this condition, he manages to extend his result to m = 4.

In the work of Tartakowsky the lower bound for n is not made effective and
it is not clear how it depends on (). Especially the latter is important for many
applications. The first finding in this direction is due to Watson [62] who shows
that a locally represented integer is represented by ¢ if

5 41
. {(detQ)m m 5<m<0,
> 1

5
(det Q)1+ m = 10.



By choosing another analytical approach, Hsia and Icaza [26] obtain an effec-

tive lower bound of size (det Q)%;ﬁ% which improves the exponent of Watson
if m = 5,6. Furthermore, Browning and Dietmann [12] improve the exponent in
the cases 7 < m < 9 by applying a modern version of the Hardy-Littlewood circle
method, cf. [12, Table 1].

To address the case m = 4, Browing and Dietmann make the assumption that
for all primes p and k € Z there exists z € Z* such that

;xTQx =n(modp*) and Qz # 0 (modp”) (SLC)
where 7 = 1 if p is odd and 7 = 3 for p = 2. If this strong local solubil-
ity condition holds, they obtain a lower bound of size (det@Q)*h(Q)%¢
where h(Q) is the size of the largest coefficient (in absolute values) which sat-
isfies (det Q)7 < h(Q) < det Q.

A much broader array of results for m = 4 is obtained via the theory of modular
forms and theta series by Rouse [45]. Let N denote the level of (). Rouse shows
that r(q,n) = 1 if n is locally represented by ¢ and

« n» (N2(det Q)7 + N2det Q)N and  (n,N) =1,
e n» (Ni(detQ)i + N3det Q)N and n satisfies (SLC),
e n» (N3(det Q)7 + N3det Q)N¢  and n primitively locally represented.

In this thesis, we refine Rouse’s approach and extend it to m > 5. The key
difference is our estimation of the Petersson inner product of the cuspidal part of
the theta series. By rather elementary methods that are based on [4], we obtain a
considerable sharper bound than [45, Theorem 3].

For a diagonal form ¢ we let a denote the product of its two largest coefficients.
For all other forms, we set a = (det Q)%

Theorem 4. Let q(z) = 27 Qx denote a positive, integral quadratic form in m > 4
variables. Then, n is represented by q provided that n is locally represented by q
and that

e (n,N)=1and

n>» N7

e <Ndet Q>mlz+€‘

\/a
e m =4, n satisfies (SLC|) and

N1+e<det Q>2
—CL .

n> N3¢+

13



e m =4, n is primitively locally represented by q and

det )

n>><N+ Ja

)N3+€N

where N = NI? with N squarefree.
m =5 and

n>» (N”mi (det\C/Q&\ﬁ) >N6 min (N, (det Q)’i i)ﬁ
for any 6 > 0 with (det Q)° < ledetQ(p2,det Q). If n satisfies (SLC)), we

can drop the minimum term.

Note that (SLC)) is satisfied for all n if N = pj*...ps and pmw] fdet Q. The
bounds in Theorem [ are not only an improvement in the case of m = 4 but also
for larger m. For example, for m = 6 and arbitrary n we obtain the condition

n» Nimin(N3, (det Q) %) + (det Q).

In general Theorem [ is favorable in comparison to previous results in those cases
where the determinant is relative large compared to the level or where is
satisfied.

Next, let us outline the proof of Theorem [4] Some of the interim findings are of
independent interest and have applications in other areas. Following a standard
approach due to Siegel, we approximate the theta series by an average over the
different classes in the genus of (). The difference is a cusp form and we write
0(Q,z) =0(gen @, z) + f(2). On the level of Fourier coefficients, this corresponds
to

r(@,n) = r(gen@,n) + a(n).
By Siegel’s Hauptsatz we have that

N\S

ns 1

T(genQan) - % Wnﬁp n Q
where

Bp(n, Q) = lim p o )#{m e (Z/p*Z)™ | ;mTQm = nmodp“}.

a—00
To evaluate the p-adic densities, we follow the work of [24] and [45]. If n is
(primitively) locally represented by @ for all primes this yields
N~ if n satisfies [SLC]
[[6,(n.Q) »{ N2N"z it m = 4,
P N‘Emax( L (det Q) m- 4) if m>5,

14



where N = N2 with N squarefree. To bound the Fourier coefficients of the
cusp form f(z) = >} ., a(n)e(nz) we apply either the Petersson formula, cf. [27,
Corollary 14.24], or Deligne’s proof of the Ramanujan-Petersson conjecture. This
yields

a(n) < || fn% 2 min(N2,1 + ni(n, N)iN“2)(nN)"
where the norm is induced by the Petersson inner product
{f9) = f(2)g(2)y"*dx dy.
Lo (N)\H
By refining a proof of Blomer [4], we obtain:
Lemma 5. Let m = 3. Then, it holds for f(z) = 0(Q, z) — 0(gen Q, Z) that
Nz N
, L | V7= + 7)]\/‘5
S < (g v * va

As befog’e, a s the product of the two largest coefficients if q is diagonal and
(det Q)= in general.

Bounds of the cuspidal part of the theta series are useful in different contexts,
see for example [5], [21] or [47].
1.3 Representation of binary quadratic forms by quadratic forms

The representation of integers by quadratic forms is in fact a special instance of
a more general representation problem. For two integral, positive quadratic forms
in m and n variables given by () and 27" we study

HQ.T) = #{X € My (2) | ;XTQX -1},

Therefore, we consider the Siegel theta series

0Q.2)= ), e(;tr(XTSXZ))zZr(@,T)e(tr(TZ))

XGMQk,n(Z) TeSn

together with 6(gen @, Z) the corresponding weighted average over the genus.

These are both Siegel modular forms with respect to F(()z)(N ) and the quadratic
character (2). The crux of the matter is, however, that 0(Q,Z) — 6(gen@Q, Z)
vanishes only at zero-dimensional cusps and in general not at higher-dimensional
cusps. This complicates the computation of the error term considerably.
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The first result for n > 1 is due to Raghavan [44] who showed for m > 2n + 3
and min T > (det T')# that

r(Q,T) =r(gen@,T) + (’)((det T)™= (min T)Q"”*%)

where min7T = mina’Tx for 0 # x € Z™. The idea of proof is to express the
Fourier coefficients of g(Z) = 0(Q, Z) — 0(gen Q, Z) by

L g(Z) exp(—2mtr(TX))dX,

where Z = X + T~ runs over a cube & of side length 1 with one corner in ¢77.
The computation is based on a generalized Farey dissection that was introduced
by Siegel in [56, Section 8-9].

The Fourier coefficients of 6(gen @, Z) are evaluated by Siegel’s Hauptsatz:

n(2m n+1) m— n 1
T (detT
HgenQ,T) = = 5,(Q.T).
Hj:OF (— —j det Q2 H

For m > 2n + 3 Kitaoka [29] showed that [],d,(Q,T) is bounded from below by
a constant depending only on N. This gives an asymptotic formula for r(Q,T) if
min7" » (det T)%. However, latter condition is quite restrictive, as Minkowski’s
reduction theory already implies that min 7" « (det 7).

Furthermore, Kitoka [29] refined Raghavan’s method and managed for n = 2 to
get rid of the dependence on T of the lower bound of min7T". In addition, Kitaoka
[33] extended the result to m = 6 if n = 2 and stated an asymptotic formula for
r(Q,tTy) if (t, N) =1, t — oo and Ty is locally represented by Q.

For even m > 4n + 4 another approach is to decompose 6(Q, Z) — 6(gen Q, Z)
into a sum of Klingen-Eisenstein series and cusp forms of weight k& = 5. The
former arise as lift of cusp forms of lower degree and converge for k > 2n + 2.
Their Fourier coefficients were treated in detail by Kitaoka [31] who proved for

even k and T' > 0 that they are bounded by

(det T)*3 (minT) =
Naturally, the Fourier coefficients of Siegel modular forms grow more slowly and
are bounded by O(det T)g’ﬁ. By r(gen@,n) »y (det T') k=3 this gives an asymp-
totic formula for r(Q,T') if minT" goes to infinity and m > 4n + 4.

Recently, Ellenberg and Venkatesh [I8] achieved a breakthrough by applying
ergodic methods and obtained results even for the case that m = n + 3. These
findings are conditional, among other things, on the existence of primitive local
solutions and that T has a sufficiently large minimum and squarefree determi-
nant. However, at present, this approach neither gives an effective bound on the
sufficiently large minimum nor an asymptotic formula for r(Q,7T), cf [53].
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None of these findings give an efficient lower bound for min7T" and det 7. For
applications, it is particularly useful to know how the implied constant depends
on (). The aim of this thesis is to present an answer for the case n = 2, even
m > 12 and squarefree level. Therefore, we follow Kitaoka’s strategy of decom-
posing 0(Q,Z) — O(gen @, Z) into a sum of Klingen-Eisenstein series and cusp
forms. This involves the following steps:

e The principal task is to obtain uniform bounds in the level for Fourier coeffi-
cients of Klingen-Eisenstein series. Therefore, we modify Kitaoka’s approach
for the principal congruence subgroup [34] appropriately. This even yields an
explicit formula.

e Furthermore, we compute the Petersson inner product of the cuspidal part
of the Siegel theta series of degree two.

o To bound the coefficients of the genus theta series from below, we rely on the
work of [63] and [24] on the evaluation of p-adic densities.

For simplicity we assume that Klingen-Eisenstein series and cusp form transform
with respect to the trivial character. By the transformation behavior of the theta
series this implies that det () is a square. Furthermore, we restrict ourselves to the
case of prime level through most of the work. However, similar results hold for
squarefree level, cf. Theorem [74], and Section [4.4] contains a sketch of proof.

Theorem 6. Let m > 12 with 4 | m. Consider a positive, integral mxm matriz @
of odd prime level N such that det Q) is a square. A binary quadratic form T > 0
is represented by Q, i.e. T = XTQX s soluble for X € Z™*?, if N™* {det Q and

\/NdetQ g .
o)
N5(detQ)2)m25

a

2
minT » N'Fm=ste 4 (

det T > N“E(

As before, azis the product of the two largest coefficients of q if q is diagonal and
a = (det Q)= otherwise.

Remark. If (det T, N) = 1 we may drop the requirement that N™~* { det Q,
see Section [4.3.4] For (min7, N) = 1, the exponent in the lower bound of min T’

. 2 2
improves from == to —=5.

The condition concerning the minimum of 7" coincides with our results for the
one-dimensional case. Indeed, if ' = X7QX is soluble for X € M,, »(Z), then also

1
WITW = 5XTQX (13)
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for any W € Gly(Z). For T = f o ta/2 and W = (" ") the upper left
t2/2 t4 wg *
entry of ([13)) implies that

1
wftl + wywsty + w§t4 = inQx

is soluble in z € Z™ for any coprime choice of wy,ws. Hence, in particular min 7’
is represented by @ and applying Theorem [] gives the first line of Theorem [6]

Lastly, we outline the proof of Theorem [6] As N is prime, there are only two
one-dimensional cusps. Hence, every Klingen-Eisenstein series can be written as a
linear combination of

E(f,Z) = > i (Z)7* fi(r(M Z))
MeP(N)\I'? (W)
and

Ex(f Z) =Nt > ju(NZ)Ff(r(M(NZ)))

MeP(N)\IS? (N)J4

for f1, f> € Sp(N) and P(N) = {M € TS (N) | A(M) = (0,0,0, )}, where A(M)
denotes the bottom row of a matrix. This gives a decomposition

0(Q.2) = 0(genQ, Z) + E(f1, Z) + Ex(f2. Z) + G(Z)
for a cusp form S. An application of the Siegel ®-operator yields that

Nk

= Gt OVQT ) — Oleen NQ, ).

fl(z) = 9(@7 Z) - Q(genQ, Z) and f2(z)

By finding a suitable decomposition of P(N)\F(()Z)(N) and P(N)\F(()Q)(N)J4, we
determine explicit formulas for the Fourier coefficients A(T'), B(T') of E(f1,2)
and En(f2, Z) at T > 0, cf. Theorem [52] and 53] As a result, we obtain that

A(T) < (det T3N3 ST bR (a(t,) (N, T)? + b(tw))dne,

(w1,w3)=1

B(T) « (det T)"3(det @)™ > thFa(ty)

(w1,ws)=1

where

T_ ty ty)2 €S, ty,= U)%tl + wywsts + w§t4
t2/2 t4
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and a(n),b(n) are the Fourier coefficients of f; and f,. Interestingly, the bound
for En(fa, Z) reflects the one-dimensional problem. More precisely, B(T) is dom-
inated by r(gen@,T) if and only if a(t,) is dominated by r(gen@,t,) for all
(wq,ws) = 1 (assuming a lower bound of similar size for the p-adic densities).

To treat the Fourier coefficients of the Siegel cusp form, we apply Kitaoka’s
equivalent of the Petersson formula, cf. [I5, Theorem 1.3]. This gives

S(T) « ||G|(N~2(det T)

where ||G|| = 4/{G,G) is induced by the Petersson inner product, cf. (3)). A rather
tedious computation shows that

2k+1

(G,G) « —

For the p-adic densities
1
Bo(Q,T) = lim p=*®" V(X € My n(Z/p°Z) | 5XTQX = T (mod p*)}

we apply Yang’s formula, [63], for odd primes which gives 5,(Q,T) » 1 if either
p?*tfdetQ or (detT,p) = 1. To compute the 2-adic densities, we show how to
lift certain solutions modulo 8 and obtain (5(T,p) » 1 if 278 { det Q.

Notation and conventions. For an L-function L(s) = [, F,(p~*), we set LY =
[ Ln Fp(p~*). Furthermore, we set £ := k — 3/2. We use the usual e-convention
and all implied constants may depend on e. A term is negligible, if it is of size
O(N~19). By [-,],(-,-) we refer to the least common multiple respectively the
greatest common divisor of two integers. Furthermore, we let I,, denote the identity
matrix of dimension n. To hold notation simple, we often omit the subscript when
referring to 2 x 2 matrices, e.g. we write [ instead of I5.

Moreover, we write M, ,,,(R) for the space of nxm matrices with entries in R and
P, (R) for the space of symmetric n x n matrices with entries in R. Furthermore,
we denote all positive semi-definite half-integer n x n matrices with diagonal entries
by &, and the subset that is positive definite by .7,.

2 Moments of Spinor L-Functions

The aim of the following section is to compute a fourth moment of the spinor
L-function in the level aspect. This part was published by the author in the
Quarterly Journal of Mathematics, cf. [60].

We commence by reviewing the old- and newform theory for Siegel modular
forms distinguishing between generic forms and Saito-Kurokawa lifts. The adelic
framework and its associated representation theory allow us to construct specific
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bases of the new- and oldspace. Then, we focus on analytic properties of the spinor
L-function. A major difficulty - estimating Satake parameter at ramified primes
- is overcome by transferring cuspidal automorphic forms of GSp, to GL4. Next,
we introduce the principal tool for our estimate - the Kitaoka-Petersson formula.
To treat the off diagonal terms in this spectral summation formula, we present
estimates of sums over symplectic Koosterman sums. Finally, we conclude with
the proof of Theorem [I

A short review of the most important properties of Siegel modular forms and
some basic definitions can be found in the beginning of Section [4]

2.1 Representations, Newform Theory and Saito-Kurokawa Lifts

Let N be a squarefree integer with prime divisors p = 3 (mod4). To define the

oldspace, we introduce four endomorphisms Ty(p), T1(p), T2(p), T5(p) of S,(CQ)(N ).
The operator Ty(p) is simply the identity, while 77(p) is the Atkin-Lehner invo-

lution that acts on F ¢ S&(Np~1) < SP(N) by (Ty(p)F)(Z) = p*F(pZ). The
third operator T3(p) maps F' with Fourier coefficients as in onto

To(p)F = ) ar(pT)(det pT)* = e(tr(T 2)), (14)

TeY

and T3(p) = T1(p) o Tz(p), cf. [49]. We define the oldspace 5',&2)(]\7)01d in S,gz)(N) as
the sum of the spaces

T(p)S"(Np™), i=0,1,2,3, p|N,
and the newspace as the orthogonal complement of S,EQ) (N)° inside S ,22)(N ) with
respect to (3)). Furthermore, the space S,(f)(N ) contains a subspace of lifts from

elliptic Hecke cusp forms f of weight 2k — 2 and level N, which we denote by
S ,(f)(N )SK. This gives us the following orthogonal decompositions:
S(N) = 57 (V) ® 5.7 (W)X
— SIEQ)(N)new,T &) Sl(f)(N)old,T &) S}E?)(N)new, SK D S](f)(N)Old’SK.

A principal tool in the newform theory is the correspondence between Siegel cusp
forms of degree two and automorphic representations on GSp(4), To simplify no-

tation, we set G = GSp(4). We define the local analogue of T’ (N) in Zy forp| N
by

P ={ (& 5) 6@ 10 =0modz,)| (15)

and set Ko(N) = HmN G(Z,) x HP‘N Pi(p). By strong approximation for G we may
write an element g € G(A) as g = goguoks With gg € G(Q), g € G(R)™, ks € Ko(N).
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Let Z denote the center of G. For F' € S,EQ)(N ), we denote the adelization of F' to
be the function on Z(A)G(Q)\G(A) defined by

Or(9) = 11(90) 5 (gons iL2) *F (90 (i),
where j(g, Z) = det(CZ+ D) for g = (4 B). Since G(Q) nG(R)* Ko(N) = I'o(N),
®r(g) is well defined. By setting
1
vol(Z(A)G(Q\G(A)) L(A)G(@)\G(A)
we get a Hilbert space L?(G(Q)\G(A). This space contains a closed subspace

L3(G(Q)\G(A), the so called cuspidal subspace, containing all ® € L*(G(Q)\G(A)
satisfying

(Pp, Pg) = or(9)dc(g)dg,

J ®(ng)dn =0
N(Q)\N(4)

for each g € G(A) and each unipotent radical N of each proper parabolic subgroup
of G. The map ¢ : F — 6F is an injection from Si(N) into L3(G(Q)\G(A). We
denote the image by V. and note that Si(N) — Vj is an isometry, normalized by

(FLF)
vol(Sp(4, Z)\H,)

Furthermore, every ® € V;, satisfies ®(gk;) = ®(g) for ks € Ko(N). We let G(A) act

on ® € L(G(Q)\G(A) by ®(g) — ®(gh) for h € G(A). Under this action, the space

L3(G(Q)\G(A) decomposes into irreducible subspaces. We denote an irreducible

cuspidal representation of G(A) to be an irreducible subspace of LZ(G(Q)\G(A).
There exists a decomposition of V}, into

Vi = @ Vi(n),

TesS

= <¢)F7 CI)F>

where Vi () is the subspace of Vi composed of all elements that generate 7 and
S is the set of irreducible admissible representations 7 of G(A) with Vi (7) # .
Via the inverse of the adelization map, any basis of V} corresponds to a basis of
S,EQ)(N ). Hence, there is a basis of S,gQ)(N ) such that every element is associated
to an irreducible representation. These forms are automatically Hecke eigenforms
at all places p ¥ N. Furthermore, two elements are orthogonal to each other if
the associated representations differ. From now on, we only consider forms that
correspond to irreducible representations.

An irreducible cuspidal representation m of G(A) is factorizable; so there exist
irreducible unitary, admissible representations m, of G(Q,) such that

/
T =~ ®U7Tv7
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where the prime denotes a restricted tensor product. Accordingly, we factorize
Vi(m) as

Vi(m) = &, Vi(my)

with Vi(m,) € m,. We call ¢, € m, spherical if ¢,(gk) = ¢,(g) for k € G(Z,). At
unramified primes (p 1t N) and for v = oo, Vi (m,) is one-dimensional and contains
the unique (up to multiples) spherical vector in 7,, respectively the unique lowest-
weight vector in 7. For ramified primes Vj(m,) is given by Wf 1(P) meaning that
Vi(m,) contains all P;(p) fixed vectors in 7.

In the following, we study the local spaces 7T;; 1(?) for p | N in order to obtain an
orthogonal basis for Vj(m). A principal tool for this purpose is the categorization
of possible local representations , into different types, cf. for example [49, Table
1]. The underlying idea is to determine explicit, orthogonal bases for each type
with respect to a suitable inner product. Then, ®; = & ¢; ., P2 = Q) P2, € Vi(m)
are orthogonal, if for one place p the local vectors ¢ ,, ¢2,, € Vi(7,) are orthogonal.

The forms that generate the same representation 7 are all part of the same
subspace of S(N), meaning they all live in either S\ (N)mewT g (N)old.T
S (N)ews SK op 53 (N)old SK - The correspondence is determined by the local

representation types of m. More precisely, a form F' e S,E;Q)(N ) is a newform if and
only if 7, is non-spherical (meaning that 75, does not contain a spherical vector)

at all primes p | N. If F' e S,(f)(N )T then 7p, is a tempered type I representation
(meaning that all characters are unitary) whenever 7p, is spherical and otherwise
of type Ila, I1Ia, Vb/c, VI a or VIb (conjecturally type Vb/c cannot happen). If

Fe S,(f)(N )SK then 75, is type IIb whenever it is spherical, and otherwise of type
VIb; cf. [17, §3].
If we take a basis of S,(f)(N ) as above and single out the forms with tempered

type I for p t N and non-spherical 7g,, for p | N, we obtain a basis of S ,EQ)(N ynew. T,
By manipulating this basis locally, we can assume orthogonality and that every
element is an eigenform of the T5(p) operator for all p | N. The latter holds
if the corresponding local vectors ¢, € 7TZI: 1(P) are eigenforms of a certain local
endomorphism T} o at places p | N. (For the definition of T} o see [I7, p.276].)
If 7, is of type Ila, Vb/c, VI there is a unique (up to multiples) P;(p)-invariant
vector ¢, in 7, that is obviously an eigenform of 77 o. For type IIla, the local space
has dimension two and Dickson et al, [17, §2.4], work out how to construct two
orthogonal local vectors that are both eigenforms of the T} o operator.

For F € S,gQ)(N )ol4T there is at least one prime p | N for which 7p, is of
tempered type I, i.e. mp), >~ X1 X X2 X 0 with X1, X2, 0 unitary. To determine a
basis for the P (p) fixed subspace of 7p,, we follow [49, §2]. First one determines
a basis of the /-fixed subspace of mp,, where

* 0 % %
f:{gecxzp)!gz (33:1)<modp>}
000 *
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is the Iwahori-subgroup. Let W denote the 8-element Weyl group with generators
$1, S2, cf. [49] §1.3], and for w e W set f,(w) =1 and f,(w') =0 for w’' € W,w' #
w. Then, a basis for the I-fixed subspace is given by

fe; f17 f27 f21; f1217 f12; f12127 f212 (16)

where f; = f;, and so on. This basis is orthogonal with respect to the G(Z,)
invariant inner product

(fih) = f(g)h(g)dyg, (17)

G(Zyp)

since the f; are supported on disjoint cosets. A basis for the P;(p) fixed subspace
is then given by

P1p=fet fi. Gap=fot for, O3p = fro1 + fiz,  Gup = froi2 + farz.  (18)

To construct an orthogonal bases of S,(f)(N )Y, cf. [17, §3], we introduce a linear
map from 5,22)(6)“6va to S,Ez) (abcde)™, where a,b, ¢, d, e denote pairwise coprime,
squarefree integers. This map acts on newforms F' € S ,EQ)(e)T in the following way:
we factor the corresponding automorphic form ¢r = @g®pre ¢y, where S denotes the
places dividing e. Then, for p | abed, ¢, is a spherical vector in a type I represen-
tation and we have an orthogonal decomposition of ¢, = ¢p1 + @p2 + Gp3 + Opa
in w1 ®) We set

(¢,  if ptabed,

(bp,l lf D ’ a,

§a,b,c,d(¢s ®¢p) = (bS ®¢lp7 where ¢; = 1 ¢p72 lfp | b7

e e ¢ps ifple

\ ¢p,4 if p ’ d.

Then, there is an orthogonal direct sum decomposition:
515:2) (N)T — @ 5a’b7c’d (S]£2) (e)neW,T) ) (19)
aboiee

For ¢ # N, the right hand side is precisely S\>) (N)ol4T,

Similarly, we construct a basis of S,(f)(N )SK. For this purpose, we introduce a
representation theoretic analogue to the Saito-Kurokawa lifting. Consider an irre-
ducible cuspidal automorphic representation m of PGL(2, A) that corresponds to a

form f e Sé,lg)_Q(N ). Furthermore, let 7y denote the non-cuspidal automorphic
representation of PGL(2, A) such that 7y, is the trivial representation if v { N and
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the Steinberg representation if v | N. Then, [5I] introduces a functorial transfer
IT from PGLy x PGLs to PGSp, such that SK(m) := II(m x 7x) is an irreducible
cuspidal automorphic representation. Furthermore, o € Vj, that generates SK ()
is unique (up to multiples) and the corresponding cusp form coincides with the
classical Saito-Kurokawa lift of f.

To obtain a basis of S,gQ)(N )rewSK with associated representations SK(m), we
simply choose a basis of SéilZ(N )"V such that the adelization of each element
generates an irreducible representation 7y and apply the lifting from above. If 7,
is spherical, then 7y, = m(x, x ') is a principal series representation of PGL(2,Q,)
and by [50, §7] we have that SK(m), = xlgL, x x !, i.e. is of type IIb with
o = x~'. An orthogonal basis for the P;(p) fixed subspace of this representation
is given in [43]:

q;p,l = fe+ f1, QZNSp,Q = fo+ for + fi21 + fi2 Qgp,:’) = fi212 + fo12 (20)
with f; as in .

Let r, s, t, m denote pairwise coprime, squarefree integers. Take F' € S ,£2) (m)
with associated representation SK(m) and factorize or = ¢s x @), ¢,. For p | rst,
¢, is a spherical vector in a type IIb representation as above and we have an or-

thogonal decomposition ¢, = ¢p1 + Gp2 + dps in mh P). We set

new,SK

bp if p1rst,
~ 5 if p|r,
bras(65 @) = 05 @, where o= 1 21 1P
ME pte ?p,Z p ‘ S,
¢p,3 1fp | l.

Then, 0, is a mapping from S,(f) (m)nevSK to S,(f) (rstm)“E and we have an or-
thogonal direct decomposition

S’(f) (N)SK _ @ Sr,s,t <S](€2) (m)new,SK> ] (21)

r,s,t,m
rstm=N

For m # N, the right hand side is S,(CQ)(N)OM’SK.
In the following section, we compute Bocherer’s relation for members of these

bases, and .
2.2 The Spinor L-Function and Bocherer’s conjecture for oldforms

As in the previous section, we assume that F' € S,gQ)(N )¢V generates an irreducible
representation and is an eigenform of T (p) if it is not a Saito-Kurokawa lift. The
former implies that F' is an eigenform of the Hecke algebra for all p t+ N. Let
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oy, Bp,7p denote the Satake parameter of F'. Then, we define the local spin L-
factors at pt N by

-1 1 1 1
Ly(s. F) = <1_%) (1_%/%) (1_%%) (1_%%)
P\ ps pS ps ps

for Rs sufficiently large. Furthermore, we set Lo, = I'c(s + 1/2)['c(s + k — 3/2),
where I'c(s) = 2(2m)*['(s). For F € S,EQ)(N)HBW’T, we only consider F' that satisfy
wpy # 0. (In this case the forms F have a corresponding Bessel model.) This
implies that for p | N, the type of 7p v is either IIla or VIb. To distinguish these
two cases, we consider the eigenvalues p, under the T5(p) operator. If p, = +p,
then F'is of type VIb. As in [51], we set for p | N

Ly(s, F)™ = (1 — ppp™2*7%)(1 — _1 p/27%) for p, # £p (7p, of type Ila),
2

Ly(s, F)7' =(1- ,upp_‘(\)’/2 ) otherwise (7F,, of type VIb).

Then, the completed L-function A(s, F') = [, ., Ly(s, F') has meromorphic con-
tinuation to the whole complex plane and satisfies the functional equation

A(s, F) = N'"2A(1 — 5, F). (22)

However, this result is conditional on a nice L-function theory for GSp, as in

[49, 3.14]. The associated representation to F' € S,?)( N)mew T is cuspidal and non-
CAP]and thus not in one of the classes (Q),(P) and (B) in the notion of [52]. For
representations belonging to the other two possible classes, (G) and (Y), a nice
L-function theory is known, cf. [52, Lemma 1.2 and 1.3].

In a standard way [27, Theorem 5.3], we get the following approximate function

L(1/2,F x x,) = 22 Ar(n n2/2 o)y <N];|2) , (23)

where L(s, F') = [, Ly(s, ') = 3., Ar(n)n~* and

1 [ Ly(s+1/2)
210 )y Lan(1/2)

By shifting the contour, we see immediately that the integral satisfies for all A > 0
the bound

W(z) - (1— 52):586[8.

W(z) <a (1+2)™" (24)

1A representation of G(A) is said to be CAP if it is nearly equivalent to a global induced representation
of a proper parabolic subgroup of G(A) and otherwise non-CAP. In our setting, F' is a Saito-Kurokawa
lift if and only if the associated representation is CAP.

25



A key role plays the following formula from Andrianov

ap(ml)x,(m)

LN(s, F x xg)ap(I) = LN (s + 1/2,x0) LY (s + 1/2, x—4g) Y. =

(m,N)=1

(25)

cf. [I, Theorem 4.3.16] with [ = a = 1, n = x = trivial. We denote by

rn) = rg(m) = X0 Sy (a) (26)

din

the Dirichlet coefficients of L(s + 1/2, x4)L(s + 1/2, x_44). For ¢ = 1, the latter is
the Dedekind zeta function (g (s + 1/2).

For f € So,_o(N) with L-function L(s, f), the partial L-function of the corre-
sponding Saito-Kurokawa lift F' is given by, cf. [41],

L¥(s, F) = ¢"(s = 1/2)¢" (s + 1/2) L7 (s, f). (27)

At primes p | N, we define the local spin L-factors for F' € S,(f)(N)new’SK as in [11].
Let F' e S,(f)(N ) be an eigenform of the Hecke algebra at all pt N with eigenval-

ues A\,p*~32. Then, the eigenvalues satisfy \, = p? if F is a Saito-Kurokawa lift,
and due to Weissauer \, « p otherwise. Furthermore, it holds by [61, Theorem
1.1] that ap(mpl) = Ma(mlI) + |a(mI)|O(p~/?), where the Fourier coefficients
ar(mlI) are normalized as in (4). It follows for (m, N) = 1 that

ap(ml) « méap(I)  for FeSP(N)T,

28
ap(ml) « m7ap(I) for Fe S (N)SK. (28)

For the proof of Theorem , we need to bound the coefficients Ag(p) of the spinor
L-function at ramified primes p:lﬂ

Lemma 7. Let F € S,?RN)““T with ap(I) # 0. Then, it holds for p | N that

|Ap(p)| < p~ /M.

Proof. Since ap(I) # 0, we know that 7g, is of type Illa or VIb. For latter we
directly see |Ar(p)| « p~2. For type Ila, Tpp = X X 0 Stgsp(2), where x, o are
unramified characters of Q, with xo? =1 and Stasp(2) is the Steinberg represen-
tation. Let w € Z, be a generator of the maximal ideal pZ,. By [49, Table 2|, it
holds that

Ly(s, F)™' = (1 = o(w)p™7*)(1 — ox(w)p™ 7). (29)

5The argument presented in this lemma was communicated to the author by Ralf Schmidt.
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The key to bound o(w), ox(w) is to transfer 7 to a cuspidal automorphic rep-
resentation of GL(4, A). For representations in the general class (G) in the notion
of [52] such a lift is possible. Since F' is a non-CAP form, 7r cannot be in one
of the classes (Q), (P) and (B). Furthermore, [46, Table 16] states all possible
representation types for (Y) and Illa is not one of them, so 7r is in (G).

For 7w, = x % 0 Stgsp(2), the attached Langlands L-parameter is (p, N') with

p: Wg, — GSpy(C)
v12x0(w)

01
v 2x0(w) 0
w — 12 and N = 0-1 s

vi2o(w)
v 126 (w)

cf. [49, p. 266], where Wy, is the Weil group of Q,. We map this parameter into
GL4(C) and apply the local Langlands correspondence for GLy4. In this way, we
obtain the representation xo Stgr2) X o Star) of GL4. Since x, o are unramified
characters, this corresponds in the notation of [8] to the representation induced
from Star2)[e(x0)] ® Star)le(o)], where e denotes the exponent of a character
defined by |o| = |.|*(). By applying [8, Theorem 1], we obtain e(c), e(ox) < 9/22.
In other words, |o(w)|, |ox(w)| < p”/?2. O

The proof of Bocherer’s conjecture in [I7] and [20] is obtained via local com-
putations. In the introduction, we already stated relations for newforms; now we
present similar results for members of the oldspace basis constructed in the previ-
ous section. Recall that if F' € S,EQ)(N ) is an oldform, there is at least one p | N
for which 7p, is of type I or IIb . For these types, we define the local standard
L-factor by

L(s,m,,Std) ™ = (1 —p~*)(1 — a,p~*)(1 — a;lpfs)(l — Bop®*)(1 — ﬁpflp*s),

where we use the following notation for the Satake parameter oy, 3,,7,: If 7, =
X1 X X2 X0 is a type I representation, we set oy, = x1(w), 8, = x2(w) and 7, = o(w),
while for m, = ylane) x 0, we set o, = p~Y2x(w), B, = p*x(w) and v, = o(w).
In both cases, it holds that apﬁpfyz = 1. For elements in the basis , a proof of
Bocherer’s conjecture has been obtained in [17, Theorem 3.9]:

Lemma 8. Let F' e S,(CQ)(N)T. Assume that F' = 64.04(G), where abcde = N and

G is a newform in S,(f)(e)T. Let m = ®,m, denote the representation attached to
G (or equivalently to F'). Then

271 = NYT(2k — 4)L(1/2, F)L(1/2, F x x_4)
B N3T'(2k — 1)L(1,7p, Ad)

Jp
N [] I+p H(A+p2)

p|N
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where s = 6 if F' is a weak Yoshida lift and 7 otherwise and

L(1,m,,Std)(1 —p™?) if p| be (cannot occur if F' newform),

L1, 7, Std)(1 —pp~' if p|ad (cannot occur if F newform),
Jy=3X 1 +p2)(1+pt if ple andm, is of type Ila,

21+ p2)(1+p) if p| e and m, is of type VIb,

0 otherwise.

Analogously, we compute a relation for our basis of Saito-Kurokawa lifts :

Lemma 9. Let g € Sor_o(m) denote a newform of squarefree level m that generates
an irreducible representation my. Let m := SK(m) denote the lift of mo and G
the corresponding Siegel newform. Let r,s,t denote squarefree, mutually coprime

numbers with (rst,m) = 1 and consider F = 6,,,(G) € 5(2)( N where N =
rstm. Then:

e — 3-257T(2k —4)  L(1/2, f x x_4) 1—[ Ip (30)
PYUNTRE 1) L(3/2 L1 mo, Ad) L3 (T p (L p2)
where
L(1,7,,Std)(1 —p~*)p~* if p| r (cannot occur if F' newform),

)
7 L(1,mp,Std)(1 —p ™) (p~' +1) ifp|s (cannot occur if F newform),
P L(1,7,,Std)(1 —p~*) if p |t (cannot occur if F newform),

2(1+p2)(1 +p‘1) if p|m.
Proof. By [17, (105) and (106)] we have that

|ar(1)|[Sp4(Z) : To(N)] ean L(1/2,m0 % x_4) L(1, X _4)? .
(F.F) — L(3/2,7)L(1, my, Ad) Z (27 7%(0p))

p|N

where ¢, € 7, is a P;(p) fixed vector. If ¢, is not spherical, then it is of type VIb
and we apply the results from [I7]. If ¢, is spherical, then by construction of ¢, ,
it is one the three vectors from . We have

J*<¢p)) = M(W)JO(%);

where

Jo(dp) = 1= (q+ 1)g>No) + ¢ *u(9),
L(l, T, Ad)(l + p_l)

M(T) = 50 = p L2 1) L(/27 % )’
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cf. [17, §2.5], and A(¢), u(¢) are given with respect to by

)\(Qb) _ <d1€z202>¢a ¢>’ M(Cb) _ <d162;12)>¢7 ¢>

The action of the local operators ey, e; are given as a 8 x 8 matrix with respect
to in [49, Lemma 2.1.1]. Here, d; = (¢ + 1)"*(e + €1) is the so-called Siege-
lization and maps onto the space of P;-fixed vectors. Recall that 7TII: 1(P) s spanned
bY Gp1s pa, dps and ¢, + dpo + dps is the G(Z,) fixed vector. If we write
d1€16061¢p7i = Zj:l Cij¢p,j and d1€06160¢p7i = Zj:l 6ij¢p,j7 then )‘(¢p,z) = Cj; and
,u(qgm) = ¢;. A straightforward but lengthy calculation shows

- - -1 ~
Nop) = (=1 AGa)= g M) =0,
,U(ép,l) = (p - 1)]32, H(&pﬁ) = PZ, /L(épyg) = 0.
As a consequence, we get
‘]O(q;p,l) = p_l’ JO(&Q) =1 +p_1, J()(QZBg) = 1.

It remains to compute M (7). The local L-factors are computed in [2, §3.1.2] and
[49, Table 2] and it holds for 7 of type IIb that

L(1, 7, Ad)
L(1/2,m)L(1/2,7m x x_4)

= (1—p HL(1,7,Std).

2.3 Kitaoka-Petersson formula

The primary tool in the proof of Theorem [I]is a spectral summation of Petersson
type for Siegel cusp forms. For the full modular group, it was proved in [30] and
later extended in [I5] to include congruence subgroups. We quote their results and
introduce some notation. Let A denote all symmetric, integral 2-by-2 matrices. A
major role plays a generalized Kloosterman sum

K(Q,T;C) = Y e(tr(AC™'Q + C~'DT)),

D

where Q,T € .7, C' € Maty(Z), the sum runs over matrices

{D € My(Z) mod CA | (C D> e Sp4(Z)}, (31)
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and A is any matrix such that (é l*)) € Sp4(Z). The cardinality of depends

only on the elementary divisors of C, since

K@Q, T;U'CV™Y) = K(UQUT, VITV:C) for U,V e GLy(Z), (32)
and for C' = U! <01 . > V! one has
2

K(Q.T;:C)] < i)™ (ea, 1), (33)
where t4 is the (2,2)-entry of T[V].
For a real, diagonalizable matrix P with positive eigenvalues s?, s3 we write

/2
Ji(P) = f Jo(4msy sin 0)Jy(4msy sin 0) sin 0 db, (34)

0
where Ji () denotes the Bessel function of weight k. For Ji(z), we have the simple
bounds

(i) Ju(x) < 1, (i) Ju(z) <k 2% and (i) Jp(z) < 2 (35)

for all z > 0,k > 2. This gives us

1

(i) Je(P)<|P]> and (i) Ji(P)<« (detP)s(tx(P)) 275 (36)

The former follows from applying (35])(i47) to both Bessel factors in (34)). The
latter follows by applying (m) to the Bessel factor with smaller eigenvalue
and (35)(ii) to the other Bessel factor.

For two matrices P = [ P! p2/2 e, S = s1 - s2/2 €. and ce N we
P2/2  pa $2/2 54

IN

define a “Salié” sum

dy$4d2 F dypod dy + dy d
(PSC Seren, 2 Z (184 5 + a1p2as + Sods + ai1pr + 181117282).

d1 (mod ¢) d2 (mod ¢) ¢ 2csy

This sum is relatively easy to handle. By applying the well-known bound for Gauss
SUMS D5, 1nod ) € (@) « (a,c)2c'? for the dy sum and estimating the d; sum
trivially, we get
|H* (P, S;¢)| « *?(c,s4)"2. (37)
For @) € .7, we define a Poincaré series

Po(Z)= Y. i, Z2) Fe(tr(@v2)) = ] ho(T)(det T)
~eT o\ (V) Tes

kE_
2

ie(tr(T2)),
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where ',y = {(!$)]S € A}, Then, we have by [15, Proposition 2.1]| that

(F,Py) = 8c(det Q) 2" 1ap(Q), withc = *f(amﬁ—%r(k —3/2)T(k — 2)

(38)
for F' e S,gz)(N). By computing {Pr, Pg) for T, Q € . it follows
k_3
det7T\2 * ar(T)ar(Q) ks
¢ ( o Q) > TR, ho(T)(det T)= 1. (39)

eB (V)
The Fourier coefficients of the Poincaré series, hg (1), have been computed in [15]:

Lemma 10. [t holds for T, Q) € . and even k > 6 that
ho(T)(det T)2 ™5 = 8o 7 Aut(T)

k

2

det T\ 24 DRI o 47+ /et (TQ
4 (dStQ) ZZZZ 03/251/2 T UQUT, VTV, 6, (” ces( )>
+ s c>1UYV

Nle

det T\ 21 K(Q,T;C) U
+sﬁ2( ) R@QT:C) o remipe),
det @ de;:#o |det O A %)

N|C

=

where the sum over U,V € GLy(Z) in the second term on the right hand side runs
over matrices

U= <u3 u4> [{£), V= (z; :) , (us w)Q (Zi) = (—v3 v))T <‘£3> = 5.

Here, Aut(T) = {U € GLo(Z) |UTTU =T} and Q ~ T means equivalence in the

sense of quadratic forms. The sums are absolutely convergent for k = 6.

In the last term, [30] and [I5] have the constant 1/27* instead of 872, As pointed
out by [6, p. 7], this is incorrect. As in [30] and [I5], we refer to the first term on
the right side as diagonal term, the second as rank 1 and the third as rank 2 case.

From now on, we assume that N = 3 (mod4) is prime. The main obstacle to
proving Theorem |1} is computing the rank 2 case. The decay of the Bessel function
implies that we only need to consider matrices C' with small entries. For § > 0,
we set

«)-c- (2

- ?)|0¢det0<<N173,51,62,63,64<<NH@B} (40)
3 4

SThere is a minor typo in [15, Proposition 2.1], there should be an additional factor of 2 on the right
hand side. The reason is that the original proof from Klingen [38, §6] uses a different definition for
'y that differs from the definition in [I5] (that coincides with ours) by a factor 2.
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and

K(mol,mI;NC mymyC~1C~T
blomsyng, €) = ST g (et E ),

N3|det C|*? N?
Recall that ¢ = k — 3/2.

Lemma 11. For m;, ms « N'**¢ we have

2 h(ml, m27 Z h ml, ma, ) + (9(]\]'717ﬁJr 5(12-Zﬂ)+€).
det C#0 Ce¥(B)

Proof. By using principal divisors, we can write C' € Z?*2 uniquely as

c=vu'(“ e
Co ’

where 1 < ¢y | ¢o, U € GLy(Z),V € GLy(Z)/P(co/cr), cf. [30, Lemma 1]. Here,

Pn) {(‘CL Z) e GLy(2) ‘ bEO(modN)}.

In this way, we can assign to a matrix C' a unique parameter (U, ¢y, o, V). For
fixed ¢y, co, V', we pick Uy € GLy(Z) such that

—1 —1
A=UT ( _1> vy (Cl _1> U,
Co &)

is Minkowski-reduced. Then, the matrices C' with parameters (c1,co, V') are pre-

cisely the matrices
O — UflUlfl <Cl ) v
Co

where U varies over GLy(Z) and C~7C~! = UT AU =: A[U]. Furthermore, by [15
Lemma 5.5] it holds that

D (ca,my (V2 + VD)2 « eptrecd? e (41)
V=(% 32 ) €GLa(Z)/P(ca/c1)

By (33), and using (Ncy, t4)"? < NY2(cy, t4)"/? for ty = my(v2 + v3), we get

Z h(my,ms, C) « NEZC_1/2+6 m“( Z (mjl\gw) (det A)7*  (42)

det C#£0 C1|62 UEGLQ(Z)
tr A[U]<1
Mymag\ /2-1/4 o
_— ( = ) det AY2 tr(A[U])42 1),
UGGLQ
tr A[U]>
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where we applied . ) for the first, and (| . i1) for the second sum. For these
two sums, we have the following estimates from [30, Lemma 3|, [40, Lemma 3.4]

#{U € GLy(Z)| tr A[U] < 1} « (det A)~Y2, (43)

> det A tr(A[U]) %47 « det AV (44)
UeGL2(Z), tr(A[U]>1

for every 6 > 0 and A Minkowski-reduced.
First, we consider C' in C := {C'| det(C) » NI/} By ([@2), [#3),[4) (with
§=1/2—1), my,my « N and det A = (c1c2) 72, we get

—0+1/2+4€ —0+3/2 _
Z h(my, my,C) « N° Z et / Tyt /24 « N Z ¢T3/
CeC ciles, x> N1+B)/L
0102>>]\/v(1+’6)/Z

5(1+B)
« N~ 1-B+=5~ +6

Next, we treat C' in

+2[‘1 2m

o > 1}

Cr = {C|N& «detC « N and tr(C~TC ) » N
with o € Z, such that 2/ | @ and ™= < # By and with § = €, we get

(2+25) m(l 2) _ _1_B4 5
Z h(ml,mz,C) « N~1=B8+ + = +EZC +3/2+e N! B+ 55 (1+6)+e
CeCm ey N™/

Note that if C' ¢ | J,,Cp U C, then C € €(5). Indeed, the former implies that

F+E+E+E=tr(CTTCN)(det 0)? « NEH2O/H2a g5 O = (gl ?) :
3 4

By choosing « sufficiently large, the claim follows. n

Remark 12. There are O(N3U1+8/¢+¢) elements in € (). If ¢, = det C, then
either ¢, or ¢3 must be 0. For ¢;¢4 # det C' and fixed ¢, ¢4, det C' there are only
7(¢1¢4 — det C') « N°€ choices for & and ¢3, since ¢éaés = ¢¢4 — det C.

2.4 Symplectic Kloosterman sums

This section focuses on the decomposition of the Kloosterman sum in the rank 2
term of Lemma [I0] The idea is to decompose the modulus NC' into a large part
of modulus N and a small part of modulus C. After computing the N part via
a congruence condition in the proof of Theorem [, we see that the rank 2 term
is small unless C' has a certain form. This condition allows us to compute the
remaining sum over Kloosterman sums.
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Kitaoka [30, Lemma 1-3] worked out how to decompose a Kloosterman sum
for the case that C' is diagonal and in combination with (32), this is sufficient in
most cases. However, our Kloosterman sum K (u11, uol; NC) with pq, o, N € Z
has diagonal terms in the first two arguments and such an approach would imply
non-diagonal terms in the first two arguments. However, in order to apply Lemma
[15] we require a diagonal term in the second argument of the Kloosterman sum,
hence, we need to adjust Kitaoka’s proof slightly. To simplify notation, we set

Lemma 13. Set ¢ := detC' and assume (¢, N) = 1. Choose integers s,t with
sN +tc=1and set X =tc-C~'. Let Q,T € .. Then

K(Q.T.NC) = K(XQX",T,N)K(s*Q,T,C).
C 15) e I' if and only if ATD — CTB = I and ATC and
BTD are symmetric. Since ATC symmetric implies that AC~! is symmetric, it
follows that,

( A B) (CTA CTB — sATD> (NA NB — XTATD)
el < , el

Proof. 1t holds that (A

NC D NI XD C sD
cf. [30, Proof of Lemma 1]. Consequently, we can show that the map

Dmod NCA — (XD mod NA, sD mod CA)

{DmodNCA| (NC D> e F} - {DmodNAy (NI D) e r} x {Dmodcz\\ (C D) e r}
is bijective. This works exactly as in the proof of [30, Lemma 2], since NC' = C'N.
By CX + sNI = I, we obtain
tr(A(NC)™'Q + (NC)'DT)
=tr(XTCTA+sNAN'C'Q + N 'C 1 (CXD + sND)T)
= tr((XTCTAN'CT'Q + sAC™'Q + N"'XDT + sC~*DT)
= tr(XTCTAN Y sNI + XCO)C'Q + sA(sNI + XC)C'Q)
+tr(N'XDT + sC~1DT)
= tr(CTAN'XQX" + N7'XDT) + tr(NAC™*s*Q + C~'sDT)
+tr(sXTCTACT'Q) + tr(sAXQ).

Since sXTCTAC1Q = stcAC1Q = sAXQ is symmetric and integral, we con-
clude that

tr(A(NC)™'Q + (NC)'DT)
=tr(CTAN'XQXT + N"'XDT) + tr(NAC's*’Q + C~'sDT) (mod 1).
O
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If the modulus is pl for a prime p, a symplectic Kloosterman sum simplifies as
follows:

Lemma 14. Let p be a prime, Q = <q2q}2 qi]i 2) and T = ( t§}2 tQtZ 2). Then

O(daqn — dage + diqa) + dity + dots + d4t4)
p b)

K@Q,T;pl)= )] (
)

d1,d2,ds(mod p
pté

where § = dydy — d3.

N d1 d2 . * *
Proof. Set D = ds dy) Since <C’ D

and (C, D) is primitive] it follows for C' = NI that dy = d3 and the sum runs
over all dy,dy,ds modulo N that satisfy p t §. Let § be an integer such that

56 = 1mod N. Setting A =0 di —d
—dy dy

B:= (ATD — L)N~' € My(Z). 0

e I' if and only if C~1D is symmetric

), it follows that ATC' is symmetric and

The next lemma counts the number of solutions of a congruence that arises when
computing the Kloosterman sum of modulus N.

Lemma 15. Let N = 3(mod4) be a prime and hq, hs,c1,ce,¢c4 € 7 such that
deiey — 3 # 0(mod N). Let L(cy, co,ca,hy, hy) denote the number of solutions
d17d2,d4 (modN) Of

hy = a(dy + dy) (mod N) (45)
(d1d4 — d%)hg = b(d461 - dQCQ + d104) (HlOd N) (46)
0% dydy — d2 (mod V), (47)

where a,b are arbitrary integers coprime to N. Then

L(Cla Ca, Cy, h17 h’2) = 5h15h250 (mod N) 561564,0250 (mod N) N2 + O(N)

Proof. First, we compute the left hand side for h; = hy = 0 (mod N). It follows
by that dy = —d; (mod N) and by thus dy(c; — ¢4) + cads = 0 (mod N).

For ¢; = ¢4 and ¢; = 0 (mod N), this congruence holds for arbitrary d;, ds. In
addition, congruence requires that d? # d3 (mod N). Since only 2N pairs
dy,dy fulfill d? = d% (mod N), there are N? — 2N solutions for dy, ds, d; (mod N)
satisfying all three congruences. On the other hand, for ¢; # ¢4 or ¢ # 0 (mod N),
there are less than N + 1 solutions, since choosing d; already fixes d, and vice
versa.

*

"(C, D) is primitive, if there exists U = <z, D) € GL4(Z).
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Next, we show that for fixed h; £ 0 or hy # 0 and arbitrary fixed ¢y, o, ¢4, We
have L(hl,hg,cl,CQ,C4) < N + 1. By it holds that d4 = Zth — d1 (mOdN)
After substituting h; by ah; and hy by bhs, equals

ho(—d? — d3) + hohidy = dy(cy — ¢1) — dycy + c1hy (mod N).

For hy = 0, this gives 0 = (¢4 — ¢1)dy — ¢ads + ¢1hy (mod N). Since hy # 0 and
either ¢4 — ¢1,¢; or ¢y is # 0 (mod N), choosing d; fixes d4 and vice versa. For
hs #£ 0 we get

(dl — ?(64 — Cl—hl))2 (d2 — %62>2
= h101 + hQ + dl) ( (C4 — C1 — hl))2 + (T}I/QCQ)Q (mod N)

The congruence x? +y? = n (mod N) has N + 1 solutions for z,y (mod N) if N { n,
and one solution if N | n, namely (0,0). O

To treat the remaining sum over Kloosterman sums, we cite [6, Lemma 4]. Let
¢ : Z[i] — N denote Euler’s totient function on Z[i].

Lemma 16. Let

C e GOy(Z) = {(_x y) | (z,y) e Z* + {(0,0)}} (48)

Ty *x

and q1, g2 two fundamental discriminants (possibly 1). Then

D X ()X (12) K (pi2], 11, C) = 8, gy |det CPip( + iy).

p1(mod[q1 ,det C])
w2 (mod[q1,det C])

2.5 Proof of Theorem 1
The proof follows [6] closely. By the approximate functional equation (23)) we have

> wenL(1/2,F x xq ) L(1/2,F X Xg,) (49)
FEB(2)( )new,T
Ap(ny)Ap(n n n n n
_ Z WrN Z F(n1)Arp 123)(;112( 1)Xan ( 2)W 1 S w 2 ).
*ny Nlq| N|gol
FeBP) (Nynew,T T2

To apply Andrianov’s formula , we need nq,ny to be coprime to N. Hence, we
need to estimate

AF n)Xxq\n n
Ly(F, xq) = Z (nz;;()W (N|q|2> ‘

Nin
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By the decay of the weight function, we truncate the sum at n « N'*€ at a
negligible error. By Lemma [7] we get

Ar(N) v Ar(n)xg(Nn) n e
LN(F, Xq) = N1/2 Z nl/q2 w |q| +(f)( 100) « N 13/22+.

n<N€

By applying Cauchy Schwarz and making use of the further computations of this
2
section, i.e. ) wF,N‘LN(1/2, F x Xq)‘ « N°¢, we can remove all terms on the right

hand side of with IV | niny at the cost of an error of O(N—13/22+€),

For newforms that are Saito-Kurokawa lifts, we cannot apply . Fortunately,
their contribution is very small on both sides of . so we can extend the basis
to include lifts at the cost of a small error. For the left hand side, we apply (12| .
and the convexity bound for central L values, getting an error of O(N 5/4+€) By
double Mellin inversion and ( . ) the right hand side of (49 . ) with F' running over

an orthogonal basis of S,EQ)(N 2w SK and ny, ny coprime to N equals

—3 2m)°T (2k — 4)
o | e Y6 1) ) s )
T2k—1)  Jo

Z (1/27f X X—4)LN(1/2+Saf X Xq1)LN(1/2+37f X XQ2)
L(3/2, f)L(L, f,Ad)

X

fEBéi)_Q (N)new
(50)
ot dsdt
st ’

Loo(s + 3) Loo(t + 3) 2 s+t—3| |28
1,12 L) 00N e

where Bé?_Q(N )% is an orthogonal basis of Sé?_2(N )*Y We can shift the s-
contour to Rs = ¢, since the pole at s = 1 (for ¢ = 1) cancels with the zero of
(1 — s?). In the same manner, we shift t-contour to Rt = e. By the convexity

bound, we conclude that is bounded by O(N—5/4+€),
By combing these estimations and applying , we obtain

Z wF,NL(l/ZF X qu)L(1/2,F X Xth)

FeB( (N)new

_ gy ralmdram)vatm)vama) ( nymy ) - (W> 61

n1n2m1m2)1/2 |Q1|2N |Q2|2N

[\

X

n1,n2
mi,m2

2 CaF(m;Q(?;mQI) n (’)(N_13/22+5),

X

FeB) (N)new

where >.* denotes that all summands are coprime to N and the constant c is
given by . To apply Kitaoka’s formula on the right hand side, the sum needs
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to run over an orthogonal basis of the whole space including oldforms. To show
that we can include the oldspace at the cost of a small error, we truncate at
ny, na,my, me < N use r1(n), ro(n) < n=2t and ap(ml) <« mY2ap(I), cf. [29).
Hence, the first term on the right hand side of with F' running over a basis
of the oldspace B,(f)(N )4 is bounded by

N* Y wpn. (52)

FeBP) (N)eld

We choose the orthogonal basis from and (21) for B Old. Since there
are only O(1) oldforms, we conclude by Lemma § and 9 that is bounded by
(9( N_H'e).

Neglecting the error terms and applying , display equals

43 T2 (m)Xes (m2) ( i ) w ( s ) )
(n1n2m1m2) / |Q1| N |Q2| NJ 8

ny,n2
mi,m2

The Fourier coefficients h,,,;(m11) are given by Lemma . We compute the three
terms separately. The diagonal term is given by

, Z 1(n1)ra(ng)x1(my)x2(me) W (\;ﬁ;njv) w (I:;ITN> ‘

n1ma,m (n1n2m2)1/2

By double Mellin inversion, this equals

J J LN (s 4+ 1, x0 ) LN (5 + 1, X4 ) LN (E + 1, Xg0)
27TZ (2)

Loo(s +1/2) Loyt + 1/2)
L(1/2)  Le(1/2)

X LN(t +1, Xf4q2)LN<S +t+ 1, Xq100) (53)

o dsds
st

x (1= 5)%(1 = t)*N°N'|q1 |||
Next, we add the local spin L-factors at N. Therefore, we write

Xa (V
LN(s+1,Xq) = L(s + 1,xq,) — ]l<[£+1)L(S + 1, Xq1)-

To bound the contribution from the second term, we shift the ¢ contour in
to R =e¢ obtaining

dsds

Xq1 N s ATt —1+4e¢
+q,Xq )L +1,X24q,) - (L —=8)"N°N'—— « N .
J(e)fm N5+1 L(s + ¢, Xq ) L" (s X-ag) - (1 —1)? ot

For the other four L-functions, this works analogously.
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To compute (with local L-factors at V), we shift the s-contour to ® = —1+¢
picking up a pole at s = 0 of order 1 or 2. To estimate the remaining integral, we
shift the t-contour to Rt = —1 + €, picking up a pole at t = —s (since (q1,¢q2) = 1
that can only happen if ¢; = go = 1) and a pole at ¢ = 0. The latter pole and the

remaining integral are O(N~27¢), while the residue at t = —s equals

- I'k—=1+s)(k—1—y5) g\ ds

2 s+ Do (s + DT — 8)Corn (1 — _ 228
o | T Dot + D = s)a 1 - P = -

It is not necessary to simplify this term further, since it will cancel with another
term from the rank 2 contribution.

To treat the pole at s = 0, we shift the t-contour to & = —1+ € picking up a pole
at t = 0 of order at most 4 that comes from the terms L(t + 1, x4,), L'(t + 1, Xg100)
and t~!. The remaining integral is O(N~2*¢). The residue at s = t = 0 is the
main term in Theorem . For ¢, ¢ € {1,—4}, both poles have at least order 2 and
we obtain a polynomial in log N, whose leading coefficient can be read off after
applying Taylor expansion. For ¢, ¢s ¢ {1, —4} each pole is of order 1 and hence,
the residue does not depend on N.

Next, we consider the rank 1 contribution. By the decay of W, we truncate

ni, N, M1, My at « N'€ at a negligible error. There are s ChOiC?S for U,V and
it must hold [my, ms] | s. Hence, by and r1(n),re(n) « n=2%¢ the rank 1

contribution is bounded by
J 4mrmyme
“\ [mima]Nes )|

Setting d = (mq, my), the previous display is bounded by

4rd
7 222

1-1/2
« N-1/2+e Z d-1 (]C\i]) ZCI/Q—IS—H-e « N—%+€’

d«N1te

I Z* 1 Z (Ne, [mims]s)'/?

(mymy)/2 ([mamg]s)t/2=<

ml,m2<<N1+5 s,C

mims

Ne€ Z* <m1m27 N>% d—% Z 01/256

TrLl,T)7,2,6l<<]\71+E

where we used (35 (i) for the second step.
It remains to treat the rank 2 contribution

42 Z* 71(n1)r2(ng) W (g;f%) W (@j?ﬁ,) x1(m1)x2(me)
T
g gz, (nimingmy)t/?

y Z K(mol,miI; NC) <m1mgClCT>
det O#£0 N3|detC|3/2 ! N? .

(54)
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By we truncate the 1y, mq, ne, mo sums at n;my, noms < N1+€ at the cost of a
negligible error. This allows us to apply Lemma (11| which bounds the contribution
of all C ¢ €(B) by O(N—F+E+58)/21+€) = For notational simplicity, we set ¢ :=
|det C'|. To apply Poisson summation, we complete the ny, my, ny, mo sum at a
negligible error and split my, my in residue classes modulo N|e, ¢;] and N|e¢, ¢a].
This way, display (54 @ ) equals

*7”1 n1 7“2 TLQ K(/,LQ[,/L1]7NC)
2 Z n n 1/2 Z Z Xa1 (lul)XQQ (ﬂQ) N3¢3/2
ni,nz 112) Ce%(B) p1(mod N[e,q1])
p2(mod Ne,q1])
W (nﬂ;hl ) W <n27;12 ) C_lc_T
N N mim 450,
y Z lq1] s gz N/ ( 1 2N2 ) + O(N B+3158 4 )
mi=p1 (N[e,q1]) my My
ma=pa2 (N[c,q2])
Poisson summation yields for the main term
*7“1 n1 7‘2 TLQ K(Mgl,[tll,NC)
47
Z n1n2 1/2 2 Z Xa1 (Ml)XQ2 (:uQ) ]\[5[07 Ch][C, q2]cg/2

n1,n2 Ce%(B) p1(mod N[c,q1])
p2(mod Nec,q1])

pihy p2ha )
U, o (NC: hy, ho)e | — - (55
X T (NCituohe ( V- ) o)

where \Ilm s (NC5 hy, he) is

[[" (i) (ﬁ%)%(xmclow% LU oty

xle N2 N[Ca Q1] N[Cv QQ]
Substituting x; by le and xy by Nx,, this integral simplifies to

NJ f lqll2 (‘qz\z) 7 (xle(j—lC—T) e ( Ll + v2hs ) dzy dx,,

$1.’L’2 [C> q1] [C7 q2]

which we denote by NW,,, .,(C’; hy, hy). By applying partial summation sufficiently
often with respect to x; and xo (integrating the last term and differentiating the
rest), we can truncate the hy, hy sum at hy, hy « NO+HA/EF€ at a negligible error.

We choose s,t € Z with sN +tc = 1 and (s,¢q2) = 1. By Lemma , the
Kloosterman sum decomposes into

K(/“LQIa :U’lja NC) = K(M2t2cc_lcc_T7 :U’IIJ N‘[)K(S2/“L2-[7 :U’l-la C)
The first Kloosterman sum on the right hand side equals by Lemma
Z . (M2t2(5(d401 — dacy + d164) + (dl + d4))

N

d1,d2,ds(mod N)
N6
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C1 02/2

/2 ¢y
Next, we split p; mod N|c, ¢;] into v;mod N and ~; mod[e, ¢;], that is, we put

wi = vile, ¢i] +%N. Then x4, (1) = x4, (N7:). Consequently, display equals

* 7“1 ’I’Ll 7’2 n2 1
i Uy (Ciha,ha)  (56)
H;Q (ning) 1/2 Ce;ﬁ) N4e, q1][c, g2]c®? hl%ez o
v1hy - 72h2>

[C7 Q1] [C’ QQ]

where cC~teCT = < ) with ¢;, ¢y, ¢4 € Z, § = dydy — d3.

<X (K (sl N O (-

71 (mod[c,q1])
72 (mod[c,q2])

x > D <V1<[Ca m](d?\;r dy) — h1)>

d1,d2,ds (mod N) v1#0 (mod N)

N1s
t26(dacy — d d —h
y Z . (Vz([C, @2]t?(dscy — dacy + dycy) 2)).
N
v2#0 (mod N)

Thus, we need to count the number of solutions of £ : hy = [¢, ¢1](d1+dy) (mod N)
and Ly : hod = [, 2|t*(dycy — dacy + dycy) (mod N). For fixed ¢y, ¢o, ¢y, hy, ha, the
last two lines of display equal:

D NP | L1 0 Lo} — N(#{di | L1} + #{di | L2}) + 1
d1,d2,ds (mod N)
N6

The first term is computed in Lemma [15|and is of size N* + O(N3) for hy = hy =0
and ¢; = c4,co = 0 and is O(N?) in all other cases. The second term is of size
O(N?) since both congruences already fix one d; modulo N.

The condition that CTC is a multiple of the identity for invertible C'is equivalent

to C € GOy(Z), cf. (48]) and [6, p.1770]. By Remark |1 here are O(NP(+8)/t+e)
G

choices for hq, h2 and the entrles of C'. Hence, display (56 equals
dm Z ri(m)ro(ny) > Yo (NV5) D Xa (1Xe(12) K (oI, 11, C)
1 2 3/2 q1 q2 ) )
ni,ng n1n2 (mne)? CeGO2(Z) [C, Ch] [C’ QQ]C / ~1 (mod[c,q1])

72 (mod[e,g2])

Wiinx AW (nyx 2 545
J (m 1/|q1|q;>1:c2( 222|¢s| ).7@(9019620’10’ ) day dzy + O(N~' g B“)

We choose § such that O(N is of the same size as the previous error

B+ 4oy _ 20—5 _ 2k-8
term O(N~7772" %) e 8 = 5= = 5,55

Applying Lemma [16, we see that the sum vanishes for ¢; # 1 or ¢o # 1. Since
matrices C' € GOy(Z) fulfill C~' = CT¢™!, the main term of the previous display

JT’B +e)
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equals

/2
* 7"1 n1 7'2 n2 W n1x1 (n2x2) T1T2
8 Z n1n2 1/2 f f x1$2 j ( | | ) dl’l dZL'Q.

ni,n2 'yGZ

Iy[? «N*

By and we can complete the y-sum at a negligible error. By the compu-
tation in [6, §7], the resulting term equals

eri(n)ra(ne) Cow (55) (Leo(l +5/2) (1= 51N

167° f 2 )7 g (+)< Lo(1/2)(s + 1)/2 )
(4m)°T(k — 22) ds

(1+s)T(k — 3% 2mi”

We add the summands ny,ny that are multiples of N at the cost of an error of
size O(N~°/2). By changing variables, applying the functional equation of the
Dedekind zeta-function and shifting the contour, the previous term equals

4 Fk—1+s)'(k—1—-s)I'(s+1)I(1—s) o\ dS
= . 1 (1 — 1— it
o 7“?@(1)(3 + )¢ (1 — 5) T(k— 1) ( ) 52
which cancels with the residue s = —¢ from the rank 0 case.

3 Theta series of degree one

We consider an integral, positive mxm matrix ) with even diagonal and its cor-
responding quadratic form ¢(z) = %xTQx for m > 3. Throughout this thesis we
tacitly assume that q(z) is primitive which implies that NQ ™! is of level N. The
aim of this section is to obtain an asymptotic formula for

r(@Q;n) = #{x e Z" [q(x) = n}
that is uniform in the level N of ). Therefore, we consider the theta series
1
0(Q,z) = e(=2TQuxz) = r(Q,n)e(nz).
@2 = 3 elyr"r2) = X r(@metnd

We decompose 0(Q, z) into an Eisenstein series and a cusp form. Recall that two
matrices ), Q" are in the same genus, if there exists U, € GL,,(Z,) for every p such
that Q = Ug Q'U,. For positive () there are only finitely many classes in the genus
and the set of automorphs o(Q) := {U € GLQ(Z) | UTQU = @} is finite. We set

0(R, 2)
een Q.2) = ( 2z ) 2w

Regen Q Regen Q
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The Fourier coefficients r(gen @, n) of 9( en (), z) are given by Siegel’s Hauptsatz:

r(gen@m)— — H@an (57)

m m
2

where £,(n, Q) = lim,_, p‘“(m_l)rpa (n, Q) denotes the usual p-adic density with

rpa(n, Q) = #{me (Z/p*Z)™ | ;mTQm = nmod p“}.

We write 6(Q, Z) = 0(gen @, z) + f(z) for a cusp form f. On the level of Fourier
coefficients this corresponds to

r(@Q,n) = r(genQ,n) + a(n).

We view 7(gen (), n) as the main term and bound it from below by estimating the
p-adic densities. To evaluate the error term a(n) uniformly in the level we compute
an inner product of the cuspidal part of the theta series and apply the Petersson
formula. In the end we give bounds with respect to N on the largest integer n
that is locally represented but not over the integers.

We start by treating the p-adic densities. If p 4 2nN, an easy computation shows,
cf. [55] Hilfssatz 12], that

1—p 2 (7(_1)7%“@) if m even
By(n, Q) = v [ (2R (58)
g 1+p" (H)“dtQ) if m odd
p
For p t 2N, we have by [55], Hilfssatz 16] that
1— Bp(n, Q) < 1+p" (59)
where r = % for even m and r = _Tm for odd m. For the remaining p-adic

densities, we apply a formula from Yang [63]. Therefore, we fix some notation.
For odd p we know that () is p-adically equivalent to

diag(p” uy, pug, ..., p""Up) With u; € Z,0 =11 S 1vp < ... < Uy
We set
VI)={l1<i<m]|y;,—1<0isodd}

and

d(l)=l+;Z(m—l), o(l) = (_1)[ T <“) (60)

vi<l p €V (1) p

Then, the following formula for the p-adic densities was shown by Yang [63, The-
orem 3.1J:
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Theorem 17. Set n = pt with (t,p) = 1. Then, for odd p, we have that

Bp(@mn) =1+ (1+p") > vDp™ +v(a+ 1)p" f(n)
0<i<a
#V (1) even
where
) —% if #V(a+ 1) is even,
n) = _ . .
(%) % if #V(a+ 1) is odd.
The case p = 2 is slightly more complex. However, a very similar formula holds

due to Yang, cf. [63, Theorem 4.1]. A direct consequence is the following estimate
for odd p { n:

Corollary 18. Assume that 5,(Q,n) > 0. Then, we have for odd p {n either that
5p(Q> n) =2 or

1 1
1——-<3,(Q,n) <1+ —.
p p(Q,n) 5

Proof. We apply Theorem [17] with @ = 0 and make a case distinction according to
#V() =#{1<i<m|y; =0} If #V (1) =1, then

By @m) =1+ (Zr([) (Z‘))) ~o

since 3,(Q,n) > 0. For #V (1) = 2, we have p?V|f(n)| < p~! and the formula
yields 1 - < 8,(Q,n) <1+ . O

Furthermore, we obtain the following upper bounds for the p-adic densities:

Corollary 19. [t holds that

[ [8:(Q.n) « (n, N)2(nN)“.

Proof. By , and Corollary |18 we already know that
[ [5(@n) <« (aN) ] Bu(@.m).
P )

p|2(n,N
Let (n, N) = p’. Then, d(I) < 2 for all . Hence, Theorem (17 gives for odd p that
Bp(@Q,n) < p? as lv(l)| = 1. For p = 2 we apply [63, Theorem 4.1]. The term d(k),
defined in [63, (4.3)], satisfies d(k) < 2°% which implies that [63, (4.4)] is bounded
by « 25 and hence, also Pa(n, Q). O
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As a consequence, we obtain by that

m

n%=1(n,N)z
v/det Q)

To bound 3,(Q,n) from below, we make the assumption that n is locally rep-
resented by ¢. For m > 5 this implies that there is a primitive local solution,
i.e., a p-adic solution of g(x) = n such that at least one of the entries of x is
a unit in Z,. If such a solution exists, we always have ,(n,Q) > 0. For four
variables the situation becomes more complicated, since the quadratic form might
be anisotropic over Z, for some prime p which means that lim,_,, 8,(p", Q) = 0.
To avoid complications we assume that n is primitively represented by q if m = 4.

We follow the approach from Hanke [24]. As before, we use that ¢(t) is p-adically
equivalent to a form

r(gen@Q,n) <« (nN)“. (61)

P gi(t) + pga(ta) + ... + 07 ge(t,), (62)

where g; has unit discriminant and is indecomposable over Z, and p"
1. If p is odd, this implies that g; is of dimension 1, while for p = 2 the forms g;
may also be equivalent to one the binary forms zy or 2 + zy + 3%

We call a solution of ¢(t) = n (mod p") good if there is ¢ such that p“it; # 0 (mod p)
and bad if t; = 0 (mod p) for all v; = 0, but there is some ¢; # 0 (mod p) with v; > 1.
For v; = 1 we refer to this solution as type I and for v; > 2 as type II. Furthermore,
we say that ¢ is of zero type if ¢ = 0 (mod p).

We denote the number of good solutions modulo p® by rgfo‘i(n, Q). We infer by
Hensel’s Lemma for odd p that

rpeci(n, Q) = p""VrEd(n, Q).

and TgOOd(n Q) = 2@=2)(m=1) T%?Od(n Q).
For odd p and (n,p) = 1 we already treated the p-adic densities in Corollary (18] .
If p | n, we decompose (62| 1nt(ﬁ

qo(Zo) + pq1(Z1)

where ¢ is of discriminant coprime to p and ¢g, ¢; are diagonal forms. We make
a distinction according to dimgy = #{1 <i < m | y; = 0}. If dimgy = 1, there
are no good solutions. For dimqy = 2, the existence of one primitive solution
of u1t? + ust? = 0 (mod p) implies that there are p — 1 non-trivial solution. By
choosing all other entries, &, ¥, arbitrarily, there are p™~! + p™~2 good solutions
of ¢(¥) = 0 (modp). For dimgy = 3, a similar argument works, cf. [45, Proof of
Lemma 2|. If dimgy > 4 We apply Theorem . and the fact that d; < —I[ gives
the bound rp(n) > 1 -1 — 2.

p p

8We use the notation #; here to emphasize that ¥; is a vector.
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For p = 2, we consider

qo(Zo) + 2q1(Z1) + 22(]2@2) + 23@3(53)

where qg, q1, ¢2 are of discriminant coprime to 2 and each ¢; consists of forms as in
(62). For m = 4 Rouse [45] shows that the existence of one good solution implies
that there at least 27 good solutions modulo 8 by enumerating all possibilities of
the 2-adic Jordan decomposition. As a direct consequence, we get f2(Q,n) = %
if dimgg + dimg; < 4 and there is a good solution. Indeed, ¥3 can be chosen
arbitrarily and for 7y we only need to distinguish between ¢»(Z2) = 0 (mod 2)
and ¢o(72) = 1 (mod 2) which costs us at most three-quarters of the solutions. If
dim gy + dimg, > 4 we apply [63, Theorem 4.1]. Let d(k) and 6(k) denote the
functions from [63, (4.3)]. Then, d(1) < 0 if §(1) # 0, d(2) < —2 if §(2) # 0 and
d(k) < 5/2 — 2k which implies that 5(Q,n) = 1.
Bad type solutions only appear if p | n. We decompose ¢ into

G@o(To) + par(T1) + PPq2(d2) (63)

where qg, ¢ are of discriminant coprime to p and qg, q1, g2 consist of forms as in .
For type I, we reduce the congruence by p; so instead of counting the solutions of

qo(To) + pq1 (T1) + p*qa(F2) = n (mod p')

we use that 7y = 0 (mod p) and consider

pa0(Zo) + q1(Z1) + pga(Ta) = np~' (modp' ).

By definition of type I this congruence has solutions of good type. The corre-
sponding lift has multiplicity pdma+dime since we are free to choose 7 and Zs.
For type II, we reduce by p?, thus, we consider

qo(Zo) + pq1(Z1) + qa2(T) = np~? (mod p'~?).
In this case, we can choose 75 freely, and for ¥y, Z;, we have p choices for each
entry, so the multiplicity is

dim go+dim g1 +2 dim g2

p

We apply these maps consecutively until we obtain a congruence that possesses a
good type solution. We have shown the following:

Lemma 20. Let p be odd and assume that q(x) = n (mod p'),t > 1 has a solution
of good type. Then,

1 2

6”(62’”)21_5_?
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while for a solution bad type I we have
. 1

By(@n) = prm (1 =~ 2

and for bad type II that
. . 1 2
2—dim go—dim
51:(@7”)21) 9 ql(l—p—pg>-

For p =2 and a good solution modulo 2, t > 3 the same bounds hold provided that
we substitute (1 — % — I%) by %.

The lower bounds in the lemma above are not optimal but sufficient for our pur-
poses. We say that ¢ satisfies for n if there is a solution of ¢(z) = n (mod p')
with Qx # 0 (mod p) for all odd p and t = 1 as well as for p = 2 and ¢ > 3. This
condition is equivalent to the existence of good solutions modulo p’. As a conse-
quence, we obtain that:

Corollary 21. Assume that m > 4 and q(x) = n is soluble over x € Z, for all
primes. If q satisfies (SLC|) for n or (n, N) =1, we have that

[[81n.Q)» (nN)™,

if m =4 and n is primitively locally represented by q we obtain

vp(N)+1J *lvp(d;tQ)J

By(n, @) » | [max(p™™=,p J(nN)
pIN
and for m =5 we get that
_(vp(det Q)—2 e
By(n, Q) » | [max(p~»™, p~ 7=y (nN) 7,
pIN

Proof. Recall that a quadratic form in three variables with unitary discriminant
is isotropic over Z, if p is odd. We decompose ¢ as in . If dim gy > 3, there
is a solution of good type and if dimg; > 3 there is a solution of bad type I.
Furthermore, bad type solutions of type I only exist if p™ 2 | det Q and type II
solutions if p*™~¢ | det ). More generally, if the smallest type II solution m; has
coefficient p*s, then p™~4%*+2 | det Q). For p = 2, any form with four variables
and unitary discriminant is isotropic over Z,. Hence, if dim gy > 4, there is a good
type solution, and if dim ¢; > 4 there is a bad type solution of type I. The bounds

follow now from Lemma , and . n
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In the class of () there exists an element )’ that lives in the Siegel domain
S(%, 1), cf. [14, p.259]. These matrices admit a decomposition

372
Q' =Vv*'DV,
where V' is a rational upper triangular matrix with ones on the diagonal and all

other entries |v; ;| < 5 and D is a rational diagonal matrix with entries ay, ..., a,, €
Q such that

ap =1, and a;41 = (3/4)a; foralli=1,...,m—1. (64)

This construction of aq,...,a, with respect to ) is not unique. However, any
a; is (up to a constant depending on m) of the same size as the i-th successive
minimum of @ , cf. [14, §12 Theorem 4.1].

Lemma 22. Consider 0 < Q € M,,(Z) with even diagonal, with level N and
ai,...,a, as above. Then, we have

3\ i1 4\ m—i
— <a < |\ o N
(1) =w<()
for every 1 < i < N. Furthermore, it holds

N l lm_%‘/alagﬂ/am N lmlw/alcm)le

=

l

2
1
;lr(Q,x) <<< +\/ch e bt ot 0 o0
and
12 \/an, Im=3 det =1 det
St (e, e e ),
= VN N™3 Jar\famm s NG

Proof. Since r(Q,n) = r(UTQU,n) for any U € GL,,(Z) we may assume that
Qe S(3,1). Since @ = VIDV for V and D as above, we obtain that

372

1 a a
q(l’) = ixTQx = 51(.771 + V1,272 + ...+ Ul,majm)Q + - 4 meil
We count the number of solutions of ¢(x) = n. For z3, ..., x,, there are at most

(5 ) ()

choices. After that, we are left with a binary quadratic form that has O(n°)
solutions. This yields

1/2 m_
r(Q,n) <n, <1+ L —|—...+n2> ne.
am

Vaz az -
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If we want to count all solutions of ¢(z) < [, we proceed as before, but bound the
number of solutions for x; and x5 by

) (2

l
r(@Q,r) « 1+ max —— .
; ( ) Ijsm \/ay ... /a;

The first claim now follows from these two bounds and a; - - - a,, = det Q.
Next, we consider the quadratic form corresponding to NQ~!. It holds that

Thus, we obtain

ks,

NQ ' =NWVIDV) ' =V Y ND YV T,
The diagonal entries of ND~! are

N N
,...,— with
aq QA

N

Qjy1

2=

=

A~ w

The lowest diagonal entry % of D equals the lower right entries of NQ~! since V1

is an upper and V~1 a lower diagonal matrix with ones on the diagonal. Hence,
% € Z and thus a,, < N. If we combine this with , we obtain the bounds for
a,; stated in the lemma.

Furthermore, it holds that

1 1
4(z) = ixTNQ_lx = §xTV_1(ND_1)V_Tx

2 2 2
i+ oo+ — (W@ F o F Wi @y + T,

- 27L1 20,

where w;; are the entries of V1. These values |w;;| are bounded from above by a

constant. To see this, write V' = I + M for the m x m identity I and a nilpotent

matrix M. A simple calculation shows that V=1 = (I+M)~" = [+ 37" (—1)FM*.
Next, we count solutions of §(z) = n. For xy,...x,,_» there are

(2M+1>---<2W+1)

choices and O(n¢) for x,,_1 and xz,,. It follows that

1/2 1 g
r(NQ™n) « (1 p L lmez “ am_2> ne. (65)

VN N%-1
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Furthermore, we obtain by the same argument as above that

i SUm—it1 - A)Q
ZT(NQ_I,x) « 1+ max [z .Y " ]Hj =,
o 1gjsm N2

Combining these bounds yields the second claim. O

To compute the inner product of the cuspidal part of the theta series, we require
a transformation formula for the theta series. For simplicity, we omit the weight

3 in the slash operator [[g]m.

b

Lemma 23. Let o = (Z d

) € SLy(Z) with ¢ # 0 and l = (N, c). Then,
1

Q. 2)llel = (@t @) H Y a(r.0.Qe( ]

xTDQfIUm'),

where |a(z, p, Q)| = 1, D is a diagonal matriz of determinant (det Q,1™) and Q,

is of level % and determinant (dieéﬁm).

Remark. The matrix @) is explicitly constructed in the proof below and is given

by Q; = D'VTQV for D as above and a matrix V € SL,,(Z).

SIS

and obtain by the transformation formula for the generalized theta series, cf. [55]
p.575], that

Proof. We factorize

0(Q.2)|le] = >, alz,Q, @)e(;xTQ‘lxz> (66)

xeZ™
where
d 1
a(z,Q,0) = m<€<$TQ_1$> Z €<*UT$ + QEUTQQQ
€z we@jezym  C ¢
and |¢| = 1. Then,

Sl 28 e(femenmon s am o)

ue(Z/cZ)™ ve(Z/cZ)™

DI CLC TR I YA e B

we(Z/cZ)™ ve(Z/cZ)™

’ 2
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We write ¢ = ¢2' with odd ¢ and decompose the v and w sums accordingly. As ¢
is odd, we can find M € GL,,(Z/¢Z) such that MTQM is congruent to a diagonal
matrix D mod ¢ with entries ¢; ..., q,. Hence, substituting v by Mv and w by
Mw we obtain

Z e<2a w Qu + inx> Z e(%vTQw>

we@/gzym  “€ (Z/eZ)m

a2qZ wimiT:L‘ aq;v; w;
I3 () X (),

1<i<m w; mod é v; mod é

where m; denotes the i-th row of M and v;, w; the i-th entry of v, w. Set l = (g;, )

and [ = (I1,...,l,)T. By applying the orthogonality relation and recalling that
(a,¢) = 1, the previous display equals

- wzm z\ & (det@, &™) if MTx =0 (modl),
3 «()-; .

B ——r otherwise.

Over Zs we cannot diagonalize every quadratic form, but we can decompose it
into a sum of diagonal terms and multiples of the binary quadratic forms ry and
22 + zy + 2, cf. [28) Theorem 33]. Hence, there is M € GL,,(Z/2'Z) such that
q(z) = 32T MTQMz satisfies

q=2"g1+ ... +2"g. +2"d; + ... +2%"d, (mod?2)

for 2r + s = m, v;, J; < t, binary quadratic forms g; given by matrices

(Oléi ;) with a; =0or oy =2 (mod 2")

and diagonal forms d; with discriminant coprime to 2. The d; can be treated as
above. For the binary quadratic form g; we need to evaluate:

a(qw? + 2wiwse + caqw3)  wyml zy + wamdxy
Z € 2t—l/1+]. + 2t
)

B e(mgET) 3 (g e

v1(mod 2t) vz (mod 2%)

w1,w2(mod 2¢

The latter two sums vanish unless
awy +wy = 0 (mod 2'™") and wy + awy = 0 (mod 2'~").

This implies that wy, wy = 0 (mod 2°7*). Hence, display equals

o2t 2 . wym] Ty 4+ warmgxy\ )22 if imfxy = Mz, = 0mod 27,
) 27 0 otherwise.

w1 ,w2(mod 2¥1
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The rest works analogously. Let D denote the diagonal matrix with entries [; given
by

I; = 1;2"9) with v(i) = { 2

Ui_op if 4+ > 2r.

By construction, we have det D = [y ---1,,, = (det @, c™). We choose V' € GL,,(Z)
with V' = M (mod¢) and V = M (mod2'). The computation above gives the
following congruence condition for x:

VTr = 0(mod DZ™).
Thus, equals

% Zm e <;<VT90)T(VTQV)_1V$ (Z i CD)

VT 2=0 (mod DZ™)

4/ (det @, d
=¢ Zet " x;,n ( D(VTQV)~ 1Dx<z+ ))

Note that both D and V' only depend on [ = (N, ¢) and not on the specific value of
c. By construction Q; := D~'VTQV is a positive, integer matrix of level ( ]\],VC) =2

The claim follows by setting a(z, 0, Q) = Ce (%(xTDQ’lx). O

We improve the estimates in [4, Lemma 4.2] and [5, Lemma 2.3] by means of
Lemma 22 and 23}

Lemma 24. Consider a positive, integral, primitive quadratic form in m = 3
variables given by Q. If f(z) = 0(Q,z2) — 0(genQ, Z) and q(x) = Y, a;x? with
a; < aj fori < j, then

m

SRR <(det]C\£,N2 /O m—1 1>

More general, if Q, Q' are in the same genus and f(z) = 0(Q, z) — 0(Q’, z) it holds
that

o N7Z N .
i< <(detQ,N?) i (detQ)i)N '

Proof. First, note that f is a cusp form since the value of 6(Q, z) at each cusp
depends only on a genus-invariant term, cf. Corollary 32} Set y = [SLo(Z) : [y(N)]
and i = [SLy(Z) : T'(NV)] and recall that

vt

p|N

= =
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We obtain
i 4 2
=] Wy =B sl ey

To(N)\H

for a set of coset representatives 7; of I'(V)\ SLa(Z). On this set, we define an
equivalence relation

7~ 7 < 1,e '(N);T forT:{<1 T>‘0<$<N—1}

and choose a subset {01, ..., 05~} of representatives. Thus,

B/N
S p=EX U IAeEl 2y (69)

] 1 teT

where F is a fundamental domain of SLy(Z)\H. Let

(e b
Qj_(%‘ dj)'

By construction, the fi/N cusps a;/c; are a complete set of representatives for F(N )

(with the convention that 1/0 = 00). Recall that two rational numbers a;/c;, a}, cj

are I'(N)-equivalent cusps if and only if @ = ¢’(mod N) and ¢ = ¢/(mod N), so in
particular (¢, N) = (¢/, N). Hence, for d | N exactly

N\ ¢(d)
) AN
of the ¢; satisty (¢;, N) = d.

First, we estimate the contribution of the ¢(/N) matrices o; with ¢; = 0. In this
case f|[o;] = f and hence, these matrices contribute at most

~so NJ Z|T Q.n) —r(gen Q,n)|* exp (—dmy) y? dy < 1

to (69).

For p; with ¢; # 0, we apply Lemma which yields the following Fourier
expansion for f|[g;]:

e = @t Q0 Y aatwe(5)

n=0
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where Ny = 2~ = & and |ag(n)| < 7(Sg,n) + r(gen Sy, n) for Sg = NyD,Qy"

(N,cj) d
with Q4 = VTQV D! as in Lemma 23] In particular, we have
det @ NJ'(det Q,d™)
detQQy = ——~—~—— d detS;= .
Q= er g, gy 4 det S det Oy

It follows that

{f,f)<1+N g Z Z (det Qq)~" Jl 2 aq(n)? exp <_Z§z;dyn>y?2dy

d|IN (c;,N)=d 5 n>1
Nd Nd %_1 n

«1+ 2 (—) <—)
;\/ det Qg4 7; a(n) n b Ny

We truncate the n sum at n « Nj*¢. First, we consider the contribution of the
genus theta series. By we obtain that

NZ 2 T 21 N
d td 2 r(genmsi’ ARy Ng Y n(; t (n;zm> « N-.
© Qd n<<N01l+5 ne n<<N01l+5 ( © Q’ )

To estimate r(S4,n), we apply Lemma . Following the construction of ay, ..., a,

just before this lemma we obtain tuples a;(Sy), .. ., a,(Sq) with respect to Sy and
a1(Qaq), - -, am(Qq) with respect to Qg. It follows that
Nd% Z T(Sda n)2
det Qa n«N}te e
« ( Ne oL /@1(Sa)as(Sa)r/am(Sa) N \/al(Sd)az(Sd)>Ne
detQ, 7 V/Ny(det Q, d™) (det Q,dm) d
N7 N,
& + N§.
(det Qg am(Qd)am_l(Qd)) d

If @ is diagonal, then @), is also diagonal and we can arrange the coefficients by size
and set a;(Qq) as the i-th entry. Since a;(Q) | N, we may decompose a; := a;(Q) as
(a;, Ng)(a;, d). By definition of Q4 we have a,,(Qq)am—1(Qa) = (am, Na)(@m—1, Na)-
Thus,
N; _ N, d N
\/am(Qd)am—l(Qd) N \/(ama Na)(am—1, Na) \/(amv d)(am-1,d) vV mAm—1

In this case, the inner product is bounded by

m

N2 N . N7 N ¢
B <<;V<detde * m+1>N « <(detQ,N7§) " m)N'
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If ¢ is not diagonal, we simply estimate a,,(Q;)am—1(Q;) = (det Qj)%. As a
consequence, we get

m

Nz N .
(detQ, N?) " (det Q),L)N '

o< (

]

This bound is a significant improvement to previous results. For m > 3 it is
known by [47] that

(f ) « N™724 4 N™57 \/det Q + (det Q)
and for m = 4 by [45] that
(. f) « N2¥e(det Q)7 + N2*.

An application of Lemma [24] is the representation by squares of almost primes.
While every number n = 5 (mod 24) can be expressed by the sum of five squares,
it is not possible to prove an analogous result for four or less squares by current
technology. However, using a vector sieve, Blomer and Briidern, [I0] [7], [5] obtain
similar findings for almost primes. In the case of three squares, the main input
is [7, Theorem 4.2] where for n = 3 (mod8) and the quadratic form qq = d?x? +
d3a3 + djz} = s27 Qqu, the error term is given by

Ro®) = 3 pldy)u(da)p(ds)|r(Qasn) — r(gen Qu, )]

di,dz,dz<n?

The aim is to maximize 6 such that R3(0) « n2~¢. Let N denote the level of Q.
First, we use a local argument from Blomer [5, p. 14] which allows us to assume
that (n, N) is relatively small. Then, we apply [60, Theorem 1] and Lemma .
This gives

3 3
RO« Y (e M) (A Yy

d1,d2,ds<n?
«nt 3 (nB (o) 40 (ddady) ) (V)
dy,d2,d3<n?
3 n%H“%)a(nN)E + H%HM@G(”N)G'

We conclude that R3(0) « nz=¢ is satisfied as long as 0 < 1—}6. If we insert this

bound into [I3], 3.50], where the variable 6 is called 7, we obtain that every large
integer n = 3(mod 24) with 5 1 n is represented by three almost primes with each
at most 67 prime divisors.
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For four squares, the main input is [10, Theorem 3] which shows that

RiO)= > ul(d)(d2)u(ds)(ds)|r(Qa,n) — r(gen Qa,m)| « n' ™

d1,dg,d3<n?

for the quadratic form gy = d32% + d322 + d322 + d323 = %mTde and 0 < 2—12 Let
N denote the level of ¢4. By the Petersson formula and Lemma [24] we obtain

. N VN
Ry(0) « dl’d§$n0n2 (1 L (Z[;V) )(\/d]e\:]tQ - ¢di\;4>

4
103 1 1 3
«n®nz 4 na < E (n, d2)4) «n®tz 4 it

d<n?®

e

Hence, if 0 < 0 < £, then Ry(f) « n'~¢ which improves [10, Theorem 3.
Another application is due to Golubeva [2I] who shows that every even and
sufficiently large n = 1 (mod 5) can be represented by two squares, one cube, two

fourth and one sixteenth power. Therefore, she shows that
n =z + x5 + 6Px3,

is solvable if n is larger than a small power of P. By the lemma above, the cuspidal
part f of 6(Q, z) satifies || f|| « PY**¢ which is sufficient to show that r(n, Q) > 1
if n > Pt

To conclude this section, we determine a lower bound for n with respect to ). To
bound the Fourier coefficients of f(z) = 0(Q, z) — 0(gen@,2) = >,,-; a(n)e(nz),
we apply the lemma above and either Deligne’s proof of the Ramanujan-Petersson
conjecture or the Petersson formula, cf. [27, Corollary 14.24]. This gives for even
m the following bounds

1

a(n) <||f||n% "% min(N=*, 1+ ni(n, N)TN"2) (70)

m_1 N7% N2 1 ni(n, N)i
et (Y (b 1 0
(VA QNT)  Va

and for odd m that
m_ 1.4 n
a(n) < || 4 (14 5
If n = tv?w? with ¢ squarefree and v | N® not too large, one can get additional

saving by applying [59, Theorem 1].
Combining the results in Lemma , and Corollary [21| shows that:

Corollary 25. Consider an integral positive quadratic form q(zx) = %xTQx in four
variables. If q is diagonal, let a denote the product of the two largest coefficients;
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otherwise, we set a = +/det Q. Then, q(z) = n is soluble provided that q satisfies
(SLC) for n and

n > <N2(n,N) + min <(n, N)(adetQ)2’ NZthQ»Ne

or if n is primitively locally represented by q and

N2detQ
Va

n» (N° + )N min(N N, det Q)

where N = NI2 with N squarefree.

This is a significant improvement of previous results as for example [45, Theorem
1]. For quadratic forms in m variables with m > 5 | we get a similar result:

Corollary 26. Consider an integral positive quadratic form q(z) = %xTQ:L" mm
variables with m = 5 and set a as the product of the two largest coefficients if q is
diagonal and a = (det Q)% otherwise. Then, q(x) = n is soluble provided that n
is locally represented by q and

det QV N\ 73
n>» (NHﬁ R AR 36\/7) TF(N)
where
Ne€ if q satisfies (SLC|) for n
f(N) = . 1 1-5 \ 4 .
min (N7, (det Q)=—1) ™3  otherwise

and any 6 > 0 with (det Q)° < Hp‘detQ(pQ, det Q). Furthermore n is represented if
(n,N) =1 and

det Q gt
7 .

The size of f(IN) depends on the lower bounds for the p-adic densities in Corol-
lary [21] If only small powers of primes divide det @), one can improve the minimum
term in f(N).

In the following sections, we frequently use the bound above for the cuspidal
part of the theta series, however, only for prime level. To hold notation simple,

we use k = % and write the first term in the bound as é\g TQ

2
ny» NFm=te 4 (
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4 Theta series and Klingen-Eisenstein series of degree two

Consider two positive, integral quadratic forms in 2 and m variables given by 27T
and (). The aim of this section is to obtain an asymptotic formula for

r(Q,T) = {X € Myo(Z) | T = ;XTQX}
that is uniform in the level N of (). We tacitly assume that @) is primitive which
implies that the level of NQ~! is also N.

We start by reviewing the theory of Siegel modular forms (of degree two) and
explain how to construct a basis for the space of Eisenstein series. Furthermore, we
present various transformation formulas for the theta series of degree two. Then,
we dive deep into the world of Kingen-Eisenstein series. To evaluate the Fourier
coefficients, we express them as an integral. The first step is to decompose the
matrices that appear in the sum of the Klingen-Eisenstein series into different
parts. Then, by treating each of these components individually, we obtain an
explicit formula for the Fourier coefficients.

To obtain an asymptotic formula of r(Q,7T) it remains to treat the cuspidal
part of the theta series. After applying Kitaoka’s equivalent of the Petersson
formula we are left with estimating the Petersson inner product. To reduce the
computation to the fundamental domain of Sp,(Z)\Hsy, it is essential to obtain
transformation formulas for Klingen-Eisenstein and theta series with respect to a
set of representatives in F(()z) (N)\ Sp4(Z). This evaluation proves to be lengthy and
technical. The final part of this chapter discusses several ways how to extend the
results of Theorem [6l

4.1 Siegel modular forms and the space of Eisenstein series

We start by introducing further notation. We set
GSpy, (R) = {M € GLy,(R) | M" Jou M = (M) J3,}  for Jo, = (1 _I”>

and some p(M) € GL;(R). The kernel of u : GSp,, — GL; is by definition

Sp,y,- Note that M = é 15)) € GSp,, (R) if and only if A”D — CTB = u(M)I,

and ATC and BT D are symmetric. By GSp,, (R)" we denote the subgroup of
GSp,, (R) consisting of those elements M with (M) > 0.

Let H, = {Z = X + 1Y € Mat,(C) | Y > 0} be Siegel’s upper half space of
degree n. We let M = <é g) € GSp;,(R) act on H, by

MZ = (AZ + B)(CZ + D)™
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and define for k € Z an action of GSp;,(R) on functions F' : H,, — C by
(FIIM])(Z) = p(M)* jai(Z) " F(M Z),

where jy(Z) = det(CZ + D). In many instances it will be clear that we work
with modular forms of weight k, so in these cases we omit the k and write simply
(F|[M])(Z). Furthermore, we set

A B

TV (N) = {M € Sp,,(Z) | M = (C D

> with C' = 0 (mod N)}

and let M ,En)(N ) denote the vector space of all functions F' : H,, — C that satisfy
F|[M] = F for all M € F(()")(N ). To hold notation simple, we omit the degree in
the superscript if it is clear from the context. For n = 1, we impose the additional
condition that F' is regular at all cusps, which holds automatically by Koecher’s
principle for n > 1. Any F € M, k”)(N ) has a Fourier expansion

F(Z)= > A(T)e(tx(TZ)),

where §,, denotes all nxn positive semi-definite, half-integer matrices with integer
entries on the diagonal. These Fourier coefficients satisfy A(T) = A(UTTU) for
U € GLy(Z). Recall that a positive matrix A with diagonal entries ay,...,a,
is called Minkowski-reduced, if 0 < a; < ... < a, and all off-diagonal entries
satisfy |a;| < min(a;, a;). In the following, we denote the set of Minkowski-reduced
matrices that are contained in S, by R,. In every class, there is at least one
T € R,, so when evaluating A(T) it is often handy to assume that T' € R,,.
Moreover, we define the Siegel-®-operator by

t—00

3 (F)(Z) = lim F (Z itb)

that maps M,gn)(N) — M,gn_r)(N). For simplicity, we write ®T(F)(Z) for r = 1.

In the following we focus on the case that n = 2. We denote by S(/N) the Satake
compactification of I' (()2)(N )\Hs and by Bd(/N) the boundary of S(N). Satake [48]
proved that the boundary components of Bd(/N) are modular curves and that they
intersect at various cusps of these curves. We call the one- and zero-dimensional
components of Bd(/V) 1-cusps and 0-cusps respectively.

The subspace of cusp forms in M,g2)(N ) is given by those forms that vanish at
Bd(N). To introduce this formally, we set ®x (F)(z) = @ (F|[K])(z) and define

SH(N) = {Fe MP(N)|®x(F) =0 for all K € Sp,(Z)}.
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The 1-cusps correspond bijectively to double cosets of F(()Z) (N)\ Sp,(Q)/P(Q) where
P(Q) is the maximal parabolic subgroup of Sp,(Q) defined by

PQ) = N Spy(Q).

=Y eyeye)
colH o

Q
Q
Q
0

exerere)

To show that F'is a cusp form it suffices to verify that ®.,(F) = 0 for a set of

1-cusp representatives v; € F(()Q)(N N\ Sp,(Q)/P(Q). In other words, a form F' is
cuspidal if the Fourier coefficients at every cusp are only supported on positive
definite matrices T'.

A set of coset representatives of 0-cusps is given by F(()Q)(N N\ Sp4(Z)/T s, where

r, - {M _ (’6‘ g) c Sp4(Z)}.

Explicit sets of representatives for 1- and 0-cusps for squarefree level are given in
[9]. This work also specifies at which 0-cusps the 1-cusp representatives intersect.

As in the case of elliptic modular forms, the space M, ,52)(]\7 ) can be decomposed
into cusp forms and Eisenstein series. We assume that k is even, since there are

no Eisenstein series with trivial nebentypus of odd weight. Indeed, F' € M,g3)(N )
satisfies F'(Z) = (—1)¥F(Z), so there are no modular forms of odd weight in

M ,5,3)(]\[ ). Besides, the ®-operator is surjective, implying that all non-cusp forms
in M, ,52)(N ) are contained in the image of M, ,ES) (N) under the ®-operator.

4.1.1 Eisenstein series

We start by considering the so-called Siegel-Eisenstein series which resemble the
classical analogue of degree one:

E(Z) = > (M2
MeT o\ (N)

They are obviously well-defined and live in M ,5,2)(]\7 ). Furthermore, they converge
absolutely (and uniformly on vertical strips of positive height) for k& > 4, cf. [38,
p.67]. The value of E(Z) at the 0-cusp represented by v € I'g(N)\ Sp,(Z)/T'y is
given by

OAE) = lim B[t = Y, lim j(M,itl) ™"

t—00
MeT x\I'o(N)

The terms of the latter sum equal 1 if M~ € I'y, and 0 otherwise, since M~ € 'y,
implies that v € T'o(N). Hence, E(Z) takes the value 1 at the cusp 700l and
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vanishes at all other cusps. For each 0O-cusp representative ~;, we set

E%(Z> = Z ](M7Z)7k

MeD\y; 'To(N)

Then, E,,(Z) takes the value 1 at the O-cusp represented by +; and vanishes at all
other O-cusps. Indeed, v, 1FO(N )2 € 'y, implies that +; and 7 are in the same
double coset.

Hence, for any F e ME)(N ) we can choose a linear combination of Siegel-
Eisenstein series )| ¢;IE,, such that F' — > ¢;E,, vanishes at all 0-cusps; a suitable
choice is ¢; = ®2 (F).

It remains to consider forms that vanish at 0-cusps but not at all 1-cusps. For this
reason, we need some additional notation. An element L € P(Z) := P(Q)nSp,(Z)
has the form

aq 0 bl bQ
a3 ay bg b4
C1 0 d1 dg
0 0 0 dy

with ay = dy = £1. We define a map from P(Z) to SLy(Z) by setting

(L) = (le 211> . (71)

Furthermore, for Z = (21 ?) € Hy, we set 7(Z) = z;. We set
2 24
E(f.Z2):= ) f(x(MZ))j(M 2)™",
MeP(N)\I'o(N)

where P(N) = P(Q) nI'y(N) and f € Sk(N). Such Eisenstein series were first
considered by Klingen [37] and are therefore called Klingen-Eisenstein series. If
we write L € P(N) in the form above we have

CL121+b1
LZ)=w(l)zy = ——. 2
n(LZ) =w(l)a = o (72)

By the cocycle relation

J(LM, Z) = §(L, MZ)j(M, Z)
and j(L,MZ) = dy(c1m(MZ) + dy) we conclude for even k that
F(a(LMZ))j(LM, Z)™" = d* fl[w(D))(n(MZ))j(M, Z)™* = [(x(MZ))j(M, Z)~".

Thus, E(f, Z) is well defined. Furthermore, E(f, Z) converges for k > 4 uniformly
on vertical strips of positive height, cf. [38, Theorem 1]. The following result was
first proved by Klingen [38, Proposition 5]:
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Lemma 27. Let k > 4. It holds that

Q(E(f,") =T

Proof. Due to the uniform convergence of the Klingen-Eisenstein series we can
interchange limit and sum. As a consequence, we obtain

RN CUION) NCTaN

M¢P(N)

It remains to show that each of the terms in latter sum is 0. Recall that for an
elliptic cusp form f it holds that f(z) « (Im2)*2. Thus, it is sufficient to show
for M ¢ P(N) that

oo ) S )

A B

Assume that M = (C’ D

) and denote the entries of each block matrix by small

ay as

letters and indices from 1 to 4, for example A = < ) Then,

a3 ay

Im7 (M (Z Z. A)) j (M, (z M))z = [(a12 + by)(cai) (74)

—<a27:A + bg)(CgZ + dg)] . [(cﬁ + dl)(—C4i/\ + d4) - (—Cgi)\ + dg)(CgZ + dg)]
We interpret the result as a polynomial in A. The A\? coefficient is given by
(alcidl — blclci — agc3c4dy + agcycyds — aycacyds + bicacsey)y.

Since M € Sp,(Z) we have that ATD — CTB = I and ATC is symmetric. This
gives us the following three relations:

a1d1 + a3d3 - blcl — b3C3 = 1,
a2d1 + CL4d3 - blcg - b304 = 0,
a1Coy + a3cy — aoCp — aygcg = 0.

Solving the second term for b3 and the third for a3z and plugging this into the first
equation, we conclude

a203d1 a201d3 a102d3 610263
ardy — by — + — — = 1.
C4 Cq Cq C4
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Thus, the A\? coefficients is ¢3. The other terms can be computed similarly and
display equals
AYN 4 |esz + ds| X + d2y.

Hence, is satisfied unless, c3 = ¢4 = d3 = 0. This yields the claim since
M e P(N) if and only if M € Sp,(Z) and A(M) = (0,0,0, ), where A\(M) denotes
the bottom row of matrix. n

In order to obtain a basis of M,EQ)(N ), we define a Klingen-Eisenstein series for
each 1-cusp representative. We assume that the level is squarefree as this allows us
to consider a more easily manageable set of 1-cusp representatives. For this pur-
pose, it is handy to identify FE)Q)(N)\ Sp,(Q)/P(Q) with T (N)\ GSp,(Q)/P*(Q),
where P*(Q) is the maximal parabolic subgroup in GSp,(Q) that contains P(Q).
The main advantage of latter coset consists in the possibility to choose represen-
tatives s; such that w7 'To(N)k; = To(N). For each divisor I of the (squarefree)
level N, we fix a matrix

/ B ) mod [2
Spa(Z) 3(1) = (75)
I) mod(N/1)?

=0 ()

Then, x(l) for I | N is a set of representatives of I'((/V)\ GSp,(Q)/P*(Q), cf. [9,
Section 2.2.] or [16, Section 7]. We set

El(f,Z) = E(f,Z)|[r1] and &(F) = ®(F|[x(1)""]).
Corollary 28. Let m, [ denote divisors of N. It holds that

0 otherwise.

and set

q)m<El(f7 Z) = {

Proof. By definition, we have

Gi(E(f,7) = (E(S,) = [

The argument in Lemma 27| also works when we consider GSp,(Q) and P*(Q)

instead of I'o(N) and P(N). Thus, we have for Z, = (Z i)\> that

lim f(m(MZy))j(M, Zy)™" = 0 for M € GSp4(Q)\P*(Q).

A—00
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Hence, if there is no element M € T$Y(N) such that Mr(l)k(m)~' € P*(Q) for
m # [ it follows that ®,,(E;(f,Z) = 0. Let’s assume that there is such an M €

F(()2)(N). This implies that A(Mk(I)k(m)™') = (0,0,0,*). By construction, all
entries of

[

mMr(D)r(m)™t = M~y(l) < m[) 7(m) € GSp,(Q)

are integers. Assume there is ¢ > 1 such that ¢t | [ and ¢ t m. For A\(M) =
(3, ¢4, d3,dy) we have

A(mM s(D)k(m)™h) = A <M (u _mf)) = (I3, lds, —mes, —mey)  (mod 2).

Consequently, we that ds,dy = 0(modt) as [ is squarefree. As ¢t | N, every entry
in the lower row of M is divisible by t. However, this contradicts the assumption

that M e T (N).
For ¢t 11 and t | m we obtain

AmM k(1)k(m)™Y) = (mds, mdy, —lcs, —lcy)  (modt?)
and the very same contradiction. O

Consider F' € M,gZ)(N) for squarefree N and set f; = ®;(F) and ¢; = ®2 (F) for
a set of representatives ; of 0-cusps. Then

F(Z) =Y E(f,Z) = Y ¢ (Z) € S (N).

IIN i
Hence, we get the following decomposition:
Corollary 29. For squarefree N we have
MP(N) = SN (E(f, Z SW(N), 1| N
® (Ey(Z) |7 € To(N)\Sp4(Z)/T)-

For arbitrary level, a set of 1-cusp representatives and the corresponding decom-
position of the Klingen-Eisenstein space can be found in [54, Corollary 3.3 and
3.4].

4.1.2 Theta series and representation of quadratic forms

As the theta series satisfies 0(Q, Z) = 0(UTQU, Z) for U € GL,,(Z) it only depends

on the class of ). As in the case of elliptic modular forms we approximate the
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theta series by a weighted average over the classes in the genus. Recall that

0(Q) = #{U € GL,,,(2)|Q = UTQU} is finite. We set

O(genQ, Z) = ( Z O&%))_ Z QOR((RZ)) = Z r(genQ, T)e(tr TZ).

Regen(Q) Regen(Q) Tes

The Fourier coefficients were explicitly computed by Siegel:

e Q.T) = (k>;((detT) g l14@) (76)

where the p-adic densities are given by

Bp(Q,T) = lim p'®WH{G € My, o(Z/p'2) | GTQG =T (mod p')}.  (77)

t—00

Our first aim is to show that 6(Q, Z) — 0(Q’, Z) vanishes at all 0-cusps if @) and
Q@' are in the same genus. By the results above, this enables us to express the
difference 0(Q, Z) — 0(Q', Z) as a linear combination of Klingen-Eisenstein series
and cusp forms.

To this end, we introduce the generalized theta series for A, B € Mj 9;,(C)

0um(@2) = 3 e u((X + ATQX + A) +2B7X))
XeMyy,2(Z)
that satisfies the transformation formula
0ap)(Q . Z7") = e(—tr(A"B)) det Q (det Z/i)" 05, 1)(Q, 2), (78)
cf. [19, Satz 0.13]. Note that 64,5 (Q,Z) = 0—a,-5)(Q,2).

Before we compute the value at each 0-cusp, we need to determine a set of
suitable representatives:

Lemma 30. In every coset class of To(N)\Spy(Z)/Tw there is M = (é, g)
with det C' # 0.
Proof. Consider M € Sp,(Z) with det C' = 0. By left and right multiplication with

'y, we can assume that
(A 0
C- ( ; O) |

If ¢; = 0 then det A # 0 and left multiplication by

K = (C D) e Ty(N)
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with det C' # 0 gives a matrix with the desired properties. For ¢; # 0 we still have
as #0oras #0by ATD — BTC = I. In the former case we choose C' = (5? 8>
3
dy

with é; # 0 and D = (d *) with d; # 0. Then,
3 *

czlcl~ 0

det(CA + DC) = det < 3
Czaq + dzcy  Czas

) = chlégdz # 0.

0 0

The latter case works analogously, we choose C = <O : ) and D as before. This
4
yields

det éA + DC = J101546L4 # 0.

For a representative with det C' # 0, we decompose M into

A B\ (I AC™! -C T\ (1 C7'D
C D) I C 1 '

This decomposition allows us to get a similar transformation formula for the
action of a 0-cusp representative on the theta series as in the case n = 1:
Lemma 31. Consider the decomposition of M with det C' # 0 as above. Then

1
K@M = ¥ a(x.Qme (3x7Q7x2)
XGMQk,Q(Z)

with

w 1 _ _
a(X,Q, M) = (detO)kdeth<2tr (XTQ'XC 1D)>

1
S )
X%—‘EMQ’Q]Q(Z)/CM2,ZI€(Z)

where w is either 1 or -1.

Proof.

an[( )0 )

= (detCZ)™ ) e(;tr (XTQXx (C"(—z o+ ACTY)) )

XeMyy 2(Z)
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We put X7 = XT+CXT where X{ runs over matrices in X7 € My ox(Z)/C Ma o1 (Z)
and X, over matrices in Moy o(Z). Since CTAC™ = AT is integral, the previous
display equals

1
(det CZ)~* Z €<§ tr (XlTQxlAcil))
X%—‘EMQ’Q]C(Z)/CM2,2]€(Z)

Y (G e XDREGCT + X6)(-2)) )

XoeMay 2(Z)

_ 1 _ _
— (det CZ)~* 3 e(itr (xTQX, AC 1))9()(10470)(@,2 b,
XTeMs 21,(Z)/C My 21 (Z)

By applying we have that

(—=1)*(det 2)%00,x,c-7)(Q~", Z)

Ox,o-r,0)(Q, Z271) = det O ;

where

boxion(@2) = Y e(;<tr(XTQ—1XZ+20—1X1TX))).
XeMoyy, 2(Z)

The claim follows now by taking the third matrix in the decomposition of M into
account. O

Corollary 32. Let Q, Q' be in the same genus. Then 0(Q,Z) —0(Q', Z) vanishes
at all 0-cusps.

Proof. The value of 0(Q, Z) at the cusp il is obviously 1. For all other cusps,
we choose a representative with det C' # 0 and apply Lemma [31 Consequently,
the value of (Q, Z) at the cusp represented by M~! is given by

W L ! o
T NE A A Z c ( i (Xl QXAC )> '
(det C)* det @ X{ €Ms 21 (Z)/C M2 2k (Z) ’

This term only depends on the discriminant and the congruence class of the un-
derlying quadratic form, thus, it is genus invariant. O]

By Corollary and Corollary we obtain the following decomposition for
squarefree level:

0(Q.7) = 0(genQ, 2) + Y Ei(f1, Z) + G(Z),

I[N
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where G(Z) is a cusp form of degree two and f;(z) are cusp forms of degree one.
To determine f; we apply the ®; operator which yields

fi(2) = lim ((9(Q7*)I[H(l)‘1]) <Z Z-t) = (0(gen Q. )|[x(D)']) <z it) )

t—00

On the level of Fourier coefficients, this corresponds to

r(Q.T) = r(gen @, T) + > A(T) + S(T), (79)

IIN

where A;(T), g(T') are the Fourier coefficients of E;(f;, Z) and G(Z). For T > 0,
the followings bounds for A;(T") and ¢(T") are known by Kitaoka, cf. [30] and [31],

A(T) <y (det TV 2 min(T) 2 g(T) < (det T)

IS

_1
4.

Furthermore, Kitaoka [29], [32] has shown that the product over the p-adic densi-
ties for 2k > 7 is bounded from below by a constant depending only on @) as long
as T is locally represented by Qﬂ By means of this gives a lower bound for
r(gen @, T) and hence, an asymptotic formula for (@, T) with respect to 7.

The goal of this thesis is to make these estimates uniform in the level N. The
treatment of the main term is rather straightforward, since we can apply a formula
from Yang [63] to evaluate the local densities at odd primes. The evaluation of the
error term, however, is very elaborate. To estimate the Fourier coefficients of the
Klingen-Eisenstein series we modify Kitaoka’s work [34]. The main challenge lies in
bounding the Fourier coefficients of the cusps form G(Z). To do so, one expresses
the cusp form as a linear combination of Poincaré series and then applies the
Kitaoka-Petersson formula to evaluate the Fourier coefficients of the latter. This
way, Chida, Katsurada and Matsumoto [I5] obtained the following bound:

g(T) <« A/{G,Gy((det T)z =5+ N3+ 4 1). (80)

To compute the inner product we make use of the fundamental domain of the full
modular group Sp,(Z). This implies that we need to bound the Fourier coefficients
of G|[M] where M runs over a set of representatives in T'o® (N)\ Sp,(Z).

For the treatment of the error term, we assume for simplicity that the level N
is prime. However, an extension of the proof to squarefree level is sketched out in

Section (4.4]
4.2 The main term

The dominant term in the asymptotic formula for r(Q,T) is given by r(gen @, T).
By (7€), we only need to treat the local densities 3(p, Q) given in to obtain

9More precisely, Kitaoka shows that if T" is locally represented by Q, then, for every p and some fixed
a there is a solution of XTQX =T (mod p®) that can be lifted to pF=3t golutions modulo p**t.
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a lower bound for r(gen @, T). To this end, we apply Yang’s explicit formula for
local densities, cf. [63, Theorem 7.1]. Due to the complexity of the formula we only
use it in some specific cases and only for odd p. Recall that counting solutions of
%XTQX = T with X € My, 2(Z) corresponds to counting solutions of x,y € Z* of

1 1
ﬂ@=§ﬁ0x=h,qu%=f0y=m dw=§f0y=u

Lemma 33. Assume that N is odd and squarefree, that T is locally represented
by Q and that for all primes p | N either (detT,p) = 1 or p**=* {det Q. Then,

H Bp(Q,T) » N~

p#2

Proof. For pt2det T det @, the p-adic densities are computed explicitly by Siegel
[55] and we have that 3,(Q,Z) =1 — p'~*. If pt2det T, we apply [63, Theorem
7.1]. For this purpose, we use that T is equivalent over Z, to diag(a;p®, app®) for
units a1, s and q to qo + pgy where qg, q; are diagonal quadratic forms of unit

discriminant. Let v(l) be defined as in and set x,(«) := <%> Ifa=0=0,
the formula yields for even dim ¢q that

dim gg __dimgg

Bp(@Q,T) =1+ v(1)xp(—arag)p' ™= — (0(1) + xp(—crag)) p~ 2
and for odd dim ¢ that

/Bp(Q7T) _ 1 o plfdimqo'

If dim gy = 1, there is obviously no solution. For dim ¢y = 2, we get that

B(@Q,T) = 1+ v(1)xp(—araz) = p~ (v(1) + xp(—ara2)).
If v(1)xp(—arae) = —1, then v(1) = —x,(—aiaz2) which contradicts £,(Q,T) > 0.
Hence, 5,(Q,T) = 2 — %. For dim gy > 3 we see directly that 8,(Q,7) > 1 — 1.
For arbitrary 7" and odd p, the terms in Yang’s formula get very small as fong
as dim Qo = 5, since then d(I) < —%l, cf. (60). If we trivially estimate the terms
I, Ir; with 1 <@ < 4,1 <j < 8 in the corrected version of [63, p.25-26], we
obtain the lower bound

2 2
Ty>1-°- 2.

Since p = 3, the claim follows. H

It remains to treat the case of p = 2. Therefore, recall that ¢ is equivalent over
Z+ to a form

q0+2q1+22qQ+...

where ¢; consist of diagonal terms of the form w;z? with units u; and the binary
quadratic forms x? + z129 + 23 and xy79. If dim g is sufficiently large, we can
compute the 2-adic densities as follows:
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Lemma 34. Let g = %xTQx (with @ > 0 and integral) be equivalent over Zs to a
form qo + q1, where

r r+s 6
2 2 9
Qo = Z(x%‘—l + Tpj1T95 + 25;) + Z Toj—1T2 + Z U5 (81)
Jj=1 I=r+1 i=25+2r+1

with r + s < 3 and u; € Z5, and q is any form in m — 6 variables. Then,
Bo(Q,T) » 1 for any choice of T.

Proof. Note that there also exists a formula from Yang [64] for p = 2, but due to
its complexity, we refrain from applying it. Instead, we enumerate all possibilities
modulo 8 of quadratic forms g; in six variables as in display . By using a suit-
able computer program such as Python, we can show that for for any combination
t1,t2,ts (mod 8) there is a solution such that

gl<x) =1, gl(x, y) = 1y, gl(y) =l (mOd 8) (82)

where x1,y, are odd, y; even and z,x, belong to a block that either consists
of two diagonal forms or one binary form. By choosing the remaining variables
arbitrarily, it follows that for any combination (¢1,%,,t,) there are at least 23(m=6)
solutions of ¢(z) = t1,q(x,y) = ta, q(x,y) = t4 (mod8) such that zy,ys are odd
and y; is even. If we can show that each of these solution can be lifted to modulus
2¢ with multiplicity 2=3)(m=3) the claim of the lemma follows.

First, we treat the case that the first block of ¢y consists of diagonal terms.
Assume there is a solution

t1 (mod 2**1)
2111 + 2uaTaYs + 9(T3, Y3, - -+ s Tony Ym) = t2 (mod 2°71)
w4+ ugys + g(ys, . - -, Ym) = t4 (mod 2¢71)

2 2 _
] + sy + g(x3, ..., Ty) =

such that xq,y, are odd and y; is even. These congruence determine xy, s, Y1, Yo
only up to modulus 2%. Fix 3, ... Zm, Y1, Y3, - - - Ym modulo 201 If Z1, To, § solve
the congruence above, then also

T1 =21+ d12a d1 € {0, 1},

To = Tog + d22a dg € {0, 1},

Yo = Uo + d32% d3 € {O, 1}.
Consider any lift of x5, ... Zm, Y1, Y3 .., Ym to modulus 2472, Then, one combina-
tion of 1, 9,9 from above already solves the congruences modulo 2972, To see

this, we first fix d3 such that the third congruence is satisfied. Since ys is even and
y1 is odd, we can choose dy, dy such that

urw? + upxsy + di 2%t 4 doxo2°tt =ty — g(as, ... 1) (mod 2%*2)

2u1 1y + 2uaTays + do2°tt =ty — g(3, Y3, - - Ty Ym) (mod 2°*?)
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is satisfied. The resulting solution (xy,x,¥s) is only fixed modulo 2% and con-
sequently, gives rise to 8 solutions modulo 29+2.
If 21, x5 belong to a binary form, the proof is very similar. The congruences

T+ rae i =t —g(as, ..., 1) (mod 2%)
2011 + T1ye + Toy1 + 220y = to — 9(T3, Y35+, Ty Yim) (mod 2%)
yi iy + s =t —9(s - Ym) (mod 2%)
already fix 1, xo,y2 modulo 2% For any lift of x3,...2,y1,93,. .. Ym, We can

choose dy, ds, d3 € {0, 1} such that
xr1 + d12a, To + dg?a Y2 + d32a

satisfy the congruence modulo 2¢*! since 1, y» are odd and 7, is even. The binary
quadratic form zy works analogously. O]

As a consequence, we obtain the following lower bound for the main term:

Corollary 35. Assume that the level N of Q) is squarefree. Furthermore, assume
that p*~* ¥ det Q for odd p and 275t det Q. Then,

r(gen @, T) »y (det T)k_% (det Q) ' N~

4.3 The error term for prime level

The aim of this section is to evaluate the error term in the asymptotic formula
for 7(Q,T). In the following we assume that k > 6 and that the level N is

prime. In this case, a set of 1-cusp representatives in F(()Q)(N)\GSp4(Q)/P*(@) is
given by I, and ny = Jy (N I) . Thus, the space of Klingen-Eisenstein series
is spanned by

(E(f1,2), En(f2, Z) | f1, fa € S(N))

where
E(f1,2) = Z iu(Z) " fi(m(M Z)),
MeP(N)\TP(N)
and
En(f2, Z) = E(f2, Z)|[n] = N* > J(M,NZ)7* f,(x(M(N Z))).

MeP(N)\TS? (N).Jy

10The operator |[174] appears frequently in the literature and is known as Fricke involution.
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It follows that
0(Q.Z) =0(genQ, Z) + E(f1,Z) + En(f2. Z) + G(2Z)

where G(Z) is a cusp form. As previously discussed, the cusp forms fi, fo € Sp(N)
can be determined by applying the Siegel ®-operator. This yields

fi(z) =0(Q,z) — 0(gen @, z) and

o> LTS 0(gen NQ ™!
fz(z)*mfl\[n](z)*m(( Q™ ,2) —0(gen NQ ™, 2)).

On the level of Fourier coefficients this corresponds to
r(Q,T) =r(genQ,T) + A(T) + B(T) + S(T). (83)

In the previous section, we already determined a lower bound for r(gen @, T"). To
bound the Fourier coefficients of the cusp form G we need to evaluate the inner
product of GG. First, we show that for this purpose it suffices to bound the Fourier
coefficients of G|[R] for R € Fé2)(N J\Sp4(Z). Then, we estimate the absolute
value of the Fourier coefficients of the corresponding Klingen-Eisenstein and theta
series.

The Klingen-Eisenstein part comprises a lot of work. The underlying idea is to
express the Fourier coefficients Ag(T) of E(f, Z)|[R] as an integral:

B tr(TX))

Ar(T) = Y. M2 2) e - =

X MeP(N)\TP(N)R

where Z = X +1Y and X = (il ?) runs over I, ra, x4 € [0, N]. To compute
2 Ty

this integral, we first derive a suitable decomposition of P(N )\I’ég)(N )R for a

set of representatives R € TéQ)(N J)\Sp4(Z) in Section m This enables us to
obtain explicit formulas for Fourier coefficients of Klingen-Eisenstein series. As
a consequence, we can derive upper bounds for A(7T") and B(7T) and evaluate the
contribution of Klingen-Eisenstein series to the inner-product. Finally, we bound
the contribution of theta series to the inner product by evaluating symplectic
exponential sums.

4.3.1 Inner product of theta series

The principal challenge in obtaining an uniform asymptotic formula for the Siegel
theta series is to evaluate the inner product of the cuspidal part:

G(Z2)=0(Q,Z) - 0(gen(Q), Z) — E(f1,Z) — En(f2, Z).
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Let F'(N) denote a fundamental domain of F(()Q)(N )\Hs. To compute

9 dXdY
<G®:LQ“”“M”hmw

we proceed as in the one-dimensional case. First, we reduce the computation to
the fundamental domain of the full modular group:

G- Y AP ety S ()
Aer (V) spy(@) Y (det )

The usual choice for F':= F(1) = Sp,(Z)\Hy is the set of Siegel reduced points. A
point Z = X +4Y is called Siegel reduced if |det jp (Z)| = 1 for all M € Sp,(Z), if
Y is Minkowski-reduced and X is reduced modulo 1. As first shown by Gottschling
[22] this fundamental domain is explicitly determined by 13 equations. For our
computations, we require that

Y _ Y .

The first step in computing is to find a suitable set of right cosets for
F(()2)(N)\ Spu(Z). If N is prime, this is fairly easy:

Lemma 36. A set of right coset representatives of Fég)(N)\Sp4(Z) for N prime
is given by

(85)

R(0) = L,
R(1) = 1y(J) {Ll ((1 f{‘)) ‘ 0<a<N- 1},
1
R = |70 2 ossmen -1t
1
R(3) = Ju {([ *;) K= <2 ’Z) 0 < Ky, Koy kg < N — 1}
Proof. See [36], Proposition 2.1]. O

For more clarity, we recall that

1 (J) = and 5(J) =
1 1

We treat the contribution of each coset class to separately. For the simplest
case, R(0), we only require an upper bound for the Fourier coefficients of S:
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Lemma 37. Let G(Z) = Y e 9(T)e(tr(TZ)). Then,
f|G (det Y)*2dXdY « ) |g(T
Tes

where the entries of T run over ty, |ts|,t4 < C for some constant C' (that does not
depend on N ).

We omit the proof, as it works analogously to the more interesting R(3) case
that we consider in the following lemma. For this class, the contribution to (G, G)
depends on the Fourier coefficients of G|[J4]:

Lemma 38. Let G|[J](Z) = Yoy g3(T)e("22)). Then,

2
> f G|[v *(det Y)F iXC;Yg « NN LT)}JJ
VER(3 ( et ) t1,ta,ta< N1te (det T) 2
>0
Proof. The left hand side equals
(GI[IN(Z + k)] (det Y)E3d X dY (86)

LP4(Z)\H2 weP(Z/NZ)

_ JY N ga(T)g(T7) exp <—2”r(TN+ Tl)Y) (det YV')F3dy

The X integral vanishes unless 77 = T5 and equals N? in this case. Taking
into account, is bounded by

o2 A (yits + yoto + yat
N? f[ J f Z ‘93(T)|2 exXp (— (it ]%Q EREL 4)) (Y191 — yg)k’?’dyl dya dys,
3/2 Y

—y1/2Jy1 T>0

where tl, and t4 are the entries of T'. To compute the integral, we substitute

(v _ (o O (o
Yo Ya Y2 va) \ O /)
Note that ys, = 72 + 72, 50 73 = ys — y—2 > 3% > % Hence, the previous display is
bounded by

© o[ —Ar(t2 + ¢ +t4(2 + A2
AN3 Z ‘93<T>‘2J J J exp < (1177 + tamiye + ta(s ’74))) 242K g
>0 % —771 %

N
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By partial integration, we obtain for the v, integral:

© ATVt s © Amyts\ s N2 ty
QJleXp<— N o7 d’y4=£ exp ( ——— ) 7 dy « " exp (=)

V2

Next, we compute the 5 integral:

71

n 71 2
2 A ’}/% (t2)2 J 2 47Tt4 ’yltg
——(t tay2) | drys = - -] |d
J_g exp ( N( 27172 + 472)> Yo = exp ( m o exp v (et o, Yo
Wl t2+t4 Nt4
< A —— —2) drys.
exp < AL, ) gty Sy, t4 exp( 72) V2

The integral is bounded by /7/2. Before applying this, we recall that the com-
plementary Gaussian error function

erfc(z J exp(—t?)dt « 2! exp(—a?)
\/7

is exponentially decaying in x. If t5 > t4 (or —ty > t4) the 7, integral is bounded

by
242 N to F t
exp [ 112 orfe [ Tlt2 T talvT
4t, 47ty vV Nty

This allows us to truncate the t5 sum at

|t2| < t4 + 4/ 254]\]']\]'€

at the cost of a negligible error. Finally, we estimate the v, integral

k—3
© —4my2 (t, — 2 N
J exp ’71( 1 4t4) fy%k74 dy < -
3/4 N tl - 2

4ty

[©]
"

o
Y
|

~
=
=\ |
Fls
N——

Combining all these computations, is bounded by

D) |g3<T>|2(M)k_gexp(—jé)exp(—“ N) (57

to&N€ (t4+\/t4 )
Tes

The exponential decay allows us to truncate ¢, to, t4 at t1,ta, t4 <« N1T€ at the cost
of a negligible error. O
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The cases R(1) and R(2) are slightly more complex. We start with the observa-
tion that

(=) To(N)u (J) = (mod N).

% % % 0%
S *x % O
S *x ox O
* % % 0%

Let F' € Sk(N). Then, F|[¢1(J)] has the following Fourier expansion:

Az = Y ame("S2),

Tes
t2,t4=0 (mod N)

t ta)2
ta)2  ty
and ®(F|[¢1(J)]) = 0 implies that A(T") = 0 if det T = 0. Similarly, we have

where T = ) . Indeed, for convergence we require A(T)) = 0ifdetT < 0

a(~ITo(N)ia(D) = | (mod N), (88)

* % % %
* O O %

Consequently, F'|[t2(J)] possesses the following expansion:

Al = Y ame(T02),

Tes
t1,t2=0 (mod N)
These considerations give rise to the following lemma:

Lemma 39. Let G|[u](Z) = Yy 01 (T) (P2 with ty,t4 = 0 (mod N). Then,

J k-3 D N2\
|G|[y 2(det V) 3dXdY « N ) |gi(T ( )
~eR(1) Tes det T

where the entries ty,ty,ty of T run over ty,ty,ty <« N and ty,t4 = 0 (mod N).
Moreover, for G|[1](Z) = Yirey 92(T)e (#) with N | t1, N | ty it holds

3
2

k—3 ie T N2 2
J|G| *(det V) 3dXdY « N Z:] %‘92 (uTU™) \ (detT>

YER(2

where t1,to, tg « N t1,ty =0 (mod N) and U = < )
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Proof. In the R(1) case the integral equals

(—27r tr(T + T)Y

~ ) (det Y53y

JY Z g1(T)A(T") exp

TTes
to,ta, t, tiL_O (mod N)

t —t’ ty — 1 ty —t
J JJ < ! +(2 NQ):E2+(4 N4)174> dl‘ldl‘gdi&;.

The latter integral vanishes unless t; = t},t, = t, and ¢4 = ¢} in which case it
equals N. It remains to compute

v1/2 tr TY
NJ J f (D) exp (—am () ) (et v)s-cay,
V3/2 Y1 Tesﬂ

y1/2
to,t4=0 (mod N)

The very same integral appears in the proof of Lemma [38 and is computed there.
This yields the first claim.
In the R(2) case the integral equals

x1,22€[0,1] 2‘G| L2 UTZU)‘(det Y)k73dXdY

I4EON

where U runs over (1 1{) with 0 < w < N — 1. For UTUT = (? ?) we
2 U

cannot assume that £;,#, = 0 (mod N). For that reason, we consider N2 copies of
the fundamental domain F' by letting 1, x9 € [0, N]. Then, the previous display
equals

5 ], [y SO0 s

This is bounded by

G tr 7Y
NZJ J J S e(UTUT)| exp ( - 47r< ! ))(det Y)E-34dy.
V3/2 J—y1/2 Iy Te.s N

t2,t4=0 (mod N)

Computing the integral as in the proof of Lemma [38| yields the second claim. [

In summary, it remains to evaluate the Fourier coefficients of G, G|[¢1], G|[12] and
G/|[J4] in order to obtain an upper bound for (G, G). As the estimation of Fourier
coefficients of Klingen-Eisenstein and theta series is based on different methods,
we treat them one by one. We start with the more challenging Klingen-Eisenstein
part.
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4.3.2 Decomposition of matrices in Sp,(Z) and F(()Q)(N)

The aim of this section is to find a decomposition of P(N )\F(()Q)(N )R in order to
compute

tr(TX))

Ar(T) = J N

[(R(M2))j(M, Z) "e( -
XeP(R)/P(NZ)

MeP(N)\T?(N)R

for T > 0. We start by showing that some matrices in the sum over M do not
contribute to the Fourier coefficients Ag(7T') if det T" # 0. Then, we find a suitable
decomposition for the remaining matrices. To do so, we closely follow the work
from Kitaoka for the principal congruence subgroup, cf. [31] and [34].

Let A(M) denote the bottom row of a matrix M. For a better understanding,
we state and prove [31, Proposition 1.6.12]:

Lemma 40. Let f € Sp(N) and R € Spy(Z). The Fourier coefficients of
2 Ju(Z2)* f(m(M(Z))) (89)

MeP(N\T? (N)R
A(M)=(0,0,%,%)

vanish for T > 0.

Proof. First, recall that T'(N) = {M € Sp,(Z) | M = I;(mod N)} is a normal
subgroup of Sp,(Z). Hence, we have a Fourier extension

. _ tr' 17
Y (2 (M (2) = Y alT)e(<).
MeP(N\TY (N)R TeS
A(M)=(0,0,,%)

For M € Sp,(Z) with A(M) = (0,0, ds, dy) set u; = %~ u

_ _d3 ;
Godny U2 = o) and consider

U= (“1 “2) € SLy(Z). Then,

M (U_l UT> e P(Z).

By we have

J(M. Z) = j(U, 2)j(L,UZU") = di(exm(UZU") + dy),
(MZ) = w(L)m(UZUT),

for some L € P(7Z) whose lower rows are given by (¢, 0,d;, =) and (0,0,0,dy).
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Moreover, we set

i — % %é for Y = b b2 =Im Z.
oY 12z Y2 Ya

By Dy we denote the differential operator

Dy = (detY')(det a(z/)
It is straightforward to show that Dy = Dyyyr for V € GLy(R). Hence,
Dy (§(M, Z)™* f(m(M(Z)))) = diDy (f|[w(L)])(x(UZUT))
= dyDyyyr (f|lw(D)])(#(UXUT +iUYUT)),

By substituting Y = UYU” the previous display equals

0
dsdetY det <O O) =0

since (f|[w(L)])(m(UXUT +4Y’) only depends on 3; and not on y, or y4. On the
other hand, we have

0 (t(TZ2)) 4 tr(T7)
(deta—ye< ~ >> =z (detT)e( N )
Thus, by letting Dy act on both sides of , we get

0— Dy< 3 a(T)e(tr(]j\;Z ))> _ Zj:;j(detY) S a(T)(detT)e(tr(T7Z).

TeS TeS

This implies that a(7") = 0 for 7" > 0. O

Consequently, we may neglect matrices M with A\(M) = (0,0, %, *) in our decom-
position and only consider M € P(N)\Fgf)(]\f) with A(M) # (0,0, =,+). For this
purpose, the first step is to decompose M € P(Z)\ Sp,(Z) with A(M) # (0,0, =, =).
Therefore, we follow Kitaokas’s work [34].

For this purpose, we introduce further notation. Set PSLy(Z) = SLo(Z)/{+1}
and for a subgroup T of SLy(Z) we denote by I' = T'{(£1}/{£1} the image of " in

PSLy(Z). Furthermore, for o = (CCZ Z) we set
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Then, t;(0)~" = ;(c™1) and for ¢ € To(N) we have that ¢ (c),.2(0) € TSP (V).
Moreover, we put

Yw,0)i= (71 ) 12(0) € Spu(Z)
()

for o,v € SLy(Z) and set ', (a) = (é GIZ> as well as 'y, := T'x(1). The following

two lemmas are based on [34, Lemma 2 & 3
Lemma 41. For M € Sp,(Z) with \(M) = (0,c4,ds,dy) and ¢y # 0 there are

(unique) v = (Zl 112) e I'T\ SLy(Z) with vy > 0 and o = <Z ;) € I'y,\ SLo(Z)
with ¢ > 0 such that
M € P(Z)~(v,0).

Proof. By multiplying M with —I, € P(Z), we may assume that ¢y > 0. We set
Uy = (cy4,dy), c = ad= Zfi and choose any a, b such that

o i (Z Z) € SLy(2).

The last row of M 15(c)~! is given by

1 0
d —b
0 1

—C a

(0, ¢4, ds, dy) = (0,0, ds, iy).

As the matrix above is in Sp,(Z) we infer that d3 and @4 are coprime. Hence, there

is an extension
u = <d3 1~L4) € SLQ(Z)

We write @ = wu with w € 'y, and u € T\ SLy(Z). Then,

A\ (MLZ(U)l (“T u_l)) — (0,0,0, %) (w_T w> — (0,0,0, %),

UT

Thus, M 15(c)~! < ul) € P(Z). By setting v = u~, we conclude that

M e P(Z) (v U_T) (o)t = P(Z)y(v,0).
Note that v; = uy = @4 > 0. Furthermore, we can assume by left multiplication

with P(Z) that o € I'y,\ SL2(Z) since the upper entries of ¢ have no impact on the
lower row of the decomposition. O
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Lemma 42. We get the following disjoint decomposition:
w1
(M & 89,2) [ M) # 0,00 = || P@noo) (V) @0

where

o= (C d> € ['y,\ SLy(Z), v = (“1 ”2) e I\ SLy(Z), w € PSLy(Z)/T,

*

with ¢ > 0 and v; > 0.

A B
Proof. For M = (C’ D

PSLy(Z)/T such that

> € Spy(Z) with A(M) # (0,0, ), we choose w €

Cw = (0 04) with ¢4 # 0.

This allows us to apply Lemma for M <w wT) which implies that M is

contained in the right hand side of (90)).
Conversely, assume that

M = Ly(v,0) (“’_1 wT)

where L € P(Z). Denote the upper left entry of ¢ by a and the penultimate row
of L by (c1,0,dy,dy). Then, the lower left two-by-two block of M is given by

(50 ( ) (5 ) (D)= o)

As ¢, vy # 0 this implies that A(M) # (0,0, =, *).

It remains to show that the decomposition is disjoint. Therefore, we fix rep-
resentatives of the cosets I\ SLy(Z), 'L\ SLy(Z), PSLy(Z) /T, and consider two
pairs o,v,w and &,0,w of such representatives with ¢ > 0,¢ > 0,v; > 0,79; > 0
that satisfy

P@nwo) (U o) - PEn@s (T ). (o1)
(") (" )

Since
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it follows by equation that
s (uTw
(0,v1¢, —v3, v1d) = +(0,0,¢, —03, 01d) < (-1 )T) .

By
(0, vic)w™ w = +(0,9,6)

and by vic # 0, we conclude that w™'w € T'y, and thus w = @ since they are part
of the same class. This, on the other hand implies

(%] (C7 d) = ’(71 (6, d)

and hence, v; = 0y, 067! € ', and thus, ¢ = 5. As a consequence, we get v = 03
which implies that o7 'v € I's. O

The next result, based on [34, Lemma 4|, plays a crucial part in the computation
of the Fourier coefficients:

Lemma 43. For u = (51 52) € My(Z) and o,v € SLy(Z) we have that
2 [l

(o 5) = 1) (6 1) 6 )

where a and ¢ are the upper and lower left entries of o and

2
r—w <,u1 Haac Mza) o7
aflo 0

Proof. We set v = v (1 _MQC). Then,

0 1
o (o 7)o (6 5)
1 M1 2
(| M e (7o)
1

A simple calculation shows that

1 f1 o o I —poc o poa
1 _ 1 a
12(0) ’uf (o™t = lf?’
1 poc 1
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Hence is equal to

I —pee o poa\ 1 poc

v 1 apls 1 vt
v T 1 1 vl

This gives a second decomposition of M € Sp,(Z) with A(M) # (0,0, *, *) which
turns out to be very useful for the evaluation of Fourier coefficients of Klingen-
Eisenstein series:

Lemma 44. Fix any two positive integers Ny, No. There is a disjoint decomposi-
tion

(M 50,2 1300 # 0.0, = L] P@wo) (T 4) (7 )

V,0, 14, W
with
= <0 'MQ) with Mo € le, Ha € NQZ,
Mo U4
o= <‘CL Z) € T\ SLa(Z) /T (N3), ¢ > 0,
v = <“1 “2) e I\ SLy(Z) /T (Nic), v > 0,
Uz U4
(w1 W2 =
w = <w3 w4) € PSLy(Z)/Tw.

Proof. Set Spy(Z)* = {M € Sp,(Z) | A\(M) # (0,0, ,+)}. By Lemma [42] we get a
decomposition

i L oo ) 9) ()

with o, v, u, w as above. By applying Lemma [43| we obtain the desired decompo-
sition. It remains to show the uniqueness. Therefore, assume that

1
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Then

1 py 1 * *
FOOSO(O 1>0 —(_CQM *)

implies that p4 = 0 since ¢ # 0. In a similar manner, Ay = 0if T2 v (1 )\2) =TTv

0 1
I’ sv <(1) Af) vt = <: U%*)‘Q)

and v, # 0. O

since

Kitaoka extends this to a decomposition with respect to the principal congruence
subgroup. This approach is also useful to determine a decomposition of M €
P(N)\F(()2)(N)R with R € Sp,(Z) and \(M) # (0,0, =, ). To do so, we start with
the decomposition above for P(Z)\ Sp,(Z) and multiply if from the right hand side
by R~!. This gives a decomposition of

{M € P(Z)\Spy(Z) | \(M) # (0,0, *,+)R™}.

To restrict this to F(()Z)(N ), we write P(Z) = P(N)L, where L runs over a set of rep-

resentatives in P(Z)\P(N) and introduce congruence conditions for the different

components such that each element is contained in F(()2)(N ). As a consequence, we

obtain a decomposition of P(N)\I? (V) with A(M) # (0,0, =, +)R~1. Multiplying
from the right-hand side by R we obtain the following result:

Corollary 45. Let
B I p\ (wt
m= L oo (U 0) (7 )

with v,o, p,w as in Lemma [{4] and L running over a set of representatives in

P(N)\P(Z). Let (#) denote a set of congruences such that MR™ < Féz)(N) if
and only if (#) is satisfied. Then, we have a disjoint decomposition

(M eTP(N)R | AM) # (0,0,%)} = {M | (#)}.

Note that every set of representatives in P(N)\P(Z) corresponds to a set of rep-
resentatives in T'o(IN)\ SLy(Z) by the map (71). Furthermore, if 7; is a set of repre-
sentatives in I'g(N)\ SLy(Z), then ¢1(y;) is a set of representatives in P(N)\P(Z).
Recall that for N prime a set of representatives of I'g(IV)\ SLy(Z) is given by

{I,J(l d11>’o<d1<zv—1}. (93)

To determine a suitable decomposition for all M € T'y(N) with A(M) # (0,0, *, =)
we apply the procedure of Corollary 45| for R = I,:
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Lemma 46. We have
1 w1
(M T X0 # (0.0.0,9) = || PO 14(0.0) (0 ) (" )
with v, o, p,w as in Lemma[{4] and either
Nlc or N]wv,Nte

In the former case we put L = I, and in the latter case

SHAR)

for di = —av3eé (mod N) with ¢ given by cc = 1 (mod N).

Proof. By Corollary [45] we consider

L rozaee) (1) (7 )

O',’U,M,’LU,L

for some L € P(N)\P(Z) and examine the necessary conditions for this decompo-

sition to be in F(()z)(N). If we write the penultimate row of L as (¢1,0,dy, ds), this
is the case if and only if

(e e e £ 80) o)

This implies that N | ¢ or N | v;. In the former case, it holds by the two upper
entries that C' = 0(mod ) if and only if ¢; = 0(mod N). This implies that
L e P(N) and we choose L = 1.

For N | vy, we require acjvy = dicvsmod N. If N | ¢, this implies that N | ¢;
and we put L = Iy. If N {¢, then any ¢; = ecvymod N and d; = eavo mod N for
some (e, N) = 1 and (¢;,d;) = 1 satisfy this condition. All these matrices lie in
the same coset of P(N)\P(Z) and making use of we choose

oo )

with d; = avyev3 = —avie (mod N). O

For the Eisenstein series En(f2, Z), the sum runs over matrices M € I'o(/N) with
A(M Jy) # (0,0, ). To this end, we derive the following decomposition:
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Lemma 47. We have
1 w1
(M T XY # 00,09} = || PO 5600 (0 (" )
with g, iy € NZ,v, 0, p,w as in Lemma [{4),
N|d and N |wvs.

Proof. By Corollary [45] we need to examine the condition under which

U’|a|’wP(N)Lfy(v,a) (é ‘I‘) (w_l wT) (I —1)
- || P@ <” UT> 1 (J)ea(0) (i ?) (wT wl)

v,0,1,Ww

is in T'o(V), where o,v,w,pu are as in Lemma [44] and L run over P(N)\P(Z).
For simplicity, we assume that po, sy € NZ. Then, the decomposition above is
contained in I'o(NV) if

(d17J4——|— dove c1v9b — dyvsd + dgvld) =0 (mod N)

Fuy +u1d
where the penultimate row of L is (¢1,0, dy, dy). This congruence is satisfied if and
only if N divides dy, v, and d. Consequently, we set L = ¢1(J). ]

To compute the inner product of the cuspidal part of the theta series, we need to
examine how the slash operators |[¢1(J)] and |[¢2(])] act on Klingen-Eisenstein se-
ries and its Fourier coefficients. The sums in E(f1, Z)|[¢1(J)] and Ex(fa, Z)|[t2(J)]
run over M € P(N)\I'o(N)e(J) while in E(f1, Z)|[t2(J)] and En(f2, Z)|[t1(J])]
they run over M’ € P(N)\I'g(NN)e2(J). By Lemma [40] it suffices to consider M, M’
such that A(M),\(M") # (0,0, *,+). We use the decomposition from Lemma
with the following congruence conditions:

Lemma 48. Let

M= || P(N)Ly(v,0) (I ?) (w_l wT)

V0,1, W

with v,o,w, 1 as in Lemma |44 and L € P(Z) with w(L) = (* : )

C1 d1
We have the following decomposition:

{M € Lo(N)ua(J) [ A(M) # (0,0, % )} = {M | pa € NZ; (a) or (b) or (c) or (d)}
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where (a), (b), (¢), (d) denote the following congruence conditions
(a) vy, w; =0,d%0(modN),
(b) ¢, ws,vy,d; =0 (mod N),
(¢) ¢=0, wy,ws,v,v9 # 0(mod N),
(d) wi,d,cy =0(mod N).

In case (a) we set ¢y =1 and dy = vobvszd (mod N) and in case (c) we assume for
simplification ps € NZ and set

d = vow 1wz, ¢1 = 1 and dy = vebwytrwy (mod N).
Furthermore, we have
{M" e To(N)wa(J) [ AM') # (0,0,,%)} = {M | pa € NZ; () or (f) or (g) or (h)}
where (e), (f), (g9), (h) denote the following congruence conditions

(e) v, w3 =0,d#0(modN),

f) ¢ wg,v9,dy =0 (mod N),

g) ¢=0, ws,wy, vy, vy # 0 (mod N),
h) ws,d,c; =0 (mod N).

D

(
(
(
In case (e) we set ¢; = 1 and di = vobvsd (mod N). For (g) we assume for
simplification that ps € NZ and choose
d = vowstiwg, 1 = 1 and dy = vybwrws (mod N).

Proof. By Corollarywe need to determine congruence conditions for M € M (—J)
such that M € Féz)(N ). Therefore, we use that

L P st (3 1) (7 )

V,0, [, W
0 Us —V; Usb 1 Wy —wWs
_ |_| P(N) L 0  wa —v3 b —po 1 Ha Wy —ws
vag  —vs¢ 0 —wsd 1 pe —Wy W4
V,0, [, W
—vUy  UC 0 v1d 1 —Wy Wy

An element of this decomposition is in I'o(/N) if the lower right block matrix is
congruent 0 modulo N. This is satisfied if

—vobwy — voa(wy e + Wafly) + HoV1Wy  VIWy + Voawy

C1 0 d1 d2 * * o
(0 0 0 1 ) w1V + v3dwsy + pavzcwy —U3CcWy = 0(mod N).
—vowy — V1dwy — U1 CWy V1 CWy
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For simplicity, we assume that pu, € NZ. The lower right entry implies that
N | vicw;y. If N | vy, then the lower left entry implies that N divides w;. If

c102b = v3d (mod N)

the congruence is satisfied.

If N | w; and N 1 vy, then N | d by the lower left entry. By the upper right
entry, the congruence is only satisfied if either N | v; or N | ¢1. If N | vy, we obtain
by the second lowest, left entry that —cjvebwy = 0 (mod N), which can only be
fulfilled if N | ¢;.

Assume that N | c and N f v;, N t wy. If N | vy, then N | wy, N | dy and
the congruence is satisfied. If N t vq, then also N t wy. Hence, we require that
vowy = —vidwy (mod N). Thus, the left entry in the third row is congruent to
dywyv (mod N). If we assume that ug, € NZ, it follows that

c1bvgws = dywivy (mod N).

For the second decomposition, we proceed in the same way. We need to analyze
under which condition

v U2b 0 —wua 1 —po Wy —Wo
|_| P(N)L v Uab 0 —va 1 Wy  —W2
0 —wvd 1y VU3¢ 1 —ws Wi
V0, bW
0 wnid -—-vy —-vcC —pg o 1 —Ws w1

is in F(()2)(N ). This is satisfied if

Wy + Vaaws  vVobwy — vy pawy + Vaapsws

C1 0 dl d2 * * -
<O 0 0 il) —V3CWs3 —vzdwy — VW3 — fovcws | 0 (mod ).
V1CW3 vidwy + Vows + Vi CcWs
The case distinction works exactly as above. O

4.3.3 Bounds for Fourier coefficients of Klingen-Eisenstein series

By applying the decompositions from the previous section, we now obtain explicit
formulas for the Fourier coefficients of Klingen-Eisenstein series at 7' > (0. For
reasons of clarity, we put

(FINMI)(Z) == §(M, Z)™ f(r(M Z).

In Section [4.1] we already saw that

(FILM])(Z) = (fllw(L)M](2) (94)
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for L € P(Z) and w(L) defined as in (71]). Furthermore, we have

(e (& ) ("7 )] @ = 2ot + )

for € P(Z) and w € SLy(Z). A decisive role plays the following result [34, Lemma
15] from Kitaoka:

Lemma 49. Let Z = ( ~! ) € Hy, v = (m 1)2) and o = <a b) € SLy(Z)
2y Z4 U3 Uy c d
with cvy # 0. Then, it holds that

(v, o))(Z) = j(o, 20) ™ f(z10] = (2201 — ¢ o) (24 + ¢ Hd) ™' + ac™'3).

Proof. Recall that y(v,0) = (U UT> 12(0). Thus, we have

i(v(v,0), Z) = det (wT (O C) Z4+o T (1 d) Z) — (0, 24)

and

oo (( e () (o)

. 21— czi(czg + d)! 29(czy +d)™! T
o \azy —cezm(azg +b)(czg +d)™0 (azq + b)(czy + d)7H '

Writing b = ¢ tad — ¢! gives (az + b)(cz + d)™' = ac™ + ¢ (24 + ¢"'d). Hence,

7(y(v,0)Z) = vi(z1 — z3c(czy + d) ) + 2u1v929(czg + d) 7+ v3(act — ¢ ez +d) )

=07z — (V129 — ¢ ') (2g + ¢ M) + viacT

This proves the claim. O]

To evaluate the Fourier coefficients of E(f,Z) = D ir 5z A(T)e(trTZ) we ex-
press them as

A(T) = i) f 2 (IIMDEX +av)dx.
XeP(R)/P(Z) MeP(N)\I'o(N)

To compute this integral, we apply the decomposition of M € P(N)\I'o(N) with
A(M) # (0,0, ) from the previous section step-by-step, following the approach
in [34, Lemma 16].
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Lemma 50. Let

. tl t2/2 _[fa =* (V1 V2
P () e o (D) em (0 ) e
with ¢ > 0,v1 > 0 and f(z) =Y, a(n)e(nz) € Sg(N). Then,

n

Lep(m) > (f||[v(v,cr) (é ‘;)D(Xﬂy)e(—tr(TX))dX

/"/GP(Z) H1=0

t1avvy? + tovguy ! + tyd
_ Ck 6_27Ttr(TY)(detT)k_%t%_kC_k @<t1'U1_2)6( 14241 2020 4

c
with dX = dxy dro dxy, v3 |t and
(2m)-}

Ck = . 95

Proof. By applying Lemma [49] the integral on the left hand equals
21 2y + 2
v, 0 e(—tyxy — towg — tyxy)dX
Ll,m,mR/Z 2 (f” ) (22 I u4>> Thn Tty

W2, HAEL

- LleR/Z (cza+d) " f (210} — (01 — ¢ '0)? (24 + ¢ ') ™" + ac™'03)

(EQ,{E4€R

X 6(—t1[)31 - t2[[‘2 - t4l‘4) dl‘l dl‘g dIL‘4.

Taking the Fourier expansion of f into account, the previous display equals
= c_kz a(n)e(n(iyv} + ac™'v3) f e((nvi — ty)zy)da,
n z1€R/Z
X f (24 + c ) e (n(—(zwl —c ) (2g + )T — tymy — t4:1:'4) dxs dxy.
z2,4€ER

The first integral vanishes unless n = t;v72. In the second integral, we shift =, by
Tte7lwy and x4 by —c'd. In this way, the previous display equals

vV, C
b ot o [(tiavdvy? — tovy toy + tyd
¢ te Mg (tv] % )e H(T,Y)
c

where H(T,Y) is given by

J (24 + iys) e (—tl(flfg + iy ) (g + dyg) "t — tawy + t4x4) dxs dxy
x2,x4€R
= J (24 + iys) e (t1y5 (za + iya) ™" — tazy)

T4€ER

X J e (—tl(x4 +iyy) D — (2triya(wy +diys) "+ tQ)SUQ) dxs dxy.
2R
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To compute this, we apply [23] 3.323/2]:

= (2it;) " 2e(i(ts + ta)y) J 27 e (—ty + (t2/2)% y) day
x4€ER

1 1 -1 :
_ 6727r(t2+t4)yz'*k2*§(271')]675]?(]{— ;) 7 (det T) 2.

In the last step we used [23, 3.382/6]. O

Njw

Remark 51. To treat the term L € P(N)\P(Z) in the decomposition of Lemma
we use (94)). If w(L) ¢ I'o(N), then f|[w(L)] is not a cusp form with respect to
Lo(N). In every case, f|[w(L)] is a cusp form with respect to I'(N) and thus, we
may expand

Fllw(D)]) = Y bme (%)

Using this Fourier expansion, we can proceed very similarly to the proof above.
The key difference is that the z; integral vanishes unless n = Ntjv7?. As a
consequence, all the N terms in the exponential sums cancel and we obtain with
o,v and T" as above that :

|- g (@it (5 4)]) 6+ e arxnax

t1av2v7? + tyvovi !t + tad
— Cr e 2T (et T)F 241 F ek b(thvl_2)e( e Ted T

C
with v} | Nt;.

By Lemma we now obtain a formula for the Fourier coefficients A(T) of
E(f,2):

Lemma 52. Let

f(2) = Y aln)e(nz) and N™2(f|[n])(2) = Y b(n)e (zn).

n

Furthermore, let
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and Cy, be given by . Then,

A(T) = ety Y, (UM Z)e(—tr(TX))dX
P(R/Z)
XeP(R/Z MEP(

N)\T'o(N)
A(M)##(0,0,%,%)
_ k—2 1-k —k T[w]
= Ci(detT)*™2 > (T[w]y) Yoot D al =5 ) K(v,e, T[w))
w320 ¢>0,N|c v1>0 U1
(w1,w3)=1 U%|T[w]l

Py e (
¢>0,Ntc v1 >0 N|v1

v2|NT[w

) Ko etlu))
where

K(vy, e, Tw]) = Z Z . <T[w]lvf avs + T[w]yvy vy + T[w]4d)

C

d#0mod ¢ v2 mod cvy
ad=1modc (v1,v2)=1

and K(Nvy, ¢, T[w]) equals

3 T . (T[w]waav%N +C T[w]zvflvg> ) <_T[w]1;)\}_2av§c) ) (T[ucjhd)

d#0mod ¢ v2 mod cNvy
ad=1modc (Nvi,v2)=1

where Tw], = T[]ﬁ,"]l and ¢c = 1mod N.

Proof. By Lemma 46| and the integral equals

fomen 2 (twmi oo (" 4) (7 ) |) et

with L,o, A\, v, w running over the cosets from Lemma We substitute X by
wXw? getting

L I (Il D)DI v, o)) (X + g+ w ' Yw Te(— tr(w TwX))dX.

Moreover, note that

o= <c d) € T,\ SLy(Z) /T, ¢ > 0

translates into ¢ > 0 and dmod ¢ with (d,c) = 1 as well as

v = (”1 ?) e I\ SLy(Z)/T(c), v; > 0
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corresponds to v; > 0 and vy mod cvy with (v1,v9) = 1. Furthermore

w = @1 *) e PSLy(Z)/T

3

is equivalent to ws = 0 and wy € Z with (wy, ws) = 1.

For the case N | vy, we use that J (N N) =1 (1 N) and obtain

d
o= als ()=l 4)]- S ()(5)
where d; = av?e (mod N) and b(n) denotes the Fourier coefficients of N2 f|[n].

The rest follows by Lemma [50] and Remark [51] []

For the second Klingen-Eisenstein series En(f, Z) = .7 B(T)e(tr(T'Z)) we pro-
ceed similarly:

Lemma 53. Let

T[’LU] _ wTTw _ (T[w]l T[w]Q) c.d
and N7F2f|[n])(2) = X, b(n)e(nz) € Sg(N). Then,

B(T) = C(detT)F=2 )’ Y (Tlwh)' a <T[f]1) Dt

vy

v1>0 (w1,w3)=1,w3=0 c>0
v%|T[w]1
y Z Z . (T[w]lcw%vl—Q + T[w]avavy * + T[whd) .
Nc
d#0mod Nc vo mod Ncvq
N|d,ad=1mod ¢ N|va,(v1,v2)=1
Proof. We use
B(T) = Nkf > (f|IM)(NZ)e(—tr TX)dX.

XeP(R)/P(2) MeP(N)\T) (N).J
A(M)#(0,0,3%,%)

By Lemma [47] this equals

Nt LEp(R)/P(Z) DI @, ) D(Nw™ Zw™ + ple(— tr TX)dX

v,0,W, 1
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with po, 1y € NZ and o,v,w as in Lemma {4 (with N; = Ny = N), N | d and
N | vg. This can be computed in the same way as in Lemma . The first step is
to substitute X by wXw” and apply Lemma [49] This gives

BTy =Nt Y Llew (N(m i+ ]\O;C))ke(—T[w]lxl — Tlw)sws — Tlw]aza)

¢,d,w1,w3,v1,02 ¥ 25 p4eR

LD (3 (G + 70002 = (@ + im)er = 2) (i + )+ 22)) ax

- Nt Stme(n(iat « 52)) [ elmt - Tluhjein

¢, d,w1,w3,v1,v2

d \ —k
o a s 7
) Lz,meR <x4 * W * NC) €< [w]2x2 [U}]4x4)

O D AT RS )
e\n Tg T 1Y2)U1 Ne Ty T 1Yy Ne Lo ATy,

where (f[[J])(2) = X, b(n)e (%), G, 2, §1 and T[w]y, T[w]s, T[w]y are the entries
of w™'Yw™" and w!Tw respectively. The rest of the proof works exactly as in
Lemma 50 and (2 O

By means of these explicit formulas, we can bound the Fourier coefficients A(T')
of E(f1,Z) and B(T) of En(f2,Z) in the asymptotic formula of r(Q,T"). For this
purpose, we start with two preparatory lemmas:

Lemma 54. Let K (vi,c, T[w]) be defined as in Lemmal[5 with v | T[w];. Then,
K (vy, Ne, T[w]) « N2(N, T[w])2 vy (Ne)°.

Moreover, for K (v, ¢, T[w]) as in Lemma withv? | NT[w]; and N™ := (v, N°),
it holds that

K (v, ¢, T[w]) < (NT,T[w]g)%c.

Proof. We write

Ko NeThul) = 6<T][\';uc]51v2> e (T[w]wl%fiJr T[w]4d) |

v2(mod Ncvy) d#0(mod Nc)
(v1,v2)=1 ad=1modc

We decompose the first sum according to whether N | vy. If N | vy, we trivially
estimate K (v, N¢, T[w]) < Nuvic®. If N { vy, the Weil bound for Kloosterman
sums gives

* T "22d+T
Z o < [w]1U1 U2d+ [w]4d) « ch/Q(N,T[w]lvl_Q,T[w]4)1/2(Nc)€.
d(mod Nc) Ne
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If N ¢ [w]lvf ? or N { T[w], the greatest common divisor above equals 1. If
N | T[w]v;? the Gauss sum

Z . (T[w]w;lvga + T[w]2v2)

Ncv
v2(mod Ncvy) 1

vanishes unless N | T[w],. Thus, if one of the entries of 27[w] is not divisible by

N, we save a factor of N 3 compared to trivial estimation.

Let v; = n"®; with (N,9;) = 1. Tt follows that N?"~! | T[w],. We decompose
the vy sum into a term of modulus N” and one of 9;¢c. We estimate the latter sum
trivially by v;c. The former sum equals

2* (T[w]lNQT“av%c — T[w]lNQT“av%c) (T[w]gvg)
e el —=—|.
N NT

vz (mod NT)

The first term cancels. The Ramanujan sum equals

L R

AGxims o ot

]

ty ty)2

Lemma 55. Let T = (t2/2 ty

) e . be Minkowski-reduced and r = 1. Then,

11 r
DT (wity + wiwsty + wity) " « £ %t « (detT) 72

(w1,w3):1,w321

Proof. We estimate

t
Z (w2t + wiwsty + wity) " < ;" Z (w Qtl +wd)"

(w1,w3)=1,w3>1 w1=0,w3>1 4

To estimate the latter term we set ¢ = =1 and conclude the argument by

Z (wit™ +w3)™" ZZ (wit™! + w3)™"

wi0,ws>1 0 nyi<<(nt1)vi

iz n+ w3 <<\/¥.
n=0w3>1
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If g(z) = 227Qx = Y, a2? with a1 < ... < ag we set a = agrag— and
a = ajas. Otherwise, we set a = a = (det Q)% As a consequence of Lemma ,
b3, 4] and [55], we obtain the following bound for the Fourier coefficients of the

Klingen-Fisenstein series:
Theorem 56. For T > 0, set

min7T = min z'Tz.
0#£xeZ?

Then, it holds for the Fourier coefficients A(T) of E(f1,Z) that

A(T) « (det T)F 3 (min Tz ((1 N (mi]r\f)i> N\l/%egg

(1+ (minT)i](\zinT,N)i><\/]%+ N£+2)NE>
2-5 —k+3 1

e R [ R

where (N, T) = (N, ty,ta,t4) for T = (
B(T) of Ex(fs2,Z), we have that

(N, det T)5N|minT

=

+ (N, T)

k—

LS
ot

+ (det T")

ty ty)2

12ty ) For the Fourier coefficients

N3 N3
+ ) N°
det@Q  +/det@Q V/a
1=k (min 7)1 (min T, N)1 1k (det T)s

X ((mmT) 2 <1—|— N1 )—i—(detT) 7 <1+71>>.
Proof. We apply the formula of Lemma [52| and decompose A(T') = A.(T) + A,(T)

according to whether N | c or N | v; and N t ¢. For the former term we have by
Lemma [52 that

AdT) < (det P2 Y (T[w]y) ™ Y (Ne) ™

B(T) « (det T)*3 (

4

weSLy (Z)/Too c=1
T
Y ‘a( E)Qg]l)‘]K(vl,Nc,T[w])].
v1>1,Uf|T[w]1 1

Recall that a(n) denote the Fourier coefficients of fi(z) = 0(Q, z) —6(gen @, z) and
T[w] = w'Tw. By Lemma [54] we have that K (vy, Ne, T[w]) « N2 (N, T[w])2 v,
For the Fourier coefficients, we apply Cauchy-Schwarz and the Petersson formula,
cf. [27, Corollary 14.24]. This gives

o) « ||f1||(TEj§]1)le+6<1 , Tleli(T [wj]vwl SN0 e

[NIE

(Y

Lt VI
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Furthermore, it holds by Lemma [24] that
Nz L N%Jre

Hfl“ \/W \4/5
t t2/2>

A(UTTU) for U € GLy(Z), we may assume that T' =
t2/2

Since A(T) =
is Minkowski-reduced, which means that t; = minT,t, < ¢; and 1t = detT. If
ws = 0 this implies that w; = 1 and thus, w"Tw = T. We infer that

A(T) « (det 7Y 3N ( e N2+6) N
v/det Q) Va =

1=k € 1 Nt 1
><< >owity? +(J\f,T)2(1 7< N1)4)
vf 2

v1>l,vf\t1

LN

<N,T[w]1>i)>.

Tlw
+ Z 1) = (N, T[w])? > vf-k(u [w] ——
(w1 ’LU3 =1 v1=>1 'U12N§
w3>0 v%|T[w]1

For the wy, w3 sum, we recall that T[w]; = w?t; +wjwsts +w3t, and apply Lemma

53 which states that
> (TIwlh) ™" « (detT) 2.

(w1 ,wg) = 1,’LU3 >0

Furthermore, we trivially estimate (N, T|w]) < N and (N, T[w];) < N.
In this case, we need to estimate the

To treat A,(T) we proceed similarly.
Fourier coefficients of
N7*2£[n)(2) = (det Q)"V2(B(NQ™Y, 2) — B(gen NQ7 L, 2)) = 2 b(n)e(nz)

By Lemma [24] and the Petersson formula we obtain that

() « (v i) ()™ ()

Nov? Vdet Q 2

For simplicity, we estimated ( U[g ]\],I,N )4 < NY4. Furthermore, by Lemma [54] it
holds that K (Nuvy, ¢, T[w]) < (N T[w]s)vic®. For T € Ry, i.e. Minkowski-reduced,
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we infer
Nz va 2—k
v/det Q) > Z ¢

Nte
9k, 5 te t
X | (N, ts) Z vyt <1+ 1)

Ay(T) « (det T)’“—%N%“(N—“% +

1
v1>1 vi N2
’U%N|t1
1
T[w]}
5 ATl
(w1,w3)= v1=1 vi Nz
wg;éO v%N|T[w]1

Note that N | ¢; implies that (N,ty) = (N,detT)). As last step, we apply Lemma
to evaluate the wy, ws sum.

To estimate B(T') we use the formula from Lemma We substitute d by Nd
and vs by Nwvs and estimate the exponential sum

3 3o (T[w]lavng12 + Tw]avovy ! + T[w]4d)

Cc

d#0modc wv2 mod cvy
aNd=1modc (v1,Nve)=1

trivially by c®v;. Recall that fo(2) = det *(B(NQ™, 2) — 6(gen NQ, 2)). Hence,

N2 fol[n] = (det Q)72 (0(Q, 2) — Hlgen @, 2)).
Proceeding similarly to the case of A.(T") we obtain for T' € R, that
N5+e Niate
+ > Z 2k
det @  +/det Q/a =

1
tI(N, 1)1

B(T) « (det T)’“*%(

v1=1 v1|t1 ’012]\[§
1
- T|wl|{ N1
D Y e Y R )]
(w1,w3)=1,w3#0 v1=>1 'U12N§
02| T[w]y
By applying Lemma, [55] the claim follows. O

It remains to estimate the contribution of Klingen-Eisenstein series to the inner
product. Therefore, we treat each coset class from Lemma [36|separately. We start

with easiest class R(0) that only contains the identity. By Lemma |37 we have a
contribution of size

Nz Nz
T>0t1|Zt]2|t4<<1| ( )|2+|B( )| dtQ VdetQ%. (96)
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The treatment of the R(3) class is already more complex. We use the fol-
lowing trick, to obtain bounds for the Fourier coefficients of E(fi, Z)|[Js] and

En(f2, Z)|[Ja]:

sl - 6.2l |a (M )| = el (U )]
Extiu 2] = B 2) | ()] = mm2n (T )]

As a consequence, we obtain

B 2|1 = Y asme( T2,

TeS

(fo. Z Z By(T <tr TZ))7

TeS

where A3(T), B3(T) are the Fourier coefficients of N"*Ex(f1, Z) and N~*E(fy, 2)
respectively. By applying Theorem [56| we obtain the bounds

VG
Jiwa)

Bs(T) « ((det T)* 3 (minT) = A/(N, T) + det T~ 15/ N)N~

A3(T) < (detT) (m1nT) P N (N—g +

(Vg wa)

By Lemma |38 and assuming that 7" € Ry it follows that the contribution in the
R(3) case is bounded by

Ag(T)2 +B3(T)2 N2k+2\/7 N2k 1\/7
2 @oiT?s € qegr T odemg TV

N4k—3 (97)

t1,t2t4<<]\f2+€
[ta|<t1

The negative power of ¢t; = minT saves us only one power in N. The estimate
above is sufficient in order to prove Theorem [6] as it is smaller than the bound for
the theta series in the R(2) case. Nonetheless, we take a closer look to obtain a
slightly better bound. This might prove useful in the future, when there is a better
treatment available for the theta series.

Lemma 57. Consider A3(T), Bs(T') as above. Then

Al (T)2 + AQ(T)2 N2k+2 N2kz—1 N2

N4k73 o
(det T")2k—3 < (det @Q)? * det @ T

t1,t2t4<<]\/2+6
[ta|<t1
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Proof. We proceed similarly as in the proof of Theorem [56] For the Fourier coef-
ficients a(n) of O(NQ™',z) — O(gen NQ, 2) we have two options, we can apply
Lemma [24] and the Petersson formula which gives

o) « (VL9 4 gt (14 N

=
PN

2

or (65) and (61)) which yields
) <1+ nz /g . nk—1/det Q . n*1y/det Q+/(n, N)
a(n — = - . )
N NE=L, faga91,—1 NF
Recall that we have to estimate

S (o T

v
(w1,w3z)=1 1

where T'[w]; = wit; +wiwsts+wity. We assume that T'€ Ry so that t; = min T If
we apply the second estimate for all wq, w3 these sums do not converge anymore.
Hence, we apply it only for ws = 0 (which implies t; = min7T’) and the first
estimate in all other cases:

As(1 3 E 1 T
3(T) < Nﬁk(det Q)2 (wl,w3)—1(T[w]1)lk (r(NQfl, EZ;]I) — r(gen NQ Y, Ejg]l
k—3 nr—k (min 7)** 1 (min T, N)
« (det TN <dletQ MR = Aok Gk —1 NF )

|

+ (det T) ’f*%N*’“( Vaay + N*§> (1 + (det T)5 T)é),

v/det ) Ni
N3(N,T)2 /(minT)'~* 1 (min T, N)
Bs(T) « (det T)E~3 N+ i ( ?
3( ) < ( ¢ ) ’ v/det Q) vdet Q) * + NE=L oo, 1 * Nk

N27§k N2—2k
+ (det T)k_% ( - )

det * v/det Q)
N2—k+e Nate det T)&
k( + i )(1+(e ))
Vdet ) det Q Waskase—1 Ni

The case w; # 0 gives the term with respect to (det T)1%~%. In the case of N | vy
we save a considerable power in N by N | ¢; as illustrated by the second line in
the bound of A5(7"). The claim follows now by inserting the bounds in the formula
above. ]

3p_5

+ (det T) 1N

Finally, we address the representatives in R(1) and R(2). To this end, we use
the decomposition from Lemma 8 This gives the following bounds:
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Lemma 58. Let

E(f1, 2 2A1 ( TZ))-

TeS

Then, for T > 0 it holds that

Ay(T) « (det T)F~3 N2 2’“(\/(]1\;%@ + %)

Proof. We use that

A1<T>exp(—mjvm)=zv—3 > hln@e( - T ax
X MeP(N)\I'o(N)ea ()

where X € P(Z/NZ), pa, fta € NZ, o,v,w,L as in Lemma and (with
N; = N, = N). We denote the entries of w™'Yw™" and T[w] by i1, J2, Ja and
T|w]y, Tw]a, T[w]y.

We treat the different cases of Lemma separately. We start with case (d)
since this is the only case with N | ¢;. This implies that L = I, and we put
fi(2) = a(n)e(nz). The further conditions of this case are N | w; and N | d. We
compute the contribution analogously to Lemma [50] by

- Z Z Z %Z n(igivy + ac”'v3)) J

e=1v1>1 (wy,ws) 0
w1 =0, N|w1

T T
X 2 f (x4 4+ Js + ¢ d)_ke( — [w]or2 — [w]4x4)
T2, ZIS4€R

N

e ((anf - T[w]l)%) dxy

N N

dmod Nc¢ ) mod Ncvq
N|d,ad=1mod c (v1,v2)=1

x e(—n((v(zg + i) — ¢ ') (24 + iy + ¢ 1d)"Y))dy duy.
We substitute x5 by Nxy and x4 by Nzy. Proceeding as in Lemma [50] we obtain

_ (et T)* ¥ N* exp ( _ %t?\f(T}/))Ck Nk N D a(T]\[le;)

c=1 (w1,w3)=1 U1>1
w1 =0, N‘wl NU1 ‘T[ ]

< (Tlw]) ™ e (T[w]wl_ av? — T[w]avevy + T[w]4d>

dmod Nc¢ vo mod Ncvq Ne
N|d,ad=1mod c (v1,v2)=1

where C} is given by . Note that N | T[w;] = wit; + wywsts + wity implies
that NV | t4.

101



We bound a ( ) by the Petersson formula and {f1, f1) « det Q + \]} Further-

more, we estimate the d sum by ¢, the v; sum by Nevy and (T[w];)' ™% < N7,
This gives a contribution of at most

N5 N§>
Vdet Q \4/6

This forms the main error term. In all other cases we put

ndy nz
= 2,bln (5 ) e (5)
where b(n) denote the Fourier coefficients of N~2 f|[n](z) = >, b(n)e(nz) and dy

is the lower right entry of w(L). We compute the integral in the same way as
above. The main difference is that the x; integral equals

LN e((nv% — T[w]l)%)dxl

[w]

which implies that n = % and thus, v} | T[w];. Apart from that, everything
1

(det T)F—3 N2-2k (

works completely analogously and as before, we obtain a factor of size N=* from
the term (Nxy + g4 + ¢ 1d)~*. Consequently, the contribution is given by

e EEG g 55 (T8 0

czl (wi,w3)=1 wv1=1
wi=0 V3T w]

DYDY e(T[w]wﬁa”g_T][\;UC]?”?Ufl+T[w]4d)6(d1T[l]t\J[]1vf2)

dmod Nc¢ v9 mod Ncvy
ad=1modc (v1,v2)=1

with the respective congruence conditions of each case (a), (b),(c). To estimate
the Fourier coefficients b(n) we apply the Petersson formula and

N A « (34 V)

For case (a), we note that N | v; implies that N? | T'[w];. Hence, its contribution
is bounded by

va kY
eereRil 2>N.

By N | ¢, case (b) and (c¢) contribute at most

(det T)F~% N5~ 3k<

k—3 Ard—2k Va —k €
(det T)*3 N <M+N2)N.
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Corollary 59. Let

Ex(fo, Z Z Bo(T (trTZ)

TeS

Then, for T' > 0, it holds that

3 Nz  N*k
By(T) « (det T)k*5N2’2k< =t det*g)

Proof. We apply the following trick:

Ex(fo, D)la()] = E(fa, (N“ Nf?z4)>|[L1<J>]-

22

If Ex(f2, 2)|[12()] = Sres Ba(T)e (“52) with bt = 0 (mod N), then,

B2l - Y a5 ) (C5)

0<TeP,

Let T > 0. Then,

2rtr(TZ omtr(TX
s = B S @ (<) ax
X
MeP(N©\Lo(N)ea(J)
A(M)#(0,0,%,%)
N71t1 t2/2
to/2 Nty
estimated exactly as in the previous lemma. The only difference is that we need to
consider f, and T instead of f; and 7. The latter does not 1mpact our estimates
as det T = det T and we apply the same trivial bound for T[ 117" as we did for
(T[w]y)'~*, that is T[w], = (N2,T[w]1).
Recall that fa(2) = detQ( (NQ™',2) — 0(gen NQ ™', 2)). For case (d) we use

Nk: N%\/E
det Q * (det Q)%

with T = ) € % and X € P(Z/NZ). This expression can be

(fa, fo) <

This gives a contribution of at most

k
(detT)k77N2 2k< N2 Nk\/7>
v/det Q det )
In all other cases we use
NF N

N~ fol[n], folln]) « (det Q) T detQva
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Consequently, the contribution of (a) is bounded by

(det T)F—% N5~ 3k<detQ VTN

and (b) and (c) contribute at most

N2 N2
det T)*EN*2 (= ).
(det T) detQ  VdetQva

The remaining two Klingen-FEisenstein series can be treated very similarly:

Lemma 60. Let

TeS

EN(fz, ‘Ll Z Bl (

TeS

B D[] = Y As(m)e (P07
r(T

Then, we have for T > 0 that
N2 Nz
Jaeto )
N3 Nkf
v/ det Q det ) )

As(T) « (det T)’“’%NQ’%(

Bi(T) « (det T)k—%N2—2k<

Proof. Similarly to before, we use that

tr(TX)
N

Ax(T)esp ( - mf,\,(m) - N > @ -

X MeP(N)\Lo(N)e2(J)

=N~ J Z (fllw [Y(v,0)]) (X + p+ iw ' Yw e (- trw"TwX) dX

vauL

)ax

where X € P(Z/NZ), po, pa € NZ, 0,v,w, L as in Lemma [48] and [44] (with N; =
Ny = N).

As above, we treat the different cases of Lemma [4§] separately. We start with
case (h) since this is the only case with N | ¢;. This implies that L = I, and we
put fi(z) = a(n)e(nz). The further conditions of this case are N | w3 and N | d.
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We compute the contribution as in Lemma [58 which gives

(det T)k_%N_k exp ( 27T tr(T )C’k Z " Z Z (

c=1 (wi,w3)=1 vi=1 )
w1 =0, N‘wg Nvl‘T[ wl

X (T[w]l)l*]C Z Z e <T[w]1v1 avs — T][Vwc]gvgvl + T[w]4d) |

dmod Ne¢ v mod Ncvy
Nl|d,ad=1modc (vy,v9)=1
Note that N | T[w;] = w?t; + wiwsty + wity directly implies that N | ;. Again,
we estimate (T'[w];)™% < N17F.
We proceed as in Lemma |58 and obtain a contribution of at most

N: Nz

Jdeto | \/a)
This is the main error term. The other cases work exactly as before and we get
for (f), (9) and (h) the same error terms as in Lemma [58| for the cases (a), (b) and

(c) respectively.
For Bi(T) we apply that

(det )3 N2~ 2’“(

1
N~ Z1 Z9

Extn D] = B (V732 Lt

Hence,
2mitr(TY tr(T'X
mnen (S v [ e - 5 ax
X MeP(N)\['o(N)ea(J)
A(M)#(0,0,3%,%)
with 7" = (ivg t2t£2) and X € P(R/NZ). The rest works exactly as above,
2 N
bearing in mind that fy(z) = detQ( (NQ™',2) —0(gen NQ 71, 2)). O

By Lemma [39| the Klingen-Eisenstein series contribution to (G, G) for the R(1)
class is bounded by

2%—2 AUT) + BT N*a ¢
N 2, (et T3 ((det Qe " \/5>N |

(98)

TeY,tl,tg,t4<<N1+€
to,t4=0 (mod N)
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and for the R(2) class with U = (1 1“{) by

(A (UTUT) + BUTUT)[ /n2+1a N2 .
(det T)+2 ( (det Q) \/a)

N2k‘—2 TLZII Z

u=0Te.? t| to,tac N1te
t1,t2=0 (mod N)

(99)
4.3.4 Bounds for Fourier coefficients of theta series

The aim of this section is to estimate the contribution of theta and genus theta
series to the inner product of G(Z) = 0(Q, Z)—0(gen Q, Z) — E(f1, Z) — Ex(f2, Z).
As done in the case of Klingen-Eisenstein series we treat the coset classes R(0),
R(1), R(2) and R(3) from Lemma 36/ one by one. To this end, recall that

- (xTQx xTQy)}
C\y'Qx y'Qy) -

For given t,ts we count solutions 1, s, v1,ys € Z2* of

r(Q,T) = # {x,y e Z*

t1 = 21 Qu1 = 21 Q1 ts = YiQur = ybQuye

with the additional requirement that ¢t; = 27 Qy; = 22 Qyo. This already deter-
mines t, and by dropping 27 Qy; = 12 Qy, we obtain for [ € R that

Z T(QvT)2< Z T(Qatl)zr(Q>t4)2' (100)

t1,t2,t4<l ty,ta<l

By definition, the very same result holds for r(gen @, T'). It follows by Lemma ,
37 and that the contribution of theta and genus theta series in the R(0) case
is bounded by a constant.

Next, we address the R(3) class. By the transformation formula it holds that

0(Q, Z)|[Ja] = (det Q)0(Q ", Z).

Thus, the Fourier expansion is given by

r(z\(fgt—; T, (tr(ffZ)) |

6@, 2)|[J] = Y.

TeS
According to Lemma [38] we need to estimate

r(NQ Y T)? +r(gen NQ71,T)?
2, ([t Q)2 '

t1,to,tg < N1te
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Asr(Q,T) = r(Q,UTTU) for U € GLy(Z), we may assume that T € Ry. This
simplifies the evaluation of r(NQ™1,T)? since t;t, = det T', but comes at the cost
that t4 « d%T which implies for small ¢; = min 7T that t, might get as large as
N?%t¢. The following result balances these two effects:

Lemma 61. Let Q) be positive definite 2k x 2k matriz and 0 < T € S(Z) and
a€[1,2]. Then,

Z (r(NQYL,T) +7r(gen NQ1,T))? « 1 . N(e=2k+1+5 . N-ok-3)
t1,ta,ta<N (det T)k*%(det Q)2 (det Q)Q det C21Jri (det Q)E '

Proof. We make a case distinction according to the size of detT. If detT < N¢
we assume that 7' € R, and estimate by ((100)):

r(NQ™',T)? r(NQ ' t)?r(NQ 1, t,)?
Z det T « Z k-3 k-3 ’
TeR2 € t1ta<N® tl 2 t4 2
t1<ty

(NI

-

The largest term comes from the case when ¢; = min 7" is small and ¢, is large. By
Lemma [22] with m = 2k, we obtain

NO-! t,)2 Na(k-&-l)d t
ZW<<(1+...+ N eQ)Nf
ta<N ti_i N2 G =

« (1 + NO@=Dk+1+5 (ot Q)l‘ﬁ>N€.

For the remaining matrices, we use (100)), det 7" > N and Lemma [22| which gives
a bound of size

N7ED N (NQTL )P D] r(NQT )P « N2 (1 + (det Q)2 %) N°.
<N I+e LN 1+e
For the genus theta series, we apply
r(gen NQ71,T)?
(det T')F~2

>, rleenNQTL 1) Y r(gen NQT 1)’

ti<N1lte ty<N1+e

(det Q)?

t1,t2,ta<IN1He

N©.

By Lemma [38] the theta series contributes in the R(3) case at most

vy TNQLT g NG T
t1 o g < N1+e (det Q)?(det T)kfg
N2k Na(k+%)+1 N(2fa)k+37°‘
+ — + 1
(det@)?  det Q'*ir det Q*

<
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We match the second and third error term roughly by setting

_4k—(i+2)+ﬁ
N 2k — 1

3+

where i is given by N?*~* = det ). Thus, these two terms are bounded by N7z .
In summary, the contribution in the R(3) case of theta series to (G, G) is bounded
by

N2k Nk+%
(det Q)? * Vdet Q (101)

As before, we treat the representatives of R(1) and R(2) simultaneously. For
this purpose, we introduce the following transformation formula:

Lemma 62. We have

0@Q. 2)|[u(N] = Y, aler, s, Q)e(;w?lelzl + 212929 + ;ngx2Z4)

271,272622k

with |a(zy, 12, Q)| = (det Q)~V2 and

0<Qa Z)|[L2(J)] = Z 6(1'1, Ta, Q)e(;x{lezl + X12929 + ;ng_lx224>

x1,02€7Z2k

with |B(z1, T2, Q)| = (det Q)~/2.
Proof. We write ¢1(J) and t9(J) as

)

-1 0 0 0
M,S,Kz(o O) and M,S,Kz(o _1)

S
1

where we put

respectively. To hold notation simple, we set 7¢ = < ) . By the transformation

formula of the theta series, we get
0(Q, 2)|[rar J 75] = (det Q) '0(Z + 5,Q7 1)
— (et @)t Y] e(; w(XTQX(Z + 5)).

XeMoyy 2(2)
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We put X =V + QU with V' € Moy 2(Z)/Q Mok 2(Z) and U € My 2(Z). Thus, the
previous display equals

1
@)™ Y e(3u07Q7VS)) fov(Q 2).
VeMay 2(Z)/QMay 2(Z)

where 04 p)(Q, Z) is the generalized theta series from Section m By its trans-
formation formula, , we conclude

Q. 2) [ T7sT) = (det @) e 1 (VIQVS) gy (@, 2)

%
1 1
B —2 1 T -1 1 T -1 T -1
= (det @) e<2tr(X Q XZ))Z@(Qtr(V QWS +2VTQ X)).
XeMay, »(Z) v
where the V' sum runs over V' € Moy, 2(Z)/Q Mok 2(Z). Hence, we obtain that
1
0(Q. 2)|[~7as JrsJric] = (det Q) Y e(5 tr(XTQIX(Z + K))
XeMoy, 2(Z)
1
x 3 e<f tr(VIQVS + 2VTQ—1X)) .
2
VeMay 2(Z)/QMay 2(Z)

We set X = (z1,22) and V' = (v1,v9) and start with the ¢;(.J) case:

0(Q, Z)|[t1(J)] = (det Q)_2 Z e(;@{Q_llel + 253{62_1%22’2 + ng—1x224>>

Il,xQEZQk

><e< oXa To~ :v1> Z e( — 35U TO v +0] Q™ x1> Z e(viQ txy).

UlEsz/Qsz vQEZQk/QZQk

By the orthogonality relation, the last sum vanishes unless x5 = 0 (mod QZ?*) and
is of size det () in this case. For the v; sum we apply the bound for symplectic
Gauss sums from [57, Theorem 1] which states that

Lop1 1/2
el — v Q v) = ((det Q)
L)

for a fourth root of unity (. This gives the first statement.
For the second part, we obtain

0(Q. Z)|[t2(])] = (det Q) Z 6(;(371 Q w2 + 207 Q M wazy + 43Q” 55224))

xl,xQEZQk

><e< — 5% T~ xg) 2 e( — 5 TQ vy 3 Q xg) Z e(vlQ'ay).
vo€Z2k /Q72k v €72k Q72K

Similarly, the last sum vanishes unless x; = 0 (mod QZ?*) and we apply the pre-
vious estimate for symplectic Gauss sums. O
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It

0(Q. 2)|[n ()] = Y. Ri(T) ( Z>)

TeY

with t9,t4 = 0 (mod N), then, we have by the result above that
|R(T)] = (det Q)fé#{fclaiﬁz eZ |ty = 2] NQ 'zy, ty = Naj g, ty = Noj Quo}.

Again, we count solutions 1, y; and xo, yo such that t; = 2T NQtxy = yI NQ 1y,
and t, = Nzl Qxy = Nyl Qys. This automatically determines ¢, and we drop the
condition that a7z, = yly,. Hence, the theta series contributes in the R(1) case
at most

r(NQ™'1)*r(NQ, t)? ([ N? \*
N Z det @ <detT>

3
2

TeS t1,ta,tak NIt
to,t4=0 (mod N)

_3 1
r(NQ™1,t,)? N F=2 Nhegte
N _ t .
« Z 5 det Q T(Q ) t1t4 — Nt /4 «

t1ta—N(t2/2)?>0

ti«NIte to ty < NE

(102)

For the last step, we trivially estimate (¢1¢; — N(t2/2)* > 1 and apply Lemam
for the t;-sum. The estimation of the genus theta series works similarly and by
(61)) we obtain a contribution of size N¥~3+¢

The R(2) case proves to be more challenging. We set

00, 2)|[ ZR2 (tr TZ)>.

By Lemma [39 we need to estimate

2 Y R(UTUT)P? <di\£2T>k_g

Te t1,t2=0 (mod N) U
t1,to,tac N1te

1 w
1

in the fact that we need to estimate the Fourier coefficients at UTUT. Since
G|[12(J)](Z) transforms with respect to (88]) we cannot assume A(UTUT) = A(T).

Furthermore, for
v [t ty)2
Urv- = ( L2 I

where U runs over U = ( > with 0 < v < N — 1. The main obstacle lies
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and u > 0 the growth and congruence conditions for 7" transform into
t « Nty « uN'™ and N | {) + uly, N | ty + uty.

A way out is to bound Ry(T") by a Fourier coefficient that satisfies A(T) =
A(UTTU) for U € SLy(Z). This way, we can assume that 7" is Minkowski-reduced.
By Lemma [62] we have that

0l[2()](2) = D a(x. Qe (X e X2)y

X€Z2k 21=0 (mod QZ2k)

with |3(X, Q)| = (det Q)~2. We drop the condition 1 = 0 (mod QZ*) and esti-

mate

r(NQ™LT)
v/det @)

By doing so, the R(2) contribution is bounded by

DY r(NQ™',T)? < N )k_g,

e det Q) det T

Ry(T) <

where 7 < {T € Ry, N | det T'} with #.7 « N'*¢. This term is bounded by

N2 Z r(NQ™' t)*r(NQ ™, t,)? <NQ)k_3 (103)
N«titac N2te det Q titg .
#t1t4<<Nl+€

To estimate r(NQ ™!, ¢,)? and r(NQ™!, t4)? we apply which gives

t2k’72 d t
eQ) NG

r(NQ™,1)? « (1 Tt e,

Again, the largest contribution comes from the case when ¢; is small and t, = N2*.
As a consequence, display (103)) is bounded by

1

N?k—l tk_§ det N2kz+1
o B dQy N
det @ N2k=2q,

ta < N2te
H#tagN1te

N°. 104
- (104)

The bounds for the genus theta series are significantly stronger and by proceeding
as above and applying , we obtain a contribution of size det @) for the genus
theta series in the R(2) case.

As a consequence, we obtain:
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Proposition 63. Let G(Z) = 0(Q,Z) —0(gen Q, Z) — E(f1,Z) — E(f2, Z). Then

2k+1

(G,G) « Ne.
Proof. As previously seen, it holds that
DY
*(det Y)?dX ——.
.6 =3 3 [ 6k ey rax

1=0veR(4)

Let g(T'), g1(T'), g2(T'), g3(T) denote the Fourier coefficients of G, G|[¢1(J)], G[t2(J])]
and G|[J4]. Then, we have by Lemma [37] 38 and [39] that

~ )7
GGy« 7)) + N2 o (DF 105
@@ Tes ol for (det T)F=3 109
t1,|t2‘,t4<<].

2

_ T
Py Sy [BOTUL s D)
(det T')k—2 (det T)*—3’

u=0 Te.¥ tl t2 t4<<N1+c
es
1 . .
where U = ( 1;) We bound the Fourier coefficients by

9T < [AD)P + BT +7(Q.T)* + r(gen @, T)”

where A(T), B(T') are the Fourier coefficients of E(f;,Z) and En(f2,Z). This
gives a bound of size for the first term in display - Analogously, We
bound [g;(T)|?,|g2(T)[2,|g3(T) |*. The resultmg bound for the contrlbutlon of R(1

is given in and , of R(2 99)) and ((104)) and of R(3) in (97 and ( -
The bound induced by the theta series in the R(2) case dommates all other error
terms. [l

There is certainly still room for improvement. For Klingen-Eisenstein series the
main obstacle is to transform the negative power in min7T into a considerable
saving with respect to N. For the theta series, we run into difficulties when
estimating Fourier coefficients for which both, t; and ¢, are large but detT is
small. A way to address this issue is to assume that 7" is Minkowski-reduced. The
downside is, however, that growth and congruence conditions for the entries of T’
are altered.

By , Proposition [63] gives the following upper bound for the Fourier coeffi-
cients of G:

k

9(T) « ]\; ((detT")2"

m\a‘

»J:-\»—\
N |=

T+ Nz)N-
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As a consequence of Theorem and the display above, we obtain r(Q,T) =
r(gen@Q,T) + E(Q,T) with

A DR N3 N3 NS Nk .
E(Q,T) « (det T)* % (min T) (detQ+ Wt@%*@@* 7 YV, 1)3)

1

y (1 N (minT)%(nriinT, N)i> N ((1 N (minT)i> NIEIC“%(N’ detT)5N|minT)N6>

Nz 2 v/det )
N*3  NHE O NE N: (det 7)s
det T) 1+~ 1 T N
+ (det T) (Wetcf a +detQ+«/detQ\4/&>< L )

Nk+e Nk+%+e
+e + ]
a a

Together with Corollary [35], this gives the following result:

Theorem 64. Let k > 6 be even. Consider a positive, integral 2k x2k matriz @
of large prime level N such that det Q) is a square. A binary quadratic form T > 0
is represented by Q, i.e. T = XTQX is soluble for X € Z2**%  if N**~4 ¥ det Q and

\/NdetQ 73 .
)T
N5(detQ)2>2k25

a

min T » Nt@s+e 4 (
detT > N2+E(

Remark. If detQQ < N k=3 only the first term in each condition is relevant. For
N2?=4 | det Q and (det T, N) = 1 we obtain the same result with the additional
condition that

N=2k43 (det Q)2(N, T)\ 525 .
)TN

Vva
If (N,minT) = 1, the exponent in the lower bound of min7 improves to k%

1
: 2
instead of 2%—3

min 7T >» (

4.4 Extensions

We discuss two ways to extend the results in Theorem [l The aim of the main
part is the treatment of the squarefree level case. In the second part we discuss
how to drop the requirement in Theorem [0] that the determinant is a square.
This involves the estimation of Eisenstein series and cusp forms transforming with
respect to quadratic characters.
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4.4.1 Squarefree level

We explain how to extend the results for Klingen-Eisenstein series and Siegel theta
series to squarefree level. We state the necessary theoretical framework but keep
the proofs very short. The structure follows the prime level case.

To start, we recall the setting of Section For squarefree level we stated the
following basis of the Klingen-Eisenstein space:

E(f,2)=1" > J(MI2)f(x(M(1Z)))

MeP(N)\To(N)y(1)
where [ | N, f € Sp(N), and ~, satisfies

Jymod 12,

Sp(Z) 2 7(1) = {14 mod(N /)2

We let 71(1) denote the corresponding element in SLy(Z), i.e., 1(l) = J (modl)
and v1(!) = I (mod N/I). For simplicity, we assume that () has the form

V(1) = u(y())e(y(1)-

Furthermore, we set

=20 (" ;) m w0 -0 ()

By [9, p.127] we have for I | N,m | N,d = (I,m),l = ld,m = 7nd that

T (N)w(l)r(m) = T (N)k(im) (C” ] ]> . (106)
We decompose

0(Q.Z) = 0(gen Q. 2) + Y | Ey(fi, Z) + G(Z)

IIN

for a cusp form G(Z). An application of the Siegel ®-operator yields that fi(z) is
given by @,(6(Q, ) — O(gen @, »))(2), where

B(0(Q. )(e) = Jim Q0D ().

t—00

The computation of f; proves to be more challenging than in the prime level
case. To this end, we recall the results for the one-dimensional theta series. By

Lemma [23| it holds for [ | N with [ # 1 that

0(Q. )| n(1)] = WZ o(w, Qe (" DAVIQV) " Dirz),
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where (VITQ7'VD;)™! is an integer matrix of determinant (det @, [?*) and level
. Furthermore, |a(z,@,l)] = 1 and D; is a diagonal matrix of determinant
(det @, (N/1)*)[T] From now on, we fix V such that V'QVD;.}! is an integral
matrix of level m for all m | N.

We establish a similar transformation formula for the theta series of degree two:

Lemma 65. Let 1 # [ be a divisor of N. Then, it holds that

MQ2I - g B oK Qer (X D(VTQV) DX Z)
’ XeMay 2(Z)

where |a(z,Q,1)| = 1 and D, and V' satisfy the same properties as above. Further-
more, we have that

D(0(Q, [+ (=) = CMW’ 2l 0)].
for some root of unity C.
Proof. Let
a 0 = 0
ORI
0 ¢ 0 d

with a =1, ¢ = 0 (mod(N/1)?),a =0, ¢ = 1 (mod [?). By Lemma [31| we have that

020 = Y, a(x.@0e(3XTex2)

XeMay,2(Z)
with X = (21, 22) € My 2(Z) and

w d _ _
a(X,Q,1) = cQ’fdeth<20(x1TQ 'z +25Q 1$2)>
a 1
X Z e(z—(vlTQvl + U%QUg))G(*(x?Ul + xQTvg)),
v1,v2€Z2k /c72k ¢ ¢

where w € {£1}. This reduces the problem to the one-dimensional case which we
already computed in Lemma [23]

" Note that this part uses a slightly different notation compared to Lemma The lower left entry c
of 1 (1) satisfies (¢, N) = &'. This means (V"' QV) ™' D; corresponds to Qny in Lemma
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To prove the second claim, let X = (x1,22) € Mag2(Z). If we apply the Siegel
d-operator on

W XGM;MZ) (X, Q,De(tr(XTDy(VTQV) ' DX 2)) (107)

all terms with z9 # 0 vanish. If z9 # 0, we have

0(X.Q1) = o e( Q)

—e
c2k det Q
a 1 a
X Z e (—vf@vl + fx{m) Z e <—U§Qvg).
- \2c c 2c
v1€Z2k [c72k vo€Z2k [cZ.2k

Since (¢, N) = & the Gauss sum equals

Z €<E(U5QU2)> = &c"/(det Q, (N/1)2*)

2c
va€Z2k [c72k

for some root of unity . Thus, for o = 0 display (107)) equals

&ulg (d Tl ) (a T 1 o )
el —(z x el —v; Qui + —x7v1 ).
N TN E NG IO ZZ/Z 2O

Note that both ¢ and w = (—1)* are independent of x;. Furthermore, the term ¢
in Lemma [23| equals ¥ and hence, also does not depend on x;. The second claim
now follows by comparing the term above with the display below . O]

By ([106)) it holds that
_ [l
I (N)r(1) ™ = T5 (N)s(D) < u) -

Hence, we obtain by the lemma above that

I5
filz) = CW(G(@ZM[M(D] —0(gen Q, 2)|[k1(1)]).

To bound the Fourier coefficients of E;(f;, Z), we need to bound the inner product
of fi|[k1(m)] for m | N. For this purpose, we set S; = ID;(VTQV)~'D; and

(I) = ask—1a9r  if 327w =Y, aa? with a; < a1,
(det S))*  otherwise.
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Note that det.S; = Z%W‘ To apply Lemma we need to compute
(det Sl, N k)

To hold notation simple, we assume for the rest of this section that (det Q, N*) =
det (). The remaining cases can be treated in a similar manner. With this assump-
tion, we obtain for m = 1 that

I¥ < NF¥ N I*N )
(det Q,1F)\det @  (det Q,1*)\/a(l)/
For m > 1 we estimate the Petersson inner product as follows:
Corollary 66. Let d = (m,l) and | = ld,m = md. Then,
I NF Pk N
(det Q) \det @ © - — )
’ (det @, (Im)*)4/ a(lm)

o fo <

il (m)](2), fill(rr(m))](2)) «

Proof. By (106) we have that
s (d
Fo(N)/{l(l)K,l(m) = F()(N)/il(lm) ( d) .
It follows by Lemma [23] that
ks (In)®
V(det Q1% [(det @, (i)

for S = miD;, (VT'QV)~'D;,,. The matrix S has level N and determinant

fills(m)](2) = (6(5,2) — b(gen S, 2))

2k, 7, 2k (det @, (N/ml)k)

(det Q, (Ml)F)

ik det Q
(det Q, (Im)*)
and Lemma [24] the claim follows. O

(det S, N*) =

We continue as in Section [4.3.2| and [4.3.3] First, we determine a decomposition
of My ={M e P(N)\I'o(N)y | A(M) # (0,0, *)}:

Lemma 67. There is a unique decomposition

e (e ( ) )

rs:% a,V,W, [
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for

with ¢ = 0 (modr),c % 0 (mod s),d = 0 (mod!),v; = 0(mod s),vs = 0 (mod!) and

L=u <71(ls) (1 “”ldl> ) e P(Z)

with dy = avycvslr (mod s).
Proof. By Corollary [45|it is sufficient to consider
v I wt _
L rz(* r)uo (T 5) (7 )0
O,0,W, 1L

and to determine congruence conditions such that all elements in the decomposi-

tion above are contained in Féz)(N ). As N is squarefree, we may split N = Im

and consider these cases separately.
Modulo [ we proceed as in Lemma [47] and obtain that [ divides both d, v, and
that

w(L) = (1 ‘1) (mod ),

For m = £ we follow the argument in Lemmawhich yields that cv = 0 (mod m).

We decompose m = rs such that ¢ = 0 (modr),c # 0 (mod s) and v; = 0 (mod s).
Furthermore, we have by Lemma [6] that

w(L) = I (modr) and w(L) = < ;}) (mod s)

where d; = —av3¢ (mod s). The choice above for L satisfies all three congruences.
O

Next, we determine the Fourier coefficients A;(T") of Ei(f;, Z) = > .7 Al(T)e(tr T'Z).
To this end, we proceed as in Section [£.3.3}
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Corollary 68. [t holds that

GELTLED VDD (Tl (1) B

rs=24L v1>0 (wy, ws =1,w3=0 c>0,

02s|T[w]y sfe
y Z 2 . (s‘lvl *T[w),alv? B s~ o 2T [w) alvire N T[w]avy N T[w]4d>
sre s suire rc

d#0mod rc v2 modresvy
ald=1modrc (sv1,lvg)=1

where a(n) are the Fourier coefficients of (ls)’gfﬂ[m(ls)] =D 1 a(n)e(nz)

Note that we already substituted vy by svy, ¢ by re¢, d by [d and vy by [vy in the
formula above.

Proof. We apply the decomposition from Lemmal67]and follow the line of argument
in Section very closely. Note that

flln(s)] = > a<n)e<%>e (nlrah).

= ls ls

Furthermore, the x; integral

! 2
ot et )
L < s T[w]1> l a1

) T
vanishes unless n = [U“th. O
1

As a consequence, we obtain the following bound:

Theorem 69. For the coefficients A)(T') of Ei(f,Z) we have

AlT) « (det TP 3(minT) 2" Y. 13751, T)25'% Gyuuinr(s, det T)

_N
rs=3

x (15) L fllss)]l1 (1 +

(min 7)1 (min T, rl)1 )
(rsl)z

3. 5 3 k det T)é
+ (det 7)1k~ 1 E 2=k Q_kl_g l 1+ ( —
( ) Ts:gr S ||fl|[’€( 8)]”( (TZ)ZS§ )

where

(ORI — (M VN )

(det Q, 1F) \ s5 /et Q \/(detQ,S’“)\“/a(S)
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Proof. We apply Corollary [68 and proceed as in Theorem [56] By the Petersson
formula and Corollary we obtain for the Fourier coefficients of (Is)~2 fi|[r(ls)] =

>, a(n)e(nz) that
. (T[w;]) . (T[ug;])’“f (14700 ]%(T[w],@sﬁ)
1 svll . e
(detQJ’“)( Vet Q wdetcz,swa(s))'

O

Recall that a(1) = a where a is defined as as the product of the two largest

coefficients if ) is diagonal and as (det Q)% otherwise. To obtain an asymptotic
formula for r(Q,T), we need to bound }; y Ai(T).

Corollary 70. Let A/(T) denote the Fourier coefficients of E(f,, Z). Then,

Nk:/? N%
AT detTk*% minT )
DA <« (e T ) (G + )

Proof. By the bound in Theorem [69 we need to find an upper bound for

Z ( r2=5537 %55 N r3ks2=5]3 )
sy \V/ (det @, 1%)1/det Q \/(det Q, (s)¥)¥/a(s)
Every prime divisor of N divides either [, r or s. The expression above is maximized

when [ = N[ O]

As in the prime case, we observe that the largest contribution derives from the
Eisenstein series En(fy, Z) as long as the determinant is not very large compared
to the level.

It remains to evaluate the Petersson inner product of

G(2) =6(Q,Z) — 0(gen @, Z) — ), ()
1IN
For this purpose, we state the following set of representatives:

Lemma 71. A set of right coset representatives of FSQ)(N)\Sp4(Z) for squarefree
N s given by

1 a K a=(N/m)d/ with0 <o <m,

L] (m)ea(ys) Bl & B k= (N/d)r"  with0 <k <d,
e 1(Ym ) t2(Vs 1 -5 B = (Nd/s)/ﬁ{ w?'th 0< 6/1 <3
d=mys) 1 B = (N/s)By with0<py<s

12Without the assumption (det @, N k) = det @) it makes sense to include the congruence conditions in
the cases p | s and p | r. Therefore, we need to treat the two terms in Theorem [69| separately.

120



Proof. For general N a set of representatives is given in [36, Korollar 2.12]. Our
set of representatives is similarly constructed as [30, Beispiel 2.14]. ]

We set d = (m, s) and m = md, s = §d. Then,

(G,G) = f M](Z)(det V) 3dXdY
Spy Z)\H2

MEFO \Sp4

= Z m2§2;fy fmedmgdG|[L1(m)L2(s)](UZUT)(detY)k_SdXdY

m|N,s|N

N
where U runs over matrices of the form <1 5 15 1) and 0 < 31 < 5. We expand

Gl (N(2) = Y A @)e( LA

= mds

where T satisfies
5| t1, Sm | ty, m | ty.

We insert the Fourier expansion into the integral term above and follow the chain
of arguments in Lemma [38 and Lemma [39] As a consequence, we obtain:

GGy« ), msd32 > A (UTUT) <(Zﬁ> - (108)

m|N,s|N Tes
d=(m,s) t1,t2,ta< (tad)1+e

As before, we treat the contribution of Klingen-Eisenstein and theta series sep-
arately. For the latter, the following transformation formula is useful:

Lemma 72. It holds that

0@ D)ls(am)eelo)] = s D) X, Qudm)
’ 15%) XeMay,»(2)

e(2T D (VIQV) ' Dpzy + 21 Dy (VIQV) ! Doy + 22 Dy(VTQV) ' Dyay)

where |a(X,Q,l,m)| =1 and D,,, Ds and V are defined as before.

Proof. If both r,s # 1, the proof works exactly as in Lemma [65] For m = 1
or s = 1 we need to follow another approach as the lower left block matrix of
t1(71(m))e2(y2(s)) might have determinant 0. To solve this, we proceed as in
Lemma, [62] O
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We expand

trT'Z )
mds

0(Q, 2) [ (o (m)ea(1a())] = A (T)e

T

and estimate

(mdSDmdSdes7 )
4/ (det @, m*)(det Q, s*)

By assuming that T € R, the contribution of the theta series is bounded by

P, F(NQLT) [ N\
2 (detQ,axy” ™ 2, det O (det]j) N (109)

dms§=N TeR
sm|det T« N2+e

A s(T) <

We estimate the T' sum by

T(NQ_l, tl)T(NQ_l, t4) N2k_3
Z det )

_3
titg < N2+e (t1t4>k 2

and apply Lemma 22| As a consequence, the display above is bounded by Nf} .

and we obtain that dlsplay - is bounded by

N2k71+€ N2k+1+e

d3 .
D R v e

dms=N

For the genus theta series we apply and proceed similarly. This gives a bound
of size N¢det Q.

Next, we treat the Klingen-Eisenstein series. For this purpose, let [, m, s denote
divisors of N. Our aim is to bound the Fourier coefficients of

Ei(fi; Z)|[1(ra(m))ea (s :E]f4l"ls < CT!Z))'

[m, s]

To this end, we commence by decomposing M € P(N)F(()2)(N)L1(’71 (r)e2(71(9)).
According to Corollary 45| we need to determine congruence conditions such that

L per (V) (U5 (Y7 ) Oaauen

o,V,W, [

is in F(()2)(N ) if and only if these conditions holds. Then, we apply the machinery

from Section 4.3.3| and |4.3.4. The first step is to decompose

[1,m, s] = limddydsyds
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into mutually coprime factors with d = (I, m, s),d; = @,dg = (l(’f),dg = (md’s).

Furthermore, we set r := ﬁ We determine the congruence conditions for each

factor separately. The folldwing display illustrates how these cases are connected
to our previous analysis of prime level:

e (o0 T
R e e A
ey e e i
e | o

Accordingly, we get the following congruence conditions:

plrd —p|corp]|u,

pllds —plvyandp]|d,

p | mdy — case (a), (b), (c) or (d) modulop in Lemma [48]

p|dis — case (e),(f),(g) or (h) modulop in Lemma 48]
Following the line of arguments in Section [4.3.4] we obtain the largest contribu-
tion modulo rds if rds | ¢. Furthermore, modulo mds, case (d) contributes the
most while modulo d;§ the largest error term is due to case (h). For the sake of

simplicity, we only compute the contribution of this main error term. In this case,
the following two congruences hold:

¢; = 0 (mod rdindyd,3) ¢, # 0 (mod ids).
To estimate the Petersson inner product, we apply Corollary [66}
(ddds)?
\/(det Q, (Iddydy))
" < i N% n (ddydp) 2 /N )
d2/det Q £/ (det Q, (ddydads)*) ¥/ a(ddydads)

(Id3) ™2 | frayapal [7(1ds)] | <
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Proceeding as in Section we infer that A, s(T") is bounded by

sk cdiR(d T)E dgt (didp)**
(det T)* 3 min ) = N (T o (Aot Q. d8) (det Q, (dnda)F)
. (m3)> 7 Iz r'T(r,T)3
V/(det Q, (113)F) (det @, 1) y/(det Q, %)

k
+(a(ddydods)) 3

GOy L B U e S (£ YL
(det @, d*) \/(det Q, df) (det Q, (did2)¥) (det Q, I¥)5 /-

By (108) we infer that A;, s(7") contributes at most
o (M&ddydyds)** =5

(dds)*3dyrndy >, > Ay, (UTUT)

slmsdy T (det T")2k=3
« d2k:+2 - d§k+1d%k §k’+2mk’+1 zk ] 7,4—k: .
(det Q.2 (detQ, (dido)*)? (det Q, (3ri)F) (det Q, IF)? (det Q, 1)

2+3k 2k 2k+2 j2k+1
d d3 d2 dl 52, ~ ! 3—k

v alddidads) a0 (et Q. ) (det O, (dhde P2 (dot Q. )

In the last step, we use that the 7" sum runs over d*d33dmd; N¢ elements and we
save one power in d and d3 by assuming that T' € R, and making use of the negative
power of min 7. To obtain the contribution of all Klingen-Eisenstein series we let
l,r, s vary over all divisors of N. As a(N) = N%, this gives a bound of size

N2k+2\/5 N2k71\/a
((detQ)Q T et

The largest error terms occur in the cases N | d and N | d3 which correspond
to the R(3) case in Section [£.3.4] Basically, we obtain the same results as in the
prime case, the only difference is that we applied a more elaborate technique in
the proof of Lemma [57]

Altogether, we obtain:

Lemma 73. Let N be squarefree and G(Z) = 0(Q, Z)—0(gen Q, Z) =3y Ei([1, Z).
Then,

+ N’H)NE.

2k+1+¢€
Va

Similar to the case of prime level, the main error term is due to contribution
of the theta series in the R(2) case. In combination with Lemma [33] and 34} we
obtain the following representation result for squarefree level:

(G,G) «
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Theorem 74. Let m = 12 with 4 | m. Consider a positive, integral mxm matric
Q of squarefree level N such that det Q is a square and (det Q, N*) = det Q. For
m = 12 we additionally assume that 2° t det Q. A binary quadratic form 2T > 0
is represented by () provided that %XTQX =T 1is soluble over the p-adic integers
for all p and

\/NdetQ g .
o)
N5(det Q)?\ =55
—v )

2
minT » N'Fm=ste 4 (

det T » N“e(

4.4.2 Quadratic nebentypus

Recall that 0(Q, Z) transforms with respect to the quadratic character

A B\ ((-1)FdetQ
X\¢ p)~ det D '
In order to drop the condition that det @ is a square in Theorem [6] and [74] we
need to estimate Klingen-FEisenstein series and Siegel cusp forms that transform
with respect to quadratic characters.

We start with the former. Consider a divisor [ of the squarefree level N. For
f € Sk(N, x) we define

Ei(f, Z,x) = 1" D X(MA (1)) (M, 12) f(r(M1Z))
MeP(N)To(M)y()

where (1) is given by (75). This is well defined as long as x(—1) = (—1)" since
TLMA) ™) f(r(LMZ)) (LM, 2)™* = x(da)di X (M~ (1)) f(r(MZ))j(M, Z)

and dy € {£1}. The twisted Klingen-Eisenstein series can be computed as in
Section [£.3.3] The only difference is that the exponential sum in Lemma [52 is
twisted by X(d) in the case N | ¢ and by

X(v3b + did) = X(v3b — viade) = Y(—vje)

if Ntc, N |v. Furthermore, the term in Lemma [53]is twisted by Y(—v?c) in .

If y is quadratic, then the results of Theorem [56| also apply for E(f, Z, x) and
En(f,Z,x) with the only difference that we have N instead of (N,detT). In the
case of N | ¢ we use that Kloosterman sums twisted by a quadratic character still
satisfy the Weil bound. In other words, we have

S x(d)e (md;”d) < 7(c)(m,n,¢)

d(mod c)

N
N

cz2.
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In the case N | v; we estimate the exponential sum by N2 instead of N2 (N, T[w]s).
This bound is still sufficient for bounds as in Theorem [} For En(f, Z) the twist
does not depend on v, or d.

Every Siegel cusp form transforming with respect to a character x of F(()Z)(N )
can be expressed as a linear combination of Poincaré series

PoZx) = Y X(M)e(t(@QM2))j(M, 2)™".

MeRy(N\I$ (N)

The Fourier coefficients of Pg(Z, x) can be evaluated by the Kitaoka-Petersson
formula. To this end, one follows the steps of proof in [I5] bearing in mind the
additional character. This way, [I5, Theorem 1.3] can be extended to Siegel cusp
form transforming with respect to (quadratic) characters. The author plans to
work this out in detail during his time at the University of Bonn.
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