Navigation ▼

Show simple item record

dc.contributor.advisor Wörgötter, Florentin Prof. Dr. de
dc.contributor.author Kalkan, Sinan de
dc.date.accessioned 2013-01-22T15:35:14Z de
dc.date.available 2013-01-30T23:51:00Z de
dc.date.issued 2008-02-12 de
dc.identifier.uri http://hdl.handle.net/11858/00-1735-0000-000D-F113-8 de
dc.description.abstract Die Wahrnehmung in den meisten künstlichen und menschlichen visuellen Systemen beginnt mit der Extraktion von lokalen visuellen Modalitäten (wie z .B. optischer Fluss, Disparität oder Kontrastübergänge) und lokalen Bildstrukturen (kantenähnlichen, eckähnlichen und texturähnlichen). Da in diesen frühen visuellen Prozessen Information nur lokal verarbeitet wird, ist das Ergebnis nicht eindeutig. Bei der Berechnung des optischen Flusses tritt zum Beispeil das Aperturproblem auf, welches besagt, dass der Fluss nur entlang des Intensitätsgradienten an kantenähnlichen Strukturen bestimmt werden kann. Flussinformation in schwach texturierten Bildbereichen ist deshalb unzuverlässig. Analog dazu tritt beim Stereosehen das Korrespondenzproblem auf: Da zwischen Stereobildern in schwach texturierten Bildbereichen nicht genügend Bildübereinstimmungen gefunden werden können, ist die berechnete Disparität in diesen Bereichen nicht akkurat genug. Mittels Benutzung redundanter visueller Information und Auswertung von statistischen Regelmässigkeiten besteht jedoch die Möglichkeit diese Lücke zu füllen. Im visuellen System werden solche Regelmässigkeiten durch Rückkopplungsmechanismen zwischen verschiedenen Verarbeitungsschichten und durch laterale Verbindungn innerhalb einer Schicht vermittelt. Diese Dissertation behandelt die Mehrdeutigkeiten, die bei der Berechnung des optischen Flusses, dem Stereosehen und dem Erkennen von Kanten auftreten, mit Hilfe statistischer Methoden. Statistische Eigenschaften werden benutzt, um die Mehrdeutigkeit visueller Information zu analysieren und um zu bestimmen, ob die fehlenden Tiefeninformationen an kantenähnlichen Strukturen durch Interpolation wiederhergestellt werden können. Zusätzlich wird ein Rückkopplungsmechanismus vorgeschlagen, der den systematischen Fehler behandelt . Darüber hinaus wird ein Modell entwickelt, durch das fehlende Tiefeninformation im Stereosehen unter Benutzung von Tiefeninformation an Kanten wiederhergestellt werden kann. de
dc.format.mimetype application/pdf de
dc.language.iso eng de
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/ de
dc.title Multi-modal Statistics of Local Image Structures and its Applications for Depth Prediction de
dc.type doctoralThesis de
dc.title.translated Multi-modale Statistik lokaler Bildstrukturen und ihre Anwendung fuer die Bestimmung der Tiefenkomponente in 3D de
dc.contributor.referee Krueger, Norbert Prof. de
dc.date.examination 2008-01-15 de
dc.subject.dnb 600 Technik de
dc.subject.gok AHI 211 de
dc.description.abstracteng Processing in most artificial vision systems and in the human vision system starts with early vision which involves the extraction of local visual modalities (like optical flow, disparity and contrast transition etc.) and local image structures (edge-like, junction-like and texture-like structures). Since information in early vision is processed only locally, it is inherently ambiguous. For example, estimation of optical flow faces the aperture problem, and thus, only the flow along the intensity gradient is computable for edge-like structures. Moreover, the extracted flow information at weakly-textured image areas are unreliable. Analogously, stereopsis needs to deal with the correspondence problem: as correspondences at weakly textured image areas cannot be found, the disparity information at such places is not accurate. One way to deal with the missing and ambiguous information is to make use of the redundancy of visual information by exploiting the statistical regularities of natural scenes. Such regularities are carried in the visual system using feedback mechanisms between different layers, or by lateral connections within a layer. This thesis is interested in the ambiguities and the biased and missing information in the processing of optic flow, stereo and junctions using statistical means. It uses statistical properties of images to analyze the extent of the ambiguous processing in optical flow estimation and whether the missing information in stereo can be recovered using interpolation of depth information at edge-like structures. Moreover, it proposes a feedback mechanism for dealing with the bias in junction detection, and another model for recovering the missing depth information in stereo computation using only the depth information at the edges. de
dc.subject.topic Mathematics and Natural Science de
dc.subject.ger Computersehen de
dc.subject.ger Bildverstehen de
dc.subject.ger statistische Methoden der Bildverarbeitung de
dc.subject.eng Computer Vision de
dc.subject.eng Image Understanding de
dc.subject.eng Statistics of Images de
dc.subject.bk 50 de
dc.subject.bk 54 de
dc.identifier.urn urn:nbn:de:gbv:7-webdoc-1706-0 de
dc.identifier.purl webdoc-1706 de
dc.identifier.ppn 600974421 de

Files in this item

This item appears in the following Collection(s)

Show simple item record