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1 Introduction 

1.1 Neurodegenerative disorders 
One of the major causes of disability in the western world is the degeneration of the nervous system 

that may occur for spontaneous or inherited causes, or for traumatic lesions. 

The term neurodegenerative disease (NDD) refers to all those diseases in which a loss of neurons is 

observed. The most common of these diseases are Alzheimer’s disease, Parkinson’s disease (PD), 

multiple sclerosis, and prion diseases. The majority of human NDD is not related to inherited 

mutations of specific genes and develops as a multifactorial pathology associated with aging. In these 

diseases neuronal cell death happens through various endogenous pathways which are trigged by 

different insults to cells like accumulation of mis-folded proteins, presence of reactive oxygen species 

(ROS), mitochondrial complex inhibition, loss of calcium homeostasis, exicitotoxicity or lack of 

neurotrophic support [1]. Despite the progress in ascertaining of several of these mechanisms, a 

detailed knowledge of the underlying causes of these diseases is not yet available [2]. 

1.2 Parkinson´s disease 

1.2.1 History and symptoms   

Evidences of Parkinson´s disease, at present the second most common NDD in the western society, 

are found already in the ancient Egypt and the first clinical study of the disease date back to 1817 

when James Parkinson first published an article on the disease [3]. Milestones on the study of PD are: 

the discovery of loss of neurons in the substantia nigra in 1919; the hypothesis in 1959, and its 

confirmation few years later, of the lack of dopamine (DA) in PD patients; and the first successful trial 

in treating symptomatically the disease using L-dopa performed by Cotzias in the same years [4]. 

Diagnosis of PD is based on the manifestation of at least 2 out of the 4 classical symptoms of the 

disease resumed by the acronym TRAP: Tremor at rest, Rigidity, Akinesia or Bradykinesia (slowness of 

movement) and Postural instability, [5] and to the positive response to the L-dopa treatment [5, 6]). 

1.2.2 Causes, pathophysiology, treatment and social incidence of PD. 

In 5 to 10% of the cases PD had been linked to inherited or de novo mutations observed in different 

genes [7] (α-syn [8], LRRK2 [9],  Parkin [10], Pink1 [11], Dj-1 [12] and ATP13A2 [13]) while, in other 

patients, it has been noted that the disease was associated to the exposure to certain chemical such 

MPTP (1-metil 4-fenil 1,2,3,6-tetraidro-piridina)  or rotenone [14]. Nevertheless, the majority of the 

casuistry stays unclear and the neurodegeneration has been related to exicitotoxicity, mitochondrial 

disfunction, oxidative stress, apoptosis or inflammation [15]. PD affects both the peripheral and the 

central (CNS) nervous system and loss of neurons is observed in several structures: noradregergic 

neurons in the locus coeruleus, serotonergic in the raphe nuclei, cholinergic nuclei, the anterior 

olfactory structures and dopaminergic neurons in the substantia nigra pars compacta (SNpc) [16]. As 

the major impairments for PD patients derive from motor symptoms, and being the SNpc and the 

nigro-striatal dopaminergic pathway involved in movements, the loss of dopaminergic neurons in this 

particular region has been the most studied so far. Parkinson’s disease is normally not diagnosed 

For most NDDs cures are not available and treatments are mainly symptomatic; new hopes for 

patients now arise from new strategies including use of gene therapy which is here presented as 

a possible alternative for the treatment of PD. 
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until the moment when more than 50% of the neurons in the SNpc and more than 70% of their 

projection in the striatum are lost [17]. The hallmark of the disease is the presence, in the surviving 

neurons, of the so called Lewy bodies, proteinaceous aggregates formed mainly by α-synuclein and 

ubiquitin [18]. It is not clear if these aggregates are toxic for the neurons by themselves or if it is a 

cell mechanism to store other more toxic species of the protein in a more inert form [19]. 

Despite intense studies on the disease, available treatments cannot arrest the neuronal loss and are 

only symptomatic. The main used treatment for PD is based on the administration of the dopamine 

precursor L-dopa developed by Cotzias [20] ameliorated in the years by co-administration of 

Carbidopa, to inhibit the L-dopa metabolism in the periphery, MAO-B (monoamine oxidase B) 

inhibitors (Selegilines) and COMT (Catechol-O-methyltransferase) inhibitors (Tolcapone), to slow 

down the metabolism of dopamine in the brain or, in alternative, the administration of other 

dopamine agonist such bromocriptidine, Ropinirole or Pramipexole [21], [4]. Another alternative 

treatment consists of the deep brain stimulation technique in which one or more electrodes are 

implanted in the basal ganglia in order to replace the role of lost neurons. This technique has 

provided good results but it is not possible to be applied in all the cases [22]. 

As the neuronal loss cannot be arrested, the dosage of L-dopa have to be increased with the time 

leading to the onset of side effects such dyskinesia which is defined as involuntary movements at rest 

that appears upon L-dopa administration [5] and it is thought to be due to fluctuations of dopamine 

level in the brain.  

At present, in the western world, is estimated that Parkinson´s disease affects 0.3% of the total 

population and about 1% of the population over 60 years of age [23]. 

The average economical impact of PD in Europe accounts to ~7.500 € per patient per year meaning 

that, being more than 1.1 million cases registered, the costs raises up to nearly 9 billion € per year. 

Considering that the average age is increasing, meaning a larger number of patients, the cost for the 

society becomes highly significant [24].  

 

1.2.3 Gene therapy for Parkinson’s disease treatment 

Viral vector based gene therapy consists in the introduction of foreign DNA into target cells by mean 

of viral vectors delivery tools. In the field of CNS disorders PD has received great attention from this 

branch of study due to the fact that the disease is routinely (for deep brain stimulation) treated by 

surgery which rend the viral infusion protocol easier to perform. Furthermore, several animal models 

mimicking the loss of DA neurons are available for testing the viruses [25]. 

Neurotrophic factors (NFs), first described by Nobel price´s laureate Montalcini [26], is a class of 

proteins with a pro-survival role for neurons; one of the members of this class of proteins is GDNF, a 

211 amino acid protein encoded by the Gdnf gene. The pro-survival role for DA neurons showed by 

As a consequence of this increase in costs and social impact, alternatives to the L-dopa based 

treatments are highly demanded. Several cell- and gene therapy based approach are under 

study and here we explore the possibility to administrate, through an adeno associated viral 

vector delivery tool and in a controllable way, the Glial Derived Neurotrophic Factor (GDNF) with 

the aim to protect surviving dopaminergic neurons and, in this way, arrest or slow the course of 

the disease. 
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GDNF was first described by Lin et al. in 1993, but, despite 20 years are passed, its exact mechanism 

of action is still not fully understood and the protein seems to act through different receptors such 

GFRα1, NCAM and RET to promote different pathways like, for example, the ERK/MAPK or the 

PIЗK/Akt [27, 28]. 

A potential use of GDNF for PD treatment has been recognized since its discovery but, due to the fact 

that it cannot easily cross the BBB (Blood Brain Barrier) [29], other routes of administration different 

from diet or peripheral injection had to be defined. Two examples are: a) direct intraputamen 

infusion of GDNF and b) overexpression of GDNF directly in the brain though injection of a viral 

vector encoding for the protein. The ability of GDNF to restore motor functionality in, MPTP (1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine) or 6-OHDA (6-hydroxydopamine), rodents and non-

human primate, models of PD has been deeply demonstrated with GDNF administrated both by 

direct infusion [30, 31] or by viral vectors delivery with lentiviruses [32], Adenoviruses [33] and adeno 

associated viruses [34]. Both direct infusion and viral mediated overexpression of GDNF have 

reached phase I and I/II clinical trial for PD treatment. 

Results from direct infusion of GDNF in clinical trials are controversially debated; an open-label phase 

I trial [35] showed good recovery of motor skills in patients but the subsequent phase I/II, 

randomized and double –blind clinical trial [36], did not confirm these results. While a open-label 

phase I clinical trial for GDNF delivery through AAV2 has been recently approved [37] and it is now in 

a recruiting phase, a similar treatment was performed using neurturin (NTN), a homolog of GDNF. A 

phase I open-label clinical trial showed good recovery in the motor function of patients [38] but 

these results could not be confirmed in a phase II double-blind, randomized, controlled, trial where, 

moreover, several side effects were observed [39]. 

It has been hypothesized that the lack of therapeutic effect might be due to the fact that selected 

patients were all in an advanced stage of the disease with the consequence that few DA neurons 

were still present; the NF, thereafter, did not have a target to act. Adverse side effects might have 

derived from a mis-targeting of the catheter/virus or to a too high GDNF expression when viruses 

were used. Moreover, studies on animal models have shown that a mis-targeting or an 

overexpression of GDNF cause three major side effects in tested animals: loss of weight [40] probably 

due to an unspecific action of the NF in other areas of the brain (for example the hypothalamus), 

aberrant sprouting of neurons [41] which might be due to a too high level of expression in neurons 

that normally express it only at low level, and downregulation of tyrosine hydroxylase (TH) the rate 

limiting enzyme for dopamine’s synthesis [42]. 

 

1.3 Viral vectors as tools in gene therapy 
Viral vectors are modified wild type viruses that allow the delivery of desired DNA sequences into 

living cells. The first successful attempt in modifying a wild type virus date back to 1976 when Paul 

Berg used a modified SV40 virus (Simian vacuolating virus 40) to transduce monkey kidney cells in 

In this project we propose to combine the use of AAV with a temporal regulatable promoter for 

GDNF expression in order to A) have the possibility to silence the expression of the transgene in 

case of unwanted side effects and B) as a consequence, increase the safety level of the 

treatment in order to promote its use in less advanced patients where GDNF could have a 

stronger impact in treating the symptoms. 
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culture [43]. Since then a great number of viral vectors have been developed starting from different 

wild type viruses and their use includes tracking proteins or cells, study proteins function by gain or 

loss of function experiments, and for therapeutic purpose. The first use of a viral vector for 

therapeutic purpose in human (gene therapy) date back to 1990 [44] and since then over 1700 

clinical trial have been performed with different degree of success (Gene Therapy Clinical Trial 

database www.wiley .com) [45]. 

One of the most widely used viruses for gene therapy is based on adeno associated virus (AAV). 

1.3.1 Adeno associated vectors 

Adeno associated viruses are small dependoviruses from the Parovidiae family; as dependovirus it is 

not able to replicate without the presence of a helper virus such as Adenovirus, Herpes virus or 

Vaccinia virus. The wild type AAV genome is formed by a ~4700 bp single strand DNA sequence 

flanked by two inverted terminal repeats (ITRs). Between the 2 ITRs two non overlapping open 

reading frames (ORF) are present (figure 1); the rep gene encodes for four proteins responsible for 

self transcription and integration into the host genome while the cap gene encodes for 3 capsid 

proteins. 

Wild type AAVs are not associated with any disease in mammals and they are able to transduce both 

dividing and non dividing cells; due to their safety and transduction properties these viruses have 

received great attention from the scientific community in order to generate recombinant viruses to 

be used for gene therapy in the CNS [46]. 

The first recombinant AAV vector was generated by Samulski et al in 1985 [47]; he assessed that only 

the two ITRs are necessary for the encapsidation of the genome while all the other proteins can be 

provided in trans during virus production. This characteristic allows the substitution of 95% of the 

original genome (except for the ITRs) with a DNA sequence of interest. Despite nearly all the genome 

can be substituted, a drawback of AAVs is its limited DNA packaging capacity of ~4800 bp.  As the rep 

proteins are deleted, viral DNA is not able to integrate in the host genome, and persists in the 

nucleus as episomal concatemer. Moreover AAVs have been better characterized and new serotypes 

have been discovered. To date 11 serotypes are available and more than 100 variants are known. 

[48]. Different serotypes show different transduction properties in term of cell tropism (by 

recognizing different receptors), immunological reaction and expression level of the transgene. The 

immunological aspect is particularly important due to the fact that AAV2 is common in nature and 

Figure 1) Representation of a wild type AAV genome, the expressed protein, and the recombinant version of the vector. 
Rep = protein responsible for viral replication and integration/excision from the genome; Cap = protein for the capsid; 
P5, P19, P40 = promoters; pA =poli adenilation sequence; ITR = inverted terminal repeats. 
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most of the people have been in contact and have developed antibodies against it. [49].The 

availability of different serotypes, thereafter, gives the possibility to circumvent a possible 

immunological reaction.  

In summary advantages of recombinant AAV for the use in the CNS are: 

 Ability to infect dividing and not-dividing cells 
 Not associated with any disease 
 Availability of different serotypes 
 Efficient gene transfer 

Drawbacks are: 

 Restricted DNA capacity 
 Possible immune reactions  

At present, around 90 clinical trials are on-going using AAVs as a delivery system 14 of which are 

directed to the CNS (www.wiley.com). Treated diseases include Parkinson Disease, Alzheimer 

disease, San Filippo syndrome, amyotrophic lateral sclerosis and epilepsy. 

1.3.2 Regulated gene expression system 

A characteristic of gene therapy, especially when applied for targeting post-mitotic cells in the CNS, is 

its intrinsic irreversibility; this feature is advantageous because its employment requires only one 

application but it is disadvantageous if side effects arise. A regulatable system to overcome this 

drawback would be therefore highly recommendable to further promote gene therapy in clinical 

trials. 

Regulated gene expression systems for gene therapy purposes should own certain features [50, 51]: 

 Ideal “zero” basal level of expression in the non induced state, or at least, a level without 

biological effects 

 Biologically relevant expression in the induced state 

 Constituted by elements of human origin  

 Positively induced 

 Demonstrated safety profile of the inducer in human 

 Dose responsiveness 

 Fast kinetic 

 Repetitiveness of induction  

 No pleiotropic effects 

 Not affecting endogenous gene expression  

 be region or cell specific 

Regulated gene expression systems can be divided in different categories depending on the nature of 

the activator, which can be a small ligand (table 1), an endogenous stimulus or a physical agent. 

The most common ligand-based gene regulatable system is the Tetracycline-Controlled 

Transcriptional Activation system called tet-off or its alternative tet-on system. Both systems consist 

of two cassettes: the first cassette expresses the Escherichia coli tet repressor protein (tetR) fused 

with the VP16 activation domain while the second cassette consists of a tet-operator DNA sequence 

(tetO) followed normally by a CMV (cytomegalovirus) promoter and the gene of interest (GOI). The 

http://www.wiley.com/
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binding of tetR to tetO, which promote the transcription of the GOI, depends on the conformational 

state of tetR that, in turn, depends on the presence of the antibiotic tetracycline (tc) or its 

homologue doxycyclin (dox). In the tet-off system the presence of the antibiotic prevents the binding 

and the transcription while in the tet-on system, due to a 4 AA substitution, the opposite effect is 

observed. The affinity of the antibiotic in the mutated form (tet-on) is 100 fold lower than the 

original one but new versions of this protein have been developed to overcome this handicap such, 

for example, the tet-on 3G [52]. More improvements on the tet systems to optimize the induction 

and lower the background expression were done by mutating the CMV [53]. 

The tet systems is the most widely employed gene regulatable expression system and it has been 

used for different purposes including for GDNF delivery in the brain. Manfredsson et al described the 

use of a single AAV2/5 vector with the tet-off system in unlesioned rats using doxycycline as drug to 

silence the transgene expression. No leakiness in the expression in the off-state was observed and 

the TH downregulation and the loss of weight due to GDNF overexpression were avoided when the 

system was off [54]. Chtarto et al. studied the tet-on system packed in a single AAV1 vector and dox 

was used as inducer; the virus was injected in unlesioned animals and the GDNF level was evaluated 

by IHC and ELISA revealing a nearly undetectable level of expression in the off-state and a 15 folds 

GDNF overexpression (60 pg/mg tissue) comparing to the endogenous level (4 pg/mg tissue) in the 

on-state. The inclusion of the transcription enhancing element WPRE affected negatively the off-

state without giving any beneficial effect in the on-state [55]. Georgievska et al. used a double 

Lentiviral (LV) vector system with the tet-on inducible promoter to express GDNF under dox control. 

A low but detectable GDNF expression in the off-state was observed which could be avoided by 

lowering the dosage of the viruses [56]. Yang used a single AAV1 vector with the tet-on system in 6-

OHDA lesioned rats to express GDNF; no leaking in GDNF expression in the off-state was observed 

and animals showed a partial motor recovery when the system was activated [57]. Liu et al. injected 

a single AAV1 vector with the tet-on system in the cochlea to protect it from aminoglycoside-induced 

damage. No leakiness was observed in the off-state and kanamicin induced animals significantly 

recovered [58].    

The tet-off system, compared to the tet-on system, displays better compromises between the on and 

off states but the inducer has to be provided to silence the gene expression, a characteristic non 

compatible for a possible application in clinical trials. Moreover concerns about the tet systems arise 

due to the bacterial origin of its components which might trigger an immunological response when 

used in clinical trials. Subretinal injection of AAV vectors expressing the tet-on system in non human 

primate displayed a repetitiveness of induction over a period of 5 years without any sign of immune 

response[59]; on the contrary, intramuscular injection of Adenoviral vector carrying the tet systems 

leaded to both humoral and cellular mediate immune response resulting in rapid loss of tet-mediated 

control of transgene expression [60]. This difference in immune response can be explained by the 

fact that the retina, like the brain, is an immune-privilege site [61].  

The rapamycin inducible system is based on the dimerization of two proteins upon addition of 

rapamycin; the first protein is formed by a hybrid zinc finger DNA binding domain coupled with Fk506 

binding domain while the second chimeric protein is constituted by the FKBP rapamycin binding 

domain (FRAP) and the C-terminus of the p65 activation protein. Once dimerized, these two proteins 

can promote the transcription of a GOI from a promoter containing the ZFHD1 binding sequence 

[62]. This system is entirely constituted by human components and the drawback given by the potent 

immunosupressor activity of rapamycin has been overcome by using analogs of it. Despite these 
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advantages this system has been only poorly used. Hadaczek et al. injected a double AAV2 vector 

system containing the rapamycin inducible promoter for GDNF expression in rat striatum and 

evaluated dosages and route of rapamycin delivery obtaining a good expression ratio (~50 folds) 

between the on- and the off-state but with a consistent leakage in GDNF expression in the non 

induced state which resulted to be 20 folds higher comparing to the endogenous GDNF expression 

level [63]. 

Another inducing system makes use of the steroid ecdysone; in this case, the truncated ecdysone 

receptor (EcR) is fused with the VP16 activation domain. In presence of the steroid the receptor 

changes conformation and became able to bind to the ecdysone responsive element (EcRE) 

promoting the transcription of the GOI [64]. This system has the advantage that is not responsive to 

any mammalian hormones but has the drawback of being constituted of non-mammals element 

which might be immunogenic. Moreover the inducing drug ecdysone, and its homologue 

muristerone A, have not been approved from FDA (Food and Drug Administration) for use in humans. 

This system is mainly used in vitro and studies are ongoing for promoting its application in mammals 

[65]. 

Vector Target Switch 
System 

inducer leakiness comments References 

AAV2/5 
single 
vector 

Rat 
substantia 

nigra 

Tet-off 
 

Dox  
20 mg to 3 g/kg 

food 

no Side effects 
avoided when 
system was off 

 
[54] 

AAV1 
single 
vector 

Rat 
striatum 

Tet-on 
 

Dox  
600 µg/ml 

drinking water 

yes WPRE affects 
negatively the off-

state 

 
[55] 

LV  
double 
vector 

Rat 
striatum 

Tet-on 
 

Dox  
1 mg/ml 

drinking water 

yes Leakiness could be 
avoided by 

decrease viruses 
dosage 

 
[56] 

AAV1 
single 
vector 

Rat 
striatum 

Tet-on Dox  
600 µg/ml 

drinking water 

no Only partial motor 
recovery 

 
[57] 

AAV1 
single 
vector 

Rat cochlea Tet-on Kan  
333 mg/kg 

twice per day 
for 12 days 

no  
Study about 

leakiness not clear 

 
 

[58] 

AAV2 
double 
vector 

Rat 
striatum 

Rap 
based 

Rap 
IP: 1,3,10 mg/kg 
for 1 or 3 days 
Oral: 1 or 3 x 

0.5mg/kg 
CED: 2 x 50 ng 

low  
Different route of 
rap administration 

 
 

[63] 

Table 1) Summary of studies employing regulatable system to express GDNF in the brain. Dox = doxyciclin; Kan = 
kanamycin; Rap = rapamycin; IP = intraperitoneally; CED =  convection-enhanced delivery; AAV = adeno associated virus; 
LV = Lentivirus. 

A different concept for inducible proteins expression is given by the conditional promoters; in these 

cases the transcription of the GOI is trigged by environmental factors. The most common example is 

the integration of the hypoxia-response elements (HRE) DNA sequence in proximity of the GOI; in 

hypoxic conditions, such in ischemia or tumor growth, the transcription of the GOI is activated 
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together with hypoxic genes [66]. Similarly, the antioxidant response element (ARE) can be used; in 

this case the transcription of the GOI is associated with oxidative stress, a condition present in PD 

[67]. 

The control of protein expression may happen at post translational level as well: in this case a 

destabilizing domain that drives the protein to proteosome-mediated degradation is added to the 

protein. The degradation of the constitutively expressed protein can then be suppressed by addition 

of a stabilizer [68].  

 

1.3.3 The pSwitch system 

The GeneSwitch™ system (here called pSwitch) is a steroid-based gene inducible expression system 

developed in 1994 by Wang et al. [69]. Despite some promising results (presented later in the 

chapter) the system has never been widely used and, in the last decade, it has been studied only 

sporadically. 

The pSwitch system is formed by three essential elements: a regulation cassette, a responsive 

cassette, and the steroidal inducer mifepristone (MF). 

The original regulation cassette of the GeneSwitch™ system encodes for the chimeric protein pSwitch 

under the control of a hybrid promoter. The promoter is constituted by a GAL4 UAS (Upstream 

Activating Sequence) that consist of 4 repetitions of a 17 nucleotides sequence; each of this 

repetition can be recognized by a GAL4 DBD (DNA Binding Domain). The second part of the promoter 

consists of a Herpes Simplex Virus thymidine kinase (TK) minimal promoter (ptk) that allows the 

expression of the pSwitch protein. The 654 amino acid (AA) (73kDa) chimeric protein pSwitch is 

formed by three distinct domains: the GAL4 DBD, the truncated human progesterone receptor ligand 

binding domain (hPR-LBD) and the human NF-κB p65 activation domain. The Saccharomyces 

Cerevisiae GAL4 protein regulates the transcription of target genes by binding as a homodimer to the 

17 nucleotides GAL4 sequences forming the UAS of target genes. The pSwitch fusion gene encodes 

for AA 1-93 of this protein which includes the region responsible for DNA binding (AA 1-65) [70], 

dimerization (AA 65-93) [71] and nuclear localization (AA 1-29) [72]. The second domain of the 

pSwitch protein consists of a truncated human progesterone receptor (hPR-LBD); the full length hPR 

Referring to protein regulated expression systems regulated by a small ligand the most 

important features, for a possible application in human, can be summarized as: 

- the tet-on system displays a good regulation but a detectable background expression in 

the off-state; 

- the tet-off system shows a good regulation and a undetectable background expression 

in the off-state; 

- both tet-system are immunogenic when applied in non-human primate muscle; 

- the rapamycin based system shows good induction but a high background expression in 

the off-state; 

- the ecdysone system is based on non-mammals elements. 

In this project we propose, as alternative to the fore mentioned systems, the adoption of the 

pSwitch™ gene expression system which is mainly constituted by elements of human origin and 

it is positively induced by the steroid mifepristone.  
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is a transcription factor responsive to progesterone and other analogues that, in presence of a ligand, 

dimerizes and promotes the transcription of target genes. The ligand-binding function is localized in 

the C-terminal portion of the protein (AA 640-933) [73]. Through directed mutagenesis it was 

discovered a truncated form (hPR-LBD; AA 640-914) which can still bind to the progesterone 

analogue mifepristone (MF) but has lost its affinity for the human progesterone. This last fragment is 

used in the pSwitch protein [69].The last domain of the chimeric protein consist of the AA 283-551 of 

the human p65 protein in which two distinct transactivation domains have been identified [74]. 

Human p65, together with p50, forms the second messenger NF-κB heterodimer and function as a 

pleiotrophic transcriptional activator in eukaryotes [75]. A last element in the regulation cassette is 

the synthetic intron IVS8 placed between the promoter and the pSwitch protein to enhance the 

transcription. 

The responsive cassette is responsible for the transcription of the gene of interest (GOI) which is 

promoted by a hybrid promoter formed by 6 repetitions of the already mentioned GAL4 UAS linked 

to a TATA box sequence from the adenovirus major late E1b gene [76]. Similarly to the regulation 

cassette an IVS8 intron is placed between the promoter and the GOI to enhance the transcription. 

Figure 2) Mechanism of action of the GeneSwitch(TM) system. The pSwitch protein is expressed at a basal level by the 
regulation cassette and stay in its inactive monomeric form; upon addition, MF binds to the hPR-BDL forcing the protein 
to change conformation and to dimerize. The dimer can then bind to the GAL4 UASs in the responsive cassette 
promoting the transcription of the gene of interest. Moreover the chimeric protein can bind to the GAL4 UAS in the 
regulation cassette enhancing the transcription of its own gene in order to obtain a positive feedback loop. MF = 
mifepristone; UAS = upstream activatin sequence; ptk = Herpes Simplex Virus thymidine kinase (TK) minimal promoter; 
Hpr-LBD = human progesterone receptor ligand binding domain; p65 AD = p65 human activation domain; E1b-TATA = 
adenovirus major late E1b gene TATA box. 

 



- 14 - 
 

The last element of the GeneSwitch™ system is the inducing agent RU486 or Mifepristone (11β-[4-

dimethylamino] phenyl-17β-hydroxy-17-[1-propynyl]estra-4,9-dien-3-one) a synthetic 19-norsteroid 

that binds with high affinity to the human progesterone receptor and to the glucocorticoid receptor 

(both kd < 1* 10-9 M) acting as an antagonist [77]. MF has been approved for use in humans as a 

component for medical termination of pregnancy (~10mg/kg), for contraception (~ 0.02-0.2 mg/kg), 

for treatment of breast and ovarian cancer (~1 mg/kg/day), for HIV treatment (Clinical trial phase I/II 

1-4 mg/kg) [78], and for major depression (10 mg/kg)[79].  

It has been shown that MF is partially able to cross the BBB in rats being its concentration in this 

organ ~28% comparing to the one in the serum [80]. 

The GeneSwitch™ system requires the presence in the same cell of both cassettes which can be 

introduced by transfection, or by viral transduction. 

When the system is in its off-state the transcription of the GOI from the responsive cassette should 

be silenced while the regulation cassette should express the pSwitch protein at a basal level. In this 

stage the pSwitch protein stays as an inactive monomer and accumulates in the nucleus. Upon 

addition, MF binds to the hPR-LBD causing a change of conformation and consequent dimerization of 

the protein that, in turn, become able to bind to the GAL4 UAS promoting the initialization of the 

transcription of the GOI. The activated protein promotes a positive feedback loop by binding to the 

GAL4 UAS in the regulation cassette enhancing the transcription of its own gene. 

Once the MF is removed or metabolized the pSwitch dimers dissociate turning the system off (figure 

2).  

After its development, the pSwitch system has been employed in several studies but, as mentioned, 

in the last decade it has been used only rarely. 

The pSwitch system has been used to generate transgenic mice lines with the pSwitch protein under 

the control, for example, of a liver specific promoter [81], brain specific promoter [82, 83] or to 

generate knock-out mice using the system in combination with the CRE recombinase [84]. Due to the 

fact that several transgenic lines of drosophila already express genes under the control of GAL4 UAS 

this animal was further engineered to express the pSwitch protein in order to obtain genes under 

spatial and temporal control [85] 

Plasmid-based vectors containing the pSwitch system have been used to transfect mouse muscles 

and express EGFP [86], secreted human placental alkaline phosphatase (SEAP) [87], or erythropoietin 

[88]. 

The pSwitch system has been used in combination with viral vectors as well; Burcin et al. substituted 

the UAS ptk promoter with a liver specific promoter to control the expression of the human growth 

factor (hGF). The two cassettes were then placed in a unique plasmid which was packed in an 

adenoviral vector. The study shows that mice infected by tail vein injection express repetitively the 

hGF upon MF administration [89]. 

The only study involving the use of the pSwitch system in association with a viral vector delivered in 

the brain was performed by Oligino et al; in this case the pSwitch protein was expressed under the 

control of the human cytomegalovirus immediate–early promoter (hCMV IEp) while the GOI in the 

responsive vector was LacZ. The two cassettes were placed in a unique plasmid and packed in a 
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Herpes Simplex Virus (HSV) which was stereotaxically injected in rat hippocampus. Upon 

intraperitoneal MF injection (25 mg/kg/day for 2 days) a 150-fold increase of LacZ was observed with 

a really low basal level of expression in not induced animals [90]. 

 

1.4 Animal model of PD 
PD is subject of extensive study: studies range from the in vitro scale to the employment of non-

human primates. Aggregation properties of α-syn and role of other proteins are studied in cell free 

systems, in yeast, in dissociated cell cultures and in different animals: Drosophila, C.Elegans, 

Zebrafish, Medaka fish, rodents and primates. The focus of this chapter will be only in the animal 

models with particular attention to rodents [91]. 

No other species in nature apart of human is known to develop the Parkinson´s disease; thereafter, 

in the last 40 years, researchers have developed several animal models of the disease using different 

approaches. Animal models of PD can be divided in two main categories: toxin induced and 

genetically induced. Both categories (and subcategories) have advantages and disadvantage and the 

model has to be chosen depending on the pursued objective.  

Genetic models of PD have been conceptualized after the discovery of various mendelian form of the 

disease starting from the mid ‘90s with the description of α-syn and its mutated forms in certain 

familiar cases of the disease [8]. Since then many other mutations have been found in other proteins 

and different animal models expressing the wild-type or mutated proteins have been developed 

either by generating transgenic animals or by overexpressing proteins by mean of viral vector 

transduction. Transgenic animals include Drosophila [92] and rodents [93, 94]. Mutated or 

overexpressed proteins include α-syn [95, 96], LRRK2, Parkin, Dj-1, PINK1. A different approach had 

been used in the generation of the MitoPark mouse in which mitochondrial function is selectively 

impaired in dopaminergic neurons by knocking down Tfam, a gene not directly related to PD [97]. 

PD-like syndrome can be generated in animals using different toxins; the first toxic compound for the 

nigrostriatal pathway studied in the mid ‘80s was MPTP (1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridin); this molecule, once crossed the BBB, is converted to MPP+ (1-methyl-4-

phenylpyridinium) by MAO-B (monoamine oxidase-B) and transported inside DA neurons by DAT 

(dopamine transporter) where it blocks mitochondrial complex I activity, thereby, killing selectively 

DA neurons [98]. The discovery that environmental factors can trigger the onset of the disease 

leaded to the discovery of other compounds such paraquat and rotenone. 

Another model consists in the infusion in the nigrostriatal pathway of the bacteria endotoxin 

lipopolysaccharide (LPS) which promote microglia activation and subsequent loss of DA neurons [99].  

The first [100], and, in the last 40 years, one of the most employed models of PD in rodents involves 

the infusion in the nigrostriatal pathway of the neurotoxin 6-hydroxidopamine (6-OHDA). 6-OHDA is 

a hydroxylated analogue of dopamine which is transported selectively inside DA neurons by DAT. 

Once inside neurons this toxin acts as a pro-oxidant promoting a high rate of hydrogen-peroxide 

The aim of this study is to demonstrate that, in the CNS, the pSwitch system might provide a 

valid alternative to the widely used tet-on systems with the further advantage of being 

constituted mainly by human elements which might render this system less immunogenic in 

mammals comparing to the tet-on system. 
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formation in the cytosol leading to neuronal death. Moreover 6-OHDA accumulates in mitochondria 

where it inhibits mitochondria complex 1 activity. This molecule is not able to cross the BBB and 

thereafter it has to be infused directly in different areas of the brain: the SN (substantia nigra), the 

medial forebrain bundle, or the striatum. Depending on the amount of the applied drug and on the 

coordinates of injection, a different, but reproducible, size of DA neurons lesion can be obtained. The 

toxin is normally injected unilaterally in the brain and the contra-lateral hemisphere is kept as a 

control. Two advantages derive from this protocol: first, a bilateral lesion is often lethal or anyway 

impairs severely the locomotor functions of animals that will then need particular care. Secondary, a 

unilateral lesion of the dopaminergic system leads to a proportional motor asymmetry in animals 

which can be measured by appropriate tests to evaluate the magnitude of it [91]. These tests include 

the apomorphine induced rotations, the corridor tests and the cylinder tests (See materials and 

methods). 

1.5 Aim of the project 
One of the main reasons why gene therapy treatments are only slowly accepted for clinical trials is 

their intrinsic irreversibility especially if they are applied for CNS disorders. Several studies in animal 

models of PD have shown the great potential in the use of neurotrophic factors to treat this 

devastating disease. Due to the high risk profile of gene therapy only patients with advanced PD 

were selected for viral mediated delivery of NFs leading to the hypothesis that the low success rate 

was due to the lack of target neurons where the NFs can act. A way to circumvent the irreversibility 

drawback is to gain the control of gene expression upon administration of an inducer which has to be 

well tolerated by the patient. In case of unwanted side effects the inducer can be withdraw blocking 

the expression of the transgene. Moreover the switching system should be able to undergo to 

several cycles of activation-deactivation and the level of expression should be dose-dependent with 

the inducer. 

In this thesis we explore, for the first time, the possibility to combine a steroid-based expression 

system (GeneSwitch™) and the adeno associated viral (AAV) vector delivery tool in order to express 

the neurotrophic factor GDNF in the striatum of a 6-OHDA PD rat model under the control of the 

inducing drug Mifepristone. 

The advantage of the pSwitch system is that it is mainly constituted of human elements, and provides 

an alternative to the most used tet-on system which has shown to trigger an immune response when 

used in primate muscle. 

The first part of the project consists on adapting the GeneSwitch™ system to the AAV vectors to find 

the most suitable combination of the two cassettes belonging to the regulatable system and other 

transcription elements using EGFP as a reporter gene. In this part of the study, levels of EGFP 

expression are evaluated in the on- and off-states, and the course of its expression is followed over 

several cycles of activation in the rat striatum or in the same animals by in vivo imaging. Studies on 

dosages and viral vectors interaction are performed as well. 

In a second part of the project a 6-OHDA rat model of PD is established and the effect of short pulses 

of GDNF expression is compared with the constitutive expression of the NF. 
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2. Material 

2.1 Chemicals, kits, enzymes and drugs 
Applichem: acrylamide, agarose for gel, ampicillin, boric acid (H3BO3), calcium chloride (CaCl2), 

chloroform, D-(+) glucose, chloroform, cumaric acid, dimethyl sulfoxide (DMSO), EDTA, ethanol 

absolute, Ficoll, glycerol, glycin, HEPES, isopropanol, kanamicin, potassium chloride (KCl), LB Agar, LB 

media, Magnesium sulfate (MgSO4), methanol, mifepristone, modified Eagle's medium (DMEM), 

paraformaldeide (PFA), phosphate buffered saline (PBS), potassium chloride (KCl), phenol 

equilibrated stabilized, sodium azide, sodium chloride (NaCl), Sodium dodecyl sulfate (SDS), sodium 

metabisulfite (Na2S2O5), Sodium Phosphate (Na3PO4) sucrose, TRIS, Triton X. 

Axis Shield: Iodixanol Opti prep. 

Bayer: bepanthene. 

Biorad: Precision Plus Protein ™ standard. 

Calbiochem: sodium citrate, luminal. 

Braun: Braunol, histoacrylic glue. 

Fermentas: Hind III Lambda DNA. 

Fluka: sodium octasulfonic acid, Monopotassium phosphate (KH2PO4), TWEEN 20. 

Fresienius Kabi: Ampuwa water. 

Gibco: B27 Supplement, DMEM:F12 (1:1), Hank's Balanced Salt Solution (HBSS), Neurobasal medium 

(NBM), neomicyn, penicillin, sodium bicarbonate solution 7.5%, streptomycin. 

Medistar: Ketamine. 

Merck: fat milk, HPLC water, hydrogen peroxide (H2O2), magnesium chloride (MgCl2), Perchloric acid 

(HClO4), sodium metabisulfite (Na2S2O5), trichloroacetic acid (C2HCl3O2). 

New England Biolabs (NEB): 2-Log DNA marker, broad range protein marker, dNTPs. 

Novagen: benzonase. 

PAA the cell culture company: fetal calf serum (FCS), newborn goat serum (NGS), PS 

(penicillin/streptomycin), Trypsin for HEK 293 cells. 

Pfitzer: ketanest, rymadil. 

Riemser: xylarien. 

Roche: proteinase inhibitor, glycerol. 

Roth: citric acid monohydrate, Mowiol, sodium acetate. 

Seromed: L-glutamine. 

SerumWerk: methamizol. 
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Serva: bromophenol blue sodium salt (BPB). 

Sigma: ammonium peroxide sulfate (APS), ascorbic acid, Bactotryptone, Dithiothreitol (DTT), Etidium 

bromide, L-dopa, mineral oil, TEMED, transferrin, yeast extract. 

Teclapharm: apomorphine.  

2.2 Solutions 
6X SDS-Loading buffer: 350 mM Tris-HCl, pH 6.8; 10% SDS, 0.6 M DTT, 30% Glycerol, 0.03% BPB. 

40% PFA in PBS: for 2 liters preparation dissolve 80 g of PFA and 19.10 g of PBS in 1.8 litres of bi-

distilled water; add few drops of 1M NaOH and heat the mixture to 60°C under stearing till it is clear. 

Cool it down on ice, pH at 7.4, bring the volume to 2 liters with bi-distilled water and filter with 

through Whatman 595 ½ folded filters. Store at 4°C. 

Annealing buffer: 20 mM Tris, pH 7.8, 100 mM NaCl, and 0.2 mM EDTA. 

CMV medium: HBSS medium diluted with bi-distillede 1:10 and pH adjusted to 7.4 with sodium 

bicarbonate solution 7.5%. 

Citric saline: 135 mM potassium chloride, 15 mM sodium citrate. 

DNA loading buffer (6x): 15% Ficoll 400 DL, 100 mM LiCl, 2% glycerol, 100 mM EDTA, pH 8.0; 0.6% 

SDS, 0.03% BPB in H2O. 

ECL-1 (for 10 ml solution): 100 µl 250mM luminal, 44 µl 90 mM Cumaric, 1 ml 1M Tris pH 8.5 and 

water to 10 ml final volume. 

ECL-2 (for 10 ml solution): 6 µl 30% H2O2, 1 ml Tris pH8.5 and 9 ml H2O. 

Freezing solution: 65% glycerol, 100 mM MgSO4, 25 mM tris; pH 8.0  autoclave. 

HCN medium: 5 μg/ml transferrin, PSN (Penicillin 50 μg/ml, Streptomycin 50 μg/ml, Neomycin 100 

μg/ml), 2 mM L-Glutamin, 2% B-27 supplement in Neurobasal medium (NBM). 

HeBS (2X): 280 mM NaCl, 10 mM KCl, 1.5 mM Na2HPO4, 12 mM glucose, 50 mM HEPES, in H2O, pH 

7.04/7.05 sterile filtered and stored in aliquots at - 20° C. 

HPLC buffer (2 l): in 1.6 ml HPLC water add 13.946 g sodium acetate, 14.72 g citric acid monohydrate, 

0.21 g sodium octasulfonic acid, 0.096 g EDTA; stear and pH = 4.3 using 1 M citric acid. Add 210 ml 

methanol and bring volume to 2 l with HPLC water  filter and degas. 

Lysis buffer for WB (1ml solution): 840µl sterile H2O, 50 µl 1M Tris pH 8.0, 50 µl 10% SDS, 50 µl 20X 

proteinase inhibitor and 10 µl DTT 0.1M. 

Mowiol: 4.8 g MOWIOL® 4-88 in 12 g glycerol and mix. Add 6 ml of water and stir for several hours at 

RT. Add 12 ml of 0.2 M Tris (pH 8.5) and heat to 50°C for 10 min with occasional mixing. After the 

MOWIOL® 4-88 dissolves, clarify the solution by centrifugation at 5000 x g for 15 min. After 

reconstitution mowiol was aliquoted and frozen (-20°C) for long-term storage or kept at 4° C for 

short-term storage. 
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PBS: 9.55 g/l PBS in bi-distilled water  filter and autoclave. 

Releasing Buffer (RB): 135 mM NaCl, 1 mM MgCl2, 1,2 mM CaCl2, 2 mM NaH2PO4, 10 mM glucose, 56 

mM KCl. Filtered. 

Resolving gel: 2000 µl of 30% acrylamide were mixed with 1250 µl of Tris pH 8.8, 1750 µl of H2O, 15 

µl of 10% APS and 3 µl of TEMED. 

Saline solution: 9 g NaCl in bi-distilled water   filter and autoclave. 

SDS running buffer (10X 1 l): 30.24 g Tris, 142.5 g glycin, 10 g SDS  filter and autoclave. 

Soc++ media: 2% bacto-tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 

mM MgSO4, 20 mM glucose pH 7.0) Add Glucose after autoclaving the solution with the remaining 

ingredients. 

Stacking gel: 217 µl of 30% acrylamide, 417 µl Tris pH 6.8, 1017 µl of H2O, 8.33 µl 10% APS and 1.7 µl 

TEMED. 

TBE buffer (10X 1 l): 108 g Tris, 55g boric acid, 9.3 g EDTA, bi-distilled water to 1 l  filter and 

autoclave. 

TBS: 150 mM NaCl, 10 mM Tris-HCl, pH 9.0 (for antigen retrieval). 

TBS-T: 150 mM NaCl, 10 mM Tris-HCl, 0.1% Tween 20, pH 7.6. 

TE buffer: 10 mM Tris-HCl, 1mM EDTA, pH 8.0. 

Transfer buffer: 192 mM Glycine, 20% Methanol, 25 mM Tris-HCl, pH 8.3. 

TRIS: 10 mM tris-buffered saline pH 8.0. 

2.3 Enzymes 
DNA polymerase I large klenow fragment + Klenow buffer: New England Biolabs (NEB)  

DNAse I + buffer: New England Biolabs (NEB) 

Phusion high fidelity DNA polymerase + buffer: Finnzymes 

Proteinase K + buffer: New England Biolabs (NEB) 

Restriction enzymes + buffers + BSA: New England Biolabs (NEB) 

Shrimps Alkaline Phosphatase + dephosphorilation buffer: Roche 

T4 DNA ligase + ligation buffer: New England Biolabs (NEB)  

2.4 Kits 
BCA™ protein assay kit: Thermo scientific 

DNA gel extraction kit: Quiagen 

GDNF EMAX® ImmunoAssay System: Promega 
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Miniprep kit: Quiagen 

Midiprep kit: Macherei Nagel 

Megaprep kit: Macherei Nagel 

PCR purification kit: Quiagen 

Platinum SYRB®Green qPCR SuperMix-UDG: Invitrogen 

pSwitch™ system: Invitrogen 

2.5 PCR primers for sequencing and cloning 
Name Sequence 

AAAD forward AGTAGATCTGCTAGCCCACCATGAACGCAAGTGAATTCCG 

AAAD reverse GATATCGATAAGCTTCTACTCCCTCTCTGCTCGCAGCACG 

BGHpA forward CTAGTTGCCAGCCATCTGTT 

BGHpA reverse CTACTCAGACAATGCGATGC 

BGHpA reverse 2 CCCCAGAATAGAATGACACC 

EGFP reverse ACTTCAGGGTCAGCTTGCCGTA 

IVS8 forward TTCTCTTCACAGGCCACCAA 

IRES forward CGTGGCGGAACCGACTACTT 

IRES reverse ATTAGCGGCCGCCCTGCAGGTCAGTCACTTTCAGATTCTTCATCTTC 

pSwitch forward CTTGGATGAGCTTAATGGTG 

pSwitch forward 2 GCTATAACTCGCCTAGTGAC 

pSwitch reverse GCCTTGATTCCACTTCTGTC 

TB forward TAAGGTACGGGAGGTACTTGGA 

TH forward ATTAGCGGCCGCGAATTCCCACCATGCCCACCCCCAGCGCCT 

TH reverse CTGTAAGCTTCCTGCAGGTTAGCTAATGGCACTCAGTGCTTGGG 

UAS TATA forward AAAATAGATCTACGCGTAAGGATCCGGGCCCAAGCGGAGTACTGTCCTCCGAGTGGA
GT 

UAS TATA reverse AATATAGATCTATGCATCCGCATGCGTGAAGCTTACTAGTGTACCGGTAGCTCGGTAC
CAAGCTAGCTTGGTGGCCTGTGAAG 

Syn forward GAGGGCCCTGCGTATGAGTGCAAGTGG 

VMAT2 forward ATTAGGATCCGAATTCCCACCATGGCCCTGAGCGAGCTGGCGCT 

VMAT2 reverse ATTAGCGGCCGCCCTGCAGGTCAGTCACTTTCAGATTCTTCATCTTC 
Table 2) list of primer used for sequencing and cloning. AAAD = aromatic amino avid decarboxylase; BGHpA = bovine 
growth factor polyadenylation sequence; EGFP = enhanced green fluorescence protein; IVS8 = synthetic intron; pSwitch = 
pSwitch protein; TB = transcription blocker; TH = tyrosine hydroxylase; syn = synapsin promoter; VMAT2 = Vesicular 
monoamine transporter 2. 

2.6 Oligonucleotides 
Name Sequence 

Oligo A Blunt-GGGCCCAACCTGCAGGATATGGATCCATATTCCGGAATAGTCGAC-Blunt 

Oligo B Blunt-GGGCCCACCTGATATCATCTGAATTCATAGGGATCC-Blunt 

Oligo C Bgl2---
ATCAATGCATGATATCACGCGTAGGCTAGCTCCCTGCAGGAGGATCCGTTAATTAAGCACCGGTCT
CAGATCTGCGGCCGCAATGAGCTCTTGCATGCT- Bgl2- 

Oligo D Age1 - CCGGTATCCTGCAGGTTATCGATGATAGCGGCCGCATTCGCTAGCTGATAAGCTT - Cla1 
Table 3) Double strand DNAs for clonation. Oligo = oligonucleotide 
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2.7 Plasmids 
pAAV SEWB: kindly provided by Dr. Sebastian Kügler, University Hospital Göttingen, Göttingen, 

Germany 

pAAV syn-GDNF-WB: kindly provided by Dr. Sebastian Kügler, University Hospital Göttingen, 

Göttingen, Germany 

pGEM4Z4: Stratagene 

ptyf 2xGfABC1D: Kindly provided byMichael Brenner University of Alabama at Birmingham, 

Birmingham, Alabama [101] 

6p 3TBXright: kindly provided by Dr. Sebastian Kügler, University Hospital Göttingen, Göttingen, 

Germany 

pTR-UF22: UOP Vector Core Florida 

pAAV HBADsREd: kindly provided by Dr. Sebastian Kügler, University Hospital Göttingen, Göttingen, 

Germany 

pDP5: Plasmid factory Heidelberg 

pDP6: Plasmid factory Heidelberg 

2.8 Cells and animals 
DH5αE. Coli strain: ElectroMAXTMDH5α-ETMCells, Invitrogen 

Sure E. Coli strain: SURE®Electroporation-Competent Cells (Stop Unwanted Rearrangement Events); 

Stratagene 

HEK 293: Stratagene 

Wistar rats: Charles RIver 

NMRI and C57/Bl6 mice: Zentrale Tierexperimentelle Einrichtung (ZTE) Universitätmedizin Göttingen 
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3 Methods 

3.1 Molecular biology 

3.1.1 Oligo annealing 

After being designed using SECentral (Scientific & Educational Software, NC, US) software, 

oligonucelotides with proper sticky ends and restriction sites were purchased from Sigma-

Aldricht as single DNA sequences.  

The lyophilized oligos were resuspended in H2O at a concentration of 200 µM; 5 µl of each 

oligonucleotide were diluted with 2 µl of 10X annealing buffer and 8 µl of H2O; the mixture was 

heated at 95°C for 4 min and the annealing was promoted by cooling down the solution for 5-10 

minutes at room temperature. The solution was then spun down, diluted at 1.10.000 and used 

for subsequent ligations.  

3.1.2 PCR amplification 

Primers for PCR amplification were designed using SECentral such that a minimum of 20 bp was 

complementary to the target sequences and appropriate overhangs, with desired restriction sites 

were added. 

PCR amplification conditions differed for each pair of plasmid/primers. Different conditions were 

tested in order to optimize the combination of MgCl2 concentration (0, 0.5, 1 mM) and annealing 

temperature (ranging from 60 to 72°C). 

PCR reaction mix contained: Phusion HF (high fidelity) reaction buffer, 0-1mM MgCl2, 500nM of each 

sense and antisense primers, 200µM of each dATP, dGTP, dCTP, dTTP, 5-10ng of the template DNA, 

0.6 unit of the Phusion High-Fidelity DNA polymerase, and Ampuwa water to a final volume of 50µl. 

After 1 min incubation at 98°C for denaturation the reaction was subjected to 35 cycles of 

amplification each of them was formed by 15 sec at 98°C for denaturation, 15 sec at 60-72°C for 

annealing the primers and 20 sec/kb at 72°C for the elongation; a final step of 10 min at 72°C was 

performed to allow a final elongation. 

One or two µl of the DNA products were then tested by gel electrophoresis and the rest was purified 

with the PCR purification kit (described later). 

3.1.3 Restriction enzymes 

DNA restriction enzymes used in molecular biology are nucleases that recognize specific sequences 

of DNA and cut them in a specific way. As their activity is predictable, we used them to generate DNA 

fragments with specific overhangs that can be used for ligation and to cut the DNA and verify if the 

resulted fragments are compatible with what we expected by molecular cut in silicio (control 

digestion). 

DNA restriction reactions were carried out following the manufacturer´s instructions. If the digestion 

product was to be used for cloning a total of 4-5 µg of DNA was used. For control digestions, a total 

of 100 ng of DNA was digested. The DNA was mixed with the appropriate 10X buffer, 10X BSA if 

necessary, Y unit of restriction enzyme (Y = X µg of DNA*6) and the volume was brought to 50 µl (in 

case of cloning) or 25 µl (in case of control digestion) with Ampuwa water. The reaction was 

incubated for 60 min at the appropriate temperature and the reaction was stopped by putting the 
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samples on ice. When the DNA had to be cut with two different but compatible enzymes regarding 

the buffer and the reaction temperature they were used together in a double reaction mix. 

3.1.4 Gel electrophoresis 

Agarose gel electrophoresis was performed for different reasons: a) to separate different fragments 

of DNA after the restriction reaction; b) to check qualitatively the DNA after a control digestion or a 

PCR reaction; and c) to quantify the amount of DNA obtained after gel extraction or PCR purification. 

a) To separate DNA fragments for subsequent manipulations the 50 µl restriction reaction was 

diluted with Ampuwa water and 6X loading buffer to a volume of 300 µl; the obtained 

mixture was then loaded in 6 different wells. 

b) To check the sizes of the DNA`s fragments after a control digestion 5 µl of loading buffer 

were added to the 25 µl reaction tube and the whole volume was loaded in a single well. If a 

PCR reaction had to be checked, 1-2 µl of the reaction were diluted with 20 µl of Ampuwa 

water and 5 µl of 6X loading buffer; the mixture was then loaded in a single well. 

c) For DNA quantification 1 and 2 µl of DNA solution was diluted with Ampuwa water and 6X 

loading buffer till a final volume of 20 µl; these mixtures were then loaded in the gel together 

with different (50, 100, 200, 400 ng total DNA) known amount of HIND III Lambda DNA; by 

comparing the intensity under a UV light of the know samples is possible to estimate the 

concentration of the un-know samples (figure 3). 

In all cases a 2-Log DNA marker (a mixture of DNA fragments with defined sizes) was loaded in the 

gels in order to verify the sizes of the bands. 

For gel preparation different quantities of agar, depending on the size of the target fragments 

ranging from 0.6% (>3000 bp) to 2% (<400bp), were dissolved in TBE buffer by heating the mixture in 

a microwave. Once dissolved, the agar was cooled down to about 40°C and 1 µl of ethidium bromide 

per 50 ml of solution was added. The mixture was then poured to a gel tray with a proper comb and 

left to polymerize at room temperature. Gels were then placed in a electrophoresis chamber and 

immersed in TBE buffer; samples and marker were loaded and run for 40-60 min at 70-100 V. DNA 

bands were visualized by UV-light in a Gel Documentation 2000 UV-transilluminator coupled with a 

computer with the Quantity One software (BioRad). 

Figure 3) Gel quantification for AAV S-IRES-B and TH, compared to 50, 100, 200 and 400 ng of HindIII-digested λ-

DNA. Comparing the relative amount of each band with the standard (right panel) it is possible to evaluate the 

amounts of the un-known samples (AAV S-IRES-B and TH). In this case concentration of AAV S-IRES-BG was 

decided to be ~75 ng/µl and of TH ~24 ng/µl 
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3.1.5 DNA gel extraction kit (GE) 

To isolate different fragments of DNA after a restriction reaction the mixture was run in agarose gel; 

the DNA band with the corresponding size of what was predicted in silicio was physically cut from the 

gel with a knife and the DNA was purified with the Quiagen gel extraction kit (Quiagen). 

The procedure was performed following the manufacturer`s instructions. Briefly, the gel piece was 

weighted and dissolved in dissolving buffer at 50°C for 10 min; the obtained solution was then loaded 

to an ion exchange column in high salt condition which allows the binding of the DNA to the silica 

column; after a washing step, the DNA was eluted in low salt conditions with 30 µl elution buffer or 

Ampuwa water. The purity and concentration of the obtained DNA was then evaluated by gel 

electrophoresis. 

3.1.6 PCR purification kit (PP) 

To isolate a linearized DNA or to purify a DNA fragment from oligonucleotides smaller than 40bp 

from a PCR reaction a Quiagen PCR purification kit was used. 

This was performed following the manufacture´s instruction: briefly, the DNA solution was diluted in 

loading buffer, load to an ion exchange column in high salt condition, washed, and eluted in low salt 

condition with 30 µl of elution buffer or Ampuwa water. 

3.1.7 Remove or fill in DNA overhangs to create blunt ends 

When it was not possible to obtain compatible sticky ends, the DNA fragments were treated in order 

to create blunt ends using the DNA polymerase I large klenow fragment an enzyme used to remove 

the 5`overhangs and to fill the 3`overhangs. The resulting DNA was incubated with 1.3 µl of the 

enzyme (5 U/µl, total of 6.5 Units), 0.9 µl of 2 mM dNTPS (final concentration 0.33 µM), 10X klenow 

buffer and the volume was brought to 50 µl final volume with Ampuwa water. The reaction was 

incubated for 15 min at 25°C and the DNA was then purified with the PCR purification kit. 

3.1.8 Dephosphorilation 

To avoid uni-molecular ligation in case of blunt ends or compatible sticky ends, a dephosphorilation 

of the 5`end of the backbone is necessary.  

The dephosphorilation was performed by mixing 200 ng of DNA with 4 µl 5X dephosphorilation 

buffer, 1.5 µl of shrimp Alkaline phosphatase (1 unit/µl) and Ampuwa water in a final volume of 20 

µl. The mixture was incubated for 25 min at 37°C and the enzyme was then inactivated by an 

additional incubation of 15 min at 65°C. The DNA was then directly used for ligation. 

3.1.9 Ligation 

The ligation reaction consists in the enzymatic joining of two linearized fragments of DNA with 

compatible ends. 

A total amount of ~200 ng of DNA with a ratio of 1:3 (weight/weight) between the backbone and the 

insert was incubated with 5X ligation buffer and 1 µl (400 units) of T4 DNA ligase. The volume was 

then brought to 20 or 30 µl with Ampuwa water. The mixture was then incubated at room 

temperature for 20 min in case the fragments were with sticky ends and for 1 hour in case of blunt 

ends. The reaction was then stopped by putting the mixture on ice and used directly for bacteria 

transformation. A negative control was performed by omitting the addition of the insert into the 

mixture.  
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3.1.10 E.Coli transformation, seeding and expansion 

In order to produce a large quantity of the cloned plasmid after ligation, the obtained DNA was used 

to transform E. Coli bacteria which were then selected by antibiotic resistance present in the 

backbone of the vectors (the antibiotic resistance will be present only in transformed bacteria) and 

expanded.  For normal vectors DH5α E.Coli were used while for AAV vectors Sure E.Coli bacteria were 

used. 

One to 4 µl of the ligation reaction were added to ~70 µl of fresh thawed electrocompetent bacteria 

and kept on ice; the mixture was transferred to a pre-cooled electroporation cuvette which was then 

subjected to a electroshock pulse procedure at Bio-rad Gene Pulser II (Voltage = 1.8 kV, pulse 

controller- low resistance = 200 Ohm, capacitance = 25 μF). The mixture was then transferred to a 2 

ml eppendorf tube together with 1 ml of pre-warmed SOC++ media, and incubated in a shaker at 200 

rpm and 37°C for 45 min. This step allows the bacteria to recover after the electroshock and to 

express the antibiotic resistance. Sixty to 500 µl of bacteria were then seeded on LB agar plate with 

the appropriate antibiotic; plates were left at 37°C over-night to allow the selected clones to grow. 

LB agar plates were prepared by dissolving 40 g/l of LB-Agar (Applichem) in bi-distilled water. The 

mixture was then autoclaved and cooled down to 50-60°C. Antibiotics were then added to the 

solution (ampicillin = 100 mg/l, kanamicin = 50 mg/l) and 20-25 ml/plate were poured in 10 cm plates 

and let to polymerize. Plates were then stored at 4°C. 

Singles colonies were then repicked and transferred in LB media supplemented with antibiotic (100 

µg/ml ampicillin or 50 µg/ml kanamicin). To prepare the LB media 25 g/l of LB were dissolved in bi-

distilled water and autoclaved. In case of mini-prep 5 ml of media were used and the cultures were 

left over night at 37°C under 200 rmp shaking. In case of Midi- or Mega-prep a pre-culture was done 

by incubating a single colony for ~6-8 hours in 2-3 ml of LB media (supplemented with antibiotics) 

under shaking at 37°C. The main culture was started by transferring bacteria to fresh LB media at 

1:1000 ratio; total volume for a Midi-prep was 100 ml while for a Mega-prep the final volume was 

2000 ml. Cultures were left o/n at 37°C with 1000 rpm shaking. 

3.1.11 Production of electro-competent E.Coli cells 

Electrocompetent cells (DH5α and SURE cells) from glycerol stock were plated in a LB agar plate 

without antibiotics and left overnight to grow; the following day a single colony was repicked, 

transferred to 10 ml LB media and incubated overnight at 37°C under shaking. The following day 2 

liters of pre-warmed LB media were inoculated with 3-4 ml of the culture and the bacteria were left 

to expand at 37°C under 100 rpm shaking till they reached an OD between 0.8 and 1.0 (pure LB 

media was used as a reference; the procedure takes 3-5 hours). Bacteria were then transferred in 6 

ultracentrifuge tubes (~350 ml each) and put on ice for one hour. Next the suspended bacteria were 

centrifuged at ~2700 g for 10 min, the supernatant discarded and the bacteria pellet was 

resuspended in 2-3 liters of 4°C sterile water. The centrifugation and resuspension was repeated 

another two times, transferring the bacteria first to three ultracentrifugation tubes with sterile water 

and then to one 50ml falcon tube with 10% glycerol in water. Cells were centrifuged again and the 

final resuspension was done by adding a volume of water 10% glycerol equal to the volume of the 

pellet. Bacteria were then aliquoted in 70-80 µl aliquots in pre-cooled 0.5 ml tubes and stored at -

80°C.  
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3.1.12 Mini-, midi-, mega-prep 

To extract the plasmid DNA from bacteria after expansion 3 kits were used depending on the size of 

the preparation; Mini-prep (Quiagen) for 5 ml bacteria, Midi-prep (Macherey-Nagel) for 100 ml 

bacteria, and Mega-prep (Macherey-Nagel) for 2000 ml bacteria. In case of a new construct 0.5 ml of 

bacteria were mixed with 0.5 ml of freezing solution and kept at -80°C as a bacteria glycerol stock. 

The preparations were done following the instructions of the manufactures; the principle of the 

preparations is always the same with only slight differences in some buffers composition. 

After overnight expansion bacteria are precipitated with a 6000g force and resuspended in 

resuspension buffer supplemented with RNAse to degrade RNA. The bacteria are then subject to an 

alkaline lysis in which the plasmid DNA stays in solution while the debris formed by membranes and 

protein is precipitated by centrifugation at 16000g; the supernatant is then loaded to a ion exchange 

column in a high salt condition that allow the plasmid DNA to bind to the resin. In the case of Midi 

and Mega-prep the column has to be pre-equilibrated before its use.  After washing the column, the 

plasmid DNA is eluted in low salt condition with water or elution buffer. In the case of Midi and Mega 

prep the total volume of bacteria was divided by 2 and the same column was used twice previous re-

equilibration. 

To further purify the DNA in the case of Midi- and Mega-prep the eluted plasmid was precipitated 

with isoprophanol, washed with 70% ethanol, dried at room temperature and resuspended over 

night in TE buffer. DNA concentration and purity was checked using a biophotometer which can 

calculate the DNA concentration using the Lambert-Beer law A = εbc, in which A = absorbance, ε = 

molar absorbitivity, b = chamber length in cm, and c = concentration; by measuring the absorbance 

at 260nm (the wavelength that is absorbed by aromatic groups) and knowing ε and b the DNA 

concentration can be calculated; moreover the machine measures the absorbance at 280nm 

(absorbance of tryptophan) and by calculating the ratio 260nm/280nm the DNA purity from protein 

can be estimated; a ratio over 1.80 was considered acceptable. 

3.1.13 Quality control of the plasmid 

To verify that all the cloning reactions led to the desired plasmids different control digestion followed 

by gel electrophoresis were performed. To predict the expected DNA fragments the control digestion 

was first simulated in silicio using SECentral and then was performed practically. Single or double 

digestions were chosen in order to obtain fragments that could be easily discriminate in a gel 

electrophoresis. 

To verify the integrity of the two ITRs all AAV plasmids were digested with Sma1; the enzyme 

recognizes 2 sequences in the two ITRs so its use leads a typical pattern in the gel electrophoresis 

with a DNA band at 3013 bp which corresponds to the backbone of the AAV vector. 

In case of any doubts or when new DNA sequences were purchased from different companies the 

material was sent to the Seqlab (Sequence laboratories Göttingen GmbH) for an “extended Hot Shot 

sequencing reaction”; 600-700 ng of plasmid DNA and 20 pmol of primer were mixed in a 0.2 ml flat-

lid vial and the volume was brought to 7 µl using 10 mM Tris pH 8.0. Primers were chosen depending 

on the vector and they were designed in order to pair to a know sequence and be able to elongate in 

the direction of the unknown sequence (table 2).  
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3.2 Vector cloning 
All cloning steps and oligonucleotides were first virtually designed using SECentral software.  

The pSwitchTM system was purchased from invitrogenTM; the kit includes a vector encoding the 

pSwitch protein and 3 responsive vector pGene A, B, C with 3 different open reading frames. 

All cloned vectors were checked by control digestion and by sequencing. 

Figure 4) Representation of the main used plasmids: AAV = adeno associated virus; ITR = inverted terminal repeat; TB = 
transcription blocker; Syn = S = synapsin promoter; EGFP = enhanced green fluorescence protein; WPRE = Woodchuck 
Hepatitis Virus (WHP) Posttranscriptional Regulatory Element; Gfabc1d = astrocytic promoter; BghpA = B = bovine 
growth hormone poli adenilation sequence; DsRed = red fluorescent protein; GDNF = glial cell derived neurotrophic 
factor; Uptk = Uptk = UAS (Upstream activatin sequence) Herpes Simplex Virus thymidine kinase (TK) minimal promoter; 
pSwitch = pSw = pSwitch protein; SV40pA = S = Simian virus 40 poli adenilation sequence; HtH = head to head; HtT = head 
to tail. 
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3.2.1 AAV vector genomes expressing the pSwitch protein 

The first cloning step consisted in transferring the DNA sequence encoding for the pSwitch protein 

and its inducible promoter to an AAV vector. Oligonucleotide A (table 3) was designed with 

overhangs compatible with Apa1 and Sal1 restriction sites. AAV SEWB (figure 4-a) was digested with 

Apa1 and Sal1, purified by GE, and oligo A was inserted resulting in AAV-OligoA-B. This and the 

original pSwitch vector were then cut with Sbf1 and BamH1 and the UAS-ptk-pSw fragment, isolated 

by GE, was inserted in AAV-OligoA-B backbone, purified by PP, resulting in AAV-UptkpSw-B (figure 4-

e). 

For further cloning and easier manipulation of the pSwitch cassette another oligonucleotide, with 

mutated Bgl2 overhangs, was designed (Oligo C; table 3). The mutated overhang results in an 

oligonucleotide that can be ligated but cannot be re-cut in the same site. AAV SEWB was cut with 

Bgl2 and the OligoC was inserted in the AAV backbone, purified by GE, resulting in AAV-OligoC.  To 

insert the SV40 poli-adenylation sequence both the AAV-OligoC and the vector containing the SV40 

sequence, pGEM4Z4, were cut with Not1 and Sac1 and the DNA corresponding to the SV40 sequence 

was isolated by GE and cloned in the AAV backbone, purified by PP, resulting in AAV-OligoC SV40 

vector. In the following step the DNA sequence for the pSwitch protein was cut from AAV-ptkpSw-B 

with BamH1 and Age1and isolated by GE. The AAV-OligoC-SV40 was cut with Bgl2 and Age1 and then 

purified by PP. As Bgl2 and BamH1 give compatible overhangs it was possible to ligate the two 

fragments obtaining the AAV-OligoC-pSw-S vector. 

In order to add the ptk promoter to AAV-OligoC-pSw-SV40 this last vector and AAV-ptkpSw-B were 

cut with Sbf1 and Pac1 and the fragment corresponding to the promoter was isolated by GE and 

cloned into the backbone. The ligation product was named AAV-Uptk-pSw-S (figure 4-f). 

To restrict the expression of the pSwitch protein to astrocytes the astrocytic promoter Gfabc1d was 

inserted in the vector AAV-OligoC-pSw-S. Both the vectors ptyf 2xGfabc1d, which contains the 

desired promoter, and AAV-OligoC-pSw-S were cut with Mlu1 and BamH1 and the fragment 

corresponding to the promoter was inserted in the backbone obtaining AAV-GfABC1D-pSw-S (figure 

4-g); both fragments were purified by GE. 

In another construct, instead of the astrocytic promoter, a neuronal specific synapsin promoter was 

used. The synapsin promoter was cut from AAV SEWB using BamH1 and Mlu1 and isolated by GE. 

Using the same enzymes as above, the astrocytic promoter was removed from AAV-GfaABC1D-pSw-S 

and the BB was purified by GE. The synapsin promoter was then inserted in the new backbone in 

order to obtain AAV SpSwS (figure 4-h).  

3.2.2 AAV vector genome with responsive promoter 

To facilitate the cloning of the responsive vectors the oligonucleotide Oligo-B (table 3) was designed 

and purchased from Sigma. Oligo-B and AAV-SEWB were cut with Apa1 and BamH1 and, after GE, the 

oligonucleotide was cloned in the backbone. The resulting AAV-OligoB-EWB was cut using EcoRV and 

BamHI and the backbone was isolated by PP while the UAS-TATA from the original responsive vector 

was cut with Ssp1 and BamH1 and isolated by GE. As both EcoRV and SspI give blunt ends, the 

ligation between the AAV vector and the UAS-TATA fragment was possible and a vector named AAV 

1TB UTEWB (figure 4-i) was obtained. 

To excise the WPRE (WHP Post-trascriptional Response Element), and decrease the expression of 

EGFP AAV-OligoB-EWB was cut with Hind3 and Hinc2. The 2 enzymes were then inactivated, the 
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desired DNA vector was separated from the WPRE sequence by GE, and a reaction with the Klenow 

fragment was performed to obtain blunt ends. The vector was then purified by PP and re-circularized 

to obtain AAV-OligoB-EB. This last vector was then cut with EcoRV and BamH1, purified by PP, and 

ligated with the UAS promoter obtained by cutting the original responsive vector with Ssp1 and 

Bamh1. The obtained vector was named AAV-1TB-UTEB (figure 4-k). 

For an easier manipulation of the responsive cassette two primers designed to target and amplify the 

UAS-TATA sequence from AAV 1TB UTEB (UAS TATA forward and reverse; table 2) with appropriate 

overhangs were purchased from Sigma. As there was the need to eliminate a Hind3 restriction site in 

the target sequence, AAV-1TB-UTEB was cut with Hind3 and the resulted linearized DNA was treated 

with the Klenow enzyme; the DNA was then purified by PP, and ligated to re-circulize it and obtain 

AAV-1TB-UTEB Hind3-. The two primers were used on this vector with annealing temperature of 

68°C and 1 µM MgCl2 to obtain the Oligo-UASTATA sequence that was then cut with Bgl2 and 

purified by PP. AAV SEWB was cut with Bgl2 and dephosphorilated. The obtained backbone, isolated 

by GE, was ligated with the Oligo-UASTATA to attain AAV-Oligo-UASTATA. To add the EGFP and the 

WPRE this last vector and AAV SEWB were cut with Hind3 and Sph1 and the fragment corresponding 

to EGFP-WPRE, isolated by GE, was add to the backbone and isolated by PP, to obtain AAV UTEWB.  

To isolate the ITR effect on the promoter 3 transcription blockers (TB) were added. AAV UTEWB and 

AAV 6p 3TBxright were cut with Mlu1 and BamH1. The backbone from AAV-UTEWB, purified by PP, 

and the fragment corresponding to the 3TB, isolated by GE, were ligated and the resulted vector was 

named AAV-3TB-UTEWB (figure 4-j). 

To remove the WPRE sequence AAV UTEWB was cut with Cla1 and after a GE the fragment 

corresponding to the open vector was re-circulized; the resulted vector was named AAV-UTEB.  

Like in the previous vector to isolate the ITR effect on the promoter 3TB were added; AAV 6p 

3TBxright and AAV-UTEB were cut with Mlu1 and BamH1 and the 3TB fragment was inserted to the 

backbone to obtain AAV 3TB-UTEB (figure 4-l). 

In order to express GDNF instead of EGFP AAV 3TB-UTEB and AAV syn-GDNF-WB (figure 4-d) were 

cut with Age1 and Hind3. BB from the first and the GDNF sequence from the second were isolated by 

GE and ligated resulting in AAV UT-GDNF-B (figure 4-m). 

3.2.3 Double cassette AAV vector genomes 

To avoid the use of two vectors the two cassettes of the pSwitch system were cloned in a single 

vector with different configurations and promoters. 

In order to clone the two cassettes into the same vector with the pSwitch protein under the control 

of the ubiquitous promoter Uptk the following steps were followed: AAVUptkpSwS was first cut with 

Spe1 and Sbf1, the two enzymes were heat inactivated, the DNA was treated with Klenow fragment, 

purified by PP and dephosphorilated. The plasmid containing the responsive cassette AAV UTEB was 

cut with Nsi1 and Mlu1, the enzymes were heat inactivated, the DNA was treated with the Klenow 

fragment and purified by GE in order to isolate the UTEB cassette. Being both fragments with blunt 

ends in was possible to perform a ligation which gave as a result two different configurations of the 

vector: AAV UptkpSwS-UTEB HtH (Head to Head; figure 4-n) and AAV UptkpSwS-UTEB HtT (Head to 

Tail; figure 4-o). 
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In order to add a TB between the two cassettes of AAV UptkpSwS-UTEB HtH, the vector was cut with 

BamH1 and BsrG1 and purify by PP. AAV 1TB-UTEB was cut with Bgl2 and BsrG1 and the DNA 

fragment corresponding to the TB was isolated by GE. Bgl2 and BamH1 give compatible sticky ends 

and the BB and TB could be ligated resulting in AAV UptkpSwS-1TB-UTEB HtH (figure 4-p). 

In order to restrict the expression to astrocytes AAV-GfaABC1D-pSw-S was first cut with Spe1 and 

then, after heat inactivation of the enzyme, the DNA was treated with the Klenow fragment; after a 

PP the vector was cut with Mlu1 and the DNA was isolated again by PP. The vector AAV UTEB was cut 

with Nsi1, the enzyme was heat inactivated and the DNA was treated with the Klenow fragment. 

After PP the DNA was cut with Mlu1 and the responsive cassette was isolated by GE. In this case the 

ligation between the backbone and the UTEB cassette was directional in a head to head 

configuration having both DNAs one blunt end and one sticky Mlu1 end. The final product was 

named AAV-GfaABC1DpSwS-UTEB (figure 4-q). 

3.2.4 AAV vector genomes for dopaminergic neuron generation 

Three vectors, delivered in bacteria, containing the TH1 (OCACo5052E1012D), AADC 

(OCAAo5051B1155D), and VMAT-2 (IRCMp5012H034D) sequences were ordered from Imagenes; six 

primers with part of the sequences complementary to the three genes and with appropriate 

overhangs for cloning were ordered from sigma; an oligonucleotide (Oligo-D; table 3) that served as 

multicloning site (MCS) was ordered as well from Sigma in two separate sequences that were 

annealed. 

Bacteria were seeded and repicked in order to isolate a single clone for each plasmid and minipreps 

were performed to isolate the plasmids. 

The first cloning step consisted in inserting Oligo D which served as a MCS in an AAV vector; for this 

purpose AAV SEWB was cut with Age1 and Cla1, the BB was isolated by GE, the MCS was ligated, and 

the obtained vector was called AAV S-Oligo d-B. 

In order to allow a single vector to produce two proteins an internal ribosome entry site (IRES) was 

used; AAV S-Oligo c-B and a vector carrying an IRES sequence pTR-UF22 were cut with Not1 and Cla1 

and the IRES sequence, after being isolated by GE, was cloned into the AAV vector which was then 

purified by PP. The resulted plasmid was called AAV S-IRES-B. 

The clone containing the TH1 gene obtained from Imagenes underwent a PCR amplification with the 

proper primers (table 2) using an annealing temperature of 72°C and a MgCl2 concentration of 1 µM. 

The PCR product was isolated by GE, cut with Sbf1 and EcoR1 and purified by PP. AAV S-IRES-B was 

cut with Sbf1 and EcoR1 and the BB was isolated from the EGFP-WPRE sequence by GE. The TH1 

sequence was ligated in the AAV vector and the obtained vector was called AAV S-TH-IRES-B. 

The PCR reaction (primers in table 2) for the AADC gene was performed with an annealing 

temperature of 68°C without MgCl2 and the product was isolated by GE. The purified DNA was then 

cut with Nhe1 and Hind3 and purified by PP. AAV-S-TH-IRES-B was cut as well with Nhe1 and Hind3 

and the BB was isolated by GE. AAAD DNA sequence was then cloned in the AAV BB and the obtained 

vector was named AAV-S-TH-IRES-AADC-B. 
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The AADC gene was as well cloned in a vector without IRES; the same AADC fragment, cut with Nhe1 

and Hind3, was inserted in AAV-S-IRES-B which was previously cut with the same enzymes and 

isolated by GE. The obtained vector was called AAV-S-AADC-B. 

The vector containing VMAT-2 underwent a PCR reaction (primers in table 2) with 68°C as a 

annealing temperature and with 1 µM MgCl2 concentration. The PCR reaction produced two 

products due to a repetition in the sequence showing 2 distinct bands in the gel electrophoresis. The 

product of interest had a molecular size of 1600 bp. The correct band was then isolated by GE, cut 

with EcoR1 and Sbf1 and purified by PP. AAVS-IRES-B was cut with EcoR1 and Sbf1 and the backbone 

was purified by GE. The VMAT2 sequence and the AAV backbone were then ligated and the resulting 

vector was called AAV S-VMAT2-IRES-B. 

To generate the vector AAV S-VMAT2-IRES-EGFP-B the vector AAV S-VMAT2-IRES-B and AAV SEWB 

were cut with Nhe1 and Hind3, the backbone from the first and the EGFP sequence from the second 

were isolated by GE; the two obtained pieces were ligated and bacteria were transformed. 

The VMAT2 PCR product cut with EcoR1 and Sbf1 was used to generate AAV-S-VMAT2-B. AAV S-

OligoC-B was cut with the same enzymes and the backbone was isolated by PP. The two pieces were 

then ligated and bacteria were transformed. 

All the clones were checked by DNA sequencing using primers (table 2) for Syn (forward), IRES 

(reverse), IRES (forward) and BGH (reverse). 

3.2.5 AAV vector genomes for control viruses 

The short version of the astrocytic promoter GFAP named Gfabc1d was kindly provided by Brenner 

(University of Alabama at Birmingham, Birmingham, Alabama) in a vector called ptyf 2xGfaABC1D. To 

excise the promoter BamH1 and Mlu1 were used and the desired DNA sequence was isolated by GE; 

AAV SEWB vector was cut with the same enzyme, the backbone was purified by GE, and the 

GfaABC1D promoter was inserted in the AAV vector obtaining the AAV-Gfabc1d-EWB vector (figure 

4-b).  

To obtain a vector expressing DsRed instead of EGFP under the synapsin promoter the DsRed DNA 

sequence was cut from the vector AAV HBADsRed with Hinc2 and BamH1, isolated by GE, and 

inserted in AAV SEWB in which the EGFP sequence was excluded by cutting the vector with Hinc2 and 

BamH1 and by purifying the backbone by GE; the obtained vector was named AAV SDsRedWB (figure 

4-c). 

3.3 Viral vectors production and purification  
Vectors for the pSwitch experiment were packed both in AAV5 and AAV6 while all the clones for the 

dopaminergic neurons experiment were packed exclusively in AAV6 capsid. 

3.3.1 Continuous HEK-293 cell culture  

AAV are small dependovirus that are not able to replicate themselves without the presence of other 

viruses such Herpesvirus, Adenovirus or vaccinia virus, which provide the essential proteins for the 

replication cycle and the capsid.  

For the production of AAV infective particles is then necessary to co-transfect HEK-293 cells with two 

constructs [102]: a first one containing the genes/cassettes between the two ITRs and a second one 
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encoding the proteins for the capsid; the adenovirus protein E1 essential for packaging is 

constitutively expressed by HEK-293 cells. 

HEK-293 cells were cultured in DMEM 10% FCS, 1% PS at 37°C with 5% CO2 and 95% humidity. 

Depending on the volume of the culture, 175 cm2 culture flasks or 4 layers cell factories (CF, Nunc) 

were used. Cells were split once they reached 50-60% confluence; referring to the volume for 175cm2 

flasks (and in brackets for CF), cells were first washed with 7-8 ml (300-400 ml) room temperature 

PBS and then trypsinized  with 4ml (100ml) 0,5% trypsin 0,02% EDTA in PBS for 5 min at 37°C. Cells 

detachment was helped by tapping mildly the flask and the CF. Trypsin activity was then stopped by 

adding 7 ml (100 ml) of DMEM 10% FCS 1% PS; cells were then collected and centrifuged at 1400g for 

5min. Supernatant was discarded and cells were resuspended in culture media and counted using a 

hemocytometer; 2*106 cells were diluted in 20 ml culture media for seeding them in 175cm2 flasks 

while 4*107 cells were diluted in 500 ml for seeding in CF for further expansion. When CFs were 

seeded for transfection and virus production, 5*107 cells were used. 

After approximately 48 hours cells in CF reach the confluency of 50-60%, the optimal state for 

transfection and virus production. 

3.3.2 Calcium phosphate transfection of HEK-293 cells 

Depending on the serotype and on the amount of virus desired one or more cell factories were used 

for the same virus production; being AAV6 easily packed only one CF was used for this serotype while 

for AAV5 vectors normally three or four CF were used for each production. The volumes mentioned 

here refer to a single CF. 

Before transfection the CF was washed once with DMEM without additives to remove the PS and 

excess FCS which can interfere with the transfection efficiency. 

The transfection mix was then prepared by mixing 265 µg of the AAV vector, 1 mg of packaging 

vector and 1650 µl of 2.5M CaCl2 in a total volume of 16.5 ml of sterile water. Afterwards 16.5 ml of 2 

x HeBS (pH 7.05) was added to the transfection mix and incubated for exactly 55 sec at room 

temperature. During this time the DNA associates with the calcium particles which are then taken by 

cells [103]. The reaction is stopped by adding the transfection mix to 315 ml DMEM 2% FCS without 

antibiotics. The transfection medium is then added to the cells which were then incubated for 10-16 

hours at 37°C, 5% CO2 and 95% humidity. The medium was then exchanged with approx. 750 ml of 

DMEM 10% FCS, 1% PS. After approximately 36-40 hours is possible to evaluate the efficiency of the 

transfection by checking the expression of the reporter genes present in the vectors.  

After approximately 50 hours cells were harvested; after removing the medium from the CF cells 

were rinsed once with 300 ml citric saline (CS) and then left in the incubator for 5-8 min with another 

200 ml CS to promote the detachment of cells from the CF. The CF was then tapped, cells were 

collected, spun down for 5-10 min at 1300 rpm, resuspended in 20 ml of tris-buffered saline pH8.5 

and stored at -80°C until further processing. 

3.3.3 AAV gradient centrifugation  

In order to lyse the cells and release the viral particles the cell suspension was thawed and frozen 3 

times in ethanol/dry ice bath; after that 1.6 µl of Benzonase (12.5 U/ml) was added to the tube and 

the mix was incubated for 30 min in a 37°C water bath. To help the lysis cells were slightly shaken 

every 5-10 min. After the incubation, the cell mix was centrifuged at 4000 rpm at 18°C for 30 min. 
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The supernatants was carefully transferred to a new 50 ml falcon tube and adjusted to a 30 ml 

volume by addition of Tris-buffered saline. 

The next step for virus isolation was to perform a gradient centrifugation [104]; using a pump 

catheter connected to a spinal needle (20G x 23/4 ) the iodixanol (Opti Prep™) step gradient was 

performed. The following stock solutions were prepared (E solution freshly prepared):  

B - 10 x PBS-MK (80g NaCl, 2 g KCl, 14.4 g Na2HPO4, 2.4 g KH2PO4 dissolved in 990 ml millipore sterile 

water, pH 7.4; plus 5 ml 2.5 M KCl and 5 ml 1 M MgCl2,solution was sterile filtered).  

C - 1x PBS-MK (500 μl 2.5 M KCl, 500 μl 1M MgCl2 in 499 ml PBS)  

D - 2 M NaCl in 1x PBS-MK  

E - 54 % working solution: (45 ml iodixanol and 5 ml B).  

To obtain different iodixanol gradient solutions the solutions C, D, E, iodixanol and phenol red were 

intermixed as follow (volumes for 4 step gradient tubes):  

15% gradient: 15.0 ml E, 27.0 D, 12.0 ml C  

25% gradient: 12.2 ml E, 14.5 ml C, 150 μl phenol red (0.05 % in water)  

40% gradient: 20.0 ml E, 7.0 ml C  

60% gradient: 25.0 ml iodixanol, 150 μl phenol red (0.05 % in water) 

Fifteen ml of the supernatant was then transferred to a Quick seal tubes (Beckmann; 1x 3.5 inch 

[25x 89 mm]), using a 20 ml syringe with a 20G x 23/4 spinal needle. 

The iodixanol gradient solutions were added consecutively using the pump (10 ml of the 15% 

gradient, 6 ml of the 25% gradient, 4 ml of the 40% gradient, and 6 ml or more of the 60% gradient to 

fill up the tube) into the Beckmann tubes underneath the virus solution. The tubes were then heat-

sealed and ultracentrifuged (SORVALL® Discovery 90SE) for 1 hour and 15 min at 68000 rpm ( 

310.000 g) at 18°C with acceleration “5” and deceleration “0”. After the centrifugation the viral 

particles are placed in the 40% gradient solution. To extract them, a needle was inserted at the 

interface of the 40% and 60% gradient solutions and the 40% gradient solution was extracted. 

Another similar needle was introduced on the top of the tube which allowed pressure 

equilibrium inside the tube. The virus-containing solution was collected in a 50 ml falcon tube 

which was stored at -20°C or used directly in the Fast Protein Liquid Chromatography step.   

3.3.4 Fast Protein Liquid Chromatography and dialysis (FPLC) 

The next purification step consisted in loading the virus into a Äkta-FPLC system (Amersham 

Biosciences) using a HiTrap™ Heparin HP 1 ml column (GE Healthcare) in low salt solution (PBS-MK). 

The column was then washed with PBS-MK till the OD at 280nm was below 0.0002 au (arbitrary 

units); after the washing step the virus was eluted in high salt conditions using 40% of PBS-MK 1M 

NaCl. The AAV particles were further desalted by dialysis using Slide-A-Lyzer (MWCO = 10,000; 

PIERCE) in 1 l PBS overnight, with 1 further hour of dialysis in 1 l of fresh PBS at 4°C. The final virus 

solution was subjected to real-time PCR (RT-qPCR) quantification for the AAV-vector genome titre.  
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3.3.5 Virus DNA preparation for qPCR  

As every virus preparation is different, a estimation on the virus titre is needed; for this purpose a 

qPCR was performed. Briefly, 5µl of virus (or water for negative control) were subjected to DNAse 

digestion in 435 μl water, 5 μl DNAse I (10 units) and 50 μl 10x DNAse I buffer for 1 hour in a 37°C 

water bath. Samples were then centrifuged for 1 min at max speed; next, 55 µl of 10X proteinase K 

buffer and 5 µl of Proteinase K (20 mg/ml) were added to the tube and the sample was strongly 

mixed and incubated for 1 hour in a 37°C water bath. The solution was then centrifuged again at max 

speed for 1 min for phenol/chloroform extraction. 

3.3.6 Phenol/chloroform extraction:  

To further purify the DNA before the qPCR a phenol/chloroform extraction was performed: briefly 

500 µl of phenol equilibrated at RT was added to the sample which was then strongly mixed for 10 

sec and centrifuged at max speed at RT for 1 min. The aqueous phase was then transferred to a new 

1.5 ml eppendorf tube and added with 250 µl of equilibrated phenol and 250 µl of chloroform. The 

sample was again strongly mixed and centrifuged at max speed for 1 min at RT. The aqueous phase 

was transferred to 500 µl chloroform in a new 1.5 ml eppendorf tube, strongly mixed for 10 sec and 

centrifuged for 1 min at max speed and RT. The aqueous phase was again transferred to a new 1.5 ml 

eppendorf tube and along with 45 µl 3M sodium-acetate pH 5.0-5.3, 1.5 µl of glycogen for molecular 

biology and 1 ml of cold 100% EtOH. The sample was mixed, put in dry ice for 5 min to help the DNA 

precipitation and centrifuged at max speed for 30 min at 4°C. The extracted DNA pellet was washed 

with 1 ml of cold 70% ethanol and centrifuged for 10 min, the supernatant was removed. The pellet 

dried and re-dissolved in 200 μl of TE pH 8.0.  

3.3.7 AAV qPCR  

The amount of PCR product in this type of qPCR was followed in real time by SYBR green 

incorporation in the dsDNA PCR product. All samples including the negative control were further 

diluted 1 to 20 before qPCR. The qPCR reaction was set up in 200 μl “thin wall tubes” and contained 

10 μl mix (Platinum SYBR® Green qPCR SuperMix-UDG), 2 μl of 4 mM primer 1 and 2, 1 μl 

fluorochrome flurescein, 4 μl of extracted DNA, standard or positive control, plus 1 μl H2O. Each 

unknown sample was assayed in duplicate and, when possible, with different primers depending on 

the vector (WPRE, bGH, Syn specific primers; table 2). qPCR was performed on “icycler” qPCR 

machine and analyzed with kcycler software. Amplification started with 15 min incubation at 98°C (to 

release the antibody bound to the polymerase) followed by 30 cycles of amplification (annealing 15 

sec between 60°C and 72°C, elongation for 20 sec/kb at 72°C and separation of DNA strands for 15 

sec at 98°C). After amplification a melting curve was performed with 0.5°C increase each 30 seconds 

until reaching 98° C. The melting curve is an indicator of PCR amplification product specificity. Cycler 

was programmed to stay at on hold at 18° C after the melting curve. Concentrations were 

automatically calculated by a regression curve between the threshold cycle and the known amounts 

of standards in logarithmic scale. Threshold cycle for known concentration samples was used to 

extrapolate the pg of DNA in unknown samples.  

3.3.8 Calculation of AAV viral genomes  

The correlation between amounts of double stranded DNA used and the qPCR standard (dependent 

on molecule size) and the single stranded DNA present in the virus genome was assumed to be 200 

pg of ssDNA AAV genome equal to 5.2 x 107 genomes (0.026x107 genomes/pg of ssDNA).  
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Titre genome was calculated as follows:  

(value in pg) x Z xY x 0.026x107/ X / n = genomes/μl (often referred as vg, viral genome).  

Where Z corresponds to the ssDNA sample dilution before qPCR (usually 20), Y is the volume where 

the ssDNA was dissolved after ethanol precipitation, X is volume in μl of virus used for DNA 

preparation and n is the volume in μl applied in the qPCR tube for quantitative determination.  

Assuming that only one every 30th viral genome is infectious, the obtained genomes were divided by 

30 to obtain the transduction units values that were used as reference in each in vitro transduction 

or in vivo injection.  

Finally, the purity of the vectors was determined by SDS-gel electrophoresis followed by coomassie 

brilliant blue staining. In short, 5 μl of virus were mixed with 6x SDS sample buffer and boiled for 5 

min at 95° C. Denaturated virus capsid proteins were loaded in 10 % polyacrylamide/bis-acrylamide 

gels and were run until the bromophenol blue reached the bottom of the resolving gel. Next 

coomassie brilliant blue staining was performed using standard protocols (figure 5). Aliquots of the 

AAV vectors were made and stored at -80°C until required. During all procedures dealing with AAV 

vectors, 0.5% SDS solution in water was used for disinfection. 

3.4 Cell culture 
Primary cortical neurons in culture were used both for a rapid screening of the vectors with the 

pSwitch system and for the dopamine producing neurons project. AAV5 serotype is not able to infect 

neurons in culture so only AAV6 vectors were used. ; before seeding (and infecting) the neurons is 

necessary to coat the culture plates with different attachment factors creating the physiologically 

relevant in vitro conditions to support normal cell growth function and ensure optimized cell culture 

conditions. 

Figure 5) SDS-gel electrophoresis of AAVs followed by coomassie brilliant blue staining. M = broad range protein 
marker; 1 = AAV6; 2 = AAV5 (good preparation); 3 = AAV5 (low titre); 4 = AAV5 (some contamination in the sample). 
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3.4.1 Coating of culture plates for primary cortical cells culture  

Cortical neurons were plated in 24 and 96 wheels/plate and, if immunohistochemistry was planned, 

13 mm cover slips were sterilized by soaking them in ethanol, flamed, and placed into the 24 

wells/plate.  24 wells/plates were first incubated for 12 to 24 h at RT with P-ORN (1 μg/ml) in sterile 

H2O (500 μl/well). After washing twice with 500 μl/well sterile H2O, plates were incubated with 

laminin 1:1000 in NBM (1 μg/ml, 500 μl/well) overnight at 37°C, 5% CO2, 95% humidity. Before 

transferring cells into wells, plates were washed twice with sterile NBM (500 μl/well), then 500 μl of 

HCN medium were added and the plates were kept at 37°C. The procedure for the 96 wells/plate was 

the same but the volumes used was 100 µl/well instead of 500 µl/well. 

3.4.2 Primary cortical cells culture  

Primary cortical neuron cultures were obtained by dissecting the cortex of E18 (Embryonic day 18) 

Wistar rats which were processed as previously described [105]. 

All surgical procedures were performed on ice. Briefly, cortex tissue pieces were collected in ice-cold 

CMF medium and centrifuged at 800 rpm (73g) for 4 min at 4°C. The medium was then removed and 

the pellet was incubated in 750 μl trypsin (0.25%, 15 min, 37°C); trypsin activity was stopped by 

addition of 700 μl ice-cold FCS and 25 μl DNAse was added to dissolve DNA-aggregates released from 

damaged cells.  The pellet was then mechanically dissociated by pipetting the mixture gently through 

a fire-polished Pasteur pipette. After another centrifugation at 800 rpm for 4 min, the pellet was 

resuspended in warm HCN culture medium. Cells were seeded in poly-L-ornithine/laminin culture 

plates at a density 250.000 cells/well in 750 µl media for the 24 wells/plates and at a density 50.000 

cells/well in 100 µl for the 96 wells/plate. Cultures were maintained at 37°C in 5% CO2 and 95% 

humidity in HCN medium; medium was normally refreshed every 4-5 days by discarding, in the 24 

wells/plate, 200 µl/well and adding 300 µl/well of fresh media which was previously pH equilibrated 

by leaving it over night in the incubator. For the 96 wells/plate 25 µl/well were discarded and 50 

µl/well were added. Neurons can stay in these conditions for up to 3 weeks. 

3.4.3 Infection of primary cortical neurons 

Cortical neurons were left to adapt to the culture conditions for at least 2 days (DIV2 = day in vitro 

two). To infect neurons in the 24 wells/plate, 10 µl of the desired amount of virus diluted in PBS was 

added to each well. For 96 wells/plate neuron infection, 2 µl of the desired amount of virus diluted in 

PBS was added to each well. 

The expression of the proteins encoded by the viruses starts approximately 36 hours after infection 

and reaches its full expression after 96 hours. 

When live neurons expressing EGFP were imaged, an incubator chamber (37°C and 5% CO2) was 

mounted in an Olympus inverted microscope and pictures were acquired using Olympus Axiovision 

rel. 4.7 software. 

3.4.4 Western blot  

To verify the protein expression after virus infection western blots [106] were performed on neurons 

seeded in 24 wells/plates. 

3.4.4.1  Cell lysis 

Neurons were first washed with 500 µl of ice cold PBS and were then treated on ice with lysis buffer 

(see solutions); wells were scratched with a cut tip to detach cells and the mixture was transferred to 
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a 1.5 ml eppendorf tube on ice. After spinning down the cells with 30 sec centrifugation at max speed 

at 4°C samples were sonicated twice for 15 sec at 40% power (UW 2070 BANDELIN electronic; 

Berlin). Tubes were then centrifuged for 30 min at max speed at 4°C and the supernatant containing 

the proteins was transferred to a new tube (the pellet was saved as well in case of proteins 

associated with the membranes). 

To compare the relative amount of a protein in different samples is essential to perform the western 

blot with a comparable total amount of proteins. To estimate the protein concentration after lysis 

the BCA (bicinchoninic acid) test was performed.  

3.4.4.2 BCA test for protein concentration determination 

BCA test, or Lowry assay, is a colorimetric test based on the ability of proteins in basic condition to 

reduce Cu2+ into Cu+. These ions form complexes with 2 molecules of bicinchoninic acid (BCA) leading 

to the formation of a violet compound with maximum absorbance at 562 nm. The amount of product 

will be proportional to the proteins concentration; therefore, comparing the absorbance of the 

unknown sample with the absorbance in a standard curve made with known samples we can 

extrapolate the protein concentration. 

Samples were diluted 1 to 10 in PBS and 10 µl/well of it were transferred in a 96 well plate; the 

standard curve was done by preparing samples of BSA ranging from 4 mg/µl to 0.031mg/µl in a serial 

dilution of 8 standard diluted each time twice with PBS; 10 µl/well of each standard were then 

transferred to the same 96 well/plate. Both the standard and the samples were done in double. The 

reaction starts by adding to each well 190 µl of reagent A and B previously mixed at a ratio of 50 to 1. 

The plate was then incubated at 37°C and the absorbance was taken using a TECAN Rainbow plate 

reader and Magellan software (V3.11) after 2 hours. Data were interpolated using Microsoft excel 

2003 and the time-point with the best standard curve was used to calculate the protein 

concentrations of the unknown samples. 

3.4.4.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

To separate proteins a two-phase polyacrylamide gel was used with a polyacrylamide concentration 

of 12% (resolving phase) and a 5% (stacking phase). 

Upon fresh preparation, the 12% polyacryamide phase (see solutions) was added to 0.75mm racks 

and a layer of isopropanol was carefully added on the top of the phase to level it. Once dried, the 

isopropanol was discarded and the mix for the stacking gel (see solutions) was added in presence of a 

suitable comb.  

Once dried the rack was mounted in the electrophoresis chamber in presence of running buffer. 

Equal amount of proteins for each sample were diluted in PBS and 6X SDS Loading Buffer, heated for 

5 min at 95°C, let to cool down at room temperature and loaded into the gel; to define a molecular 

weight of loaded proteins a molecular weight marker (Precision Plus Protein™ standard) was loaded 

and run in parallel. 

To allow the samples to enter into resolving gel without smearing the current applied for the first 15 

min was 7 mA/gel (maximum electric field of 90 V). For the run in the resolving gel the current was 

15 mA/gel (maximum electric field of 150 V) and the run lasted until the bromophenol blue reached 

the bottom of the gel. Separated proteins were then transferred to a nitrocellulose membrane for 

immunostaining. 
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3.4.4.4 Immunoblotting 

The Mini Trans-Blot Cell set up was used to transfer proteins from the polyacrylamide gels to the 

nitrocellulose membranes. The transfer sandwich was assembled by orientating cathode, fibber 

pads, Whatman filter paper, gel, membrane, Whatman filter paper, filter pads and anode so protein 

transfer goes in the direction of cathode to anode. The nitrocellulose membrane, the Whatman filter 

papers and fibber pads were preliminary soaked in transfer buffer. The “sandwich” was placed in the 

Mini Trans-Blot Cell and a current of 360 mA or a maximum voltage of 160 V/gel was applied for 70 

min at 4°C.  

The efficiency of the transfer was confirmed by immersing the nitrocellulose membrane for few 

seconds in Pancean S which highlights all proteins; after this control the membrane was washed with 

water and TBS-T. 

To avoid unspecific binding of the antibodies the membrane was blocked using TBS-T 5% fat milk for 

1 hour at RT under shaking. The membrane was then incubated over night at 4°C under shaking with 

the desired primary antibody in the appropriate dilution (see table) in TBS-T 5% fat milk. The 

membrane was then washed three times for 15 min under shaking with TBS-T and was incubated 

with the appropriate secondary antibody, coupled to Horseradish peroxidase (HRP), for one hour at 

RT under shaking; after another three 15 min washing with TBS-T at RT the membrane was ready for 

imaging. 

To visualize the bands on the membrane the substrate of HRP, luminol, has to be added to the 

membrane. This compound, reacting with the HRP, gives rise to chemiluminescence. To promote the 

reaction solutions ECL-1 and 2 were prepared, mixed in equal volume, and added to the membrane. 

The luminescence was then visualized and measured using the Fluor-STM-Max Gel Imager and 

Quantity One software (version 4.2.1). The solutions and the reaction have to be stored and 

performed in dark conditions. 

Antibody Species Dilution Company Ord. number 

Primary antibody     

Anti-TH Mouse 
monoclonal 

1:1000 Chemicon Millipore ab 152 

Anti-AADC Rabbit 
polyclonal 

1:1000 Abcam ab 49916 

Anti-VMAT-2 Rabbit 
polyclonal 

1:3000 Abcam ab 81855 

Anti-GAPDH Mouse 
monoclonal 

1:10000 Biotrent 5G4 

Anti-α-synuclein Mouse 
monoclonal 

1:1000 Invitrogen 32 8100 

Secondary antibody     

HRP-anti rabbit Donkey 1:3000 DIANOVA 711-035-152 

HRP-Anti mouse Donkey 1:3000 DIANOVA 715-035-150 
Table 4) Summary of antibodies used for western blot. TH = tyrosine hydroxylase; AADC = aromatic amino acid 
decarboxylase; VMAT-2 = Vesicular monoamine transporter 2; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase. 

3.4.5 Viability test using primary cortical neurons 

To asses possible toxic effects of viruses, proteins or other compounds a viability test was performed 

using the WST-1 proliferation reagent. The assay is based on the cleavage of the tetrazolium salt 

WST-1 by succinate-tetrazolium reductase producing soluble formazan. The enzyme is part of the 
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respiratory chain in mitochondria and the conversion only occurs in viable cells. The amount of 

formed formazan dye, which absorbance can be measured at 450 nm, will be then proportional to 

viable cells.  

For the test, performed in neurons cultured in 96 wells/plate, the WST-1 reagent was diluted in HCN 

media (1:10) and 50 µl of the solution were added to the neurons and to empty wells (to be used as 

blank); plates were then incubated at 37°C and the absorbance at 450 nm was measured after 30 

min, 2 and 4 hours with a microplate reader (Tecan RainBow). To evaluate the neurons viability the 

blank value was subtracted from the obtained values and tested neurons were compared in 

percentage with not treated neurons. The time-point which gave less variability was used. 

3.4.6 HPLC with cell lysates of primary cortical neurons 

To determine the amount of Dopamine, DOPAC and homovanillic Acid (HVA) produced from cells an 

HPLC (high pressure liquid chromatography) system coupled with an electrochemical detector was 

used. Both the released and the not released fraction of catecholamines were measured. 

To analyze the released catecholamines 400 µl of the media were taken and diluted in 50 µl of 2M 

perchloric acid (PCA) and 50 µl of 1% sodium metabisulfite (Na2S2O5); the mixture was kept on ice for 

few minutes and centrifuged at maximum speed for 10 min at 4°C. The supernatant was then filtered 

using Minisart SRP4 filters (Sartorius stedim biotech) and the samples were then directly loaded in 

the HPLC. 

To extract the not released fraction of dopamine the left over media was carefully removed and the 

cells were incubated for 10 min at room temperature with 200 µl of 3% trichloroacetic acid (TCA); 

180 µl of TCA were then transferred to 10 µl of 2M PCA and 10 µl of 1% sodium metabilsulfide, 

incubated on ice for few minutes and centrifuged for 10 min at max speed at 4°C. The supernatant 

was then filtered using the Minisart SRP4 filter and used for HPLC. 

Two series of 4 standards for the external and internal fraction were prepared. To minimize the 

variation the two series of measurement were performed mimicking the samples composition with 

known amount of Dopamine, DOPAC and HVA; for a 1 ml solution 100 µl were 2M PCA, 100 µl were 

1% sodium metabisulfite and the leftover 800 µl were culture medium for the external fraction and 

3% TCA for the internal fraction in which the catecholamines were diluted in order to obtain a final 

concentration of 0, 0.15, 0.3 and 1.5 µM (same concentration for each compound). 

The HPLC system consisted of a Guard cell (model 5020, ESA) that was kept at 600mV to oxidize the 

components of the mobile phase, a reverse-phase column ( Acclaim 120 C8 5µm 120 Å 2,1*250 mm, 

Bischoff, Leondberg, Germany) and an ESA electrochemical detector Coulochem II equipped with a 

5011A analytical cell. 

 Standards and samples were transferred to HPLC vials and loaded to the HPLC autosampler which 

was kept at 6°C and the HPLC software was programmed to inject 20 µl of the samples to the 

column. The flow rate of the mobile phase (see solutions) was 0.4 ml/min and the run lasted for 22 

min. The guard cell was held at 600 mV while the first channel of the analytical cell was held at 50mV 

to oxidize non-specific components and the second one at 300mV and used for quantification. To 

minimize errors, standards were run every 12-15 samples and averaged. The amount of the 3 

compounds was calculated by integrating the areas under the peaks. The retention time for DOPAC 

was around 4.8 min, for Dopamine 5.7 min and for HVA 10.8 min. 
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3.4.7 Live cell imaging 

Two different fluorescence microscopes were used for imaging depending on whether live neurons 

were imaged or if immunohistochemistry was performed. 

When imaging live neurons a Zeiss Axiovert 200M inverted microscope equipped with an incubator 

chamber to keep the temperature at 37°C and 5% CO2 was used; neurons in 24 or 96/wells plate 

were placed in the chamber and Images were acquired with a CCD camera (Axiocam b/w) and with 

Axiovision Rel 4.7 software. Further processing of the images was done using Adobe Photoshop 7.0. 

When our interest was to perform immunohistochemistry (IHC) to verify protein expression 24 

wells/plates with cover slips were used.  

Neurons were washed twice with ice-cold PBS and were then incubated with ice-cold 4% 

paraformaldeide in PBS (PFA see 2.2 “solutions”) for 8 minutes; the PFA cross-links the protein inside 

cells preserving the structures allowing the antibody to recognize the antigen of interest. 

After fixation neurons were washed twice with ice-cold PBS and were incubated with 10% NGS, 0.3% 

triton in PBS for 30 minutes at 37°C for blocking. Cells were then incubated with the primary 

antibody (table 5) diluted in PBS 2% NGS and 0.3 % triton for 90 minutes at 37°C. After 3 washing 

step of 5 min each with PBS neurons were incubated with the appropriate secondary antibody (table 

5) diluted in PBS 2% NGS for 90 min at 37°C. Neurons were washed another 3 times with PBS and 

incubated for 5 min at room temperature with DAPI 1:50000 in PBS and washed another 2 times with 

PBS. A last washing step was done with bi-distilled water and the cover slips were then mounted 

face-down on slides using a drop of Mowiol; The slides were let to dry over-night and could then be 

imaged using an Olympus Axioplan 2 microscope equipped with a CCD (Axiocam HRm) camera and 

the Axiovision 4.7 software. Further processing of images was done using Adobe Photoshop 7.0.  

Antigen Species dilution Company Ord. number 

Primary antibody     

Anti TH Mouse mono 1:1000 Chemicon Millipore ab 152 

Anti AAAD Rabbit poli 1:1000 Abcam ab 49916 

Anti VMAT2 Rabbit poli 1:3000 Abcam ab 81855 

Secondary antibody     

Cy 3 anti rabbit Goat 1:250 DIanova 111-165-006 

Cy 3 anti mouse Goat 1:250 Dianova 115-165-003 
Table 5) Summary of antibodies used for western blot. TH = tyrosine hydroxylase; AADC = aromatic amino acid 
decarboxylase; VMAT-2 = Vesicular monoamine transporter 2; 

3.5 Animal surgery 
All animals operations were performed under grant agreement n° HEALTH-2008-222925 (AM, JT) and 

according to the regulations of the local animal research council, legislation of the State of Lower 

Saxony (Braunschweig) and the European Community Council Directive of 24th November 1986 

(86/609/EEC). 

Both mice and rats were kept in a 12 hours cycle day/night with access to food and drink ab libitum if 

not specified. 

Animals were provided with methamizol (1.5 mg/ml) in the drinking water 3 days prior the operation 

and for an additional week after it. 
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3.5.1 Cranial window implantation in mice 

The procedure is based on the protocol described by Mostany [107]. Female NMRI or C57/Bl6 mice 

between 25 and 35 grams were anesthetized with a mixture of 80-100 mg/kg of ketanest and 5-10 

mg/kg of xilazin. One third of the dosage was given every 30 min to keep the animal sleeping if the 

operation lasted longer. The animal was then shaved and fixed by ear bars and a jaw holder in a 

stereotaxic frame (Kopf instrument); the eyes were protected using bepanthene and the head was 

cleaned and disinfected using 70% ethanol and braunol. The skin covering the skull was removed by 

cutting an oval shape from the imaginary line connecting the eyes and the scalp and exposing the 

whole flat area of the skull between the bregma and the lambda. The connective tissue covering the 

skull was then removed, blood capillaries were cauterized and the bone was scratched with a scalpel 

and dried to help the dental cement to attach. Using a mini-driller (Netzgerät AC/DC Typ NG 2-S: 

Praxxon) with a 0.8 mm tip (Dremel) a hole with ~4 mm diameter was drilled in the left hemisphere 

between the lambda and the bregma. This step is crucial and has to be done carefully to avoid the 

bleeding of the dura mater that will obscure the cranial window. Once the bone was removed the 

area was rinsed with PBS and cotton buds.  

Once cleaned, one to three points of injection were defined; injection through blood vessels was 

avoided. A glass capillary filled with mineral oil, a bubble of air and the virus mix in PBS was mounted 

in a nanoliter 2000 injector coupled with a micro4 smart controller to better monitor the injection. 

One µl of the virus mix was injected in each point with an injection speed of 200 nl/min; the glass 

capillary was left in place for 3 minutes before and after the injection to allow the tissue around the 

point of injection to adapt to the capillary and to absorb the virus. The deepness of injection ranged 

between 0.2 and 0.5 mm depending on the observed reflux that was taking place during the 

injection; these depths correspond to the 3rd-4th layer in mice cortex (figure 6). 

The cortex was then cleaned with PBS and a 5 mm cover slips was placed over the cranial window 

and glued using histoacrylic glue. The glue is toxic for the neurons, so special care was taken to 

ensure that the glue stays only between the glass and the bone and that does not enter in contact 

with the brain. This is achieved by pressing the window with a forceps and adding few µl of glue per 

time from the side of the glass. Once the glass was sealed, the glue was used to cover the rest of the 

skull and the interface between the skull and the skin. After a minute the glue is dry and the exposed 

skull can be covered with dental cement. The animal was then kept in a single animal cage and after 

2 weeks was ready for imaging. 

Figure 6) Cranial window inplantation in mice. a) Overview of the anesthetized animal with a cranial window implanted 
in the OV110 microscope chamber. Details of the cranial window; b) the three points of injection can be identified by 
the red fluorescence dots given by a AAV6 SDsRedWB vector. S = sinapsin promoter, W = WPRE; B = BghpA. 
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To induce the pSwitch system animals were injected intraperitoneally for three consecutive days 

with 20 or 10 mg/kg/day of mifepristone diluted in DMSO at a concentration of 5 mg/ml; imaging 

sessions  were performed the third day after the last injection.  

3.5.2 Two-photon imaging in mice 

For the two-photon (2-p) imaging a custom made microscope kindly provided by the MPI of 

experimental medicine (Göttingen) was used. 

The microscope is equipped with a fs-pulsed titanium-sapphire laser (Chameleon Ultra II; Coherent, 

Glasgow, UK) and the Apochromat 20X/1.0 DIC objective. For excitation the laser was set at 925 nm, 

the emitted light was split with a 560 nm long-pass filter (Carl Zeiss) end the EGFP signal was 

acquired with photomultiplier tube (Hamamatsu, Japan) through a 542 ± 27 nm band pass filter 

(Semrock). 

The animal was anesthetized and was kept asleep with 5% and 2% isofluoran. Using dental cement, a 

metal bar with screw holes was fixed on the right side of the skull. The metal bar was then screwed 

to a custom made frame with a heating system connected to a rectal probe to maintain the 

temperature of the animal at 37°C. 

The areas of injection were identified using an UV light with a 5 X/NA 0.15 objective (Carl Zeiss, Jena, 

Germany); once the area was defined a 20x objective was mounted and a 2-p image was taken. 

Images were acquired as a Z-stack with 2.4 µm distance between consecutive images and the laser 

power was adjusted depending on the depth. The best settings for each animal (laser power, 

deepness and PMT power) were defined at the first imaging session and kept the same for the next 

sessions. Images were then processed using Image J and Imaris. 

3.5.3 OV-100 imaging in mice 

The Olympus OV-100 Small Animal Imaging system (Olympus corp.) microscope was kindly provided 

by Johannes Wessels (nephrology department, Universitätmedizin Göttingen). The microscope is 

equipped with an MT-20 light source (Olympus Biosystem, Planegg, Germany) and a DP70 CCD 

camera (Olympus). Images were captured directly on a personal computer (Fujitsu Siemens 

Computers, Munich, Germany) with the LM 2.8 software (Olympus) 

The animal was anesthetized and was kept asleep with 5% and 2% isofluoran, respectively, in the 

imaging chamber. Illumination and acquisitions settings were defined at the first imaging session for 

each animal and kept the same at the different time points. 

Images were processed using ImageJ [108] and, to quantify the fluorescence, the intensity in the area 

of injection was measured and normalized versus the background; the intensity was then plotted in a 

graph considering as “1” the background fluorescence (figure 7). 
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3.5.4 Transcardial perfusion and processing on mice brains 

One of the most common methods for tissue fixation and subsequent protein visualization by 

immunohistochemistry in tissues in general and in brains in our case is the transcardial perfusion 

using as a fixative agent 4% paraformaldeyde in phosphate buffer solution (PFA, see solutions). This 

method takes advantage of the circulatory system of the animal to wash and then deliver the fixative 

solution throughout the body tissues, with optimal penetration in the brain. The PFA binds to the 

protein and, by cross-linking them, maintains the ultra-structures inside the cells allowing the 

antibody to bind to the antigen and preserving the fluorophores of reporter proteins such EGFP or 

DsRed. 

Animals were sacrificed by CO2 inhalation and immediately fixed in a rack using needles. The 

abdominal cavity was opened and the diaphragm and the ribs were cut to allow the access to the 

thorax cavity.  

A 0,30 x 12mm 30G x 1/2 needle was placed at the end of a tube connected to a peristaltic pump and 

was inserted inside the left ventricle while the right atrium was cut to allow the blood to leave the 

body. Approximately 20 ml of ice-cold, paper-filtered, PBS pH 7.4 was perfused at a speed of 3.6 

ml/min to clean the body from the blood and then, at the same flow rate, about 50-60 ml of PFA 

were perfused. A good indicator of the quality of the perfusion is the rigidity of the tail. 

The brain was then carefully removed from the skull and incubated over-night in a 15 ml falcon tube 

at 4°C in 4% PFA in PBS for post-fixation; PFA was then substituted by 30% sucrose in PBS and the 

brain was left for additional 3-4 days (until the brain sinks in the solution) at 4°C. The brain was then 

dried, cleaned of bones or other contaminants put in a new 15 ml falcon tube and stored at -80°C. 

Brains were then embedded in a cryomatrix and, using a LEICA cryostat (Leica CM 3050 S), 25 µm 

thick coronary sections were cut and directly collected on SuperFrost®Plus microscope slides 

(Menzel-Glaser, Germany) and stored at -20°C; the cutting procedure started approximately 2 mm 

before the points of injection and ended approximately 2 mm after. The slides were then ready for 

immunohistochemistry or DAPI staining (see later). 

3.5.5 Stereotaxic injection of AAV vectors into rat striatum 

Adult female Wistar rats between 220 and 280 g were used for the experiments. Animals were 

anesthetized with a mixture of ketamine (100 mg/kg) and Xilazin (5 mg/kg). Once anesthetized, they 

were shaved and fixed by ear bars and a jaw holder in a stereotaxic frame (kopf instrument). The 

eyes were protected with bephantene and the head was cleaned and disinfected with 70% EtOH and 

braunol. Using a scalpel a longitudinal cut was made in the middle of the head between the 

imaginary line connecting the eyes and the imaginary line connecting the auditory channel exposing 

Figure 7) OV 100 analysis: the same three points of injection can be easily defined when the system is off (picture a), 
induced with 20 mg/kg MF (picture b), and when it goes off again (picture c). The fluorescence can be normalized versus 
the background and plotted considering the background as “1” (picture d). 
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both the Bregma and the Lambda. The connective tissue underlying the skin was gently removed 

with a scalpel, blood capillaries were cauterized and the skull was cleaned with PBS and cotton buds. 

Using the microinjector with a glass capillary filled with mineral oil in the top, a small bubble of air in 

the middle and 1-2 µl of PBS in the bottom, the level of bregma and lambda were measured and the 

skull was set flat by putting the two points at the same height. 

Bregma was taken as a “zero” and the coordinates for the injections were calculated using the 

Praxinos and Watson atlas. Once marked the point (or points) of injection in the skull, a small hole 

was drilled around it using a micro driller with a 0.8 mm tip; in this step is important not to damage 

the dura mater to avoid excess of bleeding. The piece of bone was then removed and the surface of 

the brain was rinsed with PBS.  

Using a nanoliter 2000 injector coupled with a micro4 smart controller to better monitor the 

injection 2 µl of the solution containing the viruses in PBS or the 6 hydroxydopamine (6-OHDA; see 

later) were injected at the desired coordinates with a flow of 500 nl/min. The glass capillary was left 

in place for 4 minutes both before the injection, to allow the tissue to adapt to the capillary, and 

after injection to minimize the reflux. 

The capillary was then retracted, the surface of the brain and the skull rinsed again with PBS and the 

skin was surgically sewn. To minimize pain 10 mg/kg of 20 mg/ml rymadil were injected 

subcutaneously. Animals were kept in individual cages for 5 days and then put in groups of 4-6 

animals/cage. 

Two sets of coordinates were used depending on the experiment; in the experiment for testing the 

system with EGFP as a reporter gene the viruses were injected in the middle of the left striatum and 

the coordinates were (in cm referred to Bregma): anterior +0.12, ventral between -0.5 and -0.6 

(depending on the weight of the animal) and lateral +0.25.  

To provoke the partial lesion of the dopaminergic system two deposits of 6-OHDA per animal were 

performed at the following coordinates (in cm referred to Bregma); 1) anterior +0.05, lateral +0.21, 

and ventral between -0.5 and -0.6 (depending on the weight), and 2) anterior -0.05, lateral +0.38, 

ventral between -0.5 and -0.6 (depending on the weight). Each injection consisted of 2 µl of 2.5 µg/µl 

of 6-OHDA dissolved in saline solution 0.2% ascorbic acid. The viruses intended to restore the lesion 

were injected at the same coordinates. 

To induce the pSwitch system animals received three intraperitoneal injections of mifepristone in 

three consecutive days; in case of EGFP analysis animals were sacrificed the third day after the last 

injection. Mifepristone was diluted in DMSO at a defined concentration in order to obtain a volume 

of injection of 1 ml/kg. 

3.5.6 Transcardial perfusion and processing on rats brains 

As mentioned previously for mice, to visualize fluorescent proteins and for proper IHC animals were 

perfused and fixed using PFA. Rats were sacrificed by CO2 inhalation and were immediately fixed in a 

rack. The abdominal cavity was opened and the diaphragm and ribs were cut in order to expose the 

heart. Holding the heart steadily, a small cut was made and a blunt-ended catheter inserted through 

the left ventricle and atrium into the aorta. The catheter was then secured in position by clamping. 

Two to three hundred ml of ice-cold, paper-filtered, PBS pH 7.4 were pumped with a flow rate of 18 

ml/min. At the beginning of the perfusion the liver was multiply cut to allow a large part of the blood 
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to leave the body. After approximately a minute the abdominal aorta was clamped to restrict the 

perfusion to the upper part of the body and the nose was cut to give an alternative way out for the 

blood and the PBS. 

Once the PBS flowing from the nose didn´t show any trace of blood approximately 250 ml of ice-cold 

4% PFA in PBS were infused. The perfusion efficiency can be tested by checking the rigidity of the 

upper part of the body. 

Once the animal was perfused the head was removed and the brain was carefully removed from the 

skull and left in a 50 ml tube filled with 4% PFA in PBS over night at 4°C for post fixation. The PFA was 

then substituted with 30% sucrose in PBS and the brain was left for additional 4-5 days at 4°C until it 

sank in the solution. The brain was then dried, cleaned of pieces of bones or debris and stored at -

80°C. 

For sectioning, brains were embedded in a cryomatrix and, using a LEICA cryostat, 25 µm thick 

coronary section were cut; depending on the experiment, sections were directly mounted on 

SuperFrost®Plus microscope slides and stored at -20°C or collected as a free floating sections in PBS 

0,2% sodium azid and stored at 4°C (free floating section are better for certain IHC). 

3.5.7 Processing of brain tissue for catecholamines and GDNF quantification 

In order to measure the amount of GDNF, dopamine, DOPAC and HVA brains were not fixed via 

perfusion of PFA. 

Animals were sacrificed by CO2 inhalation, the animal was immediately decapitated and the brain 

extracted. Working on a plate cooled to -80°C and kept on ice, both the left and the right striatum 

were isolated. Both striata were divided in 2 (one part for catecholamines evaluation and one part 

for GDNF analysis) and stored at -80°C in pre-cooled cryovials (micro tube 2 ml; SARSTEDT) for 

further processing. The vials were previously filled with 0.6-0.8 g of Precellys ceramin beads 1,4 mm 

(Peqlab) spheres, weighed in advance to have the tare and weighed again with the piece of brain 

inside in order to calculate the net weight of the piece. 

3.5.7.1 Cathecolamines analysis in rat brains 

Dopamine, Dopac and HVA content in striatum was measured by an HPLC system coupled with an 

electrochemical detector (chapter 3.4.6 “HPLC with cell lysates of primary cortical neurons”); to 

extract catecholamines from the tissue previously isolated and stored at -80°C in cryovials, the 

sample had to be first homogenized. 

Fifty µl/mg tissue of 0.1 M perchloric acid (PCA) were added to the cryovials which were then 

processed in a washing machine (Precellys 24, Peqlab) for 3 cycles of 45 second at max shaking rate. 

The tubes were then centrifuged for one minute at 10.000 rpm (~9300g) at 4°C, the supernatant was 

transferred to a new tube and centrifuged again for 10 minutes at max speed at 4°C. The supernatant 

was then divided in 200 µl aliquots and stored at -20°C until analyzed. Standards were prepared by 

diluting known amount (0, 0.15, 0.30, 1.5M each) of the three catecholamines in 0.1M PCA. 

Similar to the samples prepared from cells, standards and samples were transferred to HPLC vials and 

loaded to the HPLC autosampler which was kept at 6°C and the HPLC software was programmed to 

inject 20 µl of the samples to the column. The flow rate of the mobile phase (HPLC buffer) was 0.4 

ml/min and the run lasted for 22 min. The guard cell was held at 600 mV while the first channel of 
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the analytical was held at 50 mV and the second at 400 mV. To minimize errors, standards were run 

every 12-15 samples and averaged; the amount of the 3 compounds was calculated by integrating 

the areas under the peaks. The retention time for DOPAC was around 4.8 min, for Dopamine 5.7 min 

and for HVA 10.8 min.  

3.5.7.2 GDNF measurement by ELISA 

To measure the amount of GDNF in the striatum an Enzyme-linked immunosorbent assay (ELISA) was 

performed. ELISA is a quantitative test based on the binding of specific antibodies to the target 

antigen. The amount of antigen present in solution is then evaluated by an enzymatic reaction 

performed by an enzyme linked to the last antibody used. With the reaction rate proportional to the 

amount of antigen present in solution, it is possible to evaluate the amount of GDNF in our samples 

of interest through comparison to a calibration curve. 

Samples from rat brains were added to 300-400 µl 0.1M PCA and were then processed in a washing 

machine with 3 cycles of 45 seconds at max shaking rate. Tubes were then centrifuged for one 

minute at 10000 rpm at 4° C, the supernatant was then transferred to a new tube and centrifuged 

again for 10 minutes at max speed at 4°C. The supernatant was then divided in 100 µl aliquots and 

stored at -20°C until analyzed.  

The ELISA was performed following the manufacture´s instruction except for the acid treatment of 

the samples which was avoided. Briefly, 96-wells/plates were coated with Anti-GDNF mAb and 

blocked; samples were then loaded in the plates together with known samples to design a standard 

curve. After a washing step, Anti-Human GDNF pAb was added and the plate was incubated over 

night. Samples underwent another cycle of washing before incubation with Anti-Chicken IgY HRP 

conjugated antibody; after a last washing step the TMB One Solution was added and the colorimetric 

reaction was stopped after 15 min by adding 1N hydrochloric acid. The absorbance at 450 nm was 

recorded using a microplate reader (Tecan RainBow), a standard curve was plotted, and the GDNF 

concentration of the unknown samples was extrapolated. 

3.5.8 Fluorescence microscopy 

3.5.8.1 Preparation of mounted brain slices 

In order to evaluate EGFP or DsRed expression, brain sections were mounted directly on microscope 

slides and were stored at -20°. Slides were dried by incubating them for 30 min at 37°C and 

rehydrated by placing them for few minutes in PBS. Next, slides were incubated for 10 minutes in 

DAPI (1:50.000 in PBS) and washed 3 times with PBS. Cover slips were then mounted to the slides 

using mowiol and left to dry over night at 4°C. 

Brain section were then be imaged using a Zeiss Axioplan 2 microscope equipped with a CCD camera 

and axiovision rel 4.7 software. Images were then optimized using Adobe Photoshop 7.0. 

3.5.8.2 Immunohistochemistry (IHC) on free floating brain slices 

When performing IHC, brain sections were collected as free floating slices which were stored at 4°C 

in PBS 0.1% sodium azid. 

Brain slices were transferred in 12 wells/plates (4-5 slices/well) and washed three times with PBS to 

eliminate the sodium azid. Slices were then incubated in TBS pH 9 at 60°C for different amounts of 

time (see table) for antigen retrieval (AR). After three 5 minutes washing steps with PBS slices were 

incubated with 5% NGS 0.1 % Triton in PBS for blocking. Slices were then incubated with the first 
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antibody diluted in PBS 2% NGS 0.1% Triton. Antibody dilution and incubation conditions varied 

depending on the antigen (table 6). After the washing steps with PBS (3X5 min), the slices were 

incubated for 1 hour at 37°C with the secondary antibody diluted in PBS 2% NGS 0.1% Triton (for 

dilutions see table). Another three 5 minute washing steps were performed before incubating slices 

in DAPI (1:50.000 in PBS) for 10 minutes at RT. Slices were washed again three times in PBS and 

mounted in superfrost microscope slides (Menzel-Glaser, Germany). Slices were left to dry for 30 

minutes, rehydrated by immersing them in PBS for 1 minute, covered with a cover slips and mounted 

using mowiol. Slides were left to dry over-night at 4°C and were then imaged with a Zeiss Axioplan 2 

microscope as previously mentioned. 

Antigen species dilution Incubation 
time 

AR 
time 

Company Ord. 
number 

Primary antibody       

Anti Iba1 Rabbit 
polyclonal 

1:200 o/n @ RT + 
shake 

2h Waxo 
Chem 

019 
19741 

Anti GFAP (for 
immunological reaction) 

Rabbit 
polyclonal 

1:600 o/n @ RT + 
shake 

No AR DAKO Z0334 

Anti GFAP ( for cell type 
identification) 

Rabbit 
polyclonal 

1:200 o/n @ RT + 
shake 

No AR DAKO Z0334 

Anti NeuN Mouse 
monoclonal 

1:200 o/n @ RT + 
shake 

6h Chemicon 
Millipore 

ab 377 

Anti TH Rabbit 
polyclonal 

1:1000 3 days @ 
4°C 

No AR Chemicon 
Millipore 

ab 152 

Anti S100 Rabbit 
polyclonal 

1:500 o/n @ 4°C 2h DAKO Z0311 

Secondary antibody       

Cy 3 anti rabbit Goat 1:250 1 h @ 37°C / Dianova 111-
165-006 

Cy 3 anti mouse Goat 1:250 1 h @ 37°C / Dianova 115-
165-003 

Table 6) List of antibodies used for IHC. Iba1 = microglia specific; GFAP = astrocyte specitic; NeuN = neuronal specific; TH 
= tyrosine hydroxylase (DA neurons); S100 = astrocyte specific; AR = antigen retrieval; RT = room temperature; o/n = over 
night. 

 

3.5.9 Motor functional tests 

Animals with a unilateral lesion of the dopaminergic system show some deficits in the motor skills 

that can be detected by appropriate motor tests. The detected deficits should be proportional to the 

size of the lesion. 

3.5.9.1 Apomorphine induced rotation 

The injection of 6-OHDA in the striatum causes a selective loss of dopaminergic neurons; to 

compensate the lack of dopamine the target neurons overexpress the dopamine receptors becoming 

in this way hypersensitive. The presence of the dopamine agonist apomorphine, hyperstimulates the 

target neurons and induce the animal to rotate contralateral to the lesion. The number of 360° total 

rotation should be proportional to the size of the lesion.  

Apomorphine was diluted in saline solution at 0.5 mg/ml concentration and 1 ml/kg was injected 

intraperitoneally to the rats. Animals were then placed in a 20x30 cm (height x diameter) cylinder 
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which was covered with a transparent lid. Animals were recorded for one hour with a digital camera 

(Hercules ®) connected to a computer with the Webcam Station Evolution (SE) software (Hercules®). 

The number of total turns was counted in a second moment using VLC mediaplayer software and 

results are here presented as turns /hour. 

3.5.9.2 Cylinder test 

The cylinder test takes advantage of the natural curiosity of rats that pushes them to explore the 

environment around them. Once the animal is placed in a cylinder it will start to explore the new 

environment by climbing the wall its front paws. By counting the number of times in which the 

animal put his weight only on the left paw, only on the right one or in both we can estimate if an 

unbalance of dopamine is present in the brain. A healthy rat should use around 20% only the left 

paw, around 20% only the right and around 60% both of them together. If the animal has a lesion in 

the left striatum (as in our case) the left paw, controlled by the right hemisphere will be preferred.  

In our experiment animals were placed in a transparent cylinder 30x17 cm (height x diameter) for 10 

minutes and we recorded them with a Hercules® digital camera and the SE software. To help the 

visualization when the animal´s back was to the camera, two mirrors were placed behind the cylinder 

so that the whole perimeter of the cylinder could be imaged. 

The videos were then analyzed using the VLC software and the data are here showed as left/total 

touches *100. 

3.5.9.3 Corridor test 

It was demonstrated [109] that a 6-OHDA lesion in the striatum affects the olfactory skills of the 

animal. To test this sense the animal is put in a narrow corridor with small dishes in both sides filled 

with food. Animals without olfactory deficit will smell the food from both sides and it will feed from 

the left side 50% of the time and from the right 50% of the time. If the animal has a lesion that affect 

the olfactory perception, it may smell and feed preferentially from one of the dishes. 

 In our experiments a 2 meter long, 7 cm wide and 10 cm height corridor with transparent lateral 

walls and lid was built. two series of 14 dishes 0.5 cm height and with a diameter of 1 cm were placed 

at the two sides of the corridor with a 14 cm distance between one and the next one. The dishes 

were filled with a few mg of crumbled corn Flakes. Rats were trained to the new environment by 

placing them in three consecutive days in the corridor for 10 minutes with crumbled corn Flakes 

spread everywhere. The procedure was repeated once the day before each subsequent test. Before 

the tests animals were starved for 6-8 hours. The test lasted until the animal had completed 20 food 

withdrawals from the dishes. Results are presented as left/total withdrawals * 100. 

3.6 Lineout of the experiments 

3.6.1 pSwitch system 

The first part of the project consisted of optimizing the viral vectors in order to obtain an acceptable 

compromise between the off- and the on-states. The pSwitch system was transferred from the 

invitrogen vectors to AAV vectors suitable for virus production and the EGFP was used as a reporter 

gene to evaluate the two states of the system. All the viruses were first designed in silicio, prepared, 

tested in cell culture when possible (AAV5 does not infect primary cortical neurons in culture), and 

injected in vivo stereotaxically in the rat striatum. Depending on the results, different variables were 

evaluated: 1) the insertion/omission of the transcription elements WPRE and TBs, 2) effect of 
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different polyadenylation sequences, 3) the combination of the two cassettes in only one vector with 

different configurations, 4) the use of different promoters for the pSwitch protein and 5) the 

packaging of the vectors in different serotypes. 

Once obtained the right compromise between the on- and the off-states, a large court of animals was 

injected with the chosen viruses and different groups of animals were sacrificed at different time 

points in order to study the course of the fluorescence over different cycles of activation (figure 8).  

To make most efficient use of animals and study the behavior of the system in vivo some 

combination of viruses were injected in mouse cortex, a cranial window was put over the injection 

point, and the course of the fluorescence was followed using a 2-photons microscope or an OV-100 

microscope. 

Parallel experiments were performed to study the dosage of the inducing drug mifepristone, to study 

the use of different promoters and to study the interactions between different viruses. 

Simultaneously to these experiments a rat model of PD was generated; for this purpose different 

amounts of 6-OHDA (a drug which selectively kills only dopaminergic neurons) were stereotaxically 

injected at different coordinates in the rat striatum with the aim to achieve a 50-60% loss of the 

dopaminergic innervations in the striatum. This experiment was performed by Dr. Yuliya 

Tereschenko. 

Figure 8) Time table of multiple induction experiment. Different group of animals were injected with mifepristone (red 
dots) or with DMSO (white dots) and sacrificed at different time points. The ends of the blue lines represent the time point 
when animal were sacrificed; if the line is curved the system was supposed to be active while with the flat line we expect 
no  EGFP expression. Red lines refer to control groups. MF = mifepristone. 
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Once the lesion model was established and the optimal vectors characterized, the EGFP gene was 

substituted with the gene of the neurotrophic factor GDNF and animals received first the lesion and 

then the viruses. To follow the degeneration/regeneration of the dopaminergic system different 

motor tests, biochemical tests and histological tests were performed (figure 9). 

In this experiment we compared the expression of GDNF in neurons (performed myself) and in 

astrocytes (experiment performed by Dr. Yuliya Tereshchenko). 

3.6.2 Dopamine producing neurons 

As DA neurons account only for a small fraction of the total number of neurons in the rat brain, it is 

not possible to obtain primary culture with more than 10% of DA neurons [110]. In order to study the 

interaction between DA and α-synuclein primary cortical neurons in culture were transduced with 

different combination of viruses expressing the enzymes necessary for DA production. These 

enzymes consist of: TH, AADC, GCH1, and VMAT2. 

Genes were purchased from Imagenes and transferred from shuttle plasmids to AAV vectors suitable 

for viral vector production. Protein expression was then confirmed by IHC and western blots. 

The first part of the project consisted in the use of different combination of vectors and substrates 

for dopamine production in order to obtain an easy to handle reproducible system. The amount of 

dopamine and its metabolites DOPAC and HVA was measured using a HPLC system coupled with an 

electrochemical detector. 

Once achieved the dopamine production, a study on the interaction between α-synuclein and 

dopamine was performed. Experiments include measurements of DA production by HPLC, viability 

tests, and western blots to evaluate aggregation properties of α-syn. 

 

 

 

 

Figure 9) Time-table of the 6-OHDA lesion and restoration experiment. Animals were tested for the motor tests before 
the operation (week -1). Rats were then injected with 6-OHDA (week 0), tested again (week 1-2) and injected with the 4 
different combinations of viruses (week 2). Half of the animals which received the pSwitch system were injected with MF 
at week 5 and 10 while the other half received DMSO. Rats were tested for the three motor tests at week 7, 10, 12 and 
15. Some of the animals in each group were sacrificed at week 6 and 17 in order to measure GDNF level by ELISA and 
Catecholamines concentration by HPLC.  Leftover animals were sacrificed and perfused at week 17 for histological 
analysis. Apo = apomorphine induced rotation; Cyl = cylinder test; Cor = corridor test; 6-OHDA = 6-OHDA lesion; DA = 
dopamine. 
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4 Results 

4.1 Summary 
During this thesis two projects were carried out: the main one consisted of a study of an AAV-based 

gene regulatable system for neurotrophic factor delivery in the CNS and a second one aiming to 

generate dopaminergic-producing neurons from primary cortical neuron in order to assess eventual 

interaction between dopamine and α-syn. 

In the first part of the main project, by using EGFP as a reporter protein, it is shown that by starting 

from a combination of vectors with high background expression in the off-state and, by studying the 

role of isolating elements (TB), transcription control elements (WPRE) and different AAV serotypes, 

we were progressively able to decrease the background expression of the off-state to a level 

considered acceptable. Once established the gene regulatable system, reiterate activations, inducer 

MF dosage, and immunological response in the rat brain due to the system were studied. In a 

following step, EGFP was substituted with GDNF, a 6-OHDA rat model of PD was generated and the 

effect of short pulses of expression of the NF was studied in order to evaluate a possible restorative 

effect. 

In the second project different approaches were pursued in order to obtain dopamine producing 

neurons by transducing primary cortical neurons with AAV´s expressing genes essential for 

catecholamine synthesis. Once a reproducible strategy had been identified, the interaction between 

dopamine and α-synuclein was evaluated showing a tendency of neurons to synthesize and release 

less dopamine in presence of α-synuclein. 

4.2 Generation of a low background regulated transgene expression system 
Different constructs were cloned, tested and modified depending on the results; the aim was to 

achieve a zero level of transgene expression in the off-state and an acceptable level of expression in 

the on-state.  

Two different serotypes have been used: AAV5 and AAV6, which show different transduction 

properties when used in rat striatum; serotype 5 is known to spread more and deliver less viral 

genomes per cell in the striatum comparing to serotype 6 [111]. 

Two different concepts have been followed to adapt the pSwitch system to the AAV vectors: a two 

vector system in which the two cassettes were cloned and packed in two separate vectors and a one 

vector system where the two cassettes where cloned in a single vector. The advantage in adopting 

the two vectors consists in having the possibility to vary the ratio between the two cassettes while 

the use of one vector simplifies the system (figure 10). 

The first group of experiments was performed using viruses packed in the AAV6 serotype while in the 

second group AAV5 serotype was used (in both cases the single and the double vectors system were 

tested). The choice of starting experiments with AAV6 was due to two advantages of this serotype 

over AAV5:  AAV6 production is faster and more efficient compared to AAV5 and in contrast to 

serotype 5, AAV6 transduces neuronal culture with high efficiency. These two properties allowed a 

fast screening of different constructs. Once prepared, AAV6 viruses were first tested in primary 

cortical neurons in culture. The basic protocol consisted of transducing neurons in 24 wells/plates on 

DIV2 (day in vitro 2), inducing EGFP expression with 10 nM total concentration of MF on DIV5 and 

acquiring the pictures of neurons on DIV9. Transduction of primary cortical neurons in culture has 
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been skipped when AAV5 was used as this serotype is not suitable for efficient transduction of 

primary neurons in culture. 

All viruses were essayed in vivo in the striatum of female Wistar rats; for the stereotaxic injections 

viruses were diluted in 2 µl of PBS and the coordinates of injection were always the same (in mm 

Figure 10) Representation of the main used plasmids: AAV = adeno associated virus; ITR = inverted terminal repeat; TB = 

transcription blocker; Syn = S = synapsin promoter; EGFP = enhanced green fluorescence protein; WPRE = Woodchuck 

Hepatitis Virus (WHP) Posttranscriptional Regulatory Element; Gfabc1d = astrocytic promoter; BghpA = B = bovine 

growth hormone poli adenylation sequence; DsRed = red fluorescent protein; GDNF = glial cell derived neurotrophic 

factor; Uptk = Uptk = UAS (Upstream activation sequence) Herpes Simplex Virus thymidine kinase (TK) minimal 

promoter; pSwitch = pSw = pSwitch protein; SV40pA = S = Simian virus 40 poli adenylation sequence; HtH = head to head; 

HtT = head to tail. 
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referring to Bregma): anterior +1,2, lateral +2,5 and ventral between 5 and 6. The MF induction took 

place 2 to 3 weeks post surgery and consisted of one intraperitoneal injection/day of the steroid 

diluted on DMSO for three consecutive days. Animals were perfused the third day after the last MF 

injection, brains were cut and brain slices were mounted on cover slips for DAPI staining. Each group 

mentioned in the following chapters consisted of two to five animals and only a representative 

picture of each group is shown here. Due to the large amount of animals and constructs, evaluation 

of EGFP expression in the off- and in the on-states was performed only qualitatively by observing 

brain sections at the microscope. Brief comments to explain the reason for the following steps are 

added. 

4.2.1 Two vector system in AAV6 

The use of a two vector system allowed us to administrate the two cassettes in a 3:1 

(responsive:inducing) ratio as supported by the description of the system (invitrogen). With the aim 

of studying the effect of transcription blockers (TB) to isolate the inducible promoter from ITR 

promoter activity [112], and of the transcription enhancer element WPRE, four different 

combinations of vectors were tested.  

The pSwitch™ system was purchased from Invitrogen™ and the two cassettes were delivered in two 

separate vector (pSwitch and pGene/V5-his).In the first experiment the two cassettes were 

transferred from these two vectors to two different AAV vectors. In the inducing vector the 

ubiquitous promoter Uptk was kept and, in the responsive vector, the EGFP DNA sequence was 

inserted to serve as a reporter protein; the enhancing transcription sequence WPRE was added and 

one transcription blocker (TB) was placed between the ITR and the UASTATA promoter. The two 

viruses were called AAV6 UptkpSw-B (figure 10-e) and AAV6 1TB-UTEWB (figure 10-i). 

In order to further isolate the UAS TATA promoter from the promoter activity given by ITRs, 2 

additional TBs were cloned between the ITR and the UAS TATA promoter; In addition the BgHpA in 

the inducing plasmid was exchanged with the SV40pA sequence; this was done to prevent possible 

recombinations of the two vectors after cell transduction. The two vectors were called AAV6 Uptk-

pSwS (figure 10-f) and AAV6 3TB-UTEWB (figure 10-j). 

Figure 11) Cortical neurons infected with 3*10
7
 TU/well of the responsive vectors AAV6 1TB UTEWB + 1*10

7
 TU/well of 

the inducing vector AAV6 1TB UptkpSwB (pictures a and b) and the positive control AAV6 SEWB 3*10
7
 TU/well (picture 

c). MF induction can be observed by comparing picture a versus b. Neurons infected with AAV6 SEWB (virus expressing 
EGFP from synapsin promoter constitutively show a much higher level of EGFP expression (picture a versus c). Exp time 
= 1000 ms 
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To study the WPRE effect on EGFP expression level two new responsive vectors lacking the WPRE 

sequence were prepared, named AAV6-1TB-UTEB (figure 10-k) and AAV6-3TB-UTEB (figure 10-l) and 

used in combination with AAV6 Uptk-pSwS (figure 10-f). 

As mentioned, vectors were first tested in vitro by transducing neurons in 24 wells/plates with 1*107 

TU/well of the inducing vector and 3*107 TU/well of the responsive vector. As a positive control 

neurons were infected with 3*107 TU/well of the constitutively EGFP expressing virus AAV6 SEWB 

(figure 10-a). 

As can be seen in figure 11 the activating effect of MF can be clearly seen by comparing induced and 

not induced samples (picture a versus b); in all cases EGFP expression was much lower than what 

observed in the positive control AAV6 SEWB. Once the system was activated, EGFP expression did 

not return back to the basal level of expression.   

In order to highlight possible EGFP expression without MF induction, the pictures in figure 12 were 

acquired with an exposure time of 8500 ms. As can be seen, WPRE increases the EGFP expression in 

the on-state but leads to a low but detectable expression in the off-state (picture a versus b and c 

versus d). No major difference in EGFP expression was noticed when 1 or 3 TBs were used (picture a 

versus c and b versus d). 

In summary we verified that, in vitro, the presence of the enhancing transcription control element 

WPRE increase the EGFP expression both in the MF-induced and in the not induced state, leading to 

background EGFP expression in the off-state. No substantial difference was noticed when the ITR 

promoter activity was isolated with 1 or 3TBs. The pSwitch system was then tested in vivo by 

injecting the viruses stereotaxically in rat striatum. 

 

Figure 12) WPRE effect in primary cortical neurons. All samples were transduced with 1*10
7
 TU/well of AAV6-Uptk-

pSwS + 3*10
7
: AAV6 3TBUTEB (a), 3TB UTEWB (b), 1TB UTEB (c) and 1TB UTEWB (d).Neurons in upper panel were 

induced with MF while neurons in power panel were not. By comparing picture a versus b and picture c versus d the 
WPRE effect in increasing EGFP expression is evident both in induced and not induced conditions. Acquisition time = 
8500 ms. 
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The first in vivo experiment was performed using AAV6 UptkpSw-B (figure 10-e) + AAV6 1TB-UTEWB 

(figure 10-i). The following groups of animals were prepared: 

a. AAV6 -1TB-UTEWB 2.75*108 + AAV6 UptkpSwB 0.9*108 not induced  

b. AAV6 -1TB-UTEWB 2.75*108 + AAV6 UptkpSwB 0.9*108 induced with MF 200 µg/kg 

c. AAV6 -1TB-UTEWB 2.75*108 + AAV6 UptkpSwB 0.9*108 induced with MF 20 mg/kg 

d. AAV6-1TB-UTEWB 2.75*108 (negative control) 

e. AAV6 SEWB 2.75*108 (figure 10-a) (positive control) 

Similar to what observed in cell culture, the EGFP expression in animals that received AAV6 SEWB  

(figure 13 picture e) was much higher compared to all the other groups (figure 13 pictures a-d). The 

expression of the reporter gene is present in all groups and the group that received 20 mg/kg of MF 

(figure 13 picture c) shows only a slightly higher expression of EGFP. No difference can be seen 

between group a (no MF induction), b (200 µg/kg of MF) and d (only responsive vector) suggesting 

that the EGFP expression in the off-state derives from a leakage of the responsive vector promoter in 

absence of activation.  

In conclusion, with this combination of vectors (AAV6 -1TB-UTEWB + AAV6 UptkpSwB), the EGFP 

expression in the off-state is substantial and we could not demonstrate both the inducibility and the 

dose response of the system. The EGFP expression in the not induced state might be due to the 

proximity of the UASTATA promoter to the ITR which are thought to act as a promoter in the wild 

type viruses [112]. To solve this problem 2 additional TBs were added. The lack of a strong difference 

between the on and off states might be due to a too low dosage of MF, thus a higher dosage was 

Figure 13: 25 µm thick brain coronal sections of Wistar rats injected with AAV6 -1TB-UTEWB 2.75*10
8
 + AAV6 UptkpSwB 

0.9*10
8
 (pictures a-c), with only AAV6 -1TB-UTEWB 2.75*10

8
 (picture d) and with AAV6 SEWB 2.75*10

8
 (picture e). No 

difference can be seen between animals without induction (picture a), induced with 200 µg/kg of MF (picture b) and 
injected only with the responsive vector (picture d). Animals induced with 20 mg/kg of MF seem to show a slightly 
higher EGFP expression (picture c). EGFP expression of animals injected with AAV6 SEWB is much higher than all the 
others (picture e). Acquisition time a-d = 5000 ms; e= 600 ms. 
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tested in the subsequent combination of viruses.  In addition in the following experiments the BgHpA 

in the inducing vector was exchanged with the SV40pA sequence; this was done to prevent possible 

recombinations of the two vectors after cell transduction.  

The second combination of viruses tested was AAV6 UptkpSw-S (figure 10-f) + AAV6 3TB UTEWB 

(figure 10-j) and animals were divided into the following groups: 

a. AAV6 -3TB-UTEWB 2.75*108 + AAV6 UptkpSwS 0.9*108 not induced 

b. AAV6 -3TB-UTEWB 2.75*108 + AAV6 UptkpSwS 0.9*108 induced with MF 20 mg/kg 

c. AAV6 -3TB-UTEWB 2.75*108 + AAV6 UptkpSwS 0.9*108 induced with MF 50 mg/kg 

d. AAV6-3TB-UTEWB 2.75*108 (negative control) 

From figure 14 pictures a and d, in which are shown respectively the group which did not receive the 

MF induction and the negative control without inducing vector, it can be seen that the 3TBs were 

able to decrease, but not abolish, the EGFP expression. The effect of MF is evident and can be seen in 

animals that received both 20 (figure 14 picture b) and 50 mg/kg (figure 14 picture c) of the drug. The 

system seems to be dose-responding but not enough animals were tested with the higher dosage as 

it resulted in obvious impairment of animal health deduced by hunched posture and lethargic 

behavior for one day after injection of MF. As a consequence only the 20 mg/kg dosage was used in 

the following experiments. 

Even if decreased, the EGFP expression in the off-state was still clearly detectable and to further 

decrease it, the next step consisted in omitting the transcription enhancing sequence WPRE. In the 

previous experiments we have already demonstrated that the use of 3TBs gives better results 

Figure 14) 25 µm thick brain coronal sections of Wistar rats injected with AAV6 -3TB-UTEWB 2.75*10
8
 + AAV6 UptkpSwS 

0.9*10
8
 (pictures a-c) and only with AAV6 -3TB-UTEWB 2.75*10

8
 (picture d). The activation of the system upon MF 

induction can be assessed by comparing animals that did not received MF (picture a) or that were injected only with the 
responsive vector (picture d) and animals that were induced with 20 mg/kg (picture b) and 50 mg/kg (picture c) of the 
steroid. Background expression is high and a dose response can be deduced by comparing the difference in EGFP 
expression in pictures a (not induced), b (20 mg/kg MF), and c (50 mg/kg MF). 
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compared to the use of only 1TB in respect to lower background expression in the off-state; for this 

reason the vector with only 1TB and without WPRE (AAV6-1TB-UTEB; figure 10-k) was not 

investigated in vivo and only the vector with 3TB and without WPRE AAV6 3TB-UTEB (figure 10-l) 

was used for stereotaxic injection in combination with the inducing vector AAV6 UptkpSwS (figure 

10-f). The following three groups were prepared:   

a. AAV6 -3TB-UTEB 2.75*108 + AAV6 UptkpSwS 0.9*108 not induced with MF 0 mg/kg 

b. AAV6 -3TB-UTEB 2.75*108 + AAV6 UptkpSwS 0.9*108 induced with MF 20 mg/kg 

c. AAV6-3TB-UTEB 2.75*108 (negative control) 

In figure 15 it is shown that the expression level of EGFP in animals that did not receive MF (figure 15 

picture a) or that were injected only with the responsive vector (figure 15 picture c) appears to be 

lower than in the previous experiments (figure 14 picture d). Nevertheless EGFP positive cells are still 

clearly present indicating that the 3TB UAS TATA promoter is not completely silent when not-

induced.  The activation of the pSwitch system can be easily identified by comparing animals that did 

not received the inducing drug and animals which received 20 mg/kg of MF (picture a versus b). 

The best result was obtained by including 3TB and omitting WPRE but, despite the good induction 

upon MF addition, the background level of expression in the off-state is still considerably high. In the 

following experiments we evaluated the possibility of having both cassettes packed in a single vector, 

in this way obtaining a complete isolation of the inducible promoter from the ITRs.  

Figure 15) 25 µm thick brain coronal sections of Wistar rats injected with AAV6 -3TB-UTEB 2.75*10
8
 + AAV6 UptkpSwS 

0.9*10
8
 (picture a, b) and only with AAV6 -3TB-UTEWB 2.75*10

8
 (picture c). The activation of the system upon MF 

induction can be assessed by comparing animals that did not receive MF (picture a) and animals that were induced with 
20 mg/kg (picture b). Background expression without induction remains clearly detectable. Acquisition time = 5000 ms. 
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4.2.2 One vector system in AAV6 

In addition of a further isolation of the inducible promoters from the ITRs, the use of 1 vector instead 

of 2 renders the experiment more controllable. The omission of WPRE allowed us to have the two 

cassettes small enough to fit them together in a unique AAV vector which has a maximum packaging 

size of about 4.8 kb.  

Four different constructs were generated, three with the ubiquitous Uptk promoter, and one with 

the astrocytic Gfabc1d promoter. The two cassettes UptkpSwS and UTEB were inserted in a unique 

vector with two different configurations generating the AAV UptkpSwS-UTEB Head to Tail (HtT), 

where Head to Tail means that the two cassettes are oriented consecutively in the same direction 

with the promoter of the responsive cassette placed close to one ITR (figure 10-o), and AAV 

UptkpSwS-UTEB Head to Head (HtH) where the two promoters were arranged in the middle of the 

vector and the transcription goes in the two opposite directions from the centre to the ITRs of the 

vector (figure 10-n). In order to isolate a possible interaction between the two promoters 1 TB was 

inserted between them generating the AAV UptkpSwS-1TBUTEB HtH (figure 10-p). In the last 

construct the Uptk promoter from AAV UptkpSwS-UTEB HtH was substituted with the astrocytic 

promoter Gfabc1D generating AAV Gfabc1dpSwS-UTEB HtH (figure 10-q). 

As primary cortical neuron cultures contain only a few astrocytes, only the three viruses with the 

ubiquitous promoter were tested in vitro. For these experiments 3*107 TU/well were used and, as a 

positive control, AAV6 SEWB (3*107 TU/well) was added to the culture. 

All three constructs gave similar results (figure 16), showing poor inducibility in the on-state (figure 

16 pictures a and b versus e) and low but detectable EGFP expression in the off-state (figure 16 

picture d). Moreover, induced neurons presented obvious neurite destruction, indicating a possible 

toxicity of this configuration of the system. 

Figure 16) Cortical neurons infected with 3*10
7
 TU/well of the pSwitch system packed in a unique AAV6 vector (pictures 

a-d) and AAV6 SEWB 3*10
7
 TU/well (picture e). The induction of the system upon MF addition can be verified by 

comparing picture a versus c (exp time = 1000 ms) or picture b versus d (exp time = 8500 ms). The level of expression 
upon activation is much lower compared to neurons infected with AAV6 SEWB (picture e). Moreover an apoptotic like 
shape in picture b can be seen. 
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Despite the uncertain results obtained in cell culture, the four viruses were tested in the rat striatum 

and, in order to avoid possible toxic effects, two titres were used: 2.75*108 TU (like in the previous 

experiments), and a lower titre of 1*108 TU.  

The first virus tested was AAV6 UptkpSwS-UTEB HtT (figure 10-o) and the following groups of animals 

were prepared: 

a. AAV6 UptkpSwS-UTEB HtT 2.75*108 not induced  

b. AAV6 UptkpSwS-UTEB HtT 2.75*108 induced with MF 20 mg/kg 

c. AAV6 UptkpSwS-UTEB HtT 1*108 not induced  

d. AAV6 UptkpSwS-UTEB HtT 1*108 induced with MF 20 mg/kg  

Results of this experiment are reported in figure 17. The different EGFP expression level due to the 

amount of virus injected is shown comparing pictures a and b (high titre) versus pictures c and d (low 

titre). In both MF-induced groups the reporter gene expression is fairly low and in both not-induced 

groups EGFP expression without induction can be observed. 

In conclusion AAV6 UptkpSwS-UTEB HtT is not satisfactory for both the induced and not-induced 

conditions. Problems might have arisen from an interaction between the ITR and the responsive 

promoter or an interaction between the two cassettes. 

In order to avoid a possible promoter-ITR interaction, in the following experiment the vector AAV6 

UptkpSwS-UTEB HtH (figure 10-n) with the two promoters placed in the middle of the vector was 

used. Four groups of animals were prepared: 

a. AAV6 UptkpSwS-UTEB HtH 2.75*108 not induced  

b. AAV6 UptkpSwS-UTEB HtH 2.75*108 induced with MF 20 mg/kg 

c. AAV6 UptkpSwS-UTEB HtH 1*108 not induced  

d. AAV6 UptkpSwS-UTEB HtH 1*108 induced with MF 20 mg/kg 

Figure 17) 25 µm thick brain coronal sections of Wistar rats injected with 2.75*10
8
 (pictures a, b) and with 1*10

8
 

(pictures c, d) of AAV6 UptkpSwS-UTEB HtT. The activation of the system upon MF induction can be assessed by 
comparing animals that did not received MF (pictures a and c) and animals that were induced with 20 mg/kg (pictures b 
and d). The EGFP expression, while low everywhere, depends on the titre of virus injected both without (picture a 
versus c) and with (picture b versus d) MF induction. Background expression without induction is low but clearly 
detectable. Acquisition time = 5000 ms. 
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Results of this experiment are reported in figure 18. The different EGFP expression level due to the 

amount of virus injected is shown comparing pictures a and b (high titre) versus pictures c and d (low 

titre). The difference between the on and off-states is marked but the EGFP expression of the system, 

when not induced, is still detectable, although low. 

In conclusion, this virus, in vivo, shows a good induced level of EGFP expression but a still detectable 

EGFP expression in the off-state which might be due to the proximity of the two promoters (Uptk and 

UAS TATA) belonging to the two pSwitch cassettes; to investigate this possibility a transcription 

blocker was inserted between the two cassettes generating AAV6 UptkpSwS-1TB-UTEB (figure 10-p). 

In addition, in all the following experiments, some groups of animals will be induced and sacrificed 

one month later to evaluate the switching off of the system several weeks post induction. The 

following groups were prepared: 

a. AAV6 UptkpSwS-1TBUTEB HtH 2.75*108 not induced  

b. AAV6 UptkpSwS-1TBUTEB HtH 2.75*108 induced with MF 20 mg/kg 

c. AAV6 UptkpSwS-1TBUTEB HtH 2.75*108 induced with MF 20 mg/kg + 1 month 

d. AAV6 UptkpSwS-1TBUTEB HtH 1*108 not induced  

e. AAV6 UptkpSwS-1TBUTEB HtH 1*108 induced with MF 20 mg/kg 

f. AAV6 UptkpSwS-1TBUTEB HtH 1*108 induced with MF 20 mg/kg + 1 month  

Figure 18) 25 µm thick brain coronal sections of Wistar rats injected with 2.75*10
8
 (pictures a, b) and with 1*10

8
 

(pictures c, d) of AAV6 UptkpSwS-UTEB HtH. The activation of the system upon MF induction can be assessed by 
comparing animals that did not received MF (pictures a and c) and animals that were induced with 20 mg/kg (pictures b 
and d). The EGFP expression depends on the titre of virus injected both without (picture a versus c) and with (picture b 
versus d) MF induction. Background expression without induction is high when the higher titre in used (picture a) and is 
still detectable when the lower titre is used (picture d). Acquisition time = 5000 ms. 

 



- 61 - 
 

As with the previous experiments, the EGFP expression is correlated with the amount of virus 

injected; this can be seen by comparing the EGFP level in animals induced with MF (figure 19 picture 

b versus e). In not induced animals a slight leakiness is observed only in animals injected with the 

higher titre of virus (figure 19 picture a); animals injected with the lower titre display an almost 

undetectable EGFP expression (figure 19 picture d). Similar background fluorescence can be observed 

in animals that were sacrificed one month after induction (figure 19 pictures c and f). 

In conclusion these experiments showed that a good compromise between on- and off-states with 

this virus is not achievable. By injecting a small amount of the virus we observe very low background 

of EGFP expression in the off-state but, upon MF-induction only few EGFP expressing neurons are 

observed; in order to obtain a good level of EGFP expression in the on-state one must inject more 

virus, which leads to a detectable EGFP expression in the not-induced state. 

In order to restrict the expression only to astrocytes the ubiquitous promoter Uptk was substituted 

with the astrocytic specific promoter Gfabc1d. The obtained vector was named AAV6-Gfabc1dpSwS-

UTEB (figure 10-q). The following four groups of animals were prepared: 

a. AAV6 Gfabc1dpSwS-UTEB HtH 2.75*108 not induced  

b. AAV6 Gfabc1dpSwS-UTEB HtH 2.75*108 induced with MF 20 mg/kg 

c. AAV6 Gfabc1dpSwS-UTEB HtH 1*108 not induced  

d. AAV6 Gfabc1dpSwS-UTEB HtH 1*108 induced with MF 20 mg/kg 

Abbildung 1 
Figure 19) 25 µm thick brain coronal sections of Wistar rats injected with 2.75*10

8
 (pictures a-c) and with 1*10

8
 (pictures 

d-f) of AAV6 UptkpSwS-1TBUTEB HtH. The activation of the system upon MF induction can be assessed by comparing 
animals that did not received MF (pictures a and d) and animals that were induced with 20 mg/kg (pictures b and e). The 
EGFP expression level depends on the amount of virus injected (picture a versus d and b versus e). As can be seen in 
pictures c and f the expression of the reporter protein returns to basal level in animals sacrificed 1 month after induction. 
The basal level of EGFP expression in animals injected with 1*10

8
 of the virus is almost undetectable while it is present in 

animals injected with 2.75*10
8
 TU. Acquisition time = 5000 ms. 
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In accordance with previous results the level of EGFP expression depends on the amount of virus 

injected; this is shown in figure 20 both by comparing the non-induced animals (figure 20 picture a 

versus c) and the induced ones (figure 20 picture b versus d). The virus shows, with both titres, a 

good level of EGFP expression when the animal is induced and a moderate background when animals 

are not-induced. 

As all the viruses tested show a variable leakage in the not-induced state, the next step consisted on 

packing the vectors in AAV5 capsid instead of AAV6. As previously mentioned AAV5 serotype is 

known to spread more and deliver less genome per cell comparing to AAV6 [111] which should lead 

to a decrease of expression in both states. 

4.2.3 One vector system in AAV5 

As previously explained AAV5 viruses do not transducer efficiently in primary cortical neuron culture 

and, as a consequence, vectors were tested only in vivo. 

Initially, due to the good compromise between the on and the off-states observed with the vectors 

packed in AAV6 viruses, only the two Head to Head vectors without TB were investigated in AAV5 

(AAV UptkpSwS-UTEB HtH (figure 10-n) and AAV5 Gfabc1dpSwS-UTEB HtH (figure 10-q)). 

Animals injected with AAV5 UptkpSwS-UTEB HtH were divided in the following groups: 

a. AAV5 UptkpSwS-UTEB HtH 2.75*108 not induced  

b. AAV5 UptkpSwS-UTEB HtH 2.75*108 induced with MF 20 mg/kg 

c. AAV5 UptkpSwS-UTEB HtH 2.75*108 not induced + 1 month 

d. AAV5 UptkpSwS-UTEB HtH 2.75*108 induced with MF 20 mg/kg + 1 month 

e. AAV5 UptkpSwS-UTEB HtH 1*108 not induced  

f. AAV5 UptkpSwS-UTEB HtH 1*108 induced with MF 20 mg/kg 

g. AAV5 UptkpSwS-UTEB HtH 1*108 not induced + 1 month 

h. AAV5 UptkpSwS-UTEB HtH 1*108 induced with MF 20 mg/kg + 1 month 

Figure 21 shows that animals that received higher amount of virus (figure 21 picture b) show higher 

EGFP expression upon MF induction compared to animals injected with lower amounts of virus 

Figure 20) 25 µm thick brain coronal sections of Wistar rats injected with 2.75*10
8
 (pictures a and b) and with 1*10

8
 

(picture c and d) of AAV6 Gfabc1dpSwS -UTEB HtH. The activation of the system upon MF induction can be assessed by 
comparing animals that did not received MF (pictures a and c) and animals that were induced with 20 mg/kg (pictures b 
and d). The EGFP expression depends on the titre of virus injected both without (picture a versus c) and with (picture b 
versus d) MF induction. Background expression without induction remains high. Acquisition time = 5000 ms. 
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(figure 21 picture f). EGFP expression in the off-state is undetectable in both cases (figure 21 pictures 

a and e). All groups of animals that were sacrificed 1 month after induction (figure 21 pictures c, d, g, 

h) show an undetectable level of EGFP expression demonstrating the ability of the pSwitch system to 

silence the transgene expression once the inducer is metabolized. 

In conclusion AAV5 UptkpSwS-UTEB HtH displays a moderate level of expression when induced, an 

almost undetectable level of expression when non-induced, and a return to an undetectable level of 

EGFP expression 1 month after the drug induction. 

As mentioned above, in order to restrict the expression of the pSwitch system only to astrocytes the 

vector Gfabc1dpSwS-UTEB HtH (figure 10-q) was generated and the following groups of animals were 

prepared: 

a. AAV5 Gfabc1dpSwS-UTEB HtH 2.75*108 not induced  

b. AAV5 Gfabc1dpSwS-UTEB HtH 2.75*108 induced with MF 20 mg/kg 

c. AAV5 Gfabc1dpSwS-UTEB HtH 2.75*108 not induced + 1 month 

d. AAV5 Gfabc1dpSwS-UTEB HtH 2.75*108 induced with MF 20 mg/kg + 1 month 

e. AAV5 Gfabc1dpSwS-UTEB HtH 1*108 not induced  

f. AAV5 Gfabc1dpSwS-UTEB HtH 1*108 induced with MF 20 mg/kg 

g. AAV5 Gfabc1dpSwS-UTEB HtH 1*108 not induced + 1 month 

h. AAV5 Gfabc1dpSwS-UTEB HtH 1*108 induced with MF 20 mg/kg + 1 month 

Figure 21) 25 µm thick brain coronal sections of Wistar rats injected with 2.75*10
8
 (picture a-d) and with 1*10

8
 (pictures 

e-h) of AAV5 UptkpSwS -UTEB HtH. The activation of the system upon MF induction can be assessed by comparing 
animals that did not received MF (pictures a and e) and animals that were induced with 20 mg/kg (pictures b and f). The 
EGFP expression depends on the titre of virus injected and can be verified comparing picture b versus f. The basal level of 
expression is undetectable while it is moderate upon MF induction. In all cases the EGFP expression goes to basal level in 
animals sacrificed one month after induction (pictures c, d, g, h). Acquisition time = 10000 ms. 

 



- 64 - 
 

As can be deduced from figure 22 the EGFP expression of this virus differs completely from the 

previously tested viruses. Indeed the EGFP expression in induced animals appears stronger in animals 

injected with a lower titre of virus compared to rats that received the higher dosage of the vector 

(figure 22 picture b versus f). Moreover, animals that received a high titre of virus, and that were 

sacrificed one month after induction, showed a strong EGFP expression independently of whether 

they had received the MF induction or not (figure 22 pictures c and d); this phenomenon was not 

seen in animals injected with low titre (figure 22 pictures g and h). Due to this unexpected 

performance the virus was not further investigated. 

4.2.4 Two vectors system in AAV5 

The one vector system packed in AAV5 showed the possibility to achieve a very low background 

expression but we could not obtain a substantial EGFP expression upon induction. As a good level of 

transgene expression was obtained with the two vector configuration using AAV6 serotype, in the 

following experiment we tested the performance of the system using a two vector system packed in 

AAV5 serotype virus. As a consequence of the previous experiments performed with AAV6 vectors 

only the responsive vector with 3TB and without WPRE was used (AAV 3TB UTEB figure 10-l). Three 

different promoters were used to express the pSwitch protein in order to evaluate differences in the 

EGFP expression and the possibility to restrict the expression only to defined populations of cells: The 

ubiquitous promoter Uptk (figure 10-f), the astrocytic promoter Gfabc1d (figure 10-g), and the 

neuron specific promoter synapsin (figure 10-h). 

Figure 22) 25 µm thick brain coronal sections of Wistar rats injected with 2.75*10
8
 (pictures a-d) and with 1*10

8
 (pictures 

e-h) of AAV5 Gfabc1dpSwS -UTEB HtH. The EGFP expression is detectable only in animals injected with 1*10
8
 and induced 

with MF (picture f) and in animals injected with 2,75*10
8
 of the virus and sacrificed one month after induction (pictures c 

and d). EGFP expression is undetectable in all other groups indicating an uncontrollable behavior of the system.  
Acquisition time = 10000 ms. 

 



- 65 - 
 

In the first experiment the inducing vector with the ubiquitous promoter Uptk (AAV5 1TB UptkpSwS 

figure 10-f) in combination with the responsive vector AAV5 3TB UTEB (figure 10-l) was used and the 

following groups of animals were prepared: 

a. AAV5 -3TB-UTEB 1*108 + AAV5 UptkpSwS 0.3*108 not induced  

b. AAV5 -3TB-UTEB 1*108 + AAV5 UptkpSwS 0.3*108 induced with MF 20 mg/kg 

c. AAV5 -3TB-UTEB 1*108 + AAV5 UptkpSwS 0.3*108 not induced + 1 month 

d. AAV5 -3TB-UTEB 1*108 + AAV5 UptkpSwS 0.3*108 induced with MF 20 mg/kg + 1 month 

In figure 23 we can observe: 1) the EGFP expression in non-induced animals is almost undetectable 

(picture a); 2) a clear activation of the system upon MF injection (picture a versus b); 3) animals 

sacrificed one month after induction show a decrease of EGFP expression to basal level except for 

some cells (pictures c and d) which still express the reporter protein. 

In conclusion, this combination of viruses shows an acceptable compromise between the on- and the 

off-states but the EGFP expression after one month appears to be not completely silenced.  

In order to restrict the expression of the pSwitch protein only to astrocytes the Uptk promoter in the 

inducing plasmid was substituted with the Gfabc1d promoter (figure 10-g) and the obtained vector 

was injected in the rat striatum together with the AAV 3TB-UTEB (figure 10-l) responsive vector; 

animals were divided in the following groups: 

a. AAV5 -3TB-UTEB 1*108 + AAV5 Gfabc1dpSwS 0.3*108 not induced  

b. AAV5 -3TB-UTEB 1*108 + AAV5 Gfabc1dpSwS 0.3*108 induced with MF 20 mg/kg 

c. AAV5 -3TB-UTEB 1*108 + AAV5 Gfabc1dpSwS 0.3*108 not induced + 1 month 

d. AAV5 -3TB-UTEB 1*108 + AAV5 Gfabc1dpSwS 0.3*108 induced with MF 20 mg/kg + 1 

month 

Figure 23) 25 µm thick brain coronal sections of Wistar rats injected with AAV5 -3TB-UTEB 1*10
8
 + AAV5 UptkpSwS 

0.3*10
8
. The activation of the system upon MF induction can be assessed by comparing animals that did not received MF 

(picture a) and animals that were induced with 20 mg/kg (picture b). Animals sacrificed one month after induction 
(pictures c and d) show a decrease of the EGFP expression to background level except for some cells which still express 
EGFP. Background expression without induction is almost undetectable (picture a). Acquisition time = 10000 ms. 
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Figure 24 shows that the EGFP expression in induced animals is clearly visible (figure 24 picture a 

versus b) while the expression in non induced animals (figure 24 picture a) or in animals that were 

induced and then sacrificed one month later (figure 24 pictures c and d) is almost undetectable.  

In order to assess the specificity of the Gfabc1d promoter three different immunostaining were 

performed; GFAP and S100 to identify astrocytes and NeuN to highlight neurons. As is demonstrated 

in figure 25 the different immunostainings suggest that EGFP positive cells are neurons. Indeed only 

Figure 24) 25 µm thick brain coronal sections of Wistar rats injected with AAV5 -3TB-UTEB 1*10
8
 + AAV5 Gfabc1dpSwS 

0.3*10
8
. The activation of the system upon MF induction can be assessed by comparing animals that did not received MF 

(picture a) and animals that were induced with 20 mg/kg (picture b). Animals sacrificed one month after induction 
(pictures c and d) show a decrease of the EGFP expression to background level in which the presence of the reporter 
protein is almost undetectable. Acquisition time = 10000 ms. 

 

Figure 25) Immunostaining on EGFP positive cells in the pSwitch system. EGFP expressing cells seems to be 
neurons: GFAP staining (panel a) and S100 staining (panel b) do not give double positive cells while the NeuN 
staining (panel c) in overlapping with EGFP. a1, b1, c1 = staining; a2, b2, c2 = EGFP; a3, b3, c3 = merge. 
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the NeuN staining (figure 25 panel c) is co-localizing with EGFP expressing cells while the GFAP (figure 

25 panel a) and the S100 (figure 25 panel b) are not. Thus, in the contest of AAV vectors the 

promoter is far less astrocyte-specific as compared to transgenic mice [101]. 

Despite the lack of specificity this combination of viruses gave the desired compromise between the 

on and the off state. 

In order to restrict the EGFP expression only to neurons, the astrocytic promoter Gfabc1d was 

replaced with the neuronal specific synapsin promoter and the vector AAV SpSwS (figure 10-h) was 

obtained. This vector was used together with the responsive virus AAV5 3TB-UTEB (figure 10-l) and 

two groups of animals were prepared: 

a) AAV5 -3TB-UTEB 1*108 + AAV5 SynpSwS 0.3*108 not induced  

b) AAV5 -3TB-UTEB 1*108 + AAV5 SynpSwS 0.3*108 induced with MF 20 mg/kg 

As shown in figure 26, the expression of EGFP is almost undetectable in not induced animals (figure 

26 picture a) while is clearly visible in induced animals (figure 26 picture b).  

The neuronal specific expression was assessed by IHC using as antigen the neuronal specific marker 

NeuN; the co-localization of EGFP and NeuN is demonstrated in figure 26 picture e.  

This combination of viruses, for neuron specific expression of the transgene, resulted in a good 

compromise between the on- and the off-state and the EGFP expression appears to be cells specific. 

Figure 26) Transduction in rat striatum with AAV5 -3TB-UTEB 1*10
8
 + AAV5 SynpSwS 0.3*10

8
. The inducibility of the 

system is confirmed by picture a (0 mg/Kg MF) versus picture b (20 mg/Kg MF). The specificity of the promoter is verified 
by the NeuN staining (c) which is overlapping with the EGFP expression (d) in the merge picture (e). Acquisition time a 
and b = 10000 ms; Acquisition time c-e = “automatic”. 
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4.2.5 Conclusions 

Two different serotypes and two different concepts in assembling the expression cassettes for the 

pSwitch protein and regulated transgene have been tested. When AAV6 serotype was used a good 

level of EGFP expression was achieved but it was not possible to avoid leakage of the system with 

either the one or the two vector system. The use of the one vector system in the AAV5 vectors 

displayed a very low background expression but a good level of expression upon activation was not 

possible. An acceptable compromise between the on- and the off-state was obtained by packing the 

two pSwitch cassettes in two separate AAV5 vectors; in the following experiment for studying MF 

dosage and reiterate induction of the pSwitch system AAV5 3TB-UTEB (figure 10-l) was used as a 

responsive vector and AAV5 Gfabc1dpSwS (figure 10-g) as inducing vector. The neuronal specific 

inducing vector AAV5 SynpSwS (figure 10-h) was used in the experiments involving GDNF expression. 

4.3 Study on mifepristone (MF) dosage 
According to manufacturer`s specifications, the pSwitch system displays the following properties 

when used in cell culture: a) the truncated progesterone receptor has an affinity for the ligand 

mifepristone of 1*10-9M, b) the system should be fully activated at a steroid concentration of 10 nM, 

and c) the system should be 50% induced when the concentration of MF is 0.1 nM.  

Primary cortical neurons were infected with 1*107 AAV6 UptkpSwS + 3*107 AAV6 3TBUTEB and the 

MF was added at a concentration between 0.01 nM and 100 nM on a 10-log scale. Figure 27 

demonstrates: a) the system displays some activation already at a steroid concentration of 0.01 nM 

(figure 27 picture b); b) the activation window is clearly between 0.01 (figure 27 picture b) and 0.1 

Figure 27) Mifepristone dosage in primary cortical neurons. Neurons were transduced with 1*10
7
 AAV6 UptkpSwS + 

3*10
7
 AAV6 3TB UTEB on DIV3, MF was added on DIV7 and pictures were acquired on DIV12. MF concentration ranged 

from 0 to 100nM in a 10-log scale. The threshold appears to be between 0.01 and 0.1 nM (pictures b and c) while higher 
dosage do not show evident differences (pictures d, e and f) 
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nM (figure 27 picture c); c) no obvious difference in EGFP expression was detected in cells induced 

with a MF concentration between 0.1 and 100 nM (figure 27 pictures c, d, e, f). 

In order to evaluate the MF dose effect when the pSwitch system is used in the rat striatum, four 

groups of animals were injected with 3*107 AAV5 GfABC1DpSwS (figure 10-g) + 1*108 AAV5 3TB 

UTEB (figure 10-l). In previous experiments we had already assessed that the use of a MF dosage of 

50 mg/kg displays some side effects; thus, in this experiment, animals were induced with 20, 10, 5 

and 0 mg/kg of the drug. In figure 28 pictures a-d it is shown that the system is activated with all the 

dosages tested and that the EGFP expression seems dose dependent. To quantify the fluorescence 

we noted that, in a 5x picture, 95% of the pixels are background and only 5% of them represent the 

actual EGFP expression. By averaging the intensity of those pixels we can estimate the amount of 

EGFP expressed. In the graph in picture e the obtained averaged intensity was subtracted with the 

intensity calculated in not induced animals. The increase in fluorescence is highly significant (p< 

0.005 with 2 tailed t-Test) between the dosages of 0-5 and 5-10 while the difference between the 10 

and the 20 mg/kg dosage is not significant (p = 0.87) if analyzed with a 2 tailed t-Test. This difference 

became significant (p < 0.05) if the data are analyzed with a one tail t-Test indicating a tendency of 

increased expression in the 20 mg/kg dosage group. 

4.4 Toxicity of the pSwitch system in cell culture 
To test for toxicity of the viruses and of the inducer MF, cortical neurons were plated in 96 

wells/plates and infected with the viruses. Non infected neurons were used as a control and neurons 

infected with AAV6 SEWB were used as a second control to assess the toxicity due to transduction; 

results are reported in the graph in figure 29. 

In the samples that were not treated with MF, a 20% decrease in viability compared to untreated 

neurons was measured in most of the samples transduced with viruses. As this decrease is present in 

the second control (neurons infected with AAV6 SEWB) as well it can be assumed that it is due to the 

Figure 28) Study of MF dosage in rat striatum; pictures a-d = 25 µm coronal sections. Acquisition time = 10000 ms. 
Animals were injected with 1*10

7
 AAV5 GfABC1DpSwS + 1*10

8
 AAV5 3TB UTEB and were induced with 0 (picture a), 5 

(picture b), 10 (picture c) and 20 (picture d) mg/kg of MF. A dependency of the dosage can be observed. Graph in picture 
e shows the average pixel intensities when only the 5% brightest pixels are quantified. In this graph the value obtained 
with the 0 mg/kg dosage was considered to be zero. The two tailed t-test was applied. Error bars = standard deviation. 
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transduction procedure by itself. In two cases the viability decreases substantially in comparison with 

the second control (neurons infected with AAV6 SEWB): 1) neurons infected with AAV6 Uptk-pSw-S-

UTEB HtH showed a 25% viability in comparison to the control confirming the impression of toxicity 

observed in microscopy analysis (chapter 4.2.2 “One vector system in AAV6”) and 2) neurons 

transduced only with high titre of AAV6 Uptk-pSw-S showed a 40% decrease comparing to non 

infected neurons; the high titre was used in order to match the titre of the one vector system (3*107 

TU/well).This difference might explain the lack of toxicity of the vector when used at a lower amount 

in combination with the different responsive vectors in the two vector system. 

The addition of the inducer MF decreases the viability in all samples (except for the AAV6 Uptk-pSw-

S-UTEB HtH probably because the viability is already really low) indicating a toxic effect of MF or 

EtOH (MF for cell culture is diluted in EtOH) in cell culture.  

4.5 Reiterate activation of the pSwitch system in vivo 
The previous results have shown that the system can be activated upon MF addition and that EGFP 

fluorescence decreases to basal level 1 month after induction. However, the aim of the project was 

to develop a system that can undergo several cycles of activation/deactivation over the time, 

characteristic essential for clinical application. 

Here, using various strategies, we show the ability of the pSwitch system in AAV to fulfill this 

requirement. 

 

Figure 29) Viability test on cortical neurons in culture transduced with different combination of the pSwitch system. 
Viability was normalized with control non-transduced neurons. Neurons viability is strongly impaired when the one 
vector system HtH or when only the inducing vector Uptk used at high titre are used. 3TBUTEB = AAV6 UptkpSwS + 
AAV6 3TB UTEB (1:3); 3TBUTEWB = AAV6 UptkpSwS + AAV6 3TB UTEWB (1:3); 1TBUTEB = AAV6 UptkpSwS + AAV6 1TB 
UTEB (1:3); 1TBUTEWB = AAV6 UptkpSwS + AAV6 1TB UTEwB (1:3); HtH = AAV6 UptkpSwS-UTEB head to head; HtH 1TB 
= AAV6 UptkpSwS-1TBUTEB head to head; HtT = AAV6 UptkpSwS-UTEB head to tail; ptk = AAV6 UptkpSwS (high titre); 
SEWB = AAV6 SEWB (EGFP constitutively expressing virus); Ctrl = control non-treated neurons; MF = mifepristone. Error 
bars = standard deviation. 
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4.5.1 Multiple induction in rat striatum 

To evaluate the reiterate induction of the pSwitch system in the rat striatum, animals were injected 

with 1*108 AAV5 3TB-UTEB (figure 10-l) + 0.3*108 AAV5 Gfabc1dpSwS (figure 10-g). Animals were 

sacrificed at different time points corresponding to when the system was supposed to be on and off 

(figure 30). 

 

Figure 30) Time table of multiple induction experiment. Different group of animals were induced with MF (red dots) or 
with DMSO (white dots) and sacrificed at different time points. The ends of the blue lines represent the time point 
when animal were sacrificed; if the line is curved the system was supposed to be active while with the flat line we 
expect not to have EGFP expression. Red lines refer to control groups. MF = mifepristone. 

Figure 31) Reiterate induction of the pSwitch system. 25 µm thick brain coronal section of Wistar rats injected with 1*10
8
 

AAV5 3TB-UTEB + 0.3*10
8
 AAV5 Gfabc1dpSwS. Referring to the time table in figure 30 pictures b, d, and f represent the 

three inductions, pictures c, e and g represent animals sacrificed 1 month after the last injection and picture a represents 

animals that did not receive any induction. The capacity of the system to undergo to several cycles of induction is 

evident. Acquisition time = 10000 ms. 
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As shown in figure 31 the system responds positively to all three cycles of induction (figure 31 

pictures b, d, f) and the EGFP expression returns to not-induced level (figure 31 picture a) 4 weeks 

after induction (figure 31 pictures c, e, g). No difference in EGFP expression between experimental 

and control groups was detected no loss of induction efficiency of the system over the consecutive 

cycles (data not shown).  

4.5.2 Reiterate imaging in mouse cortex with 2-photon microscopy 

With the aim to study the course of the EGFP expression in the same animal, viruses were injected 

into the mouse cortex, a cranial window was mounted over the injection point and pictures were 

acquired using a 2-photon microscope. As the cranial window is easier to apply to mice than rats, this 

technique was performed only on mice. These experiments were performed in parallel with the 

screening of different vectors and most of the viruses tested in rat striatum were tested in mice as 

well. Here only a representative selection of the results obtained using AAV6 vectors is presented; 

AAV6, due to the higher EGFP expression, was preferred to AAV5 for these experiments.  

As a positive control animals were injected with 1*108 AAV6 Gfabc1dEWB. A 3D reconstruction of a 

Z-stack acquired with the 2-photon microscope is shown in figure 32; the acquisition started on the 

surface of the cortex and went to a depth of about 300 µm. Cell bodies and protrusions can be 

identified.  

In a subsequent experiment mice were injected with 5*107 AAV6 3TBUTEWB + 1*107 AAV6 

UptkpSwS; animals were imaged a first time, injected with 20 mg/kg of MF, imaged a second time 

and then imaged again after 2 weeks. As shown in figure 33 the same area can be easily found over 

the different imaging sessions. The EGFP expression is clearly increases after the MF induction and 

decreases in the last imaging session.  

The fluorescence in the off-state was expected as the imaged animal was injected with AAV6 viruses 

and the responsive vector contained the WPRE element. 

 

Figure 32) 3D reconstruction of a Z-Stack acquired with a 2-photon microscope on an animal injected with AAV6 GfABC1D 

EWB. The stack starts on the surface of the cortex and goes to a depth of ~300 µm 
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4.5.3 Reiterate imaging in mice cortex with the OV-100 microscope 

Due to technical problems and availability of the 2-photon microscope, we decided to couple the 

cranial window technique together with the use of an OV100 microscope. The use of this microscope 

simplified the reiterate imaging at the expense of resolution. 

As already mentioned AAV5 spreads more compared to AAV6; this characteristic, although 

advantageous for our purpose in previous experiments, was problematic for in vivo imaging. When 

injected in the cortex, EGFP expressing AAV5 viruses spread considerably and EGFP fluorescence was 

observed in the whole cranial window area. Due to this sparse expression it was difficult to identify 

the points of injection and compare the EGFP expression with the background fluorescence of the 

tissue. For this reason we only present here results obtained using AAV6 viruses which, spreading 

less, presented EGFP expression only in the proximity of the injection points rendering comparison 

between the transduced area and the background easier. 

Figure 34) EGFP imaging with an OV-100 microscope. The mouse was previously injected in three points with 
1*10

8
 TU AAV6 Gfabc1dpSwS + 3*10

8
 TU AAV& 3TBUTEB. The animal was then anesthetized using isofluoran 

and placed in the imaging chamber (picture a). The difference in fluorescence in the three points of injection ( 
ROI 1, 2 and 3) can be clearly seen when the animal is injected with DMSO (picture c), with 20 (picture d) or with 
10 (picture e). The fluorescence was measured, normalized versus the background and plotted in a graph 
(picture b). MF = mifepristone; ROI = region of interest 

 

Figure 33) 3D reconstructions of the same cortex area of an animal injected with 5*10
7
 AAV6 3TBUTEWB + 1*10

7
 AAV6 

UptkpSwS. Z-Stacks were taken before MF induction (picture a), 3 days after MF induction (picture b) and 3 weeks after 
MF induction (picture c). The same area can be easily identified and the responsiveness of the system to MF is evident. 
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Animals were injected with the viruses and imaged two weeks later to define the proper exposure 

time and camera parameters for each animal (figure 34 picture a). Animals were then induced every 

three weeks with 10 or 20 mg/kg of MF and were imaged before induction and 3 days after 

induction. Images were then processed using ImageJ [108] and the average fluorescence in the area 

of injection was normalized versus the background and plotted in a graph (figure 34 picture b). 

In figure 34 the results obtained from an animal injected in three different points with 1*108 TU 

AAV6 Gfabc1dpSwS (figure 10-g) + 3*108 TU AAV6 3TBUTEB (figure 10-l) are shown. The background 

fluorescence before induction is expected due to the use of AAV6 viruses (figure 34 picture c); the 

mouse was induced three times with 20 mg/kg of MF (figure 34 picture d) and three times with 10 

mg/kg of the drug (figure 34 picture e). The fluorescence in the three regions of interest (highlighted 

in figure 34 picture d) was normalized versus the background and plotted (figure 34 picture b). The 

first cycle of induction appears to be stronger and it is not clear if the decrease of fluorescence is due 

to the lower dosage or to a lower efficiency of the system. 

4.6 Immunological reactions 
A stereotaxic injection of a virus can activate the immune system in three ways: a) there might be a 

mechanical lesion due to the injection capillary, b) there might be an immunological reaction against 

the injected virus by itself or c) against the protein expressed after the transduction (pSwitch protein, 

EGFP, GDNF). 

Figure 35) GFAP staining of injected brains. The scar formation due to the needle tract can be observed in the 2.5x 
pictures of animals perfused 3 weeks after surgery (panel a1) and 15 weeks after surgery (panel a2). Astroglyosis is 
evident in the 5x (panel b1) and 20x (panel c1) pictures taken 3 weeks post operation while it is absent in animals 
sacrificed 15 weeks after surgery (panel b2 and c2). 
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To address these issues, two immunostainings were performed; a GFAP staining to label astrocytes 

and an Iba1 staining to visualize microglial cells. Two time-points were investigated: the first one, 

corresponding to the first MF induction 3 weeks after surgery, and a second one, corresponding to 

the third MF induction performed approximately three months after surgery. 

As can be seen in figure 35 panel a1 and a2 the injection tract is clearly visible at both time-points 

investigated. Astrocytes accumulate in the lesioned region giving rise to a scar that is persistent for at 

least 15 weeks post operation. 

Panels b and c show an area 250-500 µm away from the point of injection where the virus is still able 

to infect cells but the effect of the injection scar should be less visible. Panel b1 shows that 

astroglyosis affects the whole striatum three weeks after surgery but the astroglyosis is no more 

present three months later (figure 35 panel b2). 

In the Iba1 staining (figure 36) no difference can be seen between the injected side and the contra-

lateral side in either the number or shape of the microglia cells suggesting that they do not become 

activated upon AAV-infection.  No difference in the two time-points investigated was observed. 

Taken together these results suggest that the immune system is activated only due to the mechanical 

lesion caused by the needle but the virus and the pSwitch protein appear not to be immunogenic in 

the rodent brain. 

4.7 “Leakiness” of the pSwitch system in the not induced state 
The EGFP expression in the off-state using AAV5 serotype viruses, the 3 transcription blockers, and 

omitting the WPRE, appears much lower compared to the first experiments performed, but it is not 

completely abolished. 

This can be observed when pictures are taken with a long exposure time, high magnification or when 

the brightness and the contrast of the pictures are digitally modified to highlight this leakiness. 

Figure 36) Iba1 staining of injected striatum. No difference in number and shape of microglial cells can be observed 
between the injected side (panels a1 and b1) and the contralateral side (pictures a2 and b2) 
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Figure 37 shows pictures acquired and modified as mentioned. A low, but detectable, EGFP 

expression in the off-state can be seen in both experiments where the synapsin promoter and the 

Gfabc1d promoter were used to express the pSwitch protein in the inducing virus. The leakiness 

appears to be slightly higher in the case of the Gfabc1d promoter. 

4.8 Viral vectors interaction 

4.8.1 Interaction between different serotypes (AAV5 and AAV6) 

Some tests were performed using AAV5 and 6 serotypes together in order to co-transduce the same 

area with both viruses. Previous works [113] claimed that AAV5 and 6 should not compete for the 

same receptors, but our results indicate a high competitiveness which leads to very poor co-infection 

of the same cells with the two different viruses. To demonstrate this observation, animals were 

injected with two combinations of viruses expressing DsRed and EGFP; AAV6 SDsRedWB (figure 10-c) 

+ AAV6 SEWB (figure 10-a) and AAV6 SDsRed + AAV5 SEWB.  

As shown in figure 38 when the same AAV6 serotype is used (figure 38 panel a) the infection of 

neurons is homogeneous and cells are equally transduced with both viruses. When two different 

serotypes (AAV5 and AAV6) were used (figure 38 panel b) a different pattern of infection could be 

observed; the DsRed expressing  AAV6 virus infects neurons around the point of injection while the 

EGFP expressing AAV5 virus, spreads more and has lower affinity for the receptors, infects only 

neurons which are not reached by the AAV6 virus. 

Figure 37) “Leakiness” of the pSwitch system. To highlight the EGFP expression in the off-state the 5x pictures in panels 
a1 and a2 were taken with an exposure time of 30 seconds while the 40x pictures in panels b1 and b2 were taken with an 
exposure time of 5 seconds. In both cases brightness and contrast were strongly increased. MF = mifepristone. 
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4.8.2 Interaction between viruses of the same serotype (AAV5) and different promoters 

The previous experiment showed that the use of two viruses with the same serotype seems not to 

interfere with the pattern of infection. As AAV viruses have a low DNA packaging capacity, co-

transduction with two AAV viruses have been routinely used [114-117]. With this assumption the 

experiment for multiple induction (chapter 4.5.1 “Multiple induction in rat striatum”) was first 

performed using a third virus expressing constitutively the fluorescent protein DsRed under control 

of the synapsin promoter; this third virus was meant to be a reference for finding the point of 

injection and a control for comparing the pSwitch system between different animals. This experiment 

revealed that the addition of a third virus changed the pattern of infection and activation of the 

pSwitch system.  

Figure 39 panel a shows the infection pattern of the pSwitch system together with the Dsred virus 

while in figure 39 panel b shows the infection pattern when only the two viruses of the pSwitch 

system were used. In the first case a decrease of the EGFP expression and in the number of EGFP 

expressing cells can be clearly seen indicating interference in the infection or in the transgene 

expression between the pSwitch system viruses and the DsRed control virus. This decrease in 

efficiency might be due to the competitiveness for the cell viral receptors, rearrangement of the viral 

genome upon transduction, or to competitiveness for the cell transcription machinery due to the 

different activity of the promoters. 

 

Figure 38) Transduction interference between AAV5 and AAV6 viruses. DsRed (pictures a1 and b1), EGFP (pictures a2 and 
b2) and merge (pictures a3 and b3) pictures of mice cortex injected with 1*10

8
  AAV6 SDsRed + 1*10

8
 AAV6 SEWB (panel 

a) and with 1*10
8
  AAV6 SDsRed + 1*10

8
 AAV5 SEWB (panel b). When the same serotype is used the infection is 

overlapping (picture a3), while, when different serotypes are used, the infection is selective (picture b3) and the virus 
with higher affinity for the cell receptors (AAV6) does not allow the virus with lower affinity (AAV5) to enter into the 
cells. AAV5, able to spread more, infects cell around the AAV6 area.  
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4.9 6-OHDA lesion paradigm 
In order to evaluate if the pSwitch system might be suitable for neurotrophic factor expression in 

Parkinson´s disease, there is a need for a rat model of the disease with a partial loss of the 

dopaminergic system in the striatum. The lesion has to be strong enough to show motor deficits that 

can be evaluated by appropriate motor tests but not too harsh, in order to allow the neurotrophic 

factor to act on surviving cells. To generate the lesion, the dopaminergic neuron´s selective toxin 6-

hydroxydopamine (6-OHDA) was used. Motor tests used in this experiment were the cylinder test 

and the apomorphine induced rotation. 

Figure 39) Transduction interference between AAV5 SdsRed and AAV5 pSwitch system. DsRed (pictures a1 and b1), EGFP 
(pictures a2 and b2) and  merge (pictures a3 and b3) pictures of rat striatum injected with 5*10

7
 AAV5 SDsRed +3*10

7
 

AAV5 GfABC1DpSwS + 1*10
8
 AAV5 3TB UTEB (panel a) and 3*10

7
 AAV5 GfABC1DpSwS + 1*10

8
 AAV5 3TB UTEB (panel b). 

The transduction efficiency appears much lower when the DsRed expressing virus is present. 

 

Figure 40) Cylinder test before and after the 6OHDA lesion.  Data are presented as left/total touches. Before the 
operation (week -1) animals use only the left paw approximately 20% of the times as expected. After the lesion 
(week 1 and 2) animals use exclusively the left paw approximately 50% of the times indicating a partial lesion of 
the dopaminergic system in the left striatum. Error bars = standard deviation. p = 2 tailed t test. 
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The study for the right injection coordinates and proper amount of injected toxin was previously 

performed by Dr. Yuliya Tereschenko. A total of 10 µg of 6-OHDA, diluted in 4 µl of PBS 0.2% ascorbic 

acid, were injected in two different points (2 µl/injection) with the following coordinates: bregma 

+0.05, lateral +0.21, depth between -0.5 and -0.6 (depending on the weight), and bregma -0.05, 

lateral +0.38, depth between -0.5 and -0.6 (depending on the weight). 

Animals, which were tested for the two motor tests before surgery, were injected with the toxin and 

tested again twice, one and two weeks post surgery. Rats were then sacrificed and the striata were 

cut and stained with the dopaminergic neurons marker TH. 

In figure 40 data obtained from the cylinder test in which the results are presented as left/total 

touches are reported; before the operation animals used their paws normally (the left one approx. 

20% of the total times) but after the lesion there was a significant increase in the preferential use of 

the left paw to approximately 50% (or a decrease in the use of the right paw) indicating a dysfunction 

in the left striatum. The fact that animals are not exclusively using the left paw indicates that the 

lesion of the dopaminergic system is partial and not total. No difference in the behavior can be 

observed between the first and the second test after the lesion. 

The results obtained from the apomorphine induced rotation test are presented in figure 41 in which 

the observed data are plotted in total turns/hour. The experiment was repeated twice (week 1 and 2) 

but, as can be seen from the table in figure 41 in which the results of every animal are presented 

separately, the test shows a huge variability between animals and in assessing the same animal 

consecutively; indeed some rats never respond to the drug, some respond only one time and some 

respond both times. To overcome this problem, only the best performance of the two tests was 

considered and animals that displayed less than 50 rounds/hour were not used for further analysis. 

By examining data in this way we can see a significant increase in the rotations of animals pre- 

operation (not rotating, week -1) and post operation (approx 280 rotations/hour; best week 1+2). A 

number of rotations between 200 and 300 indicates a partial lesion. This data should be considered 

carefully due to the large variability that they show.  

Figure 41) Apomorphine induced rotations before and after 6-OHDA lesion. Results are presented as total turns/hour. In 
the table are reported the results for every single animal in each session; as the variability was high we decided to 
consider the average of only the best performance out of the two (“average all”) and then to exclude animals that did 
not perform in both tests (“average good”). As shown in the graph the increase in rotation becomes significant only 
when this method is used. Error bars = standard deviation. SD = standard deviation. p = 2 tailed t test. 
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After the test animals were sacrificed and their brains were cut and stained for the dopaminergic 

neuron marker TH. 

As can be seen from figure 42 the contralateral striatum (panel a) appears intact while the lesion in 

the left striatum (panel b) is evident and appears as a lack of TH staining in the striatum. 

Nevertheless it is evident that not all the fibers were destroyed indicating a partial rather than total 

lesion of the dopaminergic system. 

4.10 Regulated GDNF expression in 6-OHDA lesioned rats 

4.10.1 Layout of the experiment 

In order to evaluate if short term expression of GDNF, induced by MF, can restore a partial lesion of 

the dopaminergic system, EGFP was substituted in the responsive vector with GDNF. 

As mentioned above, two parallel experiments were performed in which two different promoters 

were used to express the pSwitch protein in the inducing virus; the Gfabc1d (experiment performed 

by Dr. Yuliya Tereshchenko) and the synapsin promoter (performed in this study). In this section only 

experiments done with the synapsin promoter are presented.  

Figure 42) TH staining of control side (panel a) and lesioned side (panel b) of rats striatum injected with the dopaminergic 
neuron´s toxin 6-OHDA. The striatum in the control side appears intact while the lesioned side shows a lack of TH 
staining indicating a loss of TH positive fibers. TH = tyrosine hydroxylase. 

 



- 81 - 
 

A total number of 107 animals were tested for three motor tests: apomorphine induced rotation, 

cylinder test, and corridor test. Animals that did not perform according to the behavior expected for 

healthy animals (no apomorphine induced rotation, 20 ± 10% left/total paw touches in the cylinder 

test, and 50 ± 20% left/ total food retrieval in the corridor test) were excluded from the experiment 

while the rest were injected with 6-OHDA as previously described. This time-point was considered to 

be week 0. 

Animals were tested again for the three motor tests and animals that showed a too harsh or a too 

mild lesion were excluded. The acceptable range was decided by having at least two out of three 

tests in the following ranges: between 200 and 350 rotations in the apomorphine induced rotation 

test; 50% ± 20% Left / total paw touches in the cylinder test; and 80% ±20% Left / total food retrieval 

in the corridor test. 

On week 2 animals that fulfilled previous criteria were divided into the following 4 groups and a 

double injection at the same coordinates of the 6-OHDA deposits was performed: 

a. AAV5 SpSwS 3*107 + AAV5 UT-GDNF-B 1*108 with MF induction as “treated” animals (24 

animals) 

b. AAV5 SpSwS 3*107 + AAV5 UT-GDNF-B 1*108 without MF induction as “not treated” animals 

(22 animals) 

c. AAV5 S-GDNF-B 1*108 as a positive control (24 animals) 

d. AAV5 SEWB 1*108 as a negative control (21 animals) 

Animals were left to recover for 3 weeks and on week 5 group a received a first cycle of MF induction 

while group b received only the solvent DMSO. 

At week 6 seven animals from group b and d, and 8 animals from group a and c were sacrificed in 

order to measure the level of GDNF by ELISA and the amount of Dopamine, DOPAC and HVA by HPLC. 

Figure 43) Time-table of the 6-OHDA lesion and restoration experiment. Animals were tested for the motor tests before 
the operation (week -1). Rats were then injected with 6-OHDA (week 0), tested again (week 1-2) and injected with the 4 
different combinations of viruses (week 2). Half of the animals which received the pSwitch system were injected with 
MF at week 5 and 10 while the other half received DMSO. Rats were tested for the three motor tests at week 7, 10, 12 
and 15. Some of the animals in each group were sacrificed at week 6 and 17 in order to measure GDNF level by ELISA 
and catecholamines concentration by HPLC.  Leftover animals were sacrificed and perfused at week 17 for histological 
analysis. Apo = apomorphine induced rotation; Cyl = cylinder test; Cor = corridor test; 6-OHDA = 6-OHDA lesion; DA = 
dopamine. 
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Between week 7 and 10 animals were tested twice for the three motor tests; the apomorphine 

induced rotation test was repeated two times each time and only the higher number of rotation was 

considered.  

At week 10 group a received a second MF induction and group b received again DMSO. 

Between week 12 and 15 animals were tested twice for the three motor tests; the apomorphine 

induced rotation test was repeated two times each time and only the higher number of rotation was 

considered. 

At week 17 six animals per group were sacrificed for GDNF and dopamine measurement while the 

residual rats were perfused in order to cut and stain the brains for histological analysis. 

In this chapter each test is presented and discussed separately. 

4.10.2 Apomorphine induced rotation test 

For the apomorphine induced rotation test, animals were injected intraperitoneally with 4 mg/kg of 

apomorphine diluted in saline solution and were placed in a 30 cm diameter cylinder; the total 360° 

rotation in one hour were counted. 

As shown in figure 44 animals were not rotating before the 6-OHDA lesion, while in week 1-2 they 

displayed between 200 and 320 rotations/hour. In the following time points, all groups decreased 

the number of rotations without a significance difference between the 4 groups indicating a possible 

endogenous recovery of the dopaminergic system. In all cases a huge standard deviation can be 

observed which invalidate the significance (except between the first 2 time-points).  

Figure 44) Apomorphine induced rotation presented in 360° total turns/hour. Blue bars refer to animals injected with 
the pSwitch system and induced with MF; red bars refer to animals injected with the pSwitch system and injected with 
DMSO; Green bars refer to animals injected with the virus expressing GDNF constitutively; Violet bar refers to animals 
injected with a EGFP expressing virus. Before 6-OHDA lesion animals do not rotate upon apomorphine injection while 
they all rotate between 220 and 320 turns/hour after the lesion. In the subsequent tests all groups show a decrease in 
rotation without any differences between groups. Error bars = standard deviation. p = 2 tailed t test. 
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4.10.3 Corridor test 

For the corridor test animals were first trained by placing them in the corridor with free available 

corn flakes at least three times before the first test and one time before each of the following tests. 

As can be deduced from the graph in figure 45, at week -1 animals behaved normally, retrieving the 

food equally from both sides. On week 1, after the lesion, animals retrieved the food preferentially 

from the left side (around 80%). In the following time-points we can observe a decrease of the 

average retrieval to 70% left and 30 % right without any significance difference between the groups. 

A big standard deviation can be observed which invalidate the significance except for the first 2 time 

points considered. 

4.10.4 Cylinder test 

In the cylinder test the animal is placed in a transparent cylinder of 24X40 cm (diameter X height) for 

10 min and recorded; the video is then analyzed and the number of times the animal climb the wall 

using only his left, only his right or both front paws is counted. The results are then plotted as 

left/total touches * 100. 

In the graph in figure 46, before the operations, at week -1, animals climbed the wall by using only 

the left paw 20% of the times as expected. 

Figure 45) Corridor test; here data are presented as left/total food retrieval. Blue bars refer to animals injected with 
the pSwitch system and induced with MF; red bars refer to animals injected with the pSwitch system and injected 
with DMSO; Green bars refer to animals injected with the virus expressing GDNF constitutively; Violet bar refers to 
animals injected with a EGFP expressing virus. Before 6-OHDA lesion animals retrieved the food 50% from both side 
while after the lesion they retrieved food more than 80% from the left side, indicating a partial lesion of the left 
dopaminergic system. Error bars = standard deviation. p = 2 tailed t test. 
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After the 6-OHDA lesion it is demonstrated an increase in the use of only the left paw to 

approximately 50% over the total touches; in the following tests a partial recovery in all groups is 

observed without significant differences between them. The large standard deviation invalidates the 

significance except for the first 2 time points considered. 

4.10.5 Dopamine level by HPLC 

At week 6 and 17 animals were sacrificed and part of the striata were treated in order to measure 

the amount of dopamine, DOPAC and HVA. 

As shown in the graphs in figure 47 we can observe a decrease of dopamine in the left striatum, the 

one that was lesioned, comparing with the contralateral side. At week 17 the amount of dopamine 

was further decreased compared to the previous time point without any significance difference in 

the different groups. 

Figure 46) Cylinder test; here data are presented as left/total touches. Blue bars refer to animals injected with the 
pSwitch system and induced with MF; red bars refer to animals injected with the pSwitch system and injected with 
DMSO; Green bars refer to animals injected with the virus expressing GDNF constitutively; Violet bar refers to animals 
injected with a EGFP expressing virus. Before 6-OHDA lesion animals were climbing the wall 20% exclusively with the 
left paw while after the lesion they climbed ~50% only with the left paw, indicating a partial lesion of the left 
dopaminergic system. Error bars = standard deviation. p = 2 tailed t test. 
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4.10.6 GDNF ELISA 

The same brains used for dopamine evaluation were used for GDNF measurement by ELISA.  From 

the data reported in table 7, which refers to the measurements done on animals sacrificed at week 6, 

and table b, which refers to animals sacrificed at week 17 we can draw the following conclusions: a) 

there is a variability in endogenous GDNF expression (measured in the right striatum) but the 

concentration is always between 1 and 4.3 pg/mg tissue; b) an increase in the GDNF level is observed 

at week 6 when the system is activated (54 pg/mg tissue); c) GDNF level in induced animals 

decreases to basal level at week 17; d) the basal level of expression of GDNF in animals injected with 

the pSwitch system is always double that of the contralateral side; e) the GDNF concentration in 

brains injected with the NF constitutively expressing virus was much higher than in experimental 

animals and decreases at week 17; f) no effects on GDNF level can be observed in animals injected 

with the EGFP expressing virus.   

Figure 47) Total dopamine, DOPAC and HVA measured in rat striatum in ng/mg tissue. a) left  striatum measurement at 
week 6; b) contralateral right striatum dopamine content at week 6; c) left  striatum measurement at week 17; d) 
contralateral right striatum dopamine content at week 17. Total dopamine content in the left striatum is decreased 
comparing to the right striatum in all groups at week 6 after the 6-OHDA lesion. No recovery is observed in any group at 
week 17 where the total dopamine content in the left striatum which stays at a level approximately of 50% compared to 
the right striatum. pSw+ = animals injected with AAV5 SpSwS + AAV5 3TB-UT-GDNF-B induced with MF; pSw- = animals 
injected with AAV5 SpSwS + AAV5 3TB-UT-GDNF-B injected with DMSO; GDNF = animals injected with AAV5 S-GDNF WB 
(virus expressing GDNF constitutively under the synapsin promoter); EGFP = animals injected with AAV5 SEWB (virus 
expressing EGFP constitutively under the synapsin promoter). Each group n = 6. Error bars = standard deviation. 
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4.10.7 Immunohistochemistry 

In order to evaluate the size of the lesion and a possible recovery several rats was perfused and 

brains were cut and stained for the dopaminergic neuronal marker TH. The big variability observed in 

the motor behavioral tests was not observed in the IHC. Figure 48 shows pictures acquired from the 

brains of two animals from the group injected with the pSwitch system and induced with MF. The 

two graphs present the results obtained from the motor tests in which the apomorphine test is 

normalized to “1” with rotations measured after the lesion (week 2). The animal in panel a does not 

display any amelioration over time while the animal in panel b shows a progressive recovery over 

time. This difference cannot be clearly seen in brain sections, where the TH staining appears to be 

similar in the two brains. 

Further analysis is needed to evaluate if different areas of the brain and the different behaviors in 

the motor tests can be associated.  

 

 

 

 

 

Table 7) GDNF content in brain striatum measured by ELISA in pg/mg tissue. pSw+ = animals injected with AAV5 SpSwS 
+ AAV5 3TB-UT-GDNF-B induced with MF; pSw- = animals injected with AAV5 SpSwS + AAV5 3TB-UT-GDNF-B injected 
with DMSO; GDNF = animals injected with AAV5 S-GDNF WB (virus expressing GDNF constitutively under the synapsin 
promoter); EGFP = animals injected with AAV5 SEWB (virus expressing EGFP constitutively under the synapsin 
promoter); SD = standard deviation. Each group n = 6. 
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Figure 48) TH staining on striatum of two animals (panels a and b). Comparing panel a1-a5 (lesioned and contra-lateral in 
each panel) and b1-b5 the lesion appears to be comparable. In panel a6 and b6 results from motor tests are presented; 
blue = corridor test (left/total food retrieval); red = cylinder test (left/total touches; violet = apomorphine induced 
rotation (rotation / rotation post lesion at week 2). Animal a show a recovery in the motor behavior with the values of 
the three tests that returns to pre-lesion value; animal b, contrarily, do not show significant amelioration and the values 
of the three tests remain at the post lesion level. 
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4.11 Dopamine production in cultures of cortical neurons 
Essential genes for dopamine synthesis are tyrosine hydroxylase (TH), which converts L-tyrosine to L-

dopa, GTP cyclohydrolase 1 (GCH-1), which is the rate limiting enzyme for the synthesis of the TH 

essential co-factor tetrahydrobiopterine (BH4), aromatic amino acid decarboxylase (AADC), which 

converts L-dopa to dopamine, and vesicular monoamine transporter 2 (VMAT-2) which is essential 

for storing dopamine in vesicles. These genes, normally not expressed in cortical neurons, were 

cloned and packed in AAV6 viruses and used in different combination in primary cortical neurons 

culture in order to generate dopamine-producing cells.   

Once a reproducible dopamine production was achieved, the interaction between α-synuclein and 

dopamine was tested in order to assess a possible interaction between these two entities. 

4.11.1 Preliminary experiments 

Different trials had been carried out before being able to achieve a reproducible dopamine 

production from neurons. In this chapter a brief summary of these strategies is reported. 

In the attempt to reduce the number of viruses needed for transduction, an IRES (Internal Ribosome 

Entry Site) element was used to express two genes from the same vector. Analysis performed using 

EGFP cloned downstream of IRES showed a really low efficiency of IRES (data not show) and this 

approach was abandoned. 

A first attempt to produce dopamine from neurons involved a simultaneous transduction with TH, 

AADC and VMAT-2; to promote the production of the catecholamine both the precursor L-Tyrosine 

and the essential co-factor BH4 were added but no dopamine was detected by HPLC.  

The BH4 co-factor is unstable in culturing media and, in order to allow neurons to synthesize it, a 

virus expressing GCH-1 was included in the experiment and dopamine production was promoted by 

adding L-Tyrosine but the trial was again unsuccessful (data not shown). 

Finally a stable and reproducible dopamine production was achieved by transducing neurons only 

with AADC or with AADC + VMAT-2 and by adding in the culturing media the dopamine precursor L-

dopa (figure 51).  

4.11.2 Protein expression upon viral transduction 

To verify gene expression neurons were infected with the different viruses, fixed with PFA and 

stained with the corresponding antibody. 

As shown in figure 49 the TH and the AADC staining are specific and present only in infected neurons; 

concerning the VMAT-2 staining, a difference between infected and non infected neurons can be 

observed but the antibody used is clearly staining non-transduced neurons as well. Different 

antibodies and blocking procedures had been tested but a clearer staining could not be achieved 

indicating an unspecificyty of the antibody or an endogenous expression of VMAT-2 in non-

transduced neuron. 
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For further confirmation of protein expression western blots on lysates of infected and controls 

neurons were performed. As shown in figure 50, a clear and specific band can be detected for TH 

while, in the case of AADC, a weak band is present in the negative control. Western blot for VMAT 2 

showed only unspecific signals present both in experimental neurons and in negative control; 

different antibodies and blocking protocols were used but it was not possible to obtain a clearer 

result indicating, like in the IHC, or an unspecificity of the antibody or an endogenous expression of 

VMAT-2 in non transduced neurons.  

Figure 49) Pictures of IHC on dopamine producing neurons. Top pictures refer to non transduced control while bottom 

pictures refer to infected neurons. TH (picture a) and AADC (picture b) staining are specific while VMAT-2 staining 

(picture c) show staining both in the positive and negative control indicating or an unspecificity of the antibody or the 

presence of the protein endogenously. TH = tyrosine hydroxylase; AADC = aromatic amino acid decarboxylase; VMAT-2 = 

vesicular monoamine transporter 2; Ctrl = control. 

Figure 50) Western blot on neurons infected with viruses expressing proteins for DA production. TH and AADC 
staining are positive while VMAT-2 is unspecific. TH = tyrosine hydroxylase. AADC = aromatic amino acid 
decarboxylase. VMAT = Vesicular monoamine transporter 2. Ctrl = controls. Marker = NEB ColorPlus Prestained 
Protein Marker, Broad Range (10 -230 kDa).  
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4.11.3 Dopamine level by HPLC  

A reproducible dopamine production from transduced primary cortical neurons could be achieved by 

infecting cells with viruses expressing AADC or AADC + VMAT-2 and using L-dopa to promote the 

production of the catecholamine. The amount of dopamine and its metabolites DOPAC and HVA was 

measured using an HPLC system coupled with an electrochemical detector. Both the released and 

intracellular stored fractions were assessed. Different parameters were evaluated in the 

experiments: I) presence/absence of VMAT-2, II) amount of viruses, III) amount and time of L-dopa 

incubation, and IV) culturing media. Four different groups were prepared in triplicate:  

A) AADC + VMAT-2 high titre in RB (releasing buffer) 

B) Only AADC high titre in RB 

C) AADC + VMAT-2 low titre in RB  

D) AADC + VMAT-2 high titre in HCN media 

Releasing Buffer (RB) consists of a high potassium buffer that should favor the release of dopamine 

and protect it from degradation. HCN media was exchanged with RB before the L-dopa addition. 

Influence of each parameter is show in the two graphs in figure 51 (intracellular fraction) and figure 

52 (extracellular fraction). If not specified, data are considered significant when a 2 tailed t-Test was 

< 0.05. 

I. To evaluate the effect of VMAT-2 neurons were infected with both AADC and VMAT-2 or only 

with AADC. Both the internal fraction of dopamine (Figure 51 Box A versus B) and the 

released one (figure 52 box A versus B) are significantly higher in neurons expressing VMAT-2 

when they were incubated with 10 µM of L-dopa for 2 and 4 hours.  

II. The influence on DA production depends significantly, for the 2h incubation time, on the 

amount of used viruses; this is verified by comparing box A (2.5*107 of each virus) and box B 

(1*107 of each virus) both in the intracellular fraction (figure 51) and in the released fraction 

(figure 52). If the 4 hours incubation time is considered, a significant difference in favor of 

the neurons infected with the higher amount of viruses is obtained with a 1 tail t-Test 

indicating a tendency of higher production when higher amount of viruses are used. 

III. In this experiment two different concentrations and two different incubation times of L-dopa 

were tested: 5 and 10 µM concentration for 2h, and 2 and 4 hours incubation with 10µM 

concentration of L-dopa. No significant differences were observed for the intracellular 

fraction of the neurotransmitter (figure 51 box A, B, C, D) indicating a saturation of the 

system in all conditions. Contrarily, a significant difference in the released fraction of 

dopamine was observed depending on both time of incubation and amount of L-dopa used 

(figure 52 A, B, C, D). The increase of both time of incubation and amount of L-dopa in the 

media lead to an increase of released dopamine. 
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IV. The two different incubation media considered do not affect the intracellular storage 

capacity of dopamine (figure 51 Box A versus D) while, observing the released fraction of the 

neurotransmitter, we can notice a significant decrease in the release when neurons were 

incubated in HCN media (figure 52 Box A versus D). 

In order to verify the repetitiveness of the dopamine production transduced neurons underwent 

three cycles of L-dopa induction. Cultured media was analyzed and changed before the L-dopa 

addition. After 4 hour incubation media was analyzed again (time-table in figure 53). As can be noted 

in the graph in figure 53 neurons can synthesize DA repetitively but a decrease in production is 

observed. Other experiments, not reported here, indicate that this decrease is likely due to a lower 

viability of the culture caused mainly by the media changing; cultured media indeed is normally only 

refreshed (200 µl discarded and 300 µl of fresh media) to avoid excess of stress to neurons while in 

this experiment the whole media was changed before the addition of L-dopa.  

Figure 51) Dopamine, DOPAC and HVA measured in the intracellular fraction of dopamine-producing neurons measured by 
HPLC. * = 2 tails t-test < 0.05. Error bars = standard deviation.  

Figure 52) Dopamine, DOPAC and HVA concentration in the extracellular fraction of dopamine-producing neurons 
measured by HPLC. * = 2 tails t-test < 0.05. Error bars = standard deviation. 
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4.11.4 Doapmine and α-synuclein interaction 

In order to verify possible interactions between dopamine and α-synuclein neurons were transduced 

with three different AAV6 vectors expressing α-syn under the control of the synapsin promoter 

(AAV6 S-α-synWB), AADC and VMAT-2. In positive controls the EGFP expressing virus AAV6 SEWB 

was used instead of AAV6 S-α-synWB. Three different experiments were performed:  a) the 

dopamine production and metabolism was assessed by HPLC, b) the viability of neurons in presence 

of dopamine and α-syn was measured by BCA viability test, and c) aggregation properties of α-

synuclein were evaluated by western blot. 

a) With the intent of evaluate an influence of α-syn in DA production and release, neurons were 

incubated for 4 and 24 hours with 10 µM L-dopa. No significant differences were observed 

when data were analyzed with a two tailed t-Test but, if a one tail t-Test is adopted, a 

significant difference can be observed in both intracellular and released fraction of dopamine 

after 24 hours incubation indicating a tendency of neurons to store and release less 

dopamine in presence of α-syn (figure 54).  

Figure 54) Dopamine, DOPAC, HVA measured by HPLC in the intra and extracellular fraction of dopamine-producing neurons 
co-transduced with α-synuclein (α-syn) or EGFP expressing viruses. ** = 1 tail t-test < 0.05. Error bars = standard deviation. 

Figure 53) Reiterate dopamine production measured by HPLC in dopamine-producing neurons. 10 µM of L-dopa was added, 
the dopamine production was measured 4h later and the whole media was exchanged. After 20h no dopamine was 
detected in the media, 10µM L-dopa was added, dopamine concentration was measured after 4 h (24h total time) and the 
whole media was exchanged. After 20h (44h total) no dopamine was detected, 10 µM L-dopa was added and dopamine 
concentration was measured after 4 h (48h total time). Error bars = standard deviation. 
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b) To evaluate if the presence of dopamine, α-syn, and the combination of the two has an 

immediate effect on neuron viability a BCA viability test was performed 48h after L-dopa 

incubation using as a positive control both untreated cells and neurons transduced with 

AAV6 SEWB. No significant difference could be observed in any case (figure 55). 

c) Unpublished data have shown that, in a cell-free system in vitro, the presence of dopamine 

trigger α-syn aggregation (figure 56, picture a). In order to verify if this can be reproduced in 

primary cortical neurons, transduced cells (AADC + VMAT-2 + α-syn) were incubated for 4, 48 

and 96 hours with 10 µM L-dopa. Differently from the cell-free system no increase in 

aggregation of α-syn was noticed both in native (figure 56 picture b) and SDS-Western blot 

(figure 56 picture c).  

 

 

Figure 55) BCA viability test performed of primary cortical neurons transducer with viruses expressing the listed 
genes. α-syn = α-synuclein; EGFP = Ctrl = non-transduced control. Error bars = standard deviation. 

 

Figure 56) Western blot for α-syn performed at different incubation times with dopamine. a) α-synuclein was incubated 
in vitro in a cell-free system with dopamine; b) native western blot performed on cell lysates of dopamine producing 
neurons co-transduced with a α-synuclein expressing virus; c) SDS western blot performed on cell lysates of dopamine 
producing neurons co-transduced with a α-synuclein expressing virus. Time in b and c refer to the L-dopa incubation. M = 
broad range protein marker. α-syn aggragation can be observed in the cell-free system upon dopamine addition while no 
aggregation is observed in cultured neurons.  a-syn = α-synuclein. 
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5 Discussion 

5.1 Development of a AAV vector based regulatable system for use in the 

CNS 
Gene therapy has been shown to be a promising tool for treating diseases currently untreatable with 

conventional medicine but its introduction into the clinic has been considerably delayed due to 

safety concerns. The application of viral-based vectors implies the insertion in the target cells of 

foreign DNA which will be expressed by the host cell transcription and translation systems. Different 

from traditional medicine, in cases of unwanted side effects, the treatment cannot be reversed. This 

drawback is exacerbated in the CNS where target cells consist of post-mitotic cells like neurons. One 

gene therapy approach for PD treatment consists of the overexpression of NFs such neurturin [38]or 

GDNF [37] in order to promote the DA neuron survival; the positive effects of GDNF on DA neuron 

survival have been demonstrated [27] but  side effects due to overexpression of the NF or mis-

targeting of the delivery vector, such as weight loss [40], aberrant sprouting of neurons [41] and TH 

downregulation [42] have been observed in animal models. Moreover, side effect may be due to the 

overexpression of neurturin or viral-mis-targeting, has been observed in a phase I/II clinical trial 

where a neurturin AAV2 expressing virus was injected bilaterally in the putamen of PD patients [39]. 

As a consequence only a few clinical trials have been performed in this direction and only advanced 

patients that did not show any benefits from traditional treatments were involved. This might have 

lead to a partial failure when NFs were administrated as not enough surviving target cells were 

present. 

In order to increase the safety profile of gene therapy, a regulated protein expression tool to control 

the transgene expression in case of unwanted side effects would be recommendable. In this project 

we explored, for the first time, the possibility to combine a mifepristone-based gene regulatable 

system together with the AAV delivery tool for application in the CNS. 

 To promote its use in clinical trials, an optimal system should have the following features [50, 51]: 

 Ideal “zero” basal level of expression in the non induced state, or at least, a level without 

biological effects 

 Biologically relevant expression in the induced state 

 Constituted by elements of human origin  

 Positively induced 

 Demonstrated safety profile of the inducer in human 

 Dose responsiveness 

 Fast kinetics 

 Repetitiveness of induction  

 No pleiotropic effects 

 Not affecting endogenous gene expression  

 be region or cell specific 

One of the major problems shared by regulatable gene promoter systems is the difficulty to achieve a 

“zero” level of transgene expression in the off-state while maintaining a biologically relevant level of 

transgene expression in the on-state. In this project the effects on the transgene expression level of 

various elements (isolators, transcriptional control elements, promoters, cassettes configuration, 

serotypes of AAV) have been studied; the combinations of constructs that gave the best compromise 
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between a low level of transgene (EGFP and GDNF) expression in the off-state and a high expression 

of the same proteins in the on-state consisted of AAV5 Gfabc1d pSwS + AAV5 3TBUTEB (figure 10 g+l) 

or AAV5 SpSwS + AAV5 3TBUTEB (figure 10 h+l). Despite the omission of the enhancing transcription 

element WPRE, the inclusion of 3TBs to isolate the ITR’s effect, and the employment of AAV5 

serotype, which delivers less viral genomes per cell comparing to AAV6, a low but detectable level of 

expression in the off-state was observed both when EGFP and GDNF were expressed. By measuring 

GDNF concentration in the striatum by ELISA, a ~2 fold increase of protein concentration in the off-

state has been observed in the injected hemisphere compared to the endogenous expression 

measured in the contra-lateral hemisphere. Upon induction of the system with MF, an 18 fold 

overexpression of GDNF over the endogenous level was measured. Hadaczek et al., studied a 

ramamycin-based regulatable system in AAV vectors for GDNF expression in rat brain and a ratio of 

about 50:1 in protein concentration between the off- and the on-states was observed by ELISA. 

Despite the high induction ratio, it has to be noted that the GDNF expression level in the off-state 

resulted to be 20 folds higher comparing to the endogenous level [63]. Our data appear to be similar 

to what was observed using the tet-on system in AAV or LV where the level of GDNF expression in 

the off-state was 1 to 2 fold higher compared to the endogenous level while a 7 to 12 fold 

overexpression of GDNF was measured in the on-state. [55-58]. Contrarily, the tet-off system 

appears superior both for induction capacity, displaying a 500 to 1000 fold induction between the 

off- and the on-states, and for basal level of expression in the off-state which could not be 

distinguished from the endogenous GDNF expression. Nevertheless it has to be noted that, in order 

to maintain such a low level of GDNF expression in the off-state, a high dosage (500 mg/kg diet) of 

doxycycline had to be provided to the animals [54]. The pSwitch system activity in the brain, 

mediated by a HSV viral vector, has been evaluated only in one study performed by Oligino et al. In 

this study Lac Z was used as a reporter gene and, similar to our result with EGFP, a low but detectable 

level of expression in the non induced state could be measured while a much higher ratio (~150 fold) 

of protein expression between the off- and the on-state was observed upon MF administration. [90]. 

This higher induction rate might be due to the use of only one HSV vector comparing to our 2 vectors 

co-transduction protocol. If only one vector is used 100% of infected cells contain the two cassettes 

while, if two separated vectors are used, only co-transduced cells can overexpress the GOI upon 

induction, thus lowering the transgene expression in the on-state. In this project several one vector 

systems have been tested but they resulted in a much higher transgene expression in the off-state 

and, as a consequence, they were not investigated further. Moreover the system used by Oligino was 

an older version of the pSwitch system which included the Herpes virus protein VP16 activation 

domain instead of the human p65 activation domain rendering the system slightly different and not 

fully comparable.   

In this study it has been observed a 2 fold GDNF overexpression in the off-state and an 18 folds 

overexpression of the same protein in the on-state (levels normalized with the endogenous GDNF 

expression). In order to evaluate if both these levels of GDNF expression display a relevant biological 

effect we tested (results not presented here) the ability of the pSwitch system in the on- and if the 

off-states to protect the dopaminergic fibers in the striatum from the effect of the DA neuron specific 

toxin 6-OHDA (Adeno-associated virus mediated, mifepristone-regulated neurotrophic factor 

expression in the brain; article submitted).  
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Four groups of animals were prepared: 

a) AAV5 Gfabc1dpSwS + AAV5 3TB UT-GDNF-B induced with MF 

b) AAV5 Gfabc1dpSwS + AAV5 3TB UT-GDNF-B  not induced 

c) AAV5 Gfabc1d GDNF WB (GDNF constitutively expressed by the Gfabc1d promoter; positive 

control) 

d) AAV5 Gfabc1dpSwS + AAV5 3TB UTEB induced with MF (EGFP expressing system upon MF 

induction; negative control) 

Viruses were injected in rat striatum and the MF induction was performed 5 days prior 6-OHDA 

injection in order to overlap the toxin-induced lesion with the GDNF expression in the pSwitch 

induced group. Results showed that, while the induced group displayed protection from the toxin, 

not-induced group exhibited a lesion comparable to the negative control group expressing EGFP 

instead of GDNF; the lesion was verified by apomorphine induced rotation, cylinder test, and IHC. 

This proof of principle experiment demonstrated that a 2 folds GDNF overexpression in the off-state 

do not have relevant biological effect for this paradigm while the GDNF expression in the on-state do 

have a biological effect. Importantly no weight loss and no TH downregulation has been observed in 

both groups of animals injected with the pSwitch system (induced and not induced). Similar results in 

regard of the absence of side effects have been reported by Manfredsson et al. when the tet-off 

system was used for controlling the GDNF expression [54]. 

While a good immunological toleration of AAV vectors as delivery tool in the CNS has been assessed 

in various clinical trials [118, 119], the beneficial effect of inclusion of a regulatable system for 

controllable gene expression is a topic of debate [120, 121]; immunological reaction against the 

regulating machinery might indeed lead to a failure of the treatment. In order to address this aspect 

several studies on the most widely used tet-on system have been performed. The tet-on system has 

shown no immune reaction over a period of 5 years when expressed by using an AAV vector as a 

delivery tool in the retina of non-human primates [59]. One the contrary, a strong humoral and 

cellular mediate immune response resulting in rapid loss of tet-mediated control of transgene 

expression was observed after intramuscular injection in non-human primates of a adenoviral vector 

expressing the tet-on system[60]. Importantly, this immune response could not be prevented by 

engineering the bacterial elements of the tet system [122]. 

In this project we propose the employment of the pSwitch system that, differently from the tet-on 

and tet-off systems is mainly constituted by human elements (excluding the GAL4 DBD) which might 

lower the immunogenicity of the system. In our experiment we assessed that the observed 

astroglyosis was probably due to the injection needle and that microglia were not activated in 

response of the expression of the pSwitch protein. These results cannot be considered definitive but 

indicate that it is reasonable to further investigate the immunogenic properties of the system in non-

human primates.  

An important feature for promoting the use of regulatable systems in human patient is that the 

administration of the inducing molecule has to be safe and well tolerated. Moreover it is highly 

desirable that the inducing drug has a positive effect by activating the expression of the protein 

rather than repress it. Due to this last requirement, the tet-off system, which is negatively regulated 

and need continuous administration of the inducer for the silencing of the transgene expression, is 

not advisable for use in humans. The pSwitch system, in order to induce the gene expression, makes 
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use of the already FDA (Food and Drug Administration) approved steroid mifepristone. Mifepristone 

is a synthetic 19-norsteroid with progesterone and glucocorticoid antagonist activity; this compound 

is used as a component for medical termination of pregnancy (~10mg/kg; 600 mg tablet; body weight 

considered = 60 kg), for contraception (~ 0,02-0,2 mg/kg), for treatment of breast and ovarian cancer 

(~1 mg/kg/day), for HIV treatment (Clinical trial phase I/II 1-4 mg/kg) [78], and for major depression 

(10 mg/kg) [79]. In general, MF can be used in any situation where a blockage of the glucorticoid 

activity is desired which is achieved with a dosage > 4 mg/kg of MF [123]. Importantly, MF 

administration had been proven to be safe over several months of treatment with only few minor 

adverse side effects such fatigue and rush but no disturbance of the immune parameters [124]. In 

the pSwitch system MF acts as an agonist binding to the hPR-LBD of the pSwitch protein and 

promoting its dimerization and the subsequent transcription of the GOI [69]. 

Similarly to the dosage used by Oligino et al. (25 mg/kg IP for two days), in this project the 

administrated MF dosage consisted of 20 mg/kg/day injected intraperitoneally in three consecutive 

days; by converting this dosage using the FDA approved normalization to body surface area from rats 

to human it results that 20 mg/kg in rats corresponds to 3.2 mg/kg in human, dosage well below to 

what has already been showed to be safe. Moreover, we have demonstrated that the EGFP 

expression can be induced with dosages of 10 and 5 mg/kg in rats which correspond to 1.6 and 0.8 

mg/kg in human. As MF is orally available for use in human, further experiments to evaluate minimal 

dosage and ideal route of administration of the drug need to be performed in rodents and non-

human primates.  

The kinetic of expression is another important aspect of an inducible gene expression system which 

should, ideally, display a fast response both in the induction and in the repression of the transgene 

expression. In this project the induction was performed over three days and the expression was 

evaluated the third day after the last day of induction indicating a reasonable fast activation of the 

system (5 days after the first induction). Transgene expression has been shown to decrease at basal 

level 4 weeks after induction in rats (GDNF tested by ELISA and EGFP tested by IHC) and 2 weeks 

after induction in mice (EGFP evaluated by in vivo imaging). Another study adopting the pSwitch 

system expressed through a systemically administrated adenovirus in mice has shown that the 

transgene reach the peak of expression already 12h post induction and the expression returns to 

basal level after one week [89]. Similar results were observed with the pSwitch system administered 

in the mice muscles through a plasmid based method [125]. These results indicate that the pSwitch 

system might have a faster kinetic comparing to what we assumed (5 days for induction and 4 weeks 

in rats and 2 weeks in mice for silencing) but, as these studies were performed in different target 

areas, further studies are needed to confirm that this assumption is true for a pSwitch system applied 

in the CNS through AAVs.  

The ability of the regulatable gene expression system described here to be repeatedly activated is 

confirmed by the three consecutive induction analyzed with the system injected in the rat striatum 

and the 6 cycles of activation performed with the viral system injected in mouse cortex and 

evaluated by in vivo imaging. 

The requirement that the induction of transgene expression should not interfere with the 

endogenous gene expression is fulfilled by different observations. The initiation of DNA transcription 

is based on the binding of the GAL4 DBD to the GAL4 binding sites, sequences of yeast origin and 

present exclusively in the pSwitch cassettes. No evidence of an unspecific binding of the pSwitch 
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protein to the mammalian DNA has been observed. Moreover the use of recombinant AAVs implies 

that the transduced DNA stays in an episomal form into the nucleus avoiding integration with the 

host genome that might lead to disturbance in the expression of other genes. As shown by the 

viability test in culture, the pSwitch protein might have some toxic effect only if expressed at high 

level but the two vectors system employed here implies a low utilization of the vector expressing the 

pSwitch protein meaning a decrease of a possible toxic effect. Moreover toxic effects have been 

observed only in cultured neurons while no toxicity of the pSwitch system has been observed with 

the viruses injected in rat striatum as demonstrated by lack of microglia activation or efficiency of 

EGFP expression when the system was repetitively induced. On the other hand, a decrease of EGFP 

expression upon MF induction was observed by in vivo imaging after the first induction with the 

pSwitch system injected in mouse cortex; this decrease might have been due to the presence of the 

cranial window which might have triggered an inflammation in the area of injection and a 

subsequent loss of transduced cells.  

Cell type specificities can be achieved by adopting a cell specific promoter to express the pSwitch 

protein. In this study three promoters have been evaluated: the ubiquitous promoter Uptk, the 

astrocyte Gfabc1d promoter, and the neuron specific synapsin promoter. While we could 

demonstrate the specificity of the synapsin promoter more studies are needed to assess the tropism 

of the astrocytic promoter which was shown to be 100% astrocytic specific in transgenic mice [101] 

but that showed consistent activity in non astrocytic cell types in this project; this unspecificity might 

be due to the formation of concatamers upon transductions with the ITRs overcoming the specificity 

of the promoter. 

In conclusion it was shown that the pSwitch regulatable gene expression system in AAV described in 

this project fulfill most of the criteria required for the use in humans: it shows really low expression 

of the transgene in the off-state (comparable to the tet-on system) and a biologically relevant effect 

in the on-state (if GDNF is expressed and the 6-OHDA paradigm is considered), it is positively induced 

with a drug already approved for use in human, it displays dose-dependence, fast kinetic, and 

repetitiveness of induction, and no side effects due to pleiotropic activity has been observed. Further 

studies are nevertheless needed to confirm the lack of an immune response, to define the best route 

of mifepristone administration, and for a more cell-specific expression which can be obtained by 

further manipulations of the promoters. Moreover, more studies need to be performed in order to 

eliminate the background expression by engineering the UAS-TATA promoter. 

5.2 GDNF expression in the 6-OHDA rat model 
The ability of GDNF to protect [34] or restore [126] a lesion of the dopaminergic system in the 

striatum due to a 6-OHDA application have been demonstrated. Therefore, after having 

characterized the pSwitch system using EGFP as expressed gene, our goal was to assess if a short 

pulse of expression from a regulatable vector expressing GDNF instead of EGFP might have any 

restorative effect on the same 6-OHDA rat model of PD; moreover it was important to verify if the 

low but detectable expression in the off-state might have a biological effect on animals. With this 

purpose, animals were first injected with 6-OHDA to induce a DA neuron loss and once the lesion was 

confirmed by the three motor tests, Apomorphine induced rotation, cylinder test and corridor test, 

they were divided in 4 groups:  
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a) Treated group with the pSwitch system induced with MF 

b) Not treated group with the pSwitch system not induced 

c) Positive control expressing GDNF constitutively 

d) Negative control expressing EGFP 

The first part of the experiment, consisting in inducing the DA neuron lesion in the left striatum, gave 

the expected results confirmed by all tests: a contralateral rotation of about 250 turns/hour upon 

apomorphine injection, a preferential left paw use in the cylinder test, a preferential left food 

withdrawn in the corridor test and a depletion in the total dopamine amount of about 50% 

comparing to the unlesioned contra-lateral striatum. Functionality of the viruses was confirmed by 

GDNF ELISA on animals sacrificed immediately after the first MF induction in the treated group. 

Results of this test show that, a high level of expression was given by the GDNF constitutive-

expressing virus in the positive control (> 2000 pg/mg tissue), no increase in the NF level was 

observed in the EGFP negative control (3-4 pg/mg tissue), a two folds increase in GDNF level 

comparing to the contra-lateral side was measured in animals injected with the pSwitch system but 

not induced with MF (~6 pg/mg tissue), and a 18 fold overexpression versus the endogenous level 

when animals injected with the pSwitch system were induced with 20 mg/kg of MF (~54 pg/mg 

tissue). 

The second part of the experiment, which aimed to restore the confirmed lesion by a short MF-

induced GDNF expression, leaded to discordant results. In all three motor behavior tests a 

comparable amelioration was observed but each group presented high standard deviations 

indicating great variability within the groups. Moreover, in several cases, the motor behavior tests 

displayed variability in the same animal when tested at the different time points. Dopamine 

evaluation at the end of the experiment showed that total dopamine level in the striatum was not 

increased in any of the groups. ELISA for GDNF gave the expected results with a high level of GDNF 

expression in the positive control, and the basal two-fold overexpression level comparing with the 

endogenous expression in both groups injected with the pSwitch system; in this case, the pSwitch 

group induced with MF, was sacrificed four weeks after the last induction and therefore this low level 

of expression was expected. A TH staining to mark dopaminergic fibers in the striatum was 

performed but a clear explanation could not be defined. Indeed, in some cases, brains belonging to 

different rats displayed a similar size of the lesion but the animals were performing completely 

differently in the motor tests. 

Different causes might have leaded to these results: it has been demonstrated that GDNF 

concentration in cell culture should lie within a specific range otherwise, if a certain threshold is 

reached, the presence of the protein becomes toxic for cells [127]. In our positive control we 

measured a concentration of more than 2000 pg/mg tissue, meaning 500-1000 times higher than the 

normal endogenous level. This high concentration might have lead to invalid results in the positive 

control. 

Another explanation for the variability measured in this experiment can be that the size of the lesion 

was “border line” meaning that a spontaneous recovery was possibly masking the effect of the 

treatment. A comparable outcome have been already noticed in a similar experiments in which, after 

a 6-OHDA lesion, rats were injected with AAV vectors expressing GDNF under the control of the 

regulatable system Tet-on [57]. 
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In conclusion more analysis should be accomplished in which the behavioral data, the biochemical 

data and the results of the dopaminergic neuron staining (TH), are compared at the level of a single 

animal in order to define a possible pattern in the results or to identify specific loci of the lesion 

associated with specific motor behavior results.    

5.3 Dopamine producing neurons  
In PD several areas of the brain display progressive neuronal loss and formation of Lewy bodies and, 

out of them, the loss of DA neurons in the substantia nigra seems to be responsible for the motor 

deficits. Therefore it would be of great interest to study the effect of α-synuclein, or the role of other 

protein involved in PD (LRRK2, DJ-1, Parkin, PINK-1, ATP13A2), directly in this particular population of 

neurons. Moreover, un-published data showed that, in a free-cell system in vitro, the presence of 

dopamine can trigger the α-synuclein aggregation hypothesizing a role of the catecholamine in Lewy 

bodies formation. As DA neurons account only for a small fraction of the total number of neurons in 

the rat brain, it is not possible to obtain primary culture with more than 10% of DA neurons [110]. 

LHUMES (Lund human mesencephalic) cells [128] have been used to study the release of dopamine 

but, being an immortalized cell line, they differ substantially from DA neurons.  In alternative, 

dopaminergic-like neurons can be obtained from the emerging field of stem cells research by starting 

from different source of pluripotent cells which can be cultured and provided with the appropriate 

stimuli [127, 129].  

In this project we aimed to obtain dopamine-producing neurons by transducing primary cortical 

neurons with AAVs expressing the essential genes responsible for the catecholamine production. 

These genes are TH, to convert L-tyrosine into L-dopa, GCH1, for the synthesis of the TH co-factor 

BH4, AADC, to convert L-dopa into dopamine, and VMAT-2 which sequestrate dopamine into 

vesicles.  Similar approaches have been already followed by transducing fibroblast with AADC + 

VMAT-2 and promoting dopamine production by incubating cells with L-dopa [130] or by transducing 

primary cortical neurons with a tri-cistronic lentiviral vector expressing TH, AADC and GCH-1 and 

promoting dopamine production by incubating cells with the precursor L-tyrosine.  

A high and reproducible dopamine synthesis was obtained by transducing neurons with AADC or with 

AADC + VMAT and promoting the dopamine production by incubating cells with the precursor L-

dopa. 

Our experiments agree with those previously published [130] and highlight the importance of the 

presence of VMAT-2 in increasing both the intra and the extracellular fraction of newly synthesized 

dopamine. Studies on the amount of the inducer L-dopa, time of incubation, and incubation buffers 

displayed a good reproducibility of the system regarding both the intra and the extracellular fraction 

of the synthesized dopamine and its metabolites.  

Considering the possible interactions between dopamine and α-synuclein, we showed a lack of toxic 

effects due to dopamine, α-syn, or the combination of the two, in the neuronal culture at least for 

the time-frame considered in this experiment (48h). The α-synuclein aggregation tendency in 

presence of dopamine, observed in a free-cell system in vitro, was not confirmed when western blots 

were performed on cultured neurons indicating the ability of cells to prevent this aggregation at least 

for the time considered (96h). Considering the dopamine production, a one tail t-Test showed a 

tendency of α-synuclein to affect negatively the catecholamine synthesis and release; more 



- 101 - 
 

experiments including extended time points and different amount of synthesized dopamine are 

needed to confirm this hypothesis. 

In conclusion we developed an easy, regulatable and reproducible system for dopamine synthesis in 

primary cortical neurons that can be used for study the interaction of the neurotransmitter, and its 

oxidative role, with other components of PD. 

5.4 Considerations about AAV transduction in the CNS 
In this project two different serotypes have been used, AAV5 and AAV6 which show different 

transduction properties due to their differences in the capsid which is, as a consequence, differently 

recognized by cells. AAV6 was chosen at the beginning for the ease of production and the ability in 

transducing primary cortical neurons in culture while AAV5 serotype was used in a later stage in 

order to obtain a lower release of genome copies per cell resulting in a decrease in EGFP expression 

level in transduced cells. 

A drawback of AAV viruses is the limited DNA packaging capacity (~4.8 kb) and, as a consequence, co-

transduction with 2 vectors expressing different proteins has been routinely performed without any 

observed decrease in the transduction ability. This feature was observed with different serotypes 

[114-116] including serotype 5 [114, 117]. 

During our experiments we observed that this assumption might have to be reconsidered at least 

when a triple co-transduction with AAV5 is performed. In order to facilitate the identification of the 

transduced area in the experiment aiming to evaluate consecutive cycles of induction, a third AAV5 

virus, expressing DsRed under the control of the neuronal promoter synapsin (AAV5 SDsRedWB 

figure 10-c), was co-injected together with the two AAV5 vectors forming the pSwitch system (AAV5 

Gfabc1d pSwS + AAV5 3TB-UTEB figure 10 g+l). The outcome of this experiment was a drastic 

reduction of the EGFP expression in the on-state both considering the number of cells and the EGFP 

expressed within single cells. This observation was confirmed by repeating the double and triple co-

transduction in a new group of animals and using viruses from the same production batch. An 

overload of the virus cell receptors can be excluded as the sum of the titres of the three vector 

(0.3*108 TU AAV5 Gfabc1d pSwS + 1*108 TU AAV5 3TB-UTEB + 0.5*108 TU AAV5 SDsRedWB = 1.8*108 

TU total amount) is considerably lower compared to titres that have been used in other experiments 

(for example 2.75*108 TU when the one vector system was used). We cannot propose a conclusive 

explanation of this phenomenon but, considering that after transduction the AAVs genomes stay in 

an episomal structure forming concatamers into the nucleus, we hypothesize that some 

rearrangements in the DNA sequences might have occurred. Moreover, the DsRed protein in the 

third vector is under the control of the synapsin promoter which is known to promote a high level of 

expression; this high activity of the synapsin promoter might give rise to a competition for the 

transcription elements necessary for DNA transcription leading to a poor activity of the UAS TATA 

promoter present in the pSwitch system.  

Adeno associated viruses make use of surface cell receptors to mediate cell-entry and the set of 

needed receptors is topic of debate. Studies performed by Seiler et al. in airway epithelial cells 

demonstrated that AAV5 and AAV6 use a completely different set of receptors to mediate the cell-

entry indicating no competition of the two serotypes in cell transduction [113]. Contrarily, Asokan et 

al. states that both AAV5 and AAV6 are using the α 2,3 N-linked sialic acid receptor to mediate their 

entry into the cell [131]. During the course of this project  AAV5 expressing EGFP and AAV6 
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expressing DsRed have been used together to co-transduce mouse cortex; IHC on these brains 

revealed a repetitive pattern in which the DsRed (AAV6) was expressed in the proximity of the point 

of injection while the EGFP (AAV5) was expressed exclusively in the periphery. These results indicate 

a high competition for the receptor in favor of the AAV6 serotype which validates Asokan’s 

assumption in regarding, at least, the co-transduction in mouse cortex. 

The inefficiency of AAV5 triple transduction and the strong competiveness between AAV5 and AAV6 

for cell entry demonstrate that many aspects of AAV biology have to be still elucidates for a proper 

use of this delivery tool both in the CNS and in other tissues. 

5.5 Outlook 
We have demonstrated to have developed a tight and controllable gene expression system that can 

be considered as an alternative of the most widely used tet-on system for possible use in clinical 

trials. As stated already above, forthcoming studies should aim to: 

- optimize oral mifepristone administration 

- test the immunological profile of the pSwitch system in non-human primates 

- optimize promoters for cell tropism and lowering the background expression 
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6 Summary 
Parkinson’s disease (PD), the second most common neurodegenerative disease in the western 

society, affects more than 1% of the population and its impact on the society increases with the 

increasing average age. Current treatments for Parkinson disease, based on L-dopa administration, 

are only symptomatic and the neural loss is not prevented. As a consequence treatments become 

less effective and lead to the onset of side effects such dyskinesia. New treatments are, therefore, 

highly demanded. New hopes come from the emerging field of gene therapy but its employment for 

clinical trials has been considerably slowed down due to safety concern regarding its intrinsic 

irreversibility. In order to circumvent this drawback the availability of a regulatable gene expression 

system would be favorable. The most widely used gene regulatable system is based on the tet-

operon. Despite the good characteristics in gene regulation its employment for treatment in humans 

is unlikely due to the immunological reactions observed when applied in non-human primate muscle.  

In this project we propose, for the first time, the employment of the mifepristone-based pSwitch 

system for regulated gene expression in the CNS by adeno-associated viral (AAV) vectors. The 

pSwitch system has the advantage to be mainly constituted of human protein components, which 

should decrease the possibility of an immune reaction against the elements of the system. Moreover, 

the inducing drug mifepristone is already approved for use in humans.  

In the first part of the study, using EGFP as reporter gene, the effect of different transcription 

elements and virus serotypes is evaluated. The aim was to obtain a good compromise between an 

ideal “zero” level of expression in the off-state and a high level of expression in the on-state. Results 

obtained here are compared with alternative gene regulatable systems including the tet-system. 

Once defined the combination of vectors, EGFP was substituted with the neurotrophic factor GDNF 

and the biological effect of this protein was evaluated in the on- and in the off-states. Using the 

dopaminergic neuron selective drug 6-OHDA, a rat model of PD was generated. Viruses encoding the 

pSwitch system for inducible GDNF expression were injected in the area of the lesion and the effect 

of a short expression of the protein was evaluated. Results of this experiment are controversial and 

reasons for this are discussed. 

In a second project we aimed to generate dopamine-expressing neurons by AAV transduction. For 

this purpose primary cortical neurons in culture were infected with AAVs expressing the enzymes 

necessary for the synthesis of the catecholamine. Dopamine-producing neurons served to evaluate 

possible interaction between dopamine and α-synuclein, the major component of Lewy bodies in PD. 

No increase in aggregation of α-synuclein was observed but a tendency in decreasing dopamine 

production and release was measured in presence of α-synuclein.  
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8 Annexes 

8.1 Abbreviations 
6- OHDA = 6-hydroxy dopamine 

AADC = Aromatic L-amino acid decarboxylase 

AAV = Adeno Associated Virus 

AR = antigen retrieval 

ARE = antioxidant responsive element 

α-syn = α synuclein 

B = BGHpA = bovine growth hormone poli adenilation sequence 

BB = back bone (linearized vector genome)  

BBB = Blood brain barrier 

BCA = bicinchoninic acid  

BH4 = Tetrahydrobiopterin  

Bp = base pairs 

BSA = bovine serum albumine  

CF = cell factory  

CMV = cytomegalovirus 

CNS = Central nervous system 

DA = dopamine/dopamiregic 

DAT = Dopamine transporter 

DBD = DNA binding domain 

DIV = day in vitro  

DMEM = Dulbecco’s modified Eagle’s medium  

DOPAC = 3,4-Dihydroxyphenylacetic acid 

Dox = doxycycline 

EDTA = ethylenediaminetetraacetic acid  

EGFP = Enhanced green fluorescence protein 

FCS = fetal calf serum  

FDA = Food and drug administration 

FPLC = Fast protein liquid chromatography 

GAPDH = Glyceraldehyde 3-phosphate dehydrogenase  

GCH1 = GTP cyclohydrolase 1 

GDNF = Glial cell derived neurotrophic factor 

GE = DNA gel extraction  
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GFAP = Glial fibrillary acidic protein 

GOI = gene of interest 

LV = Lentivirus 

HCN = hippocampus and cortex primary culture medium 

HPLC = High pressure liquid chromatography 

hPR-LBD = human progesterone recptor ligand binding domain 

HRP = horse reddish peroxidise 

HSV = Heprex Simplex virus 

HVA = homovanillic acid 

IHC = Immunohistochemistry 

HRE = Hypoxia responsive element 

ITR = inverted terminal repeats 

Kan = kanamicin 

LB = Lysogeny broth  

MF = Mifepristone = 11β-[4-dimethylamino]phenyl-17β-hydroxy-17-[1-propynyl]estra-4,9-dien-3-

one) 

MPTP = 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

NDD = neurodegenerative disease 

NeuN = neuron specific nuclear protein 

NF = neurotrophic factor 

NGS = newborn goat serum 

NTN = neurturin 

ORF = open reading frame 

pA = poli adenilation sequence 

PBS = phosphate buffered saline  

PCR = polymerase chain reaction 

PD = Parkinson’s disease 

PFA = paraformaldehyde  

PP = PCR purification 

PS = penicillin/streptomycin 

PS-N = penicillin/streptomycin/Neomicin 

pSw = pSwitch protein 

ptk = Herpes Simplex virus thymidine kinase (tk) minimal promoter 

RB = Releasing buffer 

Rap = rapamycin 
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ROI = region of interest 

ROS = Reactive oxygen species 

rpm = rotations per minute  

RT = room temperature 

S (before the expressed protein in the construct = syn = sinapsin promoter 

S (after the expressed protein in the construct) = SV40 = Simian virus 40 poli adenilation sequence 

SD = standard deviation 

Sn = Substantia nigra 

Snpc = Substantia nigra pars compacta 

Tc = tetracycline 

TH = tyrosine hydroxylase 

UAS = Upstream activatin sequence 

Uptk = UAS Herpes Simplex Virus thymidine kinase (TK) minimal promoter  

UTR = untranslatede region 

Vmat-2 = Vesicular monoamine transporter 2 

WPRE = Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element 
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