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ABSTRACT 

In the recent years it has become increasingly obvious that multiple sclerosis (MS) is not only 

a white matter (WM) disease of the central nervous system (CNS) but also involves 

frequently and extensively the grey matter (GM) in all MS disease subtypes. Particular 

cortical pathology including demyelinated lesions was reinvestigated in detail by improved 

immunohistochemical staining techniques and new magnetic resonance imaging (MRI) 

acquisition methods. Clinically, MS patients often suffer from physical disability and 

neuropsychological deficits affecting their quality of life. These symptoms were associated 

with GM lesions. Therefore, the pathomechanism(s) leading to GM pathology needs to be 

elucidated for the development of preventative or acute treatments. 

Studying GM pathology requires appropriate animal models reflecting human cortical 

pathology. The most used rodent model in MS research, experimental autoimmune 

encephalomyelitis (EAE), rarely affects the cerebral cortex in ‘conventional’ immunization 

protocols. An EAE model targeting the cortex and reflecting human MS lesions has been 

described in the rat. GM lesions were induced by the injection of proinflammatory cytokines 

in a predetermined cortical area. Due to the lack of useful transgenic rat strains in order to 

study the mechanisms underlying GM pathology, the targeted EAE model needs to be 

established in mice. 

This project focused on the establishment of a targeted cortical EAE mouse model and the 

histopathological characterization. Furthermore, cortical brain tissue of late disease-stage MS 

patients was studied focusing on dendritic pathology. 

Targeted cortical EAE was induced in myelin oligodendrocyte glycoprotein (MOG)-

immunized BiozziABH (antibody high) and F1 offsprings generated from BiozziABH and 

mice on a C57BL6/J background by intracortical injection of TNF-α and IFN-γ. Histological 

analyses revealed widespread subpial demyelination and inflammation in the cortex three 

days after cytokine injection in the affected hemisphere. Within three weeks inflammation 

resolved profoundly and demyelinated lesions showed partial remyelination. Axons remained 

well preserved in lesioned areas and neuronal loss could not be detected in the cortex. 

Furthermore, a method was established that allows detailed analysis of dendritic pathologies 

in mice. 

Cerebral cortex autopsy specimen of progressive MS patients with a long-lasting disease 

revealed a reduction of dendritic spines in neurons located in the lower cortical layers in 
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chronically demyelinated lesions as well as in the surrounding normal appearing grey matter 

(NAGM). 

In the present project a targeted cortical EAE mouse model was established reproducing key 

hallmarks of GM pathology observed in early-stage MS patients. The model is a useful tool to 

study early events in demyelinated cortex and to investigate therapeutic treatments such as 

increasing remyelination. Furthermore, the global loss of dendritic spines in the cerebral 

cortex of chronic MS patients might be attributed to neuropsychological deficits that are often 

observed.  
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ZUSAMMENFASSUNG 

In den letzten Jahren ist zunehmend deutlich geworden, dass die Multiple Sklerose (MS) nicht 

nur eine Erkrankung der weißen Substanz des zentralen Nervensystems ist, sondern auch 

häufig und beträchtlich die graue Substanz in allen klinischen Verlaufsformen betrifft. 

Besonders die kortikale Pathologie mit entmarkten Läsionen wurde durch verbesserte 

immunhistochemische Färbetechniken und neuen magnetresonanztomographischen Verfahren 

ausführlicher untersucht. MS-Patienten leiden klinisch oft an körperlichen Beeinträchtigungen 

und neuropsychologischen Defiziten, welche die Lebensqualität beeinflussen. Diese 

Symptome wurden mit Läsionen in der grauen Substanz assoziiert. Mechanismen, die zu 

dieser Pathologie führen, müssen daher aufgeklärt werden um vorbeugende oder akute 

Behandlungen entwickeln zu können. 

Zur pathologischen Untersuchung der grauen Substanz werden angemessene Tiermodelle 

benötigt, welche die humane kortikale Pathologie wiederspiegeln. Das am häufigsten 

verwendete Tiermodell in MS-Studien ist die Experimentelle Autoimmune Enzephalomyelitis 

(EAE), die in ihrem ‘konventionellen’ Immunisierungsprotokoll nur selten den zerebralen 

Kortex betrifft. Ein EAE-Modell mit Einbezug des Kortex, das MS-Läsionen nachahmt, 

wurde in Ratten beschrieben. Hierzu wurden proinflammatorische Zytokine in eine 

vorbestimmte kortikale Region injiziert. Da spezifisch genveränderte Rattenstämme fehlen 

um die Mechanismen der Pathologie in der grauen Substanz zu untersuchen ist es notwendig 

das Tiermodell in Mäusen zu entwickelen. 

Das Ziel dieses Projekts war die Entwicklung eines kortikalen EAE-Mausmodells sowie 

dessen histopathologische Charakterisierung. Desweiteren wurde kortikales Gehirnmaterial 

von MS-Patienten im späten Krankheitsstadium auf dendritische Patholgie untersucht. 

Die kortikale EAE wurde in Myelin Oligodendrozyten Glykoprotein (MOG)-immunisierten 

BiozziABH (hohe Antikörper) und F1 Nachkommen, die aus BiozziABH und Mäusen mit 

einem C57BL6/J-Hintergrund generiert worden sind, durch die intrakortikale Injektion von 

TNF-α und IFN-γ induziert. Histologische Untersuchungen zeigten eine ausgedehnte subpiale 

Entmarkung und Entzündung im Kortex drei Tage nach der Zytokininjektion in der 

betroffenen Hirnhälfte. Die Entzündung ging innerhalb von drei Wochen fast vollständig 

zurück und entmarkte Regionen wiesen teilweise eine Remyelinisierung auf. Axone blieben 

in läsionalen Regionen erhalten und neuronaler Verlust wurde im Kortex nicht beobachtet. 

Desweiteren wurde eine Methode etabliert, die es erlaubt detailliert dendritische Pathologien 

in der Maus zu untersuchen. 
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Kortex-enthaltenes Autopsiematerial von progressiven MS-Patienten mit langandauerndem 

Krankheitsverlauf zeigte einen Verlust von dendritischen Dornfortsätzen (Spines) in Neurone, 

die in den unteren korikalen Layern sowohl in chronisch entmarkten Läsionen als auch im 

umliegenden normal erscheinendem Gewebe der grauen Substanz lokalisiert waren.  

Im vorliegenden Projekt wurde ein kortikales EAE-Mausmodell entwickelt, das die humane 

MS-Pathologie der grauen Substanz in frühen Krankheitsstadien wiederspiegelt. Dieses 

Modell ist für Untersuchungen früher Mechanismen im entmarkten Kortex und für die 

Erprobung therapeutischer Behandlungen wie die Erhöhung der Remyelinisierung nützlich. 

Darüberhinaus wurde ein ausgedehnter Verlust dendritischer Dornfortsätze im zerebralen 

Kortex in chronischen MS-Patienten gezeigt, der auf oft beobachtete neuropsychologische 

Defizite zurückgeführt werden könnte. 
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1 INTRODUCTION 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central 

nervous system (CNS) typically starting in young adults between 20 and 40 years of age 

(Compston and Coles, 2008; Noseworthy et al., 2000). MS, also known as encephalomyelitis 

disseminata, is the leading cause of nontraumatic permanent neurologic disability in this age 

group in the United States and Europe (Dutta and Trapp, 2007). 

The prevalence of MS varies around the world and is highest in Europe (WHO and MSIF, 

2008). The World Health Organization (WHO) and Multiple Sclerosis International 

Federation (MSIF) estimated in 2008 a total number of people diagnosed with MS of 

approximately 1.3 million worldwide (WHO and MSIF, 2008). Germany belongs to the 

countries with the highest estimated prevalences of MS and in 2008, 122’000 people suffered 

from MS (MSIF). 

The potentially first patient’s description widely accepted representing MS originated from 

the patient’s diaries. From 1822-1848, Sir Augustus d’Este, grandson of King George III, 

described in detail his periodic symptoms including recurring impaired vision, diplopia, 

weakness of the legs, ataxia, spasms, and paralysis (Pearce, 2005). From the early 19
th

 century 

many scientists and physicians studied on the still unnamed nervous disease and contributed 

to the advanced understanding. Working independently Robert Carswell and Jean Cruveilhier 

discovered damage to the CNS in pathological studies (Pearce, 2005). In 1868, the Parisian 

Jean-Martin Charcot first described multiple sclerosis as an independent disease and 

correlated clinical symptoms with pathology of the CNS. He termed the disease “sclérose en 

plaques” (Charcot, 1868). MS is an unpredictable complex disease with diverse clinical, 

immunological and pathological phenotypes. Despite extensive research on this 

heterogeneous disorder the main cause of MS remained undiscovered. Studies in humans and 

animal models reflecting key features of the pathology found in MS patients contributed to 

our understanding resulting to the idea of a CD4
+
 T cell-mediated autoimmune disease 

evolving in genetically susceptible individuals exposed to an environmental trigger. The 

broadening understanding in the recent years that neurodegeneration detrimentally affected 

individuals with MS and the modification of the concept, that MS is not only restricted to the 

white matter (WM) but also involves frequently and extensively the grey matter (GM) yielded 

additional focuses in MS research. 
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1.1 Multiple sclerosis 

1.1.1 Etiology of MS 

The cause of MS has not yet been identified and the reason for the global varying prevalence 

is still unknown. However, evidences exist that MS occurs in genetically high-risk individuals 

exposed to an environmental agent. 

A role for a genetic factor in disease susceptibility is supported by the familiar recurrence risk 

of MS that varied depending on the relatedness to the patient. First-degree relatives of MS 

patients have an approximately 15-25 fold higher risk (recurrence risk of 3-5%) to develop 

MS compared to the general population (lifetime prevalence 0.2%). In twin studies it was 

shown that there is a higher concordance rate in monozygotic twins (about 20%) in 

comparison to dizygotic twins (about 5%) (Dyment et al., 2004).  

Furthermore, gene variations have been linked with an increased risk to develop MS. The 

MHC class II alleles (MHC, major histocompatibility complex, in vertebrates this system is 

named HLA, human leukocyte antigen) DR15 and DQ6 with the following genotypes 

DRB1*1501, DRB5*0101, DQA1*0102, and DQB2*0602 were associated with MS 

especially in Northern Europe. In addition, gene variations in interleukin-2 and interleukin-7 

receptor α chains were linked to an increased susceptibility (Compston and Coles, 2008). 

The variable global disease distribution of MS with increasing prevalences to the north and 

south in both hemispheres from the equator suggested an environmental factor contributing to 

disease manifestation. Moreover, children migrating from high-risk to low-risk regions 

adopted the decreased risk of developing MS. Reversed migration in childhood is associated 

with an increased risk (Compston and Coles, 2008). 

In addition, clinical infections increased the risk of relapses in MS. Exacerbations that 

occurred during the period of a systemic infection led more frequently to sustained 

neurological deficits (Andersen et al., 1993; Buljevac et al., 2002; Sibley et al., 1985). Among 

putative infectious agents, Epstein-Barr (EBV) virus infection was strongly associated with 

MS (Ascherio and Munger, 2007a; Haahr and Hollsberg, 2006). It was suggested that EBV 

infection manifested as infectious mononucleosis in young adulthood is a risk factor for 

developing MS (Thacker et al., 2006). EBV interference with MS risk might involve 

mechanisms of molecular mimicry between viral and myelin components (Lang et al., 2002). 

In autopsy brain tissue of MS patients with different disease courses EBV-infected B 

lymphocytes/plasma cells were detected in the meninges and perivascular compartment of 
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WM lesions. MS cases with a secondary progressive disease course even exhibited ectopic B 

cell follicles in the meninges suggested to represent main sites of EBV persistence (Serafini et 

al., 2007). 

In addition to putative infectious agents, environmental factors like cigarette smoking, low 

sunlight, deficiency in vitamin D, diet, geomagnetism, air pollutants, radioactive rocks, and 

toxins have been suggested to trigger the development of MS (Ascherio and Munger, 2007b; 

Compston and Coles, 2008; Hernan et al., 2005; Mikaeloff et al., 2007). 

The female predominance of about 2:1 suggests hormones as nongenetic factor contributing 

to MS risk. This assumption was supported by the fact that the rate of relapses decreased 

especially during the third trimester of pregnancy but was increased immediately after birth 

(Confavreux et al., 1998). 

 

1.1.2 Diagnosis and clinical presentation 

The clinical course and response to immunomodulatory therapies of individual MS patients is 

very heterogenous. Clinical manifestation depends on the affected CNS region and most 

patients show visual, sensory, motor, and autonomic deficits. The expectancy of life is only 

slightly reduced. Fatality of MS cases is attributable to about 
2
/3 of patients and to the higher 

risk and complications of infections in progressive diseased individuals. A fulminant and fatal 

clinical disease course, in which MS patients die within month after disease onset, is rare 

(Marburg’s variant of MS). Impairment in social and work life are side-effects besides 

depression and suicide that remain a great risk among patients (Compston and Coles, 2008; 

Noseworthy et al., 2000). 

1.1.2.1 Diagnosis 

Guidelines for diagnostic criteria for MS have been established and revised (McDonald et al., 

2001; Polman et al., 2011; Polman et al., 2005). The basic concept in MS diagnosis is 

dissemination of lesions in space and time. Clinical, imaging, laboratory and physiologic 

evidences can contribute to diagnosis such as periods of neurologic dysfunctions, lesions 

detected in magnetic resonance imaging (MRI), disease progression, positive oligoclonal 

bands in cerebrospinal fluid (CSF) showing increased intrathecal synthesis of 

immunoglobulins of restricted specificity and prolonged latency of evoked potentials 

indicating slowed propagation of action potentials in demyelinated axons (Compston and 

Coles, 2008). 
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Neurologic disability in MS patients can be assessed by the Kurtzke Expanded Disability 

Status Scale (EDSS) (Kurtzke, 1983), a rating system with 10 steps from 0 (normal) to 10 

(death due to MS). 

1.1.2.2 Clinical disease courses in MS 

At disease onset about 80% of patients are affected by a relapsing-remitting disease course 

(RRMS) characterized by periodic episodes of neurologic deficits (relapses) followed by 

complete or partial recovery of the symptoms (remission). In about 10% of cases relapses are 

absent for more than 20 years and MS is considered to be benign. RRMS typically affects 

young adults in the second and third decade of life and shows a female to male predominance 

of ~2:1 (Noseworthy et al., 2000). In average ten years after disease onset ~50% of patients 

who suffered from RRMS enter a disease phase with a steady worsening of clinical 

symptoms, fewer relapses and incomplete recovery, called secondary progressive MS (SPMS) 

(Siffrin et al., 2010). About 20% of MS patients manifested a primary progressive disease 

course (PPMS) that is characterized by a gradually progressive deterioration of clinical 

symptoms from disease onset and a similar incidence between men and women (Noseworthy 

et al., 2000). 

Regardless of an initial relapsing-remitting or progressive disease course, the age at time of 

irreversible disability is about 40 years (Confavreux and Vukusic, 2006). In addition, if a 

clinical threshold of irreversible disability is passed, the following progression of impairments 

is neither affected by relapses before nor during this phase (Confavreux et al., 2003; 

Confavreux et al., 2000). 

1.1.2.3 Clinical correlates of cortical lesions 

MS was typically considered as a white matter (WM) disease but it has become increasingly 

obvious that the grey matter (GM) is frequently and extensively involved. Lesions in the GM 

may contribute to the so-called clinico-radiological paradox indicating that the WM pathology 

cannot explain the complete spectrum of clinical deficits (Barkhof, 2002). As an example, 

cognitive symptoms and epileptic seizures might be better explained by GM than WM 

pathology. Cognitive deficits are a common feature in MS affecting 40-65% of patients. 

These symptoms can affect patients with a RR disease course but is more severe in the 

progressive forms whereas it seems to be more pronounced in SPMS than PPMS (Amato et 

al., 2006; Chiaravalloti and DeLuca, 2008; Rinaldi et al., 2010). Imaging studies associated 

the accumulation of cortical GM lesions with cognitive decline in MS patients (Calabrese et 
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al., 2009; Roosendaal et al., 2009). Additional factors affecting cognitive performance are 

depression and fatigue that are also common symptoms in many patients with MS 

(Chiaravalloti and DeLuca, 2008; Feinstein, 2011). Furthermore, MS is linked to an increased 

risk of epilepsy than the general population (Catenoix et al., 2011; Spatt et al., 2001). It was 

shown that the accumulation of cortical lesions is higher in epileptic versus non-epileptic 

RRMS patients and that they exhibit a more severe cortical atrophy, more pronounced 

cognitive impairment and higher physical disability (Calabrese et al., 2008; Calabrese et al., 

2012b). An association of physical disability and the accumulation of cortical lesions has been 

confirmed in further MRI acquisition studies (Calabrese et al., 2012c; Calabrese et al., 

2010b). Interestingly, cortical lesions have even been detected in some patients a long time 

before MRI showed inflammatory lesions in the WM, which suggests that cortical 

demyelination could represent the initial pathological event in MS (Calabrese and Gallo, 

2009; Popescu et al., 2011). 

Treatment studies in RRMS patients showed an effect of disease-modifying drugs on cortical 

pathology in MRI over two years as assessed by a reduced accumulation of new cortical 

lesions and reduced progression of cortical atrophy compared to untreated patients (Calabrese 

et al., 2012a; Rinaldi et al., 2012). 

 

1.2 Myelin and myelin proteins 

Myelin or the myelin-forming oligodendrocytes are generally believed to be attacked by an 

autoimme response in MS leading to demyelination. Myelin is predominantly present in the 

WM of CNS tissue and gives these structures macroscopically the white appearance. 

However, myelin is also a component of the GM, albeit to a lesser extent, and ensheathes 

many axons originating from or terminating on cortical neurons. 

Myelin consists of 75% lipids and 25% proteins. The multilamellar myelin sheath is build by 

lipid-rich plasma membrane extensions of oligodendrocytes in the CNS, which spirally 

surround axons and thereby forming myelinated axon segments called internodes. Internodes 

are periodically interrupted by the so-called nodes of Ranvier resulting in short uncovered 

axon segments enabling saltatory nerve conduction. Thus, myelin functions as an electrical 

insulator and provides fast and energy-efficient impulse propagation over long distances. The 

loss of myelin was associated with a conduction block and increased vulnerability to axons 

and neurons (Franklin and Ffrench-Constant, 2008). In contrast to axons, dendrites do not 

show myelination. 
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In the most used animal model of MS research, experimental autoimmune encephalomyelitis 

(EAE), many myelin proteins like proteolipid protein (PLP), myelin basic protein (MBP), and 

myelin oligodendrocyte glycoprotein (MOG) have been shown to induce MS-like pathology 

and disease (Iglesias et al., 2001). 

1.2.1 Proteolipid protein (PLP) 

PLP is the major integral membrane protein of myelin in the CNS that account for ~50% of 

the CNS myelin protein mass. Two PLP forms are expressed, the full-length PLP (~30 kDa) 

and a shorter isoform, the splice variant DM20 (~20 kDa). Both proteins are primarily 

expressed in the CNS. DM20 can also be detected in the thymus, in which full-length PLP is 

only hardly detectable. Central tolerance to most epitopes to full-length PLP could be 

mediated by the higher expression of thymic DM20 (Goverman, 2011; Seamons et al., 2003). 

1.2.2 Myelin basic protein (MBP) 

MBP was the initial antigen with which CNS autoimmune diseases were elicited. MBP is a 

component of the central and peripheral myelin. In the CNS myelin MBP is the second most 

abundant protein (30-40% weight of membrane protein) whereas in the peripheral myelin it is 

less strongly expressed (5-15%). The MBP gene locus encodes two protein families, classic-

MBPs (~21.5 kDa) and golli-MBPs. Classic-MBP proteins are components of the myelin 

sheath in central and peripheral nervous system. Golli-MBP isoforms are expressed in the 

nervous system, thymus, peripheral lymphoid tissues. Central tolerance to epitopes from 

classic MBP could be mediated by the thymic expression of golli-MBP (Goverman, 2011; 

Seamons et al., 2003). 

1.2.3 Myelin oligodendrocyte glycoprotein (MOG) 

MOG is a ~28 kDa glycoprotein and highly conserved between species. MOG is 

quantitatively a minor component of myelin with 0.05-0.1% of the total myelin protein and is 

expressed on the outermost surface of the myelin sheath containing a single immunoglobulin-

like domain exposed to the extracellular environment (Johns and Bernard, 1999). MOG is 

primarily expressed in the CNS but MOG transcripts have been detected in mouse and human 

thymus (Derbinski et al., 2001; Pagany et al., 2003). 

 

1.3 Immunology of MS 

MS is considered as an autoimmune, CD4
+
 T cell-mediated disease of the CNS. In this current 

concept, autoaggressive myelin-specific T cells attack the myelin sheath thereby triggering 
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the formation of inflammatory demyelinated lesions, which lead to the manifestation of MS. 

A role for an autoreactive T cell response was supported by the findings that myelin-specific 

T cells have been isolated from MS patients although they also have been shown to exist in 

healthy individuals (Burns et al., 1983; Olsson et al., 1990; Pette et al., 1990; Richert et al., 

1983) and naïve animals (Anderson et al., 2000; Schluesener and Wekerle, 1985). 

Furthermore, in the widely used EAE model, MS-like diseases can be induced by active 

immunization with myelin antigens inducing a CD4
+
 T cell response or by adoptive transfer 

of activated myelin-specific CD4
+
 T cells in naïve recipients (Gold et al., 2006). Additionally, 

spontaneous EAE has been observed in mice expressing a transgenic myelin-specific T cell 

receptor (TCR) (Goverman et al., 1993; Pollinger et al., 2009; Waldner et al., 2000). Insights 

into disease pathomechanisms in MS were gained mostly from animal models and primarily 

from studies on EAE. 

1.3.1 Concept of autoimmune T cell responses 

The initiation of CNS inflammation required the presence of autoreactive CNS-specific T 

cells in the peripheral circulation that escaped central and peripheral tolerance mechanisms. 

Central tolerance in thymus can be escaped by autoreactive thymocytes with low avidity to 

the cognate antigen presented by antigen-presenting cells (APCs) or may be circumvented due 

to the limited number of thymic APCs presenting the self-antigen. In the periphery self-

tolerance might be maintained by regulatory T cells (Tregs) (Goverman, 2011). 

Before migration into the CNS peripheral myelin-specific T cells have to be activated. 

According to this, myelin epitopes have to be presented by APCs in the context of MHC class 

II (e.g. dendritic cells) but these conditions are still not understood (Goverman, 2009). 

Alternative mechanisms for autoreactive T cell activation could be molecular mimicry 

(Fujinami and Oldstone, 1985), a mechanism in which pathogens and self-antigens share 

cross-reactive epitopes, or bystander activation (Deshpande et al., 2001), a mechanism in 

which an unrelated infection might lead to the activation of pre-existing autoraggressive T 

cells (McCoy et al., 2006). Among other investigations, two important EAE studies 

performed by Reboldi et al., 2009 and Bartholomaus et al., 2009 shed light on the beginning 

of CNS inflammation (Ransohoff, 2009). Peripheral activated effector T cells migrate to and 

enter the still uninflamed CNS in a first wave by crossing the blood-cerebrospinal fluid (CSF) 

barrier in the choroid plexus in a C-C chemokine-receptor 6 (CCR6)-dependent manner and 

enter the subarachnoid space. Then, a second wave of T cells enter the CNS by crossing 

activated parenchymal blood vessels (blood-brain barrier, BBB) in a CCR6-independent 
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manner (Reboldi et al., 2009). In the first wave, T cell reactivation in the subarachnoid space 

has been shown to occur by interaction of T cells with MHC class II APCs (Kivisakk et al., 

2009), which lead to the activation of subpially and then distally microglial cells and blood 

vessels (Goverman, 2009). During the second wave of T cell entry, activated T cells arrested 

at and scanned activated blood vessels, crawled preferentially against the blood flow, crossed 

the blood vessel into the subarachnoid space and continued their scan. Encountering their 

specific antigen led to production of proinflammatory cytokines and CNS inflammation 

(Bartholomaus et al., 2009). Furthermore, these events led to activation/recruitment of 

macrophages/microglia and tissue damage such as demyelination and neurodegeneration. 

Activated macrophages/microglia might be the responsible cells for axonal damage because 

their number correlates with disease severity and they can secret harmful soluble factors 

(Gold et al., 2006). 

1.3.2 Role of CD4
+
 T cell effector subsets 

The differentiation of naïve CD4
+
 T cells into effector T cells with a distinct phenotype is 

induced by stimulation with cognate antigen presented on MHC class II molecules on 

professional APCs in the presence of co-stimulatory signals and a distinct cytokine milieux. 

Several CD4
+
 lineages such as T helper (Th) cells, subdivieded in type 1 (Th1), type 2 (Th2), 

type 17 (Th17), regulatory T cells (Tregs) and follicular helper T cells (Tfh) have been 

described. Tfh cells mediate B cell help for antibody production in germinal centers. Tregs 

derived from positively selected thymic CD4
+
 T cells with higher affinity to self-antigens than 

normal and are thought to suppress autoimmunity. The first classified Th cells were Th1 and 

Th2 cells. Th1 differentiation required interleukin (IL)-12 and the main effector cytokine is 

IFN-γ whereas Th2 cells differentiate in the presence of and secrete IL-4. Later, additional 

subsets were identified such as the IL-17, IL-21, and IL22-secreting Th17 cells that are 

stimulated by transforming growth factor (TGF)-β and IL-6 (Fletcher et al., 2010; Petermann 

and Korn, 2011; Zhu et al., 2010).  

IFN-γ-producing Th1 effector cells have been originally considered as the major pathogenic T 

cell in EAE and MS. The Th1 disease hypothesis was concluded from studies performed in 

IL-12p40 deficient mice that were resistant to EAE (Gran et al., 2002), adoptive transfer 

experiments in which myelin-specific Th1 cells induced EAE (Baron et al., 1993), 

observations that IFN-γ treatment exacerbated disease in MS (Panitch et al., 1987) and 

detection of IFN-γ in active MS lesions (Traugott and Lebon, 1988). However, this concept 

was revisited when it was shown, that mice, deficient of important factors in the Th1 pathway 
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(IFN-γ deficient mice, IFN-γ receptor deficient mice and IL-12p35 deficient mice) were 

highly susceptible to EAE (Becher et al., 2002; Ferber et al., 1996; Gran et al., 2002; 

Willenborg et al., 1996). IL-12 is composed of the subunits p35 and p40. But p40 forms with 

the subunit p19 another cytokine IL-23 (Oppmann et al., 2000). IL-23 drives the 

differentiation of effector Th17 cells and it was shown, that adoptively transferred Th17 cells 

can induce EAE (Langrish et al., 2005). Both, IL-12 and IL-23 polarized Th1 and Th17 cells 

were pathogenic and induced similar EAE disease courses in mice but showed different 

expression patterns of CNS chemokines, composition and localization of infiltrating cells and 

responsiveness to immunomodulatory treatments (Kroenke et al., 2008). A relevant role for 

Th17 cells in MS was suggested by several observations. Th17 cells have been detected in 

CSF of patients with RRMS and interestingly, frequencies of Th17 cells were increased 

during relapses compared to patients in remission (Brucklacher-Waldert et al., 2009). 

Furthermore, IL-17 positive cells were detected in MS brain (Kebir et al., 2007; Tzartos et al., 

2008) and in vitro experiments showed that Th17 lymphocytes crossed more efficiently the 

BBB compared to Th1 cells (Kebir et al., 2007). 

1.3.3 Role of CD8
+
 T cells 

A putative involvement of CD8
+
 T cells in MS arose in gene association studies in HLA class 

I regions, which suggested a predisposition by the HLA-A3 allele (HLA-A*0301) and 

protection by the HLA-A2 allele (HLA-A*0201) (Friese and Fugger, 2009). In addition, 

histological studies showed a predominance of CD8
+
 T cells compared to CD4

+
 T cells and a 

clonal expansion of these CD8
+
 T cells in the MS lesions (Babbe et al., 2000; Frischer et al., 

2009). The recent described cortical GM lesions in early-stage MS patients also showed CD8
+
 

T cell infiltrates (Lucchinetti et al., 2011). Furthermore, the extent of axonal damage was 

correlated with the number of CD8
+
 T cells in MS lesions (Bitsch et al., 2000; Kuhlmann et 

al., 2002) and in vitro experiments showed that neurites can be damaged by cytotoxic CD8
+
 T 

cells (Medana et al., 2001). Due to the deficiency of CD8
+
 T cell-driven EAE models, only 

few studies could assess the role of these effector cells (Willing and Friese, 2012) that might 

exert pathogenic (Huseby et al., 2001) and regulatory functions (York et al., 2010). 

1.3.4 Role of antibodies and B cells 

MS research primarily focused on the role of T cells, however, the involvement of B cells and 

antibodies also attracted investigators in the recent years. Not only the presence of oligoclonal 

bands in CSF of MS patients (Kabat et al., 1942), which are important paraclinical diagnostic 

markers (Freedman et al., 2005), but also the detection of abundant deposition of 



INTRODUCTION 

10 

 

immunoglobulins (Ig) and components of the complement in many MS lesions (designated as 

pattern II) (Lucchinetti et al., 2000) and responsiveness of patients exhibiting such lesion 

pattern II to plasma exchange (Keegan et al., 2005) confirmed an involvement of humoral 

factors like antibodies in MS. The myelin surface protein MOG was characterized by the 

particular ability to induce a demyelinating autoantibody response in parallel to an 

encephalitognic T cell response (Gold et al., 2006). MOG-induced EAE in rats shared 

important aspects of the pathology in MS (Adelmann et al., 1995; Johns et al., 1995) and a 

direct pathogenic role for a MOG-specific monoclonal antibody was shown by the 

augmentation of demyelination in vivo in rat EAE models (Lassmann et al., 1988; Linington 

et al., 1988; Schluesener et al., 1987). Even serum obtained from MS patients with high anti-

MOG autoantibody titers enhanced demyelination and axonal damage in rats with EAE (Zhou 

et al., 2006). Moreover, MOG autoantibodies have been detected in WM lesions in EAE and 

MS and were associated with myelin damage (Genain et al., 1999; Raine et al., 1999). 

Additionally, an autoantibody response against the potassium channel KIR4.1 expressed on 

glial cells was shown in a proportion of MS patients (Srivastava et al., 2012). However, the 

epitope(s) recognized by specific pathogenic antibodies is still unknown (Iglesias et al., 2001). 

In contrast to pathogenic IgG antibodies showed IgM antibodies beneficial effects and have 

been shown to promote remyelination in animal models of MS (Bieber et al., 2002; Miller et 

al., 1994; Warrington et al., 2007).  

B cells and plasma cells are involved in antibody production and secretion. In recent studies 

an involvement of B cells in MS was suggested as depletion of circulating B cell populations 

by administration of rituximab, a chimeric monoclonal antibody specific for CD20
+
 B cell 

(not plasma cells), decreased brain lesions and relapses in RRMS (Bar-Or et al., 2008; Hauser 

et al., 2008). In contrast, atacicept, a human recombinant fusion protein containing binding 

sites for two important cytokine regulators of B cell maturation, function and survival, that 

selective impair mature B cells and antibody-secreting plasma cells was shown to increase 

disease activity in MS (Hartung and Kieseier, 2010). B cells might contribute to disease 

independent of antibodies. In EAE it was shown that the time-dependant depletion of B cells 

influenced EAE outcome (Matsushita et al., 2008) and interleukin 6 secreting B cells might 

drive pathogenesis in T cell mediated autoimmune disease (Barr et al., 2012). 
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1.4 Pathology of MS 

Inflammation, de- and remyelination, neurodegeneration and glial scar formation are 

pathological characteristics occurring in the brain and spinal cord of MS patients. Tissue 

damage can occur in a focal or global diffuse manner and is disease-stage dependent. Both, 

WM and GM areas can be affected, whereas the GM in the cerebral cortex is extensively 

involved (Kidd et al., 1999; Lassmann et al., 2007; Lassmann et al., 2012; Peterson et al., 

2001). 

1.4.1 Immunopathology 

Primarily active lesions, which are most frequent in patients with acute disease or RRMS, are 

accompanied by inflammatory infiltrates composed of T cells, B cells, plasma cells and 

activated macrophages/microglia in which CD8
+
 T cells outnumber CD4

+
 T cells (Babbe et 

al., 2000; Friese and Fugger, 2009; Frischer et al., 2009; Lucchinetti et al., 2000). In early 

active stage demyelinated lesions in the WM, identified by myelin destruction and 

macrophages/activated microglia containing intracytoplasmic myelin products, four different 

patterns have been described. Pattern I and II lesions described early active demyelination 

with a T cell- and macrophage-dominated inflammation. Pattern II lesions showed additional 

deposition of immunoglobulins (mainly IgG) and complement C9neo. The other two patterns 

III and IV were thought to arise through a primary oligodendrocyte dystrophy. Lesion patterns 

were homogeneous within multiple early active lesions from the same patient but 

heterogeneous between different patients (Lucchinetti et al., 2000). Inflammation in WM 

lesions might be associated with damage to the BBB as shown by gadolinium-enhanced 

lesions in MRI (Miller et al., 1988). Slowly expanding lesions, inactive and remyelinated 

lesions showed less inflammation (Lassmann et al., 2012). 

Cortical demyelinated lesions in early MS disease-stage have been described very recently 

and were identified as inflammatory and strongly associated with meningeal inflammation. 

Cortical lesions were composed of macrophages/microglia, CD3
+
 and CD8

+
 T cells as well as 

but to a lesser extent B cells (Lucchinetti et al., 2011; Popescu et al., 2011). As the patient 

presented by Popescu et al., in 2011 showed an inflammatory cortical lesion linked to 

gadolinium enhancement in MRI it was suggested that inflammation induced damage of the 

BBB in cortical lesions. 

Chronic cortical lesions in late-stage disease were found to be less inflammatory than early 

cortical lesions (Bo et al., 2003a; Peterson et al., 2001) probably due to long intervals between 

lesion formation and autopsy. However, profound meningeal inflammation has been 
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identified in progressive MS (Magliozzi et al., 2007; Serafini et al., 2004) that were associated 

with subpial demyelination (Kutzelnigg et al., 2005). Moreover, the severity of meningeal 

inflammation correlated with GM demyelination and neurite loss (Choi et al., 2012; Howell et 

al., 2011). In immunohistological studies it was suggested that the BBB integrity is relatively 

preserved in intracortical GM lesions due to the lack of markers for BBB disruption or 

astrogliosis (van Horssen et al., 2007). Furthermore, in cortical GM lesions some complement 

deposition was found (Brink et al., 2005; Schwab and McGeer, 2002) probably sheding light 

on a possible pathomechanism mediated by humoral factors. 

1.4.2 Demyelination 

Plaques of focal demyelination are characteristic hallmarks of all MS disease stages and they 

can be classified depending on the activity into classic active lesions, slowly expanding 

lesions, inactive lesions or remyelinated shadow plaques by the level of inflammatory 

activity, axon loss or remyelination status (Lassmann et al., 2012). 

WM lesions showed variable densities of oligodendrocytes at all stages of demyelinating 

activity between nearly complete loss and numbers exceeding densities in the periplaque WM 

(Lucchinetti et al., 1999). 

Although the early description of cortical demyelination by Charcot in the late 18
th

 century 

(Popescu and Lucchinetti, 2012) and other neuropathologists later on (Brownell and Hughes, 

1962; Dinkler, 1904; Lumsden, 1970; Sander, 1898; Taylor, 1892) remained cortical lesions 

understudied over a long time period until improved immunohistological staining techniques 

led to a histopathological reinvestigation of GM pathology (Bo et al., 2003a; Bo et al., 2003b; 

Giaccone et al., 2012; Kidd et al., 1999; Peterson et al., 2001; Vercellino et al., 2005). 

Cortical demyelination was thought to occur in part independently to pathologic WM changes 

(Bo et al., 2007; Giaccone et al., 2012; Kutzelnigg et al., 2005) and may represent an early or 

initial target of MS (Calabrese and Gallo, 2009; Popescu et al., 2011).  

Currently, cortical lesions are classified into four types depending on their localization (Bo, 

2009; Calabrese et al., 2010a; Popescu and Lucchinetti, 2012) based on the system used in 

Kidd et al., 1999, simplified in Peterson et al., 2001 and modified by Bo et al., 2003b. 

Accordingly, leukocortical lesions extending through both WM and GM were assigned to 

lesion type I. Purely intracortical lesions that neither extend to the pial surface nor to the 

subcortical WM were defined as lesion type II. Cortical lesions of type III classified subpial 

lesions that often affect several adjacent gyri. Lesions extending throughout the full width of 
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the cortex without affecting the subcortical WM were assigned to lesion type IV. Type III and 

IV lesions were both classified as subpial lesions. 

Very recently, extensive and well-demarcated cortical demyelinating lesions have been 

described in early disease-stage MS patients with the most common lesion type located 

leukocortical followed by subpial and intracortical lesions. Lesions were primarily classified 

as active and contained often foamy, myelin-laden macrophages indicative for ongoing 

demyelination. Additionally, in a subset of lesions a reduction of oligodendrocyte density was 

observed in comparison to nearby myelinated cortex (Lucchinetti et al., 2011; Popescu et al., 

2011). 

Although already present in RRMS and acute MS, cortical demyelination was most prominent 

and extensive in patients with a progressive disease stage (Kutzelnigg et al., 2005) and the 

most common lesion type was subpial (Albert et al., 2007; Bo et al., 2003b; Kutzelnigg et al., 

2005; Peterson et al., 2001; Vercellino et al., 2005). Chronic cortical lesions also showed 

well-demarcated area of demyelination and oligodendrocyte/glial cell loss (Albert et al., 2007; 

Bo et al., 2003a; Bo et al., 2003b; Peterson et al., 2001; Wegner et al., 2006). 

The degree of cortical demyelination varied regionally with the most affected brain areas in 

the cingulate gyrus (17-44%) followed by the temporal and frontal cortices (17-28%). Less 

damage occurs in the paracentral lobule (11.5%), occipital lobe (8%) and primary motor 

cortex (3.5%) (Bo, 2009). 

1.4.3 Remyelination 

Remyelination is a regenerative repair mechanism in demyelinated plaques that restores the 

lost myelin sheath (Franklin and Ffrench-Constant, 2008). It was shown that remyelination 

prevented axonal loss after demyelination (Irvine and Blakemore, 2008) and played a role in 

functional recovery (Liebetanz and Merkler, 2006; Manrique-Hoyos et al., 2012; Merkler et 

al., 2009). Histologically, variable degree of remyelination can be noted, which was most 

extensive in the so-called shadow plaques. Characteristic for remyelinated plaques was the 

reduced myelin density in comparison to the surrounding normal appearing brain matter due 

to a thinner myelin sheath thickness (Bruck et al., 2003). Extensive remyelination can be 

observed in the WM in RRMS and MS patients in progressive disease stages (Patani et al., 

2007; Patrikios et al., 2006). However, remyelination is often incomplete or absent although 

oligodendrocyte precursor cells (OPCs) have been shown to be present in chronic lesions but 

it seemed that they failed to proliferate and differentiate (Wolswijk, 1998). Differentiation of 

OPCs to mature oligodendrocytes is a prerequisite for myelin regeneration. 
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Remyelinating capacity has also been observed in cortical GM lesions and was even more 

extensive in cortical lesions in comparison to WM lesions (Albert et al., 2007). Remyelinated 

plaques contained an increased number of oligodendroglia at the lesion border compared to 

the demyelinated center of lesions or control cortex (Albert et al., 2007). Furthermore, 

remyelination has also been observed in the cerebral cortex of animal models after a 

demyelinating event (Merkler et al., 2006b; Merkler et al., 2009; Skripuletz et al., 2008). 

1.4.4 Neurodegeneration and atrophy 

Axonal damage, transection and loss (Ferguson et al., 1997; Lovas et al., 2000; Trapp et al., 

1998), progressive brain atrophy (Fisher et al., 2002; Rudick et al., 1999), decrease of the 

neuronal marker N-acetyl aspartate (NAA) (Bjartmar et al., 2000) and neuronal loss 

(Papadopoulos et al., 2009; Wegner et al., 2006) have been associated with MS (Trapp and 

Nave, 2008). Progressive axon degeneration is considered as the main cause of gradually 

worsening of irreversible neurologic deficits in MS (Trapp and Nave, 2008). In MS lesions, 

acute axonal damage is mostly prominent in early disease stages, correlated with 

inflammation and decreased over time (Kuhlmann et al., 2002). Diffuse axonal injury was 

also detected in normal appearing WM (NAWM) but more pronounced in progressive disease 

compared to acute or RRMS (Kutzelnigg et al., 2005). Demyelination is not a prerequisite for 

axon damage, which can be reversible (Nikic et al., 2011). Mechanims leading to axon 

damage in acute lesions may include vulnerability of demyelinated axons to the inflammatory 

environment, glutamate-mediated excitotoxicity or cytotoxic CD8
+
 T cells (Trapp and Nave, 

2008). In addition to neuronal pathology in the WM the neuronal compartment in the GM was 

also affected. 

In early-stage MS, it was shown that several cortical demyelinated lesions showed neuritic 

swellings indicative for acute damage. However, the majority of lesions showed relative 

preservation of neurits. In rare cases, focal neuritic loss was observed (Lucchinetti et al., 

2011).  

Chronic cortical lesions showed neuronal damage as indicated by apoptosis, a mild to 

moderate neuronal loss, smaller neuronal sizes and transected axons and dendrites in the 

demyelinated cortex (Choi et al., 2012; Magliozzi et al., 2010; Peterson et al., 2001; 

Vercellino et al., 2005; Wegner et al., 2006). Neuronal loss was not restricted to lesions as it 

was also observed in normal appearing GM (NAGM) (Choi et al., 2012; Magliozzi et al., 

2010). Loss and injury of thalamic and cortical neurons by measuring NAA levels has also 

been suggested (Cifelli et al., 2002; Kapeller et al., 2001; Wylezinska et al., 2003). In 



INTRODUCTION 

15 

 

addition, synaptic loss was detected in leukocortical lesions (Wegner et al., 2006). However, 

another study found no reduction in synaptic density (Vercellino et al., 2005). 

GM atrophy was also shown to be a pathologic hallmark of MS. GM atrophy can occur early 

in the disease, increased with disease stage and was related to disease progression (De Stefano 

et al., 2003; Fisher et al., 2008; Rudick et al., 2009). As additional parameter thinning of 

cortical thickness was detected in MS patients in MRI studies (Chen et al., 2004; Sailer et al., 

2003) and in a histological study (Wegner et al., 2006). 

Permanent deficits in MS may occur when axonal loss exceeds a threshold that CNS 

mechanisms cannot compensate for (Bjartmar et al., 2003; Dutta and Trapp, 2007). 

Compensatory processes may include axonal remodeling leading to restoration of damaged 

axonal connections as it was shown in MS-like lesions in rats (Kerschensteiner et al., 2004a). 

 

1.5 Animal models of MS 

Animal models have been very useful tools to investigate putative pathomechanisms and test 

therapeutic approaches in inflammatory, demyelinating diseases like MS. Depending on the 

needs, immune-mediated, toxic, viral and genetic models have been established (Ransohoff, 

2012). 

1.5.1 Experimental autoimmune encephalomyelitis (EAE) 

The most used animal model in MS research is EAE, which is an immune-mediated disease 

leading to inflammatory demyelinated lesion in the CNS. The view, that MS is a T cell-

mediated autoimmune disease and most of our current knowledge concerning CNS 

inflammation derived from studies on EAE. 

EAE was first described by Thomas Rivers in the early 1930s (Rivers et al., 1933). Rivers and 

colleagues repeatedly injected intramuscularly rabbit brain homogenates in rhesus monkeys 

and observed in two out of eight treated animals clinical signs (ataxia, weakness, paresis). 

Tissue sections revealed inflammation and demyelination in the CNS. From the date EAE was 

elicited in various species including marmoset monkeys, guinea pigs, rats and mice by either 

immunization with CNS tissue or myelin-derived antigens, usually emulsified in complete 

Freund’s adjuvant (CFA) or adoptive transfer of activated autoaggressive T cells, and led to 

the establishment of well-characterized animal models reflecting specific features of the 

immunopathology in MS. CFA is a mineral oil-based solution containing components of heat-

inactivated mycobacteria tuberculosis that stimulated induction of EAE (Gold et al., 2006). 

Nowadays, most studies were performed in C57BL/6 mice in which EAE is induced by 
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subcutaneous active immunization with MOG-peptide (amino acids 35-55) emulsified in CFA 

and additional injection of pertussis toxin to augment disease induction. This ‘conventional’ 

EAE was reproducible and benefits from the diversity of transgenic and knockout mice 

available on a C57BL/6 background. Unfortunately this EAE displayed only a chronic 

monophasic disease course (without recurring disease bouts), elicit primarily a CD4
+
 T cell 

response and predominantly affected the spinal cord leading to the classic symptoms of 

ascending paralysis (Ransohoff, 2012). EAE can also be induced by immunization with 

MOG1-125 (amino acids 1-125) in CFA in C57BL/6 leading to a similar chronic-progressive 

disease course. Another standard EAE mouse model eliciting a relapsing-remitting disease 

course was induced in SJL mice by immunization with PLP-peptide (amino acids 139-151) 

emulsified in CFA (Gold et al., 2006). BiozziABH mice represent another mouse strain also 

highly susceptible to EAE. These mice exhibited a chronic relapsing-remitting disease course 

upon immunization with homologous spinal cord homogenate, myelin containing full-length 

‘native’ MOG or myelin antigens such as MOG1-125 in adjuvant among other CNS antigens. 

Inflammation and demyelination are particular evident during the relapse/chronic disease 

phase (Amor et al., 1994; Amor et al., 2005; Baker et al., 1990; Smith et al., 2005). 

Additionally to active immunization schemes, EAE can be elicited by adoptively transferred 

activated myelin-specific T cells in different species (Ben-Nun et al., 1981; Zamvil et al., 

1985). 

1.5.2 Targeted EAE models 

In the above mentioned ‘conventional’ rodent EAE models, inflammation primarily targets 

the spinal cord leading to disseminated spinal lesions in space and time. An animal EAE 

model showing demyelinated inflammatory lesions randomly distributed in the cerebral 

cortex similar to those in MS has been described in marmoset monkeys (Merkler et al., 2006a; 

Pomeroy et al., 2008; Pomeroy et al., 2005). Later, ‘conventionally’ MOG1-125-immunized 

rats (LEW.1W and LEW.1AR1 rat strains) showed extensive cortical demyelination 

distributed in the forebrain (Storch et al., 2006). In active immunized mice (MOG35-55 in mice 

on a C57BL/6 background, PLP139-151 in SJL/J mice) cortical lesions were detected by a 

decreased or absent intensity of myelin staining (Girolamo et al., 2011; Mangiardi et al., 

2011; Rasmussen et al., 2007). Unfortunately, lesions that occur randomly in anatomical 

localization are difficult to study precisely. These limitations were overcome by the 

introduction of localized EAE models targeting a predetermined area. The first inflammatory 

targeted EAE model was established in rat spinal cord. Stereotactic injection of 
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proinflammatory cytokines in a predetermined spinal region led to local inflammation, focal 

demyelinated lesions and axonal damage in this area sharing similarities with MS lesions 

(Kerschensteiner et al., 2004b). In 2006, the targeted spinal cord EAE was transferred to the 

cerebral cortex as a model reflecting human GM pathology was still missing. Merkler and 

colleagues adjusted the protocol from the targeted spinal cord EAE (from Kerschensteiner et 

al., 2004b) and developed a focal EAE rat model for cortical demyelination reflecting key 

features of cortical MS lesions. They stereotactically injected a mixture of proinflammatory 

cytokines into the cortex and triggered local demyelinated lesions. These lesions showed 

cortical inflammation (T cells and activated macrophages/microglia) as early, transient and 

rapidly resolving phenomenon, deposition of complement C9, rapid remyelination, acute 

axonal damage but no apparent loss thereafter and sporadic irreversible neuronal damage 

(Merkler et al., 2006b). This model also shed light on an association between cortical 

demyelination and cortical function. By measuring the propagation velocity of a wave of 

depolarization of neurons and glia cells in GM (cortical spreading depression) it was shown 

that the velocity of this propagating wave inversely correlated with the myelin content 

(Merkler et al., 2009). Unfortunately, further mechanistic studies on cortical pathology were 

hampered by the lack of useful transgenic rat strains. 
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2 AIM OF THE STUDY 

The increasing association between inflammatory demyelinated lesions within the cerebral 

cortex and clinical impairments in MS patients demonstrated the urgent need for a suitable 

mouse model to study cortical pathology. The present project aimed to establish and 

characterize a mouse model that reflects key pathological features of cortical MS lesions. In 

order to facilitate studies on cortical pathology a targeted model was sought, in which lesions 

were induced in a predetermined cortical area in a defined time window by an inflammatory 

stimulus. MS patients in early disease-stages showed cortical lesions with demyelination and 

inflammation, therefore, the modeled cortical lesions should be accompanied by infiltrates 

composed of T cells and activated macrophages/microglia and loss of myelin. Furthermore, 

the next step of the project was to elucidate neuronal pathology as measured by axonal density 

and neuronal numbers since some extent of neuronal injury was detected in lesions of early 

MS patients but is most prominent in late-stage disease. Furthermore, a method allowing 

detailed studies on dendritic pathology in mice should be established. In addition, dendritic 

pathology was assessed in the cerebral cortex of chronic MS patients. 

Following specific aims were addressed in this doctoral thesis: 

1) Establishment of a targeted EAE mouse model showing cortical demyelinated lesions 

triggered by an inflammatory stimulus. 

2) Characterization of targeted cortical EAE with regard to the extent of demyelination, 

capacity for remyelination and inflammation (T cells, activated macrophages and 

microglia) and neuronal pathology (axonal and neuronal densities). 

3) Establishment of three-dimensional (3D) reconstruction and analysis of dendritic 

processes in the cerebral cortex of mice. 

4) Assessment of abnormalities in dendritic branch pattern and number of dendritic 

spines in cortical GM of progressive MS patients. 
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3 MATERIAL AND METHODS 

3.1 Material 

3.1.1 Reagents 

Reagent     Company   Catalog number 

Animal experimentation 

Aqua ad iniectabilia    BBraun   #353 5665 

Dulbecco’s Phosphate Buffered Saline 

(DPBS), 1x     Gibco    #14190-094 

Esconarkon     StreuliPharma AG  #55815002 

Freund’s Adjuvant Incomplete  Sigma-Aldrich  #F5506 

Isoflurane     Nicholas Piramal (I) Limited 

Ketasol-100 (Ketamine)   Graeub    #668.51 

Monastral Blue (Copper(II)phthalocyanine- 

tetrasulfonic acid tetrasodium salt)  Sigma-Aldrich  #274011 

Mouse VEGF (164aa)   MACS MiltenyiBiotec #130-094-087 

Mycobacterium Tuberculosis H37Ra Difco    #231141 

Paraformaldehyde (PFA)   AppliChem   #A3813 

Pertussis toxin     Sigma    #P2980 

Phenol red     Sigma-Aldrich  #32661 

Prequillan (Acepromazine)   Fatro    #56 719 

Recombinant Mouse TNF-α aa 80-235 R&D Systems   #410-MT/CF 

Recombinant Murine IFN-γ   PeproTech GmbH  #315-05 

Rompun 2% (Xylazine)   Bayer HealthCare  #35 464 

Sodium azide     Sigma-Aldrich  #S2002 

 

 Proteinbiochemistry 

Acetic acid (glacial) 100%   Merck    #1.00063.2500 

Acrylamide/Bis Solution 29:1, 40%  Bio-Rad   #161-0146 

Agar, granulated    Difco    #214530 

Ammonium Persulfate   Amersham   #171311-01 

β-Mercapthoethanol    PlusOne   #17131701 
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BSA Standard     Bio-Rad   #500-0206 

Bradford Protein Assay, 1x Dye Reagent Bio-Rad   #500-0205 

Bromophenol Blue    Bio-Rad   #161-0404 

Complete protease inhibitor cocktail tablets Roche    #04693116001 

Coomassie Brilliant Blue R 250  Sigma    #27816 

DNAse I     Roche    #04716728001 

DL-Dithiothreitol (DTT)   Sigma    #D9779 

EDTA      Fluka    #03680 

Glycerol for molecular biology, 99% Sigma    #G5516 

Glycine     Bio-Rad   #161-0718 

Imidazole     Sigma    #56748 

IPTG      Invitrogen   #15529-019 

Javel water 13/14%    Reactolab   #10200-150 

Kanamycin     Roth    #T832.1 

LDAO      Sigma    #40236 

Lysozyme     AppliChem   #A3711 

Protein Standard Dual Color   Bio-Rad   #161-0374 

SDS, 20% Solution    AppliChem   #A3942 

Sodiumacetate     Fluka    #71185 

Sodium chloride    Acros Organics  #207790050 

Sodium dihydrogen phosphate monohydrate Fluka    #71506 

Sodium phosphate dibasic dihydrate  Sigma-Aldrich  #30435 

Sodium phosphate dibasic heptahydrate Sigma-Aldrich  #S9390 

Talon Metal Affinity Resin   Clontech   #635503 

TEMED     Sigma    #T7024 

Tris (MW121g/mol)    Bio-Rad   #161-0719 

Tryptone     BD Bacto   #211705 

Urea      Sigma    #51456 

Yeast Extract     BD Bacto   #212750 

 

 DNA isolation and genotyping PCR 

Agarose     Promega   #V3125 

dATP      Fermentas   #R0141 

dCTP      Fermentas   #R0151 



MATERIAL AND METHODS 

21 

 

dGTP      Fermentas   #R0161 

dTTP      Fermentas   #R0171 

GeneRuler 100bp DNA Ladder  ThermoScientific  #SM0321 

Green GoTaq reaction buffer, 5x (M791A) Promega   #M3175 

GoTaq DNA Polymerase (M830B)  Promega   #M3175 

QuickExtract DNA Extraction Solution epicenter   #QE09050 

SybrSafe DNA gel stain   Invitrogen   #S33102 

Water Molecular biology grade  AppliChem   #A7398 

 

Primer   Sequence      Company 

GFP-geno Fwd  5’-AAG TTC ATC TGC ACC ACC G-3’  Microsynth 

GFP-geno Rev  5’-TCC TTG AAG AAG ATG GTG CG-3’  Microsynth 

GFP-intctrl Fwd 5’-CTA GGC CAC AGA ATT GAA AGA TCT-3’ Microsynth 

GFP-intctrl Rev 5’-GTA GGT GGA AAT TCT AGC ATC ATC C-3’  Microsynth 

 

 ELISA 

BSA (Albumin – Fraction V)   AppliChem   #A1391,0100 

FBS Superior     Biochrom AG   #S0615 

Sulfuric acid 95-97%, p.a.   Merck    #731 

TMB      Moss, Inc.   #TMBUS-1000 

Tween 20     Sigma-Aldrich  #P9416 

 

Histology and immunohistochemistry 

Acetone     Acros Organics  #176800025 

Alcohol absolutus 2% MEK (Ethanol) Brenntag   #13229-307 

Ammonium hydroxide, 32%   Merck    #1.05426 

Calcium carbonate    Merck    #5286707 

Citric acid monohydrate   Merck    #1.00244 

Chromium(III) potassium sulfate  

dodecahydrate     Sigma-Aldrich  #243361 

DAB chromogen + substrate buffer  Dako    #K3468/K5001 

Dako Real antibody diluent   Dako    #S2022 

Dako Real peroxidase blocking solution Dako    #S2023 

Dako wash buffer, 10x   Dako    #S3006 
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DAPI (Dilactate)    Invitrogen   #D3571 

Formalin (Formaldehyde solution min 37%) Merck    #1.04003.1000 

Fluoprep     bioMérieux   #75 521 

Gelatin from porcine skin   Fluka    #48722 

Isopentane (2-Methylbutane)   Merck    #106056 

MayersHemalaun    Merck    #1.09249.0500 

Mercury chloride    Merck    #4419 

Methanol     Acros Organics  #176840025 

Nitric acid, 65%    Merck    #100456 

Paraffin (Embedding System)  H-Plast   #95100.00 

Paraffin (Tissue Processor)   Brenntag   #12270-331 

Potassium chromate    Sigma-Aldrich  #216615 

Potassium dichromate   Sigma-Aldrich  #60188 

Silver nitrate     Roth    #9370.2 

Sodium carbonate    Sigma    #S2127 

Sodium dihydrogen phosphate monohydrate Fluka    #71506 

Sodium hydroxide    Fluka    #71690 

Sodium phosphate dibasic heptahydrate Sigma-Aldrich  #S9390 

Sodium thiosulfate pentahydrate  Merck    #106516 

Sucrose     Fluka    #84097 

Tissue-Tek O.C.T. compound  Sakura    #4583 

Triton X-100     Fluka    #93418 

UltraClear     J.T.Baker   #3905 

Ultrakitt (mounting medium)   J.T.Baker   #3921 

 

3.1.2 Antibodies 

Antigen  Isotype  Clone  Company  Catalog number 

Primary antibodies for immunohistochemistry 

MBP   Rabbit IgG polyclonal Dako   #A0623 

Mac-3 (CD107b) RatIgG1 M3/84  BioLegend  #108501 

NeuN   Mouse IgG1 A60  Millipore  #MAB377 

CD3   Rat IgG1 CD3-12 AbD Serotec  #MCA1477  
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 Secondary antibodies for immunohistochemistry 

Alexa Fluor 555 Goat-anti-Rabbit IgG (H+L) Invitrogen  #A21429 

Fab Fragment Goat-anti-mouse IgG (H+L)  JacksonImmunoRes. #115-007-003 

Dako EnVision HRP labeled polymer anti-rabbit Dako   #K4003 

Dako EnVision HRP labeled polymer anti-mouse Dako   #K4001 

Polyclonal Rabbit Anti-Rat Immunoglobulins/Biotinylated Dako  #E0468 

Dako Real Streptavidin Peroxidase (HRP)  Dako    #K5001 

 

Antibody for ELISA 

Anti-Mouse IgG-Peroxidase Conjugate Sigma-Aldrich  #A8924 

 

 

3.1.3 Buffers and solutions 

Animal experimentation 

Monastral Blue,3% 

  Monastral Blue     0.03g 

  Sterile PBS      1ml 

 

Paraformaldehyde (PFA), 8%: 

  PFA       80g 

  10 M sodium hydroxide    ~ 5 drops 

  10x PBS      100ml 

  Distilled water     fill up to 1000ml 

  Adjust to pH = 7.3 and filter 

Store at -20°C  

 

PFA, 4%: 

  8% PFA      500ml 

  1x PBS      500ml    

  Store at 4°C 
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Phosphate buffered saline (PBS), 10x 

  Sodium phosphate dibasic dihydrate   12.8g 

  Sodium dihydrogen phosphate monohydrate 3.86g 

  Sodium chloride     85g 

  Distilled water     fill up to 1000ml 

 

PBS-sodium azide, 0.02% 

  10x PBS      10ml 

  Sodium azide      0.02g 

  Distilled water     fill up to 100ml 

 

 Proteinbiochemistry 

APS, 10% 

  APS       0.1g 

  Distilled water     1ml 

 

Coomassie destain solution 

  100% acetic acid (glacial)    10% 

  Methanol      10% 

  In distilled water 

 

Coomassie stain solution, 0.1% 

  Coomassie R250     1g 

  Methanol      400ml 

  Distilled water     500ml 

  100% acetic acid (glacial)    100ml 

 

Dialysis buffer, 1x 

  Sodium acetate      4.1g (10 mM) 

  Distilled water     fill up to 5l 

  100% acetic acid (glacial)    2.875ml 

  Adjust to pH = 3 
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Imidazol, 1M 

  Imidazol      3.404g 

  8 M urea      fill up to 50ml 

  Store at 4°C 

 

Imidazol, 40mM 

  1 M imidazol      2400µl 

  8 M urea       fill up to 60ml 

 

Imidazol, 5mM 

  1 M imidazol      175µl 

  8 M urea      fill up to 35ml 

 

IPTG, 1M 

  IPTG       1g 

  Aqua ad iniectabilia     4.2ml 

 

Kanamycin 

  Kanamycin      40mg  

  Aqua ad iniectabilia     1ml 

 

LB agar 

  Tryptone      10g 

  Yeast Extract      5g 

  Sodium chloride     10g 

  Agar       15g 

  Distilled water     fill up to 1l 

  Adjust to pH 7 

Treat by autoclave 

40 mg/ml Kanamycin     1ml 
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LB Medium 

  Tryptone      10g 

  Yeast Extract      5g 

  Sodium chloride     10g 

  Distilled water     fill up to 1l 

  Adjust to pH 7.4 

Treat by autoclave 

40 mg/ml Kanamycin     1ml 

 

Sample loading buffer, 5x 

  Tris, pH = 6.8      0.25M 

  Glycerol      50% 

  SDS       5% 

  DTT       0.5M 

  Bromophenol Blue     0.02%  

  In distilled water 

 

SDS running buffer, 10x 

  Tris       250mM 

  Glycine      2.5M 

  SDS       1% 

  In distilled water 

 

Separation buffer, 2x 

  Tris, pH = 8.8      0.75M 

  SDS       0.2% 

  In distilled water 

 

Separation gel, 15% 

  2x separation buffer     5ml 

  40% Acrylamide/Bis Solution 29:1   3.75ml 

  Distilled water     1.25ml 

  TEMED      5µl 

  10% APS      50µl 
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Solubilisation buffer 

  8 M urea      10ml 

  β-Mercapthoethanol     14µl (20 mM) 

 

Sonication buffer 

  Sodiumchloride      17.53g (300 mM) 

  Sodiumphosphatedibasicheptahydrate   6.7g (25 mM) 

  Sodiumdihydrogenphosphatemonohydrate   3.45g (25 mM) 

 

Stacking buffer, 2x 

  Tris, pH = 6.8      0.25M 

  SDS       0.2% 

  In distilled water 

 

Stacking gel, 4% 

  Stacking buffer 2x     1ml 

  40% Acrylamide/Bis Solution 29:1   200µl 

  Distilled water     800µl 

  TEMED      5µl 

  10% APS      50µl 

 

TAE buffer, 1x 

  Tris       0.04M 

  Glacial acetic acid     0.04M 

  EDTA       0.002M 

  In distilled water 

 

TE buffer, 1x 

  Tris       10mM 

  EDTA       1mM 

  In distilled water 

  Adjust to pH = 7 
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Tris stock solution, 1M 

  Tris       121g 

  Distilled water     fill up to 1l 

Adjust to pH = 6.8 or pH = 8.8 

 

Urea, 8M 

  Urea       480.48g 

  Distilled water     fill up to 1l 

 

Wash buffer 

  LDAO       8.5ml 

  Soni buffer      fill up to 500ml 

 

 

 ELISA 

Sulfuric acid, 2N 

  95-97% sulfuric acid     51.12ml 

  Distilled water     448.9ml 

 

Sulfuric acid, 1N 

  2N sulfuric acid     100ml 

  Distilled water     100ml 

 

PBS-T0.05% 

  1x PBS      1l 

  Tween 20      0.5ml 

 

PBS-T0.05%/10%FBS 

  1x PBS      10ml 

  Tween 20      0.005ml 

  100% FBS      1ml 
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 Histology 

Citrate buffer, 10x (0.1M), pH = 6 

  Citric acid monohydrate    21g 

  Distilled water     fill up to 1l 

Adjust to pH = 6 

 

Citrate buffer, 1x (0.01M), pH = 6 

  Citrate buffer 10x     100ml 

  Distilled water     900ml 

 

Developer solution (Bielschowky’s silver staining) 

  Formalin      20ml 

  Distilled water     100ml 

  Citric acid monohydrate    0.5g 

  Nitric acid      2 drops 

 

Formalin, 10% 

  Formalin neutral     100ml 

  Distilled water     900ml 

 

Formalin neutral 

  Formalin      1l 

  Calcium carbonate     add until saturation 

Filter 

 

Formalin with salt 

  Formalin      1l 

  Sodiumdihydrogenphosphatemonohydrate  40g 

  Sodium phosphate dibasic heptahydrate  60g 

  Tap water      fill up to 10l 
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Gelatin solution for coating slides (0.5%) 

Gelatin       0,25g 

Chromium (III) Potassium Sulfate Dodeca-H 0,05g 

Distilled water     fill up to 50ml 

 

Sorensen’s phosphate buffer, 0,4M 

  Sodium phosphate dibasic heptahydrate  87.92g 

  Sodium dihydrogen phosphate monohydrate 9.94g 

  Distilled water     fill up to 1l 

  Adjust to pH = 7.4 

 

3.1.4 Laboratory animals 

BiozziABH/RijHsd (reffered to as BiozziABH) inbred mice were purchased from Harlan 

Laboratories (Order code: 937). EGFP-M mice (B6.Cg-Tg(Thy1-EGFP)MJrs/J on a 

C57BL6/J background), in which EGFP is expressed by the thy1 sequence in less than 10% of 

cortical neurons (Feng et al., 2000), were obtained from The Jackson Laboratory (Stock 

number: 007788). Male BiozziABH mice were bred with female EGFP-M mice to obtain F1 

BiozziABH x GFP-M hybrids (reffered to as F1 hybrids). 

 

3.1.5 Human brain samples 

For histopathological analysis of multiple sclerosis tissue, human brain autopsies of male and 

female individuals with multiple sclerosis were obtained from the collection of the 

Department of Neuropathology at the Georg-August University, Göttingen, Germany. The 

use of the brain samples for scientific purposes was in accordance with the guidelines of the 

Ethics Committee of the Georg-August University, Göttingen, Germany. 

 

3.1.6 Equipment 

Animal experimentation 

Changing station CS5 Type: 9CS53  Tecniplast S.P.A. 

Drill (K5plus Anlage)    Kavo    #4965/4911 

Drilling head     Gebr. Brassler GmbH&CoKG #H141A104 014 

Ear bars (Mouse) 60° Tip   David Kopf Instruments #922 
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Ear puncher, KN-292B, 2.0   Napox 

Forceps, 12cm     F.S.T    #11002-12 

Forceps, 2AM-SA    rubis, Switzerland 

Forceps     Aesculap   #BD043R 

Homogenizer pistil for 1,5ml tubes  neoLab   #6-1060 

Iris Scissors STR S/S 120MM  Aesculap   #BC064R 

Isoflurane system for anesthesia  tem sega 

Laminar flow Hera Safe Type: HS18 Heraeus   #50054579 

Micro knife     F.S.T    #10055-12 

Micro scissors, curved, 15,5cm, 6”  KLS martin group  #11-773-01 

Mouse Adaptor    Stoelting   #51624 

Needle holder, durogrip TC, 145mm  Aesculap   #BM015R 

Peristaltic pump Type: MC-MS/CA-4/8 Ismatec 

Scale PL602-S    Mettler Toledo 

Scissors     F.S.T    #14060-11 

Scissors     Hermle   #521 

Scissors     F.S.T    #14013-17 

Scissors     Hermle   #501 

Scissors     Hermle   #511 

Shaver      Tondeo   #100766 

Stereo microscope M60   Leica  

Stereotaxic device    Stoelting   #51600 

Tissue Forceps Slim – 1x2 Teeth  F.S.T    #11023-10 

TUB PTFE 2XHUBadapter Ga24x20mm length Chromatographie 

Service GmbH  #06586510 

Warming plate    MedaxHaska AG 

 

 Proteinbiochemistry 

3-D Shaker GyroTwister   Labnet 

Centrifuge Tubes, 50ml   KendroSorvall   #03146 

Circular mixer RM 5    Assistent   #348 

Electrophoresis Power Supply E802  Consort 

Homogenizer motor Type HS-30E Set witeg    #DH.WOS01011 

Homogenizer + PTFE pistil, 40ml, cylindric schuett-biotec GmbH  #3.213 402 



MATERIAL AND METHODS 

32 

 

Lab-Shaker RS-306 Type AG20  Infors AG HT 

Lab-Shaker Type LSR-V   Adolf Kühner AG 

Magnetic Stirrer RH basic 2   IKA    #3339000 

Mini-Protean 3 Cell Electrophoresis System Bio-Rad 

Nalgene Centrifuge Bottles, 250ml  Thermo Scientific  #3141-0250 

NanoDrop 2000c    Thermo Scientific  #ND-2000C 

Sonic Ruptor 400 Ultrasonic Homogenizer Omni International  #18-000-115 

Superspeed centrifuge Sorvall RC-5B Sorvall    #RC-5B 

Superspeed centrifuge Sorvall RC-5B Plus Sorvall    #RC-5B Plus 

Vaccum pump N86KN.18   KNF Lab Neuberger 

VMax Kinetic Microplate reader  Molecular Devices 

 

 Histology and immunohistochemistry 

CryostatCryoStar NX70   ThermoScientific  #957070 

Microscope, confocal LSM510Meta  Zeiss 

Microscope, light, CX41   Olympus 

Microscope, fluorescence, Axioskop 2 Zeiss 

Microtome, rotary HM 340 E  Thermo Scientific  #904090A 

Mirax Midi slide scanner   Zeiss 

Pascal pressure chamber, model S2800 Dako 

Tissue Embedding System TES 99  Medite    #TES99 

Tissue Processor Tissue-Tek VIP  Sakura 

Vibratome series 1000, Sectioning system TPI    #050418 

 

 Others 

Centrifuge, benchtop, 5415R   Eppendorf 

Centrifuge, benchtop, Model 4-16K  Sigma    #10475 

Freezer -20°C     Liebherr ProfiLine 

Fridge      LiebherrProfiLine 

Laminar flow MSC-Advantage 1.8  Thermo Scientific  #51026370 

Laminar flow BH 2006-D 195  Faster 

PCR 96 well Fast Thermal Cycler, Veriti Applied Biosystems 

Pipettes     Gilson 

Electrophoresis system, Sub-Cell GT BioRad   #170-4401 
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Electrophoresis system power supply BioRad    

ThermoMixer,MKR 13   HLC BioTech 

Ultra-low Temp.Freezer Forma 900 Series Thermo Scientific 

UV gel documentation   witec ag 

 

3.1.7 Consumables 

Animal experimentation 

Animal Lancet 5mm    Goldenrod 

BD Microtainer SST Tubes   BD     # 365951 

Butterfly     BD Valu-Set   #387425 

Capillaries     HirschmannLaborgeräte #903 02 08 

Glass capillaries    BlaubrandintraMark  #7087 07 

Insulin syringe 0,3ml    BD Micro-Fine  #320837 

Insulin syringe 0,5ml    BD Micro-Fine  #320812 

Insulin syringe 1ml    BD Micro-Fine  #324811 

LuerLock syringes 3ml   BBraunOmnifix  #4617022V 

LuerLock syringes 5ml   BBraunOmnifix  #4617053V 

Needles 26G x 
3
/8 (0,45mm x 10mm) BD Microlance 3 #300300 

Needles 18G x 1
1
/2 (1,2mm x 40mm) BD Microlance 3  #304622 

Scalpels, surgicaldisposable   B.Braun   #5518075 

Sugi      Kettenbach   #31602 

Suture material    Ethicon   #6683H 

Syringe filter 0,22µm    TPP    #99722 

 

 Proteinbiochemistry 

Cuvettes     Sarstedt   #67.742 

Dialysis Cassette, Slide-A-Lyzer 3,5  Pierce    #66 110 

F96Maxisorp immunoplate   Nunc    #442404 

Poly-Prep Chromatography Columns, 5ml BioRad   #731-1550 

PP Centrifuge and Test Tubes, 14ml  BD    #352059 
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 Histology and immunohistochemistry 

24 well cell culture plate, cellstar  Greiner bio-one  #662 160 

Embedding cassette, Uni-Cassette Biopsy green Sakura    #4174 

Microscope cover glasses, 22x22mm VWR    #631-1570 

Microscope cover glasses, 24x50mm VWR    #631-1574 

Microscope slides, Superfrost Plus  Menzel GmbH  #J1800AMNZ 

Microtome blade    Feather   #S35 

Razor blade, stainless steel, uncoated GEM    #62-0167 

Superglue, Cyanolit universal classic 3M    #241-D 

Tubes for cryo asservation   Semadeni   #1661 

 

 Others 

Combitips Plus 1.0ml    Eppendorf   #0030 069.234 

Combitips Plus 5.0ml    Eppendorf   #0030 069.250 

Eppendorf tubes, safe lock, 1.5ml  Eppendorf   #0030 120.086 

Eppendorf tubes, safe lock, 2.0ml  Eppendorf   #0030 120.094 

Falcon tubes, 15ml    Nunc    #366052 

Falcon tubes, 50ml    BD    #352070 

Micro Amp Fast reaction tubes  Applied Biosystems  #4358293 

Protein LoBind Tubes 0.5ml   Eppendorf   #022431064 

 

3.1.8 Software 

Fiji open source image processing software http://fiji.sc/; Schindelin et al., 2012  

GraphPadPrism 5.01    GraphPad Software, Inc. 

Huygens Essential    Scientific Volume Imaging 

LSM Image Browser Version 4.2.0.121 Zeiss 

LSM 510 Version 4.0 SP2   Zeiss 

NeuronStudio (Beta) Version 0.9.92  CNIC: http://research.mssm.edu/cnic/tools-

ns.html 

Pannoramic Viewer 1.15 RTM  3D Histech Ltd 

Tissue Studio Version 2.0.4   Definiens Developer XD 64 

 

http://research.mssm.edu/cnic/tools-
http://research.mssm.edu/cnic/tools-
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3.2 Methods 

3.2.1 Genotyping of EGFP-M positive animals 

Expression of EGFP in cortical neurons was determined by PCR. DNA was extracted from 

ear stamps with QuickExtract DNA Extraction Solution. The biopsy was roughly mixed in 

50 µl QuickExtract DNA Extraction Solution and incubated shaking for 15 min at 65°C 

followed by an incubation step at 98°C for 2 min. 1.5 µl extracted DNA from the supernatant 

was used as template for genotyping PCR (see Table 1 Genotyping PCR for EGFP expression 

and Table 2 PCR program for EGFP genotyping). 

The Primers GFP-geno Fwd and GFP-geno Rev (see all primer sequences in materials) were 

used for expression of the target sequence that results in a 173 bp PCR product. The Primers 

GFP-intctrl Fwd and GFP-intctrl Rev served as internal positive PCR control and result in a 

324 bp amplicon. EGFP positive animals showed a strong DNA band at 173 bp and a weak 

control amplicon at 324 bp, whereas EGFP negative animals showed only a strong DNA band 

at 324 bp.  

PCR products were separated by electrophoresis on a 2% agarose gel stained with SybrSafe 

DNA gel stain (1:10000). PCR products were visualized using ultraviolet light. 

 

Table 1 Genotyping PCR for EGFP expression  

Reagents Volume (12.5µl) 

Green GoTaq reaction buffer ,5 x 2.5 µl 

dNTPs (10 mM, each 2.5 mM) 0.5 µl 

Primers (10 µM) each 0.5 µl 

GoTaq DNA Polymerase 0.1 µl 

Water Molecular biology grade 5.9 µl 

DNA 1.5 µl 

 

Table 2 PCR program for EGFP genotyping 

Temperature (°C) Time (sec) Replication 

94 180 1x 

94 30 

35x 60 60 

72 60 

72 600 1x 

4 indefinite  
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3.2.2 Expression and purification of recombinant rat MOG1-125 

The N-terminal sequence of recombinant rat MOG1-125 (amino acids 1-125) was produced as 

previously described (Adelmann et al., 1995). His-tagged MOG1-125 was expressed in 

Escherichia coli (E.coli) strain BL21 and purified using Ni-NTA columns. A small amount of 

the bacterial glycerol stock was streaked onto a LB agar plate containing 40 µg/ml 

Kanamycin and grown at 37°C overnight. A preparatory culture of 6 ml LB Medium 

(40 µg/ml Kanamycin) was inoculated with a single colony of MOG1-125 expressing E.coli and 

incubated for 12 h at 37°C. A large-scale expression was performed in 2 l LB-Media 

(40 µg/ml Kanamycin) inoculated with 4 ml of the preparatory culture. Bacteria were 

incubated at 37°C until they reached an OD600 of 1. Then protein over expression was induced 

by addition of 1 mM IPTG and cultures were incubated for further 4 h at 37°C. Bacteria were 

harvested at 6000 rpm for 15 min at 4°C and dry pellets were stored at -20°C overnight. 

All purification steps (including centrifugations) were performed at 4°C. After resuspension 

of each bacteria pellet in 10 ml sonication buffer containing lysozyme, DNase I and protease 

inhibitor cocktail tablet (e.g. 70 ml sonication buffer + knife point lysozyme + 70 µl DNase I 

+ 1 Complete protease inhibitor cocktail tablet), cells were lysed by pulsed sonication. 

Sonication (1 puls/second) was performed six times for 1 min at intensity between 40-45%. 

Lysed bacteria suspensions were centrifuged at 11000 rpm and pellets were resolved in wash 

buffer. Further preparation and extraction of insoluble MOG1-125 present in inclusion bodies 

was performed using a homogenizer with a motorized pistil at 500 revolutions per minute. 

Suspensions were homogenized three times in wash buffer and one time in sonication buffer. 

After every homogenizing step suspensions were centrifuged at 14000 rpm. After the last step 

pellets were stored at -20°C. 

Each MOG1-125 pellet was resolved in 11 ml solubilisation buffer on a circular mixer for 

several hours and purified as follows. Nickel-NTA-columns contained 5 ml Talon Metal 

Affinity Resin that was equilibrated successively in 2 M, 4 M, 6 M urea solutions prepared in 

sonication buffer and finally in 8 M urea. In each equilibration step the resin was resolved in 

urea solution, mixed on a circular mixer for 20 min and centrifuged at 1000 rpm for 4 min. 

Supernatants were discarded. The resuspended MOG1-125 was loaded on the equilibrated resin 

and incubated for 2 h on a circular mixer. After loading, the resin was washed three times 

with 8 M urea for 20 min on a circular mixer and filled into the Poly-Prep Chromatography 

Columns. MOG1-125-loaded resin was washed further two times with 8 M urea and 5 ml 5 mM 

imidazole. MOG was eluted by addition of 40 mM imidazole. 1 ml fractions were collected 
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and MOG1-125 containing fractions were pooled (measured by a colour change using Bradford 

Protein Assay 1x Dye Reagent). 

Purified MOG1-125 was dialysed two times against 10 mM acetate buffer for 24 h. MOG1-125 

concentration was determined by a Bradford assay using Bradford Protein Assay 1x Dye 

Reagent and BSA standard protein dilutions. Protein degradation was analyzed by SDS-

PAGE and Coomassie staining. Finally MOG1-125 was diluted in water to a final concentration 

of 3 µg/µl and stored in aliquots at -80°C. 

 

3.2.3 SDS-PAGE 

SDS-PAGE was performed using a 4% stacking gel and 15% separation gel. A maximum of 

24 µg MOG1-125 were dissolved in TE buffer containing 1x sample loading buffer. MOG 

samples were heated at 95°C for 5 min and loaded into the stacking gel. A protein standard 

was used as molecular weight marker. The gel was initially run at 150 V in SDS running 

buffer until the lanes were parallel. Subsequently voltage was increased to 200 V for the 

separation. 

After electrophoresis gel was stained by 0.1% Coomassie stain solution for 5 min and washed 

several times with Coomassie destain solution until the lanes were visible. 

 

3.2.4 Animal experiments 

Animal experiments were performed in the Department of Neuropathology, University of 

Göttingen and the animal facility of the University Medical Center Göttingen in accordance 

with the guidelines and approved by the corresponding authorities in Niedersachsen 

(Germany) and in the Department of Pathology and Immunology, University of Geneva and 

in the animal facility of the University Medical Center Geneva in accordance with the 

guidelines and approved by the corresponding authorities in Geneva (Switzerland). 

Animals were kept in a 12:12 h light/dark cycle with food and water ad libitum.  

 

3.2.5 Blood sampling 

Animals were anaesthetized by inhalation of isoflurane and blood samples were taken by 

puncturing the submandibular vein on the day of immunization and the second and the fifth 

week after immunization. Animals were fixed tight at the head and a lancet was pricked into 
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the vein. Blood (~5 drops) was collected in a BD Microtainer tube. After 30 min of 

coagulating tubes were centrifuged at 15000 g for 1.5 min and stored at -20°C. 

 

3.2.6 Induction of EAE 

EAE was induced in eight to ten week old male and female BiozziABH mice and F1 hybrids 

of BiozziABH and EGFP-M mice. Animals were anesthetized by inhalation of isoflurane and 

immunized subcutaneously in all four flanks with 50 µg recombinant rat MOG1-125 emulsified 

in incomplete Freund’s adjuvant (IFA) supplemented with 10 mg/ml Mycobacterium 

Tuberculosis H37Ra in a total volume of 200 µl. Immunization was repeated one week later. 

Additionally 200 ng Pertussis toxin was administered intraperitoneally on both days of 

immunization and also the following day. Control animals were treated in an analogous 

manner but emulsions did not contain MOG. Clinical signs and weight were monitored daily 

from the tenth day. 

Clinical presentation was classified by an EAE scoring system ranging from score 0 to 5 (0: 

no overt clinical sings; 0.5: paresis of the tip of the tail; 1: complete tail paralysis; 1.5: 

difficulties to straighten up from a dorsal position; 2: hind limb paresis; 2.5: partial hind limb 

paralysis; 3: complete hind limb paralysis; 3.5: partial fore limb paralysis; 4: complete fore 

limb paralysis; 5: moribund). 

 

3.2.7 Intracerebral stereotactic injection 

Cortical lesions were induced by injection of 0.5 µg recombinant mouse TNF-α and 1500 U 

recombinant murine IFN-γ into the cortex three or five weeks after EAE induction as 

indicated in figure legends. For the surgical procedure animals were anesthetized using 

ketamine and xylazine containing acepromazine. 

BiozziABH mice with a clinical score or those who have been developed a clinical score were 

anesthetized by intraperitoneal (i.p.) injection of 67.5 mg/kg body weight ketamine followed 

by an injection of a mixture consisting of 8.8 mg/kg body weight xylazine and 1.35 mg/kg 

body weight acepromazine. BiozziABH mice without any clinical sign were anesthetized by 

i.p. injection of 75 mg/kg body weight ketamine followed by an injection of a mixture 

consisting of 9.75 mg/kg body weight xylazine and 1.5 mg/kg body weight acepromazine. 

F1 hybrids were anesthetized by i.p. injection of 90 mg/kg body weight ketamine followed by 

an injection of a mixture consisting of 11.7 mg/kg body weight xylazine and 1.8 mg/kg body 
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weight acepromazine. Anesthesia was administered in sterile PBS to maintain normal 

hydration during the surgical procedure.  

After loss of consciousness, mice were mounted on a stereotaxic device equipped with a 

mouse adaptor and mouse ear bars to hold the head fixed. The scalp was opened and a fine 

hole was drilled into the skull 0.6 mm caudal to the bregma and 2.2 mm lateral to the sagittal 

suture (Figure 1A). To avoid damage of the brain, the last part of the skull was removed 

carefully with a surgical micro knife giving access to the surface of the brain. A fine drawn 

glass capillary (outer diameter ~25 µm) was inserted 1.2 mm in an angle of 60° into the cortex 

(Figure 1B). These coordinates allow a targeted cytokine injection 0.6 mm caudal to the 

bregma, 1.2 mm lateral to the sagittal suture in a depth of 0.8 mm in the cortex. The addition 

of a blue marker dye (Monastral Blue) to the cytokine mixture allowed tracing of the lesion 

site. The cytokine mixture of 0.5 µg TNF-α and 1500 U IFN-γ was dissolved in sterile PBS 

and a total volume of 2 µl cytokine mixture was injected over a time period of 5 min. After 

the surgical procedure the skull was sealed by suturing the scalp and animals were kept warm 

until they woke up. In order to exclude tissue damage due to the penetration of the glass 

capillary, sterile PBS containing the blue marker dye was injected in MOG-immunized 

animals. 

 

 

Figure 1 Strategy of targeted cortical EAE 

Defined coordinates for intracerebral stereotactic injection are shwon. (A) Schematic representation of 

the anatomical features after opening the scalp. The bregma is used as reference point for setting the 

stereotactic coordinates. A hole was drilled 0.6 mm caudal to the bregma and 2.2 mm lateral to the 

sagittal suture. (B) The glass capillary was inserted 1.2 mm in an angle of 60° into the cortex. These 

coordinates allowed the injection of the cytokines 1.2 mm lateral to the sagittal suture in a depth of 

0.8 mm. The cytokine mixture contained a blue marker dye allowing tracing of the lesion site. 
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3.2.8 Enzyme-linked immunosorbent assay (ELISA) 

Anti-MOG autoantibody titers were measured in naïve mice and two and five weeks after 

EAE induction. Each well of a 96-well Nunc plate was coated with 0.4 µg recombinant rat 

MOG1-125 in 1x PBS overnight at 4°C Wells were blocked with 5% BSA in 1x PBS for 1 h at 

room temperature and washed three times with 1x PBS. Sera were prediluted 100-fold in 

PBS-T0.05%/10% FBS. Beginning with the 100-fold sera dilution antibody titers were titrated 

in 3-fold dilutions in 11 steps in PBS-T0.05%/10% FBS and incubated for 2 h at room 

temperature in the well plate. Autoantibodies were detected by a goat-anti-mouse IgG-

peroxidase conjugate (1:10000) for 1 h at room temperature and developed with 50 µl TMB-

US per well for 5 min. The reaction was stopped by addition of 50 µl 1 N sulfuric acid and the 

optical density was measured at 450 nm. After both antibody incubation steps plates were 

washed at least four times with PBS-T0.05%. Threshold for seropositivity was defined as an 

absorption value higher than a control animal achieved in a 300-fold dilution. 

 

3.2.9 Histology of mouse brain tissue 

3.2.9.1 Tissue processing 

3.2.9.1.1 Perfusion and sectioning 

Tissue was analyzed histologically three days and three weeks after intracortical cytokine 

injection. For this purpose, animals were anaesthetized intraperitoneally with a lethal dose of 

Esconarkon. After loss of consciousness mice were perfused transcardially with 15 ml ice-

cold 1x PBS followed by 50 ml 4% ice-cold paraformaldehyde over 10 min (perfusion 

velocity ~6.5 ml/min) using a peristaltic pump. Brains were carefully dissected from the skull 

and postfixed in 4% paraformaldehyde for 24 h at 4°C. Brain tissue was then transferred into 

1x PBS. Coronal slices of ~3 mm containing the injection site (Figure 2) were cut out and 

either embedded in paraffin using an automated tissue processor (gradually dehydration to 

paraffin) or cryoprotected in Tissue-Tek and stored at -20°C or -80°C. Tissue obtained from 

BiozziABH or EGFP-negative F1 hybrids was embedded in paraffin whereas tissue from 

EGFP-positive F1 hybrids was cryoprotected. Paraffin-embedded tissue was trimmed until the 

injection site (recognized by the blue marker dye within the tissue) and then 1-2 µm thin 

coronal sections containing the lesion were mounted on microscope slides. Sectioning was 

performed using a rotary microtome. Tissue slices obtained from EGFP-positive F1 hybrids 
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were incubated in 30% sucrose for 3 days at 4°C, embedded in Tissue-Tek and stored at -

20°C. Cryosections of 30 µm thickness were cut directly before staining using a cryostat. 

 

 

Figure 2 Coronal sectioning of the injection site 

A coronal slice including the injection site of about 3 mm thickness was carefully cut out from the 

fixed brain as shown in the scheme. The exact injection site was visible on the surface of the brain due 

to the blue marker dye. The coronal slice was either embedded in paraffin or cryoprotected for further 

trimming to the lesion and obtaining slices for histological analyses. 

 

3.2.9.1.2 Deparaffinizationa and rehydration 

Paraffin-embedded tissue sections were incubated in a dry oven at 55-60°C overnight. 

Deparaffinization was performed successive in four bath of Ultraclear for 10 min respectively 

and rehydrated by incubating the slides twice in 100% ethanol, one time in 90% ethanol, one 

time in 70% ethanol and one time in 50% ethanol in water for 5 min respectively and finally 

washed in distilled water.  

For dehydration tissue sections were incubated in the same bath in a reversed order for 5 min 

respectively, mounted in Ultrakitt and coverslipped. 

 

3.2.9.2 Histochemistry 

3.2.9.2.1 Bielschowsky’s silver staining 

Axon density was determined by Bielschowsky silver staining. Deparaffinized tissue sections 

were washed with distilled water and afterwards incubated in 20% silver nitrate solution for 

20 min. Following washing in distilled water, sections were incubated in 20% silver nitrate 

solution containing 5% ammonium hydroxide for 15 min protected from light. Sections were 

transferred in 0.6% ammonium hydroxide and swayed. 1/35 volume of the developer solution 

was added to the 20% silver nitrate solution containing 5% ammonium hydroxide while 

stirring. Subsequently the sections were transferred into the solution and developed until the 
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colour of the sections turned brown. Following washing in distilled water, sections were 

incubated in 2% sodium thiosulfate solution for 2 min. Finally sections were washed with tap 

water, dehydrated (as described above), mounted in Ultrakitt and coverslipped. 

 

3.2.9.3 Immunohistochemistry 

3.2.9.3.1 Antigen retrieval for CD3, Mac-3, NeuN in paraffin-embedded sections 

Immunostainings for some antigens required an antigen retrieval step in order to unmask 

antigenic sites that were masked during fixation  

Rehydrated tissue sections were treated for 30 sec at 125°C under pressure (20-22 psi) in 1x 

citrate buffer (pH = 6) in a Pascal pressure chamber. Antigen retrieved sections were allowed 

to cool down, washed in distilled water and subsequently stained. 

 

3.2.9.3.2 Immunohistochemistry for MBP and NeuN in paraffin-embedded sections 

Antigens in paraffin-embedded sections that were recognized by a primary mouse or rabbit 

antibody were stained using the Dako EnVision System. All staining steps were performed at 

room temperature in a humid chamber. Sections were washed in 1x Dako wash buffer for 

2 min and blocked with Dako Real peroxidase blocking solution for 5 min. After two washing 

steps in 1x Dako wash buffer for 5 min, sections were treated with the primary antibody 

diluted in Dako Real antibody diluent for 1 h. Primary antibody dilutions are as follows: 

1:1000 for MBP and 1:50 for NeuN. 

After washing with 1x Dako wash buffer for 2 min, Dako EnVision HRP labeled polymer 

anti-rabbit or anti-mouse IgG secondary antibody was added for 30 min. After that, sections 

were washed twice with 1x Dako wash buffer for 5 min and developed with DAB-containing 

developer solution (20 µl DAB chromogen + 1 ml DAB substrate buffer). Tissue sections 

were washed with tap water followed by counterstaining with Mayer’s Hämalaun. Finally, 

sections were dehydrated (as described above), mounted in Ultrakitt and coverslipped. NeuN-

staining required additionally a Fab blocking and FBS blocking step before primary antibody 

treatment. Fab blocking was performed by incubating the sections with Fab Fragment Goat-

anti-mouse IgG diluted 1:50 in Dako Real antibody diluent after peroxidase blocking for 1 h. 

Subsequently sections were blocked with 10% FBS diluted in Dako Real antibody diluents for 

20 min and stained with the primary antibody thereafter. NeuN sections were not 

counterstained. 
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3.2.9.3.3 Immunohistochemistry for Mac-3 and CD3 in paraffin embedded sections 

Antigens in paraffin-embedded sections that were recognized by a primary rat antibody were 

stained using a Biotin-Streptavidin System from Dako. All staining steps were performed at 

room temperature in a humid chamber. Peroxidase blocking and incubation with primary 

antibodies was performed as described above. Primary antibody dilutions are as follows: 

1:100 for CD3 and 1:200 for Mac-3. 

After washing with 1x Dako wash buffer for 2 min, tissue sections were incubated with a 

biotinylated Rabbit Anti-Rat antibody diluted 1:250 in Dako Real antibody diluent for 15 min. 

After two washing steps with 1x Dako wash buffer for 5 min, Dako Real Streptavidin 

Peroxidase (HRP) was added for 15 min. Subsequently the sections were washed twice with 

1x Dako wash buffer for 5 min and developed with DAB-containing developer solution as 

described above. Tissue sections were washed with tap water followed by counterstaining 

with Mayer’s Hämalaun. Finally, sections were dehydrated (as described above), mounted in 

Ultrakitt and coverslipped. 

 

3.2.9.3.4 Immunohistochemistry for MBP in EGFP positive cryosections 

Cryosections (40 µm) were cut and directly transferred in a 24 well cell culture plate 

containing 1x PBS. Sections were stained free-floating (protected from light) at room 

temperature on a shaker if not indicated otherwise. Sections were washed three times with 1x 

PBS for 10 min, treated for 15 min with cooled methanol at -20°C and washed three times 

with 1x PBS for 15 min. Sections were blocked in 1x PBS containing 10% FBS and 0,5% 

Triton X-100 for 1 h and treated with the primary antibody diluted in 1x PBS containing 

1% FBS and 0.5% Triton X-100 overnight. Primary antibody dilution was 1:200 for MBP. 

After washing three times in 1x PBS for 10 min, sections were treated with the secondary 

fluorescence labeled (Alexa Fluor 555) goat-anti-rabbit IgG (H+L) antibody diluted 1:200 in 

1x PBS containing 1% FBS and 0.5% Triton X-100 for 3 h. Sections were washed three times 

with 1x PBS for 30 min. DAPI was stained 1:10000 in 1x PBS for 15 min and sections were 

washed three times with 1x PBS for 10 min. Sections were stretched in distilled water 

containing 0.1% gelatin and 10% ethanol and put on slides, mounted in Fluoprep and 

coverslipped. 
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3.2.10 Histology of human brain tissue 

3.2.10.1 Human tissue collection 

Tissue samples were collected from four autopsy cases with multiple sclerosis and three 

control autopsy cases without neurologic disease. Brains were stored immediately after death 

in 4% formalin with salt for one to two month. Brain tissue containing the cortex was 

dissected at one topographic area, namely frontotemporal lobe, of both hemispheres. Tissue 

blocks were split into two parts and one part was embedded in paraffin and stained for MBP 

to assess cortical demyelination (MBP staining was performed according to the MBP staining 

protocol for mice with the exception, that human sections required the above mentioned 

antigen retrieval in 1x citrate buffer using a Pascal pressure chamber). The second part of the 

block was processed for Golgi-Cox impregnation to study cortical dendritic pathology. 

 

3.2.10.2 Golgi-Cox impregnation 

In order to assess dendritic pathology in human brain tissue a Golgi-Cox impregnation was 

performed. Formalin-fixed tissue blocks were washed three times with 0.4 M Soerensen 

phosphate buffer (pH = 7,4) at room temperature for washing out the fixative. Subsequently 

the blocks were incubated afloat in a solution consisting of 5% potassium dichromate, 5% 

mercury chloride and 5% potassium chromate for three weeks protected from light at room 

temperature. After postfixation in 10% formalin for 1 h at 37°C, tissue blocks were cut in 

70 µm sections using a vibratome. Tissue slices were treated with 5% sodium carbonate for 

2 min at room temperature, washed with distilled water and mounted on gelatin-coated slides. 

Sections were mounted in Ultrakitt and coverslipped for further analyses. 

 

3.2.11 Image acquisition, processing  and analyses of histological tissue sections 

Brightfield histological slides were scanned in an automated mode with a Mirax Midi slide 

scanner equipped with a Plan-Apochromat 20x/0.8 objective and detected with a Marlin F-

146C IRF Medical camera. Images were either analyzed manually using Pannoramic Viewer 

1.15 or automatically in Tissue Studio Version 2.0.4. 

Cortical de- and remyelination was analyzed in scanned MBP-stained paraffin sections on the 

ipsilateral (injected) hemisphere using Pannoramic Viewer 1.15 by measuring the area of 

demyelination and the length of subpial demyelination.  
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Axonal density was analyzed on the ipsilateral hemisphere in Bielschowsky’s silver-stained 

tissue sections. Myelin density was determined in adjacent MBP-stained sections. Axon and 

myelin density was measured in cortical layer I and II (depth of 150µm from the pial surface 

into the cortex) with a counting grid under a light microscope at 40x magnification. 

Intersections of axons and myelin with the counting grid were counted in four visual fields 

alongside the pial surface. One visual field encompassed an area of 200 µm x 150 µm. 

Inflammatory T cell infiltrates were determined in scanned CD3-stained paraffin sections, 

total activated, round/oval-shaped and foamy macrophages/microglia were assessed 

respectively in scanned Mac-3-stained sections on the ipsilateal hemisphere using Pannoramic 

Viewer 1.15. The number of cells was counted in different cortical layers, namely cortical 

layers I+II, layer III+IV and V of at least 0.15mm
2 

respectively or in the combined cortical 

layers I-V of at least 0.45mm
2
.  

Cortical thickness was measured paramedially in scanned NeuN-stained paraffin sections on 

both hemispheres using Pannoramic Viewer 1.15. 

Neuronal density was analyzed in scanned paraffin sections stained for neuronal nuclei 

(NeuN) on the ipsilateral and contralateral hemisphere in cortical layers II, III+IV and V as 

well as in combined cortical layers II-V using Tissue Studio Version 2.0.4 in comparable area 

sizes as described above for inflammatory infiltrates. Tissue Studio counted NeuN
+
 neurons 

automatically by detection of DAB-stained, brown nuclei and perikarya in marked regions of 

interest. 

Dendrites and dendritic spines in mice were visualized in MBP-stained cryosections of EGFP 

positive F1 hybrids. Segments of the main dendritic branch extending upright to the surface of 

the brain of neurons in cortical layer V-VI were imaged in distinct distances from the soma. 

Images of 44 µm x 44 µm were aquired using a confocal laser scanning microscope 

(LSM510Meta) equipped with an upright Zeiss Axio Imager Z1 microscope. Images were 

captured with a Plan Apochromat 63x 1.4 Oil DIC objective using an Argon/2 laser (488 nm) 

in a coupled detector. EGFP-expressing neurons were detected by emitted fluorescence. To 

achieve ideal sampling for image processing (deconvolution) confocal stacks were scanned in 

z-direction in an interval of 200 nm to obtain an overlap of 75%. Each frame was scanned 

four times and averaged. Voxel sizes of 75 nm x 75 nm x 200 nm were obtained using a 3x 

zoom. Images were deconvolved using Huygens Essential to improve resolution laterally and 
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axially. Dendrites and dendritic spines were analyzed using NeuronStudio (Beta) Version 

0.9.92. Dendritic shaft radii, general spine densities, spine densities of specific spine shapes 

and spine head volumes were computed. Spines were calssified according to their 

morphologic characteristics into mushroom, stubby or thin by using the default values in 

NeuronStudio (Beta) Version 0.9.92 (CNIC). In detail, spines that have a head to neck 

diameter ratio greater than 1.1 were classified as thin or mushroom. Spines that meet that 

criteria and have a head diameter greater than or equal to 0.35 µm were classified as 

mushroom, otherwise as thin. Spines that have a head to neck diameter ratio smaller than or 

equal to 1.1 and a spine length to head diameter ratio greater than 2.5 were classified as thin, 

otherwise as stubby. Changing radii were measured by the sum of slopes between radii from 

two adjacent nodes divided by the dendritic length meaning the more irregularly the dendrite 

the more variable is the radius and the higher the sum of slopes for an imaged dendritic 

segment. 

Dendritic pathology in MS cases was investigated in Golgi-Cox-impregnated sections. 

Dendrites were classified to be located within the lesion, at the lesion border or in the NAGM 

according to the MBP staining on adjacent sections and localization of the neuronal soma. 

Dendrites of cortical layer IV-VI neurons were imaged. In detail, basal segments of the main 

dendritic branch extending upright to the surface of the brain were studied in 50 µm 

successive distances from the soma. Image acquisition was performed as described above. 

Golgi-Cox-impregnated structures were detected by the reflected laser light. For this purpose, 

the microscope was set up only with a 80/20 beam splitter. Image sampling and processing 

(deconvolution) was performed as described above. Dendritic spines and branches per 

dendritc length were counted and dendritic width was measured using Fiji software.  

 

3.2.12 Statistical analyses 

Data illustration and statistical analysis was performed using Prism 5.01 (GraphPad).  
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4 RESULTS 

4.1 Development of a targeted EAE model of cortical demyelintion 

EAE was induced in BiozziABH mice and F1 hybrids generated from BiozziABH and EGFP-

M mice. Animals were immunized twice against recombinant MOG1-125 in CFA. Controls 

were treated with CFA alone. Cortical demyelination was elicited five and three weeks after 

the first immunization in BiozziABH and F1 hybrids respectively by the intracortical injection 

of TNF-α and IFN-γ as described above (Figure 1). Control mice were treated equally. Brain 

tissue was collected three days and three weeks after lesion induction for histological analyses 

(Figure 2). Injection site was recognized by a blue marker dye. Clinical EAE scores (if 

occurred) are not shown as they reflect lesions affecting the spinal cord but not the here 

investigated cortical GM. 

 

4.2 Immunization with MOG1-125 leads to high antibody titers in serum 

Myelin-specific autoantibodies may play a crucial role in triggering demyelination in the 

cerebral cortex. Therefore, mice were immunized with recombinant MOG1-125 instead of 

MOG-peptide. Autoantibody titers against MOG1-125 were measured two and five weeks after 

immunization in sera of BiozziABH and F1 hybrids using ELISA (Figure 3). MOG-

immunized BiozziABH (Figure 3A) and F1 hybrids (Figure 3B) developed autoantibody titers 

from week two after the first immunization that increased slightly in BiozziABH and 

remained stable in F1 mice to week five. In naïve mice and control animals that were treated 

with CFA alone autoantibodies against MOG were not detected (nd). 

 

 

 

 

 

 

 

 

 

Figure 3 MOG1-125-immunization induces high autoantibody titers 

Autoantibody titers against MOG1-125 were measured at indicated timepoints after immunization in (A) 

BiozziABH and (B) F1 hybrids. Data are shown as mean + SEM. nd = not detected. 
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4.3 Cortical demyelination is primarily located at subpial areas, reveals partial 

remyelination and mimics cortical MS lesions 

Demyelinated lesions were induced by intracortical (i.c.) injection of the proinflammatory 

cytokines TNF-α and IFN-γ five weeks and three weeks after immunization against MOG1-125 

in BiozziABH and F1 hybrids respectively. Cortical demyelination as well as remyelination 

were assessed on MBP-stained paraffin sections on the injected (ipsilateral) hemisphere three 

days and three weeks after cytokine injection respectively. Induced cortical plaques could be 

classified as active lesions three days after cytokine injection as evidenced by the presence of 

myelin-laden cells (Figure 4). These cells, corresponding to macrophages/microglia, 

phagocytozed myelin debris as indicated by cytoplasmic colocalization of MBP
+
 fragments at 

the lesion border of demyelinated cerebral cortex. Generally, MBP-laden 

macrophages/microglia are indicative for active demyelination. 

Furthermore, cortical demyelination was detected in MOG-immunized BiozziABH as well as 

F1 hybrids three days after lesion induction but not in controls (Figure 5). Both experimental 

groups showed capacity for widespread remyelination three weeks after lesion induction 

(Figure 5). 

 

 

Figure 4 Active demyelination can be observed three days after cytokine injection 

A representative picture of a cortical lesion border (marked by the dotted line) showing demyelination 

at the top and the surrounding NAGM at the bottom in a MBP-stained section. Note at the lesion 

border phagocytes containing MBP
+
 fragments can be observed (boxes a, b, and c, arrows in the 

higher magnification of boxes a, b, and c on the right-hand side) indicating ongoing demyelination. 
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Topologically, lesions primarily affected subpial areas with demyelination extending from the 

pial surface mostly to cortical layer II (Figure 5). These lesions spread laterally as band-like 

demyelinated area. Similar cortical lesion types were seen primarily in chronic MS patients 

and were reminiscent of the described lesion type III affecting subpial areas (Bo et al., 2003b; 

Peterson et al., 2001). Purely intracortical lesions could as well be detected and were observed 

as small round-shaped demyelinated areas, centered on blood vessels (Figure 5). This lesion 

type was less frequently observed than subpial demyelination and accounted for only 1% of 

the total demyelinated area in BiozziABH mice and 4% of the total demyelinated area in F1 

hybrids. 

Targeted cortical demyelination was quantified as the area of demyelination (subpial as well 

as intracortical) in MOG-immunized BiozziABH and F1 hybrids three days and three weeks 

after cytokine injection (Figure 5). The extent of demyelination was similar between 

BiozziABH (0.51 ± 0.09 mm
2
, Figure 5A) and F1 hybrids (0.49 ± 0.11 mm

2
, Figure 5B) at 

day three. Three weeks after cytokine injection both experimental groups showed a significant 

reduction in demyelinated area and a partial restoration of myelin in the ipsilateral cortex, 

indicating a transient cortical demyelination (Biozzi: 0.02 ± 0.003 mm
2
, F1 hybrids: 

0.10 ± 0.02 mm
2
, Figure 5A and B). The residual area of demyelination at week three was 

significantly smaller in BiozziABH mice compared to F1 hybrids (p = 0.0159, statistical 

evaluation was performed as indicated in the legend of Figure 5). Therefore, remyelination in 

BiozziABH mice is more efficient than in F1 hybrid mice. The intracerebral injection of PBS 

alone led to no signs of demyelination in a MOG-immunized animal (data not shown). 

In addition to the demyelinated area the length of subpial demyelination was analyzed on the 

same MBP-stained sections. The lateral extension of subpial demyelination was comparable 

in BiozziABH (3.60 ± 0.51 mm, Figure 5A) and F1 hybrids (3.52 ± 0.31 mm, Figure 5B) 

three days after intracortical cytokine injection. According to the reduced area of 

demyelination the length of subpial demyelination was also significantly reduced in both 

animal strains three weeks after lesion induction. Again BiozziABH showed a significant 

more efficient regeneration (BiozziABH 0.14 ± 0.01 mm and F1 hybrids 0.81 ± 0.14 mm, 

p = 0.0159, statistical evaluation was performed as indicated in the legend of Figure 5A and 

B). 

Since similar extents of cortical demyelination were observed in BiozziABH and F1 hybrids 

and the intercross with C57BL6/J animals could allow the use of transgenic animals as e.g. 

reporter strains in F1 hybrids, this work further focused on the analysis of the effects of de- 

and remyelination in F1 hybrids. 



RESULTS 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Targeted cortical demyelination is followed by partial remyelination 

Representative pictures and quantification of demyelination (area and subpial length) in (A) 

BiozziABH (n = 4 animals per group) and (B) F1 hybrids (n = 5 animals per group) at indicated time 

points after cytokine injection revealed widespread cortical demyelination (indicated by the dotted 

line) at three days followed by partial remyelination at three weeks. Injection site is marked by an 

asterisk. Data are shown as mean + SEM. Statistical evaluation was performed by a Mann-Whitney 

test. * indicates statistical significance (* = p<0.05, ** = p<0.01). nd = not detected. 
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4.4 Axonal preservation but incomplete remyelination in targeted cortical 

demyelinated lesions 

Although remyelination occured within three weeks after cytokine injection this process 

remained incomplete as seen by a less dense myelin staining compared to controls (Figure 6) 

and residual small demyelinated areas (Figure 5). In order to investigate whether the partial 

remyelination may be due to axonal loss, axonal density was determined in Bielschowsky-

stained paraffin sections in F1 hybrids in cortical layer I-II during de- and remyelination on 

the ipsilateral hemisphere (Figure 6C). Furthermore myelin density was assessed equally in 

de- and remyelinated cortex in adjacent MBP-stained paraffin sections (Figure 6A). 

Afterwards, the proportion of myelinated axons was determined by calculating the ratio of 

myelin intersections to axon intersections (Figure 6E). Corroborating the previous analyses of 

the extent of demyelination, during ongoing demyelination three days after cytokine injection 

subpial myelin density in cortical layer I-II was significantly reduced in MOG-immunized F1 

hybrids (10.35 ± 2.94 MBP
+
 intersections/field) compared to control animals (39.90 ± 3.15 

MBP
+
 intersections/field). Three weeks after cytokine injection myelin density significantly 

regenerated in MOG-immunized animals (22.35 ± 3.35 MBP
+
 intersections/field) compared 

to demyelinated animals. However, the density of myelin was still significantly decreased 

compared to control animals (42.00 ± 1.50 MBP
+
 intersections/field) similar to the above-

described results (Figure 6A and B). The axon density was comparable in MOG-immunized 

and control F1 hybrids at all timepoints with 104.10 ± 1.15 axon intersections/filed in MOG-

immunized F1 hybrids in comparison to 107.70 ± 4.68 axon intersections/field in controls at 

three days after cytokine injection. Three weeks after lesion induction MOG-sensitized F1 

hybrids revealed 98.95 ± 6.01 axon intersections/field compared to 97.15 ± 3.84 axon 

intersections/field in controls (Figure 6C and D), clearly demonstrating that no significant 

axonal degeneration occurred during de- and remyelination. Accordingly, the proportion of 

myelinated axons in demyelinated cortex (8.49 ± 3.13%) is significantly decreased compared 

to controls at day three (37.49 ± 3.91%) and to remyelinated cortex (22.79 ± 3.58%) three 

weeks after cytokine injection. Nevertheless, the proportion of myelinated axons is still 

significantly reduced in remyelinated cortex in comparison to controls (43.36 ± 1.44%) at 

three weeks after lesion induction (Figure 6E), indicating that only approximately 50% of 

demyelinated axons got remyelinated during the observed period of three weeks. 
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Figure 6 Axonal preservation in incomplete remyelinated lesions 

Representative pictures of (A) MBP- and (C) Bielschowsky-stained sections are depicted at indicated 

time points after cytokine injection in F1 hybrids. Quantification of myelin density (B), axonal density 

(D), and proportion of myelinated axons (E) in subpial areas revealed demyelination at three days 

followed by incomplete remyelination (arrows in A) at three weeks and preservation of axons at all 

indicated time points after lesion induction. All groups included n = 5 animals except for the MOG 

day 3 group of axon density and myelinated fraction (n = 4 animals). Data are represented as mean + 

SEM. Statistical evaluation was performed by a Mann-Whitney test. * indicates statistical significance 

(* = p<0.05, ** = p<0.01). 
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4.5 Cortical inflammation is transient after lesion induction 

4.5.1 Infiltration of T cells during demyelination 

Acitve cortical demyelination was shown to occur on a background of inflammation in MS 

patients (Lucchinetti et al., 2011) as well as in rats (Merkler et al., 2006b). Therefore, 

inflammatory infiltrates of T cells were assessed in CD3-stained paraffin sections in different 

cortical areas in the injected hemisphere three days and three weeks after intracortical 

cytokine injection (Figure 7). Cortical areas comprising cortical layer I+II, III+IV and V were 

analyzed separately and combined (cortical layer I-V). Infiltrating T cells were readily 

detectable in all analyzed cortical layers three days after cytokine injection and a small 

number of T cells was still visible at three weeks (Figure 7A, cortical layer I+II are shown). 

Quantitative analysis of cortical layers I-V proved the number of infiltrating T cells 

significantly increased in MOG-immunized F1 hybrids (47.58 ± 8.24 Total CD3
+
 T 

cells/mm
2
) in comparison to controls (21.82 ± 2.06 Total CD3

+
 T cells/mm

2
) at day three 

(Figure 7B). Three weeks later the T cell number significantly decreased in MOG-sensitized 

animals (6.33 ± 0.95 Total CD3
+
 T cells/mm

2
) and controls (0.32 ± 0.32 Total CD3

+
 T 

cells/mm
2
) (Figure 7B). Subanalysis investigating distinct cortical layers showed no overt 

increase of T cells in MOG-immunized mice in the cortical layer I+II (41.75 ± 18.93 CD3
+
 T 

cells/mm
2
), where demyelination is mostly prominent, compared to other cortical layers (layer 

III+IV 51.48 ± 24.08 CD3
+
 T cells/mm

2
 and layer V 49.51 ±22.85 CD3

+
 T cells/mm

2
). 

However, T cell numbers were significantly higher in all analyzed cortical areas in MOG-

immunized animals compared to controls at day three (layer I+II: 21.67 ± 5.05 CD3
+
 T 

cells/mm
2
, layer III+IV: 22.32 ± 9.81 CD3

+
 T cells/mm

2
, layer V: 21.47±9.23 CD3

+
 T 

cells/mm
2
) and to animals at three weeks (layer I+II: 11.34 ± 6.09 CD3

+
 T cells/mm

2
, layer 

III+IV: 4.82 ± 5.85 CD3
+
 T cells/mm

2
, layer V: 2.85±2.6 CD3

+
 T cells/mm

2
 for MOG-

immunized animals and layer I+II: not detectable CD3
+
 T cells/mm

2
, layer III+IV: 0.95 ± 2.13 

CD3
+
 T cells/mm

2
, layer V: not detectable CD3

+
 T cells/mm

2
 for controls) (Figure 7C). 

Intracerebral injection of PBS alone in a MOG-immunized mouse led to infiltration of a low 

number of T cells around the injection site and the needle track at three days (data not shown). 

Thus, cortical demyelination was accompanied by a transient T cell infiltration and T cells 

distribute almost equally throughout the whole ipsilateral cortex three days after lesion 

induction. 
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Figure 7 Transient CD3
+
 T cell infiltration during demyelination 

(A) Representative pictures of CD3-stained T cells (marked by arrows) in F1 hybrids are depicted at 

indicated time points after lesion induction. Quantification of the number of T cells in cortical layer I-

V (B) and specific cortical layers (C) revealed a transient increase of T cells throughout the ipsilateral 

hemisphere in MOG-sensitized mice at day three after lesion induction. (B) Data are shown as mean + 

SEM (n = 5 animals per group). For statistical evaluation a Mann-Whitney test was performed. * 

indicates statistical significance (** = p<0.01). (C) Data are expressed as mean + SD (n = 5 animals 

per group). A two-way ANOVA followed by a Bonferroni post hoc analysis was performed for 

statistical analysis. * indicates statistical significance (* = p<0.05, ** = p<0.01, *** = p<0.001). 

nd = not detected. 

 

 

4.5.2 Different morphological phenotypes of macrophages/microglia are present in 

demyelinated cortex 

The presence of different morphological activated macrophages/microglia phenotypes might 

represent functional variety. A hallmark for ongoing demyelination is the presence of myelin-

phagocytosing and foamy macrophages. Therefore, total numbers of activated 

macrophages/microglia as well as morphologic round-shaped and foamy 

macrophage/microglia phenotypes were analyzed respectively in Mac-3-stained paraffin 

sections in distinct cortical layers of the ipsilateral hemisphere three days and three weeks 

after lesion induction as described above (Figure 8). The Mac-3 antigen is expressed on the 

surface of activated macrophages/microglia but much less on restint microglia. Different 

reactive phenotypes are depicted in Figure 8A on the right-hand side.  
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Figure 8 Different morphological phenotypes of macrophages/microglia during demyelination 

(A) Representative pictures of Mac-3
+
 activated macrophages/microglia in subpial areas (left) and 

different reactive phenotypes (right). Quantification of total activated macrophages/microglia (B, C) 

and subdivision into round/oval-shaped (D, E) and foamy (F, G) phenotypes in cortical layer I-V or 

indicated cortical layers. Note the number of activated macrophages/microglia and especially 

round/oval-shaped and foamy phenotypes was increased during demyelination in MOG-immunized F1 

hybrids at day three. (B, D, F) Data are shown as mean + SEM (n = 5 animals per group). For 

statistical evaluation a Mann-Whitney test was performed. * indicates statistical significance 

(** = p<0.01). (C, E, G) Data are expressed as mean + SD (n = 5 animals per group). A two-way 

ANOVA followed by a Bonferroni post hoc analysis was performed. * indicates statistical significance 

(* = p<0.05, ** = p<0.01, *** = p<0.001). nd = not detected. 
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High numbers of activated macrophages/microglia were detectable in the cortex of MOG-

immunized mice and controls three days after cytokine injection which then decreased at three 

weeks (Figure 8A). Quantitative analysis revealed significantly more numbers of activated 

macrophages/microglia in cortical layers I-V of MOG-sensitized F1 hybrids (418.3 ± 31.21 

Mac-3
+
 cells/mm

2
) compared to controls (286.6 ± 13.17 Mac-3

+
 cells/mm

2
) at day three and 

in comparison to both experimental groups three weeks after lesion induction (MOG: 

53.91 ± 12.41 Mac-3
+
 cells/mm

2
, Controls: 37.01 ± 1.94 Mac-3

+
 cells/mm

2
) (Figure 8B). 

Analyses of distinct cortical areas showed that the number of total activated 

macrophages/microglia was significantly higher in MOG-immunized mice in cortical layer 

I+II (488.27 ± 130.83 Mac-3
+
 cells/mm

2
) and III+IV (461.04 ± 96.23 Mac-3

+
 cells/mm

2
) in 

comparison to controls (I+II: 305.22 ± 34.89 Mac-3
+
 cells/mm

2
, III+IV: 292.40 ± 50.03 Mac-

3
+
 cells/mm

2
) three days after cytokine injection. In cortical layer V comparable numbers of 

activated macrophages/micrglia were detected in MOG-immunized animals (305.45 ± 58.06 

Mac-3
+
 cells/mm

2
) and controls (262.22 ± 37.94 Mac-3

+
 cells/mm

2
) (Figure 8C). Considering 

round/oval-shaped activated macrophages/microglia similar results were obtained. In cortical 

layer I-V significantly more round/oval-shaped activated macrophages/microglia were 

detected in MOG-immunized animals (119.8 ± 18.61 Mac-3
+
 cells/mm

2
) compared to controls 

(40.34 ± 2.06 Mac-3
+
 cells/mm

2
) during demyelination. Only a few round/oval-shaped 

activated macrophages/microglia remained in the cortex within three weeks in MOG-

immunized mice (6.26 ± 1.95 Mac-3
+
 cells/mm

2
) but were almost absent in controls 

(1.95 ± 0.72 Mac-3
+
 cells/mm

2
) (Figure 8D). In all distinct cortical layers round/oval shaped 

macrophages/microglia were significantly more present but primarily in layer I+II 

(119.83 ±67.55 Mac-3
+
 cells/mm

2
) and III+IV (148.90 ±50.09 Mac-3

+
 cells/mm

2
), slightly 

less in V (90.67 ± 15.36 Mac-3
+
 cells/mm

2
) but still significantly increased compared to 

controls (I+II: 36.22 ± 12.97 Mac-3
+
 cells/mm

2
, III+IV: 42.42 ± 10.43 Mac-3

+
 cells/mm

2
, V: 

42.39 ± 7.60 Mac-3
+
 cells/mm

2
) three days after lesion induction (Figure 8E). Foamy 

macrophages/microglia that were indicative for phagocytosing myelin debris thereby 

representing ongoing demyelination were mostly seen in MOG-immunized F1 hybrids three 

days after cytokine injection in cortical layers I-V. This group showed significantly higher 

numbers of foamy cells (22.35 ± 4.44 Mac-3
+
 cells/mm

2
) compared to controls (2.49 ± 1.10 

Mac-3
+
 cells/mm

2
) at three days and to both experimental groups at three weeks after lesion 

induction, in which foamy macrophages/microglia are nearly not present (MOG: 1.49 ± 1.13 

Mac-3
+
 cells/mm

2
, Controls: not detected) (Figure 8F). Detailed analyses regarding distinct 

cortical layers revealed significantly higher numbers of foamy macrophages/microglia in all 
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cortical areas but primarily in cortical layer III+IV (30.00 ± 12.66 Mac-3
+
 cells/mm

2
) and V 

(21.16 ± 11.29 Mac-3
+
 cells/mm

2
) and slightly less in cortical layer I+II (15.88 ± 14.11 Mac-

3
+
 cells/mm

2
). In all other experimental groups they were nearly completely absent (Figure 

8G). The intracerebral injection of PBS alone in a MOG-sensitized mouse revealed a few 

activated macrophages/microglia close to the injection site and needle track three days later 

(data not shown). Due to the injection of proinflammatory cytokines in control mice, 

macrophages/microglia were on alert and expressed the activation marker Mac-3. However, 

since round/oval-shaped and foamy phenotypes are virtually not present in control animals 

this indicated that these cells are differentially activated. Round/oval-shaped and especially 

foamy macrophages seemed to contribute to demyelination. 

 

4.6 Cortical EAE reveals no neuronal loss  

4.6.1 Cortical thickness is slightly reduced after remyelination 

Cortical thinning is a general sign for cortical atrophy. Cortical thickness was measured 

paramedially in NeuN-stained paraffin sections in the ipsi- and contralateral hemisphere of F1 

hybrids as indicated (Figure 9A). MOG-immunized F1 hybrids showed a statistical trend for a 

reduced paramedial cortical thickness three weeks after lesion induction on the ipsilateral 

(1191 ±70.59 µm, p = 0.056 compared to MOG day three) and contralateral 

(1267 ± 60.19 µm, p = 0.15 compared to MOG day three) hemisphere compared to both 

hemispheres in MOG-immunized mice at day three (ipsilateral: 1416 ± 30.33 µm, 

contralateral: 1395 ± 12.09 µm). Controls revealed comparable cortical thicknesses three days 

(ipsilateral: 1341 ± 54.61 µm, contralateral: 1368 ± 73.04 µm) and tree weeks (ipsilateral: 

1328 ± 62.04 µm, contralateral: 1359 ± 46.99 µm) after cytokine injection in comparison to 

F1 hybrids three days after lesion induction (Figure 9B). 
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Figure 9 Slightly reduced paramedial cortical thickness after remyelination 

(A) Representative pictures of NeuN-stained tissue sections and measurement of paramedial cortical 

thickness in F1 hybrids. Injection site is marked by the asterisk. (B) Quantitative analysis revealed a 

trend for reduced cortical thickness in MOG-immunized mice three weeks after cytokine injection on 

the ipsilateral hemisphere. Data are expressed as mean + SEM (n = 5 animals per group). 

 

4.6.2 Neuronal density is not reduced in targeted EAE 

Evaluation of a potential loss of cortical neurons was assessed by counting the number of 

cortical NeuN
+
 neuronal nuclei automatically in paraffin sections on both hemispheres. 

Neurons were counted in cortical layers II, III+IV and V respectively and combined (cortical 

layer II-V) and neuron detection was performed as shown in Figure 10A. MOG-immunized 

animals did not reveal a loss of cortical neurons in any analyzed cortical area at all time points 

(data not shown). Depicted is the neuronal density of cortical layer II-V. According to the 

absence of axonal degeneration in MOG-immunized mice, no loss of neurons on both 

hemispheres could be observed three weeks after cytokine injection (ipsilateral: 

1953 ± 128.2 NeuN
+
 cells/mm

2
, contralateral: 1915 ± 102.7 NeuN

+
 cells/mm

2
) compared to 

MOG-immunized mice (ipsilateral: 1924 ± 58.31 NeuN
+
 cells/mm

2
, contralateral: 

2055 ± 53.74 NeuN
+
 cells/mm

2
) and controls (ipsilateral: 1902 ± 73.97 NeuN

+
 cells/mm

2
, 

contralateral: 2141 ± 69.32 NeuN
+
 cells/mm

2
) three days after intracortical injection and to 

controls three weeks (ipsilateral: 1936 ± 46.18 NeuN
+
 cells/mm

2
, contralateral: 1880 ± 59.43 

NeuN
+
 cells/mm

2
) after lesion induction (Figure 10B).  
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Figure 10 Neuronal density is not altered during de- and remyelination 

(A) Neuronal density was analyzed by counting NeuN
+
 cells automatically in the ipsi- and 

contralateral hemisphere in areas of cortical layers II-V. (B) Neuronal cell counts revealed comparable 

numbers of NeuN
+
 cells in both hemispheres at all indicated timepoints and groups. Data are shown as 

mean + SEM (n = 5 animals per group). 

 

4.7 Visualization and shape analysis of dendrites and spines in the cerebral 

cortex of mice 

Neurons receive signaling input via their dendrites and spines. During neurodegenerative 

processes loss of synaptic transmission therefore alter the functional properties of neurons. 

Previous studies showed that in MS patients loss of synaptic density in demyelinated 

hippocampi (Dutta et al., 2011) and leukocortical lesions (Wegner et al., 2006) can occur. 

However, it remains still unclear at which cellular level such alterations affect dendrites and 

spines. The primary aim of this work was, therefore, to establish a method that would enable 

to study alterations in neuronal structures as dendrites and dendritic spines in the cerebral 

cortex at subcellular level with high spatial resolution. In this approach a computational 

assisted method was used with which neuronal structures can be reconstructed and alterations 

in spine densities, shapes or dendritic irregularities can be detected. In order to visualize 

dendrites and dendritic spines, tissue from EGFP
+
 F1 hybrids was analyzed since these mice 

expressed EGFP in less than 10% of cortical neurons allowing the tracking and reconstruction 

of distinct cortical dendrites with high spatial resolution (Feng et al., 2000). Main dendritic 

branches of neurons located in the cortical layer V-VI were imaged in distinct distances from 

the soma using a confocal laser scanning microscope and images were deconvolved (Figure 

11). High-resolution imaging revealed detailed dendritic structures like dendritic branches 

(Figure 11B) and spines (Figure 11C and D). Zooming in allowed even the detection of single 

dendritic spines (Figure 11E-G). 
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Figure 11 Visualization of dendritic branches and spines 

(A) Confocal image of an EGFP
+
 cortical neuron with the main dendritic branch extending upright to 

the brain surface. (B-D) High resolution images revealed dendritic branches (yellow arrows) and 

spines. (E-G) Zooming in allowed detection of single spines (red arrows). 

 

Three-dimensional (3D) reconstruction of such neuronal processes was performed using 

NeuronStudio (CNIC) (Figure 12). NeuronStudio allowed automated tracing of the main 

dendritic branch and detection as well as classification of dendritic spines (Figure 12A-C, E) 

using the so-called Rayburst sampling algorithm (Rodriguez et al., 2008; Rodriguez et al., 

2006). Raburst sampling used multidirectional rays casting from the center of mass of a 3D 

object to its surface in order to compute precisely diameters, volumes and surface areas 

(Dumitriu et al., 2011; Rodriguez et al., 2008; Rodriguez et al., 2006). Spine volumetric 

measurements like spine head volumes (Figure 12F) used a 3D Rayburst algorithm 

(Rodriguez et al., 2006). Two-dimensional (2D) Raburst algorithms were used to analyze 

dendritic shaft diameter at each node (Rodriguez et al., 2006; Wearne et al., 2005), which is 

useful to estimate irregularities in branch diameters (Figure 12D), and to perform spine shape 

classifications (Rodriguez et al., 2008) (Figure 12E). Spines were classified according to the 

default values set in NeuronStudio (CNIC) into mushroom, stubby or thin (Figure 12B). 

Generally, spine density was a function of distance to the soma (Figure 12C), different spine 
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shapes were distributed along the dendrite (Figure 12E and F) and basal dendritic segments 

were more regularly shaped in contrary to more distal parts, which showed some fluctuations 

as indicated by increased changes in radii per dendritic length (Figure 12D). Using this 

computational approach clearly showed, that precise detection of dendrites and spines and 

shape analyses was performable. Ongoing measurements will assess dendritic and spine 

alteraltions within demyelinated cerebral cortex. 

 

 

Figure 12  3D analysis of dendritric and spine shapes 

(A) Tracing of dendrites (green nodes) and spines (colored small circles) in deconvolved confocal 

images led to 3D reconstruction and analysis of spine density (C) and fluctuations in dendritic shaft 

radius (D) as function of distance to the soma using NeuronStudio. (B) Shape classification of spines 

and their densities (E) and head volumes (F) were automatically computed in NeuronStudio. Data 

represent measuremtents obtained from 3 dendrites. 
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4.8 Loss of dendritic spines and branches in the cortex of progressive MS cases 

Since synaptic loss has been shown in leukocortical lesions (Wegner et al., 2006), cortical 

dendrites were analyzed in autopsy specimen from chronic MS patients with a late disease-

stage focussing on the number of dendritic spines and branches and compared to dendrites in 

healthy controls (Figure 13). MS autopsy cases and controls are summarized in Table 3. Brain 

tissue containing cerebral cortex was dissected from the frontotemporal lobe (F2-3) of both 

hemispheres and tissue blocks were split into two parts and either processed for MBP staining 

to assess cortical demyelination or Golgi-Cox staining to study cortical dendrites (Figure 

13A). In two out of four MS patients cortical demyelinated lesions could be detected in the 

frontotemporal cortex specimen. A representative picture of such a human cortical lesion in 

comparison to NAGM and GM in healthy controls is shown in Figure 13B. On the basis of 

the adjacent MBP-stained sections, cortical neurons were classified as located within the 

lesion, at the lesion border or in NAGM. In Golgi-Cox impregnated sections neurons of the 

cortical layer IV-VI were chosen for image acquisition with a confocal laser scanning 

microscope (Figure 13C). Spines and branches were counted on 50 µm successive basal 

dendritic segments of the main dendritic branch from the neuronal soma in MS cases and 

healthy controls. Individual case spine counts are depicted in Figure 13D. Similar to the 

distribution of spine densities detected in mice, control specimen showed that the number of 

spines increased in relation to the distance to the soma with a continuous increase in spine 

number to distances of 150 µm to 200 µm from the soma and a slight reduction in longer 

distances.  

 

Table 3 MS and control cases 

MS cases Sex Age at death Disease duration Storage in 4% formalin 

1 female 44 years unknown 1 month 

2 female 51 years over 10 years (RRMS) 2 month 

3 male 55 years over 10 years 1.5 month 

4 male 51 years over 10 years 1.5 month 

  Mean age at death: 

50.3 years 

 Mean storage period: 

1.5 month 

Controls     

1 male 62 years no neurologic disease 2 month 

2 female 68 years no neurologic disease 1 month 

3 male 64 years no neurologic disease 1 month 

  Mean age at death:  

64.7 years 

 Mean storage period: 

1.5 month 
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Quantification of spine counts in MS patients revealed a decreased number of dendritic spines 

predominantly at longer distances to the soma in comparison to controls and the reduction in 

spine number was irrespective of neuronal localization within a demyelinated lesion including 

the lesion border or in NAGM. An analysis of combined data of all MS cases and controls 

indicated a significant reduction in the number of dendritic spines within cortical lesions or 

NAGM compared to controls in a two-way ANOVA (Figure 13E). The number of dendritic 

branches showed a significant trend for reduced branch numbers in a two-way ANOVA (post 

hoc test not significant) primary in shorter distances to the soma in MS patients. In all cases, 

the investigated dendrites had comparable dendritic width excluding varying spine numbers 

due to different dendritic sizes (Figure 13E). These results demonstrated a pronounced global 

dendritic pathology in progressive MS formed by reduced dendritic spine densities in neurons 

of the lower cortical layers in chronically demyelinated lesions as well as the surrounding 

NAGM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Reduced densities of dendritic spines and branches in chronic MS 

(A) Autopsy tissue from MS patients and healthy controls was dissected as indicated and processed for 

MBP staining (B) or Golgi-Cox impregnation (C). (B) Note the cortical lesion in MS (lesion border is 

indicated by the dotted line, border between GM and WM is marked by the dashed line). (D) 

Quantification of the number of dendritic spines (red arrows in (C)) and branches (yellow arrows in 

(C)) in individual cases (analyzed number of dendrites per case is indicated in the graph). (E) 

Combined individual spine counts revealed a significant reduction in spine and branch density in MS 

but comparable dendritic width to controls. (D) Data are expressed as mean ± SD. (E) Data are shown 

as mean ± SEM (n = 3 controls, n = 4 MS NAGM, n = 2 MS lesion + border). For statistical analyses a 

two-way ANOVA was performed. * indicates statistical significance (** = p<0.01, *** = p<0.001). 
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5 DISCUSSION 

5.1 Targeted cortical EAE in mice allows reproducible lesion induction within a 

defined anatomical area 

In the presented work an EAE mouse model targeting the cerebral cortex was established. The 

intracortical injection of a proinflammatory cytokine cocktail composed of TNF-α and IFN-γ 

in MOG-immunized BiozziABH and F1 hybrids generated from BiozziABH and mice on a 

C57BL6/J background triggered the formation of confluent demyelinated lesions in the 

cortical GM in a predetermined anatomical area, in a temporally well-defined manner and 

with reproducibility. 

Therefore, this model allows the precise investigation of pathomechanisms involved in lesion 

formation in the cortical GM which is in contrast to ‘conventional’ disseminated EAE models 

that rarely affect the brain or lesions occur randomly distributed in the GM (Girolamo et al., 

2011; Mangiardi et al., 2011; Merkler et al., 2006a; Pomeroy et al., 2008; Pomeroy et al., 

2005; Rasmussen et al., 2007; Storch et al., 2006). Moreover, the confluent demyelination 

with well-demarcated lesion borders induced in the here described model is in contrast to the 

myelin loss in cerebral cortices of ‘conventional’ EAE mice as demyelination is exemplified 

by reduced myelin density but confluent demyelinated areas are not measured (Girolamo et 

al., 2011; Mangiardi et al., 2011). Although cortical lesions were induced artificically, they 

reproduced the immunopathological nature characteristic for MS lesions. This is in contrast to 

toxin-induced models like the systemic administration of the copper chelator cuprizone. 

Cuprizone treatment lead to demyelination in defined anatomical areas like the cerebral cortex 

(Merkler et al., 2009; Skripuletz et al., 2008), however, this model triggers primary the death 

of mature oligodendrocytes and does not mimic the complex immunopathology of MS lesions 

(Skripuletz et al., 2011; Torkildsen et al., 2008). An important aspect of the here described 

targeted cortical EAE model was the functionality in BiozziABH mice and their F1 offsprings 

intercrossed with mice on a C57BL6/J background. Intercrossing of transgenic mice allows 

the use of reporter strains like the used mice that express EGFP in a subset of cortical neurons 

in this work. A striking phenomenon was the reproducible induction of primarily subpial 

lesions in the targeted cortical EAE mouse model sharing pathological hallmarks with MS. 

EAE lesions spread laterally as band-like demyelination extending from the pial surface of the 

brain mostly to cortical layer II and exhibited a well-demarcated lesion border. This induced 

subpial lesion type is reminiscent to lesion type III described in early-stage MS patients 
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(Lucchinetti et al., 2011) and chronic MS patients (Bo et al., 2003b; Peterson et al., 2001) as 

well as in the targeted cortical EAE rat model (Merkler et al., 2006b). Subpial lesions were 

the second most common cortical lesion type (accounted for a considerably proportion of 

about 34%) in early MS (Lucchinetti et al., 2011) and the most common cortical lesion type in 

chronic MS (Albert et al., 2007; Bo et al., 2003b; Giaccone et al., 2012; Kutzelnigg et al., 

2005; Peterson et al., 2001; Vercellino et al., 2005). The occurrence of almost only subpial 

lesions and nearly no intracortical or leukocortical lesions would be in favor for an intrinsic 

cortical demyelinating disease that can occur independently to WM lesions (Giaccone et al., 

2012; Kutzelnigg et al., 2005). The lesion distribution preferentially at subpial areas might 

also be explained by a reflow of intracerebral injected cytokines back through the injection 

trace to the surface of the brain, which can sometimes be observed during the stereotactic 

injection of the animals or during mechanical retraction of the capillary. Furthermore, it has 

been shown that intraparenchymal injected tracer spread along perivascular spaces to the 

surface of the brain and leaked into the CSF (Abbott, 2004), intracortical injected cytokines 

could diffuse equally. After reaching subpial areas, the cytokines might activate the BBB and 

affect BBB integrity to allow activated T cells and autoantibodies to enter the CNS 

parenchyma and lead to a localized inflammatory lesion in this area. Moreover, cortical 

demyelination is associated with meningeal inflammation (Choi et al., 2012; Howell et al., 

2011; Kutzelnigg et al., 2005; Lucchinetti et al., 2011; Magliozzi et al., 2007). Diffusion of 

pro-inflammatory cytokines from inflamed meninges could support cortical GM pathology 

from the surface of the brain (Magliozzi et al., 2010). Since the targeted EAE mouse model 

also showed meningeal inflammation (data not shown) cortical demyelination might be 

induced from cytokines released from the meninges. However, since control mice also 

showed meningeal inflammation, a sole cytokine-mediated mechanism from the meninges 

seems to be insufficient to induce demyelination. 

 

5.2 Active cortical demyelination and inflammation are transient and do not 

induce neuronal or axonal loss 

The induction of confluent demyelinated lesions in the cerebral cortex of MOG-immunized 

mice was accompanied by the development of anti-MOG autoantibody titers in sera and 

widespread but temporarily infiltration of T cells and activated macrophages/microglia in the 

ipsilateral hemisphere that was subjected to the lesion induction. 
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The inflammatory character and composition of the here described cortical EAE lesions in 

mice reflect the highly inflammatory nature of cortical demyelinated lesions in early-stage 

MS patients, which also consists of activated microglia and a strong T cell inflammation 

(Lucchinetti et al., 2011). Furthermore, these findings are also in line with observations in the 

targeted cortical EAE rat model. Cortical demyelination accompanies a transient parenchymal 

T cell infiltration in a comparable range to the here presented model but exhibit 25% less 

activated macrophages/microglia three days after lesion induction. Inflammation resolves 

afterwards within two weeks (Merkler et al., 2006b). The profound clearance of inflammation 

in the targeted EAE mouse model might explain the differences in early disease-stage cortical 

lesions in MS patients, which are highly inflammatory (Lucchinetti et al., 2011), in 

comparison to chronic lesions in late-stage MS, which are less inflammatory (Bo et al., 

2003a; Peterson et al., 2001). This demonstrates that the targeted EAE mouse model reflects 

cortical lesions observed in early-stage MS patients and is useful to study underlying 

pathomechanisms. 

A striking aspect between the cytokine-injected cortices of EAE mice exhibiting 

demyelination and control mice without demyelination was the difference in reactive 

macrophage/microglia phenotypes. Generally, entire cortical hemispheres subjected to a 

lesion showed higher numbers of reactive macrophages/micrglia with remarkable more 

round/oval-shaped and especially foamy macrophages/micrglia compared to control cortices. 

Particular the presence of foamy macrophages/microglia in NAGM in the lower cortical 

layers indicate ongoing demyelination since these cells are associated with ingestion of 

myelin debris. According to this model, myelin-laden macrophages/microglia are described in 

the targeted cortical EAE of rats (Merkler et al., 2006b) and in active cortical lesions in early 

MS (Lucchinetti et al., 2011). Furthermore, the parenchymal distribution of particular 

round/oval-shaped macrophages/microglia and T cells in affected cortices may indicate an 

interaction between these cells. Infiltrating activated macrophages and reactive microglia 

could function as APC thereby triggering local reactivation of infiltrating MOG-specific T 

cells and propagation of the immune response. In turn, T cells could secrete soluble factors 

that stimulate macrophages/microglia and also exaggerate the disease (Jack et al., 2005). The 

presence of round/oval-shaped and foamy macrophages/microglia in lesioned hemispheres 

might indicate that these cells trigger the observed demyelination. Moreover, all reactive 

phenotypes could trigger tissue damage by production of toxic mediators or reactive oxygen 

or nitric oxide species (Jack et al., 2005). Next steps would be to further characterize the cell 

type that is directly involved in demyelination. 
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In addition to initiate CNS inflammation, encephalitogenic T cells are also required to disrupt 

the BBB allowing humoral immune factors like antibodies to penetrate the CNS parenchyma 

(Genain et al., 1995; Iglesias et al., 2001).  

In this work, mice were immunizated with recombinant MOG1-125 instead of MOG-peptide in 

order to elicit a strong MOG-specific antibody response. Peripheral immune priming against 

MOG was clearly required for the induction of cortical demyelinated lesions in the targeted 

EAE since mice treated with CFA alone did not reveal signs of cortical demyelination 

although they were subjected to an intracortical cytokine injection.  

Antibody and complement-mediated mechanisms in demyelination have been suggested in 

active MS lesions by the identification of immunoglobulin and complement deposition in a 

proportion of patients (Lucchinetti et al., 2000) and by detecting MOG autoantibodies in WM 

lesions of EAE and MS and their association with myelin damage (Genain et al., 1999; Raine 

et al., 1999). Furthermore, in vivo studies demonstrate that passively transferred MOG-

specific monoclonal autoantibodies enhance demyelination in rats that were previously treated 

with either MBP-specific T cells or MBP/CFA (Lassmann et al., 1988; Linington et al., 1988; 

Schluesener et al., 1987) and BiozziABH immunized with spinal cord homogenate (Morris-

Downes et al., 2002). These findings, together with the detection of high anti-MOG 

autoantibody titers as well as complement deposition in cortical lesions in targeted rat EAE 

(Merkler et al., 2006), suggest that the pathogenic effect observed in the here described model 

is an interplay between B cell derived MOG-specific autoantibodies, probably followed by 

complement activation, establishment of an autoaggressive T cell response and activation of 

macrophages/microglia. Macrophages/microglia might be activated by both, autoantibodies in 

combination with complement and T cells, which then trigger myelin destruction by secretion 

of toxic factors and phagocytosis of myelin debris. 

In the here described model, cortical lesion formation required in addition to the anti-MOG 

immune response the injection of the proinflammatory cytokines TNF-α and IFN-γ into the 

cortex. 

Both cytokines have been associated with lesion formation in EAE and MS (Steinman, 2001) 

and are detectable within active MS lesions (Hofman et al., 1989; Selmaj et al., 1991; 

Traugott and Lebon, 1988). They can activate cerebral endothelial cells, which are important 

components of the BBB, to express adhesion modelcules in order to trigger T cell arrest and 

migration into the CNS parenchyma and they can induce damage to the BBB by disorganizing 

cell-cell junctions (Minagar and Alexander, 2003). Most importantly, both cytokines attrack 

and enhance immune responses locally leading to inflammatory demyelinated lesions in the 
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CNS (Kerschensteiner et al., 2004b; Merkler et al., 2006b). Since the half-life of the locally 

injected cytokine mixture into the cortex is unclear, the transient nature of the acute 

inflammatory demyelination observed in the here described model might be attributed to a 

short-lived effect of these cytokines. Therefore, it might conceivable to induce chronic 

demyelinated lesions by continuous intracortical delivery of these cytokines for a distinct time 

period. 

Furthermore, transient cortical demyelination did not result in axonal loss in subpial areas 

although remyelination was only efficient in about 50% of axons. Moreover, neuronal loss 

was not observed in the affected hemisphere at day three and week three after lesion 

induction. 

Axonal and neuronal preservation are in line with previous findings that shows indeed acute 

axonal damage as visualized by the accumulation of amyloid precursor protein in axons in 

areas of subpial demyelination and around inflamed vessels in rat cortex but this result not in 

a reduction of axonal density after remyelination and only single apoptotic neurons in 

demyelinated areas are detectable (Merkler et al., 2006b). Moreover, the majoriy of cortical 

lesions in early MS exhibit relative axonal preservation and only several plaques have focal 

neuronal injury seen by pyknotic neurons (Lucchinetti et al., 2011). Axonal preservation in 

the here described model might be due to the fast decline of inflammation since axonal 

pathology correlates with inflammation (Kuhlmann et al., 2002; Trapp et al., 1998).  

The future aim of the targeted EAE mouse model is the assessment of dendritic pathologies 

within demyelinated cortical lesions as well as in the surrounding NAGM. This approach 

needs high-resolution imaging of dendrites and dendritic spines, deconvolution and a 

computational 3D reconstruction (Dumitriu et al., 2011; Rodriguez et al., 2008; Rodriguez et 

al., 2006). The introduction of transgenic mice on a C57BL6/J background with fluorescently 

labeled single cortical neurons in the here used F1 hybrids allowed high-resolution imaging of 

dendrites, branches and dendritic spines using confocal laser scanning microscopy. 

Deconvolution and reconstruction of these neuronal structures allowed detailed analysis of 

dendritic shaft radii, spine densities and even spine shapes in addition to spine head volumes 

in an automated manner using NeuronStudio (CNIC). This method provides the basis for 

detecting even subtle changes as alterations in spine volumes or numbers of specific spine 

shapes or common changes in spine density. Furthermore, potential dendritic swellings can be 

analyzed by means of radii analysis along the dendrite. Dendritic alterations might represent 

pathological hallmarks in cerebral cortices of MS patients since synaptic loss can occur in 

leukocortical lesions (Wegner et al., 2006). Moreover, dendritic pathology occurs 
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in‘conventional’ EAE rat and mouse models in lumbosacral spinal cord tissue (Bannerman et 

al., 2005; Zhu et al., 2003) and spine loss is detectable in acute EAE on second dendritic 

branches of striatal neurons (Rossi et al., 2012). Dendritic abnormalities might contribute to 

clinical symptoms like neuropsychiatric deficits and therefore have to be studied in detail. 

 

5.3 Widespread but incomplete remyelination 

Although active demyelination in the here described model was observed as a transient loss of 

myelin and occurrence of foamy macrophages/microglia and T cell infiltrates in the range of 

days after cytokine injection, only partial remyelination could be detected after three weeks 

although axons remained preserved. 

In non-demyelintead cortex, myelin is regularly arranged and the proportion of myelinated 

axons in the cortical layer I+II detected in the targeted EAE mouse model in this work and 

cortical layer III in targeted EAE rat model is strikingly similar and is about 40% (Garea 

Rodriguez, 2010). The pattern of remyelinated fibers was diffuse in comparison to normal 

myelinated equal areas, which is in line with human remyelinated plaques (Bruck et al., 

2003). The extent of remyelination was in a similar range in the mouse model and rat model 

as about 40-50% of axons got remyelinated after a demyelinating event (Garea Rodriguez, 

2010). Although remyelination could be observed, it remained incomplete. The partial 

regenerative capacity however could not be attributed to axonal loss because axons remained 

preserved in the targeted EAE mouse model and axonal preservation is in line with findings in 

the rat (Garea Rodriguez, 2010; Merkler et al., 2006b). Furthermore, electron microscopic 

analysis reveals a thinner myelin sheath confirming that these fibers are remyelinated 

(Merkler et al., 2006b).  

The incomplete remyelination observed in mice might represent a stage, in which the 

regenerative process has not finished yet and a complete recovery would require longer time 

periods. However, the partial remyelination observed in the cortical EAE mouse model is in 

accordance with incomplete remyelination capacity frequently found in MS patients in WM 

and cortical GM (Albert et al., 2007; Bruck et al., 2003). Mechanisms involved in 

remyelination may differ in WM and GM lesions as cortical lesions remyelinate more 

efficient (Albert et al., 2007; Chang et al., 2012). The here established targeted cortical EAE 

could be extended to target additionally WM structures in order to compare directly the 

different regenerative capacities and elucidate underlying mechanisms by intercrossing 

transgenic mice. 



DISCUSSION 

71 

 

Capacity for endogenous cortical remyelination can be observed in MS irrespective of disease 

duration or age of the patients (Chang et al., 2012), however, chronic demyelinated lesions 

usually accumulate with disease progression (Kutzelnigg et al., 2005). Exhaustion of 

remyelination might be attributed to a lack of oligodendrocyte progenitor cells, failure of 

precursor cell recruitment including proliferation, migration and repopulation or disturbed 

differentiation and maturation to myelinating oligodendrocytes which is the best evident 

(Chang et al., 2002; Franklin and Ffrench-Constant, 2008; Kuhlmann et al., 2008). It would 

therefore be interesting to investigate in the here described model, whether remyelination 

efficiency can be promoted by different factors interfering with oligodendrocyte 

differentiation and maturation. Demyelination in cortical GM of rats shows a transient loss of 

oligodendrocytes but demyelinated areas are repopulated during remyelination (Merkler et al., 

2006b) and existing oligodenrocyte precursor cells show substantial proliferation (Garea 

Rodriguez, 2010). If this is also the case in the mouse remains unclear at state.  

 

5.4 Global dendritic spine loss in cortices of progressive MS patients 

Since the end of the 1990s, MS research has refocused on the pathology affecting neuronal 

structures in the CNS (Peterson et al., 2001; Trapp et al., 1998; Wegner et al., 2006) that 

might attributed to CNS atrophy (Siffrin et al., 2010) and irreversible neurologic disability 

(Trapp and Nave, 2008). 

In this work, cortical GM autopsy specimen from the frontotemporal lobe of the cerebrum 

were obtained from progressive MS patients and investigated for pathologic dendritic 

alterations. Interestingly, MS cortex showed a global reduction of dendritic spine density of 

neurons located in lower cortical layers in chronically demyelinated lesions as well as in the 

NAGM. Furthermore, dendrites in the cortical GM of MS patients were identified to trend for 

decreased branch numbers primarily in basal dendritic segments. 

The detailed spine analysis could be achieved by the combination of the neuronal 

impregnation technique Golgi-Cox, which is invaluable in its characteristic to stain randomly 

distributed single neurons in the network of indefinitely neurons on an almost clear 

background, with laser scanning confocal microscopy, which was applicable due to the 

reflective capacity of the dense metal particles within the neurons and allowed high-resolution 

imaging (Mancuso et al., 2012; Spiga et al., 2011; Tredici et al., 1993).  

Dendritic spine pathologies can be triggered from many conditions like progressive 

neurodegenerative diseases, malnutrition, genetic disorders associated with mental 
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retardation, traumatic injury or deafferentitaion (Fiala et al., 2002). The latter, neuronal 

deafferentation, induces dendritic spine loss in the adult CNS that can be partial recovered by 

axonal sprouting and replacement of the lost afferent synaptic input (Cheng et al., 1997; 

Parnavelas et al., 1974). Therefore, damage or loss of projections, e.g. thalamocortical axons, 

may result in transsynaptic deafferentation and spine loss on neurons in the cortex. Since the 

thalamus has been associated with neuronal injury and loss in MS (Cifelli et al., 2002; 

Wylezinska et al., 2003), the here observed spine loss may in part be explained by 

neurodegenerative processes in other brain areas like the thalamus. Moreover, since 

thalamocortical projections connect many cortical areas, spine loss would not be restricted to 

a focal (lesioned) area, spine pathology would rather occur in a global manner as observed in 

the investigated chronic MS cortices. In addition, transected and damaged neurits have been 

described in both, WM and GM structures (Peterson et al., 2001; Trapp et al., 1998) that 

might contribute to a loss of synaptic transmission. In early disease-stage, damaged or lost 

connecting pathways might induce sprouting or remodeling of axonal connections 

(Kerschensteiner et al., 2004a), however, if regenerative capacities were exceeded a decline in 

spine density would persist. 

As mentioned above, spine abnormalities are a common feature in neurodegenerative or 

neuropsychiatric diseases. Spine densities are reduced on cortical neurons in Alzheimer’s 

disease (Fiala et al., 2002; Mavroudis et al., 2011) and schizophrenia (Garey et al., 1998), but 

are increased in autism spectrum disorders (Hutsler and Zhang, 2010). Furthermore, a 

neocortical synapse loss is correlated with cognitive deficits in Alzheimer’s disease (Terry et 

al., 1991). Since cognitive deficits are also commonly seen in MS (Amato et al., 2006), the 

here identified global dendritic spine pathology may partially account for the neuropsychiatric 

deficits in progressive MS. 
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6 SUMMARY AND CONCLUSIONS 

In the presented work a targeted cortical EAE mouse model was established and 

characterized. Furthermore, dendritic pathology was investigated in the cortical GM of 

chronic MS patients. 

Cortical demyelinated lesions were induced in EAE mice by the targeted injection of 

proinflammatory cytokines into the cerebral cortex. Histological evaluation revealed 

extensive subpial demyelination and widespread inflammation composed of T cells and 

activated macrophages/microglia three days after lesion induction. Within three weeks 

inflammation decreased profoundly and lesions remyelinated to a major extent although 

myelin density and proportion of myelinated axons did not again reach levels of untreated 

animals. In this acute model axonal and neuronal loss could not be observed in the affected 

cortex at three days or three weeks after lesion induction. Furthermore, a method was 

established that allows precise investigation of abnormalities in dendrites and dendritic spines 

in mice. 

A global reduction of dendritic spines in neurons of the lower cortical layers could be 

identified as a pathological hallmark of chronically demyelinated lesions as well as the 

surrounding NAGM in autopsy specimen of progressive MS patients. 

Targeted cortical EAE lesion in the mouse shared several pathological hallmarks with active 

lesions in the cortical GM of early-stage MS patients. Neurodegenerative processes observed 

in chronic MS lesions or surrounding NAGM were not reflected by this model. Therefore, the 

targeted cortical EAE mouse model mimics cortical lesions rather in early-stage MS patients 

and is suitable to study pathomechanisms occurring early in the cerebral cortex. 

The global reduction of dendritic spines in the cerebral cortex of progressive MS is a new 

neurodegenerative feature that might be attributed to neuropsychological deficits and should 

become a new target for therapies. 
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