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1 Introduction

This dissertation investigates some aspects of spline smoothing. There are three spline-

based methods for the approximation of statistical data: smoothing splines, regression

splines and penalized splines. In this dissertation, we investigate penalized splines and

their connection to smoothing and regression splines. After presenting the theoretical

background, we study: a unified framework, the local and the global asymptotic proper-

ties of penalized splines.

A detailed overview of spline estimators together with formulas, notations and terminol-

ogy is given in Chapter 2. In the following three paragraphs, we give a brief description,

research methods and practical usage for each spline estimator.

A smoothing spline estimator arises as the solution to a certain variation problem and is

a spline with knots at the observation points. A penalty parameter controls the trade-

o↵ between the fidelity to the data and the smoothness of the estimator. Smoothing

splines are an old and well-studied technique. The main tool for studying their asymp-

totic properties is the reproducing kernel Hilbert spaces framework. A practical flaw of

smoothing splines is that their parameter dimension is high, i.e. the number of param-

eters to estimate equals the number of observations. Hence, smoothing splines can be

computationally expensive for large sets of data or in high dimensions.

A regression spline estimator is obtained as the least-square projection onto a spline

space with fewer knots than the number of observations. The smoothness and the good-

ness of the estimator is controlled by the number and the position of the knots. The

asymptotics of regression splines is well-studied and is based on the use of the results of

Barrow and Smith (1978) on the best L
2

-approximation of a smooth function by a spline

set. Unlike smoothing splines, regression splines have a low parameter dimension. Their

drawback is that the choice of the number and of the position of the knots is crucial and

this choice is a non-trivial optimization problem.

1



1 Introduction

A penalized spline estimator combines the projection onto a low-dimensional spline space

with the roughness penalty. A penalized spline estimator is a trade-o↵ between a smooth-

ing and a regression spline, where the last two can be considered as particular instances of

penalized splines. If the number of knots equals the number of observations, then penal-

ized and smoothing splines coincide. If the penalty parameter equals zero, then penalized

and regression splines coincide. The asymptotic properties of penalized splines are not

well-studied. Claeskens et al. (2009) found that the global asymptotic properties of pe-

nalized spline estimators depend on transfer parameter k
q

. This parameter depends on

the number of knots, the penalty parameter, and the degree of splines. If k
q

is bounded,

then the global asymptotics of penalized splines is similar to that of regression splines,

if k
q

grows with the number of observations then the global asymptotics of penalized

splines is similar to that of smoothing splines. Penalized splines are the most widely used

estimators, since they circumvent the disadvantages of smoothing and regression splines.

The statistical properties of smoothing, regression and penalized splines are investigated

by di↵erent methods. In this dissertation we study all three estimators simultaneously,

pursuing three steps:

1. we construct the Demmler and Reinsch (1975) basis

2. we investigate the properties of the equivalent kernel

3. we study the local asymptotics using kernel regression methods.

To make use of Fourier techniques, we assume that knots and observations are equidis-

tant, and the unknown regression function and spline estimators are periodic. Addition-

ally, we follow the idea of Claeskens et al. (2009) and investigate the asymptotic behavior

of splines depending on k
q

, where the extreme values of k
q

correspond to smoothing or

to regression splines. Let us outline each step.

In step one, we obtain the Demmler-Reinsch basis of the corresponding spline space.

By definition, the basis is orthonormal under an inner product that depends on the

observations points. Additionally, derivatives of the basis functions are L
2

-orthogonal.

Using known exponential splines and certain polynomials constructed for our problem,

we derive a closed-form expression for the Demmler-Reinsch basis in our special case of

equidistant knots and periodic splines. With its help, we find the Fourier coe�cients and

2



1 Introduction

study the global asymptotic properties of periodic spline estimators. Any spline estima-

tor can be represented with the help of the Demmler-Reinsch basis as a weighted sum

of observations. The explicit form of the Demmler-Reinsch basis, which is unknown in

general, allows us to study the weight function of all periodic spline estimator.

In step two, we examine the weight function of periodic splines, known as the equivalent

kernel. Making use of the explicit expression for the Demmler-Reinsch basis, we obtain

a closed-form expression for the equivalent kernel. This expression depends on the roots

of certain polynomials, which are, in general, di�cult to find. However, for low degree

splines these roots are known and the equivalent kernel is given explicitly. The formula

we obtain is both general and precise. It shows the dependence of spline estimators on

the position between the knots and is used for obtaining the decay rate of the equivalent

kernel. Apart from the closed-form expression, we find the moments of the equivalent

kernel that play a significant role in obtaining the local asymptotic properties of periodic

spline estimators.

Finally, in step three, we study the local asymptotics of all periodic spline estimators

together. We look at periodic spline estimators as at kernel estimators. A kernel estima-

tor is determined by a kernel satisfying certain moment conditions and by a bandwidth

that controls the smoothness of the estimator. The local asymptotic properties of the

kernel estimator are known and depend on the bandwidth. From the previous step, the

equivalent kernel of periodic splines satisfies the necessary moment conditions. Hence,

the missing part is the bandwidth. We find a bandwidth that depends on k
q

and is

universal for all spline estimators. With its help, we obtain the pointwise asymptotic

behavior of periodic splines using known results from kernel regression.

The remainder of this dissertation is structured as follows. Chapter 2 provides a detailed

exposition of spline spaces, spline estimators and their global asymptotic properties.

Chapter 3 contains the known results on the local asymptotic properties of splines and

is intended to motivate our further investigation of penalized splines and the choice of

methods we use. Chapter 4 establishes the unified framework for all spline estimators

and presents our results.

3



2 Spline estimators

Consider the nonparametric regression model for data pairs (x
i

, Y
i

)

Y
i

= f(x
i

) + ✏
i

, i = 1, . . . , N, (2.1)

with standard assumptions on random errors

E(✏
i

) = 0, E(✏
i

✏
j

) = �2�
ij

, �2 > 0, (2.2)

where the �
ij

as the Kronecker delta, the design points x
i

2 [0, 1] are deterministic and

f is an unknown, su�ciently smooth regression function. In this work, spline-based es-

timators of f will be considered.

In Section 2.1, di↵erent spline spaces and their bases are defined. In Section 2.2, we

discuss asymptotic characteristics of nonparametric estimators. In Section 2.3 and 2.4,

we give definitions and known global asymptotic properties of a smoothing and a regres-

sion spline estimator of f , respectively. In Section 2.5, we consider a penalized spline

estimator as a trade-o↵ between a smoothing and a regression spline.

2.1 Definitions of spline functions

Splines are smoothly connected piecewise polynomials. The points on which the polyno-

mials are connected are called knots. Splines are defined by the degree of the piecewise

polynomials, by the position of the knots and by conditions on smoothness at knots. In

this section, we give formal definitions of di↵erent kinds of splines and spline spaces.

4



2 Spline estimators

2.1.1 Spline spaces

We list and characterize some basic spline spaces. We use the following notations for

p,K 2 N :

1. P
p

B {p(x) : p(x) =
P

p

i=0

c
i

xi, c
0

, . . . , c
p

, x 2 R} is a space of polynomials of de-

gree p (order p� 1).

2. ⌧
K

= {0 = ⌧
0

< ⌧
1

. . . ⌧
K�1

< ⌧
K

= 1} is a partition of the interval [0, 1]. We refer

to ⌧
i

, i = 1, . . . , K � 1 as inner knots.

3. M = (m
1

, . . . ,m
K�1

) with 1  m
i

 p+1, i = 1, . . . , K� 1 is a mulplicity vector.

A polynomial spline is a piecewise polynomial, whose smoothness is controlled by the

multiplicity vector M. The next definition gives the details.

Definition 1 The space of polynomial splines of degree p, of mulplicity M = (m
1

, . . . ,m
K�1

)

and knots ⌧
K

= {0 = ⌧
0

< ⌧
1

. . . ⌧
K�1

< ⌧
K

= 1} is defined as

S(p;M; ⌧
K

) B{s : 9 s
1

, . . . , s
K

2 P
p

: s(x) = s
i

(x) for x 2 [⌧
i�1

, ⌧
i

], i = 1, . . . K

and s
(j)

i

(⌧
i

) = s
(j)

i+1

(⌧
i

), j = 0, . . . , p�m
i

, i = 1, . . . K � 1}.

In Schumaker (2007, p. 110), it is proved that S(p;M; ⌧
K

) is a linear space with di-

mension p + 1 +
P

K�1

i=1

m
i

. The next definition gives the smoothest space of piecewise

polynomials that corresponds to M = (1, . . . , 1).

Definition 2 If M = (1, . . . , 1), ⌧
K

= {0 = ⌧
0

< ⌧
1

. . . ⌧
K�1

< ⌧
K

= 1} then space

S(p;M; ⌧
K

) is called the space of polynomial splines of degree p with simple knots at

points ⌧
K

and is denoted by S (p; ⌧
K

), where

S (p; ⌧
K

) B
�
s 2 Cp�1[0, 1] : s(x) 2 P

p

on each interval [⌧
i

, ⌧
i+1

], i = 0, . . . , K � 1
 
.

The linear space S(p; ⌧
K

) has dimension p+K.

Natural splines arise as the solution of the smoothing spline minimization problem, which

will be discussed in Section 2.3.

5



2 Spline estimators

Definition 3 The space of natural splines of degree 2q � 1 with simple knots at ⌧
K

=

{0 = ⌧
0

< ⌧
1

. . . ⌧
K�1

< ⌧
K

= 1} is defined as

NS(2q � 1; ⌧
K

) B{s 2 S(2q � 1; ⌧
K

) : s |
[0,⌧1], s |[⌧

K�1,1]
2 P

q�1

},

where s |
[0,⌧1] and s |

[⌧

K�1,1]
denote the restriction of function s to domain [0, ⌧

1

] and

[⌧
K�1

, 1] respectively.

Hence, a natural spline is 2q � 2 times continuously di↵erentiable piecewise polynomial

of degree q � 1 on the intervals [0, ⌧
1

] and [⌧
K�1

, 1] and of degree 2q � 1 on [⌧
1

, ⌧
K�1

].

Because of the 2q constraints on intervals [0, ⌧
1

] and [⌧
K�1

, 1], the dimension of natural

spline space NS(2q � 1; ⌧
K

) is K � 1.

Most of our results were obtained in the following space, which is comparatively simple

because its functions are periodic and its knots are equidistant.

Definition 4 The space of periodic splines of degree p > 0 based on equidistant knots

⌧
K

= {i/K}K
i=0

is defined as

Sper(p; ⌧
K

) B
�
s 2 S (p; ⌧

K

) : s(j)(0) = s(j)(1) for j = 0, . . . , p� 1
 
.

Obviously, any periodic spline s 2 Sper(p; ⌧
K

) can be extended to the whole real line

with s(x+ l) = s(x), l 2 Z. Because of the p periodicity constraints, the space of periodic

splines Sper(p; ⌧
K

) has dimension K.

2.1.2 B-spline bases

In this section, we define di↵erent types of B-spline functions that are used in the con-

struction of bases of the spline spaces given in Section 2.1.1.

There are several ways to define a B-spline, such as divided di↵erence (de Boor, 1978,

p. 108) and recursion (Schumaker, 2007). Here we give an explicit definition, using trun-

cated polynomials (based on Schoenberg, 1973).

Definition 5 Given points ⌧
j

, . . . , ⌧
j+p+1

2 R, let (x)p
+

: x 7!{ max (0, x)}p , p > 0 and

(x)0
+

: x 7! I{x�0}, where I is the indicator function. A general B-spline of degree p based

6



2 Spline estimators
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Figure 2.1: Forward cardinal B-spline B
c,p

(x) for p = 1, 2, 3

on ⌧
j

, . . . ⌧
j+p+1

is defined as

eB
j,p

(x) B
p+1X
i=0

(p+ 1)(⌧
i+j

� x)p
+

@

@x

{(x� ⌧
j

) . . . (x� ⌧
j+p+1

)}
x=⌧

i+j

.

Functions eB
j,p

(x) have bounded support, that is 0 < eB
j,p

(x) for x 2 (⌧
j

, ⌧
j+p+1

) andeB
j,p

(x) = 0 for x /2 (⌧
j

, ⌧
j+p+1

). Functions eB
j,p

(x) are normalized in that
R1
�1

eB
j,p

(x)dx =

1, 8j, p. Given a partition ⌧
K

= {0 = ⌧
0

< ⌧
1

. . . ⌧
K�1

< ⌧
K

= 1} of [0, 1], we define 2p

additional knots ⌧�p

= . . . = ⌧�1

= 0 and ⌧
K+1

= . . . = ⌧
K+p

= 1. Then functionseB
j,p

(x), j = �p, . . . , K � 1 form a basis of S (p; ⌧
K

). For more properties of a B-spline

function, see de Boor (1978, chapter 9).

A particular case of the general B-splines are cardinal B-splines constructed on equidis-

tant knots.

Definition 6 A forward cardinal B-spline of degree p is defined as

B
c,p

(x) B
1

p!

p+1X
i=0

(�1)i
✓
p+ 1

i

◆
(x� i)p

+

, (2.3)

7



2 Spline estimators

where (x)p
+

: x 7!{ max (0, x)}p , for p > 0 and (x)0
+

: x 7! I{x�0}. A cardinal B-spline of

degree p centered at i 2 Z is defined as

B
c,p,i

(x) B B
c,p

(x+ p/2 + 1/2� i). (2.4)

Taking in Definition 5 {⌧
j

= j}p+1

j=0

, one can check that B
c,p

(x) = eB
0,p

(x), that is B
c,p

(x)

is a general B-spline of degree p based on knots 0, . . . , p + 1. The plot of B
c,p

(x) for

di↵erent p is given in Figure (2.1). For more details about forward cardinal splines, we

refer to Schoenberg (1973, lecture 3). Here, we mention only one well-known property

we will use: Z 1

�1
B

c,p

✓
x+

p+ 1

2

◆
exp(�2⇡ix)dx = sinc(⇡x)p+1, (2.5)

where function sinc(x) is defined via

sinc(x) B

8<:sin(x)/x, x 6= 0

1, x = 0.

Finally, we define periodic B-splines on equidistant knots.

Definition 7 The j-th periodic B-spline for the partition ⌧
K

= {i/K}K
i=0

is given by

B
j,p

(x) B
1X

l=�1

B
c,p

{K (x+ l � j/K)} . (2.6)

Functions B
j,p

(x), j = 1, . . . , K build a basis of space Sper(p; ⌧
K

). Function B
j,p

(x)

has period 1 and is a periodic extension to the real line of eB
j,p

(x), based on knots

{⌧
i

= i/K}j+p+1

i=j

. From (2.5), the Fourier series of periodic splines are given by

B
i,p

(x) =
1X

l=�1

sinc(⇡l/K)p+1 exp{2⇡il(x� i/K)}, i = 1, . . . , K. (2.7)

For p = 3 and K = 4, the periodic B-spline basis is plotted in Figure 2.2.

8



2 Spline estimators
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Figure 2.2: Periodic B-spline B
j,p

(x) for p = 3, K = 4

2.2 Global asymptotic characteristics of nonparametric

estimators

In this section, we define the best achievable (optimal) rate of convergence of estimators

and give it for di↵erent spaces. Further, we define measures of goodness of an estimator

that allow us to check whether the estimator has the best possible rate of convergence

or not.

Definition 8 A positive sequence {a
N

}1
N=1

is called an optimal rate of convergence of

estimators on class of functions F with respect to norm k·k if 9 c
1

, c
2

> 0

lim inf
N!1

inf
b
f

N

2 bF
N,f

sup
f2F

E

��� bf
N

� f
���2 a�2

N

�
� c

1

lim sup
N!1

inf
b
f

N

2 bF
N,f

sup
f2F

E

��� bf
N

� f
���2 a�2

N

�
 c

2

,

where bF
N,f

denotes a class of estimators of f based on random sample of size N .

9



2 Spline estimators

Subsequently, we take bF
N,f

to be the set of all estimators that are linear in observa-

tions. The next lemma gives optimal rates of convergence for linear estimators with the

deterministic design in Sobolev space.

Lemma 1 (Speckman, 1985)

In Definitionin 8, let F = W q[0, 1], where

W q[0, 1] B
n
f : [0, 1] ! R, f, f

0
, . . . , f (q�1)are absolutely continuous,

and

Z
1

0

�
f (q)(x)

 
2

dx < 1
�

is a Sobolev space of order q. For fixed {x
i

}N
i=1

, x
i

2 [0, 1] with limiting density g(x) such

that
R
x

i+1

x

i

g(x)dx = N�1, let

Y
i,f

= f(x
i

) + ✏
i

, i = 1, . . . , N, f 2 F ,

where assumptions (2.1) holds for errors {✏
i

}N
i=1

. Let bF
N,f

be all linear in {Y
i,f

}N
i=1

estimators. Under these assumptions, the optimal rate of convergence of estimators on

F with respect to norm kfk
N,2

= N�1

nP
N

i=1

f(x
i

)2
o�1/2

is N�q/(2q+1).

With additional assumptions on space F (for example, F = Cq[0, 1] etc.) and error

distribution, the results of Lemma 1 hold for the class of all estimators (including non-

linear estimators) and random designs (see Tsybakov, 2009; Stone, 1980, 1982). Lemma 1

also holds in the Sobolev space for the class of all estimators (including non-linear) under

additional assumptions on the error distribution (Golubev and Nussbaum, 1990).

The global goodness of estimator bf can be measured by the integrated squared mean

error (the IMSE) that is defined for the equidistant design on interval [0, 1] via

IMSE( bf) B E
��� bf � f

���2
2

= E

Z
1

0

nbf(x)� f(x)
o

2

dx (2.8)

=

Z
1

0

n
E bf(x)� f(x)

o
2

dx+

Z
1

0

E
nbf(x)� E bf(x)o2

dx.

10



2 Spline estimators

The discrete version of the IMSE is the average mean squared error (the AMSE)

AMSE( bf) B 1

N

NX
i=1

nbf(x
i

)� f(x
i

)
o
2

(2.9)

=
1

N

NX
i=1

n
E bf(x

i

)� f(x
i

)
o
2

+
1

N

NX
i=1

E
nbf(x

i

)� E bf(x
i

)
o
2

.

Clearly, IMSE( bf) and AMSE( bf) are asymptotically equivalent for N ! 1 under certain

assumptions on the regularity of the data points. Estimator bf is said to be asymptotically

optimal on F with respect to norm k·k
2

if its IMSE (the AMSE) has the same order of

magnitude as the corresponding squared optimal rate of convergence of estimators on F .

From Lemma 1, if the regression function is from W q[0, 1], then asymptotically optimal

linear estimators have the IMSE (the AMSE) of order N2q/(2q+1).

2.3 Smoothing spline estimators

In this section, we discuss smoothing splines and their global asymptotic properties.

Smoothing splines are the oldest spline-based method. The idea of smoothing splines

traces back to Whittaker (1923) and has been developed further by, among many oth-

ers, Schoenberg (1964), Reinsch (1967) and Wahba (1975), who popularized smoothing

splines in statistics. To obtain L
2

-error bounds for smoothing spline estimators, di↵erent

methods have been employed. Among them are Fourier techniques (Rice and Rosenblatt,

1981, 1983; Cogburn and Davis, 1974), the reproducing kernel Hilbert spaces framework

(Craven and Wahba, 1979) and the asymptotic correspondence of the smoothing spline

minimization problem to a certain boundary value problem (Utreras, 1983). Let us pro-

ceed with the details.

In Sobolev space W q[0, 1] defined in Section 2.2, we consider a minimization problem

min
g2W q

[0,1]

"
1

N

NX
i=1

{Y
i

� g(x
i

)}2 + �

Z
1

0

�
g(q)(x)

 
2

dx

#
, � >0, q > 0, (2.10)

where observations 0 < x
1

< x
2

. . . x
N�1

< x
N

< 1 and data {Y
i

}N
i=1

are from regression

model (2.1) with conditions (2.2). The solution of (2.10) bf
ss

is called a smoothing spline

11



2 Spline estimators

estimator. The trade-o↵ between the fidelity to the data and the smoothness of bf
ss

is

controlled by roughness penalty �
R
1

0

�
g(q)(x)

 
2

dx with penalty parameter �. If � = 0,bf
ss

interpolates {Y
i

}N
i=1

. If �! 1, bf
ss

is a polynomial of degree q � 1.

It is a well-known result that bf
ss

is a natural spline of degree 2q� 1 with inner knots at

x
i

, i = 1, . . . , N (see, e.g., Eggermont and LaRiccia, 2009, Chapter 19.3). Hence (2.10)

is equivalent to the minimization in (N +2q)-dimensional spline space S �2q � 1; ⌧
N�1

�
,

where ⌧
N+1

= {0 = x
0

< x
1

< x
2

. . . x
N

< x
N+1

= 1}. Defining 4q � 2 additional

knots x�2q+1

= . . . = x�1

= 0 and x
N+2

= . . . x
N+2q

= 1, we can construct basis vector

B(x) =
n eB�2q+1,2q�1

(x), . . . eB
N,2q�1

(x)
o
with B-spline eB

j,2q�1

(x) based on x
j

, . . . , x
j+2q

for j = �2q+1, . . . , N (see Definition 5). In matrix form, the smoothing spline estimator

can be written as

bf
ss

(x) = B(x)(BTB + �D
q

)�1BTY , (2.11)

where Y = (Y
1

, . . . Y
N

)T , B =
�
B(x

1

)T , . . . B(x
N

)T
 
T

is a N ⇥ (N + 2q) design matrix,

D
q

=
R

1

0

B(q)(x)TB(q)(x)dx is a (N + 2q)⇥ (N + 2q) matrix.

Let us touch a few aspects of the global asymptotic properties of smoothing splines. The

AMSE of smoothing splines in the periodic case was studied by Wahba (1975).

Lemma 2 (Wahba, 1975)

Suppose that f 2 W 2q

per[0, 1] =
�
g 2 W 2q[0, 1], g(j)(0) = g(j)(1), j = 0, . . . , 2q � 1

 
and

its Fourier series are f(t) =
P1

l=�1
ef
l

exp(2⇡ilt). Let bf per
ss

be the solution of

min
g2W 2q

per[0,1]

"
1

N

NX
i=1

{Y
i

� g(x
i

)}2 + �

Z
1

0

�
g(q)(x)

 
2

dx

#
,

where {x
i

= i/N}N
i=1

. Then

AMSE
⇣ bf per

ss

⌘
=

24(N�1)/2X
i=1

2�2(2⇡i)4q| ef
i

|2
{1 + �(2⇡i)2q}2 +

�2

R1
0

(1 + t2q)�2

dt

N�1/2q
+
�2

N

35 {1 + o(1)} . (2.12)

To obtain the results of Lemma 2, Wahba (1975) worked with the Fourier trigonomet-

ric basis. In the non-periodic case, another orthogonal basis is used. We give a brief

exposition of it. As was mentioned above, the solution bf
ss

is a natural spline in space

12



2 Spline estimators

NS(2q � 1; ⌧
N+1

), where ⌧
N+1

= {0 = x
0

< x
1

< x
2

. . . x
N�1

< x
N

< x
N+1

= 1}.
Demmler and Reinsch (1975) introduced a real-valued orthogonal basis {'

N,i

(x)}N
i=1

of

NS(2q � 1; ⌧
N+1

) that is determined by conditions

1

N

NX
l=1

'
N,i

(x
l

)'
N,j

(x
l

) = �
i,j

Z
1

0

'
(q)

N,i

(x)'(q)

N,j

(x)dx = �
i,j

⌫
N,i

(2.13)

with 0 = ⌫
N,1

= . . . = ⌫
N,q

< ⌫
N,q+1

 . . .  ⌫
N,N

for i, j = 1, . . . , N . In the Demmler-Reinsch basis, the solution of smoothing spline

minimization problem (2.10) is

bf
ss

(x) =
1

N

NX
l,i=1

'
N,i

(x
l

)'
N,i

(x)

1 + �⌫
N,i

Y
l

=
NX
i=1

f
N,i

'
N,i

(x)

1 + �⌫
N,i

(2.14)

with f
N,i

=
1

N

NX
l=1

'
N,i

(x
l

)Y
l

.

A continuous analogue of the Demmler-Reinsch basis {'
i

(x)}1
i=1

is determined byZ
1

0

'
j

(x)'
i

(x)dx = �
i,j

Z
1

0

'
(q)

i

(x)'(q)

j

(x)dx = ⌫
j

�
i,j

(2.15)

with 0 = ⌫
1

= . . . = ⌫
q

< ⌫
q+1

 ⌫
q+2

. . .

for i, j 2 N. From, e.g., Speckman (1985), it is known that functions {'
i

(x)}1
i=1

build a

complete orthogonal system in W q[0, 1] under L
2

-inner product. Hence, 8f 2 W q[0, 1]

f(x) =
1X
l=1

f
l

'
l

(x), with f
l

=

Z
1

0

f(x)'(x)dx and
1X
l=1

f 2

l

⌫
l

< 1.

Using Demmler-Reinsch representation (2.14) of bf
ss

and approximating lim
N!1 '

N,i

(x) =

'
i

(x), lim
N!1 ⌫

N,i

(x) = ⌫
i

(see, e.g., Speckman, 1985), the IMSE of smoothing splines

in the non-periodic case can be written as

IMSE( bf
ss

) =

" 1X
i=q+1

�2⌫2
i

f 2

i

(1 + �⌫
i

)2
+

1

N

1X
i=q+1

�2

(1 + �⌫
i

)2
+

q�2

N

#
{1 + o(1)}. (2.16)

13



2 Spline estimators

Let us consider the asymptotic rate of IMSE( bf
ss

). The second and the third summands

in (2.16) are the integrated variance with the order of magnitude N�1��1/(2q), where

⌫
i

⇣ i2q, i > q (Birkho↵, 1908) and an approximation by an integral was used (see, e.g.,

Speckman, 1985). Here and subsequently, the notation a ⇣ b denotes that a = const b,

where const > 0 is some generic constant. The first sum in (2.16) is the squared integrated

bias and its rate depends on the decay of f
i

. The decay rate of f
i

for f 2 W 2q[0, 1] was

studied by Utreras (1988), and he obtained for i > l that

|f
i

| 
�����
2q�1X
j=q

O
���f (j)(1)

��+ ��f (j)(0)
�� ⌫�(j+1)/(2q)

i

+ ⌫�1

i

Z
1

0

'
i

(x)f (2q)(x)dx)

����� . (2.17)

From (2.17), the decay rate of f
i

and, therefore, the asymptotic rate of the IMSE depend

on the natural boundary conditions

f (j)(0) = f (j)(0) = 0, j = q, . . . , 2q � 1. (2.18)

If (2.18) holds, the integrated squared bias can be bounded by

Z
1

0

���f(x)� E bf
ss

(x)
���2 dx  �2

1X
i=q+1

⌫2
i

f 2

i

= �2
Z

1

0

�
f (2q)(x)

 
2

dx = O(�2).

Therefore, for f 2 W 2q[0, 1] with natural boundary conditions (2.18), the global asymp-

totic error of smoothing splines is

IMSE( bf
ss

) = O(�2) +O
�
N�1��1/(2q)

 
(2.19)

with optimal � ⇣ N�2q/(1+4q) providing IMSE( bf
ss

) = O{N�4q/(4q+1)}.
If, for example, the j-th natural boundary condition in (2.18) does not hold, the squared

integrated bias becomes (Utreras, 1988)Z
1

0

���f(x)� E bf
ss

(x)
���2 dx = O

�
�(2j+1)/(2q)

 
,

where (2.17), ⌫
i

⇣ i2q, i > q and an approximation of the first term in (2.16) by an

integral were used. Therefore, the IMSE has a bigger order of magnitude than in (2.19)
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2 Spline estimators

and for f 2 W 2q[0, 1] with f (j)(0)2 + f (j)(0)2 6= 0 for some j 2 {q, . . . , 2q� 1} the global

asymptotic error of smoothing splines is

IMSE( bf
ss

) = O{�(2j+1)/(2q)}+O
�
N�1��1/(2q)

 
(2.20)

with optimal � ⇣ N�q/(j+1) providing IMSE( bf
ss

) = N�(2j+1)/(2j+2).

If f does not satisfy the natural boundary conditions, the IMSE is dominated by con-

tribution from the boundary. If the IMSE (the AMSE) of an estimator is dominated by

the contributions from the boundary, we say that the estimator has boundary e↵ects.

For f 2 W q[0, 1], the global asymptotic properties were studied in Craven and Wahba

(1979); Cox (1983); Eggermont and LaRiccia (2009). The IMSE of smoothing splines for

f 2 W q[0, 1] is

IMSE
⇣ bf

ss

⌘
= O(�) +O

�
N�1��1/(2q)

 
.

with optimal � ⇣ N�2q/(1+2q) providing IMSE( bf
ss

) = N�2q/(1+2q). Since in the interior

the pointwise squared bias is of order O(�2) (see Section 3.2.2), the boundary bias of bf
ss

dominates the IMSE. Thus, smoothing splines have boundary e↵ects.

2.4 Regression spline estimators

In this section, we study regression splines and their global asymptotic properties. Re-

gression (or least-squares) splines are introduced in works of Hartley (1961) and Hudson

(1966), among others. Global asymptotics of regression splines were studied in Agarwal

and Studden (1980) and Zhou et al. (1998). Both make use of the results of Barrow and

Smith (1978), who found a sharp estimate of the error for the best L
2

-approximation of

a smooth function by a splines set. Let us look more closely at the details.

We consider regression model (2.1) with error assumptions (2.2). The regression spline

estimator bf
rs

of degree p based on partition ⌧
K

= {0 = ⌧
0

< ⌧
1

. . . ⌧
K�1

< ⌧
K

= 1} is

defined to be the minimizer of

min
s2S(p;⌧

K

)

NX
i=1

{Y
i

� s(x
i

)}2 . (2.21)
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2 Spline estimators

The matrix form representation of the regression spline estimator is

bf
rs

(x) = B(x)(BTB)�1BTY , (2.22)

where the N ⇥ (K + p) basis matrix B =
�
B(x

1

)T , . . . B(x
N

)T
 
T

has colons B(x) =n eB�p,p

(x), . . . eB
K�1,p

(x)
o
. For the construction of basis vector B(x) see Section 2.1.2.

The global asymptotics (the IMSE) of the regression spline estimator was studied in

Agarwal and Studden (1980). For sake of simplicity, we present their result for equidistant

knots and observations.

Lemma 3 (Agarwal and Studden, 1980)

Let f 2 Cp+1[0, 1], x
i

= i/N, i = 1, . . . , N , ⌧
K

= {i/K, i = 0, . . . , K}. The solution bf
rs

of (2.21) has the following IMSE

IMSE
⇣ bf

rs

⌘
=

 B
2p+2

(2p+ 2)!K2p+2

Z
1

0

�
f (p+1)(x)

 
2

dx+ �2K/N

�
{1 + o(1)} ,

where B
2p+2

is the (2p+ 2)-th Bernoulli number.

The first term of the IMSE is the integrated squared bias, the second term is the in-

tegrated variance. The optimal rate of convergence N�(p+1)/(2p+3) is provided by K ⇣
N1/(2p+3).

Unlike the smoothing spline estimator, the regression spline estimator does not have

boundary e↵ects. Zhou et al. (1998) showed that the same rate of convergence as in

Lemma 3 is achieved locally for any x 2 [0, 1], that is bf
rs

(x)�f(x) = O
p

�
N�(p+1)/(2p+3)

 
uniformly (see also Section 3.3.2 for details). However, the variance at the boundary of

[0, 1] is much larger than in the interior, since there are fewer observations at the bound-

ary (Zhou et al., 1998).

2.5 Penalized spline estimators

A trade-o↵ between smoothing and regression spline estimators are penalized splines,

which have become increasingly popular over last two decades, see Ruppert et al. (2003).

The asymptotic properties of penalized spline estimators have got attention only re-

cently. It has been discussed in Claeskens et al. (2009) that depending on the number of
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2 Spline estimators

knots taken, penalized splines have asymptotic behavior similar either to regression or to

smoothing splines. Kauermann et al. (2009) studied in more detail the “small”number of

knots scenario in the generalized regression context. Recently, Wang et al. (2011) have

shown that in the asymptotic scenario with the “large” number of knots, the equivalent

kernel for penalized splines is asymptotically equivalent to that of smoothing splines.

All these works used mixed approaches, combining techniques for regression and spline

estimators, depending on the asymptotic scenario.

This section introduces penalized splines as a smoothing technique and their global

asymptotic properties.

Definition 9 Given regression model (2.1) with error assumptions (2.2). Penalized

spline estimator bf
ps

of degree p based on partition ⌧
K

= {0 = ⌧
0

< ⌧
1

. . . ⌧
K�1

< ⌧
K

= 1}
is the solution of the following minimization problem:

min
s2S(p;⌧

K

)

"
1

N

NX
i=1

{Y
i

� s(x
i

)}2 + �

Z
1

0

�
s(q)(x)

 
2

dx

#
, � >0, 0 < q  p. (2.23)

If � = 0, penalized spline estimator bf
ps

coincides with regression spline estimator bf
rs

,

the solution of (2.21). The penalized spline estimator of degree p = 2q � 1 based on

partition ⌧
N+1

= {0 = x
0

< x
1

< x
2

. . . < x
N

< x
N+1

= 1} equals the smoothing spline

estimator bf
ss

, the solution of (2.10).

The matrix representation of the penalized spline estimator is

bf
ps

(x) = B(x)(BTB + �D
q

)�1BTY , (2.24)

where B =
�
B(x

1

)T , . . . B(x
N

)T
 
T

is N ⇥ (K + p) design matrix with vector-function

B(x) =
n eB�p,p

(x), . . . eB
K�1,p

(x)
o

and D
q

=
R

1

0

B(q)(x)TB(q)(x)dx is (K + p)⇥ (K + p)

matrix. For the construction of basis vector B(x) see Section 2.1.2.

It was shown in Claeskens et al. (2009) that the asymptotic behavior of the penalized

spline estimator depends on some parameter k
q

, which is proportional to the maximum

of the eigenvalues of �(BTB)�1D
q

and depends on �, K, q.

Lemma 4 (Claeskens et al., 2009)

Let k
q

⇣ �1/(2q)K be the maximum eigenvalue of �(BTB)�1D
q

. The solution bf
ps

of the
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2 Spline estimators

minimization problem (2.23) has the following global asymptotic properties:

AMSE( bf
ps

) =

8<:O
�
K

N

�
+O (�2K2q) +O (K�2p�2) , k

q

= O(1), f 2 Cp+1[0, 1]

O (K�2q) +O (�) +O
�
��1/(2q)N�1

 
, k

q

! 1, f 2 W q[0, 1].

If k
q

= O(1), the optimal convergence rate N�(p+1)/(2p+3) is achieved when K ⇣ N1/(2p+3)

and � = O(N��) with �  (p+ 1� q)/(2p+ 3).

If k
q

! 1, the optimal convergence rate N�q/(1+2q) is achieved when � = O
�
N�2q/(2q+1)

 
,

where �N2q ! 1 and K ⇣ N⌫ with ⌫ � 1/(2q + 1).

The AMSE consists of three summands that give the orders of magnitude of the average

squared approximation bias (bias that arises due to the approximation of the regression

function by splines), the average squared shrinkage bias (bias that arises due to the pe-

nalization) and the average variance, respectively.

In case k
q

= O(1), the asymptotically optimal number of knots K (its rate of magni-

tude) and the optimal convergence rate of bf
ps

coincide with those of regression splines

(see Section 2.5). For � ⇣ N�(p+1+q)/(2p+3) and for asymptotically optimal K, the aver-

age squared shrinkage bias contributes to the AMSE, while for � of a smaller order of

magnitude, the average squared shrinkage bias is asymptotically negligible (Claeskens

et al., 2009).

In case k
q

! 1, the asymptotically optimal order of magnitude of � and the optimal

convergence rate of bf
ps

coincide with those of smoothing splines (see Section 2.3). For

K ⇣ N1/(2q+1) and for asymptotically optimal �, the average squared approximation

bias contributes to the AMSE, while for K of a bigger order of magnitude, the average

squared approximation bias is asymptotically negligible (Claeskens et al., 2009).

Note that the optimal convergence rate of bf
ps

is determined by p for k
q

= O(1) and by

q for k
q

! 1. Since we assume q  p, the optimal convergence rate of bf
ps

is faster for

k
q

= O(1). This phenomenom can be explained by the shrinkage bias, which dominates

when k
q

! 1 and is a lot bigger at the boundary (Claeskens et al., 2009).
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3 Local asymptotic properties and

equivalent kernel for spline

estimators

In this chapter, we bring together results on the pointwise behavior of three types of

spline estimators that we introduced in the previous chapter.

In Section 3.1, we discuss one more method of nonparametric regression – kernel regres-

sion. As we will see later, methods of kernel regression can be used in order to find the

pointwise bias and variance of spline estimators. In the remainder of Section 3.1, we in-

troduce the concept of an equivalent kernel and give a short summary on kernels for each

spline estimator. In Section 3.2, we discuss the local asymptotic properties of smoothing

splines. In order to do it, we look more closely at the corresponding di↵erential equations

and their Green’s functions. In Section 3.3, we discussion the local asymptotic proper-

ties and the equivalent kernel for regression splines. In Section 3.4, we have compiled

a few known results concerning the pointwise asymptotic behavior of penalized spline

estimators.

In this chapter and further, {x} denotes the fractional part of x, bxc = x � {x} is the

largest integer not greater than x. Function B
p

(x) denotes a Bernoulli polynomial of

degree p

B
p

(x) B
pX

i=0

1

i+ 1

iX
j=0

(�1)j
✓
i

j

◆
(x+ j)p.

Notation B
p

= B
p

(0) is used for denoting the Bernoulli numbers. �(x) denotes the Dirac

delta function.

For simplicity of notation, we give most results for equidistant knots and observations.
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3 Local asymptotic properties and equivalent kernel for spline estimators

3.1 Definition of the equivalent kernel

Kernel regression is a standard technique of nonparametric regression to estimate un-

known function f in regression model (2.1). Methods similar to kernel regression are

used in order to find the local asymptotic properties of spline estimators. The concept

of the equivalent kernel is used for it.

3.1.1 Kernel regression: basics

This section contains definitions of kernel estimators, their pointwise asymptotic behavior

and a few aspects of boundary kernels.

Definition 10 Function K(x, t) : R2 ! R is called a kernel of order p + 1 on R if and

only if it satisfies the moment conditions

1.
R1
�1 K(x, t)tldt =

8<:1, l = 0,

xl, l = 1, . . . p

2.
R1
�1 K(x, t)tp+1dt 6= xp+1

3.
R1
�1 K2(x, t)dt < 1.

Given regression model (2.1) and kernel of order p+1 K(x, t), let us define kernel estimatorbfK for equidistant observations points {i/N}N
i=1

as

bfK(x) B 1

Nh

NX
i=1

K

✓
x

h
,

i

Nh

◆
Y
i

, (3.1)

where positive parameter h ! 0 is called a bandwidth and plays a role similar to the

penalty parameter for smoothing splines, i.e controls the trade-o↵ between the fidelity

to the data and the smoothness of the estimator.

Further, we discuss the pointwise bias and variance of the kernel estimator. For simplicity,

we consider a translation-invariant kernel estimator with equidistant observations.

Definition 11 Kernel K (x, t) is called translation-invariant if there exists K (t) such

that K (x, t) = K (x� t).
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3 Local asymptotic properties and equivalent kernel for spline estimators

Hence, the translation invariant kernel estimator can be written as

bfK(x) = 1

Nh

NX
i=1

K

✓
x� i/N

h

◆
Y
i

(3.2)

with the following moment conditions:

Z 1

�1
K(t)tldt =

8<:1, l = 0

0, l = 1, . . . p
;

Z 1

�1
K(t)tp+1dt 6= 0;

Z 1

�1
K2(t)dt < 1. (3.3)

The local asymptotic properties of the translation-invariant kernel estimator are rela-

tively easy to study. With some additional assumptions on the kernel, the technique for

finding the pointwise bias and variance is similar in the non translation-invariant case.

We refer to Section 4.4.4, wherein this case was considered. We now show how to find

the pointwise bias and variance of the translation-invariant kernel estimator. The gen-

eral idea for finding the pointwise bias is to use the Taylor series of f 2 Cp+1[0, 1] for

t 2 [0, 1], h ! 0:

f(x� th) = f(x)� thf
0
(x) + . . .+

(�th)pf (p)(x)

p!
+

(�th)p+1f (p+1)(x)

(p+ 1)!
+ o(hp+1).

If x 2 (h, 1�h), interval (x/h�h, x/h) is approximately equal to (�1,1), since h ! 0.

Therefore, conditions (3.3) on the moments can be applied:

E bfK(x) =
1

Nh

NX
i=1

K

✓
x� i/N

h

◆
f(i/N) = h�1

Z
1

0

K

✓
x� t

h

◆
f(t)dt+O(N�1)

=

Z
x/h

x/h�1/h

K (t) f(x� th)dt+O(N�1) ⇡
Z 1

�1
K (t) f(x� th)dt+O(N�1)

= f(x) +
(�h)p+1f (p+1)(x)

(p+ 1)!

Z 1

�1
K (t) tp+1dt+ o(hp+1) +O(N�1). (3.4)

The di↵erence
R
x/h

x/h�1/h

K (t) f(x�ht)dt�R1
�1 K (t) f(x�ht)dt depends on the particular

kernel K(t), but in any case is asymptotically negligible for h ! 0.
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3 Local asymptotic properties and equivalent kernel for spline estimators

The pointwise variance of the kernel estimator can be derived from

Var
nbfK(x)o =

�2

N2h2

NX
i=1

K2
✓
x� i/N

h

◆
=

�2

Nh2

Z
1

0

K2
✓
x� t

h

◆
dt+O(N�1)

=
�2

Nh

Z
x/h

(x�1)/h

K2 (t) dt+O(N�1) = O(N�1h�1). (3.5)

With this, in the interior, the bias of the estimator bfK has order of magnitude hp+1, while

the variance has order N�1h�1. Thus, the bandwidth controls the trade-o↵ between the

bias and the variance: decreasing the pointwise bias, we increase the pointwise variance.

Kernel regression estimator bfK has a bias of a bigger order at the boundary than in

the interior, where the boundary region is [0, h) and (1 � h, 1]. There are many ways

to correct the boundary bias, such as the boundary correction kernel method. The idea

is to use a corrected kernel that satisfies certain incomplete moment conditions at the

boundary, so that the same technique as in (3.4) can be applied for the boundary points.

For x = ↵h,↵ 2 [0, 1), these conditions on boundary kernel K
↵

(t) are

Z 1

�↵

K
↵

(t)tldt =

8<:1, l = 0

0, l = 1, . . . p
;

Z 1

�↵

K
↵

(t)tp+1dt 6= 0.

For x = 1� ↵h,↵ 2 [0, 1), the conditions on boundary kernel K
↵

(t) are

Z
↵

�1
K
↵

(t)tldt =

8<:1, l = 0

0, l = 1, . . . p
;

Z
↵

�1
K
↵

(t)tp+1dt 6= 0.

Kernel K
↵

(t) can be constructed for each x 2 [0, h) or x 2 (1 � h, 1] by weighting the

original kernel K(t) with polynomials so that the resulting function satisfies the incom-

plete moment conditions above. The coe�cients of the polynomials can be expressed in

terms of incomplete moments of function K(t) (see Gasser and Müller, 1979; Gasser and

Müller, 1984). In the literature (e.g., Gasser and Müller, 1979), kernel K(t) and K
↵

(t) are

usually assumed to have compact support and the integrals in the moment conditions

are typically taken over a finite interval.

Finally, we discuss one more aspect of the global asymptotic properties for kernel estima-
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3 Local asymptotic properties and equivalent kernel for spline estimators

tor bfK from (3.1). In general, the moment conditions in Definition 10 are not su�cient in

order to provide the optimal rate of convergence for estimator bfK. The following lemma

gives su�cient conditions on kernel K(x, t) under which kernel regression estimator bfK
achieves the optimal convergence rate.

Lemma 5 Eggermont and LaRiccia (2009, theorem 14.2.16)

For f 2 W q[0, 1] and bfK from (3.1), IMSE( bfK) = O
�
N�2q/(2q+1)

 
if h ⇣ N�1/(2q+1) and

h�1K(h�1x, h�1t) is convolution-like kernel of order q, that is

1. 8x 2 [0, h�1] 9c > 0

Z
h

�1

0

|K(x, t)| dt  c; sup
t2[0,h�1

]

|K(x, t)|  c;

Z
h

�1

0

���� @@tK(x, t)

���� dt  c.

2. 8x 2 [0, h�1] 9c > 0

Z
h

�1

0

(x� t)lK (x, t) dt =

8<:1, l = 0,

0 l = 1, . . . , q � 1Z
h

�1

0

|x� t|q |K (x, t)| dt  c.

For more global asymptotic properties of the kernel estimator we refer to Eggermont

and LaRiccia (2009).

3.1.2 Equivalent kernel for spline estimators: definitions

The idea of an equivalent kernel for spline estimators is to provide a simpler estimator

than the original one. In this section, we discuss an equivalent kernel for all three spline

estimators together and an equivalent kernel for each of them in particular.

From matrix-form representations (2.11), (2.22) and (2.24), it follows that spline esti-

mators are linear in observations Y
1

, . . . , Y
N

, i.e., there is the unique weight function

W (x, t) such that spline estimator bf can be represented in the form

bf(x) = 1

N

NX
i=1

W (x, x
i

)Y
i

. (3.6)
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3 Local asymptotic properties and equivalent kernel for spline estimators

In general, function W (x, t) depends on the design points x
1

, . . . , x
N

, on the correspond-

ing spline space (its degree, the number of knots and the position of the knots), on the

penalty parameters (in case of smoothing and penalized splines). Function W (x, t) is

called the e↵ective kernel. We consider an equivalent estimator

ef(x) = 1

N

NX
i=1

fW (x, x
i

)Y
i

such that function fW (x, t) does not depend on the design points and 8x 2 [0, 1]��� bf(x)� ef(x)��� = o
p

n
E bf(x)� f(x)

o
.

We call function fW (x, t) an equivalent kernel. We also refer to scaled versions of fW (x, t)

as equivalent kernels. Equivalent estimator ef is simpler than original spline estimator bf
and, in many cases, allows to study the pointwise asymptotic behavior of spline estima-

tors using the methods of kernel regression discussed in Section 3.1.1.

In the following, we give a literature overview of equivalent kernels for each spline esti-

mator.

The equivalent kernel for smoothing splines is the Green’s function of the corresponding

continuous di↵erential equation. For the discussion see, e.g., Eggermont and LaRiccia

(2009) and Section 3.2.1. This Green’s function can be approximated by a translation-

invariant function in the interior that has a simple explicit form. At the boundary, the

form of the equivalent kernel (Green’s function) is more complicated, but its behavior is

studied and the explicit form can be obtained in many cases.

The equivalent kernel for regression splines is an L
2

-projection kernel on a certain linear

spline space (see Huang and Studden, 1992). The equivalent kernel is not translation-

invariant and its shape depends on the distance from the knots. Its formula is obtained

in terms of B-splines and roots of some polynomials, which can be computed at least for

p = 1, 2, 3. For more details see Huang and Studden (1992) and Section 3.3.1.

The equivalent kernels for penalized splines is usually associated with the equivalent ker-

nel for smoothing splines. That is, the known results are obtained only for the k
q

! 1
scenario (see Section 2.5 for the asymptotic scenarios and Section 3.4 for an overview

of the literature). We treat di↵erent asymptotic scenarios and obtain new results that
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3 Local asymptotic properties and equivalent kernel for spline estimators

establish the dependence of the equivalent kernel on k
q

in Section 4.3.

3.2 Equivalent kernel for smoothing splines

To understand the local properties of smoothing spline estimators, asymptotic equiva-

lent kernels have been studied extensively. First, Cogburn and Davis (1974) obtained an

asymptotic equivalent kernel for smoothing splines on the real line, using Fourier tech-

niques. Messer and Goldstein (1993) and Thomas-Agnan (1996) extended this kernel

to the case of a bounded interval. Later, Eggermont and LaRiccia (2006) refined these

two results. In this section, we look more closely at the equivalent kernel for smooth-

ing splines. Then, we define with its help equivalent estimator ef
ss

and study the local

asymptotic properties of ef
ss

.

3.2.1 Formula of the equivalent kernel for smoothing splines

The problem of finding an approximation of the weight function in (3.6) for smoothing

spline estimator bf
ss

given in Section 2.3 is known and has been treated exhaustively to

the verge of being solved. The general idea is to approximate bf
ss

by the solution of some

continuous minimization problem, which can be solved using di↵erential equations and

Fourier analysis. In Section 3.2.1, we first discuss smoothing spline related minimization

problems and their corresponding boundary value problems, then we define the equiva-

lent kernel and examine its properties. Finally, we study the behavior of the equivalent

kernel in the interior.

From Eggermont and LaRiccia (2009, p.63), the Euler equation of smoothing spline

minimization problem (2.10) is

1

N

NX
i=1

g(x
i

)�(x� x
i

) + �(�1)qg(2q)(x) = 1

N

P
N

i=1

Y
i

�(x� x
i

) (3.7)

g(j)(0) = g(j)(1) = 0, j = q, . . . , 2q � 1.
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3 Local asymptotic properties and equivalent kernel for spline estimators

The standard approach is to approximate the discrete sums in (3.7) by integrals and to

look for the solution of the following Euler equation

g(x) + �(�1)qg(2q)(x) = f(x), x 2 (0, 1) (3.8)

g(j)(0) = g(j)(1) = 0, j = q, . . . 2q � 1

that corresponds to Tikhonov regularization problem

min
g2W q

[0,1]

Z
1

0

{g(x)� f(x)}2 dx+ �

Z
1

0

�
g(q)(x)

 
2

dx

�
. (3.9)

A slightly di↵erent approach, to be found in Eggermont and LaRiccia (2009), is to

approximate only the first discrete sum in (3.7) and work with solution ef of the following

Euler equation

g(x) + �(�1)qg(2q)(x) = N�1

P
N

i=1

Y
i

�(x� x
i

) (3.10)

g(j)(0) = g(j)(1) = 0, j = q, . . . 2q � 1,

which corresponds to minimization problem

min
g2W q

(0,1)

"Z
1

0

g2(x)dx� 2

N

NX
i=1

Y
i

g(x
i

) + �

Z
1

0

�
g(q)(x)

 
2

dx

#
. (3.11)

The last minimization problem corresponds to smoothing spline minimization problem

(2.10) with only N�1

P
N

i=1

g(x
i

) approximated by
R
1

0

g2(x)dx.

To define the equivalent kernel, we need to introduce the concept of the Green’s function

and the reproducing kernel. The Green’s function R
�

(x, t) for (3.8) and (3.10) satisfies

R
�

(x, t) + �(�1)q
@2qR

�

(x, t)

@t2q
= �(x� t), (3.12)

@jR
�

(x, t)

@tj

�
t=0

=


@jR

�

(x, t)

@tj

�
t=1

= 0 , j = q, . . . , 2q � 1, x 6= 0, 1. (3.13)

Now we give the definition of the reproducing kernel.

Definition 12 Let H be a Hilbert space on [0, 1] with inner product hf, gi , f, g 2 H.
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3 Local asymptotic properties and equivalent kernel for spline estimators

Function R : H⇥H! R is called the reproducing kernel i↵

1. R(x, t) 2 H for fixed t 2 [0, 1]

2. g(x) = hR(x, t), g(t)i , 8g 2 H, 8x 2 [0, 1].

The details on the Green’s function can be found in, e.g., Stakgold (1979), while the

details on the reproducing kernels can be found in (Berlinet and Thomas-Agnan, 2004).

In Eggermont and LaRiccia (2009), it was shown that the Green’s function of (3.8),

(3.10) exists, is unique and equals the reproducing kernel of W q[0, 1] with inner product

(f, g)
�

=
R

1

0

f(t)g(t)dt+�
R
1

0

f (q)(t)g(q)(t)dt. In the literature, function R
�

(x, t) is called

the equivalent kernel for smoothing spline estimator bf
ss

.

By Green’s theorem, the solutions of boundary value problems (3.8) and (3.10) areR
1

0

R
�

(x, t)f(t)dt and
R
1

0

R
�

(x, t)N�1

P
N

i=1

Y
i

�(x�x
i

)dt, correspondingly. The last solu-

tion is denoted ef
ss

and was treated in detail in Eggermont and LaRiccia (2009). It can

be written as

ef
ss

(x) = N�1

NX
i=1

R
�

(x, i/N)Y
i

(3.14)

=

Z
1

0

R
�

(x, t)f(t)dt+N�1

NX
i=1

R
�

(x, i/N)✏
i

+O(N�1).

The following bound from Eggermont and LaRiccia (2009) shows how good ef approxi-

mates bf
E

(
sup

x2[0,1]

��� bf
ss

(x)� ef
ss

(x)
���2) = O

�
�(4q�1)/(2q) + ��3/(2q)N�2

 
. (3.15)

Further, we find the explicit form for Green’s function (equivalent kernel) R
ss

(x, t).

Finding the Green’s function of system (3.8) and (3.10) is equivalent to finding the

general solution of (3.12) as a linear combination of homogeneous solutions and matching

coe�cients so that they satisfy boundary conditions (3.13).
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3 Local asymptotic properties and equivalent kernel for spline estimators

For q = 1, the Green’s function was found in Nychka (1995)

R
�

(x, t) =
exp

�
��1/2 |x� t|�+ exp{��1/2(�t� x)}
��1/2{2� 2 exp (���1/2)}

+
exp{��1/2(t+ x)� 2)}+ exp(2� ��1/2 |t� x|)

�1/2{2� 2 exp (��1/2)} .

For q = 2, the Green’s function is already quite complicated (see, e.g., Thomas-Agnan,

1996). Hence, we give only the following form for all q � 1

R
�

(x, t) = ��1/(2q)K
ss

�
��1/(2q)(x� t)

 
+ ��1/(2q)

2q�1X
i=0

↵
i

{��1/(2q)t} 
i

�
��1/(2q)x

 
, (3.16)

where ��1/(2q)K
ss

�
��1/(2q)(x� t)

 
is the solution of (3.12) with boundary conditions

(3.13) moved to infinity,  
i

�
��1/(2q)x

 
, i = 1, . . . , 2q� 1 are the homogeneous solutions

of (3.12) and coe�cients ↵
i

{��1/(2q)t} i = 1, . . . , 2q � 1 are chosen to match natural

boundary conditions (3.13) for each t. Representation (3.16) is equivalent to R
�

(x, t) =

��1/(2q)K[0,1]

ss

{��1/(2q)x,� �1/(2q)t}, where

K[0,1]

ss

(x, t) B R
�=1

(x, t) = K
ss

(x� t) +
2q�1X
i=0

↵
i

(t) 
i

(x) (3.17)

is referred to as the (scaled) equivalent kernel and �1/(2q) is the smoothing spline band-

width. Let us discuss each term in (3.16) and (3.17) in more detail.

The homogeneous solutions of (3.12),  
i

�
��1/(2q)x

 
, i = 1, . . . , 2q� 1, are found via the

roots of characteristic polynomial t + �(�1)qt2q = 0. It is convenient to write them in

the form

 
i

(x) =

8<:exp
n
exp

⇣
2i+q+1

2q

⇡i
⌘
x
o
, i = 0, . . . , q � 1

exp
n
exp

⇣
2i+q+1

2q

⇡i
⌘
(x� 1)

o
, i = q, . . . 2q � 1.

(3.18)
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3 Local asymptotic properties and equivalent kernel for spline estimators

Coe�cients ↵
i

{��1/(2q)t}, i = 0, . . . 2q� 1 decay exponentially away from the boundary.

More precisely, from Eggermont and LaRiccia (2006), it holds that

sup
0iq�1

|↵
i

(t)| = O {exp(�↵t)} , sup
qi2q�1

|↵
i

(t)| = O {exp(�↵(1� t))} , ↵ >0. (3.19)

Finally, let us study function K
ss

(x) that plays an important role in our further analysis.

From (3.16), ��1/(2q)K
ss

�
��1/(2q)(x� t)

 
corresponds to the Green’s function of Euler

equation

g(x) + �(�1)qg(2q)(x) = f(x), x 2 R (3.20)

lim
|x|!1

g(j)(x) = 0, j = q, . . . 2q � 1,

which in turn corresponds to the minimization problem on the real line

min
g2W q

(R)

Z 1

�1
{g(x)� f(x)}2 dx+ �

Z 1

�1

�
g(q)(x)

 
2

dx

�
. (3.21)

From (3.21), the explicit form of K
ss

(x) can be derived by means of Fourier transform

(see Thomas-Agnan, 1996) and is given in Definition 13.

Definition 13 Function K
ss

: R ! R defined via integral

K
ss

(x) B
Z 1

�1

exp(2⇡ux)

1 + (2⇡u)2q
du (3.22)

is called the equivalent kernel for smoothing spline estimator (2.10) in the interior.

Definition 13 is motivated by the fact that from (3.19) in the interior of [0, 1] the

equivalent kernels can be approximated by R
�

(x, t) ⇡ ��1/(2q)K
ss

�
��1/(2q)(x� t)

 
and

K[0,1]

ss

(x, t) ⇡ K
ss

(x� t). These approximations were first considered in Silverman (1985)

for q = 2. The integral (3.22) can be computed using the residue theorem (see Thomas-

Agnan, 1996) and its closed-form expression is

K
ss

(x) =
q�1X
j=0

i exp [i |x| exp {⇡i (2j + 1) /(2q)}]
2q exp {i⇡(2q � 1) (2j + 1) /(2q)} . (3.23)
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Figure 3.1: Equivalent kernel K
ss

(x) for smoothing spline estimator

Formula (3.23) can be written without the complex exponentials by grouping the terms

in the summation as

K
ss

(x) =
bq�1c/2X

j=0

sin [⇡(2q � 1)(2j + 1)/(2q)� |x| cos {⇡(2j + 1)/(2q)}]
q exp [|x| sin {⇡(2j + 1)/(2q)}] � I{q is odd}

2q exp(|x|) .

For fixed q, formula (3.23) becomes

K
ss

(x) =
1

2
exp(� |x|), for q = 1

K
ss

(x) =
1

2
exp

⇣
� |x| /

p
2
⌘
sin
⇣
|x| /

p
2 +

⇡

4

⌘
, for q = 2

K
ss

(x) =
1

6

(
exp (� |x|) + 2 exp (� |t| /2) sin

 
|x|

p
3

2
+
⇡

6

!)
, for q = 3.

The plot of K
ss

(x) for q = 1, 2, 3 is given in Figure 3.1. As we can see, the equivalent

kernel for smoothing splines in the interior of [0, 1] is symmetric and decays very rapidly.

Remarks

1. The special periodic case was considered in Cogburn and Davis (1974). If f 2
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3 Local asymptotic properties and equivalent kernel for spline estimators

L
2

[0, 1] and g 2 W q[0, 1] are functions with period 1, then the solution of (3.21)

has the form
R

1

0

f(t)W
ss

(x� t)dt with

W
ss

(x) =
1X

l=�1

��1/(2q)K
ss

�
��1/(2q)(x+ l)

 
.

2. Formulas 2.6 and 2.7 from Messer (1991) give an approximation of the Green’s

function for q = 2 as a combination of K
ss

(x) and its derivatives.

3. From Eggermont and LaRiccia (2009), Green’s function R
�

(x, t) is a convolution-

like kernel as defined in Lemma 5 with h = �1/(2q).

3.2.2 Pointwise asymptotic behavior of smoothing splines

In this section, we study the pointwise bias and variance of smoothing spline estimatorbf
ss

. From matrix form representation of bf
ss

, given in Section 2.3, the smoothing spline

is linear in observations and can be written as

bf
ss

(x) = N�1

NX
i=1

W
ss

(x, i/N)Y
i

,

where W
ss

(x, t) = NB(x)
�
BTB + �D

q

��1

BT (t) with matrices B,D
q

and vector-basis

B(x) given in Section 2.3. From Nychka (1995), 9c
1

, c
2

> 0 such that

|W
ss

(x, t)�R
ss

(x, t)| < O


��1/(2q)N�1

�1/(2q) � c
1

N�1

exp
��c

2

��1/(2q) |x� t| � .
Hence, ef

ss

given in (3.14) is a very good approximation of bf
ss

. Results on the goodness

of the approximation of bf
ss

by ef
ss

are to be found in Messer (1991, theorems 3.2, 3.3),

Eggermont and LaRiccia (2009, Lemma 14.7.2) and in (3.15). Summarizing the references

above, the di↵erence between bf
ss

and ef
ss

at a fixed point is of a smaller order than their

bias at this point and we can study asymptotic properties of ef
ss

instead of those of bf
ss

.

From the discussion in the previous section, in the interior it holds that R
ss

(x, t) ⇡
��1/(2q)K

ss

�
��1/(2q)(x� t)

 
. Hence, in the interior bf

ss

⇡ ef
ss

⇡ bfK, where bfK is a kernel

estimator from (3.2) with kernel K(x) = K
ss

(x), bandwidth h = �1/(2q) and p + 1 = 2q.
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The necessary moment conditions (3.3) on K
ss

(x) follow from (3.23) and Messer and

Goldstein (1993, Proposition 3.4 ):

Z 1

�1
tlK

ss

(t)dt =

8>>><>>>:
1, l = 0

0, 0 < l < 2q

(�1)q+1(2q)!, l = 2q.

(3.24)

The pointwise bias and the pointwise variance of bfK in the interior follow from (3.4) and

from (3.5) and are given in Lemma 6.

A di↵erent approach is to be found in Nychka (1995) who worked with a basis ofW q[0, 1],

{'
i

(x)}1
i=1

, satisfying (2.15) and its eigenvalues {⌫
i

}1
i=1

. To obtain the pointwise bias and

variance of bf
ss

, Nychka (1995) used the series representation of the Green’s function from

Cox (1988)

R
�

(x, t) =
1X
l=1

'
l

(x)'
l

(t)

1 + �⌫
l

and the Euler equation (3.8). The results are given for random design and for p = 1.

Restricting the design to equally spaced observations, the generalization of Nychka (1995,

Theorem 2.2) for p � 1 follows directly from their proof.

Lemma 6 (Nychka, 1995)

Let bf
ss

be the solution of minimization problem (2.10) with {x
i

= i/N}N
i=1

, f 2 C2q[0, 1]

and
��f (2q)(x)� f (2q)(t)

��  c |x� t|↵ ,↵> 0, 0 < c < 1. Then for the interior of [0, 1]

and for c
1

N�2q/(2q+1)Log(N)  �! 0, c
1

> 0 it holds that

E
nbf

ss

(x)� f(x)
o
=� (�1)q�f (2q)(x) + o(�)

V ar
nbf

ss

(x)
o
=
�2

N

Z
1

0

R2

ss

(x, t)dt {1 + o(1)} .

Remarks

1. For q = 1, the explicit expression for the variance is available:

V ar
nbf

ss

(x)
o
=

�2

8N�1/(2)
{1 + o(1)} .

32



3 Local asymptotic properties and equivalent kernel for spline estimators

2. From Eggermont and LaRiccia (2009, p.133), the uniform bond on the smoothing

spline estimator on interval [0, 1] is

sup
x2[0,1]

��� bf
ss

(x)� f(x)
��� = O

p

⇢
�1/2 +

q
��1/(2q)Log (N) /N

�
,

with optimal convergence rate {Log(N)/N}q/(2q+1) when � ⇣ {Log(N)/N}2q/(2q+1).

3.3 Equivalent kernel for regression splines

Investigation of the local asymptotic properties of regression splines is based on di↵erent

approaches. Agarwal and Studden (1980) and Zhou et al. (1998) studied the pointwise

asymptotic behavior of the regression spline estimators making use of the results of Bar-

row and Smith (1978) on L
2

-projection of a smooth function on a spline space. Another

approach is to be found in Huang and Studden (1992) who derived an equivalent kernel

for regression splines in terms of B-splines. We focus on the second approach since it is

related to our method for finding the local asymptotic properties of penalized splines in

Chapter 4.

3.3.1 Formula of the equivalent kernel for regression splines

The section is based on the result of Huang and Studden (1990) and Huang and Studden

(1992). We define the equivalent kernel for regressions splines, give the explicit formula

for the equivalent kernel in the interior for p = 1, 2, 3 and discuss its properties.

Huang and Studden (1990) defined equivalent kernel for regression splines in the inte-

rior K
rs

(x, t) as the L
2

-projection kernel on spline space S2(p;Z) = {P1
i=�1 a

i

B
c,p,i

(x) :

x 2 R,
P1

i=�1 a2
i

< 1}, where B
c,p,i

(x) is given in (2.4). They also showed that

K
rs

(x, t) is the reproducing kernel of Hilbert space S2(p;Z) with inner product hf, gi =R1
�1 f(x)g(x)dx and found its explicit form for p = 1, 2, 3 in terms of B-splines:

K
rs

(x, t) B
bx+p/2+1/2cX

i=bx�p/2�1/2c

bx+p/2+1/2cX
j=bx�p/2�1/2c

B
c,p,i

(x)B
c,p,j

(t)
pX

l=1

c
l

�
|i�j|
l

, (3.25)
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3 Local asymptotic properties and equivalent kernel for spline estimators

(a) (b) (c)
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Figure 3.2: Equivalent kernel for regression splines. (a) K
rs

(x, 0) for p = 1, 3, (b)
K

rs

(x, 0.3) for p = 1, 3, (c) K
rs

(x, 0.5) for p = 1, 3.

where the coe�cients c
l

, �
l

, l = 1, . . . , p are known for p = 1, 2, 3. For p = 1, �
1

=

�2 +
p
3, c

1

=
p
3. For p = 2, �

1

' �0.4306, �
2

' �0.0433, c
1

' 3.0950, c
2

' �0.2528.

For p = 3, �
1

' �0.5353, �
2

' �0.1226, �
3

' �0.0091, c
1

' 6.0163, c
2

' �1.0558,

c
3

' 0.0043. The notation ' is used for the approximation of the values up to the fourth

place. For odd p, the formula can be written as

K
rs

(x, t) =
(p+1)/2X

i,j=�(p+1)/2

B
c,p,i

({x})B
c,p,j

({t})
pX

l=1

c
l

�
|i�j+bxc�btc|
l

. (3.26)

Figure 3.2 plots K
rs

(x, t) for di↵erent t. As we can see, kernel K
rs

(x, t) is not translation-

invariant and its shape depends on the position of t between the knots.

To obtain the equivalent kernel in form (3.25), Huang and Studden (1990) showed

that the projection kernel K
rs

(x, t) equals B1 (x)
nR1

�1 BT

1(u)B1(u)du
o�1

B1(t), with

B1(x) = {B
c,p,j

(x), j 2 Z} being the B-spline basis vector-function of S2(p;Z). SinceR1
�1 BT

1(u)B1(u)du is a bi-infinite symmetric Toeplitz band matrix, its inverse matrix

can be found explicitly for p = 1, 2, 3. The elements of the inverse matrix are of formnR1
�1 BT

1(u)B1(u)du
o�1

�
i,j

=
P

p

l=1

c
l

�
|i�j|
l

, i, j 2 Z.
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3 Local asymptotic properties and equivalent kernel for spline estimators

Following is a list of properties of the equivalent kernel (Huang and Studden, 1990).

Z 1

�1
K

rs

(x, t)s(t)dt = s(x), 8s(x) =
1X

i=�1

a
i

B
c,p,i

(x), a
i

< 1, i 2 Z (3.27)Z 1

�1
K

rs

(x, t)tidt = xi, i = 0, . . . , p (3.28)Z 1

�1
K

rs

(x, t)tp+1dt = xp+1 � B
p+1

({x}) (3.29)

|K
rs

(x, t)|  C�|bxc�btc| C > 0, 0 < � < 1 (3.30)

K
rs

(x, t) = K
rs

({x} , {t}). (3.31)

Property (3.27) states that the reproducing property holds for wider class of functions

than S2(p;Z). Properties (3.28) and (3.29) give the first p+ 1 moments of K
rs

(x, t) and

they are obtained using (3.27) applied to polynomials 1, t, . . . , tp. For i = 0, x = 0 in

(3.28) we use the convention 00 = 1. Property (3.30) states that for fixed t kernel K(x, t)

decays exponentially. Properties (3.28), (3.29), (3.30) are used to obtain the pointwise

asymptotic behavior of regression splines.

Now we give a link between equivalent kernel K
rs

(x, t) and the weight function of the

regression spline estimator. Using (2.22), we write regression spline estimator bf
rs

as

bf
rs

(x) =
1

N

NX
i=1

B(x)
�
N�1BTB

��1

BT (x
i

)Y
i

, (3.32)

where the design matrix B and basis vector-function B(x) are given in Section 2.4. We

define K
rs

(x, t) as the scaled weight function

K
rs

(x, t) B K�1B(x/K)
�
N�1BTB

��1

BT (t/K). (3.33)

With this, the regression spline estimator can be written as

bf
rs

(x) =
K

N

NX
i=1

K
rs

(Kx,Kx
i

)Y
i

.

It appears that the equivalent kernel K
rs

(x, t) is an approximation of K
rs

(x, t) in the

interior of interval [0, 1] (Huang and Studden, 1992), i.e. K
rs

(x, t) is the analogue of
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3 Local asymptotic properties and equivalent kernel for spline estimators

K
ss

(x, t) for smoothing splines. A (scaled) equivalent kernel on interval [0, 1] is defined

as

K[0,1]

rs

(x, t) B K�1B
�
K�1x

�⇢Z 1

0

BT (u)B(u)du

��1

BT

�
K�1t

�
. (3.34)

Note that K[0,1]

rs

(x, t) corresponds to K
rs

(x, t) with matrix N�1BTB in (3.33) approxi-

mated by
R

1

0

BT (x)B(x)dx. Huang and Studden (1992) showed that K[0,1]

rs

(x, t) is a good

approximation of weight function K
rs

(x, t) on the whole interval [0, 1]. However, the ex-

plicit expression for K[0,1]

rs

(x, t) has not been obtained.

3.3.2 Pointwise asymptotic behavior of regression splines

There are two ways to find the local asymptotic properties of regression spline bf
rs

defined

in Section 2.4. The first way was considered in Huang and Studden (1992) who studied

the pointwise asymptotic behavior of an equivalent kernel estimator defined as

ef
rs

(x) B N�1K
NX
i=1

K
rs

(Kx,Kx
i

)Y
i

. (3.35)

They did not consider the di↵erence between bf
rs

and ef
rs

. They obtained the following

bound, which gives the goodness of the approximation of K
rs

(x, t) by the equivalent

kernel in the interior of interval [0, 1]:

|K
rs

(Kx,Kt)�K
rs

(Kx,Kt)|  O
⇣
K/N + |�

1

|K/2

⌘
, 8t 2 [0, 1],

where �
1

is given after formula (3.25) for p = 1, 2, 3. Together with this bound and the

exponential decay of the equivalent kernel (3.30), we can conjecture that the asymptotic

properties of estimators bf
rs

and ef
rs

are very similar in the interior. The pointwise bias and

variance of ef
rs

are given in Lemma 7. Although Huang and Studden (1992) considered

the case p = 3 only, their results can easily be extended to general p.

Lemma 7 (Huang and Studden, 1992)

Let f 2 Lipp+1,↵[0, 1] = {f 2 Cp+1[0, 1] :
��f (p+1)(x+ �)� f (p+1)(x)

��  C�↵ for all 0x 
x+ �  1}. Further, let ef be the equivalent kernel estimator defined in (3.35) with equiv-
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3 Local asymptotic properties and equivalent kernel for spline estimators

alent kernel K
rs

(x, t) defined in (3.25). Let {x
i

= i/N}N
i=1

, K ! 1, N/K ! 1. Then

for x in the interior it holds that

E
nef

rs

(x)
o
� f(x) =� f (p+1)(x)

(p+ 1)!Kp+1

B
p+1

({Kx}) +O

✓
K�p�1�↵ +

1

N

◆
V ar

nef
rs

(x)
o
=
�2K

N
K

rs

({Kx} , {Kx}) +O
�
N�1

�
.

To obtain the pointwise bias and variance, the methods of kernel regression were used,

i.e. Taylor series expansion of f and moments conditions (3.28), (3.29) of the equivalent

kernel. To show that the remainder terms are asymptotically negligible, Huang and

Studden (1992) used property (3.30) – the exponential decay of the kernel.

The second way of finding the local asymptotic properties of the regression spline esti-

mator is to use the known results about the approximation error of a smooth function

by splines, which was found in Barrow and Smith (1978)

inf
s2S(p�1;⌧

K

)

����f(x) + f (p)(bKxc /K)

p!Kp

B
p

({Kx})� s(x)

����
L1

= o(K�p).

Using this result, Zhou et al. (1998) proved Lemma 8.

Lemma 8 (Zhou et al., 1998)

Let f 2 Cp+1[0, 1], bf
rs

be the solution of the minimization problem (2.21) with {x
i

= i/N}N
i=1

and ⌧
K

= {i/K}K
i=1

. For x 2 [0, 1],

E
nbf

rs

(x)� f(x)
o
= � f (p+1)(x)

Kp+1(p+ 1)!
B
p+1

({Kx}) + o(K�p�1)

V ar
nbf

rs

(x)
o
=
�2K

N
K[0,1]

rs

({Kx} , {Kx}) + o(N�1K).

With some restrictions on the design density, Lemma 8 holds for non-equidistant knots

and observations.

3.4 Equivalent kernel for penalizes splines: overview

In this section, we give an overview of the related work on the pointwise asymptotic

behavior of penalized spline estimator bf
ps

defined in Section 2.5.
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3 Local asymptotic properties and equivalent kernel for spline estimators

The first results for p = 0, 1, q = 1, 2, k
q

! 1 were obtained in Li and Ruppert

(2008) and for the case p = q = 1 are given in Lemma 9. The idea of Li and Ruppert

(2008) is based on finding the inverse matrix (BTB + �D
q

)�1 in (2.24) explicitly. Since

B-splines have compact support, the i-th row of matrix (BTB + �D
q

), except for the

first and the last p rows, has form (0, . . . , a
p

, . . . , a
1

, a
0

, a
1

, . . . , a
p

, . . . , 0). The roots of

the characteristic polynomial a
p

+a
p�1

t+ . . . a
p

t2p are needed for the construction of the

inverse matrix. For p = 1, 2, these roots are known and these cases were treated in Li

and Ruppert (2008). For general p, we are aware of results of Xiao et al. (2011) whose

idea is to approximate the roots of the characteristic polynomial for k
q

! 1 by using

Rouche’s theorem.

A di↵erent approach and more general results can be found in Wang et al. (2011). Their

idea is to search the equivalent kernel as the Green’s function of certain di↵erential

equation. The authors focused on the case p = q. Wang et al. (2011) showed that, under

certain assumptions, a penalized spline estimator is equivalent to a smoothing spline

estimator.

Lemma 9 (Wang et al., 2011)

1. Let � = c2qN�(2q)/(4q+1), c > 0, K ⇣ N ⌧ , ⌧ > (2q � 1)/(4q + 1), f 2 C2q[0, 1]

with f (2q)(x) < 1 and �̂(x) = O
p

(K�1)I{p 6=q} given in Wang et al. (2011, formulas

18,19), then for x in the interior

N2q/(4q+1)

nbf
ps

(x)� f(x)� �̂(x)
o

d! N
⇢ �c2q

(�1)q
f (2q)(x),

�1/(2q)

c

Z
1

0

R2

�

(x, t)dt

�
.

2. If p = q and � > 0,

sup
x2[�,1��]

��� bf
ss

(x)� bf
ps

(x)
��� =O

p

✓
�1/2

K

◆
+O

p

(r
Log(K)

N�K

)
,

sup
x2[0,1]

��� bf
ss

(x)� bf
ps

(x)
��� =O

p

✓
1

K

◆
+O

p

 r
Log(K)

N�K

!
.

Note, that the first part of Lemma 9 corresponds to k
q

! 1 scenario, since k
q

⇣
�1/2qK ⇣ N (2q�2)/(4q+1)N ⇠, 0 < ⇠  (2q + 2)/(4q + 1). We recall that the optimal

convergence rate in the interior for k
q

! 1 is N�2q/(4q+1). Hence, for term �̂(x) =
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3 Local asymptotic properties and equivalent kernel for spline estimators

O
p

(N ⌧ )I{p 6=q} being asymptotically negligible we need, in fact, ⌧ > 2q/(4q+1) for p 6= q.

The bounds in the second part of the Lemma 9 are su�cient only for the k
q

! 1
scenario, since for k

q

= O(1), the bounds are of the bigger order then the bias, which

is O(K�2q). For k
q

! 1, the convergence rate of the penalized spline estimator to the

smoothing spline estimator, applied for � ⇣ N�2q/(4q+1) and K ⇣ N ⌧ , ⌧ > (2q�1)/(4q+

1), is N�⇠Log(N), ⇠ > 2q/(4q+1) in the interior. The convergence rate at the boundary

is slower.

Summarizing, the available results on the pointwise asymptotic behavior of penalized

splines are restrictive and only the case k
q

! 1 was considered. In Section 4.3 and

Section 4.4, we give the local and the global asymptotic properties of penalized splines

for di↵erent k
q

-scenarios in the periodic case.
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4 General framework for splines

In this chapter, our main results are stated and proved. In the special case of periodic

functions, we find the Demmler-Reinsch basis, the equivalent kernel for periodic spline

estimators, and study the global and the local asymptotic properties of these estimators.

Thereby we investigate smoothing, regression and penalized splines simultaneously.

As before, we consider regression model (2.1) with standard error assumptions (2.2).

Assume that the unknown regression function f is periodic with period 1, more precisely,

f 2 Cp+1

per = {f : f 2 Cp+1(R), f (j)(0 + l) = f (j)(1 + l), l 2 Z, j = 0, . . . , p}.

Assume that the observations points {x
i

= i/N}N
i=1

are fixed and equally spaced on [0, 1]

interval. Periodic penalized spline estimator bf of f is defined as the minimizer of

min
s2Sper(p;⌧

K

)

"
1

N

NX
i=1

{Y
i

� s(x
i

)}2 + �

Z
1

0

�
s(q)(x)

 
2

dx

#
, � >0, 0 < q  p, (4.1)

where Sper (p; ⌧
K

) is a space of periodic splines of degree p based on equidistant knots

⌧
K

= {i/K}K
i=0

(see Definition 4). This chapter studies the behavior of bf . Without loss

of generality, assume number of knots K to be even and M = N/K – the number of

observations in each interval [⌧
i

, ⌧
i+1

) – to be an integer.

Periodic penalized spline estimator bf can occur in two extreme cases. If number of knots

K equals number of observations N and � > 0, estimator bf is a periodic smoothing

spline estimator (see Section 2.3). If penalty parameter � = 0 and K ⌧ N , then bf is a

periodic regression spline estimator (see Section 2.4). From now on, we will refer to bf as

the periodic spline estimator, stressing that all cases are included.

In Section 4.1, we introduce the common Demmler-Reinsch basis for all periodic spline

estimators. In Section 4.2, we study the global asymptotics (the IMSE) of periodic spline
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4 General framework for splines

estimators. In Section 4.3, we find a bandwidth that is universal for all splines and study

weight functions of periodic spline estimators. In Section 4.4, we use the results of Section

4.3 to find the pointwise bias and variance of periodic spline estimators.

4.1 Demmler-Reinsch basis for periodic splines

We recall that periodic cardinal B-splines B
i,p

(x), i = 1, . . . , K given in (2.6) build a

basis of Sper (p; ⌧
K

). This basis has several useful properties, including compact support

(see Section 2.1.2) and known Fourier series representation (2.7). However, the basis

is not orthonormal and, hence, not convenient for studying periodic spline estimators.

In this section, we will give the exact expression for the orthonormal Demmler-Reinsch

basis of periodic splines in terms of exponential splines. Similar to natural spline space

NS(2q � 1; ⌧
N+1

) in Section 2.3, the exponential Demmler-Reinsch basis {�
i

(x)}K
i=1

of

periodic spline space Sper (p; ⌧
K

) is determined by conditions

1

N

NX
l=1

�
i

(x
l

)�
j

(x
l

) = �
i,j

;

Z
1

0

�
(q)

i

(x)�(q)

j

(x)dx = �
i,j

µ
i

; �
j

(x) = �
K�i

(x). (4.2)

The construction of the Demmler-Reinsch basis is performed in three steps. First, in

Section 4.1.1, we recall the definition of known exponential splines, Euler-Frobenius and

Q-polynomials, study their properties and connections. Most properties are known and

given without proofs, but some properties needed in subsequent proves are derived.

Second, in Section 4.1.2, we construct special trigonometric polynomials Q
p,M

. These

polynomials depend on the ratio M = N/K and arise in case the number of knots

and observations are di↵erent. Third, in Section 4.1.3, we define the Demmler-Reinsch

basis via exponential splines and Q
p,M

-polynomials and verify that the basis satisfies

all necessary conditions using the properties stated in Section 4.1.1. Finally, we find

coe�cients of periodic spline estimator bf in the Demmler-Reinsch and in the Fourier

basis.
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4 General framework for splines

4.1.1 Euler-Frobenius polynomials, exponential splines and

Q-polynomials

The section is organized as follows. First, we give a definition of well-known Euler-

Frobenius polynomials and list their properties. Second, we define more general functions

that were studied intensively in Schoenberg (1973) – exponential splines. We list proper-

ties of exponential splines we will need later. Finally, we define Q-polynomials that are

related to Euler-Frobenius polynomials and and are used intensively in this dissertation.

We give a brief literature overview, since Q-polynomials (or very similar polynomials)

often arise in di↵erent contexts, although do not have common notation.

Definition 14 Euler-Frobenius polynomials are defined via the recurrence relation

⇧
n+1

(t) B (1 + nt)⇧
n

(t) + t(1� t)⇧
0

n

(t) (4.3)

⇧
0

(t) B 1.

The first five Euler-Frobenius polynomials are

⇧
1

(t) =1

⇧
2

(t) =t+ 1

⇧
3

(t) =t2 + 4t+ 1

⇧
4

(t) =t3 + 11t2 + 11t+ 1

⇧
5

(t) =t4 + 26t3 + 66t2 + 26t+ 1.

Following is a list of properties of the Euler-Frobenius polynomials.

1. The connection with B-splines (He, 2011)

⇧
p

(t) = p!
p�1X
j=0

B
c,p

(p� j)tj.

2. The explicit formula for the Euler-Frobenius polynomials

⇧
p

(t) =
pX

i=0

✓
p+ 1

i

◆
(�1)i

p�iX
j=1

jptp�j�i, p > 0,with 00 B 1.
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4 General framework for splines

3. Roots of⇧
p

(t) are simple and negative. Denoting them �
p�1

< �
p�2

< . . . < �
1

< 0,

it holds that �
1

�
p�1

= �
2

�
p�2

. . . = 1 (Schoenberg, 1973).

Using Euler-Frobenius polynomials, we can define exponential splines.

Definition 15 Exponential spline of degree p to base z are defined as follows.

�
p

(t, z) B zbtc
�
1� z�1

�
p

pX
j=0

✓
p

j

◆{t}p�j ⇧
j

(z)

p! (z � 1)j
, z 6= 0, z 6= 1, (4.4)

With the convention 00 B 1, we define �
p

(t, z) B zt�p⇧
p

(z) /p!, t 2 Z and �
p

(t, 1) B 1.

The following properties hold for exponential splines.

1. Schoenberg (1973, Lecture 2, Lemma 2)

�
p

(t+ 1, z) = z�
p

(t, z) , on the interval 0 < t < 1. (4.5)

2. An equivalent definition of the exponential splines (Schoenberg, 1973, Lecture 2)

�
p

(t, z) =
1X

l=�1

zlB
c,p

(t� l) , z 6= 0, z 6= 1.

3. Fourier series representation

�
p

{t, exp(2⇡iz)} =
exp(2⇡izt)

exp{⇡iz(p+ 1)}
1X

l=�1

sinc {⇡ (z + l)}p+1 exp(2⇡ilt)

(�1)l(p+1)

. (4.6)

The last property needs to be derived.

Proof of (4.6)

The proof largely follows from Theorem 5 in Lecture 3 of Schoenberg (1973). From

formulas (1.1) and (1.4) given in the lecture follows the equality

exp (2⇡iz)� 1

exp (2⇡iz)� exp (x)

exp ({t}x)
xp+1

=
1X
l=0

{1� exp (�2⇡iz)}�l �
l

{t, exp (2⇡iz)}
exp (2⇡iz btc) xl�p�1.

The residue of this function at 0 is exp (�2⇡iz btc) {1� exp (�2⇡iz)}�p �
p

{t, exp (2⇡iz)} ,
while {exp (�2⇡iz)� 1} exp {2⇡i{t} (z + l)} / {2⇡i (z + l)}p+1 are the residues at poles
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2⇡i (z + l) , l 2 Z. With this, from the Cauchy residue theorem, it follows that

1X
l=�1

{1� exp (�2⇡iz)} exp {2⇡i{t} (z + l)}
{2⇡i (z + l)}p+1

=
{1� exp (�2⇡iz)}�p �

p

{t, exp (2⇡iz)}
exp (2⇡iz btc) .

Multiplication by sin (⇡z)p+1 and some simplifications lead to

�
p

{t, exp(2⇡iz)} =
{1� exp(�2⇡iz)}p+1 exp(2⇡izt)

sin (⇡z)p+1 (2i)p+1

1X
l=�1

sin {⇡(z + l)}p+1 exp (2⇡itl)

(�1)l(p+1) {⇡(z + l)}p+1

.

Making use of sin(⇡x) = {exp(⇡ix)� exp(�⇡ix)} /(2i) proves (4.6). ⇤

Finally, we define Q-polynomials as series and will show later in Lemma 10 that they

are, in fact, trigonometric polynomials.

Definition 16 Q-polynomials of degree p� 1 are defined as series

Q
p�1

(z) B
1X

l=�1

sinc{⇡(z + l)}p+1. (4.7)

In a somewhat di↵erent context, Q-polynomials have been discussed in Gautschi (1971),

who studied the so-called attenuation factors in the approximation of the Fourier coe�-

cients of f available on a grid of N values {f(x
l

)}N
l=1

. In the simplest case, the i-th atten-

uation factor is defined as the ratio of i-th Fourier coe�cient of an interpolation of values

{f(x
l

)}N
l=1

andN�1

P
N

l=1

f(x
l

) exp (�2⇡iix
l

). If we interpolate values {f(x
l

)}N
l=1

by a pe-

riodic spline of degree 2q�1, then the i-th attenuation factor is sinc(⇡i/N)2q/Q
2q�2

(i/N)

(see Example 5.1 in Gautschi (1971) and �-and q-polynomials defined in his Section 2).

Q-polynomials also arise in Blu and Unser (1999) as an interpolation filter for B-splines

and in spline wavelet analysis (e.g., Zheludev, 1996).

The next lemma states that Q
p�1

(z) are polynomial of cos(⇡z) of degree (p � 1) and

gives a recursive formula for them.

Lemma 10 Polynomial Q
p�1

(z) defined in (4.7) can be obtained using the following
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recursive formula

Q
j

(z) = cos(⇡z)Q
j�1

(z) +
1� cos(⇡z)2

j + 1

dQ
j�1

(z)

d cos(⇡z)
, j = 1, . . . , p� 1, z /2 Z, (4.8)

where for odd p, the recursive formula (4.8) is applied with Q
0

(z) B 1, while for even p,

formula (4.8) is applied with Q
0

(z) B cos(⇡z). If z 2 Z, Q
p�1

(z) = 1.

Proof of lemma 10

For z 2 Z equality Q
p�1

(z) = 1 follows immediately from (4.7) . We consider case z /2 Z.
For odd p, series (4.7) can be written as

1X
l=�1

sinc{⇡(z + l)}p+1 =
sin(⇡z)p+1

⇡p+1

1X
l=�1

(z + l)�(p+1) = (�1)p
sin(⇡z)p+1

p!⇡p+1

@p

@zp

1X
l=�1

(z + l)�1.

For even p, it holds that

1X
l=�1

sinc{⇡(z + l)}p+1 =
sin(⇡z)p+1

⇡p+1

1X
l=�1

(z + l)�(p+1)

(�1)l
= (�1)p

sin(⇡z)p

p!⇡p

@p

@zp

1X
l=�1

(z + l)�1

(�1)l
.

It is known that
P1

l=�1(z + l)�1 = ⇡ cot(⇡z) and
P1

l=�1(�1)l(z + l)�1 = ⇡ sin(⇡z)�1,

where the summation is understood in the principal value sense. Hence, for odd p, the

functions in recursion (4.8) are

Q
j�1

(z) B (�1)j
sin(⇡z)j+1

j!⇡j

@j

@zj
cot(⇡z), j = 1, . . . , p.

For even p, these functions are

Q
j�1

(z) B (�1)j
sin(⇡z)j+1

j!⇡j

@j

@zj
sin(⇡z)�1, j = 1, . . . , p.

Substitution of the corresponding functions in (4.8) proves the lemma. ⇤
Applying Lemma 10, we obtain the first three Q

p�1

(z) polynomials for odd p

Q
2

(z) = 1/3 + 2 cos(⇡z)2/3

Q
4

(z) = 2/15 + 11 cos(⇡z)2/15 + 2 cos(⇡z)4/15

Q
6

(z) = 17/315 + 4 cos(⇡z)2/7 + 38 cos(⇡z)4/105 + 4 cos(⇡z)6/315.
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Figure 4.1: (a) Q
p�1

polynomials for p odd, (b) Q
p�1

polynomials for p even

For even p, the first three Q
p�1

(z) polynomials are given by

Q
1

(z) = 1/2 + cos(⇡z)2/2

Q
3

(z) = 5/24 + 3 cos(⇡z)2/4 + cos(⇡z)4/24

Q
5

(z) = 61/720 + 479 cos(⇡z)2/720 + 179 cos(⇡z)4/720 + cos(⇡z)6/720.

Later we will make use of the following connection between the Euler-Frobenious and

Q-polynomials.

Lemma 11 Let ⇧
p

(t) be the Euler-Frobenius polynomial defined in (4.3). For odd p,

Q-polynomials can be expressed as

Q
p�1

(z) = exp{iz⇡(p� 1)}⇧
p

{exp(�2i⇡z)}/p!. (4.9)

For even p, Q-polynomials can be expressed as

Q
p�1

(z) = exp{⇡iz(p� 1)/2} cos (⇡z/2)p+1 ⇧
p

{exp(�⇡iz)} /p!
� (�1)p/2i exp{⇡iz(p� 1)/2} sin (⇡z/2)p+1 ⇧

p

{� exp(�⇡iz)} /p!.
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Proof of lemma 11

We apply formulas (4.4) and (4.6) for�
p

{0, exp(�2⇡iz)} to obtain

exp {⇡iz (p� 1)}⇧
p

{exp (�2⇡iz)} /p! =
1X

l=�1

(�1)l(p+1) sinc {⇡ (z + l)}p+1 . (4.10)

With this, the lemma is proved for odd p. For even p, we use (4.10) and the fact that

1X
l=�1

sinc {⇡ (z + l)}p+1 =cos (⇡z/2)p+1

1X
l=�1

(�1)lsinc {⇡ (z/2 + l)}p+1

� sin (⇡z/2)p+1

1X
l=�1

(�1)lsinc {⇡(z + 1)/2 + ⇡l}p+1 .

⇤

4.1.2 Q-polynomials for low-rank splines

As shown in (4.2), the Demmler-Reinsch basis is an orthonormal basis of a spline space

under discrete inner product hs
1

, s
2

i = N�1

P
N

l=1

s
1

(x
l

)s
2

(x
l

), where s
1

, s
2

are spline

functions from a corresponding spline space and {x
l

}N
l=1

are the observation points.

Polynomials Q
p,M

, which we define in this section, are used for the normalization of the

Demmler-Reinsch basis for periodic splines under the discrete inner product and appear

in special case K 6= N . For K = N , they can be expressed in terms of Q-polynomials.

We define

Q
p,M

(z) B
1

N

NX
i=1

|�
p

{K(i/N) + (p+ 1)/2, exp(�2⇡iz)} |2

=
1

N

MX
i=1

K�1X
j=0

|�
p

{(i+ jM)/M + (p+ 1) /2, exp(�2⇡iz)}|2

=
1

M

MX
i=1

|�
p

{i/M + (p+ 1)/2, exp(�2⇡iz)} |2, (4.11)
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where on the last step we used N = MK and the fact that

|�
p

{t+ j, exp(�2⇡iz)}| = |�
p

{t, exp(�2⇡iz)}| , j 2 Z,

which follows from (4.5). Let us examine the properties of Q
p,M

-polynomials.

From (4.11), functions Q
p,M

varies smoothly between Q
2p

(z) and Q2

p�1

(z), depending on

M . For M = 1, we find from (4.6) that |�
p

{i+ (p+ 1)/2, exp(�2⇡iz)} | = Q
p�1

(z) .

Therefore, it holds that

Q
p,1

(z) = Q2

p�1

(z).

For M = N/K ! 1, we approximate (4.11) by an integral and use series representation

(4.6) of the exponential splines, obtaining

lim
M!1

Q
p,M

(z) =

Z
1

0

|�
p

{x+ (p+ 1)/2, exp(�2⇡iz)}|2 dx

=

Z
1

0

1X
l,s=�1

sinc {⇡(z + l)}p+1 sinc {⇡(z + s)}p+1 exp {2⇡i(l � s)x} dx

=
1X

l=�1

sinc {⇡(z + l)}2p+2 = Q
2p

(z).

Lemma 12 gives the connection between Q
p,M

and the Euler-Frobenius polynomials and,

with this, an explicit formula for Q
p,M

.

Lemma 12 We define function e⇧
p,M

as

e⇧
p,M

(u) B
pX

j,l=0

⇧
j

(u)⇧
l

(u�1)ul(u� 1)2p�l�j

(�1)p�lj!l! (p� j)!(p� l)!

2p�l�jX
s=0

✓
2p� l � j

s

◆
2s

B
s+1

(M)� B
s+1

(s+ 1)(2M)2p�j�l+1

,

if for p even and M odd. In all other cases

e⇧
p,M

(u) B
pX

j,l=0

⇧
j

(u)⇧
l

(u�1)ul(u� 1)2p�l�j

(�1)p�lj!l! (p� j)! (p� l)!

B
2p�j�l+1

(M)� B
2p�j�l+1

M2p�j�l+1 (2p� j � l + 1)
.

Additionally we define e⇧
p,M

(1) B lim
u!1

e⇧
p,M

(u) = 1. Then Q
p,M

-polynomials can be
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expressed in terms of e⇧
p,M

-polynomials by

Q
p,M

(z) = exp(2⇡ipz)e⇧
p,M

{exp(�2⇡iz)}.

Proof of lemma (12)

Using (4.4) and (4.11), we compute N�1

P
N

i=1

|�
p

({i/M + (p+ 1)/2, u})|2 with |u| =
1, u 6= 1:

NX
i=1

(1� u)p(1� u�1)p

N

pX
j,l=0

✓
p

j

◆✓
p

l

◆{i/M + (p+ 1)/2}2p�j�l ⇧
j

(u)⇧
l

(u�1)

(p!)2 (u� 1)j(u�1 � 1)l

=
1

M

pX
j,l=0

⇧
j

(u)⇧
l

(u�1)(u� 1)2p�j�l

(�1)p+lup�l(p� j)!(p� l)!

MX
i=1

{i/M + (p+ 1)/2}2p�j�l .

Using the property of Bernoulli polynomials
P

M�1

i=0

ij�1 = {B
j

(M)� B
j

} /j and some

easy simplifications prove the lemma. ⇤

From Lemma 11 and 12, it also follows that functions Q
p,M

are indeed trigonometrical

polynomials, justifying our vocabulary.

Using Lemma 12, we find Q
p,M

-polynomials for p = 1, . . . , 5.

Q
1,M

(z) = Q
2

(z) +
2 sin(⇡z)2

3M2

Q
2,M

(z) =

8<:Q
4

(z)� 2 sin(⇡z)

4

15M

4 , for even M

Q
4

(z) + 7 sin(⇡z)

4

60M

4 , for odd M

Q
3,M

(z) = Q
6

(z) + 2
3 sin(⇡z)4 � 2 sin(⇡z)6

135M4

+
8 sin(⇡z)6

189M6

Q
4,M

(z) =

8<:Q
8

(z)� 2 sin(⇡z)

8

135M

8 � 4{2+cos(2⇡z)} sin(⇡z)6
567M

6 , for even M

Q
8

(z) + 127 sin(⇡z)

8

8640M

8 + 31{2+cos(2⇡z)} sin(⇡z)6
4536M

6 , for odd M

Q
5,M

(z) = Q
10

(z) +
2 {2 + cos(2⇡z)}
675M8 sin(⇡z)�8

+
33 + 26 cos(2⇡z) + cos(4⇡z)

14175M6 sin(⇡z)�6

+
8 sin(⇡z)10

1485M10

.
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Figure 4.2: Functions Q
p,M

(z): (a) Q
1,M

for M = 1, 2, 3, (b) Q
3,M

for M = 1, 2, (c) Q
2,M

for M = 1, 2, (d) Q
6

/Q
p,M

for di↵erent M . Grey line denotes Q
2p

.

Plots of Q
p,M

-polynomials are given in Figure 4.1. In (a), (b), (c), the grey lines corre-

spond to Q
2p

-polynomials for di↵erent p, while the solid black lines correspond to squared

Q
p�1

-polynomials. In (a), (b), we can see how Q
p,M

-polynomials for odd p change be-

tween Q
2p

(z) and Q2

p�1

(z) depending on M . For p = 3, this change is already so rapid

that Q
6

(z) and Q
3,2

(z) practically coincide and only in (d) we can see that they are

slightly di↵erent in the interior. In (c), we see that the Q
p,M

(z) are bounded by Q
p,2

(z)

and Q2

p�1

(z) for even p and converge very fast to Q
2p

(z) with growing M .
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A few more properties of Q
p,M

-polynomials, such as a series representation and the

connection to Q-polynomials, are given below.

1. Series representation

Q
p,M

(z) =
1X

l,j=�1

sinc {⇡ (z + l)}p+1 sinc {⇡ (z + l + jM)}p+1 . (4.12)

2. Connection to Q
2p

-polynomials

Q
p,M

(z) = Q
2p

(z) +
M�1X
i=0

X
l 6=j

[sinc {⇡ (z + i+ lM)} sinc {⇡ (z + i+ jM)}]p+1 .

3. Bounds

0 < Q
2p

(z)  Q
p,M

(z)  Q2

p�1

(z), if p or M are odd

0 < Q
p,2

(z)  Q
p,M

(z)  Q
2p

(z), if p even and M are even.

4. Bounds for ratio Q
2p

(z)/Q
p,M

(z)

Q
2p

(z)Q�2

p�1

(z)  Q
2p

(z)Q�1

p,M

(z)  1, if p or M are odd

1  Q
2p

(z)Q�1

p,M

(z)  Q
2p

(z)Q�1

p,2

(z) < 3/2, if p even and M are even.

4.1.3 Demmler-Reinsch basis and Fourier coe�cients of spline

estimators

Even though the Demmler-Reinsch basis for periodic smoothing splines has been em-

ployed in Cogburn and Davis (1974) and Craven and Wahba (1979), no explicit expres-

sions were derived there. Our next lemma gives the explicit expression for the complex-

valued Demmler-Reinsch basis for periodic spline space Sper(p; ⌧
K

).
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Lemma 13 For x 2 R, functions

�
i

(x) B
�

p

{Kx+ (p+ 1)/2, exp(�2⇡ii/K)}p
Q

p,M

(i/K)
(4.13)

i = 1, . . . , K form the complex-valued Demmler-Reinsch basis in Sper(p; ⌧
K

), i.e.

1

N

NX
l=1

�
i

(l/N)�
j

(l/N) = �
i,j

(4.14)Z
1

0

�
(q)

i

(x)�(q)

j

(x)dx = µ
i

�
i,j

, (4.15)

i,j=1,. . . , K, where �
i,j

is the Kronecker’s delta and the eigenvalues are

µ
i

B (2⇡i)2qsinc(⇡i/K)2q
Q

2p�2q

(i/K)

Q
p,M

(i/K)
. (4.16)

Proof of Lemma 13

The proof is based on the series representation of the Demmler-Reinsch basis and its

connection to the discrete Fourier transform (DFT) of periodic B-splines. Using (4.6)

and the definition of the complex-valued Demmler-Reinsch basis (4.13), we can write

�
i

(x) =
1p

Q
p,M

(i/K)

1X
l=�1

sinc{⇡(i/K + l)}p+1 exp{�2⇡ix(i+ lK)}. (4.17)

Plugging the Fourier series of a periodic B-spline (2.7) into the DFT of B-splines, we

find

KX
i=1

B
i,p

(x) exp(�2⇡ili/K) =
1X

m=�1
sinc(⇡m/K)p+1 exp(�2⇡imx)

⇥
KX
i=1

exp{2⇡ii(m� l)/K}

= K

1X
n=�1

sinc{⇡(l/K + n)}p+1 exp{�2⇡i(l + nK)x}

= K
q
Q

p,M

(l/K)�
l

(x),
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where in the last equality representation (4.17) has been used and n = (m� l)/K. The

properties of DFT ensure that the functions �
i

(x), i = 1, . . . , K are also the basis in

Sper(p; ⌧
K

). Moreover, if the {�
i

}K
i=1

and {�
i

}K
i=1

are the coe�cients of spline function

s 2 Sper(p; ⌧
K

) in di↵erent bases, i.e. s(x) =
P

K

i=1

B
i,p

(x)�
i

=
P

K

i=1

�
i

(x)�
i

, then �
i

=P
K

l=1

�
l

exp(�2⇡ili/K)/{KQ
p,M

(l/K)}. That is, �
i

is the DFT of scaled �
l

.

For i = j, property (4.14) follows from definition (4.11) of Q
p,M

and definition (4.13) of

the Demmler-Reinsch basis. Hence, it holds that

1

N

NX
l=1

|�
i

(l/N)|2 = N�1

P
N

l=1

|�
p

{Kl/N + (p+ 1)/2, exp(�2⇡ii/K)}|2
Q

p,M

(i/K)
= 1.

For i 6= j, the orthogonality of �
i

(x) and �
j

(x) follows from series representation (4.17)

and the fact that
P

N

l=1

exp {�2⇡il(i� j + sK)/N} = 0 and i, j = 1, . . . , K.

To show property (4.15), one can again use representation (4.17) to findq
Q

p,M

(i/K)�(q)

i

(x) = (�2⇡ii)qsinc(⇡i/K)q

⇥
1X

l=�1

(�1)lqsinc{⇡(i/K + l)}p+1�q exp{�2⇡ix(i+ lK)}.

Since for j, i = 1, . . . , K and 8l,m 2 Z
R
1

0

exp {�2⇡ix(i� j + lK �mK)} dx 6= 0 i↵

i = j and l = m, we obtain

Q
p,M

(i/K)

Z
1

0

����(q)

i

(x)
���2 dx = (2⇡i)2qsinc(⇡i/K)2q

1X
l=�1

sinc {⇡ (i/K + l)}2p�2q+2 ,

which implies the assertion and proves the lemma. ⇤

Remarks

1. Function s 2 Sper(p; ⌧
K

) i↵ s(x) =
P

K

i=1

�
i

(x)�
i

with �
i

= �
K�i

, i = 1, . . . , K/2.

2. The continuous version of the Demmler-Reinsch basis and its eigenvalues is

�(u, x) B �
p

{Kx+ (p+ 1)/2, exp(�2⇡iu/K)}/
q
Q

p,M

(u/K) (4.18)

µ(u) B (2⇡u)2qsinc(⇡u/K)2qQ
2p�2q

(u/K)/Q
p,M

(u/K). (4.19)
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4 General framework for splines

For u = 1, 2, . . . K� (u, x) = �
u

(x).

3. As discussed in the proof of Lemma 13, basis functions �
i

(x) have series represen-

tation (4.17) and �
i

(x) are the scaled DFT of periodic B-splines, i.e.

�
i

(x)K
q
Q

p,M

(i/K) =
KX
l=1

B
l,p

(x) exp(�2⇡iil/K).

4. Since �
i

(x) is the scaled DFT of a real-valued B-spline functions and Q
p,M

(z) is

a symmetric, positive function by definition, it holds that �
i

(x) = �
K�i

(x) and

µ
i

= µ
K�i

.

5. From series representation of Q-polynomials (4.7) and from series representation

of the Demmler-Reinsch basis (4.17), it follows thatZ
1

0

�
i

(x)�
j

(x)dx = �
ij

Q
2p

(i/K)/Q
p,M

(i/K). (4.20)

In Lee and Tang (1991), Lee et al. (1992), Zheludev (1996), they essentially con-

sidered L
2

-orthonormal basis Q1/2

p,M

(i/K)Q�1/2

2p

(i/K)�
i

(x), i = 1, . . . , K.

6. For K = N and p = 2q � 1, µ
i

= (2⇡i)2qsinc(⇡i/K)2qQ
2q�2

(i/K)�1 and at the

data points l/N , the Demmler-Reinsh basis reduces to �
i

(l/N) = exp(�2⇡iil).

7. Functions
p
2R {�

i

(x)} , p
2Im {�

i

(x)} for i = 1, . . . , K/2 construct the real-

valued Demmler-Reinsch basis.

Thus, any s(x) 2 Sper(p; ⌧
K

) can be represented as s(x) =
P

K

i=1

�
i

�
i

(x) and the solution

to (4.1) results in bf(x) =PK

i=1

b�
i

�
i

(x) with b�
i

= (1 + �µ
i

)�1by
i

, where

by
i

B N�1

NX
l=1

Y
l

�
i

(l/N). (4.21)

From series representation (4.17) we obtain

bf(x) = 1p
Q

p,M

(i/K)

1X
l=�1

KX
i=1

b�
i

sinc{⇡(i/K + l)}p+1 exp{�2⇡ix(i+ lK)}.
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4 General framework for splines

Since b�
i

= b�
i+lK

the Fourier coe�cients of the spline estimator are given by

c
i+lK

=
sinc{⇡(i/K + l)}p+1p

Q
p,M

(i/K)
b�
i

=
sinc{⇡(i/K + l)}p+1by

ip
Q

p,M

(i/K)(1 + �µ
i

)
, (4.22)

where the c
l

satisfy bf(x) =
P1

l=�1 c
l

exp(�2⇡ilx). From (4.22), one can immediately

obtain the Fourier coe�cients for both extreme cases: periodic smoothing and regression

splines. In particular, for � = 0, K ⌧ N (periodic regression spline), it holds that

c
i+lK

=
sinc{⇡(i/K + l)}p+1by

ip
Q

p,M

(i/K)
=

sinc{⇡(i/K + l)}p+1by
ip

Q
2p

(i/K) +O(M�p�1)
.

For K = N and p = 2q � 1 (periodic smoothing spline), it holds that

c
i+lN

=
sinc{⇡(i/N + l)}2qy̌

i

Q
2q�2

(i/N) + �(2⇡i)2qsinc(⇡i/N)2q
,

with y̌
i

= N�1

P
N

l=1

exp(2⇡iil/N)Y
l

. Note that for � = 0, ratio c
i

/Ey̌
i

coincides with the

i-th attenuation factor for spline interpolation obtained in Gautschi (1971) and discussed

in Section 4.1.1.

4.2 The integrated mean squared error for periodic

splines

In Section 2.5, we discussed the results of Claeskens et al. (2009) on the dependence

of the global asymptotics (the AMSE) of penalized splines in the non-periodic case on

parameter k
q

. In this section, we obtain similar results, i.e two asymptotic scenarios

depending on k
q

, for the IMSE of periodic splines making use of the results obtained in

the previous section. For periodic splines, we set

k
q

B �1/(2q)⇡K. (4.23)
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4 General framework for splines

Let us proceed with the study of the global asymptotics of periodic spine estimators.

The IMSE of a spline estimator can be decomposed as

IMSE( bf) =

Z
1

0

Var{ bf(x)}dx+

Z
1

0

[E{ bf(x)}� sp(x)]
2dx+

Z
1

0

{sp(x)� f(x)}2dx,

where sp is the best L
2

-approximation of f 2 Cp+1

per by Sper(p; ⌧
K

). Thus, the IMSE

consists of three summands: the integrated variance, the integrated squared shrinkage

bias and the integrated squared approximation bias. The shrinkage bias appears due

to the penalization involved in (4.1) and vanishes for regression splines (� = 0). The

approximation bias is the error caused by the approximation of a continuous function

f by a spline. The sharp asymptotic behavior of the integrated squared approximation

bias has been proved in Barrow and Smith (1978). In particular, they have shown that

lim
K!1

K2p+2

Z
1

0

{sp(x)� f(x)}2dx =
|B

2p+2

|
(2p+ 2)!

✓Z
1

0

|f p+1(x)|1/(p+1.5)dx

◆
(2p+3)

. (4.24)

The following theorem gives exact expressions for the integrated variance and the inte-

grated squared shrinkage bias.

Theorem 1 Let model (2.1) with assumptions (2.2) hold. Let f 2 Cp+1

per and bf(x) 2
Sper(p; ⌧

K

) be the solution to (4.1) with {x
i

= i/N}N
i=1

, and ⌧
K

= {i/K}K
i=0

. Then,

the integrated squared shrinkage bias the integrated variance and the integrated squared

shrinkage bias of bf(x) are given by

Z
1

0

Var{ bf(x)}dx =
�2

N

KX
i=1

Q
2p

(i/K)

Q
p,M

(i/K)(1 + �µ
i

)2
(4.25)

Z
1

0

[E{ bf(x)}� sp(x)]
2dx =

KX
i=1

Q
2p

(i/K)(�µ
i

)2|f
i

|2
Q

p,M

(i/K)(1 + �µ
i

)2

����1� f
i,N

� f
i

f
i

�µ
i

����2 , (4.26)

with f
i

=
p

Q
p,M

(i/K)/Q
2p

(i/K)
R

1

0

f(x)�
i

(x)dx and

f
i,N

=
p

Q
p,M

(i/K)/Q
2p

(i/K)N�1

P
N

l=1

f(l/N)�
i

(l/N).
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4 General framework for splines

Proof of Theorem 1

From Parseval’s identity, it holds that

Var{ bf(x)} =
KX
i=1

1X
l=�1

Var(c
i+lK

) =
KX
i=1

1X
l=�1

sinc{⇡(l + i/K)}2p+2

Q
p,M

(i/K)(1 + �µ
i

)2
Var(by

i

)

=
�2

N

KX
i=1

Q
2p

(i/K)

Q
p,M

(i/K)(1 + �µ
i

)2
.

To obtain V ar(by
i

) = N�1�2, we use (4.21) and
P

N

l=1

|�
i

(l/N)|2 = N . From (4.17) and

(4.20), the projection estimator sp(x) can be written as

sp(x) =
KX
i=1

R
1

0

f(x)�
i

(t)dtR
1

0

�
i

(t)�
i

(t)dt
�
i

(x) =
KX
i=1

1X
l=�1

sinc {⇡(i/K + l)}p+1 f
ip

Q
p,M

(i/K)
exp {�2⇡ix(i+ lK)} ,

where

f
i

= Q
1/2

p,M

(i/K)Q�1/2

2p

(i/K)

Z
1

0

f(x)�
i

(x)dx.

With this, Z
1

0

[E{ bf(x)}� sp(x)]
2dx

=
KX
i=1

1X
l=�1

����E(c
i+l/K

)� sinc{⇡(l + i/K)}p+1f
i

/
q
Q

p,M

(i/K)

����2

=
KX
i=1

1X
l=�1

sinc{⇡(l + i/K)}2p+2

Q
p,M

(i/K)

���� f
i,N

1 + �µ
i

� f
i

����2

=
KX
i=1

Q
2p

(i/K)(�µ
i

)2|f
i

|2
Q

p,M

(i/K)(1 + �µ
i

)2

����1� f
i,N

/f
i

� 1

�µ
i

����2 ,
with f

i,N

= Q
1/2

p,M

(i/K)Q�1/2

2p

(i/K)N�1

P
N

l=1

f(l/N)�
i

(l/N), proving the theorem. ⇤

Since the ratio Q
2p

(u)/Q
p,M

(u) is bounded (see Section 4.1.2), from the equations (4.25)

and (4.26), it is clear that the asymptotic behavior of spline-based estimators depends

on

�µ
K/2

= k2q

q

(2/⇡)2qQ
2p�2q

(1/2)/Q
p,M

(1/2),
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4 General framework for splines

similar to the results in Claeskens et al. (2009). Since k
q

di↵ers only by a constant from

(�µ
K/2

)1/(2q), the asymptotic behavior of spline-based estimators also depends on k
q

.

From (4.24), (4.25) and (4.26), one can find the asymptotic orders of the components of

the IMSE in two asymptotic scenarios.

Corollary 1 Under the assumptions of Theorem 1, for p � 2q � 1, it holds that

IMSE( bf) =
8<:O (KN�1) +O (�2) +O(K�2p�2), for k

q

= O(1),

O
�
��1/(2q)N�1

�
+O (�2) +O(K�2p�2), for k

q

! 1,

so that for k
q

= O(1) and K ⇣ N1/(2p+3), � = O(N�⌫), ⌫ 2 [(p + 1)/(2p + 3), 1] imply

IMSE( bf) = O
�
N�(2p+2)/(2p+3)

 
. For k

q

! 1 and � = O
�
N�2q/(4q+1)

 
with �N ! 1,

K ⇣ N & , & 2 [1/(4q + 1), 1] it holds that IMSE( bf) = O
�
N�4q/(4q+1)

 
.

Proof of Corollary 1

Let k
q

= O(1). Then, since Q
2p

(i/K)/Q
p,M

(i/K)  3/2 for all i,

Var{ bf(x)} = 2
�2

N

K/2X
i=1

Q
2p

(i/K)

Q
p,M

(i/K)(1 + �µ
i

)2
< 3

�2

N

K/2X
i=1

1

(1 + �µ
i

)2

< 3/2
�2

N
K = O(KN�1).

In case k
q

! 1, we use the bound µ
i

� (2⇡i)2q, i = 1, . . . , K/2 that follows from (4.16)

and

sinc(⇡x)2q
Q

2p�2q

(x)

Q
p,M

(x)
� sinc(0)2q

Q
2p�2q

(0)

Q
p,M

(0)
= 1, x 2 [0, 1/2].

Using this bound and approximating sums by integrals as in Wahba (1975), we bound

the integrated variance by

Var{ bf(x)}  3�2

N

K/2X
i=1

1

{1 + �(2⇡i)2q}2 =
3�2

N

"Z
K/2

0

dx

{1 + �(2⇡x)2q}2 � 1 + r
q

#

=
3�2

N

⇢Z
k

q

0

��1/(2q)dx

2⇡ (1 + x2q)2
� 1 + r

q

�
 3�2

N

⇢Z 1

0

��1/(2q)dx

2⇡ (1 + x2q)2
� 1 + r

q

�
,
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4 General framework for splines

where r
q

= O(1) is the remainder term of the Euler-Maclaurin formula,
R1
0

(1 + x2q)�2

dx

is a positive constant that can be found for each q. Hence, if �1/(2q)N ! 1, the rate of

the integrated variance is O
�
��1/(2q)N�1

 
.

To find the rate of the integrated squared shrinkage bias, we will need the quadrature

errors between f
i,N

and f
i

. From Utreras (1980), 8g
1

, g
2

2 W q[0, 1] 9c > 0 such that����� 1N
NX
i=1

g
1

(i/N)g
2

(i/N)�
Z

1

0

g
1

(x)g
2

(x)dx

�����
N�2c

Z
1

0

n
g
(q)

1

(x)
o

2

dx

Z
1

0

n
g
(q)

2

(x)
o

2

dx.

Using this quadrature error and the fact that f,R (�
i

) , Im (�
i

) 2 W q[0, 1], we obtain

|f
i,N

� f
i

| Q
1/2

p,M

(i/K)

Q
2p

(i/K)

����� 1N
NX
l=1

f(l/N)R {�
i

(l/N)}�
Z

1

0

f(x)R {�
i

(x)} dx
�����

+
Q

1/2

p,M

(i/K)

Q
2p

(i/K)

����� 1N
NX
l=1

f(l/N)Im {�
i

(l/N)}�
Z

1

0

f(x)Im {�
i

(x)} dx
�����

=O
�
N�2

�
.

Similarly, |f
i,N

/f
i

� 1| = O(N�1).

Further, let us consider the integrated squared shrinkage bias in di↵erent scenarios. If

k
q

= O(1), we bound the integrated shrinkage bias (4.26) as follows.

Z
1

0

[E{ bf(x)}� sp(x)]
2dx =

KX
i=1

Q
2p

(i/K)

Q
p,M

(i/K)

���� f
i,N

1 + �µ
i

� f
i

����2  3
K/2X
i=1

����fi,N � f
i

� �µ
i

f
i,N

1 + �µ
i

����2

3
K/2X
i=1

||f
i,N

� f
i

|+ �µ
i

|f
i,N

||2 = O(K/N) +O(�2).
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4 General framework for splines

If k
q

! 1, the integrated squared shrinkage bias (4.26) can be bounded by

Z
1

0

[E{ bf(x)}� sp(x)]
2dx =

KX
i=1

Q
2p

(i/K)(�µ
i

)2|f
i

|2
Q

p,M

(i/K)(1 + �µ
i

)2

����1� f
i,N

/f
i

� 1

�µ
i

����2

 3�2
K/2X
i=1

µ2

i

|f
i

|2
����1� f

i,N

/f
i

� 1

�µ
i

����2

 3�2
K/2X
i=1

µ2

i

|f
i

|2{1 +O(N�1)} = O(�2).

Optimizing the IMSE( bf) with respect to the parameters K and � gives the optimal

rates for K and � in both asymptotic scenarios. ⇤

Corollary 1 states that depending on k
q

, and thus on the number of knots K taken,

the asymptotic scenario of periodic spline estimators is either similar to the periodic

regression spline asymptotics or to the periodic smoothing spline asymptotics. For small

K ⇣ N1/(2p+3) with k
q

= O(1), the convergence rate of the estimator N�(p+1)/(2p+3)

is the same as that for the regression splines (see Zhou et al., 1998) and � is, in fact,

non-identifiable, i.e. can not be estimated consistently. Once more knots are taken, so

that k
q

! 1, the smoothing parameter � controls the fit and the convergence rate is

N�2q/(4q+1), as was found for periodic smoothing spline estimators by Wahba (1975).

In this scenario, K is non-identifiable, meaning that taking any K satisfying K ⇣ N & ,

& 2 [1/(4q + 1), 1] has no influence on the IMSE. Apparently, the choice of p and q

is important for the convergence rate in each scenario. Taking p > 2q � 1 leads to a

faster convergence rate in the “small” number of knots scenario, while for p = 2q� 1 the

convergence rate in both scenarios is the same.

4.3 Equivalent kernel

Periodic splines are linear in observations and can be written as a weighted sum

bf(x) = 1

N

NX
i=1

W (x, i/N)Y
i

.
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4 General framework for splines

We refer to function W (x, t) as the equivalent kernel for periodic spline estimators.

Strictly speaking, W (x, t) is an e↵ective kernel, since it depends on observation points

{i/N}N
i=1

. However, in case of periodic splines, equidistant knots and observations, this

dependence is simpler than in general case and can be expressed via parameter M =

N/K – the number of observations between two subsequent knots. Thus, in contrast to

the available results on smoothing and regression splines, we work with the exact form

of W (x, t) avoiding any asymptotic approximation of the e↵ective kernel (and herewith

of the estimator).

Knowing the properties and the exact form of the equivalent kernel allows us to study

the pointwise asymptotic behaviour of periodic splines. In this section, we study the

periodic equivalent kernel on the interval and a related non-periodic kernel on the real

line.

4.3.1 Periodic equivalent kernels and equivalent kernels on real line

Using the Demmler-Reinsch basis, we can write the solution to (4.1) as

bf(x) = 1

N

NX
l=1

KX
i=1

�
i

(x)�
i

(l/N)

1 + �µ
i

Y
l

. (4.27)

Hence, the equivalent kernel for a periodic spline estimator is

W (x, t) =
KX
i=1

�
i

(t)

1 + �µ
i

�
i

(x). (4.28)

Some properties of the equivalent kernel follow immediately.

1. W (x, t) is a real-valued function 8x, t 2 [0, 1].

2. W (x, t) 2 Sper(p; ⌧
K

) at a fixed t (or fixed x).

3. W (x, t) is the reproducing kernel of Sper(p; ⌧
K

) with respect to inner product

hf, gi
�

B N�1

NX
i=1

f(i/N)g(i/N) + �

Z
1

0

f (q)(x)g(q)(x)dx,

i.e. hW (t, x), s(x)i
�

= s(t), 8s 2 Sper(p; ⌧
K

) and t 2 [0, 1] for any N � K.

61



4 General framework for splines

Properties 1, 2 follow from the fact, that the i-th and the (K� i)-th summands in (4.28)

are complex conjugate. Property 3 follows from Lemma 13 and the representation of

splines in the Demmler-Reinsch basis.

We define a kernel on the real line via

W(x, t) B
Z

K

0

�(u, x)�(u, t)

1 + �µ(u)
du, (4.29)

where function �(u, x) and µ(u) are given in (4.18) and (4.19) correspondingly. Note,

W(x, t) is a real valued function, since �(u, x) = �(K � u, x) and µ(u) = µ(K � u).

Lemma 14 Equivalent kernel W (x, t) can be obtained by “folding back”W(x, t), that is

W (x, t) =
1X

l=�1

W(x, t+ l). (4.30)

Proof of Lemma 14

Note that for fixed x, function
P1

l=�1 W(x, t + l) is a periodic real-valued function of

t with period 1. Hence, it is enough to show that for fixed x, the Fourier coe�cients of

W (x, t) and
P1

l=�1 W(x, t + l) coincide. From now on, we consider both functions as

functions of t, while x is being a fixed parameter.

Substituting series representation (4.17) for �
i

(t) into (4.28), we obtain the Fourier series

of W (x, t):

W (x, t) =
1X

l=�1

KX
i=1

sinc{⇡(i/K + l)}p+1�
i

(x)p
Q

p,M

(i/K)(1 + �µ
i

)
exp{2⇡it(i+ lK)}.

Next, we use Q
p,M

(i/K) = Q
p,M

(i/K + l), µ
i

= µ
i+lK

and �
i

(x) = �
i+lK

(x) for l 2 Z.
Similar to the Fourier coe�cients c

i+lK

of bf(x) as given in Section 4.1.3, the Fourier

coe�cients a
l

(x) of W (x, t) are given by

a
l

(x) =
sinc{⇡(l/K)}p+1�

l

(x)p
Q

p,M

(l/K)(1 + �µ
l

)
, l 2 Z, (4.31)

62



4 General framework for splines

for W (x, t) =
P1

l=�1 a
l

(x) exp(2⇡ilt). From the Poisson summation formula

Z
1

0

1X
j=�1

W(x, t+ j) exp(�2⇡itl)dt =

Z 1

�1
W(x, t) exp(�2⇡itl)dt, (4.32)

follows the equality of l-th Fourier coe�cients of
P1

j=�1 W(x, t+ j) and of the Fourier

transform of W(x, t). Applying the Poisson summation formula again, we obtain

W(x, t) =

Z
K

0

1X
l=�1

sinc{⇡(u/K + l)}p+1�(u, x)p
Q

p,M

(u/K){1 + �µ(u)} exp{2⇡it(u+ lK)}du

=

Z 1

�1

sinc{⇡(u/K)}p+1�(u, x)p
Q

p,M

(u/K){1 + �µ(u)} exp(2⇡itu)du. (4.33)

Using the inverse Fourier transform for (4.33), we obtainZ 1

�1
W(x, t) exp(�2⇡itu)dt =

sinc{⇡(u/K)}p+1�(u, x)p
Q

p,M

(u/K){1 + �µ(u)} . (4.34)

If we take in (4.34) u = l 2 Z, then from (4.32) follows the equality of the l-th Fourier

coe�cients of
P1

j=�1 W(x, t+ j) and a
l

(x) in (4.31), which proves (4.30). ⇤

4.3.2 Explicit formula for the equivalent kernel

In this section, we give the explicit form of equivalent kernels W (x, t) and W(x, t).

The obtained solutions depend on the roots of a certain combination of Euler-Frobenius

polynomials given in Theorem 2. The equivalent kernels look complicated, but they are

exact and hold for any p, q, M , K and �. Related results in term of B-splines are to be

found in Huang and Studden (1990) for regression splines and in Li and Ruppert (2008)

for penalized splines when p = q = 1. Both worked with an approximation of the weight

function of spline estimators.

Theorem 2 Let

P
2p

(u) B e⇧
p,M

(u) + (�1)q(k
q

⇡�1)2q(1� u)2q⇧
2p�2q+1

(u)/(2p� 2q + 1)! (4.35)

be a polynomial of degree 2p where ⇧
2p�2q+1

(u) is the Euler-Frobenius polynomial and
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e⇧
p,M

(u) be a linear combination of the Euler-Frobenius polynomials given in Lemma 12.

Let also r
j

, r�1

j

, j = 1, . . . , p be the roots of P
2p

(u) with |r
j

| < 1. Then, denoting

P
0
2p

(r
j

) B @P
2p

(u)/@u|
u=r

j

, d
x,t

B
⌅
Kx� �p+1

2

 ⇧� ⌅Kt� �p+1

2

 ⇧
and representing

zp�d

x,t�
p

{Kx+ (p+ 1)/2, z}�
p

�
Kt+ (p+ 1)/2, z�1

 
=

2pX
l=0

↵
l

({Kx}, {Kt}) zl

for some functions ↵
l

(t
1

, t
2

) and x, t 2 R, we find

W (x, t) = K

pX
j=1

2pX
l=0

↵
l

({Kx}, {Kt})
P

0
2p

(r
j

)

r
(d

x,t

+l�1) modK

j

+ r
K+2p�2�(d

x,t

+l�1) modK

j�
1� rK

j

�
W(x, t) = K

pX
j=1

2pX
l=0

↵
l

({Kx}, {Kt})
P

0
2p

(r
j

)
r
|d

x,t

+l�1|+I{d
x,t

�l}(2p�2)

j

. (4.36)

Proof of Theorem 2

Using formulas of Demmler-Reinsch basis (4.13), its eigenvalues (4.16) and formulas

(4.23), (4.28), (4.29) we can represent functions W (x, t) and W(x, t) as

W (x, t) =
KX
i=1

�
p

{Kx+ (p+ 1)/2, exp(�2⇡ii/K)}�
p

{Kt+ (p+ 1)/2, exp(2⇡ii/K)}
Q

p,M

(i/K) + (2k
q

⇡�1)2q sin(⇡i/K)2qQ
2p�2q

(i/K)

W(x, t) =

Z
K

0

�
p

{Kx+ (p+ 1)/2, exp(�2⇡iu/K)}�
p

{Kt+ (p+ 1)/2, exp(2⇡iu/K)}
Q

p,M

(u/K) + (2k
q

⇡�1)2q sin(⇡u/K)2qQ
2p�2q

(u/K)
du.

We aim to represent W (x, t) and W(x, t) as a ratio of two polynomials in exponential

function. From (4.9), it holds that

Q
2p�2q

(u) = exp {2⇡iu(p� q)}⇧
2p�2q+1

{exp(�2⇡iu)} /(2p� 2q + 1)!.

Moreover, from Lemma 12 we know that Q
p,M

(u) = exp(2⇡ipu)e⇧
p,M

{exp(�2⇡iu)}.
With this, the denominators of W (x, t) and W(x, t) can be expressed in terms of expo-

nential function using

Q
p,M

(u) + (2k
q

⇡�1)2q sin(⇡u)2qQ
2p�2q

(u) = exp(2⇡ipu)P
2p

{exp(�2⇡iu)} . (4.37)
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Using the representation of the exponential splines in terms of polynomials ↵
l

(t
1

, t
2

)

given in the theorem, we can express W (x, t) and W(x, t) as a ratio of two polynomials

in exponential functions:

W (x, t) =
KX
i=1

exp (�2⇡id
x,t

i/K)
P

2p

l=0

↵
l

({Kx}, {Kt}) exp (�2⇡iil/K)

P
2p

{exp (�2⇡ii/K)}

W(x, t) =

Z
K

0

exp (�2⇡id
x,t

u/K)
P

2p

l=0

↵
l

({Kx}, {Kt}) exp (�2⇡iul/K)

P
2p

{exp (�2⇡iu/K)} du.

Next, we find the partial fractional decomposition of 1/P
2p

(u) that allows us to use the

inverse discrete Fourier transform in order to find W (x, t) and methods of contour inte-

gration in order to find W(x, t). Before we proceed, we need to study roots of polynomial

P
2p

(u). Define additionally

eP
p

{cos(⇡u)2} B exp(2⇡ipu)P
2p

{exp(�2⇡iu)} . (4.38)

Function eP
p

(u) is a polynomial of degree p whose existence follows from (4.37) and the

fact that functions Q
2p�2q

(u) and Q
p,M

(u) can be expressed as polynomials of cos(⇡u)2

(see Section 4.1.1 and 4.1.2). Equation (4.38) is equivalent to the representation

P
2p

(u) = up eP
p

✓
u+ u�1 + 2

4

◆
, (4.39)

since cos(⇡u)2 = {exp (�2⇡iu) + exp (2⇡iu) + 2}/4. Hence, the roots of P
2p

(u) can

be found from the roots of polynomial a smaller degree eP
p

(u). Moreover, the inverse

of a root of P
2p

(u) is also a root of P
2p

(u), i.e. the roots of P
2p

(u) can be written as

r
j

, r�1

j

, i = 1, . . . , p with |r
j

| < 1. Note that roots of the Euler-Frobenius polynomial

have the same property (see Section 4.1.1).

Now, the coe�cients of the partial fractional decomposition of 1/P
2p

(u) are 1/P
0
2p

(r
j

)

and 1/P
0
2p

�
r�1

j

�
correspond to roots r

j

and r�1

j

for j = 1, . . . , p. Further, from (4.39),

we obtain

P 0
2p

(u) = pup+1P̃
p

✓
u+ u�1 + 2

4

◆
+ up�1

u� u�1

4
P̃ 0
p

✓
u+ u�1 + 2

4

◆
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and therefore

P 0
2p

(r
i

) =rp�1

i

r
i

� r�1

i

4
P̃ 0
p

✓
r
i

+ r�1

i

+ 2

4

◆
P 0
2p

(r�1

i

) =� r1�p

i

r
i

� r�1

i

4
P̃ 0
p

✓
r
i

+ r�1

i

+ 2

4

◆
.

Hence, making use of P
0
2p

(r�1

i

) = �r2�2p

i

P
0
2p

(r
i

), we obtain

W (x, t) =
pX

j=1

2pX
l=0

↵
l

({Kx}, {Kt})
P

0
2p

(r
j

)
R

n

(j, l)

W(x, t) =
pX

j=1

2pX
l=0

↵
l

({Kx}, {Kt})
P

0
2p

(r
j

)
R(j, l),

for

R
n

(j, l) B
KX
i=1

"
exp {�2⇡i (d

x,t

+ l) i/K}
exp(�2⇡ii/K)� r

j

� r2p�2

j

exp {�2⇡i (d
x,t

+ l) i/K}
exp(�2⇡ii/K)� r�1

j

#

R(j, l) B
Z

K

0

"
exp {�2⇡i (d

x,t

+ l)u/K}
exp(�2⇡iu/K)� r

j

� r2p�2

j

exp {�2⇡i (d
x,t

+ l)u/K}
exp(�2⇡iu/K)� r�1

j

#
du.

To find R
n

(j, l), we use the inverse discrete Fourier transform of the sequence {ri
j

}K
i=1

,

which can be obtained from the geometric progression formula, so that

R
n

(j, l) = K
r
(d

x,t

+l�1) modK

j

+ r
K+2p�2�(d

x,t

+l�1) modK

j

1� rK
j

.

To find R(j, l), we use of a change of variable exp(�2⇡iu/K) = z for d
x,t

+ l > 0 and

exp(2⇡iu/K) = z for d
x,t

+ l  0 . Then, we apply the Cauchy integral formula

R(j, l) =

8>><>>:
K

2⇡i

H
|z|=1

✓
z

d

x,t

+l�1

z�r

j

� r

2p�2
j

z

d

x,t

+l�1

z�r

�1
j

◆
dz = Kr

d

x,t

+l�1

j

, for d
x,t

+ l > 0

K

2⇡i

H
|z|=1

✓
r

2p�1
j

z

�d

x,t

�l

z�r

j

� r

�1
j

z

�d

x,t

�l

z�r

�1
j

◆
dz = Kr

�d

x,t

�l+2p�1

j

, for d
x,t

+ l  0,

where the contour integral is taken counter-clockwise. ⇤
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There is a closed-form expression available for the roots of polynomial P
2p

for degrees

p  4. For these degrees, both W (x, t) and W(x, t) can be obtained explicitly.

For p = q = 1, both functions have simple representations that become increasingly

involved for larger p and q. For p = q = 1, we find

r
1

= 1�
⇣q

6/M2 + 3 + 36k2

q

⇡�2 � 3
⌘
/(6k2

q

⇡�2 � 1 + 1/M2),

P
0
2

(r
1

) =
q
(2/M2 + 1 + 12k2

q

⇡�2)/3, ↵
2

(t
1

, t
2

) = ↵
0

(t
2

, t
1

) = t
1

� t
1

t
2

and ↵
1

(t
1

, t
2

) =

1� ↵
0

(t
1

, t
2

)� ↵
2

(t
1

, t
2

). Hence, for p = 1 the formula for W(x, t) is

W(x, t) = K
q
3/
�
2M�2 + 1 + 12k2

q

⇡�2

�n
({Kt}� {Kx}{Kt}) r|bKxc�bKtc�1|

1

+ (1� {Kx}� {Kt}+ 2{Kx}{Kt}) r|bKxc�bKtc|
1

+ ({Kx}� {Kx}{Kt}) r|bKxc�bKtc+1|
1

o
.

For k
q

= 0 and M ! 1, the root is r
1

= �2 +
p
3 and kernel W(x, t), scaled with K,

coincides with the equivalent kernel for regression splines K
rs

(x, t), obtained in Huang

and Studden (1990):

K
rs

(x, t) =
p
3
n
({t}� {x}{t}) r|bxc�btc�1|

1

+ (1� {x}� {t}+ 2{x}{t}) r|bxc�btc|
1

+ ({x}� {x}{t}) r|bxc�btc+1|
1

o
.

The last formula can be found by plugging (2.3) into (3.26) for p = 1 and some sim-

plification. For k
q

! 1, M = 1, we scale W(x, t) with ⇡�1/(2q) and make use of

lim
k

q

!1 r
k

q

|x�t|
1

= exp(�⇡ |x� t|), lim
k

q

!1 r
1

= 1 obtaining for p = 1 that

lim
k

q

!1

⇥
�1/(2q)W �

�1/(2q)x,� 1/(2q)t
 ⇤

= 1/2 exp(� |x� t|) = K
ss

(x� t).
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For p = 3, q = 2, the explicit form of the equivalent kernel is a lot more complicated.

The ↵
l

(t
1

, t
2

) coe�cients are given by

↵
0

(t
1

, t
2

) = (t
2

� t
1

t
2

)3/36

↵
1

(t
1

, t
2

) = (1� t
1

)3(1 + 3t
2

+ 3t2
2

)/36 + (1 + 9t
1

� 15t2
1

+ 6t3
1

)t3
2

/36

↵
2

(t
1

, t
2

) =
(2� t

1

)3

36
+

4� 6t2
1

+ 3t3
1

12t�1

2

� 8 + 6t
1

� 30t2
1

+ 15t3
1

36t�3

2

+
2 + 6t

1

� 12t2
1

+ 5t3
1

12t�2

2

↵
3

(t
1

, t
2

) =
1

2
+

t2
1

(4t
1

� 9)

18
+

t
1

(3� t2
1

)t
2

� (3� 9t2
1

+ 5t3
1

)t2
2

6
� (2t

1

� 1)(4 + 5t
1

� 5t2
1

)t3
2

18

and ↵
6

(t
1

, t
2

) = ↵
0

(t
2

, t
1

), ↵
5

(t
1

, t
2

) = ↵
1

(t
2

, t
1

), ↵
4

(t
1

, t
2

) = ↵
2

(t
2

, t
1

). Additionally, let

a B 4/315� 8/189M�6 + 4/135M�4 + 32/3k4

q

⇡�4

b B 38/105 + 8/63M�6 � 2/45M�4 � 16k4

q

⇡�4

c B 4/7� 8/63M�6

d B 17/315 + 8/189M�6 + 2/135M�4 + 16/3k4

q

⇡�4

V B 2�1/3

⇢q
(2b3 � 9abc+ 27a2d)2 � 4(b2 � 3ac)3 + 2b3 � 9abc+ 27a2d

�
1/3

.

Then the root of cubic polynomial eP
p

(u) used in the proof of the theorem are given by

R
1

B� �b+ V +
�
b2 � 3ac

�
V �1

 
/(3a)

R
2

B
n
�b+

⇣
1 + i

p
3
⌘
V/2 +

⇣
1� i

p
3
⌘ �

b2 � 3ac
�
V �1/2

o
/(3a)

R
3

B
n
�b+

⇣
1� i

p
3
⌘
V/2 +

⇣
1 + i

p
3
⌘ �

b2 � 3ac
�
V �1/2

o
/(3a).

The formula for the roots r
i

and P
0
2p

(r
j

) for i = 1, 2, 3 is

r
i

=min

(
�1 + 2R

i

+ 2
q

R2

i

�R
i

,

✓
�1 + 2R

i

+ 2
q

R2

i

�R
i

◆�1

)
P 0
2p

(r
i

) =
�
r3
i

� r
i

� �
3aR2

i

+ 2bR
i

+ c
�
/4.

Note that root {r
i

}3
i=1

depend on k
q

and M . Even though the formula if complicated, the

exact values of {r
i

}3
i=1

and
�
P

0
2p

(r
i

)
 
3

i=1

can be computed for any fixed k
q

and M . In par-
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ticular, for k
q

= 0 and M ! 1, we obtain r
1

' �0.5353, r
2

' �0.1226, r
3

' �0.0091,

P
0
2p

(r
1

) ' 0.0476, P
0
2p

(r
2

) ' �0.0142, P
0
2p

(r
3

) ' 0.0196.

4.4 Local asymptotic properties of spline estimators

In this section, we find the precise pointwise behavior of periodic spline estimators. For

this, we need to introduce the scaled equivalent kernel on R, defined as

K(x, t) B h(k
q

)W {h(k
q

)x, h(k
q

)t} ,

where h(k
q

) is a bandwidth given in Section 4.4.1.

4.4.1 Bandwidth

We introduce a bandwidth, which is universal for all periodic spline estimators. Let us

motivate the choice of the bandwidth. We want the bandwidth to satisfy the following

conditions

1. It is a smooth function of k
q

.

2. It tends to zero as the number of observation grows.

3. For k
q

! 1, it coincides up to a constant with bandwidth �1/(2q) of the equivalent

kernel for smoothing splines.

4. For k
q

= 0, it coincides with the bandwidth 1/K of the equivalent kernel for

regression splines.

Let us define the bandwidth and check its properties.

h(k
q

)�1 B
Z

K

0

dx

1 + �(⇡x)2q
= ��1/(2q)⇡�1

Z
k

q

0

dx

1 + x2q

.

Bandwidth h(k
q

) is a smooth function of k
q

with a (rather complicated) closed form

expression available for each q. However, for our subsequent developments the following
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representation will be more suitable.

h(k
q

)�1 = ��1/(2q)⇡�1

8<:k
q

c
1

(k
q

), k
q

< 1

⇡c
2

(k
q

), k
q

� 1,
(4.40)

where c
1

(k
q

) and c
2

(k
q

) are known functions that vary slow with k
q

, namely

c
1

(k
q

) B
2

F
1

[{1, 1/(2q)}; {1 + 1/(2q)},�k2q
q

] 2 (⇡/4, 1]

c
2

(k
q

) B ec
2

� 2

F
1

[{1, 1� 1/(2q)}; {2� 1/(2q)},�k�2q

q

]

k
q

2q�1⇡(2q � 1)
2 (0.25, 0.5],

with ec
2

= sinc{⇡/(2q)}�1⇡�1 and
2

F
1

denoting hypergeometric series (Abramowitz and

Stegun, 1972). For simplicity of notation, in the following sections we write c
1

instead

of c
1

(k
q

) and c
2

instead of c
2

(k
q

). To obtain representation (4.40) for k
q

< 1, we used

a change of variable, Taylor series expansion and the definition of the hypergeometric

series:Z
k

q

0

dx

1 + x2q

= k
q

Z
1

0

dx

1 + (k
q

x)2q
= k

q

Z
1

0

1X
l=0

(�1)l(k
q

x)2ql = k
q

1X
l=0

(�k2q

q

)l

2q {l + 1/(2q)} .

Similarly, for k
q

� 1, we made use of

Z
k

q

0

dx

1 + x2q

=

Z 1

0

dx

1 + x2q

�
Z

k

�1
q

0

x2q�2dx

1 + x2q

= sinc {⇡/(2q)}�1 �
1X
l=0

Z
k

�1
q

0

(�1)lx2ql+2q�2

=sinc {⇡/(2q)}�1 � k�2q+1

q

1X
l=0

(�k�2q

q

)l

2q {l + 1� 1/(2q)} .

Formula (4.40) is equivalent to

h(k
q

) =

8<:K�1 c
1

(k
q

)�1, k
q

< 1

�1/(2q)c
2

(k
q

)�1, k
q

� 1.
(4.41)

Note that for regression spline estimators (k
q

= 0) the bandwidth h(0) = K�1c
1

(0)�1 =

K�1 and for smoothing spline estimators the bandwidth h(1) = �1/(2q)ec�1

2

. Therefore,
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bandwidth h(k
q

) satisfies our requirements.

4.4.2 Asymptotic behavior of the equivalent kernel

In Theorem 3, we show how equivalent kernel K(x, t) depends on k
q

. In particular, k
q

determines the transition rate from K(x, t) to equivalent kernel of regression splines

K
rs

(x, t) for k
q

< 1 and to equivalent kernel of smoothing splines K
ss

(x, t) for k
q

� 1.

More discussion follows after the theorem.

Theorem 3 The equivalent kernel for spline estimators on R for p = 2q� 1 is given by8<:c
1

K (c
1

x, c
1

t) = K
rs

(x, t)� k2q

q

K
1

(x, t), k
q

< 1

c
2

K (c
2

x, c
2

t) = K
ss

(t� x) + k1�2q

q

K
2

(x, t), k
q

� 1,

where K
1

(x, t) and K
2

(x, t) are bounded functions given in the proof, K
rs

(x, t) is the

regression spline equivalent kernel

K
rs

(x, t) =
pX

j=1

2pX
l=0

↵
l

({x}, {t})
⇧

0
2p

(r
j

)
r
|d

x,t

+l�1|+I{d
x,t

�l}(2p�2)

j

,

with ↵
l

, r
j

, d
x,t

defined in Theorem 2 and K
ss

(t� x) is the smoothing spline equivalent

kernel given in (3.23).

Proof of Theorem 3

From (4.29), we have

W(x, t) =

Z
K

0

�(u, x)�(u, t)

1 + �µ(u)
du = R

Z
1/2

0

2K�(Ku, x)�(Ku, t)

1 + �µ(Ku)
du.

Let first consider 0  k
q

< 1. Scaling W(x, t) with c�1

1

K�1, leads to

c
1

K(c
1

x, c
1

t) = R

"Z
1/2

0

2�(Ku, x/K)�(Ku, t/K)du

�
Z

1/2

0

2�µ(Ku)�(Ku, x/K)�(Ku, t/K)

1 + �µ(Ku)
du

#
= K

rs

(x, t)� k2q

q

K
1

(x, t),
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where K
rs

(x, t) is the equivalent regression spline kernel on R and

K
1

(x, t) B R

Z
1/2

0

2 sin(⇡u)2qQ
2q�2

(u)�(Ku, x/K)�(Ku, t/K)

⇡2qQ
p,M

(u){1 + �µ(Ku)} du

 22qQ
2q�2

(1/2)

⇡2qQ
4q�2

(1/2)
K

rs

(x, t).

Using Q
lq�2

(1/2) = 2⇡lq(2lq � 1)⇣(lq) for the Riemann zeta function ⇣(lq) =
P1

i=1

i�lq,

we can get explicit bounds for each q.

For k
q

� 1, we first introduce the following notation.

1. 1 + �µ(Ku) = {1 + �(2⇡Ku)2q}{1 + r
1

(u)}.

2. �(Ku, x)�(Ku, t) = exp{2⇡iKu(x� t)}{1 + r
2

(x, t, u)}.

3. r
q

(x, t, u) = {r
2

(x, t, u)� r
1

(u)}{1 + r
1

(u)}�1.

Scaling W(x, t) with c�1

2

�1/(2q) and using approximations defined above results in

c
2

K(c
2

x, c
2

t) =

Z 1

�1

exp{2⇡iu(t� x)}
1 + (2⇡u)2q

du

+ R

Z
k

q

/2

0

2 exp{2iu(t� x)}
⇡{1 + (2u)2q} r

q

(x, t, u/k
q

)du

� R

Z 1

k

q

/2

2 exp{2iu(t� x)}
⇡{1 + (2u)2q} du = K

ss

(x, t) + k�2q+1

q

K
2

(x, t),

where K
ss

(x, t) is the smoothing spline kernel on R and

⇡K
2

(x, t) B k2q�1

q

R

Z
k

q

/2

0

2 exp{2iu(t� x)}
1 + (2u)2q

r
q

(x, t, u/k
q

)du

�
Z 1

1

cos{k
q

u(t� x)}
k�2q

q

+ u2q

du.

The second component of ⇡K
2

(x, t) is clearly bounded by 1. Now, let us consider r
q

(x, t, u/k
q

).

Since Q
4q�2

(u)  Q
p,M

(u)  Q2

2q�2

(u) for odd p, the term r
1

(u) is bounded by

(2uk
q

)2q

1 + (2uk
q

)2q

⇢
sinc(⇡u)2q

Q
2q�2

(u)
� 1

�
 r

1

(u)  (2uk
q

)2q

1 + (2uk
q

)2q

⇢
sinc(⇡u)2qQ

2q�2

(u)

Q
4q�2

(u)
� 1

�
,
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Figure 4.3: Equivalent kernel K(x, t) for penalized splines for k
q

= 0, 1, 5 and M = 5.
(a) t = 0, p = q = 1, (b) t = 0.3, p = q = 1, (c) t = 0, p = 2q � 1 = 3, (d)
t = 0.3, p = 2q � 1 = 3. The grey lines correspond to the smoothing spline
kernels.

so that |r
1

(u)|  1� sinc(⇡u)2q/Q
2q�2

(u). Observing

Q
2q�2

(u/k
q

)sinc(⇡u/k
q

)�2q = 1 + 2⇣(2q)(u/k
q

)2q +O(k�4q

q

),

we obtain |r
1

(u/k
q

)|  ⇣(2q)(2k
q

)�2q + O(k�4q

q

). Using the same techniques, we obtain

|r
2

(x, t, u/k
q

)|  8⇣(2q)(2k
q

)�2q +O(k�4q

q

). In principle, one can also find a lower bound
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for 1+ r
1

(u/k
q

) depending on q and k
q

, but it is enough to note that 1+ r
1

(u/k
q

) � 1/2.

Finally, |r
q

(x, t, u/k
q

)|  18⇣(2q)(2k
q

)�2q+O(k�4q

q

) and hence, the first term in ⇡K
2

(x, t)

is also bounded for any k
q

� 1.

It remains to set K
rs

(x, t). K
rs

(x, t) is obtained from (4.36), scaling W(x, t) with K and

setting P
2p

(u) = ⇧
2p

(u). ⇤

From Theorem 3, it follows that lim
k

q

!1 c
2

K(c
2

x, c
2

t) = ec�1

2

K
ss

{(x� t)/ec
2

} and

lim
k

q

!0

c
1

K(c
1

x, c
1

t) = K
rs

(x, t), that is, K(x, t) varies smoothly between K
rs

(x, t) and

K
ss

(x, t), scaled with appropriate constants. This is visualized in Figures 4.3. Figure 4.3

depicts the penalized spline kernel K(x, t) for M = 5 at t = 0 and t = 0.3 for di↵erent

values of k
q

and for p = 1, 3. As k
q

grows, K(x, t) becomes more symmetric and for

k
q

= 5 is already non-distinguishable from the smoothing spline kernel shown in grey.

4.4.3 Moments and exponential decay of the equivalent kernel

The next two lemmas are technical and are used in the proof of the Theorem 4 on the

pointwise behavior of periodic splines in Section 4.4.4. As Nychka (1995) notices, one

does not need to know the exact form of the kernel in order to study the pointwise bias

and variance of smoothing splines. Similarly, in the proof of our Theorem 4, it turns out

that only the following two lemmas are crucial.

Lemma 15 For x, t 2 R, it holds for 0  m  min(p, 2q � 1) thatZ 1

�1
(t� x)m W (x, t) dt =

Z
1

0

(t� x)m W (x, t) dt = �
m,0

,

while for m = min(p+ 1, 2q),Z 1

�1
(t� x)m W (x, t) dt =

Z
1

0

(t� x)m W (x, t) dt

= I{p2q�1}

(
2B

p+1

��
p+1

2

 �
Np+1

� B
p+1

��
Kx+ p+1

2

 �
Kp+1

)
� I{p�2q�1}

� (2q)!

(�1)q
,
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Proof of Lemma 15

From (4.33), (4.34) and the fact that W(x, t) is a real-valued function it follows that

W(x, t) =

Z 1

�1
a(u, x) exp (�2⇡itu) du,

with a(u, x) defined as

a (u, x) B
sinc {⇡ (u/K)}p+1 � (u, x)p
Q

p,M

(u/K) {1 + �µ (u)} =

Z 1

�1
W(x, t) exp(�2⇡itu)dt

=

Z
1

0

W (x, t) exp (�2⇡itu) dt, u 2 R, (4.42)

where the last equality is obtained using (4.30) and the Poisson summation formula. Note

that for u 2 Z, function a (u, x) coincides with the u-th Fourier coe�cient of W (x, t)

given in (4.31). Properties of the Fourier transform and (4.42) ensure thatZ 1

�1
(2⇡it)mW(x, t) exp(2⇡itu)dt =

@m

@um

Z 1

�1
W(x, t) exp(2⇡itu)dt

=
@m

@um

Z
1

0

W (x, t) exp(2⇡itu)dt =

Z
1

0

(2⇡it)2qW (x, t) exp(2⇡itu)dt =
@m

@um

a(u, x).

Evaluating derivative of a (u, x) at u = 0 and grouping the terms of a (u, x) in (4.42),

we represent Z 1

�1
(2⇡it)mW(x, t)dt = I

1

+ I
2

+ I
3

, (4.43)

where

I
1

B
@m

@um

"
exp (2⇡ixu)

(
1 +

sinc (⇡u/K)2p+2 �Q
p,M

(u/K)

Q
p,M

(u/K)

)#
u=0

I
2

B
@m

@um

264{sin (⇡u/K) sinc (⇡u/K)}p+1

Q
p,M

(u/K)

X
l 6=0

exp {2⇡ix (u+ lK)}n
(�1)l ⇡ (u/K + l)

o
p+1

375
u=0

I
3

B
@m

@um

"
��µ (u) sinc (⇡u/K)p+1 � (u, x)p

Q
p,M

(u/K) {1 + �µ (u)}

#
u=0

.
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The idea is to represent each of these components as a product of sin (⇡u/K)n , n 2 Z
and some function that is di↵erentiable at 0. After that, we use that Q

p,M

(0) = µ(0) =

�(0, x) = 1,

@m

@um

{sin (⇡u/K)n}
u=0

=

8<:0, m = 0, . . . n� 1

n! (⇡/K)n , m = n

and the Fourier series of the periodic Bernoulli polynomials

B
p+1

({x}) = (�1)p(p+ 1)!
X
s6=0

exp(�2⇡isx)/ (2⇡is)p+1 .

To handle I
1

, we regroup series representation (4.12) of Q
p,M

as

Q
p,M

(u/K) = sinc (⇡u/K)2p+2 + 2 {sin (⇡u/K) sinc (⇡u/K)}p+1

X
l 6=0

(�1)lM(p+1)

{⇡ (u/K + lM)}p+1

+
sin (⇡u/K)2p+2

⇡2p+2

M�1X
j=1

( 1X
l=�1

(�1)(j+lM)(p+1)

(u/K + j + lM)p+1

)
2

+
sin (⇡u/K)2p+2

⇡2p+2

(X
l 6=0

(�1)lM(p+1)

(u/K + lM)p+1

)
2

.

With this, the wanted representation for the components of I
1

is obtained. Putting it all

together, we find

I
1

=

8<:(2⇡ix)m , m = 0, . . . p

(2⇡ix)p+1 + 2(2⇡i/N)p+1B
p+1

��
p+1

2

 �
, m = p+ 1.

The components of I
2

are already represented as a product of sin(⇡u/K)p+1 and a

function that is di↵erentiable at 0. Thus, we find that

I
2

=

8<:0, m = 0, . . . p

�(2⇡i/K)p+1B
p+1

��
Kx+ p+1

2

 �
, m = p+ 1.
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To find I
3

, we use µ (u) = (2K)2q sin(⇡u/K)2qQ
2p�2q

(u/K)/Q
p,M

(u/K) that follows from

(4.19). We obtain

I
3

=

8<:0, m = 0, . . . 2q � 1

�� (2⇡)2q (2q)!, m = 2q.

To obtain integrals
R1
�1 (t� x)m W (x, t) dt =

R
1

0

(t� x)m W (x, t) dt, one needs to ex-

pand (t� x)m and use (4.43). ⇤

The next lemma deals with the decay of equivalent kernel K(x, t).

Lemma 16 Kernel K(x, t), x, t 2 R decays exponentially, i.e. there are constants

0 < C < 1 and 0 < � < 1 such that

|K(x, t)| < C �|x�t|. (4.44)

Proof of Lemma 16

Since K(x, t) is defined as function W(x, t) scaled with h(k
q

), from (4.36) and (4.41),

one finds for k
q

< 1 that

c
1

K(c
1

x, c
1

t) =
pX

j=1

2pX
l=0

↵
l

({x} , {t})
P 0
2p

(r
j

)
r
|bxc�btc+l�1|+I{bxc�btc�l}(2p�2)

j

, (4.45)

while for k
q

� 1,

⇡c
2

K(⇡c
2

x, ⇡c
2

t) = k
q

pX
j=1

2pX
l=0

↵
l

({xk
q

}, {tk
q

})
P 0
2p

(r
j

)

⇥ r
|bxk

q

c�btk
q

c+l�1|+I{bxk
q

c�btk
q

c�l}(2p�2)

j

. (4.46)

Here, polynomial P
2p

is given in (4.35) and the r
j

= r
j

(k
q

) are its roots with |r
j

| < 1. If

k
q

is a bounded constant, then r
j

= r
j

(k
q

) 9 exp(�2⇡iu), u 2 (0, 1) since

P
2p

{exp(�2⇡iu)} = exp(�2⇡ipu)
�
Q

p,M

(u) + (2k
q

/⇡)2q sin(⇡u)2qQ
2p�2q

(u)
 6= 0,
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where the relationship follows from formula (4.37). Similarly, r
j

= r
j

(k
q

) 9 0 and

0 < � < 1 can be defined as follows.

� B

8<:sup
j,k

q

|r
j

(k
q

)| , k
q

< 1

sup
j,k

q

��r
j

(k
q

)kq
�� , 1  k

q

< 1,

while

C B sup
k

q

,j

p(2p+ 1) sup
l,x,t

↵
l

({x}, {t})��P 0
2p

{r
j

(k
q

)}�� |r
j

(k
q

)|l+1

< 1.

For k
q

! 1, we know from Theorem 3 that

lim
k

q

!1
K(x, t) = K

ss

{(x� t)/ec
2

} /ec
2

.

To obtain the bound on the smoothing spline kernel K
ss

(x), the expression given in

Theorem 3 can be rewritten as

|K
ss

(x� t)| =

�������I{q is odd}
exp (� |x� t|)

2q
+

b(q�1)/2cX
j=0

exp [� |x� t| sin {⇡(2j + 1)/(2q)}]
q

⇥ sin


⇡(2q � 1)(2j + 1)

2q
� |x� t| cos

⇢
⇡(2j + 1)

2q

������
 q + 1

2q
exp {�| x� t| sin (⇡/2q)} ,

so that one can set � B exp [� sin{⇡/(2q)}/ec
2

] 2 (0, 1) and C B (q + 1)/(2qec
2

) < 1 for

k
q

! 1. ⇤

4.4.4 Pointwise bias and variance of spline estimators

In this section, we obtain new results concerning the pointwise bias and pointwise vari-

ance of the periodic spline estimator bf . The local asymptotic behavior is given in terms

of the universal bandwidth h(k
q

).

Theorem 4 Let the model (2.1) hold and bf(x) 2 Sper(2q � 1; ⌧
K

) be the solution to

(4.1) with {x
i

= i/N}N
i=1

and ⌧
K

= {i/K}K
i=0

. Then, for f 2 Cp+1

per such that f (2q) 2
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C0,↵([0, 1]), i.e. f (2q) is Hölder continuous with |f (2q)(x) � f (2q)(t)|  L|x � t|↵, 8x, t 2
[0, 1] and ↵ 2 (0, 1], it holds at any x 2 [0, 1]

E
nbf(x)o� f(x) = �h(k

q

)2q
f (2q)(x)

(2q)!
C(k

q

, x) + o
�
h(k

q

)2q
 

Var
nbf(x)o =

�2

Nh(k
q

)

Z 1

�1
K2 {x/h(k

q

), t} dt+ o
�
N�1h(k

q

)�1

 
,

where

C(k
q

, x) B

8<:c2q
1

⇥B
2q

({Kx}) + (�1)q(2q)!⇡�2qk2q

q

� B
2q

M�2q

⇤
, k

q

< 1

c2q
2

⇥
(�1)q(2q)! + B

2q

({Kx}) ⇡2qk�2q

q

� 2B
2q

⇡2q(k
q

M)�2q

⇤
, k

q

� 1

and
R1
�1 K2 {x/h(k

q

), t} dt < C2/ log(��1) for some C 2 (0,1) and � 2 (0, 1), both

depending on k
q

, explicitly given in the proof of Lemma 16.

Proof of Theorem 4

The proof is based on the kernel regression methods, discussed in Section 3.1.1. To show

that the remainder terms are asymptotically negligible, we use the exponential decay

(4.44) and methods similar to Huang and Studden (1993). From (4.27),

E
nbf(x)o = E

(
1

N

NX
i=1

W (x, i/N)Y
i

)
=

Z
1

0

W (x, t)f(t)dt+O
�
N�1

�
=

Z 1

�1
W (x, t) f(t)dt+O

�
N�1

�
.

The Taylor series of f around x at point t are

f(t) = f(x) + f 0(x)(x� t) + . . .+
f (2q�1)(x)

(2q � 1)!
(x� t)2q�1 +

f (2q)(⇠
x,t

)

(2q)!
(x� t)2q,
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where ⇠
x,t

is a point between x and t. Using this and Lemma 15 results in

E
nbf(x)o� f(x) =

Z 1

�1
W (x, t) (x� t)2q

f (2q)(⇠
x,t

)

(2q)!
dt+O(N�1)

=
f (2q)(x)

(2q)!

Z 1

�1
W (x, t) (x� t)2qdt+R

⇠

(x) +O(N�1)

= h(k
q

)2q
f (2q)(x)

(2q)!

Z 1

�1
K (x

h

, t
h

) (x
h

� t
h

)2q dt
h

+R
⇠

(x) +O(N�1),

where x
h

B x/h(k
q

), t
h

B t/h(k
q

) and

R
⇠

(x) B h(k
q

)2q
Z 1

�1
K (x

h

, t
h

) (x
h

� t
h

)2q
f (2q)(⇠

x,t

)� f (2q)(x)

h(k
q

)(2q)!
dt.

From Lemma 15,
R1
�1 K (x

h

, t) (x
h

� t)2q dt = �C(k
q

, x), where C(k
q

, x) is given in The-

orem 4. It remains to show that R
⇠

(x) = o {h(k
q

)2q}. Using techniques similar to Huang

and Studden (1993),

R
⇠

(x) = h(k
q

)2q
1X

l=�1

Z
x+lh

x+(l�1)h

K (x
h

, t
h

) (x
h

� t
h

)2q
f (2q)(⇠

x,t

)� f (2q)(x)

h(k
q

)(2q)!
dt

 h(k
q

)2q+↵CL
1X

l=�1

Z
x+lh

x+(l�1)h

�|xh

�t

h

| |xh

� t
h

|2q+↵

h(k
q

)(2q)!
dt

 h(k
q

)2q+↵

2CL

(2q)!

1X
l=1

�l�1l2q+↵ = o
�
h(k

q

)2q
 
,

where the exponential bound on the kernel from Lemma 16 together with the Hölder

continuity of f (2q) have been used.

Next, the variance of bf(x) is given by

Var
nbf(x)o =

�2

N2

NX
i=1

W 2(x, i/N) =
�2

N

Z
1

0

W 2(x, t)dt+O(N�1).

Let us define K(x, t) via

h(k
q

)�1K(x
h

, t
h

) = W (x, t) =
1X

l=�1

W(x, t+ l) = h(k
q

)�1

1X
l=�1

K(x
h

, t
h

+ l
h

),
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for l
h

B l/h(k
q

). Then, using periodicity of W (x, t) and a change of variable t
h

in the

integration on the last step, we have:

Z
1

0

W 2(x, t)dt =

Z
x+

1
2

x� 1
2

W 2(x, t)dt =
1

h(k
q

)2

Z
x+

1
2

x� 1
2

K2(x
h

, t
h

)dt

=
1

h(k
q

)

⇢Z 1

�1
K2(x

h

, t)dt+R
k

(x)

�
,

for

h(k
q

)R
k

(x) =

Z
x+

1
2

x� 1
2

K2(x
h

, t
h

)dt�
Z 1

�1
K2(x

h

, t
h

)dt

=

Z
x+

1
2

x� 1
2

�
K2(x

h

, t
h

)�K2(x
h

, t
h

)
 
dt�

Z
x� 1

2

�1
K2(x

h

, t
h

)dt�
Z 1

x+

1
2

K2(x
h

, t
h

)dt.

Now, we can make use of K(x
h

, t
h

) =
P1

l=�1 K(x
h

, t
h

+ l
h

) and of the exponential decay

of K(x, t) found in Lemma 16 to bound terms in h(k
q

)R
k

(x). That is,

Z
x+

1
2

x� 1
2

�
K2(x

h

, t
h

)�K2(x
h

, t
h

)
 
dt

=

Z
x+

1
2

x� 1
2

X
l 6=0

K(x
h

, t
h

+ l
h

)

(X
l 6=0

K(x
h

, t
h

+ l
h

) + 2K(x
h

, t
h

)

)
dt

 C2

Z
x+

1
2

x� 1
2

X
l 6=0

�|xh

�t

h

�l

h

|

 X
l 6=0

�|xh

�t

h

�l

h

| + 2�|xh

�t

h

|

!
dt

= 2C2

Z 1
2

0

X
l 6=0

�|th+l

h

|

 X
l 6=0

�|th+l

h

| + 2�th

!
dt

To compute the bound we use the sum under the integral

X
l 6=0

�|th+l

h

| =
�
�th + ��t

h

�
�1/h(kq)/

�
1� �1/h(kq)

 
, t 2 [0, 1/2].
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Hence Z
x+

1
2

x� 1
2

�
K2(x

h

, t
h

)�K2(x
h

, t
h

)
 
dt

4C2

Z 1
2

0

"
(�th + ��t

h)2 �2/h(kq)

2 {1� �1/h(kq)}2 +
(�th + ��t

h) �|th|+h(k

q

)

�1

1� �1/h(kq)

#
dt

=h(k
q

)
C2�1/h(kq)

�
3� 4�1/h(kq) + �2/h(kq) + 2h(k

q

)�1 log (��1)
 

{1� �1/h(kq)} log (��1)

h(k
q

)
2C2�1/h(kq) {2 + h(k

q

)�1 log (��1)}
{1� �1/h(kq)} log (��1)

.

Also,

Z
x� 1

2

�1
K2(x

h

, t
h

)dt+

Z 1

x+

1
2

K2(x
h

, t
h

)dt  C2

(Z
x� 1

2

�1
�2(xh

�t

h

)dt+

Z 1

x+

1
2

�2(th�x

h

)dt

)

= h(k
q

)
C2�1/h(kq)

log(��1)
.

In a similar fashion, one finds
R1
�1 K2(x

h

, t)dt  C2/log(��1). Putting it all together

gives

|R
k

(x)|  C2�1/h(kq)

log(��1)

"
1 +

4 + 2h(k
q

) log(��1)

{�1/h(kq) � 1}2
#
= O

�
h(k

q

)�1�1/h(kq)
 
= o(1),

proving the theorem. ⇤

The results on the local asymptotic properties of periodic spline estimators allow us

to make the bounds for the choice of optimal � and K, given k
q

, more precise.

Lemma 17 Under the assumptions of Theorem 4,

IMSE( bf) =
h(k

q

)4q

(2q)!2
kf (2q)C(k

q

)k2 + o
�
h(k

q

)4q
 

+
�2c

3

Nh(k
q

)

Z
1

0

Z 1

�1
K2 (x, t) dtdx+ o

�
N�1h(k

q

)�1

 
,

where
��f (2q)C(k

q

)
�� =

hR
1

0

�
f (2q)(x)C(k

q

, x)
 
2

dx
i
1/2

, c
3

(k
q

) = I{k
q

�1} + c
1

I{k
q

<1}. The
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asymptotic optimal bandwidth depending on k
q

is

h
opt

(k
q

) B C
opt

(k
q

)c
3

N�1/(4q+1),

where

C
opt

(k
q

) B
�2(2q)!

R
1

0

R1
�1 K2 (x, t) dtdx

4q kf (2q)C(k
q

)k2 .

For k
q

< 1, the asymptotic optimal K is K
opt

B c�2

1

C�1
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(k
q

)N1/(4q+1) (achieved for

� = k2q

q

{c2
1

C
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C
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(k
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)}�1 N1/(4q+1)).

Proof of Lemma 17

We tackle the proof in three steps.

First, integrating the squared pointwise bias and variance given in Theorem 4, we obtain

IMSE( bf) =
h(k

q

)4q

(2q)!2
kf (2q)C(k

q

)k2 + o
�
h(k

q
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,

Second, we show that
R

1

0

R1
�1 K2 {x/h(k

q

), t} dtdx depends on k
q

and q only, and hence

we can treat it as a constant while minimizing the IMSE over h(k
q

) for fixed k
q

. Using

(4.45) and expression for bandwidth (4.41), we obtain for k
q

< 1

K{x/h(k
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2q�1X
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4q�2X
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q
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where ↵
l

(x, t), l = 0, . . . , 4q � 2 are given in Theorem 2 and for fixed x,t depend on q

only; {r
j

}2q�1

j=0

and P 0
4q�2

(r
j

) depend on k
q

and q; function g is defined as follows:
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Further, with change of variable c�1t� bKxc, we obtainZ 1

�1
g2
�{Kx}, {c�1

1

t}, bKxc � ⌅c�1

1

t
⇧
, k

q

, q
�
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1
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g2 ({Kx}, {y},�btc , k

q
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Change of variable Kx and simple computations lead toZ
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Hence, for k
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< 1 it holds thatZ
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Z
1
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K2 (x, t) dtdx,

where K(x, t) depends on k
q

and q only for fixed x, t. For k
q

> 1, it follows from (4.46)

and (4.41) that
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with ek
q
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2

k
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/⇡. We continue in a similar fashion as before to obtain for k
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Third, we show that kf (2q)C(k
q

)k2 is asymptotically a constant with respect to h(k
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) if
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is fixed. For this, we will need
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Finally, we obtain the asymptotic optimal bandwidth by minimizing over h(k
q

) the

asymptotic IMSE

h(k
q

)4q

(2q)!2
kf (2q)C(k

q

)k2 + �2c
3

Nh(k
q

)

Z
1

0

Z 1

�1
K2 (x, t) dtdx.

For finding asymptotic optimal K for k
q

< 1 we use h(k
q

) = c�1

1

K�1. For finding

asymptotic optimal � for k
q

� 1, we use for h(k
q

) = c�1

2

�1/(2q). ⇤
Compared to Corollary 1, the results of Lemma 17 are more precise.
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5 Discussion

In this dissertation, the local asymptotic properties of periodic spline estimators are

obtained in Theorem 4 by employing the equivalent kernel W(x, t) with bandwidth

h(k
q

). As can be deduced from the proof of Theorem 4, the obtained pointwise bias and

variance of periodic splines coincide in the interior with those of non-periodic splines.

The asymptotic properties of periodic splines depend on the bandwidth that behaves

di↵erently depending on k
q

. Crucial parameter k
q

determines the type of the global and

local asymptotics, the pointwise bias, the constants in the bandwidth and the shape

of the equivalent kernel. Unlike the standard approaches on studying the asymptotic

properties of spline-based estimators, our approach does not require an approximation

of the spline estimator. Instead, we are able to work with the exact weight function of

the (periodic) spline estimator obtaining precise results.

In this chapter, we consider possible generalizations of our results.

The assumption of equidistant knots and observations dominates in the literature on the

equivalent kernels. However, we can generalize the results following Huang and Studden

(1993). In particular, if the design points {x
i

}N
i=1

have a limiting density g(x) and the

sequence of knots ⌧
K

satisfies
R
⌧

i

⌧

i�1
p(t)dt = 1/K, for a positive continuous density p(t)

on [0, 1], then the equivalent kernel for a general spline estimator satisfies

W(x, t) =
1

g(t)h(k
q

)/p(t)
K
⇢

x

h(k
q

)/p(t)
,

t

h(k
q

)/p(t)

�
.

The question for equivalent kernel K(x, t) on bounded interval [0, 1] remains open.

However, Theorem 2 emboldens to conjecture that it changes smoothly with k
q

be-

tween K[0,1]

rs

(x, t) and K[0,1]

ss

(x, t) given in (3.34) and (3.17) correspondingly. Moreover,

the boundary e↵ects should also smoothly change with k
q

. Indeed, for regression and
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smoothing splines, equivalent kernels on [0, 1] can be written as

K[0,1]

rs

(x, t) =K
rs

(x, t) +Kb

rs

(x, t)

K[0,1]

ss

(x, t) =K
ss

(x, t) +Kb

ss

(x, t),

where boundary kernels Kb

rs

(x, t) and Kb

ss

(x, t) are defined via

Kb

rs

(x, t) B K[0,1]

rs

(x, t)�K
rs

(x, t); Kb

ss

(x, t) B
2q�1X
i=0

↵
i

(t) 
i

(x),

with  
i

(x) given in (3.18) and ↵
i

(t) arising from matching the natural boundary con-

ditions. Kernel Kb

rs

(x, t) is not available explicitly, while Kb

ss

(x, t) has a complicated

closed-form expression for each q. As we know from Huang and Studden (1992), at

the boundaries, kernel K[0,1]

rs

(x, t) satisfies all conditions for boundary kernels as given

in Gasser and Müller (1984), confirming that regression spline estimators do not have

boundary e↵ects. As scaled Green’s function R
�

(x, t), kernel K[0,1]

ss

(x, t) satisfies natu-

ral boundary conditions (3.13) and causes the boundary e↵ects of smoothing splines.

Similarly, for penalized splines, we can define the equivalent kernel in interval [0, 1] as

K[0,1](x, t) B K(x, t) +Kb(x, t),

where Kb(x, t) is an unknown boundary kernel. As we know from Theorem 2, kernel

K(x, t) varies smoothly between K
rs

(x, t) and K
ss

(x, t). Therefore, one can expect that

additional boundary terms in K[0,1](x, t) to also vary smoothly between Kb

rs

(x, t) and

Kb

ss

(x, t), so that the boundary e↵ects of spline estimators grow as k
q

! 1.

Extending our results onto d-dimensional space and studying the bias at the boundary

in the spirit of Rice and Rosenblatt (1983) are interesting directions of further research.
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