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SUMMARY 

 

Due to restrictions on feeding and management on low input farms, there are vast differences 

between cattle on low input and conventional farms. Therefore, variance components of the 

same traits recorded in low input and conventional populations might be different. Even if the 

variance components were different, the necessities of setting up an overall breeding goal and 

implementing an own breeding program in organic production system are still open to further 

discussion. The first objective of this study was to estimate variance components of 

production, reproduction and health traits measured on Brown Swiss on low input farms in 

Switzerland. On the other hand, breeding strategies with consideration of genomic selection 

on both conventional and low input farms were compared by applying stochastic simulations.         

 

Test-day data for milk yield (MY), fat percentage (Fat%), protein percentage (Pro%), lactose 

percentage (Lac%), somatic cell score (SCS), and milk urea nitrogen (MUN) were available 

on 1,283 cows kept in 54 small low input farms. For Gaussian distributed production traits 

mentioned above, a multi-trait random regression animal model (RRM) was applied with days 

in milk (DIM) as a time-dependent covariate. In general, daily heritabilities of production 

traits followed the pattern as found for high input production systems. Female fertility traits 

including number of inseminations (NI), stillbirth (SB), calving ease (CE), calving to first 

service (CTFS), days open (DO), and gestation length (GL) were analyzed with parity as a 

time covariate. Threshold methodology was applied for the first three traits. In most of case, 

heritabilities of reproduction traits were lower than 0.1. A threshold-linear sire model was 

applied to estimate daily correlations between MY, Fat%, Pro%, SCS, MUN and the binary 

distributed fertility trait conception rate (CR). Pronounced antagonistic relationships between 

MY and CR were in the range of -0.40 to -0.80 from DIM 20 to DIM 200. Estimated genetic 

parameters for reproduction traits were partly different from those estimated in high input 

production systems. 

 

Phenotypic records for mastitis, metritis, retained placenta, ovarian cysts and acetonemia were 

available from the same cows as for production and reproduction traits, while the number of 

cows changed to 1,247. The five health traits were defined as binary data, categorical data and 

longitudinal binary data respectively. Binary data recorded between days in milk -1 and 120 

were analyzed by linear models as well as threshold models with probit link function. 

Categorical data counted the total number of diseases during the same period and the data 
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were analyzed by linear models and Poisson mixed models respectively. The longitudinal 

binary data were analyzed by linear and threshold repeatability models and RRM respectively. 

Apart from moderate heritabilities for mastitis (0.32) and retained placenta (0.39), 

heritabilities were generally low for binary and categorical traits. Repeatabilities and 

heritabilities of longitudinal traits estimated from repeatability models were also low. The 

highest daily heritabilities for all health traits were found at the beginning of lactation and at 

the end of the defined interval. Generally, threshold models were favored by a low Bayesian 

information criterion except threshold RRM. 

 

A stochastic simulation study was carried out with a focus on an application of genomic 

selection in dairy cattle breeding programs, to compare true breeding values (TBV) from a 

variety of selection schemes. Heritability of trait of interest was low (0.1) or moderate (0.3) 

and genomic estimated breeding value (GEBV) was imitated by the defined accuracy, which 

was between 0.5 and 0.9. Three breeding strategies were simulated in total, including 

selection of bull calves based on pedigree index, genotyped parents and genotyped bull calves 

themselves. A variety of scenarios were assumed within last two breeding strategies, 

indicating different pre-selection criteria for each strategy. Schemes of genotyping parents of 

the future bulls were similar with the classical young bull program, but TBV from these 

schemes were competitive or superior. The highest average TBV was found to be in scenarios 

of genotyping young male candidates. Only if the pre-fined accuracy of GEBV was greater 

than 0.5, TBV of the idealistic scenario, genotyping all male calves, was competitive with 

scenarios of genotyping pre-selected male calves based on estimated breeding values (EBV) 

of bull dams or the average GEBV of bull parents. Hence, genotyping young male candidates 

should be most suitable strategy for breeding organizations.  

 

In the forth part of this thesis, another stochastic simulation was applied to compare TBV and 

inbreeding coefficients of organic breeding program designs. Basically, three breeding 

strategies were simulated: i) selection of sires from conventional population with 

consideration of genotype by environment (G x E) interactions, ii) selection of genotyped 

sires from the low input population for AI, iii) selection of genotyped nature service sires 

(NSS) in each of the organic herd. Heritabilities of the simulated traits were 0.05 and 0.3 

respectively. The G x E interactions were realized by considering genetic correlations 

between traits of interest recorded in different environments (rg = 0.5 to 1). GEBV were 

generated with accuracy (rmg) between 0.5 and 1. The average TBV of the 5 best genotyped 
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AI sires from organic environment was always higher than selection of sires from 

conventional population on EBV. If the selection criterion was GEBV in both environments, 

rg ≤ 0.80 is the general threshold favouring selection in the organic population. Genotyped 

NSS were competitive with selection of sires based on EBV in conventional population, only 

if the significant G x E interactions (rg = 0.5) was exited between two environments and 

accuracy of genotyped NNS was high (rmg ≥ 0.9). Inbreeding of selected sire and their 

progeny could be reduced when using genomic breeding program.   
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Preface  

 

The amount of animal products, i.e. milk and meat production, increased continuously in the 

past four decades. 305-d lactation milk yield was doubled from the middle of last century to 

2008 for the Holstein, Ayrshire and UK Jersey cattle (CDI, 2011). However, because of the 

negative genetic relationship between production traits and functional traits, high intensive 

selection of milk production traits in the recent decades has resulted in a decline in female 

fertility and in dairy cattle's health status. Consequently, animal products with better quality 

and animals with higher welfare will probably meet the demands of customers in future. Low 

input or organic farming is a production system that strongly focuses on animal health and 

healthy products and in the meantime maintains a high level of animal welfare. Therefore, 

breeding goals and breeding strategies might be different compared to conventional dairy 

cattle breeding schemes. The pre-requisite for implementing an own organic breeding 

program and for evaluating different breeding program designs is the availability of genetic 

parameters for all traits of interest. Apart from definition of a breeding goal, breeding 

program design for organic farming also plays an important role and some particularities 

should be considered in the design, e.g. the importance of natural service sires. Another 

important part when defining breeding strategies is to control inbreeding and genetic 

relationships, because organic populations generally are characterized by a small population 

size.  

 

Low input or organic farming 

 

Due to a considerable number of crises of animal products from the 1980s, e.g. Salmonella, 

Escherichia coli, tuberculosis, swine fever, and foot and mouth disease (Kirk and Soffe, 

2002), the concept of organic farming has become more and more popular. The increasing 

organic production is mainly based on consumers' demands, because consumers believe that 

animal products produced from organic production systems are more healthy. The demand for 

organic products increased dramatically after 1990, however the stability of the market has 

not been reached yet. The European Union statistics shown that the growth of organic farming 

has been consistently around 25% per year in the decade from 1990 to 2000 (Rosati and 

Aumaitre, 2004). A relatively fast increase of organic industry can be observed in the United 

States as well. For example, the organic industry grew to over $28.6 billion and the growth 

rate of the industry was nearly eight percent in 2010 (U.S. Organic Industry Overview. 2011).   
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The basic rules of organic animal farming have been standardized in the guidelines of the 

Council Regulation (EC, 1999) and of the International Federation of Organic Agriculture 

Movements (IFOAM, 2000). Different from conventional production systems, organic 

farming has a high priority in maintaining genetic diversity of agricultural system and its 

surroundings. Animals should perform all kinds of their innate behavior in this production 

system. For example ruminants should be kept outside with access to pasture, and 

reproduction technologies are forbidden except artificial insemination. "Genetic 

modifications" of animals and their products are prohibited as well (von Borell and Sørensen, 

2004). Additionally, local breeds with high disease resistance are prior to all the other breeds 

for feeding in organic farming. Antibiotic treatments and chemical applications are strictly 

restricted in organic farming systems.  

 

In contrast to organic farming, low-input farming systems do not have any official definition. 

In the explanation by Parr et al. (1990), the low input farming systems are those who “seek to 

optimize the management and use of internal production inputs (i.e. on-farm resources)... and 

to minimize the use of production inputs (i.e. off-farm resources), such as purchased 

fertilizers and pesticides, wherever and whenever feasible and practicable, to lower 

production costs, to avoid pollution of surface and groundwater, to reduce pesticide residues 

in food, to reduce a farmer's overall risk, and to increase both short- and long-term farm 

profitability.” However, based on the report by Elbersen and Andersen (2007), specifications 

for the three types of "alternative farming" a) the low input system, b) the organic systems, 

and c) the high nature value system overlap (Figure 1). In this thesis, low input farming 

represents the organic farming to some extent. 

 

Figure 1. Impression for the overlapping elements between the low input system, the organic 

system, and the high nature value (HNV) system (Elbersen and Andersen, 2007). 
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Switzerland has about 4 million hectares land area, of which 1.7 million are grass. Among the 

grass land, 1 million hectares area is Alpine pastures and 0.7 million hectares are meadows 

and pastures. Therefore, increasing organic farming should be an economic alternative in 

Switzerland, because it can utilize the relatively remote mountainous area for producing high 

quality food. Figure 2 (Schmid et al., 2007) shows that there are two countries with more than 

10% organic area in the whole cultivated land in Europe, which also demonstrates that 

organic farming is more important in Switzerland and Austria than in other European 

countries. All the raw data in this thesis were recorded on approximately 1200 Brown Swiss 

cows located in the mountainous region in Switzerland. The cows came from 50 farms 

characterized by small herd size. Parameters of the simulated low input population in Chapter 

5 were also defined based on the characteristics of the Brown Swiss dairy cattle population.     

 

 

Figure 2. Area of organically cultivated land in Europe in 2005 (adopted from Schmid et al., 

2007).  
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Organic breeding programs  

 

Generally, fully developed breeding program designs based on artificial insemination are 

implemented in the conventional dairy cattle industry. Due to large daughter groups for 

progeny testing, milk and protein yield increased dramatically after a long term of breeding 

starting in the 1960s. However, no systematic breeding program has been built in organic 

dairy population. The first decision one has to make is whether to set up an own organic 

breeding program or using sires from the conventional population. Many questions and 

difficulties should be considered before making this final decision. For eample, based on the 

regulations of organic farms, local breeds are preferred because they are more suitable for the 

local nature environment, however, a lot of the current organic farms converted directly from 

conventional farming by keeping the commercial genetic material and the same breeding 

strategies. Moreover, some farms use crossbreeds rather than just one pure breed, because 

hybrids have higher adaptability as well as production yield.  

 

Embryo transfer is completely forbidden in organic production systems, while AI is allowed 

although it goes against the natural behavior of animals. Some farmers using AI recognized 

that it disobeys the naturalness of mating behavior, but there is no practical alternative 

available (Nauta et al., 2005). Because, on the one hand, keeping bulls in the farms is 

expensive and many farmers do not have enough knowledge on selection and kin-breeding in 

their own farms. On the other hand, completely abandoning AI service means organic farmers 

can not take advantage of a long and successful breeding achievement in conventional 

breeding programs. Even though a distinct breeding program was established in the organic 

production chain, with limited number of cows per farm and incomplete data recorded in 

organic farms, genetic components and estimated breeding values (EBV) could not reach the 

accuracy compared to the conventional dairy breeding programs. Therefore, it might be 

necessary to apply other selection criteria or new breeding technologies (such as genomic 

selection) in organic production systems. 

 

Basically, there are three possible breeding scenarios for organic farmers. The first scheme is 

to use AI bulls from current world-wide breeding schemes as service sires in organic farms. 

Nevertheless, the re-ranking of sires might be caused by different breeding goals and the 

genotype by environment interactions (G x E) between conventional and organic populations, 

which means that sires selected based on data recorded in conventional population may not 
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meet the requirements in organic farms. Secondly, several AI bulls can be selected directly 

within the organic production systems on the base of organically data. Severely speaking, AI 

is also infringed by the spirit of naturalness advocated in organic farming. Therefore, an 

alternative can be selection of several natural service (NS) sires based on kin-breeding within 

each herd or a certain region, and to use these sires evenly to avoid mating of close relatives 

(Baars, 2002). Nauta et al. (2005) reported that the impact of NS sires in the organic cow 

population in The Netherlands is relatively low and should be extended. The authors focused 

on the necessity to formulate an own breeding goal and to implement specific breeding 

program designs for organic farming.  

 

Breeding goals 

 

The breeding goal is a main foundation for setting up breeding programs, and it is acheieved 

by adding traits related to the overall breeding goal using weighting factors derived by 

applying selection index theory. Certainly, the importance of traits is determined by the value 

of relationship between the traits and the breeding goal (Falconer and Mackay, 1996). Over a 

long period, the breeding goals in conventional dairy farming systems focused on increasing 

outputs of dairy cows, which inferred higher income per cow. However, at the beginning of 

the 21
st
 century, there has been a growing interest in broadening selection indices to include 

functional traits such as reproduction and health (Miglior et al., 2005). However, to improve 

functional traits by breeding is really difficult, because additive genetic variances and 

heritabilities for functional traits are low. For example heritabilities for female fertility traits 

ranged between 0.01 and 0.07, and for longevity from 0.02 to 0.18 (Mark, 2004). Additionally 

as a further problem, some of the functional traits are difficult to measure on farms in the 

whole population. Using a small number of phenotypic data collected from experimental 

stations only result in low accuracies of EBV. In some cases indirect selection is applied to 

improve functional traits, while physiological and genetic relationships between indicator and 

functional targeted traits should exist. For example, somatic cell count is an indicator trait for 

udder health, and in a limited number of studies food intake and body weight are collected to 

improve efficiency of feed utilization. Nevertheless, relatively low heritabilities combined 

with indirect selection for functional traits cause the genetic progresses in functional traits to 

be small and slow.  
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In general, organic farming is defined as an animal and environment friendly production 

system, so it focuses more on the functional traits than conventional production systems. 

From a survey conducted by Nauta et al. (2009) on 151 organic farms in The Netherlands, the 

overall breeding goal focused more on functional traits (43%) than on production (32%) and 

conformation traits (25%) in the overall breeding goal. Within the category of functionality, 

udder health was ranked in the first place, followed by fertility, animal behavior, and calving 

ease. However, there are conflicts within the organic farming systems as well. In order to 

meet the increasing demands for organic products from consumers, some organic farmers also 

expect that their organic cows produce more milk. Other farmers prefer dual purpose breeds 

and increased milk quality, because they switched into "a niche" such as cheese production, 

establishing farm gate shops (i.e. milk and meat products), or natural development and 

conservation (Nauta, 2009). Although health and fertility have a high priority in organic 

farming, the health and fertility status of cows in organic farms (Hovi et al., 2003; Vaarst et 

al., 2003) is almost the same as cows kept in conventional farms (Sandoe et al., 1999). This 

might result from the extreme limitation on the use of pharmaceuticals and chemicals which 

help problematic cows cure health diseases (Nauta, 2009).  

 

Genotype by environment interactions 

 

A major problem when using conventional AI service sires in organic dairy farms is the 

magnitude of G x E interaction between organic and conventional farming systems. The G x 

E interaction is a phenomenon that different genotypes express differently in different 

environment. To prove G x E via analysis of variance, the phenotypic variance is partitioned 

into a genetic component, an environmental component, and a genotype by environment 

interaction. In dairy cattle, genetic connectedness across production systems is better than in 

poultry or in swine because of a wide application of AI. Therefore, in dairy cattle, genetic 

correlation between traits measured in different environments is employed to quantify the 

magnitude of G x E interactions (Falconer and Mackay, 1996). In 1959, Robertson proposed 

that a  genetic correlation  lower than 0.8 indicates G x E interactions and re-ranking of sires 

in different environments. Moreover, significant G x E interactions or low correlations 

between the same trait in organic and conventional farming systems (i.e. milk yield in 

environment A and in environment B) suggest that genetic material coming from 

conventional dairy breeding programs would not perform well in organic farms. 
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It is imperative to investigate G x E interactions between the two farming systems, because a 

lot of organic farmers still use AI bulls of commercial breeds from breeding companies until 

now. Nauta et al. (2006) reported that genetic correlations between organic and conventional 

production for milk, fat and protein yield in the Netherlands were 0.80, 0.88 and 0.71, 

respectively. Therefore, milk as well as protein yield were genetically different traits in the 

two environments. However, the correlations were close to unity for fat percentage, protein 

percentage and somatic cell score (SCS). Nauta et al. (2006) also found that a correlation of 

0.80 for milk production results in a re-ranking of the top 10 breeding bulls. Berry et al. 

(2003a) found a low genetic correlation of 0.63 for milk yield between high and low 

concentrate feeding level groups in Ireland as well. Wallenbeck et al. (2009) reported 

Spearman rank correlations between organic and conventional EBV of values 0.48 and 0.42 

for growth rate and carcass leanness, respectively, for Swedish pigs. 

 

It is predicted that the G x E interaction will increase with increasing differences between 

conventional and organic farming systems. The differences might extend via two aspects. 

First, standards and managements of organic farming will be more severe in the future. For 

example, only concentrates with at least 95% organic ingredients can be used in European 

organic farms since 2005. To reduce the cost for feeding organic dairy, more farmers would 

choose roughage to replace the concentrates (Nauta et al. 2006). It will probably widen the 

gap between the two production systems. Second, number of crossbreeds or local breeds 

adapted to naturalness of organic farms will have a further increase, which will result in a 

decline of genetic correlations of traits expressing in the two environments. 

 

Inbreeding 

 

The coefficient of inbreeding gives the probability that two alleles at any locus in an 

individual are identical by descent (Falconer and Mackay, 1996). Inbreeding is accumulating 

rapidly in most commercial livestock species due to efficient genetic selection programs 

(Weigel, 2001). Farmers from both organic and conventional production systems are 

concerned about inbreeding depression that results from the high inbreeding rate. Inbreeding 

depression is a phenomenon that reduces the mean phenotypic value of traits related to 

reproduction capacity or physiological efficiency (Falconer and Mackay, 1996). However, the 

improvement of functionality including reproduction capacity and physiology efficiency and 

the conservation of genetic diversity are the most important aspects in overall breeding goal in 
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organic farming systems. Therefore, it is necessary to take inbreeding coefficients seriously 

into account in the management of organic production systems.  

 

Inbreeding may increase more rapidly in organic systems than in conventional dairy farming 

for two reasons. Firstly, the traits of interest in organic farming often have low heritabilities. 

Selection of traits with low heritabilities could increase inbreeding rapidly due to higher 

weight on family versus individual information (Strandén et al., 1991). Secondly, NS is 

preferred in organic farms. Selection of NS sires based on families is expected to increase 

inbreeding despite the fact that more than one sire may be kept as NS sire in each of the 

organic farms. In addition, the herd size in organic farms is usually very small in comparison 

with conventional dairy farms, which should also increase the accumulation of inbreeding. In 

organic breeding schemes, it is important to find a satisfactory balance between the degree of 

inbreeding, improvement of desirable traits and mating designs.  

 

With the availability of high-density arrays of SNP markers, inbreeding coefficient can be 

calculated based on pedigree information and genome-wide SNP data (Li et al., 2011; 

VanRaden et al., 2011). It has been found that inbreeding was lower in breeding schemes with 

genomic information (Buch et al., 2012a). The reason is probably that the EBV is predicted 

based on information of relatives, and close relatives may have higher chance of getting the 

same allele coming from the common ancestor. Pedersen et al. (2009) reported that marker-

assisted selection can reduce probabilities of identity by descent as well as pedigree-estimated 

inbreeding. Nevertheless, when selection is based on breeding values predicted from genomic 

data, control of inbreeding should also be done at the genomic level, i.e., taking genomic 

inbreeding into account (Sonesson et al. 2012). However, the aim of selection is to improve 

performance of traits of interest, so frequency of favorite alleles of QTL controlling these 

traits will increase in the long term. 

 

Functional traits and new traits 

 

The term functional traits represent all the traits which increase efficiency by reducing costs 

of input. Traits like health, fertility, calving ease, efficiency of feed utilization, and milkability 

belong to the class of functional traits (Groen et al., 1997). Some functional traits have 

already been included in the selection index in many breeding programs, e.g. fertility and SCS. 

Due to the development of new phenotyping technologies, some new traits such as efficiency 
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of feed utilization and more health traits are also expected to be added into selection indices. 

However, genetic gains for functional traits can hardly be detected in conventional dairy 

farming systems. The most important reasons for that are the negative genetic correlations 

between milk production and functional traits (Berry et al., 2003b; Pimentel et al., 2010), and 

the higher economic weights were put on production traits. Furthermore, low heritabilities of 

some functional traits, which lead to a lower selection accuracy, also contribute no or negative 

genetic gain for the functional traits. 

 

In order to meet naturalness in organic farming systems, higher emphasis is put on functional 

traits rather than milk production traits (Nauta et al., 2009; Rozzi et al., 2007). The effects of 

negative genetic correlations between functional and milk production traits decline because 

generally functional traits have higher economic weight in organic farms. However, although 

some special sires have an ‘ecological index’ (cited from Nauta et al., 2005), almost all AI 

bulls used in organic farms are chosen with no or only little concern on functional traits. Due 

to the small size of organic herds, EBVs of organic bulls usually have low accuracy. 

Moreover, real occurrence of diseases in organic farms may be higher than the recorded 

treatments because of limited usage of medicine. This will probably introduce some bias on 

the accuracy of selection and EBV. Actually, systematic breeding strategies for organic 

farming are not established because no clear breeding goal has been agreed upon and the 

number of prerequisite parameters is limited.      

 

Introduction of genomic selection into organic farming might solve the problem of the low 

accuracy for functional traits caused by low heritability. Buch et al. (2012a) reported that 

breeding schemes with genomic selection resulted in higher annual genetic gain in functional 

traits than breeding schemes without genomic selection. Buch et al. (2012b) also showed that 

the accuracy of direct genomic values was higher for a reference population of cows with 

phenotypic records than for a reference population of proven bulls with daughter yield 

deviations if a functional trait with small-scale recording was examined. Therefore, 

introduction of genomic selection into organic farming systems may be a beneficial approach. 

 

Objectives of the thesis 

 

This thesis aims to estimate genetic parameters of traits of interest using data recorded in low 

input Brown Swiss farms in mountainous region in Switzerland and meanwhile to compare 
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differences of genetic gain and inbreeding coefficient between applying own organic breeding 

programs and using AI bulls from conventional breeding schemes.  

 

In chapter 2, heritabilities of production traits and genetic correlations between milk yield and 

other production traits were estimated with a multivariate animal random regression model 

using days in milk as a time-dependent covariate. Eight reproduction traits were also analyzed: 

age at first parity, interval from calving to first service, days open, gestation length, calving 

interval, calving ease, number of inseminations and stillbirth. Reproduction traits were 

analyzed with linear or threshold sire random regression models using parity as a time 

covariate. In addition, genetic correlations between conception rate and production traits were 

estimated in the first two thirds of the lactation. 

 

Chapter 3 gives an insight into the genetic background underlying five health traits: mastitis, 

metritis, retained placenta, ovarian cysts and acetonemia. Animal/sire, repeatability and 

random regression models were used to estimate genetic parameters. Heritabilities of the 

health traits varied from different models and traits, but they were lower than 0.1 in most 

cases.  

 

Chapters 4 and 5 compare a variety of breeding scenarios with the consideration of genomic 

selection. The evaluation criteria employed in the two simulation studies performed in these 

chapters were the average of true breeding values and inbreeding coefficients of selected sires. 

Chapter 4 focuses on modifying and re-building breeding programs to use accurate 

information from genomic selection efficiently in conventional dairy populations. Chapter 5 

investigates possibilities of applying own organic dairy cattle schemes. 

 

A general discussion of the thesis is presented in Chapter 6. Implications of breeding schemes 

in organic farming systems are discussed based on genetic parameters of routinely recorded 

traits estimated in Chapters 2 and 3 and genetic gain in conventional and organic dairy 

populations simulated in Chapters 4 and 5. 
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ABSTRACT 

 

Organic and low input farming differ substantially from conventional farming, suggesting the 

need for separate breeding programs. This requires knowledge of (co)variance components of 

important traits in low input or organic production systems. Test-day data for production and 

data for reproduction traits from 1,283 Brown Swiss cows kept in 54 small, low input farms 

across Switzerland were available. Production traits milk yield (MY), fat percentage (Fat%), 

protein percentage (Pro%), lactose percentage (Lac%), somatic cell score (SCS), and milk 

urea nitrogen (MUN), were analyzed with a multi-trait random regression animal model with 

days in milk (DIM) as a time covariate. Female fertility traits number of inseminations (NI), 

stillbirth (SB), calving ease (CE), calving to first service (CTFS), days open (DO), and 

gestation length (GL) were analyzed with parity as a time covariate, with threshold 

methodology was applied for the first three traits. A threshold-linear sire model was applied to 

estimate daily correlations between MY, Fat%, Pro%, SCS, MUN and the binary distributed 

fertility trait conception rate (CR). In general, daily heritabilities for production traits 

followed the pattern as found for high input production systems. Expected genetic 

antagonisms were found between MY and Pro%, and between MY and Fat% for all DIM. An 

antagonistic relationship between MY and SCS was only found directly after calving in parity 

1. In parities 2 to 7, heritabilities for an interval trait describing the cows’ ability to recover 

after calving, e.g. CTFS, were lower than estimates for traits associated with a successful 

insemination, e.g. NI and DO.  Pronounced antagonistic relationships between MY and CR 

were in the range of -0.40 to -0.80 from DIM 20 to DIM 200. In this study, we showed the 

variety and flexibility of random regression methodology which can be applied to data from 

small herds, and for a limited number of repeated measurements of a categorical trait per cow. 

Estimated genetic parameters for reproduction traits were partly different from those 

estimated in high input production systems. In particular, these differences underline the 

necessity to implement an own organic breeding program using estimates from the current 

study which are based on data obtained only from cows in organic or low input herds. 

 

Key words: Organic and low input farms, random regression models, genetic parameters 

 

INTRODUCTION 
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Traditionally, conventional dairy cattle farming have focused on improving productivity of 

cows while functional traits were neglected. Based on arguments from the genetic point of 

view, e.g. antagonistic relationships between productivity and functionality (e.g. Pimentel et 

al., 2010), and based on results from studies that derived economic weights (e.g. Schierenbeck 

et al., 2009), functional traits have been included gradually and increasingly in total net merit 

indices (Miglior et al., 2005). Unidirectional selection on productivity in the past decades 

resulted in a negative energy balance with detrimental impact on fertility and health (Rauw et 

al., 1998). Conventional farmers can compensate such energy deficiencies in early lactation 

by feeding concentrates or specific energy components (e.g. glycerin), but organic farmers 

have to follow strict rules and limitations that may not permit the use of such supplements. 

Furthermore, an increased amount of consumers are concerned about product quality, animal 

welfare and environmental impact. Traditionally, functional traits play an important role in 

organic or low input dairy cattle farming (Rozzi et al., 2007). The concept of organic farming 

focuses on the sustainability of agro-ecological systems. There are strict limitations on the use 

of pharmaceuticals and chemicals in organic farming, and diversity, animal welfare and the 

ability to adapt to the local environment are highly appreciated (Boelling et al., 2003). 

 

With the increased demand for organic dairy products, the number of organic farms is rapidly 

growing in some European countries (Haskell et al., 2009; Nauta et al., 2006). Also, in the 

United States, organic sales have been steadily increasing and reached an economic value of 

$24.6 billion in 2008 (Organic Trade Association’s, 2009). During the process of conversion 

from conventional to organic farming, management practices (e.g. husbandry and feeding) are 

changed while mostly maintaining the general breeding strategies. In particular, this means 

that sires from conventional progeny testing schemes are used breeding objectives in organic 

production systems. However, because of substantial differences in production systems, and 

including further restrictions on feeding, husbandry and management in organic and low input 

environments (Roesch et al., 2005), genotype by environment interactions between 

conventional and organic production systems may exist (Nauta et al., 2006). This 

phenomenon may result in re-ranking of bulls in organic environments having been progeny 

tested in conventional herds. Re-ranking of bulls suggests the implementation of an own 

genetic evaluation for the organic and low input population, and furthermore, the initialization 

of an own organic breeding program.  
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Mulder et al. (2006) identified the genetic correlation between two production systems as a 

crucial parameter for the need of two different or of one common breeding program. The 

threshold value of the genetic correlation in their simulation study was rg = 0.61. Yin et al. 

(2011) evaluated the potential of independent organic breeding programs in the era of 

genomic selection. Again, crucial factors were genetic correlations of the same traits recorded 

in conventional and organic production systems, and accuracies of genomic breeding values 

for natural service sires. According to Schmidtko (2007), further arguments for implementing 

own organic breeding programs address general aspects of breeding program designs, 

especially the utilization of reproduction biotechnologies such as artificial insemination, 

embryo transfer, and sexed semen. Substantial differences in feeding, breeding, and 

husbandry strategies may cause substantial differences in phenotypic performances. 

Comprehensive comparative studies pointing at differences for a broad variety of traits was 

done by Sundberg et al. (2009) and by Reksen et al. (1999).  

 

 Traits in organic breeding goals comprise all conventional traits, but place a higher emphasis 

on functionality (Schmidkto, 2007). Furthermore, organic farmers in Switzerland request that 

new health traits should be included in overall breeding goals. A variety of such traits 

currently recorded in organic farms within the framework of the 'low input breed' project is 

mostly in line with a list of new functional traits as described by Mark (2004). An essential 

prerequisite for the implementation of genetic evaluations in organic breeding programs for 

both categories of traits, i.e. the 'conventional' and the 'new functional' traits, are estimates of 

genetic parameters based on phenotypes from organic herds. Genetic parameters may change 

during an animals' lifetime based on changes in the physiological background. Such changes 

in genetic parameters can be modeled using random regression methodology (Swalve, 2000; 

Schaeffer, 2004).  

 

Consequently, the aim of the present study was the estimation of (co)variance components of 

both production and female reproduction traits for Brown Swiss cows kept in organic and low 

input farms in different regions in Switzerland. Different statistical models with a focus on 

random regression methodology combined with threshold methodology for different types of 

longitudinal data were applied to this particular dataset comprising organic or low input farms 

with small herd sizes.  

 

MATERIRALS AND METHODS 
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Data 

 

The original production trait dataset comprised 36,877 test-day records from 1,283 Brown 

Swiss cows kept in 54 (organic and low input) farms from different regions of Switzerland. 

Both organic and low input farming strategies are characterized by limitations on the use of 

feeding concentrates, using antibiotics and hormones, and putting strong emphasis on animal 

welfare in alternative production systems. In contrast to low input farming, 'organic' is an 

official farming status which implies that organic farms have to follow official guidelines 

mainly related to restrictions in feeding and dairy cattle husbandry, whereas 'low input' is less 

stringent and on a voluntary base. Average herd size was extremely small, i.e. only 24 cows 

per herd with in average 9.79 observations per herd-test-date. Average number of records per 

cow per lactation was 8.10, 8.41, and 8.07 and number of cows per lactation was 1,283, 920, 

and 694 for parity 1, 2, and 3, respectively. Restrictions for data editing were adopted from 

the official genetic evaluation for Brown Swiss cattle in Switzerland as summarized in Table 

1. Descriptive statistics for all test-day production traits (MY = milk yield, Fat% = fat 

percentage, Pro% = protein percentage, Lac% = lactose percentage, SCS = somatic cell score, 

MUN = milk urea nitrogen measured in mg/dl) by parity after editing are given in Table 2.  

 

Test-day production data from calving years 1996 to 2010 have been merged with female 

fertility traits data. Data editing for female reproduction traits (AFC = age at first calving, 

CTFS = calving to first service, DO = days open, GL = gestation length, CI = calving interval, 

NI = no. of insemination, CE = calving ease, SB = still birth, and CR = conception rate) were 

also based on restrictions that are used for official genetic evaluations (Table 1). The 

minimum CI in our data was 296 days, and 240 days as defined as official minimal criterion 

did not apply. In addition to those limits, gestation length was required to range between 240 

d to 300 d (Jamrozik et al., 2005). Descriptive statistics for female reproduction traits are 

shown in Table 3. Number of records in higher parities were relatively small, e.g. for CTFS, 

no. of records were 1,273, 1,008, 749, 520, 399, 269, 164, and 104 for parities 1 to 8, 

respectively. For both trait complexes, production and female fertility, pedigrees were used 

from the official genetic evaluation which traced back four generations. 
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Table 1. Restrictions as used for data editing 

Criterion Minimum Maximum 

Days-in-milk 5 365 

Milk yield (in kg) 1.5 90.0 

Fat % 1.50 9.00 

Protein % 1.00 7.00 

Somatic Cell Count (in thousand) 1 9999 

Calving Interval (in d) 240 Open
1 

Calving Age for n-th lactation (in month) 17+11*(n-1) 50+18*(n-1) 

Calving Date for 1
st
 lactation 01.01.1989 Open

1 

Calving Date for 2
nd

 lactation (missing 1
st
.lactation) 01.01.1994 Open

1 

Calving Date for 3
rd

 lactation (missing 2
nd

.lactation) 01.01.1995 Open
1 

1
 No restriction for maximal value  

 

Statistical Models 

 

Model 1: Time dependent covariate (DIM) for production traits  

 

For production test-day records (MY, Fat%, Pro%, Lac%, SCS, MUN), a multiple-trait 

random regression model (RRM) was used simultaneously for parities 1, 2, and 3. Following 

the method of Bohmanova et al. (2008),  test-day data were from 5 to 365 days in milk (= 

time dependent covariate DIM). In matrix notation, model 1 can be described as: 

y = Xb + Z1u + Z2p + Z3h + e, [1] 

where y = vector of observations for test-day records; b = vectors of fixed effects of herd-year, 

and regressions on DIM using third-order Legendre polynomials for all traits; u an p = vectors 

of additive genetic, and permanent environmental effects, respectively, for random regression 

coefficients of order three using Legendre polynomials; h = vector of random herd-test-date 

effects, and e = vector of random residual effects (residuals were equal for all DIM but not for 

parities); and X, Z1, Z2, and Z3 = incidence matrices for b, u, p, and h, respectively. The 

variance-covariance structure of the random effects was assumed as  
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where G and P = (co)variance matrices of random regression coefficients for the genetic and 

permanent environmental effects, respectively; A = additive genetic relationship matrix; Ip = 

identity matrix for p cows; H = matrix for herd effects, Ih = identity matrix for h herds; In = 

identity matrix for n observations, R = (co)variance matrix for residual effects of dimension 

3x3 with random residual variances for parity 1, 2, and 3, and  = direct matrix product.  

 

Following Tsuruta et al. (2009), independent proper priors based on a uniform distribution 

and no degrees of freedom were assigned to elements in vector b. For elements in vectors h, u, 

and p, multivariate normal prior distributions were assumed. Independent scaled inverse 

Wishart distributions were used as priors for the (co)variance matrices for H, U, P, and R. 

 

Model 2: Time dependent covariate (parity) for female reproduction traits  

 

Model 2 was similar to the multiple animal RRM for production traits, and applied for the 

female reproduction traits dataset (CTFS, DO, GL, CI, NI, CE and SB). However, without 

repeated measurements within lactation, parity was used instead of DIM as a time dependent 

covariate. In this RRM, vector b included fixed effects of the herd, calving age, calving year, 

and calving season (1 = December-February, 2 = March-May, 3= June-August, and 4 = 

September-November). Additionally, the effect of the service sire (for DO and CI), and 

accordingly of the sire of the calf (for CE, and SB), was included as a further random effect in 

the statistical model. Hence, for these traits, the (co)variance structure of the random effects 

was extended as follows: 
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where S is a sire (co)variance matrix of service sire (for CE) or sire of the calf (for SB), and Is 

is the belonging identity matrix. For categorical traits with only one (SB: 1 = stillbirth, 0 = 

calf alive), or several thresholds (CE: 1 = no assistance, 2 = some assistance, 3 = mechanical 

assistance, and 4 = caesarean section), threshold methodology was applied. 

 

Model 3: Time dependent covariate DIM for one female reproduction trait  
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Because in general, and also cows in this study have a limited number of observations for CR 

(0 = cow was not pregnant after insemination, 1 = cow was pregnant after insemination) in 

one particular time interval in first parity. The average no. of inseminations per cow in the 

time interval was 3.07±1.56. The RRM can extract genetic parameters for each day through 

the connections created by sires. Hence, a series of bivariate two-trait threshold-linear random 

regression sire models were applied to estimate (co)variance components over DIM for one 

categorical fertility trait (CR) and for the five Gaussian test-day production traits ( MY, Fat%, 

Pro%, SCS, MUN) in parity 1. The date of the insemination was assigned to the nearest herd-

test-date, and consequently, we selected test-days with a corresponding insemination date for 

statistical analyses. The statistical model 3 in analogy to Tsuruta et al. (2009) was: 
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where l = vectors of unobserved liabilities for service records to a binary outcome (no 

conception or conception); y = vectors of observations for test-day production records; b = 

vector of fixed effects of  herd year, and regressions on DIM using third-order Legendre 

polynomials; s = vector of random effects for the service sire only for CR; u = vector of 

random sire of cow effects using third-order Legendre polynomials for DIM; p = vector of 

random permanent environmental effects for cows using Legendre polynomials of order three 

for DIM; h = vector of random herd-test-date effects, and e = vector of random residual 

effects; and X, W, Z1, and Z2 are incidence matrices for b, s, u and p, respectively. The 

(co)variance structure was as follows: e 
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where S is a 2 × 2 sire (co)variance matrix of service sire for both traits (because of no service 

sire effect for test-day observations, the variance for test-day observations and the covariance 

between test-day observations and CR were set to zero); Is is an identity matrix for the effect 

of the service sire; G is a 8 × 8 additive genetic (co)variance matrix for sire of cow effects for 

CR and one test-day production trait; Au is an additive genetic (co)variance matrix for sires of 

cows; and matrices P, Ip, H, Ih, R, and IR are explained above (see model 1). For this specific 

model 3, residual variances for the binary trait (CR) were set equal to 1. Assignment of prior 
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distributions for fixed and random effects are identical to model 1, and also for the matrix S, 

independent inverse Wishart distributions were used as priors. 

 

For models 1, 2, and 3, Gibbs sampling was used to infer genetic parameters by applying the 

program THRGIBBS1F90 (Misztal et al., 2002). Convergence of the Gibbs sampling chains 

(residuals and (co)variances among random regression coefficients) were monitored by visual 

examination. In total, 100,000 samples were generated for each analysis, and 40,000 of them 

were discarded as in the burn-in process. From the remaining 60,000 samples, every 5th 

sample was used to calculate posterior means and posterior standard deviations. The effective 

sample size for the random effects of HTD, service sire, and residual was larger than 2,000. 

For additive genetic and permanent environmental effects, the effective sample size 

approximated 50.  

 

RESULTS AND DISCUSSION  

 

Descriptive statistics  

 

Generally, descriptive statistics for production traits (Table 2) and female reproduction traits 

(Table 3) from organic and low input data were within the well-known range which is 

relevant for dairy cattle farming in Switzerland (Swiss Brown Cattle Breeders’ Federation, 

2011). As our study used data from low input farms only, the overall mean of MUN (25.11 

mg/dl) was relatively high. Most of the previous studies reported values of MUN ranging 

between 12 to 15 mg/dl. For example, Wood et al. (2003) found a mean value of 12.61 mg/dl 

of  for the first three lactations. Mitchell et al. (2005) reported that the average value for 

infrared MUN and for wet chemistry MUN were 12.92 mg/dl and 14.30 mg/dl, respectively. 

Two studies conducted in conventional dairy cattle farms reported levels of MUN in the range 

from 20 to 23 mg/dl (Butler et al., 1996; Stoop et al., 2007). König et al. (2008) found an 

average MUN value of 26.71 mg/dl in conventional farms in a pasture based production 

system in the maritime region of Lower Saxony, and they reported antagonistic relationships 

between MUN and female fertility traits. The comparably high value for MUN also for cows 

in organic and low input farms in Switzerland reflects that diets are high in degradable protein 

and deficient in fermentable carbohydrates. Amaral-Philllips (2005) gave two reasons for high 

levels of MUN, especially being relevant for low input farming: First, diets may contain a 

very high percentage of alfalfa haylage, or secondly, cows are fed on lush vegetative pasture.  
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Table 2. Descriptive statistics for test-day production traits by parity 

Parity Trait #records Mean SD Min Max 

1 Milk yield (in kg) 10,338 19.04 4.57 2.0 35.5 

 Fat% 10,303 4.04 0.56 1.50 9.65 

 Protein% 10,306 3.40 0.33 2.48 5.82 

 Lactose% 10,306 4.94 0.17 2.13 5.52 

 Somatic cell score 10,304 1.98 1.43 -3.64 9.64 

 Milk urea nitrogen (in mg/dl) 10,302 25.70 8.40 5 90 

2 Milk yield (in kg) 7,736 21.87 6.02 2.7 47.0 

 Fat% 7,716 4.07 0.60 1.84 9.61 

 Protein% 7,719 3.48 0.36 2.48 5.68 

 Lactose% 7,719 4.85 0.18 2.21 5.55 

 Somatic cell score 7,719 2.45 1.45 -3.64 9.01 

 Milk urea nitrogen (in mg/dl) 7,719 25.03 8.74 5 67 

3  Milk yield (in kg) 5,604 23.61 6.62 4.2 50.4 

 Fat% 5,589 4.06 0.64 1.61 8.44 

 Protein% 5,589 3.45 0.36 2.23 4.98 

 Lactose% 5,589 4.81 0.19 3.38 5.42 

 Somatic cell score 5,589 2.78 1.48 -2.06 9.64 

 Milk urea nitrogen (in mg/dl) 5,588 24.59 8.58 5 68 

  

Values for SCS from cows in organic and low input farms of the present study were 

marginally lower compared to those values from cows kept in conventional dairy cattle farms 

in Switzerland. Neuenschwander et al. (2005) reported a mean SCS of 2.13, 2.49 and 2.81 for 

the first three lactations. In the present study, the average SCS in the low input population for 

parities 1, 2, and 3 was 1.98, 2.45 and 2.78, respectively. Nauta et al. (2006) compared SCS of 

Holstein cows in first parity in four environmental groups in The Netherlands, i.e. an organic, 

a pre-organic, a converting-to-organic, and a conventional group. In their study, SCS was 

highest in the organic group. Also Rozzi et al. (2007) reported relatively high values for SCS 

of cows kept in organic farms in Canada, maybe due to restrictions regarding the use of 

antibiotics. In The Netherlands (Nauta, 2001), Great Britain (Pryce et al., 2001) and Canada 

(Rozzi, 2007), large differences between organic and conventional dairy cattle farming exists. 

In contrast, in Switzerland and in Denmark (Kristensen and Pedersen, 2001), herd 

characteristics such as herd size and feeding strategies of organic farms are almost identical to 
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conventional dairy cattle farms in the same country. This could be a further explanation for 

the comparatively high status in udder health for dairy cows in organic farms in Switzerland.  

 

Table 3. Descriptive statistics for female reproduction traits   

Trait #records Mean SD Min Max 

Age at first calving (in d)
1 

1388 939.49 100.68 700 1351 

Calving to first service (in d) 4486 69.95 28.30 6 320 

Days open (in d) 4486 98.58 59.71 12 500 

Gestation length (in d) 3466 290.30 5.93 242 300 

Calving interval (in d) 3496 388.62 58.55 296 791 

No. of insemination 4484 1.68 1.09 1 11 

Calving ease (scale 1-4) 4443 1.31 0.54 1 4 

Still-birth (0 or 1) 4828 0.05 0.22 0 1 

 
1
 only first parity 

 

Heritabilities and variances for production traits by DIM  

 

In most cases, heritabilities in parities 1, 2, and 3 were lowest at the beginning of lactation 

(Fig. 1). This is not a particularity for organic farms, and in line with several studies based on 

‘conventional data’ (e.g. Odegard et al., 2003; Strabel and Jamrozik, 2006; Strabel et al., 

2005). Strabel et al. (2005) based their studies on a large dataset of test-day records, and they 

showed different pattern of curves for daily heritabilities when changing statistical modelling. 

Hence, they clearly indicate the impact of the statistical model on estimates of genetic 

parameters irrespective of the size of the dataset. 

 

In our study, with regard to the middle and to the end of lactation in all parities, heritability 

was highest for MY and Pro% with the highest value of 0.55 that was found at the end of 

lactation 2 and in the middle of lactation 3. Heritabilities for MY higher than h
2
 = 0.50 are in 

the upper range of values reported in the literature. Nauta et al. (2006) stratified their data into 

four groups of herds: conventional, pre-organic, converting, and organic. Heritability for MY 

(h
2
 = 0.70) was highest in the organic group. Same trends, i.e. an increase of heritabilities 

going along with a decrease of intensity of the production system from conventional towards 

organic was observed for fat yield and protein yield. Nauta et al. (2006) considered the 

findings of higher heritabilities in organic data 'surprising', an assumption maybe based on the 

theory of pronounced genetic differentiation of production traits in better environments as 
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explained by Schierenbeck et al. (2011). König et al. (2005) reviewed the literature for 

estimates of genetic parameters with a focus on low input production systems, especially low 

input grazing production systems in New Zealand, Australia, and Ireland: Relatively low 

values of genetic parameters from international comparisons were in line with estimates from 

own studies conducted in a pasture-based production system in the north-western part of 

Germany. Hence, additional factors may exist which are typical for organic farming systems 

in The Netherlands and in Switzerland, and which are different from so-called low input 

pasture based systems.  

 

In the present study, apart from 2nd parity, heritability of MY increased from the beginning to 

the middle of lactation, and substantially decreased at the end of lactation. However, MY in 

parity 2 revealed the highest heritability at the very end of this lactation, and the lowest 

heritability was found at DIM 275. A continuous upward trend could be observed for the 

heritability of Pro% and Fat% in parity 1 and 2 throughout lactation. Heritabilities for Fat% at 

the beginning of lactation were generally lower as expected. A reason might be the possibility 

to mobilize body fat reserves at the beginning of lactation to overcome restrictions in feeding 

concentrates. Heritabilities for Lac% increased in parity 1 and 2 by DIM, but this trend was 

opposite in parity 3. Literature focussing on the estimation of genetic parameters for lactose is 

rare, but values as found in our study in parity 1 are in line with estimates based on data from 

conventional herds in Canada (Miglior et al., 2007). Among all production traits, heritabilities 

were lowest for MUN, with a value close to 0.13 from the beginning to the end of lactation. 

These estimates at the beginning of lactation correspond to results by König et al. (2008), who 

focussed on single test-day observations from the onset of lactation. For MUN, the effect of 

the HTD explained 68.89%, 72.83%, and 71.20% of the total variance in parities 1, 2, and 3, 

respectively, which was substantially higher compared to other traits. For completeness, 

posterior estimates for variance ratios (in %) of the herd-test-day effect and the residual effect 

expressed in relation to the phenotypic variance in parity 1, 2, and 3 are given in Table 4.  
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Table 4. Posterior estimates for variance ratios (in %) of the herd-test-day effect (HTD) and 

the residual effect expressed in relation to the phenotypic variance in parity 1, 2, and 3 (MY = 

milk yield, Fat% = fat percentage, Pro% = protein percentage, Lac% = lactose percentage, 

SCS = somatic cell score, MUN= milk urea nitrogen). SD are given in brackets.  

 Parity 1  Parity 2 Parity 3 

Trait HTD  Residual HTD Residual HTD  Residual 

MY 15.05 (1.63) 32.20 (3.49) 14.23 (2.11) 29.34 (4.36) 13.57 (2.20) 37.43 (6.08) 

Fat% 17.89 (1.49) 52.50 (4.36) 21.72 (2.44) 52.33 (5.89) 19.29 (1.37) 59.78 (4.24) 

Pro% 22.23 (4.16) 28.79 (5.38) 22.60 (4.26) 27.50 (5.18) 17.42 (3.40) 28.49 (5.56) 

Lac% 11.27 (1.57) 40.09 (5.60) 12.04 (3.24) 33.22 (8.94) 6.81 (1.62) 33.14 (7.89) 

SCS 4.27 (0.28) 43.72 (2.82) 7.75 (1.02) 40.55 (5.33) 3.22 (0.50) 47.13 (7.30) 

MUN 68.89 (2.31) 19.92 (0.67) 72.83 (2.51) 16.41 (0.57) 71.20 (2.14) 17.87 (0.54) 

 

Heritabilities for SCS revealed remarkable changes by DIM and parity. For example in parity 

1, the highest heritability with a value of 0.31 was found at the end of lactation. In contrast in 

parity 3, heritability for SCS was highest at the beginning (h
2
 = 0.31) and at DIM 270 (h

2
 = 

0.27), but substantially dropped to a low value of h
2
 = 0.01 at DIM 365. Relatively high 

heritabilities for SCS of value 0.29 were also used by Biscarini et al. (2011) when deriving 

genomic breeding values for the conventional Brown Swiss population in Switzerland. 

Heritabilities for SCS in organic and conventional farms in The Netherlands were identical for 

the two production systems, with a value of 0.10 (Nauta et al., 2006).  

 

In our data from organic herds, we observed some remarkable differences within same traits 

across and within lactations. Minor changes in pattern of curves are expected when increasing 

complexity of statistical modelling, e.g. allowing heterogeneous residual variances within and 

across lactations. 

 



 

                                                                                                                

Figure 1. Posterior estimates of daily heritabilities in parity 1, 2, and 3 for six test-day production traits by DIM (MY = milk yield, Fat% =fat 

percentage, Pro% = protein percentage, Lac% = lactose percentage, SCS = somatic cell score, MUN= milk urea nitrogen). Posterior SD of daily 

heritabilities ranged from 0.022 - 0.087 for MY, 0.008 - 0.053 for Fat%, 0.026 to 0.068 for Pro%, 0.024 to 0.097 for Lac%, 0.008 to 0.081 for SCS, 

and 0.001 to 0.029 for MUN. 
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Genetic correlations among production traits by DIM  

 

Generally, genetic correlations were negative between MY and Fat%, MY and Pro%, and MY 

and SCS, but positive between MY and Lac%, and MY and MUN (Fig. 2). Apart from MUN, 

the pattern of curves or trends of associations were relatively similar when comparing 

estimates from parity 1, 2, and 3. However, the genetic correlation between MY and Fat% 

was slightly negative and positive directly after calving in parity 2 and 3. This finding might 

be explained by physiological mechanisms, i.e. by the mobilization of body fat reserves early 

in lactation (Collard et al., 2000). Daily genetic correlations between MY and Lac% showed 

the opposite trend, i.e. being negative in the first third of lactation from 1 to 50 DIM, but 

increasing to rg = 0.84 at DIM 270 in parity 3. A comprehensive, multi-trait study based on 

random regression model likewise revealed this change in genetic parameters for Lac%, i.e. 

daily heritabilities and daily genetic correlations (Miglior et al., 2007). Hence, based on the 

pronounced genetic background for Lac% (Fig. 1 and Fig. 2), a general possibility is given to 

include Lac% in an official genetic evaluation for the Brown Swiss low input population, and 

furthermore into an overall breeding goal. However, the pre-requisite when including a new 

trait into an overall breeding goal implies economic importance, and the availability of an 

economic weight or value. 

 

Daily genetic correlations between MY and Pro% were consistently negative over DIM 

ranging from rg = -0.14 at DIM 5 in parity 1 to rg = -0.81 at DIM 70 in parity 2. This 

antagonistic relationship between MY and Pro% across DIM and parities and across breeds 

and production systems is well known in dairy cattle breeding. Genetic correlations between 

MY and MUN were mostly positive over DIM in parity 1 and 3, and also in the first half of 

lactation in parity 2. A positive correlation between MY and MUN implies that more energy 

is diverted to milk and less to protein production, resulting in an energy shortage for protein 

production and increased levels of MUN. 

 

Interestingly, a genetic antagonism between MY and SCS was only found in the beginning of 

lactation in parity 1. In parity 2 and 3, genetic correlations between MY and SCS were 

throughout negative, which indicates improved udder health for high yielding cows. However, 

the non-linear relationship between SCS and mastitis should be kept in mind, meaning that a 

higher SCS below the threshold indicating mastitis is not indicating a bad udder health. 

Samore et al. (2008) found positive genetic correlation between MY and SCS only in the 
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beginning of lactation in first parity, but the correlation was negative both at later stages of 

first lactation and throughout subsequent lactations. This is quite comparable to results in our 

study (Fig. 2). Jamrozik et al. (2010) found antagonistic relationships between MY and SCS 

from DIM 25 to DIM 295 in first parity, but in second parity, the antagonism could only be 

observed from DIM 25 to DIM 135. In third parity, the genetic correlation between MY and 

SCS was negative throughout the entire lactation. Hence, no clear agreement for longitudinal 

associations between MY and SCS can be reported. This is mainly due to a variety of factors 

and their interactions influencing SCS. On the phenotypic level, the relationship between MY 

and SCS can be affected by three major factors: the effect of infection, the effect of stress, and 

the effect of dilution (Jamrozik et al., 2010). Additionally, possible feedback situations or 

recursive biological systems between MY and SCS complicate the interpretation of results. 

For animal breeding objectives, first applications of recursive models have been discussed by 

de los Campos et al. (2006a, 2006b). On one pathway, they found an increased risk of an 

infection in the udder with increasing milk yield. The feedback situation is described via a 

second path, such that an infection in terms of increasing somatic cell scores decreases milk 

yield in the ongoing lactation. Such biological systems, in which one phenotype is directly 

involved in the phenotypic expression of other traits, cannot be modeled adequately when 

applying standard linear mixed model theory. Furthermore, the effect of high milk yield is 

bidirectional: On the one hand there is an increasing risk of a mastitis with increasing milk 

yield, but on the other hand there is the effect of dilution for somatic cells (Jamrozik et al., 

2010). 

 



                                                                                                                

Figure 2. Posterior estimates of daily genetic correlations in parity 1, 2, and 3 between test-day milk yield (MY) and other test-day production traits 

by DIM (MY = milk yield, Fat% = fat percentage, Pro% = protein percentage, Lac% = lactose percentage, SCS = somatic cell score, MUN= milk 

urea nitrogen). Posterior SD of daily genetic correlations between MY and other traits ranged from 0.068 to 0.152 for Fat%, 0.037 to 0.177 for 

Pro%, 0.063 to 0.199 for Lac%, 0.044 to 0.193 for SCS, and 0.078 to 0.200 for MUN. 
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Genetic parameters for female reproduction traits by parity  

 

In parities 1 to 4, posterior heritabilities were lower than 0.15 for all female fertility traits (Fig 

3). Due to the limited observations in parity four and later, those estimates should be 

interpreted with caution. Based on this approach using random regression methodology, an 

interval trait describing the cow’s ability for recovering after calving, i.e. CTFS, heritabilities 

in parities 2 to 8 were lower compared to fertility traits that include the component of a 

successful conception after an insemination (NI and DO; Fig. 3). Only in the first parity, 

heritabilities for the ‘interval trait’ CTFS were slightly higher than for the ‘conception traits’ 

NI and DO. Posterior SD of heritabilities were relatively high, but this finding agrees with 

König et al. (2008), who estimated genetic parameters for NR56, NR90, and CTFS  in first 

parity for Holstein cows kept in a pasture-based production system in Germany. Heritability 

was 0.029 for NR56, 0.029 for NR90, and was higher for CTFS with a value of 0.073. This is 

also in line with the estimates of NR and CTFS in a subset of the Brown Swiss population in 

Switzerland, which were 0.04 and 0.08, respectively (Schnyder and Stricker, 2002). The 

fertility trait CI considers both aspects of a successful insemination and of an early start of the 

first cycle after calving. That is the reason why Pasman et al. (2006) suggested CI as an 

overall fertility trait for genetic evaluation. 

 

Heritabilities for GL in parities 4 to 7 ranged between 0.07 and 0.16 and were higher than for 

CTFS, DO, CI or NI (Fig. 3), but lower than reported in the literature. The direct heritability 

estimate for GL in a comprehensive study by Jamrozik et al. (2005) was also highest among 

all analyzed fertility traits, i.e. 0.31 in parity one, and 0.27 in later parities. Also in the studies 

by Cervantes et al. (2010) and by Hansen et al. (2004), heritabilities for GL were higher than 

0.30. As parameter estimates in the present study are based on data from organic farms only, 

they are relatively unbiased and free from disturbing effects of preferential treatment. In a 

survey by König (2004) including a subset of high input farms in Germany, the use of 

hormones was identified as a quite common practice to induce the birth of a calf, especially 

for high index cows in first parity. Santos et al. (2004) analyzed the effect of bovine 

somatotropin application in dairy cattle, which improved conception rates in cyclic cows. The 

impact of preferential treatment on genetic evaluation in general has been discussed for 

production traits (Kuhn et al., 1994). Statistical models cannot account for such unknown 

effects that apply only to a small fraction of cows within a herd. This problem was the main 

reason for implementing tests on station for potential bull dams (König et al., 2007). Such 
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biases may also be relevant for female reproduction, but will be less relevant when analyzing 

data from organic and low input dairy cattle farms due to the general prohibition of hormone 

use in organic farming. Further preferential treatment for female reproduction is possible 

when applying hormones for heat synchronization. This is a common treatment to 

synchronize heifers or cows that are used as recipients for embryo transfer in conventional 

farms. Heat synchronization affects female reproduction traits such as CTFS and AFC. 

Consequently, the estimates from our present study for CTFS and AFC (h
2
 = 0.09) are 

assumed to be unbiased and may reflect the true genetic background. Also Goodling et al. 

(2005) found different heritabilities when analyzing different subsets of data stratified 

according to synchronization or heat detection treatments. 

 

Figure 3. Posterior estimates of heritabilities for female reproduction traits by parity of the 

cow (CTFS = interval from calving to first service, DO = days open, CI = calving interval, GL 

= gestation length, NI = number of insemination, CE = calving ease, SB = stillbirth). Posterior 

SD of heritabilities in different parities ranged between 0.008 to 0.078 for CTFS, 0.006 to 

0.054 for DO, 0.008 to 0.101 for GL, 0.013 to 0.085 for CI, 0.010 to 0.056 for NI, 0.016 to 

0.094 for CE, and 0.039 to 0.130 for SB. 
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Heritabilities for CE were lower than for SB in parity 6, 7 and 8. Estimates for CE are based 

on subjective appraisals recorded by farmers on a scale from 1 to 4. Additionally, as found in 
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several previous studies (e.g. König et al., 2008) the variance of the service sire (not shown) 

for CE was close to zero. An alternative for improving selection on CE is the implementation 

and the utilization of objective measurements such as the birth weight of calves instead of 

using subjective scores. Recording the moderately heritable trait birth weight of calves was a 

wish long time ago for improvements in animal breeding (e.g. Plum et al., 1965), but has been 

hampered due to the difficulties of data collection in the whole population. Within the 

framework of the low input breed project in Switzerland, a variety of functional traits will be 

recorded and analyzed with the objective of improving dairy cattle programs in organic 

production systems via direct selection strategies instead of using indicator traits. In our 

present study, heritabilites for the binary trait SB were higher compared to heritabilities for 

CE (Fig. 3). Stillbirth is an objective measurement, because the calf could be either alive or 

dead within 24 h after birth. In contrast for CE, four subjective scores were assigned to 

describe the variation of this trait resulting in three thresholds when applying threshold 

methodology (model 2). Generally, traits related to calving difficulties (SB and CE) had 

higher heritabilities than remaining fertility traits associated with pregnancy after 

insemination. 

 

Estimates for genetic correlations among fertility traits were in the expected range (not shown) 

previously identified for conventional dairy cattle farming. From the point of animal breeding, 

an important result is the genetic correlation between an interval trait (i.e. CTFS), and a trait 

describing the success of an insemination (i.e. NI). In accordance with König et al. (2008), 

this correlation was close to zero reflecting that breeding on short intervals or on early estrous 

after calving does not necessarily impair non-return rates. 

 

To our knowledge, so far there is a lack of scientific literature focusing on estimates of 

genetic parameters for female reproduction traits based on data from organic cows.  Ahlman 

et al. (2010) defined the binary trait 'fertility determined survival'. Estimates of heritabilities 

ranged between 0.03 and 0.06 for Swedish Red and Swedish Holstein in both organic and 

conventional environment.  

 

Daily relationships between production traits and conception rate 

 

 Genetic correlations between CR and Fat%, CR and Pro%, and CR and SCS were positive, 

but negative between CR and MY, and between CR and MUN (Fig. 4). Correlations with MY 



2
nd

 Chapter                Genetic Parameters for Production and Reproduction traits                 42  

                                                                                                                

were relatively constant from DIM 30 to DIM 210, i.e. indicating a pronounced antagonistic 

relationships with values in the range from rg = -0.80 to rg = -0.40. Posterior SD for genetic 

correlations were relatively high, especially at DIM characterized by a limited no. of 

observations. Posterior SD for genetic correlations between one production trait and CR were 

relatively constant and moderate in the middle and at the end of lactation (e.g. 0.22 when 

correlating Fat% and CR at day 178), but substantially higher up to factor 2 in the early period 

of lactation. 

 

Figure 5. Posterior estimates of  daily genetic correlations between conception rate (CR) and 

milk yield (MY), fat percentage (Fat%), protein percentage (Pro%), somatic cell score (SCS), 

and milk urea nitrogen (MUN) by DIM in parity 1. Posterior SD of daily genetic correlations 

between CR and production traits ranged from 0.162 to 0.314 for MY, 0.226 to 0.322 for 

Fat%, 0.207 to 0.328 for Pro%, 0.252 to 0.312 for SCS, and 0.236 to 0.337 for MUN. 
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Interestingly, results show a clear genetic antagonism between MUN and CR in the period 

from 25 d to 180 d after calving. Genetic correlations ranged from 0 to -0.40. Studies 

addressing the genetic relationship between MUN and female fertility traits are relatively rare. 

Fertility traits investigated were non-return rates and CTFS (e.g. Mitchel et al., 2005; König et 

al., 2008).  König et al. (2008) only analyzed the early period of lactation, and they found that 



2
nd

 Chapter                Genetic Parameters for Production and Reproduction traits                 43  

                                                                                                                

a higher level of MUN was genetically associated with a longer CTFS and slightly lower non-

return rates after 56 d and after 90 d. Based on the low to moderate genetic correlations, these 

authors suggest focusing on direct selection strategies for reproduction traits instead of using 

MUN as an indicator trait. Due to the higher heritabilities for MUN than for CR, and 

moderate to strong genetic correlations between MUN and CR, selection strategies or 

breeding goals including MUN can be an alternative to currently used systems for the 

improvement of female fertility in organic and low input production systems in Switzerland.  

 

CONCLUSIONS 

 

Daily heritabilities for production traits from Brown Swiss cows located in organic production 

systems in Switzerland were similar to estimates as reported in the literature for high input 

production systems. Genetic variation by DIM was also found for Lac%, but only traits 

having an economic value should be included in an overall breeding goal. Expected genetic 

antagonisms were found between MY and Pro%, and also between MY and Fat% for all DIM. 

Genetic relationships between MY and SCS showed some fluctuations in the course of 

lactation. Genetic correlations between MY and MUN were mostly positive over DIM in 

parity 1 and 3, and also in the first half of lactation in parity 2. For female reproduction traits 

and modelling parity as a time covariate, posterior heritabilities were generally lower than 

0.15 in parities 1 to 4. In first lactation, heritabilities were slightly higher for 'interval traits' 

describing luteal activity after calving (e.g. CTFS) than traits associated with success of an 

insemination (e.g. NI and DO). Results obtained from random regression sire threshold 

models including one binary trait (CR) and Gaussian distributed test-day observations clearly 

showed the genetic antagonism between CR and MY, and between CR and MUN over DIM 

in first lactation. Especially MUN was identified as a valuable indicator trait to improve 

female fertility which can be realized by including MUN in an overall breeding goal and 

utilizing correlated selection response. The present study demonstrates the feasibility of 

applying different versions of random regression models to infer genetic parameters for 

organic and low input farms in different regions in Switzerland characterized by small herd 

sizes. One limitation of statistical modeling, i.e. assuming equal residuals in different 

lactations, should be kept in mind. Subsequent analyses will focus on random regression 

methodology for mostly binary distributed new functional health traits, and on the 

development of an overall organic breeding goal in Switzerland.  
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ABSTRACT 

 

Records for mastitis, metritis, retained placenta, ovarian cysts and acetonemia from 1,247 

Brown Swiss cows in first parity kept in 53 organic and low input farms in Switzerland were 

used to infer genetic parameters. Animal and sire models, repeatability models, and random 

regression models (RRM) in combination with generalized linear mixed model were applied 

to analyze the health disorder data. Five health traits were defined as binary data, count data 

between days in milk (DIM) -1 and 120, and longitudinal binary data during test-day. Firstly, 

the five health traits defined as binary data between DIM -1 and 120 were analyzed by linear 

animal and sire models as well as threshold animal and sire models with probit as a link 

function. Secondly, data of total number of diseases cases during the same period were 

analyzed by linear models and Poisson mixed models on animal and sires respectively. 

Thirdly, linear repeatability models, linear RRM, threshold repeatability models and RRM 

with probit link function were used to analyze test-day records for health diseases. Disease 

incidences of the five health disorders occurs in organic farms were lower than corresponding 

incidences in conventional farms. Apart from heritabilities of 0.32 and 0.39 for mastitis and 

retained placenta respectively, heritabilities for binary traits and categorical traits were low. 

Repeatabilities and heritabilities for longitudinal data from repeatability models were 

relatively low as well. Substantial increase between heritability of 0.01 to repeatability of 0.14 

was only found for longitudinal recorded ovarian cysts, suggesting a substantial permanent 

environmental effect. Daily heritabilities for all health traits from linear and threshold RRMs 

were the highest at the beginning of lactation and at the end of the defined interval. Bayesian 

information criterion (BIC) favored threshold animal and sire models, threshold repeatability 

models, but did not favor threshold RRM. Similar BIC values were found between animal 

models and sire models, indicating little difference existed by applying animal and sire 

models on the health data.  

 

Key words: organic and low input farms, health diseases, genetic parameters 

 

INTORDUCTION 

 

Especially in the early period directly after calving up to and including the ‘peak phase’ of 

lactation, dairy cows are particularly susceptible for infections of udder quarters (e.g. Schwarz 

et al., 2011). Furthermore within the first 100 days in milk (DIM), metabolic diseases occur 
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frequently, and fertility disorders related to the puerperium are only relevant in the early stage 

of lactation. An overview of incidences for a variety of health disorders is given by Gernand 

et al. (2012). For all categories of health traits, i.e. fertility, metabolism, claw disorders, and 

mastitis, they found a substantial decrease of disease incidences with increasing DIM. König 

et al. (2005), and König et al. (2008) used a variety of statistical modeling approaches to 

analyze the genetic background of claw disorders, but data always focused on the first third of 

lactation. The above-mentioned studies used data from Holstein cows kept in large-scale 

contract herds located in East Germany, which are characterized by a high production level, 

especially at the first test-days directly after calving. Consequently, energy intake does not 

match energy requirement, and the negative energy balance is associated with an increasing 

risk of occurrence of health disorders in the ongoing lactation (Collard et al., 2000). 

 

Test-day milk yield in the early period of lactation of Brown Swiss cows kept in organic or 

low input dairy cattle farms in Switzerland is substantially lower compared to the production 

level of Holstein cows from East German contract herds (Yin et al., 2012a). Nevertheless, 

also health disorders including fertility and metabolism, play an import role in organic 

production systems in Switzerland, but claw disorders are less relevant (Yin et al., 2012b). 

The economical loss per cow and year or per herd and year due to clinical mastitis in low 

input or high input production systems was calculated in several studies (Schepers and 

Dijkhuizen, 1991). Of economic relevance are also health disorders including female fertility 

and metabolism. Both categories  contribute to the increase of involuntary dairy cow cullings 

(Dubuc et al., 2011; Kesler and Garverick, 1982; Østergaard and Grohn, 1999). Functional 

health traits have a high priority especially in organic dairy cattle farming systems, which 

underlines their relevance in an independent overall organic breeding goal (Rozzi et al., 2007).  

 

Prerequisites for traits to be included in an overall breeding goal are their economic 

importance, the availability of a suitable recording system (data quality), the value of additive 

genetic variance or of heritability, and genetic correlations to other traits of interest. The latter 

three arguments address statistical methodology for data preparation and genetic analyses. For 

test-day production data, official and identical recording systems across country borders exist, 

but for functional health traits, the variety of possible data definitions and completeness of 

data may cause differences in estimated genetic parameters. Using large datasets, such 

problems can be compensated, e.g. Shook et al., 2012 who used 4,531,536 fertility records for 

different data quality definitions, but organic and low input populations are characterized by a 
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comparatively small population size and small herd sizes as well. The small number of 

contemporary groups in organic herds was  a substantial problem for genetic evaluation of 

production traits when applying over-parameterized statistical models (Yin et al., 2012a). 

Basically, health data preparation in the early period of lactation includes three definitions. 

The easiest way is to focus on a specific interval, and to assign a score of 1 for diseased cows, 

irrespective the number of disease cases (e.g. König et al., 2005). Secondly, using the code = 

1 for diseased cows, and considering all disease cases in the interval, generates a longitudinal 

data structure (e.g. Carlen et al., 2009; Gernand et al., 2012). A third option is to count the 

total number of disease cases occurring within a given interval, resulting in broader range of 

scores compared to the binary scores, as done by König et al. (2007) for female fertility traits. 

The latter two definitions make it difficult to distinguish between a new case of a disease, or 

an ongoing treatment. Usually, a 5 d interval was used to separate a new from a pre-existing 

disease (Hinrichs et al., 2005).  

 

Regarding statistical modeling for genetic evaluation of binary data, main questions addressed 

comparisons of sire versus animal models, and applications of the threshold concept instead 

of assuming a Gaussian data distribution. In the early 1980s, threshold models reported by 

Gianola and Foulley (1983) or by Harville and Mee (1984) were developed based on Wright’s 

threshold concept for analyses of categorical data in animal breeding. Later, this concept was 

applied in a multitude of studies or in official genetic evaluations (e.g. Koeck et al., 2010b). 

Theoretically, threshold models studying the trait of interest on an underlying liability scale 

are more appropriate for depicting the physiological background than linear models. However, 

problems may occur for data with extreme incidences, such that some sub-cells of effects are 

underrepresented for certain scores (Hoeschele and Tier, 1995). In most of the genetic 

analyses, threshold methodology for binary traits was applied within a Bayesian framework 

using a large number from Gibbs sampling to calculate posterior means and SD of estimates 

(e.g. Gernand et al., 2012; Sorensen et al., 2009). An alternative to Bayesian procedures is to 

apply REML and generalized linear mixed models (GLMM). Using GLMM, different link 

functions can be invoked to analyze data with different distributions, e.g. an identity link 

function for Gaussian traits, a probit or logit link function for binary data, or a log link 

function for Poisson distributed ‘count data’ (McCullagh and Nelder, 1989). An overview of 

methodologies in the context of GLMM applications to analyze categorical traits is given in 

Table 1. As a further methodological innovation for time series or longitudinal binary data, 

GLMM can be extended to random regression methodology (RRM). RRM allows inferring 
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genetic effects in dependency of a time dependent covariate, and effects may change due to 

changes of the physiological background, e.g. aging of an animal. Traditionally, RRM have 

been developed for longitudinal production test-day records (e.g. Schaeffer and Dekkers, 

1994), but can be extended to type traits, fertility, health, and longevity (Schaeffer, 2004). So 

far for health data, linear and threshold RRM were used by Carlen et al. (2009) and Chang et 

al. (2004) for relatively large mastitis datasets. 

 

The objective of the present study was to apply GLMM for genetic analyses of health traits 

using appropriate link functions according to data distributions. Applications of GLMM start 

with relatively simple univariate linear and threshold models for a single observation in 

distinct intervals, then address GLMM with log link functions for ‘count data’, and continue 

with longitudinal data analyses in the early period of lactation using repeatability and random 

regression models. A main focus was to evaluate the possibility of GLMM applications in low 

input farms characterized by relatively low disease incidences and comparably small herd 

sizes. Comparison of sire versus animal models was also addressed at the same time. 
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Table 1. Overview of applications of generalized linear mixed models for analyses of 

categorical data in animal breeding 

Author (Breed) Type of 

data 

Traits
 

Link function 

Kadarmideen et al., 2004 

(SLW)  

Binary 

Binary 

Category 

OL
2
 in head of numerus 

OL in head of numerus 

OL in distal epiphyseal cartilage of ulna 

Probit  

Logit  

Log 

König et al., 2005 (HOL) Binary 

Binary 

Binary 

Binary 

Digital dermatitis 

Sole ulceration 

Wall disorder 

Interdigital hyperplasia 

Logit  

Logit 

Logit 

Logit 

Guerra et al., 2006 (COR) Binary 

Binary 

Binary 

Binary 

Calving rate 

Calving rate 

Calving survival 

Calving survival 

Probit  

Logit  

Probit  

Logit  

König et al., 2007 (HOL) Count  

Count  

Transferable embryos 

Unfertilized oocytes 

Log 

Log 

Vazquez, 2009a 

(NOR) 

Binary 

Binary 

Count 

Clinical mastitis 

Clinical mastitis 

Clinical mastitis 

Linear  

Logit  

Log 

Vazquez, 2009b 

(HOL) 

Binary 

Count 

Clinical mastitis 

Clinical mastitis 

Probit 

Log 

Fuerst-Waltl et al., 2010 

(HOL) 

Binary Heifer mortality 

 

Logit  

Koeck et al., 

2010a (FLE) 

Binary 

Binary 

Binary 

Metritis 

Retained placenta 

Ovarian cysts 

Logit 

Logit  

Logit 

Koeck et al., 2010b (FLE) Binary 

Binary 

Clinical mastitis 

Clinical mastitis 

Probit  

Logit  

1) 
SLW = Swiss Large White, HOL = Holstein, COR = Crossbreed between Angus, Brahman, 

Charolais, and Hereford breeds, NOR = Norwegian red cows, FLE = Fleckvieh dual-purpose cows 

2) 
Osteochondral lesions 

 

 

MATERIALS AND METHODS  

 

 Data and health trait definitions  
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The five health traits with highest incidences in first parity were mastitis, metritis, retained 

placenta, ovarian cysts and acetonemia. Consequently these traits were used for genetic 

analyses. After editing, data comprised health disorders from 1,247 Brown Swiss cows in first 

parity kept at 53 organic and low input farms from calving years 2000 to 2009, and resulting 

in 353 herd-calving-year levels.  Average herd size was 3.53 cows per herd-calving year, with 

a maximum value of 17 cows. Age at first calving ranged from 18 to 45 months. Due to the 

fact that the five health traits are only relevant in the first third of lactation, records were from 

-1 d to 120 d after calving. The 1,247 Brown Swiss cows were daughters of 362 different sires, 

which implies an average of 3.44 daughters per sire. The maximum number of daughters per 

sire was 51, five sires had 31 to 50 daughters, five sires had 21 to 30 daughters, 13 sires had 

11 to 20 daughters, 24 sires had 6 to 10 daughters, 125 sires had 2 to 5 daughters, and 189 

sires had only 1 daughter. For sire models, the pedigree file included 2,426 animals, and for 

animal models, 5,834 animals were considered. Generally, the pedigree was traced back to 

four generations. Regarding data preparation, three different definitions for the five health 

traits were used. Firstly, only the early period directly after calving was considered.  Within 

this period from -1 d to 120 d after calving, health disorders were defined as a classical all-or-

none binary trait. Trait definition implies that a score = 1 was assigned for cows with at least 

one entry of the health disorders within in this period, irrespective the number of entries of the 

same disease. For healthy cows, a score = 0 was assigned. The five health disorders were 

analyzed separately, and labeling of mastitis, metritis, retained placenta, ovarianc cysts, and 

acetonemia was Mast_I, Met_I, RP_I, OC_I, and Acet_I, respectively. Incidences of health 

disorders for this first strategy of health trait definition are given in Table 2. Secondly, records 

of mastitis (Mast_II), metritis (Met_II), retained placenta (RP_II), ovarian cysts (OC_II), and 

acetonemia (Acet_II) from -1d to 120 d after calving were defined as ‘count data’, i.e. the 

total number of unique episodes. Within the defined time period for each trait, at least 5 d 

were requested to count a treatment as a new disease case (Gernand et al., 2012). The total 

numbers of unique episodes of the five health traits are shown in Table 3. Thirdly, to create 

time-dependent data, a period starting from 1 d before calving was partitioned into four 

intervals of 30 days length. Following Carlen et al. (2009), only the first case of the same 

health disorder within an interval was used. For creating the time dependent covariate DIM, 

the day within the interval at which the disease first occurred was used. For healthy cows, the 

midpoint of the interval was assigned. Disease incidences of the five health traits for the third 
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trait definition are listed in Table 4. Abbreviations of the five health traits edited by the third 

definition were Mast_III, Met_III, RP_III, OC_III, and Acet_III.    

 

Statistical Models 

 

Estimates of (co)variance components were obtained by using the AI-REML algorithm as 

implemented in the DMU package (Madsen and Jensen, 2010). Generalized linear mixed 

models were applied for "Gaussian" traits (identity link function = linear mixed model), for 

binary traits (probit link function = threshold methodology), and for count variables (log link 

function for Poisson distributed traits). All health disorders were analyzed separately in 

consecutive runs. The residual variance for threshold and Poisson models was fixed to 1.        

 

Model 1: Univariate sire and animal models 

 

Univariate linear sire and animal models, and univariate threshold sire and animal models 

were applied for all health disorders as specified in Table 2. In matrix notation, the linear 

model 1a for a Gaussian trait was: 

ehZuZXby 21   [1a] 

For a binary trait, the generalized linear model 1b using the probit link function was: 

ehZuZXbl  21  [1b] 

where l = vectors of unobserved liabilities for a health trait from a binary outcome; y = 

vectors of observations for a health trait regarded as a Gaussian trait; b = vector of fixed 

effects of  age of first calving (in month) and calving month; u = vector of random sire of cow 

or animal additive genetic effects; h = vector of random herd- calving year effects, and e = 

vector of random residual effects; and X, Z1, and Z2 are incidence matrices for b, u and p, 

respectively. The (co)variance structure of the random effects was assumed as  
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where 2

a , 2

h , and 2

e  are the variances of additive genetic, herd-year, and residual effects, 

respectively; Au is an additive genetic (co)variance matrix for sires (sire model), or for cows  

(animal model).  
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Model 1c was a generalized linear model including fixed and random effects as specified for 

models 1a and model 1b, but using a log link function for Poisson distributed ‘count data’ as 

specified in Table 3. 
   

 

Model 2: Repeatability sire and animal models  

 

For longitudinal health data (Table 4), univariate repeatability models with pedigree 

relationships based on sires (sire model) or on cows (animal model) were fitted. The health 

disorders were analyzed both as Gaussian traits using a linear model, and as binary traits 

applying threshold methodology (probit link function). In matrix notation, the statistical 

model 2a for a Gaussian trait was:    

 epZhZuZXby  321  [2a] 

Consequently, the statistical model 2b for a binary trait was: 

epZhZuZXbl 321   [2b] 

where p = vector of random permanent environmental effects for cows and Z3 = incidence 

matrices for p. Fixed effect, additive genetic effect and herd-year effect were identical as 

defined in models 1. The (co)variance structure of random effects was extended as follows: 
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where 2

p is the variance of permanent environmental effect.  

 

Model 3: Random regression sires models  

 

The “extreme category problem” may occur when applying animal models to analyze 

categorical traits (Hoeschele and Tier, 1995; Luo et al., 2001). Therefore, this problem may 

have major relevance for random regression animal models. Consequently in the present study, 

only random regression sire models were applied. Model 3 is an extension of model 2, 

because in addition, a change of genetic parameters by intervals for DIM via random 

regression methodology was allowed.  The additive genetic relationship matrix was built up 

from relationships among sires. Hence, similar to models 2, the linear random regression sire 

model 3a was: 

epZhZuZXby 321   [3a] 
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and for a binary trait, the threshold sire model 3b was: 

epZhZuZXbl 321   [3b] 

where l and y are the same as used in model 1; b = vector of fixed effects of  age at first 

calving (in month), calving month and regressions on lactation stages (intervals) using third-

order Legendre polynomials; u = vector of random effects using third-order (for Mast_III) and 

second-order (for Met_III, RP_III, OC_III and Acet_III) Legendre polynomials for recorded 

time intervals; p = vector of random permanent environmental effects for cows using 

Legendre polynomials of order three for Mast_III and order two (for Met_III, RP_III, OC_III 

and Acet_III)  for recorded time intervals; h = vector of random herd-year effects at calving, 

and e = vector of equal random residual effects; and X, W, Z1, Z2, and Z3 are incidence 

matrices for b, s, u, p and h, respectively. The (co)variance structure of random effects was as 

follows: 
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where G is a 4 x 4 (for Mast_III) and 3 x 3 (for Met_III, RP_III, OC_III and Acet_III) 

variance-covariance matrix of random regression coefficients for the sire effects; P is a 

(co)variance matrix of random regression coefficients for permanent environmental effects, 

respectively; 2

h  and 2

e  are the variance of herd-year and residual effects, respectively. Au is 

an additive genetic relationship matrix; Ih is an identity matrix for h herds; Ip is an identity 

matrix for p cows; In is an identity matrix for n observations, and  is the direct matrix 

product.  

 Standard errors of heritabilities were calculated by the methodology reported by Fisher 

et al. (2004). A Taylor series expansion was used to estimate the variance of heritability at 

time i, and the equation was: 
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 [4] 

where gi,i and yi,i are diagonal elements of genetic and total phenotypic (co)variance matrix, 

and var(gi,i), var(yi,i) and cov(gi,i, yi,i) are variance and covariance of genetic and phenotypic 

variance at time i.   

 

RESULTS AND DISCUSSION  
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Descriptive statistics  

 

Disease incidences of Mast_I, Met_I, RP_I, OC_I, and Acet_I recorded between -1 and 120 

days were 5.78%, 2.97%, 4.01%, 0.64% and 1.36%, respectively (Table 2). The incidence of 

5.78% for Mast_I was in line with results from 20 organic farms in Ontario (Rozzi et al., 

2007). Appuhamy et al. (2009) also found a low disease incidence of 2.7% for mastitis in 398 

commercial dairy herds in the first 100 days of first lactation. However, incidences were 

substantially lower than a mean incidence of 34.6% for clinical mastitis (CM) which was 

found in Holstein populations in large-scale contract herds of the eastern part of Germany 

(Gernand et al., 2012). Generally, incidences of mastitis are lower in organic herds compared 

to conventional herds. Hardeng and Edge (2001) showed that the percentage of treated cows 

for mastitis within 305 days of lactation was 29% in 93 conventional, and 14% in 31 organic 

Norwegian dairy cattle herds. Pol and Ruegg (2007) also found a higher incidence of mastitis 

in conventional herds located in Wisconsin,  i.e. 40.9%, which was significantly higher than 

the incidence in organic dairy farms (20.5%) from the same region. Low mastitis incidences 

of 2.6%, 4.2% and 5.0% for parity 1, 2, and 3+, respectively, were also observed in organic 

Danish dairy cows (Bennedsgaard et al., 2003). The main reason for lower mastitis incidences 

in organic herds may be that organic production systems put more emphasis on disease 

prevention via selection strategies in the past decades (Kijlstra and Eijck, 2006). The 

incidence with a value of 2.97% for Met_I was lower than the metritis incidence of 9.3% in 

organic and 15.3% in conventional populations in Wisconsin (Pol and Ruegg, 2007). In 

organic farms in Ontario, Rozzi et al. (2007) analyzed metritis and retained placenta together, 

however, even for the combined trait, disease incidence was extremely low (0.5%). Disease 

frequencies for mastitis, ketosis, retained placenta, metritis, and cystic ovaries in our current 

study were also lower than the corresponding incidences reported for Canadian Holsteins 

(Koeck et al., 2012). In our study, only health disorders in first parity were analyzed. 

However, disease incidences increase with increasing age of cows (Lin et al., 1989). 
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Table 2. The number of diseased cows and incidences of mastitis (Mast_I), metritis (Met_I), 

retained placenta (RP_I), ovarian cysts (OC_I), and acetonemia (Acet_I) based on the first 

health trait definition
1
. 

Health trait Days from calving # of cows # of diseased cows  Incidence % 

Mast_I -1 to 120 1,247 72 5.78 

Met_I - 1 to 120 1,247 37 2.97 

RP_I - 1 to 120 1,247 50 4.01 

OC_I - 1 to 120 1,247 8 0.64 

Acet_I - 1 to 120 1,247 17 1.36 

1) 
Presence (= 1) or absence (= 0) of health disorders during -1 to 120 d after calving 

 

With regard to Mast_II, Met_II, RP_II, and OC_II, for a large proportion of diseased cows, 

only a single disease case during the first lactation was observed (Table 3). For instance, 33 

cows had one disease case of metritis, 2 cows had two cases of metritis, and another 2 cows 

had three cases of metritis. There was just one threshold for Acet_II, because no cow had 

more than one case of acetonmia. Consequently, acetonemia is only relevant directly after 

calving, and Acet_I and Acet_II were identical traits. Disease incidences for the longitudinal 

health data structure are given Table 4. Incidence of Mast_III from DIM -1 to 30 d was 

identical with results by Vallimont et al. (2009), but incidences in later intervals from our 

study were substantially lower. The highest incidences in the first interval for Mast_III, 

Met_III, RP_III and Acet_III are associated with physiological stress directly after calving, or 

even calving difficulties.  
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Table 3. The total number of unique episodes of mastitis (Mast_II), metritis (Met_II), retained 

placenta (RP_II), ovarian cysts (OC_II), and acetonemia (Acet_II) defined based on the 

second health trait definition
1
. 

Health 

trait 

Days from 

calving 

# of 

cows 

# unique episodes 

0 1 2 3 4 

Mast_II -1 to 120 1,247 1,175 63 8 1 - 

Met_II - 1 to 120 1,247 1,210 33 2 2 - 

RP_II - 1 to 120 1,247 1,197 47 3 - - 

OC_II - 1 to 120 1,247 1,239 6 - 1 1 

Acet_II - 1 to 120 1,247 1,230 17 - - - 

1) 
Total number of disease cases during -1 to 120 d after calving = ‘count data’ 

 

Table 4. The disease incidence of mastitis (Mast_III), metritis (Met_III), retained placenta 

(RP_III), ovarian cysts (OC_III), and acetonemia (Acet_III) based on the third health trait 

definition
1
.  

Interval 
Days from 

calving 

Incidence % 

Mast_III Met_III RP_III OC_III Acet_III 

1 -1 to 30 4.09 2.25 3.69 0.08 0.96 

2 31 to 60 0.72 0.48 0.16 0.16 0.16 

3 61 to 90 0.80 0.24 0.08 0.40 0.16 

4 91 to 120 0.64 0.24 0.16 0.16 0.08 

1) 
Presence (1) or absence (0) of health disorders during test-day intervals 

 

Genetic parameters 

 

Apart from OC_I and Acet_I, heritabilities of binary health traits on the underlying liability 

scale were higher when using threshold models compared to heritabilities on the observed 

scale from linear models (Table 5). This finding was confirmed in several previous studies 

using large datasets (e.g. Vallimont et al., 2009). Furthermore, heritabilities from sire model 

were generally higher than heritabilities from animal models (Table 5). Average heritability of 

Mast_I from the different models was 0.19, in a range from 0.06 to 0.32. The highest 

heritability for Mast_I was from the threshold sire model, while the lowest value was found 

when a linear animal model was applied. Heritability of h
2
 = 0.32 was significantly higher 

than values reported in other studies, e.g. h
2 

= 0.14 for mastitis in Danish Holsteins (Sørensen 
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et al., 2009). However, the heritability for mastitis from the remaining three models was in a 

reasonable range. Heritabilities of Met_I ranged from 0.02 to 0.13. The averaged heritability 

from all models for Met_I was 0.05, and in agreement with results reported by Appuhamy et 

al. (2009), and only slightly lower than estimates by Zwald et al. (2004) in US Holstein cows. 

Heritability of OC_I was the lowest among all traits and models (h
2
 = 0.002) . For OC_I, only 

the linear animal model converged. Heritability with a value of h
2
 = 0.02 for Acet_I from the 

linear sire model was higher than h
2
 = 0.006 from a linear animal model (Zwald et al., 2004). 

Threshold models analyzed Acet_I did not converge. For RP_I, all models converged, and as 

expected, the highest heritability with h
2
 = 0.18 was estimated when applying the threshold 

sire model. The heritability of h
2
 = 0.08 from the threshold animal model was comparable to 

results obtained from identical statistical models, e.g. Gernand et al. (2012).  

 

Table 5. Heritability and standard error (SE) of heritability (h
2
) for mastitis (Mast_I), metritis 

(Met_I), retained placenta (RP_I), ovarian cysts (OC_I), and acetonemia (Acet_I) from 

animal model and sire model based on the first trait definition
2
.  

  Link function / assumed data distribution 

  Identity / Gaussian  Probit / Binary 

Health trait Model h
2
 (x 100) SE (h

2
) h

2 
(x 100) SE (h

2
) 

Mast_I Animal  6.14 0.0753 13.92 0.1709 

Mast_I Sire 21.21 0.0264 31.68 0.1150 

Met_I Animal  1.63 0.0343 2.84 0.4091 

Met_I Sire 1.65 0.0104 12.90 0.1711 

RP_I Animal  2.29 0.0374 8.34 0.3070 

RP_I Sire 0.91 0.0108 18.25 0.1525 

OC_I Animal  0.22 0.0344 x x 

OC_I Sire x x x x 

Acet_I Animal  0.55 0.0288 x x 

Acet_I Sire 2.38 0.0104 x x 

1) 
Presence (1) or absence (0) of health disorders during -1 to 120 d after calving

 

x) 
Not converaged 

 

Heritabilities for retained placenta and ovarian cysts were generally higher when using the 

second trait definition for ‘count data’ (Table 6) instead of analyzing only one observed case 

in a defined time interval (Table 5). Especially for RP_II, the heritability was extremely high, 
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i.e. h
2
 = 0.39, when a sire model with a log link function for Poisson data was applied. 

Comparing results from linear animal models, heritabitlies were higher when count data 

instead of binary data was used. For example for OC_II, heritability of 0.08 was substantially 

higher than estimates from animal linear model for OC_I. In 2009, Valimont et al. applied 

GLMM with a log link function for mastitis, but in their study, heritability was about 6% 

smaller compared to estimates for Mast_II from our study. For Met_II and RP_II, 

heritabilities from linear sire and linear animal models were almost identical, but for Mast_II 

and for OC_II, heritabilities were higher when using the linear sire model, i.e. h
2
 = 0.10 

versus h
2
 = 0.07 for Mast_II, and h

2
 = 0.13 versus h

2
 = 0.08 for OC_II. For count data, the 

lowest heritabilties among all traits were estimated for Met_II with values close to zero for 

both linear models. GLMMs for Met_II with a log link function for the Poisson distribution 

did not converge.    

 

Table 6. Heritability and standard error (SE) of heritability (h
2
) for mastitis (Mast_II), metritis 

(Met_II), retained placenta (RP_II), ovarian cysts (OC_II), and acetonemia (Acet_II) from 

animal model and sire model based on the second trait definition
2
.  

  Link function / assumed data distribution 

  Identity / Gaussian  Log / Poisson 

Health trait Model h
2 

 (x 100) SE (h
2
) h

2 
(x 100) SE (h

2
) 

Mast_II Animal  6.77 0.0477 27.52 0.1629 

Mast_II Sire 10.31 0.0190 17.58 0.1219 

Met_II Animal  0.09 0.0304 x x 

Met_II Sire 0.09 0.0089 x x 

RP_II Animal  4.16 0.0391 14.44 0.1219 

RP_II Sire 3.62 0.0119 38.70 0.1243 

OC_II Animal  7.95 0.0494 x x 

OC_II Sire 12.63 0.0212 14.01 0.0880 

1) 
Total number of disease cases during -1 to 120 d after calving

 

x) 
Not converaged 

 

Heritabilities and repeatabilities from repeatablity models 2a and 2b are shown in Table 7.  

Substantial differences between heritabilities and repeatabilities were found for OC_III, 

suggesting a substantial permanent environmental effect. Repeatability for OC_III was 0.14, 

but heritability for OC_III was only 0.01 underlying that repeated non-genetic effects have 
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major impact on occurrence of ovarian cysts during lactation. Variance ratios for permanent 

environmental effects for Mast_III and Met_III, averaged from both the linear animal and sire 

model, were 1.93% and 2.19%, respectively. However, several other studies (Vallimont et al., 

2009; Wolf et al., 2010) have found a substantial larger variance of permanent environment 

effects for mastitis compared to results from our study. As shown by Gernand et al. (2012), 

the permanent environmental effect was extremely small for retained placenta. But  this 

finding is due to the 'biological nature' of this trait.  

 

Daily heritabilities by DIM from RMM are depicted in Fig. 1a when using linear sire model, 

and in Fig. 1b when using threshold methodology and the probit link function. In contrast to 

the theoretical expectation heritabilities on the observed scale from the linear model were 

generally higher than on the underlying liability scale from the threshold model. From the 

threshold model over the whole trajectory for DIM, heritabilities were close to zero.  Only for 

retained placenta, slightly higher heritabilities were found on the underlying liability scale.  

For both models and all analyzed health traits, heritabilities were highest at the beginning of 

lactation, and only increased for Mast_III at the end of the defined interval. A similar shape of 

curves for the heritability of mastitis was found for CM in first parity Swedish Holstein cows 

(Carlén et al., 2009). Mastitis was recorded during the entire lactation, whereas health 

disorders of the categories 'female fertility' and 'metabolism' were only relevant directly after 

calving which may explain the low genetic variation after DIM 50. In the study by Carlén et 

al. (2009), they applied a linear sire RRM, but not a threshold sire RRM. Also Döhne et al. 

(2012) concluded high data quantity and data quality is imperative for the application of a 

threshold RRM for binary claw disorders. Estimates of heritabilities for Mast_III from the 

linear sire RRM were in the range reported in the literature for comparable DIM (e.g. Chang 

et al. 2004). 

 

Genetic correlations between DIM 5 and remaining days in the interval from calving to DIM 

125 showed the same pattern for the linear RRM (Fig. 2a) and the threshold RRM (Fig. 2b). 

Genetic correlations between neighboring days were close to 1, but substantially dropped 

when correlating day 5 with days in the interval from DIM 50 to DIM 100. In the linear 

model, genetic correlations of rg = -1 suggest a complete re-ranking of sires for different days 

in milk. Low genetic correlations in the same health disorder for test-days being far apart 

were also found in other studies applying RRM for binary health data (Carlén et al., 2009; 

Döhne et al., 2012), but curves were smoother, and negative correlations did only exist for 
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large intervals between days of interest. For production traits, in small organic (Yin et al., 

2012a) as well as in large-scale conventional dairy cattle herds (Gernand et al., 2007), 

minimum of genetic correlations in the same trait between different DIM was rg = 0.50. Low 

genetic correlations in same health traits between different days also indicate that mastitis, 

metritis, and ovarian cysts are completely different traits before and after DIM 50. Hence, 

ongoing research should focus e.g. on specific major pathogens as done by Schafberg et al. 

(2006) which have different relevance at different stages of lactation. Such a deeper analysis 

might contribute to a deeper understanding of the physiological and genetic background of 

clinical mastitis. Also metritis is defined as a multi-factorial disease, which can be caused by a 

variety of major pathogens including bacteria, viruses, and fungi (Foldi et al., 2006). For 

interpretation of results of genetic correlations, extremely large Bayesian information criterion 

(BIC) and SEs for sire threshold RRM should be kept in mind. 

    



                                                                                                                

 Table 7. Heritability, standard error (SE) of heritability (h
2
), repeatability (r) and SE of repeatability for mastitis (Mast_III), metritis (Met_III), 

retained placenta (RP_III), ovarian cysts (OC_III), and acetonemia (Acet_III) from animal and sire repeatability model based on the third trait 

definition
2
. 

  Link function / assumed data distribution 

  Identity / Gaussian Probit / Binary 

Health trait Model h
2 

(x100) SE (h
2
) r (x100) SE(re) h

2 
(x100) SE (h

2
) r (x100) SE(re) 

Mast_III Animal  2.62 0.0148 3.76 0.0134 7.62 0.0976 7.62 0.0892 

Mast_III Sire 4.57 0.0065 7.29 0.0136 22.22 0.0468 22.22 0.0904 

Met_III Animal  0.67 0.0101 2.61 0.0133 9.60 0.1708 10.07 0.1407 

Met_III Sire 0.62 0.0030 3.06 0.0132 8.00 0.0502 8.00 0.1453 

RP_III Animal  0.52 0.0089 0.52 0.0126 x x x x 

RP_III Sire 0.53 0.0029 0.53 0.0125 6.83 0.0483 6.83 0.1474 

OC_III Animal  1.76 0.0155 13.56 0.0152 x x x x 

OC_III Sire 1.19 0.0045 14.33 0.1510 x x x x 

Acet_III Animal  x x x x x x x x 

Acet_III Sire 0.37 0.0026 0.38 0.0128 0.29 0.0287 0.29 0.0457 

1) 
Presence (1) or absence (0) of health disorders during test-day intervals

 

x) 
Not converaged 
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Figure 1.  Heritability of mastitis (Mast_III), metritis (Met_III), retained placenta (RP_III), 

ovarian cysts (OC_III), and acetonemia (Acet_III) from linear (a) and threshold (b) sire 

random regression model with link function of identity and probit based on the third trait 

definition
1
.  
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Figure 2.  Genetic correlation between 5 days after calving and other days for mastitis 

(Mast_III), metritis (Met_III), retained placenta (RP_III), ovarian cysts (OC_III), and 

acetonemia (Acet_III) from linear (a) and threshold (b) random regression sire model with 

link function of identity and probit based on the third trait definition
1
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Comparison of models        

 

Convergence problems were more likely to occur when threshold methodology was used 

compared to linear model applications (Table 8). This finding is especially valid for ovarian 

cysts and acetonomia, which characterized by extremely low disease incidences. Convergence 

problems were less relevant for sire compared to animal models, maybe due to the above 

mentioned properties of threshold methodology. When applying sire instead of animal models, 

the number of animals in the pedigree decreased from 5,834 to 2,426 which reduces 

substantially the number of solutions that have to be estimated.  

 

Average SE of heritabilities when using threshold models (model 1b and 2b) was 0.13, and 

decreased to 0.0235 when linear models (Model 1a and 2a) were applied. Koeck et al. (2010a) 

found that SEs for heritabilities from logit threshold sire models were around 5 times as large 

as SEs from linear models. Also Pérez-Cabal et al. (2009) reported larger SEs for heritabilities 

from threshold and Poisson models compared to linear model applications. For models 1 and 

2, average SE from sire models with a value of 0.054 was significantly different from animal 

models (SE = 0.083). The maximum SE for heritablity (0.41) was found when using an 

animal model, although the corresponding SE from the sire model was also quite high (0.17). 

In a study by Ghavi Hossein-Zadeh et al. (2009), slightly higher SEs for estimated 

heritabilites were found from animal models as well. SEs of heritabilities estimated by 

threshold and linear RRMs followed the same pattern. Relatively high SEs were found at the 

very beginning of lactation as well as in the last interval. However, in general SEs for RMM 

were relatively large, which might be attributed to the small number of records in the low 

input population and the extremely small herd sizes.  

 

The main evaluation criterion was BIC. BIC is a criterion for model selection and it depends 

on log likelihood function and number of parameters to be estimated. Apart from Mast_I and 

model 3, BIC from animal and sire models were almost identical, while health traits analyzed 

with probit or log link functions always revealed a lower BIC than the application of linear 

models. The fundamental reason is that health disorders are categorical traits which are not 

following Gaussian distributions. Hence, our study favored the general threshold concept over 

linear models for the analysis of categorical traits. Tempelman and Gianola (1999) clearly 

demonstrated that negative binomial mixed models were more appropriate for the analysis of 

binary female fertility traits than linear mixed models. However, evaluation of RRM does not 
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fit in this theoretical context. BIC from threshold sire RRM was larger than BIC from linear 

sire RRM and sire and animal repeatability models, which is in line with the extremely large 

SEs for heritabilities estimated from the threshold sire RRM.  

 

Using Poisson mixed models  for genetic analyses of count data are not only applied in our 

study but also in other studies (Vallimont et al., 2009; Vazquez et al., 2009a; Vazquez et al., 

2009b) and higher variance components for additive genetic effects were found in the studies. 

However, cows without diseases are significantly higher than cows with one or more cases of 

diseases, e.g. frequencies of cows without health disorders were higher than 94% in this study. 

Due to the high pecetage of healthy cows, Poisson distribution can not characterize count data 

for health disorders accurately. Alternatively, Rodrigues-Motta et al. (2007) compared zero-

inflated Poisson models with a standard Poisson model to analyze total number of cases for 

CM in Norwegian Red cattle. Only small differences was found between the two models as 

the rank correlation of sires was 0.98. Nevertheless, the high percentage of cows without 

mastitis in this and other studies suggested that zero-inflated models may warrant further 

development (Vallimont et al., 2009).  

 



                                                                                                                

Table 8. Bayesian information criterion
1
 (BIC) for mastitis, metritis, retained placenta, ovarian cysts and acetonemia from animal and sire model 

(Model 1), animal and sire repeatability model (Model 2) and sire random regression model (Model 3) based on the three definitions. 

Model Link function Pedigree Mast_I Mast_II Met_I Met_II RP_I RP_II OC_I OC_II Acet_I 

Model 1 Identity  
Animal -1017 -1748 -2989 -2410 -2623 -2420 -4770 -3121 -3877 

sire -2222 -1747 -2989 -2410 -2623 -2419 x -11338 -3878 

Model 1 Probit 
Animal -1071 -3551 -5298 x -4567 -4238 x x x 

sire -2179 -3511 -5313 x -4550 -4182 x -19890 x 

            

   Mast_III  Met_III  RP_III  OC_III  Acet_III 

Model 2 Identity 
Animal -15610  -18857  -17711  -25708  x 

sire -15610  -18852  -17706  -25702  -22987 

Model 2 Log 
Animal -44430  -18123  x  x  x 

sire -44754  -21572  -48762  x  -59539 

Model 3 Identity sire -17368  -21120  -24614  -26275  -24550 

Model 3 Probit sire 186596  10340  31223468  671  x 

1)
 The lower the BIC value is, the better the model fit. 

x) 
Not converged 
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CONCLUSIONS 

 

Disease incidences of mastitis, metritis, retained placenta, ovarian cysts and acetonemia 

recorded in the early stage of lactation were relatively low in organic dairy farms in 

Switzerland. Generally, genetic parameters of the five health traits were in a reasonable range. 

Marginally lower heritabilities might be due to the low disease incidences, which can result in 

low additive genetic variances. For routine genetic evaluation, the optimal statistical model 

should be identified. Based on the BIC information criterion, Poisson and Binomial mixed 

models were favored compared to linear models. Only when applying RRM, the linear sire 

model gave a better fit to the data than the threshold sire model. When applying RRM, SEs of 

estimated genetic parameters were relatively high and genetic correlations for the same 

disease between different DIM dropped to negative values. Number of parameters to be 

estimated and complexity of calculations increase dramatically by using longitudinal data and 

applying RRM. Hence, for small datasets and small contemporary groups combined with low 

disease incidences in organic farms, we suggest a robust application. Instead of using a 

longitudinal data structure or only a single observation within a given time interval, the total 

number of unique episodes of a disease (count variable) might be a promising alternative for 

practical applications.  
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ABSTRACT 

 

The objective of the present study was to conduct a stochastic simulation study on the 

possible benefits of an application of genomic selection in dairy cattle breeding programs 

according to a variety of selection schemes. In addition, the heritability of the trait in question, 

the accuracy of genomic breeding values, and the number of animals to be genotyped were 

varied. Specifically, the question of genotyping males and / or females was addressed. 

Selection schemes were compared with a young bull breeding program. The main criterion for 

comparison was the average of true breeding values of selected young males to be used as 

replacements for A.I. bulls. Stochastic simulations were run with 50 repetitions each to 

generate individuals with phenotypes, breeding values estimated by BLUP, and true breeding 

values. Genomic breeding values were generated from true breeding values with defined 

accuracy. Examined scenarios included a group of selection schemes that featured genotyping 

of parents of future bulls only. Such schemes can be viewed as improvements of young bull 

programs and were found to be competitive or superior with a classical young bull program. 

However, usually, a genomic breeding program will consist of at least genotyping young male 

candidates. A second group of selection schemes reflected this requirement. Scenarios in this 

group were found to be superior over the young bull program by 1.0 SD to 1.2 SD of the 

average true breeding value of young male candidates. Within this group of scenarios, one 

scheme referred to an ideal situation under which genotypes for male calves are available 

without limitation. Using the average of true breeding values as the criterion for comparison, 

this idealistic scenario is only competitive with other scenarios, if the reliability of genomic 

breeding values is larger than 0.50. Conventionally, not all males available will have 

genotypes, and the two most promising scenarios included a pre-selection step for dams of 

future bulls. This pre-selection step can be based on conventional BLUP EBV for bull dams, 

because differences with a scheme under which both parents and the resulting male offspring 

are genotyped were marginal. Genotyping of young male candidates should be the main focus 

of activities of a today’s breeding organization. 

 

Key words: Genomic selection, breeding program, pre-selection 

 

INTRODUCTION 
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Basing selection decisions on the results of genotyping animals for high-density arrays of 

single nucleotide polymorphisms (SNP) denotes what is now called genomic selection. It 

consists of estimating breeding values applying previous knowledge from so-called 

calibration or reference samples. This new tool in dairy cattle breeding has the potential of 

overcoming the up to now existing obstacle of a costly and time-consuming progeny test for 

future bulls to be used in artificial insemination. Meuwissen et al. (2001) have shown the 

enormous potential of such a strategy, and Schaeffer (2006) using simple deterministic 

calculations outlined the use of genomic selection comparing traditional and new strategies 

with respect to genetic gain and costs. Since then, numerous authors have studied the benefits 

of genomic selection in dairy cattle breeding programs. 

 

It is quite obvious that the accuracy of a genomic evaluation, i.e. the correlation between a 

breeding value estimated from genomic data, and incorporating the results from calibration 

samples, with the true breeding value, often referred to as rmg, plays a critical role in the 

success of implementing  genomic selection into a breeding program. The current knowledge 

on what can be achieved considering this parameter points to accuracies that will be high 

enough to resemble accuracies obtained from costly and time consuming progeny testing. 

Amongst others, Goddard and Hayes (2009) have emphasized that the size of the calibration 

sample which is composed of bulls with high accuracies of their progeny test genetic 

evaluations is the most critical parameter determining rmg. However, other factors, like the 

extent of linkage disequilibrium in the specific population will also play a role. VanRaden et 

al. (2009) showed that reliabilities (rmg
2
) of genomic breeding values were as high as 69 % for 

a calibration sample of 3,576 bulls but depended on the trait analysed. For traits with lower 

heritability, lower values will be found. Hayes et al. (2009) also showed the dependencies 

between the size of the calibration sample and the reliability obtained. Latest results from 

various countries were presented at the World Congress on Genetics Applied to Livestock 

Production. Wiggans et al. (2010) reported a value for rmg
2 

of 71 % for milk yield and 76 % 

for fat yield, based on a calibration sample of 7,113 Holstein animals consisting mostly of 

bulls but also incorporating cows. For the German calibration sample of 5,025 bulls, Liu et al. 

(2010) presented values for rmg
2
 of 68 % for milk yield and 72 % for fat yield. Lund et al. 

(2010) showed results from the up to now largest reference population consisting of bulls that 

has been assembled for the Holstein breed by a team effort of the countries France, The 

Netherlands, Denmark, Sweden, Finland, and Germany. This reference population includes 

15,966 bulls and has contributed to further increase the reliabilities obtained in the respective 
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individual countries by substantial margins. For the German calibration sample, reliabilities 

based on the combined reference population and compared to the national reference were 

increased by 11 %, averaged over traits (Lund et al., 2010).  On the other hand, also countries 

with smaller breeds will adopt genomic selection and will have to cope with lower accuracies. 

Thus, concluding from the wide range of results for reliabilities or accuracies of genomic 

breeding values that have been reported so far, it will be necessary to reflect this wide range 

in model calculations studying the benefits of genomic selection. 

In quite a few countries or even through collaborative efforts across countries, procedures for 

genomic selection have already been implemented so far. Interbull (Interbull, 2010) lists eight 

Holstein populations from 11 countries that provided information for the validation of their 

genomic evaluation system. However, within population or country, breeding organizations at 

present are facing the question on how to make use of the genomic evaluation provided and 

especially have to answer the question which animals should be genotyped as candidates for 

selection. In conventional progeny testing programs, the most crucial step of selection is the 

selection of bull dams since potential selection candidates are spread across herds, regions, 

and even countries and are subject to preferential treatment. The male paths of selection are 

less problematic as long as a progeny test with sufficient numbers of progeny is conducted in 

an unbiased way. Therefore, a topic of intense discussion is whether to genotype males, or 

females, or both sexes as candidates for selection. 

The overall objective of the present study was to conduct a stochastic simulation study on the 

possible benefits of an application of genomic selection in dairy cattle breeding programs. A 

stochastic simulation was preferred over a deterministic calculation since means and variances 

of individuals can be studied and also due to the fact that a stochastic simulation allows for 

greater flexibility when analysing the simulated data. Within the general objective, the present 

study aims at varying the most critical parameters and scenarios. This specifically pertains to 

genotyping a wide range of animals, females and males, and also varying the reproductive 

rate of females, thus resulting in a categorization of general strategies and varying selection 

intensities within strategies. The overall approach is to take the view of a breeding 

organization. This is not only reflected by varying selection intensities but also by defining 

the main criterion for comparison as the average of true breeding values of the selected bulls 

that are the ultimate product of an A.I. organization. Additionally, the genetic structure and 

inbreeding coefficients of the bull calves selected to be future replacements for bulls used in 

widespread artificial insemination will be examined.  
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MATERIAL AND METHODS 

 

Simulation was based on the application of the QMSIM program (Sargolzaei and Schenkel, 

2009). QMSIM is a very powerful simulation program to be used for the stochastic simulation 

of animal populations covering a population genetic level as well as the genomic level and 

featuring the simulation of historical populations to create linkage disequilibrium. The 

genomic level includes the capability of defining several chromosomes with QTL and marker 

maps. In the present study, however, QMSIM was used to simulate populations consisting of 

individual animals under a defined genetic structure of the entire population along with their 

true breeding values and phenotypes. Features simulating high-density marker maps were not 

used since the objective of this study was not to simulate the entire process of genomic 

selection including calibration samples, estimation of genomic breeding values, validation, 

and finally the use of formulae to predict breeding values for young selection candidates 

without phenotypes. Rather, genomic breeding values, i.e. breeding values estimated from 

genomic data without the use of phenotypes, were simulated with defined accuracies based on 

the true breeding values. 

 

Simulation of populations using QMSIM 

 

A founder population was generated over 1000 generations with a constant population size of 

50,500 animals, the last generation containing 50,000 females and 500 males. Based on this 

founder population, 20 generations of a population under selection were simulated. Animals 

of the last historic generation were parents of generation 1 for the population under selection. 

For females, a replacement rate of 25 % was set. For males, 50 % of the individuals were 

replaced by males from the following generation. Selection of males and females under these 

replacement strategies was based on BLUP EBV for a single trait. Within the selected 

fractions of males and females, mating was at random. The assumption of random mating 

appears to hold as breeders have many individual reasons for choosing a bull from those 

selected and offered by breeding organizations. In contrast, a strictly assortative mating 

scheme would be way off to what happens in the real world of dairy cattle breeders. From 

generation 1 to generation 5 the number of females in the population was increased by 25 % 

of the original population size to reflect the growth of a superior breed. Thus, the number of 
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females for generations 1 to 5 was 50,000, 62,500, 75,000, 87,500, and 100,000. The number 

of sires was kept at 500. After generation 5, the size of the population was constant. 

 

Within the simulation of generations 1 to 19, the reproductive rate of females was set such 

that one offspring, with a probability of 50 % for being male or female, was produced by 

every cow. However, for potential bull dams, this may not be applicable. Modern dairy cattle 

breeding programs almost regularly use embryo transfer to increase the reproductive rate of 

females. In the simulation studies by Sorensen and Sorensen (2010), Buch et al. (2010), and 

Pedersen et al. (2010), the success rate of embryo transfer was set to 5 offspring per cow. 

Although such a value may be achievable, in this study we used a much lower success rate 

such that in the last generation 20, all cows produced one male offspring. In a second set of 

simulation scenarios, the rate of male offspring per bull dam in generation 20 was set to 0.5. 

 

In total, two single traits with mean zero and phenotypic SD of 1.00 were independently 

simulated in different simulation runs for a heritability of 0.10 and 0.30. Simulations using 

QMSIM were repeated 50 times. Within each repetition means for true breeding values for 

desired numbers of selected bull calves were computed. Then, means for repetitions were 

averaged and SDs were calculated across repetitions and within scenario and number of 

selected bull calves. 

 

Selection was based on BLUP EBV as supplied by QMSIM. In summary, the variables 

simulated for every individual applying QMSIM and used for further processing were 

phenotypes, conventional BLUP EBV, true breeding values (TBV), and the inbreeding 

coefficients. In all further steps, only animals from generation 20 were considered as young 

candidates for selection to mimic the actual situation of breeding organizations. 

 

Simulation of genomic EBV 

 

Based on the output of the QMSIM program, all further computational steps were undertaken 

by own programming using SAS and C as programming languages. Given the objective to 

analyze various scenarios differing by the correlation between breeding values estimated from 

genomic data with the TBV, direct genomic breeding values were simulated based on the 

TBV as supplied by QMSIM according to the following formula 

gbvi = ((1-r
2

mg)
½
 zgi + rmg·TBVi/ sd(TBVt)) sd(TBVt) 
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where  gbvi is the genomic breeding value of animal i, rmg is the accuracy of the genomic 

breeding value, TBVi is the true breeding value of animal i, sd(TBVt) is the standard deviation 

of TBV in generation t, and zg is a random variable sampled from N(0,1).  

 

For some scenarios, the population was divided into groups to imitate large herds to be used 

as a nucleus for selection activities. Herd sizes were from 200 to 800 cows, i.e. with a mean of 

500 cows and an SD of herd size of 100. Selection of such herds by breeding organizations 

most likely will be according to phenotypic level. This was mimicked by deriving herd effects 

which were correlated with the average genetic level of the herd according to 

hmj = ((1-r
2

hm.EBV)
½
 zgj + rhm.EBV·EBVHerdj/sd(EBVHerd))sdhm 

Where hmj denotes the herd effect of herd j, rhm.EBV is the correlation between the vector of 

herds effects (hm) and the vector of herds EBV averages (EBVHerd), and sd(EBVHerd) is its 

standard deviation.   EBVHerdj is the average EBV of all cows in herd j. A fixed value of 0.3 

was used for rhm.EBV. 

 

Scenarios for comparison 

 

All scenarios centered on comparing the genetic merit of selected young bull calves as 

potential replacements for A.I. bulls. Figure 1 gives an overview of the scenarios simulated 

for comparisons. In Figure 1, scenarios are grouped by three main strategies. Scenario REF is 

the reference scenario referring to the initial step of a conventional progeny testing program, 

i.e. the selection of young bulls for progeny testing. In this scenario, bull calves are selected 

through selection of parents with outstanding EBV, i.e. by a pedigree index defined as the 

mean of parents’ BLUP EBV. Selection simply consisted of selecting the best n bull calves 

according to their pedigree index in a single step. Thus, scenario REF denotes a young bull 

program. In conventional programs, these young bulls would then be subject to progeny 

testing and their genetic merit with accuracy typical for progeny testing would only be known 

five years later. Given that the conventional estimation of breeding values would be unbiased, 

a selection among these calves according to pedigree index would result in average values for 

TBV corresponding to average EBV that would be available five years later. However, REF 

differs from a conventional progeny testing program as only the pre-selection step of a 

conventional program was applied for this scenario. 
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Figure 1. Characteristics of the simulated scenarios. 

 

Scenario GPAR consists of a group of scenarios describing a situation in which a breeding 

organization is reluctant to use the technology of genomic selection or wishes to minimize 

any costs associated with it. In such a situation, a breeding organization could rely on the 

availability of GBV for bulls and especially sires of bulls already genotyped by other breeding 

organizations worldwide. Additionally, many potential bull dams will already have been 

genotyped, financed by the individual owner rather than the breeding organization. Such a 

scenario can also be viewed as a scenario describing the situation of a breeding organization 

not having access to genomic selection technology and hence relying on publicly available 

data or on data supplied by individual breeders. This could also denote the case of individual 

traders of genetic material that select bull calves based on genomic evaluations of parents 

which will or may be publicly available and market these young bulls for A.I. or as natural 

service bulls under the term “genomically selected”. In all GPAR scenarios, GBV are 

available for parents, i.e. potential bull sires and bull dams. Scenario GPAR_ALL denotes a 

situation in which all females that could possibly be used as bull dams, i.e. all females, will 

have a GBV and the GBV of potential sires of bulls will be publicly available. In 

GPAR_BD_BLUP, a pre-selection step is introduced such that bull dams with a high 

conventional EBV will be genotyped. Scenario GPAR_BD_PHEN is similar to scenario 

GPAR_BD_BLUP, however, bull dams are pre-selected according to phenotype rather than 
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EBV. For GPAR_BD_BLUP and GPAR_BD_PHEN, the number of pre-selected females was 

varied to build selection pools of 50, 100, or 500 females. These numbers were chosen to 

reflect the current situation in which the number of potential bull dams is still limited and can 

be viewed as a contrast to an unlimited access to genotyped bull dams simulated in 

GPAR_BD_ALL. 

 

In all GPROG scenarios, bull calves as potential candidates for selection are always 

genotyped and thus have a GBV. Disregarding costs and all other expenses within a breeding 

program, such scenarios will always have the clear advantage of having a GBV associated 

with each bull, the final product of all efforts of the breeding organization. In GPROG_ALL, 

the “bull calf program” as suggested by König and Swalve (2009) is represented. All male 

calves will have a GBV thus assuming an ideal situation in which costs of genotyping would 

be negligible. Scenario GPROG_RANDOM is a variation of GPROG_ALL but now defining 

limits to a number of randomly genotyped bull calves. For scenario GPROG_BD_BLUP, a 

pre-selection step is introduced. Bull dams are pre-selected according to their conventional 

BLUP EBV and only their male offspring has to be genotyped. Scenario GPROG_BD_PHEN 

is similar to scenario GPROG_BD_BLUP, but the pre-selection step is based on phenotypes 

of cows. In scenario GPROG_BD_HERD, selection of bull dams is restricted to specific 

herds that could be called “supplier herds” (Weigel, 2008) since they are the source to supply 

new genetic material. Scenario GPROG_BD_HERD can also be viewed as the initiation of a 

nucleus scheme where herds are selected to form the nucleus and from then on selection, at 

least of females as future bull dams, is practiced within these herds. As explained above, large 

herds of size 500 were formed to simulate this situation. In order to avoid a further pre-

selection step which would again create a need for variation, all females in these herds were 

considered as potential bull dams and hence selection took place within their male calves. 

Finally, in scenario GPROG_BD_GENO all animals involved in the selection process will 

have a GBV, bull sires, bull dams, and their male offspring. Pre-selection steps in 

GPROG_BD_GENO hence are based on the GBV of parents. For all scenarios 

GPROG_RANDOM to GPROG_BD_GENO, the number of bull calves or bull dams with 

either 0.5 or one male offspring, was varied by increments of 1000 from 1000 to 5000 bull 

calves with genotypes and hence with GBV available for selection. Not for all scenarios a 

variation of the reproductive rate for bull dams is reasonable. This pertains to GPROG_ALL 

and GPROG_RANDOM  and hence was not simulated. 
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In summary, all scenarios, REF, GPAR and GPROG can also be viewed as young bull 

programs in which young bulls directly enter service as A.I. bulls. The question of acceptance 

of this genetic material by breeders and commercial dairy producers is not addressed but has 

been discussed elsewhere (e.g. König et al., 2009). Neglecting the specific topic of the 

reproductive rate of bull dams, a total of 10 main scenarios were compared. Accounting for 

the variations of pre-selected animals in all scenarios except REF, GPAR_ALL, and 

GPROG_ALL, a total of 34 scenarios were evaluated for six levels of rmg and the entire set 

was repeated for heritabilities of 0.10 and 0.30. 

 

Criteria for comparison 

 

Breeding organizations most likely will seek to compare alternative selection strategies based 

on the average of breeding values of the bulls finally selected for A.I. since this parameter 

will determine their share in a competitive market. Scenarios that will be optimal under this 

criterion will also be the scenarios resulting in maximization of genetic gain. Averages and 

SD of TBV for varying numbers of selected animals were used. This is also in line with 

studies by de Roos et al. (2010) and Winkelman and Spelman (2010). Given that genetic 

evaluations performed will be unbiased, animals selected based on TBV as available in 

simulation studies will be identical to animals selected based on EBV with high accuracy. 

 

An evaluation of alternate breeding strategy would not be complete without examining 

inbreeding coefficients of the selected animals as only strategies with acceptable inbreeding 

coefficients will be sustainable. This is acknowledged by most authors conducting similar 

simulation studies (e.g. Pryce et al., 2010). Inbreeding coefficients were analyzed as supplied 

for all individual animals by the QMSIM program. 

 

RESULTS and DISCUSSION 

 

Results for a comparison of all ten main scenarios including all sub-scenarios for pre-selection 

steps are given in Figure 2 for a heritability of 0.10 and an accuracy rmg of 0.70 and in Figure 

3 for a heritability of 0.30 and an accuracy rmg of 0.90. These two sets of parameters were 

chosen since they reflect the German situation for genomic selection in Holsteins based on the 

Eurogenomics calibration sample. For functional traits with a low heritability, accuracies of 

around rmg = 0.70 are achieved and for traits with a moderate heritability of around 0.30, 
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accuracies close to rmg = 0.90 have been obtained. All values on the y-axis of the two graphs 

refer to the average of the TBV. Under the parameters used to simulate the population, the SD 

of TBV is 0.32 for h² = 0.10 and 0.55 for h² = 0.30. Scenario REF denotes the reference 

scheme under which bull calves are selected according to their pedigree index. It is well 

known that a wide-spread use of young bulls would be advantageous as recently shown again 

by Buch et al. (2010). For all scenarios, the averages of the TBV of the best five bulls are 

given. 

 

In scenarios GPAR, the bull calves itself are not genotyped. This leads to a substantial 

disadvantage compared to scenarios GPROG and reflects the fact that an additional meiosis is 

involved from parents to sons. Generalizing, this disadvantage will amount to one SD of TBV 

between the best GPAR and GPROG scenarios. In scenario GPAR_ALL, there is no shortage 

in potential bull dams as all females are genotyped and sires of bulls are always genotyped. 

Selection of bull calves under GPAR_ALL is based on genomic pedigree index. Especially 

for a low rmg = 0.70, improvements can be obtained when a pre-selection step involving 50, 

100 and especially 500 bull dams are pre-selected based on their conventional BLUP EBV is 

implemented. This finding may be surprising but is readily explained by the fact that for low 

rmg, the access to a large population of genotyped females is not very helpful when the goal is 

to find superior animals according to their TBV. As expected a pre-selection of bull dams 

according to phenotype results in lowest average values of TBV of bull calves. This is 

especially evident for a low heritability (Figure 2). Thus, breeding organizations or individual 

marketers of genetic material without access to the technology of genomic selection will not 

be competitive when attempting to market young bulls or their semen based on GBV of their 

parents only. For a moderate heritability (Figure 3), however, this low cost strategy would be 

competitive to the reference scenario. This strategy then could also be called an improved 

juvenile scheme. 
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Figure 2. Average of true breeding values (TBV) of five selected bull calves for the scenarios 

examined under parameters h
2
=0.1 and rmg=0.7. 

 

All GPROG scenarios obtain impressive results of an advantage of around 1.0 SD (Figure 2) 

or 1.2 SD (Figure 3) over the reference scenario. Scenario GPROG_ALL refers to the very 

idealistic scenario under which all male calves would be genotyped. However, as can be seen 

when comparing Figures 2 and 3, this would only be a distinct advantage for a higher rmg. 

When comparing all scenarios, it should be kept in mind, that Figures 2 and 3 display the 

average TBV of the five young bulls selected by their GBV. This explains why even an ideal 

situation of a completely genotyped male population will not be of great help when rmg is low 

and hence selection according to GBV is not accurate. As expected, a restriction of the pool of 

genotyped males available leads to lower values of TBV (scenario GPROG_RANDOM). 

However, the drop is not as marked as could be envisaged and underlines that a “bull calf 

program” according to König and Swalve (2009) would indeed produce young bulls with 

superior breeding values as compared to scenarios REF and GPAR. Even under a restriction 

of selecting from a pool of a few thousands of genotyped bull calves only and completely 

neglecting any pre-selection GPROG_RANDOM would be competitive with any scenario 

REF or GPAR. The comparison between scenarios GPAR_ALL and GPROG_ALL also can 



4
th

 Chapter                   Optimal Strategies for Genomic Selection                          90  

                                                                                                                

be interpreted as what is gained from genotyping male calves, i.e. directly focussing on the 

product of a breeding organization, as opposed to concentrate on identifying superior females. 

In both scenarios, there is no shortage of genotyping, however, the superiority of 

GPROG_ALL in terms of the accuracy of selection is very clear. 

 

A highly competitive scenario will be to include a pre-selection step for the bull dams and 

genotype their male offspring. Under low rmg (Figure 2), this strategy even would be superior 

over the idealistic scenario GPROG_ALL. For higher rmg (Figure 3), the advantage of 

GPROG_ALL over the GPROG_BD_BLUP scenarios would only be small. 

GPROG_BD_BLUP would also be cost-effective, as bull dams are not required to have 

genotype information. Thus, investments could be concentrated on genotyping an increasing 

number of bull calves from bull dams that are pre-selected according to their conventional 

BLUP EBV. Increasing the number of bull calves to be genotyped will be very beneficial for 

low rmg and an increase from 1000 to 2000 bull calves (Figure 2) but benefits will be small or 

negligible thereafter. For higher rmg and heritability (Figure 3), a pre-selection step will still 

yield improvements. 

 

Analogous to the comparison of GPAR scenarios, also for GPROG scenarios a pre-selection 

step for bull dams based on phenotypes is not advisable. Again and as expected, the 

differences between scenarios GPROG_BD_BLUP and GPROG_BD_PHEN are larger for a 

low heritability (Figure 2) as compared to a moderate heritability (Figure 3). An even stronger 

reduction in the average TBV of the five selected bull calves is obtained when selection is 

practised in a few herds that have been pre-selected based on herd effects (scenario 

GPROG_BD_HERD). This result would underline that when selection is going to be 

conducted in selected herds only, these herds should be pre-selected according to genetic 

merit.  
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Figure 3. Average of true breeding values (TBV) of five selected bull calves for the scenarios 

examined under parameters h
2
=0.3 and rmg=0.9. 

 

Highest averages of TBV of selected bull calves can be achieved when bull dams in addition 

to bull sires are pre-selected based on their GBV and additionally also bull calves will have 

GBV (scenario GPROG_BD_GENO). However, as evident when comparing 

GPROG_BD_BLUP and GPROG_BD_GENO, the advantage of the latter over the former 

would not be large. The slight increase has to be paid for through the costs of genotyping all 

potential bull dams. In practice, some scheme in between GPROG_BD_BLUP and 

GPROG_BD_GENO should be sought for as many bull dams will be genotyped on the 

expense of the breeders and thus the breeding organization could stick to a strategy of not 

genotyping bull dams on their own expense. This result is in line with Sorensen and Sorensen 

(2010) who stated that it would not be advisable to genotype females unless operating under a 

MOET situation with five offspring per female. As explained above, in the present study, a 

‘limited MOET condition’ was assumed with one male offspring per selected female. 
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The question on whether to genotype females as potential bull dams also relates to the 

question of the extent and impact of preferential treatment of potential bull dams in dairy 

cattle breeding programs. A distinct advantage of genotyping females and basing any 

selection on genomic breeding values instead of conventional ones is that genomic selection 

nullifies the problem of preferential treatment (König and Swalve, 2009). Therefore, the 

ultimate decision of a breeding organization on whether to genotype females and pay for the 

genotyping should be based on the extent to which identifying superior females by 

conventional means is disturbed by preferential treatment. If a substantial extent of 

preferential treatment has to be assumed, scenario GPROG_BD_GENO would be the scheme 

of choice. 

 

Figure 4 and 5 contain details on the mean value of TBV for all GPROG scenarios as these 

scenarios clearly are superior over REF and GPAR as seen from Figures 2 and 3. Figures 4 

and 5 allow for a comparison of different rmg (0.5 to 0.9) for both values of h², h² = 0.10 and 

h² = 0.30. In scenario GPROG_ALL all bull calves in the population are assumed to be 

genotyped. In scenario GPROG_BD_GENO GBV are available for bull sires, bull dams and 

bull calves. Both scenarios perform equally with increases in average TBV from rmg = 0.5 to 

rmg = 0.9 amounting to 1.5 SD for h² = 0.1 and to 1.4 SD for h² = 0.30. These are substantial 

increases and explain the high variation of literature results based on different assumptions for 

rmg. Results for a different value for the number of selected bull calves are not shown since no 

changes of relative differences between scenarios result from different values. Averages of 

TBV for higher numbers of selected bull calves simply decrease due to decreasing selection 

intensity. For a range of 5 to 20 selected bull calves, differences in average TBV are marginal. 
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Figure 4. Average of true breeding values (TBV) of five selected bull calves for GPROG-

scenarios and the REF-scenario under parameters h
2
=0.1 and varying rmg (0.5 to 0.9). 

 

Standard deviations of TBV (not shown in Figures) were examined. As could be expected, SD 

increase with increasing heritability and increasing average TBV. Also, SD for small numbers 

of selected bull calves were higher than for larger numbers. This finding is due to the 

stochastic nature of the simulation and reflects random fluctuations which are more visible 

when considering only very few selected animals.  

 

Average inbreeding coefficients of selected bull calves for the GPROG scenarios, varying rmg 

and varying the number of selected bull calves, 5 or 20, were examined. Differences for 

inbreeding coefficients between the two values of the number of selected bull calves were 

very small. For h² = 0.10, average inbreeding coefficients were in the range of 6.86 % to 

8.40 % and substantially higher than those for h² = 0.30 (range: 4.80 % to 5.90 %). A reason 

for this might be that the information from relatives becomes less important with increasing 

heritability. Within each set of results for h² = 0.10 or h² = 0.30, clearly scenario 

GPROG_BD_BLUP resulted in higher levels of inbreeding since this scenario relies on pre-

selection of bull dams according to conventional BLUP EBV. Average inbreeding 

coefficients for GPROG_BD_BLUP were in the range of 7.72 % to 8.40 % for h² = 0.10 and 

in the range of 5.26 % to 5.90 % for h² = 0.30. 
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Figure 5. Average of true breeding values (TBV) of five selected bull calves for GPROG-

scenarios and the REF-scenario under parameters h
2
=0.3 and varying rmg (0.5 to 0.9). 

 

 

Inbreeding coefficients of selected animals in one generation can be seen as helpful 

information but may not be fully informative for an assessment of future inbreeding. As the 

entire simulation and selection of animals in the present study focuses on the very last 

generation, an additional hint on future inbreeding may be taken from the relationship of the 

selected animals. The number of sons per sire of sons was taken as an indicator value. This 

value was calculated based on determining the size of the half-sib group from which each 

selected calf would come and then averaged over the number of selected bull calves, 5 and 20, 

respectively. As the simulation scheme used is not optimized for a multi-paths selection 

model, many sire of sons may be sires of selected bull calves. Hence values close to unity 

indicate that all selected bull calves came from different sire families. In general, differences 

between all GPROG scenarios were marginal and in the range of 1.000 to 1.284 for h² = 0.1 

and 1.000 to 1.277 for h² = 0.30. However, scenario GPROG_BD_GENO under which sires 

of sons, bull dams and the young bull calves are genotyped tends to favour fewer sire of sons 

and thus is an indication for higher future inbreeding as compared to all other scenarios. 

However, under scenario REF the average size of the half-sib group for selected bull calves 

for h² = 0.10 was 1.707 (n =5 selected bull calves) and 2.881 (n = 20 selected bull calves) and 

for h² =0.30 the average size of the half-sib group was 1.695 (n = 5 selected bull calves) and 
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2.579 (n = 20 selected bull calves). Given that scenario REF can be viewed as the initial step 

of a conventional progeny testing scheme, this is a very strong indication that breeding 

programs based on genomic breeding values lead to lower inbreeding as compared to 

conventional programs which was also underlined by de Roos et al. (2010). 

 

In their deterministic model calculation, König et al. (2009) examined the competitiveness of 

genomic selection relative to a conventional progeny testing program and found both 

approaches on an equal level with respect to discounted profit when rmg
 
was 0.40. With 

increasing values of rmg, the application of genomic selection was advantageous. Most studies 

trying to assess the benefits of genomic selection so far have worked with fixed values for 

accuracies of genomic breeding values. Schaeffer (2006) used rmg = 0.75 and a very similar 

value of 0.71 was assumed in the studies of Buch et al. (2010), Sorensen and Sorensen (2010), 

and Pedersen et al. (2010). Relatively similar values for rmg
2
 of 0.44 and 0.52 in a two-stage 

selection procedure were used in the deterministic calculation of Winkelman and Spelman 

(2010). These values may appear somewhat low compared to values from large calibration 

samples as cited above but reflect the specific situation of the implementation of genomic 

selection in New Zealand. Apart from König et al. (2009), only the studies of de Roos et al. 

(2010) and especially Lillehammer et al. (2010) looked at varying levels for rmg
2
. The latter 

study up to now is also the only simulation study examining the benefits of genomic selection 

in a breeding program that analysed a population across several generations accounting for the 

need of new calibration and considering the respective accuracies. Lillehammer et al. (2010) 

found a superiority of 46 % of genomic selection with respect to genetic gain over a 

conventional progeny testing breeding program. Lower values for the superiority of genomic 

selection over conventional programs were only found by Winkelman and Spelman (2010). 

This is in sharp contrast to other studies that have found an increase of genetic gain by 100 % 

or even larger (e.g. Schaeffer, 2006; König et al., 2009; Buch et al. 2010). In the present study, 

for a heritability of h² = 0.10, all GPROG scenarios are on a level for the average TBV of 

selected bull calves which is very similar to scenario REF when rmg is as low as 0.50, i.e. the 

reliability of genomic breeding value is 25 %. Increases in rmg then lead to distinct numeric 

advantages up to around 12 %. For a higher heritability of h² = 0.30, again all GPROG 

scenarios are on an equal level with scenario REF for rmg = 0.50. Furthermore, the 

combination of rmg = 0.50 for h² = 0.30 appears to be quite a way off from what would be 

expected even for small calibration samples. Increasing rmg to values of 0.70 or even higher 

results in advantages of GPROG scenarios of around 10.5 %. Hence, genomic breeding 
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programs have the capacity of increasing the average of the TBV of selected bull calves by 

around 10 to 12 % in comparison with a young bull program. The reason for the varying 

degree of superiority of genomic selection when compared to other programs in the literature 

presumably is a result of the different assumptions on which different studies were based on. 

This not only applies to the accuracy of genomic selection but to a large extent will also be 

due to the selection intensities on the paths of selection that were studied. Unfortunately, 

virtually all studies mentioned so far have failed in analysing a wide range of selection 

intensities for various paths of selection. Most often, only fixed values were assumed. 

Examples are Schaeffer (2006) with a fixed value of 1000 pre-selected bull dams and a fixed 

selection of 20 bull calves out of 500 bull dams, Buch et al. (2010) who examined fixed 

values of 1000 pre-selected males and 2000 pre-selected females. Further examples include 

the work of Lillehammer et al. (2010) who used a fixed value of 750 genotyped males as a 

pool for selection and also Winkelman and Spelman (2010) when analysing only five 

different options of selection intensities and strategies. Pryce et al. (2010b) have examined the 

effect of varying the number of selection candidates to be genotyped for a range of 1000 to 

10,000 for scenarios comparable to the GPROG scenarios of the present study. An important 

result from their study was that increases in response to selection are very small for values of 

candidates larger than 5000. This is very much in line with the present study as further 

increases of average TBV beyond 5000 candidates are not expected from the already marginal 

increases when comparing 4000 to 5000 candidates. It should be emphasized that scenario 

GPROG_ALL, denoting the unlimited availability of genotypes for young male candidates for 

selection only is advantageous for medium to high reliability of GBV. For low reliability, i.e. 

below 0.50, an unlimited availability of genotypes by itself is not helpful with respect to 

average TBV unless it is combined with a pre-selection of bull dams. In the case of a pre-

selection of bull dams as simulated in scenarios GPROG_BD_BLUP and 

GPROG_BD_GENO then an “unlimited” availability can be reduced to values below 5000 

candidates. 

 

The examination of a wide range of selection intensities and selection strategies is of great 

interest to breeding organizations. The reason for this is the fact that the number of animals to 

be genotyped from the point of view of a breeding organization largely is a function of costs. 

The costs of genotyping with high-density SNP-arrays already has seen a substantial decrease 

when compared to the early days of genomic selection and also varies between the density of 

arrays. Low-density arrays with 3000 to 4000 SNP may have to be taken into account, at least 
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for pre-selection steps (Weigel et al. 2010), and ‘early’ high-density arrays like the Illumina 

50K-Chip are now replaced or accompanied by arrays of much larger density.  

 

Selection intensities, however, are not the only parameters that need variation in simulation 

studies. Intensity will be interwoven with strategy. A good example in this respect is the 

question whether it will be worthwhile to genotype females in addition to male animals. 

Hayes et al. (2009) stress this point and refer to Schaeffer (2006) who concluded that 

genotyping females could probably have a higher contribution to genetic gain than genotyping 

males. However, it may be argued that this statement is not independent of the assumption of 

fixed selection intensities when pre-selecting bull dams and selecting bull calves from these 

dams. Spelman et al. (2010) reported on the practical experience of implementing genomic 

selection in New Zealand. These authors concluded that genotyping females had been 

abolished completely by the breeding organization since it was not cost effective. König and 

Swalve (2009) argued that under the assumption of low costs for genotyping, a breeding 

program could be envisaged consisting of genotyping as many bull calves as possible and 

even ignoring any pre-selection. Such a breeding programme would narrow almost all 

selection decisions into one path of selection and would be competitive with a Schaeffer-type 

genomic selection program when assuming selection fractions of less than 0.1 %. Quite 

clearly, an application of such a program would only be possible for very low-cost genotyping 

and also could be improved upon by any reasonable pre-selection of dams of bulls. From our 

results, the main conclusion is that bull calves always should be genotyped. Scenario 

GPROG_BD_BLUP reaches response parameters on a level very comparable to 

GPROG_BD_GENO or GPROG_ALL without having to genotype females. For specific sets 

of parameters (h², rmg) it could be advantageous to promote genotyping of females in such a 

way that this would result in a GPROG_BD_GENO strategy, i.e. assuming that a large 

number of females would have been genotyped. A GPROG_BD_GENO strategy would take 

advantage of the fact that many breeders would genotype their best cows at their own expense. 

 

The question of whether to genotype females is also not independent of the reproductive rate 

assumed for females. This was shown by Sorensen and Sorensen (2010) who assumed either 

one offspring per dam or five in a MOET situation. Under MOET, it was clearly beneficial to 

genotype females. Similar results were obtained by Pryce et al. (2010). In the present study, a 

more pessimistic approach towards the success rates possible under embryo transfer was 

taken. One male offspring per female was assumed and a decreased rate mimicking a situation 
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without embryo transfer was also examined. This latter scenario first of all affected the results 

for the REF scenario. Relative differences between the two sets of results for GPAR and 

GPROG scenarios, however, were too marginal to warrant presentation of results and did not 

result in a change of the relative superiority of scenarios.  

 

CONCLUSION 

 

Breeding programs for dairy cattle which partly or completely are based on breeding values 

estimated using genomic information and neglecting phenotypes for young selection 

candidates have the potential of at least doubling the selection response. In comparison with 

idealistic scenarios under which all available male calves are genotyped, a very similar 

selection response can be achieved with genotyping only a few thousands of selection 

candidates, i.e. bull calves, if bull dams are preselected based on either conventional EBV or 

on genomic breeding values and assuming that all sires of future sons are genotyped. A 

restriction of the selection of bull calves based on their GBV to herds selected by phenotypic 

herd average is not advisable. In general, phenotypic information should not be used for pre-

selection of animals to be genotyped. Pre-selection steps based on conventional EBV always 

outperform the use of phenotypic information.  

 

The need for a sufficient accuracy of genomic breeding values was again underlined by the 

results of the present study. Inbreeding can be reduced when using genomic breeding values 

and hence such breeding programs will lead to an increase of sustainability with respect to 

genetic diversity. 
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ABSTRACT 

 

Organic breeding programs are characterized by a relatively small population size, alternative 

breeding goals with a strong focus on dairy cattle health, and an intensive use of natural 

service sires. Additionally, when selecting sires from conventional breeding programs, 

genotype by environment (G x E) interactions may exist. The objective of the present study 

was to compare genetic gain and inbreeding coefficients in organic breeding program designs 

by applying stochastic simulations. The main breeding strategies were: i) selecting sires from 

conventional breeding programs, but taking into account G x E interaction, ii) selecting 

genotyped sires from the organic environment for AI, and iii) selecting genotyped natural 

service sires in each of the organic herds. The simulated conventional population comprised 

148,800 cows in 2,976 different herds with an average herd size of 50 cows per herd, and 

1,200 organic cows were assigned to 60 herds. In a young bull program, selection criteria of 

young bulls in both production systems (conventional or organic) were either 'conventional' 

estimated breeding values (EBV) or genomic breeding values (GEBV) for two traits with   

low (h
2
 = 0.05) and  moderate heritability (h

2 
= 0.30). GEBV were calculated for different 

accuracies (rmg). When selecting sires in the conventional population, G x E interactions were 

depicted by modifying true breeding values (TBV) as simulated originally in the range from rg 

= 0.5 to 1.0. Evaluation criteria were TBV and inbreeding coefficients of selected sires and 

their progeny in the next generation. For h
2
 = 0.05 and rmg ≥ 0.70, an implementation of  

genomic selection and distributing selected sires via artificial insemination (AI) revealed 

higher genetic gain than selecting young sires in the larger conventional population based on 

EBV; even when neglecting G x E interactions (rg = 1.0). Basing selection decisions in both 

environments on GEBV, rg ≤ 0.80 is the general threshold favouring selection in the organic 

population. Only for pronounced G x E interactions (rg = 0.5) and highly accurate GEBV (rmg 

= 1.0), TBV from genotyped organic natural service sires were competitive with TBV of 

conventional sires without genomic information. Inbreeding coefficients of selected sires and 

their offspring were generally lower in genomic breeding program designs. For new 

phenotypes or scarcely recorded traits, genomic selection is a breeding strategy enabling 

competiveness for small organic dairy cattle populations. 

 

Key words: Genomic breeding program, organic population, genotype x environment 

interaction 
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INTRODUCTION 

 

Especially for organic or low input dairy cattle farming, new functional health traits play an 

important role (Rozzi et al., 2005). Mark (2004) gave an extended overview of these traits 

relevant for dairy cattle breeding in the near future. Examples are temperament and other 

behavior traits, feed intake, and a broad variety of health traits including the compound traits 

claw disorders, mastitis, and metabolism, which are generally not yet used for official national 

genetic evaluation. Due to the comparatively small population size in organic farming, 

implementation of an own organic breeding program design for new traits based on progeny 

testing should be associated with a loss in genetic gain and in associated economic evaluation 

criteria, e.g. fewer discounted return and fewer discounted profit (Hunt et al., 1974). 

Therefore organic dairy cattle farmers have continued to use semen of progeny tested sires or 

young bulls from conventional dairy cattle breeding programs. However, when allowing gene 

flow from high input to low input environments, the problem of genotype by environment (G 

x E) interactions may exist (König et al., 2005; Nauta et al., 2006). Furthermore, apart from 

attempts currently made in contract herds (Schierenbeck et al., 2011; Gernand et al., 2012), 

only a few, routinely recorded indicator traits are used to improve dairy cattle health by 

breeding. For example, SCC has been used in conventional breeding programs as an indicator 

trait for mastitis over decades, but the genetic correlations between SCS and clinical mastitis 

only range between 0.60 and 0.70 (e.g. Emanuelson et al., 1988; De Haas et al., 2002). 

 

The concept of genomic selection (GS) offers new perspectives for the inclusion of new traits 

in organic dairy cattle breeding programs. Buch et al. (2011) stated that GS has focused on 

traits that have been recorded and used for official genetic evaluation for a long time, because 

for these traits, large calibration groups of progeny tested bulls with highly accurate, 

conventionally estimated breeding values (EBV) exist. The largest reference population for 

the Holstein breed including 15,966 bulls from France, The Netherlands, Denmark, Sweden, 

Finland, and Germany contributed to significant gain in accuracies of genomic estimated 

breeding values (GEBV) for the traditional list of traits (Lund et al., 2010) and this reference 

population has substantially increased in size in the past two years. Forming a joint reference 

population across countries implies a harmonization of traits and EBVs , as has been 

successfully implemented for international genetic evaluations for production traits, 

conformation, fertility, milkability, and longevity. For new health traits, large datasets are 

only available from Scandinavia (Heringstad et al., 2010) for Norwegian Red, and from 
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Austria (Koeck et al., 2010; Egger-Danner et al., 2012) for dual purpose Simmental cows, e.g. 

for directly recorded, clinical mastitis. For newly recorded traits, older proven bulls as used in 

‘conventional’ reference populations have no reliable EBVs based on daughter records. As a 

solution, Buch et al. (2011) suggested to set up calibration groups of cows, and to use 

phenotypes instead of conventional sire EBVs as dependent variables to estimate effects of 

single nucleotide polymorphisms (SNP). With this strategy, for the same number of animals 

within the reference population, accuracies of GEBVs were higher than when using sires with 

lowly reliable EBVs. McHugh et al. (2011) showed via a simulation study that additional gain 

in terms of higher selection response and shorter generation intervals could be obtained when 

using genotyped females for optimization of genomic dairy cattle breeding programs. As a 

consequence, some breeding programs implemented reference groups of cows for new traits. 

One example, related to the current study, is the reference group including almost 1,200 

Brown Swiss cows mostly from organic farms in Switzerland within the framework of the 

'Low Input Breed' project. The objective of a study within the ROBUSTMILK- project (Berry 

et al., 2011) is to utilize genomic and phenotypic data on almost 4,000 Holstein-Friesian cows 

from experimental farms in Ireland, the UK, the Netherlands and Sweden to explore the 

complex of female fertility. Mixing of populations for the estimation of SNP effects has been 

suggested for beef cattle (Rolf et al., 2010), and offers new perspectives for collaborations in 

organic dairy cattle breeding.  

 

In contrast to restrictions regarding the use of some reproduction biotechnologies such as 

embryo transfer (Nauta et al., 2005), the molecular tool of GS might be accepted in organic 

dairy cattle breeding. As a side effect, the implementation of GS will benefit natural service 

sires. Natural service sires are frequently used in organic dairy cattle farming, because 

artificial insemination (AI) conflicts with natural mating behaviour, and is as such considered 

by some organic organizations to have negative impact on animal welfare and integrity 

(Rutgers et al., 1996). When implementing GS, accuracies of GEBVs of natural service sires 

will be competitive with accuracies of GEBVs of sires offered for AI worldwide. The direct 

selection of genotyped male calves generates a new perspective for improving existing 

breeding programs in the era of genomic selection, and enables a modification of the 4-

pathway model according to Rendel and Robertson (1950) when calculating annual genetic 

gain (König and Swalve, 2009). 

 



5
th

 Chapter                     Alternative Genomic Breeding Programs                             105  

                                                                                                                

In summary, improvement of new traits in small organic populations can be realized via i) 

selecting sires from conventional breeding programs, but taking into account G x E 

interaction, ii) implementing an own genomic breeding program and using genotyped sires for 

AI, or iii) implementing an own genomic breeding program, but only using genotyped natural 

service sires. In the present study, success of these breeding strategies was compared by 

applying stochastic simulations and evaluation of true breeding values (TBV) and inbreeding 

coefficients of selected sires and their offspring in the next generation. 

 

MATERIALS AND METHODS 

 

Stochastic simulation 

 

Analogous to a previous study (Wensch-Dorendorf et al., 2011) assessing the effect of pre-

selection in genomic breeding programs, the QMSIM program (Sargolzaei and Schenkel, 

2009) was used to simulate a fictitious population including 150,000 cows. The input 

parameters for QMSIM were defined as follows: No. of replicates = 50, no. of generations for 

historical population = 1000, historical population size = 50,500 animals including 500 bulls, 

total heritability = 0.05 or 0.30, no. of generations for simulated population = 20, replacement 

ratio for sires per generation = 0.5, replacement ratio for dams per generation = 0.25, selection 

criterion over the 20 generations = high EBV, culling criterion = low EBV, mating design 

among selected males and females = random, population growth rate = 0.25 from generation 1 

to 9, and 0 from generation 10 to 20. QMSIM also allows the simulation of parameters on the 

genomic level. Settings were: no. of chromosomes = 30, no. of markers per chromosome = 

333, marker position = random, marker mutation rate =2.5e-6 with recurrent effects, 

quantitative trait loci (QTL) mutation rate = 2.5e-6, no. of QTL per chromosome = 5, additive 

genetic variances due to QTL = 20% of the total additive genetic variances. A considerable 

part of the simulation for studying varying scenarios of genomic breeding programs was 

conducted by firstly  applying QMSIM, and secondly modifying the QMSIM output via own 

programming using the computer languages SAS and C. QMSIM output generated in this 

present study included phenotypes, TBV and EBV, but high throughput SNP data was 

neglected. For studying aspects of breeding program designs in various scenarios, GEBVs 

were 'imitated' using a strategy proposed by Wensch-Dorendorf et al. (2011) for saving 

computing time and reducing memory. In detail, TBVs and pre-defined correlations between 
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TBV and GEBV referred to as accuracy of GEBV (rmg) were used to calculate GEBVs 

applying the following formula (1): 

GEBVi = ( ( 1-r
2

mg )
 ½

 RND + rmg · TBVi / sd(TBVt ) ) sd(TBVt ) [1] 

where  GEBVi is the genomic breeding value of animal i, rmg is the accuracy of the genomic 

breeding value altered in the range from 0.5 to 1.0, TBVi is the true breeding value of animal i, 

sd(TBVt) is the SD of TBV in generation t, and RND is a random variable sampled from 

N(0,1). Hence, GEBV for a wide range of rmg can be depicted very easily without setting up 

specific designs for a calibration group. 

 

Formula (1) was also used to depict the aspect of G x E interactions by altering genetic 

correlations (rg) between different environments. For sires selected in the conventional 

population, and subsequently used in the organic population, TBV were modified (mTBV) by 

altering rg in the range from 0.5 - 1.0. Altering TBV reflects the physiological background of 

G x E interactions, i.e. the change of an animals' true genetic value with altered gene 

expression in changing environments. Consequently, formula (2) for calculating mTBV was: 

mTBVi = ( ( 1-r
2

g )
 ½

 RND + rg · TBVi / sd (TBVt ) ) sd(TBVt ) [2] 

with parameters as defined above. 

 

TBV for progeny of sires (pTBV) in the organic population were calculated according to 

formula (3): 

RNDσ ) FF ( 0.25 0.5)TBVTBV ( 0.5pTBV adsdsi  [3] 

where pTBVi is the TBV of progeny i in the organic population; TBVs  is TBV of sire s (when 

directly selected in the organic population) or mTBV (when selected in the conventional 

population) of progeny i, TBVd  is the TBV of the dam d of progeny i; Fs and Fd are 

inbreeding coefficients of sire and dam of progeny i, respectively; and σa
2

 is the additive 

genetic variance of the trait of interest, and RND is a random variable sampled from N(1,0). 

Simulation was performed for a low heritability trait (h
2
 = 0.05), and for a moderate 

heritability trait (h
2
 = 0.30). 

 

Breeding program scenarios 

 

With the aim of studying the impact of genotyped natural service sires in detail for both 

evaluation criteria, genetic gain and inbreeding, required assigning cows and bulls to 

individual herds with the restriction of matings to sires recruited from the same herd only. 
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Cows in the conventional population were distributed to 2,976 different herds with an average 

herd size of 50 cows per herd, and 1,200 organic cows were distributed to 60 different organic 

or 'low input herds' with an average herd size of 20 cows per herd depicting the current 

organic and low-input population structure for Brown Swiss in Switzerland (Yin et al., 2012). 

The essential steps of the simulation from the practical point of view along with analyzed 

breeding program scenarios and defined abbreviations for different scenarios are illustrated in 

Figure 1. In total, 5 different breeding strategies were defined to select service sires for the 

organic population. All strategies follow a young bull program as defined e.g. by Oltenacu 

and Young (1974) which implies a comparison of scenarios for identical generation intervals. 

Scenarios are labeled using the endings *_AI (selected young sires are used for artificial 

insemination in the organic population) or *_NS (matings of selected sires are restricted 

within herds).  

 

In the first scenario (C_EBV_AI), based on their EBV, 5 young bulls were chosen for AI in 

the organic population from 2,976 conventional herds. Selected young bull were sons of 

influential proven bulls with an average of 500 daughters per proven bull. Without daughter 

information at this point of selection, the EBV of the young sire can be interpreted as a 

pedigree index. Such a scenario reflects the traditional situation that young sires without 

daughter records were used for approximately 30 % of inseminations in conventional progeny 

testing programs. G x E interaction between the conventional and the organic population was 

considered by altering sires' TBV. The second scenario (C_GEBV_AI) was realized by 

selecting 5 sires from conventional farms based on GEBV. Again, G x E interaction was 

mimicked by altering their TBV. The practical relevance can also be seen within the context 

of multiple across country evaluations enhanced with genomic information (GMACE). The 

last three breeding scenarios (O_GEBV_AI, O_GEBV_NS and O_EBV_NS) were carried out 

by selecting service sires directly in the small organic population, and by neglecting G x E 

interactions. In scenario O_GEBV_AI, 5 service sires for AI were selected in the whole 

organic population based on GEBV. In scenario O_GEBV_NS and scenario O_EBV_NS, 

selection criterion for natural service sires within herds was either GEBV or EBV, 

respectively. For AI, the 5 selected sires were used with equal frequencies in the organic 

production system, and selected natural service sires were mated only with cows from the 

same herd. To account for practical circumstances, matings between close relatives (sire - 

dam, sire - grand dam, sire - full-sib, sire - half-sib) were forbidden. This implies the 

availability of at least two selected natural service sires per herd. A further detailed 
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comparison was made between scenario O_GEBV_NS and an identical genomic scenario, but 

without mating restrictions (O_GEBV_NS_II). 

 

Main evaluation criteria were the average TBV of selected sires (when the sire was directly 

selected in the organic environment) or mTBV (when the sire was selected in the 

conventional population), and the average pTBV of their progeny in the next generation. In 

addition to TBVs, inbreeding coefficients of sires and their progeny were monitored. For this 

objective, the software package 'Pedigreemm', (subroutine of the R 2.11.1-version by Bates 

and Vazquez, 2009), was used. The algorithm for computing inbreeding coefficients in this 

package is based on the approach by Sargolzaei and Iwaisaki (2005). 

 

 

 

Figure 1. Explanation of the simulation for the evaluation of different scenarios of genomic 

breeding programs (TBV = true breeding value, EBV = conventional estimated breeding 

value, , PHENO = phenotype, GEBV = genomic estimated breeding value, AI = artificial 
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insemination, NSS = natural service sires, rmg = accuracy of GEBV, rg = genetic correlation in 

the same trait between conventional and organic production system). 

 

RESULTS AND DISCUSSION 

 

True breeding value of selected sires and their progeny 

 

A comparison of TBVs or mTBVs (hereafter generally named TBV) of selected sires and 

their progeny after one round of mating with organic cows for four different scenarios 

(C_EBV_AI, O_GEBV_AI, O_GEBV_NS, and O_EBV_NS, respectively) is given in Figure 

2a for h
2
 = 0.05, and in Figure 2b for h

2
 = 0.30. Results from the more complex scenario 

C_GEBV_AI are shown in Figure 3a for h
2
 = 0.05, and in Figure 3b for h

2
 = 0.30. Same 

trends of increasing TBV with increasing rmg or increasing rg are depicted for the low and the 

moderate heritability trait for sires and for their progeny. As expected, genetic gain in terms of 

average TBV was higher for the trait with higher heritability. In order to ease interpretation of 

results, it should be noted that average SD of TBV from all male candidates in last generation 

was SD = 0.20 for h
2
 = 0.05, and SD = 0.49 for h

2
 = 0.30. For a low heritability trait (h

2
 = 

0.05; Figure 2a), and assuming rmg of value 0.70 or higher, selection strategy O_GEBV_AI 

revealed highest TBV. Hence, from a more practical point of view, selecting 5 sires with 

moderately accurate GEBV directly in the organic population, and afterwards widespread 

used via AI, will ensure highest genetic gain. Average TBV from scenario O_GEBV_AI for 

h
2
 = 0.05 and rmg = 0.70 was even higher compared to a young bull program in the 

conventional population, i.e. when neglecting G x E interactions (rg = 1.0). For the moderate 

heritability trait, superiority of scenario O_GEBV_AI over scenario C_EBV_AI was less 

pronounced (Figure 2b); here, rmg of 0.80 or higher is required for achieving highest response 

in selection. For identical rmg, and when directly selecting young sires in the organic 

population, the 'genomic AI scenario' (O_GEBV_AI) revealed higher genetic gain compared 

to the 'genomic natural service sire scenario' (O_GEBV_NS), e.g. TBV of values 2.27 versus 

2.05 for h
2
 = 0.05 and rmg = 0.70 (Figure 2a). Scenario O_EBV_NS was not competitive at all.  

 

For same heritabilities and same breeding scenarios, TBV of sires were throughout higher 

than pTBV of their progeny. This was especially the case when selecting sires for AI in the 

large conventional population in scenarios C_EBV_AI and C_GEBV_AI, but it was also 

valid for the smaller organic population in scenario O_GEBV_AI. Selecting a small no. of 
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only 5 sires from a total of 74,400 candidates in the conventional population, but also from 

600 candidates in the organic population, imply very high selection intensities of i = 4.05 and 

i = 2.73, respectively. The impact of such an intensive selection of young sires for AI on the 

increase of their TBV was shown by König et al. (2011). Several theoretical investigations 

have supported the dominant role of the male pathways of selection in dairy cattle breeding 

programs (e.g. Van Tassel and Van Vleck, 1991). However, sires were selected based on 

EBVs or GEBVs for a single trait, whereas in practical breeding programs, realized selection 

intensities were lower than expected selection intensities due to a multitude of selection 

criteria not necessarily reflecting the genetic potential (König et al., 2007). Only a strong 

focus of selection on one target trait resulted in realized selection intensities on the cow-sire 

pathway close to theoretical expectations. One classical example is the rigorous selection on 

SCC when graduating cow sires in Sweden (Powell et al., 2003). Selection intensity of cows 

in the present study was comparatively low (i = 0.55). Hence, also cows with lower genetic 

merit were used for matings with young sires. Consequently, average pTBV of offspring were 

lower than TBV of their sires.  

 

Natural service sire scenarios (O_GEBV_NS and O_EBV_NS) were generally not 

competitive with breeding strategies based on AI (C_EBV_AI and C_GEBV_AI). Only for 

pronounced G x E interactions between the organic and the conventional population (rg = 0.5), 

and highly accurate GEBV (rmg = 1.0), average TBV from scenario C_EBV_AI was lower 

than average TBV from scenario O_GEBV_NS. Both, the low genetic correlation in the same 

trait between production systems, and the extremely high accuracy of GEBV, are not 

consistent with practical results. König et al. (2005) gave an overview of rg in same traits 

across country borders, or between different production systems within countries. Pronounced 

indications for G x E interactions for production traits with rg = 0.5 or lower were only found 

for countries characterized by substantial, climatic differences, e.g. Kenya versus United 

Kingdom (Ojango and Pollot, 2002). When grouping herds into different subsets according to 

average production levels or intra-herd-variances within countries, lowest genetic correlations 

were in the range of 0.75 and 0.80 (e.g. Veerkamp and Goddard, 1998; Calus et al., 2002). 

Kearny et al. (2004a) analyzed G x E interactions based on data from two production systems 

(grazing versus conventional) within Ireland. Genetic correlations were 0.89, 0.88, and 0.91 

for milk, fat, and protein yield, respectively. Also estimates of genetic correlations between 

the two environments for low heritability reproduction traits (days open, days to first service 
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and number of services per conception) were high and not significantly different from unity 

(Kearny et al., 2004b). 

 

Accuracy of GEBV is moderate to high when GS is based on a large set of bulls in a 

calibration group, which is the case e.g. in the EuroGenomics project (Lund et al., 2010) or in 

the collaborative project in North America (VanRaden et al., 2009). For new traits especially 

in rare breeds or in small, low input populations, large calibration groups of sires with highly 

reliable conventional EBV do not exist. The only alternative would be to base GS on a 

calibration group of cow phenotypes, but first results revealed comparably low values for rmg. 

Veerkamp et al. (2011) used 1,841 genotyped cows and 194 genotyped sires. Accuracies of 

direct genomic values ranged from 0.40 to 0.58 for milk, fat and protein yield. In the study by 

Verbyla et al. (2010), 527 genotyped Dutch Holstein-Friesian heifers with records for rare 

phenotypes were the base for estimating direct genomic values for energy balance. The small 

no. of phenotypes in the calibration group resulted in a low value of rmg = 0.29. Those first 

results, and the general dependency of rmg on the no. of phenotypes in the calibration group 

(e.g. Goddard, 2009), should be kept in mind when comparing TBV of selected sires from the 

'genomic low input breeding strategies' O_GEBV_AI and O_GEBV_NS to the 'conventional 

selection strategy' C_EBV_AI in the conventional population (Figures 2a and 2b).  

 

In addition to the size of the calibration group, heritability of the trait is a crucial parameter 

determining accuracy of genomic evaluations. Heritability also has strong impact on accuracy 

of conventional EBV. Correlations between EBV and TBV for proven sires in the 

conventional population with an average of 500 daughter records were 0.90 for h
2
 = 0.30, and 

0.75 and for h
2
 = 0.05. For GEBV and for pre-defined values of rmg, the no. of animals 

required in a calibration set decreases with increasing heritabilities (e.g. Goddard, 2009). The 

use of dense SNP chips (777K SNP chip) for high heritability traits offer the possibility to 

transfer estimates of SNP effects to other populations or even to other breeds. Rolf et al. 

(2010) outlined this concept for highly heritable meat quality traits in beef cattle, but this 

strategy might be difficult to realize for low heritability health traits in dairy cattle. Assuming 

high values of rmg in combination with high genetic correlations between environments, 

highest average TBV were achieved in scenario C_GEBV_AI (Fig. 3a and 3b). Assuming an 

optimal sub-scenario with rmg = 1 and rg = 1, TBV of selected sires were 2.20 for h
2
 = 0.05, 

and 7.63 for h
2
 = 0.30. When comparing scenarios O_GEBV_AI (Figure 2a) and 

C_GEBV_AI (Figure 3a) for same values of rmg, higher average TBV were realized when 
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selecting sires in the large conventional population for rg in a range between 0.70 and 1.0. 

Additionally, results from the present study indicate the value of genotyped young bulls from 

foreign countries. VanRaden and Sullivan (2010) pointed out that more than 50,000 dairy 

cattle worldwide are genotyped with high-density SNP chips. Consequently, they developed 

statistical procedures for GMACE- applications. Hence, international genetic evaluations for 

GEBVs might be the main selection criterion across country borders in the near future, and 

genetic correlations will determine the rank of foreign sires on the national scale, and the 

significance of domestic breeding program designs. 

 

The relatively simple selection strategy, i.e. selection of natural service sires in the organic 

population based on EBV (= pedigree index), resulted in lowest average TBV. Selection 

according to EBV (O_EBV_NS) was only comparable to scenario O_GEBV_NS for a low 

accuracy of GEBV of value rmg = 0.5 (Figures 2a and 2b). Genomic breeding values based on 

a multitude of SNP- effects depict an animals' individuality. Consequently, GS definitely aids 

in avoiding the observed practical drawback of so called 'pedigree slippage' (Everett, 1984). 

The phenomenon of 'pedigree slippage' indicates biases in estimated breeding values of young 

sires when selection was based on pedigree indices due to over-estimated EBV of bull dams. 

Possible reasons for over-estimation were preferential treatment of potential bull dams (Kuhn 

et al., 1994), or the impact of heterogeneous within-herd variances on cow EBVs (e.g. Garrick 

and Van Vleck, 1987).  
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Figure 2. Average and standard error of true breeding value of selected sires and their progeny 

for four different scenarios (C_EBV_AI, O_GEBV_AI, O_GEBV_NS, O_EBV_NS as 

explained in Figure 1) for h
2
 = 0.05 (a) and for h

2 
= 0.30 (b). 
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Figure 3. Average and standard error of true breeding values for selected sires and their 

progeny for scenario of C_GEBV_AI (explanation: Figure 1) for h
2
 = 0.05 (a) and h

2
 = 0.30 

(b). (rg = genetic correlation in the same trait between conventional and organic production 

system) 

rg: 

rg: 
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Inbreeding coefficients of selected sires and their progeny 

 

Mean values and SE of inbreeding coefficients of selected sires and their progeny for all five 

scenarios C_EBV_AI, C_GEBV_AI, O_GEBV_AI, O_GEBV_NS, and O_EBV_NS are 

shown in Figure 4a for h
2
 = 0.05, and in Figure 4b for h

2
 = 0.30. Taking the average over all 

scenarios, inbreeding coefficients of selected sires were 0.092 (SE = 0.019) for h
2
 =0.05, and 

0.056 (SE = 0.012) for h
2
 = 0.30. For all scenarios, higher inbreeding coefficients were 

observed for the low heritability trait. Several studies in the pre-genomic and in the genomic 

era support our results. For example, Woolliams (1989) reported an increase of correlations 

between EBV of related animals, and an increase of probabilities of their co-selection with 

decreasing heritabilities. Due to higher weight on family versus individual information, also 

Strandén et al. (1991) noted that inbreeding accumulated most rapidly when selection was 

focused on a low heritability trait. For different strategies of pre-selection of young sires in 

genomic breeding programs, Wensch-Dorendorf et al. (2011) found substantially higher 

inbreeding coefficients with decreasing heritabilities.  

 

In the present study, genomic selection scenarios C_GEBV_AI, O_GEBV_AI, O_GEBV_NS 

resulted in lower inbreeding coefficients of selected sires compared to the conventional 

scenario C_EBV_AI (Figure 4a and 4b). For h
2
 = 0.05, inbreeding coefficients of sires were 

0.09 for scenarios C_GEBV_AI, O_GEBV_AI, and O_GEBV_NS, and 0.12 for scenario 

C_EBV_AI. König et al. (2011) concluded that a pattern of single markers combined in a 

GEBV clearly depicts the individuality of a selection candidate instead of basing selection 

decisions on conventional BLUP-EBV. For the management of inbreeding in genomic 

breeding programs, Schaeffer (2006) recognized early the possibility to calculate 

heterozygosity indices based on marker genotypes. Pedersen et al. (2009) reported that 

marker-assisted selection might reduce identical by descent probabilities as well as pedigree-

estimated inbreeding. Lillehammer et al. (2011) also found that the genomic breeding 

schemes could reduce the rate of inbreeding and still increase genetic gain, compared to the 

conventional breeding scheme. Daetwyler et al. (2007) summarized that genome-wide 

selection achieves high accuracies in predicting Mendelian sampling terms, which allows for 

a better differentiation between sibs. Weigel (2001) focused on the increased likelihood of co-

selection of related animals when using EBV as the ultimate selection criterion, and 

consequently when selecting related animals, inbreeding will increase faster.  
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In conventional dairy cattle breeding programs in Germany, pedigree indices were used as a 

main criterion for bull dam selection regarding the young category "heifers without own 

performance". Analyses of top lists of potential bull dams revealed a multitude of heifers with 

similar or even identical genetic background (König, 2001). In the present study, EBV was 

selection criterion for natural service sires within herds, and for selecting 5 young bulls in the 

conventional population. A large number of selected natural service sires for each of the 60 

organic herds depict a broad genetic diversity. Consequently, realized inbreeding coefficients 

in scenario O_EBV_NS were lower compared to scenario C_EBV_AI.  Inbreeding 

coefficients were slightly higher for scenario O_EBV_NS than the comparable natural service 

sire scenario O_GEBV_NS.  

 

However, compared to inbreeding coefficients of sires in the starting phase of GS, the 

development of inbreeding or of genetic relationships in the long term is of higher relevance. 

In the next generation after one round of matings, inbreeding coefficients of conventional and 

genomic selection strategies were almost identical, but on a lower level than in selected sires. 

This is valid for the low (Figure 2a) and the moderate heritability trait (Figure 2b). Inbreeding 

coefficients in selected groups of elite animals, i.e. bull dams and bull sires, are generally 

higher than in milking cows in the population (König and Simianer, 2006), but those groups 

of elite animals determine accumulation of inbreeding in the long term. In genomic breeding 

programs, results for inbreeding should be seen in close relation to generation intervals. A 

stochastic simulation by de Roos et al. (2011) clearly showed that GS has the potential for 

doubling the rate of genetic gain per generation without further increase of inbreeding per 

generation. However, due to the substantial shortening of generation intervals, rate of 

inbreeding per year increased. Genomic selection makes it possible to select sires with low 

inbreeding coefficients, but for controlling inbreeding in the long-term, genomic relationships 

among selection candidates should be used in mating designs determined by breeding 

organizations (Schierenbeck et al., 2011).  

 

Selection criterion for scenarios O_GEBV_AI and O_GEBV_NS was the same, but 

inbreeding coefficients were slightly higher for O_GEBV_AI, because 5 sires were selected 

for O_GEBV_AI versus 120 sires for O_GEBV_NS. The result is in agreement with Pryce et 

al. (2010). They found that the number of selected sires has a major impact on levels of 

inbreeding. Weigel (2001) also stated that inbreeding is primarily a function of selection 

intensity, rather than population size. Moreover, creation of sub-lines as done in scenario 
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O_GEBV_NS may also reduce inbreeding substantially, albeit with a slight decrease in 

genetic gain (Terawaki et al., 1998).  

 

 

 

 

Figure 4. Average and standard error of inbreeding coefficients of selected sires and their 

progeny for five different scenarios (C_EBV_AI, C_GEBV_AI, O_GEBV_AI, O_GEBV_NS, 

O_EBV_NS as explained in Figure 1) for h
2
 = 0.05 (a) and h

2
 = 0.3 (b). 
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Sub-scenario for genotyped natural service sires 

 

Organic dairy cattle farmers prefer a breeding system with a strong focus on cow families 

(Baars, 2002). Female offspring from influential cow lines are used for replacements within 

farms, and male offspring are used as natural service sires. On the maternal side, the scientific 

reason underlining the importance of cow families or maternal lineage is due to cytoplasmic 

effects that explain a small fraction of the phenotypic variance of the trait of interest (e.g. 

Albuquerque et al., 1998). The argument for using natural service sires grown up in the own 

herd is based on farm environment adaptation. However, always using natural service sires 

from the same cow family in the herd makes it difficult to avoid matings between close 

relatives. This is the reason for a detailed comparison of scenario O_GEBV_NS (no matings 

between close relatives) with scenario O_GEBV_NS_II (matings between close relatives may 

occur). Inbreeding coefficients for progeny of selected sires from both scenarios are a shown 

in Figures 5 for h
2
 = 0.05 and h

2
 = 0.30, respectively. For identical heritabilities and same 

values for rmg, no differences in TBV between these two selection strategies were observed 

(Figures not shown). In contrast, realized inbreeding coefficients from scenario 

O_GEBV_NS_II were 13.69 % and 23.91% higher compared to scenario O_GEBV_NS for h
2
 

= 0.05 and h
2
 = 0.30, respectively. Hence, there is potential for realizing identical genetic gain 

by restricting mating designs, pointing to the application of 'optimum genetic contribution' in 

the genomic era (Sonesson et al., 2010; Schierenbeck et al., 2011).  

 

Suggestion: Breeding strategy in small organic populations 

 

For new phenotypes or scarcely recorded traits, especially in small populations, the most 

promising strategy for improving genetic gain will be realized via the implementation of own 

genomic selection strategies. A possible approach might be the application of scenario 

O_GEBV_AI. Organic breeding focuses on improvements of animal health and product 

quality, and only direct selection on the trait of interest, instead of using indicator traits, will 

ensure sufficient selection response (König and Swalve, 2006). Conventional breeding on 

health traits currently is mostly based on indicator traits, e.g. SCC for clinical mastitis, or 

conformation traits for claw disorders. EBVs of those indicator traits are also use used in large 

reference populations for the estimation of SNP effects and of GEBVs. Pimentel and König 

(2011) verified results for selection response in the genomic era by applying selection index 

calculations: genetic gain was higher when using GEBVs from the trait of interest instead of 
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using GEBVs from indicator traits. Organic breeders could take the lead in breeding on dairy 

cattle health when implementing a calibration group for new phenotypes as pre-requisite for 

genomic selection. Also GEBVs for new health traits with sufficient reliability increase 

competiveness of natural service sires, and consequently the competiveness of organic 

breeding programs. In the present study, costs for different breeding strategies were not taken 

into account. However, implementation of an own genomic breeding program might be 

cheaper than implementing an own conventional breeding program including a large amount 

of fixed costs due to necessary capacities for test bulls and waiting bulls. Additionally, König 

et al. (2009) have shown that the costs for genotyping are of minor importance in a genomic 

breeding program when applying a comprehensive cost calculation, e.g. considering costs for 

performance tests or herdbook registration.  
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Figure 5. Average and standard error of inbreeding coefficients for progeny of selected sires 

for scenario O_GEBV_NS (explanation: Figure 1) for h
2
 = 0.05 and h

2
 = 0.30. (Scenario 

O_GEBV_NS_II is identical compared to scenario O_GEBV_NS, but matings between close 

relatives were allowed). 

 

Generally, in small populations with a small effective population size, a high risk of 

inbreeding exists. Compared to conventional dairy cattle breeding programs, organic 

populations are characterized by a small population size. Genomic selection has the potential 

to combine both genetic gain and acceptable rates of inbreeding. Inbreeding coefficients of 

sires and of their progeny in the next generation from organic genomic scenarios 
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O_GEBV_AI and O_GEBV_NS were on the same level or lower compared to conventional 

scenarios C_GEBV_AI and C_EBV_AI.  

 

CONCLUSIONS 

 

This is a first study addressing the aspects of natural service sires and G x E interactions in 

genomic breeding programs, which has strong relevance for the optimization of organic 

breeding program designs. For making decisions about the optimal strategy, crucial 

parameters are genetic correlations in the trait of interest measured in different production 

systems, and accuracies of GEBVs. When selecting sires in the larger conventional population 

based on GEBV, higher TBVs of sires and their offspring compared to organic genomic 

breeding programs were only realized by neglecting G x E interactions and assuming a 

genetic correlation close to one. For health traits, we expect genetic correlations between 

conventional and organic environments below the critical 'threshold' of 0.80, which indicate G 

x E interactions, and support the idea for implementing an own organic genomic breeding 

program. A breeding concept based on genotyped natural service sires is competitive with a 

conventional breeding program for sufficiently reliable GEBV (rmg ≥ 0.80) and genetic 

correlations of rg < 0.80 between production systems. Furthermore, we showed that selection 

of natural service sires based on GEBV resulted in lower inbreeding coefficients than 

conventional selection strategies in the large conventional population, or selecting natural 

service sires in the organic population based on pedigree indices.  
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This thesis provides descriptive statistics and genetic parameters for conventional and 

innovative traits of Brown Swiss cows located in low input farms in Switzerland. In addition, 

two simulation studies addressed the chances and the risks of breeding programs using 

genomic selection. Chapter 2 found that heritabilities for production traits in organic farms 

were similar to those of conventional production systems. However, genetic parameters for 

reproduction traits were partly different across the two systems. Chapter 3 presented the low 

disease incidences for new health traits in organic farms and the genetic parameters for these 

traits using a variety of trait definitions and statistical models, i.e. animal and sire models, 

repeatability models and random regression models (RRMs). Chapter 4 focused on genomic 

breeding program designs and evaluated selection strategies for young sires. Pre-selection of 

bull dams and of bull calves based on genomic breeding values (GBV) could achieve a 

genetic gain as good as an ideal situation. This is especially valid for lowly heritable traits. 

The "ideal situation" implied that all male calves in the population were genotyped. In 

Chapter 5, we showed that if genotype by environment (G x E) interactions exist, (i.e. the 

genetic correlations were lower than 0.8), an organic breeding program with artificial 

insemination (AI) was competitive with a conventional breeding program. Therefore, 

establishing a breeding program for organic farming systems might be a viable alternative, 

especially to improve traits not currently considered in overall breeding goals (Chapter 5). 

 

Descriptive statistics in organic dairy farming systems 

 

The phenotypic records of Brown Swiss indicate that test-day milk yield increased with 

increasing age of the cows. However, an increased disease incidence in later lactations was 

also observed and this finding was supported by previous studies. For example, Lin et al. 

(1989) found an increased incidence of clinical mastitis in later parities. Compared to other 

studies conducted in conventional Holstein cows (e.g. Gengler et al., 2004; Nixon et al., 2009), 

test-day milk yields of organic Brown Swiss cows were relatively low (e.g. 19.04 kg  in parity 

1, 21.87 kg in parity 2 and 23.61 kg in  parity 3). However, fat, protein and lactose content 

was greater in milk from organic Brown Swiss compared to those from conventional dairy 

farms across the first three parities (Miglior et al., 2007; van Straten et al., 2011). At least two 

reasons can explain the low milk yield and high fat, protein and lactose percentages for 

organic cows. Firstly, organic farming focuses on alternative feeding strategies, with 

increased dry matter intake from roughage and reduced concentrates. Roughage intake is 

associated with the increase of fat percentage, while concentrates strongly increase test day 



6
th

 Chapter                                        General Discussion                                              128  

                                                                                                                

milk yield. Secondly, Brown Swiss is a breed that produces high quality milk when fed diets 

based on hay instead of silage for cheese production. Brown Swiss cows have the optimal 

kappa casein genotype for cheese production. Furthermore, milk urea nitrogen (MUN) can be 

used as an indicator of energy intake. Lower MUN represents lack of energy in diets, while 

higher MUN may have toxic functions for cows. A comparatively high MUN was found in 

low input dairy farms in Switzerland, reflecting diets that were high in degradable protein, 

and deficient in fermentable carbohydrates. 

 

The descriptive statistics for reproduction traits in organic farms were partly different from 

those of conventional dairy farms. For example, age at first calving for organic Brown Swiss 

cows was greater than 31 months, but conventional Brown Swiss cows have a value of less 

than 30 months (Garcia-Peniche et al., 2005; Hare et al., 2006). These data indicate that cows 

in organic farms may reach sexual maturity later than those in conventional farms, and it may 

be related to increased dietary roughage and extensive management practices. Interestingly, 

calving interval was larger in conventional compared to organic production systems (Dal 

Zotto et al., 2007; Hare et al., 2006), indicating that days open and calving to first service are 

shorter for organic cows.  

 

Compared to conventional farms, incidences of mastitis, metritis, retained placenta, ovarian 

cysts and acetonemia are relatively low in the Brown Swiss organic farms (Gernand et al., 

2012; Koeck et al., 2012). Functional traits including udder health, fertility, character, calving 

ease and durability were proven to be more important in breeding goals for organic cows than 

those for conventional cows (Nauta et al., 2009a). Therefore, the lower disease incidence in 

organic farms may result from the application of selection strategies supporting the breeding 

goal (Kijlstra and Eijck et al., 2006). However, there were studies which revealed that health 

and fertility problems were of the same or even of higher relevance in organic than in 

conventional farms (Borell and Sorensen, 2004; Weller and Cooper, 1996). Different genetic 

backgrounds or feeding and management strategies could explain the contradictory results 

found in the literature. For example, extensive management systems on organic farms may 

limit medical treatments in organic farming systems. In fact, hand milking may be used 

instead of antibiotics in some mastitis cases, resulting in reduced mastitis occurrences 

reported by veterinarians.           
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Genetic parameters in organic dairy farming systems 

 

Basically, heritabilities for production, reproduction and health traits of Brown Swiss in low 

input farms are similar with those of conventional farms (Chapter 2). As expected, heritability 

estimates for production traits were moderate, and reproduction and health traits had low 

heritabilities (Chapter 3). Interestingly, daily genetic correlations between milk yield and 

somatic cell score (SCS) varied substantially by days in milk in different parities (Chapter 2). 

Excluding a weak positive genetic correlation at the very beginning of first parity, the genetic 

correlations were negative throughout the first three lactations. This result disagrees with 

several studies showing genetic antagonism between milk yield and SCS (Carlén et al., 2004; 

Koivula et al., 2005). Generally, lactose percentage had positive genetic correlations with test-

day milk yield, and heritabilities for lactose percentage in the first three lactations were 

moderate. Therefore, adding lactose percentage to the overall breeding goal may be of benefit 

for organic breeding schemes. 

 

Functional traits including udder health, fertility and calving ease will have higher economic 

weights in the overall organic breeding goals (Nauta et al., 2009a; Rozzi et al., 2007). 

Conception rate is one of the important fertility traits. Moderate to high negative genetic 

correlations between conception rate and test-day milk yield indicate that a higher weight on 

conception rate would probably reduce milk yield on the genetic level. Meanwhile, fat 

percentage and protein percentage will increase since conception rate has moderately positive 

genetic correlations with fat percentage and protein percentage. Milk with higher quality, (e.g. 

higher fat and protein percentage), should fulfill demands of organic farmers and consumers. 

Perhaps because higher levels of MUN have toxic effects on cows, MUN was negatively 

correlated with conception rate. Therefore, selection on conception rate might reduce MUN 

on the genetic level.  

 

Strictly speaking, the quality and quantity of data from low input farms in Switzerland are not 

sufficient to estimate reliable genetic parameters. Heritabilities of traits can be influenced by 

the quality of data. For example, Buch et al. (2011a) reported that higher occurrence of hoof 

diseases was reported by hoof trimmers than by veterinarians (Laursen et al., 2009). 

Consequently, heritability was also higher for the hoof diseases reported by hoof trimmers 

(Buch et al., 2011a). Therefore, improvement of data quality from organic farms is necessary 

to precisely estimate genetic parameters and predict genetic gain. Futhermore, direct selection 



6
th

 Chapter                                        General Discussion                                              130  

                                                                                                                

on traits of interest can more efficiently improve selection response compared to indirect 

selection via indicator traits (König and Swalve, 2006). Therefore, direct measurements on 

functional traits, e.g. mastitis, metritis and ovarian cysts, might positively influence genetic 

progress. 

 

Comparison of breeding strategies for organic dairy populations 

 

As proposed in chapter 5, three breeding strategies could be applied for organic farms. The 

first strategy is to use bulls selected from conventional populations into organic farms taking 

G x E interactions into account. In another alternative, a closed organic breeding chain can be 

built up and organic AI bulls are only selected from the organic population. The third option 

is to select natural service (NS) sires based on farms and regions. There are advantages and 

disadvantages for each breeding scheme. 

 

In the first breeding scheme, sires used in organic farms are selected from conventional farms. 

This scheme is relatively easy to apply because semen of sires can be bought from breeding 

companies for conventional populations and there will be no cost to building up new breeding 

programs. However, due to G x E interactions between the two production systems, rank of 

breeding values of sires may change. Therefore, breeding values adjusted to G x E 

interactions should be given for sires provided for organic farmers. In addition to G x E 

interactions, breeding goals between organic and conventional dairy farming are also very 

different. Conventional farmers prefer higher production yield, while functionality is the most 

important aspect to organic farmers. Using conventional sires in organic farms may not help 

achieve the goal of improving functionality for cows in organic farms, even when adjusted 

breeding values to G x E interactions are given. Overall ecology breeding values, as offered 

by some breeding organizations in Germany and Austria (Krogmeier, 2003), could benefit 

organic farms greatly. Therefore, it might be worthwhile to re-estimate the overall ecology 

breeding values of sires in conventional farming systems based on the data coming from 

organic farms.    

 

Utilization of modern reproduction technologies for producing bull calves, such as multiple 

ovulation and embryo transfer (ET), is also a disadvantage of using sires selected from 

conventional farms in organic production systems, because the technologies contradict the 

naturalness of organic production. Based on organic farming regulations, artificial 
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reproduction technologies are prohibited in organic dairies. Therefore, farmers in organic 

systems prefer to use semen of sires without the application of ET, but sometimes information 

of ET is not available for all bulls. Moreover, conventional breeding of commercial breeds is 

based largely on ET and complementary technologies (Nauta, 2009b). The farmers in organic 

farms can only choose sires which are not produced by ET themselves without considering 

the use of ET in previous generations. If ET in previous generations was banned as well, only 

very few bulls would remain eligible for use on organic farms.  

 

In the second breeding scheme, organic breeding programs are established within the organic 

farming systems. Like breeding programs in conventional production systems, a relatively 

small number of AI bulls are selected based on EBV estimated from data recorded in organic 

farms. This breeding scheme maintains naturalness of organic breeding, because all genetic 

material comes from organic production systems and ET-free AI bulls can be supplied to 

farmers. Additionally, as a result of high weight on functionality, sires selected from organic 

populations tend to improve udder health and fertility of cows directly, which implies that 

there is no need to adjust breeding values estimated from this breeding scheme. 

 

However, there are many shortcomings for establishment of breeding programs with AI bulls 

in organic populations. First of all, the amount of data from organic populations is very small 

compared to conventional populations. Therefore, accuracy of selection in organic 

populations is not comparable with the corresponding accuracy in commercial dairy cattle 

populations. For example, there were more than 100,000 certified organic dairy cows in 

Germany in 2007, and this was the largest organic dairy population in Europe. Austria had the 

second largest organic dairy population in Europe, which had around 80,000 organic dairy 

cows (An analysis of the EU organic sector, 2010). Harder et al. (2004) reported that a 

conventional breeding program was superior to an organic breeding program in terms of 

genetic gain, return of costs and profit, assuming 50,000 cows. Better results in conventional 

breeding programs are attributable to larger population size of conventional populations and 

the frequent use of reproduction technologies, such as ET. Apart from the lower selection 

intensity, AI bulls will be used in organic breeding programs. Although AI is still allowed in 

organic dairy farming, according to EU regulations on organic farming, the proportion of AI 

in organic farming systems should be reduced as much as possible. Nauta (2009b) also 

suggested that AI disturbs a natural process of reproduction and natural mating can achieve 

better fertility results than AI.                   
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In the third breeding strategy, sires are also selected within organic farms, and AI is 

completely discarded. In this strategy, NS sires are selected within each herd or region and 

selection of bull dams can be applied within female lines in the herd. Among the three 

breeding schemes described above, the third one is the most natural way, therefore confirming 

to the natural aspect of organic farming. Because NS is carried out at farm level or small 

region level, G X E interactions for the third scheme should be the lowest in the three 

breeding strategies. Furthermore, there might be an increase in genetic diversity because more 

service sires are kept in organic populations. Breeding at farm level will also increase 

differences between herds, since each farmer has a unique opinion on the best type of animal 

for the specific farm and management. Therefore, vigor of cows may be increased by 

exchanging genetic materials regularly between organic farms.  

 

Breeding programs with natural mating pose various challenges. First of all, keeping bulls in 

organic farms may be dangerous and expensive for farmers. Additionally, a great deal of 

practical knowledge for working with bulls is needed (Nauta et al., 2005), because breeding at 

farm level is more complicated than choosing semen of AI bulls provided by breeding 

companies. However, because many organic farms converted directly from conventional 

farms, many farmers do not have breeding experience. Most importantly, only a very small 

number of cows are available in each organic farm, commonly ranging from 45 to 140 cows 

(Rotz et al., 2007) and around 24 (Chapter 2) in our study. A breeding program with a small 

population will reduce genetic variation because of close genetic relationships and genetic 

drift (Falconer and Mackay, 1996). Selection intensity of NS bulls also declines because only 

a limited number of candidates are available at farm level. Furthermore, a reduction in 

accuracy of selection might be observed as well because number of daughters used for 

estimating EBVs of bulls is smaller compared to the first and the second breeding schemes. 

Genetic progress of traits of interest may be reduced when implementing the third breeding 

scheme in herds with small populations compared to that of larger herds because of decreased 

genetic variation, selection intensity and accuracy of selection.      

 

Several studies showed that breeding programs with genomic information could increase 

genetic gains of functional traits. For example, Egger-Danner et al. (2012) found a clear shift 

of annual monetary genetic gain towards fitness and health traits when applying genomic 

selection. Buch et al. (2012a) also reported that breeding schemes with genomic selection 
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resulted in higher annual genetic gain, greater contributions of functional traits to the gain and 

lower rate of inbreeding per generation than breeding schemes without genomic selection. 

Results from Chapter 4 also revealed that selection response would be doubled if GBV was a 

selection criterion in breeding programs for dairy cattle. Hence, application of genomic 

breeding programs in organic breeding schemes (the second and the third schemes) may 

increase accuracy of selection. Generation interval may also decrease with frequent use of 

young bulls in a genomic breeding program. Therefore, incorporating genomic selection into 

organic breeding programs should increase genetic progress because of improved accuracy 

and shorter generation interval. 

 

The results from studies of Egger-Danner et al. (2012) and Buch et al. (2012a) were based on 

relatively large population sizes. Therefore, the potential of genomic selection in small 

organic populations was tested in Chapter 5 by combining organic breeding scenarios with 

genomic selection. True breeding values (TBV) of AI sires selected from an organic 

population based on GBV were higher than TBV of AI sires selected from a conventional 

population based on pedigree information, although the numbers of cows in the organic and 

conventional populations were 1,200 and 148,800 respectively. Only if a small G x E 

interaction existed between two environments (genetic correlation ≥ 0.8), TBV of AI sires 

selected from a conventional population based on pedigree information were greater than 

TBV of genotyped AI sires selected from organic farms with accuracy of GBV equals to 0.5. 

This was especially evident for low heritable traits (h
2
 = 0.05). Buch et al. (2012b) reported 

that when 2,000 genotyped cows were added to the reference population annually, accuracy of 

direct genomic value was around 0.32 for a lowly heritable trait after 10 years. However, the 

study also showed that the accuracy increased to 0.45 if 30 sires, 2,000 cows and 170 test 

bulls were genotyped and added to the reference population every year. Verbyla et al. (2010) 

also found the accuracy of direct genomic value was 0.52 for energy balance, based on data 

from 527 primiparous cows. This indicates that an accuracy of 0.5 was achievable if more 

cows were available in organic populations. However, creating an informative reference 

population for small organic populations is difficult because only a limited number of organic 

cows are available (Buch, 2011b) Therefore, implementation of an organic breeding program 

with AI bulls might be possible if the program was applied on organic cattle in the whole 

country or internationally.  
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Assuming equal accuracy of GBV, the TBV of genotyped organic AI sires were higher than 

those from conventional farms if the genetic correlation of the trait was lower than 0.8. 

Genetic correlations between organic and conventional dairy production for a variety of traits 

ranged from 0.6 to unity (Ahlman et al., 2011; Nauta et al., 2006; Sundberg et al., 2010). 

However, selection is based on an index rather than individual traits and the composition of 

conventional and organic selection indexes are very different (Nauta et al., 2009a). 

Employment of different breeds between organic and conventional farms will further increase 

G x E interactions in the future. Therefore, it might be necessary to create a breeding program 

for organic production system. As suggested in Chapter 4, pre-selection of bull dams based on 

phenotypes for new functional traits would increase genetic gains compared to selection of 

bull calves based on a pedigree index. Buch et al. (2012b) also stated that adding genotyped 

cows with phenotypic information into breeding programs would increase accuracy of 

selection for new functional traits. Facing so much information, breeding organizations 

servicing organic farmers should be set up to design optimal breeding schemes and coordinate 

organic farms to fulfill desires from consumers, organic farmers and the regulations of the 

organic Council. 

 

Genetic gain of NS sires was greater by incorporating genomic information into the breeding 

scheme applied at farm level. For example, despite the fact that accuracy of GBV was 0.5, 

TBV of genotyped NS sires was higher than TBV of NS sires selected on EBV. Nevertheless, 

selection of NS sires within herd obtained the lowest genetic gain (Chapter 5) in the three 

breeding schemes. However, genetic gain is not the sole criterion for evaluating breeding 

programs in organic production systems, naturalness and wishes of organic farmers are also 

important. The breeding scheme completely using NS sires is the most natural scheme, but 

may require additional work to maintain genetic vigor. For example, mating information 

should be recorded in detail and number of bulls kept in the farm should be decided carefully 

to avoid mating between relatives within 3 generations and prevent inbreeding depression 

(Chapter 5).  

 

Rate of inbreeding per generation was higher in breeding schemes without the use of genomic 

selection (Chapter 4 and Chapter 5). There are two reasons summarized by Daetwyler  et al. 

(2007) for lower inbreeding in genomic selection. First of all, genome-wide selection is 

expected to reduce the between family variance and shift the emphasis of estimated breeding 

values of individuals towards the Mendelian sampling term. Secondly, estimation induced 
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intraclass correlations of sibs are expected to be lower in genome-wide selection. However, 

genomic information might increase the fixation rate of the favorable QTL alleles and thereby 

increase inbreeding (Pedersen et al., 2010). Moreover, the rate of inbreeding based on 

genomic identity-by-descent was 3 times higher when a pedigree based rate of inbreeding was 

constrained (Sonesson et al., 2010). Therefore, Sonesson et al. (2012) suggested that 

management of changes in genomic inbreeding rather than in pedigree-based inbreeding was 

relevant, when using genomic-based estimates of breeding values. However, in this thesis, 

only pedigree based rate of inbreeding was calculated for all breeding schemes (with or 

without genomic selection).  
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