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Preface 

Dear reader, 

Scientific research is a fast-paced business with new results, reviews and opinions of thousands of 

researchers worldwide published every day. Digital, accelerated publishing and a steadily growing 

number of scientific journals make it increasingly difficult to navigate through the jungle of 

literature. While the author of this dissertation is a supporter of open access digital publishing, he 

feels that for the individual, increasing complexity can only be faced using digital armaments like 

reference management software and data-and-text mining tools. Already using the former, the 

latter however still seems to be a special discipline of computer scientists and not widely usable.  

This manuscript was carefully crafted and established as well as recent literature was cautiously 

selected for citation. However, for the reasons mentioned above, not all publications that might 

refer to the topics presented in this dissertation could be discussed or cited. Moreover, new papers 

have been appearing during the process of writing that did not find their way into the final 

manuscript. New publications are only recognized until the date of 01.03.2013. The author 

apologizes for any inconvenience caused by these circumstances.  

Although you may read this document in its printed form, indeed the manuscript was written and 

edited on a computer. The text is enriched with hyperlinks to navigate within the document (dark 

blue font color) and to access additional information on the Internet (dark green font color). To 

experience the full potential of informational enrichment and easier access to information relevant 

to you, the author highly recommends reading the digital version of this document. 

The reader may notice, that reagents and devices i2n the “Materials and Methods” section are also 

linked. In addition, the supplier is given in brackets. However, the author consciously desisted from 

denoting the city or country a supplier may be based in, since in the globalized and fast changing life 

sciences market, where companies, fuse, split and outsource within increasingly short periods, the 

model of a centralized headquarter is simply outdated and does not provide any additional 

informational use to the reader. On the contrary, readers interested in making use of the 

experimental procedures presented here shall make use of the meta-information that is 

represented in linking materials and devices with their official description on the world wide web.  

Please also note that gene names for mouse genes used in this thesis are official gene symbols 

provided by the Mouse Genome Informatics resource (MGI) based on genome assembly GRCm38. 

Human gene names are official gene symbols provided by the HUGO Gene Nomenclature 

Committee (HGNC) based on genome assembly GRCh37. Furthermore, it should be recognized that 

words in a language other than English (American English is used throughout the thesis) are 

denoted in ITALIC SMALL CAPITALS. 

 

 

http://www.informatics.jax.org/
http://www.genenames.org/
http://www.genenames.org/
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Summary 

Evolution has equipped multicellular organisms with ever more sophisticated means of processing 

information about the environment they live in. The hippocampus has been shown to be one of the 

most important structures of the mammalian brain for information processing with respect to 

learning and memory formation. 

In general, memories stored for seconds to minutes are known as short-term memories (STMs), 

while long-term memories (LTMs) may be stored for hours, days and up to years. Research on the 

cellular and molecular mechanisms of memory consolidation has revealed that LTM formation as 

well as a cellular correlate of this process – late-phase long-term potentiation (LTP) – depend on DE 

NOVO protein synthesis and transcription. The synaptic tagging and capture (STC) hypothesis has 

been formulated as a theoretical basis of this process. 

Chromatin plasticity, including dynamic histone acetylation has been demonstrated to play a 

positive role in long-term memory consolidation and regulation of plasticity-related transcription. 

Inhibition of histone deacetylases (HDACi) has beneficial effects in several disease models and 

enhances memory formation across multiple species. Loss of histone acetyltransferase (HAT) 

function on the other hand has negative effects on memory consolidation. Kat2a is a HAT associated 

with stimulus-dependent transcriptional activation. However, its function and targets in the adult 

brain have not been explored yet. 

With increasing human life span, aging is becoming a major challenge in modern societies. As in 

many other aspects, the brain also holds an exceptional position when it comes to aging. One of the 

earliest symptoms of the aging brain is age-associated memory impairment (AAMI), which is a 

normal though commonly undesirable process, manifesting itself by difficulties in acquisition of new 

memories and by increased forgetfulness. Brain aging is also accompanied by massive 

transcriptional changes. However, a detailed, homogenous picture of the transcriptome of the aging 

mouse hippocampus, especially towards the end of an individual’s life span, has not been drawn yet. 

Accumulating evidence suggests that chromatin-related mechanisms may be involved in the 

regulation of transcriptional aging. However, data on the contribution of histone acetylation 

remains incomplete. 

Here, we provide extensive evidence supporting a role for Kat2a in learning and memory. The data 

shows strong Kat2a expression in the hippocampal neurons, especially in the CA1. Using elaborate 

behavioral testing, we show impairment of hippocampus-dependent LTM formation upon Kat2a 

deletion from excitatory forebrain neurons. This finding is further supported by electrophysiological 

data revealing impaired LTP in the CA1 region. Interestingly, stimulus-dependent mRNAome 

profiling in the CA1 of conditional knockout and control mice following a novelty-exposure 

paradigm showed downregulation of several genes related to neuronal activity, which are likely 

target genes of Kat2a activity. Interestingly, Kat2a overexpression in the DG did not result in 

enhancement of LTM formation, and even led to impaired performance in the Morris water maze, 
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used for spatial memory testing. The findings are discussed with respect to stimulus-dependent 

gene expression during memory consolidation and in the light of the STC hypothesis. 

In a second set of experiments we assessed histone acetylation in the hippocampus of aged mice. 

While we found no evidence for altered levels of bulk histone acetylation or differential HAT 

activity, we observed reduced HDAC activity in mice towards the end of lifespan (EOL), that was not 

associated with reduced expression of Hdac2 or Hdac3. Assuming this to be a compensatory 

mechanism, we tried to facilitate this compensation at an earlier stage using HDACi. Indeed, long-

term HDACi treatment rescued the AAMI phenotype that is observed in aged mice. 

In addition, transcriptional changes that accompany the aging process in the hippocampus were 

detected using whole-transcriptome mRNA sequencing as well as microarray technology. Together, 

both methods revealed a transcriptional signature of aging highly associated with a pro-

inflammatory milieu, which may be caused by ineffective aggregate clearance. Increased intragenic 

H3K9 acetylation was associated with at least one of these genes, C4b, demonstrating activatory 

regulation. Implications of these findings for brain aging in general as well as late-onset Alzheimer’s 

disease in particular are presented and discussed. 
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1. Introduction 

1.1. Learning and Memory 

1.1.1. Memory Systems 

Evolution has equipped multicellular organisms with ever more sophisticated means of processing 

information about the environment they live in. In the past century scientists have identified two 

pivotal, yet very dissimilar mechanisms of environmental information processing and adaptation: 

Perception and genome-environment interaction (referred to as epigenetics; Holliday, 2006; 

Waddington, 1953). Though these processes seem to be unrelated at the first glance, they share an 

integral similarity, since they provide an internal representation of the environment. The first 

mechanism relies on sensory processing of diverse external stimuli and is represented in a complex 

network of cell-to-cell communication. With the development of a brain, multicellular organisms 

have evolved a unique organ for the first task, made up of a cell type that has brought cell-to-cell 

communication to perfection. The second mechanism represents information in the form of a 

transcriptional profile that adapts to extracellular signals to maintain homeostasis (see 1.3.2). Even 

if this information is represented on very different levels of abstraction, this information can be 

preserved beyond the actual stimulus. We call information stored this way memory.  

The term memory (from Latin MEMORIA) in general refers to storage and retrieval of information. 

Thus, the term can be used in many different ways with diverse connotations depending on the 

context or scientific discipline, ranging material science (shape memory, smart metal) over 

computer science (data storage) and cell biology (transcriptional memory) to neuroscience and 

psychology (engram) and even sociology (culture, collective memory). In this thesis, the term 

memory will be exclusively referring to the mechanisms of storing multimodal sensory information 

in the brain, which will lead to so-called engrams or memory traces (Semon, 1921). Learning will be 

defined as the process of generating this engram, also referred to as encoding. Though it is still 

unclear what the physical correlate of the engram is, several mechanisms have been proposed to 

explain how memory traces can manifest themselves in the physical world of neurophysiology 

(Bruce, 2001; Garner et al., 2012; Liu et al., 2012; Reijmers et al., 2007). However, none of these 

theories is able to explain all aspects of memory (Sakaguchi and Hayashi, 2012). 

A major challenge in finding the nature of the engram is the variety of forms of memory and it 

seems plausible that different types of information are stored in different ways. While these 

distinct types of memories can be observed by introspection and intuition, systematic research has 

classified them into two major subtypes called declarative and procedural memory. The declarative 

or explicit memory system can be further divided into semantic memory (facts) and episodic 

memory (autobiographic events), which both require attention (Eichenbaum, 1997; Tulving and 

Donaldson, 1972; Ullman, 2001). The procedural or implicit memory system is used to describe skill 

acquisition or other forms of learning, which do not rely conscious awareness (Fitts, 1954; Ullman, 

2001). Both subtypes of memory rely on different though partly overlapping brain regions 

(Gazzaniga, 2004).  
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1.1.2. The Hippocampus as an Anatomical Memory Hub  

The hippocampus has been shown to be one of the most important structures of the brain related 

to learning and memory formation. The first indications of its relevance came from human 

explantation experiments, where parts of the medial temporal lobe including the hippocampal 

formation were removed, which resulted in severe anterograde and retrograde amnesia in the 

patients (Corkin, 2002; Lah and Miller, 2008; Scoville and Millner, 1957). Further support came from 

animal studies, where the hippocampus was physically or pharmacologically lesioned (Barker and 

Warburton, 2011; Iordanova et al., 2009; Kim and Fanselow, 1992). Compared to rodents, humans 

have a small hippocampus in relation to total brain volume, though the subregional anatomical 

structure has largely been preserved during evolution (West, 1990). Interestingly, hippocampal 

volume has also been correlated to spatial memory capacity, between species as well as among 

individual humans (Jacobs et al., 1990; Maguire et al., 2006; Woollett and Maguire, 2011). 

To perform the task of storing information about the outside world or associations between 

external and internal stimuli, the hippocampus needs to be well connected to other brain regions 

and to integrate sensory information. One of the main excitatory hippocampal afferents is the 

perforant pathway that connects the entorhinal cortex with the Dentate Gyrus (DG) subregion of 

the hippocampus. The entorhinal cortex in turn receives pre-processed input from brain areas of 

multiple sensory modalities. In addition, the entorhinal cortex is also the major site receiving 

hippocampal output via the subiculum. It then relays the information to all neocortical areas in the 

brain. The entorhinal cortex can therefore be viewed as the major interface and information 

integrator between the hippocampal formation and the neocortex (Buzsáki, 1996; Lavenex and 

Amaral, 2000). Inside the hippocampus the main excitatory circuit involves the DG to CA3 

connections (Mossy fibers), CA3 to CA1 connections (Schaffer collaterals) and CA1 to Subiculum 

connections. The CA1 has additional efference to the prefrontal cortex (Pfc) and to the entorhinal 

cortex directly (Andersen et al., 2007).  

In addition, the hippocampus is subject to several modulatory inputs from other neurotransmitter 

systems, including dopaminergic input (mainly originating in the SUBSTANTIA NIGRA) or serotonergic 

input (mainly originating in RAPHE NUCLEI). Hippocampal neurons express several of the various 

receptors to respond to these neurotransmitters. For example, the mouse genome encodes 16 

known serotonin (5-HT) receptors, classified in 7 families. In the CA1 region 10 of these have been 

found, with differential expression in pyramidal neurons and inhibitory interneurons (Andrade, 

1998). Each of these mostly G-protein-coupled receptors has a different modulatory effect on 

electrophysiological properties of neurons. Thus, serotonergic modulation of hippocampal function 

is rather complex and critically depends on the set of receptors expressed in a certain region or cell 

(Andrade, 1998; Seifert, 2010).  

Though any of the three subfields of the hippocampus are necessary for memory formation, they 

are morphologically distinct and play dissociable roles. While the DG with its granule cell neurons is 

one of the two sites in the brain where adult neurogenesis occurs, the CA regions harbor pyramidal 

neurons and are involved in multiple sudivisions that form individual ensembles and microcircuits to 
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account for different types of information (Moser and Moser, 1998). This goes along with dissimilar 

functions for different forms of learning and the multiple types of memory (Moser and Moser, 

1998). For example, CA3 and CA1 are both involved in fear extinction learning, while only CA1 is 

necessary for is required for retrieval of the learned fear (Ji and Maren, 2008).  

1.1.3. Long-Term Memory Consolidation 

Another way to distinguish different forms of memory is the time that elapses between encoding 

and retrieval. In general, memories stored for seconds to minutes are known as short-term 

memories (STMs). STM is overlapping, but not identical, with the concept of working memory, in 

which the memory trace can be subject of active, “online” manipulation (Baddeley, 2003). Long-term 

memories (LTMs) on the other hand, may be stored for hours, days and up to years. The process of 

transformation of an STM trace toward a stable LTM is known as memory consolidation. This term 

was first coined more than a hundred years a ago (Müller and Pilzecker, 1900) and is still used to 

describe that the formation and stabilization of LTMs is a time-dependent process rather than an 

instantaneous event or shift (Dudai, 2004; Lechner et al., 1999; McGaugh, 2000). Memory 

consolidation happens in two steps, of which the first, termed synaptic consolidation, is 

accomplished within minutes to hours after memory acquisition. The second step, called systems 

consolidation, involves the transfer of hippocampus-dependent memories to cortical areas and 

completed over a considerably larger time scale. More recently, a third step has been proposed, 

reconsolidation, in which a stable memory becomes labile and can be modified again. The existence 

of this subsequent step, however, is still under debate (Dudai, 2004; Dudai and Eisenberg, 2004). 

1.1.3.1. Protein Synthesis and Transcription 

Research on the cellular and molecular mechanisms of memory consolidation has revealed that 

memory can also be classified by whether it is dependent on DE NOVO protein synthesis or not. Early 

studies mainly focused on protein synthesis inhibitors to establish a causal connection between 

translation and memory consolidation (Davis and Squire, 1984; Flexner et al., 1963; Schwartz et al., 

1971). Local protein synthesis by translation of dendrite-localized mRNA at the post-synapse is one 

of the proposed mechanisms (Bramham and Wells, 2007; Schuman et al., 2006).  

Since, however, translation is only the second step in gene expression and molecular signaling 

cascades also travel to the nucleus, it soon became evident that transcription is also a necessary 

step towards creating a stable memory trace. This connection has mainly been established by 

inhibiting the RNA polymerase II (Pol2) (Castellucci et al., 1986; Igaz et al., 2002, 2004; Montarolo et 

al., 1986; Da Silva et al., 2008). 

1.1.3.2. Long-Term Potentiation and the Synaptic Tagging and Capture Hypothesis 

Long-term potentiation (LTP) is believed to comprise a neurophysiological correlate of a memory 

trace. This phenomenon occurs in a given neuron or population in response to a strong synaptic 

stimulation, e.g. a high frequency depolarization, and results in an elevated excitatory post-synaptic 

potential (EPSP) to subsequent low frequency inputs (Bliss and Gardner-Medwin, 1973; Bliss and 

Lømo, 1973; Lømo, 2003). This establishes a “synaptic memory” that can last up to several hours in 
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vitro and even days in the living animal (Bliss and Gardner-Medwin, 1973; Bliss and Lømo, 1973; 

Douglas and Goddard, 1975). Furthermore, the mechanism serves as a coincidence detector, since 

high-frequency input may also originate from multiple independent neurons or synapses, which 

happen to reach a given neuron at the same time (i.e. within a short interval) by coincidence.  

Interestingly, LTP also resembles the different phases of memory consolidation, as LTP can as well 

be subdivided into several phases. Like the different phases of LTM consolidation, the phases of LTP 

range from early phases that are independent of protein-synthesis to later phases that do depend 

on protein synthesis and transcription (Nguyen et al., 1994; Reymann and Frey, 2007). 

However, synaptic inputs are highly localized while the supply of newly synthesized proteins to 

mediate plastic effects of these inputs from the soma is ignorant to where the signaling originated. 

How should the new proteins of neuron “know” where they are needed to establish a more 

effective connection to the high-frequency-firing neighbor? To elucidate underlying mechanisms, 

the synaptic tagging and capture (STC) hypothesis has been formulated (Frey and Morris, 1997). 

Upon stimulation a synaptic tag is set at the stimulated synapse. Depending on the strength of the 

stimulus nuclear signaling will lead to production of new plasticity-related proteins that recognize 

the tag and will thereby localize preferentially to synapses that underwent stimulation. Again, 

coincidence of weak stimulation at one synapse and strong stimulation at another may lead to 

capturing of the tag set at the weakly stimulated synapse, thus resulting in late LTP at both 

synapses (Martin et al., 2000; Reymann and Frey, 2007). 

In addition, the hypothesis may also connect protein synthesis-dependent and transcription-

dependent mechanisms of LTP and LTM: While tag setting and even spatially confined capturing 

may be achieved by local protein translation, capturing by soma-supplied, newly generated 

transcripts and proteins is dependent on nuclear signaling. 

As yet the STC hypothesis is a theoretical concept derived from experimental evidence IN VITRO and, 

most recently, also IN VIVO (Shires et al., 2012), but though there are some promising candidates, the 

exact nature of the tag and the precise molecular mechanisms of the two steps are still elusive. 

Also, the question of whether dendritic translation is sufficient to explain the localization problem 

mentioned above remains, since it has recently been shown that the abundance of mRNA at 

dendrites had been underestimated (Cajigas et al., 2012). Interestingly, however, the STC concept 

has recently been applied at a different level of complexity and is used to describe observations 

called behavioral tagging (Moncada and Viola, 2007). In this intriguing phenomenon, a behavioral 

learning protocol that would not suffice to induce a stable long-term memory trace is paired with an 

unrelated behavioral stimulus, e.g. novelty exposure, which together will result in a consolidated 

long-term memory (Ballarini et al., 2009; Barco et al., 2008; de Carvalho Myskiw et al., 2013; 

Moncada and Viola, 2007; Moncada et al., 2011).  
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1.1.4. The mouse as a model organism for the study of learning and memory 

Today, models for mammalian hippocampal function in learning and memory are mainly rats and 

mice. The latter are preferentially used for the study of genetic and molecular mechanisms 

underlying memory and to model individual aspects of human disease, since mice can easily be 

genetically modified and have a short generation time. Researchers have elaborated developed 

tests to assess the content of a specific memory in the laboratory by observation of animal 

behavior. Different tests are used for different types of memory. In the following, I describe two of 

the most common memory tests used for mice. 

Classical pavlovian fear conditioning is one of the most commonly used tests for associative 

memory (Blanchard and Blanchard, 1969; Fendt and Fanselow, 1999). In this paradigm mice are 

trained to associate a novel environment (conditioned stimulus) with an electric foot shock 

(unconditioned stimulus). The readout for formation of an associative memory is an inborn 

behavioral response to fear, which is expressed by freezing. The percentage of the time the animal 

displays freezing behavior during context reexposure correlates with memory strength. This type of 

contextual fear conditioning (cFC) has been shown to be hippocampus-dependent (Ji and Maren, 

2008; Kim and Fanselow, 1992). 

Another hippocampus-dependent memory test is the so-called Morris Water Maze (MWM), invented 

by Richard Morris in 1984 (Morris, 1984). This test is used to investigate spatial memory in rodents. 

Mice are placed in a pool filled with opacified water and need to find a platform that is submerged 

just under the water surface to escape the maze. The pool is surrounded by visual cues mice can use 

as landmarks to orient themselves and to locate the hidden platform. During the initial trials, mice 

have to learn that the platform is the only way out, and since they do not see the platform, they 

have to be guided to it by the experimenter. With repeated training mice generally show decreasing 

escape latencies, indicating increasing awareness of the task procedure and better orientation in 

the maze. Finally, the platform is removed and mice are allowed to swim in the pool for a certain 

time. During this time the time spent in each of four virtual quadrants of the pool is measured. The 

target quadrant (TQ) is defined as the quadrant where the platform was originally placed. The 

fraction of time spent in this TQ can be used to measure memory strength (Bromley-Brits et al., 

2011; Morris, 1984).  

In addition, several behavioral tests have been developed to assess other aspects of behavior like 

exploratory behavior, curiosity and anxiety. Yet, the read out of memory-testing tasks may depend 

on these parameters and may lead to false results if not accounted for.  
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1.2. Brain Aging 

The aging process affects the whole body and does not spare the brain. As in many other aspects, 

the brain also holds an exceptional position when it comes to aging. This is largely due to the fact 

that neurons are terminally differentiated, post-mitotic cells that cannot be replenished after 

events of cell loss, though there are reports suggesting that adult neurogenesis, confined to the DG 

and the subventricular zone, could play a role to ameliorate at least some of the age-associated 

decline (Deng et al., 2010; Praag et al., 2005)  

Improved medical care and sanitation standards together with enhanced access to sources of 

nutrition have resulted in progressively increasing human life span in the past century, resulting in 

huge benefits as well as posing a challenge to modern society. At the moment it is not clear when 

this trend will slow down and what the biological or medical limit to aging is. Research on the 

physiological conditions at advanced ages and towards the end of an organism’s life span is 

therefore invaluable for the future of our societies. Here we use aged mice as a model for 

mammalian brain aging. Though mice are warm-blooded mammals and therefore share certain 

similarities with humans and though we further assume that processes towards the end of an 

organism’s life span are comparable, a simple conversion of ages (e.g. 2 “mouse years” correspond 

to 70 “human years”) is inadequate, since mice exhibit quite distance metabolic features due to 

their much larger surface-to-volume ratio.  

1.2.1. Age-Associated Memory Impairment 

One of the earliest expressions of the aging brain is age-associated memory impairment (AAMI). 

This is a normal though undesirable process, often manifesting itself by difficulty in the acquisition 

of new memories and increased forgetfulness along with decreased working memory capacity. 

Notably, it is very difficult to distinguish between normal and pathological cognitive decline, since 

mild cognitive impairment can be a first sign of dementia or neurodegenerative diseases like 

Alzheimer’s disease (Hedden and Gabrieli, 2004).  

As the hippocampus is the main hub for memory formation and retrieval research on AAMI has 

invested a great deal of resources in the study of changes within this brain structure. This includes 

neurophysiological analyses as well as studying cellular and transcriptional changes. 

1.2.2. Transcriptional Changes in Aging 

Interestingly, distinct brain regions do not age at the same rate (Moroz and Kohn, 2010; Raz and 

Rodrigue, 2006; Xu et al., 2007). Several studies have investigated the transcriptional profiles of 

different brain regions in different species and came to heterogeneous results (Bishop et al., 2010; 

Blalock et al., 2003, 2010; Finch and Morgan, 1990; Loerch et al., 2008; Lu et al., 2004; Pawlowski et 

al., 2009; Pletcher et al., 2002; Verbitsky et al., 2004; Xu et al., 2007; Yankner et al., 2008; Zahn et al., 

2007). Also within the same structure, e.g. the hippocampus, and the same or closely related 

species, results are not strikingly consistent. This likely has diverse reasons associated with 
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experimental procedures, including husbandry conditions, the actual age of the animals used, sex 

differences, differences in methodology and finally also limited information on the mouse genome 

and transcriptome.  

One of the most significant efforts to determine the transcriptional changes associated with aging 

in the mouse is the AGEMAP project (Zahn et al., 2007), which includes the data by Xu ET AL. (Xu et 

al., 2007). Between mice of 1, 6, 16 and 24 months of age, a total of almost 9000 genes haven been 

found to change in 16 tissues (Zahn et al., 2007). However, for the hippocampus there were only 2 

genes significantly correlated with increasing age. Other studies tried to find similarities across 

mammalian species, including humans, and found only a small subset of gene expression changes to 

be conserved (Loerch et al., 2008). 

1.2.3. Chromatin-Related Changes in Aging 

Several authors have pointed out that chromatin-related (“epigenetic”) mechanisms have emerged 

as important modulators of the aging process in the brain (Kosik et al., 2012; O’Sullivan and 

Karlseder, 2012; O’Sullivan et al., 2010; Penner et al., 2010a, 2010b; Stilling and Fischer, 2011). This 

general agreement is based on various observations that are associated with aging and alter 

chromatin function, including increased DNA damage by reactive oxygen species (ROS), shortened 

telomeres and loss of core histones (O’Sullivan and Karlseder, 2012). Recent findings from the host 

laboratory support the notion of loss of chromatin plasticity in response to external stimuli (Peleg 

et al., 2010). Further evidence for participation of chromatin regulators was derived from 

investigation of the sirtuin (SIRT) family of histone deacetylases. Overexpression of SIRTs generally 

has been shown to have beneficial effects on genomic stability during aging and overall life span in 

several organisms (Kanfi et al., 2012; Michan and Sinclair, 2007; Oberdoerffer et al., 2008). This 

effect is like attributed to the close interaction of SIRTs with cellular metabolism, due to their 

localization
1
 and their use of nicotinamide dinucleotide (NAD+) as a cofactor (Braidy et al., 2011).  

                                                                 
1
 SIRTs 3, 4 and 5 are localized to mitochondria 
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1.3. Chromatin Plasticity and Regulation of Transcription 

Recently, a deeper connection between the two mechanisms of environmental information 

processing, perception and epigenetics, has been established, sometimes referred to as 

neuroepigenetics. This new discipline tries to unravel the dynamic plastic changes in transcriptional 

regulation in neurons upon stimulation or in disease.  

Neuronal networks are plastic in terms of connectivity and communication strength. In turn, all 

cellular components of an individual neuron, including the nucleus, need to be plastic, so that they 

can undergo physical, chemical or morphological changes of structure or function in order to 

respond to external stimuli. Chromosomal DNA in the nucleus is tightly packed and highly decorated 

with DNA-binding proteins and RNA molecules, which together make up the nuclear chromatin. It is 

therefore not surprising that also nuclear architecture and chromatin are subject to plastic changes, 

which is necessary for highly orchestrated and dynamic alterations in the production of new 

proteins and regulatory RNAs. Chromatin is an essential integrator of cellular signaling cascades and 

a crucial regulator of transcriptional activation or shutdown. To execute this function, chromatin can 

undergo diverse chemical modifications that act as signals for the transcriptional machinery. These 

include DNA modifications like methylation and hydroxymethylation but also covalent modification 

of histone proteins, which make up the nucleosomes that are wrapped by DNA in a “beads-on-a-

string” configuration. In particular, the N-terminal histone tail domains that project from of the 

nucleosome are subject to a plethora of covalent modifications, including methylation, acetylation, 

phosphorylation and ubiquitination, to name just a few. These modifications have different effects 

on intra- and inter-nucleosome association and nucleosome-DNA binding affinity and also serve as 

binding sites for other regulatory proteins and the transcriptional machinery. 

1.3.1. Histone Acetylation 

The addition of an acetyl group to lysine residues of histone tails has been one of the first 

demonstrated histone modifications (Murray, 1961) and its activatory role in transcription was 

discovered early (Allfrey et al., 1964; Dion et al., 2005; Durrin et al., 1991). Acetylation is thought to 

influence transcriptional activation by two non-mutually-exclusive mechanisms. First, addition of an 

acetyl group removes the positive charge from the protonated lysine residue and thereby reduces 

the electrostatic interaction with the negatively charged DNA. In turn, the tight binding of DNA and 

nucleosome loosens and the DNA is more easily accessible to the transcriptional machinery. Second, 

acetylated lysine residues function as binding sites themselves and recruit protein partners to 

stimulate transcription, a function that is mainly carried out by proteins harboring a bromodomain, 

which is a protein domain that specifically binds to acetylated lysine residues (Ai et al., 2011; 

Arrowsmith et al., 2012; Hargreaves et al., 2009; Hassan et al., 2007; Kanno et al., 2004; LeRoy et al., 

2008; Winston and Allis, 1999).  

Histone acetylation itself is regulated by the counteracting enzymatic activity of histone 

acetyltransferases (HATs) and histone deacetylases (HDACs). Since histone acetylation is generally 

associated with activation of transcription, HATs are suggested to stimulate transcription, while 
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HDACs are supposed to inhibit active transcription (Carrozza et al., 2003; Ekwall, 2005; Kouzarides, 

2007; Roth et al., 2001). In terms of genomic location, the activatory function of histone acetylation 

is mostly associated with the promoter region. However with the advent of large-scale genome-

wide occupation studies using chromatin-immunoprecipitation (ChIP) followed by massive parallel 

sequencing, histone acetylation has also been shown to associate with other genomic regions, 

including the coding region of actively transcribed genes, and also telomeres (Chepelev et al., 2012; 

Durrin et al., 1991; Ginsburg et al., 2009; Hargreaves et al., 2009; Johnsson and Wright, 2010; Peleg 

et al., 2010; Värv et al., 2010; Zhou et al., 2011a). The exact function of a given modification 

however, remains one of the main mysteries in the field. 

1.3.1.1. Histone acetylation in learning and memory 

After the discovery that certain forms of memory depend on protein and RNA synthesis, it was only 

a matter of time until the first groups showed involvement of several of the above mentioned 

chromatin modifications in memory consolidation: Histone acetylation in the CA1 region of the 

hippocampus was again the first modification shown to correlate with memory formation (Levenson 

et al., 2004; Swank and Sweatt, 2001) followed by histone phosphorylation (Chwang et al., 2006), 

DNA methylation (Miller and Sweatt, 2007; Miller et al., 2008) and histone methylation (Grinkevich, 

2012; Gupta et al., 2010; Kerimoglu et al., 2013). To date, histone acetylation has been found 

associated with learning and memory in diverse settings and across a wide range of species, 

including DROSOPHILA MELANOGASTER (Fitzsimons and Scott, 2011), APIS MELLIFERA (Merschbaecher et al., 

2012), HELIX SP. (Danilova and Grinkevich, 2012), CHASMAGNATHUS SP. (Federman et al., 2009) rodents 

and primates (Gräff and Tsai, 2013a). In general, increased histone acetylation is associated with 

facilitation of memory consolidation (for recent reviews see Gräff and Tsai, 2013a, 2013b). The 

proposed mechanism of this facilitation is based on the positive effect of histone acetylation on 

transcription, and in the context of learning and memory especially on those genes associated with 

synaptic plasticity (McQuown and Wood, 2011). 

1.3.1.2. Inhibition of Histone Deacetylase Activity 

Inhibitors of HDAC activity are used to transiently increase histone acetylation. This has potential 

advantages, such as to facilitate the induction of certain genes that are required in a given situation, 

e.g. in response to an external stimulus. This is the reason, why the same HDAC inhibitor can have 

different effects deepening on the cell type it is applied. 

To date several small-molecule HDAC inhibitors have been identified or specifically designed 

(Fischer, 2010). Interestingly, also several naturally occurring substances also exhibit HDACi activity. 

These include sulphoraphan and related isothiocyanates (abundant in broccoli), lactate and 

Kaempferol (Berger et al., 2012; Dashwood and Ho, 2008; Latham et al., 2012). However, most of 

the HDAC inhibitors available today are rather unselective towards the different HDAC isoforms 

(Fischer, 2010). Since these HDAC isoforms have only partially overlapping functions it is desirable 

to amend the HDACi portfolio with additional, more specific molecules. 

Suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, is a small-molecule HDAC 

inhibitor that has been shown to be able to cross the blood brain barrier and is already clinically 
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applied for oral treatment of advanced refractory cutaneous T-cell lymphoma under the trade name 

Zolinza® (Mann et al., 2007; Stowell et al., 1995). 

1.3.2. Stimulus-Dependent Regulation of Gene Expression 

Cellular life is a constant struggle against the laws of thermodynamics. Entropy tends to increase 

and chemical reactions tend to reach an equilibrium stage. Yet, cells decrease their internal entropy 

and maintain a chemical milieu away from equilibrium for enzymes to carry out their functions, as 

Erwin Schrödinger already pointed out in his famous book “What is life?” in 1944 (Schrödinger, 

1992). In that sense equilibrium is equal to death. The process of maintenance of this cellular 

interpretation of stability is called homeostasis, a term first coined by Walter Cannon in 1929 

(Cannon, 1929). Homeostasis in turn requires a sort of “housekeeping”, i.e. a set of tasks that is 

necessary for survival and structural and functional maintenance. These tasks are mainly carried out 

by proteins encoded by so-called “housekeeping genes”, which are very robust against intra- or 

extracellular disturbances (Butte et al., 2001).  

Though their interior may be fairly homeostatic, the extracellular environment is likely to change 

over time. Thus cells have to respond to changes in environment in order to maintain their internal 

state and have evolved a plethora of chemical and physical receptors and signaling pathways for 

exactly this purpose. These mechanisms usually result in plastic changes of the interior organization 

of a cell, including changes in transcriptional activity. Thus, transcription that is activated or 

deactivated by such a signal can be called stimulus-dependent transcription. In that sense, all 

changes in gene expression could be called stimulus-dependent.  

In a multicellular organism, the proximate environment is very likely to consist of other cells, so that 

receptors and signaling mechanisms may be used for cell-to-cell communication. In this respect 

neurons are perhaps the most remarkable cell types, since they have evolved to form complex 

cellular networks and offer multiple channels for communication. Here, the term stimulus is 

defined as an external signal that leads to altered neuronal activity and in turn to plastic changes in 

the activated neurons. 

Interestingly, a class of genes that are upregulated upon stimulation is shared by various cell types. 

These genes are transcribed almost immediately after the signal has reached the – in many cases 

already pre-stalled, yet paused – transcriptional machinery, which has earned them the name 

“immediate early genes” (IEGs), a.k.a. primary response genes (Hargreaves et al., 2009; Morgan and 

Curran, 1989). One of the most well studied immediate early genes is the Fos gene (a.k.a. cFOS), 

which is, like many other IEGs, a transcription factor itself (Morgan and Curran, 1988). Thus, once 

expressed, many IEGs stimulate further transcription of their respective target genes, which 

provides a way of amplifying a signal while diverting it at the same time. The targeted genes in turn 

are the genes that are needed for a specific task, here referred to as effector genes (Figure 1-1). In 

neurons these may comprise plasticity-related genes like additional ion channels and structural 

components of the post-synapse. 

http://www.ncbi.nlm.nih.gov/gene/14281
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Figure 1-1: Schematic overview of stimulus-dependent gene expression. IEG, Immediate early gene. 

 

It has been shown that novelty, i.e. the presentation of a novel environment can act as such a 

stimulus to elicit activity-driven gene expression in a neuronal network (Benito et al., 2011; Jones et 

al., 1996; Moncada and Viola, 2007). However, novelty is likely not to hold the same “relevance” as a 

stimulus that leads to formation of a memory trace. It is supposed that relevance is mediated by 

attention, repetition and inborn mechanisms that for example detect life threatening situations or 

respond to already memorized associations (Atkinson and Shiffrin, 1968). 

As outlined before, stimulus-induced gene expression has been shown to correlate with transiently 

increased histone acetylation at the promoter regions and gene bodies of upregulated genes. Also 

the timing of increased acetylation coincides with the first waves of expression (Levenson et al., 

2004; Morgan and Curran, 1989; Peleg et al., 2010). Notably, the host laboratory could recently 

show that different gene sets are regulated in response to exploration of a new context and after 

association of this context with a foot shock (contextual fear conditioning, see 1.1.4). Acetylation of 

histone H4 on lysine 12 (H4K12ac) was strongly associated with regulation of the latter gene set, as 

upregulation of acetylation at this site was impaired in the hippocampus of 16-month-old mice and 

so was upregulation of this gene set. After administration of SAHA, however, induction of H4K12ac 

as well as induction of the learning-regulated genes was reinstated, which suggests a causal 

relationship between H4K12ac and learning-induced gene expression. Interestingly, this 

modification was found enriched not only at the promoter but also throughout the gene bodies of 

the regulated genes (Peleg et al., 2010).  
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1.3.3. The Histone Acetyltransferase Kat2a (Gcn5) 

Gcn5 was the first protein described to exhibit acetyltransferase activity (Brownell et al., 1996) and 

is one of the best studied HATs to date (when all homologs from various species from yeast to 

human are considered). To account for the fact that almost all HATs discovered since then also have 

non-histone proteins as targets for acetylation, a group of leading researches in the field has 

recently proposed a new nomenclature for chromatin-modifying enzymes (Allis et al., 2007). 

Accordingly, all HATs have been renamed as serially numbered KATs (K-Lysine-acetyltransferase), 

also adding letter indices to account for orthologs in different clades, which for example makes 

Gcn5’s new name for mammals Kat2a (formerly known as Gcn5l2). In this thesis the new name is 

used, as it is now also the official gene symbol. However, I will refer to histone acetyltransferases as 

HATs. 

The diverse HAT family members are further divided into subfamilies according to sequence 

homology. Like its close homolog Kat2b (Pcaf), Kat2a belongs to the GNAT subfamily of HATs. Other 

well studied HAT subfamilies are the Kat3a/Kat3b subfamily or the MYST subfamily, of which some 

have described functions in the brain and/or cultured neurons (reviewed in Stilling and Fischer, 

2011).  

The murine Kat2a gene is positioned on chromosome 11. According to the most recent official 

mouse genome assembly by the genome reference consortium (GRC), the Kat2a gene harbors 18 

exons, which is in contrast to the annotation shown in Lin et al., 2008, Figure 1A. Two protein-coding 

and two non-coding transcripts are expressed from this locus, where the two protein isoforms differ 

only by the insertion of one amino acid (_423A) in a protein region that is not known to be part of 

any functional domain
2
. The murine Kat2a protein shares 97% of its amino acids with human Kat2a 

and both exhibit the same domain structure, as shown in Figure 1-2. One interesting feature is the 

existence of a bromodomain, which allows Kat2a to bind to pre-acetylated lysine residues. This may 

already point to a function of Kat2a, where Kat2a is not required for basal (or primary) acetylation 

but is rather binding to these and further adds additional (secondary), potentially stimulus-

dependent, acetyl groups to nearby histone tails. This notion is support by evidence for Kat2a 

binding H4K16ac, a site known to be acetylated in a basal cellular state and to not respond to 

neuronal activity (Dion et al., 2005; Owen et al., 2000; Peleg et al., 2010; Schiltz et al., 1999). 

Like most HATs Kat2a exerts its function in multi-protein complexes. In mammals, Kat2a is a 

component of at least two different complexes that can either comprise Kat2a or Kat2b in a 

mutually exclusive manner. While the SAGA complex preferentially acetylates H3, the ATAC 

complex prefers to acetylate H4 sites (Anamika et al., 2010). In fact, Kat2a has been shown to 

preferentially acetylate H3K14 and H4K12 in multiple species (Bu et al., 2007; Ciurciu et al., 2006, 

2008; Guelman et al., 2009; Hargreaves et al., 2009; Martinez et al., 2001). Interestingly, the yeast 

homolog Gcn5p was also found to be preferentially associated with the gene bodies of stress-

induced genes (Gunderson and Johnson, 2009; Johnsson and Wright, 2010; Johnsson et al., 2009), 

                                                                 
2
 source: Ensembl release 70 

http://www.ncbi.nlm.nih.gov/gene/14534
https://www.ncbi.nlm.nih.gov/gene/18519
https://www.ncbi.nlm.nih.gov/gene/12914
https://www.ncbi.nlm.nih.gov/gene/328572
https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/index.shtml
http://e70.ensembl.org/Mus_musculus/Gene/Summary?g=ENSMUSG00000020918;r=11:100704746-100712465
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which suggests role in transcriptional elongation and is in line with mouse data (Hargreaves et al., 

2009; Peleg et al., 2010).  

 

Figure 1-2: Domain structure of the Kat2a protein. Adapted from Interpro database. 

 

Using IN SITU hybridization technology, expression of Kat2a in the murine brain has been found by 

the brain map project of the Allen Brain Institute to show strong signal in the hippocampal 

formation (Figure 6-1) (Lein et al., 2007). This is the only data currently available for Kat2a in the 

adult cerebrum. 

https://www.ebi.ac.uk/interpro/IProtein?ac=Q92830
http://www.brain-map.org/
http://www.alleninstitute.org/
http://mouse.brain-map.org/gene/show/14310
http://mouse.brain-map.org/gene/show/14310
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1.4. Objectives 

1.4.1. The role of Kat2a in transcription during learning and memory 

Loss of histone-acetyltransferase function is suspected to affect memory consolidation negatively. 

Among the HATs, only Kat3a (Cbp), Kat3b (p300) and Kat2b (Pcaf) have been tested in this respect. 

Though Kat2a was the first discovered HAT, its function has only been described in the developing 

embryonic brain and it has not yet been implicated in learning and memory processes. In fact, 

though Kat2a is associated with stimulus-dependent transcriptional activation in somatic cells, little 

is known about its expression in neurons and its function and targets in the adult brain are entirely 

unexplored. 

The aim of the presented project was to determine a putative function of Kat2a in the adult 

mouse brain. In a first step, expression levels of Kat2a in different brain regions were examined. 

Furthermore, the role of Kat2a in learning and memory-related behavior was analyzed using loss- 

and gain-of-function approaches. In order to correlate a potential behavioral phenotype with 

electrophysiological properties of the hippocampus, investigation of long-term potentiation was 

carried out. To confirm stimulus-dependent transcriptional regulation by Kat2a and to identify 

potential target genes will help to further establish chromatin plasticity as a key process in 

governing regulation of neuronal gene expression and increase our knowledge of the cellular and 

molecular mechanisms underlying learning and memory. 

1.4.2. Histone acetylation and transcription in the aging hippocampus 

Though brain aging goes along with massive transcriptional changes, a detailed, homogenous 

picture of the transcriptome of the aging mouse hippocampus, especially towards the end of an 

individual’s life span, has not been drawn yet. Accumulating evidence suggests that chromatin-

related mechanisms may be involved in the regulation of transcriptional aging. However, data on 

the contribution of histone acetylation remain incomplete. 

The aim of this project was to extend our knowledge about transcriptional programs 

associated with the advanced aging and to investigate a potential role of histone acetylation 

in this process. First, enzymatic activities of HATs and HDACs as well as histone acetylation levels 

were assessed in 24-month-old mice and mice older than 28 months. Since there is extensive 

evidence for beneficial effects of HDAC inhibition on cognition in health, aging and disease, it can be 

reasoned that oral SAHA administration would exert a positive influence on memory formation of 

mice at an advanced age. Finally, we wanted to comprehensively determine the transcriptional 

signature of the aging hippocampus to draw conclusions about the processes responsible for age-

associated memory impairment.  
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2. Materials and Methods 

2.1. Animals and Tissue Isolation 

2.1.1. Animals 

All animals used in this study were of the species Mus musculus (the common house mouse). Wild 

type mice were of the inbred strain C57Bl6/J, unless stated otherwise. Specific pathogen free (SPF) 

C57Bl6/J wild type mice were obtained from Janvier SAS. Mice were kept in individually ventilated 

cages (IVC, 32 x 16 x 14 cm, Techniplast) at the certified, access restricted animal facility of the 

European Neuroscience Institute, maintained by professional animal caretakers. All procedures 

described, were performed according to protocols approved by the Lower Saxony State State Office 

for Consumer Protection and Food Safety (LAVES, Reference number G12.780). 

To obtain Kat2a conditional knockout (cKO) mice that carrying a heterozygous “floxed” allele of 

Kat2a (originally described as Gcn5
flox

, officially recognized as Kat2a
tm3.2Roth

 and hereafter named 

Kat2a
f/+

)
3
 on a 129/Sv-C57Bl/6-mixed background (Lin et al., 2008) were crossed to mice carrying a 

transgenic construct for expressing the Cre recombinase under control of the CamKIIα promoter on 

a C57BL/6J background (officially recognized as Tg(CamKIIα-cre)159Kln, hereafter named 

CamKIICre
tg

) (Minichiello et al., 1999). Mice carrying the floxed Kat2a allele homozygously and 

additionally the CamKIIα-Cre transgene are cKO mice (hereafter designated as Kat2a
f/f;tg

), with 

homozygous recombination of the two loxP sites only in excitatory forebrain neurons resulting in 

loss-of-function Kat2a alleles restricted to these cell types. The Cre-loxP system is described visually 

in Figure 2-1A.  

 

Unless otherwise stated, young adult mice at the age of 3 to 5 months were used for behavioral and 

molecular analyses. Male and female mice were used in the different groups where appropriate to 

avoid gender bias. 

 

                                                                 
3
 According to the original description exons 3 to 18 (of 19) are flanked by the loxP sites. However, Kat2a has 

only 18 exons according to the most recent genome assembly. For simplicity, it can be agreed that the loxP 
sites are integrated after exon 2 and before the last 3’ exon. Expressed this way, validity is preserved in any 
case. 

http://www.janvier-europe.com/login_fr.html
http://www.tecniplast.it/
http://www.laves.niedersachsen.de/portal/live.php?navigation_id=20138&article_id=73708&_psmand=23
http://www.laves.niedersachsen.de/portal/live.php?navigation_id=20138&article_id=73708&_psmand=23
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=alleleDetail&id=MGI:3801276
http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=alleleDetail&id=MGI:2176753
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Figure 2-1 The Kat2a-cKO mouse is based on the Cre-loxP system. A DNA element of interest (EoI) is said to 
be “floxed” if flanked by in-tandem loxP recognition sites for the Cre recombinase. The result of the 
recombination is loss of the EoI (A). Structure of the floxed Kat2a locus and genotyping results from forebrain 
(right) and tail tissue (left). The Cre recombinase is expressed under CamKIIα promoter, which is active in 
excitatory forebrain neurons (orange) (B). 

 

2.1.2. Genotyping 

Genomic DNA was extracted from cut tail tips of mice after weaning using Direct PCR DNA 

Extraction Reagent (mouse tail) (Viagen) according to the instructions manual. PCR reaction took 

place in thin-walled 0.2 ml test tubes on a Mastercycler ep gradient S (Eppendorf) Genotyping for 

the Kat2a locus was performed using three primers to distinguish between wildtype (210 bp PCR 

product), floxed (310 bp) and recombined alleles (~600 bp) as shown in Figure 2-1B (see also Lin et 

al., 2008). Presence of the CamKII-Cre transgene was tested in a different PCR. Primer sequences for 

all reactions in this study are given in Appendix 6.4. Reaction mixes and cycling conditions are given 

in Table 2-1 and Table 2-2, respectively. PCR products were loaded on agarose gels for sizing and 

visualization as described in 2.4.2.1.3. 

Table 2-1: Reaction mixes for genotyping PCRs 

Kat2a genotyping Volume CamKII-Cre genotyping 

Genomic DNA solution 1 µl Genomic DNA solution 

Dream-Taq Buffer 10x 2.5 µl Dream-Taq Buffer 10x 

dNTP Mix (10 mM each) 2 µl dNTP Mix (10 mM each) 

Primer Kat2a-GT_fwd 0.5 µl Primer Cre-GT-fwd 

Primer Kat2a-GT_rev 0.5 µl Primer Cre-GT_rev 

Primer Kat2a-GT_rev2 0.5 µl - 

Dream Taq (5 u/µl) 0.2 µl Dream Taq (5 u/µl) 

ddH2O ad 25 µl ddH2O 

 

 

 

http://www.viagenbiotech.com/
http://www.viagenbiotech.com/
http://www.mastercycler.com/
http://www.thermoscientificbio.com/pcr-enzymes-master-mixes-and-reagents/dreamtaq-dna-polymerase/
http://www.thermoscientificbio.com/pcr-enzymes-master-mixes-and-reagents/dreamtaq-dna-polymerase/
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Table 2-2: Cycling conditions for both genotyping PCRs. 

Temperature 

[°C] 

Duration [s]  

95 300  

95 30 
34 

cycles 
57.5 30 

72 60 

72 300  

4 ∞  

2.1.3. Tissue Isolation 

2.1.3.1. Tissue Isolation for Extraction of Biological Macromolecules 

Mice were sacrificed by cervical dislocation. The following steps were performed on a metal plat 

resting on an ice bed. The skull was opened and skull bones removed. The brain was unhinged and 

tissue was dissected to isolate different brain regions. For retrieval of hippocampal subfield tissue 

(CA1, CA3 and DG), dissection was performed as described previously (Hagihara et al., 2009; 

Hörtnagl et al., 1991) in PBS using binocular magnification. The isolated tissue pieces were collected 

in 1.5 ml test tubes, snap-frozen in liquid nitrogen and kept at -80 °C until use. 

2.1.3.2. Tissue Isolation for Immunohistochemistry 

Mice were anesthetized by intraperitoneal (IP) injection of 250 mg/kg(bodyweight) Avertin 

(tribromoethanol, Sigma) and it was waited until full anesthesia occurred. Surgical tolerance was 

tested checking for whisker, cornea and toe-pinch reflexes, respectively. Only then, mice were 

transcardially perfused with PBS to wash out the blood, followed by perfusion with 4% freshly 

prepared PFA. After fixation the brain was isolated as described above and post-fixed in 4% PFA 

over night at 4 °C. Then, PFA was replaced by a 30% sucrose solution and brains were kept until they 

sunk to the bottom of the falcon. Sucrose solution was discarded, residual solution dried away and 

brains frozen on tinfoil over liquid nitrogen. Brains were then embedded in tissue tek medium and 

cut in a CM1850uv cryostat (Leica Biosystems) at -20 °C into sections with a thickness of 30 µm. 

Sections were collected in sterile PBS supplemented with Penicillin/Streptavidin solution and kept 

at 4 °C. PBS was later replaced by cryo-protectant solution (containing 30%w/v sucrose, 1%w/v PVP-

40, 30%v/v ethylene glycol in 0.2 M phosphate buffer [2.448%w/v Na2HPO42H2O, 0.624%w/v 

NaH2PO42H2O]). Immunohistochemistry was performed as described in 2.4.2.3.2. 

2.1.4. Stereotaxic injection of Adeno-associated virus 

Adeno-associated virus (AAV) for IN VIVO expression of Kat2a was generated in collaboration with 

Dr. Sebastian Kügler’s laboratory. The final titer of soluble viral particle aliquots was determined to 

be 5.4 x 10
8 

transduction units per microliter (TU/µl). GFP-AAV served as control virus. The viral titer 

was determined to be 4e10
8
 TU/µl. Viral particles were diluted to 1.0e10

8
 TU/µl in sterile PBS and 

1 µl was injected into each hemisphere of anesthetized animals mounted in a digital stereotaxic 

manipulator (Leica Microsystems) using a surgical driller (Fordom) for skull penetration and a 

http://www.sigmaaldrich.com/catalog/product/aldrich/t48402?lang=en&region=US
http://www.leicabiosystems.com/products/cryosectioning/details/product/leica-cm1850-uv/
http://www.baehrlab.med.uni-goettingen.de/staff_kuegler.html
http://www.leica-microsystems.com/products/neuroscience-research-solutions/stereotaxic-instrumentation/manipulators/details/product/leica-digital-stereotaxic-1/
http://www.leica-microsystems.com/products/neuroscience-research-solutions/stereotaxic-instrumentation/manipulators/details/product/leica-digital-stereotaxic-1/
http://www.foredom.net/hmh170-1.aspx
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microsyringe pump (World Precision Instruments) with an attached glass capillary for injection at a 

rate of 300 nl/min. Surgical-tolerance anesthesia was achieved as described in 2.1.3.2. Coordinates 

for injection were (relative to bregma): anteroposterior -1.75 mm, lateral -1 mm, dorsoventral 2 mm, 

thereby targeting DG. After surgery the wound was closed using tissue glue (Histoacryl®, Braun) 

and animals were kept on a warming plate until wake-up.  

2.2. Pharmacological Inhibition of HDAC Activity 

2.2.1. Injection of Suberoylanilide Hydroxamic Acid in Young Mice 

Young adult wildtype mice (3 months old) were injected with either SAHA solution (0.5%w/v SAHA, 

35%DMSO, 0.9%NaCl in ddH
2
O, sterile filtered)

4
, or vehicle (35% DMSO, 0.9% NaCl in ddH2O, sterile 

filtered) every 24 hours for 7 consecutive days and sacrificed either 1, 3, 8 or 24 hours after the last 

injection. 

2.2.2. Oral Administration of Suberoylanilide Hydroxamic Acid in Aged Mice 

Aged wildtype mice (23 months old) were fed with either 50 µg SAHA per g body weight (10% SAHA 

in DMSO mixed with 200 mg peanut butter) or vehicle (equivalent amount of DMSO with 200 mg 

peanut butter) every 24 hours for 21 consecutive days.  

2.3. Behavioral Analyses 

If not otherwise stated, all behavioral experiments were digitally recorded and analyzed using the 

Videomot2 tracking system (Versions 7.02, TSE Systems). Experimenters were blind to the genotype 

where possible. Where necessary, experimental designs are described in the following and 

displayed together with their respective figure in the Results section. For all behavioral experiments 

mice were habituated to the testing room: male mice were kept individually at least one week 

before the start of the first experiment, while female mice were kept in groups of 2 to 5 animals. 

2.3.1. Open Field 

Animals were placed individually in a uniform-grey plastic arena (50 x 50 cm, walls were 40 cm high) 

and allowed to explore the arena for 5 minutes. The room was lit by passive illumination to avoid 

shading differences within the arena. A virtual 4 x 4 grid was drawn over the arena and the 4 inner 

tiles were defined as center region of the arena. Measured values included total distance, average 

speed and total time spent in center region vs. total time in surrounding regions. 

2.3.2. Rotarod Performance Test 

Motor function and performance was tested on the TSE RotaRod system. Animals were placed in 

individual chambers on the rotating rod and habituated for four trials at 10 rpm, 3 minutes each. 

                                                                 
4
 Final concentration (SAHA) =5µg/µl, 50 µg SAHA per g [body weight] injected, e.g. 300 µl for a 30 g mouse 

http://www.wpiinc.com/index.php/NL2010MC4.html
http://www.bbraun.de/cps/rde/xchg/bbraun-de/hs.xsl/products.html?prid=PRID00000458
http://www.tse-systems.com/products/behavior/videotracking/videomot2.htm
http://www.tse-systems.com/
http://www.tse-systems.com/products/behavior/motor-function/rotarod.htm
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Falling animals were placed back on the rod to continue training. Aversive stimuli (electric foot 

shock) were not used. During four testing trials, rotation speed was linearly increasing from 5 to 

40 rpm for 3 minutes and kept at 40 rpm for another 1 minute. Time between all trials was 6 to 12 

hours. Time until fall was recorded by the supplier’s software for each animal during all testing 

trials. 

2.3.3. Elevated Plus Maze 

Animals were placed individually in a uniform-grey plastic arena consisting of two non-walled (open) 

and two walled (closed) arms (10 x 40 cm, walls were 40 cm high). Time spent in open vs. closed 

arms was measured. 

2.3.4. 4-armed Cross Maze-Exploration Test 

Spatial working memory was tested in a uniform-grey plastic arena consisting of four numbered, 

walled arms (10 x 40 cm, angled 90°, walls were 40 cm high). Animals were allowed to explore the 

arena for 10 minutes. Mouse behavior was digitally recorded and analyzed using the TSE Videomot2 

tracking system (Version 7.02). The sequence of arm entries was extracted and successful trials 

were counted.  

A successful trial was defined as entering an arm that was not entered in one the last three trials. If 

a mouse would enter arms in random order, the fraction of successful trials out of all trials would be  

4

4
×
3

4
×
2

4
×
1

4
= 0.09375  

or 9.375% (‘chance level’). 

2.3.5. Novel object recognition 

Animals were habituated individually to a uniform-grey plastic arena (50 x 50 cm, walls were 40 cm 

high) for 5 minutes on two subsequent days. Animals were then further habituated to two equal 

objects (objects A and A) placed in opposing corners of the arena for 5 minutes on the next to days. 

On day 5 objects A and A were exchanged by two new but equal objects (objects B and B) and 

animals were allowed to explore the objects for 5 minutes. Then, mice were sent back to their home 

cages for 5 minutes (for short-term memory assessment, STM) and reintroduced to the arena after 

one object was exchanged (objects B and C). After 24 hours object C was exchanged for object D for 

long-term memory assessment (LTM). Number and duration of object contacts were measured by 

the experimenter. Mice that did not contact any of the two objects during a session or only showed 

summed interest for less than 1 s were excluded from the analysis of this test. 

Object preference was defined as  

time(B)

time(B)+ time(C / D)
 

http://www.tse-systems.com/products/behavior/videotracking/videomot2.htm


Materials and Methods 

 

20 

,where time is the summed duration spent with the object. 

For comparison of vehicle-treated vs. SAHA-treated 24-month-old-mice, a similar setting was used. 

However, mice were habituated for only one day in an arena that was 100 X 100 cm with 20 cm high 

transparent walls. Objects A and A were used for training on day 2 and objects B and C were 

introduced after a 5 min or 24 hours stay in the home cage, respectively. 

2.3.6. Fear conditioning 

Fear conditioning was performed, recorded and analyzed on the NIR Video Fear Conditioning 

system (Med Associates Inc.) using Video Freeze
TM

 software. Mice were placed in a sound-protected 

box supplied with white noise and allowed to explore the new context, while baseline freezing was 

monitored. After 3 minutes, an electrical foot shock (0.7 mA, 2 seconds) was delivered through the 

grid floor. 24 hours later, animals were reintroduced to the cage and contextual freezing behavior 

was recorded for 3 minutes. Freezing was counted in linear analysis mode, if the Motion Index was 

below a threshold of 50 for longer than 30 frames (at 30 frames per second). 

2.3.7. Morris Watermaze 

Animals were placed in a circular pool (1.2 m diameter) containing opaque water at ambient 

temperature (20-22 °C) and a platform submerged 1 cm below the water surface. The pool was 

equipped with four visual cues for orientation. On each day mice were allowed to swim on four 

trials, each starting from a different starting point. Escape latency was measured as the time the 

mice needed to find the platform. If they did not find it within 1 minute, mice were guided to the 

platform by the experimenter. On the day of probe testing, the platform was removed and mice 

were allowed to swim for 1 minute. A virtual grid of 4 quadrants was drawn over the pool surface 

and time spent in each quadrant was measured, the target quadrant being the one, where the 

platform had been placed during training. The percentage of time spent in each quadrant (chance 

level = ¼ = 25%) and the number of crossings of as well as time spent in the platform region was 

calculated. 

In a visual form of the test described above, the submerged platform was flagged with a visual cue 

and trials were performed for four days with no subsequent probe test. 

2.3.8. Novelty exposure 

Male mice were individually exposed to a uniform-grey plastic arena (50 x 50 cm, walls were 40 cm 

high) containing four objects in each corner of the arena, different in shape, size, color and material. 

Mice were allowed to explore the objects for 15 minutes while movements were monitored. One 

hour after they were sent back to their home cages, mice were sacrificed and tissue was isolated as 

described in 2.1.3.1. Naïve mice taken directly from their home cage served as controls. 

http://www.med-associates.com/products-page/fear-conditioning/nir-video-fear-conditioning-packages-video-freeze-tm/nir-video-fear-conditioning-system-for-mouse/
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2.4. Molecular Analyses 

For all protocols, all steps were performed at RT, unless stated otherwise. 

2.4.1. Extraction of Biological Macromolecules 

2.4.1.1. Extraction of Genomic DNA 

Genomic DNA was extracted only for the use of genotyping as described in 2.1.2. 

2.4.1.2. Extraction of RNA 

In general, all materials and workbenches used for RNA extraction were wiped with RNaseZAP 

(Sigma-Aldrich). RNA was extracted according to the SOP of the Transcriptome Analysis Laboratory 

(TAL). In brief, flash-frozen tissue was homogenized on ice with several pestle strokes in 0.5 ml of 

TRI Reagent (Sigma-Aldrich) After addition of another 0.5 ml of TriReagent and 5 min incubation at 

room temperature (RT) the dissociated homogenate was mixed with 300 µl of CHCl3 and incubated 

for 15 min (RT) followed by centrifugation at 12,000 x g (4 °C). The upper aqueous phase was 

transferred to a new tube, mixed with 500 µl isopropanol and incubated at -20 °C for at least 1 hour 

for precipitation. RNA was precipitated by centrifugation at 12,000 g for 30 minutes (4 °C). The 

pellet was washed twice with 1ml of 75% ethanol (centrifugation after washing steps: 12,000 x g, 

5 min, 4 °C). The washed pellet was dissolved in 30 µl of RNase-free water.  

For genome-wide methods (RNA-seq, microarray) retrieved RNA was treated with DNase I according 

to the SOP of the TAL: To the 30 µl of dissolved RNA 5 µl of 10x incubation buffer, 1 µl DNase I and 

0.5 µl RNaseOUT
TM

 (all life Technologies) was added and filled up to a final volume of 50 µl with 

RNase free water. Samples were then incubated for 20 min at 37 °C followed by addition of an 

150 µl of RNase free water and 200 µl of phenol:chloroform:isoamylalcohol (25:24:1 ratio, 

Applichem). After vortexing and centrifugation at 12,000 x g for 2 min (RT), the upper aqueous 

phase was transferred two a new tube and mixed with 20 µl of 3 M sodium acetate pH 4.8, 200 µl 

isopropanol and 1 µl Glycoblue (life Technologies). For precipitation samples were kept at -20 C for 

at least 1 hour and afterwards centrifuged for 30 min at 16,100 x g. The resulting pellet was washed 

twice with 1 ml of 75% ethanol (centrifugation after washing steps: 12,000 x g, 5 min, 4 °C). The 

pellet was then redissolved in 30 µl of RNase-free water. 

2.4.1.3. Extraction of Proteins 

Protein extracts from subcellular compartments were obtained using two different methods. In 

general, flash-frozen tissue was homogenized on ice with several pestle strokes under buffered and 

protease-inhibited conditions. To extract proteins from cytosolic as well as membrane and nuclear 

proteins the ProteoExtract® Subcellular Proteome Extraction Kit (Merck Chemicals / Calbiochem) 

was used according to the manufacturer’s recommendations.  

To separate cytoplasmic from nuclear protein fractions tissue was homogenized in 0.5 ml TX Buffer 

(1%v/v Triton X 100, 150 mM NaCl, 50 mM Tris HCl, 2 mM EDTA in PBS, pH 7.4, supplemented with 

Complete Protease Inhibitor Cocktail, Roche Applied Science) and incubated for 15 min on a 

http://www.sigmaaldrich.com/catalog/product/sigma/r2020?lang=de&region=DE
http://www.sigmaaldrich.com/
http://www.sigmaaldrich.com/life-science/molecular-biology/dna-and-rna-purification/rna-isolation-reagent.html
https://products.invitrogen.com/ivgn/product/AM2222
https://products.invitrogen.com/ivgn/product/AM2222
https://products.invitrogen.com/ivgn/product/10777019
https://products.invitrogen.com/ivgn/product/10777019
https://products.invitrogen.com/ivgn/product/AM9515
http://www.merckmillipore.de/life-science-research/proteoextract-spotlight-protein-extraction/c_FpOb.s1OuLkAAAEhrscsgmj5;sid=0lahJuDVmQm4JrAIjUfMcUgVVdWz1opy6ni_cFN48CIfRW5b_rbCjObrxQ0sm8usUiWxOuMML26IIWkccNIUzU-f86K4YiwF4cwZB1jMVlUU8W5b_ra_cFN4?back=true#3
http://www.merckmillipore.de/chemicals
http://www.merckmillipore.de/life-science-research/calbiochem/c_m7eb.s1OGuMAAAEjT.h9.zf4
http://www.carlroth.com/catalogue/catalogue.do?favOid=00000001000051b100020023&act=showBookmark&lang=en-de&market=DE
http://www.roche.com/de/products/product-details.htm?type=product&id=104
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rotation wheel (15 rpm) at 4 °C. After centrifugation (10 min, 4 °C, 400 x g), supernatant was 

collected as cytoplasmic fraction. The remaining nuclear pellet was dissolved in TX Buffer 

supplemented with 1% SDS, incubated in for 5 min on a rotation wheel (15 rpm, 4°C) and sent to an 

ultrasound bath (Bioruptor®, Diagenode) for 15 cycles (30 s ON / 30 s OFF). After centrifugation 

(10,000 x g, 10 min, 4 °C), the supernatant was collected as nuclear fraction, the pellet was 

discarded.  

2.4.2. Detection of Biological Macromolecules 

2.4.2.1. Detection of DNA  

2.4.2.1.1. DNA Quantity Measurements and Quality Control 

DNA concentration and 260/280 nm values were determined using a Nanodrop 2000 (Thermo 

Scientific). For ChIP-seq, concentration and quality (fragmented DNA size) was measured using High 

Sensitivity DNA kits with Agilent’s 2100 Bioanalyzer (Agilent Technologies) according to the 

supplier’s protocols.  

2.4.2.1.2. PCR Amplification 

For PCR amplification of gDNA for genotyping purposes see 2.1.2 

For PCR amplification of cDNA fragments for molecular cloning purposes see 2.4.3.1 

2.4.2.1.3. DNA Gel Electrophoresis and Purification 

For DNA sizing and visualization, agarose-gel electrophoresis was used. 0.8-2% w/v agarose in 1x 

TAE buffer (40 mM Tris-acetate, 1 mM EDTA in ddH2O) was boiled until complete solution, 

supplemented with 2-4 µl of ethidium bromide stock solution (10 mg/ml) and poured to 

electrophoresis chambers. Separation was achieved in electrophoresis chambers submerged in TAE 

buffer at constant voltage (100 V). For genotyping, a green loading dye was already a component of 

the PCR Mastermix. For all other PCRs (see 2.4.3.1) 6x loading dye (Thermo Scientific) was added to 

the sample to a final concentration of 1x. For sizing purposes, a reference size marker (100 bp 

ladder or 1000 bp ladder, Thermo Scientific) was loaded on each gel. 

For purification of DNA fragments from gel, the piece of interest was cut out and subjected for 

treatment with the QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s manual.  

2.4.2.1.4. DAPI Staining 

DAPI (life Technologies) stock solution (5 mg/ml) was diluted 1:10,000 in the secondary antibody 

solution and incubated as described in 2.4.2.3.2. 

2.4.2.1.5. DNA Sequencing 

For routine Sanger sequencing of amplified constructs and PCR products, purified DNA
5
 was 

prepared according to Seqlab recommendations
6
, picked up by Seqlab service and sequenced using 

                                                                 
5
 QIAquick PCR / Gel Purification kit (Qiagen) for PCR products, purification of plasmids is described in 2.4.3.4 

6
 Recommended amount of DNA was mixed with a single specific primer 

http://www.diagenode.com/en/catalog/equipment-1/bioruptor-sonicator-reg--6/product/bioruptor--1
http://www.diagenode.com/
http://www.nanodrop.com/Productnd2000overview.aspx
http://www.thermoscientific.com/
http://www.thermoscientific.com/
http://www.genomics.agilent.com/CollectionOverview.aspx?PageType=Application&SubPageType=ApplicationOverview&PageID=275
http://www.home.agilent.com/
http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152___13318508_-1
http://www.thermoscientificbio.com/nucleic-acid-electrophoresis/generuler-100-bp-plus-dna-ladder-ready-to-use-100-to-3000-bp/
http://www.thermoscientificbio.com/nucleic-acid-electrophoresis/generuler-100-bp-plus-dna-ladder-ready-to-use-100-to-3000-bp/
http://www.thermoscientificbio.com/nucleic-acid-electrophoresis/generuler-1-kb-plus-dna-ladder-ready-to-use-75-to-20000-bp/
http://www.qiagen.com/products/dnacleanup/gelpcrsicleanupsystems/qiaquickgelextractionkit.aspx#Tabs=t0
http://products.invitrogen.com/ivgn/product/D1306
http://www.seqlab.de/fileadmin/upload_doc/071207_SEQLAB_TippsTricks.pdf
http://www.seqlab.de/index.php?id=dna
http://www.qiagen.com/products/dnacleanup/gelpcrsicleanupsystems/qiaquickpcrpurificationkit.aspx#Tabs=t0
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Extended HotShot sequencing. Lasergene Seqman (Dnastar) was used for sequence inspection and 

alignment. 

ChIP-seq was performed for genome-wide H3K9ac occupation studies. ChIP samples were purified 

using ChIP DNA Purification Kit (Active Motif) and shipped to Fasteris SA. There DNA concentration 

is verified by fluorometry using the Qubit (life Technologies). The libraries were prepared as described 

by Illumina in their ChIP-seq library preparation kit. Briefly, the DNA is end-repaired to produce 

phosphorylated blunt ends, A-tailed to get a 3' protruding A residue and ligated with Illumina's 

adapters. The final library obtained by PCR amplification (15 cycles) was verified on an Agilent 2100 

Bioanalyzer (Agilent Technologies) for size distribution and concentration. The libraries were analyzed 

on a 1x50 run on the HiSeq instrument
7
. Data analysis for quality control, basic statistics and 

generation of region specific plots was performed as described in 2.6.4. 

2.4.2.2. Detection of RNA 

2.4.2.2.1. RNA Quantity Measurements and Quality Control 

RNA concentration and 260/280 nm values were determined using a Nanodrop 2000 (Thermo 

Scientific). For genome-wide assays (RNA-seq, microarray) concentration and quality (RNA integrity 

number, RIN) was measured using RNA 6000 nano or 6000 pico kits on an Agilent 2100 Bioanalyzer 

(Agilent Technologies) according to the supplier’s protocols.  

2.4.2.2.2. cDNA Synthesis 

cDNA synthesis was performed using the First Strand Synthesis kit (Roche Applied Science) 

according to the manufacturer’s protocol. In brief, 1 µg of RNA was used as input and denatured for 

10 min at 65 °C. Then first strand cDNA synthesis was performed using random hexamer primers.  

2.4.2.2.3. qRT-PCR 

For expression analysis by quantitative real-time PCR (qRT-PCR), cDNA was diluted 1:10 in PCR-

grade H2O and amplified using the LightCycler® 480 System including LC480 Mastermix in 

association with the Universal ProbeLibrary (UPL) system (Roche Applied Science). Primers and 

probes were selected using the UPL Assay Design Center. Murine housekeeping gene Hprt served as 

internal reference. I each run (96-well plate) all qRT-PCR samples were measured in duplicates. 

2.4.2.2.4. DNA Microarray 

DNase I treated RNA or frozen tissue was handed to the TAL. There, RNA extraction, quality control, 

cDNA synthesis, mono-color Cy3-labeling and hybridization to whole mouse genome microarray 

chips were carried out according to TAL-own SOPs. In brief, total RNA was labeled with Cy3 according 

to Agilent's Low RNA Input Fluorescent Linear Amplification Kit and later hybridized to Agilent Whole 

Mouse Genome 4x44K G4122F microarrays according to the manufacturer’s protocol. Quantity and Cy-

dye incorporation rates of the generated target material were assessed using a NanoDrop ND-1000. 

Washes were performed according to the Agilent Technologies SSPE protocol (v2.1) – wash solution 3 

was replaced by acetonitrile. After that, scanning was performed using an Agilent G2505B scanner.
8
 

                                                                 
7
 Protocol description kindly provided by Fasteris SA. 

8
 Protocol description kindly provided by the TAL 

http://www.seqlab.de/index.php?id=single-reads1
http://www.dnastar.com/t-sub-products-lasergene-seqmanpro.aspx
http://www.activemotif.com/catalog/690/chromatin-ip-dna-purification-kit
http://de-de.invitrogen.com/site/de/de/home/brands/Product-Brand/Qubit.html
http://www.genomics.agilent.com/CollectionOverview.aspx?PageType=Application&SubPageType=ApplicationOverview&PageID=275
http://www.genomics.agilent.com/CollectionOverview.aspx?PageType=Application&SubPageType=ApplicationOverview&PageID=275
http://www.nanodrop.com/Productnd2000overview.aspx
http://www.genomics.agilent.com/CollectionOverview.aspx?PageType=Application&SubPageType=ApplicationOverview&PageID=275
http://www.roche-applied-science.com/sis/rtpcr/htc/index.jsp
http://www.roche-applied-science.com/sis/rtpcr/upl/index.jsp?id=uplct_000000
http://www.roche-applied-science.com/sis/rtpcr/upl/index.jsp?id=UP030000
http://www.uni-bc.gwdg.de/index.php?id=709
http://www.chem.agilent.com/Library/usermanuals/Public/5185-5818_v4.0.pdf
http://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Product&SubPageType=ProductDetail&PageID=1519
http://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Product&SubPageType=ProductDetail&PageID=1519
http://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Product&SubPageType=ProductDetail&PageID=1363
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Data analysis to generate lists of differentially expressed genes (DEGs) was performed as described 

in 2.6.1.  

2.4.2.2.5. RNA Sequencing 

DNase I treated RNA was quality controlled (see 2.4.2.2.1) and handed to technical assistance (for 

the Kat2a and aging project) or the TAL (for the aging project). Library preparation and cluster 

generation for mRNA sequencing was performed according to Illumina standard protocols using the 

TruSeq RNA Sample Prep Kit v2 and the TruSeq Paired-End Cluster Generation Kit v3-cBot-HS (for 

PE mRNA-seq) with subsequent use of the corresponding TruSeq Cluster Generation Kit v3-cBot-HS 

(for SE mRNA-seq). Libraries were quality controlled and quantified using a Nanodrop 2000 (Thermo 

Scientific), an Agilent 2100 Bioanalyzer (Agilent Technologies) and Qubit (life Technologies). For the 

sequencing run, TrueSeq SBS kits were used according to Illumina manuals. Data analysis for quality 

control, basic statistics and generation of lists of differentially expressed genes (DEGs) and 

comparison of transcript abundance was performed as described in 2.6.2. 

2.4.2.3. Detection of Proteins 

For all immunological-based detection of proteins commercially available antibodies were used. For 

the full list of antibodies used in this thesis, please refer to Appendix 6.5.  

2.4.2.3.1. SDS-PAGE and Western Blot 

Protein lysates (see 2.4.1.3) were diluted to 1 µg/µl with Laemmli sample buffer (CSH Protocols, 

2007) and incubated at 99 °C for 5 min. 10 - 40µg of protein sample was loaded on SDS-PAGE 

acrylamide gels, consisting of a stacking gel (5% polyacrylamide [PA]) on top of a separating gel (10 

– 15% PA). All devices for SDS-PAGE and western blot were from Bio-Rad. 5 µl of protein-sizing 

markers (Thermo Scientific) were loaded on every gel. Gels were submerged in electrophoresis 

buffer (25 mM Tris, 250 mM Glycine, 0.1% SDS in ddH2O) and electrophoresis was carried out at 

constant voltage (45 min at 60 V plus 1.5 hours at 100 V).  

Afterwards, submerged in transfer buffer (192 mM Glycine, 25 mM Tris-HCl pH 8.3, 20% Methanol in 

ddH2O), proteins were transferred to a PROTRAN® nitrocellulose membrane (0.2 µm pore size, 

Whatman) in a cooled device (4 °C) at constant voltage (45 V) for 12 to 20 hours. 

Blotted membranes were incubated in non-fat milk (5%w/v milk powder (Roth) in TBS [5 mM Tris, 

15mM NaCl, pH 7.6]) for blocking and incubated with the primary antibody of interest ON at 4 °C 

(antibodies were diluted with in 0.5%w/v milk powder, 0.05%v/v Tween®-20 (Roth) in TBS). 

Afterwards the membrane was washed 3 times for 5 min in 0.05%v/v Tween®-20 in TBS, incubated 

with the appropriate (fluorescent) secondary antibody for 30 minutes (dilution as primary antibody) 

and washed again 3 times. Membranes were stored in TBS until imaging. Membranes were scanned 

and the results quantified using the Odyssey ® Imaging system (Li-cor). 

2.4.2.3.2. Immunohistochemistry and Imaging 

Immunohistochemistry was used to visualize protein abundance and localization in floating coronal 

and sagittal cryosections of mouse brain tissue that were prepared as described in 2.1.3.2. Sections 

http://www.illumina.com/
http://www.nanodrop.com/Productnd2000overview.aspx
http://www.genomics.agilent.com/CollectionOverview.aspx?PageType=Application&SubPageType=ApplicationOverview&PageID=275
http://de-de.invitrogen.com/site/de/de/home/brands/Product-Brand/Qubit.html
http://www.bio-rad.com/
http://www.piercenet.com/browse.cfm?fldID=717F6181-FACE-A3DF-CA2B-80430903A433
http://www.piercenet.com/browse.cfm?fldID=717F6181-FACE-A3DF-CA2B-80430903A433
http://www.whatman.com/ProtranNitrocelluloseMembranes.aspx
http://www.carlroth.com/catalogue/catalogue.do;jsessionid=9A102A693CFFB8E80C692B306190D1B4?id=19503&favOid=000000010000281b00020023&act=showBookmark&lang=de-ch&market=CH
http://www.carlroth.com/catalogue/catalogue.do?favOid=0000000200001c9200020023&act=showBookmark&lang=de-de&market=DE
http://www.licor.com/bio/products/imaging_systems/odyssey/odyssey_imager.jsp
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were transferred to 24-well plates (1 section per well) and washed twice with 500 µl9 of PBS 

supplemented with 0.2% Triton X 100 (TX, Roth) for 5 min followed by incubation in 500 µl of 

blocking solution (5% goat serum (PAN Biotech), 0.3% TX in PBS) for 90 min. After blocking, 300 µl 

of primary antibody solution (prepared in blocking buffer)10 was added and incubated over night 

(ON) at 4 °C. Washing was performed with 3 times 500 µl of 1% goat serum plus 0.2% TX in PBS for 

10 min each. Incubation with 300 µl secondary antibody solution (prepared in blocking buffer)11,12 

for 60 min was followed by 3 washes with 500 µl of 0.2% TX in PBS and an additional wash in 500 µl 

pure PBS, all steps under light protected conditions. Sections were dried, mounted on super frost+ 

glass slides (Thermo Scientific), submerged in polyvinylalcohol (Mowiol® 4-88, Sigma-Aldrich) 

covered with a glass cover slip. Slides were kept at 4 °C until imaging with a confocal microscope 

(DMIRE2, Leica) or an epifluorescence light microscope (IX70, Olympus). For image acquisition, on 

the confocal microscope LCS software (v2.6.1, Leica), on the epifluorescence light microscope a 

digital camera (DP71, Olympus) in combination with Cell F software (Olympus) were used. Image 

manipulations were done using Image J (NIH) and LCS software (v2.6.1 Leica) was used for 

fluorescence quantification.  

Immunostaining of Kat2a using was done as described above, with the following difference: 

Sections were incubated in Citrate Buffer (10 mM Tri-sodium citrate (Applichem), 0.1% TX in ddH2O) 

at 95 °C for 10 minutes before submitting to washes and blocking. 

2.4.2.3.3. HAT / HDAC Activity Measurements 

For HAT and HDAC activity measurements commercially available colorimetric assay kits (K332-100 

and K331-100, respectively, Biovision) that pick up non-specific activity of enzymatic families were 

used according to the manufacturer’s manuals. 40 – 120 µg of hippocampal nuclear fraction (see 

2.4.1.3) were used as enzyme source. Data acquisition for all assays mentioned above was carried 

out on an Infinite® 200 PRO multimode reader (TECAN) using i-control software (v1.9). 

2.4.3. Cloning of AAV constructs 

Cloning of cDNA constructs was used to prepare vectors for virus generation. AAV-ready plasmids 

were constructed for the following genes, all carrying a MYC-tag: Kat2a, Kat5 (formerly known as 

Tip60), Kat7 (Myst2 or Hbo1), Hdac2 and Hdac3. Sequenced (see 2.4.2.1.5) and test-digested plasmids 

of Kat2a and Hdac2 were then used to generate AAV viruses as described in 2.1.4. Kat2a-MYC-AAV 

was used for further analysis or IN VIVO overexpression (OE). 

2.4.3.1. Linker-PCR from Mouse Hippocampal cDNA 

To obtain cDNA containing appropriate restriction sites for cloning into the target vector, a linker-

PCR was performed in two steps. In the first step, cDNA of interest was amplified with cDNA-

                                                                 
9
 All following volumes are given as per well. 

10
 For dilutions see 6.5.1 

11
 For dilutions see 0 

12
 DAPI was added where necessary as described in 2.4.2.1.4 

http://www.carlroth.com/catalogue/catalogue.do?favOid=00000001000051b100020023&act=showBookmark&lang=en-de&market=DE
http://www.pan-biotech.com/content/index.php?option=com_content&view=article&id=52&Itemid=55&lang=en
http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152___12903178_-1
http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152___12903178_-1
http://www.sigmaaldrich.com/catalog/product/aldrich/81381?lang=de&region=DE
http://isu.technion.ac.il/ISU/Templates/showpage.asp?DBID=1&TMID=84&LNGID=1&FID=575&PID=1016
http://www.olympusamerica.com/cpg_section/cpg_pressDetails.asp?pressNo=468
http://www.dis-imaging.gr/OLYMPUS/images/software/cell_f.jpg
http://rsbweb.nih.gov/ij/
http://www.applichem.com/en/shop/product-detail/as/itrii-natriumcitrat-dihydrat-fuer-die-molekularbiologie/
http://www.biovision.com/hat-activity-colorimetric-assay-kit-2850.html
http://www.biovision.com/hdac-colorimetric-activity-assay-kit-2849.html
http://www.tecan.com/platform/apps/product/index.asp?MenuID=1813&ID=1918&Menu=1&Item=21.2.10.1.1
http://www.tecan.com/platform/apps/product/index.asp?MenuID=2046&ID=3167&Menu=1&Item=21.2.10.1.8
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specific forward (fwd) and reverse (rev) primers.
13

 In the second step, the cDNA-specific reverse 

primer was substituted for a universal reverse primer, used for all cDNA amplifications.
14

 Reaction 

mixes and cycling conditions are given in Table 2-3 and Table 2-4, respectively. For each PCR 6 

reactions were mixed used with different primer annealing temperatures (gradient). PCR products 

were loaded on agarose gels for sizing, visualization and gel purification of the correctly sized band 

as described in 2.4.2.1.3. Conditions for linker-PCRs were chosen based on the Phusion High-Fidelity 

DNA Polymerase (Thermo Scientific) manual and practical experience. 

Table 2-3: Reaction mixes for linker-PCRs 

Reagent Volume 

Hippocampal cDNA / 
PCR product form step 1 

0.5 µl 

Phusion HF Buffer 5x 10 µl 

dNTP Mix (10 mM each) 5 µl 

Primer fwd  
(depending on target (see 6.4 ) 

1 µl 

Primer rev  
(depending on target (see 6.4 ) 

1 µl 

Phusion (2 u/µl) 0.5 µl 

ddH2O ad 50 µl 

 

Table 2-4: Cycling conditions for linker- PCRs 

Temperature 

[°C] 

Duration [s]  

98 45  

98 20 
10 

cycles 
52 – 63 (gradient) 30 

72 150 

98 20 
22 

cycles 
65 – 72 (gradient) 30 

72 150 

72 420  

4 ∞  

 

2.4.3.2. Restriction Digestion and Ligation 

Restriction digestion of PCR products and target vector was achieved using FastDigest enzymes 

EcoRI, NotI, NheI according to the target (Thermo Scientific). FastDigest SmaI (Thermo Scientific) 

was used to digest final AAV constructs to make sure inverted terminal repeats (ITR) were present. 

                                                                 
13

 Primers were carrying the necessary 5’ restriction site (EcoRI or NheI) and vertebrate Kozak sequence 
(CCACC) {Kozak 1987 NAR} on the forward primer and part of the MYC-tag (Amino acid sequence of MYC-tag: 
EQKLISEEDL) on the reverse primer. The specific reverse primers were lacking the Stop-Codon. The primers 
were designed in a way to only amplify the protein coding DNA sequence (CDS). Untranslated regions (UTRs) 
were not amplified. 
14

 The universal reverse primer carried the remaining part of the MYC-tag, a Stop-Codon and a restriction site 
for NotI. 

http://www.thermoscientificbio.com/uploadedFiles/Resources/tech-manual-f-530-phusion-high-fidelity-dna-polymerase.pdf
http://www.thermoscientificbio.com/uploadedFiles/Resources/tech-manual-f-530-phusion-high-fidelity-dna-polymerase.pdf
http://www.thermoscientificbio.com/pcr-enzymes-master-mixes-and-reagents/phusion-high-fidelity-dna-polymerase/
http://www.thermoscientificbio.com/restriction-and-modifying-enzymes/restriction-enzymes/fastdigest
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Reaction mixes are given in Table 2-5. Reactions mixes were incubated at 37 °C for 15 – 30 min and 

digested constructs were sized and retrieved by gel purification as described in 2.4.2.1.3. Reaction 

mixes and incubations were based on recommendations by the manufacturer and practical 

experience. 

Ligation was carried out using T4 DNA Ligase (Thermo Scientific) according to the supplier’s 

protocol. In brief, target vector and insert were mixed in a ratio of 1:5 and incubated with the ligase 

at 22 °C for 10 - 20 min. The reaction mix is given in Table 2-6. Afterwards, the ligase was inactivated 

by incubation at 75 °C for 10 min. Mass of vector to be used was set to 50ng. Masses of inserts were 

determined according to the following formula: 

 

 

The AAV target vector plasmid, called AAV-6P-NoTB-SEWB (5288 bp), was a kind gift from 

Dr. Sebastian Kügler’s laboratory. 

Table 2-5: Reaction mixes for restriction digestion 

Reagent Volume 

Target vector or PCR product 
5 µl 

FastDigest Restriction Enzyme 1 µl each 

FastDigest universal buffer 2 µl 

ddH2O ad 20 µl 

 

Table 2-6: Reaction mixes for ligation digestion 

Reagent Volume or Mass 

Digested Target vector 
50 ng 

Digested PCR product (according to formula) 

T4 DNA ligase 1 µl 

T4 DNA ligation buffer 1µl 

ddH2O ad 10 µl 

 

 

 

2.4.3.3. Bacterial Amplification of DNA Constructs 

Target vectors or ligated constructs were amplified using SURE competent cells (Stratagene / 

Agilent Technologies). To this end, 0.5µl of ligation mix was added to provided frozen bacterial cell 

aliquots and cells were transformed by electroporation with an Electroporator 2510 (Eppendorf). 

Freshly electroporated cells were added to 1 ml of Lysogeny broth (LB) medium (1%w/v Tryptone, 

http://www.thermoscientificbio.com/dna-and-rna-modifying-enzymes/t4-dna-ligase/
http://www.chem.agilent.com/Library/usermanuals/Public/200238.pdf
http://www.eppendorf.de/int/img/na/lit/pdf/8310-C106D-07.pdf
http://www.applichem.com/en/shop/product-detail/as/trypton-ibiochemicai/
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0.5%w/v yeast extract, 1%w/v NaCl (all Applichem)) without addition of any antibiotic and 

incubated at 37 °C for 60 min. 200µl of the bacterial solution were spread on a 10 cm LB-agar plate 

(LB medium + 1.5%w/v agar) containing 100 µg/µl of ampicillin (Sigma-Aldrich). Agar plates were 

incubated at 37 °C for at least 16 hours and colony-forming clones were selected for further 

amplification in 5 ml liquid LB medium with ampicillin (as before) for small-scale preparation. 

Positive clones with correctly amplified sequence and target vector backbone were selected for 

large-scale production of plasmid DNA.  

2.4.3.4. Plasmid Purification 

For small-scale preparation, bacterial cells were collected by centrifugation (4000 x g, 10 min, 4 °C) 

and plasmid DNA was retrieved using the QuickLyse Miniprep Kit (Qiagen) according to the supplied 

manual. Plasmid sequencing and test digestion was performed as described in 2.4.2.1.5 and 2.4.3.2, 

respectively. 

Large-scale preparation was achieved by using NucleoBond® PC 2000 kit (Macherey-Nagel) as 

recommended by the supplier with the following modifications. A 1 l culture was used to harvest 

bacterial starting material. Harvesting was achieved by centrifugation at 6000 x g for 15 min at 4 °C 

multiple times as only 200 – 250 ml of culture could be centrifuged in each round; in between 

supernatant was discarded. Elution of column-bound plasmid DNA was done over night at 4 °C, DNA 

was precipitated by the use of 18 ml isopropanol and the pellet was dissolved in 3 ml of TE buffer 

(10 mM Tris, 1mM EDTA (all Applichem)). To further purify DNA, another precipitation step was 

introduced. DNA was precipitated with 2.5 volumes of cold 100% ethanol (Roth) and 1/10 volumes 

of 3 M sodium acetate (Roth) and centrifuged at 10,000 x g for 30 min at 4 °C. The pellet was 

washed with 7 ml of 70%v/v ethanol and dissolved in TE buffer. 

 

http://www.applichem.com/en/shop/product-detail/as/hefeextrakt-ibiochemicai/
http://www.applichem.com/en/shop/product-detail/as/natriumchlorid-reinst-ph-eur-usp/
http://www.sigmaaldrich.com/catalog/product/sial/a9518?lang=de&region=DE
http://www.qiagen.com/products/plasmid/quicklyse/quicklyseminiprepkit.aspx
http://www.mn-net.com/tabid/1368/default.aspx
http://www.carlroth.com/catalogue/catalogue.do;jsessionid=C9E16895F2430481B24CB5E22675A0F6?favOid=0000000100000db800020023&act=showBookmark&lang=de-de&market=AT
http://www.carlroth.com/catalogue/catalogue.do;jsessionid=C9E16895F2430481B24CB5E22675A0F6?favOid=0000000100002c2100020023&act=showBookmark&lang=en-nl&market=BE
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2.4.4. Chromatin Immunoprecipitation (ChIP) 

ChIP was carried out using the fixation-based (XChIP) Shearing Optimization kit and One Day ChIP 

kit (Diagenode) according to the manufacturer’s recommendations, with the following alterations: 

Hippocampal tissue was used as starting material and was homogenized in sterile PBS 

supplemented with Complete Protease Inhibitor Cocktail, Roche Applied Science). Fixation was 

achieved by incubation of the homogenate with 1% formaldehyde (final concentration, Applichem) 

for 10 min on a rotation wheel (12 rpm, RT). Fixation was stopped by adding 1.25 M Glycine 

(Applichem) and were then subjected to further processing using kit Buffers A, B, C and D. For 

chromatin shearing, samples were placed in a Bioruptor® high-energy ultra-sound sonification 

device (Diagenode) and sonicated for 25 cycles (1 cycle = 30 s ON / 30 s OFF) with intermediate 

changes of ice. Immunoprecipitation was achieved by incubation of the antibody-chromatin mix for 

1 hour in an ultra-sonic cleaner bath (VWR) at 4 °C. Protein-A-covered agarose beads were blocked 

with bovine serum albumin for 20 minutes and incubated with the antibody-bead-mix for 60 min on 

a rotation wheel (12 rpm, 4 °C). The resulting antibody-chromatin-bead complexes were washed 

twice with 1x provided ChIP buffer. Proteinase K digestion was for 1 hour at 55 °C.  

http://www.diagenode.com/en/catalog/chromatin-function-74/chromatin-shearing-78/product/shearing-optimization-kit-13
http://www.diagenode.com/en/catalog/chromatin-function-74/chromatin-immunoprecipitation-75/manual-chip-kits-77/product/oneday-chip-kit-350
http://www.roche.com/de/products/product-details.htm?type=product&id=104
http://www.applichem.com/en/shop/product-detail/as/formaldehyd-loesung-37-fuer-die-molekularbiologie/
http://www.applichem.com/shop/produktdetail/as/glycin-fuer-die-molekularbiologie/
http://www.diagenode.com/en/catalog/equipment-1/bioruptor-sonicator-reg--6/product/bioruptor--1
https://obi2.vwrsp.com/store/catalog/product.jsp?product_id=4645065
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2.5. Electrophysiological Analyses 

2.5.1. Measurement of LTP 

Electrophysiological analysis was performed in collaboration with the laboratory of Prof. Dr. Klaus 

Reymann (DZNE Magdeburg). Hippocampal slices (400 μm thick) were prepared from 4-months-old 

male Kat2a
f/f

 or Kat2a
f/f;tg

 mice. Mice were killed by hyperextension of the neck. After decapitation, the 

brain was quickly removed and placed into ice-cold artificial cerebrospinal fluid (ACSF) with the 

following composition (in mM): NaCl 124, KCl 4.9, MgSO4 1.3, CaCl2 2.5, KH2PO4 1.2, NaHCO3 25.6, D-

glucose 10, saturated with 95 % O2/ 5% CO2, pH 7.4). Transverse slices were prepared using a tissue 

chopper with a cooled stage and immediately transferred into a pre-chamber containing 8 ml of 

permanently carbogen-gasified ACSF for 2 h to allow recovery from preparation stress. Slices were then 

transferred into a submerged-type recording chamber and were allowed to adapt for at least 30 min 

before the experiment started. The chamber was constantly perfused with artificial cerebrospinal fluid 

(ACSF) at a rate of 2.5 ml/min at 33±1 °C.  

Synaptic responses were elicited by stimulation of the Schaffer collateral–commissural fibers in the 

stratum radiatum of the CA1 region using lacquer-coated stainless steel stimulating electrodes. Glass 

electrodes (filled with ACSF, 1–4 MΩ) were placed in the apical dendritic layer to record field excitatory 

postsynaptic potentials (fEPSPs). The initial slope of the fEPSP was used as a measure of this potential. 

The stimulus strength of the test pulses was adjusted to 30% of the fEPSP maximum. During baseline 

recording, single stimuli were applied every minute (0.0166 Hz). Once a stable baseline had been 

established, long-term potentiation was induced by applying 100 pulses at an interval of 10 ms and a 

width of the single pulses of 0.2 ms (strong tetanus) three times at 10 min intervals.
15 

2.5.2. Measurement of Input-Output relation and Paired Pulse Ratio 

The input-output relationship was obtained from a curve of fEPSP amplitude vs. stimulation intensity. 

For paired pulse stimulation, the stimulus strength of the test pulses was adjusted to 50 % of the fEPSP 

maximum. Paired-pulse stimulation was delivered with inter-stimulus interval of 20 ms and the paired-

pulse ratio (PPR) was calculated as the ratio of the second fEPSP amplitude to the first.
15

 

 

                                                                 
15

 Protocol description kindly provided by Raik Rönicke, DZNE Magdeburg 
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2.6. Computational Analyses 

Analysis of images taken by digital microscopy and western blot infrared imaging are described in 

2.4.2.3.2 and 2.4.2.3.1, respectively. For DNA sequence organization and maintenance the ApE 

software (v2.0.45) was used. 

2.6.1. DNA Microarray 

Analysis of microarrays was performed as described previously (Agis-Balboa et al., 2011; Kerimoglu, 

2012; Kerimoglu et al., 2013; Peleg et al., 2010). In summary, starting with scanned images, intensity 

data was extracted using Agilent Feature Extraction software, version 9.5.3.1, and analyzed using 

the Limma (Smyth et al., 2005) package of Bioconductor (Gentleman et al., 2004). In order to assure 

that the intensities had similar distributions across arrays, VSN normalization (Huber et al., 2002) 

was applied to the intensity values as a method for between-array normalization. To estimate the 

average group values for each gene and assess differential gene expression, a simple linear model 

was fit to the data, and group-value averages and standard deviations for each gene were obtained. 

To find genes with significant expression changes between groups, empirical Bayes statistics were 

applied to the data by moderating the standard errors of the estimated values (Smyth, 2004). P-

values were inferred from the moderated t-statistic and corrected for multiple testing using the 

FDR method (Benjamini and Hochberg, 1995). Afterwards, the final output was filtered for probes 

showing a change in normalized intensity that was greater than 1.414 – fold (log2(fold change) = 0.5) 

with an adjusted p-value of FDR(p)<0.1. 

2.6.2. RNA-seq 

For whole-transcriptome sequencing a streamlined, customized bioinformatics approach was used 

for state-of-the-art data analysis. Table 2-7 gives details on the steps involved in this pipeline and 

non-default parameter settings of the programs and scripts used. Tables 2-8 and 2-9 give basic 

parameters of RNA and data quality control, including RNA integrity number (RIN), library size and 

reference genome alignment rate. 

http://biologylabs.utah.edu/jorgensen/wayned/ape/
http://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Product&SubPageType=ProductDetail&PageID=1379
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Table 2-7: RNA-seq analysis pipeline. 

Step Description Tool / Script Non-default 
parameters 

Citation 

1     

1a Demultiplexing Illumina pipeline scripts - - 
1b File conversion (.bcl  .fastq) Illumina pipeline scripts - - 

2 Quality control FastQC - 

(Babraham Bioinformatics 
- FastQC A Quality Control 
tool for High Throughput 
Sequence Data) 

3 
Mapping to reference genome 
(GRCm38/mm10) 

Bowtie2 (v2.0.7) 
--very-sensitive-
local 

(Langmead and Salzberg, 
2012) 

4 
File conversion and sorting  
(.sam  .sorted.bam) 

SAMtools - (Li et al., 2009a) 

5 Read counting in transcripts HTSeq (htseq-count) 
-m intersection 
non-empty 

(HTSeq: Analysing high-
throughput sequencing 
data with Python) 

6 
Detection of differential gene 
expression 

DESeq (R-package) 
(pairwise 
comparisons of 
groups) 

(Anders and Huber, 2010) 

7 Visualization SeqMonk - 
(Babraham Bioinformatics 
- SeqMonk Mapped 
Sequence Analysis Tool) 

 

Table 2-8: Sample properties and quality control for samples used for RNA-seq in the study of Kat2a 
function. 

Sample# Group 
RNA Integrity 
Number (RIN) 

Unmapped Paired 
Reads (Library Size) 

Bowtie2: Alignment 
Rate [%] 

497 A 9.0 2.28E+07 98.7 

498 A 9.1 1.76E+07 98.3 

507 A 8.8 3.25E+07 98.8 

514 A 8.9 3.16E+07 98.7 

515 A 8.9 2.45E+07 98.9 

524 A 8.7 2.30E+07 98.9 

487 B 9.1 2.99E+07 98.9 

488 B 8.8 4.99E+07 98.9 

496 B 9.0 2.52E+07 98.8 

509 B 8.9 1.93E+07 98.9 

531 B 8.5 2.38E+07 98.9 

505 C 8.5 3.22E+07 98.8 

506 C 8.9 3.09E+07 98.7 

508 C 9.0 2.71E+07 98.8 

525 C 8.9 2.83E+07 98.9 

546 C 8.8 3.07E+07 99.0 

547 C 8.9 3.33E+07 98.9 

478 D 9.0 2.44E+07 98.9 

479 D 9.1 1.83E+07 98.4 

480 D 9.1 2.20E+07 98.5 

513 D 8.9 2.89E+07 98.9 

516 D 9.0 2.88E+07 98.9 

517 D 8.9 2.49E+07 98.9 

533 D 8.9 2.70E+07 98.8 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://samtools.sourceforge.net/
http://www-huber.embl.de/users/anders/HTSeq/doc/index.html
http://bioconductor.org/packages/2.11/bioc/html/DESeq.html
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
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Table 2-9: Sample properties and quality control for samples used for microarray and RNA-seq in the 
study of transcriptional changes during hippocampal aging. 

Sample# 
Age 

[months] 
Assay 

Unmapped 

Paired Reads 

(Library Size) 

Bowtie2: 

Alignment 

Rate [%] 

3m_1 3 Microarray - - 

3m_2 3 Microarray - - 

3m_3 3 Microarray - - 

3m_4 3 Microarray - - 

≥28m_1 ≥28 Microarray - - 

≥28m_2 ≥28 Microarray - - 

≥28m_3 ≥28 Microarray - - 

≥28m_4 ≥28 Microarray - - 

3m_se_1 3 RNA-seq SE 2.89E+07 98.8 

3m_se_2 3 RNA-seq SE 2.58E+07 99.4 

3m_se_3 3 RNA-seq SE 3.71E+07 98.9 

3m_se_4 3 RNA-seq SE 2.62E+07 99.1 

3m_se_5 3 RNA-seq SE 2.78E+07 99.1 

24m_se_1 24 RNA-seq SE 1.94E+07 99.0 

24m_se_2 24 RNA-seq SE 1.82E+07 99.3 

24m_se_3 24 RNA-seq SE 2.82E+07 99.4 

24m_se_4 24 RNA-seq SE 1.99E+07 99.1 

24m_se_5 24 RNA-seq SE 2.41E+07 99.2 

24m_se_6 24 RNA-seq SE 1.24E+07 99.4 

3m_PE_1 3 RNA-seq PE 1.64E+07 98.7 

3m_PE_2 3 RNA-seq PE 1.95E+07 99.1 

3m_PE_3 3 RNA-seq PE 1.44E+07 98.8 

≥28m_PE_1 ≥28 RNA-seq PE 1.54E+07 98.9 

≥28m_PE_2 ≥28 RNA-seq PE 1.60E+07 98.1 

≥28m_PE_3 ≥28 RNA-seq PE 1.75E+07 99.0 

 

2.6.3. Downstream Analysis and Functional Annotation of Gene Expression Data 

Downstream analysis for genome-wide expression assessment methods comprised group 

comparisons (search for overlaps, calculate Venn diagrams) and functional annotation. To calculate 

Venn diagrams and retrieve lists with overlapping genes, the web tool of the BEG group, University 

of Gent was used. Functional annotation and category analysis was carried out using the Database 

for Annotation, Visualization and Integrated Discovery (DAVID, v6.7) (Huang et al., 2009a, 2009b). 

2.6.4. ChIP-seq 

DNA derived from ChIP (2.4.4) was sequenced as described in 2.4.2.1.5. Fastq-files were retrieved 

from Fasteris SA’s FTP-server and steps 2, 3, 4 and 7 of the pipeline described in 2.6.2 were applied 

to the data and correlated with gene expression data from the corresponding RNA-seq 

experiments. 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://david.abcc.ncifcrf.gov/home.jsp
http://david.abcc.ncifcrf.gov/home.jsp
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2.6.5. Statistical Analyses 

General-purpose statistical analysis for behavioral and molecular analyses was performed using 

GraphPad Prism 6 or Microsoft Excel for Mac 2008. Details of statistical analysis, methods and 

parameters are given in the results sections when data is described. Statistical tests include: One-

way/Two-way/repeated measures analysis of variance or repeated measures analysis of variance 

(1way/2way/rmANOVA), Tukey’s multiple comparisons test (McHugh, 2011), Šidák’s multiple testing 

correction (Sidak, 1967), the Benjamini-Hochberg procedure (FDR) (Benjamini and Hochberg, 1995), 

Student’s t-test (Student, 1908). The number of biological replicates (n) is given at the base of 

figures where necessary; figures belonging to the same experimental setup display these numbers 

only once to avoid redundancy. Statistical analysis of whole-genome data was performed as 

described in the respective sections (2.6.1, 2.6.2, and 2.6.4). Statistical significance is indicated by 

asterisks (*), hashes (#) on three different levels throughout graphs: *: p<0.05, **: p<0.01, 

***:p<0.001. 

Unless otherwise stated, error bars in all experimental figures represent standard error of the mean 

(SEM), which is calculated as  

   

SEM =
SD

n
 

 

http://www.graphpad.com/scientific-software/prism/
https://www.microsoft.com/mac/excel
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3. Results 

The results section is separated in two main paragraphs with different focus each. While the first 

paragraph mainly covers the role of Kat2a in the adult murine brain and learning and memory, the 

second paragraph is dedicated to hippocampal aging and associated changes in transcriptional 

regulation.  

For purposes of clarity, Table 3-1 shows a color guide that shall help to intuitively associate certain 

colors with experimental conditions. 

 

Table 3-1: Color guide for the results section to help associate of figure colors with a certain condition.  

Color guide 

 

 

Young (3 – 5 months), healthy control group 

Wildtype or control genetic background 

no treatment or control treatment (Vehicle, AAV-GFP) 

 Wildtype female or male(novelty-exposed) 

 Kat2a conditional knockout mice (Kat2a
f/f;tg

) 

 Kat2a
f/f;tg

 female or male(novelty-exposed) 

 AAV-mediated Kat2a-MYC overexpression 

 
24-month-old C57B6/J wild type mice 

no treatment or control treatment (Vehicle) 

 24-month-old C57B6/J wild type mice, SAHA treated 

 3-month-old C57B6/J wild type mice, SAHA treated 

 ≥28-month-old C57B6/J wild type mice 
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3.1. The Role of Kat2a in the Adult Murine Brain and Learning and 

Memory  

3.1.1. Characterization of a Kat2a Tissue-Specific Conditional Knockout Mouse 

Deficiency of Kat2a function has been shown to result in embryonic lethality due to failure of neural 

tube closure and exencephaly (Bu et al., 2007) and was found to exacerbate neurodegeneration 

when deleted in the context of spinocerebellar ataxia type 7 (SCA7) in the cerebellum (Chen et al., 

2011). However, functional aspects of Kat2a in the adult forebrain and in the context of cognition 

have not yet been explored in detail. As several other HATs have been shown to be involved in such 

processes (see Stilling and Fischer, 2011 for review), we hypothesized that also Kat2a plays a role in 

learning and memory. This hypothesis is further supported by the observation that Kat2a is 

upregulated after contextual fear conditioning (Peleg et al., 2010) and is likely to acetylate H4K12, 

which is implicated in learning-induced gene expression (Bu et al., 2007; Ciurciu et al., 2008; 

Guelman et al., 2009; Hargreaves et al., 2009; Martinez et al., 2001; Peleg et al., 2010). 

3.1.1.1. Kat2a is Highly Expressed in CA1 

To explore the expression pattern of Kat2a within the adult murine brain we performed qRT-PCR 

and quantitative western blotting. In agreement with IN SITU hybridization data from the Allen Brain 

Atlas (Figure 6-1) (Lein et al., 2007), we observed high mRNA levels in the hippocampus as 

determined by qRT-PCR, with highest expression in the CA1 and CA3 region, and relatively low 

levels in cerebellar tissue. Two-way analysis of variance (2way ANOVA) showed a significant effect 

of genotype (F(1, 41)=169.8, p<0.001) and brain region (F(5, 41)=9.1, p<0.001). Tukey’s multiple 

comparisons test revealed significant differences between brain regions as shown in Table 3-2. In 

the knockout condition, levels in all tested forebrain regions were significantly reduced to 

background levels (~18%). As the Cre-recombinase transgene is not expressed in the cerebellum 

(CB), mRNA abundance was similar to control mice (Figure 3-1A).  

Table 3-2: mRNA levels - Tukey's multiple comparisons test after 2way ANOVA. Only significant results are 
shown. Significant differences compared to cerebellum are displayed in Figure 3-1A. 

 Pfc vs. CA1 Pfc vs. CA3 DG vs. CA1 DG vs. CB CA1 vs. NC CA1 vs. CB CA3 vs. NC CA3 vs. CB 

Mean Diff. -1.448 -0.9207 -0.9575 0.7685 1.483 1.726 0.9558 1.198 

padj <0.001 0.0011 0.0007 0.0093 <0.001 <0.001 0.0007 <0.001 

Significant? *** ** *** ** *** *** *** *** 

 

We also determined Kat2a expression on the protein level, using nuclear lysates from the same 

brain regions and a Kat2a-specific antibody. One-way analysis of variance (1way ANOVA) revealed a 

significant difference between means. Tukey’s multiple comparisons text showed significant 

differences between brain regions as shown in Table 3-3
16

.  

 

                                                                 
16

 For this experiment, the total number of biological replicates was n=3. Data from 2 technical replicates of 
each biological replicate for CA1 and CB (n=3[6]) was averaged before plotting and statistical analysis.  

http://mouse.brain-map.org/gene/show/14310
http://mouse.brain-map.org/gene/show/14310
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Table 3-3: Protein levels - Tukey's multiple comparisons text after 1way ANOVA. Only significant results 
are shown. Significant differences compared to cerebellum are displayed in Figure 3-1B. 

 Pfc vs. DG Pfc vs. CA1 Pfc vs. CA3 Pfc vs. CB CA1 vs. CA3 CA1 vs. CB CA3 vs. NC NC vs. CB 

Mean Diff. 4.28 2.933 5.676 5.851 2.742 2.917 -3.981 4.156 

padj 0.0022 0.0336 0.0002 0.001 0.0498 0.0347 0.0039 0.0028 

Significant? ** * *** *** * * ** ** 

 

Concordant with expression of Kat2a on the mRNA level, we found significantly higher levels of 

Kat2a protein in the CA1 region compared to cerebellum, where immunoreactivity was very weak. 

However, prefrontal cortical (Pfc) lysates as well as lysates from other parts of the neocortex (NC) 

showed higher levels compared to lysates from hippocampal regions (Figure 3-1B).  

The Kat2a protein is highly enriched in nuclear fractions prepared form hippocampal tissue, with a 

faint signal observed in the cytosolic fraction. Effectiveness of the subcellular fractionation method 

is demonstrated by immunoreactivity of β-Actin (weaker band intensity in the nucleus) and Histone 

H4 (immunoreactivity only in nuclear fractions). Kat2a was drastically reduced in Kat2a
f/f;tg

 mice 

(Figure 3-1C). Quantification of protein levels in hippocampal nuclear lysates showed a decrease of 

~82%, which is parallels the reduction of mRNA levels in CA1 (Figure 3-1A,D). We conclude that 

Kat2a is highly expressed in the murine CA1 subfield of the hippocampus and enriched in the 

nucleus, suggesting an important function in transcriptional regulation in this area. Expression 

levels of mRNA and protein are severely reduced specifically in forebrain regions of Kat2a
f/f;tg

 mice, 

demonstrating functionality of the knockout approach. 

 

http://www.ncbi.nlm.nih.gov/gene/11461
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Figure 3-1: Nuclear localized Kat2a is differentially expressed in adult brain regions. qRT-PCR revealed 
that Kat2a mRNA levels are highest in the hippocampal region. Values are normalized to control cerebellar 
values. Asterisks represent a statistically significant difference in comparison to cerebellum; hashes represent a 
statistically significant difference between genotypes within brain regions (A). Kat2a protein levels within the 
hippocampus are highest in the CA1 region and lowest in the cerebellum. Cortical regions are also significantly 
enriched in Kat2a protein. Asterisks refer to significance with regard to cerebellum. n=3 for Pfc,DG,CA3 and NC; 
n=3(6) for CA1 and CB (B)

10
. Hippocampal Kat2a protein is enriched in the nucleus, compared to cytosolic and 

membrane fractions (C) and reduced by 80% in Kat2a
f/f;tg

 mice (D). AU, arbitrary units. 

 

3.1.1.2. Kat2a Conditional Knockout Mice Show no Overt Morphological Alterations 

We measured body and brain weight of adult mice to determine potential developmental effects 

in Kat2a conditional knockout (cKO) mice. Average body weight was slightly reduced in male 

Kat2a
f/f;tg

 mice of ages 3 to 5 months as well as 5-8 months (Figure 3-2A). This observation was 

underlined by a reduced body size as shown in the representative picture in Figure 3-2C. Female 

Kat2a
f/f;tg

 mice only showed a trend towards reduced body weight (Figure 3-2). Interestingly, both 

male and female Kat2a
f/f;tg

 mice had significantly reduced brain weights (Figure 3-2B). However we 

could not detect gross morphological differences in by inspection of isolated brains as seen in the 

representative picture Figure 3-2D. Furthermore, the relation of brain weight and body weight did 

not show any difference between genotypes (Figure 3-2E). 
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Figure 3-2: Anatomical alterations in Kat2a
f/f;tg

 mice. Male but not female cKO mice show reduced body 
weight in two age groups and reduced body size (A). Both male and female mice have reduced brain mass, but 
no overt differences in brain morphology, as shown in representative images (B). Representative image of 3-
month-old siblings (C) and their brains (olfactory bulbs removed, D). The ratio of brain weight to body weight 
was independent of genotype (E). 

 

To further investigate potential morphological alterations in the hippocampus of Kat2a cKO mice 

in more detail, we performed DNA staining and immunohistological stainings for neuronal and pre- 

and post-synaptic marker proteins, as well as for Kat2a itself (Figure 3-3). Despite strong 

background immunoreactivity, Kat2a staining vas visible in neuronal nuclei within the hippocampal 

subregions CA1, CA3 and DG. This signal was absent in Kat2a
f/f;tg

 mice. (Figure 3-3A). DAPI PAN-

nuclear and neuronal nuclei NeuN (Rbfox3) staining did not reveal any obvious variations in cell 

distribution or morphology (Figure 3-3B,C). Post-synaptic (Map2) and pre-synaptic (Synaptophysin, 

Syp and Synaptoporin, Synpr) markers showed similar distributions and intensities (Figure 3-3C,D).  

http://www.ncbi.nlm.nih.gov/gene/52897
http://www.ncbi.nlm.nih.gov/gene/17756
http://www.ncbi.nlm.nih.gov/gene/20977
http://www.ncbi.nlm.nih.gov/gene/72003
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Figure 3-3: Morphological structure of the hippocampus of Kat2a cKO and control mice. Staining for Kat2a 
shows loss of Kat2a protein in hippocampal neuronal layers (A). DAPI is a PAN-nuclear DNA stain while NeuN 
(Rbfox3) is a marker neuronal nuclei (B,C). Map2 is localized to the post-synapse and dendrites while 
Synaptophysin (Syn) marks post-synaptic terminals (C,D). Synaptoporin (also known as Synaptophysin2) is a 
marker for mossy-fiber-specific pre-synaptic terminals (D). Representative images, scale bar: 250µm in A,C,D 
and 500µm in B.  
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Glia, such as astrocytes and oligodendrocytes, are non-neuronal cells that constitute a large 

percentage of the mammalian brain (Bandeira et al., 2009). Since they do not activate the CamKIIα 

promoter (Vazdarjanova et al., 2006), glial cells carry a functional Kat2a allele. However, gila cells 

have important supporting functions within nervous tissue such as nutritional supply, insulation and 

disposal of degenerated neurons (Schütz, 2008). Thus, they may respond to potential changes in 

adjacent, mutant neurons. We therefore stained cryosections from young adult Kat2a
f/f;tg

 and 

control mice for the glial marker proteins Gfap and Plp1 to visualize abundance and distribution of 

astrocytes and oligodendrocytes in the hippocampus, respectively. We did, however, not observe 

alterations in abundance or distribution of these cells (Figure 3-4A,B).  

Figure 3-4: Abundance and distribution of glia in the hippocampus. Gfap is a marker for astrocytes (A) while 
Plp1 marks myelin produced by oligodendrocytes (B). Representative images, scale bar: 250µm 

 

In conclusion, anatomical changes in Kat2a
f/f;tg

 mice with regard to overall body size were not 

reflected on the morphological level in the hippocampus. Furthermore, abundance and distribution 

of astrocytes and oligodendrocytes did not yield any evidence for potential deterioration of 

nervous tissue in the hippocampus. 

 

http://www.ncbi.nlm.nih.gov/gene/14580
http://www.ncbi.nlm.nih.gov/gene/18823
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3.1.1.3. Kat2a Conditional Knockout Mice Show Impairments in Hippocampus-Dependent Long-Term 

Memory 

Next, we analyzed potential behavioral effects of Kat2a loss-of-function by subjecting groups of 

male and female Kat2a
f/f;tg

 mice to a behavioral test battery. Starting with an open field test to 

monitor exploratory behavior and locomotion, we found both groups spending comparable 

amounts of time in the center region of the arena and traveling similar distances within 5 min. 

Hence, there was also no significant difference in average traveling speed (Figure 3-5A).  

Locomotion, coordination, motor-learning and physical strength was tested using the Rotarod 

performance test (Figure 3-5B). rmANOVA revealed a significant effect of time (F(3, 57)=3.54, p=0.02) 

which could be attributed to the comparison of day 1 vs. day 4 (Tukey’s multiple comparisons test: 

p=0.029). However, there was no effect of genotype. 

In the elevated plus maze anxiety and exploratory behavior was tested. Both groups showed 

normal levels of anxiety, as they spent most of the time (~85-95%) in the closed arms or the center 

region. There was no difference in time spent in the open arms of the maze (Figure 3-5C). 

Working memory was probed by monitoring the sequence of arm entries in a 4-arms cross maze, 

Successful alterations were defined as visits of an arm that was not visited within the last three 

trials before. Both groups performed significantly better than the 9.375%-chance level, which 

indicates non-random arm entries. (Student’s one-sample t-test: Kat2a
f/f

: p<0.001, Kat2a
f/f;tg

: 

p=0.001). However, there was no significant difference between groups (Figure 3-5D) 

A novel object recognition (NOR) paradigm was used to determine potential defects in short-term 

as well as long-term recognition memory. After habituation, both groups showed no preference for 

one of the two equal objects during the training session (Figure 3-5E, TR) and equivalent preference 

for the novel object in the short-term memory paradigm (Student’s one-sample t-test vs. 0.5: 

p<0.001 for both groups; Figure 3-5E, STM). Also in the long-term paradigm, both groups showed 

significant preference for the novel object (Student’s one-sample t-test vs. 0.5: Kat2a
f/f

: p<0.001, 

Kat2a
f/f;tg

: p=0.0017). Interestingly however, Kat2a
f/f;tg

 mice displayed a slightly reduced object 

preference index when compared with the control group (Student’s t-test: p=0.041; Figure 3-5E, 

LTM).  

We next tested associative learning in a contextual fear-conditioning (cFC) paradigm that is 

known to be hippocampus dependent (Anagnostaras et al., 2001). While baseline freezing in the 

training situation was comparable, Kat2a
f/f;tg

 mice showed significantly less freezing behavior when 

reintroduced to the context 24 hours after receiving the electric foot shock (Student’s t-test: 

padj=0.015; Figure 3-5F, right panel). To exclude effects of altered sensory perception in Kat2a
f/f;tg

 

mice, we also monitored shock response activity during the 2s-shock phase (Figure 3-5F, right 

panel).  
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Figure 3-5: Behavioral analysis of Kat2a loss-of-function. Open field test (A), Rotarod performance test (B), 
Elevated plus maze (C) and 4-arms cross maze (D) indicated normal behavior with regard to locomotion, 
exploratory behavior, basal anxiety and working memory. Novel object recognition (E) and contextual fear 
conditioning (F) revealed a tendency to impaired long-term memory. Control parameters like object preference 
during training (E, TR) or activity in response to electric foot shock (F, right panel) were comparable. Asterisks 
indicate significant differences between groups. Hashes indicate significant differences from chance level 
within groups. TR, Training; STM, Short-term memory; LTM, Long-term memory. 
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Finally, we subjected mice to a spatial navigation task known as Morris watermaze (MWM). To 

exclude a potential effect of impaired vision, we first installed a visible platform in the pool. 

Though both groups rapidly learned to navigate within the pool and find the platform, Kat2a
f/f;tg

 

mice showed a slight delay during day 2 (rmANOVA, main effect of time: F(3,54)=78.6, p<0.001; main 

effect of genotype: F(1,18)=4.7, p=0.044, Šidák’s multiple comparisons test: Day2, p=0.015; Figure 

3-6A, left panel).  

A different group of mice was used to test memory using a hidden-platform task. As shown in the 

right panel of Figure 3-6A, Kat2a
f/f;tg

 mice displayed a significant retardation in finding the hidden 

platform (rmANOVA, main effect of time: F(8, 176)=21.6, p<0.001; main effect of genotype: 

F(1,22)=18.04, p<0.001; Šidák’s multiple comparisons test: Day2, p=0.004; Day3, p=0.006; Day5, 

p<0.001; Day7, p=0.011; Day9, p=0.02). To exclude effects of potential mobility impairments to 

account for this difference, we also monitored the swim speed on day 1 of the test, where potential 

motivational differences are most likely negligible (Figure 3-6B).  

At the day of the probe test, the platform was removed and time spent in the four quadrants of the 

pool was monitored for one minute. Time spent in the target quadrant (TQ) was significantly 

different from chance level (Student’s one-sample t-test: p=0.013) as well as from average time 

spent in the other three quadrants (Q1-3, Student’s t-test: p=0.015) in Kat2a
f/f

 mice (Figure 3-6C). 

However, Kat2a
f/f;tg

 mice did not show preference for the target quadrant. Also the number and 

integrated time of crossing over the former platform region was reduced in Kat2a
f/f

 mice, though 

these differences were not statistically significant (Student’s t-test: Platform crossings: p=0.096, 

Time: p=0.278).  

In conclusion, Kat2a loss-of-function did neither result in changed locomotion or baseline anxiety 

levels nor was there any evidence for altered working memory or short-term recognition memory. 

Indeed, memory impairments were only found in hippocampus-dependent forms of long-term 

memory, like contextual aversive memory and spatial memory as demonstrated by cFC and MWM, 

respectively, accompanied by a slight reduction in long-term NOR memory strength. 
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Figure 3-6: Morris watermaze. Learning curves in a visual and a memory-dependent form of the task (A). Swim 
speed on day 1 of the test (B). Time spent in each of the four quadrants on the day of the probe test (C). 
Number of platform crossings and summed time spent over former platform region during probe test (D,E). 
Asterisks indicate significant differences between groups. Hashes indicate significant differences from chance 
level within groups. TQ, Target quadrant; 1-3, quadrants 1 to 3. 
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3.1.1.4. Kat2a Conditional Knockout Mice Show Impaired Long-Term Potentiation in the CA1 

In order to explore a potential neurophysiological basis for the observed behavioral phenotype in 

Kat2a cKO mice, we next investigated electrical properties of CA3-to-CA1 communication in 

acute hippocampal slices
17

. To this end, CA3-originating projections (Schaffer collateral–

commissural fibers) were externally stimulated and electric field potentials (excitatory post-

synaptic potentials, fEPSPs) were recorded in the apical dendritic layer of the CA1 of Kat2a
f/f;tg

 and 

control mice as diagramed in Figure 3-7A). In both groups stimulation strength was well correlated 

with the elicited fEPSP slope, yielding similar linear input / output curves (Figure 3-7B).  

Baseline fEPSP slopes were similar in both groups during the first 45 min of the measurement. 

Moreover, both groups showed a strong increase in fEPSP slope in response to three strong tetanic 

stimulations (LTP). Afterwards fEPSP slopes decayed slowly over time. Interestingly however, the 

change in fEPSP slope in Kat2a
f/f;tg 

mice did not reach the same level as compared to controls and 

showed a more rapid decay (rmANOVA, main effect of time: F(285, 2280)=116.9, p<0.001, main effect of 

genotype: F(1, 8)=8.3, p=0.021, interaction: F(285, 2280)=3.3, p<0.001)
18

. While control fEPSP slopes 

remained high over the whole time of measurement, fEPSP slopes of Kat2a
f/f;tg

 mice returned to 

baseline within this time (Figure 3-7C). In order to study short-term synaptic plasticity, a paired 

pulse stimulation paradigm was used. Here, we could not detect any difference between groups 

(Figure 3-7D). 

In summary, while basic postsynaptic electrical properties of CA1 pyramidal and short-term synaptic 

plasticity were not different in the cKO condition, Kat2a
f/f;tg 

mice showed LTP impairments with 

lower LTP amplitude and faster decay of the potentiation effect.  

                                                                 
17

 These experiments were carried out at the DZNE-Magdeburg, in close collaboration with Prof. Dr. Klaus 
Reymann, Dr. Raik Rönicke and Katrin Böhm.  
18

 For these experiments the total number of mice was n=5 for both groups resulting in n=17 and n=20 
replicate measurements (sections) for Kat2a

f/f;tg
 and Kat2a

f/f 
mice, respectively. Measurements for each mouse 

were averaged before plotting and statistical analysis. 
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Figure 3-7: Electrophysiological analysis of long-term potentiation and paired pulse facilitation. 
Schematic overview of experimental setup (A). Input / Output curve, showing linear correlation of stimulations 
strength and fEPSP slope (B). LTP measurement over 240 minutes, starting with three strong tetanic stimuli 
after 45 minutes of baseline measurement (C). A test for Paired pulse facilitation or inhibition showed no 
difference between groups (D) For all experiments: n=17(5) and 20(5) for Kat2a

f/f;tg 
and Kat2a

f/f
, respectively

18
. 

The asterisk in C represents significant difference with regard to the main effect of genotype. 
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3.1.1.5. Kat2a Conditional Knockout Mice Show Specific Alterations in Naïve and Stimulus-Dependent 

Gene Expression in CA1 

To analyze transcriptional changes resulting from Kat2a deletion in naïve mice as well as in a 

stimulus-dependent manner, we subjected Kat2a
f/f;tg 

and control mice to a four-object novelty-

exposure paradigm as described in 2.3.8. A graphical overview is given in Figure 3-8.  

 

Figure 3-8: Schematic overview of novelty-exposure protocol for stimulus-dependent expression analysis. 
Mice of both genotypes were either exposed to a novel environment with 4 different objects (1-4) for 15 min 
and afterwards sent back to their home cage for 1 hour or directly taken from home cage. CA1 tissue was 
extracted from all mice, resulting in 4 different groups (A-D) used for RNA-seq to determine transcriptional 
changes. 

For clarity purposes, the four resulting groups were named A to D as shown in Figure 3-8 and 

described in Figure 3-9A: A represents naïve Kat2a
f/f

 mice (naïve control group), C are their Kat2a-

deficient counterparts (naïve Kat2a
f/f;tg

), B and D are the groups of Kat2a
f/f

 and Kat2a
f/f;tg

 mice, 

respectively, that underwent novelty exposure. 

RNA-sequencing (RNA-seq) yielded 18-50 million paired reads of 200 bp (100 + 100 bp) per sample 

with comparable distribution of total read count (Figure 3-9B). Reads were of high quality, with an 

average Phred quality score of >30 across the full read length (Figure 3-9C). Alignment of reads to 

the mouse genome using Bowtie2 resulted high alignment rates in all samples (see Table 2-8). 

Interestingly, 2-dimensional principal component analysis (PCA) revealed that “novelty exposure” 

(likely component 2) seemed to explain more variance than “genotype” did, as shown by a clear 

separation of clusters B and D from clusters A and C in the 2
nd

 dimension of the PCA plot. Clustering 

of individual groups was more ambiguous (Figure 3-9D). Expression-based sample distances 

confirmed this notion, as not all samples from the same group did cluster together in a sample 

distance plot. Still, several samples within each group showed good correlation, e.g. within group D 

(Figure 3-9E). 

A great advantage of modern paired-end RNA-seq technology is the possibility of visualization of 

aligned reads and therefore transcripts. Figure 3-10F shows reads aligned at the Kat2a genomic 

locus. The aligned pairs are not split in this view so that they are visualized by a line (red or blue) 

corresponding to the length of the paired reads plus their distance. As the reads originate from 
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Figure 3-9: Stimulus-dependent gene expression determined by RNA-seq. Overview about genotype and 
treatment of groups (A) Median and range of total read counts for each group (B). Representative distribution 
of average Phred quality score across all reads of a sample dependent on the position within the read (C). 2-
dimensional principal component analysis, scale is in % (D). Sample distance and cluster dendrogram for all 
groups (E) Visualization of aligned reads at Kat2a genomic locus. Yellow: reads spanning deleted region in the 
knockout condition; Arrowheads: reads in exons that are still expressed (F). 4-way Venn diagrams to show 
overlapping DEGs that are upregulated (G) or downregulated (H). 
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spliced mRNA and are aligned to a genomic DNA sequence, this form of plotting allows to visualize 

reads that span intronic regions and thereby reveal connected exons. Indeed, within the sample of 

Kat2a
f/f;tg 

mRNA we could observe reads that span almost the entire transcribed region (yellow), 

except for exons 1 and 2 and the most-3’ exon (arrowheads), which corresponds to the region 

deleted in the knockout condition. In fact, these exons seem to exhibit an even higher read count in 

the Kat2a
f/f;tg

 sample. Together, these observations confirm location of the loxP elements and even 

allow visualizing the transcript resulting from recombination between those (Figure 3-9F). 

Using the R-based DEseq package to analyze differential expression for pair-wise comparisons in 

all possible combinations of the four groups (except combination A vs. D), we found several 

differentially expressed genes (DEGs) with respect to novelty exposure, genotype or both
19

. We 

also found several DEGs overlapping between comparisons (Figure 3-9G,H and Table 3-4). Notably, 

most changes were found between group B and D (novelty-exposed, Kat2a
f/f

 vs. Kat2a
f/f;tg

), with 167 

genes upregulated and 85 genes downregulated. Another notable observation is the extensive 

overlap between A vs. B and C vs. D (naïve vs. novelty for both genotypes) among the upregulated 

genes in contrast to downregulated genes (48 and 6, respectively). 

 

                                                                 
19

For a complete overview, sorted lists with all the DEGs found to be significantly up- or downregulated are 
given in a supplementary table in Appendix 6.2.1 
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Table 3-4: Overlapping and non-overlapping DEGs. Below the description of each group a possible 
interpretation of that group with regard to Kat2a function is given. ∩ is the mathematical notation for 

“intersection”. 
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Table 3-4 (continued) 
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To further examine potential functional relevance of these DEGs, we performed functional 

annotation by searching for overrepresentation of genes associated with specific functional 

categories (GO-Terms) or pathways (KEGG-Pathways). A complete overview of all such enriched 

categories can be found in section 6.2.2, Table 6-1 through Table 6-4). Here, I will focus on general 

trends that help to interpret the results.  

To study the effect of Kat2a deletion in naïve mice, groups A and C need to be compared. Here, 

plasma-membrane-associated genes were found among the upregulated DEGs. Genes related to 

activation of phospholipase C activity and neuroactive ligand-receptor interaction were enriched in 

downregulated DEGs.  

When comparing naïve with novelty-exposed mice, prominent upregulation of transcription-

regulation associated genes was found for either genotype (A vs. B and C vs. D). Among 

downregulated genes, those associated with growth-factor activity were enriched only in Kat2a
f/f

 

mice, while in Kat2a
f/f;tg

 mice genes that were downregulated upon novelty exposure were not 

enriched in any specific functional categories. (Table 6-1 and Table 6-4). Novelty also induced a 

significant number of genes involved in MAPK/ERK signaling in both genotypes. 

When comparing stimulus-dependent gene expression between Kat2a
f/f;tg

 and control mice, we 

found an overrepresentation of upregulated genes that were associated with calcium-ion binding 

and extracellular processes. Strikingly, genes involved in neuronal activities such as serotonin 

receptor activity were enriched among downregulated genes. Additionally, genes associated with 

the ribosome, and therefore translation, were found. When we used the 135 genes that were 

upregulated exclusively in B vs. D we did neither find any evidence for increased enrichment of 

those categories aforementioned nor of any additional categories. 

In conclusion, we identified a well-defined group of genes that respond to novelty exposure in the 

CA1, independent of Kat2a status. This group mainly consists of immediate early genes (IEGs) and 

transcriptional regulators. However, we also found several genes that show a differential response 

to a novelty stimulus, depending on genotype. This set of genes, together with those genes 

differentially expressed to Kat2a deletion in the naïve condition, are likely candidates for direct or 

indirect Kat2a regulation. Interestingly, several of these genes are associated with neuronal activity 

and translation. The significance and function of several of the identified genes are discussed in 

4.1.2.  

http://www.geneontology.org/
http://www.genome.jp/kegg/pathway.html
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3.1.1.6. Kat2a Conditional Knockout Mice Show Increased Levels of H4K12 Acetylation 

To investigate, whether Kat2a loss-of-function results in altered histone acetylation in the 

hippocampus, we analyzed bulk levels of acetylation in whole hippocampal tissue for H4K12, H3K9 

and H3K14 by western blot. These are the lysine residues associated with Kat2a function in the GO-

Term database, based on findings in the literature. To our surprise, bulk levels of H4K12ac were 

found to be elevated almost 2-fold in Kat2a
f/f;tg

 mice, while H3K9ac and H3K14ac did not show 

significant changes (2way ANOVA had significant effect of genotype: F(1,18)=9,08, p=0.008, Šidák’s 

multiple comparisons test showed significant differences in H4K12ac: padj=0.008; Figure 3-10).  
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Figure 3-10: Bulk levels of histone acetylation in the hippocampus of Kat2a
f/f;tg

 and control mice. H4K12ac 
was significantly increased whereas H3K9 and H3K14 showed only a trend towards elevated acetylation levels. 
Asterisks indicate significant difference according to Šidák’s multiple comparisons test. 

 

http://amigo.geneontology.org/cgi-bin/amigo/gp-assoc.cgi?gp=MGI:MGI:1343101#assoc
http://amigo.geneontology.org/cgi-bin/amigo/gp-assoc.cgi?gp=MGI:MGI:1343101#assoc
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3.1.2. Characterization of AAV-mediated Neuron-Specific Kat2a Overexpression in 

the Dentate Gyrus 

After investigating the role of Kat2a using a loss-of-function approach, we wanted to study Kat2a 

gain-of-function. Overexpression studies offer certain advantages over knockout studies, since 

they allow greater focality and specificity in many respects. 

As we found Kat2a mRNA to be expressed strongest in the CA region, which is supported by data 

from IN SITU hybridization experiments in the Allen brain atlas, we determined the dentate gyrus 

(DG) to be a promising region to study effects of Kat2a overexpression. To this end, we made use of 

adeno-associated viral (AAV) vectors, which allows focal, neuron-specifc expression of MYC-tagged 

Kat2a
20

 under control of the human SYN1 promoter.
21

 For these experiments, male WT C57BL/6J 

mice were used. 

3.1.2.1. Robust AAV-mediated Expression of MYC-tagged Kat2a 14 Days after Injection 

Using a MYC-specific antibody for immunohistochemistry of cryosections retrieved at 5 different 

time points after injection, we found initial expression of Kat2a-MYC at about 10 days. Robust 

expression across the whole DG was evident at 14 days after intra-hippocampal injection of viral 

particles (Figure 3-11A). After 14 days Kat2a mRNA levels had increased almost 5-fold compared to 

GFP-control condition as well as to AAV-mediated Hdac2 overexpression (Figure 3-11B)
22

. This was 

in line with other overexpression studies, using AAV vectors (Bahari-Javan et al., 2012) and was also 

confirmed when we overexpressed Hdac2-MYC for control purposes (see Figure 6-2). 

 

                                                                 
20

 Two known isoforms are expressed form Kat2a locus. The one used here was: NCBI: isoform b / variant 2, 
NM_001038010.2; ENSEMBL: Kat2a-001, ENSMUST00000006973; see 6.3B for vector map) 
21

The viral particles were generated at the University Medical Center Göttingen in close collaboration with 
Dr. Sebastian Kügler and colleagues.  
22

 For this experiment mRNA was extracted from the whole hippocampus, not from DG specifically. 

http://mouse.brain-map.org/gene/show/14310
http://www.ncbi.nlm.nih.gov/gene/6853
http://www.ncbi.nlm.nih.gov/nuccore/NM_001038010.2
http://www.ensembl.org/Mus_musculus/Transcript/Summary?db=core;g=ENSMUSG00000020918;r=11:100704746-100712465;t=ENSMUST00000006973
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Figure 3-11: AAV-mediated expression of Kat2a in the dentate gyrus. First evidence of expression was 
observed at 10 days, robust staining at 14 days after injection (A). Kat2a mRNA levels increased about 5-fold at 
this time in mice injected with Kat2a-MYC-AAV compared to mice injected with either GFP-AAV or Hdac2-MYC-
AAV (B). Representative images, scale bar is 250µm. 

 

3.1.2.2. Kat2a Overexpression Results in Spatial Memory Impairment 

To test for behavioral effects of Kat2a overexpression in the dentate gyrus, AAV-Kat2a-MYC-

injected mice underwent behavioral testing, starting 14 days after AAV administration. Mice 

overexpressing GFP only under otherwise equal conditions served as control group. This time, the 

behavioral test battery did not include Rotarod performance testing nor the visual form of the 

MWM, since the parameters measured by these test were most likely not affected by focal 

overexpression of Kat2a, as opposed to the forebrain-wide-knockout condition. 

Starting with an open field test, we first tested for altered exploratory behavior and locomotion. 

We found both groups spending comparable amounts of time in the center region of the arena and 

traveling similar distances within 5 min. Also average traveling speed was similar (Figure 3-12A).  

In the elevated plus maze anxiety and exploratory behavior was reviewed. Both groups showed 

normal levels of anxiety, as they spent most of the time (~85-95%) in the closed arms or center 

region. Hence, there was no difference in time spent in the open arms of the maze (Figure 3-12B). 

By submitting both groups to explore a 4-arms cross maze, working memory was probed by 

monitoring the sequence of arm entries. Again, successful alterations were defined as visits of an 

arm that was not visited within the last three trials before. Both groups performed significantly 

better than the 9.375%-chance level, indicating non-random arm entries. (Student’s one-sample t-

test: AAV-GFP: p=0.001, AAV-Kat2a-MYC: p<0.001). However, there was no significant difference 

between groups (Figure 3-12C) 
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A novel object recognition (NOR) paradigm was used to determine potential effects on short-term 

or long-term recognition memory. After habituation, the AAV-GFP group showed no preference for 

any of the two equal objects during the training session, while the AAV-Kat2a-MYC group 

demonstrated some preference for the object that would later not be replaced for the new one 

(Student’s one-sample t-test vs. 0.5: p=0.027; Figure 3-5D, TR). Both groups however showed 

equivalent preference for the novel object in the short-term memory paradigm (Student’s one-

sample t-test vs. 0.5: p=0.005 for both groups; Figure 3-12D, STM). Interestingly, in the long-term 

paradigm, none of the groups showed significant preference for the novel object (Student’s one-

sample t-test vs. 0.5: AAV-GFP: p=0.578, AAV-Kat2a-MYC: p=0.129; Figure 3-12D, LTM). 

Also here, we tested associative learning in the contextual fear-conditioning (cFC) paradigm. While 

baseline freezing in the training situation was equivalently low, AAV-Kat2a- mice showed a non-

significant tendency towards more freezing behavior when reintroduced to the context 24 hours 

after receiving the electric foot shock (Figure 3-12E, right panel). To exclude effects of altered 

sensory perception, we also monitored shock response activity during the 2s-shock phase (Figure 

3-12E, right panel).  
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Figure 3-12: Behavioral analysis of Kat2a gain-of-function. Open field test (A), Elevated plus maze (B) and 4-
arms cross maze (C) indicated normal behavior with regard to locomotion, exploratory behavior, basal anxiety 
and working memory. Novel object recognition (D) and contextual fear conditioning (E) showed an insignificant 
trend towards increased long-term memory. Control parameters like object preference during training (D, TR) 
or activity in response to electric foot shock (E, right panel) were only slightly different. AAV-GFP served as 
control group. Hashes indicate significant differences from chance level within groups. TR, Training; STM, 
Short-term memory; LTM, Long-term memory. For all experiments: n=7 (AAV-GFP), n=9 for (AAV-GFP). 
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Finally, we subjected mice to the MWM. Though both groups rapidly learned to navigate within the 

pool
23

, AAV-Kat2a-MYC mice displayed a significant retardation in finding the hidden platform 

(rmANOVA, main effect of time: F(6,84)=33.8, p<0.001; main effect of AAV: F(1,14)=7.9, p=0.014; 

Fisher’s uncorrected LSD test for multiple comparison : Day2, p=0.028; Day3, p=0.022; Day7, 

p=0.009; Figure 3-13A).  

At the day of the probe test, the platform was removed and time spent in the four quadrants of the 

pool was monitored for one minute. Time spent in the target quadrant (TQ) was almost significantly 

different from chance level (Student’s one-sample t-test: p=0.0549) as well as from average time 

spent in the other three quadrants (Q1-3, Student’s t-test: p=0.0548) in AAV-GFP mice (Figure 

3-13B). However, AAV-Kat2a-MYC mice did not show any evidence for preference for the target 

quadrant. Also the number and integrated time of crossing over the former platform region was 

reduced in AAV-Kat2a-MYC mice, though the difference in platform crossings was only at the verge 

of statistical significance (Student’s t-test: Platform crossings: p=0.063, Time: p=0.029, Figure 

3-12C,D). To exclude effects of potential mobility impairments to account for this differences, we 

also monitored the swim speed on the probe test day), in order to get an average over a full minute 

of swimming behavior (Figure 3-13E). We further excluded the possibility of differential body 

weight to affect the results of behavioral testing, as both groups had comparable body weights 

after completing the behavioral test battery (Figure 3-13F) 

In conclusion, Kat2a gain-of-function did neither result in changed locomotion or baseline anxiety 

levels nor was there any evidence for altered working memory or short-term recognition memory. 

Interestingly, long-term memory was affected in both groups. Though there was a trend towards 

increased aversive memory in the cFC paradigm, spatial memory impairments became evident in the 

MWM.  

 

 

                                                                 
23

 In this experiment both groups were notably fast to learn how to escape the watermaze, especially the 
control group. In order to be able to still pick up potential differences between AAV-GF and AAV-Kat2a-MYC 
mice, we stopped training phase after day 7 and performed probe testing on day 8. 
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Figure 3-13: Morris water maze reveals impairment in spatial memory in Kat2a-overexpressing mice. 
Learning curves demonstrate rapidly decreasing escape latencies for both groups (A). Time spent in each of the 
four quadrants on the day of the probe test (B). Summed time spent over former platform region and number 
of platform crossings during probe test (C,D). Average swim speed during probe test (E). Body weight as 
measured for both groups after completion of behavioral battery (F). Asterisks indicate significant differences 
between groups. TQ, Target quadrant; 1-3, quadrants 1 to 3. Indicated p-values are based on Student’s t-test. 
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3.2. Regulation of Gene Expression in Hippocampal Aging 

Regulation of gene expression is an important step in maintaining homeostasis. Aging can be 

viewed as a process leading to deterioration of homeostasis. Therefore we were interested in the 

transcriptional regulation in the aging hippocampus and its association with potential alterations in 

histone acetylation, with a special focus on advanced aging. For all following experiments, only male 

C57Bl/6J mice were used. 

3.2.1. Histone Acetylation in the Aged Hippocampus 

3.2.1.1. Decreased HDAC Activity is not Associated with Bulk Changes in Histone Acetylation Levels in 

the Aged Hippocampus 

Middle-aged (16-month-old) mice failed to induce upregulation of H4K12ac upon a learning stimulus 

and subsequent regulation of learning-related genes. This induction could be reinstated using 

HDACi. Interestingly, naïve mice of this age did neither show alterations in histone acetylation nor in 

nuclear HDAC activity (Peleg et al., 2010). 

Based on these results we asked, whether advanced aging may be associated with changes in HDAC 

or HAT activity and ultimately histone acetylation in a mouse model for advanced aging. To this end, 

we measured these parameters in 24-month-old mice and mice of an even more advanced age (≥28 

months), to explore effects that occur towards the end of lifespan (EOL) of these animals. For all 

these assays, nuclear lysates prepared from hippocampal tissue were used. It is important to 

reiterate this here, since the procedure of subcellular fractionation precludes potential effects of 

non-nuclear-localized HDACs, HATs and importantly also histones that are synthesized in the 

cytoplasm and may already carry post-translational modifications.  

Remarkably, we observed decreased HDAC activity with increasing age. 1way ANOVA revealed a 

significant effect of age (F(2,17)=8.1, p=0.003) and a significant linear trend between HDAC activity 

and age (R
2
=0.473, p=0.001). The age effect was attributed to a significant difference between 3-

month-old control mice with ≥28-month-old EOL mice (Tukey’s multiple comparisons test: p=0.003, 

Figure 3-14A). HAT activity however, remained unchanged. Here, we monitored kinetic activity 

development over time and found a significant effect of time, but not of age (rmANOVA, main 

effect of time: F(16,304)=2736, p<0.001, Figure 3-14B).  

The assay for HDAC activity measurement is unselective towards a specific HDAC. In order to 

determine, whether a particular HDAC (or HDAC family) is responsible for the detected decrease in 

activity in 3 vs. ≥28-month-old mice, we performed quantitative western blotting for Hdac2 and 

Hdac3, two HDACs that have been implicated in memory function before (Guan et al., 2009; 

McQuown and Wood, 2011). However, we did not detect alterations in nuclear protein levels of 

these HDACs (Figure 3-14C). 

We next asked, whether decreased HDAC activity is associated with altered histone acetylation. As 

representatives we chose H3K9, H3K14 and H4K12 as potentially deregulated target sites. 

Interestingly, using quantitative western blots we could detect slightly increased bulk levels at all 
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three marks, when related to total histone H3 or H4 levels. However, these differences were not 

statistically significant. 

Taken together, increasing age is associated with decreasing HDAC activity, but this was not 

explained by a reduction in protein levels of Hdac2 or Hdac3 and paralleled by only insignificantly 

increased bulk histone acetylation at H3K9, H3K14 or H4K12 sites. 

 

Figure 3-14: EOL mice exhibit decreased nuclear HDAC activity, but no altered bulk histone acetylation. 
HDAC activity followed a linearly decreasing trend with increasing age. When comparing 3-month old mice with 
≥28-month-old mice the trend reached statistical significance (A). HAT activity kinetics were similar between 
age groups (B). Hdac2 and Hdac3 protein levels were did not change between young and EOL mice(C). 
Acetylation of three histone sites was not changed significantly (D). 
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3.2.1.2. Orally Administered HDAC Inhibition Improves Age-Associated Memory Impairment 

Based on these results, we assumed a compensatory mechanism to act in the hippocampus with 

advancement of aging. We therefore hypothesized that facilitating this naturally occurring process 

may improve aging-associated memory impairment (AAMI). In favor of this notion, the host 

laboratory could recently show, that administration of the HDAC inhibitor SAHA restored spatial 

and aversive memory in aged (16 months old) wild type mice, when infused intrahippocampally. 

Based on these findings, we hypothesized that pharmacological HDACi may have a beneficial effect 

on memory also at an advanced age. 

In a pilot experiment, we asked the question, whether systemic administration of SAHA would have 

an effect on histone acetylation in the brain, especially in the hippocampus. To answer this question 

we injected 3-month-old mice with either vehicle or 50µg/g of SAHA INTRA PERITONEAL (IP) once per 

day over the course of 7 days. After the last injection, we isolated brain tissue of mice after 1, 3, 8 

and 24 hours and measured H4K12 acetylation by western blotting. 

Importantly, we discovered significant elevation of H4K12ac levels only at 1 hour after the last 

injection (Student’s t-test: p=0.029; Figure 3-15). This increase was absent already 2 hours later. 

 

 

 

Figure 3-15: Chronic SAHA administration in young mice transiently increases H4K12 acetylation. One 
hour after the last injection, H4K12ac levels were significantly elevated, and were indistinguishable from 
vehicle controls beyond 3 hours. 
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To explore putatively beneficial effects of SAHA in aged mice, we fed 23-month-old mice for 3 

weeks with 50µg/g body weight of SAHA as explained in 2.2.2 and subsequently started behavioral 

testing. Oral administration was chosen over daily i.p. injections, since mice of this advanced age 

are considerably more fragile compared to young, healthy mice and the stress of repeated fixation 

and injection may have resulted in a high premature death rate. Furthermore, with an eye on 

potential clinical applications in the future, oral administration is more favorable compared to any 

form of injection. 

Because in our experience working with 24-month-old mice leads to problems during elevated plus 

maze, Rotarod performance test, MWM and cFC, these tests were not conducted for the purpose of 

this study. However, we did observe normal behavior in the OF test in terms of time spent in the 

center region, which is a measure for exploratory behavior and basal anxiety. This parameter was 

comparable between groups fed with SAHA and vehicle as were the other parameters measured, 

namely traveled distance and average speed (Figure 3-16A). 

The NOR test is a powerful memory test, in that it allows to compare recognition memory not only 

between groups, but also within a group, as the object preference parameter offers to test VERSUS 

randomness (i.e. chance level). Here, we used a slightly modified novel object recognition paradigm 

in order to meet previous observations that mice of advanced ages lack motivation to explore 

objects when habituated for a long time. During the training session, both groups explored each of 

the similar objects equivalently. Also in the 5-min-STM test, mice of neither the SAHA group nor 

vehicle group did show preference for any of the two objects. Interestingly, while vehicle treated 

mice still had no preference for either object after reintroduction for the 24-hours-LTM test, SAHA 

treated mice showed a moderate, but statistically significant preference for the novel object 

(Student one-sample t-test: p=0.047; Figure 3-16B). 

As mice were fed with 200 mg of high-caloric peanut butter, mixed with 20 µl of either vehicle or 

SAHA solution, we also monitored potential changes in body weight. The first observation was 

readiness of peanut butter uptake: Mice ingested the prepared mixture without hesitation and 

within a time of only ~10 minutes. Interestingly, this devouring of high-fat extra diet during 3 weeks 

did neither lead to overt changes in body weight within groups nor was there an effect of the type 

of additive (SAHA or vehicle). Though rmANOVA revealed a significant effect of time (F(10,170)=5.3, 

p<0.001), this effect was attributed to individual daily fluctuations (e.g. POST HOC test for day 5 vs. 

day 13, Tukey’s multiple comparisons test: p=0.0012) and there was no significant difference 

between day 1 and day 21 (Figure 3-16C). 
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Figure 3-16: Chronic oral SAHA administration improves long-term object recognition. The Open field test 
did not reveal differences in exploratory behavior or anxiety (A). Novel object recognition memory was slightly 
improved by chronic SAHA treatment (B). Body weight did not change greatly over the 3-weeks feeding 
period(C). 



Results 

 

66 

3.2.2. Gene Expression in the Aged Hippocampus 

We next tested, whether we could detect transcriptional changes in the aging hippocampus that 

might be associated with altered HDAC activity and/or described and observed age-associated 

memory impairments. To this end, we performed RNA-seq and microarray-based comparisons of 

mRNA levels for three different aging groups. The use of multiple technical approaches yields 

additional information concerning the validity of these methods. In addition each technique offers 

different advantages. Microarrays are broadly used and highly standardized in terms of technical 

processing and bioinformatics assessment. RNA-seq on the other hand features a novel, unbiased 

approach that is not limited to known gene annotations, is more sensitive towards low abundant 

transcripts (depending on sequencing depth) and may be used to estimate differential splicing by 

estimating transcript abundance on the exon level (Sîrbu et al., 2012). qRT-PCR, as a third way to 

determine RNA levels, is unparalleled in sensitivity and specificity and remains to be the “gold 

standard” for expression analyses, often used to validate genome-wide approaches but limited by 

the experimenter’s selection and sequence availability. 

3.2.2.1. RNA Sequencing and Microarray Technology Reveal Dramatic Changes in Gene Expression 

In the following experiment three technical approaches were used, comprising single-end (SE) RNA-

sequencing, paired-end (PE) RNA-sequencing and Agilent microarrays. Figure 3-17A shows a 

summary of the groups used with each approach. In all cases, 3-month-old mice served as reference.  

RNA-seq yielded 12 – 37 million single-end reads of 50 bp per sample and 14 – 20 million paired 

reads of 200 bp (100 + 100 bp) (Figure 3-17B). Reads were of high quality, with an average Phred 

quality score of >30 across the full read length (Figure 3-9C). Alignment of reads to the mouse 

genome using Bowtie2 resulted very high alignment rates in all RNA-seq samples (see Table 2-9). 

Interestingly, 2-dimensional principal component analysis (PCA) revealed that “age” was a highly 

likely explanation for a great fraction of the variation between samples across all three 

comparisons, microarray and RNA-seq likewise (Figure 3-17D). Expression-based sample distances 

confirmed this notion. Several samples within each group showed good correlation (Figure 3-17E). 
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Figure 3-17: Expression analysis in the aging hippocampus: Group description and quality control. 
Overview of groups. For each column-wise comparison 3-month-old mice served as reference. The number of 
biological replicates is represented by n (A). Median and range of total read counts for each group (B). 
Representative distribution of average Phred quality score across all reads of a sample dependent on the 
position within the read for single-end (SE) and paired-end (PE) libraries (C). 2-dimensional principal component 
analysis for each experiment. Scale is in % (D). Sample distance and cluster dendrogram for all comparisons (E) 
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We found robust changes of transcription in the aging hippocampus. In general, all approaches 

yielded similar results: In terms of the number of genes changing, we found comparable numbers in 

all comparisons, except for the number of downregulated genes in the PE RNA-seq comparison of 3 

vs. ≥28-month-old mice. In total, we found 841 genes that were significantly upregulated and 578 

genes that were downregulated when comparing young and aged mice (Figure 3-18A). Among the 

upregulated genes, we found a substantial amount of overlap with comparable numbers between 

ages and methods, i.e. RNA-seq vs. microarray, both 3m vs. 28m, gave a similar overlap as RNA-seq 

for 3m vs. 24 vs. microarray (Figure 3-18B). Interestingly, overlaps among downregulated genes 

were considerably less pronounced (Figure 3-18C). Genes that were overlapping are given in Table 

3-5, together with one possibility of how a particular overlap may be interpreted. We also found a 

negligible fraction of genes that were overlapping between up- and downregulated genes (Table 

3-5).  

Notably, we could not detect changes in HDAC expression, which would be related to decreased 

HDAC activity as described in 3.2.1.1. However, we found two HATs to be differentially regulated 

from 3 to ≥28-month-old mice using the microarray data. These were Kat2b (a.k.a. Pcaf) upregulated 

with age) and Kat6b (a.k.a. Myst4, downregulated with age). 

 

Figure 3-18: Expression analysis in the aging hippocampus: DEGs. A comparable amount of genes was 
differentially regulated in the tree comparisons, with the exception the exception of downregulated genes in 
3m vs. ≥28m RNA-seq. Merged lists are non-redundant (nr) lists of all genes found to be differentially regulated 
due to aging in general. Numbers of probes with significantly different signals (including redundant and non-
annotated probes are given in brackets (A). Number of overlapping genes that are upregulated during aging, 
circle radius and intersection area correspond to value as closely as possible (B). Number of overlapping genes 
that are downregulated during aging, circle radius and intersection area correspond to value as closely as 
possible (C). 
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Table 3-5: Overlapping DEGs between different comparisons. In the “Group” column also the technique and 
a possible interpretation of the particular group are given. 

 

From a chromatin-biology point of view, another interesting observation was a considerable number 

of downregulated histone genes. To further examine, whether we could detect more functional 

groups of genes, we again performed GO-Term and KEGG-Pathway analysis as described in 2.6.3. 

Within upregulated genes, all comparisons between young and aged showed great agreement. A 

substantial amount of genes was involved in a plethora of terms associated with biological 

processes of immune function and associated with MHC complexes (see Table 6-5 to Table 6-7). In 

addition many upregulated genes were associated with the plasma membrane. Molecular functions 

of upregulated genes included chemokine activity and calcium ion binding. Among the most 

enriched pathways were the complement-system cascade and other immune related pathways. Only 

a few functional categories distinguished groups. These included the regulation of RNA metabolic 

process (only seen among 3 vs. 24-month-old mice), fatty acid biosynthesis (in 3m vs. ≥28m, RNA-

seq), gland, bone and tissue development and regulation of apoptosis (in 3m vs. ≥28m, microarray). 
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Within downregulated genes, there were a lot less significantly enriched categories, which were 

also different between comparisons to a larger extend than categories of upregulated genes. This 

observation is in line with a smaller overlap among the downregulated genes. Categories that 

discriminated the groups included chromatin-related processes (only among 3 vs. 24-month-old 

mice and found with microarray), neurotransmitter receptor activity (in 3m vs. ≥28m, RNA-seq) and 

mitosis (only found with microarray).  

We also merged lists of all three comparisons between young and old to determine the general 

theme of up- and down-regulated processes associated with hippocampal aging. Though the lists 

were now considerably larger, and therefore more prone to random effects, analysis of these lists 

greatly confirmed findings resulting from analyses of individual comparisons and increased 

enrichment and statistical significance for several categories (Table 3-6). In particular, complement-

pathway enrichment among upregulated genes and chromatin-related categories among 

downregulated remained the highest ranked functional categories. Interestingly, neurogenesis and 

neuroactive ligand-receptor activation were terms, where enrichment was enhanced after merging 

lists of downregulated genes. 
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Table 3-6: GO-Term and KEGG-Pathway analysis of merged, non-redundant lists for 3m vs. ≥24m (841 
upregulated, 578 downregulated). 
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Table 3-6: (continued) 
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3.2.2.2. Upregulation of the Complement Component C4 Correlates with Age and is Associated with 

Increased Intronic H3K9 Acetylation 

Among the upregulated genes with the highest fold-change in all comparisons between young and 

aged hippocampi was the C4b gene (Fold changes: RNA-seq: 3m vs. 24m: 4.3x, 3m vs. ≥28m: 7x, 

microarray: 5x). This gene’s product, called complement component 4 (C4), is a precursor protein 

that is further processed several times during the complement cascade to form the C4a, C4b and 

C4d proteins or polypeptides.  

We confirmed upregulation of C4b by qRT-PCR identifying a significant increase in 24- and ≥28-

month-old mice (1way ANOVA: F(2,14)=13, p<0.001, Tukey’s multiple comparisons test: 3m vs. 24m: 

p=0.034, 3m vs. ≥28m: p<0.001, 6.6-fold increase) and a linear trend between age and expression 

level (R
2
=0.62, p<0.001, Figure 3-19A). 

We performed genome-wide occupation experiments for H3K9ac (ChIP-seq) to investigate, 

whether transcriptional regulation during hippocampal aging is associated with changes in 

activation-related histone acetylation marks. Interestingly, we found increasing enrichment of 

H3K9ac the C4b locus with increasing age. However, H3K9ac enrichment was not restricted to the 

promoter region of the C4b gene but was dispersed over two additional hotspots within the two 

largest intronic regions of the gene. Strikingly, increasing enrichment of H3K9ac with age was 

focused at the first of these intronic hot spots (Figure 3-19B). This intronic region features a GA-rich, 

low-complexity region. To determine potential functional relevance, we performed bioinformatics 

analysis of the sequence of this region. Using the TFSearch tool, multiple MZF1-binding sites were 

found as well as a binding site for p300, a.k.a. histone acetyltransferase Kat3b.  

 

http://www.ncbi.nlm.nih.gov/gene/12268
http://genome.ucsc.edu/cgi-bin/hgc?hgsid=325666615&c=chr17&o=34737956&t=34738750&g=rmsk&i=GA-rich
http://genome.ucsc.edu/cgi-bin/hgc?hgsid=325666615&c=chr17&o=34737956&t=34738750&g=rmsk&i=GA-rich
http://www.cbrc.jp/htbin/nph-tfsearch
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Figure 3-19: qRT-PCR validation and correlation with H3K9ac. qRT-PCR validation of C4b upregulation 
during aging. Note the logarithmic scale. Normalized to 3m group. Legend gives age in months. (A). Detailed 
view of the C4b locus. Data for enrichment of H3K9ac derived form ChIP-seq experiments (2 biological 
replicates, upper panel) correlate with increased C4b mRNA abundance (arrowheads, B). Peak height and color 
correlate. 
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3.2.2.3. Increased C4 Protein Levels and Astrogliosis Accompany Hippocampal Aging 

For two of the most dramatically upregulated genes, namely C4b and Gfap, we carried out 

immunohistochemical stainings to validate differential expression on the protein level and to 

explore the distribution of these upregulated proteins within the hippocampus. 

Interestingly, fluorescent immunohistochemistry of aged brain tissue is handicapped by strong 

autofluorescent background (AFBG) that turned out to be aggregates of lipofuscin (Gray and 

Woulfe, 2005). Interestingly, lipofuscin aggregates were particularly larger and brighter in CA3 

pyramidal cells compared to DG granule cells. The brightest aggregates, however, were found in 

microglia (see Figure 6-3) 

For C4 stainings, we therefore produced overlay and subtraction images (using a different 

excitation wavelength) to discern true C4 staining from AFGB. We found C4 staining was almost 

absent in sections from 3-month-old mice, while there was prominent staining in sections from 24- 

and ≥28-month-old mice. Staining was found at filamentous structures or aggregates across the 

hippocampus and did not seem to localize inside cells (Figure 3-20A). 

Using a Gfap specifc antibody, we found an increased number and density of astroglia in the 

hippocampus of aged mice that was evident across the whole hippocampus. This invasion of 

astroglia is also known as astrogliosis. In a more detailed magnification of the dentate gyrus, we 

could again see AFBG but Gfap staining was clearly distinguishable, since its localization pattern and 

the morphology of astroglia is easily recognizable. Upregulation on the RNA level was also 

confirmed by qRT-PCR, validating observed fold changes of RNA-seq and microarray (1.5-fold and 2-

fold, respectively; Figure 3-20B) 

In conclusion, we could confirm upregulated expression for these two genes at the protein level. 

While Gfap is an astroglial marker and not known to be expressed by neurons, there is accumulating 

evidence that complement components, including C4b, are expressed in neurons and serve diverse 

functions in the brain (Davoust et al., 1999; Maier et al., 2008; Moriyama et al., 2011; Ramaglia et al., 

2012; Schafer et al., 2012; Wyss-Coray and Rogers, 2012). Whether, however, upregulated C4 

expression during aging is originating in glia cells or in neurons, we could not determine using 

immunohistological stainings. 
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Figure 3-20: Increasing protein levels in the aging hippocampus. Staining of processed C4 protein and 
downstream products (C4, C4b, C4d) across tested ages. Strong autofluorescent background (Lipofuscin) 
complicated analysis and was subtracted (24m, upper panel) or overlaid (24m, lower panel) for demonstration 
purposes and to enhance true staining of C4 (arrowheads, A). Staining for astroglial marker Gfap shows 
increased number and density of Astroglia (Astrogliosis), which is in line with qRT-PCR validation of increase in 
mRNA level (B). White outlines show hippocampal neuronal cell layers (DG & CA3). Representative images, 
scale bar is 100µm for 10x magnifications and 50µm for 63x. 
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4. Discussion 

The data presented here contributes to our understanding of the role of Kat2a in transcription-

dependent memory formation and further deepens our knowledge about the transcriptional 

changes in the aging hippocampus and its association with histone acetylation. 

Like the Results section, the Discussion section is divided into two parts that will help to review and 

interpret the data critically based on current literature. Some closing remarks integrate the results 

of this thesis into a larger context. 

4.1. Kat2a is an Important HAT in the Hippocampus that Regulates 

Long-Term Memory Formation 

4.1.1. Kat2a conditional knockout mice exhibit several specific phenotypes related 

to memory function 

Kat2a, formerly known as Gcn5l2 in MUS MUSCULUS or Gcn5 across species, is a well-studied histone 

acetyltransferase. To my knowledge, the presented study provides detailed analysis of Kat2a 

function in the mammalian brain in the context of learning and memory for the first time. 

Investigation of the expression pattern of Kat2a suggests an important role in hippocampal 

function. The expression of Kat2a mRNA was in agreement with IN SITU hybridization data retrieved 

from the Allen Brain Atlas, showing strong expression in pyramidal and granule cell layers of the 

hippocampal formation, especially in the CA region (Figure 3-1, Figure 6-1). On the protein level, we 

find Kat2a localized in the nucleus, with a very low concentration in cytosolic fractions, suggesting a 

major function in acetylation of histones and other nuclear proteins. Indeed, all known targets of 

enzymatic Kat2a-mediated acetylation are nuclear proteins, including several non-histone proteins 

(see 4.1.2).  

 We find high nuclear protein levels in cortical regions, higher even than in the CA1 and DG. 

Interestingly, CA3 protein levels of Kat2a were not different from cerebellum levels. Thus, the 

overall agreement of expression on the RNA and protein level is violated in certain brain regions. 

This may represent mechanisms of posttranscriptional regulation before or during translation (e.g. 

miRNA binding or positive/negative regulators of translational efficiency). However, these 

discrepancies may also have technical reasons as quantitative western blotting is not as sensitive as 

qRT-PCR in picking up differences (Bhuiyan et al., 2001). If we assume a correlation of expression 

level with functional relevance in a given cell type, these results support the notion that Kat2a plays 

an important role in the hippocampus and therefore memory-related functions in this brain area. 

Use of the Cre-loxP-based conditional knockout system resulted in forebrain-specific knockout of 

Kat2a, demonstrated on DNA (Figure 2-1B), RNA (Figure 3-1A) and protein level, in the latter case 

using Western blot and immunohistochemical methodology. (Figure 3-1C,D, Figure 3-3A). However, 

a detectable amount of mRNA and protein (ca. 18%) was remaining. This is likely to reflect Kat2a 
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expression in inhibitory neurons and glia, as these cell types do not express the CamK2α-promoter-

driven Cre recombinase. Together with the consideration of a glia:neuron ratio of about 2.5:1 in the 

rodent hippocampus (Bandeira et al., 2009), these low levels of residual expression suggest that 

Kat2a is mainly expressed in excitatory neurons.  

An obvious phenotype of conditional knockout mice was a slight but significant reduction in body 

weight that was paralleled by a proportionally reduced brain weight. However, the ratio of brain 

weight to body weight remained unchanged. This strongly suggests that reduction in brain weight 

can be attributed to overall smaller body size. It can be hypothesized that reduced body size reflects 

the role of Kat2a in development and growth. However, as shown in several previous studies, 

CamKIIα-driven, Cre-mediated recombination in our CamKIIα-Cre line does not appear before 

postnatal day 19 and various studies, including studies from the host laboratory, have made use of 

this line in the context of learning and memory (Kerimoglu et al., 2013; Kuczera et al., 2011; Mayford 

et al., 1996; Minichiello et al., 1999; Rotenberg et al., 1996; Tsien et al., 1996). Even so, there might 

have been an effect on growth through hormonal signaling, as Kat2a is also deleted in regulatory 

parts of the endocrine system, e.g. the hypothalamus, upon CamKIIα promoter activation. Indeed, a 

limited early hypothalamic activation of the CamKIIα promoter is reported in a similar Cre line by the 

Jackson laboratory
24

 However, we did not observe overt neuronal loss, as seen by DAPI and NeuN 

(Rbfox3) staining (Figure 3-3B,C). Also the synaptic markers Map2, Syt and Synpr did not reveal 

changes in morphology (Figure 3-3C,D) and we there was no indication for differential expression of 

these genes in our RNAseq data. In addition, we looked at astrocytes and myelin distribution that 

may indicate indirect effects of Kat2a deletion in the neuronal environment. Again, we did not 

observe overt changes (Figure 3-4). Together, these findings argue for a moderate effect on growth 

in Kat2a
f/f;tg

 mice that, however, seems to have no effect on normal brain function. 

When we investigated the effect of Kat2a deletion on hippocampal baseline histone acetylation 

levels, we found H4K12ac levels to be increased, while H3K9ac and H4K14ac were unchanged 

(Figure 3-10). Since all three sites are suggested target sites for Kat2a catalytic activity, these 

results came as a surprise. While it is plausible that those sites may not change in baseline condition 

on the bulk level because of compensatory activity of other HATs in substitution for Kat2a, 

upregulation of H4K12ac in the knockout condition is more complicated. It might reflect 

“overcompensation” in residual HAT activity or increased binding to genomic regions by other HATs. 

We did not find any evidence for increased, compensatory expression of acetyltransferases, 

however this does not exclude differential enzyme activity (see section 4.1.2 below). Other 

explanations include, that proper function of HATs generally limits acetylation to relevant genomic 

regions and boundaries (e.g. euchromatin), and an imbalance in HAT function leads to uncontrolled 

acetylation of regions that would normally not be acetylated. This might, in part, be the result of 

binding to now free binding sites that are normally occupied by Kat2a (either acetylated lysine 

residues for binding by bromodomains or genomic sequences) However, as there are no indications 

in the literature so far, this is purely speculative. Further investigation of genome-wide H4K12ac 

                                                                 
24

 The provided information can be found on the webpage for the mouse line B6.Cg-Tg(Camk2a-cre)T29-1Stl/J. 
The data in question is, however, not provided in a citable format (“data not shown”), so that it remains an 
unproven claim. 

http://cre.jax.org/Camk2a/Camk2a-creNano.html
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distribution would be necessary to determine which genomic regions are targeted by this increase. 

Finally, also a non-cell-autonomous effect cannot be excluded. In summary, these data emphasize 

that IN VIVO histone acetylation is a tightly regulated, highly dynamic and complex process that is 

influenced by a plethora of factors, including HAT-HDAC balance, upstream and downstream effects 

of the transcriptional machinery and not at least the metabolic status of the cell. Future 

experiments should be directed to the investigation of stimulus-dependent histone acetylation. 

The behavioral phenotype of Kat2a
f/f;tg

 mice however met with expectations. We did not observe 

an effect of Kat2a deficiency on exploratory behavior or basal anxiety, as tested by the open field 

and the elevated plus maze paradigms (Figure 3-5A,C). In the cross maze as well as in the short-term 

novel object recognition paradigm, both groups performed better than chance level, demonstrating 

intact spatial working memory (Figure 3-5D) and short-term memory (Figure 3-5E), respectively. We 

did not observe differences between conditional knockout and control mice in the Rotarod 

performance test. This test involves testing for physical strength as well as motor learning, and is 

dependent on proper cerebellum function (Coughenour et al., 1977; Goddyn et al., 2006; Shiotsuki 

et al., 2010), which was similar in both groups as indicated by an increase in latency to fall over time 

(Figure 3-5B). Given, that all aspects of these behavioral control parameters were normal, there is 

no reason to assume, that the growth effect (see above) leads to functional impairments.  

We found a specific impairment of long-term memory as shown by decreased object recognition, 

and impaired performance in contextual fear conditioning (cFC) and Morris’ water maze (MWM) 

(Figure 3-5E,F, Figure 3-6). While the effect on object-recognition and aversive memory was 

relatively mild, the spatial memory impairment was prominent. The Kat2a
f/f;tg

 demonstrated a 

slower decrease in escape latency during the training and showed no preference for the platform 

region in the probe test (Figure 3-6A,C). The parameters of platform crossings and time spent over 

the former platform region during probe test also supported this finding, though here the 

differences were not statistically significant (Figure 3-6D,E). During the training phase, 2way ANOVA 

did not reveal a significant interaction between genotype and training day, indicating a similar 

negative slope for escape latencies, with a shifted starting point. Indeed, differences were already 

observed on the first day. This fact may be attributed to the protocol we used, considering that four 

individual trials at each training day allow for within-day improvement of performance. A visual form 

of MWM with an independent group of mice was used to rule out possible effects of the gene 

knockout on vision. Both groups showed a very low escape latency on day 1 already and further 

decreasing latencies during the following days, thereby excluding visual impairment. Yet, we 

observed a higher latency in Kat2a
f/f;tg

 mice on day 2 (Figure 3-6A). This result may as well be a sign 

of spatial learning impairment, since the visual task also involves learning to navigate in the pool 

and to recognize that the platform is the only way out of the maze. 

Contextual fear conditioning as well as spatial navigation in the watermaze clearly depend on 

proper hippocampal function (Anagnostaras et al., 2001). Conversely, the role of the hippocampus 

in novel-object-recognition memory is controversial based on the literature (Barker and Warburton, 

2011). As object recognition is a rather broad term, the brain region dependency seems to change 

with the specific protocol used for testing. According to a systematic study in rats by Barker and 
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Warburton, object preference, as tested in the present thesis, does not involve the hippocampus 

but rather the perirhinal cortex (Barker and Warburton, 2011). Experiments by Wood and colleagues 

support this notion (Haettig et al., 2011; Stefanko et al., 2009). Though, in our paradigm, mice with 

forebrain-wide neuronal Kat2a deficiency performed slightly worse compared to controls, they 

showed a strong preference for the novel object, indicating specificity of Kat2a function for 

hippocampus-dependent memories.  

Taken together, these data suggest, that Kat2a plays a major role in hippocampus-dependent long-

term memory and supports the possibility that Kat2a loss-of-function also affects memory functions 

depending on other brain regions. In order to exclude any effects on development and to 

investigate purely hippocampus-dependent functions, future experiments would need to aim for a 

more focal loss-of-function approach, such as making use of AAV-mediated Cre expression under a 

neuron-specific promoter. 

Interestingly, phenotypic evidence for a role of Kat2a in memory-related function is paralleled by 

data from electrophysiological measurements at the CA3-CA1 synapse (Schaffer collaterals). 

Long-term potentiation is claimed to be a molecular correlate of the memory trace, since strong 

stimulation can have detectable after-effects lasting for up to several hours. We found severe 

impairment in long-term potentiation in Kat2a
f/f;tg

 mice. While input/output correlation, paired-

pulse inhibition/facilitation and baseline recording during LTP measurement were comparable, 

tetanization in the LTP protocol did result in a more modest potentiation and faster decay thereof, 

returning to baseline within the measurement time window. This indicates a genotype effect during 

the early phases of LTP with increasing severity in later stages. Both alterations may be explained by 

Kat2a function in transcriptional regulation: Kat2a may on one hand regulate a set of genes that is 

involved in or modulates post-synaptic function, like neurotransmitter receptors. On the other 

hand, the fact that later phases of LTP are also affected is likely explained by Kat2a playing a role in 

stimulus-dependent regulation of genes necessary for mRNA and protein-synthesis-dependent 

forms of LTP. Our data however, do not exclude the possibility that Kat2a acetylates non-histone 

proteins during any of the steps involved in LTP establishment and maintenance.  

4.1.2. Stimulus-induced gene-expression  

To find possible molecular mechanisms for the observed phenotypes and potential target genes of 

Kat2a we performed transcription profiling of the complete CA1 mRNAome in a stimulus-

dependent manner, using a novelty-exposure paradigm (Figure 3-8) with subsequent, region-

specific transcriptome sequencing. RNA-seq is a powerful application of next-generation 

sequencing technology. One of its advantages is the possibility to visualize individual transcripts. 

Interestingly, we could also visualize the transcript resulting from recombination-mediated deletion 

of multiple exons and introns within in the Kat2a gene locus, thereby confirming the proposed 

knockout mechanism and the genotype of the mice used for the experiment (Figure 3-9F). The 

observed higher read count in Kat2a exons 1, 2, and the most-3’ exon may reflect an attempt to 

compensate for absent Kat2a by upregulation of Kat2a expression, since transcription only leads to 
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non-functional RNA. We can however only speculate about whether this transcript is processed 

further or even translated. 

Principal component and sample distance analysis revealed that profiles of mice with different 

genotypes were not as clearly differentiated as mice with different treatment (home cage or 

novelty-exposed, Figure 3-9D,E). However, there were robust changes in gene expression between 

groups when compared pairwise (Figure 3-9G,H). 

By comparing expression of group A vs. B, we could determine the effectiveness of our novelty 

protocol. Novelty exposure induced the expression of several activity-related genes required for 

transcriptional activation (e.g. Fos, the Egr’s and the Nr4a’s) as well as neuronal immediate early 

genes (IEGs) involved in dendritic function like Homer1. GO-Term and KEGG pathway mining 

confirmed this observation, revealing enriched terms related to positive regulation of transcription 

and the MAPK-signaling pathway, that is known to play a role in neuronal activity, plasticity and 

memory (Table 6-1, Sweatt, 2001). We only found half as many downregulated genes, which did not 

reveal overall significant enrichment in specific functional categories except for 4 genes that are 

generally involved in regulation of proliferation or growth (Egf, Gdf3, Fgf22 and Gli2). This 

observation is in line with the expectation that novelty exposure mainly stimulates certain 

transcriptional programs rather than inhibiting a particular group of genes. 

To determine which genes change expression due to Kat deficiency in young, healthy, naïve mice, 

we needed to compare groups A and C. Here, we found a total of 104 DEGs (68 up, 36 

downregulated, including the Kat2a gene)
25

. These genes revealed only weak enrichment of 

functional categories. However, a relatively large number of upregulated genes were associated 

with the plasma membrane, suggesting a role in communication with the outside environment, e.g. 

cell-to-cell communication (Table 6-2). Additionally, we could determine some genes associated 

with neuronal signaling, as represented by terms associated with activation of phospholipase C 

(PLC) and the neuroactive ligand-receptor interaction pathway. These genes were the serotonin 

receptors Htr2a and Htr2c, the neuropeptide receptor Npbwr1 and the hypocretin receptor Hcrtr2 

(discussed below).  

The B vs. D comparison is the most informative comparison when analyzing stimulus-induced gene 

expression that is potentially regulated by Kat2a. In this respect, differences in the comparisons of 

A vs. B and C vs. D also provide insight, since genes that are only novelty-regulated in the control 

condition but not in conditional knockout mice are likely to be dependent on Kat2a function (Table 

3-4). However, the latter is less informative since statistical considerations need to be taken into 

account. For example, a gene might be below the threshold for statistically significant DEGs in 

comparison C vs. D (C: n=6, D: n=7) but not in comparison A vs. B (A: n=6, B: n=5), though it had a 

similar average fold change in both comparisons. Indeed, this was the case for the IEG Arc, which 

was significantly upregulated in conditional knockout mice upon novelty exposure, but not in 

control mice, because it failed to reach statistical significance in the latter (padj=0.22). However, 

when comparing B vs. D directly, there was – as expected – no difference in Arc expression.  

                                                                 
25

 For a full list, see Supplementary Table in Appendix 6.2.1 

http://www.ncbi.nlm.nih.gov/gene/14281
http://www.ncbi.nlm.nih.gov/gene/?term=egr*+mus+musculus
http://www.ncbi.nlm.nih.gov/gene/?term=Nr4a*%5Bgene%5D+mus+musculus
http://www.ncbi.nlm.nih.gov/gene/26556
https://www.ncbi.nlm.nih.gov/gene/15558
https://www.ncbi.nlm.nih.gov/gene/15560
https://www.ncbi.nlm.nih.gov/gene/226304
https://www.ncbi.nlm.nih.gov/gene/230777
http://www.ncbi.nlm.nih.gov/gene/11838
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Nevertheless, this comparison showed the highest number of DEGs, with respect to up- as well as 

downregulated genes, suggesting that Kat2a has a larger effect on transcription when neurons 

become activated. Interestingly, comparisons A vs. C and B vs. D shared only a minority of DEGs (28 

upregulated, 12 downregulated, including Kat2a itself, Figure 3-9G,H and Table 3-4) further 

supporting this hypothesis. Among upregulated genes in comparison B vs. D we found genes that 

are associated with calcium ion-binding and extracellular-matrix interaction (Table 6-3). These 

categories certainly are relevant for proper neuronal function and signaling. One of the calcium 

binding genes is Ano2 (a.k.a. anoctamin2 or TMEM16B), which is a calcium-activated chloride 

channel. This channel is used for repolarization during an action potential as shown by knockdown 

and pharmacological inhibition in hippocampal neurons (Huang et al., 2012). Thus, upregulation of 

this gene may modulate action potentials towards shorter spike durations without affecting EPSP 

amplitude or slope (Huang et al., 2012). Ano2 was also found upregulated in comparison A vs. C and 

if upregulation correlates with shorter duration of action potentials and thus decreased time for 

signal integration this provides a possible explanation for the observed electrophysiological 

phenotype of Kat2a
f/f;tg

 mice (i.e. impaired LTP while input/output function was normal).  

Interestingly, several downregulated genes were associated with neuronal activities, including 

serotonin receptor activity, and translation (i.e. ribosome components). Downregulation of 

translation-associated genes may be a sign of impaired DE NOVO protein synthesis, which is 

implicated with LTP and LTM as described in 1.1.3.1. The downregulated serotonin receptors only 

partly overlap with those found in the A vs. C comparison (Htr2a), the additionally regulated 5-HT 

receptors are Htr1a and Htr1b. In total, there are 4 out of the 16 known 5-HT receptors encoded in 

the mouse genome (10 of those expressed in CA1, Andrade, 1998) downregulated in Kat2a
f/f;tg

 mice 

(Htr1a/b and Htr2a/c). Indeed, novelty-related behavior has been linked to the serotonin system 

(Kerman et al., 2011). Furthermore, serotonin receptors are well known to play a role in learning and 

memory (Bert et al., 2008; King et al., 2008; Ogren et al., 2008). In particular, Htr1a and Htr2a were 

found to modulate synaptic activity IN VITRO and IN VIVO (Arvanov and Wang, 1998; Kojima et al., 2003; 

Mori et al., 2001).  

Together, these results provide a potential regulatory mechanism relating Kat2a deficiency to 

reduced LTP and impairments in long-term memory consolidation. Alterations of neuronal 

excitability may result from differential serotonergic modulation and calcium sensing in resting as 

well as active CA1 neurons. 

By comparing groups C and D one can most clearly see which genes are regulated by novelty-

exposure independently of Kat2a. Interestingly, we found similar results as in the A vs. B comparison 

in terms of IEGs. This is in line with previous reports of IGE expression in Cbp-loss-of-function (Valor 

et al., 2011; Wood et al., 2006) and HDACi-treated (Vecsey et al., 2007) mice after cFC. Here, we also 

found enrichment of transcription associated terms among upregulated genes, including the MAPK-

signaling pathway and no evidence for overrepresented functional categories within 

downregulated genes. Therefore it is not surprising, that a considerable fraction of upregulated 

genes are shared between C vs. D and A vs. B. However, an equally large fraction was not 

overlapping with A vs. B, indicating possible compensatory upregulation. Again, there might also be 

http://www.ncbi.nlm.nih.gov/gene/243634
https://www.ncbi.nlm.nih.gov/gene/15550
https://www.ncbi.nlm.nih.gov/gene/15551
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a few genes that are different due to statistical issues (see above). We could not identify any 

functional pattern among the genes only upregulated in C vs. D. Remarkably, almost no 

downregulated genes in the two novelty comparisons overlap. This supports the earlier notion that 

novelty, and in turn neuronal activity, induces active gene transcription rather than downregulates a 

certain set of genes.  

What are potential Kat2a target genes in the CA1? 

Being a protein with enzymatic activity towards other proteins as well as a transcriptional activator 

Kat2a has two kinds of potential target genes. The first kind are targets of lysine acetylation, such 

as specific lysine residues in the histone tail domains as well as non-histone proteins. In fact, several 

non-histone proteins are described to be acetylated by Kat2a/Gcn5, including the transcriptional 

regulators p53, Myc and Pcg1α (Patel et al., 2004). The capability of Kat2a to autoacetylate itself is, 

in contrast to autoacetylating Kat2b, controversial (Herrera et al., 1997; Vernarecci et al., 2010). 

The second kind of Kat2a targets are genes that are activated by Kat2a-mediated acetylation of 

histones within the loci of these genes. To date, it is still not clear whether each HAT regulates a 

different set of genes or whether histone acetylation is a non-specific feature of transcriptional 

activation in general. In the latter case, target genes may vary between organisms, cell types and 

even treatments or stimuli. HATs are said to be “co-activators”, which expresses that they aid in 

transcriptional activation but do not take the lead, i.e. they are not selective for specific genes and 

this function needs to be accomplished by other sequence specific DNA binding proteins (e.g. 

classical transcription factors) or – possibly – (non-coding)RNAs (Vernarecci et al., 2010). In 

conclusion we cannot speak of target genes in general but rather of target genes in a particular 

setting or situation, which in this case is the CA1 region in the basal state and upon novelty 

exposure. Interestingly, the notion that different situations or settings require different sets of 

genes to be regulated by Kat2a is supported by a related study in Kat2a conditional knock mice 

using a nestin-Cre-based knockout approach. Neither did the differentially regulated genes in 

knockout neural stem and precursor cells show substantial overlap with genes found in this study 

nor did the enriched functional categories (Martínez-Cerdeño et al., 2012). This further supports 

specificity of Kat2a function the regulation of genetic programs in the adult hippocampus. 

To identify potential target genes for Kat2a in this setting, a simple comparison between young, 

naïve controls and cKO mice (A and C, respectively) can only give a static impression on the 

transcriptional profile of CA1 neurons in basal state because the true effect of knockout-mediated 

deregulation may be masked by many other mechanisms that compensate for Kat2a loss-of-

function. In order to identify dynamic changes in response to Kat2a deletion, we designed the 

novelty exposure paradigm. As mentioned in Table 3-5, genes that are regulated by novelty 

exposure in control mice, but not in Kat2a
f/f;tg

 mice, are likely to be target genes of Kat2a regulation 

in this particular situation (A vs. B only). In particular, the intersection of upregulated genes in A vs. B 

and downregulated genes in B vs. D deserves special attention. These genes are Vamp5, Hmgb2, 

Mc4r and Fam83d. Vamp5, a.k.a. myobrevin, is a plasma membrane associated protein, important for 

vesicle fusion (Zeng et al., 1998, 2003). Though its localization has not been studied in neurons, it 

has been shown to be upregulated by LTP induction and electroconvulsive therapy in rats (Elfving et 

https://www.ncbi.nlm.nih.gov/gene/22059
https://www.ncbi.nlm.nih.gov/gene/17869
https://www.ncbi.nlm.nih.gov/gene/19017
http://www.ncbi.nlm.nih.gov/gene/53620
http://www.ncbi.nlm.nih.gov/gene/97165
http://www.ncbi.nlm.nih.gov/gene/17202
http://www.ncbi.nlm.nih.gov/gene/71878
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al., 2008; Romcy-Pereira et al., 2009). Thus, this gene may be regulated by neuronal activity and is 

possibly involved in neurotransmitter release or other cell communication processes. Hmgb2 is a 

member of the high mobility group proteins, which are non-histone components of chromatin 

involved in regulation of transcription and DNA bending (Thomas, 2001). Therefore, this gene may 

be involved in stimulus-dependent transcription and nuclear architecture. Interestingly, the Mc4r 

gene has been implicated in learning and memory and synaptic plasticity before (Cui et al., 2012; 

Shen et al., 2013). The gene encodes a melanocortin receptor that is also known to regulate feeding 

behavior (Cui et al., 2012). Fam83d is a protein associated to the mitotic spindle apparatus in 

dividing cells (Varisli, 2012). About a role in postmitotic neurons however, possibly in microtubule-

associated trafficking, I can only speculate. Together, these genes may very well belong to a larger 

transcriptional program activated by neuronal activity that is, at least in part, likely to be regulated 

by Kat2a-mediated histone acetylation. 

In summary, we report here for the first time a comprehensive view of changes in the 

transcriptome of the murine hippocampal CA1 region after novelty exposure and present evidence 

for a role of Kat2a in stimulus-dependent regulation of neuronal gene expression. Generally, this is 

also the first description of HAT-dependent, stimulus-induced gene expression IN VIVO that goes 

beyond selection of single target genes. However, I am aware that the high number of upregulated 

IEGs in both genotypes indicates that the second wave of induced, long-term-plasticity-related 

transcription (see 1.3.2 and Figure 1-1) is yet to come and may be regulated by Kat2a to an even 

larger extent. This could easily be determined experimentally by investigating the transcriptome at 

a later time point after novelty exposure (e.g. in the range of several hours). 

In our setting, we could not find evidence for a crucial role of Kat2a in regulation of IEGs. This 

observation is in contrast to the fact that regulation of IEGs and stress-induced genes by Kat2a, or 

promoter occupancy of these by Kat2a-containing complexes, has been described in multiple 

situation and organisms, ranging from salt stress in yeast and drosophila to induction of primary 

response genes in mammalian cells of the immune system. (Hargreaves et al., 2009; Krebs et al., 

2011; Nagy and Tora, 2007; Nagy et al., 2010; Spedale et al., 2012).  

Kat2a is a learning-inducible gene itself. It was found upregulated one hour after a fear-conditioning 

stimulus (Peleg et al., 2010). In our novelty-exposure paradigm however, we did not find any HATs 

differentially regulated, neither in response to novelty exposure nor to Kat2a deficiency. 

Upregulation of HATs in the latter would have indicated a possible compensatory effect. Especially, 

the closely related HAT Kat2b, which has been implicated in learning and memory before (Bousiges 

et al., 2010; Gaub et al., 2010; Maurice et al., 2008), did not show upregulation. Together, these 

findings argue for a non-redundant and rather specific function of Kat2a. But it also reveals that a 

simple novelty exposure paradigm can be differentiated from a memory-inducing paradigm on the 

level of the transcriptome. While there may be overlapping molecular and cellular mechanisms, a 

further experimental dissection of the different settings is likely to reveal a distinct expression 

profile in, for example, an associative learning paradigm like fear conditioning, and may as well 

depend on Kat2a regulation (Peleg et al., 2010). 
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4.1.3. A dose dependent effect of Kat2a? 

In order to investigate possible gain-of-function effects, we designed an adeno-associated viral 

vector for overexpression of Kat2a, harboring a C-Terminal MYC-tag (AAV-Kat2a-MYC). 

Using Kat2a specific primers for qRT-PCR as well as a MYC-specific antibody for IHC, we confirmed 

robust, DG-confined overexpression on the mRNA and protein level, respectively, which was about 

5-fold overexpressed 14 days after injection compared to hippocampi either injected with AAV-GFP 

or AAV-Hdac2-MYC. This time course paralleled other AAV-mediated overexpression experiments in 

the host laboratory (Figure 3-11) (Bahari-Javan et al., 2012; Kerimoglu et al., 2013). Comparison of 

mRNA expression levels of both Kat2a and Hdac2 during overexpression by two different constructs 

yielded proof for expression while showing that overexpression of Kat2a did not result in 

compensatory upregulation of Hdac2 and VICE VERSA (Figure 3-11and Figure 6-2).  

Fourteen days after injection, we subjected mice to a behavioral test battery to test for functional 

consequences of this overexpression. Basal anxiety, exploratory behavior and working memory of 

these mice were normal and comparable between groups. In addition, mice showed comparable 

amounts of freezing in response to contextual fear conditioning. The NOR task also did not reveal 

any differences. Mice of both groups failed to show preference for the novel object during long-

term memory testing. This may indicate that a general negative effect of either surgery or viral 

injection or both on this type of memory testing. Yet, if we assume this memory type to be 

hippocampus-independent as discussed earlier (see 4.1.1), AAV injection into the DG cannot be the 

reason. It is possible, however, that small areas of cortical tissue are damaged during surgery and 

that these parts are necessary for long-term object recognition memory. 

In the MWM we could detect a spatial-memory-impairment phenotype. Mice overexpressing Kat2a 

performed significantly worse in this test compared to the control group. However, there are 

several caveats for the interpretation of these results. First of all, the group size for behavioral 

experiments was rather small. This increases the chances of high variability in the sample group. 

Indeed, statistical testing for preference for the target quadrant in the control group did not reach 

the threshold of p<0.05 due to high variability. Second, the virus was injected into the DG and not 

the CA1, where LTP and expression analysis were carried out on. The decision about the 

intrahippocampal injection site was made due to the relatively lower expression in CA1 compared to 

DG. It is possible that differential expression in the different hippocampal subregions is necessary 

for normal function of the structure as a whole. Furthermore, this result could indicate a dominant 

negative effect of the overexpressed construct by replacing endogenous Kat2a from the SAGA and 

ATAC complexes while at the same time being non-functional due to the MYC-tag. The tag might 

also interfere with the Kat2a bromodomain that lies close to the C-terminus of the protein (Figure 

1-2). However, this seems rather unlikely because the MYC-tag is only 10 AA long and the other 

tasks, including hippocampus-dependent contextual fear conditioning, did not yield any evidence 

for impaired function. A last but equally important caveat is the observation that AAV-Kat2a-

injected mice did not actually perform poorly in the MWM. Remarkably, the control AAV-GFP-

injected mice reached an average escape latency that was already below 10 s on day 7, rendering a 
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probe test for day 8 feasible. Also the AAV-Kat2a-injected mice showed a remarkable decrease in 

escape latency, yet not as fast as controls. Thus, this testing batch might resemble a group with an 

extraordinarily high performance with the AAV-GFP-injected mice at the top. Therefore, to get a 

conclusive answer, whether Kat2a overexpression in the DG is detrimental, the experiments needed 

to be conducted with a larger sample size. 

In summary, though some caveats have to be taken into consideration, our results from the Kat2a 

gain-of-function approach demonstrate a functional role of Kat2s spatial memory, supporting the 

findings from the loss-of-function approach. Since both, gain- and loss-of-function yield similar 

results with respect to spatial memory, Kat2a function might be dose-dependent. However, there is 

no evidence in the literature to support this impression and additional experiments should be 

conducted with CA1-specific overexpression and further investigation of functionality of the 

construct in terms of functional integration into SAGA and ATAC complexes, binding to genomic 

regions and histone acetylation. 
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4.2. Extensive Transcriptional Changes and Decreased HDAC 

Activity in the Aging Hippocampus  

4.2.1. Decreased HDAC activity towards the end of lifespan 

While HAT activity was similar in naïve young and aged mice, we found a negative correlation 

between age and downregulation of HDAC activity in mice at the end of their life span (≥28 

months, EOL) (Figure 3-14A,B). This came as a surprise for two reasons. First, decreased HDAC 

activity is generally associated with improvement of cognitive abilities and neuroprotection, and 

increased HDAC activity with age-associated, neurodegenerative diseases (Gräff and Tsai, 2013b; 

Kosik et al., 2012; Stilling and Fischer, 2011), which is clearly not the case in EOL mice. Though we 

did not test memory in these mice, it is highly unlikely that cognitive abilities improve again with 

further increasing age. Second, we could not detect global functional consequences of the 

decreased activity with regard to histone acetylation: the three investigated sites (H4K12ac, 

H3K9ac, H3K14ac) did not show alterations in bulk acetylation in hippocampi of EOL mice (Figure 

3-14D). Also, expression of two key nuclear HDACs, namely Hdac2 and Hdac3, remained unchanged 

on the protein level (Figure 3-14C). 

However, there are multiple explanations for this observation. First, decreased activity is 

measured at the enzymatic level, which indicates endogenous inhibitory regulation in the lysates. 

Indeed, endogenous inhibitors of HDAC activity haven been identified, including butyrate and β-

hydroxybutyrate (Candido et al., 1978; Shimazu et al., 2013), pyruvate (Thangaraju et al., 2006), 

sphingosine-1-phosphate (S1P, mediated by SphK2 activity) (Hait et al., 2009; Spiegel et al., 2012) 

and mechanisms mediated by reactive oxygen species (ROS) (Druz et al., 2012; Rahman et al., 2004). 

In addition, HDAC as well as SIRT activity are coupled to the metabolic state of the cell via the 

metabolites Ac-CoA and NAD+, respectively (Ladurner, 2006). One or more of these mechanisms 

may be involved. Oxidative-stress-related mechanisms are particularly likely to affect HDAC activity 

in aged neurons and glia, since ROS are produced in larger amounts in old than in young cells (Muller 

et al., 2007). 

An alternative interpretation is a compensatory mechanism at work in hippocampal cells. As the 

genome and chromatin stability is deteriorating with increasing age (see discussion in 4.2.3), it 

might become favorable for a cell to downregulate HDAC activity to maintain genomic plasticity. 

Our results are in striking contrast to published data. A recent study by Zeng ET AL. suggested 

decreased BDNF expression in the rat hippocampus in association with decreased H3K9 and H4K12 

acetylation (Zeng et al., 2011). Several other studies have also found decreasing levels of histone 

acetylation with aging. We found neither any evidence for reduced BDNF expression nor for 

decreased histone acetylation in the aging murine hippocampus. If at all, there were slight, non-

significant increases in bulk histone acetylation at the sites we looked at (H3K9, H3K14 and H4K12); 

possibly connected to decreased HDAC activity. However, one has to consider the different 

experimental approaches, i.e. targeted, localized studies vs. genome-wide and bulk level 

experiments. 

https://www.ncbi.nlm.nih.gov/gene/56632
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A possible explanation for the discrepancies may arise from the fact that the assay used cannot 

discriminate between HDAC and SIRT activity. In fact, increasing activity of the SIRTs has in been 

shown to protect from age-associated damage and promote life span extension (Kanfi et al., 2012; 

Michan and Sinclair, 2007; Oberdoerffer et al., 2008), which is in line with our observation of 

decreasing activity towards the end of murine life span. Using SIRT and HDAC selective activity 

assays, it will be exciting to see whether decreased SIRT activity is the main component of the 

observed effect. This would also explain our finding of non-changing histone acetylation, since the 

nuclear SIRTs mainly deacetylate H4K16, which was not tested here. 

4.2.2. Memory enhancing effects of HDACi 

Genetic or pharmacological HDAC inhibition (HDACi) has been proven to ameliorate memory-

associated phenotypes in several animal models for neurological conditions, such as Alzheimer’s 

disease, ALS, Huntington’s disease, and stroke (Fischer et al., 2007; Francis et al., 2009; Govindarajan 

et al., 2011, 2012; Kilgore et al., 2009; Peleg et al., 2010; Ricobaraza et al., 2009) and could even 

enhance memory skills in young, healthy wild type mice (Fontán-Lozano et al., 2008; Guan et al., 

2009). Though the latter might be an artifact of conventional mouse housing due to deprivation of 

sensory stimuli, the host laboratory could recently show, that the HDAC inhibitor SAHA could 

restore spatial and aversive memory in aged (16 months old), healthy wild type mice, when infused 

intrahippocampally (Peleg et al., 2010). Based on these findings, we hypothesized that 

pharmacological HDACi may also improve aging-associated memory impairment (AAMI) in a mouse 

model for advanced aging. 

 We administered SAHA orally, dissolved in DMSO and mixed with peanut butter. This approach is a 

lot less stressful, especially for mice at the advanced age of 23 – 24 months. We could observe a 

rapid (ca. 10 min) and complete ingestion of the 300 mg peanut butter-SAHA dose offered each day 

for 3 weeks, which is a time frame chosen based on successful i.p. experiments in younger mice 

(Guan et al., 2009). Interestingly, this additional high-calorie diet did not lead to an overall increase 

in body weight. While, there was a significant effect of time in the daily body weight measurements, 

this effect was attributed to individual days only and is likely a result of daily variation. 

To assess possible effects of SAHA on memory, we chose to perform the NOR test because it offers 

several advantages over other tests of the battery, like intragroup testing of memory and the 

absence of negative extrinsic motivation factors (e.g. aversion towards a context in FC). However, 

we modified the protocol slightly to meet our observation that aged mice show a lack of motivation 

to explore the objects when habituated for too long. Since we administered SAHA systemically, it 

was irrelevant whether our NOR paradigm was truly hippocampus-dependent. Our results clearly 

demonstrate memory impairment in the vehicle group in both, STM and LTM paradigms, thereby 

confirming age-associated memory impairment. While STM was unchanged in SAHA-treated 

animals, we could observe a moderate improvement in LTM, indicating a transcription-dependent 

mechanism of action (Figure 3-16B). However, this finding raises the question of, how mice with 

impaired STM can form an LTM trace. The answer may very well lie in the way the experiment was 

conducted, since the STM test can also be viewed as an additional training session for the LTM test.  
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In a control experiment we could prove that SAHA crosses the blood brain barrier and has a 

transient positive effect on hippocampal H4K12ac for at least 1 hour after i.p. injection (Figure 

3-15). In fact, we expected histone acetylation to be increased for a longer period, since the drug 

was applied chronically over 1 week. If we assume a similar time course after oral administration, 

daily SAHA will cause repeated waves of increased histone acetylation rather than a chronically high 

level of acetylation. It can be speculated that these waves may result in differential transcriptional 

profiles in the brain, if repeated over a certain time (e.g. 3 weeks). 

To my knowledge, our results for the first time demonstrate functional oral application of SAHA in 

the context of mammalian learning and memory and thereby underline the therapeutic potential of 

HDACi in AAMI.  

4.2.3. Transcriptional Regulation in the Hippocampus: Immune System and 

Chromatin  

Though brain aging also goes along with massive transcriptional changes, a detailed, homogenous 

picture of the transcriptome of the aging mouse hippocampus, especially towards the end of an 

individual’s life span, has not been drawn yet. 

Using two different techniques we could determine the transcription profile of the aging 

hippocampus. Both techniques showed a robust overlap within age-upregulated genes, 

suggesting a good fit between methods and most variability can be attributed to age rather than to 

technical issues. Furthermore, overlapping enrichment of functional categories suggests the 

induction of a distinguished transcriptional program that is characteristic of aging. This was also 

confirmed by analyzing functional enrichment in a merged list of upregulated genes during aging 

independent of the specific age group (≥24 months). Though genes sets regulated in the different 

aging groups were not exactly the same, similar pathways were regulated. This is a general theme in 

transcriptional regulation and it also points to the fact that the changes are not due to random 

deterioration of transcription, but are part of a regulated process. If so, what is the starting point of 

this process? Does this also imply that aging is an evolutionary programmed process rather than the 

effect of incremental damage over time? These and other questions have been asked repeatedly in 

the field of aging research and to answer them is far beyond the scope of this thesis. What this 

study, however, can provide is important insight into the specific transcriptional changes that are 

associated with the aging process. If these changes are the cause or links in a long chain of 

consequences, remains a matter of ongoing research. 

Based on the gene expression profile, the induced program is highly associated with the immune 

system. Several functional categories were highly enriched among age-upregulated genes, the 

most significant one being “positive regulation of immune response” (Table 3-6). Interestingly, a 

number of these genes are also implicated in autoimmune diseases like systemic lupus 

erythematosus, i.e. they may play a role in self-directed, destructive inflammatory processes also in 

the aging brain. These genes belong to the complement cascade, which is an important subsystem 
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of the innate immune system. The specific implications of this particular group of genes in the aging 

process will be discussed below (see 4.2.4) 

Interestingly, and in parallel to results from the Kat2a-loss-of-function expression study, the 

overlap among downregulated genes was considerably less pronounced. This is likely due to the 

low number of replicates (n=3) in the comparison of 3m vs. 28m using RNA-seq, but it may also 

reflect that the pattern of downregulation is not as strictly programmed as that of upregulation. As 

a matter of fact, interindividual as well as cell-to-cell variation is commonly observed with increasing 

age of an organism (Bahar et al., 2006; Li et al., 2009b; Somel et al., 2006; Southworth et al., 2009; 

Welle et al., 2003). However, our data does not yield any evidence for higher variability in samples 

prepared from aged tissue (PCA, sample distance plots, Figure 3-17) 

However, we were able to discover some striking gene sets to be downregulated. These included 

chromatin-related genes such as histone-coding genes. It has recently been described that aging is 

associated with reduced histone biosynthesis and elevated histone expression promotes life span 

extension (Feser et al., 2010; O’Sullivan and Karlseder, 2012; O’Sullivan et al., 2010), which supports 

our observation. Apart from downregulated histone genes, a highly upregulated chromatin-related 

gene codes for the long non-coding RNA (lncRNA) Neat1. This gene was found in all samples from 

aging mice, independent of the method used. Neat1 is an interesting gene, since it is necessary for 

nuclear paraspeckle formation (Bond and Fox, 2009; Naganuma and Hirose, 2013). It may therefore 

be implicated in changes in nuclear architecture that are evident during aging (Barascu et al., 2012; 

Taimen et al., 2009). Along with Neat1, three other genes involved in paraspeckle formation were 

differentially regulated (Pspc1, downregulated, Cpsf6, upregulated, Malat1, another lncRNA, 

upregulated), further supporting the importance of this recently discovered structure in 

hippocampal aging. Interestingly, increased paraspeckle formation was also linked to viral infection 

of the central nervous system (Bond and Fox, 2009; Saha et al., 2006), providing an additional link to 

immune-response-related mechanisms to be upregulated with aging. Paraspeckles may also be 

involved in cotranscriptional mRNA processing and splicing (Bond and Fox, 2009; Fox et al., 2002). As 

the brain is a major site of alternative splicing (Dillman et al., 2013; Li et al., 2007), it does not come 

as a surprise that also brain aging may be associated with differential splicing, as several recent 

studies suggest (Harries et al., 2011; Mazin et al., 2013; Meshorer and Soreq, 2002; Muratore et al., 

2013; Osorio et al., 2011; Tollervey et al., 2011). Further analyses of the data with respect to 

differential splicing events are necessary to determine whether specifc program becomes evident 

or whether it provides insights into the reasons for the observed transcriptional changes. 

In general, the results are in line with other studies on transcriptional changes in the hippocampus 

during aging (e.g. Blalock et al., 2010 (primate) or Verbitsky et al., 2004 (mouse)), since they have 

several genes and functional category enrichment in common (e.g. immune response). Yet, some 

features are constrain commonalities. For example, Blalock et al. found chromatin-related gene to 

be upregulated, while we and others find several chromatin constituents to be downregulated with 

aging (Blalock et al., 2010; O’Sullivan and Karlseder, 2012).  

http://www.ncbi.nlm.nih.gov/gene/66961
http://www.ncbi.nlm.nih.gov/gene/66645
http://www.ncbi.nlm.nih.gov/gene/432508
http://www.ncbi.nlm.nih.gov/gene/72289
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4.2.4. Aging, Alzheimer’s disease and the complement connection 

For two genes, C4b and Gfap, we could confirm upregulation using qRT-PCR and on the protein 

level. qRT-PCR results resembled fold changes from genome-wide methods very closely, thereby 

validating these. Furthermore, the genome-wide methods validate each other in our aging study.  

Gfap upregulation is clearly an effect of astrocyte invasion, as seen by immunostaining. Astrocytic 

hypertrophy in the brain is an established effect during aging and has been described extensively 

(reviewd by Finch and Morgan, 1990). Based on similar findings, Blalock and collegues have 

speculated that increased numbers of glia may be eiter a cause or a consequence of immune gene 

induction (Blalock et al., 2003). 

In this respect, C4b is an interesting gene from many aspects. First, it was already found to be 

upregulated as one of the very few DEGs in the comparison of hippocampal expression in 3-month-

old mice with 16-month-old mice (3-fold upregulation) (Peleg et al., 2010). Interestingly, out of the 

12 upregulated genes found in this independent study, 6 genes were also found upregulated in the 

present study. In addition, other studies have observed complement-gene upregulation in early 

studies of aging in the hippocampus as well as in the prefrontal cortex (Bordner et al., 2011; 

Reichwald et al., 2009; Verbitsky et al., 2004). Along with C4b and C3 – another complement 

component – these were 1700112E06Rik, BC061194, Cox8b and Sult1c2. While the latter two of 

these four genes have a described function – notably, Cox8b is a cytochrome involved in oxidative 

phosphorylation and associated with neurodegenerative diseases – the former two transcripts have 

no known function. However, these 6 genes obviously belong to a set of genes that are highly 

associated with murine hippocampal aging.  

Human aging is the strongest risk factor for Alzheimer’s disease (AD) (Lopez, 2011). The reason 

why late-onset AD (LOAD) is associated with increasing age is not yet fully understood. However, 

accumulating evidence links LOAD to an increasing number of genetic risk factors and it seems 

feasible that these genetic risk factors result in LOAD due to changes at the transcriptome and 

proteome level. Indeed, in our hippocampal aging study in mice, we found upregulation of several 

homologs, interaction partners or other closely related genes to almost all genes that appear to be 

the top 10 single genetic risk factors for LOAD as designated by the AlzGene database
26

 (Table 4-1) 

(Bertram et al., 2007). 

                                                                 
26

 http://www.alzgene.org/TopResults.asp, Accessed: 25.03.2013  

http://www.ncbi.nlm.nih.gov/gene/12266
http://www.ncbi.nlm.nih.gov/gene/76633
http://www.ncbi.nlm.nih.gov/gene/381350
http://www.ncbi.nlm.nih.gov/gene/12869
http://www.ncbi.nlm.nih.gov/gene/69083
http://www.alzgene.org/TopResults.asp
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Table 4-1: Comparison of results from genetic association studies for LOAD from the AlzGene database 
with differential gene expression in the aging mouse hippocampus. All “Related genes“ were upregulated 
with aging. 

AlzGene Top 1 0  

Result s

Related genes                               

(homologs, direct interaction partners or 

involved in similar function)

Group/ Funct ion

Apobec1

Apobr

Apod

Apol9a

Apol9b

BI N1 - transcriptional 

regulation

CLU see ApoE Apolipoproteins 

(Clu = ApoJ) , 

regulator of 

complement 

cascade

ABCA7 see ApoE binds to 

Apolipoproteins

C1qa

C1qb

C1qc

C1ra

C2

C3

C3ar1

C4a

C4b

PI CALM - clathrin-mediated 

endocytosis

MS4A6A Ms4a6b Transmembrane 

proteins, immune 

system

Cd33

Cd22

Ms4a4b

Ms4a4c

CD2AP Cd2 immune system

Transmembrane 

proteins, immune 

system

MS4A4E

APOE_e2/ 3/ 4
Apolipoproteins, 

receptors or 

transcript 

modifying

CR1

Complement 

system, innate 

immune system

CD33 lectins, immune 

system

 

Hence, the second reason to look at C4b in more detail is its role as a complement component. The 

complement system is part of the innate immune system and is used for lysis of pathogenic and 

other cells, activation of inflammatory responses, as well as for clearance of antibody complexes 

and other extracellular aggregates (Czirr and Wyss-Coray, 2012). Activation and regulation of the 

complement cascade, also in the brain, are well studied but complex and often controvertial (for a 

review see Czirr and Wyss-Coray, 2012). Supplementary Figure 6-4 shows the KEGG pathway of the 

complement and coagulation cascades and the differentially expressed genes found in this study. It 

is important to understand that C4 as well as the C3 proteins are critical relay nodes that are 

extracellularly processed upon activation. The products of this process will in turn lead to further 

downstream activation of the cascade and ultimately to the assembly of the membrane attack 

complex. A key negative regulator of the cascade is the complement receptor 1 (CR1), encoded in 
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the mouse by the Cr2 gene
27

 (Jacobson and Weis, 2008). CR1 binds processed C4 and C3 and leads 

to degradation of the products by serving as a cofactor for their cleavage or receptor internalization 

(Krych-Goldberg and Atkinson, 2001). Interestingly, in human populations there is a high degree of 

variability and several alleles are present. Both sources of this variability, single nucleotide 

polymorphisms (SNPs) and copy number variations (CNVs) in the human CR1 gene have been shown 

to be highly associated with LOAD in a number of studies (Bertram et al., 2007; Biffi et al., 2010, 

2012; Brouwers et al., 2012; Carrasquillo et al., 2010; Chibnik et al., 2011; Crehan et al., 2012; Hazrati 

et al., 2012; Keenan et al., 2012; Lambert et al., 2009). This makes it very tempting to draw the 

conclusion that increased expression of C3 and C4 with aging will result in aberrant regulation of 

the complement cascade and in turn to neurodegeneration in carriers of the “wrong” CR1 allele. 

Aberrant regulation could lead to neurodegeneration in two different, non-mutual exclusive ways. 

On the one hand, differential CR1 regulatory activity could lead to less effective Aß aggregate 

clearance (Fonseca et al., 2004). On the other hand, deregulated activation of the complement 

system could result in collateral damage by overactive inflammation (reviewed in (Czirr and Wyss-

Coray, 2012).  

The exact mechanism of altered CR1 regulatory function in this complex network is still to be 

elucidated and a beneficial effect of complement inhibition has been demonstrated (Fonseca et al., 

2004; Kulkarni et al., 2008, 2011; Leinhase et al., 2006; Pillay et al., 2008; Rancan et al., 2003) but 

remains controversial (Loeffler, 2004; Maier et al., 2008; Wyss-Coray et al., 2002). Thus, targeting 

the complement system and other inflammatory pathways poses an intriguing possibility for the 

treatment of aging-associated diseases and cognitive decline. Physical activity in rodents and 

humans has been shown to improve cognitive abilities during aging (Erickson et al., 2011; van Praag 

et al., 1999; Praag et al., 2005). Remarkably, a recent study could show in aged mice that voluntary 

wheel running leads to a reduction in C4b expression in the hippocampus (Kohman et al., 2011), 

demonstrating a clear correlation between C4 levels and cognitive abilities, which is further 

supported by the finding that C4 inhibition by vaccinia virus complement control protein has 

beneficial effects on memory performance in mouse models of Alzheimer’s disease (Kulkarni et al., 

2008, 2011; Pillay et al., 2008). 

Interestingly, we found evidence for the involvement of H3K9ac in the upregulation of C4b using 

ChIP-seq data for this modification. This nicely demonstrates the power of such a genome-wide 

approach, since intronic enrichment of H3K9ac would have remained unexplored, if we had 

performed regular ChIP experiments with subsequent qRT-PCR, targeting the C4b promoter. 

However, further validation of this finding by qRT-PCR and correlation with other histone 

modifications or DNA methylation will be necessary to establish a clear involvement of chromatin-

dependent upregulation of complement-associated genes. 

 

                                                                 
27

 The Cr2 gene in non-primate mammals produces two isoforms, CR1 and CR2, by alternative splicing. The 
primate CR1 receptor likely evolved form duplications of another gene, Cr1l a.k.a. Crry. Both gene products can 
bind and regulate processed C4 and C3 (Jacobson and Weis, 2008). 

http://www.ncbi.nlm.nih.gov/gene/12902
http://www.ncbi.nlm.nih.gov/gene/12946
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In conclusion, our data strongly suggest an extensive upregulation of immune-system-related 

genes with aging, that may, at least in part be regulated by altered chromatin-dependent 

mechanisms, including reduced synthesis of new histones and other chromatin components on one 

hand, and upregulation of histone acetylation at the C4b locus on the other. Reduction of 

inflammatory damage may in turn result in improvement of cognitive abilities in aged mice and 

humans. Upregulation of the complement cascade with age has been observed repeatedly before, 

but its significance for non-pathological aging may have been overlooked or neglected. Now, in the 

light of recent genome-wide association studies for LOAD risk loci, this fact deserves new attention. 
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4.3. Closing remarks and Outlook 

4.3.1. Technical considerations 

Any immunological experiments to determine the abundance of localization of a certain histone 

modification depend on antibody specificity. To date most histone-modification antibodies are not 

fully determined in their specificity. Commercial vendors offer validation using multiple measures of 

specific binding to a certain histone modification. However, these tests often neglect the effect of 

combinatorial modifications that are very likely to occur on any histone. For example, Histone H4 

may be acetylated on K12 and at the same time at K5. It cannot be easily inferred whether an 

antibody that is “specific” to H4K12ac would recognize this histone or whether it only recognizes H4 

that is acetylated at K12 exclusively. This strongly depends on the type and length of the 

immunogen that is used. Mostly the immunogen is a short peptide carrying a modified lysine residue 

surrounded by several amino acids in the sequence of a conserved histone tail. This effect always 

has to be taken into consideration when interpreting western blot, IHC or ChIP-seq results. 

Short-read sequencing results in millions of short DNA sequences that need to be aligned to a 

reference sequence. For our data we used Bowtie2 that aligns reads to the mouse genome. 

However, alignment cannot account for splice junctions, since the genomic reference sequence also 

contains all introns that are not present in the sequenced cDNA reads. We used a very sensitive local 

alignment mode of Bowtie2 to circumvent this problem to the largest possible extent and retrieved 

very good alignment rates. However, recent developments in bioinformatics short-read aligning for 

RNA-seq data may produce even better alignments and will also provide more detailed information 

about splicing events, that were not analyzed in this thesis (Trapnell et al., 2009). As with all large-

scale experiments, a further caveat in using NGS-based approaches for differential expression 

analysis is the generation of artifacts like false positive DEG calling. A likely artifact is calling of 

small RNAs as DEGs, since these often lie within the gene bodies of other genes They should, 

however, be excluded by poly-dT pulldown and also by size selection step in library preparation. This 

structural error in RNA-seq becomes more critical in complex mammalian genomes. 

A limiting factor in the search for enriched functional categories is the amount of data stored in 

databases that are queried for the analysis. Only genes with annotated function can be found in 

these databases and can contribute to representation. Furthermore, genes are often annotated in 

the context of a particular treatment or cell type, tissue or disease. The more GO-Terms or 

pathways are associated with a certain gene, the better studied this gene is. This correlation could 

be the result of a sample bias but it is also possible that this gene is an important node in one or 

more regulatory networks and is well studied because it is readily found in multiple experimental 

settings. 
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4.3.2. The role of histone acetylation in learning and memory 

As discussed above, the results of our experiments on the role of Kat2a in learning and memory and 

stimulus-dependent gene expression open further questions. To address these questions additional 

analyses would need to be done, including a more focal knockout of Kat2a using AAV-Cre mediated 

recombination, which would exclude all developmental and non-hippocampus dependent effects of 

the knockout (McQuown and Wood, 2011). Furthermore, recently evidence is accumulating that not 

only transcriptional initiation but also elongation and even stimulus-dependent co-transcriptional 

alternative splicing is heavily influenced by chromatin status and histone modifications, including 

histone acetylation (Ai et al., 2011; Ginsburg et al., 2009; Johnsson and Wright, 2010; Kim et al., 

2002; Schor et al., 2009; Tyagi et al., 2009; Zhou et al., 2011b). Thus, it would be intriguing to analyze 

our RNA-seq data set on the level of individual exons to assess differential transcript abundance in 

response to novelty exposure. 

Though more and more evidence is gathered to determine a role for histone acetylation in learning 

and memory most of the data so far is correlative. In particular, concerning the molecular function 

of certain histone sites there is no definite proof for functional relevance of those modifications in 

multicellular organisms. To this end, functional studies in yeast (Dai et al., 2008; Dion et al., 2005; 

Durrin et al., 1991), where specific mutant histone genes are introduced to study the functional 

consequences of these mutations, need to be advanced to higher organisms. A promising model 

organism for these kinds of studies, especially in the context of learning and memory is DROSOPHILA 

MELANOGASTER. Here, genetic tools have been developed and started being used for applied 

functional studies (Gunesdogan et al., 2010; Pengelly et al., 2013). It is exciting to think of making 

use of these tools in the context of learning and memory.  

4.3.3. Implications for the synaptic tagging and capture hypothesis 

As shown in this and many studies HDACi as well as HAT activation have a positive effect on long-

term memory consolidation. The reason for this is likely to be found in the stimulation of expression 

of genes necessary for long-lasting changes in synaptic plasticity. Some studies have shown that 

HDACi is able to transform early-LTP into transcription-dependent forms of late-LTP (Vecsey et al., 

2007; Wood et al., 2005), which led us to propose that dynamic histone acetylation may be involved 

in synaptic tagging and capturing (STC) (Stilling and Fischer, 2011). This thesis provides further 

support for the proposed implication of HDACi and HAT activity in transcription-dependent 

capturing of synaptic tags. This view also helps to understand the specific effect of SAHA treatment 

in long-term object recognition. Here, the STM test could result in setting the synaptic tag, while 

SAHA is involved in transcription-dependent capturing. In addition, our results regarding impaired 

LTP induction in Kat2a cKO mice support the STC hypothesis. Figure 4-1 summarizes a possible 

extension of the STC hypothesis and its implications for HDACi and HAT activity to facilitate 

memory consolidation. While Wood and colleagues have come to similar conclusions and have 

formulated the “molecular brake pad hypothesis of HDAC function” as an explanation for these 

intriguing observations (McQuown and Wood, 2011; Vogel-Ciernia and Wood, 2012), Fontán-Lozano 
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et al. take the same line in hypothesizing “[…] that systemic administration of HDAC inhibitors 

decreases the stimulation threshold necessary for cognitive processes […]” (Fontán-Lozano et al., 

2008). In this way, HDAC inhibitors on a molecular parallel the electrophysiological effects of 

transcranial direct current stimulation (Nitsche et al., 2003). 

 

 

Figure 4-1: The role of histone acetylation in synaptic tagging and capturing. HDACi or HAT activation 
bridge nuclear signaling after a weak stimulus and regulate the production of proteins needed for capturing. 
Thereby a weak stimulus can result in late LTP (L-LTP) and LTM consolidation. 

 

4.3.4. (Brain) Aging – an Aggregopathy? An Autoimmune Disease? Or Both!? 

During the last century, multiple theories of aging have been developed, with different degrees of 

validity, advantages and shortcomings. These theories are in part also based on findings resulting 

from new genome-wide transcriptional profiling techniques. In spite of general agreements (with 

the mentioned exceptions) of our data with previous studies, these studies have lead to different, 

sometimes opposing, interpretations. While it would go far beyond this thesis to discuss all theories 

here in detail, I want to contribute to this ongoing discussion by drawing attention to one of these 

theories, since it may help to understand certain aspects of my interpretation of the data described 

earlier. 

Pleiotropy describes a mechanism by which a gene can have more than one function. Alternatively a 

particular gene function can have diverse effects, depending on the situation (Stearns, 2010). A 

special case of pleiotropy is antagonistic pleiotropy, where these two functions or outcomes 
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phenotypically antagonize each other. It has been proposed that antagonistic phenotypes may 

present with a substantial time lag within an organism’s life span. For example, a certain gene has a 

beneficial or even necessary role during development or early life but becomes detrimental during 

later phases in life. Natural selection will most likely only be able to act on the early-life effects of 

this gene, so that detrimental effects may accumulate in the population. The tumor suppressor p53 

has been suggested to be a gene with such antagonistic functions in youth and aging (Rodier et al., 

2007).  

Results from this study suggest that many immune-related genes may have antagonistic pleiotropic 

effects, especially in the context of brain aging. While a functional immune system confers defense 

against various parasites and defective or degenerated cells and presents an evolutionary 

advantage, deregulated immune cascades lead to autoimmunity and collateral damage in 

inflammated tissue. This hypothesis could be tested by applying anti-inflammatory agents starting 

from a certain age (Jang et al., 2010; Leinhase et al., 2006). Interestingly, Blalock and colleagues 

favor a similar model for the implications of inflammation in brain aging: Demyelination may lead to 

higher myelin turnover, which results in autoimmune inflammatory cascades against new myelin 

antigens involving astrocytes and microglia (Blalock et al., 2003). From this point of view, myelin-

composing proteins exhibit antagonistic pleiotropy.  

A related concept accounts for the fact that many age-related diseases are associated with the 

accumulation of insoluble intra- or extracellular aggregates (e.g. Aß-Plaques, Neurofibrillary 

Tangles, Lewi Bodies, SOD-accumulates, Huntingtin-aggregates). Also refered to as proteopathies 

(Walker and LeVine, 2000), the term aggregopathy (Dohm et al., 2008) tries to group these diseases 

based on this commonality. During aging oxidative damage of macromolecules also leads to 

accumulation of aggregates (e.g. Lipofuscin) that may result in impaired cellular functionality and 

eventually degeneration. Consequently aging could be termed an aggregopathy. 

The two concepts, antagonistic pleiotropy and aggregopathies, may in fact be interconnected. 

Immune-system function may be directed at clearing aggregates and abnormally functioning cells 

but would destroy surrounding tissue during this process (see (Czirr and Wyss-Coray, 2012). The role 

of the complement system in clearance of antibody complexes would be especially important from 

this point of view. Testing this hypothesis however is not straightforward since inhibiting immune 

function could also result in increased accumulation of aggregates which would be detrimental in 

itself. 

Aging has many facets and age-associated memory impairment is most likely caused by several of 

these factors. However, it remains one of the fundamental challenges of aging research to 

determine causes and consequences of the aging process. This study is supposed to offer some 

insights that may deserve a closer look and hints towards directions for further exploration. I 

personally would be more than pleased to see future research revealing that this thesis has 

contributed to elucidating a tiny part of one of the greatest puzzles of all: How and why do we age? 
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6. Appendix 

6.1. Supplementary Figures 

6.1.1. Expression pattern of Kat2a in the adult murine brain from the Allen Brain 

Atlas 

 

Figure 6-1: IN SITU hybridization image of the adult murine brain, sagittal section. Image adapted from the 
Allen Brain Atlas, mouse.brainmap.org 

 

6.1.2. Robust AAV-mediated expression of MYC-tagged Kat2a 14 days after 

injection 

 

Figure 6-2: Hdac2 mRNA levels 14 days after injection. mRNA levels of Hdac2 were almost 6-fold increased in 
mice injected with Hdac2-MYC-AAV compared to mice injected with either GFP-AAV or Kat2a-MYC-AAV. 
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6.1.3. Strong Accumulation of Autofluorescent Lipofuscin in Hippocampal 

Microglia 

 

Figure 6-3: Lipofuscin in DG and CA3 co-stained with microglia. CA3 (lower panels) pyramidal neurons seem 
to contain bigger and brighter aggregates compared to DG (upper panels) granule cells in ≥28-month-old mice. 
Some of the brightest autofluorescent spots co-localize with Iba1

+
 (Aif1

+
) activated microglia (white 

arrowheads, A). Scale bar is 50µm. 
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6.1.4. Overview of the complement system and coagulation pathyway  

 

Figure 6-4: KEGG pathway for complement and coagulation cascades. Red stars mark the genes found to be 
differentially regulated in the study of transcriptional changes during hippocampal aging. 



Appendix 

 

D 

 

6.2. Supplementary Tables 

6.2.1. List of DEGs in the study of Kat2a function 

The following table contains gene names called as DEGs in pairwise comparisons during the study of 

Kat2a function in stimulus-dependent gene expression. DEGs were defined as genes with a log2=0.5 

– fold change at a significance level of padj<0.1. The lists are sorted by descending fold-change. 

 

QR 1: https://dl.dropbox.com/u/1715727/Supplementary_Table_6.2.1.zip 

Password protected zip-file (70 kilobyte) 

PW: stl921 

https://dl.dropbox.com/u/1715727/Supplementary_Table_6.2.1.zip
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6.2.2. Lists of significantly overrepresented GO-Terms and KEGG-Pathways in the 

study of Kat2a function 

Table 6-1: Comparison of group A and group B. For "Merged " a merged list of up- and downregulated genes 
was used as input for functional annotation. 
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Table 6-2: Comparison of group A and group C. For "Merged " a merged list of up- and downregulated genes 
was used as input for functional annotation. 
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Table 6-3: Comparison of group B and group D. For "Merged " a merged list of up- and downregulated genes 
was used as input for functional annotation. 

 

 



Appendix 

 

H 

Table 6-4: Comparison of group C and group D. For "Merged " a merged list of up- and downregulated genes 
was used as input for functional annotation. 
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6.2.3. List of DEGs in the study of transcriptional changes during hippocampal 

aging 

The following table contains gene names called as DEGs in pairwise comparisons during the study of 

transcriptional changes during hippocampal aging. DEGs were defined as genes with a log2=0.5 – 

fold change at a significance level of padj<0.1. The lists are sorted by descending fold-change. 

 

QR 2: https://dl.dropbox.com/u/1715727/Supplementary_Table_6.2.3.zip 

Password protected zip-file (82 kilobyte) 

PW: stl923 

 

 

https://dl.dropbox.com/u/1715727/Supplementary_Table_6.2.3.zip
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6.2.4. Lists of Significantly Overrepresented GO-Terms and KEGG-Pathways in the 

Study of Hippocampal Aging 

Table 6-5: Comparison of 3m and 24m using RNA-seq 
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Table 6-6: Comparison of 3m and ≥28m using RNA-seq 
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Table 6-7: Comparison of 3m and ≥28m using microarrays 
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6.3. Plasmid Maps 

AAV vectors for virus generation and subsequent IN VIVO overexpression. Plasmid A was the target 

vector for cloning of other cDNAs, but also used for control virus (AAV-GFP) generation. 

A 
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Plasmid B shows the target vector, where EGFP was exchanged for Kat2a cDNA. 

B 
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6.4. List of Primers Used in this Thesis (in order of appearance) 

Please note that all primers were ordered from Sigma-Aldrich Custom Oligos. 

Table 6-8: List of primers used in this thesis (in order of appearance) 

Name Sequence (5’3’) Used for 

Kat2a-GT_fwd CACAGAGCTTCTTGGAGACC Genotyping 

Kat2a-GT_rev GGAGGTACAGGAATCAAGCC Genotyping 

Kat2a-GT_rev2 TGTAGAATGTCTGGTGGCCA Genotyping 

Kat2a-myc-fwd CCGGAATTCCCACCATGGCGGAACCTTCCCAGGCCC
28

 Linker-PCR (2.4.3.1) 

Kat2a-myc-rev CAGATCCTCTTCTGAGATGAGTTTTTGTTCCTTGTCGATGAGC Linker-PCR 

Myc-STOP-NotI ATTTGCGGCCGCTTTATCCTACAGATCCTCTTCTGAGATGAG Linker-PCR 

Kat5-myc-fwd CCGGAATTCCCACCATGGCGGAGGTGGGGGAG Linker-PCR 

Kat5-rev CAGATCCTCTTCTGAGATGAGTTTTTGTTCCCACTTTCCTCTC Linker-PCR 

Kat7-myc-fwd CTAGCTAGCCCACCATGCCGCGAAGGAAGAGAAATG Linker-PCR 

Kat7-myc-rev CAGATCCTCTTCTGAGATGAGTTTTTGTTCAGTGCCCTTGGGA Linker-PCR 

Hdac2-myc-fwd CCGGAATTCCCACCATGGCGTACAGTCAAGGAGG Linker-PCR 

Hdac2-myc-rev CAGATCCTCTTCTGAGATGAGTTTTTGTTCAGGGTTGCTGAGT Linker-PCR 

Hdac3-myc-fwd CCGGAATTCCCACCATGGCCAAGACCGTGGCG Linker-PCR 

Hdac3-myc-rev CAGATCCTCTTCTGAGATGAGTTTTTGTTCAATCTCCACATCAC Linker-PCR 

AAV-6P-seq-f1 CACTGCCAGCTTCAGCAC Sequencing of AAV 
construct 

AAV-6P-seq-r1_WPRE GGGCCACAACTCCTCATAAA Sequencing of AAV 
construct 

AAV-6P-seq-r2_bGH_pA TAGAAGGCACAGTCGAGG Sequencing of AAV 
construct 

C4b-qRT-PCR-fwd TCTCACAAACCCCTCGACAT qRT-PCR (UPL #10) 

C4b-qRT-PCR-rev AGCATCCTGGAACACCTGAA qRT-PCR (UPL #10) 

Hprt-qRT-PCR-fwd TCCTCCTCAGACCGCTTTT qRT-PCR (UPL #95) 

Hprt-qRT-PCR-rev CCTGGTTCATCATCGCTAATC qRT-PCR (UPL #95) 

Gfap-qRT-PCR-fwd TCGAGATCGCCACCTACAG qRT-PCR (UPL #67) 

Gfap-qRT-PCR-rev GTCTGTACAGGAATGGTGATGC qRT-PCR (UPL #67) 

                                                                 
28

 Legend: BLACK: Restriction facilitating extension – RED: Restriction site – GREEN: Kozak consensus sequence 
– DARK GREEN: cDNA specific – YELLOW: MYC-tag – PURPLE: Stop-Codon 

http://www.sigmaaldrich.com/life-science/custom-oligos.html
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6.5. Lists of Antibodies Used in this Thesis 

6.5.1. Primary Antibodies 

Table 6-9: List of primary antibodies used in this thesis (in alphabetical order) 

Name  Company,  catalog number Dilution for 
Western Blot 

Dilution for 
IHC 

Amount used 
for ChIP [µg] 

β-Actin Santa Cruz, sc-69879 1:1,000   

C4 [16D2] Abcam, ab11863 - 1:100 - 

Gfap 
kind gift from Anja Schneider 

(DZNE-G) 
- 1:1,000 - 

H1 Santa Cruz, sc-8030  - - 

H3 Abcam, ab1791    

H3K9ac Merck Millipore, 07-352 1:1,000 - 4.5 

H3K14ac Merck Millipore, 07-353 1:1,000 - - 

H4 Abcam, ab10158-100 1:1,000 - - 

H4K12ac Merck Millipore, 07-595 1:1,000 - - 

Hdac2 [H54] Santa Cruz, sc-7899 1:1,000 - - 

Hdac3 [H99] Santa Cruz, sc-11417 1:1,000 - - 

Iba1 
kind gift from Anja Schneider 

(DZNE-G) 
1:1,000 - - 

Kat2a (Gcn5l2) Cell Signaling, #3305 1:1,000 1:100 - 

Map2 SySy, 188002 - 1:1,000 - 

MYC [9E10] Abcam, ab32 - 1:1,000 - 

NeuN (Rbfox3) 
[A60] 

Merck Millipore, MAB377 - 1:1,000 - 

Plp1 
kind gift from Anja Schneider 

(DZNE-G) 
- 1:1,000 - 

Svp Sigma, S5768 - 1:1,000 - 

Synpr SySy, 102002 - 1:1,000 - 

 

6.5.2. Secondary Antibodies 

Table 6-10: List of antibodies used in this thesis (in alphabetical order) 

Name Company, catalog number Dilution for 
Western Blot 

Dilution for 
IHC 

Alexa 488 α-mouse life Technologies, A11029 - 1:1,000 

Alexa 488 α-rabbit life Technologies, A21206 - 1:1,000 

Cy3 α-rabbit life Technologies, A10520 - 1:1,000 

Cy3 α-rat 
Jackson ImmunoResearch, 

112-166-003 
- 1:1,000 

Li-cor IRDye 800 α-mouse Li-cor, 926-32210 1:15,000  

Li-cor IRDye 800 α-rabbit Li-cor, 926-32211 1:15,000  

http://www.scbt.com/datasheet-69879-beta-actin-ac-15-antibody.html
http://www.abcam.com/C4-antibody-16D2-ab11863.html
http://www.scbt.com/datasheet-8030-histone-h1-ae-4-antibody.html
http://www.abcam.com/Histone-H3-antibody-ChIP-Grade-ab1791.html
http://www.millipore.com/catalogue/item/07-352
http://www.millipore.com/catalogue/item/07-353
http://www.abcam.com/Histone-H4-antibody-ab10158.html
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