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Abstract

In this thesis we study the non-linear Dirac operator in dimension four and

the associated generalization of the Seiberg-Witten equations in dimension four.

The central object of this generalization is a hyperKähler manifold M , admitting

certain symmetries. The non-linear Dirac operator acts on generalized spinors,

which are equivariant maps taking values in M . Restricting to a special case of

Swann bundles allows us to study the behaviour of the non-linear Dirac operator

under the conformal change of metrics on the base manifold.

Harmonic spinors are generalizations of aholomorphic maps between hyperKähler

manifolds. The Weitzenböck formula for the non-linear Dirac operator can be in-

terpreted as an energy identity for generalized spinors, analogous to the one satis-

fied by maps between hyperKähler manifolds. In the light of this comparison, we

analyze the behaviour of the energies under smooth deformations of the base man-

ifold. This is the first step in deriving a blow-up condition for harmonic spinors

with bounded energies, as in the case of aholomorphic maps.

In the final part, we prove that restricted to the case when the target hy-

perKähler manifold is a hyperKähler reduction of a flat-space, a harmonic spinor

is L∞ and hence also uniformly W 1,2-bounded. We conclude with some remarks

towards understanding the singular set of harmonic spinors.

iii



Acknowledgements

It is my pleasure to thank everyone who in one way or the other have contributed

and given their valuable assistance in completion of this dissertation.

First and foremost I extend my sincere thanks and gratitude to my advisor

Prof. Victor Pidstrygach for not only introducing me to the world of Gauge Theory

but also helping me broaden my horizons beyond my main research through his

constant support, encouragement, endless enthusiasm and long discussions during

the “tea seminar”. Given that I picked up Differential Geometry from scratch

after joining his group, he has guided me through things with a lot of patience,

attention & care. I would like to thank Prof. Thomas Schick for his commitment

as my co-advisor. I also take this opportunity to thank Prof. Pablo Ramacher for

giving me the opportunity to work at Mathematisches Institut.

I thank DFG for supporting me financially for the first three years and the

Graduiertenkolleg for supporting me financially thereafter.

Special thanks to my colleague and friend Martin Callies for a taking time out

to proof read the entire manuscript and painstakingly looking into every detail of

the same. I also thank him for range of interesting discussions on mathematics,

photography and politics and his help with even the silliest of my questions.

A word of thanks to all my friends in Göttingen for being my family here away

from home and making my stay in Göttingen very pleasant and memorable. They

have been a constant source of inspiration. I would also like thank Aprameyan

Parthasarthy for all the help with my stay in the initial few months of my joining

in Göttingen.

Last, but not the least, I thank my parents for their unwaivering support,

encouragement and giving me the freedom pursue my research interests in difficult

times. Without it all, this would have remained a remote dream.



Contents

1 Introduction 1

2 Preliminaries and notations 5

2.1 Fibre bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Connections on principal bundles . . . . . . . . . . . . . . . 7

2.2.2 Connections on Associated bundles . . . . . . . . . . . . . . 7

2.3 Vector Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Action of the gauge group . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Gauge Group . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Elements of Spin Geometry . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Clifford algebras and Spin Groups . . . . . . . . . . . . . . . 10

2.5.2 Clifford modules and Spin representations . . . . . . . . . . 13

2.5.3 Clifford multiplication . . . . . . . . . . . . . . . . . . . . . 16

2.5.4 Spin structures . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.5 Spinor bundles and Dirac operators . . . . . . . . . . . . . . 17

2.5.6 Spinc(n)-structures . . . . . . . . . . . . . . . . . . . . . . . 18

3 HyperKähler manifolds 20

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 HyperKähler Manifolds . . . . . . . . . . . . . . . . . . . . . 21

3.2 Properties of hyperKähler manifolds with permuting action . . . . . 22

3.2.1 Permuting action . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 HyperKähler potential . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 HyperKähler Moment map . . . . . . . . . . . . . . . . . . . 28

v



CONTENTS vi

3.3 Quaternionic Vector Spaces . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Swann Bundles over Wolf Spaces. . . . . . . . . . . . . . . . . . . . 32

3.4.1 Swann Bundles . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Orbit Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Generalized Dirac Operator 35

4.1 SpinGε (n)-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 The group SpinGε (n) . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 SpinGε (n) structure . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Generalized Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Non-linear Dirac Operator . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Clifford Multiplication . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 The Covariant derivative . . . . . . . . . . . . . . . . . . . . 39

4.3.3 The Dirac Operator . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Conformal property of the non-linear Dirac operator . . . . . . . . . 40

4.4.1 The CSpinGε (4) structure . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Generalized Dirac operator & Conformal change of metric . 42
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1. Introduction

My task, which I am trying to achieve is, by the power of the written word, to make

you hear, to make you feel–it is, before all, to make you see.

– Joseph Conrad, The Nigger of the Narcissus and the Secret Sharer

A long standing problem in Differential Geometry has been to understand the

classification of smooth manifolds. Classification for compact, simply connected

manifolds of dimension ≥ 5 and for dimension three (Poincarè Conjecture) is

known. However, dimension four still remains a mystery. Donaldson, using the

Yang-Mills equations, made a successful breakthrough in the 1980’s by showing

that the moduli spaces of instantons encode non-trivial geometric information of

the underlying manifold. But the non-linear nature of the Yang-Mills equations

posed some serious technical challenges.

In the fall of 1994, Nathan Seiberg and Edward Witten introduced a set of

equations, now known as the Seiberg-Witten equations, that claimed to reproduce

the same topological data as the Yang-Mills equations. The Seiberg-Witten in-

variants were first computed for Kähler manifolds by Witten [Wit94]. Although,

again non-linear in nature, these set of equations are technically less demanding.

Therefore, it is but natural to explore the variants of these equations in the hope

of finding new invariants for four-dimensional manifolds. One such variant was

introduced by C.H. Taubes [Tau99] for dimension three and later extended for

dimension four by V. Ya. Pidstrygach [Pid04].

In this thesis, we study the non-linear Dirac operator in dimension four and

the corresponding generalization of the the Seiberg-Witten equations. The central

object for defining the generalization is a hyperKähler manifold. A hyperKähler

manifold (M, gM , I1, I2, I3) is a Riemann manifold of dimension 4n endowed with

three complex structures satisfying quaternionic relations and are covariantly con-

stant w.r.t the Levi-Civita connection. These define a family of complex structures

1
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on M parametrized by S2 ∈ Im(H). HyperKähler manifolds belong to a special

class of Einstein manifolds and therefore are naturally of interest to physicists.

Examples of hyperKähler manifolds include K3-surfaces and the flat spaces Hn.

One can construct more examples via hyperKähler reduction [HKLR87], which is

an analogue of Marsden-Weinstein reduction for symplectic manifolds. Namely,

let G be a compact Lie group acting on M by isometries and preserving the hy-

perKähler structure. Then G preserves ω. We can define a hyperkahler moment

map for the G-action µG : M −→ sp(1)⊗ g∗. For any regular value b ∈ sp(1)⊗ g,

µ−1
G (b)/G is a hyperKähler manifold.

Let X a four dimensional spin-manifold. A spinor bundle on X, is a vector

bundle associated to the spin-structure on X, with fibre H. The idea to define the

non-linear generalized Dirac operator, is to replace the fibre of the spinor bundle

by a hyperKähler manifold with a permuting action of the group Sp(1); i.e an ac-

tion that permutes the 2-sphere of complex structures on M . Generalized spinors

are sections of the associated fibre-bundle. The interaction of the Sp(1)-action

with the quaternionic structure on M , allows us to define the Clifford multiplica-

tion. Composing the covariant derivative on generalized spinors with the Clifford

multiplication defines the non-linear generalized Dirac operator, denoted by /D.

To define the generalization of the Seiberg-Witten equations, we need an ad-

ditional G-structure PG −→ X, for some compact Lie group G such that GyM

is a hyperKähler action. Every connection B on PG gives an additional twisting

of the Dirac operator. Composing a spinor with the moment map µG we can con-

struct a self-dual two form using the identification sp(1) ∼= Λ2
+R4. The generalized

Seiberg-Witten equations in dimension four are defined as:{
/DBu = 0

F+
B − µG ◦ u = 0

(1.0.1)

The equations are invariant under the action of the infinite-dimensional gauge-

group G and hence we get an action of G the space of solutions to the equations

Z . The moduli space is defined as M = Z /G .

Indeed, for the original Seiberg-Witten equations, G = U(1) and M = H, the

quadratic map H 3 h 7−→ 1
2
hih̄ ∈ sp(1) is the hyperKähler momentum map for

U(1) y H. The moduli space in this case is compact and the key to proving

compactness is the L∞-bound on the spinor part of the solution. This is derived
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using the Weitzenböck formula. The invariants derived from the moduli space

encodes the geometric information of the underlying four-dimensional manifold

X. For details, we refer to [Nic], [Mor96] & [Mar99]. For the generalized Seiberg-

Witten equations, it was proved in [Pid04], that the moduli space is compact for

G = U(1) and for a target hyperKähler manifold admitting a certain hyperKähler

potential ; i.e a real-valued function on M that is simultaneously a Kähler potential

for all three complex structures. For a general compact Lie group G, if the target

hyperKähler manifold is the total space of a Swann bundle, then the L∞-bounds on

the spinor part exists [Sch10]. Swann bundles were first introduced by A. Swann

[Swa91].

The total space of a Swann bundle can be expressed as a Riemann cone over a

Sasakian three-manifold. Hence it admits an action R+, which makes it a suitable

candidate to explore the behaviour of the non-linear Dirac operator under the

conformal change of metric on the base manifold. In this scenario, we prove in

Theorem 4.4.1 that the non-linear generalized Dirac operator exhibits the same

behaviour as the linear Dirac operator under the conformal change of metric.

We restrict our attention to analyzing the generalized Seiberg-Witten equations

for the case where M = On+1 is the total space of the Swann bundle over the Wolf

space X(n − 1) = U(n+1)
SU(2)×U(n−1)×U(1)

and G = SU(n + 1). Advantage is that the

space On+1 is a U(1)-hyperKähler reduction of Hn+1 \ {0}. [BGM93]

We lift the entire problem to the space Hn+1 as follows: letG = SU(n+1)×U(1)

and µU(1) : Hn+1 −→ sp(1)∗ denote the hyperKähler momentum map for the action

of U(1) y Hn+1. The bundle

Hn+1 ⊃ µ−1
U(1){0} −→ µ−1

U(1){0}/U(1) = On+1,

is an SU(n + 1)-equivariant principal bundle. Spinors are now sections of the

vector bundle with fibre Hn+1 instead of On+1. The Seiberg-Witten equations are

modified accordingly: 
/DBu = 0

F+
BSU(n+1)

− µBSU(n+1)
◦ u = 0

µU(1) ◦ u = 0

(1.0.2)

where BSU(n+1) denotes the SU(n+ 1) component of the connection on PG. Using

the Weitzenböck formula (Theorem 5.4.1), we obtain the a priori L∞-bound on the
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spinor part of the solution to Eq.(1.0.2) and global W 1,2-estimates on the spinor

and the SU(n+ 1)-component of the connection.



2. Preliminaries and notations

“Begin at the beginning,” the King said, gravely,

“and go on till you come to an end; then stop.”

– Lewis Carroll, Alice in Wonderland

In this chapter we shall review some basic concepts from Spin geometry which

we shall need in the further chapters.

2.1 Fibre bundles

Thoughout all the chapters, the manifolds in considerations are smooth, paracom-

pact and finite dimensional Riemann manifolds, unless otherwise mentioned.

Definition 2.1.1 (Fibre Bundles). A smooth fibre bundle is a triple (F,E,X)

along with a smooth map π : E −→ X called the projection such that given a

point x ∈ X, there exists an open neighbourhood x ∈ U and a diffeomorphism

γU : U × F −→ π−1(U) satisfying π ◦ γU = prU . E is called the total space of the

bundle, X is called the base space and F is called as the fibre of the bundle.

The pair (γU , U) is called a chart of the bundle and the collection of charts

{(γi, Ui)}i∈I , for some I, such that {Ui}i∈I is an open cover of the base X is called

a bundle atlas. Given a bundle atlas, let (Ui, γi) and (Uj, γj) be any two bundle

charts such that Ui∩Uj 6= φ. Then γi◦γ−1
j : Ui∩Uj×F −→ Ui∩Uj×F . They define

the transition maps γij : Ui ∩Uj −→ Diff(F), given by: γi ◦ γ−1
j (e, f) = (e, γij(e)f)

satisfying:

1. γii(x) = IdF

2. γij ◦ γjk ◦ γki = IdF . (cocycle condition)

5



2.2 Principal bundles 6

Definition 2.1.2. (Sections of a Fibre bundle) A smooth map u : X −→ E

is called as a section of the fibre bundle if π ◦ s = IdX .

Definition 2.1.3. (Connections on Fibre bundles) Given a fibre bundle

π : E −→ X, with a fibre F , consider the map Tπ : TE −→ TX. The kernel of

this map is a sub-bundle VE of the tangent bundle TE, called the vertical bundle.

A connection on the fibre bundle is an assignment of a horizontal HE distribution

such that TE = HE ⊕ VE.

2.2 Principal bundles

A smooth right action of a Lie group G on a manifold P is a smooth map G×P −→
P given by (g, p) −→ p · g =: Rg(p) satisfying

(p · h) · g = p · (hg) for all h, g ∈ G and p ∈ P
e · p = p for p ∈ P

Every element g ∈ G defines a diffeomorphism Rg : P −→ P and hence the map

G −→ Diff(P ), g 7→ Rg,

where Diff(P ) is the group of diffeomorphisms of P , is a group homomorphism.

Let G act smoothly and freely on P on the right. Let X denote the quotient of

the space by the equivalence relation induced by the G action and π : P −→ X,

the canonical projection. Then (G,P,X) is a fibre bundle, known as principal

bundle and G is called as its structure group. With slight abuse of notation, we

shall denote a principal bundle simply by P , wherever clear from the context.

Let g be the Lie algebra of G and let η ∈ g. For a smooth, free action of the

Lie group on a manifold P , the fundamental vector field KP
η ∈ Γ(P, TP ) generated

by η is given by:

KP
η |p =

d

dt
(p · exp(tη))|t=0 ∈ TpP.

For g ∈ G,

(Rg)∗K
P
η |p =

d

dt
(p · exp(tη)g)|t=0 =

d

dt
(p · g exp(t adg−1(η))|t=0 = KP

Adg−1 (η)|pg.
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Also for x = π(p) and Tπ : TP −→ TX, we have:

Tπ(KP
η )|p = Tπ(

d

dt
p · exp(tη)|t=0) =

d

dt
π(p · exp(tη))|t=0 = 0.

Since G preserves the fibres, KP
η is a tangent to the fibres. Since the action is

free, the dimension of the fibre is equal to that of g. Let VP ⊂ TP be the space

spanned by the fundamental vector fields. Then clearly VP = ker(Tπ) and hence

VP is a vertical subspace of TP .

2.2.1 Connections on principal bundles

A connection on P defines a G-invariant distribution HP , known as horizontal

distribution on TP such that TP = HP ⊕ VP . This is equivalent to defining a

connection one form on P :

Definition 2.2.1. (Connection 1-form) A connection 1-form A on P is a g

valued 1-form satisfying the following conditions:

1. A(KM
η ) = η for η ∈ g

2. (Rg)
∗A = Ad(g−1)A, where Ad denotes the adjoint representation of G on g.

Note that HP = ker(A).

Definition 2.2.2. (Curvature of a connection)

The curvature of a connection 1-form A is a G-equivariant, g-valued 2-form FA

defined by

FA = dA +
1

2
[A,A] ∈ Ω2(P, g)Ghor,

where the subscript ”hor” refers to the fact that the curvature vanishes on

vertical vector fields.

2.2.2 Connections on Associated bundles

Let M be a manifold with a smooth left action of G. Then the fibre bundle

associated to P with a fibre M is defined to be:

M := P ×GM
πM−→ X,
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where πM([p,m]) = π(p). Given a connection A on P , it induces a connection on

M as follows: At a point [p,m] ∈ M the vertical space is isomorphic to TmM ,

whereas the horizontal space is given by HM|[p,m] = (HP |p ⊕ {0})/G.

We have a canonical isomorphism between the spaces C∞(P,M)G and Γ(X,M)

given by

C∞(P,M)G −→ Γ(X,M)

u 7−→ su where su(x) = [p, u(p)] for p ∈ π−1(x).

Given a connection A on P , the covariant derivative of a section u ∈ C∞(P,M)G

is given by

DAu = Tu ◦ prHA
= Tu+KM

A |u ∈ Hom(TP, TM)Ghor,

where HA is the horizontal sub-bundle defined by A.

2.3 Vector Bundle

Definition 2.3.1. Vector Bundle Let X be a smooth manifold. A fibre bundle

πE : E −→ X is said to be a vector bundle if the fibre is a K-vector space, where

K = R or C, and the transition maps lie in AutK(V ).

Given a principal G-bundle P over X, let V be a G-representation. Then the

associated fibre bundle P×GV −→ X is a vector bundle. On the other hand, given

a rank n vector bundle πE : E −→ X, let πP : PGL(n,K) −→ X denote the bundle

of frames in E. Indeed, for x ∈ X and p ∈ π−1
P (x), p is a K-linear isomorphism

p : K −→ TxX. Then E = PGL(n,K) ×GL(n,K) Kn.

Given u ∈ C∞(PGL(n,K),Kn)GL(n,K) and a connection A on PGL(n,K), the induced

covariant derivative on the associated vector bundle is given by:

DAu = Tu+ A · u. (2.3.1)

2.4 Action of the gauge group

2.4.1 Gauge Group

Let P
π−→ X be a principal G-bundle over X. An automorphism of P is a G-

equivariant diffeomorphism β : P −→ P such that π ◦ β = π. The set of all the
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automorphisms of P forms a group called gauge group, denoted by G(P ). The

elements of the gauge group are called gauge transformations. Given a gauge

transformation β, it induces a G-equivariant map g : P −→ G, defined by β(p) =

pg(p) (Note that the group G acts on itself by conjugation). Conversely, given

any G-equivariant map g : P −→ G, it defines a gauge transformation β, given by

β(p) = pg(p). Thus we have an isomorphism

C∞(P,G)G ∼= G(P ).

Let A(P )-denote the space of all connections on P . If β ∈ G(P ) and A ∈ A(P ),

then clearly β∗A ∈ A(P ). Thus we have a right action of the gauge group on the

space of connections.

Definition 2.4.1. (Maurer-Cartan one form) The Maurer-Cartan 1-form is a

left-invariant, g-valued 1-form on G defined by Θ(w) = TLh−1(w) for h ∈ G and

w ∈ ThG and L∗ denotes the left action of G on itself.

If G is a matrix group so that G ⊂ GL(n), then the Maurer Cartan form can

be written as Θ = g−1(dg), where dg : TgG −→ gl(n) is the inclusion.

Proposition 2.4.1 ([Bau09]). For β ∈ G(P ), let g denote the corresponding ele-

ment in C∞(P,G)G. Then,

β∗A = Adg−1(·)A + g∗Θ,

where Θ denotes the Maurer-Cartan 1-form on G. If FA denotes the curvature of

the connection A, then

β∗FA = Fβ∗A = Adg−1(FA).

In terms of the covariant derivatives on the associated (finite dimensional)

vector bundle, for a section s ∈ C∞(P, V )G of the vector bundle, we have,

Dβ∗As = β−1(DA(β(s))).
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2.5 Elements of Spin Geometry

2.5.1 Clifford algebras and Spin Groups

Let V be a finite dimensional real vector space endowed with a quadratic form q.

Consider the tensor algebra generated by V

T (V ) =
⊕
n≥o

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n−times

.

This is an associative unital algebra.

Consider the two-sided ideal I(V, q) generated by all the elements of the form

v ⊗ v + q(v, v) · 1 for v ∈ V . Then the Clifford algebra associated to V w.r.t

q is defined as Cl(V, q) := T (V )/I(V, q). Clifford algebra satisfies the universal

property, namely, if B is another unital associative real algebra and if there exists

a linear map f : V −→ B satisfying f(v)⊗f(v)+q(v, v) ·1B = 0, then there exists

a unique morphism of algebras such that the following diagram commutes:

Cl(V, q)

f̃

��

V

ι

??����������������

f
// B

where, ι denotes the canonical inclusion of V into Cl(V, q).
Note that if q ≡ 0, then, Cl(V, 0) = Λ∗V . For q non-degenerate, Cl(V, q) and Λ∗(V )

are canonically isomorphic as vector spaces, the isomorphism being given by

v1 · v2 · · · vn 7→ v1 ∧ v2 · · · ∧ vn, (2.5.1)

where {v1, v2, · · · vn} is the orthonormal basis of V and the operation “·” denotes

the multiplication in the Clifford algebra. For simplicity, we shall write v ·w ≡ vw.

Example 2.5.1. (Clifford Algebras) Denote by Cln, the Clifford algebra of

(Rn, qst), where qst is the standard inner product on Rn.

1. Cl2 ∼= H with 1 7→ 1, e1 7→ i, e2 7→ j and e1e2 7→ k
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2. Cl3 ∼= H ⊕ H. Using lemma (2.5.1) stated below, it suffices to note that

Cleven3
∼= Cl2 and 1 7→ 1, e1e3 7→ i, e2e3 7→ j, e1e2 7→ k.

3. Cl4 ∼= M2(H) where, M2(H) denotes the set of 2 × 2 matrices with quater-

nionic entries. Identify R4 ∼= H. This gives an embedding of R into M2(H)

as follows:

R4 ∼= H 3 x 7−→

(
0 −x̄
x 0

)
.

This extends to a morphism of algebras and one can check that this is infact

an isomorphism.

The involution map α : V −→ V given by α(v) = −v, defines a Z2-grading of

the Clifford algebra

Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q),

corresponding respectively to the eigenvalues ±1 of α. Under the isomorphism

2.5.1 the decompisition corresponds to the Z2-grading Λ∗V = ΛevenV ⊕ ΛoddV .

Note here that Cl0(V, q) is a sub-algebra of Cl(V, q).
A group of multiplicative units in Clifford algebra is the set

Cl∗(V, q) = {ψ ∈ Cl(V, q) | ∃ ψ−1 such that ψψ−1 = ψ−1ψ = 1}.

The group Pin(V, q) ⊂ Cl∗(V, q) is a group, generated by the set of all the units

v ∈ V ⊂ Cl(V, q) such that q(v) = ± 1. We define the group Spin(V, q) to be

Pin(V, q) ∩ Cl0(V, q).

The group Cl∗(V, q) acts on the Clifford algebra by a twisted adjoint action.

Ad : Cl∗(V, q) −→ Aut(Cl(V, q))
Adψ(x) = α(ψ)xψ−1

Restricting to the group Spin(V, q), we get the adjoint action of Spin(V, q)

on Cl(V, q). The action preserves the subspace V ∈ Cl(V, q) and therefore gives

a real representation of the Spin(V, q) group. We have the following short-exact

sequence:

0 // Z2
// Spin(V, q) λ // SO(V, q) // 0

where λ denotes the induced group action. When V = Rn, for n ≥ 3, we define

Spin(n) := Spin(Rn, qst), where qst is the standard inner product on Rn. The

group Spin(n) is a simply connected and hence the universal cover of SO(n).
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Example 2.5.2. 1. In case of dimension three, using the universality property

of the group Spin(3), one can prove that Spin(3) ∼= Sp(1). Indeed, consider

the identification R3 ∼= Im(H). Then we have the homomorphism given by

Sp(1) −→ SO(3)

q 7−→ aq where aq(v) = qvq−1, v ∈ Im(H).

The kernel of this map is {± 1}. Sp(1) being simply connected, this implies

Sp(1) ∼= Spin(3).

2. We can argue similarly for dimension four. Identify R4 ∼= H, we have the

following homomorphism:

Sp(1)× Sp(1) −→ SO(4)

q = (q+, q−) 7−→ aq where aq(v) = q+vq
−1
− , v ∈ H.

The kernel of the map is {(1, 1), (−1,−1)}. Since Sp(1) × Sp(1) is simply

connected, we deduce that Sp(1)×Sp(1) ∼= Spin(4). We distinguish the two

copies of Sp(1) by + and −, where the corresponding actions given above.

Lemma 2.5.1 ([LM89] Chapter I, Thm. 3.7). Denote by Cln, the Clifford

algebra of Rn. The map Rn 3 v 7→ ven+1 ∈ Cl0n+1 induces an isomorphism,

Cln ∼= Cl0n+1.

We shall restrict henceforth to the case V = Rn. Choose an orientation of

Rn and let {e1, e2, · · · en} be any positively oriented orthonormal basis w.r.t the

standard inner product on Rn. Then the associated oriented volume element in

the Clifford algebra is defined by ω = e1e2 · · · en. This is independent of the

choice of an oriented orthonormal frame and satisfies ω2 = (−1)
n(n+1)

2 . For any

v ∈ Rn, vω = (−1)n−1ωv. Consequently, ω is central if n is odd. If n is even,

then for any γ ∈ Cln, γω = ωτ(γ), where τ denotes the parity operator.

Lemma 2.5.2 ([LM89] Chapter I, Lemma 3.4). If ω2 = 1, define

ε± =
1∓ ω

2
.

Then the following relations are satisfied:
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ε+ + ε− = 1

(ε±)2 = ε±

ε+ε− = ε−ε+ = 0.

Suppose now that ω satisfies ω2 = 1. If n is odd, then the Clifford algebra

decomposes into a direct sum of isomorphic sub-algebras Cln = (Cln)+ ⊕ (Cln)−,

corresponding respectively to the eigen-values ±1 of ω. If n is even, ω is central

in the sub-algebra Cl0n. Hence Cl0n decomposes as (Cl0n)+ ⊕ (Cl0n)− analogously.

Consider the three dimensional Clifford algebra Cl3. The volume element ω

satisfies ω2 = 1 and is central in Cl3. Hence Cl3 decomposes as (Cl3)+ ⊕ (Cl3)−.

Indeed, the decomposition of Cl3 as two copies of quaternions (cf. Example 2.5.1)

corresponds to the decompostion Cl3 = (Cl3)+ ⊕ (Cl3)−. Therefore (Cl3)± ∼= H.

In the development further, we shall need the following lemma:

Lemma 2.5.3. [Pid13] Let n be even and ω be the oriented volume element of Cln
and ε± be as defined in Lemma (2.5.2). Then we have the following identities

ε+ Cln ε+ = (Cl0n)+ and ε− Cln ε+ = ε− Cl1n = Cl1n ε+

Proof : Let γ ∈ Cln. The ε+ γ ε+ = 1
4
(1−ω)γ(1−ω). Let τ denote the parity

operator. Then

1

4
(1− ω)γ(1− ω) =

1

4
(1− ω)(γ − ωτ(γ))

=
1

4

(
(1− ω)γ − ωτ(γ) + τ(γ)

)
=

1

4
(1− ω)(γ + τ(γ)) =

1

2
(1− ω)γ0.

The second identity can be proved in a similar manner.

2.5.2 Clifford modules and Spin representations

Consider a vector space (V, q) over a field K, where q is a quadratic form on V .

Definition 2.5.1. A a Cl(V, q)-module over K is a K-algebra homorphism

ρ : Cl(V, q) −→ EndK(W)

into the algebra of all the K-linear transformations of a finite dimensional K-vector

space W.
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We are mainly interested in the case K = R and V = Rn endowed with the

standard inner product.

Proposition 2.5.1 ([LM89] Chapter I, Prop. 5.10). Let n = 4m and let W be

an irreducible Cln-representation. Then ω2 = 1 and each of the subspaces W± is

invariant under the Clifford sub-algebra Cl0n. Under the isomorphism Cln−1
∼= Cl0n,

these correspond to two distinct irreducible representations of Cln−1 .

Definition 2.5.2. A Z2-graded Cln-module is a module with a Z2-grading W =

W0 ⊕W1 such that ClinWj ⊆ W(i+j)mod(2), for 0 ≤ i, j ≤ 1.

Proposition 2.5.2. [ABS64] There exists a bijection from the category of non-

graded Cln−1-modules and Z2-graded Cln-modules. Indeed if W0⊕W1 is a Z2-graded

module over Cln, then W0 is a module over Cl0n ∼= Cln−1.

On the other hand, given a non-graded module W 0
n over Cl0n ∼= Cln−1, we get the

Z2-graded module over Cln by defining W = Cln ⊗Cl0n W
0. The left multiplication

of Cln on Cln, makes W into a Z2-graded module.

Each Clifford module gives rise to a representation of the Spin group.

Definition 2.5.3. (Representation of Spin(n)) Let W be an irreducible Cln-

module. A real spinor representation is a homomorphism ζ : Spin(n) −→ End(W)

obtained by restricting ζ : Cln −→ End(W) to Spin(n) ⊂ Cl0n ⊂ Cln.

Once again, consider the three dimensional Clifford algebra Cl3 ∼= H⊕H. Then

Cl03 ∼= {(h, h)| h ∈ Q} ⊂ H⊕H and Cl13 ∼= {(h,−h)| h ∈ Q} ⊂ H⊕H. Restricting

to the Spin(3) ∈ Cl03, we obtain the spinor representation, denoted by V. Then

Cl4⊗Cl04 V is a Cl4-module with the left action of Cl4 on itself (cf. Lemma 2.5.1 and

Prop. 2.5.2). Now consider the irreducible Cl4 ∼= M2(H)-module H2. Restricting

this to Cl04 gives two distinct irreducible Cl04-modules.

H⊕H ∼= Cl3 ∼= Cl04 ↪→ Cl4 ∼= M2(H)

(h1, h2) 7−→

(
h1 0

0 h2

)

Restricting further to Spin(4) ⊂ Cl04, these give the spinor representation.

Homologous to the product structure of Spin(4) ∼= Sp(1)+× Sp(1)−, we have two

distinct representations W+ and W−.
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Lemma 2.5.4. [LM89] The two Cl4-representations are isomorphic, the isomor-

phism being given by

% : H2 −→ Cl4 ⊗Cl04 V
(v, w) 7−→ 1⊗ v + e0 ⊗ w.

Restriction to the group Spin(4) induces an isomorphism Spin(4)-representations:

W+ ⊕W− ∼= Cl4 ⊗Cl04 V.

Let H −→ R4 be the standard identification given by h 7−→ eh. The subalgebra

(Cl04)+ = {e0eε+| e ∈ R4} is a free left (Cl04)+-module with generator ε+. The

isomorphism λ : H −→ (Cl04)+, given by h 7−→ e0e−h̄ε+, defines a complex structure

on (Cl04)+:

1 7−→ ε+ i 7−→ J1 =
e0e1 + e2e3

2
(2.5.2)

j 7−→ J2 =
e0e2 − e1e3

2
k 7−→ J3 =

e0e3 + e1e2

2
.

The odd part of the Clifford module Cl4 ε+, given by,

ε− Cl4 ε+ = {eε+| e ∈ R4}

is a free left (Cl04)+-module with the generator e0ε+.

Lemma 2.5.5. [Pid13] The Clifford multiplication maps

R4 ⊗ ε+(Cl4)ε+ −→ ε−(Cl4)ε+

e⊗ ε+ 7−→ e0ε+λRe0 (e)

Proof : For any e ∈ R4, the Clifford multiplication maps

R4 ⊗ ε+(Cl4)ε+ 3 e⊗ ε+ 7→ eε+ ∈ ε− Cl4 ε+ = {eε+| e ∈ R4}.

But

eε+ = −e2
0eε+ = e0(−e0)eε2

+ = e0ε+ (−e0ee
−1
0 )︸ ︷︷ ︸

Re0 (e)

e0ε+

= e0ε+Re0(e)e0ε+ = e0ε+λRe0 (e)
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Observe that Re0(e0) = −e0 and Re0(e
⊥
0 ) = −e0e

⊥
0 e
−1
0 = e⊥0 . Therefore, in quater-

nionic notation, ehε+ = e0ε+λ−h̄.

Given a Cl04-module W 0, by Proposition 2.5.2, we can define the Clifford module

W = Cl4 ⊗Cl04 W
0. Since ε− ·W 0 = 0,

W = Cl4 ε+ ⊗(Cl04)+ W
0 (2.5.3)

= (ε− Cl4 ε+ ⊗(Cl04)+ W
0)⊕ (ε+ Cl4 ε+ ⊗(Cl04)+ W

0)

= (ε− Cl4 ε+ ⊗(Cl04)+ W
0)⊕W 0

2.5.3 Clifford multiplication

Definition 2.5.4. (Clifford Multiplication)

Let W be a Cln-module and ρ be the map ρ : Cln −→ End(W). Consider the

restriction of the action of Cln on W to Rn. Then, Clifford multiplication is the

map of Spin(n)-representations

c : Rn ⊗W −→ W

c(x⊗ v) = ρ(x) · v

For simplicity, denote the Clifford multiplication by x ·v for x ∈ Rn and v ∈ W .

Example 2.5.3. In dimension four, identify R4 ∼= H by mapping the standard

oriented basis (e1, e2, e3, e4) of R4 to the basis (1, ī, j̄, k̄) of H. Define the Clifford

multiplication to be the map

m : R4 ∼= H −→ End(W+ ⊕W−)

h 7−→

(
0 −h̄
h 0

)

It is easily verified that m(h)2 = −gR4(h, h)idW+⊕W− .

Note 2.5.1. The Clifford multiplication maps W+ ⊕W− 7−→W− ⊕W+.

2.5.4 Spin structures

Let X be a n-dimensional Riemann manifold. Let E −→ X be an oriented vector

bundle over X with a fibre V . Let PSO(V ) denote the principal frame bundle over
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X associated to E. Then a Spin(V )-structure on E is a principal Spin(V )-bundle

over X, denoted by QSpin(V ), which is an equivariant double cover

Ψ : QSpin(V ) −→ PSO(V ),

i.e. Ψ(qg) = Ψ(q)λ(g), for g ∈ Spin(V ) and q ∈ QSpin(V ).

Proposition 2.5.3 ([LM89] Chapter II, Thm. 1.7). Let E −→ X be an

oriented Riemann vector bundle over X. Then the existence of a Spin structure

on E is guaranteed iff the second Steifel-Whitney class w2(E) = 0.

The obstruction to the lift can be understood in terms of Čech cohomology

class. The bundle PSO(V ) −→ X is determined by a trivializing open cover {Uα}α∈J,
for some index set J, along with transition maps gαβ : Uα ∩ Uβ −→ SO(V ).

Let {Uα} denote a trivializing open cover for PSO(V ) such that Uα ∩ Uβ is con-

tractible. Let g ∈ Ȟ1(X,SO(V )) and let gαβ : Uα ∩ Uβ −→ SO(V ) be any

representative of g. Since Uα ∩ Uβ is contractible, gαβ can be lifted to a smooth

map

g̃αβ : Uα ∩ Uβ −→ Spin(V ). By the exactness of the sequence :

0 // Z2
// Spin(V ) λ // SO(V ) // 0

we get that ηαβγ := g̃αβ g̃βγ g̃βγ : Uα ∩ Uβ ∩ Uγ −→ {1,−1}. In other words, {ηαβγ}
is a Čech cocycle and represents a cohomology class w2(E) ∈ H2(X,Z2).

The cohomology class w2(E) is known as the second Stiefel-Whitney class of E.

Definition 2.5.5. An oriented, n-dimensional Riemann manifold X is a Spin

manifold iff w2(TX) = 0.

2.5.5 Spinor bundles and Dirac operators

Let W be a Cln-representation. Then by restriction, W is also a Spin(n)-representation.

Let X be a Spin-maifold. A Spinor bundle is the associated vector bundle

W := QSpin(n) ×Spin(n) W. Spinors are then defined to be smooth sections of W.

Since we have a canonical isomorphism between the spaces C∞(QSpin(n),W)Spin(n)

and Γ(X,W), we can equivalently define spinors to be elements of C∞(QSpin(n),W)Spin(n).
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Example 2.5.4. In dimension four, we have two irreducible representations of

Spin(4) ∼= Sp(1)+ × Sp(1)−, namely W+ and W−. The spinor bundles corre-

sponding to the two representations are denoted by W+ and W−. The sections of

these are called positive and negative spinors, respectively.

Let X be an n-dimensional Spin-manifold, and PSO(n) denote the principal

frame bundle over X. Let A be the lift of the Levi-Civita connection to QSpin(n) −→
X and u ∈ C∞(QSpin(n),W)Spin(n). Denote by DA the covariant derivative given

by

DAu = Tu+ A · u ∈ C∞(QSpin(n),W)Spin(n).

Composing this with the Clifford multiplication, we obtain the Dirac operator

/DA : C∞(QSpin(n),W)Spin(n) DA→ C∞(QSpin(n), (R4)∗⊗W)Spin(n) c→ C∞(QSpin(n),W)Spin(n)

(2.5.4)

Example 2.5.5. Consider again the case for dimension four. Since in dimension

four, the Clifford multiplication by any v ∈ R4 ∼= (R4)∗ interchanges the positive

and negative spinor representations, the Dirac operator(
0 /D

−
A

/D
+
A 0

)
: C∞(QSpin(4),W)Spin(4) −→ C∞(QSpin(4),W)Spin(4).

The Dirac operator is a first order, elliptic partial differential operator and is

formally self adjoint ([Nic96] Prop. 10.1.41)

2.5.6 Spinc(n)-structures

The entire exposition given above for Clifford algebras and Spin-structures can be

extended to complexified Clifford algebras

Cln = Cln ⊗ C

and Spinc-structures. In this case one obtains the exact sequence:

0 // Z2
// Spin(n)×± 1 S

1 λ̃ // SO(n)× S1 // 0 ,

where the map λ̃ : Spin(n)×± 1 S
1 −→ SO(n)× S1 is given by

λ̃([a, z]) = (λ(a), z2).



2.5 Elements of Spin Geometry 19

We denote the group Spinc(n) := Spin(n)×± 1 S
1.

A Spinc(n)-structure on an n-dimensional Riemann manifold X is a principal

S1-bundle PS1 together with a principal Spinc(n)-bundle QSpinc(n) over X, which

an equivariant double cover

QSpinc(n) −→ PSO(n) ×X PS1 .

Proposition 2.5.4 ([LM89]). Every almost complex manifold carries a canonical

Spinc(n) structure.

Note also that every Spin manifold carries a Spinc-structure

A representation of the complexified Clifford algebra induces a complex represen-

tation of Spin(n) ⊂ Cln, which we shall denote by WC.

Lemma 2.5.6 ([Mor96] Cor. 2.6.3). A complex representation of the group

κ : Spin(n) −→ WC extends uniquely to a representation κ̃ : Spinc(n) −→ WC.

Example 2.5.6. Consider the case n = 4. As a consequence of Lemma (2.5.6),

the irreducible complex representations of W+ and W− extend to a representations

S+ and S−, of Spinc(4). Explicitly, S+ is the representation of Spinc(4) on H by

[q+, q−, z] · h 7→ q+hz

and S+ is the representation of Spinc(4) on H by

[q+, q−, z] · h 7→ q−hz.

A connection A on the principal S1-bundle coupled with the lift of Levi-Civita

connection determine a unique connection Â on the principal Spinc(n)-bundle.

The covariant derivative is defined in an analogous manner to the Spin(n)-case.

Composed with the Clifford multiplication, this defines a twisted Dirac operator

/DÂ : C∞(QSpinc(n),S) −→ C∞(QSpinc(n),S) (2.5.5)



3. HyperKähler manifolds

It is a capital mistake to theorize before one has data. Insensibly, one begins to twist

facts to suit theories, instead of theories to suit facts!

– Sir Aurthur Conan Doyle, A Study in Scarlet

In this chapter we discuss hyperKähler manifolds and focus our attention on

the properties on those which admit a permuting Sp(1)-action and give a brief

summary of results on the same.

3.1 Preliminaries

An almost complex structure on a manifold M is an endomorphism I ∈ End(TM)

such that I2 = −1. If M admits two anti-commuting almost complex structures

I, J ∈ End(TM), we can define the third one K = IJ . The triple {I, J, K}
satisfies quaternionic relations I2 = J2 = K2 = IJK = −1. There exists a unique

torsion-free affine connection A (Obata connection) on M such that∇AI = ∇AJ =

∇AK = 0 [Oba58]. That is the almost complex structures are integrable.

A manifold M is said to possess a hypercomplex structure if it admits a pair of

anti-commuting complex structures. The existence of a hypercomplex structure

implies that the real dimension of the manifold M is 4n and the holonomy is

reduced to a subgroup of GL(n,H).

A hypercomplex structure on M induces an algebra homomorphism:

I : H −→ End(TM)

h 7−→ h0 IdTM + h1I1 + h2I2 + h3I3 := Ih.

Let Sp(1) denote the group of unit quaternions and sp(1) be its Lie algebra.

Identifying sp(1) with Im(H), the imaginary quaternions, the restriction of I to

20
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Im(H) gives a map

sp(1) −→ End(TM)

η 7−→ Iη.

For any η ∈ sp(1), we have ∇AIη = 0. If η is such that η2 = −1, then I2η = Iη2 =

−IdTM and Iη is again a complex structure. Observe that M has an entire family

of complex structures parametrized by S2 ∈ Im(H).

3.1.1 HyperKähler Manifolds

Let (M, gM) be a Riemann manifold endowed with a hypercomplex structure. If

for all η ∈ sp(1), the metric satisfies gM(IηX, IηY ) = |η|2gM(X, Y ) then it is said

to be compatible with the hypercomplex structure.

Definition 3.1.1. (HyperKähler manifold) LetM be a hypercomplex manifold

with a compatible metric. If the Obata connection coincides with the Levi-Civita

connection, then the manifold is called as HyperKähler manifold.

Alternatively, a hyperKähler manifold can be charaterized as follows:

Define a two form ω ∈ sp(1)∗ ⊗ Ω2(M) by:

ω(η)(X, Y ) := ωη(X, Y ) = gM(IηX, Y ) for η ∈ Im(H) ∼= sp(1), X, Y ∈ Γ(M,TM).

(3.1.1)

Proposition 3.1.1. [Hit87] Given a Riemann manifold M endowed with complex

structures (I1, I2, I3) satisfying the quaternionic relations, a sufficient condition

for M to be a hyperKähler manifold is that the two forms {ωl}3
l=1 defined by

ωl(X, Y ) = gM(IlX, Y ), (3.1.2)

for l = 1, 2, 3, are closed.

Note 3.1.1. This is in contrast to the Kähler case where, for an almost complex

structure I, the condition dωI = 0 does not guarantee that I is integrable.

The 2-forms ωl being non-degenerate, the above conditions are equivalent to

the requirent that ωl be a symplectic form for each Il.
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Remark 3.1.1. Clubbing the above 3 conditions into one we get:

ω = ω1 i + ω2 j + ω3 k ∈ sp(1)⊗ Ω2(M).

Then the equivalent condition for M to be hyperKähler is dω = 0.

Example 3.1.1. An example of a hyperKähler manifold is the flat space Hn. The

scalar multiplication is given by Ih(X) = X · h̄ for x ∈ Hn, X ∈ TxHn ∼= Hn, h ∈
H.

Example 3.1.2. Another source of hyperKähler manifolds is via the hyperKähler

reduction. Given a (locally)free action of a compact Lie group G on a manifold M ,

preserving the symplectic two form ω, we can define a moment map µ : M −→ g∗

for the G-action (ref. Section 3.2.3 ). Let g be the Lie algebra of G and choose a

point b ∈ g∗. Let G′ be the isotropy group at a point. Then the quotient µ−1{b}/G′

inherits the symplectic structure. This is called the Marsden-Weinstein reduction.

This was generalized to hyperKähler manifolds by Hitchin et al. [HKLR87].

3.2 Properties of hyperKähler manifolds with per-

muting action

3.2.1 Permuting action

Definition 3.2.1. An action of Sp(1) on a hyperKähler manifold M is said to

be permuting if Sp(1) acts by isometries and the induced action on the sphere

of complex structures is given by Tq Iη Tq
−1 = Iqηq̄ for q ∈ Sp(1) and η ∈

sp(1), ‖η‖2 = 1.

Example 3.2.1. Consider once again, the flat space Hn. Define the Sp(1) action

on Hn by q · h = hq̄, for q ∈ Sp(1) and h ∈ Hn. The tangent bundle on Hn is

trivial and the complex structures are given by:

I1(v) = vī, I2(v) = vj̄, I3(v) = vk̄ for x ∈ Hn and v ∈ TxHn.

The induced action of Sp(1) on the tangent bundle is again given by q∗v = vq̄. Let

x ∈ Hn and v ∈ TxHn. Let η ∈ sp(1) with ‖η‖2 = 1 and Iη be the corresponding
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complex structure. Then the induced action on the sphere of complex structures

is given by

q · Iη = q̄ Iηq, q̄ Iηq(v) = v q̄η̄q = v(qηq̄) = IAdq(η)(v).

Thus we see that the action is permuting.

HyperKähler manifolds with permuting actions were first studied by Swann

[Swa91].

In what follows, we shall restrict ourselves to hyperKähler manifolds with permut-

ing action of Sp(1). We closely follow the exposition given in [BGM93], [Pid04]

and [Sch10].

Define the map KM : sp(1) −→ Γ(M,TM) given by KM(ξ) = KM
ξ , the funda-

mental vector field generated by ξ. Let ζ ∈ Sp(1). Then,

KM(ζ · ξ) = KM
Adζξ

= Tζ (KM
ξ ) = ζ ·KM

ξ .

Thus KM is an Sp(1)-equivariant map. Similarly, the map I restricted to Im(H) ∼=
sp(1) is also an Sp(1)-equivariant map.

Both the maps being linear, we combine them into one Sp(1)-equivariant map:

X ∈ sp(1)∗ ⊗ sp(1)∗ ⊗ Γ(M,TM)

X (ξ ⊗ ζ) = I(ξ)KM(ζ) = IξK
M
ζ .

Let W denote the standard representation of the group Sp(1) on H. We know

that sp(1) ∼= su(2) and therefore sp(1)⊗ C ∼= su(2)⊗ C = sl(2,C).

It is well-known that any finite dimensional irreducible representation of sl(2,C)

is a symmetric power of the standard representation C2. Since the group Sp(1)

preserves the quaternionic structure on W , it also preserves the symmetric pow-

ers of the quaternionic structure. The even symmetric powers of the quaternionic

structure is a real structure. So the even symmetric powers of the representa-

tion admit a real structure, which is preserved by Sp(1), and therefore descends

to a representation of the real form su(2) ∼= sp(1). Therefore by Clebsch-Gordon

theorem:

sp(1)∗ ⊗ sp(1)∗ ∼= R⊕ [S2(W )]r ⊕ [S4(W )]r.
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On the other hand, sp(1)∗⊗sp(1)∗ splits into a direct sum of sub-representations

S2(sp(1)∗)⊕∧2(sp(1)∗). The symmetric part further decomposes as S2(sp(1)∗) =

R⊕ S0(sp(1)∗), corresponding to the trace and the traceless part, respectively.

Therefore sp(1)∗⊗sp(1)∗ = R⊕S0(sp(1)∗)⊕∧2sp(1)∗ ∼= R⊕[S4(W )]r⊕[S2(W )]r.

Corresponding to this decomposition, the map X splits into three parts: X0, X2,

X1 respectively. Denote by Alt, the projection of sp(1)∗⊗sp(1)∗ to the alternating

part Λ2sp(1)∗ and by Sym, the projection of sp(1)∗⊗sp(1)∗ to the symmetric part

S2(sp(1)∗).

We have the isomorphism [·, ·] : Λ2sp(1) −→ sp(1) given by

i ∧ j 7−→ [i, j] = 2k

j ∧ k 7−→ [j, k] = 2i

k ∧ i 7−→ [k, i] = 2j.

(3.2.1)

The dual of this map is [·, ·]∗ : sp(1)∗ −→ Λ2sp(1)∗.

Denote by π∗1 the map π∗1 = sp(1)∗ ⊗ sp(1)∗
Alt−−→ Λ2sp(1)∗

(−[·,·]∗)−1

−−−−−−→ sp(1)∗. Then:

X0 = −1

3
trX ∈ Γ(M,TM)

X1 = π∗1 (X ) ∈ sp(1)∗ ⊗ Γ(M,TM)

X2 = −X0〈·, ·〉H − SymX ∈ S2
0(sp(1)∗)⊗ Γ(M,TM)

Define the following operators:

ιsp(1) : ⊗psp(1)∗ ⊗ Ωq(M) −→ sp(1)∗ ⊗ (sp(1)∗)⊗
p ⊗ Ωq−1(M) defined by

ιsp(1)(α)(ξ) = ιKMξ α

and

Lsp(1) : ⊗psp(1)∗ ⊗ Ωq(M) −→ sp(1)∗ ⊗ (sp(1)∗)⊗
p ⊗ Ωq(M) defined by

Lsp(1)(α)(ξ) = LKMξ α.

where KM
ξ is the fundamental vector field on M generated by ξ ∈ sp(1). One can

verify the Cartan’s formula Lsp(1) = dιsp(1) + ιsp(1)d.

Lemma 3.2.1. [Pid04] For the two form ω, as defined in (3.1.1), have the following

identity:

Lsp(1)ω = −2ω. (3.2.2)
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Proof : We first verify that ω is Sp(1)-equivariant. Let q ∈ Sp(1) and ξ ∈
sp(1). Then for the vector fields V , W on M

〈q∗ω, ξ〉(V,W ) = gM(Iξ(q∗V ), q∗W ) = gM(q−1
∗ Iξ(q∗V ),W )

= gM(IAdq−1 (ξ)(V ),W ) = 〈ω,Adq−1(ξ)〉(V,W )

For ξ1, ξ2 ∈ sp(1), using the identity above, we get:

〈Lsp(1)ω, ξ1 ⊗ ξ2〉 = LKM
ξ1
ω(ξ2) =

d

dt
(Lexp(−tξ1))

∗ω(ξ2)|t=0

=
d

dt
ω(Adexp(−tξ1)(ξ2))|t=0 = 〈ω, d

dt
Adexp(−tξ1)(ξ2)|t=0〉 = −〈ω, [ξ1, ξ2]〉

We conclude from isomorphism (3.2.1) that Lsp(1)ω = −2ω.

Define γ := −1
2
ιsp(1)ω = −1

2
gM(X , ·) ∈ sp(1)∗⊗ sp(1)∗⊗Ω1(M). Then dγ = ω.

The map γ decomposes into three components:

γ0 = −1

3
tr(γ) ∈ Ω1(M) (3.2.3)

γ1 = π∗1(γ) ∈ sp(1)∗ ⊗ Ω1(M) (3.2.4)

γ2 = Sym0(γ) ∈ S0 ⊗ Ω1(M) (3.2.5)

By construction, it is clear γ is Sp(1)-equivariant. Also notice that right hand side

of (3.2.2) lies in sp(1)∗ ⊗ Ω2(M) ∼= Λ2sp(1)∗ ⊗ Ω2(M) which implies dγ1 = ω and

dγ0 = dγ2 = 0. But first we need the following lemma.

Lemma 3.2.2. [Pid04] For the operator Lsp(1) and the map γ1 defined above, we

have the identity

Lsp(1)γ1 (ξ1, ξ2) = −〈γ1, [ξ1, ξ2]〉 (3.2.6)

Proof : We shall first prove that the map γ1 is Sp(1)-equivariant. Let q ∈
Sp(1) and ξ1, ξ2 ∈ sp(1). Then,

(Lq)
∗γ1([ξ1, ξ2])(V ) = γ1([ξ1, ξ2])(q∗V )

= gM
(
(Iξ1K

M
ξ2
− Iξ2KM

ξ1
), q∗V

)
= gM

(
q−1
∗ (Iξ1K

M
ξ2
− Iξ2KM

ξ1
), V

)
= gM

(
IAdq−1ξ1K

M
Adq−1ξ2

− IAdq−1ξ2
KM
Adq−1ξ1

), V
)
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= γ1[Adq−1ξ1, Adq−1ξ2](V ) = γ1(Adq−1 [ξ1, ξ2])(V )

Since γ1 is Sp(1)-equivariant,

〈Lsp(1)γ1, ξ1 ⊗ ξ2〉 = LKM
ξ1
γ1(ξ2) =

d

dt
(Lexp(−tξ1))

∗γ1(ξ2)|t=0

=
d

dt
γ1(Adexp(−tξ1)(ξ2))|t=0 = 〈γ1,

d

dt
Adexp(−tξ1)(ξ2)|t=0〉 = −〈γ1, [ξ1, ξ2]〉

Define the following functions:

ρ0 =
1

3
tr(ιsp(1)γ1) (3.2.7)

ρ2 = Sym0(ιsp(1)γ1) (3.2.8)

Then, by definition, ρ0 is Sp(1)-invariant and ρ2 is Sp(1)-equivariant.

Lemma 3.2.3. [Pid04] The one forms γ0 and γ2 are exact.

Proof :

Using the isomorphism sp(1)∗ ∼= Λ2sp(1)∗, the identity (3.2.6) can be rewritten

as Lsp(1) γ1 = Alt (ιsp(1)ω) which implies

dιsp(1)γ1 = Alt (ιsp(1)ω)− ιsp(1)dγ1 = Alt (ιsp(1)ω)− ιsp(1)ω.

Then from the definitions (3.2.3) and (3.2.5), we conclude that dρ0 = γ0 and

dρ2 = γ2. Thus the vector fields X0 and X2 are (upto a factor) gradient vector

fields of the functions ρ0 and ρ2 respectively.

3.2.2 HyperKähler potential

Given a Kähler manifold N with the complex structure J and Riemann metric

gN , let ωN denote the symplectic two-form associated to the complex structure. A

real valued function ρ : N −→ R is called Kähler potential if it satisfies

−d(J(dρ)) = 2ωN .

In more familiar conventions, i∂∂̄ρ = 2ωN . On similar lines, one can define the

notion of hyperKähler potential.
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Definition 3.2.2. (HyperKähler potential) Let (M, gM , I1, I2, I3) be a hy-

perKähler manifold. Then, a real-valued function ρ : M −→ R is called a hy-

perKähler potential if it is a Kähler potential w.r.t all three complex structures

simultaneously, i.e,

−d(Il(dρ)) = 2ωl

for l = 1, 2, 3, where ωl is the symplectic 2-form associated to the complex structure

Il.

Observe first that ιsp(1)γ = ρ0 + ρ2 ∈ Ω0(M,R⊕ [S4(W )]r) and in case ρ2 = 0,

ρ0 is a hyperKähler potential (cf. [BGM93], [Pid04]).

Remark 3.2.1. ρ2 = 0 =⇒ X2 = 0 since X2 = grad(ρ2). On the other hand

X2 = 0 =⇒ dρ2 = 0 and therefore ρ2 is locally constant. Claim is that ρ2 = 0.

For if not, then there exists a g ∈ Sp(1) such that g · ρ2(x) 6= ρ2(x). Since ρ2 is

Sp(1)-equivariant, g · ρ2(x) = ρ2(gx) = ρ2(x), a contradiction. Therefore ρ2 = 0.

In the following proposition, the first observation is due to Martin Callies

[Cal10], the second and third one are due to Swann [Swa91].

Proposition 3.2.1. Let M be a hyperKähler manifold with a permuting Sp(1)-

action and such that X2 = 0. Then:

1. γ1 = ιX0ω

2. ρ0 is the hyperKähler potential and gM(X0,X0) = 2ρ0.

3. LX0 ω = 2ω

Note 3.2.1. Even though there may exist may exist more than one hyperKähler

potential, there is a specific choice in the case when X2 = 0, namely ρ0 =
1
2
gM(X0,X0). Henceforth, since we restrict to the case when X2 = 0, we fix this

choice of the hyperKähler potential.

Example 3.2.2. Let M be the flat hyperKähler manifold Hn. Identifying sp(1)

with Im(H), the complex structures are given by right multiplication by {̄i, j̄, k̄}.
We have,

X2|u([i, j]) = −X0|u〈i, j〉Hn −
1

2

(
uīj̄ + uj̄ī

)
= 0
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X2|u([j, k]) = −X0|u〈j, k〉Hn −
1

2

(
uj̄k̄ + uk̄j̄

)
= 0

X2|u([k, i]) = −X0|u〈k, i〉Hn −
1

2

(
uk̄ī+ uīk̄

)
= 0

Therefore ρ0(u) = 1
2
gHn(u, u) = 1

2
‖u‖2 is the hyperKähler potential.

Theorem 3.2.1 ([Swa91]). Let N be a hyperKähler manifold admitting a permut-

ing Sp(1) action such that X0 = −IξKM
ξ , ‖ξ‖2 = 1 is independent of ξ ∈ sp(1).

Then N admits a hyperKähler potential.

3.2.3 HyperKähler Moment map

Definition 3.2.3. Let N be a manifold with symplectic form ω. An action of a

Lie group G is said to be symplectic, if G preserves the symplectic form (L∗gω = ω).

That the G-action is symplectic implies that ιg ω is a closed form. A smooth map

µ : N → g∗ is said to be a moment map for the G-action is the following conditions

are satisfied:

1. dµ = ιg ω

2. µ(gx) = Ad∗g(µ(x))

For a hyperKähler manifold M , an action of a Lie group G is said to be hy-

perKähler action is G acts by isometries and respects the complex structure, i.e

g∗Il = Ilg
∗. We are now is a position to define the notion of a hyperKähler moment

map.

Definition 3.2.4. Let (M, gM , I1, I2, I3) be a hyperKähler manifold with a hy-

perKähler action of a Lie group G. Let ω denote the one form defined by (3.1.1).

A smooth map µ : M −→ g∗ ⊗ sp(1)∗ is said to be a hyperKähler moment map if

it satisfies the following:

1. dµ = ιgω

2. µ(gx) = Ad∗g(µ(x))
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The hyperKähler moment map can be written as µ = µ1i + µ2j + µ3k, where

µ1 = 〈µ, i〉, µ2 = 〈µ, j〉 and µ3 = 〈µ, k〉 are the moment maps for the symplectic

forms ω1, ω1 and ω1 respectively. If M admits a permuting action of Sp(1), more

can be said. The map γ1 is G-invariant, which implies that Lgγ1 = 0. Also

µ = −ιgγ1 is a G-equivariant map. Therefore,

dµ = −dιgγ1 = −Lgγ1 + ιgω.

This observation is due to Pidstrygach [Pid04]. Since X2 = 0, we have IξX0 = KM
ξ .

Hence

γ1(ξ) =
1

2
ιX0ω(ξ) =

1

2
gM(KM

ξ , ·)

and this gives an explicit expression for moment map: (c.f [Sch10] )

µ(ξ ⊗ η) = −1

2
gM(KM

ξ , K
M
η ). (3.2.9)

Remark 3.2.2. If M has a hyperKähler action of a compact Lie group G, then

ρ0 is a Sp(1)×G-invariant function on M and µ is Sp(1)×G - equivariant map.

3.3 Quaternionic Vector Spaces

Throughout this section, we shall use the identification sp(1) ∼= Im(H). We shall

restrict our attention to the special case M = Hn, with the quaternionic structure

being given by Mh(X) = X · h̄ for x ∈ Hn and X ∈ TxHn. Denote by Mn×m the

space of H-linear maps L : Hm −→ Hn, i.e, R linear maps L : Hm −→ Hn that

commutes with scalar multiplication. Denote by L† the conjugate transpose of L.

So for L1, L2 ∈Mn×m, (L1L2)† = L†2L
†
1.

Let x ∈ Hn. We define a quaternionic hermitian product on TxHn by

〈·, ·〉H : TxHn ⊗ TxHn −→ H
〈X, Y 〉H = X†Y

and Riemannian metric gH(·, ·) = Re(〈·, ·〉H). For X, Y ∈ TxHn and ξ ∈ sp(1) the

hyperKähler 2-form ω is given by

ω(ξ)(X, Y ) = gH(IξX, Y ) = Re((X · ξ̄)†Y ) = Re(ξ ·X†Y ).
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The Lie group SU(n) ⊂ Sp(n) ⊂ EndH(Hn) acts on Hn by left multiplication

(L,X) 7−→ L ·X. This action preserves the metric and respects scalar multiplica-

tion and hence is hyperKähler. The fundamental vector fields due to this action

is given by

KM
η |x = (x, η · x) ∈ THn,

where η ∈ SU(n).

The Lie group Sp(1) acts permuting, the action being given by (q, x) 7−→ x · q̄ =

x · q−1 and the fundamental vector fields due to this action are given by

KM
ξ |x = (x,−x · ξ) ∈ THn,

where ξ ∈ sp(1).

In this case, X2 = 0 and hence ρ0 = 1
2
‖ · ‖2 is the hyperKähler potential (See

example (3.2.2)).

Let su(n) denote the Lie algebra of SU(n). From (3.2.9), the expression for the

hyperKähler moment map µSU(n) ∈ sp(1)∗⊗su(n)∗⊗C∞(Hn,R) is easily computed:

µSU(n)(ξ ⊗ η)|x = −1

2
Re(ξ x† η x) (3.3.1)

Alternatively, let us take into consideration, the identification H⊗CCn ∼= Hn given

by1

h⊗ z 7−→ hz (3.3.2)

The hyperKähler SU(n)-action and the permuting Sp(1)-action on H ⊗C Cn are

given by

(A, q, h⊗ z) 7−→ (q · h)⊗ (Ā · z). (3.3.3)

The moment map µ̃SU(n) ∈ sp(1)⊗ su(n)⊗ C∞(H⊗C Cn,R) is given by

µ̃SU(n)(h⊗ z) =
1

4n
hih̄⊗ (iz̄zt − i‖z‖2 · idCn).

Let η1, η2 ∈ su(n). We fix an inner product on su(n) given by

〈η1, η2〉su(n) = −2nRe(tr(η1η2)).

The Lie algebra sp(1) inherits the metric induced by identifying sp(1) ∼= Im(H)

and is denoted by 〈·, ·〉sp(1).

1 The complex structure on H is taken to be right multiplication with ī.
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Lemma 3.3.1. Under the isomorphism (3.3.2), the two moment maps defined

above are equivalent.

Proof : Let η ∈ su(n). Identify sp(1)⊗ su(n) with sp(1)∗ ⊗ su(n)∗ as:

ξ ⊗ η = 〈ξ, ·〉sp(1) ⊗ 〈η, ·〉su(n)

where 〈·, ·〉sp(1) and 〈·, ·〉su(n) are the inner products on sp(1) and su(n) respectively.

For h ∈ H, z ∈ Cn and η ∈ su(n) consider the following computations

〈µSU(n)(h⊗ z), η〉su(n) =
1

4n
hih̄ 〈(iz̄zt − i‖z‖2 · idCn), η〉su(n)

=
1

4n
hih̄ 〈iz̄zt, η〉su(n) −

1

4n
hih̄〈i‖z‖2 · idCn , η〉su(n)

=
1

4n
hih̄

(
− 2nRe(tr(iz̄ztη

)
− 1

4n
hih̄

(
− 2nRe(tr(i‖z‖2 · idCnη

)
=

1

4n
hih̄

(
− 2nRe(tr(iz̄ztη

)
= −1

2
hih̄

(
Re(tr(ztηiz̄))

)
Observe that (ztηiz̄)∗ = ztηiz̄ =⇒ (ztηiz̄) is a real number. Therefore

Re(tr(ztηiz̄)) = ztηiz̄.

Hence we have:

−1

2
hih̄

(
Re(tr(ztηiz̄))

)
= −1

2
hih̄ (ztηiz̄) = −1

2
hi(ztηiz̄)h̄

Let x := hz. Therefore,

−1

2
hi(ztηiz̄)h̄ =

1

2
h(ztηz̄)h̄ =

1

2
(hzt) η(hz) =

1

2
(hz)t ηhz =

1

2
x∗ηx ∈ sp(1)

For ξ ∈ sp(1), we have:

〈ξ, 1

2
x∗ηx〉sp(1) = −1

2
Re(ξx∗ηx) = µ̃SU(n)(ξ ⊗ η)|x
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3.4 Swann Bundles over Wolf Spaces.

In this section we shall briefly outline the construction of Swann bundles. For a

more detailed exposition, we refer the interested reader to [Swa91] and [BGM93].

A quaternionic Kähler manifold N is a 4n-dimensional manifold, n > 1, whose

linear holonomy group lies in Sp(n)Sp(1) := Sp(n) ×Z2 Sp(1) ⊂ SO(4n). This

implies that the manifold is Einstein [Ale68]. Since these are of dimension strictly

greater than 2, this implies that their scalar curvature is necessarily constant. If

the scalar curvature of N vanishes identically and N is simply connected, then

the linear holonomy subgroup is contained in Sp(n) and hence N is a hyperKähler

manifold. On the other hand, if N is a hyperKähler manifold, then its scalar cur-

vature vanishes and its linear holonomy group is contained in Sp(n) ⊂ Sp(n)Sp(1).

If N is a symmetric quaternionic Kähler manifold of strictly positive scalar curva-

ture, then it is a homogeneous, compact manifold [Wol65]. Wolf and Alekseevskĭi

[Ale68] gave a classification of compact homogenous quaternionic Kähler mani-

folds:

HPn = Sp(n+1)
Sp(1)×Sp(n) , X(n) = SU(n)

S(U(n−2)×U(2)) ,

Y (n) = SO(n)
SO(n−4)×SO(4) .

along with 5 exceptional spaces:

G2

SO(4) ,
F4

Sp(3)Sp(1) ,
E6

SU(6)Sp(1) ,
E7

Spin(12)Sp(1) ,
E8

E7 Sp(1)

for n ∈ N. These spaces are also referred to as Wolf spaces.

For defining the notion of a quaternionic Kähler manifold in four dimensions

though, a subtlety is involved. Since SO(4) ∼= Sp(1)Sp(1), every 4-dimensional

manifold would be quaternionic Kähler by the definition above, but some of the

properties of the higher dimensional analogue donot carry over to dimension four

with this definition. This is rectified by demanding that in addition to being Ein-

stein, the manifold is also self-dual (A four-dimensional manifold is self-dual if the

Weyl curvature tensor is self-dual).
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3.4.1 Swann Bundles

Let F denote the Sp(n)Sp(1) reduction of the principal frame bundle PSO(4n) of

N . Then S(N) = F/Sp(n) is a principal SO(3)-bundle, which is a frame bundle of

the three dimensional vector subbundle of skew symmetric endomorphisms of TN .

The Sp(1) action on H (by left multiplication) descends to an isometric action of

SO(3) on H∗/ ± 1. If N has a strictly positive scalar curvature, then the Swann

bundle over N is defined to be the principal H∗/Z2-bundle over N

U(N) := S(N)×SO(3) H∗/Z2 −→ N.

Remark 3.4.1. Given a a quaternionic kähler manifold N with positive scalar

curvature, the total space of U(N) obtains a Riemann metric given by gU(N) =

gH∗/Z2 +r2gN where r is the radial co-ordinate on H∗/Z2 and gH∗/Z2 is the quotient

metric obtained from H. One can alternatively write the total space of Swann

bundle as U(N) = (0,∞) × S(N) and its metric as gU(N) = dr2 + r2(gN + gRP3),

where gRP3 is the quotient metric on RP3 obtained from its double cover S3. (H∗/Z2

is a metric cone over RP3). This implies that U(N) is a metric cone over S(N),

with gS(N) = gN + gRP3 and hence, S(N) is a 3-Sasakian manifold. (A Riemann

manifold is 3-sasakian if its metric cone is hyperkähler.)

Theorem 3.4.1 ([Swa91]). Let N be a quaternionic Kähler manifold with a pos-

itive scalar curvature. Then U(N) is a hyperKähler manifold with a permuting

Sp(1) action and X2 = 0 holds. Additionally, U(N) has a hyperKähler potential

given by

ρ0 =
1

2
r2.

3.4.2 Orbit Spaces

Let G be a compact, simply connected, simple Lie group and and let GC denote

its complexification. Analogously, denote by g the Lie algebra of G and gC its

complexification. Let h ⊂ gC be a Cartan subalgebra and let Π+ be the set of

positive roots. Let sl(2,C) denote the Lie algebra of SL(2,C). We know that

sl(2,C) is generated by:

H =

[
1 0

0 −1

]
, E =

[
0 1

0 0

]
, F =

[
0 0

1 0

]
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satisfying

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

For any β ∈ Π+, by Jacobson-Morozov theorem2, we can find a distinguished

subalgebra sβ, generated by the triple (Hβ, Eβ, Fβ), corresponding respectively to

the images of (H,E, F ) under the Lie algebra embedding

λCβ : sl(2,C) ↪→ gC.

The real structure on su(2) ⊗ C and g ⊗ C commutes with λCβ which gives us an

embedding of su(2) ∼= sp(1) in g. Note that Fβ = λCβ (F ) is a nilpotent element in

gC.

Let α denote the highest root. Consider the adjoint action of GC on gC. Fα de-

termines the nilpotent orbit Oα = GC · Fα. Kronheimer [Kro90] shows that any

nilpotent adjoint orbit of the complexification of a compact semisimple and con-

nected Lie group has a natural hyperKähler structure. Futhermore, Oα admits a

homothetic H∗-action and is a Swann bundle over some homogeneous quaternionic

Kähler space, which has to be a homogeneous G-space, i.e. a Wolf space [Swa91].

2 Jacobson-Morozov Theorem([Jac51]): Let g be a semi-simple Lie algebra and E be a nilpotent element

in g. Then there exist elements Y,H, such that the sub-algebra that is generated by {E, Y,H} is isomorphic to

sl(2,C).



4. Generalized Dirac Operator

“Stands at the sea... wonders at wondering... I...

a universe of atoms... an atom in the universe.”

– R. Feynman, “The Value of Science”, The Pleasure of Finding Things Out

In this chapter we introduce the non-linear Dirac Operator in dimension four

in Section 4.3. We analyze the effect of conformal change of metric on the base

manifold in Section 4.4 for a class of hyperKähler manifolds for which ρ2 = 0.

We introduce the Fueter operator and quaternionic maps in Section 4.6 and study

their relation with the harmonic spinors. An exposition on the same may be found

in [Hay08].

4.1 SpinGε (n)-structure

The first ingredient we need in order to define the non-linear Dirac operator, is a

SpinGε (n)-structure. This is a generalization of the familiar Spin(n) and Spinc(n)-

structure, where in the latter case, the group S1 is now replaced by a compact Lie

group G. Throughout, we shall assume n ≥ 3.

4.1.1 The group SpinGε (n)

Let G be a compact Lie group and ε be an element of order two in the centralizer

Z(G) of G. The element (−1, ε) ∈ Spin(n) × G generates a normal subgroup of

order two, denoted by 〈(−1, ε)〉. We define SpinGε (n) = Spin(n)×±1 G. We have

the following exact sequence:

0 // 〈(−1, ε)〉 // SpinGε (n)
ΠG // SO(n)×G/{ε} // 0 (4.1.1)

where ΠG is the quotient map.

35
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Example 4.1.1. A familiar case is when G = S1 and ε = −1.

Then Spin(n)×±1 S
1 = Spinc(n).

Since G is a normal subgroup of SpinGε (n), we get the following short-exact

sequence:

0 // G // SpinGε (n) // SO(n) // 0

4.1.2 SpinGε (n) structure

Let X be a n-dimensional Riemann manifold. Let PSO(n) −→ X denote the

principal frame bundle over X. Then a SpinGε (n)-structure over X is a principal

SpinGε (n)-bundle, which is an equivariant double cover Q
2:1−→ PSO(n) ×X PG/{ε},

along with principal G/{ε}-bundle PG/{ε} −→ X. We denote by

πSO(n) : QSpinGε (n) −→ PSO(n)

πG/{ε} : QSpinGε (n) −→ PG/{ε}

In general, the PG/{ε} does not lift to a principal G-bundle PG −→ X. The

obstruction can be understood in terms of Čech cohomology class. Let {Uα}
denote a cover of X such that Uα ∩ Uβ is contractible. Let gαβ : Uα ∩ Uβ −→
G/{ε}. Then {gαβ}α,β∈I := g ∈ Ȟ1(X,G/{ε}). Let gαβ : Uα ∩ Uβ −→ G/{ε}
be any representative of g. Since Uα ∩ Uβ is contractible, gαβ can be lifted to

g̃αβ : Uα ∩ Uβ −→ G. By the exactness of the sequence :

0 // Z2
// G // G/{ε} // 0

we get that ηαβγ := g̃αβ g̃βγ g̃βγ : Uα ∩ Uβ ∩ Uγ −→ {1, ε}. In other words, {ηαβγ} is

a Čech cocycle and represents a cohomology class wG ∈ Ȟ2(X,Z2). This defines

the map wG : Ȟ1(X,G/{ε}) −→ Ȟ2(X,Z2). The lift of g to g̃, fulfills the cocycle

condition iff

wG(PG/{ε}) = 0 (mod 2).

In the Spin(n)-case, wG is known to be the second Steifel-Whitney class w2, which

is the obstruction to lifting the principal SO(n)-bundle to Spin(n)-bundle.
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By the same reasoning, the short exact sequence (4.1.1) implies that a SpinGε (n)

structure over X will exist iff wSpinGε (n)(PSO(n) ×X PG/{ε}) = 0 (mod 2). By natu-

ralness of constructions:

wSpinGε (n)(PSO(n) ×X PG/{ε}) = w2(PSO(n)) + wG(PG/{ε}).

4.2 Generalized Spinors

Let X be four dimensional manifold and (M, gM , I1, I2, I3) be a hyperKähler man-

ifold. The action of the group SpinGε (3) on M is said to be permuting if the action

of Spin(3) ∼= Sp(1) on M is permuting and the action of G is hyperKähler. Denote

by ϑ+ the homomorphism SpinGε (4) −→ SpinGε (3) given by [q+, q−, g] 7−→ [q+, g].

We say that the action of SpinGε (4) is permuting if the action is induced by a

permuting action of SpinGε (3) via the homomorphism ϑ+. Recall that given a

hyperKähler structure, it induces a covariantly constant algebra homomorphism:

I : H −→ End(TM)

h 7−→ h0 IdTM + h1I1 + h2I2 + h3I3 := Ih.

We define W+ to be the SpinGε (4)-equivariant bundle TM −→ M equipped with

an action induced by ϑ+. More precisely, for any w+ ∈ W+, the action is given by:

[q+, q−, g] · w+ = Tq+Tgw+.

Define the W− to be the SpinGε (4)-equivariant bundle TM −→ M equipped

with the following action:

[q+, q−, g] · w− = Iq− Iq̄+Tq+Tg w−.

One can check that this defines a left action of SpinGε (4).

Let Q −→ X denote the principal SpinGε (4) bundle over X. Then we define the

space of generalized spinors to be S := C∞(Q,M)Spin
G
ε (4). Generalized spinors

can be interpreted as smooth sections Γ(X,Q×SpinGε (4) M).

In case of G = S1 and M = H, this is nothing but the space of positive spinors

S+.
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Proposition 4.2.1. [Cal10] The space of spinors S is an infinite-dimensional,

smooth, Fréchet manifold. The tangent at a point u ∈ S is given by

TuS = C∞c (Q, TM)Spin
G
ε (4)

u := {w ∈ C∞c (Q, TM)Spin
G
ε (4) | πM ◦ w = u}.

If the base manifold X is compact, then the tangent bundle of S is given by

TS = C∞(Q, TM)Spin
G
ε (4).

4.3 Non-linear Dirac Operator

4.3.1 Clifford Multiplication

Recall that, if W is a Cln-module, restricting it to Spin(n), Clifford multiplication

is a map of Spin(n)-representations:

m : Rn −→ End(W).

Henceforth, we shall restrict ourselves to the case n = 4.

In order to define the generalized Dirac operator, we need to define the appropriate

Clifford multiplication. The isomorphism Spin(4) ∼= Sp(1)+× Sp(1)− induces the

isomorphism

SpinGε (4) ∼= (Sp(1)+ × Sp(1)−)×±1 G

We identify R4 with H by mapping the standard, oriented basis (e1, e2, e3, e4) of

R4, to (1, ī, j̄, k̄). The hyperKähler structure on H is given by (Rī, Rj̄, Rk̄) and the

SpinGε (4) action on H by [q+, q−, g] · h = q−hq̄+. Define the map

m : R4 ∼= H −→ End(W+ ⊕W−)

h 7−→

[
0 −Ih̄
Ih 0

]
Since m(h)2 = −gR4(h, h) · idW+⊕W− , by universality property, extends to a map

of algebras m̃ : Cl4 −→ End(W+ ⊕W−). Identifying R4 with (R4)∗ we define

Clifford multiplication by:

c : (R4)∗ ⊗ (W+ ⊕W−) −→ W+ ⊕W−

gR4(h, ·)(w+, w−) 7−→ m(h)(w+, w−).

This map is SpinGε (4)-equivariant [Sch10].
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4.3.2 The Covariant derivative

Let (X, gX) be a compact, oriented, Riemann manifold and let G be a compact Lie

group. Let ε ∈ Z(G) be an element of order two. Denote by PG/{ε} −→ X principal

G/{ε}-bundle over X. Furthermore assume that wSpinGε (4)(PSO(4) ×X PG/{ε}) = 0

and let Q
πX−→ X a principal SpinGε (4)-bundle over X. Let M be a hyperKähler

manifold with a permuting action of the group SpinGε (4).

The Levi-Civita connection ϕ on PSO(4)

πSO(4)−−−−→ X and a connection B on PG/{ε}-

bundle define uniquely a connection A := π∗Q(ϕ⊕B) on Q, where πQ is the double

cover Q
πQ−→ PSO(4) ×X PG/{ε}.

Let C (Q) denote the space of smooth connections on the bundle Q and A ⊂
C (Q) denote the space of all connections which are the lift of the Levi-Civita con-

nection. More precisely, if spinGε (4) denotes the Lie algebra of the group SpinGε (4)

and g denotes the Lie algebra of the group G, then

spinGε (4) ∼= spin(4)⊕ g ∼= so(4)⊕ g.

Therefore, A = {A ∈ C(Q) | prso(4) ◦ A = π∗SO(4)ϕ}.

The covariant derivative of a generalized spinor u ∈ S , w.r.t a connection A ∈ A ,

is given by :

DA : C∞(Q,M)Spin
G
ε (4) −→ C∞(Q, (R4)∗ ⊗ TM)Spin

G
ε (4)

〈DAu(p), w〉 = Tu(w̃)|p

where, w ∈ R4, and w̃ denotes the horizontal lift of πSO(4)(p)(w) ∈ TπX(p)X.

Define the homomorphism of vector bundles

KM
A |u : T ∗Q −→ u∗TM

KM
A |u(v) = KM

A(v)|u(q) ∈ Tu(q)M

where, v ∈ TqQ and KM
η is a fundamental vector field on M , corresponding to

η ∈ spinGε (4).

Using the map KM
A |u, we can alternatively write the covariant derivative as

DAu = Tu+KM
A |u ∈ C∞(Q, (R4)∗ ⊗ u∗W+)Spin

G
ε (4).
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Remark 4.3.1. Let A1 and A2 be any two connections on Q, such that A1 =

A2 + α. Then for v ∈ TqQ,

KM
A1
|u(v) =

d

dt
exp tA1(v)|t=0 =

d

dt
exp(tA2(v) + tα(v))|t=0

=
d

dt

(
exp(tA2(v)

)(
exp(tα(v))

)
|t=0

= KM
A2
|u(v) +KM

α |u(v).

4.3.3 The Dirac Operator

Composing Clifford multiplication c with the covariant derivative, we get the non-

linear Dirac operator :

/DAu ∈ C∞(Q, u∗W−) (4.3.1)

The Dirac operator can be better understood as follows:

Define the configuration space C = S×A . Then this a left G := C∞(Q,G)Spin
G
ε (4)-

space. The group G is a normal subgroup of the full gauge group C∞(Q,SpinGε (4))Spin
G
ε (4).

Define W− = C∞(Q,W−)Spin
G
ε (4). Then W− is a G -equivariant vector bundle over

S with the fibre at a point u ∈ S being given by C∞(Q, u∗W−) [See Prop. 4.2.1].

Hence, for a connection A ∈ A on Q, the Dirac operator defines a G -equivariant

section of the vector bundle W−.

For more literature on the three and four dimensional non-linear Dirac operator,

we refer the interested reader to [Tau99], [Pid04], [Sch10] and [Cal10].

4.4 Conformal property of the non-linear Dirac

operator

Let X be a four-dimensional, compact Riemann manifold and for a fixed metric

g on X, let [g] denote the conformal class of g. let f ∈ C∞(X,R). In the linear

case, for two conformally related metrics, g & e2fg, let ϕ and ϕ′ be the associated

Levi-Civita connections. Then the corresponding Dirac operators are related as1

/Dϕ′(Bu) = B
(
e−

5
2
f /Dϕ(e

3
2
fu)
)

(4.4.1)

1 To the author’s knowledge, this formula was first computed by Hitchin [Hit74].
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where u is a spinor and the B denotes an isomorphism of the principal bundles of

frames PSO(4)
e−f−−→ PSO(4), corresponding to the metrics g & e2fg respectively.

4.4.1 The CSpinGε (4) structure

The conformal group CO(n) is defined to be R+ × SO(n). The double cover

λ : Spin(n) −→ SO(n) extends to a double cover

0 // Z2
// CSpin(n) Π̃ // CO(n) // 0 (4.4.2)

where, CSpin(n) := R+×Spin(n). By the same argument, if we define the group

CSpinGε (n) := R+ × SpinGε (n), the double cover 4.1.1 extends to a double cover

0 // Z2
// CSpinGε (n)

Π̂G // CO(n)×G/{ε} // 0 (4.4.3)

where Π̂G is the quotient map.

Definition 4.4.1. (Conformal frame bundle) A conformal frame bundle over

an n-dimensional Riemann manifold N is a reduction of the principal frame bundle

to the conformal group CO(n) ⊂ GL(n).

Definition 4.4.2. (Conformal Spin structure) A conformal Spin structure

over an n-dimensional Riemann manifold N is a principal CSpin(n)-bundle, which

is a lift of the conformal frame bundle PCO(n) corresponding to the double cover

Π̃ in (4.4.2).

Remark 4.4.1. A conformal spin structure will exist iff a spin-structure exists on

the base manifold. A choice of a conformal spin structure is equivalent to choosing

a spin-structure on the manifold.

Analogous to the conformal spin structure, we are now in a position to define

the conformal SpinGε (n) structure:

Definition 4.4.3. (CSpinGε (n)-structure) A CSpinGε (n)-structure over an n-

dimensional Riemann manifold N is a principal CSpinGε (n)-bundle, which is a a

lift of the principal bundle PCO(n) ×N PG/ε corresponding to the double cover Π̂G

in (4.4.3).
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4.4.2 Generalized Dirac operator & Conformal change of

metric

Henceforth, we shall assume that X is a four-dimensional, compact Riemann man-

ifold. Let PCO(4)
πCO−−→ X be the bundle of conformal frames on (X, [g]). A metric

on X is a section g ∈ Γ(X,S2(T ∗X)). Fix a metric g on X. For f ∈ C∞(X,R),

consider the metric g′ = e2π∗fg in the conformal class of g. The two sections cor-

respond to the reductions PSO(4) → PCO(4) and P ′SO(4) → PCO(4) respectively, are

given by:

PSO(4) = {p ∈ PCO(4)|gR4(θp, θp) = π∗g(·, ·)}
P ′SO(4) = {p ∈ PCO(4)|gR4(θp, θp) = π∗(e2(π∗f)g)(·, ·)}

where, gR4(·, ·) is the standard metric on R4 and θ is the canonical one form on

PCO(4) defined by

θp(v) = p−1(πCO(v)),

for p ∈ PCO(4) and v ∈ TpPCO(4). Note that π∗g ∈ Γ(PCO(4), S
2(R4)∗). Let ϕ be a

connection on the principal bundle PCO(4) −→ X such that:{
(d+ ϕ)g = 0

(d+ ϕ)θ = 0
(4.4.4)

Then ϕ is the Levi-Civita connection w.r.t the metric g. Let ϕ′ denote the Levi

Civita connection w.r.t the metric g′ and

ϕ′ − ϕ = 〈θ, ξ〉 where ξ ∈ (R4)∗ ⊗ co(4) (4.4.5)

where co(4) is the lie algebra of CO(4) = SO(4) × R+. The covariant derivative

of the metric g′ w.r.t ϕ is given by:

(d+ ϕ)(g′) = (d+ ϕ)e2(π∗f)g

= −e2(π∗f)2(π∗df)g + e2(π∗f)dg + e2(π∗f)ϕ · g
= −e2(π∗f)2(π∗df)g + e2(π∗f)(d+ ϕ)g

= −e2(π∗f)2(π∗df)g.

Note: The left action of Aut(R4) y S2(R4)∗ is given by

S2(R4)∗ 3 g 7−→ b · g(·, ·) := g(b−1, b−1),
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where b ∈ Aut(R4). Therefore the action of an element ζ ∈ Lie(Aut(R4)) is given

by ζ · g = −g(ζ, ·) − g(·, ζ). That is the reason we have a negative sign in the

second line. If ζ ∈ R = Lie(R+) ⊂ Lie(Aut(R4)), then ζ · g = −2g(ζ, ·).
This implies (d + ϕ + (π∗df) ⊗ IdR4)(e2(π∗f)g) = 0. But the torsion of the

connection one-form ϕ+ (π∗df)⊗ IdR4 is non-zero, since

(d+ ϕ+ (π∗df)⊗ IdR4)θ = 〈π∗df, θ〉

0 // Z2
// CSpinGε (n)

Π̂G // CO(n)×G/{ε} // 0

To find the expression for ϕ′, in terms of ϕ, such that the torsion of ϕ′ vanishes,

we need to find a one form β ∈ Ω1(P ′SO(4), so(4))SO(4) so that

(d+ ϕ+ (π∗df)⊗ IdR4 + β)θ = 0.

Let T = dθ+ [ϕ, θ] and T ′ = dθ+ [ϕ′, θ] denote the torsions of the connections

ϕ and ϕ′ respectively. Then

T ′ − T = [ϕ′ − ϕ, θ].

If Dp denotes the horizontal subspace at a point p ∈ PCO(4), the torsion at p is the

map T (p) : Λ2Dp
∼= Λ2R4 dθ−→ R4 and

T ′(p)xy − T (p)xy =
1

2
(ξ(p)xy − ξ(p)yx) x, y ∈ R4,

where ξ is as in (4.4.5). The first term signifies the result of applying the torsion

to x ∧ y. In terms of the GL(4,R)-equivariant homomorphism:

δ : (R4)∗ ⊗ co(4) ↪→ (R4)∗ ⊗ (R4)∗ ⊗ R4 7→ Λ2(R4)∗ ⊗ R4, the first map being

the inclusion and the second one being the anti-symmeterization, we may write:

[Sal89]

T ′ − T = −δξ.

For simplicity, we shall use the abbreviation Λk for the space Λk(Rn)∗. We know

that (R4)∗⊗co(4) = (R4)∗⊗so(4)⊕(R4)∗⊗C· IdR4 . There is a natural isomorphism

so(n) ∼= Λ2(Rn)∗ obtained by associating to a pair of vectors v, w ∈ Rn, the skew-

symmetric endomorphism

v ∧ w = 〈v, ·〉w − 〈w, ·〉v. (4.4.6)
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It is easy to see that δ|so(4) : Λ1(R4)∗ ⊗ Λ2(R4)∗ 7→ Λ2(R4)∗ ⊗ Λ1(R4)∗ is an

isomorphism. Therefore

δ−1|so(4)(
∑
j

ei ⊗ ej ⊗ ej − ej ⊗ ei ⊗ ej)− (
∑
j

ej ⊗ ej ⊗ ei − ej ⊗ ei ⊗ ej). (4.4.7)

From the computations above for the connections ϕ and ϕ′, we know that

ξ = π∗df . So,

Tor
(
ϕ+ π∗(df)− δ|−1

so(4)(δ(π
∗df))

)
− Tor(ϕ) = −δ(π∗df)− δ(−π∗df) = 0.

The map π∗(df) ∈ C∞(PCO(4),(R4)∗). For p ∈ PCO(4) and a basis element ei ∈
R4, define fi(p) = π∗df(p̃(ei)), where p̃(ei) is the horizontal lift of p(ei) with

respect to ϕ. Thus fi ∈ C∞(PCO(4),R). Hence we can write π∗(df) =
∑

i fie
i ∈

C∞(PCO(4), (R4)∗). Computations (4.4.7) show that

δ|−1
so(4)

(
δ(π∗df)

)
= −

∑
i,j

fi(e
j ⊗ ej ⊗ ei − ej ⊗ ei ⊗ ej)

and so

Tor(ϕ+ π∗(df) +
∑
i,j

fi(e
j ⊗ ej ⊗ ei − ej ⊗ ei ⊗ ej)) = 0.

Using the isomorphism (4.4.6):

ϕ′ = ϕ+π∗(df)+
∑
i,j

fi(e
j⊗ej⊗ei−ej⊗ei⊗ej) = ϕ+π∗(df)⊗ C · IdR4 +

∑
i,j

fie
j ⊗ (ei ∧ ej)︸ ︷︷ ︸

α

.

(4.4.8)

Proposition 4.4.1. ([LM89] Prop. 6.2, Chap. I) The adjoint representation

induces the Lie algebra isomorphism ζ : spin(n) −→ so(n) is given by:

ζ(eiej) = 2ei ∧ ej,

where, {eiej}i<j are the basis elements of spin(n). Consequently for v, w ∈ Rn,

ζ−1(v ∧ w) =
1

4
[v, w].

Therefore for ei ∧ ej ∈ Λ2Rn, ζ−1(ei ∧ ej) = 1
4
(eiej − ejei). Under this isomor-

phism,

π∗(df)⊗C · IdR4 +
∑
i,j

fie
j⊗ (ei∧ej) 7−→ π∗(df)⊗C · IdR4 +

1

4

∑
i,j

fie
j⊗ (eiej−ejei),

and denoted again by α.
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Let Q be the principal CSpinGε (4)-bundle over X. Recall that for a quaternionic

Kähler manifold N of strictly positive scalar curvature, the Swann bundle over N

can be written as a Riemann cone U(N) = R+×S(N), where S(N) is a 3-Sasakian

manifold. Therefore, we have an action of R+ × Sp(1) on U(N) = [0,∞]× S(N)

given by:(
R+×Sp(1)

)
×R+×S(N) −→ R+×S(N),

(
(λ, q)(r, s)

)
7−→ (λ ·r, q ·s). (4.4.9)

Let M = U(N) for some quaternionic Kähler manifold N of strictly positive

scalar curvature and u ∈ C∞(Q,M)Spin
G
ε (4) be a spinor.

Let Aϕ and Aϕ′ , be the respective lifts of the Levi-Civita connections ϕ and

ϕ′ to Q, for a fixed connection B on PG/ε-bundle. We conclude from (4.4.8) and

Remark 4.3.1

DAϕ′
u = DAϕu+KM

α |u ∈ C∞
(
Q, (R4)∗ ⊗ u∗TM

)
. (4.4.10)

The target manifold M admits a hyperkähler potential ρ0, given by ρ0(x) =

gM(X0|x,X0|x). Let λ ∈ R∗. Then

ρ0(eλx) =
1

2
gM(X0|eλx,X0|eλx) =

1

2
e2λgM(X0|x,X0|x) = e2λρ0(x).

So
d

dt
ρ0(e2tλx)|t=0 = dρ0(

d

dt
(e2tλx)) = 2dρ0(KM,R+

λ )|x = gM(X0|x, KM,R+

λ |x).

But
d

dt
ρ0(e2tλx)|t=0 =

d

dt
(e2tλ)ρ0(x) = 2λρ0(x) = gM(X0|x,X0|x).

This gives λgM(X0|x,X0|x) = λgM(X0|x, KM,R+

λ |x) for every x ∈ M . This implies

KM,R+

λ = λX0.

Theorem 4.4.1. Let X be a four dimensional Riemann manifold and M be the

total space of a Swann bundle. Let f ∈ C∞(X,R). Then the Dirac operators

/DAϕ and /DAϕ′
, associated to the two conformally related metrics g  g′ := e2π∗fg

respectively, acting on a spinor u ∈ C∞(PCSpin(4),M)CSpin(4) are related as:

/DAϕ′
(Bu) = B

(
Te−5/2π∗f /DAϕ(e3/2π∗fu)

)
where, B is the lift of the isomorphism B : PCO(4) −→ PCO(4), given by

p 7−→ e−π
∗fp.

Before we give the proof of the theorem, we need the following Lemma.
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Lemma 4.4.1. For f ∈ C∞(X,R), we have

/DA(e−π
∗fu) = Te−π

∗f /DAu− c(dπ∗f)X0 (4.4.11)

for A, u as in Theorem (4.4.1).

Proof : Let p ∈ Q and v ∈ TpQ. Let γ : [0, 1] −→ Q be a curve in Q such

that γ(0) = p and γ̇(0) = v. Evaluating the covariant derivative of fu for v:

DA(e−π
∗fu)(v) = T (e−π

∗fu)(v) +KM
A(v)|e−π∗f(p)u(p)

The first term is given by:

T (e−π
∗fu)(v) =

d

dt

(
e−π

∗fu
)
(γ(t))|t=0

=
d

dt

(
e−π

∗f((γ(t))u(γ(t))
)
|t=0

= Te−π
∗f(p)Tu(v) +KM

Teπ∗f d
dt

(e−π∗f((γ(t)))|t=0
|eπ∗fu(p)

= Te−π
∗f(p)Tu(v) +KM

(Teπ∗fTe−π∗f )(−dπ∗f( ˙(γ(0))))|t=0
|eπ∗fu(p)

= Te−π
∗f(p)Tu(v) +KM

(−dπ∗f ˙(γ(0))
|eπ∗fu(p)

= Te−π
∗f(p)Tu(v) + (−dπ∗f ˙(γ(0))X0|eπ∗fu(p)

Here Te−π
∗f denotes the differential of the action of e−π

∗f on M . The second term

is

KM
A(v)|e−π∗f(p)u(p) = Te−π

∗f(p) KM
A(v)|u(p)

This gives

DA(e−π
∗fu) = Te−π

∗f DAu− d(π∗f)⊗X0|e−π∗fu

Applying Clifford multiplication, proves the Lemma.

We now give the proof of the Theorem (4.4.1) .

Proof : Let c denote the Clifford muliplication w.r.t the metric g. Then w.r.t the

metric e2π∗fg in the conformal class of g, the Clifford multiplication is given by c′ =

Te−π
∗fc. Substituting for α in (4.4.10) and applying the Clifford multiplication

we get:

/DAϕ′
u = Te−π

∗f
(
/DAϕu+ c(π∗df)X0|u + c(K

M,CSpin(4)
1
4

∑
i,j fie

j⊗(eiej−ejei)
)|u
)
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= Te−π
∗f
(
/DAϕu+ c(π∗df)X0|u +K

M,CSpin(4)
1
4

∑
i,j fi(ejeiej−ejejei)

|u
)

= Te−π
∗f
(
/DAϕu+ c(π∗df)X0|u +K

M,CSpin(4)
1
4

(4
∑
i fiei−2

∑
i,j fiejδi,j+4

∑
i fiei)
|u
)

= Te−π
∗f
(
/DAϕu+ c(π∗df)X0|u +K

M,CSpin(4)
3
2

∑
i fiei

|u
)

= Te−π
∗f
(
/DAϕu+ c(π∗df)X0|u +K

M,CSpin(4)
3
2
π∗(df)

|u
)

= Te−π
∗f ( /DAϕu+ c(π∗df)X0|u +

3

2
π∗df · X0|u)

But

/DAϕ′
(e−π

∗fu) = Te−π
∗f (Te−π

∗f /DAϕu+ Te−π
∗f 3

2
π∗df · X0|u)

= Te−π
∗f
(
Te−

5
2
π∗f /DAϕ(e

3
2
π∗fu)

)
This gives

/DAϕ′
(Bu) = B

(
Te−5/2π∗f /DAϕ(e3/2π∗fu)

)
. (4.4.12)

4.5 Weitzenböck Formula

Let M = Hn+1 endowed with a permuting action of SpinGε (4), where G = SU(n+

1). Let B be any fixed connection on the PG/{ε} and let A ∈ A be a connection on

Q determined by B. The following is a special case of Weitzenböck formula proved

in [Sch10] for M = Hn.

Proposition 4.5.1 (Weitzenböck Formula). Let X be a four dimensional, ori-

ented, Riemann manifold. Let πQ : Q −→ X be a principal SpinGε (4)- principal

bundle over X. Let A be any connection on Q determined by the Levi-Civita con-

nection on PSO(4) −→ X and a connection B on PG/±1 −→ X. Denote by /DA

the twisted Dirac operator determined by the connection A. Then for any spinor

u ∈ C∞(Q,W+), we have:

/D
∗
A
/DAu = D∗ADAu+

1

4
sXu+ c(F+

B )u. (4.5.1)

Corollary 4.5.1. Let X compact, oriented Riemann manifold with a SpinGε (4)-

structure and let A be the connection as in the above proposition. Let µSU(n+1) be
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the moment map for the SU(n+ 1) action. Then,

‖ /DAu‖2
L2 = ‖DAu‖2

L2 +
1

4
sX‖u‖2

L2 + 2

∫
X

〈µSU(n+1) ◦ u, F+
B 〉 volX . (4.5.2)

Proof : First observe that an oriented orthonormal basis for Λ2
+R4 is given by:

η1 =
1

2

(
e0 ∧ e1 + e2 ∧ e3

)
, η2 =

1

2

(
e0 ∧ e2 − e1 ∧ e3

)
, η3 =

1

2

(
e0 ∧ e3 + e1 ∧ e2

)
.

Identifying (Cl04)+ with H as in (2.5.2), we have c(η1) = e0e1+e2e3
2

= I1. Similarly,

c(η2) = I2 and c(η3) = I3. Note that we may write F+
B =

∑3
l=1〈F

+
B , ηl〉Λ2

+
ηl.

Therefore, we have c(F+
B )u =

∑
l Il〈F

+
B , ηl〉u. Let {ζl}3

l=1 denote the basis elements

of sp(1). Then (−uī), (−uj̄) and (−uk̄) are the fundamental vector fields at u(·)
generated by ζ1, ζ2 and ζ3 respectively. We can write u = −uī̄i = −I1uζ̄1 and

similarly for j, & k.

〈c(F+
B )u, u〉Hn+1 =

∑
l

〈
Il〈F+

B , ηl〉u,−Il(uζ̄l)
〉
Hn+1

=
∑
l

〈
〈F+
B , ηl〉u, uζ̄l

〉
Hn+1

= 2
∑
l

µSU(n+1)

(
〈F+
B , ηl〉 ⊗ ζl

)
|u

= 2〈µSU(n+1) ◦ u, F+
B 〉

The claim follows by taking an inner product with a spinor u on both sides of the

eqn. (4.5.1) and from the above computations.

4.6 Fueter operator and the generalized Dirac

operator

4.6.1 Algebraic Preliminaries

Let (V, I1, I2, I3) and (W,J1, J2, J3) be two quaternionic vector spaces. Let f :

V −→ W be a linear map. Consider the R-linear operator of R-vector spaces

F : HomR(V,W ) −→ HomR(V,W )

F (f) =
∑3

i=1 Jk ◦ f ◦ Ik.
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The operator F is called Fueter operator. This was first introduced by R. Fueter

[Fue35] in order to study the quaternionic analogue of Cauchy-Riemann equations.

Lemma 4.6.1. The Fueter operator satisfies the following properties:

1. F 2 + 2F − 3 = 0

2. The eigen-values of F are {−3, 1}.

It is a straight forward computation the verify (1) and claim (2) follows from

(1). The Fueter operator decomposes the space HomR(V,W ) into a direct sum of

two subspaces corresponding to the eigen-values {−3, 1}. The maps corresponding

to the eigen-value −3 are H-linear.

Corollary 4.6.1. (F − 1)f is H-linear for all f ∈ HomR(V,W )

Corresponding to the eigenvalues {−3, 1}, we have the decompostionHomR(V,W ) =

U−3 ⊕ U+1. Observe that (F + 3)(F − 1)f = 0. Therefore (F − 1)f ∈ U−3 and is

H-linear. We say that a map f ∈ HomR(V,W ) is aholomorphic if (F − 1)f = 0.

4.7 A brief survey on Aholomorphic maps

4.7.1 Stationary Harmonic maps

Let (M, gM) and (N, gN) be any two compact Riemann manifolds. By Nash’s

isometric embedding theorem, we assume that N is isometrically embedded in

some RK . Let N ↪→ V ⊂ RK , be a neighbourhood of N such that the nearest

point projection Π : V −→ N is smooth and well-defined. Define the one parameter

family of maps us = Π(u + sξ), where ξ ∈ C∞(M,RK) and s ∈ (−ε, ε) for some

ε > 0. Observe that for a small enough s, u+ sξ ∈ V . Define W 1,2(M,N) = {f ∈
W 1,2(M,RK) | f(x) ∈ N for a.e x ∈ M}. For u ∈ W 1,2(M,N), define the energy

functional

E(u) =
1

2

∫
M

‖du‖2dvolM ,

where du : TM −→ RK . Then u is said to be weakly harmonic if for any ξ ∈
C∞(M,RK), we have

d

ds
E(us)|s=0 = 0 (4.7.1)
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in a weak sense. Or equivalently, is a weak solution of the associated Euler-

Lagrange equation:

∆u+ A(u)(du, du) = 0 (4.7.2)

where, ∆ is the usual Laplacian and A(u)(du, du) ∈ (TuN)⊥ is the second funda-

mental form on N . Observe that the system 4.7.2 is a non-linear system which

is quadratic in first derivative. This non-linearity results in the loss of analytic

properties of harmonic maps such as existence, regularity, etc. unless, we add

some extra hypothesis. This is done by considering a second type of variation.

Let φt : M −→ M be a C1-family of diffeomorphisms such that φ0 = IdM . Let

u ∈ W 1,2(M,N) and us = u ◦ φs. Then u is said to be stationary if for any family

of diffeomorphisms {φt}, satifying φ0 = IdM , it is a weak solution to

d

ds
E(us)|s=0 = 0 (4.7.3)

In addition, if u is weakly harmonic, then it is said to be stationary harmonic.

Theorem 4.7.1. [Sch84] Let n = dimRN and u ∈ C2(Bρ(x), N), for some x ∈M ,

be such that E(u) ≤ Υ. Then, there, exists some ε > 0, depending only on Υ, n,N ,

such that if

ρ2−n
∫
Bρ(x)

‖du‖2dvolM ≤ ε,

then there exists a constant C ′ = C ′(Υ, n,N) the following inequality holds:

sup
Bρ/2(x)

‖du‖2 ≤ C ′ ρ−n
∫
Bρ(x)

‖du‖2dvolM .

Let m = dimRM . Define the set F = {u ∈ W 1,2(M,N) | E(uk) ≤ C}. Let

uk ∈ F be a sequence of maps converging weakly to a map u ∈ W 1,2(M,N).

Define the blow-up set of {uk} as in [Sch84]:

Σ =
⋂
r>0

{x ∈M | lim inf
k→0

r2−m
∫
Br(x)

‖duk‖2dy ≥ ε0} (4.7.4)

where the ε0 is given by Theorem 4.7.1.

Corollary 4.7.1. [Sch84] The set Σ is a closed singular set of locally finite Haus-

dorff measure (m − 2) in M and any map u in the weak W 1,2- closure of F is

smooth and harmonic on M \ Σ.
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Consider the Radon measure µi = ‖dui‖2dvolM . Then without the loss of

generality, we can assume that µi ⇀ µ. Fatou’s lemma2 implies µ = ‖du‖2dvolM +

ν, where ν is some non-negative Radon measure. For a map u ∈ W 1,2(M,N),

define the regular and the singular sets by:

reg(u) = {x ∈M | u is regular in the neighbourhood of x}
sing(u) = M \ reg(u).

Theorem 4.7.2. [Lin99] The set Σ is an Hm−2-rectifiable set 3, where Hm−2

denotes the m− 2-dimensional Hausdorff measure and :

1. Σ = spt(ν) ∪ sing(u).

2. ν(x) = Θ(x)Hm−2(Σ)

where Θ is an Hm−2-measurable function.

Since Σ is Hm−2-rectifiable, we can write it as a countable disjoint union Σ =

∪∞j=0Mj where each Mj for j ≥ 1 is Hm−2 measurable, Hm−2(M0) = 0 and each

Mj ⊂ Nj, where Nj is an embedded (n−2)-dimensional C1-submanifold of Rm−2+k

for some k ∈ N. Let U be an open subset of Rm−2+k. For a locally Lipschitz

function f on U , we can define the gradient operator ∇Σf , Hm−2 a.e as

∇Σf(x) = ∇Njf(x)

for x ∈Mj (cf. Section 12.1, [Sim83]) and hence the divergence operator divΣX =∑m−2
j=1 (∇Σ

ej
X) ·ej, where {ej}m−2

j=1 is an orthornormal basis at TxΣ and x ∈ Σ. Here

TΣ is defined in the sense of Theorem 11.8 of [Sim83].

Theorem 4.7.3. [LT98] Let uk ∈ F be a sequence of stationary harmonic maps

such that uk ⇀ u (weak convergence) in W 1,2(M,N). Let U ∈ M be an open set

and let X be a C1-vector field on M with compact support in U . Then∫
Σ

divΣXν +

∫
M

(
‖du‖2div(X)− 2

〈
du(∇αX), du(

∂

∂xα
)
〉)
dvolM = 0 (4.7.5)

2(Defect version of Fatou’s lemma) Let (X,B, µ) be a measurable space and {fi} : X −→ [0,+∞) be a

sequence of measurable functions converging point-wise to an absolutely integrable function f . Then∫
X
fndµ−

∫
X
fdµ− ‖fn − f‖L1(µ) → 0.

First informally proved in [BL86] by Brezis and Lieb.
3 A set M ∈ Rn+k is said to be countably n-rectifiable, if M ⊂M0

⋃∞
i=1 Fi(Rn), where Fi : Rn −→ Rn+k are

Lipschitz continuous for i = 1, 2, 3, . . . .
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If a map u ∈ W 1,2(M,N) is a stationary map, then ([Sch84]) it satisfies∑
α

∫
M

(
‖du‖2div(X)− 2

〈
du(∇αX), du(

∂

∂xα
)
〉)
dvolM = 0. (4.7.6)

But in general a weakly convergent sequence of stationary harmonic maps may

not converge strongly and the energy may concentrate on the set Σ. We define the

set Σ to be stationary if ∫
Σ

divΣX ν = 0 (4.7.7)

for any vector field on M with compact support. Thus the identity (4.7.5) and

(4.7.6) implies that the singular set Σ is stationary iff the limit map u is a stationary

map.

Theorem 4.7.4. [Bet93] Let u ∈ W 1,2(M,N) be a stationary harmonic map.

Then Hm−2(Σ) = 0 and u is smooth on M \ Σ.

4.7.2 Aholomorphic maps between hyperKähler manifolds

Let now (M, gM , I1, I2, I3) and (N, gNJ1, J2, J3) be two compact hyperKähler man-

ifolds.

Definition 4.7.1. A smooth map u : M −→ N is said to be aholomorphic 4 if∑3
i=1 Ji ◦ du ◦ Ii = du.

Let {ωIi}3
i=1 and {ωJi}3

i=1 be the symplectic two-forms associated to the respec-

tive complex structures. Define the following energy functionals

E(u) =
1

2

∫
M

‖du‖2dvolM , Eτ (u) =
1

2

3∑
i=1

∫
M

ωIi ∧ u
∗ωJi

I(u) =
1

2

∫
M

‖du−
3∑
i=1

Ji ◦ du ◦ Ii‖2dvolM =
1

2

∫
M

‖(F − 1)du‖2 dvolM

Then clearly, u is an aholomorphic map iff I(u) = 0.

4 These maps are also known as quaternionic maps in some literature [CL00], [LT98], [Che99].
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Proposition 4.7.1. ([CL00]) Let M and N be two hyperKähler manifolds as above

and let u : M −→ N be a smooth map. Then the energy functionals satisfy:

1

4
I(u) = E(u) + Eτ (u) (4.7.8)

Furthermore, if u is an aholomorphic map, then it minimizes the energy its homo-

topy class.

Remark 4.7.1. Being energy minimizers, aholomorphic maps are stationary har-

monic maps. Therefore all of the results mentioned above carry over to aholomor-

phic maps. Additionally, it was proved by Schoen and Uhlenbeck [SU82] that for

a sequence of energy-minimizing maps uk, such that uk ⇀ u in W 1,2(M,N), the

Hausdorff dimension of the singular set Σ is at most m− 3. It follows from 4.7.2

that ν = 0 and hence Σ is stationary. Furthermore, Theorem from 4.7.3, it follows

easily that the limit map u is a stationary harmonic map.

Remark 4.7.2. If M admits a permuting action of Sp(1), the su(2)-valued sym-

plectic two-form on M is exact; i.e the cohomology class of each of the Kähler

forms {ωi}3
i=1 vanishes. Therefore Eτ (u) = 0. Furthermore, if u is aholomorphic,

I(u) = 0 and therefore E(u) = 0. Thus in this case, u is a constant map.

4.8 Aholomorphic maps and harmonic spinors

Let (X, gX) be a four-dimensional Riemann manifold and endowed with a Spin-

structure Q −→ X and fix a connection A ∈ A on Q. Let M be a hyperKähler

manifold with the permuting action of the group SpinGε (4) and u ∈ S be a

generalized spinor.

Clifford multiplication is the map m : (R4)∗⊗W 0 −→ ε− Cl4 ε+⊗(Cl04)+ W
0. To

define the generalized Dirac operator, we replace W 0 by TM . Note that having a

permuting action of SpinGε (4) ∼= Sp(1)+× Sp(1)− on M implies that Sp(1)− acts

trivial on M . Therefore (c.f Section 4.3):

Cl4 ⊗Cl04 TM = TM︸︷︷︸
W+

⊕ ε− Cl4 ε+ ⊗(Cl04)+ TM︸ ︷︷ ︸
W−

.

Let u ∈ S and A ∈ A . Then composing the Clifford multiplication

m : (R4)∗ ⊗W+ −→ W−
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with the covariant derivative of u,

DAu ∈ C∞(Q, (R4)∗ ⊗ u∗W+),

we get the Dirac operator

/DA(u) =
3∑
i=0

ei ·DAu(ẽi).

Since DAu(ẽi) ∈ W+, we have (Ref. Lemma 2.5.5)

/DA(u) =
3∑
i=0

eiε+ ·DAu(ẽi) =
3∑
i=0

e0ε+λ−ēi ·DAu(ẽi)

The element λei acts on TM as:

λei =

{
Ii if i = 1, 2, 3

IdTM if i = 0

and so

e0ε+λ−ēi ·DAu(ẽi) =

{
e0ε+ · IiDAu(ẽi) if i = 1, 2, 3

−e0ε+ ·DAu(ẽi) if i = 0.

Rewriting,

/DA(u) =
3∑
i=0

ei ·DAu(ẽi)

= e0ε+ ·
( 3∑
i=1

IiDAu(ẽi)−DA(ẽ0)
)

= e0ε+ ·
( 3∑
i=1

IiDAu(Iiẽ0)−DA(ẽ0)
)

= e0ε+ ·
(
F (DAu)(ẽ0)−DAu(ẽ0)

)
= e0ε+ ·

(
(F − 1)DAu(ẽ0)

)
.

The above computations were presented in [Pid13].

Definition 4.8.1. We say that a generalized spinor is aholomorphic if

(F − 1)DAu(ẽ0) = 0.
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Thus, from the computations above, we see that if u is harmonic, then u is

aholomorphic.

Remark 4.8.1. Suppose that the base manifold (X, J1, J2, J3) is a hyperKähler

manifold and the group G is trivial. Since Sp(1)− acts trivially on M , the general-

ized spinors are maps from Q/Sp(1)− ∼= PSO(3)+ −→M , where π : PSO(3)+ −→ X

is the principal bundle associated to Λ2
+X. For any x ∈ X, hyperKähler structure

on X defines a distinguished frame ζ|x ∈ π−1(x), given by the symplectic two-

forms ωXJi . Define the trivialization by PSO(3)+ 3 p 7→ (π(p), g) ∈ X × SO(3)+,

where p = ζ|x · g. Let u : PSO(3)+ −→ M be a generalized spinor. Define the map

ũ : X −→ M by ũ(x) = u(ζ|x). Then u is just an SO(3)-equivariant extension

of ũ. Consider the trivial connection Atriv on PSO(3)+ . The covariant derivative

associated to the trivial connection is DAtrivu = Tu ◦ prHAtriv
= T ũ. Therefore

harmonic spinors are maps satisfying (F − 1)T ũ = 0. In other words, harmonic

spinors are equivariant lifts of aholomorphic maps u : X −→M .

Theorem 4.8.1. [Pid04] (Weitzenböck formula) Let X be a four-dimensional,

compact, Riemann manifold. Let θX denote the canonical one-form on PSO(4) and

ω denote the su(2)-valued symplectic, two-form on the target hyperKähler manifold

M . Then∫
X

‖ /DAu‖2dvolX =

∫
X

u∗gM⊗gX(DAu,DAu)dvolX+

∫
X

π!(〈(u∗ω)hor∧(θX∧θTX)+〉su(2))

(4.8.1)

where θTX denotes the transpose of θX , (θX ∧θTX)+ denotes the self-dual part of the

two-form (θX ∧ θTX) and π! is an isomorphism between Ω∗(Q)
SpinGε (4)
hor and Ω∗(X).

Observe that

gM
(
(F − 1)DAu, (F − 1)DAu

)
dvolX =

3∑
i=0

gM
(
(F − 1)DAu(ẽi), (F − 1)DAu(ẽi)

)
= 4 gM( /DA(u), /DA(u)

)
.

Define the energy functionals

E(u,A) =
1

2

∫
X

u∗gM ⊗ gX(DAu,DAu)dvolX ,

Eτ (u,A) =
1

2

∫
X

π!(〈(u∗ω)hor ∧ (θX ∧ θTX)+〉su(2)), I(u,A) =
1

2

∫
X

‖ /DAu‖2dvolX



4.8 Aholomorphic maps and harmonic spinors 56

From the identity 4.8.1 we see that the spinors satisfy an analogue of the energy

identity 4.7.8 for aholomorphic maps.

Remark 4.8.2. Consider again the case where (X, J1, J2, J3) is a hyperKähler

manifold (cf. Remark 4.8.1). Let A′ is some non-trivial connection on PSO(3)+ .

Since (θX∧θX)+ ∈ Ω1(PSO(3)+ ,Λ
2
+R4) and X is hyperKähler, (θX∧θX)+ = π∗ωX ,

where ωX is the su(2)-valued symplectic two-form on X. Therefore,

Eτ (u,A
′) =

1

2

∫
X

π!(〈(u∗ω)hor ∧ (θX ∧ θTX)+〉su(2))

=
1

2

∫
X

π!(〈(u∗ω)hor ∧ π∗ωX〉su(2))

Since M admits a permuting Sp(1) action, the two-form u∗ω is exact and u∗ω =

d(u∗γ1). Given any two vector fields Z, Y ∈ Γ(PSO(3)+ , TPSO(3)+), we have:

d(u∗γ1)hor(Z, Y )− (d(u∗γ1))hor(Z, Y ) = (Z − Z̃)(u∗γ1)(Ỹ )− (Y − Ỹ )(u∗γ1)(Z̃)

− (u∗γ1)([Z, Y ]− [̃Z, Y ])

where Z̃, Ỹ , [̃Z, Y ] denote the horizontal parts of the respective vector fields with

respect to the connection A′. We see therefore that the d(u∗γ1)hor 6= (d(u∗γ1))hor

and the energy Eτ (u,A
′) may not be invariant under the homotopy class of u.

Let now A′ = Atriv and consider the following commutative diagram, where u, ũ

are as defined in Remark 4.8.1. Let πtriv denote the trivialization of PSO(3)+ as

described in the same remark.

PSO(3)+

u

��

π
// X

ũ
{{ww

ww
ww

ww
ww

M

Since the connection is trivial, Ω∗(PSO(3)+)
SpinGε (4)
hor = π∗triv(Ω

∗(X)) = π∗(Ω∗(X)).

Therefore for any two vector fields Z, Y ∈ Γ(PSO(3)+ , TPSO(3)+),

(u∗ω)hor(Z, Y ) = (u∗ω)(Z̃, Ỹ ) = ((ũ ◦ π)∗ω)(Z̃, Ỹ )

= (ũ∗ω)(Tπ(Z̃), Tπ(Ỹ )) = π∗
(
(ũ∗ω)

)
(Z, Y ).

Note that the last step uses the triviality of the connection. Therefore

π!(〈(u∗ω)hor ∧ π∗ωX〉su(2)) = π!(〈π∗(ũ∗ω)hor ∧ π∗ωX〉su(2)) = 〈ũ∗ω ∧ ωX〉su(2)
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and therefore, for a trivial connection Atriv,

Eτ (u,Atriv) =
1

2

∫
X

(〈(ũ∗ω) ∧ ωX〉su(2)) =
1

2

3∑
i=1

∫
X

(ũ∗ωIi) ∧ ωXJi .

Let ψ : TTM −→ TM be a torsion-free connector. Define the first order

differential operator:

∇A,ψ : C∞(P, TM)Spin
G
ε (4) −→ Hom(TP, TM)

SpinGε (4)
hor

v −→ ψ ◦ Tv ◦ prHA

This coincides with the linearization of the covariant derivative [Sch10].

In order to derive a condition analogous to 4.7.6, for the spinor being stationary,

we analyze the behavior of the energy functionals under the deformations on the

source manifold. Let φt : X −→ X, for t ∈ [0, 1], be a family of diffeomorphisms

of X. Let φ̂t denote the horizontal lift of φt to Q w.r.t a fixed connection A on Q.

Note that, since the energy functionals are gauge-invariant, we may assume that

φ̂0 = Id. For if not, then we consider the family φ̂t ◦ φ̂0

−1
. Define ut = u ◦ φ̂t and

let Y = d
dt
φ̂∗t |t=0. Then,

Eτ (ut) =
1

2

∫
X

π!(〈(u∗tω)hor∧(θX∧θTX)+〉su(2)) =
1

2

∫
X

π!(〈(φ̂∗t u∗ω)hor∧(θX∧θTX)+〉su(2))

Therefore,

d

dt
Eτ (ut)|t=0 =

1

2

d

dt

∫
X

π!(〈(φ̂∗t u∗ω)hor ∧ (θX ∧ θTX)+〉su(2))|t=0

=
1

2

∫
X

π!(〈
d

dt
(φ̂∗t u

∗ω)hor|t=0 ∧ (θX ∧ θTX)+〉su(2))

=
1

2

∫
X

π!(〈(L d
dt
φ̂∗t |t=0

u∗ω)hor ∧ (θX ∧ θTX)+〉su(2))

=
1

2

∫
X

π!(〈(dιY u∗ω)hor ∧ (θX ∧ θTX)+〉su(2))

Given a one form α ∈ Ω1(Q), we can write it as sum of horizontal and vertical com-

ponents: α = αhor+αvert, where αhor = α◦prHA
and αvert = 〈A, ιspinGε (4)α〉 := ιKA

α.

Therefore,

d
dt
Eτ (ut)|t=0

=
1

2

∫
X

π!(〈(d (ιY u
∗ω)hor + (ιY u

∗ω)vert)hor ∧ (θX ∧ θTX)+〉su(2))
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=
1

2

∫
X

π!(〈(d (ιY u
∗ω)hor)hor ∧ (θX ∧ θTX)+〉su(2))

+
1

2

∫
X

π!(〈(d (ιY u
∗ω)vert)hor ∧ (θX ∧ θTX)+〉su(2))

=
1

2

∫
X

π!(〈DA(ιY u
∗ω) ∧ (θX ∧ θTX)+〉su(2)) +

1

2

∫
X

π!(〈(d (ιY u
∗ω)vert)hor ∧ (θX ∧ θTX)+〉su(2))

The one form

(ιY u
∗ω)vert = 〈A, ιspinGε (4)ιY u

∗ω〉 = −〈A, ιY ιspinGε (4)u
∗ω〉 = −〈A, ιY u∗(ιspinGε (4)ω)〉

= −〈ϕ+, ιY u
∗(ιsp(1)ω)〉su(2) − 〈B, ιY u∗(ιgω)〉g

= −〈ϕ+, ιY u
∗γ)〉su(2) − 〈B, ιY u∗dµG)〉g

where B denotes the connection on PG, ϕ+ is the su(2)+ component of the Levi-

Civita connection on X and µG is the momentum map for the hyperKähler action

of G on M . Therefore

d(ιY u
∗ω)vert = −d〈ϕ+, ιY u

∗γ〉su(2) − d〈B, ιY u∗dµG〉g
= −〈dϕ+, ιY u

∗γ〉su(2) − 〈ϕ+, dιY u
∗γ〉su(2) − 〈dB, ιY u∗dµG〉g − 〈B, dιY u∗dµG〉g

We can further simplify the above expression:

〈dϕ+, ιY u
∗γ〉su(2) = 〈Fϕ+ , ιY u

∗γ〉su(2) − 〈ϕ+ ∧ ϕ+, ιY u
∗γ〉su(2)

Similarly,

〈dB, ιY u∗dµG〉g = 〈FB, ιY u
∗γ〉g − 〈B ∧ B, ιY u

∗γ〉g

Therefore combining the above expressions, we get(
d(ιY u

∗ω)vert
)
hor

= −〈Fϕ+ , ιY u
∗γ〉su(2) − 〈FB, ιY u

∗γ〉g

since

1. (〈ϕ+, dιY u
∗γ〉)hor = 〈B, dιY u∗dµG〉)hor = 0,

2. 〈Fφ+ , ιY u∗γ〉hor = 〈Fφ+ , ιY u∗γ〉

3. 〈FB, ιY u
∗dµG〉hor = 〈FB, ιY u

∗dµG〉 = 〈FB, ιY d(µG ◦ u)〉.
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Note that since SU(2)− acts trivially on M , only the su(2)+ component of the

Levi-Civita connection survives. Substituting this, we get:

d
dt
Eτ (ut)|t=0

=
1

2

∫
X

π!(〈DA(ιY u
∗ω) ∧ (θX ∧ θTX)+〉su(2))−

1

2

∫
X

π!(〈(d〈ϕ+, ιY u
∗γ〉)hor ∧ (θX ∧ θTX)+〉su(2))

− 1

2

∫
X

π!(〈(d〈B, ιY u∗dµG〉)hor ∧ (θX ∧ θTX)+〉su(2))

=
1

2

∫
X

π!(〈DA(ιY u
∗ω) ∧ (θX ∧ θTX)+〉su(2))−

1

2

∫
X

π!(〈(〈Fϕ+ , ιY u
∗γ〉) ∧ (θX ∧ θTX)+〉su(2))

− 1

2

∫
X

π!(〈(〈FB, ιY u
∗dµG〉)hor ∧ (θX ∧ θTX)+〉su(2))

The first term in the above expression can be re-written as

1

2

∫
X

π!(〈DA(ιY u
∗ω) ∧ (θX ∧ θTX)+〉su(2)) =

1

2

∫
X

d
(
π!(〈(ιY u∗ω ∧ (θX ∧ θTX)+〉su(2))

)
− 1

2

∫
X

π!(〈(ιY u∗ω ∧DA(θX ∧ θTX)+)〉su(2))

The first term vanishes since the base manifold X is closed and compact. The

second term vanishes sinces the Levi-Civita connection is torsionless. Therefore,

d

dt
Eτ (ut)|t=0 = −1

2

∫
X

π!(〈(〈Fϕ+ , ιY u
∗γ〉) ∧ (θX ∧ θTX)+〉su(2))

− 1

2

∫
X

π!(〈(〈FB, ιY d(µG ◦ u)〉)hor ∧ (θX ∧ θTX)+〉su(2))

The first summand can be further simplified as follows:
1
2

∫
X
π!(〈(〈Fϕ+ , ιY u

∗γ〉) ∧ (θX ∧ θTX)+〉su(2))

=
1

2

∫
X

π!(〈(
(−1)

3
ιY u

∗γ0 Fϕ+ − [ιY u
∗γ1, Fϕ+ ]) ∧ (θX ∧ θTX)+〉su(2))

=
1

2

∫
X

π! tr
(

(〈((−1)

3
ιY u

∗γ0 Fϕ+ − [ιY u
∗γ1, Fϕ+ ]) ∧ (θX ∧ θTX)+

)
=

1

2

∫
X

π!

[
(
(−1)

3
ιY u

∗γ0)tr
((
W+

ϕ +
sX
12

(θX ∧ θTX)+

)
∧ (θX ∧ θTX)+

)]
− 1

2

∫
X

π!

[
tr
(

[(ιY u
∗γ1),W+

ϕ +
sX
12

(θX ∧ θTX)+]
)
∧ (θX ∧ θTX)+

]
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=
(−1)

24

∫
X

π!

(
(ιY u

∗γ0) sX

)
dvolX −

1

2

∫
X

π!

(
tr
(
[(ιY u

∗γ1),W+
ϕ ] ∧ (θX ∧ θTX)+

))
dvolX

Consider now the energy functional E(ut,At), where At = φ̂∗t (A). Since the the

space of connections is an affine space, we can equivalently write φ̂∗t (A) = A + αt.

Therefore
d
dt
E(ut,At)|t=0

=
d

dt

(1

2

∫
X

gM ⊗ gX(DAtut, DAtut)dvolX

)
|t=0 =

∫
X

gM ⊗ gX
(
DAu,

d

dt
DAtut|t=0

)
dvolX

=

∫
X

gM ⊗ gX
(
DAu,

d

dt
DAut|t=0

)
dvolX +

∫
X

gM ⊗ gX
(
DAu,

d

dt
Kαt|ut |t=0

)
dvolX

=

∫
X

gM

(
∇A,ψ,∗(DAu), du(Y )

)
dvolX +

∫
X

gM ⊗ gX
(
DAu,

d

dt
KM
αt |ut |t=0

)
dvolX

For every m ∈ M , we have the map KM |m : spin(4)Gε −→ TmM whose adjoint is

(KM)∗|m : TmM −→ spin(4)Gε . Therefore we have:

d
dt
E(ut,At)|t=0

=

∫
X

gM

(
∇A,ψ,∗(DAu), du(Y )

)
dvolX +

∫
X

gM ⊗ gX
(
DAu,

d

dt
KM
αt |ut |t=0

)
dvolX

=

∫
X

gM

(
∇A,ψ,∗(DAu), du(Y )

)
dvolX +

∫
X

gM ⊗ gX
(
DAu,

d

dt
KM
αt |u |t=0

)
dvolX

=

∫
X

gM

(
∇A,ψ,∗(DAu), du(Y )

)
dvolX +

∫
X

〈
(KM)∗|m(DAu),

d

dt
Kαt|t=0

〉
T ∗X⊗spin(4)Gε

dvolX

=

∫
X

gM

(
∇A,ψ,∗(DAu), du(Y )

)
dvolX +

∫
X

〈
(KM)∗|m(DAu),LY A

〉
T ∗X⊗spin(4)Gε

dvolX

=

∫
X

gM

(
∇A,ψ,∗(DAu), du(Y )

)
dvolX +

∫
X

〈
(KM)∗|m(DAu), ιY FA

〉
T ∗X⊗spin(4)Gε

dvolX

=

∫
X

gM

(
∇A,ψ,∗(DAu), du(Y )

)
dvolX +

∫
X

gM ⊗ gX
(
DAu,K

M
ιY FA

)
dvolX

Combining the computations above, we have:
d
dt
I(ut)|t=0

=

∫
X

gM

(
∇A,ψ,∗DAu, du(Y )

)
dvolX +

∫
X

gM ⊗ gX
(
DAu,K

M
ιY FA

)
dvolX

+
1

24

∫
X

π!

(
(ιY u

∗γ0) sX

)
dvolX +

1

2

∫
X

π!

(
tr
(
[(ιY u

∗γ1),W+
ϕ ] ∧ (θX ∧ θTX)+

))
dvolX
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− 1

2

∫
X

π!(〈(〈FB, ιY d(µG ◦ u)〉) ∧ (θX ∧ θTX)+〉su(2)) (4.8.2)

Remark 4.8.3. Although the curve t −→ ut may not be C1 in W 1,2(Q,M)Spin
G
ε (4),

the restriction of the energy functionals to the curve can be C1 (c.f 4.7.6). In the

above identity, if one can express the first the term in way so that the expression

is valid for any u ∈ W 1,2(Q,M)Spin
G
ε (4) ∼= W 1,2(X,Q ×SpinGε (4) M), then one may

be able to derive the condition for a spinor u ∈ W 1,2(Q,M)Spin
G
ε (4) to be a critical

point of the energy functional E(u,A), analogous to the 4.7.6. Combining this

condition with the energy identity above would be the first step in establishing a

blow-up formula for “stationary” spinors.



5. Generalized Seiberg-Witten equations

But thy eternal summer shall not fade,

Nor lose the possession of that fair thou owest.

– William Shakespeare, Sonnet 18

In this chapter, we introduce the generalized Seiberg-Witten equations associ-

ated to a hyperKähler manifold admitting a permuting action of SpinGε (3). We

discuss the particular case where M is the U(1)-hyperKähler quotient of the flat

space Hn+1 \ {0} and obtain a priori estimates for the generalized spinors and the

connection for the same.

5.1 Generalized Seiberg-Witten Equations

Having defined the generalized Dirac operator and the hyperKähler moment map

in the previous chapters, we are now in a position to state the generalized Seiberg-

Witten equations. Let (X, gX) be a four-dimensional, oriented, compact Riemann

manifold. Let M be a hyperKähler manifold admitting a permutting action of the

group SpinGε (3) and a moment map µ : M −→ sp(1)∗ ⊗ g∗.

Let B be a connection on the principal bundle PG/{ε} −→ X. Let ϕ be the Levi-

Civita connection on X. Let A ⊂ C (Q) be the set of connections on Q which are

a lift of the Levi-Civita connection. Let A ∈ A be the connection determined by

B.

Denote by

FA ∈ C∞
(
Q, Λ2(R4)⊗ spinGε (4)

)SpinGε (4)

the full curvature of the connection A and F+
B ∈ C∞(Q,Λ2

+(R4) ⊗ g)Spin
G
ε (4) the

projection to the self-dual part of g-valued component of FA.

62
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Define the isomorphism

δ : Λ2
+(R4)× g −→ sp(1)∗ × g∗

δ(γ)(ηl ⊗ η) =
〈
〈γ, ξl〉, η

〉
g
,

where γ ∈ Λ2
+(R4)× g, ηl and ξl are the basis elements of sp(1) and Λ2

+R4 respec-

tively, η ∈ g and 〈·, ·〉g is the Ad-invariant inner product given by the negative

of the Killing form. Supressing the isomorphism, the generalized Seiberg-Witten

equations can be stated as: {
/DAu = 0

F+
A − µ ◦ u = 0

(5.1.1)

The Seiberg-Witten equations can be interpreted as a G = C∞(Q,G)Spin
G
ε (4)-

equivariant section of an infinite dimensional vector bundle. Indeed, recall that

the generalized Dirac operator defines a G -equivariant section of the vector bundle

W− −→ C, where C = S × Z is the configuration space and W− is the infinite

dimensional vector bundle over C with the fibre at a point u ∈ S being given by

C∞(Q, u∗W−).

Let N denote the trivial vector bundle over the infinte dimensional manifold

C with fibre C∞(Q, sp(1)∗⊗ g∗)Spin
G
ε (4). Interpreting the second component of the

equations as a section of N , it is now clear that the Seiberg-Witten equations can

be interpreted as a G -equivariant section of the G -equivariant bundle W−⊕N −→
C, i.e:

W− ⊕N
Π−

// C

SW

yy

The solution of the equations are given by SW−1(0) := Z (gX). Supressing the

dependence on the metric, we define the moduli space to be

M = Z /G .
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5.2 Modified Seiberg-Witten equations

We are interested in studying the Seiberg-Witten equations associated to the total

space of Swann bundle over the Wolf space X(n−1). The total space of the bundle

is the higest weight nilpotent orbit of the group SL(n + 1,C) acting by adjoint

action on its lie algebra sl(n+ 1,C). Denote this total space by On+1 .

Consider the following scenario:

Hn+1 \ {0}

H∗

��

U(1)
// On+1

H∗/(Z/2)

��

HPn
U(1)

// X(n− 1)

The group U(1) acts hyperKähler on Hn+1 \ {0}, the action being given by

Hn+1 \ {0} 3 h 7→ eiθh

for θ ∈ [0, 2π). This action is free and descends to an action of U(1) on HP(n).

The moment map associated to the U(1)-action on Hn+1 \ {0} is given by

µ : Hn+1 \ {0} → sp(1)∗, h 7−→ 1

2
hih̄.

The U(1) action on Hn+1 descends to an action on HP(n). The moment map for the

U(1)-action on HP(n) is given by µ̄([u]) = 1
2
uiū. The zero-level set for µ̄ is given

by M0 = {[h] ∈ HP(n) | hih̄ = 0}. This is a submanifold of HP(n) and is invariant

under the U(1)-action. One can prove that the group U(n + 1) acts transitively

on M0. The stabilizer of a point is given by SU(2) × U(n − 1). Hence, the

quaternionic Kähler quotientMU(1) := M0/U(1) ∼= U(n+1)
SU(2)×U(n−1)×U(1)

= Gr2(Cn+1),

the Grassmannian. This is the Wolf space X(n− 1).

Swann proves [Swa91] that the hyperKähler and quaternionic Kähler quotient

constructions commutes with the construction of Swann bundles. This implies that

On+1 can be written as a U(1)-hyperKähler quotient of the flat space Hn+1 \ {0}.
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In addition to the U(1)-hyperKähler action, we also have a hyperKähler action

of SU(n), given by

Hn+1 \ {0} 3 h 7→ Ah

for A ∈ SU(n). This action commutes with the U(1) action and therefore we have

a hyperKähler action of the group SU(n)×U(1) on Hn+1 \ {0}. For simplicity, we

shall denote by G := SU(n)× U(1).

The group Sp(1) has a permuting action on Hn+1 \ {0}, given by

Hn+1 \ {0} 3 h 7→ hq̄

where q ∈ Sp(1). Observe now that Sp(1) and the G-actions commute. The

element {1,−1} ∈ Sp(1) × G acts trivially on Hn+1 \ {0}, and hence the action

descends to an action of Sp(1)×±1 G ∼= Spin(3)×±1 G.

Although we are interested in the Seiberg-Witten equations associated to the

hyperKähler manifold On+1, given the ease of analysis on Hn+1\{0} ↪→ Hn+1 com-

pared to On+1, we shall modify the generalized Seiberg-Witten equations slightly

so as to use the equations associated to the former in order to construct the solu-

tions for the latter one.

The modification is given by an additional condition µU(1) ◦ u = 0 on the equa-

tions. More precisely, with slight abuse of notation, let u ∈ C∞(Q,Hn+1)Spin
G
ε (4).

Then the modified Seiberg-Witten equations are:
/DAu = 0

F+
BSU(n+1)

− µSU(n) ◦ u = 0

µU(1) ◦ u = 0

(5.2.1)

Here, BSU(n+1) denotes the su(n)-component of the connection BG = BU(1)⊕BSU(n+1),

and µSU(n) and µU(1) denote the moment maps for the SU(n) and the U(1) action

respectively.

Denote by ρ+ : Spin(4)×±1 G −→ Spin(3)×±1 G, the homomorphism

ρ+([q+, q−, g]) = [q+, g], and now consider the trivial vector bundle Hn+1 to be a

Spin(4)×±1 G-equivariant vector bundle with the action induced by ρ+. We shall

henceforth denote the SpinGε (4)-space Hn+1, with the mentioned action, by W+.

We define the SpinGε (4)-equivariant vector bundle W− to be Hn+1 equipped with

the action ([q+, q−, g])h− = q−gh−, where h− ∈ Hn+1.
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In order to work out the further analysis, we need appropriate sobolev com-

pletions of the infinite-dimensional manifolds S , A . Fix a smooth connection

A ∈ A . Then for k ∈ N and 1 ≤ p <∞, define

S k,p := W k,p(Q,Hn+1)Spin
G
ε (4) ∼= W k,p(X,Q×SpinGε (4) Hn+1)

to be the completion of S = C∞(Q,Hn+1)Spin
G
ε (4) ∼= Γ(X,Q×SpinGε (4) Hn+1) w.r.t

the norm

‖u‖k,p =
( k∑
i=1

∫
X

‖(Di
A)u‖

p
2

) 1
p .

Additionally, assume that k − 4
p
> 0 so that the Sobolev embedding W k,p ↪→ C0

is continuous.

5.3 Variational Formulation

For G = U(1)×SU(n) and any generalized spinor u ∈ S , the Weitzenböck formula

(4.5.1) reads:

/D
∗
A
/DAu = D∗ADAu+

1

4
sXu+ c(F+

BSU(n+1)
)u+ c(F+

BU(1)
)u. (5.3.1)

Correspondingly we have:

‖ /DAu‖2
L2 = ‖DAu‖2

L2 +
1

4

∫
X

sX‖u‖2 + 2

∫
X

〈µSU(n) ◦ u, F+
BSU(n+1)

〉 volX

+ 2

∫
X

〈µU(1) ◦ u, F+
BU(1)
〉 volX .

(5.3.2)

The energy functional for the modified Seiberg-Witten equations is given by:

E(u,A) = ‖ /DAu‖2
L2 + ‖F+

BSU(n+1)
− µSU(n) ◦ u‖2

L2 + ‖µU(1) ◦ u‖2
L2 .

Its, of course, obvious that the solutions to (5.1.1) are absolute minimizers of E .

Using (5.3.2), we can re-write the energy functional as:

E(u,A) = ‖DAu‖2
L2 + ‖F+

BSU(n+1)
‖2
L2 + ‖µSU(n) ◦ u‖2

L2 +
1

4
sX‖u‖2

L2

+ ‖µU(1) ◦ u‖2
L2 + 2

∫
X

〈µU(1) ◦ u, F+
BU(1)
〉 volX .

(5.3.3)
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Recall from the previous chapter that the moment map for the hyperKähler

action of SU(n) y Hn \ {0} is given by:

µSU(n) : Hn ∼= H⊗C Cn −→ sp(1)⊗ su(n)

µSU(n)(h⊗ z) = 1
4n
hih̄⊗ (izz∗ − i‖z‖2 · idCn)

We therefore have:

‖µSU(n)(h⊗ z)‖2 =
1

4n
‖hih̄⊗ (iz̄zt − i‖z‖2 · idCn)‖2

=
1

4n
‖h‖4

(
− 2ntr

(
(iz̄zt − i‖z‖2 · idCn)(iz̄zt − i‖z‖2 · idCn)

))
=

1

4n
‖h‖4

(
− 2ntr(iz̄ztiz̄zt − 2izz∗i‖z‖2 · idCn + i‖z‖2i‖z‖2idCn)

)
=

1

4n
‖h‖4

(
2ntr(‖z‖2z̄zt − 2‖z‖2z̄zt + ‖z‖4idCn)

)
=

1

4n
‖h‖4

(
2n(‖z‖4 − 2‖z‖4 + n‖z‖4)

)
=

1

4n
‖h‖4(2n(n− 1)‖z‖4)

=
(n− 1)

2
‖h‖4‖z‖4

This implies that

‖µSU(n) ◦ u‖2|q =
(n− 1)

2
‖u‖4|q. (5.3.4)

Also, the moment map for the U(1) hyperKähler action is given by

µU(1)(h⊗ z) =
1

2
hih̄⊗ i · ‖z‖2,

and so

‖µU(1) ◦ u‖2|q =
1

2
‖u‖4|q. (5.3.5)

Therefore from (5.3.4) and (5.3.5), we get:

E(u,A) = ‖DAu‖2
L2 + ‖F+

BSU(n+1)
‖2
L2 +

1

4
sX‖u‖2

L2 + C · ‖u‖2
L2

+ 2

∫
X

〈µU(1) ◦ u, F+
BU(1)
〉 volX ,

(5.3.6)
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where C is the constant given by C = n
2
. It is clear that any solution to gener-

alized Seiberg-Witten equations is an absolute minimizer of the energy-functional

E . Observe that using the identity

‖FA‖2 = −tr

∫
X

FA∧∗FA = −tr

∫
X

F+
A ∧∗F

+
A −tr

∫
X

F−A ∧∗F
−
A = ‖F+

A ‖
2 +‖F+

A ‖
2,

we have

‖F+
BSU(n+1)

‖2 =
1

2
‖FBSU(n+1)

‖2 + ‖F+
BSU(n+1)

‖2 − 1

2
‖FBSU(n+1)

‖2

=
1

2
‖FBSU(n+1)

‖2 +
1

2

(
‖F+

BSU(n+1)
‖2 + ‖FBSU(n+1)

‖2
)

=
1

2
‖FBSU(n+1)

‖2 − 1

2
tr

∫
X

FA ∧ ∗FA

Since the second term is the second chern-number of the underlying principal

bundle, a constant, we can instead consider the energy functional:

E ′(u,A) = ‖DAu‖2
L2 + ‖FBSU(n+1)

‖2
L2 +

1

4

∫
X

sX‖u‖2 + C · ‖u‖2
L2

+ 2

∫
X

〈µU(1) ◦ u, FBU(1)
〉 volX ,

The last term is a consequence of the identification sp(1)∗ ∼= Λ2
+R∗. The Euler-

Lagrange equations for E and E ′ are the same.

Lemma 5.3.1. The Euler-Lagrange Equations for E(u,A) are given by{
D∗ADAu+ sXu+ Cu+ 2 c(FBU(1)

)u = 0

d∗AF
+
A + (dµ(i))∗ I1(DAu) + d∗A(µU(1) ◦ u) = 0

(5.3.7)

Proof : Let ut ∈ S be a smooth curve and let d
dt
ut|t=0 = u′. Then

E ′(ut,A) = ‖DAut‖2
L2 + ‖FBSU(n+1)

‖2
L2 +

1

4
sX‖ut‖2

L2 + C · ‖ut‖2
L2

+ 2

∫
X

〈µU(1) ◦ ut, FBU(1)
〉 volX ,

We have,
d

dt
‖DAut‖2|t=0 = 2

∫
X

〈D∗ADAu, u
′〉dvolX ,
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d

dt

∫
X

sX‖ut‖2dvolX |t=0 = 2

∫
X

sX〈u, u′〉dvolX ,

d

dt

∫
X

C‖ut‖2|t=0dvolX = 2

∫
X

C〈u, u′〉,

d

dt

∫
X

〈µU(1)◦ut, FBU(1)
〉dvolX |t=0 =

∫
X

d

dt
c(FBU(1)

)ut, ut〉dvolX |t=0 = 4

∫
X

〈c(FBU(1)
)u, u′〉dvolX .

Therefore d
dt
E(ut,A)|t=0 = 0 gives the first equation:

D∗ADAu+ sXu+ Cu+ 2 c(FBU(1)
)u = 0 (5.3.8)

Define I : sp(1) −→ Hn+1 by I(ξ)(p) = p · ξ̄ for p ∈ Hn+1. Let ξ ∈ sp(1) such that

ξ2 = −1 and Y ∈ TxHn+1. Then,

〈η · x, Y 〉Hn+1 = 〈η · x · ξ̄, Y · ξ̄〉Hn+1 = ω(ξ)
(
η · x, I(ξ)(Y )

)
(5.3.9)

= dµG(ξ ⊗ η)(I(ξ)(Y )) = 〈η, (dµG(ξ))∗(I(ξ)(Y ))〉g

Since this is true for any ξ ∈ sp(1), such that ξ2 = −1, choose ξ = i and let

I1 = I(i). Therefore, we get

〈η · x, Y 〉Hn+1 = dµG(ξ ⊗ η)(I1(Y )) = 〈η, (dµG(i))∗(I1(Y ))〉g. (5.3.10)

Let At = A + tα. We have:

E(u,At) = ‖DAtu‖2
L2 + ‖FBt

SU(n+1)
‖2
L2 +

1

4
sX‖u‖2

L2 + C · ‖u‖2
L2

+ 2

∫
X

〈µU(1) ◦ u, FBt
U(1)
〉volX ,

where BtSU(n+1) and BtU(1) are the su(n+ 1) and u(1)-components respectively, of the

full connection At. Therefore,

d

dt
〈DAtu,DAtu〉Hn+1|t=0 = 2〈DAu,

d

dt
DAtu〉Hn+1|t=0 = 2〈DAu, α · u〉Hn+1

= 2〈(dµG(i))∗ I1(DAu), α〉T ∗X⊗g

The last expression follows from 5.3.10. Computations, as in the case of Yang-Mills

functional, give

d

dt
〈FBt

SU(n+1)
, FBt

SU(n+1)
〉|t=0 = 2〈d∗BSU(n+1)

FBSU(n+1)
, αSU(n+1)〉
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and also

2
d

dt

∫
X

〈(µU(1) ◦ u), FBt
U(1)
〉volX = 2

∫
X

〈d∗A(µU(1) ◦ u), αU(1)〉volX .

It follows from the above computations that

d

dt
E ′(u,At) = 0 =⇒ d∗AFA + (dµG(i))∗ I1(DAu) + d∗A(µU(1) ◦ u) = 0.

5.4 A priori estimates

For the generalized Seiberg-Witten equations, Henrik Schumacher [Sch10] derived

sufficient conditions for the existence of the L∞-estimates on the spinor part of

the solution. For the case M = Hn+1, these are automatically satisfied.

Proposition 5.4.1. Let X compact Riemann four-manifold with a SpinGε (4)-

structure Q
πQ−→ X. Let (u,A) be any solution to the modified Seiberg-Witten

equations above and let sX denote the scalar curvature function on X, Denote by

s−X = max{0, −1
4

min
x∈X

sX(x)}. Then the following estimates hold:

1. ‖u‖2|q ≤ s−X

2. ‖DAu‖2
L2 ≤ 1

8

∫
X

(sX)2 volX

3. ‖F+
BSU(n+1)

‖|q ≤ 1
2
n s−X

Proof :

1. Let q ∈ Q and πQ(q) = x ∈ X. In a neighbourhood of x, choose a lo-

cal orthonormal frame {Xl} such that {ei} ∈ R4 at x ∈ πQ(q) such that

Xl|πQ(q) = πQ(q)(el) and ∇XiXj|πQ(q) = 0 and denote by Yl = X̃l the horizon-

tal lift to TQ by the connection A. Note that the function ‖u‖2 is SpinGε (n)-

invariant and therefore descends to a function f on the base manifold X.

Let ∇ denote the covariant derivative w.r.t the Levi-Civita connection.



5.4 A priori estimates 71

We shall now compute 4X f :

4X f(x) = −
4∑
i=1

∇Xl∇Xlf |x

= −
4∑
i=1

DA,YlDA,Yl‖u‖2|q = −
4∑
i=1

DA,YlDA,Yl〈u, u〉|q

= −
4∑
i=1

DA,Yl

(
〈DA,Ylu, u〉Hn|q + 〈u,DA,Ylu〉Hn|q

= −
4∑
i=1

DA,Yl〈DA,Ylu, u〉Hn|q +DA,Yl〈DA,Ylu, u〉Hn|q

= −2
4∑
i=1

〈DA,YlDA,Ylu, u〉Hn|q − 2
4∑
i=1

‖DA,Ylu‖2|q

This gives 4X f(x) ≤ 2〈D∗A,YlDA,Ylu, u〉Hn|q.

Weitzenböck formula gives :

4Xf(x) ≤ −1

2
sX(x)‖u‖2|q − 4〈µSU(n) ◦ u, F+

BSU(n+1)
〉|q.

At a point x0 where f attains a maximum, 4X f(x0) ≥ 0 and hence we get

0 ≤ −1

2
sX(x0)‖u(q0)‖2 − 4〈µSU(n) ◦ u, F+

BSU(n+1)
〉|q0

where πQ(q0) = x0.

Since u is a solution to the Seiberg-Witten equations, F+
BSU(n+1)

= µSU(n) ◦ u
and so:

‖µSU(n) ◦ u‖2|q0 ≤ −
1

8
sX(x0)‖u(q0)‖2. (5.4.1)

Therefore from (5.4.1) and (5.3.4) we get

‖u‖2|q0 ≤ −
1

4
sX(x0).

Then ‖u‖2|q ≤ s−X ∀q ∈ Q.

This proves the claim (1).
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2. Since (A, u) is a solution to the modified Seiberg-Witten equations,

µU(1) ◦ u = 0. Therefore the Weitzenböck formula 5.3.1 implies:

0 =

∫
X

‖DAu‖2dvolX +
1

4

∫
X

sX ‖u‖2 dvolX + 2

∫
X

‖µSU(n) ◦ u‖2 dvolX

≥
∫
X

‖DAu‖2 dvolX +
1

4

∫
X

sX‖u‖2 dvolX +

∫
X

‖u‖4 dvolX

This implies:∫
X

‖DAu‖2 dvolX ≤ −
[ ∫
X

(1

4
sX‖u‖2 + ‖u‖4

)
dvolX

]
.

Completing the term 1
4
sX‖u‖2 + ‖u‖4 to a square, gives the estimate:

0 ≤
∫
X

(1

4
sX‖u‖2 + ‖u‖4 +

1

8
s2
X

)
dvolX

Therefore we have:

∫
X

‖DAu‖2 dvolX = −
∫
X

(1

4
sX‖u‖2 + ‖u‖4

)
dvolX ≤

1

8

∫
X

s2
X dvolX .

This proves the claim (2).

3. Observe that, since u is a solution to the modified SW equations from, claim

(1) we get

‖F+
BSU(n+1)

‖ |q = ‖µSU(n) ◦ u‖ |q ≤
1

2
n ‖u‖2|q ≤ −

1

8
n sX(x0) ≤ 1

2
n s−X .

This proves claim (3).
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Now, here in this fort of Brahman, there is a small lotus, a dwelling-place, and

within it, a small space. In that space there is something - and that’s what you

should try to discover, that’s what you should seek to perceive.”

– Chāndogya Upanishad, 4.8.1

The Seiberg-Witten equations analysed in Chapter 5 serve as model for a more

general scenario. Many interesting hyperKähler manifolds in applications, like

Gibbon-Hawking spaces [GS78], the moduli space of instantons over R4, etc. pos-

sess a hyperKähler structure, obtained via hyperKähler reduction of flat-spaces.

For the model we have considered, we have the a priori, uniformW 1,2 bounds on the

spinor and the SU(n+ 1)-component of the connection. But the U(1)-connection

component, a priori, admits no such bounds. Indeed there exists canonical con-

nection Acan := 1
ρ0
〈h, ·〉Hn+1 on U(1)-principal bundle µ−1

U(1)(0) −→ On+1 [Hay08].

If the spinor is harmonic and µU(1) ◦ u = 0, the U(1)-component of the connection

is given by u∗Acan = 1
‖u‖2 〈u, Tu(·)〉Hn+1 . Clearly, since the spinor is not bounded

from below, the U(1)-connection component, a priori, is not under control.

As was shown in Section 4.8, harmonic spinors can be interpreted as a “gauged-

version” of the usual aholomorphic maps. Indeed, from Remarks 4.8.2 & 4.8.1, it

follows that in the case when the base manifold is hyperkähler, much of the prop-

erties of the usual aholomorphic maps are retained. In the light of this comparison,

it is natural to explore the analogy with the known case of singularities of aholo-

morphic maps.

Let M and N be two hyperKähler manifolds with dimensions m and n re-

spectively. Let uk : M −→ N be a sequence of aholomorphic maps such that

E(uk) ≤ C. The blow-up set Σ is of Hausdorff dimension at most m−3 and hence

is stationary (cf. Remark 4.7.1).

Theorem 6.0.1. [LT98] Let M and N be as above. Then for a sequence of aholo-

73
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morphic maps with E(uk) ≤ C, such that uk ⇀ u in W 1,2(M,N), the limit map u

is a stationary harmonic map and is a smooth aholomorphic map on M \ Σ.

The obstruction to the strong convergence of the the sequence uk can be at-

tributed to the existence of holomorphic spheres in the target manifold:

Theorem 6.0.2. [CL00] Let M be a compact hyperKähler surface and N be as

above and let uk be a sequence of aholomorphic maps with bounded energies. If N

does not admit a holomorphic S2 w.r.t the any complex structure on S2, induced

by the two-sphere of complex structures on R4 and any complex structure in the

two-sphere of complex structures on N , then the sequence uk converges strongly to

a map u ∈ W 1,2(M,N), which is smooth and aholomorphic on M \ Σ.

Although the harmonic spinors represent a generalized case of usual aholomor-

phic maps, the energy identities satisfied by both are significantly different. The

main difficulty is that for a fixed smooth connection A on Q, and a generalized

spinor u, the energy Eτ (u,A) is not topological, as against the case of usual aholo-

morphic maps. Therefore the harmonic spinors need not be energy minimizers of

E(u,A), as a consequence of which we cannot directly carry over the arguments

from the aholomorphic case. From remarks 4.8.1 & 4.8.2, we see that when the

base manifold is hyperKähler, Eτ (u,A) is topological.

A natural question to ask is what is the minimum restriction on the base

manifold for which the energy Eτ (u,A) is invariant under smooth deformations of

the source manifold? For instance we may argue that if the base manifold is locally

hyperKähler (i.e, the restricted holonomy group is contained in Sp(1)), then locally,

the spinors are equivariant lifts of usual aholophormphic maps and the analogue

of Theorem 4.7.1 holds for the spinors. Fix a smooth connection A. Then, for

a sequence of harmonic spinors in W 1,2(Q,M)Spin
G
ε (4) ∼= W 1,2(X,Q ×SpinGε (4) M),

with bounded energies, converging weakly to u, we may define the singular set as

u as

Σ(A) =
⋂
r>0

{x ∈ X | lim inf
k→0

r2−m
∫
Br(x)

‖DAuk‖2dy ≥ ε0}.

Using the identity 4.8.2, one may obtain a blow-up formula, analogous to Eq. 4.7.5,

for harmonic spinors (c.f Remark 4.8.3). In this regard, the following question that

arises is: Is the presence of holomorphic S2 in M , an obstruction to the locally

strong convergence? Is it also the global obstruction?
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