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Abstract

The main topic of the present thesis is the study of singularities of two-point

functions of spin-0 and spin-1
2

quantum fields, possibly set on curved spacetime or in

the presence of smooth, external electromagnetic potentials.

The first part reviews the results necessary for the construction of neutral and

charged non-interacting quantum fields on globally hyperbolic spacetimes, and sup-

plements the arguments needed in the case when no charge symmetry exists. In

this general situation, the Hadamard condition, which refers to the singularities of

the two-point functions, is discussed, and its relation to the theory of distinguished

parametrices of Duistermaat and Hörmander is explained. Additionally, similarities

between the spin-0 and spin-1
2

case are exhibited by considering a two-component

form of the Klein-Gordon equation. It is then used in the static case to reformu-

late the classical dynamics as an evolution equation whose generator is self-adjoint

in the sense of Krein spaces. By methods of spectral theory in Krein space, we con-

struct Hadamard two-point functions in the spin-0 case for a class of strong electric

potentials which possess no ground state.

The second part is concerned with renormalisation of interacting fields in the

approach of Epstein and Glaser. We focus on the problem of recovering symmetries,

possibly lost in the process of extending singular distributions on Rn \ {0} to Rn.

In our approach, this is done by imposing that the extended distributions are in the

kernel of a given set of (differential) operators. The symmetries are then recovered

using a map, which in typical applications turns out to be linear. The same method

is applied to derive the relation between off-shell and on-shell time-ordered products

for a scalar theory on Minkowski space.
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Sutanu, Thang and Zheng. Financial support of the Research Training Group 1493

“Mathematical Structures in Modern Quantum Physics” is gratefully acknowledged.

Last but not least, I cannot thank my family and close friends enough for their

invaluable support. >Aspastìn moi gÐgnetai toũto.
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Introduction

The implementation of the principle of locality in Quantum Field Theory has led

to profound theoretical insights, resulting on one side in axiomatic descriptions of

the non-interacting theory, emphasizing the structure of the underlying space-time,

and on the other side in a rigorous construction of interacting fields in position space,

known as the Epstein and Glaser method. At present, these two fundamental ingredi-

ents are unified in a local, perturbative formulation of QFT, that can be set both on

curved spacetime and in external electromagnetic potentials, without the need to rely

on any special symmetries of the system, nor on concepts such as implementability

of the classical evolution in Fock space.

In a mathematical physicist’s terminology, the non-interacting theory is described

by a representation of the canonical commutation or anti-commutation relations (ab-

breviated CCR or CAR). This is understood as a map V 3 v 7→ ψ(v) from a vector

space V to operators on a Hilbert space H, such that ψ(v) satisfy (anti-) commuta-

tion relations consistent with an additional structure on V derived from the classical

theory, for instance a symplectic form. In the quantum field theoretical context,

V can be identified with a subspace of smooth functions on the space-time M and

in typical situations it is possible to interpret v 7→ ψ(v) as an operator-valued dis-

tribution, symbolically denoted ψ(x). The perturbative formulation of interacting

QFT raises the question of how to define powers and pointwise products of ψ(x) and

ψ∗(x), such as for instance ψ(x)ψ∗(x). The distributions involved being too singular,

this problem cannot be solved without a renormalization prescription — an example

is provided by the commonly used normal ordering on Minkowski space, which is

properly generalized by the point-splitting procedure. This rather universal method

consists of selecting a distribution H(x, y) such that the limit

:ψψ∗(x):H ··= lim
x→y

(ψ(x)ψ∗(y)−H(x, y)1)

exists at least weakly, on a dense subset of H which is required to include a given

distinguished vector Ψ, interpreted as the vacuum of the theory. This is possible

whenever the singularities of the distributions H(x, y) and (Ψ|ψ(x)ψ∗(y)Ψ) cancel

out, therefore special significance is attributed to the singular structure of the two-

point function (Ψ|ψ(x)ψ∗(y)Ψ).

Since the properties of Ψ and ψ(x) strongly rely on the underlying Hilbert space

structure H, it is useful to consider a more representation-independent formalism,

as provided by the algebraic approach of Haag and Kastler [Haa59, HK64]. In this

setting, field operators ψ(v) are replaced by abstract elements of a C∗-algebra that
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encode the CARs or CCRs, and the usual Hilbert space picture is recovered after

choosing a state ω and applying the GNS construction. Of particular interest are

quasi-free states, which are uniquely determined by the sesquilinear form v, w 7→
ω(ψ(v)ψ∗(w)), also called the two-point function in what follows.

On Minkowski space, the choice of a state is uniquely fixed upon requiring its

translation invariance — this yields the Minkowski vacuum ωvac. The standard choice

in renormalisation consists of takingH(x, y) = ωvac(ψ(x)ψ∗(y)), then the evaluation of

ωvac on the Wick product :ψψ∗:H (defined by point-splitting) is equal to zero, whereas

expectation values for higher Wick products can be computed by means of the Wick

theorem. The interacting theory can be then studied using various methods, most of

which are based on explicit formulae for the Fourier transform of ωvac(ψ(x)ψ∗(y)) in

the difference variables x− y. In axiomatic approaches, the essential property of the

Minkowski vacuum is the spectral condition, that states that the joint spectrum of

generators of translation in the GNS representation of ωvac is contained in the forward

lightcone.

On a generic curved background or in the presence of external potentials, neither

special symmetries nor Fourier analysis can be directly employed, and the existence

of a property that could appropriately generalise the spectral condition remained an

open problem for years. Special insight was provided by works on renormalisation of

the quantum stress-energy tensor [Wal77]. It was realized that the so-called Hadamard

parametrix not only encodes the singularities of the two-point function of ωvac on

Minkowski space, but it can also be used to define on curved spacetime a class of

states whose two-point function have essentially the same short-distance behaviour

— the so-called Hadamard states. This observation stems from the fact that by

construction, two-point functions solve the Klein-Gordon or Dirac equation in both

variables x and y, and that Hadamard’s method for obtaining approximate solutions

of these equations can be tailored to yield a generalization of ωvac(ψ(x)ψ∗(y)).

Although the Hadamard parametrix can be written down explicitly, it provides a

description of singularities that did not seem very appealing from the mathematical

point of view and which proved to be difficult to apply in practice, making the study

of generic properties of Hadamard states a challenging task. The situation changed

dramatically with the work of Radzikowski, who rephrased the Hadamard condition

in the language of microlocal analysis [Rad96]. He proved that two-point functions of

Hadamard states can be equivalently characterized by a condition on their wave front

set, a refinement of the singular support of a distribution that additionally indicates

the directions in momentum space responsible for singularities. This insight initi-

ated a series of important results, including the construction of Wick monomials on

curved spacetime [BFK96], the proof of a generalized spin-statistics theorem [Ver01],

and most importantly, the construction of renormalised interacting QFT based on

Hadamard states by Brunetti and Fredenhagen [BF00].

The first part of the thesis is concerned with singularities of distributional two-

point functions from the microlocal point of view. The literature on the microlocal
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formulation of the Hadamard condition and Radzikowski’s theorem is extensive and

includes up-to-date reviews such as [San08, Hac10], it does however only treat, with

only very few exceptions [Hol01, Mar03, Zah13], the special case of states that are

invariant under charge conjugation. One of our main aims is to supplement the

arguments necessary to treat the general case, and to exhibit at the same time as many

common features of spin-0 and spin-1
2

fields on curved spacetime. Since existence of a

charge conjugation is not assumed, this allows us to extend known results to the case

of charged fields, minimally coupled to an external, smooth electromagnetic potential.

We start by recalling in Chapter 1 conditions for a generic sesquilinear form to be

the two-point function of a (pure, gauge-invariant) quasi-free state, following textbook

references such as [DG13]. A particular emphasis is put on the relation between

neutral and charge fields and it is shown that the study of quasi-free states can always

be reduced to charged ones, in which case the two-point function is a hermitian form

on a complex vector space. This is particularly useful in the construction of Hadamard

states, since the methods of microlocal analysis are not very well adapted to real

function spaces.

Chapter 2 contains the ingredients needed for the construction of non-interacting

spin-0 and spin-1/2 fields on globally hyperbolic spacetimes and in the presence of

smooth external potentials. We argue that similarities between the spin-0 and spin-

1/2 case are best exhibited by replacing the Klein-Gordon equation with an equivalent

equation, that on d-dimensional Minkowski space reads

(i∂t +B)

(
f0

f1

)
= 0, B =

(
V 1

−
∑d

i=1(∂i + iAi)
2 +m2 V

)
,

and which we call the two-component Klein-Gordon equation. Although the gen-

eralization to curved backgrounds requires us to assume additionally the existence

of a Gaussian foliation of the underlying spacetime, the two-component form turns

out to be advantageous in deriving formulae for the solution of the Cauchy problem

associated to the usual one-component form.

The Hadamard condition and its connection to the theory of distinguished para-

metrices of Duistermaat and Hörmander are reviewed in Chapter 3. As observed

by Hollands [Hol01], if invariance under charge conjugation is not assumed, the cor-

rect formulation of the Hadamard condition refers to both the wave front sets of

ω(ψ(x)ψ∗(y)) and ω(ψ∗(x)ψ(y)). Our main contribution is a proof of Radzikowski’s

result adapted to this general case.

Next, in Chapters 4 and 5, we focus on the static case, allowing also for time-

independent electromagnetic potentials. Although many references discuss ground

states and their Hadamard property is well-known [FNW81, SV00, SV01, SVW02,

San12b], they do not cover the case of the Klein-Gordon equation in an overcritical

electric potential, when ground state are known not to exist. Under assumptions on

the L∞ norm and decay at infinity of the electric potential, it is possible to interpret

the two-component Klein-Gordon equation as an evolution equation whose genera-

tor is a Krein self-adjoint operator B in a Krein space [LNT08]. Although in the
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overcritical case, B acquires non-real eigenvalues, the corresponding eigenspace can

be decoupled from the system if B belongs to the class of definitizable operators.

We make use of results from Krein-space spectral theory and define quasi-free states,

that have properties analogous to ground states on the subsystem with no complex

eigenvalues, and we prove that they satisfy the Hadamard condition. This generalises

our prior results obtained in [Wro12] in the flat case, and is also an improvement in

the respect that the present construction yields gauge-invariant states.

This way, our results confirm the common expectation that methods originally

developed for curved spacetime can be efficiently adapted to QFT in smooth external

potentials, even in singular cases such as spin-0 fields in overcritical electric potentials.

In the second part of the thesis, we investigate mathematical issues connected

to renormalisation in interacting theory in the setting of Epstein and Glaser [EG73].

In local perturbation theory, once Wick powers :ψk:(x) (and their derivatives) are

constructed, physical quantities are derived from the S-matrix, defined as a formal

power series

S(η) = 1 +
∞∑
k=1

ik

k!

∫
M×k

T
(
L (x1), . . . ,L (xk)

)
η(x1) . . . η(xk) dΩk

g ,

where the Lagrangian density L (x) is a Wick polynomial and η is a test function

which serves as an infrared cutoff. The time-ordered products T are maps defined by a

set of axioms for the S-matrix, attributed to Bogoliubov and Shirkov [BS59], such as

symmetry, causality, etc. By means of the Wick expansion, it is possible to reduce the

problem of determining the operator-valued distributions T (L (x1), . . . ,L (xk)) to a

similar problem for the ordinary distributions (Ψ|T (L (x1), . . . ,L (xk))Ψ). In this

reduced setting, it is either possible to work with on-shell time-ordered products Ton,

that are consistent with the free equations of motion, or with off-shell ones Toff , that

commute with derivatives and for this reason are often more useful in practice. In both

cases, the distributions to be determined are constructed in an iterative procedure,

that can however be made precise only if one disregards points on the diagonal in

M×k. For instance, on Minkowski space it yields products of distributions such as the

square of θ(x0−y0)(Ψ|ψ(x)ψ∗(y)Ψ), where θ is the Heaviside step function. Although

the Hadamard condition can be used in this case to define the products outside of

x0 6= y0, the result still needs to be extended to x0 − y0 and the latter operation is

ambiguous — this accounts for the renormalisation freedom well-known from other

approaches. Making either use of translation-invariance in the Minkowski case, or of

an expansion due to Hollands and Wald in the general case [HW02], the construction

of time-ordered products amounts to extending distributions defined originally on

Rn \ {0} to the whole space Rn. The ambiguities can be constrained by requiring

that the strength of the singularity at the origin is not significantly affected in the

extension process. As explained in Chapter 6, this is most efficiently done using

Steinmann’s notion of scaling degree of a distribution [Ste71].
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The final step in the construction of the S-matrix consists of proving existence of

extensions subject to further renormalisation conditions, such as Lorentz invariance,

invariance under discrete symmetries, etc., a task that has been achieved in the phys-

ically relevant examples on a case-by-case basis [Sch95, Pra99, HW02, Gra03, LG03,

DF04]. In Chapter 6, we present an alternative, and rather universal method devel-

oped by us recently in collaboration with Bahns [BW12], inspired by the treatment

of Lorentz invariance in the work of Dütsch and Fredenhagen [DF04]. The main idea

is to reformulate renormalisation conditions as the requirement that the extended

distributions lie in the kernel of a given set of operators {Ri}i∈I . In QFT these are

typically differential operators, for instance infinitesimal generators of Lie groups,

that act on Rn in such way that {0} is a fixed point. It turns out that the problem

can be reduced to a finite-dimensional one by considering the restriction of Ri to the

space spanned by derivatives of the Dirac delta distribution δ up to a certain order,

and conventional linear algebra can be applied.

The same methods are used in Chapter 8 to solve an apparently unrelated problem,

namely the precise relation between on-shell and off-shell time-ordered products, Ton

and Toff , in the case of a scalar theory on Minkowski space. Although an explicit

solution was already given by Brouder and Dütsch [BD08], our method avoids long

combinatorial expression and relies instead on spectral properties of finite-dimensional

operators, directly related to the Klein-Gordon equation.

The main consequence of our results is that in local perturbative QFT, the global

symmetries (and other renormalisation conditions, including the on-shell property),

possibly lost in the extension process, can be recovered by applying one local, linear

map. This exhibits yet another feature of the Epstein and Glaser method, which we

attribute once again to the principle of locality.





Part 1

Microlocal description of singularities:

Two-point functions in non-interacting

QFT
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CHAPTER 1

Non-interacting quantum fields

Both in the context of Quantum Mechanics and non-interacting Quantum Field

Theory, quantization can be viewed as the construction of field operators ψ(v) on a

Hilbert space, parametrized by elements v of a real or complex vector space V . Field

operators are required to satisfy a set of commutation or anti-commutation relations

induced from an additional structure on V , namely a symplectic form in the case

of neutral bosons or a hermitian positive form for charged fermions, which has the

interpretation of the (dual) phase space of the classical theory.

For the sake of clarity let us illustrate this on the example of charged fermionic

fields.

Let (V, q(·, ·)) be a complex vector space equipped with a positive hermitian

sesquilinear form (in other words, a pre-Hilbert space) and let H be a Hilbert space.

A charged representation of the CARs in H is an anti-linear map

v 3 V 7→ ψ(v) ∈ B(H)

which satisfies the canonical anti-commutation relations:

(CAR)
{ψ∗(v), ψ∗(w)} = {ψ(v), ψ(w)} = 0,

{ψ(v), ψ∗(w)} = q(v, w)1, v, w ∈ V,
where the curly bracket stands for the anti-commutator of bounded operators. In

Quantum Field Theory, V is always infinite dimensional and there exist many uni-

tarily non-equivalent representations of the CARs. An efficient framework aimed to

deal with this problem is provided by the algebraic approach, initiated by Haag and

Kastler [Haa59, HK64]. The first step consists of defining a C∗-algebras CAR(V, q)

spanned by abstract elements φ(v) subject to the relations (CAR). After choosing a

state ω on this C∗-algebra, one obtains a CAR representation by applying the GNS

construction.

The simplest class of states are quasi-free ones. They have the property that they

are uniquely determined by their action on elements of the form ψ∗(v)ψ(w). The

sesquilinear form λ(v, w) = ω(ψ∗(v)ψ(w)), called the two-point function of ω, is thus

of particular interest, and it is possible to characterize sesquilinear forms which are

two-point functions of states with specific properties.

In this chapter, we introduce the basic material on representations of canonical

(anti-) commutation relations, quasi-free states and their two-point functions. Our

presentation of the subject follows closely [Der06, DG13] (other textbook references

we use are [BR97, BSZ92]) and includes a systematic treatment of the four distinct

cases: neutral/charged fermions and neutral/charged bosons. A particular emphasis
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is put on the relation between the neutral and the charged case. As discussed in

detail in [GW13] in the bosonic case, it is possible to set up an equivalence between

two-point functions in the neutral case and two-point functions of gauge-invariant

quasi-free state in the charged case. This observation will allow us to restrict to the

charged case uniquely in the next chapters, which is particularly convenient as one

avoids this way the use of real vector spaces and real forms, not much compatible

with the techniques of microlocal analysis.

The notations and conventions we adopt are rather standard ones, except that

in the charge bosonic case, instead of commonly used anti-hermitian sesquilinear

forms (‘complex symplectic spaces’) we rather consider hermitian ones. This is only a

matter of convenience and serves us to have notations which are more coherent with

the fermionic case.

1.1. Bilinear and sesquilinear forms

If V,W are vector spaces over K = R or C, we denote L(V,W ) the space of all

K-linear maps from V to W , and set L(V ) = L(V, V ).

Let X be a vector space over R. Its dual X# is the vector space of all linear

functionals on X. In what follows, the evaluation of an anti-linear functional z ∈ X#

on an element f ∈ X will be denoted 〈z, f〉 ∈ R.

Bilinear forms on X can be defined as elements of L(X,X#). To each such

β ∈ L(X,X#) we associate a map

β(·, ·) : X ×X → R
β(f, g) ··= 〈βf, g〉,

which is bilinear in the usual sense. We will use interchangeably the notation β

or β(·, ·) to denote elements of L(X,X#) — the ‘operator-like’ notation is more

convenient for writing operations such as composition with a linear maps, whereas

the ‘bilinear’ notation is often more practical when evaluation on specific vectors

f, g ∈ X is needed to be displayed without referring to the dual space X#.

Definition 1.1.1. Let β ∈ L(X,X#) be a bilinear form. One says that:

• β is symmetric if β(f, g) = β(g, f) for all f, g ∈ X;
• β is anti-symmetric if β(f, g) = −β(f, g) for all f, g ∈ X;
• β is non-degenerate if Ker β = {0}, or equivalently if for any f ∈ X

β(f, g) = 0 ∀g ∈ X

implies f = 0;
• β is positive if it is symmetric and β(f, f) > 0 for all f 6= 0. In such case the

pair (X, β) is called an orthogonal space.
• β is a symplectic form if it is anti-symmetric and non-degenerate. In such case

the pair (X, β) is called a symplectic space.
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Let V be a vector space over C. In such case we denote V ∗ its dual and the

terminology just introduced for the real case extends directly. However, it is often

more convenient to consider sesquilinear forms rather than bilinear ones and some

more terminology needs to be introduced for that purpose.

The anti-dual V ∗ is the vector space of all anti-linear functionals on V . In what

follows, the evaluation of an anti-linear functional z ∈ V ∗ on an element v ∈ V will

be denoted 〈z, v〉 ∈ C.

Sesquilinear forms on V can be defined as elements of L(V, V ∗). To each such

α ∈ L(V, V ∗) we associate a map

α(·, ·) : V × V → C
α(v, w) ··= 〈αv, w〉,

which is sesquilinear in the sense that it is anti-linear in the first argument and linear

in the second argument. We will use intercheangably the notation α or α(·, ·) to

denote elements of L(V, V ∗).

Definition 1.1.2. Let α ∈ L(V, V ∗) be a sesquilinear form. One says that

• α is hermitian if α(w, v) = α(v, w) for all v, w ∈ V ;
• α is anti-hermitian if α(w, v) = −α(v, w) for all v, w ∈ V ;
• α is non-degenerate if Kerα = {0}, or equivalently if for any v ∈ V ,

α(v, w) = 0 ∀w ∈ V

implies v = 0.
• α is positive if it is hermitian and α(v, v) > 0 for all v 6= 0. In that case we

write α ≥ 0.

A positive sesquilinear form is also called a scalar product. Note that it is always

a non-degenerate form.

Definition 1.1.3. A pre-unitary space is a pair (V, α) which consists of a complex

vector space V and a non-degenerate hermitian form α ∈ L(V, V ∗).

In the context of quantization one sometimes introduce ‘complex symplectic’

forms, which are anti-hermitian and non-degenerate. Observe however that if σ is

such an anti-hermitian form then α ··= iσ is hermitian, thus in practice it suffices to

work with non-degenerate hermitian forms and pre-unitary spaces.

Let us now introduce the notions needed to pass from real forms to complex ones

and vice-versa.

If X is a real vector space, we denote CX = X⊗RC its complexification. If β is a

bilinear form on the real vector space X, its canonical sesquilinear extension to CX
is the sesquilinear form βC on CX given by

βC(w1, w2) ··= β(f1, f2) + β(g1, g2) + iβ(f1, g2)− iβ(g1, f2), wi = fi + igi

for fi, gi ∈ X, i = 1, 2. The assignment β 7→ βC maps (anti-)symmetric forms on X

onto (anti-)hermitian forms on the complexified space CX.
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Conversely if V is a complex vector space, then we denote VR its real form, i.e.,

V considered as a real vector space (we simply forget about the complex structure).

Then given a sesquilinear form α ∈ L(V, V ∗) one obtains a bilinear form on VR by

taking the real part Reα. Clearly, the assignment α 7→ Reα maps (anti-)hermitian

forms on V onto (anti-)symmetric forms on the real space VR.

It is easy to see that if β ∈ L(X,X#) is positive then its canonical sesquilinear

extension βC ∈ L(CX,CX∗) is positive. The converse statement requires a little more

care because given a sesquilinear form α ∈ L(CX,CX∗) it is a priori not clear whether

it can be obtained as the sesquilinear extension of a bilinear form β ∈ L(X,X#).

Lemma 1.1.4. Let X be a real vector space and let α be a hermitian sesquilinear

form on CX. Then α = βC for some β ∈ L(X,X#) with β ≥ 0 iff α ≥ 0.

1.2. Symplectic and unitary group

Definition 1.2.1. Let X, Y be real vector spaces and let b ∈ L(X, Y ). Its transpose

bt ∈ L(Y #, X#) is defined by

〈btz, f〉 = 〈z, bf〉, z ∈ Y #, f ∈ X.

Let V,W be complex vector spaces and let a ∈ L(V,W ). The dual operator a∗ ∈
L(W ∗, V ∗) is defined by

〈a∗z, v〉 = 〈z, av〉, z ∈ W ∗, v ∈ V.

Note that we have not assumed so far that the vector spaces are endowed with

some topology. In particular, the dual operator is not to be confused with the Hilbert

space adjoint.

Definition 1.2.2. Let (X, β) be a symplectic space (resp. orthogonal space). The

symplectic group Sp(X, β) (resp. orthogonal group O(X, β)) consists of all bijective

u ∈ L(X) s.t.

(1.2.1) utβu = β.

Let (V, α) be a pre-unitary space. The unitary group U(V, α) consists of all bijective

u ∈ L(V ) s.t.

(1.2.2) u∗αu = α.

Note that in the sesquilinear notation, (1.2.2) means that

α(uv, uw) = α(v, w), v, w ∈ V.

Observe also that

(1.2.3) U(V, α) = O(VR,Reα) ∩ Sp(VR, Imα).

Example 1. Let (V, α) be a pre-unitary space and consider the hermitian form on

V ⊕ V defined by

q(v, w) ··= α(v0, w1) + α(v1, w0), v =

(
v0

v1

)
, w =

(
w0

w1

)
∈ V ⊕ V.
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Then (V ⊕ V, q) is a pre-unitary space. If now r, s, t ∈ L(V ) are such that r∗ = −r,
s∗ = −s and t is bijective then the operators

(1)

(
1 0

r 1

)
, (2)

(
1 s

0 1

)
and (3)

(
t∗ 0

0 t−1

)
,

belong to the unitary group U(V ⊕ V, q). Moreover, one can show that if

u =

(
a b

c d

)
∈ L(V ⊕ V )

is an element of U(V ⊕V, q) such that a ∈ L(V ) is bijective then it can be represented

as the composition of three operators of the form (1), (2), (3).

Pre-unitary spaces of the form (V ⊕ V, q) arise naturally in many problems. For

instance, if V is finite dimensional then q is simply the complex equivalent of the

canonical symplectic form. We will also encounter spaces of this kind in the context

of solutions of the Klein-Gordon equation.

1.3. Representations of CARs and CCRs

In what follows, H is a Hilbert space and we denote B(H), U (H), C(H) respec-

tively the set of bounded, unitary and closed operators acting in H. The identity in

B(H) will be denoted 1.

1.3.1. Neutral fermions. Let (X, ν) be an orthogonal space and let H be a

Hilbert space. If A,B ∈ B(H) then their anti-commutator is denoted {A,B} ··=
AB +BA.

Definition 1.3.1. A CAR representation over (X, ν) in H is a map

X 3 f 7→ φπ(f) ∈ B(H)

with values in self-adjoint operators, which satisfies

(1.3.1) {φπ(f), φπ(g)} = 2ν(f, g)1, f, g ∈ X.

The superscript π in the notation above has no mathematical meaning for the

moment, it is however useful when one wants to distinguish between different CAR

representations. The notation φ(f) will be reserved for elements of the CAR C∗-

algebra later on.

Definition 1.3.2. Let H1,H2 be Hilbert spaces. One says that two CAR represen-

tations

X 3 f 7→ φπ1(f) ∈ B(H1), X 3 f 7→ φπ2(f) ∈ B(H2)

over the same orthogonal space (X, ν) are unitary equivalent if there exists a unitary

operator U ∈ U (H1,H2) s.t.

Uφπ1(f) = φπ2(f)U, f ∈ X.

The theory of CAR representations over an infinite-dimentional space X is highly

non-trivial in the sense that in general there exist many unitary non-equivalent rep-

resentations.
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1.3.2. Charged fermions. Let (V, q) be a unitary space, that is a complex

vector space equipped with a positive sesquilinear form q. The complex structure on

V will be denoted by j to distinguish it from the complex number i ∈ C.

Let H be a Hilbert space.

Definition 1.3.3. A charged CAR representation over (V, q) is a map

V 3 v 7→ ψπ(v) ∈ B(H)

which satisfies

(1.3.2)
{ψπ∗(v), ψπ∗(w)} = {ψπ(v), ψπ(w)} = 0

{ψπ(v), ψπ∗(w)} = q(v, w)1, v, w ∈ V.
A charged CAR representation over V induces a CAR representation over VR.

Namely, let v 7→ ψπ(v) be a charged CAR representation over (V, q) and set

X ··= VR, ν ··= 1
2
Re q, φπ(v) ··= 1

2
(ψπ(v) + ψπ∗(v)) .

Then X 3 f 7→ φπ(f) is a CAR representation over (X, ν).

1.3.3. Neutral bosons. Let (X, σ) be a real symplectic space. The implemen-

tation of the CCRs require more care than in the fermionic case, because the field

operators are necessarely unbounded. It is possible to work with bounded opera-

tors by considering an exponentiated version of the CCRs, called the Weyl canonical

commutation relations.

Definition 1.3.4. A CCR representation over (X, σ) in H is a map

X 3 f 7→ W π(f) ∈ U (H)

which satisfies

(1.3.3) W π(f)W π(g) = e−
1
2
σ(f,g)W π(f + g), f, g ∈ X.

An obvious consequence of (1.3.3) are the equalities

W π∗(f) = W π(−f), W π(t1f)W π(t2f) = W π((t1 + t2)f), f ∈ X, t1, t2 ∈ R.

Definition 1.3.5. Let H1,H2 be Hilbert spaces. One says that two CCR represen-

tations

X 3 f 7→ W π1(f) ∈ U (H1), X 3 f 7→ W π2(f) ∈ U (H2)

over the same pre-symplectic space (X, σ) are unitary equivalent if there exists a

unitary operator U ∈ U (H1,H2) s.t.

UW π1(f) = W π2(f)U, f ∈ X.

Definition 1.3.6. A CCR representation is called regular if for any f ∈ X the map

(1.3.4) R 3 t 7→ W π(tf) ∈ U (H)

is strongly continuous.
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Given a regular CCR representation, the field operators φπ(f) are defined as gen-

erators of the one-parameter strongly continuous group of unitaries (1.3.4), i.e.,

φπ(f) ··= −i
d

dt
W π(tf)

∣∣
t=0
∈ C(H).

For an operator A ∈ C(H), we denote DomA its domain. The field operators have

the following basic properties.

Proposition 1.3.7. Let X 3 f 7→ eiφπ(f) be a CCR representation. Then for all

f, g ∈ X,

(1) φπ(tx) = tφπ(f), t ∈ R;

(2) Domφπ(f) ∩Domφπ(g) ⊂ Domφπ(f + g);

(3) φπ(f + g) = φπ(f) + φπ(g) on Domφπ(f) ∩Domφπ(g);

(4) as a quadratic form on Domφπ(f) ∩Domφπ(g),

[φπ(f), φπ(g)] = iσ(f, g)1.

In order to avoid cumbersome assumptions on the domains in formulae which

involve products of operators, it is often useful to work with the subspace

(1.3.5) H∞,π ··=
∞⋂
n=1

⋂
f1,...,fn∈X

Domφπ(f1) · · ·φπ(fn) ⊂ H,

where the domain of the product of unbounded operators is defined by

DomAB = {h ∈ DomB : Bh ∈ DomA}, A,B ∈ C(H).

Obviously, φπ(f)H∞,π ⊂ H∞,π. One can show that if X is finite dimensional then

H∞,π is dense in H; this will also be the case in the infinite-dimensional examples we

will be interested in later on.

1.3.4. Charged bosons. Let (V, q) be a pre-unitary space and letH be a Hilbert

space. Representations of the CCRs in the charged case can be defined via a reduction

to the neutral case.

Definition 1.3.8. One says that a map

V 3 v 7→ ψπ(v) ∈ C(H)

is a charged CCR representation over (V, q) if there exists a regular neutral CCR

representation over (VR, Im q)

V 3 v 7→ W π(v) = eiφπ(v) ∈ U (H)

such that

(1.3.6) ψπ(v) =
1√
2

(φπ(v) + iφπ(jv)) , v ∈ V.

Observe that the ‘neutral’ field operators φπ(v) can be recovered from the oper-

ators ψπ(v) (called charged field operators). Indeed, using that j2 = −1 we get from
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(1.3.6) the relation

φπ(v) =
1√
2

(ψπ(v) + ψπ∗(v)) .

Up to technicalities due to unboundedness of the operators, the map V 3 v 7→
ψπ∗(v) is linear, the map V 3 v 7→ ψπ(v) is anti-linear, and the charged field operators

ψπ(v) satisfy the CCRs.

Proposition 1.3.9. Let V 3 v 7→ ψπ(v) be a charged CCR representation. Then

for all v, w ∈ V ,

(1) ψπ(λv) = λ̄ψπ(v), λ ∈ C;

(2) Domψπ(v) ∩Domψπ(w) ⊂ Domψπ(v + w);

(3) ψπ(v + w) = ψπ(v) + ψπ(w) on Domψπ(v) ∩Domψπ(w);

(4) as quadratic forms on Domψπ(v) ∩Domψπ(w),

[ψπ(v), ψπ(w)] = [ψπ∗(v), ψπ∗(w)] = 0,

[ψπ(v), ψπ∗(w)] = q(v, w)1.

1.4. CAR and CCR C∗-algebras

Let A be a C∗-algebra. A state ω is a positive continuous linear functional on A

of norm one. Here ‘positive’ means that ω(a∗a) ≥ 0 for all a ∈ A. The set of all

states on A is a convex subset of the algebraic dual A∗, and it is closed in the weak-∗

topology.

Definition 1.4.1. A state on A is pure if it is an extremal point in the set of all

states on A.

In other words, ω is pure if it cannot be written as a convex sum of two states ω1,

ω2, both of which are not equal ω.

Theorem 1.4.2. Let ω be a state on A. Then there exists a triple (Hω, πω,Ωω) which

consists of:

• a Hilbert space Hω,
• a ∗-representation πω in Hω, i.e., a ∗-homomorphism of A into B(Hω),
• a cyclic vector Ωω (i.e., an element of Hω s.t. πω(A)Ωω is dense in H), which

satisfies

ω(a) = (Ωω|πω(a)Ωω), a ∈ A.

Moreover, if (H̃ω, π̃ω, Ω̃ω) is another such triple then there exists U ∈ U (Hω, H̃ω) such

that

Uπω(a) = π̃ω(a)U, a ∈ A,

UΩω = Ω̃ω.

The triple (Hω, πω,Ωω) is called the GNS representation associated with the state

ω.

Suppose now that A is a C∗-algebra with unit, equipped with a strongly continuous
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group R 3 t 7→ αt of ∗-isomorphisms. One says that ω is a ground state w.r.t. αt
if ω ◦ αt = ω for all t ∈ R and there exists a strongly continuous group of unitaries

R 3 t 7→ Ut ∈ U (Hω) with positive generator, s.t. UtΩω = Ωω and

πω(αt(a)) = Utπω(a)U−1
t , a ∈ A, t ∈ R.

If, additionally, the eigenspace of the generator of Ut corresponding to the eigenvalue

0 is spanned by Ωω, then ω is pure [Bor66].

1.4.1. CAR C∗-algebra. Let (X, ν) be an orthogonal space. Let CARalg(X, ν)

be the ∗-algebra generated by elements φ(f) for f ∈ X, subject to relations

φ(λx) = λφ(f), λ ∈ R, φ(f + g) = φ(f) + φ(g),

φ∗(f) = φ(f), φ(f)φ(g)− φ(g)φ(f) = 2ν(f, g)1, f, g ∈ X.

It can be proved that there exists a unique C∗-norm on CARalg(X, ν).

Definition 1.4.3. The CAR C∗-algebra, denoted CAR(X, ν), is the completion of

CARalg(X, ν) with respect to the above norm.

If ω is a state on CAR(X, ν) and (H, π,Ω) is the associated GNS representation,

then

X 3 f 7→ φπ(f) ··= π(φ(f))

is a CAR representation. The converse statement can be formulated as follows.

Proposition 1.4.4. Let X 3 f 7→ φπ(f) ∈ B(H) be a CAR representation. Then

there exists a unique ∗-homomorphism π : CAR(X, ν)→ B(H) such that

π(φ(f)) = φπ(f), f ∈ X.

1.4.2. Weyl CCR C∗-algebra. In the bosonic case one can choose between

several different C∗-algebras which encode the CCRs. In the literature on QFT

on curved spacetimes, one uses mostly the so-called Weyl CCR C∗-algebra. It is

constructed as follows.

Let (X, σ) be a pre-symplectic space. Let CCRalg(X, σ) be the ∗-algebra generated

by elements W (f) for all f ∈ X, subject to relations

W (f)∗ = W (−f), W (f)W (g) = e−
1
2
σ(f,g), f, g ∈ X

Observe that if X 3 f 7→ W π(f) ∈ U (H) is a CCR representation in a Hilbert space

H, then there exists a unique unital ∗-isomorphism π : CCRalg(X, σ) → B(H) such

that

(1.4.1) π(W (f)) = W π(f), f ∈ X.

This way, the class of all CCR representations over (X, σ) can be identified with a

set of ∗-isomorphisms, which we will denote R(X, σ) in what follows. A well-known

fact says that the set R(X, σ) is not empty (note that we take into account all CCR

representations, not only regular ones).
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This allows us to introduce a norm ‖ · ‖ on CCRalg(X, σ) by

‖a‖ ··= sup{‖π(a)‖, π ∈ R(X, σ)}, a ∈ CCRalg(X, σ).

Definition 1.4.5. The Weyl CCR algebra, denoted CCR(X, σ), is the completion

of CCRalg(X, σ) with respect to the norm ‖ · ‖.

The ∗-algebra CCR(X, σ) is a C∗-algebra indeed. Let us remark that so far we

have not assumed that (X, σ) is a symplectic space, i.e., we allowed σ to be a degen-

erate form. It has been recently suggested that such degenerate forms arise naturally

in quantization of gauge fields on curved spacetimes [SDH12]. In the examples we

will consider, however, we will always be in the non-degenerate case. Then the C∗-

algebra CCR(X, σ) enjoys special properties, for instance it is simple, i.e., it possesses

no non-trivial closed two-sided ideals.

If ω is a state on CCR(X, σ) and (H, π,Ω) is the associated GNS representation,

then

X 3 f 7→ W π(f) ··= π(W (f)) ∈ B(H)

is a CCR representation. The converse statement can be formulated as follows (note

that it is not completely trivial because it involves continuity of π).

Proposition 1.4.6. Let X 3 f 7→ W π(f) ∈ U (H) be a regular CCR representation.

Then there exists a unique ∗-homomorphism π : CCR(X, σ)→ B(H) s.t.

π(W (f)) = W π(f), f ∈ X.

One can argue that different other choices of C∗-algebras are more useful in the

context of gauge-invariant observables, an example is the resolvent algebra proposed

relatively recently by Buchholz and Grundling [BG08].

1.5. Quasi-free states

1.5.1. Neutral fermions. Let (X, ν) be an orthogonal space. The simplest class

of states on CAR(X, ν) are the so-called quasi-free states, which are the ones fully

determined by their evaluation on elements of the form φ(f)φ(g), f, g ∈ X (and their

evaluation on φ(f), f ∈ X is zero). They can be rigorously defined as follows.

Definition 1.5.1. A state ω on CAR(X, ν) is called a (fermionic, neutral) quasi-free

state if there exists an anti-symmetric form β on X, called the covariance of ω s.t.

(1.5.1) ω(φ(f)φ(g)) = ν(f, g) +
i

2
β(f, g), f, g ∈ X.

Anti-symmetry of β entails that a quasi-free state ω is indeed fully determined by

(1.5.1), as the next proposition illustrates.

Proposition 1.5.2. Let ω be a quasi-free state on CAR(X, ν). Then

ω(φ(f1) . . . φ(f2n−1)) = 0,

ω(φ(f1) . . . φ(f2n)) =
∑
s∈P2n

sgn(s)
n∏
j=1

ω(φ(fs(2j−1))φ(fs(2j))),
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for all n ∈ N, f1, . . . , f2n ∈ X, where

P2n =
{
s ∈ S2n : s(2i− 1) < max{s(2i), s(2i+ 1)}, 1 ≤ i ≤ n

}
and S2n is the set of even permutations of {1, . . . , 2n}.

A quasi-free state is uniquely determined by its covariance β. Our first goal will

be to set up an analogous equivalence between quasi-free states and their two-point

function, which are a complexified version of the symmetric form (1.5.1).

Definition 1.5.3. The two-point function of a (fermionic, neutral) quasi-free state

on CAR(X, ν) (with covariance β) is the sesquilinear hermitian form

(1.5.2) λ ··= νC +
i

2
βC ∈ L(CX,CX∗),

In order to have a closer analogy to the charged case later on, it is useful to

introduce at once the positive sesquilinear form

(1.5.3) q ··= 2νC ∈ L(CX,CX∗).

Proposition 1.5.4. Let β ∈ L(X,X#) be an anti-symmetric form and let λ, q be

defined by (1.5.2), (1.5.3). Then the following are equivalent:

(1) β is the covariance of a quasi-free state on CAR(X, ν);

(2) |β(f, g)| ≤ 2 (ν(f, f))
1
2 (ν(g, g))

1
2 for all f, g ∈ X;

(3) λ ≥ 0 on CX;

(4) λ ≥ 0 and λ ≤ q on CX.

Let us stress that although conditions (3) and (4) are equivalent if λ = νC + i
2
βC

for some symmetric ν and anti-symmetric β, this is not necessarily true for a generic

sesquilinear form λ ∈ L(CX,CX∗). In the statement of the corollary below, which

can be derived as a direct consequence of Proposition 1.5.4 and Lemma 1.1.4, we

avoid making a detour via real forms.

Corollary 1.5.5. Let λ ∈ L(CX,CX∗). Then the following are equivalent:

(1) λ is the two-point function of a quasi-free state on CAR(X, ν);

(2) λ ≥ 0 and λ ≤ q.

It is well known that the subclass of pure quasi-free states can be characterized

as follows in terms of their covariances β.

Proposition 1.5.6. Let β ∈ L(X,X#) be anti-symmetric. The following are equiv-

alent:

(1) β is the covariance of a pure quasi-free state on CAR(X, ν);

(2) there exists j ∈ Sp(X, β) s.t. j2 = −1 and 2ν = βj.

Using Proposition 1.5.4 we conclude immediately that if β is the covariance of a

quasi-free state on CAR(X, ν) then the same is true for rtβr for any r ∈ O(X, ν).

Moreover, from 1.5.6 we see that if β was the covariance of a pure state, then so

is rtβr. A converse statement holds true in the case when X is complete. More

generally, we take the completion of X w.r.t. ν and denote it X . We can then
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consider covariances β ∈ L(X,X#) which extend to bounded operators from X to

the topological dual X# ≈ X , i.e., elements of B(X ).

Proposition 1.5.7. Let (X, ν) be an orthogonal space and let X be the completion

of X w.r.t. the norm induced by ν. Let β1 ∈ B(X ), β2 ∈ B(X ) be covariances

of two pure quasi-free states on CAR(X, ν). Then there exists an operator r ∈
B(X ) ∩ O(X, ν) s.t. β2 = rtβ1r, where rt ∈ B(X ) stands for the Hilbert-space

adjoint.

Proof. See, e.g., [DG13]. �

1.5.2. Charged fermions. Let (V, q) be a unitary space.

According to the discussion in Sect. 1.1, (VR,
1
2
Req) is a real symplectic space.

Observe that if j denotes the complex structure on V then clearly j ∈ O(VR,
1
2
Req).

For coherence of notation we will denote the CAR C∗-algebra

CAR(V, q) ··= CAR(VR,
1
2
Re q).

By definition, (fermionic) charged quasi-free states are simply quasi-free states on

CAR(V, q) in the sense of the previous subsection.

Again, in the charged case physical states are required to satisfy a gauge-invariance

condition.

Definition 1.5.8. A state ω on CAR(V, q) is called gauge-invariant if

ω(φ(v)) = ω(φ(ejθv)), 0 ≤ θ < 2π, v ∈ V.

If ω is a quasi-free state with covariance β then gauge-invariance of ω is equivalent

to

(1.5.4) j ∈ O(VR, β).

In order to implement the algebraic approach in the charge case, let us introduce

the abstract charged fields:

ψ(v) ··=
1

2
(φ(v) + iφ(jv)) ∈ CAR(V, q), v ∈ V.

If ω is a state on CAR(V, q) and (H, π, ω) is the associated GNS representation then

V 3 v 7→ ψπ(v) ··= ω(ψ(v)) ∈ B(H)

is a charged CAR representation.

The next proposition characterizes gauge-invariant quasi-free states.

Proposition 1.5.9. A state ω on CAR(V, q) is gauge-invariant iff

ω(ψ∗(v1) · · ·ψ∗(vn)ψ(w1) . . . ψ(wm)) = 0, n 6= m

for all v1, . . . , vn, w1, . . . , wm ∈ V . It is also quasi-free if in addition

ω(ψ∗(v1) · · ·ψ∗(vn)ψ(w1) . . . ψ(wn)) =
∑
s∈Sn

sgn(s)
n∏
j=1

ω(ψ∗(vj)ψ(ws(j))),
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for all n ∈ N , v1, . . . , vn, w1, . . . , wn ∈ V , where Sn denotes the set of even permuta-

tions of {1, . . . , n}.

If ω is a gauge-invariant quasi-free state on CAR(V, q) then we also have

(1.5.5) ω(ψ(v)ψ(w)) = ω(ψ∗(v)ψ∗(w)) = 0, v, w ∈ V.

Thus, such state is uniquely determined by the expression ω(ψ(v)ψ∗(w)), v, w ∈ V .

Definition 1.5.10. The two-point function of a (fermionic, charged) gauge-invariant

quasi-free state ω is the hermitian form λ ∈ L(V, V ∗) given by

(1.5.6) λ(v, w) ··= ω(ψ(v)ψ∗(w)), v, w ∈ V.

The charge density is the hermitian form

c(v, w) ··= ω(ψ∗(w)ψ(v)), v, w ∈ V.

We now derive necessary and sufficient conditions for a sesquilinear form λ to be

the two-point function of a gauge-invariant, quasi-free state. The result turns out to

be completely analogous to what we had in the neutral case (cf. Proposition 1.5.6).

Proposition 1.5.11. Let λ ∈ L(V, V ∗). Then the following are equivalent:

(1) λ is the two-point function of a gauge-invariant quasi-free state on CAR(V, q);

(2) λ ≥ 0 and λ ≤ q.

Proof. Using φ(v) = 1
2
(ψ(v) + ψ∗(v)), (1.5.6) and the CARs, we compute

ω(φ(v)φ(w)) = 1
4
ω(ψ(v)ψ∗(w)) + 1

4
ω(ψ∗(v)ψ(w))

= 1
4
ω(ψ(v)ψ∗(w))− 1

4
ω(ψ(w)ψ∗(v)) + 1

4
q(w, v)

= i
2
Imλ(v, w) + 1

4
q(w, v) = 1

4
Re q(v, w) + i

2
Im (λ(v, w)− 1

2
q(v, w)),

hence β = Im(λ − 1
2
q) and we can express λ̃ ··= νC + i

2
βC in terms of q and the

complexifiaction of Imλ. Since ω is gauge-invariant we have

j ∈ Sp(VR, β) ∩O(VR,
1
2
Re q) = Sp(VR, β) ∩ Sp(VR, 1

2
Imq).

From this fact we deduce the equivalence of the conditions λ̃ ≥ 0, λ̃ ≤ q and λ ≥ 0,

λ ≤ q. �

Remark 1.5.12. Let V be the completion of V with respect to the norm induced

by q. If a two-point function λ ∈ L(V, V ∗) extends to a bounded operator λ ∈
B(V , V̄∗) (where V̄∗ stands for the dual in the sense of Banach spaces), then under

the identification B(V , V̄∗) ≈ B(V) condition (2) becomes

0 ≤ λ ≤ 1

in the sense of positivity of operators on the Hilbert space V . This is the condition

which appears in most of the literature.

Proposition 1.5.13. Let λ ∈ L(V, V ∗) be hermitian. Then the following are equiv-

alent:

(1) λ is the two-point function of a pure gauge-invariant quasi-free state on
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CAR(V, q);

(2) there exists an involution κ ∈ U(V, q) s.t. qκ ≥ 0 and λ = 1
2
q(1− κ);

(3) λ ≤ 1
2
q and λq−1λ = λ.

Proof. By Proposition 1.5.20 the state ω is pure iff there exists an anti-involution

j ∈ Sp(VR, Im q) such that

(1.5.7) Re q = βj.

Since j ∈ Sp(VR, β)∩Sp(VR, 1
2
Im q) we obtain that j ∈ U(V, q). Complexifying (1.5.7)

we then get that q = 2i(ν − λ). Setting κ = −ij we see that κ ∈ U(V, q) and

λ = 1
2
q(1− κ). Therefore (1) is equivalent to

(4) λ ≥ 0, λ ≥ q, λ = 1
2
q(1 + κ), κ2 = 1, κ ∈ U(V, q).

(4) clearly implies (2). Let us prove the converse implication. Set p± ··= 1
2
(κ ± 1).

Clearly p± are projections with p∗±q = qp±, κp± = ±p±, and

λ ≥ 0, λ ≤ q ⇔ ±qp± ≥ 0.

Now we have

qp± = qp2
± = p∗±qp± = ±p∗±qκp±,

which completes the proof since qκ ≥ 0. The fact that (2) and (3) are equivalent is

an easy computation. �

Using the above result one can prove an analogue of Proposition 1.5.7 in the

charged case.

Proposition 1.5.14. Let (V, q) be a unitary space and let V be the completion of

V w.r.t. the norm induced by q. Let λ1 ∈ B(V), λ2 ∈ B(V) be two-point functions

of two pure quasi-free states on CAR(V, q). Then there exists an operator r ∈ U (V)

s.t. λ2 = r∗λ1r, where r∗ ∈ B(H) stands for the Hilbert-space adjoint.

1.5.3. Neutral bosons. Let (X, σ) be a symplectic space.

Quasi-free states on CCR(X, σ) could be formally defined as those ω which satisfy

(1.5.8) ω(φ(f)φ(g)) = η(f, g) +
i

2
σ(f, g), f, g ∈ X

for some symmetric η ∈ L(X,X#). In the bosonic case, however, field operators

φπ(f) are always unbounded and there are no corresponding elements φ(f) in the C∗-

algebra CCR(X, σ). This problem is avoided in the definition below by considering

an exponentiated version of (1.5.8).

Definition 1.5.15. A state ω on CCR(X, σ) is called a (bosonic, neutral) quasi-free

state if there exists a symmetric form η on X, called the covariance of ω, such that

(1.5.9) ω(W (f)) = e−
1
2
η(f,f), f ∈ X.

Proposition 1.5.16. Let ω be a quasi-free state on CCR(X, σ) and let (H, π,Ω) be

the associated GNS representation. Then the CCR representation

X 3 f 7→ W π(f) ··= π(W (f)) ∈ B(H)
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is regular and there exists a unique Ψ ∈ H s.t.

(1.5.10) ω(W (f)) = (Ψ|W π(f)Ψ), f ∈ X.

Moreover, Ψ ∈ H∞,π and

(1.5.11) (Ψ|φπ(f)φπ(g)Ψ) = η(f, g) +
i

2
σ(f, g), f, g ∈ X.

The expression (Ψ|φπ(f)φπ(g)Ψ) can be thought of as a rigorous replacement for

the ill-defined object ω(φ(f)φ(g)). Another way of making the expression ω(φ(f)φ(g))

rigorous is to give up on the C∗-algebraic picture and consider instead a ∗-algebra

which contains φ(f). This alternative strategy is frequently used in QFT on curved

spacetime and the ∗-algebra used in this context is the so-called Borchers-Uhlmann

algebra.

Definition 1.5.17. The two-point function of a (bosonic, neutral) quasi-free state is

the sesquilinear hermitian form

(1.5.12) λ ··= ηC +
i

2
σC ∈ L(CX,CX∗).

Similarly to the fermionic case, we introduce a hermitian sesquilinear form called

the charge form

q ··= iσC ∈ L(CX,CX∗).
The following results are well-known (see, e.g., [AS71], [DG13, Chaps. 17,11]).

Proposition 1.5.18. Let η ∈ L(X,X#) be a symmetric form. Then the following

are equivalent:

(1) η is the covariance of a quasi-free state on CCR(X, σ);

(2) η ≥ 0 on X and

|σ(f1, f2)| ≤ 2 (η(f1, f1))
1
2 (η(f2, f2))

1
2 , f1, f2 ∈ X;

(3) λ ≥ 0 on CX;

(4) λ ≥ 0 and λ ≥ q on CX.

Corollary 1.5.19. Let λ ∈ L(CX,CX∗). Then the following are equivalent:

(1) λ is the two-point function of a quasi-free state on CCR(X, σ);

(2) λ ≥ 0 and λ ≥ q.

The subclass of pure quasi-free states can be characterized as follows in terms of

their covariances η.

Proposition 1.5.20. Let η ∈ L(X,X#) be symmetric. The following are equivalent:

(1) η is the covariance of a pure quasi-free state on CCR(X, σ);

(2) there exists j ∈ Sp(X, σ) s.t. j2 = −1 and 2η = σj.

Proposition 1.5.21. Let (X, σ) be a presymplectic space and let η1, η2 be covari-

ances of two pure quasi-free states on CCR(X, σ). Denote X1,X2 the completions of

X w.r.t. respectively η1, η2. Then there exists an operator r ∈ B(X2,X1) ∩ Sp(X, σ)

s.t. η2 = rtη1r, where rt ∈ B(X#
1 ,X

#
2 ) stands for the Banach-space adjoint.
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1.5.4. Charged bosons. Let (V, q) be a pre-unitary space.

Clearly, (VR, Imq) is a real symplectic space and the complex structure j on V

satisfies j ∈ Sp(VR, Imq).
For coherence of notation we will denote the Weyl CCR C∗-algebra

CCR(V, q) ··= CCR(VR, Im q).

By definition, (bosonic) charged quasi-free states are quasi-free states on CCR(V, q)

in the sense of the previous subsection. Let ω be a quasi-free state on CCR(V, q)

and let (H, π,Ω) be the associated GNS representation. By Proposition 1.5.16, the

corresponding ‘neutral’ CCR representation v 7→ W π(v) = ω(W (v)) is regular and

we have well-defined self-adjoint field operators φπ(v) ∈ C(H). If now

ψπ(v) ··=
1√
2

(φπ(v) + iφπ(jv)), v ∈ V

then the map

V 3 v 7→ ψπ(v) ∈ C(H)

is a charged CCR representation.

In the charged case, physical states are required to satisfy a gauge-invariance

condition.

Definition 1.5.22. A state ω on CCR(V, q) is called gauge-invariant if

ω(W (v)) = ω(W (ejθv)), 0 ≤ θ < 2π, v ∈ V.

If ω is a charged quasi-free state with covariance η then gauge-invariance is equiv-

alent to

(1.5.13) j ∈ O(VR, η).

If ω is a charged quasi-free state on CCR(V, q), by Proposition 1.5.16 there exists

a vector Ψ ∈ H∞,π s.t.

ω(W (v)) = (Ψ|W π(v)Ψ), v ∈ V.

If ω is additionally gauge-invariant then one can show that

(1.5.14) (Ψ|ψπ(v)ψπ(w)Ψ) = (Ψ|ψπ∗(v)ψπ∗(w)Ψ) = 0, v, w ∈ V

Definition 1.5.23. The two-point function of a (bosonic, charged) gauge-invariant

quasi-free state ω is the hermitian form λ ∈ L(V, V ∗) given by

(1.5.15) λ(v, w) ··= (Ψ|ψπ(v)ψπ∗(w)Ψ), v, w ∈ V.

The charge density of ω is the hermitian form

c(v, w) ··= (Ψ|ψπ∗(w)ψπ(v)Ψ), v, w ∈ V.

The following propositions are the analogues of Propositions 1.5.4, 1.5.20 and

1.5.21. We sketch their proofs for the reader’s convenience.

Proposition 1.5.24. Let λ ∈ L(V, V ∗). Then the following are equivalent:

(1) λ is the two-point function of a gauge-invariant quasi-free state on CCR(V, q);
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(2) λ ≥ 0 and λ ≥ q.

Proof. In terms of the self-adjoint fields φ(v), using the CCRs we compute

ω(φ(v)φ(w)) = Re(λ− 1
2
q)(v1, v2) +

i

2
Im q(v1, v2),

hence η = Re(λ− 1
2
q). Since ω is gauge-invariant,

j ∈ O(VR, η) ∩ Sp(VR, Im q) = O(VR, η) ∩O(VR,Req).

From this fact we deduce that η ≥ 0 ⇔ λ ≥ 1
2
q, and that the second condition in

Proposition 1.5.4 (with σ replaced by Im q) is equivalent to

±q ≤ 2λ− q.

These three conditions are equivalent to λ ≥ 0, λ ≥ q. �

Proposition 1.5.25. Let λ ∈ L(V, V ∗) be hermitian. Then the following are equiv-

alent:

(1) λ is the two-point function of a pure gauge-invariant quasi-free state on

CCR(V, q);

(2) there exists an involution κ ∈ U(V, q) s.t. qκ ≥ 0 and λ = 1
2
q(1 + κ);

(3) λ ≥ 1
2
q and λq−1λ = λ.

Proof. By Proposition 1.5.20 the state ω is pure iff there exists an anti-involution

j ∈ Sp(VR, Im q) such that

(1.5.16) 2η = (Im q)j.

Since j ∈ O(VR, η) ∩ Sp(VR, Im q) we obtain that j ∈ U(V, q), i.e. j is C−linear and

pseudo-unitary for q. From (1.5.16) we then get that 2λ − q = σj. Setting κ = −ij

we see that κ ∈ U(V, q) and λ = 1
2
q(1 + κ). Therefore (1) is equivalent to

(4) λ ≥ 0, λ ≥ q, λ = 1
2
q(1 + κ), κ2 = 1, κ ∈ U(V, q).

(4) clearly implies (2). Let us prove the converse implication. Set p± ··= 1
2
(1 ± κ).

Clearly p± are projections with p∗±q = qp±, κp± = ±p±, and

λ ≥ 0, λ ≥ q ⇔ ±qp± ≥ 0.

Now we have

qp± = qp2
± = p∗±qp± = ±p∗±qκp±,

which completes the proof since qκ ≥ 0. The fact that (2) and (3) are equivalent is

an easy computation. �

Proposition 1.5.26. Let λ1, λ2 be two-point functions of two pure, gauge-invariant

quasi-free states on CCR(V, q). Then there exists r ∈ U(V, q) s.t. λ2 = r∗λ1r.

Proof. We introduce the real covariances η1, η2. By Proposition 1.5.7 there exists

r ∈ Sp(VR, Im q) with η2 = rtη1r. Using the gauge-invariance of the two states we

obtain that rj = jr, hence r ∈ U(V, q). �
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1.5.5. Complexification of quasi-free states. The characterization of two-

point functions of quasi-free states we discussed in this chapter yields the following

relation between the neutral and charge case.

Theorem 1.5.27. Let (X, ν) be an orthogonal space and let ω be a quasi-free state

on CAR(X, ν) with two-point function λ. Set

Ṽ ··= CX, q̃ ··= 2νC.

Then there exists a unique gauge-invariant quasi-free state ω̃ on CAR(Ṽ , q̃) with

two-point function λ̃ = λ. Moreover, ω̃ is a pure state iff ω is pure.

Conversely, let (V, q) be a pre-unitary space and let ω be a gauge-invariant quasi-

free state on CAR(V, q) with two-point function λ. Set

X̃ ··= VR, ν̃ ··= 1
2
Re q.

Then there exists a unique quasi-free state ω̃ on CAR(X̃, ν̃) with two-point function

λ̃ = λ. Moreover, ω̃ is a pure state iff ω is pure.

The bosonic analogue reads:

Theorem 1.5.28. Let (X, σ) be a symplectic space and let ω be a quasi-free state

on CCR(X, σ) with two-point function λ. Set

Ṽ ··= CX, q̃ ··= iσC.

Then there exists a unique gauge-invariant quasi-free state ω̃ on CCR(Ṽ , q̃) with

two-point function λ̃ = λ. Moreover, ω̃ is a pure state iff ω is pure.

Conversely, let (V, q) be a pre-unitary space and let ω be a gauge-invariant quasi-

free state on CCR(V, q) with two-point function λ. Set

X̃ ··= VR, σ̃ ··= Im q.

Then there exists a unique quasi-free state ω̃ on CCR(X̃, σ̃) with two-point function

λ̃ = λ. Moreover, ω̃ is a pure state iff ω is pure.

It follows that, possibly after complexifying the real orthogonal or symplectic

space, one can always restrict the discussion to gauge-invariant quasi-free states on a

pre-unitary space (V, q) (where q is required to be positive in the fermionic case).

In the sequel we will henceforth only consider gauge-invariant quasi-free states,

and often call them simply quasi-free states.

1.5.6. Charge conjugation. If the pre-unitary space (V, q) possesses some dis-

crete symmetries, it is natural to consider classes of states which preserve these sym-

metries. A common example of a discrete symmetry is charge conjugation.

Definition 1.5.29. Let (V, q) be a pre-unitary space. An anti-linear map κ : V → V

is said to be a charge conjugation if κ2 = 1 or κ2 = −1 and

q(κv, κw) = q(w, v), v, w ∈ V
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in the fermionic case, respectively

q(κv, κw) = −q(w, v), v, w ∈ V.

in the bosonic case.

One says that a quasi-free state ω on CAR(V, q) or CCR(V, q) is invariant under

charge conjugation if

(1.5.17) ω(ψ∗(v)ψ(w)) = ω(ψ(κv)ψ∗(κw)), v, w ∈ V.

Strictly speaking, in the bosonic case, the formal expression ω(ψ∗(v)ψ(w)) has to

be understood as in Definition 1.5.23.

If there exists a charge conjugation on (V, q) then given a quasi-free state ω on

CAR(V, q) or CCR(V, q), invariance under charge conjugation means that the two-

point function λ and charge density c are related by

c(v, w) = λ(κw, κv), v, w ∈ V.

Therefore, a hermitian sesquilinear form λ on V is the two-point function of a quasi-

free state which is invariant under charge conjugation iff

λ(v, v) ≥ 0, λ(v, w) + λ(κw, κv) = q(v, w) v, w ∈ V

in the fermionic case, and

λ(v, v) ≥ 0, λ(v, w)− λ(κw, κv) = q(v, w) v, w ∈ V

in the bosonic case.
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CHAPTER 2

Normally and pre-normally hyperbolic operators

In non-interacting Quantum Field Theory, the classical space which is quantized

is the space of smooth solutions of the free equations of motions: the Klein-Gordon

equation in the case of spin-0 fields, and the Dirac equation in the case of spin-1
2

fields.

This construction can be carried through on a curved spacetime provided that the

equation of motion has a reasonable global theory, as is the case on globally hyperbolic

spacetimes. On the same lines, it is possible to consider a coupling to a smooth, real

valued external electromagnetic potential, which may possibly vary in time.

In this chapter we collect basic results needed for the construction of quantum

fields on globally hyperbolic spacetimes in the spin-0 and spin-1
2

case. Our discussion

follows the references [BGP08, Dim82, BG11], although our results are more general

in the respect that we allow for smooth external potentials in formulating the Cauchy

problem. We also discuss an alternative approach to the Klein-Gordon equation,

usually written in the form

(2.0.1)
[
−(∇µ + iAµ)(∇µ + iAµ) +m2

]
f = 0.

Namely, we observe that this is equivalent to the system

(2.0.2)

(
i−1nµ(∇µ + iAµ) 1

−hµν(∇µ + iAµ)(∇ν + iAν) +m2 i−1nµ(∇µ + iAµ)

)(
f0

f1

)
= 0,

by substituting f0 = f and f1 = i−1nµ(∇µ + iAµ), where nµ and hµν are constructed

once a so-called Gaussian foliation of (M, g) by Cauchy surfaces is given. The two-

component Klein-Gordon equation (2.0.2) is a generalization of the equation consid-

ered by Feshbach and Villars in the flat case already in the 1950’s [FV58]. It has the

advantage of having many properties in common with the Dirac equation and it also

proves to be a helpful auxiliary device in deriving formulae for the solution of the

Cauchy problem associated to (2.0.1). In the static case, nµ∇µ is interpreted as the

derivative in the time direction — this fact will be used in Chapter 5, where (2.0.2)

will be solved using a one-parameter group of non-selfadjoint operators.

The well-known results on the Klein-Gordon equation that we will recall in this

chapter (with external potentials or without) rely strongly on the fact that it is

normally hyperbolic, i.e., the highest derivative term equals −gµν∂µ∂ν . The analysis

of the Dirac equation and two-component Klein-Gordon equation leads us to consider

the more general class of pre-normally hyperbolic differential operators D, which have

the property that DD̃ is normally hyperbolic for some operator D̃. This allows to

deduce properties like existence of advanced and retarded propagators for D from

analogous facts in the normally hyperbolic case. Pre-normally hyperbolic of order
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one were studied in [Müh07, Müh11], the original motivation coming from the study

of fermionic fields with spin higher or equal 1
2
. We extend the results of Mühlhoff

on well-posedness of the Cauchy problem to a more general class of pre-normally

hyperbolic operators, which includes in particular (2.0.2).

Next, we outline the well-known construction of the pre-unitary space which de-

scribes the classical field theory associated to a pre-normally hyperbolic D on a her-

mitian bundle V . We show that the pre-unitary spaces which correspond to the one-

and two-component form of the Klein-Gordon equation are isomorphic, thus the two

quantization problems are equivalent. Finally, we briefly discuss under what con-

dition does a pair of distributions Λ(±) on M ×M define a two-point function of a

quasi-free states on the respective CAR or CCR algebra, in the generality appropriate

for systems with no charge conjugation.

The first few sections contain a brief introduction to globally hyperbolic spacetimes

and differential operators and make use of expository references such as [BGP08,

Pfä09].

2.1. Globally hyperbolic spacetimes

Let us denote by R1,d the n = 1+d Minkowski space, which is simply Rn equipped

with the symmetric bilinear form

x · y =
∑
µ,ν

ηµνxµyν , x, y ∈ Rn,

where µ, ν = 0, 1, . . . , d and we adopt the convention

ηµν =


−1, µ = ν = 0,

1, µ = ν, µ 6= 0,

0, µ 6= ν.

More generally, we call a non-degenerate, bilinear symmetric form η a Lorentzian

product on an n-dimensional vector space V if there exists a basis {eµ}µ=0,...,n of V

such that

η(eµ, eν) = ηµν .

We write in short x2 = η(x, x). A vector x ∈ V is called time-like if x2 < 0, light-like

if x2 = 0 and x 6= 0, null if x2 = 0 and space-like if x2 > 0 or x = 0.

For n ≥ 2 the set of timelike vectors has two connected components. Fixing a time-

orientation means that one chooses one of those two components and call its elements

future-directed. Elements of the other component are then called past-directed.

Let (M, g) be a Lorentzian manifold1 of dimension n ≥ 2 and signature

(−,+, . . . ,+). This means that M is a smooth manifold and g is a Lorentzian metric,

i.e., to each point x ∈ M it associates in a smooth way a Lorentzian scalar product

gx on the tangent space TxM . More precisely, if x = (xµ)µ=0,...,d : U → Ũ ⊂ Rn are

local coordinate maps and ∂µ are the corresponding coordinate vector fields, then

1More precisely, we always consider Hausdorff, paracompact, connected smooth manifolds.
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the functions

gµν ··= g(∂µ, ∂ν) : Ũ → R
are required to be smooth.

We would like to assign to each x ∈M a time-orientation on TxM in a continuous

way. This corresponds to choosing a continuous time-like vector field τ ; its value at

x then determines a time-orientation. Such vector field τ does however not always

exist on a generic Lorentzian manifold.

Definition 2.1.1. A Lorentzian manifold (M, g) is said to be time-orientable if there

exists a continuous timelike vector field τ on M .

From now on we will consider only connected, time-oriented Lorentzian manifolds

(i.e., time-orientable ones equipped with a continuous timelike vector field) and call

them spacetimes.

A curve γ : I → M is said to be causal if the tangent vectors along γ are time-

like or light-like. Additionally, one says that it is extendible if there exists another

causal curve γ̃ : Ĩ → M and a subinterval J ⊂ I together with a reparametrisation

φ : J → I , such that γ ◦ φ = γ̃|J .

Definition 2.1.2. A hypersurface Σ of M is called a Cauchy surface if each inex-

tendible timelike curve in M intersects Σ at exactly one point. A spacetime (M, g)

is called globally hyperbolic if there exists a Cauchy surface in M .

The existence of a Cauchy surface implies that the metric has a quite specific,

diagonal form, described in the theorem below. The fact that one can choose Σ to be

smooth is a relatively recent result due to Bernal and Sánchez [BS05].

Theorem 2.1.3. A spacetime is globally hyperbolic iff it is isometric to R× Σ with

metric −ϑdt2 + gt, where ϑ > 0 is a smooth function, gt is a Riemannian metric on Σ

depending smoothly on t ∈ R and each {t}×Σ is a smooth spacelike Cauchy surface

in M .

In what follows we will consider only smooth Cauchy surfaces.

The geometrical concept which is essential in the construction of a Quantum Field

Theory is the causal structure of the underlying spacetime. The causal future J+(x)

of a point x ∈M (resp. the causal past) J−(x)), is defined to be the set of all y ∈M
that can be reached from x by a causal future-directed (resp. past-directed) curve.

By convention, x ∈ J+(x) and x ∈ J−(x). The causal future and causal past of a

subset U ⊂M are by definition the sets

J±(U) ··=
⋃
x∈U

J±(x).

We will need later on the following important fact, discussed in detail for instance in

[BGP08].

Theorem 2.1.4. If (M, g) is globally hyperbolic and K,K ′ ⊂ M are compact sets,

then J−(K) ∩ J+(K ′) is compact.
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An essential feature of globally hyperbolic spacetimes is that they possess no time-

like causal curves nor null ones. Furthermore, there is a difficult result which states

that if a spacetime (M, g) has this property and the assertion of Theorem 2.1.4 holds

true, then it must be globally hyperbolic [BS07].

2.2. Distributions on manifolds

Let (M, g) be a pseudo-Riemannian manifold and let V be a finite rank vector

bundle with base space M . We will denote V ∗ the dual bundle of V and V̄ ∗ the anti-

dual bundle, i.e., the bundle whose fiber at x ∈ M consists of anti-linear functionals

on Vx. If W is another finite rank vector bundle over M , the endomorphism bundle

will be denoted L (V ,W ).

We denote E (M,V ) the space of smooth sections of V , and D(M,V ) the space

of compactly supported ones, endowed with their standard Fréchet space topology.

Assume now M is orientable. In that case we have a uniquely defined volume

form Ωg. In local coordinates,

Ωg = |g|
1
2dx0 ∧ · · · ∧ dxn−1, |g| ··= det[gµν ].

The associated volume density will be denoted µg. In local coordinates, µg =

|g| 12dx0 · · · dxn−1.

The space of V ∗-valued distributions, denoted D ′(M,V ∗), is by definition the dual

space of D(M,V ).

Using the volume form Ωg we can identify E (M,V ∗) with a subspace of D ′(M,V ∗).
Indeed, to each u ∈ E (M,V ∗) we can associate a linear functional on D(M,V ) by

〈u, f〉 ··=
∫
M

〈u, f〉x dΩg, f ∈ D(M,V ),

where 〈·, ·〉x stands for fiberwise evaluation of elements of V ∗x on Vx.

2.3. Operators on manifolds

Let us now turn our attention to operators on pseudo-Riemannian manifolds.

Let V , W be finite rank vector bundles over M and let A : D(M,V )→ D ′(M,W )

be a continuous operator. The Schwartz kernel theorem states that there is a unique

distribution KA ∈ D ′(M ×M,V ⊗ W ∗) (which we call the Schwartz kernel of A)

such that

〈Af, g〉 = 〈KA, g ⊗ f〉, f ∈ D(M,V ), g ∈ D(M,W ∗).

Conversely, given KA ∈ D ′(M×M,V ⊗W ∗), the above equation defines a continuous

operator A : D(M,V )→ D ′(M,W ).

The transpose operator of A is the operator At : D(M,W ∗) → D ′(M,V ∗) with

Schwartz kernel

KAt ··= ExchKA ∈ D ′(M ×M,W ∗ ⊗ V )

where the operation Exch exchanges the two arguments of KA, i.e.

〈ExchK, f ⊗ g〉 = 〈K, g ⊗ f〉, f ∈ D(M,V ), g ∈ D(M,W ∗)
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under the identification L (W ∗,V ∗) ∼= L (V ,W ) (or in a more formal notation,

ExchK(x, y) = Kt(y, x)). The transpose operator satisfies

(2.3.1) 〈g, Af〉 = 〈Atg, f〉, f ∈ D(M,V ), g ∈ D(M,W ∗).

This relation can be slightly generalized. Indeed,

(2.3.2)

∫
〈g, Af〉x dΩg =

∫
〈Atg, f〉x dΩg

holds for any f ∈ E (M,V ), g ∈ E (M,W ∗) such that supp f ∩ supp g is compact. We

will use frequently this fact in the next sections.

The formal dual operator of A is the operator A∗ : D(M,W ∗)→ D ′(M, V̄ ∗) with

Schwartz kernel

KA∗ ··= ExchKA ∈ D ′(M ×M,W ∗ ⊗ V̄ )

where the bar stands for ordinary complex conjugation. The formal dual satisfies

〈ḡ, Af〉 = 〈A∗g, f〉, f ∈ D(M,V ), g ∈ D(M,W ∗).

Suppose now that At maps D(M,V ) continuously to E (M,V ). In such case one

says that A is regular. By duality we can extend A to an operator acting on compactly

supported distributions, namely

A : E ′(M,V )→ D ′(M,V ),

〈Au, f〉 ··= 〈u,Atf〉, u ∈ E ′(M,V ), f ∈ D(M,W ∗).

It is possible to extend the domain of definition of A in a different way if it is a properly

supported operator, i.e., if both projections π1, π2 : M ×M → M are proper when

restricted to suppKA (KA being the Schwartz kernel of A). This property entails that

A maps D to E ′ and therefore we can extend it by duality to act E → D ′. Operators

which are both regular and properly supported are of special interest because their

composition is always well-defined.

2.3.1. Differential operators. A differential operator of order m is a linear

map E (M,V )→ E (M,V ) which in local coordinates xµ has the form

(2.3.3) P =
∑
|α|≤m

aα(x)∂αx ,

where α = (α0, . . . αd) ∈ Nn
0 are multi-indices, |α| = α0 + · · · + αd, ∂

α
x
··= ∂α0

0 . . . ∂αdd
and aα ∈ E (M,L (V )).

The principal symbol σP of the differential operator (2.3.3) is the linear map

σP : T ∗M → L (V ) given locally by

(2.3.4) σP (x, ξ) =
∑
|α|=m

aα(x)ξα, (x, ξ) ∈ T ∗M,

where ξα = ξα0
0 · · · ξ

αd
d and ξ = ξµdx

µ. We will often abbreviate σP (x, ξ) ≡ σP (ξ).

The symbol of order l, denoted σlP , is obtained by replacing the sum over |α| = m in

(2.3.4) by a sum over |α| = l.

Differential operators act locally, i.e. suppPu ⊂ suppu for all u ∈ D ′(M,V ). As
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a consequence, the support of the Schwartz kernel of P is contained in the diagonal

∆M ⊂ M ×M and thus P is properly supported. Moreover, P maps continuously

D → D (in particular, it is regular) and we can extend it by duality to an operator

D ′ → D ′. The transpose P t is a differential operator and in local coordinates it takes

the form

P t =
∑
|α|≤m

at
α(x)(−1)|α|∂αx .

2.4. Normally and pre-normally hyperbolic operators

Let (M, g) be a pseudo-Riemannian manifold and let V be a smooth, finite rank

complex vector bundle on a spacetimeM . We denote by∇ the Levi-Civita connection.

Let A = Aµdx
µ ∈ Ω1(M,L (V )) be a real-valued smooth one-form and let

m ∈ E (M,L (V )) be a real-valued smooth section. The differential form A has the

interpretation of a background electromagnetic potential and m is a squared mass

term which is for the moment allowed to vary in space and time. The minimally cou-

pled Klein-Gordon operator in external electromagnetic potential A is the differential

expression

(2.4.1)
P = −(∇µ + iAµ)(∇µ + iAµ) +m2,

= −|g|−
1
2 (∂µ + iAµ)|g|

1
2 gµν(∂ν + iAν) +m2

where

|g| = det[gµν ], [gµν ] ··= [gµν ]
−1.

The operator (2.4.1) is normally hyperbolic in the following sense.

Definition 2.4.1. A differential operator P : E (M,V ) → E (M,V ) is said to be

normally hyperbolic if in local coordinates it takes the form

P = −gµν∂µ∂ν +R,

where R is a differential operator of order less or equal 1.

Equivalently, this means that the principal symbol σP (x, ξ) of P is equal to

σP (x, ξ) = g−1(ξ, ξ) idVx , (x, ξ) ∈ T ∗M,

where the symbol g−1 is used to denote the inverse metric on T ∗M . Normally hy-

perbolic operators on globally hyperbolic spacetimes are a well-studied topic and

an exhaustive discussion of the well-posedness of the corresponding Cauchy prob-

lem, local and global existence of solutions, etc., can be found in the monographs

[Fri75, BGP08, Wal12b].

To include for instance the Dirac operator in our discussion we need a more general

definition.

Definition 2.4.2. We say that a differential operator D : E (M,V ) → E (M,V )

is pre-normally hyperbolic if there exists a differential operator D̃ such that DD̃ is

normally hyperbolic.
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A short investigation of the principal symbols shows that if D, D̃ are differential

operators such that DD̃ is normally hyperbolic then also D̃D is normally hyperbolic.

According to the above definition, a differential operator of order larger than 1 is

allowed to be pre-normally hyperbolic and in particular each normally hyperbolic

operator is pre-normally hyperbolic. This differs from the convention adopted for

instance in [Müh11], but will allow us to consider at once the Klein-Gordon equation

in its two-component form.

2.4.1. Retarded and advanced propagators. The key property needed in

the construction of the non-interacting fields is the existence of retarded and advanced

propagators.

Definition 2.4.3. Let D : E (M,V )→ E (M,V ) be a differential operator. We call

linear maps S± ∈ D(M,V )→ E (M,V ) advanced/ resp. retarded propagators for D

if they satisfy

(1) DS±f = f,

(2) S±Df = f,

(3) supp(S±f) ⊂ J±(suppf), f ∈ D(M,V ).

If S− (resp. S+) is continuous as a map D → D ′, we can associate a distribution by

Schwartz’ kernel theorem; it is usually called the retarded fundamental solution (resp.

advanced fundamental solution). In the literature, retarded (advanced) propagators

are also called alternatively retarded (advanced) Green’s operators and retarded (ad-

vanced) fundamental solutions are then called retarded (advanced) Green’s functions.

The proof of the fundamental result below can be found for instance in [BGP08].

Theorem 2.4.4. In a globally hyperbolic spacetime, any normally hyperbolic oper-

ator P admits unique advanced and retarded propagators E+, E−.

We deduce an analogous result for pre-normally hyperbolic operators using a

generalization of the method proposed initially by Dimock in the context of the Dirac

operator [Dim82]. We follow closely the work of Mühlhoff [Müh11], except that we

do not assume that D is an operator of order one.

Lemma 2.4.5. Let P : E (M,V ) → E (M,V ) be a differential operator and assume

it admits advanced/retarded propagators E±. Then P t has a unique advanced prop-

agator Et
− (the transpose of E−) and a unique retarded one Et

+ (the transpose of

E+).

Proof. For any u ∈ E (M,V ∗), f ∈ E (M,V ) with suppu ∩ suppf compact, we have∫
M

〈Et
±u, f〉x dΩg =

∫
M

〈Et
±u, PE∓f〉x dΩg

=

∫
M

〈P tEt
±u,E∓f〉x dΩg =

∫
M

〈u,E∓f〉x dΩg,
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provided that supp(Et
±u) ∩ supp(E∓f) is compact. It holds indeed that

supp(Et
±u) ∩ supp(E∓f) ⊂ J±(suppu) ∩ J∓(suppf),

where the latter set is compact by Theorem 2.1.4. �

Theorem 2.4.6. Let D : E (M,V )→ E (M,V ) be a pre-normally hyperbolic opera-

tor and let D̃ be as in Definition 2.4.2. Then

S± ··= D̃E±

are unique advanced/retarded propagators for D, where D̃ is such that DD̃ is nor-

mally hyperbolic and E± are the respective advanced/retarded propagator for DD̃.

Proof. The operator DD̃ being normally hyperbolic, by Theorem 2.4.4, there exist

unique advanced and retarded propagators E± : E (M,V ) → E (M,V ) for DD̃ and

E ′± : E (M,V ∗)→ E (M,V ∗) for DtD̃t. Define

S± ··= D̃E±, S ′± ··= D̃tE ′±.

We will show that S± are unique retarded/advanced propagators for D. By construc-

tion, on compactly supported sections we have

DS− = DD̃E− = id,

DtS ′+ = DtD̃tE ′+ = id.

For all f ∈ D(M,V ),

supp(S−f) = supp(D̃E−f) ⊂ supp(E−f) ⊂ J+(suppf),

where the last inclusion follows from the support property of E−. We have to show

S−D = id. For arbitrary u ∈ D(M,V ∗), f ∈ D(M,V ),

(2.4.2)

∫
M

〈S ′±u, f〉x dΩg =

∫
M

〈S ′±u,DS∓f〉x dΩg

=

∫
M

〈DtS ′±u, S∓f〉x dΩg =

∫
M

〈S−u, f〉x dΩg.

In the second equality, we have used that

supp(S ′+u) ∩ supp(S−f) ⊂ J−(suppu) ∩ J+(suppf),

where the latter set is compact by Theorem 2.1.4. We found S− = (S ′+)t. Taking the

adjoint of DtS ′+ = id, we get id = (S ′+)tD = DS− as requested.

Uniqueness can be seen as follows. Let T− be another retarded propagator for D.

Then, (2.4.2) holds with S− replaced by T− (and S ′+ unchanged), hence T− = S−.

The claim for the advanced propagator follows by analogous arguments. �

2.4.2. Causal propagator. If a differential operator D : E (M,V )→ E (M,V )

has an advanced and a retarded propagator, respectively S+ and S−, then the causal

propagator is defined as their difference

S ··= S+ − S−.
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Its Schwartz kernel (if exists) is called the commutator function or Pauli-Jordan func-

tion (although it is actually a distribution). It plays an important role in quantization

and first of all, it is essential in the description of smooth solutions of D.

The next theorem is a formal generalization of a result by Dimock [Dim82], which

characterizes spaces of smooth solutions of D.

Theorem 2.4.7. Let (M, g) be a globally hyperbolic spacetime, V a vector bundle

over M and let D : E (M,V ) → E (M,V ) be a differential operator. Assume it has

advanced/retarded propagators S± and let S = S+−S− be the corresponding causal

propagator. Then:

(1) If f ∈ D(M,V ) and Sf = 0, then there exists g ∈ D(M,V ) s.t. f = Dg.

(2) If f ∈ Solsc(D) then there exists g ∈ D(M,V ) s.t. f = Sg.

Proof. (1): By assumption S+f = S−f . Setting g ··= S+f = S−f we see that

supp g ⊂ supp(S+f) ∩ supp(S−f) ⊂ J+(suppf) ∩ J−(suppf),

hence g ∈ D(M,V ). Moreover, Dg = DS+f = f .

(2): We can decompose f = f+ − f−, where suppf± ⊂ J±(K) and K is some

compact subset of M . Then g ··= Df+ = Df− satisfies supp g ⊂ J+(K) ∩ J−(K),

hence g ∈ D(M,V ). Let us show that S±g = f±. Indeed, for all u ∈ D(M,V ∗) we

have by Lemma 2.4.5∫
M

〈u, S±Df±〉x dΩg =

∫
M

〈St
∓u,Df±〉x dΩg

=

∫
M

〈DtSt
∓u, f±〉x dΩg =

∫
M

〈u, f±〉x dΩg,

where in the second equality we used that the set

suppf± ∩ supp(St
∓u) ⊂ J+(K) ∩ J−(suppu)

is compact. Now S±g = f+ entails that Sg = S+g − S−g = f+ − f− = f . �

From (2) it follows that using the map S one can identify Solsc(D) with the

quotient space D(M,V )/KerS.

2.4.3. The charge form. Recall that V̄ ∗ is the anti-dual bundle, which fiberwise

consists of anti-linear functionals on C. We will consider sesquilinear forms on Vx
smoothly depending on the base point x ∈ M . These can be defined as smooth

sections of the bundle L (V , V̄ ∗).
Let us fix a section β ∈ E (M,L (V , V̄ ∗)). Then for each f, g ∈ D(M,V ) such

that suppf ∩ supp g is compact,∫
M

β(f, g) dΩg =

∫
M

〈βg, f〉x dΩg <∞.

Definition 2.4.8. Let β ∈ E (M,L (V , V̄ ∗)) be fiberwise hermitian and non-

degenerate and let A : D(M,V ) → E (M,V ) be a linear operator. We say that
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A† : D(M,V )→ E (M,V ) is the formal adjoint (with respect to β), if∫
M

β(f, Ag)dΩg =

∫
M

β(A†f, g)dΩg, f, g ∈ D(M,V ).

We say that A is formally self-adjoint (with respect to β) if A† = A.

In the literature, one often uses the notation f † ··= βf (in the context of the

Dirac equation), where β is understood as a mapping D(M,DM)→ D(M,DM∗). Of

course, this is not to be confused with the formal adjoint of an operator.

The data required to construct a sensible non-interacting field theory on a globally

hyperbolic spacetime consists of:

(1) the spacetime (M, g) itself,

(2) a finite-dimensional vector bundle V over M , equipped a smooth section β ∈
E (M,L (V , V̄ ∗)) which has values in hermitian, non-degenerate sesquilinear

forms,

(3) a differential operatorD : E (M,V )→ E (M,V ) which has advanced/retarded

propagators and is formally self-adjoint with respect to β.

In the fermionic case, an additional positivity condition is required, as we will see.

A bundle V equipped with β as in (2) is called a hermitian bundle. The notation

(M,V , D) will be used to abbreviate the data (1-3) and we will call (M,V , D) a field

theory triple. The point of view that the non-interacting field theory is determined

by such triple is adopted from [BG11] (where the authors work with real quantities

rather than complex ones), a further generalization of this concept for gauge field

theories has been recently proposed in [HS12].

The first step in the construction of quantum fields is to assign to the above data a

pre-unitary space (more precisely a unitary space in the fermionic case). As explained

in Chapter 1, this (pre-)unitary space serves to construct the respective CCR or CAR

C∗-algebra, defined in a different way in the neutral and charged case. The numerous

possible representations of the CCRs/CARs are then be studied by considering states

on the CCR/CAR C∗-algebra.

Definition 2.4.9. The charge form for the field theory triple (M,V , D) is defined

by

(2.4.3) 〈Qf, g〉 ··= −i

∫
M

〈βf, Sg〉x dΩg, f, g ∈ D(M,V ),

where S is the causal propagator for D.

In the more familiar ‘form-like’ notation, (2.4.3) means

Q(f, g) = −i

∫
β(f, Sg)dΩg, f, g ∈ D(M,V ).

Proposition 2.4.10. Let Q be the charge form for the triple (M,V , D). Then

(D(M,V )/KerS,Q) is a pre-unitary space, i.e., Q is a non-degenerate, sesquilinear

hermitian form on D(M,V )/KerS.
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Proof. Non-degeneracy follows trivially from the non-degeneracy of β. To prove

hermiticity, observe that for all f, g ∈ D(M,V ),∫
M

β(f, S±g)dΩg =

∫
M

β(S±g, f)dΩg =

∫
M

β(S±g,DS∓f)dΩg

=

∫
M

β(DS±g, S∓f)dΩg =

∫
M

β(g, S∓f)dΩg,

where we used formal self-adjointness of P to go from the first line to the second. It

follows that

Q(f, g) = i

∫
β(f, Sg)dΩg = −i

∫
β(g, Sf)dΩg = Q(g, f). �

In the fermionic case, one needs additionally the charge formQ to be positive. This

imposes an additional condition on the triple (M,V , D), which is satisfied spefically

for the Dirac equation, but turns out to be problematic for higher-spin fields, i.e. the

Rarita-Schwinger equation. We will not discuss this problem further, instead we refer

the reader to [BG11, HM12a].

In most typical examples, like the Klein-Gordon or Dirac equation, it is possible

to write a formula for Q which involves integration over an arbitrary smooth Cauchy

surface Σ rather than over the whole spacetime M . In what follows we derive these

results in a unified and generalized way. Our method is particularly useful in the case

of non-vanishing electromagnetic potentials.

First, we will need the following lemma, which is a version of Green’s formula for

first-order differential operators. The proof is a direct computation which makes use

of Stokes’ formula.

Lemma 2.4.11. Let R be a differential operator of order no larger than oneand sup-

pose it is formally self-adjoint with respect to β. For any smooth submanifold V of

M ,

(2.4.4)

∫
V

[β(Rv,w)− β(v,Rw)] dΩg =

∫
∂V

β(v, σ1
R(ñ)w)ds, v, w ∈ E (M,C2)

whenever the supports of v, w are such that the integrals converge, where ds is the

volume measure on ∂V induced from the metric on M and ñ is the outward pointing

unit normal vector field across ∂V .

Lemma 2.4.12. Let Σ be a smooth space-like Cauchy hypersurface of (M, g). Let

D : E (M,V ) → E (M,V ) be a differential operator which has advanced/retarded

propagators and in local coordinates can be written as

(2.4.5) D = NµM
µ + L = MµN

µ + L,

where:

(1) Nµ, Mµ are differential operators of order at most one, formally self-adjoint

with respect to β;
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(2) L is a differential operator of arbitrary order s.t.∫
J±(Σ)\Σ

[β(Lv,w)− β(v, Lw)] dΩg = 0

for all v, w ∈ E (M,V ) s.t. the sets J±(Σ) ∩ suppw are compact.

Then the charge form for the couple (D, β) is given by

(2.4.6) iQ(f, g) =

∫
Σ

[β(σMµ(n)NµSf, Sg)− β(Sf, σNµ(n)MµSg)] ds

for f, g ∈ D(M,V ), where n is the future-pointing normal unit vector field across Σ.

Proof. Let V be equal Σ+ ··= J+(Σ) \Σ or Σ− ··= J−(Σ) \Σ. Applying Lemma 2.4.11

several times and taking into account (2) we get∫
V

[β(Dv,w)− β(v,Dw)] dΩg

=

∫
V

[β(NµM
µv, w)− β(Mµv,Nµw) + β(Mµv,Nµw)− β(v,MµNµw)] dΩg

=

∫
∂V

[
β(σ1

Mµ(n)Nµv, w)− β(v, σ1
Nµ(n)Qµw)

]
ds.

We will apply the above equality to the cases

V = Σ±, ∂V = Σ, v = Sf, w = S∓g, ñ = ∓n,

where n is the forward pointing unit normal vector field for the Cauchy surface Σ.

Strictly speaking, ∂V consists of Σ and a part which will be irrelevant in formulae

involving integration by parts as a consequence of the fact that the set V ∩ suppw is

compact in both cases. Using homogeneity of the symbols σ1
Mµ , σ1

Nµ and the definition

of the causal propagator S = S+ − S−, we obtain for any f, g ∈ D(M,V )

iQ(f, g) =

∫
M

β(f, Sg)dΩg =

∫
Σ−
β(DS+f, Sg)dΩg +

∫
Σ+

β(DS−f, Sg)dΩg

=

∫
Σ

[
β(σ1

Mµ(n)NµS+f, Sg) + β(σ1
Mµ(−n)NµS−f, Sg)

− β(S+f, σ
1
Nµ(n)MµSg)− β(S−f, σ

1
Nµ(−n)MµSg)

]
ds

=

∫
Σ

[
β(σ1

Mµ(n)NµS+f, Sg)− β(σ1
Mµ(n)NµS−f, Sg)

− β(S+f, σ
1
Nµ(n)MµSg) + β(S−f, σ

1
Nµ(n)MµSg)

]
ds

=

∫
Σ

[
β(σ1

Mµ(n)MµSf, Sg)− β(Sf, σ1
Nµ(n)MµSg)

]
ds. �

Roughly speaking, the assumption on L means that it is formally self-adjoint with

respect to β and involves no time derivative. In particular, a constant (real) mass

term L = m2 trivially satisfies (2).
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2.4.4. Cauchy problem. The pre-unitary space (D(M,V )/KerS,Q) corre-

sponding to the triple (M,V , D) is the only data required to perform the construc-

tion of non-interacting quantum fields, both neutral and charged ones. The crucial

property of D used so far is the existence of advanced/retarded propagators and its

formal self-adjointness with respect to a given hermitian form β. As pointed out in

[BG11], it is a priori not even necessary to require that the Cauchy problem for D is

well posed. However, we will deal in the sequel only with operators with a well-posed

Cauchy problem, and this property will be used in our analysis of quasi-free states

later on.

Let us fix a Cauchy surface Σ in a globally hyperbolic spacetime (M, g) and let n

be the future directed unit normal vector field along Σ.

The proof of the well-posedness of the following non-characteristic Cauchy problem

for normally hyperbolic differential operators can be found for instance in [BGP08].

Theorem 2.4.13. Let P : E (M,V ) → E (M,V ) be normally hyperbolic and let Σ

be Cauchy surface. Then for initial data ϕ0, ϕ1 ∈ D(Σ,V |Σ) the Cauchy problem

(P )


Pf = 0, f ∈ E (M,V )

f |Σ = ϕ0,

i−1nµ∇µ|Σ = ϕ1

has a unique solution f and this solution satisfies suppf ⊂ J(suppϕ0 ∪ suppϕ1).

In the case when external electromagnetic potentials are present, it is more ap-

propriate to take i−1nµ(∇µ + iAµ)|Σ = ϕ1 as initial datum. The analogue of Theorem

2.4.13 for such modified Cauchy problem can be proved by reinterpreting ∇A
µ
··=

∇µ + iAµ as the covariant derivative in the sense of principal bundles. There will

be however no need of doing so, as this claim will also follow as a side result of our

results for pre-normally hyperbolic operators.

The next theorem is a straightforward generalization of a result Mühlhoff, proved

initially for first-order pre-normally hyperbolic operators [Müh11]. The validity of

the proof relies on an assumption on the symbol, which is automatically satisfied for

pre-normally hyperbolic operators of order one.

Theorem 2.4.14. Let D, D̃ : E (M,V ) → E (M,V ) be differential operators such

that DD̃ is normally hyperbolic and suppose σkD(n) = σk
D̃

(n) = 0 for k ≥ 2. Let

Σ ⊂M be a smooth spacelike Cauchy surface. Then the Cauchy problem

(D)

{
Df = 0, f ∈ E (M,V )

f |Σ = ϕ0

has a unique solution for every initial datum ϕ0 ∈ D(Σ,V |Σ). This solution satisfies

suppf ⊂ J(suppϕ0).

Theorem 2.4.14 is a direct consequence of (2) and (3) of the following lemma.

Lemma 2.4.15. Let D, D̃ be as in Theorem 2.4.14 and consider the following two
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Cauchy problems:

(D̃D)


D̃Df = 0,

f |Σ = ϕ0,

i−1nµ∇µ|Σ = ϕ1,

given ϕ0, ϕ1 ∈ D(Σ,V |Σ);

(D̃D)′


D̃Df = 0,

f |Σ = ϕ0,

(Df)|Σ = ϕ1,

given ϕ0 ∈ D(Σ,V |Σ).

The following statements hold true:

(1) If f ∈ E (M,V ) solves (D̃D)′ for initial datum ϕ0, then f solves (D̃D)′ for

initial data ϕ0 and ϕ1 ··= ∇nf |Σ.

(2) For any initial data ϕ0 there exists a unique solution f ∈ E (M,V ) to (D̃D)′.

It satisfies suppf ⊂ J(suppϕ0).

(3) f ∈ E (M,V ) solves (D) for initial datum ϕ0 iff it solves (D̃D)′ with initial

data ϕ0 and ϕ1 = 0.

Proof. (1): The only non-trivial part is to prove that ∇nf |Σ is compactly supported.

First, observe that the assumptions on σD imply that D = σ1
D(n)∇n +R, where R is

a differential operator s.t. σkR(n) = 0 for all k ≥ 1. Moreover, normal hyperbolicity

implies that σ2
DD̃

(n) = σ1
D(n)σ1

D̃
(n) is invertible. In particular, σ1

D(n) is invertible.

Therefore, the equality

0 = (Df)|Σ = σ1
D(n)∇nf |Σ +Rf |Σ,

is equivalent to

(2.4.7) ∇nf |Σ = −(σ1
D(n))−1Rf |Σ,

where the RHS is compactly supported.

(2): Given ϕ0, let us define

ϕ1 ··= −(σ1
D(n))−1Rϕ0 ∈ D(Σ,V |Σ),

where R is as in 2.4.7. By Theorem 2.4.4, there exists a unique solution f ∈ E (M,V )

of (D̃D) with initial data ϕ0, ϕ1 and it satisfies the requested support properties.

According to the discussion in the proof of (1), ϕ1 is chosen in such way that (Df)|Σ =

0, therefore f is a solution of (D̃D)′ with initial datum ϕ0. Uniqueness follows from

(1) and uniqueness of solutions of (D̃D).

(3): Clearly, if f solves (D) with initial datum ϕ0 then it also solves (D̃D)′ with

the appropriate initial data. Conversely, let f solves (D̃D)′. This implies DD̃Df = 0,

(Df)|Σ = 0 and (D̃Df)|Σ = 0. Observe that this means Df solves a Cauchy problem

analogous to (D̃D)′, but with the role of D̃ and D inversed, and vanishing initial

data. By (2), solutions of this Cauchy problem are unique, hence Df = 0 and f

solves (D). �

2.4.5. Cauchy-data charge form. The well-posedness of the Cauchy problem

(D) implies that the restriction map ρ, ρf = f |Σ is a bijection when understood as

map Solsc(D)→ D(Σ,V ).
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The charge form Q can be transported as follows to a form q acting on Cauchy

data.

Definition 2.4.16. Let D be pre-normally hyperbolic and assume that the Cauchy

problem (D) is well-posed. The Cauchy-data charge form is defined by

q : D(Σ,V )→ D(M,V )
∗
,

q ··= (ρS)∗Q(ρS),

that is

Q(f, g) = q(ρSf, ρSg), f, g ∈ D(M,V )/KerS

in the ‘form-like’ notation, where S is the causal propagator for D.

It follows from Theorem 2.4.7 that (D(Σ,V ), q) is a pre-unitary space and we

have an isomorphism

(D(M)/KerE,Q) ∼= (D(Σ,V ), q).

The explicit form of q will be deduced from Lemma 2.4.12 in the cases we are specif-

ically interested in.

Observe that the dual ρ∗ : E ′(Σ, V̄ ∗|Σ) → E ′(M,V ) of the restriction map ρ :

E (M,V ) → E (Σ,V |Σ) extends to an operator D(Σ, V̄ ∗|Σ) → E (M,V ). We obtain

a result which generalizes [Dim82, Prop 2.4].

Proposition 2.4.17. The unique solution of (D) with initial datum ϕ0 is given by

(2.4.8) f = −iSβ−1ρ∗qϕ0 ∈ E (M,V ),

where q is understood as an operator D(Σ,V |Σ))→ D(Σ, V̄ ∗|Σ)).

Proof. By definition of q,

〈qρf, ρSg〉 = i〈βf, g〉
Hence f = −iβ−1S∗ρ∗qρf . By formal self-adjointness of S w.r.t. β, this entails

f = −iSβ−1ρ∗qρf . �

2.5. The Dirac equation in external potentials

The main motivation for introducing the notion of pre-normally hyperbolic oper-

ators is the study of the Dirac equation, possibly on curved spacetime or in external

potentials. We briefly recall the relevant definitions and show how do they fit in

the framework developped in the previous section. A broader introduction to spin

structures and the Dirac equation on curved spacetime can be found in the references

[Dim82, San08, Hac10].

In order to treat background electromagnetic fields, it is often useful to use the

language of U(1)-principle bundles and write the Dirac operator using the correspond-

ing covariant derivative. Such approach is particularly fruitful in investigating issues

like local covariance, as studied in [Zah13], and has the advantage of generalizing

to non-abelian groups. We restrain from doing so, as we will be more interested in

analytical properties of the corresponding Dirac operator.
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2.5.1. Spin structures. Let us denote SO0(1, d) the restricted Lorentz group,

i.e., the connected component of the Lie group SO(n−1, 1) which contains the identity

element.

The Lorentz frame bundle, denoted LM, is a principle fiber bundle with group

structure SO0(1, d).

The universal covering group of SO0(1, d) is denoted Spin0(1, d). Let us denote

Π : Spin0(1, d) → SO0(1, d) the double-covering Lie group homomorphism (in the

case n = 4 it actually concides with the universal covering homomorphism).

Definition 2.5.1. A spin structure SM is a principal fibre bundle with base manifold

M and structure group Spin0(1, d), equipped with a smooth bundle homomorphism

θ : SM→ LM s.t.

(1) θ preserves the base points, i.e., πL ◦ θ = πS, where πL, πS are the respective

base projections of LM, SM;

(2) θ satisfies

RL(Λ) ◦ θ = θ ◦RS(Π(Λ)), Λ ∈ Spin0(1, d),

where RS, RL are the respective right actions of the structure group on LM,

SM.

There are well-known criteria for the existence of a spin structure on a spacetime,

it suffices for instance that M is parallelizable, i.e. admits a global Lorentz frame

(see, e.g. [Hus94]). This is the case in particular if M is globally hyperbolic and

n = 4, or if M is flat and n is arbitrary. Another feature of parallelizable spacetimes

is that the bundles LM and SM are trivial (for any choice of spin structure).

2.5.2. Clifford relations and spinor bundles.

Definition 2.5.2. Let V be a finite-dimensional vector space over R or C and let

η be the Lorentzian scalar product on R1,d. A linear map γπ : R1,d → L(V ) is a

representation of the Clifford relations in V if

{γπ(eµ), γπ(eν)} = 2ηµν1, µ, ν = 0, 1, . . . , d.

This definition can be generalized in several ways, for instance by replacing

Minkowski space with some other space equipped with a symmetric bilinear form

or by considering vector spaces over other fields than R. This more general frame-

work is studied in [DG13] and is somehow reminescent of the definition of CAR

representations introduced in Chapter 1.

We will focus here only on representations of the Cliffords relations for η in

n = 3, 4, 9, 10 mod 8 spacetime dimensions. In such case there exists a Majorana

representation γπ in C2[n/2] , i.e. a representation of the Clifford relations s.t.

(γπ(e0))∗ = γπ(e0), (γπ(ek))
∗ = −γπ(ek) (k = 1, . . . , d), γπ(eµ) = −γπ(eµ),

where the bar stands for entry-wise complex conjugation (and [n/2] stands for the

entire part of n/2). A well-known result states that there exists a representation

% : Spin0(1, d)→ L(C2[n/2]) whose image is the R-linear span of {γπ(eµ)}dµ=0.
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Definition 2.5.3. Let SM be a spin structure over M . The bundle of Majo-

rana spinors DM is the vector bundle associated to SM and the representation

% : Spin0(1, d)→ C2[n/2] , i.e.

DM = SM n% C2[n/2] .

A review on spinor bundles in arbitrary dimensions can be found for instance in

[San08]. As the results we present later on do not depend in an essential way on

the assumption n = 3, 4, 9, 10 mod 8 (cf. the remark in [SV00, Sec 3.4]), we will

not remind it anymore. The dual bundle of DM is traditionally called the cospinor

bundle.

If E is a local section of SM, it induces via θ a local section of SM, whose compo-

nents will be denoted eµ (not to be confused with the basis in R1,d). It also induces a

set local sections {EA}2[n/2]

A=0 of DM defined by EA = [E, sA], where sA is the standard

basis in C2[n/2] . Moreover, we can choose local sections eµ, EA in the dual bundles of

SM and DM, such that eµ(eν) = δµν and EA(EB) = δAB.

2.5.3. Dirac operator. Assume that we are given a spin structure SM.

The Levi-Civita connection ∇ on (M, g) induces a connection on the frame bundle

LM and since the Lie algebras of SO0(1, d) and Spin0(1, d) can be identified, this

also induces a connection on SM. This in turn yields a connection on the spinor

bundle DM. The covariant derivative of this connection will also be denoted ∇ :

E (M,TM ⊗ DM) → E (M,DM) for sake of shortness of notation. If f = fAEA is a

local section in DM then ∇f = ∇µf
A(eµ ⊗ EA) has components

∇µf
A = ∂µf

A + ςµ
A
B f

B,

where

∂µf
A = dfA(eµ), ςµ

A
B = −1

4
Γλµνγλ

A
C γ

νC
B ,

and Γλµν are Christoffel’s symbols of the Levi-Civita connection.

The spinor tensor γ is by definition the element of E (M,T ∗M ⊗ DM ⊗ (DM)∗)

whose components (γµ)AB in the induced frame eµ⊗EA⊗EB are equal to the matrix

elements γπ(eµ)AB . One can show that this definition does not depend on the choice

of the local section E.

The Dirac operator in a background potential A = Aµdx
µ and with mass term m

is defined by

D = −γµ(∇µ + iAµ) +m.

Clearly, this definition is independent on the choice of a local frame and yields a

differential operator E (M,DM)→ E (M,DM) of order one.

Let us also define an auxiliary differential operator D̃ by

D̃ = −γµ(∇µ − iAµ)−m.

Then we can compute as in [Zah13]

DD̃ = −∇µ∇µ +
R

4
+

i

4
[γµ, γν ]Fµν +m2 − γν∂µm,
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where Fµν = ∂µAν − ∂νAµ and R is the scalar curvature of (M, g) (i.e., the trace of

the Ricci tensor). Therefore, D is pre-normally hyperbolic.

The Dirac conjugation is the hermitian form β ∈ E (M,DM⊗ DM∗) defined by

〈βf, g〉 ··= −i〈f, γ0g〉, f, g ∈ D(M,DM).

A well-known result states that D is formally self-adjoint w.r.t. β. Thus, we have a

field theory triple (M,DM, D) with hermitian structure β and an associated charge

form Q.

Proposition 2.5.4. The Cauchy-data charge form for the triple (M,DM, D) is given

by

(2.5.1) q = −iβγµn
µ.

Proof. It suffices to apply Lemma 2.4.12 with Nµ = −γµ and Mµ = ∇µ. �

The formula (2.5.1) can be then used to prove positivity of q, and hence of the

charge form Q.

2.6. Two-component form of the Klein-Gordon equation

As realized a long time ago by Villars [FV58], the Klein-Gordon equation on

Minkowski space is equivalent to a differential equation which involves only one time

derivative. The same construction is possible on a class of curved spacetimes and

in the presence of external potentials, and we will show that it corresponds to a

pre-normally hyperbolic operator with many properties quite analogous to the Dirac

equation.

As previously, let us fix a real-valued external potential A = Aµdx
µ and a real-

valued smooth section m and consider the Klein-Gordon operator

P = −(∇µ + iAµ)(∇µ + iAµ) +m2

= −∇A
µ∇Aµ +m2,

where we denoted ∇A
µ
··= (∇µ + iAµ).

Let us assume in addition that the spacetime is foliated by a family of Cauchy

surfaces {Σs}s∈R, such that the vector field ∂s = nµ∂µ is geodesic and orthonormal to

the Cauchy surfaces, i.e.,

(2.6.1) ∇νnµ −∇µnν = 0, nµ∇µn
ν = 0.

Such ‘Gaussian foliation’ can be always constructed in a neighbourhood of a Cauchy

surface, thus our results will be also valid on a generic spacetime after possibly re-

stricting to a small enough region which contains a given Cauchy surface.

The metric gµν induces a d-dimensional Riemannian metric hµν by the formula

(2.6.2) hµν = gµν + nµnν .

Let us now consider the trivial bundle with base manifold M and fiber C2 and
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define a differential operator D : D(M,C2)→ D(M,C2) by

D =

(
i−1nµ∇A

µ 1

−hµν∇A
µ∇A

ν +m2 i−1nµ∇A
µ

)
,

We will refer to D as the two-component Klein-Gordon operator. The two-component

Klein-Gordon equation is related to P as follows. Writing f = (f0, f1) for f ∈
E (M,C2), we have

(2.6.3) Df = 0 ⇐⇒

{
Pg = 0,

f0 = g, f1 = i−1nµ∇A
µ g.

Let us check that D is pre-normally hyperbolic. Indeed, defining an auxiliary differ-

ential operator

D̃ =

(
inµ∇A

µ 1

−hµν∇A
µ∇A

ν +m2 inµ∇A
µ

)
.

we obtain that

DD̃ = D̃D =

(
P 0

0 P

)
,

which is clearly normally hyperbolic.

As a consequence, D possesses unique advanced/retarded propagators S± = D̃E±,

where E± are the advanced/retarded propagators for P (cf. Theorem 2.4.6). The

causal propagators are related by S = D̃E.

Moreover, from Theorem 2.4.14 we obtain that the Cauchy problem (D) is well-

posed. Indeed, the assumption σ2
D(n) = σ2

D̃
(n) = 0 is easy to check using (2.6.2).

2.6.1. Charge form. Let us equip C2 with the hermitian form

β(w, z) ··= w0z1 + w1z0 w =

(
w0

w1

)
, z =

(
z0

z1

)
∈ C2,

A straightforward computation shows that D is formally self-adjoint with respect to

β. Therefore, if we equip the trivial bundle C2 with base space M with the hermitian

form β, (M,C2, D) is a field theory triple and consequently if the assumptions of

Proposition 2.4.10 are satisfied, the charge form Q is a well-defined non-degenerate

hermitian form and we have a pre-unitary space

(D(M,C2)/KerS,Q).

Since the Cauchy problem (D) is well-posed, we also have a Cauchy-surface charge

form.

Proposition 2.6.1. The Cauchy-data charge form for the triple (M,C2, D) equals

q(f, g) =

∫
Σ

(f̄0g1 + f̄1g0)ds, f =

(
f0

f1

)
, g =

(
g0

g1

)
∈ D(Σ,C2),

Proof. We apply Lemma 2.4.12 with

Nµ =

(
nµ 0

0 nµ

)
, Mµ =

(
i−1∇A

µ 0

0 i−1∇A
µ

)
,
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L =

(
0 1

−hµν∇A
µ∇A

ν +m2 0

)
.

Since σ2
L(nµ) = σ1

L(nµ) = 0 we deduce that L satisfies assumption (2) of Lemma

2.4.12 indeed. �

2.6.2. Equivalence with Klein-Gordon equation. Let us now consider the

original Klein-Gordon equation again. First, observe that the relation with the two-

component form (2.6.3) implies that the following Cauchy problem in external poten-

tials is well-posed.

Corollary 2.6.2. Let P be the Klein-Gordon operator in external potentials and

fix a Cauchy surface Σ. For any ϕ0, ϕ1 ∈ D(Σ,V |Σ) the Cauchy problem

(KG)


Pf = 0, f ∈ E (M,V )

f |Σ = ϕ0,

i−1nµ(∇µ + iAµ)|Σ = ϕ1

has a unique solution f and this solution satisfies suppf ⊂ J(suppϕ0 ∪ suppϕ1).

Obviously, the complex vector space C has a non-degenerate, hermitian sesquilin-

ear form z 7→ z̄ ∈ C∗, which we will denote βKG for the sake of consistency of notation.

The Klein-Gordon operator P is formally self-adjoint with respect to this hermitian

form (thanks to the assumption that Aµ and m2 are real). We have thus a charge

form QKG associated to the triple (M,C, P ).

Let us now discuss the corresponding notions on a Cauchy surface Σ. The map

ρKG : E (M,C2)→ E (Σ,C2), ρKGf ··=
(

f |Σ
i−1nµ(∇µ + iAµ)f |Σ

)
assigns to a smooth solution its initial data, therefore it maps bijectively Solsc(P )→
D(Σ,C2).

Let E be the causal propagator for P . If we define in analogy to the two-

component Klein-Gordon equation

qKG : D(Σ,C2)→ (D(Σ,C2)∗

qKG
··= (ρE)∗−1Q(ρE)−1,

then qKG is a non-degenerate hermitian form on D(Σ,C2). We obtain this way iso-

morphic pre-unitary spaces

(D(M)/KerE,QKG) ∼= (D(Σ,C2), qKG).

Proposition 2.6.3. The Cauchy-data charge form for the triple (M,C, P ) equals

qKG(f, g) =

∫
Σ

(f̄0g1 + f̄1g0)ds f =

(
f0

f1

)
, g =

(
g0

g1

)
∈ E (Σ,C2),

Proof. We apply Lemma 2.4.12 with Nµ = Mµ = i−1(∂µ + iAµ) and L = m2. �

Thus, qKG coincides with the Cauchy-data charge form q for the two-component
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Klein-Gordon equation computed in Proposition 2.6.1. We can sum up this discussion

as follows.

Corollary 2.6.4. We have the following isomorphisms of pre-unitary spaces:

(D(M)/KerE,QKG)
(ρE)−1

∼= (D(Σ,C2), q)
ρS∼= (D(M,C2)/KerS,Q).

This result means that the conventional approach to quantization based on the

Klein-Gordon operator P is equivalent to the approach which makes use of the two-

component form D.

2.7. Distributional two-point functions

Let us now discuss quasi-free states on the C∗-algebras

CAR(D(M,V )/KerS,Q), CCR(D(M,V )/KerS,Q),

where Q is the charge form associated to a field theory triple (M,V , D), i.e.,

Q(f, g) = −i

∫
M

β(f, Sg)dΩg, f, g ∈ D(M,V ).

If Λ is the two-point function of a quasi-free state ω and it maps continuously D(M,V )

to its topological anti-dual, then by Schwarz kernel theorem we can associate a con-

tinuous operator Λ(+) : D(M,V )→ D ′(M,V ) such that

(2.7.1) Λ(f, g) = −
∫
M

β(f,Λ(+)g)dΩg, f, g ∈ D(M,V ).

Furthermore, let us define Λ(−) ··= iS−Λ(+) in the fermionic case and Λ(−) ··= −iS+Λ(+)

in the bosonic case. The maps Λ(±) will be called distributional two-point functions

of ω. Observe that since Λ vanishes on KerS, it follows from (1) of Theorem 2.4.7

and formal self-adjointness of D that Λ(±) satisfy

DΛ(±) = Λ(±)D = 0.

Conversely, two continuous maps Λ(+),Λ(−) : D(M,V ) → D ′(M,V ) are distribu-

tional two-point functions of a quasi-free state on CAR(D(M,V )/KerS,Q) iff

(D) DΛ(±) = Λ(±)D = 0,

(Pos) βΛ(±) ≥ 0,

(CAR) Λ(+) + Λ(−) = iS.

The analogous condition for Λ(±) to define a quasi-free state on CCR(D(M,V )/KerS,Q)

reads

(D) DΛ(±) = Λ(±)D = 0,

(Pos) βΛ(±) ≥ 0,

(CCR) Λ(+) − Λ(−) = iS.

Note that since the causal propagator is a bi-solution for D, (D) is equivalent to one

of the conditions DΛ(+) = Λ(+)D = 0 or DΛ(−) = Λ(−)D = 0 (provided that (CAR) or
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(CCR) holds).

2.7.1. Multiplication by smooth sections. In applications it is often conve-

nient to replace a given pre-normally hyperbolic operator D by aDb, where a, b ∈
E (M,L (V )) are suitable chosen fiberwise invertible smooth sections. Although mul-

tiplying by both sides with smooth sections does break in general the property of being

normally hyperbolic, it is easy to see that aDb is pre-normally hyperbolic if and only

if D is pre-normally hyperbolic. It turns out that the charge forms corresponding to

D and aDb are related in a simple way if (ab)† = ab.

Proposition 2.7.1. Let a, b ∈ E (M,L (V )) be fiberwise invertible, let (M,V , D) be

a field theory triple with hermitian structure β and denote Q the associated charge

form. Assume that ab is formally self-adjoint w.r.t. β and set D′ ··= aDb. Then

(M,V , D′) is a field theory triple with hermitian structure β′ and charge form Q′

given by

β′(f, g) = β(b†a−1f, g), Q′(f, g) = Q(a−1f, a−1g), f, g ∈ D(M,V ).

Proof. We have to check that D′ is formally self-adjoint w.r.t. β′. Indeed, for all f, g

we have

β′(D′f, g) = β(b†a−1aDbf, g) = β(f, b†Dbg)

= β(b†a−1f, b−1a†b†Dbg) = β(b†a−1f, aDbg) = β′(f,D′g),

where (·)† denotes the formal adjoint w.r.t. β. The causal propagator for D′ equals

S ′ = b−1Sa−1, hence

Q′ = iβ′S ′ = βb†a−1b−1Sa−1 = β(a−1)†Sa−1. �

It follows that if Λ(·, ·) is the two-point function of a quasi-free state on the CAR

or CCR C∗-algebra corresponding to the triple (M,V , D) then Λ(a−1·, a−1·) defines

a quasi-free state for the triple (M,V , D′). Note also that if Λ(±) are distributional

two-point functions associated to Λ(·, ·), then (a−1)†Λ(±)a−1 are two-point functions

associated to Λ(a−1·, a−1·).
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CHAPTER 3

The Hadamard condition

On Minkowski space, if no external potentials are present, there exists a dis-

tinguished state — the vacuum ωvac, which is uniquely defined by the translation-

invariance property. It can also be characterized as the ground state w.r.t. time

evolution and has the interpretation of a state of lowest energy.

On a generic globally hyperbolic space-time or in the presence of external poten-

tials which vary in time, neither of these conditions make sense and the choice of

a preferred state is problematic. On the other hand, the formulation of interacting

Quantum Field Theory and semi-classical Einstein equations requires well-definiteness

of the evaluation of a given state ω on Wick powers :φ(x):k, :ψk(x)ψ∗l(x): of non-

interacting fields. The best-to-date way to define 7→ ω(:ψ(x)ψ∗(x):) as a distribution

on M consists of viewing ω(:ψ(x)ψ∗(y):) as a distribution on M ×M in the variables

x and y, substracting its singular part and then taking the limit of conciding points

x → y. The discovery that this can be done consistently for a class of states which

possess the same x→ y behaviour as the Hadamard parametrix led to the formulation

of the Hadamard condition [Wal77].

A parallel line of investigation was initiated by Duistermaat and Hörmander in

their works on Fourier integral operators [Hör71, DH72]. Using methods of microlocal

analysis they constructed parametrices distinguished modulo smooth terms by their

wave front set and proved propagation of singularity theorems valid for a class of

differential operators which included normally hyperbolic ones. The relation between

the microlocal approach and the constructions developed by field theorists remained

however obscure for years1.

In his seminal paper [Rad96], Radzikowski was able to make the precise connec-

tion between the Hadamard parametrix and the theory of distinguished parametrices

of Duistermaat and Hörmander and he proved that the Hadamard condition can be

rephrased as a condition on the wave front set of the two-point function. This initi-

ated a series of important results, including most importantly a proof of perturbative

renormalizability of field theory on curved space-time by Brunetti and Fredenhagen

[BF00]. The condition obtained by Radzikowski for the Klein-Gordon field was gen-

eralized to the case of Dirac fields in [SV01, Hol01] and consequences in the case of

non-vanishing external potentials were investigated in [Mar03].

The aim of this chapter is to introduce the reader to the microlocal formulation

of the Hadamard condition and derive the connected results in a unified way for both

1See [Wal12a] for a historical overview on the developments in quantum field theory on curved
spacetime.
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bosonic and fermionic fields. In contrast to what is done in most of the literature

we do not assume invariance of the states under a charge conjugation, motivated by

the fact that no charge conjugation exists if non-vanishing external potentials are

present. Our results are to a large extent a formal generalization of the work of

Hollands [Hol01] (where only the Dirac case is considered), the proofs we give are

also somewhat simplified and thus of didactical value.

3.1. Parametrices

In the study of singularities of solutions of elliptic and hyperbolic partial differ-

ential equations, it is often useful to replace actual fundamental solutions, usually

difficult to construct explicitely, by parametrices, which can be thought as ‘funda-

mental solutions up to smooth remainders

Definition 3.1.1. Let P : D(M,V )→ D(M,W ) be a differential operator. We say

that S : D(M,W )→ D ′(M,V ) is a parametrix for P if both PS and SP differ from

the identity on by an operator with smooth Schwartz kernel.

We will write A = B mod C∞ if A and B differ from the identity by an operator

with smooth Schwartz kernel. In this notation S is a parametrix of P if

PS = idD(M,W ) mod C∞, SP = idD(M,V ) mod C∞.

3.2. Wave front set

One of the classical results in Fourier analysis — the Paley–Wiener–Schwartz

theorem, entails that a compactly supported distribution v ∈ E ′(Rn) is smooth if its

Fourier transform satisfies an estimate of the form

(3.2.1) |v̂(ξ)| ≤ CN〈ξ〉−2N , N ∈ N0,

where 〈ξ〉 = (1 + |ξ|)1/2. In order to obtain a precise description of the singularities

of a generic distribution u ∈ D ′(Rn), we localise it around a given point x0 ∈ Rn

by multiplying it with a test function ϕ ∈ D(Rn) with arbitrarily small support and

such that ϕ(x0) 6= 0, obtaining this way a compactly supported distribution ϕu. If u

has a singularity at x0, this means that ϕu is not smooth and we can ask what are

the directions ξ responsible for the violation of inequality (3.2.1). This idea is at the

heart of the definition of the wave front set of a distribution u ∈ D ′(Rn), which is a

subset of Rn × Ṙn (Ṙn ··= Rn \ {0}) denoted WF(u) and defined as follows.

Definition 3.2.1. A point (x0, ξ0) ∈ Rn × Ṙn does not belong to WF(u) iff there

exists ϕ ∈ D(Rn), with ϕ(x0) 6= 0, and an open cone Vx0 ∈ Ṙn (i.e., tVx0 ⊂ Vx0 for all

t > 0) such that ξ0 ∈ Vx0 and

|ϕ̂u(ξ)| ≤ CN〈ξ〉−2N , N ∈ N0

for all ξ ∈ Vx0 .
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If π : Rn × Ṙn → Rn is the projection on the first component, then it can be

checked that the set πWF(u) is nothing but the singular support of u. Consequently,

u ∈ D ′(Rn) is smooth if and only if its wave front set is empty.

To extend the definition of the wave front set to distributions on a smooth manifold

M , let us first discuss how WF(u) transforms under diffeomorphism. Let Φ : U → V

be a diffeomorphism between open subsets of Rn and let u ∈ D ′(U). The push-

forward of u by Φ is the distribution Φ∗u ∈ D ′(V ) defined by 〈Φ∗u, ϕ〉 = 〈u, ϕ ◦ Φ〉
for ϕ ∈ D(V ). It holds that

(3.2.2) WF(Φ∗u) = {(Φ(x), ξ) : x ∈ U, (x, (Φ′x)
tξ) ∈WF(u)},

where (Φ′x)
t is the transpose of the Jacobi matrix (Φ′x)

t of Φ.

In particular, it follows that the ξ component of WF(u) behaves like a covector

under the action of diffeomorphisms. Therefore, we can identify WF(u) with a subset

of T ∗U\Z , i.e. the cotangent bundle of U with the zero section Z ∈ T ∗U removed.

If now u ∈ D ′(M) is a distribution on a manifold and (Uα,Φα) is a coordinate

system of M , the push-forward of u|Uα by the diffeomorphism Φα is a distribution on

an open neighbourhood of the origin in Rn. The relation (3.2.2) can be thus used to

define WF(u|Uα) as a subset of T ∗Uα\Z . The wave front set of u is then defined by

(3.2.3) WF(u) ··=
⋃
α WF(u|Uα) ⊂ T ∗M\Z .

Again, it is not difficult to show that u ∈ D ′(M) is a smooth density if and only if

WF(u) is empty.

The definition of the wave front set extends easily to elements of D ′(M,V ), where

V is vector bundle of rank k < ∞. Namely, if u ∈ D ′(M,V ) and ui,α (i = 1, . . . , k)

are the components of u in a local trivialization of V relative to a covering {Uα} of

M , we set

WF(u|Uα) ··=
⋃
i WF(ui,α) ⊂ T ∗Uα\Z

and then define as WF(u) as in (3.2.3). It is not difficult to prove that this definition

does not depend on the choice of the trivialization.

3.2.1. Operations on distributions. The practical relevance of the wave front

set in applications in Quantum Field Theory is based on the fact that it can be used

to express sufficient conditions for the well-definiteness of operations on distributions

which are in general ill-defined, such as restriction to submanifolds or pointwise prod-

ucts. In this section we briefly recall well-known properties of the wave front set with

respect to basic operations on distributions.

It is convenient to introduce first the following definitions. A set Γ ⊂ T ∗M \Z is

said to be conic if

(x, ξ) ∈ Γ ⇒ (x, tξ) ∈ Γ, t ∈ R.
In particular, the wave front set of a distribution is always a conic set. If Γ ⊂ T ∗M\Z
is conic, we define

−Γ ··= {(x,−ξ) : (x, ξ) ∈ Γ} ⊂ T ∗M \ Z .
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Let M1,M2 be two manifolds, let Z1,Z2,Z be the zero section of respectively T ∗M1,

T ∗M2, T ∗(M1 ×M2), and let Γ ⊂ T ∗(M1 ×M2) \ Z be a conic set. The elements of

T ∗(M1 ×M2) \ Z will be denoted by (x1, ξ1, x2, ξ2). We set

Γ′ ··= {(x1, ξ1, x2,−ξ2) : (x1, ξ1, x2, ξ2) ∈ Γ} ⊂ T ∗(M1 ×M2)\Z ,
Exch(Γ) ··= {(x2, ξ2, x1, ξ1) : (x1, ξ1, x2, ξ2) ∈ Γ} ⊂ T ∗(M2 ×M1)\Z ,

M1Γ ··= {(x1, ξ1) : ∃ x2 such that (x1, ξ1, x2, 0) ∈ Γ} ⊂ T ∗M1\Z1,

ΓM2
··= {(x2, ξ2) : ∃ x1 such that (x1, 0, x2, ξ2) ∈ Γ} ⊂ T ∗M2\Z2.

If A : D(M,V ) → D ′(M,V ) is a continuous operator with Schwartz kernel KA, we

will write for simplicity WF(A) ··= WF(KA) and WF′(A) ··= WF(KA)′. We will see

that in many situations it is more natural to use WF′ instead of WF.

We refer the reader to [Hör83] for the proof of the theorem below and the con-

struction of distributions such as u|Y .

Theorem 3.2.2. The wave front set has the following properties:

(1) Sum: if u, v ∈ D ′(M,V ) then WF(u+ v) ⊂WF(u) ∪WF(v).

(2) Complex conjugation: if u ∈ D ′(M,V ) then WF(u) = −WF(u).

(3) Action of a PDO: let P : D(M,V ) → D(M,V ) be a partial differential

operator and denote σP (x, ξ) its principal symbol. Then

WF(Pu) ⊂WF(u) ⊂ N ∪WF(Pu), u ∈ D ′(M,V ),

where N is the characteristic submanifold of P , defined by

N = {(x, ξ) ∈ T ∗M\Z : detσP (x, ξ) = 0}.

(4) Tensor product: if u ∈ D ′(M1), v ∈ D ′(M2) then

WF(u⊗ v) ⊂ (WF(u)×WF(v)) ∪ ((suppu× {0})×WF(v))

∪ (WF(u)× (supp v × {0}).

(5) Restriction to a sub-manifold: Let Y ⊂M be a sub-manifold. The co-normal

bundle to Y in M is by definition the bundle

T ∗YM ··= {(y, ξ) ∈ T ∗M\Z : y ∈ Y, ξ · v = 0 ∀v ∈ TyY }.

If u ∈ D ′(M,V ) and WF(u)∩T ∗YM = ∅ then the restriction u|Y of u to Y is

well defined and

WF(u|Y ) ⊂ {(y, ξ|TyY ) : y ∈ Y, (y, ξ) ∈WF(u)}.

(6) Kernels: let A : D(M2) → D ′(M1) be linear continuous. Then Au is well

defined for u ∈ E ′(M2) if WF(u) ∩WF′(A)M2 = ∅ and in such case

WF(Au) ⊂ M1WF(A) ∪WF′(A) ◦WF(u).

(7) Composition: Let A1 ∈ D(M1) → D ′(M2), A2 ∈ D(M1) → D ′(M2) be

continuous and assume that K2 is properly supported. Then A1 ◦ A2 is well

defined if

WF′(A1)M2 ∩ M2WF′(A2) = ∅,
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and in such case WF′(A1 ◦ A2) is contained in

(WF′(A1) ◦WF′(A2)) ∪ (M1WF′(A1)× Z3) ∪ (Z1 ×WF′(A2)M3) .

Property (5) can be used to define products of distributions. To see that, observe

that if u and v are distributions on M and one of them is smooth, their product can

be obtained by restricting the tensor product u ⊗ v to the diagonal ∆M = M ×M .

By (5), since the co-normal bundle of ∆N is

T ∗∆M
M = {(x, ξ, x,−ξ) ∈ T ∗(M ×M)\Z : (x, ξ) ∈ T ∗M\Z},

the distribution uv ··= (u⊗ v)|∆M
is still well-defined if

(3.2.4) WF(u) ∩ −WF(v) = ∅,

and in such case it satisfies

WF(uv) ⊂ {(x, ξ + η) ∈ T ∗M\Z : (x, ξ) ∈WF(u) ∪ Z , (x, η) ∈WF(v) ∪ Z}.
Condition (3.2.4) also allows to define an operation that generalizes the pairing 〈·, ·〉
between compactly supported distributions E ′ and E . Indeed, if u is compactly

supported and (3.2.4) holds, then 〈u, v〉 ··= 〈uv, 1〉 is well-defined.

3.3. Distinguished parametrices

In what follows, we review the theory of distinguished parametrices of Duistermaat

and Hörmander [DH72].

Let P : E (M,V ) → E (M,V ) be a differential operator and let us denote N its

characteristic manifold, i.e.

N = {(x, ξ) ∈ T ∗M\Z : detσP (x, ξ) = 0}.

A bicharacteristic of P is by definition a curve in N generated by the Hamiltonian

flow with Hamiltonian σP . In other words, this means that a bicharacteristic is an

integral curve in N of the system of equations

dxi
dτ

=
∂σP (x(τ), ξ(τ))

∂ξi
,

dξi
dτ

= −∂σP (x(τ), ξ(τ))

∂xi
, i = 0, . . . , d.

In what follows we will use the notation X = (x, ξ) ∈ T ∗M\Z . The bi-characteristic

passing through X0 = (x0, ξ0) ∈ T ∗M\Z will be denoted B(X0).

Definition 3.3.1. A differential operator P : E (M,V ) → E (M,V ) is said to be of

real principal type if its principal symbol σP is real and homogeneous and there exists

no complete bicharacteristic of P whose projection onto M is included in a compact

subset of M .

Let us define an equivalence relation between elements of N by

X1 ∼ X2 ⇔ X2 ∈ B(X1).

We write X1 � X2 (resp. X1 ≺ X2) if X1 ∼ X2 and X1 comes strictly after (resp.

before) X2 wrt. the natural parameter on the bicharacteristic curve through X1 and

X2.
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Hörmander’s propagation of singularities theorem states:

Theorem 3.3.2. Let P be a differential operator of real principal type and suppose

u ∈ D ′(M) satisfies Pu ∈ E (M). Then WF(u) ⊂ N and

(3.3.1) X ∈WF(u) ⇒ B(X) ⊂WF(u).

In what follows we will need an additional assumption on P . Namely, for an

arbitrary compact set K, let us consider the set of all bicharacteritics P whose both

endpoints are in K. If there exists another compact set K ′ which contains all these

curves, one says that M is pseudo-convex w.r.t. P .

The bicharacteristic relation of P is the set

C ··= {(X1, X2) ∈ N ×N : X1 ∼ X2}.

Denote ∆N the diagonal in N ×N , i.e.

∆N ··= {(X,X) : X ∈ N }.

Observe that C \∆N is the disjoint union of two open sets, namely

C + ··= {(X1, X1) ∈ C : X1 � X1}, C − ··= {(X1, X2) ∈ C : X1 ≺ X2},

which satisfy Exch(C +) = C −.

Definition 3.3.3. An orientation of C is a partition C \ ∆N = C 1 ∪ C 2 into two

disjoint open subsets C 1,C 2 ⊂ C \∆N s.t. Exch(C 1) = C 2.

Observe that if (C 1,C 2) is an orientation of C then the property Exch(C 1) = C 2

entails that none of the two sets C 1,C 2 can be empty. It should also be noted that

C 1 must be the union of connected components of C \∆N and the same is true for

C 2.

All orientations of C can be obtained in the following way from connected com-

ponents of N . Let us set

C ±(X) ··= C ± ∩B(X)×B(X).

Obviously, Exch(C +(X)) = C −(X). Then the following result holds true.

Proposition 3.3.4. Let C be a bi-characteristic relation.

(1) Let C \∆N = C 1 ∪ C 2 be an orientation of C . Set

N i ··= {X ∈ N : C +(X) ⊂ C i}, i = 1, 2.

Then N i are unions of connected components of N .

(2) Conversely let N = N 1∪N 2 be a partition of N into two open and closed

subsets of N . Set

C 1 ··=
⋃

X∈N 1

C +(X) ∪
⋃

X∈N 2

C −(X),(3.3.2)

C 2 ··=
⋃

X∈N 2

C +(X) ∪
⋃

X∈N 1

C −(X).

Then (C 1,C 2) is an orientation of C .
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Recall that an operator E is a parametrix of P if PE = EP = id mod C∞. We

are ready to formulate the main result of Duistermaat and Hörmander’s theory:

Theorem 3.3.5 ([DH72]). Let P : E (M,V ) → E (M,V ) be a differential operator

of real principal type such that M is pseudo-convex w.r.t. P and let (C 1,C 2) be an

orientation of C . Then there exist parametrices Ei of P , i = 1, 2, such that

(3.3.3) WF′(Ei) ⊂ ∆∗ ∪ C i,

where ∆∗ is the diagonal in T ∗M \Z ×T ∗M \Z . Any left or right parametrix which

satisfies (3.3.3) is equal to Ei modulo C∞.

3.3.1. Distinguished parametrices of the Klein-Gordon operator. We

now apply the theory of distinguished parametrices of Duistermaat and Hörman-

der to the special case of a normally hyperbolic operator P on a globally hyperbolic

spacetime (M, g). It is proved in [Rad96] that in such case P is of real principal type

and M is pseudo-convex for P .

Recall that Vx± ⊂ TxM are the open future/past light cones and the dual cones

V ∗x± are subsets of T ∗xM defined by

V ∗x± ··= {ξ ∈ T ∗xM : ξ · v > 0, ∀v ∈ Vx±, v 6= 0}.

The characteristic manifold of P is given by

N = {(x, ξ) ∈ T ∗M \ Z : gµν(x)ξµξν = 0}.

Recall that the bicharacheristic relation of P is the set

C = {(X1, X2) ∈ N ×N : X1 ∼ X2}.

It can be easily shown that in our case of interest, X1 ∼ X2 iff X1 = (x1, ξ1) and X2 =

(x2, ξ2) are on the same null geodesic strip, that is if there is a null geodesic through

x1 and x2 with tangent vector ξ1 ending at x2 with tangent vector ξ2. Moreover,

X1 � X2 ⇐⇒ X1 ∼ X2, x1 ∈ J±(x2) if ξ1 ∈ V ∗x1±,(3.3.4)

X1 ≺ X2 ⇐⇒ X1 ∼ X2, x1 ∈ J∓(x2) if ξ1 ∈ V ∗x1±.

Observe that N has two connected components invariant under the bicharacter-

istic flow, namely

N± ··= {X ∈ N : ξ ∈ V ∗x±},
This gives 4 partitions of N into disjoint open sets, and hence 4 orientations of C
and 4 distinguished parametrices. They have the following traditional names:

Feynman parametrix: take the partition N = N ∪ ∅, this corresponds to the

orientation (C 1
F ,C

2
F), where

C 1
F = C + = {(X1, X2) ∈ C : X1 � X2}, C 2

F = C − = {(X1, X2) ∈ C : X1 ≺ X2}.

The parametrix EF ··= E1
F = E2

F
is called the Feynman parametrix.

Anti-Feynman parametrix: the partition N = ∅ ∪N corresponds to the orienta-

tion (C 1
F
,C 2

F
), where

C 1
F

= C −, C 2
F

= C +.
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The parametrix EF
··= E1

F
= E2

F is called the anti-Feynman parametrix.

Retarded parametrix: take N = N+ ∪ N−, this corresponds to the orientation

(C 1
−,C

2
−), where

C 1
− = {(X1, X2) ∈ C : x1 ∈ J+(x2)}, C 2

− = {(X1, X2) ∈ C : x1 ∈ J−(x2)}.

The parametrix ER ··= E1
R = E2

A is called the retarded parametrix.

Advanced parametrix: take N = N− ∪N+, this corresponds to the orientation

(C 1
A,C

2
A), where

C 1
A = C 2

−, C 2
A = C 1

−.

The parametrix EA ··= E1
A = E2

R is called the advanced parametrix.

The terminology above is motivated by the following important fact.

Proposition 3.3.6. Let EA/R be a retarded/advanced parametrix for P , and let

E+/− be the retarded/advanced fundamental solution for P (cf. Section 2.4). Then

EA = E+ mod C∞, ER = E− mod C∞.

In the context of quantization and two-point functions, one is more interested in

solutions rather than in fundamental solutions. The next lemma characterizes the

wave front sets of differences of the distinguished parametrices, which are solutions

of P up to smooth remainders. The proof essentially follows [Jun95].

If U ⊂M , and Γ1,Γ2 ∈ T ∗M\Z are conic sets, we will say that Γ1 = Γ2 above U

if Γ1 ∩ T ∗U\Z = Γ2 ∩ T ∗U\Z .

Lemma 3.3.7. We have:

(1) WF′(ER − EA) = C ,(3.3.5)

(2) WF′(ER − EF) = C ∩N− ×N−,(3.3.6)

(3) WF′(EA − EF) = C ∩N+ ×N+.

Proof. (1): Since ER, EA have disjoint wave front sets above {x1 6= x2}, it follows

that above {x1 6= x2}

WF′(ER − EA) = WF′(ER) ∪WF′(EA) = C \∆N .

Since P (ER − EA) = (ER − EA)P = 0 mod C∞, by the propagation of singularities

theorem we obtain that ∆N ⊂WF′(ER − EA). This proves (1).

(2): Above {(x1, x2) : x1 ∈ J−(x2)}, we have

WF′(ER − EF) = WF′(EF) = {(X1, X2) : x1 ∈ J−(x2), ξ ∈ V ∗x1+}.

Using the propagation of singularities theorem for ER−EF we obtain that WF′(ER−
EF) = C ∩N− ×N−. The proof of (3) is analogous. �

It follows directly from (1) and Proposition 3.3.6 that if E is the causal propagator

for P then

(3.3.7) WF(E) = C = {(X1, X2) ∈ N ×N : X1 ∼ X2}.
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3.3.2. Parametrices for prenormally hyperbolic operators. Consider now

a pre-normally hyperbolic operator D : E (M,V ) → E (M,V ). By definition, there

exists a differential operator D̃ such that P ··= DD̃ is normally hyperbolic. We have

thus distinguished parametrices EF, EF̄ and by setting

SF ··= D̃EF, SF̄
··= D̃EF̄

we obtain parametrices for D. Recall also that if ER, EA are the retarded and ad-

vanced propagator for P then SR ··= D̃ER and SA ··= D̃EA are retarded and advanced

propagators for D. As far as the wave front sets are concerned, in general we only

have the relations

WF(SF) ⊂WF(EF), WF(SF̄) ⊂WF(EF̄).

and analogous ones for SR, SA. Some of the results for normally hyperbolic operators

do however extend to the pre-normally hyperbolic case. We have for instance a strict

analogue of Lemma 3.3.7.

Lemma 3.3.8. The parametrices SA, SR, SF satisfy

(1) WF′(SR − SA) = C ,(3.3.8)

(2) WF′(SR − SF) = C ∩N− ×N−,(3.3.9)

(3) WF′(SA − SF) = C ∩N+ ×N+.

Proof. (1): The arguments of the proof of (1) of Lemma 3.3.7 apply directly.

(2) and (3): By Lemma 3.3.7, we have the inclusions

(3.3.10)
WF′(SR − SF) ⊂ C ∩N− ×N−,

WF′(−SA + SF) ⊂ C ∩N+ ×N+.

In particular, the two sets WF′(SR − SF) and WF′(−SA + SF) are disjoint, hence

WF′(SR − SF) ∪WF′(−SA + SF) = WF′((SR − SF) + (−SA + SF))

= WF′(SR − SA) = C .

This proves that the inclusions in (3.3.10) are not strict ones. �

3.4. The Hadamard condition

Duistermaat and Hörmander’s original result concerned only parametrices. The

key result for applications in Quantum Field Theory is Radzikowski’s theorem: it

says that in the case of a normally hyperbolic operator P on a globally hyperbolic

spacetime (M, g), there is a solution modulo C∞ which is determined uniquely up to

smooth functions by its wave front set. The condition on the wave front set is called

the microlocal spectrum condition, as it turns out to be a consistent generalization of

the properties satisfied by the two-point function of the vacuum state on Minkowski

space.

Recall from Section 2.7 that a pair of continuous maps Λ(+),Λ(−) : D(M,V ) →
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D ′(M,V ) are distributional two-point functions of a quasi-free state if

(D) DΛ(±) = Λ(±)D = 0,

(Pos) βΛ(±) ≥ 0

and

(CAR) Λ(+) + Λ(−) = iS, resp. (CCR) Λ(+) − Λ(−) = iS

in the fermionic, respectively bosonic case.

Definition 3.4.1. Let Λ(+),Λ(−) : D(M,V )→ D ′(M,V ) be linear continuous. Then

the pair Λ(+),Λ(−) satisfies the Hadamard condition if

(Had) WF′(Λ(±)) = {(X1, X2) ∈ N± ×N± : X1 ∼ X2}.

Definition 3.4.2. A (neutral or charged, gauge invariant) quasi-free state is a

Hadamard state if it has distribitional two-point functions Λ(±) which satisfy the

Hadamard condition (Had).

As pointed out in [Hol01], it is in general not true that the condition on Λ(+) in

(Had) follows simply from the condition on Λ(−) or vice-versa. It is not difficult to see,

however, that the two conditions are equivalent if the state is assumed to be invariant

under a charge conjugation κ which acts on D(M,V ) as an element of E (M,L (V ))

(cf. Definition 1.5.29). Indeed, in such case the relation between Λ(+) and Λ(−) implies

that WF(Λ(+)) = Exch(WF(Λ(−))). In the sequel, existence of a charge conjugation

will not be assumed for the reasons outlined in the introduction to this chapter.

In practice it is often useful to consider the following weaker condition, which

turns out to imply (Had) if Λ(±) are distributional two-point functions of a quasi-free

state. The definition we use is adapted from [San10], where the charge invariant case

is treated.

Definition 3.4.3. We say that Λ(±) satisfy the generalized Hadamard condition if

there exists a conic set Γ ⊂ T ∗(M ×M)\Z such that Γ ∩ −Γ = ∅,

(X1, X2) ∈ Γ ⇒ ξ1 ∈ V ∗x1+

and

(genHad) WF′(Λ(±)) ⊂ ±Γ.

The next theorem makes the connection between the Hadamard condition and

the distinguished parametrices for pre-normally hyperbolic operators. The implica-

tion (1)⇒(3) was initially proved by Radzikowski in the charge-invariant, normally

hyperbolic case by Radzikowski in his celebrated paper [Rad96]. The generalization

to pre-normally hyperbolic ones (discussed on the example of the Dirac equation) was

performed by Hollands in [Hol01], similar results were also obtained in [SV01]. The

implementation of (genHad) in the implication (1)⇒(3) makes uses of the techniques

of proof of [Hol01, San10].

Theorem 3.4.4. Let Λ(+),Λ(−) : D(M,V )→ D ′(M,V ) be continuous. The following

conditions are equivalent:
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(1) The pair Λ(+),Λ(−) satisfies (Had), (D) mod C∞ and (CAR) mod C∞ (respec-

tively (CCR) mod C∞ in the bosonic case);

(2) The pair Λ(+),Λ(−) satisfies (genHad) and (CAR) mod C∞ (respectively (CCR)

mod C∞ in the bosonic case);

(3) Define S(+) ··= i(SF − SA) and S(−) ··= i(SR − SF) (respectively S(−) = i(SF −
SR) in the bosonic case). Then

Λ(+) = S(+) mod C∞, Λ(−) = S(−) mod C∞.

Proof. The implication (1)⇒(2) is obvious.

(2)⇒(3): Recall that by (2), (3) of Lemma 3.3.8, WF′(S(±)) = C ∩N± ×N±.

Therefore Λ(±) − S(±) satisfy (genHad), in particular

WF′(Λ(+) − S(+)) ∩WF′(Λ(−) − S(−)) = ∅.

On the other hand, if (CAR) mod C∞ holds then by (1) of Lemma 3.3.8

(Λ(+) − S(+)) + (Λ(−) − S(−)) = i(S − (SA − SR)) = 0 mod C∞.

We conclude that Λ(+) − S(+) and Λ(−) − S(−) are smooth. The proof in the bosonic

case is analogous.

(2)⇒(1): (D) mod C∞ is obvious, (Had) follows directly from Lemma 3.3.8,

whereas (CAR) mod C∞ (resp. (CCR) mod C∞) follows from S = SA − SR. �

The next proposition generalizes a well-known result (usually called the local-to-

global theorem) to the case of states which are not necessarily invariant under charge

conjugation. The method of proof is similar to the arguments used in [San10].

Proposition 3.4.5. Let S(±) be defined as in Theorem 3.4.4. Assume Λ(±) satisfy

(Pos) mod C∞, (CAR) (respectively (CCR)) mod C∞, and suppose

(3.4.1) WF′(Λ(+) − S(+)) = WF′(Λ(−) − S(−)) = ∅

above the diagonal ∆2 ⊂M×2. Then Λ(±) satisfy (Had) and (D) mod C∞.

Proof. We can assume with no loss of generality that Λ(±) satisfy (Pos). This means

|〈Λ(±), f † ⊗ g〉|2 ≤ 〈Λ(±), f † ⊗ f〉〈Λ(±), g† ⊗ g〉, f, g ∈ D(M,V ).

We deduce that

(3.4.2) (X,X) /∈WF′(Λ(±)) ⇒
(X,X1) /∈WF′(Λ(±)), X1 ∈ T ∗M\Z ,
(X2, X) /∈WF′(Λ(±)), X2 ∈ T ∗M\Z .

For definiteness assume (CAR) holds. By Lemma 3.3.8, WF′(S(±)) = C ∩N± ×N±,

and it follows from (3.4.1) that

(X,X) ∈WF′(Λ(±)) ⇒ (X,X) ∈WF′(S(±)) ⇒ ξ ∈ V ∗±.

Therefore using (3.4.2) we see that

(X1, X2) ∈WF′(Λ(±)) ⇒ ξ1 ∈ V ∗x1±, ξ2 ∈ V ∗x2±.

Hence, Λ(±) satisfy (genHad) and the assertion follows by Theorem 3.4.4. �

On suitably chosen neighbourhoods of the diagonal ∆2 ⊂ M ×M , it is possible
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to give explicit formulae for the singular terms of Λ(+), using a recursive construction

traditionally attributed to Hadamard and worked out in detail by subsequent authors

(see, e.g., [HM12b] for a recent review). Namely, one considers a set of the form

U × U , where U is a causal normal neighbourhood of a given point x ∈ M , i.e.,

for all x1, x2 ∈ U , the exponential map exp : TxM → M is required to be a local

diffeomorphism at least in a neighbourhood of J−(x1) ∩ J+(x2). Then, one chooses

a global time coordinate function τ which is increasing towards the future, and on

U × U one considers an ansatz of the form

hε(x1, x2) =
u(x1, x2)

4π[σ(x1, x2) + iε(τ(x1)− τ(x2)) + ε2]

+ v(x1, x2) ln
σ(x1, x2) + iε(τ(x1)− τ(x2)) + ε2

λ2
,

where u and v are smooth functions and σ stands for the squared geodesic distance,

i.e.

σ(x1, x2) = ±
(∫ b

a

∣∣∣∣gµν(x(τ))
dxµ(τ)

dτ

dxν(τ)

dτ

∣∣∣∣ dτ)2

(here x(·) parametrizes the geodesic from x1 to x2, in particular x(a) = x1, x(b) = x2;

the sign depends on whether x(·) is space-like or time-like). The functions u and v

are usually written as series involving powers of σ, and the requirement that limε↘0 hε
yields a solution modulo smooth terms gives recursive relations for the coefficients.

It was proved that Radzikowski that the distribution limε↘0 hε, traditionally called

the Hadamard parametrix, satisfies indeed the Hadamard condition [Rad96]. Its use-

fulness, beside the fact that the formulae are very explicit and suitable for practical

computations, stems from the fact that it can be expressed in terms of purely geo-

metric quantities2.

3.5. Existence and examples of Hadamard states

The existence of Hadamard states on a generic globally hyperbolic spacetime was

established by Fulling, Narcowich and Wald in [FNW81]. They showed that the

problem can always be reduced to spacetimes which possess an ultra-static region,

which is sufficiently large to contain a Cauchy surface with its neighbourhood. A

Hadamard state can be constructed explicitely on that neighbourhood and then it is

propagated to the whole spacetime. One of the features of this method is that one

can always obtain pure states as an output. On the other hand, the construction

is intrisically non-local and rather non-explicit, which poses problems in practical

applications.

An alternative method consists of constructing a sufficiently explicit parametrix

for P in terms of pseudo-differential operators, which distinguishes between solutions

which propagate with positive and negative frequencies in the wave front set. The

first result along these lines is the work of Junker [Jun95], where a construction of

Hadamard states for the Klein-Gordon equation is performed for spacetimes with a

2This observation can be also made precise in the presence of external potentials, cf. [Zah13].
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compact Cauchy surface. A more general construction was recently obtained for a

class of spacetimes whose metric components are reasonably well-behaved at spatial

infinity [GW13]. It is also shown in [GW13] that one can use these results to con-

struct Hadamard states on arbitrary globally hyperbolic spacetimes by a ‘cutting and

patching’ procedure: a partition of unity is employed to reduce the problem to space-

times with a compact Cauchy surface. This technique is local, one does however not

get pure states in general.

Beside the general constructions mentioned above, known examples of Hadamard

states include:

(1) passive states for stationary spacetimes (this includes ground- and KMS

states) [SV00],

(2) states constructed in [DMP05, Mor08] for a subclass of asymptotically flat

vacuum spacetimes at null infinity,

(3) states constructed in [DMP09] for a class of cosmological spacetimes (this

includes the Bunch-Davies state on de-Sitter spacetime),

(4) states of low energy for Friedmann-Lemâıtre-Robertson-Walker spacetimes

[Olb07],

(5) the so-called Unruh state [DMP11],

In the next chapter we will study in more detail stationary states on static space-

times in the presence of time-independent external potentials.
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CHAPTER 4

Dirac equation in static external potentials

In a stationary spacetime, the ground state with respect to the time flow, if ex-

ists, provides a distinguished state which generalizes the properties of the Minkowski

vacuum. It was proved by Sahlmann and Verch [SV00, SV01] that it satisfies the

Hadamard condition (this generalizes earlier results of Fulling, Narcowich and Wald

for spin-0 fields on static spacetimes [FNW81]). A different proof was given by

Strohmaier, Verch and Wollenberg [SVW02] using the notion of wave front set for

distributions with values in a Banach space.

Following [Wro12], we provide a simple proof of this result in the static case,

allowing also for time-independent external potentials. The main advantage beside

technical simplicity is that the method extends to the case of the Klein-Gordon equa-

tion in a strong electric potential, as will be explained in Chapter 5. In this very

chapter we focus on the static Dirac equation. We briefly explain how it can be re-

duced to the form of an evolution equation with self-adjoint generator and we then

discuss the construction of stationary Hadamard states.

4.1. Static spacetimes

Definition 4.1.1. A spacetime (M, g) is called stationary if there exists a smooth,

complete, future-pointing, time-like Killing vector field ξ on M . It is called static if in

addition ξ can be chosen to be irrotational, i.e., if M can be foliated by hypersurfaces

orthogonal to ξ.

The definition of a stationary spacetime can be rephrased as follows. First, com-

pleteness of ξ means that it induces a flow Ξt : R×M →M by

ξ(0, x) = x, dΞ(t, x; ∂t, 0) = ξ(Ξ(t, x)), t ∈ R.

Then, the propriety which states that ξ is a Killing vector field is equivalent to

invariance of the metric under the flow Ξt, i.e., Ξ∗tg = g for all t ∈ R.

In a static spacetime (M, g), one can choose local coordinates (t,x) such that

ξ = ∂t and such that the metric reads

(4.1.1) g = −ϑ(x)dt2 + hij(x)dxidxi,

where ϑ > 0 and hij are smooth and do not depend on t. If in addition ϑ is bounded

from below and from above by positive constants and (Σ, h) is a complete Riemannian

monifold, then the spacetime (M, g) is globally hyperbolic [Kay78].
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4.2. Abstract Dirac equations

Let us consider a globally hyperbolic static spacetime M = R × Σ with metric

as in (4.1.1) and let SM be a spin structure. We also assume that we are given a

potential A and mass term m which do not depend on t and write A = (V,Ai) in the

coordinates (t,xi). The Dirac operator reads

(4.2.1) D = −γµ(∇µ + iAµ) +m.

From Section 2.7 we know that we can multiply from both sides a pre-normally hy-

perbolic operator D by smooth sections (provided they are invertible and formally

self-adjoint) without losing track of the quantities needed for quantization. In partic-

ular, this observation allows us to consider instead of D the operator

D′ ··= i∂t +H(x),

where H(x) is a differential operator with time-independent coefficients, given by

H(x) = ϑ−1/2γ0
(
iγi(∇i + iAi)−m

)
+ V.

It can be checked using Propositions 2.5.4 and 2.7.1 that the Cauchy-surface charge

form associated toD′ concides on test sections with the Hilbert space scalar product in

L2(Σ,DM) ··= L2(Σ,C2[n/2]), denoted (·|·) in what follows. Moreover, H(x) is hermitian

on D(Σ,DM), i.e.

(u|H(x)v) = (H(x)u|v), u, v ∈ D(Σ,DM),

it makes thus sense to ask under what circumstances does it define a self-adjoint

operator. As pointed out in [Shi91], essential self-adjointness of H(x) follows directly

from the general arguments given in [Che73], which are valid for arbitrary smooth

potentials without the need to assume any particular decay of the potentials at infin-

ity.

Proposition 4.2.1. If Ai, V,m are smooth and real valued, then the operator H(x)

acting on D(Σ,DM) is essentially self-adjoint in the Hilbert space L2(Σ,DM).

The closure of H(x), denoted H, is traditionally called the Dirac Hamiltonian.

Its spectral properties for various classes of potentials are a well studied topic, see

e.g. [Tha92], where the flat case is discussed. In particular in the free case, i.e.

under the assumptions (Σ, h) = Rd, A ≡ 0 and m constant, the Dirac Hamiltonian

H is self-adjoint with domain Dom(H) = H1(Rd,C2[n/2]) and its spectrum is the set

sp(H) = (−∞,−m] ∪ [m,∞).

All summed up together, this allows us to set the static Dirac equation in an

abstract framework which is particularly convenient for the quantization. According

to our discussion, it is natural to consider pre-normally hyperbolic operators D on

static spacetimes which satisfy the following set of assumptions.

Assumption 4.2.2. We assume that

i) D is a differential operator of the form D = i∂t + H(x), where H(x) :

D(Σ,V )→ D(Σ,V ) is a differential operator s.t. (H(x))
2 is elliptic.
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Moreover, we assume that there exists a Hilbert space (H, (·|·)) and a self-adjoint

operator H ∈ C(H), s.t.

ii) D(Σ,V ) is dense in H and there exists β ∈ E (M,L (V ,V ∗)) s.t.

(u|v) =

∫
Σ

β(u, v)ds, u, v ∈ D(Σ,V );

iii) H(x) = H on D(Σ,V ).

4.3. Hadamard states

Suppose that Assumption 4.2.2 is satisfied. Then i∂t+H(x) is pre-normally hyper-

bolic, and the assumption on self-adjointness implies that D is formally self-adjoint

w.r.t. β. We have thus a well defined charge form Q and Cauchy-surface charge form

q. From the results in Chapter 2 we obtain that:

• The Cauchy-data charge form q(·, ·) equals (·|·) on D(Σ,V ).
• The Cauchy problem

(D)

{
Df = 0, f ∈ E (M,V )

f |t=0 = ϕ0, D(Σ,V )

is uniquely solved by f = −i(Sβ−1q)ϕ0.

On the other hand, we certainly know that the same Cauchy problem is uniquely

solved by f = (Tt)ϕ0, where Tt = eitH . In order to write the relation between S

and Tt it is useful to use translation invariance in the time coordinate. Namely,

S ∈ D ′(M×2,L (V )) depends on the time coordinates via the difference t − t′ only,

which means that S is the pullback of a distribution S̃ ∈ D ′(R× Σ×2,L (V )) under

the map

(4.3.1) M ×M 3 (t,x, t′,x′) 7→ τ(t,x, t′,x′) ··= (t− t′,x,x′) ∈ R× Σ×2

We have then

(4.3.2)
〈S̃, f ⊗ ū⊗ v〉 = i

∫
R
(u|Ttv)f(t)dt

= i (u|(F−1f)(H)v), f ∈ S (R), u, v ∈ D(Σ,V )

where we used a non-unitary convention for the Fourier transform F and (F−1f)(H)

is defined by functional calculus.

Since the charge form q concides with the inner product in H on a dense subspace,

the CAR C∗-algebra of interest is CAR(H, (·|·)). For later reference it is convenient

to reformulate in the following way the characterization of two-point functions of

quasi-free states discussed in Chapter 1.

Proposition 4.3.1. Let P ∈ B(H). Then λ ··= (·|P ·) is the two-point function of a

gauge-invariant quasi-free state on CAR(H, (·|·)) iff

(4.3.3) P ≥ 0, 1− P ≥ 0.
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Moreover, the state is pure iff P is a projection.

If J ⊂ R is a finite union of intervals, we denote 1lJ its characteristic function. In

the case when 0 /∈ sp(H), we have a distinguished projection which satisfies (4.3.3),

namely P = 1l(0,∞](H). It is well known that it corresponds to the unique ground

state w.r.t. the time flow and it was proved in [SV00] that it is a Hadamard state.

In order to include the degenerate case 0 ∈ sp(H) in our discussion, let us consider

for a generic interval J ⊂ R the hermitian form

(4.3.4) λJ (·, ·) ··= (·|1lJ (H)·).

Since 1 − 1lJ = 1lR\J and H is self-adjoint, we immediately obtain by Proposition

4.3.1 that λJ defines a pure quasi-free state iff J ∩ sp(H) ⊂ [0,∞). We will prove

in the next section that λJ satisfies the Hadamard condition. As a consequence,

any convex combination of two-point functions of the form (4.3.4) is the two-point

function of a Hadamard quasi-free state.

4.3.1. Hadamard condition for ground states. As we have seen before, in

the static case we can use translation invariance of the causal propagator to write it

as S = τ ∗S̃, where τ maps (t, t′) to the time difference t− t′ and S̃ ∈ D(R×Σ×2,V ).

The wave front set of S̃ is determined by the relation

WF(S̃) = {(t,x, t′,x′; ξ,k,−ξ,k′) : (t− t′,x,x′; ξ,k,k′) ∈WF(S)}.

Suppose now that we have some distribution Λ̃(+) ∈ D ′(R×Σ×2,V ) and let us define

Λ(+) ··= τ ∗Λ̃(+). Then we have an analogous relation for the wave front sets of Λ(+)

and Λ̃(+) and we can deduce that the pair Λ(+),Λ(−) satisfies the Hadamard condition

(Had) iff

(4.3.5) WF(Λ̃(±)) = WF(S̃) ∩ Γ±,

where Γ± ··= {(ξ,k,k′) ∈ T ∗(R× Σ×2)\Z : ±ξ > 0}.
Condition (4.3.5) is implied by a stronger condition on the support of the Fourier

transform of Λ(±), which will turn out to hold in our main case of interest.

First let us recall a basic lemma due to Hörmander.

Lemma 4.3.2 ([Hör83], Lemma 8.1.7). If u ∈ S ′(Rp), then WF(u) ⊂ Rp × F , where

F ··=
{

lim
j→∞

αjxj : xj ∈ supp(Fu) ⊂ Rp, αj > 0, lim
j→∞

αj = 0

}
and F denotes the Fourier transform in Rp.

We will consider distributions contained in the topological tensor product

S ′(R)⊗̂D ′(Σ×2,L (V )) ⊂ D ′(R × Σ×2,L (V )), so that it makes sense to apply a

Fourier transform in the first argument (thanks to continuity of the Fourier transform

in S ′(R)).

Theorem 4.3.3. Let D be a differential operator which satisfies i) of Assumption

4.2.2. Suppose that Λ(±) satisfy (CAR) (or (CCR)) and (D) mod C∞, Λ(±) = τ ∗Λ̃(±)
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for some Λ̃(±) ∈ S ′(R)⊗̂D ′(Σ×2,L (V )) and

(4.3.6)
supp(F0Λ̃(+)) ⊂ [α+,∞)× Σ×2 for some α+ ∈ R,

supp(F0Λ̃(−)) ⊂ (−∞, α−]× Σ×2 for some α− ∈ R,

where F0 is the Fourier transform in the first variable. Then Λ(±) satisfy (Had).

Proof. Assume for the moment that Σ = Rd, V is trivial and u is tempered. Then

supp(F0Λ̃(±)) ⊂ [α±,±∞)×R2d implies supp(F Λ̃(±)) ⊂ [α±,±∞)×R2d. By Lemma

4.3.2 this yields

(4.3.7) WF(Λ̃(±)) ⊂ Γ± ∪ Γ0,

where Γ± = (R× Σ×2)× ((0,±∞)× R2d) and Γ0 = (R× Σ×2)× ({0} × R2d).

Let us now consider the general case Λ̃(±) ∈ S ′(R)⊗̂D ′(Σ×2,V ). Let us fix s ∈
Σ×2, a (trivializing) coordinate neighbourhood U ⊂ Σ×2 of s, and a test function

χ ∈ D(Σ×2) s.t. suppχ ⊂ U and χ ≡ 1 in a neighbourhood of s. By replacing Λ̃(±)

with the pullback of (1l ⊗ χ)Λ̃(±) along coordinate maps of Σ we are reduced to the

previous case and obtain that (4.3.7) holds above R× {y} for all y ∈ Σ×2.

Observe that Λ̃(±) is a parametrix for D. Therefore, it is also a parametrix for

the elliptic operator (−i∂t + H(x))D = ∂2
t + (H(x))

2, hence WF(Λ̃(±)) ∩ Γ0 = ∅.
Consequently, (4.3.7) is equivalent to WF(Λ̃(±)) ⊂ Γ±. In particular, WF(Λ̃(+))

and WF(Λ̃(−)) are disjoint. Together with iS̃ = Λ̃(+) + Λ̃(−) mod C∞ (or iS̃ =

Λ̃(+) − Λ̃(−) mod C∞) this entails precisely

WF(Λ̃(±)) = WF(S̃) ∩ Γ±. �

Note that we did not have to assume α+ ≥ α− in Theorem 4.3.3. In fact, the

Hadamard condition can be interpreted as a splitting of S into a positive and negative

frequency part in an asymptotic sense, i.e. accurate for sufficiently high frequencies.

Proposition 4.3.4. Let J be an unbounded finite union of intervals s.t. J ⊂ [α,∞)

and let λJ be defined as in (4.3.4). Then the associated distributional two-point

functions Λ(±)

J satisfy (Had).

Proof. We have Λ(±)

J = τ ∗Λ̃(±)

J , where

〈Λ̃(+)

J , f ⊗ ū⊗ v〉 = −(u|(F−1f)(H)1lJ (H)v),

〈Λ̃(−)

J , f ⊗ ū⊗ v〉 = −(u|(F−1f)(H)(1− 1lJ )(H)v),

for f ∈ S (R), u, v ∈ D(Σ,V ).

We will show that the assumptions of Theorem 4.3.3 are satisfied. By (4.3.2) we

have iS = Λ(+)

J + Λ(−)

J and by construction, Λ(±)

J are bi-solutions. To prove that Λ̃(±)

J is

tempered in the time direction we have to show Λ̃(±)

J : S (R)⊗D(Σ,V )⊗D(Σ,V )→ C
is continuous. By Schwarz inequality and Borel functional calculus for self-adjoint

operators, we have

|〈Λ̃(+)

J , f ⊗ ū⊗ v〉| = |(u|(F−1f)1lJ (H)v)| ≤ ‖u‖‖(F−1f)(H)1lJ (H)‖ ‖v‖
≤ ‖u‖ ‖(F−1f)1lJ ‖∞ ‖v‖ ≤ ‖u‖ ‖F−1f‖∞ ‖v‖.
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Convergence of f to 0 in S (R) implies F−1f → 0 in S (R) and consequently

‖F−1f‖∞ → 0. Furthermore, convergence of u (resp. v) to 0 in D(Σ,V ) implies

‖u‖ → 0 (resp. ‖v‖ → 0), hence Λ̃(+)

J is continuous. The reasoning for Λ̃(−)

J is analo-

gous.

Finally, to see that F0Λ̃(±)

J have the required support properties, observe that for

any ϕ ∈ D(R) with suppϕ ∩ J = ∅, we have

〈F0Λ̃(+)

J , ϕ⊗ ū⊗ v〉 = −2π(u|ϕ(H)1lJ (H)v) = −2π(u|(ϕ · 1lJ )(H)v) = 0,

and the analogous property holds for Λ̃(−)

J (with R \ J instead of J ). �
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CHAPTER 5

Klein-Gordon equation in static external potentials

The similarities between the two-component form of the Klein-Gordon equation

and the Dirac equation, outlined in Chapter 2, suggest the possibility to treat spin-0

fields in the static case much analogously to the spin-1
2

case considered in Chapter 4.

There are however two problems:

• The charge form q associated to the Klein-Gordon equation is not positive and

thus, contrary to the Dirac case, it cannot be used to define a Hilbert space.
• If the electric potential V is too strong, there exists no ground state.

The first difficulty can be overcome by considering instead a Krein space, i.e. a Hilber-

tizable space equipped with a non-necessarily positive hermitian form. Under reason-

able assumptions on the potentials it is then possible to express the two-component

Klein-Gordon equation as an evolution equation whose generator B is an unbounded

operator, formally self-adjoint w.r.t. the hermitian form q.

The second problem stems from the fact that for sufficiently strong electric poten-

tials (referred to as overcritical ones) it is impossible to transform the dynamics into

an evolution equation whose generator is a self-adjoint operator in the usual Hilbert

space sense [Bro83]. This phenomenon, usually called the Klein paradox, is connected

to the appearence of non-real eigenvalues in the spectrum of B. Although the general

argument of Fulling, Narcowich and Wald implies that Hadamard states still exist in

that case, it is not clear what property could be used to select a preferred one.

Following [Wro12], we investigate both the subcritical and overcritical case. In

analogy to the results of Chapter 4 we show that ground states for the Klein-Gordon

equation with subcritical, static, smooth potentials satisfy the Hadamard condition

(providing thus an alternative proof for the result of [FNW81]). For a class of over-

critical smooth potentials, we still find families of Hadamard states which are ground

states after restricting the two-point function to an infinite dimensional subspace.

This improves on the result in [Wro12], as the states we construct are gauge-invariant.

In our implementation of Krein space methods, we use extensively results due

to Langer, Najman and Tretter [LNT08] and Gérard [Gér12]. One of the crucial

assumptions we make is that B belongs to the class of definitizable operators, which

admit a functional calculus with particularly good properties.

5.1. Abstract Klein-Gordon equation

In analogy to the Dirac equation, we want to consider a more abstract version of

the Klein-Gordon equation which emphasizes its spectral properties.
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To this end, let h be a Hilbert space and suppose that the Klein-Gordon equation

can be written as

(5.1.1)
[
(∂t − iV )2 + ε2

]
f(t) = 0,

where V ∈ C(h) is a self-adjoint operator and ε ∈ C(h) is strictly positive. For

instance, the Klein-Gordon equation with vanishing potentials on Minkowski space

can be brought to this form by setting h = L2(Rd) and ε = (−∆ +m2)1/2 if m2 > 0.

As already anticipated in Chapter 2, we can formally reexpress (5.1.1) as an

evolution equation which involves only time derivatives of order one.

(i∂t +B)

(
f0(t)

f1(t)

)
= 0, B ··=

(
V 1

ε2 V

)
.

The one-component and two-component Klein-Gordon equations are then related as

follows:

(i∂t +B)

(
f0(t)

f1(t)

)
= 0 ⇐⇒

{
[(∂t − iV ))2 + ε2] f(t) = 0,

f0(t) = f(t), f1(t) = −(i∂t + V )f(t).

We have seen in Chapter 2 that the differential expression D which corresponds to

i∂t + B is pre-normally hyperbolic. Moreover, D is formally self-adjoint w.r.t. the

hermitian form

β(v, w) = v̄0w1 + v̄1w0 v, w ∈ C2.

and the corresponding charge form equals q(·, ·) =
∫

Σ
β(·, ·)ds. The situation is thus

very similar to the abstract Dirac equation discussed in Section 4.2, except that the

hermitian form q is not positive definite and it cannot be used to define a Hilbert

space. The appropriate replacement are Krein spaces. We will see in 5.1.2, how one

can build a suitable Krein space equipped with a non-positive hermitian form [·|·]
which concides with q(·, ·) on test functions, and how assign to the formal expression

B an operator which is Krein self-adjoint in the appropriate sense

Even though q(·, ·) is not positive definite, it is still possible to work in a Hilbert

space setting if the potential V is not ‘too large’. This can be understood in the

following way. Let us introduce the operator

A ··=
(

0 1

ε2 − V 2 2V

)
=

(
1 0

V 1

)(
V 1

ε2 V

)(
1 0

−V 1

)
=

(
1 0

V 1

)
B

(
1 0

−V 1

)
.

In a formal sense, A is hermitian with respect to the sesquilinear form [·|·]en (the

so-called energy inner product), defined as

[u|v]en ··= (u0|(ε2 − V 2)v0) + (u1|v1)

on suitable elements u = (u0, u1), v = (v0, v1) ∈ h ⊕ h. This sesquilinear form is

positive if ε2−V 2 is a well-defined positive operator. In such a case, one uses [·|·]en to

define a Hilbert space and it is possible to assign to A a self-adjoint operator. Under a

reasonable set of assumptions, the operators A and B have the same spectral theory,

therefore one often prefers to work with A instead of B.

The quantity [u|u]en is interpreted as energy conserved by the evolution t 7→ eitA
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and the violation of positivity, occurring when ε2 − V 2 is not positive, is usually

called the Klein paradox (see [GMR85, Man88, Ful89] for disambiguation, historical

remarks and detailed discussion on the physics of the Klein paradox). In such case it

is necessary to work in a Krein space formalism. The properties of the operator A ,

defined on a suitable Krein space, have been investigated by several authors (there is

a particularly vast literature on the positive definite case), see [LNT06] and references

therein.

We choose to work with the operator B and the inner product [·|·] only, motivated

by the fact that it is obtained directly from the charge form q and that it allows for

a closer analogy with the Dirac case.

The idea of using the operator B for quantization in external potentials dates

back to the 1950’s [FV58]. Most of the material of this chapter comes from [Wro12].

Many enlightning remarks on quantization in Krein spaces are contained in [SS70].

5.1.1. Operators in Krein spaces. Let us briefly introduce the basic notions

from Krein space theory. The standard references are [Bog74, Lan82]. We follow

closely the exposition of this subject contained in [Gér12] and focus on the class of so

called definitizable Krein self-adjoint operators, which admits a ‘smooth functional

calculus’ and ‘Borel functional calculus’ with particularly nice properties.

Definition 5.1.1. A Krein space (K, [·|·]) consists of a Hilbert space K with its

scalar product (·|·)K and an inner product [·|·] on K (that is a hermitian sesquilinear

form), such that [·|·] = (·|J ·)K for some invertible, self-adjoint J ∈ B(K).

Unless stated otherwise, any topological statements refer to the Hilbert space

topology of K. In the literature, a more general definition of Krein spaces is often

used, which requires K to be merely a Hilbertizable topological vector space, but this

lies away from our case of interest.

Let A : Dom(A) → K be a densely defined operator. The Krein adjoint A† of A

in (K, [·|·]) is defined by

Dom(A†) ··= {u ∈ K : [u|A·] is continuous on Dom(A)},(5.1.2)

[u|Av] = [A†u|v] ∀ u ∈ Dom(A†), v ∈ Dom(A).

A densely defined operator A is called Krein self-adjoint, respectively Krein unitary

if A† = A, resp. A†A = AA† = 1. It is called Krein positive if

[u|Au] ≥ 0, u ∈ K.
In such case we will write A ≥ 0 (this is not to be confused with positivity w.r.t. the

Hilbert space scalar product, note also that it is not true that 1 ≥ 0 unless the Krein

space product [·|·] is positive). We say that A is Krein negative if −A ≥ 0. Later on

we will use the fact that if B is bounded and A ≥ 0, then also B†AB ≥ 0.

Proposition 5.1.2. If P ∈ B(K) is a Krein self-adjoint and Krein positive projec-

tion, then [u|Pu] > 0 for all nonzero u ∈ K. Furthermore, RanP with scalar product

inherited from K is a Hilbert space, and its topology coincides with the topology
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induced by [u|u]1/2.

Definition 5.1.3. A Krein self-adjoint operator A is called definitizable if it has

non-empty resolvent set and there exists a real polynomial p(λ) s.t. p(A) is Krein

positive. Such a polynomial is called definitizing for A.

It can be shown that a definitizable operator A can be decomposed as A = A1⊕A2,

where sp(A1) ⊂ R and A2 is finite-dimensional and Krein self-adjoint. Making use of

the fact that the definitizing polynomial p(λ) is real, one can characterize sp(A) as

follows.

Proposition 5.1.4. Let A be a definitizable operator. Then sp(A) \ R consists of

finitely many pairs of isolated eigenvalues {λi, λ̄i}.

5.1.2. Abstract two-component Klein-Gordon equation. Motivated by

analogies with the Dirac case, we will consider the following set of assumptions.

Assumption 5.1.5. We assume that:

i) D is a differential operator of the form D = i∂t + B(x), where B(x) :

D(Σ,V )→ D(Σ,V ) is a differential operator s.t. (B(x))
2 is elliptic.

Moreover, we assume there exists a Krein space (K, [·|·]) and a Krein self-adjoint

operator B ∈ C(K), s.t.

ii) D(Σ,V ) is dense in K and there exists β ∈ E (Σ,L (V ,V ∗)) s.t.

[u|v] =

∫
Σ

β(u, v)ds, u, v ∈ D(Σ,V );

iii) B(x) = B on D(Σ,V ).

iv) B is definitizable and regular at infinity.

In what follows, we give sufficient conditions for Assumption 5.1.5 to hold, making

use of results obtained by Langer, Najman and Tretter [LNT08], basing on earlier

works (among others) by Veselić [Ves70] and Jonas [Jon88].

As previously, h is a Hilbert space with scalar product denoted (·|·), V ∈ C(h) is

self-adjoint and ε ∈ C(h) is a strictly positive operator. Let us introduce the Hilbert

space

K ··= ε−
1
2h⊕ ε

1
2h.

More explicitly, ε−1/2h is by definition the space Dom(ε
1
2 ) with scalar product (ε1/2 ·

|ε1/2·) and ε1/2h is the completion of h with respect to the norm induced by the scalar

product (ε−1/2 · |ε−1/2·). The indefinite inner product [·|·] on K is rigorously defined

by

[u|v] ··= (ε1/2u0|ε−1/2v1) + (ε−1/2u1|ε1/2v0) = (u|Jv)K

for u = (u0, u1), v = (v0, v1) ∈ K, where J =

(
0 ε−1

ε 0

)
. By invertibility of J It

follows that (K, [·|·]) is a Krein space. Let us define a pair of projections by

(5.1.3) Π± = 1
2
(1± J) ∈ B(K).
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Then

Π†± = Π±, Π+ + Π− = 1, Π∓Π± = 0,

and ±Π± ≥ 0, therefore K decomposes as a direct sum of two spaces, Ran Π+ and

Ran Π−, which are orthogonal w.r.t. [·|·] and are Hilbert spaces with scalar product

respectively [·|·] and −[·|·].

The authors of [LNT08] consider (not necessarily smooth) potentials V satisfying

the following assumptions:

Assumption 5.1.6. V and ε are such that

(i) Dom(ε) ⊂ Dom(V ),

(ii) c = V ε−1 can be decomposed as c = c0 + c1 with ‖c0‖ < 1 and c1 compact,

(iii) 1 /∈ spp(c∗c).

Under the above assumptions, the operator B in the Hilbert space K is rigourously

defined by

Dom(B) ··=
{(

v0

v1

)
∈ ε−

1
2h⊕ ε

1
2h : v1 ∈ h, V v0 + v1 ∈ ε−

1
2h, ε2v0 + V v1 ∈ ε

1
2h

}
,

(5.1.4) B

(
v0

v1

)
··=
(
V v0 + v1

ε2v0 + V v1

)
.

An important role in the spectral analysis of B is played by the operator ε2 − V 2

defined by

ε2 − V 2 ··= ε(1− c∗c)ε, Dom(ε2 − V 2) ··= {w ∈ ε−1h : (1− c∗c)w ∈ ε−1h}.

Let us note that part (iii) of Assumption 5.1.6 is equivalent to 0 /∈ spp(B). This

simplifies much the discussion presented later on, but is not an essential assump-

tion, see [GGH12] for new developments in that direction. The following theorem

summarizes the spectral properties of the operator B.

Theorem 5.1.7 ([LNT08]). Suppose that Assumption 5.1.6 is satisfied for c = c0 +c1

with ‖c0‖ < 1 and c1 compact, and let B be the operator defined by 5.1.4. Then:

(1) The operator B is definitizable in the Krein space (K, [·|·]) and is regular at

∞. Consequently, B is the generator of a strongly continuous group of Krein

unitaries {Tt}t∈R.

(2) The essential spectrum spess(B) is real and spess(B) ∩ (−α, α) = ∅, where

α ··= (1− ‖c0‖)µ.

(3) Assume J ⊂ [0,∞) (resp. J ⊂ (−∞, 0]) is admissible for B. Then, 1lJ (B)

is Krein positive (resp. Krein negative) iff J ∩ spcr(B) = ∅.
(4) If c1 = 0, then B has no complex eigenvalues.

(5) If ε2 − V 2 is strictly positive, then sp(B) ⊂ R and spcr(B) = ∅.

As a special case, if Σ = Rd, m > 0 and Ai(x) ≡ 0 for i = 1, . . . , d, the operator ε

equals (−∆ + m2)1/2 with domain W 1
2 (Rd). Then, one can give explicit examples of

classes of potentials V satisfying the assumptions of Theorem 5.1.7.
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Proposition 5.1.8 ([LNT08]). Let d ≥ 3. Parts (i)-(ii) of Assumption 5.1.6 are

satisfied if ε = (−∆ + m2)1/2 with m > 0 and V = V0 + V1, where V1 ∈ Lp(Rd) with

d ≤ p <∞, and one of the following holds:

(1) V0 ∈ L∞(Rd) with ‖V0‖∞ < m;

(2) V0(x) = γ/|x|, x ∈ Rd \ {0}, with γ ∈ R s.t. |γ| < (d− 2)/2.

5.1.3. Quasi-free states. Suppose we have a differential operator D such that

Assumption 5.1.5 is satisfied and which has advanced/retarded fundamental solutions.

The assumption on self-adjointness implies that D is formally self-adjoint w.r.t. β.

We have thus a well defined charge form Q and Cauchy-surface charge form q. From

the results in Chapter 2 we obtain that:

• The Cauchy-data charge form q(·, ·) equals [·|·] on D(Σ,V ).
• The Cauchy problem

(D)

{
Df = 0, f ∈ E (M,V )

f |t=0 = ϕ0, D(Σ,V )

is uniquely solved by f = −i(Sβ−1q)ϕ0, where S is the causal propagator for

D.

Since on the other hand, the same Cauchy problem is uniquely solved by f = (Tt)ϕ0,

we have

(5.1.5) 〈S̃, f ⊗ ū⊗ v〉 = i

∫
R
(u|Ttv)f(t)dt f ∈ S (R), u, v ∈ D(Σ,V ).

Since the charge form q concides with [·|·] on a dense subspace of K, the CCR

C∗-algebra of interest is CCR(K, [·|·]). We can reformulate in the following way the

characterization of two-point functions of quasi-free states discussed in Chapter 1.

Proposition 5.1.9. Let P ∈ B(K). Then λ ··= [·|P ·] is the two-point function of a

gauge-invariant quasi-free state on CCR(K, [·|·]) iff

(5.1.6) P ≥ 0, 1− P ≤ 0

in the sense of Krein space positivity. Moreover, the state is pure iff P is a projection.

If only the first condition P ≥ 0 is satisfied, then we still obtain a quasi-free state,

it will however not be gauge-invariant.

By analogy to the Dirac case, it would be desirable to define a pure quasi-free

state by taking P = 1lJ (B), where J is (0,∞) or [0,∞) and 1lJ (B) should be defined

by some generalization of the functional calculus for self-adjoint operators specially

adapted to the Krein self-adjoint case. In the next section we will introduce the

functional calculus of Langer and Jonas which allows to define spectral projections

of a definitizable Krein self-adjoint operator, restricted however to a certain class of

intervals which does not always contain the full half-line.
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5.2. Definitizable operators

5.2.1. Smooth functional calculus for definitizable operators. We quote

first the adaptation of the functional calculus of Davies [Dav95] to definitizable oper-

ators in Krein spaces proposed by Gérard [Gér12], omitting the explicit constructions

and proofs. This functional calculus is available for classes of smooth functions de-

creasing fast enough at ∞:

For ρ ∈ R, denote Sρ(R) the space of functions f such that

∀α∈N ∃Cα≥0 : |f (α)(λ)| ≤ Cα〈λ〉ρ−α ,

equipped with the semi-norms ‖f‖m ··= supλ∈R,α≤m |〈λ〉−ρ+αf (α)(λ)|. Here, f (α) de-

notes the derivative of order α of f and 〈λ〉 ··= (1 + λ2)1/2. Note that S (R) ⊂ Sρ(R)

for all ρ ∈ R.

For f ∈ Sρ(R), define

(5.2.1) f̃(x+ iy) ··=

(
N∑
r=0

f (r)(x)
(iy)r

r!

)
χ

(
y

δ〈x〉

)
,

where N is some fixed integer, δ > 0 and χ ∈ D(R) with χ(s) ≡ 1 for |s| ≤ 1
2

and

χ(s) ≡ 0 for |s| ≥ 1. A function defined this way is called an almost analytic extension

of f . It satisfies

f̃ |R = f,

∣∣∣∣∣∂f̃(z)

∂z

∣∣∣∣∣ ≤ C〈Re z〉ρ−N−1|Im z|N .

Proposition 5.2.1 ([Gér12], B.8). Let A be a definitizable operator. Let ρ < −1,

f ∈ Sρ(R) and let f̃ be given by (5.2.1). Then for sufficiently high N the integral

f(A) ··=
1

2πi

∫
C

∂f̃

∂z
(A− z)−1dz ∧ dz.

is norm convegent in B(K) and does not depend on the choice of χ, δ, N . The map

Sρ(R) 3 f 7→ f(A) ∈ B(K) is a homomorphism of algebras and

f(A)† = f(A),(5.2.2)

‖f(A)‖ ≤ CA‖f‖m, for some m ∈ N.(5.2.3)

5.2.2. Borel functional calculus. A Borel functional calculus is also available,

up to some restrictions on both the operators and the class of functions [Lan82, Gér12].

There, a crucial role is played by the set of critical points spcr(A), defined as follows.

Definition 5.2.2. Let A be a definitizable operator. The set

(5.2.4) spcr(A) ··=
⋂
p

p−1({0}) ∩ sp(A) ∩ R

is called the set of critical points of A, where the intersection is taken over all defini-

tizing polynomials for A.
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It is shown in [Gér12, B.10], that there is an operator-valued measure µ such that

(5.2.5) f(A) =

∫
R
f(t)dµ(t)

for each f ∈ D(R) with suppf ∩ spcr(A) = ∅. A construction of such measure µ is

described in [Lan82], we will use this particular choice without giving a more explicit

characterization.

Definition 5.2.3. A finite union of intervals J ⊂ R is called admissible for A if its

boundary ∂J contains no critical point of A.

Let J ⊂ R be admissible for A. We denote by BA(J ) the ∗-algebra of bounded

Borel functions on J which are locally constant near spcr(A).

Theorem 5.2.4 ([Gér12], B.11). Let J ⊂ R be a bounded admissible finite union of

intervals for a definitizable operator A and let g ∈ BA(J ). Decompose g = g0+
∑

i gi,

where g0 ∈ BA(J ) is such that supp g0 ∩ spcr(A) = ∅ and gi ∈ D(R) (i = 1, . . . , N ;

N <∞). Set

g(A) ··=
N∑
i=1

gi(A) +

∫
R
g0(t)dµ(t),

where gi(A) is defined via smooth functional calculus. Then g(A) is a well-defined

operator in B(K) and the definition does not depend on the decomposition of g. The

map

BA(J ) 3 g 7→ g(A) ∈ B(K)

is a homomorphism of ∗-algebras such that g(A)† = g(A).

We use the Borel functional introduced in Theorem 5.2.4 to define spectral projec-

tions 1lJ (A), where J is bounded admissible and we recall that 1lJ ∈ BA(J ) denotes

the characteristic function of J . Equivalently, one could use the construction of spec-

tral projections described in [Lan82]. To discuss generalizations for larger classes of

intervals, one makes the following definition.

Definition 5.2.5. Let A be a definitizable operator. A point c ∈ spcr(A) is said

to be a regular critical point of A if 1l[c−ε,c+ε](A) converges in the strong operator

topology as ε ↘ 0. Otherwise, it is said to be a singular critical point. We say that

a definitizable operator A is regular at infinity if 1l[−L,L](A) converges in the strong

operator topology as L→∞.

Let us note that in the literature, a convention where∞ is by definition in spcr(A)

is often employed and one speaks of ∞ being a ‘regular critical point’ instead. It is

natural to adopt the following notation:

Definition 5.2.6. Let A be a definitizable operator and let J be a finite sum of

bounded intervals such that no singular critical points of A intersects ∂J . We define

(5.2.6) 1lJ (A) ··= s− lim
ε↘0

1lJ (ε)(A), J (ε) ··= J \
( ⋃
c∈spcr(A)

[c− ε, c+ ε]

)
.
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Definition 5.2.7. Let A be a definitizable operator, regular at infinity, and let J
be a finite sum of intervals such that no singular critical points of A intersects ∂J .

If J is not bounded, we define

(5.2.7) 1lJ (A) ··= s− lim
L→∞

1lJ∩[−L,L](A).

Proposition 5.2.8. Let A be a definitizable operator and let J ,J ′ be finite sums

of bounded intervals such that no singular critical points of A intersects ∂J . Let

f ∈ Sρ(R) with ρ > −1 and let f(A) be defined by smooth functional calculus.

Then:

(1) 1lJ (A)† = 1lJ (A),

(2) 1lJ (A)1lJ ′(A) = 1lJ∩J ′(A),

(3) if suppf ∩ J = ∅ then f(A)1lJ (A) = 0.

(4) if suppf ⊂ J then f(A)1lJ (A) = f(A).

Moreover, if A is regular at infinity, this extends to unbounded J as well.

Proof. Properties (1)–(2) are direct consequences of Theorem 5.2.4. To prove prop-

erties (3)–(4) it suffices to consider f ∈ D(R) (D(R) being dense in Sρ(R)). For such

functions the smooth and Borel functional calculus coincide and using the latter we

get

f(A) = (f · 1lsuppf )(A) = f(A)1lsuppf (A)

and one uses property (2) to get (3)–(4). The last assertion follows, as properties

(1)–(4) are preserved by the strong operator limit (5.2.7). �

5.2.3. One-parameter groups generated by definitizable operators. The

following property of definitizable operators which are regular at infinity is essential

for our purpose (see [LNT08] for a more complete discussion).

Proposition 5.2.9. Let A be definitizable and regular at infinity. Then, it is the

generator of a strongly continuous one-parameter group of Krein unitaries {Tt}t∈R,

i.e.

Ax = lim
t→0

Ttx− x
it

∀x ∈ Dom(A).

Let us now investigate the relation between Tt and operators defined by function

calculi for A. In doing so, one has to take into account that Tt contains all the

information about eventual complex eigenvalues of A, but this not the case for an

operator f(A) defined by smooth functional calculus. We illustrate this in Proposition

5.2.10.

First, let us introduce the projection corresponding to the non-real part of the

spectrum of A. Let E(λ,A) denote the Riesz projection relative to an isolated eigen-

value λ ∈ sp(A). Define

(5.2.8) 1lC\R(A) ··=
∑

λ∈sp(A),Imλ>0

E(λ,A) + E(λ,A).

A standard result from Krein space theory says that [u|1lC\R(A)u] = 0 for all u ∈
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Ran1lC\R(A).

Proposition 5.2.10. Let A be definitizable and regular at infinity. Denote {Tt}t∈R
the one-parameter group it generates. For any f ∈ D(R), one has

(5.2.9)
1√
2π

∫
R
dt f(t)Tt(1− 1lC\R(A)) = (F−1f)(A),

where (F−1f)(A) is defined via smooth functional calculus.

Proof. by [ABHN11, Theorem 3.12.2], Tt is the inverse Laplace transform of the

resolvent of iA, i.e.

(5.2.10) Tt = s− lim
k→∞

1

2πi

∫ k

−k
e(µ+is)t(A+ (iµ− s)1)−1ds

for sufficiently large µ > 0. by writing the same equality for T (−t) and taking the

Krein adjoint, we get also

(5.2.11) Tt = s− lim
k→∞

(−1)

2πi

∫ k

−k
e(−µ+is)t(A− (iµ− s)1)−1ds.

Using (5.2.11) we get that
∫∞

0
dt f(t)Tt equals

(−1)

2πi

∫ ∞
0

dt

∫ ∞
−∞

dsf(t)e(−µ+is)t(A− (iµ− s)1)−1.

by the Riesz-Dunford calculus,

(A− w1)−1(1lC\R(A)− 1) =
1

2πi

∫
γ(w)

(w − z)−1(A− z1)−1dz,

where γ(w) ··= γ0(w)∪ γ1 ∪ γ1, γ0(w) is a circle in rs (A) which surrounds w ∈ C and

γ1 is a circle in rs (A) ∩ {z : Im z > 0} which surrounds sp(A) ∩ {z : Im z > 0}.
Hence ∫ ∞

0

dt f(t)Tt(1− 1lC\R(A))(5.2.12)

=
−1

(2πi)2

∫ ∞
0

dt

∫ ∞
−∞

ds

∫
γ(s+iµ)

dz f(t)e(−µ+is)t(s+ iµ− z)−1(A− z1)−1(5.2.13)

=
−1

(2πi)2

∫ ∞
0

dt

∫ ∞+iµ

−∞+iµ

dw

∫
γ(w)

dz f(t)eiwt(w − z)−1(A− z1)−1.

We claim that the contour γ(w) can be replaced by η(ε) ··= (R + iε) ∪ (R − iε)

(clockwise), where ε > 0 is arbitrarily small. To this end we have to prove that the

respective integral over two half-circles (in the z variables) with center iε, −iε and

radius R vanishes as R → ∞. Indeed, we can use that ‖(A − z1)−1‖ is O(|Im z|−1)

for large |Im z| (as follows from the Hille-Yosida theorem) to show that the integral

over z is O(R−1 lnR). We have

−1

(2πi)2

∫ ∞
0

dt

∫ ∞+iµ

−∞+iµ

dw

∫
η(ε)

dz f(t)eiwt(w − z)−1(A− z1)−1(5.2.14)
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=
(−1)

2πi

∫ ∞
0

dt

∫
η(ε)

dz f(t)eizt(A− z1)−1.

Analogously, using (5.2.10) instead of (5.2.11), one finds∫ 0

−∞
dt f(t)Tt(1− 1lC\R(A)) =

(−1)

2πi

∫ 0

−∞
dt

∫
η(ε)

dz f(t)eizt(A− z1)−1.

Thus, denoting g ··= F−1f ,

1√
2π

∫
R
dt f(t)Tt(1− 1lC\R(A)) =

(−1)

2πi

∫
η(ε)

g(z)(A− z1)−1.

On the other hand, to evaluate the RHS of (5.2.9), observe that g is an entire

function and it consequently admits an almost analytic extension of the form

g̃(z) ··= g(z)χ0(z), χ0(x+ iy) ··= χ (y/(δ〈x〉)) ,

where χ and δ are as in (5.2.1). Therefore,

g(A) =
1

2πi

∫
C

∂g̃

∂z̄
(z)(A− z1)−1dz ∧ dz̄ = lim

ε↘0

1

2πi

∫
Cε

∂g̃

∂z̄
(z)(A− z1)−1dz ∧ dz̄(5.2.15)

= lim
ε↘0

1

2πi

∫
∂Cε

g̃(z)(A− z1)−1dz = lim
ε↘0

1

2πi

∫
∂Cε

g(z)χ0(z)(A− z1)−1dz,

where Cε ··= suppχ0 ∩ {z : |Im z| > ε}. The last integral does not depend on ε,

hence

g(A) =
1

2πi

∫
η̄(ε)

g(z)(A− z1)−1 =
(−1)

2πi

∫
η(ε)

g(z)(A− z1)−1.

�

5.3. Hadamard states

Suppose now that Assumption 5.1.5 is satisfied. In particular, we have a defini-

tizable operator B which is regular at ∞. Recall also that we have a pair of Krein

self-adjoint projections Π± such that ±Π± ≥ 0.

Suppose that spcr(B) is contained in the point spectrum of B. Then if we set

J± ··= (0,±∞) \ spcr(B), the projections 1lJ±(B) are well defined by Borel functional

calculus. Let us define a sesquilinear form λ by λ(·, ·) ··= [·|P ·], where

(5.3.1) P ··= 1lJ+(B) + (1− 1lJ−∪J+(B))Π+(1− 1lJ−∪J+(B)).

Then P ≥ 0 and we also have

1− P = 1lJ−(B) + (1− 1lJ−∪J+(B))Π−(1− 1lJ−∪J+(B)) ≤ 0,

therefore by Proposition 5.1.9, λ is the two-point function of a gauge-invariant quasi-

free state on CCR(K, [·|·]). It makes sense to distinguish between the following three

cases:

(1) Subcritical case. If ε2 − V 2 ≥ 0 then spcr(B) = ∅ and P = 1l(0,∞), 1 − P =

1l(−∞,0) and one can show that in that case λ is the two-point function of the

unique ground state.
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(2) Overcritical case, ±m /∈ spcr(B). The condition ±m /∈ spcr implies that

there is no critical point embedded in the continuous spectrum of B [LNT08].

Thus, the definition of λ stated above makes sense and it will be shown that

the corresponding quasi-free state is Hadamard. The role of the term with

Π+ in (5.3.1) is to select the positive frequency part in the finite dimensional

space corresponding to complex eigenvalues or critical points. A priori it is

possible to do this using a different projection with properties analogous to

Π+, so this part of the definition is to some extent ambiguous.

(3) Overcritical case, −m or m ∈ spcr(B). In that case 1lJ±(B) is ill-defined.

Although it is possible to define a state by removing from the intervals J±
some arbitrarily small neighbourhood of ±m, and as shown in [Wro12] such

state will satisfy the Hadamard condition, it will however not be gauge-

invariant.

Sufficient conditions for the second case to hold are given in [Gér12]. This includes

for instance the case when Σ = Rd, Ai ≡ 0, V ∈ D(Rd) ∩ Ld(Rd) and m < ‖V ‖∞ <√
2m.

The proof of the Hadamard condition is similar to the Dirac case, except that we

have additionally to show that the term with Π+ does not contribute to the wave

front set. In [Wro12] we used a simpler definition which did not involve the Π+ term,

it did however not yield a gauge-invariant state.

Proposition 5.3.1. The sesquilinear form λ(·, ·) = [·|P ·] defined by (5.3.1) is the

two-point function of a pure, gauge-invariant, quasi-free Hadamard state ω.

Proof. Let us define Λ(±) ··= τ ∗Λ̃(±), S0 ··= τ ∗S̃0, where

〈Λ̃(±), f ⊗ ū⊗ v〉 = −[u|(F−1f)(B)1lJ±(B)v],

〈S̃0, f ⊗ ū⊗ v〉 = i [u|(F−1f)(B)(1lC\R(B) + 1lR\(J−∪J+)(B))v],

for f ∈ D(R), u, v ∈ D(Σ,V ).

We show that the assumptions of Theorem 4.3.3 are satisfied. By (5.1.5) and

Proposition 5.2.10 we have iS = Λ(−) − Λ(+) + iS0 and by construction, Λ(±)

J , S0 are

bi-solutions for D. Since the range of 1lC\R(B) + 1lR\(J−∪J+)(B) is spanned by a finite

set {ϕi} of eigenvectors of B, S̃0 restricted to t = const is proportional to the integral

kernel of ∑
i

eiλit|ϕi)(ϕi|,

where λi are the respective eigenvalues. We see that S̃0 is smooth in the time variable,

i.e. WF(S̃0) ⊂ Γ0. Since it is a bi-solution for D, WF(S̃0) ∩ Γ0 = ∅. This yields

WF(S0) = ∅, hence iS = Λ(+)

J − Λ(−)

J mod C∞.

To prove that Λ̃(+) is tempered in the time direction we have to show Λ̃(+)

J :

S (R)⊗D(Σ,V )⊗D(Σ,V )→ C is continuous. By Schwarz inequality and smooth
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functional calculus, there exists m ∈ N s.t.

|〈Λ̃(+), f ⊗ ū⊗ v〉| = |[u|(F−1f)(B)1lJ+(B)v]| = |(u|J(F−1f)(B)1lJ+(B)v)K|
≤ ‖u‖K‖(F−1f)(B)‖‖J1lJ+(B)‖‖v‖K
≤ CB‖u‖K‖F−1f‖m‖J1lJ+(B)‖‖v‖K.

Convergence of f to 0 in S (R) implies F−1f → 0 in S (R) and consequently

‖F−1f‖m → 0. Furthermore, convergence of u (resp. v) to 0 in D(Σ,V ) implies

‖u‖K → 0 (resp. ‖v‖K). Indeed, this follows from the inequality

‖u‖2
K = ‖ε1/2u0‖2 + ‖ε−1/2u1‖2 ≤ ‖ε−3/2‖2‖ε2u0‖2 + ‖ε−1/2‖2‖u1‖2.

Now, u0, u1 → 0 in D(Σ,V ) implies ε2u0, u1 → 0 in D(Σ,V ) and consequently ‖ε2u0‖,
‖u1‖ → 0. The reasoning for Λ̃(−) is analogous.

Finally, to see that F0Λ̃(±) have the required support properties, observe that the

distributions F0Λ̃(+), F0Λ̃(−) are uniquely determined by their value on simple tensors:

〈F0Λ̃(±), f ⊗ ū⊗ v〉 = −i[u|f(B)1lJ±(B)v],(5.3.2)

By 3. of Proposition 5.2.8, (5.3.2) vanishes for each f ∈ S (R) with suppf∩spcr(B) =

∅ and suppf ∩ J± = ∅. Therefore,

supp(F0Λ̃(±)) ⊂ (spcr(B) ∪ J±)× Σ×2,

which by boundedness of the set spcr(B) finishes the proof. �

The physical interpretation of the Hadamard state ω constructed in the overcrit-

ical case (2) can be made clearer by viewing K as a direct sum of two spaces: the

range of 1lJ+(B)+1lJ−(B) and the finite dimensional space spanned by the remaining

eigenvectors of B. In fact, λ restricted to the first component yields a ground state

in the usual sense. The restriction to the second component is not a ground state,

but this poses no problem from the point of view of the Hadamard condition.

On the other hand, it does not seem possible to decompose the physical system

in a similar way in the more singular situation (3), and the problem of constructing

gauge-invariant Hadamard states with properties close to a ground state remains

open.





Part 2

Strength of singularities: Renormalisation

and interacting fields
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CHAPTER 6

Renormalisation and scaling degree

In local perturbative QFT, the S-matrix is defined as a formal power series in the

coupling constant. In the formulation proposed by Brunetti and Fredenhagen [BF00],

the theory is determined by the choice of a Hadamard state ω of the non-interacting

theory and a Lagrangian density L (x) which accounts for the interaction. It is a

distribution with values in operators on the Hilbert space Hω, obtained from the

GNS construction for the state ω. Additionally, an adiabatic cutoff η ∈ D(M) has to

be introduced to avoid infrared problems. The ansatz for the S-matrix in terms of a

Dyson series

(6.0.1) S(η) ··= 1 +
∞∑
m=1

im

m!

∫
M×m

T
(
L (x1)⊗ · · · ⊗L (xm)

)
η(x1) . . . η(xm) dΩm

g ,

can be solved by the method of Epstein and Glaser [EG73], after imposing a set of

defining axioms on the time-ordered product T . These axioms, proposed and worked

out in [SR50, BP57, BS59], can be extended to curved spacetime in a very natural way.

The main difficulty is that most terms in the series (6.0.1) involve ambiguous products

of distributions, that cannot be defined just by making use of sufficient conditions on

their wave front sets. The rigorous definition of the time-ordered products, the study

of resulting ambiguities and the implementation of global symmetries are the central

questions in renormalisation in the Epstein and Glaser approach.

In what follows, we review the main elements of the construction and introduce

a mathematical notion due to Steinmann [Ste71], which is particularly useful in the

problem of extending singular distributions — the scaling degree. The material that

we present here serves as an introduction to the results of the next chapters and can

be found in the references [EG73, Sch95, BF00, HR02, SVW02, DF03], it can be

skipped by the expert reader familiar with the toolset of extensions of distributions.

6.1. The algebra of Wick polynomials

6.1.1. Operator-valued distributions. To formulate the result of Brunetti

and Fredenhagen in an effective way, it is useful to make the following definitions. If

H is a Hilbert space and D some subspace (not necessarily closed), then we denote

D(H) the algebra of all operators A (not necessarily closed), such that

DomA ⊂ D, RanA ⊂ D.
We endow additionally D(H) with the family of seminorms pΨ,Φ(A) ··= |(Ψ|AΦ)|,
Ψ,Φ ∈ D, turning it into a locally convex topological space.



6.1. THE ALGEBRA OF WICK POLYNOMIALS 88

In this section we will deal with operator-valued distribution φ ∈ D ′(M,D(H))

and by writing φ(f) ··= 〈φ, f〉 for f ∈ D(M), we will mean the element of D(H)

obtained via the pairing 〈·, ·〉 between operator-valued distributions and ordinary

test densities.

We will need a generalization of the wave-front set adapted to the case of operator-

valued distributions. First, observe that the original definition of the wave front set

of u ∈ D ′(M) (cf. Definition 3.2.1) refers to estimates on |ϕ̂u| for ϕ ∈ D(M).

This extends directly to distributions with values in elements of a Banach space, by

replacing |ϕ̂u| with ‖ϕ̂u‖, cf. [SVW02]. The properties of the wave front set defined

this way are to a large extent analogous to what we have already seen in the case

of ordinary distributions, for instance one has essentially the same criteria for the

existence of restrictions to submanifolds, products of distributions, etc. (cf. Theorem

3.2.2). Finally, if φ ∈ D ′(M,D(H)), we set

WF(φ) ··=
⋃

Ψ∈D

WF(φΨ).

The above definition is somewhat artificial, as it refers to some subset D of H which

does not need to coincide with the domain of φ, but it is completely satisfactory for

the applications in the next section.

6.1.2. Wick monomials. In what follows we briefly recall the construction of

Wick polynomials due to Brunetti and Fredenhagen. Our intention is to make the

connection between the Hadamard connection and renormalisation, and for that pur-

pose it is sufficient to consider the case of neutral spin-0 fields. The letter P will

denote the Klein-Gordon operator on a globally hyperbolic spacetime (M, g).

Assume we are given a Hadamard state ω and let (Hω, πω,Ωω) be the associated

GNS representation. To the corresponding field operators we associate an operator-

valued distribution φ(x) in the obvious way. Let H∞
ω be the joint domain of field

operators (cf. (1.3.5)). Conforming to the point-splitting strategy, we first define

Wick monomials, such as :φ(x1)φ(x2):, by substracting the singular part using the two-

function Λ(+)(x, y), and later on we will take the limit of coinciding points. Formulas

for higher Wick monomials involve products such as Λ(+)(x1, x2)Λ(+)(x2, x3) — this is

where the Hadamard condition enters, it implies that these products are well-defined

indeed. To avoid the use of long combinatorial expressions, it is useful to express

the definition of Wick monomials in the language of formal derivatives (we refer the

reader to [BF00, HR02] for precise definitions and more detailed discussion). All these

observations are used in the formulation of the following theorem.

Theorem 6.1.1 ([BF00]). There exists a dense subspace Dω ⊂ Hω, contained in H∞
ω

and such that for m ∈ N, the formal functional derivative

δm

δf(x1) . . . f(xm)

[
exp

{
1
2

∫∫
f(x)Λ(+)(x, y)f(y)dΩ2

g + i
∫
φ(x)f(x)dΩg

}]∣∣∣∣
f=0

yields a well defined distribution on M×m with values in Dω(Hω), denoted :φ⊗m:.
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Moreover,

(6.1.1) WF(:φ⊗m:) ⊂ {(x1, ξ1, . . . , xm, ξm) : ξi ∈ V ∗xi−, i = 1, . . . ,m}.

The special form of the wave front set (6.1.1) allows to define Wick powers :φm:

as distributions on M with values in Dω(Hω), by taking the restriction of :φ⊗m: to

the diagonal

∆m ··= {(x1, . . . , xm) ∈M×m : x1 = . . . = xm}.
Equivalently, this can be done by setting

:φm(f): ··= 〈:φ⊗m: , fδ∆m〉, f ∈ D(M)

where the bracket 〈·, ·〉 on the right hand side denotes the pairing between distribu-

tions u, v s.t. WF(u) ∩ −WF(v) = ∅ (cf. Section 3.2), and δ∆m is the Dirac measure

supported at ∆m. More generally, the right hand side makes sense if fδ∆m is replaced

by any distribution u which belongs to the set

Wm ··=
{
u ∈ E ′(M×m) : u symmetric, WF(u) ∩

(⋃
x V
∗
x+ ∪ V ∗x−

)
= ∅
}
.

This observation is used in [DF01a] to obtain a particularly convenient form of Wick’s

theorem. Namely, one considers the direct sum W ··=
⊕∞

m=0Wm, W0 ··= C, and

endow it with an associative product

(u · v)m ··=
∑

m+2k=l+i

ui ⊗k vl, u = (u0, u1 . . . ), v = (v0, v1, . . . ) ∈W

where

〈um ⊗k vl, f〉 =
m! l!

k!(m− k)!(l − k)!
〈um ⊗ vl, (Λ(+)⊗k ⊗ f) ◦ s〉,

for symmetric f ∈ D(Mm+l−2k) and m ≥ k, l ≥ k, and s : M×(m+l) → M×(m+l) is

given by s(x1, . . . , xm, y1, . . . , yl) = (x1, y1, . . . , xk, yk, xk+1, . . . , xm, yk+1, . . . , yl). The

above definitions are tailored in such way that the algebra product inW encodes the

combinatorics of Wick’s theorem, which takes the following form.

Theorem 6.1.2 ([DF01a, DF01b]). The map

Wm 3 u 7→ :φ⊗m(u): ∈ Dω(Hω)

extends by linearity to an algebra homomorphism τ :W → Dω(Hω) with kernel

Ker τ = {
∑

k(P
t)⊗kuk : uk ∈Wk}.

The algebraW is called the algebra of Wick polynomials. It also contains elements

that correspond to Wick products of derivatives of fields. For instance, the expression

:φ∇µφ: evaluated on f ∈ D(M) is defined as the image of the symmetrization of

(f ⊗∇t
µ)δ∆2 via the homomorphism τ (cf. [Mor03] for a detailed discussion).

The corresponding definitions for charge fields are more complicated, since both

the distributions Λ(±) need to enter. The algebra of Wick polynomials was studied in

this case by Marecki [Mar03], see also [Zah13].

Remark 6.1.3. It is possible to obtain similar results for Wick powers defined by

renormalising with the Hadamard parametrix instead of the two-point function of a



6.1. THE ALGEBRA OF WICK POLYNOMIALS 90

Hadamard state [HW01]. This approach, not pursued here, has the advantage that it

eventually produces interacting fields whose dependence on the underlying spacetime

is local and covariant with respect to isometric embeddings which preserve causal

relations.

Let us mention that a recent result of Sanders states that :φ2(f): is essentially self-

adjoint on the domain
⋃
m φ(f1) . . . φ(fm)Ωω, provided that f is the sum of squares

of test functions [San12a]. It is however unknown whether essential self-adjointness

holds on the ‘microlocal domain of smoothness’ Dω from Theorem 6.1.1 introduced

by Brunetti and Fredenhagen.

In what follows we will work in a more abstract setting, which is possible after

identifying W with an algebra that has the interpretation of an algebra of classical

fields [DF03].

To this end, one defines off-shell classical fields, denoted ϕx, as evaluation func-

tionals on E (Rn) (the classical configuration space), namely
(
ϕx
)
(h) := h(x) for h ∈

E (Rn). The derivatives of classical off-shell fields are defined by
(
∂αϕx

)
(h) := ∂αh(x).

The algebra of off-shell fields P is the commutative algebra generated by elements

of the form ∂αϕx with respect to the pointwise product, i.e.
(
∂α1ϕx∂

α2ϕx
)
(h) ··=

∂α1h(x)∂α2h(x). The algebra of classical on-shell fields is the quotient algebra P0 ··=
P/J , where J is the ideal

J ··= {
∑

α∈N0
Bα∂

α(� +m2)ϕ : Bα ∈ P}.
We denote by π : P → P0 the canonical surjection, i.e. π(B) = B + J for B ∈ P .

One can easily see that it is a homomorphism of algebras. The derivatives of on-shell

fields are defined for A ∈ P0 by ∂µA ··= π∂µB, where B is an arbitrary element

of P such that π(B) = A. One can check that this does not depend on the choice

of B and that one has (� + m2)πϕ = 0 in P0 for any ϕ ∈ P — this is the on-

shell property. In consequence, it follows from Theorem 6.1.2 that there exists an

isomorphism W → P0.

6.1.3. On-shell time-ordered products. Time-ordered products T of order k

are defined as maps from W⊗k to operator-valued distributions. Using the isomor-

phism W → P0, one can equally well consider a map Ton from P0 to operator-valued

distributions. The axioms defining Ton and its inductive construction are the ba-

sic components of the Epstein and Glaser approach to renormalisation and are a

subject covered exhaustively by the literature [EG73, Sch95, DF01a, DF03]. The

crucial assumption is the factorization property — it states that for any m,n ∈ N, if

xi ∩ J−(yj) = ∅ for all i = 1, . . . ,m and j = 1, . . . , k, then the time-ordered product

Ton

(
L (x1)⊗ · · · ⊗L (xm)⊗L (y1)⊗ · · · ⊗L (yk)

)
decomposes as

Ton

(
L (x1)⊗ · · · ⊗L (xm)

)
Ton

(
L (y1)⊗ · · · ⊗L (yk)

)
.
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This property is obtained upon requiring causality of the S-matrix, i.e.,

η1, η2 ∈ D(M), supp η1 ∩ supp
(
J−(η2)

)
= ∅ ⇒ S(η1 + η2) = S(η1)S(η2)

in the sense of products of formal power series. With the exception of problematic

points lying on the total diagonal ∆m, the factorization property allows to express

time-ordered products of order m in terms of time-ordered products of lower order.

Using the well-known Wick expansion theorem (cf. [BF00, Thm. 2.4]), it is addition-

ally possible to reduce the problem to ordinary distributions, therefore one ends up

with the task of extending distributions defined on M×m \∆m to M×m. In the spe-

cial case of a flat spacetime and vanishing external potentials, translation-invariance

can be then used to reduce the problem to extension of distributions originally given

on Ṙn ··= Rn \ {0} to distributions on Rn. Otherwise, an expansion in curvature

terms [HW02], and in covariant quantities derived from the potentials [Zah13], can

be applied to reduce the problem to a flat one.

6.2. Scaling degree

As a preparation to the discussion of extension of distributions, in what follows

we recall the definition of Steinman’s scaling degree of a distribution on Ṙn or Rn

[Ste71]. Although this notion plays nowadays a key role in renormalisation [BF00],

it does not seem to have entered the mathematical literature as such. Note, however,

that similar estimates have been used in e.g. [Est98]. Moreover, Steinman’s scaling

degree for distributions on Rn is closely related to two-microcal spaces, see for instance

[Mey98] and references therein, and is also a degenerate case of Weinstein’s degree of

a distribution [Wei78].

Consider the natural action of the dilation group R>0 on D(Rn) and its dual on

D ′(Rn), i.e. for a distribution u ∈ D ′(Rn) and λ > 0 set

〈uλ, ϕ〉 ··= λ−n〈u, ϕ(λ−1·)〉, ϕ ∈ D(Rn).

Definition 6.2.1. The scaling degree of u ∈ D ′(Rn), denoted sdu, is the infimum

over all ω ∈ R s.t. limλ↘0 λ
ωuλ = 0 in D ′(Rn). The degree of divergence of u is

deg u ··= sdu− n.

The degree of divergence of a distribution u ∈ D ′(Ṙn), denoted also deg u, is

defined analogously (one simply replaces D(Rn) by D(Ṙn) and D ′(Rn) by D ′(Ṙn)

in the above definition). The difference is that it is possible here that the limit

limλ↘0 λ
ωuλ does not exist for any ω ∈ R. In this case we write deg u =∞.

We will use the degree of divergence rather than the scaling degree, as it is more

convenient in our framework. As a basic example, observe that the derivatives of the δ-

distribution δ(α) on Rn have degree of divergence |α|. A function in E (Rn), considered

as an element of D ′(Rn), has degree of divergence at most −n. A distribution which

is homogeneous of degree a ∈ C on Rn (resp. Ṙn) has degree of divergence −Re a−n
in D ′(Rn) (resp. D ′(Ṙn)).

Let us briefly recall the basic properties of the degree of divergence, which were
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proved1 in [BF00, Lemma 5.1].

Lemma 6.2.2. Let u ∈ D ′(Rn) and assume deg u <∞. Then:

(1) For α ∈ Nn, deg(∂αu) ≤ deg u+ |α|.
(2) For α ∈ Nn, deg(xαu) ≤ deg u− |α|.
(3) Let f ∈ E (Rn) and assume f (α)(0) = 0 for |α| ≤ k − 1 , then deg(fu) ≤

deg u− k.

(4) Let v ∈ D ′(Rk) then sd(u⊗ v) ≤ sdu+ sd v.

6.2.1. Extension of distributions. Let us recall the basic ingredients of the

construction of extensions of distributions. Essentially, we follow [BF00], but for later

purposes, we make systematic use of the following spaces of distributions. Denote by

D ′({0}) the space of distributions supported at {0}. For r ≥ 0, let D ′({0})≤r be the

subspace of D ′({0}) given by those of maximal degree r,

D ′({0})≤r = span {v ∈ D ′({0}) : deg v ≤ r} = span
{
δ(α) ∈ D ′(Rn) : |α| ≤ r

}
.

On the other hand, consider the space of all test functions vanishing up to order r at

x = 0:

(6.2.1) Dr(Rn) ··= {ϕ ∈ D(Rn) : (∂αxϕ)(0) = 0 ∀α ∈ Nn
0 , |α| ≤ r}.

It will be convenient to generalize this definition in the following way. Let K be a

finite dimensional subspace of D ′({0}). Set

DK(Rn) ··= {ϕ ∈ D(Rn) : 〈v, ϕ〉 = 0 ∀v ∈ K}.
Clearly, Dr(Rn) equals DK(Rn) with K = D ′({0})≤r. Observe that the scaling degree

of a distribution in D ′K(Rn) can be defined in an analogous way to the scaling degree

in D ′(Rn). We now restate Theorem 5.2 from [BF00] as follows:

Proposition 6.2.3. Let u ∈ D ′(Ṙn) have degree of divergence r ··= deg u < ∞.

Then it admits a unique extension ũ ∈ D ′r(Rn) with the same degree of divergence r,

given by

(6.2.2) 〈ũ, ϕ〉 ··= lim
ρ→∞
〈u, (1− ϑρ)ϕ〉, ϕ ∈ Dr(Rn)

where ϑρ(x) ··= ϑ(2ρx) and ϑ is an arbitrary function in D(Rn) such that ϑ = 1 in a

neighbourhood of the origin.

It now remains to find elements of D ′(Rn) which correspond to the extension

ũ ∈ D ′r(Rn). Following the ideas of [BF00], we do so by considering projections2

W t : D(Rn) → Dr(Rn), and applying their transpose W : D ′r(Rn) → D ′(Rn) to

ũ ∈ D ′r(Rn).

To this end, let us first state two lemmas which are slight generalizations of results

found in [DF04] where they were stated for K = D ′({0})≤r.
1Strictly speaking, the third claim is considered there only for k = 0, but the case k ≥ 1 follows
immediately by noting that under the assumptions, such f equals xk

1 . . . x
k
ng for some g ∈ E (Rn)

and then using 2.
2This means that W t : D(Rn) 7→ Dr(Rn) is continuous and (W t)2 = W t.
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Lemma 6.2.4. Let K be a finite dimensional subspace of D ′({0}), let {vi}i∈I be a

basis of K, and assume {ψi}i∈I is a family ψi ∈ D(Rn) s.t. 〈vi, ψj〉 = δij. Then

(6.2.3) W tϕ = ϕ−
∑
i∈I

〈vi, ϕ〉ψi

defines a projection W t : D(Rn)→ DK(Rn). Conversely, if W t : D(Rn)→ DK(Rn) is

a projection, there is a family {ψi}i∈I with the above properties.

Lemma 6.2.5. Let u ∈ D ′K(Rn) and let W t : D(Rn)→ DK(Rn) be a projection. Then

〈Wu,ϕ〉 = 〈u, ϕ〉 for all ϕ ∈ DK(Rn) and degWu = deg u.

Taking into account that deg δ(α) = |α|, we find the following important result on

the existence of extensions with the same degree of divergence.

Corollary 6.2.6. ([BF00]) Let u ∈ D ′(Ṙn) be a distribution with r ··= deg u <∞.

Then there is an extension u̇ ∈ D ′(Rn) of u with deg u̇ = deg u. Each such extension

can be written as u̇ = Wũ, where ũ is the unique extension of u in D ′r(Rn) and

W t : D(Rn) → Dr(Rn) is a projection. Moreover, two arbitrary extensions with the

above properties differ by an element of D ′({0})≤r.

While each extension of u with the same degree of divergence can be constructed

as above by using a projection W t, it can sometimes be more convenient to use some

other operator V t which maps D(Rn) to Dr(Rn) and check whether V ũ is an extension

of u with the correct degree of divergence. In fact, this approach will prove to be

more convenient in directly constructing on-shell extensions (cf. Proposition 7.2.7).
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CHAPTER 7

On-shell extension of distributions

As we outlined in the previous chapter, the renormalisation problem in the Epstein

and Glaser approach is reformulated as a problem of extending distributions defined

on Rn \ {0} =·· Ṙn to distributions on Rn. By construction, any two extensions can

differ by a distribution supported in 0, and one way to constrain this ambiguity is

to require that the extension should have the same scaling degree as the original

distribution. In QFT, the ambiguity is further constrained by imposing physically

motivated renormalisation conditions. Such conditions include the requirement that

if u ∈ D ′(Ṙn) respects a global symmetry, e.g. it is invariant under the Lorentz

group or a global gauge group, then the same should hold for its extension to Rn.

Another such condition, which turned out to be essential in renormalisation on both

flat and on curved space-time [HW02], is the requirement that if u is homogeneous,

its extension should be homogeneous as well, or at least it should behave as much like

a homogeneous distribution as possible (a property which can be properly formulated

in terms of almost homogeneous distributions).

A problem which at first sight seems to be unrelated to such renormalisation

conditions occurs in the construction of on-shell time ordered products involving

higher derivatives of quantum fields. Roughly speaking, one wishes to extend to Rn an

expression in D ′(Ṙn) involving derivatives of the Feynman propagator and Heaviside

theta functions such that the extension satisfies the (free) equation of motion. The

possibility of finding such an extension can be rephrased using the relation between

on-shell time-ordered products (ordinarily used in quantum field theory) and off-shell

products, the latter of which have proved to be better suited for a theoretical study

of Epstein-Glaser renormalisation [DF03, DF04].

The main idea in the approach proposed in [BW12] is that all these problems can

be formulated and solved in a unified framework, by restating them in terms of the

existence of extensions which solve a set of (differential) equations. More precisely,

we state the following extension problem:

Problem. Let {Qi}ki=1 be a family of differential operators on Rn with smooth coef-

ficients, and let u be a distribution in D ′(Ṙn) that satisfies

Qiu = 0 on Ṙn (i = 1, . . . , k).

Find u̇ ∈ D ′(Rn) such that u̇ = u on Ṙn and Qiu̇ = 0 on Rn (i = 1, . . . , k). If such

extensions u̇ exist, we call them on-shell extensions (w.r.t. {Qi}ki=1).

Indeed, invariance of a distribution under the action of a connected Lie group is

equivalent to it being a solution of its infinitesimal generators. (Almost) homogeneity
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is described using (powers of) the operator
∑

i xi∂i − a. In the construction of on-

shell time-ordered products, the differential operator of interest is the Klein-Gordon

operator (2 + m2). To include discrete symmetries, we will consider a more general

class of operators later.

On the mathematical side, the ‘on-shell extension’ problem we consider is closely

related to the so-called Bochner’s extension problem, an issue which we explain in

the text.

One advantage of our reformulation is the following. The various constructions

and prescriptions to implement renormalisation conditions proposed so far in e.g.

[Sch95, Pra99, Gra03, LG03, DF04, HW02], see also [DG12], are each limited to a

particular type of symmetry. Therefore, the simultaneous implementation of a number

of different conditions requires cumbersome proofs of compatibility. Our framework

on the other hand, allows for a compact formulation of e.g. sufficient conditions

on the existence of extensions subject to different renormalisation conditions, such

as Lorentz invariance considered together with almost homogeneity and (eventually)

parity. Moreover, it exhibits a new feature of Epstein-Glaser renormalisation: a

renormalisation condition corresponding to a (differential) operator Q can be imposed

by applying a linear map to a generic extension (which is a solution of Q on Ṙn).

This statement extends to the case of several renormalisation conditions.

Concerning the relation between on-shell and off-shell time-ordered products, we

would like to point out that it was given in [DF03, DF04] in terms of a recurrence

relation for which an explicit solution was found in [BD08]. In our framework we find

a more compact formula, which contrary to that given in [BD08] does not contain

unnatural combinatorial factors. Instead, the coefficients which appear in our formula

are simply eigenvalues of certain finite-dimensional operators directly related to the

Klein-Gordon operator.

This chapter is organized as follows. Section 7.1 contains the main ideas and

results. First, in subsection 7.1.1, we introduce the notion of operators of essential

order m on D ′(Rn). Such operators generalize differential operators and will enable

us to treat discrete symmetries. In subsection 7.1.2 we equip the finite dimensional

spaces of distributions of given maximal order supported at the origin with a scalar

product. The restrictions of operators Q : D ′(Rn) → D ′(Rn) to these spaces play

an important role in subsection 3.2, especially for Theorem 7.2.2. This theorem

provides a solution to the extension problem with respect to an operatorQ of arbitrary

essential order in the sense that it lists different statements which are equivalent to the

existence of on-shell extensions, and provides a candidate for such an extension. This

candidate can be calculated explicitly and only requires one to find the eigenvalues

of a finite dimensional matrix. Special cases, examples and generalizations are then

discussed. Of particular interest is Theorem 7.2.8 which states sufficient, and easy-

to-check conditions that ensure the existence of on-shell extensions w.r.t. an operator

of essential order 0. We then explain how the extension problem with respect to a

finite number of operators is solved. Section 8.1 is devoted to the construction of
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on-shell time-ordered products involving higher derivatives of the fields. We clarify

how the relation between the on-shell and the off-shell formalism can be formulated

and understood in our framework.

7.1. Operators of finite essential order

7.1.1. Essential order. Our aim is to implement symmetries, i.e. we will ask

our extensions to satisfy a set of given equations. In order to include discrete sym-

metries, we consider more general operators from D ′(Rn) to D ′(Rn) rather than just

differential operators.

Definition 7.1.1. We say that Q : D ′(Rn) → D ′(Rn) is an operator of essential

order q if

(1) Q is the transpose of a linear operator Qt : E (Rn) → E (Rn) which continu-

ously maps D(Ṙn) and D(Rn) to themselves;

(2) q ∈ N0 is the lowest number such that degQu ≤ deg u+q for all u ∈ D ′(Rn).

Basic examples for such operators are of course differential operators, for which

the essential degree was already considered in [Nik07]: a differential operator of order

m has essential order smaller or equal m. More precisely, a differential operator

Q =
∑
|α|≤m aα(x)∂α has essential order q, where q is the smallest possible non-

negative number s.t. (∂βaα)(0) = 0 for |β| ≤ |α| − q − 1. In particular, Q has

essential order 0 if (∂βaα)(0) = 0 for |β| ≤ |α| − 1.

Let us list some basic properties of operators of essential order q.

Lemma 7.1.2. Let Q : D ′(Rn)→ D ′(Rn) be an operator of essential order q. Then

(1) Q is continuous in the D ′(Rn) topology;

(2) Q maps D ′(Ṙn) and D ′({0}) to themselves.

(3) Let K1 be a linear subspace of D ′({0}). Then Qt maps DK1(Rn) to DK2(Rn),

where

K2 = {v ∈ D ′({0})| Qv ∈ K1}.
In particular, Qt maps D(Rn) to DK(Rn), where K = Ker(Q|D ′({0})).

Proof.

(1) By definition of the weak topology.

(2) The first assertion is obvious. For the second one it suffices to notice that

for any v ∈ D ′({0}) the expression 〈Qv, ϕ〉 only depends on the restriction

of ϕ to an arbitrary small neighbourhood of 0.

(3) Let ϕ ∈ DK1(Rn), then Qtϕ ∈ DK2(Rn), since for any v ∈ K2, i.e. v ∈
D ′({0}) such that Qv ∈ K1, we have 〈v,Qtϕ〉 = 〈Qv, ϕ〉 = 0.

�
The following two lemmas give examples of operators of essential degree 0, for

which we usually reserve the symbol R.

Lemma 7.1.3. Let R be an infinitesimal generator of a Lie group G acting on Rn

such that 0 is a fixed point. Then R is an operator of essential degree 0.
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Proof. Indeed, R =
∑n

i=1 ξ
i(x)∂i where ξi(0) = 0 (as follows from, i.e., [Olv95, Ex.

2.68]). �

Lemma 7.1.4. Let Φ : Rn → Rn be a C∞ diffeomorphism s.t. Φ(0) = 0. Then the

operator given by Ru ··= u−Φ∗u for u ∈ D ′(Rn) is an operator of essential degree 0.

Proof. Since Φ(0) = 0, we find that suppϕ ∩ {0} = ∅ implies supp(Φ∗ϕ) ∩ {0} = ∅.
Let us now check that sd(Φ∗u) ≤ sdu for all u ∈ D ′(Rn). Indeed, τ−ω〈u, ϕ(τx)〉 →
0 for all ϕ ∈ D(Rn) implies that τ−ω〈u, (Φ∗φ)(τx)〉 → 0 for all φ ∈ D(Rn), so

τ−ω〈Φ∗u, φ(τx)〉 → 0. �

These two cases are of particular importance in our applications. To see this,

first recall that a distribution u ∈ D ′(Rn) is invariant under the induced action of a

connected Lie group G acting on Rn if and only if Riu = 0 for all the infinitesimal

generators Ri of G. Now, if 0 is a fixed point of the action of G on Rn, then by the

first of the above lemmas, the infinitesimal generators are of essential order 0.

Similarly, discrete symmetries entail operators of essential degree 0, as they are of

the form discussed in the second lemma. For instance, even distributions are in the

kernel of the operator R+u ··= u− u(− ·), and odd ones in that of R−u ··= u+ u(− ·).

7.1.2. Spaces of distributions supported at the origin. Recall that

D ′({0})≤r denotes the finite dimensional vector space spanned by derivatives of the

delta distribution up to order r. It it will turn out to be very useful to equip it with

a scalar product. To this end, for r ≥ 0 define the maps

Sr : D ′({0})≤r → E (Rn), Srv ··=
∑
|α|≤r

xα

α!
〈v, xα〉, v ∈ D ′({0})≤r

Tr : E (Rn)→ D ′({0})≤r, Trf ··=
∑
|α|≤r

δ(α)

α!
〈δ(α), f〉, f ∈ E (Rn).

One can easily check that TrSr = id on D ′({0})≤r and SrTr = id on the space of

polynomials of degree ≤ r. Now set

(v|w)r ··= 〈v̄,Srw〉 =
∑
|α|≤r

1
α!
〈v̄, xα〉〈w, xα〉 = 〈w,Srv̄〉, v, w ∈ D ′({0})≤r.

where the bar denotes ordinary complex conjugation. Writing elements v, w of

D ′({0})≤r as linear combinations v =
∑
|α|≤r vαδ

(α), w =
∑
|α|≤r wαδ

(α), with

vα, wα ∈ C, we have

(v|w)r = 〈
∑
|α|≤r vαδ

(α),
∑
|β|≤r(−1)βwβx

β〉 =
∑
|α|≤r α! vαwα,

therefore it is evident that (·|·)r is a scalar product on D ′({0})≤r.
Let Q : D ′(Rn)→ D ′(Rn) be an operator of essential order q. We denote

Q|r : D ′({0})≤r → D ′({0})≤r+q
the restriction of Q to D ′({0})≤r, understood as an operator from D ′({0})≤r to

D ′({0})≤r+q. Let us stress that this definition depends on the essential order of

Q. The next lemma characterizes the adjoint of Q|r.
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Lemma 7.1.5. Let Q be an operator of essential order q. Then the adjoint of Q|r :

D ′({0})≤r → D ′({0})≤r+q is

(7.1.1) (Q|r)∗ = TrQ
tSr+q : D ′({0})≤r+q → D ′({0})≤r.

Proof. For all v ∈ D ′({0})≤r+q and w ∈ D ′({0})≤r one has

(v|Qw)r+q = 〈v̄,Sr+qQw〉 = 〈Qw,Sr+qv̄〉 = 〈w,QtSr+qv̄〉

= 〈TrSrw,QtSr+qv̄〉 = 〈Srw, TrQtSr+qv̄〉 = (TrQ
tSrv|w)r,

so (7.1.1) follows. �

We will need for certain results an assumption which guarantees that (Q|r)∗ and

(Q|r′)∗ are in a sense compatible for r 6= r′.

Definition 7.1.6. We say that an operator Q of essential order q is essentially ho-

mogeneous if Qt maps polynomials of order ≤ r + q to elements of

(7.1.2) {f ∈ C∞(Rn) : f (α)(0) = 0, |α| > r}.

Lemma 7.1.7. Let Q be essentially homogeneous. Then for all r ∈ N0 and s ≥ r the

restriction of the operator (Q|s)∗ to D ′({0})≤r+q equals (Q|r)∗.

Proof. We use Lemma 7.1.5 and observe that Ss+q coincides with Sr+q on D ′({0})≤r+q
and Ts coincides with Tr on the space (7.1.2). Therefore, TsQ

tSs+q restricted to

D ′({0})≤r+q equals TrQ
tSr+q. �

A sufficient condition for an operator Q to be essentially homogeneous is that Qt

maps polynomials of degree r + q to polynomials of degree r.

Example 2. The operators ∂x, x∂x, x∂x + cos x are essentially homogeneous, but

∂x +m is not unless m = 0.

7.2. On-shell extension — single operator case

Let us specify the problem we already outlined in the introduction, first for the

case when only one operator is considered.

Problem. Let Q : D ′(Rn) → D ′(Rn) be an operator of essential order q. Let

u ∈ D ′(Ṙn) have degree of divergence r ··= deg u <∞ and assume

Qu = 0 on Ṙn.

Find ü ∈ D ′(Rn) such that ü = u on Ṙn and Qü = 0 on Rn. If such extension(s)

exist, we call them on-shell extensions w.r.t. Q.

The next lemma is an easy observation, which will however play a key role in our

approach to the problem of finding on-shell extensions.

Lemma 7.2.1. Let Q : D ′(Rn) → D ′(Rn) be an operator of essential order q. Let

u ∈ D ′(Ṙn) have r ··= deg u <∞ and assume

Qu = 0 on Ṙn.
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Then the following statements are equivalent:

a) u has an on-shell extension ü ∈ D ′(Rn) s.t. deg ü = r,

b) Qu̇ ∈ Ran(Q|r) for all extensions u̇ ∈ D ′(Rn) of u with deg u̇ = r;

c) Qu̇ ∈ Ran(Q|r) for some extension u̇ ∈ D ′(Rn) of u with deg u̇ = r;

Proof. a)⇒b): Assume Qü = 0. Since for all extensions u̇ of u with deg u̇ = deg u = r

we have u̇ = ü + v for some v ∈ D ′({0})≤r, it follows that Qu̇ = Q(ü + v) = Qv ∈
Ran(Q|r).
b)⇒c): is obvious.

c)⇒a): Assume Qu̇ = Qv for some v ∈ D ′({0})≤r. Then ü ··= u̇ − v satisfies

Qü = 0. �

Let us now focus on the following problem — in the case when u ∈ D ′(Ṙn)

has on-shell extensions w.r.t. Q, how can they be constructed? From Lemma 7.2.1

we know that if u̇ is a generic extension with degree of divergence r, then u̇ is on-

shell modulo an element of Ran(Q|r). If the problem was purely finite-dimensional,

we could get rid of the remainder in Ran(Q|r) using the orthogonal projection to

(Ran(Q|r))⊥. Observe that such projection can be expressed as a polynomial in the

operator (Q|r)∗(Q|r). As we show below, it suffices to consider such polynomials in

(Q|r)∗Q instead, to get an operator with the desired properties which is well-defined

on distributions u̇ ∈ D ′(Rn).

Theorem 7.2.2. Let Q : D ′(Rn) → D ′(Rn) be an operator of essential order q.

Denote

Solext(Q) = {v ∈ D ′(Rn) : Qv = 0 on Ṙn, deg v 6=∞}
Let R : Solext(Q)→ Solext(Q) be defined by

(7.2.1) Rv ··= pr
(
(Q|r)∗Q

)
v, r = deg v,

where pr is the polynomial pr(z) =
∏

λ(1 − z/λ), the product being taken over all

nonzero λ ∈ sp
(
(Q|r)(Q|r)∗

)
. Then for all v ∈ Solext(Q),

(1) Rv = v on Ṙn,

(2) degRv ≤ deg v,

(3) degQRv ≤ degQw for all w ∈ Solext(Q) with w = v on Ṙn and degw =

deg v.

In particular, Rv is an on-shell extension of v w.r.t. Q iff such on-shell extension

exists.

Proof. Fix v ∈ Solext(Q) and denote r = deg v. Since Qv ∈ D ′({0})≤r+q and

(Q|r)∗ maps D ′({0})≤r+q to D ′({0})≤r, the distribution (Q|r)∗Qv ∈ D ′({0})≤r is well

defined. Since pr(0) = 1, we also have

Rv − v = (pr − 1)
(
(Q|r)∗Q

)
v ∈ D ′({0})≤r.

This proves (1) and (2). To prove (3), we compute

QRv = Qpr
(
(Q|r)∗Q

)
v = pr

(
Q(Q|r)∗

)
Qv = pr

(
(Q|r)(Q|r)∗

)
Qv.
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Observe that pr
(
(Q|r)(Q|r)∗

)
is the orthogonal projection to (RanQ|r)⊥, henceQRv ∈

(RanQ|r)⊥. For any w ∈ D ′(Rn) with w = v on Ṙn and degw = r, we can decompose

Qw = QRv +Q(w −Rv) ∈ (RanQ|r)⊥ ⊕ RanQ|r,

therefore degQw ≥ degQRv. �

Given a distribution u ∈ D ′(Ṙn) with degree of divergence r s.t. Qu = 0 and an

arbitrary extension of u̇ with deg u̇ = r, the distribution Ru̇ is a candidate for an

on-shell extension of u. If no on-shell extension exists, then Ru̇ is ‘as close to being

an on-shell extension as possible’. To calculate it explicitly, one only has to find the

eigenvalues of the finite-dimensional matrix (Q|r)(Q|r)∗.
There is another remarkable feature of the map R. It turns out that under the

additional assumptions that Q is essentially homogeneous (cf. Definition 7.1.6), R is

linear on Solext(Q). This statement is obvious when one speaks only of distributions

with a fixed degree of divergence r. However, it is not at all evident if one considers

distributions with different degrees of divergence, for both the definition of pr and

(Q|r)∗ in (7.2.1) depend on r.

Proposition 7.2.3. Let Q be an operator of essential order q and assume it is

essentially homogeneous. Then the map R : Solext(Q) → Solext(Q) from Theorem

7.2.2 is linear.

Proof. Let v1, v2 ∈ Solext(Q) and denote r1 = deg v1, r2 = deg v2 and r = deg(v1 +

v2) ≤ max{r1, r2}. To prove that

pr
(
(Q|r)∗Q

)
(v1 + v2) = pr1

(
(Q|r1)∗Q

)
v1 + pr2

(
(Q|r2)∗Q

)
v2

it suffices to show that

0 =
[
pr′
(
(Q|r′)∗Q

)
− pr

(
(Q|r)∗Q

)]
v

for all r′ ≥ r and v ∈ Solext(Q) with deg v = r. One has[
pr′
(
(Q|r′)∗Q

)
− pr

(
(Q|r)∗Q

)]
v = (pr′ − pr)

(
(Q|r)∗Q

)
v

because (Q|r′)∗ restricted to D ′({0})≤r+q equals (Q|r)∗ by Lemma 7.1.7. Since (pr′ −
pr)(0) = 0, the expression (pr′ − pr)

(
(Q|r)∗Q

)
is the sum of elements of the form(

(Q|r)∗Q
)k

. For Qu̇ ∈ D ′({0})≤r+q, we conclude (pr′ − pr)
(
(Q|r)∗Q

)
u̇ ∈ Ran(Q|r)∗.

On the other hand, observe that

Q(pr′ − pr)
(
(Q|r)∗Q

)
u̇ = (pr′ − pr)

(
(Q|r)(Q|r)∗

)
Qu̇.

By Lemma 7.1.7, (pr′ − pr)
(
(Q|r)(Q|r)∗

)
restricted to D ′({0})≤r+q is the differ-

ence of two orthogonals projections on the same subspace, hence vanishes on

Qu̇ ∈ D ′({0})≤r+q. This means that (pr′ − pr)
(
(Q|r)∗Q

)
u̇ belongs to Ker(Q|r) =

(Ran(Q|r)∗)⊥ and therefore vanishes. �

The problem of finding on-shell extensions can be thought as a variant of the

following Bochner’s extension problem:

Problem. Let u ∈ D ′(Rn) and assume Pu = 0 on Ṙn. Does Pu = 0 hold on Rn?
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If Pu = 0 on Rn, one says that u has a removable singularity for P at 0, see [RS10]

and references therein for a collection of results on that subject. Observe that the

assumption Pu = 0 on Ṙn implies that Pu is supported in 0, and a computation of the

degree of divergence gives Pu ∈ D ′({0})≤r+m, where r = deg u and m is the essential

order of P . In particular, we obtain that Pu = 0 on Rn if deg u < −m. This gives a

useful sufficient condition for removable singularities, which can be rephrased in terms

of commonly used function spaces such as Lp or Sobolev spaces, more suitable for

various applications outside quantum field theory. On the other hand, the theorems

proved by us are particularly useful in the more singular case when deg u ≥ −m as a

distribution on Ṙn.

7.2.1. Operators of essential order 0. As we have seen, operators of essential

order 0 are of special interest in the applications. Moreover, they map D ′({0})≤r
to itself, so one can study the natural subclasses consisting of self-adjoint or normal

operators and use their special properties in the analysis. Also, for an operator

of essential order 0, we will give sufficient conditions for the existence of on-shell

extensions which are easy to check.

In what follows, R : D ′(Rn)→ D ′(Rn) is always an operator of essential order 0.

If R|r is normal, then Ker(R|r) = Ker(R|r)∗ = Ker(R|r)k for k ∈ N0. This fact

is used in the proof of the next proposition, which provides additional information

when no on-shell extension exists for R (or more generally Rk). This will for instance

be the case for homogeneous distributions of degree a s.t. −a ∈ N0 + n, which in

general do not have homogeneous extensions to Rn.

Proposition 7.2.4. Let R be of essential order 0. Let u ∈ D ′(Ṙn) have degree of

divergence r <∞ and suppose

Rku = 0 on Ṙn

for some k ∈ N0. If R|r is normal, there exists an extension ü ∈ D ′(Rn) of u with

deg ü = deg u such that

Rk+1ü = 0 on Rn.

More precisely, one can take ü = pr
(
(Rk|r)∗Rk

)
u̇, where u̇ ∈ D ′(Rn) is an arbitrary

extension of u with deg u̇ = deg u and pr(z) =
∏

λ(1− z/λ), the product being taken

over all nonzero λ ∈ sp
(
(Rk|r)(Rk|r)∗

)
.

Proof. One has

Rk+1ü = Rk+1pr
(
(Rk|r)∗Rk

)
u̇ = Rpr

(
Rk(Rk|r)∗

)
Rku̇ = Rpr

(
(Rk|r)(Rk|r)∗

)
Rku̇.

This vanishes because Rku̇ ∈ D ′({0})≤r and pr
(
(Rk|r)(Rk|r)∗

)
is the orthogonal pro-

jection to Ker(Rk|r)∗, which by normality of R|r equals Ker(R|r). �

An analogue of Proposition 7.2.3 is available:
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Proposition 7.2.5. Let R be of essential order 0 and assume it is essentially homo-

geneous. Let Solext(R
k) be defined as in Theorem 7.2.2. The map

Solext(R
k) 3 u̇ 7→ pr

(
(Rk|r)∗Rk

)
u̇ ∈ Solext(R

k)

is linear, where pr is as in Proposition 7.2.4 and k is taken to be sufficiently high.

Proof. Let r = deg u̇ and let k ∈ N0 be such that Rku = 0. Analogously to the proof

of Proposition 7.2.4, one shows that for any u̇ ∈ Solext(R
k), r′ ≥ r and k′ ≥ k,[

pr′
(
(Rk′ |r′)∗Rk′

)
− pr

(
(Rk|r)∗Rk

)]
u̇ ∈ Ran(Rk)∗

and that this expression also belongs to Ker(R|r) = Ker(R|r)k = (Ran(Rk|r)∗)⊥,

hence vanishes. �

In the case when on-shell extensions for R exist, they can also be obtained as

follows using the resolvent of R|r.

Proposition 7.2.6. Let R be an operator of essential order 0. Assume u ∈ D ′(Ṙn)

has degree of divergence r <∞, satisfies Ru = 0 and has on-shell extensions. If R|r
is normal then

ü ··= lim
ε→0

(
1− [(R− iε)|r]−1R

)
u̇

is an on-shell extension, where u̇ is an arbitrary extension of u to Rn with the same

degree of divergence.

Proof. By continuity of R,

Rü = R lim
ε→0

(
1− [(R− iε)|r]−1R

)
u̇ = lim

ε→0

(
1−R [(R− iε)|r]−1 )Ru̇(7.2.2)

= lim
ε→0

(
1− (R|r) [(R− iε) |r]−1

)
Ru̇ = lim

ε→0
(−iε) [(R− iε) |r]−1Ru̇.

The operator (−iε) [(R− iε) |r]−1 converges to the orthogonal projection to KerR|r =

Ker(R|r)∗ and by assumption Ru̇ ∈ RanR|r, therefore the above expression vanishes.

�

Let us now examine the special case when R|r is self-adjoint. Then, the operator

pr
(
(R|r)∗R

)
in Theorem 7.2.2 can be replaced by pr

(
R2
)
. The gain is that pr

(
R2
)

makes sense as an operator acting on arbitrary distributions. Even better, it is well

defined as an operator from D ′K(Rn) to D ′(Rn), where K = Ker(R|r). This fact can

be used to construct directly an on-shell extension ü, that is without referring to some

generic extension u̇. In the following proposition, the polynomial pr (defined using

the eigenvalues of R2) is replaced by a polynomial br defined using the eigenvalues of

R, which makes the formulae slightly more compact.

Proposition 7.2.7. Let R be of essential order 0 and assume (R|r)∗ = R|r. Assume

u ∈ D ′(Ṙn) has degree of divergence r < ∞ and satisfies Ru = 0 on Ṙn. Suppose

that u has an on-shell extension for R. Denote K = Ker(R|r) and let W t : D(Rn)→
DK(Rn) be a projection. Set

(7.2.3) ü ··= Wbr(R)ũ,
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where ũ is the unique extension of u in D ′r(Rn) with deg ũ = deg u, and br is the

polynomial

br(z) =
∏

λ∈spR|r\{0}(1− z/λ).

Then ü is an extension of u in D ′(Rn) with deg ü = deg u and Rü = 0 on Rn.

Proof. The projection W t can be written as

W tϕ = ϕ−
∑
i∈I

〈wi, ϕ〉φi,

where {wi}i∈I is a basis of K = Ker(R|r) = Ran(br(R|r)) and {φi}i∈I are elements

of D(Rn) such that 〈wi, φj〉 = δij. Let us choose {vi}i∈I , vi ∈ K in such way that

br(R)vi = wi (which is always possible for dimensional reasons). Set

V tϕ ··= ϕ−
∑
i∈I

〈vi, ϕ〉br(Rt)φi

Since 〈vi, br(Rt)φj〉 = 〈br(R)vi, φj〉 = δij, V
t : D(Rn) → DK⊥(Rn) is a projection

and a short computation gives V tbr(R
t) = br(R

t)W t. Since br(R
t) maps D(Rn) to

DK⊥(Rn), we have Ztbr(R
t) = br(R

t) for any projection Zt : D(Rn) → DK⊥(Rn).

Thus,

ü = Wbr(R)ũ = br(R)ZV ũ.

By 3. of Lemma 7.1.2, V t maps DK⊥(Rn) to Dr(Rn), hence V tZt maps D(Rn) to

Dr(Rn). It follows that u̇ ··= ZV ũ is an element of D ′(Rn) and ü = br(R)u̇. By

Theorem 7.2.2 (with br(R) playing the role of pr(R
2)), ü is an element of D ′(Rn) with

the required properties. �

In the next theorem we give several conditions on R which ensure the existence

of on-shell extensions for all degrees of divergence r ≥ 0. Note that these conditions

are of rather different nature.

Theorem 7.2.8. Let R be an operator of essential order 0, let u ∈ D ′(Ṙn) have

degree of divergence r < ∞ and assume Ru = 0 on Ṙn. Assume at least one of the

following holds:

1) Ker(R|r) = {0};
2) Rt maps polynomials of degree ≤ r to polynomials of degree ≤ r and suppu

is compact;

3) Rt maps polynomials of degree ≤ r to polynomials of degree ≤ r and there

exist ψ, φ ∈ D(Rn) s.t. ψ ≡ 1 in a neighbourhood of 0 and Rtψ = φRt;

Then u admits an on-shell extension, i.e. an extension ü ∈ D ′(Rn) s.t. deg ü = r and

Rü = 0 on Rn.

Proof. 1) If Ker(R|r) = {0} then Ran(R|r) = D ′({0})≤r and b) of Theorem 7.2.2 is

trivially satisfied.

2) Let u̇ ∈ D ′(Rn) be an arbitrary extension of u with the same degree of diver-

gence. We want to show that b) of Theorem 7.2.2 is satisfied, or equivalently

(7.2.4) (Ru̇|v)r = 0 ∀ v ∈ (Ran(R|r))⊥.
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Using that u is compactly supported, we obtain

(Ru̇|v)r = 〈Ru̇,Srv〉 = 〈u̇, RtSrv〉.

To show that the expression above vanishes, let us remark that v ∈ Ran(R|r))⊥ means

0 = (Rw|v)r = 〈Rw,Srv〉 = 〈w,RtSrv〉 ∀w ∈ D ′({0})≤r,

which implies RtSrv = 0.

3) Let us show that (7.2.4) holds. We have

(Ru̇|v)r = 〈Ru̇,Srv〉 = 〈Ru̇, ψSrv〉 = 〈u̇, Rt
ψSrv〉 = 〈u̇, φRtSrv〉,

where in the second equality we used that Ru̇ is supported at {0}. The expression

above vanishes because as previously, R
tSrv = 0. �

Let us emphasize that if condition 1) holds then the on-shell extension u̇ is unique.

Condition 3) is satisfied if R is for instance one of the infinitesimal generators of

rotations.

7.2.2. Example — homogeneous and almost homogeneous distribu-

tions. The canonical example for extension of singular distributions are homogeneous

distributions. We will now show that the known results on extensions of homoge-

neous or almost homogeneous distributions which appear in renormalisation are

easily recovered in our approach .

Proposition 7.2.9. ([Hör83], Thm 3.2.3) Let u ∈ D ′(Ṙn) be homogeneous of degree

a ∈ C, i.e.

(
∑n

i=1 xi∂i − a)u = 0 on Ṙn.

If −Re a /∈ N0 + n then u has a unique homogeneous extension u̇ ∈ D ′(Rn) (i.e.

(
∑n

i=1 xi∂i − a)u̇ = 0 on Rn).

Proof. Clearly, R ··=
∑n

i=1 xi∂i − a is an operator of essential order 0. By Theorem

7.2.8, for an on-shell extension to exist it is sufficient that Ker(R|r) = {0} for all

r ∈ N0 (and in such case it is unique). Since R|rδ(α) = Rδ(α) = −(|α| + n + a)δ(α),

we have

|detR|r| =
∣∣∣∏|α|≤−Re a−n(|α|+ n+ a)

∣∣∣ ,
so that −Re a /∈ N0 + n entails |detR|r| 6= 0. �

The following proposition concerns distributions of generalized homogeneity. It is

a variant of [HW02, Lem. 4.1], see also [DF04, Prop. 4]) and [Kel10, Cor. I.15].

Proposition 7.2.10. Let a1, . . . , ak ∈ C. Let u ∈ D ′(Ṙn) and assume
∏k

j=1R(aj)u =

0 on Ṙn, where R(a) ··= (
∑n

i=1 xi∂i − a). If −Re aj /∈ N0 + n, then u has a unique

extension ü ∈ D ′(Rn) s.t.
∏k

j=1R(aj)ü = 0 on Rn.

Proof. We use Theorem 7.2.8 as in Proposition 7.2.9. We need to prove that∏k
j=1 R(aj) restricted to D ′({0})≤r has trivial kernel for r ∈ N0. But this readily

follows from the same property for the operators R(aj) that was shown in the proof

of Proposition 7.2.9. �
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If u is as above with all aj’s equal, one speaks of an almost homogeneous distribu-

tion (or associate homogeneous distribution, cf. [NST11] and references therein). If

the aj’s are pairwise distinct, one speaks of a heterogeneous distribution.

Since for arbitrary r ∈ N0, R(a)|r is diagonal in the basis {δ(α)}|α|≤r, it is normal.

As a straightforward corollary from Proposition 7.2.4 one recovers the following result

on almost homogeneous distributions.

Proposition 7.2.11. Let u ∈ D ′(Ṙn) and assume R(a)ku = 0 on Ṙn. Then there

exists an extension u̇ ∈ D ′(Rn) with the same degree of divergence s.t. R(a)k+1u̇ = 0

on Rn.

7.3. On-shell extension — multiple operators

Let us now move on to the more general problem where instead of a single operator

Q, several operators {Qi}ki=1 are considered.

If the operators {Qi}ki=1 commute pairwise, one can easily generalize the results

of sections 7.2 and 7.2.1. For instance, the generalization of the key part of Theorem

7.2.2 reads:

Theorem 7.3.1. Let {Qi}ki=1 be a family of mutually commuting operators of arbi-

trary essential order. Let u ∈ D ′(Ṙn) have r ··= deg u <∞ and let it satisfy

Qiu = 0 on Ṙn, i = 1, . . . , k.

The following are equivalent:

a) There is an extension ü ∈ D ′(Rn) of u with deg ü = deg u such that Qiü = 0

on Rn (i = 1, . . . , k);

b) For all extensions u̇ ∈ D ′(Rn) of u with deg u̇ = deg u, one has

Qj

k∏
i=1

pir
(
(Qi|r)∗Qi

)
u̇ = 0, j = 1, . . . , k,

where pir is the polynomial pir(z) ··=
∏

λ(1 − z/λ), the product being taken

over all nonzero λ ∈ sp
(
(Qi|r)(Qi|r)∗

)
.

In the case when the operators Qi do not commute pairwise, one strategy is to

find a polynomial of the Qi’s (or several mutually commuting ones), which commutes

(respectively, commute) with all the Qi’s. If the set of solutions of this operator

(respectively, the joint set of solutions of these operators) coincides with the joint set

of solutions of the Qi’s, then one is reduced to the case of a single operator (or several

mutually commuting ones). This requirement can be formulated as follows:

Assumption C. Assume there exist mutually commuting operators {Cj}k′j=1 which

are polynomials of the Qi’s, commute with all the Qi’s and satisfy⋂k′

j=1 Ker(Cj|r) =
⋂k
i=1 Ker(Qi|r).

Provided mutually commuting operators exist, one inclusion is always guaranteed.

The non-trivial part in the assumption is that the joint kernel of the operators Cj
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should not be larger than that of the original operators. Observe that often in the

applications, those Qj which do not commute among themselves form a Lie algebra,

and the Cj are the Lie algebra’s Casimir operators. Below we give a criterion for

existence of on-shell extensions which is particularly useful in this context.

Theorem 7.3.2. Let {Ri}ki=1 be a set of operators of essential degree 0, let u ∈ D(Ṙn)

have degree of divergence r <∞ and assume

Riu = 0 on Ṙn, i = 1, . . . , k.

Let C be a polynomial in the variables Ri (i = 1, . . . , k) with no term of degree one

or zero. Assume that

(C|r)∗ = C|r, CRi = RiC, i = 1, . . . , k.

and that the following stronger form of Assumption C is satisfied

KerC =
⋂k
i=1 KerRi.

Then u has an on-shell extension, i.e., an extension ü ∈ D ′(Rn) with deg u = r s.t.

Riü = 0 on Rn for i = 1, . . . , k.

Proof. Since C|r is self-adjoint, there is a polynomial br s.t. br(C|r) is the orthogonal

projection to Ker(C|r)∗ = KerC|r, namely

br(z) =
∏

λ∈spC|r\{0}(1− z/λ).

Let u̇ ∈ D ′(Rn) be an arbitrary extension of u with degree of divergence r and set

ü ··= br(C)u̇. Clearly, ü is an extension of u with degree of divergence r. Moreover,

Riü = Ribr(C)u̇ = br(C|r)Riu̇ ∈ KerC =
⋂k
j=1 KerRj, i = 1, . . . , k

hence RiRjü = 0 for all i, j and consequently Cü = 0, which entails Riü = 0. �

The above theorem can be used to treat Lorentz symmetry, by taking C = (xµ∂ν−
xν∂µ)(xµ∂ν−xν∂µ) (the quadratic Casimir for the Lorentz group) and Ri proportional

to generators of rotations and boosts. It was proved [DF04] that the kernel of this

operator corresponds indeed to Lorentz invariant distributions, the operator br(C)

was also used therein in the construction of on-shell extensions.

7.3.1. Application — renormalisation conditions in scalar theory. As

an application of our framework, we show how can one treat the symmetries which

arise in a scalar quantum field theory. In this particular case our method essentially

reduces to the arguments used in [DF04], except that we obtain an additional result

on linearity of the map R defined below.

Corollary 7.3.3. Let Solext(QFT) denote the space of all distributions v ∈ D ′(Rn)

with finite degree of divergence such that the restriction u ··= v|Ṙn satisfies:

a) deg u = deg v,

b) u is Lorentz-invariant;

c) u is the finite sum of almost homogeneous distributions of integer degree.
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Then there exists a linear map R : Solext(QFT) 7→ Solext(QFT) such that for all

v ∈ Solext(QFT),

(1) Rv = v on Ṙn

(2) Rv is Lorentz-invariant;

(3) Rv is the finite sum of almost homogeneous distributions. More precisely, if

v is almost homogeneous of degree a ∈ Z and order k ∈ N0 on Ṙn, then Rv
is almost homogeneous on Rn of degree a and order k if k /∈ N0 + n and of

order k + 1 otherwise.

Proof. Let C = (xµ∂ν − xν∂µ) and R(a) =
∑n

i=1 xi∂i − a as in Subsection 7.2.2. For

any v ∈ Solext(QFT), Cv = 0 on Ṙn and there is a sequence of non-negative integers

{Nj}j∈Z s.t. Nj = 0 for almost all j and
∏

j∈ZR(j)Njv = 0 on Ṙn. Set

Rv = pr(
∏

j∈ZR(j)2Nj)br(C)v,

where r = deg v, br(z) ··=
∏

λ(1− z/λ) where the product runs over all λ ∈ sp(C|r) \
{0}, pr(z) ··=

∏
λ(1− z/λ) where the product runs over all λ ∈ sp

(∏
j∈ZR(j)2Nj |r

)
\

{0}. Since C|r and
∏

j∈ZR(j)Nj |r are self-adjoint for any r, the arguments from

Proposition 7.2.5 give linearity of R. Property 3 is proved as in subsection 7.2.2.

Based on the fact that C satisfies the conditions in Theorem 7.3.2, we deduce that

property 2 holds. That these two properties can be satisfied simultaneously is due to

the fact that the R(j) commute with C. �

7.3.2. Vector-valued distributions. Let us consider distributions in D ′(Ṙn,Rq),

D ′(Rn,Rq). We use the notation 〈u, ϕ〉 =
∑q

i=1〈ui, ϕi〉 for the pairing be-

tween D ′(Rn,Rq) and D(Rn,Rq), where u = (u1, . . . , uq) ∈ D ′(Rn,Rq) and

ϕ = (ϕ1, . . . , ϕq) ∈ D ′(Rn,Rq). With this notation, the definition of the scal-

ing degree extends verbatim to the case of vector-valued distributions, and so do the

results on extension of distributions. One easily sees that

sdu = max
i=1,...,q

(sdui).

In practice, one is often interested in the following situation. Let G be a Lie group

acting on Rn and consider the group action on Rn × Rq given by

(7.3.1) g : (x, u) 7→ (g · x, µ(g, x)u), g ∈ G, x ∈ Rn, u ∈ Rq,

where µ : G× Rn → GL(q) satisfies

µ(g · h, x) = µ(g, h · x)µ(h, x), µ(e, x) = 1l

for all g, h ∈ G, x ∈ Rn. This property of µ guarantees that (7.3.1) defines an action

of G. In applications in renormalisation one is mostly interested in the case µ(g, x)

does not depend on x. The associated infinitesimal generators are of the form

R =
n∑
i=1

ξi(x)
∂

∂xi
+

q∑
α,β=1

hαβ(x)uβ
∂

∂uα
,

where
∑n

i=1 ξ
i(x) ∂

∂xi
is the infinitesimal generator of G acting on Rn, associated to
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some element v of the Lie algebra of G and h(x) = d
dt
µ(exp(vt), x)|t=0 (see [Olv95] for

details). Now, the results of sections 7.2 and 7.2.1 directly carry over, and extensions

which are on-shell w.r.t. the above operator R can be constructed in the same manner

as described there.
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CHAPTER 8

On-shell and off-shell time-ordered products

In this final chapter, we will rephrase the link between on-shell and off-shell time-

ordered products within the framework of [BW12]. We consider here only the simpli-

est case of a scalar field on Minkowski space-time, in the absence of external poten-

tials. To introduce the reader to the problem, let us recall the well-known fact that

the time-ordered product in scalar quantum field theory (of second order) is formally

written as

T
(
φ(x)φ(y)

)
= θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x),

where φ(x) is the free field and θ is the Heaviside theta distribution. By Wick’s

theorem, T
(
φ(x)φ(y)

)
is equal to the normal product :φ(x)φ(y): plus the singular

distribution

(8.0.1) θ(z0)Λ(+)(z) + θ(−z0)Λ(+)(−z),

where z = x − y and Λ(+) is the distributional two-point function of the Minkowski

vacuum, and where the product of θ and Λ(+) is well-defined as a distribution in

D ′(Rn) by the criterion on wave front sets (cf. Section 3.2). This is a fundamental

solution of P = � + m2, traditionally called the Feynman propagator and denoted

EF ∈ D ′(Rn). One can also view (8.0.1) as a distribution on Ṙn. Since its degree

of divergence is −2, it admits a unique extension to Rn with the same degree of

divergence as given by Theorem 7.2.2. Of course, this construction again yields the

Feynman propagator on Rn.

Ambiguities arise when one considers higher derivatives of the fields. For instance,

applying Wick’s theorem to T
(
∂µxφ(x)∂νyφ(y)

)
, the contribution which cannot be ex-

tended unambiguously, is

−θ(z0)∂µ∂νΛ(+)(z)− θ(−z0)∂µ∂νΛ(+)(−z).

The degree of divergence of this distribution is 0. Consequently, its extensions to Rn

are no longer uniquely fixed by requiring that they have the same degree of divergence.

Requiring additionally Lorentz covariance, one obtains that the most general form of

any such extension is

∂µ∂νEF(z) + Cgµνδ(z),

where C is an arbitrary constant. The choice C = 0, or more generally, a prescription

for the time-ordered product which would make it ‘commute’ with derivatives, seems

to be the simplest one. Such a choice, however, is inconsistent with the requirement

that the fields are on-shell in the sense of the equation of motion, i.e. in our language

on-shell w.r.t. the Klein-Gordon operator, (� + m2)φ = 0. Indeed, setting C = 0
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would imply for instance

(�x +m2)T
(
φ(x)φ(y)

)
= (�x +m2)EF(x− y) = −iδ(x− y),

whereas the Klein-Gordon on-shell condition yields T
(
(�x +m2)φ(x)φ(y)

)
= 0.

Most of the physics literature uses on-shell time-ordered products. The off-shell

formalism, developed in [DF03, DF04], is based on a time-ordered product which

commutes with the derivatives of the fields. For this reason it has many advantages

over the on-shell formalism, an especially remarkable one being the possiblity of

writing in a compact form the so-called Master Ward Identity, which serves as a

universal renormalisation condition [DF03]. Another feature of off-shell time-ordered

products is consistency with the requirement that the S-matrix should depend only

on the action, i.e., on the integral
∫
M
η(x)L (x)dΩg, rather than on the Lagrangian

density L (x).

8.1. Map relating off-shell and on-shell time-ordered products

Recall from Chapter 6 that the on-shell time-ordered product Ton of order k is a

map from P⊗k0 to operator-valued distributions defined by a set of axioms. Off-shell

time-ordered products are by definition maps from P⊗k that satisfy an analogous set

of axioms and that commute with derivatives, see [DF03] for a detailed discussion1.

In the present setting, we are merely interested in the following result which relates

Ton and Toff :

Theorem 8.1.1 ([DF03, DF04, BD08]). There exists a unique linear map S 7→ χ(S)

from differential operators with constant coefficients to differential operators with

constant coefficients such that:

a) χ(S(� +m2)) = 0 for all S;

b) for any S = ∂µ1 . . . ∂µk , χ(S) transforms under Lorentz transformations as S;

c) ordχ(S) ≤ ordS for all S;

d) there is a linear map S 7→ χ1(S) s.t. χ(S)− S = χ1(S)(� +m2).

Now, on-shell and off-shell time-ordered products of order k are related by

Ton(A1 ⊗ · · · ⊗ Ak) = Toff(σ(A1)⊗ · · · ⊗ σ(Ak)), Ai ∈ P0,

where σ : P0 → P is the unique linear algebra homomorphism s.t. σπ(Sϕ) = χ(S)ϕ

for all S, ϕ.

This recurrence has been solved in [BD08] in an explicit way. Although the result

is certainly well-suited for practical use, it involves long combinatorial expressions

which do not seem to have a deeper interpretation. For the sake of completeness, we

quote below the explicit formula for χ obtained in [BD08].

1The requirement that Toff should commute with derivatives is called Action Ward Identity in [DF03],
the concept and the name is attributed therein to Stora.
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Theorem 8.1.2 ([BD08]). The map χ from Theorem 8.1.1 is given by

(8.1.1) χ(∂µ1 . . . ∂µk) =

k/2∑
j=0

αkjP
k
j (∂µ1 . . . ∂µk),

where P k
j (S) = 1

j!
Λj(S), Λ(∂µ1 . . . ∂µk) =

∑
i<j gµiµj∂µ1...̂i...ĵ...µk (where î means µi is

removed), ak0 = 0 and for j > 0

αkj = (−1)j(� +m2)
∑j−1

p=0

(
j−1
p

)
m2p�j−1−p∏j−1

q=0(n+ 2k − 2p− 2q − 4)−1.

In particular, at the lowest orders, (8.1.1) gives

χ(1) = 1, χ(∂µ) = ∂µ, χ(∂µ∂ν) = ∂µ∂ν − n−1gµν(� +m2),

which entails χ(� +m2) = 0 as required.

8.1.1. Construction of the map in the present setting. In our setting,

the problem can be formulated as follows. We are given a fundamental solution

EF ∈ D ′(Rn) of Q = � + m2. Given a partial differential operator S with constant

coefficients, we want to replace SEF with a distribution which agrees with the latter

on Ṙn and is, moreover, 0 when S = (� + m2). More precisely, the question is

to associate to each differential operator S with constant coefficients a distribution

Θ(S) ∈ D ′(Rn) such that:

(1) Θ(S) = SEF on Ṙn;

(2) deg Θ(S) ≤ degSEF;

(3) the assignment S 7→ Θ(S) is linear;

(4) Θ(S) is Lorentz-covariant;

(5) Θ(S(� +m2)) = 0 for all S.

Provided that Θ(S) satisfies the above properties, it can be used to define directly

the on-shell time-ordered product of order two. It will, however, be more convenient

to relate Θ(S) to the map considered in [BD08] which gives the connection between

between the on-shell and off-shell time-ordered products of order k, cf. Theorem 8.1.1

and 8.1.2.

Let us recall from the previous section that we can find a map R that assigns to

a distribution u with Qu = 0 on Ṙn a distribution Ru which is ‘as close to being a

solution of Q on Rn as possible’. The same idea is used in the construction of the map

S 7→ Θ(S) in the theorem below. The least trivial property is linearity — although

we are interested in operators which are not necessarily essentially homogeneous in

the sense of Definition 7.1.6, this problem can be overcome making use of the fact

that we consider here only differential operators with constant coefficients.

Theorem 8.1.3. Let Q : D ′(Rn) → D ′(Rn) be a nonzero differential operator of

order q with constant coefficients and assume v ∈ D ′(Rn) satisfies deg v = −q and

Qv = cδ for some c ∈ C. Assign to a differential operator S of order s with constant

coefficients the distribution

Θ(S) ··= ps
(
(Q|s)∗Q

)
Sv ∈ D ′(Rn),
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where ps is the polynomial ps(z) =
∏

λ(1 − z/λ), the product being taken over all

nonzero λ ∈ sp
(
(Q|s)(Q|s)∗

)
. Then Θ(SQ) = 0 for each differential operator S with

constant coefficients. Moreover, the mapping S 7→ Θ(S) is linear.

Proof. To prove Θ(SQ) = 0, let us remark that this is equivalent to QΘ(SQ) = 0,

as Q has no nonzero solutions in D ′({0}). We have

QΘ(SQ) = Qps+q
(
(Q|s+q)∗Q

)
SQv = ps+q

(
Q(Q|s+q)∗

)
QSδ.

Clearly, QSδ ∈ Ran(Q|s+q) = (Ker(Q|s+q)∗)⊥, so it is projected out by ps+q
(
Q(Q|s+q)∗

)
.

For linearity, we have to prove that if s′ ≥ s then ps′
(
(Q|s′)∗Q

)
Sv equals

ps
(
(Q|s)∗Q

)
Sv. Because Q has no nonzero solutions in D ′({0}), this is equivalent to

Q
[
ps′
(
(Q|s′)∗Q

)
− ps

(
(Q|s)∗Q

)]
Sv = 0.

One has

Q
[
ps′
(
(Q|s′)∗Q

)
− ps

(
(Q|s)∗Q

)]
Sv(8.1.2)

=
[
ps′
(
Q(Q|s′)∗

)
− ps

(
Q(Q|s)∗

)]
SQv(8.1.3)

= c
[
ps′
(
Q(Q|s′)∗

)
− ps

(
Q(Q|s)∗

)]
Sδ.

To prove that the last expression vanishes it suffices to show that ps′
(
Q(Q|s′)∗

)
and

ps
(
Q(Q|s)∗

)
coincide on D ′({0})≤s. Indeed, ps′

(
Q(Q|s′)∗

)
is the orthogonal projec-

tion to (Ran(Q|s′))⊥s′+q , where ⊥r denotes the orthogonal complement in D ′({0})≤r.
Analogously, ps

(
Q(Q|s))∗

)
is the orthogonal projection to (Ran(Q|s))⊥s+q . Moreover,

(8.1.4) (Ran(Q|s′))⊥s′+q ∩D ′({0})≤s = (Ran(Q|s))⊥s+q ∩D ′({0})≤s.

Indeed, suppose that v ∈ D ′({0})≤s is such that (v|Qw)s+q = 0 for all w ∈ D ′({0})≤s.
Then each w′ ∈ D ′({0})≤s′ can be written as w′ = w + w′′ with w ∈ D ′({0})≤s and

w′′ ∈
(
D ′({0})≤s′ \D ′({0})≤s

)
∪ {0} and we have

(v|Qw′)s′+q = (v|Qw)s+q + (v|Qw′′)s′+q = 0,

where the first term in the sum equals zero by assumption and the second one vanishes

because Qw′′ ∈
(
D ′({0})≤s′ \ D ′({0})≤s

)
∪ {0}. The other inclusion in (8.1.4) is

trivial. �

The next lemma gives the connection between the map S 7→ Θ(S) and a general-

ized version of the map χ from Theorem 8.1.1 and 8.1.2.

Lemma 8.1.4. Let Q and v be as in Theorem 8.1.3. There is a linear map S 7→ χ(S)

on the space of differential operators with constant coefficients, s.t. ordχ(S) ≤ ordS

and Θ(S) = χ(S)v for all S.

Proof. Since Θ(S)−Sv ∈ D ′({0})≤s−q, it can be written as χ1(S)δ for some differential

operator χ1(S) with constant coefficients of order s − q. More precisely, χ1(S) =

Ss−q [Θ(S)− Sv] (−∂), hence the assignment S 7→ χ1(S) is linear. The map S 7→
χ(S) ··= χ1(S)Q+ S satisfies the required properties. �
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Setting Q = � + m2 and v = EF, it follows automatically that χ satisfies the

conditions given in Theorem 8.1.1 except Lorentz covariance. But it easy to see that

χ is defined purely using Lorentz covariant quantities.

Corollary 8.1.5. Let Q = � + m2, v = EF, let Θ(S) be as in Theorem 8.1.3 and

χ as in Lemma 8.1.4. Then χ satisfies the conditions listed in Theorem 8.1.1.

The adjoint of (� + m2)|r is easily computed — one has [(� +m2)|r]∗ =

Pr [(xµx
µ +m2)|r+2], where Pr is the orthogonal projection to D ′({0})≤r. In par-

ticular if m = 0, since xµx
µ maps D ′({0})≤r+2 to D ′({0})≤r, this simplifies to

(�|r)∗ = xµx
µ|r+2. Consequently the distribution Θ(S) from Theorem 8.1.3 equals

Θ(S) = ps(xµx
µ�)SEF.

(Without the obligation to restrict xµx
µ to a subspace of D ′({0})).

We expect that the method can be extended with no difficulty to the case of

spin-1/2 and gauge fields, cf. the remarks in [BD08]. The generalization to curved

space-time or external potentials remains however an open problem.
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