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1.  Introduction 

1.1  Hearing and the auditory system 

Hearing is one of the five senses and is essential for communications with others. It 

enables humans to transfer information and exchange ideas and thoughts. In other 

vertebrates, sound localization is also indispensable for survival and reproduction.  

   Sound is an oscillation of pressure waves propagated via a gas, liquid or solid 

medium. Its frequency and intensity are fundamental features for analyzing voices and 

for comprehending speech. Animals equipped with a pair of hearing organs utilize two 

additional features of sound, i.e. interaural time difference and interaural level 

difference, for localizing a sound source and analysis of an acoustic scene. Hearing is 

enabled by the auditory system, which includes the outer, middle, and inner ear, the 

auditory nerve as well as the central auditory pathway up to the auditory cortex. 

 

1.1.1  The mammalian ear 

The external ear, which is composed of the auricle and external auditory meatus, gathers 

acoustic stimuli and focuses them on the tympanic membrane. In humans, the external 

ear has a resonant frequency of around 3 kHz (Shaw, 1974). The external auditory 

meatus ends at the tympanic membrane, which compartmentalizes the outer and middle 

ear (see Figure 1 for a schematic representation). 

   The middle ear is an air-filled cavity, containing three tiny ossicles called malleus, 

incus, and stapes. These ossicles transmit the sound vibration from the comparatively 

large, low impedance tympanic membrane to the much smaller, high impedance oval 

window. This converts the low pressure, large displacement of the airborne acoustic 

stimuli into a high pressure, small displacement of the fluid in the cochlea. Thus, the 

middle ear plays an important role known as impedance matching (Wever and 

Lawrence, 1954). 

   The inner ear is a complex structure, which consists of two parts: the organ of 

hearing, the cochlea, and the vestibular apparatus. The vestibular apparatus further 

consists of the saccule and the utricle, which detect linear acceleration and head position, 
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as well as of the semicircular canals, which detect angular acceleration (I hereafter 

mention nothing about the vestibular apparatus in this thesis). 

 

Figure 1  The human ear 

The cross section of the human ear exposes the outer, middle, and inner ear as well 

as the eighth cranial nerve comprising the cochlear nerve and the vestibular nerve 

(left). After the sound waves vibrate the tympanic membrane, this energy is 

transferred via the three ear ossicles (malleus, incus, and stapes) to the oval window 

of the cochlea (upper right). 

Adopted from Purves et al., 2004. 

 

1.1.2  The cochlea 

The cochlea derives its name from the Cochlea, the Latin word for snail, because of its 

unique coiled structure. The number of turns varies among species: in human it is 2.5, in 

mouse 1.75, and in guinea pig 4. The size of the human cochlea is 10 mm in width and 



Introduction 

3 

 

5 mm from the base to the apex, and the coiled basilar membrane is approximately 35 

mm in length, when uncoiled. 

   Inside the bony wall of cochlea, there are three partitioned compartments: scala 

vestibuli, scala media, and scala tympani. The scala vestibuli stands superior to the scala 

media with Reissner’s membrane dividing them and the scala tympani stands inferior to 

the scala media with the basilar membrane dividing them. The scala vestibuli and the 

scala tympani communicate with each other via an opening known as helicotrema 

located at the very top of the cochlea apex, contain a common fluid called perilymph, 

which is similar to the extracellular fluid in composition, and are equipotential to the 

extracellular fluid elsewhere in the body. The scala media forms the middle 

compartment of the cochlea. However, it does not communicate with the other two 

compartments and contains a special fluid called endolymph, which is similar to the 

intracellular fluid with a high concentration of K
+
 (157 mM, Wangemann and Schacht, 

1996). This is produced by active transport of K
+
 through the stria vascularis, generating 

a high positive potential (+ 80 mV, von Békésy, 1952) called endocochlear potential in 

the endolymph, which serves as a strong driving force for K
+
 movement across the 

stereocilia on the hair cells (Hibino et al., 2010). 

   When the vibration of the stapes is transmitted to the scala vestibuli via the 

membraneous opening called oval window, the fluid in the cochlea is displaced towards 

the other side, which contains another membranous opening, the round window, and is 

thus transmitted onto the scala tympani. This flow causes vertical movements of the 

basilar membrane, creating a travelling wave of the basilar membrane towards the 

cochlear apex. Here, the basilar membrane is tuned in its properties; it is thick, narrow 

and stiff in the base, but gets thinner, broader and more elastic towards the apex. Due to 

this gradation of the properties, high frequency sound leads the maximal basilar 

membrane vibration in the base and low frequency sound leads the maximal virbation in 

the apex. This micromechanical process is the first stage for the sound analysis in the 

auditory system, and even without active cellular contribution results in a rough 

mapping of sound onto tonotopic locations of the basilar membrane (for review, see 

Purves et al., 2004).
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1.1.3  The organ of Corti 

The organ of Corti is a highly specialized structure situated on the basilar membrane 

with the function to convert acoustic signals into electrical signals. It contains a single 

row of inner hair cells (IHCs), three rows of outer hair cells (OHCs) and several kinds 

of supporting cells such as Deiter’s cells, Hensen’s cells, phalangeal cells, and pillar 

cells (Figure 1). 

   The OHCs have a cylindrical shape and play a role in amplification of sound energy 

via an active process (for review, see Hudspeth et al., 1997; Dallos and Fakler, 2002).  

On the apical surface, they have V- or W-formed hair bundles (stereocilia) attaching to 

the tectrial membrane. Vertical movement of the basilar membrane turns into deflection 

of stereocilia, causing opening/closing of mechanotransduction (MET) channels to 

depolarize/hyperpolarize the OHCs via cation influx (mainly K
+
). This change in 

membrane potential drives an electromotility in the OHCs: depolarization causes cell 

contraction, in contrast, hyperpolarization causes cell elongation via a conformational 

change in the motor protein prestin (Zheng et al., 2000). The electromotility in the 

OHCs, indeed, underlies the cochlear amplification (Liberman et al., 2002). 

   Supporting cells play roles in homeostasis and mechanical support of the organ of 

Corti. In addition to these functions, recent studies revealed that they have a potential to 

trans-differentiate into new hair cells under specific conditions (White et al., 2006). 

   The organ of Corti receives afferent innervation by type I and type II spiral ganglion 

neurons (SGNs), which form auditory nerve fibers. In mature mice each IHC contacts 

with 5- 20 afferent dendrites of type I SGNs, a single type I SGN seems to receive input 

from a single IHC through a single active zone of the ribbon-type afferent synapse (e.g. 

Meyer et al., 2009). L-glutamate, a neurotransmitter at this synapse, is released from 

IHCs through the process of synaptic vesicle exocytosis and activates AMPA-type 

glutamate receptors on the type I SGNs to generate action potentials. This signal is 

relayed through the auditory pathway up to the auditory cortex. Type II SGNs receive 

inputs from 15- 20 OHCs (Spoendlin et al., 1972), which also release L-glutamate 

(Weisz et al., 2010). 

   The organ of Corti also receives efferent innervation from the olivocochlear system.  
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The olivocochlear system has two pathways: the medial olivocochlear (MOC) pathway 

arising from the contralateral ventral nucleus of the trapezoid body and the lateral 

olivocochlear (LOC) pathway arising from the ipsilateral lateral superior olive (Guinan 

et al., 1984). The projection pattern of the MOC fibers and the LOC fibers varies with 

development. At the early stage of development, the MOC fibers project to the IHCs 

alone, while the projection of LOC fibers is unknown. At the intermediate stage, the 

MOC fibers project to both IHCs and OHCs, while the LOC fibers project to IHC 

region alone. Finally at the late stage of development, the MOC fibers project to OHCs, 

while the LOC fibers project to the afferent dendrites of IHCs (for review, see Simmons, 

2002). The olivocochlear system employs predominantly acetylcholine (ACh) as its 

neurotransmitter to hyperpolarize the targeting cells via activation of 9 (Elgoyhen et 

al., 1994; Vetter et al., 1999) and 10 (Vetter et al., 2007) nicotinic ACh receptors 

concomitant with subsequent activation of small conductance Ca
2+

-activated K
+
 

channels (Yuhas and Fuchs, 1999; Oliver et al., 2000). However, the LOC system 

additionally seems to employ dopamine as its neurotransmitter to activate dopamine 

receptors on the afferent dendrites of type I SGNs (Eybalin et al., 1993; Darrow et al., 

2006). Efferents are believed to modulate the spontaneous activity of IHCs before the 

hearing onset (Glowatzki and Fuchs, 2000) and type I SGN activity after the hearing 

onset (Ruel et al., 2001) as well as the motility of OHCs for negative control of the 

cochlear amplifier via a motor protein prestin (Zheng et al., 2000). 
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Figure 2  The cochlea and the organ of Corti 

The cross section of the membranous labyrinth (top left) exposes three partitions of 

cochlea: scala vestibuli, scala media, and scala tympani (top right). The organ of 

Corti, a specialized structure for auditory transduction, is located between the 

tectorial membrane and the basilar membrane (bottom). A single row of inner hair 

cells, three rows of outer hair cells, and surrounding supporting cells are seen. 

Adopted from Purves et al., 2004. 

 

1.1.4  The inner hair cell (IHC) 

The IHC is the genuine sensory cell of the organ of Corti, transducing auditory stimuli 

into a neural signal at its synapses with SGNs. It has a pear-like shape and 2-3 rows of 
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stereocilia on the apical surface (hair bundle). The stereocilia amount to 20-50 in each 

IHC, depending on species and location (for review, see Raphael and Altschuler, 2003), 

and contain actin-filament cores (Sobin and Flock, 1983). The top of each stereocilium 

is connected to the lateral surface of its neighboring hair bundle through a tip-link 

filament, which is primarily composed of Cadherin 23 (Siemens et al., 2004; Sollner et 

al., 2004) and Protocadherin 15 (for review, see Müller, 2008). Since the tip links and 

mechanoelectrical transduction (MET) channels are directly connected to each other, 

deflections of the hair bundle leading to changes in tension of the tip link filaments 

directly gate the MET channels. A displacement towards the kinocilium (or longest 

stereocilia) increases tension of tip links, opens MET channels, and allows cation influx 

(mainly K+) to cause a depolarization in the IHC, which is termed a receptor potential. 

On the contrary, a deflection towards the opposite side (shortest stereocilia) decreases 

tension of tip links, closes MET channels, and shuts off cation influx to set the 

membrane potential to more negative values (for review, see Hudspeth, 1997). This 

receptor potential triggers the opening of voltage-gated Ca
2+

 channels at the ribbon-type 

synapses, further leading to exocytosis of synaptic vesicles at the active zones. 

   In addition to the MET channels, the IHCs express voltage-gated Ca
2+

 channels and 

K
+
 channels (for review, see Kros, 1996). 

   While presynaptic Ca
2+

 currents at the conventional CNS synapses are carried by 

P/Q-, N-, and R-type Ca
2+

 channels, that at the IHC afferent synapse is carried by 

L-type Ca
2+

 channels (predominantly CaV1.3 (1D) Ca
2+

 channels, Platzer et al., 2000; 

Brandt et al., 2003). The L-type Ca
2+

 channels have an advantageous feature: they 

remain active upon prolonged depolarization by their relatively little inactivation 

(Moser and Beutner, 2000; Ricci and Schnee, 2003; Yang et al., 2006; Cui et al., 2007; 

Grant et al., 2008). The L-type Ca
2+

 channels are clustered at the release sites of the 

IHC ribbon synapse (Roberts et al., 1990; Zenisek et al., 2003; Brandt et al., 2005), 

allowing nanodomain control of synaptic vesicle exocytosis (Brandt et al., 2005). 

Interestingly, the number of L-type Ca
2+

 channels varies among ribbon synapses within 

a single IHC, which could contribute to the heterogeneous response properties of the 

auditory nerve fibers to the sound. The Ca
2+

 current density undergoes a developmental 



Introduction 

8 

 

change; it reaches the maximum level at P6 and decreases afterwards (Beutner and 

Moser, 2001). Just recently, two families were identified that have sinoatrial node 

dysfunction and deafness (termed SANDD syndrome) due to a mutation in CACNA1D 

encoding CaV1.3 (1D) Ca
2+

 channels (Baig et al., 2011). 

   Presynaptic K
+
 currents are carried by large-conductance Ca

2+
-activated potassium 

(BK) channels, KV-type voltage-gated potassium channels, voltage-gated potassium 

channel of the KQT-like subfamily, member 4 (KCNQ4), and small-conductance 

Ca
2+

-activated potassium (SK) channels. The BK current, which is also known as IK, f, 

due to a fast activation, shapes the sound-evoked receptor potential in the mammalian 

IHCs (Oliver et al., 2006) and contributes to frequency-tuning in the non-mammalian 

vertebrates IHCs (Ramanathan et al., 1999). Interestingly, it is not until the onset of 

hearing that they begin to be expressed (Kros et al., 1998). The Kv–type potassium 

current, which is known as IK,s due to a slower activation, mediates a delayed rectifier 

conductance (Kros et al., 1998; Marcotti et al., 2003). The KCNQ4 (KV7.4) potassium 

channel, which is affected in autosomal dominant hereditary deafness type 2 (DFNA2), 

carries a low-voltage activated, slow delayed rectifier K
+
 conductance, IK,n, and 

contributes to the resting membrane potential (Marcotti et al., 2003; Oliver et al., 2003; 

Kharkovets et al., 2006). SK channels are expressed on IHCs transiently until the onset 

of hearing (Katz et al, 2004; Marcotti et al., 2004b), and are essential for cholinergic 

function of efferent inhibition (Fuchs and Murrow, 1992; Kong et al., 2008).
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Figure 3 The inner hair cell with its ion channels as well as afferent and efferent 

innervating fibers 

The IHC expresses the mechanoelectrical transduction (MET) channel (depicted in 

orange), three classes of K+ channels (BK, KV, and KCNQ4, green), L-type (CaV1.3) Ca2+ 

channels (yellow). Note that the IHC is innervated by afferent fibers of type I spiral 

ganglion neurons (blue), which further innervated by lateral olivocochlear efferents 

(purple). Modified from Bulankina and Moser, 2012. 
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1.1.5  Molecular anatomy and physiology of the inner hair cell ribbon synapse 

The most characteristic property of the IHC afferent synapse is the synaptic ribbon, a 

submicron-sized electron-dense structure where 125 (in electron-microscopic study) or 

200 (in 4pi study) synaptic vesicles are tethered (for review, see Nouvian et al., 2006). 

The synaptic ribbon is found among the retinal photoreceptors and bipolar cells, 

auditory and vestibular hair cells, and pinealocytes (for review, see Lenzi and von 

Gersdorff, 2001; Fuchs et al., 2003; Lagnado et al., 2003; Sterling and Matthews, 2005; 

Matthews and Fuchs, 2010). It is also found in the hair cells and electroreceptors of the 

lateral line in fish and amphibians (Katz et al., 1993). Thus, the synaptic ribbon seems 

to be present wherever the system requires exocytosis evoked by graded depolarization 

to cover a wide dynamic range of stimuli and where a high, sustained rate of release is 

needed. 

   The synaptic ribbons in the mammalian cochlea are relatively small (less than 200 

nm in width), Moser et al., 2006). In the mammalian cochlea, more than 100 synaptic 

vesicles are tethered to the ribbon (Nouvian et al., 2006) and several tens of L-type Ca
2+

 

channels are present at these active zones (Brandt et al., 2005; Meyer et al., 2009; 

Zampini et al., 2010), where synaptic transmission occurs. The number of docked 

synaptic vesicles is estimated to be approximately 10-20 (Pangršič et al., 2010) and this 

seems enough to support a rapid burst of release at the onset of stimulus. 

   The molecular components of the synaptic ribbon have recently begun to be 

deciphered. The protein RIBEYE is a major constituent of the ribbon and has two 

domains. Its B domain is almost identical to a ubiquitous transcription factor, 

C-terminal binding protein 2 (CtBP2) and bears enzymatic activity (Schwarz et al., 

2011), while its A domain mediates homophilic interactions (Magupali et al., 2008). In 

addition, scaffolding proteins such as bassoon and piccolo are present in synaptic 

ribbons. Recent studies have shown that bassoon anchors the ribbons to the active zones 

(Dick et al., 2001, 2003; Khimich et al., 2005; Frank et al., 2010). Moreover, Rab3 

interacting molecules (RIMs, Wang et al., 1997) are present at the active zones of 

retinal photoreceptors (tom Dieck 2005) and immature IHCs (Gebhart et al., 2010), 
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while it was stated to be absent from the active zones of mature IHCs (Gebhart et al., 

2010). 

   Although the precise functions of the synaptic ribbon remain to be addressed, there 

have been a few hypotheses for them. One is that the ribbon functions as a ‘conveyor 

belt’ to move the vesicles in the upper rows down to the active zone for continuous 

vesicle supply (Bunt, 1971). Another is that the ribbon functions to enable a large RRP 

of synaptic vesicles at the active zone (Khimich et al., 2005; Moser et al., 2006b). 

 

 

Figure 4  The inner hair cell ribbon synapse 

The synaptic ribbon, an electron-dense structure located beneath the presynaptic 

plasma membrane, tethers a number of synaptic vesicles (pale blue). L-type (CaV1.3) 

Ca2+ channels (VGGCs, yellow) and large-BK-type K+ channels (green) are clustered 

near the synaptic ribbons. AMPA-type glutamate receptors (blue) are expressed on 

the surface of postsynaptic afferent boutons for binding to neurotransmitter 

glutamate, while glutamate transporters (GLAST, red) are expressed on the surface 

of supporting cells (SCs) for clearance of glutamate in the synaptic cleft. Modified 

from Fuchs et al., 2003. 
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1.2  Expression and function of RIMs at presynaptic active zones of the IHCs 

The active zone is a specialized structure in the presynaptic plasma membrane where 

synaptic vesicles undergo docking, priming, and fusion in order to release their 

neurotransmitters onto the postsynaptic neurons.  A variety of proteins are involved in 

this process (for review, see Südhof and Rizo, 2011; Schoch and Gundelfinger, 2006). 

Among these are the Rab3-interacting molecules (RIMs), which are major active zone 

proteins and are ubiquitously expressed at central synapses. 

 

Figure 5  The active zone proteins 

Modified from Mittelstadt et al., 2010 

 

The RIMs are composed of the multi-domain -RIMs and -RIMs (RIM1, RIM1 

RIM2 and RIM2 as well as the shorter -RIMs (RIM2, RIM3 and RIM4).  

-RIMs contain a full set of domains: a helix 1 and a zinc finger domain in the 

N-terminus, a PDZ-domain in the center, two C2-domains (C2A and C2B) and a 

proline-rich sequence in the C-terminus (Wang et al., 2000). RIM1 is similar to 

RIM1 except that RIM1 lacks the helix 1, while RIM2 is similar to RIM2 except 

that RIM2 lacks the helix 1 and the zinc finger domain. -RIMs only contain an 

isoform-specific N-terminus and the C2B domain (Wang et al., 1997). 
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Figure 6  Domain components of RIM isoforms 

(a) helix 1; (ZF) zinc finger domain; (S413) serine 413, phosphorylation site for PKA; 

(PDZ) PSD95, Dlg, and ZO-1/2-like domain; (C2) PKC conserved region 2; (Q) 

proline-rich sequence. Modified from Mittelstadt et al., 2010. 

 

   Remarkably RIMs interact with remaining active zone proteins such as Munc13, 

Bassoon, Piccolo, ELKS and Liprin-(for review, see Mittelstaedt et al., 2010). 

Moreover, PDZ domains of RIMs directly bind to the -subunits of P/Q- and N-type 

Ca
2+

 channels (Kaeser et al., 2010).  In addition, RIMs are linked to P/Q-, N-, and 

L-type Ca
2+

 channels via an interaction with RIM-binding proteins (RIM-BPs) through 

their proline-rich domains (Hibino et al., 2002). 

  

 

Figure 7  RIMs interact with multiple other active zone proteins in central synapses 

(a) helix 1; (ZF) zinc finger domain; (S413) serine 413, phosphorylation site for PKA; 

(PDZ) PSD95, Dlg, and ZO-1/2-like domain; (C2) PKC conserved region 2; (Q) 

proline-rich sequence. Modified from Mittelstadt et al., 2010. 
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   The RIMs play essential roles in neurotransmitter release and synaptic plasticity. 

Several recent studies have shown that RIM1 and 2 regulate the docking/priming step of 

the release process and tether P/Q- and N-type Ca
2+

 channels to the active zones in 

hippocampal cultured neurons (Kaeser et al., 2010) as well as at the calyx of Held 

synapse (Han et al., 2011). RIM1 alone not only controls release probability but also 

changes both short- and long-term synaptic plasticity in the hippocampus (Schoch et al., 

2002; Castillo et al., 2002, Calakos et al., 2004). However, deletion of RIM2 failed to 

show any synaptic phenotypes in the hippocampus. Knockout of both RIM1 and 

RIM2 causes perinatal lethality without changing synaptic structure and formation, 

although deletion of either RIM1 or RIM2 does not cause this perinatal lethality 

(Schoch et al., 2006).  

   Compared to CNS synapses, the expression and function of RIMs in the sensory 

epithelium have not been characterized. Expression of RIMs was detected in the mouse 

retina, although their function was not elucidated (tom Dieck et al., 2005; 

Deguchi-Tawarada et al., 2006). Notably the distribution profiles of the RIM proteins 

are different between the wild-type retina and the ribbon-deficient Bassoon mutant 

retina: both RIM1 and RIM2 colocalize with RIBEYE at the wild-type photoreceptor 

terminal, while only RIM1, not RIM2, colocalizes with RIBEYE at the mutant 

photoreceptor, suggesting that RIM1 localizes to the synaptic ribbon, but RIM2 is 

present at the plasma membrane of the active zone (tom Dieck et al., 2005). A recent 

study indicated that RIM2, but not other isoforms of RIMs, is expressed in IHCs, 

however, only before hearing onset (Gebhart et al., 2010). In order to provide more 

information on the role of RIMs in hearing, I probed the role of RIMs at the first 

auditory synapse employing RIM knockout animals. 
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1.3  Clarin-1 and Usher syndrome type IIIA 

1.3.1 Usher syndrome and Usher proteins 

Usher syndrome (USH) is an autosomal recessive disorder, which was named after the 

English medical doctor Charles Usher (Usher, 1914), although it had been first reported 

by the German medical doctor Albrecht von Graefe as retinitis pigmentosa in 

combination with deafness (von Graefe, 1858). Among the around 40 kinds of 

hereditary disorders which present deafness and blindness, USH is the most frequent 

with approximately 50 % of all cases (Saihan et al., 2009). USH is clinically classified 

into three types according to the extent and the onset of deafness as well as the presence 

of vestibular dysfunction (Smith et al., 1994). To date, at least 10 genetic loci have been 

mapped for USH and in most cases, the responsible genes have been identified (Weil et 

al., 1995; Verpy et al., 2000; Bitner-Glindzicz et al., 2000; Wayne et al., 1996; Bork et 

al., 2001; Bolz et al., 2001;Chaib et al., 1997; Ahmed et al., 2001, 2009;Alagramam et 

al., 2001; Mustapha et al., 2002; Weil et al., 2003; Kimberling et al., 1990; Eudy et al., 

1998; Pieke-Dahl et al., 2000; Weston et al., 2004; Ebermann et al., 2007, 2010; Sankita 

et al., 1995). 

   USH type I patients are born profoundly deaf and have severe vestibular 

dysfunction. They present with progressive vision impairment afterwards by the age of 

ten. To date, seven genetic loci (USH1B-H) have been mapped for this subtype, and 

five causative genes for USH type I have been identified, namely myosin VIIa (MYO7A, 

USH1B), harmonin (USH1C, USH1C), cadherin 23 (CDH23, USH1D), protocadherin 

15 (PCDH15, USH1F), and sans (SANS, USH1G). 

   USH type II patients are born moderately to severely deaf without vestibular 

dysfunction. Vision problems in USH type II progress more slowly compared to USH 

type I. The causative genes for USH type II are usherin (USH2A, USH2A), VLGR1 

(VLGR1, USH2C) and whirlin (WHRN, USH2D). 

   USH type III patients are not born deaf, but may develop progressive hearing loss 

afterwards. The severity of auditory, vestibular or vision symptoms varies from person 

to person. The only identified causative gene for USH type III is clarin-1 (CLRN1), 

whose genetic locus is 3q21-q25 (Sankila et al., 1995). In USH type III patients, at least 
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10 mutations in the CLRN1 gene have been detected (Joensuu et al., 2001; Adato et al., 

2002; Fields et al., 2002; Ness et al., 2003; Aller at al., 2004; Sadeghi et al., 2005; 

Ebermann et al., 2007; Herrera et al., 2008). 
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Figure 8  Usher proteins and their different isoforms 

(A) The USH1B protein, myosin VIIa, is comprised of a motor head domain, five 

calmodulin-binding IQ motifs, two FERM domains, two MyTH4 domains and a Src 

homology 3 (SH3) domain. (B) The USH1C protein, harmonin, is comprised of at least 

two PDZ (PSD95, discs large, ZO-1) domains (PDZ1 and 2) and a coiled-coil domain.  

The class A isoform contains an additional PDZ domain (PDZ3). The class B isoform 

also contains this PDZ3 domain, a second coiled-coil domain and a proline, serine, 

threonine-rich region (PST). Isoforms A1 and B4 contain a C-terminal class I PDZ 

binding motif (PBM). (C) The USH1D protein, cadherin 23, has three different 

isoforms. The isoform A is comprised of 27 Ca2+-binding extracellular cadherin 

domains (EC1-27), a transmembrane domain (grey disks) and a short intracellular 

domain with a C-terminal class I PBM. The isoform B is similar to the isoform A, but 

only contains the last six EC domains. The isoform C is comprised of the intracellular 

domain and C-terminal PBM. (D) The USH1F protein, protocadherin 15, is comprised 

of either eleven (isoform A) or one (isoform B) EC domain, a transmembrane domain 

and a C-terminal class I PBM. (E) The USH1G protein, SANS, is comprised of three 

ankyrin domains (ANK), a central region (CENT), a sterile alpha motif (SAM) and a 

C-terminal class I PBM. (F) Isoform A of the Usher 2A protein (USH2A) is comprised 

of an N-terminal thrombospondin/pentaxin/laminin G-like domain, a laminin 

N-terminal (LamNT) domain, ten laminin-type EGF-like (EGF Lam) and four 

fibronection type III (FN3) domains. In addition to this region, Isoform B contains 

two laminin G (LamG), 28 FN3, a transmembrane domain and an intracellular 

domain with a C-terminal class I PBM. (G) Isoform B of the USH2C protein, the very 

large G-coupled protein receptor VLGR1, contains a 

thrombospondin/pentaxin/laminin G-like domain, 35 Ca2+-binding calcium 

exchanger β (Calx) domains, seven EAR/EPTP repeats, a seven-transmembrane 

region and an intracellular domain containing a C-terminal class I PBM. (H) Clarin-1, 

the USH3A protein, contains four (isoform A), none (isoform B), or one 

transmembrane (isoform C) domain. Adopted from Kremer et al., 2006. 
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   Usher proteins undergo a wide range of mutual interactions (Figure 9). Among them, 

the USH1C protein harmonin plays a central role, interacting with most of the 

remaining USH proteins. Moreover, a recent study reported that harmonin reduces 

synaptic Ca
2+ 

influx through CaV1.3-type Ca
2+

 channels in IHCs (Gregory et al., 2011). 

 

 

Figure 9  The Usher protein network 

Currently known protein–protein interactions between different Usher proteins.  

Note that clarin-1 interacts with Myosin VIIa (Adato et al., 1999). Modified from 

Brown et al., 2008.  

 

1.3.2  Expression and function of clarin-1 at the IHC ribbon synapse 

Clarin-1, a member of four- transmembrane superfamily also containing tetraspanins 

and claudins, had been proposed to regulate hair cell synaptic transmission as well as 

the organization of actin filaments, on the basis of its expression at the synaptic and 

stereociliar sites (Adato et al., 2002; Tian et al., 2009; Geng et al., 2009; Zallocchi et al., 

2009 and 2012). A preceding study found that the CLRN1 knockout mouse, an animal 

model for USH type IIIA, develops profound hearing loss as well as vestibular 

dysfunction, and that the hair bundles are disrupted in CLRN1
-/-

 mice (Geng et al., 2009). 
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Although the hair bundle disruption seemed to cause the mechanoelectrical transduction 

deficit and mostly underlies the elevated ABR thresholds, a further involvement of 

synaptic deficits at the IHC afferent synapse was suggested on the basis of the observed 

delay in the peak latencies of ABRs in CLRN1
-/-

 mice (Geng et al., 2009). To test this 

hypothesis, I probed the presynaptic functions of clarin-1 knockout mice. 

.
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2.  Material and Methods 

2.1  Animals 

The generation of knockout mice was previously described for RIM2 -/-
 (Schoch et al., 

2006) and for Clrn1
-/-

 (Geng et al., 2009), respectively. As controls, age-matched 

wild-type littermates were used. All experiments were complied with national animal 

care guidelines and approved by the University of Göttingen Board for Animal Welfare 

and the Animal Welfare Office of the State of Lower Saxony.  

 

2.2  Single-cell nested RT-PCR 

Wild-type C57BL6 mice at the age of postnatal days (P) 14 through 16 were used in this 

study. IHCs from the apical coils of freshly dissected organs of Corti were harvested 

after cleaning off supporting cells at a high bath perfusion rate (3 ml/min). Each 

individual IHC was aspirated and the pipette content was transferred into first strand 

cDNA synthesis mix containing after the dilution: 50 mM Tris-HCl, pH 8.3, 75 mM 

KCl, 5 mM MgCl2, 5 mM DTT, 100 units of SuperScript II Reverse Transcriptase 

(Invitrogen, Carlsbad, CA) and 40 units RNaseOUT Ribonuclease inhibitor (Invitrogen). 

Reverse transcription was performed with oligo(dT)primers according to the 

manufacturer’s instructions. Aspirated bath solution was used as a negative control. 

Each cDNA mix was used as a template for two subsequent PCR reactions with nested 

primers specific for RIM1-, RIM2-, RIM3, RIM4 and otoferlin or RIBEYE 

(specific) cDNA. Primer sequences are listed in Table 1 and 2. 
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fwd/rev 1st nested 

RIM1 
forward GAGGAACGAACGAGACAGATGAAA GTCCGCCAAGTCATCAGATAGTGA 

reverse TTTTTAACTTCTTGTGGCCGGACT TTCTGCTTCTTCGAGACACAATGG 

RIM2 
forward GCCTCTCAACTCAGCCAAAC GATGGCAGCATGAACAGCTA 

reverse CAGAGACGATTGGGAAGCTC TAGGGAGGAAGGAGGGAAGA 

RIM3 
forward TGGGAGCACCAACAGTAACA AAGCCAGTTCAGTGACTTTCTGGA 

reverse CATGTTTTCTTGGCCACCTT GTTCTCCAGCAGGTAAGCCTTGAT 

RIM4 
forward ACACTGCCAGCTGCCTATATCAAG TGTCTGCATTGCCAAGAAGAAAAC 

reverse CGTAGTTTCCCCACACGATTACCT GGGACTCTCAGGAAACAGAAGCAC 

Table 1. Primers for RT-PCR/nested RT-PCR 

 

 

fwd/rev 1st nested 

RIM1 
forward CTCCCCCTATGCAAGAACTG ACCGAGGAGGAGAGGAACAT 

reverse GACCTTGATCGCTCTTGGAG TTGTTCGATCGCAGAGACAC 

RIM1 
forward CAGAAGCTGTCCCATTTTCC CCTTCTGGAGCTTTCTGAGC 

reverse GACCTTGATCGCTCTTGGAG TTGTTCGATCGCAGAGACAC 

RIM2 
forward AGCAAGAGCAGAAGGGTGAT CTGCAGCAACCTGATCAAAA 

reverse TCCACATCTTCATCATCCACA ATTGAGGCTCACGCTGAGAT 

RIM2 
forward GCCAGGTCTGCAATTCTGTT CGCTGAACAATGCAAGAAAA 

reverse TCCACATCTTCATCATCCACA ATTGAGGCTCACGCTGAGAT 

RIM2 

forward TCCATGCAGCGCTCTCAG CAGCCTCTCTGCCTCTTTTG 

reverse 
TAGCTGTTCATGCTGCCATC/ 

TCCAGGAAATCACTGAACTGG 
CCTCCTCCTTCTCCTTCATCT 

Table 2. Subtype-specific primers for RT-PCR/nested RT-PCR 

 

2.3  Immunohistochemistry 

The freshly dissected apical cochlear turns from P9-17 wild-type C57Bl6 mice were 

fixed with 100 % methanol for 20 min at −20°C. Thereafter, the tissue was washed three 
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times for 10 min in PBS and blocked for 1 h in goat serum dilution buffer (GSDB) 

(16% normal goat serum, 450 mM NaCl, 0.3% Triton X-100, and 20 mM phosphate 

buffer, pH 7.4) in a wet chamber at room temperature. Primary antibodies were 

dissolved in GSDB and applied overnight at +4°C in a wet chamber. After washing 

three times for 10 min (wash buffer: 450 mM NaCl, 20 mM phosphate buffer, and 0.3% 

Triton X-100), the tissue was incubated with secondary antibodies in GSDB in a wet 

light-protected chamber for 1 h at room temperature. Then the preparations were 

washed three times for 10 min in wash buffer and one time for 10 min in 5 mM 

phosphate buffer, placed onto glass microscope slides with a drop of fluorescence 

mounting medium (Dako. Glostrup, Denmark), and covered with thin glass coverslips. 

The following antibodies were used: mouse IgG1 anti-CtBP2 (also recognizing the 

ribbon protein RIBEYE; 1:150; BD Biosciences), polyclonal rabbit antibody 1 against 

RIM 2, PDZ domain (1:200; Synaptic System, Göttingen, Germany), RIM3 (1:200, 

kindly provided by Prof. Dr. Susanne Schoch at University of Bonn) as well as 

secondary AlexaFluor488- and AlexaFluor568-labeled antibodies (1:200; Invitrogen). 

Confocal images were acquired using a laser scanning confocal microscope (TCS SP5, 

Leica, Wetzlar, Germany) with 488 nm (argon) and 561 nm (helium–neon) lasers for 

excitation and a 63× oil-immersion objective (1.4 numerical aperture; Leica). 

Whole-mount preparations of the organ of Corti provided the possibility to analyze 

several IHCs in a row (Khimich et al., 2005). Images were processed using NIH ImageJ 

software and assembled for display in Adobe Illustrator software (Adobe Systems). 

 

2.4  Patch-clamp recording 

For analyzing the IHC presynaptic function, I performed perforated patch-clamp 

recordings in apical coils of freshly dissected organs of Corti (Moser and Beutner, 

2000) from RIM2 -/-
 mice or Clrn1

-/-
 mice and their wild-type littermates (P13-19 for 

RIM2-related animals, P14-20 for Clrn-1-related animals). The pipette solution 

contained (in mM): 130 Cs-gluconate, 10 TEA-Cl, 10 4-AP (4-aminopyridine; Merck 

KGaA, Darmstadt, Germany), 1 MgCl2, 10 HEPES (pH adjusted with HCl to 7.17, 

osmolarity ~ 290 mOsm/kg) and 300 μg/ml amphotericin B (Calbiochem, La Jolla, CA) 
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dissolved in dimethyl sulfoxide (Invitrogen). The extracellular solution contained (in 

mM): 104 NaCl, 35 TEA-Cl, 2.8 KCl, 10 CaCl2, 1 MgCl2, 10 HEPES, 1 Cs gluconate, 5 

4-AP, 11.1 D-glucose (pH adjusted with NaOH to 7.2, osmolarity ~ 300 mOsm). 

Pipettes were prepared by a puller (P-97, Sutter Instruments Company, Novato, CA) 

with a resistance of 3-5 M coated with Sylgard (Dow Corning, Midland, MI). An 

EPC-10 amplifier controlled by Pulse software (HEKA Elektronik, Lambrecht, 

Germany) was used for recordings from IHCs visualized by BX-50WI (Olympus, 

Tokyo, Japan) with a 40X magnification by an objective lens (Olympus). 

   All voltages were corrected for liquid-junction potentials. Currents were sampled at 

20 kHz and low-pass filtered at 2 kHz. Cells that displayed a leak current exceeding –30 

pA were discarded from analysis. Ca
2+

 currents were further isolated using a P/n 

protocol. Series resistance (RS) was below 30 M. Patch-clamp data were analyzed 

with Igor software (Wavemetrics, Portland, OR). 

 

2.5  Auditory brainstem responses (ABRs) and distortion-product otoacoustic 

emission (DPOAE) 

RIM2 -/-
 and RIM2 +/+

 mice (5-weeks-old to 8-weeks-old) were anesthetized by 

intraperitoneal injection of a combination of ketamine (100–125 μg/g) and xylazine 

(2.5–5 μg/g). The heart rate of anesthetized animals was constantly monitored by 

electrocardiogram (ECG). The body temperature was maintained constant at 37 °C 

using a rectal temperature-controlled heat blanket (Hugo Sachs Elektronik–Harvard 

Apparatus GmbH, Hugstetten, Germany). For stimulus generation, presentation, and 

data acquisition, we used the TDT II or III Systems (Tucker Davis Technologies, 

Alachua, FL) run by BioSig32 software (TDT) or MATLAB (Mathworks, Natick, MA) 

routines. Sound pressure levels are provided in decibels sound pressure level (SPL) rms 

(tonal stimuli) or decibels SPL peak equivalent (clicks) and were calibrated using a ¼ 

inch Brüel & Kjaer microphone (D 4039; Brüel & Kjaer, Nærum, Denmark). Stimuli 

were presented ipsilaterally in the free field using a JBL 2402 speaker (JBL, Northridge, 

CA). 
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For recording ABRs, the difference potential between vertex and mastoid subdermal 

needles was amplified (50,000 times), filtered (low pass, 4 kHz; high pass, 100 Hz) and 

sampled at a rate of 50 kHz for 20 ms, 2 × 2000 times to obtain two mean ABRs for 

each sound intensity. Hearing threshold was determined with 10 dB precision as the 

lowest stimulus intensity that evoked a reproducible response waveform in both traces 

by visual inspection. 

   For recording DPOAEs, a 24-bit sound card and the ED1/EC1 speaker system 

(Tucker David Technologies) were used to generate two primary tones f1 and f2 (f2/f1 

ratio: 1.2). Primary tones were coupled into the ear canal by a custom-made probe 

containing an MKE 2 microphone (Sennheiser, Barleben bei Magdeburg, Germany) and 

adjusted to an intensity of 60 dB sound pressure level at the position of the ear drum as 

mimicked in a mouse ear coupler. The microphone signal was amplified (DMP3; 

M-audio, Hallbergmoos, Germany) and analyzed by fast Fourier transformation. 

 

2.6  Statistics 

Means are presented with their standard errors and were statistically compared using 

Student’s unpaired, two-tailed t test, unless otherwise noted. 
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3.  Results 

3.1  Probing expression and function of RIM proteins in the IHCs 

3.1.1  Mature IHCs express RIM2 and RIM3 at their active zones after the 

onset of hearing 

To detect Rab3-interacting molecules (RIMs) mRNAs in IHCs of hearing mice, I 

performed nested single cell RT-PCR in collaboration with Dr. Friederike Predöhl. 

Among the 10 IHCs examined, all cells expressed otoferlin (positive control), 7 cells 

expressed RIM2 and RIM3 mRNAs, but none contained RIM1 or RIM4. In contrast, 

nested RT-PCR analysis of the whole organ of Corti showed expression of all isoforms 

of RIMs (Figure 10A). To further clarify the isoform-specific expression of RIM2, we 

analyzed another 10 IHCs. Among them, 9 cells expressed CtBP2 (positive control), 5 

cells expressed RIM2 mRNAs, but none contained RIM2 or RIM2 (Figure 

10B).Taken together, these results suggest that the IHCs in hearing mice express the 

isoforms RIM2 and RIM3. 

   To substantiate this finding, I performed immunohistochemical analysis of the 

expression of RIM2 and RIM3 on whole mounts of the organ of Corti from hearing 

mice using anti-RIM2 and anti-RIM3 antibodies together with antibody directed 

against the nuclear protein CtBP2, which also detects RIBEYE, a major structural 

component of the synaptic ribbon (Schmitz et al., 2000, Khimich et al., 2005). As 

shown in Figure 10C-E, RIM2 and RIM3 immunofluorescence was observed within 

and around the base of the IHCs. Specifically, we found RIM2 and RIM3 

immunofluorescence at CtBP2 labeled ribbon-type active zones, indicating that IHCs of 

hearing mice express RIM2 and RIM3 isoforms at their active zones. Additional 

RIM2 immunofluorescence outside the IHCs most likely represented RIM expression in 

efferent nerve terminals, which display small conventional active zones, as well 

unspecific labeling. 
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Figure 10  Expression of RIM isoforms at the IHC ribbon synapse in hearing mice 

Expressions of RIM isoforms were detected by single cell nested RT-PCR (A and B) 

and immunohistochemistry (C, D, and E). (A) Expression of RIM isoforms in the 

C57BL/6 mouse after the hearing onset by single cell nested RT-PCR. Expected sizes 

of the PCR products are 336 bp for RIM1, 522 bp for RIM2, 324 bp for RIM3 228 bp 

for RIM4, and 140 bp for Otoferlin, respectively. Otoferlin was used as a positive 

control. (B) Expressions of the RIM2 isoforms in IHCs of C57BL/6 mice. Only RIM2α 

was detected in IHCs of C57BL/6 mice by single cell nested RT-PCR. The expected 

size of the PCR products are 376 bp for RIM2, 232 bp for RIM2, 232 bp for RIM2, 

and 283 bp for CtBP2, respectively. PCR results were confirmed by sequencing. (C) 

Projection of confocal sections of C57BL/6 organ of Corti at P8. IHCs were 

immuno-labeled for ribbons (anti-CtBP2, red) and RIM2 (green). (D) Projection of 

confocal sections of C57BL/6 organ of Corti at P14. IHCs were immuno-labeled for 

ribbons (anti-CtBP2, red) and RIM2 (green). (E) Projection of confocal sections of 
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C57BL/6 organ of Corti at P14, C57BL/6. IHCs were immuno-labeled for ribbons 

(anti-CtBP2, red) and RIM3γ (green). Scale bar in C-E: 10 μm. 
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3.1.2  Disruption of RIM2 reduces presynaptic Ca
2+

 currents and exocytic 

membrane capacitance change 

To probe the function of RIM2 in the IHCs, I next performed perforated patch-clamp 

recordings on IHCs in RIM2 knockout (RIM2-/-
) mice and wild-type littermates 

(RIM2+/+
). The mean peak amplitude of the Ca

2+
 current was significantly smaller in 

RIM2-/-
 IHCs (-105.7 ± 14.8 pA, n = 5) than in RIM2+/+

 IHCs (-157.2 ± 15.3 pA, n = 

5, p < 0.05, Figure 11A&B). This can result either from a reduced number of Ca
2+

 

channels or a reduced opening probability of Ca
2+

 channels.  

  The exocytic membrane capacitance change (Cm) evoked by 100 ms-long 

depolarizations, which is thought to reflect the number of synaptic vesicles fused during 

synchronous and sustained exocytosis, was also smaller in RIM2-/-
 IHCs (Figure 11C, 

D, 42.8 ± 14.3 fF, n = 5) than that in RIM2+/+
 IHCs (96.3 ± 17.6 fF, n = 5, p < 0.05). 

 

  

Figure 11  Patch-clamp analysis of presynaptic function of RIM2deficient IHCs 
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In vitro perforated patch-clamp recording in RIM2α+/+ (black) and RIM2α -/- (red) IHCs. 

All recording were done with P14-17 mice in the extracellular presence of 2 mM 

Ca2+. 

(A) Current-voltage relationship of RIM2α+/+ and RIM2α -/- obtained from the initial 

2-5 ms during 10 ms depolarizations. 

(B) The peak amplitude of presynaptic Ca2+ currents (ICa) elicited by depolarization to 

-24 mV for RIM2α+/+ and RIM2α -/-. Individual data points (open circles) and their 

averages (filled circles) are shown. Mean ICa peak amplitude was -157.17 ± 15.26 pA 

in RIM2α+/+ (n = 5), -105.66 ±14.84 pA in RIM2α -/- (n = 5). *p = 0.02. 

(C) Sample traces of ICa and exocytic capacitance jump (ΔCm) at 100 ms 

depolarization in RIM2α+/+ and RIM2α -/-, lines indicate the average Cm before and 

after the depolarization 

(D) Summary of integral of Ca2+ current (QCa) and ΔCm for depolarizing pulses of 

various durations. In RIM2α -/- , both QCa and ΔCm were significantly reduced 

compared to RIM2α+/+. (p < 0.05). 

 

I analyzed the responses to depolarizations of different durations (Figure 11D) to further 

investigate the defect of exocytosis and fitted the cumulative exocytosis-time function 

by the sum of an exponential (raised to a power to accommodate the supralinear rise) 

and a linear term (Figure 12A). The size of the RRP was approximated as the amplitude 

of the initial exponential term (fast component), while sustained exocytosis was 

quantified as the slow linear term (slow component). The RRP size and kinetics of RRP 

fusion were not significantly different between IHCs of both genotypes (Figure 12B), 

arguing against a substantial role of RIM2 for establishing/stabilizing vesicular release 

sites and their close spatial coupling to Ca
2+

 channels at IHC active zones. However, the 

sustained exocytosis rate was reduced from 730 ± 145 fF/sec for RIM2+/+
 IHCs to 155 

± 101 fF/sec for RIM2-/-
 IHCs (p < 0.05). This result indicated that RIM2 is essential 

for synaptic vesicle replenishment at the IHC ribbon synapse
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Figure 12  Estimation of vesicle pool size and dynamics 

(A) Fitting of ΔCm (t) relationship using the following function: for estimation of RRP 

size, RRP depletion time constant and sustained exocytosis rate. Individual data 

points represent averages for each cell. 

(B) The table for values obtained from fitting of ΔCm (t). Means ± SEMs are shown. 



Results 

31 

 

3.1.3 Auditory systems consequences of the disruption of RIM2 

Finally, we tested the hearing capability of RIM2-/-
 mice by measuring auditory 

brainstem responses (ABRs). Mice were anesthetized intraperitoneally with either 

ketamine plus xylazine or urethane plus xylazine, and the data was pooled because no 

significant difference in ABR thresholds was detected between ketamine/xylazine 

anesthetized group and urethane/xylazine anesthetized group. In ABR the first wave 

(wave I) is a representation of the compound action potential in the spiral ganglion 

neurons. Then the wave II is primarily generated by glubular cells in the cochlear 

nucleus (CN). The wave III is partly generated by spherical cells in the CN and partly 

by their targeting cells. The waves IV and V are generated by MSO principal neurons. 

(Melcher JR and Kiang NY. 1996c). Despite of unaltered amplitude of waves that were 

elicited by suprathreshold stimuli (Figure 13A), RIM2-/-
 mice showed higher 

thresholds than RIM2+/+
 mice at all frequencies examined (Figure 13B) as well as 

prolonged latencies to peaks of individual waves except for wave I (Figure 13C). 

DPOAE, which the active amplification by OHCs yields, were normally detected in 

RIM2-/-
 IHCs (Figure 13D). These results suggest that RIM2 is necessary for normal 

hearing, but it is currently unclear whether or how much it can be attributed to the 

presynaptic deficit observed in IHCs in vitro, since neither amplitude nor latency of 

wave I was significantly altered in RIM2-/-
 mice. Altered synaptic transmission in the 

auditory brainstem might predominantly underlie the threshold shift observed in 

RIM2-/-
 mice. 
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Figure 13  The auditory brainstem response and the distortion product of 

otoacoustic emission from RIM2 knockout mice 

(A) Auditory brainstem response (ABR) evoked by 80 dB clicks in RIM2α+/+ (black) 

and RIM2α -/- (red) mice. 

(B) ABR audiograms obtained by tone burst or click stimulation in RIM2α+/+ and 

RIM2α -/- mice. Asterisks (*) show significant difference (p < 0.05). 

(C) Latency to peak of the each wave at various sound pressure levels. RIM2α -/- 

mice showed significantly longer latencies to wave peak in all waves except for 

wave I. 

(D, E) Input-output relationship of DPOAE at 12 kHz (D) and 16 kHz (E) tone bursts 

derived from RIM2α+/+ and RIM2α -/- mice. No significant difference. 

 

3.2  Probing presynaptic function of clarin-1 at the IHC ribbon synapse  

The elevated ABR thresholds in clarin-1 knockout (Clrn1
-/-

) mice shown by a previous 

study (Geng et al., 2009) and reports on a presumptive IHC synaptic phenotype in 

Clrn1
-/-

 mice (Bitner-Glindzicz et al., 2000; Zallocchi et al., 2009) motivated our 

investigation of their presynaptic function in IHCs. Our collaborators in parallel studied 
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mechanoelectrical transduction at hair bundles and assessed the number of ribbon 

synapses (Geng et al., 2012). I explored the physiological impact of the null mutation in 

clarin-1 on exocytic membrane capacitance changes (Cm) in response to Ca
2+

 currents 

(ICa) evoked by step depolarizations by perforated-patch recordings from IHCs in 

hearing mice (P14-20). I found that neither the integral of CaV1.3-mediated Ca
2+

 

currents upon depolarization nor corresponding Cm was different between Clrn1
-/-

 and 

Clrn1
+/+

 IHCs (Figure 14C). In summary, Clrn1
-/-

 IHCs showed normal ICa and Cm in 

response to hair cell depolarizations. These results argue against an essential function of 

clarin-1 at the IHC ribbon synapse. 

 

Figure 14  Patch-clamp analysis of presynaptic function of clarin-1 at the IHC ribbon 

synapse 

(A) Representative exocytic membrane capacitance changes (Cm, top) and Ca2+ 

currents (ICa, bottom) in response to 50 ms depolarization from a resting potential of 

-84 mV to -14 mV in Clrn1-/- (grey) and Clrn1+/+ (black) IHCs. 

(B) Grand average Cm and QCa for step depolarizations to 14 mV of variable 

durations. All responses are given as grand averages (calculated from the means of 

the individual cells) ± SEM.  

(C) Current-voltage relationship for Cav1.3 Ba2+ currents in control (black, n= 12 IHCs) 

and mutant (n = 10 IHCs) IHCs. Currents were evoked by 10 ms step depolarizations 

from a resting potential of -84 mV to variable potentials and their peak current was 

plotted against test potential. 
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4.  Discussion 

4.1  RIM2 regulates L-type Ca
2+

 current and Ca
2+

-triggered exocytosis at the 

IHC ribbon synapse 

I demonstrated that the IHCs of hearing mice express RIM2 and RIM3, but not other 

isoforms of RIMs, at their active zones and that RIM2 plays a regulatory role in 

synaptic transmission at the IHC ribbon synapse. This study, for the first time, 

demonstrates functional roles of RIM2, after previous studies failed to assign any roles 

to it (Schoch et al., 2006). Strikingly, the IHC ribbon synapse and central synapses do 

not share common isoform(s) of -RIMs to control Ca
2+

-triggered release, presumably 

due to their different origins (sensory epithelium versus neuron). This is in line with 

other previous findings, which show that the IHC ribbon synapse differs from other 

synapses in some respects. In addition to using CaV1.3 L-type Ca
2+

 channels for 

secretion control, the IHCs likely utilize Otoferlin instead of the conventional Ca
2+

 

sensor synaptotagmins to mediate Ca
2+

-regulated vesicle fusion (Roux et al., 2006) and 

vesicle replenishment (Pangršič et al., 2010). Moreover, the IHC ribbon synapse seems 

to operate without neuronal SNARE proteins (Nouvian et al., 2011). Thus, the IHC 

ribbon synapse operates in a specialized manner so that it can keep pace with 

submillisecond-order stimuli, in order to perform fast and faithful sound encoding (for 

review, see Pangršič et al., 2012). 

   Previous work studied the functions of RIMs at conventional active zones using 

conventional or conditional knockout mouse lines. At the hippocampal CA3-CA1 

synapse of RIM1 knockout mice, Ca
2+

-triggered release was reduced (Calakos et al., 

2004) and short-term synaptic plasticity was altered (Schoch et al., 2002). Deletion of 

RIM1 reduced release probability in excitatory synapses in the amygdala (Fourcaudot 

et al., 2008) just like it did in the inhibitory synapses in the hippocampus (Kaeser et al., 

2008a). In the absence of RIM1, LTP was abolished in the excitatory synapses in the 

hippocampus (Castillo et al., 2002; Huang et al., 2005; Pelkey and McBain, 2008) and 

the cerebellum (Castillo et al., 2002; Lonart et al., 2003; Simsek-Duran et al., 2004) as 

well as it was in the inhibitory synapses in the cerebellum (Lachamp et al., 2009). LTD 

was also abolished in inhibitory synapses in the hippocampus and the amygdala 
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(Chevaleyre et al., 2007). Kaeser et al. (2008a) showed that double-knockout of RIM1 

and RIM1 reduced release probability in the CA3-CA1 synapse and further abolished 

LTP in the DG-CA3 synapse and LTD in the inhibitory interneuron synapses of the 

hippocampus. Moreover, double-knockout of RIM1 and RIM2 reduced the 

amplitude and increased failure rate of evoked release at the embryonic neuromuscular 

junction (Schoch et al., 2006). Furthermore, conditional double knockout of RIM1 and 

RIM2 disrupted synaptic transmission by decreasing Ca
2+

 channel density and number 

of docked and readily releasable vesicles at the active zone of the calyx of Held synapse 

in the auditory brainstem (Han et al., 2011). As already stated, knockout of RIM2 

alone caused no synaptic deficits (Schoch et al., 2006).  

In this study, however, I demonstrated that RIM2, as a key player, regulates 

the CaV1.3-mediated Ca
2+

 current and synaptic vesicle replenishment at the IHC ribbon 

synapse (Figure 15). I postulate that the reduced CaV1.3 Ca
2+

 current reflects a reduction 

in the number of Ca
2+ 

channels, which also impairs synaptic Ca
2+

 influx. This is 

consistent with findings at the calyx of Held (Han et al., 2011) and excitatory synapses 

of hippocampal neurons in culture (Kaeser et al., 2011). While not yet tetsted by 

electron microscopy, I conclude from the unaltered RRP size that the number of 

membrane-proximal vesicles is not changed in the absence of RIM2 Thereby the IHC 

afferent synapse deviates from the calyx of Held synapse, which showed a reduced RRP 

in the absence of -RIMs (Han et al., 2011). Moreover, my finding of an impaired 

vesicle replenshiment reports a yet unknown RIM function. 
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Figure 15  Schematic representation of putative functions of RIM2 at the IHC 

ribbon synapse 

Membrane-associated vesicles (red), ribbon tethered vesicles (blue) are shown. The 

width of arrows indicates the rate of synaptic vesicle replenishment. It is postulated 

that RIM2-knockout IHCs show a normal number of membrane-associated vesicles, 

but reduced density of CaV1.3-type Ca2+ channels (black) and slower replenishment 

of synaptic vesicles (arrows). Yellow clouds around the Ca2+ channels shows Ca2+ 

nanodomains for triggering synaptic vesicle fusion. RIM2 might interact with 

CaV1.3-type Ca2+ channels as well as synaptic vesicles via Rab3 (green). 

 

4.2  Discrepancy between the in vitro finding of impaired vesicle replenishment 

with reduced Ca
2+

 currents and the in vivo finding of relatively intact auditory 

brainstem responses 

Table 3 is a summary of the exocytic parameters obtained by presynaptic capacitance 

recordings from IHCs in RIM2 knockout mice, Bassoon mutant mice with a deletion 

of exon 4/5 (BSN
Ex4/5

, Khimich et al., 2005), and Otoferlin mutant mice with a single 

amino acid substitution of D1767G in the C2F domain (Pachanga, Pangršič et al., 

2010).  
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RRP size 

(fF) 

RRP depletion 

time constant (ms) 

Sustained 

exocytosis 

 (fF/sec) 

Ref 

RIM2+/+ 8.8 6.8 730 
this study 

RIM2-/- 10.6 5.0 155 

 
BSNwt 15-18 8-9 265 Khimich et al., 

2005 BSNEx4/5 5 11 ? 

 
Otof +/+ 7.0  5.2 391 Pangršič et al., 

2010 OtofPga/Pga 9.4  3.9 98 

Table 3  Quantification of exocytosis in RIM2, Bassoon, and Otoferlin mutant IHCs 

 

The RIM2-/-
 and Otof 

Pga/Pga
 IHCs share a common phenotype of slower sustained 

exocytosis with intact RRP size and RRP depletion rate. The slower sustained rate in 

both mutants is compatible with their roles in synaptic vesicle replenishment potentially 

related to priming or active zone clearance. The intact RRP size and RRP depletion time 

constant in the RIM2-/-
 IHCs suggest that RIM2 is not essential for docking and 

fusion of synaptic vesicles at the active zones of IHC ribbon synapse. In contrast, the 

BSN
Ex4/5

 IHCs have a unique phenotype of reduced synaptic complement of Ca
2+

 

channels, fewer docked vesicles resulting in a reduced RRP size and slower sustained 

exocytosis (Khimich et al., 2005; Frank et al., 2010). Finding impaired sustained 

exocytosis in RIM2 and otoferlin mutants is interesting also because those mice show 

very different hearing. While ABRs are relatively maintained in RIM2
-/- 

, the 

Pachanga mice essentially lack ABRs. The difference could be a quantitative one: the 

rate of sustained exocytosis of RIM2α
-/-

 IHCs was almost twice as high as in the 

Pachanga IHCs. This might be caused by higher probaboility of spike generation in the 

type I spiral ganglion neurons at the RIM2
-/-

 IHC affferent synapse due to following 

mechanisms: down-regulated K
+
 channels leads enhanced excitability of afferent 
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dendrites, and/or impaired developmental pruning of synaptic contacts (for review, see 

Bulankina et al., 2012). Additional works on single auditory nerve fiber responses and 

synaptic ultrastructure in RIM2
-/- 

will be needed to further clarify the issue.   

   Finally, a recent study has shown that -RIMs are expressed in a variety of neurons 

in the cortex, cerebellum, olfactory bulb, and retina. Remarkably, RIM3, but not 

RIM4, exhibits a synaptic expression pattern. In contrast, RIM4 is ubiquitously 

expressed along axons and dendrites. Despite the differential localization, either of them 

controls the neuronal branching. With regard to the synaptic function of -RIMs, their 

knock-down decreases miniature EPSC amplitude recorded from primary cortical 

neurons (Fuentes, 2010). Thus, -RIMS might play substantial roles at other synapses 

including the cochlear hair cell synapses. However, further insight into the function of 

-RIMs at the IHC ribbon synapse is out of scope of the current study. 

 

4.3  Clarin-1 is dispensable for the ribbon synapse development and function 

In the present study, I provided evidence against a function of clarin-1 at the IHC ribbon 

synapse in hearing mice. Although previous studies predicted its involvement in hair 

cell synapse function (Adato et al., 2002, Geng et al., 2009, Zallocchi et al., 2009 and 

2012), I found no evidence of synaptic dysfunction in the absence of clarin-1. The 

Clrn1
-/-

 mouse cochlea (Zallocchi et al., 2012) exhibited no morphological changes in 

the development of the IHC ribbon synapse (present study). Moreover, Clrn1
-/- 

IHCs did 

not show larger Ca
2+ 

currents than wild-type controls, which was observed in athyroid 

IHCs at the same age (Sendin et al., 2007). These results further argue against a 

potential role of clarin-1 in the ribbon synapse development. Besides, a recent study 

ruled out an involvement of clarin-1 in photoreceptor function (Geller et al., 2009). 

Taken together, these sets of evidence suggest that clarin-1 is dispensable for ribbon 

synapse development and function. 

   In contrast, our collaborators have shown that clarin-1 is indispensable for 

development or maintenance of the hair bundles (Geng et al., 2012), as was indicated by 

preceding studies (Geng et al., 2009; Tian et al., 2009). The reduced amplitude of MET 

channel-mediated currents due to the disrupted hair bundles in Clrn1
-/-

 mice likely 
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underlies elevated thresholds and delayed latencies of peaks in ABRs. Thus, hearing 

loss in the USH type III mouse model is caused by a hair bundle deficit. 

   The cochlear implant, the only treatment for USH at present, showed satisfying 

outcomes in Finnish USH3 patients (Pietola et al., 2012). This also supports the fact that 

USH3 patients have no major synaptic deficits in the auditory ascending pathways after 

the SGNs, which the electrodes directly stimulate. Restoration of hair bundle function 

by gene therapy in USH3 patients would promise faithful sound encoding through the 

intact IHC ribbon synapse. 
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Abbreviations 

ABR   Auditory brainstem response 

ACh   Acetylcholine 

BK channel  Large conductance voltage and Ca
2+

 activated K
+
 channel 

Cm   Membrane capacitance 

Cm   Membrane capacitance increment 

CN   Cochlear nucleus 

CtBP   C-terminal binding protein 

DPOAE   Distortion-product otoacoustic emission 

EGTA   Ethylene glycol-bis-(2-aminoethyl)-N,N,N',N'-tetraacetic acid 

GluR   Glutamate receptor 

GSDB   Goat serum diluted buffer 

GTP   Guanosine 5’-triphosphate 

HEPES-HBSS  HEPES-buffered Hanks’ balanced salts solution 

IBa   Ba
2+

 current 

ICa   Ca
2+

 current 

IV   Current-voltage relationship 

IHC   Inner hair cell 

LOC   Lateral olivocochlear 

MET   Mechanoelectrical transduction 

MOC   Medial olivocochlear 

MSO   Medial superior olive 

OHC   Outer hair cell 

PBS   Phosphate-buffered saline 

PSTH   Poststimulus time histogram 

RIM   Rab3 interacting molecule 

RRP   Readily releasable pool 

RS   Series resistance 

RT-PCR  Reverse transcription polymerase chain reaction  
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SGN   Spiral ganglion neuron 

SK2   Small conductance Ca
2+

 activated K
+
 channel 

SNARE   Soluble NSF attachment protein receptor 

SOC   Superior olivary complex 

SPL   Sound pressure level 

TEA-Cl   Tetraethylammonium chloride 

VGCC   Voltage-gated Ca
2+

 channel 

WT   Wild-type 
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