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IV. Abstract 

 

The transcription factor NF-κB is a major player in a wide variety of crucial cellular 

functions such as proliferation, apoptosis, invasion as well as inflammation. However in 

the human epidermis, opposite, growth inhibitory effects have been associated with 

NF-κB activation. Epidermal homeostasis constitutes a prerequisite for maintaining a 

healthy skin barrier involving balanced proliferation and differentiation of epidermal 

keratinocytes. Various insults such as prolonged exposure to sunlight can induce 

deregulation of epidermal homeostasis leading to epidermal neoplasm development such 

as actinic keratosis or squamous cell carcinoma (SCC).  

The major aim of this thesis was to elucidate the expression and function of NF-κB 

subunits in human keratinocytes in vitro. Transient downregulation revealed a novel role 

for c-Rel in several aspects of keratinocyte cell fate decisions. In contrast to former 

studies associating inhibition of the NF-κB proteins p50 and p65 with growth induction, 

downregulation of c-Rel led to keratinocyte growth inhibition. Concomitantly, cell cycle 

regulation was modified showing accumulation of mitotic cells with aberrant, 

predominantly monopolar mitotic spindle formation. Furthermore, increase in apoptosis 

resulting from c-Rel downregulation might be a consequence of prolonged mitotic arrest 

of those keratinocytes. Therefore, we suggest c-Rel being involved in regulation of mitotic 

entry or proceeding, however, specific target genes have not been identified yet. 

Furthermore, c-Rel downregulation yielded phenotypic modifications of immortalized 

HaCaT keratinocytes with a more spindled morphology and altered growth pattern. 

Adhesion and especially wound healing responses were abrogated in HaCaT cells, which 

could be attributed to diminished stress fiber appearance. However, this effect was not 

observed in c-Rel downregulated primary keratinocytes, possibly attributing to acquired 

mutations in the HaCaT keratinocyte cell line.  
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In summary, this thesis elucidated the role of the single NF-κB proteins, especially of c-Rel 

in keratinocytes, thus contributing to a better understanding of the multi-facetted and 

complex regulation of NF-κB related functions and effects on epidermal homeostasis.  
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1. Introduction 

1.1 The human epidermis and terminal differentiation 

The human epidermis constitutes the multilayered outer barrier of the skin 

protecting the organism against a wide range of external influences, e.g. against 

UV-radiation, bacterial and viral infection as well as dehydration. More than 90 % of 

cells within the epidermis are keratinocytes; the remaining cells comprise melanocytes, 

Merkel cells and Langerhans cells. The innermost epidermal cell layer directly adjacent 

to the basement membrane is the basal layer followed by the spinous layer, granular 

layer and finally the outermost layer, the cornified layer or stratum corneum (Figure 1).  

 

 

Figure 1: Schematic illustration of the human skin with enlarged epidermal layers (Neill, 2012). 
On the left side, a basic scheme of the human skin is depicted with blood and lymph vessel 
pervading dermis and adjacent epidermis. In the enlarged box, epidermal layers are shown with 
basement membrane (purple line) and underlying dermis. 

 



1. INTRODUCTION 

 
 
 

 
 

2 
 

Under physiologic conditions, the ability of keratinocytes to proliferate is 

restricted to the basal layer of the epidermis. Basal keratinocytes show expression of 

keratins 5 and 14, are polarized and connected via hemi-desmosomes to the basement 

membrane. When a basal keratinocyte moves into suprabasal layers, terminal 

differentiation is initiated, a transitory and tightly regulated process: In the spinous 

layer, keratin expression switches to keratin 1 and 10 expression, respectively, leading 

to a more robust intermediary filament network further intensified by desmosomal 

interlinkage (Fuchs and Green, 1980). Concomitantly, lysine and glutamine-rich proteins 

such as involucrin are being expressed (Rice and Green, 1979). In the granular and 

cornified layer, keratinocytes flatten and de-nucleate while further structural proteins 

such as loricrin and filaggrin are synthesized as late differentiation markers, get 

enzymatically crosslinked and build up a proteinaceous sac. Finally, together with 

released lipid bilayers and the keratinocyte envelop, the water impermeable outermost 

skin barrier is formed. Typically, the life cycle of a keratinocyte starting in suprabasal 

layers until being shed of the skin surface takes about four weeks. 

The molecular mechanism of initiation of terminal differentiation involves multiple 

regulatory levels (Blanpain and Fuchs, 2009). Implications for the transcription factor 

p63 belonging to the p53 tumor suppressor family have been made as well as for the 

canonical Notch signaling pathway (Blanpain et al., 2006; Koster et al., 2004; Koster and 

Roop, 2007; Mills et al., 1999; Rangarajan et al., 2001; Senoo et al., 2007; Truong et al., 

2006; Watt et al., 2008; Yang et al., 1999). Further increasing its complexity, also timely 

expression of specific microRNAs (miR-203) as well as histone modifications seem to be 

required for accuracy of this process (Andl et al., 2006; Kouzarides, 2007; Yi et al., 2008). 

However, the exact interplay and orchestration is still topic of ongoing research. 
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1.2 Epidermal homeostasis and epidermal neoplasms 

Epidermal homeostasis describes the steady state between proliferating basal 

keratinocytes, differentiation of keratinocytes in suprabasal layers and final shedding of 

keratinocyte remnants from the cornified layer. To replenish the pool of basal 

keratinocytes, continually dividing cells are required. This task is mediated by epidermal 

stem cells residing in hair follicles, sebaceous glands and the basal layer. Distinctions are 

made between stem cells with unlimited proliferative capacity and transient amplifying 

(TA) cells with the ability to divide several times before undergoing differentiation 

(Alberts, 2002). In combination, stem cells and TA cells guarantee a continuous renewal 

of the epidermis thus sustaining epidermal homeostasis. 

Environmental factors such as UV-radiation may dysregulate epidermal 

homeostasis and consecutively induce precancerous skin lesions such as actinic 

keratosis (AK). Histologic features of AK include atypical keratinocytes in the basal layer 

of the epidermis, interfering with terminal differentiation of keratinocytes resulting in a 

thickened hyperparakeratotic cornified layer. Furthermore, up to 60 % of AK evolve into 

squamous cell carcinomas (SCC) of the skin (Marks, 1990). SCC constitute the second 

most common skin cancer type after basal cell carcinoma (BCC) with an estimated 

incidence of 34.000 in Germany in 2008 (Robert Koch-Institut, 2012). SCCs are also 

comprised of atypical keratinoytes additionally showing invasive growth into the dermis 

(Ratushny et al., 2012). Multiple signaling pathways are known to be involved in SCC 

development, however, the exact mechanisms have to date not to been fully elucidated. 

Nonetheless, p53 and Ha-ras mutations are frequently found in SCC (Brash and Ponten, 

1998; Nelson et al., 1994). 
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1.3  The transcription factor NF-κB 

More than 25 years ago, the ubiquitously expressed transcription factor NF-κB was 

discovered by Baltimore and colleagues while studying the regulation of B-cell 

development (Singh et al., 1986). Since that time, NF-κB became one of the most 

intensively studied transcription factors due to its involvement in various crucial cellular 

processes. NF-κB activation has been associated with immune responses, anti-apoptotic 

and pro-proliferative characteristics as well as tumorigenesis (Karin, 2006). Furthermore, 

NF-κB dysregulation has been shown in various haematological malignancies, 

mesenchymal as well as epithelial malignant tumors like breast cancer (Sovak et al., 

1997).  

 

1.3.1 Structure of the five NF-κB subunits 

NF-κB activates its target genes as a homo- or heterodimer composed of a 

combination of two of the five NF-κB subunits p50, p52, p65 (also known as RelA), RelB 

as well as c-Rel (Figure 2). Besides RelB homodimers, all dimer combinations have been 

previously described, the most abundant dimer form however constitutes the p50/p65 

heterodimer (Chen and Greene, 2004). 
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Figure 2: Schematic structure of the five NF-κB proteins (modified from Chen and Greene, 
2004). 

The five NF-κB proteins contain a Rel Homology Domain (RHD) mediating DNA binding, 
dimerization and binding to inhibitory proteins additionally carrying the Nuclear Localization 
Signal (NLS) mediating translocation into the nucleus. The subunits p50 and p52 are shown 
together with their precursor forms p105 and p100, respectively harboring large inhibitory 
ankyrin repeats. RHD= Rel Homology Domain, NLS= Nuclear Localization Signal, TAD= 
Transactivation Domain, GRR= Glycine Rich Region, LZ= Leucine Zipper. 

 
 

All NF-κB proteins contain a conserved, N-terminal Rel Homology Domain (RHD) 

mediating dimerization and DNA-binding while also harboring the nuclear localization 

signal (NLS). Both p50 and p52 are synthesized as precursor forms p105 and p100, 

respectively, with large inhibitory ankyrin repeats at their C-terminus. When activated, 

the C-terminal part is removed via proteolytic processing resulting in the active protein 

(p50 or p52), which may then translocate - together with its dimer partner - into the 

nucleus. In contrast, the Rel proteins (p65, RelB and c-Rel) harbor C-terminal 

transactivation domains (TAD) further positively affecting target gene activation.  

Although belonging to one transcription factor family, each NF-κB subunit seems 

to exert highly diverse functions. For example, knockout studies showed massive 

hepatocyte apoptosis and subsequent death for rela-/- mice during early embryonic 

development (Beg et al., 1995). In contrast, relb-/- mice are vital and develop a T-cell 

dependent inflammatory dermatitis (Barton et al., 2000). nfĸb2-/- and nfĸb1-/- mice 

develop normally with smaller defects in immune responses (Caamano et al., 1998; Sha 

et al., 1995). However, in c-rel-/- mice, aberrant T-cell functions and alterations for 

B-cells were detected (Kontgen et al., 1995; Tumang et al., 1998).  
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1.3.2 NF-κB signaling and activation 

Under quiescent conditions, most NF-κB dimers are retained in the cytoplasm 

bound to a member of the inhibitor of NF-κB family (IκB). Upon activation, the 

respective stimuli determines which of the two major pathways is initiated, the classical 

(canonical) or the alternative (non-canonical) signaling pathway (Figure 3).  

 

Figure 3: Major activation pathways of NF-κB (Sur et al., 2008). 
Classical signaling (shown on the left side) involves activation of an IKK complex composed of 
IKKα, IKKß and IKKγ phosphorylating IκBα leading to its proteasomal degradation and the freed 
translocation of the respective NF-κB dimer, here p50 together with p65 which is subsequently 
traveling into the nucleus activating its target genes. The alternative pathway (on the right side) 
involves activation of an IKKα homodimer by NF-κB inducing kinase (NIK) leading to 
phosphorylation of p100 bound to RelB and proteasomal processing to an active p52/RelB dimer 
travelling into the nucleus binding to promoters of specific target genes. 
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The classical pathway is activated as a response to microbial or viral infections by 

pro-inflammatory stimuli such as tumor necrosis factor α (TNFα). This indirectly initiates 

activation of the IκB kinase (IKK) complex composed of IKKα, IKKβ and IKKγ (NEMO) 

further activating the inhibitory protein IκBα which is bound to the NF-ĸB dimer (mostly 

p50 and p65, sometimes involving c-Rel) normally retaining the dimer in the cytoplasm. 

Activation leads to ubiquitinylation and proteasomal degradation of IκBα resulting in 

release of the NF-κB dimer and translocation into the nucleus with subsequent target 

gene activation. The second major pathway, the alternative pathway, mainly involves 

p52/RelB heterodimers and is activated by lipopolysaccharides (LPS) or CD40 inducing 

IKKα homodimers, leading to proteasomal processing of p100 to p52 and p52/RelB 

dimer translocation into the nucleus (Senftleben et al., 2001). The alternative pathway is 

described as being crucial for secondary lymphoid organ development and B-cell survival 

and -maturation (Bonizzi et al., 2004).  

Only little is known about dimer-specific modes of action since studies usually 

focus on p65, the most prominent NF-κB protein. The NF-κB nucleotide binding 

sequence is highly conserved, however, it is suggested that interaction of the respective 

NF-κB dimer with other transcription factors, chromatin and co-regulatory proteins or 

posttranslational modifications regulate different sets of target genes and thus different 

outcomes (Smale, 2012).  

 

1.4 Cell cycle regulation and mitosis 

Activity of NF-κB is associated with cell fate decisions such as cell proliferation thus 

involving cell cycle regulation. Generally, the cell cycle can be subdivided into four 

phases: Gap 1 (G0/G1) phase, Synthesis (S) phase, Gap 2 (G2) phase as well as Mitosis 

(M) phase (Figure 4). 
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Figure 4: Schematic illustration of cell cycle phases and associated regulatory proteins 
(modified from Peters, 2002). 

The four cell cycle phases G1 (early and late), S, G2, and M are depicted as parts of the black 
circle whereas G0 phase is shown on the outside indicating the ability of G0 phase cells to 
re-enter the cell cycle. The associated cyclin (black ellipse)/CDK (grey ellipse) complexes are 
depicted at the corresponding cell cycle phase together with the according phosphorylation 
status of the retinoblastoma tumor suppressor protein (Rb) (black circle). Respective inhibitory 
proteins are shown at the corresponding cell cycle phase in grey boxes and indicate their target 
complexes with black inhibitory arrows. 

 

To reassure all conditions are met for entering the next stage of the cell cycle, 

there are several cell cycle checkpoints serving as control mechanisms able to delay 

progression from one phase to the next, thereby ensuring cellular integrity. During 

G1 phase, a cell prepares for DNA replication and can be influenced by mitogenic or 

growth inhibitory signals resulting either in proceeding, pausing or exiting of the cell 

cycle regulated by the G1/S phase cell cycle checkpoint. Transition from G1 to S phase is 

positively affected by complexes of cyclin D (D1, D2 or D3) along with the cyclin 

dependent kinases CDK4 or CDK6. These complexes and subsequently also cyclin E/CDK2 

complexes activate the central retinoblastoma tumor suppressor protein (Rb) which in 

turn induces expression of other proteins resulting in cell cycle progression and DNA 

synthesis.  
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However, cell cycle progression from G1 to S-phase can be inhibited by cyclin 

dependent kinase inhibitors (CKIs), either Cip/Kip family members like p21CIP1 or p27KIP1 

or INK4 family members such as p15INK4B or p16INK4A (Figure 4).  

Following DNA replication during S phase, cells proceed into G2 phase and prepare 

for mitosis, which is positively affected by cyclin A/CDK1 complexes. The G2/M 

checkpoint prevents premature entry into mitosis in case of DNA replication errors for 

instance. In late G2 phase and during mitosis, cyclin A/cdc2 complexes and cyclin B/cdc2 

complexes promote mitotic entry and proceeding. Several regulators of these 

complexes have been identified, e. g. protein kinase wee1 which is able to inactivate 

cdc2 at Tyr15 and/or Thr14 leading to cell cycle pausing whereas wee1 activity status is 

reversely dependent on cdc2 activity (Peters, 2002; Vermeulen et al., 2003). However, 

Cip/Kip family proteins such as p21CIP1 or p27KIP1 are also capable of inhibiting cyclin 

B/cdc2 and cyclin A/cdc2 complexes (Figure 4).  

Mitosis comprises separation and equal distribution of condensed replicated 

chromosomes onto two daughter cells. The four major mitotic stages include prophase, 

metaphase, anaphase, and telophase (Figure 5). 
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Figure 5: Schematic illustration of major mitotic phases and associated processes (modified 

from Ruchaud et al., 2007). 
During prophase (A), chromosomes (blue) are condensating while centrosomes (red structures 
outside the nucleus) move to opposite cellular poles followed by nuclear envelop breakdown 
(indicated by interruptions in outer grey circle). The chromosomal passenger complex (CPC, 
green spots) is localized along the chromosome arms, mostly to the centromeres adjacent to 
both kinetochors (pink spots). In metaphase (B), the chromosomes are aligned and their 
kinetochores are attached to the evolved mitotic spindle (red filamentous structures) while the 
CPC is localized to the centromeres. During anaphase (C), sister chromatids are pulled towards 
each cellular pole by dynamic mitotic spindle disassembly whereas the CPC stays localized to the 
spindle midzone. In telophase (D), chromosomes are decondensating and cellular abscission 
occurs with CPC involvement.  

 

During mitotic prophase and concomitant with chromosome condensation, the 

previously duplicated centrosomes separate, move to opposite cellular poles and 

establish microtubule organization centers (MTOCs) regulating mitotic spindle assembly. 

Then, nuclear envelope breakdown (NEB) occurs allowing the newly formed mitotic 

spindles to start interacting with the chromosomes kinetochors aligning them at the 

metaphase plate in metaphase. Correct attachments of spindle microtubules to the 

kinetochors of each sister chromatid are a prerequisite for pulling the chromatids apart 

during anaphase and for finally moving a complete set of chromosomes to each cellular 

pole. Microtubule attachments to kinetochors are monitored by the spindle assembly 

checkpoint (SAC) which prevents premature entry into anaphase thus guaranteeing 

proper chromosome segregation (Rieder et al., 1994). SAC activation is triggered by 

inappropriately attached kinetochores and involves amongst a variety of proteins the 

kinases budding uninhibited by benzimidazole 1 (Bub1), budding uninhibited by 

benzimidazole related 1 (BubR1) and monopolar spindle 1 (Mps1) (Musacchio and 

Salmon, 2007). Together, they form the mitotic checkpoint complex (MCC) protecting 

cyclin B from degradation thus preventing transition to anaphase (Musacchio, 2011). 
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When meeting the conditions for transition to anaphase, sister chromatids are 

separated and pulled to opposite spindle poles. During telophase and cytokinesis, 

chromosomes de-condensate, a new nuclear envelop is formed and a contractile 

acto-myosin ring regulates abscission of the two daughter cells (Figure 5). 

Concomitant with initiation of mitotic chromosome condensation, histone H3 

phosphorylation at serine 10 occurs starting in late G2 phase reaching its maximum 

during metaphase and disappearing in late anaphase or early telophase (Hendzel et al., 

1997). Aurora B kinase regulates as one part of the chromosomal passenger complex 

(CPC) this phosphorylation event, which is involved amongst others in correct 

microtubule attachments to the chromosomes kinetochores. Besides aurora B, the CPC 

comprises three functional components; survivin, borealin/Dasra-B as well as the inner 

centromere protein (INCENP). CPC localization changes with mitotic stages: In prophase, 

it persists on chromosome arms while during metaphase, the CPC is localized to 

centromeres correcting misattachments to kinetochores thereby supporting SAC 

functions. After metaphase, its localization is shifted to the spindle midzone, the 

equatorial cortex and finally to the midbody in telophase involved in abscission 

(Ruchaud et al., 2007; Vader et al., 2006, Figure 5).  

 

1.5 Molecular mechanisms of cellular migration and adhesion 

NF-κB activation is also associated with tumor invasion usually involving basic 

cellular processes such as cellular migration and motility. As a prerequisite, the adhesion 

process is deeply intertwined with migration but also showing some differences: 

Whereas adhesion involves the attachment of a cell to a substrate accompanied by 

clustering of adhesion receptors and bundled actin filaments, migration additionally 

involves alternating adherence and dis-adherence from the substrate leading to cellular 

motility (Kim et al., 1994).  
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Integrins are classical adhesion receptors acting as variable heterodimers with 

high affinity for specific sequence motifs on extracellular matrix (ECM) proteins. 

Integrins own an extra- and an intracellular domain undergoing conformational changes 

upon binding. On the intracellular domain, adhesion induces linkage to the actin 

cytoskeleton via multi-protein complexes called adhesomes. Adhesomes are connected 

to filamentous actin (F-actin) which is generated out of monomeric globular actin 

(G-actin) involving actin nucleating proteins such as actin related proteins 2 and 3 

(Arp2/3) (Pollard, 2007).  

Based on the adhesion process, the migration cycle of one single cell involves the 

extension of actin-based lamellipodia at the cell front, which are broad and flat 

membrane protrusions as well as filopodia, smaller and finger-like actin protrusions. 

Anchoring of protrusions occurs as previously described. However during migration, 

thicker and bundled actin filaments are necessary for cellular movement; stress fibers. 

Stress fibers subsequently mediate movement of the cell body and retraction of the cell 

rear by generating traction forces together with myosin II finally completing one single 

migratory cycle (Vicente-Manzanares and Horwitz, 2011). 

 

1.6 NF-κB in epidermal homeostasis and SCC development 

In various cell types NF-κB activation is associated with tumor-promoting 

characteristics such as proliferation, anti-apoptosis and invasion (Karin, 2006). However, 

in human epidermis NF-κB exerts opposite effects: Immunohistochemical staining of 

NF-κB p50 in human epidermis showed cytoplasmic localization in basal, proliferating 

keratinocytes whereas in suprabasal keratinocytes, signals were localized to the nucleus 

(Seitz et al., 1998). Subsequent functional studies using an IκBα mutant (IκBαM) to 

inactivate the classical NF-κB signaling pathway revealed a hyperplastic epidermis in vivo 

and increased proliferation of human primary keratinocytes in vitro.  
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Concurrently, embryonic epidermis of rela-/- mice transplanted onto immune-deficient 

scid/scid mice resulted in hyperproliferation and showed similar effects in the human in 

vitro system (Zhang et al., 2004). Furthermore, overexpression of p50 and p65 induced 

the contrary effect, a hypoplastic epidermis in vivo as well as reduced cell growth of 

human keratinocytes in vitro (Seitz et al., 1998).  

Besides phenotypic changes of transfected cells overexpressing p50 or p65, 

molecular analyses showed upregulation of cyclin dependent kinase inhibitor (CKI) 

p21Cip1/WAF1. In primary keratinocytes, p21Cip1/WAF1 induction led to G1 phase cell cycle 

arrest without affecting expression of early differentiation markers (Seitz et al., 2000a). 

Additionally, when studying apoptosis, a protective effect of both p50 and p65 by 

induction of anti-apoptotic factors TRAF1, TRAF2 and c-IAP1 and c-IAP2 was shown in 

primary keratinocytes (Seitz et al., 2000b).  

Interestingly, generation of mice also using the IκBα mutant however under the 

control of a different promoter (keratin 5 instead of keratin 14 as used by Seitz and 

colleagues) resulted in development of dysplasia as well as spontaneous and rapid 

appearance of SCC (van Hogerlinden et al., 1999). Subsequent studies revealed SCC cells 

to be aneuploid and to arise without the involvement of known SCC-inducing p53 or 

Ha-ras mutations. Furthermore, in mouse keratinocytes NF-κB inhibition could be 

associated with defective cell cycle checkpoint control in response to DNA damage (van 

Hogerlinden et al., 2002). However in the human system, NF-κB inhibition alone is not 

sufficient to induce SCC development. Expression of oncogenic active Ras in normal 

human keratinocytes induced cell cycle arrest, which could be bypassed by 

co-expression with IκBαM leading to SCC-like tumor formation (Dajee et al., 2003). Up to 

now, only few studies focused on the expression of NF-κB proteins in SCC, however, one 

suggested NF-κB modulation of SCC associated gene expression in a murine model and 

showed dysregulation of NF-κB. Ambiguously, NF-κB inactivation seemed to reduce 

malignant phenotypic features here (Loercher et al., 2004). 
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1.7 Aim of this study 

Previous studies investigating the impact of NF-κB on epidermal keratinocytes 

focused on role of the classical NF-κB signaling pathway, i. e. the NF-κB proteins p50 and 

p65. These former studies most importantly revealed a negative growth control by NF-κB 

activation. While expression of the less frequently studied NF-ĸB subunits RelB, c-Rel and 

p52 has been shown in human epidermis as well as in primary keratinocytes (Takao et 

al., 2003), little is known on the functional contribution of these NF-κB subunits in the 

epidermis and primary keratinocytes, respectively. One functional approach revealed 

growth inhibition of primary human keratinocytes overexpressing p52, RelB and c-Rel, 

however pursuing experiments have not been performed (Hinata et al., 2003).  

Therefore, this work aimed at unraveling the functional contribution of the five 

NF-κB subunits to epidermal homeostasis. Since the aforementioned studies showed 

pro-proliferative and thus tumor-promoting characteristics when both p50 and p65 

where inhibited, effects of transient downregulation of each single NF-κB subunit were 

examined. Subsequently, typical NF-κB associated characteristics relevant during 

initiation and progression of epidermal carcinogenesis such as proliferation including cell 

cycle regulatory changes, apoptosis and migration, were analyzed. Initially, the 

spontaneously immortalized HaCaT cell line was used to characterize downregulation 

associated aspects and was later complemented by studies in primary epidermal 

keratinocytes. 
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2 Material and Methods 

2.1 Material 

Table 1 : Equipment list 

Laboratory equipment Company 

Appliskan Multimode Microplate Reader Thermo Scientific 

Autoclave Sanyo  

BD FACSCanto II BD Biosciences 

Cary 50 Micro-Volume TrayCell Kit Hellma 

Centrifuge Multifuge 15-R Heraeus 

Centrifuge Pico 17 Heraeus 

CO₂ Incubator HeraCell 150i Heraeus 

Cryo Freezing Container  Nalgene 

Double Distilled Water System Arium® 611VF Sartorius 

Electrophoresis Power Supply-EPS 1001 Amersham Biosciences 

Gel Imaging System U:Genius Syngene 

Gradient Thermocycler Mastercycler  Eppendorf 

LAS-4000 Imaging System Fujifilm 

Magnet Stirrer VWR 

Micro Scale ALC Acculab 

Microcentrifuge Sprout 

Microscope AxioImager M1 Zeiss 

Microscope Axiovert 200 Zeiss 

pH-Meter FE20-Five easyTM Mettler Toledo 

Pipette Set: 1,000, 100 and 10 μl Eppendorf 

PowerPac Basic Bio-Rad 

PowerPack P25 Biometra 

Refrigerated Centrifuge  Eppendorf 

Rocking Platform Polymax 1040 Heidolph 

Scale Vicon  Acculab 

See-Saw Rocker SSL4 Stuart 

Spectrometer Genesys 10Bio Thermo Scientific 
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Sterile Bench Heraeus 

Thermal Mixer ThermoStat Plus Eppendorf 

Trans-Blot SD Semi-Dry Transfer Cell Bio-Rad 

Vertical Electrophoresis System Mini-

PROTEAN®TetraCell  

Bio-Rad 

Vortex L46 Labinco 

Water Bath Memmert 

  

Table 2: Consumables 

Disposable/Material Company 

6-Well Plates Greiner Bio One 

8-Well CultureSlides BD Biosciences 

96-Well Plates, Flat Bottom Greiner Bio One 

Cell Culture Flasks 25 cm³, 75 cm³ Greiner Bio One 

Cell Scrapers Sarstedt 

Chromatography Paper Whatman™ GE Healthcare 

Coverglasses, 24 x 60 mm Menzel-Gläser 

Cryo Vials Cryo.S Greiner Bio One 

Culture-Inserts Ibidi 

Falcon Tubes 15 ml, 50 ml Greiner Bio One 

Filter Pipette Tips for PCR epT.I.P.S.® Eppendorf 

Filter Pipette Tips for RNA TipOne Starlab 

Freezing Tubes Cryo.S Greiner Bio One 

Imaging Chamber 4CG Zellkontakt 

Needle Microlance 3 BD Biosciences 

Nitrocellulose Membrane Bio-Rad 

Nylon Membrane, positively charged Roche 

PCR Reaction Tubes, 0.2 ml Biozym 

Pipette Tips 10 µl, 200 µl, 1,000 µl Starlab 

Plastic Cuvettes Sarstedt 

Plastic Pipettes 5 ml, 10 ml, 25 ml Sarstedt 

Polystyrene Round Bottom Tube, 5 ml BD Falcon 



2. MATERIAL AND METHODS 

 
 
 

 
 

17 
 

Reaction Cups 2 ml, 1.5 ml and 0.5 ml Eppendorf 

Syringe 1 ml Omnifix 40 solo B. Braun 

TechnoCut Scalpel HMD Healthcare 

 

Table 3: List of reagents 

Reagent Company 

4',6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich 

7x Protease inhibitor cocktail Roche 

Acetic acid Merck 

Aceton Carl Roth 

Acrylamide/ Bis-acrylamide, 30 % solution Bio-Rad 

Ammonium persulfate (APS) Gibco BRL 

Boric acid Carl Roth 

Bovine serum albumin (BSA) Carl Roth 

Bradford Reagent Bio-Rad 

Bromophenol blue Sigma-Aldrich 

BSA Standards, ready to use Fermentas 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich 

Dithiothreitol (DTT) Carl Roth 

dNTP mix, 10 mM Fermentas 

Ethanol Carl Roth 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth 

Fluorescence Mounting Medium Dako 

GelRed Nucleic Acid Gel stain, 10,000x Biotium 

Glycerol Sigma-Aldrich 

Glycine Merck 

Hydrochloric acid (HCl) Carl Roth 

Hydrogen peroxide (H2O2) Carl Roth 

Hydroxyethyl piperazineethanesulfonic acid (HEPES) Carl Roth 

LE Agarose Biozym 

Lipofectamine 2000 Invitrogen 

Luminol Sigma-Aldrich 
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Magnesium chloride (MgCl2) Merck 

Methanol Merck 

Nocodazole Sigma 

Non-fat dry milk (NFDM) Bio-Rad 

Nonidet P-40 (NP-40) USB 

p-Coumaric acid Sigma-Aldrich 

Phalloidin PromoFluor 555 PromoCell 

Ponceau S Sigma-Aldrich 

Potassium chloride (KCl) Carl Roth 

Potassium dihydrogen phosphate (KH2PO4) Merck 

Potassium hydroxide (KOH) Merck 

Propidium iodide Carl Roth 

Recombinant human tumor necrosis factor alpha      

(rh-TNFα) 

Immunotools 

Restore Western Blot Stripping Buffer Thermo Scientific 

Sodium azide (NaN3) Merck 

Sodium chloride (NaCl) Merck 

Sodium n-dodecyl sulfate (SDS) Calbiochem 

Sulfuric acid (H2SO4) Carl Roth 

Tetramethylethylenediamine (TEMED) Merck 

TRIS Carl Roth 

TRIS-hydrochloride acid Carl Roth 

Triton X-100 Merck 

Trypan blue Sigma-Aldrich 

Tween-20 Carl Roth 

β-mercaptoethanol Carl Roth 
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2.1.1 Solutions and Buffers 

ECL Solution 

Solution 1 

- 100 mM TRIS-HCl, pH 8.5 

- 0.4 mM p-coumaric acid 

- 2.5 mM luminol 

 

Solution 2 

- 100 mM TRIS-HCl, pH 8.5 

- 0.018 % hydrogen peroxide  

Prior to usage, solution 1 and 2 were mixed 1:1 

 

Nuclear Extraction Buffer A 

- 10 mM HEPES-KOH, pH 7.9 

- 1.5 mM MgCl2  

- 10 mM KCl 

- 0.5 mM DTT 

 

Nuclear Extraction Buffer C 

- 20 mM HEPES-KOH, pH 7.9 

- 25 % glycerol 

- 420 mM NaCl   

- 1.5 mM MgCl2  
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- 0.2 mM EDTA  

- 0.5 mM DTT 

 

Ponceau S Staining Solution 

- 0.1 % Ponceau S 

- 5 % Acetic acid 

 

Running Buffer, 10x 

- 1.92 M glycine 

- 250 mM TRIS 

- 5 % SDS 

 

SDS Lysis Buffer 

- 10 % SDS 

- 50 mM TRIS, pH 7.0 

- 1 % SDS 

- 5 % β-mercaptoethanol 

- 1x protease inhibitor cocktail 

 

SDS Sample Buffer, 5x 

- 200 mM TRIS, pH 6.8 

- 4 % SDS 

- 40 % glycerol 
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- 0.07 % bromophenol blue 

 

TBE Buffer, 10x 

- 890 mM TRIS 

- 890 mM boric acid 

- 20 mM EDTA, pH 8.0 

 

TBS-T Buffer 

- 10 mM TRIS  

- 1 mM EDTA, pH 8.0 

- 150 mM NaCl 

- 0.05 % Tween 20 

 

Transfer Buffer 

- 48 mM TRIS 

- 39 mM glycine 

- 0.0375 % SDS 

- 20 % methanol 
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2.1.2 Cell Culture Reagents and Growth Media 

Table 4: Cell culture reagents 

Product Company 

DMEM high Glucose (4.5 g/l) PAA Laboratories 

Keratinocyte Growth Medium 2 PromoCell 

Trypsin-EDTA (1x) 0.05 %/0.02 % in PBS PAA Laboratories 

Dulbecco’s PBS (1x) without Ca and Mg PAA Laboratories 

Accutase PAA Laboratories 

Fetal Bovine Serum, Gold PAA Laboratories 

Penicillin/ Streptomycin (100x) PAA Laboratories 

L-Glutamine (200 mM) PAA Laboratories 

Cryo-SFM PromoCell 

 

DMEM Growth Medium 

- 10 % FCS 

- 100 U/ml penicillin  

- 100 µg/ml streptomycin 

- 2 mM L-glutamine 

 

Keratinocyte Growth Medium 2 

- 0.06 mM CaCl2  

  

2.1.3 Oligonucleotides 

2.1.3.1 Primers 

Primer pairs for RELA u RELB were previously used (Takao et al., 2003), just like 

primers for NFKB1 and NFKB2 (Scian et al., 2005).  
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REL primers were designed with the primer designing tool of PrimerBLAST (NCBI) and 

ordered from MWG Eurofins Operon (Table 5). Remaining primer pairs were designed by 

former members of the lab. 

Table 5: Primer list  

Gene Forward primer  Reverse primer Size 

NFKB1 5‘-CACTTAGCAATCATCCACCTT-3‘  5’-AGCCCTCAGCAAATCCT-3’  171 bp 

NFKB2 5’-GGGGCATCAAACCTGAAGATTTCT-3’  5’-TCCGGAACACAATGGCATACTGT-3’  202 bp 

RELA 5’-AGCGCATCCAGACCAACAACAACC-3’ 5’-CCGCCGCAGCTGCATGGAGACAC-3’ 433 bp 

RELB 5’-ACCGCCAGATTGCCATTGTGTTC-3’ 5’-AGTGTGGGGGCCGTAGGGTCGTAG-3’ 428/ 

419 bp 

REL 5’-GGCCTCCTGACTGACTGACTG-3’ 5’-ACGCATTCCCCTCTGCCTG-3’ 146 bp 

GAPDH 5'-CTTTGGTATCGTGGAAGGACTC-3' 5'-TTCGTTGTCATACCAGGAAATG-3' 451 bp 

BIRC5 5'-GCATGGGTGCCCCGACGTTG-3' 5'-GCTCCGGCCAGAGGCCTCAA-3' 446 bp 

 

2.1.3.2 EMSA probes 

The sequence was chosen in compliance with diverse publications performing NF-κB 

specific EMSA. The biotin-labeled probes were ordered from Thermo Scientific Ulm and 

the non-modified cold probes from MWG Eurofins Operon (Table 6). 

 

Table 6: List of EMSA probes 

Probe Sense Antisense Modification 

NF-κB 

labeled 

5’-AGTTGAGGGGACTTTCCCAGGC-3’ 5’-GCCTGGGAAAGTCCCCTCAACT-3’ 3’-biotin 

NF-κB 

unlabeled 

5’-AGTTGAGGGGACTTTCCCAGGC-3’ 5’-GCCTGGGAAAGTCCCCTCAACT-3’ - 

 

2.1.3.3 siRNA 

All respective siRNA constructs were obtained from Qiagen (Table 7). 
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Table 7: List of utilized siRNA constructs 

Name Product name Target sequence 

control siRNA AllStars Neg. Control siRNA Not announced 

p50 siRNA Hs_NFKB1_7 5’-TACCTGGTGCCTCTAGTGAAA-3’ 

p52 siRNA Hs_NFKB2_1 5’-AACCCAGGTCTGGATGGTATT-3’ 

p65 siRNA Hs_RELA_5 5’-AAGATCAATGGCTACACAGGA-3’ 

RelB siRNA Hs_RELB_3 5’-CACAGATGAATTGGAGATCAT-3’ 

c-Rel siRNA (I) Hs_REL_1 5’-CCGGTGCGTATAACCCGTATA-3’ 

c-Rel siRNA (II) Hs_REL_4 5’-CACAGAACCCGTAACAGTAAA-3’ 

c-Rel siRNA (III) Hs_REL_6 5’-CAGGCGCCAATTCCAATACTA-3’ 

 

2.1.4 Antibodies 

2.1.4.1 Primary antibodies 

 
Table 8: List of primary antibodies 

Primary human antibody Company 

CDK4 Cell Signaling Technology 

CDK6 Cell Signaling Technology  

c-Rel Cell Signaling Technology  

Cyclin A Cell Signaling Technology  

Cyclin B1 Cell Signaling Technology  

Cyclin D1 Cell Signaling Technology  

Cyclin D3 Cell Signaling Technology  

E-cadherin BD (Becton, Dickinson and Company) 

GAPDH Cell Signaling Technology  

Integrin alpha v beta 5  Millipore 

Integrin β1 Abcam 

Integrin α2 Chemicon 

Involucrin Abcam 

Isotype control IgG2a ĸ, PE-labeled Biolegend 

Lamin A/C  Cell Signaling Technology  

N-cadherin TaKaRa 
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NF-ĸB p100/p52 Cell Signaling Technology  

NF-ĸB p105/p50 Epitomics 

NF-ĸB p105/p50 Santa Cruz Biotechnology 

p15 INK4B Cell Signaling Technology  

p16 INK4A Cell Signaling Technology  

p21 Waf1/Cip1 Cell Signaling Technology  

p27 Kip1 Cell Signaling Technology  

p65 Santa Cruz Biotechnology  

Paxillin Abcam 

phospho-cdc2 (Tyr15) Cell Signaling Technology  

phospho-Histone H3 (Ser10) Cell Signaling Technology  

phospho-wee1 (Ser642) Cell Signaling Technology  

RelB Cell Signaling Technology  

β-actin  Millipore 

β-tubulin  Sigma-Aldrich 

Survivin Santa Cruz Biotechnology  

Vinculin Sigma-Aldrich 

 

2.1.4.2 Secondary antibodies 

Table 9: List of secondary antibodies 

Secondary antibody Company 

Alexa Fluor® 555 Goat Anti-Rabbit IgG (H+L) Invitrogen 

Anti-mouse IgG (H+L), F(ab’)2 Fragment (Alexa 

Fluor® 488 Conjugate) 

Cell Signaling Technology  

Anti-Mouse IgG (H+L), HRP Conjugate Promega 

Anti-Rabbit IgG (H+L), HRP Conjugate Promega 

Polyclonal Goat Anti-Mouse Immunoglobulins/ 

FITC Goat F(ab’)2 

Dako  
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2.1.5 Enzymes 

Table 10: List of enzymes 

Enzyme Company 

Taq DNA polymerase PEQLAB 

DNase I Omega BioTek 

RNase A Carl Roth 

 

2.1.6 Ladders 

Table 11: Utilized DNA and protein ladders 

Ladder Company 

PageRuler Prestained Protein Ladder Thermo Scientific 

GeneRuler 100 bp Plus DNA Ladder Thermo Scientific 

 

2.1.7 Kits 

Table 12: Utilized kits 

Kit Name Company 

Cell Cycle Regulation Antibody Sampler Kit I Cell Signaling Technology 

Cell Cycle Regulation Antibody Sampler Kit II Cell Signaling Technology 

First Strand cDNA Synthesis Kit Fermentas/Thermo Scientific 

ECM Cell Culture Optimization Array Millipore 

E.Z.N.A.® Total RNA Kit I Omega BioTek 

Nuclear Extraction Kit Panomics/ Affymetrix 

Chemiluminescent Nucleic Acid Detection 

Module Kit 

Pierce/Thermo Scientific 

LightShift Chemiluminescent EMSA Kit Pierce/Thermo Scientific 

CellTiter 96®Non-Radioactive Cell Proliferation 

Assay (MTT) 

Promega 

DetachKit PromoCell 

Cell Death Detection ELISAPLUS Roche 

Cell Proliferation ELISA, BrdU Roche 

RNase-free DNase Set Omega BioTek 
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2.1.8 Software 

Table 13: List of utilized software 

Program Company 

Axiovision Rel 4.7 Zeiss 

LAS2000 Imaging System Fujifilm 

Multi Gauge V3.2 Fujifilm 

Metamorph 6.3r2 Molecular Devices 

Microsoft Office 2007 Microsoft 

ImageJ National Institute of Health 

Primer BLAST/ Primer designing tool NCBI 

 

2.2  Methods 

2.2.1 Cell Culture Methods 

2.2.1.1  Keratinocyte Cultivation, Cell Counting and Cryopreservation 

In the past, the cultivation of primary keratinocytes has been a challenge due to the 

frequent contamination with fibroblasts and other cells (Prose et al., 1967). In 1975, 

Rheinwald and Green established serum-based isolation of primary keratinocytes on a 

feeder layer of lethally irradiated 3T3 fibroblasts which provided keratinocyte essential 

growth requirements leading exclusively to keratinocyte colony growth (Rheinwald and 

Green, 1975). This finally led to development of serum-free cultivation media without the 

need of fibroblasts meeting the specific requirements of keratinocytes, containing 

essential supplements such as epidermal growth factor (EGF) and bovine pituitary extract 

(BPE) (Boyce and Ham, 1983; Maciag et al., 1981; Wille et al., 1984). Even though a lot of 

progress has been made, nowadays cultivation of primary keratinocytes is still not of 

greatest ease due to the cell’s restrictive proliferative capacity on the one hand resulting 

in low passaging number and on the other hand due to easy induction of 

confluence-dependent growth inhibition. However, human keratinocytes isolated from 

foreskin retain higher proliferative capacity than keratinocytes isolated from adult skin. 
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In 1988, Boukamp and colleagues established a spontaneously immortalized human 

keratinocyte cell line retaining typical primary keratinocyte characteristics (Boukamp et 

al., 1988). The cell line named HaCaT originates from a 62-year-old patient from excised, 

normal appearing skin in the periphery of a melanoma. The name refers to the human 

adult skin origin and cultivation in media with low Ca2+ concentrations and elevated 

temperature. HaCaT cells are an optimal model system with retained characteristics of 

primary keratinocytes as they still show the ability to differentiate and to generate a 

normal epidermis when transplanted onto nude mice (Boukamp et al., 1988).  

Furthermore, they are non-tumorigenic but aneuploid with stable marker 

chromosome expression and show some molecular aberrations, i.e. loss of both p53 

alleles, hypermethylation of the promotor region of p16INK4B as well as a greater 

susceptibility to apoptosis (Chaturvedi et al., 1999). Due to their spontaneous 

immortalization and aforementioned retained typical characteristics, they constitute one 

of the best model systems to study primary keratinocyte characteristics. 

For subsequent studies, HaCaT cells were provided by P. Boukamp (Boukamp et al., 

1988) and cultivated in Dulbecco’s Modified Eagle Medium (DMEM) growth medium at 

37°C in a humidified atmosphere with 5 % CO2. Routinely, mycoplasma infestation was 

excluded by performing respective PCRs. The cells were sub-cultivated by two washing 

steps with PBS and incubation for 5-6 min with 1.5 ml trypsin-EDTA until approximately 

90 % of the cells detached. By addition of 5.5 ml growth medium the reaction was 

stopped, the cell suspension was transferred to a 15 ml falcon tube and centrifuged at 

400 x g for 4 min. The supernatant was removed and the pellet refilled with fresh growth 

medium up to 10 ml. For further cultivation, cells were diluted 1:5 until 1:10 up to a total 

volume of 12 ml with fresh growth medium in a new T75-cell culture flask.  

For following experiments, cells were diluted 1:3 or 1:4 with trypan blue and counted in a 

Neubauer chamber. The portion of vital cells was determined and the respective cell 

number was utilized for subsequent experiments. 
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Cryo-preserved primary human keratinocytes were thawn and cultivated in 

Keratinocyte Growth Media 2. Subcultivation occurred with the DetachKit. Cells were 

received at passage 2 from the distributor and used for transfection experiments 

exclusively from passage 3 – 4 to guarantee basal keratinocyte characteristics. 

For cryo-preservation, cells were harvested, resuspended in Cryo-SFM at a 

maximum concentration of 3*106 cells/ml and transferred to cryo vials. Subsequently, 

vials were put into a cell freezing container and stored at -80°C overnight. The next day, 

vials were transferred to liquid nitrogen. 

 

2.2.1.2 Cell Stimulation 

In case of nocodazole treatment, cells were incubated with 50 ng/ml nocodazole for 

16 h before harvesting. For TNFα stimulation, cells were incubated with 30 ng/ml rh-TNFα 

in growth medium for 30 min prior to performing further experiments.  

 

2.2.1.3 Cell Synchronization 

For cell synchronization by medium depletion, 0.5*105 cells/ml were seeded and 

adhered in standard growth medium overnight. After washing steps with PBS, cells were 

starved in DMEM growth medium containing 0.5 % FCS for 72 h. Afterwards, DMEM 

complete growth medium was added. Cells were harvested 0 h, 2 h, 6 h, 8 h and 24 h 

after serum addition and subjected to western blotting and cell cycle analysis 

experiments by flow cytometry. 
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2.2.1.4 siRNA Transfection of Cells 

siRNA was transiently transfected at a concentration of 200 pmol using 

Lipofectamine 2000. Initially, siRNA and the transfection reagent were diluted in the 

respective amount of nullmedium depending on the experimental setup and incubated at 

RT for 15 min.  

Exemplarily, 5 µl Lipofectamine 2000 and 12.5 µl siRNA (20 µM) were added to 

250 µl nullmedium for one 6-well sample. Both suspensions were mixed and incubated at 

RT for another 15 min. In the meantime, cells were detached and resuspended in media 

lacking antibiotics. Finally, 1.5*105 cells were added per well to the siRNA-lipofectamine 

suspension and filled up with medium lacking antibiotics. After 24 h, medium was 

replaced and after 72 h, cells were used for future studies. 

 

2.2.2 Nucleic Acid Techniques 

2.2.2.1 RNA Isolation and Concentration Determination 

Total RNA was isolated using the E.Z.N.A. RNA Isolation Kit according to the manual. 

Cells were detached with trypsin-EDTA and pelleted in PBS at 800 x g and 4°C for 10 min. 

Depending on the pellet size, either 350 µl or 700 µl TRK Buffer were added followed by 

the same amount of 70 % ethanol. The sample was homogenized with a microlance 3 

needle with further steps carried out as described. In cases of contamination with 

genomic DNA, DNase I digestion was performed according to the manufacturer’s 

recommendations. Finally, RNA concentration and purity was determined by measuring 

the absorbance at 260 nm and 280 nm with the Genesys 10 Bio spectrophotometer.  
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2.2.2.2 cDNA Synthesis 

cDNA was generated using the First Strand cDNA Synthesis Kit. Equal amounts of 

total RNA (usually 1 µg) were mixed with 1 µl of Oligo d(T) primers and Aqua bidest ad 

11 µl and incubated at 65°C for 5 min. Thereafter, 1x Reaction buffer, 20 U RiboLock 

RNase Inhibitor, 40 U MMuLV reverse transcriptase and 1 mM dNTP mix were added to a 

total volume of 20 µl and cDNA was generated at 37°C for 1 h. The reaction was stopped 

by incubation at 70°C for 5 min. Samples were stored until further use at -20°C. 

 

2.2.2.3  Reverse Transcriptase-PCR 

RT-PCR reaction samples including Taq DNA polymerase were prepared as depicted 

in Table 14. 

Table 14: Components and concentrations of one PCR reaction 

Component Final concentration 

10x Reaction buffer 1x 

Forward primer (10 µM) 0.4 µM 

Reverse primer (10 µM) 0.4 µM 

dNTPs (10 mM) 0.4 mM 

Taq DNA polymerase (5 U/µl) 1 Unit 

Aqua bidest ad 24 µl 

cDNA template undetermined (1 µl) 

 

The PCR reaction was performed in a thermocycler as follows (Table 15). 

Table 15: Generalized PCR temperature profile  

 Temperature Time (min) Cycles 

Initial denaturation 95°C 02:00 1 

Denaturation 95°C 00:30 

variable Annealing Variable 00:30 

Elongation 72°C 00:45 

Final elongation 72°C 5:00 1 
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Annealing temperatures and cycle numbers were primer-pair dependent (Table 16). 

Table 16: Primer-specific annealing temperatures 

Primer Annealing temperature Cycles 

NFKB1 60°C variable 

NFKB2 62°C variable 

RELA 62°C variable 

RELB 60°C variable 

REL 60°C variable 

GAPDH 58°C 26 

BIRC5 62°C 30 

 

Subsequently, samples were loaded with 5x DNA loading dye and applied to a 

polymerized 1 – 1.5 % agarose gel and separated at 100 V until the loading dye front 

passed 2/3 of the gel. Finally, separated fragments were documented with the gel imaging 

system U:Genius. 

 

2.2.3 Protein Methods 

2.2.3.1 Generation of Whole Cell Lysates 

For generation of whole cell lysates, cells were scrape-harvested and pelleted at 

800 x g for 10 min at 4°C. The appropriate amount of SDS lysis buffer (according to pellet 

size 150 - 300 µl) was added and incubated at 95°C for 5 min. After homogenization with 

a microlance 3 needle, the suspension was centrifuged at 25,000 x g for 5 min. The 

supernatant was carefully transferred to a fresh tube and after concentration 

determination stored until further use at -80°C. 

 

2.2.3.2 Generation of Cytoplasmic and Nuclear Lysates 

The respective cell samples were scrape-harvested and pelleted with 800 x g at 4°C 

for 10 min.  
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For western blotting experiments, nuclear and cytoplasmic lysates were generated 

according to the instructions of the nuclear extraction kit. Their concentration was 

determined and samples were stored until further use at -80°C.  

For EMSA experiments, cell pellets were resuspended in 50 µl – 100 µl Buffer A and 

incubated on ice for 30 min. After addition of 1.6 µl - 3.2 µl 10 % NP-40 (v/v) respectively, 

samples were mixed for 10 sec and centrifuged at 25,000 x g at 4°C for 10 min. The 

supernatant (cytoplasmic fraction) was removed and the pellet resuspended in 25 µl 

Buffer C. After 20 min incubation on ice, samples were centrifuged at 25,000 x g at 4°C for 

2 min and the supernatant (nuclear fraction) was transferred to a fresh tube. 

Concentrations were determined and samples were stored until further use at -80°C. 

 

2.2.3.3 Determination of Protein Concentration 

Protein concentration was determined by using Bradford Reagent. BSA standards 

with concentrations ranging from 0.125 µg/ml - 20 µg/ml were used to generate a 

standard curve. This was performed by mixing 1 µl of each BSA standard with 1 µl of the 

respective sample buffer diluted in 800 µl Aqua bidest and 200 µl Bradford Reagent. For 

concentration determination, 1 µl of the respective lysate was added to 800 µl Aqua 

bidest and 200 µl Bradford and incubated at RT for 10 min. The protein concentration was 

determined by measuring the absorbance with Genesys 10 Bio Spectrometer at 595 nm. 

 

2.2.3.4 SDS-PAGE and Western Blotting 

Between 20 µg and 50 µg of protein lysate were filled up to an equal sample volume 

with Aqua bidest and loaded with 1x SDS sample buffer. After 5 min incubation at 95°C, 

respective samples were separated by SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE). Depending on the protein size desired for detection, 8 % - 15 % 

polyacrylamide gels were used. Exemplarily, the pipetting scheme of one 10 % SDS-PAGE 

gel is depicted (Table 17). 
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Table 17: Pipetting scheme for one SDS-PAGE gel 

Stacking gel 1x Separation gel (10 %) 1x 

Aqua bidest 1.05 ml Aqua bidest 2 ml 

30 % acrylamide/bisacrylamide 0.25 ml 30 % acrylamide/bisacrylamide 1.65 ml 

1 M TRIS-HCl (pH 6.8) 0.19 ml 1.5 M TRIS-HCl (pH 8.8) 1.25 ml 

10 % SDS 15 µl 10 % SDS 50 µl 

10 % APS 15 µl 10 % APS 50 µl 

TEMED 3 µl TEMED 15 µl 

 

Samples were separated at 150 V - 200 V until the respective dye reached the lower 

front of the gel. Then, proteins were transferred onto a nitrocellulose membrane by 

semi-dry blotting at 150 mA for 50 min. Therefore, filter and membrane were 

pre-equilibrated with ice-cold transfer buffer. Successful protein transfer was confirmed 

by staining with Ponceau S staining solution and de-staining with Aqua dest. The 

membrane was blocked with 5 % NFDM/TBS-T for 1 h and primary antibody incubation 

occurred in 1 % NFDM/TBS-T at 4°C overnight. Following three washing steps with TBS-T, 

HRP-labeled secondary anti-mouse or anti-rabbit antibodies were incubated in 1 % 

NFDM/ TBS-T for 1 h. After three additional washing steps, ECL solution was added 

equally covering the membrane and 5 min after incubation, chemiluminescent signals 

were recorded via LAS 2000 imaging system. 

 

2.2.3.5 Electrophoretic Mobility Shift Assay (EMSA)  

Probe Annealing 

Biotin labeled or unlabeled complementary oligonucleotides were mixed at a 1:1 

molar ratio with a starting concentration of 100 nmol/µl and diluted to a final 

concentration of 1 pmol/µl in 10 mM TRIS with 1 mM EDTA and 50 mM NaCl (pH 8.0).  
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The samples were incubated at 95°C for 5 min and slowly cooled down for annealing of 

both oligonucleotides. Finally, samples were stored at -20°C until further use and directly 

prior to use, further diluted for EMSA experiments. 

EMSA Shift und Supershift  

To determine NF-κB activity and dimer composition, EMSA shifts and supershifts 

were performed. Native conditions are of highest priority to guarantee transcription 

factor binding, thus potential SDS residuals had to be carefully removed. Initially, 

non-denaturing 6 % polyacrylamide gels were casted according to the following scheme 

(Table 18). 

Table 18: Pipetting scheme of a 6 % native polyacrylamide gel 

Component Amount 

10x TBE 0.5 ml 

30 % acrylamide/ bisacrylamide 2 ml 

80 % glycerol 312.5 µl 

10 % APS 150 µl 

Aqua bidest 7.19 ml 

TEMED 10 µl 

 

After polymerization, the gel was transferred to a native electrophoresis chamber 

filled with 0.5x TBE and set at 100 V for 30 – 60 min at 4°C without any samples. In the 

meantime, samples were prepared as given in Table 19. 
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Table 19: Pipetting scheme for one EMSA shift or supershift reaction 

Component Final concentration 

10x Binding buffer 1x 

Poly (dI•dC) 50 ng/µl 

Unlabeled probe (for cold probe) 4 pmol 

Labeled probe 20 fmol 

Nuclear lysate 6 - 15 µg 

Antibody depending on concentration 

Aqua bidest ad 20 µl 

 

Samples were incubated at RT for 20 min for the shift or in case of supershift 

reactions for 30 min. Native gelelectrophoresis was started with 0.5x TBE as running 

buffer at 4°C and 100 V until the loading dye reached the lower front of the gel. Proteins 

were transferred to a positively charged nylon membrane equilibrated in ice-cold 0.5xTBE 

by semidry blotting at 380 mA for 30 min. For fixation, the membrane was finally 

cross-linked at 312 nm on an UV transilluminator for 15 min. Further steps were 

performed as described in the distributer’s manual whereas chemiluminescence was 

finally detected by LAS 2000 imaging system. 

 

2.2.4 Functional Assays 

2.2.4.1 MTT Assay and Growth Curve Generation 

The assay was performed according to the instructions of the CellTiter 

96®Non-Radioactive Cell Proliferation manual 72 h after siRNA transfection. The 

respective 96 well plate was finally incubated overnight in a humidified atmosphere at 

37°C. The next day, absorbance was measured at 570 nm with the Appliskan Plate 

Reader.  

Cell growth was documented by photographing at least six microscopic fields (x160) 

each 24 h after transfection using an Axiovert 200 microscope and MetaMorph 6.3r2 

software. Cell numbers were evaluated using ImageJ. 
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2.2.4.2 BrdU Proliferation Assay 

60 h after transfection, 10 µM BrdU was added to the transfected samples and 

incubated for 12 h. 72 h after transfection, the experiment was performed according to 

the instructions of the BrdU Cell Proliferation ELISA manual. The reaction was stopped by 

adding 25 µl 1 M H2SO4 and the absorbance was measured at 405 nm with the Appliskan 

Plate Reader. 

2.2.4.3 Apoptosis Assay  

To determine the apoptosis rate, samples were treated 72 h after transfection 

according to the specifications of the Cell Death Detection ELISAPLUS manual. This system 

is based on determination of the amount of cytoplasmic histone-bound fragments as 

apoptotic marker. Finally, the absorbance was measured at 405 nm with the Appliskan 

Plate Reader. 

 

2.2.5 Immunofluorescence 

For immunofluorescence studies, cells were either directly seeded onto 8-Well 

Culture Slides or initially transfected, seeded and fixed 72 h after transfection with 

ice-cold 100 % methanol or in case of phalloidin staining with 100 % acetone for 5 min. 

Blocking and permeabilization occurred with 5 % FCS/0.5 % Triton X-100/PBS for 1 h 

followed by addition of primary antibody in 2.5 % FCS/PBS overnight at 4°C. After three 

washing steps with PBS the following day, the conjugated secondary antibody was added 

for 1 h at RT in 2.5 % FCS/PBS. The cells were washed five times with PBS, chambers were 

removed with the provided tools and air-dried. Wells were covered with Fluorescence 

Mounting Medium supplemented with 0.5 µg/ml DAPI. Photographs were taken with 

AxioImager M1 and Axiovision software Rel 4.7. 

vf 
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2.2.6 DIC Microscopy 

Cells were transfected and seeded onto 4-Well Imaging Chambers and were 

documented 72 h after transfection by DIC microscopy with the Axiovert 200 microscope. 

 

2.2.7 Flow Cytometry Analyses 

2.2.7.1 Flow Cytometry Surface Staining 

After cell harvesting with accutase, the pellet was resuspended in ice-cold 10 % 

FCS/1 % NaN3/PBS together with 1 µg antibody and incubated in the dark at 4°C for 

30 min. Cells were washed three times with ice-cold PBS, resuspended in 3 % BSA/PBS 

with the secondary antibody and incubated at RT for 20 min. After three additional 

washing steps with ice-cold PBS, cells were resuspended in 100 µl ice-cold 3 % BSA/1 % 

NaN3/PBS. Surface staining intensity was determined with BD FACSCanto II. 

 

2.2.7.2 Flow Cytometry Cell Cycle Analysis 

72 h after transfection, cells were trypsinized and resuspended in 0.5 ml PBS. 

Fixation occurred by dropwise addition of 3 ml ice-cold 100 % ethanol to each sample and 

repeated mixing. After at least 2 h at -20°C, fixed cells were centrifuged at 4°C and 400 x g 

for 5 min to remove residual ethanol. The resulting pellet was resuspended in PBS 

containing 100 µg/ml RNase A and 50 µg/ml propidium iodide up to a final volume of 

0.5 ml, and incubated in the dark for 30 min. Cell cycle phase distribution was determined 

with BD FACSCanto II. 
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2.2.8 Cellular Assays 

2.2.8.1 Migration Assay 

Cells were transfected and seeded onto a migration insert consisting of two adjacent 

wells separated by a 50 µm thick gap. 48 h after transfection, HaCaT cells were irradiated 

with 55 Gray for growth inhibition. 72 h after transfection, the migration insert was 

carefully removed with sterile forceps. By phase contrast microscopy, appropriate gaps 

were chosen and marked for further documentation.  

Photographs were taken with MetaMorph software and Axioskop 200 microscope, 

evaluation of wound closure rate occurred via ImageJ. 

 

2.2.8.2 Adhesion Assay 

General Adhesion Assay 

Samples were trypsinized 72 h after transfection, reseeded in equal cell number 

(1*105 cells/ml) and allowed to attach for 3 h and 6 h, respectively. Non-attached cells 

were washed off by careful rinsing with DMEM growth medium. Evaluation was 

performed by documenting 10 microscopic fields (x160) in a total of 3 wells (30 fields) for 

each sample and counting the number of attached cells at the respective time point. 

 

ECM Adhesion Assay 

72 h after transfection, cells were harvested with accutase, resuspended in DMEM 

without supplements and reseeded at a cell number of 1*106 cells/ml. Cells were allowed 

to attach to 0.125 µg/ml – 20 µg/ml of collagen I, fibronectin, laminin and vitronectin for 

2 h. The adhesion rate was determined according to instructions of the ECM Cell Culture 

Optimization Assay. The absorbance was measured at 544 nm with the Appliskan Plate 

Reader. 
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2.2.9 Statistical Evaluation and Analysis 

To determine p-H3Ser10 positive cell portion of HaCaT cells, at least ten 

immunofluorescence photographs (x100) were evaluated using ImageJ. For primary 

keratinocytes, 20 immunofluorescence photographs (x200) were evaluated similarly. 

Determination of the mitotic cell portion based on β-tubulin immunofluorescence 

stainings evaluating at least 19 photographs (x200) by using ImageJ.  

Normal and aberrant mitotic spindle classification based on immunofluorescence findings 

of at least 19 photographs (x200). Generally, p values were determined by performing 

two-sided unpaired student’s t-test. 
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3 Results 

3.1 NF-ĸB expression and activity in HaCaT keratinocytes 

Previous studies showed the importance of NF-ĸB signaling in regulating epidermal 

homeostasis. To date, predominantly the role of p50 and p65 has been examined in 

primary epidermal keratinocytes by overexpression of the single subunits and by 

downstream inactivity of the canonical pathway using constitutively active inhibitory 

mutants of IĸBa (Seitz et al., 1998; van Hogerlinden et al., 1999). Since various NF-κB 

subunits exert distinct functions as shown by knockout mice targeting single NF-κB 

subunits, this thesis aimed at elucidating the impact and contribution of the single NF-ĸB 

subunit in respect to cell fate decisions of keratinocytes.  

As starting experiments, mRNA and protein expression was confirmed for all NF-κB 

subunits along with determining subcellular protein distribution patterns using the 

spontaneously immortalized keratinocyte cell line HaCaT (Boukamp et al., 1988). 

Analysis of NF-κB gene expression by semi-quantitative RT-PCR with varying cycle 

counts revealed a relative stronger expression of NFKB1 (encoding for p105/p50) and REL 

(encoding for c-Rel) compared to RELA, NFKB2 (encoding for p100/p52) and RELB (Figure 

6A). On the protein level, expression of all five subunits could be already shown with total 

protein load of 20 µg (Figure 6B). In immunofluorescence studies, subcellular expression 

patterns were analyzed and a consistent, predominantly cytoplasmic staining of all five 

subunits could be observed (Figure 6C). Additionally, RelB immunofluorescence staining 

revealed small perinuclear speckles and staining for c-Rel showed small intranuclear 

speckles. However, downregulation of RelB and c-Rel resulted in persistence of the 

speckles suggesting an unspecific staining pattern. 
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Figure 6: All NF-ĸB subunits are expressed in HaCaT keratinocytes. 
(A) Semi-quantitative RT-PCR of unstimulated HaCaT cells for the NF-ĸB subunits with different 
cycle counts (20 - 35). GAPDH served as positive control, (-) = negative control. (B) Western 
blotting of 20 µg and 40 µg whole cell lysate of unstimulated HaCaT cells with antibodies directed 
against all NF-ĸB proteins. Actin served as loading control. (C) Immunofluorescence stainings of all 
NF-ĸB subunits in HaCaT keratinocytes. Samples stained for p65 and p50 were incubated with 
anti-mouse secondary antibody conjugated with AlexaFluor 488, whereas samples stained for 
p52, RelB and c-Rel were incubated with anti-rabbit secondary antibody conjugated with 
AlexaFluor 555. On the right side, photographs were merged with DAPI stained nuclei. One of two 
resembling experiments is shown representatively. Bar= 20 µm. 

 

To further examine the functional activity of NF-ĸB in HaCaT keratinocytes, 

electrophoretic mobility shift assays (EMSAs) were performed with unstimulated and 

TNFα-stimulated nuclear HaCaT lysates as positive control (Figure 7A). After exclusion of 

unspecific bands detected by the cold probe (CP), two specific bands could be shown (two 

arrows). Both bands indicate activity of NF-ĸB dimers composed of different NF-ĸB 

proteins. Therefore, EMSA supershifts were used to uncover these dimer complexes 

(Figure 7B). For positive control, a shifted signal (lower arrow) and a supershifted signal 

were detected for p65 (upper arrow).  
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For the unstimulated sample, a shifted but no supershifted signal became obvious for 

p65, p52, RelB or c-Rel respectively. On the right, a single p50 EMSA supershift is depicted 

with unstimulated and TNFα-stimulated lysate revealing a shift but no supershift (Figure 

7B). However, the shifted signal was consequently reduced by the addition of antibody 

and for p65, p52 and c-Rel supershift samples, some brighter bands appeared at a higher 

molecular weight. Since supershifted bands should resemble the additional band in the 

positive control, the fainter signals were interpreted as unspecific bands.  

Conclusively, moderate NF-ĸB activity in unstimulated HaCaT cells could be shown 

even though no discrimination in single subunit composition could be made. 
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Figure 7: Basal NF-ĸB activity in HaCaT cells. 
(A) Electrophoretic mobility shift assay (EMSA) of 6 µg and 8 µg unstimulated HaCaT nuclear 
lysate either as a cold probe (CP) showing unspecific bands, unstimulated (-TNFα) or stimulated 
with 30 ng/ml TNFα for 30 min as positive control (+TNFα). Arrows on the right indicate specific 
NF-ĸB signals. (B) EMSA supershift of 15 µg HaCaT nuclear lysate applied as a cold probe (CP), 
without incubated antibody (-/-) or incubated with the respective antibody as indicated above. As 
positive control served 15 µg of 30 ng/ml 30 min TNFα stimulated HaCaT nuclear lysate incubated 
without or with 2 µg p65 antibody. A supershift band is indicated by superior arrow, shift band by 
the arrow below. On the right, a supershift for p50 is shown, containing cold probe, unstimulated 
and TNFα stimulated sample with or without addition of p50 antibody. One of two representative 
experiments is shown here. 

 

The proliferative potential of keratinocytes depends, amongst other factors, on its 

confluency. When keratinocytes become confluent, they usually stop proliferating and 

start the program of cellular differentiation. To include this aspect into our studies, we 

investigated the dependency of keratinocyte confluency on distribution and expression of 

NF-ĸB subunits. For this purpose, HaCaT keratinocytes were harvested at a low (30 %) and 

high (80 %) density (Figure 8A). Subcellular protein distribution was analyzed by 

generation of cytoplasmic and nuclear lysates (Figure 8B); cytoplasmic p50 increased 

twofold at higher cell density whereas c-Rel was about 40 % induced in the cytoplasm.  
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Nuclear localization however remained stable for both proteins. Even though RelB and 

p52 seem to be localized confluence-dependent as well, this could not be shown 

repeatedly.  

Furthermore, whole protein content was analyzed by western blotting showing 

about twofold induction of p50 and about 50 % induction of c-Rel at higher density 

(Figure 8C). However, examining mRNA expression via semi-quantitative PCR with varying 

cycle counts, no confluency-specific changes were obvious for NFKB1 or REL (Figure 8D) 

indicating for post-transcriptional regulatory mechanism.  

Conclusively, induction of p50 and c-Rel at higher confluency indicates involvement 

in processes like growth inhibition or differentiation. Since up-regulation was 

predominantly cytoplasmic, we can only speculate about the exact mode of action at this 

time. However, subsequent functional studies aimed at elucidating this issue. 
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Figure 8: Confluence-dependent expression pattern of p50 and c-Rel in HaCaT keratinocytes. 
(A) Representative phase contrast photographs of 30 % and 80 % confluent HaCaT cells. Bar= 
100 µm. (B) Western blotting of 40 µg cytoplasmic (CP) and nuclear (N) lysates of 30 % as well as 
of 80 % confluent HaCaT cells, respectively. Lamin and GAPDH served as loading and quality 
controls of the lysates. (C) Western blotting of p50 and c-Rel of 20 µg and 40 µg whole cell lysate 
of 30 % and 80 % confluent HaCaT cells, respectively. Actin served as loading control. (D) 
Semi-quantitative PCR of NFKB1 and REL of 30 % as well as of 80 % confluent HaCaT keratinocytes 
with varying cell cycle counts (20 - 35). GAPDH served as positive control. Generally, one of at 
least two representative experiments is shown. 

 

3.2 Functional effects of NF-ĸB downregulation on HaCaT keratinocytes 

As aforementioned, our studies targeted at unraveling the function of the single 

NF-ĸB subunits with special regard to cell fate decisions and epidermal homeostasis. In 

previous studies, inhibition of both p50 and p65 by forced expression of an IĸBa mutant 

led to increased proliferation of human keratinocytes in vitro (Seitz et al., 1998; van 

Hogerlinden et al., 1999) whereas data for p52, RelB or c-Rel are scant.  
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We therefore yielded to downregulate the abovementioned subunits by transient 

transfection of NF-ĸB specific siRNA constructs. Transfection with control siRNA proven to 

have no effect on any eukaryotic transcript served as control. 

Successful downregulation via siRNA transfection of the respective NF-κB subunit 

was confirmed by western blotting. Each remaining protein level accounted between 

20 - 30 % of control siRNA level as determined by densitometry (Figure 9). 

 

 

Figure 9: Efficient downregulation of all NF-ĸB proteins after siRNA transfection in HaCaT cells. 
Western blotting of 50 µg whole cell lysate of untreated (untr), lipofectamine treated (lipo), 
control siRNA (ctrl) and the respective NF-κB siRNA (siRNA) treated HaCaT cells 72 h after 
treatment. Actin served as loading control. 

 

Subsequent studies aimed at unraveling functional consequences of 

downregulation of each of the five NF-ĸB subunits in HaCaT cells. Initially, cell viability 

was studied, both 48 h and 72 h after transfection (Figure 10A). A clear and consistent 

effect was obvious 72 h after transfection for c-Rel siRNA transfected HaCaT cells. 

Compared to control, viability was about 55 % reduced (p<0.05) whereas downregulation 

of other NF-ĸB subunits did not induce a consistent effect regarding cell viability.  

MTT cell viability assays are used to determine the number of living cells by 

conversion of a tetrazolium salt into a formazan product, however they do not 

discriminate between resting and proliferating cells.  
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Therefore, proliferation of NF-ĸB downregulated HaCaT cells was determined by 

measuring incorporation of the thymidine analogue BrdU into the genome of replicating 

cells (Figure 10B). Respective experiments revealed a decreased proliferation of about 

20 % (p<0.05) for c-Rel siRNA treated cells.  

In a next step, we examined whether any NF-ĸB knockdown has an effect on 

apoptosis of HaCaT cells by determining the amount of histone-bound DNA fragments. 

c-Rel downregulated HaCaT cells showed an increased apoptosis of about 25 % (p<0.05, 

Figure 10C).  
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Figure 10: c-Rel downregulation impairs cell viability and proliferation and induces apoptosis in 
HaCaT cells. 

(A) MTT viability assay of untreated, lipofectamine treated, control (ctrl) siRNA treated and NF-ĸB 
subunits siRNA treated HaCaT cells 48 h (grey bars) and 72 h (black bars) after transfection. Mean 
absorption values of two (48 h) and three (72 h) experiments are depicted here, every experiment 
was performed in triplicates, error bars are ±SD, * indicates p≤0.05. (B) BrdU incorporation assay 
of untreated, lipofectamine treated, control (ctrl) siRNA treated and NF-ĸB siRNA treated HaCaT 
cells 72 h after transfection. Three independent experiments revealed similar results, one is 
representatively shown here, error bars are ±SD, *p≤0.05. (C) Apoptosis assay of untreated, 
lipofectamine treated, control (ctrl) siRNA treated and NF-ĸB siRNA treated HaCaT cells 72 h after 
transfection. Mean absorbance values of three independent experiments are depicted, every 
experiment was performed in triplicates, error bars are ±SD, * indicates p≤0.05.  

 

In summary, c-Rel knockdown significantly affected cell growth by reducing 

proliferation and increasing apoptosis of HaCaT cells in contrast to p50, p65, RelB or p52 

knockdown. Therefore, we focused our subsequent studies on c-Rel downregulation to 

unravel its impact on epidermal homeostasis and cell fate decisions in keratinocytes. 
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3.3 c-Rel downregulation related effects in HaCaT keratinocytes 

3.3.1 c-Rel downregulation induces growth reduction and cell cycle changes 

Before studying c-Rel siRNA related effects in more detail, specificity of the chosen 

siRNA was tested regarding two aspects. First, two other c-Rel siRNAs (c-Rel siRNA II and 

III) besides the initially used (c-Rel siRNA I) were transfected to test specificity of the 

siRNA construct. Again, cell viability was examined 72 h after transfection (Figure 11A). 

Both constructs yielded similar effects with 42 % reduced viability for c-Rel siRNA II 

(p<0.001) and 46 % reduced viability for c-Rel siRNA III (p<0.01), thereby confirming c-Rel 

specific effect with c-Rel siRNA I-related reduction being slightly more pronounced (66 % 

reduced, p<0.001).  

Second, because c-Rel downregulation might influence other NF-ĸB protein 

expression levels due to the high homology among the NF-ĸB subunits or other 

compensatory mechanisms, western blotting was performed for all five subunits but no 

influence on any other NF-ĸB protein level except c-Rel was observed (Figure 11B).  

 

 

Figure 11: c-Rel downregulation is specific and does not affect any other NF-ĸB protein level in 
HaCaT keratinocytes. 

(A) MTT viability assay of control (ctrl) siRNA transfected HaCaT cells as well as HaCaT cells 
transfected with three different c-Rel siRNAs (I, II and III) 72 h after transfection. Error bars are 
±SD, * indicates p≤0.05. (B) Western blotting of 50 µg whole cell lysate of control (ctrl) and c-Rel 
siRNA treated HaCaT cells 72 h after transfection. Actin served as loading control. The experiment 
was performed twice with similar results.  
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To study growth characteristics of c-Rel downregulated HaCaT cells over a period of 

time, the number of adherent cells was documented and counted at 24 h intervals up to 

96 h after transfection (Figure 12A and B). Both control and c-Rel siRNA cell growth 

remained similar until 48 h after transfection. Thereafter, control cells grew faster and 

reached confluency 96 h after transfection whereas growth of c-Rel downregulated cells 

remained static and was significantly reduced compared to control cells, about 70 % 

(p<0.001) 72 h after transfection and even more than 85 % (p<0.001) 96 h after 

transfection. HaCaT cells still retain the ability to differentiate. Because differentiation is a 

confluency-dependent process, cell confluency impedes comparability of the samples. 

Therefore, 72 h after transfection proved to be an optimal measurement point: On the 

one hand, decreased proliferation of c-Rel downregulated HaCaT cells was obvious while 

on the other hand, control cells were still sub-confluent excluding differentiation-

associated changes of the cells. 

 

 

Figure 12: Time-related growth inhibition of c-Rel downregulated HaCaT cells. 
(A) Exemplary photographs of control (ctrl) and c-Rel siRNA cells from 24 to 96 h after transfection 
(bar= 100 µm). (B) Growth curve of control (ctrl) and c-Rel siRNA cells on tissue-culture treated 
wells from 24 to 96 h after transfection. Curve represents mean cell numbers of least six 
microscopic fields (x160) evaluated using ImageJ. One of three experiments with similar results is 
representatively shown, error bars are ±SD, * indicates p≤0.05. 

 

Subsequently, to further examine the observed growth reduction of c-Rel 

downregulated cells, cell cycle phase distribution of vital control and c-Rel knockdown 

cells was determined 72 h after transfection (Figure 13).  
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Using flow cytometry to analyse the cell cycle, cells can be classified based on their DNA 

content into G0/G1 phase cells with a single set of chromosomes (first peak), S-phase 

cells duplicating their genome (elevated region between both peaks) and G2/M phase 

cells with a double set of chromosomes which either reside in G2 phase preparing for 

mitosis or which are mitotic (second peak) (Momoi et al., 1979).  An overlay of one 

representative histogram of control and c-Rel knockdown cells points to an increased 

portion of c-Rel knockdown cells in G2/M phase as shown by the elevated second peak 

(Figure 13A). Overall, mean distribution values revealed an increase of c-Rel knockdown 

cells in G2/M cell portion of about 40 % compared to control cells (28.78 % vs. 20.65 % of 

vital cells, p<0.05, Figure 13B).  

 

 

Figure 13: Induction of G2/M phase cell portion in c-Rel downregulated HaCaT cells. 
(A) Overlay of one exemplary cell cycle phase histogram of vital control (ctrl, thicker line) and 
c-Rel (thinner line) siRNA cells 72 h after transfection. Each cell cycle phase is additionally marked. 
(B) Diagram of cell cycle phase distribution of vital control (ctrl, grey bar) and c-Rel siRNA 
transfected cells (black bar) 72 h after transfection. Data represents mean distribution values of 
four independent experiments, error bars are ±SD, * indicates p≤0.05. 

 

Due to the determined shift in cell cycle phase distribution, we examined this effect 

more closely by investigating the expression level of cell cycle regulatory proteins, 

involved in both the G1/S phase- and the G2/M phase checkpoint. Furthermore, to 

investigate whether c-Rel knockdown-related growth inhibition may be associated with 

differentiation (a result of keratinocytes exiting G1 phase), we also included the early 

differentiation marker involucrin into our studies. 
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By western blotting, no expression change of the early differentiation marker 

involucrin was observed for c-Rel downregulated cells suggesting no further effects on 

differentiation (Figure 14A). However, of all examined G1/S phase related proteins, a 

consistent, twofold upregulation of p15INK4B could be detected (Figure 14B). Further 

consistent expression changes in cyclin D1 or D3, CDK4 or CDK6 or other CKIs did not 

occur. The INK4 protein family member p15INK4B is usually activated by anti-mitogenic 

stimuli leading to cyclin dependent kinases (CDK) binding, thus preventing them from 

complexing with cyclin D at the transition from G1 to S phase. Based on our findings, we 

hypothesized that p15INK4B upregulation leads to a - yet undiscovered - G1 phase arrest. 

To study this issue, control and c-Rel siRNA cells were treated with 50 ng/ml nocodazole 

to arrest them in mitosis. 16 h after nocodazole addition and 72 h after transfection, both 

samples were harvested and subjected to flow cytometry cell cycle analysis (Figure 14C). 

However, analysis showed no additional G1 phase peak for c-Rel knockdown cells 

suggesting that p15INK4B upregulation alone is not sufficient to induce G1 phase arrest.  
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Figure 14: c-Rel downregulation induces p15INK4B expression but no subsequent G1 phase arrest 
in HaCaT keratinocytes. 

(A) Western blotting of 50 µg whole cell lysate of control (ctrl) and c-Rel downregulated HaCaT 
cells 72 h after transfection examining early differentiation marker involucrin. Actin served as 
loading control and one of two representative experiments is shown here. (B) Western blotting of 
50 µg whole cell lysate of control (ctrl) and c-Rel downregulated HaCaT cells 72 h after 
transfection regarding G1/S phase related protein expression. Actin served as loading control and 
one of three representative experiments is shown here. (C) Overlay of one cell cycle histogram of 
control (ctrl) and c-Rel siRNA cells with indicated cell cycle phases. Control and c-Rel siRNA 
transfected cells were treated with 50 ng/ml nocodazole for 16 h and were then, 72 h after 
transfection, subjected to cell cycle analysis.  

 

In summary, c-Rel downregulation could be associated with upregulation of G1/S 

phase regulator p15INK4B whereas no impact on cell cycle progression or on expression 

level of early differentiation marker involucrin could be shown. 

Furthermore, G2/M cell cycle checkpoint related protein expression was analyzed 

by western blotting (Figure 15A). Downregulated c-Rel cells showed a distinct increase of 

phosphorylated histone H3 at Ser10 (p-H3Ser10) compared to control levels (Figure 15A). 

For quantitative evaluation, we subsequently determined the portion of p-H3Ser10 positive 

cells of control and c-Rel knockdown cells by immunofluorescence (Figure 15B and C). In 

these stainings, an about threefold increase in the percentage of p-H3Ser10 positive cells 

could be detected for c-Rel downregulated HaCaT cells (5.89 % vs. 1.89 %, p<0.01).  

For cyclin A2, cyclin B1 and the active (phosphorylated) form of cdc2 or wee1, no 

consistent expression changes could be observed in several independent experiments. 
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Figure 15: Induction of phospho-histone H3Ser10 in c-Rel downregulated HaCaT cells. 
(A) Western blotting of 50 µg whole cell lysate of control (ctrl) and c-Rel siRNA cells examining 
G2/M phase cell cycle related protein expression 72 h after transfection. Actin served as loading 
control and one of three similar independent experiments is shown here. (B) Exemplary 
photographs of p-H3Ser10 immunofluorescence staining of control (ctrl) and c-Rel siRNA cells are 
depicted 72 h after transfection, digitally enhanced with Axiovision software Rel 4.7. Secondary 
anti-rabbit antibody was labeled with Alexa Fluor 555 and nuclei were counterstained with DAPI 
(bar= 100 µm). (C) Quantitative evaluation of p-H3Ser10 positive cell portions of at least ten 
microscopic fields of view (x100). One of two independent experiments is representatively shown 
here, error bars are ±SD, * indicates p≤0.05.  

 

Condensed chromosomes show phosphorylated histone H3 at Ser10 starting in late 

G2 phase reaching its maximum during metaphase and disappearing in late anaphase or 

early telophase (Hendzel et al., 1997).  

Since the chromosomal passenger complex (CPC) regulates this phosphorylation 

event, we hypothesized a dysregulated CPC complex by c-Rel downregulation. As one 

component of the CPC, we studied subcellular localization of survivin by 

immunofluorescence and its expression status. Immunofluorescence co-staining with 

c-Rel showed similar localization of survivin during later mitotic stages of c-Rel and 

control siRNA cells as highlighted in the enlarged boxes, however, pro- and metaphase 

signals were only hardly detectable (Figure 16A). Furthermore, neither western blot 

analysis (Figure 16B) nor semi-quantitative PCR revealed any expression changes (Figure 

16C). Based on recent experiments, no indications for CPC dysregulation were given. 
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Figure 16: Stable survivin localization and expression in c-Rel downregulated HaCaT cells. 

(A) Representative photographs of survivin and c-Rel immunofluorescence co-stainings of control 
(ctrl) and c-Rel siRNA cells 72 h after transfection in later mitotic stages. Secondary anti-mouse 
Alexa Fluor 488 antibody was used for detection of survivin and anti-rabbit Alexa Fluor 555 
antibody for detection of c-Rel. Both, control and c-Rel siRNA samples were subjected to the same 
exposure time, nuclei were counterstained with DAPI (bar= 20 µm). (B) Western blotting of 50 µg 
whole cell lysate of control (ctrl) and c-Rel siRNA cells 72 h after transfection. c-Rel served as 
positive control and actin as loading control. (C) Semi-quantitative PCR of BIRC5 (gene encoding 
for survivin) of control (ctrl) and c-Rel siRNA cells 72 h after transfection. REL PCR confirms 
successful downregulation, GAPDH served as positive control. All experiments were performed 
twice with similar results. 

 

As aforementioned, phosphorylation of histone H3Ser10 appears mostly during 

mitotic stages. To directly examine mitotic characteristics of c-Rel and control siRNA cells, 

ß-tubulin immunofluorescence stainings were performed to identify cells with mitotic 

spindles (Figure 17B). Subsequently, portion of cells in mitosis was determined via 

immunofluorescence and revealed a significant, almost twofold induction of c-Rel 

knockdown cells (7.77 % vs. 4.25 %, p<0.05).  
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Thus, c-Rel downregulation increased the percentage of cells in mitosis while 

concomitantly showing reduced cell viability. We therefore hypothesized that mitotic 

dysregulation may cause accumulation of mitotic cells. To further study this issue, mitotic 

spindle structures were examined with respect to potential formation defects since 

dysregulation of bipolar spindle assembly can abrogate proper mitotic proceeding. 

Indeed in our studies, a distinctly higher portion of aberrantly structured mitotic 

spindles was obvious for c-Rel knockdown cells compared to control siRNA cells (5.97 % 

vs. 1.46 %, p<0.001, Figure 17B). Typical examples of how aberrant mitotic spindles were 

structured are depicted in Figure 17A. Generally, spindles appeared to be less organized: 

Many aberrant spindles remained monopolar and were located in the center of the 

mitotic cell with astral microtubules pointing outwards (arrows Figure 17A). When 

spindles were bipolar, they often seemed to be disproportionally arranged and lacked the 

typical geometry of metaphase spindles (arrowheads Figure 17A). To more precisely 

characterize this formational defect, we classified the spindles according to their 

appearance into mono-, bi- or multipolar spindles (Figure 17C).  

According to this sub-classification, the most distinct feature was an about fourfold 

increased portion of monopolar spindles for c-Rel downregulated cells (86.62 % vs. 

21.17 %, p<0.01). Contrary, the bipolar spindle appearance was significantly reduced for 

c-Rel downregulated cells (8.81 % vs. 67.17 %, p<0.05) whereas the portion of multipolar 

spindles remained comparable to control siRNA cells. 
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Figure 17: Increased mitotic cell portion and aberrant mitotic spindle formation in c-Rel 

downregulated HaCaT cells. 
(A) Exemplary photographs of ß-tubulin immunofluorescence stainings of mitotic c-Rel siRNA cells 
72 h after transfection with aberrant spindle formation digitally enhanced with Axiovision 
software Rel 4.7. Arrowheads point at aberrantly structured bipolar spindles whereas arrows 
show aberrant spindles classified as monopolar. Secondary anti-mouse Alexa Fluor 488 antibody 
was used for detection of ß-tubulin and nuclei were counterstained with DAPI (bar= 20 µm). (B) 
Quantitative evaluation of control (ctrl) and c-Rel siRNA mitotic cell portion of at least 
19 microscopic fields (x200) additionally subdivided into normal and aberrant mitotic spindles. 
Classification based on immunofluorescence findings. One of three experiments is 
representatively shown here, error bars are ±SD, * indicates p≤0.05. (C) Quantitative evaluation of 
aberrantly structured spindles of control (ctrl) and c-Rel siRNA cells subdivided into mono-, bi- or 
multipolar spindle morphology. Classification based on immunofluorescence findings. One of 
three experiments is representatively shown here, error bars are ±SD, * indicates p≤0.05.  

 

In conclusion, c-Rel downregulated cells accumulate in G2/M phase and show 

induction of p-H3Ser10. In contrast to p15INK4B upregulation, which did not affect G1/S 

phase transition, p-H3Ser10 induction could be associated with additional changes. We 

detected an almost twofold increased number of cells in mitosis for c-Rel downregulated 

cells. When examining mitotic spindle formation, c-Rel downregulated cells showed a 

fourfold increase of aberrantly structured mitotic spindles. These structural abnormalities 

likely cause cell accumulation in mitosis due to disturbed mitotic proceeding. 
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3.3.2 Expression of c-Rel in mitotic HaCaT cells 

Since previous experiments indicated a role for c-Rel during mitosis, c-Rel 

expression and abundance in untreated mitotic HaCaT cells was examined by 

immunofluorescence and showed increased signal intensity of c-Rel in mitotic cells 

compared to surrounding interphase cells (Figure 18A).  

To quantify this impression, HaCaT cells were forced into mitosis, either by 

nocodazole treatment (Figure 18B) or by synchronization (Figure 18C). Nocodazole 

prevents assembly of a proper mitotic spindle apparatus by disturbing microtubule 

dynamics and leads to artificial accumulation of cells in mitosis. After nocodazole 

treatment for 16 h, about 80 % of vital HaCaT cells remained in G2/M phase. Subsequent 

western blotting revealed an about twofold induction of c-Rel in nocodazole treated 

HaCaT cells (Figure 18B). Since nocodazole interferes with microtubule dynamics, 

synchronization of cells was used as a second method to support previous data without 

artificial interference into cellular metabolism. HaCaT cells were synchronized by serum 

starvation for 72 h and then released by serum addition. 6 h after serum addition, major 

part of vital HaCaT cells (84.7 %) remained in G0/G1 phase whereas 24 after serum 

addition, 59.2 % vital cells were in G2/M phase and 28.8 % in S phase. Again, a twofold 

induction of c-Rel could be determined densitometrically (Figure 18C). 
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Figure 18: c-Rel expression is induced in mitotic HaCaT cells. 
(A) Representative immunofluorescence photographs of mitotic HaCaT cells stained for c-Rel 
digitally enhanced with Axiovision software Rel 4.7. Secondary anti-rabbit Alexa Fluor 555 
antibody was used for detection. Nuclei were counterstained with DAPI, bar= 20 µm. (B) On the 
left, flow cytometry cell cycle phase distribution of untreated (untr, grey line) HaCaT cells and cells 
treated with 30 ng/ml nocodazole for 16 h (noco, black line) is depicted. On the right, western 
blotting of 50 µg whole cell lysate is shown examining c-Rel expression. Actin served as loading 
control and one of two similar experiments is shown. (C) On the left, flow cytometry cell cycle 
phase distribution of 48 h serum starved HaCaT cells 6 h after addition of serum (6 h, grey line) 
and 24 h after serum addition (24 h, black line) is depicted. On the right, western blotting of 50 µg 
whole cell lysate of the same samples is shown examining c-Rel expression level. Actin served as 
loading control.  
 

3.3.3 Phenotypic changes of c-Rel downregulated HaCaT cells 

Another phenomenon induced by c-Rel downregulation was a phenotypic change of 

HaCaT cells (Figure 19). The cells had the tendency to lose their typical cobblestone-like 

morphology, they were elongated and more spindle-shaped on the single cell level (Figure 

19A). Additionally, they grew more scattered compared to the keratinocyte-specific 

clustered growth of control siRNA cells (Figure 19B).  
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Figure 19: c-Rel downregulation alters HaCaT cell morphology to a more scattered, spindle 
shaped phenotype. 

(A) Representative differential interference contrast (DIC) photographs of control (ctrl) and c-Rel 
knockdown cells 72 h after transfection (bar= 25 µm). (B) Representative phase contrast 
photographs of control (ctrl) and c-Rel knockdown cells 72 h after transfection (bar= 50 µm). 
These effects could be repeatedly observed 72 h after siRNA transfection. 

 

Such morphological changes are characteristic for the process of epithelial 

mesenchymal transition (EMT) in which epithelial cells reduce their cell-to-cell contacts 

and gain mesenchymal characteristics such as a higher motility as well as a 

spindle-shaped phenotype. During recent years, EMT gained in importance due to its 

association with tumor progression (Gravdal et al., 2007; Hazan et al., 2004). EMT 

typically comprises differential expression of the calcium-dependent adhesion proteins 

cadherins involved in cell-to-cell contacts: the major cadherin form in epithelial cells, 

E-cadherin, switches towards expression of neural or N-cadherin (Boyer et al., 1989; Hay, 

1995).  

c-Rel downregulated HaCaT keratinocytes seemed to acquire EMT resembling 

qualities: loosening of cell-cell contacts as well as an elongated, singled phenotype.  
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Therefore, expression of E-cadherin and N-cadherin were studied via 

immunofluorescence and western blot analysis (Figure 20A and B). However, no 

localization or expression changes could be observed in c-Rel downregulated HaCaT cells. 

 

 

Figure 20: c-Rel downregulation reveals no changes of E-cadherin or N-cadherin expression in 
HaCaT keratinocytes. 

(A) Representative immunofluorescence photographs of control (ctrl) and c-Rel siRNA cells 72 h 
after transfection stained for E- and N-cadherin. Secondary anti-mouse Alexa Fluor 488 antibody 
was used for detection of E-cadherin and anti-rabbit Alexa Fluor 555 antibody for detection of 
N-cadherin. One of two representative experiments is shown here. Both ctrl and c-Rel siRNA 
samples were subjected to the same exposure time, nuclei were counterstained with DAPI, bar= 
50 µm. (B) Western blotting of 40 µg whole cell lysate of untreated (untr), lipofectamine treated 
(lipo), control siRNA (ctrl) and c-Rel siRNA (c-Rel) transfected cells after 72 h examining E-cadherin 
and N-cadherin expression. Actin served in both cases as loading control and one of two 
experiments is depicted. 

 

Another, more transitory process resulting in an EMT-resembling phenotype is 

wound healing or re-epithelialisation.  
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After in vivo skin wounding, surrounding keratinocytes migrate to the wound bed, 

proliferate and finally differentiate. Likewise, migration during wound healing involves 

dissolution of cell-cell contacts, a change to a more flat and elongated phenotype as well 

as a different polarization (Sivamani, 2007, Kirfel and Herzog, 2004). Concomitant with 

this change, a different expression pattern of integrin surface receptors becomes 

apparent enabling the cells to gain a higher motility (Grinell, 1992). Typically, ß1 integrin 

upregulation can be observed during wound healing on the cellular surface, which we 

analyzed in further experiments along with one of its binding partners, α2 integrin (Figure 

21). In a first approach using immunofluorescence studies, an increase of ß1 integrin was 

detectable for c-Rel knockdown cells compared to control siRNA cells (Figure 21A). Due to 

quantitative limitations of this method, surface expression was examined by flow 

cytometry analysis. Repeatedly, mean fluorescence intensity (MFI) of vital c-Rel 

downregulated cells resembled control cells (MFI of 11,937 vs. 12,828, Figure 21B). 

Therefore, even though immunofluorescence studies suggested differently, no 

upregulation of ß1 integrin surface expression was verifiable. 
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Figure 21: No changes in ß1 integrin surface expression on c-Rel downregulated HaCaT cells. 
(A) Representative photographs of integrin α2 and ß1 co-immunofluorescence staining of control 
(ctrl) and c-Rel siRNA cells 72 h after transfection. Secondary anti-mouse Alexa Fluor 488 antibody 
was used for detection of integrin α2 and anti-rabbit Alexa Fluor 555 antibody for detection of 
integrin ß1. Both control and c-Rel siRNA samples were subjected to the same exposure time, 
nuclei were counterstained with DAPI (bar= 50 µm). (B) Flow cytometry analysis of surface ß1 
integrin for control (ctrl, grey line) and c-Rel siRNA cells (black line) 72 h after transfection. 
Negative control is depicted with a grey filling. One of three experiments yielded similar results. 

 

To investigate in vitro wound healing/migration of c-Rel downregulated HaCaT cells 

further, wound healing assays were performed. Due to reduced growth of c-Rel siRNA 

cells, both samples were growth inhibited by exposing them to 55 Gray radiation 48 h 

after transfection. Hence, the resulting effect can be attributed exclusively to cell 

migration and not to cell growth. In the applied assay, cells were transfected and seeded 

onto a culture insert with two single wells separated by a 50 µm thick dividing wall. 72 h 

after transfection, the culture insert was removed, leaving an equal gap between the cells 

of both wells. Subsequently, gap closure was documented for up to 48 h after insert 

removal (Figure 22). Surprisingly, the wound healing rate of c-Rel downregulated HaCaT 

cells was dramatically reduced as shown for 10 h and 24 h after insert removal (Figure 

22A). Wound closure was already declined after 6 h (2.21 % vs. 7.73 %) becoming 

significant after 24 h (9.07 % vs. 73.22 %, p<0.05) while being most pronounced and 

highly significant after 48 h (26.55 % vs. 97.7 % wound healing, p<0.001, Figure 22B).  
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Figure 22: Migration of c-Rel downregulated HaCaT cells is considerably impaired. 

(A) Photographs of wound healing assay 0 h, 10 h and 24 h after insert removal of growth 
inhibited c-Rel siRNA compared to control siRNA HaCaT cells 72 h after transfection (bar= 
100 µm). (B) Quantitative evaluation of wound closure rate of control (ctrl) and c-Rel siRNA cells 
from insert removal (0 h) until 48 h after insert removal. One of two experiments is 
representatively shown here, error bars are ±SD, * indicates p≤0.05. 

 

Furthermore, adhesion, a process closely related to migration, was examined. 

Initially, in a more general approach adhesion of cells onto tissue culture treated wells 

after reseeding of control and c-Rel knockdown cells was tested (Figure 23A). 3 h and 6 h 

after reseeding, a significant reduction of adhesion was determined for c-Rel knockdown 

cells (27 % reduction after 3 h (p<0.001) and even 37 % reduction (p<0.001) after 6 h). In 

the adhesion process, various compositions of heterodimeric integrin receptors are 

generally involved. However, binding of basal keratinocytes to various ECM proteins in 

the basement membrane is a process of higher specificity since different integrins bind to 

specific sequence motifs on ECM proteins.  
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Subsequently, adhesion to different concentrations (0.125 µg/ml - 20 µg/ml) of four 

ECM proteins was examined 2 h after reseeding; collagen I, fibronectin, laminin as well as 

vitronectin. Adhesion onto all ECM proteins was generally reduced for c-Rel 

downregulated HaCaT cells but also showed concentration- and ECM protein dependent 

effects (Figure 23B). Adhesion to collagen I was about 20 - 35 % impaired except at the 

lowest concentration of 0.125 µg/ml with about 70 % decreased adhesion. Significant 

reduction could be detected at a concentration of 2.5 µg/ml and 5 µg/ml of collagen I 

(p<0.05). Adhesion to fibronectin was not significantly reduced however, at lower 

concentrations impaired adhesion was more pronounced (about 30 - 50 %) than at higher 

concentrations (about 10 - 30 %). Similarly, adhesion to laminin was more impaired at 

lower concentrations (50 - 80 %) than at higher concentrations (about 40 - 45 %) with a 

significant difference of 45 % at 20 µg/ml laminin (p<0.01). On vitronectin however, 

adhesion was most clearly impaired constantly ranging between 40 - 60 % with most 

pronounced effects at the two highest concentrations (about 60 %). Significant 

differences were obtained at a concentration of 1.25 µg/ml (59 % impairment, p<0.05) 

and 10 µg/ml (60 % impairment, p<0.05) vitronectin.  

Since adhesion was most affected on vitronectin, we subsequently focused on the 

corresponding integrin receptors on the cellular surface. αvß3 integrin and αvß5 integrin 

have both been reported to bind to vitronectin whereas only αvß5 integrin is expressed 

on keratinocytes (Kim et al., 1994). However, flow cytometry analyses revealed no clear 

changes in surface expression level of αvß5 integrin comparing c-Rel downregulated and 

control siRNA cells (MFI 271 vs. 242, Figure 23C). Even though surface expression level of 

αvß5 integrin is not affected by c-Rel downregulation, final conclusions about the 

functional state of the respective integrin may not be drawn from these experiments.  

However, general adhesion is significantly impaired for c-Rel downregulated HaCaT 

cells on tissue culture treated surfaces and mostly also on various ECM proteins with 

vitronectin-binding being most affected. Yet, this could not be associated with a 

diminished surface expression level of the respective integrin receptor.  
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Figure 23: Reduced adhesion of c-Rel downregulated HaCaT keratinocytes. 
(A) Adhesion assay of control (ctrl) and c-Rel downregulated cells onto tissue culture treated 
wells. 72 h after transfection, cells were detached, reseeded and allowed to re-attach again for 
3 h and 6 h, respectively. Quantitative evaluation occurred by evaluating the number of attached 
cells per microscopic field of at least 30 fields (x160) via ImageJ. One of two experiments is 
representatively shown here, error bars are ±SD, * indicates p≤0.05.  (B) Adhesion assay of control 
(ctrl) and c-Rel downregulated cells onto wells coated with different ECM proteins and BSA, 
respectively. 72 h after transfection, cells were detached, reseeded and allowed to re-attach again 
for 2 h on wells with concentrations ranging from 0.125 - 20 µg/ml. Wells were coated with 
collagen I, fibronectin, laminin, vitronectin and BSA as control. Shown are mean absorbance 
values of two independent experiments, error bars are ±SD, * indicates p≤0.05. (C) Flow 
cytometry analysis of integrin αvß5 expression shows no clear changes between control (ctrl, 
black line) and c-Rel (grey line) downregulated cells. Isotype control is depicted with a bright grey 
filling. One representative of three independent analyses is shown here. 

 

Although adhesion and migration are two distinct processes, both rely on similar 

molecular mechanisms such as adhesion receptor binding and assembly of multi-protein 

complexes on the inner side of the cell membrane. 

Adhesomes consist of about 180 proteins with a complex interaction network 

generating small and highly transient nascent adhesions (<0.25 µm). These can either 

disassemble or turn into more mature and larger focal complexes (<1 µm). Most stable 

adhesion complexes focal adhesions are the tallest complexes (1 - 5 µm) leading to 

increased adhesion strength (Ciobanasu et al., 2012; Parsons et al., 2010).  
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To investigate whether adhesion complexes are deregulated in c-Rel siRNA cells, 

two very common adhesome proteins were studied by immunofluorescence: paxillin and 

vinculin (Figure 24A). Paxillin interacts with the intracellular integrin tail whereas vinculin 

binds directly to F-actin. We subsequently aimed to evaluate adhesions in number, 

distribution and size according to previously described classifications. However, this 

revealed to be not practicable due to rather faint paxillin signals on the one hand and on 

the other hand rather strong cytoplasmic vinculin signal potentially covering specific 

adhesion complexes. Additionally, keratinocyte clusters further complicated affiliation of 

the respective adhesion complex to specific cells. Possibly due to the aforementioned 

reasons, we could not detect any changes of vinculin and paxillin expression comparing 

control and c-Rel siRNA cells. 

Actin polymerization to F-actin and generation of stress fibers at adhesomes is a 

prerequisite for traction generation and subsequent movement of the cell, and is 

required specifically during the migration process. Therefore, we focused on examining 

stress fiber appearance in c-Rel downregulated cells via immunofluorescence (Figure 

24B). On the one hand, F-actin signal appeared fainter for c-Rel downregulated cells while 

on the other hand also less stress fibers were detectable for c-Rel downregulated cells 

especially at cell elongations, as highlighted in the enlarged boxes (Figure 24B).  
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Figure 24: Reduced stress fiber appearance in c-Rel downregulated HaCaT cells. 
(A) Immunofluorescence stainings of focal adhesion proteins vinculin and paxillin of control (ctrl) 
and c-Rel downregulated cells 72 h after transfection. Secondary anti-mouse Alexa Fluor 488 
antibody was used for detection of vinculin and anti-rabbit Alexa Fluor 555 antibody for detection 
of paxillin. Enlarged boxes highlight adhesion rich regions, nuclei are counterstained with DAPI 
(bar= 50 µm). (B) Immunofluorescence staining of PromoFluor 555 labelled phalloidin of control 
(ctrl) and c-Rel siRNA cells 72 h after transfection. Enlarged boxes highlight stress fiber containing 
regions. Nuclei are counterstained with DAPI (bar= 50 µm). All experiments were performed at 
least twice with similar results. 

 

In summary, a modified phenotype for c-Rel downregulated HaCaT cells was 

obvious with a reduced colony-growth formation and more elongated cell phenotype 

which could not be associated with EMT-determining protein expression.  
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Even though surface expression of wound healing associated ß1 integrin did not change, a 

clearly diminished migratory response could be observed in wound healing assay with 

downregulated c-Rel. Furthermore, impaired adhesion to tissue culture treated surfaces 

and to the ECM protein vitronectin was obvious whereas vitronectin associated adhesion 

receptor showed no significant expression changes. Thus, we hypothesize a more general 

mechanism initiating reduced migratory and adhesive characteristics. According to this, a 

clearly reduced amount of stress fibres became apparent in c-Rel downregulated HaCaT 

cells constituting a prerequisite for proper adhesion and migration. 

 

3.4 Characterization of NF-ĸB expression in primary keratinocytes 

Even though spontaneously immortalized HaCaT cells are one of the best model 

systems to study keratinocytes, they show some different characteristics compared to 

primary keratinocytes such as loss of both p53 alleles, hypermethylation of the promotor 

region of p16 as well as a greater susceptibility to apoptosis. Regarding NF-ĸB activity, 

HaCaT cells have higher constitutive levels of p50 and p65 (Chaturvedi et al., 1999). 

To increase the impact of our studies, NF-ĸB expression and functional studies on 

c-Rel were subsequently investigated in the primary cell system with human epidermal 

keratinocytes derived from foreskin (Figure 25). Regarding transcription, these cells 

showed relatively lower levels of NFKB1 and REL in contrast to RELA, NFKB2 and RELB as 

determined by semi-quantitative PCR with varying cycle counts (Figure 25A). Again, 

western blotting revealed expression of all subunits (Figure 25B). Immunofluorescence 

studies revealed that all NF-ĸB subunits were predominantly localized within the 

cytoplasm. However, primary keratinocytes showed greater heterogeneity than HaCaT 

cells; within some clusters, several cells showed cytoplasmic staining, others even 

distribution while some cells revealed nuclear staining as well. Again, c-Rel and RelB but 

also p52 revealed additional punctate nuclear staining pattern. 

 



3. RESULTS 

 
 

71 
 

 

 

Figure 25: Expression of NF-ĸB proteins in primary epidermal keratinocytes. 
(A) Semi-quantitative PCR of all NF-ĸB genes with different cycle counts (30 - 40). GAPDH served 
as positive control, (-) displays the sample without template. (B) Western blotting of 20 µg and 
40 µg whole cell lysate using antibodies directed against each respective NF-ĸB protein. Actin 
served as loading control. (C) Exemplary photographs of immunofluorescence staining of all NF-ĸB 
subunits digitally enhanced with Axiovision software Rel 4.7. p65 stained sample was incubated 
with anti-mouse secondary antibody conjugated with AlexaFluor 488, whereas p50, p52, RelB and 
c-Rel stained samples were incubated with anti-rabbit secondary antibody conjugated with 
AlexaFluor 555. On the right side, photographs were merged with DAPI stained nuclei. Bar= 20 
µm. One of two representative experiments is depicted.  

 

Our studies identified expression differences of NF-ĸB proteins in HaCaT cells and 

primary epidermal keratinocytes as follows: Primary keratinocytes show lower relative 

transcription of NFKB1 and REL, whereas NFKB2, RELA and RELB are expressed more 

strongly while being reverse in HaCaT cells. Subcellular distribution revealed only minor 

differences since all NF-ĸB subunits are predominantly localized to the cytoplasm. 

However, NF-ĸB subunits were more heterogeneously distributed in primary keratinocyte 

clusters compared to HaCaT cells.  
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3.5 Impact of c-Rel downregulation on primary keratinocytes 

To clarify whether c-Rel downregulation yields similar results compared to HaCaT 

keratinocytes, analogous transfection experiments were conducted with primary 

keratinocytes. For these experiments, keratinocytes were used exclusively from passage 3 

to 4 guaranteeing basal characteristics. Western blotting confirmed c-Rel downregulation 

72 h after transfection with a 60 % reduction as determined densitometrically confirming 

a highly efficient siRNA downregulation (Figure 26A).  

Subsequently, keratinocyte growth was analyzed by quantification of cells per 

microscopic field every 24 h after transfection establishing a growth curve (Figure 26B). 

48 h after transfection, c-Rel downregulated primary keratinocytes revealed an about 

22 % reduced growth compared to control cells (p<0.01). 72 h after transfection, growth 

reduction was slightly more pronounced (about 25 %, p<0.01) whereas after 96 h, growth 

reduction was most distinct with 44 % compared to control (p<0.001). However, 96 h 

after transfection, control cells reached confluency potentially inducing differentiation 

related growth arrest. To exclude this effect, for the following studies the time point of 

72 h after transfection was chosen. 
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Figure 26: c-Rel downregulation leads to growth reduction in primary keratinocytes. 
(A) Western blotting of 40 µg whole cell lysate of control siRNA (ctrl) and c-Rel siRNA transfected 
primary epidermal keratinocytes 72 h after transfection. Actin served as loading control. (B) 
Growth curve of control (ctrl) and c-Rel siRNA transfected primary keratinocytes between 24 h 
and 96 h after transfection. Curve represents mean cell numbers of ten microscopic fields (x100) 
evaluated using ImageJ. One of two experiments with similar results is representatively shown, 
error bars are ±SD, * indicates p≤0.05. 

 

Regarding functional studies, MTT viability assay revealed moderate, non-significant 

reduction for c-Rel downregulated keratinocytes, repeatedly around 10 % (Figure 27A). In 

contrast to this, BrdU incorporation assays showed a significantly reduced proliferation 

rate for c-Rel siRNA treated cells of about 36 % (p<0.01, Figure 27B). Furthermore, 

apoptosis was increased, about 44 % compared to control cells (Figure 27C) revealing no 

significance. 
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Figure 27: c-Rel downregulation reduces proliferation of primary keratinocytes. 
(A) MTT viability assay of control (ctrl) siRNA and c-Rel siRNA transfected keratinocytes 72 h after 
transfection. One of three experiments with similar results is shown, every experiment was 
performed in triplicates, error bars are ±SD. (B) BrdU incorporation assay of control (ctrl) siRNA 
and c-Rel siRNA transfected primary keratinocytes 72 h after transfection. Two experiments 
revealed similar results, one is representatively shown here, error bars are ±SD, * indicates 
p≤0.05. (C) Apoptosis assay of control (ctrl) siRNA and c-Rel siRNA keratinocytes 72 h after 
transfection. Data represent mean absorbances of two independent experiments, every 
experiment was performed in triplicates, error bars are ±SD.  

 

In summary, our studies confirmed that c-Rel downregulation induces growth 

reduction in primary keratinocytes both impacting proliferation and apoptosis 

comparable to previous results for HaCaT keratinocytes.  

When analyzing cell cycle phase distribution, c-Rel downregulated primary 

keratinocytes showed a significant 24 % increase of cells in G2/M phase compared to 

control (43.2 % vs. 34.9 %, p<0.05, Figure 28A). Furthermore, p-H3Ser10 

immunofluorescence staining revealed an increased positive cell portion; by trend, about 

56 % more primary keratinocytes were p-H3Ser10 positive compared to control (Figure 28B 

and C). To determine the mitotic cell portion, immunofluorescence stainings of ß-tubulin 

were evaluated and revealed 53 % increase of c-Rel downregulated sample compared to 

control (Figure 28D).  
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Generally, due to the lower mitotic cell number and quite considerable variations, no 

significant differences between control and c-Rel sample could be determined, however, 

the trend was detected repeatedly. 

 

 

Figure 28: Increased G2/M phase cell portion of c-Rel downregulated primary keratinocytes. 
(A) Diagram of cell cycle phase distribution of vital control (ctrl, grey bar) and c-Rel siRNA 
transfected primary keratinocytes (black bar) 72 h after transfection. Shown are mean distribution 
values of two independent experiments, error bars are ±SD, * indicates p≤0.05. (B) Exemplary 
photographs of p-H3Ser10 immunofluorescence staining of control (ctrl) and c-Rel siRNA primary 
keratinocytes 72 h after transfection digitally enhanced with Axiovision software Rel 4.7. 
Secondary anti-rabbit antibody was labeled with Alexa Fluor 555 and nuclei were counterstained 
with DAPI (bar= 100 µm). (C) Quantitative evaluation of p-H3Ser10 positive cell portions of control 
(ctrl) and c-Rel siRNA transfected primary keratinocytes of 20 microscopic fields of view (x200). 
One of two experiments is representatively shown here, error bars are ±SD. (D) Quantitative 
evaluation of control (ctrl) and c-Rel siRNA transfected mitotic cell portions of at least 
19 microscopic fields (x200) based on ß-tubulin immunofluorescence stainings. One of two 
experiments is representatively shown here, error bars are ±SD.   

 

Furthermore, the phenotype of primary keratinocytes with downregulated c-Rel 

was analyzed. However in contrast to HaCaT cells, no or only minor morphological 

changes could be observed 72 h after transfection for primary keratinocytes (Figure 29A). 

Furthermore, wound healing assay revealed only a mildly impaired migration of c-Rel 

downregulated primary keratinocytes (Figure 29B). 
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Figure 29: c-Rel downregulation shows minor effects on primary keratinocyte phenotype and 
migration. 

(A) Representative phase contrast photographs of control (ctrl) and c-Rel knockdown primary 
keratinocytes 72 h after transfection (bar= 50 µm). (B) Representative photographs of wound 
healing assay 0 h, 6 h and 12 h after insert removal for control (ctrl) and c-Rel siRNA transfected 
primary keratinocytes 72 h after transfection (bar= 100 µm). 

 

In summary, effects of c-Rel downregulation in primary keratinocytes are similar to 

those of HaCaT cells with respect to cell growth and cell cycle: impaired growth of 

primary keratinocytes, reduced proliferation and increased yet non-significant apoptosis. 

In contrast, cell cycle phase distribution is significantly shifted towards a greater cell 

fraction in G2/M phase. Furthermore, p-H3Ser10 positive and mitotic cell portion is induced 

in c-Rel downregulated primary keratinocytes as well. Regarding phenotypic and 

associated changes, no or only minor effects were seen for c-Rel downregulated primary 

keratinocytes in contrast to HaCaT cells. 
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Conclusively, taking into consideration system-specific difficulties like transfection 

efficiency and greater variability of primary cells, our data generated in primary 

keratinocytes support c-Rel downregulation specific effects especially regarding cell 

growth.
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4 Discussion 

 

The ubiquitously expressed transcription factor NF-κB exerts a wide variety of 

crucial cellular functions by regulating typical tumor promoting characteristics such as 

proliferation, apoptosis, invasion as well as inflammation (Karin, 2006). In various cancer 

types, NF-κB is constitutively active being an intriguing target for cancer therapeutics (Van 

Waes, 2007). However, showing a higher complexity than originally anticipated, NF-κB 

exerts its specific effects in a cell type- and context-dependent manner (Perkins, 2004). In 

human skin, NF-κB activation influences epidermal homeostasis by showing a growth 

inhibitory effect on keratinocytes (Seitz et al., 1998; van Hogerlinden et al., 1999). 

Previously, NF-κB has been associated with development and progression of human SCC 

by demonstration of ambiguous expression- and activity patterns (Dajee et al., 2003; 

Loercher et al., 2004). The major aim of this thesis was to further elucidate the function of 

the five single NF-κB subunits with respect to basic keratinocyte characteristics involved 

in the regulation of epidermal homeostasis. 

 

4.1 Pro-proliferative, anti-apoptotic implications for c-Rel in HaCaT cells  

Functional studies on single NF-κB subunits using a siRNA based approach revealed 

significant effects in HaCaT cells for c-Rel but not for the NF-κB proteins p50, p52, RelB, or 

p65.  

However, this finding does not necessarily point at a negligible function of the four 

latter proteins, more probably representing a consequence of functional redundancy 

between the subunits as could previously be shown in mouse fibroblasts (Hoffmann et al., 

2003).  
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Among the five different NF-κB proteins, c-Rel owns exclusive properties as it 

constitutes the only subunit associated with oncogenic features: An avian mutated 

homologue of c-Rel, v-Rel, has been reported to malignantly transform chicken 

hematopoietic cells in vitro (Chen et al., 1981). Furthermore, c-Rel was shown to be 

induced in the nuclei of solid and hematopoietic cancers (Rodig et al., 2005; Sovak et al., 

1997). In addition, c-rel-/- mice revealed mainly B-cell defects but also displayed smaller 

T-cell defects (Kontgen et al., 1995; Tumang et al., 1998). Interestingly, B-cells of c-rel-/- 

mice showed reduced proliferation and increased apoptosis (Hsia et al., 2002), features 

that were also identified in the present work for HaCaT and primary keratinocytes. 

Even though c-Rel is expressed in the epidermis and in hair follicles of fetal mice 

(Gugasyan et al., 2004), no overt skin phenotype has been detected in c-rel-/- mice so far. 

However, recent studies uncovered previously unknown extralymphoid defects in c-rel-/- 

mice such as cardiac hypertrophy (Gaspar-Pereira et al., 2012) as well as liver fibrosis and 

liver regeneration (Gieling et al., 2010). Therefore, these findings might reflect a broader 

range of defects in c-Rel knockout mice than previously suspected.  

In our functional studies, we could show a negative impact of c-Rel downregulation 

on cell growth and proliferation in HaCaT cells. Therefore, our results suggest 

pro-proliferative, growth supportive functions of c-Rel. Since previous studies on the 

NF-κB subunits p50 and p65 revealed opposite effects in keratinocytes these findings 

were rather unexpected (Seitz et al., 1998; van Hogerlinden et al., 1999). It seems 

however that c-Rel acts differently than the NF-κB subunits p50 and p65 in this respect, 

more in accordance with the typical NF-κB related effects in most other cell types. 

Beyond analysis of the impaired growth of c-Rel downregulated cells, we were able 

to identify underlying processes and molecular targets, thus contributing to a better 

understanding of the impact of c-Rel. Regarding cell cycle regulation, c-Rel knockdown led 

to CKI p15INK4B induction in HaCaT cells yet without any further effect on associated G1/S 

cell cycle phase transition.  
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However, c-Rel downregulation markedly increased HaCaT cell portion in G2/M 

phase. Subsequent studies examining G2/M phase associated protein expression revealed 

strong induction of histone H3 phosphorylated at serine 10 and a clearly increased 

portion of p-H3Ser10 positive cells. Whereas the exact function of histone H3 

phosphorylation remains controversial so far (Cerutti and Casas-Mollano, 2009), 

phosphorylation was shown to be initiated in late G2 phase along with chromosome 

condensation, peaking in metaphase and disappearing in later mitotic phases (Hendzel et 

al., 1997). The chromosomal passenger complex (CPC) is known to regulate this 

phosphorylation event. Investigation of CPC localization and expression by studying one 

of the CPC components, survivin, revealed no alterations for c-Rel downregulated HaCaT 

cells. Since the CPC component aurora B kinase is responsible for phosphorylating histone 

H3 at serine 10 (Crosio et al., 2002; Murnion et al., 2001), experiments addressing its 

potentially dysregulated expression or activity status in c-Rel knockdown cells could 

further enlighten this issue. In this context, it may be of interest that overexpression of 

aurora B kinase has been reported in many cancer types, among others also a subtype of 

SCC, head and neck SCC (Qi et al., 2010). 

Since p-H3Ser10 induction is mainly associated with condensed chromatin during 

mitosis, our results suggested that there might be an aberrant mitotic proceeding of c-Rel 

downregulated cells. Therefore, further experiments were performed to determine the 

number of mitotic cells which indeed was clearly increased for c-Rel downregulated 

HaCaT cells. Subsequently, we focused on the appearance of the mitotic spindle 

apparatus and identified highly increased mitotic cell portion with aberrant mitotic 

spindle structures for c-Rel knockdown cells. When investigating and evaluating mitotic 

spindle morphology in more detail, a predominantly monopolar spindle morphology 

became obvious.  
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Accurate bipolar mitotic spindle formation depends on several cellular events; 

centrosome duplication during S-phase, centrosome separation by molecular motor 

proteins in mitotic prophase pushing microtubules of opposite polarity apart, and finally 

formation of spindle microtubules emanating from each centrosome as microtubule 

organization center (MTOC) supported by a variety of proteins (Tillement et al., 2009). 

Monopolar spindle formation can be caused by inhibited centrosome duplication, 

functional defects of molecular motor proteins, decreased microtubule stability or by 

inhibition of specific dynein-related or kinesin-like proteins, such as the polo-like kinase 1 

(Plk1) (Sumara et al., 2004; Tillement et al., 2009; van Vugt et al., 2004). Further 

experiments such as examination of centrosome number and -localization are needed to 

unravel the exact causes of monopolar spindle formation in c-Rel downregulated HaCaT 

cells. 

As a consequence of disturbed bipolar mitotic spindle assembly, usually mitosis is 

delayed due to activation of the mitotic spindle assembly checkpoint (SAC). SAC activation 

is triggered by incorrect attachments of the mitotic spindle microtubules to the 

kinetochors of sister chromatids (Tillement et al., 2009). Since c-Rel downregulation 

induces disturbances in mitotic spindle assembly probably resulting in erroneous or no 

kinetochore attachment, we propose prolonged activation of SAC in c-Rel downregulated 

HaCaT cells.  

As a general result of prolonged SAC activation, cells arrest in mitosis and sooner or 

later either proceed into apoptosis or slip through mitosis, i.e. escape from mitosis with 

improper chromosome separation (Huang et al., 2009). Indeed, functional studies showed 

an increased apoptosis rate of c-Rel downregulated HaCaT cells. Therefore, we suggest 

that induction of apoptosis may occur as a result of prolonged SAC activation. To prove 

whether mitotic slippage occurs as a result of c-Rel knockdown, future karyotype analysis 

should be performed. However, these would require longterm downregulation of c-Rel as 

could be achieved by stable shRNA insertion into HaCaT cells. 
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Usually, SAC induction involves upregulation of cyclin B1 in various cell types 

(Castedo et al., 2004). However, this upregulation could not be detected in c-Rel 

downregulated HaCaT cells, possibly due to low cyclin B1 expression level. It will 

therefore be of great interest to examine other proteins associated with SAC activation 

such as the transcriptional activator p38 or kinetochore binding proteins such as the 

mentioned kinase BubR1 to confirm this hypothesis (Musacchio and Salmon, 2007; 

Takenaka et al., 1998).  

Various anti-mitotic drugs such as paclitaxel or the Vinca alkaloid vinblastine are 

used as chemotherapeutic agents to treat a broad range of cancer types. These drugs 

generally act on microtubule dynamics interfering with proper mitotic spindle assembly 

resulting in mitotic arrest and following cell death (Hadfield et al., 2003; Pellegrini and 

Budman, 2005). Intriguingly, similar structured mitotic spindles as for c-Rel knockdown 

HaCaT cells could be observed when incubating HeLa cells with 6.4 nM of vinblastine for 

18 - 20 h. Spindle morphology was mainly monopolar with ball-shaped condensed 

chromatin and plenty star-like microtubule aggregates (Jordan et al., 1992). Vinblastine 

disrupts microtubule dynamics concentration-dependent by preventing addition of 

microtubule monomers to the microtubule end resulting in depolymerization and mitotic 

arrest of the respective cell (Matson and Stukenberg, 2011). Future studies need to 

unravel the exact mechanism of c-Rel downregulation on mitotic spindle formation and 

its potential similarity to vinblastine mechanism of action. One approach would involve 

live cell imaging of mitotic c-Rel downregulated HaCaT cells to obtain a more detailed 

insight into the origin of spindle formation disturbances over time.  

Since most anti-mitotic agents have high neurotoxic effects, the search for 

alternatives is an ongoing field of research recently expanding to small molecule 

inhibitors for mitotic spindle proteins (Jackson et al., 2007).  

In summary, c-Rel downregulation initiates mitotic spindle disturbances in HaCaT 

cells. Two examples will further highlight the relevance of our findings:  
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First, Torchia and colleagues recently characterized conditional aurora a-/- mice 

revealing a hypoproliferative epidermis and a strong increase of mitotic keratinocytes 

with disorganized mitotic spindles. Additionally, also apoptosis was induced in 

keratinocytes lacking aurora A kinase (Torchia et al., 2013). Aurora A is besides the 

previously mentioned aurora B a member of the aurora kinase family and is involved in 

proper mitotic proceeding. It is directly localized at the centrosomes and mitotic spindles 

regulating centrosome maturation, proper mitotic entry as well as bipolar spindle 

assembly (Marumoto et al., 2003; Vader and Lens, 2008). Intriguingly, aurora A has been 

reported to be overexpressed in SCCs of the skin suggesting a potential role during 

epidermal carcinogenesis (Clausen et al., 2006; Torchia et al., 2009). Based on the 

resemblance to c-Rel knockdown associated changes in HaCaT cells, one may hypothesize 

that c-Rel could directly affect mitotic spindle assembly suggesting a function for c-Rel 

apart from its role as transcriptional activator. However, no such indications for c-Rel 

functions have been reported yet. Furthermore, disturbances in mitotic spindle formation 

do not necessarily indicate a direct role in regulation of microtubule dynamics. Therefore, 

it seems more likely that c-Rel knockdown related spindle assembly disturbances might 

represent a secondary effect due to the lack of c-Rel at an earlier point of time.  

The second example involves a similar experimental approach with in vitro 

downregulation of another transcription factor. Herein, shRNA depletion of the forkhead 

transcription factor FoxM1 in breast cancer cell lines led to mitotic cell accumulation and 

disturbed mitotic spindle formation. Generally, FoxM1 function is associated with 

accurate timely entry into mitosis and regulation of mitosis-associated target genes such 

as NIMA-related kinase 2 (Nek2), Kinesin-like protein 20A (KIF20A) or Centromere Protein 

A (CENP-A) (Wonsey and Follettie, 2005). Due to functional analogy of FoxM1 and c-Rel 

both owing transcription factor activity, we hypothesize c-Rel may similarly regulate 

target genes which are required for proper mitotic proceeding. Intriguingly, c-Rel and 

FoxM1 have also been reported to be interconnected: Wound healing responses of c-rel-/- 

mouse hepatocytes showed delayed induction of FoxM1 including reduction of cyclin B1 

and cdc25c. As a response to injury, c-Rel binding to the promoter of FoxM1 was detected 

thus contributing to hepatocyte wound healing (Gieling et al., 2010).  
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Since hepatocytes and keratinocytes share many functional similarities, future studies 

elucidating the expression and activation status of FoxM1 in c-Rel downregulated HaCaT 

cells could gain new insights into mitotic regulation. 

In conclusion, we hypothesize a role for c-Rel in timely mitotic entry or mitotic 

proceeding by affecting the expression level of mitosis-associated regulatory genes. This 

is further supported by the fact that c-Rel is induced in mitotically arrested and serum-

synchronized mitotic HaCaT cells compared to non-synchronized unstimulated cells. 

However, with our current data we cannot exactly determine the peak of c-Rel expression 

which might be prior to investigated time points. Future studies will have to focus on 

determination of c-Rel activity status prior to and during mitotic entry and proceeding 

compared to other cell cycle phases or non-synchronized HaCaT cells. In case of increased 

mitotic c-Rel activity, subsidiary ChIP analyses may give final hints on respective target 

genes of c-Rel during mitosis. Usually, the majority of transcription factors are silenced in 

mitotic cells but genomic DNA still remains accessible to certain transcription factor 

binding despite of the high condensation grade (Chen et al., 2005).  

To summarize, current data point at a novel role for c-Rel in cell cycle progression, 

more precisely in proper mitotic entry or proceeding of HaCaT cells. Identification of 

c-Rel-associated specific target genes, its mitotic activity status as well as complementary 

studies focusing on overexpression effects of c-Rel in HaCaT cells will further contribute to 

a better understanding of c-Rel specific mode of action and its implications on epidermal 

homeostasis.  

 

4.2 Putative role for c-Rel in cytoskeleton dynamics of HaCaT cells 

Phenotypic modifications such as elongation and flattening of cells have been 

reported in early studies for overexpression of chicken c-Rel in HeLa cells but also in later 

studies overexpressing human c-Rel in primary keratinocytes (Bash et al., 1997; Bernard 

et al., 2004). The mechanistic causes of these morphological changes however have not 

been analyzed further.  
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In our studies, we could show by transient c-Rel downregulation a conversion of the 

typical HaCaT keratinocyte phenotype to an elongated and more singled appearance. 

These phenotypic traits have been previously associated with EMT of keratinocytes, 

however, the hallmarks of EMT (upregulation of N-cadherin and downregulation of 

E-cadherin) could not be detected. On contrary, when examining migration of HaCaT cells 

in a wound healing assay, the wound healing i.e. in vitro migration rate was dramatically 

diminished. Not quite as pronounced as the migration rate but also reduced was adhesion 

of c-Rel downregulated HaCaT cells. Even though examination of cellular adhesion to 

different ECM proteins revealed protein specific varieties, no impairment of specific 

integrin surface receptors could be associated with c-Rel downregulation.  

Both of these processes, adhesion and migration are closely related with adhesion 

constituting a prerequisite for migration. Whereas adhesion includes more the simple 

attachments of a cell associated with increased integrin clustering, migration comprises 

rather diffuse integrin localization as well as the sequential adherence and disadherence 

from the substrate resulting in cellular movement (Kim et al., 1994).  

In following experiments examining molecular components responsible for 

adhesion and migration, study of the two typical adhesome components, vinculin and 

paxillin, revealed no obvious differences. In contrast to this, stress fiber appearance was 

clearly diminished in c-Rel downregulated HaCaT cells. Since stress fibers are required for 

cellular motility by generation of traction forces, these findings can be directly associated 

with the abrogated migration rate in wound healing of c-Rel downregulated cells. 

Adhesion does not depend to the same extent on traction forces, resulting in a not quite 

as pronounced effect compared to migration. 

Since actin dynamics also regulate the cellular shape, we suggest the modified 

phenotype of c-Rel downregulated HaCaT cells being caused by diminished stress fiber 

appearance. Therefore, the faulty impression of increased cellular motility might actually 

be due to cytoskeleton changes.  
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Generally, stress fibers are generated by crosslinking of the actin filaments involving 

α-actinin and tropomyosins while myosin serves as a molecular motor to generate 

traction forces (Ciobanasu et al., 2012). Thus, the question arises how c-Rel 

downregulation impacts stress fiber appearance and associated changes. We suggest that 

c-Rel could affect stress fiber generation or stabilization by targeting actin or 

actin-binding cellular components as those contributing to the adhesome formation. 

Indeed, there is experimental evidence for a function of single NF-κB subunits 

beyond transcription factor regulation regarding cytoskeleton dynamics: In rat fibroblasts, 

association of p65 with F-actin and adhesomes could be shown (Are et al., 2000). 

However, interaction of c-Rel with cytoskeleton components has not been reported to 

our knowledge yet.  

Besides its impact in adhesion and migration, actin acts in concert with 

microtubules and intermediate filaments in a wide variety of essential cellular processes 

as mitosis for instance. Mitosis not only involves mitotic spindle formation but also 

remodeling of the actin cytoskeleton presenting a tremendous reorganization process 

(Stewart et al., 2011). It comprises dissolution of adhesion complexes and stress fibers 

leading to retraction of the cell margin (Cramer and Mitchison, 1997), mitotic cell 

rounding anchoring the cell via actin-based retraction fibers and generation of the rigid 

acto-myosin based cell cortex (Maddox and Burridge, 2003). Intriguingly, the acto-myosin 

cortex generates tensile forces in retraction fibers suggested to support proper mitotic 

spindle alignment and also being required for accurate centrosome separation 

(Rosenblatt et al., 2004; Uzbekov et al., 2002). Furthermore, F-actin is located at the 

mitotic spindle suggesting a direct role for mitotic spindle dynamics (Woolner et al., 2008; 

Yasuda et al., 2005). Due to recent findings emphasizing the role of actin during mitosis, 

we propose a connection of disturbed actin dynamics in c-Rel downregulated 

keratinocytes and previously mentioned mitotic spindle aberrations.  

 



4. DISCUSSION 

 
 
 

 
 

87 
 

Even though our findings are related to stress fiber appearance in interphase cells which 

retract during mitosis, disturbed actin dynamics can affect mitotic cells on many levels, 

for instance in rigidity of the mitotic cell cortex that also depends on acto-myosin 

mediated forces and affects mitotic spindle position and stability.  

An experimental approach to identify c-Rel influence on actin dynamics involves 

determination of the activation status of the Rho GTPase protein RhoA in c-Rel 

downregulated HaCaT cells. Rho GTPases are small proteins switching between an active 

GTP bound form and a GDP bound inactive form mainly mediating actin- but also 

microtubule assembly and organization incorporating many downstream signaling 

pathways (Bishop and Hall, 2000; Etienne-Manneville and Hall, 2002; Hall, 1998). Thereof, 

RhoA was reported to be upregulated in rounded mitotic cells supporting acto-myosin 

based contractility and retraction of the mitotic cell cortex (Maddox and Burridge, 2003). 

Therefore, investigating potential changes of RhoA activation status in c-Rel 

downregulated cells may be an interesting field for future studies potentially combining 

both, cell cycle regulation and actin dynamic changes.  

 

4.3 c-Rel downregulation in HaCaT and primary keratinocytes  

Although HaCaT cells are spontaneously immortalized, they show some differences 

compared to primary keratinocytes such as loss of both p53 alleles, hypermethylation of 

the promoter region of p16INK4A as well as a greater susceptibility to apoptosis. 

Furthermore, HaCaT cells reveal higher constitutive expression levels of p50 and p65 

(Chaturvedi et al., 1999).  

Characterization of single NF-κB subunit expression in primary keratinocytes 

showed expression of all proteins similar to HaCaT cells. However, HaCaT cells and 

primary keratinocytes revealed differences in relative transcriptional expression patterns 

and subcellular localization with greater signal heterogeneity in primary cells.  
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To confirm general validity of c-Rel downregulation related effects, key experiments 

were repeatedly performed with primary keratinocytes. Regarding functional parameters, 

cell growth and proliferation were reduced whereas apoptosis tended to increase. 

Furthermore, cell cycle phase distribution shifted towards a higher fraction of G2/M 

phase cells. Also the portion of p-H3Ser10 positive and mitotic c-Rel downregulated primary 

keratinocytes was increased but due to higher variations in mitotic cell number no 

statistically significant differences could be shown.  

Including system specificities such as heterogeneous expression level and greater 

transfection sensitivity, former data on c-Rel downregulation could be clearly verified in 

primary keratinocytes regarding cell cycle related effects. 

Previous studies investigating c-Rel function in human primary keratinocytes were 

performed by the use of retroviral constitutive expression vectors. Ambiguously, these 

studies also showed growth inhibition responses (Bernard et al., 2004; Hinata et al., 

2003). Whereas cell cycle phase distribution of c-Rel overexpressing keratinocytes had 

not been analyzed further, Bernard and colleagues associated growth inhibition with 

specific features of premature senescence involving exiting out of the cell cycle (Bernard 

et al., 2004).  

Despite of these seemingly contradictory results, it can be concluded that balanced 

c-Rel expression is required for regulated keratinocyte cell growth in vitro. Our obtained 

data indicate a pro-proliferative and anti-apoptotic function of c-Rel in keratinocytes by 

regulation of target genes important for mitotic entry or proceeding. Studies examining 

c-Rel function in other cell types such as HeLa and B-cells suggested similar functions for 

c-Rel but proposed involvement in G1/S-phase transition (Bash et al., 1997; Hsia et al., 

2002). Even though our data show similarities of c-Rel-associated functions, there might 

be differences in regulatory target genes of c-Rel in keratinocytes compared to other cell 

types, further supported by the previously shown unique role of NF-κB in keratinocytes.  
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At this point, we can only speculate about the exact effect of c-Rel on cell cycle 

progression in keratinocytes. For clarification, further experiments are required such as 

expression analysis by microarray screenings of control and c-Rel downregulated 

keratinocytes possibly identifying dysregulated target genes.  

In contrast to similar cell-cycle-associated changes, no or only minor phenotypic and 

wound healing response changes could be observed in primary keratinocytes in contrast 

to HaCaT cells after c-Rel downregulation. The exact causes for this difference remain 

speculative at this point. Possibly, loss of both alleles of the tumor suppressor p53 in 

HaCaT cells might contribute to this finding.  

 

4.4 Summary and conclusion 

The transcription factor NF-κB represents one of the major players in the regulation 

of epidermal homeostasis. To further enlighten its specific and unique impact in the skin, 

this thesis aimed at unraveling the functional contribution of each single NF-κB subunit in 

vitro. A novel role of the NF-κB subunit c-Rel could be indicated being involved in the 

regulation of keratinocyte cell fate decisions. Contrary to former studies associating NF-κB 

p50 and p65 activation with growth reduction, our c-Rel related data indicate a growth 

supportive function. In detail, we obtained hints for a regulatory function of c-Rel in 

mitotic entry and/or proceeding. 

Altogether, our studies emphasize the individual role of every single NF-κB subunit 

as previously shown by the diversity of single knockout mice: whereas rela-/- mice die 

shortly after birth due to massive apoptosis induction in hepatocytes (Beg et al., 1995), 

relb-/- mice develop for instance a T-cell regulated inflammatory dermatitis (Barton et al., 

2000). A unique role of c-Rel has been previously suggested by showing a broader range 

of target binding sequences compared to other NF-κB subunits generally indicating a 

greater range of target genes (Hoffmann, 2003). In accordance with these data, new c-Rel 

interaction partners are recently emerging such as an isoform of the p53 tumor 

suppressor homologue p63 (∆Np63) in keratinocytes.  
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Intriguingly, ∆Np63 was furthermore shown to be up-regulated in a subtype of SCC (head 

and neck SCC) (King et al., 2008). As previously mentioned, c-Rel is the only NF-κB protein 

associated with proto-oncogenic functions (Chen et al., 1981) and has also been 

associated to be deregulated in various cancer types such as breast- and hematopoietic 

cancers (Curry et al., 2009; Sovak et al., 1997). However, a detailed study of c-Rel 

expression in SCC of the skin has not been performed to date, noteworthy our laboratory 

is currently trying to elucidate this aspect potentially furthermore unraveling an effect for 

c-Rel in epidermal carcinogenesis.  
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