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Abstract 

 

The establishment and maintenance of cell polarity is crucial for the function of many cell types in 

multicellular organisms. Especially in epithelial tissues, cell polarity is connected to the regulation 

of cell adhesion and regulated by a complex hierarchy of highly conserved proteins. These can be 

subdivided into three groups of genes, the bazooka and crumbs groups, which encode apically 

localizing proteins, and the discs large group that encodes laterally localizing tumor suppressor 

proteins. Among these classes of proteins, Bazooka (Baz), the Drosophila homolog of vertebrate 

Par-3, plays a predominant role as shown by genetic epistasis experiments. 

In a yeast two-hybrid screen we identified the protein encoded by the annotated gene CG43427 

which we named smallish (smash), as a new interaction partner of Baz. The gene product of 

smash possesses a C-terminal PDZ binding motif and a LIM domain close to the C-terminus. 

Endogenous Smash colocalizes with Baz apically in epithelial cells, a region harboring the 

adherens junctions (AJs). Co-immunoprecipitation of Baz and an N-terminally tagged version of 

Smash-PI (an isoform encoding for the last 889 amino acids of Smash) has confirmed that these 

proteins interact in vivo in embryos. 

To analyze the function of smash during the development of Drosophila, we generated two 

different knockout alleles by transdeletion, one representing a null allele and the other a C-

terminal truncation affecting the part of the protein carrying the LIM domain and the PDZ binding 

motif. We found that smash is not an essential gene, as homozygous mutants for both alleles are 

viable and fertile. The subcellular localization of polarity markers such as Baz were not affected 

upon smash knockout. On the other hand, overexpression of Smash using the UAS/Gal4 system 

and transgenes encoding for N-terminally GFP-tagged versions of Smash caused lethality in 

embryonic and larval stages. Rare eclosing escaper flies were decreased in body size. 

Overexpression of Smash in epithelial cells resulted in reduction of the apical surface area, 

indicating that Smash may function in apical constriction, a process important for morphogenetic 

rearrangements in epithelia. Overexpression of Smash during eye development caused a rough 

eye phenotype and reduction of eye size. Upon ubiquitous overexpression of Smash in embryos, 

many embryonic cuticles exhibited anterior and dorsal holes. 
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Following up on these findings, we showed that the non-receptor tyrosine kinase Src42A binds N-

terminally GFP-tagged versions of Smash-PI in vitro in S2 cells and is furthermore able to 

phosphorylate GFP-Smash-PI. Endogenous Smash protein was found to be tyrosine 

phosphorylated in vivo in embryos as well. Domain deletion versions of Src42A still showed 

binding to Smash, indicating different binding mechanisims provided by the fact that tyrosine 

phosphorylation of Smash was only abolished upon deletion of the kinase domain. 

A double mutant for Src64B, the second Src kinase encoded by the Drosophila genome, and 

smash is lethal. However, embryonic cuticles did not show defects and epithelial integrity 

appeared intact. 
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1 Introduction 

 

1.1 Cell polarity 

 

The polarization of a cell regulates various aspects of cell behaviour, such as the shape of the cell, 

the unequal distribution of organelles or the alignment of the cytoskeleton. Cell membranes are 

furthermore composed of different types of lipids, which also represents a type of polarization. A 

very important feature of polarization is provided by the asymmetric localization of different 

proteins or protein complexes. Many types of cells are polarized, e.g. neurons, oocytes or stem 

cells, to mention a few. 

Epithelial cells represent a highly polarized cell type and have important functions in forming 

physiological and mechanical barriers (Suzuki and Ohno, 2006) and in shaping a metazoan 

organism by delineating different compartments (Knust and Bossinger, 2002). The plasma 

membrane of epithelial cells can be subdivided into two distinct domains: the apical membrane 

domain facing the environment or a lumen and the basolateral membrane domain, which is in 

contact with neighboring cells and the basal substratum. These two membrane domains are 

segregated by highly elaborated adherens junctions (AJs). Fig.1 shows a schematic of an 

ectodermal epithelial cell of Drosophila melanogaster (Drosophila) in comparison with an 

ectodermal epithelial cell of vertebrates. 

The region containing the AJs is also referred to as the zonula adherens (ZA). A region slightly 

above the ZA is called marginal zone or subapical region (SAR), which harbours proteins which 

have been identified as homologs of vertebrate tight junction (TJ) proteins. However, TJs are 

absent in Drosophila which in contrast features septate junctions (SJ) at the lateral membrane, 

which are not formed in vertebrates (Fig.1). Within these membrane domains three main protein 

complexes had been identified over the past two decades, which localize in a highly polarized 

fashion to these distinct regions. These complexes will be discussed in more detail in the following 

pages with regard to their function in ectodermal epithelia. 

As mentioned above, another highly polarized cell type is represented by stem cells. The 

Drosophila ventral neural ectoderm (VNE) is the origin for Drosophila neuroblasts (NB), which will 

give rise to the nervous system of the animal. Here, NBs divide asymmetrically, which leads to the 

generation of two daughter cells, another NB and a ganglion mother cell (GMC). The latter cell will 
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divide once more and give rise to a pair of neuron or glial cells, whereas the NB will continue 

dividing (Wodarz and Huttner, 2003; Wodarz, 2005). In the VNE, individual neuroectodermal cells 

are determined to become NBs via Notch/Delta signaling and delaminate from the epithelium 

into the embryo (Doe, 2008). A very important point is that the NB will inherit the polarization of 

the neuroectodermal cells, which indicates that those proteins needed for polarization are not 

just important for epithelial cells but also for other types of cells. 

 

 

Fig.1: Organization of epithelial cells in comparison between Drosophila and vertebrates 

(A) Epithelial cells of Drosophila can be distinct into different regions: an apical membrane domain facing 

the environment or a lumen, and a basolateral membrane domain which is in contact with neighboring cells 

as well as with the basal substratum. Both domains are segregated by AJs, which is a belt-like structure 

encircling the cell, also referred to as ZA. Apical to the ZA a region is defined as SAR or marginal zone. The 

latter region harbours protein homologs of vertebrates which form TJs (B). Although TJs are not formed in 

Drosophila, proteins localizing to this region share some functions. In comparison Drosophila exhibits SJs, 

which are absent in vertebrates. Adapted from Knust and Bossinger, 2002. 

 

As mentioned above epithelial cells are highly polarized and depend on three identified groups of 

proteins or genes which are involved in the correct formation and maintenance of epithelial 

integrity. The gene products of two of the three groups were found to be localized apically in 

epithelial cells, regions referred to as the apical membrane domain and the ZA. Gene products of 

the third group have been shown to localize to the lateral membrane domain and the SJs. The 

apical protein complexes belong to gene products of the bazooka (baz) and the crumbs (crb) 

group. The discs large (dlg) group represents proteins of tumor suppressor genes, which have 

been found to localize at the lateral membrane and the SJs. These three groups have been shown 
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to be crucial for the establishment of epithelial cell polarity as well as their maintenance and will 

be discussed in more detail below (Johnson and Wodarz, 2003). 

Proteins belonging to the baz group of genes are Baz, which is the Drosophila homolog of 

vertebrate Partitioning defective 3 (Par3), Drosophila atypical Protein Kinase C (DaPKC) and the 

adaptor protein Drosophila Partitioning defective 6 (DPar6). Baz and DPar6 are scaffolding 

proteins, which exhibit PDZ domains (name derived from PSD-95, Dlg and ZO-1). PDZ domains are 

one of the most common protein-protein binding domains (Sheng and Sala, 2001; Te Velthuis and 

Bagowski, 2007). They consist of about 80-90 amino acids, which contain six anti-parallel β-

strands and two α-helices (Fanning and Anderson, 1999). They bind to C-terminal peptide motifs 

and internal sequences resembling a C-terminus and are also described to bind phospholipids 

(Harris and Lim, 2001; Jeleń et al., 2003). Baz, DaPKC and DPar6 are also referred to as the Par 

complex, since they had been found to form a protein complex in vivo (Wodarz et al., 2000; 

Petronczki and Knoblich, 2001). The binding of Baz to DPar6 and DaPKC is important for their 

initial recruitment to the apical plasma membrane (Harris and Peifer, 2005; Horikoshi et al., 2009). 

Later DaPKC phosphorylates Baz at serine 980 and thereby releases it from the complex. DaPKC 

and DPar6 remain in the SAR due to the binding of DPar6 to Crb (Morais-de-Sá et al., 2010; 

Walther and Pichaud, 2010), whereas Baz localizes to the AJs (Nam and Choi, 2003; Harris and 

Peifer, 2005; Horikoshi et al., 2009; McCaffrey and Macara, 2009; Morais-de-Sá et al., 2010; 

Walther and Pichaud, 2010). DPar6 acts as a regulatory subunit of DaPKC with evidence showing 

that it negatively influences its kinase activity (Atwood et al., 2007), which is of importance for the 

maintenance of apical membrane identity. For example phosphorylation of Lethal giant larvae 

(Lgl, which is a member of the dlg group) and Par1 leads to their exclusion from the apical 

membrane (Betschinger et al., 2003; Plant et al., 2003; Yamanaka et al., 2003; Hurov et al., 2004; 

Kusakabe and Nishida, 2004; Suzuki et al., 2004). However, it was found that DaPKC 

phosphorylates the cytoplasmic tail of Crb at four serine/threonine residues (Sotillos et al., 2004), 

but the in vivo function of this modification remains unknown (Huang et al., 2009). As mentioned 

above, phosphorylation of Baz results in its dissociation from the Par complex and relocalization 

to the AJs. Here Baz can bind to Armadillo (Arm, the Drosophila homolog of β-Catenin (β-Cat)) and 

Echinoid (an immunoglobulin-superfamily adhesion molecule) (Wei et al., 2005) and to a 

phosphatase PTEN (Von Stein et al., 2005). Here Baz has been proposed to function in the 

recruitment of cadherin-catenin clusters for the formation of AJs (McGill et al., 2009). With 

regards to this, baz loss of function alleles result in a loss of AJs components and the phenotype 

resembles the loss of function of arm (Müller and Wieschaus, 1996). Furthermore, apical polarity 
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markers are reduced and were found to be mislocalized along the basolateral membrane domain. 

Cells are rounded up and the epithelium becomes multilayered. As a consequence these cells 

begin to die through apoptosis (Bilder et al., 2003). 

The crb group, which is the second group of proteins localizing to the apical plasma membrane 

domain, consists of Crb, which is the only transmembrane protein (among the so far identified 

members of the three groups) with a huge extracellular domain consisting of EGF and LamG 

domains. It exhibits a short intracellular tail of 37 amino acids containing a highly conserved C-

terminal PDZ binding motif (ERLI), which recruits Stardust (Sdt, encoding for a membrane 

associated guanylate kinase (MAGUK)) as a member of the crb group to the apical membrane. 

Aside from a single PDZ domain, Sdt exhibits a L27 and a SH3 domain and recruits PATJ (Pals1-

associated TJ protein) to the apical membrane, which also contains a L27 domain as well as four 

PDZ domains. Crb is localized slightly apical to the AJs in the SAR (Tepass, 1996) and crb mutants 

show loss of apical membrane identity and the AJs, whereas overexpression leads to an increase 

of the apical membrane domain (Wodarz et al., 1993, 1995). 

The dlg group of tumor suppressor genes is composed of Dlg and Scribble (Scrib), which exhibit 

several PDZ domains, as well as Lgl, a WD40 domain containing protein. These polarity markers 

are located at the lateral plasma membrane. Scrib was also described to exist in a cytoplasmic 

pool (Bilder and Perrimon, 2000; Bilder et al., 2000). In contrast to proteins of the apical 

networks, members of the dlg group have not been described to bind to each other. Mutations in 

these genes show abnormal cell shapes and loss of the ZA accompanied by a multilayered 

epithelium (Bilder and Perrimon, 2000; Bilder et al., 2000, 2003; Tanentzapf and Tepass, 2003). A 

very important difference to mutations in the baz and crb group is an enlarged apical membrane 

domain, which is reduced or lost in mutations of the latter genes. Furthermore mutations in genes 

of the dlg group do not lead to apoptosis of these cells (Bilder and Perrimon, 2000; Bilder et al., 

2000, 2003). Fig.2 shows a schematic of an epithelial cell with the main identified polarity markers 

which play a role in establishing or maintaining epithelial polarity and integrity. 
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Fig.2: Localization of distinctive protein markers in Drosophila epithelial cells 

Different distinguishable regions of the epithelium are indicated on the left side of the scheme. Members of 

the baz and crb group are shown in orange and those of the dlg group are shown in blue. Baz was also 

identified to be an AJ marker, where it recruits cadherin-catenin clusters (CCC). Arrows indicate the 

interaction between AJ markers and apical polarity determinants, negative regulatory mechanisms are 

indicated between proteins of the lateral membrane domain and apical polarity proteins. Adapted from 

Tepass, 2012. 

 

Genetic experiments revealed that baz gene function is most likely upstream of other identified 

genes that encode for polarity markers so far. As mutations in crb or sdt, as well as baz, show 

quite similar phenotypes, defects in baz mutants become apparent slightly earlier. Furthermore 

Crb mislocalizes in baz mutants, but Baz is localized correctly in crb mutants (Müller and 

Wieschaus, 1996; Müller, 2000; Bilder et al., 2003). In this context it was shown that Baz recruits 

Sdt to the plasma membrane. This direct interaction is dependent on aPKC activity, as 

phosphorylation of Baz at serine 980 causes dissociation of Sdt from the complex. Expression of a 

respective non-phosphorylatable Baz transgene caused phenotypes similar to crb and sdt mutants 

(Krahn et al., 2010a). It has been shown that proteins of these complexes interact in a dynamic 

manner (some examples had been discussed above). One important regulatory mechanism was 

identified by genetic experiments, where it was found that apical determinants antagonize the 

function of laterally localized proteins, and vice versa. For example zygotic crb scrib double 

mutants somehow show suppression of the crb single mutant phenotype to a large extent, 
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indicating the interaction between these two different groups (Bilder et al., 2003). However, 

zygotic dlg baz double mutants show quite a similar phenotype to baz single mutants, underlining 

the epistatic importance of baz in the establishment of cell polarity (Bilder et al., 2003; Tanentzapf 

and Tepass, 2003). 

There are many more factors which are important for the establishment and maintenance of 

epithelial polarity and integrity. For example Yurt (Yrt), Coracle (Cora), the NaK-ATPase and NrxIV 

have been shown to be necessary for proper SJ formation and are implicated in tube size control 

of tracheal cells, which also represent a type of an ectodermal epithelium (Laprise et al., 2010). 

Since Echinoid was recently shown to fuction upstream of the Hippo pathway (Yue et al., 2012), 

which in general is a pathway described for being important for tissue growth and organ size 

(Cherret et al., 2012), the establishment of cell polarity and junction formation must be regarded 

as a highly dynamic process. 

 

1.2 Cell adhesion 

 

AJs, which have already been mentioned in the previous chapter, are important for cell-cell 

adhesion. They are composed of E-Cadherin (E-Cad), a transmembrane protein which is important 

for the homophilic cell-cell adhesion and its intracellular associated Catenins. The extracellular 

domain of E-Cad forms trans dimers with E-Cad proteins of the plasma membrane of the 

neighboring cell and cis dimers with E-Cad proteins of the same cell. Intracellular, E-Cad binds to 

β-Cat which in turn binds to α-Catenin (α-Cat). The complex of E-Cad-β-Cat-α-Cat is also referred 

to as cadherin-catenin complex (see chapter before). α-Cat associates with Actin and it was 

believed that these interactions form a stable link between AJs and the cytoskeleton. Nelson and 

co-workers have shown in 2005 that the function of AJs in cell adhesion is much more dynamic 

and that a quaternary complex of E-Cad-β-Cat-α-Cat-Actin cannot exist simultaneously (Drees et 

al., 2005; Gates and Peifer, 2005; Yamada et al., 2005). It was shown that a monomeric form of α-

Cat binds to the E-Cad-β-Cat complex, whereas a dimeric form of α-Cat does not bind to this 

complex anymore. In contrast, these homodimers show high binding affinity for Actin. 

Furthermore α-Cat homodimers can suppress the activity of the Arp2/3 complex, which is 

important for the nucleation of Actin branches. However, the physiological relevance of this 

property is not known. Fig.3 shows the classical view of cell-cell adhesion as described above and 
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Fig.4 shows an illustration of the revised model of how AJs may be connected tightly or transiently 

to the cytoskeleton. 

 

 

Fig.3: Classical model of cell-cell adhesion 

(A) AJs are important for cell-cell adhesion. Here, E-Cad as a transmembrane protein forms cis and trans 

dimers. The latter are important for cell-cell contacts. (B) Intracellularly, E-Cad associates with β-Cat, which 

in turn binds to α-Cat. Since α-Cat binds to Actin it was believed that this binding forms a stable link 

between AJs and the cytoskeleton. Other Actin binding proteins like ZO-1 or Afadin have been proposed to 

play a role in this link as well, as many of them can associate with α-Cat. Adapted from Gates and Peifer, 

2005. 
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Fig.4: Revised models showing possibilities of the linkage between AJs and the cytoskeleton 

(A) Summarized revised interactions of the cadherin-catenin complex. α-Cat associates with E-Cad-β-Cat in 

a monomeric form, whereas its dimeric form dissociates from this complex and shows binding to Actin. 

However, homodimers of α-Cat can antagonize the activity of the Arp2/3 complex. (B) A possible link 

between AJs and the cytoskeleton could be through Nectins. These transmembrane proteins belong to the 

immunoglobulin-superfamily adhesion molecules. Nectins form dimers as well and associate with Afadin 

intracellularly, which in turn binds to Actin, providing a second link between AJs and the cytoskeleton. (C) A 

more complex model includes many protein-protein interactions which thereby form a transient link 

between AJs and the cytoskeleton, which is highly dynamic. Adapted from Gates and Peifer, 2005. 

 

The remodelling and interplay of AJs and the Actin cytoskeleton is of fundamental importance, as 

processes like apical constriction, where the Actin/Myosin ring beneath the AJs contracts to 

mediate cell shape changes, are needed for morphogenetic processes. e.g., during gastrulation 

the mesoderm invaginates due to repositioning of the AJs by contraction forced by the 

Actin/Myosin network. When AJ function is abolished by depletion of β-Cat, the Actin/Myosin ring 

still contracts, but cell shape change does not take place (Dawes-Hoang et al., 2005). These 

findings strongly indicate that a physical link between AJs and the cytoskeleton must somehow 

exist. 
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1.3 Src kinases 

 

Src family kinases (SFKs) are known to be important for several cell biological processes, e.g. cell 

migration, cell-shape changes, cell-substratum and cell-cell interactions. SFKs are considered to 

function in the modulation of the Actin based cytoskeleton, which represents a determinant of 

cell shape change and cell migration (Boschek et al., 1981; Brown and Cooper, 1996). 

Furthermore, Src activity is involved in the alteration of the cadherin-catenin complex as tyrosine 

phosphorylation of β-Cat or other AJs associated proteins causes weakening of the linkage to the 

Actin cytoskeleton (Takeda et al., 1995; Lilien et al., 2002). Phosphorylation of the cadherin-

catenin complex correlates with loss of epithelial character, detachment of cells and gain in 

invasiveness (Behrens et al., 1993; Hamaguchi et al., 1993; Lilien et al., 2002). Several proteins are 

known to bind Src kinases for being substrates for them. Many of them are associated with the 

cytoskeleton and AJs (Thomas and Brugge, 1997). Vertebrate Fes/Fer tyrosine kinases share some 

substrates with SFKs, among them p120ctn, β-Cat (Piedra et al., 2003) and Cortactin, which is the 

activator of Arp2/3 (Wu and Parsons, 1993; Kim and Wong, 1998). 

 

The vertebrate family of Src non-receptor tyrosine kinases comprehends of 9 members. These are 

subdivided into three groups: Src, Yes and Fyn. Each group comprises three members which are 

widely expressed in a variety of cells (Thomas and Brugge, 1997). The Drosophila genome encodes 

for two Src kinases, Src42A, the closest homolog to vertebrate c-Src (Takahashi et al., 1996), and 

Src64B (Simon et al., 1985; Takahashi et al., 1996). 

Src non-receptor tyrosine kinases are composed of three main domains: an N-terminal Src 

homology 3 domain (SH3), a structural motif known to associate with proline rich regions, a Src 

homology 2 domain (SH2) for binding phosphotyrosine, followed by the tyrosine kinase domain. 

Other structural features of Src kinases are a myristoylation site at the N-terminus, which is 

functioning as a membrane anchor, an autophosphorylation site which is important for activation 

and a second tyrosine phosphorylation site at the C-terminus, which is targeted by C-terminal Src 

kinase (Csk), an endogenous Src inhibitory factor (Ia et al., 2010). Phosphorylation results in an 

intramolecular binding of Src, where the SH2 domain binds to this phosphotyrosine, resulting in a 

conformational change which inactivates the kinase (Engen et al., 2008). The domain structure of 

Drosophila Src42A is depicted in the results section (see Fig.31 A) and Fig.5 shows the common 

structure of Src kinases. 
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Fig.5: Structure of Src kinases 

Figure depicts overall domain structure of c-Src kinase, the closest homolog of Drosophila Src42A. The N-

terminus shows a myristoylation site, important for membrane anchoring. An SH3 domain is located in the 

N-terminal part, followed by an SH2 domain, important for intramolecular binding of the C-terminal 

tyrosine, after Csk dependent phosphorylation. The tyrosine kinase domain locates at the C-terminus of the 

kinase. Identfied mutations in v-Src are indicated. Adapted from Parsons and Parsons, 2004. 

 

Members of SFKs are good candidate genes for the regulation of AJ remodelling. In cultured 

epithelial cells activated Src was shown to downregulate E-Cad, thereby leading to dissociation of 

cells, a process also referred to as epithelial mesenchymal transition (EMT) (Behrens et al., 1993; 

Boyer et al., 1997; Thomas and Brugge, 1997). 

Drosophila Src42A localizes along the plasma membrane in epithelial cells, whereas activated 

Src42A (pSrc) colocalizes with DE-Cad/Arm at the AJs. Evidence was provided by Shindo et al., that 

Src42A is preferentially activated at AJs of epithelia undergoing morphogenetic rearrangements. 

They showed that Src42A can influence DE-Cad in two distinct, and disparate, ways. First it 

antagonizes DE-Cad mediated cell adhesion, while on the other hand positively influencing the 

transcription of DE-Cad in a TCF dependent manner. These findings propose a model where 

activation of Src42A at the AJs is mediating AJs turnover, thereby promoting their rearrangement 

and remodelling of the epithelial tissue. With regard to this it was shown that expression of 

activated Src42A increased expression of Escargot (Esg), which is a target of Wg/Arm signaling in 

the trachea, whereas mutants for Src42A showed reduced Esg expression. This suggests that 

Src42A is acting through the Arm/TCF pathway, because this phenotype was suppressed by co-

expression of dominant negative TCF (TCFΔN) (Chihara and Hayashi, 2000; Llimargas, 2000; 

Shindo et al., 2008). However, the function of Srcs in Wg signaling appears to be limited, since 

double mutants for Src42A and Src64B do not exhibit segmentation defects, which is a 

characteristic of mutations in these genes. 
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Src42A and Src64B were shown to have redundant functions in germband retraction and dorsal 

closure (Tateno et al., 2000), which is a process where two lateral epithelial cell sheets migrate 

towards each other closing the big gap at the dorsal side which remains after germband retraction 

(see further down for more details). Double mutants frequently exhibit broken longitudinal tracts 

and commissures, and optic lobe/Bolwig’s organ and trachea formation was found to be 

disrupted as well (Takahashi et al., 2005). In comparison, the respective single mutants do not 

exhibit severe defects in these processes/structures. In this context, Src42A and Src64B have been 

shown to interact genetically and functionally with shotgun, which encodes for DE-Cad, and arm. 

Here Src42A and Src64B can trigger cytosolic and nuclear accumulation of Arm. Co-IP experiments 

revealed that DE-Cad and Arm form a ternary complex with Src42A (Takahashi et al., 2005; Shindo 

et al., 2008). Upon Src42A knockdown it was shown that Arm remained at cellular junctions, 

whereas nuclear as well as cytosolic fractions were lower in comparison to the wt situation 

(Desprat et al., 2008). Src42A and Src64B functions had been shown to play roles in 

WNT5/Derailed signaling, as double mutants for Src42A and Src64B exhibit comparable 

commissural phenotypes similar to Wnt5 and derailed mutants (see also above), which could be 

suppressed or enhanced by Src gain- and loss-of-function, respectively. A physical interaction 

between Derailed and Src64B had been shown in this context as well (Wouda et al., 2008). 

 

As mentioned above, Src42A and Src64B have been shown to have some redundant functions 

with regard to morphogenetic processes like dorsal closure. However, some functions have been 

shown, where only one single Src kinase is involved. For example mutations in Src64B result in 

reduction in female fertility, which is due to nurse cell fusion and ring canal defects (Dodson et al., 

1998), whereas Src42A is supposed to have just minor, if at all, functions during oogenesis 

(Takahashi et al., 2005). Src64B was also shown to be important for proper cellularization of the 

Drosophila embryo (Thomas and Wieschaus, 2004; Strong and Thomas, 2011). In contrast Src42A 

was confirmed to modulate mitochondrial Citrate synthase (CS) activity negatively in vivo, as 

mutants show increased CS activity (Chen et al., 2008). Src42A mutants show high frequency of 

lethality before hatching, whereas Src64B single mutants are viable (Dodson et al., 1998; Lu and 

Li, 1999; Tateno et al., 2000; Takahashi et al., 2005; O’Reilly et al., 2006). However one 

hypomorphic Src42A allele is reported (Src42AJP45) which shows some escapers exhibiting mild 

dorsal cleft phenotypes (Tateno et al., 2000). Src42A was shown to regulate receptor tyrosine 

kinase (RTK) signaling and JUN Kinase (JNK) activity (Lu and Li, 1999; Tateno et al., 2000). Src42A 

single mutants exhibit defects in mouthpart formation (Tateno et al., 2000) and defects in leading 
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edge cells: the actomyosin cable is disrupted, phosphotyrosine levels are weaker and dorsal 

closure is slightly defective, where 8% show small holes at embryonic stage 16, where the dorsal 

hole should be already closed (see Fig.7 B) (Murray et al., 2006). Transcripts of Src42A accumulate 

in high levels in neighboring cells upon wound induction and wound-induced genes like Ddc and 

ple show widespread wounding induced transcription in Src42A mutants (Juarez et al., 2011). It 

was shown that Src42A is acting cell autonomously and inhibiting Ddc expression when its 

constitutively active form is expressed. 

Src42A was recently shown by two groups to be involved in the elongation of the dorsal trunk of 

the tracheal network (Förster and Luschnig, 2012; Nelson et al., 2012; Ochoa-Espinosa et al., 

2012). Src42A single mutants, as well as expression of dominant negative Src42A (Src42AKM), 

leads to a shortened dorsal trunk. Expression of Src42A, as well as its constitutively active form, 

leads to an extended dorsal trunk respectively. DE-Cad recycling at AJs is affected in Src42A single 

mutants, indicating that defective junction remodelling leads to cell shape changes. The apical 

surface area of Src42A mutants is significantly reduced. Src42A dependent anisotropic expansion 

along the longitudinal axis was shown to be a main driving force for elongation and overall apical 

expansion. Furthermore, it was demonstrated that this expansion process is cell autonomous by 

expressing Src42A transgenes via the UAS/Gal4 system in three different compartments in the 

Src42A mutant background. Expansion had been shown consequently in expressing cells (Förster 

and Luschnig, 2012). The short trunk phenotype of Src42A single mutants is epistatic to several 

genes which are involved in dorsal trunk development, and overelongated dorsal trunk 

phenotypes of respective mutants is not due to increased Src42A activity, indicating a parallel or 

downstream pathway where Src42A acts. Fig. 6 depicts the model of these new findings. 
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Fig. 6: Model of dorsal trunk elongation with regard to Src42A function 

(A) Shown in blue is the tracheal dorsal trunk. After stage 14 of embryogenesis the dorsal trunk elongates, 

which is depicted in the wt embryo. Mutants for Src42A show a shortened dorsal trunk phenotype. The 

magnified area indicates the function of Src42A in the anisotropic expansion of dorsal trunk cells in the 

longitudinal axis. (B) Model summarizes findings of Förster and Luschnig, 2012 and Nelson et al. of how 

Src42A acts in apical membrane growth, as well as in the cell shape changes. Adapted from Ochoa-Espinosa 

et al., 2012. 

 

The dorsal closure defects, which have been observed in double mutants for Src42A and Src64B, 

indicate functional redundancy with regard to this morphogenetic process. Dorsal closure is the 

last big morphogenetic process during Drosophila embryogenesis, where two epidermal lateral 

sheets extend to the dorsal side meet and fuse, thereby closing the big dorsal hole which remains 

after germband retraction. During dorsal closure the amnioserosa and yolk sac are enclosed inside 

the embryo as a consequence. The process where the leading edge cells meet at the dorsal 

midline is regulated in part through the remodelling of adherens junctions, which is leading to 
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their fusion. An important signaling pathway for dorsal closure was shown to be JNK signaling 

(Jacinto et al., 2002). Fig.7 depicts the process of dorsal closure. 

Src42A is proposed to act upstream of JNK signaling. Members of the SFK family cooperate to 

regulate JNK activity: double mutants in Src42A and tec29 as well as Src42A and Src64B (as 

described above) give dorsal open phenotypes, whereas single mutants do not (Tateno et al., 

2000; Takahashi et al., 2005). Furthermore tec29 Src42A double mutants show loss of dpp and puc 

expression at the leading edge, which are downstream effectors of JNK signaling (see Fig.7 C) 

(Tateno et al., 2000). Mutations of dfer and Src42A together are causing total failure of dorsal 

closure (Murray et al., 2006). 

 

Src42A was shown to act together with DCas in integrin-dependent effector pathways. 

Simultaneous reduction of Src42A and DCas functions caused blistered wing phenotypes in adult 

escapers. This phenotype had been reported for mutants in the integrin subunits multiple 

edematous wings (mew) and inflated (if) as well (Bloor and Brown, 1998), and embryonic cuticles 

displayed dorsal closure and anterior cuticle defects (Tikhmyanova et al., 2010). Analysis of Src 

and Focal adhesion kinase (Fak56) revealed overlapping and distinct contributions in inhibiting 

neuromuscular junction growth, which is transduced by the integrin signaling pathway (Tsai et al., 

2008). Src42A was also shown to be important for the Draper pathway. Here association of Shark 

and Draper is mediated by Src42A, since Draper is a Src substrate. This binding promotes 

activation of downstream phagocytic signaling events (Ziegenfuss et al., 2008). 

All these data nicely demonstrate that Src non-receptor tyrosine kinases, as well as SFKs in 

general, are implicated in many different cellular and morphogenetic processes, where AJs are 

undergoing rearrangements and are remodelled. Many of those genes do not exhibit dramatic 

phenotypes as in contrast their combinations do. This demonstrates that these kinases have many 

overlapping functions, indicating a highly dynamic and complex network. 
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Fig.7: Dosal closure and JNK signaling 

(A) Shown is an embryo at developmental stage 14, where a big dorsal hole remains as a consequence of 

germband retraction. Amnioserosa cells (AS) are marked in green, leading edge cells (LE) are labeled in red 

which represent the most dorsal epithelial cell row. (B) After embryonic stage 15, the dorsal hole is closed 

by the process of dorsal closure, and both leading edge cell rows build a seam at the dorsal midline. (C) JNK 

signaling is important for dorsal closure. The result of the JNK pathway is the secretion of Dpp at the leading 

edge and expression of puc, which encodes a dual phosphatase dephosphorylating Bsk (JNK) in a negative 

feedback loop. Adapted from VanHook and Letsou, 2008. 
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1.4 LMO7 

 

The family of PDZ and LIM domain containing proteins comprises ten members possessing PDZ 

domains and at least one LIM domain. LIM domains (name derived from C.elegans lin-11, rat ISL-1 

and C.elegans mec-3) (Way and Chalfie, 1988; Freyd et al., 1990; Karlsson et al., 1990) act as 

protein-protein binding interfaces. The domain is approximately 55 amino acids in size and 

characterized by a highly conserved histidine/cysteine motif important for the binding of two zinc 

ions, thereby forming a two-zinc-finger-like structure (Bach, 2000; Kadrmas and Beckerle, 2004; 

Te Velthuis et al., 2007). PDZ and LIM family proteins are thought to be involved in Z-Band 

formation of muscles through their PDZ domains, which can bind to α-Actinin or β-tropomyosin. 

However, PDZ and LIM domain containing proteins are associated with the cytoskeleton directly 

or indirectly as well (Harris and Lim, 2001; Kadrmas and Beckerle, 2004). The group of PDZ and 

LIM domain encoding genes consists of four subgroups: the ALP subfamily (ALP, Elfin, Mystique, 

and RIL), the Enigma subfamily (Enigma, Enigma Homolog, and ZASP), LIM kinases (LIMK1 and 

LIMK2), and the LIM only protein 7 (LMO7). The latter protein will be discussed in more detail. 

LMO7 was initially linked as a candidate gene to breast cancer progression, due to implication of 

human genomic region 13q21-22 in cancer development (Rozenblum et al., 2002) and was found 

to be upregulated in several human tumors, among them lymphnode metastasis in breast cancer 

(Sasaki et al., 2003). 

LMO7 contains an intramolecular PDZ domain, a C-terminal LIM domain and a Calponin homology 

domain (CH). A partial consensus sequence for a putative F-box motif has been described earlier 

(Cenciarelli et al., 1999), which fails to be detected by current prediction programs (Te Velthuis et 

al., 2007). Coiled coil domains are predicted for some LMO7 gene products as well, which is 

species dependent. So far, functional analysis of these domains has not been reported for LMO7. 

The LMO7 gene (on chromosome 13q22 in humans, see above) was duplicated through evolution 

and the gene product of its paralog LIMCH1 (on chromosome 4p13 in humans) shows 64% 

identical amino acid sequence of the CH domain and 60% homology of the LIM domain, 

respectively. However, LIMCH1 does not contain an additional PDZ domain. Beside these domains 

three regions with high homology have been identified within LMO7 and LIMCH1. These regions 

may indicate the existence of domains within these proteins, which have not been identified yet 

(Friedberg, 2009, 2010). LIMCH1 was found to be upregulated in PIK3CA-mutated tumors (Cizkova 

et al., 2010). LIMCH1 was described to be expressed in the presomitic mesoderm, however, 

targeted mutations for LIMCH1 have not been reported yet (Sewell et al., 2010). LMO7 exhibits a 
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splice variant lacking the LIM domain in mice brain cDNA (Tanaka-Okamoto et al., 2009), whereas 

LIMCH1 shows splice variants lacking the CH domain (Friedberg, 2009). Homologs of LMO7 have 

been identified in invertebrates. temporarily assigned gene 204 (tag204) was found to be the 

LMO7 homolog in C.elegans and CG31534 (now annotated as CG43427) encoding the Drosophila 

homolog respectively. These homologs show high conservation in regard to the C-terminal LIM 

domain but the invertebrate homologs do not exhibit PDZ and CH domains (Te Velthuis et al., 

2007). A domain structure of full length vertebrate LMO7 is shown in Fig.9 A. 

Studies indicated that LMO7 is likely involved in the formation and maintenance of epithelial 

architecture by remodelling the Actin cytoskeleton. The LIM domain has been shown to interact 

with Afadin (which in turn associates with Nectins). LMO7 binds to α-Actinin (an Actin binding 

protein). These interactions are thought to modulate a link between the cell adhesion complex of 

E-Cad and the Nectin network. Furthermore Afadin can directly associate with F-Actin, therefore 

creating a second link between LMO7 and the Actin cytoskeleton. Antibodies against LMO7 

showed expression in various rat tissues including the heart, lung, small intestine, kidney, brain, 

liver, spleen, and skeletal muscle. Staining of LMO7 showed colocalization with Afadin in the 

region of the AJs in epithelial cells of rat gallbladder (see Fig.8), supporting the biochemical data. 

It was furthermore shown that E-Cad, β-Cat and α-Cat co-immunoprecipitate with LMO7, even in 

afadin-/- ES cells, supporting the hypothesis that LMO7 connects Nectins with the E-Cad adhesion 

complex. Whether LMO7 can directly associate with the Actin cytoskeleton remains unclear, but 

CH domains can bind to Actin bundles directly, thereby suggesting a role of LMO7 in direct 

association with the Actin cytoskeleton (Ooshio et al., 2004). 
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Fig.8: Localization of LMO7 in epithelial cells of rat gallbladder 

(A) Localization of LMO7 in epithelial cells of rat gallbladder. Afadin localizes to AJs, where LMO7 is detected 

as well (arrows), slightly basal to the TJ marker ZO-1. LMO7 is additionally detected at the cytoplasmic faces 

of the apical membrane (arrowheads). Scalebar represents 10 µm. (B) Immunoelectron microscopy 

revealed that LMO7 localizes to the AJs (arrows) and at the cytoplasmic faces of the apical membrane 

(arrowheads). Scalebar represents 0.1 µm. Adapted from Ooshio et al., 2004. 

 

A large deletion of around 800 kb, covering Uchl3 and LMO7 gene loci, resulted in lethality for 

about 40% of mice between birth and weaning and surviving homozygotes showed muscular 

degeneration and growth retardation, as well as retinal degeneration. The latter phenotype is 

suggested to be caused likely by the Uchl3 knockout. Respective single mutants show the same 

retinal degeneration defects. Although the proportion of muscles to body weight was 

proportionate in the Uchl3 LMO7 knockout mice, nuclei were elongated and increased in their 



INTRODUCTION 

 

 19 

amount by a factor of 2 in thigh muscle fibers (Semenova et al., 2003). These observations are 

consistent with an expression analysis performed in mice, where LMO7 mRNA was detected in 

somites and the eye, respectively (Ott et al., 2008). 

LMO7 knockdown in the zebrafish Danio rerio causes defects in the cardiac conduction system, 

including arrhythmia and heart delocalization. The latter could indicate a possible function of 

LMO7 for neural crest cells and their migration. Severe defects which had been observed were 

shorter embryos and strongly bent tails. Severe elongation defects were found later in 

development. Some extreme phenotypes exhibited upon LMO7 knockdown were head defects. 

Rescue experiments showed that these phenotypes were observed upon the morpholino 

injection. The knockdown was targeted against the 5’UTR of LMO7, whereas LMO7 RNA was 

coinjected without the respective UTR (Ott et al., 2008). 

LMO7 is transcribed in the lung, heart, brain and kidney. An alternative splice form, lacking the 

LIM domain, was identified in a mouse brain cDNA library (Tanaka-Okamoto et al., 2009). It was 

shown, that transforming growthfactor-β1 (TGF-β1) induces expression of LMO7 while enhancing 

invasiveness of rat ascites hepatoma cells. Furthermore, TGF-β1 induced this alternatively spliced 

variant of LMO7S, lacking the C-terminal LIM domain (Nakamura et al., 2005). LMO7 localizes to 

the luminal surface of epithelial cells. The PDZ domain is essential for the apical localization, 

because LMO7 deficient mice lacking the PDZ domain showed cytosolic mislocalization of LMO7. 

These LMO7 knockout mice were viable and fertile, and had been indistinguishable in 

appearance, size, growth, development and behaviour from their littermates. Lung sections of 14-

week old LMO7 deficient mice showed irregular epithelial sheets, respiratory bronchioles and 

alveolar ducts. However, although the position of AJs was slightly deviated, E-Cad and its 

associated Catenins, as well as Afadin and Nectins were localizing at the AJs, indicating that LMO7 

function is not required for proper AJs formation. Mice at an age of 90 weeks deficient for LMO7 

showed development of adenocarcinomas to an extent of about 22%, whereas LMO7+/- mice 

developed lung cancer to 13%. It was shown that cultured tumor cell lines deficient for LMO7 

possess chromosome abnormalities and cause tumor formation in vivo when injected into nude 

mice. These observations indicate tumor suppressor roles for LMO7 (Tanaka-Okamoto et al., 

2009). With regards to these observations, human lung adenocarcinomas showed that LMO7 

expression was decreased with tumor progression (Nakamura et al., 2011). 
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Beside the tumor suppressor functions of LMO7 and its localization at the AJs, LMO7 was 

furthermore shown to be involved in gene expression. Upon LMO7 knockdown in cell culture it 

was found that around 4000 genes showed altered expression. Among these the muscle relevant 

genes emerin was identified (Holaska et al., 2006). LMO7 was reported to bind the LEM domain 

protein Emerin, in which mutations cause Emery-Dreifuss muscular dystrophy. This disease was 

reported as well for mutations in LMNA, which encodes an A-type lamin (Nagano et al., 1996; 

Emery, 2000; Bengtsson and Wilson, 2004). LMO7 activates the transcription of muscle-relevant 

genes as well as the expression of the emerin gene itself (see above). The binding of LMO7 to 

Emerin inhibits LMO7 function in emerin expression, indicating a negative feedback mechanism 

(Holaska and Wilson, 2006; Holaska et al., 2006). Furthermore Emerin is required for nuclear 

localization of LMO7. Emery-Dreifuss muscular dystrophy has been linked to LMO7 since one 

isolated missense mutant of emerin (P183H), is deficient in LMO7 binding. However, three other 

gene products of mutations in emerin were still found associating with LMO7 (Holaska et al., 

2006). Recently it was shown that LMO7 can directly bind to the promoters of Pax3, MyoD and 

Myf5, suggesting that LMO7 is directly involved in their expression. This interaction is suppressed 

by Emerin, providing a mechanism of how Emerin inhibits LMO7 function (Dedeic et al., 2011). 

Fig.9 B shows a summarized model of LMO7 functions in cell-cell adhesion as well as its nuclear 

role in expression of muscle-relevant genes. 
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Fig.9: LMO7 structure and function 

(A) Structure of full length LMO7. CH domains were identified at the N-terminus of the protein, a PDZ 

domain is found as well as a C-terminal LIM domain. Described splice variants of LMO7 are not shown. (B) 

Summarized functions of LMO7 at AJs and in the nucleus. LMO7 associates with α-Actinin at one hand while 

binding to Afadin at the other. Since Afadin associates with F-Actin and α-Actinin with Catenins, LMO7 is 

suggested to build a link between the E-Cad adhesion complex and Nectins, which bind to Afadin. LMO7 

might be able to associate directly with Actin bundles as well by the CH domain. A second function of LMO7 

is its involvement in the expression of muscle-relevant genes and emerin. The gene product of emerin was 

furthermore shown to bind LMO7, thereby inhibiting expression of target genes. This is most likely by 

recruiting LMO7 to the nuclear envelope, where Emerin localizes. LMO7 was shown recently to directly bind 

promoters of Pax3, MyoD and Myf5. Adapted from Te Velthuis and Bagowski, 2007. 

 

1.5 smallish (CG43427) 

 

As already described in the first two chapters of the introduction, baz gene function was found to 

be implicated in the establishment of cell polarity of many types of tissues (e.g. ectodermal 

epithelia and NBs) as well into the formation of AJs of epithelial cells. Baz was found in a complex 

with DaPKC and DPar6, referred as the Par complex (Wodarz et al., 2000; Petronczki and Knoblich, 

2001). The Par complex is important for the apical membrane identity at first, whereas release of 

Baz by DaPKC phosphorylation causes relocalization of Baz at the AJs, where Baz was shown to 

recruit cadherin-catenin clusters, thereby being implicated in the formation of these cell-cell 

contact sites (Wei et al., 2005; McGill et al., 2009). As baz gene function was shown to be epistatic 

to other polarity markers it is suggested that Baz is a key player in mediating cell polarity. As the 

past years revealed several new binding partners of Baz, thereby identifying new cellular 

pathways were Baz is functioning, its overall role remains elusive in many aspects. 

To unriddle the function of Baz in the establishment of cell polarity in more detail, a yeast two-

hybrid screen was performed for the identification of new binding partners of the protein 

(Ramrath, 2002). Three different regions of Baz were chosen as baits, among them the N-terminal 

oligomerization domain (Benton and Johnston, 2003), the C-terminus, as well as the 

intramolecular region encoding for the three PDZ domains. The latter one is of interest for this 

work, because one potential binding partner identified was binding to this PDZ domain containing 

region within Baz. The potential interactor identified as prey was the C-terminus of the annotated 
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gene CG31534, which was not described so far. The C-terminus encoded for a LIM domain and a 

PDZ binding motif of class I (S/T X‡Φ§ -COOH), which made this hit very interesting. PDZ binding 

motifs are the counterpart of PDZ domains, which can bind into a hydrophobic pocket within the 

PDZ domain (Harris and Lim, 2001). Furthermore CG31534 turned out to be likely the Drosophila 

homolog of vertebrate LMO7 (see 1.4), which was already implicated functioning at AJs in 

vertebrates. A detailed scheme of the yeast two-hybrid screen is shown in the results section (see 

Fig.12). 

CG31534 is located on the right arm of the third chromosome. However, in 2008 only two splice 

variants were annotated for CG31534: one encoding for 889aa (98.8 kDa), which resembled the 

full length form of the protein and a second isoform encoding for 849aa (94.4 kDa) respectively. 

This isoform was lacking the LIM domain by use of an alternative spliced exon containing a 

premature stop signal, which was also reported for a LMO7 (LMO7S) specific neuronal isoform 

(Nakamura et al., 2005). By 2009 the gene prediction for CG31534 was changed in a way that four 

isoforms were annotated, encoding for two additional isoforms. They were slightly deviated from 

the two isoforms mentioned above with minor changes affecting the C-terminus, thereby 

exhibiting 8 additional amino acids in the region N-terminal to the LIM domain, as well as a 

change affecting the N-terminus of the full length isoform by use of an alternative ATG, causing a 

slightly larger protein. Altogether CG31534 was encoding four protein isoforms, CG31534-PA, 

CG31534-PB, CG31534-PC (857aa, 95.3 kDa) and CG31534-PD (932aa, 103.5 kDa), respectively. Of 

major interest had been only the two protein isoforms PA and PD due to the lack of the C-

terminal region carrying the LIM domain and the PDZ binding motif in the two isoforms PB and 

PC, which was identified in the yeast two-hybrid screen as prey. 

Unluckily, the gene annotation of CG31534 was still not correct at this time. In 2011 (nearly at the 

end of the regular time limit of this work given by the GGNB doctoral program), a new gene 

annotation release of flybase (gene annotation release 5.40) indicated that the neighboring gene 

CG31531, located 5’ to CG31534, is part of the same transcription unit. We confirmed by PCR, 

using embryonic cDNA as template, that both transcription units indeed resemble a single gene, 

spanning approximately 52 kb (3R 485,301 – 537,915). A detailed gene map of the current gene 

annotation of CG43427 is shown in Fig.17 B in the results section. Most biochemical data 

produced within this work were performed with the shorter protein isoform CG31534-PA, which 

is now CG43427-PI, reflecting only two third of the C-terminus of the full length protein. More 

recent data generated were performed using the larger isoform, annotated as CG43427-PM, 
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encoding for 1533aa (168.9 kDa) and additionally possessing two coiled coil domains in the N-

terminal region (see also Fig.12 in the results section). 

At the start of the thesis some preliminary data had been obtained in two diploma works before 

(Neugebauer, 2007; Beati, 2009). Endogenous CG31534 protein was detected apical in 

ectodermal epithelia, which was already a good hint. In cell culture experiments it was shown that 

Baz can recruit CG31534, which localized in the cytoplasm without Baz, to the cell cortex. In vivo 

binding of Baz and CG31534 was shown later by Co-IP experiments using embryonic lysates 

expressing an N-terminally GFP tagged version of CG31534-PA. However, mutations generated in 

both works for CG31534 were viable and fertile (Beati, 2009), which is also a characteristic for the 

respective LMO7 knockout in mice (Tanaka-Okamoto et al., 2009). 
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1.6 Scope of the thesis 

 

The aim of the thesis was the analysis of the gene function of CG43427 (smallish, (smash)) during 

the development of Drosophila. Smash was identified as a new potential binding partner of the 

cell polarity regulator Baz (Ramrath, 2002). Preliminary work showed that endogenous Smash 

protein colocalizes with Baz in the region of the AJs. As both proteins associate in vivo, we wanted 

to further analyse the function of smash with regard to epithelial cell polarity. A knockout of 

smash was generated before with regard to the old gene annotation. This allele is viable and 

fertile but did not show polarity defects. This allele cannot be considered as a classical null, 

because N-terminal parts might be still expressed. Thus we generated a mutation for smash, 

affecting the entire genomic locus by FLP/FRT mediated transdeletion. This full knockout allele 

was analysed for its viability and for potential polarity defects. Flies lacking the entire genomic 

locus are still viable and fertile and do not show obvious defects.  

All preliminary data had been obtained with the short isoform Smash-PI. As smash encodes a 

larger isoform we wanted to analyse potential gain of function phenotypes. Accordingly, the 

respective smash isoform had to be cloned and transgenic flies were subsequently generated. 

Overexpression of the respective large isoform caused a dramatic increase in the lethality score 

and embryonic cuticles showed anterior and dorsal holes. 

Beside the interaction of Smash and Baz, other binding partners of Smash had been of interest. 

Preliminary data showed that Smash binds to the non-receptor tyrosine kinase Src42A (Beati, 

2009). Based on this finding, we wanted to continue to investigate the developmental relevance 

of this interaction. Src42A has been implicated to function in dorsal closure and other 

morphogenetic processes. Thus we analyzed whether smash might also function in pathways 

coordinating dorsal closure. With regard to this we focussed on Src64B as well. Src42A is known to 

function redundantly with Src64B in morphogenetic processes like dorsal closure (see 1.3). Of 

interest had been double mutant combinations of smash with Src42A or Src64B respectively. A 

double mutant with Src64B is lethal. However, cell polarity was not affected and embryonic 

cuticles did not show the dorsal open phenotype.  
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2 Material and methods 

 

2.1 Chemicals and materials 

 

2.1.1 Chemicals and enzymes 

 

Used chemicals were purchased from following companies: 

Acros, Geel, Belgium; Baker, Deventer, Netherlands; Biomol, Hamburg, Germany; Bio-RAD, 

Munich, Germany; Difco, Detroit, U.S.A.; Fluka, Buchs, Swiss; Gibco/BRL Life Technologies; 

Karlsruhe, Germany; Gruessing, Filsum, Germany; Merck, Darmstadt, Germany; Riedel-de Haên, 

Seelze, Germany; Roth, Karlsruhe, Germany; Serva, Germany; Sigma-Aldrich, Steinheim, Machery-

Nagel, Dueren, Germany. 

 

Demineralized water was used for solutions, buffers, etc., which were autoclaved if necessary. 

Enzymes were purchased from following companies: 

Boehringer/Roche Diagnostics, Mannheim, Germany; MBI Fermentas, St. Leon-Rot, Germany; 

New England Biolabs, Schwalbach-Taunus, Germany, Invitrogen, Karlsruhe, Germany; Promega, 

Madison, USA. 

 

2.1.2 Kit systems 

 

The following kits were used in this work: 

 

Nucleobond AX100, Macherey-Nagel 

NucleoSpin Extract II, Macherey Nagel 

pENTRTM/D-TOPO® Cloning Kit, Invitrogen 

Gateway® LR ClonaseTM II Enzyme Mix, Invitrogen 

BM Chemiluminescence Blotting Substrate, Roche Diagnostics 
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2.1.3 Photo and picture analysis 

 

Light microscopy:      Axio Imager, Carl Zeiss Jena GmbH, Germany 

Fluorescence binocular:    Leica MZ 16 FA 

Confocal microscopy:     LSM 510 Meta, Carl Zeiss Jena GmbH, Germany 

 

X-ray films:       Fuji Medical X-Ray Film „Super RX“, Fuji, Tokyo, Japan 

 

X-ray film developer and fixer:   Tenetal Roentogen, Tenetal, Norderstedt, Germany 

 

Operating Systems:     Macintosh iMac, Apple, Ismaning, USA 

Microsoft Windows XP and Windows Vista, Microsoft, 

Redmont, USA 

 

Image processing:     GIMP, GNU General Public License (GPL) 

         Inkscape, GNUGeneral Public License (GPL) 

         IrfanView (Proprietary Freeware) 

 

Sequence und primer analysis:   DNA-Star Lasergene V7, DNASTAR Inc.Madison, USA 

 

2.1.4 Bacterial strains and cell culture lines 

 

Bacterial strains and cell culture lines which were used for this work are listed in Table 1. 

Table 1: Used bacterial strains and cell lines 

Cell line Usage 

E.coli DH5α 
Amplification and purification of plasmid DNA 

E.coli XL-1 blue 

E.coli Bl21 Expression and purification of recombinant proteins 

E.coli Top 10 one shot Transformation of DNA after pENTR
TM

/D-TOPO® cloning reaction 

  

S2 cells Transfection for biochemical experiments 
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2.1.5 Plasmids 

 

Used plasmids and their properties are listed in Table 2. 

Table 2: Used plasmids and their properties 

Plasmid Property 

pENTRTM/D-
TOPO® 

plasmid for gateway cloning; insertion of PCR products with 5' CACC overhang 

  

pPGW Destinationvector for gateway cloning; N-terminal tagged with GFP; under control of UASp promotor 

pPWG Destinationvector for gateway cloning; C-terminal tagged with GFP; under control of UASp promotor 

  

pUASpGW 
Destinationvector for gateway cloning; N-terminal tagged with GFP; under control of UASp promotor; contains attp 

site 

pUASpWG 
Destinationvector for gateway cloning; C-terminal tagged with GFP; under control of UASp promotor; contains attp 

site 

  

pPWH Destinationvector for gateway cloning; C-terminal tagged with HA; under control of UASp promotor 

  

pHGWA 
Destinationvector for gateway cloning; N-terminal tagged with His and GST + C-terminal His tag; under control of 

T7 promotor 

 

2.1.6 Buffers and medium 

 

Buffers and reagents for histology: 

 

PBS:       140 mM NaCl 

10 mM KCl 

2 mM KH2PO4 

6.4 mM Na2HPO4 x 2H2O 

pH 7.3 

 

4% Formaldehyde in PBS:  39.75 ml PBS 

5.25 ml 37% Formaldehyde 

 

1x Triton salt solution:  1l dH2O 

        0.3 ml Triton X-100 

        4 g NaCl 
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PBTw:      PBS with 0.1% Tween20 

 

NHS:      Normal Horse Serum (Gibco) 

 

Mowiol:      5 g Mowiol 

20 ml PBS 

10 ml Glycerol 

 

Hoyers mountant:   30 g Gumarabic 

50 ml dH2O 

200 g Chloralhydrate 

20 g glycerol 

 

Before use 800 µl hoyers mountant were gently mixed with 640 µl lactic acid. 

 

Buffers for molecular biological methods: 

 

TE-Buffer:    10 mM Tris HCl 

0.5 mM EDTA 

pH 8.0 

 

TAE-Puffer:    40 mM Tris acetate 

Acetic Acid 

1 mM EDTA 

pH 7.4 

 

Buffers for DNA purification from E.coli: 

 

S1 buffer:    50 mM TrisHCl 

10 mM EDTA 

100 μg/ml RNase A 

pH 8.0 
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S2 buffer:    200 mM NaOH 

1% SDS 

 

S3 buffer:    2.8 M Potassium acetate (CH3CO2K) 

pH 5.1 

 

Buffers S1 and S3 are stored at 4°C. 

 

Buffers for DNA purification from flies: 

 

Squishing buffer:   25 mM NaCl 

1 mM EDTA 

10 mM TrisHCl 

pH 8.0 

 

Quick Fly Genomic DNA Prep 

 

Buffer A:     100 mM TrisHCl 

pH 7.5 

100 mM EDTA 

100 mM NaCl 

0.5% SDS 

 

Buffer for protein biochemical experiments: 

Lysis buffers 

LLBVII buffer:   150 mM NaCl 

1% Igepal 

50 mM Tris HCl 

pH 8.0 
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TNT buffer:    150 mM NaCl 

50 mM Tris HCl 

1% Triton X-100 

pH 8.0 

 

TNT buffer (high salt):  500 mM NaCl  

50 mM Tris HCl 

1% Triton X-100 

pH 8.0 

 

Proteinase inhibitors: 

1 mg/ml Aprotinin 

1 mg/ml Leupeptin 

1 mg/ml Pepstatin A 

0.5 M Pefabloc SC 

 

Proteinase inhibitors were added to the lysis buffer in a concentration of 1:500. 

 

Phosphatase inhibitors: 

500 mM Sodiumorthovanadate 

50 mM Phenyloxide 

Halt Phosphatase Inhibitor Cocktail (Thermo Scientific) 
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Phosphatase inhibitors were added to the lysis buffer to a concentration of 1:500, phosphatase 

inhibitor cocktail was used 1:100. 

 

SDS gelelectrophoresis and Western blotting: 

2x SDS loading buffer:  0.2% Bromophenolblue 

200 mM beta mercaptoethanol 

20% glycerol 

4% SDS 

100 mM Tris HCl 

pH 6.8 

 

1x SDS buffer:   192 mM glycine 

25 mM Trisbase 

0.1% SDS 

 

Transfer buffer:   25 mM TrisHCl 

192 mM glycine 

20% (v/v) methanol 

 

TBST:     150 mM NaCl 

1 mM Tris HCl 

0.2% Tween20 

pH 8.0 
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Blocking buffer:   TBST containing 3% skim milk and 1% BSA 

 

Blocking buffer:   TBST containing 5% BSA 

 

Culture mediums: 

 

LB medium:    0.5% (w/v) yeast extract 

1% Trypton 

1% NaCl 

 

SOC-Medium:   20 g Trypton 

5 g yeast extract 

0.5 g NaCl 

10 ml 0.25 M KCl 

5 ml 2 M MgCl2 

20 ml 1 M glucose 

filled up to 1l volume with dH2O 

pH 7.0 

 

S2 medium:     Schneider's Drosophila Medium (Gibco) 

10% Serum, insect cell tested (Sigma) 

PenStrep (Gibco) 

 

2.1.7 Primers 

 

Table 3 lists primers that were used for this work. Primers were ordered from metabion 

international AG, Martinsried and BioTez GmbH, Berlin. 
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Table 3: Used primers and their application 

name sequence [5' - 3'] [°C] application 

M13 forward GTAAAACGACGGCCAG 51 sequencing of pENTRTM/D-TOPO® 

M13 reverse CAGGAAACAGCTATGAC 47 sequencing of pENTRTM/D-TOPO® 

    

UASp forward GGCAAGGGTCGAGTCGATAG 58 sequencing of gateway® destination vectors 

pPTagW rev GGTATAATGTTATCAAGCTC 46 sequencing of gateway® destination vectors 

eGFP N rev CGGACACGCTGAACTTGTG 57 sequencing of gateway® destination vectors 

eGFP C for CAAAGACCCCAACGAGAAG 54 sequencing of gateway® destination vectors 

    

piggyBac 5' outside 
CAATTTTACGCAGAC 

TATCTTTCTAGGG 
57 screening for mutants after transdeletion 

CG31534 genomic-e03181-R CCGATATATGCTCACCTCATGC 56 screening for mutants after transdeletion 

    

piggyBac 3' outside 
CGTACGTCACAATATGATTATCTTTCT

AGG 
56 screening for mutants after transdeletion 

CG43427 PBACRB test GTCGCGGCGCTGCCATGATCATCG 68 screening for mutants after transdeletion 

    

UP Primer 
GACGGGACCACCTTATTTTATTCTATC

ATG 
59 screening for mutants after transdeletion 

CG43427 genomic for P(XP) 
test 

CACACTCCGCCCCATTTTTATATCC 60 screening for mutants after transdeletion 

    

check ATG I CG43427 for GTGCAGATCCATCACGGATGC 60 test for successful deletion of the first ATG of CG43427 

check ATG I CG43427 rev GCGCAATGGAAAACTCACCA 58 test for successful deletion of the first ATG of CG43427 

    

check ATG II CG43427 for CATGTCACGCCCACCTCATC 59 
test for successful deletion of the second ATG of 

CG43427 

check ATG II CG43427 rev GCACCGGCCTTAAATGCTTG 58 
test for successful deletion of the second ATG of 

CG43427 

    

Control_CG9769_ 
forward 

CCGCACTATCGATAGGCCC 58 
control primers for downstream neighboring gene 

CG9769 

Control_CG9769_ 
reverse 

CATGCAGCCGCTCTTGC 58 
control primers for downstream neighboring gene 

CG9769 

    

Src42A-DeltaSH3-F 
GCAGGTGCCAACGTC 

GGA TCC GGT GGA GGT 
AAATCAATCGAAGCA 

75 deletes SH3 domain, introduces BamHI restriction site 

Src42A-DeltaSH3-R 
TGCTTCGATTGATTTACCTCCA 

CCGGATCCGACGTTGGCACCTGC 
75 deletes SH3 domain, introduces BamHI restriction site 

    

Src42A-DeltaSH2-F 
AAATCAATCGAAGCA 

GGA TCC GGT GGA GGT 
GTCCAGATCGAGAAG 

72 deletes SH2 domain 

Src42A-DeltaSH2-R 
CTTCTCGATCTGGACACCTCCA 

CCGGATCCTGCTTCGATTGATTT 
72 deletes SH2 domain 

    

Src42A-DeltaKinase-F 
ATCGACAGAACATCC GGA 

TCC GGT GGA GGT 
GAAGACTTCTATACA 

71 deletes tyrosine kinase domain 

Src42A-DeltaKinase-R 
TGTATAGAAGTCTTCACCTCCA 

CCGGATCCGGATGTTCTGTCGAT 
71 deletes tyrosine kinase domain 
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Src42A-YF-F 
ACA TCT GAT CAG AGC GAC 

TTC AAA GAG GCG CAA GCC TAC 
71 

mutates last tyrosine to phenylalanine, deletes StuI 
restriction site 

Src42A-YF-R 
GTAGGCTTGCGCCTCTTTG 

AAGTCGCTCTGATCAGATGT 
79 

mutates last tyrosine to phenylalanine, deletes StuI 
restriction site 

    

Mut Y64F for LIM 
GGACGAGAGCCCATC 

TTT GAGAATGTCAGCTCG 
68 mutates tyrosine 64 of CG43427-RI to phenylalanine 

Mut Y64F rev LIM 
CGAGCTGACATTCTC 

AAA GATGGGCTCTCGTCC 
68  

    

Mut Y152F for LIM 
CAAGCAGAGCCCTAC 

TTC CAAGTGCCGAAGGCC 
72 mutates tyrosine 152 of CG43427-RI to phenylalanine 

Mut Y152F rev LIM 
GGCCTTCGGCACTTG 

GAA GTAGGGCTCTGCTTG 
72  

    

Mut Y162F for LIM 
GCCACGGAGCCCTAC TTC 

GATGCCCCCAAGCAT 
74 mutates tyrosine 162 of CG43427-RI to phenylalanine 

Mut Y162F rev 
ATGCTTGGGGGCATC GAA 

GTAGGGCTCCGTGGC 
74  

    

Mut Y244F for LIM 
TCATCGGACAACACC TTC 

GAGACCATATCGAAC 
66 mutates tyrosine 244 of CG43427-RI to phenylalanine 

Mut Y244F rev 
GTTCGATATGGTCTC GAA 

GGTGTTGTCCGATGA 
66  

    

Mut Y601F for LIM 
GGCCTGGAGCCAGAT TTC 

GCTGTTAGCACGAGG 
71 mutates tyrosine 601 of CG43427-RI to phenylalanine 

Mut Y601F rev LIM 
CCTCGTGCTAACAGC GAA 

ATCTGGCTCCAGGCC 
71  

    

Y685F Mut for LIM 
CAGCAGCGGAAGAGT TTT 

GACAGCCAACAGACC 
69 mutates tyrosine 685 of CG43427-RI to phenylalanine 

Y685F Mut rev LIM 
GGTCTGTTGGCTGTC AAA 

ACTCTTCCGCTGCTG 
69  

    

LIM delta prr1 for 

GTAGGGCTGATGGAG GCA 
GCA AAGGAAAAG 

GCA GCA GCA GCA GCA 
ACCGAGAGTCCGATT 

79 

exchanges prolines in proline rich region 1 to glycines 

LIM delta prr1 rev 
AATCGGACTCTCGGTTGCTGCTG 
CTGCTGCCTTTTCCTTTGCTGCC 

TCCATCAGCCCTAC 
79 

    

LIM delta prr2 for 
CAGTCAGAGGCCACA 

GCA GCA GCA TTG GCA GCA GCA 
GCATCGACCGCCCAAGTG 

81 

exchanges prolines in proline rich region 2 to glycines 

LIM delta prr2 rev 
CACTTGGGCGGTCGATG 

CTGCTGCTGCCAATGCTGCTGCTGT 
GGCCTCTGACTG 

81 

    

Lim seq1 CTACCAAGTGCCGAAGGCCACG 64 sequencing of CG43427-RI 

Lim seq2 CTCGCCAGAGCAGTGAGCACTAC 63 sequencing of CG43427-RI 

Lim seq3 GCATGCATATCACCAGATGGAC 57 sequencing of CG43427-RI 

 

 

 

 



MATERIAL AND METHODS 

 

35 

2.1.8 Primary antibodies 

 

Primary antibodies, which were used for immunofluorescence staining (IF), Western blotting (WB) 

and Immunoprecipitation (IP), are listed in Table 4. Secondary antibodies and fluorochrome 

conjugated phalloidin for F-actin staining are listed in Table 5. 

Table 4: Primary antibodies 

antibody species application source / company 

Actin rabbit WB 1:2000 Sigma A2066 

Smash intra 
(DE02088) 

rabbit IF 1:500; WB 1:2000; IP Wodarz, unpublished 

Smash N-term 
(DE12095) 

guinea 
pig 

IF 1:500; WB 1:1000 Beati, unpublished 

Bazooka (DE99646) rabbit 
IF 1:2000; WB 1:2000; 

IP 
Wodarz et al., 1999 

DE-Cadherin (DCAD2) rat IF 1:5; WB 1:5, IP 

Developmental Studies Hybridoma Bank 
(DSHB) 

Discs Large (4F3) mouse IF 1:20 

Armadillo (N2 7A1) mouse IF 1:20; WB 1:50 

α-Catenin (D-CAT1) rat IF 1:50 

GFP mouse 
IF 1:2000; WB 1:2000; 

IP 
Invitrogen Molecular Probes # A11120 

GFP rabbit 
IF 1:2000; WB 1:2000; 

IP 
Invitrogen Molecular Probes # A11122 

HA mouse WB 1:2000 Roche # 11 583 816 001 

Phosphotyrosine 
(PT-66) 

mouse IF 1:1000; WB 1:1000 Sigma P3300 

Src42A rabbit IF 1:1000 Takahashi et al., 2005 

pSrc rabbit IF 1:1000 Shindo et al., 2008 

BrdU (MoBu-1) mouse IF 1:500 Abcam (ab8039) 

mCherry (1C51) mouse IF 1:500 Abcam (ab125096) 

 

Table 5: antibodies and fluorochrome conjugated phalloidin 

antibody species application company 

Peroxidase-AffiniPure Goat Anti-Mouse IgG 
+ IgM (H+L) 

goat 1:10.000 
Jackson ImmunoResearch 

(115-035-068) 

Peroxidase-AffiniPure Goat Anti-Rabbit IgG, 
(H+L) 

goat 1:10.000 
Jackson ImmunoResearch 

(111-035-144) 

Peroxidase-AffiniPure Goat Anti-Rat IgG + 
IgM, (H+L) 

goat 1:10.000 
Jackson ImmunoResearch 

(112-035-068) 

    

Alexa Fluor® 488 Goat Anti-Mouse IgG1 (γ1) goat 1:200 
Invitrogen Life Technologies 

A21121 

Alexa Fluor® 555 Anti-Mouse IgG (H+L) goat 1:200 
Invitrogen Life Technologies 

A21422 
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Alexa Fluor® 647 Goat Anti-Mouse IgG (H+L) goat 1:200 
Invitrogen Life Technologies 

A21235 

    

Alexa Fluor® 488 Goat Anti-Rabbit IgG (H+L) goat 1:200 
Invitrogen Life Technologies 

A11008 

Alexa Fluor® 555 Goat Anti-Rabbit IgG (H+L) goat 1:200 
Invitrogen Life Technologies 

A21428 

Alexa Fluor® 647 Goat Anti-Rabbit IgG (H+L) goat 1:200 
Invitrogen Life Technologies 

A21244 

    

Alexa Fluor® 488 Goat Anti-Rat IgG (H+L) goat 1:200 
Invitrogen Life Technologies 

A11006 

Alexa Fluor® 555 Goat Anti-Rat IgG (H+L) goat 1:200 
Invitrogen Life Technologies 

A21434 

Alexa Fluor® 647 Goat Anti-Rat IgG (H+L) goat 1:200 
Invitrogen Life Technologies 

A21247 

    

Alexa Fluor® 488 Goat Anti-Guinea Pig IgG 
(H+L), highly cross-adsorbed 

goat 1:200 
Invitrogen Life Technologies 

A11073 

Alexa Fluor® 555 Goat Anti-Guinea Pig IgG 
(H+L), highly cross-adsorbed 

goat 1:200 
Invitrogen Life Technologies 

A21435 

Alexa Fluor® 647 Goat Anti-Guinea Pig IgG 
(H+L), highly cross-adsorbed 

goat 1:200 
Invitrogen Life Technologies 

A21450 

    

Alexa Fluor® phalloidin 488  1:100 
Invitrogen Life Technologies 

A12379 

Alexa Fluor® phalloidin 568  1:100 
Invitrogen Life Technologies 

A12380 

Alexa Fluor® phalloidin 647  1:100 
Invitrogen Life Technologies 

A22287 

 

2.1.9 Fly stocks 

 

Used fly stocks and donors are listed below in Table 6. 

Table 6: Fly stocks 

Stock Plain text genotype Description Reference 

    

Oregon R  wildtype 
Wodarz stock 

collection 

white1118 w[1118] white eyes 
Bloomington 

#5905 

    

daughterless 
Gal4 

w[1118]; P{da-GAL4.w[-]}3 
Gal4 driver line; ubiquitous expression under 

control of daughterless promotor; 3rd 
chromosome 

Bloomington 
#8641 
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engrailed Gal4 
y[1] w[*]; P{w[+mW.hs]=en2.4-GAL4}e16E 

P{w[+mC]=UAS-FLP1.D}JD1 
Gal4 driver line; expression under control of 

engrailed promotor in stripes; 2nd chromosome 
Bloomington 

#6356 

daughterless 
Gal4 

w[*]; P{w[+mW.hs]=GAL4-da.G32}UH1 
Gal4 driver line; ubiquitous expression under 

control of daughterless promotor; 2nd 
chromosome 

Wodarz stock 
collection 

tubulin Gal4 
Y[1] w[*]; P{w[+mC]=tubP-GAL4}LL7/TM3, 

Sb[1] 
Gal4 driver line; ubiquitous expression under 
control of tubulin promotor; 3rd chromosome 

Bloomington 
#5138 

patched Gal4 W[*]; P{w[+mW.hs]=GawB}ptc[559.1] 
Gal4 driver line; expression under control of 

patched promotor in stripes; 2nd chromosome 
Bloomington 

#2017 

hsFlp;; actin > 
CD2 > Gal4, UAS 

RFP 

P{ry[+t7.2]=hsFLP}12, y[1] w[*]; 
P{w[.mC]=Act5C(CD2)Gal4}17bFO1, UAS RFP 

/TM3, Sb[1] 

Gal4 driver line, expression under control of 
actin promotor in clones 

Wodarz stock 
collection 

    

y1, w*, hsFlp; 
Sco/CyO 

P{ry[+t7.2]=hsFLP}12, y[1] w[*]; 
sna[Sco]/CyO 

Flipase under control of heat shock promotor; 
used for transdeletions 

Bloomington 
#1929 

P{XP}d00921 P{XP}CG43427d00921 
P{XP} insertion at position 3R:485,651 [-]; used 

for transdeletion of entire smash gene locus 

Exelixis 
Collection, 

Harvard 

PBac{WH}f00542 PBac{WH}CG43427f00542 
piggyBac insertion at position 3R:531,436 [+]; 

used for transdeletion of CG31534 

Exelixis 
Collection, 

Harvard 

PBac{RB}e03181 PBac{RB}CG43437e03181 
piggyBac insertion at position 3R:537,071 [-]; 

used for both transdeletions 

Exelixis 
Collection, 

Harvard 

Df(3R)ED5066 
w[1118]; Df(3R)ED5066, 

P{w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED506
6/TM6C, cu[1] Sb[1] 

Deleted segment 82C5--82E4; deficient for 
smash gene locus 

Bloomington 
#8092 

    

smash4.1 smash[4.1] 
smash mutant allele; C-terminally truncated; 

homozygous viable 
this work 

smash35 smash[35] smash null allele; homozygous viable this work 

    

Src64BKO Src64B[KO] Src64B nullallele 
O’Reilly et al., 

2006 

Src42A26-1 Src42A[26-1] Src42A nullallele 
Takahashi et al., 

2005 

    

Gla/CyO w[1118]; In(2LR)Gla, wg[Gla-1] Bc[1]/CyO Balancer for the 2nd chromosome 
Bloomington 

#5439 

If/CyO ; 
MKRS/TM6B 

w[1118]; If/CyO; MKRS/TM6B[Tb1] Balancer for 2nd and 3rd chromosome 
Wodarz stock 

collection 

Br/CyO ; 
TM2/TM6B 

w[*], Br/CyO ; TM2/TM6B[Tb1] Balancer for 2nd and 3rd chromosome 
Wodarz stock 

collection 

    

TM3/TM6B w[*]; TM3, Sb[1] Ser[1]/TM6B, Tb[1] Balancer line for the 3rd chromosome 
Bloomington 

#2537 

TM3[tw-
GFP]/TM6B 

w[*]; TM6B, Tb[1]/TM3, Sb[1], Ser[1], twist-
GFP 

Balancer line for the 3rd chromosome 
Wodarz stock 

collection 
(B.Shilo) 

    

UASt GFP-Smash-
PI 

UASt-GFP-Smash-PI 
GFP-Smash-PI under control of UASt promotor; 

3rd chromosome 
Neugebauer, 

2007 

UASt GFP-Smash-
PM 

UASt GFP-Smash-PM[10] 
GFP-Smash-PMunder control of UASt promotor; 

2nd chromosome 
this work 

    

y1, w1118;; attp 
22A3 

y[1] w[1118]; PBac{y[+]-attP-3B}VK00037 
attP docking site for phiC31 integrase-mediated 

transformation; 22A3, 2L:1582820 
Bloomington 

#9752 

UAS GFP-Smash-
PI 

UAS GFP-Smash-PI 
GFP-Smash-PI under control of UASp promotor; 

2rd chromosome (22A3) 
this work 

UAS GFP-Smash-
PM 

UAS GFP-Smash-PM 
GFP-Smash-PM under control of UASp 

promotor; 2nd chromosome (22A3) 
this work 

UAS Src42A-HA UAS Src42A-HA[11] 
Src42A-HA under control of UASp promotor, 2nd 

chromosome 
this work 
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UAS Src64B-HA UAS Src64B-HA[6] 
Src64B-HA under control of UASp promotor, 2nd 

chromosome 
this work 

UAS Src42AYF-
HA5 

UAS Src42AYF-HA[5] 
Src42AYF-HA under control of UASp promotor, 

2nd chromosome 
this work 

UAS Src42AYF-
HA6 

UAS Src42AYF-HA[6] 
Src42AYF-HA under control of UASp promotor, 

2nd chromosome 
this work 

    

UAS mCD8::GFP 
w[*]; P{y[+t7.7] w[+mC]=10XUAS-

mCD8::GFP}attP2 
mCD8-GFP under control of UAS promotor, 2nd 

chromosome 
Bloomington 

#32184 

 

2.1.10 Fly breeding 

 

Flies were raised on standard medium and kept at 25°C, unless stated otherwise. Embryo 

collections were performed by keeping flies in cages on apple juice agar plates, which were 

coated with yeast. 

 

Standard medium consists of 356 g corn groats, 47.5 g soybean flour, 84 g dry yeast, 225 g malt 

extract, 75 ml 10% nipagin, 22.5 ml propanoic acid, 28 g agar, 200 g sugar beet molasses and 4.9 l 

H2O. 

 

2.2 Genetic methods 

 

2.2.1 Separation of DNA fragments via gel electrophoresis 

 

DNA exhibits a negative charge associated with the phospho groups it contains. This allows DNA 

to migrate in an electric field to the positively charged anode. 1% agarose gels containing 

ethidiumbromide (EtBr), a chemical intercalating with DNA that can be visualized under UV light is 

widely used to resolve DNA samples. The DNA is separated based upon its length and secondary 

structure, which can be formed by circular DNA (e.g. plasmids). The size can be determined by 

using a DNA standard, which is loaded in a separate lane on the gel. 

1% agarose gel is made with 1 g agarose, which is solved in 100 ml of TAE buffer in a microwave. 1 

µl of EtBr (1%) is added and the solution poured into a gel chamber. After hardening DNA can be 

loaded and separation takes place at 110V for 20 – 25 min. 
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2.2.2 Polymerase Chain Reaction (PCR) 

 

The polymerase chain reaction (PCR) is a method allowing the amplification of specific DNA 

sequences, using primers (oligonucleotides) consisting of 18 – 30 nucleotides. The technique 

became available when the thermophilic bacterium Thermophilus aquaticus was discovered. This 

bacterium features a heat resistant DNA polymerase, afterwards called Taq polymerase. A 

disadvantage of this enzyme is a lack of “proofreading” activity, leading to a significant error rate. 

A second polymerase was isolated from the archae bacterium Pyrococcus furiosus, which features 

a heat resistant DNA polymerase too. This enzyme exhibits a proofreading activity. This Pfu 

polymerase is widely used for the cloning of DNA. 

For the use of the PCR it is necessary to generate a pair of primers, which target the DNA 

sequence of interest from 5’ to 3’ and 3’ to 5’, respectively. After denaturation at 95°C the DNA 

will be available in a single stranded form. After decreasing the temperature, the DNA will 

associate primarily with the added primers, because they are added in an excess. The 

temperature for this annealing step is dependent on the sequence of the primer. Afterwards, the 

DNA polymerase binds to the primer and a temperature shift to 72°C leads to the activation of the 

enzyme and the subsequent synthesis of the complementary DNA strand by the use of dNTPs 

(deoxynucleosidetriphosphates). Repeating these steps denaturation- annealing – elongation, 

DNA can be easily amplified. 

 

An example PCR can be set up as followed: 

100 ng template DNA 

4 µl oligonucleotides (10 pmol, forward and reverse) 

2 µl dNTPs (10 mM) 

10 µl polymerase buffer (5x) 

1 µl polymerase 

filled up to a volume of 50 µl with dH2O 
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Table 7 shows an example for a PCR program. 

Table 7: Example for PCR program 

step time temperature [°C] 

I denaturation 5 min 95 

II 
denaturation 

30 sec 95 

III annealing 30 sec 
dependent on sequence of the 

respective primer 

IV elongation 

dependent on length of DNA sequence to 
be amplified 

Taq polymerase 30 - 60 sec = 1 kb 
Pfu polymerase 90 sec = 1 kb 

72 

V repeat from step II for 34 times 

VI final 
elongation 

10 - 20 min 72 

VII end of 
reaction 

 4 

 

2.2.3 Mutagenesis PCR 

 

Mutagenesis PCRs were adapted from the QuickChange II site directed mutagenesis kit 

(Stratagene). 

By the use of PCR it is possible to generate targeted mutations of DNA constructs. Point mutations 

of single nucleotides can be achieved by designing primers, which are not fully complementary to 

the template DNA. Thereby the coding nucleotide triplet is changed to generate the desired 

mutation, meaning that during the annealing step these nucleotides will pair in a wrong way (e.g. 

G with T or A). This triplet within the primer is flanked by 15 nucleotides on the 5’ and 3’ end. This 

primer has a length of 33 nucleotides, which guarantees annealing of the oligonucleotide carrying 

the desired base pair change. 

Furthermore it is possible to delete whole domains, by “looping” them out. In this case the 5’ 

sequence of the primer is binding the template in front of the region, which is wished to be 

deleted and the 3’ end binds after this region. In between this two 15 nucleotide long sequences 

12 additional nucleotides can be added, which have a spacer function. The sequence can encode 

for G – A – G – A. It is important that the deleted DNA construct stays in frame, thereby not 

leading to a false translated protein. For this kind of PCR, the elongation time has to be adapted 
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to the length of the whole plasmid, because the polymerase has to amplify the full construct. The 

PCR product needs to be digested by a restriction enzyme DpnI, which recognizes and digests only 

methylated DNA (GAMTMC, which is modified in that way by E.coli). This step is necessary to get rid 

of the non mutated template DNA. The mutated PCR product will be transformed into E.coli 

DH5α. 

 

2.2.4 Transformation of DNA into chemically competent E.coli 

 

Chemically competent E.coli cells (e.g. XL 1 blue) are thawed on ice. 50 µl of bacteria are 

transformed with DNA and incubation on ice takes place for 30 min. The cells will be heatshocked 

for 45 sec at 42°C and incubated on ice again for 3 min. 250 µl of prewarmed SOC medium is given 

to the cells which will be incubated at 37°C for 45 min while shaking. The mixture is plated on LB 

agar plates containing an appropriate antibiotic for selection. 

 

2.2.5 Isolation of DNA out of an agarose gel 

 

After separating DNA by use of gel electrophoresis, bands can be cut out and the DNA isolated 

and purified. For this purpose the NucleoSpin Extract II kit (Macherey Nagel) was used and 

purification was according to the manufacturer protocol. DNA was eluted with 15 – 30 µl NE 

Buffer. 

 

2.2.6 Purification of DNA out of a PCR product 

 

Purification was performed with the NucleoSpin Extract II kit (Macherey Nagel). DNA was eluted 

with 15 – 25 µl of NE Buffer. 
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2.2.7 pENTRTM/D-TOPO® cloning 

 

The principle of the pENTRTM/D-TOPO® cloning (Invitrogen) is to generate a pENTRTM/D-TOPO® 

vector in the first step, which contains an insert of interest (e.g. coding sequence for CG43427-

RM). This vector can be used afterwards for Gateway® cloning to exchange the gateway cassette 

from a destination vector with the insert of the pENTRTM/D-TOPO® vector. This reaction is 

catalyzed by an enzyme called clonase, which recognizes attL sites upstream and downstream of 

the pENTR insert/gateway cassette thereby mediating their recombination. Successful 

recombination is selected by the change of antibiotic resistance. The pENTRTM/D-TOPO® vector 

carries a resistance gene against kanamycin, and the destination vectors against ampicillin. Fig.10 

shows the principle of the pENTRTM/D-TOPO® / Gateway® cloning system. 

 

For the cloning as such it is necessary to design a forward primer with a CACC overlap at its 5’ end. 

This signal will be recognized by the topoisomerase, which is included in the reaction mix with the 

pENTRTM/D-TOPO® vector. For the reverse primer it has to be decided, whether one wants to 

work with N-terminal or C-terminal tags. In the latter case the primer has to stop with the last 

coding nucleotide triplet encoding for an amino acid. For N-terminal tags it is important to add a 

nucleotide triplet encoding for a stop signal (e.g. TAA). 

 

 

Fig.10: Principle of Gateway® cloning 

An insert from the pENTR
TM

/D-TOPO® vector is shuttled to a Gateway® destination vector, mediated by the 

reversible reaction of the clonase. Selection is performed by the change of antibiotic resistence from 

kanamycin to ampicillin (source: http://de-de.invitrogen.com/site/de/de/home/Products-and-

Services/Applications/Cloning/Gateway-Cloning/Clonase-Enzyme.html). 
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For the pENTRTM/D-TOPO® reaction, 2 µl of freshly purified PCR product were mixed with 0.5 µl of 

salt solution and 0.5 µl of linearized pENTR vector. Incubation took place for 5 – 6 min at room 

temperature. Transformation was done into the E.coli strain “top 10 one shot”. LB agar plates 

containing kanamycin were used for selection. 

The following clonase reaction was done with 50 - 150 ng of the pENTRTM/D-TOPO® vector, which 

was mixed with 1.5 µl of TE buffer. 150 ng of the respective Gateway® destination vector was 

added and reaction started with 1 µl of clonase. Incubation took place for 60 min at 25°C and 

inactivation of the reaction was achieved by adding 0.5 µl of Proteinase K for 10 min at 37°C. 

Transformation was done into E.coli DH5α or XL-1 blue. Constructs which were generated in this 

work are listed in Table 8 below. 

Table 8: Constructs generated in this work 

name property 

CG43427-PM 
pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG43427-RM 

CG43427-PM 
pUASpGW 

N-terminal tagged GFP-CG43427-RM under control of UASp promotor; contains attp site 
for site directed injection 

CG43427-PM 
pTGW 

N-terminal tagged GFP-CG43427-RM under control of UASt promotor 

  

CG43427-PN 
pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG43427-RN 

CG43427-PN 
pUASpGW 

N-terminal tagged GFP-CG43427-RN under control of UASp promotor; contains attp site 
for site directed injection 

  

CG43427-PE 
pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG43427-RE 

CG43427-PE 
pUASpGW 

N-terminal tagged GFP-CG43427-RE under control of UASp promotor; contains attp site 
for site directed injection 

  

CG31534-PA 
Y64F pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG31534-RA carrying a 
pointmutation for Y64 to F 

CG31534-PA 
Y64F pPGW 

N-terminal tagged GFP-CG31534-RA with mutation for Y64 to F under control of UASp 
promotor 

  

CG31534-PA 
Y152F pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG31534-RA carrying a 
pointmutation for Y152 to F 

CG31534-PA 
Y152F pPGW 

N-terminal tagged GFP-CG31534-RA with mutation for Y152 to F under control of UASp 
promotor 

  

CG31534-PA 
Y162F pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG31534-RA carrying a 
pointmutation for Y162 to F 

CG31534-PA 
Y162F pPGW 

N-terminal tagged GFP-CG31534-RA with mutation for Y162 to F under control of UASp 
promotor 



MATERIAL AND METHODS 

 

44 

CG31534-PA 
Y244F pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG31534-RA carrying a 
pointmutation for Y244 to F 

CG31534-PA 
Y244F pPGW 

N-terminal tagged GFP-CG31534-RA with mutation for Y244 to F under control of UASp 
promotor 

  

CG31534-PA 
Y601F pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG31534-RA carrying a 
pointmutation for Y601 to F 

CG31534-PA 
Y601F pPGW 

N-terminal tagged GFP-CG31534-RA with mutation for Y601 to F under control of UASp 
promotor 

  

CG31534-PA 
Y685F pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG31534-RA carrying a 
pointmutation for Y685 to F 

CG31534-PA 
Y685F pPGW 

N-terminal tagged GFP-CG31534-RA with mutation for Y685 to F under control of UASp 
promotor 

  

CG31534-PA 
YmultiF pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG31534-RA carrying 
pointmutations for Y64, 152, 162, 244, 601 and 685 to F 

CG31534-PA 
YmultiF pPGW 

N-terminal tagged GFP-CG31534-RA with mutations for Y64, 152, 162, 244, 601 and 685 
to F under control of UASp promotor 

  

CG31534-PA 
Δprr1/2 pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence of CG31534-RA were the two 
prolin rich regions were mutated 

CG31534-PA 
Δprr1/2 pPGW 

N-terminal tagged GFP-CG31534-RA with mutated proline rich regions 1 and 2 under 
control of UASp promotor 

  

Src42A ΔSH3 
pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence Src42A where the SH3 
domain was deleted 

Src42A ΔSH3 
pPWH 

C-terminal tagged Src42A-HA where the SH3 domain was deleted, under control of 
UASp promotor 

  

Src42A ΔSH2 
pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence Src42A where the SH2 
domain was deleted 

Src42A ΔSH2 
pPWH 

C-terminal tagged Src42A-HA where the SH2 domain was deleted, under control of 
UASp promotor 

  

Src42A ΔKin 
pENTR 

pENTR
TM

/D-TOPO® vector containing the coding sequence Src42A where the tyrosine 
kinase domain was deleted 

Src42A ΔKin 
pPWH 

C-terminal tagged Src42A-HA where the tyrosine kinase domain was deleted, under 
control of UASp promotor 

  

Src42A YF pENTR 
pENTR

TM
/D-TOPO® vector containing the coding sequence Src42A where Y411 was 

mutated to F 

Src42A YF pPWH 
C-terminal tagged Src42A-HA where Y411 was mutated to F, under control of UASp 

promotor 
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2.2.8 Isolation of DNA from bacteria 

 

2 ml of LB medium containing the respective antibiotic were inoculated with a single E.coli colony 

and grown over night at 37°C while shaking. 1.5 ml of the culture was transferred into a 

microtube and bacteria were centrifuged for 1 min at 14.000 rpm. After discarding the 

supernatant, the cell pellet was resuspended with 200 µl S1 resuspension buffer. 200 µl of S2 lysis 

buffer were added and the mix vortexed. After this step cells were incubated for 5 min on ice. 

Neutralization is achieved by adding 200 µl of S3 neutralization buffer. After this step the 

microtube was inverted 5 – 6 times and subsequently centrifuged for 20 min at 14.000 rpm at 4°C. 

The supernatant, containing the plasmid DNA, was transferred to a new tube. Precipitation of the 

DNA was achieved by adding 400µl of isopropanol and centrifugation at 14.000 rpm at 4°C for 30 

min. The supernatant was discarded and the DNA precipitate washed with 200 µl of ice cold 70% 

ethanol and centrifuged for 5 min at 14.000 rpm at 4°C. Supernatant was discarded and the DNA 

precipitate dried at room temperature. 25 µl of dH2O were given to the DNA for dissolving and 

stored at -20°C. 

 

2.2.9 Restriction digestion 

 

By using restriction enzymes it is possible to cut DNA into fragments. These restriction 

endonucleases can specifically cut DNA at the sequence motif they recognize, e.g. EcoRV is a type 

II restriction endonuclease cutting GAT ↓ ATC into blunt ends (Pingoud and Jeltsch, 2001). 

For a control digestion (e.g. after clonase reaction) 1-2 µg of DNA are digested in a volume of 10 

µl, which contains 0.2 µl of the restriction enzyme and 1 µl of its respective 10x digestion buffer. 

The restriction digestion takes place for 60 min at 37°C and DNA is afterwards separated by 

agarose gel electrophoresis. 

 

2.2.10 Determining DNA concentration 

 

DNA concentration was determined with a photometer at OD260 (Eppendorf Biophotometer). The 

dsDNA program was used with a dilution factor of 1:99. A small cuvette was filled with 99 µl dH2O 
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to define the blank value and then DNA concentration was obtained by adding 1 µl of the DNA 

solution and a second measurement. 

 

2.2.11 Sequencing of DNA 

 

For the sequencing of plasmids 300 ng of DNA were used as template. For one reaction 1.5 µl of 

SeqMix, 1.5 µl of SeqBuffer were set up with 8 pmol of a respective primer and the template. 

Table 9 shows the PCR program, which was used for this reaction. 

Table 9: Sequencing program 

step time temperature [°C] 

I denaturation 2 min 96 

II denaturation 20 sec 96 

III annealing 30 sec 55 

IV elongation 4 min 60 

V repeat from step II for 25 times 

VI end of reaction  12 

 

After the reaction the PCR product was transferred into a new microtube. Solution was mixed 

with 1 µl 125 mM EDTA, 1 µl 3M sodium acetate (pH 5.2) as well as with 50 µl 100% Ethanol. After 

incubation for 5 min at room temperature the microtube was centrifuged at 14.000 rpm for 15 

min. The supernatant was discarded and the precipitate washed with 70 µl of 70% ethanol. After 

centrifugation at 14.000 rpm for 5 min the supernatant was discarded, the precipitate air dried for 

at least 2 min and resolved in 15 µl HiDi (formamide). Sequencing was performed by the 

department of Prof. Dr. Pieler. 

 

2.2.12 Isolation of genomic DNA from flies 

 

Isolation of genomic DNA out of a single fly 

By use of this method the isolation of genomic DNA out of a single fly is possible. For this purpose 

a fly is put into a microtube and shock frozen in liquid nitrogen. Afterwards the fly was 

homogenized with a biovortexer in 50 µl squishing buffer containing 0.5 µl Proteinase K. 
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Incubation for 30 min at 37°C was followed and inactivation of the Proteinase K was achieved by a 

heat shock for 5 min at 94°C. Before PCRs have been set up, the lysate was centrifuged for 2 min 

at 14.000 rpm to sediment the remaining cuticle of the fly. For a PCR of 25 µl volume 2.5 µl of the 

supernatant were used as template. 

 

Isolation of genomic DNA out of several flies (Quick fly genomic DNA prep) 

30 flies were collected in a microtube and shock frozen in liquid nitrogen. Using a biovortexer flies 

were homogenized in 200 µl buffer A, another 200 µl buffer A were added and further 

homogenized till just cuticles were left over. The lysate was incubated for 30 min at 65°C and 

subsequently mixed with 800 µl LiCl/KAc (575 µl 6 M LiCl + 230 µl 5 M KAc) solution. After 

centrifuging at 13.000 rpm for 15 min the supernatant was mixed with 600 µl isopropanol in a 

new miocrotube. Precipitation of the DNA was achieved after centrifuging for 15 min at 13.000 

rpm. The supernatant was discarded and the DNA precipitate was washed with 200 µl of 70% 

ethanol for 10 min at 13.000 rpm. DNA was resolved in 150 µl dH2O or TE buffer. This step was 

done for 60 min at room temperature or at 4°C over night. The DNA was stored at -20°C. 

 

2.2.13 UAS/Gal4 system 

 

The UAS/Gal4 system is binary and was isolated from the yeast (Saccharomyces cerevisiae). The 

Gal4 protein is the transcription factor and UAS (=upstream activating sequence) its binding site. 

This system is used in Drosophila to mediate targeted expression of transgenes, which were 

hooked up to an UAS element (Brand and Perrimon, 1993). 

For this purpose a driver line, carrying the sequence for the Gal4 protein hooked up to a promoter 

of a Drosophila gene (e.g. engrailed, en), is crossed against an UAS line. Hereby, expression is 

controlled in temporal and spatial manner. en for example is a segment polarity gene, expressed 

in stripes to the posterior compartment of segments. Therefore an en Gal4 driver line allows 

expressing an UAS transgene in stripes, like the endogenous expression pattern of en. Fig.11 

shows a schematic of the UAS/Gal4 system. 

 



MATERIAL AND METHODS 

 

48 

 

Fig.11: UAS/Gal4 system 

The UAS/Gal4 system is used for the expression of transgenes in Drosophila. A driver line, expressing Gal4 

under the control of any promoter, is crossed to a responder line, carrying a transgene fused to a the UAS 

sequence. Adapted from Wimmer, 2003. 

 

2.2.14 Generation of transgenic flies 

 

By the use of P-elements and transposons it is possible to inject DNA into Drosophila embryos for 

insertion into its genome (Bachmann and Knust, 2008). 

The destination vectors of the Gateway® system are constructed with a P-element cassette and a 

promoter (e.g. UASp or UASt) upstream of the coding sequence, as well as a mini white gene. It is 

therefore suitable for the generation of transgenic fly lines. For the insertion it is necessary to co-

inject a helper plasmid (Δ2,3), encoding for a transposase, which recognizes the P-element and 

mobilizes it and leads to its random insertion into the Drosophila genome. 

For injection 20 µg of the respective DNA were mixed with 5 µg of Δ2,3 helper plasmid DNA. 5 µl 

of 10x injection buffer (1 mM trisodium phosphate, 50 mM KCl, pH 6.8) were added and the 

solution filled up with dH2O to a volume of 50 µl. Centrifugation for 10 min at 14.000 rpm at 4°C 

was performed to get rid of particles, which could block the injection needle later on. 

Injection was done into w1118 mutant embryos (these flies exhibit white eyes), which were laid for 

20 min at 18°C. Embryos were transferred on a mesh with dH2O and dechorionized with sodium 

hypochlorite for 1-2 min and subsequently aligned (to their anterior-posterior axis) on a piece of 

apple juice agar. Afterwards embryos were transferred on a coverslip, which was coated with 

embryo glue and dried at room temperature for 14 min (dependent on actual temperature and 



MATERIAL AND METHODS 

 

49 

humidity). During this step embryos lost their inner turgor, which prevents them from bursting 

during the injection step. Right before injection embryos were covered with 10S oil and injected 

into their posterior end where the pole cells will form later (the precursors of the germline). After 

36-48 hours hatched larvae were collected and transferred into fly food. Emerging flies were 

crossed against w1118; gla /CyO [ftz::lacZ] flies. In the second generation red eyed flies can appear, 

which indicated the insertion of the transgene into their genome. 

For the identification of the chromosome of insertion, a red eyed male fly either carrying the gla 

marker or the CyO [ftz::lacZ] balancer chromosome has to be crossed against virgins of the w1118; 

gla /CyO [ftz::lacZ] fly line. Table 10 shows the phenotypical markers for the identification of the 

chromosome carrying the insertion (adapted and modified from Bachmann and Knust, 2008). 

Table 10: Phenotypical markers for identification of the chromosome carrying the transgene 

F2 w
+
 / gla F2 w

-
; gla /CyO F2 w

+
; gla /CyO F2w

-
; CyO F2w

-
; gla Chr. 

male female male female male female male female male female  

 + +   + +  +  I 

+ + + +       II 

+ + + + + + + + + + III 

 

Another injection system used is based on the phi C31 integrase, allowing the insertion specifically 

on landing positions (attp sites) in the genome (Groth et al., 2004). Here embryos were used for 

injections which exhibit an attp site on position 22A on the second chromosome. Transgenes were 

inserted by the phi C31 integrase, which is under control of the vasa promoter. An advantage of 

this method is that established UAS lines display the same expression levels, thereby allowing 

better comparison between the expression of different transgenes. The injection was performed 

as described above, only the helper plasmid was not added to the injection mix. Furthermore, 

emerging flies were crossed to w1118; gla /CyO [ftz::lacZ] and transformants were directly balanced 

with CyO [ftz::lacZ]. 
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2.3 Biochemical methods 

 

2.3.1 SDS-PAGE 

 

The SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) is a method which is 

used to separate proteins according to their molecular weight. Hereby proteins are denaturated 

and packed with SDS, giving them a total negative charge. In an electric field, these proteins will 

migrate to the positively charged anode. The density of the gel can be controlled by the amount 

of acrylamide which is used. For example, bigger proteins can be better separated by gels with 

lower concentration of acrylamide, as in contrast smaller proteins by gels with higher 

concentration. Table 11 lists the amount of contents for different gels. 

Table 11: Examples of contents for different molecular SDS-PAGE gels 

 separation gel stacking gel 

 7.5% 10%  

30% acrylamide 1.9 ml 2.5 ml 620 µl 

Tris-HCl pH 8.8 2.8 ml 2.8 ml  

Tris-HCl pH 6.8   470 µl 

20% SDS 38 µl 38 µl 20 µl 

dH2O 2.7 ml 2.1 ml 2.6 ml 

10% APS 30 µl 30 µl 20 µl 

TEMED 8 µl 8 µl 10 µl 

 

SDS gels were made by using the BioRad system. Here two glass plates were fixed into a retaining 

clip. The separation gel was poured in between the glass plates and covered with isopropanol. 

After polymerization of the acrylamide the isopropanol layer was removed. Stacking gel was 

poured on top of the separating gel and a comb, maintaining the space for the pockets, was 

pushed between the two glass plates. 

After polymerization of the stacking gel, the SDS gel was put into a BioRad electrophoresis 

chamber (either two gels or one gel and one plastic dummy) and both chambers were filled with 

1x SDS running buffer. Protein samples were loaded into the pockets with a syringe (Hamilton). 

One pocket was filled with a protein mass ruler and protein separation took place for 

approximately 60 min at 200V (depending on the concentration of polyacrylamide). 
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2.3.2 Western blot 

 

For a Western blot, proteins are first separated via SDS-PAGE and afterwards transferred to a 

nitrocellulose membrane. Detection of a specific protein occurs with an antibody and 

concomitant signal development (e.g. chemiluminescence). 

Horizontal transfer of the proteins from the SDS gel onto the nitrocellulose membrane occurs at 

4°C for 60 min in transfer buffer using the BioRad system. Hereby a supplied blotting chamber is 

assembled as follows: plastic mat – two whatman papers – SDS polyacrylamide gel – nitrocellulose 

membrane – two whatman papers – plastic mat. After transfer the nitrocellulose membrane can 

be stained with Ponceau red, which stains proteins and thereby indicates the quality of the 

transfer. Subsequent incubation in blocking buffer is necessary to saturate unspecific binding 

sites, which might cross react with antibodies. The nitrocellulose membrane had to be incubated 

in blocking buffer containing a primary antibody in an appropriate dilution. This incubation was 

done over night at 4°C. 

After washing the nitrocellulose membrane 3 times for 5 min with TBST a secondary antibody 

(conjugated with HRP) is added in blocking buffer at a dilution of 1:10.000. This incubation is done 

for 2 hours at room temperature. Another 3 washes for 5 min followed with the subsequent 

development of the chemiluminescence signal after incubating the nitrocellulose membrane for 1 

min in POD solution (1ml solution A mixed with 10 µl solution B and 15 min incubation in the dark 

before use, Roche). Detection of the signal was monitored using X-Ray developing films (Fuji). 

 

2.3.3 Lysis of Drosophila embryos 

 

For an embryonic protein extraction an overnight egg laying collection is usually used. Embryos 

were washed with dH2O, dechorionized with sodium hypochlorite and transferred into a 

microtube. Lysis was achieved by homogenizing the embryos in 200 µl lysis buffer (containing 

proteinase inhibitors or additionally phosphatase inhibitors) with a biovortexer. The lysate was 

filled up to a volume of 1000 µl and incubation on ice followed for 20 min. After a centrifugation 

at 14.000 rpm at 4°C the supernatant was transferred into a new microtube and protein 

concentration was determined. If protein lysates were not used directly, they were stored at -

20°C. Co-IPs were always continued without freezing to avoid disassembly of protein complexes. 
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2.3.4 Lysis of Drosophila S2 cells 

 

S2 cells were harvested and centrifuged for 10 min at 1000 rpm. Culture medium was discarded 

and cells were washed with 3 ml PBS. Another centrifugation at 1000 rpm for 5 min was done and 

PBS removed. S2 cells were lysed by pipetting them up and down with 500 µl of lysis buffer 

(containing proteinase inhibitors or additionally phosphatase inhibitors) and incubation on ice for 

20 min. After centrifugation at 14.000 rpm at 4°C the supernatant was transferred into a new 

microtube and protein concentration was determined. If protein lysates were not used directly, 

they were stored at -20°C. Co-IPs were continued without freezing as mentioned above. 

 

2.3.5 Determination of protein concentration 

 

Protein concentration was determined with a photometer. 800 µl of dH2O were mixed with 200 µl 

of Bradford reagent (Roth) and 2 µl of the used lysis buffer. This solution was incubated for 3 min 

at room temperature. The blank value was set at OD600. Protein samples were also mixed in 800 µl 

dH2O and 200 µl Bradford in the same way and the OD600 was measured. The value was multiplied 

by 10 which then reflected the protein concentration in µg / µl. 

 

2.3.6 Co-Immunoprecipitation (Co-IP) 

 

An Immunoprecipitation (IP) is a method, where a specific protein is precipitated out of a protein 

lysate. This is achieved by adding an antibody, which binds its antigen within this lysate. Under 

physiological conditions (e.g. pH of lysis buffer) protein-protein interactions remain intact. It is 

thereby possible to detect binding partners in Western blots after a Co-Immunoprecipitation (Co-

IP) (Wodarz, 2008). 

For an IP it is important in which species the antibody was raised. The reason for this is that the 

immunoglobulin domains of the antibodies show different affinities for the protein A/G 

agarose/sepharose beads (see Table 12 for different affinities). Furthermore it is important that 

the possible protein binding partner is bigger than 60 kDa in size or smaller than 50 kDa, if the 

antibody against this protein is raised in the same animal species. The secondary antibody used 
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for Western blotting is targeted against the immunoglobulin domains of the animal species, which 

does not allow to detect a protein of about 55 kDa, if the antibody used in the IP was from the 

same animal species. In this case a possible interaction would not be detectable, because the 

signal of the immunoglobulin domains would interfere. 

Table 12: Affinities of protein A/G agarose for different immunoglobulins 

species protein A protein B 

rat + / - ++ 

mouse ++ ++ 

rabbit ++++ +++ 

guinea pig ++++ ++ 

 

For a Co-IP 1000 – 2000 µg of total protein were used in a volume of 500 – 1000 µl. An input 

sample of 25 µg was taken for control. The lysate was preincubated with 20 µl of the respective 

protein A or G agarose beads to get rid of unspecific binding proteins within the lysate. After 

incubation at 4°C for 2 hours beads were centrifuged down for 1 min at 14.000 rpm at 4°C. The 

supernatant was transferred into a new microtube and the respective antibody was added. As a 

general rule 2 µl of serum antibodies were added or 1 µl of commercial ones (in the case of using 

hybridoma supernatant antibodies, 15 µl of beads were preincubated in 300 µl of the respective 

lysis buffer and 200 µl of the hybridoma antibody at 4°C for 2 hours; after centrifugation the 

preincubated beads with the bound antibody were given to the lysate) and incubated over night 

at 4°C. 

15 µl of protein agarose beads were added and incubation at 4°C for 2 hours was carried out. 

Beads were subsequently centrifuged down at 6.000 rpm for 30 sec at 4°C and washed three 

times with the respective lysis buffer. The immunoprecipitated protein is coupled to the beads via 

its bound antibody and interaction partners are also remaining bound to the precipitated protein, 

if the physiological conditions were good. After denaturation of the protein agarose beads with 15 

µl of 2x SDS loading buffer and concomitant separation via SDS-PAGE interaction partners can be 

detected in Western Blot. 
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2.4 Cellculture 

 

2.4.1 Transfection of S2 Schneider cells with FuGENE HD transfection reagent 

 

Transfection for Co-IP experiments were done always with 2 wells for each (co-) transfection. Two 

million cells were given into one well of a six well plate in 2 ml of S2 medium. Transfection mix for 

one well was prepared as followed: 96 µl of dH2O containing 2 µg of the respective DNA 

construct(s) were mixed with 4 µl of FuGENE HD transfection reagent. The mixture was vortexed 

shortly and incubated for 15 min at room temperature. Transfection mix was given to the cells, 

the six well plate carefully swung to achieve equal distribution of the solution within the well. S2 

cells were incubated at 25°C for 48 hours and transferred to a cell culture flask, containing 5 ml of 

fresh S2 medium. Cells were grown another 48 – 72 hours at 25°C before S2 cells were harvested. 

 

2.5 Histology 

 

2.5.1 Formaldehyde fixation of embryos 

 

An overnight egg collection was transferred into a 15 mm Netwell (Corning Life Sciences, USA; 74 

µm mesh size) and washed with dH2O. Netwell was placed into a supplied 12 well plate and 

embryos were dechorionated in sodium hypochlorite for 1 – 2 min. After washing the embryos 

with dH2O Netwell was held on top of a glass vial containing 4 ml heptane and was vigorously 

inverted. After embryos were transferred into the glass vials, 3 ml of fixing solution (4% 

formaldehyde in PBS) were added and fixation was performed for 18 min at room temperature 

while rotating. The fixing solution (lower phase) was removed, 3 ml of methanol added and 

embryos vortexed for 30 sec to remove the vitellin membrane. Embryos were transferred into a 

microtube and washed with methanol twice. Storage could be done at -20°C or staining was 

performed directly. 
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2.5.2 Formaldehyde fixation of larval tissue 

 

L3 wandering stage larvae were selected and anaesthetized in PBS on ice. The posterior end was 

cut off by using a micro scissor and the larva subsequently inverted on a needle. Larvae were 

transferred into a microtube containing 885 µl PBS and 5 µl PBT. Fixation was started by adding 

110 µl of 37% formaldehyde solution and was performed for 25 min on a rocking platform. Fixing 

solution was removed and staining was continued (see 2.5.4). 

 

2.5.3 Heat fixation of embryos 

 

An overnight egg collection was washed with dH2O and dechorionized with 50% sodium 

hypochlorite solution for 5 min. Embryos were washed on a mesh with dH2O and transferred with 

a brush into a glass vial containing boiling 1x Triton salt. The vial was subsequently shaken for 5 

times and put into ice and filled up with cold 1x Triton salt solution. Buffer was removed using a 

plastic pipette and 3 ml of heptane and 3 ml of methanol were added. The glass vial was vortexed 

for 30 sec to remove the vitelline membrane. Embryos were transferred into a microtube and 

washed with methanol twice and were stored at -20°C for at least 2 hours before proceeding with 

the staining. 

 

2.5.4 Immunofluorescence staining 

 

Fixed embryos were washed 3 times with PBT for 20 min at room temperature on a rocking 

platform. PBT containing 5% NHS was given to the embryos for 30 min to block unspecific binding 

sites. The primary antibodies were given to the embryos in PBT containing 5% NHS and incubation 

took place at 4°C over night. 

Embryos were washed 3 times with PBT for 20 min on a rocking platform. Secondary antibodies 

coupled with fluorescence markers were given to the embryos in a concentration of 1:200 in PBT 

containing 5% NHS. Incubation took place for 2 hours at room temperature. Afterwards embryos 

were washed another 3 times for 20 min in PBT. During the first washing step DAPI was added in a 
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concentration of 1:1000 for marking the DNA. Embryos were mounted in a drop of Mowiol and 

stored at 4°C. 

 

Immunofluorescence staining of larval tissue was performed according to the protocol of embryo 

staining. F-actin staining was achieved by use of fluorochrome conjugated phalloidin, which was 

given to the secondary antibody solution in a dilution of 1:100. Phalloidin was placed into a fresh 

microtube to evaporate the methanol in which it is dissolved. PBT containing 5% NHS and the 

secondary antibodies were subsequently added. 

 

2.5.5 Cuticle preparation 

 

An overnight egg laying collection was taken and aged for another 24 hours to allow completion 

of embryonic development. Hatched larvae were removed from the apple juice agar plate, as well 

as embryos which did not possessed the respective genotype of interest (e.g. CyO [twist::GFP]/ 

CyO [twist::GFP]). Embryos were dechorionated in sodium hypochlorite, washed with dH2O on a 

mesh and mounted with a drop of hoyers mountant. Incubation at 65°C was done overnight and 

the coverslip was fixed afterwards with nail polish on the slide. 

 

2.5.6 Wing preparation 

 

Flies of the respective genotype were put into 100% isopropanol, wings dissected and laid on top 

of a glass slide. After the isopropanol had evaporated, wings were mounted with a drop of Roti®-

Histokitt (Carl Roth) and a coverslip. 

 

2.5.7 Eye preparation 

 

Flies of the respective genotype were collected and placed into 100% ethanol in a glass dish. 

Pictures of the eyes were taken from female flies with a Leica MZ 16 FA microscope and size 
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measurements were performed using the supplied scale bar from anterior to posterior as well as 

from dorsal to ventral. Data were examined using Microsoft Excel. 
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3 Results 

 

3.1 Baz binds to Smash in vivo 

 

A yeast two-hybrid screen conducted by Ramrath, 2002 revealed that Baz might be a potential 

interactor of the gene product of smash. To follow up on this finding, baits were used encoding 

for either the region containing all three PDZ domains or for the regions containing PDZ 1 and 2 

or PDZ 2 and 3 of Baz, respectively. The C-terminal part of Smash, exhibiting a LIM domain and a 

class I PDZ binding motif (S/T X‡Φ§ -COOH) (Harris and Lim, 2001) was identified as prey (Fig.12). 

 

 

Fig.12: Yeast two-hybrid screen with PDZ domains of Baz as bait 

The gene product of smash was identified in a yeast two-hybrid screen as a potential interactor of Baz. 

Bars and dashed bars indicate the region of the proteins, which were used in this screen. The PDZ 

containing bait constructs were generated based upon the predicted PDZ domains at this time. In this 

scheme, a current domain prediction by the smart server (http://smart.embl-heidelberg.de/) was used for 

the PDZ domains. The oligomerization domain and the aPKC binding site are adapted from Benton and 

Johnston, 2003. Furthermore, the short isoform Smash-PI as well as the larger isoform Smash-PM are 

indicated. 

 

http://smart.embl-heidelberg.de/
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The subcellular localization shown in (Fig.13 A) shows colocalization of Smash and Baz in the 

region of the AJs in embryonic ectodermal epithelium. A physical interaction was already shown 

(Beati, 2009) but has been repeated in this work. Embryonic lysate was used for Co-IP 

experiments, which expressed an N-terminally GFP tagged version of Smash-PI under control of 

an UASt promotor with daughterless (da) Gal4. Baz was immunoprecipitated and GFP-Smash-PI 

detected in Western blot (Fig.13 B). These results show that Baz and Smash are showing the 

same subcellular localization in ectodermal epithelia and that they form a complex in vivo. 

 

 

Fig.13: Smash colocalizes with Baz and binds to in vivo 

(A) Staining for endogenous Smash protein (red) shows clear colocalization with Baz (green) in the region 

of the AJs. The lateral membrane domain is marked with staining for Dlg (blue). DNA is stained with DAPI. 

Scalebar = 10 μm. (B) da > GFP-Smash-PI. Co-IP experiments show that GFP-Smash-PI protein is detectable 

by Western blot after IP of Baz from embryonic lysates. Co-IP experiment represents result of three 

independent experiments. 

 

3.2 Expression pattern of smash 

 

To examine the expression of smash, two different antibodies were generated against 

recombinant GST fusion proteins. One antibody was raised against an intramolecular region of 

the short isoform Smash-PI (amino acids 328 – 634 of Smash-PI; 972 – 1278 of Smash-PM 

respectively) in rabbit. This anti-Smash intra antibody showed apical staining of ectodermal 

epithelia (Neugebauer, 2007), as well as expression in the trachea, where it strongly marks the 
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dorsal trunk and the dorsal branches (see Fig.14 B). However, this antibody does not work well 

and harsh fixation methods are necessary (e.g. heat fixation). 

While this work was in progress the gene annotation release 5.40 indicated that the neighboring 

gene CG31531 located upstream of the CG31534 gene locus represents a single gene together 

with CG31534, now annotated as CG43427 (see 1.5 and Fig.17 B). By PCR, using embryonic cDNA 

as template, it was possible to amplify an overlapping fragment of both coding sequences, 

confirming the reannotation of these two invidual genetic loci into a single molecular unit (data 

not shown). 

We therefore raised another antibody in guinea pigs against the first 300 amino acids of the very 

N-terminus of the full length protein (see Fig.14 A).The anti-Smash N-term antibody works with 

standard formaldehyde fixation and shows that Smash protein is detectable after cellularization 

of the embryo present from stage 5 onwards throughout embryogenesis (see Fig.14 B). It is 

localized cortically at the membrane in a honey comb pattern, similar to Baz. Cross section 

images of the epithelium clearly show subcellular colocalization with Baz in the region were the 

AJs are located (see Fig.15). The same subcellular localization was also observed when an N-

terminally HA tagged version of Smash-PI was expressed (Beati, 2009). 

 

It was also apparent that Smash protein is strongly expressed in the amnioserosa in contrast to 

Baz which is barely detectable there. Furthermore, Smash accumulated at the dorsal side of the 

leading edge cells in a planar polarized fashion, where Baz is excluded from the cortex (see Fig.15 

C and E and Laplante and Nilson, 2011). These results may indicate that membrane localization 

of Smash is independent of Baz. Furthermore high levels of Smash were detected in the 

developing hindgut, which was shown previously by RNA in situ hybridization (Ramrath, 2002). 
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Fig.14: Embryonic expression pattern of smash 

(A) Scheme indicates regions of Smash which were used for antibody production. (B) Expression pattern 

analysis using anti-Smash N-term antibody revealed that Smash is detectable throughout embryogenesis 

after cellularization is completed. Note that from stage 14 onwards Smash protein accumulates in a stripe 

like pattern, which reflects the structure of the denticle belts. The staining against Smash is specific, as 

preimmune serum does not show signal (pre). Denticle belt staining is also observed with the anti-Smash 

intra antibody. This antibody shows that Smash is present in the tracheal system, where it strongly marks 

the dorsal trunk (dt) and the dorsal branches (db). Staining with this antibody is lost in the mutant 

smash
4.1

. Scalebar = 100 μm, embryos are positioned from anterior to posterior. 
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Fig.15: Subcellular localization of Smash 

(A) Surface projection of embryonic epithelium showing membrane localization of Smash (red). (B) In a 

cross section through the epithelium it is obvious that Smash is localized at the apical tip of the lateral 

membrane, where the AJs are located and shows colocalization with Baz (green). Dlg was used as a marker 

for the lateral membrane (blue). (C) High levels of Smash protein can be detected at the dorsal side of 

leading edge cells (LE). Baz was barely detectable in the amnioserosa cells (as), whereas Smash shows 

higher expression levels. (D) Smash localization at the AJs shown at a higher magnification. Smash is not 

expressed in embryonic NBs (marked with asterisk). (E) Higher magnification of leading edge cells shows 

that Baz is excluded from the dorsal membrane, whereas Smash accumulates dorsally in these cells. 

Scalebars represent 20 µm in (A - C) and 10 µm in (D and E) respectively. 

 

Using the UAS/Gal4 system, an N-terminal GFP tagged version of isoform Smash-PM, encoding 

two additional coiled coil domains in its N-terminal part compared to the shorter isoform Smash-

PI (see 1.5 and Fig.12), could be shown to localize to the region of the AJs like the shorter 

fragment. This shorter isoform also showed a comparatively stronger cytosolic localization 

compared to the larger isoform (see Fig.16 A). Additionally, using an actin > CD2 > Gal4 flip out 

line, GFP-Smash-PI was found in the nucleus of fat body cells, and the larger isoform GFP-Smash-

PM localized cortically as well as to a region adjacent to the nuclear envelope (see Fig.16 B). 

However, the latter localization could not be shown with the antibodies raised against 

endogenous Smash protein (data not shown). 
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Fig.16: Subcellular localization of Smash transgenes 

Localization of N-terminally GFP tagged versions of Smash-PM and -PI. (A) Transgenes, carrying UASp 

promoters inserted on the 2
nd

 Chromosome at position 22A, expressed with da Gal4. Both proteins had 

been detected at the AJs, although GFP-Smash-PM showed much stronger apical localization compared to 

the short isoform GFP-Smash-PI. Lower panels show higher magnification of subcellular localizations. 

Scalebars represent 20 μm and 10 µm respectively. (B) Expression clones of N-terminally GFP tagged 

versions of Smash-PM and -PI in fat body cells with an actin > CD2 > Gal4, UAS RFP flip out line. GFP-

Smash-PM was found at the cell cortex but showed localization to a region surrounding the nucleus as 

well. However, the short isoform was strongly localized to the nucleus. Scalebar = 50 μm. 

 

3.3 smallish knockout 

 

In order to study the in vivo function of smash, a knockout allele was generated for the former 

annotated gene CG31534 by transdeletion. Two FRT site containing piggyBac elements in trans 

were recombined upon activation of a Flipase (Thibault et al., 2004). This led to deletion of the 

genomic region present between both FRT sites. According to the reannotated genetic model, 

this allele reflects a C-terminal truncation and therefore cannot be considered a classical null 

allele, because it may still expresses the upstream region of the gene (see Fig.17 A). It therefore 

could retain some function or furthermore cause dominant negative effects. 

A full knockout allele was generated by a second transdeletion using two FRT-containing 

piggyBac elements flanking the whole genomic region of smash (see Fig.17 B). Successful 

deletions were confirmed by PCR (see Fig.18 B and C) and loss of antibody staining (see Fig.14 

and Fig.20 A). Both mutations smash4.1 as well as the new allele smash35 are homozygous viable, 

fertile and can be kept as homozygous stocks. 
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Fig.17: Transdeletion of the genomic locus of smallish 

By using two different FRT containing piggyBac lines in trans it was possible to delete genomic DNA, which 

was lying in between these FRT sites. (A) Genomic locus of the gene annotation releases 3.0 (2002) and 3.1 

(2003). CG31531 is located upstream of the gene CG31534 (531,867 - 537,915). Position of piggyBac 

elements is indicated (see Fig.18 for structure of piggyBac elements). Transdeletion led to a precise 

knockout of CG31534. (B) Genomic locus according to the gene annotation release 5.40. smallish 

(CG43427) reflects the genomic locus of the fusion between CG31531 and CG31534. Three new genes 

were annotated, CR44156 and CR44157, as well as CG33927, which were also deleted by the new 

knockout. P{XP} and piggyBac positions are indicated in the upper panel. 
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Fig.18: Verification of smash knockout 

Mutant alleles for smash were verified by PCR on genomic DNA isolated from homozygous flies. (B) 

smash
4.1

 and (C) smash
35

. After transdeletion both alleles were screened for their ability to amplify DNA 

corresponding to overlapping fragments from the piggyBac elements into the respective genomic regions. 

(A) Scheme indicates overlapping PCR fragments with regard to the piggyBac elements (PCR fragments are 

marked in red; size of piggyBac elements and PCR products does not reflect real length). Amplification of 

both fragments corresponding to the overlapping fragments indicated successful transdeletion. This could 

be shown for both mutant alleles. PCRs on genomic DNA of the deleted regions showed a loss of the 

respective fragments (regions are not marked in the scheme). Structure of the piggyBac elements used is 

shown in (A) and was taken from http://flypush.imgen.bcm.tmc.edu/pscreen/transposons.html. Direction 

of insertion is indicated in the scheme with a [+] or [-] respectively. 

http://flypush.imgen.bcm.tmc.edu/pscreen/transposons.html
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Lethality was examined for F1 and F2 generations, as well as after shifting the temperature to 

29°C from 25°C. One observation was that approximately 40% of mutant embryos die during 

embryogenesis, either in the F1 or F2 generation. However, lethality after embryogenesis was 

slightly increased in the F2 generation where about 25% of flies eclosed in contrast to 

approximately 40% in F1. Shifting the temperature to 29°C increased lethality strongly. For the 

individual lethality tests see Fig.19. 
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Fig.19: Lethalities shown for smallish knockout 

Lethality scores obtained for smash
35

. (A) Lethality score for smash
35

 homozygous mutant embryos either 

in the F1 or F2 generation and after temperature shift to 29°C. (B) Lethality score for the P-element lines 

used for the transdeletion. (C) Complementation test of smash
35 

with deficiency line df(3R) ED5066 

showing nearly the same lethality score as smash
35

 
 
in (A). Data were obtained repeating the experiment 

three times, error bars indicate standard error. 
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Due to the fact that both mutant alleles generated for smash are homozygous viable, 

mislocalization of its binding partner Baz was not excpected. Mutations in the baz gene reported 

so far are lethal (see 1.1 and 1.5). Staining for Baz in embryos mutant for either smash35 or 

smash4.1 showed that Baz is localized to the apical membrane. Furthermore, DE-Cad, an integral 

component of the AJs, also showed normal localization (see Fig.20). 
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Fig.20: Epithelial integrity is not lost upon smash knockout 

(A) Staining for Smash (anti-Smash N-term) is lost in the full knockout allele smash
35 

(shown in upper panel 

in red), compare with Fig.13 A and Fig.15 B. Baz localization is not affected (green), lateral membrane is 

marked by staining against Dlg (blue). DE-Cad protein localizes apically to the AJs (shown in lower panel in 

red). (B) Staining for Baz (green) and DE-Cad (red) in the truncated knockout shows correct localization of 

both proteins. Lateral membrane was marked with staining against Dlg (blue). (C) Higher magnification of 

Baz and DE-Cad localization in smash
35

 mutant embryos. Scalebars represent 20 μm in (A and B) and 10 µm 

in (C) respectively. 

 

Examining protein levels of Baz, DE-Cad and Arm by Western Blot using embryonic lysates of 

smash35 mutants could not show any change in their expression (see Fig.21). It was also tested 

whether a change in protein levels could be observed when the N-terminal GFP tagged isoform 

GFP-Smash-PM was overexpressed. No change in the expression levels of the respective protein 

markers was detectable in Western blot. 
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Fig.21: Protein levels of AJ and polarity markers in smash mutants 

To examine expression levels of AJ and polarity markers in smash mutants, protein lysates from smash
35

 

homozygous mutant embryos were Western blotted and Baz, DE-Cad and Arm protein levels examined 

using respective antibodies. (A) Embryo collection staged 2-4h AEL and (B) embryo collection staged 16-

18h AEL. As controls, piggyBac lines used for the transdeletion as well as white
1118

 embryos were taken for 

comparison. Protein lysate from embryos overexpressing an N-terminal GFP tagged version of Smash-PM 

using tub Gal4 was tested as well. No changes in protein levels were detectable. Anti-Smash N-term 

antibody was not used, due to its background. This experiment was repeated three times, Actin is shown 

as a loading control. 

 

3.4 Overexpression of Smash 

 

As shown in the previous chapter, smash gene function is not crucial for embryonic 

development, nor for the survival of the adult fly (see Fig.19). In contrast to this finding, 

overexpression using tub Gal4 (a strong driver line) and transgenic flies carrying transgenes for 

N-terminal GFP tagged versions of Smash-PI or Smash-PM under control of UASt promotors 

respectively, resulted in almost complete lethality. Overexpression of the short isoform GFP-

Smash-PI did not lead to embryonic lethality, but increased larval and pupal lethality (see Fig.22 

A). Rare escaper flies that hatched were strongly reduced in size (see Fig.23 A and B), a result 

also observed using da Gal4, but in a milder form (data not shown). In comparison, 

overexpression of the larger isoform GFP-Smash-PM resulted in high embryonic lethality, where 

almost 50% of embryos died before hatching (see Fig.22 B). Almost 25% of embryonic cuticles 

displayed anterior holes, up to 5% dorsal holes and approximately 5% showed both anterior and 

dorsal holes (see Fig.24). Hatched larvae died before pupation (see Fig.22 B). No adult flies 

expressing GFP-Smash-PM under the control of tub Gal4 could be recovered. It was also tested 

whether adult flies expressing GFP-Smash-PM under the control of tub Gal4 could be recovered 

at 18°C, where the efficiency of the UAS/Gal4 system is reduced compared to 25°C, however no 

escapers could be observed. 
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Fig.22: Lethality after overexpression of GFP-Smash epitopes 

Lethality tests were conducted as mentioned before. tub Gal4 was used as a driver line and GFP positive 

embryos were assayed. (A) Expression of an N-terminal GFP tagged short isoform Smash-PI leads to high 

larval and pupal lethality. Rare escapers are observed that are reduced in size. (B) Expression of the 

respective larger isoform Smash-PM, N-terminally tagged with GFP, leads to high levels of embryonic 

lethality. Hatched larvae died before pupation. (C) CD8-GFP expression was used as control. All 

experiments were repeated three times, error bars indicate the standard error. 
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Fig.23: Size decrease upon GFP-Smash-PI expression 

(A) Rare eclosing escaper flies strongly expressing GFP-Smash-PI under the control of tub Gal4 show a 

strong reduction in their size (upper female fly in comparison with a sibling carrying TM3 balancer 

chromosome instead of tub Gal4). (B) Diagram showing the expression dependent size reduction of tub > 

GFP-Smash-PI flies. The data represents measurements of flies from anterior to posterior which had been 

raised at 18°C to obtain a sample size that was large enough to make a statistically relevant statement. 

Too few escaper flies emerged at 25°C to make a statistically significant conclusion. Size was measured 

with the supplied scale bar from Leica, error bars indicate standard error.  

 

B 

 

0 

500 

1000 

1500 

2000 

2500 

3000 

males females 

µ
m

 

TM3 / UASt GFP-smash-PI tub > GFP-Smash-PI 

p < 0.01 
*** 

p < 0.01 
*** 

25°C           18°C 



RESULTS 

 

77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

normal cuticle (n) anterior open (n) dorsal open (n) anterior + dorsal 
open (n) 

morphology 
defects (n) 



RESULTS 

 

78 

Fig.24: Cuticle phenotypes observed after overexpression of GFP-Smash-PM 

(A) Embryos overexpressing GFP-Smash-PM under the control of tub Gal4 show variable cuticle 

phenotypes. Approximately 50% of cuticles examined displayed no obvious defects. A subset of 

approximately 25% showed an anterior hole phenotype, whereas 5% showed dorsal hole phenotypes. 

Moreover, another 5% showed both anterior and dorsal hole phenotypes. In total, approximately 35% of 

examined cultices showed combinations of these holes within the cuticle. Cuticles with other defects were 

also observed which could not be classified and were summarized as morphology defects. (B) Diagram 

showing statistical significance of phenotypes, which had been observed. Data were generated by 

repeating the cuticle preparation three times, error bars indicate standard error. 

 

Overexpression of the large isoform Smash-PM in a striped pattern using en Gal4 (see 2.2.13) 

showed that these cells remained smaller in their size. The total length of AJs and the apical 

surface area was significantly reduced (see Fig.26 B). Neighboring cells of GFP-Smash-PM 

expression stripes were reduced in size compared to non-expressing cells of control embryos. 

Smash might functions non cell autonomously and thereby shows an effect on neighboring cells 

as well. Furthermore staining for DE-Cad showed that there is a slight accumulation of the 

protein compared to non expressing cells (see Fig.25 A). This result indicates that Smash is 

probably involved in pathways controlling apical constriction, which is a common feature of 

epithelia undergoing morphogenesis (see 1.2). However, embryonic lysates from embryos 

expressing GFP-Smash-PM under the control of tub Gal4 did not show any changes in total DE-

Cad levels (see Fig.21 B). 

Expressing the same transgene in imaginal wing discs did not lead to malformed wings. Here, en 

Gal4 was used to drive expression in the posterior half of the wing, or patched (ptc) Gal4, which 

drives expression in an proximal/distal stripe (see Fig.27). dpp Gal4 was also tested, which 

exhibits basically the same expression pattern as ptc Gal4 which also did not show any effect on 

the wing shape (data not shown). Only wings from tub Gal4 driven overexpression showed an 

overall size reduction which was expected given that the whole flies were reduced in size (see 

Fig.23 A). 
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Fig.25: Overexpression of GFP-Smash-PM leads to cells smaller in size 

Segmental expression of a UASt GFP-smash-PM transgene with en Gal4 leads to a decrease in cell size. 

Expression of CD8-GFP in a striped pattern did not show any effect on cell size nor changes in protein 

levels of DE-Cad or Baz in stage 11 embryos (B). However, expression of an N-terminally GFP tagged 

version of Smash-PM caused those cells to remain smaller in size as compared to neighboring cells which 

did not express the transgene. Interestingly DE-Cad levels at the membrane appeared to be slightly 

increased (A). Scalebars =100 μm in the overviews and 10 µm in the respective magnification. 
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Fig.26: AJ length and apical surface area is reduced upon GFP-Smash-PM expression 

Total length of AJs and apical membrane area was analyzed in en Gal4 expression stripes. Area close to the 

end of the elongated germband of stage 11 embryos was chosen for analysis. (A) Example of how the 

length of AJs and the apical membrane area was determined. DE-Cad staining (blue and white in merge) 

was used to mark the AJs (red marked cell). LSM software provided respective AJs length in µm and apical 

surface area in µm
2
. Scalebar = 10 µm. (B) AJs length and apical surface area is comparable in non 

expressing cells and en Gal4 expressing CD8-GFP stripes. A significant reduction in AJs length was observed 

upon expression of GFP-Smash-PM. Apical surface area was strongly reduced compared to non expressing 

neighboring cells. However, non expressing cells of control embryos showed that AJs were longer as 

compared to non expressing cells of GFP-Smash-PM expressing embryos. Comparable observation was 

also made with regards to the apical surface area. This might indicate that Smash is functioning non cell 

autonomously. Error bars indicate standard error. 
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Fig.27: Expression of GFP-Smash-PM does not show an effect on wing shape 

Using en Gal4 as a driver allows specific expression of transgenes in the posterior compartment of the 

developing wing. (A) Expression of the N-terminal GFP tagged short isoform Smash-PI or the larger protein 

Smash-PM do not show effects on the wing shape. As control UAS CD8-GFP (Bl 32184) was used. (B) ptc 

Gal4 used as a driver line, which expresses in a stripe from proximal to distal in the developing wing. No 

wing malformation had been observed. Scalebars = 500 μm. 

 

Overexpression of these transgenes in the eye using pGMR Gal4 as a driver resulted in a rough 

eye phenotype (see Fig.28 A). Eyes were furthermore reduced in their size in comparison to the 

transgenic lines without expression (see Fig.28 B). The rough eye phenotype was slightly 

enhanced by expressing two copies of the large isoform GFP-Smash-PM. The rough eye 

phenotype observed for Smash overexpression was also slightly apparent in the rare escapers 

using tub Gal4 (data not shown). 
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Fig.28: Eye restricted expression of Smash leads to rough eyes and size reduction 

pGMR Gal4 driven expression of N-terminal GFP tagged versions of Smash. (A) Figures show results of 

expression of GFP-Smash-PI as well as GFP-Smash-PM in the eye. Upper panel shows respective transgenic 

lines and pGMR Gal4. UASt GFP-smash-PM line was recombined with pGMR Gal4 and crossed against the 

UASt GFP-smash-PM line for expression of two copies of the transgene, which led to a slightly enhanced 

phenotype. (B) Diagram summarizes results of eye sizes. Measurements were performed for the 

anterior/posterior axis (a/p) as well as for the dorso/ventral axis (d/v) by using the supplied scalebar from 

Leica. Expression of either GFP-Smash-PI or GFP-Smash-PM led to a size reduction in the a/p axis, 

compared to pGMR Gal4 and the transgenic lines. Error bars indicate standard error. 
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3.5 Smash binds Src42A and Src64B in vivo 

 

In order to get more insight into the gene function of smash, other potential binding partners of 

Smash were examined. A yeast two-hybrid screen which was designed for an interaction map of 

Drosophila proteins (Giot et al., 2003), indicated that the non-receptor tyrosine kinase Src42A is 

a potential binding partner of Smash-PI and Smash-PJ, the latter representing a slightly shorter 

isoform lacking the LIM domain by an alternatively spliced exon containing a stop signal (see 1.5 

and Fig.32, prior annotation CG31534-PB). It was previously shown that Src42A and Src64B have 

the abilities to bind Smash-PI (Beati, 2009), but additional effort was investigated in this work. 

Antibody staining against endogenous Src42A protein showed that it is localizing along the 

basolateral membrane of epithelial cells but showing slightly higher accumulation in the region 

of the AJs (see Fig.29 A and 1.3). Furthermore a phosphospecific antibody directed against 

tyrosine phosphorylated Src42A, which represents an activated form, is localizing specifically at 

the AJs (see Fig.29 B and 1.3) and at places where morphogenetic processes like the invagination 

of the cephalic furrow happen (Shindo et al., 2008). As it has been proposed and supported by 

antibody stainings that the region of AJs are rich in phosphotyrosines (see Fig.29 C and 1.3) 

Src42A was a good candidate for further studies. 
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Fig.29: Subcellular localization of Src42A and the activated form pSrc 

Stainings show subcellular localization of Src42A and pSrc in white
1118

 embryos, as well as in mutants for 

smash
4.1

. (A) Src42A was detected along the basolateral membrane with slightly higher accumulation at 

the apical membrane. Arm is shown as an AJs marker. Merged image shows Src42A in red and Arm in blue. 

Lower panel shows subcellular localization of Src42A and Arm in smash
4.1

 mutant embryos. (B) Staining for 

the activated form of Src42A, labeled as pSrc (Shindo et al., 2008), showed strong localization in the region 

of the AJs. Lower panel shows no apparent mislocalization of pSrc in smash
4.1

 mutants. (C) Staining for 

phosphotyrosine (YP) shows that AJs are rich in proteins with phosphorylated tyrosines. Baz was stained as 

an AJs marker. Phosphotyrosine levels were not affected in smash
4.1

 mutant embryos. Scalebars = 10 μm. 

 

To test whether both proteins interact physically, N-terminally GFP tagged Smash-PI was co-

expressed in S2 cells either with C-terminally HA tagged Src42A or Src64B, respectively. After 

immunoprecipitation of GFP, HA was detected by Western blot, indicating that GFP-Smash-PI 

binds to both Src kinases in vitro in this cell culture system. Furthermore, using an antibody 

against phosphotyrosine, a strong phosphorylation signal was detected at the respective 

molecular weight of GFP-Smash-PI, which was not observed after expression of GFP-Smash-PI 

without Src42A (see Fig.30 A). This finding strongly indicates that Smash-PI is phosphorylated by 

Src42A in vitro. 

Smash was also shown to be tyrosine phosphorylated in vivo. Embryonic lysates were prepared 

from white1118 and smash4.1 mutants using phosphatase inhibitors in the lysis buffers. Smash was 

immunoprecipitated using the anti-Smash intra antibody and phosphotyrosine antibody was 

used for Western blot. A phosphorylation signal could be observed for white1118 but not for 

smash4.1 mutants (see Fig.30 B). This gives additional evidence to the identified interaction. 
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Fig.30: GFP-Smash binds to Srcs and is tyrosine phosphorylated in vivo 

(A) Expressing an N-terminal GFP tagged version of Smash-PI together with C-terminal HA tagged versions 

of Src42A or Src64B respectively, showed that both non-receptor tyrosine kinases were detectable in 

Western Blot after immunoprecipitation of GFP-Smash-PI. Furthermore, using an antibody directed against 

phosphotyrosine, a corresponding signal was observed at a molecular size of GFP-Smash-PI upon co-

expression with Src42A-HA. This phosphorylation event appeared to specifically require Src42A-HA as co-

expression with Src64B-HA resulted in very little phosphorylation. (B) The tyrosine phosphorylation of 

Smash was also shown in vivo. white
1118

 embryonic protein lysates were compared with lysates from 

homozygous smash
4.1

 mutants for phosphotyrosine levels. Smash was immunoprecipitated with anti-

Smash intra antibody and concomitant Western blotting for phosphotyrosine showed a phosphorylation 

signal, which was lost in the mutant. (C) Phosphotyrosine levels of Arm were unaffected in mutants for 

smash
4.1

 in comparison to white
1118

 embryos. 

 

It has been suggested that LIM domain containing scaffolding proteins could act as adapters 

between kinases and their respective targets (Khurana et al., 2002). Due to the fact that Arm is a 

phosphorylation target of Src42A and Src64B (Takahashi et al., 2005), its tyrosine 

phosphorylation state was analyzed in mutants for smash4.1. Embryonic lysates of the C-terminal 

truncated allele smash4.1 were used, Arm was immunoprecipitated and phosphotyrosine signal 

was analyzed in Western blot. A change in phosphorylation was not observed in mutants for 

smash4.1 (see Fig.30 C). 

 

In an attempt to uncover protein domains required for the interaction between Smash-PI and 

Src42A a set of domain deletions were generated. Either the N-terminal SH3 domain, the SH2 

domain or the C-terminal tyrosine kinase domain were deleted (see Fig.31 A). However, none of 

these deletions showed complete abolishment of the interaction with GFP-Smash-PI (see Fig.31 

B). Furthermore, deletion mutants lacking the SH3 or SH2 domain were still able to 

phosphorylate GFP-Smash-PI. Only deletion of the tyrosine kinase domain showed loss of 

phosphorylation, as expected. However, Src42A ΔSH2-HA showed a reduced ability to 

immunoprecipiate with GFP-Smash-PI, possibly indicating a special role for this domain in the 

context of this interaction. 
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Fig.31: Src deletion Co-IPs 

(A) Different Src42A domain deletions generated with the C-terminal HA tag shown in turquoise. Upper 

panel shows the N-terminal GFP tagged version of the short isoform Smash-PI. Both proline rich regions 

(prr) are indicated. (B) Co-IP experiments showed that all Src42A deletions generated can still bind to GFP-

Smash-PI. Phosphorylation of GFP-Smash-PI was still detected after SH3 or SH2 deletion. A slight decrease 

in binding was observed upon SH2 deletion. Vice versa mutations in both proline rich regions of Smash-PI 

did not show any decrease in the binding ability between both proteins. Mutations in the proline rich 

regions of Smash-PI showed no effect on Src42A binding. 
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The tyrosine phosphorylation shown in cell culture experiments (see Fig.30 A and Fig.31 B) as 

well as in vivo in embryos (see Fig.30 B) raised interest in the phosphorylation target sites. 

Phosphorylation of the protein by Src42A may have functions such as activation or inactivation 

and overexpression of respective point mutated forms of the protein could have shed light on its 

biological function. 

 

The NetphosK software from the technical university of Denmark 

(http://www.cbs.dtu.dk/services/NetPhosK/) was used to identify Src specific phosphorylation 

motifs within the amino acid sequence of Smash-PI. Five tyrosine residues were detected as Src 

phosphorylation target sites (Y64/708, Y152/796, Y162/806, Y244/888 and Y601/1245, red 

numbers indicate respective sites in Smash-PM). An additional residue (Y685/1329) was 

identified by PhosphoPep, a phosphoproteome resource of Drosophila proteins based on mass 

spectrometry (Bodenmiller et al., 2007). Due to the change in the gene annotation release a 

further tyrosine residue was detected in the N-terminal region of Smash-PM by the NetphosK 

software as a Src motif, which is Y295. This residue has not been investigated yet. 

The identified tyrosine residues were mutated to phenylalanine and co-expressed with Src42A-

HA in S2 cells to monitor the phosphorylation state of each respective point mutated protein. 

Y64/708 as well as Y162/806 showed decreased phoyphorylation signal, which was supported by 

loss of one band (a double band was usually detectable after separation with lower percentage 

SDS-gels) detected by Western blotting and probing against phosphotyrosine (see Fig.32). 

Furthermore a mutant form carrying mutations in all of the identified tyrosine residues showed 

strongly reduced phosphorylation but not a complete abolishment. These results indicate that 

the tyrosine residues, Y64/708 and Y162/806, most likely represent two phosphorylation sites 

for Src42A. However, there must be at least one more target site, which was not detected by the 

NetphosK prediction software. 

 

http://www.cbs.dtu.dk/services/NetPhosK/
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Fig.32: Analysis of Smash-PI phosphomutants 

In order to unravel the Src phosphorylation target sites, a set of point mutations were generated for 

Smash-PI. (A) Scheme indicates the Src phosphorylation motifs by the NetphosK prediction server of the 

Technical University of Denmark and the single tyrosine residue 685 predicted by the PhosphoPep analysis 

(Bodenmiller et al., 2007). Upper panel shows the respective sites in the short isoform Smash-PI and 

Smash-PJ, which lacks the LIM domain due to alternative splicing. The corresponding sites are indicated for 

the larger isoform Smash-PM. An additional tyrosine was predicted by NetphosK in the N-terminal region. 

(B) Co-IP experiments between Src42A-HA and different point mutated forms of N-terminal GFP tagged 

Smash-PI. Predicted tyrosines were exchanged to phenylalanine. Western blot and probing for 
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phosphotyrosine implicated Y64 and Y162 as phosphorylation targets because the phosphorylation signal 

is strongly decreased. Moreover a respective mutant form, carrying mutations to phenylalanine in all 

predicted sites, showed almost complete abolition of the phosphorylation signal. 

 

3.6 Overexpression of Src42A in the eye 

 

It was previously reported that overexpression of SFK transgenes in the Drosophila eye, as well 

as their constitutively active forms, causes interruption of normal development (Pedraza et al., 

2004). Based on this assay different transgenic fly lines were generated with constructs encoding 

C-terminally HA tagged forms of Src42A, Src64B and two different alleles for constitutively active 

forms of Src42A (Y511 to F mutation). These cannot be phosphorylated by Csk anymore (see 

1.3). Expression of these transgenes with pGMR Gal4 reproduced the reported phenotypes, 

although they were milder here (see Fig.33 A). Since SFKs are involved in cell proliferation 

control another observation was a change in eye size. As expected, the expression of the 

constitutively active forms showed slightly stronger phenotypes. 

It has been published that the vertebrate homolog of smash, LMO7 (see 1.4) has tumor 

suppressor functions in mice (Tanaka-Okamoto et al., 2009). To check whether smash could also 

have tumor suppressor functions especially with regard to its interaction with Src42A, expression 

of the above mentioned Src transgenes were performed together with GFP-Smash-PM. As 

already shown in Fig.28 A, expression of an UASt GFP-smash-PM transgene causes a rough eye 

phenotype as well as size reduction along the a/p axis (see Fig.28 B). However, co-expression 

with Src42A YF-HA led to an enhancement of the rough eye phenotype and a reduction in size. 

Vice versa, expressing these Src transgenes in eyes mutant for smash would be of great interest. 
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Fig.33: Expression of Src in the eye 

pGMR Gal4 driven expression of different Src transgenes. (A) Rough eye phenotypes caused by expression 

of Srcs. Slight rough eye phenotypes have been observed upon expression of either Src42A-HA or Src64B-

HA. Size measurements revealed a slight increase along the a/p as well as the d/v axis (C). Phenotypes 

were enhanced by expressing constitutively active forms of Src42A (carrying Y511F mutation). The eye size 

was increased as well compared to the non mutated form of Src42A (D). (B) The rough eye phenotype was 

slightly enhanced by co-expressing the constitutively active forms of Src42A together with GFP-Smash-PM. 

Furthermore, the enlarged eye phenotype was suppressed slightly in the a/p axis but not in the d/v axis 

(E). Error bars indicate standard error. 

 

3.7 smallish genetically interacts with Src64B 

 

Single mutants for Src42A as well as Src64B do not show strong defects with regards to 

morphogenetic processes like dorsal closure. However double mutants for both kinases exhibit 

severe defects in dorsal closure and head involution (see 1.3). To examine whether smash has 

redundant functionality in these pathways, double mutants for both kinases were generated. 

Src42A single mutants are homozygous lethal but Src64B mutants are homozygous viable. The 

Src42A26-1 mutation, the strongest reported mutant allele for Src42A (Takahashi et al., 2005), can 

still be kept in the homozygous mutant background of smash4.1. This observation indicates that 

both proteins act in the same pathway, as one copy of Src42A is still enough for survival in the 

smash mutant background. 
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Interestingly a double mutant for smash4.1 and Src64BKO shows high embryonic lethality (see 

Fig.34 A and B and Fig.19 A for smash35 lethality scores). Approximately 70% die during 

embryogenesis and larvae furthermore die immediately after hatching. However, some eclosing 

escapers were observed. Embryonic cuticles do not exhibit dorsal closure defects (see Fig.35 A), 

which were reported for Src42A and Src64B double mutants (see 1.3). Stainings for Baz and DE-

Cad did not show mislocalization, indicating that cell polarity and the formation of AJs remains 

intact, which supports the finding that some escapers were observed. However, a da Gal4 driven 

transgene of GFP-Smash-PM could not significantly rescue the lethality of this double mutation, 

although a few homozygous flies were recovered. smash may exhibit more isoform specific 

functions (10 isoforms are annotated on flybase), which may explain this finding. Unfortunately a 

resuce using transgenic flies carrying the genomic locus of smash could not be performed 

because the injected genomic clone did not give rise to any transformant flies. A rescue 

experiment using a transgene for Src64B has not been tested so far. These results may indicate a 

new redundant pathway for smash in regard to Src64B which is not important for dorsal closure. 

 

 

 

 

 

 

 

 

 

Fig.34: Lethality of smash and Src64B double knockout 

Double-knockout of Src64B and smash showed significantly increased lethality. (A) The null allele Src64B
KO

 

is homozygous viable and can be kept as a homozygous stock. The same observation was made for both 

smash alleles (see Fig.19 A for lethality scores of smash
35

). (B) A double-knockout of smash
4.1

 and Src64B
KO

 

showed high embryonic lethality. Almost 70% died during embryogenesis, hatched larvae usually died 

immediately. Very few eclosing escapers were observed. Lethality scores represent data from three 

experiments, error bars indicate standard error. 
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Fig.35: Double-knockout of smash and Src64B shows no dorsal closure defects and normal epithelial 

integrity 

(A) A double-knockout for smash and Src64B does not show cuticular defects. (B) Heterozygous embryo 

compared to a homozygous double mutant for smash and Src64B, marked by GFP expression of the TM3 

balancer chromosome. Difference in Baz and DE-Cad levels were not detectable. Dorsal closure was 

completed in the homozygous mutant. Scalebar = 100 µm. (C) Epithelia showed normal organization. 

Staining for Baz showed correct apical localization, DE-Cad was found to be localized at the AJs. These 

findings indicate that lethality of the double mutant is probably not caused by defects in epithelial cell 

polarity. Scalebars represent 20 μm in the surface projections and 10 µm in the cross sections respectively. 
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4 Discussion 

 

In this study we investigated the function of the so far undescribed gene CG43427, which we 

named smallish (smash) due to its reduced size phenotype caused by overexpression. The gene 

product of smash was identified in a yeast two-hybrid screen as a potential interactor of Baz 

(Ramrath, 2002), a keyplayer in regard to cell polarity and AJs formation (Johnson and Wodarz, 

2003; McGill et al., 2009). In this screen the three PDZ domains of Baz were selected as bait. 

These domains are known to be protein-protein-interacting modules (Sheng and Sala, 2001; Te 

Velthuis and Bagowski, 2007). The C-terminus of Smash possesses a PDZ binding motif of class I 

(S/T X‡Φ§ -COOH) (Harris and Lim, 2001), a motif binding to PDZ domains. Furthermore, a 

vertebrate homolog of smash, LMO7, had already been shown to function at AJs (Ooshio et al., 

2004). We confirmed the in vivo binding of Baz and Smash and continued studying the 

developmental relevance of this interaction. Furthermore we showed that the non-receptor 

tyrosine kinase Src42A is a binding partner of Smash in vitro (Beati, 2009). We further investigated 

this interaction and found that Src42A phosphorylates Smash and that smash genetically interacts 

with the second Src kinase encoded by the Drosophila genome, Src64B. 

 

4.1 Baz binds to Smash in vivo 

 

As we have shown previously (Beati, 2009), Baz forms a complex with Smash in vivo in embryos. 

At this time we did not have access to antibodies against Smash that worked well in Western 

blots. The anti-Smash intra antibody showed many unspecific bands. In this work we used 

embryonic lysates expressing an N-terminally GFP tagged version of Smash-PI, which showed an 

ability to co-immunoprecipitate with Baz. However, it would be interesting to test whether 

endogenous Smash can be detected as well, when Baz is precipitated from embryonic lysates, as 

we do not know anything about the stoichiometry of this binding. Furthermore it was only tested 

whether Baz forms a complex with Smash during embryogenesis. It would be interesting to test 

whether Baz and Smash can be still detected in a complex in vivo in larval as well as in adult 

tissues. Since Smash was identified as a potential binding partner of Baz by a yeast two-hybrid 

screen, the likelihood is high that both proteins can bind directly to each other, which we have 

not tested so far. Further evidence for direct binding of Baz to Smash is given by additional yeast 
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two-hybrid analyses, where only PDZ 1 and PDZ 2, or PDZ 2 and PDZ 3 were used as baits 

respectively (Ramrath, 2002; see Fig.12). In both cases, the C-terminus of Smash still bound to the 

bait proteins. GST pulldown assays could show whether both proteins can interact directly, and if 

so, which of those three PDZ domains is of importance by using PDZ deletion versions of Baz. 

As we found that Baz is colocalizing with Smash in the region of AJs, it would be important to 

analyze whether Smash mislocalizes in mutants for baz. So far we have not investigated whether 

Smash is expressed in the follicular epithelium, which is derived from the mesoderm. An easy test 

would be to induce baz mutant clones in this tissue and co-stain for Smash. However, a baz 

deletion allele is not available and respective mutants may still express defective fragments of Baz 

(Shahab, unpublished data). However, some alleles are supposed to lack the region carrying the 

PDZ domains and thus could be used for the respective experiment (Krahn et al., 2010b). It was 

reported that Baz is excluded dorsally in leading edge cells in a planar polarized fashion (Laplante 

and Nilson, 2011). As we detected that Smash shows strong accumulation dorsally in leading edge 

cells (see Fig.15) it may indicate that Smash can localize to the plasma membrane in a Baz 

independent way. Furthermore staining for Baz showed low protein levels in the amnioserosa, 

whereas Smash was clearly detectable in this tissue. Furthermore, Smash transgenes lacking C-

terminal parts still localized to the membrane (Beati, 2009). Currently, all generated transgenic fly 

lines were created with the old injection system. It would be important to test the localization of 

respective deletion mutants with site directed insertion of the respective transgenes. This would 

guarantee comparable expression levels via the UAS/Gal4 system. Another mechanism for Smash 

localization could be via Src42A. However, Smash localizes to regions containing AJs, whereas 

Src42A localizes along the whole plasma membrane (see Fig.29). It would therefore be interesting 

to analyze this interaction with regards to pSrc, which was shown to exclusively localize at AJs 

(Shindo et al., 2008). It is possible that Smash may only bind to pSrc, however, we could not 

discuss this specific interaction using our experimental setup. 
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4.2 Expression of smallish 

As the anti-Smash intra antibody did not work well with standard fixation methods (e.g. 

formaldehyde fixation) and staining required harsh fixation methods (e.g. heat fixation), co-

stainings with other proteins were not easy. Due to the change in the current gene annotation 

release 5.40 and the fact that smash consists of both transcription units of CG31534 and CG31531 

we decided to generate a second antibody. As shown in Fig.14 we could show ubiquitous 

expression of Smash in ectodermal epithelia throughout embryogenesis. Staining is apparent after 

cellularization of the embryo, when the first epithelium is established (Knust and Bossinger, 

2002). Currently it is not clear if Smash is maternally deposited into the egg in the form of 

proteins or mRNAs. To determine when zygotic expression begins, female mutants for smash 

could be crossed to wildtype males. Staining for Smash would indicate the start of zygotic 

expression, since any maternal supply would be depleted in those eggs. 

We found that Smash protein shows similar subcellular localization as Baz. It localizes at the 

membrane in a honey comb fashion and was found to localize at AJs (see Fig.15). Immuno 

electron microscopy could reveal the subcellular localization in greater detail. The vertebrate 

homolog LMO7 was shown to localize specifically at AJs (see 1.4) and at the free apical membrane 

(Ooshio et al., 2004). 

We further detected Smash in the tracheal tubes using the anti-Smash intra antibody. This 

staining was shown after heat fixation and was lost in the smash4.1 mutant allele, supporting the 

specifity of the staining. However, the anti-Smash N-term antibody only showed non specific 

tracheal staining, which did not disappear in mutant embryos (data not shown). Both antibodies 

showed high accumulation of Smash in the embryonic hindgut, which was also confirmed by RNA 

in situ hybridization (Ramrath, 2002), and the denticle belts. However, expressing N-terminally 

GFP tagged versions of Smash-PI and Smash-PM in clones in fat body cells, showed clear 

localization of GFP-Smash-PI in the nucleus (see Fig.16 B), whereas the large isoform GFP-Smash-

PM showed strong cortical localization and accumulation in a region adjacent to the nuclear 

envelope. These localizations could not be shown for endogenous Smash (data not shown). If 

there is an in vivo function of Smash in the nucleus, the amount of protein entering the nucleus is 

probably below the detection limit. Use of drugs inhibiting nuclear export may lead to 

accumulation of endogenous Smash in the nucleus, which would probably be detectable using 

anti-Smash antibody. Nuclear localization of Smash would show homology to LMO7 nuclear 

function. LMO7 enters the nucleus and regulates expression of muscle-relevant genes, among 
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them the LEM domain protein Emerin. Emerin in turn binds to LMO7 inhibiting emerin expression, 

indicating a negative feedback mechanism. Mutations in emerin cause Emery-Dreifuss muscular 

dystrophy (Nagano et al., 1996; Emery, 2000; Bengtsson and Wilson, 2004). emerin has homologs 

in Drosophila as well, the closest one being otefin. Otefin has been shown to be essential for 

germline stem cell maintenance (Jiang et al., 2008). Co-IP experiments between Smash and Otefin 

could show whether a function in this pathway may be conserved. 

 

4.3 Knockout of smallish 

 

We found that smash gene function is not essential. Homozygous flies are viable and fertile, 

although they seem weaker than heterozygous siblings. However, temperature shift to 29°C 

increased the lethality score, indicating that stress may influences death rate. So far we have not 

tested whether nutritional stress can also change their viability. Differences in the lethality scores 

of the two generated alleles smash4.1 and smash35 have not been detected (data not shown). The 

latter allele was generated recently, as the gene annotation release 5.40 in 2011 indicated that 

the gene annotation was not correct (see 1.5). The smash4.1 allele represents a C-terminal 

truncation and therefore cannot be considered a classical null allele. So far we do not know 

whether the N-terminal part is expressed in smash4.1. In this regard, by use of the newly produced 

anti-Smash N-term antibody we can likely answer this question. Here it would be also interesting 

to examine the subcellular localization of the N-terminus. If it is expressed and localized at the 

membrane it would clearly show localization independent of Baz. 

As the knockout of smash did not lead to lethality, mislocalization of polarity markers was not 

expected. Staining for markers such as Baz or DE-Cad showed that cell polarity is intact and AJs 

are formed. Examining protein levels did not reveal any change in accumulation of Baz, DE-Cad 

and Arm (Fig.21). 

The observed lethality scores are comparable with those reported for a knockout of LMO7, where 

homozygous mice show up to 40% lethality between birth and weaning. Surviving mice normally 

give rise to progeny (Tanaka-Okamoto et al., 2009). In this allele the PDZ domain was precisely 

excised, which may disrupt the functionality of the protein. Another LMO7 allele was reported 

carrying an 800 kb deletion. Parts of the neighboring gene Uchl3 were taken out as well. Only 40% 

of mice were born alive carrying this deletion. Homozygous mice showed growth retardation and 
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muscular as well as retinal degeneration. However, latter observation is most likely caused by the 

Uchl3 mutation, as single mutants for this gene showed a comparable phenotype (Semenova et 

al., 2003). Our smash knockouts do not exhibit obvious defects, but respective electron 

microscopy analysis of muscle fibers and the ommatidia has not been performed so far. Subtle 

morphological defects are probably not detectable by conventional light and confocal microscopy. 

 

4.4 Overexpression of Smash 

 

We found that in contrast to the smash knockout, overexpression of N-terminally GFP tagged 

versions of Smash dramatically increased the lethality score (using tub Gal4 as a strong driver 

line). The short isoform, GFP-Smash-PI caused no embryonic lethality but many individuals died 

during larval and pupal development. Expression of the larger isoform GFP-Smash-PM led to 

embryonic lethality for approximately 50% of individuals, and no hatched larvae developed to 

pupation. Since the activity of the UAS/Gal4 system is temperature-dependent, a shift to 18°C 

reduces transgene expression. Even at this temperature not a single fly eclosed, emphasizing the 

high lethality caused by expression of GFP-Smash-PM. We found that eclosing flies expressing 

GFP-Smash-PI were strongly reduced in size (see Fig.23 A). With regards to this, expression of 

GFP-Smash-PM by en Gal4 showed that cells overexpressing GFP-Smash-PM were smaller in 

comparison to their neighboring non expressing cells. The apical surface area of expressing cells 

was significantly decreased. These observations indicate a potential function of smash in apical 

constriction, which is a process important for an epithelium undergoing morphogenetic changes 

(e.g. invagination, see 1.2). Cuticles of embryos which expressed GFP-Smash-PM under the 

control of tub Gal4 showed anterior holes, dorsal holes, or both. It would be interesting to test 

whether Smash transgenes lacking the LIM domain or the PDZ binding motif show the same 

phenotypes upon overexpression. This could clarify the functional relevance of the C-terminal 

part of Smash with regards to the observations. 

It would be of big interest whether smash mutant clones would show the opposing effect, i.e. a 

widening of the apical surface. However genetic methods are restricted. FRT recombination is the 

method of choice for clone induction. Recombination of smash alleles with a FRT is not easy, as 

the relevant FRT chromosome used for this chromosome arm is FRT82B. The genomic locus of 

smash (3R 82D-E) is very close to this FRT and we were not able to obtain a single recombinant so 

far. Another possibility would be the generation of clones with a translocated genomic locus of 
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smash (e.g. on the second chromosome) in the smash mutant background. However, only a single 

genomic clone is available carrying the entire smash gene locus and generation of respective 

transformants did not work so far. 

 

4.5 Smash forms a complex with Src42A in vivo and interacts genetically 

with Src64B 

 

In a Drosophila wide yeast two-hybrid screen it was previously shown that the non-receptor 

tyrosine kinase Src42A is a potential binding partner of Smash-PI and Smash-PJ respectively (Giot 

et al., 2003). Src42A was shown to be expressed in epithelia (Takahashi et al., 2005) and its 

activated form, pSrc is restricted to AJs and sites of morphogenetic rearrangements (Shindo et al., 

2008). Due to this we were interested in investigating the possible binding of Smash and Src42A. 

We previously showed that Src42A as well as Src64B can bind to Smash-PI in vitro in S2 cells 

(Beati, 2009). Furthermore, results presented in this thesis indicate that Src42A phosphorylates 

Smash-PI in vitro in cell culture, which is specific for Src42A, as Src64B mediated phosphorylation 

was barely detectable (see Fig.30). This finding was strongly supported by the fact that 

endogeneous Smash protein showed tyrosine phosphorylation in vivo in embryos as well (see 

Fig.30 B). We have not tested whether Smash is still phosphorylated in Src42A mutants. As 

described in the introduction SFKs have many overlapping functions. Therefore it would be 

interesting to check the tyrosine phosphorylation state of Smash in these respective mutations. 

We found that deletion mutants of Src42A can still bind to Smash. As Smash is likely 

phosphorylated at three residues, the following mechanism is imaginable: Src42A could bind 

Smash via its SH3 domain and thereby phosphorylate Smash on an initial residue. Concomitant 

binding to this phosphorylated tyrosine, likely mediated via the SH2 domain could cause intense 

phosphorylation of Smash. This would suggest a positive feedback loop and would fit into a 

proposed model for phosphotyrosine signaling (Lim and Pawson, 2010). This hypothesis is 

supported by the fact that deletion of the SH2 domain showed reduction in binding and 

phosphorylation of Smash (see Fig.31 B). However, the developmental relevance of this 

interaction is not clear so far. 

It was shown that Abelson, another tyrosine kinase, is able to phosphorylate Arm Y667, which is 

also phosphorylated by Src42A (Takahashi et al., 2005; Tamada et al., 2012). However, Abelson 
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can also induce activation of Src42A, as expression of abelson transgenes with dpp Gal4 in the 

wing discs led to specific activation of Src42A in the expression stripe (Singh et al., 2010). We 

performed comparable experiments using anti-pSrc antibody (Shindo et al., 2008) but could not 

detect changes in pSrc levels upon overexpression of Smash (data not shown). From these results 

we conclude that smash is probably not involved in activation of Src42A. smash could also have 

functions in inhibiting Src42A activity, as LMO7 was implicated in functioning as a tumor 

suppressor. Here 90 week old LMO7 deficient mice showed development of adenocarcinomas in 

the lung (Tanaka-Okamoto et al., 2009). To address this possibility we expressed Src and Smash in 

the eye by pGMR Gal4. We found contradictory phenotypes: Src42A-HA and Src64B-HA 

expression resulted in rough eyes which were slighty enlarged, stronger phenotypes were 

observed upon expression of constitutively active forms of Src42A (carrying Y to F mutation, 

thereby losing the ability to be phosphorylated by Csk, see 1.3). However, expression of GFP-

Smash-PM resulted in rough eyes as well, which were smaller in size. The same observation was 

made upon expression of GFP-Smash-PI. The size decrease was observable most strongly in the 

a/p axis of the eye (see Fig.28). However, co-expression of Src42A-HA and GFP-Smash-PM could 

reduce the enlarged eye phenotype caused by Src42A-HA expression, which is likely caused by 

additive effects. If Smash has the potential to inhibit Src42A function it would be interesting to 

test whether the Src42A-HA mediated overexpression phenotype is enhanced in eyes mutant for 

smash. Unfortunately we have not performed this experiment yet. 

Src42A and Src64B function redundantly in several morphogenetic processes like dorsal closure or 

germband retraction (Tateno et al., 2000; Takahashi et al., 2005). Single mutants do not exhibit 

strong defects, whereas double mutants do. We generated double mutants of smash with Src42A 

and Src64B. Reported mutations in Src42A are lethal (Takahashi et al., 2005) and one copy of 

Src42A gene function is still sufficient for survival in the smash mutant background. If both 

proteins are acting in the same pathway, this would explain this observation. In contrast, a double 

mutant for smash4.1 and Src64BKO resulted in a high lethality score. Only 30% of larvae hatched, 

which usually died immediately. However, some eclosing escaper flies were observed. Epithelial 

polarization and integrity was not affected. We cannot exclude that the observed lethality is 

caused by disruption of cell polarity, as we only analyzed zygotic mutants. Homozygous escaper 

flies could not be kept as a stock and did not give rise to any progeny. Maternal supply of either 

Src64B or smash is probably important and rescues epithelial polarity in embryos of the first 

generation of heterozygous parents. As escaper flies were extremely rare, we could not analyze 

embryos in the second generation, lacking maternal supply. Currently we also do not know 
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whether the C-terminal truncated allele smash4.1 retains part of its function. Another double 

mutant with the full knockout allele smash35 could increase embryonic lethality and possible 

defects. As discussed above, we were unable to generate a recombinant for the FRT82B with 

smash4.1 for clone induction. As the Src64B gene locus is on the left arm of the 3rd chromosome, 

clones mutant for both mutations are not inducible easily. 

We tried to rescue the lethality of Src64B smash double mutants by ubiquitous expression of GFP-

Smash-PM under the control of da Gal4, which could not rescue the observed lethality. As the 

gene annotation release 5.40 lists 10 isoforms, we cannot exclude isoform specific functions of 

smash. Furthermore, overexpression of Smash might have a negative effect on survival, as we 

found that strong overexpression led to 50% lethality during embryogenesis (see Fig.22 B). Flies 

were viable expressing the N-terminally tagged version of GFP-Smash-PM with da Gal4, although 

they were slightly reduced in size (data not shown). However the genomic background could be 

sensitized due to the Src64B mutation. A rescue could be performed with a transgene carrying the 

genomic smash locus on a different chromosome as well, but as mentioned above we currently 

do not have these flies. However, in this way we would circumvent the problem of functions of 

different isoforms, and expression levels of smash would better reflect endogenous levels. A 

rescue with Src64B transgenes has not been tested yet. 
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5 Conclusion and future perspectives 

 

We showed that smash gene function only plays minor roles during Drosophila development and 

is not important for survival of the fly. We generated two different mutant alleles, one 

representing a classical null allele due to deletion of the genomic locus of smash and a second 

allele truncated at the C-terminus by deletion of the 3’ genomic region. Both mutant alleles do 

not result in lethality or obvious epithelial defects. However, it cannot be ruled out that minor 

defects have been overlooked. Since we showed that Src42A phosphorylates Smash in vitro, and 

Smash is tyrosine phosphorylated in vivo as well, it would be helpful to identify the missing 

phosphorylation target sites by mass spectrometry. By our approach we were able to identify Y64 

and Y162 as potential phosphorylation sites of the short isoform Smash-PI. Antibodies raised 

against phosphorylated Smash could shed light on its subcellular site of function, although we do 

not know whether phosphorylation correlates with activation of Smash. In this regard it would be 

very interesting to test whether transgenic flies encoding for the smash gene locus have the 

ability to rescue smash Src64B double mutants. A respective transgene mutated in the 

phosphorylation sites would clearly show the importance of the Smash Src42A interaction and its 

phosphorylation. In the context of the interaction with Src42A it was shown that the vertebrate 

homolog of Baz, Par3, is phosphorylated by c-Src, which is the closest homolog of Src42A. Par3 

tyrosine phosphorylation results in the dissociation of LIM kinase 2, which in turn regulates 

phosphorylation of cofilin and thereby delays TJ assembly (Wang et al., 2006). We could not find a 

link between Smash function and Baz in this regard. Baz co-immunoprecipitates with Src42A as 

well and showed tyrosine phosphorylation in vitro in cell culture, likely independent of Smash 

(data not shown). This observation was made after co-expressing Baz and Src42A in S2 cells and 

analyzed in a similar manner to the Smash and Src42A interaction. Since we did not downregulate 

Smash protein levels in this system we cannot exclude a function for Smash in the complex 

formation of Baz and Src42A. So far we have not tested whether Baz can associate with Src42A in 

the absence of Smash. The easiest way would be to test Baz association with Src42A, as well as 

phosphorylation of Baz in vivo in embryos compared to smash mutants.  

 

Contradictory to loss of smash, overexpression resulted in a dramatic increase in embryonic 

lethality. Overexpression of GFP-Smash-PM using en Gal4 as a driver line resulted in cells that are 

smaller and decreased in their apical surface area, which likely represents an apical constriction 
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phenotype. Apical constriction is a process that depends on the Actin/Myosin network, which lies 

beneath the AJs (see 1.2). This process is of importance for morphogenetic rearrangements, as 

contraction exerts force on AJs and their relocation results in cell shape changes. Apical 

constriction is regulated by Rho-associated kinase (ROCK) activity, which is involved in the 

phosphorylation of Myosin light chain, thereby enhancing the Actin/Myosin contractility (Riento 

and Ridley, 2003; Vicente-Manzanares et al., 2009). For example, expression of Spaghetti-squash 

the Drosophila homolog of Myosin light chain, mutated in its phosphorylation sites results in 

apical expansion if mutated to non phosphorylatable alanine, whereas glutamate exchange 

results in apical constriction (Zimmerman et al., 2010). Recently it was shown that aPKC is 

negatively involved in apical constriction, as it is recruited to the apical membrane not only by 

Par3 but also by Willin. Simultaneous depletion of Willin and Par3 resulted in loss of aPKC at the 

apical membrane and induced apical constriction. aPKC had been shown to phosphorylate ROCK, 

thereby reducing the junctional localization of ROCK explaining these findings (Ishiuchi and 

Takeichi, 2011). If the observed phenotype caused by Smash represents apical constriction it is 

still elusive how Smash might function in this pathway. So far we have not focused on potential 

interacting proteins of the Actin/Myosin network. Candidates would be Canoe, the Drosophila 

homolog of Afadin and α-Actinin. Both proteins were shown to bind LMO7 (Ooshio et al., 2004). 

Furthermore, Canoe supports a link between the Actin cytoskeleton and AJs during apical 

constriction and mutants for canoe show dorsal closure defects (Takahashi et al., 1998; Sawyer et 

al., 2009). Whether Src42A plays a part in this pathway as well could be tested by expressing 

Smash-PM mutated at its phosphorylation sites. Loss of the smaller cell phenotype would clearly 

place Src42A in this context. 

 

The classical model of cell-cell adhesion was thought to be mediated by a stable connection 

between AJs and the cytoskeleton through α-Cat (see 1.2). However, it was shown that a 

quaternary complex of E-Cad-β-Cat-α-Cat-Actin does not exist and that the link between AJs and 

the cytoskeleton is likely mediated by several different interacting modules (e.g. Afadin) resulting 

in a highly dynamic connection (Drees et al., 2005; Yamada et al., 2005). The cortical Actin based 

cytoskeleton was also reported to be more dynamic than the AJs by FRAP (fluorescene recovery 

after photobleaching) (Gates and Peifer, 2005; Yamada et al., 2005). Smash might represent a so 

far undescribed link between AJs and the cytoskeleton. It would be interesting to perform FRAP 

analysis of the cortical Actin cytoskeleton upon overexpression of Smash and record its activity.  
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We provide evidence that smash gene function is not essential but cannot exclude whether smash 

functions redundantly with other genes. The vertebrate homolog LMO7 was duplicated and 

shows a paralog LIMCH1 (Friedberg, 2009, 2010). It is possible that a double knockout of LMO7 

and LIMCH1 results in lethality and severe defects, if both genes function redundantly. However, a 

LIMCH1 mutant is not reported. It would be important to search for similar proteins encoded by 

the Drosophila genome, although smash appears not to be duplicated. Generation of different 

double mutants with smash might exhibit specific defects. However, blast search does not show 

genes similar to smash. In this context proteins with related domain composition would be of 

interest as well. 
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