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“If you try and take a cat apart to see how it works, the first
thing you have on your hands is a nonworking cat. Life is a level

of complexity that almost lies outside our vision; [...]”

Douglas Adams (1952–2001)
The Salmon of Doubt: Hitchhiking the Galaxy One Last Time
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Chapter 1

Introduction

Since the Enlightenment, the natural sciences have been undergoing a process of immense

diversification and progress. The gain of knowledge has led to the formation of more spe-

cialized fields, namely physics, chemistry and biology, which have themselves diversified

into a vast number of subfields in the course of the twentieth century. However, the con-

tinuing improvement of theoretical and experimental techniques has, at the same time,

fostered interactions between subjects which had been regarded before as very distant rela-

tives in this genealogy of fields. Examples are the emergence of “(bio)physical chemistry”,

“biophysics” or “biomedical engineering”. The name of the group within which the work

for this thesis was carried out is “Biomedical Physics”, indicating its focus of research at

the interface of physics, biology and medicine.

During the last decades, the focus of interest of many physicists has started to include

phenomena observed in living matter – from molecules to cells, organisms and populations.

The reason for this development is at least twofold: on the one hand, biological investi-

gations have revealed more and more microscopic detail of biological processes. Since all

these processes ultimately obey the laws of physics (which might not be obvious on a

macroscopic scale), there is a natural demand for physicists to determine the underlying

physical basis. Prominent examples of active research interests in this area are protein fold-

ing dynamics [1], physics of the cell membrane and membrane proteins [2], ligand-receptor

interactions [3] and other protein-protein interactions such as kinesin-microtubule binding

[4] or actin-myosin cross-bridging [5]. On the other hand, the continuously improving

methodology and the abstract concepts of physics and even mathematics have been found

to be applicable to biological systems on higher levels, especially for the description of

emergent properties of so-called complex systems. The term refers to a self-organizing,

composite system displaying a collective behavior which is not obviously visible in any

of its many constituent parts. Non-linearity plays an important role for such emergent

behavior, in that it invalidates the superposition principle. Under these considerations,

physicists from the field of non-linear dynamics and complex systems have been studying

a wide range of phenomena in networks of neurons [6], genetic networks [7], multicellular

organization [8], epidemic spread in populations [9] and evolutionary dynamics [10], to

only name a few examples from biology.

The perspectives described above from which physicists investigate biological systems rep-

resent two distinct approaches: in the first case, the goal is to understand the detailed

inner workings of specific biological components from first principles, i.e. from the fun-

11



12 CHAPTER 1. INTRODUCTION

damental laws of physics. For example, this is done in large-scale molecular dynamics

simulations, where thousands of atoms forming a protein and its environment follow the

action of theoretical, semi-empirical or empirical inter-molecule force fields to study pro-

tein dynamics and stability on the nanosecond timescale [2]. The second approach relies

more on generic properties of certain biological systems which make them fit into a specific

framework. For instance, interacting biological oscillators (which may be cells, animals or

more abstract processes [11]) often exhibit synchronization phenomena, whose character-

istics can be studied without knowing how the individual oscillators function in detail (see

reference [12] for an example of synchronized chirps in crickets). Naturally, this results

in a more descriptive manner of approaching the system in question, but sometimes also

leads to useful analogies between different realizations of the same fundamental phenom-

ena. There is, of course, also the possibility to gradually add a certain level of detail to

the generic description of specific phenomena. But in contrast to the first, bottom-up

approach, this merely happens in a top-down manner.

The work of this thesis falls into the second category of the generic approach to biological

systems. In a first approximation, most of the muscle constituting the heart can be viewed

as a so-called excitable medium. In general, excitable systems are characterized by a few

fundamental properties:

• There is a stable resting state, meaning that small perturbations quickly decay with-

out exciting the system.

• In response to a (still small but) strong enough perturbation, upon crossing an

excitation threshold , the system displays a characteristic course of dynamics, called

an activation.

• Without any further input, the system eventually returns to the excitable resting

state, but only after going through a phase in which excitability is reduced or com-

pletely lost. This time span is called the refractory period .

If many of such excitable units are spatially coupled, they form an excitable medium,

which supports the propagation of non-linear excitation waves. Due to the above local

properties of the medium, these waves differ in some essential aspects from the optical

or acoustic waves observed in passive media: As a result of the excitation threshold, it is

usually not sufficient to induce excitation in a single excitable element in order to produce

a propagating wave, but a finite excited area is required, whose size depends on the cou-

pling strength. After some transient propagation, the wave profile is usually independent

of the method used to initiate the wave. This behavior is inherited from the characteristic

form of the activation in a single element, which is somewhat altered by the coupling

but generally independent of the exciting stimulus. A more critical factor determining

the response to a stimulus is the refractoriness due to preceding activations of the same

site. One of the most striking non-linear wave phenomena in excitable media is that of

annihilation: When two wave fronts collide, the refractory tail behind each wave prohibits

propagation of activity in the direction of either wave, leading to the annihilation of the

two. This basic mechanism has important consequences for two competing wave sources

exciting the medium at different frequencies: Assuming both sources produce propagating

wave trains at the corresponding frequencies, the domain of influence of the faster wave



13

a) b)

c)

Figure 1.1: Spatio-temporal patterns in different excitable media. a) Chemical
waves in the two-dimensional Belousov-Zhabotinsky reaction. Waves originating from
the lower left corner have been broken by disturbing the solution in the petri dish with
a pipette. Picture by C. Richter. b) Spiral wave patterns in a colony of starving
dictyostelium discoideum (difference beetween two consecutive images, picture by D. Loh
and A. Bae). c) Contraction waves in cultured cardiomyocytes from neonatal rats, made
visible by difference imaging. Picture by C. Richter.

source will continually grow due to wave annihilation at the domain boundary, until the

whole medium is controlled by the faster source.

Depending on the level of detail one is interested in, one excitable unit in the heart cor-

responds to a piece of cardiac muscle cell membrane, one cell or a small tissue region. As

will explained below, the excitable nature of cardiac tissue is the basis for its normal func-

tion, but the generic mechanisms present in all excitable media – like the aforementioned

high-frequency domination – also play an important role when the rhythm of the heart is

disturbed. A number of substrates other than cardiac tissue can, under the right condi-

tions, exhibit the characteristics of an excitable medium. These are mostly chemical and

biological systems, including the Belousov-Zhabotinsky reaction [13, 14] (investigated by

1980 Lenin Prize laureates B. P. Belousov and A. M. Zhabotinsky), catalytic CO ox-

idation on platinum surfaces [15] (the system involved in the studies that led to the award

of the Nobel Prize to G. Ertl), collective cell dynamics in the aggregation of the slime

mold dictyostelium discoideum [16] and mammalian cortical tissue [17]. Wave patterns

observed in those systems range from regular, periodic patterns to self-sustained spiraling

wave activity to spatio-temporal chaos. Examples of the non-linear waves observed in

some of the above systems are shown in figure 1.1, including activity in cell cultures of

cardiomyocytes, which is the main cell type in the cardiac muscle. Before defining the

central questions and hypotheses of this thesis in section 1.7, it is useful to review briefly
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Figure 1.2: Anatomy of the heart. Cavities and vessels transporting oxygenated blood
are colored in red, those filled with oxygen-depleted blood are marked blue. Picture
modified from [19].

– from a physicist’s point of view – the anatomy and physiology of the heart. On the

one hand, this intermezzo is meant to give the reader the opportunity to familiarize with

the physiological properties of the heart which give rise to a system that can indeed be

caricatured as an excitable medium. On the other hand, the aspects of the heart will be

introduced which exceed the generic description as an excitable medium and are necessary

to answer specific questions, foremost its structural complexity and the specific medical

means of controlling its activity.

1.1 Anatomy of the heart

The heart is the central pumping organ for blood in all higher organisms and drives the

circulatory system that is designed to supply all body tissues with adequate amounts of

oxygen and nutrients and to remove carbon dioxide and other waste products. In humans,

it is a four-chambered hollow muscle (see figure 1.2), which, by coordinated contraction,

transports de-oxygenated blood to the lungs and oxygenated blood to other organs in-

cluding the extremities of the body.1 The four chambers consist of two ventricles, each

receiving fluid inflow from its adjacent atrium during one heart beat. A system of valves

ensures that, during the sequence of contractions (systole) and relaxations (diastole) of the

different chambers commonly referred to as the cardiac cycle, blood is taken in from the

veins and pumped out through the arteries. The right heart (the right atrium and ventricle

as a whole) is responsible for the pulmonary circulation, receiving oxygen-depleted blood

from the body and releasing it through the right ventricle into the pulmonary arteries.

1As a reference for the basic cardiac anatomy described in the following, see, e.g., reference [18].
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After the lung has replenished the blood with oxygen, it enters the left heart through

the left atrium and is pumped out through the heart’s biggest artery, the aorta, which is

connected to the left ventricle. One of the amazing properties of the heart is that it also

supplies blood to its own tissue: Just outside the aortic valve, the left and right coronary

arteries branch off from the aorta. They run in between the pericardium, a protective

sac for the heart, and the epicardium, the outermost layer of actual muscle tissue (my-

ocardium). From there they branch off into the myocardium, splitting into smaller and

smaller vessels which provide the necessary blood supply. A similar tree-like structure is

formed by the coronary veins which remove oxygen-depleted blood and waste products

from the muscle.

The two atrioventricular valves separating the atria and the ventricles are connected via

the cordae tendineae to the papillary muscles and trabeculae of the ventricles. The former

are large-scale finger-shaped protrusions from the bulk of ventricular muscle tissue, while

the latter are beam-like muscle strands, connected to the bulk tissue in different places.

They contract together with the ventricles and thereby pull on the cordae tendineae, thus

preventing valve prolapse into the atrium due to the high pressure during the ventricular

systole.

1.2 Physiology of the heart

The cardiac cycle is controlled by electrical signals traveling through the heart.2 The phe-

nomenology of the heart’s bioelectricity has been known since the end of the nineteenth

century, when time-varying potential differences on the body surface were discovered which

are correlated with the heart beat. They were made practically available as electrocar-

diograms (ECGs) for diagnosis by W. Einthoven through his invention of the electro-

cardiograph, for which he received the Nobel Prize in 1924. On the microscopic scale,

these electrical signals are known today to correspond to action potentials performed by

individual muscle cells (cardiomyocytes), similar to those of neurons (with some important

qualitative differences, see section 1.2.1). The pathway for excitation from initiation to the

contraction of the ventricles is shown in figure 1.3. In the sinoatrial node located in the

right atrium, specialized pacemaker cells spontaneously generate action potentials, which,

under normal physiological conditions, are considered the start of the cardiac electrical

conduction system. Action potentials are rapid transient alterations of a cell’s transmem-

brane voltage. The rate at which the pacemaker cells depolarize defines the heart rate

and is influenced by the autonomous nervous system. The sinoatrial node directly excites

the muscle tissue of the right atrium from which the activity can propagate to the left

atrium via different connections, the fastest of which is usually Bachmann’s bundle. Any

activity spreading to the ventricles has to pass through the atrioventricular node located

at the top of tissue separating the two ventricular chambers of the heart, the septum. The

atrioventricular node delays the conduction of the signal by about 100 ms, ensuring the

ventricles are filled before contraction occurs. Additionally, it is the first in a cascade of

(slower) backup pacemakers which can initiate contraction of the ventricles in case the

2As a reference for the brief overview of cardiac electrophysiology given in the following, see, e.g.,
reference [20].
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Figure 1.3: Electrical conduction system of the heart. (1) Sinoatrial node; (2) Atri-
oventricular node; (3) Bundle of His; (4) Left bundle branch; (5) Left posterior fascicle;
(6) Left-anterior fascicle; (7) Left ventricle; (8) Ventricular septum; (9) Right ventricle;
(10) Right bundle branch. Picture from [21].

input from the sinoatrial node is absent or blocked.3 From the atrioventricular node, the

His bundle and the Purkinje fibers conduct action potentials down the septum and to the

left and right ventricles. The fibers of the electrical conduction system consist of spe-

cialized cardiomyocytes and are connected to the actual contracting tissue only in a few

places. Within the bulk of tissue, the activity propagates via gap junctions connecting

individual cardiomyocytes to their neighbors. The arrangement of excitatory connections

between different parts of the heart therefore coordinates the activation sequence, which

is indispensable for the heart to effectively fulfill its function.

1.2.1 Cardiomyocytes

Like all cells, cardiomyocytes in their resting state have a finite membrane voltage or

potential , which is defined as the electrical potential within the cell with respect to the

extracellular space. It arises from the interaction of electrical and ion concentration gra-

dients across the cell membrane. Inside the cell, the concentration of Na+, Ca2+ and Cl−

ions is much lower than in the extracellular fluid, while the converse is true for K+ ions.

These different ion concentrations are maintained by active membrane proteins including

the Na+/K+ ATPase and Ca2+ ATPase, which derive their energy from the hydrolysis

of adenosine triphosphate. The fact that, under normal physiological conditions, the ion

concentrations are stable is called ion homeostasis.

3In fact, the ventricles themselves can initiate an activation due to the tendency of all cardiomyocytes
to depolarize spontaneously. However, the intrinsic rate of this last component in the backup cascade
is very slow (20 to 40 beats per minute). Therefore, idioventricular rhythm is only observed if all other
pacemakers fail.
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For a single ion species, the difference in concentration across the membrane causes a di-

rected net flow of ions that seeks to compensate the concentration gradient, provided the

membrane has a non-zero permeability. However, since the diffusing particles are charged,

this leads to the buildup of an electrical gradient, counteracting the concentration gra-

dient. The electrical potential difference between the intracellular and the extracellular

space, when these two opposing gradients balance, is called the reversal potential of the

ion species. It can be calculated from the Nernst equation (see reference [20], pp. 78–83)

Vx =
kBT

ez
ln
cex

x

cin
x

, (1.1)

where x refers to the ion species, cex
x and cin

x are its extracellular and intracellular con-

centrations, respectively, kB is Boltzmann’s constant, e is the elementary charge and z

is the degree of ionization of the ion species. Since the ion concentrations are more or

less constant due to ion homeostasis, each ion species has a fixed reversal potential. Using

equation (1.1), these evaluate to approximately −90 mV for K+, +60 mV for Na+, −80 mV

for Cl− and +120 mV for Ca2+.

When multiple permeating ion species are present, the resulting resting potential can be

calculated using the Goldman-Hodgkin-Katz equation [22, 23], in which the concentrations

cx of equation (1.1) are replaced by weighted sums for the different ion species and the

weights are given by the corresponding membrane permeabilities.4 Specialized pores in

the cell membrane, so-called ion channels, selectively determine the permeability of the

membrane for different ion species. At rest, the membrane is mainly permeable to K+,

which is why the resting membrane potential of a cardiac cell is between −90 mV and

−80 mV.

The permeability of the membrane for individual ion species can change rapidly, because

ion channels are active elements that can open and close in response to external stimuli.

This mechanism of ion channel gating is what gives the membrane potential its dynamics

and the cell the ability to perform action potentials. A schematic sketch of the cardiac

action potential is shown in figure 1.4. A small depolarization of the cell above a critical

threshold between −70 mV and −60 mV increases the opening probability of voltage-gated

sodium channels and initiates a positive feedback process: the increased permeability

drives the membrane potential more towards the reversal potential of sodium, which leads

to the opening of even more sodium channels. Since the Na+ ions move down both the

electrical and concentration gradient, this process results in a rapid upstroke with an am-

plitude of approximately 100 mV on a millisecond time scale,5 after which most sodium

channels are inactivated. During the upstroke, around −25 mV, voltage-gated calcium

channels in the membrane slowly start to open. After a small but rapid repolarization

caused by a transient outward K+ current, the influx of Ca2+ into the cell, combined

with decreased K+ conductance and calcium-induced calcium release from internal stor-

ages such as the sarcoplasmatic reticulum, leads to the formation of a plateau phase of

the membrane potential which lasts about 200 ms and is one of the main differences to

4The equation can also be generalized to include ion species of differing ionization degrees. For a
summary of extensions, see reference [24].

5The time scale differs greatly across different cell types. For example, pacemaker cells in the sinoatrial
node depolarize more slowly than the average myocyte in the bulk of ventricular myocardium, while the
converse is true for Purkinje cells.
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Figure 1.4: Cardiac action potential.

other excitable cells such as neurons in the brain. Towards the end of the plateau, the

potassium conductance increases again and the calcium channels close, which causes the

cell to repolarize to its resting membrane potential. Only now, triggered by the value of

the membrane potential, the sodium channels return from their inactivated to the (ini-

tial) closed state, which can be activated again to elicit another action potential. The

initial persistence of the inactivated state is what causes the cell to be less excitable after

an action potential has been initiated and is therefore mainly responsible for the refrac-

toriness of the cell as an excitable system. In addition to the aforementioned ATPases,

the Na+/Ca2+ exchanger in the membrane helps expelling excess calcium from the cell.

Most of the calcium is, however, taken up by the sarcoplasmatic reticulum via the Ca2+

ATPase. For a detailed description of the contribution of individual ion channels and their

gating mechanisms beyond the simplified picture given here, the reader be referred to an

extensive review by A. O. Grant [25].

The macroscopic force of the cardiac muscle is caused on the microscopic scale by the con-

tractile force of individual cardiomyocytes, which is produced by the interaction of myosin

and actin filaments within the cells. The action of this contraction machinery is triggered

by the high intracellular calcium concentrations arising during the plateau phase of the

action potential (excitation-contraction coupling [26, 27]) and is delayed with respect to

the electrical activity of the cell.

1.2.2 Cell-to-cell coupling

Activity initiated by the excitation conduction system introduced at the beginning of sec-

tion 1.2 can propagate from cell to cell in order to cause contraction of a macroscopic

region of the muscle. This cell-to-cell coupling stems mainly from gap junctions – proteins

providing a direct electrical connection between the intracellular spaces of two neighboring

cells [28].6 In this way, one cell performing an action potential can provide the necessary

6There is evidence that field effects provide an additional contribution to excitation conduction in
cardiac tissue [29].
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superthreshold stimulation for its neighboring cells.7 From a viewpoint of a reduced mod-

eling approach, this is a next-neighbor coupling scheme which leads, macroscopically, to

a diffusive interaction and thus turns the cardiac muscle into an excitable medium. As

cells surrounding an excited cell not only receive input from that cell but also act as a

charge sink, the action potential shape during wave propagation is altered compared to

that measured in isolated cardiomyocytes [31].

1.3 Structural Heterogeneity

The coupling between cells in cardiac tissue is inherently anisotropic, due to both the

elongated, cylindrical shape of individual myocytes and the inhomogeneous distribution

of gap junctions, which are found preferentially at the ends of the cell pointing in the lon-

gitudinal direction [28]. The anisotropic behavior of the tissue as a whole stems from the

tendency of myocytes to locally align with their neighbors. However, this fiber orientation

is not constant throughout the muscle, but rotates continuously from the endocardium to

the epicardium by about 180 ◦ in total. Additionally, the cardiac muscle is organized in

layers, so-called sheets, which are separated by regions of reduced coupling [32]. In the

healthy heart, the anisotropy of the bulk electrical conductance manifests first of all in the

anisotropy of conduction velocity [33]. Apart from the intracellular coupling, additionally,

the ionic, i.e. local, properties of cardiac cells are known to differ across the ventricular

wall and in different regions of the cardiac muscle, including dispersion in action potential

duration and repolarization [34, 35].

The anatomy of the heart implies that a certain level of complexity and heterogeneity is

always present: As described in section 1.1, the coronary vasculature supplies the tissue

with blood and removes waste products. The vessels form a tree-like network comprising

the full range from very large vessels down to the smallest capillaries. An illustrative im-

age obtained from mirco-computed tomography (µCT) is shown in figure 1.5. Where these

vessels penetrate the tissue, they disrupt the intracellular coupling between myocytes and

therefore form non-conducting inclusions in the tissue, which can also be viewed as inter-

nal tissue boundaries. Other complex boundary shapes are introduced on the ventricular

endocardium by surface undulations, papillary muscles and trabeculae (see section 1.1 and

figure 1.6).

Besides this rather necessary and intended complexity of the cardiac muscle, further het-

erogeneity in the system is caused by random impurities such as fatty tissue, scars and

fibrotic tissue, which may grow in number and intensity in the process of cardiac remod-

eling after myocardial infarction or due to other diseases. Fibroblasts occur naturally in

healthy tissue as they are responsible for maintaining the extracellular matrix in which the

cardiomyocytes are embedded. However, it has become clear that they not only influence

the coupling between cardiomyocytes during development and tissue repair, but are also

directly coupled to cardiac muscle cells and can therefore change the electrophysiological

behavior of the tissue by acting as current sinks [36, 37].

7As mentioned at the beginning, as for generic excitable media, one activated cell alone is usually not
enough to excite its neighbors (see introduction of reference [30] for a summary).
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Figure 1.5: The tree of cardiac vessels. Visualization of the branching network of
coronary vessels of a whole beagle dog heart from a µCT scan after injection of contrast
agent. The diameter of the heart is approximately 6.5 cm. Visualization and µCT data
by M. L. Riccio/Cornell University µCT Facility for Imaging and Preclinical Research
and F. H. Fenton/Cornell University.

Figure 1.6: Endocardial structure. Complex geometry of the inner ventricular wall of
a mouse ventricle with a diameter of approximately 5 mm. Visualization and µCT data
by D. Hornung.
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1.4 Arrhythmias

Failure of the cardiac muscle to produce a normal heart beat or normal sinus rhythm can

originate from different parts of the electrical conduction system of the heart. Besides

the inability of the fast fibers to excite specific parts of the muscle (AV-block, bundle

blocks, etc.), one important source of arrhythmias is the bulk of cardiac muscle tissue

itself. Under normal conditions, the activation of a chamber of the heart can be carica-

tured as a coherent wave front, traveling across the tissue in a quasi-planar manner and

thereby exciting the whole chamber. Afterwards, the muscle recovers and awaits the next

triggered wave. However, waves that do not fully excite the available tissue volume at the

first attempt can lead to the formation of reentrant wave patterns [38, 39, 40] (similar to

those shown in figure 1.1). Once these self-excited spiral waves, or scroll waves in three

dimensions, have been initiated, they excite the tissue with a frequency much larger than

the natural pacemaker and thereby decouple a region from the control of sinoatrial node

(via the mechanisms of high-frequency domination explained at the beginning of the intro-

duction, see also reference [41]). If the ventricles are affected, spiral waves therefore lead

to an unnaturally fast heart rate, called tachycardia in medical terms. Furthermore, the

pumping function of the heart is impaired, since the contraction of the ventricles ceases

to be coordinated with atrial activation and not the whole ventricle contracts at once.

An even more dangerous situation arises when spiral waves break up into multiple waves,

which may lead to a state of spatio-temporal chaos that is known as ventricular fibrillation

[42, 43]. Under these conditions, small tissue regions contract in arbitrary sequence, caus-

ing the heart to completely lose its pumping force. The result is a standstill of circulation,

called cardiac arrest , and consequently damage to the heart tissue itself, to other organs

and, irreversibly within minutes, to the brain. Ventricular fibrillation thus is a lethal state

of cardiac activity and its spontaneous occurrence is one of the main reasons for sudden

cardiac death, which accounts for about 500,000 annual deaths in the United States [44].

Fibrillation can also occur in the atria, where it is not immediately life-threatening due

to the filter effect of the atrioventricular node, which imposes an upper frequency limit

on the excitation signal transmitted to the ventricles. However, even atrial fibrillation

can cause serious long-term damage, e.g., by increasing the risk of stroke to five times its

normal value [45].

The initiation mechanisms for arrhythmias are an active area of research. Most of the

proposed mechanisms have in common that due to specific conditions, waves are partially

blocked and some tissue region remains excitable for the potential formation of a reentry.

One way this is possible is through premature beats (extrasystoles), where the partial block

is caused by dispersion in refractoriness due to the preceding normal activation, acting as

a dynamical heterogeneity . Alternatively, the substrate may have spatially inhomogeneous

excitability, and this structural heterogeneity (see section 1.3) can cause a partial block

under stress conditions. For both possibilities, a number of underlying reasons have been

identified, including, but not limited to, genetic mutations altering the dynamics of ion

channels or receptors [46, 47, 48], remodeling after myocardial infarction [49, 50], electri-

cal shocks during the vulnerable phase of a normal heart beat [51, 52, 53, 54] or fibrosis

[55, 56, 57]. A case which is difficult to classify is idiopathic ventricular fibrillation, which

is thought to be responsible for a considerable percentage of sudden cardiac deaths and
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occurs in seemingly healthy patients [58].

1.5 Antiarrhythmic therapies

There are at least three ways of treating cardiac arrhythmias: pharmaceutical intervention,

ablation and electric shocks. While the first two can be used to reduce the susceptibility of

the cardiac muscle to undesirable activation patterns, the latter cannot prevent arrhyth-

mias from occurring. However, electrical defibrillation is the only therapy available for

acute lethal arrhythmias such as ventricular fibrillation. Antiarrhythmic drug therapy can

help controlling non-life-threatening arrhythmias or reduce the risk of arrhythmia onset,

in particular for patients after myocardial infarction or suffering from atrial fibrillation

[59, 60]. In some cases, a specific region in the heart can be identified as the cause of

recurring arrhythmias. For example, certain types of atrial fibrillation have been shown

to be caused by focal activity originating at the junction of the pulmonary veins and the

left atrium. In radio-frequency ablation, a high-intensity current is used to deliberately

create lesions around the foci and thereby electrically decouple the responsible region from

the rest of the tissue [61, 62]. The same strategy is also applied to the ventricles, where

areas that are “critical to the arrhythmia” [63] are destroyed. Apart from strong side

effects of antiarrhythmic drugs that can damage other organs and possible (undeliberate)

lesions of the heart from the ablation procedure, both antiarrhythmic drug medication and

ablation bear the risk of proarrhythmic effects [64, 65, 66]. This is probably due to the

indication-based prescription of specific drugs and the phenomenological choice of ablation

sites, which are only rarely supported by a theoretical understanding of the mechanisms.

In cases where proarrhythmic effects cannot be ruled out or if there is an irreducible risk

of recurring ventricular arrhythmias, it is therefore appropriate to provide a “safety net”

with the implantation of a device that can automatically deliver appropriate electrical

shocks to terminate an arrhythmia [67].

To terminate the most lethal form of arrhythmia, ventricular fibrillation, implantable

cardioverter-defibrillators (ICDs) as well as external defibrillators deliver a short, high-

energy electrical shock.8 This shock (∼300 J within 10 ms if applied externally) is thought

to excite the whole tissue, thus depriving the chaotic reentrant waves of the excitable

substrate needed for propagation. In this way, all waves are terminated indiscriminately

and the heart is shocked into quiescence. Afterwards, the low-frequency impulses of the

sinoatrial node (see section 1.2) can excite the heart and restore normal sinus rhythm.

There is contradictory evidence whether the shock energies used in today’s defibrillators

can cause considerable injury of the cardiac muscle [69, 70] and possibly increase the risk

of future arrhythmias by introducing additional structural heterogeneity. A second impor-

tant problem is that ICD therapy is also associated with severe psychological implications

such as anxiety and reduced quality of life [71], mainly due to defibrillating shocks de-

livered during consciousness. These can be triggered due to early or mis-detection and

are a traumatic pain experience for patients with implanted devices. Therefore, there is a

search for low-energy alternatives to conventional defibrillation.

8For slower arrhythmias such as ventricular tachycardia, there are low-energy alternatives such as
antitachycardia pacing (ATP) [68].
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1.6 Complexity in structure and dynamics

As outlined above, the heart is a complex system in terms of structure, owing to its

anatomy and heterogeneous bulk properties, as well as in terms of the (malignant) dy-

namics it exhibits. Obviously, the structural complexity forms the substrate for the dy-

namics, which is why the two kinds of complexity can interact across the whole range

from the triggering of reentrant wave patterns, to their stabilization or further degen-

eration into spatio-temporal chaos, to their termination via pharmaceutical or electrical

intervention. The dynamical complexity is thus only partly a result of the behavior as

a generic excitable medium: planar waves representing normal activation, spiral waves

associated with tachycardia and spatio-temporal chaos underlying cardiac fibrillation can

be observed in simple, generic (and homogeneous) models of excitable media [72, 73]. The

spontaneous occurrence of wave breaks necessary to produce arrhythmias in the first place,

though, cannot be explained by such simplistic models. In contrast, the interaction of the

dynamics with structural heterogeneities and the stochastic behavior of single cells have

been shown to facilitate the occurrence of wave breaks and the development of reentrant

waves [74, 75, 76, 77]. These spiral or scroll waves waves can then interact with het-

erogneities, e.g. by pinning to inexcitable regions in the tissue [39, 78, 79, 80], by drifting

due to excitability gradients [78, 81, 82, 83] or by destabilization due to the inherent and

spatially varying anisotropy of cardiac tissue [84, 85, 86].

Over the last twenty years, it has become clear that the importance of the non-uniformity

of the cardiac substrate extends to the mechanisms of electrical defibrillation. The simple

picture given in section 1.5 suggests that, in some way, most of the tissue is excited by

a sufficiently strong electrical shock, which ultimately terminates all waves propagating

through the muscle. In early efforts to understand the mechanism underlying electric-field

induced activation of the tissue, this was thought to be possible because of the intracel-

luar coupling scheme of cardiac tissue alone, where the voltage drop at high-resistance gap

junctions leads to sawtooth-shaped depolarization pattern along a chain of interconnected

cells. The spikes located at gap junctions were thought to be sufficient to initiate an action

potential at one end of each cell [87, 88, 89, 90]. However, several studies revealed that

the expected depolarization patterns are not observed in real, well-connected tissue [91]

and instead, additional heterogeneities in electrical conductance (including those on larger

length scales) play a major role in the formation of these so-called secondary sources or

virtual electrodes [92, 93, 94, 95, 96, 97, 98]. Electrical shocks above a critical defibrillation

threshold of about 6 V/cm are believed to, on the one hand, activate a large enough tissue

fraction by heterogeneity-induced virtual electrodes to terminate all existing waves and,

on the other hand, minimize the risk of inducing new arrhythmias by interaction with

preexisting activity [99, 100]. However, as most of the studies are focused on elucidating

the mechanisms of conventional, high-energy, defibrillation, they are lacking perspectives

for the development of gentler defibrillation techniques.

1.7 This thesis

The work presented in this thesis aims at elucidating the mechanisms of arrhythmia de-

velopment and control in the heart which originate from its inherent heterogeneity and
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complex structure. The hope is that the results may open the path to the development

of novel antiarrhythmic therapies which are efficient insofar as they do not disturb the

normal function of the heart or damage the muscle more than necessary. This requires,

on the one hand, a detailed understanding of the processes that lead to the development

of arrhythmias and a way to assess the complexity of the resulting activation patterns,

in order to provide tailor-made therapies for different scenarios. On the other hand, the

design of such control strategies has to be supported by theoretical concepts which can

predict the effect of an anti-arrhythmic intervention and thus enable the choice of appro-

priate parameters for the control strategy.

Three different topics are presented, which approach this problem from both of the above-

mentioned directions: The first one adopts the generic view of cardiac tissue and aims at

establishing a quantitative stability analysis method from non-linear dynamics as a new

tool in the field of modeling excitable media. The other two focus on elucidating in theory

(second topic) and experiments (third topic) the mechanisms underlying future low-energy

techniques for electrical antiarrhythmic therapy and specifically the role of internal and

external tissue boundaries. The theoretical background and its numerical implementation

necessary for the work of sections 3.1 and 3.2 as well the experimental technique of optical

mapping for section 3.3 are introduced in section 2. The results presented in section 3 are

ordered from generic to specific, from theoretical to experimental:

Section 3.1 is centered around the question, how the stability and dynamics of ac-

tivation patterns in models of cardiac tissue can be characterized quantitatively. A very

practical and common approach to obtain qualitative descriptions is to numerically sim-

ulate the dynamics and simply observe (possibly for different levels of heterogeneity or

different parameters) characteristic quantities such as the action potential duration, con-

duction velocity, the trajectories of spiral tips and whether or not spiral waves break

up [101, 102, 85, 103, 104, 74, 76]. To get a more quantitative insight and determine

the mechanisms that underlie spiral wave behavior and interaction, phenomenological ap-

proaches like the definition of predator-prey quantities [105] have been proposed. In some

more detail, the stability of spiral waves has been assessed using linear stability analysis

[106, 107, 108] and response functions, which can be used to predict spiral wave drift

[109, 81]. However, both of these methods require an explicit transformation of the state,

whose stability is to be determined, to a fixed point. For a rigidly rotating spiral wave,

this can be done by switching to the co-rotating frame of reference, but even finding the

steady state in this frame of reference can be a challenging task due to the non-linearity

of the problem [108]. Thanks to these studies, it is now known that there are specific

meandering and alternans modes which can destabilize spiral waves.

A method from non-linear dynamics which can assess the stability of arbitrary attractors

to infinitesimal perturbations is Lyapunov stability analysis. The original idea of a set

of characteristic numbers, so-called Lyapunov exponents, quantifying the stability of an

attractor of a dynamical system was introduced by A. Lyapunov in his doctoral the-

sis published in 1892 [110]. Lyapunov exponents yield information on the stability of a

trajectory in different directions of phase space and can be used to perform bifurcation

analysis. A rigorous mathematical theory [111] and practical algorithms for their compu-

tation [112, 113] were developed in the second half of the twentieth century, the latter of
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which were mainly targeted at low-dimensional systems of ordinary differential equations

(ODEs), but their application to systems with many degrees of freedom is only limited

by computational power. Lyapunov stability analysis has recently regained some degree

of popularity, due to new algorithms which allow the computation of so-called covariant

Lyapunov vectors [114, 115, 116, 117, 118, 119], which are, however, not the subject of

this thesis (see section 2.1.8). The very few studies, which have applied Lyapunov stability

analysis to excitable media so far, have used it either as a simple indicator for chaos [120],

or as a means to compute an effective dimension during chaotic activity [121]. To the

best of knowledge, there have been no attempts to extract detailed information from the

structure of the spectrum of Lyapunov exponents itself. Since it is the first systematic

study of Lyapunov spectra of generic excitation patterns in excitable media, the purpose

of section 3.1 is twofold: Firstly, the results will be linked to what is already known for

low-dimensional systems and analogies (e.g., to coupled oscillator systems) will be given

to explain observed Lyapunov exponent spectra for plane waves and single spiral waves.

Secondly, the properties of the Lyapunov spectra determined in the first part shall be

used to characterize more complex scenarios involving multiple spirals and heterogeneous

media. It will be shown that heterogeneities can have ambivalent effects on the complexity

of spiral wave or chaotic activity.

In section 3.2, the interaction of electric fields with boundaries of cardiac tissue is in-

vestigated. As indicated in section 1.6, a number of studies have aimed at determining the

mechanisms that cause bulk depolarization during electric-field stimulation and thus lead

to the success of conventional defibrillation. The heterogeneities which were considered

include changes in fiber direction with respect to the electric field [122, 123, 97], intercellu-

lar clefts due to the microstructure of cardiac tissue [124], random variation of geometrical

cell properties [93, 94] and the global geometry of the heart and tissue-bath interface con-

ditions [125, 126]. The strongest kind of heterogeneity in electrical conductance leading

to the formation of secondary sources is the tissue boundary itself, since it represents a

sudden intracellular conductivity drop to zero. In all of the above studies, it is therefore

usually implied that strong effects of electric fields are seen at the tissue boundaries in any

case, because they focused at high field strengths. At low field strengths, however, the

geometry of those boundaries might influence their susceptibility to electric fields. The im-

portance of knowing where exactly electric fields excite the tissue has been demonstrated

in a number of studies which showed that waves pinned to circular non-conducting inclu-

sions in the tissue (i.e. internal tissue boundaries) can be unpinned with electric fields well

below the defibrillation threshold, because excitation is induced exactly at those obstacles

and therefore close to the spiral center [127, 128, 129, 130, 131, 132, 133]. In order to

develop low-energy electric-field based antiarrhythmic strategies, it is therefore essential

to understand the interaction of electric fields with the tissue substrate and, more specif-

ically, the mechanisms that determine the location of electric-field induced wave emission

at low field strengths instead of those well above the defibrillation threshold. Here, the

effect of boundary curvature on the depolarization patterns in response to electric fields

shall be studied. As a special case, this includes the above-mentioned non-conducting

inclusions that present obstacles to the electrical coupling between cardiomyocytes. As

seen in figure 1.6, the outer boundaries of the tissue are an additional source of structural



26 CHAPTER 1. INTRODUCTION

heterogeneity. As shall be shown in section 3.2, this geometric fine structure gives rise to

a variety of electric-field induced effects not observed for simple, large scale geometries.

These effects will be characterized utilizing a theory devoloped by A. Pumir and V. Krin-

sky [127] for circular inclusions, which is extended and generalized to arbitrary shapes.

The theory is based on a modified boundary condition for the cardiac equations, which

implements the effect of an electric field. A numerical technique known as the phase-field

method [134] will be extended in section 2.1.5 to be able to apply this modified bound-

ary condition in numerical simulations of arbitrary tissue geometries. Subsequently, using

different levels of approximation to the mathematical model, several prototypical shapes

of tissue boundaries will be examined for their susceptibility to electric-field stimulation

both analytically and numerically.

The subject of section 3.3 is to understand the physiological basis of a recently-

developed low-energy defibrillation technique. As indicated in section 1.5, today, the term

defibrillation is inseparably tied to a high-energy electric shock. In the early times of

this anti-arrhythmic therapy, pulse shape optimizations (from an alternating current wave

form to a biphasic pulse) led to a considerable reduction of the energy required to restore

normal sinus rhythm in a fibrillating heart. Reducing the required energy also diminished

the risk of potential damage to the myocardium. However, during the last 20 years, the

energy could only marginally be lowered, showing that the optimization potential of con-

ventional single-shock defibrillation has been almost exhausted.

However, the paradigm of an absolute defibrillation threshold has recently started to crum-

ble. In 2009, F. Fenton, S. Luther et al. demonstrated in-vitro that atrial fibrillation

can be terminated using a series of low-energy shocks instead of one high-energy shock

[135], achieving an energy reduction of more than 85%. Similar energy reduction was

observed by W. Li et al. and C. M. Ambrosi et al. using a multi-stage atrial defibril-

lation technique [136, 137]. For the study by Fenton and Luther, the effectiveness of

the method was attributed to the recruitment of many wave sources throughout the tissue

and the progressive activation of more and more volume with subsequent waves emitted

from these sources (with a stimulation period on the time scale of the arrhythmia). Hence,

the image of defibrillation as an all-or-nothing process has to be abandoned, replacing it

by the view that field strengths below the defibrillation threshold are still able to induce

waves in the muscle, but cannot recruit enough tissue volume to end all irregular activity

with a single stimulus. From the viewpoint of control theory, it seems reasonable that

spatio-temporal chaos underlying fibrillation can be controlled from a large enough num-

ber of control sites. This is supported by the finding by M. Allessie et al. that rapid

pacing from one location can control a certain region during fibrillation [138]. Like above

for the second topic, knowing the locations of tissue activation can help to assess the lim-

itations and improve the strategy of low-energy anti-fibrillation pacing (LEAP). In view

of the generally accepted fact that virtual electrodes in the tissue are mediated by tissue

heterogeneity, it is therefore necessary to find out, what kind of heterogeneity provides the

substrate for the necessary wave source recruitment in the field strength range covered by

LEAP. Based on anatomical data from µCT measurements and the theory of wave source

recruitment due to Pumir and Krinsky [127], section 3.3 provides experimental evidence

for a dominating role of cardiovascular tree as the heterogeneity in question.
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Methods

2.1 Mathematical background

An important class of results generated by biophysical research in the twentieth century is

that of mathematical models, both of complete biological systems and of their constituting

parts. A major breakthrough was the mathematical description of cell electrophysiology,

beginning with the modeling of action potential propagation in the giant squid axon (a

large nerve fiber) by Hodgkin and Huxley. In fact, their paper [139] is a summary of

a series of preceding publications by Hodgkin, Huxley and Katz [140, 141, 142, 143].

At the time, its novelty lay in the fact that the authors not only systematically studied

transmembrane currents of different ion species using the newly established method of

voltage clamp [144, 145]. They also gathered enough data on the voltage-determined,

ion-specific permeability1 of the membrane to combine all of their findings in a mathemat-

ical framework that accurately reproduces the experimental action potentials, including

propagation along the nerve fiber.

Their results have essentially remained valid despite the progress that has been made in

the discovery of molecular mechanisms leading to the observed ion current dynamics. This

fact emphasizes the broad range of applicability of their method which is independent of

the internal functioning of the biological substrate and thus rootedly empirical. D. Noble

was one of the first to apply the model to cardiac excitable tissue, such as Purkinje fibers

[146, 147]. All modern schemes of building electrophysiological models of excitable cells

such as neurons, cardiomyocytes or muscle cells are still based on this method, merely

using improved and more detailed experimental tools for identifying the active membrane

proteins such as the patch clamp technique [148] and expression systems for ion channels

[149]. Such models are therefore called Hodgkin-Huxley type models.

In the following sections, the necessary theoretical background for modeling cardiac tissue

(and excitable media in general) will be introduced. They form the basis of all numer-

ical work in this thesis. Following this fundamental theoretical framework, the specific

models and analysis methods utilized in this work will be presented. In addition to the

above-mentioned electrophysiology, a full mathematical description of cardiac tissue (up

to the state of current knowledge) would have to cover many more aspects than just the

pure electrophysiology, the most evident of them being excitation-contraction coupling –

1The molecular basis of this variable permeability of the membrane (ion channels, cf. section 1.2) was
not known at the time.
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Figure 2.1: Equivalent circuit diagram for the cell membrane. The cell membrane
is modeled as a capacitor that is charged to the membrane voltage Vm by the Nernst
potentials (VNa+ ,. . . ) of different ion species. Variable resistors indicate varying individual
permeability of the membrane for each ion species. The current source corresponds to ion
transporters in the membrane necessary for ion homeostasis.

indispensable for the normal physiological function. However, using Occam’s razor, the

presented methods will be restricted to those aspects that are necessary to understand

the results in section 3. It should also be noted that, despite the general agreement on

the nature of action potentials in excitable cells and the huge system of theories that is

based on the pioneering work by Hodgkin and Huxley, there is also a recent alterna-

tive explanation of propagating nerve impulses based on soliton waves in traveling in the

cell membrane [150, 151, 152], which is, however, highly controversial and shall not be

elaborated further upon in this work.

2.1.1 Single cell dynamics

Following Hodgkin’s and Huxleys’s scheme, the electrical behavior of the cell membrane

can be modeled by an equivalent circuit as shown in figure 2.1: The (impermeable part

of the) cell membrane is represented by a capacitor with capacity Cm. It can be charged

by the accumulation of charge on its two plates (the inner and outer surfaces of the cell

membrane) and the potential difference Vm = vi − ve between the intracellular and the

extracellular potentials is called membrane potential, as explained in section 1.2.1. This

happens through passive and active ion channels that determine the permeability and thus

the electrical conductivity of the membrane for specific ionic species (gx for ion species x).

Denoting the current through the membrane of ion species x by Ix and the charge on the

capacitor by Q, Kirchhoff’s current law implies that the sum of all currents (through the

vertical elements in figure 2.1) is zero

0 =
dQ

dt
+ Ipump + INa+ + IK+ + ICa2+ + ICl− + I. . . (2.1)

⇒ dQ

dt
= Cm

dVm
dt

= −Ipump − INa+ − IK+ − ICa2+ − ICl− − I. . . (2.2)

resulting in the above equation for the membrane potential Vm. In the above equation,

the convention was used that positive currents point out of the cell, i.e. from intracellular

to extracellular, which implies that the charge Q is the one on the intracellular “plate” of

the capacitor. The right hand side is sometimes summarized in a term Iion. Each term

Ix, according to the circuit diagram in figure 2.1 is of the form

Ix = gx(Vm − Vx), (2.3)
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where Vx is the reversal potential of the ion species x. The dots in equation (2.2) and

figure 2.1 represent additional ion species and dynamic elements that could be included

in the model. Due to the existence of multiple ion channel types for the same ionic

species, the currents associated with each species in figure 2.1 have to be interpreted as

net currents and gx as a net (average) conductivity. Thus, the model could be refined

by treating each ion channel type as a separate circuit element. This is indeed done in

physiologically detailed models such as the Wang-Sobie model [153], but it is not necessary

for the purpose of this thesis.

In contrast, an important aspect that has to be taken into account and that is at the

basis of the nonlinear phenomenon of action potential formation is the variability of the

conductances gx. These are functions of time as well as the quantity gating the channel

(membrane potential, individual ion concentrations or mechanical stress, cf. section 1.2.1

and reference [25]). As mentioned in the introduction of this chapter, the development

of the Hodgkin-Huxley formalism preceded the discovery of the molecular functioning of

ion channels. Still, from the measured current traces in voltage clamp experiments, it was

already clear that the dynamics of the individual ion conductances can themselves only

be modeled by dynamical systems for the so-called gating variables. These describe the

transitions between different states of the ion channel or its subunits, the main parameters

being the transition rates that are, in turn, determined by the quantity responsible for

gating the channel (e.g., Vm for voltage-gated channels). Depending on the absolute

number of channels, a stochastic or deterministic model for the gating variables is required

to accurately model the overall membrane conductance for a particular ionic species [154,

155]. As this thesis deals with macroscopic systems only, deterministic dynamics modeled

by differential equations will be assumed in the following. In general, each current term

in equation (2.2) is thus supplemented by a number of additional ordinary differential

equations describing its (in-)activation dynamics. The full system of equations describing

a single cell electrophysiological model in its most abstract form thus reads

Cm
dVm
dt

=

−Iion(Vm,h)︷ ︸︸ ︷
−Ipump(Vm,h)−

∑
x

Ix(Vm,h)

dh

dt
= H(Vm,h),

(2.4)

where the vector h consists of the gating and all further variables necessary to model

the individual components (this may also include ion concentrations, etc). All current

electrophysiological cell models have the form of equation (2.4) and the number of terms

on the right hand side varies with model complexity, either absorbing many summands

into one term or splitting some of them up into individual contributions (see section 2.1.6

for details).

2.1.2 Bi-domain description of cardiac tissue

The single-cell model introduced in section 2.1.1 can be thought of as a description for

an average piece of the cell membrane without any spatial extent. In this case, Cm, Q

and the current Iion in equation (2.4) have to be interpreted as capacitance, charge and
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current per unit membrane area. This can be used to construct a model of a d-dimensional

domain of cardiac tissue by extending the so-called core conductor model of neuronal

cable theory [156], an idea that emerged during efforts in the 1970s to model surface

electrocardiograms [157, 158, 159]. The resulting mathematical framework is currently

viewed as the standard and most accurate model of cardiac tissue as a continuum [160, 161,

32]. If an extended slab of cardiac tissue is considered, the intracellular potentials, vi(x, t)

and ve(x, t), respectively, become functions of the position x in space, i.e. x ∈ Rd, t ∈ R.

The idea behind this is that both intracellular and extracellular spaces are defined in

the whole tissue domain (thus occupying the same physical space) and have conductivity

tensors σi and σe, respectively, that are averaged quantities over multiple cells. The

relative volumes of the physical intracellular and extracellular spaces and the geometrical

arrangement of cells are implicitly contained in these averaged conductivities, as is the

additional resistance introduced by gap junctions in the intracellular domain. The two

domains represent spatially extended versions of the capacitor plates considered in the

single cell model. Current densities within each domain caused by the corresponding

potentials are:

ji = −σi∇vi
je = −σe∇ve

(2.5)

The current densities enter continuity equations for the charge densities qi and qe in

the intracellular and extracellular domain, respectively. It is assumed that no charge

accumulates anywhere in the tissue, such that ∂qi/∂t = −∂qe/∂t =: ∂q/∂t and

∇ · ji +
∂q

∂t
= −iion

∇ · je −
∂q

∂t
= iion,

(2.6)

where the lowercase quantities q and iion are charge and membrane current per unit vol-

ume, respectively. Otherwise, the same sign conventions as in section 2.1.1 apply. The

membrane currents appear as sources and sinks for the extracellular and intracellular do-

main, respectively, as crossing the cell membrane is the only way for charge to leave one of

the two domains (in the absence of current injection via electrodes). As the correspond-

ing quantities Q and Iion are given per unit membrane area, these quantities have to be

converted using the surface-to-volume ratio β (units: area per volume) which specifies

how much membrane surface there is on average for a given volume of tissue. Combining

equations (2.5) and (2.6), the bi-domain equations for the tissue domain D are obtained:

∇ · σi∇vi = −∇ · ji = β

(
∂Q

∂t
+ Iion

)
= β

(
Cm

∂(vi − ve)
∂t

+ Iion

)
∇ · σe∇ve = −∇ · je = −β

(
∂Q

∂t
+ Iion

)
= −β

(
Cm

∂(vi − ve)
∂t

+ Iion

)
 in D

(2.7a)

(2.7b)

These equations have to be completed by boundary conditions for vi and ve at the bound-

ary ∂D of the tissue domain D. Assuming the space outside the tissue domain D is a

mono-domain with conductivity σo and a corresponding outside potential vo, these bound-
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ary conditions are

n · σi∇vi = 0

ve = vo

n · σe∇ve = n · σo∇vo

 on ∂D
(2.8a)

(2.8b)

(2.8c)

where n is a local unit vector perpendicular to the boundary ∂D. Equation (2.8a) is a

no-flux boundary condition, expressing the fact that the intracellular space ends at the

tissue boundary and thus no current in the intracellular domain can cross this boundary.

Equation (2.8b) and equation (2.8c) ensure the continuity of the extracellular potential

and currents at the interface between the extracellular space inside the tissue and the

mono-domain outside the tissue (e.g., the bath).

For practical calculations, a different linear combination of the system (2.7) is used which

corresponds to a change of variables from vi and ve to Vm = vi − ve and ve:

∇ · σi∇(

vi︷ ︸︸ ︷
Vm + ve) = β

(
Cm

∂Vm
∂t

+ Iion

)
∇ · σe∇ve

(2.7a)+(2.7b)
= −∇ · σi∇vi = −∇ · σi∇(Vm + ve)

 in D

Reordering the terms in both equations yields

Cm
∂Vm
∂t

=
1

β
∇ · σi∇(Vm + ve)− Iion(Vm,h)

∂h

∂t
= H(Vm,h)

∇ · (σe + σi)∇ve = −∇ · σi∇Vm.


in D

(2.9a)

(2.9b)

(2.9c)

Having been omitted so far, equation (2.9b) was reinserted from equation (2.4) for com-

pleteness. Equation (2.9c) does not contain t and thus states that the extracellular po-

tential can be determined from the membrane potential at any given instant. In equa-

tion (2.9a), the term ∇ · σi∇(Vm + ve) is more favorable than the seemingly simpler

−∇ · σe∇ve, because in this way, the equation stays valid in the limit σe = ασ∗e for

α → ∞. This will be useful in the next section. For the boundary conditions (2.8), the

change of variables can be achieved by replacing Vm in equation (2.8a):

n · σi∇(Vm + ve) = 0

ve = vo

n · σe∇ve = n · σo∇vo

 on ∂D
(2.10a)

(2.10b)

(2.10c)

2.1.3 Mono-domain descriptions of cardiac tissue

For a full numerical simulations using the bi-domain equations (2.9), one would have to

time-step the membrane potential Vm using equation (2.9a) from a given present state

and calculate the corresponding extracellular potential by solving equation (2.9c) for ve.

The latter requires solving a large system of linear equations, an operation that is compu-

tationally very costly. Because of this, there exists an approximation that only involves a

single partial differential equation (PDE) for Vm that can be solved by time stepping, the
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so-called mono-domain equation. Although the mono-domain model is used extensively in

the literature and is regarded a valid model in its own right without further justification,

it is important to know its connection to the full and more realistic bi-domain formula-

tion. In particular, this is true for understanding the effects of electric fields near tissue

boundaries, which is one of the aims of this thesis. In the following two sub-sections, two

different ways of deriving the mono-domain equation with different physical interpretation

will be presented. When working with a mono-domain equation, one has to ensure that

modifications to the equations are consistent with the choice of interpretation.

Neglecting the extracellular potential

Assume a very well-conducting extracellular space2, i.e. α � 1 for σe = ασ∗e. In the

limit α → ∞, equation (2.9c) reduces to ∇ · σ∗e∇ve = 0. This means that for large α the

source term for the extracellular potential becomes negligible and one possible form of

solution is ve = −E ·x+c with some fixed electric field vector E and an arbitrary constant

c (if boundary conditions (2.10b) and (2.10c) permit)3. For this solution, it has to be

assumed that σ∗e is spatially constant. If we assume the extracellular space is insulated

(n ·σ∗e∇ve = 0) or grounded (ve = 0) on ∂D, this solution reduces even further to ve = c or

ve ≡ 0, respectively. In contrast, equation (2.9a) is still valid. The mono-domain equation

in this scenario therefore is

∂Vm
∂t

= ∇ ·D∇(Vm + ve)− Iion/Cm in D, (2.11)

where the diffusion tensor is given by D = σi/(βCm) and ve is merely a parameter for the

problem, which is usually set to zero following the line of thoughts above. To make this

problem well-defined, the boundary condition (2.10a) is sufficient:

n ·D∇(Vm + ve) = 0 on ∂D (2.12)

Equivalent mono-domain description

In section 2.1.3, a mono-domain formulation of the bi-domain model was obtained by

changing the physics of the problem. The extent, to which the dynamics is altered can

be significantly reduced in the case were the intracellular and extracellular conductivity

tensors are scaled versions of the same tensor: σe = ασi. In this case, equation (2.7b) can

be subtracted from equation (2.7a):

∇ · σi∇Vm =
(
1 + α−1

)
β

(
Cm

∂Vm
∂t

+ Iion

)

2Incidentally, this case brings the model of cardiac tissue very close to the neuronal cable equation
from which it branched off. There, the assumption of an infinite conductivity in the extracellular space is
justified by the large amount of fluid that surrounds the axon.

3Other solutions are possible, viz. all those for which a vector potential A exists with σ∗e∇ve = ∇×A.
For ve = −E · x, choose A = −((σiE)3x2, (σiE)1x3, (σiE)2x1)T
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Rearranging for ∂Vm/∂t yields the mono-domain equation

∂Vm
∂t

= ∇ ·D∇Vm − Iion(Vm,h)/Cm

∂h

∂t
= H(Vm,h)

 in D
(2.13a)

(2.13b)

where now D = σi/[βCm(1 + α−1)]. In the limit α → ∞, the definition of D is equal to

that in equation (2.11). Similarly, the ve term in equation (2.11) becomes irrelevant if σ∗e
is a scaled σi, because then ∇ ·D∇ve = 0 follows from ∇ · σ∗e∇ve = 0. Equation (2.11)

and equation (2.13) are thus consistent in the sense that they are equivalent when the

assumptions for both mono-domain descriptions are fulfilled.

Note that the mono-domain description (2.13) is completely equivalent to the full bi-

domain model, but numerically cheap compared to equation (2.9). Consequently, for the

case σe = ασi, numerical simulation of the bi-domain model is usually superfluous. There

is, however, one caveat: from the set of boundary conditions (2.10), no boundary condition

for the membrane potential alone can be derived. Also, unlike in equation (2.11), ve is

not decoupled from the membrane potential dynamics and so equation (2.10a) cannot be

enforced unless ve is calculated, which would defeat the original purpose of a mono-domain

formulation. The usual (somewhat nonphysical) solution to this dilemma is to apply the

ad-hoc no-flux boundary condition

n ·D∇Vm = 0 on ∂D. (2.14)

This is sufficient for modeling the dynamics inside a tissue domain D, where the boundary

of the domain is not meant to be a physical part of the system but rather a computational

necessity. However, it is only a valid simplification, if one can rule out any influence of the

boundary condition on the effects one wants to study. Sometimes, the no-flux boundary

condition is physically justified, for example, if the extracellular space is known to be insu-

lated electrically at the tissue boundary. However, in particular in this thesis, investigating

effects at the boundaries of the tissue due to the conductive connection of the extracellu-

lar space to the surrounding environment is the original purpose of the modeling. In this

case, an alternative solution is to assume that α and the outside conductivity σo are large,

which decouples the corresponding potentials from the dynamics of the membrane poten-

tial and makes them parameters as seen for equation (2.11). This way, an extracellular

or outside potential (e.g., a uniform electric field) can be assumed rather than calculated,

which makes it possible to use equation (2.10a) itself or a boundary condition obtained

by subtracting equation (2.10c) from equation (2.10a):

n ·D∇(Vm + ve) = 0 on ∂D (2.15)

or

n · ασi︸︷︷︸
=σe

∇Vm = −n · σo∇vo on ∂D (2.16)

The second boundary condition (2.16) will be used in section 3.2 to study the effect of

electric fields near boundaries of the tissue. As for the bi-domain model (2.9), the mono-
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domain equation (2.13) has to be supplemented by a concrete model H for the local

variables h and the corresponding ionic currents Iion(Vm,h). The models used in this

thesis will be introduced in section 2.1.6.

2.1.4 Anisotropy

Although all simulations in this thesis are carried out assuming isotropic diffusion, for

completeness of the mathematical framework, the construction of the corresponding ten-

sors for the specific requirements of cardiac tissue shall be mentioned here briefly: The

anisotropic conductivity of cardiac tissue due to the fiber orientation and sheet structure

of the muscle (see section 1.3) can be implemented in the bi-domain and in the mono-

domain model by choosing the diffusion tensor D or equivalently the conductivity tensors.

D can be constructed from its three eigenvectors, each of which represents a direction in

which a potential gradient leads to a current density in the same direction, with a con-

ductivity equal to the corresponding eigenvalue. The fiber orientation determines one of

these directions, the other two are uniquely defined by the normal vector of the laminar

sheets (the remaining vector thus corresponds to the direction perpendicular to the fibers

within the sheet). These three eigenvectors form an orthonormal basis of R3, implying

that D must be a real, symmetric matrix. Using these properties, the entire tensor D is

determined by two unit vectors in space defining the fiber direction f = (fx, fy, fz) and

the direction normal to the sheet plane n = (nx, ny, nz) and by diffusion constants D‖
along the fibers, D⊥ perpendicular to the fibers (within the sheet) and D⊥⊥ normal to

the sheets (see equation 17 in [32]):

Dij = δijD⊥ + (D‖ −D⊥)fifj + (D⊥⊥ −D⊥)ninj , i, j ∈ {x, y, z} (2.17)

A common simplification is to ignore the sheet structure and thus assume D⊥⊥ = D⊥,

which eliminates one of the terms in equation (2.17). Note also that, in general, both the

directions and diffusion constants may vary spatially.

The so-called anisotropy ratio is defined as the quotient D‖/D⊥. In the bi-domain equa-

tions, the two conductivity tensors σe and σi can be chosen independently. While the

fiber orientation for both is the same, because it is given by the geometrical arrangement

of the cells, the anisotropy ratio can be different. The case of equal anisotropy ratio is the

one considered in the mono-domain approximation of section 2.1.3.

2.1.5 The phase-field method

As outlined in section 2.1.3, boundary conditions constitute an important part of any

problem described by a PDE on a spatial domain D. It was mentioned that a widely-used

boundary condition for mono-domain cardiac models is no-flux. Another possibility which

was derived for the case of a predetermined extracellular/outside potential is that of equa-

tion (2.16) in the same section. Both boundary conditions are of the Neumann type, i.e.

they fix the normal fluxes n ·D∇u on the boundary ∂D. As will be shown in section 2.2.3,

for a finite-difference numerical scheme, no-flux boundary conditions are straightforward

to implement, if the boundaries of the domain D are parallel to the coordinate axes, e.g.,

rectangles in cartesian coordinates or (fractional) annuli in polar coordinates. For ar-
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bitrarily shaped domains D, there is no such natural way of imposing zero flux on the

domain boundary. In this case, one usually resorts to more complex and computationally

intensive numerical schemes like finite-volume or finite-element methods (see section 6.3

of reference [32] and references therein).

In reference [134], Fenton et al. introduce a phase-field method to impose no-flux bound-

ary conditions on arbitrary geometries using finite differences on a simple (e.g., rectan-

gular) computational domain Dc which contains the actual physical domain D. In the

following, this method will be explained in detail and extended to arbitrary Neumann

boundary conditions of the type of equation (2.16). Furthermore, mathematical improve-

ments to the convergence proof will enable a better assessment of the method’s numerical

accuracy. The generalized method will be used extensively in section 3.2 to study the

effect of electric fields at boundaries of curved tissue domains.

Description of the method

The phase-field method is based on defining a phase field φ, which is a smoothed version

of the characteristic function of D, i.e. φ ≈ 1 inside the domain D ⊂ Dc and φ ≈ 0

otherwise, with a smooth transition in between. In this thesis, a different dynamical

system than suggested in reference [134] shall be used for obtaining φ from the sharp,

original characteristic function φ0:

∂φ

∂t
= (φ0 − φ) + ξ2∆φ. (2.18)

In this equation, φ approaches a smooth phase field for t → ∞, which stays close to φ0

and has a diffusive boundary with a characteristic length scale ξ of the resulting transition

at the interface between φ = 1 and φ = 0. It does not suffer from the stability issues in

higher dimensions mentioned in [134] for the double-well potential method defined therein.

Hence, any method that finds the equilibrium of equation (2.18) may be used instead of

explicit time-stepping. In the following, this steady-state solution will be referred to as

φ. An example for φ0 and the resulting φ is depicted in figures 2.2a) and b), respectively.

One property that will prove to be important for the line of thoughts below is that the

normal slope of lnφ decreases rapidly and monotonically within the interface region (in

the outward direction) until reaching an approximately constant value on the order of

−1/ξ, as shown in figure 2.2c). Hence, at large normal distances from the interface, φ

decays approximately exponentially and ∂2 lnφ/∂n2 ≈ 0. As illustrated in figure 2.2d),

the normal direction is defined by the direction of the gradient ∇ lnφ itself.

The phase field method then consists of substituting the original diffusion term (e.g., in

equation (2.13)) by a modified term that involves the phase field φ:

∇ · (D∇u) → 1

φ
∇ · (φD∇u) (2.19)

The resulting PDE after the substitution is assumed to be defined on the whole domain Dc,
but only the part of the solution in D ⊂ Dc is taken to have physical meaning. Fenton

et al. present a mathematical argument in reference [134] for a one-dimensional tissue

domain which suggests that the substitution (2.19) for Dc, leads to a solution in D that
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Figure 2.2: Phase field behavior. a) Initial binary phase field φ0, i.e. the characteristic
function of D. b) Steady-state solution of equation (2.18) with φ0 from a) and ξ = 2.
c) |∇ lnφ| which is equal to −∂ lnφ/∂n if one defines the normal vector n to be anti-
parallel to ∇ lnφ. The logarithmic normal derivative increases quickly from 0 inside D to
an approximately constant value ≈ 1/ξ outside D. d) lnφ shown as a color plot and the
corresponding gradient shown as arrows for the region indicated by a white rectangle in
c).
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Vdn2
dn1

dt1

dt2

φ0 = 1 φ0 = 0

Figure 2.3: Volume integration at the phase-field interface. Sketch of the integration
volume for equation (2.22) parallel to the boundary ∂D which is defined by the border
between φ0 = 1 (green) and φ0 = 0 (gray). Arrows indicate normal vectors on the surfaces
of the integration volume corresponding to the individual terms in equation (2.23).

obeys a no-flux boundary condition

n · (D∇u) = 0 on ∂D. (2.20)

A similar proof for higher dimensions based on the same idea was provided in reference

[162]. In the following, this idea and its shortcomings in terms of the necessary mathe-

matical assumptions will be presented and an argument will be given how these deficits

may be resolved.

Original convergence proof

Omitting any additional non-spatial degrees of freedom for the reaction term, the general

PDE for a reaction-diffusion system with the replacement equation (2.19) is

∂u

∂t
= f(u) +

1

φ
∇ · (φD∇u), (2.21)

where f is assumed to be bounded for bounded u. The multi-dimensional equivalent of the

mathematical argument given in [134] starts by integrating equation (2.21) over a small

volume V across the boundary ∂D, which yields∫
V
φ
∂u

∂t
dV =

∫
V
φf(u) dV +

∫
V
∇ · (φD∇u) dV =

∫
V
φf(u) dV +

∮
∂V
φD∇u · dA.

(2.22)

The geometrical situation is illustrated in figure 2.3, with the volume V shaded gray. A

similar strategy for a different integration path is given in reference [163], but the following

argumentation applies universally. Denoting the individual contributions to the surface
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integral separately leads to ∫
V
φ
∂u

∂t
dV =

∫
V
φf(u) dV

+

∫
∂V 1

n

φD∇u · dn1

+

∫
∂V 2

n

φD∇u · dn2

+

∫
∂V 1

t

φD∇u · dt1

+

∫
∂V 2

t

φD∇u · dt2

+ . . . .

(2.23)

The dots indicate that, in the case of three dimensions, there are two more terms for

another direction parallel to the boundary ∂D. However, for everything presented in the

following, these terms can be treated analogously to the two explicitly mentioned in equa-

tion (2.23). For a given interface width ξ of φ, the normal width of the volume V is

chosen such that the two boundaries of V parallel to the boundary ∂D are at iso-φ levels

of φ = 1− ε and φ = ε for an arbitrarily small ε > 0.

By assuming smooth and bounded solutions u and choosing sufficiently small V (corre-

sponding to small enough ξ for fixed ε), the individual integrands of equation (2.23) can be

approximated by constants, except for the variation due to the factor φ. By then letting

ξ tend to zero, i.e. reducing the width of V normal to the boundary ∂D and making φ

steeper and steeper, the integral on the left hand side and the integrals of the tangential

components ∂V 1
t and ∂V 2

t on the right hand side of equation (2.23) vanish, because they

are integrated over a volume and a surface, respectively, whose size tends to zero. The

same is true for the reaction term, which is assumed to be bounded for bounded u. Using

the fact that φ ≈ 1 on ∂V 2
n and φ ≈ 0 on ∂V 1

n , only one of the two remaining integrals

actually has a non-zero contribution, resulting in

0 =

∫
∂V 2

n

φD∇u · dn2 ≈ |∂V 2
n |D∇u · n (2.24)

⇒ n ·D∇u = 0, (2.25)

where |∂V 2
n | denotes the surface area of ∂V 2

n .

If the above reasoning was justified, equation (2.25) would indicate that no-flux bound-

ary conditions are actually implemented by the phase field method. However, it is not

known a priori, whether the integrands are bounded independent of the choice of ξ. As the

integrands contain derivatives of u, it is not even sufficient to assume that u is bounded.

Indeed, it is quite natural to expect that by letting ξ tend to zero and thus approaching the

limit of a non-differentiable φ, the gradients of the solution u could blow up. Thus, if the

crucial assumption of boundedness is not fulfilled, it can neither be concluded that inte-

grals tend to zero because the integrated volume does, nor that for ∂V 1
n the approximation

φD∇u = εD∇u ≈ 0 holds (for sufficiently small ε). In fact, it becomes obvious that the
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line of thoughts above is not sufficient, if one notes that it would also work without the

factor φ in the volume integrals of equation (2.23), which corresponds to the additional

prefactor 1/φ in equation (2.19). As will be shown below, this prefactor is vital for the

method to yield the desired result.

In a more recent publication [164], Li et al. showed that phase-field methods can be used

to model a number of different boundary conditions, no-flux being a special case which

can indeed implemented by equation (2.21). However, the mechanisms described below

by which the phase-field method achieves its goal also explain some important details of

the numerical implementation not provided by the very abstract proof in reference [164].

Mechanism of boundary condition enforcement

Rewriting equation (2.21), the terms of the original PDE and the influence of the phase

field can be separated:

∂u

∂t
= f(u) +

1

φ
∇ · (φD∇u) (2.26)

= f(u) +∇ · (D∇u) +
1

φ
(∇φ) · (D∇u)

= f(u) +∇ · (D∇u) + (∇(lnφ)) · (D∇u), (2.27)

where “·” in the last two equations is the dot product between two vectors. In equa-

tion (2.27), the third term only becomes active, if there are components of the current

density −D∇u perpendicular to the boundary (i.e. violating the intended no-flux bound-

ary condition), as ∇(lnφ), by definition of the phase field, is just a scaled normal vector:

∇(lnφ) =
∂ lnφ

∂n
n (2.28)

With this information, equation (2.27) reads:

∂u

∂t
= f(u) +∇ · (D∇u) +

∂ lnφ

∂n
n · (D∇u) (2.29)

Note that the second term resembles an advection term in fluid dynamics, though the

velocity field is not divergence free. Shifting D to the other side of the scalar product, the

velocity field for the quantity u is given by

−∂ lnφ

∂n
Dn. (2.30)

As D is positive definite, n ·Dn ≥ 0. Taking n to point out of the domain D, according

to figure 2.2c) ∂ lnφ/∂n < 0 holds, which means that the velocity (2.30) points into the

same half-space as n, although it might not be normal to ∂D. Therefore, u is “advected”

outwards with a velocity proportional to |d lnφ/ dn|.
To show that the assumed boundedness of the integrands in equation (2.23) is actually

present, the so-called maximum principle will be used: If the local reaction term in equa-

tion (2.21) is ignored for the moment, a pure diffusion equation is obtained. The maximum

principle states that the solution u(x, t) for 0 ≤ t < T and x ∈ Dc is attained either on the
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spatial boundary ∂Dc or at some point x ∈ Dc at t = 0 [165]. Another way to say this is:

The solution will never exceed the maximum of the initial field u at t = 0, provided that

the values on the boundary ∂Dc stay below the maximum as well. The same applies to

the minimum. For the purpose of the following reasoning, it is assumed that the bound-

ary ∂Dc of the auxiliary domain is subject to a passive boundary condition which never

attains a maximum or minimum, for example a Dirichlet condition u = 〈u(t = 0)〉Dc on

∂Dc. Below, it will be argued why the boundary condition on the auxiliary domain is not

important for the solution u in the physical domain D.

Having the maximum principle at hand, an upper bound for the left hand side of equa-

tion (2.23) can be obtained by differentiating equation (2.21) (still without the local reac-

tion term) with respect to t and noting that the time derivative ∂u
∂t itself therefore fulfills

the diffusion equation

∂ ∂u∂t
∂t

=
1

φ
∇ ·
(
φD∇∂u

∂t

)
. (2.31)

The initial condition ∂u
∂t

∣∣
t=0

is connected to the initial condition u0(x) = u(x, t = 0)

of the original diffusion equation via equation (2.21) or equation (2.29). Given that u0

fulfills the no-flux boundary condition in the interface region, the φ-dependent terms in

equation (2.29) drop out and thus ∂u
∂t is bounded independent of φ by the maximum

principle for all t: ∣∣∣∣∣ ∂u∂t
∣∣∣∣
(x,t)

∣∣∣∣∣ ≤ C ∀x, t and ∀ξ. (2.32)

In the context of excitable media, with the source term f = Iion introducing additional
∂u
∂t contributions, usually, the fastest time scale of u is given by the rise velocity upon

activation. The maximum principle therefore ensures that ∂u/∂t is not increased further

by the φ-dependent diffusion dynamics and C can be interpreted as the upstroke velocity

of the action potential.

The boundedness of the integrand involving the reaction term f(u) in equation (2.23) is

seen immediately, because u itself is subject to a diffusion equation and thus obeying the

maximum principle, if f(u) is omitted in equation (2.21). Again, this means that the

φ-dependent diffusion dynamics cannot increase or decrease u further than determined by

the reaction dynamics. Therefore u is bounded and so is f(u).

For the remaining terms on the right-hand side of equation (2.23), a simpler special case

is considered, namely that of a diffusion tensor D which is nearly spatially constant in the

interface region and of an approximately straight boundary, such that spatial derivatives

of D and n can be neglected.4 Under these assumptions, differentiating equation (2.29)

4D constant has to be required only in the interface region, because it is reasonable to assume that the
dynamical system, uninfluenced by the phase field, only produces finite spatial gradients in the physical
domain D. Anything else would render numerical simulations (even without the phase field method)
impossible in any case. Therefore, here, it is sufficient to show that these gradients are not amplified by
the choice of the steepness parameter ξ of φ. Furthermore, the assumption of a nearly straight boundary
is probably not as stringent as it might first seem, as on the spatial scale of ξ, every boundary with finite
curvature becomes straight for ξ → 0. However, this generalization will not be shown here.
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in the normal direction yields:

∂ ∂u∂n
∂t

= ∇ ·
(

D∇∂u
∂n

)
+
∂ lnφ

∂n
n ·
(

D∇∂u
∂n

)
+
∂2 lnφ

∂n2
n · (D∇u) (2.33)

=
1

φ
∇ ·
(
φD∇∂u

∂n

)
+
∂2 lnφ

∂n2
n · (D∇u) (2.34)

If only the first term on the right hand side was present, ∂u
∂n would be bounded by the

maximum principle. Due to the shape of the phase field (compare figure 2.2 and the begin-

ning of this section), ∂
2 lnφ
∂n2 is negative everywhere in the interface region and approaching

zero from below in the outward direction. Therefore, the second term on the right hand

side is only present in the interface region and opposite in sign to the normal component

of the flux D∇u. As D is positive definite, the induced change of ∂u/∂n = n · ∇u leads

to a reduction of the normal component of D∇u, because in general, for a vector v with

a normal component vn

∂n ·Dv

∂vn
= n ·Dn ≥ 0, (2.35)

which means that the change of the normal component of Dv is positive, if the normal

component of v is increased. The second term in equation (2.34) can therefore be viewed

as a feedback term that aims at reducing n ·D∇u to zero by changing n · ∇u appropri-

ately. This can in principle mean that |n · ∇u| is increased (if D is anisotropic), but zero

flux will always be reached at finite values, as indicated above, depending on the parallel

components of ∇u. As the phase field transition length ξ tends to zero, the “feedback

strength” is increased. Applying the same strategy for the derivative of u parallel to the

boundary yields equations for p · ∇u = ∂u/∂p identical to equation (2.34), only without

the last term. Therefore, this component is bounded by the maximum principle.

In summary, the gradient ∇u will thus be bounded independent of the steepness of the

phase field at the boundary of D (at least in the approximations used here), which renders

the line of thoughts after equation (2.23) correct. In addition to verifying the validity of

the phase field approach, the above reasoning contains some useful information about the

mechanisms, by which the no-flux boundary condition is achieved: Most importantly, one

ambiguity of the ansatz (2.19) was removed. It is now clear why simply multiplying D by

the phase-field φ does not lead to the desired results, although equation (2.23) apparently

suggested this. If this was done, equation (2.29) would contain ∂φ/∂n instead of ∂ lnφ/∂n

(in addition to a factor φ before the diffusion term, which would, however, not have any

impact). Replacing lnφ by φ in equation (2.34) would destroy the gradient reduction effect

of the second term. Therefore, it would not be possible to conclude that the gradient is

bounded.

Furthermore, when the constant C in equation (2.32) is interpreted as the upstroke ve-

locity, as suggested, it can be seen from equation (2.23) that the accuracy of the method

depends on this maximum upstroke velocity. This was also noted in reference [134], with-

out, however, taking into account the possibility that this might be caused by the phase

field method itself. This has now been ruled out by the line of thoughts above. An addi-

tional source of inaccuracy stems from the steepness of gradients arriving at the interface

region from inside the domain D. Equation (2.34) indicates that the boundary condition
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of the original problem formulated for D has been replaced by a dynamical process that

aims at reducing n · (D∇u) to zero. As this does not happen instantaneously, larger initial

gradients mean larger remainders of n · (D∇u) after the reduction process. In excitable

media reaction-diffusion systems, the upstroke velocity and the steepness of gradients are,

of course, closely related.

Finally, equation (2.29) together with the information illustrated in figure 2.2c) indicates

that the velocity, with which the quantity u is transported outwards, increases steadily

in the interface region and becomes ≈ 1/ξ after some distance. The smaller ξ, the less

information can therefore travel back from Dc\D to D. The only process available for

this is the diffusion term in equation (2.29), which does not depend on φ and is therefore

arbitrarily slow. This means that the auxiliary (arbitrary) boundary condition applied

for numerical reasons at the boundary ∂Dc of the auxiliary domain becomes less and less

important. This fact is useful for the numerical implementation of the phase field method

(see section 2.2.3).

Extension to other boundary conditions

Although the phase-field method was designed by Fenton et al. to implement no-flux

boundary conditions on arbitrary geometries, with the information above, it can be ex-

tended to a more general type of Neumann boundary conditions of the type

n ·D∇u = n ·E, (2.36)

where E is a fixed vector. This is a special case of equation (2.16), when σo∇vo is a constant

electric field vector. It is seen immediately from the line of thoughts after equation (2.22)

that the corresponding phase field replacement in this case is

∇ · (D∇u) → 1

φ
∇ · (φ(D∇u−E)). (2.37)

With this substition, equation (2.21) is not altered for regions where φ ≈ 1, since −∇·E =

0. In the integrals of equation (2.23), however, the additional term appears, leading to

n · (D∇u−E) = 0 in equation (2.25), which is the desired boundary condition. The same

result can be obtained from reference [164] by starting from equations 2.28 and 2.37 and

substituting the correct boundary condition.

2.1.6 Models

So far, in this chapter, the cross-membrane current Iion(Vm,h) in, e.g., equations (2.4),

(2.9) or (2.13) has been treated as an unknown quantity whose dynamics is determined by

the membrane potential Vm and an additional set of equations for the local (i.e. spatially

uncoupled) variables h. As described in section 2.1.1, one approach to construct this term

is to empirically determine the contributions of all different ion species and membrane

compounds that lead to transmembrane currents. Indeed, many models based on this

bottom-up approach exist, although they are by definition based on incomplete data. A

comprehensive list of physiological models, ordered by tissue type (atrial/ventricular) and

species can be found in reference [166]. One advantage of this approach is that model pa-
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rameters can directly be related to physiological properties, which enables investigations of

genetic defects and facilitates the adaption of the model for disease conditions. However,

a major drawback of these models is their computational cost, due to the large number

of local variables used. One extreme example is the Wang-Sobie model for neonatal rat

ventricular myocytes [153] with 35 dynamic variables and 74 parameters. Although the

large number of parameters might be beneficial for the reasons mentioned above, it is at

the same time hindering generic approaches such as parameter scans or fitting procedures.

Also, for most physiological models, sensitivity of the dynamics to individual parameters

is not documented, which further complicates the analysis.

On the other end of the spectrum, generic models are created using a top-down approach

to the model construction problem. Rather than incorporating every possible detail of

the system for which information exists, they try to mimic the basic properties of cardiac

tissue (or even more generic: of excitable media) using the fewest number of variables

and parameters possible to achieve a particular degree of realism. A very generic model

for excitable media is the Barkley model [72], which consists of only two variables and

three parameters which determine the basic properties of the medium such as the ex-

citability, excitation threshold and duration. The Barkley model will be used in this work

for numerical simulations, when values of physiological parameters are not important or

unknown and when results are to be obtained for the large class of excitable media. In all

other simulations, the somewhat more detailed three-variable Fenton-Karma model [84]

will be used, which has 14 parameters that enable it to reproduce important aspects of

the dynamics of more realistic cardiac models.

The Barkley and the Bär-Eiswirth model

This two-variable, generic model was developed by Barkley in the beginning of the 1990s

in an effort to understand spiral wave dynamics in generic excitable media. Although

already used in reference [72], it was newly introduced in its most efficient numerical form

in reference [167]. Its equations are

∂u

∂t
=

1

ε
u(1− u)

(
u− v + b

a

)
+∇2u (2.38a)

∂v

∂t
= g(u, v), (2.38b)

with the parameters ε, a and b. For the original Barkley model, g(u, v) = u − v. The

fast variable u can be identified as a normalized Vm in the mono-domain formalism of

section 2.1.3, while the local part on the right hand side of the u-equation represents the

cross-membrane current term −Iion/Cm. There is only one local variable, such that h is

actually a scalar and h = v. The diffusion tensor is normalized to D = Id. An example

of the local dynamics of the model, i.e. without the diffusion term, following a series

of stimulations is shown in figure 2.4. It can be understood from the (u, v) phase space

structure, which is typical for simple excitable systems5 and is depicted in figure 2.5. It

has a stable fixed point at (0, 0), whose basin of attraction is the whole square [0, 1[×[0, 1],

5Another example for a two-variable system with a similar phase space structure is the FitzHugh-
Nagumo model [168, 169], which is a reduced version of the nerve axon model constructed by Hodgkin and
Huxley.
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Figure 2.4: Barkley model dynamics. Four attempts, marked by “×”, to induce an
excitation in the Barkley model (without diffusion) by instantaneously setting the model
variable u. In the first case, the stimulation is subthreshold. The second and third
stimulation produce almost identical excitations, whereas the fourth stimulation occurs at
a time when excitability is not fully recovered yet, as v has not returned to zero. Because
of this refractoriness, the stimulation fails to produce an excitation. Model parameters:
B1 (see table A.1, page 177).
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Figure 2.5: Barkley model: local phase space. Shown are two stimulation attempts
from the fully recovered state: one is subthreshold (cyan), causing the system to return
immediately to the stable fixed point at (0,0), whereas the other one is far enough in the
u̇ > 0 region to produce an excitation (blue). Arrows on the trajectories mark equidistant
time points, indicating the fast dynamics of u compared to v. The tilted u nullcline has
the equation v = au−b and is responsible for the refractoriness shortly after an excitation,
when still v > 0, but u ≈ 0: in this case, the distance to the right necessary to cross the u
nullcline is considerably increased. When v > a−b, the system is in absolute refractoriness,
because then for every u ∈ [0, 1[ it is u̇ < 0. Model parameters: B1 (see table A.1, page
177).
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but trajectories starting a considerable distance6 right of the nullcline u = (v+ b)/a make

a large detour close to u = 1, v = 1 and v = 0 before returning to the fixed point. In

contrast, trajectories starting close to (u, v) = (0, 0) return directly. The first case corre-

sponds to action potential following a superthreshold depolarization, whereas the second

is a subthreshold depolarization not strong enough to evoke an action potential. The

meaning of the three parameters in terms of the characteristics of excitable media can

readily be read off the phase space diagram: b/a is the excitation threshold during rest,

whereas ε determines the time scale of u compared to v. Its main impact is on the up-

stroke velocity of an action potential, which also determines the conduction velocity in the

spatially extended case in conjunction with diffusion. a on its own mainly influences the

action potential duration, as it determines the slope of the above-mentioned nullcline and

thus the value of v at which u starts to decrease.

Despite its simplicity, the Barkley model (now, again, including the Laplacian term) sup-

ports a large number of different wave patterns, including pulses, plane waves and both

stationary and meandering spiral waves. However, there are no (homogeneous) parameters

for which the Barkley displays spiral wave breakup or other types of chaos. It was shown

by Bär and Eiswirth that turbulence can be observed by delaying the increase of the

slow variable v. This can be done by redefining g in equation (2.38) as follows [73]:

g(u, v) =


−v u < 1

3

1− 6.75u(u− 1)2 − v 1
3 ≤ u ≤ 1

1− v u ≥ 1

(2.39)

This modification will be referred to as the Bär-Eiswirth model in the rest of this thesis.

The Fenton-Karma model

The equations for this generic model were developed by Fenton and Karma in 1998 with

the aim of capturing the most important features specific to cardiac models (as opposed

to general excitable media). Consequently, although the model has only three variables, it

considerably more tightly connected to the physiological mechanisms of excitability in the

cardiac muscle. The model considers three cross-membrane currents, named fast inward

(fi), slow outward (so) and slow inward (si) current. These roughly correspond to the

sodium, potassium and calcium currents, respectively (cf. section 1.2.1). However, the

complexity of different ion channel types and other contributions to membrane potential

dynamics has been condensed into these net currents and their activation and inactiva-

tion. Therefore, the parameters (most of which are timescales and thresholds) have a

physiological meaning in that they reflect typical or net properties of these summarized

currents, but nevertheless they cannot be interpreted as descriptions of the microscopic

components responsible for membrane potential dynamics.

6This distance is indeed finite and depends on the parameter ε, which determines, for a fixed starting
point of the trajectory, whether the u dynamics will be successful in driving the system even more to the
right and thus to performing an action potential, or whether the v dynamics is dominant and brings the
system back over the u-nullcline and thus directly to the fixed point.
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The equations of the Fenton-Karma model are

∂u

∂t
= ∇ ·D∇u− Jfi(u, v)− Jso(u)− Jsi(u,w) (2.40a)

∂v

∂t
= Φ(uc − u)(1− v)

(
Φ(u− uv)

τ−v1

+
Φ(uv − u)

τ−v2

)
− Φ(u− uc)

v

τ+
v

(2.40b)

∂w

∂t
= Φ(uc − u)

1− w
τ−w

− Φ(u− uc)
w

τ+
w

(2.40c)

where the three cross-membrane currents are defined as

Jfi(u, v) = − v

τd
Φ(u− uc)(1− u)(u− uc) (2.41a)

Jso(u) =
u

τ0
Φ(uc − u) +

1

τr
Φ(u− uc) (2.41b)

Jsi(u,w) = − w

2τsi
(1 + tanh[k(u− usic )]). (2.41c)

The sum of these currents corresponds to the term −Iion/Cm of section 2.1.3. Again, u

is a normalized membrane potential Vm and on the order 0 to 1, such that one unit of u

roughly corresponds to a 100mV membrane potential change. The vector of local variables

for the Fenton-Karma model therefore is h = (v, w).

In its original published form, the function Φ(x) in equations (2.40) and (2.41) is simply

the step function

Φ(x) = Θ(x) :=

 1 x ≥ 0

0 x < 0.
(2.42)

However, in this case, the right hand side of the dynamical system (2.40) is not differen-

tiable. When this is required, an continuous approximation for the step function will be

used instead:

Φ(x) = Θ∗(x) :=
1

2
(1 + tanh(k2x)) (2.43)

In this way, k2 becomes an additional parameter of the model and the original dynamics

is recovered for k2 → ∞, which is why large values for k2 will be used throughout this

thesis. With this choice of Φ, the equations will be referred to as the smooth Fenton-

Karma model .

The steady state of the Fenton-Karma model is close to (u, v, w) ≈ (0, 1, 1), where u, even

for the case Φ = Θ, deviates slightly from 0 because of the tanh term in equation (2.41c).

If depolarized above the threshold uc, the fast inward current Jfi drives u rapidly towards

1, on a time scale defined by τd. Jso is responsible for repolarization, whereas Jsi is the

current that counteracts Jso during the plateau phase [84]. The local variables v and w

are gates for the fast and slow inward currents, respectively. For the resting state, these

two currents have their full amplitude, but time periods in which u > uv or u > uc bring

v and w closer to 0, thereby reducing the ability of the model membrane to depolarize

or withstand the repolarizing slow outward current. This leads to both a decrease in

membrane excitability (upstroke velocity) and action potential duration (APD), the former
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Figure 2.6: Fenton-Karma model dynamics. Four attempts, marked by “×”, to
induce action potentials in the Fenton-Karma model (without diffusion) by instantaneously
setting the model variable u. In the first case, the stimulation is subthreshold. The
second and third stimulation each produce an excitation, but the APD varies due to
restitution. The fourth stimulation occurs during refractoriness and fails to produce an
action potential. Model parameters: FK1 (see table A.2, page 177).

correlating with conduction velocity (CV).

As both kinds of refractoriness are parameterized separately with corresponding thresholds

and time scales, the Fenton-Karma model is able to reproduce a variety of CV and APD

restitution curves, even for more complex models as well as experimentally measured

restitution curves. Indeed, providing a simple (as opposed to ionically accurate) model

with realistic restitution properties was one of the primary reasons for its construction

[84]. Later, an extended version with four variables was published which, in addition to

the restitution properties, also produces more accurate action potential shapes [163]. In

summary, despite its lack of detail on the ionic level, the Fenton-Karma model represents

an intermediate class of models that is still generic but accounts for some important

properties specific to cardiac tissue. An example trajectory of the local model dynamics

is shown in figure 2.6. It should be noted that the meaning of the parameters τ−v1 and τ−v2

is reversed in reference [104] with respect to the original model publication in reference

[84]. In this work, the original definition is used.

2.1.7 Spiral tips and phase singularities

In contrast to plane waves which travel through a given finite domain only once and self-

terminate when they arrive at a boundary, spiral waves have, in principle, an unlimited life

span. Both the Barkley model and the Fenton-Karma model can exhibit this fundamental

excitation pattern of excitable media. The inherent stability of spiral waves is one of the

key reasons for their dangerousness in the context of cardiac dynamics (see section 1.4).

Even during the chaotic activity of fibrillation, activity has been shown to be organized

around phase singularities [42, 43].

Spiral waves can, in general, extend over an arbitrarily large domain. However, unless the

spiral is perturbed very close to its center (the spiral tip), it will continue to rotate largely

uninfluenced. The organizing centers around which spiral waves rotate can be character-

ized by phase singularities. A suitable phase for the detection of phase singularities can

be defined in different ways. In the two-variable Barkley model, this is particularly simple,
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Figure 2.7: Spatial phase distribution. a), b) Exemplary distributions of the u and
v variables of the Barkley model during spiral wave dynamics. c) Distribution of the
phase θ. Near the center of the domain, all phases converge in a single point – the phase
singularity. Simulation of the Barkley model using parameter set B1 (see table A.1, page
177).

since the trajectory of a normal activation in the local phase space is similar enough to a

circle to define a phase θ by the function [170]

θ(x, t) = arctan2(u(x, t)− u∗, v(x, t)− v∗), (2.44)

where (u∗, v∗) is a point in the local phase space which is circled by the trajectory during

a normal activation. For the example shown in figure 2.5, (u∗, v∗) = (0.3, 0.3) would be

an appropriate choice, although one has to ensure that the values are still adequate when

looking at the dynamics of a single point embedded into the extended system. An example

for this definition of the phase and the resulting phase distribution in space are shown in

figure 2.7 for a spiral wave in the Barkley model. Close to the center of the domain,

all different phases θ ∈ ]−π, π] are present. This point defines the phase singularity.

When the model has more than two variables, one can select two suitable variables or two

different combinations of variables to define the phase according to equation (2.44). If this

is not straightforward or, e.g., only the membrane potential is available experimentally,

delay embeddings (or, almost equivalently, the derivative) of the membrane potential or

Hilbert transformations can be used to obtain a second variable for the definition of a

phase [170, 171, 172]. In this thesis, spiral tip detection will only be carried out for the

Barkley model, so the above method is sufficient.

In a spatial domain D with two dimensions and with a suitable definition of the phase,

the topological charge ntop can be defined as [173]

ntop =
1

2π

∮
∂D

∇θ dl, (2.45)

where l is the path parameterizing the boundary ∂D of D. ∇θ is well-defined (except at

the phase singularity itself) if the phase interval ]−π, π] is interpreted as having periodic
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boundary conditions, or equivalently, if for each point in space, the branches of the arctan2

function are chosen appropriately. Assuming that the phase θ is differentiable everywhere

in D, equation (2.45) trivially yields ntop = 0 due to Stokes’ theorem. However, integrating

once around a phase singularity leads to a line integral of ±2π, which is possible despite

Stokes’ theorem, because θ cannot be made differentiable everywhere. The topological

charge of a domain with one phase singularity is thus ntop = ±1, where the sign indicates

the chirality of the phase singularity, which, for the same definition of the phase, char-

acterizes the direction of rotation of the spiral wave. If multiple phase singularities are

present in the domain within the integration path, a net topological charge is obtained.

For the sake of detecting spiral tips, therefore, small integration domains have to be chosen

(see numerical implementation of spiral tip detection in section 2.2.5).

It should be noted that there are other ways of finding spiral wave tips which do not rely

on the definition of a phase. One possibility is to find the intersection of the iso-lines

for two different variables. These two variables can either be two model variables or a

second variable can be obtained using one of the methods mentioned above. A common

choice for the detection of spiral tips and their three-dimensional equivalents, filaments of

scroll waves, is V̇m as the second iso-line or iso-surface (see appendix B of reference [84]).

However, these methods of intersection do not reveal any information about the chirality

of the spiral waves.

2.1.8 Lyapunov stability analysis

Let

du

dt
= f(u) with u(t0) = u0 (2.46)

be a bounded, continuous dynamical system7 with differentiable f : Rn → Rn and u ∈ Rn,

where n is the phase space dimension. Lyapunov stability analysis can make a statement

about overall stability properties of an attractor and quantifies the “sensitive dependence

on initial conditions” that is often viewed as a defining criterion for chaos. This is done

by analyzing the behavior of small perturbations with respect to a reference trajectory

under the assumption that the system is ergodic. An attractor is regarded as stable, when

perturbations in arbitrary directions in phase space do not, in the long run, grow with

time, i.e. all perturbed trajectories decay back to the reference trajectory or at least do

not diverge from it. The analysis is carried out in the tangent space of the dynamics, i.e.

up to linear order. As will be described below in detail, this approximation in general

leads to different exponential growth rates in distinct directions in tangent space, i.e. a

perturbation δu initialized at time t0 grows approximately like δu(t0 + t) = δu(t0) exp(λt)

for large t. The growth rate λ, which depends on direction of the initial perturbation,

is the so-called Lyapunov exponent associated with this direction. The scenario for a

specific direction in phase space is illustrated in figure 2.8. Note, however, that in reality,

the behavior of the perturbations can vary substantially across different regions of the

attractor. Lyapunov exponents are therefore long-term, average growth rates.

7In allusion to some of the excitable media models used in this thesis, the letter u refers here to a state
in phase space (instead of the more widely-used x) to avoid confusion with a position x ∈ Rd in space
(with d = 1, 2, 3).
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u(t0)

u(t0) + δu(t0)

δu
(t

0 )

u(t0 + t)

δu
(t

0
+
t)

Figure 2.8: Lyapunov stability analysis extracts growth rates of perturbations.
The black line represents a reference trajectory u(t0 + t), which is a solution of the dy-
namical system. An infinitesimally perturbed initial condition (dashed circle) leads to
different trajectories. On average, for t → ∞, the perturbation δu with respect to the
reference trajectory either shrinks exponentially (green line; λ < 0), stays constant (blue
line; λ = 0) or grows exponentially (red line; λ > 0).

In the following, a very condensed summary of the mathematical definition of Lyapunov

exponents and vectors will be given, facilitating the numerical implementation of the

analysis (see section 2.2.6) and the interpretation of the results in section 3.1. Instead of

working through this rather technical and mathematical section, some readers might prefer

to skip directly to the next section (page 57) and obtain a more intuitive understanding of

the meaning of Lyapunov exponents and vectors while reading the results in section 3.1.

Definition of Lyapunov exponents

Let

Φt :
(
t,u0

)
7→ u(t0 + t)

R× Rn → Rn
(2.47)

be the flow of the system, where the first argument t is usually written as a superscript

and which is alternatively understood as a family of functions Φt : Rn → Rn parametrized

by t. Combining equations (2.46) and (2.47), this definition is equivalent to the statement

∂Φt

∂t

∣∣∣∣
t′

= f ◦ Φt′ with Φ0 = IdRn . (2.48)

Given a reference trajectory u(t0 + t), we can ask how an infinitesimally perturbed tra-

jectory with an initial condition u0 + δu0 instead of u0 evolves. Up to linear order the
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following identity holds

∂δu

∂t
=
∂(u + δu)

∂t
− ∂u

∂t
= f(u + δu)− f(u) ≈ f(u) + Juf δu− f(u) = Juf δu, (2.49)

where Juf denotes the Jacobian of f at the point u ∈ Rn. Alternatively, we can use the

flow with the perturbed initial condition to obtain an approximation for the temporal

evolution of the perturbation δu:

δu∗(t0 + t) = u(t0 + t) + δu∗(t0 + t)− u(t0 + t) = Φt(u0 + δu0)− Φt(u0) ≈ Ju0

Φtδu0

(2.50)

To see that equation (2.50) actually describes the same dynamics as equation (2.49), we

expand the time derivative of Ju0

Φt . Assuming all the partial derivatives of the flow are

continuous and thus commute, we have

∂Ju0

Φt

∂t

∣∣∣∣
t′

= Ju0
∂Φ
∂t
|t′

(2.48)
= Ju0

f◦Φt′ = J
Φt
′
(u0)

f ◦ Ju0

Φt′
= J

u(t0+t′)
f ◦ Ju0

Φt′
. (2.51)

The composition operator ◦ for linear maps was deliberately used in the last two steps

instead of ordinary matrix multiplication to emphasize the similarity of equation (2.51)

to equation (2.48). A straightforward calculation shows that Ju0

Φ0 = IdRn . By comparing

equation (2.48) with (2.46) and in the same way equation (2.51) with (2.49), we see that

Ju0

Φt is indeed the flow for the perturbations defined by equation (2.49), i.e.

δu∗(t) = δu(t). (2.52)

Oseledec’s theorem [111] ensures under fairly general conditions that the limit

lim
t→∞

(Ju0

Φt
TJu0

Φt)
1/2t = Λu0 (2.53)

exists for almost all initial conditions u0 on the attractor. The logarithms of the eigen-

values of Λ are called Lyapunov exponents and are denoted by λi, i = 1 . . . n, with the

convention that λi ≥ λj for i < j. If we denote the unique Lyapunov exponents (i.e. with-

out multiplicity) by λ(i), each of them is associated with the eigenspace E(i) belonging to

the eigenvalue exp(λ(i)), where dimE(i) is the multiplicity of the Lyapunov exponent. In

this alternative definition, i ranges between 1 and ñ, where ñ is the number of distinct

Lyapunov exponents. One of the fundamental properties of Lyapunov exponents which

makes them useful for the characterization of attractors is that, for ergodic systems, the

eigenvalues of Λu0 and thus the Lyapunov exponents are identical for almost all8 initial

conditions u0 and only the matrix itself and its eigenvectors really depend on u0. Os-

eledec also showed that these exponents can be obtained by looking at the linearized

dynamics of single perturbations δu, which are initialized in the right subset of tangent

space:

λ(i) = lim
t→∞

1

t
ln
∥∥Ju0

Φtδu0

∥∥ δu0 ∈ E(i)\E(i+1) ⊂ Rn (2.54)

8Exceptions are, e.g., unstable fixed points or unstable periodic orbits embedded into an attractor.
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E(i) is the subspace of Rn which is spanned by eigenvectors for which λ ≤ λ(i):

E(i) = span(E(i), E(i+1), . . . , E(ñ))

and for consistency we define E(ñ+1) := {0}. Let Up ∈ Rn be an arbitrary set which is

contained and open in the p-dimensional subspace spanned by linearly independent vectors

δurk0 ∈ E(rk)\E(rk+1) for 1 ≤ k ≤ p and rk suitable integer numbers. As an extension of

equation (2.54), it can be shown that Up grows like the sum of the corresponding Lyapunov

exponents [174, 175, 176]:

lim
t→∞

1

t
ln Vol(Ju0

ΦtU
p) =

p∑
k=1

λ(rk) (2.55)

Since the actual choice of Up within the subspace does not matter, for simplicity, one can

think of the parallelotope spanned by the δurk0 . Choosing Vol(Up) = 1 is a convenient

choice to assign Vol(Ju0

ΦtU
p) the meaning of a growth factor even for finite t. Note however

that, in the formulation of equations (2.54) and (2.55), the choice of δu0 or the δurk0 re-

quires a-priori knowledge of the subspaces E(i). Guessing these subspaces for all Lyapunov

exponents but the first (i = 1) is nearly impossible because E(i) has zero-measure in Rn for

i > 1. Besides this systematic problem, numerical calculation is impeded by the fact that

slight numerical errors will always lead to components of δu in E(1)\E(2), which composes

almost all of Rn. Therefore, any (even most carefully chosen) δu0 will asymptotically grow

like exp(λ1t).

In 1980, more than a decade after the rigorous mathematical definition of Lyapunov ex-

ponents by Oseledec (1968), Benettin and co-workers found a method for calculating

all Lyapunov exponents [112, 113]. It makes use of two basic facts: Firstly, assuming

t = t(m) = m∆t with some m ∈ N, the Jacobian Ju0

Φt can be replaced by

Ju0

Φt = J
u(t0+(m−1)∆t)

Φ∆t J
u(t0+(m−2)∆t)

Φ∆t · · · Ju0

Φ∆t . (2.56)

Secondly, like almost any δu0 will be in E(1)\E(2), similarly, almost any p-dimensional

parallelotope Up defined by linearly independent δuk0, 1 ≤ k ≤ p will be in E(1)\E(p∗+1),

where p∗ is chosen such that λ(p∗) = λp. This means that, almost certainly, the rk in

equation (2.55) refer to the p most expanding directions:

lim
t→∞

1

t
ln Vol(Ju0

ΦtU
p) =

p∑
k=1

λk (2.57)

Since we are dealing with linear maps and so the volume of all open sets in a sub-

space grows by the same factor, by virtue of equation (2.56), growth of the subspace

span(δu1
0, δu

2
0, . . . , δu

p
0) can be calculated as

Vol(Ju0

ΦtU
p) = Vol(J

u(t0+(m−1)∆t

Φ∆t Upm−1) ·Vol(J
u(t0+(m−2)∆t

Φ∆t Upm−2) · · ·Vol(Ju0

Φ∆tU
p)

=

m−1∏
l=0

Vol(J
u(t0+l∆t)

Φ∆t Upl ) with Up0 := Up,
(2.58)
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where the parallelotopes fulfill Vol(Upi ) = 1 for 1 ≤ i ≤ m − 1 and the δuki , 1 ≤ k ≤ p

spanning the parallelotope Upi satisfy

span(δu1
i+1, δu

2
i+1, . . . , δu

p
i+1) ≡ span(J

u(t0+i∆t)

Φ∆t δu1
i , J

u(t0+i∆t)

Φ∆t δu2
i , . . . , J

u(t0+i∆t)

Φ∆t δupi ).

(2.59)

The latter means that a suitable parallelotope can be chosen for each step of the linearized

flow independently, as long as the new parallelotope is in the same subspace as the result

from the last step (Vol(Upi ) = 1 was only chosen to avoid having to divide by the original

volume in each step to obtain the growth factor).

As noted by Benettin, a convenient way to calculate the parallelotopes’ volume and

get a computationally favorable representation of the subspaces is by means of a reduced

QR-decomposition: Let Ai+1 ∈ Rn×p be a matrix whose columns are the p linearly inde-

pendent vectors spanning the parallelotope J
u(t0+i∆t)

Φ∆t Upi . Ai+1 = Qi+1Ri+1 is a unique

decomposition of Ai+1 into a matrix Qi+1 ∈ Rn×p whose columns are orthonormal and

an upper triangular matrix Ri+1 ∈ Rp×p whose diagonal elements we require to be pos-

itive. Each column of Ai+1 is thus expressed as a linear combination of the columns of

Qi+1 whose weights are given by the corresponding column of Ri+1. As Ri+1 is upper

triangular, the first q columns of Qi+1 (1 ≤ q ≤ p) span the same subspace as the first

q columns of Ai+1. Therefore, for any dimension q, 1 ≤ q ≤ p, the first q columns of

Qi+1 can be chosen as a replacement (according to equation (2.59)) for the parallelotope

J
u(t0+i∆t)

Φ∆t U qi spanned by the first q columns of Ai+1. Applying the linearized flow to the

parallelotopes Upi as in equation (2.58) therefore corresponds to a matrix multiplication

Ai+1 = J
u(t0+i∆t)

Φ∆t Qi.

The new paralellotopes for the next step given by Qi+1 automatically fulfill Vol(Upi+1) = 1.

Since the columns of Qi+1 are orthonormal, the q-dimensional volume of the parallelotope

given by the first q columns of Ai+1 can be calculated using

Vol(J
u(t0+i∆t)

Φ∆t U qi ) =

q∏
j=1

Ri+1
jj . (2.60)

Putting it all together, we have

q∑
k=1

λk = lim
t→∞

1

t
ln Vol(Ju0

ΦtU
q)

(2.58)
= lim

m→∞

1

m∆t

m−1∑
l=0

ln Vol(J
u(t0+l∆t)

Φ∆t U ql )

(2.60)
= lim

m→∞

1

m∆t

m−1∑
l=0

q∑
j=1

lnRl+1
jj = lim

m→∞

1

m∆t

m∑
l=1

q∑
j=1

lnRljj .

(2.61)

By subtracting both sides of equation (2.61) for q = i and q = i− 1, it becomes clear that

the Lyapunov exponents are just the time-averaged logarithms of the individual diagonal

elements of R:

λi = lim
m→∞

1

m∆t

m∑
l=1

lnRlii (2.62)
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Norm-indepencence and covariance

Lyapunov exponents are independent of the norm (and scalar product) and of the starting

point u0 (except for some zero-measure set) on the attractor [111, 176, 175]. This makes

them a property of the dynamical system itself, or, more specifically, of one attractor of

it, invariant under diffeomorphic coordinate transformations. The same applies to the

subspaces E(1) ⊃ E(2) ⊃ . . . , the so-called Oseledec splitting: Naturally, they depend on

the coordinates and the reference point u0 on the attractor, but like the corresponding

exponents, they are also norm-independent [177]. How are the two Oseledec splittings at

two different points on the same trajectory u(t0 + t) linked to each other? A corollary of

equation (2.54) is that

lim
t→∞

1

t
ln
∥∥Ju0

Φtδu0

∥∥ ≤ λ(i) ⇔ δu0 ∈ E
(i)
u0 . (2.63)

The suffix u0 was added to E(i) in order to indicate the reference point in phase space to

which the Oseledec splitting is attached. The above question now reads: what can be said

about E
(i)
u1 with u1 = u(t0 + t1)? Similarly to equation (2.56), we have for t > t1:

Ju0

Φt = Ju1

Φt−t1
Ju0

Φt1
(2.64)

If we assume that Ju0

Φt1
is invertible, then substituting equation (2.64) into equation (2.63)

yields

lim
t→∞

1

t
ln
∥∥Ju1

Φt−t1
Ju0

Φt1
δu0

∥∥ ≤ λ(i) ⇔ δu0 ∈ E
(i)
u0

invertibility⇔ Ju0

Φt1
δu0 ∈ Ju0

Φt1
E

(i)
u0 .

(2.65)

As Ju0

Φt1
is invertible, i.e. bijective, Ju0

Φt1
δu0 can be an arbitrary vector within Ju0

Φt1
E

(i)
u0 .

Defining δu1 := Ju0

Φt1
δu0, we thus have

lim
t→∞

1

t
ln
∥∥Ju1

Φt−t1
δu1

∥∥ ≤ λ(i) ⇔ δu1 ∈ Ju0

Φt1
E

(i)
u0 , (2.66)

i.e. Ju0

Φt1
E

(i)
u0 is actually E

(i)
u1 . In general, the subspaces are thus covariant with the linearized

dynamics [175]:

E
(i)
u(t0+t) = Ju0

ΦtE
(i)
u0 (2.67)

Lyapunov vectors

Assuming again invertibility of the linearized flow, everything said so far for Ju0

Φt can

likewise be defined for
(

J
u(t0−t)
Φt

)−1
which is the flow mapping a vector in tangent space

from time t0 back to t0− t. If we use the notation −X for the definition of any variable X

corresponding to this inverted flow and number Lyapunov exponents and eigenspaces in

reverse order, i.e. −λi <
−λj for i < j, equation (2.53) implies

λi = −−λi, 1 ≤ i ≤ n, (2.68)
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as, due to Oseledec’s theorem, the Lyapunov exponents do not depend on the starting

point on the attractor, and the inverted matrix has reciprocal eigenvalues. Furthermore,

we read off equation (2.54):

−λ(i) = lim
t→∞

1

t
ln

∥∥∥∥(J
u(t0−t)
Φt

)−1
δu0

∥∥∥∥ δu0 ∈−E(i)
u0\−E(i−1)

u0 ⊂ Rn (2.69)

−E
(i)
u0 is the subspace of Rn which is spanned by eigenspaces for which −λ ≤−λ(i):

−E
(i)
u0 = span(−E

(1)
u0 ,
−E

(2)
u0 , . . . ,

−E
(i)
u0 )

and for consistency we define−E
(0)
u0 := {0}. An intuitive interpretation of equation (2.69) is:

if initialized sufficiently far in the past, perturbations growing like −−λ(i) = λ(i) (forward

in time) will end up in −E
(i)
u0\−E(i−1)

u0 at t0. Equation (2.54) therefore describes the set of

initial conditions which grow with a specific rate, whereas equation (2.69) determines the

images of this set under the linearized flow. In analogy to equation (2.63), −E
(i)
u0 is the

subspace of vectors that grow backward in time with a rate ≤−λ(i) or equivalently with a

rate ≥ λ(i) forward in time:

lim
t→∞
−1

t
ln

∥∥∥∥(J
u(t0−t)
Φt

)−1
δu0

∥∥∥∥ ≥ λ(i) ⇔ δu0 ∈−E(i)
u0 (2.70)

Like the E
(i)
u0 , the −E

(i)
u0 are thus covariant. Since the eigenspaces −E

(i)
u0 are orthogonal, we

can find an orthonormal basis −eiu0
, 1 ≤ i ≤ n of Rn such that

−E
(i)
u0 = span(−e1

u0
,−e2

u0
, . . . ,−edu0

), d = dim−E
(i)
u0 , 1 ≤ i ≤ ñ. (2.71)

This basis is unique apart from the choice of an arbitrary orthonormal basis within the

eigenspaces with dim−E
(i)
u0 > 1. If a basis fulfills this requirement, the vectors eiu0

are

termed backward Lyapunov vectors [118], because they depend on the action of the flow

in the past. Similarly, forward Lyapunov vectors can be defined in the same way as an

orthonormal basis of the covariant subspaces E
(i)
u0 . Another name for the backward Lya-

punov vectors is Gram-Schmidt vectors [118, 114], because they are linked to the matrices

Qi defined above in the following way and the QR-decomposition can be obtained by

Gram-Schmidt orthogonalization:

Assume q = dimE
(q∗)
u0 for some fixed q∗. The first q columns of the matrix Qi constructed

in section 2.1.8 span a subspace contained in Ju0

Φi∆t

(
E

(1)
u0 \E(q∗+1)

u0

)
. According to equa-

tion (2.54), E
(1)
u0 \E(q∗+1)

u0 ⊂ Rn contains all (and only those) vectors that asymptotically

grow under the action of the linearized flow with exponential rates ≥ λ(q∗) = λq. There-

fore, it follows from equation (2.70) that the subspace spanned by the first q columns

of Qi tends towards −E
(i)
u(t0+i∆t) for large t (or i). Since the subspace is by construction

q-dimensional, the first q columns of Qi thus tend to the backward Lyapunov vectors
−e1

u(t0+i∆t),
−e2

u(t0+i∆t), . . . ,
−equ(t0+i∆t). As mentioned above, once converged to the cor-

responding backward eigenspaces, they are unique except for the freedom of choosing

arbitrary orthogonal vectors within the eigenspaces of dimensionality greater than 1. For

those cases, the backward Lyapunov vectors one obtains depend on the initially chosen

vectors spanning the q-dimensional subspace of E
(1)
u0 \E(q∗+1)

u0 .
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The eigenspaces −E(i) themselves are not covariant, because the −E(i) are by construction

orthogonal, but the linearized flow is not, in general, angle preserving. This implies that

the Gram-Schmidt vectors, are not covariant, either. Obviously, since orthogonality is

defined via a norm, they are not norm-independent. However, there is a set of covari-

ant, norm-independent vectors spanning the same covariant subspaces −E
(i)
u(t0+i∆t), which

can be obtained from sets of forward and backward Lyapunov vectors [114, 178, 118].

Consequently they are know as covariant Lyapunov vectors. Despite their recent popular-

ity [114, 115, 116, 117, 118, 119], some authors noticed advantages of the Gram-Schmidt

Lyapunov vectors, namely their directionality with respect to time [119]: by construction,

they only depend on the past history of the trajectory (cf. equation (2.69)), making them

a more “causal” object than the covariant Lyapunov vectors which are invariant under

time reversal.

In section 3.1, Lyapunov exponents and Gram-Schmidt vectors will be used to character-

ize activation patterns in excitable media. The numerical implementation for this specific

type of system and its compatibility to the abstract dynamical system of equation (2.46)

considered in this section will be outlined in section 2.2.6.
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2.2 Numerical implementation

2.2.1 Time stepping scheme

Simulations of cardiac tissue using mathematical models as described in sections 2.1.3

and 2.1.6 require the numerical solution of PDEs or, more specifically, reaction-diffusion

equations (RDEs). These are of the form of equation (2.13) (page 33). All numerical

results in this thesis are based on the numerical procedure of finite differences: Let

∂u

∂t
= f(u,h) + L[u] (2.72a)

∂h

∂t
= H(u,h) (2.72b)

be the prototypical RDE that is to be solved. u(x, t) is the solution for the diffusing

variable defined on some domain D× [0, T [ ⊂ Rd×R with d ∈ {1, 2, 3}. f : Rn → R is the

local reaction term and L is the diffusion term (a linear operator) which acts spatially on

u. h denotes the vector of local variables and H defines the corresponding dynamics, as in,

e.g., equation (2.13). All simulations in this thesis are initial value problems, meaning that

u(x, t = 0) and h(x, t = 0) are given and the solution for t ∈ ]0, T [ is to be determined. For

this purpose, the solution (u,h) is discretized spatially and temporally, with discretization

steps hx, hy and hz in the (at most) three space directions and ∆t in time. This means

that the solution is only known at spatially equidistant nodes. Rectangular computational

spatial domains are used, even if the physical domain D is not rectangular, using the phase-

field method introduced in section 2.1.5, whose numerical implementation will be explained

in section 2.2.3. If the computational domain has a length Ll in direction l (l ∈ {x, y, z}),
the l-position of node number i is defined to be

πl(i) =
(1 + 2i)hl − Ll

2
i ∈ N0, 0 ≤ i ≤ Nl − 1 (2.73)

The convention hl = Ll/Nl is used, where Nl is the number of nodes in l-direction.

In the case of three spatial dimensions, this implies that the computational domain is

]−Lx/2, Lx/2[× ]−Ly/2, Ly/2[× ]−Lz/2, Lz/2[ ⊂ R3 and that the nodes are placed at the

centers of the computational voxels that are hx×hy×hz in size. An exemplary geometrical

arrangement for a one-dimensional domain is shown in figure 2.9. Numerically, the solution

u thus consists of a finite number of values referred to as uτi,j,k, where i, j and k denote

x

x = −Lx/2 x = 0 x = Lx/2

i = 0

hx

i = 1

hx

i = 2

hx

i = 3

hx

i = 4

hx

Figure 2.9: Numerical grid points in a one-dimensional domain. The simulation
domain isD = ]−Lx/2, Lx/2[ ⊂ R. Nx = 5 numerical nodes are used, whose positions πx(i)
are indicated by black dots. Each node is centered in a computational box hx = Lx/Nx

in size.
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the three spatial indices and τ the time index:

uτi,j,k := u(πx(i), πy(j), πz(k),∆t · τ) (2.74)

with i ∈ N0, 0 ≤ i ≤ Nl − 1 ∀l ∈ {x, y, z} (2.75)

and τ ∈ N0, 0 ≤ τ ≤ T

∆t
(2.76)

The time stepping of consecutive values for all spatial nodes from the initial values u0
i,j,k

is done using a simple forward Euler or forward-time centered-space (FTCS) scheme:

uτ+1
i,j,k = uτi,j,k + ∆t

(
f(uτi,j,k) + (L[uτ ])i,j,k

)
(2.77)

Here, L refers to the approximation of the diffusion operator L in equation (2.72). In

contrast to L, L acts on the discretized field uτ , where this vector quantity contains the

set of u-values at all numerical grid points at the time step τ . L is usually expressed as

a weighted sum of neighboring points, as will be discussed in detail in section 2.2.2, so

it acts like a (sparse) matrix on the vector uτ . (L[uτ ])i,j,k refers to the node (i, j, k) of

the result of this operator approximation. The time stepping of the local variables (the

components of h) is done in the same way as in equation (2.77), only without the diffusion

term.

2.2.2 Diffusion Term

Approximations of the linear operator L can be obtained in different ways, depending on

the specific form of L. They all have in common that the approximation L can usually be

written as a convolution of the form:

(L[u]) (πx(k∗), πy(l
∗), πz(m

∗)) ≈ (L[u])k∗,l∗,m∗ =
∑

k,l,m∈{−1,0,1}

αk,l,m uk∗+k,l∗+l,m∗+m︸ ︷︷ ︸
=(TzmTyl Txku)k∗,l∗,m∗

.

(2.78)

The time dependence has been omitted and will be for the rest of this section, as L and

L act solely on the spatial degrees of freedom. Defining a discrete approximation L for

L now reduces to finding a suitable kernel α. For this purpose, it is useful to define the

translation operator Ti
nu, which takes the field u and shifts it by a given amount −nhi in

the direction i, where i ∈ x, y, z, such that(
Tx

+1u
)

(x, y, z) = u(x+ hx, y, z) (2.79)

or
(
Tx

+1u
)
k,l,m

= uk+1,l,m. (2.80)

From the definition it follows that translation operators in the same direction follow the

summation rule

Ti
n1

Ti
n2
u = Ti

n1+n2
u (2.81)
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and that they correspond to the identity if the shift is zero, i.e.

Ti
0u = u. (2.82)

In the following, δi,j denotes the Kronecker delta, which is 1 if and only if i = j and 0

otherwise. The inverse Kronecker delta δ̄ is defined as δ̄i,j = 1− δi,j .

General Diffusion Tensors

A discretization for the general form of the diffusion term L = ∇ · D∇ with a space-

dependent diffusion tensor D can be obtained by approximating all derivatives by centered

finite differences, i.e. ∂iu ≈ (Ti
1
2

u − Ti
− 1

2

u)/hi, where ∂i is the spatial derivative in the

direction i and hi the corresponding spatial discretization step. In the most general case,

D is space-dependent, which means that each component Dij of D is itself a field. For

values of u and Dij in between two numerical grid points, the definition

Ti
µ
2

:=
Ti

0 + Ti
µ

2
(2.83)

is used, where µ ∈ {1,−1}. In this way, the following expansion for a general diffusion

term is obtained:

∇ ·D∇u =
∑

i∈{x,y,z}

∂i
∑

j∈{x,y,z}

Dij∂ju

≈
∑

i∈{x,y,z}

1

hi
∂i

 ∑
j∈{x,y,z}

Dij(T
j
1
2

u− Tj

− 1
2

u)


≈
∑
i=j

1

h2
i

(
Ti

1
2

Dii · (Ti
1u− u)− Ti

− 1
2

Dii · (u− Ti
−1u)

)
+
∑
i 6=j

1

hihj

[
Ti

1
2

Dij · (Ti
1
2

Tj
1
2

u− Ti
1
2

Tj

− 1
2

u)

− Ti
− 1

2

Dij · (Ti
− 1

2

Tj
1
2

u− Ti
− 1

2

Tj

− 1
2

u)
]

=
∑
i=j

1

h2
i

∑
µ∈{−1,1}

Ti
µ
2
Dii · (Ti

µu− u)

+
∑
i 6=j

1

4hihj

[
Ti

1
2

Dij · (Ti
1Tj

1u+ Tj
1u− Ti

1Tj
−1u− Tj

−1u)

−Ti
− 1

2

Dij · (Ti
−1Tj

1u+ Tj
1u− Ti

−1Tj
−1u− Tj

−1u)
]

=
∑
i=j

1

h2
i

∑
λ∈{−1,1}

∑
µ∈{−1,1}

λµTi
µ
2
Dii · (δµ,λTi

µu+ δ̄µ,λu)

+
∑
i 6=j

1

4hihj

∑
λ∈{−1,1}

∑
µ∈{−1,1}

λµTi
µ
2
Dij · (Ti

µTj
λu+ Tj

λu)
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=
∑

i,j∈{x,y,z}
λ,µ∈{−1,1}

λµTi
µ
2
Dij

hihj
·
[
δi,j

(
δµ,λTi

µu+ δ̄µ,λu
)

+
δ̄i,j
4

(
Ti
µTj

λu+ Tj
λu
)] (2.84)

At most two shift operators are applied to u in equation (2.84), such that by comparison

with (2.78), αk,l,m = 0 for |k| = |l| = |m| = 1. The remaining elements of the kernel αk,l,m

can be calculated directly by iterating through the kernel as suggested by equation (2.84)

(see listing 2.1).

Listing 2.1: Calculation of Laplace kernel for a space dependent diffusion tensor. The ker-

nel elements αk,l,m are constructed for one specific point in the computational domain and

saved to the array kernel. The scheme follows exactly equation (2.84), see also comments

in the code.

1 void PhaseFieldAddPotentialUpdater :: buildKernel(const Array <double >&

... sigma_halves , Array <double >& kernel) const {

2 kernel.setAllTo (0);

3 // position in kernel

4 vector <std::size_t > inKernel;

5 for(unsigned int dir = 1; dir <=3; dir ++) {

6 for(unsigned int odir = 1; odir <=3; odir ++) {

7 if(laplaceDirections(dir) && laplaceDirections(odir)) {

8 for(int pm=-1; pm <=1; pm+=2) {

9 for(int pm2=-1; pm2 <=1; pm2 +=2) {

10 /* sigma_halves(i,j,k,(pm+1) /2+1) contains diffusion tensor

11 component Dij for the current position shifted by pm/2

12 in direction k.*/

13 double factor = 1./( gridStep(dir)*gridStep(odir))*

... pm*pm2*sigma_halves(dir ,odir ,dir ,(pm+1) /2+1)

... ;

14 if(pm==-pm2 && dir==odir) {

15 // zero = center point

16 inKernel=zero;

17 kernel(inKernel) += factor;

18 }

19 if(pm==pm2 && dir==odir) {

20 inKernel=zero;

21 // operator [] is zero based , thus dir -1

22 inKernel[dir -1]=( int)inKernel[dir -1]+pm;

23 kernel(inKernel) += factor;

24 }

25 if(dir!=odir) {

26 inKernel=zero;

27 inKernel[odir -1]=( int)inKernel[odir -1]+ pm2;

28 kernel(inKernel) += factor /4.;

29

30 inKernel=zero;

31 inKernel[dir -1]=( int)inKernel[dir -1]+pm;

32 inKernel[odir -1]=( int)inKernel[odir -1]+ pm2;

33 kernel(inKernel) += factor /4.;

34 }
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35 }

36 }

37 }

38 }

39 }

40 }

Homogeneous, isotropic diffusion

For spatially constant and isotropic diffusion tensors D = DId, i.e. L = ∇ ·D∇ = D∇2,

throughout the computational domain, and equal discretization steps hx = hy = hz = h

in all directions, the kernel elements αk,l,m become symmetric in the sense that

|k1|+ |l1|+ |m1| = |k2|+ |l2|+ |m2| ⇒ αk1,l1,m1 = αk2,l2,m2 , (2.85)

meaning that only the number of non-zero indices k, l, m determines the value of the

kernel element. From equation (2.84), the following values are obtained:

αk,l,m =
D

h2
·


−6 for k = l = m = 0

1 for |k|+ |l|+ |m| = 1

0 for |k|+ |l|+ |m| = 2

(2.86)

Under the assumption Tz
1u = Tz

−1u = u, all derivatives in the z-direction vanish and

the dynamics for a two-dimensional medium is obtained. Thus, a two-dimensional kernel

α2d
k,l can be obtained by setting α2d

k,l =
∑

m=−1,0,1 αk,l,m for all k, l. In this case, the

kernel reduces to the usual five-point stencil (see equation 12.5.1 in reference [179]) for the

Laplacian D∇2:

(
α2d
k,l

)
k=−1,0,1
l=−1,0,1

=
D

h2

 0 1 0

1 −4 1

0 1 0

 . (2.87)

A Taylor expansion of u(x, y) reveals that the approximationα
2d
L for the Laplacian defined

by this kernel (and also by the αk,l,m above) is second order accurate, i.e. ∇2u =α2d
Lu+

O(h2), which is to be expected because it originates from the second-order finite difference

discretization in section 2.2.2.

If isotropy and a spatially constant diffusion tensor D are present, instead of α above, the

following kernel α̃ can be used:

α̃k,l,m =
D

30h2
·


−128 for k = l = m = 0

14 for |k|+ |l|+ |m| = 1

3 for |k|+ |l|+ |m| = 2

1 for |k|+ |l|+ |m| = 3

(2.88)

Again, it is defined for −1 ≤ k, l,m ≤ 1. A Taylor expansion shows that this kernel is

second-order accurate and thus might not seem to have any advantage over α. However,

it preserves the rotational symmetry of the Laplacian much more accurate, which results
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in reduced grid-induced distortions of the dynamics at a fixed spatial discretization length

h. Using the same method as above, the two-dimensional version of this stencil can be

calculated as

(
α̃2d
k,l

)
k=−1,0,1
l=−1,0,1

=
D

6h2

 1 4 1

4 −20 4

1 4 1

 , (2.89)

the so-called nine-point stencil (see equation 12.5.4 in reference [179]).9

2.2.3 Boundary conditions

Rectangular domains

For numerical grid points on the boundary, the convolution (2.78) contains neighbor points

outside the actual computational domain, whose values are not defined. When D is spa-

tially constant and isotropic, these can be used to implement the desired boundary condi-

tion in conjunction with the simple kernels introduced in section 2.2.2: For a rectangular

grid, the normal fluxes n · D∇u at the boundaries are just derivatives of u along grid

directions. For example, the flux at the boundary x = πx(0) can be approximated by a

simple centered finite difference:

n ·D∇u|x=πx(0) = D1,1
∂u

∂x

∣∣∣∣
x=πx(0)

≈ D1,1
u1,j,k − u−1,j,k

2hx
(2.90)

For no-flux boundary conditions, this term has to vanish, so defining u−1,j,k := u1,j,k yields

the desired result. For periodic boundary conditions, the numerical point just outside the

domain is actually identical to the one on the opposing side. Therefore the definition

in this case reads u−1,j,k := uNx−1,j,k. The same method is applied to the boundary at

x = πx(Nx − 1) and for the other space directions.

Domains of arbitrary shape

If D is non-rectangular, the phase-field method introduced in section 2.1.5 is employed.

A large enough computational domain Dc is chosen that contains D. Then, for no-flux,

technically, the replacement (2.19) is carried out by letting

D = φDphys, (2.91)

where Dphys is the physical diffusion tensor and φ is the phase field introduced in sec-

tion 2.1.5, describing the shape of the tissue domain D. Even if Dphys is spatially con-

stant, a space dependence of D is introduced by the phase field. Thus, the numerical

scheme developed in section 2.2.2 is applied. After calculating the local kernel elements

αk,l,m according to equation (2.84), all weights have to be divided by the local value of

the phase field φ(x) in order to account for the additional factor 1/φ in equation (2.19).

9The fourth-order accuracy of the nine-point stencil sometimes referred to is only present under special
circumstances (for example, for the solution of the Poisson equation), because the fourth-order error has
a special form that can be corrected for in those cases.
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Since φ and Dphys are independent of time, this kernel calculation has to be carried out

only once at the beginning of the simulation, allowing for an efficient implementation of

no-flux boundary conditions for arbitrarily shaped tissue domains D.

To enforce the more general boundary condition of the type of equation (2.36), the phase-

field replacement (2.37) is rewritten as

1

φ
∇ · (φ(D∇u−E)) =

1

φ
∇ · (φD∇u+ D̃∇vE) =

1

φ
∇ · (φD∇u) +

1

φ
∇ · (φD̃∇vE) (2.92)

where vE is chosen such that E = −D̃∇vE . If the outside potential vo in equation (2.16)

(page 33) is assumed to have a constant gradient, vE is identical to vo, with an ap-

propriately chosen D̃. Substituting the right hand side of equation (2.92) for L[u] in

equation (2.72), the numerical scheme introduced in section 2.2.2 can be applied to both

diffusion terms, as explained above for the no-flux case. Splitting up the two terms as in

equation (2.92) is particularly convenient, if the assumed potential vE is independent of

time or merely multiplied by a time-dependent prefactor. In this case, the entire second

term has to be calculated only once at the beginning of the simulation. The result of this

calculation (a field of the size of the computational domain Dc) is then multiplied by ∆t

and possibly the time-dependent factor, before being added to equation (2.77).

As mentioned in [134], the results of a numerical simulation with the phase-field method

change only insignificantly if numerical calculations are performed solely for grid points

for which φi,j,k > φcut-off with φcut-off � 1. The spatial domain in which φ > φcut-off holds

corresponds to a slightly enlarged tissue domain D within the auxiliary domain Dc. As

explained in section 2.1.5, the pseudo-advection term in the phase-field method leads to a

relative independence of the dynamics in D from the boundary condition imposed at ∂Dc.
In essence, skipping the numerical update step for the values of computational points for

which φi,j,k < φcut-off corresponds to an artificial Dirichlet boundary condition imposed

at the boundary of the enlarged tissue domain (which would also be a valid choice for

Dc, but usually rectangular domains are used). Therefore, the validity of this approach

follows from the line of thoughts in section 2.1.5. In all simulations throughout this thesis

φcut-off = 10−5 is used.

2.2.4 Stability considerations

For the assessment of numerical stability, the nature of the different terms of the RDE

has to be taken into account. One limitation arises from the typically large upstroke

velocity of the membrane potential for a beginning excitation in cardiac models, which

is a result of the local reaction term f in equation (2.72) or correspondingly −Iion/Cm

in equation (2.13). A name often used to describe problems with strongly differing time

scales is stiff systems. To avoid instabilities due to this stiffness, the time step for an

explicit Euler scheme like equation (2.77) has to be considerably smaller than the time

scale τupstroke = AAP/vupstroke, where AAP is the action potential amplitude and vupstroke

is the maximal rate of change during the upstroke. As the typical upstroke time in cardiac

cells is on the millisecond order, this restricts ∆t to the sub-millisecond range for models

that work with real units.

Another possible instability arises from the diffusion term. If equation (2.77) is considered
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without the reaction term, for isotropic diffusion D = DId, the discretized version of a

heat equation is obtained. Applying a von Neumann stability analysis to this discretization

(using the kernels of equation (2.86)) leads to a stability condition for the forward Euler

scheme, namely

D
∆t

h2
≤ 1

2d
, (2.93)

where d is the number of spatial dimensions (equation 19.2.6 in reference [180] generalized

to higher dimensions). This is a stringent restriction, since it means that a small h which

might be necessary by itself to resolve spatial details of the dynamics automatically require

a quadratically smaller ∆t. In three dimensions, if the left hand side of equation (2.93) is

kept constant, halving h thus leads to an approximately 32-fold increase in computational

cost, because the number of numerical grid points increases by a factor of eight and ∆t

has to be divided by four.

Both kinds of stability criteria could be relaxed or avoided by using more sophisticated

time stepping schemes than FTCS. However, despite providing the desired stability, the

additional computational cost – arising, e.g., for implicit methods from solving large sys-

tems of linear equations – does not necessarily bring about an equal increase in accuracy.

The accurate numerical computation of the solution even on small spatial scales is de-

sirable in particular for models of cardiac tissue, because the interaction of diffusion and

rapid upstrokes on these scales is essential for the propagation of wave fronts. Thus,

reducing h without reducing ∆t to faithfully model the physics of the additional small

scales is usually leading nowhere, even if stability is guaranteed by the numerical method.

Nevertheless, computation time and memory consumption can be reduced to some extent

by using alternative numerical schemes [181] (see [32] for a recent summary of widely-used

techniques). However, considering the additional implementation and debugging costs in

addition to the arguments above, an explicit FTCS scheme is a less unfavorable numerical

scheme for this type of problem than it may seem at first sight.

It should be noted that the stability criterion (2.93) applies also to spatially varying dif-

fusion tensors D, as long as they vary slowly. In this case, the von Neumann stability

analysis is thought to be carried out locally. This condition is certainly not fulfilled, when

the phase-field method introduced in section 2.1.5 is employed. Here, the diffusion ten-

sor is multiplied by φ, a quantity which decays rapidly at the physical system boundary.

Far away from the physical domain, it decays exponentially with a decay length ≈ ξ

comparable to the grid spacing h. The normal derivative of the phase field is therefore

| d lnφ/dn| . 1/ξ. According to equation (2.29), this leads to an advection-like term with

a velocity of |v| . D/ξ, if the original diffusion tensor is again assumed to be isotropic with

D = DId. For any explicit time stepping scheme of an advection equation, the Courant-

Friedrichs-Lewy criterion for numerical stability applies (equation 19.1.17 in reference

[180]):

1 ≥ |v|∆t
h

& D
∆t

ξh
(2.94)

The values for ξ used in this thesis range between h/2 and h such that equation (2.94) is

not a more stringent restriction on ∆t than equation (2.93). Of course, this calculation is
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only an approximation and equation (2.94) should be taken as an order-of-magnitude es-

timation. Also, additional instabilities could arise from the steep increase of the advection

velocity near the boundary of the physical domain, and the behavior at some intermediate

distance from the boundary might also differ from the simple exponential decay due to the

geometry of the boundary. However, equation (2.94) shows that, at zeroth order, there

is no reason why the phase-field method should destabilize the numerical solution. In

reality, test simulations show that numerical simulations using the phase-field method are

mostly stable provided they were without the phase field (φ = 1 everywhere). Only some-

times, it is necessary to reduce ∆t slightly, never leaving, however, the order of magnitude

suggested by equation (2.93).

2.2.5 Spiral tip detection

The tips of spiral waves in two-dimensional simulations of the Barkley model are localized

by determining the topological charge of small test domains within the simulation domain

according to equation (2.45). To numerically calculate the integral along a closed curve,

the method of Iyer and Gray [170] is used:

2πntop
i,j =

∮
Ci,j

∇θ dl ≈
n∑

m=2

diff(θi+km,j+lm , θi+km−1,j+lm−1) (2.95)

The offsets k1, . . . , kn and l1, . . . , ln parameterize a path Ci,j around the point (i, j) in

numerical coordinates. The function diff yields the phase difference between two points.

As explained in section 2.1.7, for the local phase differences, the branch of the arctan2

function has to be chosen such that there is no phase jump between the two points whose

phase difference is to be determined. A unique difference is obtained by assuming that

the phase difference is always smaller in magnitude than π:

diff(x, y) := mod(x− y + π, 2π)− π ∈ [−π, π[ (2.96)

The mod function is defined such that it returns positive values and thus the result of

diff ends up in the desired range. As in reference [170], an eight-point integration path is

chosen: (
k1, . . . , kn

l1, . . . , ln

)
=

(
1 1 0 −1 −1 −1 0 1 1

0 1 1 1 0 −1 −1 −1 0

)
(2.97)

On the one hand, this integration path is small enough to minimize the risk of enclosing

multiple phase singularities, such that isolated phase singularities can be detected. On

the other hand, it contains enough sampling points to avoid large phase jumps on the

integration path (after all, the phase differences have to add up to 2π if a phase singularity

is enclosed). Such large jumps of θ could cause the definition equation (2.96) to miss full

turns of the phase. Phase singularities and their corresponding spiral tips can then be

detected by locating the points (i, j) for which ntop
i,j = ±1 in equation (2.95). Usually,

four adjacent numerical points (a 2h× 2h region) are detected as possible candidates for

the location of a phase singularity, since the integration path encloses a region which is
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2h× 2h in size. Within this thesis, the position of the phase singularity is then defined to

be in the center of this 2h× 2h region.

2.2.6 Lyapunov exponents and vectors

Linearization of an extended system

In section 2.1.8, the theory of Lyapunov stability analysis and the standard mathematical

strategy for its implementation were summarized for a general dynamical system like

equation (2.46). In this thesis, the analysis is applied to extended systems of the type of

equation (2.72). Obviously, in the framework of section 2.1.8, it is not possible to include

differential operators directly on the right hand side of equation (2.46). However, this is

possible for the semi-discretized form of equation (2.72)

dui,j,k
dt

= f(ui,j,k, h1i,j,k, h2i,j,k, . . . ) + (L[u])i,j,k

dh1i,j,k

dt
= H1(ui,j,k, h1i,j,k, h2i,j,k, . . . )

dh2i,j,k

dt
= H2(ui,j,k, h1i,j,k, h2i,j,k, . . . )

...

∀i, j, k (2.98)

where the vector quantity u again contains the values of u at all numerical nodes by

defining a fixed mapping of (i, j, k) to a linear index. Similar vectors with the same

mapping can be defined for each of the local variables hi, which were summarized as

h = (h1, h2, . . . ) in, e.g., equation (2.4). For clarity, they have been separated here.

As the approximation L for the differential operator L is expressed as a convolution of

the form (2.78), equation (2.98) represents a system of coupled ODEs, together with the

boundary conditions introduced in section 2.2.3. Let the set of ui,j,k(t), h1i,j,k(t), h2i,j,k(t),

. . . for all i, j, k be a solution of this dynamical system. Then, the linearized dynamics

of equation (2.49) (again, with all vector components given separately) has the following

structure:

dδui,j,k
dt

= J
(ui,j,k,h1i,j,k,h2i,j,k,... )

f δui,j,k + (L[δu])i,j,k

dδh1i,j,k

dt
= J

(ui,j,k,h1i,j,k,h2i,j,k,... )
H1

δh1i,j,k

dδh2i,j,k

dt
= J

(ui,j,k,h1i,j,k,h2i,j,k,... )
H2

δh2i,j,k

...

∀i, j, k (2.99)

It is worth noting that the Jacobian matrices for f , H1, H2, . . . are indeed only the low-

dimensional matrices for the local dynamics. Just like the functions f , H1, H2, . . . , they

are identical for all numerical grid points of the discretization. For the models used in

this thesis, they are easily calculated by hand for arbitrary values of u, h1, h2, . . . and can

be found in appendix A. To guarantee differentiability, the smooth Fenton-Karma model

introduced in section 2.1.6 is used instead of the original model. The discretization L

of the operator L introducing the spatial coupling is linear (as is the original operator).
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Thus, its Jacobian is the operator itself and its numerical implementation can be used

without modification for the evolution of the linearized system.

For periodic or no-flux boundary conditions, this is true even at the boundary: According

to the explanations in section 2.2.3, both types of boundary conditions can be imple-

mented by exchanging certain numerical points in the convolution (2.78) for others. This

procedure preserves the linearity of the operator (in its discretized form), which is why the

linearized operator again is just the operator itself. In fact, this strategy should work just

as well for no-flux boundary conditions implemented by the phase field method, although,

in this thesis, Lyapunov stability analysis will only be carried out for simple, rectangular

geometries. For Dirichlet boundary conditions (not used in this thesis), a similar argu-

ment leads to the conclusion that the original boundary condition has to be replaced by

a Dirichlet boundary condition with the value 0 everywhere on the boundary for the lin-

earized operator.

A different way of looking at equation (2.99) is to view it as a discretization of the system

of partial differential equations

∂δu

∂t
= J

(u,h1,h2,... )
f δu+ L[δu]

∂δh1

∂t
= J

(u,h1,h2,... )
H1

δh1

∂δh2

∂t
= J

(u,h1,h2,... )
H2

δh2

...,

(2.100)

where δu, δh1, δh2, . . . are now functions of space again. In reference [177], Eckmann

and Ruelle note that Lyapunov stability analysis is possible on function spaces. This is

a first indication that the Lyapunov spectra obtained from the linearization of the semi-

discretized system equation (2.98) might actually be used to characterize the original

reaction-diffusion system itself. This will be investigated in detail in section 3.1.

Orthonormalization

Most of the stability analysis will be carried out for two-dimensional systems. Assuming

a spatial discretization with NxNy nodes (according to the scheme introduced in sec-

tion 2.2.1) and a model with one diffusing variable and Nv − 1 local variables, the total

number of degrees of freedom of the semi-discretized system (2.98) as well as for the lin-

earized system (2.99) is Ndof = NxNyNv. Typical numbers are Nx = Ny = 150 and, e.g.

for the Barkley model, Nv = 2, resulting in Ndof = 45000. To calculate the Nlyap leading

Lyapunov exponents, Nlyap copies of the system (2.99) have to be integrated alongside

the actual dynamics. Hence, the matrix A from section 2.1.8 containing one perturbation

in each column is a Ndof ×Nlyap-matrix. The perturbations are initialized randomly and

orthonormalized at regular intervals. According to section 2.1.8, they converge to the

Nlyap backward Lyapunov vectors corresponding to the Nlyap most expanding directions.

The accuracy of the Lyapunov exponents calculated as in equation (2.62) (page 53) can

be improved by averaging the growth rates only after this alignment of the perturbations

has taken place. The amount of time the perturbations were allowed to align for will be

indicated along the with the results of the simulations in section 3.1.
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Because of the large number of rows, the Gram-Schmidt orthogonalization procedure used

to compute the QR-decomposition of A can be parallelized efficiently. The scalar prod-

ucts of different columns A with the columns of Q that have already been obtained are

calculated in separate threads. Moreover, when the results of this calculation are used

to subtract the projections of the preceding columns from the current column, work in

different blocks of rows is separated between threads.

In addition, the orthonormalization interval ∆t in section 2.1.8 does not necessarily have to

equal the numerical time step ∆t in section 2.2.1. In fact, the orthonormalization interval

is the result of an arbitrary splitting of the linearized flow as equations (2.56) and (2.58) in-

dicate. The purpose of this splitting is to prevent the volume spanned by the perturbations

from collapsing, which may happen if two of the perturbations become linearly dependent

due to finite-precision arithmetics. Choosing a larger orthonormalization interval leads to

a considerable gain in computation time, since the costly QR-decomposition has to be car-

ried out less often. To check the validity of the results, the resulting Lyapunov exponents

are compared with those from simulations for which the orthonormalization procedure

was carried out in each time step. For all results presented in this thesis, the results were

ensured to be numerically indistinguishable with regard to the criterion explained below.

Convergence measure

The result of the Lyapunov stability analysis are the time-independent Lyapunov ex-

ponents λ1, λ2, . . . , λNlyap
and the Gram-Schmidt vectors at different time points. The

vectors correspond to the columns of Q, each of which in turn consists of all the degrees

of freedom of equation (2.99). According to equation (2.62), the Lyapunov exponents are

time-averaged growth factors of the perturbations. Due to Oseledec’s theorem [111],

it is known that this average will converge to a well-defined Lyapunov exponent when

t→∞. However, the time scales on which this happens depend strongly on the attractor

the system is evolving on. Heuristically speaking, the system has to sample the attractor

densely enough and must have acquired the typical probability of being found in a certain

position on the attractor. To recover the Floquet exponents as Lyapunov exponents for

a periodic system, either one well-converged trajectory of exactly one period in time has

to be averaged, or the averaging time has to be much larger than the periodicity of the

system.

In order to obtain a quantitative measure for the accuracy of the obtained Lyapunov ex-

ponents, the sum of equation (2.62) is split up to define partial averages of the growth

rates as

λ
(k)
i =

K

m∆t

∑km
K

l=(k−1)m
K

+1
lnRlii ∀k : 1 ≤ k ≤ K, (2.101)

where m as in section 2.1.8 denotes the total number of orthonormalization steps and i is

the index of the Lyapunov exponent counting from the largest one. The new parameter

K defines the number of partial exponents that are calculated as if the averaging time

had been only one Kth of its actual value. The reasoning behind this is that the partial

exponents will start to deviate from their average (which is just the overall estimated

Lyapunov exponent), when the averaging time becomes too short. In contrast, in the

limit m → ∞, i.e. infinite simulation and averaging time, all of the partial exponents
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λ
(k)
i , k = 1, . . . ,K converge to the same value, the true Lyapunov exponent λi. The

standard deviation across the set of partial exponents is taken as an accuracy measure

for each calculated Lyapunov exponent λi. In order to avoid an accidental match of the

averaging time for the partial Lyapunov exponents with a periodicity of the system, the

above accuracy estimation is carried out for values of K from 2 to 10. The maximum of

all the standard deviations calculated for different K then serves as an error measure for

each Lyapunov exponent. These error measures will be plotted as error bars in section 3.1

when appropriate.

2.2.7 Hardware, software, parallelization

All numerical simulations for this thesis were carried out on computer clusters of the Max

Planck Institute for Dynamics and Self-Organization in Göttingen. Most of the calcula-

tions were done on the 16 machines of the Biomedical Physics Group with 8 cores each

(two quad-core Intel R© Xeon R© X5355 CPUs @2.66GHz) and 32GB of RAM. For some of

the simulations, it was possible to use parts of the computer cluster of the Laboratory for

Fluid Dynamics, Pattern Formation and Biocomplexity (LFPB), consisting of a total of

72 machines with 12 cores each (two hexa-core Intel R© Xeon R© X5650 CPUs @2.67GHz)

and 24GB of RAM.

All computers run a homogeneous Linux environment. The software MediaSim for car-

rying out the actual calculations is a modular framework for the simulation of extended

systems and was completely self-written in C++. Its capabilities exceed those described

in this numerical methods section (see appendix C). In the course of the work for this

thesis, it has become one of the standard numerical tools in the Biomedical Physics Group

and was used and considerably consolidated and extended by several people, first of all D.

Hornung [182]. A. Behrend and P. Linke used it for their Diploma thesis and Bach-

elor’s thesis, respectively [183, 184]. Furthermore, A. Mayer extended the framework

during the work for his Bachelor’s thesis [185], as did H. tom Wörden [186] in addition

to his work as a student research assistant.

Many of the theoretical problems that are addressed in this work using numerical simu-

lations (in particular in sections 3.1 and 3.2) require parameter scans, resulting in a large

number of similar numerical simulations. The simplest form of paralellization therefore

is to use the hundreds of cores available on the computer cluster to start N of these

simulations in parallel. This results in a guaranteed reduction of the computation time

to 1/N times the time required for sequential calculation on a single core (apart from

marginal losses due to bandwidth limitation during file reading and writing operations).

The same kind of trivial parallelization was applied to the analysis of experimental data

for section 3.3, which was implemented in MATLAB R© [187].

If the number of available cores exceeds a small number of computationally intensive nu-

merical simulations which have to be carried out at the same time, the numerical work can

be split between different threads, thus using multiple or all cores on a single machine. For

the models used in this thesis, the critical order of magnitude, for which a single-core cal-

culation become too time-consuming, is typically reached for long-term, two-dimensional

simulations at high spatial resolutions or three-dimensional simulations. In these cases,

the computational domain is subdivided into strips of equal width. Each thread then
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carries out the calculations for all computational points in one strip. This parallelization

technique is implemented in the framework MediaSim on the level of array operations

and is therefore available to all higher-level algorithms. For the calculation of Lyapunov

exponents and vectors, not only the QR-decomposition is parallelized (as described in

section 2.2.6), but also the time stepping in tangent space, where different perturbations

are propagated in different threads. The threading strategy could in general be extended

to computations distributed across different machines, e.g., via message-passing interface

libraries, but this has not been necessary so far.
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2.3 Experimental methods

A global measure for the electrical activity of the heart10 can be obtained via an ECG. In-

tracellular or surface electrodes can provide local information on the membrane potential

of single cells or small tissue regions. However, for a detailed investigation of activation

patterns in the heart, information with high spatial and temporal resolution on the excita-

tory state of the tissue is required. This has become possible through the use of so-called

voltage-sensitive or potentiometric dyes. These are fluorescent molecules which embed

into the cell membrane and whose spectral properties depend on the membrane voltage

through field-induced charge shift. They were discovered at the end of the 1960s in studies

investigating general optical properties of nerve fibers and their changes due to propagat-

ing action potentials [188, 189, 190]. Soon after this proof-of-principle in nerve fibers was

accomplished, the cardiac community recognized the chances and opportunities of this

new technique [191, 192]. After the discovery and characterization of the potentiometric

probe di-4-ANEPPS, it became one of the standard dyes in the cardiac field due to its

sub-millisecond response time, high sensitivity, long-term stability and comparably low

phototoxicity [193, 194, 195].11 This dye is used for all measurements in section 3.3 which

will be described in the following12.

2.3.1 Setup and tissue preparation

Most of the recordings presented in section 3.3 are obtained on isolated atrial or ventricu-

lar preparations of adult beagle dogs. The experimental procedures for these animals were

approved by the Institutional Animal Care and Use Committee of the Center for Animal

Resources and Education at Cornell University. The procedure for tissue preparation is

described in detail in the methods sections of references [201] and [135]. Briefly, after

excising the heart from anesthetized adult beagle dogs, physiological conditions are main-

tained by perfusing the tissue with 37 ◦C tyrode solution through the cannulated coronary

arteries. The perfusion is also used to administer all drugs including di-4-ANEPPS. Atria

or ventricles were cut open and flattened out in a bath, such that both epicardial and

endocardial surfaces could be imaged. The setup for optically imaging cardiac electrical

activity (excluding the perfusion) is depicted in figure 2.10: Di-4-ANEPPS in the sample is

excited using LEDs (Luxeon LXHL-LM5C Green) with approximately 530 nm peak wave

length. The emitted light is longpass filtered before it is detected by a high-resolution,

high-speed camera, either a Photometrics Cascade 128+ or a Vision Research Phantom

V7. The former acquires images of a maximum of 128× 128 pixels at a maximum frame

rate of about 500 Hz, which can be streamed to the hard disk of a PC in real time. This

resolution is sufficient to resolve the spatio-temporal dynamics on the tissue surface during

normal or arrhythmic activity and to accurately observe the activity induced by electric-

field stimulation of quiescent tissue with low field strengths up to approximately 1.5 V/cm

(see sections 2.3.3 and 2.3.4 for details). Due to limited buffer size, only short recordings of

600× 800 pixels at 2 kHz were acquired with the Phantom camera for validation purposes

10See section 1.2.
11To optimize measurements for certain experimental requirements – e.g., simultaneous imaging of

calcium and voltage or recording of optical signals from below the surface of the tissue – there is a search
for alternatives, particularly in the long wave length range [196, 197].

12For further information on optical imaging in general, see references [198, 199, 200].
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high resolution, high speed camera

longpass filter: > 580 nm

objective: f = 50 mm, f/0.95

cardiac tissue

electrodes

LEDs
∼ 530± 17.5 nm

BOP DAQ

frame
trigger

PC
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Figure 2.10: Optical mapping setup. LEDs shine excitation light at the sample without
additional excitation filters. The perfused cardiac tissue is loaded with voltage-sensitive
dye (di-4-ANEPPS), whose excitation and emission spectra depend on the membrane po-
tential. An emission filter is used to convert the specific spectral changes into an intensity
change (cf. figure 2.11) that can be recorded with high-speed, high-resolution cameras
equipped with EMCCD/CMOS sensors. The voltage between the electrodes is delivered
by a power amplifier (Kepco BOP 100-4M), which is controlled by a custom written Lab-
View program through a digital/analog data acquisition device (National Instruments
DAQ USB-6259 BNC). Through the same device, the LabView program can trigger the
acquisition of individual camera frames.

and to verify that, for electric-field stimulation at higher field strengths when the dynamics

is faster, the limited time resolution of the Cascade camera starts to impact the results.

Due to nonuniform illumination and staining, the absolute intensity of light detected from

different tissue regions varies greatly, which results in motion artifacts, when the tissue is

moving. To ensure that there is a nearly constant relation between tissue locations and

image pixels in the course of an excitation, Blebbistatin is used to suppress contraction of

the tissue [202].

2.3.2 Optical imaging

Under these conditions, the intensity change in the recorded images is a measure for

the membrane voltage at the corresponding location. The spectral properties of the dye

and of the hardware components used in the experiments described here are illustrated

in figure 2.11.13 The sample is illuminated using the above-mentioned LEDs without

an excitation filter, which is possible due to the relatively narrow-banded light of 35 nm

spectral half-width (green line). The LED spectrum overlaps almost exclusively with the

long-wave-length edge of the excitation spectrum of the dye, which shifts a few nanometers

to the left when the membrane is depolarized. As the excitation spectrum amplitude

in the overlap region is lower during depolarization than at the resting potential, this

results in a weaker excitation (hatched area between the dashed curves) of the dye and

13Optical properties of di-4-ANEPPS were mainly extracted from a recent publication on ratiometric
optical mapping [203], which contains collected and combined figures from a number of earlier studies (see
also references therein). The properties of the LEDs can be found on the data sheet available at the man-
ufacturer’s website http://www.luxeonstar.com/v/vspfiles/downloadables/DS30.pdf (note, however,
that the product line has been discontinued).

http://www.luxeonstar.com/v/vspfiles/downloadables/DS30.pdf
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Figure 2.11: Voltage-dependent excitation and emission spectra of di-4-
ANEPPS. Excitation (dashed lines) and emission spectra (full lines) spectra are plotted
for the resting membrane potential (red) and the depolarized state of the cell (blue). The
red area under the red curve indicates the total intensity detected for the resting poten-
tial through a low pass emission filter. The area between the excitation curves is hatched
where the LED intensity (green) is above 10% of its peak value. The hatched area between
the emission curves is the intensity change picked up by the camera due to the spectral
shift and amplitude change.

therefore an overall decrease in the emission amplitude, from the (full) red to the blue

curve. Additionally, the emission spectrum is also voltage-sensitive and is shifted to the

left. Due to the Stokes shift – the separation between the excitation and the emission

spectrum – most of the excitation ligh can be kept away from the camera using a 580 nm

longpass filter, such that, at resting potential, the camera detects the integrated intensity

indicated by the red area. Due to the combined spectral shift and amplitude decrease,

the intensity is reduced during depolarization by the hatched area between the full curves.

The optical signal is therefore expected to yield inverted action potentials. The fractional

intensity change is typically between 1% and 5%.

2.3.3 Electric-field stimulation experiments

Electric-field pulses are delivered using a power amplifier (Kepco BOP 100-4M) controlled

by a custom-made LabView program and two plate electrodes placed on opposing sides

of the bath (see figure 2.10). The field strength in the bath is calibrated by measuring

the voltage between two wire electrodes placed at a known distance. For all experiments

presented here, except those in section 3.3.6, monophasic electric-field pulses with a du-

ration of Tpulse = 5 ms were used (see figure 2.12). The experiments were carried out by

A. Squires, F. H. Fenton, S. Luther and the author of this thesis. The work for

this thesis led to significant improvements in the LabView software, automating the data

acquisition for electric-field stimulation at different field strengths and with the different

pulse shapes shown in figure 2.12. The follow-up experiments presented in section 3.3.6 use

this new software and were carried out by M. Chebbok, D. Hornung and the author.
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Figure 2.12: Pulse shapes. Different pulse shapes used for stimulating the tissue. All
waveforms are relative to the peak amplitude Emax and the total pulse duration Tpulse.
a) Monophasic pulse b) Biphasic pulse c) Truncated exponential biphasic pulse mimicking
a capacitor discharge. This waveform has another parameter τdecr denoting the damping
time constant. For the first half of the pulse, E(t) = Emax exp(−t/τdecr).
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2.3.4 Signal processing – Activation maps

The raw images are acquired by the camera at a frequency of 0.5 kHz to 2 kHz (depending

on camera type and binning parameters) and then processed as depicted in figure 2.13.

The area enclosed by the yellow line in the raw image of figure 2.13a) was determined

retrospectively after carrying out the analysis. It contains a region that lies entirely

within the tissue of one chamber (in this case: the right atrium) and has sufficient staining

to provide a fractional intensity change (above noise level; approximately >0.5%) which

allows for reliable upstroke detection. In figure 2.13b), the averaged signal within the

mask shows a single activation of the tissue which was evoked by an electric field pulse

of 5 ms duration and field strength E = 0.22 V/cm. To reduce noise in the individual

time traces for each pixel as plotted in figure 2.13c), a box filter is applied spatially (5

pixels × 5 pixels) and temporally (3 frames). This results in time series for every pixel

according to figure 2.13d). Each time series is then normalized by its individual minimum

and maximum values to vary between 0 and 1, leading to the data as in figure 2.13e).

From these time series, the activation of the tissue can be reliably detected using a simple

threshold, usually 0.5. For the examples plotted in figure 2.13f), one can see that the

tissue is activated earlier at the red location marked in figure 2.13a) than at the blue one.

Assuming that the tissue is activated everywhere only once within a certain time window,

an activation map can be constructed from the processed data:

Ta(x, y) := min{t | Î(x, y, t) < 0.5} ∀x, y within mask (2.102)

Î is the preprocessed and normalized intensity as shown in figure 2.13e), which depends

on the spatial coordinates x, y and time t. For each camera pixel, Ta displays the time of

activation, reducing the activation information contained in the time-varying signals to one

static image. To reduce the probability of misdetections due to noise, an activation time is

only accepted as such if the average value of the next 10 frames is also subthreshold. One

common application of activation maps is the characterization of conduction velocities for

arbitrary wave patterns [204, 205, 206, 207]. An example map for the same data as in

figure 2.13 is shown in figure 2.14. The earlier activation of the tissue at the location

circled in red compared to the region circled in blue can be read off directly from the map

(compare figure 2.13e) and f)).

When interpreting activation maps, one has to bear in mind that activity is only observed

on the surface of the tissue. Wave fronts on the surface correspond to iso-Ta lines, but the

conduction velocities estimated from the advancing wave fronts on the surface can at best

be considered an apparent velocity , since the angle of inclination with of the wave front

with the surface is not known. Likewise, minima in an activation map correspond to points

from which waves spread outwards. These are marked by crosses in figure 2.14a). Such

locations can be considered apparent wave sources, but in general correspond to the break-

through sites, where waves from different real wave source in the bulk of tissue appear

first on the surface. Assuming an approximately constant conduction velocity within the

tissue, it is reasonable to suspect that each of the apparent wave sources corresponds to

at least one real wave source and the activation time of each apparent wave source is

correlated with the distance of a real wave source from the surface [208]. Additionally,

there could be an intrinsic latency of the onset of a propagating wave for near-threshold
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Figure 2.13: Signal processing of optical mapping data. a) Raw camera image
showing the endocardial view of the sample. The yellow line indicates the mask of sufficient
staining and fractional intensity change above noise level in the right atrium. b) Average
signal within the masked region after an electric field pulse of 5 ms duration at a field
strength of 0.22 V/cm, indicated by red dashed line. c) Raw signals at locations indicated
by colored circles in a). d) Spatially and temporally filtered signals at the same locations.
e) Signals normalized to maximum and minimum intensity. The dashed gray line indicates
the threshold of binarization. f) Binarized signal for activation detection.



2.3. EXPERIMENTAL METHODS 77

 

 

T
a
 [ms]

18

23

29

34

39

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

 P
1
(T

a
)  P

99
(T

a
)

t [ms]

S
(t

)

a) b)

Figure 2.14: Activation map. a) Activation map Ta superimposed on a raw image of the
atrial tissue preparation. Circles indicate the locations considered in figure 2.13, crosses
mark minima.

stimulation. In figure 2.14a), the two apparent wave sources on the left appear more than

10ms later than the one on the right. The activation time τ is defined as

τ = P99(Ta)− P1(Ta), (2.103)

where Pn(Ta) is the nth percentile of activation times within the masked region. In sec-

tion 3.3, τ will be used to to quantify the number of sources created in the tissue as a

response to the electric field. Essentially, this is the time from the observation of the first

wave on the surface to the time of full activation of the considered tissue domain. Taking

the percentiles instead of the actual minimum and maximum values is a precaution to

remove outliers stemming from misdetected activation times. In a graph of the fractional

area S(t) activated until a given time t (with respect to the mask), these percentiles can

be visualized as depicted in figure 2.14b).

It should be noted that, a priori, the definition of τ is not equivalent to the time from the

stimulation to full activation of the tissue, as the first activation at time minx,y(Ta(x, y))

can occur some time after the pulse. In order to obtain sufficient statistics, recordings

from a large number of experiments carried out over a time of several years (even before

the beginning of the work for this thesis) had to be screened in terms of optical signal

quality and stability of the preparation. For many of those measurements, camera record-

ings and electric-field stimulation were initiated independently of each other, rendering a

determination of the stimulation time relative to the recorded frames impossible. Instead,

the definition of equation (2.103) will be used, which is independent of the actual time of

the pulse. There are, however, two reasons why this definition is not expected to alter the

results significantly: Firstly, as will be seen in the development of the theoretical tools in

section 3.3, the approximations derived there are only valid for a large number of wave

sources distributed approximately homogeneously throughout the tissue. If this is the case,

then there will certainly be a wave source near the surface of the tissue, calibrating P1(Ta)
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to the time of the pulse. Secondly, the same theory will assume that waves propagate

with a constant velocity from the wave sources, starting instantaneously at a given time.

However, in reality, there may be a certain latency in the response of the tissue, especially

for lower field strengths. Furthermore, the pulse has a finite duration, so the starting

time of wave propagation is not well defined even without latency, and using either the

beginning or the end of pulse as a reference time is inaccurate, too. From this viewpoint,

assuming that the waves begin to propagate when the first activation on the surface is

observed might even be a more realistic approximation. For consistency, the activation

time τ as defined in equation (2.103) is used for all results presented in section 3.3.



Chapter 3

Results

3.1 Quantification of dynamical complexity in heterogeneous

excitable media

As indicated in the introduction, in this section, the generic view of cardiac tissue as

an excitable medium is adopted to investigate, how activation patterns in these systems

can be characterized. While the approach chosen here is purely theoretical, in the long

run, such characterization might aid the quantitative assessment of the turbulence and

complexity of cardiac arrhythmias in an experimental situation and thus contribute to

the development of adaptive control strategies which make use of this information. In the

past, there has been fruitful interaction between the fields of cardiac electrophysiology and

physics, in particular non-linear dynamics, contributing to the understanding of arrhyth-

mias and their development [209]. The investigations in this section continue on this path

by applying Lyapunov stability analysis (see section 2.1.8), which has become a standard

method in the field of non-linear dynamics, to excitable media and examine, for the first

time, the Lyapunov spectra of typical activation patterns arising in these systems. For

this purpose, the mathematical framework of reaction-diffusion equations, corresponding

to the mono-domain approximation of the cardiac bi-domain equations introduced in sec-

tion 2.1.3, and the specific models of section 2.1.6 are used. The results presented below

target two central questions: First, how can what is known about Lyapunov exponents for

low-dimensional dynamical systems be applied to simple, low-dimensional attractors of the

extended, dissipative, high-dimensional systems under consideration? Which additional

aspects have to be taken into account? Second, how can this basic knowledge help to

characterize the dynamics in excitable media in general and in particular in heterogeneous

substrates?

Using covariant Lyapunov vectors [114] and the so-called domination of the Oseledec

splitting [210, 211] Yang et al. argue that numerical realizations of extended dissipa-

tive systems such as the Kuramoto-Sivashinsky and complex Ginzburg-Landau PDE are

characterized by a well-defined number of physical, interacting modes, representing the

actual dynamics [117]. Additionally, there are passive, isolated, rapidly-decaying modes

that originate from the spatial coupling of nearby points. Their number increases with

the numerical resolution, whereas the number of physical modes does not, as long as the

resolution is sufficiently good. The working hypothesis (necessary for the results to char-

79
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acterize the original PDE and not just its discretization) is that this is equally true for

reaction-diffusion PDEs of excitable media. Since the analysis will be applied to very

high-dimensional systems and thus only the upper part of the Lyapunov spectrum will

be calculated, the results are expected to converge for high numerical resolutions, with

isolated modes being added in the lower part of the spectrum not included in the analysis.

Generally, excitable media have many coexisting attractors: using identical model pa-

rameters, they usually support a large number of excitation patterns, depending only on

initial conditions. These typically include plane waves, single spiral waves and multiple

spiral waves (for large enough systems). Furthermore, by varying the model parameters,

bifurcations from stable spiral waves to meandering spirals and to spiral breakup can be

observed. Since Lyapunov exponents always characterize a specific attractor of a system

and not the system itself, the analyses in the next sections will be carried out with respect

the above-mentioned typical attractor types in excitable media.

3.1.1 Plane waves

Plane waves traveling along the x-axis were initiated in a two-dimensional medium of

6.25 cm × 6.25 cm size, using the smooth Fenton-Karma model with parameter set FK2

(see table A.2, page 177), isotropic diffusion of D = 1 cm2/s and periodic boundary con-

ditions. Due to the periodic boundary conditions, the plane wave does not die out at the

medium boundary but continuously reenters the domain from the opposite side. For the

parameters used here, a stable periodic activation pattern develops, such that λi ≤ 0 is

expected for all i, meaning that no perturbation should grow with time. In figure 3.1, a

snapshot of the system is plotted along with the perturbations belonging to the leading

Lyapunov exponents. As indicated in the figure, there is one neutrally stable direction

with λ1 = 0 and all other λi < 0, i ≥ 2. This is entirely consistent with the Lyapunov spec-

trum of a periodic orbit in an autonomous low-dimensional system, where the neutrally

stable direction corresponds to a shift along the trajectory, indicating time invariance of

the dynamical system. However, in this case, the Lyapunov vectors have a spatial struc-

ture: They are concentrated at the wave front and back and show a characteristic vertical

oscillation in space. The first vector (second column) indeed corresponds to a shift along

the trajectory, accelerating the plane wave towards a future state. A cut along the y-axis

of the first 15 Lyapunov vectors, shown in figure 3.2, indicates that the decay rate (cf.

figure legend) of the perturbations increases with the spatial frequency. The harmonic

spatial shape of the perturbations suggests to attribute their existence to the diffusive

spatial coupling of the excitable medium. The emergence of the observed spectrum will

be explained in the following.

Indeed, a plane wave in the two-dimensional system can be viewed as the natural extension

of a one-dimensional scenario: Because of the absence of spatial variations in y-direction,

the two-dimensional version of equation (2.72), which describes the actual dynamics, re-

duces to a one-dimensional problem:

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2︸︷︷︸
=0

)
+ f(u,h) = D

∂2u

∂x2
+ f(u,h) (3.1)
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Figure 3.1: Example perturbations of a plane wave. The plane wave is traveling
from left to right in a square medium with periodic boundary conditions. In the leftmost
column, a snapshot of the medium state at an arbitrary point in time is depicted, the five
columns on the right show snapshots of five associated Lyapunov vectors (at the same
time), ordered by growth rate. For the first Lyapunov vector λ1 ≈ 0, since the plane
wave is a periodic orbit in an autonomous system. The higher-index perturbations have
negative growth rates, indicated below each column (see figure 3.2 for details). The red line
in the upper left plot indicates the domain of a one-dimensional cable which, if considered
separately, would exhibit identical dynamics. Simulations done in a 6.25 cm × 6.25 cm
domain with the smooth Fenton-Karma model using parameter set FK2 (see table A.2,
page 177), isotropic diffusion of D = 1 cm2/s and periodic boundary conditions. The space
step is h = 521µm, the time step ∆t = 12.5µs. Lyapunov vectors were allowed to align
for 2800 ms before calculating the spectrum according to section 2.2.6 for another 2800 ms
(roughly 13 periods).
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Figure 3.2: Wave front modulation for a plane wave. The plot shows a cut along
the wave front (parallel to the y-axis) through the δu-component of the first 15 Lyapunov
vectors. The position x0 of the cut is indicated by arrows in the first row of figure 3.1.
Model and numerical parameters are identical to figure 3.1.

This is the equation for a one-dimensional cable (indicated by a red line in figure 3.1).

The Lyapunov spectrum of N uncoupled copies of such a cable would consist of N copies

of the spectrum of a single cable. However, the diffusion operator ∂2

∂y2 which couples the

cables in y-direction stabilizes the trajectory where u(x, y, t) is identical for all y and thus

shifts some Lyapunov exponents in the negative direction.

Following the above picture, the structure of the Lyapunov spectrum can be explained in

the context of transverse Lyapunov exponents for a coupled system of identical oscillators,

where one oscillator corresponds to the aforementioned periodic one-dimensional cable.

Its n = 3Nx degrees of freedom are the values of the three dynamic variables in every

of the Nx computational points. N of these oscillators (where N = Ny is the number

of computational points in y-direction in the two-dimensional simulation) exhibiting the

periodic dynamics of a traveling wave are diffusively coupled in y-direction. Assume for a

moment that all degrees of freedom of neighboring oscillators are coupled in the same way

via diffusion, corresponding to the following system of equations for the Fenton-Karma

model (replacing equation (2.40)):

∂u

∂t
= ∇ ·D∇u− Jfi(u, v)− Jso(u)− Jsi(u,w) (3.2a)

∂v

∂t
= H1(u, v) +∇ ·D∇v (3.2b)

∂w

∂t
= H2(u,w) +∇ ·D∇w (3.2c)
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Figure 3.3: Lyapunov spectrum for a traveling wave in a cable. The wave is
traveling from left to right in a cable modeled by the modified system 3.2 with periodic
boundary conditions. The first column displays the spatial distribution of the model
variables u, v and w. In the second column, the first four Lyapunov vectors are plotted.
Corresponding Lyapunov exponents are indicated in the legend. Numerical parameters
are identical to figure 3.1 except for a vanishing spatial extent of the domain in y-direction.

H1(u, v) and H2(u, v) denote the original right hand side for v and w of equation (2.40).

A snapshot of the dynamics in one cable together with the leading Lyapunov spectrum

is shown in figure 3.3. With this modified system of equations, the transverse Lyapunov

exponents of the numerically discretized system viewed as a collection of coupled cables

can be calculated analytically, following Heagy, Carroll & Pecora [212]: They derived

an expression for a system of coupled oscillators with an additive coupling term for the jth

oscillator of the form c[zj−1− 2zj + zj+1], where zj is the state vector of the jth oscillator

with its n degrees of freedom. This corresponds exactly to one possible discretization of a

second derivative such as the y-component of the Laplacian. Equations (2.86) and (2.87)

state that the coupling strength in this context is c = D 1
h2 = D

N2
y

L2
y

. The result of Heagy

et al. now is that the transverse Lyapunov exponents can be calculated as follows:

λki = λ0
i − 4c sin2

(
πk

Ny

)
, (3.3)

1 ≤ k ≤ Ny − 1 is the index denoting the spatial mode, and λ0
i with 1 ≤ i ≤ n are

the Lyapunov exponents for a single cable without coupling, which were illustrated in

figure 3.3, such that λ0
i = λ1d

i . In the continuum limit Ny → ∞, the origin of this shift
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becomes immediately clear, because for k � Ny

λki ≈ λ0
i − 4c

(
πk

Ny

)2

= λ0
i −D

(
2πk

Ly

)2

. (3.4)

The last term can be recognized as the eigenvalues of the diffusion operator which is

responsible for the coupling and whose eigenspaces are two-dimensional:

D
∂2

∂y2
(A sin (γky) +B cos (γky)) = −Dγ2

k (A sin (γky) +B cos (γky)) , (3.5)

where γk = 2πk
Ly

. The fact that the shift of the transverse Lyapunov exponents is given by

the eigenvalues of the y-component of the Laplace operator is, of course, not a coincidence:

Let δU1d(x) = [δu1d(x), δv1d(x), δw1d(x)] be a Lyapunov vector of the one-dimensional

cable associated with a Lyapunov exponent of λ1d in the co-moving frame of reference

(hence the time independence). Let L1d denote the linearized dynamics of the cable in the

co-moving frame (i.e. the linearization around the fixed point) and L = L1d + ∂2

∂y2 that

of the two-dimensional system with complete coupling as in equation (3.2).1 Then, it is

known that δU1d is an eigenvector of L1d with eigenvalue λ1d. It is seen immediately that

with an eigenfunction fk(y) of the Laplace operator with eigenvalue γk, the definition

δU(x, y) = δU1d(x)fk(y) (3.6)

yields an eigenvector δU(x, y) of L with eigenvalue λ1d−Dγ2
k . Thus, each choice of k yields

a different copy of the spectrum of the one dimensional system in the two-dimensional

medium, shifted by −Dγ2
k , which is exactly the result of equation (3.4).

Since λ1d
1 = 0 for a single cable, a number of Lyapunov exponents equal to the second term

of equation (3.3) are expected to appear in between λ1d
1 and λ1d

2 (if there is a large enough

gap between them). To verify this conjecture, simulations of the full two-dimensional

system with the modified equation (3.2) were carried out. As shown in table 3.1, the

Lyapunov spectrum of the two-dimensional system corresponds exactly (within numerical

errors) to that expected from equation (3.3) for a system of coupled one-dimensional ca-

bles: “Copies” of both λ1d
1 and λ1d

2 can be found in the spectrum with their values shifted

by the second term of equation (3.3).

In reference [212], Heagy et al. note that the case of non-complete diffusive coupling

is not analytically tractable. This corresponds to the case of the original system equa-

tion (2.40), since only the u variables of neighboring cables are coupled. However, even in

this situation, the Lyapunov spectra of the plane wave and of the traveling wave in a cable

are still closely connected by the spectrum of the Laplace operator: The third column

in table 3.2 indicates that all additional Lyapunov exponents between λ1d
1 and λ1d

2 differ

from those expected from equation (3.3) only by an approximately constant factor. Also,

the two-fold degeneracy of the Lyapunov exponents is preserved. Indeed, even the spatial

structure of Lyapunov vectors depicted in figures 3.1 and 3.2 resembles that expected from

equation (3.6), namely different oscillatory modulations of the first Lyapunov vector. The

similarity of the two scenarios (complete coupling and u-coupling) indicates the dominant

1If diffusion only acts on the variable u as in the original model, ∂2

∂y2
would correspondingly only act on

the δu-component of δU, which would lead to a different L and would invalidate the following argument.
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Table 3.1: Lyapunov spectrum of a plane wave for complete coupling. Lyapunov
exponents are listed in descending order for plane waves using parameter set FK2 and
diffusion in all model variables according to equation (3.2). The first column contains
the Lyapunov exponents for a one-dimensional cable (cf. figure 3.3), the second those for
the full two-dimensional system. The third column indicates ratio of the observed shift of
the Lyapunov exponents to that one expected from equation (3.3). The fourth and firth
column denote the values of i and k used for equation (3.3).

λ1d
i = λ0

i λ2d = λki (λki − λ0
i )/(−4c sin2(πkN )) i k

(0.2± 4.8)× 10−4 (−0.1± 4.7)× 10−4 1 0
(−9.5± 4.8)× 10−4 1.0± 0.9 1 1
(−9.8± 4.8)× 10−4 1.0± 0.9 1 1
(−4.0± 0.5)× 10−3 1.0± 0.2 1 2
(−4.0± 0.5)× 10−3 1.0± 0.2 1 2
(−9.0± 0.5)× 10−3 1.0± 0.1 1 3
(−9.0± 0.5)× 10−3 1.0± 0.1 1 3

(−1.60± 0.05)× 10−2 0.99± 0.06 1 4
(−1.60± 0.05)× 10−2 0.99± 0.06 1 4
(−2.49± 0.05)× 10−2 0.99± 0.04 1 5
(−2.49± 0.05)× 10−2 0.99± 0.04 1 5
(−3.58± 0.05)× 10−2 0.99± 0.03 1 6
(−3.58± 0.05)× 10−2 0.99± 0.03 1 6
(−4.86± 0.05)× 10−2 0.99± 0.02 1 7
(−4.86± 0.05)× 10−2 0.99± 0.02 1 7
(−6.33± 0.05)× 10−2 0.99± 0.01 1 8
(−6.33± 0.05)× 10−2 0.99± 0.01 1 8
(−7.98± 0.05)× 10−2 0.99± 0.01 1 9
(−7.98± 0.05)× 10−2 0.99± 0.01 1 9

(−8.53± 0.02)× 10−2 (−8.53± 0.01)× 10−2 2 0
(−8.63± 0.04)× 10−2 1.0± 0.6 2 1
(−8.63± 0.04)× 10−2 1.0± 0.5 2 1

(−8.6± 0.2)× 10−2 (−8.6± 0.2)× 10−2 3 0
(−8.6± 0.2)× 10−2 (−8.7± 0.1)× 10−2 4 0
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Table 3.2: Lyapunov spectrum of a plane wave for single-variable coupling.
Lyapunov exponents are listed in descending order for plane waves in the original Fenton-
Karma model of equation (2.40) using parameter set FK2. The first column contains the
Lyapunov exponents for a one-dimensional cable (cf. figure 3.3), the second those for the
full two-dimensional system. The third column indicates ratio of the observed shift of
the Lyapunov exponents to that one expected from equation (3.3). The fourth and firth
column denote the values of i and k used for equation (3.3).

λ1d
i = λ0

i λ2d = λki (λki − λ0
i )/(−4c sin2(πkN )) i k

(−0.8± 2.6)× 10−4 (−0.8± 2.6)× 10−4 1 0
(−1.5± 0.3)× 10−3 1.4± 0.5 1 1
(−1.5± 0.3)× 10−3 1.4± 0.5 1 1
(−5.9± 0.3)× 10−3 1.4± 0.1 1 2
(−5.9± 0.3)× 10−3 1.4± 0.1 1 2

(−1.32± 0.03)× 10−2 1.45± 0.06 1 3
(−1.32± 0.03)× 10−2 1.45± 0.06 1 3
(−2.35± 0.03)× 10−2 1.46± 0.03 1 4
(−2.35± 0.03)× 10−2 1.46± 0.03 1 4
(−3.70± 0.03)× 10−2 1.47± 0.02 1 5
(−3.70± 0.03)× 10−2 1.47± 0.02 1 5
(−5.37± 0.03)× 10−2 1.49± 0.01 1 6
(−5.37± 0.03)× 10−2 1.49± 0.01 1 6
(−7.40± 0.03)× 10−2 1.51± 0.01 1 7
(−7.40± 0.03)× 10−2 1.51± 0.01 1 7

(−8.6± 0.5)× 10−2 (−8.6± 0.6)× 10−2 2 0
(−8.6± 0.5)× 10−2 (−8.6± 0.6)× 10−2 3 0
(−8.6± 0.5)× 10−2 (−8.6± 0.6)× 10−2 4 0
(−8.6± 0.5)× 10−2 (−8.6± 0.6)× 10−2 5 0
(−8.6± 0.5)× 10−2 (−8.6± 0.5)× 10−2 6 0
(−8.6± 0.6)× 10−2 (−8.6± 0.6)× 10−2 7 0
(−8.6± 0.5)× 10−2 (−8.6± 0.5)× 10−2 8 0
(−8.6± 0.5)× 10−2 (−8.6± 0.5)× 10−2 9 0
(−8.6± 0.5)× 10−2 (−8.6± 0.5)× 10−2 10 0
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role of the activation variable u for the formation of wave patterns in excitable media. Af-

ter all, activation (or, in the Fenton-Karma model: action potentials) can only be initiated

from the resting state by a perturbation to u, but not via any other variable.

3.1.2 Rigidly rotating spiral waves

Another type of attractor that can be found in various examples of excitable media (with

no-flux boundary conditions) is that of a single spiral wave. In its simplest form of a rigidly

rotating wave, the trajectory of the system corresponds to a periodic orbit. Therefore,

at a first glance and from the dynamical systems point of view, the attractor seems to

be similar to the one considered in section 3.1.1. However, it is known that spiral waves

are characterized by phase singularities (see section 2.1.7), a topological property which

represents a localized wave source that does not require specific anatomical features, as

opposed to the plane wave that requires the periodic medium considered in section 3.1.1.

This qualitative difference between the two attractors becomes manifest in the spectrum

of Lyapunov exponents by the appearance of two additional Lyapunov exponents that are

equal to zero: In figure 3.4, the subspace belonging to λ1 = λ2 = λ3 = 0 for a spiral wave

in the Barkley model is illustrated with three meaningful directions in tangent space. Due

to the degeneracy, Lyapunov stability analysis yields three arbitrary Lyapunov vectors in

this subspace. In figure 3.4, three orthonormalized linear combiniations of these arbitrary

Lyapunov vectors are depicted, indicating that the two additional zero exponents are a

result of the translational symmetry in the system: If the boundary is far away from the

rotational center of the spiral – i.e. the two are electrotonically decoupled – a shift of the

wave in either of the two available directions will not decay but represents a neutrally stable

perturbation that is picked up by the linear stability analysis. The first Lyapunov vector

plotted in figure 3.4 (second column) corresponds to a perturbation along the trajectory

of the system, i.e. parallel to ∂(u,v)
∂t . This is the neutrally stable direction in tangent space

expected for a periodic orbit every autonomous dynamical system, in this case accelerating

the dynamics towards a future state. Consequently, the other two linearly-independent

directions indeed correspond to a shift of the spiral wave in two different directions. For

example, the perturbation in the third column of figure 3.4 accelerates wave parts moving

(roughly) to upper left of the medium and decelerates those parts moving to the lower

right, effectively shifting the whole spiral towards the upper left.

The periodic orbit of a steadily rotating spiral therefore seems to be embedded in an in-

variant manifold of total dimension three, where the two directions transverse to the flow

represent the independence of the dynamics from position of the spiral tip. Although the

finding that spiral waves are subject to a Euclidean symmetry (ignoring boundary effects)

seems trivial, note that Lyapunov spectra are computed using a spatially and temporally

discretized system. In contrast, the translational, Euclidean invariance of the dynamics

is a continuous symmetry. A priori, it is at least questionable whether this continuous

symmetry is also present in the discretized system. The analysis shown here confirms that

this is indeed the case.

The correctness of the numerical approximation in this particular aspect (with respect

to the original PDE) depends on the chosen numerical resolution, as shown in figure 3.5.

For high resolutions, the upper Lyapunov spectrum becomes independent of the numer-
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Figure 3.4: Lyapunov vectors of a rigidly rotating spiral wave. Depicted are
the medium state (first column) and three Lyapunov vectors (second to fourth column)
spanning the degenerated subspace for λ1 = λ2 = λ3 = 0 (values obtained in the simulation
indicated below each column). Linear combinations were chosen such that the second
column represents a shift along the trajectory of the system. The third and fourth column
correspond to translational Lyapunov vectors that are perpendicular both to each other
and to the second column. Simulations done using parameter set B2, see page 177. The
numerical space step is h = 1/6, the domain size 20 × 20 and the time step ∆t = 6.25 ×
10−4. Lyapunov vectors were allowed to align for a time span of 35 time units, before
the Lyapunov spectrum was calculated for 350 time units (roughly 100 spiral periods)
according to section 2.2.6.
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Figure 3.5: Numerical artifacts in the Lyapunov spectrum (Barkley model). Plot
of the upper Lyapunov spectrum of a stable spiral wave against the numerical resolution
in the Barkley model. As expected, there is a limiting spectrum for large N/L (good
numerical resolution). Note the initially stable translational perturbations (λ2 and λ3)
which become marginally stable as the resolution increases. Thus, at sufficiently high
resolutions, the translational invariance of the PDE is preserved in the discretized system,
whereas pinning of the spiral to the numerical grid is observed at low resolutions. Simu-
lations done using parameter set B2, see page 177. The numerical space step is indicated
in the plot, the domain size is 20× 20, the time step ∆t = 6.25× 10−4. Lyapunov vectors
were allowed to align for 35 time units, before the Lyapunov spectrum was calculated for
350 time units (roughly 100 spiral periods) according to section 2.2.6.
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Figure 3.6: Numerical artifacts in the Lyapunov spectrum (Fenton-Karma
model). Dependence of the upper Lyapunov spectrum of a stable spiral wave on nu-
merical resolution in the smooth Fenton-Karma model. In contrast to the Barkley model
(figure 3.5), the lower part of the spectrum (λi, i > 3) shows increased stability for low
resolutions. Note the different y-axis scalings in the lower and upper half of the plot. Sim-
ulations done using parameter set FK3 (see page 177) with isotropic diffusion of 1 cm2/s.
The numerical space step is indicated in the plot, the domain size is 3.125 cm× 3.125 cm,
the time step ∆t = 0.0125 ms. Lyapunov vectors were allowed to align for 2800 ms, before
the Lyapunov spectrum was calculated for 2800 ms time units (roughly 22 spiral periods)
according to section 2.2.6.
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ical resolution and the structure of the neutrally stable subspace is preserved. For low

resolutions, the Euclidean symmetry is broken and the neutrally stable subspace becomes

one-dimensional: certain positions of the spiral wave are favored and stabilized by the

numerical grid, hence yielding negative Lyapunov exponents for the translational pertur-

bations. In other words, the spiral wave tends to pin to the numerical lattice. This effect

has already been noticed by comparing spiral tip trajectories for different numerical res-

olutions [104]. For stable spiral waves without a visible core (i.e. with a stationary tip),

however, this strategy is inappropriate, since a retrospective analysis cannot determine

whether or not the tip could potentially have been located at a slightly different position.

The plot in figure 3.5 also indicates that a low numerical resolution does not have identical

effects on all directions in tangent space: in contrast to λ2 and λ3, higher-index Lyapunov

exponents increase towards lower resolutions, meaning that the corresponding perturba-

tions become less stable. This effect is, however, not universal: Figure 3.6 indicates that

for specific parameters in the Fenton-Karma model, a low numerical resolution has a sta-

bilizing effect on λi, i > 3 as well. Other authors have observed that a coarse numerical

resolution can both induce [104, 213] and prevent [103, 163] spiral wave break-up, which

would be associated with one or more Lyapunov exponents being elevated above or reduced

below zero, respectively. In particular for investigating control strategies for spiral wave

activity in excitable media, Lyapunov stability analysis therefore presents a valuable tool

to directly assess the accuracy of the numerical approximation. In this way, the faithful

reproduction of stability properties in the numerical realization of the PDE can be ensured

without relying on the traditional method of checking the sensitivity of indirect indicators

to changes in resolution, such as spiral tip trajectories or periods, conduction velocity,

action potential duration and the rate of change of the membrane potential during the

upstroke phase [32]. The big advantage of the analysis lies in its implicit check for possible

perturbations, whereas all other indicators mentioned above only operate on the attractor

itself.

3.1.3 Multiple spiral waves

In section 3.1.2, it was shown that Lyapunov stability analysis can detect symmetries in an

activation pattern. At a second glance, this is quite surprising for the translational sym-

metries, since the domain under consideration (a bounded region with no-flux boundary

conditions) does not have this symmetry. Consequently, it can be concluded that the part

of the activation pattern responsible for the observed zero exponents (and possibly also

for other exponents in the upper Lyapunov spectrum) is actually much smaller than the

domain size and thus protected from the influence of the boundary2. This does not contra-

dict the extension of the corresponding Lyapunov vectors throughout the whole domain

(see figure 3.4), as translations and rotations – the latter being equal to a perturbation

along the trajectory – nevertheless act globally, as long as the spiral wave can reach the

whole domain.

One way to assess the extension of the essential part of the spiral in terms of symmetry and

2This protection is caused by the waves that are periodically emitted outwards and prevent any in-
teraction in the opposite direction. Indeed, there is a very weak electrotonic coupling even in retrograde
direction which decays exponentially with distance from the boundary, thus quickly vanishing from the
accessible range of numerical accuracy.
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stability would be to investigate the dependence of the spectrum on system size. Here, a

different approach is chosen: different numbers of spiral waves are initiated in a medium of

constant size, using the Barkley model with parameter set B2 (see table A.1). Figure 3.7a)

shows example snapshots of the u-variable of the Barkley model for one to twelve spiral

waves. The images correspond the state of the medium after an initial transient phase

of spiral movement and possible disappearance of phase singularities from the medium.

From the plot in figure 3.7b), it can be concluded that the specific signature of three zero

Lyapunov exponents for a spiral wave must be carried by a relatively small region around

the phase singularity. For one to twelve spiral waves, the number of zero Lyapunov expo-

nents corresponds exactly to three times the number of spirals in the domain. This means

that all the symmetries are preserved for each spiral individually. More specifically, this

rules out the possibility that any of the spiral waves are phase-synchronized or that the

position of one phase singularity is constrained by interaction with the surrounding ones

(in which case some zero Lyapunov exponents should become negative). As indicated in

figure 3.7c), this additive behavior of the Lyapunov spectrum does in fact extend to the

next (more negative) two pairs of Lyapunov exponents. For the number of spirals and

parameters considered here, the entire leading Lyapunov spectrum for n spirals is there-

fore identical to that one expected for n copies of a system with one spiral wave. This is

remarkable, since different n actually represent coexisting attractors in the same system.

On the one hand, the behavior of the Lyapunov spectrum reveals that these attractors

have a very specific structure. On the other hand, it confirms the intuitive interpretation

of spiral waves in excitable media as objects.

To emphasize that the directions in the more and more degenerated subspaces in tangent

space can indeed be assigned to individual spiral waves, figure 3.8 shows four specific

Lyapunov vectors from the subspace with growth rate zero in a three-spiral simulation.

The first one corresponds to the perturbation along the trajectory, while the other three

indicate that the time- or phase-shifting symmetry is indeed preserved for each spiral wave

individually, as if they were (almost) independent systems. As an interesting by-product,

these specific vectors yield a decomposition of the medium into domains controlled by the

individual spirals. At least for this periodic attractor, Lyapunov stability analysis there-

fore provides a way to objectively define “domains of influence” of individual spirals in

contrast to visual inspection of the dynamics [105].

It should be noted that the complete preservation of symmetries does not imply that

phase singularities in the medium do not interact: as mentioned above, the simulations

were allowed to converge to a state with stationary phase singularities exhibiting periodic

dynamics. In this transient time, spiral waves can have interacted with each other or

pushed each other out of the medium. All the above analysis means is that the phase

singularities have settled down outside their mutual interaction ranges, probably because

for this specific model and parameters B1, the spiral waves are repelling each other. In

contrast, the formation of pairs or clusters of spiral waves that settle down in a mini-

mum of an attracting potential could have been detected, provided the force survives the

linearization of the original equations.
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Figure 3.7: Lyapunov exponents of multiple stable spirals. The number of spirals
can be detected from the Lyapunov spectrum: a) Exemplary snapshots of the activator
variable u of the Barkley model from simulations with one to twelve spirals exhibiting
periodic dynamics. Black color indicates activation. Positions of phase singularities are
marked by red dots. b) Number of zero Lyapunov exponents for the above simulations.
Every spiral contributes three such exponents, indicating the waves’ mutual independence
in terms of angle and position (all symmetries are preserved individually). c) Lyapunov
spectrum of 50 leading exponents plotted against the number of spirals. Dashed lines
indicate change of Lyapunov exponents for each additional spiral, Lyapunov exponents are
colored randomly by their index. Numbers above gray bands indicate, how many Lyapunov
exponents have a value within the corresponding interval of growth rates. Counts that are
affected by the limited number of Lyapunov exponents (50) have been replaced by “x”.
Simulation done using parameters B2, see page 177. The numerical space step is h = 1/5,
the domain size 30× 30 and the time step ∆t = 0.002. Lyapunov vectors were allowed to
align for a time span of 50 time units, before the Lyapunov spectrum was calculated for
another 350 time units (roughly 100 spiral periods) according to section 2.2.6.
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Figure 3.8: Single-spiral perturbations in a system of multiple spirals. Multiple
spiral waves on a periodic orbit as independent entities. Along with the state of a medium
containing three periodically rotating waves (first column), four specific directions in the
degenerate subspace of neutral perturbations are shown. δ(u, v)traj is the perturbation
along the trajectory of the complete system. δ(u, v)spiral{1,2,3} are perturbations advancing
each spiral individually in time, thereby separating the areas controlled by different spiral
waves. Numerical and model parameters are identical to those used in figure 3.7.
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Figure 3.9: Bifurcation detection. Transition from a rigidly rotating spiral (a & 0.760)
to a meandering spiral (a . 0.760) for parameter set B3, see page 177. Spiral tip paths
detected by the method outlined in section 2.2.5 with (u∗, v∗) = (0.5, 0.4) are shown above
the plot centered at the corresponding values of a. The bifurcation point can be clearly
detected from the spectrum of Lyapunov exponents. For meandering, the degenerate
subspace of growth rate zero becomes four- instead of three-dimensional, as expected
from the Hopf nature of the bifurcation. Inset: Plot enlarged around the bifurcation
point. The numerical space step is h = 1/8, the domain size 18.75 × 18.75 and the time
step ∆t = 0.002. Lyapunov vectors were allowed to align for a time span of 80 time
units, before the Lyapunov spectrum was calculated for 700 time units (roughly 200 spiral
periods independent of a) according to section 2.2.6.

3.1.4 Transition to meandering

One classical use case for Lyapunov exponents is bifurcation analysis: Bifurcations are

qualitative changes of the attractor structure along a certain path in parameter space.

Locally in phase space, certain directions change their stability properties from stable to

unstable or vice versa. Therefore, exactly at the bifurcation, there are typically one or

more additional neutrally stable directions that can be detected via Lyapunov stability

analysis (and yield additional zero Lyapunov exponents). A typical and well-understood

bifurcation in excitable media is the transition from a rigidly rotating spiral to a meander-

ing spiral, which has been shown to occur via a Hopf bifurcation [72, 107, 106] introducing

a second frequency into the system. D. Barkley obtained this important finding by

carrying out a linear stability analysis on the fixed point representing a rigidly rotating

spiral in the co-rotating frame of constant angular velocity. In this frame of reference, two

eigenvalues of the Jacobian (at the fixed point) cross the imaginary axis at the critical

bifurcation parameter value.

Figure 3.9 shows the Lyapunov spectrum for a single spiral wave in the Barkley model using

parameter set B3. The transition to meandering occurs from right to left for a parameter

value of a ≈ 0.760 and is identical to the one considered in a publication by Barkley
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Figure 3.10: Meandering modes for a rigidly rotating spiral. Bifurcating subspace
in tangent space for parameter set B3 with a = 0.766, i.e before the meandering bifurcation
(c.f. figure 3.9). Shown is the medium state (leftmost column) and are two arbitrary per-
pendicular vectors in the degenerated subspace belonging to the fourth and fifth Lyapunov
exponent (values indicated below each column).

[107]. Towards the bifurcation point (from the right), two Lyapunov exponents approach

zero, corresponding to the two-dimensional eigenspace for the fixed-point problem consid-

ered by Barkley. At the bifurcation, the rigid rotation of the spiral becomes unstable

via the above-mentioned Hopf bifurcation. Since Lyapunov spectra only characterize the

attractor the system is currently exploring, the two Lyapunov exponents do not become

positive (as the real parts of the eigenvalues for the fixed-point analysis do). Instead, after

the bifurcation (towards the left), there are now four zero Lyapunov exponents: two for

the periodic or quasi-periodic dynamics on a torus and two – as before – as a result of the

Euclidean symmetry (see sections 3.1.2 and 3.1.3). The Lyapunov vectors belonging to the

two exponents approaching zero towards the critical parameter value correspond to the

bifurcating directions in tangent space. Thus, the two vectors shown in figure 3.10 span

the two-dimensional bifurcating subspace. As the Lyapunov vectors depicted in figure 3.4,

which represent the Euclidian symmetry, the Lyapunov vectors for the meandering modes

are concentrated at the wave front and back. However, while the symmetry modes have

an angular periodicity of the wave front modulation of approximately 2π (because of its

action as a spatial shift), the meandering modes exhibit a higher spatial frequency. Note

that this is similar to the increasing spatial frequency for higher-index modes for plane

waves as depicted in figure 3.1.

Of course, Lyapunov stability analysis cannot replace linear stability analysis of the cor-

responding fixed point problem: the most important disadvantage is that the imaginary

parts of the eigenvalues cannot be reconstructed from the Lyapunov exponents. Further-

more, as mentioned above, Lyapunov analysis is always restricted to the attractor the

system is currently evolving on, while a linear stability analysis can determine the sta-

bility properties of arbitrary points in phase space, no matter whether they are stable or
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not.3 The latter might, however, also be considered an advantage, since the fixed points

(or other manifolds) do not have to be determined separately from the stability analysis.

As an example, the angular wave speed of the co-rotating frame along with the fields of

u, v and w of the Fenton-Karma model are obtained using a Newton-Raphson method

in reference [108], and the dominant eigenvalues and eigenmodes at the fixed point have

to be determined by further sophisticated methods. In contrast, Lyapunov exponents

and vectors can be determined by standard procedures without any further algorithmic

effort. Note also that the ability to detect and characterize this particular meandering

bifurcation via linear stability analysis is based on the geometrically simple trajectory

from which it originates, which makes it easiliy possible to transform a periodic orbit into

a fixed point. While this can in the general case always be done by defining appropriate

Poincaré sections, switching from the continuous to a time-discrete system might hide

important details. In contrast, Lyapunov analysis could also be applied for meandering

transitions where the (non-meandering) spiral trajectory is not just a circular motion.

3.1.5 Circular heterogeneities

So far, the stability analysis has been applied to homogeneous excitable media, only. How-

ever, an important problem in the context of the control and development of undesired

activation patterns in excitable media is how heterogeneity influences their stability (see

introduction, section 1.6). One more specific question one might ask is: If a spiral wave is

prone to some sort of instability, does heterogeneity stabilize or destabilize it?

The scenario in which this question will be answered uses a specific parameter range in

the Barkley model, in which a and ε are fixed, whereas the excitation threshold b is varied.

Figure 3.11 shows the Lyapunov spectra for a spiral wave in a homogeneous medium with

the different values of b. For the whole range, the spiral wave rotates steadily, indicated

by three Lyapunov exponents which are equal to zero (similar to the spiral in section 3.1.4

before the meandering bifurcation, see figure 3.9). The two Lyapunov exponents associ-

ated with meandering come very close to zero towards b ≈ 0.13, but instead of bifurcating,

they stabilize again for further increasing b. Finally, for very high b, the medium loses its

ability to form spiral waves and so the Lyapunov spectrum becomes all negative, indicat-

ing a stable fixed point which corresponds to the stable, homogeneous resting state of the

medium.

The heterogeneity that will be considered is a circular region of radius R close to the

spiral tip, in which the excitation threshold is increased from b = 0.08 (which is used in

the rest of the medium) to bhet. It is well established that spiral waves are usually drawn

to regions of longer spiral wave periods or lower excitability [214, 83, 215], although ex-

ceptions are known [82]. For the parameters used here, the expected behavior is indeed

observed and the spiral wave is attracted by the heterogeneity if initiated close to it. A

snapshot of the long time behavior for an exemplary simulation is shown in figure 3.12a).

From section 3.1.2 it is known that usually, two Lyapunov exponents which are equal to

zero indicate the translational symmetry of the activation pattern. Consequently, for a

heterogeneity which pins the spiral wave to a specific position as in figure 3.12a), these

3Linear stability analysis can therefore be used to determine the modes that are responsible for insta-
bilities, e.g., meandering and alternans modes for a rigidly rotating spiral in the unstable regime [107, 108].
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Figure 3.11: Lyapunov spectrum for different homogeneous excitation thresh-
olds. Parameter set B4 (see table A.1, page 177) is used with the indicated value of b
throughout the medium. The range of the excitation threshold b covers all values used
in the heterogeneous scenario (cf. figure 3.12). The numerical space step is h = 1/3, the
domain size 40 × 40 and the time step ∆t = 0.0025. Lyapunov vectors were allowed to
align for a time span of 35 time units, before the Lyapunov spectrum was calculated for
150 time units according to section 2.2.6.

two exponents should become negative, similar to the pinning effect of the numerical grid

observed in figure 3.5.

However, a parameter scan for bhet and R reveals that the behavior of the system is much

richer than expected. Figure 3.12c) shows the Lyapunov spectrum of the dynamics for

a small heterogeneity of R = 1.2 in model length units, plotted against the parameter b

within the heterogeneity. bhet = 0.08 corresponds to a homogeneous medium. As expected,

the two Lyapunov exponents λ2 and λ3 indicating spatial symmetry become negative with

increasing excitation threshold b. The heterogeneity thus seems to create one specific

favorable location for the spiral and the “pinning force” to this location increases with

the excitation threshold bhet (indicated by the more and more stable symmetry modes).4

One can already see in the same plot that the destabilization of the meandering modes

which was visible for homogeneously increased b (see figure 3.11) is not fully suppressed:

λ4 and λ5, which were identified as the meandering modes in section 3.1.2, are slightly

destabilized, although not enough to lead to a bifurcation and less than in the homoge-

neous case (see figure 3.11). However, if the heterogeneity is larger, as is the case for

figure 3.12d) (R = 2), exactly this happens. Not only is the rate with which the symme-

try modes become stable much faster, but at the same time, the meandering modes are

destabilized much stronger, leading to a bifurcation close to bhet = 0.115 which results

in one additional zero Lyapunov exponent above bhet = 0.115 (similar to meandering in

a homogeneous medium). Note that, for this to happen, the Lyapunov exponents which

correspond to the symmetry and meandering modes have to reverse their order (see value

of b marked by “◦” in figure 3.12d)). This will be discussed in detail at the end of this

section. Visual inspection of the spiral tip trajectories confirms that up to bhet = 0.115, the

spiral wave is indeed held in a fixed position by the heterogeneiety, as seen in figure 3.12a),

4One could also imagine that the spiral wave is just attracted initially by the heterogeneity but its
exact position is still arbitrary, which would result in a preservation of the local symmetry.
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Figure 3.12: Symmetry break by heterogeneity. a), b) Example snapshots of the
Barkley model variable u of spirals interacting with a circular heterogeneity of increased
excitation threshold b (region indicated by yellow color). Parameter set B4 (see table A.1,
page 177) is used with b = 0.08 throughout the medium, except for the circular region,
whose parameter bhet is indicated by “◦” and “×” in d) and e), respectively. The spiral
tip path detected using the method outlined in section 2.2.5 with (u∗, v∗) = (0.48, 0.38) is
plotted as a red line. c) to e) Leading Lyapunov spectra for three different radii of the
heterogeneity (R = 1.2, 2, 5, respectively) plotted against the value of the model parameter
b = bhet within the circular region. bhet = 0.08 corresponds to a homogeneous medium.
The numerical parameters are identical to those noted in the caption of figure 3.11.
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whereas above the bifurcation value, the tip starts to meander. This effect is seen more

easily for an even larger heterogeneity (R = 5), with a Lyapunov spectrum as plotted in

figure 3.12e). The corresponding spiral tip trajectory for the meandering region with two

zero Lyapunov exponents is shown in figure 3.12b).

For small R, the heterogeneity therefore acts as a pinning center, despite the fact that a

homogeneous medium of the same increased excitation threshold is close to a meandering

instability (cf. figure 3.11). For larger R, however, this potential instability does not only

reappear but is even enhanced, such that an actual bifurcation can take place which is not

observed in the homogeneous case. Another interesting phenomenon for R = 5 is that the

symmetry modes are not stabilized for moderate values of bhet, indicating that within the

heterogeneity, the spiral can still evolve freely if the heterogeneity is not too strong. Also,

note that the Lyapunov spectra for moderate bhet (below the bifurcation value) look very

similar to the homogeneous case in figure 3.11. The value of bhet at which the spiral wave

feels that the modification of b is not global and deviates from the homogeneous behavior

therefore increases with increasing R. This is consistent with the fact that the case of

R→∞ is identical to the homogeneous scenario of figure 3.11.

For a stable spiral wave in a homogeneous medium it was shown in section 3.1.2 that

the leading Lyapunov spectrum consists of three neutrally stable modes which represent

a perturbation along the trajectory of the system and spatial shifts in the two available

directions due to Euclidian symmetry. The fourth and fifth Lyapunov exponent were asso-

ciated with the modes which were found to be responsible for the meandering bifurcation

considered in section 3.1.4. However, as seen in this section, the relative order of the sym-

metry and meandering modes in terms of growth rate is not universal, but can be reversed

by interaction of the spiral wave with a heterogeneity. In figure 3.12d), it is seen that this

reversal can take place when both modes are actually stable, which makes it impossible to

differentiate them by observing the dynamics of the spiral wave. By following the change

of Lyapunov exponents from the homogeneous case (bhet = 0.08) to the value of b indicated

by “◦”, it was implicitly assumed that the trend in growth rate for both modes continues

and that indeed the Lyapunov exponents of the meandering modes approach a value of

zero (later confirmed when the bifurcation takes place at about bhet = 0.115). However,

since the ordering of Lyapunov exponents from largest to smallest alone defines their in-

dices, one would not be able to follow this (heuristic) reasoning if only the spectrum at

bhet = 0.1 (“◦”) was known. Fortunately, this is possible making use of one quantity disre-

garded so far this section: the Lyapunov vectors. Figure 3.13 shows the Lyapunov vectors

for the five leading exponents in the system with R = 2 and bhet = 0.1. The first one

corresponds to the perturbation along the trajectory, whereas the spatial symmetry modes

can be found as the fourth and fifth Lyapunov vector. δ(u, v)4 represents a shift of the

wave pattern towards the lower right, whereas δ(u, v)5 shifts the spiral wave towards the

lower left. In contrast, the second and third Lyapunov vector exhibit a higher-frequency

modulation of the wave front characteristic for the meandering modes (see section 3.1.4).

In this way, the reversal of stability order necessary for the pinned meandering bifurcation

observed in this section can be objectively confirmed.
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Figure 3.13: Lyapunov vectors of a spiral wave interacting with a circular het-
erogeneity. Shown are the Lyapunov vectors corresponding to the first five Lyapunov
exponents for the parameters indicated by “◦” in figure 3.12. The region of increased
excitation threshold b is marked by yellow color. The medium state is depicted in the
leftmost column. The five columns each show the u and v components of the Lyapunov
vectors. Values of Lyapunov exponents are printed below each column.

3.1.6 Random heterogeneities

One of the advantages of Lyapunov stability analysis compared to the linear stability

analysis of fixed points is that it can be applied to arbitrary trajectories. Therefore,

the heterogeneity in the system does not have to be “simple” for the method to work.

Thinking about the complex system of the heart and its inherent heterogeneity, not only

abrupt changes of tissue properties in localized regions are conceivable, as considered in

section 3.1.5. Rather, real-world (and in particular biological) systems are usually sub-

ject to natural variability which leads to a random distribution of parameters. Following

this line of thoughts, the excitation threshold of the medium is now modified randomly.

To compare the results with those in section 3.1.5, random variations of b from the base

value of b0 = 0.08 towards higher excitation thresholds are imposed, where a well-defined

correlation length serves as a similar measure as the radius of the heterogeneity in sec-

tion 3.1.5. To construct such a randomly varying b(x, y), so-called Gaussian random fields

are utilized. These are fully defined by their auto-correlation function, which makes it

particularly easy to obtain different realizations. If σ is the intended correlation length,

let

R(x, y) = exp

(
x2 + y2

2σ2

)
(3.7)

be the imposed (spatial) auto-correlation function. Via the Wiener-Khinchin theorem, the

Fourier transform of R is the power spectrum of the underlying field βfull(x, y), so

|F2[βfull]| =
√
F2[R], (3.8)
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Figure 3.14: Construction of random excitation threshold. a) Imposed two-
dimensional gaussian auto-correlation function R(x, y) with a defined correlation length
σ (see equation (3.7)). b) Amplitude of the spectrum of the underlying random field, via
Wiener-Khinchin theorem from a) as in equation (3.8). c) Random phase θ(x, y) deter-
mining the realization of the field. d) Realization of the field according to equation (3.9).
e) Normalized and capped version β(x, y) of the field in d) used to modify the excitation
threshold. f) Same as e), but for a different realization, i.e. different phases in c).

where F2 denotes the two-dimensional Fourier transform in space. As the Fourier trans-

form of the field βfull is only determined up to its amplitude by this relation, different

realizations of the field can be obtained by choosing random phases θ(kx, ky) for each

mode (numerically: for each computational point) and transforming the spectrum back to

real space:

βfull = Re
(
F−1

2

[
θ ·
√
F2[R]

])
, (3.9)

where Re is the real part. The standard deviation of the obtained realization βfull(x, y)

across the whole domain is then normalized to one and negative regions are set to zero to

give the final modulation β(x, y):

β(x, y) =
1

std(βfull)

0 βfull(x, y) < 0

βfull(x, y) βfull(x, y) > 0
∀x, y (3.10)

The complete process of construction is illustrated in figure 3.14. The field b(x, y) for the

simulation is then defined as

b(x, y) = b0 + (btarget − b0)β(x, y) ∀x, y. (3.11)

The number btarget is by construction the value of b which is one standard deviation of

βfull above the base value b0 of the excitation threshold. It serves here as a measure for

the amplitude of the heterogeneity and has a meaning similar to bhet in section 3.1.5.

Simulations for a range of correlation lengths σ and target excitabilities btarget were carried
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out. Because of the stochasticity of the system, for every fixed σ and btarget Lyapunov

exponents were calculated using 40 different realizations of b(x, y). The ensemble averages

for three selected values of σ along with two exemplary snapshots are shown in figure 3.15.

For rather small-scale heterogeneities (σ = 0.71), figure 3.15c) shows that little more hap-

pens for increasing btarget than the gradual stabilization of the Euclidian symmetry modes.

This is in a way expected, because the spiral wave interacts with the first heterogeneity

it encounters and pins to it. The gradual effect is a result of an increasing average ampli-

tude of the heterogeneity with increasing btarget. The meandering modes are only slightly

destabilized and Lyapunov exponents with even higher indices, λi, i > 5 (shown in gray),

only increase for the extreme values of btarget. Note also that the standard deviation of the

ensemble Lyapunov exponents increases towards higher btarget, because there is a larger

variability in the amplitude of heterogeneities the spiral can encounter.

For heterogeneities on larger spatial scales (σ = 1.56), figure 3.15d) shows a similar behav-

ior. However, the symmetry modes are stabilized more rapidly and the meandering modes

are considerably more destabilized compared to the first case. Thus, although there is, on

average, no bifurcation, some of the behavior for a discrete heterogeneity (cf. figure 3.12)

is maintained. A prominent difference is seen in the higher-index Lyapunov exponents,

which clearly increase for higher btarget, closing the otherwise large gap below the mean-

dering modes. This is probably due to the heterogeneities with which the spiral tip is not

directly interacting and which are distributed across the rest of the medium – a feature

that does not exist for the discrete heterogeneities of section 3.1.5.

Figure 3.15e) indicates that all these features are preserved for even larger heterogeneities

(σ = 2.97), except for one: for small btarget, the pinning force (as measured by the stabiliza-

tion of the symmetry modes) stays relatively weak, before intensifying from btarget ≈ 0.11

upwards. This is again a somewhat masked version of the effect seen for large hetero-

geneities in figure 3.12e): There, no symmetry break was observed up to a certain thresh-

old value of the heterogeneity amplitude. Hence, even for the random case, the larger the

typical size of the heterogeneities, the stronger this heterogeneity needs to be to cause a

considerable pinning effect, although the meandering modes are still destabilized imme-

diately. The latter could make the spiral wave prone to other destabilizing factors, like a

global parameter shift of the medium or random stimuli.

It should be emphasized that all the Lyapunov spectra considered in this section were

ensemble averages, although it was confirmed that no meandering is observed for any sin-

gle realization of heterogeneity. Nevertheless, it would be interesting to find out, whether

the reversal of the growth rates for symmetry and meandering modes as observed in sec-

tion 3.1.5 can similarly occur in this generalized scenario. Unfortunately, the Lyapunov

vectors which turned out to be very useful for circular heterogeneities are less indicative in

this case. The first five Lyapunov vectors for the system whose parameters are marked by

“×” in figure 3.15 are shown in figure 3.16. While the first Lyapunov vector can clearly be

identified as a perturbation along the trajectory, the next four Lyapunov vectors appear to

be more or less random modulations of the wave front with no discernible regularity. This

is likely to be due to the irregular propagation of the spiral wave, which causes fluctuating

growth rates of which the Lyapunov exponents (which nevertheless have an exact two-fold

degeneracy) are only averages. Thus, the Lyapunov vectors are also time-dependent be-

yond a simple rotation.
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Figure 3.15: Symmetry break by random heterogeneity. a), b) Example snapshots
of the Barkley model variable u of spirals interacting with the random heterogeneity of
increased excitation threshold b (deviation b(x, y) − b0 from the base value indicated by
yellow color). Base parameters correspond to parameter set B4 (see table A.1, page 177)
with b0 = 0.08. The value of btarget for the example snapshots is indicated by “◦” and
“×” in c) and e), respectively. The spiral tip path detected using the method outlined in
section 2.2.5 with (u∗, v∗) = (0.48, 0.38) is plotted as a red line. c) to e) Leading Lyapunov
spectra for three different correlation lengths σ plotted against the strength btarget of
the heterogeneity. btarget = 0.08 corresponds to a homogeneous medium. The plotted
Lyapunov exponents are ensemble averages, error bars indicate standard deviation. The
numerical space step is h = 1/3, the domain size 40× 40 and the time step ∆t = 0.0025.
Lyapunov vectors were allowed to align for a time span of 60 time units, before the
Lyapunov spectrum was calculated for 525 time units according to section 2.2.6.
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Figure 3.16: Lyapunov vectors of a spiral wave interacting with random het-
erogeneity. Shown are the Lyapunov vectors corresponding to the first five Lyapunov
exponents for the parameters indicated by “×” in figure 3.15. The deviation b(x, y) − b0
from the base value is indicated by yellow color. The medium state is depicted in the
leftmost column. The five columns each show the u and v components of the Lyapunov
vectors. Values of Lyapunov exponents are printed below each column.

In summary, the above analysis shows that the interpretation of the Lyapunov spectrum for

this specific case does not change dramatically when making the transition more realistic

and asymmetric forms of heterogeneity. Considering the global nature of this heterogene-

ity (as opposed to the localized disk in section 3.1.5), this implies that the modes with

a Lyapunov exponent close to zero (for the homogeneous case) mainly respond to the

interactions located at the spiral center. This is in good agreement with the localization

of response functions in a region close to the spiral tip [81, 109]. Only for large and strong

heterogeneities, the outer regions of the spiral wave become important, leading to a desta-

bilization of the lower Lyapunov spectrum. This is intuitive to some extent, because these

heterogeneities might eventually cause breakup in the waves sweeping over them. The fact

that no meandering was observed for random heterogeneities suggests that the sharp drop

of the excitation threshold for the single, isolated heterogeneity considered in section 3.1.5

is a necessary prerequisite for this effect.

3.1.7 Heterogeneities in spatio-temporal chaos

In sections 3.1.5 and 3.1.6, the interaction of a single spiral wave with heterogeneities of the

medium parameters was examined. As outlined in the introduction (see section 1.4), spiral

waves underlie tachycardias in the heart and their stability properties are of major interest

because they may degenerate into a life-threatening state of spatio-temporal chaos. It is

reasonable to assume that the chances of terminating such turbulent activity with gentle

defibrillation methods depend on the complexity (or chaoticity) of the dynamics and that

this complexity depends on the properties of the tissue and the degree of heterogeneity

in the system. However, different consequences of heterogeneity are conceivable: On the
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one hand, it could increase complexity, because it adds diversity to the substrate. On the

other hand, it could decrease complexity due to the additional spatial structure imposed.

The third and probably most plausible possibility is that, assuming the whole range of

heterogeneous parameters gives rise to spatio-temporal chaos, the chaotic dynamics leads

to an average complexity in between those observed for homogeneous systems within the

same range of parameters. Therefore, the subject of this last topic of section 3.1 is the

question, how spatial heterogeneities can alter the dynamics during spatio-temporal chaos

beyond what can be inferred from individual homogeneous systems with different param-

eters.

For chaotic attractors, Lyapunov stability analysis provides a means to quantitatively

assess complexity, namely the Lyapunov dimension DL, which was introduced by J. A.

Kaplan and J. L. Yorke [216]. It was conjectured by Kaplan and Yorke that for

typical (non-pathological) systems, DL is equal to the Rényi dimension of order 1 [217],

which is also called the information dimension and is a fractal dimension for the attractor

in phase space. A direct calculation of the information dimension is almost impossible for

very high-dimensional attractors, as it relies on the estimation of the asymptotic proba-

bility distribution of trajectories in phase space and the time until densities sufficient for

this estimation are reached increases with increasing dimensionality. DL, however, is a

function of the spectrum of Lyapunov exponents and can thus easily be calculated, if the

Lyapunov exponents are known. It is defined as

DL = k +
1

|λk+1|
k∑
i=1

λi︸ ︷︷ ︸
∗

, (3.12)

where k is the largest index such that the sum (*) is still non-negative. Consequently, for

non-chaotic attractors with λi ≤ 0 for all i, the Lyapunov dimension DL is equal to the

number of Lyapunov exponents which are equal to zero. Heuristically, in the general case,

DL is the number of degrees of freedom necessary to describe the dynamics, such that the

resulting set in phase space is, on average, neither expanding nor contracting. For this

reason, it can be used to estimate an effective number of degrees of freedom for high- or

infinite-dimensional systems. In fact, as noted in the introduction in section 1.7, in one

of the two studies which have made use of Lyapunov exponents in excitable media so far,

M. C. Strain and H. S. Greenside did exactly that [121]: In the Bär-Eiswrith model

during spatio-temporal chaos, DL was found to be an extensive quantity and the average

number of degrees of freedom per phase singularity was found to be a function of the

model parameter ε in the chaotic regime. The following results build on this knowledge

by considering heterogeneities in the same model parameter.

Simulations are carried out in a medium of size 40×40 with periodic boundary conditions,

using the Bär-Eiswirth model with parameters a = 0.84, b = 0.07 and ε varying between

0.08 and 0.12. For the whole range of ε, spiral waves are known to break up leading to a

state of spatio-temporal chaos [73]. In all cases, the activity is initiated by creating two

spiral waves which subsequently break up as illustrated in figure 3.17a). Note that the

initial condition is slightly asymmetric to prevent mirror symmetry which would persist

even after breakup. The simulation is allowed to equilibrate for 1500 model time units
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Figure 3.17: Spatio-temporal chaos in the Bär-Eiswrith model. a) Snapshots of
the model variables u and v for the beginning of an exemplary simulation showing the ini-
tiation protocol for spatio-temporal chaos (time progresses from left to right). Two spiral
waves quickly break up and a turbulent state is formed. Red dots correspond to phase
singularities detected by the method outlined in section 2.2.5 with (u∗, v∗) = (0.65, 0.45).
The value of ε is marked by “×” in b) and c). b) Mean number of phase singularities in
simulations exhibiting spatio-temporal chaos, initiated as in a), using parameter set BE1
(see table A.1, page 177) with different values of ε. The number of phase singularities
is calculated every 1 model time units from t = 1500 to t = 3000 to allow for equilibra-
tion. Error bars indicate standard deviation. c) Kaplan-Yorke dimension DL for the same
parameters as in b). Error bars indicate the possible range of DL for Lyapunov spectra
shifted by the error as calculated according to section 2.2.6. The numerical space step is
h = 1/3, the domain size 40 × 40 and the time step ∆t = 0.002. Lyapunov vectors were
allowed to align for a time span of 200 time units, before the Lyapunov spectrum was
calculated for 1500 time units (roughly 300 dominant periods) according to section 2.2.6.
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(roughly 300 dominant periods) before Lyapunov exponents and phase singularity statis-

tics are obtained for another 1500 time units. Phase singularities are detected every 1 time

units using the method introduced in section 2.1.7 with (u∗, v∗) = (0.65, 0.45). In contrast

to reference [121], this fixed definition of phase is used independent of the value of ε, to

be able to obtain comparable results later in the heterogeneous case. The Lyapunov di-

mension DL is calculated for the obtained Lyapunov spectra according to equation (3.12).

In order to assess the accuracy of the dimension estimation, the calculated Lyapunov

spectrum is shifted up (down) by the error estimate introduced in section 2.2.6 and the

Lyapunov dimension is calculated for the shifted spectra to yield an upper (lower) bound

for DL.

Figure 3.17b) shows that, in the parameter range considered here, neither the number

nor the number fluctuation of phase singularities depends strongly on the parameter ε.5

Roughly 10 phase singularities are present on average in the simulation domain. In con-

trast, as indicated by figure 3.17c), the Lyapunov dimension DL increases steadily with

increasing ε. This is plausible, as the transition to spiral breakup occurs just below ε = 0.07

[73] and is consistent with the results reported in reference [121]. Beyond the critical value,

further increase of ε thus increases the chaoticity of the system.

What happens now if different values of ε from this range are combined in a single medium?

Similarly to the results presented in section 3.1.5, circular heterogneities are considered.

Since multiple spiral waves are present in the system, not only one but several circular

heterogeneities, in which the value of ε is modified, are inserted into the system. For sim-

plicity, here, a regular grid of 4×4 heterogeneities is chosen, such that the total number of

16 heterogeneities is on the same order as the average number of phase singularities as cal-

culated in figure 3.17b). Simulations were carried out for three different levels εhet within

the circular regions, whose radius radii R was also varied. In the rest of the medium, ε was

kept at its base value of 0.08. Phase singularity statistics and the Lyapunov dimension DL

are calculated as above. Snapshots of an examplary simulation for heterogeneities with

εhet = 0.12 and R = 3 and the time evolution of the number of phase singularities can be

found in figure 3.18.

The statistical results for all simulations are summarized in figure 3.19. The number of

phase singularities shown in figure 3.19a) deviates only slightly from the expected behavior:

the mean number of phase singularities is approximately uninfluenced by the heterogeneity

for all three levels of εhet, which is consistent with the fact that changes in ε in the consid-

ered range do not in general alter this quantity (cf. figure 3.17b)). Only for radii around

R = 3.5, the number of phase singularities is slightly reduced for εhet = 0.107 and the

smaller errors bars indicate that heterogeneities with εhet = 0.107 and εhet = 0.12 cause

a decrease in the number fluctuations of phase singularities. What comes as a surprise is

the effect of the heterogeneity on the complexity of the chaotic dynamics. Figure 3.19b)

shows that DL is more or less constant up to a certain radius of the heterogeneity for all

εhet. This is remarkable, since, for increasing R, a growing fraction of the domain has

parameters which should cause an increase in complexity according to figure 3.17c). Even

5It should be emphasized that the number of phase singularities which are detected depends on the
chosen origin (u∗, v∗) necessary to define the phase. Although visual inspection of the dynamics for the
parameters considered in this section confirms that the detected phase singularities are reasonable, the
numbers can deviate from those reported in reference [121].
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Figure 3.18: Spatio-temporal chaos in a heterogeneous system. a) Example snap-
shots of the Bär-Eiswirth model variable u of spatio-temporal chaos interacting with cir-
cular heterogeneities, within which ε is increased to εhet (indicated by yellow color). Red
dots correspond to phase singularities detected by the method outlined in section 2.2.5
with (u∗, v∗) = (0.65, 0.45). The radius R = 3 of the heterogeneities and εhet = 0.12 are
indicated by “+” in figure 3.19. Parameter set BE1 (see table A.1, page 177) is used; out-
side the yellow regions ε = 0.08. b) Number of phase singularities for the entire simulation
time. Statistics (shown in figure 3.19) are calculated from t = 1500 onwards. The “+” at
t = 0 indicates that the data corresponds to the equally marked parameters in figure 3.19.
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Figure 3.19: Complexity of chaos in a heterogeneous system. a) Mean and standard
deviation of the number of phase singularities (calculated as in figure 3.17) plotted against
the radius R of the heterogeneities for different values of εhet. b) Kaplan-Yorke dimension
DL for the same systems as in a). Error bars have the same meaning as in figure 3.17.
Symbols “+”, “◦” and “×” mark the parameters εhet and R of the dynamics displayed in
figures 3.18, 3.20 and 3.21. Parameter set BE1 (see table A.1, page 177) is used; outside
the heterogeneities ε = 0.08. Numerical parameters are identical to those indicated in the
caption of figure 3.17.
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Figure 3.20: Spatio-temporal chaos in a heterogeneous system. a) Example snap-
shots of the Bär-Eiswirth model variable u of spatio-temporal chaos interacting with cir-
cular heterogeneities, within which ε is increased to εhet (indicated by yellow color). Red
dots correspond to phase singularities detected by the method outlined in section 2.2.5
with (u∗, v∗) = (0.65, 0.45). The radius R = 3.33 of the heterogeneities and εhet = 0.107
are indicated by “◦” in figure 3.19. Parameter set BE1 (see table A.1, page 177) is used;
outside the yellow regions ε = 0.08. b) Number of phase singularities for the entire simu-
lation time. Statistics (shown in figure 3.19) are calculated from t = 1500 onwards. The
“◦” at t = 0 indicates that the data corresponds to the equally marked parameters in
figure 3.19.

for εhet = 0.12, which, in the homogeneous case, doubles DL with respect to ε = 0.08, no

effect at all is seen. Of course, for R→∞, the homogeneous behavior should be recovered,

which is why DL eventually increases towards R = 5 (at this radius, the heterogeneities

just touch each other). However, before these large values of R are reached, DL even de-

creases below the values of a homogeneous medium. This drastic reduction in complexity

occurs at different values for εhet = 0.107 and εhet = 0.12, although this could also be a

statistical effect.

For εhet = 0.107, the dynamics for this minimum complexity is illustrated in figure 3.20.

After an initial phase of very turbulent spiral wave breakup, during which the locations

of phase singularities have no or little correlation with the heterogeneities, the fluctuation

of phase singularity number is reduced (for t > 1000) and the system merely switches

between different spatial arrangments of phase singularities trapped by heterogeneities.

For εhet = 0.12, the large error bar of DL for the minimum complexity in figure 3.19b)

indicates that dynamics qualitatively changed during the extraction of the Lyapunov spec-

trum. Indeed, after a transient phase of spiral wave breakup, the phase singularities settle

down in the regions of increased ε and are trapped for the rest of the simulation as depicted

in figure 3.21. For both values of εhet, the (transient or seemingly permanent) pinning of

heterogeneities also explains the reduced phase singularity number fluctuations indicated
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Figure 3.21: Spatio-temporal chaos in a heterogeneous system. a) Example snap-
shots of the Bär-Eiswirth model variable u of spatio-temporal chaos interacting with cir-
cular heterogeneities, within which ε is increased to εhet (indicated by yellow color). Red
dots correspond to phase singularities detected by the method outlined in section 2.2.5
with (u∗, v∗) = (0.65, 0.45). The radius R = 3.67 of the heterogeneities and εhet = 0.12
are indicated by “×” in figure 3.19. Parameter set BE1 (see table A.1, page 177) is used;
outside the yellow regions ε = 0.08. b) Number of phase singularities for the entire simu-
lation time. Statistics (shown in figure 3.19) are calculated from t = 1500 onwards. The
“×” at t = 0 indicates that the data corresponds to the equally marked parameters in
figure 3.19.
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by figure 3.19a) for those values of R and εhet.

The observed, and at first sight counter-intuitive, behavior of the phase singularities and

the complexity measure DL becomes intelligible, if one considers the results of section 3.1.5.

There, it was shown that localized regions of reduced excitability can stabilize the sym-

metry modes of a spiral wave, which, in the context of this section, also corresponds to

a dimension reduction of the attractor. The parameter ε varied in this section has a

similar effect: although a larger ε increases the complexity of the dynamics as seen in fig-

ure 3.17, at the same time, it reduces the excitability of the system (cf. equation (2.38)).

Therefore, the heterogeneities exert an attracting force on the spiral waves present dur-

ing spatio-temporal chaos and thereby restrict the dynamics, counteracting the inherent

destabilizing effect of their local parameters. Interestingly, for a large range of radii R . 3,

this effect is very subtle, such that the number of phase singularities as well as DL do not

indicate any change to the system at all. Slightly above this critical radius, heterogeneities

of sufficient strength exert a very strong pinning force, outweighing any destabilizing effect

(cf. figure 3.19b)), quickly followed by the originally expected increase of DL.

The above results show two important facts: firstly, the basic mechanism of spiral wave

stabilization observed in section 3.1.5 also extends to spatio-temporally chaotic dynamics.

Again, the spatial scale of the heterogeneity is a critical parameter determining whether

it will stabilize or destabilize the dynamics. Secondly and more fundamentally, hetero-

geneities can reduce the complexity of activation patterns even below values found for

any of the involved parameters in a homogeneous setting by introducing additional spatial

structure. A prediction of the behavior of the heterogeneous system based on information

obtained for the homogeneous case is therefore difficult if not impossible.

3.1.8 Brief summary

In section 3.1, wave patterns in excitable media were characterized with the help of Lya-

punov stability analysis. In sections 3.1.1, 3.1.2 and 3.1.3, spectra of different periodic

attractors, corresponding to the well-known wave phenomena of plane waves, spiral waves,

and multiple spiral waves, respectively, were examined in the Fenton-Karma model and

the Barkley model. Fundamental properties of the leading Lyapunov spectra could be

explained with the diffusive interaction between nearby points (plane waves), symme-

tries of the system (spiral waves) or the decoupling of different regions due to localized

periodic wave sources and wave annihilation (multiple spiral waves). In all cases, the lead-

ing Lyapunov spectrum was found to be discrete, indicating finite-dimensional attractors

despite the originally infinite-dimensional PDE. Although only a discretized system was

simulated, continuous leading Lyapunov spectra could be ruled out due to the coupled-

oscillator analogy for plane waves and the convergence of the Lyapunov sepctrum with

increasing resolution for spiral waves. In section 3.1.4, it was shown that bifurcation anal-

ysis of the meandering instability of spiral waves is possible in these high-dimensional

systems using the Lyapunov spectrum. The results (including the bifurcating directions

indicated by Lyapunov vectors) were found to be consistent with results of a linear stabil-

ity analysis of the corresponding fixed point problem [107]. This information was used in

sections 3.1.5 and 3.1.6 to investigate the influence of circular and random heterogeneities

of lower excitability on spiral wave dynamics. Depending on the size and strength of
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the heterogeneities, opposing effects of stabilization and destabilization of the spiral wave

could be observed, even leading to a heterogeneity-induced meandering bifuraction for

discrete heterogeneities. However, the pinning effect of the heterogeneity always led to a

stabilization of the symmetry modes, which could be identified from the spatial structure

of Lyapunov vectors. Finally, in section 3.1.7, it was shown in the Bär-Eiswirth model that

the stabilizing effects of less excitable regions also extend to the state of spatio-temporal

chaos. Using Lyapunov stability analysis, this reduction in complexity (compared to the

homogeneous case) could even be detected before an actual pinning effect in the spiral

wave dynamics became visible. For a detailed summary and a discussion of the results,

see section 4.
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3.2 Sensitivity of curved tissue boundaries to electric-field

stimulation6

In the introduction, it was suggested that the geometry of the cardiac muscle contributes

significantly to its complexity. Several theoretical studies by A. Pumir and S. Takagi et

al. have shown that the internal tissue boundaries arising at the interface to electrically

insulated circular regions of tissue can lead to size-dependent wave emission in response

to relatively weak electric-field stimulation [127, 219, 128, 130]. In these studies, it was

conjectured that inducing waves at heterogeneities in this way might be a superior way of

unpinning pinned spiral waves. This conjecture was later confirmed in a simple generic

model by comparison with anti-tachycardia pacing [131, 220], which suggests a possible

relevance of wave induction at these tissue boundaries for antiarrhythmic therapies. In-

deed, in references [135, 201], low-energy defibrillation was experimentally achieved in

canine hearts based on weak electric field pulses and the success of the method could be

related to wave source recruitment at the internal tissue boundaries originating from blood

vessels. Although these experimental results shall be presented in detail in section 3.3,

they may serve here already as a strong indication for the importance of tissue boundaries

in low-energy defibrillation – in contrast to other heterogeneities which were investigated

in the context of single-shock, high-energy defibrillation (see section 1.7).

The aforementioned investigations by A. Pumir and S. Takagi et al. predict that elec-

tric fields create zones of depolarization and hyperpolarization next to circular regions

of insulated cardiac tissue. For a given electric field strength, the magnitude of the de-

polarization was shown to increase with increasing radius R of the obstacle, converging

to a characteristic value for R → ∞ (i.e. a straight boundary) [127, 130]. Conversely, a

smaller electric field strength is needed to bring the membrane potential of larger obstacles

above the excitation threshold and induce an activation. According to this current state

of knowledge, there should be a field strength below which no waves at all can be induced,

due to the limiting value for the depolarization for large obstacles R → ∞. However,

the restriction of the above studies to circular shapes raises the question, whether and at

what field strengths other kinds of tissue boundaries might serve as wave emitting sites,

possibly allowing for the termination of certain arrhythmias at even lower field strengths.

This question will be answered below by generalizing the theory to different prototypical

shapes, revealing the basic mechanisms governing the depolarization induced at arbitrary

tissue boundaries.

3.2.1 Theoretical framework

The theoretical and numerical investigations are based on the equivalent mono-domain

approximation derived in section 2.1.3 with the large-conductivity boundary condition of

equation (2.16). For the following analysis, isotropic tissue is considered, which results in

a scalar diffusion coefficient D and conductivities σi, σe and σo. Assuming a homogeneous

electric field E outside the tissue, the outer potential is vo = −E ·x. Substituting the outer

potential into equation (2.16) leads to the following equations governing the dynamics of

6Meanwhile, some of the results of this section have been published in reference [218]. Any display
items identical with those in the publication are marked appropriately. Parts of the text may also be found
in the paper.
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the medium:
∂Vm
∂t

= D∇2Vm − Iion(Vm,h)/Cm

dh

dt
= H(Vm,h)

in D
(3.13a)

(3.13b)

n · ∇Vm = n · σo
σe

E on ∂D. (3.13c)

Equations (3.13a) and (3.13b) can be combined to one system of partial differential equa-

tions for the state vector u = (Vm,h):

∂u

∂t
= f(u) + e1D∇2u1, (3.14)

where f = (−Iion/Cm,H) and e1 = (1, 0, 0, ...) is the first basis vector which limits diffusion

to the membrane potential u1 = Vm.

Equation (3.14) cannot be solved analytically (neither with nor without the modified

boundary condition). In order to still derive some quantitative measure for the effect of

E, equation (3.14) is linearized around the resting state of the membrane potential and

the gating variables u0 = (V 0
m,h

0):

∂δu

∂t
= Jf |u0

δu + e1D∇2δu1 (3.15)

Jf is the Jacobian matrix of the function f . If the function H describing the ion channel

dynamics is independent of Vm below some finite threshold V thresh
m > V 0

m, then δu1 is

independent of all δui, i > 1, and the latter have a fixed value. In this case, the linearization

corresponds to the passive dynamics of the membrane [122, 123, 125]. The steady state

of equation (3.15), obtained by setting the left-hand side to zero, yields the membrane

potential distribution and gating variables that represent the response to an infinitesimal

electric field7 applied for infinite time. Only the first row of the vector equation contains

a diffusion term, making it possible to express δu2, δu3, . . . in the first row as a function

of δu1 (assuming that Jf with the first row and column removed is invertible). As δu1 is

actually the deviation of the membrane potential, let e := δu1, such that the following

time-independent equations for e are obtained:

∇2e− e

λ2
= 0 on D (3.16a)

n · (∇e−E) = 0 on ∂D (3.16b)

λ is the electrotonic constant , resulting from the replacement procedure of the δui, i > 1.

The second equation is the boundary condition of equation (3.13c), with the conductivity

ratio absorbed into E. It should be emphasized that the modified boundary condition

implementing the approximate bi-domain effect of an electric field is the only place in

equation (3.16) as well as in the full model of equation (3.13) which depends on the

electric field. Thus, within this approximation, the application of an electric field can be

included in any simulation simply by imposing the modified boundary condition. This fact

7Infinitesimal deviation δu from the resting state and infinitesimal electric fields are equivalent as-
sumptions, as the resting state is known to be stable.
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will be exploited towards the end of this investigation, when finite field strengths outside

the scope of the linear approximation 3.16 are considered. In the following, equations

(3.16a) and (3.16b) will be solved on domains D of different prototypical shapes8.

3.2.2 Setup of numerical simulations

For domains D that do not allow an analytical solution of equation (3.16) and to check

the validity of the analytical calculations presented in the following sections, direct nu-

merical simulations with the Fenton-Karma model (see section 2.1.6) are carried out using

parameter set FK1 (see table A.2, page 177). The modified boundary condition (3.16b)

is imposed via the phase-field method as outlined in sections 2.1.5 and 2.2.3, using a very

small field strength of |E| = 1µV/cm. The depolarization pattern is allowed to equilibrate

for a time span of 1000 ms, before the maximum depolarization is determined. For the

computation of the phase fields, ξ2 = 0.72h2 is used in equation (2.21), where h is the

space step of the simulation. For increased accuracy of the resulting phase field φ, φ0 is

not binary, but the value of each numerical pixel is equal to the fractional overlap of the

pixel with the domain D. This is possible here, because D will be given analytically. The

default space step is h = 100µm, but for certain problems involving small geometrical

features, a smaller h is used. The time step is ∆t = 0.1 · h2/D throughout, in order to

fulfill the stability criterion of equation (2.93). This corresponds to ∆t = 10µs for the

default value of h.

For the Fenton-Karma model, the state vector u from equation (3.14) is given by u =

(u, v, w). The resting state is u0 = (u0, v0, w0) ≈ (0, 1, 1) (see section 2.1.6, page 45).

Under the assumption that uc, uv > 0, the Jacobian of equation (3.15) evaluates to

Jf |u0
=

 δ 0 ε

0 −1/τ−v2 0

0 0 −1/τ−w

 , (3.17)

where δ = − 1
τ0

+ w0k
2τsi

(1− tanh2[k(u0− usic )]) and ε = 1
2∗τsi (1 + tanh[k · (u0− usic )]) (cf. the

full Jacobian in appendix A). Substituting this Jacobian into equation (3.15) and setting

the left-hand side to zero yields

λ =
√
−D/δ (3.18)

in equation (3.16a). If usic is large enough, such that tanh[k · (u0−usic )] ≈ −1 (which is the

case for the parameters used here), then δ reduces to − 1
τ0

, which means that λ ≈ √Dτ0.

For the FK1 parameters, this expression leads to λ = 1.12mm.9

8Equation (3.16) is identical to the ad-hoc ansatz used in references [127, 130] to assess electric-field
induced membrane potential changes for circular obstacles. However, those publications use a different
sign in equation (3.16b). Private communication with the main author, Alain Pumir, led to the finding
that the latter is a misprint.

9The size and curvature of the tissue domains can be normalized by λ, as explained in section 3.2.3.
Therefore, the actual parameters used for the Fenton-Karma model do not alter the results. The only
condition is that the field strength used is small enough to preserve the validity of equation (3.16).



118 CHAPTER 3. RESULTS

3.2.3 Generic properties of induced membrane potential changes

Some properties of the membrane potential distribution e can be directly deduced from

equation (3.16). By defining a normalized coordinate system x∗ = x/λ (with a corre-

sponding gradient ∇∗ and transformed tissue domains) and the normalized membrane

potential deviation as e∗ = e/(λ|E|), equation (3.16) can be rewritten as

∇∗2e∗ − e∗ = 0 on D∗ (3.19a)

n · (∇∗e∗ − Ê) = 0 on ∂D∗, (3.19b)

where Ê = E/|E| is the unit vector in the direction of the electric field10. Two different

problems with tissue domains D1 and D2 and respective electrotonic constants λ1 and λ2

thus have the same solution e∗, if D1 can be transformed to D2 by a scaling transforma-

tion: D1 = λ1
λ2
D2. The electric field strength |E| does not appear in equation (3.19) and

therefore is completely irrelevant for the solution e∗. From the definition e∗ it is evident

that the solution e for the original problem is simply proportional to |E|.
In contrast, the direction Ê of the electric field is generally important: The larger the

component of Ê along n, i.e. perpendicular to the boundary, the larger the deviation

of equation (3.19b) from the usual homogenous Neumann (no-flux) boundary condition.

Large effects can therefore be expected at boundaries perpendicular to the direction of

the electric field. The sign of the induced membrane potential deviation can be heuris-

tically determined from equation (3.16): The effect of the electric field should vanish far

away from the boundary. Assuming a monotonic decay of e towards zero in the direction

away from the boundary of the tissue due to the diffusion term, e > 0 at the boundary

implies ∂e
∂n < 0 (with n pointing into the tissue). On the other hand, according to equa-

tion (3.16b), ∂e
∂n = n · E, which means that E must have a component anti-parallel to n

and is therefore pointing in the half-space out of the tissue. Consequently, depolarizations

and hyperpolarizations of the tissue are expected to occur on parts of the boundary with

the electric field vector pointing out of and into the tissue, respectively.

3.2.4 Tissue domains of different dimension

Let D2d ⊂ R be an arbitrary two-dimensional tissue domain and D3d = {(x, y, z) ∈
R3 | (x, y) ∈ D2d ∧ z ∈ I} its extension to three dimensions, where I ⊂ R is either an

interval I = [a, b] or the whole of R. Let e2d(x, y) be a solution to equation (3.16) for D2d

with an electric field E2d. Define the extensions to three dimensions as

e3d(x, y, z) := e2d(x, y) on D3d (3.20)

E3d := (E2d
x , E

2d
y , 0). (3.21)

For I = R, it follows that ∂D3d = {(x, y, z) ∈ R3 | (x, y) ∈ ∂D2d}. This means that

everywhere on the boundary the normal vector is just

n3d(x, y, z) = (n2d
x (x, y), n2d

y (x, y), 0) on ∂D3d. (3.22)

10As E has units of a potential divided by a length, applying the same transformations as for x and e
automatically leads to a unit E∗, thus being identical to Ê defined above.
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Substituting equations (3.20), (3.21) and (3.22) into equation (3.16) for D3d leads to

∇2e3d − e3d

λ2
=
∂2e2d

∂x2
+
∂2e2d

∂y2
+

=0︷ ︸︸ ︷
∂2e2d

∂z2
−e

2d

λ2

(3.16) for D2d

= 0 on D3d

(3.23a)

n3d · (∇e3d −E3d) = n2d
x

∂e2d

∂x
+ n2d

y

∂e2d

∂y
− (n2d

x E
2d
x + n2d

y E
2d
y )

(3.16) for D2d

= 0 on ∂D3d

(3.23b)

which implies that e3d as defined in equation (3.20) is a solution of the three-dimensional

problem.

In the case of I = [a, b], ∂D3d has two additional boundaries parallel to the z-plane at

z = a and z = b, i.e.

∂D3d = {(x, y, z) ∈ R3 | (x, y) ∈ ∂D2d ∧ z ∈ I}︸ ︷︷ ︸
=:∂D3d

1

∪ {(x, y, z) ∈ R3 | (x, y) ∈ D2d ∧ (z = a ∨ z = b)}︸ ︷︷ ︸
=:∂D3d

2

. (3.24)

Equation (3.22) remains valid for ∂D3d
1 , but for the new parts of the boundary, instead

n3d(x, y, z) = (0, 0, 1) on ∂D3d
2 (3.25)

holds. Because of the definition of e3d, equation (3.23a) remains valid and equation (3.23b)

does still hold for ∂D3d
1 (because it is a subset of ∂D3d considered in equation (3.23b)).

For the additional boundary points the boundary condition of equation (3.16b) is

n3d · (∇e3d −E3d) = 1 ·

=0︷ ︸︸ ︷
∂e2d

∂z
−1 ·

=0︷︸︸︷
E3d
z = 0 on ∂D3d

2 , (3.26)

which means that the boundary condition is still fulfilled on the whole of ∂D3d.

In summary, the above argument shows that, for an unskewed “z-stack” of identical two-

dimensional shapes, the solution to equation (3.16) looks like the corresponding solution

for the two-dimensional shape in every cross-section parallel to the z-plane with z ∈ I,

if the electric field vector lies also in the z-plane11. For example, for a (finite or infinite)

cylinder, the depolarization pattern in every cross-section perpendicular to the cylinder

axis is identical to that of the corresponding disk in two dimensions.

The same line of thoughts also applies to a one-dimensional D1d and its extension D2d =

{(x, y) ∈ R2 |x ∈ D1d ∧ y ∈ I}, again with I = R or I = [a, b]. The solution for the

rectangle D2d = [α, β] × [a, b] ⊂ R2 with an electric field parallel to the x-axis therefore

looks, for every fixed y ∈ [a, b], like the one-dimensional solution on the interval [α, β].

11In fact, for the infinite stack, i.e. I = R, the electric field can also have a z-component, which does,
however, not change the solution, because all normal vectors have vanishing z-components according to
equation (3.22)
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Figure 3.22: Boundary effects in two-dimensional cardiac cell culture experi-
ments. Cultured neonatal rat cardiac cells were stimulated with vertical electric fields
(white arrows) of a) 0.91 V/cm and b) 1.37 V/cm and activity was imaged using the fluo-
rescent Ca2+ indicator Fluo-8. Colors indicate time from pacing to activation, gray color
marks regions without tissue. At higher field strengths, the flat parts of the boundary are
excited as well as the tip of the V-shaped boundary. For the lower electric field strength,
excitation can only be induced at the latter location. A series of N = 9 experiments yielded
a field strength ratio of 1.49±0.26 between the two types of boundaries. Reproduced from
[218].

3.2.5 Curvature dependence in cell culture experiments12

A strong indication for the relevance of the geometric shape of the outer tissue boundaries

can be obtained in experiments on cardiac myocyte cultures with artificial boundaries,

but an otherwise homogeneous cell monolayer. Activation maps of such cell cultures for

electric-field stimulation with two different field strengths are shown in figure 3.22. During

the culturing process on a cover slip, a region was blocked with a V-shaped obstacle manu-

factured out of polydimethylsiloxane (PDMS) to prevent cardiac cells from attaching. The

obstacle itself was removed during the culturing process, but a V-shaped region containing

no cells was left behind, which is marked gray in figure 3.22. For a detailed description of

the experimental method, see the Supplementary Material of reference [218]. Figure 3.22b)

demonstrates that the membrane potential changes induced by electric fields can be used

for exciting the tissue at the boundary. Moreover, the predictions of section 3.2.3 are

verified in that the tissue is excited at those boundaries, where the electric field vector

points out of the tissue (upper edge of the V-shaped gray region), and in that boundaries

perpendicular to the electric field are the most relevant ones. However, stimulation with

a lower field strength shown in figure 3.22a) reveals that the field strength necessary to

induce excitation is significantly different for tissue boundaries of convex and flat shape.

This behavior was found to be consistent across N = 9 different cell cultures prepared in

the same way: On average, the minimum field strength necessary to elicit an excitation at

the flat boundary was 1.49±0.26 times as large as the field strength required to excite the

convex tip of the boundary. The individual threshold field strengths for each cell culture

are plotted against each other in figure 3.23. Specific geometrical features thus enable the

recruitment of additional localized wave emitting sites in the low field-strength range – an

effect that has not been studied before.

12The experiments presented in this section have been carried out and the analysis was performed by
Marcel Hörning, who is a co-author of reference [218].
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Figure 3.23: Increased susceptibility of convex boundaries. Minimum field strength
necessary to induce excitation at the flat parts of the V-shaped boundary (cf. figure 3.22)
plotted against the corresponding field strength for the curved tip of the boundary. The
absolute field strength necessary varies across different samples. However, the experiments
yield a reproducible difference between the two types of boundaries, as indicated by the
linear fit.

3.2.6 Definition of boundary curvature

Motivated by the experimental evidence shown in section 3.2.5, in the following, different

boundaries ∂D of one- to three-dimensional tissue domains D will be characterized by

their curvature at the point of maximum depolarization. The definition of curvature that

will be used throughout is the mean curvature κ = (κ1 + κ2)/2, where κ1 and κ2 are the

two principal curvatures of the surface ∂D, given by the two curves through the point

under consideration with maximum and minimum curvature.

Following from the dimensionality argument in section 3.2.4, an additional dimension of

the boundary with curvature zero does not change the solution e of equation (3.16). Thus,

in order to have a curvature measure consistent across different dimensions, κ2 = 0 is

assumed for two-dimensional D, i.e. one-dimensionl ∂D. For zero-dimensional, point-like

∂D originating from the ends of a one-dimensional tissue domain D principal curvatures

κ1 = κ2 = 0 are assumed, corresponding to flat boundaries in higher dimensions.

As the sign of the curvature depends on the direction of the normal vector (either into or

out of the domain), in the context of this study, boundaries of convex domains are defined

to have negative curvature: the boundary of a circular domain of radius R thus has a

curvature of κ1 = −1/R, corresponding to a mean curvature of κ = −1/(2R). In contrast,

a hole of radius R in an otherwise infinite domain has mean curvature κ = 1/(2R).

As explained in section 3.2.3, dimensionless space units can be obtained by a normalization

with the electrotonic constant λ. As the curvature κ has units [1/length], the normalized

curvature that will be used throughout this section is κ∗ = κλ.

3.2.7 Flat boundaries

Applying the results of section 3.2.4, the induced membrane potential change predicted

by equation (3.16) next to a flat boundary in two or three dimensions can be calculated

by considering a one dimensional tissue domain D = [a, b] ⊂ R, where either a = −b (for a

bounded domain), or a = −∞, b = 0 (for an unbounded domain). Given an electric field
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Figure 3.24: Depolarization in a one-dimensional tissue domain. The solutions of
equations (3.27) (b = 1.3λ) and (3.28) are plotted as a blue and green line, respectively.
Vertical dashed lines of the same color indicate tissue boundaries.

strength E in positive x-direction, which is just a positive scalar quantity in this case, the

solutions obtained by elementary calculus are

ebounded(x) = λ|E|sinh(x/λ)

cosh(b/λ)
on [−b, b] (3.27)

eunbounded(x) = λ|E| exp(x/λ) on [−∞, 0]. (3.28)

For the unbounded domain, it is assumed that the effect of the electric field vanishes for

x→ −∞. Both solutions (see figure 3.24) are monotonically increasing, so the maximum

depolarization occurs at the right end of the domain in both cases: emax
bounded = ebounded(b) =

λ|E| tanh(b/λ) and emax
unbounded = eunbounded(0) = λ|E|. Consistently, emax

bounded approaches

emax
unbounded for b→∞.

For the bounded case, the electric field causes a hyperpolarization at the left side of the

domain, which is equal in magnitude to the depolarization on the right side. The maximum

depolarization decreases with decreasing domain size. For b/λ � 1 it asymptotically

behaves like emax
bounded ≈ |E|b. Inside the domain, the argument of the sinh in equation (3.27)

is even smaller, such that the x-dependence for domains that are very small compared to λ

simplifies to ebounded(x) ≈ |E|x, and thus becomes linear13. Physically, the decrease of the

maximum depolarization can be interpreted as a merging of the two effects from the left

and right boundary: because of the diffusive nature of the system, hyperpolarization and

depolarization more and more cancel each other, depending on the distance between the

two boundaries. This is because the characteristic length for the diffusion (the electrotonic

constant λ) is fixed. This kind of source-sink interaction was also confirmed in a study on

cable-shaped cell cultures by A. Kondratyev [221].

3.2.8 Circular boundaries

Circular boundaries arising from circular inexcitable regions of cardiac tissue (cf. fig-

ure 3.25a)) are analytically tractable, yet important, geometrical shapes, as they represent

cross sections of blood vessels in heart, as indicated in the beginning of this section. The

13As very small domains are equivalent to very large λ (cf. section 3.2.4), this is also clear directly from
equation (3.16a), which turns into a homogeneous Laplace equation for large λ.
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a)

b)

c)

d)

Figure 3.25: Two dimensional shape prototypes. Different kinds of shapes examined
for their interaction with electric field stimulation. Positions in gray regions are ∈ D, black
lines indicate ∂D. “×” indicate points, where the maximimum depolarization is expected
for an electric field pointing to the right following the argumentation in section 3.2.3.

inverse (convex) case, depicted in figure 3.25b), which has not been considered before, can

be thought of as a cross section through, e.g., papillary muscles or trabeculae in places

where they are not directly attached to the endocardial wall (see sections 1.1 and 1.3).

Let ea and eb denote the solutions for the two shapes of figure 3.25a) and figure 3.25b),

respectively. For both cases, the boundary condition of equation (3.19b) takes the same

form

∂e∗a,b
∂r∗

∣∣∣∣
r∗=R∗

= cos(ϕ) ∀ϕ ∈ [−π, π[, (3.29)

if an electric field in positive x-direction is assumed and the solution is written in polar

coordinates (r∗, ϕ) (“∗” denotes the normalized coordinates introduced in section 3.2.3).

R∗ = R/λ is the radius of the circle in normalized coordinates. Substituting the ansatz

e∗a,b = cg(r∗) cos(ϕ) into equation (3.19a) yields[
∂2

∂r∗2
+

1

r∗
∂

∂r∗
+

1

r∗2
∂2

∂ϕ2

]
(g(r∗) cos(ϕ)) = g(r∗) cos(ϕ)

⇒ g′′(r∗) cos(ϕ) +
1

r∗
g′(r∗) cos(ϕ)− 1

r∗2
g(r∗) cos(ϕ) = g(r∗) cos(ϕ)

⇒ r∗2g′′(r∗) + r∗g′(r∗)− (1 + r∗2)g(r∗) = 0. (3.30)

Equation (3.30) is the differential equation for the modified Bessel function of order 1,

which has two linearly independent solutions I1 and K1, namely the modified Bessel

functions of the first and second kind, respectively. I1 diverges for r∗ → ∞, whereas K1

diverges for r∗ → 0. The effect of the electric field is expected to vanish at infinite distance

from the obstacle in case of figure 3.25a) and is expected to stay finite in all of D for the

shape of figure 3.25b). Therefore, for the solution e∗a, only K1 comes into consideration,

and likewise only I1 for e∗b .
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The factor c in the ansatz is determined from equation (3.29):

∂e∗a,b
∂r∗

∣∣∣∣
r∗=R∗

= cg′(R∗) cos(ϕ) = cos(ϕ) (3.31)

⇒ c =
1

g′(R∗)
(3.32)

The solutions for the boundary condition of equation (3.29) therefore read14

ea = λ|E|e∗a = λ|E|K1(r/λ)

K ′1(R/λ)
cos(ϕ) defined for r > R (3.33)

eb = λ|E|e∗b = λ|E| I1(r/λ)

I ′1(R/λ)
cos(ϕ) defined for r < R. (3.34)

The first one is identical to the solution obtained in reference [127] and has its maximum

at (r, ϕ) = (R, π), because K1 is monotonically decreasing and the solution is only defined

for r > R. As I1 is monotonically increasing, correspondingly, the solution eb for circular

D has its maximum at (r, ϕ) = (R, 0). As a circular boundary of radius R has equal

curvature 1/R everywhere, the mean curvatures at the point of maximum depolarization

are κa = 1/(2R) and κb = −1/(2R), using the definition introduced in section 3.2.6. The

maximum depolarizations are therefore

emax
a = −λ|E|K1(R/λ)

K ′1(R/λ)
= −λ|E|K1(1/(2κaλ))

K ′1(1/(2κaλ))
(3.35)

emax
b = λ|E|I1(R/λ)

I ′1(R/λ)
= λ|E|I1(−1/(2κbλ))

I ′1(−1/(2κbλ))
. (3.36)

Exemplary depolarization patterns corresponding to equations (3.33) and (3.34) are de-

picted in the bottom and top row of figure 3.26, respectively. The last image of the top

row and the first image of the bottom row of figure 3.26 show that both solutions (3.33)

and (3.34) describe the same scenario for the depolarized boundary in the limiting case of

R→∞. Indeed, assuming large R, the solutions near the depolarized boundary read

ea = λ|E|K1(

≈−x︷︸︸︷
r /λ)

K ′1(R/λ)
cos(

≈π︷︸︸︷
ϕ ) ≈ λ|E| exp(x/λ)

− exp(−R/λ)
· (−1)

= λ|E| exp[(x+R)/λ] for x < −R (3.37)

eb = λ|E|I1(

≈x︷︸︸︷
r /λ)

I ′1(R/λ)
cos(

≈0︷︸︸︷
ϕ ) ≈ λ|E| exp(x/λ)

exp(R/λ)
· 1

= λ|E| exp[(x−R)/λ] for x < R. (3.38)

14As indicated in section 2.1.3, the assumption of a constant electric field vector determining the bound-
ary condition of equation (3.16b) and ultimately the cos-term on the right hand side of equation (3.29) is
only an approximation. In case a more realistic boundary condition is determined in the future and the
right hand side of equation (3.29) is replaced with some arbitrary function f(ϕ), the mathematical strategy
as presented here could be applied by writing f as a sum of its Fourier modes an cos(nϕ), bn sin(nϕ). With
the ansatz e∗a,b = cg(r∗) cos(nϕ) (or similarly with sin), following the derivation would lead to solutions
involving Kn and In, where n = 1 is only the special case considered above. As the Neumann bound-
ary condition of equation (3.29) is additive, the solution could then be written as a sum of these partial
solutions.
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Figure 3.26: Membrane potential changes at circular boundaries. Each plot shows
a depolarization pattern for a circular boundary of different positive and negative normal-
ized mean curvature κλ. The images are centered at the point of maximum depolarization
(value indicated by colorbar limits). Length and depolarization units are normalized.
White color indicates regions that are not part of the active tissue domain D. Top row:
negative curvature boundaries, solution according to equation (3.34). Bottom row: posi-
tive curvature boundaries, solution according to equation (3.33).

In the above calculation, the identities K ′n = −(Kn−1 +Kn+1)/2 and I ′n = (In−1 +In+1)/2

were used (third line of equation 9.6.26 in [222], pp. 376). Furthermore, for large argu-

ments x, the Bessel functions can be approximated by Kn(x) ≈
√
π/(2x) exp(−x) and

In(x) ≈
√

1/(2πx) exp(x) (truncated form of equations 9.7.1 and 9.7.2 in [222], pp. 377-

378). For large R and near the points on the boundary which are maximally depolarized,

both solutions (3.37) and (3.38) for circular boundaries thus become identical to the so-

lution (3.28) for a flat boundary, which is located, however, at x = −R and x = R,

respectively. This fact indicates that, for large enough R, the existence of a hyperpo-

larized boundary on the opposite side of the circular shape can be neglected, which is

reasonable due to the finite diffusive interaction length represented by the electrotonic

space constant λ. Consequently, for κa = 0 and κb = 0, the maximum depolarization at

the boundary is emax
a,b = λ|E|. The same result can be obtained by taking the limit of

either equation (3.35) or (3.36) for κa and κb towards zero.

The two cases considered above can therefore be assumed to originate from the same

limiting case: a flat boundary, which is subsequently bent inwards or outwards and then

continued with constant curvature. In normalized units, the maximum depolarization near

a circular boundary of curvature κ∗ is therefore given by the function:

e∗ max
circ (κ∗) =


−K1(1/(2κ∗))

K ′1(1/(2κ∗))
κ∗ > 0

I1(−1/(2κ∗))

I ′1(−1/(2κ∗))
κ∗ < 0

(3.39)
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It was already shown above that the function e∗ max
circ (κ∗) is continuous at κ∗ = 0. When

the curvature passes through zero, the two kinds of domains (a hole in an infinite domain

vs. a circular tissue domain) are smoothly transformed into each other, which suggests

that e∗ max
circ (κ∗) should be even continuously differentiable. Returning to the physics of the

problem, heuristically, the effect of boundaries of different shape should be more or less

equivalent in the low curvature regime, as long as their global shape guarantees that other

parts of the boundary are several λ away from the low curvature site, in order no to disturb

the depolarization pattern. As this is the case for the circular boundaries considered here,

equation (3.39) should be valid for other kinds of boundaries in the regime κ∗ � 1.

This universal curvature dependence for small deviations from a flat boundary of curvature

zero can be calculated by approximating In as

In(x) ≈
√

π

2x
exp(−x)

(
1− 4n2 − 1

8x
+ . . .

)
(3.40)

for large arguments x = −1/(2κ∗) (equation 9.7.1 in [222], pp. 377-378, truncated after

linear order term in parentheses). Using again I ′n = (In−1 +In+1)/2 in the denominator of

the negative curvature part of equation (3.39), the depolarization close to zero curvature

can be written as

e∗ max
circ (κ∗) =

2I1(x)

I0(x) + I2(x)
≈ 2

(
1− 3

/
8x
)

2 + 1
/
8x − 15

/
8x

= 1− κ∗

1 + 7
4κ
∗ for |κ∗| � 1, κ∗ < 0.

(3.41)

A similar calculation for the positive curvature part of equation (3.39), i.e. for |κ∗| � 1,

κ∗ > 0, leads to exactly the same result, meaning that the continuation of equation (3.39)

is actually continuously differentiable at κ∗ = 0 with

de∗ max

dκ∗

∣∣∣∣
κ∗=0

= −1 or e∗ max ≈ 1− κ∗ for |κ∗| � 1 (3.42)

Note that the suffix “circ” was omitted here to emphasize that, according to the above line

of thoughts, this result should hold in general for low-curvature parts of boundaries with

perpendicular electric fields. In the original units, the slope of the maximum depolarization

with respect to boundary curvature is

demax

dκ

∣∣∣∣
κ=0

= −λ2|E|. (3.43)

In a substrate of constant λ that has boundaries of different curvature κ, or in artificially-

cultured tissue with well-controlled boundary curvature, this relation opens a way to mea-

sure the electrotonic constant λ: With an estimate of the left hand side of equation (3.43)

from multiple measurements of the depolarization close to boundaries of different curva-

tures and the known electric field strength, a value of λ2 can be obtained, which permits

a high-accuracy estimate of λ.

In figure 3.27, the maximum depolarization for circular boundaries as given by equa-

tion (3.39) is plotted against the normalized mean curvature κ∗ = κλ of the boundary,

where positive curvature (gray line) refers to a concave medium and negative curva-
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Figure 3.27: Maximum depolarization for circular boundaries. The normalized
maximum depolarization e∗ max

circ is plotted against the normalized mean curvature κ∗ = κλ
as predicted by equation (3.39). The dots denote values obtained in numerical simulations
with the phase field method as indicated in section 3.2.2. The space step h for these
simulations was chosen such that h < R/12 is fulfilled for all cases, where R is the radius
of the tissue domain or obstacle. The slightly lower numerical values are due to the blurred
interface used with the phase field method (cf. section 2.1.5). The tangent at κ∗ = 0 from
equation (3.42) is plotted as a magenta dashed line. Approximations from equations (3.44)
and (3.47) which become exact for |κ∗| � 1 are plotted as black dashed lines. Insets show
examplary depolarization patterns for the two branches of the curve (see figure 3.26 for
additional examples).



128 CHAPTER 3. RESULTS

ture (green line) refers to a convex medium. There are two interesting features, which

were not visible in previous studies due to their limitation to positive curvatures: firstly,

the non-monotonicity for negative curvature means that there is an “optimal” curvature

for which the effect of the electric field is largest. This maximum of equation (3.39) is

e∗ max = 1.1096 . . . and occurs at κ∗ = −0.16359 . . . , which yields an optimal radius of

R = (3.056 . . . )λ for circular tissue domains (or cylinders, according to section 3.2.4). Sec-

ondly and more fundamentally, the maximum depolarization can exceed the theoretical

limit of λ|E|, as calculated in reference [127], meaning that some boundaries with negative

curvature will induce excitation for a smaller electric field strength than all boundaries

with positive curvature. In the vicinity of κ∗ = 0, this is already universally predicted by

equation (3.42). For the circular boundaries considered here, it is the case in the range

from κ∗ = −0.3236... to κ∗ = 0, corresponding to a tissue radius from R = (1.5451...)λ to

R =∞.

Small tissue domains

The decline of the maximum depolarization towards large negative curvatures can be at-

tributed to the diffusive interaction with the hyperpolarized area at the opposite boundary

like in the one-dimensional case in section 3.2.7. Analogously, the asymptotic shape of

the depolarization pattern for a small circular tissue domain can directly be deduced from

equation (3.16a): large normalized mean curvatures can by reached by letting λ → ∞
in a domain of finite curvature. Fixing the center point x = 0 of the circular domain at

e = 0 because of symmetry, for large λ, a simple gradient e = E · x is a solution of equa-

tion (3.16a) and automatically fulfills the boundary condition equation (3.16b). Thus, for

small domains, the maximum depolarization is just

emax
b = |E|R for R� λ. (3.44)

In fact, as the boundary condition equation (3.16b) is fulfilled by the asymptotic solution

e = E · x independently of the normal vector n, this trend holds for arbitrarily shaped

tissue small domains D with a spatial extent smaller than λ. As an arbitrary D lacks the

symmetry to argue that e = 0 at the center, it might at first seem that e = E·x+c with any

c ∈ R is a solution. Physically, it is clear that the deviation e from the resting potential

must have a defined value. For a finite, but large λ, e can be gauged by integrating

equation (3.16a) over the tissue domain D:

0 =

∫
D
∇2edV − 1

λ2

∫
D
e dV =

∮
∂D
∇e · n dA− Vol(D)

λ2
〈e〉D

(3.16b)
=

∮
∂D

E · n dA− Vol(D)

λ2
〈e〉D = −Vol(D)

λ2
〈e〉D

⇒ 〈e〉D = 0 (3.45)

〈·〉D denotes the spatial average over the tissue domain D. For the solution e = E · x + c,

〈e〉D = 0 is fulfilled with c = 0, if, without loss of generality, the coordinate system is

defined such that the center of mass of the tissue domain D is in the origin. If, additionally,
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the x-axis is aligned with the electric field vector, the maximum depolarization is simply

emax = |E|l, where l is the maximum x-coordinate within the tissue domain D. This is

consistent with equation (3.47) for a circular domain.

According to figure 3.27, in the positive curvature regime, the maximum depolarization

also decreases with increasing curvature κ∗. The asymptotic behavior can be derived in

a similar way as in the negative-curvature case: since the domain is infinitely large, the

gauge condition above is replaced here by the additional condition that the solution is

assumed to decay far away from the circular obstacle. The correct solution to ∇2e = 0,

the asymptotic form of equation (3.16a) for large λ, is

ea = −|E|R
2

r
cos(ϕ) for R� λ (3.46)

as it is the real part of the holomorphic function |E|R2z−1 and it also fulfills the boundary

condition (3.29). Therefore, the maximum depolarization, which occurs again at ϕ = π

and r = R, is

emax
a = |E|R for R� λ (3.47)

and thus identical to the negative curvature case (3.44). Both (3.47) and (3.44) result in

e∗ max
circ (κ∗) =

1

2|κ∗| for |κ∗| � 1 (3.48)

for circular boundaries, which is shown as a black dashed line in figure 3.27. This result

could also have been obtained by approximating equations (3.33) and (3.34) for small

arguments of the Bessel functions.

3.2.9 Semi-circular protuberances

For circular tissue boundaries, high curvatures are intrinsically connected to small domains

(in the case of negative curvatures) or small holes (for positive curvature). It was shown

above that, for small domains, interactions between depolarized and hyperpolarized regions

set in that diminish the maximum depolarization in the tissue. Since the universal effect of

negative curvature seems to be an increase in the maximum depolarization, as supported

by the low curvature approximation (3.42), one can pose the question whether a shape that

avoids the proximity of hyperpolarized boundaries would show an even larger response to

electric fields.

The shape shown in figure 3.25c) eliminates the compensatory effect by cutting away the

hyperpolarized half of the boundary. In figure 3.28, the maximum depolarization for this

shape is plotted against the curvature κ∗ = λ/(2R) of the protuberance. It was calculated

purely numerically by the procedure explained in section 3.2.2. The curve features a

maximum and a minimum for negative and positive curvatures, respectively, and declines

towards λ|E| for |κ∗| → −∞. The maximum e∗ max
prot ≈ 1.22 of the curve is considerably

higher than for circular boundaries, in agreement with the absence of the compensatory

effect between adjacent regions of de- and hyperpolarization described above. The fact

that the depolarization is non-monotonic and approaches λ|E| for large curvatures (in
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Figure 3.28: Maximum depolarization for semi-circular protuberances. The nor-
malized maximum depolarization e∗ max

prot is plotted against the normalized mean curvature
κ∗ = κλ. The low curvature approximation (equation (3.42), dashed line) is tangent to
the curve at κ∗ = 0. All values were obtained in numerical simulations as outlined in
section 3.2.2. Insets show examplary depolarization patterns for negative and positive
curvature.

either direction) is again due to diffusivity: although there is no hyperpolarized boundary

nearby, large curvatures imply small protuberances. The membrane potential is smoothed

out within an area of characteristic length λ, such that features much smaller than λ

cannot be resolved by the dynamics of the system. Therefore, below a certain size of the

protuberance, the depolarization pattern approaches that of a straight boundary.

3.2.10 Parabolic boundaries

Although there is no interaction between regions of de- and hyperpolarization for semi-

circular protuberances, the limited effect size is again related to the close connection

between the scale of features and the curvature. A shape which does not change quali-

tatively while assuming higher curvatures is the parabolic tissue domain D = {(x, y) ∈
R2 |x < ay2}, which has mean curvature κ = a at the origin and is shown in figure 3.25d).

Analytical calculation of the solution eparab(x) for the basic equation (3.16) is impeded

by the boundary condition (3.16b), which does not assume a simple form in parabolic

coordinates. However, the solution eparab for κ∗ < 0 (when the domain has finite extent in

y-direction for any given x) can be composed as a linear combination of a few terms of the

form exp(±x/λx,i±y/λy,i) with different λx,i and λy,i which satisfy 1/λ2
x,i+ 1/λ2

y,i = 1/λ2

for all i. This ensures that the terms are solutions of equation (3.16a). As for circular

boundaries, an electric field in positive x-direction is assumed. The solution must be in-

variant under y → −y and e(x) must vanish for x → −∞ (for every fixed y). To satisfy

these conditions, valid solutions must have equal coefficients for terms with +λy,i and

−λy,i, and Re(λx,i) > 0 must be fulfilled.

As it turns out numerically, even terms with λx,i, λy,i ∈ R suffice to compose an accurate
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Figure 3.29: Maximum depolarization for parabolic boundaries. The normalized
maximum depolarization e∗ max

parab , as obtained by the ansatz (3.49), is plotted against the
normalized mean curvature κ∗ = κλ as a red line. The dots indicate numerical simu-
lations for the positive curvature regime and to verify the semi-analytical solution (see
section 3.2.2). Again, the slightly lower numerical values are due to the blurred interface
used with the phase field method (cf. section 2.1.5). The low curvature approximation
(3.42) is plotted as a dashed line. Insets show examplary depolarization patterns for
negative and positive curvature.

solution. In summary, we make the ansatz:

eparab(x) =

N∑
i=1

ciei(x) (3.49)

with ei(x) = exp(x/λx,i) cosh(y/λy,i), (3.50)

where λx,i, λy,i > 0 for all i. Because of the form of the single terms (3.50), eparab(x) will

be an exact solution of equation (3.16a). Furthermore, the coefficients ci are chosen such

that equation (3.16b) is approximately satisfied. This is done by choosing a set of points

xj = (ay2
j , yj) on the boundary and expressing the boundary condition of equation (3.16b)

in these cartesian coordinates:

−1 · ∂e
∂x

∣∣∣∣
(xj ,yj)

+ 2κyj ·
∂e

∂y

∣∣∣∣
(xj ,yj)

= −Ex ∀j. (3.51)

The partial derivatives can be calculated analytically by substituting equation (3.49) for

e(x), which turns equation (3.51) into a system of linear equations for the coefficients ci.

This system was solved for the most sparse solution. The relative error of the solution

was calculated as the maximum deviation of the right hand side of equation (3.51) from

its left hand side, divided by Ex, using points x̃j on the boundary with a density 10 times

higher than the xj , for which the solution was calculated. For the results shown here,

this relative error never exceeded 10−10, which is why the solution can be characterized

as “semi-analytical”.

The resulting maximum depolarization e* max
parab is plotted as a red line in figure 3.29. Despite
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Figure 3.30: Maximum depolarization for three-dimensional boundaries. The
normalized maximum depolarization e∗ max

parab is plotted against the normalized mean cur-
vature κ∗ = κλ of the parabolic boundaries. All values were obtained in numerical simu-
lations according to section 3.2.2. Insets show examplary depolarization patterns for the
negative-curvature regime.

the non-circular shape of the domain, the behavior of the curve close to κ∗ = 0 is predicted

correctly by the approximation (3.42), which confirms its universality. In contrast to the

other shapes considered so far, e∗ max
parab is monotonic. From the finite part of the curve that

was calculated, it cannot be concluded whether there will be a limiting value for large

κ∗ → −∞. However, the steepness of the curve decreases quickly towards larger negative

curvatures. Thus, the most apparent difference in the reaction of this kind of boundary

to electric fields should be noted up to curvatures of the order of −1/λ.

For positive curvatures, the maximum depolarization was determined numerically as out-

lined in section 3.2.2. Figure 3.29 indicates that the maximum depolarization in this

regime decreases towards larger positive curvatures, as does that of circular boundaries

in figure 3.27. However, the comparative plot of figure 3.31 shows that the decline for

parabolic boundaries is considerably more shallow. Similar to the scenario for negative

curvatures, the stronger electric-field induced depolarization for parabolic boundaries can

be attributed to the absence of a close hyperpolarized boundary, which is present for cir-

cular boundaries (c.f. right inset of figure 3.27). There, once the distance of the hyperpo-

larized part of the boundary to the point of maximum depolarization becomes comparable

to λ, the electrotonic interaction leads to a reduction of the effect strength, in addition to

that one caused purely by the curvature of the boundary.

3.2.11 Inherently three-dimensional boundaries

Numerical results for two three-dimensional tissue domains are plotted as blue and cyan

dashed lines in figure 3.30. For the blue line, D = {(x, y, z) ∈ R3 |x < ay2}, i.e., D is a

three-dimensional extension of figure 3.25d) with zero curvature in z-direction. The two

principal curvatures κ1 = 2a and κ2 = 0 lead to a mean curvature of κ = a as in the
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Figure 3.31: Summary: Depolarization for diffferent boundary types. The nor-
malized maximum depolarization e∗ max for all shapes considered in this study is plotted
against the normalized mean curvature κ∗ = κλ. Colors and line styles of the original
plots were maintained.

two-dimensional case. This corresponds to the scenario considered in section 3.2.4, which

is why the maximum depolarization e∗ max
3d-stack is exactly the same as in the two-dimensional

case (see summarizing figure 3.31). This confirms numerically that, as derived in sec-

tion 3.2.4, three-dimensional extensions of the shapes considered so far will yield the same

depolarization pattern: circular domains become cylinders, circular obstacles are equiva-

lent to cylindrical obstacles and the semi-circular protuberances cannot be differentiated

from cross-sections through half-cylinders attached to a flat surface of the tissue.

However, if the added dimension introduces additional curvature, this can enhance (or

diminish) the observed depolarization. The tissue domain defined by D = {(x, y, z) ∈
R3 |x < a(y2 + z2)} corresponds to the parabolic shape rotated around the x axis. Its

principal curvatures at the origin are k1 = 2a and k2 = 2a, resulting in a mean curvature

of κ = 2a. The resulting maximum depolarization at the tip of the paraboloid e∗ max
3d-full is

shown as a cyan curve in figure 3.30. For larger negative curvatures, the additional curved

dimension increases the induced depolarization. This is an inherent effect of the three-

dimensional topology, since all curves are plotted against the mean curvature. In contrast,

towards zero curvature, the maximum depolarization asymptotically behaves according to

the conjecture (3.42), meaning that for this regime, the mean curvature alone determines

the strength of depolarization. This agreement between native three-dimensional bound-

aries and two-dimensional boundaries close to κ∗ = 0 is also a reassurement that the mean

curvature is a suitable mathematical quantity to characterize the boundary.

3.2.12 Boundary effects in full numerical simulations

The results in figure 3.31 were obtained by solving equation (3.16), which is a low-field-

strength, mono-domain, steady-state approximation. As indicated at the beginning of

section 3.2, electric-field induced membrane potential changes are thought to be important

during stimulation, e.g., in an effort to terminate arrhythmias. In this situation, the
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Figure 3.32: Electric-field stimulation in a two-dimensional simulation. Numer-
ical simulation of a 5 ms monophasic shock at a field strength E, resulting in curvature-
dependent activation. The geometry of a cross section of a left ventricular rabbit wall
was obtained from µCT and implemented using the phase field method with the modified
boundary condition (3.16b). a) E=0.2 V/cm: wave emission is observed at a protuber-
ance with large negative curvature, while depolarization at the boundary remains below
threshold. b) E=0.4 V/cm: excitation of almost the entire tissue boundary results in a
quasi-planar wave. c) E=1.0 V/cm: Internal boundaries with positive curvature (blood
vessels indicated by arrows) emit waves. Simulations were carried out using the Fenton-
Karma model with parameter set FK1 (table A.2, page 177) and isotropic diffusion of
1 cm2/s. The time step is ∆t = 2.5µs, the space step h = 50µm. Figure reproduced from
[218].



3.2. SENSITIVITY OF CURVED TISSUE BOUNDARIES 135

purpose of the stimulation is to induce new waves in the cardiac muscle that act as control

stimuli. However, induction of the waves ultimately requires a superthreshold stimulation,

a process not covered by the low-field strength approximation. Additionally, finite pulse

durations are used in reality, such that, even if the membrane dynamics is assumed to

be passive up to the excitation threshold, the asymptotic depolarization value might not

be reached. Therefore, it is important to validate the approximation in more realistic

numerical simulations. This was done on the complex geometry of the left ventricular

wall obtained from µCT. The full, non-linear, time-dependent Fenton-Karma model was

simulated, with equation (3.16b) instead of the usual no-flux boundary condition. In

contrast to the numerical simulations carried out so far (cf. section 3.2.2), now, field-

strengths that are capable of evoking action potentials are used, therefore leaving the

scope of the linear (passive membrane) approximation introduced in section 3.2.1. The

results shown in figure 3.32 qualitatively reproduce the mechanisms described above: A

large protuberance on the endocardium is activated at a lower field strength than the flat

part of the endocardium. This finding agrees with the cell culture experiments shown in

figure 3.22 and the increased sensitivity of the negative-curvature regime demonstrated

by figure 3.31. Inner boundaries such as blood vessels are being activated at higher field

strengths, since they correspond to the regime of κ∗ > 0 in figure 3.31, for which the

depolarization is generally lower. Good agreement with the theoretical results shown in

figure 3.31 suggests that other effects which might depend on the geometry such as the

liminal area [223] only play a secondary role.

The action of different kinds of boundaries as wave emitting sites in a realistic three-

dimensional setting is illustrated in figure 3.33. The Fenton-Karma model was used with

parameters obtained by J. Schröder-Schetelig from a fitting procedure of the model

to measured restitution curves in rabbit hearts [224]. A high field strength was chosen,

such that the multitude of boundary reactions becomes visible (corresponding to the case

of figure 3.32c)). The different kinds of boundaries leading to separate activations include

papillary muscles (arrow A), endocardial undulations (arrow B) and blood vessels (arrows

C, D and E). In reality, many more (smaller) blood vessels would be activated which are

not resolved accurately by the numerical simulation due to resolution limitations (58µm).

3.2.13 Influence of finite pulse duration

From the numerical simulations shown in figure 3.32, it seems that the maximum depolar-

izations of different kinds of boundaries obtained from the low field strength, steady-state

approximation (figure 3.31) can qualitatively be translated to realistic settings based on

a finite pulse duration and complex geometries. However, this does not mean that quan-

titative results like the optimal curvature for circular boundaries (peak of the green line

in figure 3.31) are preserved as well. A priori, it is not clear how a spatial property like

the boundary curvature interacts with processes that are thought to be determined by

local properties such as the subthreshold membrane time constant (τ0 in the case of the

Fenton-Karma model). Implicitly, this time constant was included in the electrotonic con-

stant λ introduced in section 3.2.1, but the results presented above yield no information

on the time scale on which the membrane potential approaches the computed steady-state



136 CHAPTER 3. RESULTS

t = 1ms

t = 7ms

t = 10ms

t = 14ms t = 18ms t = 30ms
 

 

−80mV 20mV

t = 3ms

t = 10ms t = 10ms

t = 5ms

A

C

ED

B

Figure 3.33: Electric-field stimulation in a three-dimensional simulation. Numer-
ical simulation of a 10 ms monophasic shock at a field strength of 2 V/cm. The geometry
of a piece of a left ventricular rabbit wall was obtained from µCT and implemented using
the phase field method with the modified boundary condition (3.16b). The electric field
is approximately directed into the image plane on the second snapshot at t = 10 ms (third
row, second column). Simulations were carried out using the Fenton-Karma model with
parameter set FK4 (table A.2, page 177) and isotropic diffusion of 0.1 cm2/s. A different
color code was chosen for visualization purposes.
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depolarization patterns.

As a first step towards determining the additional mechanisms which come into play when

pulses with finite duration are used to bring the membrane potential above the excitation

threshold, circular boundaries (of positive and negative curvature) shall be considered in

this section using numerical simulations. A simple, analytical way to obtain an estimate

for the field strength required to induce excitation at such a boundary from the theory

above is to calculate, at what field strength the maximum depolarization of the asymptotic

membrane potential distribution (cf. figure 3.27) reaches the excitation threshold. Denot-

ing the excitation threshold by et (relative to the resting potential; in the Fenton-Karma

model, et ≈ uc), this asymptotic required field is thus determined by the condition

Easymptotic
req λe∗ max

circ (κ∗) = et

⇒ Easymptotic
req (κ∗) =

et
λ

1

e∗ max
circ (κ∗)

, (3.52)

where e∗ max
circ (κ∗) is the unified maximum depolarization for circular boundaries with pos-

itive and negative curvatures of equation (3.39).

Alternatively, the critical electric field strength Ereq can be measured directly in numeri-

cal simulations of the Fenton-Karma model by employing a procedure of nested intervals.

This way Ereq can be determined for each normalized curvature κ∗ to arbitrary (but fi-

nite) accuracy. Again, the parameter set fitted to rabbit restitution data was used (FK4,

see table A.2, page 177). The same adaptive numerical resolution as for the numerical

results in figure 3.27 was chosen for different curvatures, to ensure that the small circular

boundaries for large |κ∗| are well resolved by the phase field method and to guarantee

comparability. In figure 3.34, subthreshold and superthreshold stimulations with rectan-

gular biphasic pulses for two exemplary curvatures are shown. The depicted simulations

correspond to the final step of the nested interval procedure, meaning that subthreshold

and superthreshold field strengths for each curvature represent lower and upper bounds

for the required field strength Ereq, respectively. The determined required field strength

Ereq for a whole range of curvatures is plotted in figure 3.35a). The blue symbols denote

the numerical results for three different pulse shapes identical to those used in experi-

ments (see figure 2.12, page 74). The pulse duration is Tpulse = 10 ms in all cases and

Ereq is the minimum peak field strength (corresponding to Emax in figure 2.12), for which

the stimulation results in an activation. Asymptotic theoretical values for Ereq(κ∗) from

equation (3.52) are plotted as a red line.

Figure 3.35a) indicates that, generally, all pulse shapes require an equal or higher field

strength for activating the boundary than estimated by the asymptotic approximation.

This is expected because the finite pulse duration prevents the membrane potential from

reaching its limiting value.15 While monophasic and biphasic pulses do not lead to quan-

titatively very different results, the required peak field strength for the biphasic truncated

exponential pulse shape is considerably larger. However, one has to bear in mind that in

each half of the pulse, much less total charge is injected into the domain than for a rect-

15Note that, despite the adaptive space step h of the simulations, the numerical realization of the
boundaries using the phase-field method slightly underestimates the electric field-induced effect in the
asymptotic case (see figure 3.27). Assuming this trend holds for finite pulse duration, the critical field
strength in the corresponding field strength range shown in figure 3.35 could be slightly too high.
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Figure 3.34: Critical field strength for biphasic rectangular pulses: small cur-
vatures. In each row, the deviation from the resting membrane potential 5 ms, 10 ms
and 15 ms after the beginning of the stimulation with a biphasic rectangular electric field
pulse (cf. figure 2.12, page 74) is shown. The total pulse duration is Tpulse = 10 ms in all
cases. The first two columns correspond to snapshots after each half of the pulse (electric
field direction during the preceding 5 ms indicated by arrow above each column). Note the
different color codes for subthreshold and superthreshold cases. a), b) Subthreshold and
superthreshold stimulation, respectively, of a circular tissue domain of normalized mean
curvature κ∗ = −0.3. c), d) Subthreshold and superthreshold stimulation, respectively,
of a tissue domain containing a circular obstacle with a normalized mean curvature of
κ∗ = 0.3. Subthreshold stimulation in a) and c) does not activate the tissue and the mem-
brane potential decays quickly back to the resting value. For b) and d), superthreshold
stimulation leads to an activation induced by the first half of the biphasic pulse. Simula-
tions were carried out using the Fenton-Karma model with parameter set FK4 (table A.2,
page 177).
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Figure 3.35: Electric-field pulses of finite duration and different shapes at circu-
lar boundaries. a) Field strength required to induce a wave from a circular boundary
plotted against the normalized mean curvature κ∗ of the boundary. The three blue symbols
correspond to the pulse shapes depicted in figure 2.12, page 74, where the pulse duration
is Tpulse = 10 ms for all pulse shapes and τdecr = 3.33 ms for the truncated exponential
wave form. Black triangles are obtained from blue triangles by multiplication with the
correction factor (3.53). The red line denotes the asymptotic expected minimum field
strength, see equation (3.52). b) Ratio between the required field strength from a) for
biphasic and monophasic pulses.
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Figure 3.36: Time scale of depolarization at circular boundaries. Data extracted
from numerical simulations of the asymptotic case (cf. dots in the plot of figure 3.27).
τ1/2 and τ0.99 denote the time after which half and 99% of the asymptotic maximum
depolarization of figure 3.27 are reached, respectively, starting from entirely quiescent
tissue at the resting membrane potential.

angular pulse shape with the same peak field strength. Here, an exponential decay rate

of τdecr = 3.33 ms was used. The mean electric field strength in one half of the biphasic

pulse can be calculated as

Ē =
2

T pulse

Tpulse/2∫
0

Epeak exp(−t/τdecr) dt

= Epeak
2τdecr

Tpulse

[
1− exp

(
−Tpulse

2τdecr

)]
. (3.53)

Correcting the data points for the exponential wave form by this factor (≈ 0.518 in this

case) yields the black triangles in figure 3.35. The corrected data are indeed considerably

closer to those of the other pulse shapes. The initial high field strength for each half of the

truncated exponential wave form seems to be even advantageous for large |κ∗|, indicating

that the depolarization in this curvature regime takes place on a much smaller time scale,

such that the system is able to resolve this specific feature of the exponential wave form.

In contrast, for small |κ∗|, the depolarization time scale is large enough to average out the

specific pulse shape.

The relative behavior of Ereq for biphasic and monophasic wave forms points into the same

direction: The ratio between the two required field strengths, plotted in figure 3.35b),

tends towards ≈ 1 for large positive and negative curvatures and features a maximum at

small negative curvatures. Again, a longer time scale for the depolarization process in the

small-|κ∗| regime would explain this behavior, as it would diminish the overall effect by

partial averaging the opposite-polarity halves of the pulse.

To get a more direct picture of the time scales governing the depolarization process at

the boundary, the numerical simulations carried out for figure 3.27 (black dots) can be

utilized: Figure 3.36 displays the time τx necessary to elevate the membrane potential
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from the resting potential to a certain percentage x of the final maximum depolarization.

For both values of x (50% and 99%), the curves are consistent with the behavior observed

above: A maximum at small negative curvatures indicates a slow response of the boundary

to the applied electric field, whereas towards large positive and negative curvatures, the

maximum depolarization is reached much more rapidly. The overlay of the plots for τ1/2

and τ0.99 shows that for large negative curvatures, the two time scales are proportional to

each other (indicating a similar relative time course of convergence, independent of the

curvature), whereas towards positive curvatures, the depolarization process slows down

more and more when approaching the maximum depolarization.

Besides explaining the relative behavior of the required field strengths for different pulse

shapes shown in figure 3.35, the small time scales for high positive and negative curvatures

lead to another interesting phenomenon for biphasic pulses: For the two successful activa-

tions depicted in figure 3.34, the action potential is always elicited by the first half of the

biphasic pulse. In contrast, for larger positive and negative curvatures, the second (nega-

tive) half of the pulse is dominating the dynamics, such that the activation starts on the

opposite side of the boundary. The cases for the smallest negative and positive curvatures

for which this behavior is observed are depicted in figure 3.37. A possible explanation

is that short time scales imply a strong force driving the membrane potential to its final

value, which allows the second half of the pulse to suppress an action potential emerging

as a result of the positive-polarity part. The asymmetry in the curvatures, for which this

effect appears (κ∗ = −0.5 for negative curvatures; κ∗ = 1.2 for positive curvatures), is

in line with the asymmetry of the ratio between biphasic and monophasic required field

strengths (figure 3.35b)) and the asymmetry for τ0.99 in figure 3.36.

In summary, the most important feature of the asymptotic results for circular boundaries is

preserved for more realistic scenarios with finite pulse duration and different pulse shapes:

Even in full numerical simulations, there is still an optimal size of circular tissue domains

in terms of sensitivity. However, the curvature, at which this minimum required field

strength is assumed, is shifted somewhat more towards negative curvatures. In addition,

a curvature-dependent time scale determines the reaction of the boundary to different

pulse shapes. It should be emphasized that the effective time constant for membrane

depolarization as depicted in figure 3.36 was extracted from numerical simulations for

the asymptotic case (i.e. using subthreshold field strengths). Therefore, the curvature-

dependent time scales are not a result of the different field strengths necessary to induce

activation and still, as seen above, they can explain some of the features observed for

superthreshold stimulation.

3.2.14 Brief summary

In section 3.2, the effect of geometry on the membrane potential changes induced by

electric fields was investigated. For this purpose, in section 3.2.1, a low-field strength

approximation was derived, based on the mono-domain description of cardiac tissue out-

lined in section 2.1.3. This approximation incorporates the effect of the electric field by a

modified boundary condition and corresponds to the ad-hoc theoretical ansatz of Pumir

and Krinsky et al. [127, 130]. Based on the central equation (3.16), in sections 3.2.3

and 3.2.4, general properties relating to electric field orientation, scaling behavior and the
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Figure 3.37: Critical field strength for biphasic rectangular pulses: large curva-
tures. Figure similar to figure 3.34, but for larger curvatures |κ∗|: a), b) Subthreshold and
superthreshold stimulation, respectively, of a circular tissue domain of normalized mean
curvature κ∗ = −0.5. c), d) Subthreshold and superthreshold stimulation, respectively,
of a tissue domain containing a circular obstacle and with a normalized mean curvature
of κ∗ = 1.2. Note that, in contrast to figure 3.34, the tissue is activated by the second half
of the biphasic pulse in b) and d).
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dimensionality of the tissue domain were derived. These allow for statements about the

sign of membrane potential deflections, the transfer of known results to systems with a

different characteristic length scale λ and the generalizability of two-dimensional results to

three-dimensional structures even without knowing the exact depolarization patterns. The

relevance of boundary shape for the effect strength of an electric field pulse is indicated

by the cell culture experiments presented in section 3.2.5. Following this indication, the

mean curvature κ was introduced in section 3.2.6 as a quantitative measure for boundary

shape. Supported by numerical simulations as outlined in section 3.2.2, the depolarization

patterns for different kinds of two-dimensional boundaries were determined in sections

3.2.7, 3.2.8, 3.2.9 and 3.2.10, revealing effect strengths in the negative-curvature regime,

which exceed the hitherto assumed range of possible values. Each of the considered pro-

totypical geometries demonstrated a specific combination of mechanisms which enhance

or diminish the maximum depolarization. These mechanisms include the proximity of

hyperpolarized boundaries (circular boundaries), the spatial scale of anatomical features

(protrusions) and pure curvature effects (parabolic boundaries). All geometries, includ-

ing the three-dimensional boundaries presented in section 3.2.11, were shown to exhibit a

similar behavior for low curvature, as described by equation (3.42). Using numerical sim-

ulations with finite field strengths, the relevance of the asymptotic theoretical results for

superthreshold stimulation was shown qualitatively on a realistic geometry in section 3.2.12

and quantitatively for circular boundaries in section 3.2.13. The latter revealed a possi-

ble relevance of shape-dependent depolarization time scales for realistic scenarios. For a

detailed summary and a discussion of the results, see section 4.



144 CHAPTER 3. RESULTS

3.3 Heterogeneity-induced wave sources in low-energy de-

fibrillation16

In section 3.2, the response of cardiac tissue boundaries to electric-field stimulation was in-

vestigated theoretically and in numerical simulations. Knowledge about the fundamental

mechanisms that govern the initiation of waves by electric fields is required to understand

how electrical stimulation influences wave activity that is already present in the tissue.

An important field of application for a comprehensive understanding of field-induced wave

sources in combination with wave interaction mechanisms is that of anti-arrhythmic pac-

ing strategies, the most prominent among which is defibrillation. The investigations that

will be presented in this section have become part of a publication [201], which, on the

one hand, demonstrates that LEAP is effective for both ventricular and atrial fibrillation

in-vitro as well as atrial fibrillation in-vivo. On the other hand – and that is the contri-

bution of this work – it sheds some new light on the mechanisms that govern wave source

recruitment for LEAP, by providing a strong empirical basis for the specific anatomical

structures that give rise to wave sources during LEAP.

3.3.1 Hypothesis

As indicated in the introduction of this thesis, the tree of coronary arteries and veins is

present everywhere in the heart to supply the tissue with oxygen and nutrients, organized

in a branching network from the large coronary vessels of millimeters in diameter downto

the capillaries with a diameter of a few micrometers. Furthermore, the branching struc-

ture of the cardiovascular tree has been shown to follow certain laws that are based on the

minimization of construction and fluid conduction cost [225, 226, 227].17 Although the

relations derived in these references cannot be transformed directly into a probability dis-

tribution of vessel sizes [182], it is reasonable to assume that such statistics is determined

by the same fundamental laws and therefore preserved across individuals, guaranteeing

the presence of suitable heterogeneities for electric-field stimulation – provided, of course,

it has been confirmed in a sufficient number of samples. The anatomical and physiological

properties of cardiac vessels thus suggest the hypothesis that they might be the primary

source of heterogeneity for LEAP. Then, of course, the question of whether and how the

mechanisms involved could be accessed experimentally becomes inevitable.

How could the relevance of the tree-like vessel system for LEAP be tested? Given

that fibrillation itself is a turbulent and complex activation pattern, analyzing the inter-

actions of field-induced waves with this activity is a challenging task. There is an even

more obstructive technical problem: the cardiac muscle is a three-dimensional system,

but the imaging technique described in section 2.3.2 can only collect information from

the surface of the muscle, rendering it impossible to directly observe waves in the bulk

of tissue. Nevertheless, some information about intramural activity can be inferred from

observations of the surface (e.g., the direction of wave fronts [229]) and there are efforts

to create suitable three-dimensional imaging methods using optical coherence tomography

16The results obtained in adult beagle dogs which are presented in this section have been published in
reference [201].

17See also reference [228] and references therein.
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[230], transillumination tomography [231] or ultrasound imaging (via contraction) [232].

However, resolution and/or penetration depth are too limited to observe a large volume

of tissue in real-time and to simultaneously detect anatomical structures such as blood

vessels.

Therefore, an alternative approach is chosen here, using the following procedural simpli-

fications:

• Instead of trying to directly observe the interaction of induced waves with fibrilla-

tion during LEAP, waves are observed in quiescent tissue. This is to separate the

mechanisms of wave initiation from the interaction with complicated activity. Con-

sequently, one has to bear in mind that the wave sources considered from now on are

actually only potential wave emitting sites and their recruitment in a LEAP setting

depends on the dynamics already present in the medium.

• Due to the unavailability of adequate three-dimensional high-resolution imaging

methods, a model for the activation of blood vessels by electric fields is constructed to

predict a quantity that is observable by optical mapping techniques: the activation

time τ (see section 2.3.4).

• Structural information required for the above model is not extracted during the

optical mapping experiment, but using a suitable tomography technique such as

µCT with a contrast agent injected into the coronary vessel tree. This way, the data

can be obtained with high spatial resolution, sacrificing, however, a direct correlation

of observed waves and locations of blood vessels.

3.3.2 Theoretical framework

The simple model that is to be constructed is based on the following fundamental assump-

tions:

1. Heterogeneities are discrete, circular obstacles with a radius R. When electrically

stimulated, a heterogeneity either is recruited as a wave source or it remains silent

(does not emit a wave), depending on the field strength of the pulse.

2. Heterogeneities are distributed homogeneously throughout the myocardium.

3. Once recruited as a wave emitting site, the heterogeneity acts as a point source and

the excitation wave spreads outwards with a constant velocity.

Using assumption 3, a single wave source activates a volume

V1(t) = γ(vt)d with γ =

π d = 2

4
3π d = 3

(3.54)

of the tissue, where t is the time after the stimulation and v is the conduction velocity. d

is the dimensionality of the tissue, which can be either viewed as a two-dimensional sheet

or a three-dimensional volume. In reality, the anisotropy of cardiac tissue (see section 1.3)

leads to an ellipsoidal rather than spherical wave propagation. However, as will be argued

below, γ and v will be consumed into an arbitrary constant and only the scaling V1 ∝ td
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is relevant, which also holds for ellipsoidal wave propagation.

Ignoring the overlap between the waves emitted from different sources and employing

assumption 2, the activation time of a given volume V is the time τ , for which

V = NsV1(τ) = Ns(E)γ(vτ)d (3.55)

holds, when Ns(E) is the field-strength dependent number of wave sources. Let ρ(E) =

Ns(E)/V be the wave source number density, then the activation time τ can be calculated

as

τ(E) = v−1[γρ(E)]−
1
d . (3.56)

To turn this equation into a prediction for τ , ρ(E) has to be estimated theoretically: It

is assumed that blood vessels act like a tissue boundary, meaning that the intracellu-

lar space of the electrophysiologically active substrate ends abruptly at the surface of the

blood vessel (i.e. is insulated), and the extracellular space is continuous. This corresponds

to the assumptions that lead to the theory presented in section 3.2. The tubular vessels

are modeled locally as cylinders. Using the results of section 3.2, or, more specifically,

the dimensionality equivalence explained in section 3.2.4, this implies that the theoret-

ical results for membrane potential changes at two-dimensional circular boundaries can

be applied to these three-dimensional structures. The theory for circular obstacles was

already developed in references [127, 130] and corresponds to the positive-curvature part

of figure 3.27 (page 127). Therefore, assuming that the electric field is correctly oriented,

the maximum depolarization depends on the radius R of the blood vessel and is given by

equation (3.35):

emax(R) = −λ|E|K1(R/λ)

K ′1(R/λ)
(3.57)

According to sections 3.2.12 and 3.2.13, the dominating factor that determines whether

a tissue boundary emits a wave is indeed the maximum depolarization. Let et be the

excitation threshold for a cardiac cell, i.e. the deviation from the resting membrane

potential which just elicits an action potential. Then

emax(R) ≥ et (3.58)

is the condition for a blood vessel to be recruited as a wave emitting site. The positive-

curvature regime of figure 3.27 relevant for blood vessels shows that equation (3.57) is

monotonically decreasing with the curvature κ = 1/(2R), i.e. monotonically increasing

with R. This means that the condition (3.58) is fulfilled automatically for all R > R̂, if

it is fulfilled for R̂. Conversely, for any given λ and |E|, there is a minimum radius Rmin,

such that equation (3.58) is fulfilled if and only if R > Rmin and Rmin is the value of R for

which equation (3.58) reaches equality. Substituting equation (3.57), Rmin is calculated as

Rmin(E) = λ

[
K ′1
K1

]−1(
−λE
et

)
, (3.59)
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where [K ′1/K1]−1 is the inverse function of K ′1/K1 and E = |E|. Equivalently, Ereq(Rmin)

is the field strength required to excite blood vessels with a radius larger than Rmin:

Ereq(Rmin) = −et
λ

K ′1(Rmin/λ)

K1(Rmin/λ)
. (3.60)

The sizes of blood vessels in the tissue are extracted from µCT scans. The result of the

segmentation procedure is a list of blood vessel radii, each of which characterizes a blood

vessel segment of approximately equal length (along the cylinder axis). The list of vessel

radii is used to calculate a probability density function (PDF) p(R) for the radius of an

arbitrarily chosen vessel segment, which is then reinterpreted – according to assumptions

1 and 2 – as a parameter distribution of homogeneously distributed, point-like objects

which emit waves if their parameter R fulfills the condition (3.58).

For the smallest blood vessels, arterioles and venules, assumption 2 can be expected to

be correct, due to nutrients and oxygen supply constraints and the large number of such

structures. Since the vessels are organized in a fractal tree, homogeneity is inherited by

larger blood vessels from which the smaller ones branch off. However, it is clear that this

kind of inheritance has certain limits: On the other end of the size distribution, the largest

coronary vessels each supply one area of the myocardium and their location is strongly

preserved across individuals. In between these two extremes, there must be a gradual

transition from (smaller) sizes, for which assumption 2 is still approximately fulfilled, to

(larger) vessels, for which this cannot be true. Similarly, assumption 1 is fulfilled for

the large number of small vessel segments distributed across the entire myocardium, but

for the few large vessels, their tubular shape will become important. Therefore, large

deviations of the model from reality can be expected primarily for large blood vessels,

corresponding to low field strengths E.

Once one accepts these limitations of the reinterpretation of p(R), the number of wave

sources Ns(E) can be calculated as

Ns(E) = Nmax
s

∞∫
Rmin(E)

p(R) dR. (3.61)

Nmax
s denotes the maximum number of wave sources recruited if the whole range of sizes

characterized by p(R) is activated (i.e. for Rmin(E) = 0). Substituting equation (3.61)

into equation (3.56) leads to the following expression:

τ(E) = v−1

γNmax
s

V

∞∫
Rmin(E)

p(R) dR


− 1
d

. (3.62)

Together with equation (3.59), this formula provides a link between the activation time τ

(observable by optical imaging) and p(R), which encodes purely anatomical information

about the cardiovasculature. The conceptual basis of this link is illustrated again in

figure 3.38. In fact, the activation time can only be predicted up to an unknown factor:

The prefactor v−1(γNmax
s /V )−1/d consists of a number of peparation-specific constants.

In particular, Nmax
s is a rather abstract quantity originating from the reinterpretation
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Figure 3.38: Wave source recruitment model. The tissue is assumed to contain
obstacles (top left; black circles) of all radii R with a PDF p(R). For each field strength
E, theory predicts a certain minimum size Rmin(E) above which all obstacles are recruited
as wave emitting sites (lower left; red circles) and which results in a certain wave source
density ρ(E). The activation time τ is then estimated by assuming simultaneous radial
wave spread from these wave sources (lower right; activation shown in blue).

of the size distribution p(R). As this number cannot be determined experimentally, the

prefactor as a whole can be redefined as an unknown proportionality constant ξ, such that

the equation reads

τ(E) = ξ

 ∞∫
Rmin(E)

p(R) dR


− 1
d

. (3.63)

Assuming the size distribution follows a power law, p(R) = cRα with α < −1, a result for

the scaling of τ(E) independent of the prefactor ξ can be obtained in the limit of large

field strengths: if λE/et � 1, it follows that R � λ. In this case, the small-obstacle

approximation of equation (3.47) (page 129) holds and Rmin(E) ≈ et/E. Substituting this

into equation (3.62) yields

τ(E) = ξ

 ∞∫
Rmin(E)

cRα dR


− 1
d

= ξ

(
− c

α+ 1
Rmin(E)α+1

)−1/d

= ξ̃E(α+1)/d (3.64)

In the last step, all factors were, again, summarized in a proportionality constant ξ̃ > 0.

The result implies that, for large field strengths E, a power law for p(R) with an exponent
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α leads to a power law for τ(E) with an exponent β = (α+ 1)/d:

p(R) = Rα
β=(α+1)/d←→ τ(E) = Eβ. (3.65)

So far, the main focus was on predicting an observable dynamic effect from structural

data. One can also ask the converse question: is it possible to learn something about the

size distribution of heterogeneities from the dynamical response of the tissue? Indeed,

equation (3.63) can also be read backwards: given the measured activation time as a

function of τ(E), p(R) could be calculated by differentiation with respect to E. Since

τ(E) is measured in experiments only at discrete field strengths E and with a certain

degree of inaccuracy, differentiating τ(E) is impractical. However, the integral of p(R)

within certain bins of radii can be determined directly from measured τ(E) values by

subtracting equation (3.63) for two different field strengths.

Rmin(Ei)∫
Rmin(Ei+1)

p(R) dR = ξd
(
τ(Ei+1)−d − τ(Ei)

−d
)

(3.66)

Ei+1 > Ei are the field strengths for which τ was measured. Because of the monotonicity

of Rmin, this implies that Rmin(Ei+1) < Rmin(Ei).

3.3.3 Blood vessel size distributions

Size distributions p(R) were obtained separately for atria and ventricles. Contrast agent

(MicroFil, Flow Tech Inc., USA) was injected into the coronary arteries and the sample

was scanned at the µCT Facility for Imaging and Preclinical Research/Cornell University

by Mark L. Riccio. The resulting voxel data was analyzed by Daniel Hornung using

a custom-made segmentation algorithm which is outlined in the Supplementary Material

of reference [201] and described in detail in reference [182]. Briefly, a skeleton of the

vascular tree approximating the center lines of the arteries was obtained by applying an

intensity threshold and using a skeletonization algorithm. Then, the radius of the vessels

at each point on the skeleton was estimated by fitting a plateau function to the intensity

profile of the µCT data in a plane perpendicular to the center line. Histograms of the

detected radii Ri, i = 1 . . . NR for exemplary ventricular and atrial preparations are shown

in figure 3.39a) and b). Because of the rapid decrease of size frequencies towards larger

vessel sizes, logarithmically spaced bin edges R̂0 > R̂1 > R̂2 > . . . (shown as vertical

dashed lines in figure 3.39) are chosen to produce an approximation of the PDF p(R):

pj =
1

NR(R̂j−1 − R̂j)
∑
i

R̂j≤Ri≤R̂j−1

1 ∀j > 1 (3.67)

The pj can be interpreted as an approximation to p(R) at the geometric center
√
R̂jR̂j−1

of the bin (e.g., for fitting purposes). These approximations are shown in figure 3.39c) and

d). They show, in the limited range of sizes where reliable segmentation was possible, a

behavior compatible with a power law.

In addition, the pj are correspond directly to the integrals of equations (3.63) and (3.66)
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Figure 3.39: Size distributions of blood vessels. a), b) Histograms of ventricular
and atrial detected blood vessel radii in canine hearts. Prominent features are the rapid
decrease of radius counts towards larger vessel sizes. The decrease below approximately
70µm is due to the resolution limit of the µCT data (50µm). Vertical dashed lines indicate
logarithmic bins. c), d) Log-log plots of PDFs for the radius distributions shown in a)
and b), respectively, calculated using the indicated bins. The values of p(R) for each bin
are plotted at the x-coordinate corresponding to the geometric center of the bin.

via the relations

∞∫
Rmin(Ei)

p(R) dR =

i∑
k=1

pk(R̂k−1 − R̂k) (3.68)

Rmin(Ei−1)∫
Rmin(Ei)

p(R) dR = pi(R̂i−1 − R̂i), (3.69)

provided that Ei and R̂i are related by equation (3.59) or equation (3.60), i.e. R̂i =

Rmin(Ei) or Ei = Ereq(R̂i). Thus, the bin edges for p(R) determine the points for which

a predicted τ(E) can be calculated, and conversely, the values of E for which τ(E) is

measured determine intervals for which the size distribution of heterogeneieties can be

estimated from optical mapping data.

3.3.4 Activation times

Activation times were obtained according to the procedure described in section 2.3.4.

Typical activation patterns observed in an isolated canine atrium are shown in figure 3.40.

The activation time dependence resulting from multiple measurements in a ventricular

and an atrial tissue preparation can be found in figure 3.41. In particular for the atrial

preparation in figure 3.41b) and d), it is evident that there is a large variability of the

activation times at low field strengths. In this regime, only very few heterogeneities or

tissue boundaries are recruited as wave emitting sites, such that the activation time is very

sensitive to changes in the number of wave sources. Consequently, the slightest change
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Figure 3.40: Tissue activation for different field strengths. Activation patterns of
the same tissue preparation (canine dog, atrium) for three different field strengths (see
column headings). The color code is identical for all cases, the total activation time τ is
denoted in the bottom row. Activation maps show both faster activation and increased
number of breakthrough sites for higher field strengths, the latter corresponding to minima
in the activation map.
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Figure 3.41: Observed activation times. Multiple measurements of the activation time
τ(E) in a single preparation of a) ventricular tissue and b) atrial tissue of canine hearts.
c), d) Log-log plots of the same data as in a) and b), respectively.
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Figure 3.42: Averaged activation times. Activation times binned and averaged from all
atrial (N = 3, 17 measurements) and ventricular (N = 5, 22 measurements) preparations
of canine hearts. a) Activation time τ versus field strength E. At high field strengths,
atrial activation times start to saturate at about 3 ms due to the limited camera time
resolution. b) Log-log plot of the same data. Error bars indicate standard deviations
across different measurements.

of physiological and/or dynamical conditions in the time between two measurements with

the same field strength can drastically change the activation time. Even if the behavior is

less volatile at low field strengths, as for the ventricular prep in figure 3.41a) and c), it can

be expected that the activation time will vary greatly across different samples. To pro-

duce an accurate picture of the general behavior of the activation time, all measurements

are averaged in predefined bins. As discussed in section 3.3.3, the positions of the bins

determine, at the same time, for which radii the PDF integrals of p(R) can be calculated.

One has to keep in mind that averaging activation times from different preparations in-

volves another systematic error: for very low source densities (i.e., low field strengths), the

activation time for a specific prep is not only a function of the source density, although

the central model equation (3.56) suggests that this be the case. In the extreme situation

where only a single wave emitting site is created by the electric-field pulse, the measured

time from the pulse to complete activation depends on the maximum distance from the

source of any point in the field of view of the camera. Even the activation time as defined

in equation (2.103), although being independent of the time of the pulse, still depends on

the dimensions of the observed part of the tissue. Relics of this dependence disappear only

gradually towards higher field strengths, when there is a large number of wave sources not

only in the whole tissue, but in the field of view, and the homogeneity assumption 2 (page

145) is fulfilled more accurately. As this kind of systematic error depends on the concrete

spatial arrangement of wave sources in a given tissue sample and its magnitude depends

on field strength, there is no simple normalization procedure to correct for it. Therefore,

the averaging procedure is carried out with the original, unmodified activation times, even

from different tissue preparations (see figures B.1 and B.1 in the appendix for all indi-

vidual data sets). The resulting mean curves are shown in figure 3.42. The error bars at

low field strengths therefore not only represent a measurement error, but also include the

aforementioned systematic error stemming from the choice of the field of view and natural
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R̂i Ei

atria 100.97−i·0.06mm i · 0.15V/cm
ventricles 100.99−i·0.08mm i · 0.15V/cm

Table 3.3: Summary of binning parameters. Bin edges used for calculating p(R) as
introduced in section 3.3.3 and for averaging activation times as discussed in section 3.3.4.

variability in wave source arrangement.

3.3.5 Linking structure and function

In total, µCT data from three ventricular and five atrial tissue preparations was available.

The size distributions p(R) (or rather the pj as introduced in section 3.3.3) are plotted in

figure 3.43a) and figure 3.44a). The binning parameters used to obtain an approximation

of p(R) from the list of detected vessel radii can be found in table 3.3. The size distri-

butions were analyzed separately by Daniel Hornung (see Supplementary Material of

[201] and [182]) to have an average scaling exponent of α = −2.75± 0.30 for the ventricles

and α = 2.74 ± 0.05 for the atria. This average scaling behavior is indicated by black

lines in figure 3.43a) and figure 3.44a). All size distributions are converted separately into

wave source densities and activation times using equations (3.61) and (3.56) in conjunction

with equation (3.68).18 For equation (3.61), Nmax
s was chosen arbitrarily to produce wave

source densities on the same order of magnitude as those calculated from the activation

time measurements. Note, however, that this does not change the scaling behavior of

the prediction. Otherwise, parameters were kept fixed at physiologically sensible values:

λ = 1 mm [233] and et = 15 mV. Technically, a conduction velocity v = 37 cm/s was

used to convert source densities ρ into activation times τ and vice versa. However, the

conduction velocity is not critical to the overall link between p(R) and τ(E), as any change

can always be compensated by an appropriately chosen Nmax
s , as indicated by the joint

proportionality constant ξ in equation (3.63). For the atria as a thin, sheet-like medium,

d = 2 was used, as opposed to d = 3 for the thick ventricular walls.

The independent predictions of ρ(E) and τ(E) are then averaged and the standard de-

viation of their values is used to produce an error estimate at each field strength. The

resulting mean predictions are plotted as green diamonds with corresponding error bars in

figure 3.43c) and d) (for the ventricles) and figure 3.44c) and d) (for the atria). Fitting a

power law to each of the individual predictions leads to a mean predicted scaling exponent

β = −0.74± 0.25 for the ventricles and β = −0.81± 0.07 for the atria.

Mean measured activation times and data calculated from them using equation (3.56) are

shown as blue squares throughout figures 3.43 and 3.44. In order to not only obtain an

overall scaling exponent for the observed activation time but also a measure for its variabil-

ity, scaling exponents were determined for each measured activation time curve separately

(cf. tables B.1 and B.1 in the appendix). Their mean values are β = −0.73± 0.17 for the

ventricles and β = −0.81±0.24 for the atria. Therefore, the prediction of activation times

from size distributions yield a scaling behavior that is in excellent agreement with the

18One bin containing all sizes of blood vessels beyond the upper limit of the plotting range in figures
3.44a) and 3.43a) was included in the prediction. This corresponds to blood that are large enough to be
activated already at the lowest predicted field strengths.
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Figure 3.43: Structure vs. function in canine ventricles. a) Size distributions
p(R) of blood vessels for three canine ventricular preparations, obtained as described in
section 3.3.3. Symbols +, ◦, ∆ indicate different preparations. The black line indicates the
mean scaling behavior p(R) ∝ R−2.75±0.30 of all preparations. b) Projection of examplary
µCT data. The arrow indicates contrast agent injection site. c) Average of wave source
density predictions ρ(E) from the three size distributions using equation (3.61) (green
diamonds) and a calculation from the average ventricular activation time τ(E) shown in
d) using equation (3.56) (blue squares). d) Average measured activation time τ(E) in all
ventricular preparations (blue squares) and average of activation time predictions from
the three size distributions by virtue of equation (3.63) (green diamonds). The black line
indicates the power law τ ∝ E−0.58±0.10 obtained from a direct conversion of the exponents
as suggested by equation (3.65). Figure adapted from figure 3 in reference [201].
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Figure 3.44: Structure vs. function in canine atria. a) Size distributions p(R) of
blood vessels for five canine atrial preparations, obtained as described in section 3.3.3.
Symbols +, ◦, ∆, ×, ∇ indicate different preparations. The black line indicates the
mean scaling behavior p(R) ∝ R−2.74±0.05 of all preparations. b) Projection of examplary
µCT data. b) Projection of examplary µCT data. The arrow indicates contrast agent
injection site. c) Average of wave source density predictions ρ(E) from the five size
distributions using equation (3.61) (green diamonds) and a calculation from the average
atrial activation time τ(E) shown in d) using equation (3.56) (blue squares). d) Average
measured activation time τ(E) in all atrial preparations (blue squares) and average of
activation time predictions from the three size distributions by virtue of equation (3.63)
(green diamonds). The black line indicates the power law τ ∝ E−0.87±0.03 obtained from a
direct conversion of the exponents as suggested by equation (3.65). Figure adapted from
figure 3 in reference [201].
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observed data. In addition, figures 3.43 and 3.44 show that the use of physiological values

for the parameters of the model (et, λ) leads to variations of the activation time in the

observed field strength range and that there is good quantitative agreement between the

observed dynamical behavior and that expected on the basis of the structural information.

Direct conversion of the structural scaling exponents to those for the activation time as

suggested by equation (3.65) yields β = −0.58±0.10 for the ventricles and β = −0.87±0.03

for the atria. Although these exponents are still compatible with the observed ones within

error bars, the predictions, in particular for the ventricles, are clearly further away from the

observed values. This could simply be a result of the relatively few and different ventric-

ular structures (cf. figure 3.43a)) that were available. However, it could also be evidence

for the superiority of the numerical prediction of activation times using equation (3.63)

instead of working with scaling exponent averages and an approximate conversion.

Using equation (3.66) together with equation (3.69), the source densities ρ(E) calculated

from the activation time data can further be converted into expected size distributions

of the heterogeneities involved. The proportionality constant of equation (3.66) was cal-

culated by imposing
∫
p(R) dR = 1 (which is merely an arbitrary normalization because

there can also be heterogeneities with a critical field strength outside the observed acti-

vation time range). The result of this calculation is shown in figure 3.45. As the average

activation time curve for the atria is not monotonic, no meaningful size distribution can be

calculated for the corresponding radius intervals, as the model assumes that higher field

strengths can only recruit additional wave sources, not fewer. These points are omitted

in figure 3.45b). Nevertheless, the calculation shows that the size distribution of hetero-

geneities that could be responsible for the observed activation times is remarkably similar

to the detected blood vessel size distributions.

3.3.6 Universality of activation time scaling

In section 3.3.1, it was motivated that the blood vessel size scaling is a result of certain

physiological constraints. In the range of sizes reliably detected by µCT measurements,

these constraints led to a power law PDF for blood vessel radii. Via the described wave

source recruitment mechanisms, this scaling behavior is transferred to a characteristic

field-strength dependence of optically measured activation times. At this point, the ques-

tion arises how universal this scaling behavior is. Does it extend to other species? And,

even if this might not be surprising, how does the power-law behavior depend on the

pulse shape of the applied electric-field? For the in-vitro investigations in canine hearts

shown above, monophasic rectangular pulses were used throughout, because this wave-

form was thought to be most directly connected to the theory for wave emission from

heterogeneities. However, in modern ICDs, biphasic pulses are used, because these have

been shown to result in considerably higher success rates for the same energy [234]. Given

that the adjustable wave source density observed in the previous sections is thought to

be an important prerequisite for the efficacy of LEAP, the question of universality of the

activation time scaling is also important with respect to the clinical applicability of this

low-energy technique.

For this reason, activation maps were obtained in isolated ventricular preparations of pig

hearts. The hearts were excised from euthanized pigs after in-vivo experiments investigat-
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Figure 3.45: Size distribution estimation from canine activation times. a) Size
distributions for all three ventricular preparations (green symbols) and size distribution
calculated from averaged ventricular activation time data (blue squares). b) Size distribu-
tions for all five atrial preparations (green symbols) and size distribution calculated from
averaged atrial activation time data (blue squares).
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ing the application of LEAP to ventricular fibrillation in healthy animals which are carried

out in collaboration with the cardiology department of the University Hospital Göttingen.

The optical mapping setup at Göttingen is functionally identical to that one used for the

canine heart studies. For these particular experiments, the custom-made electrodes used

to deliver the electric field-pulses in the dog experiments were physically transferred to

Göttingen, to increase the comparability of the experiments by using the exact same field

configuration. For these experiments, the averaging procedure for the activation times

of different trials is more straight forward (no binning required), as all measurements

were carried out using the same, automated voltage-stepping protocol controlled by an

improved LabView program. The tissue response was recorded ten times for each voltage

and activation maps were averaged. Additionally, to compute the activation time, the

mask (cf. figure 2.13) was restricted to those locations in the recorded video which showed

a fractional change in optical signal intensity of 1% or more. Two different wave forms

were used: biphasic rectangular pulses and biphasic truncated exponential pulses (see fig-

ure 2.12b) and c), respectively). The latter resemble those applied by capacitor-discharge

based modern defibrillators and by the experimental defibrillator device used in the corre-

sponding in-vivo experiments. The pulse duration used throughout is Tpulse = 10 ms, the

exponential decay rate was set to τdecr = 4.95 ms, which roughly corresponds to the time

scale observed in the in-vivo experiments.

Figure 3.46a) shows the measured activation times for both wave forms, plotted against

the peak voltage of the pulse (see figure B.3, page 181, for individual measurements). The

log-log plot of figure 3.46b) indicates that the activation times accurately follow a power

law over a wide range of values. The small error bars even at activation times around

20 ms indicate the superiority of the newly developed automated experimental protocol

based on its increased reproducibility and better statistics due to a larger number of mea-

surements. However, even here, large variability is observed below a critical field strength,

which is accompanied by a clear deviation from the power law behavior. As before, this

indicates that other wave source recruitment mechanisms might become important in this

field strength range. The dashed lines represent power laws with almost the same expo-

nent (see legend), which demonstrates that the pulse shape has negligible influence on the

observed power laws, apart from an overall shift of the curve towards higher voltages. This

shift results from the reduced effective pulse amplitude for the exponential case compared

to the rectangular wave form, since the amplitude variations on a time scale comparable

to the membrane time constant will be averaged out. This effect can be included by the

same procedure as in section 3.2.13, converting the peak voltage to a mean voltage for

each half of the biphasic pulse. The collapse of the two curves in figure 3.46c) indicates

that, indeed, only the mean voltage (or, equivalently, the total injected current) deter-

mines the activation time, and therefore the wave source density. Hence, the time scale

for the depolarization of the tissue seems to be on the same order as the duration of one

polarity of the stimulus (5 ms).

3.3.7 Brief summary

In section 3.3, the wave source recruitment mechanisms underlying low-energy electric-

field based control of cardiac tissue was investigated. The hypothesis outlined in sec-
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Figure 3.46: Activation time scaling in pig ventricular preparations. a) Average
of multiple activation time measurements in two ventricular wedge preparations of excised
pig hearts, using biphasic electric-field pulses with rectangular (green, Tpulse = 10 ms)
and truncated exponential (blue, Tpulse = 10 ms, τdecr = 4.95 ms) shape. b) The same
data in a log-log plot. Dashed lines indicate power laws obtained by least-squares fitting
(with offsets for better readability). c) Correction of the voltage scale for the truncated
exponential pulse shape according to equation (3.53) yields almost identical activation
times for both cases. See figure B.3 for plots of all individual activation time curves.
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tion 3.3.1 was that the dominant source of heterogeneity underlying wave emission in

the field strength range relevant for LEAP is the tree of cardiac vessels. To test this

hypothesis, a model based on the idea of homogeneously distributed wave sources was

constructed in section 3.3.2, which links the size distribution of cardiac vessels to the

dynamics following an electric-field stimulation by utilizing the theoretically predicted,

radius-dependent threshold field strength necessary for successful recruitment. In sec-

tions 3.3.3 and 3.3.4, structural and dynamical data for multiple preparations of canine

ventricles and atria was presented, which were obtained from µCT measurements and

optical mapping experiments, respectively. In section 3.3.5, it was shown that these ex-

perimental size distributions p(R) and activation times τ(E) can be linked successfully

using the above model in the form of equations (3.59) and (3.62). Alternatively, the scal-

ing exponents of the two kinds of data were related to each other using equation (3.65),

eliminating the need for assumptions about the correct physiological values for λ and the

excitation threshold. Both observations provide significant experimental evidence that

the cardiovasculature is the dominant kind of heterogeneity for the field strength range

in which activation times were consistent across preparations. For lower field strengths,

preparation-specific heterogeneities become relevant (cf. section 3.2 [218]), leading to a

greater variability in the observed activation times. Finally, in section 3.3.6, activation

time data obtained in optical mapping experiments on pig ventricular preparations was

presented. Although no size distributions of the cardiovasculature were available yet to

quantitatively check the relation between structure and dynamics for these preparations,

the activation time data suggests that its power-law behavior is a universal feature across

species and does not depend critically on the pulse shape used to stimulate the tissue in

terms of the injected electric current. For a detailed summary and a discussion of the

results, see section 4.
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Chapter 4

Conclusion

The work presented in this thesis was centered around the complexity of the heart, which

becomes manifest in both its structure and its dynamics. The function of the heart was

examined from different perspectives: The subject of section 3.1 was the characteriza-

tion of dynamical complexity in the heart viewed as a heterogeneous excitable medium,

whereas in sections 3.2 and 3.3 the relevance of a specific kind of structural heterogeneity,

namely tissue boundaries, for electric-field based control strategies was investigated. In

this section, the results of all three studies shall be summarized (section 4.1) and discussed

(section 4.2), pointing out their respective limitations and possible directions of future re-

search. Finally, the findings will be put into context by considering their contributions to

the long-term vision of a specific diagnosis of cardiac arrhythmias and subsequent model-

driven, tailor-made therapies.

4.1 Summary

In the beginning of section 3.1, a fundamental understanding of the structure of the

Lyapunov spectrum for typical attractor types in excitable media was established. It

was shown that Lyapunov stability analysis can successfully be applied to the Barkley

model and the smooth Fenton-Karma model, the latter of which implements the most

important characteristics which are specific to cardiac tissue. In both cases, well-defined

leading Lyapunov spectra are obtained, which become independent of the discretization

of the extended system for sufficient resolution, indicating low-dimensional attractors in

the infinite-dimensional phase space of the original PDEs. Further investigations in the

Barkley model showed that periodic and quasi-period orbits can be reliably identified

from the structure of the Lyapunov spectrum and bifurcation points can be detected in

the same way as in low-dimensional systems. In addition, the excitable nature and the

spatial topology of the system leave the following marks in the Lyapunov spectrum:

Firstly, as the degrees of freedom of the extended system do not only form an abstract

phase space but can be identified with certain locations in physical space, the same is

true for the Lyapunov vectors. In agreement with the excitable nature of the dynamics,

Lyapunov vectors for the leading exponents are concentrated at wave fronts and backs,

with characteristic oscillations for higher-index exponents, whose values for plane waves

were explained by the action of diffusion with an analogy to systems of coupled oscillators.

For spiral waves, these oscillations could be identified as the meandering modes. Secondly,
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the dimensionality of the neutrally stable subspace is tightly connected to the symmetries

(and therefore to the topology) of the system and the wave pattern. In particular, the

preservation of these symmetries for multiple rotating waves in the same system opens a

new way of defining the entity of a spiral wave and its domain of influence, independent of

any definition of a phase necessary to identify these object via phase singularities. In fact,

it was found that, at least in the Barkley model, the upper Lyapunov spectrum of multiple

spiral waves is identical to that of multiple systems containing a single spiral wave, which

indicates a mutual decoupling of the parts of the medium controlled by different spirals.

Furthermore, the convergence of the leading Lyapunov spectrum for increasing numerical

resolution provides an independent measure for the faithfulness of the numerical approxi-

mation.

Utilizing the knowledge about these fundamental properties of the Lyapunov spectrum

in homogeneous media, the effect of attracting heterogeneities in excitability was studied.

The Lyapunov spectra obtained for spiral waves interacting with discrete heterogeneities of

excitability reveal that there is an interplay of effects determined by the size and strength

of heterogeneity. Opposing tendencies of stabilization (symmetry modes) and destabi-

lization (meandering modes) are present for different perturbation modes, in the extreme

case leading to a heterogeneity-induced meandering bifurcation, which is consistent with

an experimental finding by Fast and Pertsov, who observed drift along the border of

an inhomogeneity [235]. Similar behavior was observed for randomly distributed and ar-

bitrarily shaped heterogeneities, with additional destabilizing effects on lower Lyapunov

spectrum below the meandering modes. Meandering was only observed for the scenario

of an abrupt heterogeneity in excitability.

Finally, the influence of discrete heterogeneities in excitability was examined during a

state of spatio-temporal chaos in the Bär-Eiswirth model with the help of the Lyapunov

dimension, which can be regarded as a measure for dynamical complexity. It was found

that, although reduced excitability leads to increased complexity of the chaotic activity in

a homogeneous medium, this effect is absent for patches of low excitability up to a certain

size, indicated by a constant Lyapunov dimension. As for stable spiral waves, the size of

the heterogeneities was found to be a critical factor: For a resonant size of heterogeneous

regions, the chaotic activity was even found to be stabilized, for strong heterogeneities

eventually leading to a highly organized state of multiple pinned spiral waves.

The investigations in section 3.2 were focused on the influence of tissue geometry on

the depolarization pattern induced by electric fields. Using analytical methods and an

extension of the phase-field method (section 2.1.5), a low field strength, steady-state ap-

proximation to the cardiac mono-domain equations, originally developed by A. Pumir and

V. Krinsky for circular obstacles to electrical conduction [127], was generalized towards

boundaries of arbitrary shape. The results [218], supported by cell-culture experiments,

reveal a strong correlation of the sensitivity of the tissue with anatomical features of the

substrate, based on an interplay of different mechanisms governing the response of cardiac

tissue to electric-field stimulation: curvature effects, interaction of depolarized and hy-

perpolarized regions, and the scale of anatomical features with respect to the electrotonic

space constant λ.

Relative to the electric-field induced depolarization next to a straight boundary, elec-
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trotonic effects lead to an enhancement of the maximum tissue depolarization towards

negative curvatures and a decline towards positive curvatures. This is qualitatively in

line with a series of cell culture experiments revealing an increased sensitivity of negative-

curvature boundaries. Theoretically, the relevant quantity determining the strength of

this curvature effect in the vicinity of curvature zero was determined to be the normalized

mean curvature κ∗ (in both two and three dimensions). In the natural, normalized units

of the problem, this difference to the depolarization of a straight boundary was shown to

be just −κ∗. For larger deviations from a straight boundary, the global shape of the tissue

becomes important: while for parabolic boundaries or protrusions, the maximum depo-

larization caused by an electric field is monotonic in the curvature, there is a maximum

effect strength for a specific value of (negative) curvature for circular boundaries, caused

by the interaction of the “pure” curvature effect and the spatial vicinity of depolarized

and hyperpolarized boundaries. For small tissue domains of arbitrary shape (on a length

scale much shorter than λ), this interaction was shown to result in a maximum depolar-

ization proportional to the length of the domain in the direction of the electric field. An

analytical argument was presented which makes it possible to transfer the results for one-

or two-dimensional tissue domains to higher dimensions.

In numerical simulations based on the Fenton-Karma model, two restrictions of the the-

ory (infinitesimal field strengths and infinite pulse duration) were determined not to be

essential for its applicability to realistic scenarios of electric-field stimulation of cardiac

tissue with a complex geometry. Qualitatively, the higher sensitivity of negative-curvature

boundaries, and therefore its response to lower electric fields, could be confirmed in those

simulations.

In a systematic study for circular boundaries, it was shown that there are quantitative

differences in the field strength necessary for wave induction, which, for an experimentally

relevant pulse duration, depend on the pulse shape. However, the existence of an opti-

mal radius for circular tissue regions was found, though for slightly different values of the

curvature, to be independent of the pulse shape. The differences in critical field strength

between different stimulation wave forms could be explained with a shape-dependent time

scale for the electric-field induced depolarization next to a tissue boundary. This time

scale was found to be in agreement with the time scale on which the membrane potential

approaches the steady-state solution in the low field strength approximation. Broadly

speaking, high-|κ∗| boundaries were found to depolarize on smaller time scales, leading to

only small differences in the critical field strength between biphasic and monophasic pulses.

At the same time, the short time scales result in an advantage of truncated exponential

wave forms in terms of the average field strength necessary for wave induction, because

the effect of the initial high field strength implied by the wave form is more pronounced.

In contrast, longer time scales for small-|κ∗| boundaries lead to a larger difference between

biphasic and monophasic pulses, while simultaneously canceling out the advantageous ef-

fect of the exponential wave form.

In the experimental investigation presented in section 3.3, the recruitment mecha-

nism for intramural wave sources underlying LEAP was studied. The hypothesis was that

the cardiovascular tree provides the heterogeneities in conductance giving rise to multiple

pacing sites for LEAP, which act as control sites for spatio-temporal chaos during fibril-
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lation. To test this hypothesis, isolated cardiac tissue preparations of canine atria and

ventricles were artificially perfused and observed in-vitro using the technique of optical

voltage mapping.

The theoretical wave source density was calculated from size distributions of the coronary

vessels, which were obtained from µCT scans of the tissue preparations perfused with con-

trast agent. Based on the size statistics, in accordance with the results of section 3.2, the

asymptotic theory for circular heterogeneities developed by A. Pumir and V. Krinsky

[127] was utilized to theoretically determine the fraction of (cylindrical) blood vessels ac-

tivated at a certain electric field strength. A simplistic model was constructed connecting

a specific wave source density in the bulk of the cardiac muscle to an observed activation

time. In the in-vitro experiments, this proxy quantity was directly measured following the

stimulation of quiescent tissue with short electric-field pulses.

Both the size distributions and the activation times as a function of the field strength

were found to follow power laws, whose exponents could be connected analytically to each

other, separately for atria and ventricles, with good quantitative agreement. Even better

consistency could be reached by using the above model to predict activation times directly

from the measured size distributions. The inverse relationship was used to construct hy-

pothetical size distributions of circular heterogeneities which could be responsible for the

observed activation times. Again, good quantitative agreement with the real size distri-

butions of the cardiovasculature was found. These results [201] provide a strong empirical

basis for the relevance of the cardiovascular tree as wave nucleation sites during LEAP in

the considered field strength range.

Using the same experimental technique, but an improved and computer-controlled proto-

col, activation times were also measured in perfused ventricular preparations of pig hearts.

Although size distributions of the coronary vessels were not available yet, the optical map-

ping experiments indicate that the power law behavior of the activation times is a universal

feature across species and different pulse shapes, which suggests that LEAP efficacy should

not depend fundamentally upon species or the technical implementation details of the de-

fibrillator. Quantitatively, it was found that for pulse durations of 10 ms, the total injected

current alone (or, equivalently, the mean electric field strength) determines the density of

recruited wave sources, independent of the pulse shape.

4.2 Discussion and Outlook

The aim of section 3.1 was to establish Lyapunov stability analysis as a new tool for the

characterization of the dynamics in models of cardiac tissue or, more generally, excitable

media. As outlined in the introduction, the study of the stability of activation patterns

is an attempt to conceptually understand how undesired spatio-temporal activation pat-

terns arise and to quantify the complexity of such dynamics. The work presented in the

first subsections of section 3.1 can be viewed as a methodological proof of principle in

this context. It shows that the acquisition of Lyapunov spectra in numerical models of

excitable media with a vast number of degrees of freedom is feasible and leads to meaning-

ful results despite the infinite-dimensional phase space of the underlying PDE. Its main

advantage over the linear stability analysis of fixed points is that it can be applied to

arbitrary trajectories and does not require any considerable algorithmic effort. Although
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the computational demand increases with the number of perturbation modes integrated

along with the system dynamics, by construction, reaction-diffusion systems are easily

linearized, as the Jacobian of the (relatively low-dimensional) local dynamics can usually

be calculated analytically, and diffusion acts in the same way as in the original system.

To systematically gain an understanding of the meaning of Lyapunov spectra for these

systems, relatively simple scenarios in the Barkley and (smooth) Fenton-Karma model

were considered in the beginning of section 3.1, in particular to make the transition from

existing results of the linear stability analysis of fixed points [106, 107, 108] and response

functions [109, 81]. Future studies could be extended to other models of cardiac tissue,

including spiral waves with non-circular cores and instabilities leading to breakup [104].

Moreover, deviations from the scenario of multiple independent spiral waves presented in

section 3.1.3 could reveal valuable information on the mechanisms governing the inter-

action between spiral waves in more realistic models of cardiac tissue. These could turn

out to be important for strategies aiming at the termination of individual spiral waves,

depending on whether they can be viewed as independent waves or have to be considered

“entangled” in some way.

From a methodological point of view, one important aspect of the method is that desta-

bilizing effects can already be detected before the modes actually become unstable, some-

thing that would not be possible by simply observing the dynamics: For example, in

figure 3.12 (page 99), for stable spiral waves, the rate with which the meandering modes

are destabilized indicates, whether there is a danger of arriving at a bifurcation (in this

case, the nature of the bifurcation could even be identified from the spatial structure of

the corresponding Lyapunov vectors). Similarly, during spatio-temporal chaos, the subtle

stabilizing effect of heterogeneities in excitability was already detectable via the Lyapunov

dimension for small heterogeneities, but visible effects like spiral wave pinning or reduced

number fluctuations of phase singularities were only observed for specific sizes of het-

erogeneities (cf. figure 3.19, page 110). In the future, this predictive power of Lyapunov

stability analysis could help to identify the critical directions in the usually large parameter

space of detailed, physiological, cardiac models which make the dynamics more vulnera-

ble to instabilities. Similarly, it could facilitate the search for possible countermeasures

suppressing a developing instability or reducing the complexity of a turbulent state.

The results on the influence of heterogeneities presented in sections 3.1.5, 3.1.6 and 3.1.7

point to a whole new class of interesting but difficult questions regarding the proarrhyth-

mic or antiarrhythmic effect of local changes in the properties of cardiac tissue. Similar

to the effect of increased ε in the Bär-Eiswirth model (in a homogeneous medium), it

is a generally accepted fact that reduced excitability in cardiac tissue is proarrhythmic

[236]. The results presented here suggest that it is, in general, not possible to predict

the effect of a local parameter change from a known behavior in a homogeneous medium.

Thus, if excitability is reduced in a spatially heterogeneous manner in the heart, the effects

might differ greatly from those observed for global changes of physiological conditions or

expected on the basis of mean tissue properties. Furthermore, the results show that the

effects could depend in a non-trivial manner on the length scale and the strength of the

heterogeneity. As meandering for a single spiral wave was only observed for the step-wise

heterogeneity considered in section 3.1.5 but not for the random, smooth heterogeneities

imposed in section 3.1.6, the steepness in the change of properties towards the heteroge-
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neous region apparently is another determining factor. Heterogeneity-induced complexity

changes during spiral wave or chaotic activity could be of particular relevance for the ter-

mination of tachycardia or fibrillation in diseased hearts, when the natural heterogeneity is

increased, either facilitating or impeding low-energy termination efforts. An investigation

of such effects should be carried out by simultaneously considering the results of section 3.3

and the effect the additional heterogeneity might have on wave source recruitment during

electric-field stimulation.

One should bear in mind that spiral waves in the ventricles are organized around three-

dimensional filaments that evolve in a medium of irregular shape, which adds considerable

complexity to the problem. However, following the mathematical line of thoughts outlined

in section 2.2.6, it should in principle be possible to apply Lyapunov stability analysis to

numerical simulations of cardiac activity on realistic geometries. In this way, the complex-

ity of fibrillation and its influence on controllability by low-energy methods could be tested

in a realistic scenario. Another possible application of Lyapunov analysis for realistic sim-

ulations could be based on the analogy of plane waves to the synchronization of coupled

oscillators: The creation of a reentry pattern underlying tachycardia requires the break

of the plane wave. This process could be viewed as a destabilization of synchronization

between pathways in the heart which, under normal conditions, are activated in parallel.

In view of the recent popularity of covariant Lyapunov vectors, another possible applica-

tion of Lyapunov stability analysis is during spatio-temporal chaos. While in section 3.1,

most of the Lyapunov vectors (except for the meandering modes) were located in the de-

generated subspace of the largest Lyapunov exponent, which is automatically covariant,

general covariant Lyapunov vectors have been shown to allow for an independent definition

of an effective physical dimension in other extended systems exhibiting spatio-temporal

chaos [117] and their spatial structure was used to identify relevant length scales and

locations in the system [115]. In view of the latter, it is therefore possible that a more

detailed inspection of the Lyapunov spectrum and the spatial structure of covariant Lya-

punov vectors in spatio-temporally chaotic excitable media (as considered in section 3.1.7)

could reveal the mechanism underlying the strong size dependence of the effect of hetero-

geneities. Additionally, they could contain information about the optimal number and

location of control sites necessary to suppress chaos.

One way to noninvasively create such control sites in the tissue is via virtual electrodes

in response to electric fields. The creation of these secondary sources at tissue boundaries

was the subject of section 3.2. A particular sensitivity to electric fields was predicted for

negative-curvature boundaries, which correspond to convex tissue regions and therefore

outer boundaries of the tissue. The most obvious consequence of the theoretical predic-

tions is that, assuming the electric field is appropriately oriented, the activations that are

observed for the lowest field strength, should come from certain locations on the endo-

cardial surface, which has a particularly complex anatomical structure (see introduction).

Depending on the concrete spatial arrangement and their attachment to the endocardial

surface, trabeculae and papillary muscles can be caricatured as protrusions from the en-

docardial surface or as cylindrical tissue domains. The non-monotonic shape of the green

curve in figure 3.27 (page 127) singles out a particular size from these anatomical features,

which is optimal in terms of electric-field sensitivity. The importance of structures that
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are linked to the bulk of cardiac tissue in distant places for the activation dynamics has

already been shown for the Purkinje system, which was reported to have an increased

excitability compared to the bulk of tissue due to it being a one-dimensional geometric

structure [237]. The results therefore suggest that there are even more structures in the

heart that, only due to their geometry, can be excited very easily. Optical mapping studies

of the complex endocardial surface could verify this spatially heterogeneous response to

electric fields.

With respect to low-energy control of cardiac activity, the results indicate that further

significant energy reduction may be achieved by control strategies that aim at inducing

wave emission from the above-mentioned structures. However, being located on the endo-

cardium, they provide direct access to a very specific tissue region near the inner surface of

the heart, only. Simulations including ongoing activity in the tissue and experiments will

have to determine whether control sites on the endocardium could provide an effective way

of controlling simpler arrhythmias than fibrillation, e.g., polymorphic or fast ventricular

tachycardias, thereby filling the gap in between ATP and LEAP. Additional effects going

beyond the scope of the framework presented here can be expected, as dynamical proper-

ties such as the action potential duration can be influenced by the presence of boundaries

as well [238].

While most of the results presented in section 3.2 are independent of the actual mem-

brane kinetics, because the theory is based on a linearization around the resting state,

the simulations for finite pulse duration and different pulse shapes in section 3.2.13 in-

deed do depend on the specific model. The Fenton-Karma model was chosen because it

has been shown to produce results comparable to more detailed, ionic, models. However,

quantitatively, this comparability has only been shown for reentry patterns and restitution

properties [84], i.e. tissue properties which are defined for propagating action potentials.

It is therefore unclear, whether the subthreshold dynamics, which is important for the

critical electric field strength determined in section 3.2.13, is realistic, too. Indeed, one

degeneracy of the model is that the membrane dynamics is completely passive below the

excitation threshold uc, except for the slow inward current, which activates slowly towards

usi
c . This absolute passivity leads to the seemingly plausible and large underestimation by

the asymptotic theory of the electric field necessary to activate circular boundaries of all

curvatures in figure 3.35 (page 139). If the sodium channels responsible for the fast inward

current were modeled in a stochastic manner, the force driving the membrane potential

back to its resting value would decrease towards the excitation threshold. This could lead

to a narrowing of the gap between the critical field strength determined from the numerical

simulation and that predicted by the analytical theory.

Most of the results presented in section 3.2 are based on theory and numerical simulations.

However, it should be emphasized that there is growing experimental support for the the-

oretical framework in several aspects: The original theory, developed by A. Pumir and

V. Krinsky to describe the effect of circular obstacles in the tissue [127], was not only

successfully employed in section 3.3 of this thesis to make experimentally relevant pre-

dictions for low-energy stimulation of cardiac tissue, but was also tested in a more direct

way using cardiac cell cultures: In her PhD thesis, C. Richter measured critical elec-

tric field strengths for the activation of artificial circular obstacles as wave emitting sites

in cardiomyocyte cell cultures of neonatal rats [239], thereby confirming the quantitative
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predictions of the theory (combined with results from reference [240]). The results of the

generalized theory presented in this thesis contain two more predictions which are in line

with experimental results: Firstly, the high sensitivity of negative-curvature boundaries

was qualitatively confirmed by the cell culture experiments presented in section 3.2.5. Fur-

ther cell culture studies with carefully-prepared artificial boundaries of known curvature

could take this verification to a quantitative level or indicate directions of improvement.

Secondly, the reduced time scale for depolarization next to high-curvature circular bound-

aries found in section 3.2.13 is consistent with a recent study by A. Kondratyev et al.,

who found a considerably shorter time scale for the rise of the membrane potential in cell

cultures of neonatal rat myocytes, if depolarized and hyperpolarized straight boundaries

are in close proximity [221]. Thus, a qualitatively similar mechanism seems to be in effect

for curved boundaries.

When drawing conclusions from the results in section 3.2 about the absolute sensitivity

of certain types of boundaries to electric fields, one should bear in mind that several ap-

proximations were necessary to derive the central equation (3.16) (page 116) on which

all theoretical predictions are based. One assumption is that the outer potential at the

boundary is a simple gradient leading to a constant electric field vector. In section 2.1.3,

it was argued that one way to justify such a fixed potential is by assuming very large

extracellular and/or outer conductivities. This could be a good approximation for cell

cultures, where a monolayer of cardiomyocytes is usually covered by a well-conducting

layer of culture medium. In real tissue, however, the conductivities in the extracellular

space are usually on the same order of magnitude as the intracellular conductivities [32],

which renders the assumption of a decoupled extracellular potential unrealistic. A possi-

ble extension of the theory is therefore to account for the “feedback” of the dynamics on

the extracellular potential. If this should not be possible analytically, only full bi-domain

simulations (including a third, passive, outer domain) can determine the effect of this

approximation. Likewise, the influence of tissue anisotropy (see sections 1.3 and 2.1.4)

on the results presented in section 3.2 could be studied in such simulations: While the

results are not expected to change qualitatively for the case of equal anisotropy ratio (cf.

section 2.1.4), it is known from an extension of the original theory for circular obstacles

that an unequal anisotropy ratio can lead to the appearance of additional zones of de-

polarization and hyperpolarization further away from the boundary [219, 128]. Once the

approximation used here has been validated in bi-domain simulations, the extended phase-

field method developed in section 2.1.5 for arbitrary boundary conditions could prove to

be a valuable tool for the efficient numerical simulation of cardiac tissue in the future, by

eliminating the need for full bi-domain simulations when the effect of an electric stimula-

tion is known to be implementable via modified boundary conditions.

In addition to the above-mentioned systematic deficiency of the theory, it should also be

emphasized that the electric field assumed in equation (3.16) implicitly contains the con-

ductivity ratio σo
σe

of the outer conductivity and the extracellular conductivity (see, e.g.,

equation (3.13)). Therefore, the electrical interface configuration can also influence the

absolute effect strength of the electric field. If the outer domain is identical to the extra-

cellular domain (i.e., when the cellular substrate is continuous and only the intracellular

space ends at the boundary), the ratio is equal to one and the theory applies unchanged.

However, if the extracellular space is connected to a well-conducting open space (e.g., to
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a bath) at the boundary, this will enhance the effect of the electric field. Again, this sim-

plified rule is only valid under the assumption of a fixed electric field strength in the outer

medium. In general, a well-conducting outer medium will have a smaller potential gradi-

ent if the total voltage across the whole setup (tissue and outer medium) is determined

by two electrodes at fixed potentials, diminishing or even overcompensating the above ef-

fect. Even for internal boundaries, interface conditions might be altered for anatomical or

physiological reasons, such as endothelial cells covering blood vessels or a different tissue

composition in papillary muscles and trabeculae (see sections 2.1.3 and 2.2.3 in reference

[32]).

Despite these complications, it was shown in section 3.3 that the theory for virtual

electrodes near tissue boundaries can be used to predict the global response of cardiac

tissue to electric fields from anatomical data. The knowledge that blood vessels are the

relevant heterogeneities responsible for intramural activation of the tissue during LEAP

can aid the modeling and optimization of this low-energy control strategy. Furthermore,

the large number of wave sources which can be adjusted by choosing an appropriate elec-

tric field strength provides a plausible explanation for the efficacy of LEAP, by enabling

the creation of a control site density which is just sufficient to terminate a given arrhyth-

mia. The results of section 3.2 could help to include shape-dependent boundary activation

into the prediction and thereby provide a deterministic explanation for some of the large

variability of activation times in the very low field strength range seen in figures 3.41, 3.43,

3.44 and 3.46. However, to build a theoretical model for the efficacy of LEAP, which pre-

dicts the outcome of a termination attempt on the basis of the chosen pacing parameters,

it is necessary to gain a more detailed understanding of how the activity initiated at blood

vessels and other heterogeneities interacts with the spatio-temporally chaotic activity of

the muscle during fibrillation.

One of the mechanisms which could play an important role in this respect is that of unpin-

ning: As seen in section 3.1, the pinning force of a heterogeneity increases with decreasing

excitability. Circular obstacles can be viewed as the extreme case of a completely inex-

citable region, whose tendency to attract spiral or scroll waves was recently quantified by

Zemlin and Pertsov [79]. These anchored spiral waves present a particular challenge for

termination by high-frequency pacing (ATP) from a location far away from the anchoring

site [241], as drift cannot be as easily induced as for freely rotating spirals [41]. It has

been shown in several experimental and theoretical studies that inducing activity directly

at the pinning location via electric-field stimulation can lead to unpinning of the wave

[127, 128, 129, 130] and that the capabilities of this control strategy indeed exceed those

of ATP [131, 132]. Along with the results presented in section 3.3, reference [201] makes

out a good case for the importance of this mechanism during LEAP: a number of success-

ful LEAP terminations of fibrillation using frequencies below the dominant frequency of

the arrhythmia are a strong indication that the wave sources are located close the cores

of the vortices underlying fibrillation (pacing from a distance should not be able to reach

the spiral core in this case [41]). Hence, the cylindrical obstacles to electrical conduction

represented by the cardiovasculature could be particularly effective in controlling fibrilla-

tion, because they are, at the same time, the heterogeneities to which scroll waves in the

heart can pin. For geometrical reasons, pinning seems much less likely for other intrinsic
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heterogeneities such as intercellular clefts between the sheets of cardiac tissue. Based on

this assumption, in a study with A. Behrend, a model for the application of LEAP to

a pinned spiral wave was constructed as a first step towards assessing the influence of the

pacing frequency on the efficacy of LEAP [242]. However, one should not forget that wave

emission is not the only mechanism by which heterogeneities can respond to electric field

pulses. It has been proposed that effects such as the prolongation of APD or the repo-

larization due to virtual electrodes might also play a significant role in the defibrillating

effect of an electric shock [100]. These investigations have to be reevaluated at the field

strengths relevant for LEAP.

Due to the considerable energy reduction of LEAP compared to standard defibrillation

reported in reference [201], it is a promising candidate for a painless defibrillation tech-

nique in future ICDs. However, since these devices are implanted in patients with diseased

hearts who are at risk of developing serious arrhythmias, the investigation of the mecha-

nisms underlying LEAP success have to be extended to altered physiological conditions,

such as post-myocardial-infarction models with scar tissue or fibrosis. In the context of

virtual electrodes, these additional heterogeneities could alter the activation patterns due

to electric-field stimulation and, depending on their number and sizes, disturb the scaling

behavior observed in healthy tissue in this thesis. On the other hand, they also influence

the development and evolution of arrhythmias in the tissue, as indicated by the results

presented in section 3.1, for example by attracting spiral waves or reducing the complex-

ity of fibrillatory activity. Thus, there is no fundamental reason why the same favorable

line of thoughts as indicated above for the pinning and unpinning of vortices should not

apply to these heterogeneities, but, of course, this has to be verified experimentally. With

respect to the model for wave source recruitment presented in section 3.3, estimating the

tissue response for other kinds of heterogeneities or in other species (cf. figure 3.46) from

structural data will be a good test for the general theoretical framework.

While the quantitative agreement of predictions and measurements in section 3.3 seems

convincing, one should bear in mind the systematic errors introduced by the simplistic

model to link size distributions and activation times, most prominently the reinterpreta-

tion of size distributions as homogeneously distributed obstacles, the ignoring of blood

vessel orientation and overlapping activated regions, and the utilization of the unmodified

asymptotic theory for virtual electrode formation. However, even if some of the errors

are considerable, they might not necessarily lead to an immediate invalidation of the re-

sults: For example, a misestimation of the absolute field strength necessary to excite blood

vessels of the measured sizes (due to wrong physiological parameters used in the model,

specific interface conditions at blood vessel boundaries, etc) would leave the conclusion

untouched, if one assumes that the scaling behavior of blood vessel radii extends to smaller

sizes as well. Size statistics of smaller blood vessels and high-resolution, three-dimensional

numerical simulations incorporating blood vessels of the full range of sizes could help to

unravel the effect of the different theoretical approximations. In addition, experiments

employing novel imaging techniques could provide a way to directly observe wave sources

and localize them in the three-dimensional myocardium [243].

From the data of pig ventricular activation times shown in figure 3.46, it is evident that

the automation of the experimental protocol alone can lead to considerable improvements

in the reliability of activation time measurements. In retrospect, the very robust power-
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law behavior observed there can also serve as a justification for assuming a power-law

behavior in the relatively sparse data of the canine hearts in the first place (compared

with the pig hearts). Blood vessel size statistics for the pig hearts, as soon as they become

available, will thus allow for more precise and definite statements about the compatibility

of size distributions and observed activation times than was possible in the canine studies.

Other possible technical improvements could be inspired by recent publications on a more

reliable mathematical detection of power laws in experimental data [244, 245] and on a

more accurate detection of surface activation times using optical mapping [246].

One aspect that deserves more attention in future studies is that of time scales: While the

numerical results obtained in section 3.2.13 show that the time scale for depolarization

decreases substantially towards smaller heterogeneities, the independence of the activa-

tion time from the pulse shape indicated by figure 3.46c) conveys a different impression:

The fact that only the mean field strength determines the wave source density is a strong

hint at a time scale on the same order of magnitude as the pulse duration across the

whole range of voltages. It should be noted that the shape-dependent time scales in sec-

tion 3.2.13 were not only inferred from the difference in the critical field strength between

different pulse shapes, but could also be extracted from the low field strength, steady-state

approximation. Therefore, at least for the Fenton-Karma model, the time scales seem to

remain correct when going from infinitesimal depolarizations to a scenario where the mem-

brane potential crosses the excitation threshold. From this perspective, the experimental

results of section 3.3.6 suggest that after the initial rise of the membrane potential (i.e.

after leaving the linear approximation), when the membrane potential approaches the ex-

citation threshold, additional ionic mechanisms not included in the Fenton-Karma model

might have a dominating influence on the time scale. This deficiency could be related to

the ionic passivity of the model below the excitation threshold mentioned above.

4.3 Concluding remarks

In this thesis, the dynamical and structural complexity of the heart was investigated from

different theoretical and experimental perspectives. The results presented in the three sub-

sections of section 3 have in common that they are based on reduced modeling approaches

tailored to the respective problem: In section 3.1, homogeneous and heterogeneous ex-

citable media on two-dimensional, rectangular geometries were considered to study the

stability and assess the complexity of generic activation patterns corresponding to healthy

or pathological cardiac dynamics. Section 3.2 was based on a mono-domain description of

cardiac tissue combined with a boundary condition which incorporates the approximate

bi-domain effect of a fixed electric field at the boundary. Tissue domains of idealized

geometries were assumed to study the effect of boundary shape during electric-field stim-

ulation. Finally, in section 3.3, the cardiac muscle was modeled as continuum containing

a homogeneous distribution of differently-sized heterogeneities which may emit waves of

constant radial velocity upon recruitment by LEAP. The fact that such conceptually and

methodologically different descriptions are used to characterize the same system already

shows that none of the modeling approaches can possibly be regarded as complete, not to

mention the aspects of the cardiac muscle which have been completely disregarded in this

thesis: the molecular basis of the trans-membrane currents underlying cardiac electrophys-
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iology; the fast fibers of the electrical conduction system of the heart, most importantly

for the ventricles: Purkinje fibers; the microscopic and macroscopic implications of con-

traction; the fluid dynamics of blood flow; and many more. However, reducing the model

to the necessary ingredients for each problem allows for an easier determination of the

mechanisms and prerequisites necessary to produce an observed effect. The hope is that

the knowledge gained about these mechanisms in simple models within this thesis will aid

their future identification in more realistic settings.

As outlined in the introduction, another benefit of a top-down approach to a complex

system is that generic descriptions are very likely to be applicable to a broad class of

systems. For example, the results presented in section 3.1 hold for excitable media in

general and thus are valid for (and could also be tested in) other manifestations of this

type of system, such as the chemical Belousov-Zhabotinsky reaction. Likewise, the effect

of electric-field stimulation near boundaries studied in section 3.2 could also be relevant

for other biological bi-domains, as the described curvature effects are solely based on the

different extracellular and intracellular boundary conditions and the electrically excitable

nature of the system. Both facts apply to any substrate composed of cells which are ca-

pable of action potentials. Possible applications include nerve fibers and neuronal tissue,

which may have a complex shape and are stimulated with electric fields, e.g., during tran-

scranial stimulation of the brain [247]. Although the model for wave source recruitment

developed in section 3.3 is relatively specific, even here, generalizations are conceivable:

Analogously to the results shown in figure 3.45, deducing the parameter distribution of

wave sources from the activation times for other kinds of heterogneities should be possible,

as long as a relation similar to equation (3.60) is known that determines the minimum

field strength (depending on the aforementioned parameter) necessary to recruit the het-

erogeneity as a wave source.

Returning to the concrete results of this thesis, the immediate purpose of the inves-

tigations was to refine the picture we have today of cardiac dynamics and the role of

structural heterogeneity. Due to its complexity, the heart is a fascinating system to study

for a physicist. Naturally, a deeper understanding of this vital organ is not purely academic

but is particularly useful if it can aid the optimization or development of new therapeutic

options. Each of the results presented in section 3 has the potential to contribute to a

different aspect of future anti-arrhythmic therapies: Ultimately, the quantitative stabil-

ity analysis investigated in section 3.1 could improve the risk assessment for the onset of

arrhythmias and suggest a specific pharmaceutical intervention for known medical condi-

tions based on indicators which have been determined using numerical models of cardiac

tissue. For acute arrhythmias, similar indicators could be used to define and quantify the

complexity of undesired activity. Also, Lyapunov spectra might be obtained directly from

experimental data [248], although the high dimensionality of the system might impede

such efforts. Once the dynamics of an acute arrhythmia has been characterized, suitable

parameters for a tailor-made electrical intervention have to be chosen, which terminate the

arrhythmia effectively but as gently as possible. These parameters include field strengths

and time points of electric-field pulses. While on-demand simulations of an electrical shock

to predict its effect and determine its optimal parameters will not be possible within the
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foreseeable future in an automated device such as an ICD due to high computational de-

mands, only limited information and computational power are needed to determine the

locations of induced wave sources for arbitrary field strengths from preprocessed anatomi-

cal data using the findings of sections 3.2 and 3.3. The results presented in those sections,

combined with the findings in reference [201] on the efficacy of LEAP, suggest that the

field strengths leading to wave induction at the considered structural heterogeneities are

exactly those suitable for the low-energy termination of arrhythmias. Probably, the infor-

mation about the complexity of the dynamics and the spatial arrangement of wave sources

is not sufficient to predict the outcome of the anti-arrhythmic intervention, but similar

reduced models have to be obtained for the effect of the induced waves on the arrythmia

in order to enable an accurate real-time assessment of the consequences. As an example in

this direction, the success rate of low-energy pacing for different pacing frequencies can be

determined with the help of a concept, again, from nonlinear dynamics, namely iterative

maps, as demonstrated in reference [242]. In this way, the results obtained within this

thesis on the interaction of structural and dynamical complexity in the heart can open the

way towards the vision of a patient-specific, model-based, low-energy treatment of cardiac

arrhythmias.
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Appendix A

Modeling details

The parameters used for the Barkley (B), Bär-Eiswirth (BE) and Fenton-Karma (FK)

model can be found in tables A.1 and A.2.

parameter set B1 B2 B3 B4 BE1

ε 0.02 0.02 0.02 0.02 *
a 0.9 0.9 * 0.95 0.84
b 0.08 0.06 0.05 * 0.07

Bär-Eiswirth modification X

Table A.1: Parameter sets for the Barkley (B) and Bär-Eiswirth (BE) model.

parameter set FK1 FK2 FK3 FK4

k 10 10 10 10.4222
k2 – 500 500 –
gfi 8.7 1/0.4050 2.35 5.6093115
τ0 12.5 8.3 8.3 8.36
τr 25 60 60 62.41
τsi 22.22 45 45 63.4124
τ−v1 333 1000 100 40.4284
τ−v2 40 3 3 36.5891
τ+
v 10 3.33 3.33 10.8037
τ−w 65 9 9 132.373
τ+
w 1000 97 97 663.715
uc 0.13 0.13 0.13 0.143713
usi
c 0.85 0.98 0.98 0.443994
uv 0.025 0.055 0.055 0.0420205

Table A.2: Parameter sets for the Fenton-Karma (FK) model. If k2 is specified,
the continuous modification of the Fenton-Karma model introduced in section 2.1.6 is
used, otherwise parameters refer to the original model as published in reference [84].
Parameter set FK1 is identical to GP parameters in reference [249]. Parameter set FK4 is
the result of a fitting procedure of the model to restitution curves measured in rabbits by
J. Schröder-Schetelig [224]. τd = Cm/gfi with Cm = 1µF/cm2 for all parameter sets.

The following equations denote the Jacobian matrices of the Barkley (B), Bär-Eiswirth
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(BE) and smooth Fenton-Karma (FK) model in this thesis. For the formalism of calcu-

lating Lyapunov exponents and vectors, whose application to RDEs is described in sec-

tion 2.2.6, the first row of the Jacobian corresponds to Jf and the further rows to JH1 ,

JH2 and so on.

JB
∣∣
(u,v)

=

 1

ε

(
(1− 2u)

(
u− v + b

a

)
+ u(1− u))

)
− 1

aε
u(1− u)

1 −1

 (A.1)

JBE
∣∣
(u,v)

=

 1

ε

(
(1− 2u)

(
u− v + b

a

)
+ u(1− u))

)
− 1

aε
u(1− u)

γ(u) −1

 , (A.2)

where

γ(u) =


0, u < 1

3

−6.75(u− 1)(3u− 1) 1
3 ≤ u ≤ 1

0 u ≥ 1

. (A.3)

The Jacobian JFK for the smooth Fenton-Karma model has been split up into its rows

JFK
1,{1,2,3}, JFK

2,{1,2,3} and JFK
3,{1,2,3} for better readability. As explained in section 2.1.6, within

this thesis, the smooth approximation for the step function is Φ(x) = Θ∗(x) = 1
2(1 +

tanh(k2x)) resulting in Φ′(x) = k2
2 (1− tanh2(k2x)).

JFK
1,{1,2,3}

∣∣∣
(u,v,w)

=



v
τd

Φ′(u− uc)(1− u)(u− uc)− v
τd

Φ(u− uc)(2u− uc − 1)

− 1
τ0

Φ(uc − u) + u
τ0

Φ′(uc − u)− 1
τr

Φ′(u− uc)
+ wk

2τsi
(1− tanh2[k(u− usic )]),

1
τd

Φ(u− uc)(1− u)(u− uc),
1

2τsi
(1 + tanh[k(u− usic )])
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−Φ′(u− uc) v

τ+
v
,

−Φ(uc − u)
(

Φ(u−uv)

τ−v1

+ Φ(uv−u)

τ+
v2

)
− Φ(u− uc) 1

τ+
v
,

0


(A.5)

JFK
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Supplementary data

Preparation scaling exponent Preparation scaling exponent

#1 -0.7596±0.09 #4 -0.5441±0.05

#1 -0.7796±0.06 #4 -0.8050±0.12

#2 -0.3470±0.10 #4 -0.6658±0.07

#2 -0.9703±0.10 #4 -0.8288±0.09

#3 -0.9166±0.06 #4 -0.6345±0.03

#3 -0.5364±0.08 #5 -0.9839±0.07

#3 -0.9304±0.06 #5 -0.5293±0.09

#3 -0.6776±0.08 #5 -0.8614±0.10

#3 -0.8976±0.07 #5 -0.6705±0.09

#3 -0.5459±0.07 #5 -0.7938±0.08

#4 -0.6706±0.08 #5 -0.6405±0.10

Table B.1: Scaling exponents for canine ventricular activation times τ(E).

Preparation scaling exponent Preparation scaling exponent

#1 -0.8035±0.06 #2 -1.1246±0.10

#1 -1.3799±0.09 #3 -0.8923±0.05

#1 -0.4462±0.11 #3 -0.7641±0.05

#1 -0.9767±0.10 #3 -0.7053±0.05

#2 -0.7745±0.06 #3 -0.7516±0.03

#2 -0.8091±0.05 #3 -0.5762±0.03

#2 -0.9509±0.08 #3 -0.5561±0.04

#2 -0.8043±0.08 #3 -0.5279±0.03

#2 -1.0111±0.08

Table B.2: Scaling exponents for canine atrial activation times τ(E).
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Figure B.1: Activation time observations τ(E): canine ventricles.
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Figure B.2: Activation time observations τ(E): canine atria.
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Figure B.3: Activation time observations in pig ventricular wedge preparations.
a) Activation times observed for biphasic, rectangular electric-field pulses in two different
preparations (marked by different symbols). b) Observations in the same preparations for
truncated exponential (biphasic) pulses.
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Appendix C

MediaSim – an open framework

for simulating extended systems

MediaSim is a simulation framework written entirely in C++ [250], designed mainly for

(but not restricted to) solving PDEs of the excitable-medium type using finite differences.

It has a strictly object-oriented structure, is plugin-based for effortless extensibility and

provides convenience functions for parallelizing operations on large arrays. The framework

can be used either directly from a C++ program, or through extensive MATLAB [187]

and Python [251] interfaces.

MediaSim’s plugins can be subdivided into five categories: Simulations, States, Initial-

izers, Updaters and Analysers. Each category provides a superclass defining the interface

for interaction with other components of the framework. Simulations coordinate the ac-

tions and relationships of all other components, States provide a container for the data

Initializers, Updaters and Analysers work with. Using operator splitting techniques, the

numerical algorithms for solving different terms of the PDE can be implemented in sep-

arate Updaters, which simplifies their optimization and enhances reusability of code for

different numerical models.

Plugin implementations, i.e. classes derived from the above superclasses, can be fully

customized without restrictions on external libraries or custom parallelization techniques

while they can at the same time make use of convenience functions and objects provided

by MediaSim. To facilitate interaction with numerical libraries, all array classes can be

accessed as plain C arrays. As full-blown objects, they provide natural multi-index ac-

cess similar to MATLAB or Python syntax, including subarray extraction and assignment

realized through overloaded operators. All data objects offer conversion functions to MAT-

LAB and NumPy [252] arrays. Components of the framework, including data objects, are

serializable.

Apart from various local and global fixed-time and event-triggered stimulation terms, cur-

rently implemented Updaters include:

Local reaction models:

Barkley [72], Bär-Eiswirth [73], Bueno-Orovi et al. Minimal model [163], Fenton-Karma

[84], Karma [101], Wang-Sobie [153]
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Diffusion operators:

Isotropic or anisotropic diffusion on rectangular Cartesian grids with no-flux or periodic

boundary conditions (up to 3D), isotropic diffusion on polar grids with no-flux boundary

conditions (2D), anisotropic diffusion on arbitrary geometries using the phase field method

with no-flux boundary conditions [134] or special Neumann boundary conditions [218] (up

to 3D), bi-domain model for isotropic or anisotropic spatial coupling [160].
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[217] Rényi, A. On the dimension and entropy of probability distributions. Acta Mathe-
matica Academiae Scientiarum Hungarica 10, 193–215 (1959).

[218] Bittihn, P., Hörning, M. & Luther, S. Negative curvature boundaries as wave emit-
ting sites for the control of biological excitable media. Physical Review Letters 109,
118106 (2012).

[219] Takagi, S. et al. A physical approach to remove anatomical reentries: A bidomain
study. Journal of Theoretical Biology 230, 489–97 (2004).

[220] Bittihn, P. Control of spiral wave activity in excitable media (University of Göttin-
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