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1 Heavy Fermions and Ordered Phases

Heavy-fermion (HF) materials are intermetallic compounds containing rare-earth or actinide
ions with partly filled 4f - and 5f - orbitals, respectively. In most of these compounds the
corresponding outer f -wavefunctions are localized inside the atomic core region due to
a centrifugal barrier in their effective potential. As a result, the f -electrons are strongly
localized and their atomic properties largely persist in the solid state since the f -electrons
are screened by outer valence electrons. In particular, the magnetic moments originating
from the f -shell electrons are localized; they are formed by a partial filling of the orbitals
according to Hund’s rule. The resulting state for Cerium is [Xe] 6s25d14f 1. In a metal
containing Ce, the outer 6s- and 5d- electrons contribute to the conduction band but
the single 4f electron remains as a stable magnetic moment in the core region of the ion.
Spin-orbit coupling leads to a total angular moment J = L− S = 5/2 with L = 3 being
the orbital and S = 1/2 the spin angular momentum, respectively. As the Ce-ions are
exposed to the crystal field of their host, this six-fold degenerate state is often split into
three Kramers doublets. The low-energy physics can then typically be described by the
lowest lying Kramers doublet only, provided that the relevant energy scale is lower than
the crystal-field splitting. The system of Ce-ions can in this case be described as a lattice
of magnetic spin-1/2 moments in a non-magnetic metallic host of conduction electrons –
this system is called Kondo lattice. The name stems from the Kondo effect, which describes
an unusual scattering of conduction electrons by magnetic impurities. The Kondo effect,
in turn, is named after Jun Kondo, who theoretically described it. Although the Kondo
lattice differs in some important points from dilute alloys of magnetic impurities, it is quite
instructive to consider the dilute case first.

1.1 The Kondo Effect

Simple metals such as copper or gold show a residual resistivity at very low temperatures
T → 0, which stems from electron scattering on crystal defects or neutral impurities.
For low but finite temperatures, the electron-phonon scattering yields a T 5-contribution
to the electrical resistivity – close to zero temperature the lattice vibrations freeze out.
However, such a monotonous decrease of the resistivity to a finite value upon cooling
down to T → 0 is not observed in all metals. This had already been noticed by Meissner
and Voigt in 1930 [Mei30a, Mei30b]. Alloying simple metals with a small amount of

1



2 1 Heavy Fermions and Ordered Phases

magnetic impurities, they exhibit a minimum in the resistivity at a material-specific
temperature. Further decreasing the temperature, the resistivity increases again. A
theoretical explanation for this unusual behavior remained a challenge to physicists for
about thirty years. The first explanation was presented by Kondo via perturbation theory
[Kon64]. His calculations showed that the increase of the resistivity upon cooling originates
from a spin-dependent scattering of conduction electrons by magnetic impurities: “spin-flip”
processes, in which the spin of the impurity and the scattered electron is exchanged,
give rise to a log(T )-contribution to resistivity. Together with the T 5-contribution from
electron-phonon scattering it qualitatively explains the existence of a minimum. However,
the experimental observations do not support a logarithmically diverging resistivity for
T → 0 but rather a saturation. The perturbative result of Kondo thus breaks down in this
regime. Later, in 1975, Wilson provided a full solution to the Kondo problem [Wil75] by
means of renormalization group methods.

The spin-flip scattering at low temperatures results in a many-body effect, in which the
conduction-band electrons close to the magnetic impurity screen the local moment and
thereby build a many-particle singlet groundstate; only a renormalized potential scatterer
in the metallic host is left. This process is called Kondo screening, which occurs below a
characteristic Kondo temperature TK . A single spin-flip is actually an exchange process
on the impurity of a d- or f - electron and a conduction band electron with opposite spin.
Hence, this interaction is often modeled by a direct antiferromagnetic exchange interaction
of strength J . It is the consequence of a weak hybridization between localized and itinerant
states. When Kondo screening is fully intact at T ≪ TK , the magnetic susceptibility in
dilute magnetic alloys is similar to that of a Pauli paramagnet, χ ∝ 1/TK . Increasing
the temperature to T ≫ TK , the system approaches a region where the impurity spin is
asymptotically free and one observes a Curie-like susceptibility χ ∝ 1/T . The transition
regime is a continuous crossover through T = TK , below which the local spin fluctuations
appear.

The atomic states of d- or f -orbitals together with the hybridization result in a broadened
peak or resonance in the local density of states, as illustrated in (Fig. 1.1) at U = 0.
Fermi’s golden rule yields a resonance width of ∆ = πρ0(Ef )V 2, where ρ0(Ef ) is the density
of states of the conduction electrons with an energy Ef and V denotes the average of the
hybridization matrix element for transitions between conduction-band and f -states. Due
to the strong localization of f -orbitals, the Coulomb interaction for two electrons in the
same orbital is rather strong and splits the levels to energies ω = Ef and ω = Ef + U ,
where only the index f is used for simplicity. If the Coulomb repulsion U is much larger
than the broadening of the levels, the local magnetic moment is retained.

A remarkable feature in the spectral density emerges upon increasing U : a third narrow and
distinct resonance emerges right at the Fermi energy. It is called Abriskosov-Suhl (or Kondo)
resonance and is a characteristic feature of the Kondo effect – it appears due to the strongly
correlated behavior of electrons arising from scattering and it is associated with the spin
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Figure 1.1: Figure adapted from
Ref. [Col13]. Illustration of the for-
mation of the Kondo resonance in the
f -electron spectrum Af (ω) with fixed
f -occupancy. The lower part of the
figure is the corresponding density
plot of Af (ω)

fluctuations of the local moment. The renormalized width of the Abrikosov-Suhl resonance
is a comparatively small energy scale of order TK . Nevertheless, it is the origin of anomalies
in the resistivity, specific heat or magnetic susceptibility, which are experimentally observed
at low temperatures. In this regime, such transport and thermodynamic properties are
mainly determined by electrons with an energy close to the Fermi energy.

1.2 Properties of Heavy-Fermion Compounds

The Kondo effect is the driving force behind the HF behavior described in the following.
While thermodynamic properties of HF systems can mostly be understood in terms of
single-impurity behavior, transport properties and ordered phases can only be explained
by the emerging coherence effects at low temperatures. As in the dilute case, the magnetic
susceptibility shows a Curie-Weiss behavior at high temperatures and a quenching of local
moments at low temperatures. HF systems are considered as heavy Fermi liquids with a
strongly enhanced effective mass m∗ of the corresponding quasiparticles [Noz74, Hew93a].
Experimentally, effective masses up to several hundred times the free-electron mass are
observed [Ste84]. The quasiparticles are considered to emerge below a crossover region T ∗,
which is typically found between T=5K and T=50 K, and they form a narrow renormalized
band. The local density of states ρ(EF ) around the Fermi energy is enhanced at low
temperatures T ≪ T ∗ and shows a distinct peak. As outlined above, this peak results from
the hybridized states with an effective bandwidth of order TK , which is comparable to the
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Kondo-singlet binding energy.

The effective mass in HF compounds is directly proportional to the Sommerfeld coefficient
γ in the specific heat cV ≈ γT + βT 3. The specific heat divided by temperature, cV /T , is
observed to decrease with cooling down to the region where T ≈ T ∗. There it starts to
steeply increase again, which is related to the formation of the Kondo singlet an can be
interpreted in a Fermi-liquid picture via an enhanced mass. Despite the many common
properties of heavy-fermion compounds, the further development towards zero temperature
depends on the exact material. Usually, away from quantum critical points, the specific
heat cV /T either flattens and reaches a constant but high value for T → 0 or it goes
through a maximum and decreases again to a residual value.

The constant Pauli-like magnetic susceptibility for T ≪ T ∗ in the paramagnetic case can be
interpreted as the susceptibility of heavy quasiparticles. An example for a roughly constant
susceptibility for T → 0 is the first HF compound CeAl3 discovered by Andres, Graebner
and Ott in 1975 [And75]. Its zero-temperature value is still two orders of magnitude higher
than the one of free electrons. For a Fermi liquid, the susceptibility is proportional to
the density of states at the Fermi energy. Thus it is directly proportional to the effective
mass and the Sommerfeld coefficient, too. This latter fact is usually expressed through
the Wilson ratio R ∝ χ/γ. While this dimensionless ratio is one for free electrons, it lies
between 2 and 5 in HF compounds.

The susceptibility and thermodynamic properties in most HF systems can be understood
from the case of dilute magnetic impurities in a metal. The reason is their dependence on the
thermal effective mass m∗, which applies as a conceptual description for the quasiparticles
in the dilute case, too [Hew93b]; the transition temperature T ∗ in HF systems is often
surprisingly close to the single-ion Kondo temperature TK . However, the situation is more
subtle for transport properties like the electrical resistivity. While in the dilute case a
saturated maximum of the resistivity is observed for T → 0, HF metals exhibit a maximum
around the characteristic energy scale T ∗ and a resistance drop towards zero temperature.
This behavior can only be understood by a developing coherence. At low temperatures
the quenched moments become strong scatterers, which results in an increase in resistivity.
At the same time, increasing elasticity of the scattering leads to a development of phase
coherence, starting to develop at roughly T ∗. At an even lower temperature T0 ≪ T ∗

the scattering becomes completely coherent due to the lattice periodicity and is thereby
strongly suppressed. This gives rise to a rapid resistance drop upon cooling at the onset of
coherence.
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1.3 Magnetic Order in Heavy-Fermion Materials

In addition to the intrasite Kondo interaction between the spin-density of conduction-band
electrons and the local moments, an intersite (RKKY1) exchange interaction among the
local moments is mediated by conduction electrons. In fact, both the RKKY interaction
and Kondo screening compete. The Kondo interaction tends to quench the moments and to
delocalize f -electrons. The ratio of the corresponding two energy scales determines whether
a HF groundstate is build or not. Actually, it depends on the strength of the Kondo
coupling J which interaction prevails. In the strong coupling regime the Kondo interaction
is dominant and the HF groundstate develops. For weak coupling on the other hand, the
intersite interaction wins and an antiferromagnetically ordered groundstate is formed. In
principle, there are two possibilities for antiferromagnetic order in HF systems. One is
that the local moments are only weakly reduced by the Kondo effect as in the prototypical
HF antiferromagnet CeAl2 [Bre78]. The other is the case of itinerant spin-density-wave
antiferromagnetism, which occurs among the heavy quasiparticle system with delocalized
magnetic moments [Oka09]. In the region where the energy scales of both interactions
are comparable, a quantum critical point (QCP) occurs at zero temperature, that is, a
second-order phase transition driven by quantum fluctuations only. The observed behavior
in the vicinity of a QCP deviates from a Fermi liquid; this non-Fermi liquid behavior is
characterized by anomalous critical exponents, see, e.g., [Loe07].

The coupling constant J can be tuned by hydrostatic pressure or chemical doping. Thereby,
an initially antiferromagnetic compound can be tuned to a paramagnetic state. At zero
temperature this tuning defines an antiferromagnetic quantum critical point, where the
fluctuations of the magnetic order parameter diverge. In some HF systems, the QCP
is actually hidden by a superconducting dome. The most prominent example of such a
compound is CeCu2Si2, which crystallizes in a tetragonal ThCr2Si2 structure, cf. (Fig.
1.2). The corresponding tetragonal crystal field splits the S = 5/2 multiplet of the
Ce3+-ions into a lowest-lying Kramers doublet and two excited doublets around 30meV.
Hence, at low temperatures the conduction electrons effectively interact at every Ce-site
with a localized spin-1/2 of the 4f -level, i.e., it is a typical Kondo-lattice compound.
The corresponding single-ion Kondo temperature lies roughly at TK = 15K [Ste12a].
Both the antiferromagnetic phase and the superconducting dome above the AF QCP are
found in CeCu2Si2. An example for a pressure-induced QCP and emerging phases at low
temperatures is shown in (Fig. 1.3) for 10-at.%-Ge-doped CeCu2Si2. In fact, a second
superconducting dome is found in the high-pressure regime, which makes this compound a
very interesting heavy-fermion superconductor. For pure CeCu2Si2 both domes merge and
cannot be distinguished.

1 The RKKY interaction is named after Ruderman, Kittel, Kasuya and Yosida [Rud54, Kas56, Yos57]
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Figure 1.2: The body-centered
tetragonal unit cell of the ThCr2Si2
structure of CeCu2Si2. Adapted from
[Ste12b].

Figure 1.3: Pressure dependence of 10-at.%-
Ge-doped CeCu2Si2. Transition temperatures
for Néel- (TN ) and superconducting (Tc) order
are shown. The thin solid Tc-line is for pure
CeCu2Si2. Figure adapted from Ref. [Geg08]
with permission of P. Gegenwart.

1.4 Heavy-Fermion Superconductors: The Case of CeCu2Si2

Before the discovery of HF superconductors, magnetism and superconductivity were thought
to be mutually exclusive. Dilute magnetic impurities lead to spin-flip scattering which
breaks up s-wave singlet Cooper pairs as they are formed by an attractive interaction
due to phonons. The discovery of superconductivity in CeCu2Si2 in 1979 by Steglich et
al. [Ste79] was thus quite astonishing. The dense lattice of magnetic moments in the
Ce-4f -shell does not only coexist with superconductivity below 0.6K – it turned out that it
is, in fact, a prerequisite for superconductivity in this material. Hence, the superconducting
state has to be unconventional to a certain degree since the Cooper-pairs consist of heavy
quasiparticles. Large deviations from standard theories of superconductivity like BCS theory
[Bar57a, Bar57b] or Eliashberg theory [Eli69] were measured, hinting already to a possible
non-phononic origin of Cooper pairing. Several other superconducting HF compounds
like CeIn3, UPt3 or UBe13, which were found afterwards, do exhibit an unconventional
superconducting state, too.

That the superconducting state in CeCu2Si2 evolves out of the heavy Fermi liquid is
supported by a large amount of experimental evidence. A first hint is given by the
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compound LaCu2Si2 which does not become superconducting down to the milli-Kelvin
range [Ste79]. Compared to CeCu2Si2, there is just the 4f -electron and thus the local
moment missing. In addition, the coherence length ξc and London penetration depth λL

observed in CeCu2Si2 are both in the range of extreme type-II superconductors – their
large λL and reduced ξc stem from the strongly enhanced effective electron mass, thus
indicating that the f -moments are involved in superconductivity [Gre91]. Apart from a
few exceptions, this is true for most HF superconductors where Cooper pairing is hence
attributed to the heavy-quasiparticle system.

Along with the fact that “electron-phonon coupling in CeCu2Si2 is not retarded, i.e., the
heavy charge carriers cannot escape their own polarization cloud” [Ste12a], the involvement
of f -moments in superconductivity hints towards a non-phononic pairing mechanism. In
fact, a magnetic origin of the superconducting “glue” was proposed [Miy86, Sca86]. These
early proposals have been experimentally supported in the recent years. An overdamped
dispersive antiferromagnetic excitation mode has been identified to be the driving force
of superconductivity in CeCu2Si2 [Sto11]. The mode coupling of these excitations to the
heavy fermions is strongly retarded, as opposed to the almost non-retarded phonons. The
microscopical origin of the Cooper-pair glue is thought to be related to the symmetry
of the gap function or order parameter. From an anisotropic temperature dependence
of the magnetic-field penetration depth [Bro90] in UPt3 or the four-fold anisotropy of
the upper critical field Hc,2 in CeCu2Si2 it is inferred that the order parameter in HF
systems is anisotropic, too. In addition, non-exponential temperature dependencies of the
specific heat and similar properties hint towards a d-wave symmetry of the gap function in
CeCu2Si2. The ratio of the gap width ∆ to the critical temperature Tc is universal for BCS
superconductors and has a value of ∆/Tc ≈ 1.74. However, this value is often exceeded
in HF superconductors, which is typically interpreted in terms of weak-coupling d-wave
pairing. At least in CeCu2Si2, the main driving force of superconductivity seems to be
experimentally identified in the meantime1: Non-local antiferromagnetic quantum-critical
fluctuations mediate the retarded d-wave pairing [Sto11].

1.5 Outline

CeCu2Si2 and many other heavy-fermion systems constitute Kondo lattices, where effectively
a spin-1/2 is coupled via an antiferromagnetic exchange interaction J to each lattice site.
Neglecting all other rather complex aspects, the essential low-temperature behavior of
these HF systems is captured by the simple Kondo-lattice model (KLM). The experimental
findings naturally raise the question whether also the rather complex physics can already
be captured by a simple model like the KLM – especially ordered phases are of interest.

1 This statement refers to the superconducting pairing close to the AF QCP.
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It is known that the KLM naturally exhibits antiferromagnetic Néel order for a small
coupling constant. However, the question whether superconductivity also emerges in the
KLM without adding an extra pair-term to the model, had been remained unclear. In
the present thesis, this very question is investigated along with a possible connection to
magnetic properties.

The thesis is structured as follows. First, an introduction to theoretical concepts and
computational tools, which can be used to solve lattice models for HF systems, is given
in chapter 2. The dynamical mean-field theory (DMFT) is combined with the numerical
renormalization group (NRG) method and it is described how these methods can be extended
to tackle symmetry-broken phases like antiferromagnetism or s-wave superconductivity. In
chapter 3 the low energy properties of the Kondo-lattice model (KLM) and its extensions are
discussed for the paramagnetic phase applying the DMFT+NRG method. This numerical
approach is afterwards applied to the antiferromagnetic phase of the KLM, where the focus
is on spectral properties and the actual nature of the antiferromagnetic state. The next
chapter 5 is dedicated to the surprising finding of a stable s-wave superconducting phase in
the KLM. Some of the results presented there are published in [Bod13]. Finally, in chapter
6, results for the superconducting phase of the KLM width additional interactions like the
Coulomb repulsion and a local electron-phonon coupling are presented. The influence of a
higher local-moment spin S = 1 is also briefly discussed. In the very end, the results of
this thesis are summarized and several conclusions are drawn, which provide the basis for
an outlook to still open questions.



2 Computational Methods

Except for a few limiting cases, even the simplest lattice models for strongly correlated-
electron systems constitute a rather challenging task to theoretical physics. While exact
analytical solutions are often limited to one dimension, for two- or three-dimensional
problems one needs to introduce certain approximations; most often the problem is then
solved numerically. At present there are several methods available to tackle the quantum
many-body problem in an approximative way. All these methods have their own specific
advantages and drawbacks. A rather successful approach is the dynamical mean-field theory
(DMFT) and its cluster extensions [Geo96, Mai05]. The DMFT maps the lattice problem
to a quantum impurity problem in an effective medium, and the medium is determined
self-consistently. The quantum impurity problem needs to be solved in every iteration
of the DMFT self-consistency cycle. For this task one has several methods at hand, also
depending on the cluster size. Here, the focus is on the combination of single-site DMFT
with the numerical renormalization group (NRG) method [Wil75] – it is well-suited for
the treatment of low temperatures and low-energy scales as they appear in HF systems.
A review on more recent developments in the field of the NRG method can be found
in [Bul08]. The expense of DMFT methods is the loss of information about non-local
correlations beyond the spatial extent of the impurity cluster, i.e., in the single-site method,
non-local correlations cannot be incorporated at all. Nevertheless, it allows to include
phases with broken-symmetry to a certain extent, e.g., ferromagnetism, commensurate
antiferromagnetism or s-wave superconductivity.

This chapter is structured as follows. First, the DMFT is introduced and the inclusion of
ordered phases is briefly described. Afterwards it shown how the effective single-site problem
is linked to quantum impurity models. A special emphasis is put on the treatment of
superconductivity. Finally, the basic concepts of the NRG method are discussed, again with
an emphasis on superconductivity. Technical details of the implementation are postponed
to the appendix.

9
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2.1 Dynamical Mean-Field Theory

The philosophy behind DMFT is to approximate interactions by a static spatial mean-field
while the quantum fluctuations in time are retained. This is best illustrated by deriving
the DMFT equations by means of the so-called cavity method [Geo96]: Utilizing a path
integral formulation, spatial degrees of freedom can be integrated out and one obtains
an effective single impurity problem in a dynamical mean-field, while the latter needs
to be determined self-consistently. The whole DMFT procedure and the derivation of
self-consistency equations is outlined in the following.

2.1.1 Cavity Method and Effective Action

A general one-band lattice Hamiltonian with only local interactions reads

H = −
∑

ijσ

tijσc
†
iσcjσ +

∑

i

H loc
i , (2.1)

where tij denotes the tunneling matrix element or “hopping” between lattice sites i and j,
σ denotes the spin, c(†)

iσ is the creation (annihilation) operator and H loc
i gathers all local

interactions that shall be included. In fact, these interactions can be rather arbitrary as
long as they are local and can be handled by the impurity solver. Typical examples are a
local Coulomb term, Holstein phonon modes or local spin interactions. It is also possible
to add electron bands and local interband interactions. However, for the sake of simplicity,
these additional terms and indices are not included here.

For the following derivation it is suitable to introduce Grassmann fields {ci(τ), c̄i(τ)} as
function of imaginary time τ . The corresponding functions of Grassmann fields are denoted
by curly letters. Moreover, spin indices are mostly suppressed in the following, but a sum
over σ is implied. The action for the Hamiltonian (2.1) then reads

S[{ci, c̄i}] =

β∫

0

dτ




∑

ij

c̄i [(∂τ − µ)δij − tij] cj +
∑

i

Hloc
i (c̄i, ci)



 . (2.2)

It can be split into three different parts, S = So + S∆ + S(o), where the index o tags an
arbitrary but fixed site of the lattice. The local on-site part So is separated from the lattice
part S(o) which denotes the contribution from the lattice without site o. It is only the
hopping term tij which connects both parts and enters the hybridization term S∆. These
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three parts of the action are written as

So =

β∫

0

dτ
(

c̄o (∂τ − µ) co + Hloc
o (c̄o, co)

)

(2.3)

S(o) =

β∫

0

dτ




∑

i6=o,j 6=o

c̄i [(∂τ − µ)δij − tij] cj +
∑

i6=o

Hloc
i (c̄i, ci)



 (2.4)

S∆ = −
β∫

0

dτ
∑

i6=o

tio (c̄ico + c̄oci) . (2.5)

The principle of the cavity method is illustrated in (Fig. 2.1) and (Fig. 2.2). In order to
obtain a mean field, the lattice degrees of freedom need to be integrated out. To this end,
the expectation value of an operator A with respect to the action S(o) is defined as

〈A〉(o) =

(
∫
∏

α

D (c̄α,cα) e−S(o)

A(c̄α, cα)

)/(
∫
∏

α

D (c̄α,cα) e−S(o)

)

=
1

Z(o)

∫
∏

α

D (c̄α,cα) e−S(o)

A(c̄α, cα) , (2.6)

where the index α labels all potential quantum numbers and Z denotes the partition function.
The functional integral measure is abbreviated by D(c̄,c) = limN→∞

∏N
i=1 dc̄(τi)dc(τi) for

the N time slices τi in the imaginary-time interval [0,β].

Figure 2.1: Cavity method: The
lattice is divided into one site and
the rest of the lattice. The left
part (o) can be integrated out
formally.

Figure 2.2: The lattice problem is
mapped onto an effective single site inter-
acting with a dynamical mean field which
captures the influence of all neighboring
sites.
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With these definitions at hand it is possible to integrate out the lattice part in the partition
function,

Z =
∫

D (c̄o,co) e−So

∫
∏

i6=o

D (c̄i, ci) e−S(o)

e−S∆ (2.7)

= Z(o)
∫

D (c̄o,co) e−So

〈

e−S∆

〉(o)
. (2.8)

By comparison, an effective action for the site o can be obtained via

1
Zeff

e−Seff(c̄o,co) =
1
Z
∫
∏

i6=o

D (c̄i, ci) e−S(c̄i,ci) , (2.9)

i.e. one needs to expand the expectation value

〈

e−S∆

〉(o)
= 1 −

β∫

0

dτ 〈∆S(τ)〉(o) +
1
2!

β∫

0

β∫

0

dτ1dτ2 〈Tτ∆S(τ1)∆S(τ2)〉(o) − . . . (2.10)

with the shorthand ∆S(τ) for the integrand in Eq. (2.5) and with the time ordering
operator Tτ . The expectation values with an odd number of operators in this series vanish,
thus the lowest order term is of order two and contains the sum over unconnected 2-point
Green’s functions 〈Tτciσ(τ1)c̄jσ(τ2)〉(o) since the on-site operators co are not affected by the
cavity average 〈·〉(o).

In higher orders the n-th order term similarly contains 2n-point unconnected Green’s
functions. Due to the linked cluster theorem, see, e.g., [Mah00], the effective action can be
expanded in terms of connected 2n-point functions as

Seff = So +
∞∑

n=1

∑

i1,...,in;j1,...,jn

∫

dτ1 . . . dτn

(

J̄i1 . . . J̄in
G

(o),linked
i1,...,jn

(τi1 , . . . ,τjn
)Jj1 . . . Jjn

)

(2.11)

with the source terms Jik
= toik

cik
.

2.1.2 The Mean-Field Limit of Infinite Dimensions

In a lattice it is quite illustrative that a mean-field description is better when more nearest-
neighbor fields superimpose to have an averaged influence at a single lattice site. For
example, in a fcc-lattice in three dimensions the number of nearest neighbors z = 12 is
already quite large. In the theoretical limit of infinite dimensions or, equivalently, of infinite
coordination number z → ∞, a mean-field theory in classical statistical mechanics gets
exact; the same is true for DMFT. For z → ∞, the influence of the cavity lattice “(o)” on
a single lattice site “o” is captured by a single dynamical mean-field. All local terms of
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the Hamiltonian are still well-defined in this very limit. However, the hopping term would
produce a diverging kinetic energy, as the number of bonds to adjacent sites grows linearly
with increasing z. The kinetic energy per lattice site would scale proportional to z, which
needs to be compensated. One finds that the hopping has to be scaled as [Met89]

tij =
t∗ij√
z|i−j|

(2.12)

where |i− j| is the minimal distance between sites i and j with respect to the L1-norm,
i.e., z1 is the coordination number for nearest neighbors, z2 for next-nearest neighbors and
so on. The exact relation between z and d depends on the underlying lattice geometry,
e.g., z|i−j| = d|i−j| in the easiest case of the Bethe lattice, which is introduced below. As a
result of Eq. (2.12) it turns out that the Green’s functions Gij scale with the same factor
1/√z|i−j|. Thus, the kinetic energy is constant for z → ∞. The scaling in this limit has
the tremendous effect that all non-local contributions to the self-energy vanish [Met89],

Σij(ω) d→∞−→ δijΣ(ω) , (2.13)

which can be shown in several ways. One possibility is to take a look at the scaling of
Green’s functions entering the effective action in the expression Eq. (2.11). The n-th order
term brings in a factor (1/d)n−2, so that only the second order term survives in the limit
of infinite dimensions [Geo96]. Then, the effective action Eq. (2.11) extremely simplifies to

Seff = So −
∑

ij

β∫

0

β∫

0

dτ1dτ2 c̄o(τ1)toiG
(o)
ij (τ1,τ2)tjoco(τ2) (2.14)

Below it is shown that this action is formally equal to the effective action for an Anderson
impurity model. Here, it can already be seen that the only field entering this expression
belongs to the site o and the rest of the one-particle terms plays the role of an effective
bath. In the form

Seff = Slocalint −
β∫

0

β∫

0

dτ1dτ2 c̄o(τ1)G−1
0 (τ1 − τ2)co(τ2) (2.15)

the physical content of this effective bath becomes more apparent. While all local interac-
tions are encoded in Slocalint, the effective Weiss field G0 yields the amplitude of a particle
hopping at a time τ1 from the bath onto the site o and being destroyed at a later time
τ2.1

1 In principle, it is also possible to take into account superconductivity and Cooper pairs, which can also
‘hop’ from the bath onto the impurity and back.
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2.1.3 Self-Consistency Equations

To obtain a closed set of self-consistency equations, the cavity Green’s function G(o) needs
to be related to the rest of the lattice by [Hub64, Geo96]

G
(o)
ij = Gij −GioG

−1
o Goj . (2.16)

The effective action in Eq. (2.15) is transformed in two steps. First the usual transformation
from imaginary time to Matsubara frequencies is carried out, and subsequently the analytic
continuation iωn → ω + i0+ is applied, so that the Weiss filed or effective medium finally
reads

G−1
0 (ω + i0+) = ω + i0+ + µ−

∑

ij

toitjoG
(o)
ij (ω + i0+) .

A Fourier transform of Gij in the lattice sites, tij → εk, yields

Gk(ω) =
(

ζ(ω + i0+) − εk

)−1
,

with ζ(ω + i0+) = ω + i0+ + µ−Σ(ω + i0+) and a local self-energy Σ(ω + i0+). Using the
relations

∑

k εkGk(z) = −1 + ζGo(z) and
∑

k ε
2
kGk(z) = −ζ + ζ2Go(z)2, one obtains the

central self-consistency equation

G−1
0 (ω + i0+) = Σ(ω + i0+) +Go(ω + i0+)−1 (2.17)

which relates the effective medium with the impurity Green’s function. It is formally similar
to the Dyson equation but of different physical content.

How does this equation now allow for a self-consistent solution? They key ingredient is the
calculation of the local Green’s function for the site o by k-summation of the non-interacting
propagator Gk,0(z),

Go(z) =
∑

k

(

G−1
k,0(z) −Σ(z)

)−1
. (2.18)

For a given self-energy it is thereby possible to determine the effective medium by means
of Eq. (2.17). In the practical implementation one can start with, e.g., Σ = 0 or with
another initial guess of Σ(z). The resulting Weiss field G0(z) defines the effective impurity
problem which needs to be solved by an appropriate impurity solver. This, in turn, yields
a new impurity Green’s function. The latter can be put into Eq. (2.17), this time solved
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for Σ, so as to obtain a new self-energy.1 At this point, the whole procedure needs to be
iterated, as illustrated in (Fig. 2.3), until convergence is reached.

The k-summation in Eq. (2.18) can be replaced by an integral over ε which constitutes a
Hilbert transform H of the non-interacting density of states ρ0(ω):

Go(z) =
∑

k

(

G−1
k,0(z) −Σ(z)

)−1
=
∫

dερ0(ε)(ζ − ε)−1 =: H[ρ0](ζ) (2.19)

The self-consistency equations above have been derived for the paramagnetic case, but it is
possible to extent them to symmetry-broken phases, namely ferromagnetism, antiferromag-
netism and superconductivity [Geo96]. The latter two are of high interest with respect to
heavy fermions and the corresponding extension of the DMFT is explained in the following
two subsections.

Figure 2.3: The DMFT self-consistency loop.

1 In practice, it is more convenient to use the so-called self-energy trick [Bul98] and compute Σ(z) as the
ratio of higher Green’s functions, see section 2.4.5.
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2.1.4 Antiferromagnetism

In the derivation above, spin-indices have been mostly suppressed since the focus has
been on the paramagnetic state. The SU(2) symmetry of the Hamiltonian does then not
allow for magnetically ordered phases. Thus, one needs to carry out all calculations in a
spin-dependent way. The Néel state is the simplest antiferromagnetically ordered state
where the spin directions simply alternate on the lattice sites. To include Néel order, a
bipartite A-B-structure of the lattice must be considered in the DMFT: Each A-site has
only B-sites as nearest neighbors and vice versa. The whole lattice thus consists of two
sublattices. Neighboring sites A and B have different self-energies [Geo96], but in the Néel
state the relation between them simply reads

ΣA
σ = ΣB

σ̄ , (2.20)

for opposite spins σ and σ̄. For this reason, one needs to solve only one effective impurity
problem; interchanging the spin indices yields the solution for the other sublattice. The
hopping occurs exclusively between A- and B-sublattices, so that the local Green’s function
written in the A,B-basis reads

Go,σ(ω) =
∫

dερ0(ε)

(

ζA
σ −ε

−ε ζB
σ

)−1

,

with ζA/B
σ = ω + i0+ + µ − ΣA/B

σ (z). With this equation the effective fields can now be
calculated for both spin directions and sublattices. In the actual implementation of DMFT
it is necessary to break the SU(2) symmetry in the first iteration by applying a small
magnetic field ζA

σ → ζA
σ + σh and ζB

σ → ζB
σ − σh. Thereby, non-zero differences between

the two sublattices are induced, which do not necessarily evolve out of numerical noise only.
After the very first iteration the field is switched off again and the self-consistency cycle
continues as usual. If the system is unstable towards antiferromagnetism, it evolves into a
self-consistent solution with Σ

A/B
↑ 6= Σ

A/B
↓ and a finite polarization 〈sz〉 = (n↑ − n↓)/2.

2.1.5 Superconductivity

The extension of DMFT equations to superconducting long-range order is a bit more
involved since anomalous Green’s functions 〈〈ck↑; c−k↓〉〉 need to be accounted for. To do so,
it is convenient to introduce the Nambu formalism [Nam60] which gathers particle and
hole operators in a single two-component spinor

C†
k =

(

c†
k↑, c−k↓

)

, Ck =

(

ck↑

c†
−k↓

)

.
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Nambu spinors obey the usual fermionic anti-commutation rules1
[

Ck, C
†
k′

]

+
= δkk′12 and

[Ck, Ck′ ]+ = 0 with the identity matrix 12. The complete derivation of DMFT equations
can be rewritten in the Nambu formalism, with a generalized self-energy

Σ(ω) =

(

Σ11(ω) Σ12(ω)
Σ12(−ω)∗ −Σ11(−ω)∗

)

, (2.21)

where the off-diagonal parts contain information about the frequency-dependence of electron
pairing. The particle and hole components of both µ and ε have opposite sign, which needs
to be taken care of. The local Green’s function reads

G(ω) =
∫

dερ0(ε)

(

(ω + i0+) + µ− ε−Σ11(ω) −Σ12(ω)
−Σ12(−ω)∗ (ω + i0+) − µ+ ε+Σ11(−ω)∗

)−1

,

(2.22)

so that an anomalous component in the self-energy induces a finite off-diagonal part
Goff

0 (ω) in the effective medium, too. In the corresponding effective action, a term like

c†
o(τ1)

[

Goff
0 (τ1 − τ2)

]−1
c†

o(τ) survives. This term illustrates the physics encoded in the

anomalous part of the effective medium: Goff
0 (τ1 − τ2) is the amplitude for the process that

two particles pair up on the local site – one particle coming from the bath onto the local
site at a time τ1 and a second at a latter time τ2. The local pairing can thus be strongly
retarded. Quantum fluctuations in imaginary time can mediate this pairing. The impurity
solver has to be able to include such an anomalous part of the effective medium, too. Due
to the frequency dependence, this task is highly non-trivial. The way to implement it in
the NRG is shown in appendix B.

For the Hilbert transform in Eq. (2.22) it is very convenient to use a partial fraction
decomposition of the integrand. Thereby, it is possible to express the resulting terms as
linear combinations of the usual Hilbert transform H[ρ0]. This also holds for a combined
A-B- and Nambu-formalism. The explicit calculation is shown in appendix A. Similar to
the case of antiferromagnetism, it is important to break the U(1) symmetry2 in the very
first iteration by applying a small pair field. In this way, non-zero off-diagonal components
are induced and can evolve self-consistenly. Without the initial “kick” this might not
happen out of numerical noise only.

1 The (anti-) commutators are understood as component-wise commutators of the outer product of
spinors.

2 A pair condensate has a well-defined phase φ, which corresponds to a broken global U(1) gauge symmetry.
The latter normally ensures particle number conservation being not present in a pair condensate.
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2.2 Lattice Topologies

The density of states entering the hilbert transform is the only quantity which contains
information about the spatial structure of the original lattice. In the limit of infinite
dimensions, an important example is the Bethe lattice, for which most of the calculations
in this thesis are done. This rather artificial lattice can be constructed as follows. Initially,
one site is connected to z nearest neighbors. Every site of this first nearest-neighbor shell
is then connected to z − 1 sites and so on. A very important property resulting from this
construction is that the lattice does not contain any closed loops, that is, every two sites
are connected by only a single path. As a result many models can be solved exactly on
the Bethe lattice [Bax08]. The corresponding local Green’s function can be written as
[Eco90]

G−1
o (z) = z − t2

∑

i∈NN

G
(o)
ii (z) ,

where t = tij denotes the nearest neighbor (NN) hopping and G(o) is again the Green’s
function for the lattice with a site o removed, see section 2.1.1. In principle, a second-
nearest neighbor hopping can be included [Pet09], but throughout this thesis we will
resort to a simple NN hopping. For the Bethe lattice with z → ∞, Eq. (2.16) simplifies
to G(o)

ii (z) = Gii(z), thus one can apply the scaling Eq.(2.12), t = t∗/
√
z, and solve the

resulting equation G−1
o (z) = z − t2Go(z) for G(z) := Go(z):

G(z) =
1

2t2
(

z +
√

4t2 − z2
)

.

The density of states can be derived by taking the imaginary part of the Green’s function,
ρ(ε) = − 1

π
ImG(ε+ i0+), and reads for the Bethe lattice

ρ(ε) =
1
2t

√
4t2 − ε2 , |ε| ≤ 2t ,

i.e., a simple semi-circular structure results for d → ∞. At the band edges ω = ±2t this
DOS has the same analytic properties like a three dimensional cubic DOS [Eco90] – which
makes it a fairly good approximation for the three-dimensional DOS. Moreover, the Bethe
lattice can be divided into a bipartite structure and hence allows for a Néel state.

Below, a two-dimensional cubic lattice is used in some cases. Although the DMFT is a
rather crude approximation for two-dimensional systems, the incorporation of van-Hove
singularities in this case can lead to qualitatively different results. The 2d-DOS contains
the complete elliptic integral of the first kind, K1(ε), and reads [Eco90]

ρ2d-cubic(ε) =
2

π2W
θ(W − |ε|)K1

(√

1 − ε2/W 2

)
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A comparison of the two different cases is shown in (Fig. 2.4) and (Fig. 2.5). A two-
dimensional DOS is mainly used for illustrative reasons in this work, provided that the
physics for both Bethe lattice and 2d-square lattice do not differ qualitatively. The spectral
function

A(εk, ω) = − 1
π

ImG(εk, ω + i0+) DMFT= − 1
π

Im
[

ω + i0+ + εk −Σ(ω)
]−1

of a two-dimensional system as function of momentum kx and ky is a good starting point
to compare with results from cluster methods or even experimental results from ARPES1.
Moreover, a two-dimensional Fermi surface can be obtained by plotting A(εk, 0). One
can simply use the above formula to obtain the spectral function from the self-energy
calculated in DMFT. Although the self-energy is purely local in DMFT, one can reintroduce
a momentum dependence via the energy dispersion εk of non-interacting electrons on the
corresponding lattice, e.g., εk = −2t

∑d
n=1 cos (kna) for a d-dimensional cubic lattice with

lattice constant a. The artificial k-dependence does not provide any information about
non-local correlations. In the case of the Bethe lattice, however, there is no such dispersion
relation but one can simply plot A(ε, ω) as function of energy ε.

Figure 2.4: DOS of the Bethe
lattice for d = ∞.

Figure 2.5: DOS of the 2d-
square lattice.

1 Angle-Resolved PhotoEmission Spectroscopy
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2.3 Quantum Impurities and their Relation to DMFT

Although the degrees of freedom are reduced to a single site, there exists no explicit solution
for the problem stated by the effective action in Eq. (2.14). However, this single-site action
can be related to a quantum impurity problem, which in turn can be solved numerically.
The lattice models of interest in this thesis can all be captured by the sum of a hopping
term and a term with local interactions on each site. As it is shown above, this class of
models is within DMFT mapped onto an effective impurity problem with three ingredients:
1.) An on-site term including local interactions, 2.) a hybridization term which couples the
impurity to an effective bath, and 3.) a Hamiltonian for the non-interacting bath degrees
of freedom. These problems can be classified as Anderson impurity models (AIM) with
certain on-site interactions,

HAIM = Himp +Hhyb +Hband (2.23)

with

Hhyb =
∑

kσ

Vkσ

(

d†
σckσ + c†

kσdσ

)

and

Hband =
∑

kσ

εkσc
†
kσckσ +

∑

k

(

∆kc
†
k↑c

†
−k↓ +∆∗

kc−k↓ck↑

)

,

where the impurity operators d(†)
σ couple via the hybridization matrix element Vkσ to the

conduction electrons. The spin-dependence is here retained in the notation for the case of
magnetic phases. Moreover, a BCS-type pairing term with a pair amplitude ∆k is added
to allow for superconductivity. Including all prospective interactions studied in this thesis,
the local impurity term reads

Himp =
∑

σ

εd
σd

†
σdσ + Und

↑n
d
↓ + J ~S · ~s d + ω0b

†b+ λ
(

b† + b
)

·
∑

σ

d†
σdσ .

The on-site energy is denoted by εd
σ. The Hubbard-U captures a local Coulomb repulsion

and J is the strength of an explicit exchange interaction of the local conduction-electron
spin-density

~s d =
1
2

∑

α,β

d†
α~σαβdβ

with a local magnetic moment ~S and the vector ~σ of Pauli spin matrices. In addition,
a local bosonic mode b(†) with a frequency ω0 can be coupled via λ to the local charge
density.

In the following, the effective action for such an AIM in a superconducting medium is
related to the effective action arising in DMFT. The most important task is to express
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the hybridization V and the pair potential ∆ of the AIM as function of the effective
medium. Only then, it is possible to relate the AIM with the DMFT. Employing the
Nambu formalism and using Grassmann variables again, the action for the AIM reads

SAIM =

β∫

0

β∫

0

dτ1dτ2

[

−
∑

k

C̄kG−1
k (τ1 − τ2)Ck +

∑

k

Vk

(

C̄kτ 3D + D̄τ 3Ck

)

+ Himp

]

,

(2.24)

where irrelevant constant terms as well as spin indices and some imaginary-time arguments
are suppressed. The Pauli-z matrix in Nambu space is denoted by τ 3. (Vk, ∆k) ∈ R is
assumed in the following.

Similar to the derivation of the effective action in the DMFT, it is possible to integrate
out the lattice degrees of freedom by completing the square in the partition function. The
result reads

SAIM
eff =

β∫

0

β∫

0

dτ1dτ2 D̄(τ1)G
−1
0 (τ1 − τ2)D(τ2) + Simp .

The Fourier transform of the effective medium is obtained as G0(iωn) = − ∫ β
0 dτeiωnτ G0(τ −

0). In the standard approach, the Weiss field is equated to the non-interacting Green’s
function of the impurity,

G0(iωn)−1 = iωn1 − εdτ 3 − Γ (iωn) ,

here with a generalized hybridization matrix Γ (iω) to account for superconductivity.
Importantly, the AIM effective action is formally equivalent to the effective action in DMFT,
Eq. (2.15). By means of the Dyson equation and the DMFT equation G−1

d + Σ = G
−1
0

one obtains the complex hybridization matrix

Γ (iωn) = iωn1 − G
−1
0 (iωn) .

In the following we work with real frequencies obtained via analytic continuation iωn →
ω + i0+ = z. The hybridization matrix of a non-interacting AIM in a superconducting
bath reads

Γ (z) =
1
N

∑

k

V 2
k

z2 − ε2
k −∆2

k

(

z + εk ∆k

∆k z − εk

)

= −
∫

dερ0(ε)
V (ε)2

z2 − ε2 −∆(ε)2

(

z + ε ∆(ε)
∆(ε) z − ε

)

. (2.25)

The two formulas for Γ (z) allow for a connection between the DMFT and the impurity
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model. The poles ε± = ±
√

z2 −∆(ε±)2, where in general ∆(ε+) 6= ∆(ε−), can be used for
a partial fraction expansion

−(z + ε)
(ε− ε+)(ε− ε+)

=
a1

ε− ε−

+
a2

ε− ε+

.

Replacing γ(ε) = πρ0(ε)V (ε)2, z → ω + i0+ and using the Plemelj formula 1/(x+ i0+) =
P(1/x) − iπδ(x), where P denotes the Cauchy principal value, the integration in Eq.(2.25)
can be easily done for the imaginary part. Since ImΓ11(ω) does not have a defined parity,
two independent equations are provided by +ω and −ω:

ImΓ11(±ω) = sgn(ω)

[

±ω + ε−

ε+ − ε−

γ(ε−) +
±ω + ε+

ε+ − ε−

γ(ε+)

]

. (2.26)

In a similar way one obtains

ImΓ12(ω) = sgn(ω)

[

−∆(ε−)
ε+ − ε−

γ(ε−) − ∆(ε+)
ε+ − ε−

γ(ε+)

]

(2.27)

The poles are given by the implicit expression above, but in the case of an even pair
function ∆(ε) = ∆(−ε), it follows that ε± = ±ε = ±

√

ω2 −∆(ε)2. Finally, the system
of the three above equations needs to be solved (numerically) for {∆(ω), γ(+ω), γ(−ω)}.
These functions define a generalized impurity model, cf. appendix B. The quantum impurity
model can be solved by means of the numerical renormalization group, which is the topic
of the next section.

2.4 Numerical Renormalization Group for Superconductors

The renormalization group (RG) concept was originally developed in quantum field theory
[Stu53, GM54] where it provides a tool to deal with divergencies. Later, the RG idea was
applied to condensed matter theory as well [Kad66, Wil75], where it is an important tool to
study low-energy properties of several model systems. Renormalization links the behavior
of a physical system at different energy scales: The basic idea is to successively integrate
out virtual high energy fluctuations and to adapt the Hamiltonian of the system. Thereby
the low-energy interactions induced by the virtual high-energy fluctuations are taken into
account [Col13].

The most important concept in the RG procedure is the RG transformation [Hew93b, Bul08].
In such a transformation Rb, specified by a continuous parameter b, a Hamiltonian H( ~K)
with a given set of coupling constants ~K = (K1, . . . ,Km) is mapped to a Hamiltonian
H( ~K ′) of the same form but with new coupling constants ~K ′ = (K ′

1, . . . ,K
′
m,K

′
m+1, . . .),
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i.e.,

Rb : H( ~K) −→ H( ~K ′), ~K −→ ~K ′ .

The correlation lengths ξ( ~K) of the system thereby scale as

ξ( ~K ′) =
1
b
ξ( ~K) .

The RG flow ~Kn+1 = Rb( ~Kn) of the coupling constants can end in fixed points ~K∗, for
which Rb( ~K∗) = ~K∗. In this case the physics of the system described by H can be derived
from this fixed point. In the neighborhood of an isolated fixed point the mapping can be
linearized, which effectively leads to an eigenvalue problem for the corresponding linear
term Tb( ~K∗):

Tb
~φi(b) = λi(b)~φi(b) ,

where ~φ is a complete basis in the space of coupling constants. Linearity brings along the
semi-group structure Rb′(Rb( ~K)) = Rbb′( ~K) of the renormalization procedure. In addition,
(Tb)l = Tbl . The expansion ~Kn =

∑

i u
(n)
i
~φi leads to the notion of scaling fields u(n)

i and to
the relation

u
(n+l)
i = λl

iu
(n)
i ,

with which a classification of the scaling fields is possible:

• |λi| > 1: ui grows and is called relevant

• |λi| < 1: ui −→ 0 and is called irrelevant

• |λi| = 1: ui does not change and is called marginal

A stable fixed point has only irrelevant scaling fields, while one or more relevant scaling fields
yield an unstable fixed point – the trajectories are finally driven away from it. Without
any relevant eigenvalue or at least one marginal one, fixed points are called marginal.
Except for the case of a stable fixed point, further investigations are needed to describe
the behavior of the RG flow towards that fixed point.

A method to carry out the renormalization procedure numerically was established by Wilson
[Wil75] and applied to the Kondo impurity problem. Later, this numerical renormalization
group (NRG) method was also successfully applied to the single impurity Anderson model
(SIAM) [Km80a, Km80b], which is the model of interest here. A recent review of the NRG
method applied to various quantum impurity problems can be found in [Bul08].
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In most applications, the NRG is carried out in the following steps.

1. The energy support of the effective medium, or “bath”, is divided into a set of
logarithmic intervals.

2. Logarithmic discretization: The continuous spectrum is reduced to a discrete set
of states.

3. Tridiagonalization: The discretized model is mapped onto a semi-infinite chain.

4. Iterative diagonalization of the semi-infinite chain.

Afterwards, all quantities calculated in the iterative diagonalization can be used for a further
analysis of static and dynamic properties of the quantum impurity model. As the details of
the NRG and its implementation are accurately described, e.g., in Ref.’s [Ž07, Bul08], here
the focus is on the inclusion of superconducting correlations in the NRG approach, such
that it can be combined with DMFT. Actually, the inclusion of an energy-independent
pair amplitude ∆0

sc in the NRG is simple and has already been achieved early in the 1990’s
[Sat92, Sak93]. However, for the combination with DMFT, the frequency dependence of
the effective medium needs to be taken into consideration [Bul97]. The NRG thus needs to
handle a non-constant pair amplitude ∆sc(ω), too. The corresponding implementation is
briefly sketched in the following while computational details can be found in appendix B.

2.4.1 Logarithmic Discretization

For the NRG, the band part Hband and hybridization part Hhyb of the Anderson-impurity
Hamiltonian in Eq. (2.23) need to be generalized to a continuous energy support, which
is shown in appendix B. Next, the energy support is divided in intervals I±

m with an
exponentially decreasing width. In the interval [−1,1] in terms of half the bandwidth D, an
appropriate possibility is I−

m = [−Λ−m,−Λ−(m+1)], I+
m = [Λ−(m+1),Λ−m] with the logarithmic

discretization parameter Λ > 1. In each of these intervals, a complete set of orthonormal
plane-wave functions ψml is introduced and only the constant l = 0 sates are retained,
to which the impurity site couples [Wil75]. Denoting the band states corresponding to
positive energies as a(†)

n and the ones for negative energies as b(†)
n , the resulting discretized

band Hamiltonian reads

Hband =
∑

n

(

ξ+
n a

†
nan + ξ−

n b
†
nbn

)

+
∑

n

∆+
n

(

a†
n↑a

†
n↓ + an↓an↑

)

+∆−
n

(

b†
n↑b

†
n↓ + bn↓bn↑

)

. (2.28)
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A similar result is obtained for the discretized hybridization term:

Hhyb =
1√
π
d†

σ

∑

n

(

γ+
n anσ + γ−

n bnσ

)

+
1√
π

∑

n

(

γ+
n a

†
nσ + γ−

n b
†
nσ

)

dσ

The coefficients {γ±
n , ξ

±
n , ∆

±
n } are calculated by means of the functions γ(ω) and ∆(w)

determined from Eqns. (2.26), (2.27). A more detailed derivation and the actual calculation
of the discretization coefficients is presented in appendix B.

2.4.2 Tridiagonalization

The discretized band part of the Hamiltonian can be expressed by Nambu spinors An =
(

an,↑, a
†
n,↓

)T
and Γ ±

n given by

Γ ±
n =

(

ξ±
n ∆±

n

∆±
n −ξ±

n

)

,

which gathers the corresponding discretization coefficients. Similar to the standard approach,
see e.g. [Bul08], the desired tridiagonal Hamiltonian can be obtained by equating it to the
Hamiltonian in the “star basis”,

Hband =
∑

n

AnΓ +
nAn +BnΓ −

nBn
!=
∑

n

F †
nεnFn + F †

ntnFn+1 + F †
n+1t

T
nFn . (2.29)

The spinors Fn =
(

fn,↑, f
†
n,↓

)T
correspond to the new tridiagonal chain, which is usually

referred to as Wilson chain. From the above equality, a set of recursion relations for the
new coefficients on the Wilson chain can be derived. In the case of a superconducting
bath, the procedure is similar to the standard procedure, but completely formulated in the
Nambu formalism. The detailed derivation is relegated to appendix B.

2.4.3 Iterative Diagonalization

The semi-infinite chain Hamiltonian on the righthand side of Eq. (2.29) allows to apply
an iterative RG procedure since it can be defined as the limit of a series of finite-size
Hamiltonians,

H = lim
N→∞

Λ−N/2HN

HN = ΛN/2

(

Himp +Hhyb +
N∑

n=0

F †
nεnFn + F †

ntnFn+1 + F †
n+1t

T
nFn

)

.
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The factor Λ±N/2 rescales the energies and cancels the energy dependence of the lowest lying
hopping process tN , which is the hopping between the last two chain sites N and N + 1.
Here the RG character becomes apparent: A single NRG iteration is defined recursively
as

HN+1 = R [HN ] ,

which itself cannot have fixed points. Instead, R2 : HN → HN+2 defines a RG flow
with possible fixed points [Wil75, Km80a]. The RG transformation of the Hamiltonian,
R : H( ~K) → H( ~K ′), successively absorbs high energy excitations into new renormalized
coupling constants ~K ′, which can, however, not be obtained from the HN in the NRG
iterations. Nevertheless, HN and the RG flow are characterized by the corresponding
many-particle energies EN . The iterative diagonalization, in which these energies are
obtained, proceeds as follows.

One starts with the set up of the Fock space of the impurity site (N = −1), which is
decoupled from the rest of the chain. It can be easily diagonalized as the number of
eigenstates |φ〉-1 is small. In the case of a single channel model, for example, there are only
four states of the impurity. In the next step, a basis for the system including the first chain
site (N = 0) is simply obtained as the tensor product of the impurity Fock space with the
Fock space of the first chain site. This new two-site cluster is then diagonalized again and
the eigenstates are used to set up a basis for the enlarged system including the next site,
and so on. For N > 0 this scheme generalizes to

|r; s〉N+1 = |r〉N ⊗ |s[N + 1]〉 ,

where a state of the enlarged chain N +1 is build from the tensor product of the eigenstates
|r〉N of the smaller chain and the eigenstates |s[N + 1]〉 of the single added site. With
these eigenstates, the matrix elements of the new Hamiltonian HN+1 can be calculated.
Its diagonalization yields the new eigenvalues EN+1 and eigenstates. The problem of
this procedure is an exponential growth of number of states in the Fock space. For a
complete diagonalization one is typically limited to a few sites. Thus, one has to reduce
the number of states and truncate the Fock space. It turns out, that simply retaining the
Ns lowest lying sates after the diagonalization of HN+1 works quite well Bulla2008. The
maximum iteration number in the NRG has to be taken sufficiently high in order to reach
the low-temperature fixed point.

2.4.4 Calculation of Static and Dynamic Properties

In the superconducting case, both static and dynamic expectation values of off-diagonal
quantities have to be calculated for the impurity in addition to the diagonal ones. Examples
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are the local anomalous expectation value Φ = 〈d↑d↓〉 or the off-diagonal Green’s function
〈〈d↑; d↓〉〉ω. The standard procedure is straightforward and is detailed in the literature
[Bul08]. For completeness, it is only briefly sketched here. Static expectation values can
be calculated by setting up a matrix before the diagonalization procedure. The matrix
is updated in each iteration step N to the current basis. By means of the corresponding
energy values E(N)

i and Boltzmann weights β, the static thermodynamic expectation values
of a general operator Ô(N) for the chain of size N can be calculated as

〈Ô〉(N) =
1

Z(N)

∑

i

e−βE
(N)
i N〈i|Ô|i〉N ,

where Z(n) is the respective partition function and i labels the quantum numbers. Although
the Fock space is truncated, this is often already a good approximation for 〈Ô〉(TN ), where
the sum should rather run over a complete basis. The relevant contributions originate from
a chain with the length, where the energy scale of the last site corresponds to the given
temperature [Bul08]. However, a more advanced approach incorporating the complete basis
set [And05, And06, Pet06, Wei07] is used for more precise calculations, especially at finite
temperatures.

For the more intricate calculation of dynamic quantities, such as spectral functions, one
can use the Lehmann representation – after the NRG calculation all necessary ingredients
are basically available: eigenstates and -energies and the corresponding expectation values
which can be used in

ρÔ1Ô2
(ω, T ) =

1
Z

∑

i,j

δ(ω + Ei − Ej)〈i|Ô1|j〉〈j|Ô2|i〉
[

e−βEi + e−βEj

]

with the partition function Z =
∑

i exp(−βEi). Now the sum has to run over the complete
basis: Neither the basis of the last iteration, nor a sum over all iterations of the chain is
appropriate without further approximations. One can again overcome these problems by
introducing a complete Fock-space basis [And05, And06, Pet06, Wei07].

2.4.5 Calculation of the Self-Energy

Another important dynamical quantity, which needs to be calculated for DMFT, is the
self-energy. Although the self-energy can in principle be determined from Eq. (2.17), it
turned out that it is more reliable to calculate the self-energy directly in NRG by the ratio
of two correlation functions of the Anderson impurity model [Bul98]. For superconducting
systems, this method needs to be generalized to the matrix structure of the Nambu
formalism [Bau09]. One starts with the equation of motion for two fermionic operators a



28 2 Computational Methods

and b,

z 〈〈a; b〉〉z +
〈〈

[H,a]− ; b
〉〉

z
=
〈

[a,b]+
〉

.

Applying it to each component of the Green’s function matrix of the impurity,

Gd(z) =
〈〈

D;D†
〉〉

z
=





〈〈

d↑; d
†
↑

〉〉

z

〈〈

d↑; d↓

〉〉

z〈〈

d†
↓; d

†
↑

〉〉

z

〈〈

d†
↓; d↓

〉〉

z



 ,

one obtains a self-energy matrix

Σ(z) =
〈〈

[H,D]− ;D
〉〉

z
· G(z)−1 ,

where the matrix
〈〈

[H,D]− ;D
〉〉

z
incorporates higher Green’s functions, depending on the

exact form of the local interaction on the impurity. The symmetry relations of the normal
and higher Green’s functions [Bau09] ensure the symmetry of the self-energy matrix given
in Eq. (2.21), so that the computational effort in NRG can be reduced.



3 The Kondo-Lattice Model

In this chapter two of the most important models for Heavy-Fermion systems are introduced:
the periodic Anderson model (PAM) and its effective low-energy simplification in a certain
parameter regime, the Kondo-lattice model (KLM). Both belong to the most studied many-
particle models in solid state theory. They qualitatively describe some of the rich physics
observed in HF systems, originating from the interplay of itinerant conduction electron in
s-, p-, or d- bands with the rather localized f -electrons. The orbitally non-degenerate PAM
accounts for this interplay in an idealized way such that the non-degenerate f -orbitals
are subject to an intrasite Coulomb interaction U and a hybridization V with a single
non-interacting conduction band. In the so-called Kondo-regime, the effective physics
of the PAM can be captured by the KLM; it describes singly occupied f -orbitals as a
quantum-mechanical spin-1

2
which is coupled via an antiferromagnetic exchange interaction

J to the local spin density of itinerant conduction electrons.

First, the PAM is introduced and afterwards its connection to the KLM is discussed.
Some insight to the physical properties of the KLM can be gained in a simple mean-field
description (section 3.1.2) and a more elaborate analysis within the DMFT+NRG approach
(section 3.2). In real systems additional interactions are present among the electronic
subsystem, such as a Coulomb interaction or a coupling to a local Holstein phonon mode.
These extensions of the KLM and their influence on the paramagnetic properties are
discussed at the end of the chapter.

3.1 Periodic Anderson and Kondo Lattice Model

Heavy-fermion systems are typically described with the periodic Anderson model [And61,
Ric85, Bla87, Gre06]. It captures the essential physics of non-degenerate f -orbitals coupled

29
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to a band of itinerant conduction electrons (Fig. 3.1) and reads

HPAM = −
∑

〈ij〉σ

tijc
†
iσcjσ + εf

∑

i

nf
iσ +

∑

ikσ

Vk

(

c†
kσfiσ + f †

iσckσ

)

+ U
∑

i

nf
i↑n

f
i↓ (3.1)

with nf
σ = f †

σfσ. The first term describes the kinetic energy of the conduction electrons due
to hopping processes with a tunneling matrix element tij, εf denotes the atomic energy
level of the f -orbital, V is the c-f -hybridization matrix element and U denotes the local
Coulomb repulsion among f -electrons.

Figure 3.1: Sketch of the periodic Anderson model. Conduction (c) electrons are mobile
due to the hopping tij . Each site of the conduction band hybridizes with a local f -orbital
with an energy level εf . The strength of hybridization is given by V and two f electrons
on the same site cost an energy U due to Coulomb repulsion.

In the so-called Kondo regime relevant to HF systems the formation of a singly occupied
f -level is favored and charge fluctuations are minimized. To generate such a situation, the
singly occupied f -state f 1 has to lie lower in energy than the chemical potential, εf < µ.
On the other hand, it is necessary that the doubly occupied state f 2 lies above the chemical
potential such that εf + U > µ. In addition, the difference to µ should be rather large, i.e.
U ≫ V in order to suppress charge fluctuations. In the latter case it is only the residual
spin-1

2
degree of freedom which can interact with the conduction sea due to virtual charge

fluctuations [Col13]

e↑ + f 1
↓ ↔ f 2 ↔ e↓ + f 1

↑ and e↑ + f 1
↓ ↔ e↑ + e↓ ↔ e↓ + f 1

↑

where eσ denotes an electronic state with spin σ in the conduction band. These processes
have the energies ∆E ∝ U + εf in the first case and ∆E ∝ −εf in the second case. This
effective spin exchange happens in the singlet channel S = 0.

Schrieffer and Wolff had shown that the PAM maps to a much simpler model in the
so-called Kondo limit [Sch66]. The simple Kondo limit may be thought of either V → 0 or
|εf |, εf + U → ∞ and thus corresponds to the weak-coupling regime of the KLM, J ≪ W .
The Schrieffer-Wolff transformation results in eliminating the hybridization term in first
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order, and to second-order in V an effective exchange term with a coupling strength

J = V 2

(

− 1
εf

+
1

ǫf + U

)

results. The full effective Hamiltonian reads

HKLM = −t
∑

〈ij〉σ

c†
iσcjσ +

J

2

∑

i,αβ

~Si ·
(

c†
iασαβciβ

)

(3.2)

which is called the Kondo Lattice Model (KLM), see (Fig. 3.2). ~Si represents the residual
f -spin-1

2
and ~si = c†

iασαβciβ/2 is the local spin density of conduction band electrons.1

Figure 3.2: Sketch of the Kondo-lattice model. At each site of the conduction band (c)
the local spin density couples via an antiferromagnetic exchange interaction J to a local
spin-1

2 degree of freedom.

In HF systems the Kondo coupling J between ~S and ~s is always positive and thus acts as
an antiferromagnetic exchange interaction. For the case of half filling of the f band one
has εf = −U/2 and obtains J = 4V 2/U . Then, an exact mapping from the PAM to the
KLM is possible for any finite value of J in an extended Kondo limit [Sin02]: While keeping
V 2/U constant, one takes U → ∞ and V → ∞. From the numerical perspective, both
models become effectively equivalent already for U > 5W and one can actually extract
low energy properties of the PAM such as the quasiparticle residue from the much simpler
KLM [Don12].

3.1.1 Energy Scales and the Doniach Diagram

As the KLM results from a strongly correlated system, namely the PAM with a large
Coulomb repulsion among felectrons, it also constitutes a model of strongly correlated

1 In the given form it is possible to account for higher spins S = 1, 3

2
, 2, . . . also. For example, the S = 1

Kondo-lattice model is relevant to HF compounds containing Uranium. As a single conduction band
cannot fully screen the f -spins for S > 1

2
, the model is then referred to as the underscreened KLM in

the literature.
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electrons – even in the weak-coupling regime. Depending on the strength of J , the
effective interactions in the KLM at low temperatures can be classified by two different
regimes. In the case of weak coupling J ≪ W the Ruderman-Kittel-Kasuya-Yosida (RKKY)
[Rud54, Kas56, Yos57] interaction dominates the physics: It is a non-local indirect exchange
interaction between the localized f -spins and is generated in second order perturbation
theory of the KLM. In the opposite strong coupling limit, J ≫ W , the system is governed
by local Kondo-singlet formation which competes with the RKKY interaction.

Weak Coupling: The RKKY Interaction

The sharp Fermi surface in metals and a spin-dependent scattering potential lead to
Friedel oscillations [Fri52] in the spin-density around a magnetic moment ~S1 immersed in
the electron sea. The surrounding of a second magnetic moment ~S2 nearby is therefore
locally spin-polarized and ~S2 will lower its energy by aligning either ferromagnetically or
antiferromagnetically with it. The sign of the magnetic interaction depends on the spatial
distance r between magnetic moments and oscillates as function thereof. In HF systems
the RKKY interaction is typically antiferromagnetic and the characteristic dependence on
r and the Kondo coupling J is given by

JRKKY ∝ J2ρ0
cos(kF r)
(kF r)α

,

with a positive dimension-dependent number α and an additional exponential spatial decay
not included here. Strictly speaking, this form is valid only in the limit J → 0. It is far
from clear whether the RKKY picture extends to the limit of infinite dimensions in the case
of DMFT. However, it has been shown that in this limit the RKKY interaction depends
on the momentum derivative of the local susceptibility via [MH89, Pet07]

JRKKY ∝ J2 d
dx
χzz(x)

∣
∣
∣
∣
∣
x=0

with x = lim
d→∞

1
d

d∑

i=1

cos(qia) (3.3)

for a hypercubic lattice with lattice constant a and momenta qi. The behavior of JRKKY

in the limit d → ∞ is shown to be filling-dependent [Pet07]. For n ≤ 0.45 the effective
interaction is ferromagnetic, while there is a sign change for n > 0.45 to an antiferromagnetic
interaction. In this thesis calculations are only shown for n > 0.5, hence a weak Kondo
interaction typically yields an antiferromagnetic intersite coupling.
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Strong Coupling: Kondo-Singlet Formation

For a strong antiferromagnetic coupling it is evident that the conduction band electrons
tend to build a many-particle Kondo-singlet state with the f -spins. The formation of
Kondo singlets is associated with the single-ion Kondo temperature TK . In the dense lattice
of local moments the situation is qualitatively different to the case of diluted magnetic
impurities: While incoherent Kondo screening sets in at TK already, the spin scattering
develops coherence below a corresponding temperature T0 (usually T0 < TK) and the
resistance of the system drops down drastically, as in the case of CexLa1−xCu6 for a doping
x → 1 [Onu87]. The coherence below T0 also indicates the Fermi-liquid regime of the
renormalized heavy composite quasiparticles with a heavy mass. A special case occurs for
half filling, nc = 1: On average every c-electron is bound into a singlet with an f -spin (1/2)
and thus the system is insulating.

Bridging the Regimes: The Doniach Diagram

A qualitative understanding of the transition regime between weak and strong coupling
limits of the Kondo lattice was put forward by Doniach [Don77]. In the so-called Doniach
diagram (Fig. 3.3) a second order phase transition between the antiferromagnetic to a
Kondo-spin compensated groundstate was suggested. It results from the crossing of two
relevant energy scales in Kondo lattice systems, the aforementioned Kondo temperature
or Kondo-singlet binding energy TK ∝ exp (−α/J) and the RKKY interaction scale
ERKKY ∝ J2ρ0. As function of J both scales cross at a critical coupling Jc, below which
TK < ERKKY and the system orders antiferromagnetically at low temperatures, and above
which the coherent Kondo screening dominates (TK > ERKKY). Both energy scales are
proportional to the critical temperatures of the RKKY and heavy Fermi liquid phase,
respectively. At zero temperature the regimes are divided by a quantum critical point.

Quantum critical fluctuations around QCPs also influence the physics at finite temperatures:
Many HF systems show a peculiar non-Fermi liquid (NFL) behavior above a QCP. Often
the QCPs are indeed hidden by a superconducting dome [Ste12a] as sketched in (Fig. 3.3)
and thus the connection between quantum critical fluctuations and superconductivity is a
matter of current research [Onu13].

3.1.2 Static Mean-Field Description of the KLM

The picture of composite quasiparticles from hybridized bands is further elucidated in
a mean-field treatment of the KLM. Moreover, the static mean-field description serves
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Figure 3.3: Schematic Doniach diagram as function of exchange coupling J showing the
competing energy scales ERKKY (dotted green) and TK (dashed blue). At the point where
both energy scales cross, a QCP exists at zero temperature. It divides the antiferromag-
netically ordered (AF) phase from the Fermi-liquid (FL) regime. Quite often the QCP is
hidden by a dome of superconducting (SC) order above which a non-Fermi-liquid (NFL)
regime exists. T ∗ denotes the coherence scale below which a FL is formed.

as a reference to which DMFT results can be compared to. As the derivation of the
mean-field model for the Kondo lattice also includes some important physical insight, it
will be outlined in the following.

The spin operators in the Kondo-lattice Hamiltonian in Eq. (3.2) can be rewritten in a
fermionic representation

Sz
i = (nf

i↑ − nf
i↓)/2

S+
i = f †

i↑fi↓

S+
i = f †

i↓fi↑

i.e., one uses auxiliary fermionic fields f . This mapping is exact only if one adds the
constraint of single occupation of the f -levels at each site, nf

i = nf
i↑ + nf

i↓ = 1. Thus, the

charge of the auxiliary fermions is conserved, Qf
i = 1, and this representation of the f -shell
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local moments has a local U(1) gauge symmetry. The KLM can then be written as

HKLM = −t
∑

〈ij〉σ

c†
iσcjσ +

J

4

∑

i,αβ

(

f †
iατ αβfiβ

)

·
(

c†
iατ αβciβ

)

(3.4)

that is, the Kondo interaction now includes four-fermion terms. These can be decoupled
so as to obtain a mean-field theory for the KLM. In the standard approach, a functional-
integral representation of the KLM is introduced and a Hubbard-Stratonovich transform
in the particle-hole channel is carried out, whereby additional bosonic fields Vi, V

∗
i are

introduced [Rea83]. Thereafter the interaction term reads1

HV =
∑

iσ

[

Viσ

(

c†
iσfiσ

)

+
(

f †
iσciσ

)

V ∗
iσ + 2V V ∗J−1

]

.

In addition, the constraint Qf
i = 1 has to be dynamically enforced by a time-dependent

bosonic field2 λi that couples to (nf
i − Qf

i ). The full Lagrangian L(τ) in the functional
integral for the partition sum

ZKLM =
∫

D(c,c†)D(f,f †)D(V,V ∗)Dλ exp




−

β∫

0

dτL(τ)






then reads

L(τ) =
∑

iσ

[

f †
iσ (∂τ + λ) fiσ + c†

−σ (∂τ + εk) ciσ − λ
]

+HV .

This Lagrangian was shown to be invariant under a certain gauge transformation, the
Read-Newns transformation [Rea83]. The gauge phase can be absorbed in the field λ and
then V becomes real. By this Anderson-Higgs-type mechanism the f -degrees of freedom
are endowed with a physical charge and can be regarded as electrons. This process justifies
the standard picture of two hybridized electronic bands once the heavy Fermi liquid has
formed.

The above derivation may be interpreted as a sort of reverse Schrieffer-Wolff transformation
of the KLM to the periodic Anderson model, though without a Coulomb repulsion among
f -electrons. The philosophy is, however, quite different. The KLM serves as an effective
model for the PAM in the Kondo-limit, with an effective spin-1

2
per site originating from

electrons in f -orbitals. From this perspective, the picture of additional electronic states,
i.e., composite heavy fermions, appears to emerge naturally from the hybridization with
f -electrons. However, the spins in the KLM could also be of nuclear origin. In this case,

1 Note that the Vi are full fluctuating bosonic fields for the time being.
2 The λ-fields are actually dynamic Lagrange multipliers, see e.g. [Col13].
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the mean-field decoupling implies the generation of additional electronic states near the
Fermi energy from nuclear spins once the lattice Kondo effect takes place. In the single-ion
Kondo model this leads to a Kondo resonance at the Fermi energy, while in the dense
Kondo lattice the new states form the coherent heavy quasiparticle band.

In the following the hybridized-band picture is elucidated in a bit more detail. The
decoupling introduced above motivates a saddle-point approximation, that is, the fluctuating
fields V (τ) and λ(τ) are replaced by their static values at the saddle-point of the partition
function. The resulting mean-field Hamiltonian for the KLM reads

HMF
KLM =

∑

kσ

(εk − µ)nc
kσ + λ

∑

i

nf
iσ + V

∑

iσ

(

c†
iσfiσ + f †

iσciσ

)

+Ns
|V |2
J

. (3.5)

Since λ effectively constitutes an on-site energy, it is renamed by εf . Both V and εf in
principle have to be determined self-consistently. After a Fourier transform the Hamiltonian
can be rewritten in a matrix form (µ = 0 in the following)

HMF
KLM =

∑

kσ

(

c†
kσ f †

kσ

)
(

εkσ V
V εf

)(

ckσ

fkσ

)

(3.6)

and the quasiparticle energies can be easily obtained by diagonalizing this matrix. For
a finite hybridization V the resulting energies split in two branches, also referred to as
hybridized bandstructure of the KLM:

E±
k =

εf + εk ±
√

(εk − εf )2 + 4V 2

2
(3.7)

In (Fig. 3.4) the typical qualitative shape of quasiparticle bands in the paramagnetic KLM
according to Eq.(3.7) is shown. Essential quantities are a direct gap of width 2Veff, an
indirect hybridization gap ∆g and the renormalized chemical potential εf of the f -level.
The eigenvectors of the mean-field Hamiltonian Eq. (3.6) are mixtures of c- and f -degrees
of freedom, the weight of which is indicated in (Fig. 3.4) by color: The strongly dispersive
parts of the upper and lower band correspond to the conduction c-electrons (blue) while
the flat parts belong to f -electrons (green). Although the f -level itself is non-dispersive in
its origin, it gains a slight dispersion by hybridization. These flat and almost dispersionless
segments of the quasiparticle bands close to Ek ≈ εf correspond to the quasiparticles with
a strongly renormalized mass, i.e., heavy fermions.

In the hybridized-band picture, the insertion of electronic states in the conduction band
can be understood by noting that the intersection of the lower band with the Fermi
energy between the Γ - and M -point shifts towards k = (π,π). It thus yields a large Fermi
surface. A rigorous proof of this fact is far from trivial. While Luttinger’s theorem [Lut60]
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Figure 3.4: Visualization of hybridization in a typical renormalized quasiparticle band-
structure of the KLM in the mean-field picture. Left: Weight of c-states. Right: Weight of
f -states. The dashed line indicates the position of εf .

states that the Fermi volume of a metal is proportional to the fermionic particle density,
Vf ∝ nc + nf , which certainly applies to the PAM with a hybridization [Lan66], spin
degrees of freedom are not included. The localized spins in the Kondo lattice do, however,
contribute to the Fermi surface provided that Kondo screening is intact [Mar82]. Another
version of Luttinger’s theorem [Osh00] based on topological arguments proves this fact. A
large hole-like Fermi surface is thus always present in the paramagnetic phase of the KLM
with a finite antiferromagnetic Kondo coupling.

However, in the antiferromagnetic phase of the KLM a small Fermi surface is possible. For
weak coupling, the RKKY interaction prevails such that the local moments are effectively
decoupled from the conduction band electrons. Thereby, a transition from a particle-like to
a hole-like Fermi surface is induced upon increasing J . Approaching this transition from
the strong coupling regime, it is often called “Kondo breakdown”. From a more general
perspective it constitutes an example for an orbital-selective Mott transition [Voj10]. It
has been proposed, that an additional energy scale E∗

loc in the Doniach diagram separates
the two regimes [Geg08]. At zero temperature it marks a (f -) moment-localization phase
transition while at elevated temperature it is more to be understood as a crossover regime.
To the left of E∗

loc Kondo screening is incomplete and the local moments do not deliver a
crucial contribution to the Fermi volume. On the right of the E∗

loc line the local moments
delocalize and do contribute to a large Fermi volume. At T = 0 the position of E∗

loc

determines the nature of the QCP: If E∗
loc hits ERKKY at zero temperature, i.e., the AF

phase boundary falls together with the breakdown of the Kondo effect, the quantum-critical
fluctuations do include both the quantum fluctuations of the magnetic order parameter
and the ones of the setting-in or destruction of Kondo screening. This case is termed a
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local QCP. In the other case E∗
loc crosses ERKKY and the quantum-critical fluctuations at

the antiferromagnetic QCP are only the ones of the order parameter. The local moments
are delocalized in the part of the AF phase close to the QCP and the magnetic groundstate
of the system can be described as a spin-density-wave state. The QCP is thus called
spin-density-wave-type QCP.

3.2 Paramagnetic Properties of the Kondo-Lattice Model

The static mean-field treatment of the KLM gives some first insight into the nature of
heavy quasiparticles. As the underlying mechanism of heavy-fermion physics is, however, a
dynamic quantum many-particle effect, it is necessary to include quantum fluctuations for
a more accurate description. In this section results for the KLM obtained from DMFT in
combination with NRG are presented, where it is accounted for local quantum fluctuations.
At high temperatures and small to intermediate Kondo coupling the DMFT analysis of
the KLM well describes the system as consisting of localized moments [Ots09]. This result
fits well with the experimentally measured Curie-like susceptibility χ ∝ T−1 at elevated
temperatures. With decreasing temperature the local moments gradually disappear and
get immersed to the sea of conduction electrons. Heavy quasiparticles result.

The heavy quasiparticles manifest in a large Fermi surface according to Luttingers theorem,
i.e., the spin degrees of freedom are included in the Fermi volume. For a two-dimensional
dispersion and zero temperature, this is shown for the KLM with J/W = 0.15 in (Fig. 3.5).

Figure 3.5: Left: Fermi surface of the KLM for J/W = 0.15 at a fixed filling n = 0.9
obtained by DMFT results. Right: Fermi surface for J/W = V 2/(Wεf ) = 0.15 and
n = 0.9 in the mean-field description.
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The Fermi surfaces obtained by DMFT+NRG are qualitatively the same as those obtained
in a simple mean-field treatment, as shown in (Fig. 3.5). However, the DMFT+NRG
method allows access the low energy scale and dynamic quantities such as the density of
states or self-energies more accurately. Some of these detailed Fermi-liquid properties of
the KLM are discussed in the following.

3.2.1 Fermi Liquid Properties

In the normal paramagnetic state the KLM realizes a heavy Fermi liquid at low temperatures
for n 6= 1 with a corresponding Fermi-liquid or coherence scale T0. The coherence scale is
typically much smaller than the single ion Kondo temperature TK in the metallic regime
[Pru00] and increases with J , that is, for larger J the temperature up to which the Fermi
liquid exists is also higher. In a local self-energy approximation, the Green function can be
approximated near the Fermi surface as renormalized Fermi liquid

Gk(ω) ≈ Z

ω − Z [εk − µ+Σ(0)]
.

The corresponding renormalization factor Z or quasiparticle weight can be extracted from
the local self energy by

Z =

(

1 − dReΣ(ω)
dω

∣
∣
∣
∣
∣
ω=0

)−1

and yields a measure of the inverse effective mass m∗ of the quasiparticles, Z = m/m∗.
The coherence scale T0 can be easily extracted by T0 = W · Z, W being the bandwidth.

In (Fig. 3.6) the DOS of the KLM away from half filling (n = 0.9) is shown for three
different Kondo couplings J/W = 0.2, 0.3, 0.4. The pseudogap width reflects the coherence
scale T0 which grows with increasing J . The exact behavior of T0 as function of J is shown
in the inset of (Fig. 3.6). For very small couplings J → 0 the scale T0 depends exponentially

on both J and the bare c-DOS, T0 ∝
√

J/W exp (−α(n) ·W/J) [Bur00, Pru00]. The factor
α(n) is only weakly n-dependent. For large Kondo couplings J/W > 0.5 the J-dependence
of T0 significantly deviates from this Kondo-like form and tends to saturate in the limit of
an infinite Kondo coupling.

Keeping J fixed and sweeping the filling n one observes a behavior of the DOS as in (Fig.
3.7). At half filling n = 1 the system is an insulator in the sense that the DOS is fully
gapped at the Fermi surface. This behavior stems from Kondo-singlet building at each
lattice site. Away from half filling the DOS drops down right at the Fermi energy and the
pseudgap persists as a residual feature. In the inset it is shown that the known dependence
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Figure 3.6: DOS of the KLM for J/W = 0.2, 0.3, 0.4 and a filling n = 0.9. The width of
the pseudogap slightly above the Fermi energy reflects the coherence scale T0 shown in the
inset: At small couplings T0 grows exponentially as function of J (exponential fit function
in orange).

T0 ∝ nec·n [Pru00] is recovered. The lower the filling, the more T0 is suppressed and the
steeper the drop in the DOS at ω = 0. Close to quarter filling the large slope results in an
excessive increase of the DOS at ω ≤ 0. The pseudogap is less marked for low fillings due
to exhaustion of conduction electrons available for screening. In this region n . 0.5 the
KLM typically orders ferromagnetically [Pet07].
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Figure 3.7: Close-up of the DOS for the KLM with J/W = 0.2 at several fillings. Inset:
Exponential behavior of the coherence scale T0 as function of filling.

Figure 3.8: Filling dependence of the quasi-
particle residue in the KLM with J/W = 0.4.

The situation very close to half filling devi-
ates from the exponential form as function
of n, cf. (Fig. 3.8). T0 has a maximum
around n = 0.99 and drops down to zero
at half filling since the system is a Kondo
insulator there. The transformation of the
gap at half filling to a pseudogap for fi-
nite doping is thus not completely abrupt
but rather smooth in a very small region
0.99 < n < 1.
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3.2.2 Influence of Additional Interactions

The KLM is most often studied without any additional interactions both for the sake of
identifying only the most relevant physical aspects and applicability of many analytical
and numerical methods. Nevertheless, in real systems there are many interactions adding
up to the antiferromagnetic exchange coupling in HF systems. Here, we focus on the –
probably most important – two local interactions among conduction electrons: the Coulomb
repulsion and the coupling to bosonic modes, effectively mediating a retarded interaction
among electrons.

Coulomb Repulsion

The Coulomb repulsion among conduction band electrons is typically neglected in the KLM.
It is nevertheless physically present and can well be of importance, especially in 3d-4f -
systems where the 3d states can contribute in the conduction band, e.g., in Ce-compounds
containing Co [Pat10]. Although this contribution may be weak, it can significantly
change electronic properties. The correlated Kondo-lattice model, or sometimes called
Kondo-Hubbard model, accounts for a local Coulomb repulsion in the conduction band:

HCKL = HKLM + U
∑

i

ni↑ni↓ (3.8)

With respect to the HF physics, a conduction electron repulsion is expected to affect
the competition between Kondo-singlet formation and magnetic order due to RKKY
interactions. An on-site repulsion supports the tendency towards localization while the
Kondo-singlet formation delocalizes the f spins. For a two-dimensional KLM it was shown
that for small U and J the on-site and inter-site spin correlations depend non-monotonically
on U [Sia12]. Even more important, the lattice coherence scale T0 was reported to increase
monotonically with U and to reach a plateau in the large U limit. As T0 = W ·Z = W · m

m∗

this corresponds to a reduced effective mass. An increase of T0 should thus bring along
an increase of the pseudo-gap width in the DOS. In (Fig. 3.9) this behavior is confirmed.
There the paramagnetic DOS of the KLM with an additional repulsion U > 0 among
the conduction band electrons is shown. For large U , the spectral weight in the DOS is
shifted to a Hubbard peak around ω ≈ U . A small peak slightly above the upper limit
of the pseudogap remains and marks the heavy quasiparticles which are retained in the
renormalized band.

In fact, a local Coulomb repulsion of the order of bandwidth reinforces Fermi liquid behavior
and leads to an increase of the renormalization factor of roughly 200%, see inset of (Fig. 3.9).
The stronger localization of the conduction band electrons results in a stronger interaction
between local spin-density and Kondo spins; charge fluctuations on the conduction band
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Figure 3.9: Development of the DOS of the correlated KLM as a function of Coulomb
repulsion U and with a fixed J = 0.2. Inset: Corresponding renormalization factor as
function of U .

site, which compete with local spin fluctuations, are increasingly suppressed with larger
values of the repulsive U . From this point of view it is also clear, that an attractive
interaction among conduction band electrons, should lead to the opposite case: an increase
of charge fluctuations and thereby a suppression of spin fluctuations and the corresponding
energy scale T0.

Holstein Phonons

An attractive interaction among conduction electrons can be induced by a coupling of
them to bosonic degrees of freedom, such as phonons, excitons or plasmons1. Phonons
can induce such phenomena like superconductivity [Fro50], or the large volume collapse in
Cerium which characterizes the structural γ − α phase transition [All82]. The electron-
phonon coupling in real materials can be incorporated in the DMFT+NRG approach in an

1 For the sake of simplicity we will refer to the bosonic mode as “phonon” in the following.
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idealized way only [Geo96, Bul08]. The Holstein model [Hol59] captures such an electron
phonon coupling for dispersionless Einstein modes with frequency Ω0, which are in addition
harmonic and do not alter the hopping t:

HHolstein = −
∑

〈ij〉,σ

tij
(

c†
icj + h.c.

)

+ g
∑

i

xi (ni↑ + ni↓) +
MΩ2

0

2

∑

i

x2
i +

1
2M

∑

i

p2
i

The phonon coordinate and its momentum at site i are denoted as xi and pi, respectively.
The local oscillator displacement couples via g, the electron-phonon coupling constant,
to the on-site electron density. In the following the oscillator mass is set to M = 1, for
simplicity. The spring constant is then κ = Ω2

0 and measures the energy per unit length
squared being stored in the bosonic field. A more simple form of the Hamiltonian can
be achieved by using the displacement operator xi =

(

bi + b†
i

)

/
√

2Ω0 of the bosons, such
that

HHolstein = −
∑

〈ij〉,σ

tij
(

c†
icj + h.c.

)

+ g
∑

i

(

bi + b†
i

)

(ni − 1) +Ω0

∑

i

b†
ibi .

The bosonic degrees of freedom can be integrated out in the path integral formalism, such
that an effective interaction

Ueff(ω) =
2g2Ω0

ω2 −Ω2
0

(3.9)
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Figure 3.10: Effective interaction, Eq. (3.9), of the Holstein model with g = 0.2 for Ω0 =
0.5 (blue) and Ω0 = 1.0 (red). The dashed lines show the effective attractive interaction in
the corresponding anti-adiabatic limit.
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results [Fre93, Bau10a]. The bosonic bath may therefore be thought of as an effective
retarded interaction among the conduction electrons.

This effective interaction is shown in (Fig. 3.10). For large ω it actually tends to zero while
for ω → 0 it is indeed attractive, Ueff = −λ with λ = 2g2/Ω0. At ω = ±Ω0 the effective
interaction diverges and changes sign from repulsive to attractive. In the anti-adiabatic
limit Ω0 → ∞, keeping λ constant, the Holstein model thus maps onto the attractive
Hubbard model where the effective interaction between electron becomes instantaneous
Ueff(τ) → Uδ(τ). In the opposite adiabatic limit Ω0 → 0 the phonons become static in
the sense that its coordinate does not change in time, hence U(τ) → U is constant. The
Holstein model interpolates between these two limits [Fre93] in which the system exhibits
either superconducting order in the anti-adiabatic limit, or a charge density wave (CDW)
order in the adiabatic limit. In the absence of long range order and for large λ ≫ t, the
model shows a tendency towards bipolaron formation with a binding energy Ueff = −λ
[Bau10b].

The coupling of conduction electrons to Holstein phonons in the KLM has just recently
gained attention [Nou09, Bod11]. In the PAM this type of coupling is extensively discussed
in [Rac10]. In the anti-adiabatic limit the KLM with phonons maps to a KLM with
a negative-U correlation among the conduction electrons. Kondo screening and the
coherence scale T0 are efficiently suppressed in this case [Bod10] due to the increasing
charge correlations. The observed suppression is actually stronger than exponential. The
effect of phonons away from the anti-adiabatic limit is similar. As T0 is a rather small
energy scale, it is already substantially suppressed by a weak electron-phonon coupling
[Rac10, Bod11]. This interplay eventually results in a breakdown of the lattice Kondo effect
when the energy scale of charge fluctuations is larger than the coherence scale, Ueff > T0,
or even due to the formation of polarons for large electron-phonon couplings.

In (Fig. 3.11) the DOS of the Holstein-Kondo-Lattice and the corresponding quasiparticle
residue Z for a fixed Kondo coupling J = W/5 and fixed Ω0 = W/2 is presented as function
of the electron-phonon coupling g. The phonons clearly lead to a reduction of the width
of the pseudogap close to the Fermi energy and to a reduction of the overall effective
bandwidth. At energies higher than the reduced bandwidth additional features appear
with increased g, reflecting enhanced charge correlations around ω ≈ Ueff.
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Figure 3.11: DOS of the KLM (J/W = 0.2) with an Einstein-phonon mode with fre-
quency Ω0 = 0.5W for different electron-phonon couplings g. Inset: Corresponding renor-
malization factors for a larger range of electron-phonon couplings.



4 The Antiferromagnetic Phase of the

Kondo-Lattice Model

Antiferromagnetic order is frequently found in strongly correlated electron systems such as
cuprates or HF materials at low temperatures [Sac12]. Quite often this AF phase appears
close to a superconducting instability. For example, the undoped cuprate La2CuO4 is an
antiferromagnetic insulator with a Néel temperature roughly at room temperature. Doping
this compound with a small amount of hole carriers, e.g., by Ba, it becomes superconducting
[Lee06]: La1.85Ba0.15CuO4 was the first high-Tc superconductor discovered by Bednorz and
Müller in 1986 [Bed86]. An example of an antiferromagnetic HF metal is the compound
CeCu2Si2 which is extremely sensitive to small variations in stochiometry [Ste12b]. In
samples with a tiny Cu deficit (‘A-type’) AF order is observed and with a tiny Cu excess
(‘S-type’) the material becomes superconducting at low temperatures. For the nominal
1:2:2 stochiometry, a first-order transition from the AF to the superconducting state is
observed by lowering the temperature [Ste79].

AF order in HF systems can be of either localized or itinerant type. For small exchange
couplings, the weak antiferromagnetic order can qualitatively be explained by ordered
localized moments, which are effectively decoupled from the conduction band but polarize
the conduction electrons. This type of antiferromagnetism corresponds to a small Fermi
surface since only the conduction-band states contribute to the Fermi volume. The strong
coupling regime, on the other hand, is more intricate since the magnetic moments are more
of an itinerant character and contribute to a large Fermi volume. The AF ordering then
occurs in the heavy quasiparticle system. These itinerant “heavy-fermion antiferromagnets”
typically tend towards incommensurate magnetic order. It is of high interest to classify
antiferromagnetically ordering HF compounds and AF order emerging in corresponding
models. The most interesting case is, of course, when a single compound can be tuned by a
control parameter like doping, pressure or magnetic field to both types of AF order. This
is intimately related to the type of the AF QCP as outlined in the last chapter.

On the theoretical side, the Doniach diagram already predicts the existence of an antiferro-
magnetic phase for materials which can effectively be described as Kondo lattices. It does,
however, not give any hint to the actual nature of AF order within the model. Actually, the
KLM shows a variety of magnetic phases [Lac79, Faz91] such as Néel antiferromagnetism,
incommensurate magnetic phases and even a ferromagnetic (FM) phase is observed at

47
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strong doping. A peculiar feature in the FM phase was just recently observed [Pet12]: At
strong doping the KLM orders ferromagnetically only in the majority channel while the
minority electrons exhibit an insulating behavior. This sort of cooperation of ferromag-
netism and Kondo singlet formation was termed spin-selective Kondo-insulator. Since the
FM phase emerges in a region of the phase diagram complementary to a superconducting
phase in the KLM [Bod13], FM ordering is not covered in this work.

Within DMFT the AF phase of the KLM has been studied in two and infinite dimensions
[Ass99, Pet07]. Calculations in the Néel phase with a bipartite staggered magnetization
can be easily carried out in single-site DMFT by introducing a bipartite structure [Zit02].
Incommensurate magnetic phases are, however, hard to stabilize in the simple DMFT
approach [Pet09]. Nevertheless, there are at least indications to incommensurate ordering
such as an increasing instability of the AF ordered phase or even an oscillating magnetization
within DMFT iterations [Pet09, Bod11]. Both the nature of AF order itself and the possible
competition with superconductivity is of large interest for an extended Doniach diagram.

In Sec. 4.1 DMFT+NRG results for the antiferromagnetic Néel phase of the half-filled
KLM at zero temperature are presented. The presence of a recently observed resonance in
the DOS is shown and related with the magnetization of conduction-band electrons. The
next section 4.2 extends the discussion to the doped system close to half filling, where a
metal insulator transition is observed as function of Kondo coupling. The insulating state
is very fragile and found to be destroyed by small finite temperatures. The transition from
a local-moment antiferromagnet with a small Fermi surface to an itinerant antiferromagnet
with a large Fermi surface is discussed and related to the type of the QCP in the KLM.

The work in section 4.1 was initiated by Rok Žitko, who first observed the “spin resonance”
in the conduction electron DOS in the AF state and provided the NRG code [Ž]. Part
of the work in section 4.2 has been published in Journal of Physics: Condensed Matter
[Bod11] and therefore it may be, that some parts of the corresponding section resemble
the manuscript [Bod11]. The work was a collaboration with Rok Žitko, Robert Peters and
Thomas Pruschke.
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4.1 Half Filling: The Antiferromagnetic Kondo Insulator

In the AF phase it is necessary to retain a bipartite (A-B-) lattice structure and spin-
dependence in the DMFT. Due to the symmetry XA,σ = XB,σ̄ for spin-dependent quantities
X in the Néel AF phase it is sufficient to solve the effective two-site problem in a single
spin-resolved NRG calculation. Throughout the chapter, the NRG calculations within
each DMFT iteration are done with z-averaging [Ž09b], z = 16, a discretization parameter
Λ = 2.1, N = 1000, . . . ,6000 kept states, and with the full density-matrix approach [Wei07].
As the case of half filling is most stable within single-site DMFT, it is discussed first. At
n = 1 the KLM is an insulator which orders antiferromagnetically (AFI) below a critical
coupling J . Jc, as expected from the Doniach diagram. Examples for the spin-resolved
DOS in this AFI state are shown in (Fig. 4.1).

At half filling, the DOS for the majority spin (green) is fully symmetric to the one for
the minority spin (red) and their sum yields the total spin-averaged DOS ρtot = ρ↑ + ρ↓,
which is also shown in (Fig. 4.1). The regime for small J . 0.1 can be fully explained by a
Hartree approximation [Zit02]; in the majority-spin DOS (green) one observes a square-root
singularity at the lower gap edge and a remnant of the power-law behavior at the upper gap
edge. These characteristics begin to vanish upon increasing the Kondo coupling starting
from J/W = 0.1. For a larger J/W = 0.25 the insulating gap has roughly doubled but the
singularities are no longer present at the gap edges. One observes a new feature, instead,
which is referred to as spin resonance or side resonance (SR) in the following; enlarging J ,
it splits from the gap edge and moves deep into the band. The shift of the SR initially scales
with J . The majority-spin DOS features a spin resonance with a sharp low-energy edge
within the ω < 0 part. The minority-spin DOS exhibits a corresponding dip feature and
vice versa for positive frequencies. The SR can also be observed in the total spin-averaged
DOS at this position, since the resonance is more pronounced than the dip.

The staggered magnetization of the conduction band is defined as mc = 〈Sc
z〉 and similarly

mf = 〈Sf
z 〉 is the polarization of the local moments. Due to the antiferromagnetic coupling

J > 0 both have a different sign. The sum mtot = mc +mf quantifies the net magnetization.
For the weak-coupling case shown in the top panel of (Fig. 4.1) it is mc = −0.111 and
mf = 0.469, that is, the local moment system is strongly polarized while the staggered
magnetization of the band states is rather weak. Indeed, one expects the largest mf → 1/2
and an unpolarized conduction band, mc → 0, for small J → 0 since the system of the
ordered local moments is then almost decoupled. For stronger coupling around J/W = 0.25,
instead, mf is reduced by more than 50% while mc is only slightly less than in the case
of J/W = 0.1. In general, the absolute value of mc is mostly only a fraction of mf , but
seems to become comparable close to Jc. This leads to a strongly reduced total moment
for J . Jc which can be understood due to the increasing tendency towards Kondo-singlet
formation. In fact, the critical Jc & W/4(= t) lies roughly in the region where J exceeds
the hopping parameter t. The magnetizations as a function of J are shown in (Fig. 4.2).
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Figure 4.1: Spin-up (green), spin-down (red) and total (black) DOS of the KLM in the
AF ordered phase for different couplings J/W = 0.1, 0.15, 0.2, 0.25 at half filling. mc and
mf are the corresponding staggered magnetizations of the conduction (c) band electrons
and local moments (f).
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Figure 4.2: Magnetizations for the Néel-ordered KLM at half filling.

From (Fig. 4.2) the critical coupling is determined as Jc ≈ 0.275W . Due to the opposite
signs of mc and mf , the total staggered magnetization is monotonously decreasing as J is
increased towards Jc. In the region of J where mc is maximal, i.e. around J/W ≈ 0.175,
the spin resonance in the DOS is the most pronounced, cf. (Fig. 4.1).

4.2 Antiferromagnetism away from Half Filling

Away from half-filling the DMFT suffers from convergence problems in the AF phase of the
KLM. In order to obtain a reasonable convergence, the DMFT needs to be supplemented
with Broyden mixing [Ž09a]. Even then, in certain parameter regimes, which are likely to
be connected to a spin-density-wave groundstate, it is not possible to stabilize the DMFT
calculations. While the small-J region can be stabilized for a filling of n = 0.9, it becomes
increasingly hard to get converged results for J/W & 0.1. It is nevertheless possible to
obtain converged results for certain other fillings with the same J .

In order to cover the range of relevant couplings, the DOS is plotted for two different
fillings n = 0.9 and n = 0.94 in (Fig. 4.3). The essential features in the spectral functions
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are expected to be only quantitatively different for the two close-by filling factors. For
J/W = 0.075 the remnant AF (pseudo-) gap is confined by asymmetric square-root
singularities, the one stemming from the majority-spin part (green) being damped. The gap
position has shifted to finite positive frequencies in contrast to half filling. At ω = 0 instead,
a tiny resonance feature for spin-up and a dip for spin-down develops. This very feature
becomes actually more pronounced upon increasing the Kondo coupling to J/W = 0.125:
The DOS of the majority electrons shows a high and narrow resonance very close to the
Fermi energy, ω . 0, cf. inset of (Fig. 4.3). This singularity seems to be accompanied
by an adjacent shoulder which drops down to zero weight for ω → 0−. For non-negative
frequencies a gap is seen in the spin-up DOS. For the minority electrons, the DOS exhibits
only little spectral weight at the peak position and does also feature a gap for ω ≥ 0. The
total DOS thus classifies the system as an insulator for n = 0.9 and J/W = 0.125 since
the Fermi energy is gapped. At a small finite temperature T/W = 0.001, the insulating
state is, however, lifted to a metallic state1, as studied in Ref. [Hos13]. Opposed to the
emerging resonance close to ω = 0, the AF gap diminishes to a small dip-hump feature
from J/W = 0.075 to J/W = 0.125. The structures become more apparent in the panel
for J/W = 0.175, though n = 0.94 in this case. In the temperature-induced metallic case
the strong resonance close to the Fermi energy might be interpreted as a spin-selective
coherence effect. Indeed the effective masses and thereby coherence scales T0 of both spin
channels can differ by several orders of magnitude in the metallic case of finite temperatures
for this parameter regime [Hos13]. Finally, for J/W = 0.225 the features are developed
on an even larger scale: The shoulder adjacent to the SR is clearly visible in the majority
DOS. In the minority-electron DOS one can now observe a semi-circle-like spectral weight
below the resonance. The gap above the Fermi energy grows with increasing J and the
remnant AF singularities are almost washed out.

The magnetization of local moments given in (Fig. 4.3) drops by more than 50% from
mf = 0.457 to mf = 0.167 by increasing J/W = 0.075 to 0.125. Neither this fast decrease
nor a phase transition from metallic to insulating is expected from the half-filled case. In
(Fig. 4.4) the different magnetization observables for a fixed filling n = 0.9 are shown
as function of J . Indeed, the magnetizations seem to confirm a transition between two
different AF regimes: mf starts with the maximal polarization at weak coupling and is
only slightly reduced up to J/W = 0.075. In a small parameter window up to J/W = 0.1,
it is reduced by more than 50% – while mc saturates for J . 0.1. Due to the small scale of
mc, the total magnetization essentially follows the large mf . In the region 0.1 < J ≤ 0.125,
converged results are obtained for occupations differing by ±0.2% from n = 0.9. This
may lead to the somewhat wiggling magnetizations shown in the figure. Nevertheless, the
results definitely hint at a phase transition at J/W = 0.1 within the AF phase. The DMFT
does not converge in the parameter region 0.125 . J/W . 0.25, but for J/W ≥ 0.25 AF
order definitely vanishes.

1 The corresponding data are not shown here.
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Figure 4.4: Magnetizations in the KLM for n = 0.9. The local-moment antiferro-
magnetism breaks down for J/W ≈ 0.1 and a metal-insulator transition is observed at
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half filling are also shown for comparison in light gray.

For even higher Kondo couplings, 0.125 < J < Jc, it was not possible to stabilize the DMFT
in the AF phase for the fixed filling n = 0.9 up to Jc/W . 0.25. For J = 0.25 a vanishing
magnetization is found, such that Jc ≈ 0.25W . Despite the lacking convergence in the
region of interest, 0.125 < J/W < Jc, the DMFT calculations hint at an incommensurate
AF order therein. This instability is likely to be lifted by an additional Heisenberg exchange
coupling JH between the local spins [Hos13]. In Ref.[Hos13], a transition from the local-
moment AFM to itinerant heavy-fermion AFM is observed at Jc,2 = 0.16W for a filling
nc = 0.95 and a small JH/W = 0.025. These parameters are consistent with a larger Jc,2

compared to the present case. A kink in the staggered magnetization at Jc,2 was also
confirmed in Ref. [Hos13], which develops to a rather steep drop in mtot for T → 0.

Measurements of the Hall coefficient in the HF material YbRh2Si2 show a steep change
upon varying an external magnetic field. Lowering the temperature, this crossover becomes
much sharper and converges to the field-induced AF QCP [Pas04, Geg08]. The extrapolated
zero-temperature jump is inconsistent with a SDW-type QCP where the Hall coefficient is
continuous across the QCP [Nor03]. The results rather prove a local QCP in this material,



4.2 Antiferromagnetism away from Half Filling 55

i.e., the Fermi surface collapses together with the onset of AF order. In variational
Monte Carlo calculations for the Kondo lattice such a discontinuous change is found for
a filling nc . 0.82, but for larger fillings there appear two separate types of transition
[Wat07]: Decreasing J from a large value, the ground state changes from paramagnetic to
antiferromagnetic with an intact Kondo effect, that is, a large Fermi surface. This transition
is identified as second-order and the Hall-coefficient changes continuously. Lowering J
further, the AF ordered groundstate changes its Fermi surface topology from “large”
(hole-like) to small (particle-like) in a first-order transition [Wat07], accompanied by a
discontinuous change in the Hall coefficient.

Within the DMFT treatment of the KLM the AF QPT at half filling was identified to lie
inside the HF regime [Hos10] and does not feature a localization of the f spins. Away from
half filling, the situation changes: Including an explicit small RKKY interaction JH in the
model, an itinerant-localized transition of the local moments is found well inside the AF
ordered regime [Hos13]. The latter is thus divided into weak itinerant antiferromagnetism
in the conduction band for small J , and a heavy-fermion antiferromagnet for larger J . It is
thus of interest if this behavior persists for JH = 0 in the pure KLM. From the T = 0 results
shown in (Fig. 4.3) and (Fig. 4.4) one can expect such a transition at Jc,2/W = 0.1 for
n = 0.9, but these results are not totally conclusive. However, from the results in [Hos13]
the transition can be expected roughly at this coupling strength since the somewhat higher
value of Jc,2/W = 0.16 is likely due to a slightly higher filling, finite temperature and an
additional intersite coupling JH .

More evidence for the type of AF phase is given by inspection of the momentum-resolved
spectral function Aσ(εk, ω). In the Bethe lattice the definition of a momentum is lacking,
but one can resolve the general energy ε-dependence. The corresponding spectral functions
to the majority-electron DOSs (upper panels in (Fig. 4.3)) are shown in (Fig. 4.5). The
overall structure for J/W = 0.075 looks rather linear with broader and more pronounced
peaks for ω < 0. For ω ≈ 0.1 the remnant AF pseudogap is still visible as a lack of spectral
weight. In the close-up the emerging resonance at ω = 0 is clearly visible as a bended
part of the upper half (ω > 0) of the band. It is actually a precursor of the hybridized
bandstructure, but intersects the Fermi energy such that a small Fermi surface results.
The situation changes completely for J/W = 0.125 where the hybridized bandstructure
and thereby the heavy Fermi liquid fully developed. Although Aσ(ε, ω) now exhibits an
insulating gap, it is lifted by a small finite temperature (cf. discussion above) and results
in an itinerant metallic antiferromagnet, cf. (Fig. 4.4). These results clearly hint towards
the spin-density-wave nature of the QCP in the Kondo-lattice model. Similar results are
published in [Bod11].
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Figure 4.5: Spectral functions Aσ(ε,ω) for spin-up electrons (KLM, n = 0.9). Left col-
umn: J/W = 0.075. Right column: J/W = 0.125. Note the logarithmic color scale.

4.3 Summary

Generic examples of the Kondo-lattice model in the antiferromagnetic phase at T = 0 were
investigated for the Bethe lattice in infinite dimensions by means of DMFT in combination
with NRG. While the magnetization behavior of the KLM is known, the spectral detail of
the newly observed “spin resonance” was not discussed in the literature before. At half
filling its strength correlates with the polarization of the conduction band. Close to half
filling, AF order persists in a metallic or even insulating state at zero temperature: A
transition from the local-moment to itinerant antiferromagnetism is not observed at T = 0
but rather a transition from an AF metal to an AF insulator is found. This transition
happens when the bands are fully hybridized. The DOS exhibits then a resonance in
the majority channel very close to the Fermi energy at negative frequencies. Thus, the
insulating state is lifted by a small finite temperature which broadens the steep slope and
yields a finite spectral weight at ω = 0. The values of the DOS at the Fermi energy for each
spin channel can nevertheless differ by a factor of up to 30 for small finite temperatures.
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The AF order in the KLM typically appears close to half filling where the AF QCP is,
within DMFT, identified to be of SDW-type. Since SDW-type QCPs are mostly hidden
by a superconducting dome, it seems promising to search for superconductivity in the
phase diagram of the KLM. A possibly important finding with regard to superconductivity
is the strong enhancement of the local magnetic susceptibility χloc at low temperatures
near the itinerant-localized transition, but well in the itinerant regime [Hos13]. Due to
the immediate connection between local and RKKY fluctuations, cf. Eq. (3.3), these
fluctuations may provide a “pairing glue” not only for isotropic, but also for anisotropic
superconductivity. Even in a single-site DMFT, where only s-wave superconductivity can
be captured, the search for superconductivity close to the localized-itinerant transition
surprisingly turned out to be successful [Bod13] and is discussed in the next chapter.





5 Unconventional Superconductivity in the

Kondo Lattice

In addition to extreme Fermi liquid properties, various phase transitions and symmetry-
breaking phases are observed in HF materials. They either occur within the heavy Fermi
liquid, as revealed by thermodynamics, or compete with it [Ste84, Loe07]. An example
of the former class is the SDW-type antiferromagnetic phase transition discussed in the
previous chapter. Detailed investigation of the ordered states uncovered them as being of
unconventional nature [Gre91]. This observation has been underpinned by the development
in the field over the past two decades which manifested in the discovery of a large number
of HF systems exhibiting curious quantum phase transitions, some of them recognized as
being closely connected to superconducting order [Ste01, Loe07].

HF superconductivity is usually found to emerge out of the HF liquid [Geg08] and not close
to local QCPs, which are accompanied by a breakdown of the Kondo effect. This observation
seems on the one hand plausible, since local magnetic moments and superconductivity can
only coexist under very restrictive conditions on the microscopic scale. Superconducting
order in HF systems should thus emerge when the local moments are “dissolved” in the
system of heavy quasiparticles and do no longer act as localized magnetic moments. On the
other hand, quantum critical fluctuations of the order parameter are also identified to be
responsible as the “glue” for Cooper pairing. They also appear at local QCPs, in addition
to quantum critical fluctuations of the Kondo breakdown and the Fermi surface transition.
From this point, it is not immediately obvious, why the type of QCPs provides such a
clear-cut criterion [Geg08]. The appearance of superconductivity in these compounds is a
rather unconventional feature since magnetic order seems to be inevitable for it to appear.
A conclusive experimental confirmation of this fact has just been accomplished recently: By
inelastic neutron scattering measurements in the prototypical HF superconductor CeCu2Si2
antiferromagnetic excitations are identified as the driving force behind superconductivity
close to the AF QCP [Sto11].

To theory, HF superconductivity is a rather long-standing challenge. To include su-
perconductivity, models for HF systems such as the KLM or PAM usually need to be
complemented by additional bosonic degrees of freedom [Raz84, Gre84] or new concepts
like anisotropic composite pairing in multi-channel Kondo-lattice models [Fli08, Fli10]. In
contrast, studies of the pure single-band Kondo-lattice or periodic Anderson model had

59
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not yielded conclusive evidence for superconducting ground states therein. Within DMFT,
a hint to a local even-frequency superconducting instability in the PAM was found in
[TZ98], though it is found to arise out of the normal state and not from a Fermi liquid.
Static mean-field descriptions of the KLM or PAM are also found to yield superconducting
solutions, either conventional pairing in the simple KLM [Gus00], or rather unconventional
superconductivity in the PAM [Mas13] or extended Anderson-Kondo lattice [How12]. The
validity of static mean-field treatments is, however, difficult to asses since fluctuations be-
yond mean-field pairing may destroy electron pairing. The DMFT and its cluster extensions
[Geo96, Mai05] map the lattice problem onto an impurity model, thereby loosing non-local
correlation effects beyond the spatial size of the impurity cluster. To properly describe
HF superconductivity within DMFT-based approaches, it is thus commonly believed that
either large enough clusters are required or even a bath in the two-particle channel has to
be included – which explicitly models a bosonic “glue” for superconductivity.

As a surprising finding during the course of this thesis, a robust s-wave superconducting
solution for the KLM within the DMFT+NRG approach has been found, without any
external glue [Bod13]. This SC phase is stable over a large region of the (n,J)-phase
diagram. Although being of s-wave type, the pairing is driven by local spin fluctuations and
the gap function is strongly frequency dependent. This novel type of pairing is thus highly
unconventional. Both the formation of heavy quasiparticle bands and strong local spin
fluctuations are identified to be a prerequisite for the superconducting order to emerge.

Section 5.1 starts with a general discussion of theoretical treatments of HF superconductivity
before the bandstructure in the SC phase of the KLM is studied by means of both static
and dynamical mean-field theory. In the following Sec. 5.2 dynamic and static properties
in the SC phase at T = 0 are studied in more detail. The focus is especially on the relation
between pair correlations and the heavy Fermi liquid. Results for finite temperatures
are shown in Sec. 5.3. Finally, in Sec. 5.4 the pair-mechanism for the present type of
superconductivity is identified as originating from local spin fluctuations.

Much of the content in sections 5.2 - 5.4 is published in Physical Review Letters [Bod13]
and some parts of this chapter may thus resemble the manuscript. The work was done in
collaboration with Rok Žitko, Matthias Vojta, Mark Jarrell and Thomas Pruschke.
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5.1 Superconductivity in the KLM

Early after the discovery of HF superconductivity theoretical attempts were made to
understand how a Cooper pair condensate can emerge out of the heavy Fermi liquid.
The theoretical studies included possible phononic origins of pairing in the Kondo lattice,
potentially connected to the Kondo volume collapse [Raz84, Gre84], or pairing of f electrons
in the Anderson model with a small attractive interaction among f electrons of unknown
origin [Ohk84]. It turned out, that even s-wave superconductivity in the f -system would be
anisotropic1: It can thus also lead to rather unconventional features such as a gap function
featuring line nodes on the Fermi surface [Ohk84].

Since HF superconductivity was early associated with an unconventional pairing mechanism,
it has in fact most often been assumed to appear among the f -electrons. Thus, the most
promising model on this route is the periodic Anderson model, sometimes modified such
that the f -electrons obtain a small dispersion εf

k around the average f -level εf , i.e., the
kinetic energy term for the f -electrons reads

Hf
kin =

∑

kσ

(

εf
k + εf

)

f †
kσfkσ .

The possibility of superconductivity in this Yoshimori-Kasai model [Yos83] has been studied
early after the discovery of the first HF superconductors CeCu2Si2 and UBe13 and gave first
theoretical insight into the differences of HF superconductivity to conventional BCS theory
[Tac84, Xu 87]. Some important issues of these studies should be noted here. It is assumed
that U, |Ef |, V are rather large such that the system constitutes a Kondo lattice but charge
fluctuations are still allowed. Moreover, it is assumed that Cooper pairing takes place
among f -electrons since the corresponding critical temperature seemed to be much higher
than for c-electrons.2 While in BCS theory a frequency cutoff at the Debye frequency ωD

is introduced, in HF systems the attractive interaction between the heavy quasiparticles is
limited to a frequency range up to the Kondo temperature, ω ∼ TK . Above TK , the Kondo
effect leads to a repulsion of the electrons. The replacement of ωD by TK yields a critical
temperature proportional to the Kondo temperature [Tac84]

Tc = 1.13 TK exp

(

− 1
gc/fρ0(0)

)

,

where gc/f is the renormalized BCS coupling constant for either conduction band electrons
or f electrons. The DOS of the conduction electrons at the Fermi energy is denoted by
ρ0(0). One would thus already expect a rather low Tc since typically TK ≪ ωD. Another

1 In two dimensions, an extended s-wave symmetry of the gap function is given by ∆s
k

=
∆s

0
(cos(kxa) + cos(kya)), where a denotes the lattice constant.

2 Recent theoretical studies of HF superconductivity in fact focused on c-f -pairing, see e.g. [Mas13].
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important difference to BCS theory is that the gap function is not equal to the order
parameter [Xu 87].

5.1.1 Static Mean-Field Description of HF Superconductivity

Before the discussion of superconducting order emerging in the dynamical mean-field
approximation for the KLM, it is instructive first consider the static MF treatment of
superconductivity in the KLM. The MF description of the KLM in the paramagnetic phase
has been introduced in chapter 3, cf. Eq. (3.5). The f degrees of freedom introduced
there mainly contribute to the flat and weakly dispersive parts of the band. In case of a
superconductor, these very parts of the band are of particular interest as will be shown
in the following. As a first simple model, a mean-field BCS-type pairing term can be
added to the Hamiltonian in Eq. Eq. (3.5) both in the conduction (c-) and f -band.
Another possibility is to add a hybrid c-f -pairing term ∆cf . The latter type of pairing
was recently proposed to explain s-wave superconductivity in HF systems [Mas13]. The
general mean-field Hamiltonian for superconductivity in the Kondo-lattice can be written
in a composite (c-f) ⊗ (particle-hole) structure:

HSC-MF
KLM =

∑

kσ

(

c†
kσ c−kσ̄ f †

kσ f−kσ̄

)








εkσ ∆c V ∆cf

∆c −ε−kσ̄ ∆cf −V
V ∆cf εf ∆f

∆cf −V ∆f −εf
















ckσ

c†
−kσ̄

fkσ

f †
−kσ̄









(5.1)

Although it should be noted that all three types of off-diagonal order lead to qualitatively
similar quasiparticle bands and gap structures, here the focus is, however, on a c-f -
pairing term. The corresponding bandstructure for a non-zero ∆cf is shown in (Fig. 5.1),
illustrating several new features in comparison to the paramagnetic case in (Fig. 3.4). First
of all, due to the introduction of hole degrees of freedom, the Hamiltonian matrix has four
eigenvectors and thus the number of quasiparticle bands is doubled. On the one hand,
a pair of narrow particle- and hole-like bands is present around the Fermi energy. They
originate from the formerly non-dispersive f -level εf . On the other hand, a corresponding
pair of wide dispersive bands stemming from the c-electrons is present. The introduction of
an off-diagonal superconducting order parameter (in this case ∆cf ) has two effects. First, it
introduces a full superconducting gap ∆0 around the Fermi energy. Secondly, it also gaps
the narrow flat bands from the upper and lower dispersive band, respectively, at Ek ≈ 0.1
in (Fig. 5.1). The corresponding “side-gap” will be referred to as ∆>. Heavy-fermion pairs
should appear as a pronounced weight in the flat particle and hole band close to the Fermi
energy, with a full gap ∆0. The connection of the gap ∆> to Cooper pairing is, however,
far from clear.

Actually, the gap ratio ∆0/∆> can be tuned by using different mean-field parameters
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Figure 5.1: Typical renormalized quasiparticle bandstructure of the paramagnetic KLM
on the two-dimensional square lattice in the mean-field picture. Left: Weight of c-states.
Right: Weight of f -states. The color intensity represents the amount of weight and gray
corresponds to zero weight.

∆c, ∆f and ∆cf , even to an almost vanishing ∆> by increasing ∆f to high values together
with a finite ∆cf . Due to quasiparticle scattering and finite lifetime effects, the gap ∆> is
also likely to be filled. Below, these structures will be investigated in more detail by means
of DMFT.

A similar effect in the bandstructure emerges in the AFM phase of the KLM (cf. Ch. 4),
where the mean-field Hamiltonian can be written formally equivalent to (5.1). There the
gapped structure of four bands in combination with finite lifetime effects eventually lead
to the observation of the spin resonance in the DOS, cf. (Fig. 4.1). However, due to the
non-zero imaginary part of the self-energy, ImΣ, the avoided crossing appears as a simple
crossing and the spectral density in-between is either enhanced or reduced, depending on
sign of ω and spin, which eventually produces the resonances. A similar observation can
thus be expected for DMFT results in the SC phase.
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Figure 5.2: Spectral function A(εk,ω) for the KLM in the SC phase at a filling n = 0.9
and with J/W = 0.2. A two-dimensional square-lattice DOS and dispersion is used for the
plot.

For a comparison of the dispersion obtained in a static MF treatment, a brief “preview”
to DMFT results shall be discussed at this point already. In figure (Fig. 5.2) a typical
spectral function Ak(ω) for the superconducting phase of the KLM at n = 0.9, J/W = 0.2
with a two-dimensional square-lattice DOS obtained via DMFT is shown.

One observes a hybridized bandstructure, fairly broadened by finite imaginary parts of
the self-energy. Right at the Fermi energy ω = 0, a full gap in the flat band of heavy
quasiparticles can be observed. Actually, the flat part of the lower band splits into particle
and hole components as in the structures obtained in a static MF description, cf. (Fig. 5.1).
The flat structures are rather sharp and thus resemble quasiparticles of a well-defined heavy
Fermi liquid. At frequencies ω ≈ ±0.15 the splitting between flat and strongly dispersive
parts is visible. For positive frequencies the gap ∆> is almost well developed, while for
negative frequencies it is almost completely smeared out except for a slightly visible lack of
spectral weight.

The mean-field description thus provides a good starting point to interpret the spectral
structures arising in DMFT results of the KLM, not only in the paramagnetic, but also in
the superconducting phase. Especially the splitting into a four-fold bandstructure observed
in the static MF description helps to clearly identify the blurred quasiparticle bands in the
DMFT-spectra.
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5.2 Superconductivity at Zero Temperature

At zero temperature, stable s-wave superconducting results over a large region of the
(n,J)-phase diagram are obtained within the DMFT+NRG approach. Its properties are
discussed in the following.
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Figure 5.3: (Published in Ref. [Bod13]) Left panel: N DOS (red, dashed) and SC DOS
(black) for n = 0.9 and several J . Right panel: Real part of the frequency-dependent gap
function. Note the different ω-scales.

In (Fig. 5.3) the conduction band density of states in both the paramagnetic normal
(N) and superconducting (SC) phase are shown for different Kondo couplings J at a
fixed conduction band filling n = 0.9. The only feature in the N DOS is a hybridization
pseudo-gap above the Fermi energy which signals the formation of heavy quasiparticles.
This formation can be rationalized within the picture of hybridized c- and f -bands as
discussed in section 3.1.2 already.

The SC DOS is richer in structure since two additional features appear in the SC phase.
First, a true BCS-like superconducting gap is present around the Fermi energy. It is limited
by well-developed singularities and grows with increasing J in the range of Kondo couplings
shown in the figure. Secondly, side-resonances are visible in the DOS at positions which
roughly scale with J . These structures are to a certain degree similar to the resonance
observed in the AF DOS, though somewhat less distinct. Interestingly, these resonances
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are the most pronounced in the same parameter region as the spin resonances are in the
AF case. In connection with superconductivity the appearance of side- or spin-resonances
in the DOS is usually observed in strong-coupling superconductivity [Sca66].

To conclusively identify the solution as superconducting, the appearance of a gap alone is
not sufficient, but rather the off-diagonal observables and dynamical quantities need to
be studied. One is the anomalous part of the self-energy, a finite value of which clearly
identifies the system as superconducting. It enters the definition of a frequency-dependent
superconducting gap function, usually used in Eliashberg theory:

∆(ω) =
Σ1(ω) + iΣ2(ω)

1 −Σ0/ω
. (5.2)

The Σi(ω) are the components of the self-energy matrix expanded in Pauli matrices,
Σ(ω) =

∑

α Σα(ω)τ α, α = 0,1,2,3, where τ 0 denotes the identity matrix.

The resulting real part Re∆(ω) of the gap function is symmetric as it is expected for
even-frequency superconductivity, see right panel of (Fig. 5.3). It is strongly frequency
dependent and shows sharp features which are broadened and shifted to higher energies
with increasing J . These peaks are locally point symmetric around the zeroes ω±

0 where
Re∆(ω) changes its sign. For frequencies higher than |ω0| it decays to zero within a fraction
of the bandwidth. Such a sign change of the gap function followed by a decay indicates that
the effective interaction among the paired quasiparticles turns from attractive to repulsive.1

In the case of heavy fermions it furthermore hints to an attractive interaction present
among the heavy quasiparticle band only; the resonance position roughly scales with J
and is located at energies closely above the pseudogap which resembles the quasiparticle
bandwidth. This supports above argument since the zeroes of the gap function coincide
with the minima of the side resonances – they mark the renormalized bandwidth of the
heavy quasiparticles to which the pairing is restricted.

Even more support for this argument can be obtained from the energy-resolved spectral
functions. In (Fig. 5.4) the SC spectral function A(εk,ω) is plotted in comparison to the
ε-integrated DOS ρ(ω) for J/W = 0.2 and J/W = 0.3. On a large scale, one observes a
hybridized bandstructure, which is the more pronounced the larger J is. For J/W = 0.2
the diverse structure close to the gap becomes visible for energies ω/W < 0.2. As it has
been observed above, the number of bands has doubled from two to four: Close to the
Fermi energy two separated flat bands appear. The gap between the two upper bands
and between the two lower bands, respectively, is smeared out by the self-energy and thus

1 Actually, a causal connection the other way around can be shown by means of a Bardeen-Pines
interaction. It simply extends the Coulomb potential such that it is attractive for a finite frequency
range around the Fermi energy, but repulsive otherwise. As a result, the corresponding gap function
exhibits a sign change exactly at the point where the effective potential changes sign, too [Col13].
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Figure 5.4: Spectral function A(εk, ω) and corresponding DOS ρ(ω) for J/W = 0.2 (top)
and J/W = 0.3 (bottom). Note that colors are scaled logarithmically as above.
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only a weak dip in spectral weight is visible. Importantly, the band splitting is located
exactly where the side resonances appear in the DOS.1 Around ε = 0, the spectral weight in
the upper part of the ω < 0 band is rather high and the corresponding structure becomes
increasingly sharp towards ω = 0, before it ends up in the singularities at the SC gap edge.
It can be seen that the structures close to the Fermi energy are mirrored at the ε-axis to a
certain degree, i.e., apart from different spectral weight these structures are particle-hole
symmetric (note the logarithmic color scale). This feature in the single-particle spectrum
is a result from weak Cooper pairing at energies higher than the gap edge.

It can be seen that the structures associated with superconductivity are limited to the
flat heavy-quasiparticle bands. The latter are, in turn, restricted to energies |ω| . T0. For
larger couplings such as J/W = 0.3 in (Fig. 5.4) the band-splitting at the side-resonances
is hardly visible in the spectral function anymore, since the larger self-energy contributions
smear out the side gaps more and more. The above arguments are also consistent with
the dispersion obtained in the static mean-field description, cf. (Fig. 5.1). In summary, it
can be concluded that a hybridized bandstructure with well-formed heavy quasiparticles is
a necessary prerequisite for the observed type of superconductivity in the KLM. Cooper
pairing is, in fact, limited to the heavy Fermi liquid.

As an aside, but quite interestingly, even for half filling a stable superconducting solution
is found in a small region 0.05 < J/W < 0.2. Examples are shown in (Fig. 5.5). SC
here emerges where the KLM is a Kondo insulator in the paramagnetic phase, which is
particularly interesting. Furthermore the superconducting “dome” lies well inside the AF
regime. For J/W = 0.15 it can be nicely seen that the singularities at the gap edge are
effectively suppressed. The corresponding anomalous expectation values Φ are, however,
roughly an order of magnitude smaller compared to n < 1. Numerical reliability can thus
not be absolutely ensured.

5.2.1 Static Properties and Zero-Temperature Phase Diagram

The zero-frequency limit Re∆(0) provides an estimate for the gap seen in the DOS. It
exhibits the same non-monotonic behavior as the true gap ∆sc, which, as function of J , first
increases up to J/W ≈ 0.5 and then slowly decreases again, cf. (Fig. 5.3). This behavior
is not necessarily the same as for the anomalous expectation value Φ = 〈ĉi↑ĉi↓〉 [Xu 87]. As
a static observable the latter nevertheless serves as a good simple quantity to explore the
parameter region in which a stable superconducting solution exists. The evolution of Φ
across the (n,J)-“phase diagram” is presented in (Fig. 5.6). At zero temperature a stable

1 It should be noted that the bandstructure is very similar to the half-filled case in the AF phase: Due to
the doubling of the unit cell, the number of bands doubles as well. The position of the spin resonance
there also coincides with the band splitting, cf. chapter 4.
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Figure 5.5: Left panel: N DOS (red) and SC DOS (black) for the KLM at half filling.
Right panel: Real part of the corresponding gap functions.

superconducting phase can be found in a large region of parameters (n,J). For all fillings
between n = 0.5 and n . 1 a lower threshold Jmin/W = 0.1 exists, above which the pairing
is stabilized. For lower values of J no stable superconducting solution can be found as the
anomalous quantities are that small that it is hardly possible to distinguish them from
numerical noise. A maximum of Φ is found for J ≈ 0.25 and n = 0.85, opposed to Re∆(0)
which increases up to J/W ≈ 0.5 before it slowly decreases again for larger couplings. In
region of the maximal Φ, however, the side resonances are also the most pronounced.1

Focusing on a fixed J/W = 0.2 a superconducting solution is found for fillings 0.45 < n < 1.
For larger J/W a finite order parameter Φ extends to even lower fillings.

A more detailed evolution of Φ along two cuts in the phase diagram, indicated by white
dashed lines in (Fig. 5.6), is shown in (Fig. 5.7). For a fixed filling n = 0.9 the evolution
of Φ is shown in the left panel. In addition, the evolution of the lattice coherence scale T0

is shown. However, there seems to be no simple connection between T0 and Φ. For small

1 A similar connection of the resonances to c-electrons is observed in the AF case: There they are the
most pronounced, where the magnetization of the conduction band – and not of the local moments – is
the largest.
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Figure 5.6: (Published in Ref. [Bod13]) Anomalous expectation value Φ as function of J
and n between quarter and half filling.

couplings Φ(J) seems to scale with T0. For strong couplings J > W/2, on the other hand,
the anomalous order parameter decays roughly as 1/J . The n-dependence of both Φ and
T0 is shown in the right panel of (Fig. 5.7) and does not reveal a simple dependence Φ(T0)
either.
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Figure 5.7: (Published in Ref. [Bod13]) Left panel (a): Φ and T0 as function of J at
fixed n = 0.9. Right panel (b): Φ and T0 as function of n at a fixed J/W = 0.2. The full
lines represent approximate dependencies of T0 on J and n, respectively (cf. Sec. 3.2.1).
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Competition with Magnetism

The superconducting order may compete with magnetically ordered states of the KLM.
Within DMFT, both antiferromagnetism close to half filling and a ferromagnetic phase at
small fillings are observed [Pet07, Ots09, Bod11]. These magnetic phases have, however,
a limited extent in both J and n. For example, at n = 0.9 AF order is only found for
J < Jc ≈ 0.25W [Bod11], cf. chapter 4. FM order is only found for n < nc ≈ 0.65
[Pet07, San02]. The region where a strong superconducting phase is found in (Fig. 5.6) is
complementary to the regions with magnetic order, although the phase boundaries seem to
overlap. The actual interplay or competition of AF, FM and SC in these regions is of high
interest and still an open question.

5.3 Finite-Temperature Behavior

Finite temperature properties of the superconducting state in the KLM are deeply inter-
esting, especially in order to obtain a critical temperature Tc at which superconductivity
completely vanishes. For accurate results at T > 0 within the NRG it is necessary to
use the full-density-matrix (FDM) approach [Wei07] in combination with z-averaging
[Ž09b]. In (Fig. 5.8) the temperature evolution of the SC DOS is shown for n = 0.9 and
J/W = 0.25, where SC is rather pronounced, cf. (Fig. 5.6). With increasing temperature
T the SC gap shrinks and the side resonances are depleted. Both observations reveal
reduced pair correlations. This is even more obvious by inspection of Φ(T ), shown in the
inset. Over a wide range up to T/W , Φ stays almost constant, while a further temperature
increase initiates a decrease in Φ. Close to Tc the anomalous expectation value finally drops
down with a rather steep slope. In this region the gap is also progressively filled and the
singularities at the gap edge get more and more depleted. Both the hybridization gap and
the side resonance move towards the Fermi level as T → Tc. Finally, for T > Tc, where the
system is in the normal paramagnetic state, only the hybridization gap is visible. This is
again a hint for the essential prerequisite of a HF state for local superconducting order in
the KLM, since it vanishes before the lattice Kondo-effect does.

The exact determination of Tc from the numerical data is challenging, since close to
Tc the signatures of superconductivity become as small as numerical noise. Also, the
convergence close to phase transitions is generally rather slow in DMFT due to critical
slowing down [Ž09a]. From the data in (Fig. 5.8) a Tc = 0.0036W is extracted at n = 0.9
and J/W = 0.25. This is well below the corresponding T0. More results at a fixed n = 0.9
are collected in Tab. 5.1 for several values J in the region where optimal conditions for
pairing seem to be fulfilled, cf. (Fig. 5.7). It is generally observed that Tc < T0, i.e., the
HF state is necessary for the emergence of SC. This leads to a strong suppression of Tc for
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J/W 0.2 0.25 0.3 0.4 0.5
T0/W 0.0200 0.0418 0.0658 0.1139 0.1548
Tc/W 0.0027 0.0036 0.0054 0.0058 0.0054
Φ(T = 0) 0.0160 0.0163 0.0174 0.0153 0.0140
Re∆(0)/W 0.0138 0.0165 0.0180 0.0193 0.0195

Re∆(0)/Tc 5.169 4.583 3.321 3.305 3.585

Table 5.1: Quantities characterizing the superconducting solution for n = 0.9 as a func-
tion of J in the region of optimal pairing conditions.

small J . On the contrary, the SC gap Re∆(0) is less sensitive to both J and T0 in this
regime: From J/W = 0.5 to 0.2 the gap changes only by roughly 15% while Φ is reduced
to half of its initial value. Another interesting quantity is the ratio Re∆(0)/Tc ≡ ∆/Tc.
In Tab. 5.1 these results are shown in the last row. The BCS-ratio of ∆/Tc ≈ 1.74 is
exceeded by a considerable factor between 2 and 3. Such values are actually observed in
HF superconductors [Sto11, Miz11], although there these values are interpreted by means
of a weak-coupling theory for d-wave pairing.
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T0/W = 0.0105 at T → 0 for the fixed parameters n = 0.9, J/W = 0.25. Inset: Evolution
of Φ with temperature. For T > Tc ≈ 0.0036W pair correlations are fully suppressed.
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5.4 Pairing Mechanism

The behavior of pair correlations expressed by Φ(J) and the pairing mechanism can,
at least in the strong coupling regime J > W , be understood perturbatively, cf. (Fig.
5.9). Therefore, a conduction-band filling n ≈ Nel/Ns . 1 of Nel electrons on Ns sites
is considered. In the strong coupling limit J/W → ∞ there are Nel Kondo singlets and
Ns − Nel unscreened local moments. Since the conduction electrons are itinerant, these
unscreened local moments can also be interpreted as spinful c-holes with a density (1 − n)
and a hard-core repulsion. They form a Fermi liquid with a corresponding coherence
scale T0 ∝ W in the strong coupling limit 1. For large but finite Kondo couplings virtual
excitations are allowed – the lowest one converts a singlet into a triplet a can be created
by hopping in the conduction band (cf. Fig. 5.9): If a spin-up electron of the right-hand
singlet tunnels to the intermediate site, a triplet state is virtually excited there. The excited
triplet can then decay via another neighboring hole – provided that its spin is opposite
to the other one. Antiferromagnetically ordered local (f -) moments do thus support this
mechanism. Altogether, this virtual second-order process leads to correlated hopping of
holes with an energy gain ∝ W 2/J . It binds two holes into a singlet state, cf. (Fig. 5.9).
The pairing occurs locally on the intermediate site, which is only shared by the holes in the
virtual triplet state. Hence, the local pairing is strongly retarded. After the two hopping
processes, the spin-down hole has moved by two sites from the left to the right across a
spin-up hole by exciting an intermediate triplet state.

Figure 5.9: Second-order hopping process responsible for pairing in the strong coupling
limit J > W . The c electron and local moment (f -) configurations on adjacent lattice
sites are depicted. The yellow ellipse represents a singlet of two electrons, the intermediate
triplet state is indicated by red arrows.

This pairing mechanism requires Kondo screening to be intact since it allows for the
existence of the virtual triplet state. Thus, it also applies to smaller J . The energy of the
virtual state may be approximated by the Kondo binding energy or coherence scale T0,
which directly explains the limiting fact Tc < T0 in the KLM. Moreover, in this picture it
becomes plausible that SC is more favorable close to half filling. At n . 1 Kondo screening

1 In turn, the impurity Kondo scale diverges proportional to J .
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involves conduction electrons while the Cooper pairs are comprised of c-holes. In the
“exhaustion limit” of small fillings, Kondo screening processes become less – T0 falls off
exponentially away from n = 1 – whereby also the second-order processes responsible for
pairing are less frequent.

5.5 Eliashberg Theory for Spin-Fermion Models

In this section the approach of magnetic Eliashberg equations including spin fluctuations
[Nor87, Nor88, Pla06] is applied to the KLM. It brings up another argument why local
spin fluctuations can serve as a “pairing glue” and drive superconductivity for the KLM in
DMFT. The section closely follows Ref. [Pla06] but is adapted to the KLM. It is started
with a general model that captures the interaction of electrons and spin fluctuations,

H =
∑

kσ

εkσc
†
kσckσ +

∑

k,σ,σ′

(

Vsf(k)
∑

α=x,y,z

Sα
k τ α

σσ′

)

︸ ︷︷ ︸

=:W sf
σσ′

(k)

c†
kσckσ′ . (5.3)

The Pauli spin matrices are denoted by τ α
σσ′ (α = x, y, z) and a local Kondo interaction

Vsf(k) ≡ J is assumed throughout this work. The second term can be written as

Hsf = J
∑

k

(

Sz
k

(

c†
k↑ck↑ − c†

k↓ck↓

)

/2 + S+
k c

†
k↓ck↑ + S−

k c
†
k↑ck↓

)

.

In order to account for superconductivity, the Nambu formalism for the corresponding
Green’s functions needs to be employed again. With the Nambu spinors Ψkσ(t) in the
Heisenberg presentation, the first equation of motion can be derived as

(ω1 − εkστ 3)Gk,σ(ω) = 12 +
∑

σ′

〈〈

W sf
σσ′(k)Ψkσ′ ; Ψ†

kσ

〉〉

ω
,

which is equivalent to the Dyson equation in the form

[

G
(0)
k,σ(ω)

]−1
Gk,σ(ω) = 12 + Σk,σ(ω) Gk,σ(ω) .

Comparing the former two equations, one obtains the self-energy as

Σk,σ(ω) =
∑

σ′

〈〈

W sf
σσ′(k)Ψkσ′ ; Ψ†

kσ

〉〉

ω
· [Gk,σ(ω)]−1 , (5.4)

which resembles the self-energy trick used in NRG, though in a k-dependent form here. The
higher Green’s function in (5.4) can now be differentiated over the second time argument
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t′ such that a second equation of motion is obtained:

〈〈

W sf
σσ′(k)Ψk,σ′ ; Ψ†

k,σ

〉〉

ω
=

〈〈

W sf
σσ′(k)Ψk,σ′ ;

∑

σ′′

Ψ†
k,σ′′

(

W sf
σσ′′(k)

)†
〉〉

ω

G
(0)
k,σ(ω)

It is assumed that no spin-ordering is present and hence the average 〈W sf
σσ′(k)〉 = 0 vanishes.

The self-energy can now be related to the irreducible part of the scattering matrix [Pla06],

Σk,σ(ω) =
∑

σ′,σ′′

〈〈

W sf
σσ′(k)Ψkσ′ ; Ψ†

kσ′′

(

W sf
σσ′′(k)

)†
〉〉irr

ω
.

It can be used to derive an approximate form of the self-energy, the off-diagonal part
of which is needed to derive a gap equation. The non-crossing approximation (NCA)
[Gre83, Kur83] yields a beneficial simplification. Within NCA, the propagation of fermionic
and bosonic excitations are assumed to be independent of each other, such that the
time-dependent correlation function can be decoupled:

〈

W sf
σσ′(k,t)Ψkσ′(t); Ψ†

kσ′′

(

W sf
σσ′′(k)

)†
〉

(5.5)

≈
〈

W sf
σσ′(k,t);

(

W sf
σσ′(k)

)†
〉〈

Ψkσ′(t); Ψ†
kσ′′

〉

(5.6)

= δσ′σ′′ |J |2
∑

α

〈

Sα
k (t);S† α

k

〉

τ α
σσ′τ

α
σ′′σ

〈

Ψkσ′(t); Ψ†
kσ′′

〉

(5.7)

The time-dependent correlation functions can be represented as

〈Ap(t);A†
p〉 =

∞∫

−∞

dω
e−iωt

1 ± e−βω

(

− 1
π

Im
〈〈

Ap;A†
p

〉〉

ω+i0+

)

,

such that the self-energy can be written as

Σk,σ(ω) =
∞∫

−∞

dzK(ω,z; k)
(

− 1
π

ImGkσ(z)
)

. (5.8)

The Kernel of the integral equation Eq. (5.8) has the same form as in Eliashberg theory
[Pla06]

K(ω,z; k) =
∞∫

−∞

dΩ
tanh z/2T + cothΩ/2T

2(ω − z −Ω)
λ(k,Ω) , (5.9)

with the spin-mediated electron-electron interaction

λ(q,ω) = |J |2
(

− 3
π

Im
〈〈

Sz
q;Sz

−q

〉〉)

=
3|J |2
π

Imχzz
q (ω) .
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It is assumed that no magnetic order is present so that the spin susceptibility χ±
q (ω) =

2χzz
q (ω) = −2

〈〈

Sz
q;Sz

−q

〉〉

ω
is isotropic. Note that the spin susceptibility corresponds to

the local (f−) moments.

In a local DMFT approximation all momentum dependencies in the Eliashberg-type Eq.
(5.8) can be neglected, since one deals with an effective single-site problem. Moreover,
assuming that the system constitutes a local Fermi liquid with renormalized parameters,
Hewson’s renormalized perturbation theory [Hew93a] can be employed. As the dynamic
Kondo spin is a dynamic quantity with a fluctuation spectrum with a support on the order
of the Kondo scale, the usual approximations in Eliashberg theory cannot be used: The
relevant energy scales are of order T0 and must not be put to the Fermi energy.

The off-diagonal component of Eq.(5.8) in the local approximation reads

Σ(12)
σ (ω + i0+) =

∞∫

−∞

dω′K(ω,ω′)
(

− 1
π

ImG(12)(ω′ + i0+)
)

(5.10)

with the kernel from Eq. (5.9) in a k-independent form. Eq. (5.10) constitutes the gap
equation which needs to be solved.

In Eliashberg theory with phonons the common approximation at this point is ω, ω′ ≪
Ω ≪ µ and hence ω ≈ ω′ ≈ 0, leading in the spin-fluctuation case to

K(ω,ω′) ≈ −3|J |2
2

tanh(ω′/2T )
∞∫

−∞

dΩ
Ω

( 1
π

Imχzz(Ω)
)

︸ ︷︷ ︸

Reχzz(0)

.

The positive contribution of Rezzχ(0) > 0 yields a negative and hence repulsive kernel
which will not yield an s-wave even-frequency solution. In HF systems, however, the above
approximations are not valid any longer: For the Fermi liquid the chemical potential shifts
µ −→ µ̃ ∼ T0 and therefore one may not assume ω, ω′ ≪ µ.

Assuming the system to be deep within the Fermi liquid phase, temperature dependencies
of Fermi-liquid parameters are negligible. For a frequency-independent gap one can put
ω = 0 and retains the frequency dependence of χ in the kernel,

K(0, ω′) ≈ 3|J |2
2

tanh(ω′/2T )
∞∫

−∞

dΩ
Imχzz(Ω)
−ω′ −Ω

(5.11)

= −3|J |2
2

tanh(ω′/2T )Reχzz(−ω′) , (5.12)
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where Reχzz(−ω′) = Reχzz(ω′). The full spin-fluctuation spectrum of the Kondo spin is
thus of high importance to the question whether superconductivity may arise or not.

In order to determine Tc from Eq. (5.10), it is necessary to determine

G(12)(z) =
Σ(12)(z)

(z + εk −Σ(22)(z)) (z − εk −Σ(11)(z)) − (Σ(12)(z))2 ,

where the the off-diagonal self-energy can, for a determination of Tc, be approximated by a
step function in the numerator, Σ(12)(ω + i0+) ≈ ∆Θ(J/2 − ω) ∈ R, and be set to zero in
the denominator [Bod13]. The diagonal self-energies are replaced by the approximations
for a local Fermi liquid [Hew93a], i.e., Σ(11),(22)(z) = Ṽ 2/(z + µ̃), where both the effective
hybridization Ṽ and µ̃ are of order T0. Further assuming µ̃ = 0 on can perform the k-sum
to obtain the local off-diagonal Green’s function,

G(12)(z) = iπ∆ρ0

(

z − Ṽ 2/z
)−1

,

where a flat DOS ρ0 of the conduction band and the wide-band limit is assumed. Putting
together all the above approximations in the gap equation, one obtains

1 = ρ0

J/2∫

0

dωK(0,ω)
( 1

ω − Ṽ
+

1

ω + Ṽ

)

(5.13)

as equation to determine the critical temperature Tc.

The kernel contains the real part of the spin-susceptibility, which is shown in (Fig. 5.10).
The kernel can be identified as negative for small ω, cf. Eq. (5.12), and would thus be
considered repulsive. However, the contribution from the off-diagonal Green’s function
within the approximation of a local Fermi liquid stemming from the Kondo effect is also
negative in the region |ω| . c0 · T0, c0 > 1. The total contribution from the interval
ω ∈ [0, T0] is thus positive. An important constraint arises from the pole at ω = Ṽ : The
sign change for ω > Ṽ requires Reχzz(ω) to decay rapidly on a scale T0.

Taking the numerical data for Reχzz(ω) from (Fig. 5.10) and varying Ṽ from Ṽ ≪ T0 to
Ṽ ≫ T0 the integral value in Eq. (5.13) can be determined and the result is shown in the
inset of (Fig. 5.10). In both limits the integral is negative and no solution exists. However,
in the intermediate regime a reasonably large region with Ṽ = O(T0) is present: A positive
value of the integral yields a non-trivial solution and thus the tendency towards pairing.

The analysis identifies two absolutely necessary requirements for SC in the KLM: well-
defined heavy quasiparticles with a small energy scale T0, i.e. hybridized bands, and a spin
fluctuation spectrum that decays on the same scale. Moreover, the above result predicts a
strongly reduced Tc for phonon-mediated HF superconductivity; the kernel there enters
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Figure 5.10: Reχzz(ω) ≡ χs(ω) in the PM phase of the KLM for J/W = 0.2 and n =
0.9. The red dashed line marks the zero. Inset: Value of the integral from Eq. (5.13) as
function of Ṽ at T = 0.

with a negative sign and thus the low-energy part of the integral tends to suppress pairing
instead.

Due to the uncontrolled approximations above, the discussion yields only a qualitative
foundation for s-wave superconductivity in the KLM. Nevertheless, the result is contrary
to common knowledge: Under the very special conditions met in heavy-fermion systems,
spin fluctuations can lead to s-wave superconductivity.

5.6 Summary

In this chapter a novel mechanism for superconductivity in heavy-fermion materials has
been identified; due to the Kondo exchange coupling, local spin fluctuations arise and
can act as retarded “glue” for s-wave pairing of heavy quasiparticles. At energies related
to the spin fluctuation spectrum, side resonances have been observed in the density of
states, similar to the antiferromagnetic phase. By means of a static mean-field description
these DMFT results have been interpreted as stemming from the separation between the
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flat quasiparticle bands close to the Fermi energy and the strongly dispersive part of
the bandstructure. The correlation between the side-resonance position and the effective
quasiparticle bandwidth has thus led to the conclusion that the superconducting order
appears among heavy quasiparticles only. Further DMFT results shown in this chapter
are, in fact, consistent with this conclusion. First, the observed gap function indicates a
sign change of the effective interaction exactly at the resonance position. Secondly, finite
temperature results revealed the general rule that Tc < T0, i.e. the heavy-fermion state
needs to be developed before superconductivity can appear in the HF liquid. Finally, both
the proposed pairing mechanism and an Eliashberg-type analysis support the picture of
low-energy local spin fluctuations gluing heavy quasiparticles together to heavy Cooper
pairs.





6 Extensions of the Kondo-Lattice Model:

Superconducting Properties

The simple Kondo-lattice model is an extremely simplified minimal model for HF systems.
Nevertheless, it captures the essential low-energy properties of HF systems and exhibits
rather rich physics in ordered phases as presented in the previous chapters. It is thus
a good basis to investigate basic mechanisms being responsible for antiferromagnetism
or superconductivity. However, the complexity of real HF superconductors requires the
inclusion of additional interactions, such as a Coulomb repulsion among conduction electrons
or the coupling to phonon modes. In section 3.2.2 it has already been shown how such
additional interactions influence the low-energy scale. An on-site Coulomb repulsion
enhances the coherence scale T0 while the attractive interaction mediated by a local phonon
mode strongly suppresses this scale. In the previous chapter it has been shown that the
scale T0 is closely related to superconductivity and that a well-developed HF state is a
prerequisite for the Cooper pairs. One can thus expect a rather strong influence of these
additional interactions on the presence and strength of a superconducting condensate.
Another line of research aims at uranium-based HF superconductors, where the KLM with
a higher local moment, S = 1, provides a minimal model to describe the physics of the 5f 2

configuration of uranium ions [dV91, Sto12].

In this chapter, the influence of the aforementioned interactions on the superconducting
state in the KLM is discussed. Due to the large parameter spaces only some prototypical
results are shown. First, a local Coulomb repulsion among the conduction electrons is taken
into account, as discussed for the paramagnetic state in Sec. 3.2.2. In the same way, the
inclusion of an Einstein-phonon mode locally coupled to the conduction electron density is
investigated in the next section. At the end of this chapter, results for the superconducting
phase of the KLM with a spin S = 1 are presented.
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6.1 Stabilized Pairing in the Correlated Kondo-Lattice Model

The influence of an additional on-site repulsion U on the paramagnetic state has already
been discussed in section 3.2.2. The quasiparticle residue Z and coherence scale T0 increase
monotonically with U , reflected in a growing pseudogap width. As shown in the last
chapter, the superconducting state depends sensitively on T0. A superconducting state only
emerges above a minimal value of T0 and the pair correlations are the most pronounced in
a certain order of magnitude of T0. The local on-site pairing is expected to be suppressed
by a local Coulomb repulsion.

However, as the unconventional superconducting state in the KLM originates from local spin
fluctuations, its interplay with a local repulsion is more subtle than a simple suppression.
The dependence of the anomalous expectation value Φ = 〈c↑c↓〉 and the gapwidth ∆gap

on U is presented in the inset of (Fig. 6.1). The filling n = 0.9 and Kondo coupling
J/W = 0.2 are fixed. While the general trend of Φ is a decrease with U , a peculiar feature
arises between U/W = 0.1 and U/W = J/W = 0.2. There the anomalous expectation
value displays a non-monotonous behavior and a local maximum around U = J . It further
illustrates the unconventional nature of the superconducting state. This feature is likely to
be related to local spin fluctuations, but a detailed explanation can unfortunately not be
inferred from the standard expectation values of the system. In the previous chapter, local
pairing in the simple KLM is identified to appear among heavy quasiparticles. Due to the
mixed c-f -character of these quasiparticles, a reduced on-site pair expectation value of the
conduction electrons does thus not necessarily correlate with a reduced superconducting
gap in the DOS, as long as Φ is finite. This is underpinned by the results for ∆gap in
the inset of (Fig. 6.1): While Φ decreases, ∆gap does actually increase monotonically and
saturates around U ≥ W . This behavior can be understood as follows. An increasing local
repulsion suppresses on-site charge fluctuations due to hopping and the local spin-density
of conduction electrons becomes more of a local spin-1/2 character close to half filling.
Thereby, local spin-fluctuations are enhanced and c-f -singlet states favored – both are a
necessary ingredient for pairing.

The dynamic gap function in (Fig. 6.1) offers more insight to the pairing. The low-
frequency range of Re∆(ω) has been identified to be responsible for pairing among heavy
quasiparticles. It changes sign at the effective quasiparticle bandwidth and quickly decays
at higher energies for U = 0. By increasing U up to the bandwidth, Re∆(ω) becomes
primarily broadened. Together with T0, the sign change shifts to higher energies. Even
its value at ω = 0 attains slightly higher values for larger U , which is consistent with an
increased gapwidth. For large U/W = 1.0, an additional zero in the gapfunction emerges
at high energies of order U .

The development of the superconducting state can additionally be traced by the evolution
of corresponding spectral functions. The spectral functions on the complete energy scale
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Figure 6.1: Real part of the dynamic gap function for several U and fixed filling n = 0.9
and Kondo coupling J/W = 0.2. Inset: Development of Φ = 〈c↑c↓〉 and the superconduct-
ing gap ∆sc with increasing Coulomb repulsion U .

for U/W = 0.2, 1.0 are shown in (Fig. 6.2), while (Fig. 6.3) shows a closeup around the
Fermi energy and the superconducting gap. On the overall scale, an increased U broadens
especially the upper band, but also leads to a more incoherent structure in the lower band,
whereas the latter is relatively fixed at its position. The upper band, on the other hand, is
shifted to higher energies due to the Coulomb repulsion and leaves some incoherent weight
around ω ≈ 0.20W for large U , cf. the closeup for U/W = 1.0. The most interesting
development can be observed in the closeups around the Fermi energy. The flat and sharp
quasiparticle bands at the gap edges are, for larger U , increasingly bended around ε = 1.0.
This behavior reflects a reduced effective mass compatible with the increase of T0. Thereby
the upper part of the flat band respectively the quasiparticle peak acquire more spectral
weight, i.e., a larger fraction of heavy quasiparticles can take part in the superconducting
condensate and the gap grows up to a saturation value.

In summary, the locally induced pairing of conduction electrons is – apart from a small
local maximum – suppressed by a local Coulomb repulsion U , as expected. Nevertheless,
the gap width increases with U , which may be interpreted in terms of c-f -pairing and
increased local spin fluctuations.
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Figure 6.2: Spectral functions for the KLM (n = 0.9, J/W = 0.2) in the SC phase with
repulsive U/W = 0.2 (top) and U/W = 1.0 (bottom). The color scale is the same as in
(Fig. 5.4).
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Figure 6.3: Closeups of (Fig. 6.2) on a smaller energy scale around the Fermi energy.
The color scale is the same as in (Fig. 5.4).
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6.2 Destabilized Pairing by Holstein Phonons

The influence of an electron-phonon coupling by a Holstein term has been discussed for the
paramagnetic phase in Sec. 3.2.2: The coupling to an Einstein mode does actually strongly
suppress the coherence scale T0 and associated spin fluctuations. This suppression is even
stronger than exponential for large electron-phonon couplings. In the strong-coupling
regime it is thereby even stronger than the enhancement by Coulomb repulsion. The
influence of a local phonon mode with frequency ω0 and electron-phonon coupling g on the
superconducting state can thus be expected to be rather strong. The behavior of Φ and
∆gap as function of g is shown in the inset of (Fig. 6.4). The suppression of T0 results in a
decrease of pair correlations and in the reduction of the gap width. For larger electron-
phonon coupling it is again difficult to stabilize the solution against the formation of a
charge-ordered state. It can thus not be clarified whether the pair correlations completely
vanish at a critical gc, or if it exhibits a local minimum and the unconventional pairing
switches to a conventional phonon-mediated nature.
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Figure 6.4: SC gap function for the KLM at n = 0.9, J/W = 0.2 with a Holstein term
(ω0/W = 0.5) for different electron-phonon couplings g/W = 0, 0.1, 0.2, 0.3. The color scale
is the same as in (Fig. 5.4).
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However, from results for an attractive U it can – at least for the anti-adiabatic limit of
the Holstein-Kondo lattice – be inferred, that another BEC-like superconducting solution
emerges for larger g: In the KLM with an attractive U , we find a superconducting solution
with intact Kondo screening and a comparatively small order parameter for small |U | < J ,
while for large |U | ≫ J Kondo screening is almost completely suppressed and a BEC-like
state with a large superconducting order parameter evolves. From this perspective, it
would not be expected that superconductivity is completely suppressed but rather that its
origin changes from spin fluctuations to phonons.

The presented results are somewhat surprising and do again illustrate the unconventional
nature of the superconducting state in the KLM: An attractive interaction actually results
in a suppression of pair correlations. Since the pairing stems from local spin fluctuations,
it is actually not that unexpected on a second glance. The attractive interaction acting in
the charge sector reduces spin fluctuations, which are a prerequisite for pairing in the KLM.
Furthermore, the Eliashberg-type analysis also predicted that phonon-mediated pairing
does not yield a solution to the gap equation for HF superconductors. The properties
of Cooper pairing can be further characterized by the gap function shown for several
electron-phonon couplings in (Fig. 6.4). Increasing g has two effects: First, the zeros
corresponding to the effective bandwidth shift to smaller energies for higher couplings. This
observation is consistent with a reduced coherence scale T0. Secondly, additional zeros in
frequency space are induced. They probably reflect an effective interaction which changes
sign more than once. Since a decay of Re∆ is observed at even larger energies and not
directly close to the zeros, this might be interpreted as a mixture of different attractive
interactions which operate on different energy scales. However, the relevant low-energy
scale on which the Kondo exchange interaction induces an effective attraction among the
heavy quasiparticles is strongly reduced by enlarging g.

The spectral functions presented in (Fig. 6.5) further illustrate the influence of a Holstein-
term. For a small g/W = 0.1, the structure almost equals the case of g = 0, except for
slightly narrowed structures. In the regime, where the electron phonon-coupling strongly
suppresses the coherence scale, the effects become clearly visible. The hybridization gap is
strongly quenched, and the side-resonances become increasingly sharp and compact on a
reduced effective bandwidth. The superconducting gap is also reduced. At higher energies
the spectrum is rather incoherent. In summary, it can be stated that the unconventional
pairing mediated by local spin fluctuations is suppressed by a large coupling g since the
effective quasiparticle bandwidth, within which the pairing occurs, is increasingly reduced.
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Figure 6.5: Spectral function A(ε, ω) and corresponding DOS ρ(ω) for the KLM with
a Holstein term (ω0/W = 0.5) with g/W = 0.1 (top) and g/W = 0.3 (bottom). The
filling n = 0.9 and Kondo coupling J/W = 0.2 are the same for both. Colors are scaled
logarithmically as in (Fig. 5.4).
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6.3 The underscreened Kondo lattice

The KLM can be extended to local moments with a higher spin, e.g., S = 1, which is
applicable to some uranium-based [Per07] or neptunium-based [Tho12] HF compounds.
The description is justified, if the 5f -electrons are well localized and most of the ions are
in a 5f 2-configuration and form a S = 1 state. In general, the 5f -electrons in actinide
compounds can be localized, itinerant, or of a mixed nature in between, depending on
the actual material. Although the underscreened KLM may not provide a general model
for actinide-based HF compounds, it is nevertheless interesting to study the higher spin
version of the KLM for two reasons. First, Kondo screening in a single-channel S = 1
system is incomplete since only a spin-1/2 can be screened at each site. It is thus referred
to as underscreened Kondo lattice. Two screening channels are necessary for a complete
screening. A second interesting point is that it therefore allows for the coexistence of
Kondo screening and magnetic ordering phenomena [Per07], whereas in the single-channel
spin-1/2 KLM they typically compete.

Here the focus is on the superconducting phase of the underscreened KLM, which is indeed
found to be stable. A comparison of several properties of the underscreened KLM and
the simple KLM with S = 1/2 is presented in (Fig. 6.6) for both the paramagnetic and
superconducting phase. The parameters are n = 0.9 and J/W = 0.3. The figure parts (b),
(d) and (f) in the right column show results for the paramagnetic phase. In part (b) the
pseudogap in the paramagnetic DOS for S = 1 is rather broad and reflects an enhanced
energy scale T0 of the heavy quasiparticles. Moreover, the DOS in the vicinity of the Fermi
energy displays a steep step-like part, which is roughly follows the DOS for S = 1/2. This
“edge” is similar to the case of low filling factors in the spin-1/2 KLM, where underscreening
effects may also play a role. In line with a larger coherence scale for a higher spin, the
singularity in the self-energy moves to a higher frequency, cf. (d), (f). In the imaginary
part (f) a little bit more structure is observable around the Fermi energy, especially a small
hump close to the large peak. However, the spectral features in both cases are qualitatively
rather similar, except for the larger coherence scale for S = 1. The latter is expected
from the known enhancement factor in T0 ∝ (NJ)1/N · exp[−1/(NJ)] for a spin S = N/2
[Col13].

In the superconducting phase, cf. left column of (Fig. 6.6), the qualitative differences in
the diagonal self-energy are neither very pronounced. The SC DOS displays a smaller
gap in the high-spin case and the side-resonances vanish. A similar DOS is obtained for
S = 1/2 and a larger Kondo coupling. It can thus be attributed to an enhanced coherence
scale T0, too. Another fact underpinning this argument are the shifted zeros of both the
off-diagonal self-energy (g) and the gap function (h). The latter observation is indicated
by dashed lines and can be interpreted as an enlarged effective bandwidth, within which
an attractive interaction is present among the heavy quasiparticles. The evolution of the
anomalous expectation value Φ = 〈c↑c↓〉 as function of J is shown in part (i). It is generally
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Figure 6.6: Comparison of properties of the KLM with S = 1 (red) and S = 1/2 (black)
for fixed parameters n = 0.9 and J/W = 0.3: SC DOS (a) and N DOS (b); correspond-
ing real (c), (d) and imaginary parts (e), (f) of the diagonal self-energy; real part of the
anomalous self-energy (g) and gap function (h) in the SC phase; (i) static anomalous ex-
pectation value Φ = 〈c↑c↓〉 as function of J .

less pronounced for S = 1 and sets in at a smaller J compared to S = 1/2. For large
couplings, Φ decreases roughly proportional to 1/J .

Similar conclusions can be drawn from the spectral function in the superconducting phase
of the underscreened KLM, cf. (Fig. 6.7). For a small coupling J/W = 0.1 the band
splitting and the corresponding side resonances are visible on a small energy scale around
ω = 0, while the singularities at the gap edges are suppressed. The system is very sensitive
to a variation of J due to the enhancement factor of T0: Already an increase to J/W = 0.2
completely broadens the spectrum and leaves a DOS with almost washed-out side resonances
and no visible splitting of the bands.
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Figure 6.7: Spectral function A(ε, ω) and corresponding DOS ρ(ω) for the underscreened
KLM with J/W = 0.1 (top) and J/W = 0.2 (bottom). The color scale is the same as in
(Fig. 5.4).





7 Conclusion and Outlook

In this thesis, the combination of DMFT and NRG was used to investigate superconductivity
and antiferromagnetism in the Kondo-lattice model. The DMFT+NRG method is applied
at the expense of loosing information about non-local correlations, while pairing in CeCu2Si2
and probably some other heavy-fermion superconductors seems to be mediated by non-local
spin fluctuations [Sto11]. Hence, it had not been clear before, if superconductivity can
emerge from local correlations only. This question was affirmed in the present thesis.

The analysis of the paramagnetic state at zero temperature in chapter 3 reviewed the
description of the electronic system as a Fermi liquid of heavy quasiparticles. Within
DMFT+NRG a coherence scale T0 can be identified for the heavy Fermi liquid. The
known dependencies of T0 on the filling n of the conduction band and on the Kondo
coupling J were reproduced. Moreover, the influence of a local Coulomb repulsion in the
conduction band and a coupling of conduction electrons to a bosonic Einstein mode were
investigated. While the repulsion actually leads to an increase of T0, thereby enhancing
local spin fluctuations, a local boson-mediated attraction strongly suppresses T0.

Besides these additional interactions, the heavy-fermion state itself is rather fragile against
an intersite RKKY interaction, which also arises as a second-order process in the simple KLM
without adding an explicit intersite term to the Hamiltonian. The DMFT+NRG method
can simply be extended to handle antiferromagnetic Néel order. In the antiferromagnetically
ordered phase at zero temperature and half filling, the Néel state was found to be stable
for small couplings up to a critical Jc/W ≈ 0.275. A peculiar feature arises in the density
of states: We observe a “spin resonance” at energies of ωsr ∼ ±J/2. These resonances are
the more pronounced, the higher the conduction band electrons are polarized – hence they
are quite likely related to spin fluctuations. Close to half filling, the AF order persists
in a metallic state for small Kondo coupling, or in an insulating sate for higher J . In
the insulating state away from half filling, a resonance in the DOS was found in the
majority-spin channel close to the Fermi energy. This insulating state is, however, very
fragile and lifted by finite temperatures to a metallic state. In the latter case a transition
from a local moment antiferromagnet to an itinerant heavy-fermion antiferromagnet is
found within DMFT [Hos13], which is supported by the results obtained in this thesis. The
itinerant antiferromagnetic phase is associated with incommensurate AF order, that is, the
AF quantum critical point in the KLM is of spin-density-wave type. The strongly enhanced
spin fluctuations close to the critical point motivate the search for spin-fluctuation mediated
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superconductivity.

As a main result of the present thesis, such a superconducting state at zero temperature was
found to be stable in a large parameter regime within the DMFT+NRG approach. The pair
correlations are indeed the most pronounced in the region of the parameter space, where
AF order breaks down. Although only even-frequency singlet s-wave superconductivity can
be treated within the utilized approach, the superconducting state was actually found to
be closely related to local spin fluctuations, which act as retarded “glue” for s-wave pairing
of heavy quasiparticles. This is a novel mechanism for superconductivity in HF systems.
Similar to the antiferromagnetic case, resonances were observed in the density of states at
energies related to the spin-fluctuation spectrum. These resonances were interpreted by
means of a static mean-field description as a separation of the flat quasiparticle bands from
the strongly dispersive part of the bandstructure. Such a structure is also observed in the
spectral functions obtained by DMFT. Therefore, we drew the conclusion that the pairing
appears among the heavy quasiparticles. This conclusion is underpinned by sign changes
of the dynamic gap function at the very frequencies, where the resonances respectively the
band splitting is observed. In addition, the observed rule that the critical temperature Tc

for the superconducting state is generally lower than the coherence scale T0, indicated that
the heavy-fermion state is a prerequisite for pairing in the Kondo-lattice model. Moreover,
the ratio ∆gap/Tc of the gapwidth and critical temperature is strongly enhanced over the
universal BCS ratio. This fact is associated with a non-phononic origin of the attractive
interaction. Surprisingly, the range of both ∆gap/Tc and Tc itself, which is of the order of a
few Kelvin, roughly agree with experimental results. In summary, superconducting state
was identified to be highly unconventional.

Further evidence for a local spin-fluctuation-mediated pairing was provided by two comple-
mentary viewpoints. First, an illustrative retarded pairing mechanism via virtual triplet
excitations was proposed from strong-coupling arguments. Secondly, an Eliashberg-type
treatment in combination with local Fermi-liquid approximations yielded a non-trivial
solution of the gap equation, i.e., Tc > 0, provided that a HF liquid is present and that the
spin fluctuations decay rapidly on a small energy scale.

We further found that the influence of additional interactions on the superconducting state
does not follow conventional behavior. The effects of these interactions on quasiparticle
pairing are effectively characterized by their influence on the coherence scale T0. A
local Coulomb repulsion admittedly suppresses the local pairing in the conduction band
but enhances the superconducting gap in the density of states. If superconductivity is
interpreted in terms of c-f -pairing, this might be understood as an increasing f -character
of the Cooper pairs. In fact, spin fluctuations and thereby the pairing mechanism are
supported by a local repulsion. Another important interaction is the electron-phonon
coupling by a Holstein term. Its effect on the unconventional superconducting state is
rather unexpected: An increasing electron-phonon coupling strongly suppresses the spin-
fluctuations and thereby the pairing mechanism instead of enhancing the pair correlations.
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In spectral functions of the KLM this behavior becomes apparent by a reduced effective
bandwidth of the heavy quasiparticles. The unusual effects of both additional interactions
underline the unconventional nature of s-wave superconductivity in the KLM.

The pairing mechanism still holds for a higher spin S = 1 in the KLM. There we found
essentially a qualitative agreement of the superconducting state with the S = 1/2 case,
apart from enhancement factors with respect to the coherence scale. As the underscreened
Kondo-lattice features the coexistence of the Kondo-screening and magnetic order [Per07],
and since the proposed pairing mechanism originates from the Kondo effect, the S = 1
KLM constitutes a potential candidate for the coexistence of antiferromagnetism and
superconductivity. However, this issue remains a challenge for future research.

The arising spin fluctuations close to the AF critical point enhance pair correlations
among heavy quasiparticles, which require an intact Fermi-liquid state. This finding would
underline a clear-cut criterion for superconductivity above QCPs in HF systems: Usually,
HF superconductivity is not found above local QCPs, where the Kondo effect is critically
destroyed [Geg08]. Within the Kondo-lattice model, superconductivity requires a Fermi-
liquid state and hence the Kondo effect to be intact. A “Kondo-breakdown” QCP would
thus not feature unconventional superconductivity mediated by local spin fluctuations
at the righthand side of the QCP. Both are necessary, spin fluctuations as “glue” and a
underlying Fermi liquid of heavy quasiparticles. However, a single HF compound has been
found recently, in which superconductivity seems to arise from fluctuations associated
with a “Kondo-breakdown” QCP, namely CeRhIn5 [Par11]. The scenario proposed in the
present work, does certainly not apply for superconductivity close to local QCPs.

The presented results raise several questions, which remain to be addressed in the future.
As the Kondo-lattice model describes the effective low-energy physics of the periodic
Anderson model in the Kondo limit, a superconducting state should also be obtained in
this very limit of the PAM. In the PAM it would be possible to study the interplay of pair
correlations with charge fluctuations, which play an increasingly important role away from
the Kondo limit of the PAM. Another line of research is to take into account non-local
correlations. For this purpose, one needs to extend the DMFT method to clusters and
utilize quantum cluster solvers, like quantum Monte Carlo methods. Another possibility is
to resort to different methods beyond DMFT, like the dual-fermion method [Rub08] or the
variational cluster approximation [S0́5]. With these methods it can be examined, whether
superconductivity in models for heavy-fermion systems survives under the influence of
non-local correlations. These methods further allow for an anisotropic, e.g., d-wave gap
function.

Nevertheless, also an anisotropic pairing may originate from local spin fluctuations.
Anisotropy itself may, e.g., be induced by other effects, which are not necessarily the
true origin of a superconducting “glue”. Even a Kondo interaction which is anisotropic due
to the crystal structure, could yield an anisotropic gap function. The nodes of the gap
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function in frequency space, which we observed, may also translate into experimentally
observed features of HF superconductors such as nodes of the gap function on the Fermi
surface. These alternative scenarios of anisotropic pairing – albeit with a local origin – in
HF superconductors are probably also worth investigating in parallel to the main route of
current research.

Along these lines, this thesis shall end with the words of William James and Douglas
Adams:

“Truth, as any dictionary will tell you, is a property of certain of our ideas. It means

their ‘agreement’, as falsity means their disagreement, with ‘reality.’ ” – William
James

“Reality is frequently inaccurate.” – Douglas Adams, in The Restaurant at the End

of the Universe
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A Details of the DMFT Setup

In DMFT the local lattice Green’s function Gloc(ω) needs to be calculated. This can be
done by summation over the momentum,

Gloc(z) =
∑

k

Gk(z) =
∑

k

(ζ − εkτ 3)
−1 ,

with ζ = z1+µτ 3 −Σ(z), the chemical potential µ, and the Pauli-matrix τ 3 and self-energy
Σ as defined in Sec. 2.3. The summation can be carried out as integral over energies,

Gloc(z) =
∞∫

−∞

dερ0(ε)
(

ζ̂ − εkτ3

)−1
,

with the density of states ρ0(ε). In the paramagnetic case, the ε-summation results in

Gloc(z) =
∞∫

−∞

dε
ρ0(ε)
ζ − ε

= H[ρ0](ζ) ,

where the Hilbert transform H for a general function f(z) is defined as

H[f ](z) =
∞∫

−∞

dε
f(ε)
z − ε

.

In some cases the Hilbert transform of the DOS is known analytically, so that this form of
the integrand is advantegous. However, for the matrix structure in the superconducting
case, such a form is not retained due to the matrix inversion. One can nevertheless perform
a partial fraction decomposition so as to obtain the Green’s function matrix elements as
[Bau11]

G11(ω) = AGH[ρ0](ε+) +BGH[ρ0](ε−) and

G21(ω) = AF H[ρ0](ε+) +BF H[ρ0](ε−) ,
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with

AG =
ζ2 + ε+

ε+ − ε−

BG =
ζ2 + ε−

ε− − ε+

AF =
Σ21

ε+ − ε−

BF =
Σ21

ε− − ε+

and

ε± =
ζ1 − ζ2

2
± 1

2

√

(ζ1 + ζ2)2 − 4Σ12Σ21 .



B NRG Setup for Superconducting Leads

In the logarithmic discretization and in the derivation of the Wilson-chain coefficients we
closely follow the scheme described in [Bul08, Bul97]. As an extension, also off-diagonal
components are included here. We thereby allow for superconductivity in addition to a
frequency-dependent DOS, which is needed for an application of the NRG as an impurity
solver in DMFT.

B.1 Logarithmic discretization

Considering the band and hybirization part of a single impurity Anderson model in a
superconducting medium, a possible generalised form is given by

Hband +Hhyb =
∑

σ

∫

dω ω a†
ωσaωσ +

∫

dω
√

Γ (ω)/π
(

d†
σaωσ + a†

ωσdσ

)

−
∫

dω ∆(ω)
(

a†
ω↑a

†
ω↓ + aω↓aω↑

)

, (B.1)

where ω denotes the physical energy, which lies within the interval [−1,1] in terms of
half the bandwith D. The hybridization function is defined as Γ (ω) = πρ0(ω) [V (ω)]2 =
π
∑

k V
2

k δ(ω − εk) and ∆(ω) is the energy dependent paring amplitude. The pairing phase
is assumed to be constant in the whole frequency range.

A change of variables from ω to ε yields a Hamiltonian

Hband +Hhyb =
∑

σ

∫

dε g(ε) a†
εσaεσ +

∫

dε h(ε)
(

d†
σaεσ + a†

εσdσ

)

(B.2)

−
∫

dε ∆̃(ε)
(

a†
ε↑a

†
ε↓ + aε↓aε↑

)

(B.3)
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which is equivalent to (B.2) if the three following conditions are fulfilled,

Γ (ω) = π
dε(ω)

dω
h [ε(ω)]2 (B.4)

ε(ω) = g−1(ω) (B.5)

∆̃[ε(ω)] = ∆(ω), (B.6)

which has been shown by [Bul97]. Both ω and the fictious energy ε run from −1 to 1 and
are equal at each discretization point xn. When h(ε) is required to be a stepwise function
with a constant value in each discretization interval, the impurity will only couple to the
average state within each discretization interval. The average values of h(ε) are

h±
n

2 =
1
dn

±,n∫

dω
Γ (ω)
π

.

dn is the width of the discretization interval and ±,n denotes the boundaries of the positive
and negative discretization interval, respectively. The average states are obtained after
discretizing the diagonal part of Hband:

1∫

−1

dεg(ε)c†
εcε −→

∑

n

(

ξ+
n a

†
nan + ξ−

n b
†
nbn

)

, ξ±
n =

1
dn

±,n∫

dε g(ε)

In each interval ε, ω ∈ [xn+1,xn] the relation

Γ (ω) = π
dε
dω

h±
n

2 ↔ dε =
Γ [g(ε)]

πh±
n

2 dg

applies. Thus,

ξ±
n =

1
dn

±,n∫

dg g
Γ (g)

πh±
n

2 .

The integration boundaries remain the same after the change of the integration variable
as g(±xn) = ±xn. Renaming g with ω, the coefficients of the discretized Hamiltonian are
finally obtained as

ξ±
n =

∫±,n ωΓ (ω) dω
∫±,n Γ (ω) dω

.

An analogous procedure is possible for the off-diagonal pairing term of the band Hamilto-
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nian,

1∫

−1

dε∆̃(ε)
(

c†
ε↑c

†
ε↓ + cε↓cε↑

)

−→
∑

n

∆+
n

(

a†
n↑a

†
n↓ + h. c.

)

+∆−
n

(

a†
n↑a

†
n↓ + h. c.

)

∆±
n =

1
dn

±,n∫

dε ∆̃(ε) .

The change of the integration variable

∆±
n =

1
dn

±,n∫

∆̃[ε(ω)]
dε
dω

dω =
1
dn

±,n∫

∆(ω)
Γ (ω)

πh±
n

2 dω (B.7)

results in the expression

∆±
n =

∫±,n Γ (ω)∆(ω) dω
∫±,n Γ (ω) dω

, (B.8)

which is equivalent to the one for the kinetic part of the Hamiltonian, replacing energy ω
with pairing ∆(ω). Altogether the discretized band Hamiltonian reads

Hband =
∑

n

(

ξ+
n a

†
nan + ξ−

n b
†
nbn

)

+
∑

n

∆+
n

(

a†
n↑a

†
n↓ + h. c.

)

+∆−
n

(

a†
n↑a

†
n↓ + h. c.

)

. (B.9)

Finally, the hybridization term has to be discretized:

1∫

−1

dεh(ε)d†
σcεσ −→ 1√

π
d†

σ

∑

n

(

γ+
n anσ + γ−

n bnσ

)

, γ±
n =

√
√
√
√

±,n∫

dωΓ (ω)

In order to apply an RG transformation, the Hamiltonian has to be transformed from the
‘star basis’ into the Wilson chain basis where only the first state of the chain is directly
coupled to the impurity.

B.2 Mapping to the Wilson-chain

In the folllowing I use Nambu-spinors

f =

(

f↑

f †
↓

)

f † =
(

f †
↑ , f↓

)

, (B.10)
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which obey the anticommutator relation

[

f , f †
]

+
= f ⊗ f † + f † ⊗ f =





[

f↑ , f
†
↑

]

+

[

f↑ , f↓

]

+[

f †
↓ , f

†
↑

]

+

[

f †
↓ , f↓

]

+



 = 1 (B.11)

[

f , f †A
]

+
= A (B.12)

[

B f , f †A
]

+
= BA . (B.13)

Thereby, the conduction part of the Hamiltonian, Eq.(B.9), can be written in a compact
form,

H =
∑

n

a†
nΓ +

n an + b†
nΓ −

n bn − ξ+
n − ξ−

n , (B.14)

where Γ ±
n =

(

ξ±
n −∆±

n

−∆±
n −ξ±

n

)

.

The Hamiltonian H̃ = H +
∑

n ξ
+
n + ξ−

n now has to be transformed from the star basis into
the Wilson-chain basis, that is,

H̃ =
∑

n

a†
nΓ +

n an + b†
nΓ −

n bn
!=
∑

n

f †
n
εnfn

+ f †
n
tnfn+1

+ f †
n+1

tT
nfn

(B.15)

has to be fulfilled. For this purpose orthogonal transformations U and V are defined via

f
n

=
∑

m

Unmam + V nmbm f †
n

=
∑

m

a†
mUT

nm + b†
mV T

nm

an =
∑

m

UT
mnfm

a†
n =

∑

m

f †
m

Umn

bn =
∑

m

V T
mnfm

b†
n =

∑

m

f †
m

V mn . (B.16)

Defining the spinor f
0

which corresponds to the first chain site as

f
0

:=
1√
ξ0

∑

n

γ+
n an + γ−

n bn , (B.17)

a comparision of the coupling terms in the star and chain basis yields

U 0m =
γ+

n√
ξ0

10m V 0m =
γ−

n√
ξ0

10m , (B.18)

where ξ0 =
∑

n(γ+
n )2 + (γ−

n )2 =
∫ 1

−1 dε Γ (ε) is a normalization constant.

After the transformation of the annihilation operators in H̃ one has again to compare the
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terms in the star and chain basis. For m = 0 this results in
∑

n

a†
nΓ +

n UT
0n + b†

nΓ +
n V T

0n = f †
0
ε0 + f †

1
tT

0 , (B.19)

and for m > 0 it gives
∑

n

a†
nΓ +

n UT
mn + b†

nΓ −
n V T

mn = f †

m
εm + f †

m+1
tT

m + f †

m−1
tm−1 . (B.20)

By taking the anticommutator of f
0

and Eq. (B.19) ,

ε0 =
∑

n

U 0nΓ +
n UT

0n + V 0nΓ −
n V T

0n (B.21)

is determined. But as U 0n is diagonal,

ε0 =
1
ξ0

∑

n

[(

γ+
n

)2
Γ +

n +
(

γ−
n

)2
Γ −

n

]

. (B.22)

Furthermore, from Eq.(B.19) follows

f †

1
tT

0 =
∑

n

a†
n

(

Γ +
n UT

0nε0

)

+ b†
n

(

Γ −
n V T

0nε0

)

, (B.23)

which allows for determining the matrix elements

UT
1n =

(

Γ +
n UT

0n − UT
0nε0

)

t−1
0 (B.24)

V T
1n =

(

Γ −
n V T

0n − V T
0nε0

)

t−1
0 . (B.25)

Taking the anticommutator of Eq. (B.23) with the corresponding adjoint operators on
both sides yields the relation

tT
0 t0 =

∑

n

(γ+
n )2

ξ0

[

(Γ +
n )T − εT

0

] [

Γ +
n − ε0

]

+
(γ−

n )2

ξ0

[

(Γ −
n )T − εT

0

] [

Γ −
n − ε0

]

. (B.26)

The chain hopping t0 is assumed to be diagonal, and can now be calculated by the equation
above.

The anticommutator of f
m

and Eq. (B.20) enables one to determine εm,

εm =
∑

n

UmnΓ +
n UT

mn + V mnΓ −
n V T

mn . (B.27)
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Moreover, from Eq. (B.20) it follows that

tmUm+1,n = Umn

(

Γ +
n

)T − εT
mUmn − tT

m−1Um−1,n (B.28)

tmV m+1,n = V mn

(

Γ −
n

)T − εT
mV mn − tT

m−1V m−1,n . (B.29)

According to the steps shown above one can derive a relation for the chain hopping

tmtT
m =

∑

n

(

MT
mnMmn + NT

mnNmn

)

(B.30)

with

Mmn = Γ +
n UT

mn − UT
mnεm − UT

m−1,ntm−1 (B.31)

Nmn = Γ −
n V T

mn − V T
mnεm − V T

m−1,ntm−1 . (B.32)

Altogether, a set of recursion relations for the orthogonal transformations U and V has
been derived. Thereby it is possible to determine the operators and coefficients of the
Wilson-chain in Eq .(B.15).
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