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Abstract 
Pancreatic ductal adenocarcinomas are the fourth leading cause of death among all 

kinds of cancers. The poor prognosis is due to usually late diagnosis and, in most cases, 

the available therapeutic options lack sustained efficacy. Thus, there is an urgent need to 

identify new biomarkers, which might help to tailor therapy for patients. At present, the 

standard chemotherapeutic agent is gemcitabine, a nucleoside analogue and is contained 

in almost each chemotherapy regimen in pancreatic cancer. A recent clinical study 

performed in our institute revealed two SNPs in the genetic region of the equilibrative 

nucleoside transporter 1 (ENT1) associated with the overall survival of patients treated 

with gemcitabine for pancreatic cancer. The first SNP (rs1057985) of which the variant 

allele (minor allele frequency 33% in Caucasians) resulted in a significantly prolonged 

overall survival is located in an ENT1 promoter region. The second (rs45573936) of 

which the variant allele (2%) was linked to a dramatically reduced overall survival, 

constitutes an amino acid exchange at codon 216 from isoleucine to threonine. 

Recently, a genome-wide approach has featured SNPs for the first time in relation to the 

outcome of gemcitabine-based chemotherapy in pancreatic cancer. The aim of my thesis 

was to elucidate the molecular mechanisms of the aforementioned ENT1 

polymorphisms and to explore new biomarkers for gemcitabine sensitivity in a genome-

wide fashion.  

ENT1 transcript variant expression was determined via quantitative real time PCR in a 

panel of various human tissues as well as pancreatic cancer and lymphoblastoid cell 

lines. These analyses included ascertainment upon gemcitabine exposure. Transcription 

factor binding was analyzed by electrophoretic mobility shift assay (EMSA) with 

addressing hypothesized allele-specific disparities. Allele-specific constructs were 

generated both for the ENT1 promoter region and for Ile216Thr. The functional 

consequences were assessed by reporter gene assay in a transiently transfected 

pancreatic cancer cell line and transport kinetics of 3H-labelled gemcitabine in stably 

transfected HEK293 cells, respectively. Genome-wide dose-response relationships for 

gemcitabine sensitivity were determined in a training set of 196 and a test set of 95 

lymphoblastoid cell lines. Regarding the training set, comprehensive genotypes were 

available from resequencing. Twenty top hits were examined in the test with primer 

extension method used for genotyping. 

Quantitative real time experiments demonstrated strong expression of an ENT1 

transcript variant with the transcription start in vicinity to the index promoter SNP. The 
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variant allele of this SNP was concomitant with higher induction of this transcript 

variant in 101 LCLs upon gemcitabine exposure. Linkage disequilibrium analysis 

revealed complete coherence of the so far investigated index SNP (rs1057985) with 

another SNP (rs507964) located even closer to the start site of the considered ENT1 

transcript variant. In silico analysis predicted regulatory elements in the region 

surrounding rs507964, but not for rs1057985. In EMSA experiments protein binding 

was detected only in presence of the wild type, but not the variant allele of rs507964. 

No protein binding was detected when probes for rs1057985 were used regardless of the 

allele configuration. A bioinformatic screen suggested a member of the SP family to be 

the observed binding protein on the probe containing rs507964 and was supported by 

cold competition with respective probes in EMSA. However, reporter gene assays did 

not reveal any allele-specific impact of rs507964. Regarding Ile216Thr, the two alleles 

did not alter gemcitabine uptake. One of the findings from a recently published genome 

wide association study (GWAS) in relation to overall survival of pancreatic cancer 

patients could be confirmed, i.e. worse outcome of the variant allele of the SNP 

rs11644322 in the WWOX gene. Since the sequence pattern around this SNP resembled 

that of rs507964 EMSA experiments were likewise performed. This procedure revealed 

stronger protein binding for the probe with the wild type than the variant allele of 

rs11644322 again suggesting a member of the Sp family interacting. The genome-wide 

screen in LCLs elicited SNP rs6898780 as a potential new candidate for cellular 

gemcitabine sensitivity. 

In conclusion, the ENT1 promoter index SNP appears to act transcript-specifically as 

corroborated by expression analysis and EMSA. The lack of functionality in reporter 

gene assay points to so far unknown additional components which may interfere, but 

not yet understood. With respect to Ile216Thr, because no effect on gemcitabine uptake 

was noted, the relation to export kinetics should be addressed. In case of rs11644322 in 

the pro-apoptotic WWOX gene the allele clinically associated with poor survival 

exhibited reduced protein binding and showed a trend to weaker induction by 

gemcitabine in vitro. The herein newly identified SNP rs6898780 in relation to 

gemcitabine sensitivity is currently not attributable to a gene or transcript and should be 

investigated further. 
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1 Introduction  

1.1 Pancreatic Cancer: Incidence and Medical Challenge 
In most cases pancreatic cancer is referred to ductal pancreatic carcinoma, which is 

diagnosed in about 80% of patients with pancreatic malignancies. Most of the 

carcinomas stem from exocrine tissues (AHLGREN 1996), which are predominantly 

localized in the head of the pancreas. In few cases pancreatic tumor genesis originates 

from acinar cells (BARDEESY and DEPINHO 2002; DE LA and MURTAUGH 2009). Certain 

kinds of stem cells could represent the origin from which pancreatic cancer arises 

(GIDEKEL FRIEDLANDER et al. 2009). Ductal pancreatic adenocarcinomas are the fourth 

leading cause of death referred to cancer following lung, prostate and colorectal cancer 

(WARSHAW and FERNANDEZ-DEL CASTILLO 1992). The incidence for ductal 

adenocarcinomas is about 10 per 100.000 citizens in most parts of Europe, North 

America and parts of South America according to the International Agency for Research 

on Cancer (http://www-dep.iarc.fr/). For Germany, about 7600 women and 7800 men 

were expected to develop pancreatic cancer in 2012 according to a report of the Robert-

Koch-Institute. The average age of occurrence is 70 years for men and 76 years for 

women (Robert-Koch-Institut 2012). The appearance of pancreatic cancer in individuals 

below 40 years is extremely rare (WARSHAW and FERNANDEZ-DEL CASTILLO 1992)  

Due to the high mortality in advanced stages and the lack of sufficient early detection 

screenings the prognosis of adenoductale pancreatic cancer is very poor. The absolute 

overall survival is five years after detection of the cancer, which makes it to the type 

with the lowest survival rate between all kinds of cancer (according to Robert-Koch-

Institut 2012).  

Most patients (about 80%) show advanced stages of pancreatic cancer at time of 

diagnosis, which cannot be completely resected by surgery (LOOS et al. 2008). Even in 

the subgroup in which surgery could be executed in curative intention the five-year 

survival rate is not more than 20%-25% (VINCENT et al. 2011). When considering all 

cases diagnosed with pancreatic cancer this rate is only about 5% (JEMAL et al. 2010). 

The median overall survival for locally advanced tumors ranges from 8 – 12 months. 

The worst prognosis is observed for patients with distant metastases with a median 

survival time of 3 – 6 months (HUGUET et al. 2009; SHAIB et al. 2006). This poor 

prognosis renders pancreatic cancer to those types of cancer with the lowest survival 

rates (according to Robert-Koch-Institut 2012).  

http://www-dep.iarc.fr/
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1.1.1 Risk Factors for Pancreatic Cancer 
Risk factors for the appearance of adenoductale pancreatic carcinomas are considered to 

be inheritance, pancreatitis, overweight, smoking, consumption of saturated fat (LYON 

et al. 1993). The chronic pancreatitis was also assumed to cause about a 20-fold 

increased risk of pancreatic cancer (LOWENFELS et al. 1993). But newer studies claim 

that occurrence of pancreatic cancer in individuals who were suffering from chronic 

pancreatitis for 20 years was just about 5 % (RAIMONDI et al. 2010). Persons suffering 

from a primary sclerosing cholangitis show a 14-fold risk of pancreatic cancer incidence 

(BERGQUIST et al. 2002; SCHRUMPF and BOBERG 2003). In several studies smoking is 

considered to lead to a 2 to 3 times increased risk of pancreatic cancer (HART et al. 

2008; MACK et al. 1986; MALFERTHEINER and SCHUTTE 2006). In about 25 % of 

pancreatic tumors smoking is associated with the occurrence. In people smoking the 

cancer develops even ten years earlier than in non smokers and the risk increases with 

the timeframe of smoking cigarettes (AHLGREN 1996; HASSAN et al. 2007). There are 

several hereditary syndromes promoting pancreatic cancer development such as Peutz-

Jeghers polyposis, Li-Fraumeni syndrome, cystic fibrosis and telangiectatic ataxia 

(Louis-Bar syndrome), melanoma syndrome, hereditary breast-ovarian cancer 

syndrome, familial adenomatous polyposis syndrome and familial atypical multiple 

mole (LYNCH et al. 2001). Persons who have an appearance of pancreatic cancer in their 

family history have statistically a considerably higher risk of pancreatic cancer 

emergence. Individuals with a pancreatic cancer case under their first-degree relatives 

have a 6.8-fold increased risk of pancreatic cancer incidence as well (BRUNE et al. 

2010).  Members of the population who suffer from diabetes mellitus are considered to 

be exposed to a higher risk of pancreatic cancer occurrence to a certain extent, since 

high amounts of insulin are suspected to have a mitogenic effect (DRAZNIN 2010). The 

consumption of coffee has been refused to be a reason for developing pancreatic 

carcinomas (TURATI et al. 2012). There was also no evidence that the consumption of 

cigars, pipe tobacco, alcoholic potables (HART et al. 2008), or tea are promoting the 

development of pancreatic cancer (MACMAHON et al. 1981). Individuals carrying the  

blood group 0 show up a reduced risk to develop pancreatic cancer in comparison to 

those carrying the blood groups A or B. The development of pancreatic cancer out of 

regular epithelia cells is suggested to evolve out of several mutations.  
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1.1.2 Tumor Genesis of Pancreatic Cancer 
The tumor genesis of pancreatic cancer was investigated in detail in a study by Jones et 

al 2008 identifying markers in 24 genetically analyzed pancreatic cancers. About 63 

genetic alterations were found on the average causing the tumor genesis in pancreatic 

cancer. Most of them were point mutations and referred to 12 cellular signaling 

pathways including apoptosis, regulation of cell cycle and cell signaling cascades (e.g. 

KRAS)(JONES et al. 2008). The deactivation of tumor suppressor genes (e.g. p53, p16 

and SAMD4) and the activation of oncogenes (e.g. KRAS) are a frequent reason for the 

development of pancreatic cancer (BARDEESY and DEPINHO 2002). Thereby KRAS 

mutation is one of the most common mutations with 75% to 90% occurrence discovered 

in pancreatic cancer (GHANEH et al. 2007; HRUBAN et al. 1993; MOSKALUK et al. 1997)  

 

 

1.2 Current State of Therapy  
Despite major efforts in the treatment of pancreatic cancer in the recent years the high 

lethality rate did not change significantly. Besides surgery, adjuvant treatment is 

regularly intended including patients with R0 resection status due to high risk for 

locoregional recurrence. In addition, chemotherapy is also considered as part of 

palliative care. New developments in the field consider neoadjuvant regimens prior to 

surgery. Whereas surgery is still considered as first choice therapy it means substantial 

time delay for adjuvant therapies or the patients’ general condition does not recover 

well to receive adjuvant treatment. Therefore, neoadjuvant strategies have emerged 

recently. According to data of the MD Anderson Cancer Center (MDACC), patients 

who respond to a neoadjuvant chemoradiation therapy had higher rates of R0 resections 

and lower rates of local reoccurrence which leads to a prolonged overall survival. It is 

assumed that in “borderline resectable cases”, i.e. when it cannot clearly be defined if 

resectable or not, there might be a particular benefit for neoadjuvant radiotherapy (KATZ 

et al. 2008).  

The first chemotherapeutic agent applied to gastrointestinal including pancreatic cancer 

was 5-fluorouracil, which dates back to the early 1960s (WEISS and JACKSON 1961). In 

1997, based on a landmark phase III study, gemcitabine was introduced for palliative 

therapy of pancreatic cancer with an overall survival of 5.6 months for gemcitabine 

compared with 4.4 for 5-fluorouracil (BURRIS et al. 1997). Later, gemcitabine was also 
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approved for the adjuvant setting as tumor recurrence after complete resection was 

delayed (OETTLE and NEUHAUS 2007). In the adjuvant situation, a translation into 

significantly improved overall survival was not observed for gemcitabine, however, 

adverse events were strongly reduced in comparison to 5-fluorouracil (NEOPTOLEMOS et 

al. 2010).  

In the recent decade, a plethora of combinations with other cytostatic drugs based on 

gemcitabine were investigated. However, no breakthrough in terms of improved overall 

survival was achieved, regardless which add-on drug was considered, e.g., 5-FU 

(BERLIN et al. 2002), capecitabine (HERRMANN et al. 2007) (CUNNINGHAM et al. 2009), 

cisplatin (COLUCCI et al. 2010; HEINEMANN et al. 2006), irinotecan (STATHOPOULOS et 

al. 2006), or oxaliplatin (LOUVET et al. 2005; POPLIN et al. 2009). The latest advances 

in this field represent triple therapy. The most popular one has become the combination 

of 5-FU, irinoteca and oxaliplatin (FOLFIRINOX). This therapy showed relatively 

strong efficacy compared to gemcitabine alone in metastatic pancreatic cancer with an 

overall survival of 11.1 over 6.8 months, however accompanied by aggravated toxicity 

(CONROY et al. 2011). For the latter reason, FOLFIRINOX is recommended only to 

patients younger than 76 years with a high performance status and good hepatobiliary 

functions (KO 2011). As another triple therapy based on conventional cytostatic drugs 

the GTX regimen was suggested consisting of gemcitabine, docetaxel, and capectiabine 

(DE JESUS-ACOSTA et al. 2012; FINE et al. 2008). 

Ongoing approaches evaluate combinations of gemcitabine with specific targeted 

therapy, i.e. the small molecule inhibitors of tyrosine kinases. The pioneer in this regard 

was erlotinib which targets the epidermal growth factor receptor (EGFR). A slightly 

increased overall survival was noticed for the combination with gemcitabine over 

gemcitabine alone (MOORE et al. 2007). In view of the very minor advantage, this 

regimen has not yet evolved as a common standard therapy (MIKSAD et al. 2007). 

Efforts using an antibody directed against EGFR (e.g., cetuximab) did not show any 

advance in comparison to a gemcitabine monotherapy (PHILIP et al. 2010). Targeting  

the vascular endothelial growth factor (VEGF) signaling by bevacizumab in 

combination with gemcitabine did not result in prolonged survival (KINDLER et al. 

2010; VAN CUTSEM et al. 2009). Subsequent approaches shifted to inhibition of VEGF 

receptors by small molecules like axitinib (KINDLER et al. 2011; SPANO et al. 2008) or 

sorafenib (EL-KHOUEIRY et al. 2012) in combination with gemcitabine, however with so 

far no significant improvement of therapeutic outcome. Other potential targets might be 
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inhibition of KRAS (GYSIN et al. 2011) or the Hedgehog signaling pathway (OLIVE et 

al. 2009). 

In total less than 25% of pancreatic cancer patients show at least moderate response to 

the currently used chemotherapy strategies (DHAYAT et al. 2011; JIMENO and HIDALGO 

2006). The limited benefit should be balanced against the toxic side effects of the 

therapy. There is no established second line option in case gemcitabine-based therapy 

fails. At present, continuous use of gemcitabine combinations is recommended for 

patients with good performance status by the National Comprehensive Cancer Network 

Guidelines (available at www.nccn.org). 

 

 

1.3 The Nucleoside Analogue Gemcitabine 

1.3.1 Clinical Indications 
While developed first as an antiviral drug gemcitabine showed striking antitumoral 

activity targets in vitro and in vivo. At present, the approved indications comprise 

metastatic pancreatic cancer (BURRIS et al. 1997) or adjuvant therapy of the same 

(OETTLE and NEUHAUS 2007), in combination with cisplatin bladder cancer (VON DER 

MAASE et al. 2000) and non-small lung cancer (SANDLER et al. 2000), in combination 

with carboplatin (XIROS et al. 2005) ovarian cancer, and as second-line therapy in breast 

cancer (JONES et al. 2009). Furthermore, it is sometimes used in mesothelioma, and 

head and neck malignancies. 

 

1.3.2 Pharmacokinetics 
Gemcitabine requires intravenous administration due to a high first-pass effect in the 

gastrointestinal tract. The usually recommended dose is 1000-1250 mg/m2 (Eli Lilly and  

Company drug information GEMZAR) given in a time frame from 0.4 to 1.2 hours. In 

case of patient discomfort or side-effects like haematologic toxicity dose reduction is 

commonly performed. Maximal plasma concentrations range between 11 and 170 µM 

and are achieved within 5 min upon infusion stop. Plasma half-life is between 42 and 90 

minutes depending on the age of the patient, gender and body surface area as well as the 

duration of infusion (STORNIOLO et al. 1997; Eli Lilly and Company drug information 

GEMZAR). The plasma half-life is dose-independent (ABBRUZZESE et al. 1991). Only 
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10% of the parent drug is found in the urine suggesting that the majority of the given 

dose is degraded before reaching the target cell (ABBRUZZESE et al. 1991). The major 

enzyme responsible for rapid degradation, the cytidine deaminase (CDA), is described 

in detail below. 

 

1.3.3 Molecular Features 
The antineoplastic agent gemcitabine (2',2'-difluoro 2'-deoxycytidine, dFdC) is a 

nucleoside analogue of cytidine with two fluorine substituents at the second position of 

the furanose ring (Figure 1). Thus, it constitutes an antimetabolite competing with 

natural nucleosides in RNA and DNA synthesis. It has a molecular weight of 

263.2 g*mol-1 and is highly hydrophilic (EMERICH et al. 2000), which requires an active 

transport in the cell. Gemcitabine offers high chemical stability in the absence of 

degrading enzymes (XU et al. 1999).  

 

  
Figure 1: Structure formula of cytidine (left) and gemcitabine (right) 

 

 

1.3.4 Route of Gemcitabine Distribution 
As soon as gemcitabine (dFdC) is administered to the patients, it is delivered by the 

blood stream and degraded by the enzyme cytidine deaminase (CDA) to 

difluorodeoxyuridine (dFdU, (HEINEMANN et al. 1992)).  
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1.3.5 Cellular Uptake of Gemcitabine 
Gemcitabine has to be transported and activated in the target cell to exert cytostatic 

effects (MINI et al. 2006). Since gemcitabine diffuses very slowly through plasma 

membrane, transporter proteins are required. Equilibrative, non-sodium-coupled (ENTs) 

and sodium-coupled concentrative (CNTs) nucleoside transporters (NTs) are involved 

in gemcitabine uptake. For five NTs a function in gemcitabine transport was suggested 

(ERRASTI-MURUGARREN and PASTOR-ANGLADA 2010). The major players for 

gemcitabine uptake are ENT1 (BELT et al. 1993; GRIFFITH and JARVIS 1996; MACKEY 

et al. 1998; MARECHAL et al. 2009) and, to a lesser degree, the CNT1 (GARCIA-

MANTEIGA et al. 2003; MACKEY et al. 1999) and CNT3 transporters (RITZEL et al. 

2001a; RITZEL et al. 2001b). For other ENTs (i.e., ENT2, ENT3, ENT4) or CNTs (i.e., 

CNT2) there is no compelling evidence for clinical relevance in gemcitabine treatment.  

ENTs participate in the bidirectional transfer of a broad range of nucleosides and 

nucleoside analogues, in case of ENT2 also nucleobases, through biological membranes 

along the diffusion gradient. Affected drugs include cytarabine (CLARKE et al. 2006), 

fludarabine, cladribine, clofarabine (KING et al. 2006), 5'-deoxy-5'-fluorouridine 

(MOLINA-ARCAS et al. 2006) and gemcitabine (MACKEY et al. 1999). ENTs are 

typically found in basolateral and apical membranes, but also in non-polarized cells 

(ERRASTI-MURUGARREN and PASTOR-ANGLADA 2010). 

The CNT1 is expressed on the apical side in polarized cells like intestinal cells, 

proximal tubule cells of the kidney, as well as hepatocytes and breast cells 

(GLOECKNER-HOFMANN et al. 2006; MANGRAVITE et al. 2001; NGO et al. 2001). High 

CNT1 expression may render pancreatic cancer cells sensitive toward gemcitabine 

(BHUTIA et al. 2011). A clinical relation to the outcome in pancreatic cancer has not yet 

been demonstrated. CNT3 is also found on the apical membrane, but the type of cells in 

which it is predominantly expressed differs from CNT1 with additional presence, for 

instance, in the pancreas (DAMARAJU et al. 2007; RITZEL et al. 2001b). The clinical  

contribution of CNT3 to gemcitabine-treated pancreatic cancer outcome is not clear 

since only once having been associated with no further replication (MARECHAL et al 

2009). In view of its paramount relevance based on literature and own data the ENT1 

with pertinent genetic variation is described in detail below (1.4.4). 
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1.3.6 Gemcitabine Metabolism 
The initial phosphorylation of gemcitabine to gemcitabine monophosphate is mediated 

by deoxycytidine kinase (dCK), which is suggested to be the rate limiting step for the 

activating biotransformation (MINI et al. 2006). The thymidine kinase 2 (TK2) also 

performs this phosphorylation step, but has an extremely poor affinity to gemcitabine in 

comparison to dCK (5-10%, (WANG et al. 1999)). The next phosphorylation step to 

gemcitabine diphosphate is catalyzed by cytidine monophosphate kinase (CMPK) (MINI 

et al. 2006; NAKANO et al. 2007). The gemcitabine diphosphate and triphosphate are the 

active forms of the cytostatic agent, which have multiple intracellular targets for their 

cytotoxic impact (HEINEMANN et al. 1988). It was shown that gemcitabine triphosphate 

competes with the natural deoxycytidine triphosphate (dCTP) and is incorporated in 

DNA (HUANG et al. 1991) where it is stalling DNA synthesis by inhibition of the DNA 

polymerase (HEINEMANN et al. 1988) (HERTEL et al. 1990) (GANDHI and PLUNKETT 

1990). As soon as gemcitabine triphosphate is incorporated in DNA the synthesized 

strand is extended with only one further nucleotide, then the elongation process is 

terminated (ROSS and CUDDY 1994). The 3'-->5' exonuclease activity of DNA 

polymerase is not capable to excise nucleotides from DNA, which contains gemcitabine 

monophosphate (GANDHI et al. 1996; HUANG et al. 1991; SCHY et al. 1993). There is 

additional evidence that incorporated gemcitabine triphosphate inhibits the detection 

and repair by cellular DNA repair mechanisms (PAUWELS et al. 2006). The inhibition of 

DNA synthesis is one major issue, which causes the induction of apoptosis induced in 

gemcitabine-treated cells (HUANG and PLUNKETT 1995). Further it was discovered that 

gemcitabine triphosphate is also incorporated in RNA, which hampers RNA synthesis 

(RUIZ VAN HAPEREN et al. 1993b). While there is no conclusive knowledge about the 

impact of RNA incorporation on the cell function, the degree of RNA incorporation is 

negatively correlated with internal resistance towards gemcitabine in human tumor cell 

lines (KROEP et al. 2000). The metabolites gemcitabine di- and triphosphate promote a  

self-potentiating effect in the inhibition of the ribonucleotide reductase, a key player in 

the de novo synthesis of deoxy-nucleotides. This aggravates the toxic effects of 

gemcitabine as the reduced amounts of natural nucleotides in the cell facilitate an 

increased incorporation of gemcitabine triphosphate in DNA (HEINEMANN et al. 1990) 

(BAKER et al. 1991). Another site of actions is the inhibition of cytidine triphosphate 

synthetase (CTP synthetase) (HEINEMANN et al. 1995), thereby reducing the pool of 
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CTP for RNA synthesis and instead increasing incorporation of gemcitabine into RNA. 

It was further shown that gemcitabine modulates the activity of topoisomerase-I, which 

causes enhanced strand breaks in DNA and may contribute to the cytotoxic effect 

(POURQUIER et al. 2002). Thus, the toxic effects of gemcitabine are not limited to the 

early S phase during cell cycle, but also affect non-dividing cells (ROCKWELL and 

GRINDEY 1992).  

Gemcitabine activation competes with degradation. Non-phosphorylated gemcitabine is 

degraded by the ubiquitously expressed CDA to 2',2'-difluoro-deoxyuridine (dFdU), 

mainly before the parent drug could enter the target cells (as outlined above in, 1.3.4), 

but also therein. The inactivation of the gemcitabine monophosphate metabolite 

(dFdCMP) to dFdUMP is executed by deoxycytidine deaminase (DCTD, official full 

name dCMP deaminase). The latter is inhibited by gemcitabine triphosphate 

(HEINEMANN et al. 1992) further enhancing gemcitabine effects. The aforementioned 

transport, bioactivation and degradation processes of gemcitabine are displayed in 

coherence in Figure 2. 
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Figure 2: Route of gemcitabine and metabolism. Black dashed lines indicate stimulation, red 
dashed inhibition. (CDA: cytidine deaminase; ENT1: equilibrative nucleoside transporter1; CNT1: 
concentrative nucleoside transporter1; CNT3: concentrative nucleoside transporter1; DCK: deoxycytidine 
kinase; NT5C3: cytosolic 5'-nucleotidase 3; NT5C: 5'(3')-deoxyribonucleotidase; CMPK1: cytidine 
monophosphate kinase; DCTD: deoxycytidylate deaminase; dFdU: 2',2'-difluoro 2'-deoxyuridine; dFdU-
MP: 2',2'-difluoro 2'-deoxyuridine monophosphate; NDPs: nucleoside-diphosphate; dNDPs: 
deoxynucleoside-diphosphate; dNTPs: deoxynucleoside-triphosphate; RRM2,RMM1, RRM2B: subunits 
of ribonucleotide reductase) 

 

 



Introduction 

 
11 

 

1.3.7 Variability in Gemcitabine Response 
In the clinical situation gemcitabine-treated patients show progression of pancreatic 

cancer in most cases. This unsatisfying response to gemcitabine is due to the high 

degree of inherited and acquired chemoresistance (CARMICHAEL et al. 1996; LI et al. 

2004). The degree of sensitivity towards gemcitabine depends on the intracellular 

metabolite levels, which are modulated by the activity of transporters as well as 

enzymes for bioactivation and degradation (BERGMAN et al. 2002).  

The enzyme CDA is associated with gemcitabine toxicity (NEFF and BLAU 1996). The 

actual significance of this enzyme for the gemcitabine response is not decisive, on the 

one hand it was proven, that cell lines with decreased CDA activity are sensitive 

towards gemcitabine (BERGMAN et al. 1998), but on the other hand human tumor cells 

and human tumor xenodrafts do not show evidence that inherited resistance and CDA 

activity are linked (RUIZ VAN HAPEREN et al. 1993a; VAN HAPEREN et al. 1996). But the 

increased expression of CDA might affect the acquired resistance towards gemcitabine, 

which often occurs in patients during gemcitabine-based treatment (BENGALA et al. 

2005).  

The first phosphorylation step of gemcitabine by deoxycytidine kinase (dCK) is 

suggested to have a major role in the response to gemcitabine (KROEP et al. 2002). 

Some cells in vitro and in vivo with inherited and acquired resistance towards 

gemcitabine exhibit a lack of dCK (BERGMAN et al. 2002). Other contributors to the 

sensitivity towards gemcitabine are 5'-nucelotidases, which convert nucleotides in 

nucleosides. In some studies the sensitivity of cells was referred to the presence of 5'-

nucelotidases (DUMONTET et al. 1999; HUNSUCKER et al. 2001). There is evidence that 

cells with an enhanced expression of ribonucleotide reductase subunit 1 (RRM1) exhibit 

gemcitabine resistance (DAVIDSON et al. 2004), since an increased activity of 

ribonucleotide reductase leads to higher concentration of natural dCTPs, which are 

competing with gemcitabine triphosphate (GOAN et al. 1999).  

Gemcitabine efficacy is highly correlated with the maintenance of gemcitabine 

triphosphate in the cells. The longer the gemcitabine metabolites persist in the cell the 

higher the sensitivity towards gemcitabine treatment is, which was shown in vitro and in 

vivo tumor models (RUIZ VAN HAPEREN et al. 1994; VAN HAPEREN et al. 1996). As 

demonstrated in many studies one of the most important issues concerning the response 
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and toxicity by gemcitabine is the transport into target cells, which is mainly performed 

by the equilibrative transporter -ENT1 and, to a lesser extent, by CNT3.  

 

1.3.8 Genetic Polymorphisms Affecting Gemcitabine Response 
The understanding of sensitivity and resistance mechanisms towards gemcitabine can 

support the choice and adjustment of therapy modalities. In this regard, knowledge of 

genomic markers might help to predict the clinical outcome of a certain therapy to 

obtain the best treatment for pancreatic cancer patients. Already several studies tried to 

elucidate polymorphisms in genes involved in gemcitabine transport, bioactivation and 

degradation (FUKUNAGA et al. 2004; LI et al. 2012; TANAKA et al. 2010; XU et al. 

2011). Polymorphisms in genes encoding for proteins involved in transport (e.g., 

ENT1), degradation (CDA) or bioactivation (dCK) of gemcitabine as well as in 

pathways competing with gemcitabine activity (RRM1) were considered to be predictive 

markers for gemcitabine efficacy and side effects in patients with locally advanced 

pancreatic cancer (TANAKA et al. 2010). The quantitative trait of gemcitabine 

pharmacokinetics was also subjected to an association analysis in gemcitabine pathway 

genes. In 250 Japanese cancer patients the plasma concentration of gemcitabine and its 

metabolite dFdU was determined. SNPs in the CDA gene were claimed to be a 

significant contributor to gemcitabine clearance whereas no significant effect of SNPs 

in DCK and ENT1 could be demonstrated (SUGIYAMA et al. 2010). Under clinical 

conditions the need to make the considered cohorts as homogenous as possible results in 

low sample sizes typically under-powering statistical association studies when multiple 

markers are tested. Thus, findings are often preliminary until confirmation in replication 

studies. 

Another approach to identify genetic factors putatively contributing to the outcome of 

gemcitabine-based chemotherapy represents genome-wide association studies (GWAS). 

When my thesis work was already ongoing a GWAS for advanced stage pancreatic 

cancer treated with gemcitabine was reported (INNOCENTI et al. 2012). The strongest 

associating signal exhibited a polymorphism in IL17A, a component linked to 

angiogenesis. 

Furthermore, GWAS have also been applied to functional traits. One single study 

screened for genome-wide markers affecting gemcitabine drug response in  
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lymphoblastoid cell lines (LCLs). This analysis revealed the most significant hits 

beyond typical candidate genes, whereby not reaching statistical significance for 

gemcitabine cytotoxicity upon adjustment for multiple testing (LI et al. 2009). Besides 

genetic polymorphisms, drug-naïve genome-wide transcripts in LCLs were correlated 

with cytotoxic effects of gemcitabine (LI et al. 2008).  

 

1.4 Major player: The Equilibrative Nucleoside Transporter 1 (ENT1) 
The ENT1 transporter is almost ubiquitously expressed and facilitates import and export 

of gemcitabine over the cell membrane as well as between intracellular compartments 

(LAI et al. 2004; MANI et al. 1998). It is well known that the ENT1 has a key player 

position in the transport of gemcitabine, which was demonstrated in vitro, ex vivo and in 

vivo (FARRELL et al. 2009; MACKEY et al. 2005; MACKEY et al. 2002; MARCE et al. 

2006; MARECHAL et al. 2009; SANTINI et al. 2008; SPRATLIN et al. 2004). Pyrimidines 

as well as purines are substrates for ENT1, which is sensitive towards NBMPR 

(nitrobenzylthioinosine), a specific inhibitor. 

 

1.4.1 Protein Conformation 
The ENT1 gene encodes a protein containing 456 residues (CANO-SOLDADO and 

PASTOR-ANGLADA 2012). It consists of eleven transmembrane domains including a 

huge intracellular loop between the transmembrane domains six and seven (Figure 3). A 

PEXN motif consisting of proline 71, glutamate 72, and asparagine 74 was reported to 

be important for mitochondrial trafficking of this protein (LEE et al. 2006). The residues 

phenylalanine 334 and asparagine 338 in the transmembrane domain 8 seem to be 

crucial for protein folding, inhibitor sensitivity, and catalytic activity (VISSER et al. 

2007). Nucleoside selectivity may be, at least in part, rendered by residues in the 

transmembrane domain 1 like tryptophan 29 (PAPROSKI et al. 2008). The exchange to 

threonine at position 29 results in a selective loss of pyrimidine transport activity 

(PAPROSKI et al. 2008). In addition, mutations of glycine 24 reduced both substrate 

transport activity and inhibitor binding (ZIMMERMAN et al. 2009).  
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Figure 3: Conformation of the protein encoded by ENT1. It composes eleven transmembrane 
domains. The N-terminus is located intracellularly, the C-terminus extracellularly. Image modified 
according to Osato (OSATO et al. 2003). 

 

 

1.4.2 Clinical Relevance of ENT1 Expression 
The expression of ENT1 is highly correlated with the sensitivity towards gemcitabine 

and other nucleoside analogues in vitro (ACHIWA et al. 2004; GALMARINI et al. 2002; 

GATI et al. 1997). The quantities of immunohistochemically detected ENT1 in 

pancreatic cancer tissue turned out as a predictor for overall survival. In a first report, it 

was shown that patients with higher intratumoral expression experienced better outcome 

(SPRATLIN et al. 2004). This finding was later confirmed (FARRELL et al. 2009; 

MARECHAL et al. 2009). Similar findings were reported for mRNA levels 

(GIOVANNETTI et al. 2006). Apparently, fine-needle biopsies are not suitable to detect 

reliably an association between ENT1 transcripts and gemcitabine treatment response 

according to tumor markers (ASHIDA et al. 2009). Ex vivo sensitivity testing in 

pancreatic cancer cell lines derived from patients corroborated the significance of ENT1 

mRNA expression (MICHALSKI et al. 2008). The latter was also partially attributable to 

acquired resistance toward gemcitabine (NAKANO et al. 2007). Beyond pancreatic 

cancer, the relevance of ENT1 was demonstrated also in gemcitabine treatment of 

urinary bladder cancer (MEY et al. 2006) as well as biliary tract cancer (SANTINI et al. 

2011) whereby higher ENT1 prevalence was favorable in both tumor types. Conversely, 

high ENT1 expression elicited as a poor prognostic factor in gastric cancer  
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(SANTINI et al. 2010) and ampullary cancer (SANTINI et al. 2008) without gemcitabine 

administration. 

 

1.4.3 ENT1 Expression Regulation and Transcript Variants 
There are temporal, spatial and quantitative differences in ENT1 expression inter- and 

intra-individually (PENNYCOOKE et al. 2001). Regulation occurs both at the 

transcriptional and translational level (SOLER et al. 2003). It was also shown that the 

ENT1 expression in T lymphoblastic cells is much higher than in resting peripheral T-

lymphocytes (KICHENIN et al. 2000). However, the mechanisms of ENT1 expression 

regulation have been barely elucidated yet. Some studies claim that the expression of 

ENT1 transporters is effected by hypoxia (CHAUDARY et al. 2004; ELTZSCHIG et al. 

2005), passage numbers of cultured cells (ARCHER et al. 2004), inflammatory cytokines 

(PETROVIC et al. 2007) and nitride oxide (SOLER et al. 2000). The ENT1-mediated 

nucleoside transport is primary associated with cell proliferation (SOLER et al. 2001a; 

SOLER et al. 2001b). It was demonstrated that MCSF (macrophage-colony-stimulating-

factor) induces macrophage proliferation accompanied by upregulation of ENT1 (SOLER 

et al. 2001a). Conversely, provoking growth arrest in macrophages by IFN (interferon) 

or LPS (lipopolysaccharide) causes down regulation of ENT1 (SOLER et al. 2001a; 

SOLER et al. 2001b). At least, twelve ENT1 mRNA isoforms were suggested, which are 

regulated by four identified alternative promoter regions (ABDULLA and COE 2007; 

FUKUCHI et al. 2010). The NCBI data base provides five validated transcript variants of 

the ENT1 transporter (http://www.ncbi.nlm.nih.gov/gene/2030), which all code for the 

same protein. 

 

1.4.4 Genetic Variability in ENT1 
Among humans the coding sequence of ENT1 is highly conserved with a single 

haplotype accounting for 91% of the genetic variability (OSATO et al. 2003). Despite 

limited sequence identities with other species there is high conformational conservation 

indicating functional preservation during evolution (SANKAR et al. 2002). Thereby, the 

most conserved regions are identified in the putative transmembrane domains 

suggesting a crucial role in membrane substrate recognition (GRIFFITHS et al. 1997). 

Polymorphisms in the ENT1 genetic region have been suggested to be implicated in 
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treatment response to substrates of ENT1 like gemcitabine and ribavirin (LI et al. 2012; 

TSUBOTA et al. 2012). 

The most frequent genetic polymorphism affecting an amino acid substitution in ENT1 

is Ile216Thr with a minor allele frequency of 2%. This polymorphism is designated as 

rs45573936, almost exclusively found in Northern Europe (ABECASIS et al. 2012; 

OSATO et al. 2003). It is claimed that ethanol incubation leads to a significant difference 

in transport activity in the ENT1 Ile216Thr-transfected mouse embryonic fibroblasts 

(KIM et al. 2011). 

Genetic variation was mainly studied for the proximal promoter region of ENT1. An 

involvement in expression of this gene and transcription factor binding was suggested 

(MYERS et al. 2006; SUZUKI et al. 2013). In the clinical setting, at present, it is 

controversial if gemcitabine pharmacokinetics are affected by the genetic variability in 

the proximal ENT1 promoter region (GUSELLA et al. 2011; SUGIYAMA et al. 2010). An 

impact of this variability on the risk for hematologic anemia in treatment with ribavirin, 

a substrate for ENT1, could not be proven (DOEHRING et al. 2011). 

In our own institute, the Ile216Thr (rs45573936) and a polymorphism (rs1057985) in a 

ENT1 promoter region were recently suggested as predictive biomarkers for the 

outcome of gemcitabine-based chemotherapy in pancreatic cancer patients (SCHAUDINN 

2013) (Christian Zimmer, medical thesis in preparation). Thereby, the variant allele of 

rs1057985 was associated with a prolonged overall survival in three independent patient 

cohorts from Göttingen (n = 96; p = 0.03), Hamburg (n = 124; p= 0.002) and 

Heidelberg (n = 91; p = 0.05). The effect of the rare variant allele of Ile216Thr (minor 

allele frequency of rs45573936 only about 2% in Caucasians) was less consistent. In the 

Göttingen cohort, presence of Thr216 was accompanied by dramatically reduced overall 

survival (p < 0.001) exhibiting statistical significance even upon adjustment for multiple 

testing. However, in the cohort form Hamburg this finding could not be verified, 

whereas in the Heidelberg cohort only one patient carried the variant allele not allowing 

statistical assessment. 
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1.5 Aim of this Work 
The aim of my thesis was to identify and to functionally assess markers which affect the 

response towards gemcitabine. For two recently suggested promising candidate markers 

pertinent to the ENT1 gene the functional mechanisms should be investigated.  

The amino acid exchange Ile216Thr was hypothesized to alter transport of gemcitabine. 

Due to the reduced survival time in the clinical setting, it was hypothesized that the 

Thr216 allele may result in lower intracellular accumulation of gemcitabine. To pursue 

this idea, effects on radio-labeled gemcitabine transport should be studied by means of 

stably transfected allele-specific constructs in a model line.  

Regarding the suggested ENT1 promoter polymorphism, enhanced ENT1 transcription 

in presence of the minor allele was assumed. This assumption should be clarified. First, 

it was asked for differential effects on ENT1 transcript variants. Next, it should be tested 

whether there might be allele-specific differences in binding of nuclear proteins and, if 

so, to identify the putatively involved protein. Finally, a direct impact on gene 

transcription should be analyzed by reporter gene assays. 

As not yet sufficiently addressed nor in literature nor in previous theses in our 

department, a genome-wide approach was considered to elicit new potential markers for 

gemcitabine sensitivity. Such markers should be identified by dose-response curves for 

gemcitabine toxicity with fully sequenced LCLs as model and replicated in an 

independent second cohort of LCLs. While working on my thesis a report emerged in 

literature addressing for the first time a GWAS with respect to the outcome of 

gemcitabine-based chemotherapy in pancreatic cancer. The therein reported top 

association signals should be tested for reproducibility in our patient cohorts. If 

reproduced, underlying functional mechanisms should be addressed. 
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2 Materials 

2.1 Devices and pertinent Software 

Equipment and software Manufacturer  

3100 Data Collection Software  Applied Biosystems , Darmstadt 

3130xl Genetic Analyser  Applied Biosystems, Darmstadt  

Adobe Photoshop  Adobe Systems GmbH, München  

Bacteria Incubator-Incudrive  Schütt, Göttingen  

Biofuge fresco  Heraeus, Hanau  

Biofuge pico  Heraeus, Hanau  

BioPhotometer  Eppendorf, Hamburg  

BioRobot® EZ1  Qiagen, Hilden  

Centrifuge 5810 R  Eppendorf, Hamburg  

Centrifuge JA-20 Rotor  Beckman, München  

Clone Manager Suite  SECentral  

CO2-Incubator BBD 6220  Heraeus, Hanau  

ComPhor L Mini Gel-chamber  Biozym, Hessisch Oldendorf  

Concentrator 5301  Eppendorf; Hamburg  

Confocal laser scanning Microscope Carl Zeiss, Jena 

CorelDRAW X3  Corel Corporation  

DNA Sequencing Analysis  Applied Biosystems  

Electroporator Gene Pulser II  BioRad, Hercules USA  

Fine weight machine  Sartorius, Göttingen  

Flow cytometer BD LSRII, special order system Becton Dickinson, Franklin Lakes, USA 

Fluor-S™ MultiImager  BioRad, Hercules, USA  

Gel chamber Ruby SE600  Hoefer, San Francisco, USA  

GloMax-96-Plate-Luminometer  Turner BioSystems, Sunnyvale, USA 

HPLC Analysing System Merck Hitachi, Darmstadt, Germany 

Labofuge 400R  Heraeus, Hanau  

Magnetic stirrer  IKAMAG  

Mastercycler gradient  Eppendorf, Hamburg  

Membran-Vacuum pumpe  Vacuubrand, Wertheim  

Microscope Axiovert 40 CFL  Zeiss, Jena  

MS 2 Mini shaker-Vortexer  IKA, Staufen  

Nanodrop cuvette  Implen  

Neubauer-Cell chamber  Schütt, Göttingen  
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PTC-200 Peltier Thermal Gradient Cycler  MJ Research/BioRad, Hercules, USA  

QiaCube  Qiagen, Hilden  

Scintillation instrument LS1801  Beckman, München  

Shaker for Bacteria K2 260 basic  IKA, Staufen  

Stereomicroscope Stemi 1000  Zeiss, Jena  

Sterile Bench-Clean Air type DFL/REC4 KL2A  Mahl, Trendelburg  

TaqMan 7900HT  Applied Biosystems, Darmstadt  

Thermomixer 5436  Eppendorf, Hamburg  

Transilluminator TI 2  Biometra  

Vertical-Autoclave KSG 40/60  KSG, Olching  

Vertical-Autoclave: FV  Tecnorama, Fernwald  

Water bath GFL 1083  Schütt, Göttingen * 

 

2.2 Laboratory Consumables  

Used Materials   Manufacturer 
50 ml Centrifuge tube  Beckman, München  

5 ml Polysterene Round-Botton Tube BD Falcon, Durham USA 

96 Millipore MAHV N45 Plate  Millipore, Bedford, USA  

96 Millipore MANU 030 PCR-Plate  Millipore, Bedford, USA  

96 White Plate for luminescence measurement  Greiner, Frickenhausen  

96er PCR-Plate  ABgene, Epsom  

24 Well, Zellkultur Multiwellplatte Greiner, Frickenhausen 

Absolute QPCR Seal (Optical Folie for Taqman)  Thermo Scientific  

Adhesive PCR Foil Seals  ABgene, Epsom  

Culture flask 25 cm²  and 75 cm²  Sarstedt, Nümbrecht  

Cuvette (UVetten) 50-1000 μl  Eppendorf, Hamburg  

Cuvette 10x4x45 mm  Sarstedt, Hamburg  

Dialyse filter VSWP01300  Millipore, Bedford, USA  

Electroporation cuvette 2 mm  PeqLab, Erlangen  

FBS Gibco/Invitrogen 

Filter paper Nr. 2668  Schleicher und Schuell  

Filter paper Nr. 2CHR  Schleicher und Schuell  

Flat cap strips, 12er  ABgene, Epsom  

Flat cap strips, 8er  ABgene, Epsom  

FrameStar® 384  4titude, Wotton  
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Freezing container, Nalgene®, Mr. Frosty  Sigma-Aldrich, Deisenhofen 

Glass Pasteur pipette 230 mm  WU, Mainz  

LiChroCART 25-4 RP-18 HPLC Cartriges Merck, Darmstadt 

LiChroCART 125-4 RP-18 HPLC Cartriges Merck, Darmstadt 

Minisart 2000 0.2 μm  Sartorius, Göttingen  

Minisart–plus 0.2 μm  Sartorius, Göttingen  

Nunclon™ Multidishes 6 und 12 Wells  Nunc, Wiesbaden  

Parafilm®  Brand, Wertheim  

Petri Dish  Sarstedt, Hamburg  

Petri Dish for Cell culture, Falcon 353003  Schütt, Göttingen  

Pipette Tip (10 μl, 100 μl, 1000 μl)  Sarstedt, Hamburg  

Plate loader for Sephadex  Millipore, Schwalbach  

Plate Retainer for Sequencing  Applied Biosystems, Darmstadt  

Quali-Filterpipett tip sterile  Kisker, Steinfurt  

Reactions vessel 0.2 ml (RNase-free)  Biozym, Hessisch Oldendorf  

Reactions vessel 1.5 ml und 2 ml  Sarstedt, Hamburg  

Sterile Pipette (5 ml, 10 ml, 25 ml)  Sarstedt, Hamburg  

Sterile Polypropylen-tube 15 ml  Greiner, Frickenhausen  

Sterile Polypropylen-tube 50 ml  Sarstedt, Hamburg  

Thermo-Fast 384er Plate (PCR-Plates for Taqman)  ABgene Epsom  

Thermo-Fast 96er Plate  ABgene, Epsom  

 

2.3 Chemical Consumables 

Chemical consumables                    Manufacturer 
[α-32P]-dCTP  Hartmann Analytic, Braunschweig  

1 kb Standard Ladder for Agarosegel  Rapidozym, Berlin  

100 bp Standard Ladder for Agarosegel  Rapidozym, Berlin  

2-Mercaptoethanol ≥ 99%  Sigma-Aldrich, Deisenhofen  

40% (w/v) Acrylamide:Bisacrylamide/ Mix 37.5:1  Biomol, Hamburg  

4326322E (TBP,VIC-MGB) Applied Biosystem, Darmstadt 

40 micron cell strainer BD Falcon (352340) 
Acetic acid 100%, pro analysis Merck, Darmstadt 

Acetonitril Merck, Germany 

Agar (for  Bacteriology)  AppliChem, Darmstadt  

Agarose Ultra Pure  Invitrogen, Karlsruhe  
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Ammonium persulfate ≥ 98%  Sigma-Aldrich, Deisenhofen  

Ammonium sulfate ≥ 99.5%  Sigma-Aldrich, Deisenhofen  

Ampicillin  99%  AppliChem, Darmstadt  

Aquasafe 500 Plus, Safty Scintillator Zinsser Analytic, Berkshire, UK 

Bicinchoninic acid   Sigma-Aldrich, Deisenhofen  

BigDye® Sequencing Kit Applied Biosystems, Darmstadt  

Boric Acid 100%  Merck, Darmstadt  

Bovine serum albumin (BSA)  Sigma-Aldrich, Deisenhofen  

Bromphenolblue Na-Salt (for Electrophoresis)  Roth, Karlsruhe  

CFSE Proliferation Dye eBioscience, Frankfurt 

Chloroform ≥ 99.8%  J.T. Baker, Phillipsburg, USA  

Coomassie Brilliant Blue R 250 BioRad, München 

Copper sulfate pentahydrate  Sigma-Aldrich, Deisenhofen  

CountBrightTM absolute counting Beads Invitrogen, Karlsruhe 

P1,P4-Di(adenosine-5′) tetraphosphate ammonium 

salt  
Sigma-Aldrich, Deisenhofen 

2',2'-difluorodeoxyuridin 
Eli Lilly andCompany, Indianapolis, 

USA 

Dimethyl sulfoxide (DMSO)  AppliChem, Darmstadt  

Disodium hydrogen phosphate ≥ 99.9%  Merck, Darmstadt  

Dithiothreitol ≥ 99.5% (for Molecular biology)  AppliChem, Darmstadt  

DNeasy Blood & Tissue Kit  Qiagen, Hilden  

dNTP Set  ABgene, Hamburg  

Dual-Luciferase®Reporter Assay System  Promega, Mannheim 

EDTA 0.5M in water solution  Sigma-Aldrich, Deisenhofen  

EDTA pure Merck, Darmstadt 

Ethanol 96%  Merck, Darmstadt  

Ethanol denatured 99% (Desinfection agent)  Chemie-Vertrieb Hannover  

Ethidiumbromide 1% in H2O (for electrophorese)  Merck, Darmstadt  

Exonuclease I E.coli (20u/μl)  Fermentas, St. Leon-Roth 

Expand Long Template PCR System Roche Diagnostics, Mannheim 

FACS Safe Clean 
Beckton Dickinson, Franklin Lakes 

(USA) 

FACS Flow 
Beckton Dickinson, Franklin Lakes 

(USA) 

FACS Rinse Beckton Dickinson, Franklin Lakes 
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(USA) 

FuGene 6  Roche, Mannheim  

Gemcitabine (dFdC) Sigma-Aldrich, Deisenhofen 

3H-Gemcitabine (dFdC) 
American Radiolabeled Chemicals, Inc, 

St. Louis USA 

Gemcitabine monophosphate (dFdC-MP) 
Eli Lilly andCompany, Indianapolis, 

USA 

Gemcitabine diphosphate  (dFdC-DP) 
Eli Lilly andCompany, Indianapolis, 

USA 

Gemcitabine triphosphate (dFdC-TP) 
Eli Lilly andCompany, Indianapolis, 

USA 

GeneScanLIZ120 standard ladder for SNaPshotTM Applied Biosystems, Darmstadt  

Glycerol 85 % 
Central Pharmacy, Clinic Hospital 

Göttingen  

HBSS medium Gibco/Invitrogen 

Helipur® H plus N desinfection agent  Braun, Melsungen  

HotStarTaq Master Mix Kit (250 units)  Qiagen, Hilden  

Human RNA Tissue Panel (20 different Tissues) Ambion Huntingdon, United Kingdom 

Hydrogen chloride Merck, Darmstadt, Germany 

Hygromycin B (50mg/ml)  Invitrogen, Karlsruhe  

Isoamylalcohol 98%  Schuchardt, Hohenbrunn  

Isopropanol ≥ 99.9%  Merck, Darmstadt   

Kanamycin ≥ 750U/mg  AppliChem, Darmstadt  

Klenow-Fragment Fermentas, St. Leon-Roth 

KOD HotStart DNA Polymerase  Novagen Merck, Darmstadt  

Ligate-ITTM Rapid Ligation Kit  usb, Staufen  

LipofectamineTM 2000  Invitrogen, Karlsruhe  

LongRange PCR Kit (100) Qiagen, Hilden 

Magnesium chloride ≥ 99%  Riedel-De Haën AG, Seelze  

Magnesium sulfate ≥ 99.5%  Merck, Darmstadt  

Methanol for analysis Merck, Darmstadt 

Mini Quick Spin Oligo Columns  Roche, Mannheim  

Neodisher® A 8, cleaning powder  
Chem. Fabrik Dr. Weigert, 

Mühlenhagen  

Nonidet®P40 Substitute (Nonylphenylethylenglycol)  Sigma-Aldrich, Deisenhofen  

PBS  Invitrogen, Karlsruhe 
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PBS Powder (Dulbeccos 10-fold)  AppliChem, Darmstadt  

Penicillin/Streptomycin-Solution  Invitrogen, Karlsruhe 

Phenylmethansulfonyl fluoride (PMSF)  Sigma-Aldrich, Deisenhofen  

Polylysin-D-hydrobromide  Sigma-Aldrich, Deisenhofen  

Polymer POP6 und POP7 for sequencer Applied Biosystems, Darmstadt  

Prime Star HS DNA Polymerase 
Takara Bio Europe/SAS, Saint-

Germain-en-Laye , France 

Propidium Iodide BD Biosciences, California, USA 

PureYield™ Midiprep Kit  Promega, Mannheim  

Puromycin Invitrogen, Karlsruhe 

QIAquick Gel Extraction Kit  Qiagen, Hilden  

QIAquick PCR Purification Kit  Qiagen, Hilden  

5x HOT FIREPol® EvaGreen®  qPCR Mix Plus  Solis BioDyne, Estonia 

Quickszint Flow 302, Liquid Scintillator Zinsser Analytic, Berkshire, UK 

Random hexanucleotide primers dN6  Roche, Mannheim  

RNAse A ~70%  AppliChem, Darmstadt  

RNeasy Mini Kit  Qiagen, Hilden  

RNeasy Plus Mini Kit  Qiagen, Hilden  

Sephadex™ G-50 Superfine Amersham Bioscience, Freiburg 

Shrimp Alkaline Phosphatase (1u/μl)  usb, Staufen  

SnapShotTM Multiplex Kit  Applied Biosystems, Darmstadt  

Sodium acetate Merck, Darmstadt 

Sodium chloride  Merck, Darmstadt  

Sodium dihydrogen phosphate monohydrate Merck, Darmstadt 

Sodium dodecyl sulfate  BioRad, Hercules, USA  

Sodium hydrogen phosphate monohydrate Merck, Darmstadt 

Sodium hydroxide pellets pure Merck, Darmstadt  

Super Script II reverse transcriptase  Invitrogen, Karlsruhe  

SYTOX® Blue Dead Cell Stain, for flow cytometry 
Life Technologies Corporation, 

Darmstadt  
T4 DNA Ligase  MBI Fermentas, St. Leon-Roth  

Taq DNA polymerase  Qiagen, Hilden  

TEMED ≥ 99%  Sigma-Aldrich, Deisenhofen  

Tetrabutylammonium hydrogen sulfate  Sigma-Aldrich, Deisenhofen 
Thiazolyl blue tetrazolium bromide Sigma, Steinheim, Germany 
TOPO® XL PCR Cloning Kit  Invitrogen, Karlsruhe  

http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&entryPoint=adirect&productID=S34857
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TopTaq Polymerase Qiagen, Hilden 

Tramadol Sigma-Aldrich, Deisenhofen 

Tris 100%  Roth, Karlsruhe  

Triton X-100 Roth, Karlsruhe 

Trypan blue -solution (0.4 %)  Sigma-Aldrich, Deisenhofen  

TrypLE™ Express  Gibco/Invitrogen, Karlsruhe 

Tryptone AppliChem, Darmstadt  

Tween 20 (Polyoxyethylen-Sorbit-Monolaurat)  BioRad, München  

Vybrant® DyeCycle™ Ruby stain 
Life Technologies Corporation, 

Darmstadt 
X-ray film developer G150  AGFA, Leverkusen  

X-ray film fixer G354  AGFA, Leverkusen  

Xylene cyanol FF (for molecular biology)  AppliChem, Darmstadt  

Zeocin  Invitrogen, Karlsruhe  

 
 

2.3.1 Buffers 

Commercial Buffers                   Manufacturer 
HBSS Invitrogen, Karlsruhe 

 

 

PBS-buffer (pH7.4) 

Substance Final concentration [mM] 
NaCl 128.5 
KCl 2.8 
NA2HPO4 8.1 
KH2PO4 1.5 

 

 

TBE–buffer (pH 8.3) 

Substance Final concentration [mM] 
Tris 100  
Boric Acid 100  
EDTA 3.0  
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TE–buffer (pH 7.5) 

Substance Final concentration [mM] 
Tris 10  
EDTA  1  

 

 

 

2.3.2 Media 

2.3.2.1 Commercial Media  
 

 

Media                   Manufacturer 
DMEM  Invitrogen, Karlsruhe 

RPMI Invitrogen, Karlsruhe 
McCoy Invitrogen, Karlsruhe 
IMDM Invitrogen, Karlsruhe 

 

 

2.4 Enzymes 

Restriction Enzyme    Manufacturer 
BamHI Fermentas, St. Leon-Roth  

BglII Fermentas, St. Leon-Roth  

DpnI New England Biolabs, Beverly, USA  

EcoRI Fermentas, St. Leon-Roth  

EcoRV Fermentas, St. Leon-Roth  

HindIII Fermentas, St. Leon-Roth  

NotI New England Biolabs, Beverly, USA  

PstI Fermentas, St. Leon-Roth  

SacI Fermentas, St. Leon-Roth  

SalI Fermentas, St. Leon-Roth  

XhoI Fermentas, St. Leon-Roth  

XmaI  New England Biolabs, Beverly, USA  
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2.5 Plasmid Vectors  

Clone-Nr.  Vector  Resistance  Delivery  
pOG44  Ampicillin Invitrogen, Karlsruhe 

pOTB7::SLC29A1 Expression vector Chloramphenicol 
SourceBioscience, 

Nottingham UK 

pcDNA5:FRT  Expression vector    Ampicillin Invitrogen, Karlsruhe  

pT81 
Luciferasereportergene 

vector 
Ampicillin 

Molecular 

Pharmacology 

Prof. W. Knepel 

pXP2 

Luciferasereportergene 

vector without internal 

promoter activity 

Ampicillin 
Molecular 

Pharmacology 

Prof. W. Knepel 

 

 

 

 

 

 

2.6 Strains of Bacteria 

Strain of Bacteria Origin Application  
for Transfection Delivery 

Top10 
(One shot TOP10 

Electro-comp. E.coli) 
Escherichia coli Electro-competent 

Invitrogen, 
Karlsruhe 
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2.7 Cell Lines 

Cell line Origin Characteristics Delivery 

HEK Flp-InTM TREx 

293 
Human 

Embryonic kidney cell line 
(contain Flp Recombination 

Target (FRT)-manipulate 
stable in Genome integrate) 

Invitrogen, 

Karlsruhe 

AsPCI Human  ATCC, Wesel 

BxPC3 Human  ATCC, Wesel 

CFPac Human  ATCC, Wesel 

CapanI Human  ATCC, Wesel 

CapanII Human  ATCC, Wesel 

MiaPaca2 Human  ATCC, Wesel 

PancI Human  ATCC, Wesel 

Su.86.86 Human  ATCC, Wesel 

Lymphoblastoid cell 

lines (HapMap and 

1000Genome Project) 

Human  

Coriell Cell 

Repositorie, 

Camden, New 

Jersey USA 

 

2.8 Databases 

Database URL 

ECR Browser http://ecrbrowser.dcode.org/ 

ENSEMBL Genome Browser http://www.ensembl.org/index.html 

HapMap http://hapmap.ncbi.nlm.nih.gov/ 

National Center for 
Biotechnology Information  

http://www.ncbi.nlm.nih.gov/ 

TRAP http://trap.molgen.mpg.de/cgi-bin/home.cgi 

TFSEARCH http://mbs.cbrc.jp/research/db/TFSEARCH.html 

TRANSFAC-Database 
BIOBASE, Göttingen 
(http://www.biobase-

international.com/product/explain) 

UCSC Genome Browser http://genome.ucsc.edu/ 
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2.9 Bioinformatic Tools 

Bioinformatic tool Manufacturer 
3100 Data Collection Software Applied Biosystems 
Adobe Photoshop Adobe Systems GmbH, München 
Advanced Image Data Analyzer (AIDA) 

V.4.15 025 
Raytest Isotopenmeßgeräte GmbH, 

Sprockhövel 

BASReader (FujiFilm BAS1800-II) 
Raytest Isotopenmeßgeräte GmbH, 

Sprockhövel 
Clone Manager Suite SECentral 
DNA Sequenzing Analysis Applied Biosystems 
Endnote X4 Wintertree Software Inc. 

GeneMapper, Version 3.7 Applied Biosystems 
Haploview Broad Institute of MIT and Harvard 
MS Office 2007 Microsoft, USA 

Oligo Molecular Biology Insights 
Quantity One S Bio-Rad, München 

SDS 2.1 Applied Biosystems 

SPSS SPSS Inc., Chicago, USA 

Staden Package SourceForge.net 

XFluor4 Software Tecan, Crailsheim 

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&sqi=2&ved=0CDIQFjAA&url=http%3A%2F%2Fwww.broadinstitute.org%2Fhaploview&ei=F8TnUfK3LIWWswabjIDADQ&usg=AFQjCNElAfrBmgeUpb9sS4wsQJEh1iFM7Q&sig2=7SG08RAXljFyiN_X2NNiRw&bvm=bv.49478099,d.Yms
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3 Methods 

3.1 DNA Techniques 

3.1.1 DNA Isolation from Eukaryotic Cells 
For isolation of the genomic DNA from eukaryotes the DNeasy Blood & Tissue Kit 

(Qiagen) was used with the QiaCube robot (Qiagen). About 5x 106 cells, which are 

solved in 100µl PBS Buffer, were used for isolation process. The amount of extracted 

DNA was determined by photometric quantification [3.1.3]. 

 

3.1.2 DNA Isolation from Bacteria 

3.1.2.1 Isolation of Plasmid DNA by Chloroform Extraction   

(Plasmid Mini-Prep) 
The mini-prep method was an easy way to extract plasmid DNA from bacteria. For this 

purpose 5ml bacteria solutions, which were grown over night, were centrifuged 

(Centrifuge 5810R; Eppendorf) with 4000 rpm for 10 minutes at room temperature. 

Before this about 5 µl of this solution was transferred to an agar plate which should 

serve as inoculum for further experiments. After the cells were centrifuged, the 

supernatant was completely discarded and the pellet resolved in 250µl of “resuspension 

buffer” and transferred to a 1.5 ml Eppendorf tube. In the next step the cells were lysed 

by adding 250 µl of “alkaline lyses buffer” and briefly vortexed. Then 350 µl of 

“neutralization buffer” were mixed with the solution and the tube was inverted 5 to 6 

times. The precipitation of the proteins indicates the neutralization of the mixture. This 

solution was centrifuged (Biofuge pico) with 13,000 rpm for 10 minutes at room 

temperature. Then the supernatant was placed in a new 1.5 Eppendorf tube and 

supplemented with 500 µl of ice cold Chlorophorm/Isoamyl (24:1) mixture, which was 

also vortexed briefly. Next this mix was centrifuged again for 5 minutes under the same 

conditions as before. After centrifugation there were two phases from which the upper 

one containing the plasmid DNA. The upper one was removed carefully without picking 

up protein remains between the two phases and transferred to a new 1.5 ml Eppendorf 

tube. In the next step 600 µl of cold (-20°C) iso-propanol was added to the solution and 

vortexed briefly. After this the mixture was centrifuged (Biofuge fresco) with 13,000 

rpm for 15 minutes at 4°C. The supernatant was removed and the pellet washed with 



   Methods 

 
30 

 

600 µl of a 70%-Ethanol solution (-20°C) for 6 minutes under the same conditions as 

before. Then the supernatant was removed and the tube, whose lid was open, was placed 

on a heat block with 37°C while shaking. After about 10 – 20 minutes the pellet was dry 

and clear and was resolved in 50 µl TE Buffer. 

 

 

Resuspension-Buffer mix (pH 8.0)  stored at 4° 

Reagent Concentration 
Tris -HCL 50 mM 
EDTA 10 mM 
RNAse A (added after autoclaving) 100 µg/ml 

 

 

Lysis-Buffer mix (pH 8.0) stored at RT 

Reagent Concentration 
NaOH 200 mM 
SDS 1 % (w/v) 

 

 

Neutralization-Buffer mix (pH 5.5) stored at RT 

Reagent Concentration 
Potassium  acetate  3 M 

 

 

TE-Buffer mix (pH 7.5)  stored at RT 

Reagent Concentration 
Tris 10 mM 
EDTA 1 mM 

 

 

 



   Methods 

 
31 

 

3.1.2.2 Isolation of Plasmid DNA by Solid Extraction  

(Plasmid Midi-Prep) 
This approach was conducted to achieve high and pure amounts of extracted plasmid 

DNA. Plasmid DNA, which was extracted by this procedure, was used for transfection 

techniques applied on eukaryotic cells. The ComactPrep Plasmid Kit (Quiagen) was 

used for this purpose and the extraction was performed according to the manufacturer’s 

recommended protocol.  

 

3.1.3 Quantification of DNA 
The quantification of DNA samples is accomplished by photometric measurements with 

an absorbance of 260 nm. An Implen-Nanodropcuvett (Implen) was applied with the 

BioPhotometer (Eppendorf, Hamburg, Germany). For quantification of DNA 3 µl of 

sample was used. Additionally to the extinction of 260 nm there is an absorbance ratio 

of 260/280 nm, which expresses the purity of DNA in the samples. In this case the value 

of about 2 stands for high purity.  

The principle of nucleic acid quantification is the Beer-Lambert law: 

                                                   A= αcl   

A= absorbance 

α = absorbance coefficient (cm2/µg)  

c = solute concentration (µg/ml) 

I = length of the light path (cm) 

 

 

3.1.4 Polymerase Chain Reaction (PCR) 
The PCR approach is a technique for DNA amplification in vitro. The KOD Hot Start 

DNA Polymerase (Novagen Merck, Darmstadt) and the Prime Star HS Polymerase 

(Takara Bio Europe/SAS, Saint-Germain-en-Laye, France) were used for cloning 

experiments because of their excellent proofreading activity, which prevents DNA 

amplification errors. For other purposes than cloning the TopTaq Polymerase (Quiagen, 

Hilden) was used. 

In the PCR reaction the first step is to denaturate the double stranded DNA to single 

stranded DNA. In the next step the DNA-primers are annealed by temperatures between 
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50 and 70°C. The primers, which represent the start points of amplification, determine 

the DNA region of interest. After this the temperature heats up again for the elongation 

process by the polymerase. By repeating these steps for about 35 times the selected 

DNA region becomes amplified. 

The best condition for each new pair of primers in PCR reactions becomes elucidated 

by a gradient PCR, which tests different annealing temperatures. To reveal the best 

annealing temperature the fragment size and amount of the PCR product becomes 

evaluated by an Agarose gel. To improve the amplification in some cases, Q-Solution 

(from Qiagen Taq-Polymerase-Kit; Quiagen Hilden) was added to the PCR reaction. 

The PCR reactions were performed according to the manufacturer’s recommendations. 

In the following there is an example for the KOD-PCR reaction. 

 

 

Standard-KOD-PCR-reaction: 

Reagent  Volume for 1 Sample [µl] 
ddH2O 8.8 
10x Buffer 2.2 
dNTPs (2mM) 2.2 
MgSO4 0.9 
Q-Solution (optional) 4.4 
Primer forward (10µM) 0.5 
Primer reward (10µM) 0.5 
DNA  (300µg/ml) 2 
KOD HotStart Polymerase (1.0 U/µl) 0.5 

Total 20 
 

 

Standard-KOD-PCR-conditions: 

Phase  Duration Temperature 
Initial Denaturation  2  min 95°C 

Denaturation 30 sec 95°C 

Annealing  30 sec 50-70°C 

Elongation  1 min  72°C 

Terminal elongation 10 min 72°C 

 Cool down for ever 8°C 

 35x 
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3.1.5 Site-Directed Mutagenesis 
Site-directed mutagenesis is a method to make specific mutations to one or up to four 

bases in DNA-sequences by mutagenesis primers. In this case the single nucleotide 

polymorphism rs45573936 in the cDNA sequence (Clone 3051441 / IRAUp969A097D; 

SourceBioscience, Nottingham, UK; http://www.lifesciences.sourcebioscience.com/ 

genomecube?kw=3051441) of hENT1 (SLC29A1) was modified in the SNP 

rs45573936 position from T>C with the mutagenesis primer (Table 1) to obtain the 

variant allele additionally to the wild type allele, which is present in the clone of this 

polymorphism. When purchased the hENT1 gene had been inserted in the vector 

pOTB7. With this construct (pOTB7::hENT1) “Site-directed-mutagenesis” was 

performed.  

In order to conduct the side directed mutagenesis it was necessary that the construct, 

which should be mutated, was harvested from bacteria and had specific methylation 

patterns. After the amplification in the site-directed mutagenesis PCR the original 

constructs without the site-directed mutagenesis could be degraded by DpnI 

endonuclease (methylation specific restriction enzyme). The new generated constructs 

which derived from the PCR amplification step, did not show methylation patterns and 

were not degraded by DpnI. The site-directed mutagenesis PCR was performed with the 

KOD Hot Start DNA Polymerase Kit (Novagen Merck, Darmstadt). To elucidate the 

right annealing temperatures for PCR conditions a gradient PCR was conducted with 

the mutagenesis primers first (Table 1) [3.1.4].  

 

Site-directed mutagenesis PCR Mixture 

Reagent Volume [µl] 
10 x buffer  5  
 dNTPs (2 mM)                   5  
 MgSO4 (25 mM)  2  
 Q-Solution   10  
 Primer-for (10 nM)  1.3  
 Primer-rev (10 nM)  1.3  
 Plasmid DNA (50 ng/µl)  1  
 KOD HotStart Polymerase (1.0 U/μl)  1  
 ddH20  23.4  

Total Volume  50 
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PCR conditions for Site-directed mutagenesis 

Phase  Duration Temperature 
Initial Denaturation  3  min 95°C 
Denaturation 30 sec 95°C 

Annealing  30 sec 60°C 
Elongation  3 min 30 sec 72°C 
 Cool down for ever 8°C 

 

 

For degradation of the not mutated constructs 2 µl of DnpI endonuclease was added to 

the PCR reaction mixture and incubated for 1 hour at 37°C. Then 1 µl of Dpn1 was 

supplemented again and incubated again for 1 hour at 37°C. In the next step the 

digested PCR mixture was dialyzed [3.1.10].Then the dialyzed solution was 

transformed in E. coli TOP10 strain by electroporation [3.5.4]. After this the 

pOTB7::hENT1 constructs were isolated from single bacteria clones by mini prep 

[3.1.2.1] and the open reading frame of hENT1 was fully sequenced [3.1.11] with 

sequencing primers (Table 2) to validate the correct sequence of the hENT1 gene with 

the mutated SNP rs45573936 (T>C).  

 

 
Table 1: Mutagenesis primer for hENT1- rs45573936- WT  Var ( tc) 

 
 

 

 
Table 2: ENT1-Thr216 sequencing Primer 

Primer Sequence 
ENT1_Seq-1_rev 5'CCAGACCACTCAGGATCAC3' 

ENT1_Seq-2_rev 5'ATGCTGGACTTGACCTCAAC3' 
ENT1_Seq-3_rev 5'GATGGCACCAAATGAATTAATGAG3' 

Primer Sequence 
ENT1-Thr216-for 5'ACAGCCTGTGCTGTTACCATTTTGACCATCATC3' 
ENT1-Thr216-rev 5'GATGATGGTCAAAATGGTAACAGCACAGGCTGT3' 

 19x 
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3.1.6 Agarose Gel Electrophoresis 
The agarose gel electrophoresis is a technique for separating DNA fragments by their 

size on a two dimensional matrix. The principle of this approach is that negative 

charged DNA fragments move in an electric field to the positive pole. Smaller DNA 

fragments can move faster in the agarose-gel-matrix than bigger ones. In regard to the 

used DNA fragment size the agarose concentrations vary from 0.8%-3%.   

For agarose gel preparation the appropriate amount of agarose (Agarose Ultra Pure; 

Invitrogen) was weighed, dissolved in TBE-Buffer [2.3.1] and heated up in the 

microwave until boiling. After cooling down for several minutes 0.5 µg/ml Ethidium 

bromide (Merck, Darmstadt) were added and mixed with a magnet stirrer. After this the 

agarose gel liquid was filled in a gel tray, gel combs were used to shape appropriate size 

and amount for the sample pockets. After 15-30 minutes the agarose gel was hardened. 

Then the gel tray was placed in the gel chamber and covered with 1x loading buffer 

(TBE- Buffer [2.3.1] + Ethidium bromide).  

Before placing the DNA samples in the gel pockets, they became mixed with 1x loading 

dye. DNA ladders with 100 bp and 1 kb (ABgene, Fermentas) were used for a visual 

DNA standard with known DNA-fragment-sizes. The electrophoresis was performed 

with 120 V for 30 min using a ComPhor L Mini Gel chamber (Biozym). To analyze 

electrophoretic results the DNA bands became visualized by Fluor-S™ MultiImager 

(BioRad, Hercules, USA) with the software Quantity One® S Version 4.3.1 (Bio-rad). 

 

 

5x Loading Dye 

Substance Final concentration 
Glycerol 30% (v/v) 
EDTA 50 mM 
Bromphenol blue 0.25% (v/v) 
Xylene cyanol 0.25% (v/v) 
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3.1.7 DNA Purification 

3.1.7.1 DNA Purification from Agarose Gel 
For DNA extraction from agarose gels first the DNA spots of interest get sliced out of 

the gel under UV-light using transilluminator TI2 (Biometra). The slices should not 

exceed 200 mg of 2% agarose. For purification of the DNA the QIAquick Gel 

Extraction Kit (Qiagen) was used with the QiaCube robot (Qiagen) according to 

manufacturers’ protocol. 

 

3.1.7.2 DNA Purification from Solutions 
To purify DNA from enzymatic reaction mixtures (e.g. from PCR or restriction 

digestion [3.1.8]) the QIAquick PCR-Purification Kit (Qiagen) was applied according to 

manufacturers’’ protocol. 

 

3.1.7.3 Enzymatic Purification of DNA 
The enzymatic digestion was used to purify PCR-products from remaining primers and 

nucleotides of the PCR reaction. Shrimp alkaline phosphatase (SAP, Fermentas, 

Thermo Scientific) was used to dephosphorylate nucleotides (dNTPs) and Exonuclease 

I from E.coli (Fermentas, Thermo Scientific) was applied to degrade primers. The 

prepared reaction mixture is displayed next: 

 

Mixture for enzymatic purification of DNA solutions 

Reagent Volume [µl] 
SAP (1 U/µl) 5 
ExoI (10 U/µl) 0.2  
10 X SAP buffer 2  
PCR product 13  

 

 

The reaction mix was incubated for 1 h at 37oC. Afterwards the enzymes were 

inactivated by incubation for 15 min at 80oC in the thermal cycler (BioRad, Hercules, 

USA).  
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3.1.8 Digestion by Restriction Enzymes 
This basic method of molecular biology is used for the specific cleavage of DNA 

fragments for analytical or preparative purpose. The cleaving is performed by restriction 

enzymes which are types of endonucleases. The identification of correct cleavage of 

DNA fragments and the separation from different sized DNA pieces takes place by 

agarose gel electrophoresis [3.1.6]. 

 

3.1.8.1 Analytical Digestion 
This method was used to confirm the awareness of correct DNA fragment by obtaining 

a specific pattern of individual sized DNA fragments after cleaving with a certain 

digestion enzyme. To confirm the results DNA constructs became cleaved in 

independent sets with at least three different digestion enzymes. 

 

 

Analytical digestion mix 

Reagent Volume [µl] 
10 x Restriction buffer 1 
BSA (dependent on enzyme) 0.1 
DNA (~1µg) 1 
Digestion enzyme 1 
ddH2O 7 

 

 

The analytical digestion mix was incubated for 1 hour at the recommended temperature 

of the referring digestion enzyme (mostly 37°C). After that the outcome of the digestion 

was visualized by agarose gel electrophoresis [3.1.6].  

 

3.1.8.2 Preparative Digestion 
This approach is used to create matching overhanging DNA tales on inserts and vectors 

for further ligation steps by which those fragments become connected with each other. 

Generally, the final aim of this procedure was to transfect the resulting constructs into 

eukaryotic cells by stable [3.7.3] or transient transfection [3.7.1] or to transform them 

into bacteria by electroporation [3.5.4] in the end.  
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Preparative digestion mix 

Reagent Volume [µl] 
10 x Restriction buffer 5 
BSA (dependent on enzyme) 0.5 
DNA  (max. 10 µg) 
Digestion enzyme (dependent on star activity) 5 
ddH2O Up to 50 

 

 

In general the digestion was performed between 2 and 3 hours or even over night 

dependent on the activity of the applied digestion enzyme. After digesting overnight 

1 µl of the enzyme was supplemented for 1 further hour the next day. It had also been 

possible to perform a digestion with two enzymes simultaneously if the enzymes 

required the same reaction buffer. In case of two independent digestions, the cleaved 

DNA fragments had to be isolated by a preparative gel electrophoresis [3.1.6] and a gel 

extraction [3.1.7.1] before the next restriction digestion could be performed. 

 

3.1.9 Ligation 
This procedure connects double stranded DNA fragments by a ligase enzyme. This 

method is used for inserting DNA fragments into plasmids. In order to do this the ends 

of DNA fragments have to match for the linking process. There is the possibility to have 

sticky ends, which are DNA overhangs in double-stranded DNA fragments or blunt 

ends, which are plain ends of DNA fragments. The matching DNA termini for a ligation 

are usually created by restriction enzymes in a preparative digestion reaction [3.1.8.2].  

For the ligation procedure the Ligate-ITTM Rapid Ligation Kit (USB, Staufen, 

Germany) was used. The relation of the used insert and vector was 13:2 (v/v) in a total 

volume of 15 µl. The reaction mixture was prepared as depicted in the following chart: 

 

Ligation mixture 

Reagent Volume [µl] per sample 
5x Ligase buffer 5 
Vector DNA 2 
Insert (DNA-Fragment)  13 
Ligase 1 
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The ligation reaction was performed in 5 to 10 minutes incubation at room temperature. 

After this the mixture was placed on ice for 10 minutes. To analyze the quality of the 

previous restriction digestion of the vector, which was used to create sticky ends in the 

vector DNA, one ligation sample with only vector DNA (negative control) was 

prepared. After this sample was transformed by electroporation [3.5.4] into bacteria 

cells in the end, the amount of emerging clones on the agar plate were much fewer then 

on the other plates. If there were high amounts clones on the negative control agarose 

plate it would be an indication of a less efficient restriction digestion. This implies high 

rates of empty vector transfected clones on the sample plates.  

 

3.1.10 Dialysis 
The dialyses procedure is a required step necessary for the transformation of DNA 

fragments into bacteria by electroporation [3.5.4]. By this process the salt components 

in mixture were removed. In order to perform the dialyzation 20 µl of the mixture 

(mostly ligation solutions) was transferred to a semipermeable membrane (Dialyse filter 

VSWP01300, Millipore, Bedford, USA), which was placed on the surface of ddH2O in a 

petri dish for 30 minutes. After this time the solution was transferred in an Eppendorf 

tube and was ready for the electroporation process [3.5.4].  

 

3.1.11 DNA Sequencing 
DNA sequencing is an approach to identify the exact order of nucleotides in DNA 

strands. The chain-termination method, which was invented by Sanger and Coulson 

1975, was applied. The principle of this approach is that there are different fluorescently 

labeled di-deoxy nucleotide triphosphates (ddNTPs) additionally to ordinary deoxy 

nucleotide triphosphates (dNTPs), which are lacking a 3'OH-Group and cannot be 

extended in DNA amplification process. During the sequencing PCR the ddNTPs are 

randomly incorporated and cause chain termination. In the end the resulting different 

sized DNA fragments can be aligned by automated sequencing machines. Since the last 

fluorescently labeled ddNTP of each fragment reveals the identity of the last nucleotide, 

the sequence of region concerned can be determined by arrange the fragments by their 

size. 
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To sequence genomic regions a pre-PCR had to be performed to quantify the regions of 

interest for the sequencing PCR step. To sequence DNA products, which were isolated 

by Mini-Prep [3.1.2.1], there was no need for a pre-PCR. After this the master mix for 

sequencing was prepared using BigDye® terminator v1.1 Sequencing Kits (Applied 

Biosystems, Darmstadt). In the sequencing PCR just one of the complementary DNA 

strands was analyzed, in order to this just one sequencing primer was used for one 

sample. 

 

 

Sequencing-PCR-Mix: 

Reagent Volume [µl] per sample 

DMSO  0.25  
Primer (10 μM)  0.5  
BigDye®  1  
ddH2O  2.25  
DNA (~300 μg/ml)  1  

Total volume 5  

 

 

 

 
Sequencing-PCR conditions: 

Phase  Duration Temperature 
Initial Denaturation  2  min 94°C 
Denaturation 15 sec 96°C 

Annealing  15 sec 56.5°C 
Elongation  4 min  60°C 
Terminal elongation 7 min 60°C 
 Cool down for ever 8°C 

 

 

After the sequencing-PCR the reaction mix had to be purified by a Sephadex 

purification step to remove the not incorporated ddNTPs. For this purpose 35 mg 

Sephadex G50 superfine (Amersham, Freiburg) were filled in the wells of a 96-well 

 25x 
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filter plate (MAHV-N45, Millipore) together with 300µl ddH2O, then the Sephadex was  

swelled for 3 hours at room temperature. 

 Next the plate got centrifuged (Centrifuge 5810 R, Eppendorf) with 650 g for 5 minutes 

at room temperature to remove the superfluous water. After this another amount of 150 

µl ddH2O was added to each well and incubated for another 30 minutes at room 

temperature. To remove the superfluous water the plate got centrifuged again under the 

same conditions. Meanwhile 35 µl of ddH2O were added to the 5 µl of the sequencing-

PCR-mix. Then this solution was poured in the Sephadex-wells and centrifuged again 

by 650 g for 5 minutes at room temperature. The purified solution was free of unbound 

dNTPs and ddNTPs and could be used for sequencing analysis with 3130xl Genetic 

Analyser (Applied Biosystems). The sequencing data was evaluated with Staden 

Package software Version 4.0 (SourceForge.net) and Clone Manager (SECentral). 

 

3.1.12 Genotyping by Primer Extension Method (SNaPshotTM) 
To determine single nucleotide polymorphisms (SNPs) in genomic DNA of human 

individuals the primer extension method SNaPshotTM was applied. By this method it 

was possible to evaluate over 20 genotypes in one reaction. The principle of this 

approach is that different sized primers (between 18bp and 40bp) were designed in that 

manner that their 3'terminus exactly annealed one position upstream of the nucleic acid 

of the SNP of interest. By means of di-deoxy single-base extension PCR reaction step 

with fluorescently labeled ddNTPs (SNaPshot Master mix: ABI PRISM SNaPshot™-

Multiplex-Kit) the genotypes were identified. Di-deoxy nucleotides (ddNTPs) don’t 

have an OH-group on the 3'-terminus, which causes a termination of DNA 

amplification. Because of this an extension of the used primers with only one nucleotide 

occurs and reveals the polymorphic genotype by the fluorescent stain of the added 

ddNTP. The identity of each SNP in the reaction set with many primers, which were 

fluorescently labeled, were coded by the specific length of each primer, which refers to 

only one polymorphic locus. An internal DNA size standard was used to determine the 

exact length of the extended primers (Gene ScanTM 120LIZTM Size Standard, Applied 

Biosystems). Each ddNTPs has its characteristic fluorescent stain (FS): Adenine = green 

(FS = dR6G); Cytosine = black (FS = dTAMRATM); Guanine = blue (FS = dR110), 

Thymine = red (FS: dROXTM).  
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Before performing a SNaPshotTM-PCR on genomic DNA you have to amplify genomic 

regions with the polymorphic loci (Multiplex PCR Kit, Qiagen, Hilden). After multiplex 

PCR reaction the “first clearance” with SAP (Shrimp alkali phosphatase, USB, Staufen) 

and ExoI (Exonuclease I, USB Staufen) was applied to remove the multiplex primers 

and degrade dNTPs. The reaction mix was incubated for 3 hours at 37oC. Then the 

enzymes became deactivated by incubation for 15 minutes at 80 oC. 

 

 

Reaction mixture for the “first clearance” 

Reagent Volume [µl] per Sample 
SAP (1U/µl) 1.695 
SAP-Puffer (10x) 0.6  
ExoI (20U/µl) 0.705 
PCR-product 6 

Total volume                                         9 µl 
 

 

Following an example of SNaPshotTM-PCR 

Reagent Volume [µl] per sample 
SNaPshot™-Master mix 0.5  
Primer mix (2-12µM) 0.5  
ddH2O 2 
Purified PCR-product 2 

Total volume  5 µl 
 

 

PCR cycle for SNaPshot PCR 

Phase Duration Temperature 
Initial Denaturation 2 min 94°C 
Denaturation 10 sec 96°C 

Annealing 5 sec 50°C 
Elongation 30 sec 60°C 

Total volume                                         for ever 8°C 
 

 

 26x 
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After SNaPshotTM-PCR reaction the “second clearance” was performed to degrade the 

superfluous fluorescently labeled dNTPs, which cause background noise during 

analysis. This reaction was incubated for 30 minutes at 37°C. Afterwards the enzymes 

became deactivated by incubation for 15 minutes at 80°C. 

 

 

Reaction mixture for the “second clearance” 

Reagent Volume [µl] per sample 
SAP (1U/µl) 0.5 
SAP-Puffer (10x) 0.5 
SNaPshotTM-reaction mixture 5 

 

 

For determination of the genotypes the cleaned up samples were prepared for evaluation 

by 3130xl Genetic Analyser using Gene mapper v3.7 software® (Applied Biosystems). 

For this purpose the following reaction mixture became heated for 10 minutes at 95°C 

and afterwards placed on ice immediately for 10 minutes.  

 

 

Mixture for evaluating SNaPshot reaction in sequencer: 

Reagent Volume [µl] 
Formamid (Hi-Di TM  Formamid, Applied Biosystems) 10 
Gene ScanTM 120LIZTM Size 0.05 
cleaned up Sample 1 

 

 

 

3.2 RNA Techniques 
Since RNA can quickly be degraded by RNases, all the working surfaces and materials 

had to be free of RNases. For this purpose all preparations were done under a fume 

hood and all used materials were treated with an anti-RNase-spray (RNaseZap; Sigma-

Aldrich) before working. Additionally RNase-free pipette tips (Quali-

Filterpipettenspitzen steril; Kisker, Steinfurt) were used to prevent contamination with 

RNases.  

http://www.dict.cc/englisch-deutsch/superfluous.html
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3.2.1 RNA Isolation 
For RNA isolation about 1x106 cells were taken and washed with about 4 ml PBS-

buffer [2.3.1]. Afterwards cells became centrifuged with 250 g for 5 minutes at room 

temperature. Then the supernatant became discarded and the very last liquid in the tube 

became removed with a pipette. In the next step the pellet was lysed in 350 µl RLT Plus 

buffer (Qiagen). For this step no 2-Mercaptoethanol was used. Then the solution was 

transferred to a 2 ml Eppendorf tube. The RNA was isolated with the RNeasy Plus Mini 

Kit (Qiagen) by the QiaCube (Qiagen) robot according to the recommended protocol. In 

the end the extracted RNA concentration was determined by the photometric 

quantification [3.2.2]. 

 

3.2.2 Photometric Quantification of RNA 
The quantification of RNA samples is accomplished by photometric measurements with 

an absorbance of 260 nm. An Implen-Nanodrop cuvette (Implen) was applied with the 

BioPhotometer (Eppendorf, Hamburg, Germany). For quantification of RNA 3 µl of 

sample was used. Additionally to the extinction of 260 nm there is an absorbance ratio 

of 260/280 nm, which expresses the purity of RNA in the samples. In this case the 

resulting value of about 2 stands for high purity.  

The principle of nucleic acid quantification is the Beer-Lambert law: 

                                                   A= αcl   

A= absorbance 

α = absorbance coefficient (cm2/µg)  

c = solute concentration (µg/ml) 

I = length of the light path (cm) 

 

3.2.3 Reverse Transcription 
The reverse transcription method is utilized to analyze the expression of genes by the 

determination of the amount of produced RNA transcripts in cells.  

In order to do this the extracted RNA had to be transcribed in cDNA (copy or 

complementary DNA) by Super Script II reverse transcriptase (Invitrogen, Karlsruhe) 

first. Next the amount of specific cDNA transcripts was quantified by qPCR. Since the 

cDNA became generated directly from mRNA, there were no introns in resulting cDNA 
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fragments. For reverse transcription first the random primers got annealed for 5 minutes 

at 70°C in the following reaction with the total amount of 1 µg RNA. After this the 

samples became cooled down on ice for 10 minutes. 

 

 

Mixture for primer annealing 

Reagent  Volume [µl] per Reaction 
cDNA (1µg) Volume for 1µg 
dN6  (random Primers) 2 
ddH2O  Add to 18.54 

 

 

In the meantime the master mix for reverse transcription was prepared. Subsequently 

the master mix was added to each sample and the reverse transcription was conducted 

under 42°C for 1 hour as described in the following example: 

 

 

Reverse transcription reaction mixture 

Reagent Volume [µl]  per Reaction 
5 x Superscript RT buffer 6  
DTT (0.1 M)  3.5 
dNTPs (10 mM)  1  
RNase Inhib P/N (40un/μl)  0.5  
Super Script™ II (200 U/μl)  0.25  

Total volume 11.25 
 

 

At last the cDNA concentration was adjusted to a concentration between 2 ng/µl and 

10 ng/µl by diluting with TE-buffer [2.3.1]. 

 

3.2.4 Quantitative PCR 
The quantitative PCR (also qPCR or real-time PCR) is a method for quantification of 

cDNA transcripts, which were derived from mRNA reverse transcription [3.2.3], during 

PCR amplification process.  

http://www.dict.cc/englisch-deutsch/subsequently.html
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The produced DNA products were monitored by eva green (Excitation =500 nm; 

Emission = 530 nm), which is a fluorescent intercalating dye and a component of the 

qPCR-master mix (Solis BioDyne, Estonia). During several PCR cycles the cDNA 

became amplified. Between the cycles the total amount of amplified DNA was 

monitored. The fewer the amount of specific cDNA in the beginning the more cycles of 

PCR were necessary to reach a threshold (Threshold Cycle (Ct)) of a preset DNA 

quantity (HIGUCHI et al 1993). The lower the cycle number the higher was the 

expression of this gene. To be able to compare expression patterns in different cells with 

deviating total RNA amounts, it was necessary to normalize the quantity of transcripts 

with the quantity of at least one housekeeping gene (e.g. GAPDH, UBC etc.), which 

were ubiquitously expressed genes. For determination of amplification efficacy during 

the cycles a basic grade with a pool of cDNA of cell lines, which were supposed to be 

analyzed, was compounded. This basic grade was prepared by a serial dilution of cDNA 

with six concentrations (1:5 dilutions). The amount of amplified DNA became 

monitored. In the end the amplification efficacy was calculated and referred to the data 

of the samples. 

The 5x HOT FIREPol® EvaGreen® qPCR Mix Plus (Solis BioDyne, Estonia) was used 

for real-time PCR and was prepared as described in the following example: 

 

 

qPCR master mix: 

Reagent Volume [µl] per sample 

qPCR Master mix  2 
Primer [1:10] 0.2 
ddH2O 4.8 
cDNA 3  

total 10 
 

 

 

The quantitative PCR was executed by TaqMan 7900HT (Applied Biosystems) in a 384 

Well Plate (Thermo Fast Plate 384 PCR, ABgene), which was covered with a special 

“optical clear” cover slide (Adhäsiv PCR-Folie, ABgene).  

 

http://www.dict.cc/englisch-deutsch/excitation.html
http://www.dict.cc/englisch-deutsch/ubiquitous.html
http://www.dict.cc/englisch-deutsch/serial.html
http://www.dict.cc/englisch-deutsch/dilution.html
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qPCR-Program: 

Phase Duration Temperature 
Initial denaturation 15min 95°C 
Denaturation 15 sec 95°C 

Primer annealing  20 sec 60°C 
Elongation  40 sec 72°C 

Melting curve   
 

 

 

 

The results were evaluated with the software SDS 2.1. The specific melting curve in this 

qPCR process was an indication that the intended PCR product was amplified. Different 

DNA fragments have various melting temperatures due to their number of nucleotides 

and to the amount of guanosine and cytosine bonds. Because of this it was possible to 

recognize wrong amplified fragments, when a second melting curve had appeared. For 

normalization of the quantity of transcripts with housekeeping genes the ∆∆CT method 

was used. 

This method was applied in my thesis for determination of ENT1 transcript variants, 

which derived from lymphoblastoid cell lines [3.6.5], pancreatic tumor cell lines 

(AsPC1, MiaPaca2, Su.86.86, CFPac, Panc1, Capan1) [3.6.6] and a human RNA tissue 

panel from Ambion (Huntingdon, United Kingdom). The samples of the total RNA 

panel derived from tissues of at least three unrelated healthy humans and were extracted 

post mortem. The primer used for quantification of ENT1 transcript variant as well as 

for the determination of reference genes are outlined in Table 3. 

 

 

 

 

 

 

 

40x - 45x  
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Table 3: Primers for qRT-PCR. 

Gene Forward Primer (5'->3') Reverse Primer (5'->3') AL [bp] 

Reference genes 
GAPDH1 CCCTTCATTGACCTCAACTACAT ACGATACCAAAGTTGTCATGGAT 407 

HPRT11 TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT 93 

UBC2 CGGTGAACGCCGATGATTAT ATCTGCATTGTCAAGTGACGA 123 

36b43 GCAGATCCGCATGTCCCTT TGTTTTCCAGGTGCCCTCG 92 

ENT1 transcript variants 
all4 TGTTTCCAGCCGTGACT CAGGCCACATGAATACAG 147 

v1 TGCGGTCACGTTGACCT CCTAGGAGGTGCTCCTAGTTCA 113 

v2 ATCTCAGCGCGGGAGCA v1-rev 85 

v3 CGAGAGCGCGCGGATCT GGGGCCTGCCGCAGAAG 50 

v4 GAGATGAGGAGGGAGAGAAC CCTGCTGCTGAGACTTTG 93 

v5 v4-for GGCCTGCTGAGACTTTG 92 

v313248 v4-for CTGGTCTTCTGGCTTCTCTC 132 

v371708 AAGACAGGGCCTCACACTG AAGCCAGACAGCTTTGTATCTGT 134 

v371713 v1-for CAGGGGCCAGATCGATG 67 

v371731 TCTGCGGCAGGCTTCTC v1-rev 151 

The ENT1 transcript variants are based on the entries in NCBI (v1-5, see 
http://www.ncbi.nlm.nih.gov/gene/2030) and ENSEMBL (the last four rows, see 
http://www.ensembl.org) and are denoted as in the databases. Of the other seven ENSEMBL entries, six 
are covered by the five variants annotated in NCBI, and one does not code for protein product. “All” 
detect a region for protein coding shared by all investigated transcript variants. The prime numbers at the 
gene names indicate a literature report as source: 1 = PMID:16978418, 2 = PMID:19036168, 
3 = PMID:17483357, 4 = PMID:17658213. No number denotes self-established primers. 
 

 

3.3 Protein Analyses 

3.3.1 Quantification of Total Protein Using Bicinchoninic Acid (BCA) 
For quantification of the total amount of proteins in solutions the bicinchoninic acid 

(BCA) method was used (SMITH et al. 1985). The principle of this approach is that Cu2+ 

ions become reduced by the proteins to Cu+ ions, which causes a color shift of the 

reaction mixture from green to purple. The exact transition from the color shift can be 

photometrically determined and used for quantification of the protein content.  

For applying this approach at first a basic grade with a defined amount of BSA protein 

solution (bovine serum albumin) was transferred into wells of a 96-well plate (Sarstedt). 

The basic grade, which was prepared in duplicates, consisted of the conditions 0, 3, 5, 7, 

9, 11 µl of a 1 mg/ml BSA stock solution. Then 4-10 µl of undetermined protein 
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samples were transferred in triplicates to the wells of the 96-well plate. In some cases a 

1:10 dilution of the undetermined protein samples was prepared before. The BCA-

copper-sulfate-reaction-mixture is composed of 50 parts of Bicinchoninic Acid solution 

and 1 part of a 4% copper-sulfate-solution. Then 200 µl from this mixture was 

transferred on the 96-well plate for each sample and incubated for 30 minutes at 37°C. 

After this time the color shift based on the amount of proteins in the samples was 

determined by absorbance measurements at 570 nm with Tecan Ultra Microplate device 

(Tecan, Crailsheim). In the end the total protein content could be calculated in applying 

the basic grade according to the collected date with this formula: 

 

 

 

 

 

 

3.4 Electrophoretic Mobility Shift Assay 
The electrophoretic mobility shift assay (EMSA) is an approach to determine if 

regulatory proteins (e.g. from nuclear extracts (MURRAY and RUBEL 1992; SCHREIBER 

et al. 1989)) are binding on DNA probes. The DNA probes were labeled with the 

radioactive nuclide 32P to visualize the protein binding on the probe. The probes 

consisted of a pair of complementary oligonucleotides, which had a GATC-nucleotide 

overhang on the 5'terminus.  

 

3.4.1 Isolation of Nuclear Protein Extracts 
The isolation of nuclear protein extracts was performed according to the CelLyticTM 

NuCLEARTM Extraction Kit from Sigma. The principle of this method is that cells 

become lysed by osmotic pressure first. Thus, cytosolic components evade the cells and 

can be separated by centrifugation steps from membranes and nuclei. An inhibitor of 

nuclear transporters (Na-ortho-vanadate) is intended to prevent nuclear proteins from 

escaping the nucleus. Next the membranes become chemically degraded. In the means 

of another centrifugation step the destroyed membrane fragments can be separated from 

the nuclear proteins by centrifugation. 

                dilution factor      x        measured value 

     used sample volume       x       slope of basic grade 
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All the required solutions were prepared by me. The isolated nuclear protein extracts 

derived from lymphoblastoid cell lines [3.6.5] and pancreatic cancer cell lines [3.6.6] 

and were used for electrophoretic mobility shift assays (EMSA) [3.4.3].  

All of the following steps were conducted on ice.  

 

 

Mixture for Nuclear-Extraction-Buffer A 

Reagent   (pH7.9at 4°C) Concentration (mM) 
HEPES/KOH 10 
MgCl2 1.5 
KCl 10 
DTT (added directly before usage) 0.5 

PMSF (added directly before usage) 1 ml 
(of a saturated solution) 

Na-Vanadat (added directly before usage) 1 

ddH2O Up to 600 ml 
 

 

 

 

Mixture for Nuclear-Extraction-Buffer B 

Reagent  (pH7.9at 4°C) Concentration (mM) 
HEPES/KOH 20 
Glycerin 85% 25% 
NaCl 420 
MgCl2 1.5 
EDTA 0.2 
NP40 (=modification)  1 % final conc. 
Na-Doc (=modification) 0.5% final conc. 
DTT (added directly before usage) 0.5 

PSMF (added directly before usage) 1 ml 
(of a saturated solution) 

Na-Vanadat (added directly before usage) 1 

ddH2O Up to 1000 ml 
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For the nuclear protein extraction about 1x107 – 1x108 cells were used. The cells were 

harvested from the culture flask and transferred to pre-cooled Falcon tubes. Next they 

were centrifuged (Heraeus Laborfuge 400R) at 300 g for 5 minutes at 4°C. Thereafter 

the supernatant was discarded and the pellet was resolved in 10 ml of ice cold PBS 

[2.3.1] (supplemented with 1mM Na-ortho-vanadate). If many Falcon tubes were used 

at this point, all the aliquots would be pooled in one 50 ml Falcon tube. After this the 

cells were centrifuged again (Heraeus Laborfuge 400R) at 600 g for 5 minutes at 4°C. 

In the following procedure the supernatant was completely removed and the cells were 

resolved in 1 ml of ice cold PBS (supplemented with 1mM Na-Orthovanadat) and 

transferred to a 2 ml Eppendorf tube. Then the samples were centrifuged (Biofuge 

fresco) with 600 g for 5 minutes at 4°C. Hereafter the supernatant was removed and cells 

became resolved in the nuclear extraction mixture buffer A with the approximate fivefold 

volume of the pellet. Then cells were incubated for 20 minutes on ice. Subsequently the 

vitality of the cells was checked by Trypan blue staining under the microscope. In most 

cases just 60%-80% of the cells were lysed. Next 10 µl of a 10% NP-40 solution (1% final 

concentration) per 100 µl of cell mixture was applied and vortexed vigorously for 10 

seconds. After that cells became centrifuged (Biofuge fresco) with 11,000 g for 2 minutes at 

4°C. At this point supernatant includes cytosolic proteins and could be wasted. Then the 

pellet was removed and resuspended in an amount of nuclear extraction mixture buffer B, 

which corresponds to 2/3 of the volume of the pellet. This mixture was stuck to a vortexer 

and shaken with 1,800 rpm for about 30 – 60 minutes at 4°C in the cooling room. In the end 

the solution was centrifuged (Biofuge fresco) with 17,000 g for 10 minutes at 4°C. 

Thereupon the supernatant included the nuclear proteins and was pooled. Then an aliquot 

was taken for protein quantification measurement [3.3.1] and the remain was transferred to 

1.5 ml Eppendorf tubes and was frozen at –80°C for further usage.  
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3.4.2 Probe Labeling 
Probes which were supposed to be radiolabeled with α-32P-dCTP had to be annealed 

first. 

 

 

Mixture for probe-annealing 

Reagent Volume [µl] per Sample 
Oligo_for (100µM) 1 
Oligo_rev (100µM) 1 
NaCl (0.5 M)  1 
ddH2O 47 

 

 

The above mentioned probe-annealing-mixture became incubated in one liter of hot 

water (ca.95 °C), which was stirred gently (about 100 rpm) on the magnetic stirrer, until 

the water was cooled down to room temperature and the oligonucleotides were 

annealed.  

With Klenow-reaction (Klenow-Fragment, St. Leon-Roth) the single stranded GATC 

overhangs on the 5'-termini became double stranded. During Klenow-reaction the α-32P-

cytidine nucleotides became incorporated and the probe radioactively labeled. The 

nucleotides dATP, dGTP and dTTP were not radioactively labeled.  

The labeling of the probes was performed in the radioactivity area. In order to do this all 

safety procedures and rules had to be observed. The labeling mixture was prepared 

outside the radioactivity laboratory. Thereafter the Klenow-enzyme and the radioactive 

dCTPs were added to this solution in the radioactive control area and incubated for 

1 hour at 37°C. 
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Mixture for α-32P-dCTP-probe-labeling 

Reagent Volume [µl] per Sample  
Annealed oligonucleotides (2pmol/µl) 1 
10x Klenow Buffer 1 
dNTPs (A,G, T each 1mM)  1 
ddH2O 12 

α-32P-dCTP (10µCi/µl) 2 

Klenow-Fragment (1 U/µl) 2 
 

 

To purify the labeled probes from unbound α-32P-dCTP the mixture was filtered by a 

mini Quick Spin Oligo Columns (Roche). At first the sephadex matrix had to be 

homogenized by vortexing. After this the lid of the column and the outlet was opened. 

Then the column was placed in an empty tube for centrifugation (3,200 x g = 900 rpm, 

2 min, RT; Biofuge 15 R, Heraeus) to remove surplus liquid. The dry column was 

placed in a new 1.5 ml Eppendorf tube and the mixture for α-32P-dCTP-Probe-labeling, 

which was centrifuged before to avoid contamination by opening the tube, was pipetted 

in the middle of the columns matrix. Then the column became centrifuged (3,200 x g = 

900 rpm, 4 min, RT; Biofuge 15 R, Heraeus). The eluate consisted of the purified 

radioactively labeled probes. To determine the exact amount of radioactivity in the 

eluate 1 µl of latter was used, mixed with 4 ml of safety scintillator (Aquasafe 500 Plus, 

Zinsser Analytic) and applied to the scintillation counter LS1801. For the EMSA 

binding reaction the amount for 30,000 cpm of the probe was used. Primers which were 

labeled in order to use them for EMSA experiments are depicted in Table 4. 

 
Table 4: Primers for EMSA-probes 

Primer name Sequence 
EMSA-Primer- rs1057985-C 5'GATCTAATATCTGAGTTGCCTATGGAGGCAGACCT3' 

EMSA-Primer- rs1057985-G 5'GATCAGGTCTGCCTCCATAGGCAACTCAGATATTA3' 

EMSA-Primer- rs1057985-T 5'GATCTAATATCTGAGTTGCTTATGGAGGCAGACCT3' 
EMSA-Primer- rs1057985-A 5'GATCAGGTCTGCCTCCATAAGCAACTCAGATATTA3' 

EMSA-Primer- rs507964-C 5'GATCAAGGCAACTCACCCACCCCTAGTCTCTTCTA3' 

EMSA-Primer- rs507964-G 5'GATCTAGAAGAGACTAGGGGTGGGTGAGTTGCCTT3' 

EMSA-Primer- rs507964-A 5'GATCAAGGCAACTCACCCAACCCTAGTCTCTTCTA3' 

EMSA-Primer- rs507964-T 5'GATCTAGAAGAGACTAGGGTTGGGTGAGTTGCCTT3' 

Added in the 

radioactive area 
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3.4.3 Protein-DNA Interaction 
The binding reaction was prepared according to the following protocol. Since proteins 

are very sensitive all the steps were performed on ice. 

 

Protein-DNA binding-reaction-mixture 

Reagent Volume [µl] per sample 
4 x binding buffer 5 
Nuclear cell extracts [3.4.1] ~ 20 - 40 µg 
Poly dI-dC (1 μg/μl)  2 
α-32P-dCTP-labeled probes 30,000 cpm 

ddH2O Up to 20 µl 
 

 

4 x binding buffer mix(pH 7.9) stored at 4°C 

Reagent   Concentration [mM] 
Hepes (pH 7.8)  80 
EDTA (pH 8)  4 
DTT  2 
Glycerin  40 % 
KCl  560 

 

 

6 x loading dye 

Reagent  stored at -20°C Concentration [%] 
Glycerin 87%  30 (v/v) 
Bromphenol blue  0.25 (w/v) 
Xylen Cyanol FF  0.25 (w/v) 

 

 

After the binding reaction mix was prepared without α-32P-dCTP-labeled probes, the 

solutions were incubated on ice for 10 minutes. After the pre-incubation of 10 minutes 

the α-32P-dCTP-labeled probes (30,000cpm) were added in the radioactive area and 

incubated for 30 minutes on ice. After that time 4 µl of the 6 x loading dye were added 

to each sample and then transferred to the pockets of a native polyacrylamid gel [3.4.6].  

 

Was added in the radioactive  

area after preincubation  
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3.4.4 “Cold” Competition 
In cases of “cold” competition experiments a non-radiolabeled probe was also added to 

the binding mixture. In those experiments the specificity of protein binding on probes 

should be elucidated. By a competition with a non-radiolabeled probe in different 

concentrations (5 times till 300 times surplus), it was possible to visualize the 

competing effect of a protein binding on the radiolabeled probe. Thus it was feasible to 

identify the DNA bases of the probe, which were relevant for the protein binding. By 

means of the “cold” competition it was possible to predict the interacting protein due to 

the specific binding pattern.  

The “cold” competition procedure was applied to investigate binding affinities between 

polymorphic regions in relation to their allelic constitution for an ENT1 promoter SNP 

rs507964 and a WWOX SNP rs11644322. In these cases the primer for the opposite 

allele (Table 4) was used to compete with the actual protein interaction to determine if 

one allelic region showed higher affinity to the binding protein than the other. For 

determination of the binding protein on EMSA probes, consensus sequences of binding 

motives referring to putative interacting proteins were used. The primers for 

determination of binding proteins are outlined in Table 5. 

 

 

 
Table 5: Primers for “cold” competition 

Primer declaration Sequence 
EMSA-P300-1 5'GAGAGGGAGAAAGTGAAGCTGGGAGTTGCC3' 
EMSA-P300-2 5'GAGACCGAGAAAGTGAAGCTCCGAGTTGCC3' 
EMSA-CDP-1 5'ACCCAATGATTATTAGCCAATTTCTGA3' 
EMSA-CDP-1 5'TCAGAAATTGGCTAATAATCATTGGGT3' 
EMSA-AP2-Alpha-1 5'GATCGAACTGACCGCCCGCGGCCC GT3' 
EMSA-AP2-Alpha-2 5'ACGGGCCGCGGGCGGTCAGTTCGATC3' 
EMSA-SP1-1 5'ATTCGATCGGGGCGGGGCGAGC3' 
EMSA-SP1-2 5'GCTCGCCCCGCCCCGATCGAAT3' 
EMSA-EGR-family-1 5'GGATCCAGCGGGGGCGAGCGGGGGCGA3' 
EMSA-EGR-family-2 5'TCGCCCCCGCTCGCCCCCGCTGGATCC3' 

 

 

 

http://www.dict.cc/englisch-deutsch/specificity.html
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3.4.5 Super shift Assays 
This method is used to prove the identity of a binding protein in an EMSA experiment. 

By applying a specific antibody against the protein of interest to the binding reaction, 

there should additionally occur a protein-protein interaction besides the DNA-protein 

binding. The additional mass of the second protein causes a retarded migration of the 

complex in the gel matrix during the gel electrophoresis in comparison to the probe-

protein binding without the antibody. If retarded migration can be observed, which is a 

very specific reaction, the identity of the binding protein is proven. 

The SP1 antibodies (PEP2 and IC6) were obtained from Santa Cruz Biotechnology, Inc. 

(Heidelberg) and the super shift assays were performed according to their 

recommendation. The antibodies were applied to the binding reaction mix on ice 1 hour 

before the radiolabeled probes were added. 

 

3.4.6 Non-Denaturating Polyacrylamid-Gel Electrophoresis 
The non-denaturating polyacrylamid gel electrophoresis was prepared according to the 

following protocol. The property of this polyacrylamid-gel was that it did not contain 

any SDS and therefore the proteins kept their native structure and stayed functional.  

 

 

5 % Polyacrylamid-Gel 

Reagent  Volume [ml] per sample 
40% (w/v) Acrylamid/Mix 
37:5:1  4.4 

5 x TBE  3.5 
ddH2O  27 

APS 10 % (w/v)  0.35 

TEMED  0.035 
 

 

5 x TBE buffer (pH8)  

Reagent Concentration [mM] 
Tris 450 
Bor acid 450 
EDTA 10 

These supplements started 
the polymeric reaction 
and were added at the end 
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Before the samples were applied to the gel pockets the polyacrylamid gel had to be 

equilibrated in 0.5 % TBE-buffer [2.3.1] at 180 V (maximal power of mA) for about 

1 hour. After that the binding reaction samples could be transferred to the gel. 

Thereafter the gel was run under the same conditions for 1.5 hours. The gel was placed 

on two Whatman papers (Nr. 2668, Schleicher und Schuell) and covered with cling film. 

Then the gel was placed with the Whatman papers on a vacuum-gel-drying system. By this 

the gel was dried for about 2 hours at 80°C. After the gel was dry, it was positioned in a 

cassette with a Fujifilm BAS1500 plate over night. The next day the radioactive signals 

could be visualized with PhosphorImager device (Raytest, Sprockhövel, Germany) by the 

software BASreader and AIDA (Version 4.15.025, Raytest, Sprockhövel, Germany). After 

positive results the gel was additionally placed in a cassette with an x-rayfilm 

(Hyperfilm MP (18 × 24 cm); GE Healthcare) for 10-14 days at -80°C. Thus it was possible 

to get a better resolution of the radioactive signals. The x-rayfilms were developed with x-

ray-developer G150 und fixer G354 (AGFA, Leverkusen) in the darkroom. Analogous 

signal counting was performed using the Fluor-STM MultiImager (BioRad, Hercules, 

CA, USA). 

 

 

3.5 Bacteria Cell Procedures  
The electro competent bacteria strain One Shot® TOP10 Electrocomp™ E. coli 

(Invitrogen, Karlsruhe) was used to amplify vectors with inserted genes of interest 

intracellularly. 

 

 

3.5.1 Culturing and Storage  
The Luria-Bertani (LB) complex media was used in solid and liquid condition to breed 

E.coli top 10 strains (Invitrogen) for experimental purpose. The following mixture was 

used for LB preparation: 
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LB-media 

Reagent Amount [g] 
Trypton   10  
Yeast extract  5 
NaCl  5 
ddH2O Up to 1000ml 

 

 

For preparation of solid LB-plates the amount of 14 g Agar (APPliChem, Darmstadt) 

was added before autoclaving. Then the liquid LB-media (temperature ~50°C) was 

supplemented with antibiotics (e.g. Ampicillin 100 µg/ml; Kanamycin 20µg/ml; 

Chloramphenicol 170 µg/ml). Then the media was transferred to 92 mm petri dishes 

underneath the sterile bench where pertri dishes were cooled down and dried. LB media 

on petri dishes were stored at 4°C as well as in liquid form. For storing bacteria cultures 

for a long time, bacteria-LB-Media solution was mixed 1:1 with a 50% glycerol 

solution in a 1.5  ml Eppendorf tube and frozen at -80°C. 

 

3.5.2 Single Clone Separation 
Separation of single clones from a liquid bacteria solution is performed by dispensing 

cells with a bended Pasteur pipette, which was flame-treated, on the agar-plate. Then 

the agar-plate was incubated upside down in the incubator Incudrive (Schütt, Göttingen) 

overnight. Plates could be stored at 4°C for about one month if they had been sealed 

with parafilm (Brand; Wertheim).  

 

3.5.3 Single Clone Culturing  
This procedure was used to enlarge the amount of a single bacteria clone in a short time. 

For this purpose 5 ml LB-media in a sterile 15 ml tube (Greiner, Frickenhausen) for 

mini-prep [3.1.2.1] and 30 ml LB-media in a sterile 500 ml bottle for midi-prep 

[3.1.2.2] were supplemented with the referring antibiotic as selection marker. Then the 

media was supplemented with the inoculum and incubated while shaking on K2 260 

basic-shaker for bacteria (IKA, Staufen) with 250 rpm at 37°C over night. For shaking 

the samples were placed in sloping position to enlarge the surface of the media for 

better supply with oxygen and the lid was never closed.  
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3.5.4 Transformation by Electroporation 
Electroporation is an approach to import plasmid DNA into bacteria. The electric shock 

(~2,500 volts/cm) applied to the bacteria causes small cracks in their membrane, 

through which the plasmid DNA is able to enter the cells. The bacteria multiply the 

amount of plasmids, which can be extracted for further experiments for example by 

Mini-Prep [3.1.2.1] or Midi-Prep [3.1.2.2]. To ensure that just bacteria, which contain 

the inserted plasmid, can propagate an antibiotic resistance was also included in the 

plasmid DNA as selection marker.  

Mostly the plasmids for electroporation derived from a previous restriction digestion 

[3.1.8] and a ligation step [3.1.9]. In this case the salt concentration of these reaction 

mixtures had to be lowered by dilution [3.1.10]. In order to do this a 92 mm petri dish 

was filled with ddH2O and the mixture containing the plasmid of interest was 

transferred to a 0.025 µm dialysation filter VSWP01300 (Millipore, Bedford, USA), 

which was placed on the surface of the water. After 30 minutes of dialysation the 

solution was carefully removed from the filter and translocated in a 1.5 ml tube.  

The bacteria cell line One Shot® TOP10 Electrocomp™ E. coli (Invitrogen, Karlsruhe), 

was used for electroporation and was kept on ice for this procedure. For the 

electroporation process the following reaction mixture was prepared. 

 

 

Electroporation mix 

Reagent Volume [µl] 
electrocompetent E.coli 10 
Plasmid DNA 1-3 
ddH2O 40 

 

 

Then the sample was transferred to a 2 mm electroporation cuvette (PeqLab, Erlangen), 

which was cooled down on ice before. The electroporation was performed with Gene 

Pulser II (Biorad, Hercules USA) with the settings 2.5 kV, 25 µF and 200 Ω for about 

5 milliseconds. After this the electroporated cells were immediately diluted with 800 µl 

warm LB media and incubated for one hour to recuperate. Subsequently different 

amounts (between 50 – 300 µl) of this suspension were dispensed on agar-plates [3.5.2] 



   Methods 

 
60 

 

containing the specific antibiotic to obtain single colonies of bacteria including the 

plasmids of interest.   

 

 

3.6 Human Cell Culturing  

3.6.1 Used Cell Lines and Culturing Conditions 
All operations with mammalian cells were conducted under the sterile bench. Cells were 

cultured with Penicillin and Streptomycin to prevent bacterial contamination. Cells were 

visually examined with a microscope (Axiovert 40 CFL, Zeiss, Jena) to elucidate the 

health status of the cells and to check for microbiological contamination. Cells were 

cultured in an incubator (CO2-Inkubator BBD 6220; Heraeus) at 37°C with 95% 

humidity and 5% CO2. The culture media was warmed up at 37°C in a water bath (GFL 

1083; Schütt, Göttingen) before applied to the cells. The splitting interval was 

dependent on the proliferation rate of the specific cell lines and on the specific 

requirement of the planned experiments. In general the cell number of suspension cells 

was kept between 3x105 and 8x105 cells per milliliter media and adherent cell lines were 

splitted not later than 80% of confluency. For splitting adherent cells they had to be 

washed with PBS buffer [2.3.1] and then detached from the surface of the culturing 

flask. For detaching the cells 5 ml of trypsin (TrypLE™ Express, Gibco/Invitrogen) 

were applied on 75 cm2 flasks and 3 ml on 25 cm2 flasks for about 3 min at 37°C. 

Depending on the cell type the incubation time under trypsin could be increased. After 

cells were released from the surface, the trypsin was inactivated by diluting it with at 

least the same amount of media, which was supplemented with FCS (fetal calf serum). 

After this the required volume of cells was determined (e.g. by counting) and 

transferred to a 50 ml Falcon tube. Then the cell suspension was centrifuged (Centrifuge 

5810R; Eppendorf) for 3 minutes with 300 g at room temperature. After this the 

supernatant was discarded and the cells were resolved in the decided volume of media 

and transferred to a new culturing flask. 

If media turned into yellow before 80% of confluency was reached, indicating that the 

pH value was declining, the old media was removed and cells were supplied with new 

media. Suspension cells were splitted by taking the intended amount of cells from the 

culturing flask, after cells had been mixed by pipetting to resolve cell clumps. Then the 
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cell suspension was centrifuged (Centrifuge 5810R; Eppendorf) for 3 minutes with 

300 g at room temperature and transferred to a new culturing flask. If media turned 

yellow, cells were transferred into a 50 ml Falcon tube and centrifuged (Centrifuge 

5810R; Eppendorf) for 3 minutes with 300 g at room temperature. The old media was 

removed and cells were resuspended with new media and transferred back into a 

culturing flask. 

 

3.6.2 Freezing Cell Lines 
Freezing cell lines in liquid nitrogen has the purpose to preserve them for later usage. 

Thus it was possible to keep cell lines in low passage numbers to prevent them from 

enriching mutation, which occurs when cells were cultured over a long period of time.  

For freezing cell lines a special freezing solution was necessary, which consists of 90% 

pure FCS (fetal calf serum) with 10% of sterile DMSO (Dimethylsulfoxide, 

AppliChem, Darmstadt).  

To freeze cell lines they had first to be cultured in big culture flasks (75 cm2) to an 

approximate confluency of 80%. Then cells were harvested and transferred to a 50 ml 

Falcon tube. Then they were centrifuged with 300 g for 5 minutes at room temperature 

(Heraeus Laborfuge 400R). Afterwards the supernatant was discarded and the pellet was 

resolved in 4 ml of cool freezing solution. It was necessary to prepare all following 

steps on ice. Then the cells were transferred to 1.5 ml Cryo tubes (Nunc, Thermo 

Scientific, Denmark) and placed in Mr. Frosty freezing box (Sigma-Aldrich, 

Deisenhofen), which allows the cells to be cooled down at speed of 1°C/min in a  

-80°C-freezer and was pre-cooled in the refrigerator for this purpose. After 24 hours the 

cells were replaced in liquid nitrogen (about -170°C) for further storage.  

 

3.6.3 Defrosting Cell Lines 
Cell lines, which were stored in liquid nitrogen, had to be defrosted and relieved from 

the DMSO (Dimethylsulfoxid) in the freezing media to get them back in culture. In 

order to do this the aliquot-tube with frozen cells had to be warmed up by hand until the 

outer surface of the ice block started to melt. Then the tube was opened and the ice 

block was dumped in a falcon tube with 10 ml DMEM media (1% 

Penicillin/Streptomycin). The Falcon tube was shaken until the ice was melted. Then 
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the tube was centrifuged (Heraeus Laborfuge 400R) with 300 g for 3 min at room 

temperature. After this the supernatant was discarded and the pellet resolved in 5 ml of 

fresh culture media according to the culture recommendations of the specific cell line. 

In the end cells became transferred to a 25 cm2 culture flask and placed in the incubator 

(CO2-Incubator BBD 6220 Heraeus, Hanau).  

 

3.6.4 Determination of Cell Numbers 

3.6.4.1 Cell Counting with Neubauer-Cell Chamber 
In order to determine the number of cells in a suspension one possibility was to use the 

Neubauer-cell chamber. For this procedure a pre-defined amount of cell suspension was 

taken and mixed 1:1 (15µl:15µl) with the reagent Trypan Blue (Sigma-Aldrich), which 

enters cells via cracks in cell membrane. By means of this staining procedure dead cells 

could be distinguished from living cells. Thereupon the suspension mix was transferred 

to the Neubauer-cell chamber, which was covered with a cover slip. Then living cells 

for each of the four squares were counted and the concentration of cells was calculated 

for the total amount of cells in the suspension.  

 

 

Cell concentration/ml = Cell number (in all 4 squares) *2 * 1000   
                                                           4 * 0.1 µl/square  
 
                                      Cell number (in all 4 squares) * 5000 
                                                                       1 
First the mean of the cell number per square is determined. Each square has an area 
of 1 mm2 and a chamber height of 0.1 mm, which results in a volume of 
0.1 µl/square. The dilution of this mixture was 1:2. To get the concentration per 
milliliter the factor 1000 has to be considered.  
 
 

3.6.4.2 Cell Counting with Propidium Iodide Staining by Flow 

Cytometry 
One possibility to count cell numbers and to determine the living cell concentration in a 

suspension is to perform a Propidium Iodide staining (BD Biosciences) and to select 

and count living cells by flow cytometry (Flow cytometer BD LSRII, Becton 

Dickinson, Franklin Lakes, USA). Propidium Iodide is a DNA intercalating substance, 
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which only enters cells with demolished cell membranes. With this procedure it is 

feasible to mark dead and apoptotic cells. To determine the concentration of the living 

cell fraction in the suspension, counting beads (Invitrogen, Karlsruhe) are added in the 

Propidium Iodide staining solution additionally. The counting beads are homogeneous 

particles in a known concentration, which are fluorescent in a broad spectrum of 

wavelength. A pre-defined concentration of the counting beads is added. By flow 

cytometry the living cell population can be selected and counted as well as the added 

counting beads. Since it is known which amount of beads is included in the mixture, the 

counted living cell fraction can be related to the counted bead number. Thus the 

concentration of living cells in the original cell suspension can be calculated [3.6.4.2.1].  

 

 

Propidium Iodide staining solution mixture 

Reagent Volume [µl] per sample 
RPMI-Media 200 
Propidium Iodide 0.24 
Counting Bead solution 10 

Total 210 
 

 

3.6.4.2.1 Determination of Cell Numbers in a Suspension with Counting 

Beads 
The determination of cell numbers by counting beads (CountBrightTM absolute 

counting Beads, Invitrogen, Karlsruhe) was performed according to manufacturers’ 

recommendation. 

The cell concentration was determined with the formula displayed next: 

 

 

 

 

 

This technique was used for determination of cell concentration exclusively for flow 

cytometry. For this purpose cells had been stained with Propidium Iodide (BD 

 
Counted cells x total number of beads in solution x dilution 

Counted beads x total volume of sample (cell supension+ bead volume) 

 

http://www.dict.cc/englisch-deutsch/feasible.html
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Bioscience) [3.6.4.2] or with Sytox Blue (Life Technologies Corporation) and Vybrant 

Ruby (Invitrogen) [3.10.2] before. 

 

3.6.5 Lymphoblastoid Cell Lines (LCLs)  
Lymphoblastoid Cell lines were once B-lymphocytes, which were immortalized with 

the Ebstein-Barr-Virus (EBV). Most of them (196) were commercially bought from the 

Coriell Cell Repositories (Table 18; http://ccr.coriell.org) and others (95) were self 

established (with ethic committee approval and patient informed consent) by the 

Department of Radiotherapy as well as by the Department of Immunology and 

Experimental Oncology, Göttingen University. These cell lines were cultured in RPMI 

Media (15% FCS and 1% Penicillin/Streptomycin). The LCLs were incubated in 75 cm2 

culturing flasks, which were kept in the upright position and filled with 50 ml of media 

at maximum. The cell concentration was kept between 3x105 – 8x105 cells per ml. All 

LCLs from the Coriell Cell Repositories used for experiments are listed in Table 18. 

 

 

3.6.6 Pancreatic Cancer Cell Lines 
There had been eight pancreatic cancer cell lines (MiaPacaII, AsPcI, Su86.86, BxPC3, 

CapanI, CapanII, CFPac, PancI) for experiments, which were officially bought from 

ATCC, Wesel (www.atcc.org). These cell lines were cultured according to the 

recommendation of ATCC (http://www.lgcstandards-atcc.org)  

 

 

3.6.7 TRExTM 293 Cell Line 
The TRExTM 293 cells were cultured in DMEM media (10% FCS and 1% 

Penicillin/Streptomycin and 0.1 % Zeocin). Cells were cultured and split as described in 

[3.6.1].  

 

 

http://ccr.coriell.org/
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3.7 Human Cells as Model System 

3.7.1 Transient Transfection for Luciferase Reporter Gene Assay 
The transient transfection is an approach for transferring plasmid DNA in cells, which is 

not supposed to be inserted in the chromosomal DNA. Therefore the transfected DNA is 

only intracellularly stable for just a certain period of time. Because of this the method is 

suitable for short time overexpression analysis and was used for luciferase reporter gene 

assays in this context. 

The cell line AsPC1, which was supposed to be transfected with a hENT1 promoter 

fragment, was adjusted to 3x104 cells/well in a 6 well plate (= 9,6cm2) and incubated for 

24 hours at 37°C and 5% CO2. The next day AsPC1 (about 70% confluency) was 

transiently transfected with FuGene 6 (Roche, Mannheim) according to the protocol 

below. After the Media and the FuGene 6 transfection reagent was mixed, it was 

incubated for 5 minutes at room temperature. Thereafter the pCMV-Renilla-luciferase 

plasmid (1.7 ng/cm2), which was used as an internal standard for transfection efficacy, 

was added. Then the mixture was aliquoted and the referring reporter gene with the 

promoter construct was supplemented in each sample and incubated for 15 minutes at 

room temperature. During the incubation time the media in the wells was removed and 

replaced by 2 ml media with FCS (fetal calf serum) without antibiotics. Subsequently 

100 µl from the transfection mixture was added to the wells and incubated for 4-

6 hours. After this the transfection media from the wells was discarded and replaced by 

Media with FCS (fetal calf serum) and antibiotics. To investigate the condition under 

gemcitabine, 5 µM of the cytostatic was supplemented. 

The cells used to be lysed after 48 hours of incubation for determination of luciferase 

activity [3.7.2]. 
 

Transient Transfection mixture in 6 well plate (=9.6cm2) 

Reagent Volume for one transfection 
Cell confluency ~ 70%-80% 
DMEM-Media 100 µl 
Fugene* 3 µl 
Plasmid-DNA 1 µg 
Renilla-Vector 15 ng 
Transfection volume/well 2 ml 

* Transfection reagent:DNA (µl:µg) = 3:1 
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3.7.2 Luciferase Reporter Gene Assay 
The Dual-Luciferase®Reporter Assay System (Promega, Mannheim) was used to 

investigate expression regulating effects of DNA sequences and applied according to 

the recommendation of manufactures protocol.  

With this approach a potential ENT1-v4 and –v5 promoter fragment, which expands 

from the transcription start site of the ENT-v4 and –v5 to 2122 bp upstream, was cloned 

ahead of the Firefly-Luciferase gene, which was contained in the luciferase vector pXP2 

[3.8.2]. This construct was transiently transfected [3.7.1] in the pancreatic tumor cell 

line AsPCI [3.6.6].  

After transient transfection the cells were incubated for 48 hours. Then media was 

removed and cells were washed once with about 1 ml PBS. In the following step the 

cells were lysed with 300 µl of 1x passive lysis buffer in the 6-well plate for 10 minutes. 

After this the passive lysis buffer with the lysed cells were transferred to a 1.5 ml 

Eppendorf tube, which was frozen in liquid nitrogen and defrosted with a thermomixer 

at 37°C for three times. After this procedure the cell debris was removed by 

centrifugation (Biofuge fresco) for 5 minutes with 13,000 rpm at 4°C. Then the 

supernatant, which contained the cellular proteins, was transferred into a new 1.5 ml 

Eppendorf tube and kept on ice. For later analysis of the samples they were stored at  

-80°C. For fluorescent measurement 16 µl of this solution were transferred into a well 

of a white 96-well plate (Greiner, Frickenhausen). The determination of luciferase 

activity was conducted with the GloMax-96-Plate-Luminometer (Turner BioSystems, 

Sunnyvale, USA). During measurement procedure the amount of fluorescence, which 

correlates with the amount of the expressed Firefly-Luciferase proteins and the 

reference Renilla-Luciferase proteins, was detected in the sample. The fluorescent 

substrates were LAR II (Luciferase Assay Reagent II) for Firefly-luciferase proteins and 

Stop & Glo for Renilla-luciferase proteins. LAR II -Luciferase Assay Reagent II was not 

included in the luciferase kit and had to be prepared separately by diluting LAR II-

Luciferase Assay Substrate with LAR II-Luciferase Assay Buffer II. For evaluation of 

luciferase data the relation of Firefly-Luciferase signal to Renilla-Luciferase signal was 

determined. 
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3.7.3 Stable Transfection with Flp-InTM System 
The stable transfection is an approach to integrate target DNA in the chromosomal 

DNA of the host cell. In order to do this the Flp-InTM System (Invitrogen) was used. The 

difference between stable and transient transfection is basically that the DNA in a stable 

transfection stays everlasting in the host cells, which gives the possibility of performing 

experiments over a long period of time. 

The host cells which were used in the Flp-InTM System (Invitrogen) were TREx 293 

which derived from a HEK cell strain. In this cell line a Flp-Recombination Target 

(FRT) was integrated already by the plasmid pFRT/lacZeo. This side was the location 

for further integration steps by the Flp recombinase. The simultaneously inserted 

Zeocin resistance functioned as a selection marker for recombinant cell lines with FRT-

sites included. The gene which was supposed to be integrated had to be inserted in the 

vector pcDNA5 first, which also contained a FRT site and was isolated by Midi Prep 

extraction method [3.1.2.2] out of bacteria before. Additionally the plasmid had a 

Hygromicine B resistance to select positive integrated cells after transfection process. A 

second plasmid pOG44 was necessary to perform the transfection. This plasmid was co-

transfected and expressed the Flp recombinase. During the transfection process the Flp 

recombinase translocated the gene of interest (GOI) and the Hygromicine B resistance 

into the FRT side of the host cell. The details of the explained procedure are depicted in 

Figure 4.  

For the stable transfection 9 x 105 – 1 x 106 cells were placed in each well of a 6-well 

plate and incubated over night. The next day cells were supposed to be confluent for 

~80%. For transfection process a master mix had to be prepared. For each transfection 

process 12 µl Fugene 6 transfection reagent (Roche, Mannheim) were supplemented to 

100 µl of DMEM Media in a master mix and incubated for 5 minutes at room 

temperature. After this 112 µl of this mix were aliquoted to 1.5 ml tubes and 3.6 µg of 

pOG44 plasmid and 0.4µg of pcDNA5 plasmid with the gene of interest (relation of 

pOG44 and pcDNA5 9:1) were added and incubated for further 15 minutes at room 

temperature. During the incubation the cells in the 6-well plate were washed twice with 

DMEM (10% FCS) without antibiotics. Then 1.9 µl of the same media composition was 

supplemented to each well. After the 15 minutes of incubation had passed, the 

transfection-master mix for each sample was added to the corresponding well and 

placed in the incubator for 48 hours.  
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After this time the media from the 6-well plates were discarded and the cells were 

transferred to 92 mm petri dishes (Falcon, Schütt, Göttingen) in 9 ml of DMEM 

(10%FCS and 1% Penicillin/Streptomycin). After 24 hours the media was supplemented 

with Hygromicine B as screening antibiotic for a final concentration of 300 µg/ml. 

During the next ten days most of the cells which were not transfected died, but the 

transfected cells were generating colonies. These colonies got picked and transferred to 

wells in a 12-well plate at first. During the cultivating process cells got translocated in 

6-well Plates first, then into small culture flasks (25cm2) and after this into big culture 

flasks (75cm2). To increase the cell growth of selected cell clones the Hygromycin B 

concentration was reduced to 100 µg/ml in further cultivation steps. During passaging 

of the cells DNA and RNA were isolated to confirm the positive integration [3.7.3.1] 

and the correct expression of the gene of interest (ENT1) [3.2.4]. In the case mentioned 

above, the qPCR primers for detection of all ENT1 transcript variants were used  

(Table 3).  

 

 

 

 

 

Master-mix for stable transfection: 

Reagents  Volume per sample 
DMEM Media 100 µl 

Fugene 6 transfection reagent 12 µl 
pOG44 3.6µg 
pcDNA5 with GOI 0.4 µg 

 

 

 

 

5 minutes  

incubation first 
Then 15 minutes  

incubation all  

together 
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Figure 4: Chromosomal integration of the gene of interest by stable transfection with Flp-In System  

 
 

3.7.3.1 Confirmatory PCR to Validate Chromosomal Integration of 

pcDNA5 Constructs 
After a stable transfection with the Flp-InTM System (Invitrogen), the chromosomal 

integration of the gene of interest as well as the Hygromycin B resistance, which acts as 

a selection marker for integration, has to be further verified. This verification is 

conducted by two PCR reactions.  

In order to make the confirmatory PCR to check the chromosomal integration of hENT1 

with the two alleles of rs45573936, chromosomal DNA had to be extracted first [3.1.1]. 

The first PCR tested the integration of the Hygromycin B in the chromosomal DNA of 

the stable transfected TREx HEK293. The forward primer “PSV40” (Table 6) annealed 
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in the SV40 promoter of the pFRT/lacZeo site, which was the target of chromosomal 

integration and a component of the Flp-InTM System (Invitrogen) in the TREx HEK293. 

The reverse primer “Hyg” (Table 6) anneals in the Hygromycin B resistance gene, 

which was originally located in the pcDNA5 vector. Only if the Hygromycin B gene 

was really integrated in the genome, this PCR should generate a PCR-product.  

 

 

Mixture for confirmatory PCR of Hygromycin B integration 

Reagent Volume per sample 
10 x buffer  2.2 μl 
 dNTPs (2 mM)                   2.2 μl 
MgSO4 (25 mM)  0.9 μl 
5x Q-Solution   4.4 μl 
Forward-Primer  PSV40 (10 nM)  0.5 μl 
Reverse-Primer Hyg (10 nM)  0.5 μl 
Template DNA (300 ng/µl)  2 μl 
KOD HotStart Polymerase (1.0 U/μl)  0.5 μl 
ddH20  8.8 μl 

Total volume 22 µl 
 

 

PCR-Conditions for confirmatory PCR of Hygromycin B integration  

PCR-Condition Duration Temperature 
Initial Denaturation  2 min 95°C 
Denaturation 30 sec 95°C 

Annealing  30 sec 64°C 
Elongation  1 min 72°C 

Terminal elongation                 10 min 72°C 
  for ever 8°C 

 

 

With the second confirmatory PCR the gene of interest, which was inserted in the 

genome, was amplified with the primers PCMV and LacZ (Table 6) and was performed 

with the ExpandLong Polymerase Mix. These primers annealed to the flanking region of 

the gene of interest.  

 34x 
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Mixture for confirmatory PCR of gene of interest  

Reagent Volume per sample 
10 x ExpandLong Buffer-1  2.8 μl 
 dNTPs (2 mM)                   4.5 μl 
MgSO4 (25 mM)  1 μl 
5x Q-Solution   5.6 μl 
Forward-Primer LacZ (10 nM)  0.5 μl 
Reverse-Primer PCMV (10 nM)  0.5 μl 
Template DNA  3 μl 
ExpandLong Polymerase Mix  0.3 μl 
ddH20  9.8 μl 

Total volume 28 µl 
 

 

PCR conditions for confirmatory PCR of gene of interest  

PCR-Condition Duration Temperature 
Initial Denaturation  2 min 94°C 
Denaturation 30 sec 96°C 
Annealing / Elongation 4 min 68°C 
Final elongation                 10 min 68°C 
  for ever 8°C 

 

 
Table 6: List of primers for validation of chromosomal integration of pcDNA5 constructs  

Primer                                                    Sequence 
PSV40-f 5'AGCTGTGGAATGTGTGTCAGTTAGG3' 
Hyg-r 5'ACGCCCTCCTACATCGAAGCTGAAA3' 
PCMV 5'CCATGGTGATGCGGTTTTGGCAGTA3' 
LacZ 5'CCTTCCTGTAGCCAGCTTTCATCAA3' 

 

 

3.8 Sequential Steps for Cloning of Allele Specific Constructs 
Here, the order of the single procedures to achieve the final constructs is described. The 

procedures themselves are each referred to the detailed description above. 

 

35x 
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3.8.1 ENT1 Ile216Thr  
For the creation of allele specific hENT1 rs45573936 constructs the hENT1 gene (DNA 

sequence in Appendix) was purchased from SourceBioscience (Nottingham UK ; Clone 

3051441, IRAUp969A097D; http://www.lifesciences.sourcebioscience.com 

/genomecube?kw=3051441) When purchased, the hENT1 gene had been inserted in 

pOTB7 vector with the wild type T-allele for rs45573936. In this vector the site-

directed-mutagenesis [3.1.5] with mutagenesis primers in Table 1 was conducted to get 

hENT1 fragments with rs45573936 variant C allele. The correct sequences were 

checked by sequencing method [3.1.11] with the ENT1 sequencing primers in Table 2. 

Then the hENT1 gene was amplified by a PCR reaction with the primers in Table 7. 

Restrictions sites for the enzymes EcoRV and XhoI were included in the PCR primers 

for further cloning steps. Next the vector pCDNA5, which is used as vector for stable 

transfection, was digested with the enzymes EcoRV and XhoI [3.1.8.2] as well as the 

amplified ENT1 fragments. After this the hENT1 types with rs45573936 wild type T 

allele and variant C allele were ligated [3.1.9] with pCDNA5 and then electroporated 

[3.5.4] in e.coli bacteria. Subsequently clones from e.coli were picked and the 

pCDNA5::hENT1-rs45573936-WT /-Var constructs were isolated by midi prep 

[3.1.2.2]. In the end the constructs were stably transfected in HEK293 cell lines [3.7.3]. 

To proof the correct integration of the constructs in the genome, test PCRs for the  

integrated Hygromycin resistance gene as well as for the ENT1 target gene were 

conducted [3.7.3.1]. In addition enhanced expression in transfected cells in comparison 

to empty vector transfected cells were checked by qPCR [3.2.4] with qPCR primers 

detecting all transcript variants of ENT1 (Table 3). Thereafter the cells with the 

integrated hENT1-rs45573936-WT /-Var constructs could be used for further allele 

specific investigations (e.g. measurements of ENT1 transport activity [3.9]). 

 

 
Table 7: Primer for hENT1 amplification and insertion of EcoRV and XhoI restriction sites  

Primer Sequence 
ENT1-EcoRV-for 5'CGAGAACGATATCACCATGACAACCAGTCACC3' 
ENT1-XhoI-rev 5'GCAGTCCTCGAGTCCATCCTTTGTCACACAA3' 
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3.8.2 hENT1-v4/-v5 Promoter Polymorphism rs507964 
For investigation of promoter modulating effects by the hENT1 rs507964 polymorphism 

a promoter fragment with the range of -1945/+141 ahead of the transcription start site of 

the hENT1 (according to (FUKUCHI et al. 2010)) was amplified by PCR from genomic 

DNA with the primers provided in Table 8. These primers contain restriction sites for 

the enzymes XmaI and HindIII. The amplified hENT1 promoter fragment (DNA 

sequence in Appendix) derived from the LCL GM06984, which is heterogeneous for the 

SNP rs507964. In the aforementioned promoter fragment the SNP rs1057985,which is 

in perfect linkage disequilibrium with rs507964, was included in the sequence as well. 

After the PCR reaction the amplified ENT1 promoter fragment was sequenced [3.1.11] 

to check for mutations. In order to use the PCR product for sequencing the PCR mixture 

had to be enzymatically purified [3.1.7.3] to remove the old PCR primers. Next the 

amplified hENT1-promoter constructs as well as the luciferase vector pXP2 were 

digested [3.1.8.2] with the restriction enzymes XmaI and HindIII. Then the insert and 

the vector were ligated [3.1.9], dialyzed [3.1.10] and electroporated [3.5.4] into e.coli 

bacteria. Thereupon clones of e.coli were picked and pXP2::hENT1-rs507964-promoter 

constructs were isolated by mini-prep method [3.1.2.1]. The correct sequence of the 

promoter fragment was assessed by analytical digestions [3.1.8.1] and sequencing 

[3.1.11] with the sequencing primers depicted in Table 9. Subsequently the validated 

sequences were isolated from bacteria by midi-prep method [3.1.2.2] for transient 

transfection [3.7.1] in the pancreatic tumor cell line AsPCI for further luciferase reporter 

gene assay [3.7.2]. 

For further analysis of promoter modulating effects by the ENT1 SNP rs507964 the 

annealed EMSA-primers (Table 4) with the wild type allele as well as with the variant 

allele of rs507964 were cloned in the luciferase vector pT81 in the same manner. This 

time the vector was digested with the enzyme BamHI. The annealed EMSA primers 

already had the correct sticky ends, which were produced by BamHI digestion, after 

annealing. The correct integration of the inserts was confirmed by sequencing [3.1.11], 

with the sequencing primer ENT1-Prom-Seq1 (Table 9), which starts the sequencing 

process already in the vector region.  
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Table 8: Primer pair for hENT1 promoter amplification 

Primer Sequence 
ENT1_Prom_forward 5'AGAGTGGAAGCTTGCCTGGAGAGGAGGGAGAGGTTA3' 

ENT1_Prom_reverse 5'CCCCGCCCCGGGCACCTGCTGAGACTTTGGAGTGAGCATC3' 

 

 

 

 

 
Table 9: Sequencing ENT1-Promoter-Primer 

Primer Sequence 
ENT1-Prom-Seq1 5'GAACGGACATTTCGAAGTAT3' 
ENT1-Prom-Seq2_rev 5'GCCGGGCGGAAGAGAG3' 
ENT1-Prom-Seq3_rev 5'GGGGTGGGGCGGATAG3' 
ENT1-Prom-Seq4_rev 5'CACCACGCCCGGCTAATT3' 
ENT1_Prom-Seq5 5'CGCCCTGCCCAGACTG3' 
ENT1_Prom-Seq6_rev 5'CCCACCCCCACCAACTG3' 
ENT1_Prom-Seq7_rev 5'GGGGTGGGTGGGTGTTAG3' 

 

 

3.9 Measurements of ENT1 (SLC29A1) Transport Activity  

3.9.1 3H-Gemcitabine Uptake Assay 
By this approach the uptake of the radioactive labeled cytostatic agent gemcitabine 

(American Radiolabeled Chemicals, Inc, St. Louis USA) was measured in ENT1 

rs45573936 stable transfected HEK TREx cell lines with the scintillator counter 

(Scintillation instrument LS1801, Beckman) to investigate functional effects of this 

SNP on the transport activity. The ENT1 rs45573936 cell line constructs, which were 

generated by stable transfection [3.7.3; 3.8.1], contains additionally to their endogenous 

ENT1 transporter a copy of ENT1 integrated in the genome for either the wild type 

allele of this SNP or the variant allele. 

The transport measurements were performed in 12-well plates, which had to be covered 

with Poly-D-Lysine first (Sigma-Aldrich, Deisenhofen). In order to do this the plates 

http://www.dict.cc/englisch-deutsch/scintillator.html
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were filled with 0.5 ml of poly-D-lysine and incubated for 15 minutes at 37°C. After the 

incubation the poly-D-Lysine became removed and plates got dried for 20 minutes at 

room temperature. For this assay clones with the pcDNA5::ENT1-Thr216 (variant 

allele) and pcDNA5::ENT1-Ile216 (wild type) were used as well as a transfected clone 

with the pcDNA empty vector. Before the transport measurements could be performed 

the transfected HEK TREx cells in a big culture flask (75cm2) had to be trypsinized 

with 3.5 ml trypsine (TrypLE™ Express, Gibco/Invitrogen) for 3-5 minutes to get a 

single cell suspension. After trypsinization the cells became diluted with 10 ml of warm 

DMEM (10%FCS, 1% Penicillin/Streptomycin) to inhibit the enzymatic reaction of the 

digestion enzyme. The cell concentration in this suspension was determined by 

Neubauer cell chamber (Schütt, Göttingen) [3.6.4.1]. The measurement was performed 

in triplicates of each condition. In every well of interest a total amount of 0.8x106 cells 

should be placed. The required cell number for this assay was calculated and the volume 

with the amount of cells were taken from the trypsinized cells and centrifuged with 

300 g for 3 minutes at room temperature. The supernatant was removed and substituted 

with new DMEM (10%FCS, 1% Penicillin/Streptomycin) for a final concentration of 

0.4x106 cells per ml. Then 2 ml of this suspension was distributed to the wells 

respectively and incubated at 37°C and 5% CO2 for48 hours.  

The transport measurements were performed with 10 µM gemcitabine, which were 

composed of 50 nM 3H-gemcitabine (American Radiolabeled Chemicals, Inc, St. Louis 

USA) and 9.95 µM of non-radioactive gemcitabine (Sigma), for several incubation 

times (10 seconds to 10 minutes) of. Each sample was prepared in double and each 

experiment was repeated to a separate time to minimize measurement errors. 

Additionally transport measurements were conducted in presence of 50 µM NBMPR 

(also termed NBTI) (S-(4-Nitrobenzyl)-6-thioinosine), which is a specific inhibitor of 

equilibrative nucleoside transporter1 (ENT1), as a negative control means to 

demonstrate that transport is actually mediated by ENT1 transporter. One hour before 

measurement the media for all conditions was removed and replaced by 2 ml of fresh 

media DMEM (10% FCS, 1% Penicillin/Streptomycin). Additionally NBMPR was 

added to the referring transport conditions serving as negative control with the final of 

concentration of 50 µM.  

For transport measurement the media was removed and replaced by the HBSS buffer 

(Gibco/Invitrogen) and incubated for 30 seconds. Then the fluid was removed and 

400 µl of transport solution, which was already supplemented with gemcitabine, was 
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added for intended time frames. After the incubation for transport the reaction was 

stopped immediately by diluting the wells with ice cold stop solution (HBSS buffer 

including 50 µM of NBMPR (S-(4-Nitrobenzyl)-6-thioinosine)). This dilution was 

incubated for 1 minute and was then removed quickly. Next cells were washed twice 

with 2 ml of ice cold HBSS buffer containing 50 µM NBMPR (S-(4-Nitrobenzyl)-6-

thioinosine) each time for 30 seconds. Subsequently the cells were lysed with 0.5 ml 

0.1 M NaOH. The amount of 100 µl was retained for protein quantification [3.3.1] 

afterwards, which was used to normalize the data from transport experiment with the 

number of used cells. Finally 400 µl of lysed cells were mixed with 9 ml of scintillator 

(Aquasafe 500 Plus, Zinsser Analytic) and the amount of radioactivity was measured in 

the scintillator counter (Scintillation instrument LS1801, Beckman). 

Because transport of the ENT1 was so fast that even high amounts of radioactivity were 

transported within 10 to 15 seconds in following transport experiments NBMPR (S-(4-

Nitrobenzyl)-6-thioinosine) was added to the cells in a concentration of 0.1 µM in all 

steps before stopping the transport including the pre-incubation, to slow down the 

transport. By delaying transport it was intended to observe differences in the transport 

uptake of HEK 293 cells with genomic integrated ENT1-rs45573936 wild type and 

ENT1 rs45573936 variant clones. 

 

 

Transport Solution 

Reagent per 1 Well (in 12 Well Plate) 
HBSS 0.4 µl 
NBMPR/NBTI (optional) 0.1 µM 
Gemcitabine (Sigma)  9.5 µM 
3H-Gemcitabine (American Radiolabeled    
  Chemicals Inc, St. Louis USA) 0.5 µM 

 

 

Stop Solution 

Reagent per 1 Well 
HBSS 6 ml 
NBMPR  50 µM 



   Methods 

 
77 

 

3.10 Cellular Sensitivity toward Gemcitabine Toxicity 
A genome-wide screen using lymphoblastoid cell lines (LCLs) as model system should 

reveal new loci for gemcitabine sensitivity. When I started my thesis 107 fully 

resequenced LCLs obtained from the Coriell Institute [3.6.5] and 95 in-house-generated 

LCLs (with ethic committee approval and patient informed consent) were available and 

functionally assessed by me. Later, 89 additional fully sequenced LCLs were purchased 

(Coriell Institute), which were measured by another student in our lab, Mrs. Claudia 

Lüske. The 196 fully sequenced LCLs served as the training set, and the 95 in-house 

lines as the test set. For all these LCLs, dose-response curves for eight gemcitabine 

concentrations varying between 0 and 76 nM (Table 10) in relation to effects on vitality 

and proliferation were ascertained. These concentration intervals were defined based on 

literature data (LI et al. 2009) and upon own method development. In addition, RNA 

and DNA were harvested during the experimental procedure for assessment of gene 

expression and genetic polymorphisms, respectively. A detailed protocol was elaborated 

during my thesis which is described in the subsequent chapters. 

About 10 to 15 LCL cell lines were analyzed per week. At first the LCLs had to be 

cultured in big culture flasks (75cm2) to have enough cells for further preparation steps. 

Since LCLs were suspension cells, the flasks in which they were cultured stood upright 

and were filled with media up to 50 ml of RPMI (15% FCS and 1% 

Penicillin/Streptomycin). LCLs were preferably cultured in a concentration between 

3x106
 and 6x106 cells/ml to keep them in the logarithmic growth phase.  

The incubation time under gemcitabine was 72 hours for determination of vitality and 

proliferation and 24 hours for RNA and DNA isolation. An untreated LCL control 

sample for vitality and proliferation measurement was incubated for 48 hours to 

determine the proliferation index by comparing the collected data with the control 

sample of the 72 hour incubation. 

On the first day of the procedure the cells had to be counted by flow cytometry 

[3.6.4.2.1] and stained with the appropriate cell number by CFSE (eBioscience, 

Frankfurt) [3.10.1] for further proliferation analysis. After staining the cells were 

incubated for 24 hours in normal culture media (RPMI with 15% FCS and 1% 

Penicillin/Streptomycin). CFSE molecules, which were not internally activated and 

bound could diffuse out of the cells. After 24 hours cells were counted [3.6.4.2.1] again 

to adjust them to the right cell concentration for the gemcitabine incubation. Each cell 
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line was plated at the concentration of 1x106 cells/well on a 24-well plate (Greiner) with 

1 ml of culture media per well. Seven different gemcitabine concentrations additional to 

the untreated control condition of the cells on each of the 24-well plates were assessed 

(Table 10). All the conditions were set up twice to minimize measuring errors. 

 

 
Table 10: Gemcitabine concentrations applied for cytotoxicity study 

Concentration number Gemcitabine concentration [nM] 
Control 0 

1 1.9 
2 3.8 
3 6.4 
4 10.8 
5 18.1 
6 30.4 
7 76 

 

 

Cells for DNA and RNA extraction [3.1.1; 3.2.1] were cultured on 6-well plates. For 

this purpose the gemcitabine concentration number 2 and 6 were chosen for incubation 

conditions additionally to an untreated control condition. For each of the incubation 

conditions respectively three wells of the 6-well plate were taken, which were combined 

for further extraction steps in the end. By plating the cells on the referring 24- and 6-

well plates a time schedule was applied by which each cell line was supplemented in 

successive time intervals with the referring concentration of gemcitabine. Thus it was 

possible to keep the conditions and incubation time (24 hours for DNA and RNA; 

72 hours for gemcitabine incubation) under consideration of the preparation and 

measuring steps for each cell line similar in the end. 

After 24 hours the three wells of each condition were pooled and then transferred in two 

5 ml FACS tubes (BD Falcon) to the same amount. One of the samples was prepared for 

RNA extraction [3.2.1], the other one for DNA extraction [3.1.1]. 

After exact 72 hours each cell line was harvested for further measuring and evaluation 

steps. Therefore each well of the 24-well plate was mixed by pipetting to separate cell 

aggregations and then different amounts of each condition (Table 11) was transferred to 



   Methods 

 
79 

 

5 ml FACS tubes (BD Falcon). The reason for taking different volumes of each 

condition was to level approximately the number of cells in each sample, since cells had 

different growth under the particular cytostatic concentration. It was crucial to have 

similar amounts of cells for uniform staining steps in later procedures. 
 

 

 

Table 11: Volumes of gemcitabine incubated samples for flow cytometry measurements 

Concentration Number  Used Suspension Volume [µl] 
Control 200 

1 200 
2 200 
3 300 
4 300 
5 400 
6 600 
7 800 

 

 

The cells in the 5 ml FACS tubes were washed with PBS and centrifuged with 250 g for 

5 minutes at room temperature. Afterwards the entire supernatant was removed and the 

staining solution for vitality determination [3.10.2] was added then the pellet was 

resolved by vortexing. The mixture was incubated for 15 minutes in the incubator. 

Afterwards the samples were measured by the flow cytometer BD LSRII (Becton 

Dickinson) [3.10.3] and evaluated by the Software Cyflogic 1.2.1 

(http://www.cyflogic.com/), which is a freeware version for scientific research. 

 

3.10.1 Staining of Lymphoblastoid Cell Lines (LCLs) with CFSE 
The CFSE stain (eBioscience, Frankfurt), which stands for carboxyfluorescein diacetate 

succinimidyl ester, is an internal marker for monitoring cell division (LYONS and 

PARISH 1994). After CFSE has entered the cell via passive diffusion it becomes 

activated by endogenous esterases which cleave the acetate groups. After this process 

the resulting fluorescent carboxyfluorescein succinimidyl esters are fluorescent 

(excitation: 492 nm; emission: 517 nm) and form conjugates with intracellular amines 
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and up to this point is irreversibly bound inside the cell. CFSE, which is not activated or 

intracellularly bound, escapes the cell by passive diffusion during incubation. During 

cell division the intracellular amount of the stain becomes divided between the mother 

and the resulting daughter cell. By this the intensity of the stain in both cells after 

division is half of the intensity to the non-divided cell. In that way it was possible in my 

experiments to trace back the numbers of cell division over a time of 72 hours and to 

elucidate the effect of different concentrations of the cytostatic gemcitabine on 

proliferation.  

Before the staining process could be conducted, the cell concentration had to be 

determined [3.10.2] [3.6.4.2.1]. Then the volume for the total amount of 15x106 cells 

had to be taken and centrifuged with 250 g for 7 minutes at room temperature. In the 

meantime the staining solution was prepared. There were 550 µl PBS buffer with 2.2 µl 

CFSE mixed for one cell line to stain. The supernatant had to be totally removed and 

cells had to be resolved in 500 µl PBS buffer and mixed with the 1 ml pipette to get a 

homogeneous cell suspension for staining. After this 500 µl of the staining solution was 

added and vortexed gently at 1400 rpm. Then immediately the cell suspension was 

placed in the incubator for exact 2 minutes and 30 seconds. After this time rapidly 10 ml 

of ice cold RPMI media (15%FCS, 1% Penicillin/Streptomycin) was added and gently 

mixed to stop the staining process. After this the solution was placed for 5 minutes on 

ice in complete darkness. In the next step the mixture was centrifuged for 7 minutes at 

250 g at room temperature and all of the supernatant was removed. Then the pellet was 

resolved in 25 ml of warm RPMI media (15%FCS, 1% Penicillin/Streptomycin) and 

was incubated for 24 hours. Then the cells were ready for further preparation steps. 

 

3.10.2 Determination of Vitality by Vybrant Ruby and Sytox Blue 

Staining and Determination of Living Cell Number 
In order to determine the quantity of living cells in a suspension a staining was used 

which stains living and dead cells to distinguish between these two groups and to 

quantify their amounts. For this purpose the two dyes Sytox Blue (Life Technologies 

Corporation) and Vybrant Ruby (Vybrant® DyeCycle™ Ruby stain, Invitrogen) were 

used. Both of the dyes are intercalating dyes which incorporate in the DNA of the 

stained cells and can be detected by fluorescence measurements. The Sytox Blue stain 

enters only dead cells, Vybrant Ruby enters dead as well as living cells. By this staining 
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it is possible to distinguish living cells from the cell debris and from the dead cells. The 

staining mixture was prepared in a master mix with 200 µl RPMI media (15% FCS, 1% 

Pen/Strep) per sample and a dilution of 1:1000 for Sytox Blue and 1:2000 for Vybrant 

Ruby. In some steps it was necessary to determine the exact number of cells in the 

suspension, in order to do this 10 µl of the counting bead stock solution (Invitrogen, 

Karlsruhe) was added per sample [3.6.4.2.1]. 

For the staining procedure cells were mixed with the accu-jet first to separate cell 

aggregations. Then a pre-defined volume of cell suspension was taken and transferred to 

a 5 ml Falcon tube. Then the tube was filled up with PBS buffer [2.3.1] for washing. 

After this the solution was centrifuged with 250 g for 5 minutes at room temperature. 

Thereafter the supernatant was completely discarded and the pellet was resolved in 

200 µl (210 µl for cell counting procedure) of the staining solution. Subsequently the 

staining mixture was incubated for 15 minutes at 37°C. After this the cells were ready 

for measurement.  

 

 

Vitality staining mixture 

Reagent Volume per Sample [µl] 
RPMI (15%FCS,1% Pen/Strep) 200  
Sytox Blue  0.2 (1:1000) 
Vybrant Ruby 0.1 (1:2000) 
Counting Beads (optional)  10 

 

 

3.10.3 Flow Cytometry 
The flow cytometry is a technique to analyze single cells in a suspension, which cross a 

focused laser. The cells can get characterized by several parameters like size, 

morphology and fluorescent markers. The collected data can be evaluated by specific 

software.  

Flow cytometry was used to analyze the effect of gemcitabine on proliferation and 

vitality in lymphoblastoid cell lines (LCLs) [3.6.5]. Cells were first characterized by 

their size (forward scattern channel / FSC) and morphology (sideward scattern / SSC) to 

determine the particle size. Thus the small particles, which were regarded as cell debris, 
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could be excluded from the data (bigger cell debris particles were still included) to 

simplify the evaluation. The fluorescent dyes Vybrant Ruby (Vybrant® DyeCycle™ 

Ruby stain, Invitrogen) and Sytox Blue (Life Technologies Corporation) were used to 

determine vitality [3.10.2]. The Vybrant Ruby stain (excitation 638 nm and emission 

686 nm) was evaluated in the APC channel and the Sytox Blue (excitation 440 nm and 

emission 480 nm) stain in the PacificBlue channel on the flow cytometer BD LSRII 

(Becton Dickinson). Since the amount of fluorescence of these two intercalating stains 

were equivalent to the amount of DNA in cells, it could be possible to examine the cell 

cycle state with this staining, too. This issue was not pursued in my thesis. The 

proliferation rate of cells in presence of gemcitabine was evaluated by the CFSE stain 

(eBioscience, Frankfurt) (excitation: 492 nm; emission: 517 nm) [3.10.1] in the FITC 

channel. The adjusted voltages were 170 volt for FSC-Channel, 210 volt for SSC-

Channel, 685 volt for APC-Channel, 215 volt for FITC-Channel and 220 volt for 

PacificBlue-Channel. 

 

3.10.4 Data analysis 
The collected data from the flow cytometric measurements were evaluated by the 

Software Cyflogic 1.2.1 (http://www.cyflogic.com/), which is a freeware version for 

scientific research. In Dot-Plot view on the x-scale was set the APC-channel, on the y-

scale the Pacific-Blue Channel (Figure 5, Figure 6, Figure 7). In this display, it was 

possible to gate the living cells and to determine the percentage of living cells compared 

to dead cells. In addition, the geometric mean of the FITC channel signal representing 

the CFSE dye indicative for cell proliferation was determined for the fraction of living 

cells. These data were used for further statistical evaluation of the sensitivity towards 

gemcitabine and the calculation of the EC50 (EC50Vit, EC50Prolif). The EC50 was 

calculated for the gemcitabine effects on the proliferation inhibition (EC50Prolif) and on 

the fraction of living cells (EC50Vit) using the three-parameter Gompertz (EC50Prolif) 

and the four-parameter MMF model (Multiple Multiplicative Factor Model) (EC50Vit), 

respectively. These models were selected out of a panel comprising 80 models 

implemented in the software Curve Expert Professional 

(http://www.curveexpert.net/products/curveexpert-professional/) according to the set 

model fit criteria of r² ≥ 0.95 for the individual cell lines. The EC50 values for the latter 

were then determined by the Solver algorithm in EXCEL.   

ftp://www.learning.cs.toronto.edu/pub/zemel/Papers/mmfIcml.pdf
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Figure 5: Illustrated FACS data of untreated LCL cells. Cells were 
stained with VybrantRuby and Sytox Blue for determination of living 
cell populations (red)  

 

 

 

 

 

 

 

 

 
 

Figure 6: Illustrated FACS data of LCL cells treated with 10.8 nM 
gemcitabine for 72 hours. Cells were stained with Vybrant Ruby and 
Sytox Blue for determination of living cell populations (red)  

 

 

 

 

 

 

 

 

 

 
Figure 7: Illustrated FACS data of LCL cells treated with 76 nM 
gemcitabine for 72 hours. Cells were stained with Vybrant Ruby and 
Sytox Blue for determination of living cell populations (red)  
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3.11 High-Performance Liquid Chromatography (HPLC) 
High-performance liquid chromatography (HPLC) is a very sensitive method which 

isolates specific molecules in a solution from others by using their differences in affinity 

to the liquid mobile phase and the solid stationary phase. The solution is mixed with the 

liquid phase and then led through a column which consists of a solid matrix (stationary 

phase). The differences in affinity of the single molecules in the solutions cause that 

some of them are retained on the column longer than others and become eluted to 

certain points of time. Thus the molecules can be separated, purified, identified and  

even quantified. The most common form of HPLC is the reverse phase HPLC where the 

column consists of a hydrophobic matrix. The mobile phase is hydrophilic and a 

composition e.g. of water, acetonitril or methanol. Hydrophobic compounds are retained 

longer on the stationary phase than hydrophilic. If a single solution is used as mobile 

phase, it will be termed isocratic elution. If a second or third solution is used to change 

the polarity of the mobile phase during the chromatography, it will be termed gradient 

elution. The advantage of a gradient elution is that the elution time (also retention time) 

of different substances can be adjusted during a chromatography. For example 

substances, which have similar polarities and are eluted at the same time, can be 

separated or on the other hand the elution intervals of substance, which have high 

differences in polarity, can be shortened. The eluted substances can be detected by 

several systems like UV absorbance, fluorescence or radioactivity counter. Via 

computer software the collected data becomes evaluated for quantification. 

 

3.11.1 Self-Established HPLC Method for Quantification of 

Radioactive Labeled Gemcitabine Metabolites 
The method for quantification of radiolabeled gemcitabine (2′,2′- difluorodeoxyuridine, 

dFdU) and its metabolites was self-established for analysis of gemcitabine metabolism 

in self-established pancreatic tumor cell lines and in LCL cell lines [3.6.5]. Helpful 

hints for establishment were used from literature:(DECOSTERD et al. 1999) (VELTKAMP 

et al. 2008). The gemcitabine metabolites (dFdC-monophosphate, dFdC--diphosphate, 

dFdC--triphosphate and dFdU (2’,2’-difluorodeoxycytidine) for reference substances 

were kindly provided by Eli Lilly and Company (Indianapolis, CA). The pure 

gemcitabine drug (dFdC) was obtained from Sigma Aldrich (Germany).  

The 3H-Gemcitabine was purchased from American Radiolabeled Chemicals, Inc 
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(ACR). At first the detection of gemcitabine and its metabolites was established with 

the cold reference substances. After the separation of the pure substances was 

established, lymphoblastoid cell lines (LCLs) were incubated with radiolabeled  
3H-gemcitabine for different points of time. Thereupon the nucleotides were extracted 

and detected via HPLC. Methodologically the extraction process for gemcitabine 

metabolites was not yet well-engineered and did not show replicable results. Because 

the method for extraction of gemcitabine and its metabolites from LCLs was not 

brought to a satisfactory conclusion, it is not outlined in this thesis. The internal 

standard for the HPLC procedure, which was used for normalization of the extraction 

efficacy, was P1,P4-Di(adenosine-5′) tetraphosphate ammonium salt (Sigma). The 

HPLC system used for the detection was Berthold LB 506-C1 radioactive detector with 

the HPLC pump Kontron instruments 325 System and the Kontron instruments HPLC 

332 UV-Detector. The applied measuring cell was Z1000. The used columns were a 

LiChroCART 125-4 RP-18e (5 µm) (Merck) and a LiChroCART 25-4 RP-18 (5 µm) 

pre-column (Merck) and the evaluation program was Berthold LB06 Version 1.65. The 

injected volume of substrate was 20 µl. Additionally to the radioactive detection the 

elution was also detected by a UV-Detector at the wavelength of 280 nm. The dwelltime 

was set on 10 sec. The liquid scintillator (Quickszint Flow 302, Zinsser Analytic, 

Berkshire, UK) was mixed in a relation 1:4 with the flowrate of 2 ml/min with the 

mobile phase after leaving the UV-Detector. A gradient elution with a flowrate of 

0.5 ml per min for the mobile phase was selected with buffer A (47.1 mM KH2PO4, 

2.9 mM K2HPO4, 4 mM Tetrabutylammonium hydrogen sulfate (Sigma) 4 ml NaOH 

(1M) per liter)) and eluent B (100% MeOH).The applied HPLC method was: 0-15 min 

100% buffer A  85% buffer A + 15% MeOH; 15-50  min 85% buffer A + 15% 

MeOH  48% buffer A +52% MeOH; 50- 55 min 48% buffer A + 52% MeOH. The 

retention times for the single eluents were 11 min dFdC, 14 min dFdU, 19.5 min dFdC-

MP, 27 min dFdC-DP, 32 min dFdC-TP and 35 min P1,P4-Di(adenosine-5′) 

tetraphosphate. A cold reference substance for dFdU-MP was not supplied, but 

according to the chromatograms a peak with a retention time of 24 minutes was 

considered to be dFdU-MP. (Figure 8) 
 

 

http://www.dict.cc/englisch-deutsch/methodologically.html
http://www.dict.cc/englisch-deutsch/a.html
http://www.dict.cc/englisch-deutsch/satisfactory.html
http://www.dict.cc/englisch-deutsch/conclusion.html
http://www.dict.cc/englisch-deutsch/chromatogram.html
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Figure 8: Chromatograms of gemcitabine and gemcitabine-metabolite separation by HPLC. In the 
upper chromatogram separation of gemcitabine and its’ metabolites is displayed. In the middle 
chromatogram separation of intracellular converted 3H-gemcitabine is depicted, which was incubated for 
10 minutes in LCLs. In the lower chromatogram intracellular conversion of the 3H-gemcitabine is shown, 
which was incubated for 1 hour in LCLs. The x-axis displays the time and the y-axis features the UV-
signal in the upper chromatogram and the radioactive signal in the other ones.  

 

 

3.12 Patient cohorts 
The clinical cohort encompassed 397 patients of Caucasian origin. Patients have been 

recruited at three sites in Germany, Göttingen (n = 142), Heidelberg (n = 96), and 

Hamburg (n = 159) between 2003 and 2010. They exhibited all histopathologically 

proven pancreatic adenocarcinoma (without ampullary) and received adjuvant or 

palliative gemcitabine-based chemotherapy. The study was approved of for each study 

site by an ethic committee and the patients included in the study had admitted to a 

written informed consent. The patients from Göttingen and Hamburg were 

retrospectively collected (n = 301) whereas the set from Heidelberg (n = 96) was part of 

a prospective clinical trial (NEOPTOLEMOS et al. 2010). Patient baseline data are 

summarized in Table 12. 

 

 

 



   Methods 

 
87 

 

Table 12: Distribution of the patients’ baseline parameters, tumor stages, chemotherapy 
regimens, as well as time of follow-up and overall survival in the two study cohorts. 

Variable Cohort 1 
Göttingen, n=142 

Cohort 2 
Heidelberg, n=96 

Cohort 3 
Hamburg, n=159 

Age [years], median 
(IQD1, range) 

68 (61-73, 44-88) 62 (55-68, 34-81) 65 (58-72, 28-88) 

Sex, No. (%)    
     Female 68 (48) 47 (49) 64 (40) 
     Male 74 (52) 49 (51) 95 (60) 
T-stage, No. (%)    
     Classified 138 96 159 
     ≤ 2 9 (7) 1 (1) 29 (18) 
     3 or 4 129 (93) 95 (99) 130 (82) 
N-stage, No. (%)    
     Classified 128 95 159 
     0   21 (16) 7 (7)   50 (31) 
     1 107 (84) 88 (93) 109 (69) 
M stage, No. (%)    
     Classified 73 95 159 
     0 27 (37) 84 (88) 105 (66) 
     1 46 (63) 11 (12)   54 (34) 
Resection status, No. 
(%) 

   

     Classified 142 96 159 
     0 45 (32) 42 (44) 98 (62) 
     1 52 (37) 50 (52) 42 (26) 
     2 2 (1) 4 (4) 19 (12) 
     Not resected 43 (30) 0 (0) 0 (0) 
Grading, No. (%)    
     Classified 141 96 159 
     G1 7 (5) 2 (2) 21 (13) 
     G2 94 (67) 66 (69) 92 (58) 
     G3 40 (28) 28 (29) 46 (29) 
Chemotherapy 
regimen, No. (%) 

   

     Gemcitabine mono 90 (63) 96 (100) 90 (57) 
     Gemcitabine  
combination 

52 (37) 0 (0) 69 (43) 

Follow-up [months], 
median (range) 

11.0 (1-124) 17.5 (1-88) 11.5 (2-69) 

OS [months], median 
(range) 

10.9 (1-114) 15.6 (3-56) 11.5 (2-69)2 
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3.13 SNP Selection for Genotyping 
Genotyping by primer extension method as described before [3.1.12] was carried out in 

two different issues. First, the top hits of a reported clinical genome-wide association 

study (GWAS) should be verified. Second, in the self-conducted genome-wide 

assessment of gemcitabine sensitivity the top hits of the training set should be examined 

in the test set.  

Regarding the clinical GWAS replication, five reported top associations of genetic 

polymorphisms with overall survival (INNOCENTI et al. 2012) were genotyped in a 

cohort of 397 patients [3.12]. The basal characteristics of these five SNPs are listed in 

Table 13 and the used primers in Table 14. Genotypes for the 397 samples at the five 

considered loci could successfully be determined at 1,972 positions (99.3%). Repetition 

analysis of 82 samples (21%) yielded identical results. Hardy-Weinberg equilibrium 

was fulfilled for all five SNPs which were analyzed (all p > 0.5, assessed by χ²-test 

comparing observed versus expected genotype distribution according to measured allele 

frequencies). 

 

 

 

 

 
Table 13: Features of the five genotyped SNPs 

Gene SNP Genomic localization 

(chromosome: position1) 

Genetic  

element 

Base  

exchange 

MAF2 

IL17F rs763780     6: 52101739 coding A>G 0.049 
PRB2 rs2900174   12: 11547532 Intron 1 A>G 0.024 

DCP1B rs11062040 12: 2091257 Intron 3 A>G 0.486 
WWOX rs11644322   16: 79039600 Intron 8 G>A 0.259 
BTRC rs10883617     10: 103113035 Promoter A>G 0.375 

According to NCBI genome assembly GRCh37.p5. 2Genotype distribution and minor allele frequency 
(MAF) as observed in our cohorts comprising 397 patients. Genotyping failed for four samples of PRB2 
rs2900174 and DCP1B rs11062040 and for five regarding WWOX rs11644322. The minor allele refers to 
that right to the “>” symbol as indicated in the column “base exchange”. 
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Regarding the functional GWAS, all SNPs with a frequency of at least 10% for the 

combined genotypes of heterozygous and homozygous variant allele status were 

included. SNP data were derived from HapMap and 1000 human genome databases. For 

each considered SNP, association with two functional traits of gemcitabine cytotoxicity 

(proliferation inhibition, vital cell fraction reduction) was assessed by Jonckheere-

Terpstra trend test allowing for allele dosage effects. These analyses were performed by 

Prof. Beißbarth (group Bioinformatics, Institute of Medical Statistics, Göttingen 

University Medicine). The thereby elicited top twenty genetic regions were then 

subjected to fine mapping including all polymorphic sites (i.e. also SNPs with rare 

frequency) in the considered regions. By that, pairwise genetic linkage disequilibrium 

was taken into account to determine SNPs which tag the associated loci with a 

stringency of at least r² = 0.5. These procedures were carried out with HaploView 

software (www.broadinstitute.org/haploview ). The tagging approach also allowed 

selection of alternative SNPs if a certain SNP appeared difficult to assay. The final set 

of selected polymorphisms is listed in Table 13 with pertinent primers. 
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Table 14: Primer sequences for genotyping 

SNP PCR forward primer (5'->3') PCR reverse primer (5'->3') AL(bp) Extended Primer (5'->3') 
Functional replication study 
rs9458655 GCTGTGCTAGCAACCAGCGAGACT GGAGTTCCCCTTCGGAGTCAGAGAG 176 TCAGGACCCTCCGAGCCA 
rs4646903 TGTAGCCGCTGCACTTAAGCAGTCTG GCTGAGGTGGGAGAATCGTGTGAG 151 ACTGTAACCTCCACCTCC 
rs7321622 ATATTTGTGCCCCTGCAGCAAGTCAC GTTCCCTTCTACCCAGTTCTGGAAAAGATG 536 ACTGACTAACCGGTGCCCTCACAA 
rs6898780 GCCACCTGCATTTGTTGCTGTGAC CACAGCGAAGTGGAATGGATTCACTTG 238 CTGTTTGAAATTTGTCAACTTTTCTGAGAA 
rs1410824 GCTCCAGAGGGCATAAAAGTAAAGACTGTG GAAACCTTTTGTCCACCCAGAGATGAG 184 GCTCCAGAGGGCATAAAAGTAAAGACTGTG 
rs55748428 GCTGGGCCTTGAGAAAAGTAAAGTAGAAC CCCAACATACAGTAAAAAGCAGATGTGAG 88 (ACTG)3TAAAGTAGAACTTCAGCAAGATCA 
rs62369808 CACATGGGGAAAATGGTAAATGGGAAC CCCACTTAGGCAAACATTTTGACCTAAGAG 163 (ACTG)3TTTTGTAATTTTGCAGTTTAGCTC 
rs35829783 CAATGTTTGTGCAGCTAGCTAACCAACAC AGGCCAAGGGTTGTTTATTGGATCTG 407 (ACTG)3ACTCTTCCATCTATTATATTACTAAGGCAG 
rs74767865 CCCTGTTCTGTGAACGGATCAAATG CCCTTTGTAAACTTTCCTAGTGCCTACTGTC 264 (ACTG)4ACTTGAATTACTAAGTAACAAGTGCTTAGA 
rs62429896 GCCTATTGTGGGACCTTGTGATTG CAGAAAGATAGCTGGAAAGTCCCTGTATTAG 572 GA(TA)4TG(AT)5GCTATATCATACATATATGA(TA)4T 
rs7734440 TTACAGTTATTGAGGTGGAGAAGTCCAAAG CCCACCTCCTAGAGGGAACATTTTCTAAC 531 GTGGAGAAGTCCAAAGTCAAG 
rs2026946 TGCCACCTTCCACCTTAGGGAGATAC CGAGCCAGAGGATGTTCAAGCTTCTC 299 CCCAAAGTGCTGAGATTACAG 
rs10038824 GGGGCTCCTTTAGGGTCCACCTCTATAC GCACATGGCCCTACTCTCAAGAAGCTTAG 183 CTCAAGAAGCTTAGTAGAAGAGATAGA 
rs12592456 GGGTAAGGGTGGGAGGGAAGTGAGT GAGATGGGGGCTGCAATTATGTTTG 152 T(GACT)2TCACTCAGGCTGGAATGC 
rs1931915 CAGGAGAAAGTGTTTTCCCATTAAGAGAAC GCCCACTCCTTCCATTCAGATACAC 186 GACTTTGAATTTATAATCATTGGACTGGTATTA 
rs67502721 CAAACACTCAAGTGCCTCATATGTTAACCTCT CAGGGGCAAGAAGCCTAACTCCATC 297 GACTACTGAATATTTGCTTGGATAGTATATTCT 
rs113018380 CTGCTGTGGTTGTCAAATAGTTTCCATGTAG GCCAGCACAGTCAACATGGTCTTCTAGTAC 676 CT(GACT)4GGAGACTATCCTGGCTAACAC 
rs2958405 GGTCCTCCAGGAAACACTGCTATTTCAG TGACTGCCTGGAGCTGGTGTTTTTC 130 ACT(GACT)4AATTTTGTACCACCAGCTGC 
rs10454987 TAGCCCAGCACCAGAGAGCTGATG CCCTCCAAACCAGCACTGTTCAATAAAC 551 (GACT)5CTCCTAGCATATGTTGCTATTTCA 
rs9375292 CAAACTGGGTGTAAAAGCCTGTAAACCTTAC ATCTTAGCGTCAATGCTAGAAACAGAGATG 960 CTTGAAATAATCTTAATGATTTATTCTTGTAAATATTTACTTAT 
15:74748055b CTGTCCCATTAGGAAACAGTGGATGAC CCACCTCAGCCTCCCAAAGTACAG 88 T(GACT)7CACCATTCCTGGCTTGTTT 
rs28362873 GCCCTTAACCTGTCCTGCCTTCAG GCTGGGCACAGATCTGGAGAGATG 306 CT(GACT)7GACTGGGAGAATAAAGGGCTTGGA 

Clinical replication study 
rs763780 GCACTGGGTAAGGAGTGGCATTTCTAC TTGGAGAAGGTGCTGGTGACTGTTG 123 GCACCTCTTACTGCACA 
rs10883617 GGGGCATTTGGGTGTGTGTCAG GCCCTGCACTAAGGGTCAAACAGGTAC 256 CTTTGGCCTGAAAAGGTACA 
rs2900174 CAGCTTCACAGATGGTGGCTGATGAG CCTGCTCATGATGCCCAGAATCAAG 349 (CTGA)2CTCCTTACAAGACTCACAAGTGTTCT 
rs11062040 AAGGAAAGCAAATTAATTAGGCTTGTGCTA GAATGGAGAGTGGGGAGTTATCTTCTAATG 326 (TGAC)4AATTAATTAGGCTTGTGCTA 
rs11644322 CTAGGTGGCTTCAGTCAGCAGAACTG TGCCTTCTGTTCTCATGCAACTTCAC 494 GATGTGATTACAGTGAATTAGGGTGG 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2900174
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11062040
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3.14 Statistical Analysis Techniques 
The overall survival of patients was illustrated by Kaplan-Meier curve with the impact 

of genetic polymorphisms singularly assessed by log-rank test. Dependence of overall 

survival on multiple factors was ascertained by Cox regression model. Cox models were 

used in two fashions: to identify the hierarchy of significantly contributing factors by a 

stepwise model as well as to adjust the effect of a certain variable for potential 

confounders by an integrated model. 

Correlation of continuous functional parameters was analyzed by Pearson and Spearman 

coefficients for data with parametric and non-parametric distribution, respectively. 

Distribution was considered as parametric when Kolmogorov-Smirnov and Shapiro-

Wilk test did not indicate deviation from Gaussian for samples sizes ≥ 50and < 50, 

respectively. Treatment effects on continuous parameters were tested for statistical 

significance by paired t-test (in case of Gaussian distribution) and paired Wilcoxon’s 

signed rank test (non-Gaussian). Impact of a single discrete, ordinally scaled variable on 

a dependent variable was investigated with the Jonckheere-Terpstra test. That was 

typically applied for genetic polymorphisms in relation to functional traits since this test 

allows for allele dosage effects according to the order of the genotypic configurations. If 

the independent variable was binary, the effects of the two groups on the considered 

functional trait were compared by t-test (Gaussian distribution); the non-Gaussian 

pendant, i.e. the Mann-Whitney U test, was not used in my thesis. All these statistical 

procedures were carried out using SPSS version 12.0 (IBM, Chicago, IL). 
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4 Results 
Following the aim to identify biomarkers for the efficacy of gemcitabine-based 

chemotherapy in pancreatic cancer the Department of Clinical Pharmacology at the 

University of Göttingen launched a genotyping project applying a candidate gene 

approach. We hypothesized that the observed clinical variability in therapeutic outcome 

is partially impacted by genetic variability in genes encoding proteins for transport and 

metabolism of gemcitabine. In eleven referring genes 109 genetic polymorphisms 

selected by functional and bioinformatic criteria were genotyped and analyzed with 

respect to the overall survival of gemcitabine-treated patients suffering from pancreatic 

cancer. This initial study was conducted by a medical thesis student in our department 

(Alexander Schaudinn, medical dissertation, University of Göttingen 2013). As a major 

result two genetic polymorphisms pertinent to the equilibrative nucleoside transporter 1 

(ENT1), which is officially denoted SLC29A1 according to HGNC (Human Gene 

Nomenclature), were associated with overall survival. One of these polymorphisms 

presents an amino acid exchange (Ile216Thr), however, the allelic frequency of the 

Thr216 is rare (about 2.5% in Caucasians). The second variant (rs1057985) resides in a 

putative promoter region of ENT1 and exhibits a frequency of 33% for the minor allele 

in the European population.  

 

4.1 Non-Conservative ENT1 Amino Acid Polymorphism 
The coding region of ENT1 is highly conserved among humans with less genetic 

variability (OSATO et al. 2003). The isoleucine (Ile) 216 to threonine (Thr) exchange 

(rs45573936) represents the most frequent one which is primarily found with a MAF 

(minor allele frequency) of 2.5% in Northwestern Europeans (Figure 9, Figure 10).  

In a clinical association study the variant allele of this SNP was related to a dramatically 

shortened overall survival rate of pancreatic cancer patients having received 

gemcitabine-based chemotherapy (SCHAUDINN 2013). In addition, this allele exhibited 

high resistance in vitro toward gemcitabine-induced toxicity in human T-lymphocytes 

(KUSCHEL 2012). These data raised the question whether this SNP is functionally and 

medically relevant. Allele-specific constructs containing either the Ile216 or the Thr216 

variant were generated [3.8.1] and subjected for impacting direct gemcitabine transport 

and cytotoxicity of gemcitabine. 

 



Results 

 
93 

 

 

 

 
Figure 9: Plot of linkage disequilibrium in ENT1 (-10kb/+2.5kb) genetic region based on 247 fully 
sequenced individuals. The position of the SNP rs45573936 is highlighted. Above the plot, the location 
of the five ENT1 transcript variants is displayed. 

 

 

 

 

 
Figure 10: Scheme of ENT1 transporter (SLC29A1) with Ile216Thr (rs45573936) 
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4.1.1 Control of Stable Transfection 
To ensure successful genomic integration of the two entire coding sequences allele-

specific for Ile216 or Thr216 several procedures were executed. Hygromycin resistance 

was proven by cell culturing in presence of Hygromycin. Specificity to the expression 

of the transfected Hygromycin gene was detected by PCR [3.7.3.1]. Correct genomic 

integration of ENT1 coding region as the gene of interest was confirmed by PCR 

spanning the insertion boundaries [3.7.3.1]. Exclusion of undesired mutations in the 

ENT1 coding region was carried out by complete Sanger sequencing [3.1.11]. Proper 

transcription of the transfected ENT1 was measured in comparison to empty vector-

transfected HEK293 clones indicating the extent of endogenous ENT1 expression 

[3.2.4]. Upon proof of correct integration these constructs could be used for functional 

assays [3.9] the results of which are described in the following chapters. 

 

 

 

4.1.2 Impact on Gemcitabine Uptake 
First, the kinetics of cellular gemcitabine uptake were explored by using  
3H-gemcitabine as tracing molecule. The high affinitive inhibitor NBTI was employed 

to determine the specific contribution of ENT1. Uptake of 3H-gemcitabine was very fast. 

As early as 15 seconds upon treatment start about 70% of concentration equilibration 

was achieved for Ile216 overexpression in comparison to only 14% for the empty 

control vector. It took about 10 minutes until the latter reached the same amounts of 

substrate transport than the Ile216 ENT1 transfectant (Figure 11). Pre-incubation with 

50 µM NBTI dramatically reduced the transport rate indicating the observed kinetics 

being largely ENT1-dependent (Figure 11). 
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Figure 11: 3H-gemcitabine transport kinetic of ENT1-rs45573936 wild type clones in relation 
to non transfected pcDNA empty vector clones. Transport was conducted for 15 seconds to 10 
minutes with 3H-gemcitabine. Transport kinetic in presence of 50 µM NBTI inhibitor conducted 
with cells, which were pre-incubated with 50 µM NBTI for one hour, demonstrated that NBTI is a 
specific inhibitor of 3H-gemcitabine transport in this issue since only little amounts of radioactivity 
were absorbed by the cells.  

 

 

Next, suggested modulation of the 3H-gemcitabine transport kinetics by Thr216 was 

assessed. No differences in transport activity of Ile216 (wild type) clones and Thr216 

(variant) clones by transport measurements for 10 and 15 seconds could be observed 

(Figure 12) 

 

Figure 12: Transport 
activity of ENT1-
rs45573936 clones in 
relation to non transfected 
clones. Transport was 
conducted for 10 and 15 
seconds with 3H-gemcitabine.  
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Transport in presence of 50 µM NBTI inhibitor conducted with cells, which were pre-

incubated with 50 µM NBTI for one hour, demonstrated that the transport 

measurements were specific since only little amounts of radioactivity were absorbed by 

the cells (Figure 13). 

 

 

 

 

 
Figure 13: Transport activity in presence of 50 µM NBTI inhibitor of ENT1-
rs45573936 clones in relation to non transfected clones. Transport was 
conducted for 15 seconds with 3H-gemcitabine. Cells were pre-incubated with 
50µM NBTI for one hour, demonstrated that in all clones the 3H-gemcitabine 
transport is mainly dependent on ENT1 transporter. 

 

 

 

The transport activity of ENT1 was very fast. The following transport experiments were 

conducted in presence of NBTI inhibitor 0.1 µM with cells, which were pre-incubated 

with 0.1 µM NBTI for one hour, to slow down the transport activities. Even by slowing 

down the transport activities no significant difference in transport could be observed in 

the HEK-ENT1- rs45573936 wild type and variant clones (Figure 14). 
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Figure 14: Transport activity of HEK-ENT1-rs45573936 wild type and variant 
clones in presence of 0.1 µM NBTI 

 

 

4.2 Functional Evaluation of ENT1 Promoter Polymorphism 
In three independent clinical cohorts a genetic polymorphism upstream of the ENT1 

gene was reproducibly related to the overall survival of pancreatic cancer patients 

having undergone gemcitabine–based chemotherapy (SCHAUDINN 2013) (Christian 

Zimmer, medical thesis in preparation). Due to the localization of this polymorphism, 

i.e. rs1057985, upstream of the ENT1 gene functional hypotheses were drawn. Several 

ENT1 transcript variants have been identified, which differ in the 5' UTR sequence, but 

all code for the same protein. 

 

4.2.1 ENT1 Transcript Variant Expression 
A thorough ENT1 promoter region analysis was undertaken suggesting twelve different 

transcript variants (FUKUCHI et al. 2010). Eleven of them are listed in the ENSEMBL 

database, of which ten are protein-coding. Of the latter, six are covered by the five 

transcript variants listed in NCBI gene bank and four are unique in ENSEMBL. For 

these nine variants, specific primers (Table 3) were designed and expression was tested 

in lymphoblastoid cell lines and in a pool of pancreatic cancer cell lines by qRT-PCR. 

Expression beyond marginal was verified only for four variants which correspond to 
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variants 2, 3, 4, and 5 in NCBI. These four variants were then determined in different 

human tissues, six pancreatic cancer cell lines, and a set of lymphoblastoid cell lines. In 

a panel of 20 human tissues the two most abundant transcript variants were ENT1-v3 

and ENT1-v5. Highest expression of ENT1-v5 was observed in adipose tissue whereas 

it was low in brain, kidney and lung (Figure 15). Unfortunately, no sample of pancreatic 

tissue was contained in the panel. Instead, the quantities of ENT1 transcript variants 

were determined in six pancreatic tumor cell lines (obtained from ATCC cell 

repository). In all pancreatic cancer cell lines tested, ENT1-v5 is expressed most  

(Figure 16). The second highest expression was observed for ENT1-v4 except for PancI 

where it was slightly lower than ENT1-v3. ENT1-v4 differs from ENT1-v5 only by a 

3 bp insertion inside the 5'-UTR. 
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Figure 15: ENT1 transcript variant expression in a panel of various human tissues. Expression data normalized to HPRT1 were referred to the lowest transcript number over 
all tissues, i.e. ENT1-v2 in kidney. 
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Figure 16: ENT1 transcript variant expression in pancreatic cancer cell lines. Data, which were 
normalized to the mean expression of the reference genes HPRT1 and 36b4, were all referred to the 
lowest observed expression value, i.e. ENT1-v2 in MiaPaca. For better visual depiction, the y-axis is 
scaled logarithmically.  

 

 

 

Likewise, ENT1 transcript expression was quantified in 16 lymphoblastoid cell lines 

[3.6.5] (GM11840, GM12005, GM12154, GM12750, GM12814, GM10854, GM12812, 

GM07022, GM07357, GM11831, GM11832, GM11882, GM12248, GM12813, 

GM12749, GM12749). ENT1-v3 exhibited the strongest expression followed by  

ENT1-v5. These two isoforms presented with much broader expression variability in 

comparison to the low expressed ENT1-v2 and ENT1-v4 (Figure 17). Expression of 

ENT1-v1 was neglectable.  
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Figure 17: Quantitative variability of ENT1 transcript variants in 
16 LCLs. Normalization was carried out by a weighted mean of the 
reference genes GAPDH, HPRT1, and UBC, i.e. the mean of the Ct 
(cycle threshold) values of these three genes was subtracted from the 
Ct values of each ENT1 transcript variant. 

 

 

4.2.2 Gemcitabine Effects on ENT1 Expression 
As gemcitabine is the standard treatment in pancreatic cancer and as gemcitabine effects 

have been attributed to ENT1 the effects of this cytostatic drug on ENT1 transcript 

variants were investigated. Therefore, the six aforementioned pancreatic cancer cell 

lines and a panel of 16 LCLs were exposed to a moderate dose (based on literature and 

pilot experiments) of gemcitabine for 24 h. In LCLs, quantitative measurements by 

qRT-PCR revealed induction of the long transcript variants ENT1-v4 and ENT1-v5. In 

contrast, the shorter isoforms ENT1-v2 and ENT1-v3 were not altered (Figure 18).  

In the pancreatic cancer cell lines AsPC1, SU.86.86 and CFPac, the expression of 

ENT1-v4 and ENT1-v5 were substantially upregulated in relation to the reference genes. 

In contrast, the short transcripts ENT1-v2 and ENT1-v3 were induced to a much lesser 

extent. In Capan1 and MiaPaca2, ENT1 transcript increase upon gemcitabine was 

generally less pronounced; a 2-fold induction was noted in Capanl for ENT1-v4 and in 

MiaPaca2 for ENT1-v4 and v5. In PancI, no notable alteration in ENT1 gene expression 

by gemcitabine could be observed (Figure 19).  
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Figure 18: Gemcitabine effects on transcription of ENT1 variants in 16 LCLs. Upon 
incubation with 18 nM gemcitabine for 24 h RNA was harvested and transcribed to cDNA. 
Expression of the indicated ENT1 target transcripts was normalized to a weighted mean of 
GAPDH, HPRT1, and UBC serving as reference genes. 

 

 

 

 
Figure 19: Induction of ENT1 transcripts by 5 µM gemcitabine in pancreatic cancer cell lines. The 
induction of each transcript upon gemcitabine is referred to the untreated control (see Figure 16), which is 
set to a value of 1. 
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4.2.3 Impact of ENT1 Promoter SNP on ENT1 transcription 
The location of the recently associated ENT1 polymorphism rs1057985 (SCHAUDINN 

2013) was analyzed in relation to the ENT1 genetic region. Rs1057985 is located 1,341 

bp upstream of the transcription start site of the two longest ENT1 transcripts, i.e. 

ENT1-v4 and ENT1-v5 (Figure 20). Thus, the hypothesis that the expression of the 

latter might be modulated by this polymorphism should be investigated in detail.  

 

 

 
Figure 20: Plot of linkage disequilibrium in ENT1 (-10kb/+2.5kb) genetic region based on 247 fully 
sequenced individuals. The position of the SNP rs1057985 is highlighted. Above the plot, the location of 
the five ENT1 transcript variants is displayed. 

 

 

 

Therefore, effects of rs1057985 on basal and gemcitabine-modulated gene transcription 

of ENT1-v5 were evaluated in a set of 101 genetically diverse LCLs also used for 

cytotoxicity assessment. Since ENT1-v4 is only barely expressed in LCLs (Figure 17) 

this transcript was not assayed here. Under basal conditions without gemcitabine the 

expression of ENT1-v5 was not related to rs1057985 (p = 0.3, data not shown). 

Conversely, upon gemcitabine treatment the extent of ENT1-v5 induction was 

dependent on rs1057985 (Table 15). Homozygous variant allele carriers exhibited the 

strongest induction, that for heterozygous state was intermediate, and that for 
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homozygous wild-type allele was lowest (ptrend = 0.03 in linear regression). This finding 

points to a putative promoter modulating effect resulting in enhanced expression of 

ENT1-v5. 

 

 
Table 15: Induction of ENT1-V5 by gemcitabine in LCLs in dependence on the SNP rs1057985 

 
 

 

 

4.2.4 Exploration of Genetic Linkage Disequilibrium of rs1057985 
Since genetic markers in high linkage disequilibrium (LD) indicative for common 

inheritance result in similar associations with phenotypic traits it should be investigated 

if there are other genetic polymorphisms in high LD with rs1057985. Therefore, genetic 

data of fully sequenced 247 Caucasian individuals were downloaded from the 

1000 human genomes database (http://www.1000genomes.org/) in relation to the ENT1 

genetic locus including 10 kb upstream and 2.5 kb downstream of the transcription 

margins and visualized in HaploView (version 4.2, available at 

http://www.broadinstitute.org). This analysis revealed one SNP, rs507986, in perfect 

LD (i.e., r² = 1.0) with rs1057985. No other genetic marker was in high LD with 

rs1057985 (i.e. r² = 0.8). The polymorphism rs507964 is positioned 852 bp upstream the 

transcription start of ENT1-v4 and ENT1-v5.  
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Figure 21: Plot of linkage disequilibrium in ENT1 (-10kb/+2.5kb) genetic region based on 247 fully 
sequenced individuals. SNPs with a minor allele frequency of 1% are displayed with the positions of the 
SNPs rs1057985 and rs507964 specifically marked. Above the plot, the location of the five ENT1 
transcript variants is depicted.  

 

 

 

 

 

 

4.2.5 In silico Assessment of Regulatory Genetic Elements 
First, the genomic sequence context adjacent to the ENT1 promoter region was 

evaluated for evolutionary conserved regions suggesting functionality. According to the 

ECR-Browser (http://ecrbrowser.dcode.org) both SNPs are located in a region 

evolutionary highly conserved only between man, Chimpanzee and Rhesus macaques 

(Figure 22).  
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Figure 22: Illustration of evolutionary conserved regions (ECRs) in the DNA of different species 
compared to humans (according to ECR Genome Browser). The diagram shows the level of 
evolutionary conservation in the DNA region flanking the two ENT1-SNPs (rs1057985 and rs507964). 
The kind of species is shown on the right by an icon (rat, mouse, dog, cow, Rhesus macaques and 
Chimpanzees, in the order from top to down). Types of sequence stretches in regard to genes are shown in 
different colors. The more a region is evolutionary conserved the higher the peak of the curve is.  

 

 

 

According to the UCSC Genome Browser database (http://genome.ucsc.edu) the ENT1 

SNP rs507964, but not rs1057985 is located in a putative regulatory element due to the 

acetylation status at histone H3 lysine 27 (H3K27Ac) (Figure 23), which is often found 

near active regulatory elements (BOGDANOVIC et al. 2012). In addition, this regions 

offers a DNase hypersensitivity cluster, again indicative for a regulative role in gene 

expression. In a DNase hypersensitive cluster the nucleosomal structure is not organized 

in the normal manner, which makes it sensitive towards DNAse cleavage. In most cases 

hypersensitive sites are found ahead of active promoter regions. Moreover, the data 

from the UCSC Genome Browser suggests a transcription factor binding site in the 

sequence context of rs507964, but not of rs1057985 (Figure 23). Together, these 

findings indicate that rs507964 is part of a functional region and might play a role in 

regulation of ENT1 expression.  
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Figure 23: Assessment of the ENT1 rs1057985 and rs507964 containing sequences for putative 
promoter sites by UCSC genome Browser. The image displays, from top to down, the degree of 
acetylation by H3K27Ac, DNase hypersensitive clusters, and prediction of transcription factor binding 
sites based on ChIP-Seq data. Transcription start of ENT1-v4 and ENT1-v5 is indicated by the bars in the 
right-upside corner termed as “SLC29A1” with the region directly upstream of which suggesting 
particularly strong regulatory elements. 

 

 

 

4.2.6 Nuclear Protein Interaction with ENT1 SNP Region 
An important mechanism of gene expression regulation is binding of transcription 

factors on DNA which was suggested to occur in the sequence context of rs507964 

according to the abovementioned clinical, gene expression, and bioinformatic data. This 

hypothesis was tested by electrophoretic mobility shift assays (EMSA). The EMSA 

reveals nuclear protein binding at rs507964 as demonstrated in different cell lines 

comprising LCLs, HEK and the pancreatic cancer cell lines MiaPaca and AsPCI  

(Figure 24) Interestingly, this binding appeared allele-specific only affecting the 

wildtype at this position. Cold competition experiments with nuclear extracts from 

LCLs confirmed this allele specificity as the interaction between the radio-labelled 

wildtype probe and the nuclear protein could be competed more efficiently by the non-

labelled wildtype than the variant allele probe (Figure 26). Non-labelled probe for CRE 

(cAMP response element) as a reference did not interfere with protein binding 

suggesting specificity of the aforementioned competition (data not shown). There was 

no protein binding detectable for the probes of rs1057985 with nuclear extracts from 

LCLs (data not shown). 
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Figure 24: EMSA with 
allele-specific 32P-labelled 
probes at rs507964. The 
arrow indicates the band of 
interest, i.e. binding of 
nuclear cell extract protein at 
the labeled probe. The lanes 
from left to right represent  
pairwise wild type and 
variant allele probes 
incubated with nuclear 
extracts of AsPC-1, MiaPaca-
2, HEK and LCL. 

 

 
Figure 25: Cold competition experiments for 32P-labelled rs507964 wild type probe. 
The protein binding in lane 1 is interfered with increasing amounts (3-fold, 5-fold and 20-
fold) of non labeled wild type probes (lane 2-4), variant probes (lane 5-7), and unspecific 
probe (CRE) (lane 8-10). 
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Figure 26: Cold competition experiments for 32P-labelled rs507964 wild 
type probe. To test for specificity, non-radio-labeled probes for the rs507964 
wild type and variant allele with identical sequence context were evaluated for 
interference with nuclear extract binding. The graph illustrates the signal 
intensity means ± SEM derived from four independent experiments. 

 

 

4.2.7 Identification of the Nuclear Binding Protein 
The protein exhibiting binding at the wild type allele at rs507964 was attempted to be 

identified. Bioinformatic tools use different patterns of DNA binding (so-called 

consensus sequences) to calculate the binding probability of a certain protein. 

Calculations were performed based on the TRANSFAC database (Release 2012.2, 

(MATYS et al. 2003)) in cooperation with Martin Haubrock (Wingender Group, 

University Göttingen). The settings were chosen for optimal discrimination at the 

polymorphic site of interest. The results were sorted according to a score value for the 

binding probability (Table 17). Five top hits of this analysis (i.e., P300, CDP, AP2-

Alpha, SP1, EGR-family) were selected for synthesis of probes tested for cold 

competition in EMSA experiments. Respective primer pairs for validated consensus 

sequences were taken from Santa Cruz Homepage (http://www.scbt.com/support-table-

transcruz_gel_shift_oligonucleotides.html) except for P300 which was not listed there 

and instead was adopted from literature (CHEN and HUNG 1997). These sequences were  
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compared with the binding motifs elicited by the bioinformatic screen using the 

Transcription Element Search System (http://www.cbil.upenn.edu/tess). Prominent 

competition of nuclear extract binding at rs507964 wild type was achieved by even 

moderate concentrations of the SP1 consensus sequence referred to the binding motif 

V$SP1_Q6. The latter interaction was even stronger than that of the corresponding non-

labeled probe of the rs507964 sequence context. At higher concentrations, the 

consensus sequence of the transcription factor AP2-Alpha also shows competition 

(Figure 27). Thus, SP1 was considered as a major candidate for the binding protein of 

the nuclear extracts. 

 

 
Figure 27: Cold competition experiments via electrophoretic mobility shift assays with 
consensus sequences for putative binding proteins at ENT1 rs507964 using nuclear extracts 
from LCLs. All conditions are based on the 32P-labelled wild type probe except CRE which 
served as positive control for the nuclear extract. The lane on the left represents the non-competed 
probe. Competitions were carried out pairwise (5-fold and 20-fold) with the sequence context of 
the wild type allele at rs507964 (WT), and with the consensus sequences for the indicated proteins. 

 

 

To get further evidence whether SP1 is the actual binding partner its binding motif was 

analyzed in detail. It reveals a mutation in one of the four crucial bases of the SP1 motif 

in presence of the variant allele at rs507964 making weaker binding plausible in 

comparison to the wild type allele (Figure 28). 
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Figure 28: Comparison between the binding motif V$SP1_Q6 and the sequence context at 
rs507964. This motif was provided by the Transcription Element Search System 
(http://www.cbil.upenn.edu/tess). The systematic name of this motif is M9525. The higher a letter in this 
motif is, the more important this specific base for the binding pattern is. The y-axis expresses the 
respective bits ranging from 0 (no base preferred) to 2 (only one base preferred). Beneath this plot, the 
sequences flanking the wildtype and variant allele at rs507964 (highlighted in green) are depicted with the 
bases most relevant for the V$SP1_Q6 motif displayed in bold.  

 

 

 

 

 

In the next step, bases promoting binding according to the binding motive provided by 

TESS (Transcription Element Search System, http://www.cbil.upenn.edu/tess) were 

mutated with respect to the sequence stretch with wildtype allele at rs507964. The allele 

at rs507964 itself was not changed here since reduced competition has been 

demonstrated before for the variant allele of this polymorphism (Figure 26). If SP1 is 

the real binding protein the competition of the mutated probes should be reduced in 

comparison to the wildtype sequence. The respective EMSA results are shown in  

Figure 29. Protein binding at the radio-labelled probe was completely abolished by the 

consensus sequence for the SP1 motif V$SP1_Q6. Mutation of four crucial bases in 

close vicinity of rs570964 did not interfere anymore. Only slight interference was 

detected for the probes mutated at single positions one base upstream and two bases 

downstream of rs507964, respectively.  
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Figure 29: Analysis of SP1 binding motif mutations. Three types of mutations (WTmut4, WTmut-1, 
WTmut+2) were tested for cold competition with respect to the non-mutated probe (WT) and the 
consensus sequence for the V$SP1_Q6 binding pattern (SP1 consensus). The EMSA results are depicted 
in the upper panel with the non-competed radio-labeled wild type probe on the left, followed by 
competitions with the indicated sequences (5-fold and 20-fold each). The lower panel depicts the 
sequences of the mutated probes in relation to the wild type sequence context at rs507964. The mode of 
illustration is analogous to that described in Figure 28. 
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4.2.8 Effect of ENT1 SNP rs507964 on promoter activity 
The hypothesis of expression regulating elements in the sequence stretch comprising 

rs507964 should be investigated both whether this region modulates promoter activity 

in general and whether there is any allele-specific dependency on rs507964. 

To address these issues two types of inserts, each for the two alleles of rs507964, were 

cloned into vectors for reporter gene assays. The first type corresponds to the 35 bp 

sequences of the abovementioned EMSA primers. The second comprises a 2122 bp 

DNA fragment upstream of the start codon of the long transcripts ENT1-v4/ENT1v-5 

containing rs507964 and rs1057965. As host for reporter gene analysis the pancreatic 

cancer cell line AsPcI was chosen, since this cell line provides high basal expression 

rate of the long ENT1 transcript variants according to qPCR results (Figure 16). It was 

demonstrated that the construct with the long insert exhibited strong promoter activity 

whereas the short 35 bp insert did not. However, no allele-specific effect of rs507964 

was observed. In addition, exposure to gemcitabine did not obviously alter the reporter 

gene activity of the transfected ENT1 sequence fragments. 

 

 

 
Figure 30: Allele specific induction of 2122bp ENT1-V4/-v5  rs507964 promoter fragments in pXP2 
vector. Promoter fragments were transfected in AsPC-1 pancreatic cancer cell line and allele specific 
induction was measured under normal conditions and in presence of gemcitabine. 
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Figure 31: Allele specific induction of rs507964 EMSA primer in pT81 vector. EMSA primer were 
transfected in AsPC-1 pancreatic cancer cell line and allele specific induction was measured under normal 
conditions and in presence of gemcitabine. 

 

 

 

 

 

4.3 Determination of Gemcitabine Metabolites by HPLC 
During my thesis a method for determination and quantification of tritium labeled 

gemcitabine and its metabolites was established by myself [3.11.1]. This method turned 

out to generate very robust and reproducable results. Originally this method was 

established to determine intracellular amounts of gemcitabine and its metabolites in 

LCLs. Thus the effect of identified specific biomarkers associated with modulation of 

sensitivity towards gemcitabine should be examined in relation to gemcitabine 

metabolism. The method was never applied since the approach for extraction of 

gemcitabine and its metabolites was insufficient and did not show reproducable results. 

In addition no biomarkers correlated to gemcitabine metabolism could be identified in 

our institute. For that reason the perfection of the extraction method was not further 

pursued. Although the method was not employed in my projects, it proved to be a 

valuable and reliable procedure for investigating gemcitabine metabolism and can be 

sensibly applied in further examinations.   
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4.4 Recently Suggested New Biomarker: WWOX rs11644322 
While performing my thesis a paper emerged reporting a genome-wide association 

study (GWAS) with overall survival of gemcitabine-treated pancreatic cancer 

(INNOCENTI et al. 2012). Five top findings were set up for replication in three patient 

cohorts. The hit with the strongest association in the cited study could not be confirmed. 

However, the association for another of the five investigated polymorphisms, 

rs11644322 pertinent to the WWOX gene, was reproduced. Stimulated by this finding, a 

series of mechanistic investigations were performed all demonstrating accordance with 

the clinical finding. These data are described in the subsequent chapters and are part of a 

manuscript entitled “WWOX polymorphism in a putative SP1 binding site reproducibly 

predicts outcome in gemcitabine-treated pancreatic cancer”  

 

4.3.1 Confirmation of GWAS in Clinical Cohort 
The variant allele of the SNP WWOX rs11644322 was associated with worse overall 

survival (OS) in gemcitabine-treated pancreatic cancer, however, not having passed 

statistical significance upon adjustment for multiple genome-wide testing (INNOCENTI et 

al. 2012). In a cohort comprising 397 patients, I could now confirm this finding  

(Figure 32). Assuming a gene dosage effect elicited statistical significance at p = 8*10-4 

(log-rank test) which passed the threshold criterion for multiplicity testing with five 

markers. According to the three genotypes of WWOX rs11644322, the mean OS was 22 

(95% confidence interval 19-25) months for GG, 18 (14-21) for GA, and 13 (10-16) for 

AA, and the median OS was 14 (11-16), 13 (11-15), 10 (7-12) months, respectively.  

Administration of other chemotherapeutic agents in addition to gemcitabine did not 

affect OS (p > 0.5). Cox multivariate regression analysis including the non-genetic 

parameters as described above in the Methods Section elicited study site (due to 

heterogeneity in patient enrolment, i.e., a priori better prognosis for the less advanced 

stages recruited in Heidelberg), age at therapy start, resection status, WWOX 

rs11644322, histopathologic grading, and M status as predictors for OS. When adjusting 

for the effects of the non-genetic contributors, a hazard ratio (HR) of 1.39 (95% 

confidence interval [CI] 1.26-1.53, p = 7.1*10-4) for WWOX rs11644322 was noticed. 

Noteworthy, the impact of this genetic polymorphism was prevalent in both prospective 

and retrospective study conditions. In the Heidelberg cohort which was collected for a 

prospective clinical trial with a median OS of 23 months versus 12 for both the 
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Göttingen and Hamburg cohort) the effect of rs11644322 was particularly pronounced 

with a HR of 1.92 (95% CI 1.55-2.38, p = 0.002) upon adjustment for the 

aforementioned non-genetic parameters. In the study sample from Heidelberg, 

rs11644322 evolved as a stronger predictor for OS than all considered non-genetic 

variables whereby outreaching established prognostic parameters like resection status, 

grading or presence of distant metastasis. However, when restricting the analysis to the 

two retrospective cohorts (Göttingen and Hamburg), the impact of rs11644322 on OS 

was less pronounced but still detectable with a HR of 1.27 (95% CI 1.14-1.42, 

p = 0.03). The characteristics of patient cohort are described in the methods section 

(Table 12). 

 

 

 

 

Figure 32: Survival rate in dependence 
on WWOX rs11644322 as ascertained 
in a set of 392 patients by univariate 
unadjusted log-rank test (p = 0.0008). 
Patient numbers under investigation are 
specified in 12-month-intervals. For five 
of the entire 397 patients genotyping 
failed. 
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4.3.2 Modulation of Gene Expression 
Though located in intron 8, an effect of rs11644322 on WWOX gene transcription was 

suggested due to looping to promoter region (DESHANE et al. 2010). We tested the 

hypothesis that rs11644322 might be related to transcription of the last exon 9, which is 

separated from exon 8 by 778856 bp. Ratios of WWOX transcripts derived from 

exon 8/9 in relation to exon 4/6 were not altered by rs11644322 neither at baseline nor 

upon exposure to gemcitabine leading us to reject the aforementioned hypothesis. 

However, an induction of entire WWOX transcripts could be observed in presence of 

gemcitabine in LCLs (p = 2.4*10-5) (Figure 33). Thereby, a slightly increased inducing 

effect of the rs11644322 wild type allele on WWOX expression was elicited (p = 0.06, 

Figure 34). Upon adjusting data for the two cohorts of LCLs the impact of this SNP 

became more distinct (p=0.03). 

 

 

 

 
Figure 33: Inducing effect of gemcitabine on WWOX expression 
in LCLs. LCLs were pre-incubated with 30.4 nM gemcitabine for 
24 hours at 37°C before cells were harvested for later RNA 
extraction. Expression data were ascertained by qRT-PCR whereby 
raw WWOX data were normalized to a weighted mean of HPRT1, 
UBC, and 36b4. The statistical difference between gemcitabine 
treatment and control with cell culture medium only was rated by 
paired Wilcoxon’s signed rank test. 
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Figure 34: Effect of rs11644322 on gemcitabine-mediated WWOX induction. The y-axis 
refers to the data from Figure 33 and is here stratified according to the WWOX rs11644322 
genotypes. For statistical evaluation with t-test, the heterozygous and homozygous variant 
allele statuses were combined. 

 

 

 

 

4.3.3 Evolutionary and Regulatory Elements 
Following the effects of rs11644322 on the clinical outcome of gemcitabine-treated 

pancreatic cancer the genomic vicinity of rs11644322 was explored for polymorphisms 

in high LD. Three polymorphisms were discovered by Haploview at r2 > 0.8, 

rs2062903, rs34310485, and rs12598700. These three SNPs together with rs11644322 

were subjected to an analysis screening for evolutionary regions using the ECR Browser 

(http://ecrbrowser.dcode.org/). None of these four SNPs showed any evolutionary 

conservation (data not shown).  

Next, these four SNPs were checked for surrounding regulatory sites employing the 

UCSC Genome Browser (http://genome.ucsc.edu/). A DNase hypersensitive site was 

detected in the sequence stretch comprising rs34310485. In addition, a transcription 
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factor binding and a H3K27 acetylation site were elicited each 100 bp upstream of this 

polymorphism (Figure 35). In contrast, no features indicative for regulatory elements 

were identified for the clinically associated SNP rs11644322 (Figure 36). Thus, in 

addition to rs11644322 the SNP in tight LD, rs34310485, was investigated by 

electrophoretic mobility shift assay (EMSA).  

 

 

 

 

 

 

 

 

 

 
 

Figure 35: Potentially regulatory regions surrounding WWOX rs34310485. The graph shows 
the features according to the UCSC genome Browser. rs34310485 is highlighted by a black 
vertical line.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 36: Potentially regulatory regions surrounding WWOX rs11644322. The mode of 
illustration is analogous to Figure 35.  
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4.3.4 Allele-Specific Protein Binding 
It was asked whether protein binding occurs at the sequence stretch around the clinically 

associated SNP rs11644322 as well as the bioinformatically suggested rs34310485. 

Interestingly, not the putatively conserved rs34310485 but rs11644322 indicated 

transcription factor binding. Moreover, a slight but reproducibly allele-specific binding 

was noticed: A stronger binding for the G wild-type in comparison to the A variant 

allele was noticed (Figure 37). Cold competition experiments on the 32P-labelled G 

allele containing probe revealed this difference being statistically significant between 

the G and the A allele both with 5-fold and 20-fold excess of the non-radioactive probe 

(Figure 38). A bioinformatic analysis was conducted to identify candidate proteins 

binding to rs11644322 in an allele-specific manner. Double-stranded probes 

representing the consensus sequences of the top hits elicited by the in silico screen were 

tested for cold competition in EMSA experiments. The probe containing the consensus 

sequence for the SP1_Q6 binding pattern (Figure 39) abolished the interaction between 

the nuclear protein extract and the probe with the G allele at rs11644322 (Figure 40) 

suggesting that the binding protein might be SP1 (or a protein with high structural 

homology like other SP-family members). Moreover, when mutating four bases at the 

most crucial positions of the consensus motif no competition was observed anymore 

(Figure 40) strengthening the hypothesis that a SP-family member binds allele-

specifically at rs11644322. 
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Figure 37: Representative EMSA plot for assessing transcription factor 
binding of nuclear protein extracts at WWOX rs11644322. Lane 1 indicates 
negative control without nuclear proteins. Lanes 2 and 3 illustrate 32P-labelled 
probes containing the wild-type G and the variant A allele, respectively. In 
lanes 4-9 the interaction between nuclear proteins and the G allele-containing 
probe was competed with increasing concentrations of non-radioactive probes 
(indicated as x-fold in comparison to the radio-labeled) for both the G and the 
A allele to delineate allele-specific interaction affinities. Lane 11 shows 
positive control for transcription factor binding (CRE probe). The arrow at the 
left points to the bands of interaction between nuclear proteins and the radio-
labeled probes. 
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Figure 38: Quantification of allele-specific differential transcription factor 
binding at WWOX rs11644322 as assessed by EMSA in nuclear protein 
extracts. The signal intensities of cold competition experiments (5-fold and 20-
fold surplus of G and A allele-containing probes) were referred to the 32P-
labelled wild-type G allele probe without cold competition of which the intensity 
was set at 1.0. Data represent the results from three independent experiments 
with the standard error of the mean depicted. Statistical significance was tested 
by paired student’s t-test with the respective p-values denoted. 

 

 

 

 

 
Figure 39: SP1_Q6 binding motif in relation to WWOX rs11644322. The mode of depiction is 
analogous to that described in Figure 28 and Figure 29. Beneath the motif, the sequences of the 
used probes are displayed. The first row refers to the wild type G-allele, the second to the A-
variant allele at rs11644322 (green), and the third to a sequence artificially mutated at four 
positions (red) particularly crucial for this motif.  
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Figure 40: Relevance of SP1 
motif for nuclear protein 
binding. Radio-labeled 
hybridized double-stranded 
probes with the G wild-type 
allele at rs11644322 were 
subjected to nuclear protein 
extracts from LCLs. Non-
competed probe (lane 1) was 
compared with cold competition 
by excess of the probe itself 
(lanes 2 and 3, second sequence 
row in Figure 39), of the probe 
mutated at the four positions 
most pivotal for SP1 binding 
(lanes 4 and 5, third row in 
Figure 39), and of the SP1_Q6 
consensus sequence (lanes 6 and 
7, first row in Figure 39. Lane 8 
represents a positive technical 
control displaying strong binding 
of CRE at a respective radio-
labeled probe. The arrow 
indicates the bands of interest. 

 

 

4.4 Genome-Wide Determinants for Gemcitabine Sensitivity  
In 196 fully sequenced lymphoblastoid Cell lines (Coriell Cell Repositories) and 95 

self-established LCLs [3.6.5], dose-response curves for gemcitabine sensitivity were 

generated as described in the Methods section [3.10]. Thereof, gemcitabine 

concentrations reducing cell vitality by 50% (EC50Vit) and lowering cell proliferation 

by 50% (EC50Prolif, i.e. a delay of one cell division compared to the untreated control) 

were  
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calculated by MMF and Gompertz model, respectively, as outlined above [3.10]. The 

variability of these data was depicted and assessed for impact of genetic polymorphisms 

in a training and a test set fashion. 

 

4.4.1 Variability of Gemcitabine Cytotoxicity 
The overall distribution of the EC50Vit and EC50Prolif values in the training set 

comprising 196 LCLs is illustrated in Figure 41. For both parameters, the displayed 

distribution did not significantly deviate from normal (p > 0.2 according to 

Kolmogorov-Smirnov test). The parameters representing sensitivity and proliferation 

effects were highly correlated (Pearson correlation coefficient r = 0.89).  

 

 

 

 

 

  
Figure 41: Distribution of gemcitabine sensitivity on cell vitality and proliferation of LCLs. The 
EC50Vit value represents the gemcitabine concentration at which the percentage of vital cells was reduced 
by 50% (left panel). Likewise, the EC50Prolif value indicates the concentration of gemcitabine which 
inhibits cell proliferation by 50% (right panel). 
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4.4.2 Genome-Wide Determinants of Gemcitabine Sensitivity 
For the training set of LCLs, the two phenotypic parameters for gemcitabine sensitivity 

were tested for association with genetic variants by a genome-wide screen. This analysis 

was conducted by Prof Beißbarth (Institute for Medical Statistics, group Bioinformatics, 

University Medicine Göttingen). Test statistics for each genetic marker was carried out 

using the non-parametric Jonckheere-Terpstra trend test considering allele dosage  

effects. For each single association, in addition to the raw p-value multiple testing 

adjustment was performed per chromosome using FDR (false discovery rate). The most 

significant 20 top hits over the entire genome according to their FDR were picked for 

further confirmatory analyses (Table 16). In case of clusters comprising multiple 

markers in high linkage disequilibrium (LD) a tagging SNP covering the respective 

cluster was selected. Thereby, for markers with identical FDR the raw p-values were 

also taken into account.  
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Table 16: Genetic polymorphisms representative for loci strongest associating with proliferation inhibition by gemcitabine in the training set. 

The SNPs were ranked in the first instance according to their false discovery rate (fdr) and in the second instance according to their probability value (P-value) and represent the 
most significant SNPs elicited. If possible, genes are assigned. The third row indicates the respective chromosome number, followed by the chromosomal position. The column 
“ID” lists theSNP identification number as annotated in dbSNP. “REF” and “ALT” stand for the two allelic configurations of a SNP.  

 

 

Ranking Nr. Gen X.CHROOSO

 

POS ID REF ALT P value fdr 
1 CYP1A1 15 75011641 rs4646903 A G 1.39E+07 0.0777 
2 PACRG 6 163265311 rs9458655 G A 1.57E+09 0.1160 
3 KIAA1024 15 79731140 rs190148744 A G 2.10E+09 0.1674 
4 Inter genetic region  5 159019195 rs55748428 A G 6.27E+08 0.1706 
5 Inter genetic region  5 114987179 rs55740412 C T 1.34E+09 0.1715 
6 Inter genetic region  6 98632010 rs9385308 G T 4.18E+09 0.1770 
7 Inter genetic region  13 75037871 rs1931915 T G 2.21E+09 0.2071 
8 Inter genetic region  6 77257094 rs62429896 G C 5.09E+09 0.2131 
9 Inter genetic region  5 100987070 rs113018380 C T 2.28E+09 0.23888 

10 ITPKA 15 41789704 rs2026946 G A 5.19E+09 0.2415 
11 MEGF11 15 66502218 rs12592456 A G 5.42E+09 0.2455 
12 GPR116 6 46824165 rs9395217 T A 6.24E+09 0.2459 
13 LOC100506207 6 8776410 rs4383861 C T 6.05E+09 0.2459 
14 Inter genetic region  6 133452425 rs3904628 A G 6.12E+09 0.2459 
15 Inter genetic region  5 27500724 rs12517916 G A 5.17E+09 0.2468 
16 Inter genetic region  5 33156656 rs62368013 T C 5.28E+09 0.2468 
17 SLC26A2 5 153362970 rs78177740 C T 7.33E+09 0.2468 
18 CHSY1 15 101747869 rs67502721 C A 8.79E+09 0.3396 
19 SEMA7A 15 74713300 rs11857558 T C 9.48E+09 0.3455 
20 FAM155A 13 108065075 rs7321605 G C 4.88E+09 0.3477 

Ranking Gen CHROM POS ID REF ALT P value fdr 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=135138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=23251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=84465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=221395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=22856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=8482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=728215
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4.4.3 Confirmation Study of GWAS Determinants  
The top associations with gemcitabine sensitivity identified in the training set (Table 16), 

were set up for confirmation in an independent test set of 95 LCLs. For the latter, 

genotyping was performed in-house by primer extension method.  

Four of the 20 SNPs listed in Table 16 failed for genotyping in the test set. They could not 

be replaced by another SNP in high LD. For SNP rs190148744 (rank #3 in the training set) 

highly repetitive sequence stretches made unique primer design for this region impossible. 

The region of rs62429896 (#8) was difficult to amplify (GC-content 18%). Despite it 

worked with a single PCR the subsequent primer extension method failed (only 

homozygous wildtype allele status detected possible due to highly repetitive AT-elements). 

The SNPs rs4383861 (#13) and rs3904628 (#14) were skipped for reasons of fine mapping 

of the respective genetic regions.  

Upon fine mapping, the eight SNPs rs55740412 (#5), rs9385308 (#6), rs9395217 (#12), 

rs12517916 (#15), rs62368013 (#16), rs7817740 (#17), rs11857558 (#19) and rs7321605 

(#19) were each substituted due to high LD by rs2098630, rs9375292, rs1410824, 

rs6898780, rs62369808, rs74767865, and rs35829783, rs7321622. 

In addition, fine mapping of the 20 regions covered by the SNPs denoted Table 16 elicited 

four SNPs with a minor allele frequency below the threshold of 10% as used for the 

training set. Since these four SNPs are not sufficiently tagged by the other selected SNPs 

they were included into the analysis. Finally, 20 SNPs were successfully genotyped in the 

test set. With respect to multiplicity of testing, these 20 SNPs were tested in a hierarchical 

order according to the regions as ranked in Table 16. Thereby, the threshold for the SNP 

representing the region ranked highest (#1) was set to 0.05. The other SNPs were 

sequentially analyzed according to their rank in the training set whereby the statistical 

threshold was each time divided by the cumulative number of the SNPs already tested. 

Just one of the considered 20 SNPs (rs6898780) revealed an association with gemcitabine 

sensitivity also in the test set. Figure 42 compares the impact of rs6898780 on the 

gemcitabine-caused inhibition of LCL proliferation. When applying the same phenotype 

and statistical test, statistical significance was not reached in the test set (p = 0.059 

according to Jonckheere-Terpstra trend test). However, when normalizing the raw 

EC50Prolif values to the basal proliferation rate the Jonckheere-Terpstra trend test revealed 

a p-value of 0.01. Nonetheless, statistical significance was failed since the threshold for 

rs6898780 was 0.004 since this SNP was tested as the 11th. Likewise, the fraction of vital 

cells was impacted by this SNP (p = 0.040, Figure 43). 
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Figure 42: Reproducible impact of rs6898780 on proliferation inhibition by gemcitabine. The left 
panel shows the training set comprising 191 LCLs (four cell lines with missing genotype). The right 
image displays the test set with 95 LCLs (for two EC50 was not determinable, for another two genotyping 
failed). The respective p-values were 3*10-5 and 0.06 according to Jonckheere-Terpstra trend test. The 
distribution of the data by boxplots is as follows: The thick horizontal line represents the median. The 
horizontal line below displays the 1st (Q1) and that above the 3rd quartil (Q3), i.e. 50% of the values are 
enclosed by these two lines. The distance between Q1 and Q3 is termed as “interquartil distance (IQD)”. 
Values not more than 1.5-fold the IQD below Q1or above Q3 are covered by the whiskers, i.e. the vertical 
line bounded by the short horizontal. Values between 1.5 and 3.0-fold the IQD with respect to either Q1 
or Q3 are displayed as circles (“outliers”), and those more than 3.0-fold the IQD apart Q1 or Q3 are 
illustrated as asterisks (“extreme values”). 

 

 

  
Figure 43: Reproducible impact of rs6898780 on reduction of vitality by gemcitabine. The left panel 
shows the training set comprising 191 LCLs (four cell lines with missing genotype). The right image displays 
the test set with 95 LCLs (for two EC50 was not determinable, for another two genotyping failed). The 
respective p-values were 4.9*10-6 and 0.040 according to Jonckheere-Terpstra trend test. The detailed 
explanation of the box plots is depicted in Figure 42. 
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5 Discussion 
The major focus of this thesis was to decipher molecular effects of polymorphisms in 

the ENT1 genetic region recently linked to the outcome of patients treated with 

gemcitabine for pancreatic cancer. The ENT1-mediated transport of nucleoside 

analogues can be the rate-limiting step in sensitivity towards gemcitabine (ACHIWA et 

al. 2004). The absence of ENT1 mRNA results in resistance towards gemcitabine 

(NAKANO et al. 2007; SPRATLIN et al. 2004). Despite the relevance of ENT1 for the 

transport of gemcitabine under therapeutic conditions the transcriptional regulation is 

barely understood. In my PhD thesis, I investigated the molecular effects of the ENT1 

promoter SNP rs507964 and the ENT1 Ile216Thr amino acid exchange SNP 

(rs45573936) in relation to gemcitabine sensitivity in cell culture experiments. In 

addition, when doing my thesis a published genome-wide screen suggested further loci 

for outcome of gemcitabine-based chemotherapy in pancreatic cancer (INNOCENTI et al. 

2012). Since one of the top hits of this publication could be reproduced in available 

clinical cohorts functional mechanisms of this SNP were also investigated with the same 

techniques as established for the ENT1 promoter SNP. The last part refers to our own 

genome-wide in vitro screen to determine new loci for gemcitabine sensitivity. 

 

 

5.1 SNP in ENT1 Promoter Region 
Two recent medical theses conducted in our department revealed a reproducible impact of 

the SNP rs1057985 located in the promoter region of the ENT1 gene. The variant allele 

was linked to a prolonged overall survival of pancreatic cancer patients treated with 

gemcitabine (SCHAUDINN 2013), (Christian Zimmer, medical thesis in preparation). Thus 

motivated, I set up for detailed functional analyses to clarify the molecular mechanisms 

driving the observed clinical association. Due to its location an impact on the differential 

expression of ENT1 transcript variants was hypothesized. Since the variant allele displays a 

significant prolonged overall survival, it was hypothesized that the polymorphic locus 

somehow affects the transcript quantities or stabilities of ENT1. The SNP rs1057985 might 

lead to enlarged amount of ENT1-transporters in cell membranes, which results in higher 

uptake ability of gemcitabine and in increased sensitivity in cells.  
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5.1.1 Expression of Different ENT1 Transcript Variants 
The analysis of ENT1 transcript variant expression in different tissues and cell types 

revealed ENT1-v5, -v4, and -v3 as the most abundant variants. The transcription start site 

of ENT1-v4 and ENT1-v5 is close to the promoter polymorphism associated in the 

previous clinical-epidemiological study. Beyond these three variants, a substantial 

expression was also confirmed for ENT1-v2 (nomenclature according to NCBI gene bank 

entry, release GRCh37.p10). Other suggested variants, ENT1-v1 and those of ENSEMBL 

database (http://www.ensembl.org/index.html) or as reported in literature (FUKUCHI et al. 

2010) not covered by ENT1-v2, -v3, v4, or -v5 were barely expressed. Obviously, 

expression of ENT1 seems to be almost completely represented by four transcript variants. 

It remains to be clarified to which extent these four mRNA variants are translated into 

protein. Since ENT1 protein levels vary considerably between individuals ((ABDULLA and 

COE 2007; FARRE et al. 2004; MACKEY et al. 2002), it might be interesting to determine 

the contribution of each mRNA variant. Another issue to be resolved refers to the question 

about the existence of different transcript variants all coding for an identical protein. It is 

conceivable that mRNA stability and thus the extent of translation into protein are different 

between these variants. A major hypothesis is that these transcript variants reflect different 

regulation events possibly responsible for the high variability of ENT1 mRNA levels 

among human tissues (PENNYCOOKE et al. 2001). 

 

5.1.2 Transcript Variant Expression affected Gemcitabine 
ENT1 transcripts, in particular the extended ENT1-v5 and -v4, were induced in all 

investigated pancreatic cancer cell lines except for PancI (Figure 19). In LCLs, an 

induction of ENT1-v5 was also observed. These findings suggest a selective regulation of 

ENT1 variant expression by gemcitabine.  

When normalizing the raw expression data to that of the reference genes it was noticed that 

the latter were massively down-regulated upon gemcitabine. That was particular true for 

those cell lines in which the normalized ENT1 transcripts showed the highest induction. 

That raised the question about an unspecific effect. However, that is unlikely for two 

reasons. First, the less-extended transcript variants ENT1-v2 and ENT1-v3 were not 

induced to the same extent. Second, we checked the expression of RRM1, the induction of 

which was linked to gemcitabine resistance (BERGMAN et al. 2005). In contrast to ENT1-v4 

and -v5, RRM1 raw data expression indicated down-regulation by gemcitabine. Two 
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housekeeping genes reflecting different cellular functions were chosen to minimize 

systematic bias of gemcitabine effects on normalization. 

 

5.1.3 Gemcitabine Transcript Induction Modulated by Promoter SNP 
The SNP rs1057985 was assessed for modulation of gemcitabine-driven ENT1 induction. 

This hypothesis was tested in 101 LCLs for ENT1-v5 since rs1057985 was supposed to be 

located in a promoter regulatory element for ENT1-v5. The latter was preferred to ENT1-

v4 which has the same transcription start site but is lower expressed (Figure 17) and 

weaker induced by gemcitabine in LCLs than ENT1-v5 (Figure 18). The induction of 

ENT1-v5 by gemcitabine was about 2-fold and 1.5-fold when LCLs were homozygous for 

the variant and the wild type allele of rs1057985, respectively (Table 15). These findings 

raised the question whether this SNP is involved in a regulatory element, e.g. a 

transcription factor binding site. Since the so-far results concerning rs10579865 represent 

associations without proof of functionality it is also conceivable that another SNP 

genetically coupled is the causative one. 

 

5.1.4 Genetic Linkage Disequilibrium Analysis for rs1057985 
Screening for SNPs in high linkage disequilibrium (LD) with the polymorphism rs1057985 

revealed rs507964 highly correlated (r² = 1.0). Rs507964 is closer to the ENT1-v5 and -v4 

transcription start site by 489 bp and is located in a region with potentially regulatory 

elements (according to UCSC-Browser). For none of these two variants any functionality 

has been reported in literature yet. To elucidate the regulatory impact of rs1057985 and 

rs507964 on the expression of ENT1-v5 and -v4 protein binding was investigated by 

EMSA. 

 

5.1.5 EMSA: Allele-Specific Binding 
EMSA experiments elicited a protein binding on a probe with the wild type but not with 

the variant allele of rs507964. The region of the SNP rs1057985 did not exhibit any protein 

binding. These findings supported the hypothesis of an expression-regulating effect of this 

polymorphism. Cold competition experiments suggested a member of the SP1 family to be 

the binding protein. However, the final proof would be an EMSA with a super shift by an 

antibody specific for the supposed binding protein. I tested two different antibodies against 
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SP1 which both failed to cause a super shift. Then, I checked super shift with a probe 

containing the consensus sequence for SP1. Since that also failed it was assumed that the 

antibodies do not work properly under the specified experimental conditions. A possibility 

to control that might be the use of standard nuclear protein extracts. Regarding literature, 

SP1 binding sites in the promoter region of ENT1 have been described long time before 

ENT1 transcript variants with far upstream-coded 5'-UTRs were discovered (CHOI et al. 

2000). How could the discrepancy between the variant allele associated with better clinical 

outcome and exhibiting no binding of putative SP1 be explained assuming that higher 

ENT1 expression is beneficial for gemcitabine-based chemotherapy in pancreatic cancer as 

several times reported (FARRELL et al. 2009; GIOVANNETTI et al. 2006; MARECHAL et al. 

2009; SPRATLIN et al. 2004)? Interestingly, overexpression of SP1 or high SP1 protein 

abundance as provoked by high glucose was linked to down-regulation of ENT1 expression 

(PUEBLA et al. 2008). If so, the observed allele-specific binding of SP1 only in presence of 

the wild type allele of rs507964 may suggest lower ENT1 levels accompanied by worse 

clinical response. In this context, it is very unlikely that the binding protein has an 

expression promoting function, but rather an inhibitory role.   

 

5.1.6 Reporter Gene Analysis: SNP Region with High Promoter Activity 
Luciferase reporter gene assays did not show any impact of the SNP rs507964 in the 

pancreatic cancer cell line AsPCI. Even under gemcitabine treatment the two alleles did 

not cause any differences in expression. Thus, the suggested inhibitory effect of the wild 

type allele at rs507964 could not be verified under the chosen experimental settings. 

However, a simultaneous overexpression of SP1 in a reporter gene assay might elucidate 

an expression-regulating effect of rs507964. Another possibility might be that the effects 

of rs507964 are masked by other regulatory elements not investigated in this study. The 

reporter gene assay in AsPCI demonstrated a high promoter activity for the suggested 

promoter region. Thus, the described promoter in the publication of Fukuchi (FUKUCHI et 

al. 2010) could be confirmed in a pancreatic cancer cell line.  
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5.2 Ile216Thr 
With respect to the amino acid exchange Ile216Thr in ENT1 (rs45573936), the rare 

threonine allele (about 2% in Caucasians) displayed a dramatically reduced overall 

survival in one clinical cohort (SCHAUDINN 2013). However, this association could not be 

reproduced in a second cohort (Christian Zimmer, medical thesis in preparation). 

Nonetheless, the latter negative result does not exclude a medically relevant functionality 

of this SNP, in particular when considering the low allelic frequency of Thr216 which 

renders a particular susceptibility to confounding factors in limited sample sizes. Another 

motivation for further functional investigation was a finding in leucocytes of healthy 

volunteers. Gemcitabine and cytarabine (another nucleoside analogue) cytotoxicity was 

strikingly reduced in presence of Thr216 (KUSCHEL 2012). The substitution of isoleucine 

by threonine constitutes a heavy alteration replacing an aliphatic residue by a side chain 

which is a potential target for post-translational modification. The hypothesis was that the 

amino acid exchange Ile216Thr reduces the transport ability of ENT1 towards 

gemcitabine. This could result in lower intracellular levels of gemcitabine along with 

increased resistance towards this drug.  

 

5.2.1 ENT1 as the Major Gemcitabine Uptake Route in HEK Cells 
In transport experiments it could be demonstrated that 3H-gemcitabine uptake is 

dramatically reduced by NBTI (50 µM) in stably transfected HEK293 cells (Figure 11). 

NBTI seems to lower both velocity and maximal capacity of 3H-gemcitabine transport. 

These data indicate that ENT1 is the major uptake route for gemcitabine also in HEK cells, 

which was already stated for other cell types in literature (FARRELL et al 2009) (SPRATLIN 

et al. 2004) (SANTINI et al 2008). The extent by which NBTI reduced gemcitabine import 

demonstrates that other transporters have an inferior role in gemcitabine uptake. 

 

5.2.2 Gemcitabine Import Not Affected 
Repeated measurements for 3H-gemcitabine uptake did not reveal a dependency on 

Ile216Thr as addressed in allele-specific stably transfected HEK293 cells. One challenge 

was to control for the endogenous level of ENT1 transporter in HEK293 cells, which 

contributes to the 3H-gemcitabine uptake and causing thereby background noise. Another 

difficulty was the humongous velocity of uptake mediated by overexpressed ENT1 
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transporter. Within 10 s high amounts of substrate were transported, which impedes the 

ability to detect small differences due to experimental handling. Therefore, an artificial 

delay of transport was provoked by application of low NBTI concentrations (0.1 µM). 

However, again no differences in uptake activity between the two allelic constructs were 

noted. Although ENT1 expression between the two allelic constructs was controlled on the 

mRNA level differences in ENT1 protein expression could not be excluded and may have 

masked allelic effects on gemcitabine uptake kinetics. 

These findings are in agreement with former literature data. Indirect gemcitabine import 

kinetics as measured by inhibition of 3H-inosine uptake was not affected by Ile216Thr 

(OSATO et al 2003). However, the conclusions of that study with respect to gemcitabine 

transport in humans are limited for several reasons: First, the experiments including 

cytotoxicity assays were preformed in yeast cells. Second, only gemcitabine uptake was 

addressed and the equilibrative actions of the ENT1 were not considered. Third and most 

important, no direct interactions between gemcitabine and the two alleles of this 

polymorphism were analyzed (gemcitabine was used only as transport inhibitor and not as 

substrate). This is of particular importance as the binding pockets for substrates and 

inhibitors may differ. 

In a second study, a significant difference in transport was observed for Ile216Thr, when 

cells were pre-incubated with ethanol for 24 hours (KIM et al 2011). It was suggested that 

Thr216 has an increased uptake activity for adenosine and inosine under these conditions. 

Additionally, it is claimed that Thr216 results in a decrease of NBTI (specific inhibitor of 

ENT1) affinity. One reason for altered uptake activity and NBTI affinity is considered to 

be an increased hydrophilicity introduced by Thr216 in the transmembrane domain 6 

which is accompanied with altered domain conformation.  

In patients peak plasma concentrations upon infusion reach values of about 40 µM lasting 

for about 15 minutes. Then, the concentrations decrease due to enzymatic degradation. The 

gemcitabine concentration used in transport experiments (i.e. 10 µM) were chosen 

according to the peak values in patients’ sera adjusted to that estimated to reach the target 

cells shortly after infusion stop. Using this concentration, gemcitabine appeared 

intracellularly equilibrated within 5 min in HEK cells (Figure 11). Thus, with respect to the 

equilibrated intracellular gemcitabine amounts due to import kinetics any potential 

difference between Ile and Thr216 might probably compensated by the longer drug 

exposure time in the clinical setting. Since the equilibrative ENT1 acts in both directions it  
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is also conceivable that efflux rather than influx kinetics are affected by Ile216Thr, 

possibly by altered substrate affinities, what was not featured in this thesis. Regarding the 

clinical situation, upon end of infusion the gemcitabine serum concentrations decrease 

step-by-step going along with a discretely, but permanently positive gemcitabine gradient 

from intra- to extra-cellular. Under these conditions, a relevant effect of Thr216 is not 

unlikely. The hypothesis is that Thr216 facilitates outward-directed transport more 

efficiently than Ile216 thereby reducing intracellular exposure time toward gemcitabine. 

This idea would be in agreement with the worse survival observed for patients with Thr216 

(SCHAUDINN 2013). The relationship between Ile216Thr and export kinetics has to be 

investigated in further experiments. 

 

 

5.3 Fields of Application for Gemcitabine Metabolites Determination 

by HPLC  
The self established HPLC method is suitable for precise separation, determination and 

quantification of gemcitabine and its metabolites (Figure 8). Possible fields of applications 

are investigations of molecular markers associated with impact on the transformation of 

gemcitabine metabolites. It might also be an option to compare intracellular amounts of 

gemcitabine metabolites in resistant and sensitive cell lines to identify possible sensitivity 

mechanisms by tracing back metabolic phenotypes to their genetic make-up. In order to 

apply this method the metabolites have to be extracted before. To achieve accurate results, 

the extracts have to be of a constant quality to identify small differences in metabolite 

variations.  

 

 

5.4 Confirmation of a GWAS Finding: WWOX rs11644322 
The positive confirmation of a GWAS finding (INNOCENTI et al. 2012) renders a 

potentially clinical implication. In other words, the referenced GWAS result becomes 

promising not before independently confirmed as now done. In general, GWAS require 

huge sample sizes so that an association can be regarded as statistically significant upon 

multiple testing correction. That was not the case for the WWOX rs11644322 

polymorphism in the referenced study with about only 300 patients. But even if these 



Discussion 

 
136 

 

statistical requirements are more or less met that does typically not guarantee 

reproducibility. A nice example for that is the association of the polymorphism IL17F 

rs763780 which was the reported study’s top hit and claimed as significant due to 

statistical considerations (INNOCENTI et al. 2012). However, in the cohorts available for my 

thesis we could not detect any relationship of rs763780 with outcome of pancreatic cancer. 

One reason for failure of reproducibility in this case might be due to sample stratifications 

possibly causing spurious associations. Indeed, the authors admitted loss of significance 

level if they correct for treatment arm and ethnic ancestry (INNOCENTI et al. 2012). The 

inherent problems with GWAS highlight the value of independent replication by other 

GWAS or by analyses restricted to the top hits of the initial GWAS. 

The clinical confirmation of WWOX rs11644322 in our available cohorts appeared 

particularly convincing as the effect of this polymorphism was not only evident in the 

relatively homogenous subgroup from Heidelberg (part of well-controlled clinical trial), 

but also, albeit to a weaker extent, in the combined retrospective set from Göttingen and 

Hamburg. Until now, there are no functional investigations for this SNP in literature. Due 

to its intronic location and the known function of WWOX as a tumor suppressor gene it was 

hypothesized that the variant allele of rs11644322 may reduce WWOX expression and 

thereby reducing its tumor-suppressive effects resulting in worse clinical outcome 

(INNOCENTI et al. 2012). I have now functionally addressed these ideas. 

The first assumption that rs11644322 due to its localization in the last, humongous intron 

with > 1 million bp might result in expression loss of the last exon did not prove. However, 

EMSA experiments indicated weakened binding of putatively SP1 in presence of the 

variant allele at rs11644322 suggesting expression-related effects for this polymorphism. 

Interestingly, the induction of WWOX as observed in most LCLs was mitigated by the 

variant allele of rs11644322, albeit having scarcely failed statistical significance. One 

should consider that in the experimental setting the LCLs were exposed to gemcitabine 

only for 24 h until RNA was harvested. In the more protracted clinical situation, it seems 

conceivable that the effect of rs11644322 becomes more prominent. The latter issue could 

be addressed by a clinical study. However, when analyzing cytotoxic effects of 

gemcitabine in LCLs, no consistent impact of rs11644322 was seen. Nevertheless, the 

reproducible clinical association in conjunction with the new suggested relation to 

gemcitabine (at least on the transcriptional level) renders this polymorphism a promising 

candidate. That appears as much more plausible as this SNP is pertinent to a gene with  
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important anti-apoptotic functions in oncological issues including pancreatic cancer 

(AQEILAN et al. 2007; BEDNAREK et al. 2001; KUROKI et al. 2004; NAKAYAMA et al. 2008; 

PAIGE et al. 2001) 

 

 

5.5 Genome-Wide Determinants of Gemcitabine Sensitivity 

5.5.1 RS6898780 as a New Putative Marker 
In LCLs a reproducible impact of a SNP, i.e. rs6898780, on cellular gemcitabine 

sensitivity was observed. The variant allele of rs6898780 conferred resistance toward 

gemcitabine both in terms of proliferation inhibition and reduction of the vital cell fraction. 

However, it has to be admitted that the level for statistical significance in the test set failed 

scarcely when adjusted for multiple testing. This formally necessitates another replication 

study. Nonetheless, at present this polymorphism is regarded as a promising candidate for 

gemcitabine sensitivity. This constitutes a new finding as there are so far no literature 

reports for this issue. Rs6898780 is located on chromosome 5 apart from a known gene or 

expressed transcript. When analyzing the surrounding sequence context a humongously 

extended genetic linkage disequilibrium (LD) comprising this SNP was detected. Precisely, 

rs6898780 is in high LD at r² > 0.5 with 144 genetic markers spanning about 110 kbp 

upstream and 100 kbp downstream of the index SNP. Interestingly, the region of the 

upstream LD comprises a locus encoding the validated long intergenic non-protein coding 

RNA 1021 (according to NCBI gene bank). Moreover, the 5'-ends of this RNA and that of 

the high LD block are identical suggesting potential selection events occurred in this 

region. No functional relevance of this RNA has been established yet. In view of this large 

number of genetic markers in high LD it is much conceivable that the causative variant 

with respect to gemcitabine sensitivity might not be rs6898780, but rather any of the other 

variants. 

 

5.5.2 Considerations about the Phenotypic Robustness 
In literature (LI et al. 2008), the effects on cellular vitality and on proliferation are common 

parameters for sensitivity measurements towards nucleoside analogues. The major 

challenge to obtain reasonable results is to control for the intra-cell biological variability,  
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e.g. changes in the basal proliferation rate very probably affect sensitivity toward an 

antimetabolite like gemcitabine. Besides that, technical issues like the accuracy of the 

measurements have to be considered. 

To control for the biological variability, a subset of 16 LCLs was subjected to the entire 

experimental procedure twice. That revealed substantial inter-cell reproducibility (Pearson 

correlation coefficient r = 0.8), a prerequisite for the purpose to test for associations with 

the invariant genotypes. 

In our study, the accuracy of measurements by flow cytometry turned out to be very 

accurate as confirmed by comparing the vitality and proliferation data in samples prepared 

in double. However, when evaluating the fraction of living cells it was not possible in all 

cases to distinguish precisely between dead cells and cell debris. As the fraction of living 

cells was referred to the total number of counted events, it was affected by varying 

amounts of cell debris. Thus, in the control samples without gemcitabine a broad range 

from about 30% to 80% of living cells was observed. It was estimated that initial 

deviations in the fraction of vital cells might affect the gemcitabine dose response curves 

of LCLs. However, no correlation with the EC50 value for cytotoxicity was seen in the 

final analysis. 

The determination of the proliferation rate revealed consistently identical data between the 

samples prepared in double for each cell line, which indicates a very precise measurement 

method. The observation was that in some cases the initial staining of CFSE was varying 

between cell lines. It has to be considered that different initial CFSE loads might affect 

cellular functions as cell cycle process according to the supplier. Since substantial inter-

day reproducibility for a subset of LCLs was observed, the inaccuracy was considered to 

be tolerable. 

 

 

5.6 General Considerations about GWAS 
In principle, GWAS is an extremely powerful approach to identify genetic markers in the 

entire genome. It is especially attractive since no priori knowledge is needed, which makes 

the analysis much more open-minded and allows the identification of genes so far 

unrelated to the considered phenotype (HIRSCHHORN and DALY 2005).  

However, genome-wide association studies face some limitations. The most important 

issue in GWAS are problems adherent to multiple testing. In addition, this approach is 
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constraint by the fact that mostly haplotypes related to a phenotype are identified and low 

frequent markers often stay undetected. In addition, all correlated SNPs in a respective 

haplotype have to be further evaluated since they all come into consideration for 

functionality. Noteworthy, the GWAS results just suggest associations with certain 

phenotypes, but do not reveal a direct functional link. All these limitations for clinical 

GWAS also hold true for functional GWAS, albeit herein the phenotypes could, in most 

cases, be determined more precisely. 

In the recent years, whole genome sequencing has steadily become cheaper, which 

enlarges the data for GWAS. In the future, it is estimated that this method might be 

affordable for routine clinical applications. In my thesis, I had access to LCLs which are 

part of a large resequencing project. Thus, the used genotype data represent almost 

completely the genetic variability in the considered ethnicity except for rare variants for 

which the sequencing coverage is not yet sufficient. Consequently, the typical detection 

failure of SNPs which are not tagged by a haplotype in array-based GWAS is no more an 

issue for complete resequencing data. However, the higher marker density for the latter 

parallels with an increase in multiple testing. 
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6 Conclusion 
In my thesis, I investigated the molecular mechanisms of two SNPs in the equilibrative 

nucleoside transporter (ENT1), which were recently identified in our institute to affect 

overall survival of patients treated with a gemcitabine-based therapy for pancreatic 

cancer. The first SNP (rs1057985) is located in a promoter region of ENT1 and is 

hypothesized to modulate ENT1 transcription. Gemcitabine-induced ENT1 transcription 

was more pronounced in presence of the variant compared to the wild type allele of 

rs1057985. Electrophoretic mobility shift assay (EMSA) demonstrated protein binding 

only for the wild type allele of rs507964, the only polymorphism in perfect linkage 

disequilibrium with rs1057985 in Caucasians. EMSA experiments further suggested a 

member of the Sp-family to be the interacting protein. The mechanistic idea is that the 

Sp-family protein binds only in presence of the wild type allele thereby decreasing 

ENT1 transcription resulting in reduced cellular uptake of gemcitabine accompanied by 

worse therapeutic efficacy. Identification of the actual SP-family protein and its detailed 

functional cross-talk with the rs507964 should further clarify this issue. 

The second ENT1 SNP rs45573936 derived from the association study represents an 

amino acid exchange (Ile216Thr). The suggested poor outcome for Thr216 was 

supposed to reduce gemcitabine uptake. Transport experiments with radio-labeled 

gemcitabine did not show uptake disparities between Ile216 and Thr216. Alternatively, 

this polymorphism might affect the efflux since ENT1 acts bidirectional what has to be 

further investigated. 

In addition, picking up currently published GWAS data in relation to the outcome of 

gemcitabine-treated patients with pancreatic cancer the relevance of the polymorphism 

WWOX rs11644322 was confirmed. Expression induction of the tumor suppressor gene 

WWOX by gemcitabine was mitigated by the variant allele of rs11644322 which was 

associated with worse prognosis. In EMSA, this allele exhibited attenuated protein 

binding, putatively again belonging to the SP-family. If the hypothesized effects of this 

polymorphism on mRNA transcription translates into protein remains to be elucidated. 

An own functional GWAS for gemcitabine sensitivity revealed reproducibly enhanced 

resistance toward gemcitabine in presence of the variant allele of rs6898780. As this 

polymorphism and its genetic environment have not been functionally explored further 

studies may elicit new promising insights in the context of gemcitabine sensitivity and 

possibly pancreatic cancer.  
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Appendix  
 
Table 17: Transcription factor binding prediction on hENT Promotr-SNP rs507964 

1. V$P300_01 2. V$MZF1_02 3. V$CDP_01 4. V$AP2_Q6 
5. V$SP1_Q6 6. V$EGR1_01 7. V$NGFIC_01 8. V$EGR3_01 
9. V$EGR2_01 10. V$GC_01 11. V$MSX1_01 12. V$HOXA3_01 
13. V$ZIC2_01 14. V$AP2REP_01 15. V$HOXA4_Q2 16. V$MAZ_Q6 
17. V$ETF_Q6 18. V$ZF5_01 19. V$EGR_Q6 20. V$SP1_Q6_01 
21. V$SP1_Q4_01 22. V$CHCH_01 23. V$LRF_Q2 24. V$RBPJK_01 
25. V$KID3_01 26. V$ELK1_03 27. V$ELK1_04 28. V$CKROX_Q2 
29. V$SREBP2_Q6 30. V$MAFB_01 31. V$LHX5_01 32. V$NKX25_03 
33. V$NKX23_01 34. V$GLI3_Q5_01 35. V$KLF15_Q2 36. V$ING4_01 
37. V$AML2_01 38. V$ZBP89_Q4 39. V$GKLF_Q4 40. V$FKLF_Q5 
41. V$EGR1_Q6 42. V$EGR1_02 43. V$WT1_Q6_01 44. V$EGR2_Q6 
45. V$NFE4_Q5 46. V$ZFP740_03 47. V$ZIC1_04 48. V$EGR1_04 
49. V$GCM1_04 50. V$SMAD4_04 51. V$SP4_04 52. V$TCFAP2C_04 

 

 
Table 18: Lymphoblastoid cell lines from Coriell Cell Repositories (http://ccr.coriell.org) 

GM07000 GM11831 GM12892 GM12347 HG00096 HG00130 HG00236 
GM11839 GM11832 GM06984 GM12348 HG00097 HG00131 HG00237 
GM11840 GM11881 GM06986 GM12383 HG00099 HG00133 HG00238 
GM11993 GM11882 GM06989 GM12399 HG00100 HG00134 HG00239 
GM12003 GM11992 GM07037 GM12400 HG00101 HG00135 HG00240 
GM12005 GM11994 GM07051 GM12413 HG00102 HG00136 HG00242 
GM12056 GM11995 GM07346 GM12414 HG00103 HG00137 HG00243 
GM12154 GM12004 GM07347 GM12489 HG00104 HG00138 HG00244 
GM12716 GM12006 GM11829 GM12546 HG00106 HG00139 HG00245 
GM12750 GM12043 GM11843 GM12716 HG00108 HG00140 HG00246 
GM12760 GM12044 GM11892 GM12718 HG00109 HG00141 HG00247 
GM12762 GM12057 GM11893 GM12749 HG00110 HG00142 HG00249 
GM12763 GM12144 GM11894 GM12775 HG00111 HG00143 HG00250 
GM12812 GM12145 GM11918 GM12776 HG00112 HG00146 HG00251 
GM12814 GM12146 GM11919 GM12777 HG00113 HG00148 HG00252 
GM12873 GM12155 GM11920 GM12778 HG00114 HG00149 HG00253 
GM12875 GM12156 GM11930 GM12828 HG00116 HG00150 HG00254 
GM10854 GM12234 GM11931 GM12830 HG00117 HG00151 HG00255 
GM10859 GM12239 GM11932 GM12889 HG00118 HG00152 HG00256 
GM06985 GM12248 GM11933 GM12890 HG00119 HG00154 HG00257 
GM06993 GM12249 GM12045 GM12282 HG00120 HG00155 HG00258 
GM06994 GM12264 GM12046 GM12283 HG00121 HG00156 HG00259 
GM07022 GM12717 GM12058 GM12286 HG00122 HG00158 HG00260 
GM07034 GM12751 GM12272 GM12748 HG00123 HG00159 HG00261 
GM07055 GM12761 GM12273 GM12827 HG00124 HG00160 HG00262 
GM07056 GM12813 GM12275 GM12829 HG00125 HG00231 HG00263 
GM07345 GM12815 GM12287 GM12842 HG00126 HG00232 HG00264 
GM07357 GM12872 GM12340 GM12843 HG00127 HG00233 HG00265 
GM11829 GM12874 GM12341 GM12340 HG00128 HG00234 HG01334 
GM11830 GM12891 GM12342 GM12342 HG00129 HG00235  
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Coding sequence of ENT1 (SLC29A1) used for transfection  
 

The hENT1 clone was obtained from SourceBioscience (Nottingham UK ; Clone 

3051441, IRAUp969A097D; http://www.lifesciences.sourcebioscience.com/ 

genomecube?kw=3051441)  
 

Sequence: 
3'CTGCAGCGAGAGCGCGCGGATCTCAGCGCGGGAGCAGTGCTTCTGCGGCAGGCCCCTGAGGGAGGGAG

CTGTCAGCCAGGGAAAACCGAGAACACCATCACCATGACAACCAGTCACCAGCCTCAGGACAGATACAAA

GCTGTCTGGCTTATCTTCTTCATGCTGGGTCTGGGAACGCTGCTCCCGTGGAATTTTTTCATGACGGCCA

CTCAGTATTTCACAAACCGCCTGGACATGTCCCAGAATGTGTCCTTGGTCACTGCTGAACTGAGCAAGGA

CGCCCAGGCGTCAGCCGCCCCTGCAGCACCCTTGCCTGAGCGGAACTCTCTCAGTGCCATCTTCAACAAT

GTCATGACCCTATGTGCCATGCTGCCCCTGCTGTTATTCACCTACCTCAACTCCTTCCTGCATCAGAGGA

TCCCCCAGTCCGTACGGATCCTGGGCAGCCTGGTGGCCATCCTGCTGGTGTTTCTGATCACTGCCATCCT

GGTGAAGGTGCAGCTGGATGCTCTGCCCTTCTTTGTCATCACCATGATCAAGATCGTGCTCATTAATTCA

TTTGGTGCCATCCTGCAGGGCAGCCTGTTTGGTCTGGCTGGCCTTCTGCCTGCCAGCTACACGGCCCCCA

TCATGAGTGGCCAGGGCCTAGCAGGCTTCTTTGCCTCCGTGGCCATGATCTGCGCTATTGCCAGTGGCTC

GGAGCTATCAGAAAGTGCCTTCGGCTACTTTATCACAGCCTGTGCTGTTATCATTTTGACCATCATCTGT

TACCTGGGCCTGCCCCGCCTGGAATTCTACCGCTACTACCAGCAGCTCAAGCTTGAAGGACCCGGGGAGC

AGGAGACCAAGTTGGACCTCATTAGCAAAGGAGAGGAGCCAAGAGCAGGCAAAGAGGAATCTGGAGTTTC

AGTCTCCAACTCTCAGCCCACCAATGAAAGCCACTCTATCAAAGCCATCCTGAAAAATATCTCAGTCCTG

GCTTTCTCTGTCTGCTTCATCTTCACTATCACCATTGGGATGTTTCCAGCCGTGACTGTTGAGGTCAAGT

CCAGCATCGCAGGCAGCAGCACCTGGGAACGTTACTTCATTCCTGTGTCCTGTTTCTTGACTTTCAATAT

CTTTGACTGGTTGGGCCGGAGCCTCACAGCTGTATTCATGTGGCCTGGGAAGGACAGCCGCTGGCTGCCA

AGCCTGGTGCTGGCCCGGCTGGTGTTTGTGCCACTGCTGCTGCTGTGCAACATTAAGCCCCGCCGCTACC

TGACTGTGGTCTTCGAGCACGATGCCTGGTTCATCTTCTTCATGGCTGCCTTTGCCTTCTCCAACGGCTA

CCTCGCCAGCCTCTGCATGTGCTTCGGGCCCAAGAAAGTGAAGCCAGCTGAGGCAGAGACCGCAGGAGCC

ATCATGGCCTTCTTCCTGTGTCTGGGTCTGGCACTGGGGGCTGTTTTCTCCTTCCTGTTCCGGGCAATTG

TGTGACAAAGGATGGACAGAAGGACTGCCTGCCTCCCTCCCTGTCTGCCTCCTGCCCCTTCCTTCTGCCA

GGGGTGATCCTGAGTGGTCTGGCGGTTTTTTCTTCTAACTGACTTCTGCTTTCCACGGCGTGTGCTGGGC

CCGGATCTCCAGGCCCTGGGGAGGGAGCCTCTGGACGGACAGTGGGGACATTGTGGGTTTGGGGCTCAGA

GTCGAGGGACGGGGTGTAGCCTCGGCATTTGCTTGAGTTTCTCCACTCTTGGCTCTGACTGATCCCTGCT

TGTGCAGGCCAGTGGAGGCTCTTGGGCTTGGAGAACACGTGTGTCTCTGTGTATGTGTCTGTGTGTCTGC

GTCCGTGTCTGTCAGACTGTCTGCCTGTCCTGGGGTGGCTAGGAGCTGGGTCTGACCGTTGTATGGTTTG

ACCTGATATACTCCATTCTCCCCTGCGCCTCCTCCTCTGTGTTCTCTCCATGTCCCCCTCCCAACTCCCC

ATGCCCAGTTCTTACCCATCATGCACCCTGTACAGTTGCCACGTTACTGCCTTTTTTAAAAATATATTTG

ACAGAAACCAGGTGCCTTCAGAGGCTCTCTGATTTAAATAAACCTTTCTTGTTTTTTTAAAAAAAAAAAA

AAAAAAAAA'5 
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Cloned Region Upstream of Transcription Start Site (TSS) of ENT1  

-1945/+141 According to (FUKUCHI et al. 2010) 
 

Primer 
ENT1_Prom_f    AGAGTGGAAGCTTGCCTGGAGAGGAGGGAGAGGTTA 

ENT1_Prom_r     CCCCGCCCCGGGCACCTGCTGAGACTTTGGAGTGAGCATC 

 

Promoter Fragment Ahead of hENT1 Long Transcripts (2122bp) 
3'AGAGTGGAAGCTTGCCTGGAGAGGAGGGAGAGGTTAGGCCCCCAAAAGTGAGGCCACAAGTCCTGGCA

GCAGCTGTATCCACAAAATGCTTTCTTTTGGAGTAGGATAATCCTGGCACCAGCACTGACCGAAGCCTGC

CCAGTGGACAGAAGATATAGTGAGGGTTGTGCATGAGAGGGATCTGCCACAGACATGCCTCTCCACTCCC

AACAGAAATGTCTTTCTGGAAGAATGCCTTGCATCTAGCACAAAACTGATTATTGCCCCTCTGTCCTCCA

GCAGTTCCTCCCAAAGACCACTCCTAATCACCTCTGGCCTCAGGCGGGAGGGGAACTAACACCCACCCAC

CCCTGCCCTCCCTGCAAATGGGAACATCAAGGTTCCCAGTGCTTAACTGAGGGACAAGTGACAATTTAGC

AGAGAGGCAAGATTTGAATCCAGACTGTCTTCCAGACTCAGGACCTACCTTAAAATAATATCTGAGTTGC

TTATGGAGGCAGACCTGCCTGCAAAGCCCAGCACTCAGCAAGTGCTCAATAAATATTTGATTTGAATTCT

TTCCATGGCTTTGAAAGTCTAATCACCCAGACTGCTGCTCTGCAAAACAGTTTAACCTGGCCTGGCAGTT

GGTGGGGGTGGGGGAGAGGAGAGATGGACAATTGTACAAGGGTTTATTTTGCTACCTATTCCATCGTGGT

TTCAGTCCTCACAGCCTGGAAGTTGTTTCCCCCTGCTAAGTTTCGGTCAGTATGTCACACTGTGACCCAG

AAATGGCTTGAGTCCATCTAGGAGGAAGTTTGCCTGGCTAGCTCACAGTAGGGAGGAAAATATCCTCCAG

CGAGTTTGAGGACTTCTCAGCTAGTGGTGGTGGGAAGAGGGGTGATACGTTTGCTAAGAGACTGGGTGGG

AGGCCACCCAGGGAGGCAGTGCAGAAATGCATCCCCTTGAGGGTCATCCCACCCTAGAAGAGACTAGGGT

TGGGTGAGTTGCCTTAAGAACTGACTTCATCATTTCCTCCTCCCTAGTGGGAGGCCCCTCAGGGGTCAAA

TAAGAGCCTCAGAAGAGTCAACATGCTTAAGGAAACACAGTTAGAAAGTGCAGTCTGGGCAGGGCGCGGT

GGCTCACGCCTGTAATCTCAGCACTTTGGGAGCAGAGGCAGGAGGATCACCTGAGGTCGGGAGACCAGCC

TGACCAACATGGAGAAACCCCGTCTCTACTAAAAATACAAAATTAGCCGGGCGTGGTGGCGTATGCCTGT

AATCCCAGCTCCTACGGAGGCTGAGGCAGGAGAATCGCTTGAATCCGGGAGGCGGAGGTTGCAGTGAGCC

GAGATCGCGCCATTGCTCTCCAGCCTGGACAACAAGAGCGAAACTCCGTCTTAAAAAAAAAAAAAAAAAG

AGTTAGACACATTTGCATCCCAGCCTCCGGATAATTTGCTTATTGTTCCCAGGCAATAATCCTCTCTCTC

TGGGTGACTCTTGGGCTCTATCTAGGTTCAGACGAGGACAGTGAGGAGTACAGGATCCAATTGGGATTCC

AGTCCCCTCCCCACACCCGTCAGAAGGCTTGGTTGGGAAAGAAGTGAGCCCCAAGCTATCCGCCCCACCC

CCAGCCCTGCGGGGCTTTCTGCCTGCCACACGCCGTCCCTGCTCACTACCCCATCGGTTTCCTTCGGGAG

TCTTCAAAGCCAGTGCACGTGCTCCCAGGTCTCAGGGAGGCGACCCAGGGGGAGGGGCAGAGAGAAGGGG

GTCCGAGCCCTTGGGCCCCTAACCCCGTCCCTTTCCGGAGCCTCGGGTGCCCAAAGGCGCCGGCCGCCAG

TCCCAGGCCCGAAGGGCCCCTCCCACTGAGTCGGCTCTGGTCTCCCCGCCCCTGAGCCGCGAGGACTGGA

CGCAGCTGGCTGCGGAGCTCTGGGCGGGCGCTGGGGTCGCCTGTTGCAGCCTCTCTTCCGCCCGGCGGCC

CACACCGGTCAGGCCCGGCGCGGGCTGCGCTCTCCAGCTGTGGCTATGGCCCCAGCCCCGAGATGAGGAG

GGAGAGAACTAGGGGCCCGCAGGCCTGGGAATTTCCGTCCCCCACCAAGTCCGGATGCTCACTCCAAAGT

CTCAGCAGGTGCCCGGGGCGGG'5 
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