
 
 

 

 

 

 

Habitat ecology and long-term development of 

the macrophyte vegetation of north-west German 

streams and rivers since the 1950s  

 

 

 

 

 

 

 

Dissertation zur Erlangung des Doktorgrades der 

Mathematisch-Naturwissenschaftlichen Fakultäten der 

Georg-August-Universität Göttingen 

 

 

 

 

 

vorgelegt von 

Kristina Steffen 

aus Eckernförde 

 

 

 

 

 

Göttingen, 2013 



2 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Referent: Prof. Dr. Christoph Leuschner 

Korreferent: Prof. Dr. Markus Hauck 

Tag der mündlichen Prüfung: 28.5.2013 

 

 



3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

„Krickerode war rechtskräftig verurteilt worden. Das 

Erkenntnis untersagt der großen Provinzfabrik bei hundert 

Mark Strafe für jeden Kalendertag, das Mühlwasser von 

Pfisters Mühle durch ihre Abwässer zu verunreinigen und 

dadurch einen das Maß des Erträglichen übersteigenden 

übeln Geruch in der Turbinenstube und den sonstigen 

Hausräumen zu erzeugen, sowie das Mühlenwerk mit einer 

den Betrieb hindernden, schleimigen, schlingpflanzenartigen 

Masse in gewissen Monaten des Jahres zu überziehen.“ 

 

(Wilhelm Raabe in „Pfisters Mühle“, 1884) 
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Summary 

This PhD thesis deals with the habitat characterization and the long-term development 

over 60 years of the macrophyte vegetation of north-west German running waters in order to 

contribute to the knowledge about the ecology of aquatic macrophytes and make use of them 

as bioindicators. Seventy streams and rivers in the regions Ems-Hunte moraine, Lüneburg 

Heath, Aller lowlands, northern Harz foothills, base of the Weser-Leine uplands and eastern 

Holstein were investigated, the emphasis though is on the cross-regional scale. From the 

analysis of the composition and distribution of the macrophyte communities in relation to river 

size and physical and chemical water and sediment properties could be concluded that water 

course depth and current velocity are the most decisive variables for the community 

composition nowadays, followed by the content of plant-available phosphorus in the 

sediment. However, it is possible that several decades ago, before the strong intensification 

of agricultural land-use taking place in the study area since the 1950s, when more 

pronounced gradients in the nutrient concentrations of running waters existed, chemical 

variables had a stronger influence on the macrophyte occurrences than today. 

By means of a semi-permanent plot approach, the vegetation change between the 1950s 

and 2010 was investigated, revealing a dramatic decline in species diversity (the overall 

species pool declined by 27.5 % from 51 to 37 hydrophytic species, plot-level richness by 

19.4 % from 4.7 to 3.8 species per relevé), accompanied by a profound shift in community 

composition from the predominance of potamid species to the predominance of lemnid 

species. Oligotraphent species such as Potamogeton gramineus and P. polygonifolius died 

out in the study sites and the mesotraphent species Myriophyllum alterniflorum and 

Ranunculus peltatus declined in their frequency of occurrence by more than 50 %, whereas 

the eutraphent species Myriophyllum spicatum and Spirodela polyrhiza increased by more 

than 100 %. In addition, a change in the species traits leaf longevity and specific leaf area 

(SLA) was found: in the historical macrophyte communities from the 1950s, evergreen 

species and species with leaves being thin or rich in air-filled lacunae were abundant, while 

the recent vegetation from 2010 was characterized by summergreen species with a robust 

structure (low SLA). On the regional scale, the changes in species composition were most 

profound in the Ems-Hunte moraine country, where drainage of fens and bogs preceded 

highly intensive land-use especially since the embankment of the Dümmer lake (1953), and 

less pronounced in the Lüneburg Heath region, where lowland water courses with a natural 

structure can still be found. 

On the syntaxonomic level, the application of two different phytosociological classification 

systems revealed deep changes in the macrophyte community structure over six decades. 

All relevés from vegetated reaches could be assigned to one of the classes 
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Potamogetonetea, Lemnetea, Phragmitetea or Fontinalietea. While Batrachietalia/Batrachion 

and Potamogetonetalia/Potamogetonion stands strongly decreased, Nymphaeetalia 

/Nymphaeion communities gained importance. The observed increase in phytosociologically 

weakly characterized stands (‘residual communities’) implies losses of highly specialized 

species. Average similarity was significantly higher in the recent (SBC=0.25) than in the 

historical (0.22) assemblages, revealing a homogenization of the macrophyte vegetation of 

north-west German water courses. 

The most likely causes of the decline in the macrophyte species and community richness 

and diversity are accelerated eutrophication processes and river regulation measures, that 

caused uniformization of the running water habitats in the intensively managed cultural 

landscape, and regular disturbance. Ongoing efforts to reduce the nutrient loads, as well as 

the enhancement of the habitat heterogeneity by renaturalizing the structure of the water 

courses and ecologically compatible weed-cutting techniques and dates are necessary to 

halt and reverse the diversity decline in the macrophyte vegetation of north-west German 

streams and rivers. Diverse vegetation stands are an essential element in running water 

ecosystems, whose functionality is relevant, not least for human welfare. 
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Zusammenfassung 

Diese Arbeit behandelt die Charakterisierung der Habitate und die Langzeit-Entwicklung 

über sechs Jahrzehnte der Makrophytenvegetation nordwestdeutscher Bäche und Flüsse, 

um zum Wissen über die Ökologie aquatischer Makrophyten beizutragen und sie als 

Bioindikatoren zu nutzen. Siebzig Bäche und Flüsse der Regionen Ems-Hunte Geest, 

Lüneburger Heide, Allerflachland, nördliches Harzvorland, Fuß des Weser-Leine Berglandes 

und ostholsteinisches Hügelland sind Bestandteil der Studie, wobei der Schwerpunkt auf der 

überregionalen Betrachtungsebene liegt. Aus der Analyse der Zusammensetzung und 

Verbreitung der Makrophytengesellschaften im Zusammenhang mit Gewässergröße und 

physikalischen und chemischen Wasser- und Sedimenteigenschaften schlossen wir, dass 

Gewässertiefe und Fließgeschwindigkeit von den gemessenen Variablen den größten 

Einfluss auf die heutige Gesellschaftszusammensetzung haben, gefolgt vom Gehalt 

pflanzenverfügbaren Phosphors im Sediment. Es ist jedoch nicht auszuschließen, dass vor 

der im Untersuchungsgebiet seit den 1950ern stattfindenden, starken Intensivierung der 

landwirtschaftlichen Nutzung, als noch ausgeprägtere Gradienten bei den Nährstoffgehalten 

der Fließgewässer existiert haben, chemische Größen einen stärkeren Einfluss auf die 

Makrophytenvorkommen hatten als heute. 

Mittels semi-permanenter Dauerflächen haben wir den Vegetationswandel zwischen den 

1950ern und 2010 untersucht und einen dramatischen Rückgang der Artenvielfalt festgestellt 

(der Gesamtartenpool sank um 27.5 % von 51 auf 37 Hydrophytenarten, die Artenzahl pro 

Aufnahmefläche um 19.4 % von 4.7 auf 3.8 Arten), begleitet von einem umfassenden 

Bestandsumbau vom Vorherrschen wurzelnder (v.a. potamider) Arten zur Dominanz 

freischwimmender (v.a. lemnider) Arten. Oligotraphente Arten wie Potamogeton gramineus 

und P. polygonifolius sind in den Probeflächen ausgestorben und die mesotraphenten Arten 

Myriophyllum alterniflorum und Ranunculus peltatus in ihrer Auftretenshäufigkeit um mehr als 

50 % zurückgegangen, während die eutraphenten Arten Myriophyllum spicatum und 

Spirodela polyrhiza um mehr als 100 % zugenommen haben. In den Artmerkmalen 

Blattausdauer und spezifische Blattfläche (SLA) wurden Änderungen festgestellt: In den 

historischen Makrophytenbeständen der 1950er waren immergrüne Arten und Arten mit 

dünnen Blättern oder solchen mit viel arenchymatischem Gewebe häufig (große SLA), 

während die rezenten Bestände von 2010 durch sommergrüne Arten und solche mit robuster 

Struktur (geringe SLA) gekennzeichnet sind. Die Veränderungen in der Arten-

zusammensetzung waren am tiefgreifendsten in der Region Ems-Hunte Geest, wo 

weitläufige Niedermoore durch Entwässerung insbesondere seit der Eindeichung des 

Dümmer Sees (1953) intensiv bewirtschaftetem Agrarland gewichen sind, und weniger 
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ausgeprägt in der Lüneburger Heide, einer der wenigen Tieflandsregionen Deutschlands, in 

der noch Fließgewässer mit kaum durch den Menschen veränderter Struktur zu finden sind. 

Auf der syntaxonomischen Ebene zeigte die Anwendung zweier unterschiedlicher 

pflanzensoziologischer Klassifikationssysteme tiefe Veränderungen in der Struktur der 

Makrophytengesellschaften über sechs Jahrzehnte auf. Alle dokumentierten Vegetations-

bestände konnten einer der Klassen Potamogetonetea, Lemnetea, Phragmitetea oder 

Fontinalietea zugeordnet werden. Während Batrachietalia/Batrachion und Potamogetonetalia 

/Potamogetonion-Bestände stark zurückgegangen sind, haben Nymphaeetalia/Nymphaeion-

Gesellschaften zugenommen. Die beobachtete Zunahme pflanzensoziologisch schwach 

charakterisierter Bestände (Fragmentgesellschaften) deutet auf Verluste bei den hoch-

spezialisierten Arten hin. Im Schnitt waren sich die rezenten Vegetationsbestände signifikant 

ähnlicher (SBC=0.25) als die historischen (0.22), was eine Homogenisierung der 

Fließgewässervegetation Nordwestdeutschlands offenbart. 

Beschleunigte Eutrophierungsprozesse in den Gewässern und wasserbauliche 

Maßnahmen in der intensiv genutzten Kulturlandschaft haben zu einer Uniformierung der 

Fließgewässerhabitate geführt, worin neben häufigen Störereignissen die Hauptursache für 

die Verluste in Artenreichtum und Vielfalt der Makrophytenvegetation gesehen werden kann. 

Weitere Anstrengungen zur Reduzierung der Nährstofffrachten, sowie eine Erhöhung der 

Habitatheterogenität durch strukturverbessernde Renaturierungsmaßnahmen und ökologisch 

verträgliche Unterhaltungstechniken und -zeitpunkte sind notwendig, um den Diversitäts-

rückgang in der Makrophytenvegetation nordwestdeutscher Bäche und Flüsse aufzuhalten 

und umzukehren. Eine artenreiche Vegetation ist ein wichtiger Baustein in Fließgewässer-

Ökosystemen, deren Funktionsfähigkeit nicht zuletzt auch für das menschliche Wohlergehen 

von Bedeutung ist. 
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Brief history of running water vegetation research 

A macrophyte is an “aquatic photosynthetic organism, large enough to see with the naked 

eye, growing permanently or periodically submerged below, floating on, or up through the 

water surface” (Chambers et al. 2008). The earliest studies on freshwater macrophytes deal 

for example with aspects of taxonomy, toxicity, life history and leaf anatomy (Pulteney 1800, 

Palisot de Beauvois 1816, Kützing 1832, Tuckerman 1849, Sauvageau 1891). Limnology 

[Greek: λίμνη (‘limnh’) = lake], the scientific study of freshwater ecosystems, is a 

specialization of ecology with the first textbook by Forel (1901) being available at the 

beginning of the twentieth century. Since the foundation of the International Society of 

Limnology (Societas Internationalis Limnologiae) in 1922, running water research is explicitly 

incorporated in this field (Schwoerbel 1993). The first monographic studies on running water 

macrophyte vegetation as related to different habitat qualities originate from Central Europe 

(Tansley 1911, Koch 1926, Butcher 1927, Horvatić 1931, Roll 1939, Steusloff 1939), North 

America (Muenscher 1931, Thomson 1944, Moyle 1945, Jones 1955) and South Africa 

(Weintroub 1933), bearing the seeds for the application of aquatic plants as bioindicators. 

With the inspection of the vegetation of tropical rivers (Lebrun 1947, Cook 1968) also the 

observed spread of tropical aquatic weeds as for example Eichhornia crassipes came into 

focus (Bard 1965, Bennett 1967). The classification system of aquatic plant taxa into life form 

(e.g. pleustophytic or rhizophytic) and growth form types (e.g. ceratophyllid, nymphaeid or 

batrachid) was basically developed by Glück (1924), Luther (1949), Den Hartog & Segal 

(1964) and Mäkirinta (1978). By now, taxonomical questions in some genera as for example 

Potamogeton (Wiegleb & Kaplan 1998, Preston 1995), Callitriche (Schotsmann 1967, Dersch 

1987, Lansdown 2006) and Ranunculus (Cook 1966, Wiegleb & Herr 1983) still require 

clarification, possibly by using a genetic approach (Kaplan & Štěpánek 2003, Bradley et al. 

2011, Telford et al. 2011). 

 

Evolution and physiological characteristics of aquatic macrophytes 

The terrestrial higher plants evolved in the Ordovician period (c. 450 million years ago) 

from the Characeae being a family of complex structured Chlorophyta (green algae) with a 

stem and lateral branches (Bresinsky et al. 2008). The evolution of aquatic angiosperms 

probably emanated from terrestrial angiosperms involving processes of reduction and loss 

with regard to more complex ancestors (Arber 1920, Les et al. 1997). The adaptation of 

terrestrial plants to the life in the water is thought to have taken place independently many 

times, because despite the low proportion of higher plant species being macrophytic (2 %), 

this group is very heterogeneous, particularly with regard to reproduction strategies and 

growth forms, hinting at individual evolutionary lines (Philbrick & Les 1996, Cook 1999). 
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Submerged plants show a variety of adaptations to the life under water: leaves, shoots 

and rhizomes are typically rich in gas-filled lacunae causing buoyancy and facilitating oxygen 

and carbon dioxide transport within the plants (Sculthorpe 1967, Sand-Jensen & Prahl 1982). 

Submerged leaves have only a thin cuticle with a water permeability about three times higher 

than that of surfaces from emergent leaves (Schönherr 1976), allowing effective nutrient 

uptake (Sand-Jensen et al. 1992). Early studies attributed anchoring in the sediment as the 

main function to the roots of hydrophytes (Brown 1913, Sutcliffe 1962), but their roots also 

play a significant role in nutrient uptake (Denny 1972, Chambers et al. 1989). Defense 

strategies of macrophytes include the translocation of nutrients and shortening of the growth 

period as observed for Potamogeton perfoliatus under grazing pressure (Miler & Straile 

2010). For Stratiotes aloides the allelopathic inhibition of algal growth has been observed 

(Mulderij et al. 2005) and Elodea nuttallii is capable of performing chemical defense against 

herbivorous insects (Erhard et al. 2007). 

Aquatic plants except for bryophytes have the ability to use carbon not only from carbon 

dioxide, of which the uptake is a diffusive process, but also from bicarbonate being actively 

transported through the cell membrane (Madsen 1993). Depending on the pH of the water, 

inorganic carbon is predominantly present in the form of carbon dioxide (at 0 °C: pH <6.5), 

bicarbonate (pH 6.5–10) or carbonate (pH >10) (Gessner 1959). Another specific feature, 

though only of a few macrophyte species, is the capability to perform Crassulacean acid 

metabolism (CAM) being a photosynthesis mechanism involving nighttime fixation of carbon 

in the form of malate acid for decarboxylation at daytime. The CAM occurs in terrestrial 

plants adapted to aridity and in aquatic plants, like Isoëtes lacustris or Litorella uniflora, 

adapted to carbon limitation (Keeley 1998). 

 

Ecological functions of river macrophytes 

Macrophytes increase the diversity of ecological niches by providing hiding place, feeding 

habitat and spawning ground or serving as food for fish (Petr 2000, Valley et al. 2004), 

invertebrates (Berg 1949, Rooke 1986, Brusven et al. 1990, Newman 1991) and waterfowl 

(Søndergaard et al.1998). An example for an indirect positive effect of aquatic rhizophytes in 

running waters for animals depending on the hyporheic interstitial - like the brown trout being 

the host fish of the freshwater perl mussel - is the reduction of the load of fine particles in the 

water column. Due to erosion, caused for example by hydraulic engineering or coming from 

agricultural land, high amounts of suspended matter can regularly be found in lowland rivers, 

silting the interstitial (Altmüller & Dettmer 1996). As macrophytes reduce the current velocity 

within the vegetation patches, they cause sedimentation and act as “sand filters” (Sand-

Jensen 1998). They also prevent erosion from the banks by fixing the sediment with their 

roots. Macrophytes contribute to the “self-purification” of water bodies directly by uptake of 
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nutrients and oxygenation of the water and the sediment, but also indirectly by building the 

substrate for epiphytic algae that multiply the same effects (Engelhardt & Ritchie 2001, Dhote 

& Dixit 2009). 

 

Practical applications of aquatic macrophytes 

An application of aquatic macrophytes is the use as bioindicators. Although the knowledge 

about the aut- and synecological tolerance ranges of macrophyte species or communities 

against specific factors is still insufficient (Lansdown & Bosanquet 2010), the sensitiveness of 

macrophytes to changes in environmental conditions as for example eutrophication and 

pollution has been verified by means of field (Kohler et al. 1974, Kutscher 1984, O’Hare et al. 

2010) and experimental studies (Grube 1975, Glänzer et al. 1977, Geurts et al. 2009). In the 

European Water Framework Directive (European Union 2000) macrophytes are used as one 

of five biological components for the assessment of the ecological quality of water bodies. 

Other applications of macrophytes include the use of fast growing macrophytes like 

Lemna minor, Spirodela polyrhiza or Salvinia minima for phytoremediation purposes like 

organic wastewater treatment (Bergmann et al. 2000, Körner et al. 2003, Olguín et al. 2007). 

The gained protein-rich phytomass can be harvested and used as animal food or for the 

production of fuel ethanol (Culley & Epps 1973, Cheng & Stomp 2009). Lemna minor is also 

frequently used to test chemicals for environmental toxicity in a standard test (International 

Organization for Standardization 2005). 

 

Threats to the phytodiversity in running waters: eutrophication and 

alterations of the morphology of water courses 

The vegetation of western European streams and rivers, consisting of c. 100 macrophyte 

species (Haslam 1987), has largely been affected by eutrophication and construction 

measures during the second half of the twentieth century (Riis & Sand-Jensen 2001, 

Ellenberg & Leuschner 2010). Eutrophication, the increase in productivity of a water body 

caused by the addition of nutrients, may be a slow natural process, but occurs as man-made 

phenomenon especially in industrialized countries due to regular fertilizer or sewage inflow 

with the surface water (Lampert & Sommer 1993). On German farmland, phosphorus 

fertilization has dropped after a peak in the 1970s, while the nitrogen input by fertilization is 

still about four times higher today than in the 1950s (Figure 1.1). The negative effect of 

eutrophication on macrophytes is mostly an indirect one, in the way that phytoplankton and 

epiphytic algae get to a mass reproduction shading out submerged, rooted plants (Phillips et 

al. 1978). In few cases of macrophyte decline, direct ammonium toxicity has been diagnosed 

(Smolders et al. 1996, Zantout et al. 2011). In Germany, especially in the lowlands, in the 
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course of melioration the majority of the streams and rivers has considerably been modified 

in their morphological structure (Umweltbundesamt 2011). Alterations of the morphology of 

water courses by construction works mostly result in degraded habitats for macrophytes, due 

to increased water turbidity from erosion and a loss of sheltered inlets, backwaters and 

transition zones to floodplain areas (Lubke et al. 1984, Baattrup-Pedersen & Riis 1999). 
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Figure 1.1 Nutrient inputs by fertilization on German farmland between 1949 and 2011, based on data 

taken from Statistisches Bundesamt (2012) 

 

Thesis aim and chapter outline 

At the beginning of this PhD thesis stood the idea that the potential of aquatic plants as 

long-term indicators for environmental conditions was not yet extendedly explored and 

applied in Central European running waters. The aim of this study is to draw a multi-faceted 

picture of the macrophyte vegetation of streams and rivers as related to habitat 

characteristics and its temporal development over 60 years using the example of the north-

west German lowlands. 

Chapter 1 presents the background and the concept of the study, giving an overview of 

the state of knowledge about the vegetation of running waters and information on the natural 

conditions and anthropogenic influences in the study area. 

In chapter 2 correlations between the environmental conditions of running waters and the 

macrophyte occurrences recorded in 289 sites in 2010/2011 are presented. Relevant 

environmental factors (among those measured are pH and nutrient contents of the water and 

the sediment, river size and flow velocity) being decisive for the current vegetation 

composition were to be identified testing on the species and community levels. 

In chapter 3 the floristic compositions of 338 vegetation relevés from the 1950s and the 

same number of relevés from 2010/2011 are compared, asking whether changes in the 
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species richness and diversity have occurred over the six decades. Species traits like leaf 

longevity and specific leaf area (SLA) were included in the comparison, as a relation with 

environmental conditions is assumed, as well as environmental variables like current velocity 

and the Ellenberg indicator value for nitrogen, to extend the basis for identifying causes of 

observed changes. For a subset of the data (29.6 % of the study sites) a three-step 

comparison between the 1950s, the 1980s and 2010 allowed the analysis of the time course 

of the species richness and diversity development. 

For chapter 4 the macrophyte assemblages from the 1950s and from 2010/2011 were 

classified in order to detect changes in the macrophyte community structure over the six 

decades. Assuming that two independent classification systems should lead to more robust 

conclusions on vegetation change than one system alone, two different phytosociological 

character species-based systems were applied. Community development was analyzed on 

the landscape and cross-regional scale, also in relation to the change in habitat 

characteristics. 

In chapter 5 the synthesis of the three parts of the study as presented in the chapters 2 to 

4 is given, combining the knowledge about the habitat preferences of the different 

macrophyte species and communities and about the floristic and syntaxonomic 

developments over six decades. Methodological aspects of assessing long-term change in 

macrophyte communities are pointed out, the probable causes of the vegetation change in 

running waters are outlined and possible future developments discussed. 

 

The study area: geology, climate and human influence 

The federal states Lower Saxony, Schleswig-Holstein and the northern part of North 

Rhine-Westphalia make up the north-west German lowlands being a morphologically diverse 

Pleistocene landscape, bordered by the Northern Sea, Denmark and the Baltic Sea in the 

north, the Netherlands in the west, Mecklenburg-Vorpommern, Brandenburg and Saxony-

Anhalt in the east and the Central German highlands in the south. Glacial processes formed 

the relief until the end of the last (Weichsel) Ice Age 10,000 years ago and since about 

1,000 years anthropogenic colonization influences the shape of the landscape surface 

(Liedtke & Marcinek 2002). Melioration measures improving the agricultural land use are 

conducted since the Middle Ages. In terms of the Köppen-Geiger climate classification, the 

north German lowlands belong to the warm, temperate and year-round humid zone (Kottek 

et al. 2006). The coastal regions (Schleswig-Holstein and the north-western parts of Lower 

Saxony) are characterized by an Atlantic climate with low temperature amplitudes (c. 1.3 °C 

in the winter and c. 15.9 °C in the summer, Kiel) and relatively high precipitation amounts (c. 

754 mm yr-1, Kiel), whereas the south-eastern parts of the study area (the northern Harz 

foothills and base of the Weser-Leine uplands) have a continental climate with higher 
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temperature amplitudes (c. 1.0 °C in the winter and c. 16.6 °C in the summer, Braunschweig) 

and lower precipitation amounts (c. 656 mm yr-1, Hannover) (means over thirty years, 

Deutscher Wetterdienst 2013). 

 

 

Figure 1.2 Location of the study regions within the north-west German lowlands: the Ems-Hunte 

moraine country (78 plots), the Lüneburg Heath and Aller lowlands (108 plots), the northern Harz 

foothills and base of the Weser-Leine uplands (91 plots) and the eastern Holstein moraine country (61 

plots) 

 

 

Table 1.1 Number of studied rivers and semi-permanent plots per study region, mean widths and 

depths of the studied river reaches in the 1950s and in 2010/2011 (means ± SD) and most intensively 

sampled rivers 

Region No. 
of ri-
vers 

No. 
of 
plots 

Reach 
width 
1950s 
[m] 

Reach 
width 
2010/11 
[m] 

Reach 
depth 
1950s 
[m] 

Reach 
depth 
2010/11 
[m] 

Most 
intensively 
sampled rivers 
(no. of plots) 

Ems-Hunte 
moraine 

21 78 7.7 ±4.4 12.6 ±12.9 0.9 ±0.5 1.4 ±0.7 Hunte (32),  
Elze (6) 

Lüneburg Heath 
with Aller 
lowlands 

24 108 9.9 ±7.8 9.7 ±7.5 0.8 ±0.5 0.8 ±0.6 Lachte (16), 
Aller (15), 
Örtze (15) 

Harz foothills with 
base of Weser-
Leine uplands 

19 91 9.4 ±7.8 9.6 ±7.4 0.8 ±0.7 0.9 ±0.7 Schunter (29), 
Oker (27) 

Eastern Holstein 6 61 3.9 ±3.3 8.7 ±7.4 0.8 ±0.5 1.2 ±0.6 Kossau (31), 
Schwentine (12) 
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Seventy streams and rivers were studied, belonging to the catchments of the Rhine, the 

Ems, the Weser and the Elbe flowing into the Northern Sea, or draining to the Baltic Sea. 

They are located in six regions (Figure 1.2). The Ems-Hunte moraine country (15-50 m 

a.s.l.), located between the rivers Ems and Weser, is characterized by base-poor, sandy and 

sometimes loamy soils originating from the penultimate (Saale) Ice Age (Meynen & 

Schmithüsen 1962). Especially in the south around the c. 12 km² big Dümmer lake, rests of 

fens and bogs are distributed, which had once been dominant in this region before having 

widely been drained for land cultivation during the last centuries (Finck et al. 1997). Today, 

an intensive agricultural management predominates. Settlements and forests account for an 

area below the national average, while the area of agriculturally used land (67-73 %) is 

above the national average of 55 % and the proportion of this land being used for crop 

cultivation has risen between the 1950s (34-48 %), when wet meadows used for cattle 

grazing were still common, and 1991 (63-78 %), due to an improvement of the drainage 

techniques (Finck et al. 1997). 

The Lüneburg Heath (30-60 m a.s.l.), lying between the rivers Elbe and Aller, is 

characterized by nutrient-poor, acid sand soils (Meynen & Schmithüsen 1962). About 2,000-

3,000 BC the first settlers started cutting trees and establishing a heathland agriculture that 

reached a peak in the eighteenth century with c. 75 % of the Lüneburg Heath area being 

heathland (Finck et al. 1997). Since then reforesting, mainly with managed pine and spruce 

forests, occurred that decreased the proportion of heathland to c. 20 % of the area of this 

region, where intensive crop cultivation also plays a role since the 1950s (Finck et al. 1997). 

Remarkably, in the Lüneburg Heath structurally unmodified streams and rivers can still be 

found (Niedersächsisches Landesamt für Ökologie 2001). The Aller lowlands (30-60 m 

a.s.l.), located between the Lüneburg Heath in the north and the northern Harz foothills in the 

south, are characterized by base-poor sand soils and alluvial deposits (Meynen & 

Schmithüsen 1962). Forests are underrepresented in this region, while settlements and 

agricultural land represent the national average; the predominant land-use type is crop 

cultivation (Finck et al. 1997). In the chapters 3 and 4, the sites in the Aller lowlands were 

included in the Lüneburg Heath region, due to resembling bedrock chemistries. 

The northern Harz foothills (45-160 m a.s.l.), located in a zone with Pleistocene loess 

deposits at the base of the Central highlands, are characterized by relatively base- and 

nutrient-rich sandy or loamy soils (Meynen & Schmithüsen 1962). This region has a long 

dating back tradition of crop cultivation; forests are mainly restricted to the hill tops and most 

of the rivers were subject to hydro-engineering and some were also affected by potash salt 

and coal mining (Finck et al. 1997). The base of the Weser-Leine uplands (90-210 m a.s.l.) is 

also located in the transition zone between the northern lowlands and the Central highlands, 

being characterized by base-rich soils (Meynen & Schmithüsen 1962). In the chapters 3 and 
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4 the sites at the base of the Weser Leine uplands were integrated in the northern Harz 

foothills region, because in all those sites runoff and groundwater are influenced by the 

silicate- or carbonate-rich bedrock of the uplands. 

The eastern Holstein moraine country (25-40 m a.s.l.), located between the Baltic Sea and 

the Elbe valley, is characterized by relatively base- and nutrient-rich, sandy or loamy young 

moraine soils and littered with lakes originating from the Weichsel Ice Age (Meynen & 

Schmithüsen 1962). The proportion of forested area is low and intensive crop cultivation is 

the predominant land-use type (Finck et al. 1997). 

The streams and rivers have sandy sediments, which are partly overlain by gravel 

especially in the Lüneburg Heath and northern Harz foothills regions, where summer-cool, 

rhithral water courses can be found. In the potamal rivers of the Ems-Hunte and eastern 

Holstein moraine regions, sapropels and organic deposits are not uncommon. Modifications 

to the hydromorphology of the investigated water courses between the 1950s and 2010/2011 

were most pronounced in the Ems-Hunte moraine and eastern Holstein regions, whereas 

only slight widening and deepening occurred in the Lüneburg Heath and northern Harz 

foothills regions (Table 1.1). 

 

Nomenclature 

The nomenclature of the species follows Buttler & Thieme (2011) for vascular plants and 

Koperski et al. (2000) for bryophytes. Syntaxonomic vegetation units are named after 

Preising et al. (1990), Chytrý (2011), or if bryophyte-dominated after Schubert (2008). 
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Abstract 

The macrophyte vegetation of Central Europe’s rivers and streams has markedly 

impoverished during the last decades as a consequence of man’s impact on water chemistry 

and hydromorphology. Here, we examine relationships between species composition and 

about 35 physical, chemical and river morphological parameters in 69 water courses (291 

sampling plots) in the Pleistocene lowlands of north-west Germany for identifying indicator 

species and environmental parameters suited for categorizing habitat types, growing 

conditions and the anthropogenic influence in these profoundly altered aquatic ecosystems. 

Of the 94 species recorded in total, 31 frequent taxa were analyzed for their affinity to 

specific environmental conditions. Current velocity and water depth (river size) were the most 

influential determinants of community composition while chemical factors were of secondary 

importance. We identified eight macrophyte assemblages, each with their own distinctive 

indicator species and characteristic combinations of growth forms. Small rhithral, relatively 

nutrient-poor water courses with high velocity were indicated by Myriophyllum alterniflorum 

and Ranunculus peltatus, while Elodea nuttallii, Myriophyllum spicatum and Spirodela 

polyrhiza characterized large, potamal water courses with high trophy. We conclude that 

macrophytes may serve as valuable bioindicators of habitat conditions even in 

anthropogenically altered running waters, but the specific effects of physical, chemical, and 

river morphological factors are difficult to separate. 

 

Keywords: bioindication, current velocity, macrophyte assemblages, sediment 

characteristics, water chemistry 

 

Introduction 

There is general consensus that the distribution patterns of freshwater macrophytes in 

flowing waters are largely determined by a few physical and chemical factors including 

current velocity (Janauer et al. 2010, Grinberga 2011), the grain size and nutrient content of 

the bottom substrate (Baattrup-Pedersen and Riis 1999, Paal et al. 2007), the trophic state of 

the water body (Demars and Harper 1998) and the geochemistry of the catchment 

(Grasmück et al. 1995, Barendregt and Bio 2003, Baattrup-Pedersen et al. 2008). Even 

though current velocity was identified already eighty years ago as a decisive factor 

determining the vegetation structures in running waters (Butcher 1933), in the subsequent 

decades, most Central European studies on the ecology of river macrophyte vegetation 

focused on hydrochemistry. The principal objective was to establish a macrophyte-based 

indicator system for water pollution assessment, comparable to the standardized Central 

European macrozoobenthos-based saprobic system (Grube 1975, Weber 1976, Kohler 
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1978, Wiegleb 1979, Janauer 1981). These investigations revealed, however, that the 

influence of physical factors, notably current velocity, seems to overlay the effects of 

sediment and water chemistry on community composition in many cases, causing a more or 

less distinct downstream zonation of vegetation. In contrast, chemical factors were found to 

differentiate only within the vegetation zones defined by the gradient of current velocity 

(Wiegleb 1984, Bernez et al. 2004, Daniel et al. 2006). Macrophyte indices for the 

assessment of the trophic status of rivers have been developed in the United Kingdom (MTR 

= Mean Trophic Rank, Holmes et al. 1999), Germany (TIM = Trophic Index of Macrophytes, 

Schneider and Melzer 2003) and France (IBMR = Macrophyte Biological Index for Rivers, 

Haury et al. 2006). Despite regional differences in the list of indicator species, the trans-

national validity of macrophyte indices has partly been confirmed (Schneider 2007). 

Nevertheless, the applicability of these indicators may be limited allowing only very rough 

assessments of environmental conditions, and the limitations are subject to ongoing 

discussion (e.g. Demars et al. 2012).  

Recently, macrophyte studies in rivers have been triggered by the implementation of the 

European Water Framework Directive (WFD, European Union 2000) that brought the so-

called ‘good ecological condition’ to the centre of attention. Integrative indicators are needed 

that are responsive to both physical and chemical factors and give information about the 

state of river bed morphology and the intensity of anthropogenic pressure. Macrophytes 

might be good indicator organisms, because in their growth and distribution they respond to 

all of these factors (Meilinger 2003, Schaumburg 2004, Kuhar et al. 2011). However, 

pronounced changes in Central Europe’s macrophyte vegetation in the last 50 years (Riis 

and Sand-Jensen 2001, Ellenberg and Leuschner 2010, Steffen et al. 2013) make it 

necessary to re-evaluate the indicator value of macrophyte species and assemblages. Even 

though some attempts to differentiate between macrophyte assemblages hinted at the 

existence of only loose associations (Gessner 1955, Brux et al. 1988), a number of 

characteristic assemblages can be identified in Central European rivers (e.g. Weber-Oldecop 

1969, Herr et al. 1990, Holmes et al. 1998, Paal and Trei 2004). Notwithstanding that the 

major drivers of vegetation distribution in rivers are largely known, we go a step further and 

try to assess the relative importance of hydromorphological, physical and chemical factors as 

possible controls of macrophyte occurrence. 

We present the results of a study in 291 plots covering 69 rivers and streams in the north-

west German lowlands, which examined the correlation of species presence and community 

composition with important morphological, physical and chemical properties of the water 

bodies. We investigated the environmental variables water depth, current velocity, the 

degree of anthropogenic alteration of river morphology, the pH and nutrient concentrations 

(N, P, Ca, K, Mg) of the sediment and water column, and the concentration of potentially 
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harmful elements (e.g. Cu, Zn and Al). We sought to answer the questions: (1) are there 

macrophyte species presently occurring only under specifically low or high values of 

important physical (current velocity) and chemical state factors (availability of N and P) or a 

low or high degree of anthropogenic influence on river morphology, and (2) which 

investigated variables differ significantly between the recognizable species assemblages at 

the reach level? 

 

Materials and methods 

Study area 

 

Hamburg

Bremen

Kiel

Hannover

6

3
1

4

5

Berlin

2

 

Figure 2.1 Location of the 291 study plots (open squares) in the six study regions of the north-west 

German lowlands. 1 = Ems-Hunte moraine country, 2 = Aller lowlands, 3 = Lüneburg Heath, 4 = 

northern Harz foothills, 5 = base of the Weser-Leine uplands and 6 = Eastern Holstein moraine 

country 

 

 

The study area is situated in the Pleistocene lowlands of north-west Germany in the states 

of Lower Saxony, Schleswig-Holstein and North-Rhine-Westphalia at elevations below 210 m 

a.s.l. Six study regions with a large number of rivers and streams were selected: 1. the Ems-

Hunte moraine country; 2. the Aller lowlands; 3. the Lüneburg Heath; 4. the northern Harz 

foothills; 5. the basis of the Weser-Leine uplands, and 6. the Eastern Holstein moraines 

(Figure 2.1). While the river sediments of the study regions 1, 2 and 3 are base-poor, those 
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of the regions 4, 5 and 6 are moderately base-rich (Table 2.1). The six regions belong to 

different catchment areas: In region 1, 81 % of the plots are located in the Hunte catchment, 

13 % in the Ems catchment; all plots of region 2 refer to the Aller catchment; in region 3, 

92 % of the plots are associated with the right-side Aller tributaries, 8 % refer to tributaries of 

river Elbe; in region 4, 97 % of the plots belong to the Oker catchment; in region 5, 77 % 

belong to the Leine-Weser system, 23 % to the Rhine catchment; the water courses in region 

6 drain into the Baltic Sea and not into the North sea as in all other regions investigated. All 

rivers receive considerable nutrient loads from the adjacent intensively managed agricultural 

land. We established a total of 291 study plots in 69 rivers and streams, covering a broad 

range of water courses of different sizes (1–75 m width and 0.2–>2 m depth), current 

velocities (from close to zero to 50 cm s-1) and sediment types (sandy or loamy with partial 

coverage by organic deposits, gravel or stones). The catchments of all rivers are part of the 

cultural landscape of north-west Germany, which consists of a mosaic of arable fields, 

pastures, meadows, forests and settlements. Due to the oceanic influence, the north-west 

German lowlands have a humid climate, characterized by warm summers and relatively mild 

winters with short frost periods. Mean annual temperatures range around 9 °C, with lowest 

mean temperatures in January (0.4 °C Braunschweig, Lower Saxony) and highest mean 

temperatures in July (17.2 °C for Hannover, Lower Saxony). The average annual 

precipitation lies between 656 mm yr-1 (Hannover) and 754 mm yr-1 (Kiel, Schleswig-Holstein; 

Deutscher Wetterdienst 2013). 

 

 

Table 2.1 The six study regions with some characteristics (altitudinal range, minima and maxima of 

river width and water and sediment pH). The dominating substrate types and the most intensively 

studied rivers are indicated as well 

Region No. of 
studied 
rivers 

Altitu-
de [m 
a.s.l.] 

River 
width 
[m] 

Domina-
ting 
substrate 
type 

pH (water 
column) 

pH (sedi-
ment) 

Most 
intensively 
studied rivers 
(no. of plots) 

Ems-Hunte 19 15–50 1–75 Sand 6.7–9.1 6.3–7.7 Hunte (28), Elze 
(5), Lohne (5) 

Aller lowlands 1 30–60 8–40 Sand 8.1–9.1 6.2–7.6 Aller (14) 
Lüneburg 
Heath 

23 30–60 1–25 Sand 6.7–9.1 4.7–7.4 Lachte (12), 
Örtze (12) 

Harz foothills 12 45–160 1–30 Sand 7.2–9.1 6.7–8.0 Schunter (28), 
Oker (27) 

Weser-Leine 
uplands 

9 90–210 3–30 Gravel 7.5–8.4 6.8–7.5 Emmer (6), 
Niese (3) 

Eastern 
Holstein 

5 25–40 2–45 Sand 7.2–8.5 6.6–7.7 Kossau (22), 
Schwentine (10) 
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Sampling design and field methods 

The sampling design used locations where vegetation relevés had been taken in 

representative macrophyte stands in the 1930s–1960s (Roll 1939, Weber-Oldecop 1969, R. 

Tüxen archive: Hoppe 2005); these relevés were analyzed for vegetation change in an 

earlier study (Steffen et al. 2013). At each of the 291 locations, vegetation was sampled in 

2010 or 2011 in plots of 100 m²; the relevés were quadratic if possible. This size was chosen 

as a compromise because smaller plots are not appropriate for adequately recording river 

macrophytes that can reach a length of several metres (e.g. Ranunculus fluitans), while 

larger plots would cover significant environmental gradients in smaller streams (e.g. 

sediment heterogeneities, Clarke and Wharton 2001). In addition, plot size in most cases 

exceeded the minimum sampling area required for macrophyte assemblages in streams of 

up to 10 m width according to the study of Wiegleb (1983) who found no increase in the 

number of hydrophyte species in reaches varying between 8 and 250 m length. Vegetation 

sampling took place between June and September 2010 and between June and August 

2011. All species that rooted below the water level were noted. Cover values were mostly 

estimated in percent; in a few cases, the traditional Braun-Blanquet scale was used 

(Dierschke 1994). In every vegetation plot, one 100 ml sediment sample and one 50 ml water 

sample were taken close to the centre of the water course; the water samples were collected 

10 cm below the water surface. Water and sediment sampling took place in all regions in 

June 2011 (except for region 6: August 2011). Water and sediment samples were cooled 

immediately and frozen on the same day for storage until analysis. At each plot, the width 

and depth of the water body were noted and current velocity in the main current was 

determined using a floating body and a stopwatch (drift method, Weber-Oldecop 1969). The 

anthropogenic influence on the riverbed morphology was estimated with a 5-category 

assessment scheme of naturalness after Brunken (1986) (1 = natural structurally diverse 

water course, 2 = richly structured water course, recognizably impacted by humans, 3 = 

straightened water course with numerous natural elements such as pools and rifles, 4 = 

straightened water course with a trapezoid cross profile, and 5 (combining categories 5 and 6 

of Brunken’s system) = completely modified water course structure with artificial bottom 

and/or bank substrates). Sediment type and type of adjacent vegetation were recorded. 

Herbarium specimens of all Ranunculus spp. as well as of critical taxa of Potamogeton were 

collected for later identification. Fresh plant material of Callitriche spp. was collected for 

identification by an experienced taxonomist. 

 

Water analyses 

The pH was measured with a pH meter (EASY pH, WTW, Weilheim, DE). The 

concentrations of aluminum, calcium, copper, iron, magnesium, manganese, potassium, 
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sodium, sulphur and zinc were analysed using ICP-OES (Optima 5300 DV, Perkin Elmer, 

Rodgau, DE). The concentrations of nitrate, ammonium and phosphate were determined with 

a Continuous Flow Analyzer (SanPlus, photometer SA 6250, Skalar Analytical B.V., Breda, 

NL). 

 

Sediment analyses 

The pH was measured in the moist suspension of the original sediment samples with a pH 

meter (EASY pH, WTW, Weilheim, DE). For further analyses, the sediment samples were 

filtered until dropping stopped and passed through a 2 mm sieve. One part of a sample was 

dried in a cabinet dryer at 70 °C for 48 h. The concentrations of total carbon (Ctotal) and total 

nitrogen (N) in the sediment material and of inorganic carbon (Cinorg) in the ash were 

determined with a C/N-autoanalyzer (Vario EL III, Elementar Analysensysteme GmbH, 

Hanau, DE). For obtaining the Corg/Ntot ratio, Corg was calculated by subtracting Cinorg from 

Ctotal with Cinorg being measured in the ash after ignition of the sediment material at 950 °C. 

For determining the salt-extractable concentration of cations in the sediment, 2.5 g of a 

sediment sample were percolated with 100 ml of 0.2 N BaCl2-solution and the concentrations 

of Al3+, Ca2+, Cu2+, Fe2+, Mg2+, Mn2+, K+, Na+ and Zn2+ in the percolate being measured by 

ICP-OES. We used the resin-bag method for obtaining an estimate of plant-available 

phosphorus in the sediment; 1 g of a sediment sample was shaken with a resin bag (4 cm³ 

anion exchange resin (Dowex 1x8-50, The Dow Chemical Company, Midland, US) sewn in a 

polyethylene sieve cloth) for 16 h, the adsorbed P was subsequently re-exchanged by 10 % 

NaCl and 2 % NaOH solutions and the P concentration in the washing solution determined 

photometrically at 712 nm (Libra S22 UV/Vis spectrophotometer, Biochrom Ltd., Cambridge, 

GB). 

 

Statistical analyses 

In the statistical analyses at the species level, all 291 relevés were included and a total of 

31 macrophyte species with a minimum occurrence in 10 plots considered. A Wilcoxon test 

was used to test for differences between all sites with the occurrence of a species against 

the sites where the species was absent. Simple logistic regressions were performed with 

species presence/absence data and environmental variables and tested with an omnibus-

test to obtain predicted probabilities of species occurrence at a certain parameter value. 

Analyses at the community level were performed with 47 macrophyte species that occurred 

at least in five plots. In these analyses, only relevés that contained a minimum of two taxa 

were included (280). Vegetation classification was done with cluster analysis (Sørensen 

distance measure, linkage: beta -0.25). Differences in mean values between the eight cluster 

groups were tested for significance with a Tukey post hoc test. To identify the most relevant 
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variables, simple and multiple correlation analyses with backward variable selection were 

conducted. A Principal Components Analysis (PCA) on the environmental data was also 

performed to investigate inter-correlations, but the results are not presented, because the 

explanatory value of the first three components was rather weak (35 %). In the following 

variables, each two or three of them were strongly correlated to each other (correlation 

coefficient >0.70); river width and depth; Na and K concentration (water); Na and K 

concentration (sediment); Ca, Mg and S concentration (water); Ca and Mg concentration 

(sediment); N, C and Corg concentration (sediment). Thus, only one of these variables each 

was kept in the analyses. 

Diversity was expressed by means of true diversity D (Jost, 2006), D= eH’, with H’ being 

Shannon’s diversity index and D the number of species that would be needed to produce the 

given Shannon diversity value, if cover values were evenly distributed. Red-listed species 

were identified using the red list for ferns and flowering plants of Germany (Korneck et al. 

1996). Plant growth forms were determined after Segal (1968), Mäkirinta (1978) and Wiegleb 

(1991). An indicator species analysis (ISA) after Dufrêne and Legendre (1997), where 

indicator values are generated from a combination of a species’ abundance and frequency in 

a particular group, was carried out with PCOrd 5.1 (MjM Software Design, Gleneden Beach, 

US). The ISA was performed with eight groups and indicator values were assessed for 

significance using Monte Carlo randomizations with 10000 permutations. A detrended 

correspondence analysis (DCA, Hill and Gauch 1980), where environmental variables were 

added in a post hoc manner, was done with Canoco 4.56 (Plant Research International, 

Wageningen, NL). For statistical tests and correlation analyses, the package SPSS 15.0 

(SPSS Inc., Chicago, US) was used. 

 

Results 

Species level 

In total, 94 macrophyte species were recorded, including hydrophytes, amphiphytes and 

helophytes that rooted in the river bed. The most abundant species were Lemna minor 

(occurrence in 192 of 291 plots), Sparganium emersum (169 plots), Phalaris arundinacea 

(161 plots), Callitriche platycarpa (108 plots), Spirodela polyrhiza (107 plots) and Nuphar 

lutea (93 plots).  

Twelve species were found to predominantly occur in habitats of generally large, deep 

river reaches with low current velocities (Table 2.2 in Appendix). Of those, habitats of Elodea 

nuttallii, Myriophyllum spicatum, Nuphar lutea, Sagittaria sagittifolia and Spirodela polyrhiza 

were base- and nutrient-rich (Table 2.3, Figures 2.2a and 2.2b). Hydrocharis morsus-ranae 

and Potamogeton crispus occurred in more or less alkaline environments, while 

Ceratophyllum demersum, Lemna minor and Sparganium emersum preferred nutrient-rich 
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habitats. The occurrence of E. nuttallii and L. gibba was related to high turbidity. Of the group 

of species that were mostly found in potamal reaches, Potamogeton lucens and six other 

species were associated with low Al concentrations in water and/or sediment. 
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Figure 2.2 Predicted probabilities of occurrence of Callitriche hamulata, Elodea nuttallii, Myriophyllum 
alterniflorum, M. spicatum, Ranunculus peltatus and Spirodela polyrhiza at different pH values and 
concentrations of plant-available phosphorus (Presin) in the sediment (significance levels of the logistic 
regressions: Table 2.3) 

 

 

Seven species were found in reaches that were small and shallow, had a close-to-natural 

structure and were characterized by fast flowing water. Of those, Callitriche hamulata, 

Myriophyllum alterniflorum and Ranunculus peltatus were related to a significantly lower 

sediment pH, lower water and sediment Ca concentration, lower sediment K and Na as well 

as lower water and sediment Mg concentrations than at the sites where the species were 

absent (Figure 2.2c). The latter two species were also related to a low P concentration in the 

sediment (Figure 2.2d). Berula erecta and Glyceria fluitans occurred in habitats characterized 

by low sediment pH values and low Ca, P and Fe concentrations of the sediment. Fontinalis 

antipyretica occurred in habitats of low sediment N and P contents, showing a significantly 

higher water Mg concentration, compared to sites without the species. Sparganium erectum 

c) d) 

b) a) 
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occurred mostly in base-rich habitats. Four species of this group showed an apparent affinity 

to a high sediment Al concentration.  

Behaving indifferently towards water course morphology, Elodea canadensis, Callitriche 

obtusangula and C. platycarpa were associated with soft water, while Butomus umbellatus, 

Lemna trisulca, Potamogeton natans, P. pectinatus and Utricularia vulgaris occurred in Ca-

rich waters. The species Phalaris arundinacea, Phragmites australis, Potamogeton 

perfoliatus and P. pusillus behaved indifferently towards the various parameters studied. 

 

 

Table 2.3 Results of the omnibus-test for logistic regressions (chi² and p) on six selected hydrophyte 

species and selected environmental variables. Significant correlations (at p<0.1) and their directions 

are indicated: ↓ for negative and ↑ for positive relation. CEC – cation exchange capacity 

 Current 
velocity 

pH 
(Sed.) 

Ctot 
(Sed.) 

Corg 
(Sed.) 

NH4
+
 

(Wat.) 
NO3

-
 

(Wat.) 
Ntot 
(Sed.) 

Presin 
(Sed.) 

K 
(Sed.) 

Na 
(Wat.) 

Na 
(Sed.) 

CEC 

Callitriche hamulata 

Chi
2
  ↓ 21.3 ↓ 4.0  ↓ 6.1  ↓ 3.9   ↓ 4.1 ↓ 4.0 ↓ 8.0 

p  <0.001 0.046  0.014  0.049   0.043 0.045 0.005 

 Myriophyllum alterniflorum 
Chi

2
 ↑ 5.1 ↓ 6.6 ↓ 14.8 ↓ 11.9 ↓ 8.0  ↓ 7.3 ↓ 5.5 ↓ 5.7 ↓ 6.2 ↓ 7.0 ↓ 16.4 

p 0.024 0.010 <0.001 0.001 0.005  0.007 0.019 0.017 0.013 0.008 <0.001 
 Ranunculus peltatus 
Chi

2
  ↓ 10.6 ↓ 7.2 ↓ 3.9  ↑ 4.8 ↓ 3.9 ↓ 5.1 ↓ 18.6 ↓ 20.7 ↓ 7.3 ↓ 19.1 

p  0.001 0.007 0.049  0.029 0.050 0.023 <0.001 <0.001 0.007 <0.001 
 Elodea nuttallii 
Chi

2
 ↓ 9.0  ↑ 7.0 ↑ 11.3   ↑ 10.7 ↑ 10.1 ↑ 3.4    

p 0.003  0.008 0.001   0.001 0.001 0.064    
 Myriophyllum spicatum 
Chi

2
 ↓ 3.8 ↑ 9.0    ↑ 2.9   ↑ 11.6 ↑ 16.3 ↑ 11.2  

p 0.051 0.003    0.088   0.001 <0.001 0.001  
 Spirodela polyrhiza 
Chi

2
 ↓ 19.0 ↑ 4.2 ↑ 14.1 ↑ 22.9 ↑ 30.8 ↓ 28.3 ↑ 24.7 ↑ 16.5 ↑ 3.2 ↓ 7.0  ↑ 28.1 

p <0.001 0.040 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.075 0.008  <0.001 
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Community level 

Species richness per relevé ranged between two and 15. Plot-level species diversity (D) 

did not show a significant correlation with any of the measured environmental variables (all 

correlation coefficients <0.25). The river macrophyte vegetation was grouped into eight 

clusters by the cluster analysis. Each cluster is characterized by indicator species according 

to the indicator species analysis (Table 2.4). Cluster C is characterized by Nuphar lutea, 

Potamogeton natans and Spirodela polyrhiza, cluster D by Elodea nuttallii and Lemna gibba. 

The pleustophytic (lemnid, ricciellid and ceratophyllid) and nymphaeid growth forms were 

grouped in these two clusters, which are mainly found in the Ems-Hunte region (Figure 2.3). 

Clusters C and D corresponded to potamal reaches (Figures 2.4a and 2.4b) with high Corg, N 

and P concentrations in the sediment (Figures 2.4c and 2.4d), low water Al concentration, 

but high pH and a modified morphological structure of the river bed. These two clusters are 

characterized by high species richness, high plant coverage and, in the case of cluster C, by 

a relatively high proportion of red-listed species per relevé (16 %) as well as high diversity 

(D). Cluster B is characterized by Sparganium erectum, Potamogeton crispus and 

Potamogeton pectinatus. The parvopotamids are grouped in this cluster. Assemblages of this 

cluster mainly occurred in the northern Harz foothills and in Eastern Holstein. It includes a 

moderately species-rich and diverse community found in habitats with low current velocity, 

high Na and Zn concentrations as well as a rather high pH of the water (Figures 2.4e and 

2.4f). Cluster E is characterized, among others, by Myriophyllum alterniflorum and 

Ranunculus peltatus. This assemblage contains the batrachid species and is moderately 

species-rich. It prevails in the Lüneburg Heath and the northern Harz foothills regions. It 

grows in small, shallow reaches with fast flowing water, low sediment Corg, N and P contents 

as well as low water Na, Zn and pH. Together with cluster F, which is characterized by 

Fontinalis antipyretica and Nasturtium officinale, and cluster A, characterized by Sparganium 

emersum, Callitriche hamulata and Myriophyllum spicatum, these three clusters contain all 

myriophyllid and peplid species. Cluster A‘s community was mainly found in the Lüneburg 

Heath region in reaches that had a relatively unmodified structure and rather low current 

velocities. The sediments were of low Ca, Ctotal and Corg as well as low N concentrations. 

Cluster H with dominant Phragmites australis was mainly present in the Eastern Holstein 

region. It comprises the most species-poor community in habitats of low sediment P and high 

Ca concentrations, but low water nitrate content and low pH (Figures 2.4g and 2.4h). The 

reaches of this community had a close-to-natural structure. The habitats of the vegetation 

grouped in the clusters F and G, which occurred mainly in the Lüneburg Heath and northern 

Harz foothills regions, were characterized by rather high current velocities. They did not show 

any extremes in other environmental parameters. 
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Table 2.4 The macrophyte vegetation of the study region as classified into eight assemblages by 

cluster analysis (in order of increasing adaptation to life in water from A: submerged growth forms, to 

H: helophytes). Base figures: relative frequency of species occurrence within a cluster in percent; 

exponents: cover values as averages within clusters. Indicator species for each cluster were derived 

from the indicator species analysis 

No. of relevés  29 26 78 14 26 46 52 9 
No. of species  33 36 42 31 31 42 40 12 
No. of species/relevé 6.6 7.5 8.9 8.4 6.8 5.8 6.3 3.6 

Indicator 
species 2)

 
Growth 
form

 1)
 

A B C D E F G H 

Cluster A          
Spar. emer.* Val. 100 

24.5
 54 

6.3
 50 

3.6
 64 

2.7
 38 

1.8
 33 

1.7
 94 

2.3
 33 

0.8
 

Call. hamu.* Pep. 45  
2.8

   - 6  
1.3

 14 
0.1

 19 
1.3

 15 
1.4

 19 
1.1

   - 

Myri. spic.* Myr. 21  
10.3

 19 
1.6

 6  
1.8

   -   - 4  
3.0

 10 
2.9

   - 

Call. stag. Pep. 14  
0.5

 8  
0.4

 1  
1.0

   -   -   - 4  
0.6

   - 

Pota. perf. M-pot. 10  
5.0

 4  
7.0

 1  
4.0

 14 
0.3

 4  
2.5

 2  
35.0

 4  
1.5

 11 
2.0

 

Cluster B          

Spar. erec.* Hel. 21 
1.9

 58 
20.2

 42 
2.9

 21 
0.3

 19 
1.6

 17 
1.3

 38 
2.9

   - 

Pota. pect.* P-pot. 24 
2.8

 54 
21.5

 10 
2.5

 7  
25.0

   - 2  
0.0

 10 
3.8

   - 

Pota. cris.* P-pot. 7  
0.5

 38 
5.2

 6  
0.7

 14 
7.0

 8  
0.3

 7  
1.5

 6  
0.6

   - 

Buto. umbe.* Val./Hel. 10 
2.7

 23 
8.1

 23 
1.9

 7  
0.0

   -   - 12 
1.5

 11 
1.0

 

Phal. arun. Hel. 52 
1.3

 81 
2.0

 54 
2.0

 79 
1.4

 58 
1.9

 74 
1.7

 42 
0.8

 11 
3.0

 

Cluster C          

Nuph. lute.* Nym. 7  
0.4

 23 
1.8

 73 
13.8

 29 
8.1

 4  
10.0

 7  
2.3

 37 
2.3

 11 
0.5

 

Sagi. sagi.* Val./Hel. 17 
14.5

 23 
4.3

 72 
13.9

 29 
5.5

   - 7  
0.4

 17 
1.5

   - 

Spir. poly.* Lem. 21 
0.0

 38 
0.3

 64 
3.9

 79 
0.6

 4  
0.5

 26 
0.6

 21 
0.0

 67 
0.0

 

Utri. vulg.* Cer.   -   - 13 
4.3

   -   -   -   -   - 

Pota. nata.* Nym. 17 
14.2

 4  
4.0

 31 
13.3

 14 
0.6

   - 2  
1.0

 6  
1.9

   - 

Pota. pusi.* P-pot.   -   - 13 
5.3

   -   -   -   -   - 

Pota. luce.* M-pot. 3  
1.5

   - 14 
20.0

   -   -   - 2  
2.0

   - 

Glyc. maxi.* Val./Hel. 7  
0.5

 12 
1.5

 33 
5.1

 36 
1.4

 23 
2.4

 22 
1.1

 13 
0.7

   - 

Lemn. mino. Lem. 72 
0.1

 77 
0.5

 91 
1.8

 86 
0.5

 35 
1.8

 41 
2.3

 63 
0.1

 78 
0.0

 

Hydr. mors. Hyd.   - 8  
0.3

 9  
2.2

 7  
0.1

 4  
0.5

 2  
2.0

   -   - 

Lemn. tris. Ric. 3  
0.1

 15 
0.2

 18 
0.2

 21 
0.0

 8  
0.5

 9  
0.0

 6  
0.0

 11 
0.0

 

Cera. deme. Cer.   - 12 
2.8

 19 
2.5

 21 
1.2

   - 4  
25.1

   -   - 

Cluster D          

Elod. nutt.* Elo. 10 
3.3

 12 
0.5

 49 
2.1

 100 
35.7

 4  
0.5

 11 
2.0

 13 
1.5

   - 

Lemn. gibb.* Lem. 3  
0.0

 19 
0.1

 21 
1.3

 29 
2.3

 8  
1.0

 2  
3.0

 2  
0.0

 11 
0.1

 

Pers. amph. Nym.   - 4  
0.5

 13 
0.6

 14 
1.0

   - 2  
0.1

 2  
0.5

   - 

Iris pseu. Hel.   -   - 1  
0.2

 7  
0.2

   - 2  
0.4

 6  
0.3

   - 

Cluster E          

Beru. erec.* Hel. 28 
1.5

 12 
1.0

 10 
1.8

   - 62 
16.1

 20 
2.2

 25 
1.5

   - 

Call. plat.* Pep. 41 
1.0

 27 
0.7

 41 
1.1

 21 
0.3

 62 
7.5

 35 
2.0

 42 
0.9

   - 

Plat. ripa. (M)* Bry.   - 12 
1.2

   -   - 38 
20.4

 9  
0.3

 4  
0.3

   - 

Ranu. pelt.* Bat. 10 
3.1

   - 3  
0.6

 14 
10.0

 38 
12.4

 4  
1.5

 17 
1.7

   - 

Ment. aqua.* Hel. 7  
1.8

 8  
2.6

 1  
0.3

   - 42 
5.2

 11 
0.7

 10 
0.8

 11 
1.0

 

Vero. becc.* Hel.   - 4  
0.2

 4  
0.6

 7  
1.0

 27 
0.9

 20 
0.5

 6  
0.2

   - 

Myos. palu.* Hel. 14 
0.3

 27 
0.3

 27 
0.9

 7  
1.0

 54 
0.6

 26 
0.7

 12 
0.3

 11 
0.1

 

Myri. alte. Myr. 10 
0.6

   - 3  
1.5

   - 19 
1.5

 2  
0.3

 10 
3.0

   - 

Agro. stol. Val./Hel. 24 
0.8

 19 
0.2

 4  
0.3

 7  
0.5

 23 
1.1

 22 
0.6

 10 
0.2

   - 

Alis. plan. Hel.   -   - 10 
0.3

 7  
0.4

 4  
5.0

 2  
0.1

   -   - 

Cluster F          

Font. anti. (M)* Bry. 3 
1.0

 4  
0.3

   -   - 15 
0.7

 24 
5.2

 4  
0.6

   - 

Nast. offi.* Hel. 10 
0.2

 4  
0.0

 5  
4.1

   - 19 
1.0

 20 
12.5

 2  
0.2

   - 

Ranu. flui. Myr.   -   -   -   -   - 9  
13.4

 2  
1.5

   - 
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No. of relevés  29 26 78 14 26 46 52 9 
No. of species  33 36 42 31 31 42 40 12 
No. of species/relevé 6.6 7.5 8.9 8.4 6.8 5.8 6.3 3.6 

Indicator 
species 2)

 
Growth 
form

 1)
 

A B C D E F G H 

Chil. poly. (M) Bry.   -   -   -   - 4  
2.0

 7  
6.8

 2  
0.1

   - 

Elod. cana. Elo. 24 
3.8

 15 
4.0

 27 
1.6

 50 
1.1

 23 
1.7

 26 
14.5

 27 
0.5

   - 

Ranu. tric. Myr.   - 4  
11.0

   -   -   - 11 
2.2

 2  
0.3

   - 

Glyc. flui. Val./Hel. 10 
9.5

 8  
0.6

 4  
2.5

 7  
0.1

 12 
0.5

 15 
5.8

 8  
1.7

   - 

Vero. anag. Hel. 3  
0.4

 4  
0.3

 3  
0.3

 7  
0.0

 4  
0.5

 13 
0.2

   -   - 

Call. obtu. Pep.   -   - 8  
1.0

 21 
0.5

 4  
4.0

 4  
18.5

   -   - 

Cluster G          

Acor. cala. Hel.   - 8  
0.5

 3  
0.9

   -   - 7  
0.4

  13 
0.6

   - 

Cluster H          

Phra. aust.* Hel. 7  
1.0

 15 
2.3

 1  
0.6

   -   - 9  
3.3

 10 
1.6

 100
10.8

 

1
) Bat. = batrachid, Bry. = bryid, Cer. = ceratophyllid, Elo. = elodeid, Hel. = helophytic, Hyd. = 

hydrocharid, Lem. = lemnid, M-Pot = magnopotamid, Myr. = myriophyllid, Nym = nymphaeid, Pep. = 

peplid, P-pot. = parvopotamid, Ric. = ricciellid, Val. = vallisnerid 
2
) * = significant indicator species for the respective cluster (p<0.05), (M) = moss 
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Figure 2.3 Relative contribution (in %) of relevés from the six study regions to the total number of 

relevés in the eight vegetation clusters A to H 
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Figure 2.4  a) Depth of water body, b) current velocity, sediment contents of c) total N, d) plant 

available P (Presin) and e) calcium, f) pH (water and sediment) and g) sodium and h) nitrate in the water 

in eight macrophyte vegetation clusters (A to H). Means ± SE of nine to 78 plots sampled in June or 

August 2011. Different letters (W to Z) indicate significant differences between the vegetation clusters 

a) b) 

e) f) 

g) 

c) d) 

h) 
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Of the variables that were identified as being relevant for macrophyte community 

composition according to multiple regression analysis with backward variable selection, 

current velocity showed a strong positive correlation with DCA axis 1, water depth a negative 

one (Figure 2.5, Table 2.5 in Appendix). The P, Corg and Ca concentrations in the sediment, 

the NH4, Fe and Na concentrations in the water and the anthropogenic influence on the river 

bed structure were negatively correlated with this axis. The second DCA axis was positively 

correlated with the pH of the sediment and negatively with the Zn concentration in the water. 

-2.5 5.5Axis 1 (Eigenvalue 0.71)

-0
.5

4
.5

A
x
is

 2
 (
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ig
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e

 0
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2
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NH4 (Wat.)

Fe (Wat.)

Corg (Sed.)

P (Sed.)

Ca (Sed.)

CEC (Sed.)

Depth

Current velocity

Anthrop. influence

Cluster A Cluster B Cluster C Cluster D

Cluster E Cluster F Cluster G Cluster H
 

Figure 2.5 DCA of the clustered vegetation (280 relevés, eight groups) and selected environmental 

variables (Wat. = measured in the water column, Sed. = measured in the sediment). For the 

ordination, species cover values were log-transformed 

 

Discussion 

We focused on a comprehensive analysis of the effects of physical and chemical 

parameters on community assembly and species distribution of river macrophytes. In order 

to avoid false conclusions based on pseudocorrelation, we analyzed more than 30 variables 

including their intercorrelations. At the community level in the six regions, we found seven 

groups of true macrophyte assemblages in which free-floating species and hydrophytes with 

submerged or floating leaves rooting in the sediment were dominant. One additional cluster 

refers to a helophytic community characterized by Phragmites australis. The seven species 
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assemblages show a marked differentiation according to the main river habitats colonized by 

them and also with respect to the relative abundance of macrophyte growth forms. Three 

clusters are related to nutrient-rich, potamal water course reaches. One of them (cluster B) 

contains the parvopotamid species including Potamogeton crispus and P. pectinatus that are 

known as eutraphent species (Casper and Krausch 1980). Another two clusters (C and D) 

contain the pleustophytic and nymphaeid species of the regional species pool. Relevés 

assigned to those species-rich clusters were mainly taken in the Ems-Hunte region, where 

the river macrophyte assemblages had earlier been characterized by their abundance of 

nymphaeid species (Herr et al. 1989, Zander et al. 1992). In eutrophic waters that are often 

turbid due to phytoplankton blooms, the pleustophytic and nymphaeid growth forms are 

advantageous, because these plants place their leaves close to or on the water surface and 

thus escape light competition in the water column (Mesters 1995). In correspondence with 

the species level analysis, the indicator species for highly eutrophic conditions Elodea 

nuttallii and Spirodela polyrhiza are characteristic species of these two clusters. One cluster 

(E) contains the species Myriophyllum alterniflorum and Ranunculus peltatus, which were 

identified as regional indicators for mesotrophic conditions in our study region. 

Corresponding conclusions by Weber-Oldecop (1969) and Herr et al. (1989) can be 

generalized for a wider geographical area. Together with two other clusters (A and F), these 

three assemblages of less nutrient-rich running water reaches contain members of the 

batrachid, myriophyllid and peplid growth forms, which are adapted to relatively high current 

velocities. These assemblages are found in the study region mostly in the Lüneburg Heath 

confirming earlier work by Herr et al. (1989). A similar community with elodeid, peplid and 

batrachid species was also reported as typical for streams with mesotrophic, neutral 

conditions in northeast France (Thiébaut and Muller 1999). Cluster G is the second largest 

one containing more than 50 relevés that lack well-characterized indicative species. It may 

be termed a ‘central cluster’ in analogy to the ‘central association’ in phytosociology, because 

it contains ‘average’ relevés in which a dominance of a certain growth form is absent, specific 

dominance structures do not exist, and the relevés are neither particularly species-rich nor 

species-poor. This type of vegetation was called ‘Sparganium emersum community (various 

formations)’ by Herr et al. (1989, Tab. 16). In Danish lowland streams, the Sparganium 

community was the predominant vegetation cluster (Riis et al. 2000); the authors assume 

that the community is promoted by regular mowing. The eighth cluster (H) is only indicated 

by the helophyte Phragmites australis and is thus somewhat atypical for our macrophyte data 

set; this cluster includes less than ten species-poor relevés mainly from the Eastern Holstein 

region. However, Phragmites-dominated vegetation can frequently be found in river reaches 

off the main current, in particular around the Baltic Sea (Baattrup-Pedersen et al. 2003, Paal 
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et al. 2007). Emergent helophytes such as Phragmites are often excluded from sampling or 

analysis (see e.g. Demars and Harper 1998), as a low indicative value is expected. 

The seven vegetation clusters were not only characterized by each one to eight indicator 

species and characteristic combinations of growth forms, but also by marked differences in 

certain physical, chemical and river morphological properties. According to the DCA, water 

depth and current velocity were the two factors with largest influence on the species 

composition of the studied streams and rivers. This result supports earlier findings that 

current velocity and related factors play a key role for the structure and composition of the 

macrophyte vegetation of running waters (see review by Franklin et al. 2008). Even though 

the informative value of instantaneous flow velocity measurements may be limited because 

seasonal variability is not captured, a rough classification of flow regimes may be possible, 

as the measurements were done in summer, when flow rates are typically lower than in 

winter and spring. The influence of water depth is plausible, because it determines the 

relative importance of helophytic and pleustophytic species. Chemical properties of the 

sediment were of secondary importance with Presin apparently being the most influential 

element while Ntotal and the salt-exchangeable concentrations of Ca and Fe in the sediment 

played subordinate roles. Even less influential were the concentrations of nutrients and other 

elements in the water column. This agrees with the findings of Demars and Edwards (2009); 

it is not surprising for several reasons. First, concentrations typically vary considerably over 

time both diurnally and seasonally. Our data from summer 2011 give only a snapshot of the 

fluctuation in water chemistry, because the focus of our study was on the sampling of a large 

number of rivers and vegetation stands. In summer, phosphate and other nutrients are 

rapidly cycled through the aquatic community with the consequence that actual nutrient 

concentrations are rarely related to supply rates. Second, intercorrelation with other factors is 

high and possible effects are difficult to separate from each other (Demars and Harper 1998). 

In naturally nutrient-rich rivers (in particular of the regions 1, 4 and 6), a response to further 

nutrient enrichment is not very likely (Demars and Edwards 2009). 

When comparing the means of our water chemistry data from 291 sampling locations with 

literature data from other North and Central European streams and rivers, we found in 

general good agreement (Remy 1993, Schneider and Melzer 2004, Paal et al. 2007). As the 

samples were mainly taken in June, when nutrient uptake by macrophytes and microalgae 

(phytoplankton and benthic forms) should be highest, the measured phosphate (mean: 0.03 

mg L-1), nitrate (2.35 mg L-1) and ammonium (0.17 mg L-1) concentrations in the water 

column were relatively low. In contrast, the sediment concentrations of macronutrients (N, P, 

Ca, K, Mg) were high at several sites, especially in the regions 1 (Ems-Hunte) and 6 (Eastern 

Holstein), where intensive agricultural land-use is ubiquitous and the sediment pools are 

reflecting the ‘long-term memory’ of the water body. 
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At the species level, a number of taxa differed significantly with respect to the physical 

and chemical properties of their habitats, which became visible when comparing sites with 

and without occurrence of the target species. The investigated running waters are all in a 

mesotrophic to eutrophic or even hypertrophic condition (LAWA 1998, NLÖ 2001). Within this 

range of water conditions, Myriophyllum alterniflorum and Ranunculus peltatus were present 

in relatively nutrient-poor habitats, as it was stated earlier by Wiegleb (1984) for northern 

German waters. At the same time, the habitats of these taxa can be categorized as ‘rhithral’, 

a term that is most often applied to headwaters flowing through mountainous regions, but 

also relates to lowland streams of high current velocities and low temperatures due to 

groundwater inflow (Weber-Oldecop 1970). In the lowlands, rhithral waters are generally not 

as nutrient-rich as potamal waters, because a river is enriched with nutrients between its 

close-to-spring rhithral range, where dilution has an effect on element concentrations when 

groundwater flows in, and its lower potamal range after the passage through an agricultural 

catchment area. Accordingly, the species Elodea nuttallii, Myriophyllum spicatum and 

Spirodela polyrhiza, which are generally used as indicators for eutrophic habitats, showed an 

affinity to potamal river reaches. 

That flow velocity is a main structuring force of macrophyte assemblages in rivers, can be 

expected from the known large species differences in the tolerance of water movement 

(Sirjola 1969, Brewer and Parker 1990). Less clear are species differences in the response 

to chemical factors. Macrophyte species have been found to prefer different N forms which 

might explain some of the apparent affinities found. For example, a macrophyte species 

known to prefer ammonium is Potamogeton alpinus that has been observed to show reduced 

growth in nitrate-enriched water (Boedeltje et al. 2005). Another species with possible 

preference for NH4
+ is Elodea canadensis (Melzer and Kaiser 1986, Rolland et al. 1999). 

Sewage dumping could promote species with ammonium preference. We found several 

species that were typically present at elevated NH4
+ water concentrations, but showed no 

association to higher NO3
- concentrations (e.g. Ceratophyllum demersum, Sagittaria 

sagittifolia, Spirodela polyrhiza). On the other hand, species such as Potamogeton 

pectinatus, Myriophyllum spicatum, Callitriche hamulata and the moss Fontinalis antipyretica 

occurred under conditions of elevated NO3
- but reduced NH4

+ levels in our study region. 

Other chemical factors such as the availability of basic cations (Ca2+, K+, Mg2+) may be less 

influential for community composition in our study region, because weakly acidic waters with 

pH <7 in the water column and low conductivity and cation concentrations were lacking in our 

sample. 
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Conclusions 

Current velocity in combination with the occurrence of characteristic macrophytic growth 

forms are the most promising parameters for categorizing the river and stream habitats of the 

north-west German Pleistocene. The rather low indicative value of chemical factors is partly 

a consequence of the dominant mechanical factors in running waters, but may also be 

caused by decades of anthropogenic interference, which must have greatly reduced former 

gradients in water and sediment chemistry as well as hydromorphology across the 

catchments. Despite some limitations, our study confirmed the indicative value of 

macrophytes for the abiotic and biotic conditions of streams and rivers as it has been found, 

e.g. for southern Germany (Poschlod et al. 2010) and other European countries (Birk and 

Willby 2010). This potential should be used for ecological quality assessment as required by 

the European Water Framework Directive. 
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Abstract 

This resampling study in 338 semi-permanent plots analyses changes in river macrophyte 

diversity in 70 water courses (small streams to medium-sized rivers) from four regions of the 

north-west German lowlands during the last six decades. The total macrophyte species pool 

decreased between the 1950s and 2010/2011 by 27.5 % (from 51 to 37 species), mean plot-

level species richness by 19.4 % (from 4.7 to 3.8 species per relevé) and the number of red-

listed species by 40.0 % (from 30 to 18 species). Species loss was associated with marked 

change in species traits: species with presumably higher mechanical stress tolerance 

(indicated by low specific leaf area and short leaf longevity) are more abundant today. Nearly 

half of the species present in the 1950s had either disappeared or been replaced by other 

species in the recent relevés. The dramatic impoverishment is likely a consequence of 

continued nutrient input that drove oligo- and mesotraphent species to extinction, and of 

restructuring and maintenance works in the water courses that reduced stagnant and 

undisturbed river habitats, where stress-intolerant species can persist. Efficient measures to 

reduce the nutrient load and to re-naturalize stream and river beds are urgently needed to 

halt and reverse the loss of macrophyte diversity. 

 

Keywords: Aquatic macrophytes, eutrophication, running waters, species traits, vegetation 

change 

 

Introduction 

With less than 100 species, the hydrophytic macrophyte flora (Charophyta, Bryophyta, 

Pteridophyta and Spermatophyta) of Central Europe’s running waters is relatively species-

poor (Casper & Krausch 1981), but rich in different growth forms reflecting the considerable 

diversity of habitat types being present in streams and rivers of variable sizes, current 

velocities, water chemistries and sediment types. With rapidly increasing amounts of 

fertilizers used in the agricultural landscape and manifold hydro-engineering measures 

completed, the biota of running waters have been exposed to an ever-increasing pressure in 

the last century with consequences for macrophyte diversity and community composition 

(Phillips et al. 1978, Robach et al. 1996, Smith et al. 1999, Egertson et al. 2004, Hilton et al. 

2006, Kozlowski & Vallelian 2009). Eutrophication of water bodies by oxidized and reduced 

nitrogen compounds, but also by phosphorus, is known to cause profound shifts in the plant 

community composition of running waters, where rooted macrophytes may eventually be 

replaced by green macroalgae or phytoplankton as a consequence of light deficiency (Sand-

Jensen & Borum 1991, Vadineanu et al. 1992, Marques et al. 2003). 



53 
 

Aquatic macrophytes have frequently been used in limnology and vegetation ecology as 

reliable indicators of habitat conditions in running waters, because various species respond 

sensitively to alteration in water chemistry and/or current velocity (Kohler & Schneider 2003, 

Schaumburg et al. 2004, Daniel et al. 2006, Demars & Trémolières 2009). As an outcome of 

macrophyte monitoring, plenty of information exists on the ecological conditions of streams 

and rivers in many European regions (Pott 1980, Wiegleb 1981, Riis et al. 2000, Kuhar et al. 

2007, Grinberga 2011). However, this information is predominantly of qualitative nature and 

does not provide reliable information on long-term changes in the diversity and composition 

of the vegetation or alteration in environmental conditions that affect community composition. 

Only a limited number of studies on long-term change in river macrophyte communities 

covering several decades exists (Whitton & Dalpra 1967, Holmes & Whitton 1977, Herr et al. 

1989, Mesters 1995, Whitton et al. 1998, Riis & Sand-Jensen 2001, Schwieger 2002, Schütz 

et al. 2008) and an over-regional picture of diversity loss has not yet emerged. 

This study uses a semi-permanent plot approach to analyse long-term change in the 

macrophyte vegetation of 70 streams and rivers from four regions in north-west Germany 

from the mid of the 20th century until present. We resampled 338 relevés taken between 

1936 and 1969 in 2010/2011 and analysed changes in species diversity, abundances of 

growth forms and functional traits at the community level including specific leaf area (SLA) 

and the indicator value for nitrogen. For a restricted data set, the temporal development of 

community change could be analysed between the 1950s, the 1980s and present. The aim 

of our study was to examine long-term changes in stream and river macrophyte vegetation 

from an over-regional perspective and, in case of changes, to elucidate the possible drivers 

of change. More specifically, we asked (1) if the decrease in macrophyte species richness 

among the 1950s and 2010/2011 was a general phenomenon in all studied river systems, 

(2) if nutrient-demanding and stress-tolerant species increased proportionally and (3) if 

community change has been more profound between the 1950s and the 1980s than between 

the 1980s and 2010/2011. 

 

Materials and methods 

Study area 

Four regions located in the Pleistocene north-west German lowlands with a variety of 

small streams to medium-sized rivers were selected for study. Region 1 comprising the Ems-

Hunte moraine (mainly Dümmer lowlands) with acid base-poor moraine soils and bogs; 

region 2, the Lüneburg Heath (including the Aller lowlands) with base-poor sandy soils, both 

formed by the penultimate (Saale) Ice Age; region 3, (a) the northern Harz foothills with fertile 

Pleistocene loess deposits and (b) running waters at the base of the Weser-Leine uplands; 

and region 4, the eastern Holstein moraine with more base-rich young moraine soils of the 
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last (Weichsel) Ice Age (Figure 3.1). Region 3 combines the subregions (a) and (b), because 

all those sites are situated at the southern edge of the north German Pleistocene lowlands 

where runoff and groundwater are influenced by the silicate- or carbonate-rich bedrock of the 

uplands. In total, 70 rivers and streams were sampled (Table 3.1 in the Appendix) covering a 

broad range of water courses with small to medium size (1–40 m width and 0.2–2 m depth), 

current velocities between 0 and 50 cm s-1 and sandy or loamy sediments partly overlain by 

organic deposits or gravel. The catchments of all rivers are part of the cultural landscape of 

north-west Germany, consisting of a mosaic of arable fields, pastures, meadows, forests and 

settlements. While the river sediments of the regions 1 and 2 are base-poor and those of the 

regions 3 and 4 moderately base-rich, in the last decades all streams and rivers have 

received considerable nutrient loads from the adjacent intensively managed agricultural land 

(Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit 2010). Due to the 

oceanic influence, the north-west German lowlands have a humid climate, characterized by 

warm summers and relatively mild winters with short frost periods. Mean annual 

temperatures range around 9 °C, with lowest mean temperatures in January (0.4 °C 

Braunschweig, Lower Saxony) and highest mean temperatures in July (17.2 °C Hannover, 

Lower Saxony). The average annual precipitation lies between 656 mm y-1 (Hannover) and 

754 mm y-1 (Kiel, Schleswig-Holstein) (all climate data from Deutscher Wetterdienst 2012). 

Hamburg

Bremen

Kiel

Hannover

Region 4: Eastern
                 Holstein

Region 2: Lüneburg
                 Heath

Region 1: Ems-Hunte

Region 3(a): 
Northern Harz 
          foothills

Region 3(b): 
base of the 
Weser-Leine uplands

Berlin

 

Figure 3.1 Location of the study sites (open squares) within four regions of north-west Germany: 

region 1 = Ems-Hunte moraine, region 2 = Lüneburg Heath (including the Aller lowlands), region 3 = 

(a) Northern Harz foothills and (b) parts of the Weser-Leine uplands and region 4 = Eastern Holstein 

moraine 
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Data basis 

We analysed data sets from three different periods (A: 1936–1969, B: 1983–1986, C: 

2010/2011). Set A, referred to as the 1950s data, contains 338 relevés from the literature 

(Roll 1939, Weber-Oldecop 1969) and from the Reinhold-Tüxen-Archive in Hannover (Hoppe 

2005). The relevés deposited in the Tüxen archive were mostly taken by Rudolph Alpers in 

1946. Set B contains 100 relevés from the 1980s of locations that were all sampled in the 

periods A and C (Herr & Wiegleb 1984, Herr 1987). Set C contains present-day data of 338 

locations congruent with set A. In the analysis, we first compared the data sets A (1950s) 

and C (2010/2011) (two-step comparison); in a second step, subsets of these two sets were 

compared with data set B (1980s), because only 100 sites were available that had been 

sampled in the 1950s, the 1980s and 2010/2011 (three-step comparison). The second 

analysis examined the time course of community change in more detail and the results are 

presented in the “Results” section (“Time course of community change: comparing the 

1950s, the 1980s and 2010/2011”). Subset AєB contains those data of set A that relate to the 

100 locations of set B and subset CєB includes the data of set C that refer to the 100 

locations of set B. The plot sizes of the recent relevés (set C) were chosen in 

correspondence with the plot sizes of set A (varying between 1 and 100 m²). If no plot size 

was indicated in the historical relevés, a size of 40 m² was sampled, which is the average of 

all indicated plot sizes in several hundred relevés from streams and rivers available at the 

Tüxen archive. No uniform plot size could be achieved in the three-step-comparison (see 

below under “Methodological restrictions”).  

 

Sampling design and field methods 

Historical and recent vegetation analysis was conducted with the relevé method by 

determining all occurring plant species in a plot and estimating their cover either in percent or 

(in a few cases) in cover classes according to Braun-Blanquet (see Dierschke 1994). In order 

to repeat the historical relevés (set A), the original sampling sites as indicated in the historical 

sources were revisited in the vegetation periods (June to September) of the years 2010 and 

2011. In the reach of a sampling location, we chose a site where the macrophyte vegetation 

was well developed, because a similar selection procedure had generally been adopted by 

the authors 60 years ago. Particularly species-poor stands (e.g. under shading trees or next 

to artificial structures) were not selected. Relevé size was adapted to the size of the 

respective historical relevé. In addition, a standard plot size of 100m² was sampled in 

2010/2011 and used for the three-step-comparison. Vegetation was inspected using wade 

trousers and a telescopic rake was used in deep or very turbid water. The cover values of all 

macrophyte species that rooted in the river bed below the water level were recorded. In 

addition, several environmental parameters were recorded, notably the width and depth of 
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the water body, flow velocity (determined in the stream line with the drift method as it had 

been used by Weber-Oldecop, 1969) and the sediment type within the plot. 

 

Data analysis 

Cover values that were available in scores of the scales according to Braun-Blanquet 

(1964; non-decimal) or Londo (1976; decimal) were transcribed into percentage cover values 

for every species, using the mean percent value of the respective class. All cover values, 

including those having been estimated in percent, were then transcribed into the mean 

percent value of the corresponding Braun-Blanquet class, to obtain consistent scaling among 

the data sets. Diversity changes were quantified using a modification of Shannon’s diversity 

index, i.e. true diversity D according to Jost (2006), with D = eH’, where H’ is Shannon’s 

diversity index and D the number of species that would be needed to produce the given 

Shannon diversity value, if cover values were evenly distributed. For comparing the species 

composition of pairs of historical and recent relevés at a site, we calculated the dissimilarity 

index after Lennon (Lennon et al. 2001) with Lennon DI = min (b,c) / [min (b,c) + a], where a 

is the number of species being present in both relevés, b the number of species only 

occurring in relevé 1 and c the number of species only occurring in relevé 2. In contrast to 

other indices of species turnover, the Lennon DI does not generate high dissimilarities from 

high differences in species richness, but concentrates on compositional differences with 

values between 0 (a relevé includes all species of the other relevé) and 1 (no species in 

common). The current red list of endangered ferns and flowering plants of Germany 

(Korneck et al. 1996) was used to identify endangered macrophyte species (see Table 3.2 in 

the Appendix). Plant growth forms were determined after Segal (1968), Mäkirinta (1978) and 

Wiegleb (1991). Information on pollination types was taken from the BiolFlor data base (Klotz 

et al. 2002) and on SLA from the LEDA database (Kleyer et al. 2008). The strategy type 

classification (CRS-system) follows Landolt et al. (2010). Information on leaf longevity and on 

the species’ ecological indicator values for temperature, nitrogen and soil reaction were 

taken from Ellenberg et al. (2001). The Ellenberg indicator values (EIVs), which are based on 

vast expert knowledge about the species, have repeatedly been proven for reliably 

characterizing the environmental conditions of Central European plant communities (Hill et 

al. 2000, Diekmann 2003, Jansson et al. 2007). They were available for all species occurring 

in the analysis except for the two aggregates. To facilitate the analyses, similar plant 

functional groups were aggregated: the pleustophyte group includes lemnids, ricciellids, 

ceratophyllids and hydrocharids; the potamids contain parvo- and magnopotamids. The 

group of zoogamous species contains all species pollinated by insects and/or snails. With 

respect to leaf longevity, only two categories (evergreen and summergreen) were 

distinguished and the analyses were run with the percental proportion of evergreens. 
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All statistical tests and correlation analyses were done with the package SPSS 15.0 

(SPSS Inc., Chicago, USA). When two time steps (1950s vs. 2010/2011) were compared 

and values were normally distributed (according to a Shapiro-Wilk test), the t-test for paired 

samples was used to test for significance. For data that were not normally distributed and 

could not be transformed, the non-parametric Wilcoxon-test was used. When three time 

steps (1950s vs. 1980s vs. 2010/2011) were compared, a repeated measures ANOVA was 

used to test for differences. In cases, where an overall effect was found, the differences 

between the groups were further tested with the Bonferroni post hoc test. The species 

richness estimator indices ACE, ICE, Chao 1, Chao 2, Jackknife 1, Jackknife 2, Bootstrap 

and MMmeans were calculated from species presence/absence matrices with the software 

EstimeS 8.20. An indicator species analysis (ISA) after Dufrêne & Legendre (1997), where 

indicator values are generated from a combination of a species’ frequency and abundance in 

a particular group, was carried out with PCOrd 5.1. ISA analyses comparing historical and 

recent samples were performed for each of the four study regions separately and also for the 

pooled data set across all regions. The indicator values were tested for significance using 

Monte Carlo randomizations with 9999 permutations (Bakker 2008). A detrended 

correspondence analysis (DCA) (Hill & Gauch 1980) was done with Canoco 4.56, where 

information on environmental and biological traits was correlated with the DCA axes in a post 

hoc manner. Traits were calculated for each relevé as means (EIVs, SLA) or proportions 

(growth forms, strategy types, leaf longevity) to be fitted on the ordination space in the form 

of arrows pointing into the direction in which the value of the variable increases (Leps & 

Smilauer 2003). For variables that were not normally distributed we used Spearman 

correlation, for normally distributed variables Pearson correlation. The respective types of 

correlation analysis are listed in Table 3.3 in the Appendix.  

 

Methodological restrictions 

To achieve sufficient comparability among the different data sets, only hydrophytic 

species (plants with morphological adaptations to life in water in the form of submerged or 

floating leaves) were included in the analyses. Amphiphytes and terrestrial plants, which may 

have been present in certain relevés when taken at high water, were excluded, because 

these species were not treated uniformly by the different authors. In the three-step-

comparison (time course analysis), relevés of different sizes had to be compared. The 1950s 

relevés (subset AєB) had the smallest size, the 1980s relevés (set B) were largest and the 

2010/2011 relevés (subset CєB) were intermediate in size. It thus can be assumed that the 

species richness in the 1950s may have been rather underestimated, especially when 

compared to the richness in the 1980s. Despite these methodological shortcomings, it is 

probable that the species pool of each region was adequately characterized in our analysis 
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even with the relatively small relevés of the 1950s, as most water courses were sampled at 

several sites (see also Figure 3.4). 

The reliability of species identification in historical time was not always sufficient. In case 

of two genera with difficult species determination, aggregates were used throughout the 

analyses: the species Callitriche cophocarpa Sendtner, C. obtusangula Le Gall de Kerlinou, 

C. palustris Linnaeus, C. platycarpa Kützing, C. stagnalis Scopoli and C. x vigens Martinsson 

were summarized to C. palustris agg. and the species Ranunculus aquatilis L. and R. 

peltatus von Schrank were summarized to R. aquatilis agg. In the text, aggregates and 

hybrids are referred to as species. The floristic knowledge of the historical author R. Alpers 

was assumed to be very good; only the fact that he mistook Potamogeton natans L. for P. 

nodosus Poiret (based on his own notes as cited in Herr et al. 1989) was taken into account 

by correcting for this mistake. Similarly, the species identifications of D.W. Weber-Oldecop 

were considered to be reliable throughout. Regarding the earliest historical author H. Roll, 

who worked in region 4 (eastern Holstein), it astonishes that the common macrophyte 

Sparganium emersum Rehmann did not appear in his species lists. As taxonomical literature 

was not sufficiently developed in his time, he might have confused this species with Glyceria 

fluitans (L.) Brown (Weber-Oldecop 1982) or Sparganium erectum L.; however, we did not 

change any identification into Sparganium emersum in Roll’s data for not increasing possible 

errors. 

 

Results 

Change in floristic composition and diversity between the 1950s and 2010/2011 

In all 676 historical and recent relevés covered by the analysis, 55 hydrophytic 

macrophyte species were recorded. The number of macrophyte species dropped by 27.5 % 

from 51 species in the 1950s to 37 species in 2010/2011. Four species [Elodea nuttallii 

(Blanchon) St. John, Potamogeton praelongus von Wulfen, P. trichoides von Chamisso & 

von Schlechtendal and Wolffia arrhiza (L.) Wimmer] were recorded in the recent, but not in 

the historical survey. On the other hand, 18 species [Helosciadium inundatum (L.) Koch, 

Hippuris vulgaris L., Juncus bulbosus L., Leptodictyum riparium (Hedwig) Warnstorf, 

Luronium natans (L.) Rafinesque, Nymphaea alba L., Potamogeton acutifolius Roemer & 

Schultes, P. alpinus Balbis, P. angustifolius Presl, P. compressus L., P. filiformis Persoon, P. 

friesii Ruprecht, P. gramineus L., P. obtusifolius Mertens & Koch, P. polygonifolius Pourret de 

Figeac, Ranunculus circinatus Sibthorp, Sparganium natans L. and Utricularia australis 

Brown] were present in the historical, but not in the recent 338 relevés. In region 1 (Ems-

Hunte), the loss in species richness was largest (Table 3.4). Lennon´s pairwise dissimilarity 

between historical and present-day relevés was 0.46 indicating that 46 % of the species of 

an average relevé pair were different and 54 % of the species were identical. Highest 
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dissimilarity between historical and recent relevés (70 %) was observed in the Holstein 

region and lowest (36 %) in the Lüneburg Heath region. The number of red-listed species 

present in the study area dropped by 40 % from 30 in the 1950s to 18 in 2010/2011. 

 

Table 3.4 Total number of species and red-listed species in the 1950s and in 2010/2011 and their 

proportional increase or decrease in the four study regions. The Lennon dissimilarity index describes 

the quantitative species turnover. The assignment of red-listed status refers to the species’ current 

vulnerability status according to Korneck et al. (1996) 

Region No. of 

species 

1950s 

No. of 

species 

2010 

/2011 

Change in 

no. of 

species 

[%] 

No. of red-

listed 

species 

1950s 

No. of red-

listed 

species 

2010/2011 

Change in 

no. of red-

listed 

species [%] 

Lennon’s 

dissimi-

larity 

All regions 51 37 -27. 5 30 18 -40.0 0.46 

Ems-Hunte 37 25 -32.4 20 9 -55.0 0.49 

Lüneburg Heath 31 23 -25.8 14 7 -50.0 0.36 

Harz foothills 27 25 -7.4 10 8 -20.0 0.40 

Holstein 19 17 -10.5 11 4 -63.6 0.70 

 

 

The mean number of species per relevé decreased from 4.7 to 3.8 between the 1950s 

and 2010/2011 (Figure 3.2, Table 3.5 in the Appendix). Simultaneously, the percentage of 

red-listed species per relevé dropped from 20.4% to 8.6%, indicating a disproportionately 

larger decrease in this group. Diversity (true diversity D) declined from 2.8 to 2.3 in the whole 

sample. The indicator species analysis revealed 28 species (51% of the total species pool) to 

be suitable indicators in at least one region for either recent or historical relevés; in other 

words, the 28 species showed either a significant decrease or an increase in at least one of 

the regions (Table 3.6). Twenty-three species showed a decrease or increase between the 

1950s and 2010/2011 that was significant in the whole sample and thus independent from 

the region. Within the species, the direction of change was highly consistent, i.e. nearly all 

species either increased or decreased in the four regions. However, 77 % of the species with 

a significant frequency change decreased or increased in only one or two of the four regions 

pointing to a large regional influence on community change. Only three species (Nuphar 

lutea (L.), Potamogeton perfoliatus L., Ranunculus aquatilis agg.) showed a decrease in 

three of the four regions, only one species (Elodea nuttallii) an increase in three regions. The 

only species, which decreased in all four regions, was the Canadian Waterweed, Elodea 

canadensis Michaux, which thus served as a highly reliable indicator for running waters of 

the 1950s. The four regions differed considerably with respect to the number of decreased 

species. In region 3 (Harz foothills), 15 species decreased, in region 2 (Lüneburg Heath) 13, 

in region 1 (Ems-Hunte) ten, and in region 4 (eastern Holstein) three. The numbers of 

species with frequency increase ranged from one to three in the regions. The ratio of 
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decreased to increased species was highest in region 2 (ratio of 6.5) followed by region 3 

(5.0), region 1 (3.3) and region 4 (3.0), indicating that the losses in species frequency and 

abundance were high in the Lüneburg Heath and comparably low in the Ems-Hunte region 

and in eastern Holstein. In all regions together, 21 species decreased and only 2 species 

increased. 

 

 

Figure 3.2 Species richness, number of red-listed species and diversity (true diversity D) per relevé in 

the 1950s and in 2010/2011 (means ± SE). Differences significant at p<0.001 are marked by ***. The 

assignment of red-listed status refers to the species’ current vulnerability status according to Korneck 

et al. (1996) 
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Table 3.6 Macrophyte species of running waters which have increased or decreased in four north-

west German regions between the 1950s and 2010/2011. Percent frequency (constancy) values are 

shown (historical relevés vs. recent relevés). Arrows indicate the direction of change: ↑ = increase, ↓ = 

decrease. The statistics base on the indicator species analysis; only species which have significantly 

(at p<0.1) decreased or increased at least in one region are listed 

 All regions Region 1 

(Ems-Hunte) 

Region 2 

(Lüneburg 

Heath) 

Region 3  

(Harz foothills)  

Region 4  

(eastern 

Holstein) 

Decreased species      

Callitriche hamulata ↓23.1→12.1*** n.s. ↓67.6→28.7*** n.s. n.s. 

Callitriche palustris agg. ↓41.4→32.0*** n.s. ↓63.9→47.2** ↓56.0→18.7*** n.s. 

Ceratophyllum demersum n.s. n.s. n.s. ↓9.9→3.3+ n.s. 

Elodea canadensis ↓39.9→20.4*** ↓35.9→32.1** ↓52.8→26.9*** ↓20.9→3.3*** ↓50.8→19.7*** 

Fontinalis antipyretica 

(moss) 

↓6.8→3.3+ n.s. ↓14.8→1.9*** n.s. n.s. 

Juncus bulbosus fluitans ↓2.7→0.0** n.s. ↓8.3→0.0** n.s. n.s. 

Lemna minor n.s. n.s. n.s. ↓52.7→33.0** n.s. 

Lemna trisulca ↓15.1→9.5** ↓26.9→21.8* ↓13.2→1.1** n.s. n.s. 

Leptodictyum riparium 

(moss) 

↓5.9→0.0*** n.s. ↓13.0→0.0*** ↓6.6→0.0* n.s. 

Myriophyllum alterniflorum ↓9.5→4.4*** n.s. ↓28.7→13.0*** n.s. n.s. 

Nuphar lutea ↓34.6→24.0*** ↓62.8→51.3** n.s. ↓24.2→18.7* ↓32.8→11.5*** 

Potamogeton alpinus ↓5.3→0.0*** n.s. ↓13.9→0.0*** n.s. n.s. 

Potamogeton crispus ↓18.3→7.4*** ↓16.7→6.4* n.s. ↓42.9→17.6*** n.s. 

Potamogeton friesii ↓9.5→0.0*** n.s. n.s. ↓27.5→0.0*** n.s. 

Potamogeton lucens ↓10.9→3.0*** ↓26.9→9.0*** n.s. n.s. ↓24.6→0.0*** 

Potamogeton natans ↓30.5→10.4*** ↓62.8→26.9*** n.s. ↓39.6→2.2*** n.s. 

Potamogeton obtusifolius ↓1.5→0.0+ n.s. n.s. n.s. n.s. 

Potamogeton pectinatus ↓16.0→10.4** ↓12.8→5.1* n.s. ↓37.4→28.6* n.s. 

Potamogeton perfoliatus ↓12.4→3.0** ↓21.8→3.8*** ↓9.3→1.9* ↓6.6→2.2+ n.s. 

Potamogeton pusillus ↓6.8→3.6** n.s. n.s. ↓15.4→0.0*** n.s. 

Ranunculus aquatilis agg. ↓23.4→8.0*** ↓9.0→2.6+ ↓59.3→23.1*** ↓8.8→0.0** n.s. 

Ranunculus fluitans ↓4.7→2.4* n.s. n.s. n.s. n.s. 

Sparganium emersum ↓52.1→52.1*** ↓41.0→33.3* ↓79.6→78.7+ ↓63.7→50.5*** ↑0.0→31.1*** 

Increased species 

     

Elodea nuttallii ↑0.0→19.8*** ↑0.0→41.0*** ↑0.0→26.9*** ↑0.0→6.6* n.s. 

Lemna gibba n.s. ↑2.6→17.9*** ↑2.8→9.3** ↓20.9→6.6** n.s. 

Myriophyllum spicatum ↑0.9→5.6*** n.s. n.s. ↑1.1→17.6*** n.s. 

Spirodela polyrhiza n.s. ↑21.8→59.0+ n.s. ↑2.2→9.9* n.s. 

     Species without overall increase or decrease 

   

Chiloscyphus polyanthos 

(liverwort) 

n.s. n.s. ↓4.6→0.0+ ↑0.0→5.5+ n.s. 

Numbers of decreased / 

increased species 

21/2 10/3 13/2 15/3 3/1 

n.s. = non-significant, + = p<0.1, * = p<0.05, ** = p<0.01, *** = p<0.00 
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Change in vegetation structure and biological traits between the 1950s and 2010/2011 

The pleustophytic growth form types as well as vallisnerids increased in relative 

abundance from the 1950s to 2010/2011. In contrast, peplids, potamids, batrachids and 

nymphaeids declined. Isoetids disappeared completely (Figure 3.3, Table 3.7 in the 

Appendix). Competitor-strategists proportionally declined, while ruderal- and stress-

strategists increased. The abiotic pollination types anemogamy and hydrogamy declined in 

the study area, while the relative frequency of self-pollinated macrophyte species and 

species pollinated by insects or snails increased. Species with evergreen leaves showed a 

decline, while the proportion of summergreen (short-lived) species increased. Species with a 

high specific leaf area, i.e. with leaves and lamina rich in aerenchymatic tissue, proportionally 

declined from the 1950s to 2010/2011 (Table 3.8). 

 

P
ro

p
o
rt

io
n
 o

f 
lif

e
 o

r 
g

ro
w

th
 f
o

rm
 [
%

]

0

10

20

30

40

1950s

2010/2011 

Ple. Nym.Pep. Pot.Val. Myr. Elo. Bat.Iso.Bry.

***

*

***

***
***

***

**

 

Figure 3.3 Proportions of the different growth forms in the total number of species in the relevés of the 

1950s and 2010/2011 (means ± SE of 338 relevés); Ple. = pleustophytes (lemnids, ricciellids, 

ceratophyllids, hydrocharids), Val. = vallisnerids, Bry. = bryids, Myr. = myriophyllids, Elo. = elodeids, 

Pep. = peplids, Iso. = isoetids, Pot. = parvo- and magnopotamids, Bat. = batrachids, Nym. = 

nymphaeids. Significant differences are indicated (*** = p<0.001, ** = p<0.01, * = p<0.05) 
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Table 3.8 Relative abundance of life strategies (CRS-classification), pollination types, leaf properties 

and mean Ellenberg indicator values among the species of the relevés from the 1950s and from 

2010/2011. Mean values are shown 

Trait 1950s 2010/ 

2011 

Direction of 

change
1
 

T (paired t-test) / 

Z (Wilcoxon test) 

p 

C-strategists [%] 23.9 18.9 ↓ T=5.9 <0.001 

R-strategists [%] 11.2 14.5 ↑ Z=-4.2 <0.001 

S-strategists [%] 64.9 66.6 ↑ Z=-4.2 <0.001 

Anemogamy [%] 43.5 40.6 ↓ Z=-3.4 <0.001 

Hydrogamy [%] 28.5 24.6 ↓ Z=-2.1 0.035 

Autogamy [%] 10.2 11.3 ↑ Z=-3.2 0.001 

Zoogamy [%] 17.8 23.6 ↑ Z=-4.7 <0.001 

Evergreen species [%] 72.5 55.8 ↓ Z=-7.5 <0.001 

SLA [m² kg
-1

] 37.9 29.4 ↓ Z=-8.7 <0.001 

EIV for temperature 5.5 5.5 ↑ Z=-1.9 0.059 

EIV for soil reaction 6.6 6.6 - Z=-1.1 0.271 

EIV for nitrogen 6.1 6.3 ↑ Z=-5.8 <0.001 

       1 
↓ = decrease, ↑ = increase 

 

 

Change in environmental conditions between the 1950s and 2010/2011 

The mean Ellenberg indicator values (EIV) for nitrogen and for temperature, calculated by 

averaging over all species of a relevé, have increased during the six decades of study 

(Table 3.8). No change was observed for the EIV for soil reaction (pH). Some major changes 

(significant at p<0.001) in river hydrography took place since the 1950s: Across all 70 water 

courses, we found an increase in the mean width of the water course (from 7.8 m to 10.1 m), 

an increase in mean water depth (from 0.8 m to 1.1 m), but an apparent decrease in mean 

current velocity in the stream line (from c. 0.30 m s-1 to c. 0.12 m s-1). The relative abundance 

of the different sediment types (more than 50 % sand followed by gravel/stones, mud and 

loam in the order of decreasing frequency) remained relatively stable over time (Table 3.9). 

However, while all rivers were still flowing in their natural beds in the 1950s, reaches of the 

stream Bruchgraben and the river Grawiede (both region 1) have been restructured by 

cementation since then. 
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Table 3.9 Proportion of different sediment types in the 1950s and in 2010/2011 (145 sites, where 

information from the 1950s and 2010/2011 was available, are included) 

Sediment type Proportion in the 1950s [%] Proportion in 2010/2011 [%] 

Sand 55.18 58.12 

Gravel / stones 22.30 19.77 

Mud 13.45 15.75 

Loam 6.78 3.47 

Other (natural) 2.30 2.20 

Other (artificial) 0.00 0.70 

 100.00 100.00 

 

 

Time course of community change: comparing the 1950s, the 1980s and 2010/2011 

The detailed temporal analysis with 100 plots studied in the 1950s, the 1980s and at 

present showed over all regions a continuous decline in total vegetation cover in the relevés 

from 57 % in the 1950s to 43 % in the 1980s and to 28 % in 2010/2011. The absolute 

number of species present declined by 15% between the 1950s and the 1980s and by 

another 12% between the 1980s and 2010/2011. Comparison of the number of observed 

species with the estimated number of species according to species richness estimator 

indices confirms that our analysis captured the present species pool to a large extent in all 

three sampling periods (Figure 3.4). Despite the more or less continuous decrease in the 

over-regional macrophyte species pool size, the four regions followed individual patterns of 

change. A decrease between the 1950s and the 1980s in the total number of species present 

(–19 to 36 %) was recorded only in two of the regions (Ems-Hunte and Harz foothills) and 

none of the regions showed species pool declines of more than 6 % between the 1980s and 

2010/2011 (Figure 3.5a). This pattern was different for the number of red-listed species with 

decreases of 17–59 % in two regions (Ems-Hunte and Holstein) between the 1950s and the 

1980s and further decreases of 20–25 % in all regions except region 1 (Ems-Hunte) in the 

subsequent second time interval (Figure 3.5b). The change in species composition between 

the 1950s and the 1980s (42% of species exchanged) was more profound than the species 

turnover between the 1980s and 2010/2011 (37% of species exchanged). 

Rhizophytes with floating leaves, represented by the growth form types nymphaeids and 

batrachids, declined between the 1950s and the 1980s, while potamids show a decline 

between the 1980s and 2010/2011. Pleustophytes increased between the 1980s and 

2010/2011 (Figure 3.6, Table 3.10 in the Appendix). The relative abundance of species with 

a competitor strategy proportionally declined between the 1950s and 2010/2011 (Figure 

3.7a, Table 3.10 in the Appendix). In contrast, stress-tolerating species increased in the sixty 

years, while species with a ruderal strategy increased between the 1950s and the 1980s. We 

found a shift from a high proportion of evergreen species to a high proportion of 
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summergreen species for the period from the 1980s to 2010/2011 (Figure 3.7b). The 

average specific leaf area (SLA) of the species declined from c. 37 to c. 29 m² kg-1 with a 

large drop since the 1980s (Figure 3.7c). The mean Ellenberg indicator value for nitrogen 

strongly increased between the 1950s and the 1980s, but showed a tendency to decrease 

thereafter (Figure 3.7d). The EIV for soil reaction showed a similar pattern with a peak in the 

1980s. 
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Figure 3.4 Estimated number of species for the 1950s, 1980s and 2010/2011, differentiated by 

regions. Mean values calculated from the species richness estimator indices ACE, ICE, Chao 1, Chao 

2, Jackknife 1, Jackknife 2, Bootstrap and MMmeans for data set B (1980s) and subsets AєB (1950s) 

and CєB (2010/2011). Given are the means and the average standard deviation over all relevés in a 

region 
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Figure 3.5 Total number of species present (a) and number of red-listed species present (b) in the 

1950s, 1980s and in 2010/2011(data sets AєB, B and CєB), differentiated by regions 
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Figure 3.6 Proportions of pleustophytic (lemnid, ricciellid, ceratophyllid and hydrocharid) and 

rhizophytic (nymphaeid, potamid and batrachid) growth form types in the total number of species 

present in the 1950s, 1980s and 2010/2011 (means ± SE of 100 relevés). Different letters indicate 

significant differences between the sampling dates 
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Figure 3.7 Mean relative proportion of (a) different plant strategy types, (b) evergreen species, (c) 

mean specific leaf area and (d) mean Ellenberg indicator values for nitrogen and soil reaction in the 

1950s, 1980s and 2010/2011. Means and standard errors are given (n=100 relevés) 
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The DCA analysis, based on 284 relevés of 100 locations that were sampled three times 

(in the 1950s, the 1980s and 2010/2011), revealed two main axes (eigenvalues 0.607 and 

0.455) with the first axis sharing a close positive correlation with current velocity and a 

negative correlation with the EIVs for soil reaction (pH) and temperature (Figure 3.8, Table 

3.3 in the Appendix). Further, the relative abundance of competitors and of batrachid species 

correlated positively with axis 1, while this axis showed negative correlations with the relative 

abundance of stress tolerators and pleustophytic species. The second axis correlated 

positively with time (i.e. the year of sampling) and the relative abundance of pleustophytes, 

and negatively with SLA, the number of red-listed species per relevé and the relative 

abundance of potamids. 
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Figure 3.8 DCA graph based on 100 relevés from the 1950s resampled in the 1980s and 2010/2011 

together with data (plot-level means) on the abundance of red-listed species, specific leaf area (SLA), 

proportion of evergreen species and plant life / growth forms, strategy type abundance, Ellenberg 

indicator values (EIVs) for nitrogen, temperature and soil reaction, and current velocity. For the 

ordination, species abundances were log-transformed and rare species were down-weighted; 15 

relevés that did not contain macrophytes in recent time and one outlier were excluded 
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Discussion 

Our analysis of long-term vegetation change in 70 water courses of variable size, flow 

velocity and bedrock chemistry in an extended area of north-west Germany showed large 

reductions in the regional macrophyte species pool (-27.5 %) and in plot-level species 

richness (-19.4 %) during the past 60 years or so. The loss in the number of currently red-

listed species (-40.0 %) in the regional species pool was even larger indicating that species 

with specific habitat requirements, which are usually more threatened by habitat change than 

generalist species, were indeed most vulnerable. Species loss was related to marked 

changes in macrophyte community composition with nearly half of the species present in the 

relevés in the 1950s either having disappeared until 2010/2011 or having been replaced by 

other species. The current macrophyte communities are not only species-poorer, but also 

consist of species with higher mechanical stress tolerance as indicated by a reduced specific 

leaf area and shorter leaf duration. A large increase in the relative importance of 

pleustophytic species at the expense of potamid and nymphaeid species reflects the 

profound alteration in community structure during the past 60 years. 

A more detailed analysis showed that species loss and community change occurred more 

or less continuously during the past six decades and may continue if no measures to halt 

biodiversity erosion are taken. However, we found large differences in the temporal evolution 

of vegetation change among the four studied regions, which reflect local developments in 

hydro-engineering and, likely, also in agricultural intensification. The diversity decline in the 

macrophyte vegetation of north-west German lowland water courses over six decades has to 

be attributed to a variety of causes. Increased nutrient inputs with the intensification of 

agriculture since the 1950s have accelerated the eutrophication of most freshwater habitats 

(Ellenberg & Leuschner 2010). The loss of species with preference for oligotrophic waters in 

our study area, such as Helosciadium inundatum, Juncus bulbosus, Luronium natans, 

Potamogeton filiformis, P. polygonifolius, Sparganium natans or Utricularia australis, is most 

likely a direct consequence of eutrophication. The increase in the mean Ellenberg indicator 

value for nitrogen from c. 6.0 to 6.4 between the 1950s and the 1980s reflects increased 

nutrient availability in the water courses. Furthermore, the increase in the pleustophytic 

species Ceratophyllum demersum, Lemna spp. and Spirodela polyrhiza is also most likely a 

consequence of eutrophication. Apart from these species being competitive in exploiting 

nutrients, their free-floating growth forms allow them to remain on or close to the water 

surface, where they can escape light limitation in phytoplankton-rich, turbid water. 

Ceratophyllum demersum is able to relocate its biomass into the uppermost water layer 

(canopy forming) under turbid water conditions (Garniel 2008). Our results are in line with 

findings from streams in the Netherlands, where Mesters (1995) reported a shift from 

submerged to floating-leaved species over several decades, which he explained with 
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increased water turbidity, because floating-leaved and emergent species do not depend on 

light transmission in clear water. 

Potamal rivers are generally more affected by the influx of nutrient-enriched surface water 

from adjacent lands than rhithral water courses, because river water accumulates nutrients, 

while flowing through a catchment area with predominant agricultural land use. In fact, the 

changes in species composition were least pronounced in the groundwater-fed water 

courses of the Lüneburg Heath, which mostly have a rhithral character. While most rhithral 

streams are located in mountainous terrain, a number of running waters in the Lüneburg 

Heath region (region 2) are relatively cool in summer, due to groundwater inflow and thus 

also have rhithral characteristics, despite being located in the lowlands. In contrast, a 

comparatively high species turnover was found in the regions Ems-Hunte and eastern 

Holstein, where potamal rivers prevail in the intensively used agricultural landscape. With the 

embankment of the Dümmer lake and its main tributary Hunte river in 1953, the Dümmer 

lowlands, where the majority of sites in the Ems-Hunte region is located, have been 

transformed from a landscape dominated by swamps and fens to an area, where arable land 

is predominant and high nutrient inputs are affecting the wetland vegetation (Blüml et al. 

2008). This regional development explains the huge loss of diversity in the Ems-Hunte 

region, where some effluents of the Dümmer lake have already reached the hypertrophic 

state (Niedersächsisches Landesamt für Ökologie 2001). 

Since the 1980s, some improvement in the nutrient status of the running waters of north-

west Germany has occurred. The slight decrease in the mean EIV for nitrogen, as observed 

since the 1980s, might reflect a decreased mineral nitrogen load in the studied river systems. 

The most important pathway of nitrogen into the water courses is runoff from agricultural 

lands, which accounts for about two thirds of total input. This diffuse fraction remained 

relatively stable, while inputs from point sources could be substantially reduced between 

1983 and 2005 (German Federal Ministry for the Environment, Nature Conservation and 

Nuclear Safety & German Federal Ministry of Food, Agriculture and Consumer Protection 

2008). The input of phosphorus to surface waters has significantly decreased in the study 

area between 1980 and 1996, mainly as a consequence of reduced phosphorus contents in 

detergents and better sewage treatment (Schulz 1999). It appears that the vegetation is 

responding only slowly to these achievements. 

In consideration of the previously discussed eutrophication effects, our finding of a decline 

in the floating-leaved growth forms nymphaeids and batrachids is somewhat perplexing. 

However, apart from eutrophication effects, the loss in structural diversity of river beds is 

another complex of factors responsible for the macrophyte diversity decline in rivers and 

streams in Central Europe (Wiegleb et al. 1991). Looking at the respective species in detail, 

it becomes obvious that the nymphaeids Luronium natans and Nymphaea alba and the 
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batrachids Potamogeton gramineus and P. polygonifolius as well as a myriophyllid species 

that disappeared, Ranunculus circinatus, are bound to habitats where the water is constantly 

stagnant to slowly flowing (Casper & Krausch 1980, 1981). Due to the anthropogenic 

reduction in structural diversity especially in lowland water courses, areas protected from the 

current, like inlets and shallow sections in the transition zone to floodplains, have become 

rare since the 1950s (Kaiser 1993, Rasper 2001). In 2000, 85% of all river beds in the 

northern German federal state of Lower Saxony were in the state of having a substantially 

modified, unnatural morphological structure (Niedersächsisches Landesamt für Ökologie 

2001). With the aim to speed-up runoff and increase landscape drainage, many river beds 

were deepened and broadened and the river course straightened, resulting in the loss of 

retention areas and in an overall decrease in mean current velocity in the potamal rivers. 

These melioration measures were supplemented by stabilization works on the river beds 

conducted in Lower Saxony particularly between the 1950s and the 1980s 

(Wasserverbandstag e.V. 2011). In regulated lowland rivers, straightened and steep banks 

are limiting macrophyte growth (Lorenz et al. 2012). In addition, most of the studied lowland 

water courses are continuously maintained and hence subject to regular disturbance 

(Federal Water Act of Germany 2009). 

It is thus not surprising that stress-tolerant species make up the largest proportion of the 

macrophyte flora since the 1950s, which is interpreted as a sign that most water courses had 

lost their systems of dead channels and shallow side arms with its characteristic flora already 

decades ago. The proportional increase in the ruderal strategy type, which comprises 

species with a high reproduction rate and the ability of rapidly colonising open sediments, is 

a sign for irregular disturbance by maintenance works in the water courses (Trémolières 

2004). The increase in species with a low specific leaf area may also indicate increased 

disturbance levels in recent time. In general, species with lower SLA and higher tissue 

density have a higher mechanical strength which facilitates survival in waters with higher flow 

velocity. We assume that in deepened and partly canalized water courses with temporarily 

high flow rates and a lack of retention areas, macrophytes with robust structure are favoured. 

We propose that the mean specific leaf area of a macrophyte community and its change over 

time may serve as a suitable indicator of the hydromechanical stress that is imposed on the 

plants as a consequence of river construction works. 

Half of the 18 species that have disappeared in the study area between the 1950s and 

2010/2011 belong to the genus Potamogeton. A severe loss of Potamogeton species was 

also observed in Danish lakes and streams over the last 100 years and was related to low 

remaining habitat diversity and frequent disturbance in our times (Sand-Jensen et al. 2000). 

Our study confirms these findings, as only the fast-growing, disturbance-tolerant pondweeds 

Potamogeton crispus, P. natans and P. pectinatus are still relatively common in north-west 
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Germany. Nevertheless, the frequencies of these species have also decreased since the 

1950s to 60–30 % of their former values. As most Potamogeton species are pollinated by 

water and wind, the decline in potamids resulted in a general decrease in hydrogamous and 

anemogamous species as well. Of the four species which have not been observed in the 

relevés before 2010/2011, Elodea nuttallii is a neophyte that was found in Germany for the 

first time near Münster (Westfalen) in 1953 and is now widespread (Starfinger & Kowarik 

2003). Potamogeton praelongus has always been a rare species in the study area (Casper & 

Krausch 1980), while P. trichoides is a species considered vulnerable in Germany, where it 

has increased in the last decades (Haeupler & Muer 2000, Ludwig et al. 2007). The latter is 

not a typical species of running waters; it is considered to be relatively abundant in ponds, 

ditches and canals throughout its native range in Europe, Asia and Africa (Allen 2011).  

Mean winter temperature in Lower Saxony has risen by 1.9 °C from 1950 to 2005 

(Haberlandt et al. 2010). That summergreen species have experienced a relative increase, 

while evergreen species decreased, is probably mainly a consequence of increased 

disturbance intensity and not related to altered winter temperatures. Summergreens, 

overwintering with seeds or turions in the sediment, may be more tolerant to cold winters 

than evergreen macrophytes. Recent warming may have supported the arrival of Wolffia 

arrhiza, an indicator species for warm temperatures, in the study area in the last decades. 

Further warming may result in profound community change as is indicated by a modelling 

study for Finland, which predicts substantial changes in macrophyte community composition 

by 2050 with an increase in emergent macrophytes that may overgrow sensitive submerged 

macrophyte species (Alahuhta et al. 2011). Nevertheless, in the perspective of two to three 

decades, eutrophication and river-engineering are likely to represent more important threats 

to the river macrophyte vegetation of Central Europe than climate warming. Evidence in 

support of this conclusion is the observed increase in R-strategists and the decrease in mean 

SLA in our data, and the finding of Garniel (1999) that, after decades of intensive water 

course maintenance with machines, the vegetation in many running waters of Schleswig 

Holstein (northern Germany) mainly consists of mowing-tolerant species like Sparganium 

emersum, Nuphar lutea and Potamogeton pectinatus, which place their roots several 

decimetres deep in the sediment.  
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Conclusions 

Our resampling study documents the long-term change in the running water macrophyte 

vegetation of four regions that may be representative for large parts of the northern German 

diluvial lowlands. Both the decrease in the regional species pool and in plot-level diversity 

were dramatic with the consequence that most water courses are colonized nowadays by 

only species-poor, relatively uniform communities that contain a high proportion of species 

adapted to disturbance. While currently red-listed macrophytes were still relatively 

widespread in the 1950s, they are in many cases highly endangered in our times. This is, for 

example, the case for Myriophyllum alterniflorum, Isolepis fluitans (both endangered), 

Zannichellia palustris (near-threatened) and some magnopotamid species that have 

vanished in more than 50 % of the sites visited, where they still occurred in the 1950s. The 

likely causes of the impoverishment are continued nutrient input from intensively managed 

agricultural land that caused the disappearance of oligo- and mesotraphent species and the 

restructuring of most river beds together with the continuous maintenance of water courses; 

these measures resulted in the loss of more stagnant stream and river habitats where stress-

intolerant species are able to persist. Thus, measures to reduce the nutrient load in rivers 

and to re-naturalize the flow regime in selected river sections are urgently needed in order to 

halt and reverse the catastrophic loss of phytodiversity in Central European lowland rivers. 

Both, biodiversity conservation and flood risk management, would profit from the creation of 

floodplain retention areas with a variety of stagnant freshwater habitats. The loss of most 

specialist species in the macrophyte flora largely devaluates this group in its role as an 

indicator of environmental quality in streams and rivers. 
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Abstract  

Long-term change in the macrophyte assemblages of 70 streams and rivers in four 

regions of north-west Germany was examined with a semi-permanent plot design based on 

337 historical vegetation relevés from the 1950s that were repeated in 2010/2011. Plant 

assemblages were classified with two alternative phytosociological approaches based on 

character species and/or dominant species. Over the ~60 years, the structure and 

composition of the vegetation changed profoundly in all four regions, even though local 

differences in vegetation dynamics existed. In general, stands assignable to the alliances 

Ranunculion (Batrachion) and Potamogetonion (assemblages dominated by submerged 

rooted plants) decreased greatly in frequency while Nymphaeion stands (dominated by 

floating-leaved rooted plants) increased. Communities weakly characterized by diagnostic 

species increased revealing losses of specialist taxa and homogenization of the 

assemblages; macrophyte community diversity at the landscape level decreased. 

Eutrophication, hydraulic engineering and regular maintenance works in the water courses 

are discussed as likely causes of the vegetation change. We conclude that decade-long 

human impact on river hydraulics and chemistry has significantly reduced both plot-level 

species richness and community diversity at the landscape level, profoundly altering the 

relative abundance of the assemblages. 

 

Keywords: Ellenberg indicator values, eutrophication, phytosociological classification, 

reduction in community diversity, re-sampling study 

 

Introduction 

Streams and rivers and their macrophyte vegetation are among the ecosystems most 

severely affected by agricultural intensification in the world’s industrialized regions 

(Malmqvist & Rundle 2002, Ellenberg & Leuschner 2010). In the lowlands of northern Central 

Europe, for example, the amounts of N and P fertilizers applied to arable fields and 

grasslands increased more than fourfold from the 1950s to the 1980s resulting in greatly 

increased nutrient inputs into the running waters and causing widespread eutrophication 

(Gelbrecht et al. 1996, Behrendt et al. 1999). In the course of floodplain melioration, many 

river beds were straightened and deepened to improve landscape drainage, and adjacent 

semi-aquatic habitats transformed to agricultural land. During the last four to six decades, the 

combined impact of nutrient addition and river engineering has fundamentally altered the 

structure of the macrophyte vegetation in the water courses of many Central European 

regions (Herr et al. 1989a, Fischer 1995, Whitton et al. 1998, Schütz et al. 2008). While long-

term monitoring data of macrophyte vegetation change are very scarce, a number of re-
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sampling studies in Central, Western or Northern Europe documented reductions in plot-level 

diversity and impoverishment of the regional macrophyte species pool (e.g. Riis & Sand-

Jensen 2001, Bouxin 2011, Steffen et al. 2013). For certain target species or genera with 

indicative value (such as Potamogeton), more detailed information does exist (Wiegleb et al. 

1991, Preston 1995). However, the bulk of studies focused on relatively small areas with the 

consequence that a broader perspective of long-term change and impoverishment in the 

macrophyte vegetation has not yet emerged. The existing data demonstrate that change has 

not only reduced plot-level diversity in many macrophyte communities, but has also resulted 

in marked shifts in the species composition of the assemblages and in the relative 

abundance of the communities at the landscape scale. There is a need for cross-regional 

assessments of long-term community change in the macrophyte vegetation of running waters 

in Europe and elsewhere. This information could help to improve conservation programs for 

the endangered stream and river biota and it would allow conclusions on long-term habitat 

quality change in running waters beyond the insights gained from official monitoring 

programs that cover only a few hydro-chemical and -biological state parameters. 

The community-based assessment of macrophyte vegetation change is hampered by 

the fact that vegetation classification in limnic habitats is more difficult than in most terrestrial 

habitats (Pearsall 1918, Haury & Muller 2008). Problems identified include the considerable 

morphological plasticity of many species (Weber 1976), an often heterogeneous vegetation 

data basis with non-consistent plot sizes (Wiegleb 1981), the relatively low number of 

obligate hydrophytes in many communities, and the fact that many macrophyte species can 

form monospecific stands covering several square metres (Sculthorpe 1967, Best 1988). 

Consequently, a number of concepts of macrophyte community classification have been 

proposed, but consensus on the most suitable method does not exist. The approaches either 

adopt the traditional phytosociological association concept based on the identification of 

characteristic species (e.g. Roll 1939, Weber-Oldecop 1970, Preising et al. 1990, Pott 1995), 

use morphological growth forms for classification (Herr et al. 1989b, Dawson et al. 1999), 

apply numerical methods and similarity or dissimilarity indices for vegetation clustering (Paal 

et al. 2007), or combine two or more of these concepts (Berg et al. 2004, Chytrý 2011). 

There has been some discussion on the usefulness of applying phytosociological 

approaches to aquatic plant assemblages. In studies carried out in the tradition of the Zürich-

Montpellier school, the criterion of homogeneity often has led to the selection of relatively 

small relevé sizes (Braun-Blanquet 1964, Passarge 1982) resulting in nearly as many 

aquatic plant associations described as there are hydrophytic macrophyte species 

(Rennwald 2000). Since about the 1970s, the sampling of larger plots became more common 

and stretches of 50 m to several kilometres length along rivers of any size were investigated 

(e.g. Holmes & Whitton 1977, Kohler 1978, Riis et al. 2000, van de Weyer 2001). Such large 
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plots seem to be quite suitable for classification, because they are more likely to contain 

characteristic combinations of taxa and not only species-poor mono-dominant stands, but 

plots of large size will inevitably cover habitat mosaics due to gradients in water depth, 

current velocity, shading intensity and other factors, thus violating a basic assumption of the 

community concept.  

In this study, which is complementary to an earlier study analysing species diversity 

changes in north-west German running waters (Steffen et al. 2013), we attempt to analyse 

the long-term change in the macrophyte assemblages of streams and rivers in north-west 

Germany over six decades with a focus on the community and landscape level. We 

conducted a re-sampling study in more than 300 semi-permanent vegetation plots in four 

regions covering a broad variety of stream and river habitats. The regions may be 

representative for large parts of the diluvial lowlands of northern Central Europe. By 

comparing the species composition and relative abundance of macrophyte assemblages in 

the regions for the 1950s and for 2010/2011, we addressed the following questions: (1) How 

has macrophyte community structure and the vegetation mosaic in streams and rivers 

changed as a consequence of agricultural intensification and water course management 

since the 1950s? (2) What do the individual developments of the macrophyte assemblages in 

the four studied regions tell us about the drivers of change? And (3) does a community and 

landscape level analysis increase our understanding of anthropogenic vegetation change 

beyond insights already gained from comparative plot-level diversity analyses? 

 

Materials and methods 

Study area 

The 70 sampled streams and rivers are located in four regions of the north-west German 

Pleistocene lowlands (federal states of Lower Saxony, Schleswig-Holstein and North Rhine- 

Westphalia): (1) the Ems-Hunte moraine country with acid, base-poor moraine soils and 

bogs and (2) the Lüneburg Heath (including the Aller lowlands) with base-poor, sandy soils, 

both formed by the penultimate (Saale) Ice Age, (3) the northern Harz foothills (including 

some sites at the base of the Weser-Leine uplands) with fertile Pleistocene loess, and (4) the 

eastern Holstein moraine country with more base-rich young moraine soils of the last 

(Weichsel) Ice Age (Figure 4.1). The studied streams and rivers cover a broad range of water 

course types with small to medium size (1–40 m in diameter and 0.2–2 m in depth), current 

velocities between 0 and 50 cm s-1 and sandy to loamy sediments partly overlain by organic 

deposits or gravel. The catchments of all rivers are part of the cultural landscape of north-

west Germany consisting of a mosaic of arable fields, pastures, meadows, forests and 

settlements. While the river sediments of the study regions 1 and 2 are base-poor and those 

of the regions 3 and 4 moderately base-rich, all rivers are receiving considerable nutrient 
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loads from the adjacent intensively managed agricultural land in recent time. Due to the 

oceanic influence, the north-west German lowlands have a humid climate, characterized by 

relatively warm summers and relatively mild winters with short frost periods. Mean annual 

temperatures range around 9 °C, with the lowest mean temperature in January (0.4 °C 

Braunschweig, Lower Saxony) and the highest mean temperature in July (17.2 °C Hannover, 

Lower Saxony). The average annual precipitation ranges between 656 mm yr-1 (Hannover) 

and 754 mm yr-1 (Kiel, Schleswig-Holstein) (climate data taken from Deutscher Wetterdienst 

2013).  

 

 
 

Figure 4.1 Location of the study sites (open squares) within four regions of NW Germany: region 1 = 

Ems-Hunte moraine, region 2 = Lüneburg Heath (including the Aller lowlands), region 3 = (a) northern 

Harz foothills and (b) base of the Weser-Leine uplands and region 4 = eastern Holstein moraine 

 

Historical data 

We used 337 historical vegetation relevés taken from the Reinhold-Tüxen-Archiv, 

Hannover (Hoppe 2005; sampled by R. Alpers, R. Tüxen and A. von Hübschmann) and from 

the literature (Roll 1939, Weber-Oldecop 1969), dating back to between 1936 and 1969, 

which are referred to as 1950s data. Plot sizes ranged between 1 and 100 m². Since it has to 

be assumed that species identification in the genera Callitriche and Ranunculus was not 

always appropriate in former times, the taxa Callitriche cophocarpa, C. obtusangula, C. 
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palustris, C. platycarpa and C. x vigens were summarized as C. palustris agg., while 

Ranunculus aquatilis and R. peltatus were summarized as R. aquatilis agg. The aggregates 

were used throughout the entire analysis and are referred to as species. As mentioned by 

Berg et al. (2004), it cannot necessarily be taken for granted that, in historical relevés, 

Lemnetea species were always noted during the documentation of a Potamogetonetea 

assemblage. However, in the case of the historical data used by us, lemnid species are 

frequently present in the Potamogetonetea relevés of all authors with the exception of the 

data of von Hübschmann (5 relevés of this author were included) suggesting that Lemnetea 

species were in most cases not ignored. 

 

Sampling design and field methods 

The historical vegetation relevés were repeated in the summers of 2010 and 2011 at the 

original sampling locations as indicated in the description or at the closest point, where 

vegetation was well developed. We sampled a plot size of 100 m². Vegetation was inspected 

by means of wade trousers and a telescopic rake. Within a plot, the cover values of all plants 

rooting below the water surface were recorded. Additionally, the width and depth of the reach 

as well as the current velocity in the stream line (drift method, Weber-Oldecop 1969) were 

determined. 

 

Data analysis 

Seventy-nine species (all hydrophytes and those helophytes that are mentioned as 

character species in the literature) were included in the analyses. To relevés taken with the 

Braun-Blanquet cover class scores, we assigned the central numerical value of that class. 

We applied two alternative classification systems to the data set. First, the relevé material 

was classified by means of phytosociological character species following Preising et al. 

(1990), whose system was developed specifically for the freshwater plant assemblages of 

the north-west German lowlands, and after Schubert (2008) for bryophyte-dominated 

communities. In this approach, helophytes were only considered for classification in relevés 

that contained no hydrophytes. Since lemnid species are displaceable in running waters, 

relevés were only grouped as Lemnetea communities, if no rhizophytic hydrophytes were 

present. 

Alternatively, the relevés were classified with the recently introduced 

phytosociological approach of Chytrý (2011) developed for the macrophyte vegetation of the 

Czech Republic. As a modification from this approach, we used lower cover threshold values 

for the assignment of relevés to an association: For reducing the proportion of relevés that 

were not assignable to defined associations, we adopted in the historical data set thresholds 

of 15% and 25%, respectively, where 25% and 50% had been defined in the Czech system. 
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In the 2010/2011 data, we set the cover threshold even to 2 %, because the recent plot size 

was on average larger than in the 1950s and we sought for a conservative assessment of 

community-level change by defining a low cut-off level which again reduced the number of 

non-assignable macrophyte stands. In the approach of Chytrý (2011), character species of 

the Batrachion associations are given a higher indicative value than those of the 

Potamogetonion associations, followed by those of Nymphaeion associations and finally by 

character species of the Lemnetea and Phragmito-Magno-Caricetea communities. The 56 

historical and 128 recent relevés, that were not assignable after applying these rules, were 

grouped with the association to which the most similar relevé according to the Bray Curtis 

similarity index had been classified. The Bray Curtis index is defined as:  

SBC= 2W/(A+B),  

where W is the sum of the lower cover values from each pair of shared species of the 

samples A and B, A is the sum of the cover values of all species in sample A, and B is the 

sum of the cover values of all species in sample B. 

Unweighted Ellenberg indicator values (EIVs) for temperature, soil reaction (pH) and 

nutrients (Ellenberg et al. 2001) were calculated as means per plot and used as an indicator 

for environmental conditions. Differences between several groups of relevés were tested for 

significance (p<0.05) with a Tukey post hoc test. A detrended correspondence analysis 

(DCA, Hill & Gauch 1980) was conducted with the software Canoco 4.56 (Biometrics, 

Wageningen, NL). For every pair of historical and recent relevés at a given site, successional 

vectors translated to the origin (McCune et al. 2002) were calculated with the program 

PCOrd 5.1 (MjM Software, Gleneden Beach, US). The same was done for the summarized 

data for each of the 70 investigated running waters. The vector lengths were determined with 

the Pythagorean Theorem to analyze the vegetation change over time at the regional level 

and in relation to environmental and hydrographic factors. The factors were correlated with 

the DCA axes in a post hoc manner. Spearman rank correlation was used, since the axes 

scores and successional vector lengths were not normally distributed; the significance levels 

for the correlations are not based on a permutation test, but are given to indicate the 

strengths of the relationships. For placing the communities in a two-dimensional niche space 

defined by current velocity and the EIV for nutrients, the minima and maxima of the two 

variables observed in the respective vegetation unit were used. The average similarity (SBC) 

between the historical and recent assemblages was calculated from all possible pairs of data 

summarized per river (species lists and numbers of occurrences) and compared with a 

Wilcoxon test. All statistical tests were carried out with the software SPSS 15 (SPSS Inc., 

Chicago, USA). 
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Results 

Vegetation change in river macrophyte assemblages over 60 years as revealed by the 

classification after Preising et al. (1990) 

In total, 79 taxa of higher plants and mosses (60 hydro- or amphiphytic and 19 

helophytic taxa) were recorded in the streams and rivers of the four study regions (Tables 

4.1a and 4.1b in the Appendix). Applying the phytosociological classification system of 

Preising et al. (1990), ninety-five percent of the relevés taken in historical time or in 

2010/2011 could be assigned to phytosociological units within the class Potamogetonetea, 

which contains all submerged or floating-leaved, rooted vascular plant vegetation types of 

European fresh waters (Table 4.2). About five percent of the relevés in 2010/2011 (none in 

the 1950s) referred to the class Lemnetea, i.e. free-floating macrophyte carpets at the 

surface without presence of rhizophytic hydrophytes. Within the principal macrophyte class 

Potamogetonetea, all three orders recognized by Preising et al. (1990) were represented by 

relevés. The most widespread assemblage at the association level was in the 1950s the 

Callitricho-Myriophylletum (in the alliance Ranunculion fluitantis and the order Callitricho-

Batrachietalia) with ~28 % of all relevés, followed by the Potamogetonetum lucentis (in the 

alliance Potamogetonion lucentis and the order Potamogetonetalia; 12 %). In historical time, 

18 % of the relevés referred to assemblages characterized by pondweeds (order 

Potamogetonetalia) and 15 % to relevés characterized by floating-leaved, rooted 

Nymphaeetalia assemblages. About six decades later, the relative frequency of the most 

widespread association, the Callitricho-Myriophylletum, has greatly decreased (-32 %). Large 

decreases were also recorded for most of the pondweed assemblages, notably the formerly 

widespread Potamogetonetum lucentis (-78 %) and the assemblages in the order 

Potamogetonetalia in general (-58 %). The number of relevés assigned to the 

Potamogetonetum lucentis remained constant over time in the Lüneburg Heath (region 2), 

but decreased greatly in the Ems-Hunte and eastern Holstein regions, where this community 

formerly occurred at 22 and 14 sites, respectively, and decreased to three sites each in 

2010. Marked decreases were also found in the once more frequent Ranunculion fluitantis 

assemblage Ranunculo-Sietum (-47 %). 

In contrast, more frequently occurring in 2010/2011 were assemblages of the 

Nymphaeetalia order (+44 %) with the association Sparganio-Elodeetum (+46 %). The 

Myriophyllo-Nupharetum and the Sparganio-Elodeetum stands occur only in streams with 

low current velocities (Figure 4.2a) and were mainly restricted to region 1 (Ems-Hunte 

moraine) in both surveys. Water lens carpets (class Lemnetea) apparently occurred more 

frequently in running waters in 2010/2011 than in the 1950s, with fragments of the alliances 

Lemnion gibbae and Lemnion trisulcae found in region 4 (eastern Holstein), where rivers 

often flow through lakes with stagnant waters. Two moss-dominated relevés originating from 
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region 3 (northern Harz foothills) from 2010/2011 were assigned to the class Fontinalietea, a 

few helophytic assemblages to the class Phragmitetea (reed vegetation). Among the each 

337 relevés taken in the two surveys, the number of relevés assignable to the association 

level decreased by a fourth from 198 (59 % of the total) in the 1950s to only 145 (43 %) in 

2010/2011, indicating that more than half of the recent relevés lacked diagnostic taxa for the 

association level. 
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Figure 4.2 (a) Current velocity and mean Ellenberg indicator values for (b) nutrients, (c) soil reaction 

and (d) temperature in six important macrophyte associations in the 1950s and 2010/2011 (198 

relevés from the 1950s and 145 relevés from 2010/2011; given are means ± SE). Different letters 

indicate significant differences between the periods. Pot.luc. = Potamogetonetum lucentis, M.-Nuph. = 

Myriophyllo-Nupharetum. S.-Elod. = Sparganio-Elodeetum, Ran.flu. = Ranunculetum fluitantis, C.-

Myri. = Callitricho-Myriophylletum, R.-Siet. = Ranunculo-Sietum. Only one Ranunculo-Sietum relevé 

from the 1950s contained information about current velocity 

 

a) 

b) 

c) d) 
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Table 4.2 Number of relevés assignable in the 1950s or in 2010/2011 to macrophyte classes, orders, 

alliances or associations according to the phytosociological system after Preising et al. (1990). At the 

order, alliance and association level, only syntaxa of the most widespread class Potamogetonetea are 

listed. In the two survey periods, 337 and 327 relevés were analyzed. The change between the 1950s 

and 2010/2011 is expressed in percent loss or gain in frequency 

 No. of relevés 

in the 1950s 

No. of relevés 

in 2010/2011 

Change [%] 

Lemnetea - 18  

Potamogetonetea 336 305 -9.2 

Phragmitetea 1 7 +85.7 

Platyhypnidio-Fontinalietea antipyreticae - 2  

No macrophyte vegetation present - 5  

    
Orders in Potamogetonetea    

Potamogetonetalia 59 25 -57.6 

Nymphaeetalia 52 92 +43.5 

Callitricho-Batrachietalia 219 183 -16.4 

    
Alliances in Potamogetonetea    

Potamogetonion graminei 1 -  
Potamogetonion lucentis 41 11 -73.2 
Potamogetonion pusilli 16 10 -37.5 
Nymphaeion albae 40 75 +46.7 
Hydrocharition 2 -  
Ranunculion fluitantis 212 171 -19.3 

    
Associations in Potamogetonetea    

Potamogetonetum lucentis 40 9 -77.5 
Myriophyllo-Nupharetum luteae 12 11 -8.3 
Sparganio-Elodeetum 24 44 +45.5 
Ranunculetum fluitantis 10 7 -30.0 
Callitricho-Myriophylletum alterniflori 95 65 -31.6 
Ranunculo-Sietum erecti-submersi 17 9 -47.1 

    
Assignable to association level 198 145 -26.8 

Assignable only to alliance level 115 135 +14.8 

Assignable only to order level 18 47 +61.7 

Assignable only to class level 6 5 -16.7 

 

 

Vegetation change as revealed by the classification system after Chytrý (2011) 

When applying the classification system of Chytrý (2011), nearly all 674 relevés could be 

assigned to one of 30 associations of this system (including the Elodea nuttallii dominance 

stand). Assignment was not possible for five relevés that referred to river sections devoid of 

macrophyte vegetation in 2010/2011. The Czech system does not contain the level of orders, 

but a rough congruence between Preising’s Batrachietalia, Potamogetonetalia and 

Nymphaeetalia orders with Chytrý’s Batrachion, Potamogetonion and Nymphaeion alliances 

does exist. Analysis of community change based on the Chytrý (2011) classification indicated 

that only a few historical Batrachion and Nymphaeion stands were replaced by 

Potamogetonion stands in 2010/2011, while many of the former Potamogetonion stands 
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changed into Lemnetea and Nymphaeion stands in recent time (Table 4.3). The proportional 

increase of macrophyte communities assignable to the class Lemnetea and the alliance 

Nymphaeion, being typical for potamal water courses, as found in the Preising approach was 

confirmed with the Chytrý approach (Figure 4.3). Especially in the regions 1 (Ems-Hunte) 

and 4 (Holstein), communities adapted to very low current velocities increased in the rivers 

and streams. Dominance stands of Elodea nuttallii were exclusively observed in the regions 

1 and 2. 
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Figure 4.3 Proportion of different synsystematic groups of macrophyte assemblages (classification 

after Chytrý 2011) in the total number of relevés of the four studied regions in the 1950s and 

2010/2011 (78 semi-permanent plots in region 1, 108 in region 2, 91 in region 3 and 60 in region 4) 
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Table 4.3 Temporal change in the macrophyte vegetation stands as mirrored in the system of Chytrý 

(2011) with the assignment of the relevés to associations in the 1950s (rows) and in 2010/2011 

(columns) (associations 1 to 31 with 1= Lemnetum minoris, 2= Lemnetum gibbae, 3= Lemno-

Spirodeletum polyrhizae, 4= Lemnetum trisulcae, 5= Lemno-Utricularietum, 6= Ceratophylletum 

demersi, 7= Hydrocharitetum morsus ranae, 8= Potamogetonetum crispi, 9= Potamogetonetum 

natantis, 10= Potamogetonetum pectinati, 11= Potamogetonetum pusilli, 12= Elodeetum canadensis, 

13= Potamo pectinati-Myriophylletum spicati, 14= Groenlandietum densae, 15= Potamogetonetum 

tenuifolii, 16= Potamogetonetum zizii, 17= Potamogetonetum friesii, 18= Potamogetonetum lucentis, 

19= Potamogetonetum denso-nodosi, 20= Potamogetonetum crispo-obtusifolii, 21= Potamogetonetum 

perfoliati, 22= Scirpo fluitantis-Potamogetonetum polygonifolii, 23= Parvo-Potamo-Zannichellietum 

pedicellatae, 24= Nymphaeo albae-Nupharetum luteae, 25= Nymphaeetum albae, 26= Ranunculetum 

fluitantis, 27= Callitricho hamulatae-Ranunculetum fluitantis, 28= Myriophylletum alterniflori, 29= 

Glycerio-Sparganietum, 30= Beruletum erectae, 31= Elodea nuttallii dominance stands and no. veg.= 

vegetation-free). The numbers give the number of assigned stands (relevés). Numbers in grey fields 

refer to vegetation stands assigned to the same association in the 1950s and in 2010/2011 

Asso-

ciation
1 3 4 5 6 8 9 10 11 12 13 18 19 20 21 23 24 26 27 28 29 30 31

no 

veg.
∑

1 1 1 1 2 1 3 1 10

2 1 1 2

3 1 1

4 1 1

5 1 1

7 1 1 2

8 1 1 1 1 2 1 2 1 10

9 6 4 2 5 3 1 7 1 29

10 1 2 9 1 3 4 1 1 22

11 1 1 3 1 3 9

12 2 1 2 3 7 2 2 1 1 21

13 2 1 1 1 5

14 1 1 2

15 1 1 2

16 1 1

17 1 2 1 4

18 3 1 2 3 1 4 3 2 9 1 1 30

19 1 1 2

20 1 1

21 1 1 2 2 2 1 5 1 1 1 17

22 1 1

23 1 1 2 2 2 7 15

24 1 2 1 3 1 2 2 1 1 5 3 1 20 1 2 1 1 2 2 52

25 1 1

26 1 1 1 1 2 5 1 12

27 1 2 2 1 3 2 1 2 4 5 9 14 2 2 50

28 1 2 1 2 2 8 1 17

29 1 1

30 1 1 3 4 1 3 2 1 16

∑ 10 5 1 3 4 9 19 22 4 18 22 12 3 1 15 8 80 16 20 30 10 12 8 5 337

Lemnetea

P.-M.-

Cari-

cetea

Potamogetonion
Batra-

chion

Nym-

phae-   

ion
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Environmental change at the community level since the 1950s 

The detrended correspondence analysis of all relevés assignable to the association 

level in Preising’s system showed a relatively clear division between the communities of 

potamal, more gently flowing water course reaches, which represent units of the 

Nymphaeion albae and Potamogetonion lucentis alliances, and those of smaller water 

course reaches with higher current velocities, which were assigned to the Ranunculion 

fluitantis alliance (Figure 4.4). While the first DCA axis revealed a strong negative correlation 

with various abiotic site factors, notably water depth and the EIVs for temperature, soil 

reaction and nutrients, and a positive relation to current velocity, the second axis correlated 

positively with time (sampling years) and negatively with current velocity (Table 4.4). Analysis 

of environmental change over time in waters colonized by the six most frequent macrophyte 

associations showed that in two of the six communities (Myriophyllo-Nupharetum and 

Sparganio-Elodeetum), the mean EIV for nutrients was significantly higher in 2010/2011 than 

in the 1950s (non-significant trend also in the Callitricho-Myriophylletum). In the 

Ranunculetum fluitantis, the mean EIV for nutrients was high in both periods (c. 6.7; Figure 

4.2b). No significant change over time was found for the mean EIV for soil reaction; the 

Ranunculo-Sietum (only recorded in region 3: Harz foothills) had a particularly high mean 

EIV for soil reaction in both periods (Figure 4.2c). Interestingly, we found in none of the six 

assemblages a significant increase in the EIV for temperature over the six decades (Figure 

4.2d), even though the communities differ considerably in their apparent thermal 

requirements. The Ranunculetum fluitantis showed even a significant decrease in EIV-T 

between the 1950s and 2010/2011. The current velocity measurements indicate a broad 

range of characteristic flow ranges for the six assemblages with nearly stagnant waters 

characterizing the sites of the Myriophyllo-Nupharetum and highest velocities found at the 

sites of the Ranunculetum fluitantis and Callitricho-Myriophylletum (Figure 4.2a). At the sites 

of the Potamogetonetum lucentis and Callitricho-Myriophylletum, current velocity has 

apparently decreased since the 1950s. Linking the pairs of plots of a given site with 

successional vectors in the ordination space revealed an overall change among the 

communities in the negative direction of DCA axis 1. This axis correlated negatively with river 

width (reach size) and the EIVs for nutrients and temperature (Figure 4.5, Table 4.5 in the 

Appendix), thus pointing to general increases in nutrient availability, temperature and river 

width over the 60 years. When grouped by region, the successional vectors of the region 2 

(Lüneburg Heath) correlated positively with increasing EIVs for temperature, soil reaction and 

nutrients and that of region 4 (eastern Holstein) with river width and depth (Table 4.6). 

Summarizing the vegetation change observed in each of the 70 rivers confirmed a general 

path of vegetation succession over the 60 years, which followed rising nutrient availabilities 

and an increase in water course size reflecting river engineering works (Figure 4.6, Table 4.7 
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in the Appendix and Table 4.8). The average similarity between the macrophyte 

assemblages of all possible pairs of rivers was significantly (p<0.001) lower in the historical 

(SBC=0.22) than in the recent (0.25) vegetation data. Figure 4.7 suggests that the historical 

macrophyte assemblages seem to have occurred under a wider range of nutrient 

availabilities and current velocities than the recent assemblages. 
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Figure 4.4 DCA graph showing all relevés that could be assigned to associations after Preising et al. 

(1990) (198 relevés from the 1950s and 145 relevés from 2010/2011). Environmental variables were 

included as additional information. See Table 4.4 for correlations of the DCA axes with environmental 

factors 

 

Table 4.4 Correlation coefficients after Spearman and p values of the relationships between time 

(sampling years) or environmental variables and DCA axes 1 and 2 for 343 relevés that were 

classified to the association level following Preising et al. (1990) 

Parameter r DCA axis 1 p r DCA axis 2 p 

Time -0.20 ***<0.001 0.44 ***<0.001 
Current velocity 0.53 ***<0.001 -0.35 ***<0.001 
Reach width -0.32 ***<0.001 -0.01 0.854 

Reach depth -0.49 ***<0.001 0.02 0.709 
EIV - temperature -0.59 ***<0.001 -0.09 0.099 
EIV - soil reaction -0.22 ***<0.001 0.14 *0.012 

EIV - nutrients -0.34 ***<0.001 0.08 0.138 
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Figure 4.5 Successional vectors translated to origin (1950s) of 325 pairs of vegetation relevés (1950s 

– 2010/2011 contrast) assigned to a vegetation unit according to the system of Chytrý (2011) or 

referring to Elodea nuttallii dominance stands with the arrow pointing to the corresponding 2010/2011 

relevé (grey arrows). The resulting direction of overall change is indicated with a dotted arrow, the 

directions of change for the relevés of each region are indicated with black arrows. Seven relevé pairs 

containing outliers were omitted. See Table 4.5 in the Appendix and Table 4.6 for correlations of the 

DCA axes and the successional vectors with environmental variables 

 

 

Table 4.6 Correlation coefficients after Spearman and p values of the relationships between 

environmental variables (changes over time per plot) and the successional vector lengths for a total of 

650 relevés that were used for the trajectory analysis, differentiated after regions 

Parameter All 
regions 

p Regi-
on 1 

p Regi-
on 2 

p Regi-
on 3 

p Regi-
on 4 

p 

Change in 
current velocity 

-0.11 0.053 0.03 0.827 0.08 0.427 -0.09 0.393 0.08 0.563 

Change in reach 
width 

0.04 0.525 0.19 0.102 0 0.954 -0.07 0.528 0.27 *0.043 

Change in reach 
depth 

-0.02 0.730 -0.02 0.842 0 0.754 -0.07 0.540 0.27 *0.046 

Change in EIV - 
temperature 

-0.02 0.719 -0.05 0.694 0.32 ***<0.001 0.05 0.650 -0.26 0.055 

Change in EIV - 
soil reaction 

-0.06 0.280 -0.08 0.514 0.21 *0.031 -0.11 0.305 -0.26 0.050 

Change in EIV - 
nutrients 

0.09 0.126 -0.03 0.788 0.42 ***<0.001 -0.01 0.909 -0.03 0.808 
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Figure 4.6 Successional vectors translated to origin (1950s) of the summarized relevés for each of the 

70 streams or rivers in the four studied regions (thin arrows, 1950s – 2010/2011 contrast) together 

with environmental variables (thick arrows). See Table 4.7 in the Appendix and Table 4.8 for 

correlations of the DCA axes and successional vectors with environmental factors 

 

 

Table 4.8 Correlation coefficients after Spearman and p values of the relationships between 

environmental variables (changes over time per running water) and the successional vector lengths for 

70 streams or rivers, differentiated after regions 

Parameter All 
regions 

p Regi-
on 1 

p Regi-
on 2 

p Regi-
on 3 

p Regi-
on 4 

p 

Change in 
current velocity 

-0.15 0.350 0.20 0.470 0.11 0.680 -0.10 0.873 -0.37 0.468 

Change in reach 
width 

0.27 0.103 0.14 0.642 0.14 0.628 -0.40 0.600 -0.26 0.623 

Change in reach 
depth 

-0.24 0.121 -0.17 0.531 -0.16 0.576 -0.30 0.624 -0.49 0.329 

Change in EIV - 
temperature 

0.06 0.607 -0.26 0.259 0.35 0.085 0.07 0.761 0.6 0.208 

Change in EIV - 
soil reaction 

0.22 0.064 0.18 0.437 0.29 0.161 0.03 0.917 0.6 0.208 

Change in EIV - 
nutrients 

0.36 **0.002 0.46 *0.035 0.42 *0.038 0.34 0.158 0.43 0.397 
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Figure 4.7 Ecograms with the two environmental axes current velocity and Ellenberg indicator value 

for nutrients plotted for (a) five vegetation units classified after Chytrý (2011) in the 1950s and (b) in 

2010/2011 (in 2010/2011, Elodea nuttallii dominance stands were additionally plotted) 

 

 

 

Discussion 

Weaknesses and strengths of the sampling and classification approaches 

The sampling and classification of river macrophyte vegetation is associated with a 

number of problems that relate to the biology of the macrophyte flora, the linear structure of 

the ecosystem with steep environmental gradients from the river bank to the stream line, and 

the high dynamics of the assemblages (Mitchell & Rodgers 1986, Boschilia et al. 2008, 

Haury & Muller 2008). In running waters, stochastic events are more important than in 

stagnant waters, many taxa are highly plastic, and species richness is typically relatively low 

(Gessner 1955, Haslam 1987). Most historical vegetation relevés in European inland waters 

were taken in the tradition of the Zürich-Montpellier school of vegetation science with small 

plot sizes (typically < 30 m2) and preferential selection of vegetation stands with presence of 

diagnostic species. Such an approach may overestimate mean species richness and might 

be biased in terms of representativeness of community composition and structure. For the 

sake of comparability, we took the recent relevés as close as possible to the historical sites 

and also selected the precise plot location preferentially in the same manner as six decades 

ago. The classification of the relevé material also requires taking subjective decisions in the 

analysis and different classification systems necessarily lead to partly deviating results.  

Our study aim was not to assess the goodness of the two applied classifications, but we 

asked what information can be gained from these classifications about the fundamental 

change having taken place in macrophyte community structure and vegetation patterns in the 

past decades. We assumed that two independent classification systems should lead to more 

robust conclusions on vegetation change than one system alone. While hierarchical 

a) b) 
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phytosociological classification concepts are somewhat artificial, such approaches have the 

advantage that they can also provide information on community impoverishment and 

community homogenization over time. The phytosociological analysis of the relevé material 

from the 1950s and 2010/2011 after Preising et al. (1990) showed a large decrease in the 

proportion of relevés that could be assigned to the association level, indicating losses in 

characteristic taxa. The decline in phytosociological character species gives reason to 

assume that many of the syntaxonomic units that were described for north-west German 

water courses in the past decades do not represent recognizable types of macrophyte 

assemblages with sufficient homogeneity and wider distribution anymore. However, the 

possibility of assigning relevés with different degrees of impoverishment to different levels in 

the syntaxonomic hierarchy may represent a strength of this approach when community 

change is to be examined. In the classification system of Chytrý (2011), dominance 

structures are decisive for classification and due to the prevalence of mono-dominant stands, 

the number of macrophyte associations identified in our study regions (1950s: 29, 

2010/2011: 23) was much greater than with the Preising system. For the assessment of 

change at the community level, it can be viewed as an advantage of this system that every 

relevé can be assigned unambiguously to a certain association. 

 

Landscape-scale diversity of macrophyte assemblages in historical and recent time 

With a macrophyte flora (vascular plants and mosses) of roughly 80 hydro- and 

amphiphytic or helophytic taxa, the species pool in the streams and rivers of the north-west 

German lowlands is relatively small. One reason is the rather restricted habitat diversity in 

the water courses of this landscape that was formed by the penultimate and last Ice Ages 

and is harboring predominantly potamal streams and rivers with relatively low current 

velocity. Only very few water courses of the Central German uplands were included in the 

study and thus, rhithral streams are present only in the study regions 2 (Lüneburg Heath) 

and 3 (northern Harz foothills) with a more or less undulating relief. Characteristic for the 

macrophyte vegetation of the north-west German lowlands are submerged assemblages with 

taxa such as Myriophyllum alterniflorum or Ranunculus fluitans, which in a number of 

phytosociological systems (e.g. Preising et al. 1990, Rennwald 2000, Berg et al. 2004) are 

classified in the Callitricho-Batrachietalia order (class Potamogetonetea), that comprises the 

largest part of Europe’s macrophyte vegetation in lotic waters. These (at least in former 

times) relatively species-rich assemblages are completed by communities assignable to two 

other Potamogetonetea orders with mostly species-poor communities, the pondweed 

assemblages (Potamogetonetalia with three alliances) and the water lily assemblages 

(Nymphaeetalia with two alliances). Less than 15 percent of the relevés were assigned to 
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other vegetation classes than the Potamogetonetea (Lemnetea, Phragmitetea/Phragmito-

Magno-Caricetea, Platyhypnidio-Fontinalietea antipyreticae). 

Following Preising et al. (1990), the phytosociological analysis revealed the presence 

of 3 orders, 6 alliances and 6 associations within the Potamogetonetea, the ‘core class’ of 

macrophyte vegetation. The single most widespread alliance was the Ranunculion fluitantis 

with its quantitatively most important association, the Callitricho-Myriophylletum. According to 

their distribution and apparent site preferences, the six Potamogetonetea associations 

currently present in the study regions according to the Preising system can be characterized 

as follows:  

(1) the Callitricho-Myriophylletum showed a preference for relatively fast-flowing, cool, 

but nutrient-poor streams and small rivers on base-poor glacial deposits (characteristic for 

the rhithral waters in particular of the outwash plains of the Lüneburg Heath and its 

surroundings);  

(2) the Ranunculo-Sietum preferred relatively slow-flowing, cool, but base-rich water 

courses (mainly in waters originating in the loess deposits of the northern Harz foothills);  

(3) the Ranunculetum fluitantis was mainly found in relatively fast-flowing, relatively 

warm and nutrient-enriched water courses (in regions with higher relief energy: Harz foothills, 

Lüneburg Heath);  

(4) the Potamogetonetum lucentis inhabited slowly to faster flowing, relatively 

eutrophic, potamal river reaches (mainly in the Ems-Hunte and eastern Holstein regions);  

(5) the Sparganio-Elodeetum colonizes relatively slow-flowing, moderately nutrient-

rich water courses in the base-poor glacial deposits of the Ems-Hunte moraine country; and  

(6) the Myriophyllo-Nupharetum is characteristic for relatively warm, nearly stagnant, 

meso- to eutrophic, potamal water courses (mainly in the Ems-Hunte and Harz foothills 

regions). The latter assemblage was often associated with lemnid carpets, in particular in the 

2010/2011 survey. 

Comparing the 1950s data with the recent survey reveals not only a markedly 

reduced mean species richness of the assemblages (from 4.7 to 3.8 species per relevé, 

Steffen et al. 2013), but also profound change in the relative abundance of the assemblages 

in the four study regions. In addition, a general reduction in community diversity at the 

landscape scale was recognized. Four of the six Potamogetonetea associations assigned 

after Preising et al. (1990) suffered severe frequency losses (by 30 to 78 %) in the each ~330 

relevés between the 1950s and 2010/2011 with large reductions also observed in the once 

most widespread associations Callitricho-Myriophylletum and Potamogetonetum lucentis. 

Two types of assemblages, which were in the 1950s assigned to the Potamogetonion 

graminei and the Hydrocharition, were no longer present in 2010/2011. On the other hand, 

assemblages assignable to the alliance Nymphaeion albae (and order Nymphaeetalia, 
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+47 %), i.e. communities dominated by floating-leaved, rooted macrophytes, and lemnid 

carpets (class Lemnetea) that often occurred together with Sagittaria sagittifolia, are much 

more widespread in recent time than 60 years ago. A large spread was observed in particular 

for the Nymphaeion association Sparganio-Elodeetum, which roughly doubled the number of 

its occurrences. This impressive shift from Potamogetonetalia (and Batrachietalia) 

communities to Nymphaeetalia communities was overlain by a general impoverishment of 

the assemblages at the plot level, many of which lost their indicative species. Today, only 

two associations of the phytosociological system of Preising et al. (1990) (Callitricho-

Myriophylletum and Sparganio-Elodeetum) can be considered as being more widespread.  

When applying the alternative classification system after Chytrý (2011), which puts 

more weight on dominance relations than on the presence/absence of diagnostic species, 

the relevés were assigned to 3 Potamogetonetea alliances with 30 associations. According 

to this classification, the Potamogetonion was the most common alliance, but on the 

association level, the Nymphaeo albae-Nupharetum luteae (alliance Nymphaeion) and the 

Callitricho hamulatae-Ranunculetum fluitantis (Batrachion) prevailed. Both classification 

approaches revealed that Nymphaeetalia/Nymphaeion stands have gained importance 

during the last 60 years at the expense of Batrachietalia/Batrachion and 

Potamogetonetalia/Potamogetonion assemblages.  

With the reduction in plot-level species richness, the macrophyte assemblages have 

become more similar to each other resulting in the increase of the average BSC index. The 

homogenization of river macrophyte vegetation from the 1950s to 2010/2011 is also 

demonstrated by Figure 4.6 showing a reduction in niche space (current velocity vs. nutrient 

availability) occupied by the assemblages in recent time. One consequence is the apparent 

larger overlap of the niches of the different vegetation units in 2010/2011, which relates to 

the species loss. Most of the species that were lost from the regional species pool of north-

west German running waters over the past 60 years are taxa with relatively narrow ecological 

niches that often served as character species for the syntaxonomic units at lower levels. The 

large frequency increase in assemblages assignable only to the alliance or order levels after 

Preising et al. (1990) (by 15 and 62 %, respectively) evidences that many macrophyte stands 

must be considered as impoverished ‘residual communities’ (Fragmentgesellschaften) in the 

sense of Brun-Hool (1966) in our times. The fate of the north-west German river macrophyte 

vegetation since the 1950s is paralleled by the development in terrestrial vegetation types of 

the cultural landscape of Central Europe, notably the arable field vegetation (Meyer et al. 

2010) and the vegetation of managed grasslands (Wesche et al. 2012). 
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Drivers of community change 

The likely main causes of macrophyte community impoverishment and vegetation 

homogenization at the landscape level are river construction works and eutrophication 

(Phillips et al. 1978, Pedersen et al. 2006). In north-west Germany, many water courses 

were straightened and deepened in the course of agricultural intensification to increase run-

off, mostly in the 1950s to 1970s. This resulted in the loss of natural floodplain areas with the 

typical mosaic of side arms, smaller and larger, partly stagnant water bodies, and swamps 

adjacent to the main rivers. Drag-sensitive species such as Nymphaea alba and Ranunculus 

circinatus lost their sheltered habitats and are no longer elements of the macrophyte 

vegetation of these running waters in recent time. Although our data indicate that many of the 

investigated water courses were broadened and deepened in the course of engineering 

works in the last decades especially in the regions 1 (Ems-Hunte) and 4 (eastern Holstein), 

current velocity seems to be lower in general than in historical time. In principal, a 

“rhithralization” (more rapid discharge, change to rhithral biotic communities) can be 

expected as a consequence of river engineering measures (Moog 2002). In our regions, in 

contrast, a “potamalization” (reduction of the current velocity, change to potamal biota) has 

taken place after water course regulation, which likely results from the construction of 

barrages and weirs in many water courses that increased the water level and reduced flow. 

The correlation of the plot-wise successional vectors for region 4 with increased reach widths 

and depths indicates a direct relation of the vegetation change in eastern Holstein with river 

engineering works. 

The maintenance of water courses is a legal duty in the study region since 1957 

resulting in regular dredging and mowing of most streams and rivers and their banks, thereby 

eliminating many disturbance-sensitive species. Species with deeper anchoring in the 

sediment such as Sagittaria sagittifolia or Sparganium emersum may then profit from 

reduced competition. Maintenance works also increase the load of suspended particles 

reducing light transmissivity in the water body (Altmüller & Dettmer 1996). This effect adds to 

the eutrophication-caused increase in phytoplankton density, which also increases turbidity 

favoring surface-floating species such as lemnids and nymphaeids over submerged growth 

forms (Hough et al. 1989). Increasing importance of surface-floating species but declines of 

rooted, submerged macrophytes has also been observed over the past decades in Dutch 

streams and was related to eutrophication and increased water turbidity (Mesters 1995). In 

north-west Germany, agricultural intensification with high inputs of N and P into the water 

courses proceeded more rapidly in the regions 1, 3 and 4 than in region 2 (Lüneburg Heath) 

and took place mainly in the 1960s to 1980s (Behrendt et al. 1999). The Lüneburg Heath 

with its extended forests and, at least in some parts, less-intense agriculture has preserved 

richer macrophyte vegetation in the streams and rivers; this was already recognized by Herr 
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et al. (1990). Nevertheless, the correlation of the successional vectors with increased mean 

EIVs for temperature, soil reaction and nutrients in the study region 2 hints at a strong 

influence of physico-chemical factors on macrophyte vegetation change in the water courses 

of the Lüneburg Heath region, where the running waters have less been impacted by 

construction works since the 1950s. While the amount of P fertilizer used on Germany’s 

farmland peaked in the 1970s and declined recently to the level of the 1950s, N fertilizer 

input remained four times higher than 60 years ago (Statistisches Bundesamt 2012). Besides 

the suppression of light-demanding submersed plants, eutrophication is likely the main driver 

behind the frequency increase in the eutraphent assemblage Sparganio-Elodeetum since the 

1950s. Moreover, the mean EIV for nutrients has significantly increased in this assemblage 

and in the Myriophyllo-Nupharetum (and seems to have increased in three other associations 

as well) indicating within-community shifts in species composition towards more nutrient-

demanding taxa such as the eutraphent neophyte Elodea nuttallii and increased abundances 

of Myriophyllum spicatum, Lemna minor and Spirodela polyrhiza. 

The characteristic species of the Potamogetonetum lucentis in the system of Preising et 

al. (1990), Potamogeton lucens and P. perfoliatus, are known to occur in meso- and also 

eutrophic waters, but are not very tolerant to pollution or highly eutrophic to hypertrophic 

conditions (Casper & Krausch 1980, Berg et al. 2004). A decline of species of the genus 

Potamogeton in running waters over several decades has been reported by various earlier 

studies and was attributed to changes in physical and chemical habitat conditions (Grube 

1975, Wiegleb et al. 1991, Riis & Sand-Jensen 2001). Due to their potamid growth form with 

predominant formation of submerged leaves, many Potamogeton species are largely 

dependent on effective light transmission through the water column and thus are sensitive to 

turbidity and high loads of suspended particles (Heegaard et al. 2001, Garniel 2008). In 

contrast, the Nymphaeion albae character species Nuphar lutea is relatively tolerant towards 

turbidity and also drag due to its ability to form both submerged and floating leaves (Berg et 

al. 2004, Bal et al. 2011). 
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Conclusions 

The macrophyte vegetation of north-west German running waters has undergone 

profound change in the last sixty years, which affected the species composition, plot-level 

diversity, the regional species pools, and the relative abundance of community types at the 

landscape level. Despite important regional differences in the development, a similar 

principal trend was detected in all four study regions suggesting that our results may be valid 

for the larger part of northern Central Europe. Species lost were mainly specialist taxa with 

high affinity to certain macrophyte assemblages. This highlights the value of indicator 

species-based classification systems with small plot sizes for detecting community- and 

landscape-level vegetation change in running waters. Despite considerable conceptual 

differences between the two used classification approaches, both analyses revealed a major 

vegetation shift from prevailing submerged rooted to floating-leaved rooted and lemnid 

macrophytes. The hierarchical phytosociological system bears the potential of estimating the 

degree of anthropogenic community impoverishment. Four of the six Potamogetonetea 

associations after Preising et al. (1990) have markedly decreased since the 1950s, other 

assemblages have disappeared completely, which urgently demands for more effective 

conservation and restoration measures in running waters. 
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Methodological remarks: assessing long-term vegetation change in 

running waters with regard to bioindication 

Since the investigation of vegetation change in running waters bases on historical 

vegetation records with sufficient precision (species lists, cover values), the water courses 

coming into question for investigation are determined by the historical data available. From 

the experience of this study, the semi-permanent plot approach bears the potential to take 

account of the following aspects of aquatic vegetation, which can be considered as very 

useful to assess long-term changes in running waters: 

1. The species composition 

Due to the differing ecological preferences of different macrophyte species, their presence 

may be of indicative value. In this regard, the occurrences of stenoecious species as for 

example Myriophyllum alterniflorum preferring mesotrophic, rhithral waters are more 

meaningful than that of eurioecious ones as for example Sparganium emersum occurring 

under wide amplitudes of currents and trophic conditions. In this study, for example species 

with broad ecological tolerances and species preferring eutrophic habitats showed an 

increase over six decades, while mesotrophic species decreased and oligotrophic species 

died out. This development in the species composition hints at the anthropogenically induced 

eutrophication of the investigated running waters. 

2. The species richness and diversity 

The size of the species pool reflects the degree of habitat heterogeneity: the more 

heterogeneous the occurring habitats are, the more species can be present. The diversity 

and number of species per plot is to be seen in relation to stress and disturbance. In stressful 

environments or highly disturbed habitats, only a low number of species is able to persist 

within a defined area. In our example, the species pool as well as plot-level species richness 

and diversity decreased over the investigated time span. The losses are attributed to habitat 

uniformization, increased mechanical stress (loss of low-flow and stagnant water habitats 

that were part of the historical running waters) and regular disturbance (e.g. maintenance 

works) that occurred in north-west German streams and rivers in the last decades. 

3. The shares of life form (rooted vs. free-floating) and growth form (totally 

submerged vs. floating-leaved) types 

Rhizophytic, submerged growth forms (e.g. potamid species) depend on relatively clear 

water with sufficient light transmission through the water column and such are typical for 

oligo- to moderately eutrophic water bodies. In contrast, pleustophytic growth forms (e.g. 

lemnid) are also able to colonize highly eu- to hypertrophic, turbid waters. In the water 

courses we looked at, a shift from the predominance of potamid to the predominance of 

lemnid species was observed, hinting at an increase in the productivity (eutrophication). 
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4. The mean specific leaf area (SLA) 

The mean SLA (i.e. leaf surface area per 1g leaf) of the macrophyte species characterizes 

their mechanical resistance: less resistant plants have a higher SLA (due to leaves being thin 

or rich in aerenchymatic tissue). In this study, the mean SLA per plot decreased over 60 

years (only hydrophytes were considered), indicating an increase of robust plant species and 

thus increased mechanical disturbance, which can be related to the loss of sheltered habitats 

at the edges of the main river channels. 

5. The proportions of syntaxonomic vegetation units as related to different 

hierarchical levels (class, order, alliance, association) 

To assess the long-term development of the vegetation community structure, it is necessary 

to classify the documented species assemblages. To detect differences between historical 

and recent macrophyte assemblages, the syntaxonomic character and/or dominant species-

based classifications proved to be appropriate, because they provide the opportunity to 

quantify the changes at the community level. After the system of Preising et al. (1990), in the 

vegetation stands that we looked at, the number of phytosociologically well characterized 

communities (associations) declined over six decades (-26.8 %), while the proportion of 

assemblages poorly defined by character species (orders, alliances) strongly increased 

(+14.8–61.7 %). Following Chytrý’s (2011) system, with the possibility to assign every stand 

to an association, the number of recognized associations declined from 29 (1950s) to 23 

(2010/2011). The apparent diversity decline at the community level is a sign for habitat 

homogenization in the investigated running waters. 

 

Vegetation and environmental change in streams and rivers in north-

west Germany since the 1950s 

The hydrophytic flora of north-west German streams and rivers became impoverished 

between the 1950s and 2010. The magnitude of change with a reduction of the species pool 

by 27.5 %, accompanied by a degradation on the syntaxonomic level and a profound shift 

from the predominance of submerged rhizophytic (mainly potamid) species in the relevés to 

the predominance of pleustophytic (mainly lemnid) species, is alarming. Looking at the 

species with considerable changes in their frequencies of occurrence in the study sites over 

the last six decades, it is evident that oligo- and mesotrophic species such as the character 

species of the Potamogetonion graminei (e.g. Potamogeton alpinus) and of the Callitricho-

Myriophylletum (e.g. Myriophyllum alterniflorum) have declined or died out, while eutrophic 

and generalist species such as the character species within the Lemnion gibbae (Lemna 

gibba, Spirodela polyrhiza) have increased (Table 5.1). This development corresponds to the 

increase in the mean EIV for nutrients. 
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Table 5.1 Changes in the frequency of occurrence between the 1950s and 2010/2011, habitat preferences and 

syntaxonomic ascription after Preising et al. (1990) of 40 macrophyte species in 338 semi-permanent plots in 

running waters with a minimum of 3 occurrences in one of the two investigated time periods. (oligo = 

oligotraphent, meso = mesotraphent, eu = eutraphent, in = indifferent with regard to the nutrient content of the 

water; (c) = character species for the vegetation unit indicated, (d) = differential species) 

Hydrophytic taxon Occurrences Change 

[%] 

Ecological 

preference 

Syntaxonomic 

vegetation unit 1950s 2010/
2011 

Myriophyllum spicatum 3 19 +>100.0 eu 
1,7

 / in
 3
 Potamogetonion lucentis (c) 

Utricularia vulgaris 2 10 +>100.0 meso–eu
 3,4

 Nymphaeetalia (c) 

Spirodela polyrhiza 36 110 +>100.0 eu 
1 

/ in
 5
 Spirodeletum polyrhizae (c) 

Elodea nuttallii 0 67 +100.0 eu 
1,2

 Potamogetonion pusilli (c) 

Lemna minor 115 207 +80.0 in
 2,5

 LEMNETEA (c) 

Ranunculus trichophyllus 4 7 +75.0 meso–eu
 3

 / in
 5,7

 Ranunculo-Sietum (c) 

Potamogeton nodosus 2 3 +50.0 in 
6
 Ranunculion fluitantis (c) 

Lemna gibba 24 33 +37.5 eu 
2,5

 Lemnetum gibbae (c) 

Ceratophyllum demersum 20 24 +20.0 eu 
5
 / in 

7
 POTAMETEA (c) 

Hydrocharis morsus-ranae 8 9 +12.5 meso–eu 
2,5

 Hydrocharition (c) 

Sparganium emersum 176 176 ±0.0 in 
4,5

 Sparganio-Elodeetum (c), 

Ranunculion fluitantis (d) 

Sagittaria sagittifolia 92 85 -7.6 eu 
5
 Sparganio-Elodeetum (c) 

Callitriche palustris agg. 144 122 -15.3 meso–eu
 3

 / in
 4
 Sparganio-Elodeetum (c), 

Callitricho-Batrachietalia (c) 

Nuphar lutea 117 81 -30.8 in 
5
 Myriophyllo-Nupharetum (c) 

Potamogeton pectinatus 54 35 -35.2 eu 
5
 / in 

6,7
 Potamogetonetalia (c), 

Nymphaeion albae (d) 

Lemna trisulca 51 32 -37.3 meso–eu 
2
 Lemnetum trisulcae (c) 

Callitriche hamulata 78 41 -47.4 meso 
1,2

 Callitricho-Myriophylletum (c) 

Potamogeton pusillus 23 12 -47.8 meso–eu 
2,5

 Potamogetonion pusilli (c) 

Elodea canadensis 135 69 -48.9 eu 
2
 / in 

5
 POTAMOGETONETEA (c) 

Fontinalis antipyretica 23 11 -52.2 in 
7
 Ranunculion fluitantis (c) 

Myriophyllum alterniflorum 32 15 -53.1 meso 
1,3

 Callitricho-Myriophylletum (d) 

Potamogeton crispus 62 25 -59.7 (meso–)eu 
5,6

 / in
 7
 POTAMOGETONETEA (c) 

Ranunculus fluitans 16 6 -62.5 eu 
4,7

 Ranunculetum fluitantis (c) 

Ranunculus aquatilis agg. 80 30 -62.5 meso 
1,4

 / eu
 3
 Ranunculion fluitantis (c), 

Callitricho-Myriophylletum (d) 

Potamogeton natans 103 35 -66.0 ±meso
 2

 / eu 
5
  POTAMOGETONETEA (c) 

Myriophyllum verticillatum 3 1 -66.7 meso–eu
 3,4

 Nymphaeetalia (c) 

Potamogeton berchtoldii 3 1 -66.7 meso–eu 
2,5

 Potamogetonetalia (c) 

Potamogeton lucens 37 10 -73.0 meso–eu 
7
 Potamogetonetum lucentis (c), 

Nymphaeion albae (d) 

Callitriche hermaphroditica 4 1 -75.0 oligo–meso 
3
 - 

Isolepis fluitans 4 1 -75.0 oligo–meso 
2
 - 

Potamogeton perfoliatus 42 10 -76.2 meso–eu
 2,6

 Potamogetonetum lucentis (c), 

Nymphaeion albae (d) 

Zannichellia palustris 14 3 -78.6 eu 
5,7

 Ranunculo-Sietum (d) 

Hippuris vulgaris 3 0 -100.0 meso(–eu) 
3,7

 Ranunculo-Sietum (d) 

Potamogeton compressus 3 0 -100.0 ±eu
 2,4,5

 Potamogetonetalia (c) 

Nymphaea alba 4 0 -100.0 in 
3,4

 Myriophyllo-Nupharetum (c) 

Ranunculus circinatus 4 0 -100.0 meso–eu 
3,5

 Potamogetonion lucentis (c), 

Nymphaeion albae (d) 

Potamogeton obtusifolius 5 0 -100.0 meso 
2,6

 Potamogetonion graminei (c) 

Juncus bulbosus fluitans 9 0 -100.0 oligo 
2
 Potamogetonion graminei (d) 

Potamogeton alpinus 18 0 -100.0 ±meso 
3,5

 Potamogetonion graminei (c), 

Callitricho-Myriophylletum (d)  

Potamogeton friesii 32 0 -100.0 meso–eu
 2,6

 Potamogetonion pusilli (c) 
1 

based on own observation (see chapter 2), 
2 

Casper & Krausch (1980), 
3 

Casper & Krausch (1981), 
4 

Garniel (2008), 
5 

Tiedemann (1982), 
6 

Preston (1995), 
7 

Kutscher (1984) 
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The diversity decline in the macrophyte vegetation of north-west German streams and 

rivers over the last six decades is paralleled by global losses in the diversity of species in 

rivers (Millennium Ecosystem Assessment 2005), losses in the phytodiversity of European 

surface waters (e.g. Sand-Jensen et al. 2000, Schütz et al. 2008, Gołdyn 2010) and 

terrestrial systems in northern Germany (Meyer et al. 2010, Wesche et al. 2012, Leuschner 

et al. 2013). These studies identify eutrophication as one of the main drivers of vegetation 

change in the cultural landscapes since the 1950s. Since the 1980s, the nutrient status of the 

running waters of north-west Germany shows some improvement with more or less 

significant reductions in the nitrogen and phosphorus loads (Schulz 1999, Behrendt et al. 

2002). These more recent developments might be reflected in the slight decrease in the EIV 

for nutrients since the 1980s; it appears that the vegetation is responding only slowly to the 

achievements. 

The fact that current-intolerant species (Nymphaea alba, Ranunculus circinatus) could no 

longer be found in the investigated water courses in 2010/2011 indicates that sheltered inlets 

and small bays with calm water have disappeared, thus hinting at structural impoverishment 

of the riverbeds. The decline in plot-level species richness and diversity is assumed to be a 

consequence of increased disturbance, for example by construction or maintenance works. 

Increased disturbance is also indicated by the relative increase in summergreen species 

(including the lemnids and some nymphaeids) with the concurrent decline in evergreen 

species (the batrachids and most potamids), by the increase in R-strategists, as well as by 

the decrease in the mean SLA over the last six decades. Supporting this, Baattrup-Pedersen 

et al. (2002) found a higher proportion of R-strategists and a lower species richness and 

diversity in reaches, where weed-cutting is practiced when comparing weed-cut and uncut 

stream reaches. 

 

Future outlook 

The effects of climatic change can hardly be predicted. Warmer winters will probably 

favour the arrival of alien species, altering aquatic communities. In an artificially warmed river 

in North Rhine-Westphalia, a number of neophytic species became established and seems 

to be an addition to the local species pool, without causing harm to the native flora (Hussner 

& Lösch 2005). Experiments by Mckee et al. (2002) showed that the exotic macrophyte 

Lagarosiphon major profited more from an increased water temperature than species 

established in Britain. Phytoplankton and algal growth might also be enhanced by warmer 

temperatures. Alahuhta et al. (2011) speculated referring to a modelling study for Finland 

that at higher temperatures emergent macrophytes might in many cases overgrow 

submerged vegetation. Elevated carbon dioxide concentrations might also favour 
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macrophytes that are not capable of using bicarbonate as a carbon source (Johnson et al. 

2009) such as for example Fontinalis antipyretica (Gessner 1959). 

To reverse the diversity decline in river macrophytes, the homogenization of their habitats 

has to be reversed. Renaturalization measures aiming at the recreation of richly structured 

water courses with meanders, side arms, sheltered bays and shallow transition zones to 

floodplain areas need to go hand in hand with continuing efforts to reduce the nutrient inflows 

from the catchments. An extensive management of low-lying farmland renders intensive 

drainage and maintenance of the water courses unnecessary. Weed-cutting may be 

minimized and carried out in a gentle manner for example with a mowing bucket at 

ecologically sound dates (in autumn after fruit formation). Eutrophication can only be 

controlled if both, nitrogen and phosphorus inputs are reduced, considering also that 

phosphorus depositions may be stored in anoxic sediments as “internal loading” for decades 

(Conley et al. 2009) and that nitrogen has residence times of up to 30 years in the 

groundwater (Umweltbundesamt 2013). Impacts from intensive land use would in some 

cases be reduced if riparian buffer strips of at least 5 m width were established (Gunkel 

1996). Jahn & Dembinski (2000) estimated costs for the revitalization of two small rivers in 

Lower Saxony and arrived at 23,000–33,000 € km-1 mainly accounting for land extensification 

and also for the regeneration of a natural riverbed morphology to restore natural runoff 

dynamics. 

In this way, specialist and less robust species, having once been much more abundant in 

north-west German running waters, might be able to become more distributed again. The re-

establishment of locally extinct macrophyte species in suitable habitats is possible by 

reintroducing plants preferably from autochthonous populations (Kaplan et al. 1998), also 

paying attention to natural growth areas as for example the Ranunculo-Sietum community 

being typical for rhithral reaches and the Potamogetonetum lucentis growing in more or less 

potamal reaches. Regeneration processes like this cannot be expected to take less time than 

the decades of decrease took. In streams of the Donau catchment in southern Germany, an 

improvement in the water quality of a reach formerly influenced by sewage discharge was 

reflected in the macrophyte vegetation only after 15 years (Veit & Kohler 2003). Conserving 

the phytodiversity of streams and rivers is essential to keep the ecosystems functioning, not 

least for the benefit of humans. 
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Table 2.2 Affinity of the 31 most abundant macrophyte species to 28 physical, chemical or river morphological parameters. Indicated are environmental 

parameters with significantly higher value (black fields) or significantly lower value (white fields) in plots with presence of the target species than in plots with the 

species’ absence. Grey field = no significant difference between habitats with and without the species, * = p<0.05, ** = p<0.01, *** = p<0.001. Figures give the 

mean of the variable for all plots with the species’ presence. Wat. = Water, Sed. = Sediment 

Macrophyte 
species (no. of 
plots) 

Current 
velocity 
[cm s

-1
] 

Depth 
[m] 

Anthrop. 
influence 

Wat. 
pH 

Sed. 
pH 

Sed. Ctot 
[mmol/g] 

Sed. Corg 
[mmol/g] 

Wat. NH4 
[mg/l] 

Wat. NO3 
[mg/l] 

Sed. Ntot 
[mmol/g] 

Sed. C/N 
ratio 

Sed. N/P 
ratio 

Wat. PO4 
[mg/l] 

Sed. 
Presin 
[µmol/g] 

Myri. alte. (16) **  17.5   **  2.9   **  6.7 ** 0.53 ** 0.47 **  0.03   *  0.06     *   0.01 **  1.67 

Ranu. pelt. (28)   *   0.6 **  3.1   **  6.8                 *** 2.24 

Call. hamu.(42)   **  0.8 *** 3.0   *** 6.7     **  0.08 **  2.91       *   0.02 *** 3.70 

Beru. erec. (57) **  17.4 *** 0.6 *** 3.0   **  7.0   ** 1.71 *** 0.06   ** 0.12 ** 10.35     *** 3.02 

Glyc. flui. (24)   *** 0.4 *** 2.9   *** 6.6                   

Font. anti. (20) **  18.9 *** 0.8 *   3.2         *   0.07 **  3.45 *  0.13       *   2.54 

Spar. erec. (90)         *   7.2                   

Elod. cana. (71)                             

Call. obtu. (12)               *   0.31           *   7.22 

Call. plat. (108)     **  3.3         *** 0.24       * 88.32     

Phal. arun. (161)                             

Phra. aust. (26)     *** 2.95         **   0.10             

Pota. perf. (12)                             

Pota. pusi. (10)                             

Pota. nata. (36)     *** 3.5 *   8.0   * 2.04 * 1.98 *** 0.28 ** 1.73   *  13.56 * 136.01     

Utri. vulg. (10)             * 4.38       *  16.89   *  <0.01   

Buto. umbe. (35)     **  3.1         **   0.09             

Lemn. tris. (32)                             

Pota. pect. (36)     **  3.3 *   8.3       *** 0.08 **  2.76         *    4.51 

Pota. luce. (13) *   7.9                           

Lemn. gibb. (31) **  8.5 *   1.4                         

Spar. emer. (169)   *** 1.1 *   3.2         *** 0.15       *** 82.85     

Cera. deme. (23)               *   0.44             

Lemn. mino. (192)   *** 1.1 **  3.3       *** 2.21 *** 0.23 *** 2.12 *** 0.15       *** 5.93 

Hydr. mors. (12) *   7.1 *   1.5     *   7.1     *   0.14 **  1.14       *   0.04   

Pota. cris. (27)   **  1.1           **  0.26 **  2.76         *   0.10 

Spir. poly. (107) *** 8.7 *** 1.3       *** 2.99 *** 2.86 *** 0.31 *** 1.56 *** 0.19 *   13.66 * 235.72     

Elod. nutt. (71)   **  1.4   ** 8.3   **  2.98 **  2.85     **  0.19 *** 15.51     *   7.75 

Nuph. lute. (93)   *** 1.3 *** 3.4   *** 7.2 **  2.21 **  2.12 *** 0.20 *   1.99 **  0.16   * 61.54   **  7.04 

Sagi. sagi. (83) *** 7.8 *** 1.5 *** 3.6 *** 8.2 *** 7.3     **  0.27       ** 171.68 *   0.01 *** 10.11 

Myri. spic. (23)   **  1.6     **  7.3     *   0.08 **  3.37         *** 7.59 
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Table 2.2 continued 

Macrophyte 
species (no. of 
plots) 

Wat. S 
[mg/l] 

Wat. Ca 
[mg/l] 

Sed. Ca 
[µmol/g] 

Wat. Mg 
[mg/l] 

Sed. Mg 
[µmol/g] 

Wat. K 
[mg/l] 

Sed. K 
[µmol/
g] 

Wat. 
Na 
[mg/l] 

Sed. Na 
[µmol/g] 

Sed. CEC 
[µmolc/g] 

Wat. 
Fe 
[mg/l] 

Sed. Fe 
[µmol/g] 

Wat. Al 
[mg/l] 

Sed. Al 
[µmol/g] 

Myri. alte. (16)   *   23.50 **  23.98 *** 5.58 **  2.43   **  0.63   *** 0.80 *   37.97   *   0.41     

Ranu. pelt. (28)   **  15.78 *** 16.80 *   3.09 **  1.48   *** 0.50   **  1.05 *   50.79       **  0.32 

Call. hamu.(42) **  10.35 *** 22.08 *** 32.32 **  4.45 *** 3.04   **  1.09   **  1.46 *** 87.08       *** 0.61 

Beru. erec. (57)     **  51.47   **  3.92 *   3.56   *   21.4 **  1.87   **  0.13 **  3.20 *   0.01 *   0.31 

Glyc. flui. (24)     **  42.53                 *** 0.86   *** 0.97 

Font. anti. (20)       *   12.06             **  0.06       

Spar. erec. (90)   **  50.45   *   10.49   *   5.55   *   35.4             

Elod. cana. (71) *   15.01 *   33.52             *   1.87   *   0.16       

Call. obtu. (12)   *   29.31   *   4.88                     

Call. plat. (108) *** 16.77 *** 33.67   *** 6.93       **  26.2   *** 127.13 **  0.26 **  6.34   **  0.52 

Phal. arun. (161)           **  5.68                 

Phra. aust. (26)                       *** 2.43     

Pota. perf. (12)                             

Pota. pusi. (10)                     *   1.09       

Pota. nata. (36)     *** 66.08   **  4.47   *   1.28       **  0.43 **  10.60   **  0.25 

Utri. vulg. (10)     *   145.27                       

Buto. umbe. (35) *** 27.59 *** 57.01   *** 10.35     *   1.61 *   48.2 *   3.17   *   0.15 **  0.89 *   0.01 *   0.01 

Lemn. tris. (32) **  16.54   *   88.67 *   6.62   **  4.37   *   19.7   *  211.43     *   0.01   

Pota. pect. (36) *** 45.17 *** 69.44   *** 16.43   *** 7.93   *** 71.0   *  139.43 **  0.13 **  1.04     

Pota. luce. (13)       *   5.09             *   0.21   * <0.01   

Lemn. gibb. (31) *   24.66       **  5.08 *** 6.64   **  38.4             

Spar. emer. (169) *** 23.93 *** 42.02   **  9.03         *   2.11 *  119.34 *** 0.17 *   3.81     

Cera. deme. (23)                             

Lemn. mino. (192) *** 20.24 *** 39.59 *** 67.78 *** 8.17 *   4.82     *   30.2     *** 0.22 *** 6.01     

Hydr. mors. (12)       *   6.40                 * <0.01   

Pota. cris. (27) **  34.05 **  56.65   *   11.62           *  162.34 *   0.15 **  1.93   * 0.01 

Spir. poly. (107)     *** 87.78               *   0.25 *   7.86     

Elod. nutt. (71) *** 21.32         *** 5.89 *   1.57 *** 36.5 *   2.49       * <0.01   

Nuph. lute. (93)   *   47.47 *** 69.16   *** 5.03   *** 1.5   **  2.56   **  0.22 *** 6.67 * <0.01 *** 0.08 

Sagi. sagi. (83)           *** 5.60   *** 34.2 **  2.58 *  177.75 *** 0.33 *** 10.61     

Myri. spic. (23) *** 35.20 *** 54.16 **  81.72 *** 10.38 **  7.62   **  2.5 *** 65.3 **  5.07   **  0.09     ** 0.02 
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Table 2.5 Correlations after Spearman of environmental variables with the DCA axes 1 and 2. Only 

variables correlating at r > ±0.20 with one of the axes are shown. Significance values were not derived 

from a permutation test and are only indicated as a guidance 

Environmental variable r DCA axis 1 p r DCA axis 2 p 

Depth [m] -0.60 <0.001 0.02 0.735 
Width [m] -0.49 <0.001 -0.06 0.352 
Current vel. [cm s

-1
] 0.45 <0.001 0.13 0.025 

NH4 (Water) -0.41 <0.001 0.02 0.776 
Anthropogenic influence -0.37 <0.001 -0.12 0.045 
Fe (Water) -0.36 <0.001 -0.30 <0.001 
Na (Water) -0.34 <0.001 0.04 0.556 
Presin (Sediment) -0.33 <0.001 -0.12 0.041 
CEC (Sediment) -0.32 <0.001 0.15 0.014 
Ca (Sediment) -0.30 <0.001 0.18 0.003 
Corg (Sediment) -0.30 <0.001 0.10 0.089 
Mn (Water) -0.30 <0.001 -0.17 0.004 
K (Water) -0.29 <0.001 -0.04 0.531 
Fe (Sediment) -0.28 <0.001 -0.03 0.573 
Na (Water) -0.27 <0.001 -0.02 0.708 
K (Sediment) -0.26 <0.001 0.04 0.482 
N (Sediment) -0.25 <0.001 0.10 0.099 
NO3 (Water) 0.24 <0.001 -0.18 0.002 
Mn (Sediment) -0.23 <0.001 -0.09 0.151 
Mg (Sediment) -0.23 <0.001 0.10 0.088 
Zn (Water) -0.09 0.148 -0.22 <0.001 

pH (Sediment) -0.19 0.002 0.20 <0.001 
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Table 3.1 Sampled water courses by region and corresponding number of relevés 

Region Catch-

ment 

basins 

Streams / rivers No. of 

relevés 

period A 

and 

period C 

No. of 

relevés 

period 

B 

1 Ems-Hunte moraine 

(western / central Lower 

Saxony) 

Ems, 

Weser 

Bornbach, Bruchgraben, Dadau, 

Dorflohne, Elze, Ems, Eyter, Flöthe, 

Grawiede, Grenzkanal, Hase, Hunte, 

Lohne, Lotterbeke, Mittelradde, 

Steinhuder Meerbach, Strothe, Schwarze 

Riede, Uchter Mühlenbach, Wagenfelder 

Aue 

 

77 45 

2 Lüneburg Heath 

(eastern Lower Saxony) 

Weser Aue, Aschau, (Seehals-) Beeke, Berger 

Bach, Böhme, Bokeler Bach, Bruchbach, 

Emmerbach, Ilmenau, Kainbach, Kleine 

Örtze, Kohlenbach, Knesebach, Lachte, 

Lutter, Örtze, Schmalwasser, 

Schwarzwasser, Wiehe, Wietze 

86 17 

with Aller lowlands 

(eastern Lower Saxony) 

Weser Aller, Allerkanal, Kleine Aller, Fuhse, Ise, 

Westaue 

 

23 8 

3 Northern Harz foothills 

(eastern Lower Saxony) 

Weser Altenau, Erse, Fuhse, Ilse, Kanal-Ilse, 

Lutter (Elm), Oker, Schiffgraben, 

Schunter, Spring, Wabe, Warne 

75 1 

with Weser-Leine 

uplands (southern 

Lower Saxony, eastern 

North Rhine-

Westphalia) 

 

Rhine, 

Weser 

Beke, Emmer, Glenne, Grone, 

Liesenbach, Niese, Oder 

 

16 7 

4 Eastern Holstein 

moraine (eastern 

Schleswig-Holstein) 

Baltic 

Sea 

Behler Bach, effluent stream from 

Stocksee to Nehmter Binnenau, Kossau, 

Kührener Au, Schwentine, Tensfelder Au 

61 22 

Total no. of relevés   338 100 
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Table 3.2 List of all hydrophytic species and related traits. (Strategy type: c = competitor, s = stress 

strategist, r = ruderal strategist; pollination type: an = anemogamy, au = autogamy, hy = hydrogamy, 

zo = zoogamy (in = insects, sn = snails); leaf longevity: ev = evergreen, su = summergreen. Red List 

status in Germany: 2 = endangered, 3 = vulnerable, V = near threatened, G = data missing, but 

assumed to be vulnerable) 

Species Strategy 
type (CRS) 

Pollination type Leaf 
longevity 

Red List 
status 

Callitriche hamulata crs an, hy, au ev – 

Callitriche hermaphroditica – hy, au ev G 

Callitriche palustris agg. – – – – 

Ceratophyllum demersum sss hy ev – 

Chiloscyphus polyanthos (liverwort) – – – – 

Elodea canadensis css hy ev – 

Elodea nuttallii css hy ev – 

Fontinalis antipyretica (moss) – – – V 

Groenlandia densa sss an, hy, au su 2 

Helosciadium inundatum css au, zo (in) su 2 

Hippuris vulgaris css an su 3 

Hydrocharis morsus-ranae css zo (in) su 3 

Isolepis fluitans css an ev 2 

Juncus bulbosus fluitans crs an ev – 

Lemna gibba rss an, hy, au, zo (in, sn) su – 

Lemna minor rss an, hy, au, zo (in, sn) su – 

Lemna trisulca sss an, hy, au, zo (in, sn) su – 

Leptodictyum riparium (moss) – – – – 

Luronium natans sss au, zo (in) ev 2 

Myriophyllum alterniflorum css an ev 2 

Myriophyllum spicatum css an, au, zo (in) ev – 

Myriophyllum verticillatum css an, hy ev – 

Nuphar lutea css zo (in) su – 

Nymphaea alba css au, zo (in) su – 

Platyhypnidium riparioides (moss) – – – – 

Potamogeton acutifolius sss an ev 3 

Potamogeton alpinus css an ev 3 

Potamogeton angustifolius – – ev 2 

Potamogeton berchtoldii rss an, hy ev V 

Potamogeton compressus sss an, hy ev 2 

Potamogeton crispus css an ev – 

Potamogeton filiformis rss an, hy, au ev 2 

Potamogeton friesii sss an, hy ev 2 

Potamogeton gramineus css an, hy ev 2 

Potamogeton lucens css an, hy ev V 

Potamogeton natans crs an ev – 

Potamogeton nodosus crs an, hy ev V 

Potamogeton obtusifolius sss an, au ev 3 

Potamogeton pectinatus rss an, hy ev – 

Potamogeton perfoliatus css an, hy ev V 

Potamogeton polygonifolius crs an, hy ev 3 
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Species Strategy 
type (CRS) 

Pollination type Leaf 
longevity 

Red List 
status 

Potamogeton praelongus css an, hy ev 2 

Potamogeton pusillus rss an, hy ev V 

Potamogeton trichoides sss an, hy ev 3 

Potamogeton crispus x perfoliatus – – – – 

Ranunculus aquatilis agg. – – – – 

Ranunculus circinatus css au, zo (in) ev V 

Ranunculus fluitans css au ev V 

Ranunculus hederaceus css au, zo (in) ev 2 

Ranunculus trichophyllus css au, zo (in) ev V 

Sparganium emersum css an ev – 

Sparganium natans css an ev 2 

Spirodela polyrhiza rss an, hy, au, zo (in, sn) su – 

Utricularia neglecta sss zo (in) su 3 

Utricularia vulgaris sss zo (in) su 3 

Wolffia arrhiza sss au su 2 

Zannichellia palustris sss hy, au ev V 

 

 

 

Table 3.3 Correlation of time (sampling date), the number of red-listed species per relevé, biotic traits 

and environmental variables with the DCA axes 1 and 2. The significance levels are not based on a 

randomization test; they are only given for indicating the strength of the relationships 

Variable Correlation 
type 

r DCA axis 

1 

r DCA axis 

2 

 

Time [year] Spearman 0.03 p=0.665 0.41 p<0.001  

Red-listed species / relevé Spearman -0.15 p=0.011 -0.45 p<0.001  

Pleustophytic [%] Spearman -0.44 p<0.001 0.27 p<0.001  

Potamid [%] Spearman -0.17 p=0.005 -0.53 p<0.001  

Batrachid [%] Pearson 0.49 p=0.001 -0.00 p=0.999  

Nymphaeid [%] Pearson -0.29 p<0.001 0.05 p=0.531  

C-strategists [%] Pearson 0.33 p<0.001 -0.03 p=0.591  

R-strategists [%] Pearson -0.17 p=0.010 0.19 p=0.003  

S-strategists [%] Pearson -0.37 p<0.001 -0.21 p<0.001  

Evergreen species [%] Spearman 0.54 p<0.001 -0.42 p<0.001  

SLA [m² kg
-1

] Pearson 0.21 p<0.001 -0.59 p<0.001  

EIV for nitrogen Pearson -0.08 p=0.197 -0.20 p<0.001  

EIV for soil reaction Spearman -0.33 p<0.001 -0.16 p=0.009  

EIV for temperature Pearson -0.39 p<0.001 -0.04 p=0.534  

Current velocity [cm s
-1

] Spearman 0.44 p<0.001 -0.25 p<0.001  
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Table 3.5 Changes in species richness and diversity between the 1950s and 2010/2011 

Diversity parameter 1950s 2010/ 

2011 

Direction 

of change
1
 

Z p Wilcoxon-

test 

T p t-test 

Species richness / relevé 4.7 3.8 ↓ -5.8 <0.001   

Red-listed species / relevé 0.9 0.3 ↓ -8.9 <0.001   

Diversity (D) 2.8 2.3 ↓   5.4 <0.001 
1 
↓ = decrease, ↑ = increase 

 

 

Table 3.7 Changes in proportions of life or growth forms between the 1950s and 2010/2011 

Life / growth form 1950s 2010/2011 Change
1
 Z p Wilcoxon-test 

Pleustophytic [%] 15.5 33.8 ↑ -8.2 <0.001 

Vallisnerid [%] 10.8 18.0 ↑ -4.1 <0.001 

Bryid [%] 4.3 5.3 - -0.1 0.924 

Myriophyllid [%] 4.3 4.2 - -0.7 0.477 

Elodeid [%] 10.0 9.1 - -0.2 0.845 

Peplid [%] 13.6 11.3 ↓ -2.1 0.040 

Isoetid [%] 0.4 0.0 ↓ -2.7 0.008 

Potamid [%] 19.6 7.7 ↓ -8.0 <0.001 

Batrachid [%] 6.1 2.0 ↓ -5.9 <0.001 

Nymphaeid [%] 15.3 8.6 ↓ -5.9 <0.001 
                      1 

↓ = decrease, ↑ = increase 

 

 

Table 3.10 Changes in biological and environmental traits between the 1950s, 1980s and 2010/2011 

Parameter 1950s 1980s 2010 Main 

effect
1
 

Change
2
 

1950s-

1980s 

Change
2
 

1980s-

2010 

Change
2
 

1950s-

2010 

Pleustophytic [%] 20.9 26.2 38.7 S <0.001 - ↑ ** ↑ *** 

Nymphaeid [%] 21.7 16.0 12.7 G <0.001 ↓ ** - ↓ *** 

Potamid [%] 17.2 16.0 6.1 G <0.001 - ↓ ** ↓ *** 

Batrachid [%] 5.0 2.3 1.0 G <0.001 ↓ * - ↓ *** 

C-strategists [%] 25.2 20.5 17.5 S <0.001 ↓ ** ↓ * ↓ *** 

R-strategists [%] 9.9 14.7 14.9 G   0.010 ↑ * - ↑ ** 

S-strategists [%] 64.8 64.9 67.6 G   0.010 - - ↑ ** 

Anemogamy [%] 39.8 42.7 34.6 S   0.024 - ↓ * - 

Hydrogamy [%] 27.2 23.7 27.6 G   0.416 - - - 

Autogamy [%] 9.5 9.1 10.0 G   0.479 - - - 

Zoogamy [%] 24.5 25.2 27.2 G   0.509 - - - 

Evergreen species [%] 65.8 59.6 48.8 S <0.001 - ↓ * ↓ *** 

SLA [m² kg
-1

] 37.2 35.3 28.9 S   0.001 - ↓ ** ↓ ** 

EIV for nitrogen 6.0 6.4 6.3 G <0.001 ↑ *** - ↑ *** 

EIV for soil reaction 6.6 6.8 6.6 S <0.001 ↑ *** ↓ ** - 

EIV for temperature 5.7 5.6 5.7 G   0.061 - - - 
    1

 Main effect: S = sphericity, G = Greenhouse-Geisser, 
2 
↓ = decrease, ↑ = increase, * = p<0.05,    

   ** = p<0.01, *** = p<0.001
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Table 4.1a Macrophyte vegetation of north-west German running waters in the 1950s as classified after Preising et al. (1990). Relevés assigned to lower 

syntaxonomic levels than the class belong to several groups; 337 relevés are included. No specific character species is attributed to the Nymphaeion albae, 

being characterized by differential species. Base figures: relative frequency of species occurrence within a group in percent; exponents: cover values as averages 

within groups 

No. of species / relevé 6.6 6.4 6 5.2 5.2 9.6 6.2 3.5 6.9 7.6 6.7 6.8 6.9 7.2 7.6 5.6 3 
No. of relevés 336 59 1 41 40 16 52 2 40 12 24 219 212 95 17 10 1 
  Pota-

metea 
Pota-
meta-
lia 

Pota-
mion 
grami-
nei 

Pota-
mion 
lucen-
tis 

Pota-
metum 
lucen-
tis 

Pota-
mion 
pusilli 

Nym-
phae-
etalia 

Hy-
dro-
cha-
rition 

Nym-
phae-
ion 
albae 

Myrio-
phyllo-
Nuphar-
etum 

Spar-
ganio-
Elode-
etum 

Batra-
chieta-
lia 

Ranun-
culion 
fluitan-
tis 

Callitri-
cho-My-
riophyll-
etum 

Ranun-
culo-
Sietum 

Ranun-
culetum 
fluitantis 

Phrag-
mite-
tea 

Lemnetea                  

Spirodela polyrhiza 11 
12

 8 
12

 . 10 
11

 10 
11

 6 
15

 31 
10

 . 30 
9
 42 

8
 25 

9
 5 

15
 4 

9
 1 

<1
 . . . 

Lemna minor 34 
10

 37 
7
 100 

<1
 24 

10
 25 

10
 69 

6
 46 

6
 . 55 

6
 83 

7
 42 

4
 30 

13
 30 

11
 22 

23
 12 

63
 30 

<1
 . 

Lemna trisulca 15 
6
 17 

6
 . 20 

5
 20 

5
 13 

8
 33 

6
 . 38 

2
 75 

2
 25 

3
 10 

4
 10 

4
 3 

<1
 . 10 

<1
 . 

Lemna gibba 7 
7
 12 

2
 . . . 44 

2
 17 

7
 . 20 

8
 42 

<1
 8 

31
 3 

<1
 3 

<1
 . . . . 

Potametea                  

Elodea canadensis 40 
17

 34 
18

 . 37 
22

 35 
23

 25 
8
 27 

21
 . 25 

14
 17 

20
 33 

12
 44 

15
 43 

14
 48 

15
 6 

38
 50 

14
 . 

Potamogeton natans 31 
14

 54 
12

 100 
15

 37 
12

 38 
12

 100 
13

 58 
15

 50 
3
 68 

15
 83 

12
 54 

19
 19 

14
 19 

14
 7 

14
 6 

3
 10 

1
 . 

Potamogeton crispus 18 
8
 27 

1
 . 15 

13
 15 

13
 63 

10
 23 

6
 . 30 

6
 33 

5
 29 

7
 16 

7
 16 

6
 9 

10
 12 

9
 10 

1
 . 

Ceratophyllum demersum 6 
12

 8 
2
 . 10 

2
 10 

2
 6 

3
 19 

14
 50 

1
 18 

13
 33 

9
 13 

18
 2 

20
 2 

20
 . . 10 

63
 . 

Persicaria amphibia 2 
5
 3 

8
 . 5 

8
 5 

8
 . 8 

2
 . 8 

3
 25 

3
 . <1 

3
 . . . . . 

Potametalia                  

Potamogeton acutifolius . 2 
1
 . 2 

1
 3 

1
 . . . . . . . . . . . . 

Potamogeton berchtoldii 1 
3
 2 

3
 . . . 6 

3
 2 

3
 . 3 

3
 . . <1 

3
 . . . . . 

Potamogeton compressus 1 
7
 2 

73
 . 2 

15
 3 

15
 . 4 

27
 . 3 

3
 8 

3
 . . . . . . . 

Potamogeton pectinatus 16 
24

 24 
19

 . 15 
26

 13 
32

 44 
11

 17 
25

 . 23 
25

 . 25 
22

 14 
25

 15 
25

 1 
15

 . 20 
9
 . 

Potamion graminei                  

Potamogeton 

angustifolius 

<1 
63

 . . . . . . . . . . <1 
63

 . 1 
63

 . . . 

Potamogeton obtusifolius 1 
11

 3 
1
 . 5 

1
 5 

1
 . 2 

15
 . . . . 1 

19
 1 

19
 . . 20 

19
 . 

Sparganium natans <1 
3
 2 

3
 100 

3
 . . . . . . . . . . . . . . 

Juncus bulbosus 3 
3
 . . . . . . . . . . 4 

3
 4 

3
 9 

3
 . . . 

Potamogeton gramineus <1 
1
 . . . . . 2 

1
 . 3 

1
 . 4 

1
 . . . . . . 

Potamion lucentis                  

Myriophyllum spicatum 1 
3
 5 

3
 . 5 

3
 5 

3
 6 

3
 . . . . . . . . . . . 

Ranunculus circinatus 1 
5
 5 

2
 . 7 

2
 5 

3
 . 2 

15
 50 

15
 . . . . . . . . . 

Potametum lucentis                  

Potamogeton lucens 11 
25

 51 
28

 . 73 
28

 75 
28

 . 4 
39

 . 5 
39

 17 
39

 . 2 
2
 2 

2
 . . . . 

Potamogeton perfoliatus 13 
16

 32 
21

 . 46 
21

 48 
21

 . 10 
7
 . 13 

7
 . 17 

9
 8 

13
 8 

14
 3 

18
 . 50 

12
 . 
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No. of species / relevé 6.6 6.4 6 5.2 5.2 9.6 6.2 3.5 6.9 7.6 6.7 6.8 6.9 7.2 7.6 5.6 3 
No. of relevés 336 59 1 41 40 16 52 2 40 12 24 219 212 95 17 10 1 
  Pota-

metea 
Pota-
meta-
lia 

Pota-
mion 
grami-
nei 

Pota-
mion 
lucen-
tis 

Pota-
metum 
lucen-
tis 

Pota-
mion 
pusilli 

Nym-
phae-
etalia 

Hy-
dro-
cha-
rition 

Nym-
phae-
ion 
albae 

Myrio-
phyllo-
Nuphar-
etum 

Spar-
ganio-
Elode-
etum 

Batra-
chieta-
lia 

Ranun-
culion 
fluitan-
tis 

Callitri-
cho-My-
riophyll-
etum 

Ranun-
culo-
Sietum 

Ranun-
culetum 
fluitantis 

Phrag-
mite-
tea 

Potamion pusilli 

Potamogeton pusillus 7 
24

 29 
30

 . 5 
2
 5 

2
 94 

33
 4 

26
 . 5 

26
 8 

38
 4 

15
 2 

2
 2 

2
 2 

2
 . . . 

Potamogeton friesii 10 
12

 25 
21

 . 5 
50

 5 
50

 81 
17

 10 
4
 . 13 

4
 33 

1
 . 5 

3
 6 

3
 2 

2
 . . . 

Nymphaeetalia                  

Myriophyllum verticillatum 1 
6
 3 

2
 . 5 

2
 5 

2
 . 2 

15
 . 3 

15
 8 

15
 . . . . . . . 

Utricularia vulgaris 1 
19

 . . . . . 4 
19

 50 
38

 3 
1
 . . . . . . . . 

Hydrocharition                  

Hydrocharis morsus-

ranae 

2 
13

 2 
15

 . 2 
15

 3 
15

 . 8 
18

 100
20

 5 
15

 17 
15

 . 1 
5
 1 

5
 1 

1
 . 10 

1
 . 

Myriophyllo-
Nupharetum 

                 

Nuphar lutea 35 
21

 37 
18

 . 41 
16

 43 
16

 31 
24

 88 
28

 . 95 
30

 100 
48

 92 
22

 22 
15

 21 
16

 11 
6
 6 

1
 20 

44
 . 

Nymphaea alba 1 
14

 . . . . . 8 
14

 . 10 
14

 33 
14

 . . . . . . . 

Sparganio-Elodeetum                  

Sagittaria sagittifolia 27 
12

 36 
13

 . 44 
15

 45 
15

 19 
1
 56 

20
 . 68 

20
 25 

7
 96 

23
 19 

7
 20 

7
 13 

3
 . . . 

Sparganium emersum 52 
19

 36 
16

 . 20 
12

 20 
12

 81 
19

 42 
12

 . 55 
12

 42 
2
 58 

15
 61 

20
 63 

20
 72 

13
 . 60 

23
 . 

Batrachietalia                  

Callitriche palustris agg. 42 
7
 27 

4
 . 2 

3
 3 

3
 94 

4
 25 

8
 50 

1
 30 

9
 . 50 

9
 51 

8
 52 

8
 69 

9
 53 

13
 10 

1
 . 

Glyceria fluitans 48 
7
 22 

7
 . 24 

8
 25 

8
 19 

2
 4 

3
 . 5 

3
 . 8 

3
 67 

7
 66 

6
 73 

7
 82 

2
 70 

4
 . 

Agrostis stolonifera 32 
1
 19 

1
 . . . 69 

1
 10 

1
 . 13 

1
 . 17 

1
 42

 1
 43 

1
 42 

1
 82 

3
 . . 

Ranunculion fluitantis                  

Fontinalis antipyretica M 7 
6
 . . . . . . . . . . 11 

6
 11 

6
 16 

7
 . 20 

8
 . 

Potamogeton nodosus 1 
63

 . . . . . . . . . . 1 
63

 1 
63

 . . . . 

Berula erecta 28 
18

 5 
7
 . 7 

7
 8 

7
 . 8 

14
 . 10 

14
 8 

15
 13 

14
 40 

19
 42 

19
 36 

14
 82 

31
 30 

6
 . 

Callitricho-
Myriophylletum 

                 

Callitriche hamulata 23 
22

 . . . . . . . . . . 36 
22

 37 
22

 81 
22

 . 10 
3
 . 

Myriophyllum 

alterniflorum 

10 
16

 . . . . . . . . . . 15 
16

 15 
16

 34 
16

 . . . 

Ranunculus aquatilis agg. 24 
20

 2 
3
 . . . <1 

3
 . . . . . 36 

20
 37 

20
 82 

20
 . . . 

Potamogeton alpinus 5 
15

 2 
3
 . 2 

2
 3 

3
 . 2 

3
 . 3 

3
 8 

3
 . 7 

17
 8 

17
 17 

17
 . . . 

Ranunculo-Sietum                  

Ranunculus trichophyllus 1 
9
 2 

15
 . 2 

15
 3 

15
 . . . . . . 1 

7
 1 

7
 . 18 

7
 . . 

Groenlandia densa 1 
38

 . . . . . . . . . . 1 
38

 1 
38

 . 12 
38

 . . 

Zannichellia palustris 4 
25

 . . . . . . . . . . 6 
99

 7 
25

 . 82 
25

 . . 

Hippuris vulgaris 1 
1
 2 

25
 . 2 

1
 3 

1
 . . . . . . 1 

1
 1 

1
 . 12 

1
 . . 

Ranunculetum fluitantis                  

Ranunculus fluitans 5 
35

 . . . . . . . . . . 7 
35

 8 
35

 6 
38

 . 100 
33

 . 
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No. of species / relevé 6.6 6.4 6 5.2 5.2 9.6 6.2 3.5 6.9 7.6 6.7 6.8 6.9 7.2 7.6 5.6 3 
No. of relevés 336 59 1 41 40 16 52 2 40 12 24 219 212 95 17 10 1 
  Pota-

metea 
Pota-
meta-
lia 

Pota-
mion 
grami-
nei 

Pota-
mion 
lucen-
tis 

Pota-
metum 
lucen-
tis 

Pota-
mion 
pusilli 

Nym-
phae-
etalia 

Hy-
dro-
cha-
rition 

Nym-
phae-
ion 
albae 

Myrio-
phyllo-
Nuphar-
etum 

Spar-
ganio-
Elode-
etum 

Batra-
chieta-
lia 

Ranun-
culion 
fluitan-
tis 

Callitri-
cho-My-
riophyll-
etum 

Ranun-
culo-
Sietum 

Ranun-
culetum 
fluitantis 

Phrag-
mite-
tea 

Phragmitetea                  

Typha latifolia <1 
15

 . . . . . . . . . . <1 
15

 . . . . . 

Phragmites australis 1 
5
 2

 1
 . 2 

1
 . . 2 

15
 . . . . . . . . . 100

 1
 

Sparganium erectum 8 
6
 8 

7
 100 

1
 2 

15
 3 

15
 19 

7
 6 

7
 . 5 

3
 . 8 

3
 9 

6
 9 

6
 2 

38
 24 

3
 . 100 

<1
 

Alisma plantago-aquatica 8 
3
 8 

1
 100 

1
 2 

1
 3 

1
 19 

1
 6 

5
 . 8 

5
 . 13 

5
 8 

4
 8 

4
 6 

8
 6 

1
 . . 

Glyceria maxima 6 
13

 7 
21

 . 10 
21

 10 
21

 . 12 
4
 . 10 

6
 8 

3
 13 

7
 5 

15
 5 

15
 3 

18
 . . 100 

<1
 

Rumex hydrolapathum <1 
15

 . . . . . . . . . . <1 
15

 . . . . . 

Sium latifolium 1 
14

 . . . . . 4 
9
 . 5 

9
 . 8 

9
 1 

20
 1 

20
 1 

3
 . . . 

Schoenoplectus lacustris 1 
2
 . . . . . . . . . . 2 

56
 1 

2
 . . 10 

3
 . 

Butomus umbellatus 13 
8
 19 

8
 . 10 

5
 8 

7
 44 

9
 12 

14
 . 3 

1
 . . 11 

6
 11 

7
 1 

3
 . 10 

3
 . 

Mentha aquatica 6 
6
 . . . . . . . . . . 9 

6
 9 

6
 9 

1
 35 

3
 . . 

Veronica beccabunga 6 
3
 2 

15
 . 2 

15
 3 

15
 . . . . . . 9 

3
 9 

3
 1 

15
 76 

2
 . . 

Veronica anagallis-

aquatica 

8 
7
 . . . . . . . . . . 12 

7
 12 

7
 8 

8
 76 

7
 . . 

Nasturtium officinale 1 
5
 . . . . . . . . . . 2 

5
 2 

5
 . 18 

2
 . . 

Glyceria notata (G.plicata) <1 
1
 . . . . . . . . . . <1 

1
 . 1 

1
 . . . 

Phalaris arundinacea 2 
9
 2 

15
 . 2 

15
 3 

15
 . 4 

15
 . 5 

15
 . 8 

15
 2

 5
 2 

5
 1 

<1
 . . . 

Carex acutiformis <1 
1
 2 

1
 . 2 

1
 3 

1
 . . . . . . . . . . . . 

Fontinalietea                  

Platyhypnidium 

riparioides M 

4 
2
 2

 1
 . 2 

1
 3 

1
 . . . . . . 5 

2
 6 

2
 . 59 

1
 . . 

Amblystegium riparium M 6 
4
 . . . . . . . . . . 9 

4
 9 

4
 17 

4
 . . . 

Chiloscyphus polyanthos 

M 

1 
26

 . . . . . . . . . . 2 
26

 2 
26

 5 
26

 . . . 

Accompanying species                  

Apium inundatum <1 
3
 . . . . . . . . . . <1 

3
 . 1 

3
 . . . 

Callitriche 

hermaphroditica 

1 
6
 3 

3
 . 5 

3
 5 

3
 . . . . . . <1 

3
 . . . . . 

Isolepis fluitans 1 
21

 3 
15

 . 2 
15

 3 
15

 6 
15

 2 
38

 . 3 
38

 . 4 
38

 <1 
15

 . 1 
15

 . . . 

Luronium natans <1 
38

 2 
38

 100 
38

 . . . . . . . . . . . . . . 

Potamogeton filiformis 1 
8
 2

 1
 . 2 

1
 3 

1
 . . . . . . . . . . . . 

Potamogeton 

polygonifolius 

1 
39

 . . . . . . . . . . 1 
39

 1 
39

 1 
15

 . . . 

Utricularia australis <1 
15

 . . . . . 2 
15

 . 3 
15

 8 
15

 . . . . . . . 
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Table 4.1b Macrophyte vegetation of north-west German running waters in 2010/2011 as classified after Preising et al. (1990). Relevés assigned to lower levels 

than the class belong to several groups; 332 relevés are included. No specific character species is attributed to the Nymphaeion albae, which is characterized by 

differential species. Base figures: relative frequency of species occurrence within a group in percent; exponents: cover values as averages within groups 

No. of species / relevé 3.7 6.9 7 7.6 8.1 7.1 7.7 8.1 7.4 8.4 6.5 6.6 7.4 6.2 6.1 1.4 2 

No. of relevés 18 305 25 11 9 10 92 75 11 44 183 171 65 9 7 7 2 

  Lem-
netea 

Pota-
metea 

Pota-
meta-
lia 

Pota-
mion 
lucen-
tis 

Pota-
metum 
lucen-
tis 

Pota-
mion 
pusilli 

Nym-
phae-
etalia 

Nym-
phae-
ion 
albae 

Myrio-
phyllo-
Nuphar-
etum 

Spar-
ganio-
Elode-
etum 

Batra-
chieta-
lia 

Ranun-
culion 
fluitan-
tis 

Callitri-
cho-My-
riophyll-
etum 

Ranun-
culo-
Sietum 

Ranun-
culetum 
fluitantis 

Phrag-
mite-
tea 

Fonti-
nalie-
tea 

Lemnetea                  

Spirodela polyrhiza 72 
<1

 38 
2
 68 

1
 82 

1
 100 

1
 70 

1
 63 

4
 64 

4
 73 

18
 61 

1
 20 

1
 20 

1
 18 

1
 . 14 

<1
 . . 

Lemna minor 100 
2
 67 

1
 88 

1
 100 

2
 100 

1
 90 

1
 88 

2
 93 

2
 91 

8
 95 

1
 53 

1
 52 

1
 55 

1
 33 

<1
 29 

<1
 . . 

Wolffia arrhiza 6 
<1

 <1 
<1

 . . . . . . . . . . . . . . . 

Lemna trisulca 22 
9
 12 

<1
 8 

<1
 18 

<1
 22 

<1
 . 24 

<1
 25 

<1
 27 

1
 34 

<1
 6 

<1
 6 

<1
 6 

<1
 . 14 

<1
 . . 

Lemna gibba 6 
<1

 10 
1
 24 

2
 27 

2
 33 

2
 30 

1
 16 

1
 17 

1
 27 

3
 14 

1
 6 

<1
 6 

<1
 5 

1
 . . . . 

Potametea                  

Elodea canadensis . 27 
4
 16 

5
 18 

1
 22 

1
 20 

9
 25 

2
 27 

2
 9 

1
 41 

1
 28 

5
 27 

6
 35 

2
 . 100 

9
 . . 

Potamogeton natans . 13 
13

 16 
5
 9 

1
 11 

1
 30 

6
 20 

16
 21 

16
 . 30 

17
 9 

12
 10 

12
 11 

9
 . . . . 

Potamogeton crispus . 9 
3
 8 

9
 9 

3
 11 

3
 . 4 

4
 5 

4
 9 

<1
 2 

1
 12 

2
 12 

2
 11 

3
 33 

<1
 14 

1
 . . 

Ceratophyllum 

demersum 

. 8 
4
 16 

4
 18 

8
 22 

8
 20 

<1
 17 

4
 19 

5
 . 20 

7
 3

 1
 3 

1
 3 

1
 . . . . 

Persicaria amphibia . 5 
1
 16 

1
 9 

1
 11 

1
 20 

2
 7 

1
 5 

<1
 . 5 

1
 3 

<1
 3 

<1
 2 

<1
 . . . . 

Potametalia                  

Potamogeton acutifolius . . . . . . . . . . . . . . . . . 

Potamogeton berchtoldii . <1 
3
 . . . . 1 

3
 1 

3
 . 2 

3
 . . . . . . . 

Potamogeton 

compressus 

. . . . . . . . . . . . . . . . . 

Potamogeton pectinatus . 12 
12

 32 
10

 36 
5
 22 

3
 . 16

 18
 20 

8
 . 7 

2
 8 

3
 8 

18
 3 

3
 11 

15
 . . . 

Potamion lucentis                  

Myriophyllum spicatum . 8 
4
 8

 4
 18 

4
 . . 11 

6
 9 

8
 36 

13
 5 

<1
 6 

4
 6 

4
 5 

3
 33 

3
 . . . 

Ranunculus circinatus . . . . . . . . . . . . . . . . . 

Potametum lucentis                  

Potamogeton lucens . 4 
18

 16 
48

 36 
48

 44 
48

 . 5 
7
 7 

7
 9 

15
 9 

5
 2 

2
 2 

2
 5 

2
 . . . . 

Potamogeton perfoliatus . 4 
7
 24

 12
 45 

14
 56 

14
 10 

<1
 2 

2
 3 

2
 . 5 

2
 2 

2
 2 

2
 3 

2
 . . . . 

Potamion pusilli                  

Potamogeton pusillus . 4 
8
 12 

18
 . . 30 

18
 4 

5
 4 

6
 . 2 

15
 3 

4
 3 

4
 3 

8
 . . . . 

Elodea nuttallii . 25 
9
 56 

24
 36 

5
 44 

5
 100 

32
 36 

5
 41 

5
 45 

7
 45 

4
 16 

6
 17 

6
 17 

6
 11 

1
 29 

8
 . . 

Potamogeton trichoides . <1 
<1

 . . . . 1
 <1

 1 
<1

 . 2 
<1

 . . . . . . . 
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No. of species / relevé 3.7 6.9 7 7.6 8.1 7.1 7.7 8.1 7.4 8.4 6.5 6.6 7.4 6.2 6.1 1.4 2 

No. of relevés 18 305 25 11 9 10 92 75 11 44 183 171 65 9 7 7 2 

  Lem-
netea 

Pota-
metea 

Pota-
meta-
lia 

Pota-
mion 
lucen-
tis 

Pota-
metum 
lucen-
tis 

Pota-
mion 
pusilli 

Nym-
phae-
etalia 

Nym-
phae-
ion 
albae 

Myrio-
phyllo-
Nuphar-
etum 

Spar-
ganio-
Elode-
etum 

Batra-
chieta-
lia 

Ranun-
culion 
fluitan-
tis 

Callitri-
cho-My-
riophyll-
etum 

Ranun-
culo-
Sietum 

Ranun-
culetum 
fluitantis 

Phrag-
mite-
tea 

Fonti-
nalie-
tea 

Nymphaeetalia 

Myriophyllum 

verticillatum 

. <1 
1
 . . . . . . . . 11 1 

1
 2 

1
 . . . . 

Utricularia vulgaris . 3 
5
 . . . . 10 

5
 11 

6
 27 

8
 2 

5
 1 

3
 1 

3
 . . . . . 

Hydrocharition                  

Hydrocharis morsus-

ranae 

. 4 
2
 12 

1
 18 

1
 22 

1
 10 

<1
 9 

2
 8 

3
 9 

15
 5 

<1
 1 

2
 1 

2
 . . . . . 

Myriophyllo-

Nupharetum 

                 

Nuphar lutea . 33 
11

 20 
15

 36 
15

 44 
15

 10 
15

 77 
12

 77 
13

 82 
32

 77 
11

 13 
6
 14 

6
 9 

4
 . . . . 

Sparganio-Elodeetum                  

Sagittaria sagittifolia . 29 
12

 36 
21

 45 
25

 56 
25

 40 
17

 70 
12

 83 
12

 45 
13

 98 
14

 9 
8
 10 

8
 8 

12
 . . . . 

Sparganium emersum . 64 
8
 52 

8
 55 

8
 44 

7
 40 

9
 51 

6
 52 

6
 36 

14
 52 

5
 74 

9
 77 

9
 92 

8
 22 

2
 86 

5
 . . 

Batrachietalia                  

Callitriche palustris agg. . 44 
2
 24 

1
 9 

3
 11 

3
 50 

1
 35 

1
 43 

1
 27 

<1
 50 

1
 52 

3
 53 

3
 72 

4
 44 

4
 57 

1
 . . 

Glyceria fluitans . 8 
4
 . . . . 2 

3
 3 

3
 . 5 

3
 12 

4
 9 

5
 15 

2
 . . . . 

Agrostis stolonifera 33
 <1

 15 
<1

 4 
1
 9 

1
 11 

1
 . 4 

<1
 4 

<1
 27 

<1
 . 22

 1
 21 

<1
 9 

1
 22 

<1
 . . . 

Ranunculion fluitantis                  

Fontinalis antipyretica M . 6 
4
 . . . . . . . . 10 

4
 11 

4
 12 

1
 33 

<1
 29 

1
 . 50

 <1
 

Potamogeton nodosus . 1 
4
 . . . . 1 

3
 1 

3
 . 2 

3
 1 

5
 1 

5
 2 

5
 . . . . 

Berula erecta . 23 
6
 . . . . 3

 1
 4 

1
 9 

1
 5 

2
 36 

6
 38 

6
 28 

4
 22 

46
 . . . 

Callitricho-

Myriophylletum 

                 

Callitriche hamulata . 16 
2
 . . . . 3 

<1
 4 

<1
 9 

<1
 5 

1
 26 

2
 27 

2
 66 

2
 11 

3
 29 

<1
 . . 

Myriophyllum 

alterniflorum 

. 6 
2
 . . . . . . . . 10 

2
 10 

2
 26 

3
 . 14 

<1
 . . 

Ranunculus aquatilis 

agg. 

. 10 
7
 . . . . . . . . 17 

7
 19 

7
 49 

7
 . . . . 

Ranunculo-Sietum                  

Ranunculus 

trichophyllus 

. 2 
4
 . . . . . . . . 4 

4
 4 

4
 2 

<1
 67 

4
 . . . 

Groenlandia densa . <1 
1
 . . . . . . . . 1 

1
 1 

1
 . 11 

1
 . . . 

Zannichellia palustris . 1 
1
 . . . . . . . . 21 2 

1
 . 22 

1
 . . . 

Ranunculetum 

fluitantis 

                 

Ranunculus fluitans . 3 
12

 . . . . . . . . 4 
12

 5 
12

 2 
3
 . 100 

13
 . . 
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No. of species / relevé 3.7 6.9 7 7.6 8.1 7.1 7.7 8.1 7.4 8.4 6.5 6.6 7.4 6.2 6.1 1.4 2 

No. of relevés 18 305 25 11 9 10 92 75 11 44 183 171 65 9 7 7 2 
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Pota-
mion 
pusilli 
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phae-
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Nym-
phae-
ion 
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Myrio-
phyllo-
Nuphar-
etum 

Spar-
ganio-
Elode-
etum 

Batra-
chieta-
lia 

Ranun-
culion 
fluitan-
tis 

Callitri-
cho-My-
riophyll-
etum 

Ranun-
culo-
Sietum 

Ranun-
culetum 
fluitantis 

Phrag-
mite-
tea 

Fonti-
nalie-
tea 

Phragmitetea 

Iris pseudacorus 6
 <1

 2 
1
 . . . . . . . . 4 

1
 4 

1
 3 

<1
 11 

1
 . . . 

Phragmites australis 33 
10

 9 
5
 16 

4
 9 

15
 11 

15
 20 

1
 10 

2
 5 

2
 . 2 

1
 7 

8
 7 

8
 3 

2
 . . 43 

9
 . 

Sparganium erectum 33 
26

 32 
5
 20 

10
 9 

15
 . 10 

15
 43 

5
 45 

4
 55 

8
 45 

3
 27 

5
 26 

5
 22 

2
 . . . . 

Alisma plantago-

aquatica 

. 3 
1
 4

 <1
 . . 10 

<1
 4

 <1
 5 

<1
 . 7 

<1
 3 

1
 3 

1
 3 

3
 . 14 

1
 . . 

Glyceria maxima 17 
10

 17 
3
 20 

3
 18 

3
 22 

3
 30 

3
 25 

4
 24 

4
 18 

8
 23 

4
 13 

2
 13 

2
 15 

2
 . 14 

3
 14 

<1
 . 

Rumex hydrolapathum . 3 
<1

 . . . . 5
 <1

 7 
<1

 9 
1
 5 

<1
 2 

1
 1 

1
 2 

1
 . . . . 

Sium latifolium . 1 
5
 . . . . . . . . 2 

5
 2 

5
 2 

15
 . . . . 

Schoenoplectus 

lacustris 

. 1 
1
 . . . . 111 1 

1
 9 

1
 . 133 1 

2
 . . . . . 

Butomus umbellatus . 13 
3
 8 

9
 9 

15
 11 

15
 10 

3
 18 

3
 19 

3
 9 

1
 18 

5
 11 

3
 12 

3
 3 

9
 . . . . 

Mentha aquatica 6 
5
 6 

3
 . . . . . . . . 9 

3
 9 

4
 9 

1
 11 

38
 . 14 

1
 . 

Veronica beccabunga . 6 
1
 . . . . 1 

1
 1 

1
 . 2 

1
 9 

1
 9 

1
 9 

1
 44 

<1
 14 

<1
 14 

1
 . 

Veronica anagallis-

aquatica 

. 3 
<1

 . . . . 2 
<1

 1 
<1

 . 2 
<1

 4
 <1

 4 
<1

 3 
<1

 44 
<1

 . . . 

Mimulus guttatus . 1 
2
 . . . . . . . . 1 

2
 . . . . . . 

Nasturtium officinale . 7 
7
 . . . . 2

 <1
 . . . 11 

8
 12 

8
 14 

3
 22 

44
 . . . 

Phalaris arundinacea 28
 4
 58 

2
 68 

2
 82 

1
 78 

1
 60 

2
 48 

3
 48 

3
 36 

5
 52 

3
 61 

2
 61 

2
 66 

2
 89 

1
 57 

<1
 14 

3
 . 

Carex acutiformis . <1 
<1

 . . . . . . . . 1
 <1

 1 
<1

 . . . . . 

Carex riparia 6 
3
 . . . . . . . . . . . . . . 29

 <1
 . 

Fontinalietea                  

Platyhypnidium 

riparioides M 

. 4 
5
 4

 1
 . . . . . . . 7 

6
 6 

6
 5 

<1
 22 

1
 . 14 

15
 50 

75
 

Chiloscyphus 

polyanthos M 

. 1 
4
 . . . . . . . . 2 

4
 2 

4
 2 

<1
 . . . 100 

1
 

Accompanying 

species 

                 

Callitriche 

hermaphroditica 

61 . . . . . . . . . . . . . . . . 

Isolepis fluitans . <1 
1
 . . . . . . . . 1 

1
 1 

1
 2 

1
 . . . . 

Potamogeton 

praelongus 

. 1 
3
 . . . . 1 

3
 1 

3
 . 2 

3
 1 

3
 1 

3
 . . . . . 
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Table 4.5 Correlation coefficients after Spearman and p values of the relationships between 

environmental variables and DCA axes 1 and 2 for a total of 650 relevés that were used for the 

trajectory analysis 

Parameter r DCA axis 1 p r DCA axis 2 p 

Current velocity 0.13 ***<0.001 0.23 ***<0.001 

Reach width -0.30 ***<0.001 -0.16 ***<0.001 

Reach depth -0.35 ***<0.001 -0.07 0.058 

EIV - temperature -0.29 ***<0.001 0.04 0.330 

EIV - soil reaction -0.04 0.270 0.16 ***<0.001 

EIV - nutrients -0.21 ***<0.001 0.07 0.085 

 

 

 

 

 

 

 

Table 4.7 Correlation coefficients after Spearman and p values of the relationships between 

environmental variables and DCA axes 1 and 2 for 70 streams or rivers (1950s and 2010/2011) 

Parameter r DCA axis 1 p r DCA axis 2 p 

Current velocity 0.49 ***<0.001 0.16 0.095 

Reach width -0.21 *0.026 0.21 *0.028 

Reach depth -0.41 ***<0.001 0.15 0.118 

EIV - temperature -0.58 ***<0.001 0.24 **0.004 

EIV - soil reaction -0.16 0.053 -0.18 *0.033 

EIV - nutrients -0.27 ***<0.001 -0.22 *0.010 
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