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1. Introduction

Integer and mixed-integer nonlinear optimization problems occur in many applications, may
they be real world or academic, compare e.g. Nemhauser and Wolsey [1988], Grossmann and
Kravanja [1995] or Jünger et al. [2010]. Unfortunately, they combine two aspects that add,
each one separately, an additional challenge to the problem: namely the nonlinearity of the
objective function and the integrality constraint. This means also that integer nonlinear
optimization problems are NP-hard as they contain the class of integer optimization problems
and the class of nonlinear optimization problems, which are both NP-hard. While one can
think of special cases where the combination of these two might lead to a simpler problem, for
example if there are only a constant number of feasible integer points, in general it is to be
expected that integer nonlinear optimization problems are even harder to solve than nonlinear
or integer optimization problems. (See also Section 1.1 for more details.)

A basic assumption that we use throughout this work is that it is easier to solve the continuous
relaxation (this is if we skip the integrality constraint) than the original integer problem.
Although there might be exceptions this is a pretty common assumption. If we assume that
it is natural to ask �Why not just solve the continuous relaxation and round the obtained
solution?�. This would make live so much easier! Of course this is not going to lead to an
optimal solution to the integer problem in general � often not even to a feasible one. But if
it leads to an optimal solution it would be great to know it, because then it could speed up
�nding an optimal integer solution via an optimal solution to the continuous relaxation.

The goal of this thesis is to identify special cases where rounding an optimal solution to the
continuous relaxation leads to an optimal solution of the integer problem � we call this the
�Rounding Property� (see Section 1.2).

The basic idea followed in this work is described in the following example: assume that we
know the (unique) optimal solution to the continuous relaxation (and that it is not integer
itself) and that we also know that the level sets are Euclidean balls. Then we know that an
optimal solution to the integer problem is the �rst integer point (or the �rst integer points)
that we reach by increasing the level of the objective function (starting with the continuous
optimal objective value), i.e., by growing the level sets. As the level sets are Euclidean balls
this is going to be the closest integer to the optimal solution to the continuous relaxation. And
hence this problem has the rounding property. Our task is to identify more general geometric
shapes of level sets that also lead to this property.
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1. Introduction

We need to make some rather strong assumptions on the problem to guarantee this kind of
rounding property. But this is what is done most of the time to handle the very broad class of
�integer nonlinear problems�. Typical assumptions in the literature are for example convexity
or concavity assumptions. (See also Section 1.1 for more details.) We do not need any of these
but instead we impose others. In this way our results are alternative properties, in contrast
to for example convexity, that lead to easier/ faster solution approaches.
Of course, the question is whether these theoretical assumptions will be met by a problem.
Therefore a part of this work is to show some applications and adaptions to special types of
optimization problems.

This work is organized as follows: we start by giving a glance on the literature on mixed-integer
nonlinear optimization, followed by the introduction of basic concepts and notations that we
use in the following and end this �rst chapter by explaining the already mentioned basic
example in more detail and generality. This provides the basic starting point for everything
that is to come.
Part I of this work is then dedicated to the task of �nding other geometric shapes, like
Euclidean balls, that guarantee the Rounding Property. We present basically two di�erent
ideas namely quasi-round (Chapter 2) and cross-shaped sets (Chapter 3). The corresponding
chapters are organized parallel: after giving the formal de�nition and some basic properties,
we establish the connection to the Rounding Property, show some applications and end with
a generalization in each case. In Chapter 4 we give some general remarks and generalizations
that are not limited to either case and show an alternative way of de�ning a rounding property.
Part II is then on applications and extensions: in Chapter 5 we apply our theory to the special
case of convex quadratic integer problems and show how to use the ideas presented so far to
derive lower bounds even if the problem does not have the Rounding Property. These bounds
are embedded in a branch-and-bound framework. Some �rst computational results indicate
their possibilities and compare them among each other. Chapter 6 shows how the concept of
the Rounding Property and our results can be adopted to the case of mixed-integer nonlinear
optimization problems. This gives rise to an easy to calculate mixed-integer relaxation bound
in many cases and is also applied to the convex quadratic case.
An overview on the dependencies between the chapters is given in the following picture:
Chapter 1 is the basis for all that follows, Chapters 2 and 3 can be read without knowledge
of the other one and Chapter 4 is based up on both of them. For Chapters 5 and 6 both 2
and 3 are needed and Chapter 5 might be helpful for Chapter 6.

1

2 3
4

5 6

We end this work by giving a summary of the main ideas and results we develop and some
further research ideas.

Parts of this work are joint work with coauthors, see the summary of contributions.
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1.1. Mixed-integer nonlinear optimization

1.1. Mixed-integer nonlinear optimization

The purpose of this section is to give a glance on complexity results and solution approaches for
mixed-integer nonlinear optimization problems. The general mixed-integer nonlinear problem
is of the following form:

(MINLP ) min f(x1, . . . , xn)

s.t. g(x1, . . . , xn) ≤ 0

x ∈ Zn1 × Rn2

where f : Rn1+n2 → R and g : Rn1+n2 → Rm.
Overviews of mixed-integer nonlinear optimization are for example provided by Grossmann
[2002] and Hemmecke et al. [2010].

We start our overview by showing the complexity of the general mixed-integer nonlinear
problem. To this end we observe �rst of all that continuous nonlinear programming is in general
NP-hard: for example the problem of minimizing a quadratic function over box constraints,
the so-called BoxQP-problem, is already NP-hard (see Pardalos and Vavasis [1991]). On the
other hand also mixed-integer linear programming is NP-hard (see Garey and Johnson [1979]).
Hence the class of mixed-integer nonlinear problems contains two NP-hard subclasses and is
therefore also NP-hard in general. Furthermore, Jeroslow [1973] showed that the problem of
minimizing a linear function over quadratic constraints over integer variables is incomputable.
Therefore most approaches to solve these kind of problems are for special cases. We discuss
the following two of these special cases here: mixed-integer linear optimization and mixed-
integer convex optimization. But besides these there are of course also other mixed-integer
optimization problems that have a special structure that allow for good solution strategies
such as for example concave or binary problems. Furthermore, we only give exact approaches
here since the scope of this work is on exact approaches, but it is of course noteworthy that
the class of heuristics and approximation approaches for mixed-integer nonlinear problems is
enormous. It is also to mention that there are a lot of approaches for special integer nonlinear
optimization problems which we do not mention here.

Mixed-integer linear optimization We start by reviewing the mixed-integer linear case since
this is the oldest and probably best-researched special case. Lenstra [1983] showed that in
�xed dimension integer linear programming can be done in polynomial time. We present
three ideas here to solve a mixed-integer linear problem because of their importance also for
the mixed-integer nonlinear case. A detailed review on mixed-integer linear optimization and
especially solvers for these problems is given by Lodi [2010].

The �rst idea was originally proposed by Land and Doig [1960] and is known today as branch-
and-bound. The basic idea is to start by solving the continuous relaxation of the mixed-integer
problem, i.e., the problem we get if we relax the integrality constraints, which is a continuous
linear problem. If the solution x̄ we get to the continuous relaxation is already feasible for
the mixed-integer problem we are done. Otherwise we construct two subproblems by choosing
one variable i ∈ {1, . . . , n1} s.t. x̄i /∈ Z and adding to the original problems on the one hand
the constraint xi ≤ bx̄ic (where bx̄ic is the greatest integer smaller than x̄i) and for the other
problem the constraint xi ≥ bx̄ic + 1. This means that x̄ is not feasible for any of these two
new problems. For each of the new problems we solve again the continuous relaxations and
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1. Introduction

continue as described. The subproblems are organized in a tree structure to demonstrate their
dependencies. Therefore the construction of the two subproblems is called branching. As soon
as we get an integer solution to one of the subproblems it gives us an upper bound on the
optimal objective value. This can be used to evaluate other subproblems: if the objective
value of the continuous relaxation is already worse than the current upper bound we do not
have to branch this problem any further since all subproblems of this problem will perform
even worse and hence we discard this subproblem � this is the bounding (the same is true if
a subproblem is infeasible). By proceeding in this way the subproblems become smaller and
smaller as we restrict the feasible region and at some point the continuous relaxation produces
integer values. As soon as all subproblems are either discarded or solved to optimality we are
done.

Dakin [1965] presented a version of this basic algorithm designed to be easier to implement
and furthermore no longer bound to integer linear problems but also applicable to integer
nonlinear instances. An overview of advances in linear programming-based branch-and-bound
approaches since these basic works is given for example by Johnson et al. [2000].

At the same time as Land and Doig, Gomory [1958] came up with a di�erent idea to solve pure
integer linear problems: the cutting plane algorithm. His idea is: if the continuous relaxation
of an integer linear optimization problem is not integer itself we add a new constraint to this
problem that is satis�ed by all feasible integer points but not by the optimal solution to the
continuous relaxation. This new inequality is called a cut since it cuts o� the continuous
optimal solution. The cut originally introduced by Gomory, the Gomory cut, is based on the
following observation: using the simplex method to solve the continuous relaxation we are
left with a set of equations of the form xB(j) = b′j −

∑n−m
i=1 a′j,N(i)xN(i) for the basis variables

xB and the non-basis variables xN and get the simplex solution xB(j) = b′j and xN(i) = 0.
If one of the b′j is not integer this solution is not a solution to the integer problem. We can
reformulate this equation as

xB(j) +

n−m∑

i=1

ba′j,N(i)cxN(i) − bb′jc = b′j − bb′jc︸ ︷︷ ︸
<1

−
n−m∑

i=1

(a′j,N(i) − ba′j,N(i)c)xN(i)

︸ ︷︷ ︸
≥0

.

This means, for all x ∈ (Z+
0 )n the left-hand side is integer and the right side is less than 1.

This means that

b′j − bb′jc −
n∑

i=1

(a′j,i − ba′j,ic)xN(i) ≤ 0

is feasible for all feasible x ∈ Zn but not for our simplex solution xB(j) = bj and xN(i) = 0
and hence a cut of the required form.

Adding cuts to the original problem means shrinking the feasible region of its continuous
relaxation. Therefore the cutting plane algorithm geometrically means to align the feasible
region more and more with the convex hull of the feasible integer points.

A strong approach is the combination of both approaches, the so-called branch-and-cut-
algorithms. The idea is to add cuts either at the beginning or also while processing the
tree to strengthen the continuous relaxations. Caprara and Fischetti [1997] give an overview
of these approaches.
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1.1. Mixed-integer nonlinear optimization

The last approach for mixed-integer linear problems we mention here is the idea of test sets.
Graver [1975] introduced this idea as a generalization of both the simplex method and the
�ow algorithm to general integer linear optimization. The idea is the following: An integral
test set T for a feasible x ∈ F := {x ∈ Zn : A1x = b1, A2x ≤ b2} is a �nite set of vectors,
T ⊆ {t ∈ Zn : A1t = 0}, such that for all t ∈ T max{α : x+ αt ∈ F} > 0 and for all y ∈ F
y − x =

∑
t∈T αtt where αt ∈ N. This gives rise to the following optimality criterion: if T is

an integral test set for x ∈ F and if for all t ∈ T we have ctt ≥ 0 then x is an optimal solution
to min{ctx : A1x = b1, A2x ≤ b2, x ∈ Zn} (compare Graver [1975]). This means, if we are
given a test set T and a feasible point x we can design an augmentation algorithm that will
terminate with an optimal solution if one exists. The original test set introduced by Graver
[1975] is the so-called Graver basis

G(A) := { t ∈ Zn : A1t = 0, max{α : x+ αt ∈ F} > 0,

for all w ∈ Zn, A1w = 0 s.t. (ai2t)(a
i
2w) ≥ 0 and |ai2t| ≥ |ai2w| for all rows

ai2 of A2 follows w = t or w = 0}.

An overview of test sets for integer linear problems is given by Weismantel [1998].

Mixed-integer convex optimization For the special case of mixed-integer convex optimiza-
tion the incomputable result does not hold since Khachiyan [1983], improved by Bank et al.
[1991], showed that if f and g are quasi-convex polynomials of degree bound d ≥ 2 there exists
a radius R ∈ N such that

min{f(x) : g(x) ≤ 0, x ∈ Zn} = min{f(x) : g(x) ≤ 0, ‖x‖2 ≤ R, x ∈ Zn}.

Hence a global (however in general ine�cient) approach to solve integer convex problems is
to compare the objective values of all points in {x ∈ Zn : g(x) ≤ 0, ‖x‖2 ≤ R}, which
are only �nitely many. In �xed dimension the problem of minimizing a convex function over
mixed-integer variables in a convex set can be done in polynomial time as has been shown
by Khachiyan [1983]. Nevertheless, mixed-integer convex problems are still NP-hard as they
still contain the class of mixed-integer linear problems. The convexity of the objective function
and the feasible region give rise to a large group of exact solution approaches of which we
present a selection here. A recent survey on algorithms and software for mixed-integer convex
problems is given by Bonami et al. [2012].

The branch-and-bound idea for the mixed-integer linear case can be applied also to the non-
linear case, as already mentioned by Dakin [1965]. The problem is then of course to solve
the continuous relaxation, which was simply a linear problem in the former case, but is now
a continuous nonlinear problem. The branch-and-bound approach was �rst applied to mixed-
integer problems by Gupta and Ravindran [1985], who compare several branch-and-bound
algorithms varying in branching rules and upper bound computation. An improvement of the
original idea for mixed-integer convex problems is given for example by Borchers and Mitchell
[1994] and Ley�er [2001]: the idea is not to solve the continuous relaxation to optimality for
each subproblem, since this might be to expensive in the convex setting.

A cutting plane algorithm for mixed-integer convex problems has been introduced by Wester-
lund and Pettersson [1995]: the so-called extended cutting plane (ECP) algorithm, extending
the method by Kelley [1960] to mixed-integer problems. A generalization to pseudo-convex
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1. Introduction

problems is given by Westerlund and Pörn [2002]. Also branch-and-cut approaches have been
extended to the convex setting, e.g. by Quesada and Grossmann [1992] or Stubbs and Mehro-
tra [1999].

Graver's idea of test sets has been generalized to some mixed-integer convex problems: Hem-
mecke [2003] derived a �nite test set for the problem min{f(x) : Ax = b, x ∈ Zn+} where
f(x) :=

∑s
i=1 fi(c

t
ix + ci,0) + ctx for fi : R → R Z-convex with minimum at 0. A function

g : R → R is called Z-convex with minimum at 0 if g(x + 1) − g(x) in increasing in x ∈ Z
and if g(x + 1) − g(x) ≤ 0 for all x ≤ 0 and g(x + 1) − g(x) ≥ 0 for all x ≥ 0. This means
that for example the problem of minimizing a separable convex function over linear equation
is contained in this class of problems. This result is extended to a broader class by Lee et al.
[2008].

Besides these adaptions from the linear case, there are also some approaches speci�cally de-
signed for mixed-integer convex optimization. For improved readability we rewrite (MINLP )
in the following way

(MINLP ) min f(x, y)

s.t. g(x, y) ≤ 0

x ∈ X ⊆ Zn1

y ∈ Y ⊆ Rn2 .

The idea of so-called decomposition algorithms is to rewrite the problem as

min{h(x) : x ∈ X ∩ V }

where V := {x ∈ Zn1 : ∃y ∈ Y : g(x, y) ≤ 0} is the projection of the feasible region on the
integer variables and h : Zn1 → R, h(x) := min{f(x, y) : g(x, y) ≤ 0, y ∈ Y }. We call this
minimization problem, i.e., the remaining continuous problem if the integer variables are �xed
in (MINLP ), subproblem (S(x)) and assume that it is easy to solve. Two famous examples
of decomposition algorithms are outer approximation and Benders decomposition which are
explained in more detail in the following.
The idea of outer approximation (OA), �rst proposed by Duran and Grossmann [1986], is to
construct a sequence of linearization points at which we construct supporting hyperplanes for
f and g (we assume f and g to be continuously di�erentiable here) to approximate h(x) and
V . The original work by Duran and Grossmann [1986] was restricted to problems where the
integer variables appear only linear. This restriction was removed by Fletcher and Ley�er
[1994]. The algorithm is based on the observation that (MINLP ) is equivalent to the master
problem

(MasterOA) min µ

s.t. ∇f(x̂, ŷ)t
(
x− x̂
y − ŷ

)
+ f(x̂, ŷ) ≤ µ ∀(x̂, ŷ) ∈ T,

∇g(x̂, ŷ)t
(
x− x̂
y − ŷ

)
+ g(x̂, ŷ) ≤ 0 ∀(x̂, ŷ) ∈ T ∪ S

x ∈ X, y ∈ Y

with T := {(x, y) : x ∈ X∩V, y optimal to (S(x))} and S := {(x, y) : x ∈ X, (S(x)) infeasible,
y solves F (x)} for the feasibility problem F (x) min{∑m

i=1wi : g(x, y) ≤ w, y ∈ Y, w ≥ 0}.
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1.1. Mixed-integer nonlinear optimization

The algorithm to solve (MINLP ) consists of alternatingly solving a relaxed version of the
master problem where T and S are approximated by T i ⊆ T and Si ⊆ S that contain not
all linearization points and solving the subproblem to construct more pairs (x̂, ŷ) to enlarge
T i and Si. It is shown in Duran and Grossmann [1986] and Fletcher and Ley�er [1994]
respectively that the algorithm converges after a �nite number of steps.
An implementation of a combined outer approximation and branch-and-bound approach is
presented by Bonami et al. [2008].

Similar to outer approximation is the generalized Benders decomposition, introduced by Ge-
o�rion [1972], generalizing the approach by Benders [1962] to mixed-integer convex problems.
Here duality theory is used to derive a stepwise description of the function h(x) and the
projected feasible region V . Here the master problem is

(MasterBenders) min β

s.t. inf
y∈Y
{f(x, y) + utg(x, y)} ≤ β ∀u ≥ 0

inf
y∈Y

λtg(x, y) ≤ 0 ∀λ ∈ {λ ∈ Rm : λ ≥ 0,
m∑

i=1

λi = 1}

x ∈ X.

It is relaxed by ignoring most of the constraints and the algorithm consists of adding more
and more constraints. To decide which constraints are added we solve again the subproblem
(S(x)).

Comparing outer approximation and generalized Benders decomposition it is to say that the
relaxed (MasterOA) gives tighter bounds than the relaxed (MasterBenders) but on the other
hand in each iteration of the OA algorithm a lot of constraints are added to the relaxed master
problem while in the generalized Benders decomposition only one constraint is added. This
means that after some iterations the relaxed (MasterOA) is much more expensive to solve
than the relaxed (MasterBenders), compare e.g. Duran and Grossmann [1986], Fletcher and
Ley�er [1994] or Grossmann [2002].

Contribution of this work As mentioned before, our approach is not dependent on f and/or
g being convex or concave. In contrast, we impose assumptions on the geometric shape of the
intersection of the feasible region and the level sets of the objective function. If these conditions
hold, we get a straightforward algorithm to solve pure integer nonlinear optimization problems
to optimality by solving its continuous relaxation and obtaining a �nite candidate set: the set
of all integer points we get by rounding each component of the continuous optimal solution
either up or down. As any �nite candidate set is a test set our results can be interpreted as the
construction of a test set for special problems. On the other hand by proving that one of the
rounded points of the continuous optimal solution x̄ is an optimal solution x∗ to the integer
problem we show that ‖x̄ − x∗‖∞ < 1. This means, we give a proximity result: proximity
results bound the distance between any optimal solution to the continuous relaxation to its
closest optimal solution to the integer problem, compare e.g. Granot and Skorin-Kapov [1990]
or Hochbaum and Shanthikumar [1990].

7



1. Introduction

1.2. Basic concepts and notations

In this section we formally introduce the Rounding Property and its strengthening, the Strong
Rounding Property. We give an intuition to our approach of investigating whether a given
problem has the (Strong) Rounding Property: a level set approach. Furthermore, we provide
some basic notations we use throughout this work.

1.2.1. The Rounding Property

To begin with, we show the basic idea in an easy example before we de�ne and formalize what
we need in the following.

Example 1.1. Consider the integer nonlinear problem

min sin(x)

s.t. 0 ≤ x ≤ 10

x ∈ Z.

This problem is neither convex nor concave, but of course it is easy to solve since there are only
10 feasible points. We compare the objective values of these points and get the unique optimal
solution x∗ = 5. The unique optimal solution to the continuous relaxation min{sin(x) : 0 ≤
x ≤ 10} is x̄ = 3π

2 ≈ 4.71, compare also Figure 1.1.

0 1 5
x∗

10
x̄

Figure 1.1.: The function sin(x) on 0 ≤ x ≤ 10.

We see that this problem has the property that we can round the optimal solution to its con-
tinuous relaxation to get an optimal solution to the integer problem, even though the level sets
are not Euclidean balls.

To formalize the above we introduce the following notation:
The problems we consider here are integer nonlinear optimization problems of the following
form.

(IP ) min f(x) (1.1)

s.t. x ∈ F
x ∈ Zn

where F ⊆ Rn, e.g. F := {x ∈ Rn : gi(x) ≤ 0 ∀i = 1, . . . ,m}, and f : F → R. We denote
this integer problem by the describing tuple (f, F ).

Notation 1.2. Given an integer optimization problem (IP ) we denote the set of optimal
solutions by X∗ := {x ∈ Zn ∩F : f(x) ≤ f(y) ∀y ∈ Zn ∩F} and an optimal solution, i.e., an
integer minimizer by x∗, if it exists.

8



1.2. Basic concepts and notations

Basic Assumption 1.3. Throughout this work we always assume that an optimal solution
to (IP ) exists, that is that X∗ 6= ∅.

Assumption 1.3 justi�es also that we wrote min instead of inf in (IP ).

As mentioned before, besides (IP ) we also consider its continuous relaxation

(CP ) min f(x) (1.2)

s.t. x ∈ F,

where we skipped the integrality constraint x ∈ Zn.

Notation 1.4. We denote the set of optimal solutions to (CP ) by X̄ := {x ∈ F : f(x) ≤
f(y) ∀y ∈ F} and a continuous minimizer by x̄, if it exists.

The other important underlying assumption is the following:

Basic Assumption 1.5. We always assume that there exists an optimal solution to (CP ),
i.e., X̄ 6= ∅ and that there exists an algorithm to solve (CP ) which we use as a black box.

The idea is that we only consider integer problems whose continuous relaxation is easier to
solve, such that we would prefer to solve (CP ) instead of (IP ). An example for such a problem
is an integer linear optimization problem, which is in general NP-hard whereas its continuous
relaxation is solvable in polynomial time. This means that we assume that the di�culty in
solving (IP ) comes from the integrality constraints.

Next we de�ne what we mean by �rounding�:

Notation 1.6. Given a point x ∈ Rn we denote the set of its rounded points by

Round(x) := {y ∈ Zn : yi ∈ {bxic, dxie} ∀i ∈ {1, . . . , n}}

and its unique rounded point by

bxe := {y ∈ Zn : yi = bxie ∀i ∈ {1, . . . , n}}

where bae := argminy∈Z |y − a|, made unique by any �xed tie breaking rule, for a ∈ R.

See Figure 1.2 for an example.

x

Round(x)

x

bxe

Figure 1.2.: Illustrating Notation 1.6: the bold points are Round(x) (left) and bxe (right).

We stress some important properties of the two de�ned objects:
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• 1 ≤ |Round(x)| ≤ 2n for every x ∈ Rn where |Round(x)| = 1 if and only if x ∈ Zn and
|Round(x)| = 2n if and only if xi /∈ Z ∀i = 1, . . . , n.

• Round(x) = {y ∈ Zn : ‖x− y‖∞ < 1}.

• bxe is unique for every x ∈ Rn. This is due to the fact that we break ties for example by
the round-the-half-up rule. This might look like a useless complication, but we exploit
explicitly this property that bxe is unique ∀x ∈ Rn.

• bxe ∈ {y ∈ Zn : ‖x− y‖∞ ≤ 0.5}.

Using these de�nitions we can �nally write down the basic property we examine in this work:
the Rounding Property.

De�nition 1.7. We say that an integer problem (IP ) has the Rounding Property (RP) if
for any optimal solution x̄ ∈ X̄ to its continuous relaxation (CP ) there exists an optimal
solution x∗ ∈ Round(x̄).

This means that whichever optimal solution x̄ to the continuous relaxation we take, (IP )
having the Rounding Property guarantees that Round(x̄) ∩ X∗ 6= ∅, so that it is enough to
compare the (at most 2n) points in Round(x̄) to �nd an optimal solution to (IP ). Hence for
every x̄ ∈ X̄ the set Round(x̄) is a �nite candidate set for (IP ). Alternatively, the Rounding
Property can also be seen as a proximity result: as Round(x̄) = {y ∈ Zn : ‖x̄ − y‖∞ < 1},
(IP ) having the Rounding Property means that for every x̄ ∈ X̄ there exists an x∗ ∈ X∗ such
that ‖x̄− x∗‖∞ < 1 (compare also Section 1.1).

Remark 1.8. We consider the minimizers to (IP ) and (CP ), so we do not know anything
about f(x∗)− f(x̄). This means also that we do not know whether f(x̄) is a good lower bound
on f(x∗). We are interested in where the minimum is attained and not in its value. An
example illustrating this di�erence can be found in Figure 2.14.

We illustrate this basic de�nition by some easy examples:

Example 1.9. In each of the following examples we consider the problem min{f(x) : x ∈ Z},
where f : R → R as shown by the respective graph. As we are in a one-dimensional example
we have Round(x̄) = {bx̄c, dx̄e}.

x∗ x̄

f(x∗)

x

f(x)

Figure 1.3.: (IP ) has the Rounding Property.

In the �rst example the continuous
as well as the integer minimizer are
unique. Furthermore, we have

x∗ ∈ Round(x̄)

and therefore the RP.
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1.2. Basic concepts and notations

x∗
1 x∗

2x̄

f(x∗)

x

f(x)

Figure 1.4.: (IP ) has the RP.

Again we have a unique continuous
minimizer but this time two integer
minimizers. Still we have the RP as

X∗ ∩ Round(x̄) 6= ∅.

x∗x̄

f(x∗)

x

f(x)

Figure 1.5.: (IP ) does not have the RP.

Here the continuous as well as the in-
teger minimizer are unique, but we do
not have the RP, as

x∗ /∈ Round(x̄).

x∗
1 x∗

2x̄1 x̄2

f(x∗)

x

f(x)

Figure 1.6.: (IP ) has the RP.

In this example we have two contin-
uous and two integer minimizers. As
for each x̄i there exists an x

∗
j such that

x∗j ∈ Round(x̄i)

we have the RP.

x∗x̄1 x̄2

f(x∗)

x

f(x)

Figure 1.7.: (IP ) has the RP.

Also here f has the RP: Now we have
two continuous and only one integer
minimizer, but still we have

x∗ ∈ Round(x̄1)

and
x∗ ∈ Round(x̄2).
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x∗x̄1 x̄2

f(x∗)

x

f(x)

Figure 1.8.: (IP ) does not have the RP.

Now we lost the RP: we still have two
continuous minimizers and one inte-
ger minimizer, but while

x∗ ∈ Round(x̄2)

we have

x∗ /∈ Round(x̄1).

The Rounding Property provides us with the following straightforward algorithm to solve an
integer problem that has the Rounding Property:

Algorithm 1: Basic algorithm to solve an integer problem that has the Rounding Property

Input: (f, F ) having the RP
Output: an optimal solution x∗ ∈ X∗
1. solve (CP ) to get an optimal solution x̄ ∈ X̄
2. choose x∗ ∈ argmin{f(x) : x ∈ Round(x̄) ∩ F}

Lemma 1.10. Algorithm 1 is well-de�ned and correct, i.e.,

(i) Round(x̄) ∩ F 6= ∅ and

(ii) x∗ ∈ X∗.

Proof. As (IP ) has the RP there exists x̃ ∈ X∗ ∩ Round(x̄). This means,

(i) x̃ ∈ X∗ ∩ Round(x̄) ⊆ F ∩ Round(x̄).

(ii) f(x̃) = min{f(x) : x ∈ F} = min{f(x) : x ∈ F ∩ Round(x̄)} = f(x∗) ⇒ x∗ ∈ X∗.

The runtime of Algorithm 1 consists of the time to solve (CP ) and the evaluation of the
objective function in up to 2n points and their comparison. This means that its e�ciency
depends only on the e�ciency in solving the continuous relaxation and the dimension n.
The latter point can be improved by observing that we do not have to take all points in
Round(x̄) into consideration, but only the feasible ones. Depending on the feasible region F
it is possible that |Round(x̄) ∩ F | � 2n.

One could think that it might be a little over the top to demand that for every optimal
solution x̄ ∈ X̄ we have X∗ ∩Round(x̄) 6= ∅ � would it not be enough if there is one optimal
solution to (CP ) that can be rounded? The problem is that if we need to �nd a particular
optimal solution to (CP ) we cannot be sure that this could be done in the same time as
solving (CP ), since �nding an arbitrary solution is in general easier than �nding a speci�c
one. Furthermore, we do not know how to get a speci�c solution to (CP ) as we use a black
box algorithm to solve it and we do not know which solution we are looking for, meaning that
we would probably have to �nd all continuous optimal solutions, while most algorithms only
�nd one. Compare also Chapter 4 for further remarks on this topic.
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If n is rather large it might not be practical to evaluate and compare the objective values of
all up to 2n points in Round(x̄). Also if we think of the special case of binary optimization
problems

(BP ) min f(x) (1.3)

s.t. x ∈ F
x ∈ {0, 1}n,

the Rounding Property would in general not be helpful since the continuous relaxation is
(CP ) min{f(x) : x ∈ F, x ∈ [0, 1]n} and therefore x̄i ∈ [0, 1] for all i = 1, . . . , n and
Round(x̄) = {0, 1}n in the worst case. This means that here Algorithm 1 would need to
enumerate all feasible 0-1-vectors, which is always an (ine�cient) way to solve (BP ).

In order to deal with both situations we introduce the Strong Rounding Property :

De�nition 1.11. We say that an integer problem (IP ) has the Strong Rounding Property
(SRP) if for any optimal solution x̄ ∈ X̄ to its continuous relaxation (CP ) it holds that
bx̄e ∈ X∗.

The following relation between the Rounding and the Strong Rounding Property is obvious
as bxe ∈ Round(x) for all x ∈ Rn.

Corollary 1.12. If (IP ) has the Strong Rounding Property, it also has the Rounding Property.

Example 1.13. Let us consider again the problems in Example 1.9: the only one that has
the SRP is the one in Figure 1.7, as bx̄1e = x∗ = bx̄2e. This means that the opposite of
Corollary 1.12 is of course not true in general.

The advantage of the Strong Rounding Property compared to the Rounding Property is that
bxe is unique for all x ∈ Rn, as we mentioned before. This means that as soon as we solved
(CP ) we have a solution to (IP ):

Algorithm 2: Basic algorithm to solve an integer problem that has the Strong Rounding
Property

Input: (f, F ) having the SRP
Output: an optimal solution x∗ ∈ X∗
1. solve (CP ) to get an optimal solution x̄ ∈ X̄
2. x∗ := bx̄e

Corollary 1.14. Algorithm 2 is correct, i.e., x∗ ∈ X∗.

Proof. This follows directly by the de�nition of the SRP.

The runtime of Algorithm 2 is the time we need to solve (CP ). In particular, if (CP ) is
solvable in polynomial time so is (IP ) no matter what n is.

But of course the Strong Rounding Property is a stricter assumption than the Rounding
Property and therefore ful�lled for a smaller class of problems. Therefore we consider both
properties in the following.
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Also the Strong Rounding Property can be seen as a proximity result:

(f, F ) has the SRP ⇒ for all x̄ ∈ X̄ there exists x∗ ∈ X∗such that ‖x̄− x∗‖∞ ≤ 0.5

But note that in contrast to the Rounding Property we do not get the reverse here. This is
due to the fact that bx̄e ∈ X∗ is a stronger assumption than the existence of an x∗ ∈ X∗ such
that ‖x̄− x∗‖∞ ≤ 0.5, since we made bx̄e unique.

Remark 1.15. We stress here that the Rounding Property as well as the Strong Rounding
Property are trivially ful�lled as soon as X̄ ⊆ Zn. Accordingly, we can ignore all optimal
solutions x̄ to (CP ) that are already integer. Therefore we assume without loss of generality
X̄ ∩ Zn = ∅ in the following.

1.2.2. Level set approach

As mentioned before we investigate the level sets of the objective function to identify problems
that have the (Strong) Rounding Property.

Notation 1.16. Given F ⊆ Rn and a function f : F → R we call the set of all points whose
objective value is less or equal a given level z ∈ R the level set of f in F corresponding to z
and denote it by

LF≤,f (z) := {x ∈ F : f(x) ≤ z}.

Remark 1.17. • What we call a level set here is also often referred to as lower level set
or sub level set.

• We write L≤,f (z) for LRn≤,f (z).

• If there is no ambiguity we skip the subscript f .

• L≤,f (z) = ∅ if and only if z < minx∈Rn f(x)

Using the level sets of the objective function we can reformulate (IP ) (or (CP )) as

min z (1.4)

s.t. LF≤,f (z) ∩ Zn 6= ∅ (or LF≤,f (z) 6= ∅).

(This reformulation and the proof can be found for example in Hamacher and Nickel [1995].)

Note that in this formulation we assume that f is de�ned on F which means that LF≤,f (z)
is the set of all feasible points whose objective value is smaller or equal than z. Therefore
Problem (1.4) means �nding the smallest level z such there is at least one feasible point in
the corresponding level set. This means that the optimal solution to (1.4) is the integer (or
continuous) minimum of (IP ) whereas an optimal solution to (IP ) (or (CP )) is a minimizer.
If we want to �nd a minimizer after solving (1.4) we can take any point in LF≤,f (z∗) ∩ Zn (or

LF≤,f (z∗)).

We use this level set approach to decide whether a given integer problem has the Rounding
Property. Therefore we use the following reformulation.
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Lemma 1.18. • (f, F ) has the Rounding Property ⇐⇒ for any optimal solution x̄ to
(CP ) and for all x ∈ Zn ∩ F we have that

LF≤(f(x)) ∩ Round(x̄) 6= ∅.

• (f, F ) has the Strong Rounding Property ⇐⇒ for any optimal solution x̄ to (CP )
and for all x ∈ Zn ∩ F we have that

bx̄e ∈ LF≤(f(x)).

Proof. �=⇒�

• Assume that (f, F ) has the RP and let x̄ be an optimal solution to (CP ). Then there
exists x∗ ∈ Round(x̄) optimal to (IP ). This means that x∗ ∈ F and f(x) ≥ f(x∗) for any
x ∈ Zn∩F , hence x∗ ∈ L≤(f(x)) for all x ∈ Zn∩F and therefore LF≤(f(x))∩Round(x̄) 6=
∅.

• If (f, F ) has the SRP, x∗ := bx̄e is an optimal solution to (IP ) and hence contained in
LF≤(f(x)) for all x ∈ Zn ∩ F .

�⇐=� Let x̄ be optimal for (CP ). (Remember that we assumed that there is at least one
optimal solution x∗ to (IP ), hence there is also at least one x ∈ Zn ∩ F .)

• We know that LF≤(f(x)) ∩ Round(x̄) 6= ∅ for any x ∈ Zn ∩ F , i.e., for any x ∈ Zn ∩ F
there exists a y ∈ Round(x̄) ∩ F such that f(y) ≤ f(x). This means, one of the points
in Round(x̄) ∩ F is optimal for (IP ), and the RP holds.

• If bx̄e ∈ L≤(f(x)) for any x ∈ Zn ∩F we obtain that f(bx̄e) ≤ f(x) for any x ∈ Zn ∩F ,
hence bx̄e is optimal for (IP ), and the SRP holds.

We demonstrate the meaning of Lemma 1.18 in the following example.

Example 1.19. Consider the integer problem (‖x− a‖2,R2) where a ∈ R2. The level sets of
the objective function f : R2 → R, x 7→ ‖x−a‖2 are circles centered at a, compare Figure 1.9.

a
Round(a)

bae
x

Figure 1.9.: (‖x− a‖2,R2) has the Strong Rounding Property.
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We see here that whenever a level set, i.e., a circle is large enough to contain an x ∈ Z2 it
contains at least one point of Round(a). In fact we even have that bae is contained in each
such circle and hence (‖x− a‖2,R2) does not only have the RP but even the SRP.

We generalize the observation made in Example 1.19 to arbitrary dimensions and arbitrary
p-norms.

Lemma 1.20. The integer problem (‖x − a‖p,Rn) where a ∈ Rn, has the Strong Rounding
Property.

Proof. x̄ = a is the unique optimal solution to the continuous relaxation. Furthermore, since
f(x) = ‖x− a‖p = p

√∑n
i=1 |xi − ai|p and |y− ai| ≥ |baie− ai| ∀y ∈ Z, ∀i = 1, . . . , n we get

f(bae) ≤ f(x) ∀x ∈ Zn.

This does not stay true if we use an arbitrary norm, for example ‖x‖Q :=
√
xtQx for positive

de�nite Q ∈ Rn,n.

Example 1.21. Consider the problem (‖x − a‖Q,R2) where a ∈ R2 and Q positive def-

inite. Take for example a = (0.4, 0) and Q =

(
909 −525
−525 349

)
. Then we get x̄ = a,

Round(a) = {(0, 0), (1, 0)} and f((0, 0)) = 145.44, f((1, 0)) = 327.24 but f((1, 1)) = 46.24.
Hence Round(a) ∩X∗ = ∅, compare also Figure 1.10.

a
Round(a)

x∗

Figure 1.10.: (‖x− a‖Q,R2) does in general not have the Rounding Property.

We come back to the question under which assumption on ‖ · ‖ the problem (‖x− a‖,Rn) has
the Rounding Property in Section 3.4.2.
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1.3. Round sets

We have seen in Lemma 1.20 that round level sets seem to comprise the Rounding Property.
The purpose of this section is hence to generalize Lemma 1.20 to depend only on the shape
of the level sets. But �rst we formalize what we mean by �round�.

Notation 1.22. Let p ∈ [1,∞], x ∈ Rn and r ∈ R+
0 ∪ {∞} then we denote by

Bp(x, r) := {y ∈ Rn : ‖x− y‖p ≤ r}

the scaled and shifted p-norm unit-ball.

For r =∞ we have Bp(x, r) = Rn for all p ∈ [1,∞] and for all x ∈ Rn.

Theorem 1.23 (Strong Rounding Property for p-norm balls). Let (f, F ) be given. Assume
that for any optimal solution x̄ to (CP ) we have that bx̄e ∈ F and for any level f(x̄) ≤
z ≤ f(bx̄e) there exists a p ∈ [1,∞] and a radius r ∈ R+

0 ∪ {∞} such that

LF≤(z) = Bp(x̄, r).

Then (f, F ) has the Strong Rounding Property.

Proof. Using Lemma 1.18 we show that for any optimal solution x̄ to (CP ) and for all x ∈
Zn ∩ F we have bx̄e ∈ LF≤(f(x)).
If f(bx̄e) ≤ f(x) we are done. Assume hence that f(x) ≤ f(bx̄e). This means, there exist
p ∈ [1,∞] and r ∈ R+

0 ∪{∞} such that LF≤(f(x)) = Bp(x̄, r). As x ∈ F we have x ∈ LF≤(f(x))
and therefore r ≥ ‖x̄− x‖p.

⇒ ‖x̄− bx̄e‖p ≤ ‖x̄− x‖p as x ∈ Zn

≤ r

This means that bx̄e ∈ Bp(x̄, r) = LF≤(f(x)).

Along with Theorem 1.23 we state that the assumptions of this theorem lead to a unique x̄.

Lemma 1.24. Assume that for any optimal solution x̄ to (CP ) there exists a p(x̄) ∈ [1,∞]
and a radius r(x̄) ∈ R+

0 ∪ {∞} such that X̄ = Bp(x̄, r). Then we have |X̄| = 1 or X̄ = Rn.

Proof. Assume that X̄ 6= Rn. By our basic assumption we know that X̄ 6= ∅. Let x̄1 ∈ X̄.
Assume that X̄ 6= {x̄1}, i.e., 0 < r(x̄1) < ∞. Let x2 ∈ Bp(x̄1)(x̄1, r(x̄1)), such that ‖x2 −
x̄1‖p(x̄1) = r(x̄1). This means, x2 6= x̄1 and x2 ∈ X̄. Thus there exist p(x2) ∈ [1,∞] and
r(x2) ∈ R+ such that X̄ = Bp(x2)(x2, r(x2)). (r(x2) > 0 as x̄1 ∈ X̄ and x̄1 6= x2.) Then we
know that r(x2) ≥ ‖x̄1 − x2‖p(x2) as x̄1 ∈ X̄.
For x̄3 = 2x2− x̄1 we have x3 ∈ Bp(x2)(x2, r(x2)) = X̄ since ‖x3− x2‖p(x2) = ‖x̄1− x2‖p(x2) ≤
r(x2), but also

‖x3 − x̄1‖p(x̄1) = 2‖x2 − x̄1‖p(x̄1) > ‖x2 − x̄1‖p(x̄1) = r(x̄1) since x2 6= x̄1

which is a contradiction to X̄ = Bp(x̄1)(x̄1, r(x̄1)). (See also Figure 1.11 for an illustration.)
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x̄1

x2

x3

Figure 1.11.: Illustrating the proof of Lemma 1.24.

Theorem 1.23 is a basic scheme we will see often in this work. Therefore, we add a few
comments here. The basic form of this type of theorems is always the same:

Let (f, F ) be given. Assume that for any optimal solution x̄ to (CP ) and for
any level f(x̄) ≤ z ≤ min{f(x) : x ∈ Round(x̄) ∩ F} (or f(x̄) ≤ z ≤ f(bx̄e)
respectively) the level set LF≤(z) has the geometric shape A with respect to x̄.
Then (f, F ) has the (Strong) Rounding Property.

The basic idea here is as long as the level sets spread nicely, i.e., they have shape A (in
Theorem 1.23 that would be scaled and shifted p-norm balls w.r.t. x̄), for small z, we can be
sure that the �rst integer point reached by the growing level sets will be one of the rounded
ones. We only need this nice behavior until the �rst integer point is touched. But as we do
not know which one will be the �rst one, we demand it until the �rst of the rounded points is
reached.

We have seen in the proof of Theorem 1.23 that we actually only need this nice shape for the
level sets that contain a feasible integer point on their boundary but we write our theorems
with the stricter condition that it holds for all z ≤ f(bx̄e) because we assume that this is
easier to test, compare Chapter 4 for a relaxation.

Especially to Theorem 1.23 we make the following comments.

(i) Note that we allow that p and r might di�er for di�erent levels (and also for di�erent x̄
but we have seen in Lemma 1.24 that x̄ is unique), see Figure 1.12 for an example: the
level sets displayed here are scaled and shifted p-norm balls, until the �rst integer point
is reached � thus the conditions of Theorem 1.23 are met.

x̄

bx̄e

Figure 1.12.: Example for the �rst level sets of a function that lead to the Strong Rounding
Property due to Theorem 1.23.

18



1.3. Round sets

(ii) Note also the di�erence between the statement in Lemma 1.20 and the one in Theo-
rem 1.23: while we assumed in Lemma 1.20 that the function is a shifted p-norm, we
only assume that the level sets have the shape of scaled and shifted p-norm balls in
Theorem 1.23. This condition is for example also met by the following function:

f(x) =





0 for x = a

1 for x : ‖x− a‖p ≤ 1

2 for x : ‖x− a‖p ≤ 2

‖x− a‖p otherwise.

Furthermore, we allow in Theorem 1.23 di�erent p-norm balls for each level.

(iii) The theorem is not true in general if we replace p-norm balls by arbitrary norm balls:
compare the example displayed in Figure 1.13: the set B de�nes a norm by γB(x) :=
inf{λ ≥ 0 : x ∈ λ · B} since B is convex, compact, centrally symmetric and contains
the origin in its interior. The level sets displayed can therefore be seen as the level sets
of γB(x − x̄). Nevertheless, it is obvious that x∗ /∈ Round(x̄) so that (γB,R2) does not
even have the RP.

x̄

x∗

B

Figure 1.13.: Example that Theorem 1.23 does not stay true if the inducing norm is not a
p-norm but an arbitrary norm.

(iv) Let us consider the special case n = 1. Here Bp(x, r) = {y : |x − y| ≤ r} for all
p ∈ [1,∞].

This can easily be generalized to guarantee the Rounding Property instead of the Strong
Rounding Property: the level sets do not need to be symmetric intervals about x̄ but
can be arbitrary nested intervals.

Lemma 1.25. Let n = 1 and (f, F ) be given. Assume that for any optimal solution x̄ to
(CP ) and for any level f(x̄) ≤ z ≤ min{f(x) : x ∈ Round(x̄) ∩ F} the level set LF≤(z)
is an interval. Then (f, F ) has the Rounding Property. If bx̄e ∈ F and the intervals
are symmetric about x̄ for all f(x̄) ≤ z ≤ f(bx̄e), then (f, F ) has the Strong Rounding
Property.

Proof. (i) Let x̄ ∈ X̄ and x ∈ Zn∩F . Using Lemma 1.18 we show LF≤,f (f(x))∩Round(x̄) 6=
∅. If min{f(u) : u ∈ Round(x̄) ∩ F} ≤ f(x) we are done. Otherwise we have
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1. Introduction

that LF≤(f(x)) is connected. This means that LF≤(f(x)) ⊇
{

[x̄, x] if x̄ ≤ x
[x, x̄] if x < x̄.

De�ne

x̃ :=

{
dx̄e if x̄ ≤ x
bx̄c if x ≤ x̄.

Then we have x̃ ∈ Round(x̄) and x̃ ∈ LF≤(f(x)), since x̃ ∈
{

[x̄, x] if x̄ ≤ x
[x, x̄] if x < x̄

. This means, LF≤(f(x)) ∩ Round(x̄) 6= ∅.

(ii) If the level sets are symmetric intervals about x̄, for each z ≤ f(bx̄e) there exists a radius
r(z) such that LF≤(z) = {x ∈ R : |x − x̄| ≤ r}. This means that either X̄ = R which
implies the Strong Rounding Property or X̄ = {x̄}, compare Lemma 1.24. The latter
case means that the assumptions of Theorem 1.23 are ful�lled (for any p ∈ [1,∞]) and
hence the problem has the Strong Rounding Property.

In the following we will see which properties of Bp(x̄, r) do guarantee the (Strong) Rounding
Property and use these insights to �nd more general shapes that lead to either the Rounding
Property or the Strong Rounding Property.
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Part I.

Su�cient conditions for the

Rounding Property
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2. Quasi-round sets

Theorem 1.23 shows that �round level sets�, i.e., level sets that have the shape of scaled p-
norm-balls, lead to the Strong Rounding Property. This raises the question: what if the sets
are not �totally round� but only �almost round�, do we at least keep the Rounding Property?

The remainder of this chapter is organized as follows. First we introduce the concept of
quasi-round sets and show some basic properties. Then we show for which �degree of quasi-
roundness� we get the Rounding or even the Strong Rounding Property. In the next section we
show some examples of functions whose level sets are quasi-round as well as an application to
robust optimization. We end this chapter by a generalization that leads to proximity results.

2.1. Properties of quasi-round sets

The basic concept of this chapter is the quasi-roundness of a set.

De�nition 2.1. Given α ≥ 0 and p ∈ [1,∞] we call a set M ⊆ Rn (α, p)-quasi-round
with respect to a point x0 if there exist r ∈ R+

0 and R ∈ R+
0 where R− r ≤ α such that

Bp(x
0, r) ⊆M ⊆ Bp(x0, R).

See some examples of (0.4, 2)-quasi-round sets in Figure 2.1.

x0

R

r

α

x0

R
r

α

x0

Rr

α

Figure 2.1.: Examples for sets that are (0.4, 2)-quasi-round.

Whether a given set M is (α, p)-quasi-round depends on α and p, see Figure 2.2.
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2. Quasi-round sets

x0

α1α2

x0

α1

Figure 2.2.: The ellipsoid is (α1, 2)-quasi-round, but not (α2, 2)-quasi-round nor (α1, 1)-quasi-
round.

First of all we observe that p-round sets are (α, p)-quasi-round for every α and that on the
other hand the only sets that are (0, p)-quasi-round w.r.t. x0 are sets of the form Bp(x

0, r)
for r ≥ 0.

Lemma 2.2. M ⊆ Rn is (α, p)-quasi-round w.r.t. x0 for every α ≥ 0 if and only if M =
Bp(x

0, r).

Proof. �⇒� If M is (0, p)-quasi-round w.r.t. x0 there exists r ∈ R+
0 such that Bp(x

0, r) ⊆
M ⊆ Bp(x0, r).

�⇐� M = Bp(x
0, r) is (α, p)-quasi-round w.r.t. x0 for every α ≥ 0: set R = r.

Next we state some direct consequences of De�nition 2.1.

Remark 2.3. Let M ⊆ Rn be (α, p)-quasi-round w.r.t. x0 and let r,R ∈ R+
0 such that

Bp(x
0, r) ⊆M ⊆ Bp(x0, R). Then we observe

(i) R ≥ r as Bp(x0, r) ⊆ Bp(x0, R).

(ii) M is bounded, as an unbounded set can never be (α, p)-quasi-round for any α and any
p ∈ [1,∞] since we require R <∞.

(iii) r ≥ 0 means that x0 needs to be in M . This is not necessary, but in the following we
investigate whether level sets are quasi-round w.r.t. a continuous minimizer and therefore
we have x0 ∈M anyway.

(iv) M is also (α′, p)-quasi-round w.r.t. x0 for all α′ ≥ α.

In the next lemma we identify some set manipulations that preserve the quasi-roundness of
sets.

Lemma 2.4. Let M ⊆ Rn be (α, p)-quasi-round w.r.t. x0 ∈M . Then the following holds:

(i) M + x is (α, p)-quasi-round w.r.t. x0 + x for all x ∈ Rn.

(ii) Any re�ection of M about a hyperplane through x0 parallel to the coordinate axes is
(α, p)-quasi-round w.r.t. x0.
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2.1. Properties of quasi-round sets

Let M1 ⊆ Rn be (α1, p)-quasi-round w.r.t. x1 ∈ M1 and M2 ⊆ Rn (α2, p)-quasi-round w.r.t.
x2 ∈ M2. Let R1 := min{R ∈ R : M1 ⊆ Bp(x

1, R)} and R2 := min{R ∈ R : M2 ⊆
Bp(x

2, R)}. Let w.l.o.g. R1 ≥ R2. Then the following holds:

(iii) If x1 = x2 the union M1 ∪M2 is (α1, p)-quasi-round w.r.t. x1.

(iv) If x1 = x2 and R1−α1 < R2−α2 the intersection M1 ∩M2 is (α1, p)-quasi-round w.r.t.
x1. If x1 = x2 and R2 − α2 ≤ R1 − α1 then M1 ∩M2 is (α2, p)-quasi-round w.r.t. x1.

(v) The Minkowski sum M1 +M2 := {m1 +m2 : m1 ∈M1, m2 ∈M2} is (α1 +α2, p)-quasi-
round w.r.t. x1 + x2.

Proof. (i) This is a special case of (v) since {x} is (0, p)-quasi-round w.r.t. x for all p ∈
[1,∞].

(ii) Re�ecting the set about hyperplanes through x0 parallel to the coordinate axes does not
change the distances of the points in M to x0.

(iii) M1 ∪M2 ⊆ Bp(x1, R1) since M2 ⊆ Bp(x1, R2) ⊆ Bp(x1, R1). And since Bp(x
1, r1) ⊆M1

we have Bp(x
1, r1) ⊆M1 ∪M2 ⊆ Bp(x1, R1) and R1 − r1 ≤ α1.

(iv) M1 ∩M2 ⊆ Bp(x
1, R2) ⊆ Bp(x

1, R1). Let r1 := R1 − α1. This means, Bp(x
1, r1) ⊆ M1

by de�nition of R1 since M1 is (α1, p)-quasi-round w.r.t. x1. Let r2 := R2 − α2. Then
we get by the same argument Bp(x

1, r2) ⊆M2.
If r1 < r2 we have Bp(x

1, r1) ⊆ Bp(x
1, r2) ⊆ M2 and hence Bp(x

1, r1) ⊆ M1 ∩M2 ⊆
Bp(x

1, R1) and R1 − r1 ≤ α1.
If r1 ≥ r2 we get analogously Bp(x

1, r2) ⊆M1 ∩M2 ⊆ Bp(x1, R2) and R2 − r2 ≤ α2.

(v) M1 +M2 ⊆ Bp(x1 + x2, R1 +R2):
Let m ∈ M1 + M2, i.e., m = m1 + m2 for some m1 ∈ M1 and m2 ∈ M2. This means,
‖m− (x1 + x2)‖p ≤ ‖m1 − x1‖p + ‖m2 − x2‖p ≤ R1 +R2. Furthermore,

Bp(x
1 + x2, r1 + r2) = Bp(x

1, r1)︸ ︷︷ ︸
⊆M1

+Bp(x
2, r2)︸ ︷︷ ︸

⊆M2

⊆M1 +M2

and R1 +R2 − (r1 + r2) ≤ α1 + α2.
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2. Quasi-round sets

2.2. Quasi-round sets and the Rounding Property

In this section we investigate how to use quasi-round level sets to derive the Rounding Property.

As we have seen that (0, p)-quasi-round sets are exactly the scaled p-norm-balls and on the
other hand if α is large enough every bounded set is (α, p)-quasi-round, it is obvious that the
question whether quasi-round level sets lead to the Rounding Property is going to depend
highly on α.

Theorem 2.5 (Rounding Property for quasi-round level sets). Let (f, F ) be given. Assume
that for any optimal solution x̄ to (CP ) and for any level f(x̄) ≤ z ≤ min{f(x) : x ∈
Round(x̄) ∩ F} there exists p ∈ [1,∞] such that the level set LF≤(z) is (αp(x̄, F ), p)-quasi-
round with respect to x̄, where

αp(x̄, F ) := dp(x̄, (Zn ∩ F ) \ Round(x̄))− dp(x̄,Zn ∩ F ).

Then (f, F ) has the Rounding Property.

Here dp(x,M) := miny∈M ‖x− y‖p is the p-norm point-set distance. Note that αp(x̄, F ) ≥ 0,
hence (αp(x̄, F ), p)-quasi-roundness is well-de�ned.

Proof. Let x̄ ∈ X̄ and x ∈ Zn∩F . Using Lemma 1.18 we show that LF≤(f(x))∩Round(x̄) 6= ∅.
If min{f(u) : u ∈ Round(x̄) ∩ F} ≤ f(x) we are done. Otherwise we have that LF≤(f(x))

is (αp(x̄, F ), p)-quasi-round w.r.t. x̄ and hence there exist r,R ∈ R+
0 such that Bp(x̄, r) ⊆

LF≤(f(x)) ⊆ Bp(x̄, R) and R− r ≤ αp(x̄, F ).

As dp(x̄,Zn ∩ F ) ≥ dp(x̄,Zn) = ‖x̄− bx̄e‖p, compare Lemma 1.20, we have

‖x̄− bx̄e‖p ≤ dp(x̄, (Zn ∩ F ) \ Round(x̄))− αp(x̄, F )

≤ ‖x̄− x‖p − αp(x̄, F ) as x ∈ Zn ∩ F and x /∈ Round(x̄)

≤ R− αp(x̄, F ) as x ∈ LF≤(f(x)) ⊆ Bp(x̄, R)

≤ r.

This means, bx̄e ∈ Bp(x̄, r) ⊆ LF≤(f(x)) and hence Round(x̄) ∩ F 6= ∅. Thus there exists
x̃ ∈ argmin{f(u) : u ∈ Round(x̄) ∩ F} and f(x̃) ≤ f(bx̄e) ≤ f(x) < f(x̃).

Like this f(x) < min{f(u) : u ∈ Round(x̄) ∩ F} leads to a contradiction.

Notation 2.6. Throughout this chapter we denote by x̃ an element of argmin dp(x̄,Zn \
Round(x̄)) and by x̃F an element of argmin dp(x̄, (Zn∩F )\Round(x̄)). These are the closest,
not rounded, (feasible) points. Analogously we denote by bx̄eF an element of argmin dp(x̄,Zn∩
F ), i.e., a closest feasible integer.

Remark 2.7. (i) Note that also here, like in Theorem 1.23, it does not have to be the same
p for all levels z, but it can depend on z.

(ii) The choice of αp(x̄, F ) makes sure that as soon as a feasible integer point is in one of
the level sets (and therefore in Bp(x̄, R)), r is large enough such that there is at least one
feasible rounded point in Bp(x̄, r) and therefore also in the level set, see also Figure 2.3.
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2.2. Quasi-round sets and the Rounding Property

bx̄eF

F

LF
≤

x̄

x̃F

αp(x̄, F )

Figure 2.3.: Illustrating the de�nition of αp(x̄, F ): bx̄eF ∈ argmin d2(x̄,Zn ∩ F ) and x̃F ∈
argmin d2(x̄, (Zn ∩ F ) \ Round(x̄)).

(iii) It is indeed possible that |X̄| > 1 and the level sets are (αp(x̄, F ), p)-quasi-round w.r.t.
all points in X̄, compare the example in Figure 2.4: the set L≤(f(x∗)) is (α2(x̄,R2), 2)-
quasi-round w.r.t. x̄ for all x̄ ∈ X̄ (since it is (α2, 2)-quasi-round w.r.t. x̄ for all x̄ ∈ X̄,
compare Corollary 2.12).

X̄

x̄1

x̄2

x∗
L≤(f(x∗))

Figure 2.4.: The depicted level set is (α2(x̄,R2), 2)-quasi-round w.r.t. x̄ for all x̄ ∈ X̄.

To apply Theorem 2.5 it is necessary to calculate αp(x̄, F ) but as it depends on F this cannot be
done in general. Therefore it might be helpful to consider the following alternative formulation.

Theorem 2.8 (Rounding Property for quasi-round level sets). Let (f, F ) be given. Assume
that for any optimal solution x̄ to (CP ) and for any level f(x̄) ≤ z ≤ min{f(x) : f ∈
Round(x̄)∩F} there exists p ∈ [1,∞] such that the level set LF≤(z) is (αp(x̄), p)-quasi-round
with respect to x̄, where

αp(x̄) := dp(x̄,Zn \ Round(x̄))− dp(x̄,Zn).

Then (f, F ) has the Rounding Property.

Proof. Analogously to the proof of Theorem 2.5.

If F = Rn we have that αp(x̄,Rn) = αp(x̄) but in general we cannot say whether αp(x̄, F ) or
αp(x̄) is smaller, and therefore imposes a stricter assumption, compare the following example.
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2. Quasi-round sets

Example 2.9. In Figure 2.5 d2(x̄,Zn ∩ F ) = ‖x̄− bx̄eF ‖2 > ‖x̄− bx̄e‖2 = d2(x̄,Zn) whereas
d2(x̄, (Zn ∩ F ) \ Round(x̄)) = d2(x̄,Zn \ Round(x̄)) = ‖x̄− x̃‖2 and therefore

α2(x̄) = d2(x̄,Zn \ Round(x̄))− d2(x̄,Zn)

> d2(x̄, (Zn ∩ F ) \ Round(x̄))− d2(x̄,Zn ∩ F ) = α2(x̄, F ).

F

x̄
bx̄e

x̃

bx̄eF

Figure 2.5.: Situation where α2(x̄) > α2(x̄, F ).

On the other hand in Figure 2.6 d2(x̄,Zn ∩ F ) = d2(x̄,Zn) = ‖x̄− bx̄e‖2 and d2(x̄, (Zn ∩ F ) \
Round(x̄)) =: ‖x̄− x̃F ‖2 > ‖x̄− x̃‖2 = d2(x̄,Zn \ Round(x̄)) and therefore

α2(x̄) = d2(x̄,Zn \ Round(x̄))− d2(x̄,Zn)

< d2(x̄, (Zn ∩ F ) \ Round(x̄))− d2(x̄,Zn ∩ F ) = α2(x̄, F ).

F

x̄

bx̄e

x̃

x̃F

Figure 2.6.: Situation where α2(x̄) < α2(x̄, F ).

It might seem odd that nevertheless both guarantee the Rounding Property. The reason is
that in fact α′p(x̄, F ) := dp(x̄, (Zn ∩ F ) \ Round(x̄))− dp(x̄,Zn) is su�cient for the Rounding
Property (see Theorem 2.10) and

αp(x̄) = dp(x̄,Zn \ Round(x̄))− dp(x̄,Zn)

≤ dp(x̄, (Zn ∩ F ) \ Round(x̄))− dp(x̄,Zn) = α′p(x̄, F ).

αp(x̄, F ) = dp(x̄, (Zn ∩ F ) \ Round(x̄))− dp(x̄,Zn ∩ F )

≤ dp(x̄, (Zn ∩ F ) \ Round(x̄))− dp(x̄,Zn) = α′p(x̄, F ).
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2.2. Quasi-round sets and the Rounding Property

Theorem 2.10 (Rounding Property for quasi-round level sets). Let (f, F ) be given. As-
sume that for any optimal solution x̄ to (CP ) and for any level f(x̄) ≤ z ≤ min{f(x) : f ∈
Round(x̄) ∩ F} there exists p ∈ [1,∞] such that the level set LF≤(z) is (α′p(x̄, F ), p)-quasi-
round with respect to x̄, where

α′p(x̄, F ) := dp(x̄, (Zn ∩ F ) \ Round(x̄))− dp(x̄,Zn).

Then (f, F ) has the Rounding Property.

Proof. The proof is analogous to the ones of Theorems 2.5 and 2.8.

As mentioned before, to apply one of the Theorems 2.5, 2.8 or 2.10 it is crucial to know the
respective α. Since αp(x̄, F ) and α′p(x̄, F ) depend on F we are not able to compute them
without knowing F and we restrict our analysis to αp(x̄).

Lemma 2.11. For a given y ∈ Rn we de�ne aj := |byje−yj | and choose i ∈ argminj=1,...,n aj.
Then we get that αp(y) := dp(y,Zn \ Round(y))− dp(y,Zn) is given by:

(i) for p =∞:
α∞(y) = 1 + ai − max

j=1,...,n
aj

(ii) for p ∈ [1,∞):

αp(y) = p

√
(ai + 1)p +

∑

j 6=i
apj − p

√√√√
n∑

j=1

apj .

Proof. By Lemma 1.20 we have dp(y,Zn) = ‖bye − y‖p for p ∈ [1,∞].
For ỹ ∈ Zn with

ỹj :=





dyie+ 1 if j = i and byie = dyie
byic − 1 if j = i and byie = byic 6= yi

byje if j 6= i

we have ỹ ∈ argmin
x∈Zn\Round(y)

‖x− y‖p, i.e., the closest, not rounded point w.r.t. y:

• ỹ /∈ Round(y) as for all x ∈ Round(y) and for all j = 1, . . . , n we have |xj − yj | < 1 but
as ai ≥ 0 we get |ỹi − yi| = ai + 1 ≥ 1.

• ‖ỹ − y‖p ≤ ‖x− y‖p for all x ∈ Zn \ Round(y):

As x /∈ Round(y) there exists k ∈ {1, . . . , n} with |xk−yk| ≥ 1 and hence |xk−yk| ≥ 1+ak
as xk ∈ Z. Furthermore, we have |xj − yj | ≥ aj for all j ∈ {1, . . . , n} as xj ∈ Z.
(i) Let p =∞: As ‖x−y‖∞ ≥ 1 +ak and ‖ỹ−y‖∞ = 1 +ai we have ‖x−y‖∞ ≥ 1 +

ak ≥ 1 + ai = ‖ỹ − y‖∞.
(ii) For p ∈ [1,∞) we get ‖ỹ− y‖pp −‖x− y‖pp =

∑
j 6=i a

p
j + (1 + ai)

p −∑n
j=1 |xj − yj |p.

If k = i we have ‖ỹ − y‖pp − ‖x− y‖pp ≤ (1 + ai)
p − |xi − yi|p ≤ 0.

Otherwise, if k 6= i we have ‖ỹ−y‖pp−‖x−y‖pp ≤ apk+(1+ai)
p−api − (1+ak)

p ≤ 0
as apk− (1 + ak)

p ≤ api − (1 + ai)
p because xp− (1 +x)p is monotonically decreasing

for p ≥ 1 and ai ≤ ak.
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2. Quasi-round sets

This means,

(i) for p =∞: α∞(y) = ‖ỹ − y‖∞ − ‖bye − y‖∞ = 1 + ai − max
j=1,...,n

aj

(ii) and for p ∈ [1,∞): αp(y) = ‖ỹ − y‖p − ‖bye − y‖p = p

√
(ai + 1)p +

∑

j 6=i
apj − p

√√√√
n∑

j=1

apj .

We can generalize αp(x̄) even further by making it independent of x̄.

Corollary 2.12. Let (f, F ) be given. Assume that for any optimal solution x̄ to (CP )
and for any level f(x̄) ≤ z ≤ min{f(x) : f ∈ Round(x̄) ∩ F} there exists p ∈ [1,∞] such
that the level set LF≤(z) is (αp, p)-quasi-round with respect to x̄, where

αp := min
y∈Rn
{dp(y,Zn \ Round(y))− dp(y,Zn)}.

Then (f, F ) has the Rounding Property.

Proof. Since αp ≤ αp(x̄) the result follows from Theorem 2.8 and Remark 2.3 (iv).

We can calculate αp explicitly, depending on p and n.

Lemma 2.13. (i) For p =∞ we have

α∞ := min
y∈Rn
{d∞(y,Zn \ Round(y))− d∞(y,Zn)} = 0.5

(ii) For p ∈ [1,∞) we have

αp := min
y∈Rn
{dp(y,Zn \ Round(y))− dp(y,Zn)} = 0.5 ·

(
p
√
n− 1 + 2p − p

√
n− 1

)
.

Proof. (i) Let p =∞: using Lemma 2.11 we have to solve

α∞ = min
y∈Rn
{1 + min

j=1,...,n
aj − max

j=1,...,n
aj}

where aj := |byje − yj |.
As 0 ≤ aj ≤ 0.5 for all j = 1, . . . , n we get α∞ ≥ 0.5. On the other hand for y =
(0.5, 1, . . . , 1) ∈ Rn we get: α∞(y) = 0.5 and therefore α∞ ≤ 0.5.

(ii) Let p ∈ [1,∞): using Lemma 2.11 we have to solve

αp = min
y∈Rn p

√
(ai + 1)p +

∑

j 6=i
apj − p

√√√√
n∑

j=1

apj
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2.2. Quasi-round sets and the Rounding Property

where aj := |byje − yj | and i ∈ argminj=1,...,n aj , �xed, i.e.,

αp = min p

√
(1 + ai)p +

∑

j 6=i
apj − p

√√√√
n∑

j=1

apj

s.t. 0 ≤ ai ≤ aj ≤ 0.5 ∀j = 1, . . . , n.

For p = 1 we see directly that α1 = 1.
For p > 1 we consider �rst the problem min{ p

√
b+ x− p

√
c+ x : l ≤ x ≤ u}, with l ≥ 0

and b > c ≥ 0. The objective function decreases with x ≥ 0 as

d

dx
(
p
√
b+ x− p

√
c+ x) =

1

p


(b+ x︸ ︷︷ ︸
≥c+x

)1/p−1 − (c+ x)1/p−1


 ≤ 0

(since 1
p − 1 < 0) and hence the minimum is attained when x = u. So in our problem

the optimal a satis�es aj = 1
2 for j 6= i and we are left with min{ p

√
(1 + ai)p + d −

p
√
api + d : 0 ≤ ai ≤ 1

2}, where d = (n− 1)/2p. The above function of ai is di�erentiable

and its derivative is ((1 + ai)
p + d)

1
p
−1

(1 + ai)
p−1 − (api + d)

1
p
−1
ap−1
i , which is obviously

nonnegative when ai ≥ 0. So the function is monotonically increasing in ai and the
minimum is attained when ai = 0, hence the result.

We show in an easy example that the di�erent αs we introduced might indeed all be di�erent.

Example 2.14. Let n = p = 2, x̄ = (0.8, 0.6) and F = {(x, y) ∈ R2 : y ≤ −x+1.6}, compare
Figure 2.7.

x̄

bx̄e
F

x̃

x̃F

bx̄eF

α2(x̄)

α2(x̄, F )

α′
2(x̄, F )

Figure 2.7.: Comparing the di�erent αs used in this section.
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2. Quasi-round sets

Then we get bx̄e = (1, 1), bx̄eF = (1, 0), x̃ = (2, 1) and x̃F = (1,−1) and therefore

α′2(x̄, F ) := ‖x̃F − x̄‖2 − ‖bx̄e − x̄‖2 ≈ 1.165

α2(x̄, F ) := ‖x̃F − x̄‖2 − ‖bx̄eF − x̄‖2 ≈ 0.98

α2(x̄) := ‖x̃− x̄‖2 − ‖bx̄e − x̄‖2 ≈ 0.818

α2 := min
x∈R2

(d2(x,Z2 \ Round(x))− d2(x,Z2)) =
1

2
(
√

5− 1) ≈ 0.618.

This means of course that there might be problems where we are able to detect the Rounding
Property by using Theorem 2.10 but not by using Theorem 2.5, Theorem 2.8 or Corollary 2.12,
compare the example in Figure 2.8.

F

x̄

x∗ x∗

α2

α2(x̄)

α2(x̄, F )
α′2(x̄, F )

LF
≤(f(x∗))

Figure 2.8.: (f, F ) has the Rounding Property, but is only (α′2(x̄, F ), 2)-quasi-round and not
(α2(x̄, F ), 2)-, (α2(x̄), 2)- or (α2, 2)-quasi-round.

In the following we collect some properties of αp. To make clear that it depends on n we
denote αp(n) = 0.5( p

√
n− 1 + 2p − p

√
n− 1).

We start by �xing p and investigating how αp(n) depends on n. Let p ∈ [1,∞] be �xed:

(i) p =∞: α∞(n) = 0.5 for all n ≥ 1

(ii) p = 1: α1(n) = 1 for all n ≥ 1

(iii) p ∈ (1,∞): αp(1) = 1 and αp is monotonically decreasing in n:

d

dn
αp =

1

2p
·
[

1

(n− 1 + 2p)1−1/p
− 1

(n− 1)1−1/p

]
< 0.

⇒ 0 ≤ αp(n) ≤ 1 for all p ∈ [1,∞], for all n ≥ 1.

(iv) limn→∞ αp(n) = 0 for all �xed p ∈ (1,∞).

Compare Figure 2.9 for graphs of αp(n) for some �xed values of p.
A smaller value of α means that the set has to be �rounder�. This means that for higher
dimensions n the level sets have to be rounder to guarantee the Rounding Property. This
e�ect occurs later for higher values of p.
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2.2. Quasi-round sets and the Rounding Property

0 50 100
n

p = ∞

αp(n)

0.5

α10(n)
α30(n)
α50(n)
α100(n)

Figure 2.9.: Graphs of αp(n) for some �xed values of p.

Now we �x n and see how αp(n) depends on p. Let n ≥ 1 be �xed:

(i) n = 1: αp(1) = 1 for p ∈ [1,∞)

(ii) limp→∞ αp(n) = α∞ = 0.5 for all n > 1:

lim
p→∞

αp(n) = lim
p→∞

0.5


 p
√
n− 1 + 2p︸ ︷︷ ︸
→2

− p
√
n− 1︸ ︷︷ ︸
→1


 = 0.5.

Compare Figure 2.10 for graphs of αp(n) for some �xed values of n.

0 10 20 30 40 50
p

0.5

αp

αp(2)
αp(3)
αp(10)
αp(30)
αp(50)
αp(100)

Figure 2.10.: Graphs of αp(n) for some �xed values of n.

We observe an eye-catching minimum for each dimension n ≥ 3 around p = 3. Even though it
might look like this, the minima are not all at the same position but di�er for di�erent values
of n. This might suggest that it is more unlikely that a set is (α3, 3)-quasi-round than for
example (α20, 20)-quasi-round. Note however that whether or not a set is (αp, p)-quasi-round
does not only depend on the value of αp, but also on the question whether its shape is similar
to the p-norm unit ball.

At this point we explain why we restrict R − r and not for example r
R in the de�nition

of quasi-roundness (compare De�nition 2.1). We want to make sure that as soon as R ≥
minx∈Zn\Round(x̄) ‖x− x̄‖p we have that r ≥ minx∈Zn ‖x− x̄‖p (ignoring F at this point for the
sake of readability). We could also restrict r

R (as for example in the closely related de�nition
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2. Quasi-round sets

of the asphericity of a set (compare Dvoretzky [1963]) to enforce this property. This would
mean to require

r

R
≥ minx∈Zn ‖x− x̄‖p

minx∈Zn\Round(x̄) ‖x− x̄‖p
. (2.1)

On the other hand in Theorem 2.8 we restrict

r ≥ R− min
x∈Zn\Round(x̄)

‖x− x̄‖p + min
x∈Zn

‖x− x̄‖p. (2.2)

This means that for R ≤ minx∈Zn\Round(x̄) ‖x− x̄‖p we have that (2.1) gives a stricter bound
than (2.2):

R ≤ min
x∈Zn\Round(x̄)

‖x− x̄‖p

⇔ R ·


 min
x∈Zn\Round(x̄)

‖x− x̄‖p − min
x∈Zn

‖x− x̄‖p
︸ ︷︷ ︸

>0


 ≤

(
min

x∈Zn\Round(x̄)
‖x− x̄‖p

)2

− min
x∈Zn\Round(x̄)

‖x− x̄‖p · min
x∈Zn

‖x− x̄‖p

⇔ R− min
x∈Zn\Round(x̄)

‖x− x̄‖p + min
x∈Zn

‖x− x̄‖p ≤ R · minx∈Zn ‖x− x̄‖p
minx∈Zn\Round(x̄) ‖x− x̄‖p

As soon as R > minx∈Zn\Round(x̄) ‖x−x̄‖p we have r ≥ minx∈Zn ‖x−x̄‖p in both (2.1) and (2.2)
and hence there is at least one rounded point in the corresponding level set and hence we are
not interested in this case. This means that for all cases we are interested in (2.1) gives a
stricter bound and hence we prefer to restrict R− r instead of r

R .

Next we investigate which function manipulations keep the quasi-roundness of the level sets
and therefore induce functions that have the Rounding Property.

Lemma 2.15. (i) Let f : Rn → R and assume that for any optimal solution x̄ to (CP ) and
for any level f(x̄) ≤ z ≤ min{f(x) : x ∈ Round(x̄)} there exists p ∈ [1,∞] such that the
level set L≤,f (z) is (αp(x̄), p)-quasi-round w.r.t. x̄.

a) De�ne g1(x) := f(x) + γ where γ ∈ R.

b) De�ne g2(x) := γf(x) where γ ∈ R, γ ≥ 0.

(ii) Let f : Rn → R, a ∈ Rn. De�ne g3(x) := f(x−a). Assume that for any optimal solution
x̄ to (CP ) and for any level g3(x̄) ≤ z ≤ min{g3(x) : x ∈ Round(x̄ + a)} there exists
p ∈ [1,∞] such that the level set L≤,f (z) is (αp(x̄+ a), p)-quasi-round w.r.t. x̄.

(iii) Let f1 : Rn → R, f2 : Rn → R and assume that the sets of continuous minimizers
coincide: X̄1 = X̄2.

a) Assume that there exists p ∈ [1,∞] such that for i ∈ {1, 2}: for any optimal solution
x̄ ∈ X̄i and for any level fi(x̄) ≤ z ≤ min{fi(x) : x ∈ Round(x̄)} the level set
L≤,fi(z) is (αp(x̄), p)-quasi-round w.r.t. x̄. De�ne g4(x) := min{f1(x), f2(x)}.
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2.2. Quasi-round sets and the Rounding Property

b) Assume that there exists p ∈ [1,∞] such that for i ∈ {1, 2}: for any optimal solution
x̄ ∈ X̄i and for any level fi(x̄) ≤ z ≤ max{min{f1(x) : x ∈ Round(x̄)},min{f2(x) :
x ∈ Round(x̄)}} the level set L≤,fi(z) is (αp(x̄), p)-quasi-round w.r.t. x̄. De�ne
g5(x) := max{f1(x), f2(x)}.

Then for each i ∈ {1, . . . , 5} there exists p ∈ [1,∞] for any optimal solution x̄ ∈ min{gi(x) :
x ∈ Rn} and for any level gi(x̄) ≤ z ≤ min{gi(x) : x ∈ Round(x̄)} such that L≤,gi(z) is
(αp(x̄), p)-quasi-round w.r.t. x̄ and hence (gi,Rn) has the Rounding Property with Theo-
rem 2.8.

Proof. g1: Let x̄ ∈ argmin{g1(x) : x ∈ Rn}. Then we have also x̄ ∈ X̄ and hence for all
f(x̄) ≤ z ≤ min{f(x) : x ∈ Round(x̄)} there exists p ∈ [1,∞] such that L≤,f (z) is
(αp(x̄), p)-quasi-round w.r.t. x̄. Since L≤,g1(z) = L≤,f (z − γ), this means that for all
g1(x̄) ≤ z ≤ min{g1(x) : x ∈ Round(x̄)} there exists p ∈ [1,∞] such that L≤,g1(z) is
(αp(x̄), p)-quasi-round w.r.t. x̄.

g2: The result for g2 follows analogously if γ > 0 with the observation that L≤,g2(z) =

L≤,f
(
z
γ

)
. For γ = 0 we have g2(x) ≡ 0 and hence X̄ = Rn and X∗ = Zn.

g3: Let x̄ ∈ argmin{g3(x) : x ∈ Rn}. Then we have x̄ − a ∈ X̄ and hence for all levels
g3(x̄) ≤ z ≤ min{g3(x) : x ∈ Round(x̄)} there exists p ∈ [1,∞] such that the level set
L≤,f (z) is (αp(x̄), p)-quasi-round w.r.t. x̄− a. Furthermore, L≤,g3(z) = L≤,f (z) + a and
hence L≤,g3(z) is (αp(x̄), p)-quasi-round w.r.t. x̄ due to Lemma 2.4.

g4: Let x̄ ∈ argmin{g4(x) : x ∈ Rn}. Then we have x̄ ∈ X̄1 = X̄2 and hence there exists
p ∈ [1,∞] such that for all f1(x̄) ≤ z ≤ min{f1(x) : x ∈ Round(x̄)} the level set L≤,f1(z)
is (αp(x̄), p)-quasi-round w.r.t. x̄ and for all f2(x̄) ≤ z ≤ min{f2(x) : x ∈ Round(x̄)}
the level set L≤,f2(z) is (αp(x̄), p)-quasi-round w.r.t. x̄. This means that for all g4(x̄) ≤
z ≤ min{g4(x) : x ∈ Round(x̄)} = min{min{f1(x) : x ∈ Round(x̄)},min{f2(x) : x ∈
Round(x̄)}} the level set L≤,g4(z) = L≤,f1(z) ∪ L≤,f2(z) is (αp(x̄), p)-quasi-round w.r.t.
x̄, due to Lemma 2.4.

g5: Let x̄ ∈ argmin{g5(x) : x ∈ Rn}. Then we have x̄ ∈ X̄1 = X̄2 and hence there exists p ∈
[1,∞] such that for all f1(x̄) ≤ z ≤ max{min{f1(x) : x ∈ Round(x̄)},min{f2(x) : x ∈
Round(x̄)}} the level set L≤,f1(z) is (αp(x̄), p)-quasi-round w.r.t. x̄ and for all f2(x̄) ≤
z ≤ max{min{f1(x) : x ∈ Round(x̄)},min{f2(x) : x ∈ Round(x̄)}} the level set
L≤,f2(z) is (αp(x̄), p)-quasi-round w.r.t. x̄. This means that for all g5(x̄) ≤ z ≤
min{g5(x) : x ∈ Round(x̄)} = max{min{f1(x) : x ∈ Round(x̄)},min{f2(x) : x ∈
Round(x̄)}} the level set L≤,g5(z) = L≤,f1(z) ∩ L≤,f2(z) is (αp(x̄), p)-quasi-round w.r.t.
x̄, due to Lemma 2.4.

The next question is, whether we even get the Strong Rounding Property as in Theorem 1.23.

In general (αp, p)-quasi-roundness does not imply the Strong Rounding Property, compare
Figure 2.11 for a counterexample. The point x̄ is the unique continuous minimizer and the
depicted level set L≤(f(x∗)) is (α2, 2)-quasi-round. Nevertheless, the problem does not have
the Strong Rounding Property, as bx̄e /∈ X∗.
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x̄

R

r

α2

x∗

bx̄e

Figure 2.11.: (αp, p)-quasi-roundness is in general not enough to guarantee the Strong Round-
ing Property.

As we know on the other hand, that for α = 0, i.e., for round level sets we have the Strong
Rounding Property (compare Theorem 1.23), it seems promising to decrease α to get the
Strong Rounding Property. This is actually possible as the next theorem shows.

Theorem 2.16 (Strong Rounding Property for quasi-round level sets). Let (f, F ) be given.
Assume that for any optimal solution x̄ to (CP ) we have bx̄e ∈ F and for any level
f(x̄) ≤ z ≤ f(bx̄e) there exists a p ∈ [1,∞] such that the level set LF≤(z) is (β′p(x̄, F ), p)-
quasi-round with respect to x̄, where

β′p(x̄, F ) := dp(x̄, (Zn ∩ F ) \ {bx̄e})− dp(x̄,Zn).

Then (f, F ) has the Strong Rounding Property.

Proof. Let x̄ ∈ X̄ and x ∈ Zn ∩ F . Using Lemma 1.18 we show that bx̄e ∈ LF≤(f(x)).
If f(bx̄e) ≤ f(x) we are done. Otherwise we have x 6= bx̄e and there exists p ∈ [1,∞] such
that LF≤(f(x)) is (β′p(x̄, F ), p)-quasi-round w.r.t. x̄. This means that there exist r,R ∈ R+

0

such that Bp(x̄, r) ⊆ LF≤(f(x)) ⊆ Bp(x̄, R) and R− r ≤ β′p(x̄, F ).
As dp(x̄,Zn) = ‖x̄− bx̄e‖p, compare Lemma 1.20, we have

‖x̄− bx̄e‖p = dp(x̄, (Zn ∩ F ) \ bx̄e)− β′p(x̄, F )

≤ ‖x̄− x‖p − β′p(x̄, F ) as x ∈ Zn ∩ F and x 6= bx̄e
≤ R− β′p(x̄, F ) as x ∈ LF≤(f(x)) ⊆ Bp(x̄, R)

≤ r.

This means, bx̄e ∈ Bp(x̄, r) ⊆ LF≤(f(x)) and hence f(x) < f(bx̄e) ≤ f(x). Like this f(x) <
f(bx̄e) leads to a contradiction.

Note that we assume explicitly here that bx̄e ∈ F . This was not necessary in the correspond-
ing theorem for the Rounding Property. The di�erence is that we assumed for example in
Theorem 2.10 that the level sets are quasi-round for all z ≤ min{f(x) : x ∈ Round(x̄) ∩ F}.
We state Theorem 2.16 in the way it is, since the advantage of the Strong Rounding Property
is that we do not have to compare all points in Round(x̄) ∩ F . Hence also the assumptions
should not require knowledge about all those points. Furthermore, if bx̄e /∈ F (f, F ) cannot
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have the Strong Rounding Property and hence it is good anyway to check this assumption
�rst.

As for the Rounding Property we get the following two weaker formulations.

Corollary 2.17 (Strong Rounding Property for quasi-round level sets). Let (f, F ) be
given. Assume that for any optimal solution x̄ to (CP ) we have bx̄e ∈ F and for any level
f(x̄) ≤ z ≤ f(bx̄e) there exists p ∈ [1,∞] such that the level set LF≤(z) is (βp(x̄, F ), p)- or
(βp(x̄), p)-quasi-round with respect to x̄, where

βp(x̄, F ) := dp(x̄, (Zn ∩ F ) \ {bx̄e})− dp(x̄,Zn ∩ F ),

βp(x̄) := dp(x̄,Zn \ {bx̄e})− dp(x̄,Zn).

Then (f, F ) has the Strong Rounding Property.

Proof. These are direct consequences of Theorem 2.16 since βp(x̄, F ) ≤ β′p(x̄, F ) and βp(x̄) ≤
β′p(x̄).

Notation 2.18. For the rest of this chapter we denote by x̂ an element of argmin dp(x̄,Zn \
{bx̄e}) and by x̂F an element of argmin dp(x̄, (Zn ∩ F ) \ {bx̄e}).

Just as in the case of αp(x̄) and αp(x̄, F ), βp(x̄) = βp(x̄, F ) if F = Rn, but there is no general
order between βp(x̄) and βp(x̄, F ) if F 6= Rn, as can be seen for example in Figure 2.12.

F

x̄

bx̄e

x̂ bx̄eF
F

x̄

bx̄e

x̂

x̂F

Figure 2.12.: In the left example we have βp(x̄) = ‖x̄ − x̂‖p − ‖x̄ − bx̄e‖p > 0 = βp(x̄, F )
whereas in the right picture we have βp(x̄) = ‖x̂ − x̄‖p − ‖bx̄e − x̄‖p < ‖x̂F −
x̄‖p − ‖bx̄e − x̄‖p = βp(x̄, F ).

Now we investigate the value of βp(y).

Lemma 2.19. For a given y ∈ Rn de�ne aj := |byje − yj | and choose l ∈ argmaxj=1,...,n aj.
Then βp(y) := dp(y,Zn \ {bx̄e})− dp(y,Zn) is given by:

(i) for p =∞: β∞(y) = 1− 2al

(ii) for p ∈ [1,∞): βp(y) = p

√
(1− al)p +

∑

j 6=l
apj − p

√√√√
n∑

j=1

apj .
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Proof. By Lemma 1.20 we have dp(y,Zn) = ‖bye − y‖p for p ∈ [1,∞].

We de�ne ŷ ∈ Zn by

ŷj :=





dyle if j = l and byle = bylc 6= yl

bylc if j = l and byle = dyle 6= yl

yl + 1 if j = l and yl ∈ Z
byje if j 6= l

This means, |yj− ŷj | = aj for all j 6= l and |yl− ŷl| = 1−al. We show ŷ ∈ argmin
x∈Zn\{bye}

‖x−y‖p :

• Obviously ŷ 6= bye since ŷl 6= byle.

• ‖ŷ − y‖p ≤ ‖x− y‖p for all x ∈ Zn \ {bye}:
As x 6= bye there exists k ∈ {1, . . . , n} with xk 6= byke and hence |xk − yk| ≥ 1 − ak as
xk ∈ Z. Furthermore, we have |xj − yj | ≥ aj for all j ∈ {1, . . . , n} as xj ∈ Z.

(i) Let p = ∞: since ‖x − y‖∞ ≥ 1 − ak and ‖ŷ − y‖∞ = 1 − al, as |ŷj − yj | = aj ≤
0.5 ≤ 1 − al for all j 6= l, we get ‖x − y‖∞ ≥ 1 − ak ≥ 1 − al = ‖ŷ − y‖∞ as
al ≥ aj ∀j.

(ii) For p ∈ [1,∞) we get ‖ŷ − y‖pp − ‖x− y‖pp =
∑

j 6=l
apj + (1− al)p −

n∑

j=1

|xj − yj |p.

If k = l we have ‖ŷ − y‖pp − ‖x− y‖pp ≤ (1− al)p − |xl − yl|p ≤ 0.

Otherwise, if k 6= l we have ‖ŷ−y‖pp−‖x−y‖pp ≤ apk+(1−al)p−apl − (1−ak)p ≤ 0,
as apk − (1 − ak)p ≤ apl − (1 − al)p since xp − (1 − x)p is monotonically increasing
for p ≥ 1 and ak ≤ al.

This means,

(i) for p =∞: β∞(y) = ‖ŷ − y‖∞ − ‖bye − y‖∞ = 1− al − al = 1− 2al

(ii) and for p ∈ [1,∞): βp(y) = ‖ŷ − y‖p − ‖bye − y‖p = p

√
(1− al)p +

∑

j 6=l
apj − p

√√√√
n∑

j=1

apj .

If we try to generalize βp(x̄) even further as we did with αp(x̄) by taking minx∈Rn βp(x) we
observe that minx∈Rn βp(x) = 0, as for example for x = (0.5, . . . , 0.5) we have βp(x) = 0.

We can adapt Lemma 2.15 to guarantee the Strong Rounding Property by replacing αp(x̄) by
βp(x̄) therefore we do not state it again here.

Remark 2.20. It is obvious by the de�nitions of αp(y) and βp(y) that we always have αp(y) ≥
βp(y). In Figure 2.13 we marked for two di�erent points u and v the points Round(x), bxe, x̃
and x̂ for x ∈ {u, v}. Furthermore, the gray area shows the set B2(x, ‖x−bxe‖2) for x ∈ {u, v}
and the dotted circles give the size of α2(x) and β2(x) for x ∈ {u, v}.
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v

Round(v)

bve

ṽ

v̂

α2(v)
β2(v) = 0u Round(u)

bue
ũ

ûα2(u)
β2(u)

Figure 2.13.: Comparing the values of α2(x) and β2(x) for two di�erent points x ∈ {u, v}.

Remark 2.21. The fact that the level sets of a function are quasi-round (or even round) does
not say anything about the actual function values. Especially it is not possible to give some
bound on f(x∗)− f(x̄), compare for example the function

f : R→ R, f(x) = M ·
⌈ ‖x− x0‖2
‖x0 − bx0e‖2

⌉

for M ∈ R+ and x0 ∈ Rn \Zn. Obviously x̄ := argminx∈Rn f(x) = x0 with f(x̄) = 0, the level
sets are scaled Euclidean balls centered at x0 and x∗ = bx̄e. But f(x∗) − f(x̄) = M can be
arbitrarily large. The function described here is shown for n = 1 in Figure 2.14.

x

f(x)

0

M

2M

x̄bx̄e

Figure 2.14.: Even if |x̄ − x∗| < 0.5 as x∗ = bx̄e the di�erence in the function values |f(x̄) −
f(x∗)| = M can get arbitrarily large.

This behavior does not dependent on f being continuous.

39



2. Quasi-round sets

2.3. Applications

In this section we give some examples of functions that have quasi-round level sets as well as
an application to robust optimization.

2.3.1. Perturbed p norms

Consider a p norm that is perturbed by some additive noise:

f : Rn → R, f(x) := ‖x− a‖p + ε(x)

where a ∈ Rn and ε : Rn → [0, εmax], x 7→ ε(x) such that ε(a) = 0 is a small perturbance. This
means, Bp(a, z − εmax) ⊆ L≤,f (z) ⊆ Bp(a, z) for all z ∈ R, i.e., L≤,f (z) is (α, p)-quasi-round
w.r.t. a for all α ≥ εmax.

Since ε(x) ≥ 0 for all x ∈ Rn and ε(a) = 0 we have furthermore X̄ = {a} and hence if
εmax ≤ αp(a),

(IP ) min f(x) = ‖x− a‖p + ε(x)

s.t. x ∈ Zn

has the Rounding Property. Furthermore, if εmax ≤ βp(a), (f,Rn) even has the Strong Round-
ing Property. This means, if the noise is additive and positive we can investigate the (Strong)
Rounding Property if we know the maximal value of the perturbance.

In the following we give three examples for realizations of ε(x) perturbing the Euclidean norm
in R2:

(i) ε(x) = ε and ε ∼ U(0, εmax), ε(a) = 0, i.e., ε is a typical noise added to a function,
compare Figure 2.15 for an example level set.

1

εmax
a

Figure 2.15.: The gray area shows the level set L≤(1).

(ii) ε(x) depends continuously on the angle between x − a and a �xed axis which may be
interpreted as a perturbance of the level set, compare also Figure 2.16.
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1

εmax
a

Figure 2.16.: The gray area shows the level set L≤(1).

a

bae

x∗δ

(d, c)

zkritα2

Figure 2.17.: The bold line is the barrier and the gray area shows an example level set.

(iii) Another perturbance which is often considered in location theory is the insertion of a
barrier, compare Katz and Cooper [1981]. The line-shaped barrier that we consider
here, as shown in Figure 2.17, is a special case of a closed polyhedron as a barrier and as
we measure the distances by the Euclidean norm this is a special case of the problems
considered by Butt and Cavalier [1996].

Here we consider a barrier of the form Bδ := {x ∈ R2 : d − δ ≤ x1 ≤ d + δ, x2 = c}
(such that a /∈ Bδ). This results in

fBδ(x) =





‖x− a‖2 if the way from x to a is not a�ected

min {‖x− (d− δ, c)‖2 + ‖a− (d− δ, c)‖2,
‖x− (d+ δ, c)‖2 + ‖a− (d+ δ, c)‖2} otherwise

and thus

ε(x) =





0 if x2 ≤ max
{

a2−c
a1−(d−δ)x1 + a2 − a1

a2−c
a1−(d−δ) ,

a2−c
a1−(d+δ)x1 + a2 − a1

a2−c
a1−(d+δ)

}

−‖x− a‖2 + min {‖x− (d− δ, c)‖2 + ‖a− (d− δ, c)‖2,
‖x− (d+ δ, c)‖2 + ‖a− (d+ δ, c)‖2} otherwise.

Hence ε(x) ≥ 0 for all x ∈ R2 and X̄ = {a} as mentioned before. In contrast to
the other examples we do not get a general εmax here. But we now that for zkrit :=
miny∈Bδ ‖a− y‖2 the ball B2(a, zkrit) ⊆ L≤(z) for all z ≥ zkrit (and for all z ≤ zkrit we
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2. Quasi-round sets

have L≤,fBδ (z) = B2(a, z) anyway), compare again Figure 2.17. This means that the
level sets are (α2(a), 2)-quasi-round w.r.t. a for all z ≤ zkrit + α2(a).

2.3.2. Strongly convex functions with Lipschitz-continuous gradient

The following family of functions is given in a recent paper by Baes et al. [2013]: let f be
strongly convex and di�erentiable, have Lipschitz-continuous gradient and ful�ll the inequal-
ities

∇f(y)t(x− y) +
l

2
‖x− y‖22 ≤ f(x)− f(y) ≤ ∇f(y)t(x− y) +

L

2
‖x− y‖22 ∀x, y ∈ Rn

for universal scalars 0 ≤ l ≤ L. Assume that x̄ is the continuous minimizer of f . (The
minimizer is unique as f is strongly convex.) Then we get ∇f(x̄) = 0 and for all y 6= x̄

l

2
‖x̄− y‖22 ≤ f(y)− f(x̄) ≤ L

2
‖x̄− y‖22

and therefore

{y ∈ Rn : f(y) ≤ z} ⊆ {y ∈ Rn : f(x̄) +
l

2
‖x̄− y‖22 ≤ z} = B2

(
x̄,

√
2

l
(z − f(x̄))

)

and

{y ∈ Rn : f(y) ≤ z} ⊇ {y ∈ Rn : f(x̄) +
L

2
‖x̄− y‖22 ≤ z} = B2

(
x̄,

√
2

L
(z − f(x̄))

)
.

This means, if l, L satisfy
1√
l
− 1√

L
≤ α2√

2(f(x̃)− f(x̄))

the level sets of f are (α2, 2)-quasi-round for all z ≤ f(x̃) := min{f(x) : x ∈ Round(x̄)} and
thus (f,Rn) has the Rounding Property.

2.3.3. Robust optimization

Following the approach of Ben-Tal and Nemirovski [1998] we consider an uncertain optimiza-
tion problem of the following form

(P (ξ)) min f(x, ξ) (2.3)

s.t. F (x, ξ) ≤ 0

x ∈ Rn

where f, F : Rn×Rk → R with some uncertain parameter ξ ∈ U and U ⊆ Rk is the uncertainty
set : the set of possible scenarios for the parameter ξ.
Given such an uncertain problem the goal is to �nd a solution x that is feasible for all pos-
sible scenarios, i.e., F (x, ξ) ≤ 0 ∀ξ ∈ U and that gives the best possible guaranteed value
supξ∈U f(x, ξ). This results in the solution of the robust counterpart of (P (ξ))

(RC) min sup
ξ∈U

f(x, ξ) (2.4)

s.t. F (x, ξ) ≤ 0 ∀ξ ∈ U
x ∈ Rn.
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Again, we are interested in integer robust optimization problems and consider (2.3) with an
additional integrality constraint

(IP (ξ)) min f(x, ξ) (2.5)

s.t. F (x, ξ) ≤ 0

x ∈ Zn.

In the well-known book on robust integer optimization problems and its applications by Kou-
velis and Yu [1997], the authors consider besides the robustness concept we consider here (the
so called minimax or, as they call it, the absolute robust criterion) also two other concepts
(robust deviation and relative robust decisions). They provide several complexity results and
approaches for special (linear and nonlinear) discrete robust optimization problems. It turns
out that the robust counterparts of many polynomially solvable discrete optimization problems
become NP-hard. Besides that book there is of course a lot of literature on

• nonlinear robust optimization: for example the basic paper by Ben-Tal and Nemirovski
[1998] we already cited, Ben-Tal and Nemirovski [2002] or Ben-Tal et al. [2012] just to
mention a small and not at all complete selection. For conic quadratic and semide�nite
robust optimization there is the book by Ben-Tal et al. [2009]. An overview on concepts
for robust optimization and some algorithms is also given by Goerigk [2013].

• and on discrete robust optimization: which is mainly on special discrete problems such as
for example Yu and Yang [1998] for robust shortest paths or Yu [1996] for robust knap-
sack problems. A recent survey on complexity results, approximability and algorithms
for some combinatorial problems is provided by Aissi et al. [2009].

But as far as we know there is not much literature on robust discrete nonlinear optimization
� probably due to the fact that robust optimization, discrete optimization and nonlinear
optimization are already hard each for themselves.

Coming back to our approach, we consider the robust counterpart to problem (2.5):

(IPRC) min sup
ξ∈U

f(x, ξ) (2.6)

s.t. F (x, ξ) ≤ 0 ∀ξ ∈ U
x ∈ Zn.

To solve (IPRC) we investigate whether it has the (Strong) Rounding Property. This means,
we assume, as before, that (RC) is e�ciently solvable.
Therefore we de�ne for any �xed ξ ∈ U fξ(x) := f(x, ξ) and for brevity's sake Fξ := {x ∈
Rn : F (x, ξ) ≤ 0}. Using these notations we can reformulate (IPRC) as

min f̂(x) := sup
ξ∈U

fξ(x)

s.t. x ∈ F̂ :=
⋂

ξ∈U
Fξ

x ∈ Zn.

Then we are again interested in the feasible level sets of f̂ and we observe that

LF̂≤,f̂ (z) =
⋂

ξ∈U
Fξ ∩

⋂

ξ∈U
L≤,fξ(z) =

⋂

ξ∈U
LFξ≤,fξ(z).
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2. Quasi-round sets

This means, if
⋂
ξ∈U L

Fξ
≤,fξ(z) is (α′p(x̄, F̂ ), p)-quasi-round w.r.t. x̄ for any optimal solution x̄

to (RC) Theorem 2.10 guarantees the Rounding Property.

Note that in contrast to many approaches in robust optimization our approach works for �nite
or continuous uncertainty sets.
We get the following result which we state and prove in the most general case we consider
here. Afterwards we show some consequences and examples for special cases.

Lemma 2.22. Assume that for any optimal solution x̄ to (RC) and for any level f̂(x̄) ≤ z ≤
min{f̂(x) : x ∈ Round(x̄) ∩ F̂} there exist ε(z), r(z), R(z) ∈ R+

0 such that

B2(mξ(z), r(z)) ⊆ LFξ≤,fξ(z) ⊆ B2(mξ(z), R(z))

with mξ(z) ∈ B2(x̄, ε(z)) for all ξ ∈ U and R(z)− r(z) + 2ε(z) ≤ α′2(x̄, F̂ ). Then (IPRC) has
the Rounding Property.

Proof. We show that for any level z ≤ min{f̂(x) : x ∈ Round(x̄)} the level set LF̂≤,f̂ (z) is

(α′2(x̄, F̂ ), 2)-quasi-round. Then Theorem 2.10 ends the proof. To this end we show that

B2(x̄, r(z)− ε(z)) ⊆ LF̂≤,f̂ (z) ⊆ B2(x̄, R(z) + ε(z)).

B2(x̄, r(z)− ε(z)) ⊆ LF̂≤,f̂ (z):

Let x ∈ B2(x̄, r(z)− ε(z)). Then we have for all ξ ∈ U

‖x−mξ(z)‖2 ≤ ‖x− x̄‖2 + ‖x̄−mξ(z)‖2 ≤ (r(z)− ε(z)) + ε(z) = r(z).

Hence x ∈ B2(mξ(z), r(z)) ⊆ LFξ≤,fξ(z) for all ξ ∈ U and thus x ∈ LF̂≤,f̂ (z).

The other direction follows directly since

B2(mξ(z), R(z)) ⊆ B2(x̄, R(z) + ε(z)).

Since R(z)−r(z)+2ε(z) ≤ α′2(x̄, F̂ ), this means that LF̂≤,f̂ (z) is (α′2(x̄, F̂ ), 2)-quasi-round.

If we assume in Lemma 2.22 that R(z)− r(z) + 2ε(z) ≤ β′2(x̄, F̂ ) we get that (IPRC) has the
Strong Rounding Property.

In the following we give some examples for Lemma 2.22. In order to keep our results readable

we only consider one �xed z ≥ f(x̄) and check if the corresponding level set LF̂≤,f̂ (z) is quasi-

round. Furthermore, we set mξ = ξ for all ξ ∈ U for simplicity.

(i) Assume that for all ξ ∈ U we have Fξ = Rn, L≤,fξ(z) = B2(ξ, r(z)) and U ⊆ B2(x̄, α2(x̄)
2 ).

Then L≤,f̂ (z) is (α2(x̄), 2)-quasi-round, compare also the example in Figure 2.18.

(ii) Assume that we have r(z), r(z) ∈ R+
0 such that L≤,fξ(z) = B2(ξ, rξ(z)) where r(z) ≤

rξ(z) ≤ r(z) for all ξ ∈ U . Assume furthermore that Fξ = Rn for all ξ ∈ U and that

U ⊆ B2(x̄, α2(x̄)−r(z)+r(z)
2 ). Then L≤,f̂ (z) is (α2(x̄), 2)-quasi-round, compare also the

example in Figure 2.19.
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Ux̄ ε

r

r − ε

r + ε

L≤,f̂ (z)

Figure 2.18.: All level sets L≤,fξ(z) are Euclidean balls with the same radius r.

Ux̄ ε

rξ
r − ε

r + ε
L≤,f̂ (z)

Figure 2.19.: All level sets L≤,fξ(z) are Euclidean balls with radius rξ such that r ≤ rξ ≤ r.

Compared to (i) we observe that to guarantee the same α2(x̄)-quasi-roundness ε has to
be smaller. Furthermore, we observe that the approximation

B2(x̄, r(z)− ε(z)) ⊆ L≤,f̂ (z) ⊆ B2(x̄, r(z) + ε(z))

is on average weaker than in the former case: in (i) B2(x̄, r(z)− ε(z)) ⊆ L≤,f̂ (z) is sharp

(in the sense that B2(x̄, r) 6⊆ L≤,f̂ (z) for all r > r(z) − ε(z)) as soon as there exists

ξ ∈ U such that x̄ = ξ. On the other hand in (ii) B2(x̄, r(z) − ε(z)) ⊆ L≤,f̂ (z) is sharp

if there exists ξ ∈ U such that x̄ = ξ and rξ(z) = r(z). The same observation is true for
B2(x̄, r(z) + ε(z)) or B2(x̄, r(z) + ε(z)) respectively where there has to exist ξ ∈ U such
that ‖ξ − x̄‖2 = ε(z) and rξ(z) = r(z) in (ii).

(iii) Assume that we have r(z), R(z) ∈ R+
0 such that B2(ξ, r(z)) ⊆ L≤,fξ(z) ⊆ B2(ξ,R(z))

for all ξ ∈ U . Assume furthermore that Fξ = Rn for all ξ ∈ U and that U ⊆
B2(x̄, α2(x̄)−R(z)+r(z)

2 ). Then L≤,f̂ (z) is (α2(x̄), 2)-quasi-round, compare also the example
in Figure 2.20.

Compared to (ii) we see that these assumptions do not impose any further constraints
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Ux̄ ε

r − ε

R + ε
L≤,f̂ (z)

Figure 2.20.: All level sets L≤,fξ(z) ful�ll B2(ξ, r) ⊆ L≤,fξ(z) ⊆ B2(ξ,R).

on ε(z): we can keep the same size as before (setting r(z) = r(z) and R(z) = r(z)) and
also the approximation is sharp under the same assumptions as before.

2.3.4. Quasi-round ellipsoids

Chapter 5 is dedicated to convex quadratic functions and their level sets which are ellipsoids.
Nevertheless, since it is a nice application of our concept of quasi-round sets we mention the
following result here:
Whether an ellipsoid is quasi-round is determined by the di�erence between the length of
the longest and the shortest semiaxis which in turn are determined by the eigenvalues of the
descriptive matrix. This means, the ellipsoid {x ∈ Rn : (x−x0)tQ(x−x0) ≤ 1} for a positive
de�nite matrix Q is (α, 2)-quasi-round w.r.t. x0 if and only if 1√

λmin
− 1√

λmax
≤ α where λi

denote the eigenvalues of Q and λmin := mini λi and λmax := maxi λi.

Note that we only consider quasi-roundness for p = 2 here due to the inherent connection to
ellipsoids. Further results on ellipsoids and convex quadratic functions as well as the proof of
this result can be found in Chapter 5.
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2.4. Proximity results

As already mentioned in Section 1.2 the (Strong) Rounding Property can also be seen as a
proximity result. Using this interpretation we have shown

(i) If the level sets are (α′p(x̄, F ), p)-quasi-round w.r.t. x̄ ∈ X̄ there exists x∗ ∈ X∗ such
that ‖x̄− x∗‖∞ < 1.

(ii) If the level sets are (β′p(x̄, F ), p)-quasi-round w.r.t. x̄ ∈ X̄ there exists x∗ ∈ X∗ such
that ‖x̄− x∗‖∞ ≤ 0.5.

Now we generalize these results to obtain, given c > 1
2 , some value αcp(x̄, F ) such that

(αcp(x̄, F ), p)-quasi-round level sets w.r.t. x̄ ∈ X̄ make sure that there exists some x∗ ∈ X∗
such that ‖x̄− x∗‖∞ < c. This makes sense only for c > 1

2 since for x = (0.5, . . . , 0.5) ∈ Rn it
is not possible to conclude ‖x− y‖∞ < 0.5 for any y ∈ Zn.

Theorem 2.23 (Proximity result for quasi-round level sets). Let (f, F ), c > 1
2 be given.

Assume that for any optimal solution x̄ to (CP ) and for any level f(x̄) ≤ z ≤ min{f(x) :
x ∈ Zn ∩ F, ‖x − x̄‖∞ < c} there exists p ∈ [1,∞] such that the level set LF≤(z) is
((αcp)

′(x̄, F ), p)-quasi-round with respect to x̄, where

(αcp)
′(x̄, F ) := dp(x̄, (Zn ∩ F ) \ {x : ‖x− x̄‖∞ < c})− dp(x̄,Zn).

Then for each x̄ ∈ X̄ there exists an x∗ ∈ X∗ such that ‖x∗ − x̄‖∞ < c.

Again (αcp)
′(x̄, F ) ≥ 0 and hence ((αcp)

′(x̄, F ), p)-quasi-roundness is well-de�ned.

Proof. (This proof is very similar to the one of Theorem 2.5. Nevertheless, we write it down
here to show that the situation is basically the same.)

Let x̄ ∈ X̄ and x ∈ Zn∩F . We aim at showing that LF≤(f(x))∩{y ∈ Zn : ‖y− x̄‖∞ < c} 6= ∅.
If min{f(y) : y ∈ Zn ∩ F, ‖y − x̄‖∞ < c} ≤ f(x) we are done. Otherwise we have that
x /∈ {y : ‖y − x̄‖∞ < c} and LF≤(f(x)) is ((αcp)

′(x̄, F ), p)-quasi-round w.r.t. x̄ and hence

there exist r,R ∈ R+
0 such that Bp(x̄, r) ⊆ LF≤(f(x)) ⊆ Bp(x̄, R) and R− r ≤ (αcp)

′(x̄, F ). As
dp(x̄,Zn) = ‖x̄− bx̄e‖p we have

‖x̄− bx̄e‖p = dp(x̄, (Zn ∩ F ) \ {y : ‖y − x̄‖∞ < c})− (αcp)
′(x̄, F )

≤ ‖x− x̄‖p − (αcp)
′(x̄, F ) ≤ R− (αcp)

′(x̄, F ) ≤ r.

Hence bx̄e ∈ Bp(x̄, r) ⊆ LF≤(f(x)) and therefore Zn ∩ F ∩ {y : ‖y − x̄‖∞ < c} 6= ∅ since
‖x̄−bx̄e‖∞ ≤ 0.5 < c. This means that there exists x̃ ∈ argmin{f(y) : y ∈ Zn∩F, ‖y−x̄‖∞ <
c} and f(x̃) ≤ f(bx̄e) ≤ f(x) < f(x̃). Thus f(x) < min{f(y) : y ∈ Zn ∩ F, ‖y − x̄‖∞ < c}
leads to a contradiction.

Note that this proximity result gives us again a �nite candidate set: if we know that there
exists an x∗ ∈ X∗ such that ‖x∗ − x̄‖∞ < c we can solve the integer problem by solving its
continuous relaxation and then comparing the objective values of the at most (2dce)n points
in {x ∈ Zn : ‖x− x̄‖∞ < c}.
Just as before we get the following weaker formulations.
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Corollary 2.24 (Proximity result for quasi-round level sets). Let (f, F ), c > 1
2 be given.

Assume that for any optimal solution x̄ to (CP ) and for any level f(x̄) ≤ z ≤ min{f(x) :
x ∈ Zn ∩ F, ‖x − x̄‖∞ < c} there exists p ∈ [1,∞] such that the level set LF≤(z) is
(αcp(x̄, F ), p)-, (αcp(x̄), p)- or (αcp, p)- quasi-round with respect to x̄, where

αcp(x̄, F ) := dp(x̄, (Zn ∩ F ) \ {x : ‖x− x̄‖∞ < c})− dp(x̄,Zn ∩ F ),

αcp(x̄) := dp(x̄,Zn \ {x : ‖x− x̄‖∞ < c})− dp(x̄,Zn),

αcp := min
y∈Rn

[dp(y,Zn \ {x : ‖x− y‖∞ < c})− dp(y,Zn).

Then for each x̄ ∈ X̄ there exists an x∗ ∈ X∗ such that ‖x∗ − x̄‖∞ < c.

Proof. These are direct consequences of Theorem 2.23 since αcp(x̄, F ) ≤ (αcp)
′(x̄, F ) and αcp ≤

αcp(x̄) ≤ (αcp)
′(x̄, F ).

Next we determine αcp(y).

Lemma 2.25. For a given y ∈ Rn and c ∈ N we de�ne aj := |byje − yj | and choose i ∈
argminj=1,...,n aj. Then we get that

αcp(y) := dp(y,Zn \ {x : ‖x− y‖∞ < c})− dp(y,Zn)

is given by:

(i) for p =∞:
αc∞(y) = c+ ai − max

j=1,...,n
aj

(ii) for p ∈ [1,∞):

αcp(y) = p

√
(ai + c)p +

∑

j 6=i
apj − p

√√√√
n∑

j=1

apj .

Proof. By Lemma 1.20 we have dp(y,Zn) = ‖bye − y‖p.
For ỹ with

ỹj :=





dyie+ c if j = i and byie = dyie
byic − c if j = i and byie = byic
byje if j 6= i

we have ỹ ∈ argmin
x∈Zn\{x:‖x−y‖∞<c}

‖x− y‖p :

• Obviously ỹ ∈ Zn since c ∈ N

• ‖y − ỹ‖∞ = |yi − ỹi| =
{
dyie+ c− yi if byie = dyie
yi − byic+ c if byie = byic

= ai + c ≥ c.

• ‖ỹ − y‖p ≤ ‖x− y‖p for all x ∈ Zn \ {x : ‖x− y‖∞ < c}:
As ‖x− y‖∞ ≥ c there exists k ∈ {1, . . . , n} with |xk − yk| ≥ c. This means, |xk − yk| ≥
c+ ak as xk ∈ Z. Furthermore, we have |xj − yj | ≥ aj for all j ∈ {1, . . . , n} as xj ∈ Z.
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(i) Let p =∞: since ‖x− y‖∞ ≥ c+ ak and ‖ỹ − y‖∞ = c+ ai we have ‖x− y‖∞ ≥
c+ ak ≥ c+ ai = ‖ỹ − y‖∞.

(ii) For p ∈ [1,∞) we get ‖ỹ − y‖pp − ‖x− y‖pp =
∑

j 6=i
apj + (c+ ai)

p −
n∑

j=1

|xj − yj |p.

If k = i we have ‖ỹ − y‖pp − ‖x− y‖pp ≤ (c+ ai)
p − |xi − yi|p ≤ 0.

Otherwise, if k 6= i: ‖ỹ − y‖pp − ‖x − y‖pp ≤ apk + (c + ai)
p − api − (c + ak)

p ≤ 0 as
apk − (c+ ak)

p ≤ api − (c+ ai)
p since xp − (c+ x)p is monotonically decreasing for

c > 1
2 , p ≥ 1 and ai ≤ ak.

This means,

(i) for p =∞: αc∞(y) = ‖ỹ − y‖∞ − ‖bye − y‖∞ = c+ ai − max
j=1,...,n

aj

(ii) and for p ∈ [1,∞): αcp(y) = ‖ỹ − y‖p − ‖bye − y‖p = p

√
(ai + c)p +

∑

j 6=i
apj − p

√√√√
n∑

j=1

apj .

Using this lemma, we can explicitly calculate αcp.

Lemma 2.26. For c ∈ N and

(i) p =∞ we have

αc∞ := min
y∈Rn

d∞(y,Zn \ {x : ‖x− y‖∞ < c})− d∞(y,Zn) = c− 0.5

(ii) p ∈ [1,∞) we have

αcp := min
y∈Rn

dp(y,Zn\{x : ‖x−y‖∞ < c})−dp(y,Zn) = 0.5·
(
p
√
n− 1 + (2c)p − p

√
n− 1

)
.

Proof. (i) Let p =∞: using Lemma 2.25 we have to solve

αc∞ = min
y∈Rn
{c+ min

j=1,...,n
aj − max

j=1,...,n
aj}

where aj := |byje − yj |.
As 0 ≤ aj ≤ 0.5 for all j = 1, . . . , n we get αc∞ ≥ c − 0.5. On the other hand for
y = (0.5, 1, . . . , 1) ∈ Rn we get: αc∞(y) = c− 0.5 and therefore αc∞ ≤ c− 0.5.

(ii) Let p ∈ [1,∞): using Lemma 2.25 we have to solve

αcp = min
y∈Rn p

√
(ai + c)p +

∑

j 6=i
apj − p

√√√√
n∑

j=1

apj
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2. Quasi-round sets

where aj := |byje − yj | and i ∈ argminj=1,...,n aj , i.e.,

αcp = min p

√
(c+ ai)p +

∑

j 6=i
apj − p

√√√√
n∑

j=1

apj

s.t. 0 ≤ ai ≤ aj ≤ 0.5 ∀j = 1, . . . , n

For p = 1 we see directly that α1 = c.
For p > 1: as in the proof of Lemma 2.13 we get that the optimal a satis�es aj = 1

2

for j 6= i and we are left with min{ p
√

(ai + c)p + d − p
√
api + d : 0 ≤ ai ≤ 1

2}, where
d = (n− 1)/2p. Again the minimum of the function is attained when ai = 0.

We get the following special cases: α1
p(x̄, F ) = αp(x̄, F ), α1

p(x̄) = αp(x̄) and α1
p = αp. Note

however that βp is not a special case of this Lemma since {bx̄e} 6= {x : ‖x − x̄‖∞ ≤ 0.5} in
general.
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2.5. Summary

2.5. Summary

We introduced the de�nition of a quasi-round set: given a �xed value α ≥ 0 and p ∈ [1,∞],
we say that a set M ⊆ Rn is (α, p)-quasi-round with respect to a speci�ed center x0, if there
exist r,R ∈ R+

0 where R− r ≤ α such that Bp(x
0, r) ⊆M ⊆ Bp(x0, R).

We are interested in quasi-round sets since we showed in Theorem 2.5 that quasi-round level
sets induce the Rounding Property, if we �x α to the appropriate value. The geometric idea
of the proof is that the choice of α makes sure that whenever an integer point, that is not
among the rounded points, is in a level set and hence in Bp(x̄, R), Bp(x̄, r) is large enough
to contain at least one integer point and hence bx̄e. We formulated Theorem 2.5 for di�erent
values of α and showed the dependencies between them. If we choose α independently of F
we are able to give its value explicitly, compare Lemmas 2.11 and 2.13. Next we investigated
the behavior of this α depending on the dimension n and the parameter p. Then we showed
some function manipulations that keep the quasi-roundness of the level sets and hence the
Rounding Property.
Choosing a smaller value for α, quasi-round level sets also guarantee the Strong Rounding
Property. Hence the challenge was again to determine this value.
Section 2.3 gives some examples of problems whose level sets are quasi-round with respect to
the continuous minimizer and who hence have the Rounding Property. A typical situation
is the one of perturbed p-norms: the level sets are no longer scaled p-norm balls but still
quasi-round, if the perturbance is not too large. We ended the section on applications by
looking at robust optimization problems. Since a robust solution has to be feasible in each
scenario and the objective is to minimize the worst-case objective value, the level sets of the
robust counterpart are the intersections of the level sets for each scenario. Hence the question
is: under which assumptions on the scenario set and on the level sets for each scenario does
the robust counterpart have quasi-round level sets?
In the last section we adapted the value of α mentioned above to give other proximity re-
sults: as mentioned before the Rounding Property and the Strong Rounding Property can be
interpreted as proximity results. Now we allow a larger value of α and do no longer get the
Rounding Property but still a proximity result.

We collect the proximity results of this chapter in the following table:
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3. Cross-shaped sets

As mentioned before we want to make sure that whenever a feasible integer point is contained
in a level set there is also a feasible rounded point (or the unique rounded point respectively)
of every continuous optimal solution in this level set. One way to guarantee this is to require
the level sets to be �cross-shaped�.

The remainder of this chapter is organized as follows. First we de�ne what we mean by a cross-
shaped set and show some basic properties. In the next section we prove that cross-shaped
level sets imply the Rounding Property and investigate under which additional assumptions
they also imply the Strong Rounding Property. Since the typical form of cross-shaped sets
might at �rst glance look quite similar to biconvex sets we investigate in the next section the
connection between the two de�nitions. Then we show some examples of functions which have
cross-shaped level sets and hence the Rounding Property. We end this chapter by introducing
a generalization, namely quasi-cross-shaped sets.

3.1. Properties of cross-shaped sets

We start by giving a basic notation we need in the following. This notation is based on the
one given in Boltyanski et al. [1996], compare Remark 3.3.

Notation 3.1. Given two points a, b ∈ Rn we denote the 1-norm-segment given by a and b by

[a, b]1 := {x ∈ Rn : xi = λiai + (1− λi)bi, λi ∈ [0, 1] ∀i = 1, . . . , n}.

Since we have [a, b]1 = [a1, b1]1 × . . .× [an, bn]1 where [ai, bi]1 =

{
[ai, bi] if ai ≤ bi
[bi, ai] otherwise

, [a, b]1 is

the box given by a and b, see Figure 3.1.

The basic concept in this chapter is a cross-shaped set.

De�nition 3.2. A set M ⊆ Rn is called cross-shaped w.r.t. x0 if for any y ∈ M the
1-norm-segment [x0, y]1 is contained in M .

See some examples of cross-shaped sets in Figure 3.2.
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3. Cross-shaped sets

x1

x3

x2a

b

[a, b]1

Figure 3.1.: Illustrating the de�nition of [a, b]1.

x0

y

x0

y

x0

y

Figure 3.2.: Examples for cross-shaped sets.

Remark 3.3. (i) Compare the de�nition of a star-shaped set: a set M ⊆ Rn is called
star-shaped if there exists a point x0 ∈ M , such that for any y ∈ M the line segment
λx0 + (1 − λ)y, λ ∈ [0, 1] is contained in M . This means that every cross-shaped set is
also starshaped since {λx0 + (1− λ)y : λ ∈ [0, 1]} ⊂ [x0, y]1.

(ii) Both cross-shaped and star-shaped are special cases of d-star-shaped sets introduced by
Boltyanski et al. [1996]: let d : Rn → R be a norm and de�ne for a, b ∈ Rn the d-segment

[a, b]d := {x ∈ Rn : d(a− x) + d(x− b) = d(a− b)}.

(Note that the de�nition of [a, b]1 given above coincides with this de�nition for the 1-
norm.)

Then a set M ⊆ Rn is called d-star-shaped if a point x0 ∈ M exists such that for any
y ∈ M the d-segment [x0, y]d is contained in M . This means that 2-star-shaped is star-
shaped and 1-star-shaped is cross-shaped. (Note however that we de�ned cross-shapedness
with respect to a speci�ed point which is a di�erence to the original de�nition.)

Whereas we show in the following that cross-shaped level sets guarantee the Rounding
Property, for all other p > 1 p-star-shaped is not su�cient for the Rounding Property.

(iii) Just as star-shaped sets, cross-shaped sets need not be convex. Nor need convex sets be
cross-shaped, compare Figure 3.3: the set on the left is cross-shaped w.r.t. x0 but not
convex. The one in the middle is star-shaped w.r.t. x0 but not cross-shaped (nor convex)
and the set on the right is convex (and star-shaped w.r.t. x0) but not cross-shaped w.r.t.
x0 (or any other point).

We collect some set operations that preserve the cross-shapedness.

Lemma 3.4. Let M ⊆ Rn be cross-shaped w.r.t. x0 ∈M . Then the following holds:

54



3.1. Properties of cross-shaped sets

x0

y

x0

y

x0

y

Figure 3.3.: Examples for the connections between cross-shaped, star-shaped and convex sets.

(i) M + x is cross-shaped w.r.t. x0 + x for all x ∈ Rn.

(ii) λ(M − x0) := {λ · (x− x0) : x ∈M} is cross-shaped w.r.t. 0 for all λ > 0. This means
(with (i)) that λ(M − x0) + x0 is cross-shaped w.r.t. x0.

(iii) Any re�ection of M about a hyperplane through x0 parallel to the coordinate axes is
cross-shaped w.r.t. x0.

Let M1 ⊆ Rn be cross-shaped w.r.t. x1 ∈M1 and M2 ⊆ Rn be cross-shaped w.r.t. x2 ∈M2.

(iv) If x1 = x2 we have that the intersectionM1∩M2 and the unionM1∪M2 are cross-shaped
w.r.t. x1.

(v) The Minkowski sum M1 +M2 is cross-shaped w.r.t. x1 + x2.

Proof. (i) This is a direct consequence of (v).

(ii) Let y ∈ λ(M − x0), i.e., y = λ(x − x0) for some x ∈ M . Let p ∈ [0, y]1, i.e., there are
µ1, . . . , µn ∈ [0, 1] such that

p = (µ1y1, . . . , µnyn) = (µ1λ(x1 − x0
1), . . . , µnλ(xn − x0

n))

= λ


(µ1x1 + (1− µ1)x0

1, . . . , µnxn + (1− µn)x0
n)︸ ︷︷ ︸

∈[x0,x]1⊆M

−x0




∈ λ · (M − x0).

(iii) Let hj := {x ∈ Rn : xi = x0
i ∀i 6= j} denote the hyperplane about which we re�ect

M and M j the resulting set, i.e., M j is the set of all points y ∈ Rn such that there
exists x ∈ M with yi = xi for all i 6= j and yj = 2x0

j − xj . Let y ∈ M j and consider

[x0, y]1 = {p ∈ Rn : pk = λkx
0
k + (1 − λk)yk, λk ∈ [0, 1] ∀k = 1, . . . , n}. Then we have

for each p ∈ [x0, y]1 that pi = qi for i 6= j and pj = 2x0
j − qj for qk = λkx

0
k + (1− λk)xk

for all k ∈ {1, . . . , n}. This means q ∈ [x0, x]1 ⊆ M as M is cross-shaped w.r.t. x0 and
hence p ∈ M j . Thus [x0, y]1 ⊆ M j for all y ∈ M j and hence M j is cross-shaped w.r.t.
x0.

(iv) Let y ∈ M1 ∩M2, i.e., y ∈ Mi for i ∈ {1, 2}. Thus [x1, y]1 ⊆ Mi and hence [x1, y]1 ⊆
M1 ∩M2. Analogously: if y ∈M1 ∪M2, there exists k ∈ {1, 2} such that y ∈Mk. Thus
[x1, y]1 ∈Mk and hence [x1, y]1 ⊆M1 ∪M2.
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3. Cross-shaped sets

(v) Let y ∈M1 +M2, i.e., y = m1 +m2 for some m1 ∈M1 and m2 ∈M2. Then we get

[x1 + x2, y]1 =
{
p ∈ Rn : pk = λk(x

1
k + x2

k) + (1− λk)(m1
k +m2

k),

λk ∈ [0, 1] ∀k = 1, . . . , n}
⊆ {p ∈ Rn : p = q1 + q2 s.t. ql ∈ [xl,ml]1 l ∈ {1, 2}}
⊆ {p ∈ Rn : p = q1 + q2 s.t. ql ∈Ml l ∈ {1, 2}} = M1 +M2.

Note that (iv) is true for any index set J : if all sets Mj , j ∈ J are cross-shaped w.r.t. the
same point x0, also

⋃
j∈JMj and

⋂
j∈JMj are cross-shaped w.r.t. x0.

Result (v) can be generalized to any �nite number of sets by induction.

In general, the point x0 with respect to whom a given set is cross-shaped is not unique. Note
however that as soon as we ask for the set to be cross-shaped with respect to every point it
contains, we already determine its shape, as the following lemma shows.

Lemma 3.5. Boxes are the only sets that are cross-shaped w.r.t. every point they contain.

An n-dimensional box is thereby a Cartesian product of n 1-dimensional (maybe unbounded
or open) intervals.

Proof. It is obvious that boxes are cross-shaped w.r.t. each point they contain. It remains to
show the opposite direction.

Let M ⊆ Rn be a set that is cross-shaped w.r.t. each x ∈M . Then we already know that M
is connected and convex.

We have to show that

M =



[
min
x∈M

x1,max
x∈M

x1

]
if min,max exist(

inf
x∈M

x1,max
x∈M

x1

]
if onlymax exists[

min
x∈M

x1, sup
x∈M

x1

)
if onlymin exists(

inf
x∈M

x1, sup
x∈M

x1

)
otherwise


× . . .×



[
min
x∈M

xn,max
x∈M

xn

]
if min,max exist(

inf
x∈M

xn,max
x∈M

xn

]
if only max exists[

min
x∈M

xn, sup
x∈M

xn

)
if onlymin exists(

inf
x∈M

xn, sup
x∈M

xn

)
otherwise


Thereby �⊆� is obvious and it remains to be shown that each x̃ where

x̃i ∈



[
min
x∈M

xi,max
x∈M

xi

]
if min,max exist(

inf
x∈M

xi,max
x∈M

xi

]
if onlymax exists[

min
x∈M

xi, sup
x∈M

xi

)
if onlymin exists(

inf
x∈M

xi, sup
x∈M

xi

)
otherwise


is in M .

First we show that for each i ∈ {1, . . . , n} there exists an xi ∈M such that xii = x̃i:

if x̃i ∈ [minx∈M xi,maxx∈M xi] there exists x ∈ M such that xi = minx∈M xi ≤ x̃i and
x ∈ M such that xi = maxx∈M xi ≥ x̃i and as M is cross-shaped w.r.t x the set [x, x]1
is contained in M and therefore there exists an xi ∈M such that xii = x̃i.
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3.1. Properties of cross-shaped sets

if x̃i ∈ ( infx∈M xi,maxx∈M xi] there exists x ∈ M such that xi ≤ x̃i: if this would not
be the case it would mean that x̃i < xi for all x ∈ M and this is a contradiction to
x̃i > infx∈M xi. Analogously to the �rst case we get that there is a x ∈ M such that
xi = maxx∈M xi ≥ x̃i and thus as above we get that there exists an xi ∈ M such that
xii = x̃i.

if x̃i ∈ [minx∈M xi, supx∈M xi ) there exists x ∈M such that xi = minx∈M xi ≤ x̃i and x ∈M
such that xi ≥ x̃i with the same arguments as above and accordingly it follows again
that there is an xi ∈M such that xii = x̃i.

if x̃i ∈ (infx∈M xi, supx∈M xi) there exist x ∈ M and x ∈ M such that xi ≤ x̃i ≤ xi by the
same arguments as above and again this means, there exists xi ∈M such that xii = x̃i.

Choose x1 ∈ M such that x1
1 = x̃1 and x2 ∈ M such that x2

2 = x̃2. As M is cross-shaped
w.r.t. x1 and x2 ∈M we have that [x1, x2]1 ⊆M . This means that there is also an x12 ∈M
where x12

1 = x1
1 = x̃1 and x12

2 = x2
2 = x̃2 and therefore M is also cross-shaped w.r.t. x12.

Choose x3 ∈ M such that x3
3 = x̃3. Then we get that [x12, x3]1 ⊆ M and therefore there is

an x123 ∈ M where x123
1 = x12

1 = x̃1, x
123
2 = x12

2 = x̃2 and x123
3 = x3

3 = x̃3. Again M is
cross-shaped w.r.t. x123 and we choose x4 ∈ M such that x4

4 = x̃4 and so on. In the end we
get x12...n = x̃ ∈M .

For orthogonal rectangles, i.e., for bounded 2-dimensional boxes this result is stated in Rawlins
and Wood [1988]: they call a set M ⊆ R2 box convex if for all pairs p, q ∈ M the orthogonal
rectangle de�ned by them lies wholly in M and show that the only sets that are box convex
are orthogonal rectangles.
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3. Cross-shaped sets

3.2. Cross-shaped sets and the Rounding Property

In this section we investigate how to use cross-shaped level sets to derive the Rounding Prop-
erty.

Theorem 3.6 (Rounding Property for cross-shaped level sets.). Let (f, F ) be given. As-
sume that for any optimal solution x̄ to (CP ) and for any level f(x̄) ≤ z ≤ min{f(x) : x ∈
Round(x̄)∩F} the level set LF≤(z) is cross-shaped w.r.t. x̄. Then (f, F ) has the Rounding
Property.

Proof. Let x̄ ∈ X̄ and x ∈ Zn∩F . Using Lemma 1.18 we show that LF≤(f(x))∩Round(x̄) 6= ∅.
If min{f(u) : u ∈ Round(x̄) ∩ F} ≤ f(x) we are done. Otherwise we have that LF≤(f(x)) is
cross-shaped w.r.t. x̄.

De�ne y ∈ Zn by yi :=





dx̄ie if xi > x̄i

bx̄ic if xi < x̄i

x̄i if xi = x̄i

. Then we have that y ∈ [x̄, x]1 ⊆ LF≤(f(x)),

thus y ∈ Round(x̄) ∩ F . This means that Round(x̄) ∩ F 6= ∅ and hence there exists x̃ ∈
argmin{f(u) : u ∈ Round(x̄) ∩ F} and therefore f(x̃) ≤ f(y) ≤ f(x) < f(x̃). Hence
f(x̃) > f(x) leads to a contradiction and therefore it holds for all x ∈ Zn∩F that f(x̃) ≤ f(x).
Thus we have x̃ ∈ LF≤(f(x)) ∩ Round(x̄).

Remark 3.7. (i) The assumption of Theorem 3.6 requires especially that the set X̄ =
L≤(f(x̄)) is cross-shaped w.r.t. every x̄ ∈ X̄, by Lemma 3.5 this means that X̄ has
to be a (maybe degenerated) box.

(ii) It is indeed possible that |X̄| > 1 and the level sets are cross-shaped w.r.t. all points
in X̄ even if the level sets are not all boxes, compare the example in Figure 3.4: the
set L≤(f(x∗)) is cross-shaped w.r.t. every x̄ ∈ X̄ and hence (f,R2) has the Rounding
Property. We also see that the function does not have the Strong Rounding Property
since for the unique integer minimizer x∗ we get x∗ 6= bx̄2e.

X̄

L≤(f(x∗))
x∗

x̄1

x̄2

Figure 3.4.: The depicted level set is cross-shaped w.r.t. every x̄ ∈ X̄.

Next we investigate which function manipulations keep the cross-shapedness of the level sets
and therefore induce functions that have the Rounding Property.
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3.2. Cross-shaped sets and the Rounding Property

Lemma 3.8. (i) Let f : Rn → R and assume that for any optimal solution x̄ ∈ X̄ to
(CP ) and for any level f(x̄) ≤ z ≤ min{f(x) : x ∈ Round(x̄)} the level set L≤,f (z) is
cross-shaped w.r.t. x̄.

a) De�ne g1(x) := f(x) + γ where γ ∈ R.
b) De�ne g2(x) := αf(x) where α ∈ R, α ≥ 0.

c) Let f̂ : R→ R be strictly increasing and de�ne g3(x) := f̂(f(x)).

(ii) Let f : Rn → R, β ∈ R \ {0}, a ∈ Rn. De�ne g4(x) := f(βx − a). Assume that for
any optimal solution x̄ to (CP ) and for any level g4( x̄+a

β ) ≤ z ≤ min{g4(x) : x ∈
Round( x̄+a

β )} the level set L≤,f (z) is cross-shaped w.r.t. x̄.

(iii) Let f1 : Rn → R, f2 : Rn → R and assume that the sets of continuous minimizers
coincide: X̄1 = X̄2.

a) Assume for i ∈ {1, 2}: for any optimal solution x̄ ∈ X̄i and for any level fi(x̄) ≤
z ≤ min{fi(x) : x ∈ Round(x̄)} the level set L≤,fi(z) is cross-shaped w.r.t. x̄.
De�ne g5(x) := min{f1(x), f2(x)}.

b) Assume for i ∈ {1, 2}: for any optimal solution x̄ ∈ X̄i and for any level fi(x̄) ≤
z ≤ max{min{f1(x) : x ∈ Round(x̄)},min{f2(x) : x ∈ Round(x̄)}} the level set
L≤,fi(z) is cross-shaped w.r.t. x̄. De�ne g6(x) := max{f1(x), f2(x)}.

c) Assume for i ∈ {1, 2}: for any optimal solution x̄ ∈ X̄i and for any level z ∈ R the
level set L≤,fi(z) is cross-shaped w.r.t. x̄. De�ne g7(x) := f1(x) + f2(x).

Then for each i ∈ {1, . . . , 7} for any optimal solution x̄ ∈ min{gi(x) : x ∈ Rn} and for
any level gi(x̄) ≤ z ≤ min{gi(x) : x ∈ Round(x̄)} the level set L≤,gi(z) is cross-shaped
w.r.t. x̄ and hence (gi,Rn) has the Rounding Property due to Theorem 3.6.

Proof. g1: Let x̄ ∈ argmin{g1(x) : x ∈ Rn}. Then x̄ ∈ X̄ and hence for all levels f(x̄) ≤
z ≤ min{f(x) : x ∈ Round(x̄)} the level set L≤,f (z) is cross-shaped w.r.t. x̄. As in the
proof of Lemma 2.15, this means that the level sets L≤,g1(z) are cross-shaped w.r.t. x̄
for all g1(x̄) ≤ z ≤ min{g1(x) : x ∈ Round(x̄)}.

g2: if α > 0: analogously to (i); if α = 0 we have g2(x) ≡ 0 and hence trivially the Rounding
Property.

g3: Let x̄ ∈ argmin{g3(x) : x ∈ Rn}. Then x̄ ∈ X̄ and hence for all levels f(x̄) ≤ z ≤
min{f(x) : x ∈ Round(x̄)} the level set L≤,f (z) is cross-shaped w.r.t. x̄.

Let g3(x̄) ≤ z ≤ min{g3(x) : x ∈ Round(x̄)}, y ∈ L≤,g3(z) and x̃ ∈ argmin{f(x) : x ∈
Round(x̄)} = argmin{g3(x) : x ∈ Round(x̄)}. Then we have g3(y) = f̂(f(y)) ≤ z ≤
g3(x̃) = f̂(f(x̃)) and hence f(y) ≤ f(x̃). Therefore L≤,f (f(y)) is cross-shaped w.r.t. x̄
due to the assumption and thus [x̄, y]1 ⊆ L≤,f (f(y)). This means, for all p ∈ [x̄, y]1 we

have f(p) ≤ f(y) and so g3(p) = f̂(f(p)) ≤ f̂(f(y)) ≤ z and therefore [x̄, y]1 ⊆ L≤,g3(z).

g4: Let x̄ ∈ argmin{g4(x) : x ∈ Rn}. Then βx̄ − a ∈ X̄ and therefore for all g4(x̄) ≤ z ≤
min{g4(x) : x ∈ Round(x̄)} the level set L≤,f (z) is cross-shaped w.r.t. βx̄− a.
Furthermore, L≤,g4(z) = 1

βL≤,f (z) + a
β and hence L≤,g4(z) is cross-shaped w.r.t. x̄ due

to Lemma 3.4.
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3. Cross-shaped sets

g5: Let x̄ ∈ argmin{g5(x) : x ∈ Rn}. This means that x̄ ∈ X̄1 = X̄2 and hence L≤,f1(z) is
cross-shaped w.r.t. x̄ for all f1(x̄) ≤ z ≤ min{f1(x) : x ∈ Round(x̄)} and L≤,f2(z) is
cross-shaped w.r.t. x̄ for all f2(x̄) ≤ z ≤ min{f2(x) : x ∈ Round(x̄)}. As in the proof
of Lemma 2.15, this means that the level set L≤,g5(z) is cross-shaped w.r.t. x̄ for all
g5(x̄) ≤ z ≤ min{g5(x) : x ∈ Round(x̄)}.

g6: Let x̄ ∈ argmin{g6(x) : x ∈ Rn}, i.e., x̄ ∈ X̄1 = X̄2. This means that for all z ≤
max{min{f1(x) : x ∈ Round(x̄)},min{f2(x) : x ∈ Round(x̄)}}, the level sets L≤,f1(z)
and L≤,f2(z) are cross-shaped w.r.t. x̄. As in the proof of Lemma 2.15 this means that
L≤,g6(z) is cross-shaped w.r.t. x̄ for all g6(x̄) ≤ z ≤ min{g6(x) : x ∈ Round(x̄)}.

g7: Let x̄ ∈ argmin{g7(x) : x ∈ Rn}. Then we have x̄ ∈ X̄1 = X̄2. Let z ≥ g7(x̄) and
y ∈ L≤,g7(z), i.e., g7(y) = f1(y) + f2(y) ≤ z.
Let p ∈ [x̄, y]1. Since L≤,f1(f1(y)) is cross-shaped w.r.t. x̄ we have p ∈ L≤,f1(f1(y)), i.e.,
f1(p) ≤ f1(y) and analogously f2(p) ≤ f2(y). Together we have g7(p) = f1(p) + f2(p) ≤
f1(y) + f2(y) ≤ z and hence [x̄, y]1 ⊆ L≤,g7(z).

We point out here that we can prove that g1, g2 and g3 have the Rounding Property if f has the
Rounding Property by the observation that not only the continuous minimizers, but also the
integer minimizers stay the same, but we wanted to make clear that also the cross-shapedness
of the level sets is preserved.

Note that in (ii) it is not enough if L≤,f (z) is cross-shaped w.r.t. x̄ for all z ≤ min{f(x) : x ∈
Round(x̄)} as assumed in the �rst part: compare the example in Figure 3.5.

x̄

x∗L≤,f (z)

x̄+a
β

x∗
L≤,g4(z)

Figure 3.5.: The level sets L≤,f (z) are cross-shaped w.r.t. x̄ for all z ≤ min{f(x) : x ∈
Round(x̄)} but not for all z ≤ min{g4(x) : x ∈ Round( x̄+a

β )} and we see that

g4 = f(βx− a) does not have the Rounding Property.

Also in (iii) c) we need that L≤,fi(z) is cross-shaped w.r.t. x̄ for all z ∈ R if we do not assume
fi to be positive.
Note furthermore that we can generalize (iii) to any �nite number of functions by induction.
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3.2. Cross-shaped sets and the Rounding Property

Just as with quasi-roundness also cross-shapedness does in general not imply the Strong
Rounding Property, compare again Figure 3.4 for a counterexample. To also get the Strong
Rounding Property we need a stronger assumption on the level sets which we de�ne next.

De�nition 3.9. As set M ⊆ Rn is called coordinate axially symmetric w.r.t. x0 if for
any y ∈M and for all i ∈ {1, . . . , n} it holds that the re�ections of y about the hyperplanes
parallel to the coordinate planes and passing through x0, i.e., zi ∈ Rn with

zij :=

{
yj if j 6= i

2x0
j − yj if j = i

are in M .

x1

x2

x̄
yz1

z2

Figure 3.6.: Illustrating De�nition 3.9.

We state that the set manipulations in Lemma 3.4 also preserve the coordinate axial symmetry
of the sets:

Lemma 3.10. Let M ⊆ Rn be coordinate axially symmetric w.r.t. x0 ∈ M . Then the
following holds:

(i) M + x is coordinate axially symmetric w.r.t. x0 + x for all x ∈ Rn.

(ii) λ(M − x0) is coordinate axially symmetric w.r.t. 0 for all λ > 0.

(iii) Any re�ection of M about a hyperplane through x0 parallel to the coordinate axes is
coordinate axially symmetric w.r.t. x0.

Let M1 ⊆ Rn be coordinate axially symmetric w.r.t. x1 ∈M1 and M2 ⊆ Rn w.r.t. x1 ∈M2.

(iv) If x1 = x2 we have that the intersection M1 ∩M2 and the union M1 ∪M2 are coordinate
axially symmetric w.r.t. x1.

(v) The Minkowski sum M1 +M2 is coordinate axially symmetric w.r.t. x1 + x2.

Proof. We use the abbreviation cas for �coordinate axially symmetric� in this proof.

(i) follows from (v)
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3. Cross-shaped sets

(ii) Let y ∈ λ(M − x0), i.e., there exists m ∈M such that y = λ(m− x0). Then we have

zj := (y1, . . . , yj−1,−yj , yj+1, . . . , yn)

=
(
λ(m1 − x0

1), . . . , λ(mj−1 − x0
j−1),−λ(mj − x0

j ),

λ(mj+1 − x0
j+1), . . . , λ(mn − x0

n)
)

= λ[(m1, . . . ,mj−1, 2x
0
j −mj ,mj+1, . . . ,mn)

︸ ︷︷ ︸
∈M since M is cas w.r.t. x0

−x0]

∈ λ(M − x0)

for all j ∈ {1, . . . , n}.

(iii) Let hi := {x ∈ Rn : xk = x0
k ∀k 6= i} denote the hyperplane about which we re�ect M

and M i the resulting set. Then we have M i = M and hence M i is also cas w.r.t x0.

(iv) Let y ∈M1 ∩M2, i.e., y ∈Mi for i ∈ {1, 2}. Since Mi is cas w.r.t. x
1 we also have that

zj ∈Mi and hence zj ∈M1 ∩M2 for all j ∈ {1, . . . , n}.
Let y ∈M1 ∪M2, i.e., y ∈Mk for some k ∈ {1, 2}. Again since Mk is cas w.r.t. x

1 also
zj ∈Mk ⊆M1 ∪M2 for all j ∈ {1, . . . , n}.

(v) Let y ∈M1 +M2, i.e., y = m1 +m2 for some m1 ∈M1 and m2 ∈M2. Then we have

zk := (y1, . . . , yk−1, 2(x1
k + x2

k)− yk, yk+1, . . . , yn)

=
(
m1

1 +m2
1, . . . ,m

1
k−1 +m2

k−1, 2(x1
k + x2

k)− (m1
k +m2

k),

m1
k+1 +m2

k+1, . . . ,m
1
n +m2

n

)

= (m1
1, . . . ,m

1
k−1, 2x

1
k −m1

k,m
1
k+1, . . . ,m

1
n)︸ ︷︷ ︸

∈M1 since M1 is cas w.r.t. x1

+ (m2
1, . . . ,m

2
k−1, 2x

2
k −m2

k,m
2
k+1, . . . ,m

2
n)︸ ︷︷ ︸

∈M2 since M2 is cas w.r.t. x2

∈ M1 +M2

for all k ∈ {1, . . . , n}.

Together with cross-shapedness coordinate axial symmetry guarantees the Strong Rounding
Property.

Theorem 3.11 (Strong Rounding Property for cross-shaped and coordinate axially sym-
metric level sets.). Let (f, F ) be given. Assume that for any optimal solution x̄ to (CP )
we have bx̄e ∈ F and for any level f(x̄) ≤ z ≤ f(bx̄e) the level set LF≤(z) is cross-shaped
and coordinate axially symmetric w.r.t. x̄. Then (f, F ) has the Strong Rounding Property.

Proof. Let x̄ ∈ X̄ and x ∈ Zn ∩ F . Using Lemma 1.18 we show that bx̄e ∈ LF≤(f(x)).

If f(bx̄e) ≤ f(x) we are done. Otherwise we have x 6= bx̄e and LF≤(f(x)) is cross-shaped and
coordinate axially symmetric w.r.t. x̄.

62



3.2. Cross-shaped sets and the Rounding Property

De�ne y1 ∈ Zn by

y1
i :=





dx̄ie if xi > x̄i

bx̄ic if xi < x̄i

x̄i if xi = x̄i

.

Then we have y1 ∈ Round(x̄) and y1 ∈ [x̄, x]1 ⊆ LF≤(f(x)), as in the proof of Theorem 3.6.

De�ne y2 ∈ Rn by

y2
i =

{
y1
i if bx̄ie = y1

i

2x̄i − y1
i otherwise

.

This means that y2 is obtained by re�ecting y1 several times along the hyperplanes through
x̄ and as LF≤(f(x)) is coordinate axially symmetric w.r.t. x̄ and y1 ∈ LF≤(f(x)) we get that

each of these re�ections yields a point in LF≤(f(x)) and hence y2 ∈ LF≤(f(x)). As LF≤(f(x)) is

cross-shaped w.r.t. x̄ we know that [x̄, y2]1 ⊆ LF≤(f(x)).

Now we show that bx̄e ∈ [x̄, y2]1 ⊆ LF≤(f(x)), i.e., that bx̄ie ∈
{

[x̄i, y
2
i ] if x̄i ≤ y2

i

[y2
i , x̄i] otherwise

for all

i ∈ {1, . . . , n}.
We distinguish the following cases:

(i) if bx̄ie = y1
i : y

2
i = bx̄ie and we are done.

(ii) if bx̄ie > y1
i : y

2
i = 2x̄i − y1

i and y1
i < x̄i < bx̄ie as both bx̄ie and y1

i are in Round(x̄i).
Since we also know |y1

i − x̄i| ≥ |bx̄ie − x̄i| we get bx̄ie − x̄i ≤ x̄i − y1
i . Hence we have

y2
i = 2x̄i − y1

i ≥ bx̄ie, i.e., bx̄ie ∈ [x̄i, y
2
i ].

(iii) if bx̄ie < y1
i : analogously.

We really need cross-shaped and coordinate axially symmetric level sets since coordinate
axially symmetric level sets alone are not even enough to guarantee the Rounding Property
in general, compare Figure 3.7

x̄

x∗

Figure 3.7.: Coordinate axially symmetric level sets do not guarantee the Rounding Property.

Next we check, as in Lemma 3.8, which function manipulations preserve the coordinate axial
symmetry of the level sets and see which further functions have the Strong Rounding Property
if we found one that has cross-shaped and coordinate axially symmetric level sets.
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Lemma 3.12. (i) Let f : Rn → R and assume that for any optimal solution x̄ to (CP )
we have that bx̄e ∈ F and for any level f(x̄) ≤ z ≤ f(bx̄e) the level set L≤,f (z) is
cross-shaped and coordinate axially symmetric w.r.t. x̄.

a) De�ne g1(x) := f(x) + γ where γ ∈ R.

b) De�ne g2(x) := αf(x) where α ∈ R, α ≥ 0.

c) Let f̂ : R→ R be strictly increasing and de�ne g3(x) := f̂(f(x)).

(ii) Let f : Rn → R, β ∈ R \ {0}, a ∈ Rn. De�ne g4(x) := f(βx− a). Assume that for any
optimal solution x̄ to (CP ) we have that b x̄+a

β e ∈ F and for any level g4( x̄+a
β ) ≤ z ≤

g4(b x̄+a
β e) the level set L≤,f (z) is cross-shaped and coordinate axially symmetric w.r.t.

x̄.

(iii) Let f1 : Rn → R, f2 : Rn → R and assume that the sets of continuous minimizers
coincide: X̄1 = X̄2.

a) Assume for i ∈ {1, 2}: for any optimal solution x̄ ∈ X̄i we have bx̄e ∈ F and for
any level fi(x̄) ≤ z ≤ fi(bx̄e) the level set L≤,fi(z) is cross-shaped and coordinate
axially symmetric w.r.t. x̄. De�ne g5(x) := min{f1(x), f2(x)}.

b) Assume for i ∈ {1, 2}: for any optimal solution x̄ ∈ X̄i we have bx̄e ∈ F and for
any level fi(x̄) ≤ z ≤ max{f1(bx̄e), f2(bx̄e)} the level set L≤,fi(z) is cross-shaped
and coordinate axially symmetric w.r.t. x̄. De�ne g6(x) := max{f1(x), f2(x)}.

c) Assume for i ∈ {1, 2}: for any optimal solution x̄ ∈ X̄i we have bx̄e ∈ F and
for any level z ≥ fi(x̄) the level set L≤,fi(z) is cross-shaped and coordinate axially
symmetric w.r.t. x̄. De�ne g7(x) := f1(x) + f2(x).

Then for each i ∈ {1, . . . , 7} for any optimal solution x̄ ∈ min{gi(x) : x ∈ Rn} we have
bx̄e ∈ F and for any level gi(x̄) ≤ z ≤ gi(bx̄e) the level set L≤,gi(z) is cross-shaped and
coordinate axially symmetric w.r.t. x̄ and hence (gi,Rn) has the Strong Rounding Property
due to Theorem 3.11.

Proof. Again we use the abbreviation cas for �coordinate axially symmetric�.

g1: Let x̄ ∈ argmin{g1(x) : x ∈ Rn}. Then x̄ ∈ X̄ and hence bx̄e ∈ F and for all levels
g1(x̄) ≤ z ≤ g1(bx̄e) the level set L≤,g1(z) is cross-shaped and cas w.r.t. x̄ (as in the
proof of Lemma 3.8).

g2: if α > 0: analogously to (i); if α = 0 we have g2(x) ≡ 0 and hence trivially the Strong
Rounding Property.

g3: Let x̄ ∈ argmin{g3(x) : x ∈ Rn}. Then x̄ ∈ argmin{f(x) : x ∈ Rn} and hence for all
levels f(x̄) ≤ z ≤ f(bx̄e) the level sets L≤,f (z) are cross-shaped and cas w.r.t. x̄.

Let g3(x̄) ≤ z ≤ g3(bx̄e), y ∈ L≤,g3(z). Then we have (as in the proof of Lemma 3.8)
that L≤,f (f(y)) is cas w.r.t. x̄ and hence zj ∈ Rn de�ned by

zjk :=

{
yk if k 6= j

2x̄j − yj if k = j

64



3.2. Cross-shaped sets and the Rounding Property

ful�lls zj ∈ L≤,f (f(y)), i.e., f(zj) ≤ f(y) ∀ j ∈ {1, . . . , n}. Hence g3(zj) = f̂(f(zj)) ≤
f̂(f(y)) ≤ z and thus zj ∈ L≤,g3(z) for all j ∈ {1, . . . , n}. Thus (together with
Lemma 3.8) L≤,g3(z) is cross-shaped and cas w.r.t. x̄ for all g3(x̄) ≤ z ≤ g3(bx̄e).

The claim for g4, g5, g6 follows as in Lemma 3.8 with Lemma 3.10.

g7: Let x̄ ∈ argmin{g7(x) : x ∈ Rn}, i.e., x̄ ∈ X̄1 = X̄2. Let z ≥ g7(x̄). By Lemma 3.8
we know that L≤,g7(z) is cross-shaped w.r.t. x̄. Let y ∈ L≤,g7(z). Since L≤,f1(z) and

L≤,f2(z) are cas w.r.t. x̄ we have that zlk :=

{
yk if k 6= l

2x̄l − yl if k = l
ful�lls zl ∈ L≤,f1(f1(y))

and zl ∈ L≤,f2(f2(y)), i.e., f1(zl) ≤ f1(y) and f2(zl) ≤ f2(y). Together we get g7(zl) =
f1(zl)+f2(zl) ≤ f1(y)+f2(y) = g7(y) ≤ z and hence zl ∈ L≤,g7(z) for all l ∈ {1, . . . , n}.
Hence L≤,g7(z) is also cas w.r.t. x̄.

Just as before we can also prove that g1, g2 and g3 have the Strong Rounding Property by using
the fact that the function manipulations do not change the continuous or integer minimizers.

We end this section by proving a su�cient and necessary condition on a function f : Rn → R
that makes sure that the level sets are coordinate axially symmetric.

Lemma 3.13. Let f : Rn → R, x̄ ∈ argmin{f(x) : x ∈ Rn} and z0 ≥ f(x̄). Then we have

L≤,f (z) is coordinate axially symmetric w.r.t. x̄ for all z ≤ z0

if and only if

∀ x ∈ L≤,f (z0) we have f(y) = f(x) ∀ y ∈ Rn with |yj − x̄j | = |xj − x̄j | ∀ j ∈ {1, . . . , n},

i.e., if f(x) only depends on (|x1 − x̄1|, . . . , |xn − x̄n|).

Proof. Once again we use the abbreviation cas for �coordinate axially symmetric�.

�⇒�: Let x ∈ L≤,f (z0), i.e., L≤,f (f(x)) is cas w.r.t. x̄. Let y ∈ Rn such that |yj − x̄j | =
|xj − x̄j |, i.e., yj ∈ {xj , 2x̄j − xj} for all j ∈ {1, . . . , n}. Thus by repeated application of
the de�nition of cas y ∈ L≤,f (f(x)) and hence f(y) ≤ f(x) ≤ z0.

But this means that also L≤,f (f(y)) is cas w.r.t. x̄ and in the same way we get x ∈
L≤,f (f(y)) and hence f(x) ≤ f(y). Together we get f(y) = f(x).

�⇐�: Let z ≤ z0 and y ∈ L≤,f (z), i.e., also y ∈ L≤,f (z0). De�ne zjk :=

{
yk if k 6= j

2x̄j − yj if k = j
.

Then we get for all k = 1, . . . , n: |zjk− x̄k| = |yk− x̄k| and hence f(zj) = f(y) ≤ z. This
means that zj ∈ L≤,f (z) for all j = 1, . . . , n and hence L≤,f (z) is cas w.r.t. x̄.

This means that for example the level sets of p-norms are coordinate axially symmetric with
respect to the origin. We will see more examples in Section 3.4.
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3. Cross-shaped sets

3.3. Connection to convexity

In this section we compare the de�nition of cross-shaped sets with the di�erent variations of
convexity. Besides the classical convex sets, we investigate also the following two de�nitions.

De�nition 3.14 (Gorski et al. [2007]). Let X ⊆ Rn1 and Y ⊆ Rn2 such that n1 + n2 = n be
two non-empty, convex sets and let M ⊆ X × Y . De�ne Mx := {y ∈ Y : (x, y) ∈ M} and
My := {x ∈ X : (x, y) ∈ M}. The set M ⊆ X × Y is called a biconvex set on X × Y if Mx

is convex for every x ∈ X and My is convex for every y ∈ Y .

The next de�nition is a generalization of the original de�nition given by Rawlins and Wood
[1988] to n-dimensions.

De�nition 3.15. A set M ⊆ Rn is called ortho-convex if for all x, y ∈ M such that there
exists j ∈ {1, . . . , n} with xi = yi for all i 6= j the set [x, y]1 is contained in M .

We get the following connections between these three variations of convexity:

(i) If M is convex it is clearly also ortho-convex (compare also Rawlins and Wood [1988]).

(ii) If M is convex it is also biconvex for all possible X,Y , compare for example Theorem
2.2. in Gorski et al. [2007].

(iii) Even if M is either biconvex for all possible X,Y or ortho-convex it need not be convex,
compare Figure 3.8 left.

(iv) If n = 2 biconvexity and ortho-convexity are by de�nition equivalent.

(v) If n > 2 andM is ortho-convex it need not be biconvex for any X,Y , compare Figure 3.8
right.

(vi) If M is biconvex on some X,Y it is also ortho-convex, see Lemma 3.16.

M

M

Figure 3.8.: Left: the set M is biconvex and ortho-convex but not convex. Right: the set M
is ortho-convex but not biconvex on any X,Y .

Lemma 3.16. If M is biconvex on some X,Y , then M is ortho-convex.

Proof. LetM ⊆ X×Y biconvex and let Jx, Jy denote the corresponding partition of the index
set {1, . . . , n}. Let (x1, y1), (x2, y2) ∈ M with a j ∈ {1, . . . , n} such that (x1, y1)i = (x2, y2)i
for all i 6= j. We have to show that [(x1, y1), (x2, y2)]1 ⊆M .
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3.3. Connection to convexity

Let us assume without loss of generality that j ∈ Jx and therefore y1 = y2. Let z ∈
[(x1, y1), (x2, y2)]1 and denote by z|Jx the components of z belonging to Jx. Then we have
z|Jy = y1, zi = x1

i for all i ∈ Jx \ {j} and zj = λ(x1, y1)j + (1− λ)(x2, y2)j for a λ ∈ [0, 1].
Consider My1 := {x ∈ X : (x, y1) ∈M}: we have x1, x2 ∈My1 and therefore also z|Jx ∈My1

as My1 convex. Hence (z|Jx , y
1) ∈M and thus z ∈M .

This means, [(x1, y1), (x2, y2)]1 ⊆M .

Now we investigate the connections to cross-shaped. We have already seen that there are sets
that are convex but not cross-shaped and sets that are cross-shaped (and even coordinate
axially symmetric) that are not convex.

Lemma 3.17. Let M ⊆ Rn be cross-shaped w.r.t. some x0, then M is ortho-convex.

Proof. Let x, y ∈M , j ∈ {1, . . . , n} such that xi = yi for all i 6= j. Without loss of generality
let xj ≤ yj . We have to show that

Z := {z ∈ Rn : zi = xi ∀i, zj ∈ [xj , yj ]} ⊆ M.

If x0
j ≤ xj we know that x ∈ [x0, y]1 as xi = yi for all i 6= j and xj ∈ [x0

j , yj ]. This means

that Z ⊆ [x0, y]1 ⊆M since M is cross-shaped w.r.t. x0.

If x0
j ≥ yj we get analogously y ∈ [x, x0]1 and therefore Z ⊆ [x, x0]1 ⊆M .

If xj ≤ x0
j ≤ yj we have [xj , yj ] = [xj , x

0
j ] ∪ [x0

j , yj ] and therefore Z = {x ∈ Rn : zi =

xi ∀i, zj ∈ [xj , x
0
j ]} ∪ {z ∈ Rn : zi = xi ∀i, zj ∈ [x0

j , yj ]} and this means, Z ⊆
[x, x0]1 ∪ [x0, y]1 ⊆M .

By (iv) above, this means that for n = 2 it holds that if M ⊆ R2 is cross-shaped w.r.t. some
x0 it is also biconvex. In general this it not the case, compare Figure 3.9. This set is obviously
cross-shaped (and even coordinate axially symmetric) w.r.t. x0 but there is no coordinate
partition X × Y of the R3 such that this set is biconvex.

x0
M

Figure 3.9.: The set M is cross-shaped w.r.t. x0 but not biconvex on any X,Y .

If M is ortho-convex or biconvex for all X,Y there need not be an x0 ∈ M such that M is
cross-shaped w.r.t. x0, compare the example in Figure 3.10. In fact, sets that are biconvex or
ortho-convex need not be connected, but even for connected sets biconvexity or ortho-convexity
is not enough to guarantee cross-shapedness.
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3. Cross-shaped sets

M

Figure 3.10.: The set M is biconvex and ortho-convex but not cross-shaped w.r.t. any x0.

A su�cient assumption to get cross-shapedness is coordinate axially symmetry and ortho-
convexity.

Lemma 3.18. Let M ⊆ Rn be coordinate axially symmetric w.r.t. x0 and ortho-convex, then
it is cross-shaped w.r.t. x0.

Proof. Let y ∈M and de�ne z ∈ Rn by zi = 2x0
i − yi for all i = 1, . . . , n.

x0

M

y

z

[x0, y]l1[z, y]l1

First we show [y, x0]1 ⊆ [y, z]1:

Let x ∈ [y, x0]1, i.e., there exists λ ∈ Rn such that xi = λiyi + (1 − λi)x0
i for all

i = 1, . . . , n. Furthermore, x0
i = 1

2yi + 1
2zi for all i = 1, . . . , n.

⇒ xi = λiyi + (1− λi)(
1

2
yi +

1

2
zi) = (

1

2
+
λi
2

)yi + (
1

2
− λi

2
)zi

and therefore x ∈ [y, z]1 since 0 ≤ 1
2 + λi

2 ≤ 1.

Now we show [y, z]1 ⊆M and this implies that M is cross-shaped w.r.t. x0.

To this end we show �rst that (i) [y, (z1, y2, . . . , yn)]1 ⊆M and then for all j = 1, . . . , n− 1:

(ii) [y, (z1, . . . , zj , yj+1, . . . , yn)]1 ⊆M ⇒ [y, (z1, . . . , zj+1, yj+2, . . . , yn)]1 ⊆M.

This implies [y, z]1 ⊆M .

(i) Since M is cas and y ∈M we get (z1, y2, . . . , yn) ∈M and therefore also
[y, (z1, y2, . . . , yn)]1 ⊆M asM is convex in the �rst component, compare the assumption.
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3.3. Connection to convexity

(ii) For x ∈ [(y1, . . . , yj), (z1, . . . , zj)]1 we have

(x, yj+1, . . . , yn) ∈ [y, (z1, . . . , zj , yj+1, . . . , yn)]1 ⊆M

and since M is cas this means, (x, zj+1, yj+2, . . . , yn) ∈M .

Hence [(x, yj+1, . . . , yn), (x, zj+1, yj+2, . . . , yn)]1 ⊆M as M is ortho-convex.

⇒ [y, (z1, . . . , zj+1, yj+2, . . . , yn)]1

=
⋃

x∈[(y1,...,yj),(z1,...,zj)]1

[(x, yj+1, . . . , yn), (x, zj+1, yj+2, . . . , yn)]1 ⊆M.

Since biconvexity and convexity imply ortho-convexity we get the following corollary.

Corollary 3.19. (i) Let B be biconvex on some X,Y and axially symmetric w.r.t. x0 then
B is cross-shaped w.r.t. x0.

(ii) Let B be convex and coordinate axially symmetric w.r.t. x0 then B is cross-shaped w.r.t.
x0.

The next corollary summarizes what this means for quasiconvex functions.

Corollary 3.20. Let f : Rn → R be quasiconvex. Assume that for all optimal solutions x̄
to (CP ) and for all x ∈ L≤,f (f(bx̄e)) we have that f(y) = f(x) for all y ∈ Rn: |yj − x̄j | =
|xj − x̄j | ∀ j ∈ {1, . . . , n}. Then (f,Rn) has the Strong Rounding Property.

Proof. Since f is quasiconvex L≤,f (z) is convex for all z ∈ R. The second assumption makes
sure that for all optimal solutions x̄ to (CP ) the level set L≤,f (z) is coordinate axially symmet-
ric w.r.t. x̄ for all z ≤ f(bx̄e), compare Lemma 3.13. Using Corollary 3.19 and Theorem 3.11
completes the proof.

We summarize the results we got in this section in Figure 3.11.
If we assume furthermore that the set M is coordinate axially symmetric w.r.t. a point x0 we
get the results shown in Figure 3.12.

69



3. Cross-shaped sets

biconvex
on some X, Y

ortho-
convex

cross-shaped
w.r.t. some x

convex

n
=

2

n = 2

Figure 3.11.: The connections between cross-shapedness and the di�erent variations of convex-
ity covered in this section. The bold arrows mean implication, the thin arrows
mean implication under special assumptions (in this case n = 2) and the struck
out arrows mean no implication.

biconvex
on some X, Y

ortho-
convex

cross-shaped
w.r.t. some x

convex

n
=

2

n = 2

Figure 3.12.: The connections between cross-shapedness and the di�erent variations of con-
vexity if the set is coordinate axially symmetric with respect to some x0. The
bold arrows mean implication, the thin arrows mean implication under special
assumptions (in this case n = 2) and the struck out arrows mean no implication.
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3.4. Applications

In this section we give some examples of functions that have cross-shaped level sets and
investigate for which p ∈ {1, 2,∞} the median or center problem with p norm has the (Strong)
Rounding Property.

3.4.1. Separable quasiconvex functions

Similar to Hemmecke et al. [2010] we call a function f : Rn → R separable quasiconvex if it
can be written as

f(x) =

n∑

i=1

fi(xi)

with quasiconvex functions fi : R→ R for all i = 1, . . . , n.

Lemma 3.21. The level sets of a separable quasiconvex function f are cross-shaped with
respect to any optimal solution x̄ to the continuous relaxation (CP ) min{f(x) : x ∈ Rn}.
This means, (f,Rn) has the Rounding Property.

Proof. Special case of Lemma 3.23.

We generalize
∑n

i=1 fi(xi) as an ordered median function of the vector

xf := (f1(x1), . . . , fn(xn)).

De�nition 3.22 (e.g. Puerto and Nickel [2005]). A function gλ : Rn → R is an ordered
median function, if

gλ(x) = λtsort(x) for some λ = (λ1, . . . , λn) ∈ Rn

where sort(x) is the sorted version of x: sort(x) : Rn → Rn, x 7→ (x(1), x(2), . . . , x(n)) such
that x(1) ≤ x(2) ≤ . . . ≤ x(n).

With this de�nition f(x) :=
∑n

i=1 fi(xi) = g(1,...,1)(x
f ).

Lemma 3.23. Let fi : R → R be quasiconvex functions and λi ≥ 0 for all i = 1, . . . , n.
Then the level sets of gλ(xf ) are cross-shaped with respect to any optimal solution x̄ to the
continuous relaxation min{gλ(xf ) : x ∈ Rn}. This means, (gλ(xf ),Rn) has the Rounding
Property.

Proof. We use the following notation: sort(x) =: (x(1)x , x(2)x , . . . , x(n)x) and sort(y) =:
(y(1)y , . . . , y(n)y) to make clear that the two vectors are ordered in di�erent ways.

(i) First we show that if a = (a1, . . . , an) and b = (b1, . . . , bn) such that ai ≤ bi for all
i = 1, . . . , n we have a(i)a ≤ b(i)b for all i = 1, . . . , n.
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3. Cross-shaped sets

We show the claim by mathematical induction:
Base Case: b(1)b = bk for some k ∈ {1, . . . , n} and therefore: b(1)b = bk ≥ ak ≥
a(1)a .

Inductive Step: j → j + 1: assume a(j+1)a > b(j+1)b . This means, a(k)a >
b(j+1)b for all k = j + 1, . . . , n and therefore b(j+1)b < a(k)a ≤ b(k)a ∀ k =
j + 1, . . . , n. Hence there are n − j entries in b that are greater than b(j+1)b ,
which is a contradiction to the de�nition of b(j+1)b .

(ii) Let x̄ be an optimal solution to min{gλ(xf ) : x ∈ Rn}. We show that this means that
fk(x̄k) ≤ fk(x) for all x ∈ R and for all k = 1, . . . , n.

Assume that there is a k ∈ {1, . . . , n} and an x ∈ R such that fk(x) < fk(x̄k).
De�ne y := (x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄n). Then we have fi(yi) ≤ fi(x̄i) for all
i = 1, . . . , n. But this means (using (i)), f(i)f(y)

(y(i)f(y)
) ≤ f(i)f(x̄)

(x̄(i)f(x̄)
) for

all i = 1, . . . , n and since f(i)f(y)
(y(i)f(y)

) = f(i)f(x̄)
(x̄(i)f(x̄)

) for all i = 1, . . . , n

would mean fk(x̄k) = fk(yk) we know that there is at least one j ∈ {1, . . . , n}
such that f(j)f(y)

(y(j)f(y)
) < f(j)f(x̄)

(x̄(j)f(x̄)
). Hence

n∑

i=1

λif(i)f(y)
(y(i)f(y)

) <
n∑

i=1

λif(i)f(x̄)
(x̄(i)f(x̄)

)

as λi ≥ 0, which is a contradiction to x̄ being an optimal solution to
min{gλ(xf ) : x ∈ Rn}.

(iii) Let z ≥ gλ(x̄f ). We show that the corresponding level set is cross-shaped w.r.t. x̄. If
L≤(z) = {x̄} we are done. Therefore assume that there is another point y ∈ L≤(z). Then
every point x ∈ [x̄, y]1 can be described as x = (µ1x̄1 +(1−µ1)y1, . . . , µnx̄n+(1−µn)yn)
with µi ∈ [0, 1] for all i = 1, . . . , n. This means,

xf = (f1(µ1x̄1 + (1− µ1)y1), . . . , fn(µnx̄n + (1− µn)yn))

and

fi(µix̄i + (1− µi)yi) ≤ max{fi(x̄i), fi(yi)} as fi quasiconvex

= fi(yi) compare (ii)

Using (i) we get f(i)f(x)
(x(i)f(x)

) ≤ f(i)f(y)
(y(i)f(y)

) and therefore

gλ(xf ) =
n∑

i=1

λif(i)f(x)
(x(i)f(x)

)

≤
n∑

i=1

λif(i)f(y)
(y(i)f(y)

) as λi ≥ 0

= gλ(yf ) ≤ z.

So we have x ∈ L≤(z) and thus [x̄, y]1 ⊆ L≤(z) for every y ∈ L≤(z). Summarizing,
L≤(z) is cross-shaped w.r.t. x̄ for all z ≥ gλ(x̄f ).
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Example 3.24. Let f1 : R → R, x 7→ x2 and f2 : R → R, x 7→ |x|. Then we consider
λ ∈ {(1, 1), (1, 2), (2, 1), (−1, 1) and depict the resulting level sets L≤,g

λj
(xf )(1) for j = 1, . . . , 4

in Figure 3.13.

Figure 3.13.: The level sets L≤,g
λj

(xf )(1) for λ1 = (1, 1), λ2 = (1, 2), λ3 = (2, 1) and λ4 =

(−1, 1).

We see that for λ1, λ2 and λ3, i.e., for λ ≥ 0 the level sets are cross-shaped w.r.t. 0, the
unique continuous optimal solution in these cases. Whereas for λ4 the level set is not cross-
shaped with respect to any point. Also gλ4(xf ) does not have the Rounding Property: X̄ =
{(x1, x2) : x2

1 = |x2|} and X∗ = X̄ ∩ Z2 = {(x1, x2) : x1 ∈ Z, |x2| = x2
1}. This means, e.g.

(108.16, 10.4) ∈ X̄ but Round((108.16, 10.4)) = {(108, 10), (109, 10), (108, 11), (109, 11)}, i.e.,
Round((108.16, 10.4)) ∩X∗ = ∅.

If we assume fi(x) = x for all i = 1, . . . , n we get that gλ(x) is convex if λ1 ≤ λ2 ≤ . . . ≤ λn
(even �if and only if�, compare Grzybowski et al. [2011]). But we see in the example in
Figure 3.14 that the level sets do not have to be cross-shaped if λ1 < 0.

L≤,g(−2,1)
(1)

Figure 3.14.: The ordered median function gλ(x) for increasing λ need not have cross-shaped
level sets.

This raises the question: are the level sets of gλ(xf ) cross-shaped only if λi ≥ 0 for all i?

The answer is �no�: compare the example f1(x) = x2 and f2(x) = 0. Let furthermore
λ = (−1, 1). Then we have f(x1, x2) = x2

1, i.e., X̄ = {(0, x2) : x2 ∈ R} and the level sets are
of the form L≤(z) = {(x1, x2) : x2

1 ≤ z} and hence cross-shaped w.r.t. every x̄ ∈ X̄.

Remark 3.25. In general we do not get the Strong Rounding Property in Lemma 3.23 since
not even a convex function in one dimension need have the Strong Rounding Property.
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3. Cross-shaped sets

The special case of minimizing separable convex functions over the integer lattice has already
been considered in the literature. We mention the work of Hochbaum and Shanthikumar
[1990] who consider the following problem

(IP ) min f(x)

s.t. Ax ≥ b
x ∈ Zn

where f : Rn → R is a separable convex function and give the following proximity result:
for each optimal solution x̄ to (CP ), there exists an optimal solution x∗ for (IP ) such that
‖x̄−x∗‖∞ ≤ n ·∆, where ∆ is the maximum of the absolute values of the determinants of the
square submatrices of A.

For the special case of A =

(
In
−In

)
and b =

(
l
−u

)
we get

(IP ) min f(x)

s.t. l ≤ x ≤ u
x ∈ Zn

where f : Rn → R is a separable convex function and l ≤ u, l, u ∈ Rn.
Let x̄ be any optimal solution to (CP ). Lemma 3.21 shows that the level sets L≤(z) are
cross-shaped w.r.t x̄ for all z ≥ f(x̄). The feasible set F = {x ∈ Rn : l ≤ x ≤ u} is a box and
therefore cross-shaped w.r.t. every point x ∈ F (compare Lemma 3.5). As x̄ is an optimal
solution to (CP ) we get x̄ ∈ F and thus L≤(z) and F are both cross-shaped w.r.t. x̄. It
follows that LF≤(z) is also cross-shaped w.r.t. x̄ for all z ≥ f(x̄), hence (f, F ) has the rounding
property due to Theorem 3.6.

The proximity result in Hochbaum and Shanthikumar [1990] would give us ‖x̄ − x∗‖∞ ≤ n
(since ∆ = 1) whereas the Rounding Property gives us the stronger bound ‖x̄− x∗‖∞ ≤ 1 as
we know that there is an x∗ ∈ Round(x̄).

This means that in this special case we get a stronger proximity result than Hochbaum and
Shanthikumar [1990] but we are limited to the case of box constraints.

While the result in Hochbaum and Shanthikumar [1990] holds for more complicated constraints
our result holds for more complicated objective functions than just separable convex ones:
the property of having cross-shaped level sets is by far not limited to separable quasiconvex
functions, compare for example the function f(x) = ‖x‖∞ which has cross-shaped level sets
w.r.t. 0 but is not separable:

Assume that f(x1, x2) = max{|x1|, |x2|} is separable, i.e., there are f1 : R → R
and f2 : R→ R, s.t. f(x1, x2) = f1(x1) + f2(x2). Let |y| ≤ 1, then we get

f1(y) + f2(1) = f(y, 1) = ‖(y, 1)‖∞ = 1 = ‖(1, y)‖∞ = f(1, y) = f1(1) + f2(y).

Together this means, ‖(y, y)‖∞ = f(y, y) = f1(y) + f2(y) = 2− f1(1)− f2(1)︸ ︷︷ ︸
=const

for

all |y| ≤ 1 which is obviously a contradiction.
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3.4.2. Norms

We have already shown that in general functions of the form f : Rn → R, x 7→ ‖x − a‖ for
some a ∈ Rn and a norm ‖ · ‖ : Rn → R do not have the Rounding Property, compare again
Figure 1.13. Nevertheless, there are some special cases of norms, like the already mentioned
p-norms, for which f(x) = ‖x− a‖ has the Rounding Property or even the Strong Rounding
Property. In this section we investigate for some special cases of norms whether they have the
(Strong) Rounding Property or not.

We use in this section that ‖x‖ = λ if and only if x ∈ λ · B‖·‖ and x /∈ µ · B‖·‖ for all µ < λ
where B‖·‖ := {x ∈ Rn : ‖x‖ ≤ 1} is the unit ball of the norm ‖ · ‖. This means that the level
sets of f(x) := ‖x− a‖ are of the form L≤(z) = a+ z ·B‖·‖ for all z > 0.

We start with absolute norms.

Absolute Norms

De�nition 3.26 (Bauer et al. [1961]). A norm ‖ · ‖ is called absolute if ‖x‖ =
∥∥∥|x|

∥∥∥ for all

x ∈ Rn.

Figure 3.15.: An example for a unit ball of an absolute norm.

Lemma 3.27. B‖·‖ := {x ∈ Rn : ‖x‖ ≤ 1} is cross-shaped and coordinate axially sym-
metric w.r.t. 0 if and only if ‖ · ‖ is absolute. This means that (‖x − a‖,Rn) for some
a ∈ Rn has the Strong Rounding Property if ‖ · ‖ is absolute.

Proof. �⇒�: let u ∈ Rn, ‖u‖ = λ ⇔ u ∈ L≤(λ) = λ · B‖·‖ and u /∈ L≤(µ) = µ · B‖·‖ for all
µ < λ. Since λ ·B‖·‖ is coordinate axially symmetric w.r.t. 0 also |u| ∈ λ ·B‖·‖. Assume
that |u| ∈ µ ·B‖·‖ for µ < λ then we would also get u ∈ µ ·B‖·‖ by the same argument.

Therefore
∥∥∥|u|

∥∥∥ = λ = ‖u‖. Hence ‖ · ‖ is absolute.

�⇐�: B‖·‖ is also convex since it is the unit ball of a norm, Lemma 3.13 gives us that it is
coordinate axially symmetric w.r.t. 0 and using Corollary 3.19 we get that it is also
cross-shaped.
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3. Cross-shaped sets

In Bauer et al. [1961] it is shown that every absolute norm is monotonic and vice versa where
a norm is called monotonic if |xi| ≤ |yi| for all i = 1, . . . , n implies ‖x‖ ≤ ‖y‖ for all x, y ∈ Rn.
This means that the result of Lemma 3.27 also holds for monotonic norms. There are some
more properties of norms that are equivalent to absoluteness (compare Johnson and Nylen
[1991]) but we only state monotonicity here since it is the most common one.

A class of absolute norms are the p-norms for p ∈ [1,∞]. But note that a similar result also

holds for the class of functions fp(x) := (
∑n

i=1 |xi − ai|p)
1/p for p ∈ (0, 1) which are of course

not norms.

Lemma 3.28. (fap (x) = (
∑n

i=1 |xi − ai|p)
1/p ,Rn) for a ∈ Rn and p ∈ (0, 1) has the Strong

Rounding Property.

Proof. (i) a is the unique continuous minimizer as fap (x) > 0 = fap (a) for all x 6= a and for
all p ∈ (0, 1).

(ii) L≤(z) is cross-shaped w.r.t. a for all z ≥ fap (a) = 0:
let y ∈ L≤(z), i.e., fap (y) ≤ z and x ∈ [a, y]1, i.e., xi = λiai+(1−λi)yi for all i = 1, . . . , n
where λi ∈ [0, 1]. This means,

f(x) =

(
n∑

i=1

|(1− λi)(yi − ai)|p
)1/p

≤
(

n∑

i=1

|yi − ai|p
)1/p

= fap (y) ≤ z.

This means that [a, y]1 ⊆ L≤(z) for all y ∈ L≤(z) and all z ≥ 0.

(iii) L≤(z) is coordinate axially symmetric w.r.t. a for all z ≥ fap (a) = 0 due to Lemma 3.13.

Example 3.29. We consider the function fap for a = (0.2, 0.7) and p = 1
2 and depict the level

set L≤(fa1
2

(x∗)), compare Figure 3.16.

a
x∗ L≤(fa

1
2

(x∗))

Figure 3.16.: An example for the family of functions considered in Lemma 3.28.

Next we investigate block norms.
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3.4. Applications

Block norms

De�nition 3.30 (Ward and Wendell [1985]). A norm ‖ · ‖ with a polyhedral unit ball in Rn
is called a block norm.

Block norms do in general not have the Rounding Property, compare again the example in
Figure 1.13.

But there is a special class of block norms that actually has the Rounding Property.

De�nition 3.31 (Ward and Wendell [1980]). Let α1, α2 ∈ R+
0 , (α1, α2) 6= (0, 0). Then the

weighted one-in�nity norm is given as

‖x‖(α1,α2) := α1‖x‖1 + α2

√
2‖x‖∞.

Figure 3.17.: An example for a unit ball of a one-in�nity norm.

Lemma 3.32. (‖x− a‖(α1,α2),Rn) for a ∈ Rn and α1, α2 ∈ R+
0 , (α1, α2) 6= (0, 0) has the

Strong Rounding Property.

Proof. Since both ‖ · ‖∞ and ‖ · ‖1 are absolute, so is ‖ · ‖(α1,α2). Therefore the result follows
from Lemma 3.27.

The cornered p-norm as presented in Büsing et al. [2011]:

|||x|||p := ‖x‖∞ +
1

p
‖x‖1 for p ∈ [1,∞),

|||x|||∞ := ‖x‖∞

is a special case of a one-in�nity-norm and therefore Lemma 3.32 also holds for cornered
p-norms.

The next class of norms we analyze is the one of weighted norms.
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3. Cross-shaped sets

Figure 3.18.: An example for a unit ball of a weighted 1-norm.

Weighted norms

De�nition 3.33 (similar to Büsing et al. [2011]). For any norm ‖ · ‖ on Rn and any λ ∈ Rn
with λ > 0 we de�ne the weighted version of ‖ · ‖

‖x‖λ := ‖(λ1x1, . . . , λnxn)‖.

Lemma 3.34. If B‖·‖ is cross-shaped w.r.t. 0 for some norm ‖ · ‖ so is B‖·‖λ for its
weighted version for any λ ∈ Rn with λ > 0. If B‖·‖ is coordinate axially symmetric w.r.t.

0 so is B‖·‖λ. This means that (‖x− a‖λ,Rn) for some a ∈ Rn has the (Strong) Rounding
Property.

Proof. If B‖·‖ is cross-shaped w.r.t. 0 we know that if ‖x‖ ≤ 1 also ‖(µ1x1, . . . , µnxn)‖ ≤ 1

if µi ∈ [0, 1] for all i = 1, . . . , n. Let now λ ∈ Rn, λ > 0 and let x ∈ B‖·‖λ , i.e., ‖x‖λ =
‖(λ1x1, . . . , λnxn)‖ ≤ 1. Let y ∈ [0, x]1, i.e., yi = µixi for all i = 1, . . . , n. Then we have

‖y‖λ = ‖(λ1y1, . . . , λnyn)‖ = ‖(µ1λ1x1, . . . , µnλnxn)‖ ≤ 1

since ‖(λ1x1, . . . , λnxn)‖ ≤ 1 and B‖·‖ cross-shaped w.r.t. 0.

If B‖·‖ is coordinate axially symmetric w.r.t. 0 we know that if ‖x‖ ≤ 1 also
‖(x1, . . . , xi−1,−xi, xi+1, . . . , xn)‖ ≤ 1 for all i ∈ {1, . . . , n}. Let now λ ∈ Rn, λ > 0 and

let x ∈ B‖·‖λ , i.e., ‖x‖λ = ‖(λ1x1, . . . , λnxn)‖ ≤ 1. De�ne zij :=

{
xj if j 6= i

−xi otherwise
. Then

we have ‖zi‖λ = ‖(λ1x1, . . . , λi−1xi−1,−λixi, λi+1xi+1, . . . , λnxn)‖ ≤ 1 for all i ∈ {1, . . . , n}
since ‖x‖λ ≤ 1. And hence B‖·‖λ is coordinate axially symmetric w.r.t. 0.

We end with a short note on elliptic norms.

Elliptic norms

De�nition 3.35 (e.g. Körner [2011]). A norm ‖ · ‖ is called elliptic if its unit ball is an
ellipsoid.1
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3.4. Applications

Figure 3.19.: An example for a unit ball of an elliptic norm.

Chapter 5 is dedicated to the special case of convex quadratic functions which includes the
function f(x) = ‖x−a‖ for some a ∈ Rn and an elliptic norm ‖·‖. For the sake of completeness
we cite the most important results here.

(i) In general, an elliptic norm need not have the Rounding Property, compare the coun-
terexample in Figure 5.1 where the depicted set could be the unit ball of an elliptic
norm.

(ii) An ellipsoid is cross-shaped if and only if it is axis-parallel. In this case it is also
coordinate axially symmetric (Lemma 5.4).

(iii) An ellipsoid {x ∈ Rn : xtQx ≤ z} (for Q positive de�nite) is α-quasi-round w.r.t. 0
if and only if 1√

λmin
− 1√

λmax
≤ α, where λmin and λmax are the smallest and largest

eigenvalues of Q (Lemma 5.8).

3.4.3. Location theory

We end this section by giving some applications to location theory. Problems from location
theory are an interesting �eld of application for the Rounding Property. First of all typically
the dimension n is rather small, which means that comparing the up to 2n points in Round(x̄)∩
F is practicable and secondly the continuous counterparts are well-researched and for many
problems an e�cient algorithm is at hand.

In the following we investigate two di�erent types of location problems: given existing facilities
p1, . . . , pM ∈ Rn, positive weights wm for all m = 1, . . . ,M and a norm ‖ · ‖ : Rn → R, we
consider the integer median location problem

min

M∑

m=1

wm‖x− pm‖ (3.1)

s.t. x ∈ Zn

and the integer center location problem

min
M

max
m=1

wm‖x− pm‖ (3.2)

s.t. x ∈ Zn.
1In geometry these norms are often also called Euclidean (e.g. Thompson [1996]).
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3. Cross-shaped sets

A survey on continuous median location problems can be found in Drezner et al. [2002] and
an overview on continuous center location problems is provided by Plastria [2002].

Integer location problems arise for example in average sampling approaches where an integer
representative for a set of sampled points is to be found. Finding the best integer point to
represent a set of sampled points can be modeled as an integer location problem. An other
application are location problems on a grid -for example a crossing has to be chosen in a city
with only orthogonal and equidistant streets.

We start by investigating median location problems and observe �rst of all that in general
Problem 3.1 does not have the Rounding Property, consider the following example.

Example 3.36. Given four points p1 = (0, 0), p2 = (0, 1), p3 = (3, 0) and p4 = (2.05, 0.3)
with equal weights w1 = . . . = w4 in the plane, we want to solve the following median problem

min{‖x− p1‖2 + ‖x− p2‖2 + ‖x− p3‖2 + ‖x− p4‖2 : x ∈ Z2}.
An optimal solution to its continuous relaxation is x̄ = p4 (compare for example Drezner et al.
[2002]) and some of the �rst level sets are depicted in Figure 3.20.

y

p1

p2

p3
x̄ = p4

x
x∗

Figure 3.20.: The median problem with Euclidean norm does in general not have the Rounding
Property.

We see that the unique optimal solution to the integer median problem is x∗ = (1, 0) and hence
Round(x̄) ∩X∗ = ∅ and the problem does not have the Rounding Property.

Note that this example also shows why it is important to assume in Corollary 3.8 and Corol-
lary 3.12 (vii) that the set of continuous minimizers to f1 and f2 coincide, to make sure that the
level sets of f1 +f2 are cross-shaped: obviously the functions fi = ‖x−pi‖2 have cross-shaped
and even coordinate axially symmetric level sets, but since the sets of continuous minimizers
do not coincide we do not get the Rounding Property here.

Next we note that for the special case of the 1-norm problem (3.1) has the Rounding Property
since the objective function is separable convex, compare Lemma 3.21. Furthermore, the con-
tinuous relaxation of this problem can be solved in O(nM) time by calculating the coordinate
wise median (compare Drezner et al. [2002]). This means, in �xed dimension problem (3.1)
can be solved in O(nM2n) time. An example of a median location problem with 1-norm is
given next.

Example 3.37. Given three points p1 = (1, 1), p2 = (2, 3) and p3 = (4, 1.5) with equal weights
w1 = w2 = w3 in the plane, we want to solve the following median problem

min{‖x− p1‖1 + ‖x− p2‖1 + ‖x− p3‖1 : x ∈ Z2}.
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3.4. Applications

Then the unique continuous optimal solution is x̄ = (2, 1.5) and the level sets can be seen in
Figure 3.21 (compare for example Hamacher and Nickel [1995]).

1 2 3 4

1

2

3

p1 x∗

x∗

p2

p3
x̄

Figure 3.21.: The median problem with 1-norm has cross-shaped level sets and hence the
Rounding Property.

Now we look at the ∞-norm and observe that the median problem with ∞-norm does in
general not have the Rounding Property: consider the following example.

Example 3.38. Given two points p1 = (0.8, 0.6) and p2 = (3, 1) with equal weights w1 = w2,
we want so solve the following median problem:

min{‖x− p1‖∞ + ‖x− p2‖∞ : x ∈ Z2}.
The set of optimal solutions to the continuous relaxation is given by X̄ = {(x1, x2) ∈ R2 : 1.4−
x1 ≤ x2 ≤ 4−x1, x1−2 ≤ x2 ≤ x1−0.2} (compare e.g. Hamacher and Nickel [1995]). Hence
X∗ = {(2, 0), (2, 1), (3, 1)} and Round(p1) ∩ X∗ = ∅ even though p1 ∈ X̄, compare also
Figure 3.22.

x∗

x∗
x∗ = p2

p1 X̄

Figure 3.22.: The median problem with ∞-norm does in general not have the Rounding
Property.

Another median problem with cross-shaped level sets is the the median problem with squared
Euclidean norm:

min
M∑

m=1

wm‖x− pm‖22 (3.3)

s.t. x ∈ Zn
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3. Cross-shaped sets

which is strictly speaking not of form 3.1 since ‖ · ‖22 is not a norm.
The level sets of this problem are Euclidean balls about the unique optimal solution to the
continuous relaxation x̄ = 1∑M

m=1 wm
(
∑M

m=1wmp
m
1 , . . . ,

∑M
m=1wmp

m
n ) (compare Eyster and

White [1973]) and hence cross-shaped and coordinate axially symmetric about x̄. Therefore
the problem even has the Strong Rounding Property.

Example 3.39. Given again the three points from Example 3.37 p1 = (1, 1), p2 = (2, 3) and
p3 = (4, 1.5) with equal weights w1 = w2 = w3 in the plane, we want to solve the following
median problem

min{‖x− p1‖22 + ‖x− p2‖22 + ‖x− p3‖22 : x ∈ Z2}.
The unique continuous minimizer is

x̄ =
1

3
(7, 5.5) =

(
7

3
,
11

6

)

and the level sets are concentric circles as depicted in Figure 3.23. Hence the unique optimal
solution is x∗ = bx̄e = (2, 2).

1 2 3 4

1

2

3

p1

x∗

p2

p3x̄

Figure 3.23.: The median problem with squared Euclidean norm has the Strong Rounding
Property.

In general the problem

min
M∑

m=1

wm‖x− pm‖pp

s.t. x ∈ Zn

for any p ∈ [1,∞) has the Rounding Property since the objective function is separable convex.

Now we move on to center location problems and observe �rst of all that the level sets of
f(x) = maxMm=1wm‖x − pm‖ are the intersection of scaled and shifted unit balls (compare
e.g. Hamacher and Schöbel [1997]):

L≤,f (z) =

M⋂

m=1

(
z

wm
·B‖·‖ + pm).

Again we start with a negative result for the Euclidean norm: in general the center problem
with Euclidean norm does not have the Rounding Property, compare the following example.
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3.4. Applications

Example 3.40. Given two points p1 = (73
78 ,

11
39) and p2 = (473

78 ,−89
39) with equal weights w1 =

w2 in the plane, we want to solve the following center problem

min{max{‖x− p1‖2, ‖x− p2‖2} : x ∈ Z2}.

The unique optimal solution to its continuous relaxation is the intersection of the bisector with
the connecting line x̄ = (3.5,−1) (compare Figure 3.24). But the unique integer minimizer is
x∗ = (4, 0), compare also Figure 3.24.

p1

p2

x̄

x∗

Figure 3.24.: The center problem with Euclidean norm does in general not have the Rounding
Property.

We see that the problem does not have the Rounding Property.

Note that this is also a counterexample for the squared Euclidean norm case, since the level
sets have the same geometric shape.

Turning our attention to the 1-norm we see that this center problem does not have the Round-
ing Property either, compare the following example.

Example 3.41. Given the two points p1 = (7
4 ,

1
2), p2 = (7

8 − 42, 1
2) with weights w1 = 1 and

w2 = 1
48 we want to solve the center problem with 1-norm

min{max{‖x− p1‖1, ‖x− p2‖1} : x ∈ Z2}.

We get the unique continuous optimal solution x̄ = (7
8 ,

1
2), X∗ = {(2, 0), (2, 1)} and see that

Round(x̄) ∩X∗ = ∅, compare also Figure 3.25.

On the other hand, now the ∞-norm leads to the Rounding Property since the intersection
of �nitely many scaled and shifted ∞-norm unit balls are boxes and hence cross-shaped w.r.t.
any continuous optimal solution. Compare also the following example.

Example 3.42. Given three points p1 = (1.2, 1), p2 = (0, 0.8) and p3 = (1.6, 2.2) with weights
w1 = 1, w2 = 1

2 and w3 = 1
3 in the plane, we want to solve the following center problem

min{max{‖x− p1‖∞, ‖x− p2‖∞, ‖x− p3‖∞} : x ∈ Z2}.

The set of continuous minimizers is X̄ = {(x1, x2) : x1 = 0.8, 1 ≤ x2 ≤ 1.4}, the level sets are
boxes as depicted in Figure 3.26 and the unique integer minimizer is x∗ = (1, 1). This means,
this example even has the Strong Rounding Property.
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p1
x̄

x∗

x∗

Figure 3.25.: The center problem with 1-norm does in general not have the Rounding Property.

p1
p2

p3

X̄
x∗

Figure 3.26.: The center problem with ∞-norm has the Rounding Property.

Summarizing the results of this section we get the following table.

distance problem Rounding Property

‖ · ‖2 median no
‖ · ‖2 center no
‖ · ‖1 median Rounding Property
‖ · ‖1 center no
‖ · ‖∞ median no
‖ · ‖∞ center Rounding Property
‖ · ‖22 median Strong Rounding Property
‖ · ‖22 center no
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3.5. Quasi-cross-shaped sets

3.5. Quasi-cross-shaped sets

Just as we de�ned quasi-round sets to be a generalization of round sets we do the same
for cross-shaped sets. This means, we enclose a given set between two scaled versions of a
cross-shaped set where the di�erence between the scaling factors is limited. For general (not
necessarily cross-shaped) sets we call this property ε-similarity. In the following we investigate
under which assumptions quasi-cross-shaped sets guarantee the Rounding Property.

De�nition 3.43. Given ε ≥ 0 we call a set M ⊆ Rn ε-similar to a set A ⊆ Rn w.r.t. x0 if
there are λ1, λ2 ∈ R+

0 such that

λ1(A− x0) + x0 ⊆M ⊆ λ2(A− x0) + x0

and λ2 − λ1 ≤ ε and we call M ε-quasi-cross-shaped w.r.t. x0 if there exists a cross-shaped
set B ⊆ Rn such that M is ε-similar to B w.r.t. x0.

Note if A = Bp(x
0, 1) and ε = α we get the de�nition of (α, p)-quasi-round as in De�nition 2.1

since Bp(x
0, R) = R(Bp(x

0, 1) − x0) + x0 and this also means that any α-quasi-round set is
also α-quasi-cross-shaped.

Notation 3.44. Given a set A ⊆ Rn, a point x0 ∈ A and a point x ∈ Rn we use the following
notation

pA,x0(x) := inf{λ ≥ 0 : x ∈ λ(A− x0) + x0}.
If A ⊆ Rn is cross-shaped w.r.t. x0, (pA,x0 ,Rn) has the Rounding Property, since the level
sets L≤,pA,x0 (z) = z · (A− x0) + x0 are cross-shaped w.r.t. x0 (compare Lemma 3.4).

Next we show that ε-quasi-cross-shapedness guarantees the Rounding Property.

Theorem 3.45 (Rounding Property for quasi-cross-shaped sets). Let (f, F ) be given. As-
sume that for any optimal solution x̄ to (CP ) and for any level f(x̄) ≤ z ≤ min{f(x) : x ∈
Round(x̄) ∩ F} the level set LF≤(z) is ε(A, x̄, F )-quasi-cross-shaped w.r.t. x̄ where

ε(A, x̄, F ) := min
x∈(Zn∩F )\Round(x̄)

pA,x̄(x)− min
x∈Zn∩F

pA,x̄(x).

Then (f, F ) has the Rounding Property.

By saying that a set M is ε(A)-quasi-cross-shaped we mean that there exists a cross-shaped
set A such that M is ε(A)-similar to A. Furthermore, we de�ne ∞−∞ = 0 here and note
that ε(A, x̄, F ) ≥ 0 and hence ε(A, x̄, F )-similarity is well-de�ned.

Proof. Let x̄ ∈ X̄ and x ∈ Zn∩F . Using Lemma 1.18 we show that LF≤(f(x))∩Round(x̄) 6= ∅.
If min{f(u) : u ∈ Round(x̄) ∩ F} ≤ f(x) we are done. Otherwise we have

(i) x /∈ Round(x̄) as x ∈ F and

(ii) there exists a set A that is cross-shaped w.r.t. x̄ such that LF≤(f(x)) is ε(A, x̄, F )-similar

to A w.r.t. x̄, i.e., there exist λ1, λ2 ∈ R+
0 s.t.

λ1(A− x̄) + x̄ ⊆ LF≤(f(x)) ⊆ λ2(A− x̄) + x̄

and λ2 − λ1 ≤ ε(A, x̄, F ).
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3. Cross-shaped sets

As x ∈ LF≤(f(x)) we have

pA,x̄(x) := inf{λ ≥ 0 : x ∈ λ(A− x̄) + x̄} ≤ λ2.

Let x̂ ∈ argmin
y∈Zn

pA,x̄(y) ∩ Round(x̄)

︸ ︷︷ ︸
6=∅ as (pA,x̄,Rn) has the RP

. Then we have miny∈Zn∩F pA,x̄(y) ≥ pA,x̄(x̂) and hence

ε(A, x̄, F ) = min
y∈(Zn∩F )\Round(x̄)

pA,x̄(y)− min
y∈Zn∩F

pA,x̄(y) ≤ min
y∈(Zn∩F )\Round(x̄)

pA,x̄(y)−pA,x̄(x̂).

This means,

pA,x̄(x̂) ≤ min
y∈(Zn∩F )\Round(x̄)

pA,x̄(y)− ε(A, x̄, F )

≤ pA,x̄(x)− ε(A, x̄, F ) as x ∈ Zn ∩ F, x /∈ Round(x̄)

≤ λ2 − ε(A, x̄, F ) ≤ λ1.

And therefore x̂ ∈ λ1(A − x̄) + x̄ ⊆ LF≤(f(x)). Thus Round(x̄) ∩ F 6= ∅ and there exists
x̃ ∈ argmin{f(u) : u ∈ Round(x̄) ∩ F}. Then we have f(x̃) ≤ f(x̂) ≤ f(x) < f(x̃). Thus the
assumption f(x) < min{f(u) : x ∈ Round(x̄) ∩ F} leads to a contradiction.

Remark 3.46. (i) We note again that we are not looking for one A that �ts for all level
sets and all x̄ ∈ X̄ but for each level f(x̄) ≤ z ≤ min{f(x) : x ∈ Round(x̄) ∩ F} and
each x̄ ∈ X̄ we can �nd A(x̄, z).

(ii) This theorem contains Theorem 3.6 as a special case.

(iii) If we consider the special case that A − x0 is the unit ball of a norm ‖ · ‖A. We get
x ∈ λ(A− x0) + x0 ⇔ ‖x− x0‖A ≤ λ and hence pA,x0 = ‖x− x0‖A. This means,

ε(A, x̄, F ) = min
x∈(Zn∩F )\Round(x̄)

‖x− x0‖A − min
x∈Zn∩F

‖x− x0‖A

and hence for example for A = Bp(x
0, 1) we get ε(A, x̄, F ) = αp(x̄, F ). Therefore Theo-

rem 3.45 also contains Theorem 2.5 as a special case: if the level set LF≤(z) is αp(x̄, F )-
quasi-round w.r.t. x̄ it is also αp(x̄, F )-quasi-cross-shaped w.r.t. x̄ as mentioned before.

(iv) The proof of Theorem 3.45 shows that it is not really necessary that A is cross-shaped.
We are going to relax that condition later, compare 4.2.

(v) The challenge is of course to decide whether there is a cross-shaped set A such that LF≤(z)
is ε(A, x̄, F )-similar to A. This includes also the problem of determining ε(A, x̄, F ) for a
given set A which is not going to be easy (or even possible) in general. Also we point out
that in a lot of cases ε(A, x̄, F ) is going to be 0 so that the assumption of this theorem is
that the level set is cross-shaped.

(vi) In contrast to the quasi-round case it is not possible to shrink ε(A, x̄, F ) to even get the
Strong Rounding Property, since even if the level sets are all cross-shaped we need not
get the Strong Rounding Property.

We end this section by providing an example where Theorem 3.45 proves the Rounding Prop-
erty and Theorems 3.6 and 2.5 do not.
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Example 3.47. In Figure 3.27 we see an example for a level set that is neither cross-shaped
(compare y) nor (αp, p)-quasi-round for any p (since R− r > 1 and αp ≤ 1 for all p ∈ [1,∞])
but that has nevertheless the Rounding Property as can be shown by Theorem 3.45 with the set
A depicted, since A is cross-shaped and hence the level set is quasi-cross-shaped.

x̄

x∗

A

y
r

R

Figure 3.27.: An example for a level set whose Rounding Property can be shown by Theo-
rem 3.45 but neither by Theorem 2.5 nor by Theorem 3.6.
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3.6. Summary

In this chapter we introduced the de�nition of a cross-shaped set: we say that a set M ⊆ Rn
is cross-shaped with respect to a speci�ed center x0 if for any y ∈M also the 1-norm segment
[x0, y]1 := {p ∈ R: pi = λix

0
i + (1 − λi)yi, λi ∈ [0, 1] ∀i = 1, . . . , n} is contained in M . We

showed that the cross-shapedness of a set is preserved under certain set manipulations like
scaling or translating and furthermore, that the only sets that are cross-shaped with respect
to every point they contain, are boxes.
We are interested in cross-shaped sets since we showed in Theorem 3.6 that cross-shaped
level sets induce the Rounding Property. The proof is, geometrically speaking, based on the
observation that if y is integer, the 1-norm segment [x0, y]1 contains at least one of the points
of Round(x0). Since we now investigated cross-shaped level sets, we showed some function
manipulations that keep the cross-shapedness of the level sets: for example the composition
with a strictly increasing function.
To even get the Strong Rounding Property in Theorem 3.11 we need to assume additionally
that the level sets are also symmetric with respect to the hyperplanes through the continu-
ous minimizer x̄ and parallel to the coordinate axes. We showed that this condition is, for
symmetric feasible regions, equivalent to the constraint that the objective function f(x) only
depends on (|x1 − x̄1|, . . . , |xn − x̄n|).
Since the de�nition of cross-shapedness and the examples we gave in two dimensions are
reminiscent of the de�nition of biconvexity, we compared in Section 3.3 the de�nitions of
convex, biconvex and ortho-convex sets with the de�nition of cross-shaped sets. The results
are summarized in Figure 3.11 and Figure 3.12.
Section 3.4 gives some examples of problems whose level sets are cross-shaped with respect to
the continuous minimizers and who hence have the Rounding Property. A class of objective
functions that have (in an unconstrained problem) cross-shaped level sets with respect to any
continuous minimizer are for example separable quasiconvex functions. We generalized this
to ordered median functions of quasiconvex functions. Next we investigated which properties
of a norm ‖ · ‖ make sure that the problem (‖x− a‖,Rn) for some a ∈ Rn has the Rounding
Property: for example if the norm is absolute. We ended the section on applications by
investigating which of the median and center problems for the 1-, 2- and ∞-norm have the
(Strong) Rounding Property.
In the last section we generalized the concept of quasi-roundness to quasi-cross-shapedness.
As in the former case we showed in Theorem 3.45 that if the level sets are �not too di�erent�
from a cross-shaped set, we get the Rounding Property.
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We end this �rst part by pointing out some di�erences between the results we achieved for
quasi-round and cross-shaped level sets and by giving some common generalizations.

4.1. Comparison

Even though we observed a lot of parallelity in the last two chapters there are some di�erences
that we discuss in the following. We start by comparing the basic properties of quasi-round
and cross-shaped sets.

First of all, we observe that while the de�nition of cross-shapedness implies that the set is
connected, this is not true for quasi-round sets: also not connected sets can be quasi-round,
compare for example Figure 2.1.

Comparing the Lemmas 2.4 and 3.4 we observe that the cross-shapedness of a set is scale
invariant and the quasi-roundness is not. This is also the reason why we only allow translation
of the input in 2.4 (ii): g4(x) := f(x − a), while we allow in 3.4 (ii) also scaling: g4(x) :=
f(βx− a). This scaling of the input results in scaled level sets which remain cross-shaped but
not necessarily quasi-round.

On the other hand, the quasi-roundness for p = 2 is invariant under rotation, while the
cross-shapedness is not, compare Figure 4.1.

x0

y

x0

y

x0 x0

Figure 4.1.: While cross-shapedness is not preserved under rotation (left), quasi-roundness for
p = 2 is (right).

Note however that the invariance of quasi-roundness under rotation is only true for p = 2,
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compare Figure 4.2 for a counterexample for p = 1.

x0 x0

Figure 4.2.: Quasi-roundness of a set is not preserved under rotation for p = 1.

We point out here that even though the cross-shapedness and the quasi-roundness of a set are
invariant under translation the Rounding Property is not, compare Figure 4.3: (pM,x̄,R2) has
the Rounding Property as x∗ = bx̄e. But translating M and x̄ destroys it: (pM+x,x̄+x,R2)
does not have the Rounding Property.

x̄
bx̄e = x∗

M x̄ + x

bx̄ + xe x∗

M + x

Figure 4.3.: (pM,x̄,R2) has the Rounding Property, but (pM+x,x̄+x,R2) does not.

The next di�erence we observe regards the position of x0 in a set that is quasi-round or cross-
shaped w.r.t. x0. While (at least for maxx∈M ‖x−x0‖p > α) the (α, p)-quasi-roundness of M
w.r.t. x0 implies that a small neighborhood of x0 is contained in M , it is not necessary that
x0 is an interior point of M in order for M to be cross-shaped w.r.t. x0, compare the example
in Figure 4.4.

x0

y

Figure 4.4.: x0 need not be in the interior of M in order for M to be cross-shaped w.r.t. x0.

The last remark concerns the Strong Rounding Property. One could get the feeling that
symmetry plays an important role for the Strong Rounding Property. We point out that
even though coordinate axial symmetry in combination with cross-shapedness or in combina-
tion with convexity guarantees the Strong Rounding Property (compare Theorem 3.11 and
Corollary 3.19), it is not su�cient in the quasi-round case, compare Figure 4.5.
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x̄

bx̄e
x∗

α2

M

Figure 4.5.: (pM,x̄,R2) does not have the Strong Rounding Property even though M is coor-
dinate axially symmetric and α2-quasi-round w.r.t. x̄.

On the other hand, in order to guarantee the Strong Rounding Property in the quasi-round
setting (compare Theorem 2.16) we do not need any symmetry assumptions.

4.2. Generalization

In this section we give some generalizations that can be applied to the results in both Chapter 2
and Chapter 3.
First of all we mention that we can relax the assumptions in Theorems 2.10, 3.6 etc. by
observing that we do not need the assumed geometric shapes for all level sets where z ∈
[f(x̄),min{f(x) : x ∈ Round(x̄) ∩ F}] but only for all

z ∈ [f(x̄),min{f(x) : x ∈ Round(x̄) ∩ F}] ∩ f(Zn ∩ F )

where we de�ne f(Zn ∩ F ) := {f(x) : x ∈ Zn ∩ F}. We formulate this for Theorem 3.45, as
we mentioned before, this is the general form that contains all others as special cases.

Theorem 4.1 (Rounding Property for quasi-cross-shaped sets II). Let (f, F ) be given.
Assume that for any optimal solution x̄ to (CP ) and for any level z ∈ [f(x̄),min{f(x) : x ∈
Round(x̄) ∩ F}] ∩ f(Zn ∩ F ) the level set LF≤(z) is ε(A, x̄, F )-quasi-cross-shaped w.r.t. x̄
where

ε(A, x̄, F ) := min
x∈(Zn∩F )\Round(x̄)

pA,x̄(x)− min
x∈Zn∩F

pA,x̄(x).

Then (f, F ) has the Rounding Property.

Proof. This proof is the same as the one of Theorem 3.45: note that we only used the quasi-
cross-shapedness of LF≤(f(x)) where x ∈ Zn ∩ F .

In fact, it is even enough if the assumption holds for f(x∗) := min{f(x) : x ∈ Zn∩F}, but as
we do not know x∗ this assumption is probably hard to check. Therefore we formulated the
results with the stricter assumption that all level sets for z ∈ [f(x̄),min{f(x) : x ∈ Round(x̄)}]
have the appropriate shape. The assumption we posed in Theorem 4.1 is a compromise between
these two extreme ways to formulate our results. It might be helpful to have Theorem 4.1 in
this way if |[f(x̄,min{f(x) : x ∈ Round(x̄)}]∩ f(Zn ∩F )| is very small and we can determine
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L≤(z) explicitly for each of these levels. Nevertheless, we continue to formulate our results
for all z ∈ [f(x̄),min{f(x) : x ∈ Round(x̄)}] in the following � just keep in mind that we can
always perform this relaxation, if helpful.

As mentioned before we do not even need A to be cross-shaped in Theorem 3.45.

Theorem 4.2 (Rounding Property for ε-similar sets). Let (f, F ) be given. Assume that
for any optimal solution x̄ to (CP ) and for any level z ≤ min{f(x) : x ∈ Round(x̄) ∩ F}
there exists a set A such that (pA,x̄,Rn) has the Rounding Property and such that the level
set LF≤(z) is ε(A, x̄, F )-similar to A w.r.t. x̄ where

ε(A, x̄, F ) := min
x∈(Zn∩F )\Round(x̄)

pA,x̄(x)− min
x∈Zn∩F

pA,x̄(x).

Then (f, F ) has the Rounding Property.

Proof. This proof is the same as the one of Theorem 3.45: note that we only used that
(pA,x̄,Rn) has the RP and not explicitly that A is cross-shaped.

As before, it is very important to note here that ε(A, x̄, F ) depends highly on A and is going
to be 0 for many sets. Nevertheless, there are of course examples where Theorem 4.2 adds
some new insights, compare also the following example.

Example 4.3. (pM,x̄,R2) with the setM as in Figure 4.6 obviously has the Rounding Property
since pM,x̄(bx̄e) ≤ pM,x̄(x) for all x ∈ Z2 and hence X∗ ∩ Round(x̄) 6= ∅. Furthermore, M
ful�lls the assumptions of Theorem 4.2 if we choose A as depicted in Figure 4.6 (note that
(pA,x̄,R2) also has the RP). But M is not quasi-cross-shaped: if there would be a cross-shaped
set A′ such that M ⊆ A′ (we set λ2 = 1 without loss of generality here), we need to have bx̄e ∈
λ1(A− x̄) + x̄ by de�nition of ε(A, x̄, F ). But this would mean [bx̄e, x̄]1 ⊆ λ1(A− x̄) + x̄ ⊆M
as λ1(A− x̄) + x̄ is also cross-shaped w.r.t. x̄ (compare Lemma 3.4). This is however not true
as can be seen in Figure 4.6.

x̄

A

bx̄e
M

Figure 4.6.: An example for a level set whose Rounding Property can be shown by Theorem 4.2
but not by Theorem 3.45.

Furthermore we can adapt Theorem 4.2 in an obvious way to guarantee the Strong Rounding
Property.
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Theorem 4.4 (Strong Rounding Property for ε-similar sets). Let (f, F ) be given. Assume
that for any optimal solution x̄ to (CP ) we have that bx̄e ∈ F and for any level f(x̄) ≤
z ≤ f(bx̄e) there exists a set A such that (pA,x̄,Rn) has the Strong Rounding Property and
such that the level set LF≤(z) is η(A, x̄, F )-similar to A w.r.t. x̄ where

η(A, x̄, F ) := min
x∈(Zn∩F )\bx̄e

pA,x̄(x)− min
x∈Zn∩F

pA,x̄(x).

Then (f, F ) has the Strong Rounding Property.

Proof. Let x̄ ∈ X̄ and x ∈ Zn ∩ F . Using Lemma 1.18 we show that bx̄e ∈ LF≤(f(x)). If
f(bx̄e) ≤ f(x) we are done. Otherwise we have

(i) x 6= bx̄e and

(ii) there exists a set A ⊆ Rn such that (pA,x̄,Rn) has the Strong Rounding Property and
such that LF≤(f(x)) is η(A, x̄, F )-similar to A w.r.t. x̄, i.e. there exist λ1, λ2 ∈ R+

0 s.t.

λ1(A− x̄) + x̄ ⊆ LF≤(f(x)) ⊆ λ2(A− x̄) + x̄

and λ2 − λ1 ≤ η(A, x̄, F ).

As x ∈ LF≤(f(x)) we have pA,x̄(x) ≤ λ2. Since (pA,x̄,Rn) has the Strong Rounding Property
we have that bx̄e ∈ argminy∈Zn pA,x̄(y). Hence we have miny∈Zn∩F pA,x̄(y) = pA,x̄(bx̄e) and
thus

pA,x̄(bx̄e) = min
y∈(Zn∩F )\bx̄e

pA,x̄(y)− η(A, x̄, F )

≤ pA,x̄(x)− η(A, x̄, F ) as x ∈ Zn ∩ F, x 6= bx̄e
≤ λ2 − η(A, x̄, F ) ≤ λ1.

And therefore bx̄e ∈ λ1(A − x̄) + x̄ ⊆ LF≤(f(x)) and thus f(bx̄e) ≤ f(x) < f(bx̄e). Like this
the assumption f(x) < f(bx̄e) leads to a contradiction.

As already mentioned in Section 1.2 the de�nition of the Rounding Property might seem too
restrictive: is it not enough if there is one continuous minimizer x̄ that ful�lls Round(x̄)∩X∗ 6=
∅? As mentioned before (compare Section 1.2) we want the Rounding Property for any optimal
solution x̄ ∈ X̄ because we assume in general the existence of a black-box algorithm to solve
(CP ) and therefore we do not know how to get a speci�c solution and we have to assume that
it is more expensive to get a speci�c one. Nevertheless, there might be situations where we
are indeed able to get a speci�c continuous minimizer. Therefore we de�ne and discuss the
Weakened Rounding Property in the following.

De�nition 4.5. We say that an integer problem (IP ) has the Weakened Rounding Prop-
erty if there exists an optimal solution x̄ ∈ X̄ to its continuous relaxation (CP ) such that
X∗ ∩ Round(x̄) 6= ∅.

First of all we observe the following simple connection between the Rounding Property and
the Weakened Rounding Property.
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Lemma 4.6. If an integer problem (f, F ) has the Rounding Property it also has the Weakened
Rounding Property.

Proof. This is a direct consequence of the de�nition of the Weakened Rounding Property since
we always assume X̄ to be nonempty.

Furthermore, all results we had so far can be weakened such that they guarantee the Weak-
ened Rounding Property instead of the Rounding Property. We show this exemplarily for
Theorem 4.2.

Theorem 4.7 (Weakened Rounding Property for ε-similar sets). Let (f, F ) be given.
Assume that there exists an optimal solution x̄ to (CP ) such that for any level z ∈
min{f(x) : x ∈ Round(x̄)∩F} there exists a set A such that (pA,x̄,Rn) has the Rounding
Property and the level set LF≤(z) is ε(A, x̄, F )-similar to A w.r.t. x̄ where

ε(A, x̄, F ) := min
x∈(Zn∩F )\Round(x̄)

pA,x̄(x)− min
x∈Zn∩F

pA,x̄(x).

Then (f, F ) has the Weakened Rounding Property.

Proof. Let x̄ ∈ X̄ as assumed in the theorem and x ∈ Zn ∩ F .
Then the proof follows as in the proof of Theorem 3.45.

An example for a function that has the Weakened Rounding Property but not the Rounding
Property can be found in Figure 4.7.

x∗

x̄1
x̄2 x̄3

x̄4

x̄5

x̄6

x̄7

x̄8

Figure 4.7.: The function whose level sets are depicted here does not have the Rounding Prop-
erty, but the Weakened Rounding Property.

Assume that X̄ = {x̄1, . . . , x̄8} as depicted in Figure 4.7 and L≤(f(x∗)) is the gray set in
Figure 4.7. Then the integer problem of minimizing this function over the integer lattice has
the Weakened Rounding Property as X∗ ∩ Round(x̄i) 6= ∅ for i ∈ {1, 2, 3, 4, 5} but not the
Rounding Property, since X∗ ∩ Round(x̄i) = ∅ for i ∈ {6, 7, 8}.
Analogously we can adopt this concept to the Strong Rounding Property and get theWeakened
Strong Rounding Property.

De�nition 4.8. We say that an integer problem (IP ) has the Weakened Strong Rounding
Property if there exists an optimal solution x̄ ∈ X̄ to its continuous relaxation (CP ) such
that bx̄e ∈ X∗.
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Again we can adopt the results we had so far for the Strong Rounding Property for the
Weakened Strong Rounding Property. We skip this here since it does not give us any new
insights. Instead we show in Figure 4.8 an example situation that has the Weakened Strong
Rounding Property and the Rounding Property. This means that for all x̄ ∈ X̄ we have
X∗ ∩ Round(x̄) 6= ∅ and there exists at least one x̂ ∈ X̄ such that bx̂e ∈ X∗.
In Figure 4.8 the dark gray area is X̄, X∗ = {x∗} and the light gray area is L≤(f(x∗)). We
see that the problem has the Rounding Property since x∗ ∈ Round(x̄) for all x̄ ∈ X̄ and the
Weakened Strong Rounding Property since for all x̄ ∈ X̄ ∩ {x ∈ R2 : x2 ≥ 0.5} we also have
bx̄e = x∗.

x∗

X̄

L≤(f(x∗))

Figure 4.8.: The function whose level sets are depicted here has the Rounding Property and
the Weakened Strong Rounding Property.
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Applications and extensions
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5. Lower bounds and algorithms for convex

quadratic integer programs

In this chapter we apply our theory of the Rounding Property to the special case of uncon-
strained convex quadratic integer programs, i.e., to problems of the form

(CQIP ) min q(x) := xtQx+ Ltx

s.t. x ∈ Zn

where Q ∈ Rn,n is a positive de�nite matrix and L ∈ Rn. This means that the objective
function q : Rn → R is strictly convex.

This chapter is organized as follows. First we recall some facts and notations about convex
quadratic integer problems and give a short literature review on their solution. Then we
identify properties (of Q) that lead to cross-shaped or quasi-round level sets. In the next
section we consider convex quadratic integer problems that do not have the Rounding Property.
In order to solve them via a branch-and-bound approach we underestimate the objective
function by another convex quadratic function that has the Strong Rounding Property in order
to get an easy to calculate lower bound. Then we show how to achieve good underestimators
independent of the continuous minimizer, since we hope that they perform good in a branch-
and-bound framework. In the last section we compare the di�erent bounds theoretically, in
an example and in some computational results.

5.1. Convex quadratic integer programs

The special type of problem (CQIP ) has two properties that make it a good application for
our theory: �rst of all, the continuous minimizer is unique since q is strictly convex and can
be calculated directly via

x̄ = −1

2
Q−1L.

And secondly we know what the level sets of q look like:

L≤(z) =
√
z − q(x̄)E(Q, x̄) ∀z ≥ q(x̄)
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where E(Q, x̄) is the ellipsoid given by Q and centered at x̄:

E(Q, x̄) := {y ∈ Rn : (y − x̄)tQ(y − x̄) ≤ 1}

and r · E(Q, x̄) := x̄ + r · E(Q, 0) for all r ≥ 0. (We adopt these notations and results
of Buchheim et al. [2012a].)
Note here that this means that the shape of the level sets only depends on Q and not on L.
This is due to the fact that, using x̄, we can reformulate q as

q(x) = q(x̄) + (x− x̄)tQ(x− x̄) ∀x ∈ Rn.

Example 5.1. Consider for example the problem

(CQIP ) min xt
(

5 −1
−1 5

)
x+

(
3.4
−7.4

)t
x

s.t. x ∈ Zn.

Here we get x̄ =

(
−0.2

0.7

)
and q(x̄) = −2.93. The level sets for z = −2.73, z = q(x∗) = −2.4

and z = −1.93 are shown in Figure 5.1. We see that x∗ = bx̄e =

(
0
1

)
, i.e., q has the SRP.

x̄

bx̄e

Figure 5.1.: Level sets of a convex quadratic function having the rounding property.

But of course not all convex quadratic integer problems have the Rounding Property, see for
example Figure 5.2.

The remainder of this chapter is organized as follows: we end this introduction by providing
a short literature review on the special case of integer quadratic optimization and introducing
some notations and basic properties of ellipsoids. In the next section we investigate under
which assumptions on Q the level sets

√
z − q(x̄)E(Q, x̄) are cross-shaped or quasi-round

w.r.t. x̄. Furthermore, we introduce a special case of quasi-cross-shapedness namely quasi-
axisparallelity and investigate under which assumptions the level sets are quasi-axisparallel
w.r.t. x̄. Since a general convex quadratic integer problem is probably not going to have the
Rounding Property we study in the next section how we can derive lower bounds to use in
a branch-and-bound framework from the concepts we had so far. To use them e�ciently in
a branch-and-bound algorithm it might be useful to make their computation independent of
x̄. This is done in the second to last section. In the last section we compare the bounds we
derived in this chapter theoretically, in an example and by some computational experiments.
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x̄

bx̄e
x∗

Figure 5.2.: Level sets of a convex quadratic function not having the rounding property.

Besides the fact that problem (CQIP ) �ts nicely into our theory it is also a very interesting
problem. First of all, we have to mention that even though the continuous relaxation is easy to
solve the integer problem (CQIP ) is NP-hard as it is equivalent to the closest vector problem,
which is known to be NP-hard (compare van Emde-Boas [1981]). This means that algorithms
for the closest vector problem as the Fincke-Pohst algorithm (see Fincke and Pohst [1985])
can also be used to solve (CQIP ). A recent approach to solve (CQIP ) is a branch-and-bound
approach by Buchheim et al. [2012a].

Literature on integer quadratic (not necessarily convex) problems is mainly on binary quadratic
problems. For this special case it is shown in Carter [1984] that also the problem where Q is
inde�nite can equivalently be formulated as a convex quadratic binary problem by replacing
the matrix Q by a positive de�nite matrix of the same size. Also the problem over the binary
variables is NP-hard as it equivalent to the max-cut problem (see Barahona et al. [1989]).
The approaches to solve this problem presented here fall into two groups: the �rst basic idea
is to reformulate the problem as an equivalent problem which is either easier to solve, whose
continuous relaxation is easier to solve or gives better bounds or that is for some other reason
preferable. The second approach is to use a branch-and-bound framework. Note however that
these two classes are not disjoint: often a reformulation is used within or before a branch-and-
bound algorithm.

The probably most common reformulation strategy in the binary case is the linearization of
the objective function: every product xi · xj is replaced by a new variable yij that is equal
to 1 if and only if xi = xj = 1 (Fortet [1960]). This means that the number of variables
and constraints increases by O(n2). Furthermore, the continuous relaxation of this problem is
weak. Therefore a lot of e�ort has been put into reducing the number of variables (e.g. Glover
[1975]) and getting tighter relaxations (e.g. Adams et al. [2004], Adams and Sherali [1986]).
Another idea is to use qu(x) := xt(Q − Diag (u))x + (L + u)tx instead of q(x). It is obvious
that qu(x) = q(x) for all x ∈ {0, 1}n and hence the problems are equivalent. If u is chosen
in such a way that Q − Diag (u) � 0 this yields a convex quadratic reformulation (compare
e.g. Hammer and Rubin [1970], Carter [1984] or McBride and Yormark [1980]). This idea
is further improved by Billionnet and Elloumi [2007] and Billionnet et al. [2009] and can be
generalized to general mixed- integer programs (Billionnet et al. [2012]).

In addition to and often combined with these reformulation techniques there are a lot of branch-
and-bound approaches, compare Pardalos and Rodgers [1990] for an overview. We mention
two more recent approaches here. They di�er mainly in the dual bound-computation. The �rst
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approach is by Helmberg and Rendl [1998]: the main idea is to reformulate min{xtQx : x ∈
{−1, 1}n} as min{tr(QX) : X ∈ PC} (where PC := conv{xxt : x ∈ {−1, 1}n} is the so-
called cut polytope and tr(A) denotes the trace of a matrix A) and then use the semide�nite
relaxation min{tr(QX) : diag(X) = e, X � 0} (where diag(A) is the n dimensional vector
containing the diagonal components of A) as introduced e.g. by Rendl [1999]. This relaxation
is tightened by some hypermetric inequalities, i.e., by inequalities of type tr((bbt)(xxt)) ≥ 1
for b ∈ {y ∈ Zn : min{|ytx| : x ∈ {−1, 1}n} = 1} and solved by interior point methods. The
authors argue that this approach is practical for instances with up to 100 binary variables. In
the meantime it has been improved by Helmberg [2000] and Rendl et al. [2010].
A completely di�erent approach is presented in a recent paper by Buchheim and Traversi
[2013]: in order to solve min{q(x) := x>Qx + Ltx : x ∈ {0, 1}n} they underestimate the
objective function q globally by a separable but not necessarily convex quadratic function

g
(t)
z (x) := (x− z)tDiag (t)(x− z) + (L+ 2Qz)tx− ztQz for a �xed point z. In this point g

(t)
z

touches q: g
(t)
z (z) = q(z) and g

(t)
z is a global underestimator of q if and only if Q � Diag (t).

The separable quadratic function can then by linearized by using the fact that x2
i = xi for

xi ∈ {0, 1}. Thus calculating the lower bounds means minimizing a linear function over the

set {0, 1}n. The challenge in this approach is to identify a good underestimator g
(t)
z .

We end this short literature review by mentioning some work on the quadratic integer opti-
mization problem where the variables need not be binary. In this case, as mentioned before,
even the continuous relaxation over box constraints, the so-called BoxQP-problem, is NP-hard
(see Pardalos and Vavasis [1991]). Some approaches to solve the integer non-convex quadratic
problem include convex reformulation (as done in Billionnet et al. [2013]), d.c. decomposition
(see Bomze and Locatelli [2004]), ellipsoidal approximation (compare Buchheim et al. [2012b])
and SDP-relaxation (Buchheim and Wiegele [2012]). Proximity results for separable quadratic
integer problems are given in Granot and Skorin-Kapov [1990].

To end this introduction we give some notations and some basic properties of ellipsoids that
we use in the following.

Notation 5.2. (i) We denote by Q � 0 that Q is positive semide�nite and by Q � 0 that
Q is positive de�nite. Both notations hence imply that Q is symmetric.

(ii) We de�ne E(Q, x) := {y ∈ Rn : (y − x)tQ(y − x) ≤ 1} also for Q � 0. Note however
that this set is unbounded if Q is not positive de�nite, but we still call it an �ellipsoid�.

(iii) We de�ne ‖x‖Q :=
√
xtQx for Q � 0, which is a norm if Q � 0.

Remark 5.3. (i) E(Q, x) = x+ E(Q, 0).

(ii) r · E(Q, x) = E( 1
r2Q, x). Note once again here that r · E(Q, x) := x+ r · E(Q, 0) for all

r ≥ 0 which does not correspond to the usual notation r ·M . We use this notation here
since it abbreviates the notation a lot in the following.

(iii) The eigenvectors of Q de�ne the principal directions of E(Q, 0) and the reciprocal square
roots of the eigenvalues are the equatorial radii.

(iv) x ∈ R · E(Q, x0) if and only if ‖x− x0‖Q ≤ R.
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5.2. Axisparallel, quasi-round and quasi-axisparallel ellipsoids

Since x̄ = −1
2Q
−1L is the unique continuous minimizer we investigate in this section under

which assumptions the level sets, which are of the form r · E(Q, x̄), are cross-shaped, quasi-
round or quasi-axisparallel w.r.t. x̄. (Quasi-axisparallelity is a special case of quasi-cross-
shapedness and will be de�ned in this section.)

First we investigate the case of cross-shaped ellipsoids. Since cross-shapedness is invariant
under translation and scaling (compare Lemma 3.4) we ask: which properties of Q make sure
that E(Q, 0) is cross-shaped w.r.t. 0? We state the following lemma in a more general way,
namely not only for positive de�nite matrices Q but for positive semide�nite matrices Q.

Lemma 5.4. The ellipsoid E(Q, 0) where Q is positive semide�nite is cross-shaped w.r.t.
0 if and only if Q = Diag (t) for some t ≥ 0.

Proof. We aim at showing that Q = Diag (t) for some t ≥ 0 if and only if [y, 0]1 ⊆ E(Q, 0) for
all y ∈ E(Q, 0), where [y, 0]1 = {p ∈ Rn : pi = λiyi, λi ∈ [0, 1] ∀i = 1, . . . , n}.

�⇐� Let Q = Diag (t) for some t ≥ 0, this means E(Q, 0) =
{
x ∈ Rn :

∑n
i=1 tix

2
i ≤ 1

}
. Let

y ∈ E(Q, 0), thus
∑n

i=1 tiy
2
i ≤ 1, and p ∈ [y, 0]1. Then

n∑

i=1

tip
2
i =

n∑

i=1

ti︸︷︷︸
≥0

λ2
i︸︷︷︸
≤1

y2
i︸︷︷︸
≥0

≤
n∑

i=1

tiy
2
i ≤ 1 .

This means, [y, 0]1 ⊆ E(Q, 0) for all y ∈ E(Q, 0).

�⇒� Let E(Q, 0) =
{
x ∈ Rn :

∑n
i=1

∑n
j=1 qijxixj ≤ 1

}
be cross-shaped w.r.t. 0 and assume

that Q 6= Diag (t) for any t ≥ 0, i.e., there exist indices l 6= k such that qkl 6= 0.
By Q � 0, we have qkk ≥ 0, qll ≥ 0, qkkqll − q2

kl ≥ 0. Using q2
kl > 0, this implies

qkk > 0, qll > 0, 4qkkqll − q2
kl > 4(qkkqll − q2

kl) ≥ 0 . (5.1)

Now we construct y ∈ E(Q, 0) with [y, 0]1 6⊆ E(Q, 0), in contradiction to our assumption.
De�ne y ∈ Rn by

yi =





0 if i /∈ {k, l}
2
√
qll√

4qkkqll−q2
kl

if i = k

− qkl√
qll
√

4qkkqll−q2
kl

if i = l.

The vector y is well-de�ned by (5.1) and we have y 6= 0. We obtain

n∑

i,j=1

qijyiyj = qkk ·
4qll

4qkkqll − q2
kl

+ qll ·
q2
kl

qll(4qkkqll − q2
kl)
− 2qkl ·

2
√
qllqkl√

qll(4qkkqll − q2
kl)

=
4qkkqll − 3q2

kl

4qkkqll − q2
kl

< 1
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and thus y ∈ E(Q, 0). However, for p with pi =

{
yk if i = k

0 otherwise
we have p ∈ [y, 0]1, but

n∑

i,j=1

qijpipj = qkky
2
k =

4qkkqll
4qkkqll − q2

kl

> 1

as 4qkkqll−q2
kl > 0 and q2

kl > 0. This means, p /∈ E(Q, 0) and therefore [y, 0]1 6⊆ E(Q, 0).

Examples for a cross-shaped ellipsoid and an ellipsoid that is not cross-shaped can be seen in
Figure 5.3.

0
0

y

Figure 5.3.: Left: cross-shaped w.r.t. 0, right: not cross-shaped w.r.t. 0.

Notation 5.5. If Q = Diag (t) for some t ≥ 0 the ellipsoid is called axisparallel.

We use the name axisparallel in the following since it suggests the right picture. Axisparallel
ellipsoids are not only cross-shaped but also coordinate axially symmetric with respect to their
center. Therefore we get the following lemma.

Lemma 5.6. If Q = Diag (t) for some t ≥ 0, problem (CQIP ) has the Strong Rounding
Property and an optimal solution is given by b−1

2Q
−1Le.

Proof. If Q = Diag (t) for some t ≥ 0 the level sets are cross-shaped (compare Lemma 5.4)
and coordinate axially symmetric w.r.t. x̄ = −1

2Q
−1L: again it is enough to prove that

E(Diag (t), 0) is cas w.r.t. 0 and this follows since E(Diag (t), 0) = {x ∈ Rn :
∑n

i=1 tix
2
i ≤ 1},

i.e., if y ∈ E(Diag (t), 0), also yi de�ned by yij =

{
yj if j 6= i

−yi otherwise
is in E(Diag (t), 0) for all

i ∈ {1, . . . , n}. Therefore Theorem 3.11 proves that (q,Rn) has the SRP and hence we know
that bx̄e ∈ X∗.

Remark 5.7. The fact that the level sets of q are cross-shaped w.r.t. x̄ for Q = Diag (t) for
some t ≥ 0 can also be proven by either of the following observations:

(i) Q = Diag (t) for some t ≥ 0 implies that q is of the form q(x) =
∑n

i=1(tix
2
i + lixi) and

therefore a separable convex function. Hence the claim follows with Lemma 3.21.
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(ii) If t > 0, E(Diag (t), 0) can also be interpreted as the weighted version of a 2-norm unit
ball:

E(Diag (t), 0) :=



x ∈ Rn :

n∑

i=1

ti︸︷︷︸
>0

x2
i ≤ 1



 =

{
x ∈ Rn : ‖x‖

√
t

2 ≤ 1
}

= B‖·‖
√
t

2

.

Consequently the claim follows with Lemma 3.34.

Now we investigate under which assumptions the level sets of the convex quadratic function
q are (α2(x̄), 2)-quasi-round w.r.t. the continuous minimizer x̄. To do this we analyze �rst
when a given ellipsoid E(Q, 0) is (α, 2)-quasi-round w.r.t. 0 for some given α ≥ 0. Here the
generalization to positive semide�nite matrices is not meaningful since only bounded sets can
be quasi-round. Furthermore, we only investigate p = 2 since Euclidean balls seem to be the
best choice for approximating ellipsoids.

Lemma 5.8. Let α ≥ 0, x ∈ Rn. Let λ1, . . . , λn denote the eigenvalues of Q and let λmin =
mini λi and λmax = maxi λi. The ellipsoid E(Q, 0) is (α, 2)-quasi-round w.r.t. 0 if and only
if

1√
λmin

− 1√
λmax

≤ α.

Note that since Q is positive de�nite we have λmax ≥ λmin > 0.

Proof. Since for ellipsoids the incenter and the circumcenter coincide with the center of the
ellipsoid, here 0, we have that B2(0, r) ⊆ E(Q, 0) if and only if r ≤ rin where rin is the inradius.
Equivalently E(Q, 0) ⊆ B2(0, R) if and only if R ≥ Rcirc where Rcirc is the circumradius.
Furthermore, we know that the inradius and circumradius are given by the smallest and biggest
equatorial radius, i.e., rin = 1√

λmax
and Rcirc = 1√

λmin
.

Assume now that E(Q, 0) is (α, 2)-quasi-round w.r.t. 0, i.e there exist r,R ∈ R+
0 such that

B2(0, r) ⊆ E(Q, 0) ⊆ B2(0, R) and R − r ≤ α. This means that r ≤ rin and R ≥ Rcirc and
therefore 1√

λmin
− 1√

λmax
= Rcirc− rin ≤ R− r ≤ α. On the other hand, if Rcirc− rin ≤ α

we get that E(Q, 0) is (α, 2)-quasiround w.r.t 0 since B2(0, rin) ⊆ E(Q, 0) ⊆ B2(0, Rcirc).

An example for an (α, 2)-quasi-round ellipsoid can be seen in Figure 5.4.

0

α

Figure 5.4.: An (α, 2)-quasi-round ellipsoid.

As we already mentioned, quasi-roundness is not invariant under scaling and therefore it is
not enough to check whether E(Q, 0) is quasi-round but we have to check whether

√
z − q(x̄) ·

E(Q, x̄) is (α2(x̄), 2)-quasi-round w.r.t. x̄ for all 0 ≤ z ≤ min{q(x) : x ∈ Round(x̄)}.
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Lemma 5.9. Let x̄ be the unique continuous minimizer to (CQIP ) and choose x̃ ∈
argmin{q(x) : x ∈ Round(x̄)}. Let λ1, . . . , λn denote the eigenvalues of Q and
λmin := mini λi, λmax := maxi λi. If

1√
λmin

− 1√
λmax

≤ α2(x̄)√
q(x̃)− q(x̄)

,

(CQIP ) has the Rounding Property.

Proof. If z = q(x̄) we know that L≤(q(x̄)) = {x̄} which is quasiround w.r.t. x̄ for all α ≥ 0.
For z > q(x̄) the level sets are of the form L≤(z) =

√
z − q(x̄)E(Q, x̄) = E( 1

z−q(x̄)Q, x̄). The

eigenvalues of 1
z−q(x̄)Q are µi = λi

z−q(x̄) for all i = 1, . . . , n. This means that µmin = λmin
z−q(x̄) and

µmax = λmax
z−q(x̄) .

If 1√
λmin
− 1√

λmax
≤ α2(x̄)√

q(x̃)−q(x̄)
we know that

1√
λmin

− 1√
λmax

≤ α2(x̄)√
z − q(x̄)

∀q(x̄) < z ≤ q(x̃)

⇒ 1√
µmin

− 1√
µmax

≤ α2(x̄) ∀q(x̄) < z ≤ q(x̃).

Using Lemma 5.8 this means that L≤(z) = E( 1
z−q(x̄)Q, x̄) is (α2(x̄), 2)-quasi-round w.r.t. x̄

for all q(x̄) ≤ z ≤ q(x̃) = min{q(x) : x ∈ Round(x̄)}. Hence Theorem 2.8 makes sure that
(CQIP ) has the RP.

As before we get the Strong Rounding Property by replacing α by β:

Corollary 5.10. Let x̄ be the unique continuous minimizer to (CQIP ). Let λ1, . . . , λn
denote the eigenvalues of Q and λmin := mini λi, λmax := maxi λi. If

1√
λmin

− 1√
λmax

≤ β2(x̄)√
q(bx̄e)− q(x̄)

,

(CQIP ) has the Strong Rounding Property and an optimal solution is given by b−1
2Q
−1Le.

Proof. Analogously to the proof of Lemma 5.9 we get that L≤(z) is (β2(x̄), 2)-quasi-round
w.r.t. x̄ for all q(x̄) ≤ z ≤ q(bx̄e). Since min{q(x) : x ∈ Round(x̄)} ≤ q(bx̄e) Corollary 2.17
makes sure that (CQIP ) has the SRP.

Applying Theorem 2.24 we get a �nite candidate set for any convex quadratic integer problem
where Q is positive de�nite.

Corollary 5.11. Let λ1, . . . , λn denote the eigenvalues of Q and λmin := mini λi, λmax :=
maxi λi. Let x̄ be the unique continuous minimizer to (CQIP ), choose x̃ ∈ argmin{q(x) : x ∈
Round(x̄)} and let c := min

{
c ∈ Z : αc2(x̄) ≥

√
q(x̃)− q(x̄) ·

(
1√
λmin
− 1√

λmax

)}
. Then there

exists an optimal solution x∗ ∈ X∗ to (CQIP ) such that ‖x∗ − x̄‖∞ < c.
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As mentioned in Section 2.4 this means that {x ∈ Zn : ‖x − x̄‖∞ < c} is a �nite candidate
set for (CQIP ) and |{x ∈ Zn : ‖x− x̄‖∞ < c}| ≤ (2c)n.

Proof. A direct consequence of Lemma 5.8 is that the ellipsoid E(Q, x̄) is (γ, 2)-quasi-round
w.r.t. x̄ for γ := 1√

λmin
− 1√

λmax
.

This means that any level set L≤(z) =
√
z − q(x̄)E(Q, x̄) is (

√
z − q(x̄)γ, 2)-quasi-round

w.r.t. x̄ and hence if
√
q(x̃)− q(x̄)γ ≤ αc2(x̄) we have that L≤(z) is (αc2(x̄), 2)-quasi-round

w.r.t. x̄ for all z ≤ q(x̃). Since min{q(x) : x ∈ Zn, ‖x − x̄‖∞ < c} ≤ q(x̃) for all c ∈ Z this
means that the assumptions of Theorem 2.24 are ful�lled and hence the claim.

For the special case of convex quadratic functions as considered here we adapt the notation
of ε-similar sets as given in De�nition 3.43 to derive the de�nition of α-quasi-axisparallel sets.

De�nition 5.12. Let α ≥ 0. A set M ⊆ Rn is called α-quasi-axisparallel w.r.t. x0 if there
exist t ≥ 0, r,R ∈ R+

0 such that

r · E(Diag (t), x0) ⊆M ⊆ R · E(Diag (t), x0) and R− r ≤ α.

Remark 5.13. • For any α-quasi-axisparallel set M there exists t ≥ 0 such that M is
α-similar to the set E(Diag (t), x0) and hence any α-quasi-axisparallel set is α-quasi-
cross-shaped, compare De�nition 3.43.

• (α, 2)-quasi-round sets are α-quasi-axisparallel with t = (1, ..., 1), compare De�nition 2.1.

• If α = 0 De�nition 5.12 means that M has to be an axisparallel ellipsoid centered at x0.

• If a set M is α-quasi-axisparallel w.r.t. x0 it is also α̃-quasi-axisparallel w.r.t. x0 for all
α̃ ≥ α.

• We use the notation that M is α(t)-quasi-axisparallel w.r.t. x0 in the following. By this
notation we mean that there exists t̂ ≥ 0, r,R ∈ R+

0 s.t. r · E(Diag (t̂), x0) ⊆ M ⊆
R · E(Diag (t̂), x0) and R− r ≤ α(t̂).

• Note here that we allow in this general de�nition t ≥ 0, i.e., E(Diag (t), x0) unbounded.
This is of course only possible for unbounded sets M .

An example for a quasi-axisparallel ellipsoid is given in Figure 5.5.

0

Figure 5.5.: A quasi-axisparallel ellipsoid.
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Corollary 5.14. Let x̄ be the unique continuous minimizer to (CQIP ) and choose x̃ ∈
argmin{q(x) : x ∈ Round(x̄)}. If E(Q, x̄) is α(t,x̄)√

q(x̃)−q(x̄)
-quasi-axisparallel w.r.t. x̄, where

α(t, x̄) := min
y∈Zn\Round(x̄)

‖y − x̄‖t − min
y∈Zn

‖y − x̄‖t,

(CQIP ) has the Rounding Property.

Here we use the notation ‖x‖t :=
√
xtDiag (t)x for t ≥ 0.

Proof. As in the proof of Lemma 5.9 we get that if E(Q, x̄) is α(t,x̄)√
q(x̃)−q(x̄)

-quasi-axisparallel

w.r.t. x̄, L≤,q(z) is α(t, x̄)-quasi-axisparallel w.r.t. x̄ for all levels q(x̄) ≤ z ≤ q(x̃) =
min{q(x) : x ∈ Round(x̄)}. Hence the claim follows with Theorem 3.45 and the observa-
tion that pE(Diag (t),x̄)(x) = ‖x− x̄‖t.

As with quasi-roundness and as mentioned in Section 3.5 the challenge is to determine α(t, x̄).

Lemma 5.15. For given x, t ∈ Rn, t ≥ 0 let aj = |xj − bxje| and choose l ∈ argmin
j=1,...,n

{(2aj +

1)tj}. Then we have

α(t, x) =

√
tl(1 + al)2 +

∑

j 6=l
tja2

j −

√√√√
n∑

j=1

tja2
j .

Proof. (i) Using Lemma 5.6 we get that miny∈Zn ‖y − x‖t = ‖bxe − x‖t for all t ≥ 0.

(ii) De�ne x̃ by

x̃j =





dxle+ 1 if j = l and bxle = dxle
bxlc − 1 if j = l and bxle = bxlc 6= xl

bxje if j 6= l

.

This means, |x̃j − xj | = aj for all j 6= l and |x̃l − xl| = 1 + al.

We show that x̃ ∈ argminy∈Zn\Round(x) ‖y − x‖t:

x̃ ∈ Zn but x̃ /∈ Round(x) as for all y ∈ Round(x) and for all j we have |xj−yj | < 1,
but |x̃l − xl| = 1 + al ≥ 1, as al ≥ 0.

Let y ∈ Zn\Round(x): this means, there exists k ∈ {1, . . . , n} such that |xk−yk| ≥
1 and hence |xk − yk| ≥ 1 + ak as yk ∈ Z. Furthermore, we have |xj − yj | ≥ aj as
yj ∈ Z.

Case 1: if k = l we have

‖x− x̃‖2t − ‖x− y‖2t =
∑

j 6=l
tj︸︷︷︸
≥0

[a2
j − (xj − yj)2

︸ ︷︷ ︸
≥a2

j

] + tl[(xl − x̃l)2 − (xl − yl)2]

≤ tl[(xl − x̃l)2

︸ ︷︷ ︸
=(1+al)2

− (xl − yl)2

︸ ︷︷ ︸
≥(1+al)2

] ≤ 0.
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Case 2: if k 6= l we have |xk − yk| ≥ 1 + ak, |xl − yl| ≥ al and |xk − x̃k| = ak,
|xl − x̃l| = 1 + al. Hence we get

‖x− x̃‖2t − ‖x− y‖2t ≤ tl[(xl − x̃l)2 − (xl − yl)2] + tk[(xk − x̃k)2 − (xk − yk)2]

≤ tl[(1 + al)
2 − a2

l ]− tk[(1 + ak)
2 − a2

k] ≤ 0

as tl(2al + 1) ≤ tk(2ak + 1).

Together we get

α(t, x) = ‖x− x̃‖t − ‖bxe − x‖t =

√
tl(1 + al)2 +

∑

j 6=l
tja2

j −

√√√√
n∑

j=1

tja2
j .

We can adapt the assumptions of Corollary 5.14 to even get the Strong Rounding Property.

Lemma 5.16. Let x̄ be the unique continuous minimizer to (CQIP ). If E(Q, x̄) is
β(t,x̄)√

q(bx̄e)−q(x̄)
-quasi-axisparallel w.r.t. x̄, where

β(t, x̄) := min
y∈Zn\{bx̄e}

‖y − x̄‖t − min
y∈Zn

‖y − x̄‖t,

(CQIP ) has the Strong Rounding Property.

Proof. Since β(t, x̄) ≤ α(t, x̄) we have that (CQIP ) has the RP, compare Corollary 5.14. This
means that x̃ ∈ argmin{q(x) : x ∈ Round(x̄)} is an optimal solution to (CQIP ).
Assume that q(x̃) < q(bx̄e). This means, �rst of all x̃ 6= bx̄e. Furthermore, we know that
L≤,q(q(x̃)) =

√
q(x̃)− q(x̄)E(Q, x̄) is β(t, x̄)-quasi-axisparallel w.r.t. x̄, i.e., there exist t ≥ 0

r,R ∈ R+
0 such that

r · E(Diag (t), x̄) ⊆ L≤,q(q(x̃)) ⊆ R · E(Diag (t), x̄) and R− r ≤ β(t, x̄).

Since miny∈Zn ‖y − x‖t = ‖bxe − x‖t for all t ≥ 0 we get

‖bx̄e − x̄‖t = min
y∈Zn\{bx̄e}

‖y − x̄‖t − β(t, x̄)

≤ ‖x̃− x̄‖t − β(t, x̄) as x̃ 6= bx̄e, x̃ ∈ Zn

≤ R− β(t, x̄) as x̃ ∈ L≤,q(q(x̃)) ⊆ R · E(Diag (t), x̄)

≤ r.

Hence bx̄e ∈ r · E(Diag (t), x̄) ⊆ L≤(q(x̃)) which is a contradiction to q(x̃) < q(bx̄e).

As in Lemma 2.19 we can also determine β(t, x).

Lemma 5.17. For given x, t ∈ Rn, t ≥ 0 let aj := |xj − bxje| and choose l ∈ argmax
j=1,...,n

{(2aj −
1)tj}. Then we have

β(t, x) =

√
tl(1− al)2 +

∑

j 6=l
tja2

j −

√√√√
n∑

j=1

tja2
j .
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Proof. De�ne x̃ ∈ Zn by

x̃j =





bxje if j 6= l

dxle if j = l, bxle = bxlc 6= xl

bxlc if j = l, bxle = dxle 6= xl

xl + 1 if j = l, xl ∈ Z

.

This means, |x̃l − xl| = 1− al and |x̃j − xj | = aj for all j 6= l.
We show that x̃ ∈ argminy∈Zn\{bxe} ‖x − y‖t : Obviously x̃ 6= bxe since x̃l 6= bxle. It remains
to be shown that ‖x̃− x‖t ≤ ‖y − x‖t for all y ∈ Zn \ {bxe}:
Let y ∈ Zn \ {bxe}. Then there is a k ∈ {1, . . . , n} with yk 6= bxke.

(i) If k = l we have

‖x− x̃‖2t − ‖x− y‖2t =
∑

j 6=l
tj︸︷︷︸
≥0

[a2
j − (xj − yj)2

︸ ︷︷ ︸
≥a2

j

] + tl
[
(xl − x̃l)2 − (xl − yl)2

]

≤ tl︸︷︷︸
≥0

[
(xl − x̃l)2 − (xl − yl)2

]
≤ 0 as yl ∈ Z \ {bxle}.

Hence ‖x− x̃‖t ≤ ‖x− y‖t.

(ii) If k 6= l we have |xk − yk| ≥ 1− ak and |xl − yl| ≥ al. Therefore

‖x− x̃‖2t − ‖x− y‖2t ≤ tl︸︷︷︸
≥0

[(xl − x̃l)2 − (xl − yl)2] + tk︸︷︷︸
≥0

[(xk − x̃k)2 − (xk − yk)2]

≤ tl[(1− al)2 − a2
l ]− tk[(1− ak)2 − a2

k] ≤ 0

as tl(1− 2al) ≤ tk(1− 2ak). And accordingly ‖x− x̃‖t ≤ ‖x− y‖t.

This means,

β(t, x) = ‖x̃− x‖t − ‖bxe − x‖t =

√
tl(1− al)2 +

∑

j 6=l
tja2

j −

√√√√
n∑

j=1

tja2
j .

We point out here that for any t ≥ 0 the second closest integer point x̃ to x with respect to
‖ · ‖t, we used to determine β(t, x), is always in Round(x) \ {bxe} if x /∈ Zn.

As mentioned before the class of α(t, x̄)- (or β(t, x̄)- respectively) quasi-axisparallel ellip-
soids contains both the class of axisparallel and the class of (α2(x̄), 2)- (or (β2(x̄), 2)- re-
spectively) quasi-round ellipsoids as subclasses. This means that Lemma 5.9 follows from
Corollary 5.14 and Lemma 5.6 and Corollary 5.10 follow from Lemma 5.16. But still β(t, x̄)-
quasi-axisparallelity is not necessary for the (Strong) Rounding Property. Compare the exam-
ple in Figure 5.6, where the level sets of a convex quadratic function q are shown. It is obvious
that the corresponding (CQIP ) has the Strong Rounding Property since bx̄e ∈ X∗ but the
level sets are not β(t, x̄)-quasi-axisparallel since x̄ = (0.5, 0.5) and therefore β(t, x̄) = 0 for all
t ≥ 0.
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x̄

bx̄e

Figure 5.6.: An example for a level set that is not β(t, x̄)-quasi-axisparallel but still guarantees
the Strong Rounding Property.
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5. Lower bounds and algorithms for convex quadratic integer programs

5.3. Lower bounds for (CQIP)

If we consider an arbitrary convex quadratic integer problem it is rather unlikely that the
problem has the Rounding Property. Furthermore, if the dimension gets too large the Round-
ing Property is not too helpful. This raises the question: is there any chance to use some of our
ideas also in the case that the given (CQIP ) does not have the Strong Rounding Property?

We follow the approach in Buchheim et al. [2012a] and solve such problems by a branch-
and-bound algorithm. In this section we investigate di�erent ways of getting tight, easy to
calculate lower bounds on minx∈Zn q(x) by using the following idea

q′ is a global underestimator of q ⇔ L≤,q′(z) ⊇ L≤,q(z) ∀z ∈ R.

Since we know that the level sets of q are ellipsoids this motivates the following class of
underestimators:

Let x̄ be the continuous minimizer of q and let Q′ be a positive semide�nite matrix such that
E(Q, 0) ⊆ E(Q′, 0). Then we consider the underestimator

q′(x) := q(x̄) + (x− x̄)tQ′(x− x̄).

Remark 5.18. (i) These are really underestimators since the level sets of q′ are of the form
L≤,q′(z) =

√
z − q(x̄)E(Q′, x̄) for all z ≥ q(x̄) and therefore for z 6= q(x̄): L≤,q′(z) ⊇

L≤,q(z) ⇔ E(Q, 0) ⊆ E(Q′, 0).

(ii) We allow here positive semide�nite Q′, in contrast to (CQIP ) where we assumed that Q
is positive de�nite.

(iii) Remember also that E(Q, 0) ⊆ E(Q′, 0) is equivalent to Q − Q′ � 0, compare again
Remark 5.3.

Since q′ is a global underestimator of q we know that min{q′(x) : x ∈ Zn} ≤ min{q(x) : x ∈
Zn}. We denote by x∗q an optimal solution to min{q(x) : x ∈ Zn} and by x∗q′ an optimal
solution to min{q′(x) : x ∈ Zn}.
Geometrically speaking, the idea (�rst proposed by Buchheim et al. [2012a]) is the following:
we surround E(Q, x̄) by another ellipsoid E(Q′, x̄). Then we know that if we scale these two
ellipsoids simultaneously such that r · E(Q′, x̄) contains no integer point in its interior and
at least one on its boundary, also r · E(Q, x̄) contains no integer in its interior. Of course

we know how to scale E(Q′, x̄):
√
q′(x∗q′)− q(x̄)E(Q′, x̄) contains x∗q′ on its boundary and no

integer point in its interior. This means, we get the lower bound lb := q′(x∗q′) ≤ minx∈Zn q(x).

See Figure 5.7 for an illustration: the dark gray ellipsoid is
√
q′(x∗q′)− q(x̄)E(Q, x̄) whereas the

light gray ellipsoid is
√
q′(x∗q′)− q(x̄)E(Q′, x̄) and the dotted ellipsoid is

√
q(x∗q)− q(x̄)E(Q, x̄)

for comparison, i.e., the level set of q corresponding to the optimal objective value of (CQIP ).

This approach is of course only helpful if it is signi�cantly easier to calculate min{q′(x) : x ∈
Zn} than min{q(x) : x ∈ Zn}. To guarantee this we use only such underestimators q′ that
have the Strong Rounding Property. Among these �easy to calculate� lower bounds we are
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x̄

x∗
q′

x∗
q

x̄

x∗
q′ = x∗

q

x∗
q′

Figure 5.7.: Illustration of the lower bound calculation: in the left picture we get lb <
minx∈Z2 q(x) whereas in the right picture we get lb = minx∈Z2 q(x).

looking for the tightest lower bound. Hence we would like to solve the following optimization
problem

max (bx̄e − x̄)tQ′(bx̄e − x̄) (5.2)

s.t. Q−Q′ � 0

Q′ � 0

q′(x) = q(x̄) + (x− x̄)tQ′(x− x̄) has the SRP :

the constraint Q−Q′ � 0 makes sure that q′ is indeed an underestimator of q, as mentioned
before. The requirement that (q′,Rn) has the Strong Rounding Property makes sure that the
lower bound is easy to calculate and we would like to maximize the lower bound which is
given by min{q′(x) : x ∈ Zn} = q′(bx̄e) = q(x̄) + (bx̄e − x̄)tQ′(bx̄e − x̄) if q′ has the Strong
Rounding Property.

A �rst result about problem (5.2) is stated in the next lemma.

Lemma 5.19. Let Q′ be feasible for (5.2). If {x : xtQx = 1} ∩ {x : xtQ′x = 1} = ∅, Q′ is
not an optimal solution to (5.2).

Proof. Since {x : xtQx = 1, xtQ′x = 1} = ∅ and Q −Q′ � 0 we have xtQx > xtQ′x for all
x ∈ Rn: if x̂tQx̂ = x̂tQ′x̂ for some x̂ ∈ Rn, 1√

x̂tQx̂
x̂ ∈ {x : xtQx = 1, xtQ′x = 1}.

If (bx̄e − x̄)tQ′(bx̄e − x̄) 6= 0 choose λ := minx∈Rn
xtQx
xtQ′x and de�ne Q′′ := λQ′. Then we have

Q−Q′′ � 0 since xt(Q−λQ′)x ≥ 0 by de�nition of λ, Q′′ � 0 since λ ≥ 0 and q′′ has the SRP
since x̄q′′ = x̄q′ and x

∗
q′′ = x∗q′ and we assumed q′ to have the SRP. HenceQ′′ is feasible for (5.2).

Furthermore, we have (bx̄e− x̄)tQ′′(bx̄e− x̄) = λ(bx̄e− x̄)tQ′(bx̄e− x̄) > (bx̄e− x̄)tQ′(bx̄e− x̄)
since (bx̄e − x̄)tQ′(bx̄e − x̄) 6= 0 and λ > 1.

If (bx̄e − x̄)tQ′(bx̄e − x̄) = 0 choose Q′′ = λminIn where λi are the eigenvalues of Q and
λmin := mini=1,...,n λi. Then we have Q − Q′′ � 0, Q′′ � 0 and q′′(x) is separable convex.
Hence Q′′ is feasible for (5.2) and we have (bx̄e− x̄)tQ′′(bx̄e− x̄) = λmin

∑n
i=1(bx̄ie− x̄i)2 > 0

since we always assume x̄ /∈ Zn.

Geometrically this means that we choose Q′ such that it �touches� Q.
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We are not able to solve problem (5.2) directly as we cannot handle the constraint �q′(x) has
the SRP�. Therefore we consider special cases of problem (5.2) where we replace this constraint
by a stronger one that is su�cient but not necessary for the Strong Rounding Property, like
for example Q′ = Diag (t) for some t ≥ 0. Hence we do not �nd the tightest lower bound in
general, but as any matrix Q′ � 0 such that Q − Q′ � 0 provides us with a lower bound we
will always �nd a lower bound. This means also that even a heuristic solution to (5.2) (or a
problem with a stronger constraint), gives us a lower bound. We use this fact later on.

First we �nd the best axisparallel ellipsoid E(Q′, x̄) that provides us with an underestimator
q′ of q.

Lemma 5.20. The tightest lower bound we can obtain by underestimating q by q′(x) :=
q(x̄) + (x− x̄)tQ′(x− x̄) with axisparallel level sets

√
z − q(x̄)E(Q′, x̄) is given by the optimal

objective value of the problem

max

n∑

i=1

ti(bx̄ie − x̄i)2 (5.3)

s.t. Q−Diag (t) � 0

t ≥ 0.

An optimal solution t∗ de�nes the underestimator q′(x) = q(x̄) +
∑n

i=1 t
∗
i (xi − x̄i)2 and gives

the bound q(x̄) +
∑n

i=1 t
∗
i (bx̄ie − x̄i)2.

Proof. To derive this program we recall that E(Q′, 0) is axisparallel if and only if Q′ = Diag (t)
for some t ≥ 0, compare Lemma 5.4. Then we use Q′ = Diag (t) to simplify the objective
function.

This problem has already been stated in Buchheim et al. [2012a] and can be solved e�ciently
as it is a semide�nite program.

If we use not axisparallelity but quasi-roundness to ensure the Strong Rounding Property of
q′, we observe �rst of all that this means that Q′ has to be positive de�nite since only bounded
sets can be quasi-round. Recall that E(Q′, x̄) has to be ( β2(x̄)√

q′(bx̄e)−q(x̄)
, 2)-quasi-round to ensure

the Strong Rounding Property.

Lemma 5.21. The tightest lower bound we can obtain by underestimating q by q′(x) :=
q(x̄) + (x− x̄)tQ′(x− x̄) with (β2(x̄), 2)-quasi-round level sets

√
z − q(x̄)E(Q′, x̄) for all levels

q(x̄) ≤ z ≤ q′(bx̄e) is given by the optimal objective value of the problem

max (bx̄e − x̄)tQ′(bx̄e − x̄) (5.4)

s.t. Q−Q′ � 0

R2Q′ − In � 0

In − r2Q′ � 0

R− r ≤ β2(x̄)√
q′(bx̄e)− q(x̄)

r,R ≥ 0.

An optimal solution Q′∗ de�nes the underestimator q
′(x) = q(x̄) + (x− x̄)tQ′∗(x− x̄) and gives

the bound q(x̄) + (bx̄e − x̄)tQ′∗(bx̄e − x̄).
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Proof. As mentioned before
√
z − q(x̄)E(Q′, x̄) is (β2(x̄), 2)-quasi-round w.r.t. x̄ for all q(x̄) ≤

z ≤ q′(bx̄e), if E(Q′, x̄) is ( β2(x̄)√
q′(bx̄e)−q(x̄)

, 2)-quasi-round w.r.t. x̄. This is if B2(x̄, r) ⊆

E(Q′, x̄) ⊆ B2(x̄, R) and R − r ≤ β2(x̄)√
q′(bx̄e)−q(x̄)

or equivalently In − r2Q′ � 0, R2Q′ − In � 0

and R− r ≤ β2(x̄)√
q′(bx̄e)−q(x̄)

.

The variables in (5.4) are Q′, r and R, meaning that the second, third and fourth constraint
are non-linear. This means that problem (5.4) is not an SDP and so far it is not known how
to solve this problem. Therefore we use the following heuristic: we �x the eigenvectors of Q′

to be the same as the eigenvectors of Q and adapt the eigenvalues to make sure that Q′ is
quasi-round. By only reducing the eigenvalues we make sure that Q−Q′ � 0. An important
property of this heuristic is that if Q is already quasi-round, the heuristic gives Q′ = Q, which
yields of course the tightest lower bound.

Lemma 5.22. Assume that (CQIP ) does not have the Strong Rounding Property. Let
Q = V tDiag (λ)V be the eigendecompositon of Q and let λmin := mini λi. De�ne Q′ :=
V tDiag (λ′)V where

λ′i = min




λi,

λmin

(1− β2(x̄)√
q(bx̄e)−q(x̄)

√
λmin)2





∀i = 1, . . . , n.

Then we have that Q′ is an optimal solution to the following problem

max (bx̄e − x̄)tQ′(bx̄e − x̄) (5.5)

s.t. Q−Q′ � 0

Q′ has the same eigenvectors as Q

R2Q′ − In � 0

In − r2Q′ � 0

R− r ≤ β2(x̄)√
q(bx̄e)− q(x̄)

r,R ≥ 0.

Proof. As (q,Rn) does not have the SRP we know that
√
q(bx̄e)− q(x̄)E(Q, x̄) is not

(β2(x̄), 2)-quasi-round, i.e., 1√
λmin

> β2(x̄)√
q(bx̄e)−q(x̄)

. This means that λ′i is well-de�ned

for all i = 1, . . . , n.

• We show �rst that Q′ is feasible for (5.5): The eigenvalues of Q′ are λ′i ≥ 0, the
eigenvalues of Q − Q′ are λi − λ′i ≥ 0, since Q and Q′ are simultaneously diagonal-
izable and therefore Q − Q′ � 0. By construction we also have that Q′ and Q have
the same eigenvectors. Since we know that 0 < λ′i ≤ λmin

(1− β2(x̄)√
q(bx̄e)−q(x̄)

√
λmin)2

, we get

λ′max ≤ λmin

(1− β2(x̄)√
q(bx̄e)−q(x̄)

√
λmin)2

. Furthermore, we have (1− β2(x̄)√
q(bx̄e)− q(x̄)

√
λmin

︸ ︷︷ ︸
≥0

)2 ≤ 1,
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i.e., λmin ≤ λmin

(1− β2(x̄)√
q(bx̄e)−q(x̄)

√
λmin)2

and hence λ′min = λmin. This means,

1√
λ′min

− 1√
λ′max

≤ 1√
λmin

−
1− β2(x̄)√

q(bx̄e)−q(x̄)

√
λmin

√
λmin

=
β2(x̄)√

q(bx̄e)− q(x̄)
.

Choose R := 1√
λ′min

, r := 1√
λ′max

. Then we have R, r ≥ 0, R − r ≤ β2(x̄)√
q(bx̄e)−q(x̄)

and

R2Q′−In � 0 since Q′−λminIn � 0 and analogously In−r2Q′ � 0 since λmaxIn−Q′ � 0.

• Let Q′′ feasible for (5.5), i.e., Q′′ = V tDiag (λ′′)V for some λ′′ > 0. Since Q′′ � 0,
Q−Q′′ � 0, this means, 0 ≤ λ′′i ≤ λi for all i = 1, . . . , n. We show Q′ −Q′′ � 0, which
implies (bx̄e − x̄)tQ′(bx̄e − x̄) ≥ (bx̄e − x̄)tQ′′(bx̄e − x̄):

assume that there is a j ∈ {1, . . . , n} such that λ′j < λ′′j ≤ λj , i.e.,

λ′j =
λmin

(1− β2(x̄)√
q(bx̄e)−q(x̄)

√
λmin)2

< λ′′j .

Since λ′′i ≤ λi for all i = 1, . . . , n we know that λ′′min := mini λ
′′
i ful�lls λ

′′
min ≤ λmin. But

this means,

1√
λ′′min

− 1√
λ′′max

≥ 1√
λmin

− 1√
λ′′j

>
1√
λmin

−
1− β2(x̄)√

q(bx̄e)−q(x̄)√
λmin

=
β2(x̄)√

q(bx̄e)− q(x̄)
.

Which means that E(Q′′, x̄) is not

(
β2(x̄)√

q(bx̄e)−q(x̄)
, 2

)
-quasi-round and hence there cannot

be r,R ≥ 0 such that (Q′′, r, R) is a feasible solution to (5.5).

As Q′ is feasible for (5.5) it is also feasible for (5.4). Note however that (5.5) has two stricter
constraints than (5.4) and therefore there might be better solutions to (5.4) than Q′: on the
one hand we restrict Q′ to have the same eigenvectors as Q. This means that there might be a
solution to (5.4) with di�erent eigenvectors that gives a better bound,compare Example 5.23.
But we only see a chance to solve (5.4) e�ciently if we �x the eigenvectors beforehand and
�xing them to anything else than the eigenvectors of Q would mean that the heuristic would
not be able to set Q′ = Q if Q itself is quasi-round. On the other hand, we restrict Q′ to be(

β2(x̄)√
q(bx̄e)−q(x̄)

, 2

)
-quasi-round which is stricter than the

(
β2(x̄)√

q′(bx̄e)−q(x̄)
, 2

)
-quasi-roundness

demanded in (5.4) as q′(bx̄e) ≤ q(bx̄e). This means that there might be a matrix Q′′ with
the same eigenvectors as Q, that is feasible to (5.4) but not to (5.5) and that gives a better
bound than Q′, compare Example 5.24. Even though we might waste some potential here we
are using this heuristic since it is easy to compute, which would not be the case if we required

E(Q′, x̄) to be

(
β2(x̄)√

q′(bx̄e)−q(x̄)
, 2

)
-quasi-round since we do not know q′(bx̄e) in advance, and

the computational results show clearly that this fast computation more than compensates for
the weaker bounds.
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Example 5.23. It is possible that a

(
β2(x̄)√

q′′(bx̄e)−q(x̄)
, 2

)
-quasi-round ellipsoid Q′′ that does not

have the same eigenvectors as Q gives a better bound than the one obtained by Lemma 5.22:

Consider Figure 5.8: we see the level sets
√
q′(bx̄e)− q(x̄)E(Q′, x̄) (dashed) and√

q′′(bx̄e)− q(x̄)E(Q′′, x̄) (solid and light gray), where Q′ is as given by Lemma 5.22 and Q′′

has slightly di�erent eigenvectors compared to Q and Q′. Both ellipsoids are
(

β2(x̄)√
q′(bx̄e)−q(x̄)

, 2

)
-

(or

(
β2(x̄)√

q′′(bx̄e)−q(x̄)
, 2

)
- respectively) quasi-round w.r.t. x̄. We see in the closeup that Q′′ gives

a better bound than Q′.

bx̄e

x̄

bx̄e

Figure 5.8.: There might be a better approximation (light gray) having the Strong Round-
ing Property with di�erent eigenvectors as Q than E(Q′, x̄) as determined by
Lemma 5.22 (dashed).

Example 5.24. We show in this example that the stricter restriction to be

(
β2(x̄)√

q(bx̄e)−q(x̄)
, 2

)
-

quasi-round in (5.5) might lead to underestimators Q′ with level sets
√
q′(bx̄e)− q(x̄)E(Q′, x̄)

that are too round:

Consider Figure 5.9: in the left picture the light gray ellipsoid is
√
q′(bx̄e)− q(x̄)E(Q′, x̄)

as determined by Lemma 5.22 and the dark gray ellipsoid is
√
q′(bx̄e)− q(x̄)E(Q, x̄). In

the right picture the dark gray ellipsoid is
√
q′′(bx̄e)− q(x̄)E(Q, x̄) and the light gray one is√

q′′(bx̄e)− q(x̄)E(Q′′, x̄), where Q′′ has the same eigenvectors as Q and E(Q′′, x̄) is(
β2(x̄)√

q′′(bx̄e)−q(x̄)
, 2

)
-quasi-round.

If we switch to quasi-axisparallel ellipsoids we observe �rst that Q′ does not have to be
positive de�nite, but, as in the case of axisparallel ellipsoids, positive semide�nite is enough.
Furthermore, we have seen that E(Q′, x̄) has to be β(t,x̄)√

q′(bx̄e)−q(x̄)
-quasi-axisparallel w.r.t. x̄ to

guarantee the Strong Rounding Property.

Lemma 5.25. The tightest lower bound we can obtain by underestimating q by q′(x) :=
q(x̄) + (x − x̄)tQ′(x − x̄) with β(t, x̄)-quasi-axisparallel level sets

√
z − q(x̄)E(Q′, x̄) for all
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x̄

bx̄e
x∗

x̄

bx̄e
x∗

Figure 5.9.: There might be better approximations (right picture) having the Strong Round-
ing Property and keeping the eigenvectors of Q than E(Q′, x̄) as determined by
Lemma 5.22 (left picture).

levels q(x̄) ≤ z ≤ q′(bx̄e) is given by the optimal objective value of the problem

max (bx̄e − x̄)tQ′(bx̄e − x̄) (5.6)

s.t. Q−Q′ � 0

R2Q′ −Diag (t) � 0

Diag (t)− r2Q′ � 0

R− r ≤ β(t, x̄)√
q′(bx̄e)− q(x̄)

r,R, t ≥ 0.

An optimal solution Q′∗ de�nes the underestimator q
′(x) = q(x̄) + (x− x̄)tQ′∗(x− x̄) and gives

the bound q(x̄) + (bx̄e − x̄)tQ′∗(bx̄e − x̄).

Proof. As mentioned before
√
z − q(x̄)E(Q′, x̄) is β(t, x̄)-quasi-axisparallel w.r.t. x̄ for all

q(x̄) ≤ z ≤ q′(bx̄e), if E(Q′, x̄) is β(t,x̄)√
q′(bx̄e)−q(x̄)

-quasi-axisparallel w.r.t. x̄. This is if there

exist t ≥ 0, r,R ∈ R+
0 such that r · E(Diag (t), x̄) ⊆ E(Q′, x̄) ⊆ R · E(Diag (t), x̄) and

R − r ≤ β(t,x̄)√
q′(bx̄e)−q(x̄)

. This is equivalent to Diag (t) − r2Q′ � 0, R2Q′ − Diag (t) � 0 and

R− r ≤ β(t,x̄)√
q′(bx̄e)−q(x̄)

.

The only di�erence to problem (5.4) is that we have the additional variable t, which makes
the problem even harder since β(t, x̄) is not a constant as β2(x̄) but depends nonlinearly on t.
On the other hand since we know that axisparallel as well as quasi-round ellipsoids are quasi-
axisparallel, an optimal solution to problem (5.6) would give a bound that is not worse than
the bounds given by (5.3) and (5.4). So we hope that even a heuristic solution to problem (5.6)
might lead to good bounds.

As already mentioned the problem is that we now have the additional variable t which keeps
us from using the same heuristic as in the quasi-round case. The idea is therefore to �x a
reasonable t̂ �rst and then continue as in the quasi-round case. By using the transformation
X 7→ Diag (t̂)−

1
2XDiag (t̂)−

1
2 and the approximation R − r ≤ β(t,x̄)√

q(bx̄e)−q(x̄)
as before we get

the problem
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max (bx̄e − x̄)tDiag (t̂)−
1
2Q′′Diag (t̂)−

1
2 (bx̄e − x̄) (5.7)

s.t. Diag (t̂)−
1
2QDiag (t̂)−

1
2 −Q′′ � 0

R2Q′′ − In � 0

In − r2Q′′ � 0

R− r ≤ β(t̂, x̄)√
q(bx̄e)− q(x̄)

r,R, t ≥ 0

which has exactly the form of (5.4) and which we solve therefore by Lemma 5.22:

The approximation Q′′ has the same eigenvectors as Q̃ := Diag (t̂)−
1
2QDiag (t̂)−

1
2

and its eigenvalues are given by

λ̃′i = min




λ̃i,

λ̃min

(1− β(t̂,x̄)√
q(bx̄e)−q(x̄)

√
λ̃min)2





∀i = 1, . . . , n

with λ̃i, . . . , λ̃n the eigenvalues of Q̃ and λ̃min := mini=1,...,n λ̃i.

Then we get a heuristic solution Q′(t̂) to (5.6) by the reverse transformation

Q′(t̂) = Diag (t̂)
1
2Q′′Diag (t̂)

1
2 .

Note that if t̂i = 0 for some i ∈ {1, . . . , n} β(t̂, x̄) = 0 and therefore we are done since
this means that we use Q′ = Diag (t̂) to approximate q. Hence the transformation X 7→
Diag (t̂)−

1
2XDiag (t̂)−

1
2 is well-de�ned since we only use it for t̂ > 0.

If we consider again the case that Q itself is already

(
β(t,x̄)√
q(bx̄e−q(x̄)

, 2

)
-quasi-axisparallel, we

need not get Q by performing this heuristic: even though we keep the eigenvectors it might
happen, that we choose the �wrong� t̂, with respect to whom Q is not quasi-axisparallel and
hence we have to adapt the eigenvalues.

If we choose an optimal solution to (5.3) for t̂, it is obvious that the bound given by (5.7)
is always at least as good as the one given by (5.3). If we choose any other t we cannot
say in general how the heuristic quasi-axisparallel bound performs in comparison to the other
bounds. Also we cannot say how the heuristic quasi-axisparallel bound behaves compared to
the heuristic quasi-round bound.

In section 5.5 we compare the bounds we get by the di�erent shapes theoretically, in an
example and by some computational experiments.
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5.4. Lower bounds to use in a branch-and-bound approach

In this section we adapt the lower bounds obtained in the last section to the special branch-
and-bound setting.

The branch-and-bound scheme we use is the one introduced by Buchheim et al. [2012a] and
works as follows: the variables are �xed in a prede�ned order x1, x2, . . . , xn. This has the
following advantage: if x1, . . . , xd are �xed to r1, . . . , rd we are left with the problem

(CQIP )dr min qdr (x) := xtQdx+ (Ld(r))tx+ cd(r)

s.t. x ∈ Zn−d

where

cd(r) :=
d∑

i=1

Liri +
d∑

i=1

d∑

j=1

qijrirj

Ldj−d(r) := Lj + 2
d∑

i=1

qijri ∀j = d+ 1, . . . , n

and Qd is obtained from Q by deleting the �rst d rows and columns. This means in particular
that Qd does not depend on the values r1, . . . , rd. Using qdr we have q(r1, . . . , rd, x) = qdr (x)
for all x ∈ Rn−d.
This means that in each depth d of the branch-and-bound tree we have to solve a (lower
dimensional) problem of the original type (CQIP ): note that Qd is still positive de�nite.

Since Qd is the same for all nodes in depth d of the branch-and-bound tree it is preferable for
computational reasons to use only one �xed matrixQ′d, for each depth d to derive a lower bound
(compare Buchheim et al. [2012a]). But the center x̄ is di�erent in the di�erent nodes of depth
d. This means �rst of all, that we have to make sure that E(Q′, x̄) is axisparallel, quasi-round
or quasi-axisparallel w.r.t. each x̄ in this depth, where we can assume, due to the usually large
number of nodes in each depth, that each x̄ ∈ Rn is possible. This is no additional constraint
in the axisparallel case, but we have seen that minx∈Rn β2(x̄) = 0 and minx∈Rn β(t, x̄) = 0 for
all t ≥ 0. This means that the only ellipsoid that is (β2(x̄), 2)-quasi-round w.r.t. x̄ for each
x̄ ∈ Rn is the sphere and the only ellipsoids that are β(t, x̄)-quasi-axisparallel w.r.t. x̄ for all
x̄ ∈ Rn are axisparallel ellipsoids. Hence it only makes sense to consider axisparallel ellipsoids
E(Q′, x̄) in this section.

Even though axisparallelity does not depend on the center point x̄, t∗ that gives the optimal
solution in problem (5.3) depends on the center x̄ and not only on the matrix Q, compare also
the examples in Section 5.5.

This means, we need to �nd a t ≥ 0 that gives us a good lower bound for all x̄ in a certain
depth d in the branch-and-bound tree, depending only on Qd. By good we mean that we want
to close as much as possible of the relative gap left by the trivial lower bound q(x̄). Recall
that the bound we get by using Q′ is q′(bx̄e), since we allow only underestimators having the
Strong Rounding Property. This means, we want to maximize

q′(bx̄e)− q(x̄)

q(x∗)− q(x̄)
.
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5.4. Lower bounds to use in a branch-and-bound approach

Since we do not know x∗ we use q(bx̄e) as an upper bound and hence maximize

∆(Q′, x̄) :=
q′(bx̄e)− q(x̄)

q(bx̄e)− q(x̄)

(where we assume as always that x̄ /∈ Zn).
We show the following properties of ∆(Q′, x̄):

Lemma 5.26. Let Q − Q′i � 0, q′i := q(x̄) + (q − x̄)tQ′i(x − x̄) have the Strong Rounding
Property for i = 1, 2 and let x̄ ∈ Rn \ Zn. Then the following holds:

(i) ∆(Q′1, x̄) =
‖bx̄e−x̄‖2

Q′1
‖bx̄e−x̄‖2Q

(ii) If Q′1−Q′2 � 0, we get ∆(Q′1, x̄) ≥ ∆(Q′2, x̄). If Q′1−Q′2 � 0, we get ∆(Q′1, x̄) > ∆(Q′2, x̄).

(iii) ∆(Q′1, x̄) = ∆(Q′1, x̄+ z) for all z ∈ Zn.

Proof. (i) ∆(Q′1, x̄) = q′(bx̄e)−q(x̄)
q(bx̄e)−q(x̄) =

(bx̄e−x̄)tQ′1(bx̄e−x̄)
(bx̄e−x̄)tQ(bx̄e−x̄) =

‖bx̄e−x̄‖2
Q′1

‖bx̄e−x̄‖2Q

(ii) Q′1 − Q′2 � 0 means (bx̄e − x̄)tQ′1(bx̄e − x̄) ≥ (bx̄e − x̄)tQ′2(bx̄e − x̄) and Q′1 − Q′2 � 0
means (bx̄e − x̄)tQ′1(bx̄e − x̄) > (bx̄e − x̄)tQ′2(bx̄e − x̄).

(iii) Since bx̄ + ze = bx̄e + z for all z ∈ Zn, we have ∆(Q′1, x̄ + z)
(i)
=
‖bx̄e+z−(x̄+z)‖2

Q′1
‖bx̄e+z−(x̄+z)‖2Q

=

‖bx̄e−x̄‖2
Q′1

‖bx̄e−x̄‖2Q
= ∆(Q′1, x̄).

As we want to maximize ∆(Q′, x̄) for all x̄ ∈ Rn \ Zn we have basically two possibilities: we
could either maximize the worst-case ∆ or the average-case ∆. We start with the worst-case
analysis.

5.4.1. Worst-case analysis

Finding a Q′ that is best in the worst case means solving the following problem

max inf
x̄∈Rn\Zn

∆(Diag (t), x̄) (5.8)

s.t. Q−Diag (t) � 0

t ≥ 0 :

recall that we only allow axisparallel Q′.

Lemma 5.27. Problem (5.8) is equivalent to

max γ (5.9)

s.t. Q−Diag (t) � 0

Diag (t)− γQ � 0.
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5. Lower bounds and algorithms for convex quadratic integer programs

Proof. As Q � 0, there exists Q1/2 positive de�nite, s.t. Q = Q1/2Q1/2.
Then Q−1/2Diag (t)Q−1/2 is positive semide�nite for all t ≥ 0. Denote by Ũ tD̃Ũ the eigen-
decompositon of Q−1/2Diag (t)Q−1/2 and by λmin(Q−1/2Diag (t)Q−1/2) = mini d̃i ≥ 0 the
smallest eigenvalue of Q−1/2Diag (t)Q−1/2. We have

inf
x̄∈Rn\Zn

∆(Diag (t), x̄)
5.26(i)

= inf
x̄∈Rn\Zn

(bx̄e − x̄)tDiag (t)(bx̄e − x̄)

(bx̄e − x̄)tQ(bx̄e − x̄)

y=bx̄e−x̄
= inf

y∈Rn\{0}
ytDiag (t)y

ytQy

z=Q1/2y
= inf

z∈Rn\{0}
ztQ−1/2Diag (t)Q−1/2z

ztz

= inf
z∈Rn\{0}

ztŨ tD̃Ũz

ztz

w=Ũz
= inf

w∈Rn\{0}
w>D̃w
wtŨ Ũ tw

= inf
w∈Rn\{0}

∑n
i=1w

2
i d̃i∑n

i=1w
2
i

= λmin(Q−1/2Diag (t)Q−1/2).

As λmin(Q−1/2Diag (t)Q−1/2) ≥ γ ⇔ Q−1/2Diag (t)Q−1/2− γIn � 0 ⇔ Diag (t)− γQ � 0 this
means that Problem (5.8) is equivalent to Problem (5.9). (The constraint t ≥ 0 can be omitted
as (γ, t) = (0, 0) is a feasible solution, an optimal solution (γ∗, t∗) hence satis�es γ∗ ≥ 0 and
hence Diag (t∗) � γ∗Q � 0 implies t∗ ≥ 0.)

Lemma 5.27 shows that the worst-case best axisparallel ellipsoid can be found e�ciently by
solving a SDP.

5.4.2. Average-case analysis

Since we have typically a lot of di�erent nodes in depth d of the branch-and-bound tree, an
average-case best axisparallel ellipsoid might be a better choice than a worst-case best one.
As we have seen in Lemma 5.26 (iii) ∆(Q′, x̄) is periodic in x̄. Therefore we do not consider
x̄ ∈ Rn \ Zn but x̄ ∈ [0, 1]n \ {0, 1}n. For large branch-and-bound trees it is reasonable to
assume that x̄ is uniformly distributed in [0, 1]n. This means that we �nd an average-case
best underestimator q′ to q with axisparallel level sets by solving

max

∫

[0,1]n\{0,1}n
∆(Diag (t), x̄)dx̄ (5.10)

s.t. Q−Diag (t) � 0

t ≥ 0.

Lemma 5.28. Problem (5.10) is equivalent to

max βtt (5.11)

s.t. Q−Diag (t) � 0

t ≥ 0
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5.4. Lower bounds to use in a branch-and-bound approach

for βi :=
∫
[− 1

2
, 1
2 ]
n\{0}

y2
i

ytQydy.

Proof. We have seen in Lemma 5.26 (i) that ∆(Diag (t), x̄) =
‖bx̄e−x̄‖2t
‖bx̄e−x̄‖2Q

. Substituting y :=

bx̄e − x̄ we get y ∈ [−1
2 ,

1
2 ]n \ {0} and

∆(Diag (t), x̄) =
‖y‖2t
‖y‖2Q

=

∑n
i=1 tiy

2
i

ytQy
=

n∑

i=1

ti
y2
i

ytQy
.

This means,

∫

[0,1]n\{0,1}n
∆(Diag (t), x̄)dx̄ =

∫

[− 1
2
, 1
2

]n\{0}

n∑

i=1

ti
y2
i

ytQy
dy =

n∑

i=1

ti

∫

[− 1
2
, 1
2

]n\{0}

y2
i

ytQy
dy

︸ ︷︷ ︸
=:βi

.

Since the coe�cients βi are independent of t we can calculate them in a preprocessing phase.
The resulting problem (5.11) is a SDP and can hence be solved e�ciently.

Remark 5.29. Rather than taking the relative gap one could also think of taking the absolute
gap q′(bx̄e)− q(x̄) as a measure of how good Q′ is. This leads to the following considerations:

Worst-case:

max inf
x∈Rn\Zn

n∑

i=1

(bx̄ie − x̄i)2ti

s.t. Q−Diag (t) � 0

t ≥ 0

Since Q−Diag (t) � 0 implies qii− ti ≥ 0 for all i = 1, . . . , n, the ti are bound and since
furthermore ti ≥ 0 this means,

inf
x∈Rn\Zn

n∑

i=1

(bx̄ie − x̄i)2ti = 0 ∀t ≥ 0 as inf
x∈Rn\Zn

n∑

i=1

(bx̄ie − x̄i)2 = 0.

Hence all axisparallel ellipsoid give the same lower bound in the worst-case and hence
this criterion is not helpful in comparing di�erent choices of Q′.

Average-case:

max

∫

[− 1
2
, 1
2

]n\{0}

n∑

i=1

y2
i tidy ⇔ max 1

12

n∑

i=1

ti

s.t. Q−Diag (t) � 0 s.t. Q−Diag (t) � 0
t ≥ 0 t ≥ 0

This means, we get almost the same SDP as in (5.11) except for that here all βi are
equal.
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5.5. Comparison of the bounds

In the last sections we proposed di�erent ways of obtaining underestimators q′ that have the
Strong Rounding Property.

The aim of this section is to compare them on the one hand regarding the resulting lower
bound, but on the other hand also regarding their computational e�ectivity, i.e., regarding
the time we need to solve (CQIP ) by a branch-and-bound algorithm using these bounds. This
means, we also take the time we need to calculate the bound into consideration.

We start by comparing the resulting lower bounds, where we consider the following ways to
compute them:

• best axisparallel: lbap as de�ned by Lemma 5.20

• worst-case best axisparallel: lbwc as de�ned by Lemma 5.27

• average-case best axisparallel: lbac as de�ned by Lemma 5.28

• best quasi-round: lbqr as de�ned by Lemma 5.21 (we only compare this bound theoret-
ically since we are not able to compute it)

• heuristic quasi-round: lbhqr as de�ned by Lemma 5.22

• best quasi-axisparallel: lbqap as de�ned by Lemma 5.25 (we only compare this bound
theoretically since we are not able to compute it)

• heuristic quasi-axisparallel: lbhqap(t̂) as de�ned by problem (5.7) with Lemma 5.22 where
we use the following t̂'s as input to (5.7):

� t̂ = tap where tap is an optimal solution to (5.3), i.e., we use the best axisparallel
underestimator: lbhqap(t

ap)

� t̂ = twc where twc is an optimal solution to (5.9), i.e., we use the worst-case best
axisparallel underestimator: lbhqap(t

wc)

� t̂ = tac where tac is an optimal solution to (5.11), i.e., we use the average-case best
axisparallel underestimator: lbhqap(t

ac)

We already mentioned that the best quasi-axisparallel bound is always at least as good as
any axisparallel or quasi-round bound. Of course we know that the best quasi-axisparallel or
quasi-round bound is never inferior to the corresponding heuristic bound. Furthermore, the
best axisparallel bound is at least as good as the worst-case best and the average-case best
bound which are also axisparallel. Depending on which t̂ we choose for the quasi-axisparallel
heuristic we get that using this heuristic is never worse than using Diag (t̂) to derive a bound.
All together we get the dominances shown in Figure 5.10 where A→ B means that A gives a
bound that is at least as good as the one given by B. (The di�erent heights in Figure 5.10 do
not have any meaning, but are only for readability.)

We point out here that the fact that the worst-case and the average-case bound compare so
badly in Figure 5.10 is of course due to the fact that we use less information to compute them:
whereas the other bounds depend on x̄ these two only depend on Q. Therefore it might be
unfair to put them in this comparison. On the other hand we are not able to actually determine
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lbqap

lbhqap(t
wc) lbhqap(t

ap) lbhqap(t
ac) lbqr

lbhqr

lbap

lbwc lbac

Figure 5.10.: Theoretical dominances between the di�erent bounds.

the best quasi-axisparallel and the best quasi-round ellipsoid, i.e., also these bounds are only
in the comparison for the sake of completeness.

To investigate the remaining open questions, i.e., where no arc is shown in Figure 5.10, and
to visualize the bounds, we consider the following example:

Example 5.30. Let Q = 1
42

(
1719 −476
−476 189

)
and consider

q1(x) := (x−
(

0.2
0.7

)
)tQ(x−

(
0.2
0.7

)
), q2(x) := (x−

(
0.9
0.3

)
)tQ(x−

(
0.9
0.3

)
)

and q3(x) := (x−
(

0.9
0.4

)
)tQ(x−

(
0.9
0.4

)
).

The continuous minimizers x̄i can hence easily be seen and we have qi(x̄i) = 0 for all i ∈
{1, 2, 3}:

q1(x) q2(x) q3(x)

x̄1 =

(
0.2
0.7

)
x̄2 =

(
0.9
0.3

)
x̄3 =

(
0.9
0.4

)

q1(x̄1) = 0 q2(x̄2) = 0 q3(x̄3) = 0

Next we determine the integer minimizers x∗i by growing the level sets until they reach the �rst
integer point, calculate qi(x

∗
i ) to compare with the bounds in the following and depict the level

sets L≤,qi(qi(x∗i )):
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q1(x) q2(x) q3(x)

x∗1 =

(
0
0

)
x∗2 =

(
1
1

)
x∗3 =

(
1
1

)

q1(x∗1) ≈ 0.6688 q1(x∗1) ≈ 1.0276 q3(x∗3) ≈ 0.6693

bx̄1e

x∗
1

x̄1

bx̄2e

x∗
2

x̄2

bx̄3e

x∗
3

x̄3

L≤,q1(q1(x∗1)) L≤,q2(q2(x∗2)) L≤,q3(q3(x∗3))

We see that none of the functions has the SRP since bx̄1e =

(
0
1

)
/∈ X∗1 , bx̄2e =

(
1
0

)
/∈ X∗2

and bx̄3e =

(
1
0

)
/∈ X∗3 .

Now we compare the di�erent bounds mentioned before. In the pictures we show L≤,qi(lbq′i)
(solid) and in light gray L≤,q′i(lbq′i) for the di�erent underestimators q

′
i. Since q

′
i has the Strong

Rounding Property we always observe bx̄ie ∈ L≤,q′i(lbq′i). The dotted lines depict the level set
L≤,qi(qi(x∗i )) corresponding to the integer minimizer for comparison.

q1(x) q2(x) q3(x)

lbap,1 ≈ 0.4954 lbap,2 ≈ 0.13429 lbap,3 ≈ 0.2178

x∗
1

bx̄1e

x̄1

bx̄2e

x∗
2

x̄2

bx̄3e

x∗
3

x̄3

L≤,q1(lbap,1) L≤,q2(lbap,2) L≤,q3(lbap,3)

lbhqr,1 ≈ 0.2269 lbhqr,2 ≈ 0.1839 lbhqr,3 ≈ 0.2359

bx̄1e

x∗
1

x̄1

bx̄2e

x∗
2

x̄2

bx̄3e

x∗
3

x̄3

L≤,q1(lbhqr,1) L≤,q2(lbhqr,2) L≤,q3(lbhqr,3)
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q1(x) q2(x) q3(x)

lbhqap,1(tap1 ) = lbap,1 ≈
0.4954

lbhqap,2(tap2 ) ≈ 0.2278 lbhqap,3(tap3 ) = lbap,3 ≈
0.2178

x∗
1

bx̄1e

x̄1

bx̄2e

x∗
2

x̄2

bx̄3e

x∗
3

x̄3

L≤,q1(lbap,1) L≤,q2(lbhqap,2(tap2 )) L≤,q3(lbap,3)

lbwc,1 ≈ 0.3368 lbwc,2 ≈ 0.13428 lbwc,3 ≈ 0.1864

bx̄1e

x∗
1

x̄1

bx̄2e

x∗
2

x̄2

bx̄3e

x∗
3

x̄3

L≤,q1(lbwc,1) L≤,q2(lbwc,2) L≤,q3(lbwc,3)

lbhqap,1(twc) ≈ 0.4222 lbhqap,2(twc) ≈ 0.2309 lbhqap,3(twc) ≈ 0.2306

bx̄1e

x∗
1

x̄1

bx̄2e

x∗
2

x̄2

bx̄3e

x∗
3

x̄3

L≤,q1(lbhqap,1(twc)) L≤,q2(lbhqap,2(twc)) L≤,q3(lbhqap,3(twc))

lbac,1 = lbap,1 ≈ 0.4954 lbac,2 ≈ 0.1239 lbac,3 ≈ 0.1239

x∗
1

bx̄1e

x̄1

bx̄2e

x∗
2

x̄2

bx̄3e

x∗
3

x̄3

L≤,q1(lbac,1) L≤,q2(lbac,2) L≤,q3(lbac,3)

lbhqap,1(tac) = lbac,1 ≈
0.4954

lbhqap,2(tac) = lbac,2 ≈
0.1239

lbhqap,3(tac) = lbac,3 ≈
0.1239
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All together we get the following rankings:
q1(x) q2(x) q3(x)

q1(x∗1) ≈ 0.6688 q2(x∗2) ≈ 1.0276 q3(x∗3) ≈ 0.6693
lbap,1 = lbhqap,1(tap1 ) = lbhqap,2(twc) ≈ 0.2309 lbhqr,3 ≈ 0.2359
lbac,1 = lbhqap,1(tac) ≈ 0.4954 lbhqap,2(tap2 ) ≈ 0.2278 lbhqap,3(twc) ≈ 0.2306

lbhqap,1(twc) ≈ 0.4222 lbhqr,2 ≈ 0.1839 lbap,3 =
lbwc,1 ≈ 0.3368 lbap,2 ≈ 0.13429 lbhqap,3(tap3 ) ≈ 0.2178
lbhqr,1 ≈ 0.2269 lbwc,2 ≈ 0.13428 lbwc,3 ≈ 0.1862
q1(x̄1) = 0 lbac,2 = lbhqap,2(tac) ≈ 0.1239 lbac,3 =

q2(x̄2) = 0. lbhqap,3(tac) ≈ 0.1239
q3(x̄3) = 0

If we compare these rankings with Figure 5.10, we see that for almost all pairs of bounds
where no hierarchy is depicted, depending on x̄, either one of them can be better than the
other and hence there cannot be any hierarchy between them. The only remaining question
is:

Are there examples where lbhqap(t
ac) > lbhqap(t

ap) ≥ lbap?
This situation could not happen in our example, since for Q as given in this example we get

tac =

(
14045
1134
0

)

and hence Q′hqap(t
ac) = Q′ac and lbhqap(t

ac) = lbac ≤ lbap.
To answer this remaining question, consider the following example:

Example 5.31.

q(x) :=
1

42
(x−

(
0.1
0.8

)
)t
(

1033 −280
−280 133

)
(x−

(
0.1
0.8

)
).

For this function we calculate lbhqap(t
ac) ≈ 0.1070 and lbap = lbhqap(t

ap) = 0.1056, compare
also Figure 5.11.

bx̄e

x∗

x̄
bx̄e

x∗

x̄

Figure 5.11.: left: L≤,q(lbhqap(tac)) and in light gray L≤,q′(lbhqap(tac)), right: L≤,q(lbap) and
in light gray L≤,q′(lbap).

This means, the theoretical hierarchy we showed in Figure 5.10 is complete: for all other pairs
of bounds we can �nd examples for both directions.

128
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Nevertheless, it might be that some of the bounds perform better than others on average and,
as we mentioned before, the time to compute the bounds has to be taken into account too. The
most important comparison however is the overall performance in a branch-and-bound tree.
To investigate all these questions we do some computational experiments. These experiments
are also submitted in Buchheim et al. [2013] and are the work of Christoph Buchheim.

To this end we embed our bounds in the branch-and-bound framework of Buchheim et al.
[2012a]. We compare the bounds among themselves and with the lower bound originally used
by Buchheim et al. [2012a]: this is the best bound we can get if we allow for Q′ only matrices
of the form Q′ = eie

t
i, where ei is the ith unit vector. These matrices describe splits and hence

we call this bound lbsplit. The matrix Q′split as well as the matrices Q′ac and Q′wc, i.e., the
solutions of (5.11) and (5.9) are computed in the preprocessing phase: one matrix Q′d for each
depth d. In each node we then compute the corresponding bound q(x̄)+(x̄−bx̄e)tQ′d(x̄−bx̄e).
On the other hand for the bounds lbap, lbhqr and lbhqap we compute the matrix Q′ in each
node, since it depends not only on Qd but also on x̄. For the heuristic quasi-axisparallel lower
bounds we only consider lbhqap(t

wc) in the experiments, since we will see that computing tap

is time-consuming so that it is not practicable to use as an input.

To compare the bounds we did the following experiments: for each �xed number of variables
n we generated 100 instances at random:

• we generate n eigenvalues of Q uniformly at random from the interval [10−4, 1]

• and n vectors with uniform entries in [−1, 1] which we then orthonormalize and use as
eigenvectors of Q

• the coordinates of L are again chosen uniformly from the interval [−1, 1].

All experiments were carried out on a standard laptop with an Intel Core2 Duo processor at
2.13 GHz RAM.

The �rst comparison is regarding the lower bounds provided: we compare the average relative
gaps closed lb−q(x̄)

q(x∗)−q(x̄) , i.e., the quantity we also used to do our worst-case and average-case
analysis. The results can be seen in Figure 5.12.

We have to mention �rst of all that we are only able to compute lbap for n ≤ 30 in reasonable
time. But for these smaller instances it clearly outperforms all other approaches in this
comparison. By the theoretical hierarchy we developed before it is clear that it has to be
better than lbac and lbwc, but it is noteworthy that it is much better than the heuristic
quasi-round and quasi-axisparallel bounds. Next we observe that using the average case gives
signi�cantly better bounds than using the worst case best underestimator, which was also to
be expected as an average behavior. Furthermore, we knew before that lbhqap(t

wc) has to
be better than lbwc, since it uses the latter one as input, but we observe that the di�erence
becomes smaller for growing n which is due to the fact that in general β(t, x̄) is going to 0
for growing n. Comparing the two heuristic approaches it seems that the quasi-axisparallel
bound is stronger than the quasi-round bound, which would also have been the case if we were
able to compute the best bounds in both cases. It remains to be mentioned that the results
obtained by the splits were by far worse than all our bounds and that we observe that the
general ranking between the bounds seems to be independent of the dimension n.

But of course the main criterion to compare the di�erent bounds has to be their performance in
the branch-and-bound-framework, i.e., the most important comparison is regarding the total
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Figure 5.12.: Average relative gap closed (in %) by number of variables.

computation time to solve a given convex quadratic integer program. This time depends of
course on the quality of the bounds, since a better bound means less nodes to be enumerated,
but also the time to compute the bounds has to be taken into account. We report the total
runtime in Figure 5.13.

Here we observe that the heuristic quasi-round approach outperforms all others. The next
best are the splits. These are the two bounds where the matrix Q′ is calculated in a relatively
simple and therefore computationally cheap way and where we do not need any preprocessing.
Compared to the splits the heuristic quasi-round approach calculates a new matrix Q′ in each
node. The next best bounds are the ones that are mainly computed in the preprocessing:
lbac and lbwc. We see that even though their computation in each node is faster than for
the heuristic quasi-round approach and the bounds were better (compare again Figure 5.12)
they do not make up for the longer preprocessing phase. Among these two we observe that
again the average-case outperforms the worst-case. The heuristic quasi-axisparallel line is
not to distinguish from the worst-case line in Figure 5.13: obviously it does not pay to do
this readapting in each node. And the clear loser in this comparison is the best axisparallel
approach. Even though the bounds are really good they are not good enough to make up
for their long computation time. It seems to be better to use the approaches worst-case and
average-case that compute one axisparallel ellipsoid for each node. Of course we have to say
that the runtimes depend highly on the implementation. For example one could try to speed
up the SDP-solving.

Summarizing, we see that there is a reason to consider di�erent bounds as we did in this
chapter since we cannot determine a theoretical dominating hierarchy between them and in
the computational results they perform very di�erent depending on whether we compare the
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Figure 5.13.: Average total runtimes (in seconds, log scale) by number of variables.

resulting bounds or the total runtime. Compared to Buchheim et al. [2012a] where the general
approach is taken from, we observe that all our bounds are tighter and that the heuristic quasi-
round approach also outperforms their approach in terms of total runtime.
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5. Lower bounds and algorithms for convex quadratic integer programs

5.6. Summary

In this chapter we used the Rounding Property to solve unconstrained convex quadratic integer
programs. To this end we used the fact that the level sets are ellipsoids whose shape is
determined solely by the Hessian of the objective function and that the unique continuous
minimizer is given by a closed formula. We proved that the level sets are cross-shaped if
and only if the objective function is separable, i.e., if the level sets are axisparallel ellipsoids.
Whether or not they are quasi-round for a given α only depends on the smallest and biggest
eigenvalues. Since the level sets considered here are all bounded and fully dimensional they
are all quasi-round if we allow the di�erence in the radii to be large enough. This enables us
to give a �nite candidate set for every unconstrained convex quadratic integer program.
We adapted the de�nition of quasi-cross-shapedness by introducing the concept of quasi-
axisparallelity: a set is said to be quasi-axisparallel if there exists an axisparallel ellipsoid to
whom the set is ε-similar. As in the quasi-round case we were able to explicitly calculate the
corresponding ε that guarantees the (Strong) Rounding Property.

If the given convex quadratic integer problem does not have the Rounding Property we use our
concepts to derive lower bounds to use in a branch-and-bound algorithm. The idea is that any
convex quadratic function that has the same continuous minimizer as the objective function
and whose level sets contain the original level sets for each level, is a global underestimator. If
we use only such underestimators that have the Strong Rounding Property, the corresponding
lower bound is easy to calculate. Since we would like to have the tightest bound this means we
try to �nd the underestimator that gives the highest lower bound and has the Strong Rounding
Property. We cannot solve the problem in this generality and therefore we consider restricted
versions: in problem (5.3) we look for the separable underestimator giving the tightest lower
bound, in (5.4) we look for the tightest lower bound we can get by an underestimator whose
level sets are α2(x̄)-quasi-round and so on. In contrast to (5.3) which is a SDP, we do not know
how to solve (5.4). Therefore we use a heuristic: we �x the eigenvectors to be the same as
the ones of the Hessian of the original problem and allow only for changes in the eigenvalues.
The same heuristic can be applied to �nd an underestimator with quasi-axisparallel level sets
if we �x �rst the axisparallel ellipsoid to whom it should be similar.
If we want to use these lower bounds in a branch-and-bound framework it might be a good
idea to develop bounds that do not depend on the continuous minimizer, but only on the
Hessian of the objective function. We obtained problems (5.9) and (5.11) by performing a
worst-case and an average-case analysis.
In the last section we compared the di�erent bounds we developed. First of all we investigated
the theoretical hierarchy, compare Figure 5.10. Next we showed in an example what the
underestimators look like, that they do in fact vary highly if we only translate the problem
and last but not least that the theoretical hierarchy shown in Figure 5.10 is complete in the
sense that for all other pairs of bounds there exist examples where either of these bounds is
tighter. Nevertheless, this need not mean that there is not an average dominance between some
of them. To investigate this question we showed some �rst computational results, indicating
for example that on the one hand the separable underestimators give the tightest bounds, but
that on the other hand they are too time-consuming to calculate. Comparing our bounds with
the bound originally used by Buchheim et al. [2012a], in whose framework we embedded our
bounds, we see that all our bounds are tighter and that one of them is able to outperform the
original bound also in total runtime of the whole branch-and-bound algorithm.
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6. Extension to mixed-integer problems

So far our approach relied heavily on the fact that we considered pure integer problems,
since like this we were able to construct our �nite candidate set Round(x̄) ∩ F . This raises
the question whether it is possible to carry our results over to the case of mixed-integer
optimization problems.

This chapter is organized as follows. First we give the general setting for the mixed-integer
case and de�ne the appropriate versions of the Rounding Property and the Strong Rounding
Property. Then we investigate how we can use our results for the pure integer case to solve
mixed-integer problems. In the next section we go the other direction: given a pure integer
problem we consider a mixed-integer relaxation to derive a lower bound. And in the last
section we apply the results to the special case of convex quadratic problems as considered in
Chapter 5.

6.1. The mixed-integer case

Consider an arbitrary mixed-integer problem

(MIP ) min f(v, w) (6.1)

s.t. (v, w) ∈ F
v ∈ Zn1

w ∈ Rn2

where F ⊆ Rn1+n2 and f : F → R.
We transfer the notation for integer problems to the case of mixed-integer problems.

Notation 6.1. We denote the set of optimal solutions to (MIP ) by

(V,W )∗ := {(v, w) ∈ F, v ∈ Zn1 : f(v, w) ≤ f(v′, w′) ∀(v′, w′) ∈ F, v′ ∈ Zn1}

and an optimal solution, i.e., a mixed-integer minimizer by (v∗, w∗).
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6. Extension to mixed-integer problems

Again we always assume that (V,W )∗ 6= ∅ and consider the continuous relaxation

(CP ) min f(v, w) (6.2)

s.t. (v, w) ∈ F
(v, w) ∈ Rn1+n2 .

Notation 6.2. We denote the set of optimal solutions to (CP ) by

(V,W ) := {(v, w) ∈ F : f(v, w) ≤ f(v′, w′) ∀(v′, w′) ∈ F}
and an optimal solution (a continuous minimizer) by (v̄, w̄).

We need to adapt Basic Assumption 1.5 to this case. Therefore we introduce the following
notation:

Notation 6.3. (i) Denote by Proj(M)m the projection of the set M ⊆ Rn where n > m
onto the �rst m dimensions:

Proj(M)m := {v ∈ Rm : ∃w ∈ Rn−m : (v, w) ∈M}.

(ii) Given a �xed v̂ ∈ Rn1 and F ⊆ Rn1+n2 we de�ne

F (v̂) := {w ∈ Rn2 : (v̂, w) ∈ F}.
Furthermore, for f : F → R we de�ne fv̂ : F (v̂)→ R, w 7→ f(v̂, w).

Basic Assumption 6.4. We always assume that (V,W ) 6= ∅ and that there exists an
e�cient algorithm to solve (CP ). This algorithm is used as a black box in the following.
Furthermore, we assume that there exists an e�cient algorithm to solve min{fv̂(w) : w ∈
F (v̂)} for any �xed v̂ ∈ Zn1 ∩ Proj(F )n1.

Now we can introduce the Rounding Property for mixed-integer problems.

De�nition 6.5. We say that a mixed-integer problem has the Rounding Property if for
any optimal solution (v̄, w̄) ∈ (V,W ) to its continuous relaxation (CP ) there exists an
optimal solution (v∗, w∗) ∈ (V,W )∗ such that v∗ ∈ Round(v̄).

Note here that we do not assume anything about the continuous variables w̄ and w∗. This
means also that we do neither get a �nite candidate set nor any proximity result, in contrast
to the pure integer case. But we get again an algorithm to solve a mixed-integer problem
having the Rounding Property.

Algorithm 3: Basic algorithm to solve a mixed-integer problem that has the Rounding
Property

Input: (f, F ) having the Rounding Property
Output: an optimal solution (v∗, w∗) ∈ (V,W )∗

1. solve (CP ) to get an optimal solution (v̄, w̄) ∈ (V,W )
2. for every v̂ ∈ Round(v̄) ∩ Proj(F )n1 solve min{fv̂(w) : w ∈ F (v̂)}
3. Choose (v∗, w∗) ∈ argmin{f(v̂, wv̂) : v̂ ∈ Round(v̄) ∩ Proj(F )n1 , wv̂ ∈
argmin{fv̂(w) : w ∈ F (v̂)}}.
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6.1. The mixed-integer case

Lemma 6.6. Algorithm 3 is well-de�ned and correct, i.e., for all (v̄, w̄) ∈ (V,W ) we have

(i) Round(v̄) ∩ Proj(F )n1 6= ∅ and

(ii) the output (v∗, w∗) ful�lls (v∗, w∗) ∈ (V,W )∗.

Proof. Let (v̄, w̄) ∈ (V,W ) be any optimal solution to (CP ). As (MIP ) has the RP we know
that there exists (ṽ, w̃) ∈ (V,W )∗ ⊆ F such that ṽ ∈ Round(v̄).

(i) This means ṽ ∈ Round(v̄) ∩ Proj(F )n1 .

(ii) Let (v∗, w∗) ∈ argmin{f(v̂, wv̂) : v̂ ∈ Round(v̄)∩Proj(F )n1 , wv̂ ∈ argmin{fv̂(w) : w ∈
F (v̂)}}. Since (ṽ, w̃) ∈ (V,W )∗ we have w̃ ∈ argmin{fṽ(w) : w ∈ F (ṽ)}:

Assume not. Since (ṽ, w̃) ∈ F this means that there exists u ∈ F (ṽ) and
f(ṽ, u) < f(ṽ, w̃) which is a contradiction to (ṽ, w̃) ∈ (V,W )∗.

Therefore we have (ṽ, w̃) ∈ argmin{f(v̂, wv̂) : v̂ ∈ Round(v̄) ∩ Proj(F )n1 , wv̂ ∈
argmin{fv̂(w) : w ∈ F (v̂)}}:

Assume not. Then there exist v′, w′: v′ ∈ Round(v̄) ∩ Proj(F )n1 , w
′ ∈

argmin{fv′(w) : w ∈ F (v′)}, i.e., (v′, w′) ∈ F and f(v′, w′) < f(ṽ, w̃) which is
again a contradiction to (ṽ, w̃) ∈ (V,W )∗.

Together we have

f(v∗, w∗) = min {f(v̂, wv̂) : v̂ ∈ Round(v̄) ∩ Proj(F )n1 ,

wv̂ ∈ argmin{fv̂(w) : w ∈ F (v̂)}} = f(ṽ, w̃).

Furthermore, we have (v∗, w∗) ∈ F as v∗ ∈ Proj(F )n1 and w∗ ∈ F (v∗) and thus
(v∗, w∗) ∈ (V,W )∗.

Note that this algorithm means that we are able to derive a �nite candidate set by choosing
an appropriate w for each v ∈ Round(v̄) ∩ Proj(F )n1 .

What does a level set approach for the mixed-integer case look like? Consider Figure 6.1:

v

w

(v̄, w̄)

v̄v∗

w∗

w̄

Figure 6.1.: A level set approach for the mixed-integer setting.

now we grow the level sets until they reach the �rst of the vertical lines representing Z × R.
In higher dimensions we get �ats: consider for example the case n = 3. Here we have the
following possibilities:
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6. Extension to mixed-integer problems

• n1 = 3, n2 = 0: this is the pure integer case.

• n1 = 2, n2 = 1: the feasible set is the union of all �ats (v1, v2,R) for (v1, v2) ∈ Z2 as
depicted in Figure 6.2 left.

• n1 = 1, n2 = 2: the feasible set is the union of all hyperplanes (v,R,R) for v ∈ Z as
depicted in Figure 6.2 right.

• n1 = 0, n2 = 3: this is the continuous case.

v1

v2
w

v

w1
w2

Figure 6.2.: The feasible sets for n1 = 2, n2 = 1 and n1 = 1, n2 = 2.

Basic Assumption 6.4 makes sure that Algorithm 3 is practicable: in the �rst step we use the
black box algorithm to solve (CP ) which we assumed to be e�cient and in the second step we
use at most 2n times the algorithm to solve min{fv̂(w) : w ∈ F (v̂)} which we also assumed
to be e�cient. Nevertheless, the second step might take much longer than the second step in
Algorithm 1 where we �just� evaluated the objective function for each x̂ ∈ Round(x̄). This
means that in the case of a mixed-integer problem the Strong Rounding Property might be
even more useful than in the pure integer case.

De�nition 6.7. We say that a mixed-integer problem has the Strong Rounding Property if
for any optimal solution (v̄, w̄) ∈ (V,W ) to (CP ) there exists an optimal solution (v∗, w∗) ∈
(V,W )∗ such that v∗ = bv̄e.

Again, we do not get any proximity result out of this property. Just as in the pure integer
case, we get that the Strong Rounding Property implies the Rounding Property.

Corollary 6.8. If a mixed-integer problem has the Strong Rounding Property it also has the
Rounding Property.

The straightforward algorithm looks as follows.

Algorithm 4: Basic algorithm to solve a mixed-integer problem that has the Strong
Rounding Property

Input: (f, F ) having the Strong Rounding Property
Output: an optimal solution (v∗, w∗) ∈ (V,W )∗

1. solve (CP ) to get an optimal solution (v̄, w̄) ∈ (V,W )
2. set v∗ := bv̄e
3. solve min{fv∗(w) : w ∈ F (v∗)} to get w∗

Lemma 6.9. Algorithm 4 is well-de�ned and correct, i.e.,

136



6.1. The mixed-integer case

(i) v∗ ∈ Proj(F )n1 and

(ii) (v∗, w∗) ∈ (V,W )∗.

Proof. Let (v̄, w̄) ∈ (V,W ). As (MIP ) has the SRP there exists (ṽ, w̃) ∈ (V,W )∗ such that
ṽ = bv̄e = v∗. This means,

(i) v∗ ∈ Proj(F )n1 .

(ii) w̃ ∈ argmin{fv∗(w) : w ∈ F (v∗)}:
Assume not. Then there exists u ∈ F (v∗) and f(v∗, u) < f(v∗, w̃) = f(ṽ, w̃)
which is a contradiction to (ṽ, w̃) ∈ (V,W )∗.

This means that

f(ṽ, w̃) = f(v∗, w̃) = fv∗(w̃) = min{fv∗(w) : w ∈ F (v∗)} = fv∗(w
∗) = f(v∗, w∗).

Since furthermore (v∗, w∗) ∈ F we get (v∗, w∗) ∈ (V,W )∗.

Remark 6.10. We assume again w.l.o.g. that (V,W ) ∩ (Zn1 × Rn2) = ∅ since all (v̄, w̄) ∈
(V,W ) with v̄ ∈ Zn1 do not impose any further constraints and can therefore be ignored.
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6. Extension to mixed-integer problems

6.2. Connection to the pure integer case

A natural question is whether the (Strong) Rounding Property for mixed-integer problems is
somehow connected to the (Strong) Rounding Property for integer problems. This question is
investigated in this section. Given (MIP ) as in (6.1) we consider its pure integer counterpart

(IP ) min f(x)

s.t. x ∈ F
x ∈ Zn1+n2 .

We observe that in general there is no connection between (MIP ) having the (Strong) Round-
ing Property and (IP ) having the (Strong) Rounding Property: it is possible that (IP ) has
the Strong Rounding Property and (MIP ) does not have the Rounding Property and vice
versa:

Example 6.11. (i) (IP ) has the Strong Rounding Property, but (MIP ) does not have the
Rounding Property (no matter if v or w has to be integer):

consider the following objective function (compare Figure 6.3)

f(v, w) =





1 if (v, w) = (v̄, w̄)

2 if (v, w) ∈ dark gray area

3 if (v, w) ∈ light gray area

4 else

(v̄, w̄)

x∗

(v∗(MIP−1), w
∗
(MIP−1))

(v∗(MIP−2), w
∗
(MIP−2))

Figure 6.3.: The areas de�ning f(v, w) and therefore also the level sets L≤(1), L≤(2) and
L≤(3).

We see that (v̄, w̄) is the unique optimal solution to the shared continuous relaxation of
both (IP ) and (MIP ). In addition we see that (IP ) has the Strong Rounding Property.
In contrast neither

(MIP − 1) min f(v, w)

s.t. v ∈ Z
w ∈ R
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6.2. Connection to the pure integer case

nor

(MIP − 2) min f(v, w)

s.t. v ∈ R
w ∈ Z

has the Rounding Property.

(ii) On the other hand it is also possible that (MIP ) has the Strong Rounding Property but
(IP ) does not have the Rounding Property:

consider again the following objective function, where the areas are this time as in Fig-
ure 6.4:

f(v, w) =





1 if (v, w) = (v̄, w̄)

2 if (v, w) ∈ dark gray area

3 if (v, w) ∈ light gray area

4 else

(v̄, w̄)

x∗

(v∗(MIP−1), w
∗
(MIP−1))

(v∗(MIP−2), w
∗
(MIP−2))

Figure 6.4.: The areas de�ning f(v, w) and therefore also the level sets L≤(1), L≤(2) and
L≤(3).

We observe that (MIP − 1) as well as (MIP − 2) have the Strong Rounding Property
whereas (IP ) does not have the Rounding Property.

Note that these examples do not depend on the fact that n1 +n2 = 2, but can easily be carried
over to higher dimensions.

Of course it is not true that the Rounding Property for mixed-integer problems is completely
independent of the Rounding Property for pure integer problems, but the pure integer coun-
terpart is not the �right� integer problem to consider. In the following we establish the connec-
tion between the (Strong) Rounding Property for a mixed-integer problem and the (Strong)
Rounding Property for a (lower dimensional) pure integer problem.

Notation 6.12. (i) De�ne g : Proj(F )n1 → R by g(v) := min{fv(w) : w ∈ F (v)}.

(ii) Denote by (IP )g the pure integer problem

(IP )g min g(v) (6.3)

s.t. v ∈ Proj(F )n1

v ∈ Zn1
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6. Extension to mixed-integer problems

and the set of optimal solutions to (IP )g by V
∗
g .

(iii) Denote by (CP )g the corresponding continuous relaxation

(CP )g min g(v) (6.4)

s.t. v ∈ Proj(F )n1

and the set of optimal solutions to (CP )g by V̄g.

We assume that these notations are well-de�ned:

Basic Assumption 6.13. In the following we assume not only that (V,W )∗ 6= ∅ and
(V,W ) 6= ∅ but also that g(v) exists for all v ∈ Proj(F )n1.

This can for example be guaranteed by assuming that f(v, ·) is continuous in w for any �xed
v and that F is compact:

Let v ∈ Proj(F )n1 . Due to our assumption f(v, w) is continuous in w. Since
v ∈ Proj(F )n1 we know that F (v) 6= ∅ and furthermore since F is compact also
F (v) is compact as it is the intersection of the compact set F with a n2 dimensional
�at. This means that g(v) := min{fv(w) : w ∈ F (v)} exists due to the extreme
value theorem of Weierstrass and hence argmin{fv(w) : w ∈ F (v)} 6= ∅ for all
v ∈ Proj(F )n1 .

The following theorem establishes the connection between the sets of optimal solutions to
(MIP ) and (IP )g:

Theorem 6.14. (i) Proj((V,W ))n1 = V̄g and

(ii) Proj((V,W )∗)n1 = V ∗g .

Proof. Ad (i)

�⊆� Let v̄ ∈ Proj((V,W ))n1 , i.e., there exists w̄ ∈ F (v̄) such that (v̄, w̄) ∈ (V,W ). Assume
that v̄ /∈ V̄g. Since v̄ ∈ Proj(F )n1 this means that there exists u ∈ Proj(F )n1 s.t.

min
w∈F (u)

fu(w) = g(u) < g(v̄) = min
w∈F (v̄)

fv̄(w) ≤ f(v̄, w̄)

which means that there exists w(u) ∈ F (u) such that f(u,w(u)) < f(v̄, w̄) and is hence
a contradiction to (v̄, w̄) ∈ (V,W ). Hence v̄ ∈ V̄g.

�⊇� Let v̄g ∈ V̄g ⊆ Proj(F )n1 . This means, there exists w̄g ∈ argmin{fv̄g(w) : w ∈ F (v̄g)}.
Assume that (v̄g, w̄g) /∈ (V,W ). Since (v̄g, w̄g) ∈ F this means that there exists (u, t) ∈ F
such that f(u, t) < f(v̄g, w̄g) which means

g(u) ≤ f(u, t) < f(v̄g, w̄g) = g(v̄g)

and is hence a contradiction to v̄g ∈ V̄g. Thus (v̄g, w̄g) ∈ (V,W ) and therefore v̄g ∈
Proj((V,W ))n1 .

(ii) follows analogously.
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Using this theorem we can show the connection between the (Strong) Rounding Property for
(MIP ) and for (IP )g.

Corollary 6.15. (MIP ) has the (Strong) Rounding Property if and only if (IP )g has the
(Strong) Rounding Property.

Proof. Using Theorem 6.14 shows:

�⇒� Let v̄g ∈ V̄g = Proj((V,W ))n1 . This means that there exists w̄g ∈ F (v̄g) s.t. (v̄g, w̄g) ∈
(V,W ). Since (MIP ) has the (Strong) Rounding Property there exists (v∗, w∗) ∈
(V,W )∗ such that v∗ ∈ Round(v̄g) (or v

∗ = bv̄ge respectively).
Since v∗ ∈ Proj((V,W )∗)n1 = V ∗g this means that (IP )g has the (Strong) Rounding
Property.

�⇐� Let (v̄, w̄) ∈ (V,W ). This means that v̄ ∈ Proj((V,W )) = V̄g. Since (IP )g has
the (Strong) Rounding Property this means that there exists v∗g ∈ V ∗g such that v∗g ∈
Round(v̄) (or v∗g = bv̄e). As V ∗g = Proj((V,W )∗)n1 there exists w∗g ∈ F (v∗g) s.t.
(v∗g , w

∗
g) ∈ (V,W )∗ and thus (MIP ) has the (Strong) Rounding Property.

Note that in addition to the claim of Theorem 6.14 we also showed how to derive an optimal
solution to (6.1) and (6.2) out of optimal solutions to (6.3) and (6.4):

• Let v̄g ∈ V̄g then (v̄g, w̄g) ∈ (V,W ) for any w̄g ∈ argmin{fv̄g(w) : w ∈ F (v̄g)}.

• Let v∗g ∈ V ∗g then (v∗g , w
∗
g) ∈ (V,W )∗ for any w∗g ∈ argmin{fv∗g (w) : w ∈ F (v∗g)}.

As in Lemma 1.18 we use a level set approach to determine whether a given mixed-integer
problem has the (Strong) Rounding Property or not. Therefore we �rst of all investigate what
the level sets of (IP )g look like:

LProj(F )n1
≤,g (z) = {v ∈ Proj(F )n1 : g(v) ≤ z}

= {v ∈ Proj(F )n1 : min
w∈F (v)

fv(w) ≤ z}

= {v ∈ Rn1 : ∃w ∈ Rn2 : (v, w) ∈ F and f(v, w) ≤ z}
= Proj(LF≤,f (z))n1 . (6.5)

Combining Corollary 6.15 and Lemma 1.18 we get the following corollary.

Corollary 6.16. • (MIP ) has the Rounding Property ⇐⇒ for any optimal solution v̄g
to (CP )g and for all v ∈ Zn1 ∩ Proj(F )n1 we have that

Proj(LF≤,f (g(v)))n1 ∩ Round(v̄g) 6= ∅.

• (MIP ) has the Strong Rounding Property ⇐⇒ for any optimal solution v̄g to (CP )g
and for all v ∈ Zn1 ∩ Proj(F )n1 we have that

bv̄ge ∈ Proj(LF≤,f (g(v)))n1 .
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Proof. • ⇔ (compare (6.5)) for any optimal solution v̄g to (CP )g and for all v ∈ Zn1 ∩
Proj(F )n1 we have that

LProj(F )n1
≤,g (g(v)) ∩ Round(v̄g) 6= ∅.

⇔ (using Lemma 1.18) (IP )g has the Rounding Property
⇔ (using Corollary 6.15) (MIP ) has the Rounding Property.

• ⇔ (compare (6.5)) for any optimal solution v̄g to (CP )g and for all v ∈ Zn1 ∩Proj(F )n1

we have that

bv̄ge ∈ LProj(F )n1
≤,g (g(v)).

⇔ (using Lemma 1.18) (IP )g has the Strong Rounding Property
⇔ (using Corollary 6.15) (MIP ) has the Strong Rounding Property.

This means, if we know that the projections of the level sets of (MIP ) have one of the shapes
identi�ed in Part I, we know that (MIP ) has the Rounding Property. Hence Lemma 1.25
implies the following lemma for the case that n1 = 1.

Lemma 6.17. The mixed-integer problem

(MIP ) min f(v, w)

s.t. (v, w) ∈ F
v ∈ Z
w ∈ Rn−1

• has the Rounding Property if for any optimal solution v̄g ∈ V̄g to (CP )g the level sets
LF≤,f (z) are connected for all levels g(v̄g) ≤ z ≤ min{g(v) : v ∈ Round(v̄g)∩Proj(F )1}.

• has the Strong Rounding Property if for any optimal solution v̄g ∈ V̄g to (CP )g we have
bv̄ge ∈ F and the level sets LF≤,f (z) are connected and symmetric about v̄g for all levels
g(v̄g) ≤ z ≤ g(bv̄ge).

Proof. • Let v̄g ∈ V̄g. If the level sets LF≤,f (z) are connected for all levels g(v̄g) ≤ z ≤
min{g(v) : v ∈ Round(v̄g) ∩ Proj(F )1} also the sets Proj(LF≤,f (z))1 are connected
for all g(v̄g) ≤ z ≤ min{g(v) : v ∈ Round(v̄g) ∩ Proj(F )1} and thus the level sets

LProj(F )1

≤,g (z) are connected for all g(v̄g) ≤ z ≤ min{g(v) : v ∈ Round(v̄g) ∩ Proj(F )1}.
This means, compare Lemma 1.25, that (IP )g has the Rounding Property and hence,
compare Corollary 6.15, (MIP ) has the Rounding Property.

• Let v̄g ∈ V̄g. If the level sets LF≤,f (z) are connected and symmetric about v̄g for all

level g(v̄g) ≤ z ≤ g(bv̄ge) also the sets Proj(LF≤,f (z))1 are connected and symmetric
about v̄g for all g(v̄g) ≤ z ≤ g(bv̄ge). But this is equivalent to the fact that all level sets
LProj(F )1

≤,g (z) are symmetric intervals about v̄g for all levels g(v̄g) ≤ z ≤ g(bv̄ge). Hence,
compare Lemma 1.25, (IP )g has the Strong Rounding Property and thus, compare
Corollary 6.15, (MIP ) has the Strong Rounding Property.
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v

w

L≤,f (z)

(v̄, w̄)

v̄ P roj(L≤,f (z))1

Figure 6.5.: Proj(L≤,f (z))1 is connected, even though L≤,f (z) is not.

Note on the one hand that connectedness is only su�cient but not necessary in Lemma 1.25
but on the other hand also that LF≤,f (z) being connected is su�cient but not at all necessary

for Proj(LF≤,f (z))1 being connected, compare for example Figure 6.5.
We end this section by showing that the projection of a set is at least as round as the original
set and that it is cross-shaped if the original set is.

Lemma 6.18. (i) Let M ⊆ Rn be cross-shaped w.r.t. x0 ∈ M . Then Proj(M)m is cross-
shaped w.r.t. (x0

1, . . . , x
0
m) for all m ≤ n.

(ii) Let M ⊆ Rn ful�ll Bp(x
0, r) ⊆M ⊆ Bp(x0, R). Then we have for all m ≤ n

Bp((x
0
1, . . . , x

0
m), r) ⊆ Proj(M)m ⊆ Bp((x0

1, . . . , x
0
m), R).

Proof. (i) Let v ∈ Proj(M)m, i.e., there exists w ∈ Rn−m s.t. (v, w) ∈ M . Since M is
cross-shaped w.r.t. x0, this means, [(v, w), x0]1 ⊆M .

Let p ∈ [v, (x0
1, . . . , x

0
m)]1, i.e., pi = λivi+(1−λi)x0

i where λi ∈ [0, 1] for all i = 1, . . . ,m.
De�ne q := (p, x0

m+1, . . . , x
0
n). Then we have q ∈ [(v, w), x0]1 ⊆ M and therefore p ∈

Proj(M)m.

(ii) Let v ∈ Bp((x0
1, . . . , x

0
m), r), i.e., ‖v − (x0

1, . . . , x
0
m)‖p ≤ r.

This means, ‖(v, x0
m+1, . . . , x

0
n) − x0‖p ≤ r, hence (v, x0

m+1, . . . , x
0
n) ∈ Bp(x

0, r) ⊆ M
and like this v ∈ Proj(M)m.

Let v ∈ Proj(M)m, i.e., there exists w ∈ Rn−m such that (v, w) ∈M ⊆ B2(x0, R). Thus∑m
i=1(vi − x0

i )
p +

∑n
i=m+1(wi−m − x0

i )
p ≤ Rp and hence

∑m
i=1(vi − x0

i )
p ≤ Rp which

means v ∈ Bp((x0
1, . . . , x

0
m), R).

For our theory this means that if LF≤,f (z) is cross-shaped w.r.t. x̄, LProj(F )n1
≤,g (z) is cross-shaped

w.r.t. (x̄1, . . . , x̄n1) and if L≤,f (z) is α-quasi-round w.r.t. x̄, LProj(F )n1
≤,g (z) is α′-quasi-round

w.r.t. (x̄1, . . . , x̄n1) for some α′ ≤ α.
Since we showed that V̄g = Proj((V,W ))n1 we can use these results to prove the Rounding
Property for (IP )g under conditions similar to those in Chapter 2 and Chapter 3.
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6. Extension to mixed-integer problems

Remark 6.19. This approach can be seen as a decomposition algorithm since we solved (MIP )
by reformulating it as min{min{fv(w) : w ∈ F (v)} : v ∈ Proj(F ), v ∈ Zn1}. Geo�rion
[1970] showed that this problem is equivalent to the original mixed-integer problem. Hence
our subproblem min{fv(w) : w ∈ F (v)} is a continuous problem and we assume that it is
e�ciently solvable. In our setting (IP )g is easy to solve since it has the Rounding Property.
If this is not the case one would use a reformulation of (IP )g as in an outer approximation
approach or the generalized Benders decomposition, compare Section 1.1.
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6.3. A mixed-integer relaxation to pure integer problems

We use a mixed-integer relaxation to get a lower bound on the optimal objective value of a
pure integer problem.

The idea here is the following: assume that the given integer problem

(IP ) min{f(x) : x ∈ F, x ∈ Zn}

does not have the Rounding Property, but there exists a partition x = (v, w) of the variables
such that the resulting mixed-integer problem

(MIP ) min{f(v, w) : (v, w) ∈ F, v ∈ Zn1 , w ∈ Rn2}

has the (Strong) Rounding Property. Then we can use the (easy to calculate) optimal objective
value of (MIP ) as a lower bound on the optimal objective value of (IP ).

Lemma 6.20. (MIP ) is a relaxation of (IP ) and hence gives a lower bound.

Proof. The feasible set of (IP ) {(v, w) ∈ F : v ∈ Zn1 , w ∈ Zn2} is contained in the feasible
set of (MIP ) {(v, w) ∈ F : v ∈ Zn1 , w ∈ Rn2} and the objective functions coincide.

This is of course only helpful if (MIP ) is easy to solve, which we guarantee by assuming that
(MIP ) has the (Strong) Rounding Property, and if the bound obtained by (MIP ) is strictly
better than the one obtained by the continuous relaxation

(CP ) min{f(x) : x ∈ F, x ∈ Rn}.

First of all we observe that (MIP ) and (IP ) have the same continuous relaxation (CP ).
As before let X̄ denote the set of optimal solutions to (CP ), (V,W )∗ the set of optimal
solutions to (MIP ) and X∗ the set of optimal solutions to (IP ). Then we have the following
hierarchy of bounds.

Lemma 6.21. Let x̄ ∈ X̄, (v∗, w∗) ∈ (V,W )∗ and x∗ ∈ X∗. Then we have f(x̄) ≤ f(v∗, w∗) ≤
f(x∗). If X̄ ∩ (Zn1 × Rn2) = ∅ we get

f(x̄) < f(v∗, w∗) ≤ f(x∗).

Proof. As mentioned before (MIP ) is a relaxation of (IP ) and hence f(v∗, w∗) ≤ f(x∗). On
the other hand, (CP ) is a relaxation of (MIP ) and therefore f(x̄) ≤ f(v∗, w∗). If X̄ ∩ (Zn1 ×
Rn2) = ∅ we have that (v∗, w∗) /∈ X̄ and hence f(v∗, w∗) > f(x̄) since (v∗, w∗) ∈ F .

This means, if X̄ ∩ (Zn1 × Rn2) = ∅ (MIP ) gives a strictly better bound than (CP ). Hence
the goal is to �nd a partition of the variables of (IP ) into v and w variables such that
the corresponding mixed-integer problem has the (Strong) Rounding Property and where no
optimal solution to the continuous relaxation has integer v-variables.

Geometrically, this means that we look for a subspace Rn1 such that the projection of the
level set LF≤,f (z) onto this subspace is cross-shaped or quasi-round and the intersection of the
projection of the continuous minimizer with the integer lattice Zn1 is empty. An example for
such a situation is given next.
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Lemma 6.22. Consider an objective function of the form

f(x) =

k∑

i=1

ai(xi − bi)2 + f ′(xk+1, . . . , xn)

where a, b ∈ Rk and m := miny∈Rn−k f
′(y) exists.

Then Proj(L≤,f (z))k =
√
z −mE(Diag (a), b).

Proof. �⊆� Let v ∈ Proj(L≤,f (z))k, i.e., there exists w ∈ Rn−k such that f(v, w) =∑k
i=1 ai(vi − bi)

2 + f ′(w) ≤ z. Then
∑k

i=1 ai(vi − bi)
2 ≤ z − f ′(w) ≤ z − m and

hence v ∈ √z −mE(Diag (a), b).

�⊇� Let v ∈ √z −mE(Diag (a), b), i.e.,
∑k

i=1 ai(vi − bi)2 ≤ z −m.

Let w ∈ argminy∈Rn−k f
′(y), i.e., f ′(w) = m, hence f(v, w) =

∑k
i=1 ai(vi−bi)2+f ′(w) =∑k

i=1 ai(vi − bi)2 +m ≤ z and therefore v ∈ Proj(L≤,f (z))k.

This means that in this situation the projection of the level sets are axisparallel ellipsoids
about b. Since the objective function decomposes into two parts we know furthermore that
Proj(X̄)k = {b} and hence the resulting mixed-integer relaxation has the Strong Rounding
Property. If furthermore b /∈ Z it gives a better bound than the continuous relaxation.

We can generalize this example further as done in the next lemma.

Lemma 6.23. Consider an objective function of the form

f(x) =

k∑

i=1

fi(xi) + f ′(xk+1, . . . , xn)

where fi : R→ R is quasiconvex for all i ∈ {1, . . . , k} and m := miny∈Rn−k f
′(y) exists. Then

Proj(L≤,f (z))k is cross-shaped w.r.t. the projection of any continuous minimizer.

Proof. Let x̄ ∈ X̄. This means that fi(x̄i) ≤ fi(x) for all x ∈ R and for all i ∈ {1, . . . , k} and
f ′(x̄k+1, . . . , x̄n) = m.
Let v ∈ Proj(L≤,f (z))k, i.e., there exists w ∈ Rn−k such that f(v, w) =

∑k
i=1 fi(vi)+f ′(w) ≤

z and hence
∑k

i=1 fi(vi) ≤ z −m.
Let p ∈ [v, (x̄1, . . . , x̄k)]1, i.e., pi = λivi + (1− λi)x̄i for λi ∈ [0, 1] for all i ∈ {1, . . . , k}. This
means,

f(p, x̄k+1, . . . , x̄n) =

k∑

i=1

fi(pi) + f ′(x̄k+1, . . . , x̄n)

=
k∑

i=1

fi(λivi + (1− λi)x̄i) +m

≤
k∑

i=1

max{fi(vi), fi(x̄i)}+m

=

k∑

i=1

fi(vi) +m ≤ z.
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6.3. A mixed-integer relaxation to pure integer problems

Hence [v, (x̄1, . . . , x̄k)]1 ⊆ Proj(L≤,f (z))k and therefore Proj(L≤,f (z))k is cross-shaped w.r.t.
(x̄1, . . . , x̄k) for all x̄ ∈ X̄.

This means again that the resulting mixed-integer relaxation where the integrality constraints
for xk+1, . . . , xn are relaxed has the Rounding Property and any (v∗, w∗) gives a better bound
than any x̄, if X̄ ∩ (Zn1 × Rn2) = ∅.
We come back to this idea in the next section.
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6.4. Application to convex quadratic problems

In this section we investigate how we can use the results obtained in this chapter in the special
case of convex quadratic mixed-integer problems as considered in Chapter 5. To this end we
consider problems of the following form

(CQMIP ) min q(v, w) := (vt, wt)Q

(
v
w

)
+ Lt

(
v
w

)
(6.6)

s.t. v ∈ Zn1

w ∈ Rn2

where Q ∈ Rn1+n2,n1+n2 symmetric and positive de�nite and L ∈ Rn1+n2 . Chapter 5 gives us

(i) (V,W ) = {−1
2Q
−1L}.

(ii) L≤,q(z) =
√
z − q(v̄, w̄)E(Q,

(
v̄
w̄

)
) for all z ≥ q(v̄, w̄)

(iii) q(v, w) = q(v̄, w̄) + ((v − v̄)t, (w − w̄)t)Q

(
v − v̄
w − w̄

)
for all (v, w) ∈ Rn1+n2 .

This means that Basic Assumption 6.4 is ful�lled: (V,W ) 6= ∅ and e�cient to compute and
also min{qv̂(w) := q(v̂, w) : w ∈ Rn2} is e�ciently solvable for any �xed v̂ ∈ Zn1 since if we
partition Q as

n1 n2

Q=:

(
Qn1,n1 Qn1,n2

)
n1

Qtn1,n2
Qn2,n2 n2

we get

qv̂(w) = q(v̄, w̄) + (v̂ − v̄)tQn1,n1(v̂ − v̄)− 2(v̂ − v̄)tQn1,n2w̄

+w̄tQn2,n2w̄ + 2(Qtn1,n2
(v̂ − v̄)−Qn2,n2w̄)tw + wtQn2,n2w

= c′ + 2(Qtn1,n2
(v̂ − v̄)−Qn2,n2w̄)tw + wtQn2,n2w

where Qn2,n2 is symmetric and positive de�nite since it is derived from Q by deleting the �rst
n1 rows and columns and hence

ŵ = −1

2
Q−1
n2,n2

(2(Qtn1,n2
(v̂ − v̄)−Qn2,n2w̄)) = −Q−1

n2,n2
Qtn1,n2

(v̂ − v̄) + w̄

is the optimal solution to min{qv̂(w) := q(v̂, w) : w ∈ Rn2} as above.
To use Corollary 6.15 we �rst of all investigate what g(v) := minw∈Rn2 qv(w) looks like.

Lemma 6.24. Let q(v, w) = q(v̄, w̄) + ((v− v̄)t, (w− w̄)t)Q

(
v − v̄
w − w̄

)
for a symmetric and

positive de�nite Q, then

g(v) := min
w∈Rn2

qv(w) = q(v̄, w̄) + (v − v̄)tQ̃(v − v̄)

where Q̃ = Qn1,n1 −Qn1,n2Q
−1
n2,n2

Qtn1,n2
is again symmetric and positive de�nite.
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Proof. As above we get

g(v) = q(v̄, w̄) + (v − v̄)tQn1,n1(v − v̄)− 2(v − v̄)tQn1,n2w̄ + w̄tQn2,n2w̄

+ min
w∈Rn2

[2(Qtn1,n2
(v − v̄)−Qn2,n2w̄)tw + wtQn2,n2w]

and using ŵ = argmin{2(Qtn1,n2
(v − v̄)−Qn2,n2w̄)tw + wtQn2,n2w} as above we get

min
w∈Rn2

[2(Qtn1,n2
(v − v̄)−Qn2,n2w̄)tw + wtQn2,n2w]

= −(v − v̄)tQn1,n2Q
−1
n2,n2

Qtn1,n2
(v − v̄) + 2(v − v̄)tQn1,n2w̄ − w̄tQn2,n2w̄.

Thus we have

g(v) = q(v̄, w̄) + (v − v̄)tQn1,n1(v − v̄)− 2(v − v̄)tQn1,n2w̄ + w̄tQn2,n2w̄

−(v − v̄)tQn1,n2Q
−1
n2,n2

Qtn1,n2
(v − v̄) + 2(v − v̄)tQn1,n2w̄ − w̄tQn2,n2w̄

= q(v̄, w̄) + (v − v̄)t [Qn1,n1 −Qn1,n2Q
−1
n2,n2

Qtn1,n2
]

︸ ︷︷ ︸
=:Q̃

(v − v̄)

and Q̃ := Qn1,n1 −Qn1,n2Q
−1
n2,n2

Qtn1,n2
is again symmetric and positive de�nite:

(Qn1,n1 − Qn1,n2Q
−1
n2,n2

Qtn1,n2
)t = Qn1,n1 − Qn1,n2Q

−1
n2,n2

Qtn1,n2
since Qn1,n1 and Qn2,n2 are

symmetric as they are derived from Q by deleting either the last n2 or the �rst n1 rows
and columns.

Let v ∈ Rn1 then

vt(Qn1,n1 −Qn1,n2Q
−1
n2,n2

Qtn1,n2
)v = (v,−Q−1

n2,n2
Qtn1,n2

v)tQ

(
v

−Q−1
n2,n2

Qtn1,n2
v

)
≥ 0

as Q is positive de�nite.

This means, consistent with Assumption 6.13, g(v) exists for all v ∈ Rn1 , (IP )g becomes

(CQIP )g min g(v) = q(v̄, w̄) + (v − v̄)tQ̃(v − v̄) (6.7)

s.t. v ∈ Zn1

and in line with Theorem 6.14 we get V̄g = {v̄} = Proj((V,W ))n1 .

Remark 6.25. Lemma 6.24 means that the projection of an ellipsoid is again an ellipsoid
which is neither surprising nor new. For example Karl et al. [1994] showed that

Proj(E(Q, 0))n1 = E(Q̃, 0) for Q̃ = (CtQ−1C)−1 where C =

(
In1

0n2,n1

)
.

However we were able to derive this result just by using our theory and furthermore get a form
for Q̃ that �ts into our framework.

The question whether (CQMIP ) has the (Strong) Rounding Property hence boils down to
the question whether (CQIP )g has the (Strong) Rounding Property. Thus we investigate

under which assumptions (on Q) E(Q̃, x̄) is axisparallel or quasiround.
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6. Extension to mixed-integer problems

(i) First of all we observe that if Q = Diag (t) for some t > 0 we have Q̃ = Qn1,n1 =
Diag ((t1, . . . , tn1)).

(ii) It is also su�cient that Qn1,n1 = Diag (t′) for some t′ > 0 and Qn1,n2 = 0n1,n2 which is
a special case of Lemma 6.22.

(iii) But it is also possible that Q̃ = Diag (t′) for some t′ > 0 even though Q does not contain

any zeros: consider for example Q =




1 1 2
1 3 4
2 4 8


 which is symmetric and positive

de�nite and results for n1 = 2 in Q̃ =

(
1
2 0
0 1

)
. Note that this means also that

Lemma 6.22 and 6.23 give only su�cient but not necessary conditions for the projection
to be cross-shaped.

(iv) For n1 = 1 we have Q̃ ∈ R and hence g(v) = q(v̄, w̄) + Q̃(v − v̄)2 and the level sets are
symmetric intervals about v̄ which means that the problem has the Strong Rounding
Property, in line with Lemma 6.17.

(v) We have already seen in Lemma 6.18 that the projection of the level set can only become
rounder and this applies of course also to the case of ellipsoids: E(Q̃, v̄) ⊆ Rn1 is at least
as round as E(Q, (v̄, w̄)) ⊆ Rn1+n2 .

To end this chapter we apply section 6.3 to this special case of objective functions and obtain
the following lemma.

Lemma 6.26. Let

(CQIP ) min q(x) := xtQx+ Ltx

s.t. x ∈ Zn

be given where Q ∈ Rn,n is symmetric and positive de�nite and L ∈ Rn. If there exists
I ⊆ {1, . . . , n}, I 6= ∅ such that qij = 0 ∀j 6= i for all i ∈ I and (−1

2Q
−1L)i∈I /∈ Z|I| we get

the following hierarchy of bounds

q(x̄) < q(¯̄x) ≤ q(x∗)

where x̄ = −1
2Q
−1L is the optimal solution to the continuous relaxation, ¯̄x =

{
x̄ if i /∈ I
bx̄e if i ∈ I

and x∗ is an optimal solution to (CQIP ).

Proof. We show that ¯̄x is an optimal solution to

(CQMIP ) min q(x)

s.t. xi ∈ Z ∀i ∈ I.

Then Lemma 6.21 proves that q(¯̄x) ≤ q(x∗) and since (x̄i)i∈I /∈ Z|I| we get that ¯̄x 6= x̄ and
hence q(x̄) < q(¯̄x) since Q is positive de�nite.
To show that ¯̄x is an optimal solution to (CQMIP ) we prove that (CQMIP ) has the Strong
Rounding Property and that (x̄i)i/∈I is an optimal solution to min{qv̂(w) : w ∈ Rn−|I|} for
v̂ = (bx̄ie)i∈I .
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6.4. Application to convex quadratic problems

Q̃ = QI,I −QI,JQ−1
J,JQ

t
I,J where J := {1, . . . , n} \ I and QI,J is obtained from Q by deleting

all columns i /∈ J and all rows i /∈ I and so on.

Since qij = 0 ∀j 6= i for all i ∈ I, this means, Q̃ = Diag ((qii)i∈I) and hence Lemma 5.6
reveals that (CQMIP ) has the Strong Rounding Property.

As above we have that ŵ = −Q−1
J,JQ

t
I,J(v̂− v̄) + w̄ is an optimal solution to min{qv̂(w) : w ∈

Rn−|I|}. Since QI,J = 0I,J , this means, ŵ = w̄ = (x̄i)i/∈I .

Since

q(x) = q(x̄) + (x− x̄)tQ(x− x̄)

= q(x̄) + (xi − x̄i)ti∈IQI,I(xi − x̄i)i∈I + (xj − x̄j)tj∈JQJ,J(xj − x̄j)j∈J
= q(x̄) +

∑

i∈I
qii(xi − x̄i)2 + (xj − x̄j)tj∈JQJ,J(xj − x̄j)j∈J

we observe x∗i = bx̄ei for all i ∈ I in this situation.

We examine the di�erent bounds in the following example.

Example 6.27. Consider the problem

min q(x) := xt




7 0 0 0 0
0 9.16 0 0 −11.88
0 0 10 0 0
0 0 0 13 0
0 −11.88 0 0 16.09



x+ (−1.4,−6.24, 12,−19.5, 7.82)x

s.t. x ∈ Z5.

We get x̄ = −1
2Q
−1L = (0.1, 0.6,−0.6, 0.75, 0.2)t and q(x̄) = −12.0725. Here I = {1, 3, 4}

and hence ¯̄x = (0, 0.6,−1, 1, 0.2)t and q(¯̄x) = −9.59.
As mentioned before x∗i = bx̄ie for all i ∈ I. To determine x∗j for j ∈ J = {2, 5} we have to
solve the problem

(CQIP )′ min (w −
(

0.6
0.2

)
)t
(

9.16 −11.88
−11.88 16.09

)
(w −

(
0.6
0.2

)
)

s.t. w ∈ Z2.

The level sets of this problem are depicted in Figure 6.6.
Together we get x∗ = (0,−1,−1, 1,−1)t and q(x∗) = −8.59. Hence we have

q(x̄) = −12.0725 < q(¯̄x) = −9.59 < q(x∗) = −8.59.
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6. Extension to mixed-integer problems

w̄

w∗

Figure 6.6.: The unique optimal solution to (CQIP )′ is w∗ = (−1,−1)t.
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6.5. Summary

6.5. Summary

In this chapter we de�ned a Rounding Property and a Strong Rounding Property for mixed-
integer optimization problems: we say that a mixed-integer problem has the (Strong) Round-
ing Property if for any optimal solution (v̄, w̄) ∈ (V,W ) to its continuous relaxation (CP )
there exists an optimal solution (v∗, w∗) ∈ (V,W )∗ such that v∗ ∈ Round(v̄) (or v∗ = bv̄e
respectively). We showed how to adapt the algorithm we got in Chapter 1 for pure integer
problems having the (Strong) Rounding Property to solve mixed-integer problems having the
(Strong) Rounding Property. The di�erence is that in the mixed-integer case we only round
the v variables and hence we have to determine the corresponding w variables. To this end
we solve the lower dimensional continuous problem min{f(v, w) : (v, w) ∈ F, w ∈ Rn2} for
�xed v ∈ Proj(F )n1 ∩ Zn1 .
In the next section we showed that a mixed-integer problem

(MIP ) min{f(v, w) : (v, w) ∈ F, v ∈ Zn1 , w ∈ Rn2}

has the (Strong) Rounding Property if and only if the lower dimensional pure integer problem
(IP )g min{g(v) : v ∈ Proj(F )n1 ∩ Zn1} for g(v) := min{f(v, w) : (v, w) ∈ F, w ∈ Rn2}
has the (Strong) Rounding Property. The proof is based on the observation that the set of
optimal solutions to (CP )g (the continuous relaxation of (IP )g) is the projection of the set of
optimal solutions to the continuous relaxation of (MIP ) and that the set of optimal solutions
to (IP )g is the projection of the set of optimal solutions to (MIP ). This is not only true for
the sets of optimal solutions but for every level set:

LProj(F )n1
≤,g (z) = Proj(LF≤,f (z))n1 .

This means that we can use the results we got in Part I to identify mixed-integer problems
where the corresponding (IP )g has the (Strong) Rounding Property and conclude that also
(MIP ) has the (Strong) Rounding Property.
We use this knowledge about how to identify and how to solve mixed-integer problems that
have the (Strong) Rounding Property to get a lower bound on a pure integer problem: Any
partition of the variables into v and w variables and relaxing the integrality constraint for the
w variables gives a relaxation of the original integer problem. If the resulting mixed-integer
problem has the (Strong) Rounding Property the corresponding lower bound can easily be
calculated. And if the optimal solution to the mixed-integer relaxation is not an optimal
solution to the continuous relaxation this bound is strictly tighter than the bound obtained
by the continuous relaxation.
In the last section we applied the results of this section to the special case of convex quadratic
mixed-integer problems. In this setting we are able to give a closed formula for g(v), which is
again a convex quadratic function. Hence we can apply the results of Chapter 5 to (IP )g.
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7. Conclusion

To end this work we summarize in this chapter the main ideas and results and give some
further research ideas.

7.1. Summary

The general problem we considered in this work is the nonlinear integer problem

(IP ) min{f(x) : x ∈ F ∩ Zn}

where f : Rn → R and F ⊆ Rn. This general problem is NP-hard, but in many cases it is
justi�ed to assume that the continuous relaxation

(CP ) min{f(x) : x ∈ F}

is easier to solve, compare the case of linear integer optimization. As can be seen in the linear
integer problem, the assumption that the continuous relaxation is somehow easier to solve
does not mean that the problem is not NP-hard anymore. In this work we assumed that there
exists an e�cient (not necessarily polynomial) black box algorithm to solve the continuous
relaxation, meaning that we only consider problems where this basic property is ful�lled.
To use this basic assumption to solve the integer problem we de�ned the Rounding Property:

We say that (IP ) has the Rounding Property if for any optimal solution x̄ to
its continuous relaxation (CP ) there exists an optimal solution x∗ ∈ Round(x̄),
where Round(x̄) := {y ∈ Zn : yi ∈ {bxic, dxie} ∀i ∈ {1, . . . , n}}.

This means, if we know that an integer problem has the Rounding Property we can derive
an optimal solution to (IP ) by solving (CP ) to get an optimal continuous minimizer x̄ and
comparing the objective values of the at most 2n points in Round(x̄) ∩ F .
Since there might be a lot of points to compare in Round(x̄)∩F we strengthen the Rounding
Property to get the Strong Rounding Property:
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7. Conclusion

We say that (IP ) has the Strong Rounding Property if for any optimal solution
x̄ to its continuous relaxation (CP ) it holds that bx̄e is an optimal solution to
(IP ), where bx̄e is the closest integer point to x̄, made unique by any �xed tie
breaking rule.

If we know that (IP ) has the Strong Rounding Property we can solve it by solving (CP ) and
rounding the obtained continuous minimizer to its unique closest integer.

The question is: how do we �nd out whether a given nonlinear integer problem has the (Strong)
Rounding Property? The approach we use here is a level set approach, i.e., we derive criteria
like: �if the level sets LF≤,f (z) := {x ∈ F : f(x) ≤ z} have this special geometric shape,
then the problem has the (Strong) Rounding Property�. The underlying idea is the following:
by the special shape of the level sets we make sure that whenever a feasible integer point
x ∈ Zn ∩F is in a level set LF≤,f (ẑ), then there is at least one rounded point x̃ ∈ Round(x̄) in
this level set, compare Figure 7.1: due to the shape of the level sets x̃ ∈ Round(x̄) is among
the �rst integer points that are reached by growing the level sets. Hence this problem has the
Rounding Property.

x∗
1 = x̃

x∗
2

x̄

Figure 7.1.: A problem that has the Rounding Property: x̄ is the unique continuous minimizer,
the dotted lines depict level sets L≤,f (z) for di�erent levels z and the light gray
area is L≤,f (f(x∗)).

The same approach can be used to guarantee the Strong Rounding Property: here we have to
make sure that whenever a feasible integer point is in a level set, also bx̄e is in this level set.

Since these properties might not be easy to test, we identi�ed features of level sets ensuring
this property, that are hopefully easier to check. First of all, we observe that we do not have
to restrict all level sets, but only the �rst ones until we reach the �rst integer point. Of course
we do not know the �rst integer point, since this is the optimal solution to (IP ) we are looking
for. Therefore we relax this condition and assume that the level sets have the required feature
until the �rst feasible point in Round(x̄) (or bx̄e respectively) is reached.
The �rst feature we introduced is being quasi-round with respect to the continuous minimizer
x̄. The de�nition means geometrically that a set is not too di�erent from a ball centered at
x̄: given a �xed value α, a level set L≤,f (z) ⊆ Rn is α-quasi-round w.r.t. x̄, if there exists
a radius r ∈ R+

0 such that the ball centered at x̄ with radius r is completely contained in
L≤,f (z) and the ball centered in x̄ with radius r + α completely contains L≤,f (z), compare
Figure 7.2.

156



7.1. Summary

x̄
rα

Figure 7.2.: An example for an α-quasi-round set with respect to x̄.

This way we make sure that whenever an integer point x is in L≤,f (z), it is also in the ball
with radius r+α and if we choose α small enough, this means, r ≥ minx̃∈Round(x̄)∩F ‖x̄− x̃‖2
(or r ≥ ‖x̄−bx̄e‖2 respectively) and we are done. This is not only possible for Euclidean balls
but for any p-norm balls. The main task in the corresponding chapter was hence to determine
the right size of α to ensure either the Rounding Property or the Strong Rounding Property.
Furthermore, we were able to adapt α to guarantee also other proximity results of the form:
for each optimal solution x̄ to the continuous relaxation there exists an optimal solution x∗ to
(IP ) such that ‖x̄− x∗‖∞ ≤ c for a �xed c ∈ N.

The second way we identi�ed of ensuring the Rounding Property is to require the level sets to
be cross-shaped with respect to the continuous minimizer x̄: whenever a point y is in L≤,f (z)
also the axisparallel box given by y and x̄ is in L≤,f (z), compare Figure 7.3.

x̄

y

Figure 7.3.: An example for a cross-shaped set w.r.t. x̄.

If y is an integer point there is always at least one of the rounded points in this box and hence
we are done. To even get the Strong Rounding Property we have to assume furthermore that
the level sets are symmetric with respect to the hyperplanes parallel to the coordinate axes
through x̄. Since pictures like the one in Figure 7.3 might suggest a connection to biconvexity,
we investigated the connection to the de�nitions of convexity, biconvexity and ortho-convexity.
Furthermore, we introduced the concept of quasi-cross-shapedness, which is an adaption of
quasi-roundness: we do not assume that the set can be enclosed between two balls but between
two scaled versions of a cross-shaped set.

Geometrically, we can interpret quasi-roundness and cross-shapedness in the following way:
using the right α in the de�nition of α-quasi-roundness we use the size of the integer lattice
to determine a shape that leads to the Rounding Property. On the other hand, for the
de�nition of cross-shapedness we use the orientation of the lattice. This explains also why
quasi-roundness is not preserved under scaling and cross-shapedness not under rotation.
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7. Conclusion

In the second part of this work we showed an application to unconstrained convex quadratic
integer problems and an extension to mixed-integer problems. The special case of convex
quadratic integer problems is an interesting �eld of application for our theory since the con-
tinuous relaxation can be solved extremely easily and the continuous minimizer is unique.
Furthermore, we know that the level sets are ellipsoids whose shape is determined only by the
Hessian of the quadratic objective function. Nevertheless, the unconstrained convex quadratic
integer problem is still NP-hard. We investigated when ellipsoids are cross-shaped, quasi-round
or quasi-cross-shaped with respect to their center. But, in addition, we also explored how to
use our ideas if the original problem does not have the Rounding Property. In those cases we
use a convex quadratic underestimator to the original objective function that has the Strong
Rounding Property. Using this underestimator we get a lower bound (that is better then the
continuous relaxation) to use in a branch-and-bound tree. We developed several bounds and
embedded them in the branch-and-bound framework by Buchheim et al. [2012a]. Some �rst
computational results show that at least one of our bounds outperforms the bound originally
used by Buchheim et al. [2012a]. Our other bounds are stricter but their computation time is
too long.

If not all but only some of the variables have to be integer, we say that a mixed-integer problem
has the Rounding Property if for any optimal solution to its continuous relaxation there exists
an optimal solution to the mixed-integer problem such that the integer variables are among
the rounded coordinates of the corresponding variables of the continuous minimizer. The main
result of the corresponding chapter is that a mixed-integer problem has the (Strong) Rounding
Property if and only if its projection onto the integer variables has the (Strong) Rounding
Property. We used this result to identify problems where a mixed-integer bound can be found
by rounding some of the variables of the continuous relaxation and therefore outperforms the
bound obtained by the continuous relaxation.

7.2. Further research directions

An obvious �eld of open questions is the search for other shapes, as quasi-round and cross-
shaped, that guarantee the Rounding Property. In the light of our experiences we expect that
this requires some link between the shape in question and the integer lattice, compare also
the discussion about quasi-roundness and cross-shapedness in the previous section.

Another really interesting question is whether it would be of any help if the level sets are
not quasi-round or cross-shaped with respect to the continuous minimizer, but with respect
to some other point. (This is, at least for the cross-shaped case, not possible for the set
of continuous minimizers X̄, but as mentioned in Chapter 4 we could relax the assumptions
anyway.) A possible application for this setting could be a perturbed p-norm where, in contrast
to Section 2.3.1, we do not force the continuous minimizer to stay the same. If the perturbation
is not too large, we might get that the level sets are quasi-round with respect to the continuous
minimizer of the unperturbed problem. This would imply that we can get an optimal solution
to the perturbed integer problem by rounding the unperturbed continuous minimizer and
hence without determining the perturbed continuous minimizer. It seems worth to think
further about this question.

Next we mention two questions that are closely connected to the results and concepts presented
in this work.
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7.2. Further research directions

In Section 3.5 we introduced the concept of quasi-cross-shapedness. As mentioned the chal-
lenge is to determine the appropriate ε to guarantee the Rounding Property. We were able
to calculate this value for the special cases of quasi-roundness and quasi-axisparallelity. The
question is whether there are other special cases for which this is also possible. One could
think for example of something like quasi-rectangular shaped.
In Chapter 5 we used underestimators that have the Strong Rounding Property to calculate
lower bounds to use in a branch-and-bound setting. In the enumeration tree we can stop
branching as soon as we obtain a problem that has the Strong Rounding Property, since we
can easily solve it to optimality. Remember that in each depth of the tree the Hessian of the
objective function (that de�nes the shape of the corresponding level sets) only depends on the
depth in the tree and is obtained from the Hessian of the original problem by deleting some
rows and columns. The question is hence whether it is possible to �x the variables in an order
that leads as soon as possible to separable objective functions or functions with quasi-round
level sets and hence to the Strong Rounding Property.

Another more fundamental research direction could be to investigate the following problem:
assume that we know that a given problem has the Rounding Property. Now we are given
the chance to demand a speci�c continuous minimizer of the black-box algorithm we use to
solve the continuous relaxation. Which one should we choose? The aim is of course to make
|F ∩Round(x̄)| as small as possible in order to have few integer points to compare. A possible
solution could be to ask for a continuous minimizer that has a lot of integer components, but
maybe it is even better to take one that is close to or even on the boundary of F .

Last but not least we have to mention that we need to keep looking for more applications
to test our approach. The di�culty is most of the time that we assume a lot of knowledge
about the shapes of the level sets. Nevertheless, we have seen in Chapter 5 that the fact
that we know what the level sets look like does not necessarily mean that the problem is easy
to solve in general. A promising approach might also be to approximate the level sets in a
certain neighborhood of the continuous minimizer, for example by considering the level sets
of a Taylor approximation. The important task is then of course to guarantee that not only
the approximation but also the original function has the Rounding Property.
Looking for applications might also lead to the interesting question whether there are proper-
ties of problems that guarantee the (Strong) Rounding Property and that can be tested by a
computer.
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Frequently used notation

General notation

Z integer numbers
Zn integer lattice of dimension n
R real numbers
R+

0 non-negative real numbers
Rn Euclidean space of dimension n
Rn,n set of real n× n-matrices

Rounding Property

(IP ) (pure) integer program
(MIP ) mixed-integer program
(CP ) continuous prgramm, used here for the continuous relaxation
(f, F ) min{f(x) : x ∈ F} possibly with further integrality constraints if mentioned
X∗ set of optimal solutions to (IP ) or (MIP )
x∗ an optimal solution to (IP )
X̄ set of optimal solutions to (CP )
x̄ an optimal solution to (CP )
RP Rounding Property
SRP Strong Rounding Property

For x ∈ R

bxc = max{y ∈ Z : y ≤ x}
dxe = min{y ∈ Z : y ≥ x}
bxe = argmin{|x− y| : y ∈ Z} made unique by any �xed tie-breaking rule

Round(x) = {bxc, dxe}
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7. Conclusion

For x ∈ Rn

bxc = (bx1c, . . . , bxnc)
dxe = (dx1e, . . . , dxne)
bxe = (bx1e, . . . , bxne) (∈ argmin dp(x,Zn))
bxeF ∈ argmin dp(x,Zn ∩ F )

Round(x) = {y ∈ Zn : yi ∈ Round(xi)}
x̃ ∈ argmin dp(x,Zn \ Round(x))
x̃F ∈ argmin dp(x, (Zn ∩ F ) \ Round(x))
x̂ ∈ argmin dp(x,Zn \ {bxe})
x̂F ∈ argmin dp(x, (Zn ∩ F ) \ {bx̄e})

Sets

LD≤,f (z) = {x ∈ D : f(x) ≤ z}, for f : D → R, z ∈ R
Bp(x, r) = {y ∈ Rn : ‖x− y‖p ≤ r}, for x ∈ Rn, r ∈ R+

0 , p ∈ [1,∞]
[x, y]d = {z ∈ Rn : d(x− z) + d(z − y) = d(x− y)},

for x, y ∈ Rn, d : Rn → R a norm
E(Q, x) = {y ∈ Rn : (y − x)>Q(y − x) ≤ 1},

for Q ∈ Rn,n positive semide�nite, x ∈ Rn
Proj(M)m = {x ∈ Rm : ∃y ∈ Rn−m : (x, y) ∈M}, for M ⊆ Rn where n > m

Distances
dp(x,M) = inf{‖x− y‖p : y ∈M}, for x ∈ Rn, M ⊆ Rn, p ∈ [1,∞]

‖x‖Q =
√
x>Qx, for Q ∈ Rn,n positive semide�nite, x ∈ Rn

‖x‖t =
√
x>Diag (t)x, for t ≥ 0, x ∈ Rn
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Summary of contributions

In this section we outline which of the results presented in this work have been derived in
cooperation with others and which results are part of submitted papers.

Section 1.2 and Section 1.3: Most of the given de�nitions as well as Lemma 1.18 are already
submitted in Hübner and Schöbel [2013].

Chapter 2: The de�nition of quasi-roundness, the connection between the quasi-roundness
of the level sets and the Rounding Property as well as the calculation of αp(x̄) and αp are
already submitted in Hübner and Schöbel [2013]. The idea to adapt αp to even get the
Strong Rounding Property is joint work with Anita Schöbel and Christoph Buchheim and the
corresponding theorem as well as the calculation of βp(x̄) can be found in Buchheim et al.
[2013]. The examples in Section 2.3.1 are also submitted in Hübner and Schöbel [2013].

Chapter 3: The de�nition of cross-shapedness and the connection between cross-shaped level
sets and the (Strong) Rounding Property are also given in Hübner and Schöbel [2013]. Also the
results about separable convex functions and absolute norms can be found there. Section 3.4.3
bene�ted from the correspondence with Arie Tamir.

Chapter 5: This chapter is joint work with Anita Schöbel and Christoph Buchheim, com-
pare Buchheim et al. [2013]. The computational results have been done by Christoph.
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