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SUMMARY 

The knowledge of the extent and pattern of linkage disequilibrium (LD) is necessary for 

estimating the number of SNPs required for implementing association mapping studies as 

well as describing genomic structure of the bovine genome as a whole. In the first work 

of this study we used Illumina Bovine SNP50K BeadChip genotypes in a sample of 

German Holstein–Friesian cattle and developed a second generation of LD map statistics 

which has four times higher resolution compared to the maps available so far. These 

results revealed a lower level of LD for SNP pairs at distances ≤100 Kb than previously 

thought. The level of LD obtained in this study indicated that a denser SNP map would be 

beneficial to capture the LD information required for whole-genome fine mapping and 

genomic selection and to completely assess the pattern of LD across the genome.  

Effective population size (Ne) was estimated based on the direct estimates of 

recombination rates from haplotype data and showed a persistent decline in about 100 

individuals at the current generations. The impact of allele frequency in analyzing 

genome-wide LD was also explored in this part. Our observation revealed that 

minimizing the allele frequency difference between SNPs, reduces the influence of 

frequency on r2 estimates and provides a useful metric for analyzing LD. The larger block 

size in Holstein cattle observed in this study indicates substantially greater LD in cattle 

than in human populations. 

The second task of this thesis involved our attempts to find traces of decades of intensive 

artificial selection for traits of economically importance in modern cattle. In the first 

experiment we employed the recently described Extended Haplotype Homozygosity 

(EHH) test for tagging the genome wide footprints of positive selection in Holstein-

Friesian cattle. This test uses the characteristics of haplotypes to detect selection by 

measuring the decay of haplotype homozygosity within a single population. To formally 

assess the significance of these results, we compared the combination of frequency and 

the Relative Extended Haplotype Homozygosity (REHH) value of each core haplotype 

with equally frequent haplotypes across the genome. A subset of the putative regions 
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showing the highest significance genome-wide was mapped. Regarding the fact that 

problems arising from multiple testing may have affected the results we performed a 

further validation by aligning the 12 regions of extreme REHH to the bovine genome 

(Btau 4.0) to verify any coincidence of the preliminary signals observed with important 

genomic regions. We found co-location of a panel of genes such as FABP3, CLPN3, 

SPERT, HTR2A5, ABCE1, BMP4 and PTGER2 and some others with putative regions. 

This panel represents a broad range of economically important traits such as milk yield 

and composition as well as reproductive and behavioral traits. We also reported high 

values of LD and a slower decay of haplotype homozygosity for some candidate regions 

harboring major genes related to dairy quality. The results of this study provided a 

genome wide map of selection footprints in Holstein genome. 

In further experiments we exploited the variation among populations to explore the 

signatures of past selection. In this sense, we developed a new Bayesian approach for 

detecting differentiated loci based on FST and applied it to a set of geographically 

separated populations with identical or diverse breeding goals. This algorithm was able to 

deal with a large battery of marker information. Clustering the genome-wide estimates of 

FST values between Holstein and Brown Swiss versus Angus and Piedemontese breeds 

using Akaike’s criterion recognized two groups, one representing putatively neutral loci, 

and the other possibly corresponding the genomic regions affected by selection.  

We examined the potential of FST analysis in detecting selection signals by testing some 

candidate major genes in our data set. The results revealed FST values larger than 

expected (P < 10%) for regions harboring the Casein cluster, GHR, STS, LP and IGF-1 

genes which are supposed to be targets for artificial selection. However, we were not able 

to propose strong candidate genes on the basis of the gene content in the vicinity of 

extreme signals. As an explanation, we theorized that selection may work on genes that 

were not considered the primary targets of selection so far. Consistent with the previous 

reports our results mostly revealed gene deserts in the location of extreme peaks, which 

may reflect selection acting on uncharacterized regulatory region or simply fixation of 

non-coding DNA by genetic drift in the absence of any selection. Thus, these results in 
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combination with the observations on human population data suggest that non-coding 

regions have been an important substrate for adaptive evolution. 

In a parallel analysis the integrated Haplotype Homozygosity Score (|iHS|) a derivation of 

EHH test, was applied for tracing on-going sweeps. After estimating |iHS| for each locus, 

we defined regions of the genome that may contain targets of positive selection as 

windows in the extreme of empirical distribution. This criterion resulted in 94 significant 

windows (P ≤ 0.05). These results revealed significant enrichments for genes such as 

SPATA17, MGAT1, PGRMC2 and SRD5A2 in the region of clustered signals which 

belong to the number of functional categories relevant to reproduction including gamete 

generation, embryo development and spermatogenesis and genes in these categories may 

provide strong candidates for selection for fertility traits.  

Another interesting observation is the presence of the genes like Actinin, Collagen and 

fibroblast activation protein as well as the gene responsible for developing the cartilage 

rudiments in the positively selected regions of beef cattle. These results suggest that 

selection for muscle related phenotypes play a major role in the shaping the beef cattle. 

These results generally are consistent with the previous reports and begin to suggest 

general themes about the types of genes that have been targets of positive selection in 

cattle genome.  

Overall, based on the results of this study we conclude that high-resolution genome scans 

using dense markers are capable to identify outlier regions that potentially contain genes 

contributing to within and inter-breed phenotypic variation. Our results may be of future 

interest for identifying signatures of recent positive artificial selection between the cattle 

breeds or as additional evidence for any polymorphisms that show associations with beef 

or milk traits. 
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Preface 

Most traits of economic importance in cattle are of complex and quantitative in nature. 

These traits are regulated by a combination of genes and environmental factors, which 

make it much more difficult to locate the genes controlling the trait of interest. Until 

recently, the genetic improvement has been achieved using conventional breeding 

programs which are based on the statistical evaluation of breeding values estimated from 

the phenotypes of an animal and its relatives. However, some of the traits cannot be 

improved very efficiently using the conventional breeding program for reasons such as 

low heritability of the traits, difficulty or expense in collecting phenotypes, or phenotypes 

collected later in life (Dekkers, 2004). Advanced genetic progress in such traits can be 

achieved by selection based on genetic markers (marker assisted selection; MAS). 

However, before the implementation of marker assisted selection, characterization of 

variants and their association with quantitative trait loci (QTL) in the genome of the 

respective breed is essential. Therefore, search for regions underlying the phenotypic 

variation of relevant traits is of great interest in breeding strategies which aim at using 

existing variation in those genes to select for superior individuals. 

High-throughput genotyping 

Since the trait-affecting gene is a priori unknown, all methods are base on neutral genetic 

markers. These are variations of the genome that can be genotyped at reasonable cost and 

time. Single nucleotide polymorphisms (SNPs) are the most abundant form of genomic 

variation and are defined as the single base pair position in DNA at which different 

sequences alternatives exist. SNPs are usually bi-allelic and, thus, show a low 

heterozygosity, but have the advantage of low mutation rates and low genotyping costs 

for large-scale genotyping through automation. The completion of the bovine genome 

sequence assembly (The Bovine Genome Consortium, 2009) formed a huge source of 

available SNP markers, suitable to carry out genome-wide studies (see below).  
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Currently, two major companies are providing fixed SNP panels for genome-wide SNP 

genotyping – Illumina and Affymetrix Inc. Both of these companies are offering very 

high throughput porcessing, high genotyping accuracy and low cost per SNP analysis. 

There are obvious advantages of having fixed SNP panels, including the possibility of 

combining datasets across laboratories and designing statistical methods for commonly 

used panels. SNPs are the marker of choice in general use today and in this study we use 

the bovine 50K Bead chip provided by Illumina Inc. 

Search for genes underlying phenotypic variation  

The search for the trait-affecting regions of the genome can be performed using either 

top-down or bottom-up genetic approaches (Ross-Ibarra et al., 2007). In top-down 

methods (also called association mapping), researchers start with a phenotype of interest 

and dissect down to the underlying genetic basis. An association between a genetic 

variant and a phenotype would suggest that either the variability at that locus is the 

causative mutation underlying the QTL, or the variation is in linkage disequilibrium with 

the QTL. This approach usually requires positional cloning of QTL or association 

analyses targeting particular candidate genes identified based on homology to genes that 

are known to control the same, or similar, phenotypes in another species. Detection of 

such polymorphisms is an important prerequisite for marker assisted selection which will 

expedite genetic improvement of economically important traits. Although top-down 

approaches seem to be promising to dissect phenotypic variation in livestock populations, 

they are not without drawbacks. For example, positional cloning is both costly and labor-

intensive, and such efforts have resulted in only a few successes in livestock systems 

(e.g., Grisart et al., 2002; Van Laere et al., 2003; Cohen-Zinder et al., 2005). Moreover, 

while association mapping holds great promise when researchers have a priori knowledge 

of the genes that are likely to be regulating a trait of interest, such studies can produce a 

biased picture of the types of genes that are responsible for phenotypic evolution. 

By contrast, bottom-up approaches involve the generation and statistical evaluation of 

population genomic data to identify likely targets of past selection. The main principles 
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of the population genomics approach to QTL mapping are that neutral loci across the 

genome will be similarly affected by genetic drift, demography, and evolutionary history 

of populations, while loci under selection will often behave differently and, therefore, 

reveal “outlier” patterns of variation. As such, functionally important genes can, at least 

in principle, be identified based on observed patterns of genetic variation even in the 

absence of information as to which trait(s) they regulate. Such bottom-up approaches 

provide a more or less unbiased view of the molecular basis of phenotypic evolution. The 

population genomics approach can also identify genes subjected to strong selection 

pressure and eventually fixed within breeds, and, in particular, genes involved in 

adaptation to extreme environments, disease resistance etc (Akey et al., 2002; Hayes et 

al., 2009). Many of these traits, which are of great importance to the sustainability of 

animal breeding, are difficult or impossible to investigate by classic QTL mapping or 

association study approaches (Dekkers, 2004), often due to a lack of well defined 

phenotypes. Taking all of the above into account, it is clear that gene mapping strategies 

must be interpreted within the context of the genetic structure of the populations being 

studied. 

Linkage disequilibrium  

The basic factor influencing the outcome of statistical gene mapping strategies in animal 

species is the phenomenon of linkage disequilibrium (LD) or allelic association. An 

individual’s chromosomal genotype consists of two haplotypes, one derived from the 

maternal gamete and the other from the paternal one. In a narrower sense, a haplotype is 

the particular combination of alleles that are inherited together as a unit (Figure 1). 

 

Figure 1: A 3 SNP haplotype pair in a diploid individual. 
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LD refers to correlations among neighboring alleles reflecting haplotypes descended from 

single ancestral chromosomes (Reich et al., 2001). Haplotypes are only disrupted by 

mutation and recombination in subsequent generations. Haplotypes therefore can be used 

as markers for tracking a variant allele in a population. Quantifying the extent of LD is 

the essential first step to determine how many markers are required to perform whole 

genome association studies. In addition, patterns of LD aid in exploring the different 

evolutionary forces that may have generated LD in certain regions of the genome (Ardlie 

et al., 2002). Therefore, LD maps not only identify alleles that have undergone selection, 

but are also important for the design and application of association studies in cattle 

populations.  

LD has been found to be variable both within and among loci and populations (Gabriel et 

al., 2002; Pritchard and Przeworski, 2001). Since LD depends on the age of the SNP-

creating mutations, the population history, genetic drift, the recombination fraction, gene 

conversion, admixture, hitchhiking, effective population size and selection (Ardlie et al., 

2002), it is highly variable even between close loci (see Chapter 2 for details). 

A number of measures for the strength of LD have been proposed. To formally introduce 

pairwise LD measures, consider two bi-allelic loci A and B, possessing alleles A1, A2;
 B1, 

B2, respectively. Let pij denote the probability of haplotype (i, j), i.e. locus 1 exhibits the 

allele i and locus 2 the allele j. Let pi. and p.j denote the single frequencies of alleles i and 

j at loci 1 and 2, respectively. These probabilities can be arranged in a contingency table:  

 

 

 

 

 1 2 ∑ 

1 p11 p12 p1. 

2 p21 p22 p2. 

∑ p.1 p.2 1 
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Under linkage equilibrium, the expected haplotype frequencies are the product of the 

allele frequencies: jiij ppp ..= .The deviation from the expectation for this particular 

haplotype is measured by: 

)2,1,(.. =−= jipppD jiijij  

For two bi-allelic loci, the absolute value of the deviation is the same for all four 

haplotypes: DD ji

ij

+−= )1(  where jiij pppD ..−= . Thus, the deviation for one haplotype 

describes the other three as well. However, linkage disequilibrium decays with time (t) 

and recombinational distance (r) according to the following formula:  

0)1( DrD t

t
−=  

where D0 is the extent of disequilibrium at some starting point and Dt is the extent of 

disequilibrium t generations later. Over time, recombination erodes linkage 

disequilibrium between alleles, which occurs more frequently between distantly located 

genes than between tightly linked genes. Therefore, D would be small between loci far 

apart from each other and would decrease with time as a result of recombination. Because 

of these dependencies, it has not been recommended to use D for measuring and 

comparing the level of LD but to use a standardized parameter (Ardlie et al., 2002). The 

absolute value of D’ (also called Lewontin’s D’) is calculated by dividing D by its 

maximum possible value, given the allele frequencies at the two loci (Lewontin, 1964). 
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Another measure of linkage disequilibrium is the square of the correlation coefficient (r2) 

between marker alleles (Hill and Robertson, 1968). It is calculated as D divided by the 

product of the four allele frequencies at the two loci: 

2121

2
2

.... pppp

D
r =  

When r2 is equal to one for two markers, it shows perfect linkage disequilibrium and one 

marker provides complete information about the other marker, making the other marker 

redundant (Ardlie et al., 2002).  

Although these measures are useful to assess pairwise LD, they cannot consider more 

than two loci and, thus, are blind to simultaneous associations between alleles of more 

than two loci. Furthermore, the measure D’ is not suitable for differentiating different 

degrees of LD. It equals ±1 if at least one haplotype is missing (Ardlie et al., 2002). 

Missing haplotypes are more probable for rare SNP alleles and for multiple SNP 

sequences than for short sequences of common SNPs. Also, the measure D’ shows much 

more inflation than r2 when small or moderate sample sizes are used (McRae et al., 2002, 

Weiss and Clark 2002). In other words, for small to moderate sample sizes, estimates of 

D’ can exhibit a considerable upward bias (Teare et al., 2002, Terwilliger et al., 2002). 

Even if D’ is estimated to be below 1, it might be strongly biased. The strength of LD 

between a trait locus and a marker, measured by r2, is indirectly proportional to the power 

of finding an association (Kruglyak, 1999; Pritchard and Przeworski, 2001; Teare et al., 

2002). As such, the decline of r2 with distance determines how many markers are required 

in a genome scan to detect a QTL, which cannot be predicted by using D’ (Hayes, 2007). 

Therefore, D’ is rather an indicator for missing haplotypes, perhaps due to absent 

recombination events, than a reliable measure of LD. Early LD studies in cattle used the 

measure D’ (e.g., Farnir et al., 2001; Tenesa et al., 2003), but r2 has recently emerged as a 

measure of choice for comparing the extent of LD (Pritchard and Przeworski, 2001, 

Weiss and Clark, 2002).  
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Signatures of the positive selection  

Detection of signatures of selection is an important tool to identify potential genes that 

might underlie economically important traits and which will improve our ability to link 

genetic variants to the phenotype of interest (Hayes et al., 2008; The Bovine HapMap 

consortium, 2009). The modern cattle has been intensively selected during the last 

centuries, as such, it has achieved tremendous phenotypic changes over the past 40 years. 

Consequently, genomic regions controlling traits of economic importance are expected to 

exhibit footprints of selective breeding. However, it is unknown how selection has 

changed the Holstein genome and what genome changes are associated with the 

phenotypic changes. The advent of the bovine genome sequence and the flood of new 

polymorphism data that has come with it (Matukumalli et al., 2009) has provided 

valuable new tools in the search for traces of the recent selection in the cattle genome 

(e.g., The Bovine HapMap consortium, 2009, Hayes, 2009).  

To this end a number of statistical tests have been developed mostly by human geneticists 

to explore different aspects of how to infer deviations from what is expected with regard 

to genetic variability under a neutral model (e.g., Tajima, 1989; Fay and Wu, 2000; 

Sabeti et al., 2002; Voight et al., 2006; Akey et al., 2002, among some others). 

Although all statistics are based on neutral genomic variation, not all of them rely on the 

same kind of information. These methods can be categorized into two classes, named 

Class I, and II, according to the information used. Class I tests are based on the frequency 

spectrum of single mutations in the sample in contrast to class II estimators which 

principally are based on the haplotype distribution. From class I estimators, the most 

relevant tests are Tajima’s D (Tajima, 1989); Fu and Li’s D, F, D* and F* (Fu and Li, 

1993); Fay and Wu’s H (Fay and Wu, 2000), and R2 (Ramos-Onsins and Rozas, 2002). 

Most of these estimators were designed for full-sequence data and not for genome wide 

collections of pre-ascertained SNPs that are currently available in some livestock species. 

Some of the most easily distinguished traces left by the forces of selection are those left 

by selective sweeps. Selective sweeps occur when an allele becomes more frequent in a 
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population as a result of positive selection. As the positively selected allele increases in 

frequency, linked nearby alleles will do so, too, a phenomenon known as genetic 

hitchhiking (Smith and Haigh, 1974). A strong selective sweep will result in a region of 

the genome where the positively selected haplotype (of the selected variant and linked 

neighboring alleles) is at high frequency, thus leading to a reduced haplotype diversity in 

the region. Thus the occurrence of a selective sweep can be investigated by measuring 

LD or by observing if a haplotype is overrepresented in a population. This is the basic for 

Class II statistics. Within this class the most relevant statistics are FS (Fu. 1997), Dh (Nei, 

1987), B and Q (Wall, 1999), ZnS (Kelly, 1997), ZA and ZZ (Rozas et al., 2001), 

populations differentiation index FST (Akey et al., 2002), EHH (Sabeti et al., 2002) and 

its extensions such as iHS (Voight et al., 2006) and XPEHH (Sabeti et al., 2007) 

estimators. Among the various statistics used for recognizing signals of positive selection 

from polymorphism data, the EHH, iHS and FST estimators are particularly useful and 

would be the methodologies of choice in this study.  

Extended haplotype homozygosity (EHH) test  

As a selective sweep carries an allele on a specific haplotype to high frequency faster 

than the rate at which it is broken down by recombination, high frequency haplotypes will 

be observed longer than expected under neutrality (Sabeti et al., 2002). This phenomenon 

has been exploited in the ‘Extended Haplotype Homozygosity’ algorithm for detecting 

recent positive selection and may be useful in detecting more recent positive selection 

(see chapter 3 for details).  
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Figure 2. The decay in haplotype homozygosity as a function of distance from the 
mutation of interest. Haplotype homozygosity is defined as the probability, at any 
distance, that any two haplotypes that start out the same have all the same SNP genotypes 
(From presentation by: David Reich, Broad Institute). 

Integrated haplotype homozygosity (iHS) test 

This test uses the EHH statistic, which measures the decay of haplotype homozygosity, as 

a function of distance of haplotypes that carry a specified core allele at one end. In this 

concept, directional selection favoring a new mutation results in a rapid increase in the 

frequency of the selected allele along with the background haplotype on which the 

mutation arose. This phenomenon increases LD on the chromosomes which harbor the 

derived (selected) allele. Thus, this measure is most sensitive to a rapid increase in the 

frequency of the derived allele at a selected site, but the derived allele must have existed 

on few distinct backgrounds (haplotypes) prior to selection and must not have reached 

fixation yet (Voight et al. 2006; Sabeti et al. 2007) (see chapter 5 for details). 

Population differentiation index (FST) 

One of the most widely used methods to detect differential selective pressures between 

populations is FST, a measure of the proportion of the genetic variance explained by 

differences among populations. FST can be used to find genes under local selection by 
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comparing the FST value of a single locus against the genome-wide values (Akey et al., 

2002). Allele frequency differences between populations are mainly caused by genetic 

drift, that is, by the random process driven by demographic history. Drift affects all loci 

across the genome in a similar fashion. Loci under selection will often behave differently 

and, therefore, reveal “outlier” patterns of variation, loss of diversity (increase of 

diversity if the loci were under a balanced selection), and through hitchhiking effects 

selection will also influence linked markers, allowing the detection of a “selection 

signature” (outlier effects). This signal can often be detected by genotyping a large 

number of markers along a chromosome and identifying clusters of outliers (see chapters 

4 and 5 for more details). A large number of studies have been published based on this 

principle, building genome-wide empirical distributions of FST based on increasing 

numbers of autosomal SNPs (Akey et al., 2002; Hayes et al., 2009; among many others).  

 

Scope of the thesis  

The knowledge of the extent and pattern of LD is necessary for estimating the number of 

SNPs required for implementing association mapping studies as well as describing certain 

genomic regions. It provides also a better understanding of genomic structure from which 

we can make some tentative inferences about the bovine genome as a whole. As a first 

scope for this thesis we generate a new generation of high density LD map of Holstein 

cattle describing genetic structure based on genotyping thousands of SNPs. This issue is 

presented in chapter 2 of this thesis. 

The second scope of this thesis looks for the traces of decades of intensive artificial 

selection for traits of economically importance in modern cattle and shedding light on 

possible selective events of genes involved which is obviously of great interest. These 

objectives would be accomplished by application of EHH and iHS statistics to develop 

genome-wide map of signatures of recent positive selection. These results are reported in 

chapter 3 and partly in chapter 5 of the thesis, respectively. 
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The FST measure of Wright (1951) will also be used to examine the differences in allele 

frequencies due to selection. To this purpose we develop a new and simple Bayesian 

algorithm for estimating a population differentiation index. Chapter 4 presents this 

algorithm in detail. Finally, we apply this new estimator to measure the population 

division among a set of cattle breeds with diverse breeding goals and compare the results 

with other statistics. The last results would be covered in chapter 5 followed by a general 

discussion in chapter 6. 
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ABSTRACT 

We used DNA samples of 810 German Holstein–Friesian cattle genotyped by the 

Illumina Bovine SNP50K BeadChip to analyze linkage disequilibrium (LD) structure. A 

panel of 40’854 (75.65%) markers was included into the final analysis. The pair-wise r2 

statistic of SNPs apart up to 5Mbp across the genome was estimated. A mean value of 

r
2=0.30 ± 0.32 was observed in pair-wise distances of <25 Kb and it dropped to 0.20 ± 

0.24 at 50 to 75 Kb, which is nearly the average inter-marker space in this study. The 

proportion of SNPs in useful LD was 26% for the distance of 50 and 75 Kb between 

SNPs. We found a lower level of LD for SNP pairs at the distance ≤100 Kb than 

previously thought. Analysis revealed 712 haplo-blocks spanning 4.6 % of the genome. 

Mean and median block length were estimated as 164. ± 117.1 and 144 Kb, respectively. 

Analysis of effective population size based on the direct estimates of recombination rates 

from SNP data showed a decline in effective population size to 103 up to ~4 generation 

ago. The impact of allele frequency in analyzing genome-wide LD was also explored in 

this study. The observations revealed that minimizing the allele frequency difference 

between SNPs, reduces the influence of frequency on r2 estimates. This study presents a 

second generation of LD map statistics for the Holstein genome which has four times 

higher resolution compared to the maps available so far.  
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INTRODUCTION 

Linkage disequilibrium (LD) defined as the non random relationship between loci has 

recently been in the focus of attention. LD is the structural basis of ‘Genomic Selection’ 

programs (Meuwissen et al. 2001) and helps to determine the actual genes responsible for 

variation of economically important traits (Van Laere et al. 2003; Grisart et al. 2004) 

through association mapping. The feasibility and efficiency of these approaches depends 

strongly on the extent, distribution and structure of LD, which determine how many 

markers are required for a genome scan in the population under study (Khatkar et al. 

2007). Moreover, for high-resolution association mapping, it is also necessary to identify 

block-like structures of haplotypes and a minimal set of polymorphisms (haplotype 

tagging SNPs; htSNPs) that capture the most common haplotypes of each block (Johnson 

et al. 2001; Dawson et al. 2002). Due to the variation in local recombination rates, 

mutation rates, and genetic hitchhiking the breakdown of LD is often discontinuous 

producing haploypic tracts across the genome (Ardlie et al. 2002; International Hapmap 

Consortium, 2005). Simianer et al. (1997) demonstrated that this variability is also 

prevalent in the bovine genome and recombination probabilities even differ between 

families. As a result, today’s chromosomes comprise a mosaic of haplotype blocks 

derived from ancestral chromosome fragments (e.g., Khatkar et al. 2007) and shared 

discrete haplotype blocks and LD patterns can be observed even in apparently unrelated 

individuals and populations (Gautier et al. 2007; Marques et al. 2008). Identifying these 

continental tracts can provide haplotypes to be used as genetic markers and delimit 

regions where htSNPs can reasonably be defined. They could also provide information on 

the spacing of SNPs in association studies, i.e. where SNPs should be considered and 

where not. By adjusting for the differences in recombination rates across the genome 

haplotype blocks can also be used for identifying the signatures of recent positive 

selection (Sabeti et al. 2001). 

With the availability of new technologies of SNP genotyping an increasing number of 

studies have aimed at quantifying LD characteristics in domestic animals, especially in 

cattle. Most of these studies used a low marker density or were done in limited regions of 
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the studied genomes. Farnir et al. (2000) performed the first whole-genome LD study to 

characterize the extent and pattern of LD based on the information of 284 microsatellite 

markers in Dutch Holstein cattle. Several subsequent studies have confirmed extensive 

LD in cattle (Khatkar et al. 2006a; Odani et al. 2006; McKay et al. 2007, Marques et al. 

2008). They all describe an extensive LD and revealed that different measures of LD such 

as r2 and D' yield different conclusions in terms of the extent of LD. Recently, Sargolzaei 

et al. (2008) and Kim & Kirkpatrik (2009) reported a genome-wide LD profile based on 

the Affymetrix 10K SNP array in Holstein population of North America. Khatkar et al. 

(2007) reported a comprehensive genome-wide profile of LD statistics and haploblock 

characteristics based on a panel of 15,036 single nucleotide polymorphisms (SNP) in 

Australian Holstein-Friesian cattle. The final average inter-marker spacing in their study 

was 251.8 Kb which is by the factor 5 × 10-3 less dense than the panel currently being 

used in LD analysis of human genome. However it is now known that BTAu_3.1 build 

used to physically locate SNPs in their study has inconsistencies with other independently 

built cattle maps (Marques et al. 2007, Snelling et al. 2007). More recently Villa-Angulo 

et al. (2009) used a panel of 31’857 SNPs generated by the Bovine HapMap Consortium 

to characterize a high-resolution haplotype block structure of 19 breeds of different 

geographic origin. They focused mainly on 101 high density regions spanning up to 7.6 

Mb on three chromosomes 6, 14 and 25 with an average density of approximately one 

SNP per 4 Kb. 

With the availability of larger-scale SNP data sets it has become possible to construct LD 

maps with higher resolution. In this study we use SNP data generated with the Illumina 

Bovine SNP50K BeadChip to create a second generation LD map of Holstein-Friesian 

cattle. We also explore some properities of r2 as the most common measure of LD in this 

study.  
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MATERIALS AND METHODS 

Data preparation and haplotype reconstruction 

Semen or blood samples from 810 German Holstein–Friesian cattle including 469 bulls 

and 341 bull dams were used as the source of genomic DNA and were genotyped using 

the Illumina Bovine SNP50K BeadChip. This chip contains a total of 54’001 SNPs with a 

mean neighbor marker distance of 48.75 Kb. 1728 SNP loci were excluded because of 

unknown genomic position and 11 markers were monomorphic. For the purposes of this 

study, only autosomic SNPs with minor allelic frequencies (MAF) ≥ 0.05 were included 

in the LD analysis. The number of heterozygous loci was determined and used to estimate 

the average heterozygosity for all individuals. The allele frequencies, observed 

heterozygosity and expected heterozygosity for each SNP were determined.  

For this analysis fully phased haplotype data were required. After the aforementioned 

filtering process we reconstructed haplotypes for each chromosome using default options 

in fastPHASE (Scheet & Stephens 2006).  

Measure of LD 

Several statistics have been used to measure the LD between a pair of loci. The two most 

common measures are the absolute value of D', and r2, both derived from Lewontin's D 

(Lewontin 1964). We used r2 which is generally accepted as the more robust and better 

interpretable LD parameter (Kruglyak 1999; Ardlie et al. 2002; Terwilliger et al. 2002) 

Consider 2 loci, A and B, each locus having 2 alleles (denoted A1, A2;
 B1, B2, 

respectively). We denote f11, f12, f21, and f22 as the frequencies of the haplotypes A1B1, 

A1B2, A2B1, and A2B2, respectively; 
fA1, fA2, fB1, and fB2 are the frequencies of A1, A2, B1, 

and B2, respectively. Following Hill and Weir (1994),  
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LD haplo-block partitioning  

Existing block definition algorithms are based on two alternative methods: Either 

pairwise D’ values above a lower limit are used to detect regions of little or no 

recombination (Gabriel et al. 2002; Daly et al. 2001; Wang et al. 2002), or blocks are 

defined by employing some haplotypic diversity criterion, where a small number of 

common haplotypes provide high chromosomal frequency coverage (Patil et al. 2001; 

Zhang et al. 2002, 2003; Anderson & Novembre 2001). For the purpose of this study we 

used the algorithm suggested by Gabriel et al. (2002) defining a pair of SNPs to be in 

‘‘strong LD’’ if the upper 95% confidence bound of D' is between 0.7 and 0.98. 

Reconstructed haplotypes were inserted into HAPLOVIEW v4.1 (Barrett et al. 2005) to 

estimate LD statistics and constructing the blocking pattern as well as identifying 

haplotype tagging SNPs for all 29 autosomes.  

Estimating effective population size using LD 

According to Wright (1938) effective population size (Ne) is defined as "the number of 

breeding individuals in an idealized population that would show the same amount of 

dispersion of allele frequencies under random genetic drift or the same amount of 

inbreeding as the population under consideration". Ne provides useful information about 

the population evolution and improves the understanding and modeling of the genetic 

architecture underlying complex traits (Reich & Lander 2001). Ne can be estimated from 

LD data and the availability of dense markers has made this option feasible. Sved (1971) 

has formulized the relationship of LD and Ne in the absence of mutation as r2= 1/ (4Nec + 

1) where c represents the linkage map distance in Morgan. If mutation is accounted for in 

the model, the expectation of r
2 is 1/ (4Ntc + 2), where Nt is the population size 1/2c 

generations ago. For more information we refer to Tenesa et al. (2007). In this study we 

assessed genetic distance c directly by estimating the recombination rates across the 

genome using PHASE v.2.1 (Li and Stephens 2003). To this purpose, random segments 

of 15 Mbp were selected on each autosome. The recombination model was applied based 

on 100 individuals and increasing the number of iterations of the final run 10 times to 
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obtain better estimates of uncertainty. The prior value for effective population size was 

set to 100. In order to save the computing time, we used known haplotypes with fragment 

sizes of 12 bp. An average of Ne over chromosomes was then calculated corresponding to 

the various times in the past. We inferred Ne for each autosomal chromosome at distance 

bins of <0.025, 0.025-0.05, 0.05-0.1, 0.1-0.5, 0.5-1, 1-5 and 5-15 cM. This range of 

linkage map distance infers the past effective population size up to 2000 generations ago. 

RESULTS  

Marker statistics and genetic diversity  

A total of 40’854 (75.65%) markers passed the above filtering criteria and were included 

into the final analysis. This subset of markers covers 2544.1 Mbp of the genome with 

62.27 ± 58.3 Kbp average adjacent marker spacing. The largest gap between SNPs 

(2081.5 Kbp) was located on chromosome 10. For the SNPs analyzed in this study, the 

average observed heterozygosity and mean MAF were estimated as 0.37 ± 0.12 and 0.28 

± 0.15, respectively. Figure 1 displays the distribution of the MAF of SNPs genotyped. 

The almost uniform distribution across frequency classes likely is due to the construction 

of the SNP array which was optimized with respect to a uniform SNP spacing and MAF 

distribution. The observed heterozygosity in the studied Holstein population averaged as 

0.23.  
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Table 1. Genome wide summary of marker and haplotype blocks in the Holstein cattle 
Chr 

 
Initial 

(n) 
Final 

(n) 
Chr-Length 

(Mbp) 
Linkage  

Map (cM) 
Block 

(n) 
Block_length 

(Kb) 
Mean_BL 
± SD (Kb) 

BSNPs
* 

(n) 
htSNPs 

(n) 
Max Gap 

(Kb) 

1 3343 2641 161.1 154 57 9159 160.7 ± 112 267 2263 683.9 
2 2764 2149 140.6 126 35 6181 176.6 ± 146 167 1876 651.9 
3 2566 2037 127.9 128 52 7428 142.8 ± 102 216 1790 813.7 
4 2541 1999 124.1 119 41 7173 175.0 ± 118 197 1759 889.7 
5 2181 1718 125.8 135 30 6333 211.1 ± 147 149 1521 1050.5 
6 2535 2044 122.5 134 46 7918 172.1 ± 119 225 1778 826.2 
7 2294 1767 112.1 135 34 6919 203.5 ± 127 177 1519 657.0 
8 2362 1849 116.9 128 42 7586 180.6 ± 108 196 1588 738.3 
9 2036 1623 108.1 116 20 3879 194.0 ± 136 89 1469 760.8 

10 2179 1713 106.2 118 40 4787 119.7 ± 93 166 1519 2081.5 
11 2267 1813 110.2 130 27 4658 172.5 ± 104 126 1624 989.5 
12 1683 1320 85.3 109 20 3102 155.1 ± 154 85 1190 788.7 
13 1802 1396 84.3 105 32 4793 149.8 ± 93 136 1227 608.9 
14 1722 1356 81.3 103 28 5402 192.9 ± 96 141 1166 576.0 
15 1688 1365 84.6 109 19 3157 166.2 ± 116 81 1245 660.2 
16 1606 1251 77.8 94 31 6443 207.8 ± 274 151 1087 1015.4 
17 1585 1284 76.5 95 14 1971 140.8 ± 68 64 1170 840.4 
18 1351 1100 66.1 84 12 1635 136.3 ± 54 53 1012 896.4 
19 1378 1108 65.2 109 15 2876 191.7 ± 96 77 1006 553.1 
20 1564 1252 75.7 82 23 3713 161.4 ± 89 102 1099 837.1 
21 1419 1093 69.2 83 16 2279 142.4 ± 102 65 985 849.4 
22 1299 1009 61.8 88 15 1723 114.9 ± 85 58 903 601.3 
23 1083 871 53.3 80 7 1500 214.3 ± 150 35 805 476.3 
24 1294 1013 64.9 78 13 1944 149.5 ± 113 56 916 527.3 
25 987 810 44.0 68 15 1834 122.3 ± 94 68 752 589.9 
26 1086 849 51.7 79 12 2136 178.0 ± 180 48 763 682.6 
27 977 798 48.7 67 3 408 136.0 ± 46 13 748 1776.8 
28 942 779 46.0 61 3 461 153.7 ± 156 12 740 470.6 
29 1048 847 52.0 69 10 1461 146.1 ± 104 38 781 1505.8 

Total 51’582 40’854 2544.1 2986 712 118’859 164.4 ± 117 3258 36’301 2081.5 

Number of SNPs forming haplo-blocks 
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Pattern of haplotype blocks  

Critical for association studies is the identification of haplotype blocks and the 

minimal set of htSNPs required to capture haplotype variation in a population 

sufficiently, which will reduce cost and effort. Table 1 presents a descriptive summary 

of genome wide marker and haplo-block distribution in the data set analyzed. A total 

of 712 haplo-blocks spanning 118’859 Kb (4.67 %) of the genome were detected.  

Mean and median block length were estimated as 164. ± 117.1 and 144 Kb, 

respectively, with a maximum of 1261 Kb. The distribution of haplotype block size is 

depicted in Figure 2.  

 

Figure 1. Minor allele frequency of SNPs. 
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Figure 2. Distribution of haplo-block size in Holstein cattle genome. 

 

Chromosome 1 having 57 blocks spanning 9159 Kb and Chromosome 27 with 3 

blocks covering 408 Kb showed the longest and shortest haplotypic structures in the 

genome. In total, 3258 SNPs (7.97 % of all used SNPs) formed blocks with a range of 

2-11 SNPs per tract. Using the tagger option incorporated in HAPLOVIEW, 36’301 

SNPs (89% of all used SNPs) were tagged in the data set analyzed. These SNPs can 

tag either neighboring markers or a set of common haplotypes within an LD block. 

Figure 3 displays the distribution of htSNPs across the genome of studied population.  
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Figure 3. Distribution of htSNPs across the genome of Holstein population studied. 
Triangles displays the number of htSNPs for each chromosome and diamonds 
represents the ratio of htSNPs versus SNPs analyzed for each chromosome. 
 

Extent of LD across the genome 

All possible SNP pairs with distance ≤ 5 Mbp on the same chromosome produced 

3’216’038 pair-wise LD values on the 29 bovine autosomes. In order to visualize the 

decay of LD and the proportion of pair markers in useful LD we stacked r2 and plotted 

them as a function of inter-marker distance categories (<0.025, 0.025-0.05, 0.05-

0.075, 0.075-0.12, 0.12-0.2, 0.2-0.5, 0.5-1.5, 1.5-3 and 3-5 (Mbp) (Figure 4). This 

genome-wide bar plot illustrates the rate at which LD decays with physical distance 

and forms the basis for comparison between studies. We observed an inverse 

relationship between LD and marker distance, confirming recent studies on r
2 

measures in cattle. Overall, six cases of complete LD (r2 = 1.0) were observed for the 

entire genome.  
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Figure 4. Level of LD decay as a function of distance between pairs of SNPs up to 5 
Mbp for the entire genome. 
 

 

The mean r2 values and the proportion of SNP pairs that shows statistically significant 

LD for SNP pairs apart up to 5 Mbp are presented in Table 2. A mean value of 

r
2=0.30 ± 0.32 was observed in pair-wise distances of <25 Kb and it dropped to 0.20 

± 0.24 at 50 to 75 Kb, the interval which includes the average inter-marker space in 

this study. In contrast an overall mean value of r
2
= 0.21 ± 0.26 was observed for 

SNPs less than 100 Kb apart from each other compared with r
2
= 0.59 presented by 

Sargolzaei et al. (2008) for the north American Holstein cattle. The similar study by 

Kim & Kirkpatrik (2009) revealed strong LD (r2 > 0.8) in genomic regions of 
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approximately 50 Kb or less which is much larger than the observation of this study 

(r2= 0.29).  

The threshold for useful LD that was chosen in this study is 0.25. With this threshold 

and considering that on average 1 cM is equivalent to 1 Mb, useful LD extended over 

0.5–1.5 cM so that the proportion of SNP pairs in useful LD is above 5%. The 

proportion of SNPs in useful LD was 39% for the distance of 25 Kb or less between 

SNPs. This proportion drops to 0.26% for SNPs between 50 and 75 Kb apart from 

each other. Overall, for SNPs less than 100 Kb apart from each other the proportion of 

SNPs in useful LD was 0.29 %. This proportion was reported as 68.34% by 

Sargolzaei et al. (2008) even with a higher threshold as 0.3. However, the substantial 

LD estimated for SNP pairs more than 100 Kb apart (r2= 0.14) is similar. 

 

 

Figure 5. Comparison of fraction of marker pairs with different r2 levels (<0.1, 0.25, 
0.4, 0.6, and >0.6, depicted by different colors) for marker pairs in different 

distance bins maximum 5 Mbp. (A) SNP pairs of all 40’854 SNPs with MAF 5%; 
(B) consider only SNP pairs with MAF 0.15. 

A 

B 
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It is known that linkage disequilibrium between SNPs with a low minor allele 

frequency is biased upwards and high-frequency polymorphisms are preferable for 

accurate estimation of LD (Reich et al. 2001). In part this can be explained by 

statistical properties of the LD statistics (Dunning et al. 2000), but may also have an 

evolutionary interpretation because low frequency SNPs have a higher probability of 

having arisen recently (Nordborg & Tavaré 2002). Taking this into account we 

evaluated the decay of LD for the SNPs with MAF greater than 15% to elucidate its 

usefulness in terms of having SNP pairs in useful LD for genomic association 

analysis. We observed an increase of about 10% in frequency of SNP pairs 

representing useful LD for almost all physical distance bins up to 5 Mbp (Figure 5). 

LD properties 

The decay of LD measures with the physical distance is well documented. LD is 

expected to be a function of linkage distance in animal populations, at least for tightly 

linked loci. It is also reported that SNPs of divergent MAFs on average have different 

LD properties (Pritchard & Przeworski 2001). Figure 5 displays the decay of LD as a 

function of physical distance and absolute MAF difference (∆MAF) between SNP 

pairs. It can be seen that pair-wise r
2 decreases with increasing distance and 

increasing ∆MAF. It is evident that the dependence of r2 on distance is stronger than 

its dependence on ∆MAF. It is also shown that SNP pairs in short physical distance 

are more affected by ∆MAF. The magnitude of this dependency in the case of SNP 

pairs far from each other is negligible.  
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Figure 6. Three dimensional surface plot depicts the decay of LD vs. inter-marker 
distance and MAF interval 
 
 

To explore the dependence of LD on allele frequency we calculated the average r
2 

statistic within nine bins of physical distance between frequency-matched pairs of 

SNPs with ∆MAF ≤ 10% and compared results with the average r2 between all SNP 

pairs (Table 2). Mean r2 were higher between matched SNP pairs than between non-

matched ones for all distance bins, with a difference of around 50% in the shortest 

distances. For the markers within a distance range of 50 to 75 Kb, the proportion of 

SNP pairs in useful LD increased from 26 to 39 %. We observed a higher extent of 

LD for frequency-matched vs. non-matched pairs of SNPs. As such, with frequency-

matched pairs of SNPs, LD significantly extended up to the range of 1.5 to 3 Mbp. 
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Table 2. Frequency and mean r2 estimated for SNP pairs in different distances compared with the frequency matched SNP pairs. 

 
 

 

 

 

 

 

 

 

 

 

Distance 

 (Mb) 

SNP Pairs 

(n) 

Median 

r
2
 

Mean r2±SD Frequency 

r
2
≥0.25 (%) 

 All pairs ∆MAF≤0.1 All pairs ∆MAF≤0.1 All pairs ∆MAF≤0.1 All pairs ∆MAF≤0.1 

<0.025 6002 4617 0.16 0.39 0.30± 0.32 0.45± 0.38 39 56 

0.025-0.05 20108 12735 0.13 0.25 0.25± 0.28 0.38± 0.35 34 50 

0.05-0.075 17938 8340 0.09 0.14 0.20± 0.24 0.29± 0.31 26 39 

0.075-0.12 31833 10725 0.07 0.09 0.16± 0.20 0.22± 0.27 20 30 

0.12-0.2 55778 12906 0.06 0.06 0.12± 0.16 0.16± 0.22 15 22 

0.2-0.5 204584 28572 0.04 0.04 0.09± 0.12 0.11± 0.16 10 15 

0.5-1.5 664447 52743 0.03 0.03 0.07± 0.09 0.08± 0.12 6 9 

1.5-3 965989 35720 0.02 0.02 0.05± 0.07 0.06± 0.09 3 5 

3-5 1249359 17384 0.02 0.02 0.04± 0.06 0.05± 0.07 1 3 
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In a further step, we plotted the r2 versus minor allele frequencies of both loci (Figure 

7). SNP pairs with highest MAF interval represent lowest r
2 and vice versa. 

Frequency-matched SNPs with moderate or low MAF values both result in the highest 

r
2 regions. However, there is a trend demonstrating a slight raise of LD for matched 

SNPs with moderate MAF comparing the matched SNPs with lower MAF. Therefore, 

it can be concluded that the frequency matched SNP pairs are less influenced when 

calculating pairwise r2 values substantiating lower decay of LD for these loci. 

 

Figure 7. The prospective plot depicts the decay of LD with allele frequencies of SNP 
pairs. r2 means were calculated for 45 bins of each 0.01 allele frequency.  

 

Past effective population size 

In most studies so far, genetic distance c was approximated by using physical distance 

directly (1Mbp~1cM) for the estimation of Ne (Gautier et al. 2007, Hayes et al. 2008; 

Kim & Kirkpatrik 2009). In this study we estimated the recombination rates directly 

from dense SNP data. Figure 8 displays the decay of LD as a function of 

recombination rate between pairs of SNPs. Recombination rates are not constant 



2
nd 

Chapter              LD Pattern                                       44 
 
                             

 

within chromosomes and vary among regions. Overall, a correlation of -0.22 was 

observed between r
2 and recombination rate over all adjacent marker intervals 

analysed. LD values averaged in bins of estimated linkage distance were used to study 

the changes in effective population size of the population from 2000 generation ago 

up to the present.  

 
Figure 8. LD between SNP pairs was plotted on the estimates of recombination rate as 
a measure of linkage distance (M). 
 

We compared the results with the estimates of Ne based on available cattle linkage 

map information (http://www.marc.usda.gov/genome/cattle/cattle.html). Given the 

known linkage and physical lengths of chromosomes (Table 1) we transformed the 

physical position to the approximate linkage distance between pairs of SNPs and 

averaged the estimates over chromosomes. While Ne was inferred as 1113 for 500 

generations ago, estimates based on recombination rates show a decline in effective 

population size to 103 up to ~4 generation ago (Figure 9.A). This is close to the 

estimate (Ne ≤ 100) in North American Holstein population based on the analysis of 

both LD (Kim & Kirkpatrik 2009) and inbreeding rate (Young & Seykora 1996). 

With the mutation included model it drops to the 56 which is close to the inbreeding 
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based estimates (Ne < 50) and (Ne = 52) in the Danish (Sorensen et al. 2005) and 

German (Koenig & Simianer 2006) Holstein populations, respectively.  

 

 
Figure 9. Estimated effective population size over the past generations from linkage 
disequilibrium data. (A) Dashed and solid lines represent Ne based on estimates of 
recombination rates and approximated linkage distances, respectively. (B) Boxplot 
represents the trend of log10 (Ne) over the past time and illustrates the divergence of 
inferred Ne among the chromosomes due to the variation in estimated recombination 
rates. 

A 

B 
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DISCUSSION 

Linkage disequilibrium (LD) maps increase power and precision in association 

mapping, define optimal marker spacing and identify recombination hot-spots and 

regions influenced by natural selection. In this report we present an analysis of LD of 

40’854 markers densely distributed across the entire bovine genome in a sample of 

German Holstein cattle. Although the principle of LD is fairly simple (i.e. the non-

random segregation of markers in close proximity), the complex interplay between all 

confounding factors complicates the interpretation of LD results. Since LD depends 

on the age of the SNP-creating mutations, the demographic population history, 

genetic drift, the recombination fraction, directional selection, population stratification 

and other factors, it is highly variable even between close loci (Kruglyak 1999; Ardlie 

et al. 2002; Pritchard & Przeworski 2001). As a result, two markers that are very close 

together can exhibit a low level of LD, while markers that are more distant can show a 

higher than expected level of LD.  

In this study we used pair-wise r2 statistic up to 5Mbp across the bovine genome to 

estimate the extent of LD. The first reports on the extent of LD in cattle genome 

described a long range of LD (e.g., up to 20 cM) (Farnir et al. 2000; Tenesa et al. 

2003). Further analyses with denser markers confirmed extensive LD, but in general 

found lower levels (Spelman & Coppieters 2006, Khatkar et al. 2006a). Recently, two 

genome wide studies based on 10K SNP data have revealed that the level of LD is 

less than previously thought (Sargolzaei et al. 2008; Kim & Kirkpatrik 2009). The 

results of this study demonstrate even less LD for SNP pairs at the distances ≤100 Kb. 

It was suggested that LD within genes is higher than LD in inter-genic regions at least 

for tightly linked markers (Kim & Kirkpatrik 2009), hence the discrepancy observed 

may be due to a systematic difference of the selected set of SNPs. For the Illumina 

Bovine SNP50k BeadChip SNPs were mainly selected to evenly cover the entire 

genome while in other studies the SNPs were targeted to certain candidate regions. 

Especially for the use in genomic selection and whole genome association mapping 

without prior positional information the average LD over the entire genome is the 

quantity of interest, which was evaluated in our study.  In general it is difficult to 

compare the level of LD obtained in different studies because of different sample 
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sizes, LD measures, marker types, marker densities, and recent and historical 

population demographics (Pritchard & Przeworski 2001).  

The decay of LD in a genome determines the resolution of quantitative trait loci 

detection in association mapping studies and indicates the required marker density. It 

was shown that in indirect association studies, the sample size must be increased by 

roughly 1/r2 when compared with the sample size for detecting the causal mutation 

directly (Kruglyak 1999; Pritchard & Przeworski 2001). Meuwissen et al. (2001) 

simulated the required level of LD (r2) for genomic selection to achieve an accuracy 

of 0.85 for genomic breeding values to be 0.2. Ardlie et al. (2002) defined high values 

of LD as r2 >1/3. In this study we assumed the threshold of useful LD to be 0.25. To 

achieve this level our results indicate that the SNP spacing should be ~35 Kb in future 

population wide studies with a whole-genome approach. This implies the use of more 

than 75,000 SNPs per individual, assuming that all SNPs are informative (with a 

MAF ≥ 0.05). According to the results of this study, the same power can be achieved 

by implementing a panel of 50’000 SNPs with moderate frequencies (e.g., MAF ≥ 

0.15) which simultaneously improves the accuracy and magnitude of estimated LD 

between pairs of SNPs. 

In this study, we examined the decay of LD as a function of physical distance. Despite 

the LD map showing a distinct decrease of LD values over increasing physical 

distance, the LD also showed extensive variability between genomic regions and 

chromosomes. This variation was probably due to recombination rates varying 

between and within chromosomes, heterozygosity and effects of selection. 

The impact of allele frequency in analyzing genome-wide LD was also explored in 

this study. Our results demonstrate that the dependence of LD on the MAF interval of 

SNP pairs is stronger for SNPs in short distances. These results also reveal that the 

minimizing the allele frequency difference between SNPs, provides a more sensitive 

and useful metric for analyzing LD across the bovine genome. Although an entirely 

frequency-independent measure of LD is not possible (Lewinton 1988), frequency 

matching between SNP pairs removes one major source of statistical noise when 

assessing the LD structure.  
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There are several published studies reporting LD properties based on dense SNP 

markers in cattle. Khatkar et al. (2006a) pioneered exploiting dense SNPs in 

developing bovine LD maps by characterizing the LD profile for chromosome 6 in the 

Australian Holstein population. They used 220 SNPs and confirmed an extensive 

level of LD in Holstein cattle. Gautier et al. (2007) studied LD properties in cattle 

breeds of different origin and observed the haplotype blocks extended up to 700 Kb in 

some cattle breeds. Khatkar et al. (2007) developed a primary genome-wide LD map 

based on a panel of 9,195 informative SNPs reporting 727 blocks with three or more 

SNPs, (mean length=69.7 Kb) covering 2.18 % of the genome. In a similar study 

Marques et al. (2008) compared LD properties of chromosome 14 in Holstein and 

Angus cattle and reported 64 blocks (33 bp to 1126 Kbp). Recently, Kim & Kirkpatrik 

(2009) reported 119 haplo-blocks (with more than 4 SNPs) with a mean length of 26.2 

Kb in a whole genome scan of Holstein cattle. It was suggested that as the number of 

markers increases more haplotype blocks will be identified. This was confirmed by 

Villa-Angulo et al. (2009) who reported the blocks of smaller size with an overall 

mean of 10.3 kb across 19 breeds. However, compared to the marker density used in 

the previous studies, the present study with more SNPs reporting 712 blocks doesn’t 

follow this expectation. Similar to the LD differences observed, this could also be due 

to the use of a different set of markers, which are evenly distributed across the 

genome covering both genic and inter-genic regions. Although the number of blocks 

is not different, we observed a higher block coverage percentage compared to the 

Australian population.  

The average extent of LD in the human genome has been extensively studied: it 

extends a few Kb up to 50 Kb but is highly variable, depending on the population and 

threshold used to measure LD. Most recently, Villa-Angulo et al. (2009) reported 

almost similar size of blocks as human for the bovine genome. However, it was 

limited to the high dense targeted regions of the genome only on three chromosomes. 

Compared to the results of human studies, average block sizes observed in the present 

study on the bovine genome are 20-30 times larger than similar haplotype blocks 

found in the human genome (Hinds et al. 2005). It must be noted that the marker 

density used in this study is about 100 times sparser than the one currently being used 

for the human genome. Hence, some of the long blocks observed in the present study 
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may break down to smaller tracts if the SNP density was increased. However, due to 

the smaller effective population size of cattle compared to the human population 

(Hayes et al. 2003) and relatively high inbreeding frequency, a greater level of LD 

and larger haplotype blocks are expected.   

CONCLUSIONS 

We presented a second generation of LD map statistics for the Holstein genome which 

has four times higher resolution compared to the maps available so far. We found a 

lower level of LD for SNP pairs at distances ≤100 Kb than previously reported. 

Assuming that r2 > 0.25 is useful for association studies, the level of LD obtained in 

this study indicates that a denser SNP map would be beneficial to capture the LD 

information required for whole-genome fine mapping and genomic selection and to 

completely assess the pattern of LD across the genome. The results show that 

frequency matched SNP pairs reduce the dependence of r
2 on allele frequency and 

provide a useful metric for analyzing LD. The larger block size in Holstein cattle 

observed in this study indicates substantially greater LD in cattle than in human 

populations. 
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ABSTRACT 

The data from the newly available 50K SNP chip was used for tagging the genome 

wide footprints of positive selection in Holstein-Friesian cattle. To this purpose, we 

employed the recently described Extended Haplotype Homozygosity test, which 

detects selection by measuring the characteristics of haplotypes within a single 

population. To formally assess the significance of these results, we compared the 

combination of frequency and the Relative Extended Haplotype Homozygosity value 

of each core haplotype with equally frequent haplotypes across the genome. A subset 

of the putative regions showing highest significance in the genome wide EHH tests 

was mapped. We annotated genes to identify possible influence they have in 

beneficial traits using the Gene Ontology (GO) database. A panel of genes, including 

FABP3, CLPN3, SPERT, HTR2A5, ABCE1, BMP4 and PTGER2 was detected 

which overlapped with the most extreme P-values. This panel comprises some most 

interesting candidate genes and QTL representing a broad range of economically 

important traits such as milk yield and composition as well as reproductive and 

behavioral traits. We also report high values of LD and a slower decay of haplotype 

homozygosity for some candidate regions harboring major genes related to dairy 

quality. The results of this study provide a genome wide map of selection footprints in 

Holstein genome and can be used to better understand the mechanisms of selection in 

dairy cattle breeding. 
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INTRODUCTION 

Recently, linkage disequilibrium (LD) has received considerable attention among 

livestock geneticists primarily to perform genome based selection (see e.g. 

Meuwissen et al. 2001) and to determine the actual genes responsible for variation of 

economically important traits (Pollinger et al. 2005; Daetwyler et al. 2008; Prasad et 

al, 2008; Hayes et al. 2008, 2009).  

The search for genes underlying phenotypic variation can be performed in two 

different directions; (i) from phenotype to genome which is performed by LD based 

association mapping and may involve positional cloning of quantitative trait loci 

(QTL) or targeting particular candidate genes identified based on homology to known 

genes, and (ii) from genome to phenotype which involves the statistical evaluation of 

genomic data to identify likely targets of past selection. The latter approaches identify 

patterns of LD in or between populations which are incompatible with the hypothesis 

of genetic neutrality, and these patterns are called selection signatures.  

Alleles under positive selection pressure encounter a fast increase in allele frequency. 

For a neutral mutation it will take many generations until the mutated allele has 

reached a high population frequency through drift. The LD in the vicinity of this locus 

will be degraded through recombination (Kimura 1983), so that frequent alleles in 

little LD with the neighbouring loci usually reflect old mutations. A novel mutation 

under positive selection pressure however will increase rapidly in frequency, so that 

the surrounding conserved haplotype is long, which is called a ‘selective sweep’ (e.g., 

Maynard Smith and Haigh 1974; Nielsen et al. 2005). 

This is the background of the extended haplotype homozygosity (EHH) statistic 

suggested by Sabeti et al. (2002) for the detection of recent selection. To account for 

facts like variability of recombination (Simianer et al. 1997), Sabeti et al. (2002) 

proposed to use the contrast of the EHH statistic of one core haplotype vs. other 

haplotypes in the same position. Alternative methods for detecting selective sweeps 

from DNA sequence data were developed which include Tajima’s D (Tajima 1989) 

and Fay and Wu’s H test (Fay and Wu 2000) for selected mutations, measuring large 

allele-frequency differences among populations by FST (e.g., Akey et al. 2002) and 
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the integrated Haplotype Score (iHS; Voight et al. 2006), an extension of the EHH 

statistic (Sabeti et al. 2002). Both D and H tests were designed for full-sequence data 

and not for genome wide collections of pre-ascertained SNPs that are currently 

available in some livestock species. Recently, MacEachern et al. (2009) applied Fay 

and Wu’s H test to examine the positive selection between Holstein and Angus cattle 

which represent opposite directional selection. They used a new metric to overcome 

the problems of ascertainment bias and observed significant deviations of allele 

frequency in two breeds. The iHS method is more powerful than D and H tests for 

selected mutations (Voight et al. 2006) but, to be applied properly, it requires the 

genotype of the selected mutation as well as a known ancestor allele.  

Among the various statistics used for recognizing signals of positive selection from 

polymorphism data, the EHH test is particularly useful (Zang et al. 2006; Walsh et al. 

2006). It detects selection by measuring the characteristics of haplotypes within a 

single population, is applied for putative core regions, and does not require definition 

of an ancestor allele genotype. Furthermore, it is designed to work with SNP rather 

than sequencing data, being less sensitive to ascertainment bias than other approaches 

(Tang et al. 2007).  

Holstein-Friesian cattle has been intensively selected during the last centuries, 

especially so in the last decades after the implementation of progeny-test based 

breeding programs in the 1960s (Skjervold and Langholz 1964). Consequently, 

genomic regions controlling traits of economic importance are expected to exhibit 

signatures of selective breeding. With the availability of large-scale SNP data it has 

become possible to construct an LD map with higher resolution and to scan the 

genome for positions that may have been targets of recent positive selection in the 

Holstein-Friesian population. In this study we report the first results of such a 

systematic genome scan, in which (i) the region of known functional candidate genes 

(confirmed QTL) were checked for signatures of recent selection and (ii) positional 

candidate genes are reported in proximity to the genomic positions showing the most 

significant indications of selection. 
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MATERIALS AND METHODS 

DNA samples and data preparation  

Semen or blood samples were obtained from 810 German Holstein–Friesian cattle 

including 469 bulls and 341 bull dams. Genomic DNA was extracted applying a 

modified Miller protocol (Miller et al., 1988) including dithiothreitol treatment for the 

semen samples. Genotyping was carried out using the Illumina Bovine SNP50 

BeadChip (Matukumalli et al. 2009) containing a total of 54001 SNPs with a mean 

neighbor marker distance of 48.75 Kb. Markers were filtered to exclude loci assigned 

to unmapped contigs or unpositioned according to the latest reference assembly of the 

bovine genome Btau 4.0 (1728), monomorphic loci (11) and loci with a minor allele 

frequency (MAF) < 0.05 (10864). 

Reconstruction of haplotypes and LD analysis 

The subset of animals used in this study belongs to the total population of Holstein 

cattle chosen for the genomic selection program in Germany. We overlooked the 

probable effect of founders and admixture in the population demography due to the 

considerable number of bulls analyzed and assumed animals to be unrelated. For the 

analyses fully phased haplotype data were required. After the aforementioned filtering 

process we reconstructed haplotypes for every chromosome using default parameters 

in fastPHASE (Scheet and Stephens 2006). Reconstructed haplotypes were inserted 

into HAPLOVIEW v4.1 (Barrett et al. 2005) to estimate LD statistics based on pair-

wise r2 and constructing the blocking pattern in the candidate regions of interest for 

selection signature analysis.  

Application of EHH test 

According to natural selection theory, regions under positive selection have frequent 

alleles, existing on long range LD backgrounds. Accordingly, the “core region” is 

defined as the region of interest in the genome, presumably characterized by the 

strong LD among SNPs and involves a set of “core haplotypes”. For identifying core 

regions Sweep v.1.1 (Sabeti et al. 2002) implements the algorithm suggested by 

Gabriel et al. (2002) defining a pair of SNPs to be in strong LD if the upper 95% 
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confidence bound of D' is between 0.7 and 0.98. The program was set to select core 

regions with at least 3 SNPs.  

To evaluate how LD decays across the genome we performed the EHH test (Sabeti et 

al. 2002). This test is based on the contrast of a core haplotype with a combination of 

high frequency and extended homozygosity with other core haplotypes at the same 

locus. EHH is the probability that two randomly chosen haplotypes carrying the 

candidate core haplotype are homozygous for the entire interval spanning the core 

region to a given locus (Sabeti et al. 2002). The EHH of a tested core haplotype t is  
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where tc  is the number of samples of a particular core haplotype t, tie  is the number 

of samples of a particular extended haplotype i, and s is the number of unique 

extended haplotypes. 

It has been observed in many experimental organisms (reviewed in Lichten and 

Goldman 1995; Petes 2001) that various chromosomal regions have higher (or lower) 

recombination rates than would be expected on the basis of the genome average 

recombination rate (~ 1 cM/Mb). Simianer et al. (1997) demonstrated that this 

variability is also prevalent in the bovine genome, and that recombination 

probabilities even differ between families. Regions with high (low) recombination 

fractions are called hot (cold) spots. Accordingly, the LD would be stronger in 

recombination cold spots than in recombination hot spots, which raises the possibility 

that a larger LD statistic may rather be due to low recombination rates in a particular 

region and not necessarily to recent positive selection. The ’Relative Extended 

Haplotype Homozygosity’ (REHH) statistic proposed by Sabeti et al. (2002) corrects 

EHH for the variability in recombination rates. It is computed by EHHEHH t , 

with EHH  defined as the decay of EHH on all other core haplotypes combined and is 

calculated as: 
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where n is the number of different core haplotypes. 

To determine the empirical significance of REHH values, we ordered haplotypes into 

20 bins according to their frequency and compared the REHH for each common 

haplotype in a candidate region to all equally frequent haplotypes. P-values were 

obtained by log-transforming the REHH in the bin to achieve normality, and 

calculating the mean and the standard deviation. As such, core haplotypes with 

extreme REHH in the distribution considered as significant. 

RESULTS 

Marker and core haplotype statistics 

A total of 41’398 (76.66%) markers passed the filtering criteria and, excluding 

chromosome X, 40’854 SNPs were included in the final analysis. This subset of 

markers covers 2544.1 Mbp of the genome (Btau 4.0 assembly) with 61.91 Kbp 

average adjacent marker spacing. For the SNPs analyzed in this study, the average 

minor allele frequency (MAF) was 0.28 ± 0.15. Table 1 presents a descriptive 

summary of genome wide marker and haplotype distribution in the data set. A total of 

3741 core regions spanning 472’127.2 Kbp (18.55 %) of the genome were detected.  
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Table 1. Summary information of genome-wide marker and core region (CR) distribution in Holstein cattle. 

Chr 
SNP 
(n) 

Chr 
Length  
(Mbp) 

Mean 
Distance 

 (Kb) 

CR 
(n) 

Mean  
CR Length 

(Kb) 

aCoverage 
CR length  

(Kb) 

Max CR 
Length  

(Kb) 

bCR 
length/ 

Chr 
Length 

cCR 
SNPs 

(n) 

Max 
CR SNPs 

(n) 

dCR SNPs/ 
SNP 

1 2641 161.06 61.0 265 134.2 ±93 35372.8 795.7 0.22 946 11 0.36 
2 2149 140.63 65.4 207 125.1 ±89 25901.7 696.3 0.18 733 9 0.34 
3 2037 127.91 62.8 209 136.8 ±112 28593.4 908.5 0.22 746 7 0.37 
4 1999 124.13 62.1 191 124.5 ±82 23646.5 490.2 0.19 683 9 0.34 
5 1718 125.80 73.2 164 142.4 ±93 23214.8 523.5 0.18 579 11 0.34 
6 2044 122.54 60.0 217 124.7 ±87 27075.6 517.7 0.22 784 12 0.38 
7 1767 112.06 63.4 171 136.9 ±94 23281.9 610.6 0.21 630 10 0.36 
8 1849 116.91 63.2 187 136.9 ±87 25598.6 566.6 0.22 675 9 0.37 
9 1623 108.07 66.6 127 132.9 ±96 16879.7 588.0 0.16 455 8 0.28 

10 1713 106.20 62.0 171 125.6 ±172 21488.6 2212.8 0.20 592 7 0.35 
11 1813 110.17 60.8 174 120.1 ±89 20900.2 661.3 0.19 607 9 0.33 
12 1320 85.28 64.6 104 126.5 ±102 13164.1 661.7 0.15 359 7 0.27 
13 1396 84.34 60.4 138 121.9 ±70 16824.7 446.4 0.20 483 8 0.35 
14 1356 81.32 60.0 127 131.8 ±89 16743.4 546.0 0.21 454 10 0.33 
15 1365 84.60 62.0 114 122.8 ±87 14008.1 686.4 0.17 392 6 0.29 
16 1251 77.82 62.2 127 136.5 ±151 17341.6 1331.7 0.22 473 14 0.38 
17 1284 76.45 59.5 110 111.6 ±65 12276.7 378.8 0.16 373 8 0.29 
18 1100 66.12 60.1 98 117.8 ±74 11548.2 689.7 0.17 332 6 0.30 
19 1108 65.21 58.9 89 125.8 ±81 11202.8 586.8 0.17 309 9 0.28 
20 1252 75.71 60.5 121 122.1 ±73 14776.7 483.4 0.20 417 8 0.33 
21 1093 69.17 63.3 94 114.0 ±61 10720.8 349.6 0.15 315 6 0.29 
22 1009 61.83 61.3 92 112.7 ±52 10373.6 279.5 0.17 316 6 0.31 
23 871 53.33 61.2 62 105.8 ±71 6559 502.6 0.12 207 8 0.24 
24 1013 64.95 64.1 85 125.0 ±88 10631.1 457.5 0.16 296 8 0.29 
25 810 44.02 54.3 71 100.3 ±51 7121.5 273.9 0.16 242 6 0.30 
26 849 51.73 60.9 70 124.6 ±96 8724.5 719.3 0.17 239 8 0.28 
27 798 48.73 61.1 57 108.8 ±69 6204.6 436.4 0.13 184 5 0.23 
28 779 46.00 59.0 41 112.4 ±65 4608.1 314.5 0.10 135 5 0.17 
29 847 51.98 61.4 58 126.6 ±77 7343.9 399.7 0.14 195 6 0.23 

Total 40854 2544.07 61.91 3741 123.7 ±87 447827.2 2212.8 0.18 13151 14 0.32 
aTotal length covered by core regions, bThe proportion of total core regions length on chromosome length, cNumber of 
SNPs forming core regions, dThe proportion of total number of SNPs forming core regions on number of SNPs used 
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Figure 1. Distribution of the length of core regions (A) and the number of SNPs 
forming the core regions (B) in Holstein genome 

 

Mean core region length was estimated as 123.7 Kb ± 87.2 Kb, with a maximum of 

2212.8 Kb. There were 265 core regions spanning on 35’372.8 Kb in chromosome 1 

and 41 core regions covering 4608.1 Kb of chromosome 28. These were the largest 

and smallest haplotypic structures in the genome. For each chromosome the 

proportion of length covered by core regions versus total length as well as the number 

of SNPs forming core regions versus the total number of SNPs are given in Table 1. 

A 

B 
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The distribution of the size of core regions is depicted in Figure 1. Overall, 13151 

SNPs (31.19 %) participated in forming core regions with a range of 3-14 SNPs per 

tract.   

EHH test in candidate genes 

The first step of our analysis focused on ten genes or gene clusters which are well-

known to be related to dairy qualities and therefore were assumed to be potentially 

under recent selection. Table 2 gives the names, details, and test statistics for the 

chosen panel. For those candidate genes we calculated REHH as a measure of LD 

surrounding a haplotype of interest. REHH values much greater than 1 indicate 

increased homozygosity of a haplotype compared with all other core haplotypes in the 

genome. REHH was calculated at 1 cM distance on both the upstream and 

downstream sides from a core for all the possible cores present. We chose this length 

because of the longer extent of LD in cattle compared to human, in which commonly 

the considered length is around 250 Kb (Sabeti et al. 2002, Yu et al. 2005). 

The results of the EHH test for the Casein cluster shows that P-values for the core 

haplotype 1 (frequency = 47 percent) exceeded the 99th percentile when REHH was 

plotted against the haplotype frequency (Figure 2.A1 and 4). P-values calculated for 

core haplotype 1 in both upstream and downstream direction are both 0.01, which 

indicates a clear signal of recent selection. In the case of the DGAT1 gene, the second 

most frequent haplotype (frequency = 30 percent) showed the highest REHH in the 

core region when plotted up to 1 cM from the candidate region in the downstream 

direction. As shown in figures 2.A2 and 3, haplotype homozygosity extended up to 

1cM only in downstream direction for this core region. This is due to the position of 

DGAT1 which is located at approximately 400Kb on BTA14 and also the lower LD 

observed in the upstream direction. This analysis also showed significant P-values for 

core haplotype 2 of the Leptin Receptor gene (LPR) and core haplotype 1 of the 

Somatostatin gene (SST) and approached significance for the Growth Hormone 

Receptor gene (GHR).   
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Figure 2. A1 and A2: EHH vs. distance plots for Casein cluster (1) and DGAT1 (2) 
core regions, showing decay of haplotype homozygosity as a function of distance for 
three most frequent haplotypes. Legends represent the core haplotype frequencies. B1 
and B2: Haplotype bifurcation plots of three core haplotypes for Casein cluster and 
DGAT1 regions, respectively. 
 
 
 

 
 
Figure 3. A graphical representation of pair-wise D’ for DGAT1 region calculated and 
visualized using HAPLOVIEW. SNP shown in green represent the closest SNP to 
DGAT1 gene and is involved in the block structure of length 207 Kb. 
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Table 2. Summary Statistics of EHH Test for Selection Signature in candidate genes 
 
Candidate 

Region Chr 

Closest SNP 

Name & Position (bp) 

Core 

Position 

Hap Freq 

(%) EHH REHHa 

REHHa 

P-Value 

DGAT1  14 ARS-BFGL-NGS-4939 
443936 

236533-
443936 

H1:  53 
H2:  30 

- / 0.19 
- / 0.70 

- / 0.32 
- / 3.47 

- / 0.83 b 
- / 0.06 

Casein 
Cluster 

6 Hapmap24184-BTC-070077 
88391612 

88350095- 
88427760 

H1:  48 
H2:  38 

0.63 / 0.54 
0.15 / 0.13 

3.69 / 3.61 
0.24 / 0.24 

0.01 / 0.01 
0.95 / 0.95 

GH  19 ARS-BFGL-NGS-73805 
49652377 

49523705-
49690250 

H1:  31 
H2:  24 

0.21 / 0.17 
0.41 / 0.38 

0.42 / 0.35 
1.35 / 1.60 

0.86 / 0.90 
0.92 / 0.94 

GHR 20 UA-IFASA-8974 
33908597 

33908597-
34080608 

H1:  54 
H2:  25 

0.72 / 0.86 
0.19 / 0.24 

1.62 / 1.76 
0.25 / 0.28 

0.10 / 0.08 

0.98 / 0.97 

SST 1 ARS-BFGL-NGS-38958 
81376956 

81283582-
81376956 

H1:  34 
H2:  30 

0.76 / 0.84 
0.27 / 0.44 

3.16 / 2.44 
0.49 / 0.72 

0.03 / 0.07 
0.80 / 0.62 

IGF-1 5 ARS-BFGL-NGS-116459 
71169823 

71073539-
71381565 

H1:  32 
H2:  31 

0.35 / 0.24 
0.22 / 0.20 

1.10 / 0.80 
0.52 / 0.47 

0.38 / 0.55 
0.76 / 0.82 

ABCG2 6 BTA-22850-no-rs 
37374911 

37135014-
37374911 

H1:  35 
H2:  21 

0.19 / 0.18 
0.29 / 0.25 

0.50 / 0.45 
1.10  / 0.95 

0.76 / 0.79 
0.53 / 0.61 

Leptin 4 ARS-BFGL-NGS-34894 
95715500 

95715500-
95825044 

H1:  79 
H2:    9 

0.14 / 0.15 
0.33 / 0.34 

0.37 / 0.38 
2.25 / 2.22 

0.45 / 0.42 
0.39 / 0.40 

LPR 3 ARS-BFGL-NGS-74572 
85569203 

85129366-
85176769 

H1:  49 
H2:  37 

0.08 / 0.11 
0.33 / 0.43 

0.25 / 0.27 
3.04 / 3.03 

0.92 / 0.90 
0.04 / 0.04 

PIT-1 1 DPI-55 
35756434 

35713131-
36085241 

H1:  32 
H2:  20 

0.22 / 0.24 
0.18 / 0.20 

0.65 / 0.62 
0.40 / 0.35 

0.67 / 0.69 
0.92 / 0.94 

 
a
 REHH and P-values are presented for upstream and downstream sides from each 

core haplotype, respectively 
  b As shown in figures 2.A2 and 3 haplotype homozygosities were extended up to 
1cM only in the downstream direction for this core region  

 

Whole genome screen for selection signatures  

For all 3741 core regions, a total of 28’323 EHH tests with an average of 7.57 tests 

per core region were calculated. To find outlying core haplotypes we calculated 

REHH at 1 cM distance on both the upstream and downstream sides. Figure 4 shows 

the distribution of REHH values vs. haplotype frequencies. Corresponding P-values 

are indicated by the use of different symbols. Based on the selection signature theory, 

a beneficial allele undergoing positive selection is fixed or is going to be fixed in the 

population. Hence core haplotypes harboring these alleles would have a high 

frequency. Taking this into consideration, we skipped core haplotypes with frequency 

<25% and plotted the -log10 of the P-values associated with REHH against the 

chromosomal position to visualize the chromosomal distribution of outlaying core 

haplotypes (Figure 5). It is evident that these signals are non-uniformly distributed 

across chromosomes and chromosome segments, with a substantial overrepresentation 

on parts of chromosomes 10, 2, and 13.  
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Chromosome position (Mbp) 

FIGURE 5. Genome wide map of P-values for core haplotypes with frequency ≥0.25. 
Dashed lines display the threshold level of 0.01.   

 

 

Table 3 presents the genome wide statistics of the selection signature test including 

the number of tests and outlying core haplotypes for each chromosome. Of 12’435 

tests on core haplotypes with frequency ≥ 0.25, in total 161 tests displayed outlying 

peaks on a threshold level of 0.01. Bovine chromosomes 6 and 14 which harbor 

known genes and QTL for several economically important traits (Stone et al. 1999; 

Mosig et al. 2001; MacNeil and Grosz 2002; Casas et al. 2003; Li et al. 2004; 

Ashwell et al. 2005; Nkrumah et al. 2007) showed 8 and 2 outliers, respectively. The 

number of peaks rises to 41 and 14, respectively, when the threshold is set to P<0.05.  
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Figure 4. Distribution of REHH vs. haplotype frequencies in the Holstein genome. 
REHH was calculated at 1 cM distances in the upstream and downstream direction for 
all possible core haplotypes. Core haplotypes with P-values lower than 0.05 and 0.01 
are presented in blue and red, respectively. The panel of 12 core haplotypes displaying 
the lowest P-values (P < 0.001) is represented by triangles. Values representing 
DGAT1 and the Casein cluster are indicated. 
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Table 3. A summary statistics of whole genome EHH tests 

Chr 
Tests on CH

a
 

(n) 

Pvalue<0.05 

(n) 

Pvalue<0.01 

(n) 

1 865 17 4 
2 678 58 17 
3 686 15 3 
4 626 11 1 
5 531 37 8 
6 695 41 8 
7 540 13 2 
8 605 41 6 
9 430 14 0 

10 552 123 45 
11 590 15 2 
12 335 9 2 
13 476 51 8 
14 439 14 2 
15 390 8 2 
16 423 29 6 
17 365 25 6 
18 340 3 0 
19 311 5 1 
20 400 51 11 
21 336 31 7 
22 300 27 7 
23 213 18 4 
24 290 8 4 
25 248 5 0 
26 234 14 2 
27 195 5 0 
28 146 5 2 
29 196 9 1 

Total 12435 702 161 
aThe number of tests on core haplotypes (both sides) with frequency ≥ 0.25 

 

We examined the conformity of the distribution of Tukey's outliers with outlying core 

haplotypes defined on the threshold level of 0.01. Figure 6 displays box plots of the 

distribution of -log10 (p-values) within each bin of core haplotype frequency. In order 

to fit the distribution of -log10 (p-values), the threshold defining outliers (1%) 

displayed in the box plots were set to Q1-3*IQR and Q3+3*IQR, where IQR is the 

interquartile range and Q1 and Q3 are the first and third quartiles respectively. It is 

evident that the extreme outliers appear in the moderate bins of haplotype frequencies.  
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Figure 6. Box plot of the distribution of P-values in core haplotype frequency bins of 
5% difference. Core haplotypes with P-values lower than 0.01 and 0.001 are separated 
with dashed and continuous threshold lines, respectively.  

 

Mapping positively selected regions to genome annotations 

A summary of statistics for 12 positively selected core regions presenting the lowest 

P-values of REHH test is shown in Table 4. Corresponding genes were identified 

using the map viewer option and aligning the core positions to the fourth draft of the 

bovine genome sequence assembly (Btau 4.0). We extended core regions in both 

directions up to 1cM as the length of the core domains. A subset of genes and EST 

regions were annotated for each core region. We screened this list for the most 

interesting candidate genes in each core region presenting top peaks. Interestingly, 

some regions overlapped with genes previously suggested being under selection. For 

example on chromosome 2q45, a core haplotype harboring the Fatty Acid-Binding 

Protein 3 muscle and heart (FABP3) gene showed a strong signature of selection (P-

value <0.0006). FABP3 is involved in gene networks driving bovine milk fat 
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synthesis during the lactation cycle and plays a key role in the regulation of the 

channeling of fatty acids toward copious milk fat synthesis in bovine mammary 

(Bionaz and Loor 2008). Another strong signature of selection on chromosome 12 

matches the SPERT (spermatid-associated protein) and 5-hydroxytryptamine 

(serotonin) receptor 2A (HTR2A) genes. 
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Table 4. Summary Statistics for 12 core haplotypes showing the lowest P-values of REHH test 

Chr Position Core 

Length(Kb) 

Hap 

Freq 

EHH REHH REHH 

P-Value 

Gene/EST 

(n) 

Candidate 

Gene 
Function 

Reports in 

Bovine 

2 127125963- 
127172772 

46.81 0.33 0.61 8.66 0.00068 12 FABP3 
 

Regulating of the channeling of fatty acids toward 
copious milk fat synthesis in bovine mammary 

Bionaz and Loor 
(2008) 

2 134666758- 
134761842 

95.08 0.61 0.47 5.07 0.00027 16 HMGCL 3 
E2F2  

Hydroxymethylglutaryl-coa lyase activity 
Activating Transcription Factor-2 in skeletal growth 
control 

Jiang et al. (2008) 
Phyllis & Luvalle 
(2003) 

10 13146429- 
13225603 

79.17 0.28 0.97 11.21 0.00087 31 PTGER2  
LCTL 

Prostaglandin E receptor activity 
Lactase like protein 

Arosh et al. 
(2003) 

10 38264640- 
38625718 

361.08 0.51 0.98 6.74 0.00071 21 CAPN3 
 

Calcium-dependent cysteine-type endopeptidase 
activity and protein binding 

Barendse et al. 
(2008) 

10 48942782- 
49031850 

89.07 0.41 0.57 7.58 0.00095 12 RORA  Steroid hormone receptor activity, transcription 
factor activity and zinc ion binding 

 

10 51073231- 
51138335 

65.1 0.51 0.80 6.45 0.00087 17 GCNT3  
LIPC  

Transferase activity, transferring glycosyl groups 
LPL is a key enzyme in catabolism of plasma 
lipoprotein (TGs) 

 
 

10 57638141- 
57773467 

135.33 0.39 0.96 9.76 0.00049 13 CYP19  Conversion of androgen to estrogen  

10 70455224- 
70552188 

96.96 0.33 0.91 8.40 0.00079 21 BMP4  Development and functioning of follicles and oocyte 
maturation 

Fatehi et al. 
(2005) 

12 14556717- 
14658840 

102.12 0.29 0.79 11.26 0.00085 11 SPERT 
5HTR2A  

Spermatid-associated protein 
G-protein coupled receptor activity 

Reist et al. (2003) 

13 5082478- 
5148264 

65.79 0.48 0.99 8.03 0.00043 1 BTBD3  Proteins with a bric--brac, tramtrack, broad-
complex/Poxvirus zinc fingers domain plays role in 
DNA binding, regulation of gene transcription and 
organization of macromolecular structures 

 

16 70812261- 
71003946 

191.69 0.36 0.79 8.42 0.00097 17 HSD11B1 
 
LPGAT1  

KEGG pathway: Androgen and estrogen 
metabolism, C21-Steroid hormone metabolism 
Acyltransferase  

 

17 13973226- 
14208603 

235.38 0.26 0.81 13.41 0.00037 7 ABCE1 
 

Transmembrane proteins  
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HTR2A 5 acts in serotoninergic pathways which are involved in economically 

important bovine gastrointestinal (GI) motility disorders such as displaced abomasum 

and cecal dilatation/dislocation (Reist et al. 2003). It was also suggested that variants 

of this gene are related with behavioral disorders in human (Khait et al. 2005) and 

aggressiveness in canine (Peremans et al. 2003). This point looks more interesting 

when we compare the temperament behavior of modern cattle breeds which have been 

bred during the last decades with native cattle breeds worldwide.  

Table 5. A list of candidate genes located nearby the peak regions on chromosome 10 

Gene Position (bp) 

PYGL phosphorylase, glycogen, liver 43,866,028 - 43,990,507 
L2HGDH L-2-hydroxyglutarate dehydrogenase 43,275,277 - 43,326,310 
TRIP4 thyroid hormone receptor interactor 4 45,955,859 - 46,007,749 
LACTB lactamase, beta 47,246,369 - 47,264,257 
CA12 carbonic anhydrase XII 46,990,214 - 47,052,877 
BMP4 bone morphogenetic protein 4 67,159,768 - 68,659,191 
CGRRF1 cell growth regulator with ring finger domain 1  68,781,739 - 68,809,111 
CDKN3 cyclin-dependent kinase inhibitor 3  68,622,652 - 68,639,430 
GCH1 GTP cyclohydrolase 1 69,125,665 - 69,182,772 
SOCS4 suppressor of cytokine signaling 4 69,288,425 - 69,302,353 
NAT12 N-acetyltransferase 12 (GCN5-related, putative 71,796,688 - 71,818,386 
TCF12 transcription factor 12 54,015,561 - 54,205,361 
GRINL1A glutamate receptor, ionotropic, N-methyl D-    

aspartate-like 1A 

53,121,124 - 53,128,327 

LIPC lipase, hepatic 52,220,965 - 52,415,726 

We found an unexpected high number of outliers on chromosome 10. One of the core 

regions representing strong signal (P-value < 0.0007) harbors the Calpain3 (CPN3) 

gene (Barendse et al. 2008). Another strong peak (P < 0.0008) on chromosome 10 is 

associated with the bone morphogenetic protein4 (BMP4) gene, which is involved in 

the bone morphogenetic protein (BMP)-signaling system, present in bovine antral 

follicles, and plays a role in development and functioning of follicles (Fatehi et al. 

2005). The other signal (P < 0.0008) observed on chromosome 10 is in vicinity of the 

prostaglandin E receptor 2-subtype EP2 (PTGER2) gene. EP2 is the major cAMP-

generating PGE (2) receptor expressed and regulated in the bovine uterus during the 

estrous cycle and early pregnancy (Arosh et al. 2003). It should be noticed that EHH 

for 5 out of 6 core regions on chromosome 10 were estimated as >0.95 when plotted 
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up to 1 cM. EHH extended up to at least 2 cM in both directions and spanned a larger 

number of candidate genes which could have been the targets of recent artificial 

selection in these regions (Table 5).  

We also explored three QTL databases available online (http://genomes.sapac.edu.au/ 

bovineqtl/index.html, http://www.animalgenome.org/QTLdb/cattle.html, http://www.- 

vetsci.usyd.edu.au/reprogen/QTLMap/) to identify the overlaps of the outlying core 

regions with published QTL in dairy and beef cattle. Table 6 lists the traits, 

approximate position and reported population of the overlapping QTL for each core 

region. In the majority of cases we found an overlap between the core regions 

presenting top P-values and those that had previously been identified to be harboring 

beef or dairy QTL. An interesting feature of this comparison is that the majority of 

these QTL have been reported in Holstein populations. 
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Table 6. Reported QTL nearby the core regions with lowest P-values 

Reported Statistic Chr Start – End 
 (bp) 

Trait Position  
(cM) 

Population 

F-ratio      P.value 

 
 

2 127125963- 
127172772 

Marbling Score 
Fat Yield 
Birth Weight 

126 
115-130 
115-128 

Multi-breed beef 
German Holstein  
Multi-breed beef 

 
 
 

Significant 
0.01 
0.014 

MacNeil et al. (2002) 
Harder et al. (2006) 
Grosz & MacNeil (2001) 

2 134666758- 
134761842 

      

10 13146429- 
13225603 

Milk Yield 
Protein Percent 
Carcass Weight 
Marbling Score 

11-20 
19 
0-30 
0-28 

German Holstein  
Israel Holstein 
Multi-breed beef 
Multi-breed beef 

2.3 
 
12.0 
11.0 

 
0.01 

 
 

Thomsen et al. (2001) 
Mosig et al. (2001) 
Casas et al. (2003) 
Casas et al. (2003) 

10 38264640- 
38625718 

      

10 [48942782- 
51138335] 

Non return rate 
SCC 
Body Depth 

48 
49 
46 

German Holstein  
German Holstein  
USA Holstein 

 
 
3.06 

Significant 
0.02 

 

Kuhn et al. (2003)  
Kuhn et al. (2003) 
Ashwell et al. (2005) 

10 57638141- 
57773467 

Protein Percent 55 Israel Holstein  0.02 Mosig et al. (2001) 

10 70455224- 
70552188 

Carcass Trait 
Udder Depth 
Calving ease 
Milk Yield 
SCC 
Teat Placement 
Udder Cleft 
Teat Length 
Protein Percent 

60-79 
68.1 
73.1 
69.0 
73.9 
68.1 
68.1 
68.1 
73 

Multi-breed beef 
Holstein  
US Holstein  
Canadian Holstein 
US Holstein 
Holstein 
Holstein 
US Holstein 
Israel Holstein 

 
 
21.78 
 
13.18 
 
 
14.03 
 

Suggestive 
0.02 

 
0.05 

 
0.02 
0.02 

 
0.03 

MacNeil et al. (2002) 
Biochard et al. (2003) 
Schnabel et al. (2005) 
Plante et al. (2001) 
Schnabel et al. (2005) 
Biochard et al. (2003) 
Biochard et al. (2003) 
Schnabel et al. (2005) 
Mosig et al. (2001) 

12 14556717- 
14658840 

Milk Yield 
Protein Yield 
Protein Percent 

21 
21 
21 

Finnish Ayrshire 
Finnish Ayrshire 
Israel Holstein 

 
 

0.006 
0.02 
0.01 

Viitala et al. (2003) 
Viitala et al. (2003) 
Mosig et al. (2001) 

13 5082478- 
5148264 

Dairy form 0-9 USA Holstein 2.82  Ashwell et al. (2005) 
 

16 70812261- 
71003946 

Hot Carcass Weight 
Udder Depth 

54-77 
61-72 

Wagyu x Limousin 
USA Holstein 

 
3.28 

Significant 
 

Alexander et al. (2007) 
Ashwell et al. (2005) 

17 13973226- 
14208603 

Rump Angle 
 

0-30 Holstein, Normande,  
Montbeliarde 

 0.005 Biochard et al. (2003) 
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DISCUSSION 

Holstein-Friesian cattle, the world's highest producing dairy animal, are believed to 

have been artificially selected since a few thousand years ago (Bradley & 

Cunningham 1998). Therefore, identifying the regions that have been subjected to 

selective breeding would facilitate the identification of genes related to traits of 

interest or biological relevance. A genome wide map of selection events will also help 

to better understand the mechanisms of selection in artificially selected populations. 

Unfortunately, robust inferences of recent positive selection from genomic data are 

difficult because of the confounding effects of population demographic history. For 

example, both positive selection and an increase in population size may lead to an 

excess of low-frequency alleles in a population relative to what is expected under a 

standard neutral model, i.e., a constant-size, randomly mating population in mutation-

drift equilibrium (Akey et al. 2004). Therefore, rejection of the standard neutral model 

usually cannot be interpreted as unambiguous evidence for recent selection. In 

contrast to human populations, the strength of artificial selection is supposed to be 

much more pronounced than natural selection on fitness related traits. Therefore, it is 

reasonable to hypothesize that targets of artificial selection will be easier to find in 

domesticated livestock populations than in non-domesticated populations (Biswas and 

Akey 2006).  

In this study we employed the long-range haplotype test, which detects selection by 

measuring the characteristics of haplotypes within a single population. We mapped a 

subset of the putative regions, identified by extreme P-values across the genome 

(Figure. 5) and used this information to annotate genes which may be under selection 

pressure. The identified genes reflect a series of pathways, like steroid metabolism, 

regulation of transcripts, transportation and other functional categories. For most 

genes associated with signals of selection a biological link to traits such as milk yield 

and composition, reproduction and behavior, which are known to be under selection, 

can be hypothesized. However these results need to be confirmed by further studies.  

Applying the EHH test on our data revealed 161 regions exhibiting footprints of 

recent positive selection at a threshold level of 0.01. We observed that other 
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haplotypes present in this region display a shorter extent of homozygosity, indicating 

abundant historical recombination. Therefore, the long stretch of homozygosity 

observed in this region presumably is not simply due to a low local recombination rate 

but likely reflects the combination of strong and recent selective pressure, pushing 

beneficial mutations rapidly towards high frequency with long conserved haplotypes 

surrounding them. The test on whole genome of Holstein genome revealed a signal on 

positions 62.27 Mbp chromosome 2 which is close to the one reported by Barendese 

et al. (2009) and the Bovine HapMap Consortium (2009) to be related with feed 

efficiency traits in a set of cattle breeds. There are also a cluster of strong signals on 

the chromosome 6 (position 88.35 Mbp) and chromosome 25 (position 30.24 Mbp) 

confirming the signatures related to multiple beef traits (Barendese et al. 2009) and 

ZNF187 gene (HapMap Consortium 2009), respectively. 

We examined the validity of EHH analysis by testing some candidate major genes in 

our data set. The results revealed a longer than expected range of LD in core regions 

harboring  the Casein cluster, DGAT1, GHR, STS and LPR genes which are supposed 

to affect milk yield and composition traits in Holstein cattle. This observation is in 

agreement with results of Hayes et al. (2009) who suggested signatures of selection in 

the vicinity of GHR and DGAT1 genes as revealed by allele frequency differences. 

The long range LD consistency observed in this study is also in coincidence with the 

reports of Grisart et al. (2003) and Marques et al. (2008) who used EHH plots to 

evaluate extended long range LD around DGAT1. The long range of LD observed for 

the second frequent core haplotype in the DGAT1 region in previous reports is 

confirmed in our study. A substantial proportion of the analyzed candidate genes 

showed P-values ≤ 0.10 which supports the validity of our approach. However, some 

of the candidate genes such as ABCG2 did not meet our definition of positively 

selected genes but may have nonetheless been targets of selection (Hayes et al. 2008, 

2009; The Bovine HapMap Consortioum 2009). Different hypothesis can be proposed 

to explain the incongruities. The disparity shown may have arisen because of a 

possible higher initial frequency of beneficial alleles (Innan and Kim 2004). Such an 

allele might e.g. be imported into a breed through crosses with other breeds. In such a 

case selection may have started from a moderate initial frequency, and beneficial 

alleles may be included in diverse haplotypes. The density of the markers is also 
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critical for the power of such studies and could be a source of discrepancy. Comparing 

the average marker spacing with mean core length and number of SNPs forming cores 

would results that the core regions were appeared where the marker density is greater 

than the average. This would imply that a new SNP chip with sufficient genome-wide 

marker density is required to efficiently identify core haplotypes. Furthermore, with a 

denser marker map a larger proportion than the 18.5 % of the mapped genome would 

be assigned to core regions. Although the effects of marker density on the distribution 

of REHH values is not clear (Zhang et al. 2006), a denser map would allow a more 

reliable and comprehensive screening of the genome for signatures of selection. The 

incongruities can also result by the complex genomic interactions, or lack of power 

given the sample size available for this study. 

CONCLUSION 

Our results provide a genome wide map of selection footprints in Holstein genome. 

Many of the regions showing top P-values seems to play important roles in 

economically interested traits in dairy cattle and can now serve as starting points for 

formulating biological hypotheses. We also reported high values of LD and a slower 

decay of haplotype homozygosity for some candidate regions harboring major genes 

related to dairy quality. Other candidate regions do not show such signals, which may 

be due either to statistical or to biological reasons. Additional studies are needed to 

confirm and refine our results. This may comprise within population studies with 

larger sample size and increased SNP density, comparative studies with 

geographically separated populations with identical or diverse breeding goals, and a 

detailed functional characterization of the candidate regions identified to be under 

recent directed selection. 
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Summary 

A two-step procedure is presented for analysis of θ (FST) statistics obtained for a 

battery of loci, which eventually leads to a clustered structure of values. The first step 

uses a simple Bayesian model for drawing samples from posterior distributions of θ-

parameters but without constructing Markov chains. This step assigns a weakly 

informative prior to allelic frequencies and does not make any assumptions about 

evolutionary models. The second step regards samples from these posterior 

distributions as "data" and fits a sequence of finite mixture models, with the aim of 

identifying clusters of θ-statistics. Hopefully, these would reflect different types of 

processes and would assist in interpreting results. Procedures are illustrated with 

hypothetical data, and with published allelic frequency data for Type-II diabetes in 

three human populations, and for 12 isozyme loci in 12 populations of the argan tree 

in Morocco. 

INTRODUCTION 

The discovery of a massive number of single nucleotide polymorphisms (SNPs) in the 

genome of several species has enabled exploration of genome-wide signatures of 

selection via an assessment of variation in marker allele frequencies among 

populations (e.g., Holsinger and Weir, 2009). Several methods have been proposed 

for doing this, such as site frequency spectrum, linkage disequilibrium and population 

differentiation (Sabeti et al., 2006, Akey, 2009). Concerning population 

differentiation, a parameter θ = FST, measuring relatedness between pairs of alleles 

within a sub-population relative to that in an entire population, has been used for this 

purpose (Wright, 1951, Cockerham, 1969, Weir and Hill, 2002), Lewontin and 

Krakauer (1973) and Robertson (1975) discuss related approaches. Equivalently, θ 

can be interpreted as a measure of dispersion of gene frequencies among groups 

relative to the variation expected in the population from which such groups derived. 

For example, Akey et al. (2002) analyzed over 26,500 SNPs for which allele 

frequencies were available in three populations of humans. The θ parameter was 

estimated for every marker locus and the distribution of estimates over the entire 
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genome, and by chromosome, was examined. By referring these estimates to their 

empirical genome-wide distribution, 174 candidate genes were identified as possible 

targets of selection. 

Holsinger and Weir (2009) provide an account of the logic of the procedure. Briefly, 

given a set of loci in a given species, a reasonable assumption is that all share the 

same demographic history and patterns of migration. If these loci are neutral and have 

similar mutation rates, members of this set can be conceivably regarded as 

exchangeable realizations of the same evolutionary process. Loci showing departures 

from the resulting distribution may serve as flags of genomic regions that have been 

under the influence of selection. Under the hypothesis of selective neutrality, the 

distribution (over loci) of estimates of θ is expected to be driven by genetic drift, 

assumed to affect all loci in a similar fashion. On the other hand, when selection 

operates on one or several loci (as in a multifactorial model for complex traits), 

markers that are within genes or in nearby locations will display large or small values 

of θ , the latter occurring when some sort of balancing selection takes place (Cavalli-

Sforza, 1996). This opens an avenue for identification of regions associated with 

population differentiation, e.g., high versus low producing breeds of dairy cattle. 

Knowledge of such regions may be useful for enhancing the effectiveness of breeding 

programs via marker-assisted selection, or for tagging variants associated with disease 

or quantitative traits. While unusual values of θ may point to genomic locations where 

selection may have operated, there is arbitrariness with respect to characterizing the 

type of selection that might have occurred. Typically, loci are classified as either 

neutral, or subject to balancing selection (low values of θ), or favored by selection 

within some specific population or environment (large population differentiation, thus 

leading to large values of θ). If the values of θ arise from different evolutionary or 

artificial (such as in plant and animal breeding) processes, one would expect to 

observe a mixture of distributions leading to clusters representing the different kinds 

of mechanisms operating. There is no apparent reason why there should be only two 

or three such clusters, there may be several clusters harboring loci undergoing 

different types of selection processes. On the other hand, if θ values vary completely 

at random due to genetic drift, a single cluster is to be expected. 
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Statistical issues associated with inferring θ statistics have been discussed, e.g., by 

Weir and Cockerham (1984) and Weir and Hill (2002), with emphasis in methods of 

moments estimation, by Balding (2003) using maximum likelihood for beta-binomial 

and Dirichlet-multinomial distributions, and by Holsinger (1999), Beaumont and 

Balding (2004) and Guo et al. (2009) employing Bayesian procedures. None of these 

treatments have addressed the possible existence of a clustered structure. 

 The objective of this paper is to present a two-step procedure eventually leading to 

clusters of θ values. The first step, along the lines of Holsinger (1999), Balding (2003) 

and Beaumont and Balding (2004), uses a simple Bayesian structure for drawing 

samples from the posterior distributions of θ parameters but without constructing 

Markov chains. This step assigns a weakly informative prior to allelic frequencies and 

does not make any assumptions about evolutionary models. The second step regards 

samples from these posterior distributions as "data" and fits a sequence of finite 

mixture models, with the aim of identifying clusters of θ statistics. Hopefully, these 

would reflect different types of processes and would assist in interpreting results. 

The paper is organized as follows. Section BACKGROUND reviews basic concepts. 

In ESTIMATION OF PARAMETERS the first step of the procedure is presented, 

contrasted with maximum likelihood, and illustrated with a hypothetical data set set 

and with data on type-II diabetes in three populations. CLUSTERING OF θ 

PARAMETERS describes the second step of the procedure, and illustrates it with a 

data set containing allelic frequencies for 12 polymorphic isozyme loci in 12 

populations of the argan tree (Argania spinosa L. Skeels) of Morocco presented in 

Petit et al. (1998) and analyzed by Holsinger (1999). The paper concludes with a 

discussion of the proposed methodology. 

BACKGROUND 

Basic concepts 

The stage is set by reviewing essentials of a treatment proposed by Cockerham (1969, 

1973). Suppose that genetic markers (e.g., SNPs) are screened in a set of individuals 
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in each of R groups or populations, the latter viewed as drawn at random from some 

conceptual hyper-population from which such groups derive. Consider a bi-allelic 

locus (developments carry to multiple alleles as well) and let Al and al be the two 

alleles at locus l (l = 1, 2, …, L), define pl = Pr (Al) to be the true, unobserved, 

frequency of allele Al in the hyper-population, with 1- pl = Pr (al) being the frequency 

of al. Cockerham (1969) defines al as any allele other than Al and uses an indicator 

variable x to denote allelic state ("content"), such that  





=
otherwise0

 allelean  if 1
,

l

lrij

Ais
x  

Here, r = 1, 2, …, R denotes group or replicate, i indicates an individual, j is an index 

for a within individual deviation, and l = 1, 2, ..., L is an indicator for locus. Even 

though xrij,l is a binary variable (so a linear model is questionable) Cockerham (1969) 

uses the linear decomposition  

                                               ,,,,, lrijlrilrllrij wbapx +++=                                       (1) 

where pl is as before and 

( ) ( ) ( )2
,,

2
,,

2
,, ,0~,,0~,,0~ lwlrilblrilalr bandba σσσ  

Are mutually uncorrelated zero-mean random deviates, specific to locus l; the σ2’s are 

variance components. Under the assumption that all alleles at locus l in the population 

have the same marginal distribution, 

( ) llrij pxE =,  

and 

( ) ( ) 2
,,,, 1 llwlblallllrij wbapppxVar σ=+++=−=  

for l = 1, 2, ..., L. Decomposition (1) induces the following covariance structure 

between allelic content variables: 
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A standard assumption is ( ) 0, =′rr aaCov . The following correlations (all positive) 

follow.  

• Pairs of alleles drawn at random from different individuals in the same group 

are correlated as 

                                       lSTl

lwlblb
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la F ,2
,

2
,

2
,

2
,

, ==
+++

= θ
σσσ

σ
ρ                                    (2) 

so 0 ≤ θ ≤ 1 for all l: 

• Pairs of alleles drawn within individuals over all replicates bear a correlation 

equal to 

lITl
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where F is the total inbreeding coefficient, also known as FIT (e.g., Weir and Hill, 

2002). 

• The correlation between alleles within individuals within the same replicate is 

lISl

lwlb

lb

lb Ff ,2
,

2
,

2
,

, ==
+

=
σσ

σ
ρ  

which is the within sub-population inbreeding coefficient f.  

It is easy to show that 
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This expression satisfies 

)1)(1(1 ,,, lSTlISlIT FFF −−=−  

indicating that a reduction in heterozygosity has as two sources: one that is due to 

population subdivision or Wahlund’s effect, (1 - FST,l) , and a reduction within 

subpopulation or group caused by "local" inbreeding, (1 - FIS,l).  

Note that parameter FST given in (2) can also be written as 
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Since σ2
a,l is the between-group variance in allelic content as per model (1), given R 

groups, a parametric representation of θl in terms of the unknown gene frequencies is                                 

                                                   ,
)1(
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∑
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where Rpp
R

r

lr /
1

,∑
=

= is the average (over groups) of the frequencies of allele Al at 

locus l: Note that 
lp

_

is taken as an unweighted average, it does not seem sensible to 

express a parameter in terms of sample size (unless weights assigned to samples 

reflect true population sizes). Expressing θl explicitly in terms of the locus-specific 

gene frequencies yields 
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providing a mapping from the joint space of R allelic frequencies to the single 

dimensional space of  θl, which resides in (0, 1).  

In Cockerham’s model (1), the random variables are the discrete allelic outcome (x) 

and the random deviates a, b and w. Their joint distribution is indexed by fixed 

parameters, one of which is the intra-class correlation θl given in (2). Now, if allelic 

frequencies for different populations are drawn at random from the same stochastic 

evolutionary process (e.g., as generated by random drift), θl becomes a random 

variable. Over loci, this defines the distribution of values of θ expected under 

neutrality assumptions, and the resulting process will depend on the distribution 

assumed for the allelic frequencies. From a Bayesian perspective, every unknown is a 

random variable and, since allelic frequencies are unknown, θ as given in (3) will 

posses a distribution, both a priori and a posteriori. In the first step of the method 

proposed in this paper, the posterior distribution of θl will result from assigning a 

vague prior to all allelic frequencies, corresponding in some sense to what could be 

termed as a fixed effects treatment from a frequentist perspective. The second step 

addresses the question of whether or not all 114 θl stem from the same distribution or 

from different distributions resulting from heterogeneity of the underlying stochastic 

processes. This makes the treatment proposed here different from those in, e.g., 

Holsinger (1999) or Balding (2003). 
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ESTIMATION OF PARAMETERS 

Inferring gene frequencies 

Gene frequencies can be inferred using a simple Bayesian approach. Suppose that nr 

individuals are genotyped in population r, so that the number of alleles screened at 

locus l is 2nr = nr,Al + nr,al, where nr,Al and nr,al are the observed numbers of copies of 

Al and al, respectively. 

A convenient assumption is that of mutual independence between the distributions of 

alleles at different loci (stronger than that of pairwise linkage equilibrium). Linkage 

disequilibrium is pervasive but the assumption made above facilitates matters and is 

widely used, e.g., by Corander et al. (2003). Let p =(p1, p2, ..., pR)’ be an RL ×  1 

vector of allelic frequencies for all R groups, where pr = (pr,1, pr,2, ..., pr,L)’ has order L 

× 1: Under the mutual independence assumption, the likelihood conferred by the 

observed number of copies of alleles to the gene frequencies is 

                                      l(p|DATA) = ∏∏
= =

−
R

r

L

l

an

lr

An

lr
lrlr pp

1 1
,,

,, )1(                                   (5) 

The maximum likelihood estimator of lrp ,  is 
r

Ar

lr
n

n
p l

2
ˆ ,

, = and its empirical variance 

is
r

lrlr

lr
n

pp
pVar

2

)ˆ1(ˆ
)ˆ( ,,

,

−
= . The maximum likelihood estimator is unbiased but 

unstable, and may take values at the boundaries of the parameter space in small 

samples. In a Bayesian treatment, allelic frequencies are assigned a prior distribution 

that might be homogeneous or heterogeneous over populations, chromosomes or 

genomic regions (e.g., coding versus non-coding regions). For example, Holsinger 

(1999, 2006) adopts a prior beta distribution, ),|( lll bapBeta (and interprets it as 

describing variation over populations) with parameters  

,
1

ll xa
θ

θ−
=  
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and  

)1(
1

ll xb −
−

=
θ

θ
. 

Here θ is common to all loci (i.e., the hypothesis of neutrality) and xl is the mean 

allelic frequency at locus l (averaged over populations). Using properties of the beta 

distribution in the parametric definition of θ leads to 
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Then, the joint posterior distribution of all unknowns (all132 allelic frequencies, θ and 

vector x = {xl}) is 

            g(p,θ,x|DATA)  ggpp
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Holsinger (1999) took g (θ) = Beta (1, 2) distribution as prior for θ and assumed that 

all xl were identically distributed according to the uniform process g (xl) = U (0, 1): 

Given θ and x, the allelic frequencies are conditionally independent with conditional 

posterior distributions 

LlRr

xnxnBetaELSEpg larlArlr ll
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where ELSE means all parameters other than pr,l and the data observed: However, the 

conditional posterior distributions of θ and x are not recognizable, so an elaborate 

sampling scheme, e.g., one based on Markov chain Monte Carlo methods, must be 

tailored. Holsinger (1999) found that inferences were insensitive with respect to the 

choices of beta and uniform prior distributions for θ and elements of x, respectively. 

However, it was assumed (as in a neutral model) that all loci share the same θ 
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parameter. This produces a mutual borrowing of information among loci (shrinking 

lrp ,  towards a common value), but the procedures is not explicit with respect to the 

existence of heterogeneity over loci due forces such as differential mutation or 

selective sweeps. As proposed by Beaumont and Balding (2004), one could estimate 

locus specific θ-values and refer these estimates to the posterior distribution of θ 

under the homogeneity value. In this manner, outliers could be found with respect to 

the "neutral" distribution, but this would not inform about the structure of any latent 

heterogeneity. Here, an alternative approach is used. Jeffreys rule (Bernardo and 

Smith, 1994, Sorensen and Gianola, 2002) is used to produce a reference prior, which 

is a ),( 2
1

2
1Beta distribution assigned to all loci in all populations. This reference 

prior distribution is minimally informative in a well defined sense (Bernardo and 

Smith, 1994). Using Bayes theorem, the joint posterior density of all allelic 

frequencies is now 
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Thus, allelic frequencies at different loci are mutually independent, a posteriori, with 

pr,l following a beta distribution with parameters 2
1

, +=
LArrl nα and 2

1
, +=

larrl nβ  

Possible point estimates of allelic frequencies are the posterior mean 
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and the posterior mode 
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 for nr,Al ≥ 1.                                       (8) 

The variance of the posterior distribution of pr,l is 
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Even though a weakly informative prior is used, differences exist with respect to 

maximum likelihood. To illustrate this point, consider a hypothetical example with 2 

groups, M and N. Suppose that 100 individuals are genotyped in group M and that the 

observed number of Al alleles is 199, i.e., the locus is nearly fixed. The maximum 

likelihood estimate of pM,l is 0.995 and its estimated standard error is 4.99 × 10-3; a 

calculation based on asymptotic normality (without truncation) yields that the 

probability of obtaining estimates larger than 1 is close to 0.16! Further, the 

probability of obtaining estimates between 0.9 and 0:995 is close to 2
1 . On the other 

hand, the posterior distribution of pM,l is Beta (199 + 2
1  , 1 + 2

1 ). The posterior mean 

and posterior standard deviation are 0.993 (note some shrinkage away from the edge 

of the parameter space) and 6.06 × 10-3, respectively, the posterior probability of the 

frequency being larger than 1 is exactly zero, and the probability that pM,l takes values 

between 0.9 and 0.995 is about 0.57. Figure 1 displays the posterior distribution of the 

allelic frequency obtained with Jeffrey’s prior, overlaid against the normal 

approximation to the distribution of the maximum likelihood estimates. Clearly, the 

approach used makes a difference, even in a situation where allelic frequencies are 

estimated with reasonable precision, as indicated by the small standard error of the 

maximum likelihood estimate and the small posterior standard deviation in the 

Bayesian analysis (the coefficient of variation of the posterior distribution is less than 

1%). 

In the second population, N, 30 individuals are genotyped and 10 alleles are of the 

type Al, the maximum likelihood estimate of pN,l is then 6
1 , much lower than in M, and 

its sampling variance is 2.31 × 10-3. The posterior distribution of pN,l is Beta (10 + 2
1  , 

50 + 2
1 ).  In N, the posterior density of pN,l and the normal approximation to the 

density of the distribution of the maximum likelihood estimator are very similar (not 

shown here). 
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Differences in allelic frequencies between populations M and N at the locus in 

question may be due to random drift or may suggest a signature of selection. 

 

Figure 1. Posterior density (thick line) of the allelic frequency p at a locus for which 
199 copies have been observed out of 200 alleles counted in hypothetical population 
M; the posterior distribution is Beta (199+ ½, 1+ ½). The thin line is the density of a 
normal approximation to the sampling distribution of the maximum 2 likelihood 
estimator. 

 

Inferring θ by maximum likelihood  

A likelihood-based estimate of θ can be obtained by replacing in (3) or (4) the 

unknown allelic frequencies by their maximum likelihood estimates. For the example 

of populations M and N above, the estimate is 
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The sampling variance of the maximum likelihood estimator of θl can be 

approximated using a Taylor series expansion. As shown in Appendix A, the first 

derivative of θl with respect to the allelic frequency at locus l in group r is 
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)ˆ(ˆ , is a diagonal matrix containing the estimates of 

the sampling variances of the maximum likelihood estimates of allelic frequencies pr,l. 

For the hypothetical example, 5108265.9)ˆ( −×≈θVar . The asymptotic normal 

approximation to the distribution of the estimates assigns nil probability to "estimates" 

outside of (0, 1); the probability of obtaining estimates of θ between 0.67 and 0.74 for 

this two-population situation is 0.9996. 

Bayesian inference of θ  

Consider now finding the posterior distribution of θl as defined in (4) and without 

making the assumption that the θs are realizations from the same stochastic process, 

i.e., without borrowing information across loci over and above the shrinkage of allelic 

frequencies produced by Jeffrey’s prior.  

The posterior distribution is analytically difficult to arrive at because θl is a non-linear 

function of gene frequencies in all R groups. However, since it is easy to obtain 

independent samples from each of the Beta ( 2
1

, +
lArn , 2

1
, +

larn ) processes, Monte 

Carlo estimates of features of the posterior distribution of θl can be obtained without 
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using Markov chain Monte Carlo methods at all. Let ,,...,2,1,)(
, Ssp
s

lr = be samples 

from the posterior (beta) distribution of pr,l, the frequency of allele Al at locus l. Then, 

a draw from the posterior distribution of θl is given by 
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which is a random variable with support in (0, 1) (Holsinger, 2006). Then, from S 

samples, the mean, median, variance, etc., of the posterior distribution of θl can be 

estimated. Each θl (l = 1, 2, ..., L) will have a point estimate and an assessment of 

uncertainty, e.g., a credibility interval of size 95% given by the 2.5% and 97.5% 

percentiles of the corresponding posterior distribution estimated either from samples 

or from the normal theory approximation given in Appendix B. 

In the hypothetical populations M and N the posterior distributions of the frequency of 

Al are Beta (199.5, 1.5) and Beta (10.5, 50.5), respectively. With draws denoted as B(s) 

(., .) , S samples from the posterior distribution of θl can be obtained as: 
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To illustrate, 5000 samples were drawn from each of the two beta distributions, to 

form S= 5000 corresponding draws from the posterior distribution of θl. The mean 

and median were 0.6966 and 0.6972, respectively, the standard deviation was 0:070 

and the range of values samples spanned from 0.4268 to 0.8883. The posterior density 
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of θl and the empirical cumulative distribution function are in Figures 2 and 3, 

respectively. Values of θl appearing with appreciable density range from about 0.5 to 

0.9 (Figure 2), with small posterior probability assigned to values smaller than 0.6. 

(Figure 3). 

 
 
Figure 2. Posterior density of θl for the hypothetical example 5 of populations M and N 
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Figure 3. Empirical cumulative distribution function of θl for the hypothetical 
example of populations M and N. 
 

A Bayesian "null" distribution for assessing sampling variation uncertainty  

It is important to check whether or not posterior estimates of θl depart from what 

would be expected by chance alone. A posterior distribution consistent with 

expectations under a "null" model is formulated next. The θl statistics calculated from 

the "full" model above can then be referred to this null distribution. Note that the 

"null" distribution given below describes the uncertainty to be expected from drawing 

random samples from the same population, but not the variability to be expected due 

to genetic drift. If estimates of θl fall in this null distribution, this would indicate that 

the study lacks power to answer evolutionary questions in any meaningful manner.  

A "null" distribution" is arrived at by stating that pr,l = pl is the same random variable 

for all R populations. Under this assumption, the posterior distribution of the vector of 

gene frequencies (now of dimension L× 1) under the "null" model is 
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Hence, allelic frequencies pl are mutually independent, a posteriori, with pl|DATA, 

Null being a beta distribution with parameters 2
1

1
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draw from the posterior distribution of the FST statistic under this model takes the 

form 

                                        ,
)1(

)(

)()(

1

2)(),(

)(
, s

l

s

l

R

r

s

l

sr

l

s

Nulll
pp

R

pp

−

−

=

∑
=

θ                                        (12) 
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involved in a realization of ,)(s

lθ and )(s

lp is the average of the R draws. A set of 

samples from the posterior distribution of θl under the null model is obtained by 

repeating the sampling process S times. This distribution serves as a reference against 

which the θl statistics calculated from the "full" model can be compared. If the 

posterior mean of θl obtained from the "full" model falls outside of a high density area 

of the posterior distribution of θ  in the null model, then the divergence between 

populations would be probably due to drift or selection (assuming mutation rates are 

constant over populations), but not due to chance alone. 

For the example of populations M and N, 209
1

, =∑
=

R

r

Ar l
n and∑

=

=
R

r

ar l
n

1
, 51 . Figure 4 

depicts the Beta (209.5, 51.5) distribution of the allelic frequency under the "null" 

model. Note that the maximum likelihood estimates of the allelic frequencies in the M 

and N populations, of 0.995 and 6
1 , respectively, are not assigned any appreciable 

density under this model. Upon drawing 5000 independent samples from the beta 
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distribution of the allelic frequency under the null model, 5000 draws for )(
,
s

Nulllθ were 

obtained by evaluating (12) for each of the samples. Draws ranged from 8.24×10-13 to 

0.0503; the mean (standard deviation) was 0.0038(0.0053) and the posterior median 

was 0.0017.  

 

 
 
Figure 4. Posterior density of the allelic frequency p under a drift ("null") model for 
hypothetical populations M and N ; 209 copies of Al are observed out of 260 alleles 
screened. 
 
 
 

The posterior density of Nulll ,θ was very sharp as shown in Figure 5. In the full model, 

the estimated posterior mean (standard deviation) of θl was 0.6966, which is unlikely 

to have been generated under the null distribution. This would make the locus a 

reasonable candidate for further examination. 
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Figure 5. Posterior density of θl under the null model for the hypothetical example of 
populations M and N: 

 

Illustration of sampling variation with candidate genes for type-II diabetes 

The Bayesian method was applied to data pertaining to identification of candidate 

gene variants for type II diabetes in Polynesians (Myles et al., 2007). Prevalence of 

this disease is high in several Pacific populations, e.g., 40% of adults living in the 

island of Nauru. DNA samples were obtained from 23 Polynesians, 23 New Guineans 

and 19 Han Chinese from Beijing. Type II diabetes associated alleles were from 10 

SNP loci having evidence of association. Estimated frequencies and θ l statistics are 

shown in page 587 of Myles et al. (2007). To illustrate the Bayesian procedure, data 

for the KCNJ11 locus was used, and susceptibility allele frequencies (Al in our 

notation) were 0.30, 0.25 and 0.34 in the three populations above, respectively. Their 

figures do not lead to an integer number of alleles, due to rounding error, so the 

number of observed Al alleles used here was set to 14 (Polynesians), 12 (New 

Guineans) and 13 (Han Chinese). Myles et al. (2007) employed an "unbiased 
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estimator" of θ l for calculating population pairwise differences, and their estimates 

were 0.003 (New Guinea- China), -0.024 (China-Polynesia) and -0.017 (New Guinea-

Polynesia). Note the two negative estimates of a parameter that resides in (0, 1), 

standard errors or significance levels were not provided. Their analysis suggests that 

this locus is not associated with prevalence of the disease. 

The posterior distributions of Al were BetaPolynesians (14.5, 32.5), BetaNew Guineans (12.5, 

34.5) and BetaHan Chinese (13.5, 25.5). The number of samples drawn from each of these 

3 posterior distributions was S = 1000, and 1000 draws from the posterior distribution 

of θKCNJ11 were obtained by evaluation of (10). Values of θKCNJ11 ranged from 2.423 × 

10-5 to 0.1500, with an estimated posterior mean (standard deviation) of 0.019 

(0.0193), this estimate is higher than that of Myles et al. (2007). The non-parametric 

estimate of the posterior density of θKCNJ11 is shown in Figure 6, illustrating that the 

true value of the FST parameter is very likely below 0.10. The posterior inter-

correlation structure between allelic frequencies and θKCNJ11 in the full model was 

examined and, as expected, draws from the posterior distributions of allelic 

frequencies in the three populations were uncorrelated. Samples of θKCNJ11 were 

positively correlated (0.55) with those for allelic frequency in Chinese Han, and the 

95% confidence interval for the correlation was 0.51-0.60. However, draws for 

θKCNJ11 were negatively correlated with allele frequencies in Polynesians (-0.07) and 

New Guineans (-0.39), the confidence intervals for these two correlations were (-

0.13,-0.01) and (-0.44,-0.34), respectively. 

For the "null" model, the 1000 samples from the posterior distribution of θKCNJ11,Null 

ranged from 3.62 × 10-6 to 0.1460, with the posterior mean (standard deviation) 

estimated at 0.002 (0.002); the posterior median was 0.002 as well. The posterior 

mean (standard deviation) estimate of θKCNJ11 under the "full" model was 0.019, and it 

did not enter with high density in the "null" model (not shown).  
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Figure 6. Density of the posterior distribution of θKCNJ11 obtained from allelic 
frequencies in Myles et al. (2007). 
 
 

Although variation in allelic frequency at locus KCNJ11 among the three populations 

departs from what would be expected from chance alone (statistical sampling), the 

observed θ value is very small. This may support the hypothesis that this locus may 

not be associated with differences in prevalence of type II diabetes, in agreement with 

Myles et al. (2007). Allelic frequencies were uncorrelated, as it should be, given that 

the three replicates were drawn from the same Beta (209.5, 51.5) distribution. The 

θKCNJ11,Null statistic was uncorrelated with allelic frequencies, and the correlations 

were -0.08, -0.11 and 0.03 in the three replicates, with all confidence intervals 

including 0. 

CLUSTERING OF θ-PARAMETERS 

The second step of the procedure consists of clustering a set of estimates of θ-values 

(in this case, posterior means) from a multi-locus analysis into data driven groups. 

The expectation is that these clusters might be representative of different processes 

taking place in the populations such as balancing or directional selection, neutrality or 

anything else. The method is illustrated with data from a study of Petit et al. (1998) in 
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which alleles were sampled for 12 isozyme loci of the Argania genus tree in each of 

12 areas (populations) of Morocco. The data, given in page 847 of Petit et al. (1998), 

were modified as shown in Table 1. The modification consisted of treating all loci as 

bi-allelic by lumping alleles for loci with more than 2 variants into 2 classes. The 

number of individuals sampled per population ranged between 20 and 50, and the 

number of alleles per locus varied originally between 2 and 5. Note that, at some loci, 

one of the alleles was fixed in almost all populations. For example, for locus 3, the 

only population in which segregation was observed was TA.  

 
 
Table 1. Allelic frequencies at 12 isozyme loci in each of 12 Argan tree populations, 
adapted from Petit et al. (1998) by making all loci bi-allelic. A1-A12 represent 
frequencies of the "A" allele at loci 1-12; No. A1-No. A12 are the observed number of 
copies of the alelles. The number of "a" alleles can be calculated from the number of 
individuals samples and the number of "A" alleles observed. 

 

For each locus, 2000 samples were drawn from the beta posterior distributions of 

allelic frequencies. For example, the posterior distribution of pAB,1 was Beta (21.5, 
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19.5). From these samples, 2000 draws from the posterior distribution of θ for each 

locus were formed as in (10). The posterior means were. 










190.0122.0095.0593.0382.0299.0137.0393.0166.0791.0168.0098.0
121110987654321 θθθθθθθθθθθθ

 

so estimates of θ varied over loci from about 0.095 (locus 10) to 0.791 (locus 3), all 

these estimates did not enter into the corresponding "null" distributions. Boxplots of 

the posterior distributions of the θ parameters are in Figure 7. Visually, it is tempting 

to suggest four clusters: the first one would include locus 3, with the posterior mean 

of θ close to 0.79, the second cluster would include locus 9, with an estimate of θ of 

0.59. The third cluster would include loci 5, 7 and 8 with estimates ranging between 

0.30 and 0.39, and the fourth cluster would be represented by loci 1, 2, 4, 6, 10, 11, 12 

having the lowest estimates of θ. 

 The existence of an underlying structure is suggested by the distribution of all 24000 

samples, presented in Figure 8. In the left panel, a non-parametric density estimate 

was obtained from these samples treated as if all draws (2000 for each of the 12 loci) 

had been made from the same process, the densities in the middle and right panels 

correspond to the logit, i.e., 








−θ

θ

1
log , and Gompit, -log(-log (θ)), transforms of the 

sampled θ values, respectively. The three densities suggest that θ values cluster 

around 3, perhaps 4, modes. 

The structure was explored more formally by fitting a sequence of finite mixture 

models to the means of the posterior distribution of the θ-values for each of the 12 

loci. These posterior means are independent (under the assumptions made for the 

allelic frequency models) but not identically distributed, since they are estimated with 

different precision, due to unequal numbers of individuals sampled and varying allelic 

frequencies. The distributions of θ-values among loci are not normal (the logit and 

Gompit transforms would be expected to be more nearly so). 
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Figure 7. Boxplot of the posterior distributions of θ parameters in 12 isozyme loci of 
the argan tree in Morocco (data originally from Petit et al., 1998). 

 

This should not be an issue because the mixture model was not used for testing 

hypotheses, its objective, rather, was to explore a clustered structure. Since there are 

only 12 posterior means, the mixture models must have less than 12 parameters, 

otherwise, a perfect fit would be obtained. The mixture model fitted to the posterior 

mean estimates lθ postulated that  

lθ  or 








− l

l

θ

θ

1
log  or  -log (-log ( lθ )) ~ ),,|( 2
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k N σµθπ∑
=

 

where K is the number of components of the mixture (clusters of posterior means of θ-

values or transforms thereof), kπ is the probability that lθ  belongs to cluster k (subject 

to 1
1

=∑
=

K

k

kπ , and kµ and 2
kσ are the mean and variance, respectively, of component k. 

For example, if k = 2, there are 5 "free" parameters in the mixture, if k = 4, there are 

11 such parameters, so it is not sensible to fit a model with more than 4 components. 

Mixture model parameters were estimated by maximum likelihood via the 
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expectation-maximization algorithm as implemented in the FlexMix package (Leisch, 

2004) in the R project (R development core team, 2008). Upon convergence 

(assuming the stationary point was a global maximum), the conditional probability 

that lθ  (or its transformation) belongs to cluster k is calculated as 

Pr (locus l ∈cluster k| parameter estimates) 

∑
=

=
K

k

kklk

kklk

N

N

1

2

2

)ˆ,ˆ|(ˆ

)ˆ,ˆ|(ˆ

σµθπ

σµθπ
 

The locus was assigned to the cluster with the largest conditional probability. Models 

with different values of k = 1, 2, 3, 4 were compared using Akaike’s information 

criterion (AIC), that is 













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


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2 )ˆ,ˆ|(ˆlog2)(
l

K

k

kklk NpkKAIC σµθπ , 

where pK is the number of parameters for a model with K components (McLachlan 

and Peel, 2000). Models with the smallest AIC values are preferred. It is known that 

this criterion tends to overstate the number of components due to violation of 

regularity conditions in mixture models (Celeux and Soromenho, 1996). 

Results of the mixture model analysis, by number of components fitted, are shown in 

Table 2. The AIC criterion favored a mixture with 2 clusters when the response was 

either θ or its Gompit transform, and a single component when the logit 

transformation was used. Clearly, with data from only 12 loci, the analyses did not 

have enough power to resolve heterogeneity in a finer manner. This would certainly 

not be the case with SNP data, where the number of marker loci typically oscillates 

between a few thousands in some animal species to close to a million in humans. 

Classification probabilities using K=2 and estimates of cluster mean and standard 

deviation are shown in Table 3. Irrespective of whether θ values were transformed or 

not, loci were clustered into two groups, one consisting of loci 3,5,7,8 and 9, possibly 

reflecting a selection signature, and the other one including the remaining loci, 

presumably representing neutral loci. 
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Table 2. Comparison of mixture models with 2, 3 or 4 components fitted to the 12 
posterior means of θ-parameters and their logit or Gompit transforms in the argan tree 
data of Petit et al. (1998). AIC: Akaike’s information criterion (models with smallest 
values are favored and indicated in boldface). 

 

 
Table 3. Conditional probabilities of membership to one of two clusters for mixture 
models fitted to the posterior means of _ for the 12 loci in the argan tree, and their 

logit, 








−θ

θ

1
log , and Gompit, -log(-log (θ)); transformations (boldfaced probability 

indicates the cluster with largest probability of membership). 
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The maximum likelihood estimates of the mean and variance of θ values in the cluster 

with loci 3,5,7,8 and 9 were 0.41±0.21, whereas the corresponding estimates in the 

other cluster were 0.12± 0.03. This assignment into clusters is consistent with the 

picture emerging from visual consideration of the box plots in Figure 7. 
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Figure 8. Non-parametric density estimates of θ-values (based on 2000 samples for 
each of 12 loci), logit (θ) and Gompit (θ): All samples treated as homogeneous, i.e., as 
generated from the same stochastic process. 

 

In principle, a better approach is to feed the entire set of posterior samples to the 

clustering procedure, such that not only the location of the posterior distributions of 

the θs is considered, but their uncertainty as well. This is very appealing conceptually, 

but it creates havoc in the EM algorithm, which often fails to converge. For instance 

Qanbari et al. (personal communication) employed the procedure with posterior 

means (each calculated with 1 million samples from the corresponding posterior 

distribution) with about 35,000 SNPs in Hereford and Simmental cattle. When 

posterior means were used as data, the mixture model approach revealed the existence 
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of 4-5 clusters. However, when the 35 million samples were used as data points, the 

EM algorithm, as implemented in FlexMix, failed to converge. 

DISCUSSION 

The use of F-statistics for the study of genetic divergence between population dates 

back to Wright (1931). Holsinger and Weir (2009) have provided a justification for 

their usefulness, e.g., in association mapping and in detecting genomic regions 

affected by evolutionary processes, such as selection. These authors also reviewed 

different types of statistical methods for inferring FST, including Bayesian procedures. 

Method of moments estimation was prompted by the linear model formalism of 

Cockerham (1969, 1973), and a review is in Weir and Hill (2002). There has been an 

increased interest in Bayesian methods, and important contributions in this front have 

been made by Holsinger (1999, 2006), Beaumont and Balding (2004) and Guo et al. 

(2009).  

In the Bayesian approaches that have been suggested, e.g., Holsinger (1999), the 

model poses a product binomial (or product multinomial in the case of multiple 

alleles) likelihood function for allelic frequencies, with conjugate prior distributions, 

such as beta or Dirichlet processes. Marginalizing over the allelic frequencies yields 

the beta binomial or Dirichlet-multinomial distributions used by Balding (2003) for 

likelihood-based inference. Holsinger (1999) matched the mean and variance of, e.g., 

the beta distribution, to the definition of θ, and obtained a joint posterior distribution 

which is a function of the unknown allelic frequencies, of θ (assumed exchangeable 

over all loci) and of the mean allelic frequencies in an undivided population. The 

implementation, as well as those of Beaumont and Balding (2004) and of Guo et al. 

(2009) requires Markov chain Monte Carlo sampling (MCMC). While the power and 

flexibility of hierarchical models coupled with MCMC are well known (Sorensen and 

Gianola, 2002), implementations are not trivial and monitoring of convergence to the 

equilibrium distribution is a delicate matter (Cowles and Carlin, 1996). The idea in 

these methods is that, under a neutral model, all θ (over loci) should be realizations of 

the same stochastic process. Outlying θ values may be suggestive of genomic regions 
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affected by selection. Typically, it is argued that loci are either neutral, subject to 

balancing selection or to directional selection favoring alleles in specific 

environments, e.g., Akey el al. (2002). However, the assignment of loci to specific 

types of processes is often arbitrary. 

The present paper follows ideas of Holsinger (1999) but it differs in two important 

respects. The proposed method has two steps. First, allelic frequencies are assigned a 

non-informative prior, so that the mutual borrowing of information between loci is 

limited, leading to less shrinkage of frequencies towards a common value, in 

maximum likelihood there is no shrinkage at all, an issue criticized by Haldane 

(1948). Samples of allelic frequencies can be obtained directly (actually, their 

posterior distributions are tractable, analytically), and these draws are used to form 

draws from the posterior distribution of locus-specific θ parameters, using the 

parametric definition of FST as a function of allelic frequencies. The first step was 

illustrated with hypothetical data and with type II diabetes data in Myles et al. (2007). 

The step leads to estimates of the posterior distribution of the θs which can be used to 

explore underlying structure, presumably caused by different evolutionary forces. In 

the second step, the structure is explored by using features of the posterior distribution 

of the θs (posterior means or transformations thereof) as response variables in a 

mixture model. Data from Petit et al. (1998) on 12 isozyme loci in 12 populations of 

the argan tree in Morocco were used to illustrate the second step. Here, the posterior 

means of θ are treated as belonging to a mixture of normal distributions which is then 

resolved into data-supported components. Since the final objective is that of clustering 

loci according to their similarity in θ-values, departures from normality are arguably 

of little consequence. Here, logit and Gompit transformations were examined, and the 

clustering procedure produced exactly the same results. Using Akaike’s information 

criterion as a gauge for model comparison, it was suggested that the 12 estimates of θ 

clustered into two groups, one representing putatively neutral loci (provided that this 

group reflects variation due to drift), and another one possibly corresponding to 

genomic regions affected by selection. With 12 loci only, it is unreasonable to expect 

a finer clustering structure. An ongoing study is applying the two-step procedure to 
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large scale SNP data in an animal population and this will be reported in a future 

communication. 

The method proposed here extends naturally to multiple alleles. In this case the 

likelihood is product multinomial and the beta prior distribution is replaced by a 

Dirichlet distribution with minimum information content. The posterior distribution of 

the allelic frequencies is product Dirichlet, which is simple to sample from. Then, 

samples from the posterior distribution of θl would be drawn by evaluation of 

formulae similar to those in Nei (1973) where θ-parameters are averaged over alleles. 

For example, one could define 
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where pr,l,m is the frequency of allele m at locus l in population r and pl,m is the 

unweighted average over the R populations. 

In common with the studies of Holsinger (1999), Beaumont and Balding (2004), Weir 

et al. (2005) and Guo et al. (2009) the procedure presented here assumes that allelic 

frequencies are in linkage equilibrium, so that the likelihood of all allelic frequencies 

is either product binomial or product multinomial. Accommodating linkage 

disequilibrium, especially with dense batteries of marker loci, represents a formidable 

task and it is a challenge for future research. For example, Akey et al. (2002) and 

Weir et al. (2005) reported that θ values of loci in regions of high linkage 

disequilibrium were similar. Guo et al. (2009) address correlations due to linkage, but 

not due to linkage disequilibrium, and do so by introducing a spatial structure for loci 

located in the same chromosome. Specifically, they proposed an autoregressive model 

in which logit transforms of θ-values are correlated according to physical distance. 

The model is quite involved and requires MCMC computations. However, loci may 

be in linkage disequilibrium even though not being physically linked (Crow and 

Kimura, 1970), and such disequilibrium is very common in animal populations 
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(Sandor et al., 2006, de Roos et al. 2008, Lipkin et al., 2009, Qanbari et al. 2010), 

where finite size and selection under epistasis are factors in building up linkage 

disequilibrium. The two-step approach considered here could be enhanced by 

exploring algorithms alternative to EM as well as by consideration of different types 

of mixtures, e.g., of beta distributions, which are more appropriate for random 

variables taking values in (0, 1). 
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APPENDIX A: First derivatives of θ with respect to allelic frequencies 
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APPENDIX B: Approximate Bayesian analysis 

An approximate Bayesian analysis without sampling from the posterior distribution is 

also possible. An approximation to the mean and variance of the posterior distribution 

of θl can be obtained using a Taylor series expansion about the modes lrp ,
~ of the 

allelic frequencies. Let now 
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derivatives evaluated at the posterior mode estimates (8) of the allelic frequencies. 

Then, approximately 
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where lp~  is the vector of posterior mode estimates of allele frequencies in the R 

groups. Then, approximately 

 

 

Likewise, 
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Since allelic frequencies have mutually independent distributions, the R _ R variance-

covariance matrix )|( DATAVar lθ  is diagonal with elements given by (9). Thus 
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In short, each θl (l = 1, 2, … , L) statistic will have a point estimate and an assessment 

of uncertainty, e.g., a credibility interval of size 95% given by the 2.5% and 97.5% 

percentiles of the corresponding posterior distribution estimated from samples, or 

from using a normal theory approximation, e.g., 
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ABSTRACT 

Background 

‘Selection signatures’ delimit regions of the genome that are, or have been, 

functionally important and have therefore been under either natural or artificial 

selection. In this study, two different and complementary methods—integrated 

Haplotype Homozygosity Score (|iHS|) and population differentiation index (FST)—

were applied to identify traces of decades of intensive artificial selection for traits of 

economic importance in modern cattle.  

Results 

We scanned the genome of a diverse set of dairy and beef breeds from Germany, 

Canada and Australia genotyped with a 50K SNP panel. Across breeds, a total of 109 

extreme |iHS| values exceeded the empirical threshold level of 5% with 19, 27, 9, 10 

and 17 outliers in Holstein, Brown Swiss, Australian Angus, Hereford and Simmental, 

respectively. Annotating the regions harboring clustered |iHS| signals revealed 

significant enrichment for functional genes like SPATA17, MGAT1, PGRMC2 and 

ACTC1, COL23A1, MATN2, respectively, in the context of reproduction and muscle 

formation. In a further step, a new Bayesian FST-based approach was applied with a 

set of geographically separated populations including Holstein, Brown Swiss, 

Simmental, North American Angus and Piedmontese for detecting differentiated loci. 

In total, 127 regions exceeding the 2.5 per cent threshold of the empirical posterior 

distribution were identified as extremely differentiated. In a substantial number (56 

out of 127 cases) the extreme FST values were found to be positioned in poor gene 

content regions which deviated significantly (p < 0.05) from the expectation assuming 

a random distribution. However, significant FST values were found in regions of some 

relevant genes such as SMCP and FGF1.   

Conclusions 

Overall, 236 regions putatively subject to recent positive selection in the cattle 

genome were detected. Both |iHS| and FST suggested selection in the vicinity of the 

Sialic acid binding Ig-like lectin 5 gene on BTA18. This region was recently reported 



5
th

Chapter          Application of FST and iHS Tests                            128 
 
 
 
               

 

to be a major QTL with strong effects on productive life and fertility traits in Holstein 

cattle. We conclude that high-resolution genome scans of selection signatures can be 

used to identify genomic regions contributing to within- and inter-breed phenotypic 

variation. 

 

BACKGROUND 

The domestication of cattle (Bos taurus and Bos taurus indicus) 8,000–10,000 years 

ago [1] had a significant impact on human civilization. Since that time, a broad range 

of either natural as well as man made factors (e.g., geography, environment, culture 

and directional artificial selection) has led to diversity in cattle: Today we know more 

than 800 cattle breeds across the world. The cattle genome therefore represents a 

significant opportunity for identifying genetic variation that contributes to phenotypic 

diversity and for detecting genome response to strong directional selection from both 

domestication and subsequent artificial selection.  

Recently a number of studies with different analytical concepts have been conducted 

to detect signals of recent positive selection on a genome-wide scale [2, 3, 4, 5, 6, and 

7]. The methods used are based either on the allele frequency spectrum or on 

properties of haplotypes segregating in populations. For example, comparing FST 

values among loci provides an estimate of how much genetic variability exists 

between, rather than within, populations [8, 9]. This statistic assumes that 

geographically variable selective forces favor different variants in different regions. 

Hence, between-population allele frequency differences may be more extreme in 

genome regions harboring such variants. The method can be used to scan patterns of 

variation over many loci. Akey et al. (2002) [10] suggested using the loci in the tails 

of the empirical distribution as candidate targets of selection. Another approach to 

infer evidence of past selection is the “Extended Haplotype Homozygosity” (EHH) 

test [11] which identifies regions with an unusually long range of haplotype and a 

high population frequency. Voight et al. (2006) [12] developed the “integrated 

Haplotype Score” (|iHS|), an extension of EHH, based on the comparison of EHH 
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between derived and ancestor alleles within a population. In this concept, directional 

selection favoring a new mutation results in a rapid increase in the frequency of the 

selected allele along with the background haplotype in which the mutation arose. This 

phenomenon increases linkage disequilibrium (LD) on the chromosomes which 

harbor the derived (selected) allele, but not the unselected allele, which therefore acts 

as a “control”. Thus, this measure is most sensitive to a rapid increase in the 

frequency of the derived allele at a selected site, but the derived allele must have 

existed only on a distinct background (haplotype) prior to selection and must not have 

reached fixation yet [12, 13]. After fixation, the |iHS| statistic may continue to identify 

regions of high LD surrounding the selected site, but may not detect selection at the 

selected region itself because fixation will eliminate variation at and near the selected 

site. 

In this study we scan the genome of a diverse set of cattle breeds including dairy and 

beef breeds based on the 50K SNP panel. Besides identifying selection footprints 

common to all breeds, these analyses examine how divergent directions of positive 

selection may have affected the genomic pattern of those breeds. Our analyses focus 

primarily on two haplotype and site frequency based statistics: the |iHS| and FST 

statistics. These tests were chosen because previous power analyses suggest they are 

largely complementary—|iHS| has good power to detect selective sweeps at moderate 

frequency, while in contrast, FST is most powerful to detect selection on fixed 

variation [14]. Applying the |iHS| test with a new Bayesian method of FST, we report a 

panel of 236 regions putatively subject to recent positive selection confirming the 

higher differentiation index and longer haplotype consistency for a strong QTL 

recently detected in Holstein cattle. 

METHODS 

Animals 

A diverse set of animals collected from Germany, Australia and Canada were used for 

this study. Table 1 summarizes information of 3876 animals included in our study. 

The main subset involves Holstein (HS), Simmental (SI) and Brown Swiss (BS) 



5
th

Chapter          Application of FST and iHS Tests                            130 
 
 
 
               

 

breeds which are part of the total population of cattle genotyped for the genomic 

selection program in Germany. These breeds are highly selected, essentially for milk 

production (HF and BS) or for milk and beef (SI). The second subset consisted of 900 

individuals collected from 6 beef breeds genotyped in Australia. Another subset of 

beef cattle included 103 North American Angus (CN) and 43 Piedemontese (PI) 

collected from Ontario, Canada. The first data set (data set I) consisted of the German 

breeds mentioned above together with the Australian beef breeds; it was used for LD 

based analysis in this study. In contrast, the second data set (data set II) included the 

German breeds together with the Canadian sample and was used for the site frequency 

approach.  

    Table 1. Description of samples 

Breed Code Data set Sample 

(n) 

Country Purpose 

Holstein HS I II 2091 Germany Dairy 

Brown Swiss BS I II 277 Germany Dairy 

Simmental SI I II 462 Germany Dual-purpose 

North American 
Angus 

CA - II 103 Canada Beef 

Piedemontese PI - II 43 Canada Beef 

Australian Angus AA I - 232 Australia Beef 

Brahman BR I - 80 Australia Beef 

Belmond Red BE I - 166 Australia Beef 

Hereford HR I - 158 Australia Beef 

Murray Gray MG I - 57 Australia Beef 

Santa Gertrudis SG I - 126 Australia Beef 

Shorthorns SH I - 81 Australia Beef 

 

SNP genotypes and data preparation 

Semen or blood samples were used as source of genomic DNA. All samples were 

genotyped using the Illumina Bovine SNP 50K BeadChip [15]. However, they were 
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genotyped on multiple platforms and at different times. To ensure the highest possible 

data quality a series of filters were employed to remove lower quality markers and 

insecure genotypes for individuals. We filtered out samples with ≥5% missing 

genotypes and SNP loci assigned to unpositioned contigs. Genotypes were also 

discarded if they had quality scores <95%. 

We used only autosomal SNPs with minor allelic frequencies (MAF) ≥ 0.05 in the LD 

based analysis (data set I). Haplotypes were then reconstructed for each chromosome 

using default options in fastPHASE [16]. Reconstructed haplotypes were inserted into 

HAPLOVIEW v4.1 [17] to estimate LD statistics based on pair-wise r2 and construct 

the blocking pattern in the candidate regions of interest for selection signature 

analysis. Both paternal and maternal haplotypes were utilized for selection signature 

analyses.  

For the analysis of site frequency spectrum, all SNPs that passed quality control were 

used in the final analysis, so that loci with MAF <5% or fixed in some populations 

were included as well. After quality control and removal of individuals with high 

proportion of missing genotypes (≥ 5 %), data set II consisted of 40,595 common 

SNPs typed on 2976 animals in 5 breeds (Table 1). The number of heterozygous loci 

was determined and used to estimate the average heterozygosity for all individuals 

across the breeds. Allele frequencies and observed and expected heterozygosity for 

each SNP were also estimated. 

Calculation of |iHS| values  

We employed the iHS
 test to evaluate the evidence of positive selection based on 

haplotype frequencies as described by Voight et al. (2006) [12]. The iHS statistic 

measures the extent of local LD, partitioned into two classes: haplotypes centered 

upon a SNP that carry the ancestral versus the derived allele. For the purpose of this 

study we used the set of ancestral alleles identified and reported in Matukumalli et al. 

(2009) [15]. This statistic is applied to individual SNPs and begins by calculating the 

integrated EHH [11, 6], which is defined as the integral of the observed decay of EHH 
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(i.e. the area under the curve of EHH versus distance) away from a specified core 

allele until EHH reaches 0.05. This integrated EHH (iHH) (summed over both 

directions away from the core SNP) is denoted iHHA or iHHD, depending on whether 

it is computed for the ancestral or derived core allele. The unstandardized iHS is then 

calculated as follows: 

unstandardized iHS= ln 



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This quantity is standardized such that it has a mean of 0 and variance of 1 
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Large positive or negative values of iHS indicate unusually long haplotypes carrying 

the ancestral or derived allele, respectively.  

Population differentiation index 

In this study we estimated FST = θ statistic [9] using a new Bayesian algorithm 

proposed by Gianola et al. (2010) [18]. The procedure has two steps. First, allelic 

frequencies are assigned a non-informative prior, leading to less shrinkage of 

frequencies towards a common value. In maximum likelihood there is no shrinkage at 

all, an issue criticized by Haldane (1948) [19]. Samples of allelic frequency can be 

obtained directly because their posterior distributions are tractable analytically and 

those draws are used to form draws from the posterior distributions of locus-specific 

θ–parameters, using the parametric definition of FST as a function of allelic frequency 

(see [18] for more details). This step leads to estimates of the posterior distribution of 

θ which can be used to explore any underlying structure, presumably caused by 
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different evolutionary forces. In the second step the structure is explored by using 

features of the posterior distribution of θ (posterior means or transformations thereof) 

as response variables in a mixed model. 

RESULTS 

Marker and LD statistics  

Table 2 presents a descriptive summary of data characteristics across breeds for data 

set I. The average observed heterozygosity and mean MAF were similar in all dairy 

and dual purpose breeds, while the MAF was generally lower and more variable in 

beef breeds. The second data set consisted of 40,595 common SNPs typed in 5 breeds 

which covered 2544.1 Mbp of the genome (Btau 4.0 assembly) with 62.68 ± 58.3 Kbp 

average adjacent marker spacing. Analysis of the entire panel of across-breed SNPs 

revealed a non uniform distribution of allele frequencies by breed (results not shown). 

 

Table 2. Genome wide summary of marker statistics for the breeds used in LD based 
analysis (data set I).  

Breed 
SNP 

(n) 

MAF 

(%) 

ObsHET 

(%) 

Inter-marker 

distance (kb) 

Max gap 

(kb) 

Holstein 39474 28.2±13 37.2±12 64.45±62.5 2081.4 

Brown Swiss 35226 27.7±13 36.6±13 72.26±72.8 2081.4 

Simmental 37976 27.5±13 37.0±12 67.06±69.8 2145.7 

Australian Angus 44938 24.3±15 32.3±16 56.70±52.4 2081.5 

Brahman 45173 16.4±14 23.7±17 56.40±51.3 1677.8 

Belmond Red 47416 24.1±15 32.3±16 53.74±47.9 1677.8 

Hereford 45322 25.5±15 34.1±16 56.22±52.1 2081.5 

Murray Gray 41369 24.4±15 33.3±17 61.52±59.0 2081.5 

Santa Gertrudis 46809 23.6±15 31.7±17 54.44±48.9 1677.8 

Shorthorns 42280 21.7±15 28.5±16 60.26±56.9 2081.5 
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We compared the extent of LD among breeds. In order to visualize the decay of LD 

we plotted r2 as a function of inter-marker distance (Figure 1). As expected, the level 

of pair-wise LD as measured by r2 decreases with marker distance within each breed. 

The decrease is more or less pronounced across the different breeds up to a rather high 

average value (0.05) at large distances (>3Mb).  
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Figure 1. Decay of LD as a function of inter-marker distance in dairy and beef breeds 

 

Signatures of positive selection revealed by |iHS|  

To identify genomic regions that may have been targets of recent selection, we 

calculated |iHS| for each SNP across the genome of the breeds in the first data set. To 

facilitate comparisons of genomic regions either within dairy and beef groups or 

across breeds we split the genome into non-overlapping segments of 500 kb and 

averaged, in each segment, the |iHS| scores over the SNPs located in each window. 

500 kb was chosen as the window size so as to have a sufficient number of SNPs in a 

window. Figure 2 presents the distribution of the average number of SNPs in windows 

sliding over the genome of breeds in data set I. We chose this length because of the 
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longer extent of LD in cattle compared to humans, in which the window length used is 

commonly around 200 Kb [11, 12].  

We tested 5099 and 5055 sliding windows in beef and dairy groups respectively, 

involving a total of 49’559 |iHS| values. The mean |iHS| value was 0.74 and the 

highest estimated value was 3.41 for a region on chromosome 6 in BS. Across breeds, 

a total of 109 extreme windows exceeded the |iHS| value 1.96 with 19, 27, 9, 10 and 

17 outliers in HS, BS, AA, HR and SI, respectively (Table S1).  

 

Figure 2. Distribution of the number of SNPs in 500 kb windows sliding over the 
genome of breeds in data set I. 

 

In order to visualize the chromosomal distribution of outlier signals, we plotted the 

|iHS| statistic against the genomic position for all breeds (Figures 3 and S1). A panel 

of clustered signals representing strong evidence for selective sweeps appeared in a 

number of breeds. Interestingly, a substantial proportion of extreme |iHS| clusters was 

observed in the telomeric regions of chromosomes, probably due to the strong LD and 

particular structure of the genome in these regions (Figure 4). Apart from this we 

found evidence of selective sweeps in two regions in HS and two regions in BS. There 

were also five distinct clusters of |iHS| signals across the genome of AA and four 

clusters in HR. The clustered signals also overlapped among breeds in some cases 
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(Figure 3, S1 and Table 4). The regions with clustered signals reflect high values of 

LD and a slower decay of haplotype homozygosity for a long stretch around the 

mutation undergoing selection. It is evident that the signals are non-uniformly 

distributed across chromosomes and chromosome segments.  

 

 

 

Chromosome 

Figure 3. Genome wide distribution of |iHS| values for Holstein and Brown Swiss 
representing dairy vs. Australian Angus and Hereford representing beef breeds and 
Simmental being a dual purpose breed. Each dot represents a window of 500Kb and 
arrows display the clustered signals. Dashed lines are cutting the upper 0.05 of the 
|iHS| values. 
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Figure 4. Box plot of standardised |iHS| values found in 5 Mbp bins from the telomere 
(Position = 0) accumulated over all chromosomes across breeds. More extreme |iHS| 
values are observed close to the telomeres.  

To gain insight into the reliability of our analysis, we compared the |iHS| scores 

between Angus populations in Australia and Canada and the United States. To this 

purpose genotypes from 103 North American Angus were used. Because of the 

smaller sample size and subsequently a larger number of excluded loci (see Material 

and Methods) only 18’772 SNPs were left for further analyses. Of the total of 12’871 

SNPs common between CA and AA, only 107 |iHS| scores overlapped in the 10% 

upper tail of the empirical distribution, thus basically indicating no major overlap of 

the regions detected to be under selection.   

To assess the background of this result we conducted a cross-validation test [20] 

regarding the accuracy of |iHS| scores in the Holstein cattle. For this, the Holstein data 

set was split at random into two data sets, and |iHS| scores calculated from both data 

sets were found to be in very good agreement (Figure 5). The discordance observed in 
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the two Angus populations could be due to the sparser inter-marker intervals in the 

North American Angus which may lead to inefficient estimates of |iHS| scores. 

However, this difference can also be caused by a different genetic composition of the 

two populations as well as by different selection pressures in the two environments. 

 

Figure 5. Cross-validation of iHS scores in Holstein data set. The iHS scores from a 
randomly chosen half data set animals (split 2) are plotted against the other half of the 
data (split 1). 

Exploring the differentiated loci 

We then investigated evidence for positive selection by assessing variation in allele 

frequency among populations, using the new Bayesian method proposed by Gianola 

et al. (2010) [18].  Data set II was used for this purpose. Several comparisons were 

made, varying the breeds and the sets of SNPs that were included. Summarized 

pairwise population comparisons of θ values are shown in Table 3. The θ values 

varied from 0 to 1, which at the extreme represent identity (FST = 0) or fixation of 

alleles in different populations (FST = 1). The mean posterior distribution of θ values 

between dairy breeds and between beef breeds respectively, was different from that 
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between dairy and beef breeds. FST between HS and CA was estimated as 0.27 ± 0.01 

and between CA and PI as 0.02 ± 0.01. Fixation index estimated between two dairy 

breeds, HS and BS, was 0.05 ± 0.01. 

Table 3. Summary statistics of the pair-wise estimates of FST and clustering information  

HS BS SI CN 
 

θ K1 L2 θ K L θ K L θ K L 

BS 0.05 5 4878    

SI 0.04 4 7796 0.04 5 7691   

AN 0.27 3 12106 0.29 4 5571 0.28 3 10882  

PI 0.27 3 19442 0.28 3 18637 0.27 3 8867 0.02 7 2247 
       1 Number of clusters 
       2 Number of SNPs with largest θ values representing the first cluster of loci 

 

In a further step estimates of θ values (in this case, posterior means) per locus were 

clustered into groups. The expectation was that these clusters might be representative 

of different processes taking place in the populations such as balancing or directional 

selection, neutrality or any other specific process. The structure of clustering was 

explored by fitting a sequence of finite mixture models to the means of posterior 

distribution of θ values for each locus. Mixture model parameters were estimated by 

maximum likelihood via the expectation-maximization algorithm in the FlexMix 

package [21] in the R project. Results of mixture model analysis, by number of 

clusters favored by the average information criterion (AIC) and the number of loci 

representing the first cluster (a fraction of loci with largest θ values) in each 

comparison, are shown in Table 3. In a breed-by-breed comparison of θ, loci were 

classified into 3 to 7 clusters, possibly reflecting selection footprints left by different 

evolutionary forces. 
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Figure 6. A. Histogram (blue) of the distribution of posterior means over loci of θ 
values between two dairy (HS and BS) and two beef breeds (CA and PI) and densities 
of the underlying mixture of two normals (green) and the respective components 
(red). B. Density plot of 39’474 FST values between two randomly derived Holstein 
sub-populations. 

 

To determine if recent selection was responsible for the differences in allele 

frequencies between dairy and beef breeds, we examined θ among HS and BS versus 

CA and PI. In total, 4.3% of the posterior θ means among the 4 populations were < 

A 

B 
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0.01, 27.1% of the θ values were equal to or greater than 0.5, and the average θ was 

0.3. Using Akaike’s information criterion as a gauge for model comparison, genome-

wide estimates of θ were clustered into two groups, one representing 19’471 

putatively neutral loci, and another one included 21’124 loci possibly corresponding 

to genomic regions affected by selection (Figure 6A).  

To address this in some further detail, we partitioned the Holstein population 

randomly into two sub-populations, then estimated FST and plotted the densities. As 

shown in Figure 6B, FST values between two sub-populations of no divergence 

derived from the same breed resulted only in a unimodal distribution indicating a 

uniform mode of selection over all evaluated loci.  

Signatures of selection can be recognized when adjacent SNPs all show high FST, due 

to the hitch-hiking effect, implying divergent selection between breeds, or where 

adjacent SNPs all show low FST, implying balancing selection between breeds. 

Therefore, to facilitate comparisons of genomic regions within or across dairy and 

beef groups and to reduce locus-to-locus variation in the inference of selection we 

averaged the FST values into the non-overlapping windows of 500 kb across the 

genome. Evidence of the positive selection was assumed for windows in the extreme 

2.5 % of the empirical distribution which resulted in 127 significant windows (Table 

S2).  

To identify differentiated windows between dairy and beef genomic background 

pairwise FST comparisons denoted as HS–AN, HS–PI, BS–AN and BS–PI were 

examined and plotted across the genome (Fig. 7). All in all, 29% of the genomic 

windows with a differentiation index >0.3 overlapped in the four breed comparisons. 

Bovine chromosome (BTA) 9 with 80 windows covering 0.35 of the chromosome and 

BTA25 with 23 windows spanning on 0.26 of the chromosome presented the largest 

and smallest degree of differentiation in the genome. Figure 7 depicts the genome 

wide map of FST windows indicating the genomic position of the most diverse 

regions. 
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Chromosomal position (Mb) 

Figure 7. Windows with FST >0.3 in all pair-wise comparisons, indicating the genomic 
position of the most diverse regions between dairy and beef breeds. Blue, black, red, 
and green dots represent FST values for HS–AN, HS–PI, BS–AN, and BS–PI, 
respectively, in each window. Dashed lines display the threshold level of 2.5%. 

Genomic annotation 

We investigated the genomic regions containing extreme |iHS| and FST values using 

the fourth draft of bovine genome sequence assembly (Btau 4.0). A subset of genes 

and ESTs located in each region were identified. We screened this list for the 

biologically most interesting candidate genes in each region. Table 4 summarizes the 

θ
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statistic estimated as well as the list of genes for 25 genomic regions presenting the 

most extreme peaks across breeds. Some regions overlapped with genes previously 

suggested being under selection. For example on chromosome 18 in the Holstein 

population, an outlier of |iHS| scores was in the interval 57.25–57.75 Mb. This 

interval contains Sialic acid binding Ig-like lectin 5 and Zinc finger protein 577 genes 

which recently were reported as candidates to have a strong effect on productive life 

and fertility traits in Holstein cattle [22]. 

Table 4. Summary statistics for windows representing extreme |iHS| and θ 

Chr Position 
(Mbp) 

|iHS| 
or 

FST* 

Breed Gene/EST 
(n) 

Candidate 

Gene 
Function 

18 57.25-57.75 2.2, 
0.78 

HS 30 SIGLEC5,8,10 Sialic acid binding Ig-like lectin 5, 8, 10 

16 19.75-20.25 2.6 HS 2 SPATA17 Spermatogenesis associated 17 
6 61.75-62.75 3.41 BS 13 UGDH 

APBB2 
UDP-glucose dehydrogenase  
Amyloid beta (A4) precursor protein-binding, family 
B, member 2 (Fe65-like) 

13 30.5-31.5 2.68 BS 8 TRDMT1 Cysteine and methionine metabolism 
1 79-81.5 2.10 HR 6 SST  Somatostatin  
2 34.5-36 2.26 HR 6 GCG 

FAP  
Glucagon 
Fibroblast activation protein, alpha 

6 80-83  HR 9 SRD5A2L2 Lipid metabolism 
7 39-41 1.9 AN 15 COL23A1 

MGAT1 
Collagen, type XXIII, alpha 1 
Fertilization and early development of the embryos 

12 36-38 2.03 AN 19 ATP12A ATPase activity 
14 64-65 2.02 AN 6 MATN2 Developing cartilage rudiments 
16 39-40 1.98 AN 14 NMNAT1 Methylenetetrahydrofolate reductase (NADPH) 

activity 
17 31-32.5 2.05 AN/HR 15 PGRMC2 Progesterone receptor membrane component 2 
2 70-73 2.06 MG/BE/ 

SH/BR 
5 - - 

10 29-31 2.24 BE/SH 8 ACTC1 Actinin, Involved in the formation of filaments 
1 12-13 0.92 - 0 -  
2 111.5-112 0.98 - 11 ABCB6 

 
GLB1L 

ATP-binding cassette, sub-family B (MDR/TAP), 
member 6 
Galactosidase, beta 1-like 

3 119.2-119.7 0.92 - 11 SMCP Sperm mitochondria-associated cysteine-rich protein 
7 53.25-53.75 0.74 - 4 FGF1 A growth factor which stimulates growth or 

differentiation, key role in embryonic development 
9 42-43 0.78 - 12 LACE1 

PPIL6 
Lactation elevated 1 
Peptidylprolyl isomerase (cyclophilin)-like 6 

13 53.5-54 0.98 - 7 SIRPA Signal-regulatory protein 
16 4.75-5.25 098 - 5 - - 
17 39.5-40.5 0.98 - 4 - - 
18 58.25-58.75 0.98 - 15 - - 
20 15.25-15.75 0.92 - 8 ADAMTS6 - 
22 35.25-35.75 0.77 - 3 - - 

* FST values are in italic 
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The window with the largest |iHS| value (3.41) was observed in BS spanning 61.75–

62.75 Mb on chromosome 6. Of the 13 genes/ESTs in this region, UGDH (which acts 

in the carbohydrate metabolism pathways) may be a possible candidate to affect feed 

efficiency traits. Another strong |iHS| cluster which harbors the Somatostatin (SST) 

gene was observed on chromosome 1 in HR. Strong evidence of a sweep reflected by 

a set of windows was observed in the region 80-83 Mb of BTA6 in the vicinity of the 

SRD5A2 gene. The enzyme steroid 5-alpha-reductase converts testosterone into 

dihydrotestosterone and a polymorphism in this gene was shown to moderately 

increase the proportion of progressively motile spermatozoa in normozoospermic men 

[23]. We also found four clusters of outliers on BTA16 and BTA17, BTA2 and 

BTA10 which overlapped among some beef breeds.  

DISCUSSION 

The high level of observed phenotypic variation among domestic cattle is a result of 

both neutral demographic processes, weak but sustained natural selection and strong 

short-term artificial selection for divergent breeding goals. The task of separating 

these processes and identifying genes under the influence of artificial selection can be 

challenging. The efforts to identify genes affected by selection have so far been 

concentrated on species with well-characterized genomes, such as Drosophila and 

humans [11, 24]. The cattle genome offers an excellent opportunity to test the power 

of genome-wide analyses, as it has extensive LD [2, 25] caused by intensive selection, 

and it is expected that selection footprints would be correlated with genes affecting 

production traits or fitness.  

In this study we presented an application of two complementary statistics of selection 

signatures in a diverse set of dairy and beef breeds. In the first step, regions of the 

genome that contained targets of putative positive selection revealed by long range 

LD were defined as windows in the extreme of the empirical distribution of the |iHS| 

statistic. This criterion resulted in 109 significant windows (P ≤ 0.05). These signals 

generally differ from those reported by the Bovine HapMap consortium [2]. This is 
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probably due to the differences in sample size and marker densities between studies 

which both could limit accurate estimates of |iHS|. Mapping the corresponding 

genomic regions to the cattle genome sequence resulted in a large number of adjacent 

loci. The list of genes with signatures of positive selection was significantly enlarged 

by those involved in the biological processes such as anatomical structure 

development, muscle development, metabolism of carbohydrates and lipids, 

spermatogenesis and fertilization. We refined the complete list for the most important 

genes in the region of clustered signals that may have functional relevance for 

economic traits. A remarkable observation in this study is a strong selection signal 

confirmed by both |iHS| and FST analyses in the vicinity of Sialic acid binding Ig-like 

lectin 5 gene on BTA18. This QTL was recently reported to have large effects on 

calving ease, several conformation traits, longevity, and total merit in Holstein cattle 

[22]. We observed that other haplotypes present in this region display a shorter extent 

of homozygosity, indicating abundant historical recombination (Figure 8). Therefore, 

the long stretch of homozygosity observed in this region presumably is not simply due 

to a low local recombination rate but presumably reflects the combination of strong 

and recent selective pressure, pushing the beneficial mutation rapidly towards high 

frequency with a long conserved haplotype surrounding it. Although the low 

heritability of most of the aforementioned traits has not made them a primary breeding 

goal in selection programs, it could be hypothesized that applying sustained but weak 

negative selection against these traits has increased the frequency of favorable alleles 

and surrounding haplotypes in the Holstein population. 

 

Figure 8. Frequencies of the haplotypes segregating in the region of extreme |iHS| in 
the interval 57.25–57.75 Mb on BTA18 in Holstein cattle. The extent of haplotype 
homozygosity was estimated by Sweep v.1.1 [11]. 
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A cluster of signals reflecting strong evidence of selection was also observed in the 

vicinity of the Somatostatin gene on BTA1. We also found clusters of outliers which 

overlapped among some beef breeds (Table S1). These results show significant 

enrichment for genes such as SPATA17, MGAT1, PGRMC2 and SRD5A2 in the 

region of clustered signals which belong to a number of functional categories relevant 

to reproduction, including gamete generation, embryo development and 

spermatogenesis, and genes in these categories may be strong candidates for selection 

for fertility traits. These results generally are consistent with the observations of Flori 

et al. (2009) [3].  Another interesting observation was the strong evidence for 

selection in the region of genes related to muscle formation (e.g., ACTC1, COL23A1, 

MATN2, and FAP) in beef breeds. For example polymorphisms in the genes encoding 

Actinin are among the best characterized athletic-performance associated variants in 

human endurance athletes [26, 27]. Evidence for positive selection in the genomic 

region surrounding muscle related genes has also been reported in racing horses [28] 

and humans [29]. The presence of genes like Actinin, Collagen and Fibroblast 

activation protein as well as the gene responsible for developing cartilage rudiments 

in positively selected regions in beef cattle (Table 4) supports the supposition that 

selection for muscle related phenotypes has played a major role in the shaping the 

beef cattle. A better understanding of the role these genes play in the development, 

strength and integrity of muscles may contribute to improved knowledge of 

musculoskeletal traits and developing new marker systems for beef cattle breeding. 

Consistency of our observations with previous reports [3, 28] may suggest general 

themes about the types of genes that have been targets of positive selection in cattle. 

We also optimized a new Bayesian approach for exploring the level of genetic 

differentiation to infer the selection signatures against the genome as a whole. This 

algorithm is able to deal with a large battery of marker information via probabilistic 

clustering of FST values. After examining FST among HS and BS versus CA and PI 

breeds using Akaike’s information criterion it appears likely that genome-wide 

estimates of FST are clustered into two groups, one representing putatively neutral 

loci, and another one (possibly) corresponding to genomic regions affected by 



5
th

Chapter          Application of FST and iHS Tests                            147 
 
 
 
               

 

selection. Annotation of the genes underlying the regions with extreme FST does not 

appear to reveal many strong candidates for positive selection with the possible 

exception of the SMCP and FGF1 genes (Table 4). A receptor of the latter gene 

(FGFR3) showed evidence of selection in a genome-wide sweep mapping study using 

FST among dog breeds [30]. This gene is responsible for achondroplasia (shortened 

limbs) in humans. As an explanation we suggest that selection may work on genes 

that were not considered the primary targets of selection so far. Some extreme peaks 

were observed in presumed gene deserts which may reflect selection acting on 

uncharacterized regulatory regions or simply fixation of non-coding DNA by genetic 

drift.  

We found that 56 of the 127 significant FST values lie in poor gene content regions, 

defined by the frequency of coding sequences in the bracket of 1Mb surrounding the 

FST signal. To test whether this observation is a systematic deviation from the 

expected, we sampled 127 random positions with matching frequencies on the 

chromosomes, i.e. since 11 significant FST values were observed on BTA1, we also 

sampled 11 random positions on that chromosome. Of these 127 random positions, 35 

were positioned in regions with poor gene content applying the same definition. The 

difference was tested with a χ² test revealing a significant difference on the 5 per cent 

error level.  

This observation is consistent with the studies of Flori et al. (2009) [3], and Gu et al. 

(2009) [28] which reported FST signals in poor gene content regions in genome wide 

analyses of cattle and thoroughbred horse, respectively. Thus, these results in 

combination with the observations from Voight et al. (2006) [12], Carlson et al. 

(2005) [31] and Wang et al. (2006) [32] on human population data suggest that non-

coding regions may have been important for adaptive evolution. 

We examined the validity of FST analysis by testing some candidate major genes in 

our data set. The results revealed FST values larger than expected (P < 10%) for 

regions harboring the Casein cluster, GHR, STS, LP, IGF-1 and MSTN genes which 

are supposed to be targets of artificial selection. The observation of selection evidence 
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in the region of the GHR gene on BTA20 is consistent with the reports of Flori et al. 

(2009) [3] and Hayes et al. (2009) [4], the latter based on a study comparing Angus 

and Holstein. The presence of the longer than expected haplotype homozygosity in 

this region was also observed in Holstein cattle [6]. Two regions on BTA2 and BTA5 

in the vicinity of ZRANB3, R3HDM1 and WIF1 genes known to affect feed 

efficiency and mammalian mesoderm segmentation, respectively [2], also matched 

with the outlier FST windows in our study. 

Overall, the average FST of dairy vs. beef breeds was equal to 0.3 which is 

substantially higher than the differentiation index reported previously between 

Holstein and Angus [2, 7]. The higher average of FST as well as the similar pair-wise 

FST within dairy and beef breeds might reflect the dominating influence of a 

substantial number of fixed SNPs in the pair-wise comparisons of breeds and groups.  

The two metrics applied yielded a total of 236 regions putatively subject to positive 

selection. To investigate how frequently selective events were unique or shared 

between methods, we assessed the number of overlapping signals. A panel of 6 

significant signals was overlapping (Table 5). Interestingly, most of these were found 

in Holstein cattle, which may reflect a comparatively higher pressure of selective 

breeding in this breed.  

 

Table 5: Overlapping signals revealed by both |iHS| and FST metrics. 

Chr Position (Mbp) Breed FST |iHS| 

4 12.5 HS 0.67 2.62 

8 40.5 HS 0.59 2.33 

10 30 SI 0.64 2.48 

10 43.5 HS 0.64 2.63 

18 58 HS 0.78 2.12 

22 26 BS 0.63 1.99 
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Overall, comparing our scan for selection with the results of previous genome-wide 

studies revealed a modest overlap with some notable exceptions. Different hypotheses 

can be proposed to explain these incongruities. From the methodological point of 

view, a possible reason could be due to the differences in the computational analyses 

between the studies. In other words, the statistical tests used in each study are 

recovering selective events from different time periods and/or for different stages of 

the selective sweep. Even for tests that should detect similar types of selective events 

(e.g., scans that identify unusually long haplotypes), low statistical power further 

decreases the probability of overlap [14]. In addition, most studies report only the 

most significant results (i.e. outliers in the 1% empirical distribution). Therefore, the 

results presented in this study are probably a conservative estimate of overlap between 

studies. 

Population demographic history can also impart similar patterns on DNA sequence 

variation, making inferences on selection difficult. For example, population expansion 

can lead to an excess of low frequency alleles compared with the number expected 

under the standard neutral model. Likewise, recent positive selection for a putative 

mutation may have started from a higher initial frequency of beneficial alleles [33]. 

Such an allele might e.g. be imported into a breed through crosses with other breeds. 

In such a case beneficial alleles may be included in diverse haplotypes and LD based 

estimators would not be able to trace the selection signature. Crossbreeding can also 

generate false selection signatures, if e.g. a large conserved piece of a chromosome 

from another breed is mixed with many shorter segments from the original breed. 

From the technical point of view, the density of the markers is also critical for the 

power of such studies and could be a source of discrepancy. It was shown earlier with 

LD based analyses that core regions are more likely to appear where the marker 

density is greater than the average [6]. This would imply that the availability of 

genotyping arrays with an increased genome-wide marker density (by a factor >10) 

will allow a more reliable and comprehensive screening of the genome for signatures 

of selection by LD based tests. Moreover, although sliding window analyses facilitate 

inferences of selection by reducing locus-to-locus variation, the size of the window is 
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often subjectively determined which can influence the final results and interpretations. 

One potential refinement would be to adjust window sizes to local levels of LD [34], 

although it remains unclear how to account for varying levels of LD between 

populations. Finally, the incongruities can also result from a lack of power given the 

sample size available for some of the breeds in this study, and complex genomic 

interactions. 

CONCLUSIONS 

In this study genomic scans based on site frequency and haplotype data led to the 

detection of 236 regions putatively subject to recent positive selection in the cattle 

genome. Our results confirmed the higher differentiation index as well as the longer 

than expected haplotype consistency in the vicinity of Sialic acid binding Ig-like 

lectin 5 gene on BTA18, which was recently reported as a strong QTL in the Holstein 

cattle [22]. However, the overlap between the identified regions via |iHS| with 

previous studies is modest. Analysis of population differentiation revealed signatures 

of selection occurring in regions of the genome thought to be nonfunctional, which 

may reflect selection acting on uncharacterized regulatory regions or simply fixation 

of non-coding DNA by genetic drift due to the absence of any selection. Clearly, 

many challenges remain, including the development of efficient methods of 

differentiating the effects of drift and selection, identifying the causal gene driving the 

signature of selection observed across large genomic regions, and functionally 

characterizing the suspected targets of selection. Independent confirmation studies 

with larger sample sizes and/or SNP densities are required. Our results may be of 

future interest for identifying signatures of recent positive artificial selection between 

the cattle breeds or as additional evidence for any polymorphisms that show 

associations with beef or milk traits. 

Abbreviations 

iHS: integrated Haplotype Homozygosity Score, EHH: Extended Haplotype 

Homozygosity, FST: Population fixation index, HS: Holstein, BS: Brown Swiss, SI: 

Simmental, CA: North American Angus, PI: Piedmontese, AA: Australian Angus, 



5
th

Chapter          Application of FST and iHS Tests                            151 
 
 
 
               

 

HR: Hereford, SH: Shorthorns, BR: Brahman, BE: Belmond red, MG: Murray Gray, 

SG: Santa Gertrudis 

Authors' contributions 

SQ carried out the data analyses, drafted and prepared the manuscript for submission. 

HS supervised the study and contributed in revising and editing the manuscript. BH 

coordinated in data analysis, provision of data and writing support. DG and FS 

coordinated in the interpretation of data as well as critically revising the manuscript. 

GT, SSM and SPM participated in provision of study material and manuscript 

improvement and also provided administrative support. All authors read and approved 

the manuscript. 

Acknowledgements 

This study is part of the project FUGATO-plus GenoTrack and was financially 

supported by the German Ministry of Education and Research, BMBF, the 

Förderverein Biotechnologieforschung e.V. (FBF), Bonn, and Lohmann Tierzucht 

GmbH, Cuxhaven. SQ thanks the H. Wilhelm Schaumann Stiftung Hamburg for 

financial support.  The authors thank the Cooperative Research Centre for Beef 

Genetic Technologies for supplying some of the data used here. The Canadian 

genotypes were made available through funding from the Ontario Ministry of 

Agriculture Food and Rural Affairs, the Ontario Cattlemen’s Association and the 

Agriculture Adaptation Council.   

 

 

 

 

 



5
th

Chapter          Application of FST and iHS Tests                            152 
 
 
 
               

 

References 

Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P: Evidence for two 
independent domestications of cattle. Proc. Natl. Acad. Sci. USA 1994, 
91:2757–2761. 

The Bovine HapMap consortium: Genome-Wide Survey of SNP Variation Uncovers 
the Genetic Structure of Cattle Breeds. Science 2009, 324:528-532. 

Flori L, Fritz S, Jaffrezic F, Boussaha M, Gut I, Heath S, Foulley JL, Gautier M: The 
genome response to artificial selection: a case study in dairy cattle. PLoS One 
2009, 4: e6595.  

Hayes BJ, Chamberlain AJ, Maceachern S, Savin K, McPartlan H, MacLeod I, 
Sethuraman L, Goddard ME: A genome map of divergent artificial selection 
between Bos Taurus dairy cattle and Bos taurus beef cattle. Animal Genetics 
2009, 40:176-184. 

Hayes BJ, Lien S, Nilsen H, Olsen HG, Berg P, Maceachern S, Potter S, Meuwissen 
TH: The origin of selection signatures on bovine chromosome 6. Animal 
Genetics 2008, 39:105-111. 

Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H: A 
Genome-Wide Scan for Signatures of Recent Selection in Holstein Cattle. 
Animal Genetics 2010a, (in press). 

MacEachern S, Hayes B, McEwan J, Goddard M: An examination of positive 
selection and changing effective population size in Angus and Holstein cattle 
populations (Bos taurus) using a high density SNP genotyping platform and the 
contribution of ancient polymorphism to genomic diversity in Domestic cattle. 
BMC Genomics 2009,10:181. 

Wright S: The genetical structure of populations. Annals of Eugenics 1951, 15:323-
54. 

Cockerham CC: Variance of gene frequencies. Evolution 1969, 23:72–84. 

Akey JM, Zhang G, Zhang K, Jin L, Shriver MD: Interrogating a high-density SNP 
map for signatures of natural selection. Genome Research 2002, 12:1805-1814. 

Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, 
Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler 
D, Cooper R, Kwiatkowski D, Ward R, Lander ES: Detecting recent positive 
selection in the human genome from haplotype structure. Nature 2002. 
419:832–837.  



5
th

Chapter          Application of FST and iHS Tests                            153 
 
 
 
               

 

Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in 
the human genome. PLoS Biology 2006, 4:e72. 

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E. et al: Genome-wide detection 
and characterization of positive selection in human populations. Nature 2007, 
449:913-918. 

Biwas S, Akey JM: Genomic insights into positive selection. Trends in Genetics 
2006, 22:437-446.  

Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, 
O'Connell J, Moore SS, Smith TP, Sonstegard TS, Van Tassell CP: 
Development and Characterization of a High Density SNP Genotyping Assay 
for Cattle. 2009, PLoS ONE 4:e5350. 

Scheet P, Stephens M: A fast and flexible statistical model for large-scale population 
genotype data: Applications to inferring missing genotypes and haplotypic 
phase. American Journal of Human Genetics 2006, 78:629–644. 

Barrett JC, Fry B, Maller J, Daly MJ: HaploView: Analysis and visualization of LD 
and haplotype maps. Bioinformatics 2005, 21: 263–265. 

Gianola D, Simianer H, Qanbari S: A two-step method for detecting selection 
signatures using genetic markers. Genetics Research 2010, (in press).  

Haldane JBS: The precision of observed values of small frequencies. Biometrika 
1948, 35:297-303. 

Whittaker J.C, Haley C, Thompson R: Weighting of information in marker-assisted 
selection. Genetical Research 1997, 69:137–44. 

Leisch F: FlexMix: A general framework for finite mixture models and latent class 
regression in R. Journal of Statistical Software 2004, 11:1-18, URL 
http://www.jstatsoft.org/v11/i08/. 

Cole JB, VanRaden PM, O’Connell JR, Van Tassell CP, Sonstegard TS, Schnabel 
RD, Taylor JF, Wiggans GR: Distribution and location of genetic effects for 
dairy traits. Journal of Dairy Sci. 2009, 92:2931–2946. 

Peters M, Saare M, Kaart T, Haller-Kikkatalo K, Lend AK, Punab M, Metspalu A, 
Salumets A: Analysis of Polymorphisms in the SRD5A2 Gene and Semen 
Parameters in Estonian Men. Journal of Andrology 2009 (in press). 

Wall JD, Andolfatto P, Przeworski M: Testing models of selection and demography in 
Drosophila simulans. Genetics 2002, 162:203–216. 



5
th

Chapter          Application of FST and iHS Tests                            154 
 
 
 
               

 

Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H: 
The pattern of linkage disequilbriom in German Holstein cattle. Animal 
Genetics 2010b (in press). 

Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K: 
ACTN3 genotype is associated with human elite athletic performance. 
American Journal of Human Genetics 2003, 73:627–631. 

Chan S, Seto JT, MacArthur DG, Yang N, North KN, et al: A gene for speed: 
contractile properties of isolated whole EDL muscle from an alpha-actinin-3 
knockout mouse. American Journal of Physiology- Cell Physiology 2008, 
295:C897–904. 

Gu J, Orr N, Park SD, Katz LM, Sulimova G, et al: A Genome Scan for Positive 
Selection in Thoroughbred Horses. PLoS ONE 2009, 4:e5767. 

MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, et al: Loss of ACTN3 
gene function alters mouse muscle metabolism and shows evidence of positive 
selection in humans. Nature Genetics 2007, 39:1261–1265. 

Pollinger JP, Bustamante CD, Adi Fledel-Alon A, Schmutz SM, Gray MM, Wayne 
RK: Selective sweep mapping of genes with large phenotypic effects. Genome 
Research 2005, 15:1809–1819. 

Carlson CS, Thomas DJ, Eberle MA, Swanson JA, Livingston RJ, Rieder MJ, 
Nickerson D: Genomic regions exhibiting positive selection identified from 
dense genotype data. Genome Research 2005, 15:1553–1565. 

Wang ET, Kodama G, Baldi P, Moyzis RK: Global landscape of recent inferred 
Darwinian selection for Homo sapiens. Proceeding of National Academy of 
Science of USA 2006, 103:135–140. 

Innan H, Kim Y: Pattern of polymorphism after strong artificial selection in a 
domestication event. Proc Natl Acad Sci USA 2004, 101:10667–10672. 

Weir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG:  Measures of human 
population structure show heterogeneity among genomic regions. Genome 
Research 2005, 15:1468–1476. 

 

 



5
th

Chapter          Application of FST and iHS Tests                            155 
 
 
 
               

 

 

Chromosomal position 

 

Figure S1. Genome wide distribution of |iHS| values across the genome of beef 
breeds. Dashed lines display the threshold level of 0.05. 
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Table S1. Genomic regions associated with extreme |iHS| values. |iHS| values averaged 
over non-overlapping windows of each 500kb. 
Position (Mb) Chr AN BR BE HE MG SG SH HS SI BS 

105.5 10 2.91 1.09 1.24 1.01 1.30 2.33 0.52 NA 1.16 1.24 
0.25 5 2.48 0.82 0.98 0.68 0.49 0.89 0.61 0.70 0.50 0.88 
0.25 5 2.48 0.82 0.98 0.68 0.49 0.89 0.61 NA NA 0.52 
63.5 14 2.29 0.75 0.49 0.53 0.32 0.46 0.45 0.49 1.27 1.31 

69 14 2.21 0.37 0.66 0.82 0.93 1.03 0.54 0.47 0.48 0.63 
13.5 28 2.10 0.25 0.63 0.26 0.29 1.25 0.07 0.74 0.66 0.12 
151 1 2.06 0.51 0.45 0.99 0.41 0.92 0.75 1.43 1.24 1.09 

38.5 12 2.03 1.17 0.77 0.44 0.53 0.60 0.24 NA NA NA 
83.5 13 0.67 2.10 2.08 2.46 1.73 1.59 1.77 0.96 0.67 0.91 

74 2 0.53 2.07 1.15 0.95 0.83 0.86 1.01 0.75 0.52 0.73 
71 2 0.99 2.05 0.73 1.50 1.67 1.60 1.73 1.01 1.04 0.37 
84 13 1.98 1.39 2.91 3.28 0.88 1.30 0.63 0.87 0.73 0.57 
59 10 0.76 1.06 2.24 1.01 0.68 0.58 0.59 0.31 0.50 0.78 
83 13 0.55 0.90 2.20 1.25 1.45 0.97 1.28 0.65 1.19 1.26 

69.5 5 1.05 1.12 2.03 0.90 0.99 0.58 0.78 0.78 1.35 NA 
84 13 1.98 1.39 2.91 3.28 0.88 1.30 0.63 0.87 0.73 0.57 

81.5 14 1.24 0.70 1.38 2.72 1.53 0.45 1.77 NA NA NA 
83.5 13 0.67 2.10 2.08 2.46 1.73 1.59 1.77 0.96 0.67 0.91 

35 2 0.67 0.85 0.59 2.26 0.98 0.53 0.60 0.65 0.70 0.61 
68 1 0.93 0.50 1.22 2.19 0.74 0.62 1.25 0.70 0.88 0.58 

11.5 15 0.74 0.58 0.96 2.16 0.84 0.51 0.93 0.81 0.73 0.59 
81 1 0.35 0.60 1.07 2.06 0.50 1.32 0.76 0.67 1.19 0.20 

81.5 1 0.65 0.99 1.08 2.06 0.46 1.13 0.57 0.35 1.41 0.92 
71.5 2 0.98 0.60 0.97 2.02 1.55 0.81 1.48 0.46 0.70 0.69 
41.5 17 0.46 0.47 0.75 2.00 0.86 0.98 1.40 1.09 0.85 0.03 
54.5 14 0.60 0.31 0.84 0.57 2.29 0.71 0.47 1.19 0.89 NA 

17 12 0.86 1.06 0.73 0.67 2.22 0.44 0.25 1.36 0.81 1.00 
75 2 1.18 0.19 0.64 0.61 2.14 0.99 1.55 0.62 1.00 0.27 

6 28 0.91 0.63 1.39 0.47 2.11 0.77 1.08 0.69 0.41 0.80 
70.5 2 0.46 0.63 0.99 1.68 2.03 0.70 1.53 0.65 0.65 0.35 

105.5 10 2.91 1.09 1.24 1.01 1.30 2.33 0.52 NA 1.16 1.24 
17 1 0.77 1.29 0.77 1.36 0.76 2.18 1.05 0.58 1.02 1.31 

19.5 1 1.17 0.48 0.36 0.27 0.70 2.16 1.38 0.80 0.16 1.41 
105 10 1.91 1.27 0.71 1.77 1.86 2.14 1.08 0.47 0.54 0.68 

85.5 12 0.89 NA 0.03 1.21 1.54 2.06 NA NA NA NA 
77 14 1.00 0.34 0.88 0.86 0.75 2.04 0.44 0.92 0.60 1.35 

16.5 1 0.53 0.66 0.79 0.71 0.73 2.00 1.00 0.72 0.77 1.15 
105.5 10 2.91 1.09 1.24 1.01 1.30 2.33 0.52 NA 1.16 1.24 

17 1 0.77 1.29 0.77 1.36 0.76 2.18 1.05 0.58 1.02 1.31 
19.5 1 1.17 0.48 0.36 0.27 0.70 2.16 1.38 0.80 0.16 1.41 
105 10 1.91 1.27 0.71 1.77 1.86 2.14 1.08 0.47 0.54 0.68 

85.5 12 0.89 NA 0.03 1.21 1.54 2.06 NA NA NA NA 
77 14 1.00 0.34 0.88 0.86 0.75 2.04 0.44 0.92 0.60 1.35 

16.5 1 0.53 0.66 0.79 0.71 0.73 2.00 1.00 0.72 0.77 1.15 
61 10 0.29 0.79 1.45 0.93 1.19 0.54 2.03 0.60 0.29 0.67 
21 16 0.23 0.53 0.62 0.61 0.39 0.17 1.03 2.83 0.80 NA 
30 18 0.75 0.32 0.27 1.03 0.55 1.04 0.61 2.81 0.30 NA 

43.5 10 0.21 0.48 0.49 0.72 0.50 0.29 0.39 2.63 0.86 0.63 
12.5 4 0.55 0.62 0.68 0.50 0.91 0.82 0.36 2.62 1.88 NA 

21 27 0.41 0.15 0.60 1.41 0.16 0.34 0.47 2.54 0.93 0.70 
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Position (Mb) Chr AN BR BE HE MG SG SH HS SI BS 

29.5 7 0.68 0.69 0.82 1.00 0.75 0.90 0.86 2.41 1.60 0.44 
9 7 0.48 1.06 0.36 0.34 0.86 0.98 0.39 2.40 0.37 0.06 

40.5 8 0.26 0.55 0.41 0.37 1.18 0.44 0.38 2.33 0.82 NA 
11 1 0.70 0.56 0.83 0.38 0.22 0.55 0.40 2.30 0.47 NA 

3 5 0.42 0.42 0.39 0.78 0.32 1.56 1.01 2.17 1.25 1.28 
25 18 0.19 1.13 0.43 0.28 0.36 0.65 0.19 2.16 NA NA 
12 7 0.43 0.30 0.35 0.55 0.12 0.87 0.52 2.13 0.56 0.76 
58 18 0.62 0.82 1.01 0.84 0.87 0.63 0.56 2.12 0.05 NA 
21 5 0.31 0.33 0.76 0.93 0.64 0.37 0.69 2.10 1.34 NA 

10.5 1 0.60 0.85 0.55 0.64 0.66 0.82 0.81 2.08 0.46 0.43 
116.5 6 0.48 0.56 0.50 0.66 0.39 0.12 0.99 2.04 1.54 1.04 

29 29 0.77 0.23 0.49 0.93 0.87 0.52 0.60 2.01 0.77 NA 
6 4 0.72 0.47 0.21 0.39 0.22 0.83 0.61 1.83 2.92 NA 

14 17 1.19 0.33 0.62 0.54 0.73 0.73 0.47 1.05 2.83 NA 
30 10 0.70 0.40 0.48 0.59 0.78 0.34 0.98 0.56 2.48 NA 

21.5 23 0.73 0.64 0.40 0.43 0.61 0.56 0.65 0.60 2.45 1.84 
6.5 4 0.54 0.34 0.20 0.46 0.12 1.03 0.48 1.94 2.38 0.94 
2.5 2 0.33 0.25 0.97 0.29 0.37 0.85 0.03 0.14 2.37 0.17 
78 12 0.45 0.85 0.87 NA NA 0.42 1.07 1.48 2.27 1.36 

101 4 0.83 0.38 1.09 0.40 0.68 0.18 1.32 1.26 2.21 NA 
67 10 0.58 0.34 0.51 0.72 1.14 0.32 0.78 0.20 2.19 NA 

23.5 22 0.84 0.19 0.47 0.46 0.43 0.51 0.42 0.27 2.11 0.10 
2 8 0.61 0.09 0.36 0.48 0.41 0.63 0.29 1.57 2.10 1.16 

16.5 19 0.85 0.49 0.50 0.84 0.44 0.54 0.65 0.80 2.08 1.53 
10.5 13 1.02 0.34 0.44 0.54 0.79 0.57 0.37 1.62 2.05 NA 

28 28 0.69 0.84 0.65 1.30 0.84 0.45 0.37 1.56 2.04 1.33 
48.5 7 0.38 0.67 0.87 0.59 0.60 0.38 0.19 NA 2.04 NA 

87 9 0.34 1.00 1.44 0.49 1.20 0.84 0.59 0.66 2.02 0.44 
62 6 0.77 0.40 0.63 1.27 1.23 0.90 0.95 0.57 0.56 3.41 

62.5 6 0.58 0.65 1.02 1.12 1.52 0.79 1.87 0.44 0.46 3.05 
29.5 11 0.66 0.94 0.65 0.78 0.65 0.80 1.05 0.73 0.86 2.86 
103 9 0.79 0.38 0.45 0.69 0.52 0.48 0.59 1.22 0.80 2.71 

30.5 13 0.87 0.41 0.50 0.70 0.90 0.67 0.69 0.36 1.33 2.68 
70.5 12 0.65 0.30 0.73 0.88 0.96 1.06 0.70 0.58 0.78 2.62 
71.5 6 1.09 0.98 0.78 1.28 1.26 0.95 0.28 0.51 NA 2.43 

79 13 0.62 1.04 0.97 0.80 0.31 0.46 0.45 1.17 1.17 2.36 
79.5 12 0.72 0.65 0.63 0.85 0.51 0.55 1.04 1.05 1.27 2.33 
0.5 14 0.39 0.76 0.75 0.21 0.26 0.26 0.54 1.10 0.75 2.22 

36.5 13 0.55 0.78 0.61 0.52 0.67 0.42 1.02 1.31 1.58 2.22 
10 5 1.72 0.45 0.26 0.70 0.44 0.27 0.67 0.59 1.83 2.20 

86.5 9 0.46 0.59 1.08 0.48 0.96 0.53 0.59 0.49 0.56 2.20 
14.5 26 0.77 0.73 0.92 0.71 0.46 0.81 0.39 0.58 1.04 2.18 
45.5 8 0.55 0.70 1.10 0.98 1.19 0.98 0.63 0.79 1.84 2.17 

16 12 0.47 0.73 0.63 1.00 1.23 0.85 0.74 1.26 1.31 2.13 
57.5 13 0.53 0.47 1.13 0.62 0.73 1.30 0.23 0.74 0.73 2.12 
30.5 25 0.97 0.47 0.60 0.77 1.15 1.13 0.71 1.14 0.87 2.07 

2 14 0.59 0.88 0.58 0.67 0.64 0.40 0.57 0.68 1.57 2.06 
39 18 0.91 0.66 0.49 0.80 0.39 0.97 0.58 1.55 0.99 2.05 
23 7 0.35 0.58 0.50 0.31 0.38 0.68 0.59 0.65 0.98 2.03 

24.5 20 0.82 0.90 1.13 0.91 0.83 0.40 0.62 0.70 1.05 2.02 
85 10 0.31 0.87 0.37 0.49 0.44 0.41 1.08 0.85 0.93 2.01 
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Table S2. Genomic regions associated with extreme θ values (P < 2.5%). θs averaged 
over non-overlapping windows of each 500kb. 

 

Chr Position (Mb) θ 

1 13.5 0.92 
1 98 0.72 
1 47 0.63 
1 75.5 0.63 
1 19 0.62 
1 9 0.62 
1 111.5 0.6 
1 32 0.6 
1 77 0.6 
1 70.5 0.59 
1 39.5 0.58 
2 107 0.98 
2 90 0.68 
2 85.5 0.65 
2 42.5 0.64 
2 130 0.63 
2 51 0.63 
3 19 0.92 
3 60.5 0.76 
3 88.5 0.66 
3 6 0.61 
3 62 0.59 
4 12.5 0.67 
4 111.5 0.64 
4 36 0.63 
4 8 0.59 
4 45.5 0.57 
5 102.5 0.99 
5 16 0.94 
5 53 0.68 
5 44.5 0.68 
5 22.5 0.67 
5 14 0.67 
5 64 0.66 
5 56 0.65 
5 34.5 0.61 
5 104.5 0.58 
6 90 0.74 
6 58.5 0.72 
6 79 0.64 
6 14.5 0.64 
6 47.5 0.63 
6 50 0.63 
6 68.5 0.6 
6 5 0.58 
7 53.5 0.74 
7 17 0.65 
7 106.5 0.62 
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Chr Position (Mb) θ 

7 77.5 0.62 
7 61.5 0.61 
7 27 0.6 
8 15.5 0.73 
8 68 0.7 
8 48.5 0.64 
8 100 0.63 
8 45.5 0.59 
8 61 0.57 
9 43 0.79 
9 58 0.63 
9 73.5 0.62 
9 79 0.6 
10 43.5 0.64 
10 29.5 0.64 
10 64.5 0.63 
10 81.5 0.62 
11 87 0.67 
11 67.5 0.65 
11 74 0.62 
11 35 0.61 
12 69.5 0.77 
12 60 0.74 
12 43 0.66 
12 32 0.62 
12 61.5 0.6 
12 36 0.58 
13 54 0.99 
13 69 0.69 
13 44 0.59 
14 57 0.57 
15 48.5 0.68 
15 46.5 0.6 
16 5 0.98 
16 13 0.67 
16 32 0.65 
16 13.5 0.61 
16 59.5 0.6 
17 40.5 0.99 
17 40 0.78 
17 34 0.64 
17 51.5 0.62 
18 59.5 0.98 
18 58.5 0.77 
18 42 0.73 
18 60.5 0.66 
18 35.5 0.62 
19 2.5 0.64 
20 15.5 0.93 
20 46.5 0.69 
20 34.5 0.66 
20 27.5 0.62 
20 37 0.62 
21 10.5 0.61 
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Chr Position (Mb) θ 

21 68.5 0.58 
22 35.5 0.78 
22 50 0.68 
22 26.5 0.63 
22 7 0.59 
23 34 0.61 
24 54.5 0.68 
24 10.5 0.66 
24 18 0.66 
24 64 0.59 
24 50.5 0.57 
25 10 0.76 
25 29 0.61 
26 1.5 0.62 
26 35 0.6 
26 40.5 0.58 
26 3.5 0.57 
27 6.5 0.72 
27 8 0.64 
27 11.5 0.59 
27 32 0.58 
27 5 0.58 
28 30 0.59 
28 43.5 0.58 
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Genome-wide pattern of linkage disequilibrium 

Quantifying the level of linkage disequilibrium is an important step for fine-scale 

mapping of QTL (e.g., Meuwissen and Goddard, 2000), genomic selection 

(Meuwissen et al., 2001), and increasing the understanding of genomic architecture 

and the historical population structure (e.g., Hayes et al., 2003). The first chapter of 

this thesis was designed to measure the extent of LD in German Holstein cattle. For 

this purpose we used the Illumina BovineSNP50 BeadChip  and presented a second 

generation of LD map statistics for the Holstein genome which has four times higher 

resolution compared to the maps available so far. At a physical distance of less than 

100 kb, an average r2
=0.21 ± 0.26 was observed. We compared our study to that of 

Sargolzaei et al. (2008) and Kim & Kirkpatrik (2009), among some others, who 

utilized r2 as measure of LD and found a lower level of LD than previously reported in 

the literature.  

The levels of LD are expected to be highly variable across the genome, due to several 

factors, such as variation in recombination rate and selection. For reliable results, this 

variation needs to be taken into account when designing experiments to exploit LD. 

Variation in rate of recombination across the genome is a key factor that contributes 

to the variance observed in patterns of LD. A number of researchers have focused on 

the distance at which average r2 is reduced to 0.25, as a reasonable point to conclude 

there is useful LD to detect associations with complex traits (e.g.,Kruglyak, 1999; 

Ardlie et al., 2002). The reasoning for this r2 cut-off is as follows: in a complex trait a 

large QTL may only explain approximately 10% of the phenotypic variation. If a 

marker only explains 10% of the total QTL variation, then the marker will only 

explain 2.5 % of the phenotypic variation. Detection of locus effects that cause 

smaller than 2.5% phenotypic variation requires exponentially increasing population 

sizes therefore such small effects would be considered undetectable in a moderate-

sized study population. Based on the investigations of this study and assuming the 

size of bovine genome as 3 Gb, to achieve this level of LD the SNP spacing should be 

~35 Kb to perform whole genome association study in Bos taurus. This implies the 
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use of more than 75,000 SNPs per individual, assuming that all SNPs are informative 

(with a MAF ≥ 0.05). However considering the fact that some of the SNPs may have 

low minor allele frequency in certain breeds, our results suggest that a nearly 100,000 

SNPs should be sufficient to perform whole genome association study. According to 

the results of this study, the same power can be achieved by implementing a panel of 

50,000 SNPs with moderate frequencies (e.g., MAF ≥ 0.15) which simultaneously 

improves the accuracy and magnitude of estimated LD between pairs of SNPs. 

Some properties of LD metric r2, such as its dependence on allele frequency and inter-

marker distance, were also explored in this study. We showed that the magnitude of r2 

is dependent on the allele frequency, as such the average r
2 values between SNPs 

unmatched for allele frequency are much less than matched SNPs. In practice, this 

observation has applications for single-marker association studies where markers that 

have similar frequencies to the causative SNP can have high correlations with the 

causative allele. Indirectly, this property of r2 has been previously observed, because 

larger sample sizes are required for mapping when an SNP has a very different 

frequency to that of the causative polymorphism (Zondervan and Cardon, 2004). Our 

results also demonstrated that the dependence of LD on the MAF difference between 

SNP pairs is stronger for SNPs in short distances. These results reveal that the 

minimizing the allele frequency difference between SNPs, provides a more sensitive 

and useful metric for analyzing LD across the bovine genome. Although an entirely 

frequency-independent measure of LD is not possible (Lewinton 1988), frequency 

matching between SNP pairs removes one major source of statistical noise when 

assessing the LD structure.  

Effective population size (Ne) was another aspect in our dataset which is of relevance 

for whole genome LD analysis. Because the extent of LD is affected by both recent 

and past Ne, estimating historical Ne is useful to shed light on the evolutionary pattern 

of LD. In this study the recombination rates required for the inferring Ne were 

estimated directly from haplotype data. Our results showed in German Holstein cattle, 

the historical Ne, going back 500 generations, was approximately 1,200 individuals, in 
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contrast to the estimated ~100 individuals in recent generations. Although the figures 

for Ne might not be highly accurate, they nevertheless provide useful information on 

the trend in effective population size. In general, our results showed a persistent 

decline in effective population size which is consistent with the results of other studies 

(Bovine HapMap Consortium, 2009). The rapid decrease in Ne from a very large 

ancestral population is explained by several bottlenecks, associated with 

domestication, selection and breed formation (Bovine HapMap Consortium, 2009). 

Investigation of possible traces of positive selection in cattle genome 

During the last century, the Holstein Friesian breed has been propagated throughout 

the world and intensively selected, particularly with the introduction of new 

reproductive technologies. Consequently, genomic regions controlling traits of 

economic importance are expected to exhibit signatures of selective breeding. With 

the availability of an ever-increasing number of genetic markers, we are able now to 

analyze cattle genome on a more comprehensive level to identify what genome 

changes are associated with the phenotypic changes. Pioneered by human geneticist 

some tools have been developed to find traces of selection on genomic data. The 

chapters from three to five of our study were aimed to explore these traces in cattle 

genome.  

Application of extended haplotype homozygosity in Holstein  

In the first of these experiments on German Holstein we employed Sabeti’s EHH 

statistic, one of the most popular of selection signature approaches (Sabeti et al., 

2002). This test was designed to work with haplotypes. Unfortunately, robust 

inferences of recent positive selection from genomic data are difficult because of the 

confounding effects of population demographic history. Another important question 

with this approach concerns the appropriate null distributions of REHH values. 

Ideally one should use a set of loci that can be considered to evolve under neutral 

conditions. However, there are no a priori criteria for choosing such loci with 

confidence. To validate the efficiency of this test we therefore took the opposite 
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approach, namely to choose loci that are candidates for positive selection and 

compared them to the overall genome distribution. We focused on ten genes or gene 

clusters which are well-known to be related to dairy qualities and therefore were 

assumed to be potentially under recent selection. The results revealed a longer than 

expected range of LD in core regions harboring  the Casein cluster, DGAT1, GHR, 

STS and LPR genes which are supposed to affect milk yield and milk composition 

traits in Holstein cattle. Consistent with previous reports (Grisart et al., 2003; Marques 

et al., 2008), the second most frequent haplotype of DGAT1 gene (frequency = 30%) 

showed the highest REHH in the core region. We observed that other haplotypes 

present in this region display a shorter extent of homozygosity, indicating abundant 

historical recombination. Therefore, the long stretch of homozygosity observed in this 

region presumably is not simply due to a low local recombination rate but likely 

reflects the combination of strong and recent selective pressure, pushing beneficial 

mutation rapidly towards high frequency with long conserved haplotype surrounding 

it. In order to test this hypothesis we examined the distribution of this haplotype in 

146 animals for which the DGAT1 genotype was available. This comparison revealed 

an almost perfect association of GGGG haplotype in the region with the Lysine 

variant at DGAT1 gene which is related to the elevated milk fat content (Winter et al., 

2002; Thaller et al., 2003). Allele frequency estimated for the lysine variant was 30% 

in the sample, which results that, most likely all of them are segregating with GGGG 

haplotype. This observation confirms that this variant is surrounded by a long range of 

haplotype and has been underlying recent positive selection.  

As a further step ahead, a genome screen was directed to identify selection signatures 

across the genome of Holstein cattle. Preliminary exploration identified a total of 

3741 core regions covering 18.5 % of the mapped genome. After estimating haplotype 

consistency, a total of 161 genomic regions displayed outlying peaks on a threshold 

level of 0.01 which were non-uniformly distributed across chromosomes. Bovine 

chromosomes 6 and 14 which harbor known genes and QTL for several economically 

important traits (Stone et al., 1999; Mosig et al., 2001; MacNeil and Grosz, 2002; 

Casas et al., 2003; Li et al., 2004; Ashwell et al., 2005; Nkrumah et al., 2007) showed 
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8 and 2 outliers, respectively. The number of peaks rises to 41 and 14, respectively, 

when the threshold was set to P<0.05. Based on the observations of the validation test 

on candidate genes, we concluded that a substantial proportion of the regions detected 

in this study is likely under selection. 

Regarding the fact that multiple testing may have led to false positive results, we 

performed a further validation by aligning the 12 regions of extreme REHH to the 

bovine genome (Btau 4.0) to verify any coincidence of the signals observed with 

important genomic regions. We found co-location of a panel of genes such as FABP3 

(Bionaz and Loor, 2008), HTR2A (Reist et al., 2003), CPN3 (Barendse et al., 2008), 

PTGER2 (Arosh et al., 2003) and some others with putative regions which previously 

suggested being under selection in cattle populations. For example FABP3 plays a key 

role in the regulation of the channeling of fatty acids toward copious milk fat 

synthesis in bovine mammary (Bionaz and Loor, 2008). There are also reports of 

associations with subcutaneous fat thickness in beef cattle (Roy et al., 2003) as well as 

milk fat content in sheep (Calvo et al., 2004). One interesting observation of this study 

was the HTR2A 5 gene which acts in serotoninergic pathways which are involved in 

economically important bovine gastrointestinal (GI) motility disorders, such as 

displaced abomasum and cecal dilatation/dislocation (Reist et al., 2003). It was also 

suggested that variants of this gene are related with behavioral disorders in human 

(Khait et al., 2005) and aggressiveness in canine (Peremans et al., 2003). This point 

looks more interesting when we compare the temperament behavior of modern cattle 

breeds, which have been bred during the last decades, to native cattle breeds 

worldwide. However, still more reference data in terms of statistical and functional 

significance will be required to confirm our finding at this locus.  

 

Comparison of the pattern of selective sweeps revealed by EHH test among 

populations 

Given the presence of the large number of false positives among possible true 

selective sweeps, it is important to find additional criteria of how the true cases can be 

identified. Schlötterer (2002) has suggested that signatures that are found in at least 
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two populations and/or with more than one statistics might be considered to be more 

reliable. We therefore used populations with different demographic and selective 

histories.  

In the first step we scanned the genomes of Brown Swiss (n=277) and Simmental 

(n=462) breeds using EHH statistic based on 50k genotypes. The extent of haplotype 

homozygosity at region of 10 candidate genes was estimated. As shown in Table 1, 

six and three regions exhibited a longer than expected extent of haplotype 

homozygosity, respectively in Brown Swiss and Simmental breeds. It is evident that 

Holstein and Brown Swiss show more similarity with respect to the number of gene 

regions underling positive selection. This observation corresponds roughly to 

expectations when the history of formation of the breeds and their breeding purposes 

are considered. Further genome-wide screen also revealed 140 and 137 genomic 

regions with haplotype consistency longer than expected (P ≤ 0.01) across the genome 

of Brown Swiss and Simmental, respectively, in contrast to 161 regions in Holstein.  

To confirm the chromosomal regions containing selection evidences in Holstein, we 

examined the co-location of selection signature at significance level of (P ≤ 0.05) 

across the genome of the three breeds. Our analysis revealed 55 and 48 regions which 

coincided between Holstein vs. Brown Swiss and Holstein vs. Simmental, 

respectively. There are also 55 overlaps between Brown Swiss and Simmental. 

Overall, we found only 7 overlapping regions across the genome of three breeds 

(Table 2) which included the Prolactin receptor gene on BTA20. However, the 

resulting pattern from the tracing of the sweep signatures in three breeds was 

generally not consistent.   

 
 

 

 

 



6
th

Chapter                      General Discussion                                         169 

 
 
 
               

 

Table 1. Comparison of the significance of the haplotype homozygosity revealed by 

the EHH test among Simmental (SI), Brown Swiss (BS) and Holstein (HS).  
 

 P-Value*  Candidate  

Region SI BS HS 

DGAT1  - / 0.19 - / 0.03 - / 0.06 

Casein Cluster 0.29 / 0.12 0.08 / 0.04 0.01 / 0.01 

GH  0.21 / 0.17 0.02 / 0.01 0.86 / 0.90 

GHR 0.23 / 0.10 0.45 / 0.34 0.10 / 0.08 

SST 0.76 / 0.84 0.22 / 0.44 0.03 / 0.07 

IGF-1 0.35 / 0.24 0.12 / 0.11 0.38 / 0.55 

ABCG2 0.19 / 0.18 0.29 / 0.19 0.76 / 0.79 

LEP 0.003 / 0.03 0.15 / 0.02 0.45 / 0.42 

LPR 0.08 / 0.11 0.35 / 0.40 0.04 / 0.04 

PIT-1 0.22 / 0.24 0.06 / 0.17 0.67 / 0.69 

 
*
 P-values for REHH statistic are presented for upstream and downstream sides from 

core region, respectively, for the most longest haplotype with frequency > 25%  

 

 

Table.2. List of overlapping regions with extreme EHH in Simmental, Brown Swiss 

and Holstein and candidate genes located nearby  

Symbol Gene Chr Position (Mbp) 

ABHD10  Esterase-lipase 1 56.75-57.25 

TSGA14 Testis specific, 14 4 95.75-96.25 

CRY1 Cryptochrome 1 5 75.75-76.25 

MGP Matrix Gla protein 5 101.75-102.25 

- - 12 62.75-63.25 

HSPB3 Heat shock 27kDa protein 3 20 26.25-26.75 

PRLR Prolactin receptor 20 41.5-43 
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Application of FST statistic to find standing variation 

The rationale of selective sweep mapping is that during breed formation natural or 

artificial selection should imparts a distinct signature on genomic regions harboring 

loci that influence the specific phenotype that is selected. In chapters four and five of 

this thesis we addressed this issue. In this study, we developed a new Bayesian 

approach for exploring differentiated loci and applied it to a set of geographically 

separated populations with identical or diverse breeding goals. We estimated FST for 

40,595 SNPs either for pair-wise comparisons or across the dairy vs. beef breeds. This 

algorithm was able to deal with a large panel of marker information. Our results 

suggested almost similar level of differentiation in pair-wise comparisons within the 

dairy and beef breeds. Clustering the genome-wide estimates of θ values between 

Holstein and Brown Swiss versus Angus and Piedemontese breeds, using Akaike’s 

criterion, resulted in two groups. One representing putatively neutral loci, and the 

other possibly corresponding to the genomic regions affected by selection. Overall, 

the average FST, comparing of dairy vs. beef breeds, was equal to 0.3 which is 

substantially higher than the differentiation index reported by MacEachern et al., 

(2009) between Holstein and Angus. The higher average of FST as well as the similar 

pair-wise FST within dairy and beef breeds might reflect the overweighting influence 

of a large number of fixed SNPs in the pair-wise comparisons of breeds and groups.  

Selection of a favorable variant is expected to result in a higher level of differentiation 

for neighboring SNPs. In several instances, outlier SNPs tended to cluster to similar 

regions (e.g. BTA2 or BTA18). Hence, in order to identify footprints of selection at 

the regional level we adopted the strategy proposed by Weir et al., (2005) consisting 

in performing average of SNP FST over sliding windows. Linkage disequilibrium was 

shown to decay within 1–2 Mb in the analyzed breeds. However a strong selective 

effect could sweep loci that are located considerably further away. We chose 500kb 

because of the longer extent of LD in cattle compared to human, in which the 

considered length is usually less than 200 Kb (Sabeti et al., 2002. Voight et al., 2006). 

However, it remains difficult to define, a priori, an optimal window size since it 
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would depend on the strength and timing of selection which are expected to be highly 

variable.  

As summarized in Table S1, 127 regions with extreme scores (P-value<0.025) were 

identified when considering FST across populations. Annotation of the genes 

underlying these regions with the extreme FST revealed some genes (e.g., SMCP and 

FGF1genes). A receptor of the latter gene (FGFR3) showed evidence of selection in a 

genome-wide sweep mapping study using FST among dog breeds (Pollinger et al., 

2005). This gene is responsible for achondroplasia (shortened limbs) in Humans. 

However, FST results do not appear to report strong candidates in the region of 

extreme signals. As an explanation, we can theorize that selection may work on the 

genes that have not been considered the primary targets of selection so far. In addition 

for most extreme regions identified, we were not able to propose candidate genes on 

the basis of the gene content in the vicinity of the peak location. These results mostly 

revealed gene deserts in the location of extreme peaks, which may reflect selection 

acting on uncharacterized regulatory region or simply fixation of non-coding DNA by 

genetic drift in the absence of any selection. This observation is consistent with the 

reports of Flori et al. (2009), and Gu et al. (2009) which reported poor gene content 

regions in genome wide analyses of Cattle and Thoroughbred horse, respectively, 

using FST statistic. Thus, these results in combination with the observations from 

Voight et al. (2006), Carlson et al. (2005) and Wang et al. (2006) on human 

population data suggest that non-coding regions have been an important substrate for 

adaptive evolution. 

We also examined the validity of FST analysis by testing some candidate major genes 

in our data set. The results revealed FST values larger than expected (P < 10%) for 

regions harboring the Casein cluster, GHR, STS, LP and IGF-1 genes which are 

supposed to be targets for artificial selection. The observation of selection evidence in 

the region of GHR gene on BTA20 is consistent with the reports of Flori et al. (2009) 

and Hayes et al. (2009) which the latter reported it between Angus and Holstein 

breeds. The presence of the longer than expected of haplotype homozygosity in this 
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region was also observed in the validation of EHH test in current study. Two regions 

on BTA2 and BTA5 in the vicinity of ZRANB3. R3HDM1 and WIF1 genes known to 

affect feed efficiency and mammalian mesoderm segmentation, respectively (Bovine 

HapMap consortium 2009), also matched to the outlier FST windows in our study.  

Tracing the on-going sweeps 

The iHS test (Voight et al., 2006), a derivation of EHH, was also applied on a diverse 

set of cattle breeds in this study and results were presented in chapter 5. We defined 

regions of the genome that may contain targets of positive selection as windows in the 

extreme of empirical distribution. This criterion resulted in 94 significant windows (P 

≤ 0.05). Interrogating the corresponding genomic regions to the cattle genome 

sequence resulted in a large number of flanking loci. The list of genes with signatures 

of positive selection was significantly enriched with those involved in the biological 

processes such as anatomical structure development, muscle development, 

metabolism of carbohydrates and lipids, spermatogenesis and fertilization. We refined 

the complete list for the most important genes in the region of clustered signals that 

may have functional relevance to the economical phenotypes. A remarkable 

observation in this study was a perfect overlap between an extreme |iHS| window and 

a major QTL on BTA18 which was recently reported to have large effects on calving 

ease, several conformation traits, longevity, and total merit in Holstein cattle (Cole et 

al., 2009). A cluster of signals reflecting strong evidence of selection was also 

observed in the vicinity of SST gene. We found also clusters of outliers which 

overlapped among some beef breeds. These results show significant enrichments for 

genes such as SPATA17, MGAT1, PGRMC2 and SRD5A2 in the region of clustered 

signals which belong to a number of functional categories relevant to reproduction, 

including gamete generation, embryo development and spermatogenesis and genes in 

these categories may provide strong candidates for selection for fertility traits. 

Another interesting observation was the strong evidence for selection in the region of 

genes related to muscle formation (e.g., ACTC1, COL23A1, MATN2, and FAP). For 

example polymorphisms in the genes encoding Actinin are among the best 
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characterized athletic-performance associated variants in human endurance athletes 

(Yang et al., 2003; Chan et al., 2008). Evidence for positive selection in the genomic 

region surrounding muscle related genes has been also reported in racing horses (Gu 

et al., 2009) and humans (MacArthur et al., 2007). The presence of the genes like 

Actinin, Collagen and fibroblast activation protein as well as the gene responsible for 

developing cartilage rudiments in positively selected regions in beef cattle suggest 

that selection for muscle related phenotypes has played a major role in the shaping the 

beef cattle. A better understanding of the role that these genes play in the 

development, strength and integrity of muscle may contribute to improved knowledge 

of musculoskeletal traits and developing new marker systems for breeding beef breeds 

with better performance. These results generally are consistent with the observations 

of Flori et al. (2009) and begin to suggest general themes about the types of genes that 

have been targets of positive selection in cattle genome.  

How can the discrepancies in the results be explained? 

Overall, we found a modest overlap between the results of previous genome-wide 

studies and our scans for selection. How can the discrepancies in these results be 

explained? From the methodological point of view, first, given the varying statistical 

tests used to detect signatures, we should not expect complete agreement between 

studies. More specifically, different studies are probably detecting different selective 

events. For example, |iHS| statistic has the greatest power to detect incomplete and 

on-going selective sweeps. Conversely, tests based on the site frequency spectrum like 

FST has greater power to identify sweeps where the advantageous allele is approaching 

fixation or completed sweeps in which new mutations are occurring on selected 

haplotypes that over time will lead the patterns of genetic variation to equilibrium. In 

short, the statistical tests used in each study are recovering selective events from 

different time periods and for different stages of the selective sweep. Second, even for 

tests that should detect similar types of selective events, low statistical power further 

decreases the probability of overlap. Third, most studies report only the most 

significant results (i.e. outliers in the 1% empirical distribution). Therefore, the results 
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presented in this study are probably a conservative estimate of overlap between 

studies. Finally, the false positive rate in genome-wide scans for selection is likely to 

be high. 

Population demographic history can also reveals similar patterns on DNA sequence 

variation, making inferences of selection difficult. For example, population 

expansions can lead to an excess of low frequency alleles compared to the number 

expected under the standard neutral model. Likewise, if the recent positive selection 

for a putative mutation has been started from a higher initial frequency of beneficial 

alleles; such an allele might, for instance, be imported into a breed through crosses 

with other breeds, in such a case beneficial alleles may be included in diverse 

haplotypes and LD based estimators would not be able to trace the selection signature.  

From the technical point of view, the density of the markers is also critical for the 

power of such studies and could be a source of discrepancy. It was shown earlier (see 

chapter 3 for more details) with LD based analyses that core regions more likely 

appeared where the marker density is greater than the average (Qanbari et al., 2010). 

This would imply that the anticipated arrival of genotyping chips with increase 

genome-wide marker density (by a factor ~10) would allow a more reliable and 

comprehensive screening of the genome for signatures of selection by LD based tests. 

As discussed earlier, the size of the window in genome sliding strategy is also a 

source of discrepancy. One potential refinement would be to adjust window sizes to 

local levels of LD (Weir et al., 2005), although how to account for varying levels of 

LD between populations remains unclear. Finally, the incongruities can also result 

from the complex genomic interactions or lack of power, given the sample size 

available for some of the breeds in this study. 

Conclusions and remaining challenges 

Based on the results of this research we conclude that high-resolution genome scan 

using dense markers is capable to identify outlier regions that potentially contain 
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genes contributing to within and inter-breed phenotypic variation. Genomic scans 

based on site frequency spectrum and haplotype data led to the detection of a 

surprising high frequency of regions subjected to recent positive selection in cattle 

genome. Many of the regions showing extreme values for the statistics seem to play 

important roles in economically important traits in cattle and can now serve as starting 

points for formulating biological hypotheses. Results from either site frequency or 

haplotype based methods also showed evidence of positive selection for some 

candidate regions harboring major genes. However, in general, the overlap between 

the identified regions and those from previous studies was modest. Analysis of 

population differentiation revealed signatures of selection occurring in regions of the 

genome thought to be nonfunctional which may reflect selection acting on 

uncharacterized regulatory regions or reflect simply the fixation of non-coding DNA 

by genetic drift.  

Clearly, many challenges remain to be investigated, including the development of 

efficient methods to differentiate the effects of drift and selection, identifying the 

causal gene driving the signature of selection observed across large genomic regions 

and the functional characterization of the suspected targets of selection. Our results 

may be of future interest for identifying signatures of recent positive artificial 

selection between cattle breeds and as an additional evidence for polymorphisms that 

show associations with beef or dairy traits.  
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