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Abstract 

This dissertation is concerned with the question of how people infer the 

consequences of active interventions in causal systems when only knowledge from 

passive observations is available. Causal Bayes nets theory (Spirtes, Glymour & 

Scheines, 1993; Pearl, 2000) provides a rational account of causality which explicitly 

distinguishes between merely observed states of variables (“seeing”) and identical states 

due to external interventions (“doing”), and which provides mechanisms for predicting 

the outcomes of hypothetical and counterfactual interventions from observational 

knowledge. By contrast, alternative models of causal cognition (e.g., associative 

theories) fail to capture the crucial difference between observations and interventions 

and thus are likely to generate erroneous predictions when the implications of 

observations and interventions differ. 

The basic research question of the eight experiments presented in this thesis was to 

investigate whether people who have observed individual trials presenting the states of a 

complex causal model can later predict the consequences of hypothetical and 

counterfactual interventions in a way predicted by causal Bayes nets. Consistent with 

the Bayes nets account learners were surprisingly good at inferring the consequences of 

interventions from observational knowledge in accordance with the structure and the 

parameters of the observed causal system. The experiments also show that participants 

were capable of taking into account the implications of confounding variables when 

reasoning about complex causal models. Although participants’ inferences were largely 

consistent with the predictions of causal Bayes nets, the studies also point to some 

boundary conditions of the competencies of lay reasoners. For example, learners had 

problems distinguishing hypothetical interventions from counterfactual interventions.  

In summary, the experiments strongly support causal Bayes nets as a model of 

causal reasoning. Alternative theories of causal cognition lack the representational 

power to express the crucial differences between observations and interventions and 

therefore fail to account for the results of the experiments. 
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Zusammenfassung 

Diese Dissertation geht der Frage nach, wie Menschen Vorhersagen über die Folgen 

von aktiven Interventionen in kausalen Systemen zu treffen, wenn sie diese Systeme 

zuvor nur passiv beobachtet haben. Die Theorie der kausalen Bayes-Netze (Spirtes, 

Glymour & Scheines, 1993; Pearl, 2000) stellt einen rationalen Ansatz zur 

Repräsentation von Kausalwissen dar und formalisiert den Unterschied zwischen passiv 

beobachteten Ereignissen („seeing“) und identischen Ereignissen, die durch 

Interventionen aktiv erzeugt wurde („doing“). Dadurch ermöglicht es der Formalismus, 

die Folgen von hypothetischen und kontrafaktischen Interventionen aus 

Beobachtungswissen abzuleiten. Alternative Theorien kausalen Denkens hingegen, die 

den Unterschied zwischen passiv beobachteten und aktiv erzeugten Ereignissen nicht 

berücksichtigen, generieren fehlerhafte Vorhersagen, wenn Beobachtungen und 

Interventionen unterschiedliche Implikationen haben. 

Die grundlegende Forschungsfrage der acht Experimente dieser Arbeit ist, ob 

Menschen die Folgen von hypothetischen und kontrafaktischen Interventionen aus 

Beobachtungswissen ableiten können, das in einem passiven Trial-by-Trial 

Lernverfahren erworben wurde. In Übereinstimmung mit der Theorie kausaler Bayes-

Netze zeigte sich, dass die Versuchsteilnehmer überraschend gut darin waren, die 

Folgen von Interventionen aus Beobachtungswissen abzuleiten, und dass sie dabei auch 

die Struktur und die Parameter des beobachteten Kausalmodells einbeziehen. Zudem 

zeigen die Befunde, dass konfundierende Variablen bei den jeweiligen Vorhersagen 

adäquat berücksichtigt werden. Obwohl die Schlussfolgerungen der Versuchsteilnehmer 

insgesamt den Vorhersagen der Theorie kausaler Bayes-Netze entsprachen, zeigen die 

Befunde auch einige Randbedingungen auf. So hatten die Probanden zum Beispiel 

Probleme, zwischen den Implikationen von hypothetischen und kontrafaktischen 

Interventionen zu differenzieren. 

Insgesamt stützen die Ergebnisse klar die Theorie der kausalen Bayes-Netze als 

psychologisches Modell kausalen Denkens. Alternative Theorien kausaler Kognitionen, 

die die Unterschiede zwischen beobachteten und durch Interventionen erzeugten 

Ereignissen nicht repräsentieren, können die Ergebnisse der Experimente nicht erklären. 
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INTRODUCTION 1 

1 Introduction 

The ability to acquire and use causal knowledge is a central competency necessary 

for explaining past events and predicting future events. What are the causes of cancer? 

How does inflation affect economic growth?  How will greenhouse gases influence our 

climate? Causality is “the cement of the universe”, as the philosopher Mackie (1974) 

once put it, and both in science and everyday reasoning we aim to reveal the causal 

texture of the world we live in. However, the question of how we acquire knowledge of 

causal relations has puzzled both philosophers and psychologists for centuries. It was 

the philosopher David Hume (1711–1776) who, with his striking analysis of causality, 

posed the fundamental challenge all theories of causal induction have ever since had to 

address: how do we learn about causal relations even though our sensory input contains 

no direct causal knowledge? The solution offered by Hume was that we induce causal 

relations from spatio-temporal contiguity and covariational information: if two events 

are repeatedly observed to vary together in space and time we will infer that they are 

causally related. Causal knowledge derived from such observations enables us to predict 

one event from the other: from observing the cause event we can infer the presence of 

the effect event, and from observing the effect we can infer the presence of the cause 

event.  

Seeing versus Doing: Causal Inferences with Observations and Interventions 

Causal knowledge acquired from passive observations can be contrasted with causal 

knowledge concerning the consequences of our actions. Would I develop a rash if I ate 

this fruit? What would happen if I pressed this red button that says “Do not push”? One 

way to directly acquire this kind of interventional knowledge is by trial and error. If 

people have tried out the interventions on previous occasions they know the potential 

outcomes of their actions. Similarly, in scientific studies the candidate cause is manipu-

lated to learn about its effects. Learning from interventions directly provides us with 

causal knowledge about the consequences of interventions. However, learning through 

intervention is not always possible. In some sciences (e.g., astronomy) and also in many 

everyday contexts, often only observational knowledge is available. The question is 

then how we can infer the consequences of our actions from observational knowledge. 

A tempting solution would be to equate observational knowledge with instrumental 

knowledge and proceed from there. Unfortunately, this strategy will often lead to 

ineffective actions. For example, the status of a barometer is statistically related to the 
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approaching weather due to their common cause, atmospheric pressure (cf.  Figure 1). 

Even though this correlation does not indicate a genuine causal relation, observational 

predictions can capitalize on such spurious statistical relations. In contrast, interven-

tional predictions cannot, since manipulating the barometer obviously does not affect 

the weather. Effects do not change their causes; thus, manipulating the barometer does 

not affect its cause, atmospheric pressure, and therefore has no causal influence on the 

weather. While observational inferences are often warranted by correlational data alone, 

interventional predictions require us to represent the causal structure underlying our 

observations. 

The difference between observing (“seeing”) and 

intervening (“doing”) is compelling in the barometer 

example, and, at first glance, the example may look rather 

trivial: is it not obvious that manipulations of the 

barometer will not influence the weather? However, this 

simple example elucidates a general problem of formal 

models such as standard probability calculus: these 

accounts provide no formal means to express the 

difference between merely observed states of variables and the very same states 

generated by external interventions. This is also mirrored in most traditional theories of 

causal cognition which, in one way or the other, model the way covariational 

information is processed to derive causal judgments. As a consequence, these models 

collapse observational and interventional knowledge and are likely to generate 

erroneous predictions when the implications of observations and interventions differ. 

For example, associative theories of causal induction distinguish between observational 

learning (classical conditioning) and interventional learning (instrumental conditioning), 

but, as the barometer example shows, they fail when predictions for instrumental 

actions have to be derived from observational learning.  

Causal Bayes Nets as Formal Account of Causal Cognition 

Recently, causal Bayes nets theory (Pearl, 2000; Spirtes, Glymour, & Scheines, 

1993) has been developed as a normative formal account of causal representation, 

causal learning, and causal reasoning. Originally developed in the context of computer 

science, philosophy, and statistics, it has been argued that the formalism also captures 

important aspects of human causal cognition (e.g., Glymour, 2001; Gopnik et al., 2004; 

Meder, Hagmayer, & Waldmann, 2005; Sloman & Lagnado, 2005; Steyvers, 

 
Figure 1. Simple causal 

model with three variables. 

Arrows indicate causal rela-

tions; dashed line indicates a 

spurious correlation. 
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Tenenbaum, Wagenmakers, & Blum, 2003; Waldmann & Hagmayer, 2005). Causal 

Bayes nets combine graphical causal models with probability calculus to represent 

causal knowledge and formalize causal learning and causal reasoning. In contrast to 

most other theories of causal cognition, which consider causal induction as a purely 

data-driven process, causal Bayes nets theory assumes that top-down and bottom-up 

processes interact in both the acquisition and use of causal knowledge. A hallmark of 

causal Bayes nets theory is that the formalism explicitly distinguishes merely observed 

states of variables from identical states due to external interventions. By providing a 

formal account of interventions in causal systems the theory allows for the derivation of 

precise predictions for the consequences of hypothetical and counterfactual interven-

tions from observational knowledge and graphical representations of causal systems.  

Structure and Aims of this Dissertation 

The goal of this dissertation is to test some of the fundamental predictions of causal 

Bayes nets theory. My intention is neither to test all aspects of causal Bayes nets theory 

nor to claim that the Bayes nets formalism provides a universal model of causal 

cognition. Clearly, the scope of Bayes nets is beyond that of psychological models.  For 

example, Bayes nets can easily handle complex causal systems with hundreds of 

variables and employ sophisticated algorithms which can analyze large amounts of 

statistical data. Consequently, in many situations the account will make psychologically 

implausible assumptions about the necessary information processing capacities. Never-

theless, I will argue that causal Bayes nets provide a useful tool to model important 

aspects of human causal cognition which conventional models of causal cognition fail 

to capture. A central emphasis is placed on the assumption that causal induction is not a 

purely data-driven process but that bottom-up and top-down processes interact in causal 

learning and causal reasoning.  

The aim of the experiments presented here is to investigate three key issues. First, 

the basic research question is whether learners distinguish between observations and 

interventions and have the capacity to derive interventional predictions from observa-

tional knowledge. A demonstration of learners’ capacity to derive adequate 

interventional predictions from observations would not only support causal Bayes nets 

theory but also question the traditional separation of representations acquired from 

observational and interventional learning, as, for example, proposed by associative 

learning theories. To compare the findings with the predictions of associative theories of 

causal learning, the experiments employ passive trial-by-trial learning which is assumed 
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to provide optimal conditions for the operation of associative learning mechanisms 

(cf. Shanks, 1991). Second, the experiments present learners with causal models that 

contain confounding causal relations. Whereas randomized experiments ensure the 

independence of the candidate cause from all other potentially confounding variables, 

merely observed statistical relations may include the influence of confounding variables 

which are both related to the potential cause and the presumed effect. In such situations 

reasoners have to disentangle the direct causal influence from a concurrent spurious 

relation to derive adequate interventional predictions. The goal of the experiments is to 

tap into participants’ understanding of the causal logic of confounds. Finally, the 

experiments presented here also allow for an investigation of the boundary conditions of 

learners’ capacity to reason in accordance with the normative framework of causal 

Bayes nets. The causal inferences participants are requested to draw therefore differ 

with respect to the kind of intervention, the number of variables and causal relations that 

have to be taken into account, and the way the learning data is presented. 

The structure of this work is as follows. I will first give an introduction to Hume’s 

analysis of causality and critically review his account of causal induction. I will 

continue with an overview of psychological theories of causal learning and conclude the 

theoretical section by introducing causal Bayes nets theory as a formal framework of 

causal inference. In the empirical section I will present a series of experiments which 

aim at investigating the adequacy of Bayes nets formalism as a psychological model of 

causal reasoning. Throughout the experiments learners are asked to draw observational, 

interventional, and counterfactual inferences from causal models and observational 

knowledge. Thus, a main goal is to investigate participants understanding of these three 

types of causal inference. In Experiments 1 and 2 learners are provided with identical 

learning input but are suggested different causal structures. Conversely, in Experiments 

3 and 4 learners are provided with identical causal models but the learning data is 

manipulated. The goal of these studies is to highlight the interaction between top-down 

and bottom-up processes in causal reasoning. In Experiments 5 and 6 the robustness of 

learners’ competency to derive interventional predictions from observational learning is 

tested by manipulating the way the learning data is presented. To achieve this goal, 

temporal order during learning is pitted against causal order, which provides a 

potentially misleading cue to causality. Finally, Experiments 7 and 8 further investigate 

learners’ understanding of confounds. In these studies, learners are presented with 

alternative causal models which generate very similar observational data but strongly 
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differ with respect to the consequences of interventions. Thus, the observational data 

learners are provided with must be simultaneously used to choose between competing 

models and to estimate the chosen model’s parameters. The dissertation concludes with 

a discussion of the empirical findings and their implications for psychological models of 

causal cognition. 

2 Philosophical Background 

The question of how we learn about causal relations is not only a concern of 

psychological theories but has also been an important issue throughout the history of 

philosophy. The following section is intended to give a brief introduction to the phi-

losophical debate on causation and causal learning. Contrary to psychological theories 

which mainly address the epistemological question of how we acquire and make use of 

causal knowledge, many philosophers have rather focused on the ontological aspects of 

causality. However, even though philosophical and psychological theories often address 

different questions, many current theories of causal cognition have been inspired by 

philosophical accounts of causality. Especially the fundamental analysis of causality 

given by the Scottish philosopher David Hume has been of great importance to the 

development of theories of causal learning. His suggestion that the acquisition of causal 

knowledge is a purely data driven process in which causal knowledge is derived from 

covariational data is still alive in most psychological theories of causal induction.  

2.1 Hume’s Riddle of Causal Induction 

Hume’s epistemological orientation was that of a radical empiricism according to 

which all knowledge is derived from experience. Traditionally, this account has been 

contrasted with rationalist approaches which emphasize the role of reason (e.g., 

deductive inferences) and deny the claim that all human knowledge originates in 

experience. Rationalist thinkers such as Descartes (1596-1650) and Leibniz (1646-

1716) proposed that there is a priori knowledge, that is, knowledge independent of 

experience from which we can derive new knowledge. For example, Descartes’ famous 

“cogito, ergo sum” was claimed to be an a priori truth since it is gained through reason 

alone and not from experience. Some philosophers in the rationalist tradition, such as 

Leibniz, also allowed for the possibility of innate ideas.  

Contrary to the rationalist position, the British empiricists John Locke (1632-1704), 

George Berkeley (1684-1753), and David Hume (1711-1776) claimed that the ultimate 
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source of human knowledge is sense experience, not reason. The empiricists also denied 

the existence of any innate knowledge (“innate ideas”), a position vividly expressed in 

Locke’s notion of the tabula rasa. In its most radical version, the empiricists’ position 

was that all our knowledge is a posteriori, that is, directly derived from experience. 

Since all knowledge depends upon sense experience, the empiricists’ position implies 

that our causal knowledge must originate in experience, too.  The question is then which 

of our experiences can give rise to knowledge of causal relations, one of the main issues 

Hume addressed in his writings.  

Hume divides the mental realm into thoughts (“ideas”) and perceptions 

(“impressions”) which provide our mind with experience. According to Hume, even the 

most elaborated and abstract concepts (“complex ideas”) stem from, and are reducible 

to, atomic pieces of knowledge (“simple ideas”). These simple ideas, in turn, originate 

in the content of our experience (Hume’s so-called “copy thesis”). In his Treatise of 

Human Nature (1739/2000) Hume argues that “(…) all our simple ideas in the first 

appearance are deriv’d from simple impressions, which are correspondent to them, and 

which they exactly represent” (p. 9).  

Embedded in Hume’s epistemological atomism is his analysis of causality. 

According to Hume, causal knowledge is inductive, not deductive. For example, when 

we encounter a new object of which we have no knowledge, we cannot discover its 

causal history or its causal powers deductively. Thus, we are not capable of determining 

an object’s causes or effects by reason alone. Therefore, Hume concluded, knowledge 

of causal relations must be derived from experience. The problem he then faced was 

that the sensory input, our ultimate source of knowledge, does not contain any direct 

causal knowledge. Even though every event is a cause or an effect (or both), there is no 

feature (“quality”) common to all events which are kinds of cause and effect: “And 

indeed there is nothing existent, either externally or internally, which is not to be 

consider’d either as cause or an effect; tho’ ‘tis plain there is no one quality, which 

universally belongs to all beings, and gives them a title to that denomination. The idea, 

then, of causation must be deriv’d from some relation among objects; and that relation 

we must now endeavour to discover.” (Hume, 1739/2000, p. 53, his italics).  

Hume’s task then was to determine which experiences give rise to the idea of 

causation. He proposed that causal relations are characterized by three features which 

are contained in our perceptions and can serve as sensory input to the process of causal 

induction. First, events of cause and effect are contiguous in space and time. This 
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relation is that of spatio-temporal contiguity. Second, events of cause and effect are 

temporally ordered since causes always precede their effects. This relation is that of 

temporal succession. However, two events might be contiguous and temporally ordered 

without being causally connected; therefore, contiguity and temporal priority are not 

sufficient to give rise to the idea of a causal relation. Hume argued that there is a third 

relation connecting causes and events and it is this relation that is essential to the idea of 

causation. Consistent with many other philosophers, Hume saw the impression of a 

“necessary connexion” to be the fundamental feature of cause-effect relations. A 

necessary connection between two events implies that the cause necessitates the effect. 

Since the cause is necessarily followed by the effect, observing the cause allows us to 

predict the presence of the effect event. It is in virtue of the acquaintance of this relation 

that we are able to transcend our past experience and make predictions about events not 

observed or not happened yet. However, contrary to many other philosophers before and 

after him, to Hume causal necessity is merely a construction of the human mind and 

must not be expected to exist outside our experience. 

The problem is then to explain what gives rise to the impression of a necessary 

connection between two events. In analogy to the argument that we cannot determine an 

object’s causal powers by reason alone, Hume was convinced that we cannot logically 

prove the existence of a necessary connection between a cause and an effect. He 

proposed that it is the relation of constant conjunction from which we derive the idea of 

a necessary connection: “The idea of cause and effect is deriv’d from experience, which 

informs us, that such particular objects, in all past instances, have been constantly 

conjoin’d with each other.” (Hume, 1739/2000, p. 63). If we were only confronted with 

single episodes in which events occur together we would never induce a causal relation.  

It is the repeated observation that events vary together which gives rise to the idea of a 

necessary connection and, eventually, generates the impression that these events are 

causally related. Hume did not claim that we can discover the exact nature of this 

connection from our sense experience but merely that we have the idea that there is such 

a connection. For example, we might infer from our experience that the moon is 

causally related to the tides even though we do not have specific knowledge of the exact 

nature of the underlying connection.  

According to Hume, the impression of a causal relation implies that the idea of the 

cause event conveys the idea of the effect event. From the experienced constant 

conjunction of cause and effect we infer that upon the appearance of the cause the effect 
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will follow, just as it did in the past. The crucial difference to the rationalist account is 

Hume’s claim that such causal inferences are not a based on reasoning but on “the union 

of ideas”: “When the mind, therefore, passes from the idea or impression of one object 

to the idea or belief of another, it is not determin’d by reason, but by certain principles, 

which associate together the ideas of these objects, and unite them in imagination. (…) 

The inference, therefore, depends solely on the union of ideas” (Hume, 1739/2000, 

p.64). Thus, Hume denied that the presence of the effect is derived deductively from the 

existence of a necessary connection that binds together cause and effect. Instead, causal 

relations are inferred inductively according to associative learning principles; the 

inferences are merely “habit”, as he later stated in his An Enquiry Concerning Human 

Understanding (Hume, 1748/1993, p. 50). Since all inductive knowledge is fallible, he 

concluded, definite knowledge of causal relations lies beyond our reach.  

To sum up, according to Hume’s empiricist approach the acquisition of causal 

knowledge is determined by spatio-temporal contiguity, temporal succession, and 

constant conjunction. When events are repeatedly perceived to be contiguous in space 

and time in several instances we will induce that they are causally related. The temporal 

information allows us to determine which event is the cause and which is the effect. 

Since the information defined by these principles is contained in our sensory input, we 

have a well-defined account of data-driven causal induction even though our senses do 

not directly provide us with causal knowledge. 

2.2 Critique of Hume’s Principles of Causal Induction 

It was Immanuel Kant (1724-1804) who in his Kritik der reinen Vernunft (Critique 

of Pure Reason) (1781/1974) was the first and most prominent philosopher to attack 

Hume’s empiricist account. Kant’s philosophy differed from the empiricists’ position as 

well as from traditional rationalist approaches. On the one hand, Kant denied the 

empiricists’ claim that all our knowledge is derived from experience and rejected the 

idea that the acquisition of causal knowledge is a purely inductive process. He also took 

issue with Hume’s claim that causal necessities do not exist outside our experience and 

rejected the attempt to reduce causal relations to experienced regularities. On the other 

hand, Kant’s philosophy was also at variance with traditional rationalist approaches. 

According to Kant, the capacity to deduce new knowledge through exercises of reason 

alone is limited to certain subject areas such as pure mathematics.  



PHILOSOPHICAL BACKGROUND 9 

Kant’s central concern was the question of how we can derive true knowledge from 

empirical observations (i.e., the possibility of “synthetic a priori knowledge” that 

“transcends” our past experience). He takes the view that knowledge can be acquired 

through experience, but argues that our experiences are not only constrained by our 

sense organs but also by the constitution of our cognitive faculty. Kant argues that the 

human mind must be endowed with general conditions (“reine Anschauungen”, “pure 

intuitions”) and certain fundamental categories of thought (“reine Verstandesbegriffe”, 

“pure categories of the understanding”) which do not originate in our experience. These 

concepts are necessary preconditions for coherent perceptions of the world and it is only 

in virtue of these cognitive structures that we can learn from experience in the first 

place. For example, the existence of an a priori spatio-temporal framework is a 

necessary precondition to the perception of an object as being uniquely located in space 

and time. We cannot decouple the representation of an object from the underlying 

concept of space and, for example, conceive of an object without any spatial properties. 

With respect to causality, Kant agreed with Hume that causal knowledge about 

particular causal relations is rather inductive than deductive. However, in Kant’s 

philosophy the general notion of causality is one of the pure categories of the 

understanding and therefore not derived from experience. Even though we might induce 

the existence of particular causal relations from our sense experience we cannot derive 

the concept of causality itself empirically. Rather, a general notion of cause and effect is 

a necessary prerequisite to causal induction. It is this objection that connects Kant’s 

philosophy with the current debate on psychological models of causal induction. In the 

tradition of Hume, associative theories of causal learning claim that causal knowledge is 

essentially associative and suggest that the acquisition of causal knowledge is a purely 

inductive process (e.g., Dickinson, Shanks, & Evenden, 1984; Shanks & Dickinson, 

1987). Other accounts such as causal model theory (e.g., Waldmann, 1996; Waldmann 

& Holyoak, 1992) and the power PC theory (Cheng, 1997; Novick & Cheng, 2004) also 

assume that covariational information is important for causal learning but emphasize the 

role of domain-independent causal knowledge for the process of causal induction.  

Kant’s critique of Hume was a fundamental one; he not only objected to Hume’s 

analysis of causality but also refuted the empiricists’ philosophical position in general. 

Whereas one of Kant’s central concerns was whether we can derive a general concept of 

causality from our experiences, other philosophers have rather focused on particular 

problems connected with Hume’s epistemology and his attempt to reduce causal 
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knowledge to experienced regularities. Hume defined a cause as “(…) an object, 

followed by another, and where all the objects similar to the first, are followed by 

objects similar to the second. Or, in other words, where, if the first object had not been, 

the second never existed” (Hume, 1748/1993, p. 51, his italics). Traditionally, the first 

part of this statement, which refers to the criterion of regular successions, has been 

conceived of as the core assumption of Hume’s analysis of causality. The second part is 

rather an alternative notion of the concept of cause based on a counterfactual definition. 

This definition has received considerably less attention, but based on this notion some 

philosophers (e.g., Lewis, 1973) have developed so-called counterfactual theories of 

causality, which refrain from the principle of constant conjunction. Other philosophers 

such as Mackie (1974) have objected to Hume’s definition of the concept of cause and 

defined causes as so-called INUS conditions („Insufficient but Necessary parts of 

Unnecessary but Sufficient conditions“). According to this idea causes are always only a 

part of a larger set of relevant conditions which are singly necessary and jointly 

sufficient. Conceptualizing causes as INUS-conditions provides a much more detailed 

account of the meaning of the concept of cause and also acknowledges the relevance of 

further causally relevant factors (cf. section 3.2.2).  

However, it is clearly Hume’s regularity criterion and the principle of constant 

conjunction that has been criticized most vigorously for its several shortcomings. First, 

the criterion of constant conjunction is overinclusive. Picking up a classic example, the 

night is invariably followed by the day but the night does not cause the day. Thus, 

regular successions do not necessarily imply causal relations. This difficulty is closely 

related to the problem of spurious regularities. Returning to the example given in the 

introduction, we can observe that the state of a barometer repeatedly covaries with the 

upcoming weather. Since the events are also temporally ordered and contiguous in 

space and time, all of Hume’s criteria are met. However, the barometer clearly does not 

cause the weather. The underlying problem is that Hume’s simple regularity criterion is 

not sensitive to spurious correlations arising from common causes (cf. Reichenbach, 

1956). Another challenge for Hume’s criterion of constant conjunction is that of 

imperfect regularities.  Smoking and lung cancer might be causally connected but this 

does not imply that all smokers inevitably develop the disease. Thus, causes are not 

always followed by their effects. Even though we do not always observe perfect 

regularities we are nevertheless willing to induce causal relations from probabilistic 

relations. Moreover, to assess the causal influence of the putative cause it is also 
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necessary to consider instances in which the effect occurs in the absence of its cause 

(e.g., there are also non-smokers who suffer from cancer).  

The problems with Hume’s original approach led to the development of so-called 

probabilistic theories of causality (Eells, 1991; Pearl, 1988; Salmon, 1980; Suppes, 

1970) which  tackle several of the problems associated with the principles of causal 

induction proposed by Hume. In contrast to Hume’s criterion of constant conjunction 

these approaches do not require that the cause is always followed by the effect. Instead, 

it is only required that causes raise the probability for the occurrence of their effects, 

that is, constant conjunction is replaced by probabilistic conjunction.1 In addition, 

probabilistic theories of causality not only consider how often the cause is followed by 

the effect but also take into account instances in which the effect occurs in the absence 

of its cause. The importance of considering the probability of the effect when the cause 

is absent is nicely illustrated by Salmon’s (1971) example of John Jones who has been 

taking birth control pills regularly and successfully fails to get pregnant.  

Taken together, these two consideration can be formalized in standard probability 

calculus as the inequality of the two conditional probabilities P(Effect | Cause) and 

P(Effect | ¬Cause) (conventionally abbreviated as P(e | c) and P(e | ¬c)). For example, 

observing that the effect is more likely to occur in the presence of the candidate cause 

than in the absence of the cause indicates a generative causal connection. Formally, this 

is expressed as P(e | c) > P(e | ¬c). Conversely, observing P(e | c) < P(e | ¬c) indicates 

an inhibitory relation. The difference of these two conditional probabilities is also 

referred to as the contingency ∆P of cause and effect.2 The contingency ∆P is often 

considered as a normative measurement of causal strength and has also been regarded as 

a psychological model of natural causal induction (cf. Section 3.2).   

To differentiate between spurious and genuine relations the constraint is added that 

the probabilistic relationship between cause and effect must not vanish when taking into 

account further variables (Cartwright, 1983; Eells, 1991; Reichenbach, 1956; Suppes, 

1970). For example, the effects X and Y of a common cause C are spuriously correlated 

but become statistically independent conditional on states of their common cause. The 

common cause C is then said to screen off X from Y. Returning to the barometer 

                                                 
1
 This assumption concerns the epistemology of causal relations rather than their ontology. For example, 

with reference to quantum mechanics it has been argued that causal relations are inherently probabilistic. 

Other authors (e.g., Pearl, 2000) have adopted Laplace’s (1814/1912) quasi-deterministic conception of 

causality according to which we only observed imperfect regularities because we do not have knowledge 

of all relevant variables (e.g., unobserved inhibitors). 
2
 Note that the cause-effect contingency must not equal the effect-cause contingency.  
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example, the impending weather is independent of barometer readings conditional on 

their common cause, atmospheric pressure. This kind of conditional independence 

relation also plays an important role in causal Bayes nets theory introduced in Section 4. 

2.3 Summary 

Hume’s analysis revealed the fundamental problem of causal induction: our sensory 

input contains no direct knowledge of causal relations. Thus, causal knowledge must be 

inferred from other sources of information. Hume put forward three fundamental 

principles which he claimed are sufficient to give rise to causal knowledge: contiguity, 

temporal succession, and constant conjunction. In accordance with his philosophical 

orientation this information, which is contained in our sense experience, defines causal 

induction as a purely data-driven process. Even though the details of his approach have 

been criticized for several reasons, the idea that we can infer non-observable causal 

relations from observable covariations has strongly influenced research in philosophy, 

statistics, computer science, and psychology.  

Modern probabilistic theories of causality acknowledge the shortcomings of 

Hume’s original account and take them into account by introducing the concept of 

contingency as a probabilistic measurement of causal relations. However, the attempt to 

reduce causal relations to probabilistic regularities also has its problems because it 

neglects important features of causal relations. For example, whereas statistical relations 

are symmetric, a general feature of all causal relations is that of causal directionality: 

causes generate their effects but not vice versa.3 This asymmetry has major 

consequences for our ability to control our environment. Intervening in the cause event 

will influence the effect event but intervening in an effect will not change the 

probability of its cause. For example, drinking alcohol will make you more likely to 

suffer from headache but producing headache by hitting on your head will probably not 

make you more likely to drink alcohol. Thus, even though probabilistic theories of 

causality have provided important insights into the analysis of causal relations the 

attempt to define causal relations only by means of standard probability calculus 

remains incomplete. 

                                                 
3
 In fact, the physicist and philosopher Hans Reichenbach (1956) has argued that the direction of time 

can be derived from the asymmetry of causal relations and the irreversibility of certain physical 

processes (e.g., thermodynamical processes). 
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3 Psychological Theories of Causal Cognition 

One fundamental question has not changed since the time of Hume and Kant: which 

kind of information enters the process of natural causal induction? In the tradition of 

Hume most psychological theories of causal cognition model the process of causal 

induction as a purely data-driven process and consider covariational information to be 

the primary means by which we infer the presence of causal relations. In the literature, 

different kinds of rule-based contingency models have been contrasted with associative 

accounts (for overviews see Allan, 1993; Allan & Tangen, 2005; Shanks, 1993). Even 

though the two approaches differ with respect to the way the covariational information 

is assumed to be processed, they both propose that covariational information is the 

primary means by which we infer the existence of causal relations. 

Whereas many accounts consider causal learning to be a bottom-up process, other 

authors have argued that covariational information is not the only source of information 

that enters the process of causal induction. These theories also consider covariation as 

an important cue to causality but also emphasize the importance of prior knowledge for 

causal learning. Some researchers have investigated the influence of domain-specific 

knowledge, such as assumptions about underlying mechanisms (e.g., Ahn, Kalish, 

Medin, & Gelman, 1995; Koslowski, Okagaki, Lorenz, & Umbach, 1989). Other 

theories propose that it is rather abstract knowledge such as knowledge of causal 

directionality that strongly influences causal learning (e.g., Waldmann, 1996; 

Waldmann & Hagmayer, 2001; Waldmann & Holyoak, 1992). 

In general, the models of causal induction discussed in the following section have 

been applied to both observational learning and interventional learning (cf. Shanks, 

1993). The former refers to situations in which learners passively observe cause-effect 

relations, whereas the latter involves an active participation. For example, a causal 

learning experiment could employ a medical scenario in which participants are 

requested to evaluate how different kinds of foods (the candidate causes) are related to 

allergic symptoms (the effects) in animals. A case of observational learning is then that 

learners simply receive information of the kind “an animal has eaten food X and effect 

Y has happened”. In contrast, an interventional learning design would ask participants 

to actively feed an animal with a certain kind of food to find out whether some allergic 

reaction results.  
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3.1 Associative Theories of Causal Induction 

Associative learning theories have a long tradition in research on animal learning. 

Originally developed to explain the acquisition of conditioned reactions and 

instrumental behavior, associative learning models have also been applied to higher 

level processes such as category learning (e.g., Gluck & Bower, 1988) and causal 

induction (e.g., Chapman, 1991; Chapman & Robbins, 1990; Dickinson, 2001; 

Dickinson & Burke, 1996; Dickinson & Shanks, 1995; Dickinson et al., 1984; Lopez, 

Shanks, Almaraz, & Fernandez, 1998; Shanks, 1985; Shanks & Dickinson, 1987; 

Shanks, Lopez, Darby, & Dickinson, 1996; Vallée-Tourangeau, Murphy, Drew, & 

Baker, 1998; Van Hamme & Wasserman, 1993, 1994; Wasserman, Kao, Van Hamme, 

Katagiri, & Young, 1996). According to associative theories, causal learning is basically 

the same as learning cue-outcome relations since both tasks are characterized by 

multiple-cue contingency learning in which a common associative learning mechanism 

is assumed to operate. Applied to human causal induction it is proposed that causal 

learning consists of associating particular cues, the cause events, with particular 

outcomes, the effect events. The general claim is that causal learning can be reduced to 

associative learning, that causal knowledge is basically associative knowledge, and that 

causal judgments are a function of associative strength. 

In accordance with Hume’s original approach, early theories of associative learning 

assumed that spatio-temporal contiguity is sufficient to learn associations between cues 

and outcomes (see Domjan, 2003, for an overview). However, Rescorla (1968) showed 

that the acquisition of conditioned reactions not only depends on the number of 

instances in which the cue is followed by the outcome (e.g., a tone followed by a shock) 

but also on the number of trials in which the outcome occurs without the cue. Rescorla 

discovered that with a fixed number of cue-outcome pairings the strength of a 

conditioned reaction decreased as a function of the probability with which the outcome 

occurred in the absence of the cue. Thus, associative strength was not only a function of 

P(Outcome | Cue), as proposed by contiguity-based approaches, but also of 

P(Outcome | ¬Cue). 

Another finding at variance with contiguity-based theories are cue interactions such 

as the blocking effect (Kamin, 1968). A typical blocking experiment involves two 

learning phases. In the first phase, a cue C (e.g., a tone) is constantly followed by an 

outcome E (e.g., a shock) until C elicits a conditioned reaction (e.g., a fear reaction). In 

a subsequent learning phase a second cue X (e.g., a light) is introduced which is always 
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presented together with C and followed by E. Since in this phase cue X is also 

constantly paired with the outcome, contiguity based theories predict that X should 

become associated with the outcome. However, when tested on cue X alone very little 

response was observed. This cue interaction effect is referred to as blocking since the 

previous pairing of cue C with the outcome prevents the acquisition of associative 

strength between cue X and outcome E in the second learning phase. This finding, too, 

is at variance with contiguity-based theories. 

3.1.1 The Rescorla-Wagner Model 

The studies of Rescorla (1968) and Kamin (1968) made it necessary to revise 

traditional associative theories which had considered contiguity to be sufficient for the 

acquisition of associative strength. One prominent model is the Rescorla-Wagner model 

(Rescorla & Wagner, 1972), probably the best known and most influential model 

formalizing the acquisition of associative knowledge (see Miller, Barnet, & Grahame, 

1995, for an overview). The Rescorla-Wagner model (henceforth R-W model) provides 

a discrepancy based learning rule which has not only been applied to animal learning 

but also claimed to provide an account of human causal induction (e.g., Shanks & 

Dickinson, 1987).  

The R-W model requires binary cause and effect events which are assumed to be 

present or absent. The model also postulates that there is an always-present background 

cue A which can be thought of as representing unobserved alternative causes. In 

addition, the learning process is divided in discrete time steps (“trials”). According to 

the R-W model, on each trial the association of cause and effect is modified according 

to the discrepancy between the expected and the observed state of the outcome. For 

example, in trials in which the cause is followed by the effect the associative weight is 

increased. Conversely, when the cause is present but the effect is absent, the associative 

weight is decreased. Thus, the associative strength between the cause and the effect 

after trial t + 1 is a function of the existing weight and the computed discrepancy (the 

“error”), that is, 1t t t

i i i
V V V

+

= + ∆ . Formally, the (positive or negative) change in 

associative weight, t

i
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( )

( )

1

2

0 if thecauseisabsent

if both thecauseand theeffect arepresent

0 if thecauseispresent but theeffect isnot

t

i i j

i j

V V

V

α β λ

α β

⎧
⎪
⎪

∆ = −∑⎨
⎪

−∑⎪⎩

 (1) 

 



PSYCHOLOGICAL THEORIES OF CAUSAL COGNITION 16 

where λ is the value of the outcome (normally assumed to be 1 for trials in which the 

effect is present and 0 when the effect is absent) and also indicates the maximum 

associative strength supported by the outcome. ΣVj is the sum of associative strength of 

causes A, C1,…,Cn present on that trial. Thus, the expected outcome ΣVj is an additive 

function of the causes present in that trial and their associative weights.  Parameters αi, 

β1, and β2 are so-called “learning rates” assumed to reflect the salience of the cause(s) 

and the effect.  The associative weight between cause and effect is incremented or 

decremented according to the learning algorithm formalized in equation (1).  

The R-W model can account for several phenomena which contiguity based 

learning theories cannot explain. For example, Rescorla’s (1968) finding is accounted 

for, since in trials in which the outcome occurs in the absence of the actual cue the 

always-present background cue gains associative strength which, in turn, contributes to 

ΣVj. As a consequence the prediction error and therefore also the associative strength 

acquired by the actual cue decreases the more often the outcome occurs without the cue. 

Thus, the acquired causal strength is not only a function of the probability of the 

outcome in the presence of the cue, but also of the probability of the outcome occurring 

when the cue is absent. The R-W model also accounts for a variety of cue interaction 

effects. For example, the model explains the blocking effect because in the first learning 

phase cue C is established as a perfect predictor of the outcome (i.e., ∆V = λ - ΣVj ≈ 0). 

Since in the subsequent learning phase the presence of C perfectly predicts the effect, no 

error occurs and therefore the redundant cue X cannot acquire any associative strength. 

However, even though the R-W model successfully explains many phenomena of 

animal learning, there are also results which are inconsistent with the model (cf. Miller 

et al., 1995).  

A number of researchers (e.g., Sutton & Barto, 1981) have pointed out that the R-W 

model is formally equivalent to Widrow and Hoff’s (1960) delta rule. Since the delta 

rule can been used to train simple connectionist networks (e.g., Gluck & Bower, 1988), 

these models are also sensitive to learning phenomena such as the blocking effect.  

However, the equivalence of the Widrow-Hoff rule and the R-W model depends on the 

chosen parameters and thus cannot readily be generalized to all combinations of 

parameters even though the basic idea (error correction) is identical in both models (see 

Danks, 2003, for a detailed analysis).  

To corroborate the claim that causal learning can be accounted for by the R-W 

model, it has been investigated whether human causal learning is subject to similar 
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conditions as animal learning. For example, it has been demonstrated that estimates of 

causal strength decreased the longer the temporal delay between the cause (tapping a 

key) and the effect (an illumination of a figure on a computer screen) (Shanks & 

Dickinson, 1991; Shanks, Pearson, & Dickinson, 1989). This result is consistent with 

studies in animal learning showing that both the acquisition of conditioned reactions 

and instrumental behavior is affected by the temporal delay between cue and outcome.  

Since cue interaction effects have been considered a hallmark of associative 

learning theories, many experiments have investigated whether similar phenomena also 

occur in human causal learning. In fact, cue interaction effects such as blocking have 

also been found in studies on human causal induction (e.g., Chapman & Robbins, 1990; 

Shanks, 1985). Other studies have provided evidence for overshadowing effects, 

another phenomenon well-known from research on animal learning (cf. Domjan, 2003). 

Overshadowing occurs in situations in which two simultaneously presented cues (e.g., a 

tone and a light) are followed by an outcome (e.g., a shock). It has been found that the 

cues receive lower associative weights (i.e., elicit weaker reactions) when presented 

simultaneously than when learned separately. The R-W rule explains this finding since 

the predicted outcome is an additive function of the cues present. Thus, when the cues 

are trained separately, each of them can gain the maximal associative strength supported 

by λ. In contrast, if the cues are presented simultaneously they can only gain half of the 

associative strength (provided they have equal learning rates). This effect has also been 

found to occur in causal learning (e.g., Baker, Mercier, Vallée-Tourangeau, Frank, & 

Pan, 1993; Price & Yates, 1993).   

Critique of Associative Theories of Causal Induction 

Learning procedures such as the R-W rule are sensitive to covariations and provide 

a detailed account of how covariational information is processed. However, cue and 

outcome may covary because they are directly causally related or because they are 

spuriously correlated. Associative theories neglect that identical patterns of covariation 

might arise from very different causal structures: the cue and the outcome may covary 

because there is a direct causal relation, because they are both effects of a common-

cause, or because they are part of a causal chain. Models such as the R-W rule provide 

no means to represent causal structure, which is at variance with findings demonstrating 

that learners’ assessment of covariational information is influenced by hypotheses about 

the underlying causal structure (Waldmann, 1996, 2000, 2001; Waldmann & Hagmayer, 

2001; Waldmann & Holyoak, 1992).  
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The failure to represent causal structure is also due to the problem that associative 

theories fail to take into account the asymmetry of causal relations: causes generate their 

effects but not vice versa. Associative models do not represent causal directionality but 

only use event types of cue and outcome irrespective of their causal roles.  However, 

these event categories do not adequately reflect the asymmetry of cause and effect, 

which, for example, is crucial when we want to intervene to bring about (or prevent) 

certain events. While the mapping is superficially justified by their temporal 

equivalence (i.e., cues precede outcomes and causes precede their effects), associative 

accounts are challenged when experienced temporal order does not match causal order. 

For example, it has been demonstrated that the occurrence of the blocking effect 

depends on the causal status of the cues, that is, whether the events observed first (i.e., 

the cues) are assumed to be causes or effects  (Waldmann, 2000, 2001; Waldmann & 

Holyoak, 1992; Waldmann & Walker, 2005). However, since there are also studies in 

which no effect of causal status on blocking was found  (Cobos, López, Cano, Almaraz, 

& Shanks, 2002), it recently has been argued that associative bottom-up and 

knowledge-based top-down processes interact with each other (Allan & Tangen, 2005; 

Tangen, Allan, & Sadeghi, 2005). 

There are also other cue interaction effects in causal learning which are 

incompatible with the Rescorla-Wagner model. For example, retrospective revaluation 

effects are problematic for the model. According to the R-W model, only associative 

weights of cues present are modified. Inconsistent with this assumption it has been 

found that the associative strength of a cue might also be modified in its absence, for 

example in backward blocking (e.g., Shanks, 1985). Backward blocking is obtained 

when the two learning phases of the standard blocking design are reversed. For 

example, participants first observe that two causes C and X (which always occur 

together) are followed by an effect E. In the second learning phase, cause C is presented 

alone with the effect. According to the R-W rule, X’s associative weight should not be 

affected by the second learning phase (cf. equation (1)). However, it has been 

demonstrated that learners discount the causal strength of cause X after observing that C 

alone is sufficient to generate the effect (e.g., Chapman, 1991; Larkin, Aitken, & 

Dickinson, 1998). Further evidence for retrospective evaluation effects has been 

provided by de Houwer and Beckers (2002a, 2002b). Since the standard R-W model 

cannot account for these findings modifications have been proposed which allow for 
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modifications of associative strength in the absence of the cue (Dickinson & Burke, 

1996; Van Hamme & Wasserman, 1994). 

Finally, there is also evidence that retrospective evaluations influence forward 

blocking. For example, it has been demonstrated that causal judgments about a to-be-

blocked cue X are affected by retrospective inferences about its status during the first 

learning phase (De Houwer, 2002). Causal judgments differed depending on whether 

learners inferred from the second learning phase that cue X was really absent in the first 

learning phase or whether the state of X could only not be observed during the first 

learning phase. This result is not only inconsistent with the standard R-W model but 

also problematic for revised versions of the model which explicitly represent absent 

cues (Van Hamme & Wasserman, 1994) or explain backward blocking by assuming 

within-compounds associations (Dickinson & Burke, 1996). 

3.2 Rule-based Accounts of Causal Induction 

Rule-based accounts of causal induction assume that humans act as “intuitive 

statisticians”; estimates of causal strength are assumed to reflect the contingency of a 

causal relation (for reviews see Allan, 1993; Shanks, 1993; Shimazaki & Tsuda, 1991). 

These theories provide computational level descriptions4 specifying which covariational 

information serves as input to the process of causal induction and how this information 

is integrated to derive causal judgments. According to these accounts, causal learning is 

primarily data driven but no particular reference is made to the underlying algorithmic 

processes. However, under certain conditions some models (e.g., the ∆P-rule) are 

consistent with associative learning procedures (e.g., the Rescorla-Wagner model) since 

the associative weights asymptotically approach the cue-outcome contingency ∆P  

(Chapman & Robbins, 1990; Cheng, 1997; Danks, 2003; Wasserman, Elek, Chatlosh, & 

Baker, 1993).  

 Rule-based approaches assume that learners induce causal relations from the joint 

frequency distributions of the cause and the effect variable. The joint frequency 

distribution of discrete variables is often represented as a contingency table with each 

cell referring to a specific combination of cause and effect (see Table 1). For example, 

                                                 
4
 Marr (1982) suggested that cognitive systems should be analyzed on three levels of descriptions. The 

computational level describes abstractly which function is being computed to solve a given problem (e.g., 

the contingency ∆P). The algorithmic level specifies the steps carried out to compute the function 

described on the computational level (e.g., how frequency information is processed). Finally, the 

implementational level specifies the physical properties of the underlying information processing system 

(e.g., the neurobiological foundations). 
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when both the cause and the effect might be 

observed to be present or absent (which is 

the standard experimental paradigm) a 2x2 

contingency table results. Corresponding 

contingency tables can be constructed for 

more than two variables and/or more than two possible states. Conventionally, the cells 

of a 2x2 contingency table are labeled as a-, b-, c-, and d-cell denoting the relative 

frequencies of event co-occurrences.  

3.2.1  The ∆P-Rule 

The oldest and most prominent model of this sort is the ∆P-rule (Allan & Jenkins, 

1980; Allan & Jenkins, 1983; Ward & Jenkins, 1965). According to this model, 

learners’ causal judgments are a monotonic function of the statistical contingency ∆P 

which is assumed to be estimated from frequency information. In terms of the cell 

entries of a 2x2 contingency table, the contingency of cause and effect is given by 
 

( | ) - ( | ) a c
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The ∆P-rule produces values ranging from -1 to +1 with positive values indicating 

the presence of a generative causal relation and negative values indicating an inhibitory 

relation. According to the simple contingency model there is no need to differentiate 

explicitly between causal structure and causal strength, because the absence of a causal 

relation is indicated by a zero contingency. 

The empirical evidence for the use of the ∆P-rule is mixed. Some studies have 

provided evidence that learners’ causal judgments reflect the contingency ∆P (e.g., 

Ward & Jenkins, 1965; Wasserman, Chatlosh, & Neunaber, 1983; Wasserman et al., 

1993), but also considerable deviations have been found. The use of the rule seems to be 

affected by factors such as the employed response format (Allan & Jenkins, 1980; 

Wasserman et al., 1983), the way the learning data is presented (Allan & Jenkins, 1983; 

Kao & Wasserman, 1993), the overall probability of the effect (so-called "density bias", 

Allan & Jenkins, 1983; Dickinson et al., 1984; Wasserman et al., 1993), and 

developmental stages (Shaklee & Mims, 1981).  

Another finding inconsistent with the simple contingency model is the so-called 

“a-cell bias”. A common finding is that the instances of the four cells are weighted in 

the order a-cell > b-cell ≥ c-cell > d-cell, a result at variance with the assumptions of the  

Table 1 

2x2 Contingency Table 

 Effect present Effect absent 

Cause present a b 

Cause absent c d 
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∆P-rule (Kao & Wasserman, 1993; Schustack & Sternberg, 1981; Wasserman, Dorner, 

& Kao, 1990). Models that can encompass the a-cell bias are linear regression models 

(e.g., Schustack & Sternberg, 1981) or a weighted ∆P-rule (e.g., Wasserman et al., 

1993). 

Further research has indicated that learners also tend to use alternative strategies 

inconsistent with the ∆P-rule (cf. Allan & Jenkins, 1983; Kao & Wasserman, 1993; 

Shimazaki & Tsuda, 1991). Especially the “sum of diagonals-strategy” (also called 

∆D-rule) has been frequently found to be used by participants. According to this rule, 

learners contrast the number of confirming instances (i.e., a-cell and d-cell) with the 

number of disconfirming instances (i.e., b-cell and c-cell): 
 

( ) ( )
a d b c

D f f f f∆ = + − +  (3) 

 

A proportional variant of the sum of diagonals-strategy is the evidential evaluation 

model (White, 2002; White, 2004). This model assumes that learners derive their causal 

judgments in accordance with the number of instances that confirm their causal 

hypotheses, an idea formalized by the so-called pCI (proportion of confirming 

instances)-rule:  
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Like the ∆P-rule, the pCI-rule generates values ranging from -1 to +1. Contrary to 

the inductive inference process proposed by the ∆P-rule, the evidential evaluation 

model proposes that learners analyze and encode contingency information in terms of 

confirmatory and disconfirmatory evidence. Causal judgments are assumed to be a 

function of the proportion of confirmatory and disconfirmatory instances.  

Critique of the ∆P-Rule 

As pointed out by several authors (Cartwright, 1983; Cheng & Novick, 1992; Melz, 

Cheng, Holyoak, & Waldmann, 1993; Spellman, 1996) a fundamental shortcoming of 

the ∆P-rule is that the model does not allow for taking into account further variables. 

For example, in situations with multiple causes, the contingency for each event is 

computed by collapsing over the alternative causes. However, computing the 

contingency over the universal set of events is not appropriate because the unconditional 

contingency also includes the influence of alternative confounding causes. Similarly, if 

two events are only spuriously related because they are both effects of a common cause, 
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the model offers no possibility to take into account the common cause event. Therefore, 

the model cannot distinguish causal relations from spurious correlations even in 

situations with a known common cause event.  

A further problem of the ∆P-rule is that of ceiling effects  (cf. Cheng, 1997). Ceiling 

effects refer to situations in which the effect is always present when the candidate cause 

is present, but also when the candidate cause is absent (i.e., P(e | c) = 1 and 

P(e | ¬c) = 1). The simple contingency model would indicate that there is no causal 

relation between the two events (because P(e | c) - P(e | ¬c) = 0), whereby intuitively 

we have a situation in which a generative cause cannot exhibit its causal powers, and 

therefore should neither be judged as causal nor non-causal.  

3.2.2 The Conditional ∆P-Rule 

According to the unconditional ∆P-rule the cause-effect contingency is computed 

across the universal set of events. Alternative causes are assumed to occur 

independently of the candidate cause; their influence on the effect event is only 

represented by the number of instances in which the effect occurs in the absence of the 

candidate cause. However, in multiple cue environments it is often necessary to control 

for the influence of alternative causes to give unconfounded estimates of causal strength 

and to detect spurious correlations. Therefore, several authors have argued for a 

conditional contingency model (e.g., Cartwright, 1983; Eells, 1991; Melz et al., 1993; 

Spellman, 1996; Suppes, 1970; Waldmann, 1996; Waldmann & Holyoak, 1992). 

 The conditional contingency model makes it possible to assess the contingency of a 

candidate cause conditional on states of other events. By holding constant the 

potentially relevant factors A1 to An, learners can derive estimates of causal strength 

relative to a certain causal background. This idea is formalized in a modified version of 

the ∆P-rule:  
 

1 1
( | . ) ( | . )

cond n n
P P e c a a P e c a a∆ = − ¬… …

5 (5) 

 

By conditionalizing on the absence of alternative causes the conditional ∆P-rule 

allows for unconfounded measurements of causal strength. For example, the effects of a 

new drug could be influenced by a person’s gender. The contingency should then be 

computed for both men and women separately to control for this potential confound. 

Conditional contingencies are also sensitive to spurious correlations arising from further 

                                                 
5
 P(e | c. a) denotes the probability of e given c and a., that is, the “.” symbolizes the conjunction of 

events c and a. 
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variables (provided they can be observed). Returning to the barometer example, the 

state of the barometer and the weather are no longer correlated conditional on the air 

pressure. Thus, the basic logic of equation (5) corresponds to the principle of controlling 

for alternative causes in experimental designs. 

A variant of the conditional contingency model is the probabilistic contrast model 

(Cheng & Novick, 1991, 1992). It is assumed that the context and existing knowledge 

determine which factors are held constant to evaluate a hypothesized causal relation. 

Cheng and Novick coined the term focal sets to refer to subsets of events in which 

alternative factors are held constant. The contingency of two variables is not computed 

over the universal set of events but in a chosen focal set in which learners judge the 

candidate cause to be independent in probability of alternative causes of the effect. 

Thus, focal sets are defined psychologically. The use of focal sets also offers the 

possibility to distinguish between causes and enabling conditions (cf. Cheng & Novick, 

1991, 1992).  

In a series of studies (Cheng & Novick, 1990, 1991, 1992; Melz et al., 1993; 

Spellman, 1996; Waldmann & Hagmayer, 2001) it has been shown that learners control 

for alternative causes and use conditional contingencies to evaluate hypothesized causal 

relations. The conditional contingency model has also been used to give an alternative 

interpretation of the blocking effect (Waldmann & Holyoak, 1992). According to 

associative theories, blocking occurs because the previously paired cue C has already 

acquired sufficient associative strength to predict the outcome which prevents the 

to-be-blocked cue X from gaining associative strength. From the perspective of the 

conditional contingency model the finding that X receives lower ratings compared to a 

control condition in which X is observed to occur independently of C is rather assumed 

to reflect learners’ uncertainty about the causal status of C and not differences in 

associative strength. Participants cannot give specific estimates of causal strength 

because they never experience what happens when C occurs in the absence of X. Thus, 

learners cannot estimate X’s conditional contingency since P(e | x. ¬c) is not defined.  

Critique of the Conditional Contingency Model 

The fundamental challenge for the conditional contingency model is to give an 

account of how we should select the factors to control for. In principle, there is an 

infinite number of factors we could conditionalize on. The advice only to control for 

factors which are potentially relevant leads to a vicious circle since such an approach 

presupposes that we already have causal knowledge (cf. Cartwright, 1983; Waldmann & 
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Hagmayer, 2001). Nancy Cartwright once vividly summarized this problem as “no 

causes in, no causes out”. 

A further problem is that conditional contingencies crucially depend on the way the 

subsets are constructed (Cartwright, 1983). The problem is that different partitions of a 

set of events can yield different contingencies, a statistical phenomenon discovered by 

Pearson (Pearson, Lee, & Bramley-Moore, 1899) which is nowadays generally referred  

to as Simpson’s paradox (Simpson, 1951). A contingency that holds in the universal set 

of events can change, disappear, or even be reversed depending on the way the set is 

partitioned (see Cartwright, 1983, for a real-world example). Even though Simpson’s 

paradox is an extreme case, it nicely illustrates how conditional contingencies depend 

on the chosen reference set. 

A further point is that the general rule of conditionalizing on causally relevant 

factors is not always appropriate. As pointed out by Waldmann and Hagmayer (2001), it 

is important to consider the underlying causal structure. For example, if C and E are 

assumed to be only spuriously correlated due to a common cause X (i.e., C←X→E) it is 

appropriate to conditionalize on X to evaluate the influence of C on E. The conditional 

contingency model will correctly indicate that C and E are only spuriously correlated. 

However, consider a situation in which C exerts its influence on E through an 

intermediate event X, that is, we have a causal chain C→X→E. Even though X is clearly 

a causally relevant event it is not appropriate to conditionalize on X since C and E 

become statistically independent conditional on values of X. Thus, if learners 

conditionalize on X in accordance with the general strategy of holding constant causally 

relevant factors they would erroneously conclude that there is no causal relation 

between C and E. Waldmann and Hagmayer (2001) showed that learners indeed are 

sensitive to this crucial difference and adjusted for alternative events in accordance with 

the hypothesized causal model. Of course, learners might be wrong about the 

hypothesized causal model, but their selections were shown to be normative relative to 

their causal beliefs. 

3.2.3 The Power PC Theory 

The power PC Theory (Cheng, 1997; Novick & Cheng, 2004) combines the 

covariational approach with the notion of causal power (Cartwright, 1989). The causal 

power px of an event denotes its capacity to produce an effect: “Causal Power (…) is 

the intuitive notion that one thing causes another by virtue of the power or energy that it 

exerts over the other” (Cheng, 1997, p. 368, her italics). Even though Cheng agrees with 
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other accounts that covariational information is the key to the process of causal 

induction she assumes that “(…) people do not simply treat observed covariations as 

equivalent to causal relations; rather, they interpret and explain their observations of 

covariations as manifestations of the operation of unobservable causal powers, with the 

tacit goal of estimating the magnitude of these powers.” (Cheng, 1997, p. 369). 

According to Cheng, the general idea of causal powers is not derived from experience 

but is a priori. This domain-independent knowledge enters the process of causal 

induction in the form of variables which learners seek to estimate. Causal judgments are 

assumed to be functions of learners’ estimates of causal power.  

The power PC model gives a formal account of how estimates of causal power can 

be derived from covariational information. Cheng’s analysis applies to situations with a 

candidate cause C and (known or unknown) alternative cause represented as a 

composite A. In addition, the events involved must be represented by discrete variables 

which can be present or absent. In accordance with the probabilistic contrast model 

(Cheng & Novick, 1990), it is assumed that causal relations are evaluated in a chosen 

focal set (cf. Section 3.2.2).  According to the power PC model, the overall probability 

of the effect depends on the base rates of its causes and their causal powers. The notion 

of causal power is formalized by introducing parameters representing causal power to 

standard probability calculus. The probability of an effect E to occur is then given by:6 
 

( ) ( ) ( ) ( ) ( )
c a c a

P e P c p P a p P c p P a p= ⋅ + ⋅ − ⋅ ⋅ ⋅  (6) 

 

Equation (6) states that the overall probability of the effect is a function of the 

probability of the causes’ base rates (i.e., P(a) and P(c)) and their causal powers (i.e., pc 

and pa), minus their intersection. Provided the causes occur independently, the 

probability of the effect conditional on the candidate cause yields 
 

( | ) ( | ) ( | ) ( ) ( )
c a c a c a c a

P e c p P a c p p P a c p p P a p p P a p= + ⋅ − ⋅ ⋅ = + ⋅ − ⋅ ⋅        and (7) 

( | ) ( | ) ( )
a a

P e c P a c p P a p¬ = ⋅ = ⋅  (8) 

 

Equation (7) states that when C is present the probability of the effect is determined 

by i) the causal power of the candidate cause (i.e., pc), ii) the probability of the 

alternative cause to occur (i.e., P(a)), and iii) the causal power of the alternative causes 

(i.e., pa). Conversely, when C is observed to be absent, the probability of the effect is 

                                                 
6
 The following equations apply to generative causes. See Cheng (1997) for details on the computation of 

causal powers for inhibitors. 
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determined by the probability and causal power of the alternative cause alone (equation 

(8)). According to equations (7) and (8) the computation of the conditional probabilities 

P(e | c) and P(e | ¬c) includes non-observable parameters representing the causal power 

of the observed events. Substituting equations (7) and (8) into the standard contingency 

formula (equation (2)) and simplifying yields 
 

(1 ( | ))
c

P p P e c∆ = ⋅ − ¬  (9) 

 

Now, by rearranging formula (9) the theoretical entity of causal power pc can be 

estimated from observational data: 
 

( | ) ( | )

1 ( | ) 1 ( | )
c

P P e c P e c
p

P e c P e c

∆ − ¬
= =

− ¬ − ¬
 (10) 

 

Since all parameters on the right-hand side of equation (10) can be estimated from 

observable frequency information, the unobservable causal power of an event can be 

estimated from covariational information. Formula (10) states that the contingency ∆P 

is only an appropriate estimate of causal power when no alternative causes influence the 

effect. Thus, if P(e | ¬c) = 0, then pc = ∆P = P(e | c) holds.  

According to the power PC model, causal judgments are not determined by the 

contingency alone but also by the probability P(e | ¬c). With a fixed contingency causal 

power increases with the number of instances in which the effect occurs in the absence 

of the candidate cause, a prediction confirmed in a series of experiments by Buehner, 

Cheng, and Clifford (2003). This finding is also in accordance with the outcome density 

bias (i.e., the finding that causal judgments are affected by the overall probability of the 

effect).  

The power PC model also makes predictions about the boundary conditions of 

causal induction. For example, when the effect is always present in the absence of the 

cause (i.e., P(e | c)  = P(e | ¬c) = 1) causal power is not defined because the denominator 

is zero. Therefore, the model formalizes the intuition that we cannot evaluate the causal 

power of a generative cause if the effect is constantly present. Indeed, there is empirical 

evidence that when the effect is always present learners consider covariational data  as 

insufficient to make judgments about a putative cause (Wu & Cheng, 1999). 
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Critique of the Power PC  Model 

The power PC model is proposed as both a normative and descriptive model of 

causal induction. However, the model has been criticized both on grounds of empirical 

evidence and theoretical analyses.  

As noted, the experiments by Buehner et al. (2003) demonstrate that learners take 

into account the probability of the effect in the absence of the candidate cause. As 

anticipated by the power PC model, with a fixed contingency learners’ causal judgments 

varied depending on the magnitude of P(e | ¬c). However, there is also evidence that 

causal judgments of non-contingent causes are affected by P(e | ¬c), a finding at 

variance with the power PC model (Buehner et al., 2003; Lober & Shanks, 2000; 

Vallée-Tourangeau et al., 1998). However, this finding also challenges all other rational 

models of causal induction. 

Recently, theoretical aspects of the power PC theory have been criticized (Luhmann 

& Ahn, 2005; White, 2005). Luhmann and Ahn (2005) have provided a detailed 

analysis of the assumptions of the power PC model (cf. Cheng, 1997, p. 373). 

According to their analysis, the conditions necessary to derive estimates of causal power 

from observable information are rarely met and, therefore, the model is too restrictive to 

provide an adequate account of causal induction. In addition, the power PC model 

tacitly assumes that causal powers are inherently probabilistic (i.e., the capacity of a 

cause to produce an effect is not only probabilistic because of unobserved inhibitors), an 

assumption Luhmann and Ahn claim to be at variance with people’s intuition about 

causality.  

While Luhmann and Ahn focus on the assumptions necessary to derive causal 

power from regularity information, White (2005) criticizes the claim that the power PC 

model successfully integrates regularity theories with the notion of causal power. In the 

power PC theory, causal powers are defined as the probability with which one event, the 

cause, produces another event, the effect. According to White, Cheng’s definition of 

causal power is incompatible with traditional power theories which assume causal 

powers to be stable properties grounded in the physical nature of the entities involved 

(e.g., Harré & Madden, 1975). Therefore, he argues, the power PC model is incomplete 

and falls short of reconciling the rivaling regularity and power views. 
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3.3 Is Covariation all there is to Causal Induction? 

The theories reviewed so far all agree with Hume’s original account in that they 

consider statistical cues as the primary means by which we acquire causal knowledge. 

Even though the theories differ with respect to the way the covariational information is 

processed, what they have in common is that causal learning is regarded as a data-

driven bottom-up process. One notable exception is Cheng’s (1997) power PC model 

which assumes that statistical information is only a means by which we try to estimate 

non-observable causal powers. However, the computational mechanism which lies at 

the heart of the power PC theory (cf. equation (10)) also only considers covariational 

information as input to the process of causal induction.  

Conventionally, most of the studies testing the adequacy of the rivaling models 

have focused on the question of how we learn about single causal relations from 

statistical cues. In accordance with the idea that causal induction is a purely data-driven 

process learners are provided with covariational information and the accuracy of their 

judgments is evaluated with respect to a normative-statistical criterion (e.g., ∆P) or the 

predictions of an algorithmic learning procedure (e.g., the R-W model). The claim that 

learners derive causal judgments from statistical information is corroborated by 

developmental studies demonstrating that even preschoolers are sensitive to 

covariational information (e.g., Gopnik, Sobel, Schulz, & Glymour, 2001; Shultz & 

Mendelson, 1975). There is also evidence that the assessment of covariational 

information plays an important role in real-world situations (e.g., Coups & Chapman, 

2002). 

The other two principles put forward by Hume, contiguity and temporal succession, 

are also claimed to be relevant but do not necessarily enter the process of causal 

induction. However, if present they can  influence the assessment of causal relations as 

demonstrated, for example, by Michotte’s (1963) classical experiments and recent 

studies which manipulated the temporal lag between cause and effect (e.g., Shanks & 

Dickinson, 1991; Shanks, Pearson, & Dickinson, 1989). There are also developmental 

studies providing evidence that even young children use the events’ temporal ordering 

to determine their causal roles (Bullock & Gelman, 1979; Mendelson & Shultz, 1976). 

Even though spatio-temporal contiguity is not explicitly considered by all models (e.g., 

contingency models), the use of these cues fits neatly with the general idea that causal 

learning is a data-driven process.  
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However, a general shortcoming of such purely inductive approaches is that they 

neglect the influence of prior knowledge on causal induction. Typically, domain-

specific knowledge has been contrasted with abstract, domain-independent knowledge. 

Both types of knowledge are claimed to have an impact on causal induction. For 

example, we can have domain-specific knowledge about certain physical mechanisms, 

such as that the transmission of light can be blocked by solid objects or that biological 

processes may take some time. Domain-specific assumptions about causal mechanisms 

have been shown to structure a continuous stream of events (Hagmayer & Waldmann, 

2002), bridge temporal gaps between cause and effect  (Buehner & May, 2002, 2003, 

2004), or override covariational information (Ahn et al., 1995). Even though these 

results challenge covariational theories the findings must not inevitably refute 

covariational models. Existing domain-specific knowledge could rather be seen to 

impose constraints on the situations in which covariational learning mechanisms are 

assumed to operate. However, it has also been objected that domain-independent 

knowledge also influences the process of causal induction (e.g., Waldmann, 1996), 

which is discussed in detail in the following section. 

Covariational accounts have also been criticized on theoretical grounds. For 

example, traditional models of causal induction lack the representational power to 

express the asymmetry of causal relations and provide no means to represent complex 

causal structures. Finally, all current models of causal induction collapse observational 

with interventional knowledge, thereby blurring the important distinction between 

merely observed states of variables and the very same states generated by external 

interventions.  

In the following, I will discuss these aspects in detail and introduce causal model 

theory (Waldmann, 1996, 2000, 2001; Waldmann & Hagmayer, 2001; Waldmann & 

Holyoak, 1992, 1997; Waldmann & Walker, 2005) and causal Bayes nets theory (Pearl, 

2000; Spirtes et al., 1993). Contrary to the inductive models discussed so far, both 

theories emphasize the interplay of bottom-up and top-down processes. Causal model 

theory can be regarded as a qualitative and psychologically plausible variant of the 

larger class of causal Bayes nets theories which provide a normative-statistical 

framework. 
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3.4 Causal Model Theory 

Causal model theory (Waldmann, 1996, 2000, 2001; Waldmann & Hagmayer, 

2001; Waldmann & Holyoak, 1992, 1997; Waldmann & Walker, 2005) emphasizes the 

importance of domain-independent knowledge and assumes that top-down and 

bottom-up processes interact in causal learning. While many studies have focused on 

the influence of domain-specific knowledge on causal induction, there is also abstract, 

domain-independent knowledge which might influence the acquisition and use of causal 

knowledge. 

An example of domain-independent knowledge is the fact that all causal relations 

are inherently asymmetric: causes generate effects but not vice versa. In the spirit of 

Kant (1781/1974) it is assumed that our experiences are constrained by and interact with 

this abstract, domain-independent piece of knowledge. With reference to causal learning 

it is postulated that abstract causal knowledge provides the background against which 

we evaluate covariational information. For example, in a standard causal learning 

paradigm participants are provided with events precategorized as cause and effect (e.g., 

fertilizer and blooming). Thus, before learners are confronted with any covariational 

data, they already have a qualitative understanding of how the events are related to each 

other: a representation implying causal directionality. Data-driven accounts lack the 

representational power to express this directionality. For example, associative theories 

use cue and outcome as the two basic types of event representations with the cue 

defined as the event that triggers the outcome irrespective of their actual causal roles.  

Contrary to covariational accounts, causal model theory (henceforth CMT) also 

explicitly differentiates between causal strength and causal structure. The tacit 

assumption of covariational approaches is that statistical information not only allows for 

estimates of causal strength but simultaneously provides information about the 

underlying causal structure (i.e., the absence of a causal relation is considered as a 

special case of zero causal strength). Indeed, this idea is plausible in experiments 

characterized by single or multiple causes which are directly related to the effect(s). 

However, in both everyday and scientific causal learning we are often confronted 

with complex causal networks consisting of several variables. Figure 2 shows three 

fundamental causal structures: a common-effect model in which event X is generated 

(independently or jointly) by both Y and Z, a common-cause model in which X is a 

cause of both Y and Z, and a causal chain in which X causes Y which, in turn, causes Z. 

In principle, by combining these basic structures causal models can be constructed for 
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causal relations of any level of 

complexity. Such causal models 

provide a qualitative representation 

of causal systems, that is, they only 

state the (hypothesized) existence of 

certain causal relations without 

specifying their strength. This idea 

fits with the intuition that we often have a rather qualitative understanding of causal 

relations without exact knowledge of their strength. For example, we might know that 

greenhouse gases affect the climate or that we might get fat from eating too much fast 

food without knowing the exact strength of these relations. Therefore some authors have 

argued for a priority of structure over strength (Griffiths & Tenenbaum, 2005; Lagnado, 

Waldmann, Hagmayer, & Sloman, in press; Pearl, 2000; Waldmann, 1996).  

According to CMT statistical information is not treated as context-free input to the 

process of causal induction but is evaluated with reference to a hypothesized causal 

structure. Thus, covariational knowledge serves the purpose of helping to estimate a 

causal model’s parameters. Note that causal directionality is a necessary prerequisite for 

representing structured models which convey more information than simply stating that 

certain events are correlated. For example, both the common-cause structure (Figure 2b) 

and the causal chain (Figure 2c) imply that events Y and Z are correlated. However, 

encoding causal knowledge in form of causal models also conveys the information that 

in the common-cause model this relation is spurious. Moreover, different causal models 

have statistical implications which learners can use to evaluate regularity information 

and decide between alternative causal models. For example, in a common effect model 

with independent causes (Figure 2a), events Y and Z become dependent conditional on 

values of their common effect X. In contrast, the common-cause model implies that Y 

and Z become independent conditional on values of their common cause X (“so-called 

“explaining away” effect, in the psychological literature also known as discounting 

principle). Constraint-based methods of causal induction capitalize on these statistical 

implications to reveal causal structure from statistical information (cf. Section 4.2).  

Several studies demonstrate how abstract causal knowledge influences causal 

learning. For example, it has been shown that causal models mediate cue interaction 

effects such as blocking and overshadowing. While associative accounts predict cue 

competition regardless of the cues’ causal roles, CMT predicts cue competition only for 

(a) (b) (c) 

   

Figure 2. Basic causal models. a) Common-effect 

model (CE) b) Common-cause model (CC) c) Causal 

chain (CH) 
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causes but not for effect events, a prediction confirmed in a number of studies 

(Waldmann, 2000, 2001; Waldmann & Holyoak, 1992; Waldmann & Walker, 2005). 

However, there is also evidence that the effect is sometimes influenced by associative 

processes (Allan & Tangen, 2005; Cobos et al., 2002; Tangen & Allan, 2004; Tangen et 

al., 2005). It has also been shown that learners use causal models to select the events 

they want to control for to give unconfounded estimates of causal strength. As discussed 

in Section 3.2.2 it is not always appropriate to conditionalize on all causally relevant 

events. For example, in the common-effect structure depicted in Figure 2a it is 

normatively correct to conditionalize on the absence of Y to estimate the causal strength 

of the link Z→X. However, if the three events form a causal chain X→Y→Z, 

conditionalizing on the intermediate event Y renders X and Z independent thus 

erroneously indicating that the two events are not causally related. CMT predicts that 

learners select the variables to control for in accordance with their assumptions about 

the underlying causal structure. In a series of experiments, Waldmann and Hagmayer 

(2001) tested these predictions and demonstrated that manipulations of the suggested 

causal structure yield very different causal judgments derived from identical 

covariational information. There is also evidence that learners can integrate separately 

learned causal relations to more complex causal structures to predict unobserved 

covariations (Hagmayer & Waldmann, 2000). In addition to causal learning, CMT has 

also successfully been applied to categorization (Rehder, 2003a, 2003b; Rehder & 

Burnett, 2005; Rehder & Hastie, 2001; Waldmann, Holyoak, & Fratianne, 1995). These 

studies show that learners do not simply use correlated features to classify objects but 

take into account the internal causal structure of the entities to determine their category 

membership. 

The main challenge for CMT is, of course, to explain how we acquire hypotheses 

about causal structure in the first place. One possible answer is that we use non-

statistical cues such as temporal order (Lagnado & Sloman, 2004, in press), or 

interventions (Hagmayer, Sloman, Lagnado, & Waldmann, in press; Woodward, 2003), 

or that we generate hypotheses by analogy  (cf. Holyoak & Thagard, 1995). Recently, 

algorithms have been developed which aim to uncover causal structure by analyzing the 

conditional dependence and independence relations found to hold in the data (Glymour 

& Cooper, 1999; Pearl, 2000; Spirtes et al., 1993) or use Bayesian methods to compute 

the likelihood of the data given a causal model (Steyvers et al., 2003). These methods 

are discussed in detail in Section 4.2.  
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4 Causal Bayes Nets Theory 

Originally developed in philosophy and machine learning, causal Bayes nets theory  

(Pearl, 2000; Spirtes et al., 1993) has recently also attracted attention in psychology 

(Glymour, 2001; Gopnik et al., 2004; Hagmayer et al., in press; Lagnado & Sloman, 

2004; Rehder, 2003a, 2003b; Sloman & Lagnado, 2005; Steyvers et al., 2003; 

Waldmann & Hagmayer, 2001; Waldmann & Hagmayer, 2005; Waldmann & 

Martignon, 1998). Causal Bayes nets theory combines graphical causal models and 

probability calculus to represent causal knowledge, to infer causal models from 

observations and interventions, and to formalize causal reasoning. A particularly 

interesting feature of this framework is the “do-calculus” developed by Judea Pearl 

(2000), which allows for the derivation of interventional predictions from observational 

knowledge. The following section gives an overview of the different aspects of causal 

Bayes nets theory and introduces the computational mechanisms by which the account 

models causal learning and causal reasoning.    

4.1 Representing Causal Knowledge with Bayes Nets 

Causal Bayes nets theory uses directed acyclic graphs (DAGs) to represent causal 

relations between variables, and parameters to express the strength of these relations 

(e.g., conditional probabilities). A completely parameterized causal model therefore 

combines qualitative assumptions about the structure of the causal model with 

quantitative knowledge about the parameters associated with these causal relations (e.g., 

base rates, causal strength, integration rules).  

Formally, a graph consists of a set of discrete or continuous variables X1 to Xn 

which are connected by edges.7 If the edges are directed and the graph contains no 

circles it is a directed acyclic graph (DAG).8 Thus, the three models depicted in Figure 2 

are examples of DAGs. The causal arrows represent causal beliefs about the presence of 

(not further specified) stable causal mechanisms connecting the model’s variables 

(Pearl, 2000; Spirtes et al., 1993; Woodward, 2003). The observable statistical 

dependencies among the observed events are assumed to arise from the operation of 

these causal mechanisms, which represent (assumptions about) invariant features of the 

                                                 
7
 The formalism is here described only for discrete events of cause and effect. The theory, however, can 

also deal with continuous variables (cf. Pearl, 2000).  
8
 It is also possible to analyze cyclic graphs by the causal Bayes nets formalism. However, this requires 

the introduction of a time index. 
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world. Such graphical models provide a qualitative representation of causal knowledge 

which explains why we observe certain probabilistic relationships.  

Associated with each DAG and its variables X1 to Xn is a joint probability 

distribution P(X1, …, Xn) encoding the probability of all possible configurations of 

variables. For example, with two variables C and E, the joint probability distribution 

consists of four data patterns (i.e., c. e, c. ¬e, ¬c. e, ¬c. ¬e), which, for instance, can be 

represented in a 2x2 contingency table. Such a joint distribution enables us to draw 

causal inferences according to the rules of standard probability calculus (e.g., to 

compute the probability of event X conditional on states of event Y). However, since the 

number of patterns grows exponentially with the number of variables and values they 

can take, representing causal knowledge this way is only reasonable with very few 

variables. For example, with only ten binary variables there are already kn = 210 = 1024 

data patterns. Therefore, the question is how an economic representation can be 

achieved that facilitates causal inferences. 

An alternative way to encode the joint distribution is to factorize the distribution 

into a product of n conditional probabilities from which the joint probabilities can be 

reconstructed. The product rule of probability calculus states that the joint probability of 

two events X and Y can always  be expressed as a function of marginal and conditional 

probabilities, that is,  
 

( . ) ( ) ( | ) ( ) ( | )P X Y P X P Y X P Y P X Y= ⋅ = ⋅  (11) 

 

By repeated application of the product rule (i.e., the so-called chain rule) any joint 

probability distribution can be decomposed into a set of conditional probabilities. For 

example, the joint distribution of the three variables X, Y, and Z can be expressed as 

P(X. Y. Z) = P(X) · P(Y | X) · P(Z | X. Y). However, this factorization will fail to provide 

a sparse representation because each event is conditionalized on all its predecessors in 

accordance with the chosen ordering. Moreover, the chain rule can be applied to any 

arbitrary ordering of events X, Y, and Z. For example, we could also choose the ordering 

Z. X. Y and write P(Z. X. Y) = P(Z) · P(X | Z) · P(Y | Z. X). Hence, without further 

constraints there is no unique decomposition of a given joint distribution.  

In the causal Bayes nets framework, the joint probability distribution of a causal 

model is decomposed into a set of marginal and conditional probabilities by applying 

the causal Markov condition (Spirtes et al., 1993; Pearl, 2000) to the causal model. The 

idea is that the complete set of variables is not necessary for the computation of the 

probability of a variable Xi; but that a subset of variables is sufficient, namely the set of 
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Xi’s direct causes. This set of direct causes is the set of parent nodes PAi,which is the 

minimal input information required to compute the probability of node Xi taking a 

certain value. This set PAi consists of what is called the Markovian parents of Xi,  an 

essential concept of causal Bayes nets. According to the causal Markov condition, the 

state of any variable Xj in the system is then independent of all other variables (except 

for its causal descendants) conditional on the set of its direct causes, PAi. Thus, for each 

variable Xi in the causal model the Markov condition defines a local causal process in 

which the state of the variable is a function of its Markovian parents. The essential point 

is that the graph (i.e., the causal model) provides us with a causally based 

decomposition of the joint probability distribution. Figure 3 illustrates how a joint 

distribution consisting of three events X, Y, and Z is factorized differently depending on 

the (hypothesized) causal model.9  

The decomposition also specifies how the causes of a common effect combine to 

generate the effect (i.e., the parameter P(x | y. z) in the common-effect model). If 

possible, this parameter can be estimated directly from frequency information. 

However, in some situations it might happen that no sufficient data is available, for 

example because the causes rarely co-occur. A physician might be confronted with an 

unusual combination of two rare diseases which she has not encountered before, though 

she has experienced the effects of both diseases separately. The question is then how the 

knowledge of the separate causal relations should be integrated to estimate how likely 

the effect occurs given several of the causes are present.  

A popular integration rule modeling how multiple dichotomous causes generate a 

common effect are so-called  “noisy-OR” gates (see Pearl, 1988, for a detailed analysis). 

In contrast to the logical OR, which applies to deterministic causes, the noisy-OR gate 

describes the disjunctive interaction of probabilistic causes. This integration rule models 

how likely the effect is to occur given the presence of multiple non-interacting causes. 

For example, in the common-effect displayed at the bottom left of Figure 3 event X is 

generated by causes Y and Z with probabilities P(x | y. ¬z) and P(x | ¬y.  z).  

 

                                                 
9
 Figure 3 must not be understood as implying that the joint distribution is temporally prior to the causal 

hypotheses or that the models themselves are induced from the data.  
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Figure 3. Basic causal models, factorization of the joint distribution, and parameterized graphs.  

 
According to the noisy-OR integration rule, the probability of X conditional on the 

presence of both Y and Z (i.e., P(x | y. z) is given by  
 

1 1 1 1( | . ) ( | . ) ( | . ) (( ( | . )) ( ( | . )))P x y z P x y z P x y z P x y z P x y z= − ¬ ¬ ⋅ ¬ ¬ = − − ¬ ⋅ − ¬  (12) 

 

For example, if the probability of developing hay fever is 0.5 in the presence of Y-pollen 

and 0.8 in the presence of Z-pollen (i.e., P(x | y. ¬z) = 0.5 and P(x | ¬y. z) = 0.8) the 

probability of hay fever given the simultaneous exposure to Y- and Z-pollen is  
 

1 1 0 5 1 0 8 9( | . ) (( . ) ( . )) .P x y z = − − ⋅ − =  

 

A similar integration rule, so-called “noisy-AND” gates, exists for inhibitory causes (cf.  

Pearl, 1988).  

Figure 3 also illustrates how the causal models determine which variables we 

should conditionalize upon. For example, in the common-cause model Z is 

conditionalized on its parent X, but in the causal chain event Z is conditionalized on its 
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Markovian parent Y. Thus, the causally based decomposition enables us to give specific 

estimates of causal strength since it tells us which variables we should conditionalize on 

and which variables are irrelevant. The conditional probabilities of the decomposed 

models can be derived from frequency information to parameterize the causal model. 

Associated with each relation in the causal model is then a conditional probability that 

determines the probability of an event conditional on its direct causes. 

 Due to the causal Markov condition, each causal model implies a specific set of 

unconditional and conditional dependence and independence relations. For example, the 

common effect model (Figure 3a) entails that Y and Z are unconditional independent but 

become dependent conditional on values of their common effect (so-called “explaining 

away effect”). Conversely, the common-cause model (Figure 3b) implies that Y and Z 

are unconditional dependent but become independent conditional on values of their 

common cause X. A Bayesian network satisfying the Markov condition can therefore be 

considered as a carrier of conditional independence information between the variables 

of the graph, a property also exploited by algorithms developed to induce causal 

structure from covariational data. Since these relations are a consequence of the 

structure of the graph they are structural dependency relations.  

However, in some cases there might be specific combinations of parameters which 

can yield conditional independence relations, too. An example is given in the model in 

Figure 4 in which X causally influences Z via two paths, namely via a direct causal link 

but also indirectly via variable Y. For the sake of convenience, the model’s parameters 

associated with the causal relations are denoted as a, b, and c. According to this causal 

model, Z is statistically dependent on X under virtually all parameterizations. However, 

there is a specific set of parameters in which Z is statistically independent of X, that is, 

when a = -bc holds. Under this parameterization, the two alternative causal pathways 

cancel each other out and the consequence is that X and Z become statistically 

independent. Even though the realization of this condition 

might be quite unlikely (and would also be very unstable), it is 

theoretically possible and makes clear that independence 

relations can also occur because of specific parameterizations.  

To account for such cases the assumption of faithfulness 

(Spirtes et al., 1993), or stability (Pearl, 2000), is introduced. 

The assumption of faithfulness states that the probabilistic 

dependency relations found to hold are a consequence of the 

 

Figure 4.  Graph with 

three nodes. Faithful-

ness rules out that Z is 

independent of X. 



CAUSAL BAYES NETS THEORY 38 

causal Markov condition applied to the graph and do not result from specific 

parameterizations of the causal structure. In other words, faithfulness allows to move 

from probability distributions to graphs by constraining the set of candidate graphs. 

With respect to the causal model shown in Figure 4, the faithfulness condition rules out 

such a specific parameterization in real world situations. Thus, if we were to find out 

that Z is independent of X we should not consider the graph as a candidate model of the 

probability distribution.  

4.2 Causal Learning with Bayes Nets 

The preceding section has introduced causal Bayes nets as a formal means of 

representing causal knowledge. The following section gives an overview of how causal 

learning is modeled from a causal Bayes nets perspective. Most experiments on causal 

learning have investigated how learners derive judgments of causal strength for single 

causal relations or common-effect models. Typical examples are medical scenarios in 

which, for example, the participants’ task is to evaluate the influence of a drug on a 

disease or to assess how different kinds of food relate to an allergic reaction. Since in 

such situations the qualitative causal structure is known before being presented with 

data, these studies are mainly concerned with the process of parameter estimation. The 

second key issue in causal learning is to induce the structure of complex causal models 

underlying patterns of covariation. Causal Bayes nets theory provides learning 

mechanisms for inferring causal structure from observational or interventional data, or a 

combination of both. In general, the formalism emphasizes the importance of structure 

learning because the structure determines the process of parameter estimation (e.g., by 

determining which variables we should conditionalize upon to give adequate estimates 

of causal strength). The first part of this section introduces the learning algorithms 

developed to infer complex causal models from observational data. The second part of 

this section describes how causal Bayes nets theories formalize interventions and model 

causal learning through interventions.  

4.2.1 Causal Learning through Observations 

Two kinds of learning algorithms have been developed in the context of causal 

Bayes nets: bottom-up constraint-based methods and top-down Bayesian methods. 

Constraint-based methods (Pearl, 2000; Scheines, Spirtes, Glymour, & Meek, 1994; 

Spirtes et al., 1993) try to induce causal models from the unconditional and conditional 

dependence and independence relations of the data.  These algorithms can infer causal 
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structures from observational data and can also integrate interventional data. Applied to 

human causal induction, these bottom-up approaches suppose that people examine the 

probabilistic dependency relations of the available data and use them to infer the 

underlying model. Constraint-based methods start with analyzing which probabilistic 

dependency relations hold between the observed variables (e.g., whether events A and B 

are (un)conditional (in)dependent). Algorithms such as TETRAD (Scheines et al., 1994) 

apply standard significance tests to determine whether a dependency relation holds. In a 

step-by-step procedure the algorithms then construct causal models consistent with the 

discovered unconditional and conditional dependence and independence relations (see 

Spirtes et al., 1993, for details). Thus, contingent on which dependency relations are 

satisfied by the data we can identify the underlying causal structure.  

An alternative approach to structure induction is provided by top-down Bayesian 

methods (e.g., Heckerman, Meek, & Cooper, 1999; Steyvers et al., 2003). These 

approaches assume that learners start from a set of hypotheses about candidate causal 

models and update their hypotheses in accordance with the available data. Briefly, 

Bayesian learning procedures start by assigning a prior probability to each graph; either 

to the complete set of possible graphs or to a restricted set. The prior probabilities 

assigned to the causal models can be uniform, but it is also possible to incorporate prior 

knowledge by giving some models a higher prior probability than others. Together with 

assumptions about the probability functions relating the variables, the likelihood of a 

particular data pattern under each of the graphs can be computed. For example, a data 

pattern such as x.y.z (i.e., all events are present) is more likely if the three variables X, Y, 

and Z form a common-cause model than when the events form a common effect model 

(because here the cause events occur independently of each other). By using Bayes 

theorem it is then possible to compute the posterior probability distribution over the 

considered causal graphs conditional on the available data. The graph with the highest 

posterior probability is then chosen as the one most likely to have generated the data. 

Both constraint-based and Bayesian algorithms provide powerful computational 

methods to induce causal structure from statistical data, capitalizing on the fact that 

different causal structures entail different dependency relations. However, some causal 

models are not only observationally equivalent but also share the same set of 

dependency relations. For example, the finding that Y and Z are independent conditional 

on X is not only consistent with a common-cause model Y←X→Z but also with the 

causal chains Y→X→Z and Y←X←Z.  Thus, from observational data alone these 
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methods can only reduce the space of possible graphs to a subset of models which share 

the same set of probabilistic dependency relations. Such models are referred to as being 

Markov equivalent (cf. Spirtes et al., 1993). Figure 5 gives an example of the possible 

models we can construct from three variables X, Y, and Z. Shaded areas group models 

according to their topology, dashed lines indicate Markov equivalent models (cf. 

Steyvers et al., 2003).  

 

 

Figure 5. All possible networks with three variables. Shaded areas group models according to their 

topology, dashed lines indicate Markov equivalent models (cf. Steyvers et al., 2003). Cyclic graphs 

(bottom left) cannot be analyzed by standard causal Bayes nets analysis. See text for details. 

 

The scope of these learning algorithms is beyond that of psychological models 

because they make unrealistic assumptions about the necessary information processing 

capacities, especially in situations with many variables. For example, constraint-based 

methods require learners to conduct a large number of comparisons to test which 

dependency relations exist in the investigated domain. Similarly, Bayesian methods 

have the problem that the number of possible causal models grows very fast with the 

number of variables (i.e., at least exponentially). Therefore, even in computer science 

heuristics are used which constrain the space of candidate models (cf. Heckerman et al., 

1999). However, in less complex situations learners might use the analysis of 

dependency relations (cf. Gopnik et al., 2004). For example, learners could start from a 

restricted set of candidate models and analyze the available data specifically with 

respect to the conditional dependency relations implied by their hypothesized models  

Thus far, only few studies have investigated whether learners have the capacity to 

induce causal structure from dependency relations alone. Gopnik and colleagues  have 

argued that children as young as 30 months use information about dependencies to infer 
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causal relations in accordance with constraint-based methods (see Gopnik et al., 2004, 

for an overview). However, research with adult reasoners suggests that this competency 

strongly depends on the complexity of the learning task (e.g., the number of variables, 

deterministic or probabilistic relations). For example, Lagnado and Sloman (2004) 

found that neither learners’ probability judgments nor their model choices matched the 

predictions of constraint-based methods. Similarly, the experiments of Steyvers and 

colleagues (2003), who proposed a psychologically more plausible model of Bayesian 

inference, show that only few learners were able to identify the correct model from 

observational data alone. However, Hagmayer and Waldmann (2000) found an 

interesting dissociation between explicit and implicit sensitivity to the structural 

implications of different causal models (e.g., a common-cause vs. a common-effect 

model). Whereas learners’ explicit probability judgments showed only a limited 

understanding of the structural implications of the different models, participants 

performed better in an implicit task requesting them to predict patterns of events they 

expected to see. 

  In a recent article, Lagnado and colleagues concluded that there is only little 

evidence that learners can uncover complex causal models from covariational data alone 

(Lagnado et al., in press). They point out that there are a number of other cues to 

causality which can be used to infer causal structure from observational data.  For 

example, temporal information and prior knowledge can assist structure learning by 

providing additional cues or constraining the set of candidate models. Another effective 

learning tool to discover a causal system’s structure is through active manipulation of 

the causal model’s variables, which is discussed next.  

4.2.2 Causal Learning through Interventions 

The preceding section has outlined how causal Bayes nets theory models causal 

inference from observational data. However, there are crucial differences between 

learning from observations (observational learning) and learning from data generated 

through interventions (interventional learning).  Whereas observations provide us with 

information about the operation of an undisturbed causal system, the “natural course of 

events”, interventions inform us about a causal system’s behavior conditional on active 

manipulations of the system’s variables. Observing the consequences of our actions 

facilitates causal inference because we can focus on certain aspects of the investigated 

system and attribute observed changes to the events previously intervened in. For 

example, we interact with technical systems such as computers or mp3-players to find 
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out how they work, we change our eating habits or start exercising to reduce our weight, 

or we try different kinds of fertilizer to make our garden’s flowers grow. These kinds of 

informal experiments provide us with direct causal knowledge about the consequences 

of our actions.  

In the causal Bayes nets framework, interventions which fix the state of a variable 

to a specific value or probability are called atomic interventions (cf. Pearl, 2000; 

Woodward, 2003). The characteristic feature of such strong interventions is that they 

render the variable intervened in independent of its actual causes (i.e., its Markovian 

parents).10 Sloman and Lagnado (2005) referred to this induced independence of cause 

and effect as “undoing”. For example, if we arbitrarily change the reading of the 

barometer our action renders the barometer independent of its usual cause, atmospheric 

pressure. Graphically, this can be represented by modifications of the graphical 

representation of the considered causal system: since the value of the variable 

intervened in is not any longer dependent on its actual causes, all arrows pointing at this 

variable are removed. Pearl (2000) has vividly called this procedure “graph surgery”; 

the result is a “manipulated graph” (Spirtes et al., 1993). A more technical introduction 

to the representation of intervention using probability calculus will be given in section 

4.3. 

To illustrate how interventions are modeled in the Bayes nets framework consider 

the following scenario. Assume we have observed a fish kill (F) in a pond and want to 

discover the causes. Analyses of the water show that there is a high level of nitrogen (N) 

in the water and a large amount of algae (A). Because a fish kill is a rather rare event, 

we cannot sample a large amount of observational data to analyze the dependency 

relations. However, we can focus on a set of candidate models which we then scrutinize 

by actively manipulating the causal system. Plausible candidate models are a common-

effect model, in which both nitrogen and algae (independently or interactively) 

contribute to the fish kill, a common-cause model in which the nitrogen causes both an 

increase of algae and the fish kill, and a causal chain leading from nitrogen to algae 

which, in turn, causes the fish kill. To differentiate between these models we can 

intervene in the system’s variables and examine the consequences of these actions. For 

example, if there exists a causal relation A→F we should observe an increase in fish kill 

subsequent to increasing the amount of algae.11 Conversely, if algae and fish kill are 

                                                 
 

10
 This, obviously, is also the key idea of the experimental method in science (e.g., Fisher, 1951). 

11 
Note that knowledge about the exact nature of the underlying mechanisms (e.g., a decrease in oxygen 

caused by the algae) is not required to infer the mere existence of causal relation. 
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only spuriously correlated because they are both effects of a common cause, 

manipulating the amount of algae should not harm the fish.  

From a causal Bayes nets perspective, interventions modify the structure of the 

graph representing the considered causal system. Because the intervention sets the 

variable targeted by the intervention to a certain value, the variable becomes 

independent of its actual causes (i.e., its Markovian parents). Graphically, this is 

represented by removing all arrows pointing towards this variable (= graph surgery); the 

result is a manipulated graph. Figure 6 illustrates the principle of graph surgery for an 

intervention that fixes the amount of algae in the water to a certain level.  

Because intervening in a causal model modifies its structure, data obtained from 

interventions enable us to differentiate between otherwise observationally equivalent 

causal models. For example, assume that we observe a correlation between three events 

X, Y, and Z (i.e., all three events tend to be either present or absent). Provided no 

additional cues such as temporal order are available, several causal models are 

consistent with this data. By analyzing the dependency relations, we can only reduce the 

set of candidate models to a subset of Markov equivalent models, for example to a set 

consisting of a common-cause model Y←X→Z and the causal chains Y→X→Z and 

Y←X←Z. Through interventional learning, we can distinguish between these models. 

For example, we could manipulate event X (i.e., set variable X to a certain value) and 

observe the outcomes of this action. If X is a common cause to Y and Z, intervening in X 

should affect both variables. In contrast, if the variables form a causal chain either Y or 

Z should be influenced by manipulations of X, depending on which of the two causal 

chains is the true model. The example also illustrates that the advantage of interventions 

crucially depends on which variable we choose to intervene in (cf. Steyvers et al., 
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Figure 6. Graph surgery in different causal models after an intervention (symbolized by the hand).  
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2003). Whereas interventions in X predict for each of the three candidate models a 

different outcome, this is not the case when intervening in Y or Z. 

 

 

Figure 7. Interventions in Markov equivalent models. 

 

For example, the outcomes of interventions in Y differentiate the causal chain Y→X→Z 

from the other two models because this chain is the only model according to which 

interventions in Y should affect both X and Z. In contrast, manipulations of Y cannot 

differentiate the common-cause model Y←X→Z from the causal chain Y←X←Z 

because both models imply that interventions in Y will influence neither X nor Z. Figure 

7 illustrates the manipulated graphs subsequent to interventions in X and Y, respectively. 

Recent work in psychology has demonstrated that learners can use the outcomes of 

interventions to infer causal structure and differentiate between candidate causal models 

(Gopnik et al., 2004; Lagnado & Sloman, 2004, in press; Steyvers et al., 2003). For 

example, Lagnado and Sloman compared the learning of a simple causal-chain model 

from observations and interventions. Their results show that learners were more 

successful in identifying the causal model when they could actively intervene on the 

model’s variables than when provided with observational data. A further experiment 

employed a yoked design in which learners in one condition could actively generate 

data by interventions, whereas participants of the yoked condition passively observed 

the outcomes of these interventions (intervention vs. observation of intervention). 

Interestingly, participants who actively intervened performed better than those who only 

observed the outcomes of interventions. This finding indicates that the capacity to infer 

causal structure is not determined only by differences in the informational content of 
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observational and interventional data. Therefore, Lagnado and Sloman suggest that the 

advantage of learning through interventions mainly results from the temporal cues that 

accompany interventions. According to their temporal cue heuristic people exploit the 

temporal precedence of their actions and the resulting outcomes, because changes 

subsequent to interventions can be attributed to the variable intervened in  (see Lagnado 

& Sloman, 2004, in press, for further details). In line with the experiments of Lagnado 

and Sloman, the experiments of Steyvers et al (2003) demonstrated that learners 

perform better when given the opportunity to actively intervene on the causal system 

than when only passively observing the data generated from the autonomous operation 

of the system. Their experiments also show that participants’ choices of the variable to 

intervene in are sensitive to the expected information gain, that is, how well the 

outcomes of the interventions can discriminate between competing hypotheses about the 

causal system  

However, the results of both the studies of Lagnado and Sloman and Steyvers and 

colleagues also show that many learners still had problems to infer the correct model 

from covariational data, even when given the opportunity to act on a causal system and 

observe the subsequent changes. 

4.3 Causal Reasoning with Bayes Nets 

The preceding sections have examined causal Bayes nets theory as a formal account 

of causal representation and causal learning. This chapter is concerned with the third 

key issue in causal cognition, causal reasoning. The characteristic feature of causal 

reasoning is that we aim to infer unobserved features of the world from the available 

information and our existing causal knowledge. For example, a physician inferring a 

bacterial infection from a patient’s symptoms engages in diagnostic causal reasoning in 

which the (unobserved) cause event is inferred from its (observed) effects. Conversely, 

inferring the symptoms from knowledge of the bacterial infection is an example of 

predictive causal reasoning (i.e., reasoning from causes to effects).  

An important issue is how we access and integrate our causal representations in 

causal reasoning. Often, people can base their inferences on causal knowledge acquired 

in similar situations. For example, an experienced physician might predict a patient’s 

future course of disease from her observations of previously encountered cases. 

Conversely, interventional knowledge about the outcomes of actions on previous 

occasions can be used to decide between potential treatments of the disease. 
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Characteristic for both situations is that the way the causal knowledge is acquired 

corresponds to the type of inference: knowledge acquired from observations is used to 

derive observational predictions and knowledge gained through active manipulations is 

used to predict the consequences of future interventions.  

However, how do we infer the consequences of hypothetical actions when only 

observational knowledge is available? How does the physician employ her 

observational knowledge about the natural course of a disease to predict the outcomes 

of actions not performed yet? The fundamental problem that has to be taken into 

account when deriving interventional predictions from observational knowledge is that 

merely observed states of variables can have different implications than the very same 

states generated by external interventions. For example, the physician might have 

observed that the fever of a patient declines before recovering from a disease. However, 

does this mean that future patients should be treated with a drug that lowers the fever? 

Probably not, because the fever is likely to be an effect of the underlying infection, too. 

Traditional theories of causal cognition such as contingency models fail to account for 

this difference because they cannot express causal directionality and lack the 

representational power to differentiate between merely observed states of variables from 

the same states generated by means of intervention. It is true that associative theories 

traditionally distinguish between knowledge acquired from observational learning 

(classical conditioning) and interventional learning (instrumental conditioning). 

However, these models fail when predictions for instrumental actions have to be derived 

from observational learning (cf. Section 5.2). In addition, neither approach provides a 

means to represent causal structure, which is crucial to model interventions in complex 

causal systems.  

By contrast, causal Bayes nets theory captures the distinction between observations 

(seeing) and interventions (doing), and provides mechanisms for predicting the 

outcomes of hypothetical and counterfactual interventions from causal models 

parameterized by observational knowledge. The formalism models three types of causal 

inference which differ in their representational and computational demands: 

observational inferences (i.e., inferences based on observed states of variables), 

interventional inferences (i.e., inferences based on states of variables generated by 

external interventions), and counterfactual inferences (i.e., inferences about the 

outcomes of counterfactual actions). Counterfactual inferences refer to the outcomes of 

interventions not in the actual but in a counterfactual world, because the action 
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contradicts factual states of the world: “The patient is in critical condition after his fever 

was observed to increase (observations in the actual world). What would have happened 

if I had intervened to lower his fever? (counterfactual intervention)”. Thus, 

counterfactual inferences combine factual observations with the question of what would 

have happened if the observed state had been modified through an intervention.  

To exemplify how causal Bayes nets theory models observations, interventions, and 

counterfactual interventions, I will use the diamond-shaped causal model depicted in 

Figure 8. The graph is illustrated by an ancient communication system consisting of 

four watchtowers A, B, C, and D. The purpose of the system is to transmit a signal from 

tower A, which is close to the enemy border, to tower D. Thus, variable A is the initial 

event that can cause the final effect D via two causal paths, that is, either by way of B or 

C. For example, tower A can light a signal fire that can be observed by towers B and C. 

These towers, in turn, can light a fire to transmit the signal further to the final tower D. 

However, the communication might not always be successful, for example because of 

bad weather. Figure 8 depicts the communication system and the corresponding graph.  

 

 

 

Figure 8. Diamond-shaped causal model illustrated by a primitive communication system.  

 

By applying the causal Markov condition to the causal model the joint probability 

distribution is factorized into 
 

( . . . ) ( ) ( | ) ( | ) ( | . )P ABC D P A P B A P C A P D B C= ⋅ ⋅ ⋅  (13) 

According to this factorization, the probability of each event is only dependent on its 

direct causes (i.e., its Markovian parents). This is mirrored in the parameters associated 

with the model’s causal arrows. Provided all variables can be observed, the conditional 

probabilities of the decomposed model can be directly estimated from the frequency 

information. 
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4.3.1 Observational Inferences 

Observational inferences refer to predictions based on observed states of the causal 

system’s variables.  Based on the structure of the causal model and its parameters, the 

probabilities implied by the observations can be computed using standard probability 

calculus. For example, from observing the state of variable C in the causal model shown 

in Figure 8, the probability of A being present can be computed using Bayes rule. Thus, 

if there is a fire on tower C, the probability that there is also a fire on tower A is given 

by 
 

( | ) ( ) ( | ) ( )
( | )

( | ) ( ) ( | ) ( ) ( )

P c a P a P c a P a
P a c

P c a P a P c a P a P c

⋅ ⋅

= =

⋅ + ¬ ⋅ ¬

 (14) 

 

Conversely, if there is no fire on tower C the probability of a signal fire on tower A is 

given by  
 

( | ) ( ) ( | ) ( )
( | )

( | ) ( ) ( | ) ( ) ( )

P c a P a P c a P a
P a c

P c a P a P c a P a P c

¬ ⋅ ¬ ⋅

¬ = =

¬ ⋅ + ¬ ¬ ⋅ ¬ ¬

 (15) 

 

These computations model diagnostic inferences from observed states of event C to 

its cause A. These simple diagnostic inferences only require taking into account the 

direct causal pathway between A and C, while the rest of the model is irrelevant. 

A more interesting example is the prediction of variable D from observations of 

event C. Obviously there is a direct causal link connecting C to D but there is also a 

second causal pathway connecting C to D via A and B. Therefore, the probability of D 

given that C is observed to be present not only depends on the strength of the direct 

causal arrow C→D but also on the information C provides about the state of D’s 

alternative cause, event B. For example, observing a fire on tower C increases the 

probability of A, which, in turn, raises the probability that there is a fire on tower B, too. 

This, in turn leads to an increase of the probability of D being present (i.e., a signal fire 

on tower D).  Pearl (2000) vividly called such confounding pathways backdoors. 

Formally, the probability for D given that C is observed to be present can be calculated 

by: 
 

( | ) ( | ) ( | ) ( | . )

( | )· ( | )· ( | . ) ( | )· ( | )· ( | . )

( | )· ( | )· ( | . ) ( | )· ( | )· ( | . )

P d c P A c P B A P d B c

P a c P b a P d b c P a c P b a P d b c

P a c P b a P d b c P a c P b a P d b c

= ⋅ ⋅

= + ¬ ¬ +

¬ ¬ + ¬ ¬ ¬ ¬

∑

 (16) 

 

Similarly, the probability of D given that C is observed to be absent is computed by 
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( | ) ( | ) ( | ) ( | . )

( | )· ( | )· ( | . ) ( | )· ( | )· ( | . )

( | )· ( | )· ( | . ) ( | )· ( | )· ( | . )
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= ¬ ¬ + ¬ ¬ ¬ ¬ +

¬ ¬ ¬ ¬ + ¬ ¬ ¬ ¬ ¬ ¬

∑

 (17) 

 

By conditionalizing A on C, these computations take into account that observed states of 

C are diagnostic for the state of A which, in turn, allows for the inference of the 

probability of B. The probability of the final effect D is estimated by adding up the 

different ways the occurrence of the event could be realized. Such alternative pathways 

are not only important to give unconfounded estimates of causal strength but are 

especially important with respect to interventions. 

4.3.2 Interventional Inferences  

A particularly interesting feature of the causal Bayes nets formalism is the 

derivation of interventional predictions from observational data and causal graphs. 

Interventional predictions refer to questions of the type “What would happen to Y if X 

were manipulated?”. Causal Bayes nets theory makes it possible to answer such 

questions by means of observational knowledge and assumptions about the underlying 

causal model.  

The notion of atomic intervention and the principle of graph surgery have already 

been introduced in the context of learning through intervention (cf. Section 4.2.2). The 

literature on causal Bayes nets has focused on these kinds of ideal interventions  in 

which the action changes the value of a variable independent of the state of the 

variable’s parents  (for more precise characterizations of these interventions, see, for 

example, Woodward, 2003). I have already examined how such atomic interventions 

modify the graphical representation of the causal system. This stage of model 

manipulation is also essential when reasoning about interventions, since interventional 

predictions should be based on the modified graph and not on the original graph.  

To formalize the idea that a variable’s state is not based on the “natural course of 

events” but was determined by an external intervention, Pearl (2000) introduced the so-

called “Do-Operator”, written as Do (•). For example, the expression “Do C = c” 

(“Do c” for short) is read as “variable C is set to state c by means of an intervention”. 

The Do-operator is the formal equivalent of graph surgery in terms of probability 

theory. Whereas the probability P(a | c) refers to the probability of A being present 

given that C was observed to be present,  the expression P(a | Do c) refers to the 

probability of A being present given that C was generated by means of intervention.  
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Because of graph surgery, interventions (in contrast to observations) do not provide 

diagnostic evidence for the causes of the manipulated variable. Thus, the Do-operator 

renders a variable independent of its direct causes, which is equivalent to deleting all 

causal links pointing towards the variable fixed by the intervention. Figure 9 illustrates 

the difference between observation of and intervention in C and shows the mutilated 

graph resulting from applying the do-Operator to variable C.  

The Do-operator provides the formal means to represent the crucial differences 

between observations and interventions in the language of probability calculus. For 

example, the probability of A = a (i.e., a signal fire on tower A) given that C is caused 

by an intervention (e.g., lightning that has lit the signal fire) equals the base rate of 

A = a because the causal link connecting these two events was eliminated by the 

intervention, and therefore  
 

P(a | Do c) = P(a | Do ¬c) = P(a).  (18) 
 

Thus, whereas inferring the state of event A from observed values of C is modeled by 

conditionalizing on C (cf. equations (14) and (15)), this does not hold when the state of 

C is set by an intervention. Applying the Do-operator to a variable implies that the state 

of this event is no longer diagnostic for the state of its Markovian parents; therefore they 

are no longer conditionalized on the variable targeted by the intervention. For example, 

if the signal fire on tower C is lit because of an event outside of the causal system (e.g., 

lightning), the presence of the fire does not raise the probability that there is a signal fire 

on tower A. 

In the same way, the probability of D can be calculated using the modified causal 

model. Generating a value of C through an intervention “closes the backdoor”, since 

states generated by external interventions do not provide diagnostic evidence for a 

 
Figure 9. Observation of and intervention in variable C.  
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variable’s actual causes. Nevertheless, the initial cause A may occur with its base rate 

and influence D via B. Therefore, the correct formula to calculate the probability of 

D = d given that C is generated by external intervention (i.e., Do c) is  
 

( | Do ) ( ) ( | ) ( | . )

( )· ( | )· ( | . ) ( )· ( | )· ( | . )

( )· ( | )· ( | . ) ( )· ( | )· ( | . )

P d c P A P B A P d B c

P a P b a P d b c P a P b a P d b c

P a P b a P d b c P a P b a P d b c

= ⋅ ⋅

= + ¬ ¬ +

¬ ¬ + ¬ ¬ ¬ ¬

∑

 (19) 

Similarly, in case of an inhibitory intervention in C (i.e., Do ¬c) the probability of D = d 

is given by: 
 

( | Do ) ( ) ( | ) ( | . )

( )· ( | )· ( | . ) ( )· ( | )· ( | . )

( )· ( | )· ( | . ) ( )· ( | )· ( | . )

P d c P A P B A P d B c

P a P b a P d b c P a P b a P d b c

P a P b a P d b c P a P b a P d b c

¬ = ⋅ ⋅ ¬

= ¬ + ¬ ¬ ¬ +

¬ ¬ ¬ + ¬ ¬ ¬ ¬ ¬

∑

 (20) 

 

In contrast to the computations modeling the observational inferences, variable A is no 

longer conditionalized on C in these formulas but replaced by the base rate P(A) (cf. 

equations (16) and (17)). Crucially, on the right-hand side of the equations only 

parameters are involved which can be derived from observational data. Thus, no direct 

knowledge about the outcomes of interventions is necessary (i.e., parameters acquired 

from interventional learning). 

There are two important criteria of atomic interventions which must be met to infer 

the consequences of interventions from causal models parameterized by passively 

observed events (see Pearl, 2000; Woodward, 2003, for further details). First, because 

interventional predictions are derived from manipulated graphs, it must be known which 

variables are affected by the intervention. For example, in the diamond-shaped causal 

model interventions in C render the event independent of its actual cause, event A. 

Graphically, this is represented by removing all arrows pointing at C while leaving the 

rest of the model intact (= graph surgery). However, if the intervention accidentally also 

fixed the value of B, the manipulated graph in which only C is disconnected from A 

would not correctly represent the structural modifications implied by the intervention 

(i.e., that variable B is also not any longer influenced by variable A). The second 

prerequisite concerns the stability of the parameters associated with the operation of the 

causal system’s mechanisms. Since the computations used to derive interventional 

predictions involve these parameters, it is necessary that they are invariant against 

interventions. In other words, the causal strength of a causal arrow C→E must be 

independent of whether C is generated by its natural causes or whether C is set by 
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means of intervention. If this is not the case, for example because the intervention not 

only influences C but also the mechanism by which C causes E, the predictions about 

the consequences of interventions are likely to be erroneous. See Hausman and 

Woodward (1999) and Woodward (2003) for further details; see Cartwright (2002) for a 

critical analysis. 

4.3.3 Counterfactual Inferences 

Causal Bayes nets theory not only provides computational mechanisms to infer the 

consequences of hypothetical interventions but also models counterfactual actions. 

Counterfactual interventions refer to interventions that deviate from the factual course 

of events in the world. For example, “If my friend had stopped me from driving too fast 

then I would still have my driver’s license” is an inference based on a counterfactual 

statement, because the events “driving too fast” and “losing my driving license” are true 

in the actual world. Similar to the predictions for hypothetical interventions, 

counterfactual inferences are not invariant against causal structure.  

Counterfactual inferences combine observations and interventions. A counterfactual 

intervention is defined as an action that alters a factual state of the world. Thus, 

inferences of this type refer to states in a counterfactual world. Causal Bayes nets allow 

to formalize questions such as “Today no signal fire was observed on tower C – what is 

the (counterfactual) probability of a fire on tower D if a fire on tower C had been lit by 

lightning?” Such counterfactuals comprise two pieces of information: a factual 

observation and a counterfactual action altering this state. For example, the 

counterfactual probability P(d | ¬c. Do c) is read as “the probability of D = d given that 

C was observed to be absent but counterfactually generated”. The first piece of 

information is that C was observed to be absent, a statement referring to the actual 

world. This information provides the basis for updating the probabilities of C’s 

Markovian parents (i.e., variable A). The second piece of information posits the 

counterfactual generation of C. This action refers not to the actual world (in which event 

C was absent) but to a counterfactual world in which C has been generated by external 

intervention. From these two pieces of information we can derive the state of D in a 

counterfactual world (which might or might not correspond to the factual world). 

Thus, the basic logic is that the probabilities of C’s causes are updated in 

accordance with the event’s factually observed state and estimates for C’s effects are 

computed conditional on the implications of the counterfactual action. We then have a 

three-step procedure for computing the consequences of counterfactual interventions 
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(cf. Pearl, 2000). First, the probabilities of the observed variable’s causes are updated in 

accordance with the event’s state in the actual world. Second, the causal graph is 

modified according to the counterfactual intervention, that is, graph surgery is 

performed. The crucial point is that graph surgery is performed in the updated model, 

not on the original one. Otherwise, the intervention would render the variable targeted 

by the intervention independent of its causes which then could not be updated. Finally, 

the updated and truncated model is used to predict the consequences of the 

counterfactual intervention. Figure 10 illustrates how causal Bayes nets model 

counterfactual interventions.  

 

 

Figure 10. Modeling counterfactual interventions. 

 
For example, in the diamond-shaped model we might observe C to be present (e.g., 

a signal fire is observed on tower C) but ask for the probability of a certain variable in 

the system conditional on a counterfactual prevention of event C (i.e., an intervention 

that would have prevented the signal fire on tower C). Again, I start with the simple 

diagnostic inference from C to its cause A. Since intervening in an effect will not 

influence its cause, the probability of A is determined by the factually observed state of 

C alone. Thus, the probability of A given we observe C to be present but 

counterfactually remove C is given by 
 

( | . Do ) ( | )P a c c P a c¬ =  (21) 

Conversely, the probability of A given that C is observed to be absent but 

counterfactually generated is given by 
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( | . Do ) ( | )P a c c P a c¬ = ¬  (22) 
 

Whereas for hypothetical interventions the probability of C’s cause A was given by A’s 

base rate, in the case of counterfactual interventions the probability of event A is 

updated in accordance with the observed state of C. Since the counterfactual 

intervention implies the alteration of a factual state, the probability of A is higher in the 

case of a counterfactual inhibition of C (which logically entails that C has been 

observed to be present) than in the case of a counterfactual generation of C (which 

implies that C has been observed to be absent in the actual world). For example, the 

probability of a signal fire on tower A is higher when a fire on tower C is observed to be 

present but counterfactually undone than in the case of a hypothetical intervention 

preventing the fire on tower C.  

It is also possible to compute the probability of the final effect D conditional on 

counterfactual interventions in C. For this inference, it is necessary to integrate both the 

observed values of C and the counterfactual intervention in C. This is an interesting case 

since the counterfactual intervention will affect the direct link C→D, but the observed 

value of C provides information about A, and, therefore, also about the probability with 

which D’s alternative cause, B, occurs. Consider the counterfactual probability 

P(d | c. Do ¬c) which asks for the probability of D given that C is observed to be present 

but counterfactually removed. The counterfactual prevention of C will break the causal 

path C→D therefore D is not any longer influenced by C in the counterfactual world. 

However, observing C to be present indicates that its cause A has been present, too, 

which, in turn, raises the probability of B occurring. Similar to the hypothetical 

intervention Do ¬c, event D is then completely determined by the backdoor path. 

However, there is one crucial difference: whereas in case of the “normal”(hypothetical) 

intervention the probability of event A is given by its base rate, in case of a 

counterfactual intervention A is conditionalized on the observed value of C. Thus, the 

probability of D is higher in case of a counterfactual prevention of C than in case of a 

hypothetical prevention of C, provided P(a) < P(a | c). The corresponding formula is 
 

( | . Do ) ( | ) ( | ) ( | . )

( | )· ( | )· ( | . ) ( | )· ( | )· ( | . )

( | )· ( | )· ( | . ) ( | )· ( | )· ( | . )

P d c c P A c P B A P d B c

P a c P b a P d b c P a c P b a P d b c

P a c P b a P d b c P a c P b a P d b c

¬ = ⋅ ⋅ ¬

= ¬ + ¬ ¬ ¬ +

¬ ¬ ¬ + ¬ ¬ ¬ ¬ ¬

∑

 (23) 

Conversely, the probability of D given that C is observed to be absent but is 

counterfactually generated is given by  
 



CAUSAL BAYES NETS THEORY 55 

( | . Do ) ( | ) ( | ) ( | . )

( | )· ( | )· ( | . ) ( | )· ( | )· ( | . )

( | )· ( | )· ( | . ) ( | )· ( | )· ( | . )

P d c c P A c P B A P d B c

P a c P b a P d b c P a c P b a P d b c

P a c P b a P d b c P a c P b a P d b c

¬ = ¬ ⋅ ⋅

= ¬ + ¬ ¬ ¬ +

¬ ¬ ¬ + ¬ ¬ ¬ ¬ ¬

∑

 (24) 

Note that in these formulas event A (C’s cause) is conditionalized on the observed state 

of C but the probability of D (C’s effect) is then computed from the counterfactually 

altered state of C. Again only parameters are involved which can be derived from 

observational learning. 

4.4 Causal Bayes Nets Theory: Summary 

Causal Bayes nets provide a formal account of causal representation, causal 

learning, and causal reasoning. By combining graph theory and probability calculus, the 

account explicitly differentiates between causal structure and causal strength, an 

important distinction blurred by most theories of causal induction. It is the formal 

representation of interventions and the capacity to derive interventional predictions from 

observations that sets causal Bayes nets apart from conventional theories of causal 

cognition. The representational power of the Bayes nets framework provides a formal 

account of interventions in causal systems which models learning through interventions 

and enables us to infer the consequences of hypothetical and counterfactual 

interventions from causal models parameterized by observational data.  

The aim of the following section is to discuss causal Bayes nets theory as a 

psychological model of causal cognition. The formalism makes precise and testable 

predictions concerning which factors should influence a learner’s causal inferences. The 

emphasis of the presented experiments is on causal reasoning and the different types of 

causal inference modeled by Bayes nets theory. The main questions pursued are 

whether learners are sensitive to the differences between observations and interventions 

and whether they have the capacity to derive predictions about the consequences of 

hypothetical and counterfactual interventions from causal models and observational 

knowledge.  
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5 Causal Bayes Nets as Models of Causal Cognition 

The examples described above show that, normatively, causal inferences differ 

depending on whether they are based on hypothetical observations (seeing) or 

hypothetical interventions (doing). The interesting question is whether people are 

sensitive to the difference between observations and interventions as well. Thus far, 

only few studies have addressed this question (see Hagmayer et al., in press, for an 

overview).  

Sloman and Lagnado (2005) have studied causal inferences in given causal 

structures and have compared causal with logical arguments. For example, participants 

were suggested a causal-chain model consisting of three events that were all described 

to be present. Participants were then requested to imagine that the intermediate event 

was either removed by an intervention or observed to be absent. In accordance with the 

predictions of causal Bayes nets participants inferred that the initial cause in the chain 

would be absent if the intermediate event was observed to be absent, but not if it was 

actively removed. Overall, the results of Sloman and Lagnado’s “undoing” experiments 

were consistent with the predictions of causal Bayes nets theory. Because the focus of 

these studies was on comparing logical with causal reasoning, only qualitative 

reasoning based on the structure of causal models was investigated. In general, Sloman 

and Lagnado focused on people’s capacity to differentiate between seeing and doing 

when reasoning about described causal situations. In addition, only one out of six 

experiments investigated reasoning about probabilistic causal relations. 

Waldmann and Hagmayer (2005) wondered whether learners’ inferences would be 

sensitive to the size of the parameters that were gleaned from observational learning 

data. Participants in their experiments were given instructions about the structure of 

causal models and subsequently received a list of cases on a single page that could be 

used to estimate the parameters of the models. Participants were then requested to 

derive predictions for new hypothetical observations and hypothetical interventions. 

The results showed a surprising grasp of the differences between seeing and doing, 

manifesting itself in predictions that took into account the size of the parameters which 

were estimated on the basis of the learning data.  

Quite recently, it has also been demonstrated that the competency to distinguish 

between observations and interventions is also found in animals (Blaisdell, Sawa, 

Leising, & Waldmann, 2006). Previous research with animals appeared to support the 

view that associative processes drive learning in animals, and that animals lack a deeper 
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understanding of causality. The experiments of Blaisdell and colleagues show that rats 

can derive interventional predictions subsequent to a classical conditioning phase, a 

finding inconsistent with the assumption that predictions of the consequences of 

instrumental actions require a prior phase of interventional learning (i.e., instrumental 

conditioning).  

5.1 Research Questions 

The general goal of this dissertation is to investigate learners’ competency in 

deriving the consequences of hypothetical and counterfactual interventions from 

observational knowledge. The normative model against which learners’ predictions are 

judged is causal Bayes nets theory. 

Three key issues are examined in detail. Firstly, previous studies used described 

causal situations (Sloman & Lagnado, 2005) or provided learners with lists of 

aggregated data available during causal reasoning (Waldmann & Hagmayer, 2005). By 

contrast, the experiments presented here move one step further in the realm of learning 

through trial-by-trial learning procedures. Secondly, participants are presented with 

complex causal models containing confounding pathways. This allows to tap into 

learners’ understanding of the causal logic of confounds because it requires them to 

disentangle direct causal relations from concurrent covariations arising from 

confounding variables. Thirdly, the experiments aim to reveal the boundary conditions 

of the normative causal Bayes nets formalism as a psychological model. Therefore, 

different types of causal inferences are examined which vary in their complexity and 

computational demands (e.g., the number of variables that have to be taken into 

account). Another factor investigated is how manipulations of the way the learning data 

is presented affect subsequent causal reasoning.  

Seeing versus Doing in Trial-by-Trial Learning 

In Waldmann and Hagmayer (2005) the parameters could be estimated on the basis 

of a list of cases which provided simultaneous information about the presence or 

absence of the variables. It can be argued that this task is still more a reasoning task than 

a learning task. The typical characteristics of causal learning, in which similar situations 

are encountered several times, are better mirrored in trial-by-trial learning than in a 

highly processed list available during the inference process. In fact, Shanks (1991) has 

hypothesized that induction on the basis of aggregated data is handled by different 

learning mechanisms than trial-by-trial learning. He argues that the processing of 
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described causal situations and induction from aggregated data is strongly influenced by 

domain-specific and domain-general knowledge (i.e., top-down processes), whereas 

associative learning mechanisms (e.g., the R-W rule) are assumed to handle trial-by-trial 

learning. Thus, associative learning procedures are only activated when similar causal 

sequences are repeatedly experienced across a period of time. Only when learning takes 

places in individual trials can the associative weights be modified according to 

associative learning rules such as the R-W model. 

According to this argument, results from experiments providing learners with 

summarized data (e.g., aggregated lists of cases) or descriptions of causal situations 

need not provide evidence against associative theories of causal learning. In contrast, a 

demonstration of the competency to distinguish seeing and doing in the context of trial-

by-trial learning would further weaken associative theories as models of causal 

induction.  

Causal Reasoning with Confounds 

A further novel aspect of the experiments is the presentation of causal models that 

contain two parallel pathways representing mutual confounds (i.e., backdoor paths). 

Methodology textbooks (e.g., Keppel & Wickens, 2000) strongly recommend controlled 

experiments to avoid problems of confounding. Experiments involve the random 

assignment of participants to experimental and control groups and a manipulation of the 

cause variable by an outside intervention. This procedure ensures independence of the 

cause variable from all other potentially confounding variables. However, in some 

sciences (e.g., astronomy, epidemiology) and in many everyday contexts controlled 

experimentation is impossible. Thus, people have to deal with the problem of 

confounding variables quite often. It is therefore an important question whether learners 

are sensitive to confounded situations and can draw adequate causal inferences despite 

confounding. 

An example of a causal model with a confounding pathway is the diamond-shaped 

causal model (cf. Figure 8) in which event A can cause the final effect D via 

intermediate variables B and/or C. Since events B and C are connected via their 

common cause A, observing either of D’s direct causes (i.e., B or C) also provides 

evidence about the state of the alternative cause. For example, observing C to be present 

makes it likely that A has been present, too, which, in turn, makes it likely that B was 

also present. However, intervening in C (i.e., Do c or Do ¬c) renders the event 

independent of its actual cause, event A, thereby breaking the correlation of variable B 
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and C. One additional goal of the experiments was to test whether learners are sensitive 

to the fact that interventions and observations differ with respect to the way the 

confounding pathways need to be taken into account. 

Competence and Performance in Seeing and Doing 

A further issue is to investigate the boundary conditions of causal Bayes nets as a 

psychological model of causal cognition. The account itself is a formal model providing 

a normative yardstick to evaluate learners’ causal judgments. However, the theory is not 

a psychological model per se because human causal induction is likely to be subject to a 

great many factors not included in the formalism. For example, in the preceding section 

diagnostic and predictive inferences exemplified the computational mechanisms of 

causal Bayes nets. These inferences differ in their complexity because the diagnostic 

inferences from C to A involve only a single causal relation whereas the predictive 

inferences from C to D require one to take into account the complete causal model (i.e., 

the confounding backdoor path). The difference in the number of variables and 

parameters that have to be taken into account might affect learners’ competency in 

inferring the consequences of interventions in accordance with Bayes nets theory. 

Another potentially relevant factor might be the way the learning data is presented. For 

example, in trial-by-trial learning it is possible to manipulate the way the covariational 

data is presented. Whereas in predictive learning experienced order is consistent with 

causal order (i.e., learning from causes to effects), in diagnostic learning participants 

first receive information about the effects before being presented with the state of the 

cause variables. Such a manipulation can provide misleading cues to causality (because 

the causal model actually entails a different temporal order) or complicate the process of 

parameter estimation because learners have to mentally reverse the presented 

information to conditionalize the effect events on their causes. Pitting experienced 

temporal order against causal order makes it possible to investigate to which extent a 

formal model provides an adequate description of natural causal induction, or, stated 

more optimistically, under which conditions human causal reasoning approximates the 

predictions of a normative model. 
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5.2 General Method 

Each of the experiments consists of three phases. The first stage is the causal model 

phase in which learners are presented with a hypothetical causal model. The causal 

model informs learners about the structure of the causal system, that is, which variables 

are causally related. However, they are not informed about the strength of these causal 

relations (i.e., the parameters of the causal graph). The introduction of the causal model 

is followed by an observational learning phase consisting of several single trials in 

which learners can estimate the model’s parameters by passively observing the 

operation of the causal system. The observational learning phase is followed by a test 

phase in which participants have to answer several questions corresponding to the 

different types of causal inferences formalized by causal Bayes nets theory. Thus, their 

task is to draw causal inferences from observations of and hypothetical and 

counterfactual interventions in the causal system’s variables.  

What are the predictions of the discussed theories of causal cognition for the test 

phase? The fundamental problem is that most accounts (e.g., contingency models) do 

not distinguish whether a variable is observed or actively generated. Thus, these 

accounts can only either make identical predictions for observations and interventions 

or make no predictions about the consequences of interventions at all. However, 

associative theories have traditionally distinguished observational learning (classical 

conditioning) from interventional learning (instrumental conditioning). Thus, from an 

associative learning perspective learners first undergo a classical conditioning phase and 

are later required to predict the consequences of an instrumental action.12 One position 

in the literature is to separate the two types of learning and to assume that different 

kinds of associations are acquired from observational and interventional learning  (cf. 

Domjan, 2003). However, such an approach implies that without interventional learning 

(i.e., an instrumental conditioning phase) we cannot predict the consequences of our 

actions. Alternatively, one could postulate an interaction between associative weights 

acquired through classical and instrumental conditioning. For example, Rescorla and 

Solomon (1967) argued that associative knowledge  acquired through classical 

conditioning can influence instrumental learning. Indeed, there is ample evidence that a 

classically conditioned stimulus can affect instrumental responses, irrespective of 

whether the classical conditioning phase precedes, follows, or is conducted in parallel to 

                                                 
12

 I here leave the question of counterfactual interventions aside, for they have no counterpart in the 

associative learning paradigm. 



CAUSAL BAYES NETS AS MODELS OF CAUSAL COGNITION 61 

the instrumental learning phase (cf. Domjan, 2003). However, the experimental settings 

used to investigate the interaction of the two types of learning always involve both a 

classical and an instrumental conditioning phase, which is not the case in the studies 

presented here. One could, of course, assume that the weights acquired through 

observational learning are used to answer the interventional question, but this account 

fails when the implications of observed and actively generated states of events have 

different implications. Nor is it possible to postulate a general transfer mechanism 

because it depends on the causal model whether there is a difference between 

observations and interventions.  

In summary, all models of causal cognition equating observational with 

instrumental knowledge are likely to produce erroneous predictions when the 

consequences of interventions have to be derived from observational knowledge. By 

contrast, causal Bayes nets theory specifies the conditions under which observations 

differ from interventions and provides computational mechanisms to derive 

interventional predictions from observational knowledge. 

5.3 Overview of Experiments 

The presented experiments are divided into three sections, each of which addresses 

different aspects of causal reasoning. Note that this division does not map directly onto 

the outlined research questions, which describe the general issues tackled by the 

experiments. For example, the complexity of the causal inferences is varied in all of 

these experiments, and each of the experiments employs causal structures with 

confounding pathways.  

The first part, consisting of Experiments 1 to 4, investigates whether learners have 

the capacity to infer the consequences of hypothetical and counterfactual interventions 

after a trial-by-trial observational learning phase. The general claim is that causal 

reasoning is neither determined by top-down influences (i.e., knowledge about causal 

structure) nor by bottom-up factors (i.e., covariational data) alone. Therefore, 

Experiments 1 and 2 provide learners with identical learning data but suggest different 

causal models to the participants. Conversely, in Experiments 3 and 4 learners are 

presented with identical causal models but the learning data is varied between 

conditions. 

The second part, which consists of Experiments 5 and 6, aims at investigating not 

the role of the learning data itself but the way the data is presented during observational 
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learning. These studies pit causal order against experienced temporal order during 

learning (i.e., predictive learning from causes to effects vs. diagnostic learning from 

effects to causes). It is examined how this manipulation affects learners’ competency to 

derive interventional predictions from observational knowledge.  

The last section, consisting of Experiments 7 and 8, further investigates causal 

reasoning with causal models containing confounding variables. People’s understanding 

of two different types of confounding is examined. Moreover, by presenting learners 

with competing causal models, both of which are plausible candidates for the available 

learning data, the studies combine structure induction with causal inferences from 

observations and interventions. Because interventional predictions crucially depend on 

causal structure, learners can only give adequate interventional predictions if they 

successfully identify the graph from which the learning data was generated.  

5.4 Causal Reasoning with Observations and Interventions 

The goal of Experiments 1 to 4 is to investigate whether people who have passively 

observed individual trials presenting the states of a complex causal model can later 

access their causal knowledge to derive observational, interventional, and counterfactual 

predictions in a fashion anticipated by causal Bayes nets. The experimental 

manipulations concern the suggested causal models, the learning data, and the 

complexity of the requested causal inferences.  

5.4.1 Experiment 1  

In Experiment 1, causal reasoning about a single cause-effect relation within a 

complex causal model is investigated. This task is especially suited to reveal whether 

people perform “graph surgery”, the building block of more complex interventional 

inferences involving multiple causal relations and their associated parameters.  

After a trial-by-trial observational learning phase participants are requested to draw 

causal inferences for observations, hypothetical interventions, and counterfactual 

interventions. In the causal Bayes nets framework counterfactual reasoning is the most 

complex type of causal inference since it requires the combination of observational 

inferences with a stage of model modification to predict the consequences of 

interventions in a counterfactual world. The comparison of the response patterns to the 

intervention and counterfactual intervention questions makes it possible to explore 

whether learners distinguish between these two types of interventions. 
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To examine the role of structural knowledge in causal reasoning in detail all 

learners receive identical learning input but are suggested different causal models. The 

goal is to scrutinize how identical covariational information can yield different causal 

judgments depending on the causal structure assumed to underlie the observed data. If 

learners’ causal inferences are primarily driven by the learning input (i.e., the observed 

covariations), the response patterns are not expected to differ. In contrast, if the causal 

model is taken into account the causal inferences should differ in accordance with the 

causal model. 

Method 

Participants and Design 

Thirty-six undergraduate students from the University of Göttingen participated. 

They received course credit for participation. Factor ‘causal model’ was varied between 

conditions, factors ‘type of inference’ and ‘presence vs. absence of C’ were varied 

within-subjects. All participants were randomly assigned to either of the two conditions.  

Procedure and Materials 

Causal model phase. In the first stage, the causal model phase, learners are 

presented with a hypothetical causal model. The model informs learners about the 

structure of the causal system, that is, which variables are causally related. However, 

they are not informed about the strength of these causal relations (i.e., the model’s 

parameters). The causal graph introduced in this phase is manipulated between 

conditions. The remaining two phases, the learning phase and test phase, are identical 

for all participants. All instructions of this and the following experiments were given in 

German. 

The two causal models and the chosen parameterizations are displayed in Figure 11. 

The two graphs are identical except for the causal relation between A and C. In 

condition A→C (Figure 11a) event A is a cause to C.  In contrast, in condition C→A 

(Figure 11b) the causal arrow between A and C is reversed. Thus, in this model event A 

is not the cause but the effect of event C. The remaining causal relations are identical 

across conditions. With the chosen parameterizations, the two causal graphs generate 

identical patterns of covariation, that is, they are observationally equivalent (provided 

no temporal information is available). 

However, due to the reversed arrow the two graphs generate different predictions 

about the consequences of interventions. For example, in condition A→C observed 
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states of C are diagnostic for A, whereas intervening in C renders the event independent 

of its actual cause A. Thus, this causal model implies a difference between seeing and 

doing. Contrary to condition A→C, in condition C→A both observed and generated 

values of C are diagnostic for event A because here the intervention targets the cause 

variable. Thus, according to causal Bayes nets learners’ interventional and 

counterfactual inferences should differ depending on the suggested causal graph. 

To the participants, the causal graphs shown in Figure 11 were introduced as a 

medieval communication systems transmitting signal fires between four watch towers 

(see lower images in Figure 11). Each of the variables A, B, C, and D was represented 

by the image of a watch tower. Participants were told that each of the four towers A, B, 

C, and D can light a signal fire. The towers were labeled as eastern, northern, western, 

and southern tower. The crucial difference between the conditions is the position of the 

initial event (i.e., the tower initiating the signal transmission). In condition A→C, 

participants were informed that watch tower A is located close to the enemy’s territory 

and is the initial event of the communication system (bottom left of Figure 11). If the 

guards at tower A observe enemy troops, they light a signal fire on the top of their 

tower. This fire can be seen from towers B and C, but not from tower D. If the guards at 

towers B and C observe the signal at tower A, they light up their own signal fires. The 
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Figure 11. Parameterized causal models in Experiment 1. All parameters were set except P(d | b. c) 

which is computed by a noisy-OR-gate. Lower images show screen-shots of learning trials. 
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signal fires of tower B and C, in turn, can independently cause the final effect, a signal 

fire at tower D.  Thus, there are two independent causal paths from A to D: either via the 

causal chain A→B→D or via the alternative path A→C→D, or both. The same cover 

story was used in condition C→A, except that here participants were told that C is the 

initial event of the communication system watching the enemy border (bottom right of 

Figure 11). Thus, in this model tower D receives the signal either directly via link C→D 

or through the causal chain C→A→B→D, or both. To clarify the system’s structure, in 

the instructional phase the paths the signal could take were illustrated by arrows. 

However, these arrows were not present during observational learning.  

 Participants were instructed to try to learn the strength of the causal relations from 

the observational learning phase by requesting them to learn “how well the 

communication system works”.  It was also pointed out that the causal relations are 

probabilistic, for example because bad weather prevents a tower’s guards from detecting 

a signal. The kind of questions they would have to answer after the learning phase was 

not mentioned until the test phase. To ensure that the instructions were understood 

correctly participants were requested to briefly summarize the instructions before the 

learning phase started.  

 Observational learning phase. The learning phase consisted of 60 trials which 

implemented the probabilities of the causal graphs shown in Figure 11. The models’ 

parameters were chosen in a way that both graphs generate identical data patterns. Thus, 

in both conditions participants received the very same learning data as shown in Table 

2. Each trial referred to a different day on which learners could observe which towers 

had lit a signal fire. Information was 

presented in randomized order on a 

computer screen displaying the 

communication system with its four 

towers (cf. Figure 11). The state of all 

four towers was displayed 

simultaneously. Learners could 

continue at their own pace, but they 

could not see a trial again. 

Test Phase. Subsequent to the observational learning phase, participants were asked 

three types of causal inference questions: observational, interventional, and 

counterfactual questions. All questions provided only information about the state of 

Table 2 

Learning Data in Experiment 1. 

Pattern Frequency Pattern Frequency 

a.  b.  c.  d 25 ¬a.  b.  c.  d 0 

a.  b.  c.¬d 1 ¬a.  b.  c.¬d 0 

a.¬b.  c.  d 2 ¬a.¬b.  c.  d 1 

a.¬b.  c.¬d 1 ¬a.¬b.  c.¬d 0 

a.  b.¬c.  d 4 ¬a.  b.¬c.  d 1 

a.  b.¬c.¬d 1 ¬a.  b.¬c.¬d 0 

a.¬b.¬c.  d 0 ¬a.¬b.¬c.  d 0 

a.¬b.¬c.¬d 0 ¬a.¬b.¬c.¬d 24 
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watch tower C, that is, whether there was a signal fire on tower C or not. The remaining 

towers were covered by a circle with a question mark to indicate that their state was not 

known (Figure 12). For each of the questions learners had to estimate the probability of 

variable A.  

For the observational questions learners were requested to imagine a new day on 

which the signal fire at tower C was observed to be present [absent] and to estimate the 

probability of a fire on tower A. Thus, these two questions required an estimation of the 

conditional probabilities P(a | c) and P(a | ¬c).  For the interventional questions learners 

were asked to imagine that the state of tower C was either generated or prevented by an 

intervention. The generative interventional question stated that lightning had struck the 

tower and lit the signal fire. The inhibitory interventional question stated that the 

tower’s guards had forgotten to collect new fire wood and therefore no fire could be lit 

that day. Thus, participants had to estimate P(a | Do c) and P(a | Do ¬c). For the 

counterfactual questions participants were 

instructed to imagine a counterfactual 

intervention, that is, an intervention 

contradicting a factual observation. The 

questions first stated the actual state of C, that 

is, whether the signal fire on tower C was 

observed to be present or not. Then learners 

were requested to imagine a counterfactual 

intervention altering this observation. The 

counterfactual generative question requested learners to assume that no fire was 

observed this day on tower C (factual observation) but to imagine that on this very day 

lightning had caused a signal fire (counterfactual intervention). Participants then had to 

estimate the probability for a fire on tower A, that is, they had to estimate the 

counterfactual probability P(a | ¬c . Do c). Conversely, the counterfactual inhibitory 

questions stated that a signal fire was observed to be present at tower C. Learners were 

then asked to imagine that the guards had forgotten to collect new fire wood that very 

day and to estimate the probability of a fire on tower A (i.e., learners were requested to 

estimate P(a | c. Do  ¬c)).  

Estimates of the observational and interventional questions were given on a rating 

scale ranging from “0 = There definitely was no fire on tower A” to “100 = There 

definitely was a signal fire on tower A”. The same scale was used for the counterfactual 

 

Figure 12. Screen-shot of test phase 

(condition A→C). 
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questions but labeled with “0 = There definitely would not have been a signal fire on 

tower A” and “100 = There definitely would have been a signal fire on tower A”. 

Interventional, observational, and counterfactual questions were grouped into blocks; 

the order of blocks was counterbalanced.  

Results and Discussion 

The results of Experiment 1 are shown in Table 3 along with the normative values 

derived from causal Bayes nets. Learners’ sensitivity to the difference between 

observations and interventions is tested by comparing their estimates of the 

observational and interventional questions within conditions; the influence of the causal 

model can be tested by between-subjects comparisons. Thus, the tests involve both 

within- and between-subjects comparisons which here are conducted with standard 

analyses of variance (ANOVA).  

Observations vs. interventions.  In both conditions, observed states of event C are 

diagnostic for event A, that is, A is more likely to be present in the presence of C than in 

the absence of C. In condition A→C, reasoning from C to A corresponds to giving 

diagnostic judgments. Since observed effects are diagnostic for their causes, learners 

should infer that event A is more likely to be present given that C is observed to be 

present than when C is observed to be absent. In accordance with this prediction, in 

condition A→C P(a | c) received higher ratings than P(a | ¬c), F(1, 17) = 42.30, 

p < .001, MSE = 430.88, η2 = .71. Similarly, event C is also diagnostic for A when the 

arrow is reversed, that is, when C is not the effect but the cause variable (condition 

Table 3 

Mean Probability Judgments for Diagnostic Inference Questions in Experiment 1 (N = 36). 

  Observation   Intervention   Counterfactual Intervention  

Causal Model  P(a | c) P(a | ¬c)   P(a | Do c) P(a | Do ¬c)   P(a | ¬c. Do c) P(a | c. Do ¬c)  

Bayes Nets 97 17 57 57 17 97 

M 78.89 33.89 40.00 43.33 38.33 68.33 
Model 

A→C
  

SD (15.68) (23.30) (27.87) (15.72) (31.11) (26.84) 

        

Bayes Nets 97 17 97 17 97 17 

M 81.11 16.67 79.44 14.44 79.44 25.00 
Model 

C→A
  

SD (14.51) (13.28) (18.62) (9.84) (20.43) (22.30) 

Note. Normative values (range 0 – 100) derived from causal Bayes nets are shown in italics. 
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C→A). Accordingly, estimates of the observational questions differed significantly in 

this condition, too, F(1, 17) = 147.01, p < .001, MSE = 254.25, η2 = .90.  

The crucial test to investigate whether learners differentiate between seeing and 

doing and perform graph surgery is provided by analyzing learners’ responses to the 

interventional questions. In condition A→C, intervening in C and asking for A means 

manipulating an effect and asking for the probability of its actual cause. Since 

intervening in an effect renders the event independent of its Markovian parents, 

participants’ estimates for A should remain at a constant level for both the generative 

and inhibitory intervention. As anticipated by causal Bayes nets, learners judged the 

probabilities P(a | Do c) and P(a | Do ¬c) to be at the same level (F < 1). This finding 

clearly differs from the responses obtained for the observational probabilities and 

provides strong evidence that learners performed graph surgery. Thus, in contrast to 

observed values of C, in condition A→C the state of C (the effect variable) was not 

considered to be diagnostic for the cause variable A when it was generated by an 

external intervention. This interpretation is corroborated by the finding that the 

probability of event A being present received higher ratings when C was observed to be 

present than when C was generated by an intervention, F(1, 17) = 38.64, p < .001, 

MSE = 352.29, η2 = .69. In accordance with the normative probabilities, A was seen to 

be less likely when C was observed to be absent than when C was prevented by an 

intervention. However, due to an overestimation of the observational probability 

P(a | ¬c), the comparison with the corresponding interventional probability P(a | Do ¬c) 

failed to reach significance, F(1, 17) = 2.22, p = .16, η2 = .11. 

A very different response pattern was obtained in condition C→A. In this condition 

the variable intervened in, event C, is a cause to the variable asked for, event A. Since 

manipulating a cause will alter the probability of its effect(s), a difference for the 

interventional questions is predicted by Bayes nets theory. The results confirm this 

prediction. In contrast to condition A→C, learners’ responses to the interventional 

questions were very similar to the observational question. While in condition A→C 

learners judged the interventional probabilities to be at the same level, in condition 

C→A the interventional questions differed significantly, F(1, 17) = 149.46, p < .001, 

MSE = 254.41 η2 = .90. Consistent with the predictions and in contrast to the findings of 

condition A→C there was neither a significant difference between observing C to be 

present and generating C by means of intervention (F < 1), nor between P(a | ¬c) and 

P(a | Do ¬c), F(1, 17) = 1.36, p = .26. This result also refutes the idea that there is a 
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general tendency to answer interventional questions differently from observational 

questions.  

The results so far conformed to the predictions of causal Bayes nets theory and 

demonstrate that learners correctly recognized that there is a crucial difference between 

seeing and doing when the intervention targets an effect variable (condition A→C), but 

not when the intervention fixes the state of a cause variable (condition C→A). This 

interpretation is corroborated by contrasting learners’ predictions for the consequences 

of interventions between conditions. The generative intervention question (i.e., 

P(a | Do c)) received lower ratings in condition A→C than in condition C→A, 

F(1, 34) = 24.93, p< .001, MSE = 561.60, η2 = .42. Conversely, when C was prevented 

by an intervention (i.e., P(a | Do ¬c)) event A was judged to be more likely in condition 

A→C than in condition C→A, F(1, 34) = 43.70, p< .001, MSE = 171.90, η2 = .56. 

Hypothetical vs. counterfactual interventions. The findings so far demonstrate that 

learners derived their interventional predictions in accordance with the hypothesized 

causal model and distinguished between seeing and doing after a trial-by-trial 

observational learning phase. A further question is whether learners also correctly 

differentiated hypothetical interventions referring to the actual world from 

counterfactual actions. This is revealed by contrasting their responses to the 

interventional and counterfactual interventional questions within conditions, whereas 

the influence of manipulations of causal structure can be tested by comparing 

participants’ estimates between conditions.  

The counterfactual intervention questions comprise two pieces of information: an 

observation of C’s state in the actual world and a counterfactual intervention which 

alters this state (cf. Section 4.3.3). For example, the counterfactual probability 

P(a | c. Do ¬c) is read as “the probability of A given that C was observed to be present 

but counterfactually prevented”. However, the way observations and interventions have 

to be combined to infer the consequences of counterfactual actions strongly depends on 

the underlying causal model. For example, in condition A→C counterfactually changing 

the state of C will not exert any influence on A in a counterfactual world since the 

(counterfactual) intervention only affects C’s descendants. Since the intervention in C 

will not affect event A, the state of A is identical in both the actual and the 

counterfactual world. This leads to the counterintuitive prediction that the probability of 

A is lower in the case of a counterfactual generation of C (which logically implies that C 

was observed to be absent in the actual world) than in the case of a counterfactual 
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prevention of C (which logically implies that C was observed to be present in the actual 

world). Consistent with this prediction, in condition A→C learners judged event A to be 

less likely when C was counterfactually generated, P(a | ¬c. Do c), than when C was 

counterfactually inhibited, P(a | c. Do ¬c), F(1, 17) = 10.59, p < .01, MSE = 764.71, 

η2 = .38. This is in clear contrast to the responses for the hypothetical intervention 

questions for which no difference was obtained. In accordance with the normative 

values, estimates for counterfactual inhibitory intervention, P(a | c. Do ¬c), were higher 

than those for the hypothetical inhibitory intervention P(a | Do ¬c), F(1, 17) = 31.61, 

p < .001, MSE = 177.94, η2 = .65. However, due to the overestimation of P(a | ¬c. Do c) 

no difference was obtained between the factual and counterfactual generation of C 

(F < 1). 

A very different response pattern is expected for condition C→A. In this condition 

the variable intervened in is the cause event of the variable asked for. Therefore, the 

state of effect variable A in the actual world does not correspond to the state in the 

counterfactual world. First, learners should update the state of event A in accordance 

with the observed state of C. However, since A is an effect of C, the counterfactual 

intervention influences variable A in the counterfactual world (to which the question 

refers). Therefore, the consequences of counterfactual interventions correspond to those 

of factual interventions, that is, A is more likely to be present in case of a counterfactual 

generation of C than when C is counterfactually removed.   

In accordance with the normative analysis, the pattern of probability judgments was 

reversed for condition C→A. With the alternative causal model guiding the 

counterfactual causal inferences, learners’ estimates of the counterfactual probabilities 

closely resembled those obtained for the “normal” interventions. In contrast to the 

findings of condition A→C, in condition C→A the counterfactual generation 

intervention, P(a | ¬c. Do c), received higher ratings than the counterfactual inhibition 

intervention, P(a | c. Do ¬c), F(1, 17) = 53.85, p < .001, MSE = 495.43, η2 = .76. 

Consistent with the normative values, the counterfactual generative intervention did not 

differ from the factual generative intervention (F < 1). However, there was a slight 

difference between the counterfactual inhibitory intervention and the factual inhibitory 

intervention, F(1, 17) = 3.83, p = .07. Nevertheless, the general pattern demonstrates 

that participants understood that the causal structure of this condition implies that there 

is no difference between the consequences of hypothetical actions in the actual world 

and the outcomes of counterfactual interventions.  
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The influence of the causal model is directly tested by the between conditions 

comparisons of learners’ probability judgments. In line with the normative probabilities, 

the counterfactual generation question received lower ratings in condition A→C than in 

condition C→A, F(1, 34) = 21.97, p < .001, MSE = 692.48, η2 = .39. Conversely, event 

A was judged to be more likely in condition A→C than in condition C→A conditional 

on a counterfactual prevention of C, F(1, 34) = 27.76, p < .001, MSE = 608.82, η2 = .45. 

Taken together, these results show that learners have a remarkable grasp of the 

difference between hypothetical and counterfactual interventions. Participants 

successfully derived the consequences of counterfactual interventions in accordance 

with the suggested causal model. Thus, they understood that the potential differences 

between hypothetical and counterfactual interventions crucially depend on the 

underlying causal model.  

5.4.2 Experiment 2  

Experiment 1 has provided strong evidence that learners distinguish between 

observations and interventions and perform graph surgery when giving diagnostic 

judgments. Moreover, the responses to the counterfactual intervention questions show 

that, as anticipated by causal Bayes nets, learners distinguished hypothetical from 

counterfactual interventions. The results of the first study also demonstrate the 

importance of the causal model when inferring the consequences of hypothetical and 

counterfactual interventions. Even though all learners received identical learning input, 

their estimates for the interventional and counterfactual probabilities differed depending 

on the causal structure assumed to have generated the data. 

The capacity to perform graph surgery is the building block of more complex causal 

inferences which require taking into account multiple causal connections and 

parameters. The goal of Experiment 2 is to show that learners not only understand that 

intervening in an effect renders it independent of its actual causes but that this 

knowledge is capitalized on when drawing more complex causal inferences. Experiment 

1 investigated reasoning about a single causal relation between the two events A and C, 

while the rest of the causal model was irrelevant for the task. Experiment 2 goes one 

step further and requires participants to estimate the probability of event D from 

observations of and interventions in C. Inferring the state of the final effect D from 

observations of and interventions in C allows for a profound test of the capacity to 

distinguish seeing and doing because learners must not only consider the direct causal 

link between C and D but also the backdoor path A→B→D (cf. Figure 11).  Predicting 
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the state of D is therefore much more challenging than the diagnostic inferences 

examined in Experiment 1.  

The difference between observations and interventions in predictive reasoning 

about D is revealed most clearly by contrasting cases in which C is observed to be 

absent and those in which C is prevented by an intervention. Since the two causes of D 

(i.e., events B and C) are connected by their common cause A, observed states of C also 

provide information about the instantiation of the alternative causal path (e.g., observed 

values of C are diagnostic for B). For example, if C is observed to be absent the 

probability of event A is low; therefore it is unlikely that D is generated via the 

alternative causal chain A→B→D. However, the situation is different when C is not 

merely observed to be absent but actively prevented from occurring. Inhibiting C by 

means of external intervention renders variable C independent of A and ensures that D is 

not generated by C. However, this action leaves the backdoor path A→B→D intact. 

Thus, the probability of D occurring is higher when C is prevented by an intervention 

than when C is merely observed to be absent (provided the causal chain A→B→D 

consists of generative causal mechanisms). Correct estimates of the interventional and 

counterfactual probabilities are only possible when learners are sensitive to the mutual 

confounder A and the backdoor path. Experiment 2 investigates whether learners 

recognize that interventions and observations differ with respect to the way the second 

confounding pathway needs to be taken into account. 

Method 

Participants and Design 

Thirty-six undergraduate students from the University of Göttingen participated. 

None of them took part in Experiment 1. They received course credit for participation. 

Factor ‘causal model’ was varied between conditions, factors ‘type of inference’ and 

‘presence vs. absence of C’ were varied within-subjects. All participants were randomly 

assigned to either of the two conditions.  

Procedure and Materials  

Experiment 2 used the same cover story and instructions as Experiment 1. In the 

causal model phase, participants were introduced to either of the two causal models 

depicted in Figure 11. Again, participants were requested to attempt to learn “how well 

the communication system works”. This stage was followed by the observational 

learning phase with the same learning input as in Experiment 1 (cf. Table 3). The 
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observational learning phase was followed by the test phase in which the same set of 

questions (observational, interventional, counterfactual) was used as before. The only 

difference was that learners were not asked about the initial event A but had to estimate 

the probability of the final effect D. Experiment 2 also used the same rating scales as 

Experiment 1. Again, interventional, observational, and counterfactual questions were 

grouped into blocks; the order of blocks was counterbalanced across participants.  

Results and Discussion 

Table 4 shows the results of Experiment 2 along with the normative probabilities 

derived from causal Bayes nets. Again, learners’ sensitivity to the difference between 

observations and interventions is tested by comparing their estimates of the 

observational and interventional questions within conditions. The influence of the 

causal model is tested by contrasting the probability judgments between conditions. 

 

Table 4 

Mean Probability Judgments for Predictive Inference Questions in Experiment 2 (N = 36). 

  Observation 
  

Intervention 
  

Counterfactual Intervention  

Causal Model  P(d | c) P(d | ¬c) 
  

P(d | Do c) P(d | Do ¬c) 
  

P(d | ¬c. Do c) P(d | c. Do ¬c)  

Bayes Nets 97 17 86 44 79 74 

M 73.33 33.89 68.33 46.11 68.33 52.78 
Model 

A→C 
 

SD (16.45) (20.33) (21.76) (12.43) (21.21) (19.04) 

        

Bayes Nets 93 17 93 17 93 17 

M 81.11 16.11 83.33 13.33 76.67 22.22 
Model 

C→A 
 

SD (14.91) (11.45) (14.14) (9.08) (23.26) (26.91) 

Note. Normative values (range 0 – 100) derived from causal Bayes nets are shown in italics. 

 

Observations vs. interventions. The causal model’s parameters imply that in both 

conditions event D is more likely when C is observed to be present than when C is 

observed to be absent. Consistent with this prediction, in condition A→C learners 

judged P(d | c) higher than P(d | ¬c), F(1, 17) = 27.85, p < .001, MSE = 502.78, 

η2 = .62. The same result was obtained in condition C→A, F(1, 17) = 153.00, p < .001, 

MSE = 248.53, η2 = .90. 

Whereas both graphs entail that observed states of C are diagnostic for the state of 

variable A, the two causal models generate very different predictions for interventions in 

C. In condition A→C the variable targeted by the intervention is an intermediate event 
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in one of two alternative causal pathways. Due to the mutual confounder, event A, 

observed values of C provide information about the backdoor path whereas 

interventions in C “close the backdoor”. Even though D is still more likely when C is 

generated than when C is inhibited, this difference should be smaller than when C is 

passively observed to be present or absent. Consistent with the normative analysis, 

participants’ estimates for the interventional probabilities, P(d | Do c) and P(d | Do ¬c), 

differed, F(1, 17) = 9.87, p < .01,  MSE = 450.33, η2 = .37, but as predicted this 

difference was smaller than the difference between the observational questions, 

F(1, 17) = 3.67, p = .07, MSE = 364.13, η2 = .18.  

The crucial tests concern the single comparisons of merely observing a state of C 

with the very same state set by external intervention. As predicted by causal Bayes nets, 

learners judged the probability of D occurring higher when C was prevented by an 

intervention, P(d | Do ¬c), than when it was observed to be absent, P(d | ¬c), 

F(1, 17) = 5.13, p < .05, MSE = 262.09, η2 = .23. In accordance with the 

parameterization of the causal model, there was only a slight, non-significant difference 

between P(d | c) and P(d | Do c), F(1, 17) = 1.05, p = .32, η2 = .06. These results 

confirm the predictions of causal Bayes nets theory and demonstrate that learners were 

remarkably sensitive to the confounding backdoor path. 

A very different response pattern was obtained when learners were suggested the 

alternative causal model of condition C→A. Since in this condition the intervention 

targets the causal model’s initial event, it makes no difference whether states of C are 

merely observed or actively generated. Accordingly, participants judged D to be more 

likely when C was generated, P(d | Do c), than when C was prevented, P(d | Do ¬c), 

F(1, 17) = 249.9, p < .001, MSE = 176.47, η2 = .94. However, in contrast to condition 

A→C the difference between the two intervention questions was as large as the 

difference between the observational questions (F < 1). Moreover, no difference 

between observing C to be present and generating C by an intervention, P(d | c) and 

P(d | Do c), nor between observing C to be absent and preventing C by an intervention, 

P(d | ¬c) and P(d | Do ¬c), was found (both Fs < 1). Thus, participants recognized that 

the consequences of observations of and interventions in C are identical when the causal 

arrow between A and C is reversed. 

 Taken together, the results convincingly demonstrate learners’ capacity to 

distinguish seeing from doing when drawing complex predictive inferences. The data 

shows that the capacity to predict the consequences of interventions is not limited to 
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simple diagnostic judgments involving only a single causal relation but was also found 

when the inferences required taking into account multiple causal relations and 

confounding backdoor paths.  Participants also recognized that the implications of 

observations and interventions do not differ when the interventions refer to the model’s 

initial event. 

 Hypothetical vs. counterfactual interventions. A further question is whether 

participants correctly understood the difference between factual and counterfactual 

interventions when drawing complex causal inferences. For condition A→C, the chosen 

parameterization implies that the probability of D is only slightly higher in case of a 

counterfactual generation of C than in case of a counterfactual inhibition of C (cf. Table 

4). When C is observed to be absent but counterfactually generated (i.e., 

P(d | ¬c. Do c)), the probability of D is high because of the direct causal arrow C→D. 

However, the probability of D is only slightly lower in case of a counterfactual removal 

of C (i.e., P(d | c. Do ¬c). Here the observed presence of C makes it likely that the 

mutual confounder A was present which, in turn, raises the probability that D is 

generated via the backdoor path, even when C is counterfactually removed.  

Whereas the normative probabilities of condition A→C imply only a slight 

difference for the counterfactual question, the obtained probability judgments reveal a 

substantial difference. The counterfactual generation P(d | ¬c. Do c) received higher 

ratings than the counterfactual inhibition P(d | c. Do ¬c), F(1, 17) = 6.36, p < .05, 

MSE = 342.48, η2 = .27. The descriptive data shows that this effect is mainly due to an 

underestimation of the probability of D in case of a counterfactual removal of C. This 

underestimation also leads to a failure to obtain a reliable difference between estimates 

of the factual and counterfactual inhibition of C. The finding that no difference was 

obtained between the hypothetical generation, P(d | Do c), and  the counterfactual 

generation, P(d | ¬c. Do c) (F < 1) is in accordance with causal Bayes nets theory. Also 

in line with the normative analysis is that the factual prevention of C received lower 

ratings than the corresponding counterfactual prevention of C, but this difference failed 

to reach significance, F(1, 17) = 1.70, p = .21. These results indicate that learners had 

problems differentiating between hypothetical and counterfactual interventions when 

drawing predictive inferences, which required taking into account the confounding 

pathway. 

In condition C→A no difference is predicted between hypothetical and 

counterfactual interventions because the variable intervened in is the causal system’s 
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initial event. The results conform to the normative values. In accordance with the causal 

model induced in this condition, learners correctly inferred that D is more likely given 

that C is observed to be absent but counterfactually generated, P(d | ¬c. Do c), than 

when C is observed to be present but counterfactually removed, P(d | c. Do ¬c), 

F(1, 17) = 29.79, p < .001, MSE = 895.43, η2 = .64. No difference was found between 

the factual and counterfactual generation of C, F(1, 17) = 1.58, p = .23, and also no 

difference was obtained for the factual and counterfactual inhibition of C, 

F(1, 17) = 2.09, p = .17. 

The data shows that learners responses to the counterfactual questions were also 

affected by manipulations of the causal model. In accordance with the hypothesized 

causal model, given a counterfactual removal of C (i.e., P(d | c. Do ¬c) the final effect D 

was judged to be much more likely in condition A→C than in condition C→A, 

F(1, 34) = 15.47, p < .001, MSE = 543.30, η2 = .31. The chosen parameterizations imply 

only a small difference for the counterfactual generation of C. Consistently, 

P(d | ¬c. Do c) received only slightly lower ratings in condition A→C, F(1, 34) = 1.26, 

p = .27. 

To sum up, in contrast to the findings of Experiment 1 learners had some problems 

differentiating between hypothetical and counterfactual actions. This is probably due to 

the increased complexity of the causal inferences, which required taking into account 

the confounding backdoor path. 

5.4.3 Experiment 3  

Experiments 1 and 2 have provided convincing evidence that learners differentiate 

between observations and interventions and can infer the consequences of interventions 

from passively observed events. This was demonstrated for both simple diagnostic 

inferences (Experiment 1) and the more complex predictive of Experiment 2. 

However, it could be argued that reasoners derived their causal judgments mainly 

from the suggested causal models without adequately integrating the learning data they 

were provided with. This would support a top-down account of qualitative causal 

reasoning and refute the claim that top-down and bottom-up processes interact in a 

fashion anticipated by causal Bayes nets. Therefore, Experiments 3 and 4 were designed 

to provide unequivocal evidence that causal reasoning is not driven by the causal 

structure alone. Learners in Experiments 1 and 2 received identical learning input but 

were suggested different causal models. In contrast, in Experiments 3 and 4 participants 

are suggested identical causal structures but are provided with different kinds of data 
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during observational learning. Experiment 3 manipulates base rate information whereas 

Experiment 4 varies causal strength within the causal model. Thus, the experimental 

manipulation concerns the causal system’s parameters. If learners indeed consider the 

causal structure as well as the associated parameters then their estimates for the 

consequences of observations, hypothetical interventions, and counterfactual 

interventions should be affected by manipulations of the learning input. By contrast, if 

learners causal inferences are mainly driven by the suggested causal model, variations 

of the learning input should not affect their causal judgments.  

The goal of Experiment 3 is to investigate whether learners are sensitive to 

manipulations of base rate information and whether they take them into account when 

predicting the consequences of interventions. Base rates are not only relevant for 

observational inferences modeled by standard probability calculus (e.g., Bayes theorem) 

but also have to be considered when deriving interventional probabilities. For example, 

in Experiment 1 the interventional questions stated that event C was fixed by external 

intervention and learners were requested to estimate the probability of its actual cause A 

(i.e., give estimates of P(a | Do c) and P(a | Do ¬c)). The results show that participants 

correctly judged the probability of event A to be at the same level irrespective of 

whether C was generated or prevented by means of intervention. The basic principle 

that intervening in a variable renders the event independent of its actual causes is, of 

course, invariant against the absolute size of the cause’s base rate. However, since the 

normative answer to the interventional questions is given by the unconditional 

probability of event A (i.e., P(a)), learners should not only judge  P(a | Do c)  and 

P(a | Do ¬c) to be equal, but their responses should mirror the absolute value of A’s 

base rate P(a). For example, if variable C is fixed by an intervention participants should 

judge event A to be more likely when P(a) = 0.6 than when P(a) = 0.3.  

Manipulations of base rate information should also affect the more complex 

predictive inferences, which require taking into account the confounding backdoor path. 

Since the instantiation of the alternative causal chain A→B→C depends on the 

probability of the initial event A, manipulations of A’s base rate should influence causal 

judgments about the state of the final effect D. For example, if A is frequent (i.e., has a 

high base rate) it is more likely that D is generated via the alternative causal chain than 

when A is rare (i.e., has a low base rate). Thus, manipulations of A’s base rate should 

affect both diagnostic and predictive judgments.  
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Method 

Participants and Design 

Forty-eight undergraduate students from the University of Göttingen, Germany, 

participated. Factor ‘base rate’ was varied between conditions, factors ‘type of 

inference’ and ‘presence vs. absence of C’ were varied within-subjects. All participants 

were randomly assigned to either of the two conditions. Subjects received course credit 

for participation; none of them took part in Experiments 1 or 2. 

Procedure and Materials  

Causal model phase. Experiment 3 used the same cover story about the medieval 

communication system as Experiments 1 and 2. As before, participants were instructed 

to learn “how well the communication system works”. However, in contrast to the 

previous studies the structure of the causal system was not varied between conditions. 

Similar to Experiments 1 and 2, the causal model’s variables are connected by strong 

probabilistic causal links. As before, participants were not informed about any of the 

models’ parameters.  

The crucial manipulation of this experiment concerns the base rates of the initial 

event A and the variable later intervened in, event C. In Experiments 1 and 2, either 

tower A or C was close to the enemy territory, indicating that this was the causal 

model’s initial event (conditions A→C and C→A, respectively, cf. Figure 11). By 

contrast, in Experiment 3 learners were instructed that both towers A and C are close to 

a border they watch (see Figure 13). If either of these two towers spots enemy troops a 

fire is lit, resulting in the signal transmission via the other towers (i.e., there are two 

possible hidden causes which can initiate the 

signal transmission). This allows for the 

manipulation of the probability with which events 

A and C occur (i.e., their base rates). 

In condition AhighClow, the initial event A has a 

high base-rate, P(a) = 0.62, but the probability of 

C occurring in the absence of A is low,  

P(c | ¬a) = 0.26. This pattern is reversed in 

condition AlowChigh. In this condition the initial 

event’s base rate is rather low, P(a) = 0.3, but there is a strong hidden cause which can 

generate C when A is absent (i.e., P(c | ¬a) = 0.55) (cf. Table 5) . Raising and lowering 

 

Figure 13. Example of trial in Expe-

riment 3. 
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the parameter P(c | ¬a) inversely proportional to the base rate of the initial event A 

allows for keeping the number of cases in which D occurs equal across the two 

conditions; P(d) = 0.60 and P(d) = 0.58 in condition AhighClow and condition AlowChigh, 

respectively. The kind of questions participants would have to answer after the learning 

phase was not mentioned until the test phase.  

 

Observational learning phase. The instruction phase was followed by the learning 

phase in which learners passively observed patterns of covariation. While the same 

hypothetical causal model was suggested to all participants, learning input during 

observational learning was varied in accordance with the respective model’s parameters. 

A trial-by-trial based learning paradigm was employed with 60 trials implementing the 

parameters of the two causal models (cf. Table 5). Trials were presented in randomized 

order. As in Experiments 1 and 2, the trials presented information on a computer screen 

about the states of the four variables with each trial referring to a new day on which the 

communication system was observed. During each trial, a picture of the communication 

system was displayed showing the state of all four watchtowers (cf. Figure 13). 

Participants could continue at their own pace but were not allowed to refer back to 

previous trials. 

Table 5 

Parametrized Graphs and Learning Data of Experiment 3.  

 Causal Models   Learning Data  

   

 Data Pattern AhighClow AlowChigh 

  a.  b.  c.  d 29 9 

  a.  b.  c.¬d 1 1 

  a.¬b.  c.  d 2 2 

  a.¬b.  c.¬d 1 1 

  a.  b.¬c.  d 5 4 

  a.  b.¬c.¬d 1 1 

  a.¬b.¬c.  d 0 0 

  a.¬b.¬c.¬d 0 0 

¬a.  b.  c.  d 0 0 

¬a.  b.  c.¬d 0 0 

¬a.¬b.  c.  d 4 20 

¬a.¬b.  c.¬d 1 4 

¬a.  b.¬c.  d 0 0 

¬a.  b.¬c.¬d 0 0 

¬a.¬b.¬c.  d 0 0 

 

Condition AhighClow 

 

Condition  AlowChigh 

  ¬a.¬b.¬c.¬d 16 18 
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Test phase. The observational learning phase was followed by the test phase in 

which the same questions (observational, interventional, counterfactual) were asked as 

in Experiments 1 and 2. In this study learners were requested to draw both diagnostic 

inferences from C to A and predictive inferences from C to D. The questions stated the 

current status of variable C (present vs. absent) and whether the state of tower C was 

merely observed, intervened in, or counterfactually altered. Participants first had to give 

estimates of the probability of A and were then asked about D before proceeding to the 

next question.  Thus, one question was diagnostic, the other predictive. In total, each 

participant had to answer 12 questions (state of C � type of question � type of 

inference). All estimates for the observational and interventional questions were given 

on a rating scale ranging from “0 = There definitely is no signal fire on tower A [D]” to 

“100 = There definitely is a signal fire on tower A [D]”. For the counterfactual 

questions, the same scale was used but labeled with “0 = There definitely would not 

have been a signal fire on tower A [D]” and “100 = There definitely would have been a 

signal fire on tower A [D]”. Interventional, observational, and counterfactual questions 

were grouped into blocks; the order of blocks was counterbalanced.  

Results and Discussion: Diagnostic Inferences 

Table 6 shows the results for the diagnostic inference questions along with the 

normative values derived from causal Bayes nets. 

 

Diagnostic inferences: observations vs. interventions. The within-subjects 

comparisons of the observational probabilities provide first evidence for how learners’ 

responses were affected by the varying base rates of events A and C.  In condition 

Table 6 

Mean Probability Judgments for Diagnostic Inference Questions in Experiment 3 (N = 48). 

  Observation   Intervention   Counterfactual Intervention  

Base Rates  P(a | c) P(a | ¬c)   P(a | Do c) P(a | Do ¬c)   P(a | ¬c. Do c) P(a | c. Do ¬c)  

Bayes Nets 87 27 65 65 27 87 

M 50.83 38.75 36.67 47.08 35.42 45.00 AhighClow 

SD (20.41) (18.25) (23.90) (16.81) (25.36) (24.67) 

        

Bayes Nets 35 22 30 30 22 35 

M 35.42 33.33 28.33 34.58 29.17 31.25 AlowChigh 

SD (18.41) (14.65) (16.59) (16.15) (23.20) (15.97) 

Note. Normative values (range 0 – 100) derived from causal Bayes nets are shown in italics. 
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AhighClow, a clear difference for the observational probabilities P(a | c) and P(a | ¬c) was 

obtained, F(1, 23) = 6.02, p < .05, MSE = 291.21, η2 = .21, even though both estimates 

showed a strong regression tendency (i.e., P(a | c) was underestimated and P(a | ¬c) was 

overestimated). Nevertheless, learners’ estimates of the observational probabilities 

mirror the fact that in this condition observed values of C are highly diagnostic for the 

initial event A. In contrast, when A has a low base-rate and C has a strong hidden cause 

(condition AlowChigh), observed values of C provide only little information about the 

state of A. In accordance with this prediction, participants in this condition judged 

probability of A being present given that C was present (i.e., P(a | c)) only slightly 

higher than when C was observed to be absent (i.e., P(a | ¬c)) (F < 1).  

Learners’ sensitivity to base rate information is directly tested by contrasting the 

probability judgments between conditions. As predicted by causal Bayes nets, P(a | c) 

received higher ratings in condition AhighClow  than in condition AlowChigh, 

F(1, 46) = 7.55, p < .01, MSE = 377.81, η2 = .14. In line with the normative predictions 

only a small, non-significant difference was found for estimates of P(a | ¬c), 

F(1, 46) = 1.29, p = .26. Thus, participants’ responses to the observational questions 

were clearly affected by variations in the models’ parameterizations. 

The next analyses concern the question of whether learners distinguished 

observations from interventions. At variance with the normative predictions, the 

interventional probabilities in condition AhighClow differed from each other, 

F(1, 23) = 5.21, p < .05, MSE = 249.91, η2 = .19. A similar result was obtained in 

condition AlowChigh; here the interventional probabilities were also found to differ from 

each other, F(1, 23) = 4.53, p < .05, MSE = 103.53, η2 = .16. A closer inspection of the 

data revealed that these deviations are mainly due to a small number of participants who 

strongly underestimated the probability P(a | Do c). However, the comparisons of the 

observational and interventional probabilities demonstrate that learners differentiated 

between seeing and doing in diagnostic reasoning. In condition AhighClow, event A was 

judged to be more likely when C was merely observed to be present (i.e., P(a | c)) than 

when C was generated by an intervention, (i.e., P(a | Do c)), F(1, 23) = 9.09, p < .01, 

MSE = 264.86, η2 = .28. Conversely, the observational probability P(a | ¬c) received 

lower ratings than the corresponding interventional probability P(a | Do ¬c), 

F(1, 23) = 11.50, p < .01, MSE = 72.46, η2 = .33. The alternative parameterization of 

condition AlowChigh also implies some differences between the normative values for 

observations and interventions. Consistent with the causal Bayes nets analysis, in this 
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condition participants judged P(a | c)  higher than P(a | Do c), F(1, 23) = 5.66, p < .05, 

MSE = 106.43, η2 = .20, but the predicted difference between P(a | ¬c) and P(a | Do ¬c) 

was not found (F < 1).  

The influence of base rate information on learners’ interventional judgments is 

directly tested by contrasting their interventional probability judgments between 

conditions. As predicted by causal Bayes nets, both interventional probabilities received 

higher ratings when the initial event A had a high base rate (condition AhighClow) than 

when A had a low base rate (condition AlowChigh). However, only the contrast for the 

preventive intervention question (i.e., P(a | Do ¬c)) turned out to be significant, 

F(1, 46) = 6.91, p < .05, MSE = 271.56, η2 = .13. Even though descriptively in line with 

the normative values, the difference for the generative action (i.e., P(a | Do c)) failed to 

reach significance, F(1, 46) = 1.97, p = .17.  

Taken together, participants distinguished between seeing and doing and responded 

differently to the observational and interventional questions. Moreover, the probability 

estimates were clearly affected by manipulations of base rate information. This finding 

refutes the hypothesis that learners’ causal judgments are driven by qualitative 

reasoning alone. However, the finding that the interventional probabilities differed from 

each other is in conflict with the normative analysis and also with the results of 

Experiment 1, in which learners correctly judged the interventional probabilities to be at 

the same level. Since in the present study in both conditions event A was judged to be 

more likely when C was prevented than when it was generated, this finding is not only 

at variance with causal Bayes nets theory but also cannot be attributed to a failure to 

distinguish seeing from doing. It is, however, not clear why the generative action 

received lower ratings than the preventive action. One possible explanation is that some 

learners confused hypothetical with counterfactual intervention. This would explain 

why event A was seen to be more likely given C’s prevention than given C’s generation 

(see below).  

Diagnostic inferences: hypothetical vs. counterfactual interventions. As in 

Experiments 1 and 2, learners were not only asked to predict the consequences of  

hypothetical interventions but also requested to estimate the probability of A given 

counterfactual interventions in C. These judgments, too, should reflect variations of 

base rate information.  

Since the probability of event A has to be updated in accordance with the factual 

observation of C, in condition AhighClow event A is more likely given that C is 
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counterfactually inhibited than when C is counterfactually generated (because the 

counterfactual inhibition logically implies that C has been observed to be present and 

the counterfactual generation implies that C has been observed to be absent). In 

accordance with this prediction, in condition AhighClow participants judged A to be less 

likely given that C was counterfactually  generated (i.e., P(a | ¬c. Do c) than when C 

was counterfactually inhibited (i.e., P(a | c. Do ¬c), F(1, 23) = 4.19, p = .05, 

MSE = 262.95, η2 = .15. In contrast, the parameterization of condition AlowChigh entails 

only a minor difference between the two counterfactual probabilities. Consistent with 

this prediction, only a small, non-significant difference was obtained (F < 1).  

With respect to the between-condition comparisons, causal Bays nets predicts 

higher ratings for P(a | c. Do ¬c) in condition AhighClow, but no difference is expected for 

P(a | ¬c. Do c). Consistent with these predictions, the counterfactual probability 

P(a | c. Do ¬c) received higher ratings in condition AhighClow than in condition AlowChigh, 

F(1, 46) = 5.25, p < .05, MSE = 431.79, η2 = .10, but only a small, non-significant 

difference was found between conditions for P(a | ¬c. Do c) (F < 1). However, 

participants failed to differentiate hypothetical from counterfactual interventions. In 

both conditions the hypothetical and counterfactual interventions received the same 

ratings, both for the prevention and generation of C (all Fs < 1).  

In general, learners’ estimates of the counterfactual probabilities matched the 

normative values better than the responses to the hypothetical interventions. In 

accordance with the normative analyses, manipulations of the learning data (i.e, base 

rates) influenced the counterfactual probability judgments. The fact that no difference 

was found between estimates for factual and counterfactual interventions indicates that 

learners confused the two types of interventions and treated the hypothetical actions as 

counterfactual intervention questions.  

Results and Discussion: Predictive inferences 

Table 7 shows the results for the predictive inference questions along with the 

normative probabilities. In contrast to the diagnostic judgments, probability estimates 

for the final effect D require that one takes into account the complete model and its 

parameters. The chosen parameterizations of the two models allow for testing for both 

learners’ capacity to differentiate between seeing and doing and their sensitivity to the 

diverging base rates of events A and C.  
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Table 7 

Mean Probability Judgments for Predictive Inference Questions in Experiment 3 (N = 48). 

  Observation   Intervention   Counterfactual Intervention  

Base Rates  P(d | c) P(d | ¬c)   P(d | Do c) P(d | Do ¬c)   P(d | ¬c. Do c) P(d | c. Do ¬c)  

Bayes Nets 92 23 88 50 80 67 

M 80.00 38.75 76.67 47.08 70.83 42.08 AhighClow 

SD (15.88) (23.46) (20.78) (19.89) (25.18) (24.84) 

        

Bayes Nets 84 17 84 20 83 23 

M 80.42 25.83 72.50 31.67 70.42 27.92 AlowChigh 

SD (14.89) (18.40) (15.95) (20.36) (18.99) (17.44) 

Note. Normative values (range 0 – 100) derived from causal Bayes nets are shown in italics. 

 

Predictive inferences: observations vs. interventions.  Due to the direct causal arrow 

C→D in both models the final effect D is more likely when C is observed to be present 

than when C is observed to be absent. As predicted, the observational probabilities 

P(d | c) and P(d | ¬c) differed significantly, F(1, 23) = 50.33, p < .001, MSE = 405.71, 

η2 = .69 in condition AhighClow, as well as in condition AlowChigh, F(1, 23) = 122.77, 

p < .001, MSE = 291.21, η2 = .84. Similarly, due to the direct causal link C→D, 

estimates of D should also differ for the interventional questions.  Accordingly, a 

significant difference between the interventional probabilities P(d | Do c) and 

P(d | Do ¬c) was obtained in condition AhighClow, F(1, 23) = 35.80, p < .001, 

MSE = 293.39, η2 = .61, as well as in condition AlowChigh, F(1, 23) = 52.95, p < .001, 

MSE = 377.90, η2 = .70.  

The crucial test of sensitivity to the difference between seeing and doing is provided 

by comparing the probability of D given observations of and interventions in C. To give 

adequate estimates of D, learners need to take into account the backdoor path A→B→D, 

especially when preventing C by an intervention. However, the difference between 

observations and interventions crucially depends on the base rate of the initial event A: 

whereas the alternative causal pathway is likely to be instantiated when A has a high 

base rate (condition AhighClow), the influence of the backdoor path can be neglected 

when the initial event A has a low base rate (condition AlowChigh). Therefore, learners in 

condition AhighClow should differentiate between observing C to be absent and actively 

preventing C, whereas no difference is predicted for condition AlowChigh. The statistical 

analyses are in accordance with these predictions: in condition AhighClow the 

observational probability P(d | ¬c) was judged lower than the corresponding 



CAUSAL BAYES NETS AS MODELS OF CAUSAL COGNITION 85 

interventional probability P(d | Do ¬c), F(1, 23) = 4.29, p < .05, MSE = 194.20, 

η2 = .16, but no difference was obtained in condition AlowChigh, F(1, 23) = 1.57, p = .22. 

Thus, participants not only proved to be sensitive to the alternative pathway in general 

but also understood the importance of A’s base rate for the instantiation of the backdoor 

path. Consistent with the normative analysis, in condition AhighClow learners gave similar 

ratings for P(d | c) and P(d | Do c) (F < 1). In conflict with the normative values is the 

finding that in condition AlowChigh event D was judged to be more likely when C was 

observed to be present than when it was actively generated, F(1, 23) = 4.95, p < .05, 

MSE = 152.08, η2 = .18.  

The influence of base rate information is further revealed by contrasting learners’ 

responses to the interventional questions between conditions. Here the crucial 

comparison concerns learners’ estimates of event D given the inhibition of C (i.e., 

P(d | Do ¬c) since this probability is most strongly influenced by the backdoor path. In 

contrast, due to the strong causal arrow C→D, no difference is expected for estimates of 

P(d | Do c). As predicted by causal Bayes nets theory, learners gave equal judgments for 

the generative interventional question, (F < 1), whereas P(d | Do ¬c) received higher 

ratings when A had a high base rate than when A had a low base rate, F(1, 46) = 7.04, 

p = .01, MSE = 404.98, η2 = .13. 

This finding demonstrates that learners proved to be sensitive to the relevance of the 

backdoor path in accordance with the base rate information acquired through 

observational learning. In summary, while some participants had problems to integrate 

base rate information in their probability judgments, the general response pattern 

confirms that learners successfully distinguished between seeing and doing and took 

into account the causal model’s parameters. 

Predictive inferences: hypothetical vs. counterfactual interventions. Due to the 

causal arrow C→D, event D is more likely to occur when C is counterfactually 

generated than when C is counterfactually removed, irrespective of the chosen 

parameterization. This is mirrored in learners’ responses to the counterfactual 

intervention questions: in both conditions P(d | ¬c. Do c) received higher ratings than 

P(d | c. Do ¬c). In condition AhighClow, the contrast yields F(1, 23) = 15.38, p < .01, 

MSE = 644.84, η2 = .40, and, consistently, a significant difference was also found in 

condition AlowChigh, F(1, 23) = 59.88, p < .01, MSE = 361.96, η2 = .72. In line with the 

normative analysis, participants gave higher ratings for P(d | ¬c. Do c) in condition 

AhighClow than in condition AlowChigh, F(1, 46) = 5.23, p < .05, MSE = 460.69, η2 = .10. 



CAUSAL BAYES NETS AS MODELS OF CAUSAL COGNITION 86 

Also predicted is the finding that estimates of P(d | ¬c. Do c) did not differ between 

conditions (F < 1).  

The chosen parameterizations do not imply many differences between hypothetical 

and counterfactual interventions. In condition AhighClow, learners’ causal judgments 

reflect that the probability of D occurring is only slightly lower for a counterfactual 

generation than for a hypothetical generation of C, F(1, 23) = 1.65, p = .21. However, 

whereas the normative analysis implies that the probability of D is higher in case of a 

counterfactual removal of C than when C is hypothetically prevented, no difference was 

found between the two estimates (F < 1). In condition AlowChigh, the normative values 

derived for the counterfactual actions are essentially the same as those for the factual 

interventions. Accordingly, under this parameterization no difference was obtained 

between hypothetical and counterfactual intervention questions (both Fs < 1).  

5.4.4 Experiment 4 

The findings of Experiment 3 show that learners integrate base rate information 

when drawing causal inferences from observations and interventions. Experiment 4 

aims at investigating further the role of variations in a causal model’s parameters. While 

Experiment 3 showed how causal reasoning was influenced by manipulations of the 

events’ base rates, Experiment 4 varies the strength of the causal links connecting the 

observed events.  

The differences between observations and interventions crucially depend on the 

strength of a causal model’s relations. For example, consider the case of an inhibitory 

action preventing the occurrence of variable C. The probability of the final effect D then 

depends on the instantiation of the alternative causal chain A→B→D, which is 

influenced by two factors. First, the base rate of variable A determines how likely it is 

for the chain’s initial event to occur. Learners’ sensitivity to manipulations of this 

parameter was investigated in Experiment 3. The second relevant factor is the strength 

of the causal relations in the chain. For example, with a high base rate of event A and a 

causal path made of strong causal relations, there is a high probability for D to be 

generated via this causal path. In contrast, with the same base rate but a causal chain 

consisting of rather weak causal arrows, the influence of event A on the final effect D is 

attenuated by the weak relations the path is made of. Even though the high base rate 

makes it likely that the chain’s initial event occurs, the influence of A on D also depends 

on the strengths of the causal links A→B and B→D. Thus, in addition to base rates the 



CAUSAL BAYES NETS AS MODELS OF CAUSAL COGNITION 87 

strength of the causal model’s links is also an important factor that has to be considered 

when predicting the consequences of interventions.  

The rationale of Experiment 4 is the same as in Experiment 3. All learners are 

suggested the same causal model, but the graph’s parameters (i.e., the learning input) 

are varied between conditions. If learners’ causal inferences are by and large determined 

by causal structure, then different parameterizations should not affect the causal 

inferences. In contrast, if both the model and its parameters are taken into account, 

learners’ estimates of the observational, interventional, and counterfactual probabilities 

should reflect manipulations of causal strength. 

Method 

Participants and Design 

Thirty-six undergraduate students from the University of Göttingen, Germany, 

participated. Factor ‘parameterization’ was varied between conditions, factors ‘type of 

inference’ and ‘presence vs. absence of C’ were varied within-subjects. Subjects 

received course credit for participation. All participants were randomly assigned to 

either of the two conditions. None of them took part in Experiments 1 to 3. 

Procedure and Materials 

Causal model phase. The same diamond-shaped causal structure as in Experiments 

1 to 3 was used, but this time the four variables of the causal model were introduced as 

chemical substances causally interacting in wine casks. Each of the substances was 

given a fictitious label (e.g., Renoxin, Desulfan). Participants were told that substance A 

causes the generation of substances B and C, each of which can then independently 

cause the generation of substance D. It was also pointed out that the causal relations are 

probabilistic. In addition, participants were shown the graph of the causal model. They 

were instructed to attempt to learn the strength of the causal relations from the learning 

data. The kind of questions they would have to answer after the learning phase was not 

mentioned until the test phase.  

The experimental manipulation lies in the different parameterizations of the two 

causal chains leading from A to D.  In contrast to Experiment 3, which manipulated base 

rates but did not vary causal strength within the model, in Experiment 4 there are both 

strong and weak links connecting the model’s variables. Thus, in this study the base rate 

of the initial event A is identical across conditions, but the causal arrows’ strengths are 

manipulated. Table 8 shows the two different parameterizations of the causal graphs 
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along with the data sets generated from the two graphs. In condition WeakA→C→D (top 

left of Table 8), the causal path A→C→D consists of weak probabilistic relations while 

the alternative causal chain A→B→D is made of strong relations. For the alternative 

parameterization of the condition StrongA→C→D (bottom left of Table 8), this pattern is 

reversed. In this condition, the causal path A→C→D involves strong causal arrows, but 

the alternative chain A→B→D comprises only weak probabilistic relations. Because 

there is always one pathway consisting of strong causal arrows and one chain made of 

weak arrows, the unconditional probability P(d) is nearly identical across conditions 

(P(d) = .36 and P(d) = .32 in conditions StrongA→C→D and WeakA→C→D, respectively).  

 

Observational learning phase. The learning phase consisted of 50 trials in 

randomized order which implemented the parameters of conditions WeakA→C→D and 

StrongA→C→D, respectively (cf. Table 8). The learning data varied according to the 

model’s parameters. The trials presented information on a computer screen about the 

states of the four variables, with each trial referring to a different wine cask. Each 

chemical substance was represented by a circle with the label of the corresponding 

substance. At the beginning of each trial, all four circles were labeled with question 

marks indicating that the variables’ states in this wine cask were not yet known. Then 

Table 8 

Parameterized Graphs and Learning Data of Experiment 4.  

 Causal Models   Learning Data  

   

 Data Pattern WeakA→C→D StrongA→C→D 

  a.  b.  c.  d 4 7 

  a.  b.  c.¬d 1 1 

  a.¬b.  c.  d 1 10 

  a.¬b.  c.¬d 5 3 

  a.  b.¬c.  d 11 1 

  a.  b.¬c.¬d 2 2 

  a.¬b.¬c.  d 0 0 

  a.¬b.¬c.¬d 3 3 

¬a.  b.  c.  d 0 0 

¬a.  b.  c.¬d 0 0 

¬a.¬b.  c.  d 0 0 

¬a.¬b.  c.¬d 0 0 

¬a.  b.¬c.  d 0 0 

¬a.  b.¬c.¬d 0 0 

¬a.¬b.¬c.  d 0 0 

 

Condition  WeakA→C→D 

 

Condition   StrongA→C→D 

  ¬a.¬b.¬c.¬d 23 23 
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information about the four variables was given, that is, which chemicals were present 

and which were absent. The presence of a chemical substance was depicted by a colored 

circle, its absence by a crossed-out circle. Figure 14 displays two examples of learning 

trials. 
 

  

Figure 14. Example of trials in Experiment 4. 

 

Information about the substances was given successively in the temporal order 

implied by the causal model. Thus, information about the initial event A was given first, 

followed by information about the presence or absence of B and C, and finally 

information about D was provided. This sequential presentation of information also 

conforms to the standard design of associative learning experiments. The interstimulus 

interval was 1 s; after the sequence had finished the information remained for another 

2 s on the screen before the next trial began. Participants started each of the trials by  

pressing the space bar on the keyboard.  

Test Phase. In this experiment, learners were only requested to draw predictive 

inferences. The questions first stated the current status of variable C (present vs. absent) 

and then asked to estimate the probability of variable D.  
 

  

Figure 15. Screen-shots of test phase in Experiment 4. Left: Observing C to be absent. Right: Inhibiting 

C by intervention (i.e., Do ¬c). 

 

For the observational questions, participants were instructed to imagine observing 

substance C in a previously unseen wine cask and then to estimate the probability that 

substance D is present, too (i.e., they estimated P(d | c)). Analogously, participants were 

asked to estimate the conditional probability of D when C was observed to be absent 

(i.e., P(d | ¬c)). For the interventional questions learners were asked to imagine that C 

was generated or eliminated by an intervention. For the generative intervention, learners 
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were requested to imagine that substance C was added to a new wine cask (i.e., 

P(d | Do c)). For the inhibitory interventional question they were asked to imagine that 

C was inhibited from developing by adding a substance called “Anti-C” (i.e., 

P(d | Do ¬c)). For the counterfactual questions participants were asked to imagine a 

counterfactual intervention, that is, an intervention contradicting the factual observation 

of C being present or absent. For the counterfactual generative intervention learners 

were asked to imagine a previously unseen cask in which C was observed to be absent, 

but to suppose substance C had been added to this very cask. Thus, this question 

required to the estimation of the counterfactual probability P(d | ¬c. Do c). Conversely, 

to estimate the counterfactual probability P(d | c. Do ¬c), participants were requested to 

imagine a wine cask in which C was observed to be present, but to imagine that the 

development of substance C had been prevented by adding “Anti-C” to this cask.  

Ratings for the observational and interventional questions were given on a 0 - 100 

scale ranging from “0 = D is definitely not present” to “100 = D is definitely present”. 

The same scale was used for the counterfactual questions but labeled with “0 = D 

definitely would not have been present” and “100 = D definitely would have been 

present”. Interventional, observational, and counterfactual questions were grouped into 

blocks with the order of blocks counterbalanced across participants. 

Results and Discussion 

Table 9 shows the results for the observational, interventional, and counterfactual 

inference questions along with the normative probabilities.  

Table 9 

Mean Probability Judgments for Predictive Inference Questions in Experiment 4 (N = 36). 

  Observation   Intervention   Counterfactual Intervention  

Causal Strength  P(d | c) P(d | ¬c)   P(d | Do c) P(d | Do ¬c)   P(d | ¬c. Do c) P(d | c. Do ¬c)  

Bayes Nets 59 23 39 30 34 56 

M 50.56 35.56 41.11 35.56 45.00 40.00 WeakA→C→D 

SD (25.55) (14.23) (24.47) (14.23) (24.07) (22.49) 

        

Bayes Nets 81 03 79 7 78 14 

M 63.33 18.47 55.97 18.47 58.89 19.03 StrongA→C→D 

SD (22.49) (14.98) (25.97) (15.75) (22.98) (19.31) 

Note. Normative values (range 0 – 100) derived from causal Bayes nets are shown in italics. 
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Observations vs. interventions. In both conditions the model’s parameters imply 

that D is more likely to occur when C is observed to be present than when the event is 

observed to be absent. Learners’ responses to the observational questions indicate that 

they considered observed states of C to be diagnostic for event D. A significant 

difference was obtained for the observational probabilities P(d | c) and P(d | ¬c) in 

condition WeakA→C→D, F(1, 17) = 5.62, p < .05, MSE = 360.29, η2 = .25, as well as in 

condition StrongA→C→D, F(1, 17) = 73.04, p < .001, MSE = 247.97, η2 = .81.  

The capacity to differentiate seeing from doing is revealed by comparing learners’ 

responses to the observational and interventional questions. Whereas the chosen 

parameterizations imply a difference between the observational probabilities in both 

conditions, the consequences of interventions in C crucially depend on the strength of 

causal chain intervened in. In condition WeakA→C→D there is only a weak causal relation 

between the variable intervened in, C, and the final effect, D. Therefore, the probability 

of D occurring is only slightly higher when C is generated than when C is prevented. As 

anticipated by causal Bayes nets, in this condition learners judged the probability of D 

to be at the same level independent of whether C was generated  (i.e., P(d | Do c)) or 

prevented by means of intervention (i.e., P(d | Do ¬c)) (F < 1). A different pattern is 

predicted for condition StrongA→C→D, in which the variable targeted by the intervention 

is part of the strong causal chain. Due to the strong causal arrow C→D, event D is much 

more likely to occur when C is generated than when the event is prevented. The 

obtained response pattern matches the normative predictions: contrary to condition 

WeakA→C→D, a significant difference was obtained for the interventional probabilities 

P(d | Do c) and P(d | Do ¬c), F(1, 17) = 31.85, p < .001, MSE = 397.43, η2 = .65. This 

finding indicates that learners differentiated between observations and interventions 

depending on the causal model’s parameters. 

This conclusion is corroborated by the comparisons of the observational and 

interventional probabilities. In condition WeakA→C→D a substantial difference is 

predicted between P(d | c) and P(d | Do c), but only a slight difference is expected 

between observing C to be absent (i.e., P(d | ¬c)) and preventing C by external 

intervention (i.e., P(d | Do ¬c)). Consistent with this prediction, no difference was 

obtained for P(d | ¬c)) and P(d | Do ¬c) (F < 1). In contrast, participants judged the 

probability of D considerably higher when C was observed to be present P(d | c) than 

when it was generated by an intervention P(d | Do c). However, the obtained difference 

failed to reach significance, F(1, 17) = 2.82, p = .11, η2 = .12. Contrary to condition 
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WeakA→C→D, in condition StrongA→C→D no difference between observations and 

interventions is predicted. In accordance with this prediction learners in this condition 

neither differentiated between observing C to be present and generating C by an 

intervention, F(1, 17) = 1.41, p = .25,  nor between observing C to be absent and 

preventing C by active manipulation (F < 1). 

Finally, the comparisons of learners’ interventional judgments between conditions 

test for the influence of the causal model’s parameters. As anticipated by causal Bayes 

nets theory, learners’ predictions for both the generative and preventive intervention 

differed depending on the causal model’s parameters. The generative interventional 

question P(d | Do c) received higher ratings in condition StrongA→C→D than in condition 

WeakA→C→D,  but only approached significance, F(1, 34) = 3.12, p = .09, MSE = 636.53,  

η2 = .09.  As predicted, the preventive interventional questions P(d | Do ¬c) received 

lower ratings, F(1, 34) = 11.67, p < .01, MSE = 225.26, η2 = .26.  

Taken together, the results demonstrate that participants’ interventional inferences 

were sensitive to the causal model’s parameters.  

Hypothetical vs. counterfactual interventions. Finally, learners’ responses to the 

counterfactual intervention questions are analyzed. For condition WeakA→C→D, causal 

Bayes nets theory again predicts that the counterfactual generative intervention, 

P(d | ¬c. Do c), should receive lower ratings than the counterfactual inhibitory 

intervention, P(d | c. Do ¬c). At variance with this prediction, P(d | ¬c. Do c) received 

slightly higher ratings than P(d | c . Do ¬c), though the difference was not significant 

(F < 1). It is likely that learners confused hypothetical with counterfactual interventions, 

which is also indicated by the comparisons of learners’ estimates for the consequences 

of hypothetical and counterfactual interventions. The parameters of condition 

WeakA→C→D imply only a small difference between the hypothetical and counterfactual 

generation of C. In line with this prediction estimates of P(d | Do c) and P(d | ¬c. Do c) 

did not differ, F(1, 17) = 1.35, p = .26. With respect to the prevention of event C, the 

causal model’s parameters imply that the probability of D given a counterfactual 

inhibition of C, P(d | c. Do ¬c), is higher than the probability of D conditional on a 

hypothetical prevention of C, P(d | Do ¬c). Descriptively, the data conformed to this 

prediction, but the comparison failed to reach significance F (1, 17) = 1.00, p = .33. 

For condition StrongA→C→D, the model’s parameters imply only minor differences 

between factual and counterfactual interventions. In accordance with the 

parameterization, the counterfactual generation of C, P(d | ¬c. Do c), received higher 
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ratings than the counterfactual prevention of C, P(d | c. Do ¬c), F(1, 17) = 26.71, 

p < .001, MSE = 535.47, η2 = .61. Moreover, a difference between factual and 

counterfactual actions was found neither for the generation of C nor for the prevention 

of C (both Fs < 1). Taken together, the findings indicate that participants failed to 

differentiate between factual and counterfactual interventions.  

However, learners’ responses to the counterfactual intervention questions were 

clearly affected by the parameters associated with the two causal models. Consistent 

with the values derived from causal Bayes nets, the counterfactual generation of C was 

seen to have more impact on the probability of D occurring when C was part of the 

causal pathway made of strong probabilistic relations. Accordingly, estimates of 

P(d | ¬c. Do c) were higher in condition StrongA→C→D than in condition WeakA→C→D, 

though the difference failed to reach significance, F(1, 34) = 3.14, p = .09, 

MSE = 553.76, η2 = .08. Similarly, responses to the counterfactual prevention question 

(i.e., P(d | c. Do ¬c)) were lower in condition StrongA→C→D than in condition 

WeakA→C→D, F(1, 34) = 9.01, p < .001, MSE = 439.39, η2 = .21.  

Overall, the analyses of the response patterns obtained for the counterfactual 

intervention questions indicate that learners were very sensitive to the causal model’s 

parameters, although they did not differentiate between counterfactual and hypothetical 

interventions.   

5.4.5 Experiments 1 to 4: Summary and Discussion 

Taken together, the results of Experiments 1 to 4 provide clear evidence that 

learners successfully distinguished between merely observed states of variables and the 

very same states generated by interventions. The capacity to distinguish seeing from 

doing was demonstrated both for simple diagnostic judgments involving a single causal 

relation and more complex predictive inferences which required taking into account 

multiple variables and confounding pathways. In all studies participants had the 

competency to derive interventional predictions from causal models parameterized by 

passively observed events. 

The results of Experiment 1 show that participants understood that intervening in an 

effect renders it independent of its actual causes, that is, learners performed graph 

surgery. However, when a different model was suggested in which the variable targeted 

by the intervention was the cause of the variable asked for, learners correctly understood 

that there is no difference between seeing and doing. In addition, participants 

successfully differentiated hypothetical from counterfactual interventions. Even though 
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all subjects received identical learning input, learners’ predictions for the consequences 

of actual and counterfactual interventions differed depending on minimal variations of 

the causal model assumed to underlie the data.  

Experiment 2 extends these results by demonstrating that learners also have the 

capacity to differentiate between observations and interventions when a confounding 

backdoor path has to be taken into account. The analyses of the response patterns 

provide not only convincing evidence that learners correctly distinguished between 

observations and interventions but also demonstrate a surprising grasp of the 

implications of confounding pathways in a complex causal model. Participants correctly 

understood that interventions and observations differ with respect to the way the second 

confounding pathway needs to be taken into account. In line with causal Bayes nets 

theory and the results of the first study, assumptions about causal structure strongly 

influenced learners’ causal inferences. Participants correctly recognized that the 

potentially diverging consequences of observations and interventions crucially depend 

on the underlying causal model. However, while the results of Experiment 1 

demonstrate that participants correctly distinguished hypothetical from counterfactual 

interventions, this capacity was impaired for the more complex inference tasks of 

Experiment 2. Even though the descriptive data indicates that participants draw a 

distinction between hypothetical and counterfactual actions, they had problems to 

differentiate between the two types of interventions. In general, the results of 

Experiments 1 and 2 emphasize the role of top-down influences in causal cognition and 

challenge purely bottom-up approaches of causal induction.  

Experiments 3 and 4 further investigated the role of the learning data. The findings 

of the two studies demonstrate that learners integrate a causal model’s parameters in 

their causal inferences. Since identical causal models lead to very different causal 

judgments depending on the learning input these results refute the explanation that 

learners’ causal inferences were mainly driven by the causal models suggested to them 

prior to observational learning. Experiment 3 investigated participants’ sensitivity to 

base rate information in causal reasoning. The results show that learners’ responses 

were clearly affected by variations of the base rate of events A and C. For example, 

when the initial event A was frequent, it was correctly understood that in case of a 

preventive intervention in C the backdoor path must be taken into account. Conversely, 

when the instantiation of the backdoor path was rather unlikely because the initial event 

was rare learners’ responses reflected that there was only a slight difference between 
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seeing and doing. However, the obtained response patterns also showed some deviations 

from the normative values. One potential factor contributing to this problem was that 

some learners seemed to have misunderstood certain aspects of the cover story (e.g., 

they assumed the hidden causes generating A and C not to be independent). In addition, 

a number of studies on judgment and decision making have shown that people often 

tend to neglect base rate information, a phenomenon known as base rate neglect or base 

rate fallacy (e.g., Eddy, 1982; Kahneman & Tversky, 1982). This might also have 

contributed to the deviations from the normative values. 

Finally, Experiment 4 illustrates how the strength of the causal relations affects 

causal inferences. As in Experiment 3, participants were suggested identical causal 

models but the learning input entailed different parameterizations of the causal models. 

As in Experiment 3, participants’ causal inferences varied systematically in accordance 

with the manipulations of the learning input. For example, learners understood that a 

confounding backdoor path consisting of strong causal relations will exhibit a larger 

influence on the probability of the final effect occurring than the same pathway 

consisting of weak causal relations. Thus, it was correctly recognized that the strength 

of the causal mechanisms connecting the model’s variables crucially influences the 

consequences of interventions. 

Taken together, the findings of the four experiments illustrate how reasoners 

integrate both qualitative knowledge (i.e., causal models) and quantitative knowledge 

(i.e., parameters) in their causal judgments. These studies corroborate the assumption 

that causal reasoning is neither purely data-driven nor completely determined by prior 

knowledge.  Instead, top-down and bottom-up processes interact in causal reasoning in 

a fashion anticipated by causal Bayes nets theory. Alternative accounts of causal 

cognition (e.g., contingency models) cannot explain the fact that learners’ causal 

inferences differed depending on whether the state of a variable was merely observed or 

generated by means of intervention. These accounts fail to take into account the crucial 

differences between observations and interventions and their diverging implications. 

The results are also at variance with the predictions of associative accounts. Even 

though learners never experienced the consequences of interventions (i.e., instrumental 

actions), they showed a remarkable competency to infer the consequences of 

hypothetical actions from their observational knowledge.  

However, the responses to the counterfactual intervention questions also indicate 

participants’ problems in distinguishing between hypothetical and counterfactual 
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interventions, especially when making judgments that require taking into account 

confounding backdoor paths. Whereas the estimates of the counterfactual probabilities 

conformed to the normatively predicted response patterns when giving simple 

diagnostic judgments, this competency was impaired for the more complex predictive 

inferences. This is probably due to the complexity of counterfactual inferences, which 

require an updating of the model’s probabilities prior to the stage of model 

manipulation.  

To sum up, the studies provide convincing evidence that learners were able to 

derive interventional predictions from observational data subsequent to a trial-by-trial 

learning phase. The results show that the capacity to predict the consequences of 

interventions from causal models parameterized by passively observed events is not 

limited to tasks in which learners are provided with lists of aggregated data (Waldmann 

& Hagmayer, 2005) or description of causal situations (Sloman & Lagnado, 2005). The 

findings weaken associative theories of causal cognition and are at variance with the 

claim that trial-by-trial learning operates through different learning mechanisms than 

causal reasoning with aggregated data. Instead, the results suggest that there are 

different modes by which identical causal knowledge is accessed and integrated to 

derive observational and interventional predictions (cf. Waldmann & Hagmayer, 2005). 

Causal Bayes nets theory, which captures the distinction between seeing and doing and 

provides the computational mechanisms to derive interventional predictions from 

observational data, is supported by these results. Theories of causal cognition that lack 

the representational power to express the differences between observations and 

interventions and do not take into account causal structure fail to account for the 

empirical findings.  
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5.5 Pitting Causal Order against Temporal Order 

Experiments 1 to 4 have provided clear evidence that learners distinguish seeing 

from doing and have the competency to derive interventional predictions subsequent to 

a trial-by-trial observational learning phase. In accordance with causal Bayes nets 

theory, these experiments demonstrate that learners use both the causal model and the 

learning data to infer the outcomes of potential actions. 

 Experiments 5 and 6 aim at investigating not the role of the learning data itself but 

the influence of the way the data is presented during observational learning. Studying 

causal inferences based on trial-by-trial learning allows the introduction of additional 

temporal cues during observational learning. Thus, the influence of temporal cues 

during observational learning can be examined because the typical temporal 

characteristics of causal learning are better mirrored in trial-by-trial learning than in a 

highly processed list that lacks natural temporal cues.  

In psychology, a number of studies have examined the influence of temporal 

information on elemental causal induction. For example, Michotte’s (1963) classical 

experiments on the perception of causality demonstrated that the longer the delay 

between the observed events the less likely they are experienced as being causally 

connected. In a similar vein, Shanks, Pearson, and Dickinson (1989) showed that 

learners had problems differentiating causal from non-causal actions when the temporal 

delay between action and outcome was increased.  However, Buehner and May (2002, 

2003, 2004) point out that longer temporal delays do not always result in decreased 

judgments of causal strength. Their studies show that the impact of temporal delays on 

contingency judgments is strongly mediated by the expected timeframe derived from 

prior knowledge about the causal relation in question (see also Hagmayer & Waldmann, 

2002). 

Trial-by-trial learning which presents the events in a temporal order not only allows 

for manipulations of the delay between cause and effect but also makes it possible to pit 

causal order against temporal order. A causal model not only represents structural 

relations between variables but also implies a natural temporal order in which we expect 

the events to occur (i.e., causes prior to their effects). In the real world, causal order is 

often signaled by the temporal order in which causes and effects are experienced. 

Therefore, temporal information provides important cues to causality which learners can 

use to infer causal structure (Lagnado & Sloman, 2004, in press; Lagnado et al., in 

press). However, we might also experience situations in which the expected and 
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experienced order of events mismatches. For example, physicians often observe 

symptoms (i.e., effects) prior to learning about their causes. Since temporal order does 

not mirror causal order in these cases, it is crucial that the experienced temporal order of 

events is ignored as a cue to causality. 

A number of experiments designed to test causal-model theory have pitted temporal 

order against causal order (Waldmann, 2000, 2001; Waldmann & Holyoak, 1992; 

Waldmann & Walker, 2005). These studies show that learners are capable of reasoning 

with causal models regardless of whether temporal order matches or mismatches causal 

order. However, this competency breaks down when complexity is increased 

(Waldmann & Walker, 2005). Moreover, the competency was only tested with test 

questions that requested observational predictions. Interventional questions are more 

complex because they require a stage of model manipulation (e.g., graph surgery) prior 

to using the manipulated model for the predictions. 

To investigate the influence of misleading temporal cues on causal reasoning about 

observations and intervention, Experiments 5 and 6 manipulate the way the information 

is presented during observational learning. Presenting the data in a series of single trials 

allows for the introduction of potentially misleading cues, for example, by reversing the 

temporal order. Causal Bayes nets theory assumes that the parameters associated with a 

causal model reflect the asymmetry between cause and effect, that is, causal strength is 

encoded as the probability of the effect conditional on its cause(s) and not vice versa. 

However, even though categories of cause and effect might ultimately determine the 

way causal strength is represented, temporal cues might nevertheless interfere with the 

estimation of these parameters. For example, in the diamond-shaped causal model used 

in the previous studies, the intermediate events B and C are dependent of the initial 

event A. Similarly, the final effect D is dependent on patterns of its two causes B and C.  

However, the observed temporal order need not mirror the causal dependencies, for 

example when the learning order is reversed. Thus, information about the final effect D 

is provided first, then about the intermediate events B and C, and finally about the initial 

event A. Formally, learners observe the probability of B and C given D and the 

probability of A given B and C but have to infer the probabilities of B and C conditional 

upon A, and of D conditional upon B and C.   

In such a learning environment, it is crucial to ignore the temporal cues and 

estimate the parameters according to the causal model. The question pursued in 

Experiments 5 and 6 is how temporal cues during observational learning influences 
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causal reasoning. Therefore, temporal order during observational learning is 

manipulated. In Experiment 5, the temporal order during each trial conforms to the 

causal order of the events in the causal model (i.e., predictive learning from causes to 

effects). In contrast, in Experiment 6 the temporal order during learning is inconsistent 

with the order implied by the causal model. (i.e., diagnostic learning from effects to 

causes). In this experiment, it is necessary to ignore the temporal cues and estimate the 

parameters in accordance with the initially suggested causal model. Note that the 

patterns of covariation are nevertheless the same across the two experiments, that is, 

participants’ judgments are based on the very same learning data. Only the order in 

which information about the events is given is manipulated. Although it is expected that 

learners will attempt to correctly parameterize the causal model regardless of temporal 

order during learning, and that they will differentiate between seeing and doing, this 

competency might be marred by performance deficits caused by the misleading 

temporal cues (see also Waldmann & Walker, 2005). Because the influence of 

misleading temporal cues might depend on the complexity of the inference task, both 

diagnostic judgments and predictive inferences are investigated.  

These experiments also pose an interesting challenge to causal Bayes nets theory, 

because the formalism provides no means to express the difference in experienced 

learning order. Since the patterns of covariation are identical, the normative 

probabilities derived from causal Bayes nets are identical regardless of temporal order. 

5.5.1 Experiment 5 

The goal of Experiment 5 is to investigate whether learners differentiate between 

seeing and doing after a trial-by-trial learning phase in which learning order corresponds 

to causal order. Both simple diagnostic and complex predictive judgments are 

investigated.  

Method 

Participants and Design 

Twenty-four undergraduate students from the University of Göttingen participated.. 

Factors ‘intervention vs. observation’ and ‘presence vs. absence of C’ were varied 

within-subjects. Participants received course credit for participation; none of them took 

part in one of the other studies. 
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Procedure and Materials 

Causal Model phase. The causal model underlying the learning data and its 

parameterization are shown in Table 10. As in Experiment 4, the variables of the causal 

model were introduced as four chemical substances causally interacting in wine casks. 

Participants were presented with the graph of the hypothetical causal model and 

instructed to attempt to learn the strength of the causal relations from the learning data. 

The kind of questions they would have to answer after the learning phase was not 

mentioned until the test phase.  

 
Table 10 

Parameterized Causal Model and Learning Data of Experiments 5 and 6. 

               Graph Learning Data 

Data Pattern Frequency Data Pattern Frequency 

a.  b.  c.  d 14 ¬a.  b.  c.  d 0 

a.  b.  c.¬d 1 ¬a.  b.  c.¬d 0 

a.¬b.  c.  d   2 ¬a.¬b.  c.  d 1 

a.¬b.  c.¬d 1 ¬a.¬b.  c.¬d 0 

a.  b.¬c.  d 2 ¬a.  b.¬c.  d 1 

a.  b.¬c.¬d 0 ¬a.  b.¬c.¬d 1 

a.¬b.¬c.  d 0 ¬a.¬b.¬c.  d 0 

 

 
a.¬b.¬c.¬d 0 ¬a.¬b.¬c.¬d 17 

 

Observational learning phase. The learning phase consisted of 40 trials. Table 10 

displays the parameterized causal model along with the learning data implementing the 

probabilities of the graph. As in Experiment 4, each trial referred to a different wine 

cask. The trials presented information on a computer screen about the states of the four 

variables; the same symbols were used as in Experiment 4 (cf. Figure 14). The temporal 

order during each trial conformed to the causal order of the events in the causal model. 

Information about A was given first, followed by information about the presence or 

absence of B and C, and finally information about D was provided. The interstimulus 

interval was 1 s. After the sequence, the complete pattern remained for another two 

seconds on the computer screen. 

Test Phase. Subsequent to the observational learning phase, participants were asked 

to imagine new cases in which either variable C was observed to be present or absent, or 

C was generated or prevented by an intervention. Learners had to estimate both the 

probability of A and D (i.e., diagnostic and predictive inferences) for observations of 

and interventions in C. For each question, participants were instructed to imagine 40 
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previously unseen wine casks and to estimate the number of casks in which substance A 

[D] would also be found, (i.e., judgments were given in a frequency format). 

Interventional and observational questions were grouped into blocks with the order of 

blocks counterbalanced across participants. 

Results and Discussion 

Diagnostic inferences.  The results for the diagnostic test questions are shown in 

Table 11 along with the normative values derived from causal Bayes nets.  

 
Table 11 

Results of Diagnostic Inference Questions in Experiment 5 (N = 24). 

Numbers Indicate Means of Conditional Frequency Estimates for 40 

Cases. 

  Observation  Intervention  

  P(a | c)  P(a | ¬c)  P(a | Do c)  P(a | Do ¬c)  

Bayes Nets  38  4  20  20  

M  30.50  17.08  25.54  27.25  

SD  (7.56)  (10.37)  (10.57)  (8.59)  

Note. Normative probabilities derived from causal Bayes nets are shown 

in italics (range 0 – 40). 

 

As anticipated by causal Bayes nets, participants gave different estimates for the two 

observational probabilities but judged the interventional probabilities to be at the same 

level. There was a significant difference between the observational questions, 

F(1, 23) = 35.51, p < .001, MSE = 59.17, η2 = .61, but no difference between the 

interventional questions (F < 1). In addition, both interventional probabilities differed 

from their observational counterparts. Substance A was judged to be more likely when 

substance C was observed to be present (i.e., P(a | c)), than when the substance was 

generated by intervention (i.e., P(a | Do c)), F(1, 23) = 4.61, p < .05, MSE = 63.93, 

η2 = .17. Conversely, P(a | ¬c) received lower ratings than P(a | Do ¬c), 

F(1, 23) = 21.03, p < .001, MSE = 58.99, η2 = .48. Thus, although participants’ 

estimates did not perfectly match the normative causal Bayes net predictions, the results 

provide clear evidence for participants’ sensitivity to the difference between seeing and 

doing in diagnostic judgments.  

Predictive inferences. The results of the predictive questions for the probability of the 

final effect D are shown in Table 12.  
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Table 12 

Results of Predictive Inference Questions in Experiment 5 (N = 24). 

Numbers Indicate Means of Conditional Frequency Estimates for 40 

Cases. 

  Observation  Intervention  

  P(d | c)  P(d | ¬c)  P(d | Do c)  P(d | Do ¬c)  

Bayes Nets  36  5  33  14  

M  29.67  14.79  27.54  21.58  

SD  (10.04  (11.56)  (11.64)  (12.55)  

Note. Normative probabilities derived from causal Bayes nets are shown 

in italics (range 0 – 40). 

 

This type of inference is more complicated than the diagnostic judgments. Whereas 

the latter only requires considering the direct causal relation between A and C (with the 

rest of the causal model being irrelevant for the task), predicting D from values of C 

requires taking into account the complete model. In particular, the alternative 

confounding pathway A→B→D needs to be considered.  

The causal model’s parameters entail a difference both between the observational 

and the interventional questions, but the difference between the interventional 

probabilities should be smaller than for the observational probabilities. Consistent with 

this prediction, there was as significant difference between P(d | c) and P(d | ¬c), 

F(1, 23) = 39.04, p < .01, MSE = 68.01, η2 = .29, as well as between P(d | Do c) and 

P(d | Do ¬c), F(1, 23) = 6.37, p < .05, MSE = 66.84, η2 = .22. In accordance with the 

normative values, the difference between the interventional questions was smaller than 

for the observational questions, F(1, 23) = 8.73, p < .01, MSE = 54.65, η2 = .28 

Participants’ sensitivity to the difference between seeing and doing is directly tested 

by comparing their estimates of the observational and interventional probabilities. As 

predicted by causal Bayes nets, there was only a slight, non-significant difference 

between P(d | c) and P(d | Do c), F(1, 23) = 1.0, p = .33. The crucial test of the 

predictions of causal Bayes nets concerns the comparison of P(d | ¬c) and P(d | Do ¬c) 

(i.e., merely observing C to be absent versus actively preventing C). Participants judged 

the probability of the occurrence of D to be significantly higher when C was prevented 

by an intervention than when it was merely observed to be absent, F(1, 23) = 9.57, 

p < .01, MSE = 57.83, η2 = .29. This test shows that learners differentiate seeing from 

doing and take into account the alternative causal chain A→B→D when estimating the 

probability of D given interventions in C. 
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5.5.2 Experiment 6 

Whereas in Experiment 5 learning order matched causal order, in Experiment 6 the 

experienced temporal order is reversed (i.e., diagnostic learning from effects to causes). 

During observational learning, participants first receive information about D, then about 

the intermediate events B and C, and finally the state of the initial event A is presented.  

Thus, the experienced temporal order of events is inconsistent with the temporal order 

implied by the presented causal model. Instead, the temporal order is consistent with a 

causal model in which variable D is the initial event causing the final effect A via the 

intermediate variables B and C.  

Reversing the temporal order also allows for a determination of whether the 

inconsistent temporal cues mislead learners to induce an alternative causal model or 

whether the modified learning procedure prevents an adequate acquisition of the 

model’s parameters. If the temporal cues override the initially instructed causal model, 

learners should induce an alternative causal model in which D is the initial cause and A 

the final effect. Whether learners adhere to the original model or induce a model 

according to the experienced temporal order is revealed by examining their 

interventional judgments. In the initially instructed model, they should perform graph 

surgery for the interventional questions when estimating the state of variable A. In 

contrast, if the temporal cues induce an alternative causal graph in which D is a cause to 

A, participants should perform graph surgery when asked to estimate the probability of 

variable D subsequent to an intervention in event C.  

Method 

Participants and Design 

Twenty-four undergraduate students from the University of Göttingen participated. 

They received course credits for participation. Factors ‘intervention vs. observation’ and 

‘presence vs. absence of C’ were varied within-subjects.  

Procedure and Materials 

Experiment 6 used the same cover story, instructions, and learning input as 

Experiment 5. The crucial difference concerns the temporal order during observational 

learning. Whereas in Experiment 5 experienced order matched causal order, in this 

experiment, participants first received information about the final effect D, then about 

the states of the intermediate variables B and C, and finally information about the 
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presence or absence of the initial cause A. Thus, the experienced order is inconsistent 

with the temporal order entailed by the instructed causal model. The same set of 

observational and interventional questions was asked as in Experiment 5.  

Results and Discussion 

Diagnostic Inferences. Table 13 shows the means of the conditional frequency 

estimates for the diagnostic inference questions.  

 

 
Similar to Experiment 5, the responses to the observational questions differed 

significantly, F(1, 23) = 63.88, p < .001, MSE = 61.43, η2 = .74, whereas learners 

judged the probability of A to be at a similar level regardless of whether C was 

interventionally generated or prevented, F(1, 23) = 1.52, p = .23. Normatively correct, 

both interventional probabilities differed from their observational counterparts. Learners 

gave higher ratings for A when C was observed to be present (i.e., P(a | c)) than when C 

was generated by intervention (i.e., P(a | Do c)), F(1, 23) = 21.28, p < .001, 

MSE = 35.72, η2 = .48. Conversely, the observational probability P(a | ¬c) received 

lower ratings than the interventional probability P(a | Do ¬c), F(1, 23) = 13.15, 

p < .001, MSE = 45.24, η2 = .36. Thus, despite the misleading temporal cues during 

observational learning, participants’ estimates show that they differentiate between 

observed values of variables and the very same states generated by interventions. 

Table 13 

Results of Diagnostic Inference Questions in Experiment 6 (N = 24). 

Numbers Indicate Means of Conditional Frequency Estimates for 40 

Cases. 

  Observation  Intervention  

  P(a | c)  P(a | ¬c)  P(a | Do c)  P(a | Do ¬c)  

Bayes Nets  38  4  20  20  

M  33.46  15.38  25.50  22.42  

SD  (8.59)  (11.20)  (11.16)  (10.31)  

Note. Normative probabilities derived from causal Bayes nets are shown 

in italics (range 0 – 40). 
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Predictive inferences. As in the previous studies, participants were also asked to 

estimate the probability of D conditional on observations of and interventions in 

variable C.  

 In contrast to Experiment 5, the results for the predictive inferences deviated from 

the causal Bayes net predictions (see Table 14). In accordance with the normative 

analysis, P(d | c) received higher rating than P(d | ¬c), F(1, 23) = 17.88, p < .001, 

MSE = 100.04, η2 = .43, and P(d | Do c) received higher rating than P(d | Do ¬c), 

F(1, 23) = 16.88, p < .001, MSE = 62.47, η2 = .42, but the predicted interaction was not 

found (F < 1). 

In accordance with the normative values, learners judged D to be equally likely 

conditional on observing C to be present and generating C by means of intervention 

(F < 1). However, the crucial test concerns participants’ causal judgments about D 

given that C is observed to be absent or actively prevented. Even though the estimates 

for observing C’s absence, P(d | ¬c), are slightly lower than the estimates for the 

prevention of C, P(d | Do ¬c), the difference failed to reach significance (F < 1). Thus, 

participants failed to differentiate between seeing and doing in the predictive task. 

 However, because learners correctly assumed that intervening in C would influence 

D, the general pattern of results shows that they reasoned in accordance with the 

initially instructed graph instead of inducing a new causal model. 

5.5.3 Experiments 5 and 6: Summary and Discussion 

Experiments 5 and 6 aimed at investigating how temporal cues during observational 

learning influence participants’ performance when drawing causal inferences with 

varying complexity. The results show that learners correctly distinguished between 

observations and interventions when drawing diagnostic inferences, irrespective of the 

Table 14 

Results of Predictive Inference Questions in Experiment 6 (N = 24). 

Numbers Indicate Means of Conditional Frequency Estimates for 40 

Cases. 

  Observation  Intervention  

  P(d | c)  P(d | ¬c)  P(d | Do c)  P(d | Do ¬c)  

Bayes Nets  36  5  33  14  

M  30.54  18.33  29.71  20.33  

SD  (11.00)  (13.26)  (10.90)  (11.74)  

Note. Normative probabilities derived from causal Bayes nets are shown 

in italics (Range 0 – 40). 
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experienced learning order. Thus, learners successfully recognized that intervening in an 

effect renders the variable independent of its actual causes.  

However, Experiment 6 also shows that the competency of learners only displays 

itself when the complexity of the task does not exceed learners’ information processing 

capacity (see also Waldmann & Walker, 2005). A popular strategy to deal with such 

impairments is to postulate two systems, a rule-based component that handles 

summarized data and an associative learning component that is specialized for trial-by-

trial learning (e.g., Price & Yates, 1995; Shanks, 1991). Although the results of 

Experiments 1 to 5, which also used a trial-by-trial learning procedure, already weaken 

this account, it might still be speculated that learners fell back on an associative mode in 

Experiment 6. However, the data of the study are inconsistent with this theory, too. 

Learners were not generally impaired, only the predictive inferences were affected. The 

less complex diagnostic inferences showed a remarkable grasp of the differences 

between seeing and doing despite the misleading temporal cues. The estimates show 

that basic inference procedures (i.e., graph surgery) were not impaired by the 

misleading temporal cues during observational learning. Only the more complex 

predictive inferences were negatively affected.  

The reason for the differences between Experiment 5 on the one hand and 

Experiments 6 on the other is likely to be located in the parameter estimation processes. 

For example, learners in Experiment 5 observed the probability of D given B and C but 

participants in Experiment 6 observed the probability of B and C given D. Since correct 

answers to the predictive inference questions require an estimation of D given B and C 

as a parameter of the causal model, only learners in Experiment 5 could estimate this 

conditional probability directly from their learning experience. Therefore, the learning 

process in the studies with the misleading temporal cues may have led to inadequate 

estimates of the model’s parameters. The diagnostic questions could be correctly 

answered by recognizing that interventions render the manipulated variables 

independent of their actual causes, which implies that solely the base rate P(A) needs to 

be accessed in order to give a correct response. In contrast, the predictive questions can 

only be answered adequately if both the model is correctly altered for the intervention 

questions and the parameters of the full causal model are correctly estimated. Thus, if 

the parameters are not acquired correctly during learning, the inferences are likely to be 

wrong.  
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5.6 Understanding the Causal Logic of Confounds 

Experiments 1 to 6 have demonstrated that people have the capacity to infer the 

consequences of interventions from causal models parameterized by passively observed 

events. Participants’ responses showed that they not only differentiated between 

observations and interventions, but they also took into account spurious relations that 

were generated by a confound. These findings provided first evidence that participants 

understand the causal logic of confounding and are able to separate a direct causal 

influence from a concurrent spurious relation.  

The goal of Experiments 7 and 8 is to investigate further learners’ understanding of 

and reasoning with different types of confoundings. Two basic types of confounding are 

investigated, common-cause confounding and causal-chain confounding, which differ in 

terms of the underlying causal model and their implications for the consequences of 

interventions.  

Spurious Correlations and Confounds 

An important task in causal induction is to separate spurious correlations from 

causal relations. A statistical relation observed between C and E not only may reflect a 

direct causal relation but a spurious relation due to other, confounding variables. For 

example, in the 1950’s, a series of studies (e.g., Doll & Hill, 1956) with non-

experimental data was published showing that lung cancer was found to be more 

frequent in smokers than in non-smokers. This data was interpreted as evidence that 

smoking is a cause of lung cancer. However, some prominent statisticians (e.g., Fisher, 

1958) argued that such a conclusion was not justified on the basis of the available data. 

Fisher offered an alternative causal model in which the observed covariation was not 

interpreted as a direct causal relation but as a spurious correlation generated by a hidden 

common cause, a genotype causing both a craving for nicotine and the development of 

lung cancer. This model, too, implies that smoking and cancer covary but denies that 

there is a direct causal relation.  

The example illustrates the necessity of taking into account common causes to 

distinguish between spurious and causal relations. However, the existence of a common 

cause does not rule out that there is a direct causal relation as well. This is a particularly 

interesting situation, because the common cause generates a spurious correlation that 

superimposes itself upon and distorts the genuine causal relation. The causal relation is 

then said to be confounded. The detection and analysis of such confounded causal 
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relations is especially challenging because unconfounded estimates of causal strength 

and correct interventional predictions require us to disentangle the direct causal relation 

from the concurrent spurious correlation.  

Confounds 

Confounding variables are statistically related to both the potential cause C 

(independent variable) and the presumed effect E (dependent variable). It is the relation 

between the confounding variable and the cause that creates serious problems. In the 

most extreme case, the cause and the other variable are perfectly confounded, that is, 

they are either both present or both absent all the time. In this case it is impossible to tell 

whether the effect is generated by the cause or by the confounding variable. Therefore it 

seems to be necessary to eliminate the relation between the candidate cause and the 

confounding variable. Note that the problem of confounding does not originate in the 

relation between the extraneous variable and the effect. Even if the extraneous variable 

has a very strong influence, the impact of the cause variable can be detected as long as 

the extraneous variable is not permanently present and the cause variable and the 

extraneous variable are independent of each other. Under these circumstances, the 

impact of the cause variable can be seen as an increase (generative influence) or 

decrease (inhibitory influence) of the probability of the effect given the presence of the 

cause.  

The recommended method to avoid confounding and discriminate between 

candidate causal models is to run randomized experiments, in which the putative cause 

is manipulated by external intervention (e.g., Fisher, 1951). Accordingly, to test whether 

a correlation indicates a genuine causal relation we should intervene in the putative 

cause and scrutinize whether this intervention exerts an influence on the effect event. 

This procedure ensures the independence of the cause variable from all other potentially 

confounding variables. However, controlled experiments are not the only way to avoid 

confounding. Observational studies in combination with other control techniques (e.g., 

holding constant hypothesized confounds) may also allow us to draw valid causal 

inferences, which is especially important when controlled experimentation is not 

possible (e.g., in astronomy or epidemiology). Causal Bayes nets theory provides a 

formal means to represent confounding, and specifies under which conditions causal 

inferences can be drawn from observational data in spite of confounding variables. 
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Common-Cause and Causal-Chain Confounding 

Two basic causal structures may underlie confounding. One possibility is that the 

confounding variable X is a cause of both the candidate cause variable C and the effect 

variable E (common-cause confound, left-hand side of Figure 16). A second type of 

confounding is a causal-chain model in which the cause variable C not only directly 

influences the effect E but also generates the 

confounding variable X which, in turn, 

influences E (causal-chain confound, right-

hand side of Figure 16). The crucial point is 

that both models imply a spurious relation 

between cause and effect even when there 

was no direct causal relation between them. If 

the confounding variable X is present, both 

the cause and the effect should tend to be present; if X is absent both C and E should 

tend to be absent. In addition to the causal relations connecting the confounding 

variable to C and E, there is a direct causal relation between C and E whose existence 

and strength has to be identified. 

The two models represent two different kinds of confounding. The common-cause 

confound model represents the situation in which some extraneous variable is causally 

affecting both the cause and the effect. The hypothesis that smoking and lung cancer are 

both caused by a specific genotype exemplifies this type of confounding. There are 

several possibilities to eliminate the causal relation among the common cause X and the 

candidate cause C. For example, X might be eliminated or held constant (e.g., only 

people without the carcinogenic genotype are studied). In addition, C might be 

manipulated independently of X (which, in the case of smoking, would not be possible 

for ethical reasons). Such an independent manipulation is equivalent to a randomized 

experiment (Fisher, 1951).  

However, controlled experimentation cannot eliminate causal-chain confounding. 

This type of confounding calls for other controls because a manipulation of C would 

directly affect X. Thus, other ways have to be found to block the causal relation 

connecting the cause C to the confound X. For example, aspirin (C) might not only have 

a direct influence on headache but also make your blood thinner (X), which, in turn, 

might also have an impact on your headache (E). One way to get rid of confounding in 

this case is to administer aspirin to people who have thin blood anyway or who are 

Common-Cause 

Confound 

Causal-Chain 

Confound 

 

Figure 16. Two types of confounding.  
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resistant against the side effect, which is equivalent to holding the confound constant. 

Another possibility is to manipulate the confounding variable in addition to the cause 

variable and thereby eliminate their causal relation. 

In summary, there are two different fundamental types of confounding which call 

for different measures of control. Manipulations of the putative cause (C) eliminate 

common-cause confounding because the intervention disconnects the event intervened 

in from the common-cause. However, this is not true for causal-chain confounding 

because manipulations of the candidate cause will also affect the confounding variable.   

Causal Bayes nets allow for representing causal structures with confounding 

variables. Provided certain conditions are met, causal Bayes nets also enable valid 

inferences about the existence and strength of confounded causal relations. 

Experiments 7 and 8 intend to investigate participants’ understanding of the two types 

of confounding. Whereas Experiment 7 confronts learners with common-cause 

confounding, Experiment 8 focuses on their understanding of causal-chain confounding.  

5.6.1 Experiment 7 

The goal of Experiment 7 is to investigate people’s causal reasoning with common-

cause confounds. In contrast to the previous experiments, in which the true causal 

model was known prior to observational learning, in this study learners are presented 

with two competing candidate models, a common-cause model and a common-cause 

confound model (cf. Figure 17). Participants’ task is to find out whether there is a direct 

relation between events C and E, which are known to be causally connected by a 

common cause X. Since the consequences of 

interventions crucially depend on which of the 

two models underlies the learning data, 

correct interventional predictions are only 

possible if the participants identify the causal 

structure underlying their observations. In 

particular, learners have to differentiate 

between spurious correlations and causal relations to decide which causal model 

underlies the observed phenomena. The observational data can then be used to 

parameterize the chosen causal model and to infer the consequences of interventions. 

The common-cause and the common-cause confound models depicted in Figure 17 

can be decomposed by applying the causal Markov condition to the graphs. According 

Common-Cause 

Model 

Common-Cause 

Confound Model 

 

Figure 17. Causal models in Experiment 7. 
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to the causal Bayes nets formalism, the joint distribution of the common-cause model is 

factorized into  
 

( . . ) ( ) ( | ) ( | )P X C E P X P C X P E X= ⋅ ⋅  (25) 

 

whereas the common-cause confound model is decomposed into 
 

( . . ) ( ) ( | ) ( | . ).P X C E P X P C X P E X C= ⋅ ⋅  (26) 

 

These factorizations mirror the causal structure of the two models, which differ in terms 

of the existence or non-existence of the causal relation C→E. Accordingly, in the 

common-cause model event E is only conditionalized on X, while in the decomposition 

of the common-cause confound model event E  is conditionalized on both X and C.  

Thus, the crucial difference between the two factorizations is whether the 

probability of E only depends on the occurrence of X (as is the case in the common-

cause model) or on the influence of both C and X (as is the case in the confound model). 

This, in turn, has consequences for the computation of the interventional probabilities. 

In the common-cause model, interventions in the candidate cause C render the event 

independent of its cause X but will not influence E because C and E are only spuriously 

correlated. For example, in the common-cause model the probability of E given that C 

is generated by an intervention is formalized by 
 

Do( | ) ( ) ( | ) ( ) ( | )P e c P x P e x P x P e x= ⋅ + ¬ ⋅ ¬  (27) 

 

Equation  reflects the fact that interventions in C do not affect E, because the two events 

are only spuriously related due to their common cause X. Thus, the probability of E 

occurring conditional on an intervention in C is solely determined by the base rate of the 

confound, P(x), the strength of the causal relation between X and E, P(e | x), and the 

probability of E occurring in the absence of X, P(e | ¬x). In contrast, in the common-

cause confound model intervening in C also renders the event independent of X but 

furthermore influences E, because there is a direct causal relation C→E. Therefore, the 

probability of E given that C is actively generated is formalized by 
 

Do( | ) ( ) ( | . ) ( ) ( | . )P e c P x P e x c P x P e x c= ⋅ + ¬ ⋅ ¬  (28) 

 

According to this computation, the probability of event E is not only determined by the 

base rate of X and the strength of the causal relation X→E, but is also influenced by the 

causal arrow C→E. 

If the parameters of the decomposed model can be estimated from the available 

data, it is possible to give unconfounded estimates of causal strength and predict the 



CAUSAL BAYES NETS AS MODELS OF CAUSAL COGNITION 112 

consequences of interventions from observational data. However, certain conditions 

have to be met in order to infer the model’s parameters from observational data.  First, 

the state of the confounding variable X must usually be observable.13 However, the 

crucial condition is that there is some variation in the confounding variable X, that is, X 

must not always be present, and that the confounding variable X is not the only cause of 

C. This is essential because the influence of C on E cannot be evaluated when the 

confound and the candidate cause are perfectly correlated.14 In contrast, if there are 

cases in which C occurs in the absence of X, the two models can be differentiated by 

observing whether C can generate E in the absence of the confound. 

Returning to the smoking/cancer debate, if no experimental data is available the 

adequacy of Fisher’s common-cause model can be tested if and only if a) the genotype 

can be measured and b) there are people who do not have the genotype but smoke (i.e., 

P(smoking | ¬genotype) > 0). If there exists a direct causal mechanism relating smoking 

to cancer, then the probability of getting cancer should be higher for smokers than for 

non-smokers in the population of people without the gene. This example also points out 

the relation between the conditional contingency model (cf. Section 3.2.2) and causal 

Bayes nets theory. Whereas both the common-cause and the common-cause confound 

model entail that there is a positive unconditional contingency between events C and E, 

the conditional contingency between C and E is only positive in the common-cause 

confound model. Formally, P(e | c) > P(e | ¬c) holds for both models, but P(e | ¬x. c) > 

P(e | ¬x. ¬c) holds only if there exists a direct causal relation C→E (i.e., in the 

common-cause confound model). 

To sum up, it is possible to differentiate the two candidate models by controlling for 

the confounding variable X. If learners recognize this, they can differentiate the two 

models and estimate the model’s parameters from the available observational data. This, 

in turn, allows for the derivation of interventional predictions.  

                                                 
13

 Pearl (2000) shows that valid causal inferences are sometimes possible even when the confounding 

variable cannot be observed.  
14

 Note that the strength of the causal relation X→C is irrelevant. For example, if there is only a weak link 

connecting the two events, X and E will often be present in the absence of C, but this does not allow one 

to assess whether there is a causal relation C→E. Conversely, even when X deterministically causes C, 

the influence of C on E can be evaluated as long as there are cases in which C occurs in the absence of X.   
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Method 

Participants and Design 

Thirty-six students from the University of Göttingen, Germany, participated in this 

experiment. They were randomly assigned to the common-cause or the common-cause 

confound condition. Factor ‘learning data’ was varied between conditions, factors ‘type 

of inference’ and ‘presence vs. absence of C’ were varied within-subjects. Subjects 

received course credit for participation, none of them took part in the previous studies.  

Procedure and Materials 

Causal model phase. Participants were told that ornithologists had recently 

discovered a new species of birds. While investigating the new species the researchers 

noticed that not all birds breed. Since it is known from some other species that birdsong 

is a relevant factor for mating and breeding, the biologists hypothesized that in this 

species singing (C) is causally related to reproduction (E), too. Thus, the causal 

hypothesis is that birds that sing breed but those that do not sing do not reproduce. In 

addition to the verbal descriptions of the assumed causal relation, participants were 

shown a graphical representation (Figure 18a). It was also pointed out that the factors 

determining whether a bird sings are not known yet.  

 
a)        b)       c) 

   

Figure 18. Instructed causal relations in Experiment 7. a) The hypothesized causal relation. 

b) Common-cause model. c) Common-cause confound model. 

 

After introducing the hypothesized causal relation C→E participants were presented 

with the confounding variable X, a gene which is known to influence both the birds’ 

capacity to sing and their fertility. Learners were then suggested two candidate causal 

models. The common-cause model represents the hypothesis that birdsong (C) and 

breeding (E) are only correlated because of their common-cause, the gene, and that 

there is no direct causal relation between the two variables. By contrast, the common-

cause confound model represents the hypothesis that birdsong (C) and breeding (E) are 

not only spuriously related because of their common cause (X), but that there is an 
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additional direct causal relation between singing and breeding. Learners were shown a 

graphical representation of the two causal models (Figure 18b, c) and requested to find 

out which of the two models was correct. The kind of questions they would have to 

answer after the learning phase was not mentioned until the test phase. To avoid 

misunderstandings, participants were asked to summarize the instructions and the two 

models in question after reading the instructions. 

Learning Phase. To assess whether there is a direct causal relation between 

birdsong and breeding, learners received 50 index cards with each card referring to a 

different bird. Each card displayed the state of the three variables (i.e., whether the bird 

sings, whether it breeds, and whether is possesses the gene). The two data sets either 

implemented a common-cause model without a direct causal relation between C and E 

or a common-cause confound model. Table 15 shows the two parameterized models 

along with the observational data generated from these graphs. In both data sets, there 

are 12 birds in which the gene is 

absent but the bird sings. 

Normatively, these are the relevant 

cases which indicate whether there is 

a causal relation between birdsong 

(C) and breeding (E). In the 

confounder condition, 8 out of these 

12 birds breed, which indicates a 

direct causal relation between C and 

E. In contrast, in the common cause 

condition none of these 12 birds 

breed. There was no time limit for 

inspecting the data. Participants were 

simply asked to signalize when they 

felt confident that they had 

determined whether there was a 

direct causal relation between 

birdsong and breeding. No feedback was provided. 

Test phase. Finally, learners were asked three blocks of two questions each. The 

blocks consisted of observational, interventional, and counterfactual questions with each 

question referring to a new case (cf. Figure 19). The order of blocks was 

Table 15 

Causal Models and Learning Data of Experiment 7. 

Common-Cause  

Model 

Common-Cause  

Confound Model 

 

 

Data Pattern  Frequencies 

X C E 

Common- 

cause 
 Confound 

yes yes yes 18  18  

yes yes no 1  1  

yes no yes 1  1  

yes no no 0  0  

no yes yes 0  8  

no yes no 12  4  

no no yes 0  0  

no no no 18  18  

Note. X = gene, C = birdsong, E = reproduction. 
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counterbalanced. Participants were allowed to refer back to the index cards and 

instructions while answering the questions.  

The observational questions stated that the ornithologists had captured a new bird 

and observed that this bird sings [does not sing] (cf. Figure 19a). Based on this 

observation, learners were asked to estimate the probability that this bird would breed 

(i.e., participants gave estimates of the conditional probabilities P(e | c) and P(e | ¬c)). 

The generative interventional questions stated that the biologists had attached a 

miniature speaker to a bird which imitates birdsong (i.e., Do c) (cf. Figure 19b). The 

inhibitory interventional questions stated that researchers had surgically modified a 

bird’s vocal cords, thereby preventing this bird from singing (i.e., Do ¬c). Participants 

were requested to estimate the probability that these birds would breed (i.e., learners 

gave estimates of the interventional probabilities P(e | Do c) and P(e | Do ¬c)). 

 

The counterfactual inhibitory question first stated that the researchers had trapped a 

new bird which had been observed singing. Participants were then asked to imagine that 

this very bird’s vocal cords had been modified by surgery, and requested to  estimate 

the likelihood that it would have bred (i.e., give estimates of the counterfactual 

probability P(e | c. Do ¬c)). The generative counterfactual question first stated a non-

singing bird had been trapped. Learners were then asked to imagine that a speaker 

imitating birdsong had been attached to this bird and were requested to estimate the 

probability this bird would have bred (i.e., give estimates of the counterfactual 

probability P(e | ¬c. Do c)).  

The ratings for the observational and interventional questions were given on a scale 

ranging from “0 = this bird will definitely not breed” to “100 = this bird will definitely 

breed”. For the counterfactual questions, the scale was labeled “0 = this bird would 

definitely not have bred” to “100 = this bird would definitely have bred”. 

a) b) c) 

  
 

Figure 19. Examples of test questions in Experiment 7. a) Observation of singing bird. b) Generative 

Intervention (Do c). c) Counterfactual prevention combining observation and intervention 
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 The test phase ended with a model selection task. Learners were given a graphical 

representation of the two alternative causal models (cf. Figure 18) and requested to 

select the correct one.  

Results and Discussion 

Probability judgments. Table 16 shows learners’ probability estimates for 

observations, interventions, and counterfactual interventions along with the normative 

probabilities derived from causal Bayes nets. 

 

Table 16 

Mean Probability Judgments in Experiment 7 (N = 36). 

  Observation   Intervention   Counterfactual Intervention  

Causal Model  P(e | c) P(e | ¬c)   P(e | Do c) P(e | Do ¬c)   P(e | ¬c. Do c) P(e | c. Do ¬c)  

Bayes Nets 58 05 38 38 05 58 

M 63.89 22.78 50.00 41.39 32.50 43.89 
Common-

cause 

SD (16.14) (27.56) (27.01) (22.48) (23.03) (20.04) 

        

Bayes Nets 84 05 78 40 68 61 

M 58.33 14.44 63.06 20.56 54.72 25.28 

Common-

cause 

confound 
SD (22.49) (20.64) (20.08) (22.81) (24.04) (28.10) 

Note. Normative values (range 0 – 100) derived from causal Bayes nets are shown in italics. 

 

 Observations versus interventions. The analysis of the responses to the 

observational questions shows that learners were clearly sensitive to the fact that both 

models imply that observed values of C are diagnostic for E. An analysis of variance 

with ‘presence vs. absence of C’ as within-subjects factor and ‘learning data’ as 

between-subjects factor yielded only a significant main effect for the presence of C, 

F(1, 34) = 63.73, p < .001, MSE = 510.38, η2 = .62, but no interaction effect (F < 1) and 

no main effect of condition, F(1, 34) = 1.86, p = .18. This result indicates that in both 

conditions participants correctly referred to the unconditional probabilities to infer the 

state of E from observations of C. 

While both models imply that observed values of C provide evidence for the state of 

E, interventions in C should only exert an influence on E if there is a direct causal link 

between C and E (i.e., between birdsong and breeding). In accordance with the causal 

Bayes nets analysis, the interventional predictions differed depending on the causal 

model from which the learning data was generated. In the common-cause condition, 
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only a small, non-significant difference was obtained for learners’ estimates of the 

interventional probabilities, P(e | Do c) and P(e | Do ¬c), F(1, 17) = 1.09, p = .31. In 

contrast, in the confounder condition the probability of E being present was judged 

higher when C was generated, P(e | Do c), than when C was prevented, P(e | Do ¬c), 

F(1, 17) = 71.67, p < .001, MSE = 226.84, η2 = .81. Further evidence for the influence 

of the underlying causal model comes from the between condition comparisons. Given 

that C was generated by an intervention (i.e., Do c), event E was judged to be more 

likely in the confounder than in the common-cause condition, though the difference 

failed to reach significance, F(1, 34) = 2.71, p = .11. However, consistent with the 

normative analysis, the interventional probability P(e | Do ¬c) received lower ratings in 

the confounder condition than in the common-cause condition, F(1, 34) = 7.61, p < .01, 

MSE = 512.79, η2 = .18. These findings indicate that the participants successfully 

identified the causal structure from which the learning data was generated and based 

their interventional predictions on the inferred causal model.   

Learners’ sensitivity to the differences between seeing and doing is corroborated by 

contrasting the responses to the observational and interventional questions within 

conditions. Normatively, in the common-cause condition both observational 

probabilities should differ from their interventional counterparts. In contrast, in the 

common-cause confound condition, a substantial difference is predicted only between 

observing C to be absent and actively preventing C. The data conforms to these 

predictions. In the common-cause condition, both interventional questions were 

answered differently than the corresponding observational questions. Participants 

judged event E to be more likely when C was merely observed to be present than when 

C was generated by an intervention (i.e., P(e | c) against P(e | Do c)),   F(1, 17) = 8.91, 

p < .01, MSE = 194.94, η2 = .34. Conversely, the observational probability, P(e | ¬c), 

received lower ratings than the corresponding interventional probability P(e | Do ¬c), 

F(1, 17) = 5.44, p < .05, MSE = 573.24, η2 = .24. 

Consistent with the normative values, in the confounder condition, event E was 

judged to be more likely in the case of actively preventing C than in the case of merely 

observing C to be absent, F(1, 17) = 4.43, p = .05, MSE = 75.82, η2 = .21, though the 

difference was not as large as normatively predicted. The crucial test concerns the 

generative intervention. In the common-cause condition, learners correctly judged E to 

be more likely when observing C to be present than when C was generated by an 

intervention, because in this model intervening in C will not affect E.  In contrast, in the 
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confound condition participants recognized that generating C will influence E because 

of the direct causal relation. Consistent with this prediction, only a small, non-

significant difference was found for estimates of P(e | c) and P(e | Do c) (F < 1).  

Taken together, these findings provide strong evidence that the participants had the 

capacity to separate the genuine causal relation from the concurrent spurious 

correlation, and that learners recognized the importance of the confounding variable X 

and the backdoor path when deriving the consequences of hypothetical interventions in 

the putative cause C. 

Hypothetical vs. counterfactual interventions. The two models differ not only in 

regard to the consequences of hypothetical interventions, but also with respect to the 

outcomes of counterfactual actions. The common-cause model implies that 

interventions in C will not affect E. Therefore, the probability of E given that C is 

counterfactually altered is determined by the factually observed state of event C. By 

contrast, if there is a direct causal relation C→E, as is the case in the confound model, 

the counterfactual inferences require the combination of observation and intervention.  

For the common-cause condition, causal Bayes nets theory predicts lower ratings 

for the counterfactual generation of C than for the counterfactual prevention of C, a 

difference which results from the logic of counterfactual inferences. The counterfctaul 

generation of event C implies that C was observed to be absent in the actual world, 

which makes it likely that the confounding variable X and, in turn, event E is absent. 

Conversely, the counterfactual prevention of C entails that C was present in the actual 

world, which raises the likelihood that X and E are present. In accordance with this 

prediction, learners gave lower ratings for P(e | ¬c. Do c) than for P(e | c. Do ¬c), 

though the difference failed to reach significance, F(1, 17) = 2.27, p = .15. Moreover, 

no difference was found between the hypothetical prevention of C, P(e | Do ¬c), and the 

counterfactual prevention of C, P(e | c. Do ¬c) (F < 1). However, in accordance with the 

normative analysis, participants judged E to be more likely in the case of a hypothetical 

generation than in the case of a counterfactual generation of C, F(1, 17) = 5.81, p < .05, 

MSE = 473.90, η2 = .26. Taken together, there is only weak evidence that learners’ 

counterfactual inferences in the common-cause condition conformed to predictions of 

causal Bayes nets.  

Similar deviations from the normative predictions are found in the confounder 

condition. Normatively, the probability of E is only slightly higher when C is 

counterfactually generated, P(e | ¬c. Do c), than when C is counterfactually inhibited, 
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P(e | c. Do ¬c), but a large difference was obtained, F(1, 17) = 18.82, p < .001, 

MSE = 414.54, η2 = .53. The comparisons with participants’ responses to the 

hypothetical intervention questions also indicate substantial deviations from the 

normative probabilities.  Consistent with the predictions, event E received slightly 

higher ratings in the case of a hypothetical generation of C than in the case of a 

counterfactual generation of C, F(1, 17) = 3.9, p = .07, MSE = 160.29, η2 = .19. But the 

crucial test concerns learners’ estimates for the hypothetical and counterfactual 

prevention of C, because here a large difference is predicted. However, no reliable 

difference was obtained (F < 1). 

Model selections. The results for the model selection task are shown in Table 17. In 

total, 27 out of 36 participants (75%) managed to identify correctly the causal model 

from which the learning data was 

generated. A 2x2-chi-square test on 

learners’ model choices yields a highly 

reliable result, χ2 (1, N = 36) = 9.26, 

p < .01. However, even though in both 

conditions a majority of participants 

chose the correct model, further analyses 

reveal that learners had more problems 

identifying the confound model than the common-cause model. The proportion of 

participants who chose the correct model was significantly greater than chance in the 

common-cause condition, χ2 (1, N = 18) = 8.00, p < .01, whereas the proportion in the 

confound condition was not, χ2 (1, N = 18) = 2.00, p = .16. A possible explanation is 

that in the common-cause confound condition some learners were led astray by the 

spurious correlation implied by the confounding variable X.  

Comparing model selections with probability judgments. Finally, Table 18 depicts 

the probability judgments for those learners who selected the correct causal model. The 

data indicates that some of the judgments conform better to the normative probabilities 

(e.g., the counterfactual probabilities in the common-cause condition), but the general 

picture is very similar to the aggregated data (cf. Table 16). However, the estimates 

which deviated most strongly from the normative values, namely the responses to the 

counterfactual questions in the confounder condition, are also not in line with the 

normative predictions for those people who selected the correct model. Thus, even 

Table 17 

Model Selections in Experiment 7. 

 Selected Model 

Condition 

Common-

cause 

Common-cause 

confound 

Common-cause 15 3 

Common-cause 

confound 
6 12 
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learners who successfully identified the confounder model from the learning data had 

problems differentiating hypothetical from counterfactual actions. 

  
Table 18 

Mean Probability Judgments in Experiment 7 for Participants who Selected the Correct Model (N = 27). 

 

 Observation   Intervention   Counterfactual Intervention  

Causal Model  P(e | c) P(e | ¬c)   P(e | Do c) P(e | Do ¬c)   P(e | ¬c. Do c) P(e | c. Do ¬c)  

Bayes Nets 58 05 38 38 05 58 

M 62.00 24.67 48.00 45.67 28.33 48.00 

Common-

cause 

(n = 15) 
SD (16.56) (29.91) (27.57) (21.95) (21.69) (19.35) 

        

Bayes Nets 84 05 78 40 68 61 

M 56.67 9.17 59.58 14.17 47.92 24.58 

Common-

cause 

confound 

(n = 12) SD (24.53) (9.00) (20.94) (13.62) (23.50) (29.03) 

Note. Normative values (range 0 – 100) derived from causal Bayes nets are shown in italics. 

 
To sum up, the results of Experiment 7 provide clear evidence that learners had the 

capacity to differentiate the “normal” common-cause model from the common-cause 

confound model on the basis of the available observational data and, in turn, to 

distinguish observations from interventions. However, participants had only a limited 

understanding of understanding the implications of counterfactual inferences, which 

require us to combine observations and interventions.  

5.6.2 Experiment 8 

Whereas Experiment 7 focused on learners’ understanding of common-cause 

confounding, the goal of Experiment 8 is to investigate reasoning with causal-chain 

confounding. As in the previous study, 

learners’ task is to evaluate whether the 

observational data indicates the presence of a 

direct causal relation C→E. The two 

candidate models they are presented with are a 

causal-chain model and a causal-chain 

confound model, as depicted in Figure 20. As 

in Experiment 7, both graphs imply that events C and E are correlated even if there is no 

direct causal relation between C and E. Thus, similar to the case of common-cause 

confounding, learners need to separate the direct causal relation from the spurious 

correlation to decide which of the two candidate models underlies the observational 

Causal-Chain 

Model 

Causal-Chain 

Confound Model 

 

Figure 20. Causal models in Experiment 8. 
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data. Interestingly, the presence of a direct causal relation C→E can be evaluated in the 

same manner as in the case of common-cause confounding. The crucial observations 

which are diagnostic for the existence of a direct causal arrow are instances in which the 

candidate cause C is present but the confound X is absent. However, whereas in 

Experiment 7 the crucial condition was that X is not the only cause of C (i.e., 

P(c | ¬x) > 0), here the necessary condition is that C does not deterministically cause X 

(i.e., P(x | c) < 1). Otherwise, there will be no cases in which C is present but the 

confounding variable X is absent.  

Applying the causal Markov condition to the two graphs factorizes the associated 

probability distributions. The causal-chain model is decomposed into 
 

( . . ) ( ) ( | ) ( | ),P X C E P C P X C P E X= ⋅ ⋅  (29) 

 

while the distribution of the causal-chain confound model is factorized into  
 

( . . ) ( ) ( | ) ( | . ).P X C E P C P X C P E X C= ⋅ ⋅  (30) 

 

These two factorizations reflect the structural difference between the simple causal-

chain and the causal-chain confound models. According to the structure of the causal-

chain model, event E is only influenced by X, therefore E is only conditionalized on X.  

In contrast, in the causal-chain confound model E not only depends on X but is also 

directly influenced by C. Therefore, event E is conditionalized on both X and C. 

Provided the parameters of the causal models can be estimated from the available 

observational data, it is possible to predict the consequences of interventions. In 

Experiment 7, the consequences of observations of and interventions in C differed 

because interventions in C rendered the event independent of the confounding variable 

X. Normatively, this implies a difference between observations and interventions; and 

the empirical findings show that learners were sensitive to this difference.  

However, if the confounding variable X is not a cause but an effect of C, as is the 

case in the causal-chain confound model, interventions in C do not disconnect C from 

X. Since C is the cause of both E and X, the dependence of X and C is not eliminated by 

an intervention on C. In other words, because event C is the causal models’ initial event, 

interventions in C do not result in a manipulated graph. Therefore, the interventional 

and observational probabilities are equal in both the simple causal chain and the causal-

chain confound model.  

For example, in the causal-chain model the probability of E = e given that C is 

merely observed to be present or actively generated is formalized in the same way  
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Do( | ) ( | ) ( | ) ( | ) ( | ) ( | ).P e c P e c P x c P e x P x c P e x= = ⋅ + ¬ ⋅ ¬  (31) 

 

The same is true for the causal-chain confound model,  
 

Do( | ) ( | ) ( | ) ( | . ) ( | ) ( | . )P e c P e c P x c P e x c P x c P e x c= = ⋅ + ¬ ⋅ ¬  (32) 

 

In other words, neither the causal-chain nor the causal-chain confound model implies a 

difference between observations of and interventions in C (i.e., P(e | c) = P(e | Do c) 

and P(e | ¬c) = P(e | Do ¬c) holds for both models). Unfortunately, this implies that 

participants’ estimates of the direct causal influence of the cause variable C on the effect 

E cannot be estimated on the basis of the two conditional interventional probabilities. In 

order to assess only the cause’s direct causal influence the causal relation between the 

cause and the confounding variable has to be eliminated by a second intervention. This 

aim could be achieved by eliminating the confounding variable or by blocking the 

causal pathway connecting the cause and confound.  

For example, consider an intervention that simultaneously manipulates C and 

interrupts the causal mechanism by which C generates X. For this kind of combination 

of  interventions, the consequences for the probability of E depend on the structure of 

the causal system. In the causal-chain model, interventions in C will not affect E if the 

intervention simultaneously breaks the causal arrow C→X, because the influence of C 

on E completely depends on the intermediate event X. In contrast, in the causal-chain 

confound model this kind of double intervention will have an impact on E because of 

the direct link C→E. In this model, the double intervention only disrupts the indirect 

causal path, but C can still influence E through the direct causal relation. 

In the causal-chain model, the probability of E conditional on a combination of 

interventions that generates C and simultaneously breaks the causal path C→X is 

formalized by 
 

Do( | . ) ( | ) ( | ) ( | ) ( | ).P e c break C X P x c P e x P x c P e x→ = ¬ ⋅ + ¬ ¬ ⋅ ¬  (33) 

 

In the causal-chain model, this double intervention renders C independent of E. 

Therefore, the probability of E occurring is determined by the probability of X occurring 

without C and the strength of the causal relation between X and E. In contrast, in the 

causal-chain confound model, in which there is also a direct causal relation between C 

and E, the probability of E conditional on the double intervention is given by 
 

Do( | . ) ( | ) ( | . ) ( | ) ( | . ).P e c break C X P x c P e x c P x c P e x c→ = ¬ ⋅ + ¬ ¬ ⋅ ¬  (34) 
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To sum up, whereas common-cause confounding entails a difference between 

observations of and (simple) interventions in C, this does not hold for causal-chain 

confounding. Both in the causal-chain and the causal-chain confound model the 

interventional probabilities include the confounding causal relation and therefore equal 

the observational probabilities. To test whether participants are able to extract the direct 

causal relation in this case, in Experiment 8 participants are not only requested to infer 

the consequences of simple interventions but are also asked about combinations of 

interventions (i.e., double interventions that simultaneously block the causal relation to 

the confounding variable). If participants understand the causal logic of confounding, 

the estimated probabilities should reflect the direct impact of the cause upon its effect. 

 

Method 

Participants and Design 

Thirty-six students from the University of Göttingen, Germany, participated in this 

experiment. They were randomly assigned to the causal-chain or the causal-chain 

confound condition. Factor ‘learning data’ was varied between conditions, factors ‘type 

of inference’ and ‘presence vs. absence of C’ were varied within-subjects. Subjects 

received course credit for participation.  

Procedure and Materials 

Causal model phase. The same scenario was used as in Experiment 7. However, 

now participants were told that ornithologists were investigating whether a specific gene 

(C) has a direct causal impact upon the birds’ reproduction (E). As before, participants 

were informed about the presence of a confounding variable. They were told that the 

gene was known to affect the birds’ ability to sing (X). Learners were also informed that 

the gene affects the birds’ ability to sing by a (non-observable) hormone mechanism 

(H). Moreover, singing has, according to the instructions, a causal influence upon 

reproduction. Participants were then presented with two competing causal hypotheses, a 

causal-chain model and a causal-chain confound model. The hypothesized causal 

relation between the gene (C) and reproduction (E) as well as the candidate model were 

visualized graphically (Figure 21). The unobservable mechanism (H) was not depicted 

in these graphical representations. The causal-chain confound model represents the 

assumption that the gene has both an immediate and an indirect causal impact upon 

reproduction, whereas the causal-chain model represents the hypothesis that the gene 
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affects reproduction only via singing. As in Experiment 7, participants were asked to 

find out which model was correct. They were not informed about the kind of questions 

they would have to answer. 

 

Learning Phase. As in the first experiment, learners received 50 index cards 

depicting observational data from individual birds. The models used to generate the two 

sets of data and the resulting distributions of event patterns are shown in Table 19. Note 

that participants were never informed about the state of H, the mechanism connecting C 

to X. The causal-chain data indicated that the observable relation between C and E was 

merely spurious, while the data corresponding to the causal-chain confound model 

pointed to a fairly strong direct relation between the gene and reproduction. The 

unconditional relation between C 

and E was identical in both data sets 

(P(e | c) = .88 and P(e | ¬c) = .06)  

As before, participants were free to 

explore the data at will. 

Test Phase. In this phase, 

participants were given three blocks 

of questions with the order of blocks 

being counterbalanced. Examples of 

the test questions are shown in 

Figure 22. The observational 

questions asked participants to 

estimate the probability that a new 

bird possessing the gene [not 

possessing the gene] would breed 

(i.e., learners were requested to give 

a)              b)              c) 

  
 

Figure 21. Instructed causal relations in Experiment 8. a) The hypothesized causal relation. b) Causal-

chain model. c) Causal-chain confound model. 

Table 19 

Causal Models and Learning Data of Experiment 8. 

Causal-Chain  

Model 

Causal-Chain   

Confound Model 

  

Data Pattern  Frequencies 

X C E 

Causal-

chain 
 

Causal-chain 

Confound 

yes yes yes 29  23  

yes yes no 0  0  

yes no yes 1  1  

yes no no 0  0  

no yes yes 0  6  

no yes no 4  4  

no no yes 0  0  

no no no 16  16  

Note. X = gene, C = birdsong, E = reproduction. 
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estimates of P(e | c) and P(e | ¬c)). The generative interventional question stated that 

the researchers had activated the gene of a new bird by means of an intervention (i.e., 

Do c). The inhibitory interventional question mentioned that the gene was deactivated 

by an outside intervention (i.e., Do ¬c). Participants had to estimate the probability that 

these new birds would breed (i.e., participants were asked to give estimates of P(e | Do 

c) and P(e  |Do ¬c)). The first question referring to a combination of interventions 

informed participants that researchers had activated the gene of a newly caught bird 

while simultaneously blocking the generation of the hormone affecting singing. The 

second combination question stated that both the gene and the hormone production had 

been deactivated by inhibitory interventions. For both questions, participants were 

asked about the probability of procreation (i.e., P(e | Do c. Do ¬h) and P(e | Do ¬c. Do 

¬h)). In both cases, participants received no information about whether the individual 

birds had the capacity to sing or not. As in Experiment 7, the test phase ended with a 

model selection task in which participants had to select the correct model from a 

graphical representation of the two alternative causal models (cf. Figure 21).  

 

 

Results and Discussion 

Table 20 shows the mean probability estimates for the six questions along with the 

normative values derived from causal Bayes nets. Again, participants gave on average 

the same ratings to the observational questions in both conditions and judged the effect 

to be more likely in the presence than in the absence of the observed cause. Consistent 

with the normative predictions, an analysis of variance with  ‘presence versus absence 

of C’ as within-subjects factor and ‘learning data’ as between-subjects factor yielded 

only a main effect for the presence of C, F(1, 34) = 317.25, p < .001, MSE = 231.19, 

η2 = .90, but neither a main effect of condition, F(1, 34) = 1.78, p = .19, nor an 

interaction between conditions, F(1,34) = 1.05, p = .31.  

           a)           b)          c) 

  
 

Figure 22. Examples of test questions in Experiment 8. a) Bird observed having the gene. b) Generative 

intervention activating the gene (i.e., Do c). c) Combination of interventions activating the gene and 

inhibiting the hormone mechanism (i.e., Do c & Do ¬h).   
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Table 20 

Mean Probability Judgments in Experiment 8 (N = 36). 

 

 Observation   Intervention   Combination of Interventions  

Causal Model  P(e | c) P(e | ¬c)   P(e | Do c) P(e | Do ¬c)   
P(e | Do c. 

Do ¬h) 

P(e | Do ¬c. 

Do ¬h) 
 

Bayes nets 88 06 88 06 06 06 

M 76.89 16.72 77.08 17.28 29.03 7.83 Causal-chain 

SD (18.98) (12.67) (16.63) (13.48) (31.45) (9.87) 

        

Bayes nets 88 06 88 06 62 06 

M 76.11 8.61 81.11 14.72 62.22 15.28 
Causal-chain 

confound 

SD (18.20) (3.35) (13.67) (21.59) (26.25) (23.92) 

Note. Normative values (range 0 – 100) derived from causal Bayes nets are shown in italics. 

 

 In contrast to Experiment 7 and in line with the Bayesian causal analysis, 

participants’ estimates for the simple interventional questions did not differ between 

conditions. An analysis of variance resulted in a significant main effect for the presence 

of C, F(1, 34) = 250.20, p < .001, MSE = 286.42, η2 = .88, but neither an effect of 

condition nor an interaction effect was found (both F’s < 1).  Participants seemed to 

have understood that intervening in C would generate E no matter whether the 

underlying causal model was a causal-chain or a causal-chain confound model, and that 

there is no difference between merely observing the state of C and actively generating 

the value of C. 

However, participants’ answers to the combination of interventions questions 

showed that they differentiated between the two models. Consistent with the normative 

probabilities, an analysis of variance yielded a main effect of presence of C, 

F(1, 34) = 54.62, p < .001, MSE = 382.55, η2 = .62, a main effect of ‘learning data’, 

F(1, 34) = 9.39, p < .01, η2 = .22, and, most important, the expected interaction, 

F(1, 34) = 7.80, p < .01, η2 = .19. This result indicates that learners inferred the 

consequences of the double intervention with respect to the model from which the 

learning data was generated. However, even though the difference between the double 

intervention questions was much smaller in the causal-chain than in the causal-chain 

confound condition, a difference was also obtained between the double intervention 

questions in the causal-chain condition, F(1, 17) = 8.87, p<.01, MSE = 457.55, η2 = .34. 

A closer look at individual ratings revealed that 10 out of the 18 participants in the 

causal-chain condition judged E to be equally likely when C was generated by an 

intervention and when it was prevented while the causal mechanism linking C to X was 
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blocked. In contrast, all participants in the causal-chain confound condition assumed 

that an intervention in C would increase the probability of E despite the blocked link. 

Thus, a majority of participants seemed to have grasped the causal logic of causal-chain 

confounding. 

Model selections. The results for the model selection task are shown in Table 21. In 

total, 31 of the 36 participants (86%) picked the correct causal model. Thus, like in 

Experiment 7, a majority was able to 

separate the causal relation between C and 

E from the spurious relation. A 2x2-chi-

square test on learners’ model choices 

yielded a highly reliable result, 

χ2 (1, N = 36) = 19.31, p < .001. The 

proportion of participants who chose the 

correct model was significantly greater 

than chance in the causal-chain condition, χ2 (1, N = 18) = 5.56, p < .05, as well as in 

the causal-chain confound condition, χ2 (1, N = 18) = 14.22, p < .001. 

5.6.3 Experiments 7 and 8: Summary and Discussion 

The goal of Experiments 7 and 8 was to further investigate learners’ causal 

inferences with confounding variables. Two basic causal structures containing 

confounds were examined: a common-cause confound model, in which a cause and an 

effect are directly and spuriously related, and a causal-chain confound model, in which 

a cause both directly and indirectly influences its effect. Manipulating the cause by an 

external intervention eliminates common-cause confounding but not causal-chain 

confounding, which requires blocking the second causal pathway. The results of the two 

experiments show that participants understand the causal logic of these two types of 

confounding. A majority of participants in both experiments were able to disentangle 

the direct causal relation from the additional spurious relation. 

How did people achieve this? Previous research on causal judgments has shown that 

participants tend to control for extraneous causal variables when estimating the causal 

impact of a target variable (e.g., Spellman, 1996; Waldmann & Hagmayer, 2001). 

Confounding variables are such extraneous variables. Controlling for these variables, 

for example by only considering cases in which they are absent, enables us to derive 

causal inferences about the consequences of interventions. Observations of participants’ 

behavior during the experiment and their written comments indicate that participants 

Table 21 

Model Selections in Experiment 8. 

 Selected Model 

Condition 

Causal-

Chain 

Causal-Chain  

confound 

Causal-Chain 14 4 

Causal-Chain 

confound 
1 17 
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used the strategy of focusing on the events in which the confound was absent when 

assessing whether a direct causal relation was present or not. The findings also 

demonstrate that people understand that observational inferences require the use of 

unconditional contingencies, whereas interventional predictions require controlling for 

the confounding variables.  

How do the experiments relate to findings showing that people occasionally fail to 

understand confounding? One critical factor might be the data that is shown to 

participants. In some studies (e.g., Luhmann, 2005), participants did not receive data 

that allowed them to focus on the absence of the confounding variable (i.e., holding it 

constant). As a consequence, participants in his study tended to overestimate how 

informative confounded data is, even though people seem to be sensitive to situations in 

which the candidate causes are perfectly confounded (Ford & Cheng, 2004). However, 

even when participants receive the necessary information, they may not succeed if the 

critical cases are rare (see Waldmann & Hagmayer, 2001). Common-cause confounding 

may serve as an example: If the common-cause confound has a high base rate and 

strongly affects the target cause only very few cases will occur in which the target cause 

will be present in the absence of the confounding variable. In the two experiments 

reported here, participants were presented with data that contained a relatively large 

number (> 10) of such critical cases. In a pilot study (not reported here), learners were 

presented with fewer of these critical observations, and participants consequently failed 

to arrive at correct conclusions.  

In summary, people are able to understand the implications of common-cause 

confounding and causal-chain confounding, and they proved capable of deriving their 

interventional predictions in accordance with the inferred causal model. Thus, the 

results of Experiments 7 and 8 further corroborate the claim that learners have the 

capacity to reason with causal models containing confounds. This remarkable capacity 

may fail, however, with more complex models or less salient data. 
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6 General Discussion 

The intention of this final section is to summarize and discuss the empirical 

findings. Not surprisingly, a central emphasis is placed on how the results of the 

experiments relate to the predictions of causal Bayes nets theory and competing theories 

of causal inference. The section will end with a review of the causal Bayes nets 

formalism as a psychological model and an outline of some future research questions. 

6.1 Summary: Causal Bayes Nets as Models of Causal Reasoning  

The thesis started with the question of how we can infer the consequences of our 

actions when no direct knowledge about the potential outcomes of these actions is 

available. The capacity to derive interventional predictions from observational 

knowledge is a touchstone of true causal reasoning, because it goes beyond the mere 

ability to detect and represent structure-free contingencies. Causal Bayes nets theory 

was introduced as a normative account of causal representation, causal learning, and 

causal inference. The theory formalizes interventions in causal systems and provides the 

computational mechanisms for inferring interventional predictions from causal models 

parameterized by passive observations.  

The results of the experiments presented here provide strong evidence that people 

have the competency to engage in this kind of causal reasoning. Consistent with causal 

Bayes nets theory, learners distinguished between merely observed states of variables 

(“seeing”) and the very same states generated by external interventions (“doing”). 

Participants correctly recognized that interventions in a variable render the event 

independent of its actual causes, but also understood that the potential differences 

between observations and interventions crucially depend on the structure and the 

parameters of the investigated causal system. Thus, participants’ inferences about the 

consequences of interventions differed systematically in accordance with the instructed 

causal graphs and the models’ parameters.  

 These findings challenge alternative accounts of causal inference, which provide no 

means to represent whether a variable’s state was merely observed or actively 

generated. The presented experiments also refute the idea that the capacity to 

distinguish between seeing and doing might be restricted to descriptions of causal 

situations or causal reasoning with aggregated data. Learners successfully derived the 

consequences of hypothetical interventions after passively observing the behavior of a 

causal system in a trial-by-trial learning procedure. This finding is inconsistent with the 
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predictions of associative learning theories, which fail to derive interventional 

predictions from a purely observational learning phase. The results are also 

incompatible with the assumption that causal learning is driven by associative learning 

mechanisms and that causal judgments are a function of associative strength. The 

competency to distinguish between the diverging implications of observations and 

interventions was demonstrated for simple diagnostic judgments as well as for 

predictive judgments that require taking into account multiple variables and causal 

relations.  

The experiments also show a surprising grasp of the implications of confounding 

variables when reasoning with complex causal models. Learners not only proved 

capable of disentangling the influence of a direct causal relation from a concurrent 

spurious correlation, but they also took into account confounding pathways when 

deriving the consequences of interventions. Moreover, they were sensitive to the 

different causal structures that might underlie confounding, as well as to the fact that 

these types of confounding differ with respect to the consequences of interventions.  

Finally, the studies also point out some of the boundary conditions for the causal 

Bayes nets formalism as a psychological model. For example, learners had problems 

distinguishing hypothetical interventions from counterfactual interventions. Even 

though the findings indicate that learners do not treat hypothetical interventions and 

counterfactual actions in an identical manner, their responses did show substantial 

deviations from the normative predictions. The problem is likely rooted in the 

complexity of counterfactual interventions, because this type of inference combines 

observations with interventions that require an updating of the model’s probabilities 

prior to the stage of model manipulation. 

In summary, the results provide clear evidence that learners are sensitive to the 

differences between seeing and doing, and that they have the capacity to infer the 

consequences of hypothetical interventions from observational knowledge. The 

experiments strongly support causal Bayes nets as a theoretical account of causal 

reasoning. Alternative theories of causal cognition lack the representational power to 

express the crucial differences between observations and interventions and therefore fail 

to account for the data. Causal Bayes nets theory is currently the only model that 

provides a formal account of interventions and allows for deriving interventional 

predictions from causal models parameterized by observational knowledge.  
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6.2 Seeing versus Doing in Trial-by-Trial Learning 

  An important feature of the studies presented was the use of trial-based learning. 

Previous studies investigating people’s sensitivity to seeing and doing either focused on 

qualitative reasoning (Sloman & Lagnado, 2005) or provided participants with 

aggregated lists of data which were available during causal reasoning (Waldmann & 

Hagmayer, 2005). However, some authors have argued (e.g., Price & Yates, 1995; 

Shanks, 1991) that learning on the basis of aggregated data is handled by different 

processes than trial-by-trial learning. According to this position, associative learning 

mechanism are only activated in trial-based learning; therefore, experiments that do not 

use trial-by-trial learning do not necessarily provide evidence against associative 

accounts of causal cognition. Thus, trial-based learning not only provides a more 

naturalistic learning environment but is also an important condition for the comparison 

of learners’ causal judgments with the predictions of associative models of causal 

cognition.  

The fundamental problem associative theories face is to give an account of how 

associations acquired from observational learning relate to causal judgments about the 

outcomes of possible interventions. As discussed in detail in Section 5.2, there are three 

lines of argument, but none of them can explain learners’ capacity to derive 

interventional predictions subsequent to an observational learning phase. One position is 

to separate learning from observations from interventional learning completely. 

Unfortunately, this would imply that interventional predictions are not possible without 

prior instrumental learning. Another position is to assume that interventional predictions 

are a direct function of the observationally acquired associations. This approach, 

however, fails when observed states of variables have different implications than the 

same states generated by external intervention. Finally, one could assume an interaction 

between classical and instrumental conditioning; but since learners never undergo an 

instrumental learning phase (i.e., experience the outcomes of interventions), this 

argument does not apply to the experiments presented here. 

Price and Yates (1995) further specify the conditions under which causal judgments 

are assumed to be a function of associative strength. They advocate a more detailed 

model of contingency learning and causal judgment, one which comprises both an 

associative learning mechanism and a rule-based component. In accordance with the 

argument put forward by Shanks (1991), Price and Yates assume that in causal 
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induction associative mechanisms are only activated when the data is presented in 

single trials; otherwise, the data is processed by the rule-based component. 

 According to Price and Yates, associations are unidirectional from cues to 

outcomes; and causal judgments are only a function of associative strength when the 

direction of the inference matches the direction of the acquired association.  
 

If a participant is asked to make a judgment that is directionally consistent with an existing 

cue-outcome association (e.g., an estimate of the conditional probability of one of the 

outcomes given one of the cues), that association serves as the basis of the judgment. 

However, if the participant is asked to make a judgment that is not directionally consistent 

with any existing association (e.g., an estimate of the conditional probability of one of the 

cues given one of the outcomes), the judgment is based on some other process. (Price & 

Yates, 1995, p. 1651) 

 

This claim, however, bears several problems. Firstly, it severely restricts the 

explanatory power of an associative account of causal inference, because many 

(everyday and experimental) situations would fall outside the boundaries of the theory. 

Secondly, the assumption also raises questions about the necessity of the associative 

component in general: if the rule-based component can handle situations in which 

learning order and the direction of the causal inference mismatch, why should these 

processes not also operate when the judgment is directionally consistent with learning 

order? In addition, because it is not known during learning which kind of judgment will 

later be demanded, the associative and rule-based processes would have to run in 

parallel. Thirdly, the empirical findings are incompatible with the claim that causal 

judgments are a function of associative strength when the inferences are directionally 

consistent with a previously acquired cue-outcome association. Experiments 5 and 6, 

which only differ in the temporal order during observational learning, best illustrate 

this. In Experiment 5, learning order matched causal order, and thus cause events are 

mapped onto cues and effect events correspond to outcomes. In contrast, in 

Experiment 6 learning order was reversed; therefore, in this experiment effects 

correspond to cues whereas causes are mapped onto outcomes. Thus, in Experiment 5 

the acquired associations lead from causes to effects, whereas in Experiment 6 the 

associations are directed from effects to causes. Now, because learners were requested 

to give diagnostic judgments (from effect to cause) as well as predictive judgments 

(from cause to effect) in each experiment, there are judgments that are directionally 

consistent as well as judgments that are directionally inconsistent with the cue-outcome 

association (see Figure 23). According to the model of Price and Yates, in 
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Experiment 5 the predictive judgments from 

C to D should be a function of associative 

strength, whereas in Experiment 6 the 

diagnostic judgments from C to A should be 

a function of associative strength, because 

these are the inferences directionally 

consistent with the acquired cue-outcome 

association. 

The empirical findings and the obtained differences between observations and 

interventions refute this assumption. In Experiment 5, learners’ predictive judgments 

from C to D differed depending on whether C was merely observed or actively 

generated. Thus, causal judgments about the consequences of the intervention were not 

derived from the association between the cue (event C) and the outcome (event D). 

However, Price and Yates point out that the paradigmatic cases in which causal 

judgments are derived from associative strength are those that concern the prediction of 

the outcome given that the cue is present, but the obtained difference between seeing 

and doing primarily concerned the probability of D given that C was absent. Apart from 

the problem that the assumption of directional consistency constrains the applicability 

of the model even further, this conjecture is refuted by the results of Experiment 6. Due 

to the reversal of the learning order, in this experiment the diagnostic judgments from C 

to A are directionally consistent with the acquired cue-outcome associations and should 

therefore be a function of associative strength. Inconsistent with this prediction, the 

probability of A was judged differently depending on whether C was merely observed to 

be present or actively generated by an intervention. Thus, even with the additional 

constraint that causal judgments are only determined by associative strength when the 

causal inference is directionally consistent with the acquired cue-outcome association, 

associative models fail to account for the empirical results.  

Finally, the model of Price and Yates also illustrates that a combination of 

associative and rule-based learning mechanisms cannot explain the data. According to 

the model, causal judgments that are not directionally consistent are handled by rule-

based mechanisms (e.g., contingency models) that derive the judgments from frequency 

information. However, because these models, too, are insensitive to the difference 

between observation and intervention, a combined model cannot account for the 

findings.  

 

Figure 23. Directionality of associations and 

causal judgments in Experiments 5 and 6. 
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Taken together, the results of the experiments convincingly demonstrate that people 

can infer the outcomes of potential actions without prior instrumental learning. These 

findings contradict traditional associative learning theories, which fail to account for 

causal-model learning, and which are incapable of deriving correct predictions for 

actions after purely observational learning. On a more general level, the findings raise 

doubts about the common distinction between representations acquired from 

observational learning (classical conditioning) and those acquired through 

interventional learning (instrumental conditioning). The separation of observational and 

interventional learning is further challenged by a recent study of Blaisdell and 

colleagues (2006) showing that rats can infer the outcomes of instrumental actions after 

a passive classical conditioning phase. 

6.3 Causal Reasoning with Confounds 

A further goal of the experiments was to investigate learners’ understanding of and 

reasoning with confounds. Confounding variables are an important issue in both causal 

learning and causal reasoning. In structure induction, learning through interventions 

(i.e., experiments) is considered the prime method for avoiding confounds, although 

manipulations of the candidate cause can only eliminate common-cause but not causal-

chain confounding (cf. Section 5.6). Anyway, other control techniques are required 

when only observational data is available. Because here confoundings cannot be 

avoided through external manipulations of the candidate cause, it is necessary to use 

other strategies to differentiate between candidate causal models. One important 

strategy is to focus on situations in which potentially confounding variables are absent. 

This strategy requires selecting the crucial cases from the available data and analyzing 

them in an adequate manner (e.g., estimating conditional contingencies). In line with 

previous research (e.g., Cheng & Novick, 1992; Spellman, 1996; Waldmann & 

Hagmayer, 2001), the experiments presented here indicate that people understand the 

importance of controlling for confounds when assessing causal relations. For example, 

in Experiments 7 and 8 the presence of the hypothesized causal relation could be 

evaluated by holding constant the confounding variable; moreover, the results showed 

that people succeeded in doing this.  

Sensitivity to confounding variables is not only crucial in causal learning but also in 

causal reasoning. In particular, confoundings are an important issue when reasoning 

about possible interventions in complex causal systems, because in such systems the 
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outcomes of our actions might be not determined solely by the variable intervened in. 

However, mere knowledge of the potentially confounding variables is not sufficient; the 

actual influence of the confounding variable with reference to the kind of causal 

inference has to be taken into account. The experiments demonstrate that people are 

sensitive to confounds and have the capability to disentangle a genuine causal relation 

from a concurrent spurious correlation. Moreover, in accordance with the predictions of 

causal Bayes nets theory, learners recognized that observations and interventions differ 

with respect to the ways confounds have to be taken into account. Participants proved 

not only sensitive to backdoor paths in general, but also took into account the likelihood 

of the backdoor path’s instantiation and the strength of the causal connections 

constituting the alternative pathway. Finally, they also differentiated between the 

implications of different types of confounding (i.e., common-cause confounding and 

causal-chain confounding), and they successfully inferred the consequences of 

observations, interventions, and combinations of interventions with reference to the 

induced causal model.  

These findings support the view that everyday causal reasoning conforms to similar 

principles as those underlying scientific studies. Further research has to investigate in 

more detail learners’ capacity to take into account confounding variables. For example, 

an important factor seems to be the number of critical cases which allow for 

distinguishing between candidate models. Another factor is that in the presented 

experiments learners already had knowledge of the existence of the confounding 

variable and could capitalize on this knowledge to distinguish the models in question. 

However, this competence might be marred if the complete model has to be induced 

from the observational data.  

6.4 Are Bayes Nets the “Grand Unifying Theory” of Causality?  

At the beginning of this thesis, I introduced causal Bayes nets theory as “a 

normative formal account of causal representation, causal learning, and causal 

reasoning” (p. 2). This description suggests that the theory provides a comprehensive 

framework for analyzing and investigating the three key issues of causal cognition. 

Both descriptive and normative formal models have a long history in psychology. 

For example, in research on hypothesis testing and the famous Wason selection task 

(Wason, 1966), formal logic provided the yardstick against which human strategies of 

hypothesis testing were evaluated. Similarly, in research on judgment and decision 
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making, the normative standards come from game theory and expected utility theory. 

However, progress in the development of psychological theories often does not result 

from asserting that human behavior conforms to certain standards that are thought of as 

normative, but rather by examining the conditions under which human behavior 

deviates from these predictions. For example, the strategies of testing descriptive rules 

in the Wason selection task strongly differed from what formal logic suggested. The 

deviations from what was considered as the normative standards then led to the 

development of more refined approaches that could account for the empirical findings, 

but still maintained a normative core (cf. von Sydow, 2006). Likewise, the development 

of prospect theory  in judgment and decision making (Kahneman & Tversky, 1979) was 

driven by systematic deviations of people’s choices from the predictions of expected 

utility theory.  

In a similar vein, causal Bayes theory can be considered as serving two functions in 

research on causal cognition. First, the formalism constitutes a consistent theoretical 

framework for research on human causal cognition (cf. Danks, in press, for a similar 

view). Some of the theory’s aspects  are also found in other approaches, such as the 

emphasis of causal structure in causal model theory (e.g., Waldmann, 1996; Waldmann 

& Holyoak, 1992) or the use of conditional probabilities in probabilistic theories of 

causality (Cartwright, 1983; Eells, 1991; Suppes, 1970). As pointed out by Glymour 

(2003), there is also a close relation between the Bayes nets formalism and Cheng’s 

(1997) power PC theory. However, whereas other accounts address only certain aspects, 

causal Bayes nets theory is the only model that integrates issues of causal 

representation, causal learning, and causal reasoning in a coherent formal framework. 

For example, the account specifies the relation between unobservable causal structures 

and observable patterns of data. In addition, the theory introduces a number of novel 

aspects not previously addressed in detail. The basic distinction between observations 

and interventions is not a new one, but only causal Bayes nets theory formalizes the 

notion of intervention and relates structural modifications of causal model 

representations to changes in the associated probability distribution. These are some of 

the normative aspects of the theory that provide the standards for evaluating different 

kinds of human causal judgment. 

Some authors have questioned the adequacy of the formalism as a means of causal 

analysis. For example, Nancy Cartwright (2001, 2002) has raised doubts about the 

theoretical assumptions of the approach, such as whether the causal Markov condition 
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holds in real-life causal systems. Although these issues clearly deserve a more thorough 

analysis, they concern first and foremost the theory’s normative status. More relevant to 

the psychological debate is whether the formalism provides an adequate description of 

how people reach their causal beliefs and how these beliefs are used in causal reasoning. 

Thus, from the perspective of psychology the critical question primarily concerns the 

model’s descriptive validity.  

Some of the theory’s most important predictions have been tested in the 

experiments of this thesis, such as whether learners’ inferences about the consequences 

of hypothetical interventions conform to the predictions of the Bayes nets formalism, or 

whether reasoners take into account confounding variables in a normative fashion. The 

results support the claim that the formalism is not only a normative model of causality 

but also captures important aspects of human causal reasoning.  In addition, the 

formalism specifies the aspects which any theory of causal inference has to address in 

order to account for the empirical findings. A major point is the need to express the 

differences between merely observed features of the world and states generated by 

active manipulations. The notion of intervention is intrinsically linked with the need to 

represent causal structure, because observations and interventions do not differ with 

respect to some internal feature, but they do indeed differ with respect to their structural 

implications. In particular, interventions are linked to structural modifications of causal 

model representations. Finally, computational mechanisms are demanded that specify 

how knowledge about causal structure is combined with quantitative knowledge, for 

example to derive the outcomes of potential actions from observational knowledge. 

Conventional theories of causal cognition, such as contingency models or associative 

accounts, currently fail to meet these requirements. 

Nevertheless, an important question is whether causal Bayes nets theory in its 

current state already represents a genuine psychological model. First, some of the 

empirical results call for further research. One critical finding concerns learners’ 

reasoning about counterfactual actions. The experimental data indicate that learners 

sometimes had problems to correctly assess how hypothetical interventions differ from 

counterfactual interventions. The crucial difference between the two types of 

interventional inferences is that predictions about counterfactual interventions demand a 

specific integration of two pieces of information. The factual observation requires an 

update of the causal graph’s probabilities, and this must be followed by a stage of model 

manipulation in accordance with the counterfactual action. As learners proved capable 
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of performing these two steps individually in accordance with the normative 

predictions, the failure to cope with the counterfactual intervention questions is likely to 

be rooted in the necessary combination of observations and interventions. This 

hypothesis also receives support from the results of Experiment 1, which focused on 

reasoning with a single causal relation. In this study answering the counterfactual 

questions did not require an integration of observation and intervention, and 

consequently learners’ responses conformed to the normative predictions. Future 

research has to further investigate whether reasoning about counterfactual interventions 

does not obey the predictions of causal Bayes nets in general, or whether the deviations 

are rather due to the specific experimental setting (e.g., probabilistic relations, 

confounds) or limited information processing capacities. For example, the studies of 

Sloman and Lagnado (2004) indicate that people perform better when reasoning with 

descriptions of single causal episodes or deterministic relations.  

A further issue that should be addressed in future research concerns people’s 

sensitivity to the causal Markov condition. This assumption is a defining principle of 

causal Bayes nets theory, but there is some evidence that reasoners’ inferences do not 

always conform to this condition (Rehder & Burnett, 2005). However, other studies 

(Lagnado & Sloman, 2004) have found that a majority of participants were sensitive to 

the conditional independence relations entailed by a causal model. More data is 

necessary to specify under which conditions learners’ inferences obey the Markov 

condition and which factors lead to violations of the principle.  

Finally, there are also some theoretical aspects of causal Bayes nets that should be 

considered in more detail, such as the theory’s level of description. In its current 

version, the approach is a computational level description of how a causal model’s 

parameters have to be combined in causal reasoning to infer the states of a system’s 

variables conditional on observations, interventions, and counterfactual interventions. 

Thus, the theory describes which information a cognizer needs in order to perform 

certain computations, but how these parameters are acquired in the first place is only 

partially explained. If learners are provided with aggregated lists of data, people can 

estimate the model’s parameters directly from the available frequency information. 

However, things get complicated in the case of trial-by-trial learning. Here learning 

mechanisms are required to explain how a model’s parameters are acquired during the 

course of learning.  
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One position is to assume that the frequency information is somehow stored in 

memory and later provides the basis for estimating the graph’s parameters. This account 

has the advantage that the data is available in a “raw format” and new information is 

easily added to the existing knowledge base. Therefore, the approach can account for 

phenomena such as retrospective evaluation effects. However, further clarifications are 

clearly needed with regard to the involved cognitive processes and memory systems. 

The major disadvantage of such an approach is that it does not specify the processes 

during the actual course of learning and, furthermore, that the account provides no 

means to express differences in the way the learning data is experienced. For example, 

Experiments 5 and 6 demonstrate that manipulations of the temporal order during 

observational learning can affect learners’ causal inferences. Explaining this result 

requires a process explanation that spells out the details of how learning from single 

trial takes place.  

An interesting approach would be to integrate trial-based learning mechanisms into 

the causal Bayes nets framework. This is where the strength of associative learning 

theories comes into play. Learning models such as the Rescorla-Wagner rule provide a 

precise description of the processes assumed to take place in trial-by-trial learning. 

Since the long-run estimates of such algorithms often converge to probability 

parameters, they offer the possibility to explain how people acquire probabilities 

without performing explicit calculations. Recently, an iterative learning algorithm has 

also been proposed that converges to the predictions of the power PC model (Danks, 

Griffiths, & Tenenbaum, 2003). This is particularly interesting since in the case of a 

single cause-effect relation the power PC theory is formally equivalent to a noisy-OR 

gate parameterization of a common-effect model (cf. Glymour, 2003). Thus, introducing 

such trial-based learning procedures could offer an opportunity for combining the 

computational level description of causal Bayes nets with a genuine learning model.  

In conclusion, I suggest that the causal Bayes nets formalism provides a 

comprehensive and coherent formal framework of causal representation, causal 

learning, and causal reasoning. Causal Bayes nets may not be the Grand Unifying 

Theory of causality, but the account is clearly a great leap towards a deeper 

understanding of causal cognition.  
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