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Kurzfassung

In dieser Arbeit werden einige quantenmechanische Untersuchungen des Reak-
tionsmechanismus in nukleophilen bimolekularen Substitutionsreaktionen (SN2–Reak-
tionen) vorgestellt. Der SN2–Mechanismus ist sowohl für zahlreiche Gebiete der ex-
perimentellen Chemie als auch für die theoretischen Konzepte der Reaktionsdynamik
von Bedeutung. Entlang der Reaktionskoordinate befinden sich in der Gasphase zwei
tiefe Potentialtöpfe, und Bindungsbruch und –bildung finden gleichzeitig statt. Da-
durch weist die Reaktion einige interessante Besonderheiten wie Resonanzen ver-
schiedenen Typs und die Möglichkeit zur Rückkehr über die Barriere auf. Mittels
zeitunabhängiger quantenmechanischer Streurechnungen wird der Einfluss der sym-
metrischen Schwingungen der Methylgruppe sowie von Rotationen des angegriffenen
Methylhalogenids an zwei Beispielreaktionen in der Gasphase untersucht. Im ersten
Fall kann eine aktive Teilnahme der Moden an der Reaktion festgestellt und somit
das Konzept der Beobachtermoden dafür in Frage gestellt werden. Der zweite Fall
zeigt die Bedeutung der Kopplung der Rotationsbewegung mit den reaktiven Freiheits-
graden.

Abstract

This thesis presents quantum mechanical investigations of the mechanism involved
in nucleophilic bimolecular substitution reactions (SN2 reactions). The SN2 mech-
anism is important both for applications in a wide field of chemistry as well as for
the theoretical concepts in reaction dynamics. In the gas phase, the presence of two
deep wells in the reaction profile before and after passage of the central barrier and
the simultaneous breaking and forming of bonds give rise to several interesting fea-
tures like resonances of different types and the possibility of recrossing the barrier.
Time–independent quantum mechanical scattering theory is applied to investigate the
role of the symmetric vibrations of the methyl group and of rotations of the attacked
methyl halide for two model reactions in the gas phase. While the former can be shown
to actively participate in the reaction, questioning the spectator mode concept in this
case, the investigation of the latter reveals the importance of the coupling of rotational
motion with the reactive degrees of freedom.
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Chapter 1

Introduction

Nucleophilic bimolecular substitution reactions (SN2 reactions) are of high practical
as well as fundamental significance in organic chemistry, physical chemistry, biology
and medicine. An example for such a process is the synthesis of adrenaline from
noradrenaline (see Fig. 1.1). While the molecules involved are themselves fairly large
from the point of view of theoretical chemistry, only a small part of them actually
takes part in the reaction. To be more specific, Fig. 1.2 shows the essential steps
in the reaction for the synthesis of synephrine from octopamine, which differ only
by a hydroxyl group on the opposite part of the molecules from noradrenaline and
adrenaline, respectively. The key step is the nucleophilic attack of an amino group
on the dipolar part of the enzyme acting as a methyl donor. For a generic theoretical
modeling, we can thus simplify the reactants to a halogenide anion attacking a dipolar
methyl halide in the gas phase (see Fig. 1.3).

Such SN2 reactions in the gas phase have attracted a huge interest over the past
decade that manifests itself by four review articles that appeared between 1994 and
2004 [1, 2, 3, 4]. The halogen exchange Walden inversion reactions

X− +CR3Y → XCR3 +Y− (1.1)

(X, Y: halogen atoms; R: hydrogen or organyl) as prototype SN2 reactions have been
the subject of extensive experimental as well as theoretical investigations (see Refs. [7,
8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,89,90,91,
92, 96, 97] and references cited in Refs. [1, 2, 3, 4]).

The SN2 mechanism involves the simultaneous making and breaking of two single
bonds and can be regarded as a simple and exemplary elementary chemical reaction.
Most other important reaction mechanisms in organic and inorganic chemistry involve
double bonds and the existence of several chemically stable intermediates. The latter
are not present in reactions that proceed according to the SN2 mechanism so that they
are particularly well suited for a detailed quantum–dynamical investigation.

Gas–phase SN2 reactions are governed by Feshbach and sometimes, e.g. in the
system Cl− + CH3Br [32], also shape resonances that are connected with relatively
stable intermediate structures created by the strong electrostatic attraction between
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Figure 1.1: Synthesis of adrenaline from noradrenaline by addition of a methyl group
which proceeds via an SN2 mechanism [5].

Figure 1.2: Detailed steps in the synthesis of synephrine from octopamine [6].
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Figure 1.3: Potential along the reaction coordinate for the Cl–Br exchange reaction
Cl−+CH3Br→Br−+CH3Cl (see [102]).

the attacking nucleophile, mostly an ion, and the dipolar substrate molecule, often a
methyl halide. As is well known [1, 2, 3, 4, 7, 8, 9], two relatively deep wells (ca. 0.5
eV) are present in the reaction profile that correspond to two complexes X− · · · CH3Y
and XCH3 · · · Y− being formed before and after passage of the central barrier.

It was shown by Hase and co–workers in a series of papers on classical dynamics
calculations on these reactions [20, 21, 22, 25, 26, 27, 28, 30, 97] that there is only a
very limited energy flow between the inter– and intramolecular modes of the collision
complex so that a detailed quantum–dynamical study is required. In particular, it is
worth investigating whether excitation of particular vibrational and/or rotational modes
in the reactant molecule result in a non–negligible influence on the reactivity in gas–
phase SN2 reactions. Moreover, state–selected reaction probabilities and cross sections
give valuable information on vibrational and/or rotational product distributions.

This thesis presents quantum mechanical studies on two model systems, the sym-
metric chlorine–chlorine exchange reaction

Cl− + CH3Cl′ → ClCH3 + Cl′−

and the exothermic bromine–chlorine substitution

Cl− + CH3Br → ClCH3 + Br−.

Using time–independent quantum mechanical scattering theory, the symmetric vibra-
tions of the methyl group (umbrella bend and C–H stretch) are treated exactly within



CHAPTER 1. INTRODUCTION 4

C3v symmetry for the first time, shedding more light on the active role of the methyl
group in the Walden inversion. In addition, methods and results on the inclusion of
the rotational motion of the methyl halide are shown, providing the first state–selective
treatment of spatial degrees of freedom beyond collinearity in heavy six–atom reac-
tions with long–range interaction potentials. For that purpose, numerical techniques
are presented in detail and suitable extensions are proposed.



Chapter 2

Theoretical Framework

The technical goal of the calculations is to obtain complete asymptotic scattering infor-
mation about the processes via computation of the S–matrix. As the reactions under
study do not possess a unique time scale due to the many resonances the lifetimes
of which vary over several orders of magnitude, time–independent scattering theory
is used. In the implementation, we essentially need to solve the time–independent
Schroedinger equation for the nuclei in the potential given by the energy of the elec-
tronic ground state in the Born–Oppenheimer approximation. This energy, in turn, can
be calculated by standard program packages and will not be considered here.

The first section provides the coordinates used and the corresponding Hamiltoni-
ans, the second briefly summarizes the scattering formalism and the third gives an
outline of the possible strategies to handle rotation of the diatom system.

2.1 Coordinate Systems and Hamiltonians

2.1.1 Jacobi Coordinates

Collinear System

The dynamically essential degrees of freedom (the bonds being broken and formed) are
well described by Jacobi coordinates r and R which easily incorporate the conservation
of center of mass and avoid mixed derivatives in the Hamiltonian. In a three–atom
system, r is the distance of two of the particles and R the distance of the third from the
center of mass of the other two (see Fig. 2.1).

For the collinear calculations, the two doubly–degenerate symmetric vibrations of
the methyl group are additionally included, yielding a complete and exact description
within C3v symmetry. The methyl group is treated as a kinematically independent
system with the center of mass of the CH3 group as origin. Its internal motion is then
described by the two coordinates z = rCH cos(θ) and q = rCH sin(θ) (see Fig. 2.1) that
correspond to the motion of the center of mass of the H3 unit against the carbon atom
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Figure 2.1: Definition of the coordinate system for the four–dimensional collinear
calculations.

(z) and the ’breathing’ motion of the D3h–symmetric H3 unit in a plane perpendicular
to the molecular axis of symmetry (q).

In these coordinates, the kinetic energy is completely decoupled and the Hamilto-
nian reads

Ĥ = − h̄2

2μ1

∂ 2

∂R2 −
h̄2

2μ2

∂ 2

∂ r2 −
h̄2

2μ3

∂ 2

∂ z2 −
h̄2

2μ4

∂ 2

∂q2 +V (R,r,z,q), (2.1)

where the reduced masses are given by

μ1 =
mXmCH3Y

mX +mCH3Y
, (2.2)

μ2 =
mCH3mY

mCH3 +mY
, (2.3)

μ3 =
3mHmC

3mH +mC
, (2.4)

and
μ4 = 3mH. (2.5)

Here, mX and mY denote the masses of the two halogen atoms (i.e. the isotopes 35Cl or
79Br) and mC and mH refer to the masses of the carbon and hydrogen atoms. V (R,r,z,q)
is the energy of the electronic ground state with the nuclei at the positions specified by
(R,r,z,q).

Three–Dimensional Coordinates

To properly treat the rotation of the diatomic part, we additionally include the angle γ
describing the position of the third particle w.r.t. the diatom (see Fig. 2.2) and omit the
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Figure 2.2: Definition of the coordinate system including rotation.

two degrees of freedom of the methyl group. The remaining degree of freedom needed
for a complete description of the system on the three–particle level (the azimuthal
rotation of the diatom) can be handled as being purely dynamical.

The full Hamiltonian Ĥ = ĤJ=0 + ĤJ +V̂ then consists of [34]

ĤJ=0 = δ j′ jδk′k

[
− h̄2

2μ1

∂ 2

∂R2 −
h̄2

2μ2

∂ 2

∂ r2 +
h̄2

2
j( j +1)

(
1

μ1R2 +
1

μ2r2

)]
, (2.6)

ĤJ = δ j′ jδk′k
h̄2

2μ1R2 [J(J +1)−2k2]−δ j′ jδk′k±1
h̄2

2μ1R2C±
JkC

±
jk, (2.7)

V̂ = δk′k〈 j′k|V (R,r,γ)| jk〉γ (2.8)

where in the second part

C±
jk =

√
j( j +1)− k(k±1).

In these equations, J denotes the conserved total angular momentum quantum num-
ber, j = 0,1, . . . the angular momentum quantum number of the rotating diatom and
k = −J, . . . ,J is the quantum number of the projection of the total angular momentum
Ĵ onto the body–fixed axis defined by the third atom and the center of mass of the
diatom. | jk〉 denotes a spherical harmonic and 〈. . .〉γ indicates integration over γ .

The angular momentum quantum numbers j and k act as dynamical variables, re-
sulting in a four–dimensional Hamiltonian. In principle, taking conservation of total
angular momentum and center of mass into account, three coupled degrees of freedom
should suffice; however, removing all Coriolis couplings is possible only if at most one
large amplitude motion exists [33].

Ĥ contains terms which become singular for r → 0 or R → 0. While the first
represent physical singularities (vanishing distance of two particles) and thus pose no
problems, the second are due to the non–Cartesian coordinate system (Eckart singu-
larities). They do not lead to infinite energies, but cancel each other. This cancellation,
however, should be treated with care in any numerical calculation.
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2.1.2 Hyperspherical Coordinates

In Jacobi coordinates, each of two variables r and R may become infinite to describe
different asymptotic configurations. As it is desirable to have a single reaction coordi-
nate only, a transformation to hyperspherical coordinates [35, 36, 37, 38, 39, 40] (ρ,δ )
is made by the simple formulas

ρ =
√

R̃2 + r̃2, (2.9)

δ = arctan

(
r̃

R̃

)
,

where

r̃ =
√

μ2

μ
r, R̃ =

√
μ1

μ
R and μ =

√
μ1μ2.

The Hamiltonian for the collinear calculation becomes1

Ĥ = − h̄2

2μ

(
∂ 2

∂ρ2 +
1

4ρ2

)
+ Ĥsurf (2.10)

with the parametrically ρ–dependent surface Hamiltonian

Ĥsurf(ρ) = − h̄2

2

(
1

μρ2

∂ 2

∂δ 2 +
1
μ3

∂ 2

∂ z2 +
1
μ4

∂ 2

∂q2

)
+V (δ ,z,q;ρ). (2.11)

To include rotation, we have now Ĥsurf = ĤJ=0
surf + ĤJ

surf +V̂ with

ĤJ=0
surf = δ j′ jδk′k

[
− h̄2

2μρ2

∂ 2

∂δ 2 +
h̄2

2
j( j +1)

(
1

μρ2 cos2 δ
+

1

μρ2 sin2 δ

)]
, (2.12)

ĤJ
surf = δ j′ jδk′k

h̄2

2ρ2 cos2 δ
[J(J +1)−2k2]−δ j′ jδk′k±1

h̄2

2ρ2 cos2 δ
C±

JkC
±
jk, (2.13)

V̂ = δk′k〈 j′k|V (δ ,γ;ρ)| jk〉γ . (2.14)

2.2 Scattering Formalism

In time–independent scattering theory, we are searching for a solution ψ of the time–
independent Schroedinger equation at fixed energy E which represents asymptotically
a free incoming plain wave (the reactants) and a scattered spherical wave (the prod-
ucts). We thus impose the boundary condition

gJ
nm(R) ∼ δnme−i(knR−lnπ/2)−

√
kn

km
SJ

nmei(kmR−lmπ/2) (2.15)

1This requires the wave function ψ(ρ ,x) to be normalized according to
∫ |ψ(ρ ,x)|2 dρ dx = 1, where

x collectively denotes the remaining degrees of freedom [ 41].



9 2.3. STRATEGIES FOR THE TREATMENT OF ROTATION

for R → ∞, initial state n and final state m. kn is the wavenumber corresponding to en-
ergy E and state n, ln the orbital angular momentum quantum number corresponding to
state n and total angular momentum J. gJ

nm(R) denotes the radial part of an expansion
of the wavefunction ψJ

n ,

ψJ
n =

1
R ∑

m
gJ

nm(R)φ J
m(x). (2.16)

The φ J
m(x) are “surface” functions depending on all other coordinates collectively de-

noted by x.
In Eq. (2.15), SJ

nm is an element of the S-matrix which yields reaction probabilities
PJ

nm via PJ
nm = |SJ

nm|2. Total state–selective cross sections σnm can be computed as

σnm =
π
k2

n
∑
J

(2J +1)PJ
nm (2.17)

and (exact) rate constants are obtained by

k(T ) =
1

hQr

∞∫
0

e−E/(kBT )Pcum(E)dE (2.18)

where Pcum = ∑
i, j

Pi j and Qr is the partition function per unit volume for the reactants.

The S–matrix elements themselves provide additional information about time de-
lays [42] and differential cross sections.

2.3 Strategies for the Treatment of Rotation

In the definition of the Jacobi coordinates, we can choose any two of the three parti-
cles to be the diatom and the other one to be the single atom the position of which is
described by (R,γ). The three possible choices yield three different coordinate sys-
tems, and each of these is asymptotically well suited to describe one of the possible
reactant/product configurations. This implies that for reactive scattering at least two
different coordinate systems need to be related in the interaction region which poses
the key challenge in this field of research. Fortunately, the hyperradius ρ can be shown
to be independent of the coordinate system: For a given physical configuration of the
molecules, all three pairs of Jacobi coordinates yield the same radius. For collinear
scattering, also the hyperangle δ can be easily related by a shift and all coordinate
systems can be treated on an equal footing. If we deviate from collinearity, the trans-
formation of the coordinates (R,r,γ) into another system involves all three of them
in a more complicated manner (see [43] for a detailed presentation), and each set of
coordinates is well suited for one configuration only.

There are several different approaches to this problem in the literature. First,
one can define adiabatically adjusting, principal axis hyperspherical coordinates [44]
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which treat all arrangements equivalently. In addition, they can avoid Eckart singu-
larities in linear transition state configurations. However, the Hamiltonian contains a
mixed derivative, and the transformation to Jacobi coordinates needed for the boundary
condition in the asymptotic region is more complicated. Fortunately, for SN2 systems,
in the configurations leading to singular terms in the Hamiltonian both halogen atoms
are on the same side of the methyl group; therefore, this situation is important for
high energies only. Other sets of hyperspherical coordinates can be used which are
also less biased towards one of the arrangement configurations (cf. [45]); however,
the drawback will be a more complicated transformation to the appropriate asymptotic
coordinates.

Second, the wavefunctions can be computed in different coordinate systems and be
connected by computing an overlap matrix [38]. This requires the choice of reference
potentials which might be critical for a proper description of the interaction region.

In this thesis, we use a third approach to compute the wavefunctions based on
one of the (biased) hyperspherical coordinate systems in the interaction region. This
method has already been used directly in Jacobi coordinates [54]. By a proper basis
set adaptation, we can still accurately describe all arrangement configurations. For an
exact Hamiltonian, at fixed hyperradius ρ all arrangement channel coordinates will
yield the same eigenstates (with a different parametrization) such that matching onto
the (different) asymptotic coordinate systems is feasible once the interaction region is
left.



Chapter 3

Numerical Methods

This chapter treats the different numerical strategies employed in the calculations. We
first outline the solution of the scattering problem after eigenfunctions have been com-
puted. The following sections deal with the necessary basis set techniques which are
crucial for a satisfactory performance. As a conceptually complete review could not
be found, the presentation is set to derive the algorithm from general principles of
orthogonal polynomials as it was first discovered in [50]. The text should give infor-
mation on the efficient implementation of this method and bridge the gap between the
mathematical and the physical point of view. The last section gives material about
diagonalization techniques and possible combinations of these to achieve an improved
performance for the systems under study.

3.1 R–Matrix Propagation

In solving the scattering problem, we used the technique of R–matrix propagation
[46]. The R–matrix relates a matrix valued wavefunction ψnm and its derivatives by
Rψ ′ = ψ . If such a matrix Rasym is available asymptotically, the S–matrix can be
obtained by

S = (RasymO′ −O)−1(RasymI′ − I), (3.1)

where I and O are diagonal matrices representing the incoming and outcoming waves,
resp., according to Eq. (2.15). The advantage of using the R–matrix lies in the fact
that it is stable and not affected by the exponential behavior of closed (energetically
forbidden) channels.

For exact results, Rasym needs to be obtained at a large value of the Jacobi coor-
dinate R. However, if only reaction probabilities are needed, it is usually sufficient to
evaluate the S–matrix directly in hyperspherical coordinates ρ and average [40].

For the construction of Rasym, the reaction coordinate ρ is divided into small sec-
tors with midpoints1 ρi. For each ρi, the wavefunction is expanded in a finite product

1This puts some restriction on the distribution of the ρ i and the equations should be rewritten if
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basis similar to the infinite expansion (2.16),

ψn(ρ;ρi) =
1
ρ

Nch

∑
m=1

gnm(ρ;ρi)φm(x;ρi). (3.2)

Note that an additional factor of ρ−1/2 has to be included if the explicitly ρ–dependent
terms in (2.10) are written in the form obtained by directly transforming the differ-
ential operator from Jacobi to hyperspherical coordinates (using the normalization∫ |ψ(ρ,x)|2ρ dρ dx = 1).

The surface functions φm(x;ρi) depend parametrically on the hyperradius ρ . If they
are chosen to be eigenfunctions of the surface Hamiltonian Ĥsurf(ρ),

Ĥsurf(ρ)φm(x;ρi) = εm(ρi)φm(x;ρi), (3.3)

insertion of the finite expansion (3.2) in the Schroedinger equation Ĥψ = Eψ will
yield decoupled equations for the gnm(ρ;ρi):

d2g̃n(ρ;ρi)
dρ2 +W(ρi)g̃n(ρ;ρi) = 0 (3.4)

where the column vector g̃n contains the elements gnm/ρ and the matrix W is given by

Wmn(ρi) =
[

2μ
h̄2 (E − εn(ρi))− 1

4ρ2
i

]
δmn. (3.5)

These are easily solved to give a local R–matrix in each sector. By continuity require-
ments of the wavefunction and its derivative at the boundary of each sector, a global
R–matrix can be assembled (cf. [46]). For that purpose, the surface eigenfunctions
φm(x;ρi) for adjacent sectors ρi−1,ρi will have to be mapped to each other by virtue of

their overlap matrix elements O(i−1,i)
mn ,

O(i−1,i)
mn = 〈φm(x;ρi−1)|φn(x;ρi)〉. (3.6)

These, in turn, do not depend on energy and need to be computed only once.

3.2 Collocation Method: Basic Properties

3.2.1 A Simple Example

Consider the linear differential operator in one dimension

D̂ = −(1− x2)
∂ 2

∂x2 +2x
∂
∂x

, x ∈ [−1,1]. (3.7)

arbitrary ρi are needed, e.g. when avoided crossings are traced.
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It results from the “ϑ”–part of −Δ̂ with Δ̂ being the Laplace operator in spherical
coordinates,

Δ̂ =
1
r2

∂
∂ r

r2 ∂
∂ r

+
1

r2 sinϑ
∂

∂ϑ
sinϑ

∂
∂ϑ︸ ︷︷ ︸+

1

r2 sin2 ϑ
∂ 2

∂ϕ2 ,

by setting r = 1 and substituting x = cosϑ . Its eigenfunctions are well known: The
Legendre polynomials Pl, given by the recurrence relation

(l +1)Pl+1(x) = (2l +1)xPl(x)− lPl−1(x)

and P0(x) = 1, P1(x) = x. They are orthogonal on the interval [−1,1] with the normal-
ization factors γi = 2/(2i+1),

1∫
−1

Pi(x)Pj(x)dx =
2

2i+1︸ ︷︷ ︸
=γi

δi j,

and satisfy D̂Pl = l(l +1)Pl.
Suppose we intend to solve a differential equation which is in some sense derived

from D̂, for example an inhomogeneous equation like

D̂u = g (3.8)

for some function g on [−1,1] or an eigenvalue problem ˜̂Du = λu for the modified
operator ˜̂D,

˜̂D = D̂+V (x). (3.9)

Instead of using a “black–box”–method like finite differences or finite elements to
locally approximate the solution u, it is tempting to expand the solution in terms of the
known eigenfunctions of D̂,

u(x) =
∞

∑
l=0

alPl(x), (3.10)

and determine the expansion coefficients al. The basis used to expand the solution
(the Legendre polynomials in this case) will be call the trial functions in the following.
Contrary to the basis functions used in finite elements or finite differences, they are
global functions. As they are derived as eigenfunctions of an associated operator, the
method is termed spectral method.

To be able to solve numerically for the coefficients al , one first needs a finite ex-
pansion for u and cut the series (3.10) after the first N terms,

uP
N :=

N−1

∑
l=0

alPl(x). (3.11)
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Formally, uP
N is obtained by applying a projection operator P̂N to u, P̂Nu = uP

N , where
P̂N will project each continuous function onto the first N Legendre polynomials, i.e. in
Dirac notation

P̂N :=
N−1

∑
l=0

|Pl ><Pl|. (3.12)

The efficiency of the method will depend on the convergence speed of the expansion
(3.10) which, in turn, is determined by the decay rate of the expansion coefficients al.
In the next section, we can see in a quite general setting that our ansatz is promising.

3.2.2 Spectral Accuracy

Suppose we have some linear differential operator ˜̂D and we would like to solve a
differential equation

˜̂Du = g. (3.13)

If we know the eigenfunctions φk of a “similar” operator D̂,

D̂φk = λkφk, (3.14)

then it is reasonable to expand the solution u of the differential equation (3.13) in terms
of the φk:

u = ∑
k

ukφk. (3.15)

If the eigenfunctions of D̂ are orthonormal w.r.t. a scalar product (,), the expansion
coefficients uk are obtained from uk = (u,φk). Now, if the operator is hermitian, we
can write

uk = (u,φk) =
1
λk

(u, D̂φk) =
1
λk

(D̂u,φk)

and by iteration

uk =
1

λ m
k

(D̂mu,φk)

for every m ≥ 1. If D̂mu is still “well–behaved”, i.e. ‖D̂mu‖ exists, we get by Cauchy–
Schwarz the inequality

|uk| ≤ 1
|λk|m‖D̂mu‖. (3.16)

If the eigenvalues λk grow at least like kα , α > 0 (which is the case for the usual
orthogonal polynomials) and ‖D̂mu‖ remains bounded for m → ∞, the expansion co-
efficients |uk| will decay faster than any inverse power of k (exponential convergence,
spectral accuracy).

The main assumptions made in this argument concern the hermiticity of the op-
erator D̂ and the growth of ‖D̂mu‖. The first assumption can be closely related to
appropriate boundary conditions if we think in terms of partial integration. For the
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second, note that the expansion coefficients uk can be linked to the difference D̂− ˜̂D
of the operators D̂ and ˜̂D and also to the expansion coefficients of g:

uk = (u,φk) =
1
λk

(D̂u,φk) =
1
λk

(
((D̂− ˜̂D)+ ˜̂D)u,φk

)
=

1
λk

(
(D̂− ˜̂D)u+g,φk

)
.

In general, spectral accuracy is an asymptotic statement for large k, i.e. it need not
imply an efficient numerical behavior. However, if the trial functions φk are chosen
properly, fast convergence will in practice often be achieved [47, 67]. An example is
given in Sec. 3.4.3. In theory, the expansion coefficients of Tschebyscheff series of
entire functions converge to zero even faster than exponential; in case of singularities
off the real line, the convergence is exponential, and with singularities in the domain of
definition [−1,1], only algebraic convergence is achieved (see [48] for a brief summary
and further references).

3.2.3 Generating a Matrix Representation

To generate a numerical solution for our examples in Eq. (3.8) or (3.9), resp., we will
substitute u by the finite expansion uP

N , Eq. (3.11),

D̂uP
N(x) ≈ g(x), (3.17)

or
(D̂+V (x))uP

N(x) ≈ λuP
N(x), (3.18)

and then solve for the expansion coefficients al, l = 0, . . . ,N − 1. For this purpose,
additional procedures have to be invented to reduce each remaining trial function to
a finite set and to ensure that the approximate solution will satisfy the differential
equation as closely as possible. The various choices for minimizing the residual error
will create the difference between one spectral method and another. In general, the
obtained solutions ãl, l = 0, . . . ,N −1 will differ from the coefficients al in the exact
solution and depend on the procedure invented.

One possibility is to form matrix elements with test functions and solve the result-
ing matrix equation or matrix eigenvalue problem, respectively. If we use the trial
functions as test functions, the approach is called Galerkin in the context of fluid
dynamics [47], variational or a Variational Basis Representation (VBR) in quantum
mechanics [60]. (The procedure is essentially the same as for finite elements, the dif-
ference lies in the choice of the functions.) We obtain a system of linear equations for
the expansion coefficients ãl which in matrix form reads for (3.17)

Dlmãm = gl (3.19)
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with

Dlm = l(l +1)γlδlm, (3.20)

gl = (Pl,g)L2[−1,1]. (3.21)

While this system is immediately solvable, we get for the second example (3.18) an
eigenvalue problem for the matrix

D̃lm = l(l +1)γlδlm +(Pl,VPm)L2[−1,1]. (3.22)

In the variational approach it is assumed that the integrals for the matrix elements
are computed exactly (or at least with a negligible error). If we allow the integration
to be performed with finite precision (for example, using a quadrature formula with N
points xi, 1 ≤ i ≤ N), the resulting matrix representation of the differential equation
is called Finite Basis Representation (FBR) in quantum mechanics. The quadrature
formula is applied only to those terms which cannot be determined exactly; usually,
these are matrix elements of functions. Denoting the L2[−1,1] scalar product in the
quadrature approximation by (,)N , the first example becomes

Dlmãm = gN
l (3.23)

with gN
l = (Pl,g)N; the second is then an eigenvalue problem for

D̃P
lm = l(l +1)γlδlm +(Pl,VPm)N. (3.24)

Another strategy which at first glance is completely different is to enforce the dif-
ferential equation in Eq. (3.17) or (3.18) only at discrete points xi, 1 ≤ i ≤ N, instead
of computing matrix elements:

DC
i ju

P
N(x j) = g(xi) (3.25)

or
DC

i ju
P
N(x j)+V (xi)uP

N(xi) = λuP
N(xi), (3.26)

respectively. (Formally, we can use delta–functions δ (x− xi) as test functions to ar-
rive at these equations). The unknowns to solve for are the function values u(xi) at
the collocation points xi instead of the expansion coefficients al . This approach is
denominated collocation method in fluid dynamics or Discrete Variable Representa-
tion (DVR) in quantum mechanics. Evaluation of the derivative terms DC in (3.25)
or (3.26) needs an explanation. It will be clarified by a crucial connection between
collocation methods and finite basis representations: For orthogonal polynomials and
Gauss quadrature points as collocation points, there is a simple orthogonal transfor-
mation relating the two approaches. The advantage of collocation methods is then the
sparsity of the representing matrices in several dimensions, as can be guessed from
(3.26).
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3.3 Collocation Method and Orthogonal Polynomials

3.3.1 Orthogonal Polynomials

Collocations methods can be best understood in the framework of orthogonal polyno-
mials. For this reason we first collect some properties of these, following [51].

Basic Properties

Orthogonal polynomials are a sequence φn(x), n = 0,1,2, . . ., of polynomials which
are orthogonal w.r.t. a weight function w(x) on an interval [a,b]. More precisely:

Definition 3.3.1 A weight function w : [a,b] → R≥0 is a nonnegative function on a
finite or infinite interval [a,b] for which all moments μn exist and are finite:

μn :=
b∫

a

xnw(x)dx < ∞ (n = 0,1,2, . . .). (3.27)

In addition, we require μ0 > 0.

For continuous functions f , g on [a,b] every weight function defines a scalar product
( f ,g) by

( f ,g)w :=
b∫

a

f (x)g(x)w(x)dx. (3.28)

The resulting notion of orthogonality can be used to orthonormalize the linear inde-
pendent polynomials 1,x,x2, . . . by the Gram–Schmidt–procedure, resulting in an or-
thonormal sequence {φn(x)}∞

0 where φ j(x) is of (exact) degree j. The only remaining
ambiguity is a choice of sign. If we require the highest coefficient kn of φn(x) to be
positive, we finally obtain

Theorem 3.3.1 For every weight function w there is exactly one sequence {φn(x)}∞
0 of

polynomials satisfying (m,n ≥ 0)

(φm,φn)w = δmn, (3.29)

φn is of exact degree n, (3.30)

kn > 0 (kn : highest coefficient of φn). (3.31)

As {φ j(x)}n−1
0 (n ≥ 1) form a basis of the space Pn−1 of polynomials of degree

n−1, we can conclude

Corollary 3.3.1 φn is orthogonal to every polynomial in Pn−1 (n = 1,2, . . .).

Of specific importance are the zeros of the polynomials φn. A priori, they might be
outside of the interval [a,b] or even be complex. However, one can show that

Theorem 3.3.2 The n zeros of the polynomials φn are real, distinct and contained in
the interval (a,b) (n = 0,1,2, . . .).
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Recurrence Relation

In a sequence {φ j(x)}∞
0 of orthogonal polynomials, each φn(x) (n ≥ 1) can be ex-

pressed as a linear combination of φ0(x), . . . ,φn−1(x) and xφn−1(x). However, due to
the orthogonality property of each φn to all polynomials of lower degree (corollary
3.3.1), none of the φ j(x) with j < n−2 are needed:

Theorem 3.3.3 Every sequence {φ j(x)}∞
0 of orthogonal polynomials satisfies a three–

term–recurrence of the form (n ≥ 2)

φn(x) =
(

kn

kn−1
x+Bn

)
φn−1(x)− knkn−2

k2
n−1

φn−2(x), Bn ∈ R. (3.32)

Note that this form requires the polynomials to be normalized according to (3.29). If
we set φ−1 ≡ 0, it extends to n = 1.

Jacobi Matrix

By rewriting the recurrence relation (3.32) as

xφn−1(x) =
kn−1

kn
φn(x)+

kn−2

kn−1
φn−2(x)−βn−1φn−1(x), βn−1 ∈ R, (3.33)

we notice a symmetry in the coefficients for φn(x) and φn−2(x). In matrix form for
n = 1, . . . ,N, it reads

xpN(x) = JNpN(x)+
kN−1

kN
φN(x)eN (3.34)

where pN(x) :=
(
φ0(x), . . . ,φN−1(x)

)T
, eN := (0, . . . ,0,1)T and the Jacobi matrix

JN :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0
k0
k1

0 0 . . . 0
k0
k1

β1
k1
k2

0 . . . 0

0 k1
k2

β2
k2
k3

. . . 0
...

...
...

... 0
...

...
...

...
...

0 0 0 0 . . . βN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.35)

JN is obviously symmetric. By the orthogonality of the φn,

(JN)i j = (φi,xφ j)w, (3.36)

i, j = 0, . . . ,N−1, i.e. in physical terms JN is the matrix representation of the position
operator X̂ (which in this setting acts on a function by multiplying it with its argument)

in the basis
{√

w(x)φn(x)
}N−1

n=0
w.r.t. the L2[a,b] scalar product.
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Christoffel–Darboux–Identity

The matrix form (3.34) of the recurrence relation enables us to establish an explicit
expression for “scalar products” of polynomials with fixed arguments which will be
crucial in the following:

Theorem 3.3.4 (The Christoffel–Darboux–Identity.)

pN(x) ·pN(y) =
N−1

∑
n=0

φn(x)φn(y) =
kN−1

kN

φN−1(y)φN(x)−φN−1(x)φN(y)
x− y

. (3.37)

In the limit of y → x, we obtain for every zero xν (ν = 1, . . . ,N) of φN(x)

‖pN(xν)‖2 =
N−1

∑
n=0

φ 2
n (xν) =

kN−1

kN
φN−1(xν)φ ′

N(xν). (3.38)

Gauss Quadrature

It is well known that the zeros of orthogonal polynomials yield an efficient choice of
quadrature points. In our presentation of Gauss quadrature, we focus especially on an
explicit relation for the weights:

Theorem 3.3.5 Let w(x) be a weight function for the interval [a,b] and {φ j(x)}∞
0 be

the resulting sequence of orthogonal polynomials. For each N ≥ 1 the zeros a <
x1, . . . ,xN < b of φN(x) and the weights

Hν =
1

‖pN(xν)‖2 =

(
N−1

∑
n=0

φ 2
n (xν)

)−1

(ν = 1, . . . ,n) (3.39)

are the unique numbers with the following property: The formula

b∫
a

f (x)w(x)dx ≈
N

∑
ν=1

Hν f (xν) =: QN( f ) (3.40)

is exact for every polynomial f of degree ≤ 2N −1.

Differential Equation

A certain class of orthogonal polynomials has an additional important property: It
solves a differential equation or, more specifically, these polynomials are eigenfunc-
tions of a differential operator. The following theorem can be shown by simple partial
integration:
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Theorem 3.3.6 (Rodrigues’ Formula). If a sequence of infinitely differentiable (“gen-
erating”) functions Gn satisfy

dn+1

dxn+1

(
1

w(x)
dnGn(x)

dxn

)
= 0,

Gn(a) = G′
n(a) = . . . = G(n−1)

n (a) = 0,

Gn(b) = G′
n(b) = . . . = G(n−1)

n (b) = 0,

then

φn(x) =
1

w(x)
dnGn(x)

dxn

is the sequence of orthogonal polynomials associated with the weight function w(x) on
the interval [a,b].

A little bit of algebra (see [51]) then reveals the differential equation; its meaning
is best explained by the examples in the next subsection:

Theorem 3.3.7 If Gn(x) has the special form

Gn(x) = w(x)[G(x)]n

with G(x) being a quadratic polynomial,

G(x) = α +βx+ γx2,

then the functions yn(x) = w(x)φn(x) composed of a weight function w(x) and the asso-
ciated orthogonal polynomials φn(x) fulfill the following differential equation of sec-
ond order (Sturm–Liouville type):

G(x)y′′n(x)+{2G′(x)−φ1(x)}y′n(x) −{
n2 −n−2

2
G′′(x)+(n+1)φ ′

1(x)
}

yn(x) = 0.

Common Examples

It is often convenient to normalize orthogonal polynomials according to (φn,φn)w =
γn �= 1. With this convention, the following table collects the properties of four widely
used examples (Tschebyscheff (T ), Legendre (P), Hermite (H) and Laguerre (L) poly-
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nomials):

T P H L

Weight fct. w(x) (1− x2)−1/2 1 e−x2
e−x

Interval [−1,1] [−1,1] (−∞,∞) [0,∞)

Conventional γ0 = π,
Normalization γn = π

2 (n ≥ 1)
2

2n+1
2nn!

√
π (n!)2

First Polynomial T0(x) = 1 P0(x) = 1 H0(x) = 1 L0(x) = 1

Second Polynomial T1(x) = x P1(x) = x H1(x) = 2x L1(x) = 1− x

Highest coeff. kn 2n−1 1·3·5···(2n−1)
n! 2n (−1)n

• Recurrence Relation:

T : Tn+1(x) = 2xTn(x)−Tn−1(x)

P: (l +1)Pl+1(x) = (2l +1)xPl(x)− lPl−1(x)

H: Hn+1(x) = 2xHn(x)−2nHn−1(x)

L: Ln+1(x) = (2n+1− x)Ln(x)−n2Ln−1(x)

• Differential Equation:

T : (1− x2)T ′′
n (x)− xT ′

n(x)+n2Tn(x) = 0

P: (1− x2)P′′
l (x)−2xP′

l (x)+ l(l +1)Pl(x) = 0

H: H ′′
n (x)−2xH ′

n(x)+2nHn(x) = 0

L: xL′′
n(x)+(1− x)L′

n(x)+nLn(x) = 0

3.3.2 Collocation Basis

Basic Properties

It is now easy to derive a key property of the Jacobi matrix (3.35):

Theorem 3.3.8 The eigenvalues of the Jacobi matrix JN are the zeros x j ( j = 1, . . . ,N)
of the polynomial φN(x), the normalized eigenvector corresponding to the eigenvalue

x j is
√

Hj
(
φ0(x j), . . . ,φN−1(x j)

)T
. The N ×N matrix UN,

(UN)i j :=
√

Hjφi(x j) ( j = 1, . . . ,N; i = 0, . . . ,N −1), (3.41)

is thus orthogonal and diagonalizes JN:(
UT

NJNUN
)

jk = x jδ jk, j,k = 1, . . . ,N. (3.42)
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Proof: From (3.34), we obtain by substituting a zero x j for x

x jpN(x j) = JNpN(x j),

i e.
(
φ0(x j), . . . ,φN−1(x j)

)T
is eigenvector of JN corresponding to the eigenvalue x j.

The normalization of the rows and columns, resp., of UN follows from the explicit
formula (3.39) for the weights of the associated Gauss quadrature. �

While the properties (3.41) and (3.42) are interesting in themselves and provide
a numerically stable algorithm to compute roots and weights for a Gauss quadra-
ture [55, 56], their importance extend to the option of performing orthogonal basis
transformations via the matrix UN [50]. In particular, we can apply this transforma-
tion to the orthogonal basis {φn(x)}N−1

n=0 of the space PN−1 of polynomials with degree
≤ N −1:

Definition 3.3.2 For every sequence {φn(x)}∞
n=0 and every N ≥ 1, the associated col-

location basis is given by

ψN
n :=

(
UT

NpN

)
n (n = 1, . . . ,N). (3.43)

Note that the collocation basis depends on N in the sense that – contrary to the orthog-
onal polynomials – enlarging the basis will not simply add another basis function, but
change all of them. The shape of these functions is clarified by

Theorem 3.3.9 Every collocation basis
{

ψN
n

}N−1
n=0 associated to a weight function

w(x) on an interval [a,b] has the following properties (m,n ≥ 0, f any continuous
function):

(ψN
m ,ψN

n )w = δmn, (3.44)

ψN
n (xm) =

1√
Hn

δmn, (3.45)

(ψN
n , f )w ≈ QN(ψN

m f ) =
√

Hn f (xn), (3.46)

(ψN
m , f ψN

n )w ≈ QN(ψN
m f ψN

n ) = f (xn)δmn. (3.47)

Proof: The first statement immediately follows from the orthogonality of UN and the
orthonormality (3.29) of the orthogonal polynomials φn(x). For the second, note the
explicit formula

ψN
n (x) =

√
Hn

N−1

∑
i=0

φi(xn)φi(x) (3.48)

and the orthonormality of the columns of UN . The third and fourth are easy conse-
quences then; the latter, for example, follows from

(ψN
m , f ψN

n )w =
b∫

a

ψN
m (x) f (x)ψN

n (x)w(x)dx
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≈ QN(ψN
m f ψN

n )

=
N

∑
ν=1

HνψN
m (xν) f (xν)ψN

n (xν)

=
N

∑
ν=1

Hνδmν
1√
Hm

f (xν)δnν
1√
Hn

= f (xn)δmn.

�

Eq. (3.45) reveals the collocation basis to be suitably weighted Lagrange polyno-
mials for the roots of the relevant Gauss quadrature,

ψN
n (x) =

1√
Hn

N

∏
i=1
i�=k

x− xi

xn− xi
. (3.49)

(In particular, each ψN
n (x) is a polynomial of (exact) degree N −1). In this sense, the

collocation points xi themselves can be regarded as the basis (instead of viewing them
as simple technical quantities needed to evaluate integrals), and the mesh created by
them is called a Lagrange Mesh [57].

Algorithm

Of special interest is the last property (3.47) as it yields a diagonal matrix representa-
tion for terms without derivatives in a partial differential equation. In the case of an
operator D̂ containing derivatives, the corresponding matrix elements in the colloca-
tion basis are

DC
i j = (ψN

i , D̂ψN
j )w. (3.50)

They can either be computed directly (based on the explicit formula (3.49) for the
basis functions) or be evaluated in the basis of orthogonal polynomials (where they
often have a simple shape, cf. (3.20)),

DP
i j = (φi, D̂φ j)w, (3.51)

and then transformed via the matrix UN:

DC = UNDPUT
N. (3.52)

The algorithm to approximately solve a linear differential equation (cf. (3.8)) or eigen-
value problem of a differential operator (cf. (3.9)) for uP

N in the collocation method can
be summarized as follows:

1. Choose an appropriate basis of orthogonal polynomials φn
2 and the basis size N.

2A generally useful choice is provided by the Tschebyscheff polynomials, see Sec. 3.4.2.
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2. Set up the Jacobi matrix JN (3.35) with the coefficients kn, βn from the normal-
ized recursion relation (3.33).

3. Diagonalize JN as in (3.42) to obtain the transformation matrix UN and colloca-
tion points xi.

4. Set up the problem in the collocation basis:

(a) Derivatives: Transform by (3.52) from the finite basis representation or
compute directly using (3.49);

(a) Functions as multiplicative operators: Evaluate at the collocation points
according to (3.47), yielding a diagonal matrix representation;

(a) Functions g as vectors on the right hand side: Evaluate pointwise in each
entry as

√
Hig(xi), see (3.46).

5. Solve the resulting matrix problem. The solution vector(s) u contain
√

HiuP
N(xi)

as entries, see (3.45).

In our examples (3.8) and (3.9), the diagonal entries in the Jacobi matrix JN are βi = 0
(see Sec. 3.3.1). For the off-diagonal ones, note that the sequence needs to be normal-
ized by φl = Pl/

√γl . The highest coefficient of the polynomial φl is then kl/
√γl and

the matrix entries turn out to be

(JN)i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i√
4i2 −1

for i = j−1,

j√
4 j2 −1

for j = i−1,

0 otherwise.

(3.53)

After transforming the derivative matrix DP
lm = l(l +1)δlm in the collocation basis via

(3.52) to yield DC, we finally get the matrix equation

DCu = g (3.54)

with gi =
√

Hig(xi) or the matrix eigenvalue problem for

DC +V (3.55)

with Vi j = V (xi)δi j. (Note that both (3.25) and (3.26) imply a different normalization).
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Convergence Properties

• Convergence of the Expansion

For a sequence of orthogonal polynomials {φn(x)}∞
0 and a function f , we can try to

expand the function in terms of the polynomials, i.e.

f (x) ∼
∞

∑
n=0

cnφn(x) (3.56)

with

cn = (φ , f )w =
b∫

a

φn(x) f (x)w(x)dx. (3.57)

While the general answer to the problem of what ∼ means in (3.56) opens up the field
of approximation theory which shall not be considered here, an interesting statement
can be given for the case that a and b are finite [61] (similar to the Dini–Lipschitz test
for the pointwise convergence of Fourier–series):

Theorem 3.3.10 Let f be continuous on the finite interval [a,b] and satisfy a Lipschitz–
condition at x0, i.e. | f (x)− f (x0)| ≤ K|x− x0| for some K > 0. Suppose in addition
that φn(x0) remains bounded for n → ∞. Then (3.56) holds pointwise at x0.

Proof: The partial sum SN(x) is

SN(x0) =
N

∑
n=0

(φ , f )wφn(x0)

=
N

∑
n=0

b∫
a

φn(y) f (y)w(y)dy φn(x0)

=
b∫

a

f (y)w(y)

(
N

∑
n=0

φn(x0)φn(y)

)
dy.

For the term in brackets, we can insert the Christoffel–Darboux–Identity (3.37). By
multiplying this identity with w(y) and integrating over y, we get by orthogonality

1 =
kN

kN+1

b∫
a

φN(y)φN+1(x0)−φN(x0)φN+1(y)
x0 − y

w(y)dy.

After multiplying with f (x0) and subtracting from SN(x0), we obtain for the difference

SN(x0)− f (x0) =

kN

kN+1

b∫
a

[ f (y)− f (x0)]
φN(y)φN+1(x0)−φN(x0)φN+1(y)

x0 − y
w(y)dy.
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The fraction kN/kN+1 can be estimated to remain bounded: It is an entry of the Jacobi
matrix the eigenvalues of which are the zeros of φN and thus lie in the finite interval
[a,b]; as the diagonal entries βn are positive, kN/kN+1 is bounded by the largest zero
xmax as can be seen with a suitably chosen test vector x in

xmax ≥ (x,JNx)
(x,x)

.

Therefore it remains to show that the integral tends to zero. The expression can be
rewritten as

SN(x0)− f (x0) =
kN

kN+1

(
(h,φN+1)wφN(x0)− (h,φN)wφN+1(x0)

)
where h(y) = ( f (y)− f (x0))/(y−x0). By the Lipschitz–condition for f , h is bounded
and continuous (except, possibly, at x0); the numbers (h,φN)w as the generalized
Fourier coefficients of h thus tend to zero for N → ∞. As φN(x0) remains bounded,
the total right hand side vanishes for N → ∞. �

• Error Classification

The principle error in every spectral method will be caused by using only a finite
expansion uP

N like (3.11) to generate the approximate solution. As pointed out in
the introduction, Sec. 3.2.3, the expansion coefficients ûN

k in the numerical solution
will depend on N itself. In other words, if u is a solution for a differential equation
like D̂u = g, then P̂Nu, the solution projected onto the first N orthogonal polynomials
(with P̂N as in (3.12)), will in general not be a solution of the reduced matrix equation
P̂ND̂P̂Nu = P̂Ng. However, the difference u− P̂Nu between the exact and the projected
solution can serve to analyze the error by looking at its norm,

‖u− P̂Nu‖w, (3.58)

where ‖ · ‖w is derived from the scalar product (,)w.
A second type of error arises from the approximate evaluation of the matrix el-

ements by (Gauss) quadrature. Note that this error is the same for the collocation
method and the finite basis representation which are related by an orthogonal transfor-
mation. To shed more light on this error, we exploit the special integration property
(3.47) of the collocation basis to define an adapted discrete scalar product [47]:

Definition 3.3.3 For any two continuous functions f , g on [a,b], we define

( f ,g)N := QN( f g) =
N

∑
ν=1

Hν f (xν)g(xν). (3.59)
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For two polynomials f , g the product of which has a degree of at most 2N −1, we get

( f ,g)N = ( f ,g)w (3.60)

by the Gaussian integration property (3.40). Thus, (,)N is a scalar product on the
space PN−1 of polynomials of degree ≤ N−1 and we have orthonormality of the finite
polynomial basis φn for n = 0, . . . ,N−1 and the collocation basis ψN

n for n = 1, . . . ,N:

(φn,φm)N = (ψN
n ,ψN

m )N = δmn. (3.61)

The collocation aims at finding the values u(xi) of the solution u at the collocation
points. If we again neglect the fact that the numerically obtained values will differ from
the exact ones for finite N, the collocation solution can essentially be described by an
interpolation polynomial ÎNu of degree N −1 which agrees with the exact solution in
all xi:

(ÎNu)(xi) = u(xi), 1 ≤ i ≤ N, ÎNu ∈ PN−1. (3.62)

(The additional factor
√

Hi contained in the solution vectors is not relevant for this
analysis). In terms of the finite basis φn, we can write

ÎNu =
N−1

∑
i=0

ũiφi

with the discrete polynomial coefficients ũi; their difference to the expansion coeffi-
cients describes the quadrature error. For every continuous f , we have

(ÎNu, f )N = (u, f )N, (3.63)

i.e. ÎNu is the projection of u onto PN−1 w.r.t. the discrete scalar product (,)N , whereas
P̂Nu projects w.r.t. (,)w. As a consequence, we can compute the discrete polynomial
coefficients from

ũi = (u,φi)N,

and by (3.61) we can express them as

ũi =

(
∞

∑
k=0

ukφk,φi

)
N

= ûi +
∞

∑
k=N

(φk,φi)Nuk.

Multiplying with φi and summing from i = 0 to N −1, this reads

ÎNu = P̂Nu+ R̂Nu (3.64)

with the quadrature error or aliasing error

R̂Nu :=
N−1

∑
i=0

(
∞

∑
k=N

(φk,φi)Nuk

)
φi. (3.65)
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Now R̂Nu is orthogonal to u− P̂Nu w.r.t. (,)w as the former is a linear combination of
polynomials φi up to index N −1 and the latter starts at index N. Therefore

‖u− ÎNu‖2
w = ‖u− P̂Nu‖2

w +‖R̂Nu‖2
w. (3.66)

By (3.65), the additional error ‖R̂Nu‖2
w is caused by quadrature instead of exact inte-

gration and will crucially depend on the decay of the expansion coefficients uk which,
in case of spectral accuracy, can be expected to be faster than polynomial.

• Spectral Accuracy Revisited

A qualitative argument in addition to the one given in Sec. 3.2.2 might support the
expected fast convergence of the method [63]. In the analysis of the convergence
properties of finite differences or finite elements, the error is usually of the form O(hα),
where h refers to the spacing of the points and α > 0 depends on the method chosen,
i.e. the polynomial degree. For collocation methods, increasing the size N of the basis
will both decrease the grid spacing h≈ 1/N and increase the polynomial degree N ≈α ,
so that the resulting error is

≈ O[(1/N)N],

i.e. it decreases faster than any finite power of N.

3.4 Generalizations

3.4.1 Several Dimensions

Passing from one to d dimensions (and thus from ordinary to partial differential equa-
tions), the sparsity (3.47) of matrix elements of functions is the key element for effi-
ciency of the collocation method. More precisely, let T̂ be a linear partial differential
operator in d coordinates q1, . . . ,qd of the form

T̂ =
g

∑
i=1

d

∏
j=1

d̂(i, j)(q j), (3.67)

where d̂(i, j)(q j) is supposed to act on coordinate q j only, i.e. T̂ is a sum of products of
such operators. This involves mixed partial derivatives of arbitrary order, multiplied
with functions in one of the coordinate, for example terms like

∂ 2

∂x2 ,
∂ 3

∂x∂y2 , f (x)g(y)
∂ 2

∂x∂y
.

In addition, we allow operators V̂ which consist of functions of all variables as multi-
plicative operators (with possibly a derivative term in one of the variables), for example

V (x,y,z), f (x,y)
∂
∂x

.
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Let the total operator be D̂ = T̂ + V̂ . (An example for an operator of this type is the
Hamiltonian in quantum mechanics. For several particles, the dimension d will not be
restricted to three). In order to solve a differential equation or the eigenvalue problem
for D̂ by the collocation method, we choose Ni orthogonal polynomials for coordinate
qi (possibly different) and form the product basis

ψ(n1,...,nd)(q1, . . . ,qd) =
d

∏
i=1

ψNi
ni

(x), 1 ≤ ni ≤ Ni. (3.68)

This basis has a size of N = N1 · · ·Nd . For computationally demanding problems, it
is not feasible to solve the resulting matrix equation or matrix eigenvalue problem
by black box algorithms like the Gauss algorithm or Householder tridiagonalization
which scale like N3 and are by far too costly. Instead, iterative procedures (Krylov–
space algorithms like the Lanczos tridiagonalization or others) come into play which
do not need the matrix representation of D̂ itself, but evaluate matrix–vector products
D̂v for arbitrary vectors v. For simplicity of the presentation, let us assume that N1 =
. . . = Nd = n. A full matrix would require N2 = n2d operations (flops) for a matrix
vector product whereas the product collocation basis scales much better [62]:

Theorem 3.4.1 In a product collocation basis like (3.68), the number of flops F for a
matrix–vector product D̂v will scale like

F(D̂v) ∼ dnd+1 (3.69)

with the number of dimensions d and the one–dimensional basis size n.

Proof: Due to the product structure of the basis, a single derivative term like ∂/∂qi

has a matrix representation like

(
ψ(n1,...,nd),

∂
∂qi

ψ(n′1,...,n
′
d)
)

= (ψni ,
∂

∂qi
ψn′i)

d

∏
j=1
j �=i

δn jn′j ,

i.e. it has n2 · nd−1 = nd+1 nonvanishing matrix elements. Mixed derivatives have a
more dense matrix representation; however, this representation consists of products of
matrices with nd+1 nonzero elements and the matrix vector product can be evaluated
sequentially. The number of derivatives terms will be roughly d in d dimensions so
that the numerical effort for the T̂–part of D̂ scales like dnd+1. While these arguments
simply rely on the product structure of the basis, for the V̂–part of the operator we
exploit the property (3.47) of the collocation basis: Matrix elements with functions
V (q1, . . . ,qd) as operators turn out to be

(
ψ(n1,...,nd),Vψ(n′1,...,n

′
d)
)

= V (qn1,1, . . . ,qnd ,d)
d

∏
j=1

δn jn′j (3.70)
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where qni,i is the ni–th collocation point in coordinate qi. In other words, the matrix
representation of such a term is diagonal and the contribution to the matrix–vector
product scales like nd which is negligible. (If in addition a derivative appears, we
arrive at the same scaling as for terms in T̂ ). �

As an example, consider d = 3 and n = 50 basis functions in each coordinate for
the operator

− ∂ 2

∂x2 − ∂ 2

∂y2 −
∂ 2

∂ z2 +V (x,y,z).

A full matrix representation has ≈ 1010 elements requiring ≈ 10 seconds of computing
time for one matrix–vector product on a processor with a gigaflop performance, while
in a collocation product basis only ≈ 107 flops, i.e. ≈ 10−2 seconds of computing time
are needed. In addition, it is of high practical importance that the representation of the
individual derivatives consists of smaller submatrices. If the vectors are blocked ac-
cordingly, matrix–vector products can be computed as several matrix–matrix products
of smaller size, allowing the use of high–performance BLAS 3–routines.

3.4.2 Arbitrary Orthogonal Functions

An Adaptive Algorithm

While the properties of collocation methods can be best described in the framework of
orthogonal polynomials, it is of a high practical importance to extend these concepts
to orthogonal functions in general.

First, the algorithm presented in Sec. 3.3.2 allows for a straightforward generaliza-
tion to a sequence { fn(x)}∞

0 of orthogonal functions. The key ingredient is the Jacobi
matrix JN which provides the collocation points as eigenvalues and the transformation
to the collocation basis via its eigenvectors. The general sequence { fn(x)}∞

0 will not
satisfy a three–term recursion by which we introduced JN; however, Eq. (3.36) pro-
vides an alternative characterization for JN as the matrix elements of the coordinate as
a multiplicative operator. Thus, if we define

(J f
N)i j := ( fi,x f j), 0 ≤ i, j ≤ N −1, (3.71)

a collocation method can be set up for an arbitrary sequence of orthogonal func-
tions [49]. As it suffices to compute the matrix elements in (3.71), the sequence
may even consist of only numerically known functions, for example one–dimensional
eigenfunctions of suitable “reference differential operators” to a higher dimensional
problem. This opens up the possibility for an efficient adaptive algorithm [52].

Of course, the question of the validity of using (3.71) arises. It can be shown that
the quadrature obtained in this way is a Gauss quadrature w.r.t. a suitably chosen set
of orthogonal polynomials [59]. In this sense, (3.71) generalizes the concept of an op-
timal quadrature to arbitrary orthogonal functions. However, regarding the collocation
method, we will demonstrate that a general set of orthogonal functions will not have
the same properties as orthogonal polynomials do.
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General Conditions

A decisive property of the collocation basis is Eq. (3.45) which states that the collo-
cation basis function behave essentially like finite dimensional delta functions within
the space of the first N orthogonal polynomials. The projection operator P̂N onto N
orthogonal functions f0, . . . , fN−1, Eq. (3.12), has the kernel

pN(x,y) =
N−1

∑
n=0

fn(x) fn(y) (3.72)

which allows to compute matrix elements of P̂N with functions g and h by

(g, P̂Nh) =
b∫

a

g(x)pN(x,y)h(y)dxdy (3.73)

(formally pN(x,y) = (δx, P̂Nδy)). The projection of a δ–function δxi centered around
xi has then the form

(P̂Nδxi)(x) =
N−1

∑
n=0

fn(x) fn(xi) (3.74)

(apart from normalization which is different in Eq. (3.48)). In order to retain orthogo-
nality between two such functions centered around xi and x j for i �= j, we need(

N−1

∑
n=0

fn(x) fn(xi),
N−1

∑
n=0

fn(x) fn(x j)

)
=

N−1

∑
n=0

fn(xi) fn(x j)

= 0 (3.75)

where in the first step we assumed orthonormality of the fn. These equations give
1/2N(N −1) conditions for the N points x1, . . . ,xN which in general cannot be satisfied
[57]. For orthogonal polynomials, however, the kernel pN has a simple shape given
by the Christoffel–Darboux Identity (3.37), and the conditions (3.75) are fulfilled by
using the zeros of φN . Collocation methods can nevertheless be set up (less efficiently)
with non–orthogonal basis sets [68], and generalizations of this formula might serve to
characterize the class of orthogonal functions with the same properties as orthogonal
polynomials and help to find a multidimensional extension [58].

A Generic Basis

In the search of a suitable basis for a specific problem, the following Fourier–type
functions derived from Tschebyscheff polynomials will yield an often useful possibil-
ity. First, note that the Tschebyscheff polynomials Tk can also be expressed as

Tk(x) = cos
(
kcos−1(x)

)
(3.76)



CHAPTER 3. NUMERICAL METHODS 32

on the interval [−1,1]. A collocation basis derived from these polynomials will cer-
tainly satisfy the orthogonality condition (3.75), and so do the functions Tk(cosϕ) =
cos(kϕ) on the interval [0,π] [57] w.r.t. a modified weight function which turns out
to be constant in our case. To get a basis that vanishes at the endpoints of an interval
[a,b] (which is a suitable boundary condition for functions that vanish at infinity), we
switch to

fk(x) =

√
2

b−a
sin

(
kπ(x−a)

b−a

)
(3.77)

with k = 1, . . . ,N−1 and the grid points xi = a+ iΔx, i = 1, . . . ,N−1 having a distance
Δx = (b−a)/N [53]. These function are orthonormal w.r.t. a unit weight function. By
Sec. 3.4.2, the collocation basis is

ψN−1
i (x) =

N−1

∑
n=0

2
b−a

sin

(
kπ(x−a)

b−a

)
sin

(
kπ(xi −a)

b−a

)

=
1

2(b−a)

sin
(

π(xi−a)
b−a

)
sin
(

π(x−xi)
Δx

)
cos
(

π(xi−a)
b−a

)
− cos

(
π(x−a)

b−a

) (3.78)

after a bit of algebra. These functions still satisfy the orthogonality condition (3.75)
and a nice result is obtained in the limit of infinite intervals b− a → ∞ and infinite
order N → ∞, but finite spacing Δx = (b−a)/N:

ψN−1
i (x) →

sin
(

π(x−xi)
Δx

)
π(x− xi)

=
1

Δx
sinc

(
π(x− xi)

Δx

)
(3.79)

with xi = iΔx, i = 0,±1,±2, . . . and sinc(x) := sin(x)/x. This “sinc”–basis can be
seen as an analytic version of “hat”–functions used in finite elements. Of course, the
infinitely many collocation points have to be reduced to a finite set, corresponding
to setting the solution to zero everywhere else. Matrix elements of derivatives can
be evaluated analytically in this basis [53] (with the proper normalization of 1/

√
Δx

instead of 1/Δx [54]):

(ψN
k ,

∂
∂x

ψN
l ) =

1
(Δx)

(−1)k−l

{
0 k = l

1
(k− l) k �= l

}
, (3.80)

(ψN
k ,

∂ 2

∂x2 ψN
l ) =

−1
(Δx)2 (−1)k−l

{
π2/3 k = l

2
(k− l)2 k �= l

}
. (3.81)
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Figure 3.1: Comparison of the convergence behavior of finite elements and a sinc–
DVR.

3.4.3 Comparison to Finite Elements

Figure 3.1 shows a comparison between the sinc–collocation from Sec. 3.4.2 and La-
grange elements of different order for the eigenvalue problem of the operator

D̂ = −1
2

∂ 2

∂x2 +
1
2

x2. (3.82)

Its eigenfunctions are composed of the Hermite Polynomials (see Sec. 3.3.1 and note
that the polynomials have to be multiplied with the square root of the weight function),
its eigenvalues are En = 1/2+n. The plot shows the relative error of E9 as a function
of the numerical effort (the number of nonvanishing matrix elements).

For small basis sizes and large errors, the collocation method does not converge
faster; however at about 500 matrix elements corresponding to ca. 22 basis functions,
the basis is large enough to capture the main features of the eigenfunction (which is
essentially a polynomial of degree 9) and exponential convergence sets in up to nu-
merical accuracy. The FEM results of order 3 and above probably suffer from roundup
errors which can be removed; however, the principal (polynomial type) behavior of
convergence will not change. In addition, if the same number of nonvanishing matrix
elements offers a similar error for two different methods, the one with the smaller basis
is preferable as matrix elements can be easier accessed and the vectors used to build
the solution are smaller. This is another argument in favor of the collocation method.
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In the literature, an absolute accuracy of ≈ 10−9 has been reported for E9 when
using 20 [65] and 28 [64] Lagrange elements of order eight, corresponding to about
20 · 8 · 10 = 1600 and 28 · 8 · 10 = 2240 nonvanishing matrix elements; for the latter,
a nonuniform grid was used. In the first case, also mean–square and maximum–norm
errors of the eigenfunctions were computed to be of the order 10−6. For a product
ansatz, the FEM error is restricted to these figures while in a collocation basis the (true)
eigenfunctions up to an arbitrary high precision can be used. Taking into account that
quadrature errors will induce spurious states at about 3/4 of the maximum eigenvalue
[66], a collocation method can accurately represent the eigenfunction to the above
problem with ≈ 14 basis functions having 196 nonvanishing matrix elements only.

Of course, the global ansatz functions of spectral methods induce certain limita-
tions. First, one is restricted to essentially rectangular geometries (“essentially” in-
tends that in the collocation method, grid points in regions where the solution (nearly)
vanishes can be omitted [53]; see Sec. 3.5). Second, boundary conditions are deter-
mined by the orthogonal functions used to build the collocation basis so that varying
the boundary values requires further effort. Especially, Gauss quadrature points never
lie on the boundary by theorem 3.3.2; to enforce a (Dirichlet) boundary condition
not automatically satisfied by the basis, Gauss–Lobatto or Gauss–Radau quadrature
schemes need to be used [47].

3.5 PODVR of the Schroedinger Equation

In view of the general background outlined in sections 3.2, 3.3 and 3.4, the potential
optimized discrete variable representation (PODVR) of the Hamiltonian presented as
a numerical recipe in [52] can be associated with its general background. Specifically,
consider a Hamiltonian of the form

Ĥ =
n

∑
i=1

D̂i︸ ︷︷ ︸
T̂

+V (x1, . . . ,xn) (3.83)

with T̂ representing the kinetic energy operator in n degrees of freedom. Each D̂i is a
derivative operator depending on one coordinate xi only and V (x1, . . . ,xn) a function
(acting as a multiplicative operator) representing the potential energy of the configura-
tion specified by x1, . . . ,xn. Finally, we would like to compute the lower spectrum of
this operator (a fixed number of eigenfunctions or all eigenfunctions below a certain
energy, resp.). For that purpose, we use a product collocation basis of the form of
Eq. (3.68); the individual collocation basis functions ψ Ni

ni are not derived from orthog-
onal polynomials, but from a more general set of orthogonal functions as described in
Sec. 3.4.2. These, in turn, are chosen to be the Ni lowest eigenfunctions of a suitable
one–dimensional symmetric operator for each degree of freedom. While the choice
of the kinetic energy part for these “reference Hamiltonians” is obvious, the potential
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energy part needs some consideration. A possibility that often works is to minimize
the potential energy V along all other coordinates,

V i
ref(x

i) := min
x j, j �=i

V (x1, . . . ,xn). (3.84)

For each degree of freedom, we then diagonalize the reference Hamiltonian

ˆHi
ref(x

i) := D̂i +V i
ref(x

i), (3.85)

yielding Ni (orthogonal) eigenfunctions fi which, in a next step, are used in Eq. (3.71).
The fi can in turn be conveniently computed by using the generic sinc–DVR, Eq. (3.80)
and (3.81), for radial degrees of freedom and Legendre polynomials (see Eq. (3.53))
for angular variables. The matrix elements of the fi with the position operator needed
in Eq. (3.71) are then consistently evaluated in a quadrature approximation by repre-
senting the position operator in the collocation basis as diagonal and transforming this
representation to the basis of the fi functions.

In a last step, all product collocation basis functions are discarded for which the
corresponding collocation points (x1

i1, . . . ,x
n
in) satisfy

V (x1
i1, . . . ,x

n
in) > Vcut (3.86)

with a suitably chosen energy Vcut which can be considered infinite for the purpose
of the calculation. This amounts to setting the wavefunction to zero at these points.
Blocking of the vectors to use BLAS 3–routines (cf. Sec. 3.4.1) requires these points
to be filled with zeros; nevertheless, storage requirements are less and the condition of
the matrix will be improved.

3.6 Diagonalization Techniques

The choice of a proper method to diagonalize the matrix representation of the Hamil-
tonian is another key issue for the efficiency of the entire algorithm. The appropri-
ate class of diagonalization techniques consists in matrix–vector algorithms owing to
the sparsity of the (large) matrices. A standard program package for that purpose is
ARPACK [69].

In the first subsection, we discuss the error measure to be used in approximate
matrix–vector algorithms. A measure different from the one used in the ARPACK
package is proposed. The second subsection contains a summary of the algorithm
used in the present calculations (Lanczos with Partial Reorthogonalization). The third
briefly summarizes another strategy (the Jacobi–Davidson method) and investigates
its criterion to determine the number of iteration steps. The fourth finally contains a
proposal to better exploit the search subspaces build in the Jacobi–Davidson method
in order to obtain an efficient method for many eigenvalues.
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3.6.1 Error Measure

For any approximation x̃ of an eigenvector x of a (symmetric) matrix H, the residual r
is given by

r = Hx̃−θ x̃, (3.87)

where θ = (x̃,Hx̃) is a (Ritz) approximation for the true eigenvalue λ , Hx = λx (all
eigenvectors and approximate eigenvectors assumed normalized). If a specific toler-
ance ε is allowed for the approximation of x̃, the first idea is to compare ε to the norm
||r|| of the residual. This measure, however, would not be scale invariant. ARPACK
essentially uses the criterion

1
θ
||r|| ≤ ε (3.88)

which solves the problem of scale invariance. However, this measure still does not
account properly for clustered eigenvalues. We thus propose

rλ :=
1
δ
||r|| ≤ ε (3.89)

where δ := min
j
|θ − θ j| and the θ j summarize all other Ritz values. This criterion,

being both shift–and scale invariant, gives reliable error bounds on scalar products of
approximate eigenvectors. To be more specific, we have the following error bound for
the eigenvector approximation x̃ [70, 71, 72]:

sin(x, x̃) ≤ ||r||
δe

(3.90)

with δe := min
j
|θ − λ j| and λ j being the exact eigenvalues. For the overlap matrix

elements of two eigenvectors x1,x2 in two adjacent sectors, this gives an error estimate

|(x̃1, x̃2)− (x1,x2)| <∼ 2rλ (3.91)

where the estimate would hold exactly if, on the one hand, x1 and x2 referred to the
same matrix (the difference of adjacent surface Hamiltonians is small, however). On
the other hand, we would have to use δe instead of δ in the definition of rλ ; again, in
practice this will not cause problems: The Ritz values are close to the true eigenvalues
as they usually are better converged than the approximations for the eigenvectors.

Along the same line of argument, the non–orthogonality of two approximate eigen-
vectors will also be bound by this quantity such that one can be sure of a certain level
of orthogonality without (re–)orthogonalization of all eigenvectors.

3.6.2 Lanczos with Partial Reorthogonalization

To obtain the first Nch eigenvalues and eigenstates used in the scattering calculations,
we can exploit the sparsity of the resulting PODVR Hamiltonian matrix and implement
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a slight variation of the Lanczos algorithm [73] with partial reorthogonalization [74].
The latter procedure in its original form has, for example, been already used by Yu and
Nyman [75] in quantum-chemical calculations.

By the well–known Lanczos recursion relation,

Hqk = βk−1qk−1 +αkqk +βkqk+1, (3.92)

with β0q0 = 0 and an initial vector q1 we generate a tridiagonal matrix representation
Tn = QT

n HQn, Qn = (q1, . . . ,qn) with orthonormal columns qk,

Tn =

⎛
⎜⎜⎜⎜⎝

α1 β2 . . . 0

β2 α2
. . .

...
. . . . . . . . .

...
. . . . . . βn

0 . . . βn αn

⎞
⎟⎟⎟⎟⎠ . (3.93)

Tn is the orthogonal projection of the PODVR Hamiltonian matrix H onto the Krylov
subspace K (q1,H,n) = span{q1,Hq1, . . . ,H

nq1} with basis Qn. Evaluation of the
recursion relation, Eq. (3.92), uses matrix–vector multiplications only, thus exploiting
the sparsity of H. The eigenvalues θk and eigenvectors sk of Tn can be determined
at low computational cost. If n equals the number of rows resp. columns of H, the
eigenvalues are the same as those of H and the eigenvectors can be easily transformed
to yield yk = Qnsk. For smaller n, we have an error bound

res(k) = ||Hyk −θkyk||2 = |βn||snk| (3.94)

where snk is the last component of the k-th eigenvector of Tn.
The common problem of numerical non–orthogonality of the qk can be handled by

full reorthogonalization of each new qn against all previous ones. However, this com-
putationally demanding procedure is unnecessary as non–orthogonality usually arises
from the convergence of an eigenvector (cf. Eq. (3.94) and (3.92)) which does not oc-
cur in every Lanczos step. If n+1 steps are performed, partial reorthogonalization [74]
estimates the orthogonality components in the (n+1)–th step, ωn+1,k = qT

n+1qk, by the
recurrence relation

ωkk = 1, k = 1, . . . ,n,

ωk,k−1 = Ψk, k = 2, . . . ,n, (3.95)

ωn+1,k =
1

βn+1

(
βk+1ωn,k+1 +(αk −αn)ωnk +βkωn,k−1 −βnωn−1,k

)
+ϑnk

for 1≤ k < n, with ωn0 = 0. Ψk and ϑnk are suitably chosen random numbers to account
for the roundoff errors. This relation avoids to compute the scalar products qT

n+1qk in
every step.

Non–orthogonal vectors usually come in batches; we intend to keep semi–ortho-
gonality at a level

√
εmach where εmach is the machine precision. Reorthogonalization
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is performed for qn+1 if |ωn+1,k| ≥ √
εmach against all neighboring qi, k − s < i <

k + r, where r and s are the smallest positive indices such that |ωn+1,k−s| < η and

|ωn+1,k+r| < η , with η being usually chosen as η = ε 3/4
mach. If a batch has been found,

it is used in two consecutive Lanczos steps for reorthogonalization. After reorthogo-
nalization, ωn+1,i is reset to a random value reflecting the regained orthogonality up to
round-off level.

To our experience, Eq. (3.95) estimates the round-off errors quite well, but small
underestimations which are randomly occurring might nevertheless destroy orthogo-
nality at a certain point. We thus use the absolute values in the last line of Eq. (3.95),
i.e.

ωn+1,k =
1

βn+1

(
|βk+1ωn,k+1|+ |(αk −αn)ωnk|+ |βkωn,k−1|+ |βnωn−1,k|

)
+ |ϑnk|

(3.96)
and replace ϑnk (proposed by Simon [74] as ϑnk = εmach(βk+1 + βn+1)Θ, where Θ
is normally distributed with mean 0 and standard deviation 0.3) by the non–random
quantity ϑnk = εmach(βk+1 + βn+1). (Note that βk > 0 for all k). ωn+1,n is evaluated
as scalar product instead of using a random number Ψn+1. While this formula largely
overestimates the orthogonality components, no random underestimations will occur
in our calculation that could destroy orthogonality. After orthogonalization of qn+1
against qi, ωn+1,i is set to εmach.

It is reasonable to test for convergence of the first Nch eigenvectors in regular inter-
vals, for example after each integer multiple of Nch. The iteration will then be stopped
at a step NLanczos = MrepNch if maxk=1,...,n res(k) ≤ rmax (this can be replaced by the
criterion (3.89)).

For the initial vector q1, we observe a slight increase in convergence speed when
it is computed as the normalized average of the first Nch eigenvectors of the previous
sector instead of a randomly chosen vector. Overall, the performance is superior to
ARPACK due to the many eigenvectors computed such that contraction of the search
space is unfavorable.

3.6.3 The Jacobi–Davidson Method

In the Jacobi–Davidson method [76], the Ritz approximation (x̃,θ ) to an eigenpair
(x,λ ) is not obtained in a Krylov subspace, but in a more general search space Vn =
span{v1, . . . ,vn}. The interesting property of this ansatz is that several starting vec-
tors instead of just one can be provided so that the eigenvector information from the
previous sector does not have to be collapsed into a single vector. This is especially
interesting for the proper resolution of avoided crossings occurring in a small range of
the reaction coordinate.

The space Vn is expanded by computing a Jacobi–Davidson update [77] to the Ritz
approximation x̃:

(I− x̃x̃∗)(H−θI)(I− x̃x̃∗)t = −r (3.97)
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where x̃∗ denotes transposition. x̃+ t is then a better approximation for x.
Eq. (3.97), in turn, has to be solved by some approximate method; a possible choice

is MINRES [78]. In this algorithm, a Krylov subspace of size m is build up by the
Lanczos recursion and the correction equation is solved approximately in this space.
The (maximum) iteration number mmax need not be guessed: The norm of the residual
of x̃ + t is composed of the norm ||r2|| of the residual resulting from the approximate
solution of (3.97) and an error contribution from the deviation of θ from the true
eigenvalue:

||H(x̃+ t)−θ(x̃+ t)||2 = (x̃,Ht)2 + ||r2||2. (3.98)

The Krylov subspace in MINRES can then be expanded as long as ||r2||2 domi-
nates. Otherwise, it is better to restart with the optimized Ritz value obtained ei-
ther directly from x̃ + t or from rediagonalization of H in the extended subspace
Vn+1 = span{v1, . . . ,vn, t}.

3.6.4 Combining Lanczos and Jacobi–Davidson

The drawback we experienced in using the Jacobi–Davidson method lies in the fact
that for many eigenvectors to be computed, during the update of a single vector, the
Krylov subspace of MINRES will also generate information about the other vectors
which is lost once the correction equation (3.97) has been solved. In addition, the
subspace Vn and thus the matrix to be diagonalized might become very large.

A possible way to tackle these problems is to first replace x̃ by x̃ + t instead of
augmenting Vn by t. Second, we can solve the correction equation for the other
eigenvector approximations in the same Krylov subspace. More specifically, let ỹ
be such an eigenvector approximation with Ritz value σ , residual s and assume Wm =
span{w1, . . . ,wm} to be a reasonable part of this Krylov subspace (for example, com-
posed of the m lowest eigenvectors of the tridiagonal matrix Tn, Eq. (3.93)), projected
onto the space orthogonal to ỹ. In view of Eq. (3.98), we then need to find a solution
to

min
w∈Wm

(||b−Hσ w||2 +(ỹ,Hw)2) (3.99)

with Hσ = (I− ỹỹ∗)(H−σI)(I− ỹỹ∗) and b = −s. Writing

w =
m

∑
i=1

aiwi,

and setting the partial derivatives w.r.t the ai to zero, we obtain the matrix equation

Hreda = bred (3.100)

with

(Hred)i j = (Hσ wi,Hσ w j)+(ỹ,Hwi)(ỹ,Hw j) and (3.101)

(bred)i = (−s,Hσ wi). (3.102)
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We can rewrite Hred as

(Hred)i j =
(
(H−σI)wi,(H−σI)w j

)
(3.103)

showing the positive definiteness (unless σ is an exact eigenvalue) and thus the exis-
tence of a local minimum. Solution of the (lower dimensional) equation (3.100) gives
the vector w which can then be used to update ỹ as ỹ+w.

The benefit of this procedure lies in the possibility of using several smaller sub-
spaces instead of one large space, and this will decrease reorthogonalization effort
which scales quadratically with the number of basis vectors. The Lanczos algorithm
usually converges the eigenvalues at the outer parts of the spectrum first; therefore, re-
peated construction of Krylov subspaces recomputes very similar information. We can
of course orthogonalize against converged eigenvector approximations, but doing this
in every Lanczos step will introduce unnecessary overhead. In an exact calculation, it
should suffice to start with an orthogonalized vector q1: If the eigenvector approxima-
tion x̃ of x to be orthogonalized against were exact and if exact arithmetic were used,
all consecutive Lanczos vectors would remain orthogonal to x. In practice, similar to
(3.91), the scalar product of the initial vector q1 with x will be no larger than ε1 = rλ
if q1 is numerically orthogonal to x̃; and the analogous quantities εk for the vectors qk
fulfill a recursion relation

βkεk+1 = (λ −αk)εk −βk−1εk−1 (3.104)

where λ is the exact eigenvalue corresponding to x. By monitoring the components of
the qk in the directions of the converged eigenvectors in this way, we should have to
reorthogonalize only when necessary.



Chapter 4

Results

The contents of the first three sections of this chapter have been published [79,82,83].
For the sake of brevity, theoretical particularities and numerical details can be found in
the corresponding papers. Additional material concerning cross sections can be found
in [81] and kinetic isotope effects are studied in [80, 84].

4.1 Cl–Cl Exchange Reaction

4.1.1 Abstract

Time–independent quantum scattering calculations have been carried out on the Wal-
den inversion SN2 reaction Cl− + CH3Cl′ (v1,v2,v3) → ClCH3 (v′1,v

′
2,v

′
3) + Cl′−. The

two C–Cl stretching modes (quantum numbers v3 and v′3) and the totally symmetric
internal modes of the methyl group (C–H stretching vibration, v1 and v′1, and inver-
sion bending vibration, v2 and v′2) are treated explicitly. A four–dimensional coupled
cluster potential energy surface is employed. The scattering problem is formulated in
hyperspherical coordinates using the exact Hamiltonian and exploiting the full sym-
metry of the problem. Converged state–selected reaction probabilities and product
distributions have been calculated up to ca. 6000 cm−1 above the vibrational ground
state of CH3Cl, i.e. up to initial vibrational excitation (2,0,0). In order to extract all
scattering resonances, the energetic grid was chosen to be very fine, partly down to
a resolution of 10−12 cm−1. Up to 2500 cm−1 translational energy, initial excitation
of the umbrella bending vibration, (0,1,0), is more efficient for reaction then exciting
the C–Cl stretching mode, (0,0,1). The combined excitation of both vibrations results
in a synergic effect, i.e. a considerably higher reaction probability than expected from
the sum of both independent excitations, even higher than (0,0,2) up to 1500 cm−1

translational energy. Product distributions show that the umbrella mode is strongly
coupled to the C–Cl stretching mode and cannot be treated as a spectator mode. The
reaction probability rises almost linearly with increasing initial excitation of the um-
brella bending mode. The effect with respect to the C–Cl stretch is five times larger for
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more than two quanta in this mode, and in agreement with previous work saturation
is found. Exciting the high–frequency C–H stretching mode, (1,0,0), yields a large
increase for small energies (more than two orders of magnitude larger than (0,0,0)),
while for translational energies higher than 2000 cm−1, it becomes a pure spectator
mode. For combined initial excitations including the symmetric C–H stretch, the spec-
tator character of the latter is even more pronounced. However, up to more than 1500
cm−1 translational energy, the C–H vibration does not behave adiabatically during the
course of reaction because only 20 % of the initial energy is found in the same mode
in the product molecule. The distribution of resonance widths and peak heights is dis-
cussed, and it is found that individual resonances pertinent to intermediate complexes
Cl− · · ·CH3Cl show product distributions independent of the initial vibrational state of
the reactant molecule. The relatively high reactivity, with respect to excitation of any
mode, of resonance states found in previous work is confirmed in the present calcula-
tions. However, reactivity of intermediate states and reactivity with respect to initial
vibrational excitation have to be distinguished. There is a strong mixing between the
vibrational states reflected in numerous avoided crossings of the hyperspherical adia-
batic curves.

4.1.2 Introduction

Clary and Palma [91] performed the first quantum scattering and additional classical
trajectory calculations on the symmetric chlorine exchange SN2 reaction

Cl− +CH3Cl′ → ClCH3 +Cl′ (4.1)

including three internal degrees of freedom: the broken and the formed C–Cl bonds
and the CH3 umbrella bending angle. The kinetic energy of the latter mode was ex-
pressed in terms of an approximate operator with Legendre polynomials as eigenfunc-
tions. These authors found that excitation of the inversion mode apparently does not
have a large influence on the reaction probability. These three–mode calculations were
repeated by Yu and Nyman [92] employing a different Hamiltonian that was based on
their rotating line umbrella (RLU) method and was exact within the chosen 3D model
for the reaction. Here, the umbrella mode was considered as a stretching–type mo-
tion of the carbon atom against the three hydrogens with the other degrees of freedom
optimized. Yu and Nyman obtained a conclusion very similar to that of Clary and
Palma.

In this work, the Hamiltonian developed for the filter–diagonalization calculations
of resonances states [94] is used in four–mode quantum scattering calculations on the
Walden inversion reaction Cl−+CH3Cl′ →ClCH3 +Cl′. To our best knowledge, these
are the first four–dimensional (4D) time–independent quantum scattering calculations
on a complex–forming bimolecular reaction. They require a high energy resolution
and are thus very CPU-intensive.

For an exact description of the Cl− + CH3Cl′ SN2 system, twelve degrees of free-
dom have to be taken into account explicitly so that a rigorous state–selective quantum
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mechanical treatment appears to be impossible at present. Furthermore, if the rota-
tional motion of the whole system were included, the three Euler angles would have
to be considered additionally. We thus reduce the dimensionality of the Cl− + CH3Cl′
→ ClCH3 + Cl′− reaction and study the system under the restriction that C3v sym-
metry is maintained throughout the reactive process. Since the minimum energy path
pertinent to the Walden inversion reaction is collinear and the potential energy rises in
all directions perpendicular to the minimum energy path, we adopt a model that ex-
plicitly takes into account the two carbon–chlorine distances and the totally symmetric
coordinates of the methyl group (corresponding to umbrella bending and symmetric
C–H stretching vibrations). As was described in Ref. [94], the motion of the atoms
under the restriction of C3v symmetry (for total angular momentum J = 0) can be de-
scribed exactly, i.e., without any further dynamical approximation. However, even
in this symmetry–restricted dimensionality–reduced model, the present SN2 system is
computationally rather demanding because the clusters exhibit low intermolecular fre-
quencies in conjunction with far–reaching ion–dipole potentials. Time–independent
quantum scattering calculations in four dimensions have been reported for the reaction
O (3P) + CH4 → OH + CH3 by Palma and Clary [85, 86] and Yu and Nyman [87].
However, in this reaction not the methyl group but only a hydrogen atom is trans-
ferred and resonances do not play any role because intermediate complexes between
the open-shell atom and the spherical top methane are not formed. Palma and Clary
studied the influence of excitation of umbrella bending and symmetric and antisym-
metric C–H stretching modes on the reaction probability and found that all modes
promote the reaction. While this effect is evident for O + CH4 because one C–H bond
is broken and both symmetric and antisymmetric C–H stretch in CH4 affect this bond,
the nature of the C–H stretch in an SN2 process is entirely different: it does not change
during the course of reaction and thus a spectator–like behavior is expected.

Experiments on the detailed, state–selective dynamics of gas–phase SN2 reactions
are scarce. Ervin and co–workers studied the promotion of the Cl− + CH3Cl′ → ClCH3
+ Cl′ reaction by kinetic energy via guided ion beam tandem mass spectrometry [14].
Bierbaum and coworkers [10] could determine the thermal rate coefficient at 300 K to
be k = (3.5±1.8)×10−14 cm3 s−1.

4.1.3 Results

Potential and Surface Eigenstates

Plots along the hyperangle δ with z and q optimized are shown in Fig. 4.1. The cut for
ρ = 10 a0 has a local maximum in the saddle point region of the PES. For very large
values of ρ , two deep wells corresponding to reactants and products are separated by a
broad and high potential barrier. Due to the symmetry of the potential, the wavefunc-
tions are either symmetric (gerade) or antisymmetric (ungerade) with respect to 1

2δmax.
In order to localize the wavefunctions in either of the asymptotic channels, appropriate
linear combinations of gerade and ungerade wavefunctions are formed. Note that the



CHAPTER 4. RESULTS 44

ρ

ρ

ρ

ρ ρ

Figure 4.1: Potential cuts along the hyperangle δ for different values of the hyperra-
dius ρ . The energy is optimized with respect to z and q.

spurious wells around 1
2δmax in the PES of Vande Linde and Hase [97] that was used

in the quantum scattering calculations reported in Refs. [89, 91, 92] are missing.
The hyperspherical adiabatic curves εn(ρ) as obtained from diagonalization of the

surface Hamiltonian for different values of the hyperradius ρ are graphically displayed
in Fig. 4.2(a). All curves show a similar behavior with a relatively deep well that
resembles the textbook case of a diatomic molecule. Fig. 4.2(b) shows the numerous
avoided crossings between the adiabatic curves that mediate the vibrationally non–
adiabatic transitions between different channels. In the 2D case [90], the reactivity
is determined by the splitting of curves pertinent to the same degree of vibrational
excitation but different symmetry [90, 91, 93]. The many additional avoided crossings
in the 4D model are the consequence of the two CH3 modes that are additionally
included.

Data are given up to E = 6100 cm−1 above the vibrational ground state of CH3Cl.
Thus, 35 initial and final states, respectively, are included in our analysis. The en-
ergy levels of the asymptotic reactant and product states up to the maximum total
energy considered in this work are reported in table 4.1. The wavenumber of the to-
tally symmetric C–H stretching vibration, ν1 = 3042.5 cm−1, perfectly agrees with
the number obtained in Ref. [94], while the umbrella bending (ν2) and C–Cl stretch-
ing (ν3) vibrations are calculated slightly too high and too low, respectively: ν2 =
1386.0 (1371.4) cm−1 and ν3 = 720.3 (727.8) cm−1, where the values in parentheses
are those obtained in Ref. [94]. The experimental data are 2967.8 (ν1), 1354.9 (ν2)
and 732.8 (ν3) cm−1 [95]. It can be seen from table 4.1 that the wavenumber of the
umbrella bending mode is almost twice that of the C–Cl stretching mode, ν2 ≈ 2ν3.
The consequence is that there are several groups of initial and final vibrational states
(v1,v2,v3) with very similar energies while only a few states, e.g. ν1, are isolated in
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Table 4.1: Assignments of quantum numbers (v1,v2,v3) to the initial and final states
of the CH3Cl molecule. Here, v1, v2 and v3 denote the C–H stretching, CH3 umbrella
bending and C–Cl stretching vibrations. Energies Etot −E0 (in cm−1) are given with
respect to the vibrational ground state of CH3Cl (E0 = 2446.6 cm−1).

(v1,v2,v3) Etot −E0 (v1,v2,v3) Etot −E0 (v1,v2,v3) Etot −E0

(0,0,1) 720.3 (1,0,1) 3764.6 (1,0,3) 5186.9
(0,1,0) 1386.0 (0,3,0) 4114.0 (0,4,0) 5457.0
(0,0,2) 1432.8 (0,2,2) 4156.2 (0,3,2) 5496.2
(0,1,1) 2098.1 (0,1,4) 4181.3 (0,2,4) 5510.1
(0,0,3) 2138.0 (0,0,6) 4215.9 (0,1,6) 5539.8
(0,2,0) 2757.1 (1,1,0) 4434.1 (0,0,8) 5576.0
(0,1,2) 2801.1 (1,0,2) 4479.3 (1,2,0) 5805.1
(0,0,4) 2836.3 (0,3,1) 4812.8 (1,1,2) 5849.4
(1,0,0) 3042.5 (0,2,3) 4837.2 (1,0,4) 5887.8
(0,2,1) 3462.2 (0,1,5) 4862.6 (2,0,0) 6049.4
(0,1,3) 3495.1 (0,0,7) 4898.3 (0,4,1) 6149.8
(0,0,5) 3528.8 (1,1,1) 5146.3

the spectrum. Groups with two states are {(0,1,0), (0,0,2)}, {(0,1,1), (0,0,3)},
{(1,1,0), (1,0,2)} and {(1,1,1), (1,0,3)}. Three states of similar energy are found
in the groups {(0,2,0), (0,1,2), (0,0,4)}, {(0,2,1), (0,1,3), (0,0,5)} and {(1,2,0),
(1,1,2), (1,0,4)}, four states in {(0,3,0), (0,2,2), (0,1,4), (0,0,6)} and {(0,3,1),
(0,2,3), (0,1,5), (0,0,7)}, and five in {(0,4,0), (0,3,2), (0,2,4), (0,1,6), (0,0,8)}.
The grouping of states is also depicted in Fig. 4.2(a). Note that the asymptotically iso-
lated curve for (1,0,0) starts to interact with other vibrational states at about ρ = 12
a0.

State–Selected Reaction Probabilities

One of the most important fundamental issues in chemistry is the mode–selectivity in
elementary chemical reactions. The time–independent quantum scattering calculations
yield detailed information on state–to–state reaction probabilities.

Fig. 4.3 depicts the diagonal element of the reaction probability, Pmm(E), for the
highest open channel m at energy E. As can be seen, P(E) exhibits a pronounced reso-
nance structure. Note that the height of the peaks becomes smaller for higher energies.
Since in recent filter diagonalization calculations on lifetimes of resonance states for
the Cl− + CH3Cl reaction exceedingly long-lived states with very narrow linewidths
(smaller than 10−8 cm−1) [94] have been found, a much higher energy resolution
(down to 10−12 cm−1) than in the previous three–dimensional calculations [91, 92]
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Figure 4.2: Hyperspherical adiabatic curves. Shown are the first 100 states with
gerade symmetry. The classical asymptotic limit of the PES is set to zero. While
figure 4.2(a) gives the full energy range covered by our calculations, 4.2(b) displays
only a small part including many avoided crossings between the curves that mediate
transitions between the different adiabatic vibrational states. Note that the curves are
plotted only up to hyperradii of 17 a0 while the actual calculations extend to 34 a0.
The lowest curve approaches the zero point vibrational energy of free CH3Cl for large
ρ (cf. table 4.1).

Figure 4.3: The reaction probability P(E) as a function of energy E is strongly dom-
inated by scattering resonances. Shown are the diagonal probabilities Pmm(E) for in
each case highest open channel m at energy E.
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Figure 4.4: Initial state–selected reaction probabilities Pm(E) for Cl− + CH3Cl′
(v1,v2,v3)→ ClCH3 + Cl′− as functions of translational energy Etrans. The data is
smoothed over intervals of 80 cm−1. Pmn(E) is summed over all accessible product
channels n. The dashed curves belong to initial excitation with one quantum in the
high–frequency C–H stretching vibration.

was used in order to detect all resonances. In order to be able to quantitatively com-
pare the influence of different initial vibrational excitations in the reactant molecules,
in the following the strongly fluctuating probabilities were averaged over intervals of
Δ = 80 cm−1, i.e. each point P(E) is the average of the probability in the energetic
range [E − 1

2Δ, E + 1
2Δ].

The initial state–selected reaction probabilities Pm(E), summed over all product
states,

Pm(E) = ∑
n

Pmn(E) = ∑
n
|Smn(E)|2 (4.2)

as functions of translational energy Etrans are graphically displayed in Figs. 4.4 and
4.5. Since the curves are not shown as functions of total energy, their energetic range is
different. To obtain the probabilities as functions of Etot, shift the energetic scale by the
respective level energies given in table 4.1. As anticipated from the two–dimensional
results [96], the reaction probability increases with excitation of the intramolecular
C–Cl stretching mode ν3.

As seen from Fig. 4.4, the probability with initial excitation (0,0,0) rises with
some fluctuations continuously and exponentially. When the C–Cl stretching mode
is excited by one quantum, P(E) becomes larger by 2–3 orders of magnitude. For
small translational energies, the reaction probability for initial excitation (0,0,2) is
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Figure 4.5: Initial state–selected reaction probabilities Pm(E) for Cl− + CH3Cl′
(v1,v2,v3)→ ClCH3 + Cl′− as functions of translational energy Etrans. Same as fig-
ure 4.4, but different initial states are shown. Note that the scale of the ordinate is
not logarithmic. The curves for initial excitations (0,1,0) and (0,1,1) are taken from
Fig. 4.4 and included for comparison.

two orders of magnitude larger than that for (0,0,1). The difference becomes smaller
for higher values of Etrans, but there is still a considerable jump between these two
curves.

According to Fig. 4.5, the probability for initially three quanta in the C–Cl stretch
is again somewhat larger, but for initial excitations (0,0,4) and (0,0,5) a saturation ef-
fect is reached in the region P(E) = 0.5–0.6. The curves for initial excitation (0,0,6),
(0,0,7) and (0,0,8) are not labeled in Fig. 4.5 because they cannot easily be dis-
tinguished. All these curves are found in the saturation regime. This behavior is in
agreement with the reaction cross sections from two–dimensional calculations on the
same PES [96].

From chemical intuition, excitation of the umbrella bending vibration should result
in an enhancement of the reactivity. As seen both from Fig. 4.4 and Fig. 4.5, for low
translational energies, the curve for (0,1,0) is three orders of magnitude higher than
that for CH3Cl initially in its vibrational ground state. Up to about E trans = 2500 cm−1,
it is even higher than the probability for C–Cl stretch excitation with one quantum,
(0,0,1). Fig. 4.5 shows that additional quanta in the umbrella bending mode almost
linearly increase the reaction probability, but obviously, similar to the excitation in the
C–Cl vibration, a saturation effect at around P(E)≈ 0.1 is found for even more quanta
in ν2. Note that in particular the oscillation pattern in the averaged P(E) curves is very
similar, e.g. between the curves (0,1,0) and (0,2,0) in the range around Etrans = 3000
cm−1.
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Figure 4.6: Transitional mode of the complex [Cl· · ·CH3· · ·Cl]−. The normal mode
turns out to be a superposition of the antisymmetric Cl–C–Cl stretching and umbrella
bending vibrations.

Most striking is a synergic effect when the combination mode (0,1,1) in the re-
actant CH3Cl molecule is excited, resulting in a particularly high reaction probability
P(E) ≈ 0.15 that is larger than that for initially four quanta in the umbrella bending
mode. Up to about 1500 cm−1 translational energy, exciting the combination mode is
more effective than putting two quanta into the C–Cl stretching mode. The synergic
effect can be explained by the fact that – within the classical picture – in the tran-
sition normal mode (with imaginary frequency) both antisymmetric Cl–C–Cl stretch
and umbrella bend are included (see Fig. 4.6). This is clear evidence that the umbrella
mode does not behave as a spectator in the Walden inversion reaction.

Exciting ν1, on the contrary, has only a minor effect (see Fig. 4.4) as is expected
from the well–known ’spectator’ mode concept: A bond that is not directly involved
in the reaction can be treated adiabatically and does not show a significant influence
on the reactivity. However, this picture is too simplified as is further discussed in
the following section. The reaction probability for one quantum in the C–H stretch,
(1,0,0), is only small, but in the range up to ca. 1900 cm−1 translational energy re-
markably larger than the probability for reaction out of the vibrational ground state of
CH3Cl. Above this energy, the two curves show a very similar structure, where the
(1,0,0) probability is slightly shifted to higher values of E trans. For the combination
mode (1,1,0) excited in reactant CH3Cl, the corresponding probability is larger than
that for pure umbrella bending excitation, (0,1,0), only for translational energies up
to ca. 500 cm−1, while for higher energies, the curves almost coincide. The same ef-
fect is observed for initial states (1,0,1) and (0,0,1), where the reaction probability
corresponding to the former excitation is higher up to translational energies of about
1250 cm−1. This behavior can be explained by the fact that the actual reaction barrier
is higher than that given by the classical potential. For the reaction to proceed with a



CHAPTER 4. RESULTS 50

considerable probability, three quanta are necessary in the stretching mode correspond-
ing to the C–Cl bond to be broken. Below this energy, the high–frequency C–H stretch
plays an important role, as can be seen from the (1,0,0) reaction probability. For a
simultaneous excitation of the C–Cl stretching mode, (1,0,1), there is already one
quantum in that mode and the range of translational energy where ν1 is of importance
becomes smaller. The same holds for initial excitation of ν2 which is strongly coupled
to the reaction coordinate (see above) so that the different offsets between the curves
can be explained. Accordingly, the probabilities for initial excitations (1,0,2), (1,1,1)
and (1,0,3) almost coincide with those for (0,0,2), (0,1,1) and (0,0,3), respectively,
because there is already sufficient energy in the reactant molecule to overcome the
barrier to reaction.

Two approximate 3D time–independent quantum studies of the reaction

Cl− +CH3Cl′(v2,v3) → ClCH3(v′2,v
′
3)+Cl′− (4.3)

have been published by Clary and Palma [91] and Yu and Nyman [92], respectively.
In both cases, the old PES of Vande Linde and Hase [97] was used and the energetic
resolution of the calculated reaction probabilities was rather low (0.81 cm−1). Clary
and Palma modified the RBA model and used the rotational kinetic energy of a linear
molecule without azimuthal dependence for the umbrella bending motion and thus ob-
tained an approximate Hamiltonian. Yu and Nyman employed the C–H3 distance to
describe that mode (similar to the present work) and optimized the C–H bond length
in the potential energy. The latter model is exact in 3D with the C–H bond distance
optimized with respect to energy and thus somewhat more reliable than that of Clary
and Palma. In the present work, the previous investigations are extended in five direc-
tions: (1) The symmetric C–H stretching mode is included explicitly in the quantum
treatment; (2) within the four–dimensional C3v symmetric coordinate subspace, the
corresponding Hamiltonian is formulated exactly; (3) a reliable PES constructed from
ab initio energy points at the CCSD(T) level of theory is employed; (4) the energetic
resolution is orders of magnitude higher so that also extremely small resonances can
be detected; (5) the range of total energy considered in the collision process is about
twice as large.

While the absolute reaction probability for initial excitation of the umbrella bend-
ing mode is only slightly smaller in Clary and Palma’s work compared to the present
results, its relative magnitude with respect to the probability for reaction out of the vi-
brational ground state of CH3Cl is considerably smaller in Ref. [91] because Clary and
Palma obtain a larger result for the latter quantity. Thus, their conclusion was that the
umbrella bending mode behaves as a spectator. Our finding that exciting state (1,1) in
the reactant molecule has a particularly large effect on the reactivity is in clear contrast
to Clary and Palma [91] who predict the influence of the combination excitation to
be even smaller than initial excitation (0,1). This is additional evidence that the um-
brella mode must not be neglected in quantum reaction dynamics on SN2 and related
reactions.
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Yu and Nyman1 cover translational energies for initial excitation (0,0) up to ca.
3200 cm−1 and correspondingly smaller ranges for (0,1) and (1,0). The reaction
probability for initial excitation of the umbrella bending mode rises from 0.1 to 0.2
at Etrans = 1600 cm−1, in good agreement with the results of the present work. The
probability for (0,0) is slightly larger than that of the present work, while that for (0,1)
is considerably increased. The present results show that in the energetic regime of Yu
and Nyman’s work, the reaction probability for initial excitation (0,1) is throughout
below that for (1,0), while Yu and Nyman, on the contrary, obtain the reverse result for
Etrans > 700 cm−1. Results on the effect of a combined excitation of ν2 and ν3 on the
reactivity of the SN2 reaction are not reported by Yu and Nyman. Since their Hamil-
tonian was exact within their 3D model, the differences to the reaction probabilities
from the present work are mainly due to the disparate potential energy surfaces.

Product Distributions

If state–to–state reaction probabilities are normalized, Pmn(E)/Pm(E), product distri-
butions are obtained. They are equivalent to relative probabilities with respect to a
particular initial state. Absolute state–to–state reaction probabilities can be recovered
by multiplying the summed absolute values in Figs. 4.4 and 4.5 with the percentage
amounts of the product distributions.

Product distributions for the Cl− + CH3Cl′ (v1,v2,v3) → ClCH3Cl (v′1,v
′
2,v

′
3) +

Cl′− reaction are graphically displayed in Figs. 4.7–4.11. Only the most important
product channels are shown, the curves corresponding to channels which are populated
only to a very minor extent are not shown in the figures.

From Fig. 4.7, it is obvious that the reaction out of the vibrational ground state
of CH3Cl is most likely to end in product states with a high degree of vibrational
excitation in the C–Cl stretching mode. Of course, for low translational energies, the
only open channel is (0,0,0). When a new channel with pure excitation in ν3 opens
up, it becomes dominating in the product distribution until the next one opens (up to
v3 = 4). However, for Etrans larger than 4000 cm−1, the product states (0,0,1) and
(0,0,2) become most important. Also, the umbrella mode, (0,1,0), and the combined
excitation (0,1,1) exhibit significant values in the product distribution.

Inspecting the product distributions for initial vibrational states (0,0, i), i = 1,2,3
(Fig. 4.8), a similar behavior is observed, in particular for initially one quantum in
the C–Cl stretching vibration; for high Etrans, product excitations (0,0,1) and (0,0,2)
dominate, while all other product vibrational states have only small probabilities.
Thus, the transfer from vibrational energy (V) into translational energy (T) is only
weak. For initial state (0,0,2), reaction in the equivalent product state is most likely,
but also final state (0,0,3) is important for Etrans between 700 and 3000 cm−1. For
higher translational energies, it is most likely to find the same number of quanta in

1Note that in their work, Yu and Nyman use the convention (v 3,v2) instead of the spectroscopically
motivated nomenclature (v2,v3).
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Figure 4.7: Product distribution for Cl− + CH3Cl′ (0,0,0) → ClCH3 (v′1,v
′
2,v

′
3) +

Cl′− for CH3Cl being initially in its vibrational ground state. The data is smoothed
over intervals of 80 cm−1.

ν3 in reactant and product CH3Cl. Note that also product states with excitation of the
umbrella bending mode play an important role, indicating the active role of this mode
in the reaction. For initial excitation (0,0,3), a similar effect can be seen. The same
product state as in the reactant molecule dominates up to 3000 cm−1. Also, the near–
resonant mode (0,1,1) has a significant role, as well as the neighboring states (0,0,2)
and (0,0,4) and the combined excitation (0,1,2). Again, V → T energy transfer is not
observed.

As can be seen from Fig. 4.9, exciting the umbrella bending mode in reactant
CH3Cl favors products in the near–resonant state (0,0,2) while the state (0,1,0) is
important only for low translational energies and shows a low population indicating
that ν2 is not to be considered as a spectator mode. Also the states (0,0,3), and to a
minor extent, (0,0,1) and (0,0,4) are populated in the product molecule. Furthermore,
the combined excitations (0,1,1) and (0,1,2) are found in the product, indicating a
strong tendency for T → V energy transfer when the umbrella mode is initially excited.
Analogously, two quanta in the umbrella bending mode yield the product most likely
in the state (0,0,4), but also in the neighboring states (0,0,3) and (0,0,5). The near–
resonant product state (0,1,2) is particularly important; its contribution drops from
40 to 5% at 1500 cm−1 and then slowly rises again. The percentage of product state
(0,2,1) is also remarkable, confirming the tendency to T → V energy transfer. Three
or four quanta in ν2 yield preferably a product with a high degree of excitation in the
C–Cl mode, viz. (0,0,6) and (0,0,8), respectively. Initially v2 = 3 populates also the
near–resonant product states (0,1,4) and (0,2,2) as well as (0,0,7) and (0,3,1) while
v2 = 4 prefers the near–resonant states (0,1,6), (0,2,4) and (0,3,2) and a state with



53 4.1. CL–CL EXCHANGE REACTION

Figure 4.8: Product distribution for Cl− + CH3Cl′ (0,0, i)→ ClCH3 (v′1,v
′
2,v

′
3) + Cl′−

with the C–Cl stretching vibration in CH3Cl initially excited with i = 1, 2, or 3 quanta,
respectively. The data is smoothed over intervals of 80 cm−1.
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Figure 4.9: Product distribution for Cl− + CH3Cl′ (0,i,0)→ ClCH3 (v′1,v
′
2,v

′
3) + Cl′−

with the umbrella bending vibration in CH3Cl initially excited with i = 1, 2, 3 or 4
quanta, respectively. The data is smoothed over intervals of 80 cm−1.
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Figure 4.10: Product distribution for Cl− + CH3Cl′ (0,1,1) → ClCH3 (v′1,v
′
2,v

′
3) +

Cl′− where CH3Cl is initially excited with one quantum in the umbrella bending and
one quantum in the C–Cl stretching vibration. The data is smoothed over intervals of
80 cm−1.

excitation of the high–frequency C–H stretching mode, (1,0,3).
Fig. 4.10 shows the product distribution for initially one quantum in the C–Cl and

one in the umbrella mode. The most important product state is the near–resonant level
(0,0,3), followed by (0,0,2), (0,0,4) and (0,1,2).

Finally, the product distribution for initial vibrational state (1,0,0) is shown in
Fig. 4.11. Compared to all other product distributions discussed above, a strong mix-
ing between the states is observed. The probability for finding products with (1,0,0),
i.e. adiabatic behavior of ν1, is about 20% up to Etrans = 800 cm−1. There, the per-
centage of the adiabatic reaction drops down to zero. Asymptotically, the reactant ν1

mode is not in near–resonance with any other energy level, but interacts with other
states (cf. Fig. 4.2) for smaller ρ values. We find product excitations (0,0,3), (0,0,4),
(0,0,5), (0,1,2) and (0,2,2) indicating vibrational energy redistribution from the C–
H stretching mode into the ”active” degrees of freedom, ν2 and ν3. Up to about Etrans

= 1900 cm−1, energy originally stored in the high–frequency C–H stretching mode is
released in the other degrees of freedom and by no means conserved in ν1. Thus, also
the C–H stretching mode plays an active role in the dynamics and should not a priori
be neglected. For thermal reactions, the influence of this low–populated mode is fairly
small, while in the detailed dynamics of the reaction, in particular at higher energies,
also the so-called ’spectator’ modes should be included. This conclusion is supported
by independent calculations on the decay of the resonance states [94]. However, it
should be kept in mind that the lifetimes of localized resonances (v1,v2,v3,v4), where
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Figure 4.11: Product distribution for Cl− + CH3Cl′ (1,0,0) → ClCH3 (v′1,v
′
2,v

′
3) +

Cl′− with the CH3Cl molecule initially with one quantum in the high–frequency C–H
stretching vibration. The data is smoothed over intervals of 80 cm−1.

ν4 is the intermolecular Cl–C stretching mode, in the intermediate complexes and the
reaction probabilities dependent on reactant CH3Cl (v1,v2,v3) are intrinsically differ-
ent. Thus, the high reactivity of the resonant states that does not cope with the spectator
mode concept and the spectator–like behavior of the reactant C–H stretching mode in
the reactive process are not in contradiction. The crossings of the adiabatic states when
going from the asymptotic to the interaction region of the PES play a crucial role.

For translational energies higher than 1900 cm−1, preferably T → V energy trans-
fer takes place, and the ν1 mode behaves adiabatically. This is in close agreement
with the energy starting from which the reaction probability is almost coincident with
that for reaction out of the vibrational ground state of CH3Cl as shown in Fig. 4.4 and
discussed before. The product states that are excited above Etrans = 1900 cm−1 are
(1,0,2), (1,0,3), (1,1,1) and (1,1,2). Surprisingly, (1,0,1) is not found according to
our calculations.

Comparing the product distributions shown in Figs. 4.7–4.11, in particular for ini-
tial states (0,0,0), (0,0,1), (0,0,2) and (0,1,0), a surprising similarity can be found,
at least up to the openings of the (0,1,1) and (0,0,3) channels. The state–to–state reac-
tion probabilities show roughly the same ratios. Obviously, the long–living resonances
decay into products independently of the way they were formed from reactants. Only
the absolute heights of the state–to–state probabilities vary and depend on the initial
vibrational state.
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Analysis of Resonance Structure

As inferred from the symmetry of the PES, many resonances appear as double peaks
with remarkably small linewidths. The energetically higher lying states (ungerade
symmetry) exhibit smaller line widths which is in agreement with the numerically
more accurate filter diagonalization results reported in Ref. [91]. A general distinction
of the resonances in states with gerade and ungerade symmetry can not be accom-
plished in the scattering calculations because wavefunctions are not obtained.

Fig. 4.12 contains a comparison with previous 4D resonance calculations [94]
showing that the overall agreement of the two distributions is fairly sound. While the
underlying Hamiltonian and the PES are identical for both methods – Tschebyscheff
filter diagonalization [94] and time–independent scattering in hyperspherical coordi-
nates –, the two approaches themselves are completely different. In Ref. [94], complex
absorbing potentials were used and the resonance energies, linewidths and wavefunc-
tions were directly obtained from the diagonalization of a 4D Hamiltonian matrix. The
results are limited to localized resonances due to the finite size of the grid. Thus, the
lower limit of the resonance distribution is well characterized while the upper limit
is not because very far–reaching resonance wavefunctions cannot be calculated ex-
actly. In the present work, we do not obtain wavefunctions and therefore cannot assign
quantum numbers. Again, the lower limit of the resonance width distribution is well
characterized because – provided the energetic resolution is sufficiently high – the
narrow but intense peaks can be fitted to Lorentzian profiles. However, small peaks
with large widths are very difficult to identify in the spectrum, in particular in the
higher energy regime where the resonances overlap and a considerable background
is found. Thus, the upper border of the Γ(E) distribution is not well defined. Note
in particular that the filter diagonalization method yields some states with extremely
large widths which are very well localized above the saddle point region of the PES
(see Fig. 4.12 and Ref. [94] for details). These resonances could not be resolved in
the present work. However, the time–independent scattering approach has several ad-
vantages: First, we obtain additional information about the heights of the peaks in the
spectrum and thus about the contribution of the individual resonances to the reactive
processes. Second, the energetic range can be considerably extended at much lower
cost than in the filter diagonalization procedure where the yield of acceptable reso-
nances becomes extremely low at higher energies compared to the strongly increasing
computational effort. To highlight the good agreement of the two distributions shown
in Fig. 4.12, we refer to the work of Zhang and Smith [99] who studied the HO2 system
that might be viewed as an intermediate in a complex–forming bimolecular reaction.
The authors carried out filter diagonalization calculations using the Lanczos subspace
and Tschebyscheff low storage methods (employing identical Hamiltonians and PESs)
and obtained similar deviations of their Γ(E) distributions.

As is to be expected and can clearly be seen in the overview of the reaction proba-
bilities, Fig. 4, the opening of a new channel has a significant effect on the resonance
structure as computed by time–independent scattering calculations, whereas it is not
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Γ
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Figure 4.12: (a) Resonance width distribution as function of excess energy E −E0,
where E0 is the vibrational ground state of CH3Cl. (b) Comparison of the data with
results from Ref. [94] (open circles). In (b), all widths below 10−8 cm−1 are set to
10−8 cm−1.
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Figure 4.13: Comparison of reaction probabilities for initial state (0,0,0), summed
over all product states, from this work, computed employing high energetic resolution
(full line) and the coarse energy grid of 0.81 cm−1 from Ref. [91] (dotted line).

important in the filter diagonalization.
The significance of the very narrow resonances that were not detected by Clary and

Palma [91] and Yu and Nyman [92] is most important in the low translational energy
regime, where the density of resonance states is low (see Fig. 4.13). In the higher
energy regime where broad resonances dominate the spectrum, their contribution to
the reaction probability becomes less important. However, under thermal conditions
the low–energy scattering is relevant and thus accurate calculations are necessary.

The sum of all peak heights of a particular resonance appearing in all state–to–
state selected reaction probabilities amounts to one2; however, the heights of the in-
dividual resonance peaks vary over several orders of magnitude (Fig. 4.14). As for
the linewidths, the opening of new channels leaves its marks; the obviously smaller
density of fitted peaks after an energy of 2000 cm−1 can be explained by the opening
of the very reactive modes (0,1,1) and (0,0,3); afterwards, the background is consid-
erably higher while the total probability of one is distributed on more channels so that
many of the peaks are difficult to identify. Note in addition that the density pattern
is somewhat repeated for energies higher than 3000 cm−1, i.e. where states with one
quantum in the C–H-stretching mode appear.

Of considerable interest are product distributions computed from complete reso-
nances, Fig. 4.15. They are independent of the initial state, reflecting that a long–lived
resonance state decays independently of the way it is formed. This implies that the
ratios of the elements of the matrix Pres containing all the peak heights of a specific
resonance are independent of the row of this matrix. Due to symmetry, Pres

mn = Pres
nm , the

2See [88] for a similar case.
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Figure 4.14: Distribution of peak heights in the reaction probability vs. energy for all
possible combinations of initial and final states. Note that resonances have been fitted
if Pmin ≥ 10−4.

Figure 4.15: Probability for finding product states (0,0,0) (a) and (0,1,0) (b) for
different initial vibrational states at resonance energies in selected energy intervals.
Only complete resonances (with ∑

i, j
Pi j = 1) have been included.
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state–to–state selected reaction probabilities show the same ratio. The matrix Pres (or,
respectively, the corresponding resonance state) can thus be characterized by N − 1
numbers if N ×N is the size of the matrix (and the general requirement that the sum
of all elements is equal to unity). Note that the product distributions show obvious
differences between the resonances; as can be seen from Fig. 4.15(a), most of the res-
onances will decay in final states with one quantum of the C–Cl–stretching mode, but
some behave just the other way round. In Fig. 4.15(b), the proportion of excitation of
the umbrella mode in the decay products also varies largely; it seems to become less
important for large energies which corresponds to the overall picture described in the
previous sections.

Looking again at the product distributions as computed from the complete spec-
trum, Figs. 4.7–4.11, independence from the initial state can be found as well, at least
in the energetic regime up to 2000 cm−1 when the (0,1,1) and (0,0,3) modes open
up. This is another hint that the reaction up to that energy is driven by resonances as
suggested by Fig. 4.13 up to an energy of 1500 cm−1.

4.1.4 Conclusions

(1) Employing a coupled cluster [CCSD(T)) potential energy surface, time–inde-
pendent quantum scattering calculations up to 6000 cm−1 above the vibrational ground
state of the reactant molecule have been carried out on the SN2 reaction Cl− + CH3Cl′
→ ClCH3 + Cl′ using hyperspherical coordinates to describe the bonds being broken
and formed. The two totally symmetric modes of the methyl group, C–H stretching
and umbrella bending, are explicitly included in the model. C3v symmetry is conserved
throughout the reaction. The Hamiltonian used is exact within the 4D dimensionality–
reduced model.

(2) A very narrow grid in the total energy was employed so that extremely long liv-
ing resonance states with widths down to 10−12 cm−1 could be resolved. In particular,
it was possible to detect two components of these peaks corresponding to gerade and
ungerade resonance states, in agreement with recent filter diagonalization calculations
in the energetic continuum. The distribution of the resonance widths agrees well with
that from the previous work and extends it towards higher energies.

(3) State–selected reaction probabilities as functions of translational energy are
presented and discussed in detail. Product distributions, closely related to state–to–
state reaction probabilities, are analyzed.

(4) While excitation of the pure umbrella bending mode already leads to a signifi-
cant enhancement of the reaction probability, its combination with vibrational excita-
tion of the broken C–Cl bond results in a strong synergic effect. This can be explained
by the similarity of the combination excitation with the reaction transition mode. The
umbrella bending vibration is by no means a pure spectator in the SN2 reaction.

(5) While exciting the high–frequency symmetric C–H stretching vibration has a
considerable influence for low translational energies and initial vibrational states up
to (0,1,0), otherwise only a small effect on the reaction probability is observed in



CHAPTER 4. RESULTS 62

agreement with the spectator mode concept. However, this concept in questionable in
so far as energy originally stored in the ν1 mode is released in the other modes of the
reaction products. Thus, though quantitatively small, the role of the C–H mode in the
reaction dynamics is not negligible.

(6) Product distributions of individual resonances can be calculated from their peak
heights in different state–to–state reaction probabilities. It is found that the decay of
the resonances is independent of the initial vibrational state of the reactant.

(7) The next step in studying the SN2 elementary reaction is to leave the collinear
reaction pathway and to consider various directions of approximation of the nucle-
ophile towards the methyl halide molecule. It is anticipated that the reaction proba-
bility is strongly decreased. While the rotation of the methyl group around its axis
of symmetry (A rotational constant) was already an object of investigation [89], the
rotation of the methyl halide molecule around an axis orthogonal to its axis of sym-
metry, i.e. the motion connected with the B rotational constant, requires two different
coordinate systems for reactants and products and the use of suitably adapted basis
sets.

4.2 Cl–Br Exchange Reaction

4.2.1 Abstract

The exothermic gas–phase SN2 reaction Cl− + CH3Br (v′1,v
′
2,v

′
3) → ClCH3 (v1,v2,v3)

+ Br− and the corresponding endothermic reverse reaction have been studied by time–
independent quantum scattering calculations in hyperspherical coordinates on a cou-
pled cluster (CCSD(T)) potential energy surface. The dimensionality–reduced model
takes four degrees of freedom into account (Cl–C and C–Br stretching modes (quantum
numbers v′3 and v3); totally symmetric modes of the methyl group, i.e. C–H stretch-
ing (v′1 and v1) and umbrella bending vibrations (v′2 and v2)). Diagonalization of the
Hamiltonian was performed using the Lanczos algorithm with a variation of partial re-
orthogonalization. A narrow grid in the total energy was employed so that long–living
resonance states could be resolved and extracted. While excitation of the reactant um-
brella bending mode already leads to a considerable enhancement of the reaction prob-
ability, its combination with vibrational excitation of the broken C–Br bond, (0,1,1),
results in a strong synergic effect that can be rationalized by the similarity with the clas-
sical transitional normal mode. Exciting the C–H stretch has a non–negligible effect
on the reaction probability, while for larger translational energies this mode follows
the expected spectator–like behavior. Combination of C–Br stretch and symmetric
C–H stretch, (1,0,1), does not show a cooperative effect. Contrary to the spectator
mode concept, energy originally stored in the C–H stretching mode is by no means
conserved, but released in other modes of the reaction products. Products are most
likely formed in states with a high degree of excitation in the new C–Cl bond, while
the internal modes of the methyl group are less important. Reactants with combined
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umbrella/C–Br stretch excitation, (0,1,1), may yield products with two quanta in the
umbrella mode.

4.2.2 Introduction

In this section, we present a four–dimensional (4D) study of the exothermic reaction

Cl− +CH3Br → ClCH3 +Br− (4.4)

and the corresponding endothermic reverse reaction. The first quantum mechanical
study on a gas–phase SN2 reaction was performed by Wang, Goldfield and Hase [100]
who studied the time–dependent dynamics of a two–dimensional (2D) wave packet
in a model with the minimum number of degrees of freedom (carbon–halogen bonds
being formed and broken). Clary [13] could obtain the thermal rate constant from a
dimensionality–reduced three–dimensional (3D) quantum model with an approximate
Hamiltonian for the umbrella bending coordinate and found good agreement with ex-
periment. Reaction cross sections in a 2D model were calculated and analyzed by
Schmatz and Clary [31]. A 2D investigation of resonance lifetimes for the complexes
Cl− · · ·CH3Br (entrance channel) and ClCH3 · · ·Br− (exit channel), obtained directly
as the imaginary parts of the complex eigenvalues, E = Eres − i

2Γ, of a complex–
symmetric Hamiltonian matrix was reported by Schmatz et al. [32] who employed
a coupled–cluster (CCSD(T)) potential energy surface in conjunction with the filter
diagonalization method. The five stationary points (reactants, products, saddle point
and the two intermediate complexes) on this surface had already been reported in
Ref. [101]. In a recent paper, Schmatz [102] reported the linewidths for the same
system in a four–mode model on an extended PES. The four–dimensional model also
includes the two totally symmetric vibrations of the methyl group (C–H stretch and
umbrella bend). The vast majority of bound states and many resonance states up to the
first overtone of the symmetric stretching vibration in the exit channel complex have
been calculated, analyzed and assigned four quantum numbers. The resonances were
classified into entrance channel, exit channel and delocalized states. It could be shown
that the widths of the resonances within a small energy window cover more than six
orders of magnitude. In addition to a majority of Feshbach–type resonances, exceed-
ingly long-lived shape resonances were found which are associated with the entrance
channel and can only decay by tunneling. The state–selective decay of the resonances
was studied in detail. The linewidths of the resonances and thus the coupling to the
energetic continuum increase with excitation in any mode. Due to the strong mixing
of the many progressions in the intermolecular stretching modes of the intermediate
complexes, this increase as a function of the corresponding quantum numbers is not
monotonic, but exhibits pronounced fluctuations.

In the present work, we use the same dimensionality–reduced Hamiltonian as em-
ployed in Ref. [102]. A rigorous quantum mechanical treatment appears to be im-
possible at present because for an exact description of the Cl− + CH3Br SN2 system,
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twelve degrees of freedom have to be considered explicitly. The dimensionality of the
reaction is thus reduced and the system is studied under the restriction that C3v sym-
metry is maintained during the reaction. Since the minimum energy path (MEP) of
the reaction is strictly collinear and the potential energy rises in all directions perpen-
dicular to that pathway, we adopt the model that explicitly takes into account the two
carbon–halogen distances and the totally symmetric coordinates of the methyl group
(corresponding to umbrella bending and symmetric C–H stretching vibrations). Due
to the low intermolecular frequencies of the complexes, the heavy mass of the bromine
nucleus and the far–reaching ion–dipole potentials, the Cl− + CH3Br SN2 system is
computationally very demanding, even in the dimensionality–reduced model.

Experimentally, the system Cl− + CH3Br → ClCH3 + Br− has considerable advan-
tages over Cl− + CH3Cl′ that was previously studied by quantum mechanical meth-
ods [79]. The former reaction is faster than the symmetric chlorine exchange by three
orders of magnitude, and, owing to asymmetry, reactants and products are easily dis-
tinguishable. Viggiano et al. [12] investigated the Cl− +CH3Br reaction as a function
of ion–neutral average center of mass kinetic energy, finding that an increase of CH3Br
temperature does not increase the thermal rate constant. In contrast to results from a 2D
quantum scattering study with a coupled–cluster PES [96], activation of the bond be-
ing broken does not seem to be necessary. Graul and Bowers [103,104] found that the
translational energy distribution of the products Br− and CH3Cl is much smaller than
the prediction by phase-space theory; consequently, the products are vibrationally ex-
cited. Reaction cross sections and product velocity distributions for the Cl− + CH3Br
reaction as a function of collision energy in the range 0.06-24.0 eV were measured
by Angel and Ervin [18]. Ineffectivity of the SN2 reaction compared with predictions
from phase space and ion–dipole capture theory was found.

4.2.3 Results

Potential and Surface Eigenstates

One-dimensional cuts V (δ ) through the PES for fixed values of the hyperradius ρ are
shown in Fig. 4.16. Here, z and q are optimized with respect to energy. The curve for
ρ = 11 a0 includes the saddle point region. In the asymptotic region, here at 34 a0,
the well at δ ≈ 5◦ (35◦) belongs to the reactants (products). For short hyperradii, the
well depths of the two channels do hardly differ, and for very short values of ρ , there
is only a single well in the potential cut.

The energy levels of the asymptotic reactant and product states (calculated in the
last sector, ρ = 33.91 a0) up to the maximum total energy considered in this work
are collected in table 4.2. The wavenumbers and quantum numbers of the reactants
are primed to distinguish them from the corresponding values of the products. The
anharmonic vibrational frequencies of the fundamental transitions can be compared
with the experimental values [105] (in parentheses), showing good agreement: CH3Cl:
ν1 = 3045 (2966) cm−1, ν2 = 1376 (1355) cm−1 and ν3 = 719 (732) cm−1; CH3Br:
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Figure 4.16: Potential cuts along the hyperangle δ for different values of the hyperra-
dius ρ . The energy is optimized with respect to z and q.

ν ′
1 = 3053 (2972) cm−1, ν ′

2 = 1321 (1305) cm−1 and ν ′
3 = 600 (611) cm−1. A more

detailed discussion is provided in Refs. [79] (CH3Cl) and [102] (CH3Br). Up to the
entrance channel level (0,1,0) the asymptotic states are relatively isolated. For higher
excitations, however, many reactant states i energetically come close to product states
f . Many of these pairs include ν1 product excitation, e.g. i/ f = (0,0,3)/(1,1,0),
(0,1,2)/(1,1,1), (0,2,1)/(1,1,2) and (0,3,0)/(1,1,3). There are initial states highly
excited in ν ′

3 that are near–degenerate with product states: i/ f = (0,0,5)/(0,1,6),
(0,0,8) and (0,0,6)/(0,4,1), (0,3,3).

Fig. 4.17 graphically displays the hyperspherical adiabatic curves, εn(ρ), in the
range from 9 a0 to 19 a0 (a) and an enlargement for 10 a0 < ρ < 15 a0 (b). Full lines
belong to asymptotic exit channel states while dotted curves correspond to entrance
channel states. Clearly, the lowest curves belong to the exit channel. The reactivity
can be traced back to vibrationally non–adiabatic transitions between the εn(ρ) curves.
Fig. 4.17(b) shows many multiple avoided crossings that mediate the reaction. Due to
the strong mixing, it is not possible to assign the complete adiabatic curves to one
particular channel. Only in the asymptotic region, this assignment can be made. The
exit channel shows a clustering of asymptotic states due to the near–resonance 2ν3 ≈ ν2

[79].

Resonance states can be regarded as bound states in isolated diabatic 1D potential
energy curves. The coupling to states in other potentials leads to decay if the formerly
”bound” state is now located in the energetic continuum, i.e. above the asymptotic
energy of a particular channel.
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Table 4.2: Assignments of quantum numbers (v(′)
1 ,v(′)

2 ,v(′)
3 ) to the initial and final

states of CH3Br and CH3Cl, respectively. Here, v(′)
1 , v(′)

2 and v(′)
3 denote the C–H

stretching, CH3 umbrella bending and carbon–halogen stretching vibrations. Primed
quantities refer to the reactants (CH3Br). Energies E −ECl

000 (in cm−1) are given with
respect to the vibrational ground state of CH3Cl, ECl

000, and for reactant states addition-
ally with respect to the zero–point energy level of CH3Br, EBr

000.

(v1,v2,v3) (v′1,v′2,v′3) E −ECl
000 E −EBr

000 (v1,v2,v3) (v′1,v′2 ,v′3) E −ECl
000 E −EBr

000

(0,0,0) 0.0 (0,0,4) 4986.3 2364.4
(0,0,1) 718.9 (0,1,2) 5126.7 2504.8
(0,1,0) 1376.3 (1,1,1) 5135.8
(0,0,2) 1431.5 (1,0,3) 5186.5
(0,1,1) 2087.5 (0,2,0) 5252.8 2630.9
(0,0,3) 2137.5 (0,4,0) 5428.7

(0,0,0) 2621.9 0.0 (0,3,2) 5471.9
(0,2,0) 2738.4 (0,2,4) 5501.1
(0,1,2) 2791.4 (0,1,6) 5535.5
(0,0,4) 2837.1 (0,0,5) 5562.0 2940.1
(1,0,0) 3045.0 (0,0,8) 5577.9

(0,0,1) 3222.0 600.0 (1,0,0) 5674.8 3052.9
(0,2,1) 3442.4 (0,1,3) 5709.7 3087.8
(0,1,3) 3487.8 (1,2,0) 5786.5
(0,0,5) 3530.5 (1,1,2) 5839.8
(1,0,1) 3765.0 (0,2,1) 5842.3 3220.4

(0,0,2) 3816.1 1194.2 (1,0,4) 5887.7
(0,1,0) 3942.6 1320.6 (2,0,0) 6056.3

(0,3,1) 4088.7 (0,4,1) 6118.0
(0,2,2) 4137.9 (0,0,6) 6131.4 3509.4
(0,1,4) 4176.7 (0,3,3) 6145.3
(0,0,6) 4218.0 (0,2,5) 6171.8

(0,0,3) 4404.3 1782.4 (0,1,7) 6207.6
(1,1,0) 4424.6 (0,0,9) 6251.1
(1,0,2) 4478.9 (1,0,1) 6274.3 3652.4

(0,1,1) 4537.6 1915.7 (0,1,4) 6286.4 3664.5
(0,3,1) 4785.6 (0,2,2) 6425.9 3804.0
(0,2,3) 4824.1 (1,2,1) 6490.0
(0,1,5) 4858.9 (1,1,3) 6536.5
(0,0,7) 4900.3 (0,3,0) 6552.2 3930.3

Reaction Probabilities

In calculations on lifetimes of resonance states in the Cl− + CH3Br reaction [102],
i.e. for energies above the reactant zero–point level, very long-lived states have been
found. They live up to several microseconds, corresponding to widths down to the
order of 10−7 cm−1. Thus, the energetic grid in the scattering calculations had to be
relatively fine to resolve as many narrow resonances as possible.

A broad overview of the resonance structure is shown in Fig. 4.18. Here, the re-
action probability from the highest open vibrational reactant state (v′1,v

′
2,v

′
3) at each

energy into the equivalent state (v1 = v′1,v2 = v′2,v3 = v′3) in the product molecule is
given. This explains the coarse structure shown in the figure which gives an overview
impression of the reaction probabilities. All calculated P(E) data follow this strongly
oscillating pattern.
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Figure 4.17: Hyperspherical adiabatic curves. Shown are all Nch = 150 curves whereof
96 belong to asymptotic exit channel states while 54 are pertinent to entrance channel
states. The classical asymptotic limit of the PES is set to zero. While Fig. 3(a) gives
the full energy range covered by our calculations, Fig. 3(b) displays only a small part
including numerous avoided crossings between the hyperspherical adiabatic curves
that mediate the non–adiabatic transitions between the different vibrational states.

Figure 4.18: The reaction probability P(E) as a function of energy E is strongly
dominated by scattering resonances. Shown are the diagonal state–to–state reaction
probabilities Pi, f (E), i.e. v′i = vi, i = 1,2,3 for the highest reactant channel (v′1,v

′
2,v

′
3)

at energy E.



CHAPTER 4. RESULTS 68

To facilitate the comparison between different initial vibrational states, the P(E)
curves are averaged over 80 cm−1 so that each point is the arithmetic mean of all
probabilities in the interval [E−Δ,E +Δ] with Δ = 40 cm−1. All initial–state selected
P(E) curves shown in the following and all product distributions (which are related to
state–to–state reaction probabilities Pi, f (E)) are averaged according to this procedure.

• The exothermic reaction Cl− + CH3Br

Fig. 4.19(a) shows the initial–state selected reaction probabilities summed over all
product states as a function of initial translational energy,

Pi(E) = ∑
f

Pi, f (E) = ∑
f

|Si, f |2. (4.5)

The energetic ranges of the curves are different because the data are not shown as
functions of total energy; to recover the probabilities as functions of total energy, the
individual curves must be shifted by the corresponding energy levels quoted in ta-
ble 4.2. There is a clear distinction between three groups of curves. The first group
contains initial vibrational states without excitation in the C–Br bond. Here, P(E) is
far below 0.1. The second group contains those initial states with one quantum of
internal energy in the C–Br stretching mode ν ′

3; here, the reaction probabilities are
considerably increased. Finally, after a clear gap, the third group contains P(E) curves
corresponding to initial vibrational states with v′3 ≥ 2. These curves are found in the
probability interval from 0.5 to 0.8 with a tendency to saturation at the latter value
which is still below the maximum value of 1.0 that should be reached for a classical
barrierless reaction.

Fig. 4.19(b) displays the probability for reaction out of the vibrational ground state
which rises exponentially with a pronounced coarse structure. Exciting the umbrella
bending mode ν ′

2 in the reactant CH3Br yields a significant increase of P(E). Interest-
ingly, excitation of the high–frequency C–H stretching mode ν ′

1 shows quantitatively
a very similar effect. This observation leads to the conclusion that both totally sym-
metric modes of the methyl group have a comparable influence on the reactivity in the
Cl− + CH3Br reaction. Putting two quanta in the umbrella bending mode results in an
almost linear increase of P(E) compared to excitation v′2 = 1. It should be pointed out
that the coarse shape of all curves displayed in Fig. 4.19(b) is quite similar exhibiting
a dip at about 750 cm−1 of translational energy.

The well–known ’spectator’ mode concept states that a bond which is not directly
involved in the reaction can be treated adiabatically and does not show a significant
influence on the reactivity. The high–frequency C–H stretch is often regarded as a pro-
totypical example of a spectator mode. The mode is present both in reactants and in
products and, owing to its large frequency, the coupling to the other modes is expected
to be weak. Surprisingly, despite the fairly small influence of these ’spectator’ modes
on thermal reactions (due to their low population), they should be included if one aims
at a detailed understanding of the underlying dynamics: From the present calculations,
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Figure 4.19: Initial state–selected probabilities Pi(E) for the exothermic reaction Cl−
+ CH3Br (v′1,v

′
2,v

′
3)→ ClCH3 + Br− as functions of translational energy Etrans. The

data is smoothed over intervals of 80 cm−1. Pi, f (E) is summed over all accessible
product channels f . (a) Overview, (b) without excitation in ν ′

3, (c) one quantum in ν ′
3,

(d) two or more quanta in ν ′
3.
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there is clear evidence that both the umbrella mode and the symmetric C–H stretch
do not behave as spectators. This conclusion is further supported by independent cal-
culations on the decay of individual resonance states [102] employing the same (real
part of the) Hamiltonian and the same potential. By analysis of a large set of reso-
nances with four assigned quantum numbers, it could be shown that excitation of the
higher–frequency modes leads to a strong decrease of the resonance lifetimes that con-
tradicts the spectator mode concept. The latter would expect that the linewidths of the
resonances are only very slightly changed by exciting the umbrella or C–H stretching
mode.

As can be seen from Fig. 4.19(c), putting energy into the C–Br bond to be broken
considerably increases the reactivity. When additionally one quantum is put in the
umbrella bend ν ′

2, the reaction probability rises more strongly than for pure excitation
of the bending mode (see Fig. 4.19(b)), an effect that becomes even more pronounced
for initial vibrational state (0,2,1) compared to (0,2,0). This emphasizes the role
of a cooperative effect in vibrational excitation in the reactant molecule CH3Br. The
simultaneous excitation of ν ′

2 and ν ′
3 corresponds to the classical transitional mode

(with imaginary vibrational frequency) at the saddle point on the PES: During the
reaction, the C–Br mode is broken and the methyl group undergoes inversion. The
same effect has already been observed in the thermoneutral reaction Cl− + CH3Cl′
[79]. On the other hand, simultaneous excitation of the C–H stretch, ν ′

1, and the C–Br
stretch ν ′

3 has a much smaller effect on the reactivity, in particular when compared to
the significance of pure excitation in ν ′

1 (see Fig. 4.19(b); only a short curve for initial
excitation (1,0,1) can be shown due to the fact that this initial vibrational state is
already very high in energy). This additionally underlines the synergic effect exhibited
by simultaneously exciting umbrella bend and C–Br stretch.

The influence of exciting the C–Br stretch with two or more quanta is shown in
Fig. 4.19(d). As expected from chemical intuition, an increase of Pm(E) is found up to
state (0,0,3), but then a saturation is observed and the curve for reactant state (0,0,6)
exhibits a lower reaction probability than in the case of lower excitation in ν ′

3. This
effect can be rationalized by the fact that higher vibrational excitation corresponds to
larger expectation values of the C–Br bond distance. Thus, it may be the case that the
bond is ’overstretched’ with respect to the optimal saddle point geometry which should
be attained by the system to overcome the barrier. Distortions from that geometry raise
the potential energy and therefore, an optimum value for the number of quanta in ν ′

3
exists. The same finding was made by Schmatz and Clary [31] who report reaction
cross sections (summed over all product states) from 2D calculations on a PES result-
ing from the 4D PES used in this work by minimizing the energy with respect to q and
z. For low translational energy, the cumulative reaction probability for initial excita-
tion (0,1,2) is considerably higher than the corresponding one for (0,0,2). A similar
behavior is found for initial states (0,0,0) and (0,1,0). According to Fig. 4.19(d),
saturation of the reaction probabilities is reached at P = 0.8.

Figs. 4.20(a)–(f) graphically display the product distributions for six selected initial
vibrational states of CH3Br. They are obtained as the normalized state–to–state reac-
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tion probabilities, Pi, f (E)/Pi(E). Absolute state–to–state reaction probabilities can
be obtained by multiplying the data from Figs. 4.19 with the percentage amounts of
Figs. 4.20. Note that all product states with a negligible population are not shown in
the figures.

At very low translational energies, reaction out of the CH3Br ground state (see
Fig. 4.20(a)) is most likely to end in product state (0,0,3) whose contribution decreases
to ca. 20 % and then on average remains constant. When the (0,1,2) product channel
opens, it becomes dominant, but for higher translational energies decreases to smaller
values. The (0,0,2) CH3Cl state is populated fairly low at small Etrans but for higher
collision energies the percentage amount of this product channel increases to more
than 30 %. After opening of the (0,0,4) product channel, its population rises to more
than 25 %, but decreases for higher energies. In summary, for reaction out of CH3Br
in its vibrational ground state, products with the C–Cl stretch excited by 2–4 quanta
are formed. In agreement with the observation by Graul and Bowers [103, 104], the
products are vibrationally hot.

Putting one quantum of energy in the bond being broken, i.e. the C–Br stretching
mode (Fig. 4.20(b)), results in a very similar picture. The (0,0,3) product curve starts
at ca. 20 % and slightly rises for larger Etrans. The (0,0,2) channel starts at ca. 5 %
and strongly increases, with pronounced oscillations, up to 40 % in the energy regime
considered. The (0,0,4) state is initially relative important, while it becomes less pop-
ulated at higher energies. The combination level (0,1,1) exhibits a contribution of
almost constantly more than 10 %. As for reactant state (0,0,0), the product channel
(0,1,2) is initially most important, but becomes much less significant at larger trans-
lational energies. Note that all product levels shown in Fig. 4.20(b) are energetically
located below the reactant state. The product channel (0,0,5) is insignificant.

For initially one quantum in the umbrella bending vibration ν ′
2, (Fig. 4.20(c)), prod-

uct channels with pure ν ′
2 excitation are most likely formed only at lower translational

energies. Product states (0,0,3) and (0,0,4) are on average almost equally probable
while showing stronger oscillations. The same observation is made for the (0,0,5)
state whose average contribution is considerably higher, however. The CH3Cl com-
bination modes (0,1,2), (0,1,3) and (0,1,4) show large contributions at small E trans,
but then decay fast to values below 5 %. In summary, C–Cl stretching excitation in
the products is strongly favored. For small translational energies, the umbrella mode
behaves adiabatically, i.e. the energy in this mode is conserved and a considerable part
of the collision energy is transformed into vibrational energy (T → V process). For
large translational energies, the energy originally stored in ν ′

2 is almost completely
redistributed.

For reactants in state (0,1,1) (Fig. 4.20(d)), overall a similar behavior is observed.
Product C–Cl stretching states are strongly populated, in particular state (0,0,5) with
almost up to 30 %, but also state (0,0,4) and to much less extend (0,0,3). Prod-
uct combination levels with v2 = 1 are initially quite significant ((0,1,3), (0,1,4) and
(0,1,5) start at about 10, 15 and 8 %, respectively), but then show a decreasing ten-
dency. Surprisingly, product channel (0,2,1) starts at more than 10 % and then further
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Figure 4.20: Product distribution for Cl− + CH3Br (v′1,v
′
2,v

′
3) → ClCH3 (v1,v2,v3) +

Br− for CH3Br being initially in vibrational states (0,0,0), (0,0,1), (0,1,0), (0,1,1),
(0,2,0) and (1,0,0). The data is smoothed over intervals of 80 cm−1.
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increases. With Δv2 = +1 this is a T → V process. This points out that the umbrella
mode clearly is not a spectator mode and that the combination mode exhibits a partic-
ularly high reactivity. The Δv2 = +1 transition is possible only when additionally the
C–Br mode is excited.

Initially two quanta in the umbrella mode, (0,2,0) (Fig. 4.20(e)), again favor the
product channels (0,0,n) close in energy. Most significant is state (0,0,7) starting
at ca. 15 % and then increasing with strong oscillations. The contribution of chan-
nel (0,0,8) rises – after its opening – to almost 15 %, but decreases for higher Etrans.
Product channels (0,0,5) and (0,0,6) show a relative similar behavior, but are less
important compared to state (0,0,7). The isoenergetic product channels (0,1,4) and
(0,2,2) initially show significant contributions which for higher energies become less
important, in agreement with initial excitation (0,1,0). Overall, the product distribu-
tion for (0,2,0) is shifted by two quanta in ν3 compared to initial state (0,1,0). This
is not surprising because for CH3Cl we have ν2 ≈ 2ν3. Thus, the translational energy
distribution is not changed.

CH3Br initially excited with one quantum in the symmetric C–H stretching mode
ν ′

1 (Fig. 4.20(f)) results in the dominant product channel (0,0,7) and a significant
contribution of state (0,0,8). The isoenergetic channels (0,1,6), (0,2,4) and (0,3,1)
are also important. The only product state with energy stored in ν1 is (1,1,2) that after
its opening rises to 15 % and then decreases to on average about 6 %. As can be seen
from Fig. 4.20(f), the probability to find products with the umbrella mode excited, in
particular in combination with the C–Cl stretch, is high. This underlines the active role
of this mode in the reaction.

• The endothermic reaction Br− + CH3Cl

Fig. 4.21 graphically displays the initial state–selected reaction probabilities for
the reverse, endothermic reaction Br− + CH3Cl (v1,v2,v3) → BrCH3 (v′1,v

′
2,v

′
3) +

Cl−. Here, P(E) is much smaller, and Fig. 4.21(a) is given with a logarithmic scale. It
is relatively difficult to divide the curves into groups.

Fig. 4.21(b) contains the isolated P(E) curve for reaction out of the vibrational
ground state of CH3Cl. Clearly, it is non–zero only when the total energy is larger
than that of the first state at the product side. The reaction probability rises less than
exponentially. Fig. 4.21(a) contains four other relatively low probability curves that
all belong to initial vibrational states with v1 = 1. Owing to the high frequency of
this mode, the curves start at Etrans = 0. Excitation of ν1 increases the reactivity. This
effect is enhanced by simultaneous excitation of the C–Cl stretch, ν3, and the umbrella
bend, ν2. Note that putting one quantum of energy in the umbrella bending mode
results in a similar but slightly larger reaction probability than one quantum in the
mode corresponding to the bond that is broken. The C–H stretch cannot be considered
as a spectator because the energy originally stored in this mode is used to overcome
the large reaction barrier.

Fig. 4.21(c) gives the reaction probabilities for pure initial bending states (0,v2,0)
with v2 = 1,2,3 and for the combined excitation of ν2 and ν3, (0,1,1). Also shown is
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Figure 4.21: Initial state–selected probabilities Pi(E) for the endothermic reaction
Br− + CH3Cl (v1,v2,v3) → BrCH3 + Cl− as functions of translational energy Etrans.
The data is smoothed over intervals of 80 cm−1. Pi, f (E) is summed over all acces-
sible product channels f . (a) Overview, (b) reaction out of the vibrational ground
state and states with excitation v′1 = 1, (c) reaction out of states (0,0,1), (0,1,1) and
(0,v2,0), v2 = 1,2,3, (d) higher excitation in ν3 and combination modes (0,v2,v3);
curves (0,1,1) and (0,3,0) are also shown for comparison.



75 4.2. CL–BR EXCHANGE REACTION

the curve for initially one quantum in the C–Cl stretch, (0,0,1), which, like (0,0,0),
increases not exponentially. The (0,1,0) probability is larger than that for reaction out
of the vibrational ground state, confirming that the umbrella mode cannot be treated
as a spectator. A drastic increase is observed for the combination mode (0,1,1) which
has a larger probability than initial state (0,0,2) (see Fig. 4.21(d)) and, for translational
energies larger than ca. 1500 cm−1, also than state (0,3,0).

In Fig. 4.21(d), higher excitations in ν3 are shown, along with simultaneous ex-
citations in ν2 and ν3. Only a few states are explicitly labeled, the other curves are
contained in the plot to demonstrate the convergence behavior. Initial states (0,3,0)
and (0,1,1) (from Fig. 4.21(c)) are also contained in this figure; note that the scale is
linear. There is a strong increase going from initial state (0,2,0) to (0,2,1) which is
larger than the addition of the probabilities out of states (0,2,0) and (0,0,1).

The product distributions for a selection of initial vibrational states are reported
in Figs. 4.22(a)–(f). Absolute state–to–state reaction probabilities can be obtained by
multiplying the data from Figs. 4.21 with the percentage amounts of Figs. 4.22. Re-
action out of the vibrational ground state of CH3Cl (Fig. 4.22(a)) favors the highest
available product state (0,0,v′3) up to v′3 = 2. When channel v′3 = 3 opens, it is about
equally populated as (0,0,2). For higher translational energies, (0,0,1) plays a domi-
nant role. Overall, we observe a clear T → V process.

For initially one quantum in ν3 (Fig. 4.22(b)), the product distribution is very sim-
ilar. For high translational energies, however, the contribution of channel (0,0,1) is
increased and also (0,0,2) becomes more important. A similar situation is encountered
for initial state (0,1,0) (Fig. 4.22(c)). Here, product state (0,0,2) is clearly dominant.
The contribution of the ’adiabatic’ product state (0,1,0) is vanishingly small. A com-
parable picture is obtained for the initial combination mode (0,1,1) (Fig. 4.22(d)).
Here, the product state (0,0,2) is even more important. Product states with up to five
quanta in the C–Br stretching mode play a significant role.

Excitation of the high–frequency C–H stretch ν1 (Fig. 4.22(e)) yields a slightly
more complicated picture for translational energies larger than 1500 cm−1. We observe
additional significant product channels (0,1,v′3) with v′3 = 1− 4 so that a vibrational
redistribution ν1 → ν ′

2 is not only possible but also very likely. However, the quantum
in ν1 is not conserved, clearly contradicting the spectator hypothesis.

For the endothermic Br− + CH3Cl reaction, results for initial state (2,0,0) for up
to more than 500 cm−1 translational energy have been obtained (Fig. 4.22(f)). Again,
product states that are close in energy with the initial state are populated: (0,0,v′3)
with v′3 = 3, . . . ,6, (0,1,v′3) with v′3 = 2,3,4 as well as (0,2,1) and (0,2,2). The two
quanta in ν1 are not conserved, not even partly, which would result in v′1 = 1. We point
out that this result again clearly contradicts the well–established spectator hypothesis
for the high–frequency C–H stretch. This conclusion is not limited to the special case
of SN2 reactions, but should have far–reaching consequences on all systems where
similar ”spectator” modes are present.

It is remarkable that the product distributions for the endothermic reaction are very
similar to each other. The same observation was made for the Cl− + CH3Cl system [79]
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Figure 4.22: Product distributions for Br− + CH3Cl (v1,v2,v3) → BrCH3 (v′1,v
′
2,v

′
3)

+ Cl− in vibrational states (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0) and (2,0,0).
The data is smoothed over intervals of 80 cm−1. The effective translational energy
denotes that part of Etrans that can be converted into product internal energy while the
remaining part compensates the endothermicity.



77 4.2. CL–BR EXCHANGE REACTION

Figure 4.23: Comparison between reactions Cl− + CH3Y (v1,v2,v3) → ClCH3 + Y−
with Y = Cl and Br. The initial quantum states of the methyl halide molecule are
(0,0,0) and (1,0,0).

and can be rationalized by the long lifetimes of the resonance states. Once formed, the
state ”looses its memory” and decays independently of its origin. For higher–lying
resonance levels, in the region of increasing densities of states, the product distribu-
tions are more complicated. This statement is obviously also valid for the exothermic
reaction Cl− + CH3Br with the high–lying product states.

Comparison with the Thermoneutral Reaction Cl− + CH3Cl′

In Fig. 4.23, reactions of a chloride anion with either CH3Cl and CH3Br, both in their
vibrational ground state, are compared. Also shown in this figure are the reaction
probabilities for initial excitation of the symmetric C–H stretching modes in CH3Cl
and CH3Br, respectively. For CH3Br, the reaction probability out of the vibrational
ground state is two orders of magnitude larger for small translational energies and one
order of magnitude at Etrans = 3500 cm−1. Both P(E) curves for the vibrational ground
state on average follow exponential laws, P(Etrans) = AeαEtrans with ACH3Cl = 1.3 ·10−5,
ACH3Br = 2.3 ·10−3, αCH3Cl = 1.55 ·10−3 1/cm−1 and αCH3Br = 0.82 ·10−3 1/cm−1.

Putting one quantum in the symmetric C–H stretching mode increases P(E) for
CH3Cl at low Etrans by about two orders of magnitude, while this mode becomes a
spectator for energies higher than ca. 1700 cm−1. For CH3Br, the corresponding in-
crease for small Etrans is only one order of magnitude and the spectator mode behavior
sets in already at ca. 900 cm−1. Obviously, the missing net barrier in the Cl− + CH3Br
potential is the reason for the different behavior. The barrier in the Cl− + CH3Cl po-
tential renders the C–H mode more important as an energy reservoir for surmounting
the barrier. The difference between the Etrans values where the spectator–like behavior
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Figure 4.24: Comparison between reactions Cl− + CH3Y (v1,v2,v3) → ClCH3 + Y−
with Y = Cl and Br. The initial quantum states of the methyl halide molecule are
(0,0,1) and (0,1,0).

sets in is roughly the value of the potential barrier in the chlorine exchange reaction.
Fig. 4.24 compares P(E) for the two reactions with either one quantum in ν3 or

ν2. Exiting the C–Hal stretch yields a similar relative behavior as for reaction out of
the vibrational ground state. For excitation of the umbrella bending mode with one
quantum, however, the probabilities of the two reactions are very similar to each other.
As discussed for the C–H stretch, also the umbrella mode plays a different role in the
barrierless reaction Cl− + CH3Br and the chlorine exchange reaction with a net barrier.
In the latter reaction, the probability is strongly increased because the energy in ν2 can
be used to overcome the barrier. In the former case, however, the enhancement of the
reaction is less pronounced, apart from the very low translational energy regime. The
similarity of the two curves for initial excitation (0,1,0) is thus accidental.

Resonance Linewidths

Fig. 4.25 graphically displays the resonance widths distribution as a function of the
excess energy which is defined as E −ECH3Br

000 with E000 being the zero–point energy
level of the product. The linewidths are directly proportional to the decay constants
k of the resonances, Γ = h̄k. Depending on the nature of the resonance, the decay is
related to one or more channels: Dissociation of the exit channel, dissociation of the
entrance channel and isomerization.

The resonance widths Γ from our scattering calculations (open circles in Fig. 4.25)
have been obtained from fitting the reaction probability to Lorentz–type profiles,

P(E) = Pmax
Γ2

4(E −Eres)2 +Γ2 (4.6)

employing a fitting procedure similar to that described in Ref. [79]. Widths are shown
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Figure 4.25: Resonance width distribution (open circles) as function of excess energy
E −Ethresh where Ethresh is the vibrational ground state of CH3Cl, ECl

000. The data are
compared with results from 4D filter diagonalization calculations [102] (full circles).

up to 0.2 cm−1. The upper bound of the resonance width distribution is cut because
the corresponding resonance heights are too low to be resolved. These broad and
unassignable resonances are mostly fully delocalized over both potential wells and
partly also the barrier region. By extracting the linewidths employing a fit to P(E),
wavefunctions are not obtained and thus, an assignment of the individual resonance
states is not possible. However, product distributions of the individual resonances
can be calculated. It could be shown in Ref. [79] for the Cl− + CH3Cl system that
the product distributions of the individual resonances are independent of the initial
reactant state [79].

Fig. 4.25 also contains a comparison with recent filter diagonalization calcula-
tions [102] (full circles) which yield directly the poles in the complex energy plane,
E = Eres − i

2Γ. Here, resonance wave functions could be obtained and the states were
assigned four quantum numbers. Due to limitations of the size of the grid for repre-
senting the wave function, only the lower bound of the linewidths is well defined while
the upper bound is not. The agreement between the two distributions in the overlap
region is overall good. The two methods, quantum reactive scattering and filter diag-
onalization, are complementary in obtaining the resonance spectrum. The scattering
calculations could be extended to even higher energies, but the resonances can hardly
be resolved because their heights are too low.

The filter diagonalization treatment could be improved by employing a larger grid.
However, for higher energies than shown in Fig. 4.25, the performance of such a cal-
culation cannot be justified from an economical point of view because the gain of
information is too low [102]. For higher excess energies, RRKM seems to fit well
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while the performance of statistical theories for lower energies is only very poor [102].
The number of resonances obtained from the scattering calculation is much smaller

than that resulting from filter diagonalization. For energies below the zero–point level
of CH3Br, only non–reactive processes Cl− + CH3Br (v′1,v

′
2,v

′
3) → Cl− + CH3Br

(v′′1,v
′′
2,v

′′
3) are possible. In particular, for low energies with just a few open chan-

nels, every possible process exhibits a high background probability, which renders the
extraction of resonances more difficult. In addition, some of these seem to show a
non–Lorentzian behavior. Below the energy of the (0,0,1) state, only elastic scatter-
ing is possible so that resonances cannot be computed from the squared moduli of the
S–matrix elements.

4.2.4 Conclusions

(1) Time–independent quantum scattering calculations have been carried out on
the exothermic SN2 reaction Cl− + CH3Br → ClCH3 + Br− and the corresponding
endothermic reverse reaction using hyperspherical coordinates describing the bonds
being broken and formed. The two totally symmetric modes of the methyl group are
included in the model. C3v symmetry is conserved throughout the reaction.

(2) A variant of the Lanczos scheme with a modified partial reorthogonalization
procedure was formulated and employed in the calculations.

(3) A narrow grid in the total energy was employed so that long living resonance
states could be resolved. Resonances are extracted by fits to Lorentzian functions. The
resonance widths distribution provides a continuation of the data obtained by previous
filter diagonalization calculations. The agreement in the overlap region of the two data
sets is good.

(4) While excitation of the umbrella bending mode already leads to a considerable
enhancement of the reaction probability, its combination with vibrational excitation of
the broken C–Br bond results in a strong synergic effect. This can be explained by
the similarity of the combined excitation with the classical transitional normal mode.
Combination of C–Br stretch and C–H stretch does not show such a cooperative effect.

(5) Exciting the high–frequency symmetric C–H stretching vibration has a non–
negligible effect on the reaction probability. For larger translational energies, however,
the reaction probability for this mode initially excited follows the expected spectator–
like behavior. The spectator concept is also questionable with respect to the product
distribution of states initially excited in the C–H stretch. Energy originally stored
in this mode is released in other modes of the reaction products and by no means
conserved. Thus, the C–H stretch does not behave adiabatically, contrary to chemical
intuition and the expectation from the weak coupling to the other modes.

(6) In agreement with chemical intuition, excitation in the bond being broken leads
to higher reaction probabilities. However, if this mode contains too many quanta, the
expectation value of the bond becomes too large, i.e. the bond is overstretched and
away from the optimal geometry in the saddle point structure: The potential energy
rises and the reactivity decreases.
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(7) Products are most likely formed in states with a high degree of excitation in the
newly formed bond. The internal modes of the methyl group are much less important.
Reactants with combined umbrella/C–Br stretch excitation (one quantum each) may
yield products with two quanta in the umbrella mode. This high reactivity is only
observed for the combined initial state, not for pure bending excitation.

(8) In the endothermic reverse reaction, excitation of the symmetric C–H stretching
mode plays a very important role to overcome the barrier. Here, also initial states
with two quanta in this mode could be considered. This energy is not even partly,
i.e. yielding product states with one quantum in the C–H stretch, conserved, but is
distributed among the other modes, strongly contradicting the spectator mode concept.

(9) A comparison between the reactions of Cl− with CH3Cl and CH3Br, respec-
tively, yields much higher probabilities for the latter case that are due to the absence of
a net barrier. Excitation of the umbrella mode, however, results in comparable reaction
probabilities. This effect is accidental and owing to the larger increase of reactivity in
the chlorine exchange reaction where the energy may be used to overcome the barrier.

(10) For low initial excitations, the product distributions of the endothermic reverse
reaction Br− + CH3Cl are similar to each other and also similar to those of the identity
reaction Cl− + CH3Cl′ because the very narrow resonances decay independently of
their formation.

4.3 Rate Constants in the Cl–Cl Exchange Reaction

4.3.1 Abstract

Within the framework of reduced–dimensionality quantum scattering theory, we em-
ploy Bowman’s adiabatic rotation approximation to describe reactive systems that have
symmetric top geometries during the entire collision process. The results are com-
pared with the approach of shifting the total energy by a characteristic rotational en-
ergy. Initial–state selected and total thermal rate constants have been computed for the
complex–forming gas–phase reaction Cl− + CH3Cl′ → ClCH3 + Cl′−. At room tem-
perature, we find a significant contribution from energetically high vibrational modes.
The dependence of the cross sections on the different angular momenta is analyzed
in detail and high total angular momenta are found to be of considerable importance.
The influence of adiabatic azimuthal rotation on the rate constants turns out to be small
compared to other effects. In addition, we use a new model to account for the asym-
metric modes not explicitly contained in the scattering calculations. The difference
to the only available experimental value confirms our conclusion that the Cl–C–Cl′
bending modes are of major importance for this reaction.
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4.3.2 Introduction

For reactions involving polyatomic molecules, the calculation of converged quantum
mechanical reaction probabilities and cross sections is a formidable task. Usually,
only a selection of the internal degrees of freedom of the system can be considered.
Employing simple energy–shifting procedures [106,107,108,109,110,111], the calcu-
lation of thermal rate constants is possible by including the degrees of freedom which
are not explicitly taken into account. Moreover, the overall rotational motion is usually
considered by shifting the reaction probability for total angular momentum J = 0 by
the rotational energies of the transition state complex. This procedure could be applied
quite successfully for reactions proceeding over a simple barrier while for complex–
forming systems where the reaction probability is governed by sharp resonance fea-
tures, J–shifting is highly questionable.

Using a more sophisticated approach in reduced–dimensionality quantum scatter-
ing calculations, approximate probabilities for J �= 0 can be obtained applying the
rotating line approximation (RLA) [88] that has been widely used in the past. This
method is suitable for collinear reactions with a linear transition state complex and thus
a single rotational constant. However, most reactions involving polyatomic molecules
do not proceed via transition states with collinear alignment of all nuclei. E.g. for sym-
metric tops, the projection of J onto the molecular axis of symmetry has to be taken
into account. In this work, we modify the adiabatic rotation approximation (ARA)
advocated by Bowman [112, 113, 114] to a simplified version, the rotating (symmet-
ric) top approximation (RTA) which can be applied in the calculation of rate constants
from reduced–dimensionality quantum scattering data for true symmetric top geome-
tries during the entire collision process (not only at the transition state).

Complex–forming bimolecular reactions are particularly challenging for studying
the applicability of such dimensionality–reduced models because they have turned out
to be very sensitive with respect to shifting procedures. Prototypes for this class of
reactions are gas–phase SN2 reactions [1, 2, 3, 4].

Total quantum mechanical cross sections σ(E) can be obtained as weighted sums
over reactions probabilities PJ(E) for all possible total angular momenta J at given
energy E. In a recent paper, Hennig and Schmatz [81] reported four–mode quantum
scattering calculations on initial state–selected total cross sections and the rate constant
for the above SN2 reaction. Reducing the dimensionality, the system was studied under
the restriction that C3v symmetry is maintained throughout the course of reaction. It
turned out that rotational effects must play a crucial role in the dynamics.

It is now important to see how the results change when the rotating top approxi-
mation is employed instead of the rotating line approximation. Furthermore, the rate
constant calculation can be extended by inclusion of the high–frequency modes not yet
incorporated in the model. Moreover, a thorough analysis of the convergence of rate
constants with respect to total angular momentum quantum number J in the J–shifting
and RTA approximations is very useful to understand the limitations of the models.
Finally, a detailed analysis of the contributions of the various initial vibrational states
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Figure 4.26: Changes of the orthogonal coordinate q and the symmetric top rotational
constant A during the reaction (as a function of the hyperradius ρ).

to the rate constants at different temperatures should shed more light on the underlying
dynamics.

4.3.3 Results

K–Dependent Reaction Cross Sections

Fig. 4.26 graphically displays the variations of the two most important structural pa-
rameters of the C3v symmetric methyl group, the rotational constant A(ρ) and q(ρ),
the distance between one hydrogen nucleus and the molecular axis of symmetry. For
each value of the hyperradius ρ , the geometries were optimized with respect to energy.
The formation of the complex results in a slight shortening of the C–H bond distance
and consequently of q, whereas at even shorter distances the H–atoms are pushed away
by the energetically unfavorably close Cl–atoms. The resulting ρ–dependent variation
of A influences the final reaction cross sections via the changes of the available kinetic
energy during the propagation.

The cumulative reaction cross sections summed over all final states and all possible
values of the azimuthal quantum number K, ∑ f ∑K σK

i, f (E), are shown in Fig. 4.27. The
small cross section sums for reaction out of the vibrational ground state, and those for
initial excitation of the C–Cl and C–H stretching modes ((0,0,1) and (1,0,0)) as well
the combination mode (1,0,1) are displayed as a function of translational energy on
a logarithmic scale in Fig. 4.27(a). Fig. 4.27(b) shows reaction cross section sums as
a function of total energy when the vibration of the broken C–Cl bond is excited by
one to eight quanta while Fig. 4.27(c) shows – for the same range of total energy –
the cross section sums for initial excitation of the umbrella bending mode with one to
four quanta. Finally, some cross section sums for initially excited combination modes
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Figure 4.27: Initial–state selected total reaction cross sections for the reaction Cl− +
CH3Cl′ → ClCH3 + Cl′−, summed over all accessible product channel and all values
of the quantum number K. The data is averaged over intervals of 80 cm−1. (a) As
a function of translational energy, (b)–(d) as a function of total energy, counted from
the classical asymptotic limit. (a) Reaction out of the reactant vibrational ground state
and excited states (0,0,1), (0,1,0), (1,0,0) and (1,0,1). (b) Excitation of the C–Cl
stretching mode ν3 with up to 8 quanta. (c) Excitation of the umbrella bending mode
ν2 with up to 4 quanta. (d) Excitation of selected combination modes.



85 4.3. RATE CONSTANTS IN THE CL–CL EXCHANGE REACTION

Figure 4.28: Relative deviation of the state–selected cross section for initial state
(0,0,0) for azimuthal quantum number K from the one for K − 1, weighted by the
difference of the squares of the azimuthal quantum numbers (see the text). Each cross
section is evaluated at the same translational energy E. The data is averaged over 600
cm−1.

of C–Cl stretch and umbrella bend are displayed. The data can be compared to the
K = 0 cross sections from Ref. [81]. Some of the differences are simply caused by the
different setting: In contrast to Ref. [81], the data in Fig. 4.27 has been averaged over
intervals of 80 cm−1 resulting in less structure and acuteness. As we show cumulative
cross sections summed over all K, the scale of the ordinates change by several orders of
magnitude. However, some of the features in Fig. 4.27 could not be so easily predicted
from our previous calculations: The envelope of the maxima becomes smoother; in
Fig. 4.27(b), the increase of the maxima has become much more monotonous (dips
at v3 = 3, 5 and 7 are missing). Also in Fig. 4.27(d), some curves change order with
respect to their maxima (e.g., (0,2,2) and (0,2,3)). For large values of the total energy,
nearly all curves show a deviation from the 1/k2

i –behavior which is explained by the
presence of several of these prefactors due to the summation over different initial states
(different K). Finally, in Fig. 4.27(a) the C–H-stretching mode does not reach the
spectator mode regime valid for higher translational energies in contrast to Ref. [81]
where such a spectator mode behavior can be observed within the displayed energy
range. We attribute this to the contribution of cross sections with higher K and thus
lower translational energy.

In order to assess the influence of different values of K on the cross sections, we
use the quantity

σK
i (E)−σK−1

i (E)
(2K−1)σK−1

i (E)
(4.7)

that gives the relative difference of these state–selected cross sections for K and K −1
weighted by the difference of the squares of the azimuthal quantum numbers. In
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Figure 4.29: Same as Fig. (4.28) for initial vibrational state (0,1,0).

Fig. 4.28, this relative difference is plotted for the reactants in their vibrational ground
state. The difference is large for low translational energies and decreases with both en-
ergy and quantum number K. Particularly large differences can be observed between
K = 0 and K = 1 (more than 75 % deviation between Etrans = 400 and 1000 cm−1). For
Etrans > 1400 cm−1, the differences rapidly converge to a K–independent value which
rises slowly with energy. At high translational energies, (see Fig. 4.28(b)), this value is
in the order of 0.2 % to 0.1 %. A similar situation is found for initial excitation of the
umbrella bending mode with one quantum (Fig. 4.29). Here, however, the deviations
are much smaller (at most up to 10 % with fast convergence down to values below
1 % for Etrans > 1000 cm−1). Note that these values are very similar to those found
for the ground state. Analogous observations can be made for other initial states and
higher values of K, indicating a universal behavior especially for larger K and higher
translational energies.

The difference between the cross sections summed over all K values from the rotat-
ing top approximation and from K–shifting are shown in Fig. 4.30. In the latter model,
the cross section from Ref. [81], σK=0, is shifted by EK

trans, omitting the contributions
from K > J, and the resulting curves are summed up. While the results are very similar
qualitatively, in particular for vibrational state (0,0,0), the differences are in the order
of a factor of 2 (for (0,1,1)) or even larger (for (1,0,0)). Consistent with Fig. 4.29,
the K–shifting cross sections are larger (they would yield a relative difference of zero
instead of a negative value) and the difference rises with energy, i.e. the available val-
ues for K. We note that the pronounced structure of the K–shifting cross sections is
due to interpolation effects.

Rate Constants

The rate constants calculated according to the theory mentioned above are shown in
Fig. 4.31 for the temperature range 10 K < T < 1000 K, together will two enlarge-
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Figure 4.30: Comparison of cumulative state–selected cross sections, summed over
all final states and all energetically accessible states with azimuthal rotation labeled by
K. The dotted curves represent the data obtained by the rotating top approximation
while the solid ones are computed from the cross section for K = 0 by adding this
curve to itself for every K with the appropriate energy shift, omitting the contributions
from K > J. The oscillations are due to interpolation effects. All curves are averaged
over 80 cm−1.

ments (from 50 and 285 K, respectively, to 1000 K). In addition to our reduced–
dimensionality quantum treatment, we also present results obtained with the J– and
K–shifting models, with all CH3Cl rotations excluded and from transition state the-
ory (TST) with two different potential surfaces. Except for the RD quantum curve,
the results in Fig. 4.31(a) have already been presented in Ref. [81]. Note that the
”red. dim. quantum” curve from this reference is labeled here by ”K–shifting, lower
resolution”. Despite the extreme computational effort of the calculations we now have
further increased the energetic resolution down to 10−1 cm−1. All curves show a linear
Arrhenius behavior in both the high and low temperature regimes with a slope greater
in magnitude in the first limit which is characteristic for a reaction with tunneling
through a single barrier [115].

In Fig. 4.31(b), the influence of J–shifting and K–shifting is shown. While increas-
ing the resolution has quite a strong effect on the rate constant below room temperature,
inclusion of K via the RTA has only a small effect, yielding a very slight decrease of
the rate constant, i.e. farther away from the experimental value. Thus, the azimuthal
rotation is of minor influence in this system in accordance with the expectation from
the overall small decrease of the cross sections in the RTA model (cf. Fig. 4.30). J–
shifting, on the contrary, leads to significantly lower rate constants in all temperature
ranges. These findings strongly support our conclusions drawn in Ref. [81] that (a)
J–shifting is not appropriate for complex–forming reactions and (b) that rotations ( j
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Figure 4.31: Thermal rate constants for the gas–phase SN2 reaction Cl− + CH3Cl′ →
ClCH3 + Cl′−. Eight different models are applied (for a description see the text).



89 4.3. RATE CONSTANTS IN THE CL–CL EXCHANGE REACTION

rotations of the reactant and product symmetric tops) play a crucial role in the system.
For chemically relevant temperatures starting from 250 K, the results from K–shifting
and RTA are almost indistinguishable on the given scale and resolution effects become
negligible.

It remains to study the influence of the asymmetric modes (i.e.,the higher–fre-
quency doubly–degenerate C–H stretching and H–C–H bending modes) on the rate
constants (see Fig. 4.31(c)). We only present the combination with the RTA model
and observe a slight increase of k(T ) where this effect becomes somewhat more pro-
nounced for higher temperatures. The effect is significantly smaller than that going
from J–shifting to RTA. Consequently, the asymmetric modes will have only a slight
effect on the rate constants within this temperature range as they are already expected
to be largely overestimated in the asymmetric mapping model [83] and thus their ex-
plicit inclusion cannot explain the discrepancy to the experimental value. Note that
also the symmetric modes do not yield the dominant contribution to the rate constant
(cf. Fig. 4.32).

The influence of asymmetric modes compared to their symmetric counterparts has
been studied explicitly by several others. Wang and Bowman found the symmetric
stretch of the H2O molecule in the OH+H2 → H+H2O reaction to be more popu-
lated than the corresponding antisymmetric mode [116], whereas in the H+C2H2 →
H2+C2H reaction the antisymmetric C–H stretch showed a higher effectivity to pro-
mote the reaction [117]. In the O+CH4 → OH+CH3 reaction which is the most com-
parable one to our investigations, calculations by Clary and Palma [86] resulted in
a smaller reaction probability for the antisymmetric C–H stretch, but of comparable
magnitude. Experiments on the Cl + CH4 → HCl + CH3 reaction [118] show almost
indistinguishable state–selected differential cross sections and rovibrational distribu-
tions when the reactants are excited either in the symmetric or the antisymmetric C–H
stretching vibration. However, in all of these reactions the antisymmetric mode is
intrinsically coupled to the reaction coordinate which is not the case for our reaction.

In Fig. 4.32, the contributions of the various initial vibrational states to the total
rate constant are analyzed in detail. The various curves show a linear Arrhenius be-
havior within the selected temperature range and a lot of crossings; the ground state
itself exhibits two different slopes as does the total rate constant (with a different bridg-
ing region, however), cf. Ref. [115]. This is very much different compared to non–
complex–forming bimolecular reactions. A comparable system (however with light
atoms only), the abstraction reaction between a hydrogen atom and methane/methanol,
was recently studied by Kerkeni and Clary with a state–selective analysis of the rate
constants [119, 120]. A direct comparison of the overall behavior is difficult because
the higher barriers in these reactions cause the relevant interesting features to appear at
higher, rarely investigated temperatures, and the smaller number of degrees of freedom
considered yields less curves.

The relative contributions of the different initially excited vibrational states are
shown in Fig. 4.32(b). The individual curves show a strikingly similar shape. Un-
der thermal conditions, the state with two quanta in the C–Cl stretching mode of the
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Figure 4.32: Contribution of the individual reactant vibrational states to the thermal
rate constant in the reduced–dimensionality quantum model, i.e. summed over all J
and K. (a) Absolute state–selected rate constants. (b) Percentage contribution of the
reactant vibrational states.

reactant molecule, (0,0,2), contributes most (35 %), followed by the umbrella bend
(0,1,0) and one or three quanta in the C–Cl stretch (0,0,1)/(0,0,3) (15 % each). The
combination mode (0,1,1) and the vibrational ground state (0,0,0) contribute with
10 % each. In general, excitations with quanta in the umbrella mode contribute less
than pure excitations of the C–Cl–bond which is one of the reasons for the low influ-
ence of the asymmetric modes (cf. Fig. 4.31(c)). Note that the (0,0,2) mode opens
at a total energy of 1432 cm−1 above the ground state of CH3Cl which is about seven
times larger than the average thermal energy at room temperature. Similar observa-
tions hold for other temperatures which infers that fairly high energies are relevant for
this reaction because the corresponding modes are much more effective in promoting
the reaction as the low–lying ones.

To shed more light on the contribution of different translational energies on the
rate constants, we evaluate the ratio kE(T )/kEmax(T ) by computing the corresponding
integral up to translational energy E. The quantity Emax denotes the highest energy
for which cross sections have been computed in the present work. Results are shown
in Fig. 4.33 for three different temperatures (150 K, 300 K and 1000 K). For each
temperature, the major contribution to the rate constant stems from an energetic re-
gion far above the average thermal energy. At room temperature, about 80 % can
be traced back to the translational energy above 1400 cm−1 where the (0,1,0) and
(0,0,2) modes open up which is consistent with Fig. 4.32. For T = 1000 K, we con-
clude that the value is not fully converged as the slope of the displayed curve does not
approach zero for Emax= 6000 cm−1 which is still nine times as large as the average
thermal energy at this temperature. The negative curvature above E= 5000 cm−1 im-
plies convergence in the order of magnitude, however, which justifies the inclusion of



91 4.3. RATE CONSTANTS IN THE CL–CL EXCHANGE REACTION

Figure 4.33: Contribution of different translational energies to the rate constants at
T = 150 K, T = 300 K and T = 1000 K. For each temperature, the graph shows the
ratio kE(T )/kEmax(T ), where kE(T ) is obtained by cutting the corresponding integral
at translational energy E and Emax is the highest translational energy for which cross
sections have been computed. Opening of the first three stretching modes (0,0,1),
(0,1,0) and (0,0,2) is indicated by the vertical lines.

these high temperatures in our plots.

In Fig. 4.34, the cumulative contributions c of angular momenta to the rate con-
stant are given as a function of 1/T . The unusual scaling of the ordinate results from
plotting 100%− c on a logarithmic scale in order to demonstrate the deviation of the
RTA/RLA–model from J–shifting; in the latter model, the resulting curves are straight
lines as inferred by the rotational partition function. For each model, two different
temperature regimes are shown. If curves are not labeled, the maximum value of J
increases by ten for each curve from the first to the last corresponding label. For
temperatures starting at T = 10 K, we observe a very irregular pattern and several
jumps with respect to the individual contributions of the total angular momenta. These
features cannot be attributed to a physical origin, but are consequences of the lim-
ited energy grid size: The individual probabilities PJ(E) do not have a fully resolved
resonance structure, resulting in under/overweighing of the individual contributions.
Anyway, summation of these yields results that are also reliable for low temperatures
in the order of magnitude: Even for the most striking irregularity at T = 50 K where
the large gap between J = 140 and J = 150 is clearly due to the energy resolution,
the contribution of J ≤ 140 is still 50 %. The increasing importance of higher angular
momenta shows a clear deviation from the linear behavior in the J–shifting which for
values from T = 100 K up to room temperature is due to the dominant contributions of
energetically higher modes; the smaller amount of kinetic energy left in these modes
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Figure 4.34: Cumulative contribution c of angular momenta to the rate constant as
a function of 1/T (see the text). (a) and (b) refer to J–shifting, whereas (c) and (d)
contain the analogous data for the RTA/RLA–model.
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favors smaller angular momenta. Starting from T = 250 K, the distances of the curves
become increasingly regular indicating less importance of the energy resolution in this
temperature region, consistent with Fig. 4.31. Above T = 400 K, the curves become
straight lines as in the J–shifting model with the only difference that more angular
momenta contribute to the final value. This observation, which is valid also for the low
temperature regime, explains the overall lower rate constants obtained by J–shifting.

4.3.4 Conclusions

(1) Based on Bowman’s adiabatic rotation approximation in quantum reactive scat-
tering, the rotating top approximation is introduced that allows for explicit consider-
ation of the rotational quantum number K in reduced–dimensionality calculations for
reactions with true symmetric top geometries during the entire collision process.

(2) Time–independent quantum scattering calculations have been carried out for
the SN2 reaction Cl− + CH3Cl′ → ClCH3 + Cl′− using hyperspherical coordinates
describing the bonds being broken and formed. The two totally symmetric modes of
the methyl group are included in the model and C3v symmetry is conserved throughout
the reaction. Making use of the rotating top approximation, converged state–to–state
selected total reaction cross sections, summed over all K–rotor contributions, could be
calculated.

(3) The thermal rate constant has been calculated and compared with the ones ob-
tained from more approximate models (J–shifting/K–shifting quantum and transition
state theory). While TST rate constants show fortuitous good agreement with experi-
ment, the physically more sound reduced–dimensionality quantum calculations show
large deviations from the only available experimental data point.

(4) Contributions of the individual K quantum numbers in the rotating top approxi-
mation have been analyzed and found to decrease the cross sections in an overall small
amount compared to K–shifting. The resulting differences of the rate constants are
negligible with respect to the order of magnitude.

(5) A new model has been proposed to estimate the influence of asymmetric modes
when quantum results for the symmetric counterpart are available, indicating a negli-
gible influence on the rate constant at room temperature.

(6) State–selected and energy–dependent rate constants have been analyzed. The
results underline the importance of certain energetically high–lying modes even at low
temperatures, especially those with excitations in the C–Cl–bond.

(7) An analysis of the contribution of the different total angular momenta showed
the convergence for small temperatures to occur only via summation. The lower rate
constants of J–shifting could be traced back to contributions of higher angular mo-
menta.
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Figure 4.35: Potential “seen” by the chloride ion with the bromine atom and the
methyl group in their equilibrium position according to the surface of Hase et al. [98].

4.4 Rotational Effects in the Cl–Br Reaction

In this section, we show first results on the quantum mechanical treatment of rotation
in the exothermic Cl–Br exchange reaction

Cl− + CH3Br → ClCH3 + Br−.

The Hamiltonian (2.12) is used at total angular momentum J = 0; the dynamical de-
grees of freedom are the Jacobi coordinates R and r (transformed to hyperspherical
coordinates) and the angle γ .

4.4.1 Potential Energy Surface

The potential energy surface employed has been derived from the full dimensional
potential energy function by Hase and coworkers [98]. The remaining degrees of free-
dom have been minimized “on the fly” using the algorithm praxis [121]. Fig. 4.35
depicts the potential resulting from keeping the bromine nucleus and the methyl group
at the Cl− · · ·CH3Br geometry and varying the position of the chlorine atom. The deep
potential well shows the possible range for angular vibration for the front–side attack,
whereas back–side attack is energetically unfavorable.

Fig. 4.36 graphically displays the potential for the surface Hamiltonian in hyper-
spherical coordinates in the coordinate system using the chlorine–carbon system as a
diatom for different values of the hyperradius ρ . For small values of the hyperradius,
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Figure 4.36: Cuts through the same potential energy surface as in figure 4.35 for fixed
values of the hyperradius ρ .
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the equilibrium geometry is not collinear, but T–shaped. The situation changes with
increasing hyperradius. This gives rise to two different types of ground states depend-
ing on the value of the reaction coordinate, and the crossing of these can clearly be
seen in the hyperspherical adiabatic curves, Fig. 4.37. For asymptotic values of the
hyperradius, the two reaction channels split. Owing to the nature of the coordinates
preferring one arrangement, the two asymptotic configurations give rise to completely
different shapes in the potential energy surface.

4.4.2 Numerical Details

We employed the Hamiltonian (2.12) in hyperspherical coordinates at total angular
momentum J = 0 with the chlorine–carbon entity treated as the diatom. The method
of R–matrix–propagation was used to compute the S–matrix. The surface Hamiltonian
was diagonalized at distances of dρ = 0.1 between ρmin = 6.5a0 and ρmax = 20.0a0,
where in the last sector convergence was checked by recomputing the eigenstates in the
other coordinate system (with the bromine–carbon entity treated as the diatom). All
channels up to a total energy of Emax = 1500 cm−1 have been computed and included
in the R–matrix–propagation (with a maximum number of Nch,max = 1061 channels).
No averaging of the final reaction probabilities w.r.t. ρ was used due to the rapidly
changing number of channels. The final S–matrix was computed at energy intervals of
ΔE = 15 cm−1.

The basis for the matrix representation of the Hamiltonian was constructed by a
PODVR (see Sec. 3.5) in both the hyperangle δ and the physical angle γ . For the
latter, the construction of the reference Hamiltonian needs some consideration as it
contains a rotational constant depending on the hyperangle δ :

Ĥrot
ref =

h̄2

2

(
1

μρ2 cos2 δ
+

1

μρ2 sin2 δ

)
︸ ︷︷ ︸

:= B(δ )

j( j +1)+Vref(γ). (4.8)

We could have used a different constant B(δ (γ)) for each value of gamma; for
example, one could choose the hyperangle δ (γ) to be the value where V (γ,δ (γ)) =
Vref(γ). This would lead to an operator that is not symmetric. It can easily be sym-
metrized, but we found it nevertheless to be superior to use the minimum rotational
constant Bmin := minδ PO B(δ PO) for all values of γ where δ PO denotes the collo-
cation points in the hyperangle δ (the collocation basis in this coordinate needs to
be constructed first). Nδ = 1000 primitive sinc–collocation functions were used and
Nγ = 1400 Legendre polynomials for ρ ≤ 15.1a0; for 15.1a0 ≤ ρ ≤ 20a0, this number
was increased to Nγ = 1900. The final sector–dependent potential optimized basis in
each coordinate was constructed from all corresponding collocation functions below
a certain energy. For the hyperangle δ , we set this energy Eδ

PO to Eδ
PO = Emax +EPO

add
with EPO

add = 6000 cm−1; for the coordinate γ , the analogous quantity E γ
PO was com-
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Figure 4.37: Hyperspherical adiabatic curves. Shown is every tenth eigenvalue of the
surface Hamiltonian as a function of ρ .

puted from

Eγ
PO = max

δ PO

Bmin

B(δ PO)
(
Eγ

ref−Vref(δ PO)
)
+ +Vmin (4.9)

where Vref(δ ) is the minimum of the potential in the corresponding sector with the
value δ of the hyperangle kept fixed, Vmin := minδ PO Vref(δ PO), Eγ

ref = Eδ
PO in this

calculation and x+ := max(x,0) for any real number x.
The cutoff energy Vcut was chosen to be Vcut = 21000 cm−1. The eigenvectors were

computed by the Lanczos algorithm with partial reorthogonalization (Sec. 3.6.2) using
the convergence criterion (3.89) and ε = 10−6.

4.4.3 Results

Fig. 4.37 shows the hyperspherical adiabatic curves, where for clarity only a tenth
of the eigenvalues has been included in the plot. The rapidly increasing density of
the eigenstates with energy becomes apparent. An interesting feature is the crossing
of the curves at ρ ≈ 11a0 due to the ground state changing to collinear geometry.
Below that value, a non–collinear state will define the minimum energy configuration.
Consequently, for small hyperradii ρ ≤ 8a0, a collinear treatment yields practically
infinite energies while inclusion of the coordinate γ provides lower eigenstates which
are finally T–shaped. In this way, we obtain an additional reaction mechanism without
inversion of the methyl group (at still large energies, however).

Fig. 4.38 shows initial state–selected probabilities Pi(E) as functions of transla-
tional energy Etrans. The curves are labeled with the initial number v of quanta in the
C–Br stretching vibration and the angular quantum number j of the diatom (which
at this distances still corresponds to a vibration). Most striking is the increase of the
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Figure 4.38: Initial state–selected probabilities Pi(E) as functions of translational en-
ergy Etrans. The data is smoothed over intervals of 80 cm−1. Pi, f (E) is summed over
all accessible product channels f .

reaction probability with the angular quantum number j. This points to an efficient
transfer of rotational energy to the reactive degrees of freedom, in agreement with our
conclusions from the previous sections.

To compare the collinear and three–dimensional results, Fig. 4.39 contains the
initial state–selected probabilities Pi(E) for two common states from the previous
collinear calculations, the ground state v = 0 and the first excited state of the C–Br
stretching vibration v = 1. In addition, the states with v = 0 (with j = 0) and j = 9 (with
v = 0) from the three–dimensional calculations have been included. While there is no
significant enhancement of the reaction probability in the ground state, the situation
is clearly different for the v = 1 state. The j = 9 already shows reaction probabilities
comparable to those for the v = 1 state in the collinear calculations, clearly pointing to
the importance of this degree of freedom for the reaction. The larger variation of the
three–dimensional reaction probabilities is purely technical (due to a larger spacing of
the points for which values have been obtained).

To obtain an estimate for the quality of the convergence of the data w.r.t. the hy-
perradius ρ , Fig. 4.40 shows a comparison with reaction probabilities obtained by
computing the S–matrix at ρ = 15.1a0 (where the wavefunctions in the two arrange-
ment configurations already do not overlap). The clear enhancement of both the v = 0
and the v = 1 probabilities can be attributed to the long range nature of the potential
and indicates the importance of evaluating the S–matrix at asymptotic regions of the
configuration space. (This might be of some importance for the computation of rate
constants for high particle densities when the mean free path drops below the value
where the reactants can be considered free). In conjunction with established projec-
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Figure 4.39: Comparison of initial state–selected probabilities Pi(E) as functions of
translational energy Etrans for a collinear calculation and the present one including
rotation. The data is smoothed over intervals of 80 cm−1. Pi, f (E) is summed over all
accessible product channels f .

Figure 4.40: Comparison of initial state–selected probabilities Pi(E) as functions of
translational energy Etrans for evaluating the final S–matrix at ρ = 15.1a0 and ρ = 20a0.
The data is smoothed over intervals of 80 cm−1. Pi, f (E) is summed over all accessible
product channels f .
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tion techniques for the S–matrix, the algorithmic implementations in the present work
open up the window for such calculations.





Chapter 5

Summary and Outlook

In this thesis, the SN2 mechanism was investigated on a quantum mechanical level by
means of time–independent scattering theory. Two model systems were considered,
the thermoneutral chlorine–chlorine exchange reaction and the exothermic chlorine–
bromine substitution.

For the first time, all degrees of freedom within C3v symmetry were treated exactly
in four–dimensional calculations. It could be shown that the umbrella bending motion
and the C–H stretching vibration do not behave as spectator modes, but actively take
part in the reaction and enhance the reaction probability. Despite chemical intuition,
the contrary is reported for the umbrella bending motion in the literature. For the C–H
stretching vibration, this effect could be traced back to long–lived resonances during
the formation of the complex in comparison with filter–diagonalization studies. By a
specific algorithm, resonance linewidths were obtained in the scattering calculations
which varied over ten orders of magnitude. For the carbon–halogen stretching vibra-
tion, a saturation effect was observed which could be explained by an overstretching
of the bond beyond the optimal transition state geometry. Simultaneous excitation of
the carbon–halogen stretching vibration and the umbrella bending motion resulted in a
strong increase of the reaction probability due to the correspondence of this excitation
to the transitional normal mode.

A detailed analysis of the cross sections and rate constants has been carried out.
Different levels of approximation for the angular momenta involved and the remain-
ing vibrational degrees of freedom have been investigated, using a new model for
the asymmetric vibrations of the methyl group. State–selective analysis of the rate
constants confirmed our conclusions about the influence of the symmetric vibrational
modes in the SN2 process. Comparison with experimental data indicated that the ro-
tation of the attacked methyl halide should be investigated on a quantum mechanical
level as could be already inferred from trajectory calculations.

For that purpose, algorithms for a spatially three–dimensional treatment of an SN2
reaction have been developed. While in the literature there is an abundance of results
for light three–atom systems with short range potentials, starting with collinear mod-
els on H+H2 [122,123] to a state–selective comparison of theoretical and experimental
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differential cross sections [124], the present work represents the first investigation of
rotational effects in a heavy six–atom system with long–range interaction potentials on
a quantum mechanical time–independent level. The results point indeed to an enhance-
ment of the reaction probability with an excitation of the angular degree of freedom.
Computations of state–selective differential cross sections are now within reach and to-
gether with promising advances in the experimental setup [125] a better understanding
of the SN2 mechanism becomes feasible.
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