Structural and functional characterisation of the mitochondrial membrane protein human voltage-dependent anion channel (HVDAC) and the membrane protein-targeting Conotoxin Conkunitzin-S1 by solution NMR

Dissertation
zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen

vorgelegt von
Monika Bayrhuber
aus Kiel

Göttingen 2007
D7
Referent: Prof. Dr. Christian Griesinger
Korreferent: Prof. Dr. Ulf Diederichsen

Tag der mündlichen Prüfung:

Summary

This thesis sheds light on the mode of action of membrane proteins and their ligands. Two model systems were chosen: the membrane protein was the human voltage dependent anion channel (HVDAC) and the membrane protein targeting toxin was Conkunitzin-S1.

HVDAC is located in the outer mitochondrial membrane. It is primarily responsible for metabolite flux of the mitochondria. The structure of HVDAC was determined conjointly by NMR-spectroscopy and X-ray crystallography. This is the first time that these methods were united to solve a de novo protein structure. It is the first structure of a human, mitochondrial ion channel. HVDAC adopts a β-barrel fold composed of 18β-strands and it has an N -terminal α-helix. The N -terminal part, which is known to contain the voltage-sensing domain, shows in solution an increased flexibility. The C-terminal part is mainly responsible for binding of interaction partners. The pro-apoptotic protein Bid and the anti-apoptotic protein $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ as well as the lanthanide Gadolinium compete for this site. The antidepressant fluoxetine interacts mainly with the C-terminal loop, while interaction sites of nucleotides are distributed over the whole sequence.

Conkunitzin-S1 (Conk-S1) is a 60 -residue neurotoxin from the venom of the cone snail Conus striatus that interacts with voltage-gated potassium channels. ConkS1 shares sequence homology with Kunitz type proteins but contains only two out of the three highly conserved cysteine bridges, which are typically found in these small, basic protein modules. In this study the three-dimensional structure of Conk-S1 has been solved by multidimensional NMR spectroscopy. The solution structure of recombinant Conk-S1 shows that a Kunitz fold is present, even though one of the highly conserved disulfide crosslinks is missing. Introduction of a third, homologous disulfide bond into Conk-S1 results in a functional toxin with similar affinity for Shaker K^{+}channels. Scanning mutagenesis revealed, that Conk-S1 adopts a different mode of binding than the structurally homologous dendrotoxins from snake venom. The affinity of Conk-S1 can be enhanced by a pore mutation within the Shaker channel pore indicating an interaction of Conk-S1 with the vestibule of K^{+}channels.

Zusammenfassung

Diese Doktorarbeit gibt Aufschluss über die Wechselwirkungen von Membranproteinen und ihren Liganden. Hierfür wurden zwei Modell-Systeme gewählt: als Membran Protein wurde der menschliche spannungsabhängige Anionen Kanal (HVDAC) gewählt, als Membran Protein Ligand das Toxin Conkunitzin-S1.

HVDAC sitzt in der äußeren mitochondrialen Membran. Er ist hauptsächlich für den Metabolitenaustausch der Mitochondrien verantwortlich. Die Struktur des HVDAC wurde gemeinschaftlich mittels der NMR-Spektroskopie und der Röntgenstrukturanalyse aufgeklärt. Dies ist das erste mal, das beide Methoden vereint wurden um eine de novo Protein Struktur zu lösen. Es ist die erste Struktur eines menschlichen, mitochondrialen Ionenkanals. HVDAC liegt als β-Fass vor, das aus 18 β-Strängen aufgebaut ist. Außerdem hat es eine N-terminale α-Helix. Der Nterminale Teil, der bekannterweise für die Spannungsabhängigkeit verantwortlich ist, zeigt in Lösung eine gesteigerte Flexibilität. Der C-terminale Teil ist hauptsächlich für die Bindung von Interaktionspartnern verantwortlich. Das pro-apoptotische Protein Bid und das anti-apoptotische Protein $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ wie auch das Lanthanid Gadolinium konkurrieren um dieses Bindungsstelle. Das Antidepressivum Fluoxetin interagiert hauptsächlich mit der C-terminalen Schleife, während Interaktionsstellen von Nukleotiden über die ganze Sequenz verteilt sind.

Conkunitzin-S1 (Conk-S1) ist ein 60-Reste großes Neurotoxin aus dem Gift der Kegelschnecke Conus striatus, das mit spannungsabhängigen Kaliumionen Kanälen interagiert. Conk-S1 hat Sequenzhomologien zu Kunitz-artigen Proteinen, besitzt aber nur zwei von den drei hochgradig konservierten Cysteinbrücken, die typischerweise in dieses kleinen, basischen Proteinen gefunden werden. In dieser Studie wurde die drei-dimensionale Struktur des Conk-S1 mit multidimensionaler NMR-Spektroskopie gelöst. Rekombinantes Conk-S1 zeigt eine Kunitz-Faltung, obwohl eine der drei hochkonservierten Disulfid-Quervernetzungen fehlt. Die Einführung der dritten, homologen Disulfidbrücke ergibt ein funktionales Toxin, mit gleicher Affinität zu dem Shaker K^{+}Kanal. Mutagenesestudien ergaben, dass ConkS1 auf unterschiedlich Weise an Kaliumkanäle bindet als die strukturell homologen Dendrotoxine aus Schlangengiften. Die Affinität von Conk-S1 kann mit einer Mutation innerhalb der Shaker Kanalpore gesteigert werden. Dies zeigt die Interaktion des Conk-S1 mit dem Vestibulum des Kaliumkanals an.

Acknowledgements

I am deeply grateful to the head of the department Prof. Christian Griesinger for the opportunity to do my Ph.D. in his department, which provided an excellent scientific environment with an outstanding equipment and exceptional scientist, and of course for his interest, encouragement and useful remarks.
I would like to express my deep and sincere gratitude to my direct supervisors Dr. Markus Zweckstetter, who supervised the NMR part, and Dr. Stefan Becker, who supervised the molecular biology part of this thesis, for all their constant help, stimulating suggestions, support and advice.
I am sincerely grateful to Prof. Heinrich Terlau from the Max Planck Institute for Experimental Medicine in Göttingen for the supervision of the electrophysiology part of this work and to Michael Ferber for training me in recording voltage clamp experiments.
I owe my most sincere gratitude to Thomas Meins from the Max Planck Institute for Biochemistry in München, his supervisors Dr. Kornelius Zeth and Prof. Dieter Oesterhelt and the technical assistance Christl Weyrauch for the most productive collaboration on the HVDAC project, for the provision of a huge amount of various samples and for the whole crystallographic work on the HVDAC, which crucially benefited from the help of Clemens Vonrhein from Global Phasing Ltd. Cambridge, UK.
I owe gratitude to Prof. Olivera from the University of Utah for providing the clone of Conk-S1.
I thank Prof. Ulf Diederichsen for accepting me as an external Ph.D. student in the Chemistry Faculty of the Georg-August University, Göttingen.
My deep and warm thanks go to many other people without whom this work would have been impossible:
to Vinesh Vijayan for getting me started at the spectrometers and for his continuous support during my thesis,
to Dr. Jochen Junker for his help with structure calculations,
to my office mates Sigrun Rumpel, Daniela Fischer and Julien Orts for their cordiality, helpfulness and the very useful discussions,
to Petra Widawka, Karin Giller, Kamila Budzyn, Annett Sporning and Mona Honemann for expert technical help,
to Kerstin Overkamp for training me in using the HPLC and the MS, and of course also for the HPLC runs and mass spectra done by her, to Roland Graf, who established the expression conditions of Conk-S1,
to Young-Sang Jung and Jegannath Korukottu for help with different computational aspects,
and to the rest of my department for a delightful working atmosphere.
I want to thank my friends for distracting my mind, for cheering me up or for joining my joy at the respective occasions, especially Nils who was always there for me.
Finally I want to thank my family for their constant, loving care and support, which gave me the strength to finish this thesis.

Publication list:

The following papers have been published ahead of this thesis:
M. Bayrhuber, V. Vijayan, M. Ferber, R. Graf, J. Korukottu, J. Imperial, J. E. Garrett, B. M. Olivera, H. Terlau, M. Zweckstetter, S.Becker. Conkunitzin-S1 is the first member of a new Kunitz-type neurotoxin family. Structural and functional characterization. Journal of Biological Chemistry, 2005, 25, 23766-70
M. Bayrhuber, R. Graf, M. Ferber, M. Zweckstetter, J. Imperial, J. E. Garrett, B. M. Olivera, H. Terlau, S.Becker. Production of recombinant Conkunitzin-S1 in Escherichia coli. Protein Expression \& Purification, 2006, 47, 640-4
J. Korukottu, M. Bayrhuber, P. Montaville, V. Vijayan, Y. S. Jung, S. Becker, M.Zweckstetter. Fast high-resolution protein structure determination by using unassigned NMR data. Angewandte Chemie International Edition English, 2007, 46, 1176-9

Table of contents

Abbreviations 13
1 Introduction 17
1.1 Structure determination of Membrane proteins 17
1.2 Membrane proteins as drug targets 18
1.3 Cone Snails and Conotoxins 19
1.4 Rationale and Outline 20
2 Materials and Methods 21
2.1 General Materials 21
2.1.1 Chemicals and enzymes 21
2.1.2 Bacterial strains 22
2.1.3 Oligonucleotide primers for mutagenesis of Conk-S1 22
2.1.4 Equipment 23
2.2 General Methods 25
2.2.1 Molecular biology methods 25
2.2.1.1 Agarose gel electrophoresis 25
2.2.1.2 Isolation of DNA 25
2.2.1.3 Site-directed mutagenesis 26
2.2.1.4 DNA sequencing 27
2.2.1.5 Determination of DNA concentration and purity 27
2.2.1.6 Transformation of E. coli 27
2.2.2 Methods for protein expression 27
2.2.2.1 Cultivation of E. coli 29
2.2.2.2 Storage of E. coli 30
2.2.2.3 Cell lysis 30
2.2.3 Protein purification and investigation 30
2.2.3.1 Protein refolding 32
2.2.3.2 CBD-Ssp DnaB intein tag cleavage 32
2.2.3.3 Cation exchange chromatography 33
2.2.3.4 Reversed phase - high performance liquid 33
chromatography (RP-HPLC)
2.2.3.5 Sodium dodecyl sulphate - polyacrylamide gel 33 electrophoresis (SDS-PAGE)
2.2.3.6 Determination of protein concentration 34
2.2.3.7 Electrospray Quadrupole Mass spectrometry 34
2.2.3.8 Site-directed spin-labeling (SDSL) 34
2.2.4 Electrophysiological methods 35
2.2.4.1 Xenopus oocyte handling 36
2.2.4.2 Electrophysiological measurements 37
2.2.5 NMR spectroscopy 38
2.2.5.1 Secondary Structure determination 38
2.2.5.2 Mapping of interaction sites 39
2.2.5.3 Solvent exchange experiments 40
2.2.5.4. Residual dipolar couplings (RDCs) 40
2.2.5.4.1 Alignment media 40
2.2.5.4.2 RDC measurements 41
2.2.5.4.3 Evaluation of the residual dipolar 41 couplings with PALES
2.2.5.5 Estimation of the molecular weight 42 from $T_{1} \rho 42$
2.2.5.6 Steady state heteronuclear ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$ - 43 nuclear Overhauser effects (NOEs)
3 Structural and functional investigation of HVDAC 46

- the first structure of a human, mitochondrial ion channel
3.1 Introduction 46
3.2 Materials and methods 49
3.2.1 Production of HVDAC1 for NMR analysis 49
3.2.1.1 Cloning of HVDAC1-His 6 50
3.2.1.2 Site directed mutagenesis of HVDAC1-His 6 51
3.2.1.3 Expression of HVDAC1-His 6 52
3.2.1.3.1 Expression of ${ }^{2} \mathrm{H},{ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ labelled 52 HVDAC1-His 6
3.2.1.3.2 Expression of selective labelled 53 HVDAC1-His 6
3.2.1.4 Purification and refolding of HVDAC1-His ${ }_{6}$ 56
3.2.1.4.1 Purification of $\mathrm{HVDAC1}-\mathrm{His}_{6}$ inclusion 56
bodies
3.2.1.4.2 Refolding of denatured HVDAC1-His 6 56
3.2.1.4.3 Purification of refolded HVDAC1-His ${ }_{6}$ 57
3.2.1.5 Preparation of $\mathrm{HVDAC} 1-\mathrm{His}_{6}$ NMR samples 57
3.2.2 NMR samples 57
3.2.3 NMR Spectroscopy 58
3.2.4 Structure determination by NMR Spectroscopy and X-ray 59crystallography
3.3 Results 60
3.3.1 NMR Resonance Assignment Strategy 60
3.3.2 Resonance Assignment and Secondary Structure 64
3.3.3 Solvent Accessibility And Dynamics 67
3.3.4 Topology model 71
3.3.4.1 Mutations that probe the position of the 72 N -terminal helix
3.3.5 Structure Determination of human VDAC by NMR 74 and X-ray crystallography
3.3.6 Functional investigation of HVDAC 76
3.3.6.1 ADP-Titration 77
3.3.6.2 Fluoxetine-Titration 77
3.3.6.3 Interaction of HVDAC with anti-apoptotic $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ 79
3.3.6.4 Interaction of HVDAC with pro-apoptotic Bid 80
3.3.6.5 Calcium (II) chloride and Gadolinium (III) 82 chloride-Titration
3.4 Discussion 84
3.4.1 The combination of NMR and X-ray crystallography 84 for structure determination of membrane proteins
3.4.2 NMR and X-ray Structure of HVDAC 86
3.4.3 Comparison of the human VDAC structure with existing 88 models
3.4.4 Support for the presented structure from "in silico" analysis 94
3.4.5 Biological relevance of enhanced flexibility in the 97
N -terminus
3.4.6 Functional investigation of HVDAC 99
3.4.6.1 ADP-Titration 99
3.4.6.2 Fluoxetine-Titration 99
3.4.6.3 Interactions with pro- and anti-apoptotic proteins 101
3.4.6.4 Calcium (II) chloride and Gadolinium (III) 105chloride-Titration
3.5 Conclusions 106
4 Structural and functional investigation of Conk-S1 108
4.1 Introduction 108
4.2 Materials and methods 110
4.2.1 Expression, refolding and purification of Conk-S1 110
4.2.2 NMR Sample Preparation 112
4.2.3 NMR Resonance Assignment and Structure Calculation 112
4.2.4 Electrophysiological Measurements 114
4.3 Results 114
4.3.1 Refolding and Purification of Conk-S1 114
4.3.2 Resonance Assignment and Tertiary Structure 116
4.3.3 Functional characterization with voltage clamp experiments 120
4.4 Discussion 124
4.4.1 Comparison of Conk-S1 with the structures of BPTI and 125 dendrotoxins
4.4.2 Comparison of the NMR and crystal structure of Conk-S1 126
4.4.3 Functional investigation of Conk-S1 127
4.5 Conclusions 132
References 133
Appendix 139
A Chemical shift assignment of HVDAC 139
B Chemical shift assignments of Conk-S1 140
C NMR restraints of Conk-S1 144
C. 1 Residual dipolar couplings 144
C. 2 Dihedral angles 146
C. 3 Coupling constants 148
C. 4 Distance constraints 149
D Pulse-programs and parameters used for HVDAC 154
D.1.1 TROSY-HSQC pulse-program 154
D.1.2 TROSY-HSQC parameters 156
D.2.1 HetNOE pulse-program 159
D.2.2 HetNOE parameters 162
D.3.1 T1rho pulse-program 165
D.3.2 T1rho parameters 167
D.4.1 NOESY-TROSY-HSQC pulse-program 170
D.4.2 NOESY-TROSY-HSQC parameters 173
D.5.1 HMQC-NOESY pulse-program 176
D.5.2 HMQC-NOESY parameters 178
D.6.1 TROSY-HNCA pulse-program 181
D.6.2 TROSY-HNCA parameters 185
D.7.1 TROSY-MQ-HNCOCA pulse-program 187
D.7.2 TROSY-MQ-HNCOCA parameters 192

Abbreviations:

A
$\mathbf{A}_{\boldsymbol{\lambda}}$ absorption at wavelength λ

ADP
adenosine di phosphate
AIF
ATP
adenosine tri phosphate
B

BMRB
BPTI
C

Conk-S1 Conkunitzin-S1
Conk-S1 ${ }^{\text {CC }} \quad$ Conkunitzin-S1 G16C Q40C
cRNA complementary ribonucleic acid
CSL combinatorial selective labelling scheme
D
DNA
desoxyribonucleic acid
dNTP
desoxyribonucleotide triphosphate
E

E.coli	Escherichia coli
EDTA	ethylene diamine tetraacetic acid
EM	electron microscopy
ESI	electrospray ionization

F

FPLC
fast protein liquid chromatography

G

γ
GPCRs
H
h
HEPES
HPLC
HSQC
HVDAC1
nuclear magnetogyric ratio
G-protein-coupled receptors

Planck's costant
2-[4-(2-hydroxyethyl)1-1 piperazinyl] ethansulfonic acid high performance liquid chromatography heteronuclear single quantum correlation human voltage dependent anion channel 1

I

IMP integral membrane protein
INEPT insensitive nuclei enhancement by polarisation transfer
IPTG
K
$\mathbf{k D a} \quad$ kilo-Dalton $\left(=10^{3} \mathrm{~g} / \mathrm{mol}\right)$
L
LB
LDAO
Lauryldimethylamine-oxide

M

$\begin{array}{ll}\text { MOM } & \text { mitochondrial outer membrane } \\ \mathbf{m q} & \text { multiple quantum } \\ \text { MS } & \text { mass spectrometry } \\ \text { MTSL } & \text { 1-oxy-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)-methanethio- }\end{array}$ sulfonate

MW molecular weight
MWCO

NFR
NMR
NOE
NOESY

0

OD
P
PAGE
PCR
PDB
PMSF
PRE
PTP
R

R2
RDC
rmsd
RNA
RP-HPLC

S

SAIL
SDS
SDSL
Shaker- $\Delta 6$-46

R1 longitudinal or spin-lattice relaxation rate
normal frog Ringers
nuclear magnetic resonance nuclear Overhauser effect nuclear Overhauser effect spectroscopy
optical density
polyacrylamide gel electrophoresis
polymerase chain reaction
protein data bank
phenylmethylsulphonyl fluoride
paramagnetic relaxation enhancement
permeability transition pore
transversal or spin-spin relaxation rate
residual dipolar coupling
root mean square deviation
ribonucleic acid
reversed phase-high performance liquid chromatography
stereo-array isotope labelling
sodium dodecylsulfate
site-directed spin-labelling
Shaker K^{+}channel with removed N -terminal inactivation

Domain

SVD singular value decoposition
T
$\mathbf{T}_{1} \quad$ longitudinal or spin-lattice relaxation time
T2
TEMED
TFA
TOCSY
TOM
Tris
TROSY
τ
correlation time for the electron-nuclear interaction
τ_{c}
V

VDAC voltage dependent anion channel
Y

YT
yeast/tryptone

Introduction

1.1 Structure determination of Membrane proteins

Membrane proteins can be either integral or peripheral to the membrane. Peripheral membrane proteins are to some degree water-soluble and tether to the membrane by an anchoring group. Integral membrane proteins (IMPs) contain several transmembrane segments and are therefore insoluble in water. IMPs are essential for cellular transport processes and intercellular signalling. They constitute roughly $20-30 \%$ of the eukaryotic genomes ${ }^{[1]}$. Despite their wide abundance and physiological importance, out of the over 35.000 protein structures deposited in the Protein Data Bank (pdb), there are only $250^{[2]}$ (state 27.03.07) coordinate files of membrane proteins. This under-representation of membrane proteins in the pdb has two major reasons. First it stems from their complex expression behaviour ${ }^{[3]}$. Secondly it results from the difficulty to obtain high-quality crystals suitable for Xray diffraction. This is due to the fact, that IMP's are highly hydrophobic. Thus they have to be solubilised for example in detergent micelles, which are inherently resistant to forming ordered crystal lattices ${ }^{[4]}$. Therefore solution nuclear magnetic resonance (NMR) spectroscopy could be a viable alternative to X-ray diffraction. However, out of the 250 deposited coordinate files, only 5 were investigated by NMR spectroscopy. The major problem for solution NMR is the size limit. As molecular masses increase, NMR spectra become increasingly difficult to interpret because of spectral crowding and line broadening due to fast transverse relaxation ${ }^{[5]}$. Since the IMPs form a complex with the detergent micelles the overall molecular weight of the
studied particle is significantly increased. Membrane proteins with masses in the same order as those of the micelles will determine the size of the complex. Therefore the complex size cannot be minimized simply by choosing a detergent known to form small micelles ${ }^{[6]}$.

Nevertheless, several recent developments make structure determination of IMP's by solution NMR feasible ${ }^{[7]}$. Transverse relaxation-optimised spectroscopy (TROSY) -based methods ${ }^{[8]}$ provide a substantial improvement of ${ }^{15} \mathrm{~N}$-nuclei relaxation behaviour, especially at high field strengths $(900 \mathrm{MHz})^{[7]}$. Full deuteration of side chains further improves the relaxation behaviour ${ }^{[9]}$, while partial protonation yields additional distance constraints ${ }^{[10]}$. Especially cell free expression systems provide the opportunity for advanced labelling schemes. The stereo-array isotope labelling (SAIL) ${ }^{[5]}$ optimises the samples with respect to spectral quality and information content. Another approach, the combinatorial selective labelling scheme $(\mathrm{CSL})^{[11]}$, is able to speed up the assignment process dramatically. Long range distance constraints can be obtained from residual dipolar couplings (RDCs) ${ }^{[12]}$ and from strategically placed paramagnetic spin labels ${ }^{[13]}$.

1.2 Membrane proteins as drug targets

Due to their physiological relevance membrane proteins constitute 60% of all drug targets ${ }^{[14]}$. Out of these are at least 40% integral membrane proteins, of which 66% are rhodopsin like G-protein-coupled receptors (GPCRs), 20% are ligand-gated and 14% voltage-gated ion channels. Under the top 20 prescription drugs based on total sales 16 act against IMPs (Med Ad News, May 2005, drug target location from DrugBank ${ }^{[15]}$). This clearly points out the immense potential of membrane protein
targeting compounds. One combinatorial library of compounds interacting with IMPs is provided by nature. These are the conotoxins that form the venome of cone snails.

1.3 Cone Snails and Conotoxins

Cone snails are a genus of toxic, carnivorous gastropodes, which consists of approximately 500 species ${ }^{[16]}$. They thrive in tropical, marine habitats. Each Conus species has evolved its own large molecular repertoire of venom components, different from that of every other Conus species. A general rationale for this can be found in the complete web of biological interactions present in marine communities ${ }^{[17]}$. All these species use a similar strategy for hunting. They carry a hollow, harpoon-shaped tooth, with which they inject a highly potent venom into their prey ${ }^{[18]}$ (see Fig. 1).

Fig. ${ }^{[18]}$ Conus purpurascens rapidly catching a clown fish.

Each Conus species developed probably over 100 different venom components. This leads to an estimate of over 50.000 different pharmacologically active components ${ }^{[19]}$. These components, the conotoxins, are small, peptidic toxins. The majority binds with high affinity and specificity to various ligand- or voltage-gated ion channels but also some conotoxins are known, that interact with GPCRs (reviewed in ${ }^{[20]}$). Since only a minuscule fraction of the total conotoxin diversity has so far been characterised in detail ${ }^{[20]}$ and since conotoxins interact with essential drug targets (see 1.2) there is a
high interest from the pharmacological point of view to continue investigating this combinatorial library provided by nature.

1.4 Rationale and Outline

The aim of this thesis is to shed light on the mode of action of membrane proteins and their ligands. Two model systems were chosen: a membrane protein and a membrane protein targeting conotoxin. The membrane protein is the human voltage dependent anion channel (HVDAC) from the mitochondrial outer membrane. The conotoxin is Conkunitzin-S1 (Conk-S1), a Kunitz-type protein from Conus striatus. Both proteins shall structurally and functionally be analysed. NMR-spectroscopy is chosen as a major tool for these investigations. This is done because only NMRspectroscopy is able to investigate proteins in solution, ergo in their physiological relevant form. Additionally it allows for the determination of dynamics, which are prerequisite for protein/protein interactions. The HVDAC will also be investigated by X-ray crystallography in the framework of the thesis of Thomas Meins. The aim is to solve the structure conjointly by NMR-spectroscopy and X-ray crystallography, because the complex behaviour of HVDAC pushes both methods at their limits.

Functional investigations for the HVDAC will solely be done by NMRspectroscopy; Conk-S1 will functionally be investigated by electrophysiology.

The following work is divided in 3 chapters. Chapter 2 describes the materials and the general methods that have been used during this thesis, Chapter 3 and 4 include experimental details, structure elucidation and functional analysis of HVDAC and Conk-S1, respectively.

2

Materials and Methods

2.1 General Materials

2.1.1 Chemicals and enzymes

All chemicals and enzymes used during this work are summarised in Table 1.

Table 1 Chemicals and enzymes

Chemicals/Enzymes	Company
Agar, DNase I, IPTG	AppliChem, Darmstadt, Germany
ammonium chloride (>98 \% 15N)	Cambridge Isotope Laboratories, Andover, USA
13C6-D-glucose (>98 \% 13C)	Spectra Stable Isotopes, Columbia, USA
BamHI, CIAP, _HindIII, NcoI, NdeI, _X174DNA/BsuRI(HaeIII), T4- DNA ligase	Fermentas, St. Leon-Rot, Germany
ammonium molybdate tetrahydrate, ascorbic acid, Coomassie Bril-lant Blue R-250, copper chloride dihydrate, iron (II) sulfate hep-tahydrate	Fluka, Neu-Ulm, Germany
DTT	Gerbu, Gaiberg, Germany
agarose, kanamycin sulphate	GibcoBRL, Karlsruhe, Germany
Ficoll 400	ICN Biomedicals Inc, Costa Mesa, USA
Bench Mark protein ladder	Invitrogen, Karlsruhe, Germany
acetic acid, α-D(+)-glucose monohydrate, ammonium acetate, am- monium chloride, ammonium hydrocarbonate, boric acid, disodium hydrogen phosphate, ethanol, glycerol, glycine, hydrochloric acid, manganese chloride dihydrate, magnesium sulfate heptahydrate, sodium chloride, sodium dihydrogen phosphate, sodium hydroxide, TFA, thiaminechloride hydrochloride, Tris, urea	Merck, Darmstadt, Germany
BSA	Toronto Research Chemicals, Toronto, Canada
Tot Star Taq, Ni-NTA Agarose, QIAGEN Plasmid Midi Kit, QI-Aprep Spin Miniprep Kit,	Qiagen, Hilden, Germany
MTSL	Riedel-de Haëen, Seelze, Germany
Cobalt chloride hexahydrate EDTA-free, elastase, protease K, trypsin	Roche Diagnostics, Mannheim, Germany
acetonitrile, ampicillin sodium salt, APS, dipotassium hydrogen phosphate, ethidium bromide, EDTA, HEPES, imidazole, magne-sium chloride hexahydrate, MES, MOPS, potassium dihydrogen phosphate, Rotiphorese Gel 30, sodium acetate, TEMED, tryptone, yeast extract	Serva, Heidelberg, Germany

2.1.2 Bacterial strains

Bacterial strains used in this work are summarized in Table 2

Table 2 Bacterial strains

Strain	Genotype	References
BL21(DE3)	$\mathrm{F}-$, ompT, $h s d S_{B},\left(\mathrm{r}_{\mathrm{r}_{-}}, \mathrm{m}_{B-}\right), d c m, \mathrm{gal}, \lambda(\mathrm{DE} 3)$	[21]
XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F'proAB $\operatorname{lacI}^{9} \mathrm{Z} \Delta \mathrm{M} 15 \mathrm{Tn} 10$ (Tet ${ }^{\text {r }}$)]	Stratagene
XL2-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F'proAB lacI ${ }^{9}$ Z ${ }^{2}$ M15Tn 10 (Tet ${ }^{\text {r }}$) Amy Cam ${ }^{\text {r }}$]	Stratagene
XL10-Gold ${ }^{\text {® }}$	$\operatorname{Tet}^{\mathrm{R}} \Delta(\mathrm{mcrA}) 183 \Delta(\mathrm{mcrCB}-\mathrm{hsdSMR}-\mathrm{mrr}) 173$ endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte[F' proAB lacI ${ }^{\mathrm{G}} \mathrm{Z} \Delta \mathrm{M} 15 \mathrm{Tn} 10\left(\mathrm{Tet}^{\mathrm{R}}\right)$ Amy Cam ${ }^{\mathrm{R}}$]	Stratagene

Plasmids containing the desired gene were transformed into the Escherichia coli (E. coli) expression strain BL21(DE3). Plasmids modified with the QuikChange ${ }^{\circledR}$ sitedirected mutagenesis kit (Stratagene) were transformed into either E. coli XL1-Blue, XL2-Blue or XL10-Gold.

2.1.3 Oligonucleotide primers for mutagenesis of Conk-S1

All primers used for the mutagenesis of Conk-S1 were ordered from Invitrogen (Karlsruhe, Germany). They are summarised in Table 3. Bases that differ from the wild type sequence are shown in bold.

Table 3 Oligonucleotide primers for the mutagenesis of Conk-S1

Name	Sequence 5'-3'	Mutation
ConS6	GAGAATTTACTACAATAGCGCTGCAAAACAGTGTTTAAGGTTCGAT	R29A ($5^{\prime}-3$)
ConS7	ATCGAACCTTAAACACTGTTTTGCAGCGCTATTGTAGTAAATTCTC	R29A ($3^{\prime}-5$ ')
ConS8	GAATTTACTACAATAGCGCTAGAGCACAGTGTTTAAGGTTCGATTAC	K30A ($5^{\prime}-3^{\prime}$)
ConS9	GTAATCGAACCTTAAACACTGTGCTCTAGCGCTATTGTAGTAAATTC	K30A ($3^{\prime}-5$ ')
ConS10	GTGGGTCGGGCACAGCGGCTGAGAAGAGAAT	K18A ($5^{\prime}-3$ ')
ConS11	ATTCTCTTCTCAGCCGCTGTGCCCCGACCCAC	K18A ($3^{\prime}-5$ ')
ConS12	GTGTTTAAGGTTCGATGCCACAGGACAAGGAGGCAAC	Y37A ($5^{\prime}-3{ }^{\prime}$)

Name	Sequence 5'-3'	Mutation
ConS13	GTTGCCTCCTTGTCCTGTGGCATCGAACCTTAAACAC	Y37A (3'-5')
ConS14	GACAGTGGGTCGTGCACAAAGGCTGAG	G16C ($5^{\prime}-3^{\prime}$)
ConS15	GGTTCGATTACACAGGATGCGGAGGCAACGAAAAC	Q40C ($5^{\prime}-3^{\prime}$)
ConS16	GAGAATTTACTACAATAGCGCTAAAAGACAGTGTTTAAGGTTCGATTACAC	R29KK30R ($5^{\prime}-3^{\prime}$)
ConS17	GTGTAATCGAACCTTAAACACTGTCTTTTAGCGCTATTGTAGTAAATTCTC	R29KK30R (3'-5')
ConS18	CAAAGGCTGAGAAGAGAATTGCCTACAATAGCGCTAGAAAAC	Y24A ($5^{\prime}-3$ ')
ConS19	GTtTTCTAGCGCTATTGTAGGCAATTCTCTTCTCAGCCTtTG	Y24A ($3^{\prime}-5$ ')
ConS20	TAGAAAACAGTGTTTAAGGGCCGATTACACAGGACAAGGAG	F35A ($\left.5^{\prime}-3^{\prime}\right)$
ConS21		F35A (3'-5')
ConS22	CGGGCACAAAGGCTGAGGCGAGAATTTACTACAATAGC	K21A ($5^{\prime}-3$)
ConS23	GCTATTGTAGTAAATTCTCGCCTCAGCCTTTGTGCCCG	K21A ($3^{\prime}-5{ }^{\prime}$)
ConS24	GGGCACAAAGGCTGAGAAGGCAATTTACTACAATAGCGC	R22A ($5^{\prime}-3^{\prime}$)
ConS25	GCGCTATTGTAGTAAATTGCCTTCTCAGCCTTTGTGCCC	R22A (3'-5')
ConS26	ATTCCTCGAGGAAGGATGCACCGAGTCTATGCGATCT	R3A ($5^{\prime}-3^{\prime}$)
ConS27	AGATCGCATAGACTCGGTGCATCCTTCCTCGAGGAAT	R3A ($3^{\prime}-5^{\prime}$)
ConS28	CGCTAGAAAACAGTGTTTAGCGTTCGATTACACAGGACAAG	R34A ($5^{\prime}-3^{\prime}$)
ConS29	CTTGTCCTGTGTAATCGAACGCTAAACACTGTTTTCTAGCG	R34A ($3^{\prime}-5^{\prime}$)
ConS30	GGCAACGAAAACAATTTTGCCCGTACTTACGATTGCCAAC	R48A ($5^{\prime}-3^{\prime}$)
ConS31	GTTGGCAATCGTAAGTACGGGCAAAATTGTTTTTCGTTGCC	R48A (${ }^{\prime}$ ' 5^{\prime})
ConS32	GCAACGAAAACAATTTTCGCGCTACTTACGATTGCCAACG	R49A ($5^{\prime}-3^{\prime}$)
ConS33	CGTTGGCAATCGTAAGTAGCGCGAAAATTGTTTTTCGTTGC	R49A ($3^{\prime}-5^{\prime}$)
ConS34	AACAATTTTCGCCGTACTGCCGATTGCCAACGAACGTG	Y51A ($5^{\prime}-3$)
ConS35	CACGTTCGTTGGCAATCGGCAGTACGGCGAAAATTGTT	Y51A (3'-5')
ConS36	GCCGTACTTACGATTGCCAAGCAACGTGTCTGTATACATG	R55A ($5^{\prime}-3^{\prime}$)
ConS37	CATGTATACAGACACGTTGCTTGGCAATCGTAAGTACGGC	R55A (3'-5')

2.1.4 Equipment

Laboratory instruments and consumables are summarised in Table 4.

Table 4 Instruments and consumables

Common Name	Identifier/Company
Balances	Sartorius B 3100 S, Sartorius, Göttingen, Germany Sartorius AC 210 S, Sartorius, Göttingen, Germany
	Beckmann-Coulter Avanti J-20 and J-301, rotors: JLA 8.100, JLA 9.100, JLA 16.250, JA 25.50 Ti, JA 30.50 Ti, Krefeld, Germany
Centrifuges	Eppendorf Centrifuge 5415D, Wesseling-Berzdorf, Germany Eppendorf Centrifuge 5804, Wesseling-Berzdorf, Germany
	Heraeus Biofuge primo, Kendro, Hanau, Germany
Concentrators	Microcon, YM-3 and YM-10, Amicon, Bedford, USA Centricon, YM-3 and YM-10, Amicon, Bedford, USA Centriplus, YM-3 and YM-10, Amicon, Bedford, USA Vivaspin 2 ml MWCO 10.000 PES, Vivascience, Hannover, Germany
Desalting	NAPT M -10, Amersham Pharmacia Biotech, Freiburg, Germany PDT M -10, Amersham Pharmacia Biotech, Freiburg, Germany
Dialysis	Slide-A-Lyzer Dialysis Cassettes, MWCO 3500, 0.1-0.5 ml Capacity, Pierce Biotechnology, Inc., Rockford, IL, USA Slide-A-Lyzer Dialysis Cassettes, MWCO 10000, 0.1-0.5 ml Capacity, Pierce Biotechnology, Inc., Rockford, IL, USA Spectra Por membranes, MWCO 10000, Roth, Karlsruhe, Germany Spectra Por membranes, MWCO 3500, Roth, Karlsruhe, Germany
Electrophoresis	Kodak Electrophoresis documentation and analysis system 120, Eastman Kodak Co., New York, NY, USA Power Pac 300, BioRad, M \neg unchen, Germany Polyacrylamide gel electrophoresis: Mini-PROTEAN 3 Cell, BioRad, München, Germany Agarose gel electrophoresis: Mini-Sub Cell GT, BioRad, München, Germany
$-80^{\circ} \mathrm{C}$ freezer	MDF-U71V Ultra-low temperature freezer, SANYO Electric Co., Ltd, Osaka, Japan
Filtering	sterile filter $0,20 \mu \mathrm{~m}$, Sartorius, Göttingen, Germany
FPLC	Äkta prime, Amersham Pharmacia Biotech, Freiburg, Germany Äkta basic, Amersham Pharmacia Biotech, Freiburg, Germany HiTrap ${ }^{\text {TM }}$ SP XL, Amersham Pharmacia Biotech, Freiburg, Germany
HPLC	system 1: UV-975, PU-980, LG-980-02, DG-980-50, AS-2055Plus, CO-200, JASCO International, Groß- Umstadt, Germany system 2: MD-910, PU-980, LG-1580-04, DG-1580-54, AS-950-10, CO-200, JASCO International, Groß-Umstadt, Germany system 3: MD-2010Plus, PU-2080Plus, LG-2080-04, DG-2080-54, AS-2055Plus, CO-200, JASCO International, Groß-Umstadt, Germany Vydac C18 10x250 mm, Hesperia, CA, USA Vydac C18 4.6x250 mm, Hesperia, CA, USA
Incubator	Infors Multitron HT, Einsbach, Germany Certomat R, B. Braun Biotech International, Melsungen, Germany
Lyophylisation	Christ Alpha 2-4, B. Braun Biotech International, Melsungen, Germany
	AVANCE 400, Bruker, Karlsruhe, Germany AVANCE 600, Bruker, Karlsruhe, Germany DRX 600, Bruker, Karlsruhe, Germany
NMR	AVANCE 700, Bruker, Karlsruhe, Germany DRX 800, Bruker, Karlsruhe, Germany AVANCE 900, Bruker, Karlsruhe, Germany
	Quality NMR Sample Tubes 5 mm , Norell, Inc., Landisville, NJ, USA Shigemi NMR tube 5 mm , Shigemi Corp., Tokyo, Japan

2.2 General Methods

2.2.1 Molecular biology methods

2.2.1.1 Agarose gel electrophoresis

All solutions used for Agarose gel electrophoresis are summarized in Table 5. DNA fragments were separated on horizontal agarose gels. These gels were prepared by melting $1 \%(\mathrm{w} / \mathrm{v})$ agarose in $1 \times$ TBE buffer and adding $25 \mu \mathrm{l}$ ethidium bromide/l 1% agarose. Each DNA sample was mixed with $1 / 5$ volumes of $5 \times$ DNA-loading buffer. Gels were run at a constant voltage of 100 V , imaged under UV-light and digitized for documentation.

Table 5 Solutions for Agarose gel electrophoresis

Application	Solution name	Substance
	Ficoll 400	Amount
	EDTA pH 8	12.5 g
Agarose gel	SDS	$2.5 \mathrm{ml}, 0.5 \mathrm{M}$
		bromphenol blue
		$\mathrm{H}_{2} \mathrm{O}$
		Tris
		boric acid

2.2.1.2 Isolation of DNA

10 ml E. coli XL2-blue overnight cultures were used for purification of up to $20 \mu \mathrm{~g}$ plasmid DNA with the help of the QIAprep Spin Miniprep Kit. Plasmid DNA was isolated from the cell pellets according to the producer's instructions. For removal of enzymes, salts and buffers, columns with a silica gel membrane
(QIAquick spin columns) were used according to the producer's instructions.

2.2.1.3 Site-directed mutagenesis

Single site amino acid changes were generated using the QuikChange ${ }^{\circledR}$ sitedirected mutagenesis kit (Stratagene). Primers used for mutagenesis were designed according to the instruction manual and are included in Table 3. The $50 \mu \mathrm{l}$ PCR reaction mixtures contained 125 ng of each primer, 10 ng plasmid DNA template, $6.25 \mu \mathrm{~mol}$ dNTPs and 2.5 units Turbo Pfu DNA polymerase in Cloned Pfu buffer. The cycling after an initial step at $95^{\circ} \mathrm{C}$ for 30 s was performed as follows: 1.) denaturing for 30 s at $95^{\circ} \mathrm{C}, 2$.) annealing for 1 min at $55^{\circ} \mathrm{C}$ and 3.) elongation for 1 min per kb of plasmid length at $68^{\circ} \mathrm{C}$. For creating single nucleotide changes and for creating double or triple nucleotide changes the number of cycles was 12 and 16 , respectively.

Multiple site amino acid changes were generated using the QuikChange ${ }^{\circledR}$ multi-site-directed mutagenesis kit. The $25 \mu \mathrm{PCR}$ reaction mixtures contained 100 ng of each primer, 100 ng plasmid DNA template, $6.25 \mu \mathrm{~mol}$ dNTPs and $1 \mu \mathrm{l}$ QuickChange ${ }^{\circledR}$ Multi enzyme blend. The cycling after an initial step at $95^{\circ} \mathrm{C}$ for 1 min was performed as follows: 1.) denaturing for 1 min at $95^{\circ} \mathrm{C}, 2$.) annealing for 1 min at $55^{\circ} \mathrm{C}$ and 3.) elongation for 2 min per kb of plasmid length at $65^{\circ} \mathrm{C}$.

Following temperature cycling, 10 units of Dpn I restriction enzyme were directly added to each PCR reaction mixture and incubated for 1 h at $37^{\circ} \mathrm{C} .1 \mu \mathrm{l}$ of the reaction mix was transformed into E. coli XL1-blue or E. coli XL2-blue for single site-, and into E. coli XL10-gold for multiple site directed mutagenesis (see 2.1.2). The plasmid DNA was isolated (see 2.2.1.2) and the desired mutation was confirmed by DNA sequencing (see 2.2.1.4).

2.2.1.4 DNA sequencing

Sequencing of purified plasmid DNA was performed via the extended Hot Shot DNA sequencing service of Seqlab (Göttingen, Germany). $200 \mu \mathrm{l}$ PCR tubes with a flat lid were loaded with a total volume of $7 \mu \mathrm{l}$ containing 20 pmol of primer and $0.6-0.7 \mu \mathrm{~g}$ plasmid DNA in water.

2.2.1.5 Determination of DNA concentration and purity

The absorption at $260 \mathrm{~nm}\left(\mathrm{~A}_{260}\right)$ was measured to determine the DNA concentration. An A_{260} of 1 equals $50 \mu \mathrm{~g} / \mathrm{ml} \mathrm{dsDNA}^{[22]}$. The ratio of $\mathrm{A}_{260} / \mathrm{A}_{280}$ was calculated. A ratio between 1.8 and 2 indicates reasonably pure DNA, suitable for DNA sequencing.

2.2.1.6 Transformation of E. coli

$1 \mu 1$ plasmid DNA was added to $50 \mu \mathrm{l}$ competent cells and incubated for 30 min on ice. Cells were subjected to a heat shock of $42^{\circ} \mathrm{C}$ for 45 s and subsequently cooled for 2 min on ice. Afterwards the cells were supplemented with 0.5 ml of 2 x YT medium and incubated for 1 h at $37^{\circ} \mathrm{C}$. Finally the cells were plated onto LB-agar plates containing ampicillin.

2.2.2 Methods for protein expression

All solutions used for cultivation, storage and lysis of E. coli cells are summarised in Table 5. The culture media utilised in the expression of Conk-S1 (Table 6) were sterilised by autoclaving. Prior to usage $100 \mu \mathrm{~g} / \mathrm{l}$ ampicillin was added to each medium. Agar plates where prepared by adding 15 g agar to 11 of medium. The ampicillin- and IPTG-stock solutions where sterile filtrated and stored at $-20^{\circ} \mathrm{C}$.

Table 6 Culture media for expression of Conk-S1

Application	Solution name	Substance	Amount
Culture medium for bacteria	2 xYT	tryptone	16 g
		yeast extract	10 g
		NaCl	10 g
		$\mathrm{H}_{2} \mathrm{O}$	up to 11
	LB	tryptone	10 g
		yeast extract	5 g
		NaCl	10 g
		$\mathrm{H}_{2} \mathrm{O}$	up to 11
	M9 minimal medium	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	6.8 g
		$\mathrm{KH}_{2} \mathrm{PO}_{4}$	3.0 g
		NaCl	0.5 g
		$\mathrm{NH}_{4} \mathrm{Cl}$ or ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}$	1.0 g
		glucose or ${ }^{13} \mathrm{C}_{6}$-glucose	4.0 g
		MgSO_{4}	$2 \mathrm{ml}, 1 \mathrm{M}$
		CaCl_{2}	50u1, 2M
		thiaminechloride $\bullet \mathrm{HCl}$	0.03 g
		trace elements	10 ml
		$\mathrm{H}_{2} \mathrm{O}$	Up to 11
Trace elements for M9 minimal medium	trace elements stock solution	$\mathrm{FeSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$	0.6 g
		$\mathrm{MnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.094 g
		$\mathrm{CoCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$	0.08 g
		$\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	0.07 g
		$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.03 g
		$\mathrm{H}_{3} \mathrm{BO}_{3}$	0.002 g
		$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	0.025 g
		$\mathrm{H}_{2} \mathrm{O}$	up to 100 ml , stir 10 min
		EDTA	0.5 g , stir over night
Antibiotic	ampicillin stock solution	ampicillin sodium salt	$100 \mathrm{mg} / \mathrm{ml}$
Inductor for transcription	IPTG stock solution	IPTG	1M

Application	Solution name	Substance	Amount
Cell lysis	Tris/HCl pH 8.5	20 mM	
		NaCl	500 mM
		PMSF	0.5 mM
		EDTA	1 mM

2.2.2.1 Cultivation of \boldsymbol{E}. coli

Conk-S1 and its mutants were expressed in the E. coli strain BL21(DE3). All cells were grown at $37^{\circ} \mathrm{C}$ in media containing the antibiotic ampicillin ($100 \mu \mathrm{~g} / \mathrm{l}$). The pre- and expression-culture were shaken vigorously. In order to start the cultivation from a single colony cells were grown overnight on an agar plate made of LB medium. From this plate a single colony was picked to inoculate a $2 \mathrm{ml} 2 \times \mathrm{YT}$ overday preculture. Of this preculture $30 \mu \mathrm{l}$ were added to a 30 ml LB overnight preculture. The expression culture for protein expression was prepared by inoculating 11 LB medium with 20 ml of the overnight preculture. For the preparation of ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ isotopic labelled samples the 2 x YT medium and the LB medium were replaced by LB and M9 minimal medium, respectively. The M9 minimal medium utilises $\mathrm{NH}_{4} \mathrm{Cl}$ and glucose as sole nitrogen and carbon sources, which can be used ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ labelled, as required. The optical density of the expression culture was measured regularly at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$, in order to follow the cell growth. Protein expression was induced at an OD_{600} of $0.6-0.7$ by addition of IPTG, to a final concentration of 1 mM . The cells were harvested at an OD_{600} of 1.7-1.9 by centrifugation at 10153 xg and $4^{\circ} \mathrm{C}$ for 17 min .

2.2.2.2 Storage of E. coli

Cell pellets were stored at $-80^{\circ} \mathrm{C}$. For long term storage of the E. coli strains a part of the LB preculture was mixed with sterile 50% glycerol at a ratio of 2.33:1 $(\mathrm{v} / \mathrm{v})$. This mixture was also stored at $-80^{\circ} \mathrm{C}$.

2.2.2.3 Cell lysis

Cell pellets from 11 culture were resuspended on ice in maximal 70 ml lysis buffer. The cells were lysed by ultrasonication for $5 \times 20 \mathrm{~s}$. In between each stroke the suspension was cooled on ice for $2-5 \mathrm{~min}$. Inclusion bodies were pelleted by centrifugation at 75000 xg at $4^{\circ} \mathrm{C}$ for 40 min .

2.2.3 Protein purification and investigation

All solutions used for refolding and purification of Conk-S1 are summarised in Table 7.

Table 7 Purification and refolding of Conk-S1

Application	Solution name	Substance	Amount
Protein refolding	denaturing buffer	guanidine/HCl	6 M
		β-mercaptoethanol	50 mM
		Tris/HCl pH 8.0	50 mM
		guanidine/ HCl	3 M
	refolding buffer 1	reduced glutathione	2 mM
		oxidised glutathione	0.2 mM
		EDTA	2 mM
		Tris/HCl pH 8.0	50 mM
	refolding buffer 2	reduced glutathione	2 mM
		oxidised glutathione	0.2 mM
		EDTA	2 mM

2.2.3.1 Protein refolding

The inclusion body pellet was dissolved in 20 ml denaturing buffer (Table 7). Insoluble debris was removed by centrifugation at 75000 xg at $4^{\circ} \mathrm{C}$ for 1 h . The supernatant was successively dialysed against 11 of refolding buffer 1 and 2 for each 16 h at $4^{\circ} \mathrm{C}$. Precipitant was removed by centrifugation at 75000 xg at $4^{\circ} \mathrm{C}$ for 20 min .

2.2.3.2 CBD-Ssp DnaB intein tag cleavage ${ }^{[23]}$

The cleavage of the CBD-Ssp DnaB intein tag from the peptide was induced by a pH jump from pH 8 to pH 6.5 (see 4.3.1). This was performed by dialysis of the protein solution against the intein cleavage buffer (Table 7) for 5 h at $4^{\circ} \mathrm{C}$, followed by 16 h of dialysis at room temperature.

2.2.3.3 Cation exchange chromatography

Cation exchange chromatography was conducted on an Äkta prime low pressure liquid chromatography system on a $1 \mathrm{ml} \operatorname{HiTrap}^{\mathrm{TM}}$ SP XL column. The column was successively equilibrated with 10 bed volumes of cation exchange buffer A (Table 7), 10 bed volumes of cation exchange buffer B (Table 7) and again 10 bed volumes of cation exchange buffer A . The flow rate for equilibration was $1 \mathrm{ml} / \mathrm{min}$. The sample was loaded at a flow rate of $1 \mathrm{ml} / \mathrm{min}$. After sample loading the column was washed with 10 to 20 bed volumes of buffer A, to remove unbound impurities. The peptide was eluted with a 30 ml linear gradient to buffer B at a flow rate of $0.5 \mathrm{ml} / \mathrm{min}$. Fractions of 0.5 ml size were collected.

2.2.3.4 Reversed phase - high performance liquid chromatography (RP-HPLC)

RP-HPLC was conducted on JASCO systems on an analytical or a semipreparative VYDAC C18 reversed phase column. The column was pre-equilibrated with RP-HPLC buffer A (Table 7). The elution was performed at a flow rate of $1 \mathrm{ml} / \mathrm{min}$ for the analytical column and $3 \mathrm{ml} / \mathrm{min}$ for the semi-preparative column. A linear gradient of 0-60 \% RP-HPLC buffer B in 30 min was applied.

2.2.3.5 Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDSPAGE $)^{[24]}$

The discontinuous Tris-glycine buffer system as described by Laemmil ${ }^{[24]}$ was used to separate proteins by molecular weight. All gels had a stacking gel with an acrylamide concentration of 3% and a separating gel with 12.5% acrylamide. The solutions for the stacking and separating gel are given in Table 7. Since Conk-S1 has a molecular weight smaller than $10 \mathrm{kDa}, 2 \mathrm{M} \mathrm{Tris} / \mathrm{HCl} \mathrm{pH} 8.8$ was used as the
stacking/separation gel buffer instead of the usually utilised 1 M buffer ${ }^{[25]}$. Protein samples were mixed with 4 x protein loading buffer and were denatured at $100^{\circ} \mathrm{C}$ for 5 min before loading. The gels were run at 25 mA . Staining of the gels was done with Coomassie blue R-250 by heating the gel in staining solution for 90 s in the microwave. Afterwards staining solution was removed, the gels were washed with water and incubated in destaining solution in the microwave for 2 times 90 s. Finally, the SDS-gels were imaged and digitized for documentation.

2.2.3.6 Determination of protein concentration

The concentration of proteins in solution was determined, according to the LambertBeer law, by measuring the absorption at $280 \mathrm{~nm}\left(\mathrm{~A}_{280}\right)$.

$$
\begin{equation*}
\mathrm{A}_{\lambda}=\varepsilon_{\lambda} \cdot \mathrm{c} \cdot \mathrm{~d} \tag{1}
\end{equation*}
$$

A_{λ} : absorption at wavelength λ
ε_{λ} : molar extinction coefficient at wavelength λ in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$
c: protein concentration (M)
d: thickness of the cuvette (cm)

2.2.3.7 Elecrospray Quadrupole Mass spectrometry

For Elecrospray Quadrupole Mass spectrometry the source capillary was set to 2.94 kV . Scans were acquired in positive-ion mode at $\mathrm{m} / \mathrm{z} 500-2500$. It was performed after RP-HPLC (see 2.2.3.4)

2.2.3.8 Site-directed spin-labeling (SDSL)

SDSL is a technique to introduce a paramagnetic spin label into a protein. It is based on a specific reaction between the spin label and an amino acid. In the most
common procedure, a unique sulfhydryl group of a cysteine is selectively modified with a paramagnetic nitroxide reagent ${ }^{[26]}$. Single cysteine mutants of HVDAC for the attachment of a spin label were prepared by Thomas Meins. They were modified with the thiol-specific nitroxide spin label reagent (1-oxy-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)-methanethiosulfonate (MTSL). $100 \mu \mathrm{~g} / \mu \mathrm{l}$ MTSL in cold acetone was added to the protein solution at a 3 to 5 -fold molar excess and incubated for at least 1.5 h at room temperature. Excess spin label was removed by dialysis. Complete labeling with MTSL was verified by ESI-MS (see 2.2.3.7).

2.2.4 Electrophysiological methods

All solutions used for the electrophysiological investigation of Conk-S1 are summarised in Table 8.

Table 8 Electrophysiological investigation of Conk-S1

Hypertonic incubation	skinning solution	K-aspartate	200 mM
		KCl	20 mM
		MgCl_{2}	1 mM
		EGTA	10 mM
		HEPES pH 7.4	10 mM
Measuring solution	normal frog Ringer	NaCl	115 mM
		KCl	2.5 mM
		CaCl_{2}	1.8 mM
		HEPES pH 7.2	10 mM
Anesthetic for Xenopus	anaesthetic solution	tricaine	2.5 g
laevis		$\mathrm{H}_{2} \mathrm{O}$	11

2.2.4.1 Xenopus oocyte handling

Female Xenopus laevis (Fig. 2a) were incubated in anaesthetic solution at $0^{\circ} \mathrm{C}$ for 30 min . Afterwards the ovarian tissue containing oocytes at different stages of maturation was surgically removed.

Fig. 2 a) Xenopus laevis ${ }^{[27]}$ b) Xenopus laevis oocytes ${ }^{[28]}$

This tissue was incubated for 2-3 hours in collagenase solution at $17^{\circ} \mathrm{C}$ in order to remove the follicular cell layer partially by digestion. The surgery and the following digestion was done by technicians of the molecular and cellular neuropharmacology
group of Heinrich Terlau at the Max-Planck-Institute for experimental medicine in Göttingen. The enzymatic reaction was stopped by washing the oocytes extensively in Barth medium. For further investigation oocytes between stage IV and VI (Fig. 2b) were selected and stored in Barth medium at $17^{\circ} \mathrm{C}$. Into each of these oocytes approx. 50 nl of a $0.25 \mu \mathrm{~g} / \mu \mathrm{l}$ cRNA solution of the corresponding Shaker K^{+}channel were injected. Afterwards they were incubated in Barth medium at $17^{\circ} \mathrm{C}$ for $1-3$ days in order to allow the expression of the ion channels. Then the oocytes were incubated in the hypertonic skinning solution for approx. 3 min at room temperature, which induces a shrinking of the oocytes. The outer vitelline membrane of the oocytes was then removed mechanically with fine tweezers. For the electrophysiological measurements the oocytes were washed once with normal frog Ringers (NFR). Finally each of them was placed in a measuring chamber containing NFR.

2.2.4.2 Electrophysiological measurements

Whole-cell currents were recorded under two-electrode voltage-clamp control using a Turbo-Tec amplifier (npi electronic, Tamm, Germany). The intracellular electrodes were filled with 2 M KCl and had a resistance between 0.4 and $1 \mathrm{M} \Omega$. Current records were low-pass filtered at $1 \mathrm{KHz}(-3 \mathrm{db})$ and sampled at 4 kHz . The bath solution was NFR containing $115 \mathrm{mM} \mathrm{NaCl}, 2.5 \mathrm{mM} \mathrm{KCl}, 1.8 \mathrm{mM} \mathrm{CaCl}_{2}$ and 10 mM Hepes $(\mathrm{pH} 7.2)(\mathrm{NaOH})$. All electrophysiological experiments were performed at room temperature $\left(19-22^{\circ} \mathrm{C}\right)$. Toxin-containing solutions were applied continuously during the whole experiment from a reservoir through a silicon tube directly into the bath chamber. Whole-cell currents at a test potential of 0 mV were measured every 15 s during toxin application.

The IC_{50} values of Conk-S1 and its mutants were calculated from the reduction of whole-cell currents at a test potential of 0 mV obtained from oocytes expressing Shaker K according to the relationship $\mathrm{IC}_{50}=\mathrm{fc} /(1-\mathrm{fc})[\mathrm{Tx}]$, where fc is the fractional current and $[\mathrm{Tx}]$ is the toxin concentration. Data are given as means \pm the standard deviation (rmsd).

The $k_{\text {on }}$ and $k_{\text {off }}$ values were obtained by an exponential fit $\left[y=y_{0}+A * \exp (-\right.$ $\left.\mathrm{k}^{*} \mathrm{x}\right)$] to the experimental data during decrease and increase of the current, obtained during the wash-in and wash-out of the peptide. This is possible because the "on" reaction is pseudo first order, due to the constant toxin concentration, and the "off" reaction is first order.

2.2.5 NMR spectroscopy

NMR sample preparation for HVDAC is described in the doctoral thesis of Thomas Meins ${ }^{[29]}$ and is repeated here in chapter 3.2.1.5 The sample preparation of Conk-S1 is described in chapter 4.2. The chemical shift assignment strategy for the 32 kDa membrane protein HVDAC is given in chapter 3.3.1, for the 7 kDa soluble protein Conk-S1 in chapter 4.2.3. For the HVDAC, all spectra were measured in a TROSY version, with exception of the NOESY-HMQC.

2.2.5.1 Secondary Structure determination

Relative to random coil chemical shifts CA and C^{\prime} resonances tend to shift upfield in β-strands and extended sheets and downfield in helices. The opposite trend holds for CB resonances ${ }^{[30]}$. Therefore secondary structure elements can be identified by subtracting the random coil $\left(\delta \mathrm{C}_{\text {coil }}\right)$ from the experimental chemical shift $\left(\delta \mathrm{C}_{\text {exp }}\right)$. Tabulated random coil values were used. The secondary chemical shift $(\Delta \delta C)$ is
defined as the difference between $\delta \mathrm{C}_{\text {exp }}$ and $\delta \mathrm{C}_{\text {coil }}$. To derive secondary structure information, the secondary chemical shifts were combined using the following formula:

$$
\begin{equation*}
\Delta \delta\left(\mathrm{CA} \mathrm{CB} \mathrm{C}^{\prime}\right)=\Delta \delta \mathrm{CA}-\Delta \delta \mathrm{CB}+\Delta \delta \mathrm{C}^{\prime} \tag{2}
\end{equation*}
$$

If CB chemical shifts were not available $\Delta \delta \mathrm{CA}$ and $\Delta \delta \mathrm{C}^{\prime}$ were added. In this notation negative secondary chemical shifts indicate β-strands and positive values indicate α helices.

2.2.5.2 Mapping of interaction sites

Chemical shifts depend on the local electronical environment of a nucleus. If effectors bind to a protein, this environment changes at the interaction site. This causes perturbations of the chemical shifts. These perturbations can be followed in every NMR-spectrum. ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}-\mathrm{HSQC}$ or ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$-TROSY-HSQC spectra have a high sensitivity. Therefore chemical shift values can be easily followed in the $15 \mathrm{~N}-1 \mathrm{H}-$ HSQC spectrum during a titration. The titration was done by a stepwise addition of the effector to the desired protein NMR-sample and subsequent recording of a ${ }^{15} \mathrm{~N}$ ${ }^{1} \mathrm{H}$-HSQC spectrum. During the titration the pH of the NMR-sample was held constant. The chemical shift perturbations upon receptor addition are commonly combined with the following equation ${ }^{[31]}$:

$$
\begin{equation*}
\Delta \delta_{H N}=\sqrt{\frac{\left(\Delta \delta_{N} / 5\right)^{2}+\left(\Delta \delta_{H}\right)^{2}}{2}} \tag{3}
\end{equation*}
$$

$\Delta \delta_{\mathrm{HN}}:$ average amide chemical shift perturbation
$\Delta \delta_{\mathrm{N}}$: amide nitrogen chemical shift changes
$\Delta \delta_{\mathrm{H}}$: amide proton chemical shift changes

Residues with the largest ${ }^{15} \mathrm{~N}$ and ${ }^{1} \mathrm{H}$ chemical shift changes upon the NMR titration define the binding interface.

2.2.5.3 Solvent exchange experiments

To investigate the solvent accessibility $\mathrm{D}_{2} \mathrm{O}$ exchange experiments were carried out. Amide protons, which are involved in tight hydrogen bonds or which are buried in the hydrophobic core of a protein, will exchange much slower with the $\mathrm{D}_{2} \mathrm{O}$ than protons, which are exposed to the solvent. Therefore the peak intensity for solvent exposed residues will be reduced in $\mathrm{D}_{2} \mathrm{O}$. For the $\mathrm{D}_{2} \mathrm{O}$ exchange the desired NMR-sample was lyophilised and subsequently redissolved in $\mathrm{D}_{2} \mathrm{O}$. Afterwards consecutive TROSY-HSQC spectra were recorded. The first spectrum was recorded 1 h after dissolving the sample in $\mathrm{D}_{2} \mathrm{O}$ and ran for 3 h and 13 min . Residues, which did show a peak in this spectrum, were considered to be in secondary structure elements. Residues, which did not show a peak in this spectrum, were considered to be in loops or flexible secondary structure elements.

2.2.5.4. Residual dipolar couplings (RDCs)

2.2.5.4.1 Alignment media

Under isotropic solution condition dipolar couplings average exactly to zero as a result of Brownian rotational diffusion, which is many orders of magnitude faster than the recording of a NMR-signal ${ }^{[32]}$. Therefore anisotropic alignment media ${ }^{[12,33,}$ ${ }^{34]}$, which induce a slightly preferred orientation of the molecule, are needed to observe RDCs. Conk-S1 was partially aligned in a non-ionic liquid crystalline medium based on a mixture of n-alkyl-poly(ethylene glycol) and n-alkyl alcohol ${ }^{[35]}$ (see 4.2.2). For the alignment of HVDAC charged copolymer gels were tested, which
were especially optimised for integral membrane proteins ${ }^{[36]}$. The composition of the charged gels was varied extensively, but in most gels no NMR signal of the ${ }^{15} \mathrm{~N},{ }^{2} \mathrm{H}-$ HVDAC was observed. This is due to the restriction of rotational diffusion of the protein in the gel ${ }^{[36]}$. Signal was observed in a positively charged 5% gel composed of acrylamide and (3-acrylamidopropyl)-trimethylammonium chloride in a 1:1 ratio, both containing N.N'-methylenebisacrylamide in a 37.5:1 ratio. However, the signal to noise ratio was too low to record a 2D TROSY-HSQC.

2.2.5.4.2 RDC measurements

${ }^{1} \mathrm{D}_{\mathrm{N}-\mathrm{H}},{ }^{1} \mathrm{D}_{\mathrm{CA}-\mathrm{HA}},{ }^{1} \mathrm{D}_{\mathrm{N}-\mathrm{C}}$ and ${ }^{1} \mathrm{D}_{\mathrm{C}-\mathrm{CA}}$ were measured in the quantitative J correlation manner as described in chapter 4.2.3.

2.2.5.4.3 Evaluation of the residual dipolar couplings with PALES ${ }^{[37]}$

The magnitude (normalized to ${ }^{1} \mathrm{D}_{\mathrm{N}-\mathrm{H}}$) and rhombicity of the alignment tensor were determined from the histogram of dipolar couplings by the program PALES ${ }^{[37]}$.

In order to determine the agreement between experimentally observed RDCs and crystal- or NMR-structures the RDCs were back calculated based on the respective structures. This was done using singular value decomposition (SVD) as implemented in PALES. The correlation coefficient of the back calculated and experimental RDCs were used to describe the consistency between the structure and the observed RDCs.

2.2.5.5 Estimation of the molecular weight from $T_{1 \rho}$

The rotational correlation time $\left(\tau_{c}\right)$ is proportional to the effective hydrodynamic radius $\left(\mathrm{r}_{\mathrm{H}}\right)$ of a molecule. For approximately spherical globular proteins τ_{c} can be calculated from Stokes' law ${ }^{[38]}$:

$$
\begin{equation*}
\tau_{c}=\frac{4 \pi \eta_{w} r_{H}^{3}}{3 k T} \tag{4}
\end{equation*}
$$

in which η_{w} is the viscosity of the solvent, k is the Boltzmann constant and T is the temperature. The hydrodynamic radius can be very roughly estimated from the molecular weight (MW) of a protein by assuming that the specific volume of a protein is $\bar{V}=0.73 \mathrm{~cm}^{3} / \mathrm{g}$ and that a hydration layer of $\mathrm{r}_{\mathrm{w}}=1.6$ to $3.2 \AA$ (corresponding to one-half to one hydration shell) surrounds the protein ${ }^{[38]}$:

$$
\begin{equation*}
r_{H}=\left[\frac{3 \bar{V} M W}{4 \pi N_{A}}\right]^{\frac{1}{3}}+r_{w} \tag{5}
\end{equation*}
$$

For $20^{\circ} \mathrm{C}$ in water solution the combination of equation (3) and (4) gives roughly:

$$
\begin{equation*}
\boldsymbol{\tau}_{c}[n s] \sim 0.5 M W[k D a] \tag{6}
\end{equation*}
$$

τ_{c} is proportional to transverse relaxation time $\mathrm{T}_{1 \rho}$. In the heteronuclear cse this gives ${ }^{[38]}$:

$$
\begin{equation*}
\tau_{c}[s]=\frac{5 r_{A B}^{6} 64 \pi^{4}}{\gamma_{A}^{2} \gamma_{B}^{2} h^{2} \mu_{0}^{2} T_{1 \rho}} \tag{7}
\end{equation*}
$$

where $r_{A B}$ is the distance between atom A and $B, \gamma_{A B}$ is the magnetogyric ratio of atom A or B, h is the Planck constant and μ_{0} is the magnetic permeability of the vacuum. For the $T_{1 \rho}$ time of the amide nitrogen this results in:

$$
\begin{equation*}
\tau_{c}[n s]=\frac{1}{1.1 T_{1 \rho}[s]} \tag{8}
\end{equation*}
$$

The $T_{1 \rho}$ time of the amide nitrogen was measured with a spin-lock power of 2.5 kHz . Two 1D experiments with different spin-lock pulse durations were recorded (pulsesequence is given in Appendix D). The first had a $2 \mathrm{~ms}\left(\Delta_{\mathrm{A}}\right)$ spin-lock pulse, the second a spin lock pulse which length $\left(\Delta_{B}\right)$ corresponds to approx. 1.3 times the theoretical relaxation time, estimated from the hypothetical MW. The two spectra were overlaid with X-WINNMR 3.5 and their intensity ratio $\left(\mathrm{I}_{\mathrm{B}} / \mathrm{I}_{\mathrm{A}}\right)$ was determined. The average amide nitrogen $\mathrm{T}_{1 \rho}$ time is:

$$
\begin{equation*}
T_{1 \rho}=\frac{\Delta_{A}-\Delta_{B}}{\ln \left(I_{B} / I_{A}\right)} \tag{9}
\end{equation*}
$$

2.2.5.6 Steady state heteronuclear ${ }^{15} \mathbf{N}\left\{{ }^{1} \mathbf{H}\right\}$-nuclear Overhauser effects (NOEs)

Steady state heteronuclear ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs were obtained from two spectra, which were recorded in an interleaved manner (pulse-sequence is given in Appendix D). One spectrum was with, the other without proton presaturation during the 5 s relaxation delay. The ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs for each residue were calculated from the intensity ration of similar ${ }^{15} \mathrm{~N} /{ }^{1} \mathrm{H}$ crosspeaks from both spectra.

2.2.5.7 Paramagnetic relaxation enhancement (PRE)

Enhanced relaxation of the nuclear spins surrounding a paramagnetic centre constituted of one or several unpaired electrons presents one of the most obvious manifestations of paramagnetism ${ }^{[39]}$. The relaxation enhancement strongly depends on the distance between the nuclear and the electron spin. Since this effect is visible for significantly longer distances than internuclear interactions long range information can be gained for a molecule with a paramagnetic centre ${ }^{[40]}$.

For the PRE measurement two TROSY-HSQC spectra were recorded, one with and one without the paramagnetic MTSL-tag (see 2.2.3.8). The peak intensities ratio ($\mathrm{I}_{\text {para }} / I_{\text {dia }}$) of corresponding ${ }^{15} \mathrm{~N} /{ }^{1} \mathrm{H}$ crosspeaks can be converted in the paramagnetic transverse relaxation rate enhancement $\left(R_{2}^{\text {para }}\right)^{[13]}$ by estimating the additional relaxation needed to reduce the peak intensity in the diamagnetic case to the intensity observed in the paramagnetic case. Paramagnetic induced R1 relaxation during t_{1} is neglected because it is typically insignificant compared to $R 2$ effects ${ }^{[41]}$. Additionally R1 and R2 relaxation effects of the spinlabel on ${ }^{15} \mathrm{~N}$ nuclei were considered to be negligible compared to ${ }^{1} \mathrm{H}$, because of the lower magnetogyric ratio of ${ }^{15} \mathrm{~N}$ (see eq 12) ${ }^{[13]}$. $R_{2}^{\text {para }}$ can be calculated from the intensity ratio of a particular amide proton by the following equation ${ }^{[13]}$:

$$
\begin{equation*}
\frac{I_{\text {para }}}{I_{\text {dia }}}=\frac{R_{2} e^{-R_{2}^{\text {para }} t_{\text {ieper }}}}{R_{2}+R_{2}^{\text {para }}} \tag{10}
\end{equation*}
$$

where R_{2} is the intrinsic transverse relaxation rate and $t_{\text {inept }}$ is the total inept evolution time $(\sim 10.5 \mathrm{~ms}) . R_{2}^{\text {para }}$ is inversely proportional to the distance between the electron and the nuclear spins $r^{[13]}$:

$$
\begin{equation*}
r=\left[\frac{K}{R_{2}^{\text {para }}}\left(4 \tau+\frac{3 \tau_{c}}{1+\omega_{H}^{2} \tau_{c}^{2}}\right)\right]^{1 / 6} \tag{11}
\end{equation*}
$$

where τ_{c} is the correlation time for this electron-nuclear interaction, ω_{H} is the Lamor frequency of the nuclear spin (proton). K is composed of the physical constants:

$$
\begin{equation*}
K=\frac{1}{15} S(S+1) \gamma^{2} g^{2} \beta^{2} \tag{12}
\end{equation*}
$$

in which γ is the nuclear magnetogyric ratio, g is the electronic g factor and β is the Bohr magneton. Overall K is $1.23 \times 10^{-32} \mathrm{~cm}^{6} \mathrm{~s}^{-2}{ }^{[42]}$. For distance calculations $\boldsymbol{\tau}_{\mathrm{c}}$ is assumed to be equal to the global correlation time of the protein. Because of low
spectral quality no exact distances were calculated. The residues were rather grouped in two classes. Broadening effects of the MTSL can be observed up to 20-25 $\AA^{[13]}$. Therefore one group contained peaks, which in the paramagnetic case were broadened beyond detection, indicating that the amide proton was closer than $25 \AA$ to the unpaired electron. The second group contained peaks, which in the paramagnetic case were still detectable, indicating that the amide proton was further than $25 \AA$ away from the unpaired electron.

3

Structural and functional investigation of HVDAC - the first structure of a human, mitochondrial ion channel

3.1 Introduction

The voltage dependent anion channel (VDAC) is a 283 residue protein located in the mitochondrial outer membrane (MOM). It is an aqueous pore and known to be primarily responsible for metabolite flux across the $\mathrm{MOM}^{[43]}$. In its open state, at low potentials, it is permeable for anions like ATP and ADP. Upon channel closure, at high potentials, it undergoes a selectivity change and small cations like Ca^{2+} can pass ${ }^{[44]}$. Therefore it has a regulatory role in the energy metabolism of the mitochondria and is involved in Ca-signalling. Additionally there is substantial evidence that VDAC plays an essential role in apoptosis, because it interacts with different pro- and anti-apoptotic proteins, like $\mathrm{tBid}^{[45]}$ or $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}{ }^{[46-48]}$.

Mitochondria-dependent apoptosis involves the permeabilisation of both mitochondrial membranes. This leads to release of proapototic effectors, like cytochrome c , apoptosis inducing factor (AIF) and endonuclease $\mathrm{G}^{[49]}$. VDAC has a size exclusion limit of approx. 5 kDa and is therefore not permeable to cytochrome $\mathrm{c}^{[50]}$. Nevertheless there are strong indications that VDAC is involved in the process of mitochondrial membrane permeabilisation. This has been demonstrated by preventing the Ca^{2+}-induced permeabilisation of the mitochondrial membrane with two polyclonal, specific anti-VDAC antibodies ${ }^{[51]}$. Theses antibodies recognise different VDAC epitopes and inhibit their activity in liposomes. Therefore there are
several models, which try to explain the role of VDAC in apoptosis. Several studies propose a Ca^{2+}-induced formation of a permeability transition pore (PTP), which is big enough to release cytochrome $c^{[48,52,53]}$. It is thought, that VDAC is a key component of the $\mathrm{PTP}^{[48,53-55]}$. Another model proposes, that the OMM becomes impermeable to small metabolites in early stages of apoptosis ${ }^{[56]}$. This would lead to accumulation of metabolites in the inter-membrane space of the mitochondrion resulting in osmotic swelling and disrupture of the outer membrane. This hypothesis is based on the fact that VDAC closes upon binding to the proapoptotic protein $\mathrm{tBid}^{[45]}$. Additionally, $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$, an antiapoptotic protein, stabilises the open conformation of VDAC ${ }^{[46]}$. Nevertheless, this model disagrees with the fact, that upon VDAC inhibition mitochondrial membrane permeabilisation is inhibited ${ }^{[51]}$. If osmotic swelling would induce apoptosis, VDAC inhibition should then rather lead to membrane permeabilisation. A third model proposes, that apoptosis is mediated by large pores formed by Bax alone ${ }^{[57]}$. However, Bax-induced apoptosis could be inhibited by selective anti-VDAC antibodies ${ }^{[51]}$. This indicates, that Bax induced apoptosis is also dependent on VDAC. However, the involvement of VDAC in apoptosis is a matter of a strong controversy. Recently Baines et al. ${ }^{[58]}$ demonstrated that by eliminating one or more VDAC isoforms either by genetic kockout or with knock-down using small interfering RNAs, mitochondria were still able to undergo mitochondrial permeability transition in vitro. Yet the authors admit, that cell death in the absence of all three VDAC isoforms may also reflect a defect in the metabolic function of mitochondria, as the VDACs are the most abundant proteins in the mitochondrial outer membrane and maintain homeostasis in ions and other small metabolites.

Due to this diversity of functional models structural information of the VDAC channel and subsequent determination of its binding sites to different effectors could shed light on several aspects of mitochondrial and cellular physiology ${ }^{[59]}$. A number of structural models are proposed in the literature. They are based on sequence alignment $\left.{ }^{[44,}, 60-62\right]$ or biochemical data ${ }^{[63-66]}$, like accessibility to either proteases or antibodies ${ }^{[64,66]}$, or electrophysiological investigations of VDAC-mutants ${ }^{[63,}{ }^{65]}$. All models are consistent in one point. They propose a β-barrel. Nevertheless the models disagree in the number of transmembrane β-strands, which vary from 12 to 19 . Additionally they differ in the position of the predicted ${ }^{[59,67]} \mathrm{N}$-terminal amphiphilic α-helix. Two models predict the helix to be a part of the barrel wall ${ }^{[63,}{ }^{65]}$. Other models place the helix outside of it ${ }^{[60,62,64]}$.

Further structural information of fungal VDAC could be obtained from 2D crystals by electron microscopy (EM) ${ }^{[59]}$. This study provides the molecular envelope with approx. $20 \AA$ resolution. It is consistent with a β-barrel-shape. In general, the barrel wall has several irregular features. It has regions were the walls are shorter than the average, grooves, a flap or a concave bulge. Furthermore the authors propose, that the N -terminal helix is not part of the barrel wall, but extends laterally away from the lumen. Additionally membrane crystals could be obtained from the human VDAC, but diffraction spots extended only up to $8.2 \AA^{[68]}$. Similar to the fungal VDAC the authors reported, that the barrel wall has a nonuniform height and that the protein mass is asymmetrically distributed around the diffusion channel.

Since a variety of different structural models has been proposed and structures are only present at very low resolution there is still a strong need for detailed structural information of the VDAC. As described above, membrane proteins are challenging objects to study, both for NMR-spectroscopy and X-ray crystallography.

This is also demonstrated by the fact, that first structural information of the VDAC was present in $1984^{[69]}$ and until the year 2007 there was no high resolution structure of the VDAC available. Since until now common methods for high resolution structure determination for the VDAC failed, unconventional methods are required. In collaboration with Thomas Meins, Max-Planck-Institute for Biochemistry, Munich, we determined the high-resolution structure of the biggest part of human VDAC conjointly by NMR-spectroscopy and X-ray crystallography. Only the combination of local information from NMR-spectroscopy and global information from X-ray crystallography is powerful enough to allow a structure determination of this "badly behaved" protein on a reasonable timescale. The human VDAC has indeed a β-barrel fold. It is composed of 18 transmembrane β-strands and an amphiphilic α-helix at the N -terminus, which points inside the barrel in the direction of the C-terminus. It is the first reported structure of a human, mitochondrial integral membrane protein. Furthermore I investigated binding sites for different effectors. It was demonstrated, that the pro-apoptotic protein Bid and the anti-apoptotic $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ compete for the same binding site. This site is close to the region, where the N - and the C-terminus close the β-barrel. In contrast to that, interaction sites for nucleotides are distributed over the whole protein.

3.2 Materials and methods

3.2.1 Production of HVDAC1 for NMR analysis

HVDAC1 and its mutants were prepared by Thomas Meins and Christl Weyrauch at the Max-Planck-Institute for Biochemistry in Munich. Later samples were also prepared by Stefan Becker and Karin Giller at the Max-Planck-Institute for

Biophysical Chemistry in Göttingen. This chapter (3.2.1) is taken from the doctoral thesis of Thomas Meins ${ }^{[29]}$.

3.2.1.1 Cloning of HVDAC1-His ${ }_{6}$

The His ${ }_{6}$ tagged version of hVDAC1 was achieved by cloning a vdacl containing PCR construct into the pDS56/RBSII-6xHis expression vector yielding

pDS56/RBSII-VDAC1His6 (Fig. 3) as described in ${ }^{\text {[70] }}$

Fig. 3 pDS56/RBSII-VDACHis6-Sequence

Abstract

ctcgagaaat cataaaaaat attgtgagcg gataacaatt ggatccgctg tgccacccac aagggctatg gatttggctt gaatttacaa gctcaggctc accaagtaca gatggactga acactaggca ccgagattac gattcatcct tctcacctaa cgggagcaca ttaacctggg ggtgctctgg tgctaggtta gcaaaatccc gagtgaccca cttcacacta atgtgaatga aagaagttgg agaccgctgt ggaatagcag ccaagtatca tccagcctga taggtttagg tcagctcttc tggatggcaa gaatttcaag caagatctca ctcctgttga tagatccagt ggttgccgcc gggcgttttt agctaaggaa gctaaaatgg atggcatcgt aaagaacatt gaccgttcag ctggatatta ttatccggcc tttattcaca ggcaatgaaa gacggtgagc ccatgagcaa actgaaacgt gtttctacac atatattcgc taaagggttt attgagaata ttttgattta aacgtggcca atattatacg caaggcgaca ctgtgatggc ttccatgtcg gcagggcggg gcgtaatttt gactctctag cttgaggcat gttttatctg ttgtttgtcg gctgcctcgc cggtcacagc cgggtgttg atactggctt aactatgcg tgaaataccg cacagatgcg gctcactgac ggcggtaata aggccagcaa aaggccagga ttatttgct tcacacagaa gtatgccgat aataaagctt agccaacact gtacggcctg tgtggaagat cactgggaaa ctgcgacatg cgagggctgg gagcaacttt cgggacagag caatcttgcc gattgaccct atacactcag gaacgtcaat tcaccatcac aatgacctca tattggtgag agaaaaaaat ttgaggcatt cggccttttt ttcttgcccg tggtgatatg tttcatcgct aagatgtggc tgtttttcgt atatggacaa aggtgctgat gcagaatgct tttaaggcag caaataaaac gtgaacgctc gatgacggtg gcggatgccg ggcgcagcca catcagagca taaggagaaa cggtctgtcg cagaatcagg accgtaaaaa tgtgagcgga ttcattaaag aggagaaatt aactatgaga cttggcaaat ctgccaggga tgtcttcacc gatttgaaaa caaaatctga gaatggattg gagaccacca aagtgacggg cagtctggaa acgtttacag agaaatggaa taccgacaat cagcttgcac gtggactgaa gctgaccttc aaaaatgcta aaatcaagac agggtacaag gatttcgaca ttgctgggcc ttccatccgg ctggccggct accagatgaa ttttgagact gcagttggct acaagactga tgaattccag tttggcggct ccatttacca gaaagtgaac tggacagcag gaaacagtaa cacgcgcttc gacgcctgct tctcggctaa agtgaacaac actctaaagc caggtattaa actgacactg gctggtggcc acaagcttgg tctaggactg catcactaag cttaattagc tgagcttgga gaactccatc tggatttgtt cagaacgctc aatccaagct agcttggcga gattttcagg cactggatat accaccgttg atatatccca tcagtcagtt gctcaatgta cctataacca aaagaccgta aagaaaaata agcacaagtt cctgatgaat gctcatccgg aatttcgtat ggatagtgtt cacccttgtt acaccgtttt ctggagtgaa taccacgacg atttccggca gtgttacggt gaaaacctgg cctatttccc ctcagccaat ccctgggtga gtttcaccag cttcttcgcc cccgttttca ccatgggcaa gccgctggcg attcaggttc atcatgccgt taatgaatta caacagtact gcgatgagtg ttattggtgc ccttaaacgc ctggggtaat gaaaggctca gtcgaaagac tgggcctttc tcctgagtag gacaaatccg ccgctctaga aaaacctctg acacatgcag ctcccggaga ggagcagaca agcccgtcag ggcgcgtcag tgacccagtc acgtagcgat agcggagtgt gattgtactg agagtgcacc atatgcggtg ataccgcatc aggcgctctt ccgcttcctc gctgcggcga gcggtatcag ctcactcaaa ggataacgca ggaaagaaca tgtgagcaaa ggccgcgttg ctggcgtttt tccataggct

3.2.1.2 Site directed mutagenesis of HVDAC1-His ${ }_{6}$

Point mutations were introduced into the pDS56/RBS2-His6 cloned HVDAC1 gene with the QuickChange ${ }^{\circledR}$ site-directed mutagenesis kit (Stratagene, La Jolla, USA), which used essentially as recommended by Stratagene ${ }^{\mathrm{TM}}$. The primers for introduction of the indicated point mutations are summarised in Table 9. Double and multi mutants were achieved one after another by introduction of a further point mutation in already mutated plasmids. Successful mutagenesis was verified by DNA sequence analysis.

Table 9 Oligonucleotide primer for the mutagenesis of HVDAC1-His ${ }_{6}$

pDS56/RBS2-		
HVDAC1His6/[mutant]	pDS56/RBS2- HVDAC1His6/[host]	primer
C130S	nativ	5^{\prime} '-gagcacattaacctgggctccgacatggatttcgacattg-3'

pDS56/RBS2- HVDAC1His6/[mutant]	pDS56/RBS2- HVDAC1His6/[host]	primer
C235S	nativ	5'-gattgaccctgacgcctccttctcggctaaagtg-3' 5'-cactttagccgagaaggaggcgtcagggtcaatc-3'
C130S / C235S	C130S	$5^{\prime}-$ gattgaccctgacgcctccttctcggctaaagtg-3', $5^{\prime}-$ cactttagccgagaaggaggcgtcagggtcaatc-3'
S49C / C130S / C235S	C130S / C235S	5'-gaatttacaagctcaggctgcgccaacactgagaccacc-3' 5'-ggtggtctcagtgttggcgcagcctgagcttgtaaattc-3'
S263C / C130S / C235S	C130S / C235S	5'-gtattaaactgacactgtgcgctcttctggatggcaag-3' 5'-cttgccatccagaagagcgcacagtgtcagtttaatac-3'
V20C / C235S	C235S	$\begin{aligned} & 5^{\prime} \text {-caaatctgccagggattgcttcaccaagggctatg-3' } \\ & 5^{\prime} \text {-catagcccttggtgaagcaatccctggcagatttg-3' } \end{aligned}$

3.2.1.3 Expression of HVDAC1-His ${ }_{6}$

All solutions, buffers and media were sterilised by filtration. Applied laboratory ware for bacterial cultivation was heat sterilized at $180^{\circ} \mathrm{C}$ for 3 h prior to utilization. All antibiotics were dissolved in 70% ethanol and stored at $-20^{\circ} \mathrm{C}$ until use. Antibiotics containing media were supplemented with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and if indicated additionally with $25 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin shortly before use. Antibiotics containing media are labelled in the following by the indices [media] ${ }^{\text {Amp }}$ or [media] ${ }^{\text {Amp/Kan }}$. If not indicated otherwise all cultures were grown in 100% deuterium oxide ($\mathrm{D}_{2} \mathrm{O}$; OntarioPower, Pickering, Canada).

3.2.1.3.1 Expression of ${ }^{2} \mathrm{H},{ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ labelled HVDAC1-His ${ }_{6}$

${ }^{2} \mathrm{H},{ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ labelled HVDAC1-His 6 was expressed in the Escherichia coli strain M15 [prep4] (Quiagen, Hilden; phenotype: E. coli $\mathrm{K} 12 \mathrm{NaI}^{\mathrm{S}} \mathrm{Str}^{\mathrm{S}} \mathrm{Rif}^{\mathrm{S}} \mathrm{Thi}^{-} \mathrm{Lac}^{-}$ $\mathrm{Ara}^{+} \mathrm{Gal}^{+} \mathrm{Mtl}^{-} \mathrm{F}^{-} \mathrm{RecA}^{+} \mathrm{Uvr}^{+}$Lon $^{+}$; carries prep4 (lacI encoding repressor plasmid)). Cells were grown in M9 minimal medium (see Table 6). According to labelling requirements, ammonium chloride and glucose have been replaced by ${ }^{15} \mathrm{~N}$ Ammonium Chloride (${ }^{15} \mathrm{~N}, 99 \%$; Larodan Fine chemicals, Malmö, Sweden) and ${ }^{13} \mathrm{C}$ -D-Glucose (${ }^{13} \mathrm{C} 6,99 \%$; D7, $97-98 \%$; Larodan Fine chemicals, Malmö, Sweden) in the expression cultures. Labelled compounds containing media are in the following indicated as ${ }^{15} \mathrm{~N}$-[media] and ${ }^{15} \mathrm{~N}{ }^{13} \mathrm{C}$-[media], respectively.

Pre-cultures of PDS/RBSII-VDAC1His6 transformed E. coli DM15 (prep4) cells were initially grown on non-deuterated $\mathrm{M} 9^{\mathrm{Amp} / \mathrm{Kan}}$ at $37^{\circ} \mathrm{C}$ and 200 rpm overnight. In order to adapt the culture to $\mathrm{D}_{2} \mathrm{O}$ based media the cells were consecutively inoculated to ${ }^{2} \mathrm{H}-\mathrm{M} 9^{\text {Amp/Kan }}$ with a $\mathrm{D}_{2} \mathrm{O}$ content of 70,80 and at last 100%. Each culture was thereby incubated for 24 h at $37^{\circ} \mathrm{C}$ and 200 rpm . After adaption, 1.51 expression cultures of $\left[{ }^{2} \mathrm{H},{ }^{15} \mathrm{~N}\right]-\mathrm{M} 9^{\text {Amp/Kan }}$ or $\left[{ }^{2} \mathrm{H},{ }^{15} \mathrm{~N},{ }^{13} \mathrm{C}\right]-\mathrm{M} 9{ }^{\text {Amp/Kan }}$ were inoculated to an OD_{600} of 0.1 AU and incubated in 51 baffled Erlenmeyer flasks at $37^{\circ} \mathrm{C}$ and 200 rpm . Adding IPTG to a final concetration of 1 mM at an OD_{600} of 0.8 AU induced HVDAC I-His ${ }_{6}$ inclusion body formation. Cells were harvested 8 h after induction by centrifugation at 5000 g for 30 min , shock frozen in liquid N_{2} and stored at $-70^{\circ} \mathrm{C}$.

3.2.1.3.2 Expression of selective labelled HVDAC1-His 6

Selective labelled HVDAC1-His ${ }_{6}$ was expressed in the amino transferase negative Escherichia coli strain DL39 [prep4]. E. coli DL39 [prep4] was constructed by transformation of E. coli DL39 CGSC\#:6913 (CGSC, Yale, USA; phenotype: F araD139 D(argF-lac)Ui69 rpsL150 relA1 thiA zei-724: :Tn10 glpR gyrA D(glpT$g l p A) 593$) with the prep4 plasmid via electroporation. The prep4 plasmid was purified from E. coli M15 [prep4] (Quiagen, Hilden) overnight cultures using the Qiaprep ${ }^{\circledR}$ Miniprep protocol as recommended by Quiagen ${ }^{\mathrm{TM}}$.
E. coli DL39 was grown in algal extract supplemented (AES) media ${ }^{[71]}$ (Table 10, 11, 12). Selective labelling was achieved by adding the respective labelled amino (Table 13) acids 15 min prior to induction in a tenfold access compared to the algal extract source to the expression culture.

Table 10 Algal extract supplemented media (AES media) ${ }^{[71]}$

substance	amount
M9 Salt deuterated (10x) v.s.	100 ml
Glucose (10\% w/v)	10 ml
$\mathrm{MgSO}_{4}(0.1 \mathrm{M})$	20 ml
L-leucine	0.25 g
Vitamin mix	5 ml
Trace element solution	1 ml
Deuterated algal lysate amino acid mixture $(10 \% \mathrm{w} / \mathrm{v})^{*}$	
$\mathrm{D}_{2} \mathrm{O}$	Ad up to

*) The deuterated algal lysate amino acid mixture was produced and characterised at the MPI of Biochemistry; Dept. of Membrane Biochemistry as described in ${ }^{[72]}$. \#) Preparatory cultures and overproduction cultures contained 30 ml and 10 ml of the algal extract, respectively. ${ }^{\$}$) The overproduction culture for selective leucine labelling contained no unlabeled leucine.

Table 11 Vitamin mix

substance	amount
Thiamine $\left(\mathrm{B}_{1}\right)$	100 mg
d-biotin (H)	20 mg
Choline bromide	20 mg
Folic acid $\left(\mathrm{B}_{9}\right)$	20 mg
Niacin amide $\left(\mathrm{B}_{3}\right)$	20 mg
d-panthotenic acid $\left(\mathrm{B}_{5}\right)$	20 mg
Pyridoxal $\left(\mathrm{B}_{6}\right)$	20 mg
Riboflavin $\left(\mathrm{B}_{2}\right)$	20 mg
Tris-base $($ saturated $)$	
$\mathrm{D}_{2} \mathrm{O}$	Ad up to

Table 12 Trace element solution

substance	amount
$\mathrm{HCl}(5 \mathrm{M})$	16 ml
$\mathrm{FeCl}_{2} \times 4 \mathrm{H}_{2} \mathrm{O}$	10 g
$\mathrm{CaCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}$	370 mg
$\mathrm{H}_{3} \mathrm{BO}_{3}$	130 mg
$\mathrm{CoCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}$	36 mg
$\mathrm{CuCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}$	8 mg
ZnCl_{2}	680 mg

substance	amount	
$\mathrm{Na}_{2} \mathrm{MoO}_{4} \times 2 \mathrm{H}_{2} \mathrm{O}$	1.21 g	
$\mathrm{MnCl}_{2} \times 4 \mathrm{H}_{2} \mathrm{O}$		80 mg
$\mathrm{D}_{2} \mathrm{O}$	Ad up to	1000 ml

Table 13 Labeled amino acids

Amino Acid (AA)	Amount AA per $\mathbf{5 0 0} \mathrm{ml}$ expression culture
L-Methionine (15N, 95-99\%)*	90 mg
L-Leucine (U-13C6, 98\%; 15N)*	80 mg
L-Isoleucine (U-13C6,98\%; 15N, 98\%)*	50 mg
L-Phenylalanine (15N, 98\%)*	150 mg
L-Valine (U-13C5,98\%; 15N)*	70 mg
DL-Lysine 2HCl (15N2, 98\%)	
L-Tyrosine (15N, 98\%)	250 mg
L-Arginin $\mathrm{HCl}(15 \mathrm{~N} 4,98 \%)^{\#}$	80 mg
DL-Alanine (15N, 98\%)	100 mg

Amino acids were purchased from *) Euriso-top, Saint-Aubin Cedex, France. *) OMNI Life Science, Bremen. ${ }^{\$}$) Sigma-Aldrich, St. Louis, USA.

Pre-cultures of PDS56/RBSII-VDAC1His6 transformed E. coli DDL39 (prep4) cells were initially grown overnight in partially deuterated $\mathrm{AES}^{\text {Amp/Kan }}$ at $37^{\circ} \mathrm{C}$ and 200 rpm . In order to adapt the culture to $\mathrm{D}_{2} \mathrm{O}$ based media the cells were consecutively inoculated to $\mathrm{AES}^{\mathrm{Amp/Kan}}$ with a $\mathrm{D}_{2} \mathrm{O}$ content of 70,80 and at last 100%. Each culture was thereby incubated for 24 h at $37^{\circ} \mathrm{C}$ and 200 rpm . After adaption, 2.01 pre-cultures of $\mathrm{AES}^{\mathrm{Amp} / K a n}$ were inoculated to an OD_{600} of 0.1 AU and incubated in 51 buffled Erlenmeyer flasks at $37^{\circ} \mathrm{C}$ and 200 rpm . At an OD_{600} of 0.5 AU , cells were harvested by centrifugation at 5000 g for 30 min and resuspended in $500 \mathrm{ml}{ }^{2} \mathrm{H}-\mathrm{M} 9$. The cells were harvested again at 5000 g for 30 min and resuspended in $500 \mathrm{ml} \mathrm{AES}^{\mathrm{Amp} / \mathrm{Kan}}$ for overproduction. The expression culture was further incubated in 2.51 buffled Erlenmeyer flasks at $37^{\circ} \mathrm{C}$ and 200 rpm . After 45 min of incubation the culture was supplemented with the labelled amino acid and
further 15 min later with IPTG to a final concentration of 1 mM . Cells were harvested 12 h after induction by centrifugation at 5000 g for 30 min , shock frozen in liquid N_{2} and stored at $-70^{\circ} \mathrm{C}$ until further use.

3.2.1.4 Purification and refolding of HVDAC1-His ${ }_{6}$

3.2.1.4.1 Purification of $\mathrm{HVDAC1}-\mathrm{His}_{6}$ inclusion bodies

Cells were resuspended in buffer $1(100 \mathrm{mM}$ Tris/ $\mathrm{HCl} \mathrm{pH} 7,5 ; 1 \mathrm{mM}$ EDTA; 5 mM DTT, $100 \mathrm{mM} \mathrm{NaCl}, 0.2 \mathrm{mM}$ PMSF) and incubated with $0,1 \mathrm{mg} / \mathrm{ml}$ Lysozym for 0.5 h . After addition of $1 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mathrm{mM} \mathrm{MnCl} 2$ and $0.05 \mathrm{mg} / \mathrm{ml}$ DNAse I the cells were finally lysed by two French press passes. Inclusion bodies were harvested by centrifugation at 5000 xg for 30 min at $4^{\circ} \mathrm{C}$. The pellet was resuspended in buffer 1 containing $3 \% \mathrm{w} / \mathrm{v}$ OPOE, stirred for 2 h at room temperature and pelleted by centrifugation at 5000 xg for 30 min at $4^{\circ} \mathrm{C}$ followed. Finally the pellet was washed with buffer 1 to remove detergent contaminations. Inclusion bodies were then solubilized in buffer 2 ($100 \mathrm{mM} \mathrm{Tris/HCl} \mathrm{pH} 7,5 ; 1 \mathrm{mM}$ EDTA; 5 mM DTT, 6 M guanidinium chloride) and insoluble material was removed by centrifugation at 100000 xg for 45 min . The denatured HVDAC $\mathrm{I}-\mathrm{His}_{6}$ protein containing supernatant was adjusted with buffer 2 to $15 \mathrm{mg} / \mathrm{ml}$ and stored at $-70^{\circ} \mathrm{C}$.

3.2.1.4.2 Refolding of denatured HVDAC1-His 6

HVDAC I-His 6 refolding was performed at $4^{\circ} \mathrm{C}$ by dropwise dilution of solubilized protein in buffer $3(100 \mathrm{mM}$ Tris $/ \mathrm{HCl} \mathrm{pH} 8,0 ; 1 \mathrm{mM}$ EDTA; 5 mM DTT, $1 \% \mathrm{w} / \mathrm{v}$ LDAO) until a final concentration of 0.6 M guanidinium chloride was reached. The resulting protein solution was stirred over night at $4^{\circ} \mathrm{C}$, centrifuged at 100000 xg for 45 min and finally 5-fold diluted with buffer 4 (100 mM phosphate buffer pH 7.5).

3.2.1.4.3 Purification of refolded HVDAC1-His 6

The HVDAC I-His 6 $_{6}$ protein was bound to a $5 \mathrm{ml} \mathrm{Ni}^{2+}$-Sepharose HP column (GE Healthcare), washed with 100 ml buffer 5 (20 mM phosphate buffer $\mathrm{pH} 7,5 ; 20$ mM imidazole; $0,2 \%$ LDAO $)$ and afterwards eluted by 50 ml buffer $6(20 \mathrm{mM}$ phosphate buffer $\mathrm{pH} 7,5 ; 300 \mathrm{mM}$ imidazole; $0,2 \%$ LDAO).

3.2.1.5 Preparation of HVDAC1-His ${ }_{6}$ NMR samples

HVDAC I-His ${ }_{6}$ containing fractions were verified by SDS PAGE and pooled. After determination of the protein concentration at 280 nm wavelength, the HVDAC1-His ${ }_{6}$ sample was supplemented with a certain amount of a 15% LDAO solution, depending on the HVDAC1-His 6 concentration. The LDAO volume was adjusted in a way that after concentration of the protein to 0.6 mM the LDAO concentration was 6%. After LDAO addition the sample was dialysed against buffer 7 (25 mM BisTris $/ \mathrm{HCl} \mathrm{pH} 6.5,0.2 \% \mathrm{LDAO}$) for 4 h and concentrated with a centrifugal filter device (Amicon Ultra- 30k, Millipore) to a protein content of 0.6 mM HVDAC I-His 6 . NMR samples were further supplemented with 0.05% sodium azide and stored at $4{ }^{\circ} \mathrm{C}$ until measurement.

3.2.2 NMR samples

NMR spectra of HVDAC were recorded from different samples. They all contained 0.6 mM HVDAC in an aqueous solution of 25 mM BisTris buffer, pH 6.8 , and approx. 250 mM Lauryldimethylamine-oxide (LDAO), with $10 \% \mathrm{D}_{2} \mathrm{O}$. Assignment spectra were measured on a perdeuterated and ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-labelled HVDAC sample. ${ }^{15}$ N-edited NOESY spectra were measured from a perdeuterated and ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$ labelled and an approx. 75% deuterated ${ }^{15} \mathrm{~N}$-labelled sample. Additionally the 75%
deuterated sample was lyophilised and redissolved in $100 \% \mathrm{D}_{2} \mathrm{O}$. TROSY-HSQC spectra were measured from different amino acid specific ${ }^{15} \mathrm{~N}$ and ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-labelled samples, respectively: ${ }^{2} \mathrm{H}-\mathrm{HVDAC}-{ }^{15} \mathrm{~N}$-Met- ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-Leu- ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-Ile, ${ }^{2} \mathrm{H}$-HVDAC${ }^{15} \mathrm{~N}^{13} \mathrm{C}$-Val, ${ }^{2} \mathrm{H}-\mathrm{HVDAC}-{ }^{15} \mathrm{~N}$-Tyr, ${ }^{2} \mathrm{H}-\mathrm{HVDAC}-{ }^{15} \mathrm{~N}$-Ala, ${ }^{2} \mathrm{H}-\mathrm{HVDAC}-{ }^{15} \mathrm{~N}$-Phe, ${ }^{2} \mathrm{H}-$ HVDAC- ${ }^{15} \mathrm{~N}$-Lys, ${ }^{2} \mathrm{H}-\mathrm{HVDAC}-{ }^{15} \mathrm{~N}$-Arg. Furthermore TROSY-HSQC spectra were measured from different HVDAC mutants: C130S, C235S, C235SV20C, C235SL34C, C235SC130SS49C, C235SC130SS263C. All mutants were approx. 75% deuterated and ${ }^{15} \mathrm{~N}$-labelled.

3.2.3 NMR Spectroscopy

All spectra were recorded at $37^{\circ} \mathrm{C}$ on either Bruker 600,800 or 900 MHz spectrometers equipped with cryogenic probeheads. Three different TROSY-type triple resonance experiments were recorded: HNCA, HNCO and multiple quantum (mq) HNCOCA. Additionally ${ }^{15} \mathrm{~N}$-edited ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY-TROSY ${ }^{[73]}$ spectra and an mixed-time parallel evolution HMQC-NOESY ${ }^{[74]}$ spectrum were recorded. The summary of which spectrum was measured on which sample can be found in Table 14. Paramagnetic relaxation enhancement (PRE) data were gained by measuring TROSY-HSQC spectra of MTSL-labelled single cysteine mutants (see 2.2.3.8) of HVDAC and the corresponding reference spectrum without MTSL. Dynamics were studied by measuring steady state heteronuclear ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs in a TROSY version ${ }^{[75]}$ in an interleaved manner. The molecular weight of the protein/micelle complex was estimated by recording a ${ }^{15} \mathrm{~N}$-edited 1D T1 ρ experiment. The NMR data were processed and analyzed using NMRPipe, NMRDraw ${ }^{[76]}$ and SPARKY (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco, CA).

Table 14 Assignment- and NOESY-spectra

Sample	Experiment	Experimental details	Spectrometer	Remarks
${ }^{2} \mathrm{H}(99 \%){ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$	TROSY-HNCA	$45 \times 25 \times 512$ pts, NS 60	$900^{\text {cryo }}$	
${ }^{2} \mathrm{H}(99 \%) /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$	TROSY-HNCA	$47 \times 25 \times 512 \mathrm{pts}$, NS 56	$900{ }^{\text {cryo }}$	distinguish noise peaks
${ }^{2} \mathrm{H}(99 \%) /{ }^{13} \mathrm{C} \mathrm{C}^{15} \mathrm{~N}$	TROSY-HNCA	$42 \times 18 \times 512$ pts, NS 80	$800^{\text {cryo }}$	optimised to ${ }^{2} \mathrm{~J}_{\mathrm{N}-\mathrm{C}_{\alpha}}$
${ }^{2} \mathrm{H}(99 \%) /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$	TROSY-HNCO	$30 \times 30 \times 512$ pts, NS 36	$600^{\text {cryo }}$	
${ }^{2} \mathrm{H}(99 \%) /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$	mq-TROSY- HNCOCA	$12 \times 20 \times 512 \mathrm{pts}$, NS 268	$600^{\text {cryo }}$	
${ }^{2} \mathrm{H}(99 \%) /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$	15 N -NOESY- TROSY	94x20x512 pts, NS 32, 160 ms mixing time	$800^{\text {cryo }}$	high resolution, low sensitivity
${ }^{2} \mathrm{H}(75 \%) /{ }^{15} \mathrm{~N}$	15 N -NOESYTROSY	$60 \times 25 \times 512$ pts, NS 48 , 100 ms mixing time	$900{ }^{\text {cryo }}$	low resolution, high sensitivity
$\begin{aligned} & \left.{ }^{2} \mathrm{H}(75 \%)\right)^{15} \mathrm{~N} \quad \text { in } \\ & 100 \% \mathrm{D}_{2} \mathrm{O} \end{aligned}$	15 N -NOESYTROSY	$53 \times 25 \times 512$ pts, NS 48 , 180 ms mixing time	$900{ }^{\text {cryo }}$	$\mathrm{D}_{2} \mathrm{O}$ exchange
${ }^{2} \mathrm{H}(50 \%) /{ }^{15} \mathrm{~N}$	15N-NOESY- TROSY	$107 \times 19 \times 512$ pts, NS 32 , 90 ms mixing time	$900{ }^{\text {cryo }}$	
$\begin{aligned} & { }^{2} \mathrm{H}(75 \%) /{ }^{15} \mathrm{~N} \\ & \mathrm{C} 235 \mathrm{SV} 20 \mathrm{C} \end{aligned}$	15N-NOESYHMQC	$91 \times 25 \times 512$ pts, NS 26 , 120 ms mixing time	$800^{\text {cryo }}$	

3.2.4 Structure determination by NMR Spectroscopy and X-ray

crystallography

The backbone resonance assignment of the NMR-spectra was achieved based on C α chemical shifts and interstrand $\mathrm{HN}-\mathrm{HN}$ NOEs. Amino acid specific ${ }^{15} \mathrm{~N}$ labelling, chemical shift perturbations due to mutations and PRE data helped with the assignment process. Based on the interstrand $\mathrm{HN}-\mathrm{HN}$ NOEs a topology model for the backbone with atomic resolution was built.

Parallel to the NMR-investigations HVDAC 1 was crystallised by Thomas Meins for X-ray structure determination. The used SeMet and Pt MAD data sets were collected at the ESRF beamlines ID29 and ID23-1. During the data collection, crystals were maintained at 100 K by a gaseous nitrogen stream. Diffraction data was integrated with MOSFLM ${ }^{[77]}$, XDS $^{[78]}$ and d*TREK ${ }^{[79]}$. Data scaling and merging was done with SCALA ${ }^{[80]}$ and prepared by SHELXC for heavy atom substructure determination in SHELXD ${ }^{[81]}$. Refinement of Se and Pt sites as well as the phase probability calculations were carried out in $\operatorname{SHARP}^{[82]}$. Subsequent density modification using different values for solvent content was done with SOLOMON ${ }^{[83]}$. Further phase improvement was attempted using inter-crystal averaging of
isomorphous datasets with DMMULTI ${ }^{[84]}$. Map interpretation was started by placing poly-alanine fragments of high-resolution beta barrel protein structures (PDB ID 1PRN, 2F1C) in B-factor sharpened ${ }^{[85]}$ electron density maps with MOLREP ${ }^{[86]}$. Subsequent manual placement of further beta-sheets and iterative model building and geometry refinement was performed with $\mathrm{O}^{[87]}$ and $\mathrm{COOT}^{[88]}$, respectively. This resulted in a poly-alanine structural model of HVDAC. The alanines were exchanged manually to the correct amino acid based on the NMR-derived topology model. The starting point for this exchange was the selenium site M132. The rest of the molecule was then oriented and remodelled according to the interstrand $\mathrm{HN}-\mathrm{HN}$ NOEs, which were translated in hydrogen bonds and the selenium sites, M158 and M230 in COOT. Positioning of the predicted N -terminal helix was done by fitting a model helix into a corresponding portion of the electron density map. Orientation and fitting of the α helix was verified through the selenium site of M13.

3.3 Results

3.3.1 NMR Resonance Assignment Strategy

Because of strong relaxation, the standard heteronuclear $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right)$ assignment strategy ${ }^{[89]}$ was very difficult to use. Out of this standard experiments the HNCA and the HNCO could be recorded. Therefore sequential information was only available for CA chemical shifts. Problematic was the fact, that only 50% of the expected CAi-1 peaks were present in the HNCA spectrum. Therefore, based on the HNCA spectrum, an overall sequential resonance assignment of 50% could maximally be achieved. To circumvent this, a modified version of the HNCA was recorded. Usually in an HNCA the insensitive nuclei enhancement by polarisation
transfer (INEPT) from N to CA is optimised to the ${ }^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}}$ coupling. This is done by maximising the term, in which the ${ }^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}}$ is modulated by the sinus:

$$
\begin{equation*}
2 \mathrm{~N}_{\mathrm{y}} \mathrm{CA}_{\mathrm{z}} \operatorname{Sin}\left[\pi \cdot{ }^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}} \cdot \mathrm{t}\right] \cdot \operatorname{Cos}\left[\pi \cdot{ }^{2} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}} \cdot \mathrm{t}\right] \cdot \operatorname{Exp}\left[-\mathrm{t} / \mathrm{T}_{2}\right] \tag{13}
\end{equation*}
$$

T_{2} is the transverse relaxation time, and t is the INEPT delay. To enhance the CAi-1 peak, the term, in which the ${ }^{2} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}}$ is modulated by the sinus, has to be maximised:

$$
\begin{equation*}
2 \mathrm{~N}_{\mathrm{y}} \mathrm{CA}_{\mathrm{z}} \operatorname{Sin}\left[\pi \cdot{ }^{2} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}} \cdot \mathrm{t}\right] \cdot \operatorname{Cos}\left[\pi \cdot{ }^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}} \cdot \mathrm{t}\right] \cdot \operatorname{Exp}\left[-\mathrm{t} / \mathrm{T}_{2}\right] \tag{14}
\end{equation*}
$$

${ }^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}}$ was set to $10.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{N}-\mathrm{CA}}$ to 8.3 Hz . T_{2} was estimated from $\mathrm{T} 1 \rho$ measurements and was set to 25 ms . This lead to a maximum at $\mathrm{t}=15.6 \mathrm{~ms}$. The resulting HNCA spectrum displayed 60% of the expected CAi-1 peaks. Further improvement in the number of CAi-1 peaks could be obtained by recording a multiple quantum version of a TROSY-HNCOCA, which was kindly provided by Roland Riek (Salk Institute, La Jolla). This finally led to 70% of the expected CAi-1 peaks, which gives rise to a sequential resonance assignment limit of 70%, based on the HNCA.

The chemical shift dispersion of CA's is approx. $21 \mathrm{ppm}^{[38]}$. Compared to the approx. 55 ppm dispersion of the CB's this is rather small. This leads to the fact that CA chemical shifts appear for the most amino acids in a very similar range. Consequently the amino acid type cannot be unambiguously established from CA chemical shifts alone. This problem was solved by the preparation of different amino acid specific ${ }^{15} \mathrm{~N}$ or ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-labelled samples. Initially a sample design as proposed by Shi et al. ${ }^{[90]}$ was planned. They choose two amino acids for ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-labelling, which can be readily distinguished by their carbon chemical shifts. Additionally, a third amino acid was ${ }^{15} \mathrm{~N}$-labelled. With such a sample the amino acid type of three residues can be established. Furthermore sequential information can be gained for the two ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-labelled residues from e.g. HNCA spectra, if they appear pairwise in the sequence. Based on this scheme a ${ }^{15} \mathrm{~N}$-Met, ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-Leu and ${ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-Ile (ILM)
labelled HVDAC sample was prepared. Unfortunately the concentration of ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ labels was too low to record a HNCA spectrum. Nevertheless, the ${ }^{15} \mathrm{~N}$-TROSYHSQC spectrum of the ILM labelled sample, which ran for 35 h , exhibited 41 of the 43 expected peaks (95%). Therefore following selectively labelled samples contained only 1 amino acid, which was ${ }^{15} \mathrm{~N}$-labelled (see 3.2.2). Figure 4 shows the overlay of the TROSY-HSQC spectra for the different selectively labelled samples.

Fig. 4 Overlay of the TROSY-HSQC spectra for the amino acid specific labelled HVDAC samples.

A further problem, which is caused by the low dispersion of the CA chemical shifts, is the strong ambiguity in the sequential information. Every CA frequency appears very often in the spectrum (Fig. 5). Therefore the major effort during assignment was to exclude wrong connectivities. On the one hand this was done based on the selectively labelled samples, on the other hand mutations were helpful, which caused chemical shift perturbations in the NMR-spectra. These perturbations
appear only for residues, which upon mutation experience a different electronic environment, i.e. residues close to the mutation site. Moreover, single cysteine mutants have been modified with the paramagnetic spin label MTSL (2.2.3.8). Due to paramagnetic relaxation enhancement, peak intensities of residues, which are closer than $20-25 \AA$ to the spin label, are reduced ${ }^{[13]}$. This helped both for the sequential assignment and for the establishment of the topology model.

Fig. 5 Strips from the TROSY-HNCA spectrum. The blue bar points out peaks with, in the range of the error, similar CA chemical shifts.

Mainly, the topology model relied on HN-HN interstrand long range NOE's. Additionally the HN-HN NOE's were used to verify the sequential assignment. If inter-strand NOE's could be established, the sequential assignment was considered to be reliable. To maximise the information from NOE's $5{ }^{15} \mathrm{~N}$-edited NOESY spectra were recorded on different samples (see Table 14). The samples were either 50, 75 or 99 \% deuterated. The NOESY-TROSY spectrum of the 99% deuterated sample displayed only $\mathrm{HN}-\mathrm{HN}$ crosspeaks, the 75% had additional crosspeaks to aromatic
and very few to HA protons. Due to strong relaxation, no additional information was gained from the 50% deuterated sample. Initially it was prepared to observe sequential HN-HA crosspeaks. To reduce overlap and determine residues, which are involved in tight hydrogen bonds, one NOESY-TROSY was recorded in $100 \% \mathrm{D}_{2} \mathrm{O}$. Because of rapid exchange of the amide protons with the solvent only 19 crosspeaks could still be observed. The NOESY-TROSY spectra were recorded either with low resolution and higher sensitivity or vice versa. In addition to the NOESY-TROSY spectra one HMQC-NOESY ${ }^{[74]}$ spectrum was recorded on the C235SV20C mutant of HVDAC. In this spectrum the frequency labelling of the NOE-crosspeaks takes place in the direct dimension and therefore the crosspeak-frequency is very well resolved.

Only the combination of all information from the different assignment and NOESY spectra and from various selectively labelled and mutant samples made the assignment process and the establishment of the topology model possible.

3.3.2 Resonance Assignment and Secondary Structure

The molecular weight of the HVDAC/LDAO complex was estimated by $\mathrm{T} 1 \rho$ measurements (see 2.2 .5 .5) to be approx. 100 kDa . For a complex of that size, the ${ }^{15} \mathrm{~N}$ TROSY-HSQC of HVADC displayed excellent chemical shift dispersion indicative of a well folded protein composed mainly of β-strands (Fig. 6). Out of the 288 expected signals of the fully ${ }^{15} \mathrm{~N}$ labelled sample $247(86 \%)$ could be observed.

Fig. $6{ }^{15} \mathrm{~N}$ TROSY-HSQC spectrum of 0.6 mM HVDAC in approx. 250 mM LDAO micelles in 25 mM BisTris buffer, pH 6.8 . The spectrum was recorded on a 900 MHz spectrometer equipped with cryogenic probehead at 310 K .

In total 56% of the backbone resonances were assigned (see Appendix A). Since only 86% of the peaks were observed in the TROSY-HSQC this corresponds to 65% of all possible assignments. In general the majority of assigned residues are in the Cterminal two thirds of the HVDAC, therefore the N-terminal third is less well defined. The assignment process was aided by site-directed mutations. The chemical shift perturbations of assigned residues upon mutations are exemplarily shown for the mutants C130S and C235S in Figure 7. Strong perturbations are observed for the mutated residue and its direct neighbours. Further away from the mutation site the perturbations decrease but appear again periodically. A linear anti-parallel β-strands fold can explain this behaviour. In such a case residues in adjacent β-strands cause the periodic reappearance of perturbations.

Fig. 7 Chemical shift changes of HN and N upon mutation to either C130S or C235S. Only assigned residues are plotted.

Secondary structure elements were identified by the difference of the observed CA and C^{\prime} chemical shifts to random coil values ${ }^{[30]}$ (see 2.2.5.1) (Fig. 8).

Fig. 8 Secondary chemical shifts of CA and C' for HVDAC plotted against the residue number.

The majority of secondary chemical shifts are negative. These negative shifts cumulate in most cases. Consequently HVDAC consists mainly of β-strands. Small positive values found between the β-strands indicate loop regions. The biggest positive values are located in the N -terminus, which agrees with the predicted N terminal α-helix.

3.3.3 Solvent Accessibility And Dynamics

In order to probe the solvent accessibility of single residues in HVDAC, a $\mathrm{D}_{2} \mathrm{O}$ exchange experiment was performed (see 2.2.5.3). The first TROSY-HSQC spectrum was recorded 1 h after dissolving the sample in $\mathrm{D}_{2} \mathrm{O}$. It displayed 91 peaks, which is 32% of all resonances (Fig. 9). Out of these 91 resonances 90 have been assigned.

Only three of them correspond to residues, which are located in the N -terminal third of HVDAC. These are L29, I30 and K31. This indicates, that hydrogen bonds in the

Fig. 9 TROSY-HSQC of HVDAC in $100 \% \mathrm{D}_{2} \mathrm{O}$, recorded 1 h after solvation in $\mathrm{D}_{2} \mathrm{O}$. Assigned residues are labelled with the one letter amino acid code.

N-terminal third of HVDAC are weaker than in the rest of the protein. This implies, that the secondary structure is less pronounced, or that enhanced flexibility can be observed for the N -terminal third of HVDAC. The $\mathrm{D}_{2} \mathrm{O}$-exchange data correlate very well with secondary structure determined by secondary chemical shift analysis (Fig. 10a). In most cases residues with strong negative secondary chemical shift do not exchange with $\mathrm{D}_{2} \mathrm{O}$ after 1 h . This indicates a β-strand. In all cases where assignment is available, β-strands are flanked by residues, which exchange with water after 1 h .

This corresponds to loops or turns, which connect the β-strands. From this analysis 13 β-strands can unambiguously be established. These are between residue 286 - 281, $266-260,252-246,240-236,228-223,212-205,197-193,188-183,176-$ 172, $158-152,148-142$ and $132-126$. An additional β-strand can be identified between residue 103 and 98. In this strand only two residues, T101 and F102, don't exchange with $\mathrm{D}_{2} \mathrm{O}$ after 1 h . This points out that already this strand is more flexible than the others. Furthermore, three fragments of β-strands can be identified in the N terminus. These are between residue $91-89,51-48$ and $33-31$. In these fragments only three residues don't exchange with $\mathrm{D}_{2} \mathrm{O}$ after 1 h . These are V90, T89 and K32. This again points out the enhanced flexibility of the N -terminus.

Additional proof for enhanced N -terminal flexibility stems from the measurement of heteronuclear NOEs (2.2.5.6) (Fig. 10b). Overall 62.5% of the steady state heteronuclear ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs are above 0.7 , indicating a well-ordered protein in solution. Residues with ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs above 1 are peaks with low signal to noise ratio. A more detailed analysis reveals, that for 61% of the residues in the N terminal third (from 1-96) and for 65% of the unassigned residues the ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs are below 0.7 (see Table 15). Since the majority of the assignments is in the Cterminus, this demonstrates that the N-terminal third of HVDAC is more mobile, than the rest of the protein. A closer inspection of the C-terminal part of HVDAC reveals, that 62% of the residues with higher flexibility are located in loop regions. Most pronounced is the loop between residues G268 and L278.

Table $15{ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOE values for HVDAC parts

	${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs below 0.7
N-terminus $(1-96)$	61%
C-terminus $(97-288)$	33% (of these are 62% located in loops)
unassingned residues	65%

Fig. 10 a) Secondary chemical shifts of CA and C' for HVDAC plotted against the residue number. Red bars indicate residues, which exchange with $\mathrm{D}_{2} \mathrm{O}$ after 1 h , blue bars, which don't exchange with $\mathrm{D}_{2} \mathrm{O}$ after 1 h . Black arrows indicate β-strands, grey arrows potential β-strand fragments. b) The ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs plotted against the residue number. The inlet shows the values for unassigned residues.

3.3.4 Topology model

The topology model of the β-strands given in Figure 11 is based on $\mathrm{HN}-\mathrm{HN}$ NOE connectivities, secondary chemical shift analysis and the amide proton exchanging behaviour with $\mathrm{D}_{2} \mathrm{O}$. The topology could unambiguously be determined

Fig. 11 Topology model of HVDAC. Amino acids are given in the one letter code. Red letters denote assigned, black letters unassigned residues. Black lines indicate HN-HN NOE connectivities. A check on top of the line refers to NOE-peaks, which are also present in $100 \% \mathrm{D}_{2} \mathrm{O}$. The abbreviation "n.r." on top of the line stands for not resolved NOEs, "aro" indicates NOEs of aromatic protons. Residues bordered blue, or light blue do not exchange with $\mathrm{D}_{2} \mathrm{O}$ after 1 h . Residues in squares are part of a β-strand. β-strands are based on $\mathrm{HN}-\mathrm{HN}$ NOE connectivities, secondary chemical shift analysis and the amide proton exchanging behaviour with $\mathrm{D}_{2} \mathrm{O}$. The β-strands could theoretically extend further because negative secondary chemical shifts are also found for some residues, which exchange rapidly with $\mathrm{D}_{2} \mathrm{O}$. Strands given in light grey and light blue feature increased flexibility. Residues in yellow boxes have side chains pointing towards the hydrophobic membrane, whereas white squares indicate side chains facing the hydrophilic channel pore. The β-strands are numbered from the N - to the C-terminus, numbers are given in magenta. The helix is based on the PSIPRED ${ }^{[91,92]}$ prediction and secondary chemical shift analysis.
for the 14 C -terminal β-strands. They are basically similar to the ones given in 5.3.3, including the more flexible β-strand between residue 98 and 103 . These 14β-strands
occupy $2 / 3$ of the sequence. Theoretically the β-strands could extend further because negative secondary chemical shifts are also found for some residues, which exchange rapidly with $\mathrm{D}_{2} \mathrm{O}$. Additionally 2 N -terminal β-strands were localised between residue $55-58$ and $29-33$, but the NOE connectivities are not unambiguous (Fig 11). Furthermore the secondary chemical shifts for the strand between 55 and 58 are not negative, except for V57. The helix is based on a prediction by the PSIPRED server ${ }^{[91,92]}$ (Fig. 23) and secondary chemical shift analysis.

3.3.4.1 Mutations that probe the position of the \mathbf{N}-terminal helix

The position of the N -terminal helix was probed by the mutation V20C and the corresponding chemical shift perturbation in the TROSY-HSQC spectrum. The residue V20 was predicted to be part of the α-Helix. The strongest perturbations upon this mutation are observed for residues close to V20. An additional cluster of strong effects can be located around residue A226. This region is indicated by a blue ellipsoid in Fig. 12. Additional effects can be observed for residues located in loops, opposite to the helix. Residues that show upon mutation chemical shift changes of HN and N bigger than 0.05 ppm are A17, R18, K23, G26, N114, I141, R166, T207, A226, Y228, A238, L262, Q285 (they are bordered in dark green in Fig. 12). Residues with perturbations between $0.035-0.05 \mathrm{ppm}$ are N40, K112, A137, A208, L211, Q229, K255, L265 (they are bordered in light green in Fig. 12).

Fig. 12 Effects due to the mutation V20C in the TROSY-HSQC spectrum mapped on the topology model of HVDAC. The green circle denotes the mutation site. Residues bordered dark green show chemical shift changes of HN and N bigger than 0.05 ppm , for residues bordered in light green the perturbations are between $0.035-0.05 \mathrm{ppm}$. The blue ellipsoid highlights the most clustered effects. The rest of the nomenclature is the same as in Figure 11.

Additionally PRE data of the mutant C130S (Fig. 13) probed the helix position. In this case the MTSL spin label was at the position C235. The signal to noise ratio of the TROSY-HSQC was very low. Therefore only peaks, which were broadened beyond detection, were actually counted as an effect. Residues specifically broadened beyond detection are: A17, R18, I30, G48, K56, K118-Y121, G129, D131, G143, A144, L205-A208, A225 - D231, A234 - K239, S244, G249 - T251, L260, L262 A264, G281, L282, Q285 (bordered dark blue in Fig. 13). Additionally some residues were unspecifically broadened beyond detection. These are residues which are not broadened beyond detection in the case of the wild type HVDAC with MTSL labels at positions C130 and C235. These residues are: Y25, I117, S196, L248, Q252, T261, K277, L278 (bordered light blue in Fig. 13). Therefore most effects are located in the
region around the mutation site. However, additionally the resonances of A17 and R18, which are located in the N-terminal helix, are broadened beyond detection.

Fig. 13 Effects due to spin labelling of the mutant C130S with MTSL at the position C235 in the TROSY-HSQC spectrum mapped on the topology model of HVDAC. The green circle denotes the position of the MTSL. Peaks of residues bordered dark blue are specifically broadened beyond detection. Peaks of residues bordered in light blue are unspecifically broadened beyond detection. The rest of the nomenclature is the same as in Figure 11.

3.3.5 Structure Determination of human VDAC by NMR and X-ray crystallography

In solution the N-terminus of HVDAC shows an enhanced flexibility, which leads to exchange broadening of the NMR signals. Thus for this part only partial assignment was possible, which was insufficient to build a reliable two-dimensional model. However, HN-HN NOE-crosspeaks could be unambiguously assigned for the 14 C-terminal β-strands. Therefore the β-barrel fold for this part of the protein could be established. Consequently a two-dimensional model with atomic resolution for the backbone was built. This was fitted into the electron density map, based on the
selenomethionine positions M132, M158 and M230. This resulting 3D-model is reliable because starting from any of the selenomethionine positions in the electron density and following the hydrogen bonds according to the NMR-topology model always results in the correct two other seleniummethionine positions in the electron density. Additionally all loops determined by NMR fit in the electron density envelope, if density is present at the corresponding position. Due to a resolution of $4 \AA$ building of this 3D-model of HVDAC would not have been possible without the NMR-topology model. Spare electron density, which does not belong to the 14β strands defined by NMR, gives rise to 4 additional N -terminal β-strands (Fig. 14).

Fig. 14 NMR/X-ray structure of human VDAC. A) The backbone is shown as a string. Red indicates residues which exchange with $\mathrm{D}_{2} \mathrm{O}$ after 1 h , blue indicates residues which don't exchange with $\mathrm{D}_{2} \mathrm{O}$ after 1 h . Electron density, which forms 4β strands in addition to the NMR-model, is shown in yellow.

In the present structure these sheets are between residues $27-35,54-64,67-76$ and $84-93$. This is consistent with the two ambiguous β-strands between residues
$31-33$ and $55-58$ and with the β-strand-fragment between residue 31 and 33 determined by NMR. The structure of human VDAC displays a typical β-barrel fold. It consists of 18 anti-parallel β-strands, which construct the β-barrel, and a N -terminal α-helix, which is located inside the barrel, close to the C-terminus (Fig. 15). The position of the helix is based on the electron density map. It is in agreement with the NMR-data, because V20 is located close to A226 in strand number 14 as can be seen from Fig 15.

Fig. 15 NMR/X-ray structure of human VDAC. It is a ribbon presentation of the backbone. Helices are marked in red and β-strands in cyan. The β-strands are numbered from the N - to the C -terminus, numbers are given in magenta. The position of V20 and A226 are indicated with the one letter amino acid code. The N-terminus is marked with a blue N , the C -terminus with a red C .

3.3.6 Functional investigation of HVDAC

To investigate the functional behaviour of HVDAC several titrations of effectors to a ${ }^{2} \mathrm{H},{ }^{15} \mathrm{~N}$-labelled HVDAC sample were carried out. After each titration point a 2D TROSY-HSQC spectrum was recorded.

3.3.6.1 ADP-Titration

VDAC is primarily responsible for nucleotide transport across the outer mitochondrial membrane (reviewed in ${ }^{[44]}$). To map potential interaction sites of nucleotides and HVDAC an ADP titration was performed. Chemical shift perturbations based on addition of ADP are mapped on the topology model in Figure 16. ADP was added up to a 16 -fold molar excess. Residues with chemical shift changes of HN and N upon ADP addition bigger than 0.02 ppm are: G26, K56, R123, N159, T185, A212, S237, A273, S288 (labelled with a green star in Fig. 16). In general, the effects are equally distributed over the whole channel.

Fig. 16 Effects in the TROSY-HSQC spectrum due to addition of ADP mapped on the topology model of HVDAC. Residues labelled with a green star show perturbations bigger than 0.02 ppm upon addition of a 16 -fold molar excess of ADP. The rest of the nomenclature is the same as in Figure 11.

3.3.6.2 Fluoxetine-Titration

Fluoxetine is a clinically used potent antidepressant ${ }^{[93]}$. It is known under trade names like Prozak ${ }^{\circledR}$ or Fluctin ${ }^{\circledR}$. Thinnes ${ }^{[94]}$ demonstrated that fluoxetine increases the
voltage dependence of HVDAC. In order to understand the interaction of fluoxetine with VDAC on an atomic level, a fluoxetine titration was performed.

Fig. 17 Effects in the TROSY-HSQC spectrum upon addition of the antidepressant fluoxetine mapped on the topology model of HVDAC. Residues labelled with a yellow circle show chemical shift changes of HN and N bigger than 0.025 ppm upon addition of a 32 -fold molar excess of fluoxetine. The blue ellipsoid highlight interaction sites with fluoxetine. The inlet shows the structure of fluoxetine. The rest of the nomenclature is the same as in Figure 11.

Chemical shift perturbations upon titration are mapped on the topology model of HVDAC in Fig. 17. Fluoxetine was added up to a 32 -fold molar excess. The most clustered effects with chemical shift changes of HN and N bigger than 0.025 ppm are found in the C-terminal loop from residue V271 and G274-L278. Additional effects can be observed in other loops on the same side. Affected residues are L42, D103, I136, R166, E192, F222, G223. Other affected residues are G26, F234 and K255.

3.3.6.3 Interaction of HVDAC with anti-apoptotic Bcl- $\mathbf{x}_{\mathrm{L}}{ }^{[47]}$

Malia et al. ${ }^{[47]}$ described the interaction of the anti-apoptotic protein Bcl- x_{L} with HVDAC. They presented an unassigned ${ }^{15} \mathrm{~N}$-TROSY-HSQC spectrum of ${ }^{2} \mathrm{H}$, ${ }^{15} \mathrm{~N}$-HVDAC in the presence of 50% Bcl- x_{L} (Fig. 18).

Fig. 18 ${ }^{[47]}$ Chemical shift perturbations of ${ }^{2} \mathrm{H},{ }^{15} \mathrm{~N}$-HVDAC in the presence of unlabeled $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$. The TROSY-HSQC spectrum of HVDAC in the absence (black) and presence (red) of $50 \% \mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$. Arrows indicate some of the major changes in the HVDAC spectrum.

Since HVDAC was reconstituted in LDAO micelles the TROSY-HSQC spectrum looks similar to the one shown in Fig. 6. Therefore the assignment could be transferred and the interaction site of HVDAC with Bcl- x_{L} was established. Fig. 19 shows major chemical shift perturbations upon addition of $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ as classified by Malia et al. mapped on the topology model of HVDAC.

Fig. 19 Chemical shift perturbations in the presence of $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}{ }^{[47]}$ mapped on the topology model of HVDAC. Residues, which are classified by Malia et al. to have major changes in the HVDAC spectrum, are labelled with a green hexagon. In the original publication these residues are pointed out with a black arrow in the unassigned TROSY-HSQC spectrum. The rest of the nomenclature is the same as in Figure 11.

These are: K56, T119, G151, A226, I230, D231, A234, G249, L254, T261, S263, A264. The majority of residues, which are affected by $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$, are located in the Cterminus between A226 and A264.

3.3.6.4 Interaction of HVDAC with pro-apoptotic Bid

Rostovtseva et al. ${ }^{[45]}$ reported, that pro-apoptotic Bid, which was activated by Caspase 8, induced channel closure of VDAC. To investigate the binding interface of Bid and HVDAC ${ }^{15} \mathrm{~N}$-TROSY-HSQC spectra of ${ }^{2} \mathrm{H},{ }^{15} \mathrm{~N}$-HVDAC in the presence of a 4-fold molar excess of unlabelled mouse Bid were recorded. Human and mouse Bid share 91.5% sequence identity (based on the sequences in the PDB files 2BID (human) and 1DDB (mouse)). Additionally a sample with MTSL-labelled Bid was prepared. The effects of Bid and Bid-MTSL on the TROSY-HSQC spectrum of

HVDAC are summarised in Fig. 20. On the one hand chemical shift and peak intensity changes upon Bid addition compared to the reference spectrum without Bid are plotted. On the other hand peak intensity changes are indicated, which additionally appear upon MTSL-labelling of Bid. Effects with Bid alone appear

Fig. 20 Chemical shift perturbations in the presence of mouse Bid mapped on the topology model of HVDAC. Residues with a peak intensity ratio <0.61 of the spectra with and without Bid are labelled with a magenta triangle. Residues, which upon Bid addition are broadened beyond detection, are labelled with a red triangle. Residues, which upon Bid addition show HN and N chemical shift changes >0.03, are labelled with a purple triangle. Residues with a peak intensity ratio <0.5 of the spectra with Bid and Bid-MTSL are labelled with a turquoise triangle. Residues, which upon MTSL labelling of Bid, are additionally broadened beyond detection are labelled with a green triangle. The rest of the nomenclature is the same as in Figure 11.
primarily in the C-terminal region starting from L205. Affected residues in this area are L205-T207, A212, A225 - I230, D233 - A234, F236, V240, I246 - G247, G249, Q252, T261 - S263, H276 and Q285 - A286. Interestingly, again residues in the N-terminal helix are affected together with the residues in the C-terminus. These are R18, K23 and Y25. Additional effects, which show up upon MTSL-labelling of Bid, appear like a semicircle around the region, which is also influenced by Bid alone.

These MTSL induced effects extend up to the N-terminus. Effected residues are I30, L32, N40, G48 - S49, V57, T63, D103, K116, E192, G223, L245, T251, Q252, S263 - A264, G275, L278 - G279, F284 and A286 - R287.

Addition of Bid to the HVDAC sample led to partial unfolding of HVDAC. However, HVDAC slowly refolded again and was completely folded after one month. Fig. 21 shows the first 1 D spectrum of a TROESY-HSQC of HVDAC after addition of Bid and of the same sample one month later.

Fig. 21 Overlay of the first 1 D spectra of a TROESY-HSQC of HVDAC directly after addition of Bid (red) and one month later (blue).

3.3.6.5 Calcium (II) chloride and Gadolinium (III) chloride-Titration

Gincel et al ${ }^{[95]}$. reported, that VDAC is highly permeable to Ca^{2+} and has $\mathrm{Ca}^{2+}-$ binding sites. In contrast, Ruthenium Red and lanthanides close the VDAC. The authors suggest, that the inhibition of mitochondrial Ca^{2+} uptake by Ruthenium Red and lanthanides results from their interaction with the Ca^{2+}-binding site. Israelson et. $\mathrm{al}^{[96]}$ established the Ca^{2+}-binding sites as E72 and E202 (E76 and E206 in the nomenclature used here) by interaction of VDAC with azido ruthenium. In order to
test these results a Ca^{2+}-titration was performed. However no major chemical shift perturbations or peak intensity changes could be observed upon addition of a 32 -fold molar excess of Ca^{2+}. Since it was suggested, that lanthanides interact with the $\mathrm{Ca}^{2+}-$ binding site of VDAC, an additional titration with GdCl_{3} was performed. Gd^{3+} is paramagnetic. Because of paramagnetic relaxation enhancement, the interaction of Gd^{3+} with HVDAC will have much stronger effects on the TROSY-HSQC than the interaction of Ca^{2+}. Thus the interaction site of Gd^{3+} with HVDAC could be established. It is mapped on the topology model in Fig. 22. Residues, which are

Fig. 22 Effects in the TROSY-HSQC spectrum upon addition of GdCl_{3} mapped on the topology model of HVDAC. Residues labelled with a purple cross are broadened beyond detection upon addition of an equimolar amount of GdCl_{3}. Purple crosses indicate peaks, which are very likely to be broadened beyond detection. They are in very overlapping regions. The rest of the nomenclature is the same as in Figure 11.
broadened beyond detection upon addition of an equimolar amount of Gd^{3+}, are in the majority observed at the C -terminus in the last 5β-strands. Affected residues are E204, K227-I230, A234-S237, G249 - Q252, L260 - A264 and Q281-L282. Additional effects can be observed for Y25, K56, K99.

3.4 Discussion

In this work, the structure of HVDAC was determined conjointly by NMRspectroscopy and X-ray crystallography. In addition, binding interfaces of HVDAC and different effectors were established.

3.4.1 The combination of NMR and X-ray crystallography for structure determination of membrane proteins

The structure elucidation of the human VDAC pushes both methods, NMR spectroscopy and X-ray crystallography, to their limits. As mentioned in the introduction, the major problem for solution NMR is the size limit. As molecular masses increase, NMR spectra become increasingly difficult to interpret because of spectral crowding and line broadening due to fast transverse relaxation ${ }^{[5]}$. The human VDAC has a molecular weight of 32 kDa and is reconstituted in LDAO detergent micelles. This leads to an overall molecular weight of approx. 80 to 120 kDa , as estimated from T1 ρ measurements. Additionally challenging is the fact, that the NMR measurements cannot be performed at a temperature higher than $37^{\circ} \mathrm{C}$. Since VDAC is a human protein it degrades above this temperature. Compared to other structural investigations of membrane proteins by NMR this temperature is still intermediate, e.g. spectra for the β-barrel protein PagP were recorded at $45^{\circ} \mathrm{C}^{[97]}$. This situation does not only make the resonance assignment difficult but most important, it makes long range distance restraints for structure calculations hard to obtain. Because of the strong relaxation it was not possible to attain accurate isotropic ${ }^{1} \mathrm{~J}_{\mathrm{HN}}$ couplings. Therefore the utilization of residual dipolar couplings (RDCs) as long-range restraints was impossible. This restricts long-range distance restraints to NOEs and paramagnetic relaxation enhancement data. Due to the high deuteration level the

NOEs are limited to $\mathrm{HN}-\mathrm{HN}$ crosspeaks. Nevertheless, in anti-parallel β-strands interstrand $\mathrm{HN}-\mathrm{HN}$ crosspeaks can be observed. These are sufficient to determine the global fold of a β-barrel. In general, a structure calculation from NMR data would be difficult and time consuming. Yet, to obtain a 2 dimensional model with atomic resolution is from this data, compared to the structure calculation, rather straightforward.

The biggest problem for X-ray crystallography is the fact that the so far obtained crystals of human VDAC I only diffract up to $4 \AA$. Nevertheless, it was possible to obtain an electron density map corresponding to about $4 \AA$ resolution. So far, the maps enabled the detection of the overall fold as well as several secondary structure elements in some areas of the electron density after b-factor sharpening. Unfortunately, the low resolution of the electron density map did not allow an exact tracing of the protein backbone. Hence, an initial map interpretation was only possible by placing poly-alanine fragments of high-resolution beta barrel protein structures into the more distinct defined portions of the electron density. The remaining somewhat ambiguous sites of the electron density map were further interpreted through the fitting of additional poly-alanine beta sheet fragments under consideration of the established beta barrel geometries. The final electron density map seems to be most consistently explained by an idealized 18 stranded beta barrel. In conclusion, this map only allowed the rough localisation of secondary structure elements, but not the placement of single amino acids.

In order to gain an extended molecular structure of the VDAC protein, the NMR derived topology was applied on the X-ray derived model. This was done by replacing manually the alanines of the X-ray model with the HVDAC sequence according to the NMR topology model. The resulting structure complies with both
restrains, interstrand $\mathrm{HN}-\mathrm{HN}$ NOEs and the selenium sites of M132, M158 and M230. Although the NMR topology structure covers only about two thirds of the whole barrel accurately, the derived hybrid model enabled a significantly improved interpretation of the electron density map. Until now, the electron density map could not be improved by the NMR-data. Nevertheless the resulting hybrid model is well suited for the ongoing structural refinement process.

In the end the combination of the local information from NMR-spectroscopy and the global information from X-ray crystallography yielded the structure of human VDAC. This clearly points out, that the combination of the two methods can be advantageous for the structure determination of integral membrane proteins.

3.4.2 NMR and X-ray Structure of HVDAC

The structure of human VDAC resembles the typical β-barrel fold (Fig. 23). It consists of 18 anti-parallel β-strands, which construct the β-barrel, and a N-terminal α-helix, which is located inside the barrel, pointing in the direction of the C-terminus. Additional proof, that the N -terminal helix is not part of the barrel wall, as proposed by other studies ${ }^{[63,65]}$, is given by NMR spectroscopy.

It was observed that the mutation V 20 C , which is located in the helix, affects the chemical shift of residues located in the 6 C -terminal β-strands (from strand number 13 to 18) around residue A226. If the helix would close the barrel and would be part of the barrel wall, this effect would very likely be restricted to residues in β strands next to the helix, for example sheet number one and eighteen. Noteworthy is the fact, that upon this mutation in the C-terminus mainly residues are affected, whose side chains point outside of the barrel wall towards the micelle. Therefore the amide

Fig. 23 Stereo view of the NMR/X-ray structure of human VDAC. It is a ribbon presentation of the backbone. Helices are marked in red and β strands in cyan. The Nterminus is marked with a blue N , the C -terminus with a red C .
bond of these residues is inside the barrel less shielded. This implies, that the helix is rather located inside the barrel, because stronger effects are observed for residues that are rather unshielded from the inside. Additional effects can be observed for residues located in loops, that are positioned on the top of the barrel, according to the presentation in Fig. 23. This can be due to another conformation because of the enhanced flexibility of the N -terminus.

Further support, that the helix is located in the neighbourhood of the Cterminal part stems from PRE data of the mutant C130S (Fig. 13). In this case the spin label is attached to C235. Most effects are located in the region around this mutation site. However, additionally the resonances of A17 and R18, which are located in the N-terminal helix, are broadened beyond detection. This indicates, that the helix is located close to residue C230 and therefore at the C-terminal side of HVDAC. Further effects can be observed around residue G129. In the presented topology model this region is located directly opposite to C 235 . The effects can be explained by the position of the MTSL tag. The side chain of C235 points to the inside of the barrel,
therefore also the MTSL points inward. Broadening effects of the MTSL can be observed up to $20-25 \AA^{[13]}$. The distance between the CA of C235 and the nitroxide radical is approx. $11 \AA$. Therefore the diameter of the barrel from backbone to backbone must be approx. between $31-36 \AA$. Otherwise no effects would be observed in a region opposite to the spin label. This distance correlates very well with the diameter of $35 \AA$ observed by X-ray crystallography. Another explanation for the effects around G129 can be an impurity of the sample, which would still contain C130. Consequently a spin-label would also be present at position C130 and would cause the line broadening around G129.

In addition to the mutational data, also the functional investigations indicated that the N -terminal helix is close to the C-terminal part. For example the proapoptotic Bid (Fig. 20) interacts most strongly with the C-terminal part of HVDAC but in addition also with residues located in the N -terminal α-helix.

3.4.3 Comparison of the human VDAC structure with existing models

Models, which are based on sequence alignment with bacterial porins ${ }^{[60-62]}$, suffer from the fact that the flexible N-terminal part differs significantly from the bacterial homologues. This is probably due to a widely observed extensive divergence of the primary sequences of β-barrels ${ }^{[98]}$. Therefore these methods are unlikely to give decent results for the human VDAC.

The model proposed by De Pinto et al. ${ }^{[64]}$ is based on analysis of amphipathic secondary structure elements and enzymatic digestion of hydrophilic, extramembranous segments of human VDAC. The authors suggest 16 transmembrane β-strands and a N-terminal α-helix, which lies on the membrane surface on the
cytosolic side (see Fig. 24A). The reported enzymatic cleavage sites are at P232, Y176, Y121 and K116. In our structure P232 is located in a loop, Y176 is vicinal to a loop, but Y121 and K116 are located in a β-strand (see Fig. 24B). Nevertheless, the β strand is directly adjacent to the flexible N -terminus and might therefore be accessible to proteases.

Fig. 24 A) Topology model of human VDAC from B-lymphocytes according to De Pinto et al. ${ }^{[64]}$ The loops contain the cleavage sites of protease V8, trypsin and chemotrypsin. B) Enzymatic cleavage sites of De Pinto ${ }^{[64]}$ mapped on the NMRderived topology model of human VDAC.

The model proposed by Blachly-Dyson et al. ${ }^{[63]}$ is based on site directed mutagenesis with subsequent electrophysiological investigation of yeast VDAC. They suggest that replacement of positively charged residues within the channel wall should change the selectivity of VDAC. Contrary a change in charge of residues located outside of the pore might not affect the selectivity. Residues, which upon mutation change the selectivity, are: D15, K19, D30, K46, K61, K65, K84, K95, R124, G179, K234, K248, T256, D282. These correspond to D19, K23, D33, S49, K64, T68, E87, K99, G129, H184, S237, T251, K269, Q285 in our human VDAC construct (see Fig. 25). Residues, which upon mutation don't change the selectivity, are: D51, K108, K132, D156, K174, K205, K211, E220, R252, K267, K274. These correspond to T54, K113, A137, E161, D179, N210, G216, G223, K255, N270, K267 in our human VDAC construct (see Fig. 25). In general, there is a good agreement between Blachly-Dysons data and our structure. Only the residues, for which the backbone is resolved on an atomic level, will be discussed here. The majority of residues for which mutation does not alter the selectivity are in our structure located in loops. The only exceptions are N 210 and G223, which are close in space. Additionally G223 is on the border of a β-strand. Likewise all residues, which upon mutation do alter the selectivity, are in our structure located in β-strands or at the border of one. Furthermore residues, which are located in the N -terminal α-Helix, change the selectivity upon mutation. Since in our structure the helix is located inside the barrel this is as well in good agreement with the presented data.

Fig. 25 A) Topology model of yeast VDAC according to Blachly-Dyson et al. ${ }^{[63]}$. Residues for which mutation altered selectivity are boxed; residues for which the mutation left the selectivity unchanged are circeld. B) Mutation sites of BlachlyDyson ${ }^{[63]}$ mapped on homologous residues in the NMR-derived topology model of human VDAC. Residues for which mutation altered selectivity are encircled green; residues for which the mutation left the selectivity unchanged are encircled magenta.

Columbini ${ }^{[44]}$ proposes a model for the human VDAC that is based on Biotin modification data from Song et al. ${ }^{[65]}$ that was obtained for the Neurosposa crassa VDAC. The model consists of 13 anti parallel β-strands and a N-terminal
transmembrane helix, which closes the barrel (see Fig. 26A). In this study streptavidin was bound to biotinylated sites of the protein followed by electrophysiological investigation. Amino acids were classified in type 1 and type 2. Type 1 amino acids show reduced conductance, type 2 a total block of current upon streptavidin binding to biotinylated sites. Previous studies revealed, that type 1 sites are static and permanently located on the VDAC surface. Type 2 sites are located on mobile domains, which only get accessible upon conformational rearrangement. By double mutations it was then investigated, if the corresponding amino acids are on the same or on opposite sites of the membrane. These mutations are all related to T53, which belongs to type 2. In human VDAC V57 corresponds T53. Since V57 is located in the flexible N-terminus its exact position cannot be determined, but it is most likely located in a β-strand. Our structure only agrees with the data for those residues, which are type 1 sites and are predicted to be located on the same side as T 53 , these are T135, D156, R240 and D264. In our structure homologous residues (S140, E161, S243, D267) are located in loops at the cytosolic side of the channel (see. Fig 26). Residues, which are said to be on the opposite site of T53, are in our structure mostly located in β-strands. The only exception is S111, which corresponds to A215. It is a type 1 residue and is located in a loop at the cytosolic side. Overall the data presented by Song et al. ${ }^{[65]}$ do not agree very well with our structure. One explanation could be, that the observed effects are influenced by the flexibility of T53. Another explanation would be, that data obtained from Neurosposa crassa VDAC are not directly transferable to the human VDAC.

Fig. 26 A) Topology model of Neurosposa Crassa VDAC according to Song et al. ${ }^{[65]}$ Residues, which were mutated to cysteins, are numbered. B) Mutation sites of Song ${ }^{[65]}$ mapped on homologous residues in the NMR-derived topology model of human VDAC. Residues, which should be on the same side as V57, are encircled green; residues, which should be on the opposite side as V57, are encircled magenta. Type 1 and type 2 residues are indicated with a red 1 or 2 , respectively.

Nevertheless, Columbinis model, which is based on Songs et al. ${ }^{[65]}$ data, is also used in other studies for the visualisation of results. For example, Israelson et al. ${ }^{[96]}$ localised the Ca^{2+} binding sites of human VDAC as E72 and E202. They
mapped these residues on Columbinis model, which reveals that they are in loops at the cytosolic side of the barrel. Even though this does make sense, because these residues can come close in space, the authors would have expected the Ca binding site at the intermembrane space. This is because Ca^{2+} induces the opening of the permeability transition pore and therefore should accumulate in the inner membrane space. However in our structure E202 is located in a loop in the intermembrane space. E72 is in the N-terminal part and cannot be localised reliably.

3.4.4 Support for the presented structure from "in silico" analysis

The presented structure is supported by results of several web servers, which predict secondary structure elements or flexible parts in proteins. The secondary structure prediction was done with the PSIPRED server ${ }^{[91,}{ }^{92]}$. It revealed an N terminal helix and 19β-strands separated by coil regions. The prediction was run at a very early stage of the structure determination and was considered as very unlikely to be correct. The reason for this was the fact, that a β-barrel, which solely consists of anti parallel β-strands, can only be composed of an even number of β-strands. However, at an advanced stage of the structure determination the located β-strands were aligned to the PSIPRED prediction. Surprisingly the position of the 14 C terminal β-strands determined by NMR spectroscopy were in very good agreement with the PSIPRED prediction (Fig. 27).

Fig. 27 Comparison of secondary structure elements determined either with the Psipred ${ }^{[91, ~ 92] ~}$ server or experimentally. Red boxes indicate experimentally established β-strands; white arrows β-strands predicted by Psipred. Green boxes indicate negative secondary chemical shifts in the N-terminus, which gives rise to a loop or a helix, the white helix indicates a helix predicted by Psipred. The numbers in the row marked with "Conf" specify the confidence of the prediction, with $0=$ low and $9=$ high. The line marked with "Pred" shows the prediction, where H stands for Helix, E for strand and C for coil. The line marked with "AA" gives the one letter amino acid code for our construct of human VDAC.

The prediction of flexible parts was done with the DisProt ${ }^{[99]}$ (Fig. 28a) and with the DisEMBL ${ }^{\text {TM }} 1.5^{[100]}$ (Fig. 28b) server. Even though these servers are optimized for natively unfolded proteins, the results fitted very well to the presented structure. DisProt showed significantly higher flexibility for residues between 25 to

125 than for residues between 126 to 255 . DisEMBL differentiates between loops/coils and hot-loops. Loops are considered as a necessary but not a sufficient requirement of disorder. Hot-loops are loops with a high degree of mobility. For the human VDAC these hot loops can only be found in region between residue 40 and 120, except of the N - and C-terminus. In conclusion, both programs predicted higher flexibility for the N-terminal third of human VDAC, which is in good agreement with the NMR data.

Fig. 28 Output of a) DisProt and b) DisEMBL ${ }^{\text {TM }} 1.5$ protein disorder prediction servers for human VDAC.

3.4.5 Biological relevance of enhanced flexibility in the \mathbf{N}-terminus

The enhanced flexibility in the N-terminus, which makes structure determination for this part difficult, results from interesting biological features of the human VDAC. The protein is encoded in the nucleus, synthesised in the cytosol, targeted to mitochondria as a chaperone-bound species, recognized by the translocase of the outer membrane (TOM complex) and then inserted into the outer membrane ${ }^{[101]}$ by the help of the sorting and assembly machinery (Sam or Tob complex) ${ }^{[102]}$. In most cases of pre-protein import into the mitochondria the Tom complex recognizes a N terminal amphiphilic helix, with one positively charged and one hydrophobic phase ${ }^{[103]}$. Since the N-terminal amphiphatic helix is sufficient for TOM recognition, this part interacts first with the TOM complex. Therefore the translocation of the proteins will start with the N -terminus. However for β-barrel proteins it is believed that the targeting information is encoded in a structural element, which involves different regions of the protein, rather than exclusively the N or the C -terminus ${ }^{[104-107]}$. Nevertheless the human VDAC has an N-terminal amphiphatic helix from residue P8 to K23. The polar site has a net charge of +1 . It is therefore very likely, that this helix is, besides other targeting sites, involved into TOM recognition, even though a $\Delta(1-$ 19)HVDAC deletion mutant can still be incorporated into the mitochondrial membrane ${ }^{[108]}$. Thus the direction of the translocation of human VDAC is expected to be from the N - to the C-terminus. It is known, that the driving force for protein translocation through the TOM complex does neither come from ATP nor from the membrane potential across the inner membrane. It rather stems from interactions with different binding sites with increasing affinity. Therefore the cis-binding site at the cytosol has a lower affinity to the pre-protein than the trans-binding site at the inter membrane space. This trans-binding site is thought to hold the pre-proteins until
further sorting to the mitochondrial sub-compartments takes place ${ }^{[98,102,109,110]}$. Thus, once the protein is trapped at the inter membrane space it can be easily incorporated into the mitochondria. An enhanced flexibility at the recognition site of the preprotein would be extremely beneficial for this process, because it facilitates the sliding of the pre-protein through the TOM complex to the high affinity binding site. Therefore the observed flexibility in the N -terminus of human VDAC can be readily explained by its translocation behaviour through the TOM complex.

An additional explanation for the observed N -terminal flexibility is given by the study of Thomas et al. ${ }^{[111]}$. They investigated the voltage-sensing domain of VDAC and found that a large portion of the protein, particularly the N -terminal third, contains residues that upon mutation affect the voltage gating properties of yeast VDAC. Therefore these residues identify regions of the protein that are translocated through the field in response to voltage changes. Additionally Thomas et al. ${ }^{[111]}$ refer to a previous study by Peng et al. ${ }^{[12]}$ where residues were located, which only affect the voltage gating properties of the open state but not, or only slightly, of the closed state of VDAC. Therefore the authors conclude, that the residues with impact on the voltage gating move out of the channel wall during channel closure. This behaviour is only possible, if this moving part has conformational freedom, which leads to increased flexibility. Thus, these results agree very well with the flexibility of the Nterminal third of VDAC observed by NMR.

Additionally, this helps to understand the difference between eukaryotic VDAC and bacterial porins. In contrast to the VDAC, bacterial porins are in vivo not voltage-gated ${ }^{[113,114]}$. This could be an explanation for the bad correlation between structural models for VDAC based on sequence alignment with bacterial porins and the actual structure.

3.4.6 Functional investigation of HVDAC

3.4.6.1 ADP-Titration

The residues, which are affected by the addition ADP, are equally distributed over the sequence (see 3.3.6.1). This corresponds well to the fact, that HVDAC is permeable to nucleotides. Since the nucleotides pass the channel, they can come close to the majority of residues. Additionally interactions can only be observed, if the nucleotide is present in large excess. This indicates a week binding affinity. Again, this corresponds to VDAC's permeability to nucleotides. They should not bind tightly to the channel, but rather pass through it quickly. Of the 19 residues, which are influenced by ADP, 10 could not be assigned. Thus the existence of an additional binding site cannot be excluded.

3.4.6.2 Fluoxetine-Titration

The anti-depressant fluoxetine interacts primarily with the C-terminal loop. Additional effects can be observed in other loops, which are on the same side of the barrel (see 3.3.6.2). Since fluoxetine stabilises the low conducting state of VDAC ${ }^{[115]}$, the C-terminal loop might, upon binding to fluoxetine, block the channel pore. This could be initiated by moving this loop like a cap on top of the barrel. This would explain, why also other loops on the same side of the barrel are affected. This model is demonstrated in Fig. 29. Fluoxetine is a small organic compound. Therefore additional effects that are wider distributed over the sequence can be caused by further binding sites. Of the 28 peaks which are influenced by fluoxetine 12 could not be assigned. Since most assignment are missing in the N -terminus and in loops, these parts are also affected.

Fig. 29 Interaction sites of fluoxetine with HVDAC mapped on the NMR/x-ray structure of HVDAC. The position of the C-terminal loop is modelled in A and B because no electron density is present at this position. Residues with chemical shift changes of HN and N bigger than 0.025 ppm upon addition of a 32 -fold molar excess of fluoxetine are shown in red (these residues are labelled with a yellow circle in Fig. 17). The position of the C-terminal loop is indicated. Residues Ile 136 and $\operatorname{Arg} 166$ are labelled with the one letter amino acid code. A) Model without fluoxetine. B) Model upon fluoxetine binding.

Nahon et al ${ }^{[115]}$. reported that fluoxetine inhibited the opening of the PTP, the release of cytochrome c and protected against staurosporine-induced apoptosis. It is suggested, that the apoptosis-related effects are mediated by the interaction of fluoxetine with the VDAC. Therefore the interaction of fluoxetine with the C-terminal loop of HVDAC might prevent apoptosis and might thus lead to an increased cancer risk upon fluoxetine treatment. However there are conflicting reports about this cancer risk. In vitro studies with tumor cells exposed to fluoxetine have shown inhibition ${ }^{[116]}$ or stimulation ${ }^{[117,118]}$ of cell growth or DNA synthesis.

3.4.6.3 Interactions with pro- and anti-apoptotic proteins

Apoptosis is an essential cellular process strictly regulated by proteins of the Bcl-2 family ${ }^{[47]}$. Members of this family are the anti-apoptotic Bcl-x x_{L} and the BH3only pro-apoptotic Bid. Both proteins interact with HVDAC. Most interestingly, they bind to the same site of HVDAC (see 3.3.6.3 and 3.3.6.4), even though their function is contrary. This implies, that pro- and anti-apoptotic proteins compete for the binding site in HVDAC. This site is located at the C-terminus (see Fig. 30).

Fig. 30 Comparison of the interaction sites of $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ and Bid with HVDAC mapped on the NMR/X-ray structure of HVDAC. In the case of Bcl- x_{L} residues, which are classified by Malia et al. ${ }^{[47]}$ to have major changes in the HVDAC spectrum, are coloured magenta. In the case of Bid residues with a peak intensity ratio <0.61 of the spectra with and without Bid or which, upon Bid addition are broadened beyond detection, are coloured magenta. The N - and the C-terminus are labelled with a yellow N or C , respectively. The β-strand numbers are given in green. Residues Thr261 and Ile230 are labelled with the one letter amino acid code.

Bid interacts primarily with residues between L205 and A284, Bcl-x x_{L} with residues between A224 and A284. Of the 48 residues, which are influenced by Bid or BidMTSL 15 could not be assigned. These missing assignments are most probably located in the N -terminus, since many assigned residues in the N -terminus are
affected and many assignments are missing in this region. The binding interface of Bcl- x_{L} was established by transferring the assignment of HVDAC on a published ${ }^{[47]}$, unassigned ${ }^{15} \mathrm{~N}$-TROSY-HSQC spectrum of HVDAC in the presence of $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$. Malia et al. pointed out some residues with major changes in the HVDAC spectrum. Of these 17 residues 5 could not be assigned. As for the case of Bid, these residues are most probably located in the N-terminus. Because of the low quality of the figure only these residues are considered to be in the binding interface of Bcl- x_{L} and HVDAC. The fact, that the binding site of Bid seems to be more extended than the one of Bclx_{L}, is most probably due to a more sophisticated evaluation of the Bid/HVDAC spectra. Most interestingly, the pro- and anti-apototic factors bind to a different site than fluoxetine, indicating a different binding mechanism.

Malia et al ${ }^{[47]}$ proposed, that helices 5 and 6 of Bcl- x_{L} move out of the protein core, insert into the mitochondrial membrane and that way bind to HVDAC. These helices are shown in green in Figure 31A. Bid is homologous to $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ and both proteins interact with the same site of HVDAC. Therefore it is possible, that also the binding site of Bid is homologous to the one in $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$. The helices homologous to helix 5 and 6 in Bcl-x x_{L} are in mouse bid between M142-H162 and L167-Q180. They are also coloured green in Figure 31B. An indirect hint, that these helices can indeed be involved in HVDAC binding is provided by PRE-data of MTSL-labelled Bid. Mouse Bid contains two cysteines, C30 and C126, that can react with the MTSL. They are shown in red in Figure 31B. Both cysteines are not located in the helices hypothetically binding to HVDAC. Therefore no additional line broadening upon MTSL labelling of Bid are expected for residues in the binding core. Rather residues in the neighbourhood should be affected. This is exactly the observed situation (see 5.3.5.4). Therefore the helices from M142-H162 and L167-Q180 in mouse Bid

Fig. 31 A) Crystal structure of human $\mathrm{Bcl}^{-\mathrm{x}_{\mathrm{L}}}{ }^{[119]}$ (PDB code: 1R2D). Helices, which are proposed to insert into the membrane ${ }^{[47]}$, are coloured green B) NMR-structure of mouse $\mathrm{Bid}^{[120]}$ (PDB code: 1DDB). Helices, which are homologous to the membrane inserting ones of $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$, are coloured green. Cysteine residues are shown in red.
should bind to the C-terminal part of HVDAC, namely to residues L205-T207, A225I230 and D233-F236. These are the most clustered residues in HVDAC affected by Bid addition, but unaffected by further MTSL labelling of Bid. MTSL-labelling of Bid induces line broadening in the upper C-terminal part and in the N -terminus of HVDAC. Therefore the rest of the Bid molecule must bend towards the N -terminus of HVDAC.

VDAC is known to appear in oligomeric states ${ }^{[121]}$. Malia et al ${ }^{[47]}$. reported, that micelle-bound HVDAC is in intermediate exchange between monomer and trimer. If $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ is present, a heterotrimer (HVDAC : $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}} 2: 1$) or a heterodimer is favoured. Therefore $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ can break down the oligomeric state of HVDAC. A similar result was observed for the interaction of Bid with HVDAC ${ }^{[29]}$. Chemical crosslinking experiments with glutaraldehyde and Ruthenium Red were performed. In the absence of Bid HVDAC monomers, dimers and trimers were observed. The
presence of Bid led to a decrease of the oligomeric HVDAC population and the appearance of HVDAC/Bid heterodimers. The fact, that in the presence of Bid HVDAC dimers are not favoured can be rationalised with the HVDAC/Bid binding interface. This interface overlaps on the HVDAC site with the region, where crystal contacts of HVDAC dimers are observed (Fig. 32). This points out, that upon HVDAC/Bid complex formation, the dimerisation site of VDAC is blocked.

Fig. 32 Bid interaction sites are visualised on the Van-der-Waals surface plot of HVDAC. Residues with a peak intensity ratio <0.61 of the spectra with and without Bid or which upon Bid addition are broadened beyond detection are coloured in magenta. Residues with a peak intensity ratio <0.5 of the spectra with Bid and BidMTSL or which upon MTSL labelling of Bid, are additionally broadened beyond detection are coloured in green. The N-terminus is shown in blue, the C-terminus in red. Grey residues are unaffected by Bid. The residues Ala63 and Ile230 are labelled with the one letter amino acid code. A) HVDAC dimer. Crystal contacts are observed at the dimeric interface. B) HVDAC monomer. The direct view on the dimeric interface is given. For this purpose the dimer in \mathbf{A} was rotated by 90° and one molecule was removed.

Addition of Bid leads to partial unfolding with successive refolding of
HVDAC. This behaviour was never observed for any other partially unfolded HVDAC sample. Usually once HVDAC is partially unfolded it stays like this. Therefore Bid influences the folding of HVDAC. Bid binds to the region in HVDAC
where the N - and the C -terminus close the barrel (Fig. 32). Therefore the influence on the HVDAC folding might be due to an opening of the HVDAC pore. This could be a hint for HVDAC's possible involvement in the permeability transition pore. If HVDAC was involved in the PTP it would experience a structural rearrangement. This might therefore be induced by the pro-apoptotic Bid.

3.4.6.4 Calcium (II) chloride and Gadolinium (III) chloride-Titration

The binding interface of HVDAC and Ca^{2+} could not be established. No chemical shift perturbations or peak intensity changes were observed in the ${ }^{15} \mathrm{~N}$ -TROSY-HSQC of HVDAC upon addition of a 32 -fold molar excess of Ca^{2+}. Gincel et al. ${ }^{[95]}$ suggested that Ca^{2+} and lanthanides bind to the same site in VDAC. The paramagnetic relaxation enhancement of lanthanide ions causes severe line broadening in the NMR spectra of their interaction partners. Therefore it was possible to establish the binding site Gd^{3+} in HVDAC (see Fig. 33). It is located in the Cterminal part of HVDAC. Primarily affected by the addition of Gd^{3+} are the 5 C terminal β-strands. Of the 29 residues, which are influenced by Gd^{3+}, six could not be assigned. The Ca^{2+} binding sites established by Israelson et al. ${ }^{[96]}$ are at E76 and E206. These Ca^{2+} binding sites were indirectly identified by the interaction with azido ruthenium. The region around E76 could not be identified as a Gd^{3+} binding site, because this region was not assigned. However, 6 peaks that interact with Gd^{3+} were not assigned. Thus these peaks could possibly correspond to residues, which are located around E76. E206 also interacts with Gd^{3+} but it is rather located at the border of the Gd^{3+}-binding cluster. If Gd^{3+} would primarily interact wit E206 the paramagnetic broadening would extend around E206. Yet, the Ca^{2+} and Gd^{3+} binding

Fig. 33 Interaction site of Gd^{3+} with HVDAC mapped on the NMR/X-ray structure of HVDAC. Residues labelled in purple are broadened beyond detection upon addition of an equimolar amount of GdCl_{3}. Additionally residues, which are very likely to be broadened beyond detection because they are in very overlapping regions, are labelled purple. The N - and the C -terminus are indicated with a blue N or red C , respectively. The β-strand numbers are given in black. Residues Thr261 and Ile230 are labelled with the one letter amino acid code.
sites are definitely very close in space. Additionally this region in the 5 C-terminal β strands also interacts with the pro-apoptotic protein Bid and the anti-apoptotic protein Bcl- $\mathrm{x}_{\mathrm{L}} . \mathrm{Ca}^{2+}$ influences apoptosis ${ }^{[122,123]}$ and lanthanides inhibit mitochondrial Ca^{2+} uptake ${ }^{[124,125]}$. This points out that apoptosis related factors compete for the same binding site in HVDAC. Most interestingly the N-terminal helix is located close to this area. Thus the helix might perhaps be involved in the regulation of interactions between HVDAC and apoptotic factors.

3.5 Conclusions

In conclusion, the structure of HVDAC was determined conjointly by NMRspectroscopy and X-ray crystallography. This is the first time that these methods were united to solve a de novo membrane protein structure. It is the first structure of a
human, mitochondrial ion channel. HVDAC adopts a β-barrel fold composed of 18β strands and one α-Helix that is not part of the barrel wall. The N-terminal part, which contains the voltage-sensing domain ${ }^{[111]}$, shows in solution an increased flexibility. The C-terminal part is mainly responsible for binding of interaction partners. The proapoptotic protein Bid and the anti-apoptotic protein $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ are interacting with the same site in the C-terminal part of HVDAC. Bid and $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$ both belong to the $\mathrm{Bcl}-2$ family and are structurally homologous. Due to their contrary function related to apoptosis their similar binding behaviour with HVDAC is surprising. The lanthanide Gadolinium binds to the same site as Bid and $\mathrm{Bcl}-\mathrm{x}_{\mathrm{L}}$, close to the Ca^{2+} binding site known from literature. This points out that apoptosis related factors compete for the same binding site in HVDAC. The antidepressant fluoxetine interacts mainly with the C-terminal loop that is not affected by apoptotic factors. Fluoxetine, like Bid, stabilises the low conducting state of HVDAC. Since the interaction sites of both molecules are not the same this indicates a different mechanism of channel closure. ADP interacts with low affinity with HVDAC and the binding sites distributed over the whole sequence. This is in line with nucleotide conductivity of HVDAC. The nucleotides should not bind tightly to the channel, but rather pass through it quickly.

4

Structural and functional investigation of Conk-S1

4.1 Introduction

Kunitz domain proteins, like the bovine pancreatic trypsin inhibitor (BPTI) ${ }^{[126]}$ or the dendrotoxins ${ }^{[127]}$, are small, basic proteins that contain three highly conserved disulfide bonds. The three disulfide crosslinks make these extracellular proteins extremely stable. Two different general functions are known for the different Kunitz proteins. One group, including BPTI consists of potent protease inhibitors. The complex of BPTI and trypsin is exceptionally stable, with an association constant of $>10^{13} \mathrm{M}^{-1}{ }^{[128]}$. The dendrotoxins belong to another group of Kunitz peptides found in the venom of the black mamba, that block different potassium channels with high specificity and selectivity ${ }^{[129]}$. In snake and scorpion venoms a diverse set of different potassium channel blockers has been identified ${ }^{[127]}$.

Despite the great variety of toxins from the venoms of the predatory cone snails, relatively few have been identified so far that interact with K^{+}channels ${ }^{[20]}$. Most conotoxins are small, peptidic toxins, that typically contain $10-30$ amino acids and bind with high affinity and specificity to various ligand gated or voltage gated ion channels. One striking feature of these peptides is that they usually contain a diverse complement of posttranslational modifications, like C-terminal amidation, hydroxyprolines or glycosylation of serine or threonine ${ }^{[130]}$. Conotoxins can be broadly divided into two groups, the non-disulfide-rich peptides and the disulfide-rich
conotoxins. The latter conotoxins are further separated into several families based on cysteine bridge pattern and biological activities ${ }^{[20]}$.

The K^{+}channel-targeted toxin Conkunitzin-S1 (Conk-S1) from the venom of Conus striatus is the first member of a new family of polypeptides. Recently it has been shown that Conk-S1 blocks Shaker K^{+}channels with an IC_{50} of less than 100 nM (Imperial et al., unpublished results). Compared to most toxins from Conus venoms, Conk-S1 is unusually long (60 amino acids). The only post-translational modification of this peptide is the amidation of the C-terminal carboxylic acid. ConkS1 shares 33% sequence identity with BPTI and 35% with Dendrotoxin I, indicating that it belongs to the Kunitz domain family of proteins (see Table 16). Therefore we do not use the term "conotoxin" for Conk-S1, which is restricted to smaller disulfiderich peptide toxins from cone snails.

Table 16 Amino acid sequence of Conk-S1 and alignment with selected Kunitz domain proteins

	1	10	20	30	40
Conk-S1	KDRPSLCDLPADSGSGTKAEKRIYYNSARKQCLRFDYTGQGGNENNFRRTYDCQRTCLYT				
BPTI	RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA				
DTI	QPLRKLCILHRNPGRCYQKIPAFYYNQKKKQCEGFTWSGCGGNSNRFKTIEECRRTCIRK				
DTK	AAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG				

BPTI is the bovine pancreatic trypsin inhibitor ${ }^{[131]}$, DTI and DTK are dendrotoxin I and K from Dendroaspis polylepsis polylepsis ${ }^{[131]}$.

One striking difference between Conk-S1 and other native Kunitz-type proteins is that it contains only four cysteine residues, resulting in only two disulfidebridges instead of the three found in all other native proteins that have been biochemically characterized in this group. The homologous cysteine residues of BPTI and Dendrotoxin I are replaced by Gly16 and Gln 40 of Conk-S1. Therefore, Conk-S1 is a Kunitz domain protein, in which one of the highly conserved disulfide bridges is missing.

4.2 Materials and methods

4.2.1 Expression, refolding and purification of Conk-S1

The expression construct was prepared and the expression conditions were optimized by Roland Graf under supervision of Stefan Becker at the Max-PlanckInstitute for Biophysical Chemistry in Göttingen. Full-length Conkunitzin-S1 cDNA sequence was obtained by 5^{\prime} and 3^{\prime} RACE procedures, as previously described ${ }^{[132}$, ${ }^{133]}$ Degenerate oligonucleotide PCR primers were based on portions of amino acid sequence of the isolated peptide ${ }^{[134]}$ and mRNA was isolated from C. striatus venom ducts. Details of the isolation of the conkunitzin gene family are being prepared in a separate manuscript (J. Garrett et al., in preparation). The cDNA clone coding for the Conk-S1 precursor protein (Fig. 34) was used as a template to amplify by PCR the coding sequence of mature Conk-S1.

```
AtG gAg GGA CGT CGT TTT GCT GCT GTT CTG ATC CTG ACC ATC
M
TGT ATG CTT GCA CCT GGG ACT GGT ACT TTG CTA CCT \AAG GAT
C
CGA CCG AGT CTA tGC GAT CTA CCA GCG GAC AGT GGG TCG GGC
R
ACA AAG GCT GAG AAG AGA ATT TAC TAC AAT AGC GCT AGA AAA
CAG tGT tTA AGG tTC GAT TAC ACA GGA CAA GGA GGC AAC GAA
Q [\begin{array}{lllllllllllllllll}{\mathbf{L}}&{\mathbf{R}}&{\mathbf{F}}&{\mathbf{D}}&{\mathbf{Y}}&{\mathbf{T}}&{\mathbf{G}}&{\mathbf{Q}}&{\mathbf{G}}&{\mathbf{G}}&{\mathbf{N}}&{\mathbf{E}}\end{array})
AAC AAT TTT CGC CGT ACT TAC GAT TGC CAA CGA ACG tGT CTG
N
TAT ACA TGA
Y T STOP
```

Fig. 34 Sequence of the Conk-S1 precursor protein cDNA. The arrowhead indicates the signal sequence cleavage site.

The forward primer $5^{〔}$-GGT GGT TGC TCT TCC AAC AAG GAT CGA CCG AGT CTA TGC G-3' contained an engineered SapI restriction site (underlined). The reverse primer 5^{\prime} '-GCT GAA TTC CTG CAG TCA TGT ATA CAG ACA CGT TCG TTG GC-3' contained an engineered PstI restriction site (underlined). The PCR product was purified with the MinElute PCR purification kit (Qiagen). The SapI- and PstI-digested fragment was purified and cloned into the corresponding sites of the pTWIN1 vector (New England Biolabs) downstream of the coding sequence of a modified form of the Synechocystis sp. dnaB gene (Ssp DnaB) intein ${ }^{[23,135]}$. The selected clone was verified by DNA sequencing.

Conk-S1 and its mutants were expressed in E. coli BL21 (DE3). A one liter culture was grown at $37^{\circ} \mathrm{C}$ in Luria Bertani medium. Six hours after induction with 1 mM IPTG the culture was harvested and resuspended in a buffer containing 20 mM Tris, $\mathrm{pH} 8.5,500 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA and 0.5 mM PMSF. The cells were lysed by ultrasonication and the inclusion bodies were pelleted by centrifugation.

The inclusion body pellet was dissolved in 20 ml of 6 M guanidinium hydrochloride and 50 mM ß-mercaptoethanol. Insoluble debris was removed by centrifugation. The supernatant was dialysed for 16 h at $4^{\circ} \mathrm{C}$ against 1 liter of a buffer containing 3 M guanidinium hydrochloride, 2 mM reduced glutathione, 0.2 mM oxidized glutathione, 2 mM EDTA and 50 mM Tris at pH 8 . Afterwards the sample was dialysed for 16 h at $4^{\circ} \mathrm{C}$ against 11 of the same buffer without guanidinium hydrochloride. Precipitant was removed by centrifugation at 75000 xg for 20 min . For cleaving the CBD-Ssp DnaB intein tag from the peptide, the supernatant was dialysed against a buffer containing $0.5 \mathrm{M} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 0.5 mM PMSF and 20 mM Tris, pH 6.5 for 5 h at $4^{\circ} \mathrm{C}$, followed by 16 h of dialysis at room temperature. Afterwards the buffer was exchanged via dialysis to 50 mM HEPES, pH 7.0 . The
solution was loaded on a $1 \mathrm{ml} \mathrm{HiTrap}{ }^{\mathrm{TM}}$ SP XL cation exchange column and the peptide was eluted with a 30 ml linear gradient to 1 M NaCl in the same buffer. Fractions containing the toxin were pooled, dialyzed against water and lyophilized. The toxin was further purified by high performance liquid chromatography (HPLC) on a preparative VYDAC C18 reversed phase column. It was eluted with a 30 ml linear gradient from 0 to 60% acetonitrile in water and 0.1% trifluoroacetic acid.

4.2.2 NMR Sample Preparation

NMR spectra were recorded from two samples, which contained either $0.5 \mathrm{mM}{ }^{15} \mathrm{~N}$-labeled, or $1 \mathrm{mM}{ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$-labeled Conk-S1 in 0.1 M sodium acetate buffer, pH 5.2 , with $10 \%{ }^{2} \mathrm{H}_{2} \mathrm{O}$. Dipolar couplings were measured from an anisotropic sample, in which the peptide was partially aligned. It contained $0.5 \mathrm{mM}{ }^{15} \mathrm{~N} /{ }^{13} \mathrm{C}$ labeled Conk-S1 in $85.5 \% 0.1 \mathrm{M}$ sodium acetate buffer, pH 5.2, $9.5 \%{ }^{2} \mathrm{H}_{2} \mathrm{O}, 4.3 \%$ pentaethylene glycol monododecyl ether $\left(\mathrm{C}_{12} \mathrm{E}_{5}\right)$ and 0.7% n-hexanol. The nematic phase was formed after vigorous mixing ${ }^{[35]}$.

4.2.3 NMR Resonance Assignment and Structure Calculation

All spectra were recorded at $27^{\circ} \mathrm{C}$ on Bruker $600,700,800$ or 900 MHz spectrometers equipped with shielded gradient triple resonance probes. For the backbone and side chain assignment the standard heteronuclear $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right)$ strategy based on 3D HNCACB, CBCA(CO)NH, HNCO, HN(CA)CO, HCCNH-TOCSY, CCONH-TOCSY, and HCCH-TOCSY experiments was used ${ }^{[89]}$. The backbone resonance assignment was achieved automatically with the assignment program MARS ${ }^{[136]}$. ${ }^{3} \mathrm{~J}_{\mathrm{HN}-\mathrm{HA}}$ coupling constants were obtained using two-dimensional CT-HMQC-J spectra and were converted to Φ torsion angles with the empirical Karplus
equation ${ }^{[137]} . \chi_{1}$ torsion angles were gained from two-dimensional HNCG spectra ${ }^{[138]}$. The program TALOS was used to obtain the backbone dihedral angles (Φ and Ψ) on the basis of chemical shift information ${ }^{[139]}$. Interproton distance restraints were derived from 3D ${ }^{15} \mathrm{~N}$-edited NOESY (120 ms mixing time) and ${ }^{13} \mathrm{C}$-edited NOESY spectra (128 ms mixing time). The NMR data were processed and analyzed using NMRPipe, NMRDraw ${ }^{[76]}$ and SPARKY (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco, CA).

The NOE spectra were automatically peak picked and integrated with SPARKY. NOE cross peaks were assigned both manually and automatically by the programs ARIA2alpha ${ }^{[140]}$. Unambiguous cross peak assignments with a range of 1.7 to $5 \AA$ set by ARIA2alpha were used for the final structure calculations.

Residual ${ }^{1} \mathrm{D}_{\mathrm{N}-\mathrm{H}},{ }^{1} \mathrm{D}_{\mathrm{CA}-\mathrm{HA}},{ }^{1} \mathrm{D}_{\mathrm{N}-\mathrm{C}}$ and ${ }^{1} \mathrm{D}_{\mathrm{C}-\mathrm{CA}}$ dipolar couplings were gained from the difference between the J couplings measured in the aligned and isotropic media. ${ }^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{H}}$ and ${ }^{1} \mathrm{~J}_{\mathrm{N}-\mathrm{C}}$ couplings were measured simultaneously from interleaved 3D TROSY- $\mathrm{HNCO}^{[141]}$ spectra and ${ }^{1} \mathrm{~J}_{\mathrm{CA}-\mathrm{HA}}$ and ${ }^{1} \mathrm{~J}_{\mathrm{CA}-\mathrm{C}}$ were obtained simultaneously from interleaved 3D CBCA(CO)NH spectra ${ }^{[142]}$. The magnitude (normalized to ${ }^{1} \mathrm{D}_{\mathrm{N}-\mathrm{H}}$) and rhombicity of the alignment tensor were 13.0 Hz and 0.38 , respectively, as determined from the histogram of dipolar couplings by the program PALES ${ }^{[37]}$.

Initially, a medium resolution structure was calculated with the program Rosetta NMR ${ }^{[143]}$ based on dipolar couplings and chemical shift information, and applying the ITAS approach ${ }^{[144]}$. This structure was used as a starting point for calculation of a high-resolution structure using CNS Solve $1.1{ }^{[145]}$, interfaced with ARIA 2alpha. A simulated annealing protocol with 14 iterations was performed. In the last iteration step a total of 500 structures were calculated. The 20 structures with lowest total energy were further refined in explicit water ${ }^{[146]}$ and were used for the
statistics. A total of 659 NOE's, 493 of them short range $(|i-j| \leq 1)$, 78 medium range $(1<|i-j|<5)$ and 88 long range $(|i-j| \geq 5)$ NOE's, 201 dipolar couplings, 126 dihedral angles and two disulfide bridge constraints were used in structure calculations.

4.2.4 Electrophysiological Measurements

To study the effects of the wild type and mutants of Conk-S1 with the Shaker K channel the Xenopus oocyte expression system was used. Oocyte preparation and Shaker RNA injection were basically performed as described by Jacobson et al. ${ }^{[147]}$ (see 2.2.4).

4.3 Results

4.3.1 Refolding and Purification of Conk-S1

Conk-S1 could be expressed as a fusion protein with a modified Ssp DnaB intein ${ }^{[23,135]}$ in large amounts, but mainly in insoluble form. Active Conk-S1 contains two disulfide bridges. Therefore oxidants for the disulfide bridge formation were added during refolding trials. Initially refolding was done at pH 7.7 in the presence of $1 \mathrm{mM} \beta$-mercaptoethanol as a reducing agent. The C-terminal cleavage reaction of the Ssp DnaB intein was found to be pH -dependent, with an optimum between pH 6.0 and $7.5^{[23]}$. Therefore after refolding the fusion protein was cleaved by shifting the pH from 7.7 to 6.5. Since the Ssp DnaB intein tag also contained a chitin-binding domain (CBD) the cleavage reaction was at first carried out on chitin resign. However only approx. 50% of the fusion protein could be cleaved this way. Executing the cleavage reaction in solution during a dialysis step resulted in an almost complete cleavage. In an SDS-PAGE analysis (Fig. 35, lanes 1-2) only a minor band of the fusion protein
was left after cleavage while a new band with the expected molecular weight of Conk-S1 became clearly visible. Subsequent purification by HPLC resulted in an average yield of 0.5 mg . By introducing a cation exchange chromatography step before HPLC the yield was increased more than 1.5 fold. Hereby the very basic ConkS1 (pI 9.12) was successfully separated by cation exchange chromatography from the acidic fusion partner $\operatorname{Ssp} \operatorname{DnaB}(\mathrm{pI} 6.15)$ as well as from most E. coli proteins (Fig. 35, lane 3). Furthermore, replacing β-mercaptoethanol as oxido shuffling agent by 2 mM reduced glutathione and 0.2 mM oxidized glutathione resulted in doubling of the yield. The combination of reduced/oxidized glutathione in the refolding buffer at pH 8.0 with the two step purification by cation exchange chromatography and

Fig. 35 Analysis by Coomassie-stained SDS-PAGE. Lane 1: supernatant of refolding from $6 \mathrm{M} \mathrm{Gdn}-\mathrm{HCl}$; lane 2: after cleavage of the $\mathrm{SspDnaB} / \mathrm{Conk}-\mathrm{S} 1$ fusion protein by pH shift; lane 3: combined fractions below peak 2 from SP Sepharose column; lane 4: final product after HPLC purification.

HPLC proved to be most successful. In the end from 1 L of LB expression culture 1.9 mg of highly pure, refolded Conk-S1 (Fig. 35, lane 4) were reproducibly obtained.

4.3.2 Resonance Assignment and Tertiary Structure

The ${ }^{15} \mathrm{~N}$ HSQC of Conk-S1 displayed an excellent chemical shift dispersion indicative of a well-folded, rigid protein (Fig. 36)

Fig. 36: ${ }^{15} \mathrm{~N}$-HSQC spectrum of 1 mM Conk-S1 in 0.1 M sodium acetate buffer, pH 5.2. The spectrum was recorded at $27^{\circ} \mathrm{C}$ on a 600 MHz spectrometer. Assigned residues are labelled with the one letter amino acid code.

Backbone resonances for all residues except Gly39 and Tyr51 could be identified in the ${ }^{15} \mathrm{~N}$ HSQC spectrum. In total 96.97% of the backbone resonances and 91.63% of the side chain chemical shifts have been assigned. The superposition of the 20 structures with the lowest total energy is shown in Figure 37b.

Fig. 37: NMR solution structures of Conk-S1. (a) Stereo view of the backbone atoms ($\mathrm{N}, \mathrm{C}_{\alpha}, \mathrm{C}, \mathrm{O}$). Represented is the mean structure of the 20 structures with lowest total energy. Cysteine bridges are marked in orange. (b) Superposition of the 20 structures with lowest total energy. Ribbon presentation of the backbone including side chains, represented as lines. Helices are marked in red and β strands in cyan. All figures were created with the program MOLMOL ${ }^{[148]}$

The quality of the solution structures is summarised in Table 17. In the Ramachandran plot 82.5% of the dihedral angles appear in the most favourable region and 16.5% in the additionally allowed region. For all heavy atoms the root mean square deviation from the mean structure is $1.4 \AA$ and for the backbone atoms it is 0.5 \AA. Side chains are well defined, as can be seen from Fig. 37b.

Table 17 Structural statistics

Parameter	
R.m.s.d.s from experimental restraints	
NOEs (659) [\AA]	0.085 ± 0.023
Dihedral angles (126) [$\left.{ }^{\circ}\right]$	2.75 ± 0.15
Correlation coefficients of experimental RDCs	
${ }^{1} \mathrm{D}_{\mathrm{NH}}$	0.988
${ }^{1} \mathrm{D}_{\text {C'N }}$	0.983
${ }^{1} \mathrm{D}_{\text {CAC }}$,	0.984
${ }^{1} \mathrm{D}_{\text {CAHA }}$	0.986
R.m.s.d.s to the averaged coordinates $[\AA]$	
Backbone heavy atoms	0.5
All heavy atoms	1.4
Distance restraint violations	
Number > 0.5 A	0.6 ± 0.9
Maximum [\AA]	1.60 ± 0.65
Energies [$\mathrm{kcal} / \mathrm{mol}$]	
Eall	-560 ± 108
$\mathrm{E}_{\text {angle }}$	322 ± 12
$\mathrm{E}_{\text {NOE }}$	187 ± 24
Ramachandran statistics	
Most favouable region (\%)	82.5
Additional allowed region (\%)	16.5
Generally allowed region (\%)	0.3
Disallowed region (\%)	0.7

Steady state heteronuclear ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOEs for most of the Conk-S1 backbone amides are above 0.6 indicating that the backbone of Conk-S1 is well ordered in solution (Fig. 38). Only Thr 60 and Ala19 are flexible with ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NOE}$ values of 0.22 and 0.15 , respectively, and the three N -terminal residues are affected by motion. Ala19 is located in the region homologous to the antiprotease loop of BPTI and is close to the "missing" third disulfide bond, which would link the positions of Gly16 and Gln40.

Fig. 38 The ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$-NOE of Conk-S1 plotted against the residue number
The solution structure of Conk-S1 resembles the typical Kunitz type fold. It consists of a 3_{10}-helix of residues 6 to 8 , a twisted β-hairpin of residues 20 to 36 and an α-helix of residues 50 to 56 . The two helices are connected by the disulfide bridge between Cys7 and Cys57. The C-terminal helix is also connected to the β sheet by the disulfide bridge between Cys 32 and Cys53. The disulfide bridge 7-57 was confirmed by 4 direct NOE contacts between these residues. For the other S-S pairing no direct contact could be observed. In this case NOEs between Cys32 and Gln54 and other long-range NOEs between residues close to the cysteines were used to confirm the cysteine bridge.

To verify, that the disulfide bonds were actually formed, electrospray quadrupole mass spectra were recorded. The theoretical mass of Conk-S1 without disulfide bridge formation would be $6933,6 \mathrm{Da}$. The experimentally derived mass was $6929,3 \pm 0.8 \mathrm{Da}$, consistent with the formation of two disulfide bonds. The same
analysis was carried out for the G16CQ40C mutant Conk-S1 ${ }^{\mathrm{CC}}$. Theoretical mass of the reduced state and experimental mass are $6954,7 \mathrm{Da}$ and $6948,2 \pm 0.9 \mathrm{Da}$, respectively, consistent with the formation of three disulfide bonds.

4.3.3 Functional characterization with voltage clamp experiments

Since the recombinant Conk-S1 does not contain the amidated C-terminus observed in the native peptide, the affinity of the recombinant peptide on Shaker K^{+} channels expressed in Xenopus oocytes was measured. The functionality of the recombinant Conk-S1 with the free acid at the C-terminus was assayed by twoelectrode voltage clamp measurements. For these experiments the Shaker K^{+}channel with removed N-terminal inactivation domain (Shaker- $\Delta 6-46)^{[149]}$ was used because it was reported that the current mediated by this mutant is more strongly modified by the presence of toxins ${ }^{[150,151]}$. Fig. 39 shows that this channel was blocked by ConkS1 with an IC_{50} value of $502 \pm 140 \mathrm{nM}(\mathrm{n}=3)$.

Since it has been reported that кM-conotoxin RIIIK ${ }^{[152]}$, which is also blocking Shaker K^{+}channels, showed an increase in affinity when tested on a are pore mutant of this channel (K427D), the functional effect of Conk-S1 on this mutated Shaker channel was also investigated. Most interestingly the affinity of Conk-S1 for this mutant was $0.22 \pm 0.08 \mathrm{nM}(\mathrm{n}=4)$, which is more than 2000-fold higher than for the wild type channel (see Fig. 39).

Fig. 39 a) Whole cell currents upon depolarizing from -100 to 0 mV are shown before and after toxin application. Currents were recorded from oocytes expressing either wild type or K427D Shaker- $\Delta 6-46$ channel. The corresponding channel is indicated beside, the corresponding toxin above the curves, respectively. The toxin concentration is shown next to the curve, which was recorded after toxin application. The vertical bars represent $2 \mu \mathrm{~A}$. The filled and open circles and squares are related to section b. b) Dose-response curves of wild type (filled symbols) and K427D (open symbols) Shaker- $\Delta 6-46$ channels. Currents were blocked by Conk-S1 (circles) and Conk-S1 ${ }^{\text {CC }}$ (squares). The symbols are also shown in section a) at the corresponding toxin/channel combination. The test potential was 0 mV and n was between 2 and 5 for the different toxin concentrations.

All Kunitz domain proteins functionally analysed so far contain three disulfide bridges. To evaluate the importance of the "missing" disulfide bridge in Conk-S1 a
double cysteine mutant (Conk-S1 ${ }^{\text {CC }}$) carrying an additional cysteine bridge between the positions 16 and 40 was constructed and the activity of this peptide on K^{+} channels was measured. Most interestingly the affinity of Conk-S1 ${ }^{\mathrm{CC}}$ to Shaker- $\Delta 6-46$ was $385 \pm 58 \mathrm{nM}(\mathrm{n}=3)$ showing that within the accuracy of measurements wild type and mutant Conk-S1 displayed the same inhibitory potential for Shaker channels. In addition, the affinity of Conk-S1 ${ }^{\mathrm{CC}}$ to Shaker- $\Delta 6-46$ K427D channels is $0.22 \pm 0.05 \mathrm{nM}(\mathrm{n}=3)$, which is also identical to the binding affinity of Conk-S1 to this channel mutant. Therefore, for both the wild type sequence and Conk-S1 ${ }^{\mathrm{CC}}$ an increase in affinity by a factor of approximately 2000 is observed. For Conk-S1 and Conk-S1 ${ }^{\mathrm{CC}}$ dose response measurements with the wild type and K427D K^{+}channels were performed as well, resulting in almost identical IC_{50} values (see Fig. 39). The Hill coefficients for the block of both channels by both peptides were all about 1 , indicating no cooperativity for the binding of both peptides to the channels.

The kinetic analysis of the block of Shaker- $\mathbf{- 6}-46$ K427D channels by ConkS1 and Conk-S1 ${ }^{\text {CC }}$ resulted in $\mathrm{k}_{\text {on }}$ values (for the forth reaction) of $17 \pm 5 \mathrm{~s}^{-1} \mu \mathrm{M}^{-1}$ for Conk-S1 and $7 \pm 3 \mathrm{~s}^{-1} \mu \mathrm{M}^{-1}$ for Conk-S1 ${ }^{\mathrm{CC}}$. The $\mathrm{k}_{\text {off }}$ values (for the back reaction) were $0.0041 \pm 0.0006 \mathrm{~s}^{-1}$ for Conk-S1 and $0.0029 \pm 0.0023 \mathrm{~s}^{-1}$ for Conk-S1 ${ }^{\mathrm{CC}}$. This analysis revealed that although the steady state affinity of Conk-S1 and Conk-S1 ${ }^{\mathrm{CC}}$ is virtually identical there are some differences in the kinetics of binding of both peptides to the ion channel.

Like Conk-S1, dendrotoxins are also Kunitz domain proteins, which interact with potassium channels. From literature ${ }^{[129,153-158]}$ it is known, that mainly positively charged and aromatic residues of the dendrotoxins are involved in receptor binding. Based on this knowledge, alanine-scanning mutagenesis of positively charged and aromatic residues in Conk-S1 was carried out, in order to characterise the binding
surface. The affinity of the toxin mutants was functionally investigated by voltage clamp experiments using Xenopus oocytes expressing either Shaker- $\Delta 6-46$ or Shaker$\Delta 6-46$ K427D channel. The results of this assay are summarised in Table 18.

Table $18 \mathrm{IC}_{50}$ values for Shaker- $\Delta 6-46$ and Shaker- $\Delta 6$ - 46 K427D block by Conk-S1 and its mutants. The ratio of mutant and wild type IC_{50} value is given in brackets.

$\mathbf{I C}_{\mathbf{5}}[\mathbf{n M}]$	Shaker- $\mathbf{\Delta 6} \mathbf{- 4 6}$	Shaker- $\mathbf{- 6} \mathbf{- 4 6} \mathbf{~ K 4 2 7 D}$
Conk-S1 wt	502 ± 140	0.22 ± 0.8
Conk-S1 CC	$385 \pm 58(0.8)$	$0.22 \pm 0.05(1)$
K18A	$1047 \pm 619(2)$	$0.42 \pm 0.06(2)$
R29A	$3678 \pm 1500(7.3)$	$3.36 \pm 1.9(16)$
K30A	$4127 \pm 2397(8.2)$	$3.77 \pm 1.1(18)$
R29KK30A	$1016 \pm 89(2)$	$0.56 \pm 2.7(2.5)$
R3A	$5124 \pm 1289(10.2)$	$2.98 \pm 0.75(12.9)$
Y37A	did not refold	
R48A	$3186 \pm 1672(6.4)$	$0.9 \pm 0.5(4.3)$
Y24A	$4273 \pm 2342(8.4)$	$0.92 \pm 0.2(4.4)$
R22A	$2177 \pm 747(4.3)$	$1.2 \pm 0.7(5.7)$
R55A	$7076 \pm 2719(14)$	$3.16 \pm 1.2(15)$
K21A	$273 \pm 143(0.5)$	$7.1 \pm 3.8(33.8)$
R49A	$5111 \pm 2253(10)$	$7.6 \pm 3.9(36.2)$
R34A	$924 \pm 102(1.8)$	$8.3 \pm 2.7(39.5)$
F35A	no block	$9.33 \pm 3.2(44.4)$
Y51A	no block	$9.55 \pm 1(45.5)$

The mutants can be divided into 4 groups, based on their affinity to the receptors. The first group (coloured in white in Fig. 40) contains residues for which the alanine substitution resulted in an IC_{50} value, which was up to 5 fold bigger than the one of the wild type blocking Shaker- $-46-46$ K427D. These are K18, R48 and Y22. G16 and Q40 were replaced by cysteine, which had no effect, and therefore join this group. The second group (coloured in yellow in Fig. 40) contains the residues, which gave rise to a 5 to 10 fold increase of the IC_{50} value. This is R 22 . The third group (coloured in orange in Fig. 40) contains the residues, which gave rise to a 10 to 30 fold increase of the IC_{50} value. These are R3, R29, K30 and R55. The fourth group (coloured in red
in Fig. 40) includes the residues with the strongest effect, resulting in IC_{50} values, which are more than 30 times bigger than that of the wild type Conk-S1. These are K21, R34, F35, R49 and Y51. These results are visualized on the Van-der-Waals surface plot of Conk-S1 in Fig. 40.

Fig. 40 Van-der-Waals surface plots of Conk-S1 stepwise rotated by 90°. Residues in Conk-S1 coloured in blue are not mutated, coloured in red are mutated to alanine and have a more than 30 times (group 4), coloured in orange a $30-10$ times (group 3), in yellow a 10-5 (group 2) times and in white less than 5 times (group 1) lower affinity to K427D Shaker- $\Delta 6$-46 channel.

4.4 Discussion

In this work, the structure of a Kunitz domain polypeptide toxin from the venom of the fish-hunting cone snail Conus striatus was solved. Proteins with Kunitz domains can be divided into two general classes: the "heterogeneous Kunitz-domaincontaining proteins", with one or more Kunitz domains, but in combination with other structural motifs, and the "homogeneous Kunitz-domain polypeptides" (which was referred to above simply as "Kunitz domain proteins") that are exclusively composed of Kunitz domains. Such polypeptides may contain one or more Kunitz domains, but have no other domain motifs. Conkunitzin- S 1 clearly belongs to the latter class.

Conkunitzin-S1 is the first natural Kunitz-domain protein with only two disulfide bonds (all other natural Kunitz-domain proteins such as BPTI or the dendrotoxins have three disulfide crosslinks). Only among the heterogeneous Kunitz-domain-containing proteins Kunitz domains with only two disulfides have been reported (the trophoblast Kunitz-domain proteins (TKDPs) ${ }^{[159]}$). These appear to function as protease inhibitors, and their structure has not been solved yet.

It has been demonstrated that, despite containing only two cysteine bridges, the structure of Conk-S1 is very similar to that of other Kunitz domain peptides like BPTI (backbone C^{α} r.m.s.d. $=1.3 \AA$) and the dendrotoxins (backbone C^{α} r.m.s.d. to Dendrotoxin $\mathrm{I}=2.2 \AA$).

4.4.1 Comparison of Conk-S1 with the structures of BPTI and dendrotoxins

Native BPTI with three disulphide bonds is extremely stable. It has been demonstrated that removing any one of these cysteine bridges still results in the native conformation, which is stable under normal conditions ${ }^{[160]}$. The most productive BPTI folding pathway includes a cysteine bridge rearrangement of non-native disulfide intermediates. This rearrangement facilitates the folding process under most experimental conditions. The most important of these intermediates of BPTI are (Cys30-Cys51, Cys5-Cys14) and (Cys30-Cys51, Cys5-Cys38) ${ }^{[161]}$. This folding pathway is not possible for Conk-S1 because the cysteines 14 and 38 (corresponding to 16 and 40 in Conk-S1) are replaced by glycine and glutamine, respectively. The folding of Dendrotoxin I and Dendrotoxin K uses similar folding pathways as BPTI, but with important energetic and kinetic differences. In particular, a direct pathway, without disulfide rearrangements, is significantly more populated than in BPTI
folding ${ }^{[160]}$. The existence of a native Kunitz domain with two replaced cysteines, as determined in this study, confirms that non-native disulfide intermediates are not necessary for the folding of Kunitz domains. This is also consistent with other studies, where mutants of BPTI, which lack Cys14 and Cys38, still folded properly ${ }^{[162]}$. Another mutant of BPTI with only two disulfide bridges (Cys30-Cys51, Cys14Cys38) also shows a native fold while the corresponding mutant in Dendrotoxin K is only partly folded. This is due to the generally lower stability of dendrotoxins compared to BPTI ${ }^{[160]}$. Conk-S1 is structurally and functionally similar to the dendrotoxins. Considering the compromised folding of cysteine mutants in dendrotoxins, it is surprising that Conk-S1 still attains the typical Kunitz fold.

4.4.2 Comparison of the NMR and crystal structure of Conk-S1

Dy et al ${ }^{[163]}$. solved the crystal structure of Conk-S1 by X-ray crystallography. The fold determined by NMR agrees very well with the crystal structure ${ }^{[163]}$. The backbone RMSD of the NMR-structure with lowest total energy compared to one representative of the crystal structure (PDB code1Y62) is $0.98 \AA$. This value is similar to others reported for NMR and X-ray structure comparisons at similar experimental resolution ${ }^{[163,164]}$. To test, if differences in the atomic coordinates are due to real structural differences, protons where added to the crystal structure by Dy and coworkers and the NOE energies where calculated. These energies where similar to or lower as the NOE distant restraint energies of the NMR ensemble. Therefore greater perturbation of Conk-S1 by crystallisation can be excluded. The difference in the atomic coordinates can rather be explained by different mathematical treatment of the X-ray and NMR data ${ }^{[163]}$. The correlation of the experimentally observed RDCs
compared to the ones calculated based on the NMR structure with lowest total energy is 0.983 (see Fig.41a).

Fig. 41 Correlation between experimentally observed and calculated $\mathrm{HN}, \mathrm{C}^{\prime} \mathrm{N}, \mathrm{C}^{\prime} \mathrm{C}_{\alpha}$ and $\mathrm{C}_{\alpha} \mathrm{H}_{\alpha}$ RDCs of Conk-S1. The $\mathrm{C}^{\prime} \mathrm{N}, \mathrm{C}^{\prime} \mathrm{C}_{\alpha}$ and $\mathrm{C}_{\alpha} \mathrm{H}_{\alpha}$ RDCs are normalized to the values of HN by the factor $\gamma_{\mathrm{H}} \gamma_{\mathrm{N}} \mathrm{r}^{-3} \mathrm{HN}^{\prime} / \gamma_{\mathrm{A}} \gamma_{\mathrm{B}} \mathrm{r}^{-3}{ }_{\mathrm{AB}}$, where γ_{X} is the gyromagnetic ratio of x and $r_{A B}$ is the distance between A and B. In a) the RDCs are calculated based on the NMR structure with the lowest total energy, in b) they are calculated based on one of the crystal structures deposited in 1Y62 in the PDB, which has the lowest RMSD to the observed RDCs.

RDCs calculated based on one member of the crystal structure ensemble have a correlation of 0.933 (see Fig. 41b) to experimentally observed ones. This also supports the view, that Conk-S1 is not much perturbed by crystallisation.

4.4.3 Functional investigation of Conk-S1

Recently it has been shown that the native, C-terminally amidated Conk-S1 blocks Shaker K^{+}channels with an IC_{50} of about 60 nM (Imperial et al., unpublished results). In our study a recombinant Conk-S1 has been used, which is lacking the Cterminal amidation. The functional consequence of this difference was studied by measuring the affinity of the recombinant Conk-S1 on Shaker- $\Delta 6-46$ channels expressed in Xenopus oocytes. The IC_{50} value of the recombinant Conk-S1 used in this study is 6 to 7 times higher than that of the native Conk-S1, indicating a reduced
inhibitory potential of the recombinant toxin. Despite this contribution of C-terminal amidation of Conk-S1 for K^{+}channel inhibition, our results demonstrate that recombinant Conk-S1 is functional. This provided the opportunity to use this recombinant neurotoxin for investigating structure, dynamics, electrophysiological properties and the effects of mutations.

Most interestingly the electrophysiological measurements revealed that there is no difference in the affinity between Conk-S1 with two disulfide bonds and the three-disulfide bonded mutant Conk-S1 ${ }^{\text {CC }}$. Furthermore, both peptides exhibit an approximately 2000 fold higher affinity to the K427D mutant of the Shaker K^{+} channel than to the wild type channel. This result indicates that Conk-S1 blocks K^{+} channels by interacting with the ion channel pore. Furthermore it underscores the importance of residue 427 , located in the outer vestibule of the ion permeation pathway, for the binding of different conotoxins to K^{+}channels. In addition, it suggests that the "missing" cysteine bridge is not of critical functional importance for the block of the K^{+}channel by Conk-S1.

Despite the identical steady state values, the kinetic analysis revealed some differences in the binding of both toxin analogues. The $\mathrm{k}_{\text {on }}$ and the $\mathrm{k}_{\text {off }}$ values for Conk-S1 were approximately two times higher than for Conk-S1 ${ }^{\text {CC }}$. Thus, Conk-S1 binds twice as fast to the channel as Conk- $\mathrm{S1}^{\mathrm{CC}}$, but it is also released twice as fast from its binding site. Therefore, the two effects compensate, resulting in identical IC_{50} values of Conk-S1 and Conk-S1 ${ }^{\text {CC }}$. From the kinetic point of view, this indicates that for Conk- $\mathrm{S}{ }^{\text {CC }}$ the formation of the complex with the channel as well as the dissociation of this complex might have a higher energy barrier. This is likely related to the number of disulfide bonds: the additional cysteine bridge makes Conk-S1 ${ }^{\mathrm{CC}}$ more rigid, especially because Conk-S1 shows decreased ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOE values in the
region of the "missing" disulfide bond (Fig. 38). These residues are K18, A19 and G41 with ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NOE}$ values of $0.57,0.22$ and 0.62 , respectively. Due to a low expression level of Conk-S1 ${ }^{\mathrm{CC}}$ no NMR-sample of Conk-S1 ${ }^{\mathrm{CC}}$ was prepared. Therefore ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOE values could not be obtained. However it is very likely that the ${ }^{15} \mathrm{~N}\left\{{ }^{1} \mathrm{H}\right\}$-NOE values in the region of the "missing" disulfide bond will be increased compared to the wild type. For binding of the toxin to the channel, flexibility within Conk-S1 may enhance the rate of binding to the channel by allowing the toxin to adjust more easily into the binding pocket within the ion channel pore. This agrees very well with the observation that $\operatorname{KcsA}-K v 1.3$, a K^{+}channel homologous to Shaker, undergoes particular conformational changes upon Kaliotoxin binding ${ }^{[165]}$. The authors suggest that these intrinsic dynamics are prerequisite for high-affinity receptor binding. These results imply, that toxins and their receptors act like ligand/enzyme complexes, because all enzymes require dynamic processes during substrate binding events (reviewed in ${ }^{[166]}$). It was described, that pre-existing equilibria of conformational substates are important for conformational changes (reviewed in ${ }^{[167]}$). The presented data suggest that this is also the case for the interaction of Conk-S1 with Shaker K^{+}.

Interestingly, experiments with non-native disulfide bond patterns in dendrotoxins resulted in the reverse situation ${ }^{[168]}$ as for Conk-S1. When the disulfide bond homologous to the missing third disulfide bond of Conk-S1 ${ }^{\text {cc }}$ was selectively removed from Dendrotoxins I and K with iodoacetamide, derivatized dendrotoxins showed a 5 to 10 times lower affinity than the unmodified toxins. One possible explanation for this effect could be steric hindrance by the acetamide group. On the other hand, the different results obtained for dendrotoxins and Conk-S1 may indicate a different binding mode of Conk-S1 and dendrotoxins, even though these peptides
both target voltage gated K^{+}channels. In another report it was shown, that by selectively reducing the cysteine bridge in BPTI, which is homologous to the one introduced into Conk-S1 ${ }^{\mathrm{CC}}$, with borohydride, no change in activity was observed ${ }^{[169]}$. Therefore, Conk-S1 more closely resembles BPTI than the dendrotoxins with respect to the importance of this disulfide bond for the functional activity of the peptide.

Further mutational analysis of Conk-S1 support the hypothesis of a different binding mode compared to dendrotoxins. Several studies present the functionally important side chains of dendrotoxins that are involved in receptor interactions. The residues in the N -terminus, especially in the 3_{10}-helix, are known to be important in dendrotoxins for the interaction with the K^{+}channel ${ }^{[129]}$ [153] [154] [155] [156] . Particularly the point mutation K3A in Dendrotoxin $\mathrm{K}^{[155]}{ }^{[153]}$ or K5A and L9A in α Dendrotoxin ${ }^{[154]}$ show more than 1000 times lower binding affinities to the receptor. The β hairpin region, where a lysine triplet is located, is known to be involved into the channel recognition only in Dendrotoxin $K{ }^{[153]}$, δ Dendrotoxin ${ }^{[129]}$ and Dendrotoxin $I^{[157]}$ but not in α Dendrotoxin ${ }^{[158]}$. Another binding site in Dendrotoxin I which is proposed by Katho et al. ${ }^{[156]}$ is the triad Lys19/Thyr17/Trp37, which is located in the antiprotease loop (Fig. 42a-d).

Based on these data, the following mutations were introduced into Conk-S1: R3A, which is located in the N-terminus of Conk-S1, R29A and K30A, which are located in the hairpin region, and K18A and Y37A, which are located in the antiprotease loop. Electrophysiological measurements revealed that, against any expectation, only moderate changes in affinity to the receptor were observed for the mutants compared to wild type Conk-S1. Therefore one can assume, that the mutated residues are not or very weakly involved in the binding to the channel. To map
functionally important residues, also positively charged and aromatic residues were investigated by alanine scanning mutagenesis. The mutants K21A, R34A, R49A, F35A and Y51A showed the strongest decrease of affinity to the Shaker channels. Therefore they most likely belong to the binding interface of Conk-S1. The binding sites of Conk-S1 and, in comparison to that, of the dendrotoxins are visualized on the Van-der-Waals surface plots in Figure 42.

Fig. 42 Equivalent views of Van-der-Waals surface plots of DTX-I (a-d) and Conk-S1 (e-h), stepwise rotated by 90° from a to d and e to h , respectively. a-d) Residues in Dendrotoxins known from literature ${ }^{[129,153-158]}$ to be involved into receptor binding are coloured in magenta. e-h) Residues in Conk-S1 coloured in blue are not mutated, coloured in red are mutated to alanine and have a more than 30 times (group 4), coloured in orange a 30-10 times (group 3), in yellow a 10-5 (group 2) times and in white less than 5 times (group 1) lower affinity to K427D Shaker- $\Delta 6-46$ channel.

Most interestingly the binding sites of the dendrotoxins are located on the bottom and on the top of the molecule, while for Conk-S1 the residues, which are most likely
involved in receptor binding are located in the middle of the toxin (Fig. 42). This demonstrates a different mode of binding of Conk-S1 compared to the dendrotoxins.

4.5 Conclusions

In conclusion, the structure of Conk-S1 was determined by solution NMR. It is an unusual K channel-targeting toxin that has a consensus Kunitz-domain amino acid sequence, but lacks one of the three disulfide bonds that are conserved in all natural Kunitz domain peptides characterized to date. The structure does not strongly diverge from those of standard Kunitz domains with three disulfide bonds. A Conk-S1 double mutant with the third Kunitz domain disulfide bond had similar K channel blocking activity, indistinguishable from that of the native peptide. Both the two- and three-disulfide crosslinked toxins had much higher affinity for the K427D Shaker Kchannel mutant, suggesting that they interacted equally avidly with the vestibule of the ion channel pore. Interestingly, Conk-S1 adopts a different mode of receptor binding than the dendrotoxins.

REFERENCES

[1] J. Liu, B. Rost, Protein Sci 2001, 10, 1970.
[2] S. White, 2007.
[3] C. G. Tate, FEBS Lett 2001, 504, 94.
[4] T. P. Roosild, J. Greenwald, M. Vega, S. Castronovo, R. Riek, S. Choe, Science 2005, 307, 1317.
[5] M. Kainosho, T. Torizawa, Y. Iwashita, T. Terauchi, A. Mei Ono, P. Guntert, Nature 2006, 440, 52.
[6] C. R. Sanders, F. Sonnichsen, Magn Reson Chem 2006, 44 Spec No, S24.
[7] A. Arora, F. Abildgaard, J. H. Bushweller, L. K. Tamm, Nat Struct Biol 2001, 8, 334.
[8] K. Pervushin, R. Riek, G. Wider, K. Wuthrich, Proc Natl Acad Sci U S A 1997, 94, 12366.
[9] L. E. Kay, K. H. Gardner, Curr Opin Struct Biol 1997, 7, 722.
[10] N. K. Goto, L. E. Kay, Curr Opin Struct Biol 2000, 10, 585.
[11] M. J. Parker, M. Aulton-Jones, A. M. Hounslow, C. J. Craven, J Am Chem Soc 2004, 126, 5020.
[12] N. Tjandra, A. Bax, Science 1997, 278, 1111.
[13] J. L. Battiste, G. Wagner, Biochemistry 2000, 39, 5355.
[14] J. P. Overington, B. Al-Lazikani, A. L. Hopkins, Nat Rev Drug Discov 2006, 5, 993.
[15] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, J. Woolsey, Nucleic Acids Research 2006, 34, D668.
[16] D. Röckel, W. Korn, A. J. Kohn, Manual of the Living Conidae, Verlag Christa Hemmen, Wiesbaden, Germany, 1995.
[17] B. M. Olivera, Annual Review of Ecology and Systematics 2002, 33, 25.
[18] H. Terlau, K. J. Shon, M. Grilley, M. Stocker, W. Stuhmer, B. M. Olivera, Nature 1996, 381, 148.
[19] R. S. Norton, B. M. Olivera, Toxicon 2006, 48, 780.
[20] H. Terlau, B. M. Olivera, Physiol Rev 2004, 84, 41.
[21] J. Grodberg, J. J. Dunn, J Bacteriol 1988, 170, 1245.
[22] J. Sambrook, F. F. Fritsch, M. Maniatis, Molecular Cloning: A laboratory manual, Cold Spring Harbor laboratory Press, Cold Spring Harbor, 1989.
[23] S. Mathys, T. C. Evans, I. C. Chute, H. Wu, S. Chong, J. Benner, X. Q. Liu, M. Q. Xu, Gene 1999, 231, 1.
[24] U. K. Laemmli, Nature 1970, 227, 680.
[25] T. Okajima, T. Tanabe, T. Yasuda, Analytical Biochemistry 1993, 211, 293.
[26] W. L. Hubbell, A. Gross, R. Langen, M. A. Lietzow, Curr Opin Struct Biol 1998, 8, 649.
[27] http://lapecoranera.splinder.com/archive/2005-12, p. xenopus laevi.
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemi tteilungen/2002/pri0267.htm, p. oocytes.
[29] T. Meins, Max-Planck-Institute for Biochemistry (Munich), 2007.
[30] W. J. Metzler, K. L. Constantine, M. S. Friedrichs, A. J. Bell, E. G. Ernst, T. B. Lavoie, L. Mueller, Biochemistry 1993, 32, 13818.
[31] D. J. Craik, J. A. Wilce, Methods Mol Biol 1997, 60, 195.
[32] A. Bax, A. Grishaev, Curr Opin Struct Biol 2005, 15, 563.
[33] G. M. Clore, M. R. Starich, A. M. Gronenborn, Journal of the American Chemical Society 1998, 120, 10571.
[34] R. Tycko, F. J. Blanco, Y. Ishii, Journal of the American Chemical Society 2000, 122, 9340.
[35] M. Ruckert, G. Otting, Journal of the American Chemical Society 2000, 122, 7793.
[36] T. Cierpicki, J. H. Bushweller, J Am Chem Soc 2004, 126, 16259.
[37] M. Zweckstetter, A. Bax, Journal of the American Chemical Society 2000, 122, 3791.
[38] J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, N. J. Skelton, Protein NMR Spectroscopy Principles And Practice, Academic Press, Inc., 1996.
[39] L. Banci, I. Bertini, C. Luchinat, Nuclear and electron relaxation: the magnetic nucleus-unpaired electron coupling in solution, VCH, Weinheim, 1991.
[40] G. Pintacuda, A. Kaikkonen, G. Otting, J Magn Reson 2004, 171, 233.
[41] J. R. Gillespie, D. Shortle, Journal of Molecular Biology 1997, $268,170$.
[42] P. A. Kosen, Methods Enzymol 1989, 177, 86.
[43] M. Colombini, Curr. Top. Membr. 1994, 42, 73.
[44] M. Colombini, Mol Cell Biochem 2004, 256-257, 107.
[45] T. K. Rostovtseva, B. Antonsson, M. Suzuki, R. J. Youle, M. Colombini, S. M. Bezrukov, J Biol Chem 2004, 279, 13575.
[46] M. G. Vander Heiden, X. X. Li, E. Gottleib, R. B. Hill, C. B. Thompson, M. Colombini, J Biol Chem 2001, 276, 19414.
[47] T. J. Malia, G. Wagner, Biochemistry 2007, 46, 514.
[48] S. Shimizu, M. Narita, Y. Tsujimoto, Nature 1999, 399, 483.
[49] M. Crompton, Biochem J 1999, 341 (Pt 2), 233.
[50] L. S. Zalman, H. Nikaido, Y. Kagawa, J Biol Chem 1980, 255, 1771.
[51] S. Shimizu, Y. Matsuoka, Y. Shinohara, Y. Yoneda, Y. Tsujimoto, J Cell Biol 2001, 152, 237.
[52] M. Zoratti, I. Szabo, Biochim Biophys Acta 1995, 1241, 139.
[53] M. Narita, S. Shimizu, T. Ito, T. Chittenden, R. J. Lutz, H. Matsuda, Y. Tsujimoto, Proc Natl Acad Sci U S A 1998, 95, 14681.
[54] Y. Tsujimoto, S. Shimizu, Apoptosis 2006.
[55] V. Shoshan-Barmatz, A. Israelson, D. Brdiczka, S. S. Sheu, Curr Pharm Des 2006, 12, 2249.
[56] M. G. Vander Heiden, N. S. Chandel, X. X. Li, P. T. Schumacker, M. Colombini, C. B. Thompson, Proc Natl Acad Sci U S A 2000, 97, 4666.
[57] B. Antonsson, F. Conti, A. Ciavatta, S. Montessuit, S. Lewis, I. Martinou, L. Bernasconi, A. Bernard, J. J. Mermod, G. Mazzei, K. Maundrell, F. Gambale, R. Sadoul, J. C. Martinou, Science 1997, 277, 370.
[58] C. P. Baines, R. A. Kaiser, T. Sheiko, W. J. Craigen, J. D. Molkentin, Nat Cell Biol 2007, 9, 550.
[59] X. W. Guo, P. R. Smith, B. Cognon, D. D'Arcangelis, E. Dolginova, C. A. Mannella, J Struct Biol 1995, 114, 41.
[60] R. Casadio, I. Jacoboni, A. Messina, V. De Pinto, FEBS Lett 2002, 520, 1.
[61] C. A. Mannella, A. F. Neuwald, C. E. Lawrence, J Bioenerg Biomembr 1996, 28, 163.
[62] G. Rauch, O. Moran, Biochem Biophys Res Commun 1994, 200, 908.
[63] E. Blachly-Dyson, S. Peng, M. Colombini, M. Forte, Science 1990, 247, 1233.
[64] V. De Pinto, G. Prezioso, F. Thinnes, T. A. Link, F. Palmieri, Biochemistry 1991, 30, 10191.
[65] J. Song, C. Midson, E. Blachly-Dyson, M. Forte, M. Colombini, J Biol Chem 1998, 273, 24406.
[66] S. Stanley, J. A. Dias, D. D'Arcangelis, C. A. Mannella, J Biol Chem 1995, 270, 16694.
[67] R. Kleene, N. Pfanner, R. Pfaller, T. A. Link, W. Sebald, W. Neupert, M. Tropschug, Embo J 1987, 6, 2627.
[68] M. Dolder, K. Zeth, P. Tittmann, H. Gross, W. Welte, T. Wallimann, J Struct Biol 1999, 127, 64.
[69] C. A. Mannella, M. Radermacher, J. Frank, in 42end Annual Meeting of the Electron Microscopy Society of America (Ed.: G. W. Three-Bailey), San Francisco Press, San Francisco, 1984, pp. 644.
[70] H. Engelhardt, T. Meins, M. Poynor, V. Adams, S. Nussberger, W. Welte, K. Zeth, J Membr Biol 2007, in press.
[71] J. Fiaux, E. B. Bertelsen, A. L. Horwich, K. Wuthrich, J Biomol NMR 2004, 29, 289.
[72] H. Patzelt, A. S. Ulrich, H. Egbringhoff, P. Düx, J. Ashurst, B. Simon, H. Oschkinat, D. Oesterhelt, J Biomol NMR 1997, 10, 96.
[73] G. Zhu, X. M. Kong, K. H. Sze, Journal of Biomolecular Nmr 1999, 13, 77.
[74] J. Ying, J. H. Chill, J. M. Louis, A. Bax, J Biomol NMR 2007, 37, 195.
[75] G. Zhu, Y. Xia, L. K. Nicholson, K. H. Sze, J Magn Reson 2000, 143, 423.
[76] F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, A. Bax, Journal of Biomolecular Nmr 1995, 6, 277.
[77] A. G. W. Leslie, Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 1992, 26.
[78] W. Kabsch, Journal of Applied Crystallography 1993, 26, 795.
[79] J. W. Pflugrath, Acta Crystallogr D Biol Crystallogr 1999, 55, 1718.
[80] P. R. Evans, Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 1997, 33, 22.
[81] T. R. Schneider, G. M. Sheldrick, Acta Crystallogr D Biol Crystallogr 2002, 58, 1772.
[82] G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, W. Paciorek, Acta Crystallogr D Biol Crystallogr 2003, 59, 2023.
[83] J. P. Abrahams, A. G. Leslie, Acta Crystallogr D Biol Crystallogr 1996, 52, 30.
[84] K. Cowtan, Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 1994, 31, 34.
[85] B. DeLaBarre, A. T. Brunger, Acta Crystallogr D Biol Crystallogr 2006, 62, 923.
[86] A. Vagin, A. Teplyakov, Journal of Applied Crystallography 1997, 30, 1022.
[87] T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, Acta Crystallogr A 1991, 47 (Pt 2), 110.
[88] P. Emsley, K. Cowtan, Acta Crystallogr D Biol Crystallogr 2004, 60, 2126.
[89] A. Bax, S. Grzesiek, Accounts Chem Res 1993, 26, 542
[90] J. Shi, J. G. Pelton, H. S. Cho, D. E. Wemmer, J Biomol NMR 2004, 28, 235.
[91] K. Bryson, L. J. McGuffin, R. L. Marsden, J. J. Ward, J. S. Sodhi, D. T. Jones, Nucleic Acids Res 2005, 33, W36.
[92] L. J. McGuffin, K. Bryson, D. T. Jones, Bioinformatics 2000, 16, 404.
[93] D. T. Wong, F. P. Bymaster, E. A. Engleman, Life Sci 1995, 57, 411.
[94] F. P. Thinnes, Mol Genet Metab 2005, 84, 378.
[95] D. Gincel, H. Zaid, V. Shoshan-Barmatz, Biochem J 2001, 358, 147.
[96] A. Israelson, S. Abu-Hamad, H. Zaid, E. Nahon, V. Shoshan-Barmatz, Cell Calcium 2007, 41, 235.
[97] P. M. Hwang, W. Y. Choy, E. I. Lo, L. Chen, J. D. Forman-Kay, C. R. Raetz, G. G. Prive, R. E. Bishop, L. E. Kay, Proc Natl Acad Sci U S A 2002, 99, 13560.
[98] S. A. Paschen, W. Neupert, D. Rapaport, Trends Biochem Sci 2005, 30, 575.
[99] K. Peng, S. Vucetic, P. Radivojac, C. J. Brown, A. K. Dunker, Z. Obradovic, J Bioinform Comput Biol 2005, 3, 35.
[100] R. Linding, L. J. Jensen, F. Diella, P. Bork, T. J. Gibson, R. B. Russell, Structure 2003, 11, 1453.
[101] S. A. Paschen, T. Waizenegger, T. Stan, M. Preuss, M. Cyrklaff, K. Hell, D. Rapaport, W. Neupert, Nature 2003, 426, 862.
[102] N. Pfanner, N. Wiedemann, C. Meisinger, T. Lithgow, Nat Struct Mol Biol 2004, 11, 1044.
[103] S. Meier, W. Neupert, J. M. Herrmann, J Biol Chem 2005, 280, 7777.
[104] D. Rapaport, EMBO Rep 2003, 4, 948.
[105] D. Rapaport, W. Neupert, J Cell Biol 1999, 146, 321.
[106] S. Hamajima, M. Sakaguchi, K. Mihara, S. Ono, R. Sato, J Biochem (Tokyo) 1988, 104, 362.
[107] D. A. Court, R. Kleene, W. Neupert, R. Lill, FEBS Lett 1996, 390, 73.
[108] V. De Pinto, F. Tomasello, A. Messina, F. Guarino, R. Benz, D. La Mendola, A. Magri, D. Milardi, G. Pappalardo, Chembiochem 2007, 8, 744.
[109] S. A. Paschen, W. Neupert, IUBMB Life 2001, 52, 101.
[110] T. Endo, D. Kohda, Biochim Biophys Acta 2002, 1592, 3.
[111] L. Thomas, E. Blachly-Dyson, M. Colombini, M. Forte, Proc Natl Acad Sci U S A 1993, 90, 5446.
[112] S. Peng, E. Blachly-Dyson, M. Forte, M. Colombini, Biophys J 1992, 62, 123.
[113] C. A. Mannella, J Bioenerg Biomembr 1997, $29,525$.
[114] B. K. Jap, P. J. Walian, Physiol Rev 1996, 76, 1073.
[115] E. Nahon, A. Israelson, S. Abu-Hamad, S. B. Varda, FEBS Lett 2005, 579, 5105.
[116] A. Serafeim, M. J. Holder, G. Grafton, A. Chamba, M. T. Drayson, Q. T. Luong, C. M. Bunce, C. D. Gregory, N. M. Barnes, J. Gordon, Blood 2003, 101, 3212.
[117] L. J. Brandes, R. J. Arron, R. P. Bogdanovic, J. Tong, C. L. Zaborniak, G. R. Hogg, R. C. Warrington, W. Fang, F. S. LaBella, Cancer Res 1992, 52, 3796.
[118] S. C. Wright, J. Zhong, J. W. Larrick, Faseb J 1994, 8, 654.
[119] M. K. Manion, J. W. O'Neill, C. D. Giedt, K. M. Kim, K. Y. Zhang, D. M. Hockenbery, J Biol Chem 2004, 279, 2159.
[120] J. M. McDonnell, D. Fushman, C. L. Milliman, S. J. Korsmeyer, D. Cowburn, Cell 1999, 96, 625.
[121] R. Zalk, A. Israelson, E. S. Garty, H. Azoulay-Zohar, V. Shoshan-Barmatz, Biochem J 2005, 386, 73.
[122] M. J. Berridge, M. D. Bootman, P. Lipp, Nature 1998, 395, 645.
[123] A. P. Halestrap, J. P. Gillespie, A. O'Toole, E. Doran, Symp Soc Exp Biol 2000, 52, 65.
[124] K. C. Reed, F. L. Bygrave, Biochem J 1974, 140, 143.
[125] G. C. Sparagna, K. K. Gunter, S. S. Sheu, T. E. Gunter, J Biol Chem 1995, 270, 27510.
[126] A. Pardi, G. Wagner, K. Wuthrich, Eur J Biochem 1983, 137, 445.
[127] F. Dreyer, Rev Physiol Biochem Pharmacol 1990, 115, 93.
[128] J. P. Vincent, M. Lazdunski, Biochemistry 1972, 11, 2967.
[129] J. P. Imredy, R. MacKinnon, J Mol Biol 2000, 296, 1283.
[130] A. G. Craig, P. Bandyopadhyay, B. M. Olivera, Eur J Biochem 1999, 264, 271.
[131] K. D. Berndt, P. Guntert, K. Wuthrich, J Mol Biol 1993, 234, 735.
[132] P. K. Bandyopadhyay, J. E. Garrett, R. P. Shetty, T. Keate, C. S. Walker, B. M. Olivera, Proc Natl Acad Sci U S A 2002, 99, 1264.
[133] G. Bulaj, O. Buczek, I. Goodsell, E. C. Jimenez, J. Kranski, J. S. Nielsen, J. E. Garrett, B. M. Olivera, Proc Natl Acad Sci U S A 2003, 100 Suppl 2, 14562.
[134] M. Bayrhuber, V. Vijayan, M. Ferber, R. Graf, J. Korukottu, J. Imperial, J. E. Garrett, B. M. Olivera, H. Terlau, M. Zweckstetter, S. Becker, Journal of Biological Chemistry 2005, 280, 23766.
[135] H. Wu, M. Q. Xu, X. Q. Liu, Biochim Biophys Acta 1998, 1387, 422.
[136] Y. S. Jung, M. Zweckstetter, J Biomol NMR 2004, 30, 11.
[137] A. Pardi, M. Billeter, K. Wuthrich, Journal of Molecular Biology 1984, 180, 741.
[138] J. S. Hu, A. Bax, J Biomol NMR 1997, 9, 323.
[139] G. Cornilescu, F. Delaglio, A. Bax, Journal of Biomolecular Nmr 1999, 13, 289.
[140] J. P. Linge, S. I. O'Donoghue, M. Nilges, Methods Enzymol 2001, 339, 71.
[141] J. J. Chou, F. Delaglio, A. Bax, J Biomol NMR 2000, 18, 101.
[142] V. Vijayan, M. Zweckstetter, Journal of Magnetic Resonance 2005, 174, 245.
[143] K. T. Simons, C. Kooperberg, E. Huang, D. Baker, Journal of Molecular Biology 1997, 268, 209.
[144] Y. S. Jung, M. Sharma, M. Zweckstetter, Angew Chem Int Ed Engl 2004, 43, 3479.
[145] A. T. Brunger, P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, G. L. Warren, Acta Crystallographica Section D-Biological Crystallography 1998, 54, 905.
[146] J. P. Linge, M. A. Williams, C. A. Spronk, A. M. Bonvin, M. Nilges, Proteins 2003, 50, 496.
[147] R. B. Jacobsen, E. D. Koch, B. Lange-Malecki, M. Stocker, J. Verhey, R. M. Van Wagoner, A. Vyazovkina, B. M. Olivera, H. Terlau, Journal of Biological Chemistry 2000, 275, 24639.
[148] R. Koradi, M. Billeter, K. Wuthrich, J Mol Graph 1996, 14, 51.
[149] T. Hoshi, W. N. Zagotta, R. W. Aldrich, Science 1990, 250, 533.
[150] H. Terlau, A. Boccaccio, B. M. Olivera, F. Conti, J Gen Physiol 1999, 114, 125.
[151] M. J. Scanlon, D. Naranjo, L. Thomas, P. F. Alewood, R. J. Lewis, D. J. Craik, Structure 1997, 5, 1585.
[152] M. Ferber, A. Sporning, G. Jeserich, R. DeLaCruz, M. Watkins, B. M. Olivera, H. Terlau, J Biol Chem 2003, 278, 2177.
[153] L. A. Smith, P. F. Reid, F. C. Wang, D. N. Parcej, J. J. Schmidt, M. A. Olson, J. O. Dolly, Biochemistry 1997, 36, 7690.
[154] S. Gasparini, J. M. Danse, A. Lecoq, S. Pinkasfeld, S. Zinn-Justin, L. C. Young, C. C. de Medeiros, E. G. Rowan, A. L. Harvey, A. Menez, J Biol Chem 1998, 273, 25393.
[155] F. C. Wang, N. Bell, P. Reid, L. A. Smith, P. McIntosh, B. Robertson, J. O. Dolly, Eur J Biochem 1999, 263, 222.
[156] E. Katoh, H. Nishio, T. Inui, Y. Nishiuchi, T. Kimura, S. Sakakibara, T. Yamazaki, Biopolymers 2000, 54, 44.
[157] A. L. Harvey, E. G. Rowan, H. Vatanpour, A. Engstrom, B. Westerlund, E. Karlsson, Toxicon 1997, 35, 1263.
[158] J. M. Danse, E. G. Rowan, S. Gasparini, F. Ducancel, H. Vatanpour, L. C. Young, G. Poorheidari, E. Lajeunesse, P. Drevet, R. Menez, FEBS Lett 1994, 356, 153.
[159] J. A. MacLean, 2nd, R. M. Roberts, J. A. Green, Biol Reprod 2004, 71, 455.
[160] T. Kortemme, M. Hollecker, J. Kemmink, T. E. Creighton, J Mol Biol 1996, 257, 188.
[161] C. P. van Mierlo, J. Kemmink, D. Neuhaus, N. J. Darby, T. E. Creighton, J Mol Biol 1994, 235, 1044.
[162] C. B. Marks, H. Naderi, P. A. Kosen, I. D. Kuntz, S. Anderson, Science 1987, 235, 1370.
[163] C. Y. Dy, P. Buczek, J. S. Imperial, G. Bulaj, M. P. Horvath, Acta Crystallogr D Biol Crystallogr 2006, 62, 980.
[164] S. O. Garbuzynskiy, B. S. Melnik, M. Y. Lobanov, A. V. Finkelstein, O. V. Galzitskaya, Proteins 2005, 60, 139.
[165] A. Lange, K. Giller, S. Hornig, M. F. Martin-Eauclaire, O. Pongs, S. Becker, M. Baldus, Nature 2006, 440, 959.
[166] J. R. Schnell, H. J. Dyson, P. E. Wright, Annu Rev Biophys Biomol Struct 2004, 33, 119.
[167] D. Kern, E. R. Zuiderweg, Curr Opin Struct Biol 2003, 13, 748.
[168] M. Hollecker, D. L. Marshall, A. L. Harvey, Br J Pharmacol 1993, 110, 790.
[169] L. F. Kress, M. Laskowski, Sr., J Biol Chem 1967, 242, 4925.

Appendix

A Chemical shift assignment of HVDAC

	CAi	CAi-1	C'i-1	H_{N}	N
A17	-	-	-	8.317	122.1
R18	59.86	-	-	7.285	117.3
K23	-	-	-	7.816	122.0
Y25	55.82	44.24	171.6	6.585	113.7
G26	46.02	55.96	175.9	8.672	105.3
G28	46.54	-	178.2	7.550	105.0
L29	53.86	46.74	175.8	7.331	120.5
I30	60.62	53.67	-	8.916	126.3
K31	54.81	60.75	175.0	8.746	126.8
L32	53.32	54.87	174.0	8.699	124.1
D33	53.73		173.9	9.104	123.9
N40	52.65	54.84	175.2	8.572	120.3
G41	45.16	52.63	,	7.849	106.5
L42	53.03	45.19	172.9	7.466	118.4
G48	44.92	53.58	173.2	9.111	111.5
S49	56.66	44.88	172.0	9.076	116.0
A50	49.40	56.67	172.2	9.149	123.9
N51	52.64	49.40	-	8.303	122.5
T55	62.03	60.26	176.2	7.652	122.5
K56	56.32	62.10	-	9.273	122.2
V57	59.74	56.25	176.8	8.606	125.1
T58	60.17	59.67	177.1	7.863	111.7
E62	54.88	54.71	175.0	8.685	127.0
T63	60.06	55.02	-	9.008	116.0
T89	60.73	59.82	174.5	9.064	123.7
V90	59.92	60.83	173.0	9.300	124.4
E91	54.88	-	,	8.765	124.5
G97	45.08	57.74	177.2	9.382	115.5
L98	53.69	45.00	173.7	7.896	122.8
K99	55.13	53.81	175.3	9.674	132.5
T101	61.15	53.49	174.5	9.123	120.4
F102	56.05	49.96	172.8	9.448	127.1
D103	52.22	56.10	173.0	8.623	129.0
G111	45.70	60.02	175.5	9.377	112.8
K112	56.33	45.45	173.7	7.445	120.5
K113	55.39	56.55	173.8	8.804	129.5
N114	53.63	55.58	172.9	8.248	125.6
K116	54.53	-	-	8.987	119.7
I117	59.34	-	177.8	8.778	120.4
K118	54.64	59.25	175.0	9.268	126.8
T119	60.15	54.62	175.8	8.671	117.2
G120	44.45	60.64	174.5	9.157	113.8
Y121	56.54	44.33	171.1	9.126	123.5
K122	52.80	56.48	172.2	7.572	124.9
R123	53.77	52.85	172.9	8.697	117.6
I126	59.84	-	173.5	7.886	118.0
N127	52.77	59.90	171.9	8.962	125.4
L128	53.25	52.78	174.5	9.487	128.9
G129	44.77	53.18	175.8	9.480	113.6
C130	58.10	44.78	171.9	8.519	121.3
D131	52.41	58.19	172.7	9.366	130.1
M132	52.44	-	174.9	9.396	123.2
I136	62.70	53.07	174.8	8.375	119.4
A137	52.42	63.02	-	8.461	123.4
G138	44.52	52.42	178.0	7.670	106.3

	CAi	CAi-1	C'i-1	H_{N}	N
S140	57.55	64.69	-	8.492	119.8
I141	59.55	57.33	172.7	9.083	122.5
R142	53.82	59.62	173.3	9.027	128.5
G143	43.79	53.88	176.1	8.720	113.4
A144	50.83	43.76	170.7	8.928	124.0
L145	53.60	50.83	174.9	9.229	123.9
V146	60.92	53.62	174.4	9.009	125.2
L147	51.98	60.88	174.7	9.344	126.2
G148	44.66	51.93	176.2	8.136	105.2
Y149	59.06	44.71	172.9	8.577	122.4
E150	56.91	59.10	173.6	9.203	125.6
G151	45.09	57.04	175.3	8.006	108.1
W152	57.23	45.09	173.3	8.100	121.5
L153	53.47	57.21	177.4	8.954	123.5
A154	50.68	53.47	175.4	8.860	121.7
G155	45.25	50.70	175.4	9.625	107.7
Y156	55.91	45.26	171.2	9.200	122.2
Q157	53.08	55.97	171.9	8.204	128.0
M158	52.87	52.75	172.2	8.736	121.3
N159	52.27	52.60	174.3	7.961	119.4
F160	56.11	52.30	175.4	9.539	127.7
E161	54.87	56.17	173.5	8.035	127.7
S165	58.34	54.53	175.3	7.469	114.7
R166	53.72	58.65	173.1	6.795	115.0
S170	57.05	55.27	174.6	8.320	119.0
N171	51.47	57.03	172.6	9.110	127.3
F172	56.04	51.47	171.9	8.602	118.3
A173	50.97	56.05	173.4	8.818	122.7
V174	60.09	50.98	176.2	8.211	116.8
G175	45.66	60.13	175.5	9.415	113.0
Y176	56.54	45.67	170.0	8.578	119.4
L183	53.42	53.54	173.9	9.349	127.8
T185	60.22	53.74	174.5	9.064	120.8
N186	53.06	60.02	171.8	8.854	116.5
V187	60.00	52.97	172.6	8.915	118.4
N188	51.27	59.98	175.0	9.315	129.3
E192	54.47	60.94	172.7	8.918	126.9
F193	55.80	54.51	174.3	8.869	125.8
G194	44.50	55.80	175.7	8.533	110.5
G195	45.43	44.46	171.6	8.626	105.6
S196	56.02	45.49	171.4	9.752	114.7
I197	56.49	56.29	174.6	8.752	119.3
L205	53.10	-	-	9.043	130.0
E206	54.11	53.30	174.1	8.830	125.6
T207	59.45	54.02	174.8	8.383	112.2
A208	50.75	59.43	171.6	9.022	122.5
V209	59.45	50.71	-	8.951	116.9
N210	51.98	59.45	174.4	8.858	122.6
L211	54.12	51.90	172.5	8.705	121.7
A212	51.81	54.14	175.2	9.193	126.5
W213	57.67	51.78	175.4	8.965	121.3
T214	60.35	57.77	173.2	8.513	120.6
A215	53.19	60.35	173.7	8.672	127.2
R221	54.98	62.66	174.5	9.036	125.6
F222	55.79	54.92	175.1	8.026	119.2

	CAi	$\mathrm{CAi}-1$	C ' $\mathrm{i}-1$	H_{N}	N
G223	45.01	55.86	173.5	8.561	107.8
I224	59.57	45.01	171.0	8.804	118.7
A225	50.16	59.60	172.1	8.857	126.3
A226	50.20	49.68	175.3	9.198	119.4
K227	56.11	50.27	177.0	8.755	122.6
Y228	55.22	56.06	174.2	9.855	129.0
Q229	54.39	55.26	173.5	9.010	131.6
I230	64.58	54.29	173.7	7.810	130.1
D231	52.69	-	175.7	8.422	118.4
D233	53.54	-	177.7	7.210	115.2
A234	51.62	53.82	-	7.662	124.3
C235	56.21	51.62	175.1	8.452	119.1
F236	55.63	56.00	171.8	9.232	128.0
S237	57.35	55.55	173.0	9.319	124.5
A238	50.70	57.38	-	8.016	122.9
K239	54.61	50.67	175.7	9.033	114.8
V240	59.45	54.62	174.6	8.948	117.0
S244	56.50	56.30	-	8.630	120.6
L245	54.77	56.37	175.8	8.464	124.7
I246	59.45	53.77	176.7	9.037	126.7
G247	44.03	59.49	174.8	9.280	114.5
L248	53.21	44.05	171.4	9.370	122.3
G249	44.66	53.20	-	9.169	110.5
Y250	56.15	44.64	170.9	9.088	125.5
T251	60.76	56.06	174.7	8.354	124.5
Q252	52.52	-	-	9.019	126.1
L254	53.73	59.44	-	7.279	118.5
K255	55.69	53.63	174.5	8.901	130.5

	CAi	$\mathrm{CAi}-1$	$\mathrm{C}^{\prime} \mathrm{i}-1$	H_{N}	N
L260	52.98	54.71	174.7	8.803	127.8
T261	61.28	52.94	174.3	9.585	122.9
L262	52.87	61.26	-	9.216	129.6
S263	56.80	52.47	174.6	8.797	115.3
A264	51.11	56.73	172.8	9.536	120.6
L265	52.41	51.11	173.4	8.709	124.9
L266	52.33	52.28	175.2	9.486	126.2
G268	46.03	52.32	176.9	8.457	112.4
K269	56.79	45.99	173.8	8.124	117.3
N270	51.80	56.76	177.1	7.423	117.5
V271	65.06	51.82	175.1	8.508	122.1
A273	51.73	54.27	175.8	7.488	120.7
G274	44.74	51.71	177.7	7.694	106.7
G275	45.46	44.81	174.0	8.509	109.1
H276	54.54	45.45	174.0	7.251	120.7
K277	54.64	64.35	176.1	8.831	119.4
L278	53.50	54.74	175.2	8.654	121.6
G279	45.03	53.44	178.0	9.096	111.1
L280	53.78	45.13	170.9	8.198	121.0
G281	44.27	53.82	-	9.574	115.9
L228	53.36	44.28	171.6	8.669	124.6
E283	55.90	53.30	177.5	7.354	125.4
F284	55.90	-	-	9.313	128.1
Q285	53.72	56.15	174.2	8.675	122.7
A286	51.25	53.91	174.4	8.282	126.4
R287	55.89	51.27	-	9.030	125.0
S288	57.14	55.74	174.1	7.745	125.8

B Chemical shift assignments of Conk-S1

1	1	LYS	CB	C	33.080	0.042	
2	1	LYS	CD	C	29.158	0.03	1
3	1	LYS	CE	C	42.048	0.03	1
4	1	LYS	CG	C	23.873	0.03	
5	1	LYS	C	C	172.311	0.03	
6	1	LYS	HA	H	4.009	0.003	
7	1	LYS	HB2	H	1.901	0.003	2
8	1	LYS	HD2	H	1.689	0.003	
9	1	LYS	HE2	H	2.991	0.003	
10	1	LYS	HG2	H	1.455	0.003	
11	2	ASP	CA	C	54.432	0.03	
12	2	ASP	CB	C	41.344	0.009	
13	2	ASP	C	C	175.290	0.03	
14	2	ASP	H	H	8.690	0.001	
15	2	ASP	HA	H	4.651	0.003	
16	2	ASP	HB2	H	2.515	0.003	
17	2	ASP	HB3	H	2.694	0.003	
18	2	ASP	N	N	123.473	0.057	
19	3	A	CA	C	54.21	0.03	
20	3	ARg	CB	C	30.490	0.03	
21	3	ARG	H	H	8.454	0.001	
22	3	ARg	N	N	123.151	0.005	
23	4	PRO	CA	C	63.199	0.001	
24	4	PRO	CB	C	32.121	0.018	
25	4	PRO	CD	C	51.116	0.03	
26	4	PRO	CG	C	27.753	0.03	
27	4	PRO	C	C	178.002	0.03	
28	4	PRO	HA	H	4.509	0.003	
29	4	PRO	HB2	H	2.431	0.001	
30	4	PRO	HB3	H	2.069	0.003	
31	4	PRO	HD2	H	3.950	0.004	2
32	4	PRO	HD3	H	3.847	0.003	2
33	4	PRO	HG2	H	2.166	0.003	2
34	4	PRO	HG3	H	2.062	0.003	2
35	5	SER	CA	C	61.	0.031	

36	5	SER	CB	C	62.776	0.037	1
37	5	SER	C	C	177.273	0.03	1
38	5	SER	H	H	8.829	0.001	1
39	5	SER	HA	H	4.194	0.003	1
0	5	SER	HB2	H	3.983	0.003	2
41	5	SER	N	N	120.366	0.138	1
42	6	LEU	CA	C	57.762	0.03	1
3	6	LEU	CB	C	40.582	0.023	1
44	6	LEU	CD1	C	26.591	0.03	1
45	6	LEU	C	C	176.584	0.03	1
46	6	LEU	H	H	8.115	0.001	1
47	6	LEU	HA	H	4.102	0.003	1
48	6	LEU	HB2	H	1.799	0.004	2
49	6	LEU	HB3	H	1.438	0.001	2
50	6	LEU	HD1	H	0.931	0.007	2
51	6	LEU	HD2	H	0.800	0.003	2
52	6	LEU	HG	H	1.558	0.003	2
53	6	LEU	N	N	122.169	0.012	1
54	7	CYS	CA	C	57.260	0.050	1
55	7	CYS	CB	C	39.349	0.026	1
56	7	C	C	C	173.714	0.03	
57	7	CYS	H	H	7.669	0.002	1
58	7	CYS	HA	H	4.29	0.003	1
59	7	CYS	HB2	H	2.812	0.003	2
60	7	CYS	HB3	H	3.104	0.003	2
61	7	CYS	N	N	116.543	0.003	1
62	8	ASP	CA	C	54.368	0.029	1
63	8	ASP	CB	C	41.901	0.013	1
64	8	ASP	C	C	177.020	0.03	1
65	8	ASP	H	H	7.582	0.003	1
66	8	ASP	HA	H	4.931	0.003	1
67	8	ASP	HB2	H	2.590	0.003	2
68	8	ASP	HB3	H	2.964	0.003	2
69	8	ASP	N	N	114.479	0.008	1
70	9	LEU	CA	C	53.388	0.03	1

229	26	ASN	C	17	0.03	
30	26	ASN H	H	8.048	0.002	1
31	26	ASN HA	H	4.585	0.00	
32	26	ASN HB2	H	2.603	0.	2
33	26	ASN HB3	H	1.967	0.00	2
34	26	ASN N	N	126.650	0.0	
35	27	SER CA	C	60.626	0.	1
6	27	ER CB	C	63.008	0.07	
7	27	ER C	C	176.131	0.03	
38	27	SER H	H	8.429	0.	
9	27	HA	H	3.827	0.00	
0	27	ER HB2	H	4.082	0.0	2
241	27	N	N	121.116	0.	
2	28	CA	C	54.788	0.01	
3	28	LA CB	C	18.297	0.0	
4	28	C	C	179.723	0.03	1
5	28	ALA H	H	8.017	0.00	1
6	28	H	H	4.201	0.00	
7	28	HB	H	1.48	0.00	
8	28	N	N	124.917	0.003	
9	29	RG CA	C	55.533	0.0	
0	29	G CB	C	31.087	0.0	1
251	29	RG CD	C	43.232	0.03	
2	29	CG	C	27.18	0.03	
3	29	G C	C	175.418	0.03	
4	29	ARG	H	7.779	0.00	
5	29	HA	H	4.112	0.	
56	29	HB2	H	1.07	0.00	2
257	29	RG HB3	H	923	0.00	2
8	29	RG	H	. 03	0	2
59	29	RG HG2	H	1.539	0.00	2
0	29	ARG N	N	114.463	0.002	
261	30	YS CA	C	56.79	0.	
2	30	LYS CB	C	29.253	0.00	
63	30	S CD	C	29.57	0.03	
264	30	CE	C	42.523	0.03	
5	30	YS CG	C	24.886	0.03	
66	30	YS C	C	174.803	0.03	
7	30	YS	H	7.927	0.00	
68	30	S HA	H	3.677	0.003	
9	30	YS HB2	H	2.039	0.00	2
270	30	LYS HB3	H	81	0.00	2
271	30	YS HD2	H	1.667	0.003	2
272	30	YS HD3	H	1.70	0.00	2
273	30	LYS HE2	H	3.018	0.00	2
4	30	YS	H	1.380	0.003	
275	30	LYS HG	H	1.298	0.0	2
6	30	N	N	117.604	0.00	
7	31	LN CA	C	54.072	0.026	
8	31	GLN CB	C	35.027	0.120	
279	31	CG	C	33.758	0.03	
0	31	N	C	174.118	0.03	
281	31	GL	H	6.800	0.00	
2	31	GLN	H	4.546	0.006	
83	31	LN HB2	H	. 37	0.00	2
4	31	GLN HB3	H	1.753	0.00	2
5	31	GLN HG	H	2.246	0.001	2
286	31	GLN	N	111.927	0.00	
87	32	CYS CA	C	57.264	0.095	
88	32	CYS CB	C	44.627	0.005	
289	32	CYS C	C	173.556	0.03	
0	32	CYS H	H	8.674	0.001	1
1	32	CYS HA	H	5.157	0.003	
2	32	CYS HB2	H	3.096	0.003	2
93	32	CYS HB	H	2.620	0.003	2
4	32	CYS N	N	121.910	0.014	1
5	33	LEU CA	C	53.319	0.03	1
96	33	LEU CB	C	46.394	0.010	
97	33	LEU CD1	C	22.887	0.03	
98	33	LEU CG	C	26.234	0.03	
99	33	LEU C	C	174.921	0.03	
00	33	LEU H	H	9.026	0.00	1
01	33	LEU HA	H	4.768	0.003	1
302	33	LEU HB2	H	1.385	0.003	2
03	33	LEU HB3	H	1.667	0.003	2
304	33	LEU HD1	H	0.778	0.003	2
305	33	LEU HD2	H	0.821	0.003	2
06	33	LEU HG	H	1.167	0.003	
07	33			7.17		

308	34	ARG CA	C	55.951	0.008	
309	34	ARG CB	C	32.149	0.016	1
10	34	ARG CD	C	43.994	0.03	
311	34	ARG CG	C	27.868	0.	
12	34	ARG	C	176.755	0.03	
13	34	ARG	H	8.351	0.	
4	34	ARG HA	H	5.436	0 3	
315	34	ARG HB2	H	1.809	0.005	2
6	34	ARG HB3	H	1.885	0.002	2
7	34	ARG HD2	H	3.162	0.003	2
8	34	ARG HG2	H	71	03	2
19	34	ARG HG3	H	1.796	0.002	2
0	34	ARG	N	119.037	0.	
321	35	PHE CA	C	55.927	0.003	
2	35	PHE CB	C	41.344	47	
3	35	E	C	171.916	3	
4	35	PHE H	H	9.497	0.002	
5	35	HA	H	4.947	0.003	
326	35	HB2	H	3.103	0.00	2
7	35	PHE HB3	H	2.992	0.003	2
8	35	HD1	H	104	0.003	
29	35	HE1	H	7.157	0.00	3
0	35	PHE N	N	121.396	0.006	
331	36	ASP CA	C	54.108	0.	
2	36	ASP CB	C	41.241	. 00	
3	36	ASP C	C	173.71	0.03	
4	36	ASP H	H	8.359	0.001	
335	36	ASP HA	H	43	03	1
336	36	ASP HB2	H	2.580	0.003	2
337	36	HB3	H	2.410	0.002	2
8	36	ASP N	N	120.047	0.048	
9	37	TYR CA	C	55.304	0.046	
340	37	TYR CB	C	41.800	0.013	
341	37	TYR C	C	175.382	0.03	
342	37	TYR	H	8.83	0.00	
343	37	TYR HA	H	. 976	0.0	
344	37	TYR HB2	H	2.297	0.003	2
345	37	TYR HB	H	2.401	0.00	2
346	37	TYR N	N	124.067	0.004	
7	38	CA	C	58.747	0.03	
8	38	THR CB	C	63.914	0.030	
349	38	THR C	C	175.226	0.03	
350	38	THR H	H	7.911	0.002	
351	38	HA	H	4.435	0.0	
352	38	THR HB	H	3.894	0.003	2
353	38	THR N	N	114.714	0.005	
4	39	GLY CA	C	45.724	0.018	
355	39	GLY C	C	172.504	0.03	
356	39	GLY HA	H	4.192	0.003	
357	39	GLY HA	H	3.337	0.00	
8	40	CA	C	54.741	0.014	
359	40	GLN CB	C	32.600	0.212	
0	40	GLN CG	C	33.735	0.03	
	40	C	C	175.264	0.03	
362	40	GLN H	H	6.647	0.003	
363	40	HA	H	4.577	0.003	
4	40	GLN HB2	H	. 696	0.002	
5	40	GLN HB3	H	. 845	0.003	2
6	40	GLN HG	H	2.187	0.003	2
7	40	GLN N	N	116.234	0.018	
8	41	GLY CA	C	45.085	0.019	
9	41	GLY C	C	175.797	0.03	
0	41	GLY H	H	8.943	0.001	
	41	GLY HA2	H	4.182	0.003	
372	41	GLY HA	H	3.906	0.003	
373	41	GLY N	N	109.417	0.006	
	42	GLY CA	C	43.803	0.002	
375	42	GLY C	C	172.996	0.03	
376	42	GLY H	H	9.292	0.001	
377	42	GLY HA2	H	4.516	0.003	
378	42	GLY HA	H	3.711	0.003	2
379	42	GLY N	N	112.607	0.008	
380	43	ASN CA		51.708	0.030	
381	43	ASN CB	C	40.620	0.014	
382	43	ASN C	C	175.253	0.03	
383	43	ASN H	H	9.210	0.001	
384	43	ASN HA	H	4.927	0.003	
385	43	ASN HB2	H	3.185	0.003	
86	43			2.910	0.003	

66	53	CYS CA	C	58.631	0.041
467	53	CYS CB	C	44.619	0.004
468	53	CYS C	C	175.009	0.03
469	53	CYS	H	6.730	0.003
470	53	CYS HA	H	1.885	0.0011
471	53	CYS HB2	H	2.535	0.003
472	53	CYS HB3	H	2.962	0.0032
473	53	CYS	N	120.799	0.002
474	54	GLN CA	C	58.508	0.005
475	54	GLN CB	C	27.764	0.035
476	54	GLN CG	C	34.735	0.03
477	54	GLN C	C	178.023	0.031
478	54	GLN	H	8.355	0.0021
479	54	GLN HA	H	3.565	0.0031
480	54	GLN HB2	H	2.126	0.0022
481	54	GLN HB3	H	1.765	0.0012
482	54	GLN HG2	H	2.042	0.0032
483	54	GLN HG3	H	2.501	0.0022
484	54	GLN N	N	120.571	0.004
485	55	ARG CA	C	58.106	0.0171
486	55	ARG CB	C	29.495	0.026
487	55	ARG CD	C	43.064	0.03
488	55	ARG CG	C	26.660	0.03
489	55	ARG C	C	176.856	0.03
490	55	ARG H	H	8.098	0.0021
91	55	ARG HA	H	3.898	0.0031
492	55	ARG HB2	H	1.578	0.0032
93	55	ARG HD2	H	3.019	0.0032
494	55	ARG HD3	H	2.901	0.0032
495	55	ARG HG2	H	1.432	0.0032
496	55	ARG N	N	117.371	0.0051
497	56	THR CA	C	66.062	0.057
498	56	THR CB	C	69.047	0.0551
499	56	THR CG2	C	22.118	0.03
500	56	THR C	C	175.235	0.031
501	56	THR H	H	7.140	0.003
502	56	THR HA	H	3.992	0.0031
503	56	THR HB	H	3.893	0.0032
504	56	THR HG1	H	1.377	0.0012
505	56	THR N	N	112.797	0.0151
506	57	CYS CA	C	54.328	0.047
507	57	CYS CB	C	42.393	0.0121
08	57	CYS C	C	173.311	0.03
509	57	CYS H	H	7.553	0.002
510	57	CYS HA	H	4.633	0.003
511	57	CYS HB2	H	1.672	0.0032
512	57	CYS HB3	H	1.363	0.0032
513	57	CYS N	N	112.636	0.0061
514	58	LEU CA	c	56.270	0.03
515	58	LEU CB	C	44.237	0.006
516	58	LEU CD1	C	25.252	0.03
517	58	LEU CG	C	27.320	0.03
518	58	LeU C	C	176.548	0.031
519	58	LEU H	H	7.522	0.0021
520	58	LEU HA	H	4.257	0.0031
521	58	LEU HB2	H	1.206	0.0032
522	58	LEU HB3	H	1.525	0.0022
523	58	LEU HD1	H	0.867	0.0032
524	58	LEU HD2	H	0.739	0.0032
525	58	LEU HG	H	1.176	0.0032
526	58	LEU N	N	120.701	0.0031
527	59	TYR CA	C	56.469	0.0401
528	59	TYR CB	C	37.679	0.0251
529	59	TYR C	C	175.127	0.031
530	59	TYR H		7.745	0.0021
531	59	TYR HA	H	4.744	0.0031
532	59	TYR HB2	H	3.167	0.0032
533	59	TYR HB3	H	2.822	0.0032
534	59	TYR HD1	H	6.982	0.0033
535	59	TYR HE1	H	6.745	0.0033
536	59	TYR N	N	120.378	0.006
537	60	THR CA	C	62.782	0.031
538	60	THR CB	C	70.624	0.031
539	60	THR H	H	7.486	0.0011
540	60	THR N	N	118.585	0.006

C NMR restraints of Conk-S1

C. 1 Residual dipolar couplings

Table $3 \mathrm{H}_{\mathrm{N}} \mathrm{N}$-RDCs of Conk-S1

Residue 1	Atom 1	Residue 2	Atom 2	D [Hz]
3	N	3	HN	4.382
5	N	5	HN	-3.092
6	N	6	HN	12.505
7	N	7	HN	-20.229
11	N	11	HN	4.851
12	N	12	HN	16.789
13	N	13	HN	21.371
15	N	15	HN	10.715
16	N	16	HN	-5.478
17	N	17	HN	5.788
18	N	18	HN	-20.673
19	N	19	HN	-7.587
20	N	20	HN	7.302
21	N	21	HN	6.391
22	N	22	HN	21.147
23	N	23	HN	5.649
25	N	25	HN	2.689
27	N	27	HN	-2.612
28	N	28	HN	-21.061
29	N	29	HN	-6.266
30	N	30	HN	19.603
31	N	31	HN	29.311
32	N	32	HN	21.366
34	N	34	HN	8.869
35	N	35	HN	14.104
36	N	36	HN	16.081
37	N	37	HN	17.244
38	N	38	HN	5.068
39	N	39	HN	0.627
40	N	40	HN	9.685
41	N	41	HN	7.842
43	N	43	HN	11.588
44	N	44	HN	1.986
45	N	45	HN	18.790
46	N	46	HN	-4.266
48	N	48	HN	-3.909
49	N	49	HN	-11.954
53	N	53	HN	-17.750
54	N	54	HN	-28.635
55	N	55	HN	-25.261
56	N	56	HN	-30.443
57	N	57	HN	-13.133
58	N	58	HN	-1.008
59	N	59	HN	-11.870
60	N	60	HN	3.270

Table 4 C'N-RDCs of Conk-S1

Residue 1	Atom 1	Residue 2	Atom 2	D [Hz]
2	C	3	N	-0.158
4	C	5	N	2.014
5	C	6	N	0.538
6	C	7	N	-1.098
7	C	8	N	0.880
8	C	9	N	-1.013
10	C	11	N	-0.485
11	C	12	N	0.160
12	C	13	N	-1.197
13	C	14	N	1.339
14	C	15	N	-0.245
15	C	16	N	2.589
16	C	17	N	-0.826
17	C	18	N	-0.159
18	C	19	N	1.916
19	C	20	N	-3.296
20	C	21	N	2.182
21	C	22	N	-1.004
22	C	23	N	-2.734
23	C	24	N	0.160
24	C	25	N	-2.109
25	C	26	N	0.415
26	C	27	N	1.545
27	C	28	N	0.388
28	C	29	N	-1.466
29	C	30	N	0.453
30	C	31	N	-3.401
31	C	32	N	1.453
32	C	33	N	0.062
33	C	34	N	-2.095
34	C	35	N	0.262
35	C	36	N	0.388
36	C	37	N	0.925
37	C	38	N	1.596
38	C	39	N	0.129
39	C	40	N	2.500
40	C	41	N	-1.435
41	C	42	N	0.372
42	C	43	N	-0.158
43	C	44	N	-2.353
44	C	45	N	0.606
45	C	46	N	1.779
47	C	48	N	1.645
48	C	49	N	-2.844
51	C	52	N	-1.191
52	C	53	N	0.150
53	C	54	N	1.958
54	C	55	N	0.930
55	C	56	N	0.566
56	C	57	N	0.475
57	C	58	N	2.329
58	C	59	N	1.123
59	C	60	N	-0.122

Table 5 CAHA-RDCs of Conk-S1

Residue 1	Atom 1	Residue 2	Atom 2	D [Hz]
1	CA	1	HA	0.252
2	CA	2	HA	12.392
4	CA	4	HA	-12.394
5	CA	5	HA	-4.727
6	CA	6	HA	32.221
7	CA	7	HA	-32.452
8	CA	8	HA	10.480
10	CA	10	HA	9.266
11	CA	11	HA	27.490
12	CA	12	HA	24.486
13	CA	13	HA	40.151
15	CA	15	HA	20.952
17	CA	17	HA	20.754
18	CA	18	HA	-32.378
19	CA	19	HA	-9.803
20	CA	20	HA	2.458
21	CA	21	HA	23.361
22	CA	22	HA	33.248
25	CA	25	HA	34.016
26	CA	26	HA	27.866
27	CA	27	HA	29.870
28	CA	28	HA	-39.994
29	CA	29	HA	-1.480
31	CA	31	HA	26.955
32	CA	32	HA	24.484
33	CA	33	HA	22.897
34	CA	34	HA	11.525
35	CA	35	HA	5.522
36	CA	36	HA	38.599
37	CA	37	HA	24.048
38	CA	38	HA	4.611
40	CA	40	HA	15.438
43	CA	43	HA	11.700
44	CA	44	HA	-9.919
45	CA	45	HA	9.769
47	CA	47	HA	8.926
48	CA	48	HA	-7.004
49	CA	49	HA	-26.711
51	CA	51	HA	-12.324
52	CA	52	HA	-12.583
53	CA	53	HA	24.849
54	CA	54	HA	19.993
55	CA	55	HA	-19.145
56	CA	56	HA	-12.933
57	CA	57	HA	-8.267
58	CA	58	HA	26.260
59	CA	59	HA	-2.156

Table 6 CaC'-RDCs of Conk-S1

Residue 1	Atom 1	Residue 2	Atom 2	D [Hz]
1	CA	1	C	1.597
2	CA	2	C	-4.968
4	CA	4	C	2.9125
5	CA	5	C	-4.209
6	CA	6	C	0.527
7	CA	7	C	2.895
8	CA	8	C	-1.292
10	CA	10	C	-1.8185
11	CA	11	C	0.38
12	CA	12	C	-3.8165
14	CA	14	C	-2.327
15	CA	15	C	-2.948
16	CA	16	C	-3.291
17	CA	17	C	2.839
18	CA	18	C	-1.199
19	CA	19	C	2.0015
20	CA	20	C	-3.877
21	CA	21	C	-3.51
22	CA	22	C	-4.806
26	CA	26	C	-4.6885
27	CA	27	C	-0.278
28	CA	28	C	2.748
29	CA	29	C	0.6455
31	CA	31	C	-3.3695
32	CA	32	C	-4.058
33	CA	33	C	-1.8915
34	CA	34	C	2.8385
35	CA	35	C	-2.6045
36	CA	36	C	0.7975
37	CA	37	C	-4.624
38	CA	38	C	0.386
40	CA	40	C	-0.7465
41	CA	41	C	-2.520
42	CA	42	C	-3.959
43	CA	43	C	3.689
44	CA	44	C	2.176
45	CA	45	C	-3.636
47	CA	47	C	-3.479
48	CA	48	C	3.147
49	CA	49	C	-3.0025
51	CA	51	C	1.4185
52	CA	52	C	1.827
53	CA	53	C	-3.923
54	CA	54	C	-2.5265
55	CA	55	C	3.372
56	CA	56	C	1.0275
57	CA	57	C	-1.341
58	CA	58	C	-1.849
59	CA	59	C	-0.78

C. 2 Dihedral angles

Table 7 Phi angles of Conk-S1 from Talos

Residue 1	Atom 1	Residue 2	Atom 2	Residue 3	Atom 3	Residue 4	Atom 4	Phi angle [${ }^{\circ}$]
3	C	4	N	4	CA	4	C	-70.0
4	C	5	N	5	CA	5	C	-76.3
5	C	6	N	6	CA	6	C	-81.2
7	C	8	N	8	CA	8	C	-97.0
8	C	9	N	9	CA	9	C	-77.0
9	C	10	N	10	CA	10	C	-72.0
10	C	11	N	11	CA	11	C	-78.0
11	C	12	N	12	CA	12	C	-100.0
12	C	13	N	13	CA	13	C	-74.0
14	C	15	N	15	CA	15	C	-96.0
15	C	16	N	16	CA	16	C	-84.0
16	C	17	N	17	CA	17	C	-90.0
17	C	18	N	18	CA	18	C	-100.0
18	C	19	N	19	CA	19	C	-97.0
19	C	20	N	20	CA	20	C	-114.0
20	C	21	N	21	CA	21	C	-90.0
21	C	22	N	22	CA	22	C	-138.0
22	C	23	N	23	CA	23	C	-112.0
23	C	24	N	24	CA	24	C	-127.0
24	C	25	N	25	CA	25	C	-100.0
25	C	26	N	26	CA	26	C	-106.0
26	C	27	N	27	CA	27	C	-66.0
27	C	28	N	28	CA	28	C	-71.0
28	C	29	N	29	CA	29	C	-96.0
29	C	30	N	30	CA	30	C	57.0
30	C	31	N	31	CA	31	C	-126.0
31	C	32	N	32	CA	32	C	-117.0
32	C	33	N	33	CA	33	C	-116.0
33	C	34	N	34	CA	34	C	-103.0
34	C	35	N	35	CA	35	C	-130.0
35	C	36	N	36	CA	36	C	-99.0
36	C	37	N	37	CA	37	C	-114.0
37	C	38	N	38	CA	38	C	-112.0
38	C	39	N	39	CA	39	C	88.0
39	C	40	N	40	CA	40	C	-121.0
40	C	41	N	41	CA	41	C	75.0
41	C	42	N	42	CA	42	C	-85.0
42	C	43	N	43	CA	43	C	-110.0
43	C	44	N	44	CA	44	C	-81.0
44	C	45	N	45	CA	45	C	-79.0
45	C	46	N	46	CA	46	C	-83.0
46	C	47	N	47	CA	47	C	-111.0
47	C	48	N	48	CA	48	C	-80.0
48	C	49	N	49	CA	49	C	-129.0
50	C	51	N	51	CA	51	C	-67.0
51	C	52	N	52	CA	52	C	-83.0
52	C	53	N	53	CA	53	C	-68.0
53	C	54	N	54	CA	54	C	-65.0
54	C	55	N	55	CA	55	C	-66.0
55	C	56	N	56	CA	56	C	-80.0
56	C	57	N	57	CA	57	C	-85.0
57	C	58	N	58	CA	58	C	-90.0
58	C	59	N	59	CA	59	C	-100.0

Table 8 Psi angles of Conk-S1 from Talos

Residue 1	Atom 1	Residue 2	Atom 2	Residue 3	Atom 3	Residue 4	Atom 4	Psi angle [${ }^{\circ}$]
4	N	4	CA	4	C	5	N	138.0
5	N	5	CA	5	C	6	N	-20.7
6	N	6	CA	6	C	7	N	-3.2
8	N	8	CA	8	C	9	N	-1.0
9	N	9	CA	9	C	10	N	147.1
10	N	10	CA	10	C	11	N	146.0
11	N	11	CA	11	C	12	N	134.0
12	N	12	CA	12	C	13	N	141.0
13	N	13	CA	13	C	14	N	-38.0
15	N	15	CA	15	C	16	N	4.0
16	N	16	CA	16	C	17	N	167.0
17	N	17	CA	17	C	18	N	-15.0
18	N	18	CA	18	C	19	N	146.0
19	N	19	CA	19	C	20	N	126.0
20	N	20	CA	20	C	21	N	135.0
21	N	21	CA	21	C	22	N	133.0
22	N	22	CA	22	C	23	N	153.0
23	N	23	CA	23	C	24	N	132.0
24	N	24	CA	24	C	25	N	155.0
25	N	25	CA	25	C	26	N	117.0
26	N	26	CA	26	C	27	N	126.0
27	N	27	CA	27	C	28	N	-27.0
28	N	28	CA	28	C	29	N	-32.0
29	N	29	CA	29	C	30	N	0.0
30	N	30	CA	30	C	31	N	35.0
31	N	31	CA	31	C	32	N	154.0
32	N	32	CA	32	C	33	N	149.0
33	N	33	CA	33	C	34	N	151.0
34	N	34	CA	34	C	35	N	139.0
35	N	35	CA	35	C	36	N	146.0
36	N	36	CA	36	C	37	N	116.0
37	N	37	CA	37	C	38	N	140.0
38	N	38	CA	38	C	39	N	2.0
39	N	39	CA	39	C	40	N	-2.0
40	N	40	CA	40	C	41	N	146.0
41	N	41	CA	41	C	42	N	25.0
42	N	42	CA	42	C	43	N	137.0
43	N	43	CA	43	C	44	N	163.0
44	N	44	CA	44	C	45	N	-28.0
45	N	45	CA	45	C	46	N	124.0
46	N	46	CA	46	C	47	N	118.0
47	N	47	CA	47	C	48	N	150.0
48	N	48	CA	48	C	49	N	-20.0
49	N	49	CA	49	C	50	N	151.0
51	N	51	CA	51	C	52	N	-36.0
52	N	52	CA	52	C	53	N	-17.0
53	N	53	CA	53	C	54	N	-38.0
54	N	54	CA	54	C	55	N	-29.0
55	N	55	CA	55	C	56	N	-37.0
56	N	56	CA	56	C	57	N	-14.0
57	N	57	CA	57	C	58	N	-8.0
58	N	58	CA	58	C	59	N	-15.0
59	N	59	CA	59	C	60	N	117.0

Table 9 Chil angles (C' CA CB CG) of Conk-S1

Residue	Chi1 angle $\left[{ }^{\circ}\right]$
11	180.0
18	180.0
20	180.0
21	180.0
23	180.0
24	60.0
25	180.0
30	180.0
34	180.0
35	60.0
37	180.0
40	180.0
45	180.0

Residue	Chi1 angle $\left[{ }^{\circ}\right]$
46	180.0
47	-60.0
48	180.0
49	180.0
51	180.0
54	180.0
55	180.0
56	180.0
58	180.0
59	-60.0
60	180.0

C. 3 Coupling constants

Table $10{ }^{3} \mathrm{~J}_{\mathrm{HnHa}}$ coupling constants

Residue 1	Atom 1	Residue 2	Atom 2	${ }^{3} \mathrm{~J}_{\mathrm{HnHa}}[\mathrm{Hz}]$
5	H	5	HA	4.0
7	H	7	HA	5.4
8	H	8	HA	9.9
9	H	9	HA	7.5
11	H	11	HA	6.2
12	H	12	HA	12.6
13	H	13	HA	6.4
15	H	15	HA	11.6
16	H	16	HA	10.1
17	H	17	HA	10.1
18	H	18	HA	11.0
19	H	19	HA	9.5
20	H	20	HA	11.2
21	H	21	HA	9.4
22	H	22	HA	10.9
23	H	23	HA	12.4
24	H	24	HA	10.2
26	H	26	HA	10.1
27	H	27	HA	5.4
28	H	28	HA	7.2
29	H	29	HA	9.9
30	H	30	HA	9.7
31	H	31	HA	10.1
32	H	32	HA	10.3
33	H	33	HA	11.2
34	H	34	HA	7.7
35	H	35	HA	9.7
36	H	36	HA	9.6
37	H	37	HA	10.1
38	H	38	HA	9.6
40	H	40	HA	10.2
43	H	43	HA	9.7
44	H	44	HA	5.5
45	H	45	HA	10.1
46	H	46	HA	9.9
47	H	47	HA	10.2
48	H	48	HA	9.5
49	H	49	HA	10.8
52	H	52	HA	7.3
53	H	53	HA	6.1
54	H	54	HA	4.6
55	H	55	HA	5.5
56	H	56	HA	9.5
57	H	57	HA	11.3
58	H	58	HA	9.8
59	H	59	HA	9.7
60	H	60	HA	10.2

C. 4 Distance constraints

Table 11 NOE distance restraints for Conk-S1

Residue 1	Atom 1	Residue 2	Atom 2	Distance [\AA]
4	HG2	4	HA	2.547
20	HG2	22	HG2	3.550
10	HG2	44	HN	3.927
30	HB1	30	HN	3.465
48	HG1	22	HD2	2.192
34	HB2	24	HB2	3.535
18	HB1	17	HG1	3.579
48	HG1	48	HN	3.105
48	HB2	52	HB2	3.827
49	HG1	49	HN	3.145
49	HG1	23	HG11	4.387
54	HB2	54	HN	2.618
29	HB1	29	HB2	2.064
21	HB1	21	HN	2.050
21	HB1	22	HG2	3.907
49	HB2	52	HB1	3.325
49	HB2	52	HA	3.881
21	HB1	21	HE2	3.441
24	HB1	11	HB2	3.564
24	HB1	11	HB1	
24	HB1	11	HB3	
24	HB2	11	HA	3.746
24	HB1	33	HB1	3.972
7	HB2	57	HB2	2.245
7	HB2	57	HA	3.278
47	HB2	47	HD1	2.392
24	HB2	11	HB2	3.291
24	HB2	11	HB1	
24	HB2	11	HB3	
32	HB2	54	HB2	3.402
8	HB1	4	HA	4.303
1	HE2	1	HA	3.844
8	HB1	5	HA	3.846
22	HD2	22	HB2	3.467
52	HB2	53	HA	3.343
22	HD2	37	HB1	4.900
55	HD2	55	HA	3.841
45	HB2	45	HN	2.579
45	HB2	45	HA	2.870
51	HB2	55	HD1	3.334
40	HG2	15	HB2	3.307
20	HG1	22	HG2	3.736
4	HB2	7	HN	3.673
4	HB1	6	HG	2.774
52	HB2	51	HB2	3.397
51	HB2	51	HB1	2.028
44	HG2	43	HB1	3.575
12	HB2	13	HN	3.621
58	HB2	58	HB1	2.141
58	HG	58	HA	3.348
57	HB2	58	HA	3.682
31	HB2	31	HG2	3.519
58	HB2	54	HG2	3.750
49	HG2	52	HN	3.125
18	HD2	18	HA	1.955
48	HG2	48	HN	2.752
49	HG2	49	HN	2.090
55	HB2	55	HD1	1.920
21	HB2	21	HN	2.913
48	HG2	52	HB2	3.962
40	HB2	40	HG2	3.413
21	HD1	21	HE2	2.716
31	HB1	31	HG2	2.901
40	HB2	40	HA	2.634
33	HB1	33	HB2	1.885
29	HG2	29	HA	2.425
29	HG2	29	HN	2.422

Residue 1	Atom 1	Residue 2	Atom 2	Distance [\AA]
58	HB1	54	HG2	3.573
34	HA	33	HA	4.025
14	HA1	15	HN	3.539
47	HA	49	HN	2.591
47	HA	46	HA	3.348
32	HA	58	HG	3.174
16	HA1	15	HA	3.200
48	HA	49	HA	3.538
7	HA	8	HA	3.619
35	HA	24	HA	4.020
35	HA	34	HA	4.812
8	HA	27	HB2	4.234
31	HA	31	HB1	1.939
31	HA	58	HA	4.086
39	HA1	15	HB2	4.644
11	HA	45	HB2	3.859
11	HA	45	HN	3.435
54	HA	32	HB1	3.874
11	HA	35	HB1	4.071
48	HD2	20	HA	4.587
47	HB1	53	HN	3.274
47	HB1	47	HB2	2.114
51	HB1	55	HD1	3.561
10	HD1	44	HN	3.761
10	HD1	10	HD2	2.121
15	HB2	16	HA1	3.870
30	HE2	57	HA	5.379
55	HD1	52	HA	4.570
55	HD1	55	HA	3.713
34	HD2	34	HN	4.030
45	HB1	45	HA	2.670
59	HB1	59	HB2	1.960
45	HB2	45	HB1	1.932
45	HB1	47	HE1	3.382
27	HB2	32	HA	4.578
6	HA	6	HB2	2.550
52	HA	56	HN	2.766
28	HA	30	HE2	3.759
44	HA	43	HB1	4.058
2	HB2	2	HA	3.017
2	HB1	2	HA	2.562
4	HB2	6	HD22	3.048
4	HB2	6	HD21	
4	HB2	6	HD23	
4	HA	4	HB2	2.590
4	HB2	6	HN	3.651
4	HA	4	HB1	1.864
4	HD2	4	HB2	3.255
4	HD1	4	HB2	3.102
6	HB2	6	HD11	2.491
6	HB1	6	HA	2.593
6	HB1	6	HD11	1.729
7	HB2	7	HN	2.387
7	HB2	57	HB1	1.981
7	HB1	7	HN	2.836
7	HB1	7	HA	2.628
8	HA	8	HB2	2.411
8	HB1	8	HN	2.804
8	HA	8	HB1	2.032
10	HA	10	HB2	2.461
10	HB1	10	HD2	2.008
10	HA	10	HB1	2.566
10	HB1	10	HD1	2.808
6	HA	10	HD1	3.672
10	HD1	10	HG2	2.469
10	HG2	10	HD2	2.541
11	HA	11	HB1	2.419

Residue 1	Atom 1	Residue 2	Atom 2	Distance $[\AA]$
12	HA	12	HB2	2.721
12	HB2	12	HB1	2.095
12	HB1	14	HA1	3.797
12	HB1	12	HA	2.978
12	HB1	42	HA2	2.836
14	HA2	14	HN	1.815
15	HB2	15	HA	2.669
15	HB2	15	HB1	2.108
16	HA2	40	HG2	3.467
16	HA2	18	HN	3.251
17	HG1	17	HB	2.325
17	HG1	15	HB2	4.077
18	HB2	18	HN	2.779
18	HB2	18	HA	2.921
18	HA	18	HB1	2.663
19	HA	19	HN	3.441
19	HA	19	HB2	2.425
20	HB2	20	HA	2.915
20	HB1	20	HA	2.575
20	HG2	20	HN	3.247
20	HG2	20	HA	3.286
20	HG1	20	HA	3.424
21	HA	21	HB2	2.417
21	HA	21	HB1	3.046
21	HD2	21	HA	3.111
22	HB2	22	HA	2.974
22	HB2	22	HG2	2.474
22	HB2	23	HN	2.854
22	HB2	37	HB1	2.832
22	HB1	22	HA	1.985
22	HB2	22	HB1	2.133
22	HB1	23	HN	2.555
22	HB1	47	HN	3.665
22	HD2	23	HN	3.542
22	HD2	22	HA	2.763
22	HB1	22	HD2	1.702
22	HD2	48	HA	3.011
22	HD1	48	HB1	3.592
22	HD1	23	HN	3.883
22	HD1	22	HA	2.579
22	HB1	22	HD1	2.867
22	HD1	22	HG2	2.633
22	HD1	48	HA	2.844
22	HG2	22	HA	2.832
22	HG2	22	HB1	2.291
22	HD2	22	HG2	2.545
22	HG2	23	HN	3.207
22	HG2	37	HB1	2.425
23	HA	23	HN	3.134
23	HA	23	HB	2.555
23	HA	23	HD11	2.464
23	HA	23	HG11	2.711
23	HA	23	HG21	2.354
23	HA	35	HN	3.043
23	HB	23	HD11	3.024
23	HB	23	HG12	2.501
23	HB	23	HG21	2.497
23	HG12	23	HN	3.429
23	HA	23	HG12	2.933
23	HG11	23	HD11	2.585
23	HG21	32	HA	3.113
23	HG21	53	HN	3.735
23	HG21	47	HD1	2.958
23	HG21	24	HD1	3.878
24	HA	25	HB1	3.278
24	HA	47	HE1	3.413
24	HA	23	HG21	3.362
24	HA	24	HN	2.863
24	HA	24	HD1	3.357
24	HA	34	HN	3.862
24	HB2	24	HN	4.121
24	HA	24	HB2	2.183
24	HB2	24	HE1	3.582

Residue 1	Atom 1	Residue 2	Atom 2	Distance [\AA
24	HB2	25	HN	3.286
24	HB1	24	HN	3.274
24	HB1	24	HA	2.167
24	HB1	24	HD1	1.968
24	HB1	24	HE1	3.055
24	HB1	25	HN	3.387
24	HD1	23	HA	3.650
24	HD1	35	HB1	2.825
24	HD1	24	HN	2.893
24	HB2	24	HD1	2.546
24	HD1	25	HN	4.467
24	HD1	34	HN	3.046
25	HA	33	HN	3.321
25	HB2	57	HB1	3.316
25	HA	25	HB2	1.808
25	HA	25	HB1	2.449
25	HB1	26	HN	3.251
26	HB2	33	HB1	3.946
26	HB2	33	HB2	3.070
26	HB2	26	HA	3.627
26	HB2	29	HB2	2.808
26	HB2	33	HD11	2.839
26	HB1	33	HB1	3.876
26	HB1	26	HN	2.648
26	HB1	26	HA	2.780
26	HB2	26	HB1	1.933
26	HB1	29	HB2	1.779
26	HB1	33	HD11	2.740
27	HA	30	HN	3.108
27	HB2	28	HN	3.161
27	HB2	30	HE2	3.521
28	HA	28	HB1	2.223
29	HA	29	HN	2.709
29	HA	29	HB1	2.548
29	HB2	33	HD12	3.334
29	HB2	31	HG2	3.462
29	HA	29	HB2	2.436
29	HB2	29	HD2	2.873
29	HB1	33	HD12	3.943
29	HB1	29	HN	2.847
29	HB1	29	HD2	2.767
30	CA	30	HN	2.375
30	HA	30	HB2	2.361
30	HB1	30	HA	2.336
30	HA	30	HG2	2.589
30	HB2	30	HG2	2.585
31	HA	31	HB2	3.377
31	HB2	33	HD11	2.851
31	HG2	33	HD12	3.372
31	HA	31	HG2	2.308
32	HA	26	HN	2.796
32	HA	32	HN	2.991
32	HA	32	HB2	2.905
32	HA	32	HB1	2.663
32	HA	33	HN	2.242
32	HB2	58	HG	2.985
32	HB1	32	HN	2.812
32	HB1	33	HN	3.362
33	HB2	24	HE1	3.020
33	HB2	33	HG	2.147
33	HB2	33	HA	2.903
33	HB2	33	HD11	2.478
33	HB1	33	HG	2.827
33	HB1	24	HE1	3.020
33	HB1	33	HN	2.976
33	HB1	33	HA	2.722
33	HB1	33	HD11	2.433
33	HD11	34	HN	3.270
33	HD11	31	HA	3.751
33	HD11	33	HA	2.554
33	HD11	29	HD2	4.282
33	HD11	34	HD2	4.289
34	HA	33	HB2	3.134

Residue 1	Atom 1	Residue 2	Atom 2	Distance $[\AA]$
34	HA	23	HG22	3.981
34	HA	23	HG21	
34	HA	23	HG23	
34	HA	35	HB1	3.783
34	HA	23	HD11	2.708
34	HA	24	HN	3.321
34	HA	34	HB2	2.112
34	HB1	34	HN	2.092
34	HB1	34	HD2	1.922
34	HG2	34	HN	3.382
34	HG2	23	HD11	3.446
34	HG2	34	HA	2.945
34	HG1	34	HA	3.081
34	HD2	34	HG1	2.212
35	HB2	35	HD1	2.354
35	HB2	11	HB1	3.408
35	HB2	24	HE1	2.769
35	HB2	35	HA	1.831
35	HB1	35	HD1	2.535
35	HB1	11	HB1	3.517
36	HB2	36	HN	2.160
36	HB2	36	HA	1.868
36	HA	36	HB1	2.356
37	HA	37	HN	2.725
37	HB2	22	HB2	3.022
37	HB2	37	HN	2.899
37	HB2	37	HA	2.819
37	HB1	37	HA	2.369
39	HA2	40	HN	2.618
42	HA2	42	HN	2.533
43	HA	43	HB2	2.804
43	HA	43	HB1	2.577
43	HB2	44	HN	2.311
43	HB1	44	HN	2.336
44	HA	44	HN	2.759
44	HB2	44	HN	2.231
44	HA	44	HB2	2.301
44	HB1	44	HA	2.555
44	HG2	44	HA	2.636
44	HG2	44	HB2	2.367
46	HB2	46	HN	2.952
46	HB2	46	HA	2.802
46	HB1	46	HA	2.921
47	HA	48	HB2	2.847
47	HA	47	HB1	1.906
47	HB2	48	HN	2.910
23	HB	47	HB2	2.891
47	HB2	47	HA	2.676
47	HB2	49	HN	2.469
48	HA	48	HG2	2.666
48	HA	48	HB2	2.233
48	HB2	48	HD2	2.767
48	HB1	48	HN	2.786
48	HA	48	HB1	2.371
48	HB1	48	HD2	1.817
48	HD2	48	HG1	2.790
48	HG2	48	HD2	2.428
48	HG1	48	HA	2.348
49	HA	49	HB2	2.438
49	HB2	49	HD2	2.781
49	HB1	52	HN	2.739
49	HB1	49	HN	3.048
49	HA	49	HB1	2.453
49	HB1	49	HD2	2.815
49	HG2	49	HA	3.372
49	HG2	49	HB2	2.674
49	HG1	49	HA	3.116
51	HA	51	HD1	2.710
51	HA	51	HB2	2.788
51	HA	52	HN	2.812
51	HA	54	HB2	2.623
51	HA	54	HB1	3.105
51	HB2	54	HB1	3.330

Residue 1	Atom 1	Residue 2	Atom 2	Distance [$\AA]$
51	HB2	49	HG1	3.904
51	HB2	51	HD1	2.374
51	HB2	51	CA	2.883
51	HB1	51	HD1	2.760
51	HB1	49	HB1	3.499
51	HA	51	HB1	2.228
52	HA	52	HB2	2.147
52	HA	55	HB2	2.173
52	HB1	49	HN	2.798
52	HA	52	HB1	2.893
52	HB1	53	HN	2.567
53	HA	57	HN	3.078
53	HA	53	HN	2.943
53	HA	53	HB2	2.538
53	HA	53	HB1	2.747
53	HA	54	HN	3.889
53	HA	56	HB	3.180
53	HB2	47	HD1	2.711
53	HB2	53	HN	2.701
53	HB2	54	HN	3.122
53	HB1	23	HG21	2.652
53	HB1	54	HN	2.770
54	HA	58	HA	3.955
54	HA	58	HD22	2.857
54	HA	58	HD21	
54	HA	58	HD23	
54	HA	58	HN	2.822
53	HB2	54	HA	2.862
54	HA	54	HB2	2.533
54	HA	54	HB1	2.362
54	HA	58	HB2	2.644
54	HA	58	HB1	2.412
58	HG	54	HG2	3.078
54	HG2	54	HA	2.789
54	HG2	58	HD21	2.981
54	HG1	58	HG	2.873
54	HG1	54	HA	2.875
54	HG1	54	HB1	2.850
55	HA	55	HB2	2.485
55	HA	59	HB1	2.726
55	HG2	56	HN	3.113
55	HG2	52	HA	2.949
56	HG1	52	HA	3.584
56	HG1	59	HB1	4.253
56	HA	56	HG1	2.265
56	HG1	57	HN	2.805
57	HB2	57	HN	2.668
57	HB2	57	HA	2.954
7	HB1	57	HB1	2.836
57	HB1	57	HA	2.691
58	HA	58	HB2	2.490
58	HA	58	HD11	2.315
58	HB2	58	HN	2.740
58	HB2	58	HD11	2.747
58	HB1	58	HN	2.579
58	HB1	58	HA	2.989
58	HB1	58	HD21	2.690
58	HB1	59	HN	2.499
58	HD11	32	HN	4.032
58	HD1 1	60	HN	3.896
58	HD11	31	HA	3.295
59	HB2	59	HD1	3.170
59	HB2	59	HA	2.730
59	HB2	60	HN	3.597
59	HB1	59	HD1	2.912
59	HB1	59	HN	2.820
59	HB1	59	HA	2.917
57	HN	59	HN	3.779
57	HN	57	HA	2.876
8	HN	7	HN	2.817
57	HN	56	HB	2.689
57	HB1	57	HN	2.687
54	HA	57	HN	3.678

Residue 1	Atom 1	Residue 2	Atom 2	Distance $[\AA]$
57	HN	56	HA	3.522
9	HN	7	HN	3.633
7	HN	6	HA	3.444
60	HN	59	HA	2.545
60	HN	59	HN	3.305
59	HB1	60	HN	3.530
48	HB2	49	HN	2.676
49	HN	48	HN	2.528
58	HN	58	HG	2.620
58	HN	57	HB1	3.396
49	HN	49	HA	2.853
49	HN	52	HB2	3.081
48	HA	49	HN	3.214
49	HB2	49	HN	2.845
48	HB1	49	HN	2.874
28	HN	30	HN	3.197
55	HA	55	HN	2.692
55	HN	52	HA	3.118
54	HB1	55	HN	2.763
55	HG2	55	HN	2.725
55	HB2	55	HN	2.300
26	HN	33	HD12	3.587
26	HN	30	HN	3.502
18	HN	19	HN	3.707
59	HB2	59	HN	2.641
58	HB2	59	HN	3.153
59	HN	59	HD1	3.613
59	HN	59	HA	2.775
58	HN	59	HN	2.479
31	HN	31	HG2	3.381
31	HN	26	HB1	3.021
30	HA	31	HN	2.540
31	HN	31	HB1	3.272
31	HN	29	HB2	3.094
31	HB2	31	HN	2.810
31	HA	31	HN	2.782
52	HN	53	HN	2.635
52	HN	51	HD1	3.539
52	HN	51	HB2	2.791
52	HN	52	HB1	3.096
52	HN	52	HA	2.856
49	HB2	52	HN	2.662
52	HN	52	HB2	2.531
52	HN	51	HB1	2.993
53	HB1	53	HN	2.497
53	HN	52	HA	3.353
53	HN	52	HB2	2.807
53	HN	54	HN	2.590
57	HN	56	HN	2.610
56	HN	55	HN	2.754
56	HN	56	HA	2.809
56	HN	56	HB	2.472
55	HB2	56	HN	2.809
32	HN	31	HB2	2.951
20	HN	39	HN	4.102
16	HN	20	HN	4.781
22	HN	21	HN	3.678
54	HG1	54	HN	2.456
54	HB1	54	HN	2.554
54	HG2	54	HN	3.017
54	HA	54	HN	2.792
54	HN	55	HN	2.851
51	HA	54	HN	3.231
36	HN	22	HN	3.969
42	HN	14	HN	3.539
48	HN	47	HA	2.433
48	HA	48	HN	2.877
48	HB2	48	HN	2.332
47	HB1	48	HN	2.779
23	HN	47	HB2	3.253
4	HA	5	HN	2.266
5	HA	5	HN	2.884
5	HB2	5	HN	2.540

Residue 1	Atom 1	Residue 2	Atom 2	Distance [\AA]
4	HB1	5	HN	3.194
5	HN	4	HB2	2.961
37	HN	20	HN	3.028
43	HN	44	HN	3.468
16	HN	41	HN	3.847
54	HB2	55	HN	3.035
54	HA	55	HN	3.669
2	HN	2	HA	2.232
5	HN	6	HN	2.898
6	HN	6	HG	2.484
5	HB2	6	HN	3.171
6	HN	6	HD22	2.793
6	HN	6	HD21	
6	HN	6	HD23	
5	HA	6	HN	3.224
4	HB1	6	HN	2.919
6	HA	6	HN	2.732
6	HB2	6	HN	2.433
6	HB1	6	HN	2.775
7	HN	4	HB1	3.165
6	HN	7	HN	2.822
7	HN	6	HD21	3.046
7	HN	6	HG	2.562
7	HN	7	HA	3.081
8	HN	6	HA	3.406
8	HN	7	HB2	3.066
8	HA	8	HN	2.931
8	HB2	8	HN	2.430
9	HN	6	HA	3.362
9	HN	8	HB2	3.339
9	HN	8	HA	3.150
10	HB2	11	HN	2.762
10	HB1	11	HN	3.061
10	HA	11	HN	2.260
11	HN	11	HA	2.866
11	HA	12	HN	2.300
12	HN	12	HA	3.110
12	HB2	12	HN	3.083
12	HB1	12	HN	2.893
12	HA	13	HN	2.229
13	HN	13	HA	3.177
13	HB2	13	HN	2.993
14	HN	12	HA	3.257
14	HA2	15	HN	2.397
15	HN	15	HA	2.856
15	HB2	15	HN	3.054
15	HB1	15	HN	2.779
15	HN	16	HN	2.563
16	HN	15	HA	2.860
16	HA2	16	HN	2.495
16	HA2	17	HN	2.468
17	HN	17	HA	2.838
17	HN	18	HN	2.443
18	HN	18	HA	2.468
18	HN	18	HB1	2.924
18	HN	18	HG2	3.265
18	HA	19	HN	2.232
19	HN	18	HB2	2.860
18	HB1	19	HN	2.400
19	HB2	19	HN	2.401
19	HN	20	HN	3.914
19	HA	20	HN	2.152
19	HB2	20	HN	2.782
20	HA	20	HN	2.753
20	HB1	20	HN	2.877
20	HG1	20	HN	2.794
20	HB2	20	HN	2.971
21	HN	21	HD2	2.581
20	HB1	21	HN	2.772
20	HA	21	HN	2.229
21	HN	21	HA	2.863
22	HN	21	HD2	3.372
22	HN	21	HB2	2.872

Residue 1	Atom 1	Residue 2	Atom 2	Distance [\AA]
21	HA	22	HN	2.144
22	HN	22	HA	2.907
22	HB2	22	HN	2.879
22	HN	22	HB1	3.284
22	HG2	22	HN	3.391
22	HN	35	HN	2.869
23	HN	22	HA	2.669
23	HB	23	HN	2.243
23	HG11	23	HN	3.004
23	HN	23	HG21	3.650
23	HA	24	HN	2.297
23	HG21	24	HN	2.516
24	HN	33	HN	2.903
25	HN	47	HE1	3.593
24	HA	25	HN	2.640
25	HA	25	HN	3.522
25	HB2	25	HN	2.813
25	HB1	25	HN	2.778
25	HA	26	HN	2.388
26	HN	26	HA	3.033
26	HB2	26	HN	2.619
26	HN	31	HN	3.177
26	HA	27	HN	2.229
27	HA	27	HN	2.888
27	HB2	27	HN	2.401
27	HN	28	HN	2.724
28	HN	27	HA	3.348
28	HA	28	HN	2.680
28	HB1	28	HN	2.246
28	HN	29	HN	2.543
28	HA	29	HN	3.242
28	HB1	29	HN	2.304
29	HB2	29	HN	2.499
30	HN	30	HG1	3.127
30	HN	30	HG2	2.991
30	HN	30	HB2	3.261
29	HN	30	HN	2.399
30	HN	29	HA	3.217
30	HN	29	HB2	3.121
30	HN	30	HA	2.287
30	HN	31	HN	2.572
31	HA	32	HN	2.199
31	HB1	32	HN	2.797
32	HB2	32	HN	2.446
33	HN	33	HD12	3.138
23	HG21	33	HN	2.865
33	HN	33	HA	2.933
33	HB2	33	HN	2.658
34	HN	33	HA	2.269
33	HB1	34	HN	2.476

Residue 1	Atom 1	Residue 2	Atom 2	Distance
34	HA	34	HN	2.893
34	HB1	35	HN	3.257
34	HB2	35	HN	2.765
35	HN	34	HG2	3.081
34	HA	35	HN	2.224
35	HN	35	HA	3.066
36	HN	35	HA	2.395
35	HB2	36	HN	2.908
36	HN	35	HD1	3.228
36	HN	36	HA	2.981
36	HB1	36	HN	2.880
36	HA	37	HN	2.209
37	HB1	37	HN	2.579
38	HN	37	HB2	3.765
38	HN	13	HA	3.412
38	HN	37	HA	2.324
40	HN	38	HN	3.367
40	HN	40	HG2	3.438
16	HN	40	HN	2.977
16	HA2	40	HN	3.042
40	HN	40	HA	2.809
40	HN	40	HB2	2.975
40	HB1	40	HN	3.187
40	HA	41	HN	2.324
41	HN	40	HB2	3.228
41	HN	40	HB1	3.012
41	HN	40	HG2	3.091
41	HA2	41	HN	2.465
41	HA2	42	HN	2.473
12	HB1	43	HN	3.099
43	HN	42	HA2	2.417
43	HN	43	HA	2.951
43	HA	44	HN	2.586
44	HB1	44	HN	2.857
44	HG2	44	HN	2.630
45	HN	45	HA	2.769
45	HB1	45	HN	2.638
46	HN	45	HN	3.555
46	HN	45	HA	2.395
46	HN	46	HA	3.214
46	HN	46	HB1	2.839
23	HB	47	HN	3.091
23	HN	47	HN	2.946
47	HN	46	HA	2.428
47	HA	47	HN	3.422
47	HN	47	HB2	3.433
47	HN	47	HB1	2.817
58	HA	58	HN	2.866
58	HA	59	HN	2.789

D Pulse-programs and parameters used for HVDAC

D.1.1 TROSY-HSQC pulse-program

```
;trosyetf3gpsi
;avance-version (02/05/31)
;2D H-1/X correlation via TROSY
; using sensitivity improvement
;phase sensitive using Echo/Antiecho gradient selection
;using f3 - channel
;(use parameterset TROSYETF3GPSI)
;
;M. Czisch & R. Boelens, J. Magn. Reson. 134, 158-160 (1998)
;K. Pervushin, G. Wider & K. Wuethrich, J. Biomol. NMR 12,
; 345-348 (1998)
;A. Meissner, T. Schulte-Herbrueggen, J. Briand & O.W. Sorensen, Mol. Phys. 96,
; 1137-1142 (1998)
;J. Weigelt, J. Am. Chem. Soc. 120, 10778-10779 (1998)
;M. Rance, J.P. Loria & A.G. Palmer III, J. Magn. Reson. 136, 91-101 (1999)
;G. Zhu, X.M. Kong & K.H. Sze, J. Biomol. NMR 13, 77-81 (1999)
#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>
"p2=p1*2"
"p22=p21*2"
"d0=6u"
"d11=30m"
;"d26=1s/(cnst4*4)"
"d26=1.75m"
"DELTA=d0*2+p21*4/3.1416+10u"
"DELTA1=d26-p16-d16-4u"
"DELTA2=d26-p1-p16-d16-4u"
"DELTA3=p19+d16+8u"
"10=1"
1 ze
2 d11
3 d1 pl1:f1
    50u UNBLKGRAD
    (p1 ph1)
4u
p16:gp1
d16
DELTA1
(center (p2 ph2) (p22 ph1):f3 )
4u
DELTA1
p16:gp1
d16
(p1 ph3)
p16:gp6
    if "10 %2 == 1"
    {
    (p21 ph4):f3
    }
    else
    (p21 ph5):f3
    }
```

```
d0 gron0
d0 gron0*-1
10u groff
p19:gp2*EA
d16
(p22 ph1):f3
DELTA
p19:gp2*-1*EA
d16
(p1 ph6)
4u
p16:gp3
d16
DELTA2 pl1:f1
(center (p2 ph1) (p22 ph1):f3 )
4u
DELTA1
p16:gp3
d16
(center (p1 ph1) (p21 ph2):f3 )
4u
p16:gp4
d16
DELTA1
(center (p2 ph1) (p22 ph1):f3 )
DELTA1
p16:gp4
d16
4u
(p21 ph7):f3
DELTA3
(p2 ph1)
4u
p19:gp5
d16
4u BLKGRAD
go=2 ph31
d11 mc #0 to 2
    F1EA(igrad EA & ip6*2 & ip7*2 & iu0, id0 & ip4*2 & ip5*2 & ip31*2)
exit
ph1=0
ph2=1
ph3=3
ph4=1320
ph5=3 120
ph6=1
ph7=0
ph31=023 1
;pl1 : f1 channel - power level for pulse (default) ;pl3 : f3 channel - power level for pulse (default) ;p1 : fl channel-90 degree high power pulse ;p2 : f1 channel-180 degree high power pulse ;p16: homospoil/gradient pulse [1 msec] ;p19: gradient pulse 2 [500 usec]
;p21: f3 channel - 90 degree high power pulse
;p22: f3 channel - 180 degree high power pulse
;d0 : incremented delay (2D)
[6 usec]
;d1 : relaxation delay; 1-5 * T1
;d11: delay for disk I/O
[30 msec]
;d16: delay for homospoil/gradient recovery
;d26: 1/(4J)YH
;cnst4: = J(YH)
;in0: 1/(2 * SW \((\mathrm{X}))=\mathrm{DW}(\mathrm{X})\)
;nd0: 2
```

;NS: 4*n
;DS: 16
;td1: number of experiments
;FnMODE: echo-antiecho
;use gradient ratio: gp $0:$ gp $1:$ gp $2:$ gp $3:$ gp $4:$ gp 5
; 3: 30: 80: 45: 50: 16.2
;for z-only gradients:
;gpz0: 3\%
;gpz1: 30\%
;gpz2: 80\%
;gpz3: 45\%
;gpz4: 50\%
;gpz5: 16.2\%
;use gradient files:
;gpnam1: SINE. 100
;gpnam2: SINE. 50
;gpnam3: SINE. 100
gpnam4: SINE. 100
;gpnam5: SINE. 50
;\$Id: trosyetf3gpsi,v 1.4 2002/06/12 09:05:18 ber Exp \$

D.1.2 TROSY-HSQC parameters

\#\#TITLE $=$ Parameter file, XWIN-NMR
Version 3.5
\#\#JCAMPDX $=5.0$
\#\#DATATYPE $=$ Parameter Values
\#\#ORIGIN= UXNMR, Bruker Analytische Messtechnik GmbH
\#\#OWNER = demo
\$ \$ Thu Jan 18 13:08:16 2007 MEZ (UT+1h)
spektrum@nmr800.nmr.mpibpc.mpg.de
\$ $/ \mathrm{u} /$ data/ $\mathrm{momo} / \mathrm{nmr} / \mathrm{hvdac} 180107$ _Ca/3/acqus
\#\# $\$$ AMP $=(0 . .31)$
100100100100100100100100100100100100100
100100100100100100100100100100100100100
100100100100100100
\#\#\$AQSEQ=0
\#\#\$AQ_mod= 3
\#\#\$AUNM= <au zgonly>
\#\#\$AUTOPOS=->>
\#\#\$BF1 $=800.15$
$\# \# \$ B F 2=201.197878$
$\# \# \$ B F 3=81.078495$
\#\#SBF4 $=800.15$
\#\#\$BF5 $=800.15$
\#\#\$BF6= 800.15
\#\#SBF7 $=800.15$
\#\#\$BF8 $=800.15$
\#\#SBYTORDA= 1
\#\# ${ }^{\text {SCFDGTYP }=2 ~}$
\#\#SCFRGTYP= 5
\#\#\$CHEMSTR $=$ <none>
\#\#\$CNST $=(0 . .31)$
1114019011111111111114.7558 .53 .517654
39120170156.5111
\#\#\$CPDPRG= <>
\#\#\$CPDPRG1 $=<$ mlev $>$
\#\#\$CPDPRG2 $=<\mathrm{mlev}>$
\#\#\$CPDPRG3 = <mlev>
\#\#\$CPDPRG4 $=<$ mlev $>$
\#\#\$CPDPRG5= <mlev>
\#\#SCPDPRG6 $=<$ mlev $>$
\#\#\$CPDPRG7 $=<\mathrm{mlev}>$
\#\#SCPDPRG8= <mlev>
\#\#\$CPDPRGB= <>
\#\#\$CPDPRGT= <>
\#\#\$D $=(0 . .31)$
6e-06 $10.0036000000 .12000 .032 \mathrm{e}-055 \mathrm{e}-0600$
3.48e-05005e-050000000.0017500000
\#\#\$DATE= 1169116837
\#\#\$DBL= (0..7)
120120120120120120120120
\#\#\$DBP= (0..7)
150150150150150150150150
\#\#\$DBP07 $=0$
\#\#\$DBPNAM0 $=<>$
\#\#\$DBPNAM1 $=<>$
\#\#\$DBPNAM2 $=<>$
\#\#\$DBPNAM3 $=<>$
\#\#\$DBPNAM4 = <>
\#\#\$DBPNAM5=<>
\#\#\$DBPNAM6=<>
\#\#\$DBPNAM7 = < >
\#\#\$DBPOAL = (0..7)
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DBPOFFS= (0..7)
00000000
\#\#\$DE= 6
\#\#SDECBNUC $=<$ off $>$
\#\#\$DECIM $=12$
\#\#\$DECNUC= <off>
\#\#\$DECSTAT $=4$
\#\#\$DIGMOD $=1$
\#\#\$DIGTYP $=8$
$\# \# \$ D L=(0 . .7)$
10120120120120120120120
\#\#\$DP= (0..7)
150150150150150150150150
\#\#\$DP07= 0
\#\#\$DPNAME $0=<>$
\#\#\$DPNAME1 = <>
\#\#\$DPNAME2 $=<>$
\#\#\$DPNAME3 $=<>$
\#\#\$DPNAME4 $=<>$
\#\#\$DPNAME5 = <>
\#\#\$DPNAME6= <>
\#\#\$DPNAME7 $=<>$
\#\#\$DPOAL $=(0 . .7)$
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DPOFFS $=(0 . .7)$
00000000
\#\#\$DQDMODE $=0$
\#\#\$DR $=17$
\#\#SDS $=16$
\#\#\$DSLIST $=<$ SSSSSSSSSSSSSSS $>$
\#\#\$DSPFIRM $=0$
\#\#\$DSPFVS $=12$
\#\#\$DTYPA $=0$
\#\#\$EXP=<>
\#\#\$F1LIST $=<111111111111111>$
\#\# ${ }^{\text {SF2LIST }}=<22222222222222>$
\#\#\$F3LIST $=<333333333333333>$
\#\#\$FCUCHAN= (0..9)
0123000000
\#\#\$FL1 $=90$
$\# \#$ \$FL2 $=90$
$\# \# \$ F L 3=90$
\#\# ${ }^{2}$ FL4 $=90$
\#\# $\#$ FOV $=20$
\#\#SFQ1LIST $=<$ freqlist $>$
\#\#\$FQ2LIST $=<$ freqlist $>$
\#\#\$FQ3LIST $=<$ freqlist $>$
\#\#\$FQ4LIST $=<$ freqlist $>$
\#\#\$FQ5LIST $=<$ freqlist $>$
\#\#\$FQ6LIST $=<$ freqlist $>$
\#\#\$FQ7LIST $=<$ freqlist $>$
\#\#\$FQ8LIST $=<$ freqlist $>$
\#\#\$FS = (0..7)
8383838383838383
\#\#\$FTLPGN $=0$
\#\#\$FW=125000
\#\#\$FnMODE $=0$
\#\#\$GP031 $=0$
\#\#\$GPNAM0 $=<$ sine. $100>$
\#\#\$GPNAM1 $=<$ SINE. $100>$
\#\#\$GPNAM10 $=<$ sine. $100>$
\#\#\$GPNAM11 $=<$ sine. $100>$
\#\#\$GPNAM12 $=<$ sine. $100>$
\#\#\$GPNAM13 $=<$ sine. $100>$
\#\#\$GPNAM14 $=<$ sine. $100>$
\#\#\$GPNAM15=<sine.100>
\#\#\$GPNAM16 $=<$ sine. $100>$
\#\#\$GPNAM17 $=<$ sine. $100>$
\#\#\$GPNAM18 $=<$ sine.100>
\#\#\$GPNAM19 $=<$ sine. $100>$
\#\#\$GPNAM2 $=<$ SINE. $50>$
\#\#\$GPNAM20 $=<$ sine. $100>$
\#\#\$GPNAM21 $=<$ sine. $100>$
\#\#\$GPNAM22 $=<$ sine. $100>$
\#\#\$GPNAM23 $=<$ sine. $100>$
\#\#\$GPNAM24 $=<$ sine. $100>$
\#\#\$GPNAM25=<sine.100>
\#\#\$GPNAM26 $=<$ sine. $100>$
\#\#\$GPNAM27 $=$ <sine. $100>$
\#\#\$GPNAM28 $=<$ sine. $100>$
\#\#\$GPNAM29 $=$ <sine. $100>$ \#\# $\$$ GPNAM3 $=<$ SINE. $100>$ \#\#\$GPNAM30 $=<$ sine. $100>$ \#\#\$GPNAM31 $=<$ sine. $100>$ \#\# $\$$ GPNAM4 $=<$ SINE. $100>$ \#\#\$GPNAM5 $=<$ SINE. $50>$ \#\#\$GPNAM6 $=<$ SINE. $100>$ \#\#\$GPNAM7 $=<$ sine. $100>$ \#\#\$GPNAM8 $=<$ sine. $100>$ \#\#\$GPNAM9 = < sine.100> \#\#\$GPX $=(0 . .31)$
0000000000000000000000000000000
0
\#\#\$GPY= (0..31)
0000000000000000000000000000000 0
\#\#\$GPZ= (0..31)
33080455016.2150000000000000000000 000000
\#\#\$GRDPROG= <grad_out>
\#\#\$HDDUTY = 20
\#\#\$HDRATE= 20
\#\#\$HGAIN = (0..3)
0000
\#\#\$HL1 $=256$
\#\#\$HL2 $=35$
\#\#\$HL3 $=16$
\#\#\$HL4 $=17$
\#\#\$HOLDER $=0$
\#\#\$HPMOD $=(0 . .7)$
00000000
\#\#\$HPPRGN= 0
\#\#\$IN= (0..31)
0.00018136250 .0010 .0010 .0010 .0010 .0010 .0010 .001 0.0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .001 0.0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .001 0.0010 .0010 .0010 .0010 .0010 .001
\#\#\$INP=(0..31)
0000000000000000000000000000000
0
\#\#\$INSTRUM $=$ <spect>
\#\#\$L= (0..31)
1111111111111111111111111111111
1
\#\#\$LFILTER $=200$
\#\#\$LGAIN= -32
\#\#\$LOCKED $=$ no
\#\#\$LOCKFLD $=2815$
\#\#\$LOCKGN= 131.100006103516
\#\#\$LOCKPOW=-20
\#\#\$LOCKPPM $=4.69999980926514$
\#\#\$LOCNUC= <2 $\mathrm{H}>$
\#\# $\$$ LOCPHAS $=287.9$
\#\#\$LOCSHFT= no
\#\#\$LTIME $=0.200000002980232$
\#\#\$MASR $=0$
\#\#\$MASRLST = <masrlst>
\#\#\$NBL= 1
\#\#\$NC= -1
\#\#\$NS $=24$
\#\#\$NUC1 $=<1 \mathrm{H}>$
\#\#\$NUC2 $=<13 \mathrm{C}>$
$\# \# \$ N U C 3=<15 \mathrm{~N}>$
\#\#\$NUC4=<off>
\#\#\$NUC5=<off>
\#\#\$NUC6 = <off>
\#\#\$NUC7 $=<$ off $>$
\#\#\$NUC8 = <off>
\#\#\$NUCLEI= 0
\#\#\$NUCLEUS $=$ <off $>$
\#\#\$O1 $=3764.70575$
\#\#\$O2 $=10663.4875340035$
\#\#\$O3 $=9628.07128129839$
\#\#\$O4= 0
\#\#\$O5= 0
\#\#\$O6 $=-19999.9999999818$
\#\#\$O7=-19999.9999999818
\#\#\$O8 = -19999.9999999818
\#\#\$OBSCHAN= (0..9)
0000000000
\#\#\$OVERFLW=0
\#\#\$P= (0..31)
1113.326 .60 .10000000000001000005002634

680000001100
\#\#\$PAPS $=2$
\#\#\$PARMODE $=1$
\#\#\$PCPD $=(0 . .9)$
100100100100100100100100100100
\#\#\$PHCOR $=(0 . .31)$
0000000000000000000000000000000 0
\#\# $\mathrm{SPHP}=1$
\#\#\$PH_ref= 0
\#\# $\$$ PL $=(0 . .31)$
120-1-6-6120 12012012012056120120120120120
$120120120-3120120120120120120120120120120$
120120120
\#\#\$POWMOD $=0$
\#\#\$PR= 1
\#\#\$PRECHAN= (0..15)

\#\#\$PRGAIN $=0$
\#\#\$PROBHD $=<5 \mathrm{~mm}$ CPTCI $1 \mathrm{H}-13 \mathrm{C} / 15 \mathrm{~N}$ Z-GRD
Z44909/0007>
\#\#\$PROSOL= no
\#\#\$PULPROG=<troesyetf3gpsi.mo>
\#\#\$PW=0
\#\#\$QNP $=1$
\#\#\$QS= (0..7)8383838383838322
\#\#\$QSB= (0..7)8383838383838383
\#\# $\mathrm{RRD}=0$
\#\#\$RECCHAN $=(0 . .15)$

\#\#\$RECPH=0
\#\#\$RG=256
\#\# $\mathrm{RRO}=0$
\#\#\$ROUTWD1 $=(0 . .23)$
000000000000000000001100
\#\#\$ROUTWD2 $=(0 . .23)$
000001000000000000101100
\#\#\$RPUUSED $=(0 . .8)$
000000000
\#\#\$RSEL=(0..9)
0215000000
\#\# $\$ \mathrm{~S}=(0 . .7)$
834838383838383
\#\#\$SEOUT $=0$
\#\#\$SFO1 $=800.15376470575$
\#\#SSFO2 $=201.208541487534$
$\# \#$ SSFO3 $=81.0881230712813$
\#\#\$SFO4 $=800.15$
\#\#\$SFO5 $=800.15$
\#\#\$SFO6 $=800.13$
\#\#\$SFO7= 800.13
\#\#\$SFO8= 800.13
\#\# $\$$ SOLVENT $=<$ D2O $>$
\#\# $\$$ SP $=(0 . .31)$
1000000000000000150150150150150150
150150150150150150150150150150
\#\#\$SP07=0
\#\# ${ }^{\text {SSPECTR }}=0$
\#\#SSPNAM0 $=<$ gauss $>$
\#\#SSPNAM1 = <gauss>
\#\#SSPNAM10= <gauss>
\#\#\$SPNAM11 = <gauss>
\#\#SSPNAM12 $=$ <gauss $>$
\#\#SSPNAM13 $=$ <gauss $>$
\#\#\$SPNAM14 = <gauss>
\#\#SSPNAM15= <gauss>
\#\#SSPNAM16 = <gauss>
\#\#SSPNAM17 $=$ <gauss $>$
\#\#SSPNAM18 = < gauss>
\#\#SSPNAM19 = < gauss $>$
\#\#SSPNAM2 $=$ <gauss>
\#\#\$SPNAM20 $=$ <gauss>
\#\#SSPNAM21 $=$ <gauss $>$
\#\#SSPNAM22 $=$ <gauss>
\#\#\$SPNAM23 $=$ <gauss $>$
\#\#SSPNAM24=<gauss>
\#\#\$SPNAM25=<gauss>
\#\#SSPNAM26=<gauss> \#\#SSPNAM27=<gauss> \#\#SSPNAM28 = < gauss $>$ \#\#\$SPNAM29= <gauss> \#\#SSPNAM3 = <gauss> \#\#\$SPNAM30=<gauss>
\#\#\$SPNAM31 = <gauss>
\#\#\$SPNAM4 = < gauss>
\#\#\$SPNAM5= <gauss>
\#\#\$SPNAM6 $=$ <gauss $>$
\#\#\$SPNAM7= <gauss>
\#\#\$SPNAM8 $=$ <gauss>
\#\#\$SPNAM9 $=$ <gauss $>$
\#\#\$SPOAL= (0..31)
0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5 $\begin{array}{llllllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5\end{array}$ 0.50 .5
\#\#\$SPOFFS $=(0 . .31)$
0000000000000000000000000000000
0
\#\#\$SUBNAM0 $=$ <"">
\#\#\$SUBNAM1 = <"">
\#\#\$SUBNAM2=<"">
\#\#\$SUBNAM3=<"">
\#\#\$SUBNAM4=<"">
\#\#\$SUBNAM5=<"">
\#\#\$SUBNAM6=<"">
\#\#\$SUBNAM7 $=<"$ " $>$
\#\#\$SUBNAM8=<"">
\#\#\$SUBNAM9=<"">
\#\#\$SW= 17.9563188048458
\#\#\$SWIBOX $=(0 . .15)$
0120056000000000
\#\#\$SW h=14367.816091954
\#\#\$TD= 1024
\#\#\$TD0 $=1$
\#\#\$TE= 310
\#\#\$TE2 $=300$
\#\#\$TE3 $=300$
\#\#\$TEG $=300$
\#\#\$TL= (0..7)
10120120120120120120120
\#\#\$TP= (0..7)
150150150150150150150150
\#\#\$TP07=0
\#\#\$TPNAME $0=<>$
\#\#\$TPNAME1 $=<>$
\#\#\$TPNAME2 $=<>$
\#\#\$TPNAME3 = <>
\#\#\$TPNAME4=<>
\#\#\$TPNAME5=<>
\#\#\$TPNAME6=<>
\#\#\$TPNAME7=<>
\#\#\$TPOAL= (0..7)
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$TPOFFS= (0..7)
00000000
\#\#\$TUNHIN=0
\#\#\$TUNHOUT $=0$
\#\#\$TUNXOUT $=0$
\#\#\$USERA1 $=$ <user>
\#\#\$USERA2 $=$ <user $>$
\#\#SUSERA3 $=$ <user>
\#\#\$USERA4= <user>
\#\#\$USERA5=<user>
\#\#\$V9 = 5
\#\#\$VALIST $=$ <valist>
\#\#\$VCLIST $=<$ CCCCCCCCCCCCCCC $>$
\#\#\$VD $=0$
\#\#\$VDLIST $=<$ DDDDDDDDDDDDDDD $>$
\#\#\$VPLIST $=<$ PPPPPPPPPPPPPP $>$
\#\#\$VTLIST $=$ <TTTTTTTTTTTTTTT $>$
\#\#\$WBST $=1024$
\#\#\$WBSW $=4$
\#\#\$WS= (0..7)8383838383838383
\#\#\$XGAIN= (0..3)
0000
\#\# $\$ \mathrm{XL}=3$
\#\# $\$ \mathrm{YL}=3$
\#\#\$YMAX_a= 12916
\#\#\$YMIN_a = - 12964

```
##$ZGOPTNS= <-DLABEL_CN>
##$ZL3= 120
##$ZL1= 120
##$ZL4=120
```

\#\#\$ZL2= 120
\#\#END=

D.2.1 HetNOE pulse-program

```
;trnoef3gpsi
;avance-version (02/07/15)
2D H-1/X correlation via TROSY and inept transfer
; using sensitivity improvement
;for measuring H1-N15 NOEs
phase sensitive using Echo/Antiecho-TPPI gradient selection
;using f3 - channel
;recording NOE and NONOE interleaved
;(use parameterset TRNOEF3GPSI)
;G. Zhu, Y. Xia, L.K. Nicholson & K.H. Sze,
; J. Magn. Reson. 143, 423-426 (2000)
prosol relations=<triple>
#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>
"p2=p1*2"
"p22=p21*2"
"d0=3u"
"d11=70m"
"d12=50u"
"d26=1s/(cnst4*4)"
"p0=p1*4/3"
"d31=aq"
"DELTA1=d26-p1-p11-p19-d16-4u"
"DELTA3=d26-p11-p19-d16-12u"
"DELTA4=d26-p11-p19-d16-p21-12u"
;# ifdef LABEL_CN
;"DELTA=d0*2+p8-p21*4/3.1416"
;"DELTA2=d26-p11-p19-d16-8u"
## else
"DELTA2=d26+d0*2-p11-p19-d16-8u"
;# endif/*LABEL_CN*/
"l1=1"
"10=1"
"l4=d1/(p0+5m)"
1 ze
2 d11
    d12
3 d12*4
d d2*4
d12
d12 pl16:f3
    d31 cpd3:f3
    4u do:f3
    if "l1==2" goto 7
    d1
    4u p10:f1 ;flip back like in the hsqc version of hetnoe
    (p11:sp1 ph2):f1
    4u
    4u pl1:f1
    goto }
7 (p0 ph1)
```

```
    5m
    lo to 7 times }1
    4u
; goto 8
;10 d1
8 50u
    100u UNBLKGRAD
    p16:gp1 ;instead of gradient flip back pulse
    d16
    (p1 ph1)
4u
p16:gp2
d16 pl3:f3
if "10 %2 == 1"
    (p21 ph4):f3
    }
    else
    (p21 ph5):f3
    }
;# ifdef LABEL CN
; DELTA
; (p22 ph1):f3
; d0
; (p8:sp13 ph1):f2
; d0
;# else
    d0
d0
;# endif/*LABEL_CN*/
(p1 ph6)
4u pl0:fl
(p11:sp1 ph6):f1
p19:gp3
d16
DELTA1 pl1:f1
(center (p2 ph1) (p22 ph1):f3 )
DELTA2
p19:gp3
d16 pl0:fl
(p11:sp1 ph9):f1
4u
4u pl1:fl
(center (p1 ph1) (p21 ph2):f3 )
4u
p19:gp4
d16
DELTA3 pl0:f1
(p11:sp1 ph3:r):fl
4u
4u pl1:fl
(center (p2 ph1) (p22 ph1):f3 )
4u pl0:f1
(p11:sp1 ph3:r):fl
DELTA4
p19:gp4
d16 pl1:f1
4u
4u BLKGRAD
(p21 ph7):f3
go=2 ph31
d11 wr #0 if #0 zd
;d11 mc #0 to 2
;F1I(iu0, 2)
;F1EA(ip6*2 & ip7*2, id0 & ip4*2 & ip5*2 & ip31*2)
```

d12 iu1
lo to 3 times 2
d12 ru1
d12 iu0
d12 ip6*2
d12 ip7*2
lo to 4 times 2
d12 id0
d12 ip4*2
d12 ip5*2
d12 ip31*2
lo to 5 times 13
exit
ph1 $=0$
ph2 $=1$
ph3 $=2$
ph9 $=0$
;\# ifdef LABEL_CN
;ph4=3 120
;ph5=1 320
;\# else
ph4=1320
ph5=3 120
;\# endif/*LABEL_CN*/
ph6=1
ph8=1
ph7 $=0$
ph31=0 231
;p10: 120dB
;pl1 : f1 channel - power level for pulse (default)
;pl3 : f3 channel - power level for pulse (default)
;pl16: f3 channel - power level for CPD/BB decoupling
;sp1: f1 channel - shaped pulse 90 degree
;sp13: f2 channel - shaped pulse 180 degree (adiabatic)
;p0 : fl channel-120 degree high power pulse
;p1: f1 channel - 90 degree high power pulse
;p2 : f1 channel - 180 degree high power pulse
;p8 : f2 channel - 180 degree shaped pulse for inversion (adiabatic)
;p11: f1 channel - 90 degree shaped pulse
;p16: homospoil/gradient pulse [1 msec]
;p19: gradient pulse 2 [500 usec]
;p21: f3 channel-90 degree high power pulse
;p22: f3 channel-180 degree high power pulse
; d 0 : incremented delay (2D)
;d1 : relaxation delay; 1-5 * T1
;d11: delay for disk I/O
[30 msec]
;d12: delay for power switching [20 usec]
;d16: delay for homospoil/gradient recovery
;d26: 1/(4J(YH))
;d31: = aq
;cnst4: = J(YH)
$; 10$: flag to switch between NOE and NONOE
;in0: 1/(2 * SW $(X))=\mathrm{DW}(\mathrm{X})$
;nd0: 2
;NS: 4 * n
;DS: >= 32
;td1: total number of experiments
= number of experiments for each $2 \mathrm{D} * 2$
;FnMODE: echo-antiecho
;cpd3: decoupling according to sequence defined by cpdprg3
;pcpd3: f3 channel-90 degree pulse for decoupling sequence
$\begin{array}{ll}\text {;use gradient ratio: } & \text { gp } 1: \text { gp } 2: \text { gp } 3: \text { gp } 4 \\ ; & 11: 7: 10: 25\end{array}$
;
;for z-only gradients:
;gpz1: 11\%
;gpz2: 7\%
;gpz3: 10\%
;gpz4: 25\%
;use gradient files:
;gpnam1: SINE. 100
;gpnam2: SINE. 100 ;gpnam3: SINE. 50 ;gpnam4: SINE. 50
;preprocessor-flags-start
;LABEL_CN: for C-13 and N-15 labeled samples start experiment with ; option -DLABEL_CN (eda: ZGOPTNS)
;preprocessor-flags-end
;use AU-program splitinvnoe to separate NOE and NONOE data into ; different datasets

;\$Id: trnoef3gpsi,v 1.3 2002/07/16 12:41:09 ber Exp \$

D.2.2 HetNOE parameters

\#\#TITLE $=$ Parameter file, XWIN-NMR
Version 3.5
\#\#JCAMPDX $=5.0$
\#\#DATATYPE= Parameter Values
\#\#ORIGIN = UXNMR, Bruker Analytische Messtechnik GmbH
\#\#OWNER = demo
\$\$ Thu Jan 4 09:42:54 2007 CET (UT+1h)
guest@nmr900
\$ / opt/xwinnmr/data/momo/nmr/hvdac1_jan0107/4/acqus
\#\#\$AMP $=(0 . .31)$
100100100100100100100100100100100100100
100100100100100100100100100100100100100
100100100100100100
\#\#\$AQSEQ $=0$
\#\#\$AQ_mod= 3
\#\#\$AUNM= <au_zgonly>
\#\#\$AUTOPOS $=\overline{<>}$
\#\#\$BF1 $=900.15$
$\# \#$ SBF2 $=226.342898$
$\# \# \$ B F 3=91.211407$
\#\#\$BF4 $=900.15$
\#\#\$BF5 $=900.15$
\#\#\$BF6 $=900.15$
$\# \# \$ B F 7=900.14$
\#\#\$BF8= 900.14
\#\#\$BYTORDA=1
\#\#\$CFDGTYP $=2$
\#\#\$CFRGTYP= 5
\#\#\$CHEMSTR $=$ <none>
\#\#\$CNST $=(0 . .31)$
1114019011111111111114.7558 .53 .517654
39120170156.5111
\#\#\$CPDPRG= <>
\#\# ${ }^{\text {SCPDPRG1 }}=$ <mlev>
\#\#SCPDPRG2 $=<\mathrm{mlev}>$
\#\#\$CPDPRG3 = <garp>
\#\#SCPDPRG4 $=<\mathrm{mlev}>$
\#\#SCPDPRG5= <mlev>
\#\#\$CPDPRG6 = <mlev>
\#\#\$CPDPRG7 $=<\mathrm{mlev}>$
\#\#SCPDPRG8 = <mlev>
\#\# ${ }^{2}$ CPDPRGB $=<>$
\#\#SCPDPRGT=<>
\#\#\$D $=(0 . .31)$
3e-0650.0036000000.12000.075e-05 5e-0600
3.48e-05005e-050000000.00277777800000.0472 \#\#\$DATE $=1167648929$
\#\#\$DBL= (0..7)

120120120120120120120120
\#\#\$DBP= (0..7)
150150150150150150150150
\#\#\$DBP07 $=0$
\#\#\$DBPNAM0 $=<>$
\#\#\$DBPNAM1 $=<>$
\#\#\$DBPNAM2 $=<>$
\#\#\$DBPNAM3 $=<>$
\#\#\$DBPNAM4 $=<>$
\#\#\$DBPNAM5 $=<>$
\#\#\$DBPNAM6=<>
\#\#\$DBPNAM7= <>
\#\#\$DBPOAL $=(0 . .7)$
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DBPOFFS $=(0 . .7)$
00000000
\#\#\$DE= 6
\#\#\$DECBNUC $=<$ off $>$
\#\#\$DECIM $=16$
\#\#\$DECNUC $=<$ off $>$
\#\#\$DECSTAT $=4$
\#\# $\$$ DIGMOD $=1$
\#\#\$DIGTYP $=8$
\#\#\$DL= (0..7)
10120120120120120120120
$\# \# \$ D P=(0 . .7)$
150150150150150150150150
\#\#\$DP07=0
\#\#\$DPNAME $0=<>$
\#\#\$DPNAME1 $=<>$
\#\#\$DPNAME2 $=<>$
\#\#\$DPNAME3 $=<>$
\#\#\$DPNAME4 = <>
\#\#\$DPNAME5 = <>
\#\#\$DPNAME6= <>
\#\#\$DPNAME7= <>
\#\#\$DPOAL = (0..7)
$\begin{array}{llllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}$
\#\#\$DPOFFS $=(0 . .7)$
00000000
$\# \# \$ D Q D M O D E=0$
\#\#\$DR $=18$
\#\#\$DS $=8$
\#\#\$DSLIST $=<$ SSSSSSSSSSSSSSSS $>$
\#\#\$DSPFIRM=0
\#\#\$DSPFVS $=12$
\#\#\$DTYPA=0
\#\#\$EXP= <>
\#\#\$F1LIST $=<11111111111111>$
\#\# ${ }^{\text {FF2LIST }}=<2222222222222>$
\#\#\$F3LIST $=<333333333333333>$
\#\# \$FCUCHAN= (0..9)
0213000000
$\# \#$ \#FL1 $=90$
$\# \#$ \$FL2 $=90$
\#\#\$FL3 $=90$
\#\# ${ }^{2}$ FL4 $=90$
\#\# $\mathrm{FFOV}=20$
\#\#\$FQ1LIST $=$ <freqlist $>$
\#\#\$FQ2LIST $=<$ freqlist $>$
\#\#\$FQ3LIST $=<$ freqlist $>$
\#\#\$FQ4LIST $=<$ caco.vivi $>$ \#\#SFQ5LIST $=<$ freqlist $>$ \#\#\$FQ6LIST $=$ <freqlist $>$ \#\#\$FQ7LIST $=<$ freqlist $>$ \#\#\$FQ8LIST $=$ <freqlist $>$ \#\#\$FS = (0..7)
8383838383838383
\#\# $\$$ FTLPGN $=0$
\#\#\$FW= 125000
\#\#SFnMODE=0
\#\#\$GP031 = 0
\#\#\$GPNAM0 $=<$ sine $.100>$
\#\#\$GPNAM1 $=<$ SINE. $100>$ \#\#\$GPNAM10 $=<$ sine. $100>$ \#\#\$GPNAM11 $=<$ sine. $100>$ \#\#\$GPNAM12 $=$ <sine. $100>$ \#\#\$GPNAM13 $=<$ sine. $100>$ \#\#\$GPNAM14 $=<$ sine. $100>$ \#\#\$GPNAM15=<sine.100> \#\#\$GPNAM16 $=<$ sine. $100>$ \#\#\$GPNAM17 $=<$ sine. $100>$ \#\#\$GPNAM18 $=<$ sine. $100>$ \#\#\$GPNAM19 $=<$ sine. $100>$ \#\#\$GPNAM2 $=<$ SINE. $100>$ \#\# $\$$ GPNAM $20=<$ sine. $100>$ \#\#\$GPNAM21 $=<$ sine. $100>$ \#\#\$GPNAM22 $=<$ sine. $100>$ \#\#\$GPNAM23 $=<$ sine. $100>$ \#\#\$GPNAM24 $=$ <sine. $100>$ \#\#\$GPNAM25 $=<$ sine. $100>$ \#\#\$GPNAM26 $=$ < sine. 100> \#\#\$GPNAM27 $=<$ sine. $100>$ \#\#\$GPNAM28 = < sine. $100>$ \#\#\$GPNAM29 $=$ <sine. $100>$ \#\#\$GPNAM3 $=<$ SINE. $50>$ \#\#\$GPNAM30 $=<$ sine. $100>$ \#\#\$GPNAM31 $=<$ sine. $100>$ \#\#\$GPNAM4 $=<$ SINE.50> \#\#\$GPNAM5 = < SINE.50> \#\#\$GPNAM6 $=<$ sine.100> \#\#\$GPNAM7 = < sine. 100> \#\#\$GPNAM8 = < sine. 100> \#\#\$GPNAM9 = < sine. $100>$ \#\#\$GPX = (0..31)
0000000000000000000000000000000 0
\#\#\$GPY = (0..31)
0000000000000000000000000000000 0
$\# \# \$ G P Z=(0 . .31)$
3507102516.20000000000000000000000 0000
\#\#\$GRDPROG = < grad_out $>$
\#\#\$HDDUTY $=20$
\#\#\$HDRATE $=20$
\#\#\$HGAIN = (0..3)
0000
\#\#\$HL1 $=200$
\#\#\$HL2 $=35$
\#\#\$HL3 $=16$
\#\#\$HL4 = 17
\#\#\$HOLDER $=0$
\#\#\$HPMOD = (0..7)

01100000
\#\#SHPPRGN=0
\#\#SIN= (0.31)
0.00015230 .0010 .0010 .0010 .0010 .0010 .0010 .001
0.0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .001
0.0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .001
0.0010 .0010 .0010 .0010 .0010 .001
\#\#SINP= (0..31)
0000000000000000000000000000000
0
\#\#SINSTRUM $=$ <spect>
\#\#\$L=(0..31)
11110199611111111111111111111111111
111
\#\#SLFILTER= 100
\#\#SLGAIN=-15
\#\#SLOCKED= yes
\#\#SLOCKFLD= 7620
\#\#\$LOCKGN= 135.5
\#\#SLOCKPOW $=-11.1000003814697$
\#\#SLOCKPPM= 4.69999980926514
\#\#SLOCNUC= $<2 \mathrm{H}>$
\#\#SLOCPHAS= 274.8
\#\#SLOCSHFT= no
\#\#SLTIME $=0.200000002980232$
\#\#SMASR= 0
\#\#\$MASRLST = <masrlst>
\#\#SNBL= 1
\#\#\$NC= -2
\#\#SNS $=120$
\#\#\$NUC1 $=<1 \mathrm{H}>$
\#\#SNUC2= < $13 \mathrm{C}>$
\#\#SNUC3= $<15 \mathrm{~N}>$
\#\#SNUC4=<off>
\#\#SNUC5=<off>
\#\#SNUC6= <off>
\#\#\$NUC7=<off>
\#\#SNUC8=<off>
\#\#SNUCLEI= 0
\#\#SNUCLEUS $=<$ off $>$
\#\#SO1 $=4245.1074$
\#\#SO2 $=11996.1735940137$
\#\#SO3= 10808.5517295109
\#\#SO4 $=0$
\#\#SO5= 0
\#\#SO6= 0
\#\#SO7= - 100010000
\#\#SO8= -100010000
\#\#SOBSCHAN= (0..9)
0000000000
\#\#SOVERFLW=0
\#\# $\$$ P $=(0 . .31)$
15.4666711.623.20.115.6000000100000001000

005002637740000001100
\#\#SPAPS $=2$
\#\#SPARMODE= 1
\#\#SPCPD $=(0 . .9)$
100100100160100100100100100100
\#\#\$PHCOR=(0.31)
0000000000000000000000000000000 0
\#\#SPHP= 1
\#\#SPH_ref= 0
\#\# $\$$ PL= (0.31)
120-1 120-3-0.5 12012012012056120120120120
$1201209.6120-3120120120120120120120120120$
120120120120
\#\#SPOWMOD $=0$
\#\#SPR= 1
\#\#\$PRECHAN=(0..15)
-12-1-1 0 1-1-1-1-14-1-1-1-1-1
\#\#SPRGAIN $=0$
\#\#SPROBHD $=<5 \mathrm{~mm}$ CPTCI $1 \mathrm{H}-13 \mathrm{C} / 15 \mathrm{~N}$ Z-GRD
Z44910/0009>
\#\#SPROSOL= no
\#\#\$PULPROG=<trnoef3gpsi_mo2>
\#\#\$PW=0
\#\#\$QNP= 1
\#\#\$QS= (0..7)8383838383838322
\#\#SQSB $=(0 . .7) 8383838383838383$
\#\# ${ }^{2}$ RD $=0$
\#\#\$RECCHAN $=(0 . .15)$
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
\#\#\$RECPH=0
\#\#\$RG= 1024
\#\# ${ }^{2} \mathrm{RO}=0$
\#\#\$ROUTWD $1=(0 . .23)$
000000000000000000001100
\#\#\$ROUTWD2 $=(0 . .23)$
000001000000000000101100
\#\#\$RPUUSED= (0..8)
000000000
\#\#\$RSEL= (0..9)
0125000000
\#\# $\$ \mathrm{~S}=(0 . .7)$
834838383838383
\#\#\$SEOUT $=0$
\#\# $\$$ SFO1 $=900.1542451074$
\#\#\$SFO2 $=226.354894173594$
\#\#\$SFO3 $=91.2222155517295$
\#\#\$SFO4 $=900.15$
\#\# $\$$ SFO5 $=900.15$
\#\#\$SFO6= 900.15
\#\#\$SFO7 $=800.13$
\#\#\$SFO8= 800.13
\#\#\$SOLVENT $=<\mathrm{H} 2 \mathrm{O}+\mathrm{D} 2 \mathrm{O}>$
$\# \# \$ S P=(0 . .31)$
135.1700000000000000150150150150150

150150150150150150150150150150150
\#\#\$SP07=0
\#\#\$SPECTR $=0$
\#\#SSPNAM0 $=<$ gauss $>$
\#\#\$SPNAM1 $=<$ Sinc $1.1000>$
\#\#\$SPNAM10=<gauss>
\#\#SSPNAM11 $=$ <gauss $>$
\#\#SSPNAM12 $=$ <gauss $>$
\#\#\$SPNAM13 = < gauss>
\#\#\$SPNAM14 = <gauss>
\#\#\$SPNAM15= <gauss>
\#\#\$SPNAM16= <gauss>
\#\#\$SPNAM17= <gauss>
\#\#\$SPNAM18 = < gauss>
\#\#\$SPNAM19 = <gauss>
\#\#\$SPNAM2 = <gauss>
\#\#SSPNAM20=<gauss>
\#\#\$SPNAM21 = <gauss>
\#\#SSPNAM22 $=$ <gauss $>$
\#\#\$SPNAM23 = <gauss>
\#\#\$SPNAM24 = <gauss>
\#\#\$SPNAM25=<gauss>
\#\#SSPNAM26=<gauss>
\#\#\$SPNAM27=<gauss>
\#\#\$SPNAM28 = <gauss>
\#\#SSPNAM29 = <gauss>
\#\#SSPNAM3 = <gauss>
\#\#SSPNAM30=<gauss>
\#\# ${ }^{\text {SSPNAM31 }}=<$ gauss $>$
\#\#SSPNAM4 = <gauss>
\#\#SSPNAM5= <gauss>
\#\#SSPNAM6=<gauss>
\#\#SSPNAM7 = <gauss>
\#\#SSPNAM8 $=$ <gauss $>$
\#\#\$SPNAM9= <gauss>
\#\#\$SPOAL $=(0 . .31)$
0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5 0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5 0.50 .5
\#\#\$SPOFFS $=(0 . .31)$
0000000000000000000000000000000 0
\#\#\$SUBNAM0=<"">
\#\#\$SUBNAM1 = <"">
\#\#SSUBNAM2=<"">
\#\#\$SUBNAM3 = <"">
\#\#\$SUBNAM4=<"">
\#\#\$SUBNAM5=<"">
\#\#\$SUBNAM6=<"">
\#\#\$SUBNAM7= <"">
\#\#\$SUBNAM8=<"">
\#\#\$SUBNAM9=<"">
\#\#\$SW= 12.0752251922052
\#\#\$SWIBOX $=(0 . .15)$
01440560001000000
\#\#\$SW_h= 10869.5652173913
\#\#\$TD = 1024
\#\#\$TD $0=1$
\#\#\$TE= 310
\#\#\$TE2 $=300$
\#\#\$TE3 $=300$
\#\#\$TEG= 300
\#\#\$TL= (0..7)
10120120120120120120120
\#\#\$TP= (0..7)
150150150150150150150150
\#\#\$TP07=0
\#\#\$TPNAME $0=<>$
\#\#\$TPNAME1 $=<>$
\#\#\$TPNAME2 $=<>$
\#\#\$TPNAME3 $=<>$
\#\#\$TPNAME4 $=<>$
\#\#\$TPNAME5 $=<>$
\#\#\$TPNAME6= <>
\#\#\$TPNAME7= <>
\#\#\$TPOAL $=(0 . .7)$
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$TPOFFS $=(0 . .7)$
00000000
\#\#\$TUNHIN= 0
\#\#\$TUNHOUT $=0$
\#\#\$TUNXOUT = 0
\#\#\$USERA1 = <user>
\#\#\$USERA2 $=$ <user>
\#\#\$USERA3 = <user>
\#\#\$USERA4 = <user>
\#\#\$USERA5 = <user>
\#\#\$V9= 5
\#\#\$VALIST $=$ <valist>
\#\#\$VCLIST $=<$ CCCCCCCCCCCCCCC $>$
\#\#\$VD=0
\#\#\$VDLIST $=<$ DDDDDDDDDDDDDDD $>$
\#\#\$VPLIST = <PPPPPPPPPPPPPPP>
\#\#\$VTLIST $=<$ TTTTTTTTTTTTTTT $>$
\#\#\$WBST $=1024$
\#\#\$WBSW $=4$
\#\#\$WS= (0..7)8383838383838383
\#\#\$XGAIN = (0..3)
0000
\#\#\$XL= 3
$\# \# \$ \mathrm{YL}=3$
\#\#\$YMAX_a= 69171
\#\#\$YMIN_a= -67259
\#\#\$ZGOPTNS= <-DLABEL_CN>
\#\#\$ZL1 $=120$
\#\#\$ZL2 $=120$
\#\#\$ZL3 $=120$
\#\#\$ZL4 $=120$
\#\#END=

D.3.1 T1rho pulse-program

\#include "bits.mz"
\#include <Avance.incl>
\#include $<$ Grad.incl $>$

```
;1 hn, 15n edited n15 t2 measurement according to linda
;history
;written by sg 2/23/93
;put in water flip_back 6/1/93
;change to waternh 7/29/93
;change to t2n15.sg 10/18/93
#define ONE D
;#define TWO_D
;#define CARB
;p1 proton 90 at pl1, 9u
;p2 1ms proton 90 at pl2 ;sklenar
;"p9=2m"
"p17=p1"
;p7 high power n15 90 on N pl7:N
;p31 low power n15 90 (160ms) on N at pl31:N
;p8 SL 15N for 8ms at pl8:N
```

;Carbon pulses
; $\mathrm{C} 1=\mathrm{Ca} \quad \mathrm{C} 2=\mathrm{C}^{\prime}$
;"p5=23.7u" ;selective 180
"p5=15.6u"
"d28=p5"
;nitrogen evolution:
"d9=4u"
"d10=2.7m"
"d0=d9+d10+p7*0.637"
;in0 $=\mathrm{d} 0 /(13+1)$
;in9=in10-in0
;in $10=1 /(2 \mathrm{sw})$
"d4=2.25m" ;hsq h to n15
"d7=p7*0.637"
"d11=50m"
"d12=10m"
"d17=p1*2.0"
"d26=p7-p1"
"d25=p7-p1*2.11-2u"
;Gradient pulses
;"p11=4.25m" ;gp1 = +50\%
;"p12=1.75m" \quad;gp1 $=+50 \%$
;"p13=0.70m" ;gp1 = +50\%
;"p14=2.35m" ;gp0 $=-50 \%$
;"p15=0.40m" ;gp0 = -50\%
\#define ON
\#undef OFF
ze
d11 BLKGRAD
d12 do:N
d12
d12*3.0
d12*6.0
d12*4.0
10u do:C1
10u

```
        10u pl7:N
#ifdef ON
            d1
            1m UNBLKGRAD
            10u fq1:H
            10u pl1:f1
;***** start 90-degree on h-n *****
            (p1 ph0)
            2u
            d4
            (p7*2 ph6):N (d26 p1*2 ph4)
            d4
            2u
;***** hsqc to nitrogen *****
            (p1 ph16)
            2u
            p11:gp2
            2.5m
            (p7 ph3):N
            2u
            p12:gp0
            928u
            (p7*2 ph0):N (d25 p1 ph4 2u p1*2.22 ph0 2u p1 ph4)
            2u
            p12:gp0
            928u pl8:N ; SL power 2.5KHz
            d7
            100u
;***** n15 relaxation delay *******
;70 (p18 ph8):N
; (p17*1.5 ph8):N (p1*1.5 ph4)
            (p18 ph8):N
            lo to 70 times 2
            (p9 ph8):N
    ***** n15 evolution delay *******
        d0 pl5:C1
#ifdef CARB
    2u
    d28*2.0
    4u
    2u fq2:C1
    d28*2.0 pl7:N
#else
    d17 pl7:N
#endif
    (p7*2 ph20):N
    d9
#ifdef CARB
    2u p15:C1
    (p5*2 ph10):C1 (p1*2 ph0)
    4u
    2u fq2:C1
    (p5*2 ph10):C1
#else
    (p1*2 ph0)
#endif
    d10
;***** end n15 evolution delay *******
    (p7 ph7):N
    2u
    p14:gp1
    10u fq1:H
    2m
    (p1 ph0)
    2u
    p15:gp1
    950u pl2:f1
    (p2 ph14)
    2u
    5u pl1:f1
    (p1*2 ph15)
    2u
    5u pl2:f1
    (p7*2 ph10):N (p2 ph14)
    2u
```

```
    p15:gp1
    (2u ph0)
    950u pl31:N
#endif
#ifdef ONE_D
go=2 ph31 cpd2:N
1m do:N
1m BLKGRAD
d11 wr #0
#endif
#ifdef TWO_D
            go}=2 ph31 cpd2:
            1m BLKGRAD
            d11 do:N wr #0 if #0 zd
#endif
#ifdef TWO_D
d12 ivp
lo to 3 times 1
d12 ip7
lo to 21 times 2
d12*0.25 dd0
d12*0.25 id9
d12*0.25 id10
d12*0.25
d12 ip31
d12 ip31
lo to 4 times }1
d12*0.25 rd0
d12*0.25 rd9
d12*0.25 rd10
d12*0.25
d12 rf #0
d12 ip16
d12 ip16
d12 ip31
d12 ip31
lo to 25 times 2
d12*0.25 rd0
d12*0.25 rd9
d12*0.25 rd10
d12*0.25
d12 rf #0
d12 ip8
d12 ip8
lo to 26 times 16 ; loop of 2 is a total of 8 scans
#endif
d11 do:N
d11 do:C1
exit
ph0=0
ph1=0
ph3=00 02 2
ph4=1
ph6=1
ph7=0
ph8=2
ph10=0
ph14=(360) 180
ph15=0
ph16=13
ph20=00001111122223333
ph31=02202002
```


D.3.2 T1rho parameters

\#\#TITLE = Parameter file, XWIN-NMR

Version 3.5

\#\#JCAMPDX $=5.0$
\#\#DATATYPE= Parameter Values
\#\#ORIGIN= Bruker Analytik GmbH
\#\#OWNER = guest
\$\$ Mon Mar 5 10:45:45 2007 CET (UT+1h)
guest@nmr900
\$\$
/opt/xwinnmr/data/momo/nmr/hvdac 1_mar0507/10/acqus
\#\#\$AMP= (0..31)
100100100100100100100100100100100100100 100100100100100100100100100100100100100 100100100100100100
\#\#\$AQSEQ= 0
\#\#SAQ_mod= 3
\#\#\$AUNM= <au_getlcosy>
\#\#\$AUTOPOS=<>
\#\#\$BF1 $=900.15$
\#\#\$BF2 $=226.342898$
\#\#SBF3 $=91.211407$
\#\#\$BF4 $=900.15$
\#\#\$BF5 $=900.15$
\#\#\$BF6 $=900.15$
\#\#\$BF7 $=900.14$
\#\#SBF8 $=900.14$
\#\#\$BYTORDA $=1$
\#\#\$CFDGTYP= 2
\#\#\$CFRGTYP $=5$
\#\#\$CHEMSTR $=$ <none>
\#\#\$CNST $=(0 . .31)$
11147111111111111111111111111111 11
\#\#\$CPDPRG=<>
\#\# ${ }^{\text {CPPDPRG1 }}=<$ p5 $\mathrm{m} 4 \mathrm{sp} 180>$
\#\#\$CPDPRG2 = <garp>
\#\#SCPDPRG3 = < garp>
\#\#SCPDPRG4 = <mlev>
\#\#SCPDPRG5 = <mlev>
\#\#\$CPDPRG6 = <mlev>
\#\#\$CPDPRG7 $=<$ mlev $>$
\#\#\$CPDPRG8 $=<\mathrm{mlev}>$
\#\#SCPDPRGB=<>
\#\#\$CPDPRGT= <>
\#\#\$D $=(0 . .31)$
$0.0027275691000 .00225002 .3569 \mathrm{e}-0504 \mathrm{e}-060.0027$
$0.050 .013 \mathrm{e}-06001 \mathrm{e}-042.076 \mathrm{e}-050000000$
$1.30982 \mathrm{e}-052.662 \mathrm{e}-0501.56 \mathrm{e}-0500$
0
\#\#SDATE $=1173087942$
\#\#\$DBL $=(0 . .7)$
120120120120120120120120
\#\#\$DBP= (0..7)
150150150150150150150150
\#\#\$DBP07 $=0$
\#\#SDBPNAM0 $=<>$
\#\#\$DBPNAM1 $=<>$
\#\#\$DBPNAM2 $=<>$
\#\#\$DBPNAM3 $=<>$
\#\#\$DBPNAM4 $=<>$
\#\#\$DBPNAM5 = <>
\#\#\$DBPNAM6=<>
\#\#\$DBPNAM7= <>
\#\#\$DBPOAL $=(0 . .7)$
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DBPOFFS=(0..7)
00000000
$\# \# \$ D E=6$
\#\#\$DECBNUC $=<$ off $>$
\#\#\$DECIM $=16$
\#\#\$DECNUC $=<$ off $>$
\#\#\$DECSTAT $=4$
\#\#\$DIGMOD $=1$
\#\#\$DIGTYP=8
\#\#\$DL $=(0 . .7)$
120120120120120120120120
\#\#\$DP= (0..7)
150150150150150150150150
\#\#\$DP07 $=0$
\#\#\$DPNAME0 $=<>$
\#\#\$DPNAME1 = <>
\#\#\$DPNAME2 $=<>$
\#\#SDPNAME3 $=<>$
\#\#\$DPNAME4=<>
\#\#\$DPNAME5=<>
\#\#\$DPNAME6=<>
\#\#\$DPNAME7= <>
\#\#\$DPOAL= (0..7)
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DPOFFS $=(0 . .7)$
00000000
$\# \# \$ D Q D M O D E=0$
\#\#\$DR= 18
\#\#\$DS $=8$
\#\#\$DSLIST $=<$ SSSSSSSSSSSSSSSS $>$
\#\#\$DSPFIRM=0
\#\#\$DSPFVS $=12$
\#\#\$DTYPA= 0
\#\#\$EXP= <>
\#\#\$F1LIST $=<111111111111111>$
\#\#\$F2LIST $=<222222222222222>$
\#\#\$F3LIST $=<333333333333333>$
\#\#\$FCUCHAN $=(0 . .9)$
0213000000
\#\# $\mathrm{FFL1}=1$
\#\#\$FL2 $=83$
\#\#\$FL3 $=83$
\#\# $\$$ FL4 $=83$
\#\#\$FOV= 20
\#\#\$FQ1LIST $=<$ T1rho.vivi $>$
\#\#\$FQ2LIST = <caco.vivi>
\#\#\$FQ3LIST $=$ <freqlist>
\#\#\$FQ4LIST = <caco.vivi>
\#\#\$FQ5LIST $=$ <freqlist>
\#\#\$FQ6LIST = <freqlist>
\#\#\$FQ7LIST = <freqlist>
\#\#\$FQ8LIST $=$ <freqlist>
\#\#\$FS= (0..7)
2283838383838383
\#\#\$FTLPGN=0
$\# \# \$ F W=125000$
\#\#\$FnMODE $=0$
\#\#\$GP031 = 0
\#\#\$GPNAM0 $=<$ SINE. $50>$
\#\#\$GPNAM1 $=<$ SINE. $50>$
\#\#\$GPNAM10 $=<$ SINE.32>
\#\#\$GPNAM11 $=<$ SINE.32 $>$
\#\#\$GPNAM12 $=$ <SINE.32>
\#\#\$GPNAM13 $=<$ SINE.32 $>$
\#\#\$GPNAM14 = <SINE.32>
\#\#\$GPNAM15 $=$ <SINE.32>
\#\#\$GPNAM16 $=$ <SINE.32>
\#\#\$GPNAM17=<SINE.32>
\#\#\$GPNAM18 $=<$ SINE.32>
\#\#\$GPNAM19 = <SINE.32>
\#\#\$GPNAM2 $=<$ SINE. $50>$
\#\#\$GPNAM20 $=$ <SINE.32>
\#\#\$GPNAM21 $=<$ SINE.32>
\#\#\$GPNAM22 $=$ <SINE.32>
\#\#\$GPNAM23 = <SINE.32>
\#\#\$GPNAM24 $=<$ RECT. $1>$
\#\#\$GPNAM25 $=<$ RECT. $1>$
\#\#\$GPNAM26=<RECT.1>
\#\#\$GPNAM27=<RECT.1>
\#\#\$GPNAM28 $=<$ RECT. $1>$
\#\#\$GPNAM29 = < RECT. $1>$
\#\#\$GPNAM3 $=<$ SINE. $100>$
\#\#\$GPNAM30=<RECT.1>
\#\#\$GPNAM31 $=<$ RECT. $1>$
\#\#\$GPNAM4 $=<$ SINE.32>
\#\#\$GPNAM5= <SINE.32>
\#\#\$GPNAM6 $=<$ SINE.32 $>$
\#\#\$GPNAM7 $=<$ SINE.32>
\#\#\$GPNAM8 = < SINE.32>
\#\#\$GPNAM9 = <SINE.32>
\#\#\$GPX $=(0 . .31)$
0000000000000000000000000000000 0
$\# \# \$ G P Y=(0 . .31)$

0000000000000000000000000000000 0
\#\#\$GPZ= (0..31)
$5025378.10000000000000000-50303341$
-5050-50 5050-50 00
\#\#\$GRDPROG= <grad_out>
\#\#\$HDDUTY $=20$
\#\#\$HDRATE $=20$
\#\#\$HGAIN $=(0 . .3)$
0000
\#\#\$HL1 $=256$
\#\# $\$$ HL2 $=35$
\#\#SHL3 $=8$
\#\#\$HL4 $=26$
\#\# ${ }^{\text {SHOLDER }}=0$
\#\#\$HPMOD= (0..7)
01100000
\#\#\$HPPRGN=0
$\# \# \$ I N=(0 . .31)$
0.00018271250 .0010 .0010 .0010 .0010 .0010 .0010 .001
0.0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .001
0.0010 .0010 .0010 .0010 .0010 .0010 .0010 .0010 .001
0.0010 .0010 .0010 .0010 .0010 .001
\#\#\$INP = (0..31)
0000000000000000000000000000000 0
\#\#SINSTRUM $=<$ spect $>$
\#\#SL= (0..31)
11125612811111111111111111111111
111
\#\#SLFILTER $=200$
\#\#\$LGAIN $=-5$
\#\#\$LOCKED= no
\#\#\$LOCKFLD $=3173$
\#\# \$LOCKGN $=122.900001525879$
\#\#\$LOCKPOW= -20
\#\#\$LOCKPPM $=4.69999980926514$
\#\#\$LOCNUC $=<2 \mathrm{H}>$
\#\#\$LOCPHAS $=314.2$
\#\#\$LOCSHFT= no
\#\#\$LTIME $=0.200000002980232$
\#\#\$MASR $=0$
\#\#\$MASRLST $=$ <masrlst>
\#\#\$NBL= 1
\#\#\$NC= - 2
\#\#\$NS= 256
\#\#\$NUC1 $=<1 \mathrm{H}>$
\#\#\$NUC2 $=<13 \mathrm{C}>$
\#\#\$NUC3 $=<15 \mathrm{~N}>$
\#\#\$NUC4 $=<$ off $>$
\#\#\$NUC5 = <off>
\#\#\$NUC6 = <off>
\#\#\$NUC7 = <off>
\#\#\$NUC8 = <off>
\#\#\$NUCLEI $=0$
\#\#\$NUCLEUS $=$ <off>
$\# \# \$ \mathrm{O}=4238.80635$
\#\#SO2 $=11996.1735940137$
$\# \# \$ O 3=10808.5517295109$
\#\#\$O4 $=0$
\#\#\$O5 $=0$
\#\#\$O6 $=0$
\#\#\$O7= -100010000
\#\#\$O8= -100010000
\#\#\$OBSCHAN $=(0 . .9)$
0000000000
\#\#\$OVERFLW $=0$
\#\#\$P= (0..31)
1110.38103013 .6515 .815 .62537920001042501750 02350400100010.3813000001300000200011001000 10001007210007001000000
\#\# $\$$ PAPS $=2$
\#\#\$PARMODE $=0$
\#\#\$PCPD $=(0 . .9)$
0015001600000100100
\#\#\$PHCOR $=(0 . .31)$
0000000000000000000000000000000 0
\#\#\$PHP=1
\#\#\$PH_ref= 0
\#\#\$PL= (0..31)
120-1 41 120-1.2 $120120-26.645412012011 .7120$
12012012.6120120120120120120120120120120
12012012012010.7
\#\#\$POWMOD $=0$
\#\#\$PR= 1
\#\#\$PRECHAN=(0..15)
-1 2 -1-1 0 1-1-1 -1 -1 4 -1 -1 -1 -1 -1
\#\#\$PRGAIN = 0
\#\#\$PROBHD $=<5 \mathrm{~mm}$ CPTCI $1 \mathrm{H}-13 \mathrm{C} / 15 \mathrm{~N}$ Z-GRD
Z44910/0009
$>$
\#\#\$PROSOL= no
\#\#\$PULPROG=<T1rhon15.mz>
\#\#\$PW=0
\#\#\$QNP=1
\#\#\$RD= 0
\#\#\$RECCHAN= (0..15)

- 1 - 1 - 1 - $-1-1-1-1-1-1-1-1-1-1-1-1$
\#\#\$RECPH=0
\#\#\$RG=724
\#\#\$RO= 0
\#\#\$ROUTWD1 = (0..23)
000000000000000000001100
\#\#\$ROUTWD2 $=(0 . .23)$
000001000000000000101100
\#\#\$RPUUSED $=(0 . .8)$
000000000
$\# \# \$ R S E L=(0 . .9)$
0125000000
\#\#\$S= (0..7)
831262626838383
\#\#\$SEOUT $=0$
\#\#\$SFO1 $=900.15423880635$
\#\#\$SFO2 $=226.354894173594$
\#\#\$SFO3 $=91.2222155517295$
\#\#\$SFO4= 900.15
\#\#\$SFO5= 900.15
\#\#\$SFO6= 900.15
\#\#\$SFO7= 800.13
\#\#\$SFO8= 800.13
\#\#\$SOLVENT $=<\mathrm{H} 2 \mathrm{O}+\mathrm{D} 2 \mathrm{O}>$
\#\#\$SP= (0..31)
1002.8000000000000150150150150150150

150150150150150150150150150150
\#\#\$SP07=0
\#\# $\$$ SPECTR $=0$
\#\#\$SPNAM0= <gauss>
\#\#SSPNAM1 $=$ <gauss>
\#\#\$SPNAM10= <gauss>
\#\#\$SPNAM11 = <gauss>
\#\#\$SPNAM12 $=$ <gauss>
\#\#\$SPNAM13 = <gauss>
\#\#\$SPNAM14 $=$ <gauss>
\#\#\$SPNAM15 = <Crp40,1.5,10.1>
\#\#\$SPNAM16=<gauss>
\#\#\$SPNAM17 $=$ <gauss>
\#\#\$SPNAM18 = <gauss>
\#\#\$SPNAM19 = <gauss>
\#\#\$SPNAM2 = <gauss>
\#\#\$SPNAM20 = < gauss>
\#\#\$SPNAM21 $=$ <gauss $>$
\#\#\$SPNAM22 = <gauss>
\#\#\$SPNAM23 = <gauss>
\#\#\$SPNAM24 = <gauss>
\#\#\$SPNAM25= <gauss>
\#\#\$SPNAM26 = < gauss>
\#\#\$SPNAM27 = <gauss>
\#\#\$SPNAM28 = <gauss>
\#\#\$SPNAM29 = < gauss>

```
##$SPNAM3= <Crp60,0.5,20.1>
##$SPNAM30=<gauss>
##SSPNAM31 = <gauss>
##SSPNAM4=<gauss>
##SSPNAM5=<gauss>
##$SPNAM6=<gauss>
##$SPNAM7=<gauss>
##SSPNAM8=<gauss>
##SSPNAM9=<gauss>
##$SPOAL= (0..31)
0.50.50.50.50.50.50.50.50.50.50.50.50.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.50.5
##$SPOFFS= (0..31)
0000000000000000000000000000000
0
##$SUBNAM0=<"">
##$SUBNAM1=<"">
##$SUBNAM2=<"">
##$SUBNAM3=<"">
##$SUBNAM4=<"">
##$SUBNAM5=<"">
##$SUBNAM6=<"">
##$SUBNAM7=<"">
##$SUBNAM8=<"">
##$SUBNAM9=<"">
##$SW= 12.9780458581692
##$SWIBOX= (0..15)
01440567001000000
##$SW h= 11682.2429906542
##STD= 1024
##$TD0=1
##$TE= 310
##$TE2= 300
##$TE3= 300
##$TEG= 300
##$TL= (0..7)
120120120120120120120 120
##$TP= (0..7)
150150150150150150150150
##$TP07= 0
##$TPNAME0=<>
```

\#\#\$TPNAME1 = <>
\#\#\$TPNAME2 $=<>$ \#\#\$TPNAME3 = <> \#\#\$TPNAME4 $=<>$ \#\#\$TPNAME5= <> \#\#\$TPNAME6=<> \#\#\$TPNAME7 $=<>$ \#\#\$TPOAL $=(0 . .7)$ 0.50 .50 .50 .50 .50 .50 .50 .5 \#\#\$TPOFFS= (0..7) 00000000 \#\#\$TUNHIN= 0 \#\#\$TUNHOUT= 0 \#\#\$TUNXOUT = 0 \#\#\$USERA1 = <user> \#\#SUSERA2 $=$ <user> \#\#\$USERA3 $=$ <user> \#\#SUSERA4 = <user> \#\#SUSERA5 = <user> \#\#\$V9= 5
\#\#\$VALIST $=$ <valist>
\#\#\$VCLIST $=<$ CCCCCCCCCCCCCCC $>$ \#\#\$VD= 0 \#\#\$VDLIST $=<$ DDDDDDDDDDDDDDD $>$ \#\#\$VPLIST= <PPPPPPPPPPPPPP>
\#\#\$VTLIST $=<$ TTTTTTTTTTTTTTT $>$
\#\#\$WBST $=1024$
\#\#\$WBSW= 6
\#\#\$XGAIN $=(0 . .3)$
0000
\#\# $\$ \mathrm{XL}=0$
\#\#\$YL= 0
\#\#\$YMAX $a=87083$
\#\#\$YMIN_a=-72388
\#\#\$ZGOPTNS= <>
\#\#\$ZL1 = 120
\#\#\$ZL2 $=120$
\#\#\$ZL3 $=120$
\#\#\$ZL4 $=120$
\#\#END=

D.4.1 NOESY-TROSY-HSQC pulse-program

```
;noesytretf3gp3d
;avance-version (02/07/15)
NOESY-TROSY
3D sequence with
; homonuclear correlation via dipolar coupling
dipolar coupling may be due to noe or chemical exchange
; H-1/X correlation via TROSY
; using sensitivity improvement
phase sensitive (t1)
phase sensitive using Echo/Antiecho-TPPI gradient selection (t2)
using f3 - channel
;(use parameterset NOESYTRETF3GP3D)
;G. Zhu, X.M. Kong & K.H. Sze, J. Biomol. NMR 13, 77-81 (1999)
;M. Czisch & R. Boelens, J. Magn. Reson. 134, 158-160 (1998)
;K. Pervushin, G. Wider & K. Wuethrich, J. Biomol. NMR 12,
; 345-348 (1998)
;A. Meissner, T. Schulte-Herbrueggen, J. Briand & O.W. Sorensen, Mol. Phys. 96,
; 1137-1142 (1998)
;J. Weigelt, J. Am. Chem. Soc. 120, 10778-10779 (1998)
;M. Rance, J.P. Loria & A.G. Palmer III, J. Magn. Reson. 136, 91-101 (1999)
#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>
"p2=p1*2"
```

```
"p22=p21*2"
"d0=6u"
"d10=6u"
"d11=30m"
"d26=1s/(cnst4*4)"
"DELTA1=d26-p16-d16-4u"
"DELTA2=d26-p1-p16-d16-4u"
"DELTA3=p19+d16+8u"
# ifdef LABEL CN
"DELTA=d10*2+p4*4+8u+p21*4/3.1416+12u"
"DELTA4=d0*2+p4*4+p22+8u+4u"
# else
"DELTA=d10*2+p21*4/3.1416+12u"
"DELTA4=d0*2+p22+4u"
# endif/*LABEL_CN*/
"TAU=d8-p16-d16"
" 10=1"
aqseq }32
1 ze
2 d11
3 d1 pl1:fl
    50u UNBLKGRAD
    (p1 ph3)
    DELTA4
    (p2 ph9)
    d0 gron0
    2u groff
# ifdef LABEL_CN
    ;(center (p14:sp3 ph1):f2 (p22 ph1):f3 )
        (p22 ph1):f3
        2u pl4:f2
        2u fq4:f2
        (p4*2 ph1):f2
        2u p14:f2
        2u fq4:f2
        (p4*2 ph1):f2
# else
(p22 ph1):f3
# endif/*LABEL_CN*/
    d0 gron0*-1
    2u groff
    (p1 ph1)
    TAU
    p16:gp6
    d16
    (p1 ph1)
4u
p16:gp1
d16
DELTA1
(center (p2 ph2) (p22 ph1):f3 )
4u
DELTA1
p16:gp1
d16
(p1 ph4)
    ;p16:gp7
    if "10 %2 == 1"
```

```
    {
    (p21 ph5):f3
    }
else
    (p21 ph6):f3
    }
d10 gron0
6u groff
# ifdef LABEL_CN
;(p14:sp3 ph1):f2
        2u p14:f2
        2u fq4:f2
        (p4*2 ph1):f2
        2u p14:f2
        2u fq4:f2
        (p4*2 ph1):f2
# else
# endif/*LABEL CN*/
d10 gron0*-1
6u groff
p19:gp2*EA
d16
(p22 ph1):f3
DELTA
p19:gp2*-1*EA
d16
(p1 ph7)
4u
p16:gp3
d16
DELTA2 pl1:f1
(center (p2 ph1) (p22 ph1):f3 )
4u
DELTA1
p16:gp3
d16
(center (p1 ph1) (p21 ph2):f3 )
4u
p16:gp4
d16
DELTA1
(center (p2 ph1) (p22 ph1):f3 )
DELTA1
p16:gp4
d16
4u
(p21 ph8):f3
DELTA3
(p2 ph1)
4u
p19:gp5
d16
4u BLKGRAD
go=2 ph31
d11 mc #0 to 2
    F1PH(rd10 & ip3 & ip9, id0)
    F2EA(igrad EA & ip7*2 & ip8*2 & iu0, id10 & ip5*2 & ip6*2 & ip31*2)
exit
ph1=0
ph2=1
```

```
ph3=00002222
```

ph4=3
ph5=1 320
ph6=3 120
ph7 $=1$
ph8 $=0$
ph9 $=1$
ph31=0 2312013
;pl1 : f1 channel - power level for pulse (default)
;pl3 : f3 channel - power level for pulse (default)
;sp3: f2 channel - shaped pulse 180 degree
;p1 : fl channel-90 degree high power pulse
;p2 : f1 channel - 180 degree high power pulse
;p14: f2 channel - 180 degree shaped pulse for inversion
;p16: homospoil/gradient pulse [1 msec]
;p19: gradient pulse 2
[500 usec]
;p21: f3 channel - 90 degree high power pulse
;p22: f3 channel-180 degree high power pulse
; d 0 : incremented delay (F 1 in 3D)
[6 usec]
; d 1 : relaxation delay; $1-5$ * T1
; d8: mixing time
;d10: incremented delay (F2 in 3D)
[6 usec]
; d11: delay for disk I/O
[30 msec]
;d16: delay for homospoil/gradient recovery
;d26: 1/(4J)YH
;cnst4: = J(YH)
;in0: 1/(2 * SW $(\mathrm{H}))=\mathrm{DW}(\mathrm{H})$
;nd0: 2
;in10: 1/(2*SW(X)) $=\mathrm{DW}(\mathrm{X})$
;nd10: 2
;NS: 8 * n
;DS: 16
;td1: number of experiments
;td2: number of experiments in F2
;FnMODE: States-TPPI (or TPPI) in F1
;FnMODE: echo-antiecho in F2
;use gradient ratio: gp $0:$ gp $1:$ gp $2:$ gp $3:$ gp $4:$ gp $5:$ gp 6
; $3: 30: 80: 45: 50: 16.2: 19$
;for z-only gradients:
;gpz0: 3\%
;gpz1:30\%
;gpz2: 80\%
;gpz3: 45\%
;gpz4: 50\%
;gpz5: 16.2\%
;gpz6: 19\%
;use gradient files:
;gpnam1: SINE. 100
;gpnam2: SINE. 50
;gpnam3: SINE. 100
;gpnam4: SINE. 100
;gpnam5: SINE. 50
;gpnam6: SINE. 100
;preprocessor-flags-start
;LABEL_CN: for C-13 and $\mathrm{N}-15$ labeled samples start experiment with
; option -DLABEL_CN (eda: ZGOPTNS) ;preprocessor-flags-end
;\$Id: noesytretf3gp3d,v 1.8.2.2 2002/09/24 09:43:30 ber Exp \$

D.4.2 NOESY-TROSY-HSQC parameters

```
##TITLE= Parameter file, XWIN-NMR
    Version 3.5
##JCAMPDX= 5.0
##DATATYPE= Parameter Values
##ORIGIN= Bruker Analytik GmbH
##OWNER= guest
```

\$\$ Mon Mar 13 10:39:23 2006 MEZ (UT+1h) spektrum@nmr800.nmr.mpibpc.mpg.de \$ $/ \mathrm{u} / \mathrm{data} / \mathrm{momo} / \mathrm{nmr} / \mathrm{hvdac} 090306 / 7 /$ acqus \#\#\$AMP $=(0 . .31)$

100100100100100100100100100100100100100 100100100100100100100100100100100100100 100100100100100100
\#\#\$AQSEQ $=0$
\#\#\$AQ_mod= 3
\#\#\$AUNM= <au_zgonly>
\#\#\$AUTOPOS= $<>$
\#\#SBF1 $=800.35$
\#\#\$BF2 $=201.248168$
$\# \# \$ B F 3=81.098761$
\#\#\$BF4 $=800.35$
\#\#\$BF5 $=800.35$
\#\#\$BF6 $=800.35$
$\# \# \$ B F 7=800.35$
\#\#SBF8 $=800.35$
\#\#SBYTORDA=1
\#\#\$CFDGTYP $=2$
\#\#\$CFRGTYP $=5$
\#\#\$CHEMSTR $=$ <none $>$
\#\# $\$$ CNST $=(0 . .31)$
1114019011111111111114.7558 .53 .517654
3912047.6370156 .5111
\#\#\$CPDPRG=<>
\#\#\$CPDPRG1 $=<$ dipsi2 $>$
\#\#\$CPDPRG2 $=$ <garp>
\#\#SCPDPRG3 = <garp>
\#\#SCPDPRG4 $=<\mathrm{mlev}>$
\#\#SCPDPRG5 = <mlev>
\#\#SCPDPRG6= <mlev>
\#\#SCPDPRG7 $=<\mathrm{mlev}>$
\#\#SCPDPRG8 = <mlev>
\#\# ${ }^{\text {SCPDPRGB }=<>~}$
\#\# ${ }^{\text {SCPDPRGT }=<>~}$
\#\#\$D $=(0 . .31)$
6e-06 $10.0010 .0010 .00180000 .160 .066 \mathrm{e}-060.03$
2e-05 4e-06 $000.00050001 \mathrm{e}-051 \mathrm{e}-05000.002750$
0.00277777800000
\#\#\$DATE= 1141936943
\#\#\$DBL $=(0 . .7)$
120120120120120120120120
\#\#\$DBP= (0..7)
150150150150150150150150
\#\#\$DBP07 $=0$
\#\#\$DBPNAM0 $=<>$
\#\#\$DBPNAM1 $=<>$
\#\#SDBPNAM2 $=<>$
\#\#\$DBPNAM3 $=<>$
\#\#\$DBPNAM4 $=<>$
\#\#\$DBPNAM5=<>
\#\#\$DBPNAM6=<>
\#\#\$DBPNAM7= <>
\#\#\$DBPOAL $=(0 . .7)$
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DBPOFFS=(0..7)
00000000
\#\#\$DE= 6
\#\#\$DECBNUC $=<$ off $>$
\#\#\$DECIM $=16$
\#\#\$DECNUC $=<$ off $>$
\#\#\$DECSTAT $=7$
\#\#\$DIGMOD $=1$
\#\#\$DIGTYP $=8$
\#\#\$DL= (0..7)
120120120120120120120120
\#\#\$DP= (0..7)
150150150150150150150150
\#\#\$DP07 $=0$
\#\#SDPNAME $0=<>$
\#\#\$DPNAME1 $=<>$
\#\#\$DPNAME2 $=<>$
\#\#\$DPNAME3=<>
\#\#\$DPNAME4=<>
\#\#\$DPNAME5=<>
\#\#\$DPNAME6=<>
\#\#\$DPNAME7= <>
\#\#\$DPOAL $=(0 . .7)$
$\begin{array}{llllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5\end{array}$
\#\#\$DPOFFS= (0..7)
00000000
\#\#\$DQDMODE $=0$
\#\#\$DR= 18
\#\#\$DS $=16$
\#\#\$DSLIST $=<$ SSSSSSSSSSSSSSSS $>$
\#\#\$DSPFIRM=0
\#\#\$DSPFVS $=12$
\#\#\$DTYPA $=0$
\#\#\$EXP $=<$ PS done $>$
\#\#\$F1LIST $=<111111111111111>$
\#\#\$F2LIST $=<222222222222222>$
\#\#\$F3LIST $=<333333333333333>$
\#\#\$FCUCHAN= (0..9)
0123000000
\#\#\$FL1 $=90$
\#\#\$FL2 $=90$
\#\#\$FL3 $=90$
\#\#\$FL4 $=90$
\#\#\$FOV=20
\#\#\$FQ1LIST= <halih2o>
\#\#\$FQ2LIST $=$ <cbcaconh $>$
\#\#\$FQ3LIST $=$ <freqlist>
\#\#SFQ4LIST $=<$ caco.vivi>
\#\#SFQ5LIST=<freqlist>
\#\#\$FQ6LIST $=$ <freqlist> \#\#\$FQ7LIST $=<$ freqlist> \#\#\$FQ8LIST $=$ <freqlist> \#\#\$FS $=(0 . .7)$
8383838383838383
\#\#\$FTLPGN= 0
$\# \# \$ F W=125000$
\#\#\$FnMODE= 0
\#\#\$GP031 $=0$
\#\#\$GPNAM0 $=<$ SINE. $100>$
\#\#\$GPNAM1 $=<$ SINE.100 $>$
\#\#\$GPNAM10 $=<$ SINE.100>
\#\#\$GPNAM11 $=<$ SINE. $100>$ \#\#\$GPNAM12 $=$ <SINE.100> \#\#\$GPNAM13 $=$ <SINE. $100>$ \#\#\$GPNAM14 $=$ <SINE.100> \#\#\$GPNAM15 $=<$ SINE.100> \#\#\$GPNAM16 = <SINE.100> \#\#\$GPNAM17 $=$ <SINE.100> \#\#\$GPNAM18 $=<$ SINE. $100>$ \#\#\$GPNAM19 = <SINE.100> \#\#\$GPNAM2 $=<$ SINE. $50>$ \#\#\$GPNAM $20=$ <SINE.100> \#\#\$GPNAM21 $=$ <SINE.100> \#\#\$GPNAM22 $=<$ SINE. $100>$ \#\#\$GPNAM23 $=$ <SINE.100> \#\#\$GPNAM24 $=$ <SINE.100> \#\#\$GPNAM25 $=$ <SINE.100> \#\#\$GPNAM26 = <SINE.100> \#\#\$GPNAM27 $=<$ SINE. $100>$ \#\#\$GPNAM28 $=$ <SINE.100> \#\#\$GPNAM29 = <SINE.100> \#\#\$GPNAM3 $=<$ SINE.100 $>$ \#\#\$GPNAM30 $=<$ SINE. $100>$ \#\#\$GPNAM31 $=<$ SINE. $100>$ \#\#\$GPNAM4 $=<$ SINE.100 $>$ \#\#\$GPNAM5 = < SINE.50> \#\#\$GPNAM6=<SINE.100> \#\#\$GPNAM7 $=<$ SINE.100> \#\#\$GPNAM8 $=<$ SINE.100 $>$ \#\#\$GPNAM9 = <SINE.100>
\#\#\$GPX $=(0 . .31)$
0000000000000000000000000000000 0
$\# \# \$ G P Y=(0 . .31)$
0000000000000000000000000000000 0
$\# \# \$ \mathrm{GPZ}=(0 . .31)$
33080455016.21915000000000000000000 00000
0
\#\#\$GRDPROG= <grad_out>
\#\#SHDDUTY $=20$
\#\#\$HDRATE $=20$
\#\#\$HGAIN=(0..3)
0000
\#\#SHL1 $=200$
\#\#\$HL2 $=40$
\#\#\$HL3 $=90$
\#\#\$HL4 $=90$
\#\#SHOLDER=0
\#\#\$HPMOD= (0..7)
00000000
\#\#\$HPPRGN= 0
\#\# $\$ \mathrm{IN}=(0 . .31)$
6.2e-05 0.0010 .0010 .0010 .0010 .0010 .0010 .0010 .001 0.0010 .000220 .0010 .0010 .0010 .0010 .0010 .0010 .001 0.0010 .0010 .0002320 .0010 .0010 .0010 .0010 .001
0.0010 .0010 .001 2e-05 0.00020 .001
\#\#\$INP = (0..31)
0000000000000000000000000000000
0
\#\#\$INSTRUM $=$ <spect>
\#\#SL= (0..31)
12016411111111164111111111111111 111
\#\#\$LFILTER $=200$
\#\#\$LGAIN $=-5$
\#\#\$LOCKED $=$ yes
\#\#\$LOCKFLD=-6885
\#\#\$LOCKGN= 125.400001525879
\#\#\$LOCKPOW $=-22.2000007629395$
\#\#\$LOCKPPM $=4.69999980926514$
\#\#\$LOCNUC $=<2 \mathrm{H}>$
$\# \#$ SLOCPHAS $=160.2$
\#\#\$LOCSHFT= no
\#\#\$LTIME $=0.200000002980232$
\#\#\$MASR $=4200$
\#\#\$MASRLST $=$ <masrlst>
\#\# ${ }^{\text {N }}$ NBL $=1$
\#\#\$NC= -2
\#\#\$NS= 32
\#\#\$NUC1 $=<1 \mathrm{H}>$
\#\#\$NUC2 $=<13 \mathrm{C}>$
\#\#\$NUC3 $=<15 \mathrm{~N}>$
\#\#\$NUC4 = <off>
\#\#\$NUC5 = <off>
\#\#\$NUC6 = <off>
\#\#\$NUC7 $=<$ off $>$
\#\#\$NUC8 = <off>
\#\#\$NUCLEI= 0
\#\#\$NUCLEUS $=$ <off>
\#\#\$O1 $=3762.44535$
\#\#\$O2 $=10666.152904$
$\# \# \$ O 3=9610.2031785$
\#\#\$O4 $=0$
\#\#\$O5=0
\#\#\$O6 $=-300220000$
\#\#\$O7=-300220000
\#\#\$O8 $=-300220000$
\#\#\$OBSCHAN= (0..9)
0000000000
\#\#\$OVERFLW=0
\#\#\$P=(0..31)
10.512 .1424 .2811 .818 .523 .135700357000256500 200000100010000500048.5970200007010 .5200 25002500
\#\#\$PAPS $=0$
\#\#\$PARMODE $=2$
$\# \# \$ P C P D=(0 . .9)$
100100100100100100100100100100 \#\#\$PHCOR= (0..31)

0000000000000000000000000000000
0
\#\#\$PHP= 1
\#\#\$PH_ref= 0
\#\# $\$$ PL $=(0 . .31)$
120-1 120-3-312012012012059.0615.96120 13.46
1201207.3617 .81205 .519 .88120120120120120120

120120120120120120
\#\#\$POWMOD $=0$
\#\#\$PR= 1
\#\#\$PRECHAN= (0..15)
-1 20 -1-1 3-1-1-1-1-1-1-1-1-1-1
\#\#\$PRGAIN=0
\#\#\$PROBHD $=<5 \mathrm{~mm}$ CPTCI 1H-13C/15N Z-GRD
Z44909/0007
>
\#\#\$PROSOL= no
\#\#\$PULPROG= <noesytretf3gp3d.mo>
\#\#\$PW=0
\#\#\$QNP= 1
\#\#\$RD=0
\#\#\$RECCHAN $=(0 . .15)$

\#\#\$RECPH=0
\#\#\$RG=128
\#\#\$RO=0
$\# \#$ ROUTWD $1=(0 . .23)$
000000000000000000001100
$\# \#$ ROUTWD2 $=(0 . .23)$
000001000000000000000000
\#\#\$RPUUSED= (0..8)
000000000
\#\#\$RSEL=(0..9)
0215000000
$\# \# \$ S=(0 . .7)$
8383838383838383
\#\#\$SEOUT $=0$
\#\#\$SFO1 $=800.35376244535$
\#\#\$SFO2 $=201.258834152904$
\#\#\$SFO3 $=81.1083712031785$
\#\#\$SFO4 $=800.35$
\#\# $\$$ SFO5 $=800.35$
\#\#\$SFO6= 500.13
\#\#\$SFO7 $=500.13$
\#\#\$SFO8= 500.13
\#\#\$SOLVENT $=<$ D2O $>$
$\# \# \$ S P=(0 . .31)$
1120120403.11204112 .80000012 .8150150150

150150150150150150150150150150150150150
\#\#SSP07=0
\#\#\$SPECTR $=0$
\#\#\$SPNAM0 $=$ < gauss $>$
\#\#\$SPNAM1 $=<$ Gaus1.1000>
\#\#\$SPNAM10=<gauss>
\#\#\$SPNAM11=<gauss>
\#\#\$SPNAM12=<gauss>
\#\#\$SPNAM13 = < gauss>
\#\#\$SPNAM14 $=$ <gauss>
\#\#\$SPNAM15 = <g3.256>
\#\#\$SPNAM16=<gauss>
\#\#\$SPNAM17 = <gauss>
\#\#SSPNAM18 = < gauss>
\#\#\$SPNAM19 = < gauss>
\#\#\$SPNAM2 $=<$ Gaus $1.1000>$
\#\#\$SPNAM20 $=$ <gauss>
\#\#\$SPNAM21 = < gauss>
\#\#\$SPNAM22 $=$ <gauss $>$
\#\#\$SPNAM23 = <gauss>
\#\#\$SPNAM24 = <gauss>
\#\#\$SPNAM25= <gauss>
\#\#\$SPNAM26=<gauss>
\#\#\$SPNAM27 = <gauss>
\#\#SSPNAM28=<gauss>
\#\#\$SPNAM29 = < gauss>
\#\#\$SPNAM3 $=<$ Crp60,0.5,20.1>

```
##$SPNAM30=<gauss>
##$SPNAM31= <gauss>
##SSPNAM4=<gauss>
##$SPNAM5=<g3.256>
##$SPNAM6= <Gaus1.1000>
##$SPNAM7= <Crp60comp.4>
##$SPNAM8=<g4tr.256>
##$SPNAM9= <g3.256>
##$SPOAL= (0..31)
0.5 0.50.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.50.50.5
0.5 0.5 0.5 0.5 0.50.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
##$SPOFFS= (0..31)
0000032005.680-32005.680000000-20000000
000000
0000000
##$SUBNAM0=<"">
##$SUBNAM1=<"">
##$SUBNAM2=<"">
##$SUBNAM3=<"">
##SSUBNAM4=<"">
##$SUBNAM5=<"">
##$SUBNAM6=<"">
##$SUBNAM7=<"">
##$SUBNAM8=<"">
##SSUBNAM9=<"">
##$SW= 13.9447264564791
##$SWIBOX= (0..15)
0120056000000000
##$SW_h=11160.7142857143
##STD= 1024
##$TD0= 1
##$TE= 310.0063
##$TE2= 300
##$TE3=300
##$TEG= 300
##$TL= (0..7)
120120120120120120120 120
##$TP= (0..7)
150150150150150150150150
```

\#\#\$TPNAME1 = <>
\#\#\$TPNAME2 $=<>$
\#\#\$TPNAME3 = <>
\#\#\$TPNAME4 = <>
\#\#\$TPNAME5= <>
\#\#\$TPNAME6=<>
\#\#\$TPNAME7 = < >
\#\#\$TPOAL = (0..7)
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$TPOFFS= (0..7)
00000000
\#\#\$TUNHIN= 0
\#\#\$TUNHOUT= 0
\#\#\$TUNXOUT $=0$
\#\#\$USERA1 = <user>
\#\#SUSERA2 $=<$ user $>$
\#\#\$USERA3 = <user>
\#\#SUSERA4 = <user>
\#\#\$USERA5= <user>
\#\#\$V9= 5
\#\#\$VALIST $=$ <valist>
\#\#\$VCLIST $=<$ CCCCCCCCCCCCCCC $>$
\#\#\$VD= 0
\#\#\$VDLIST $=<$ DDDDDDDDDDDDDDD $>$
\#\#\$VPLIST = < PPPPPPPPPPPPPPP>
\#\#\$VTLIST $=<$ TTTTTTTTTTTTTTT $>$
\#\#\$WBST $=1024$
\#\#\$WBSW= 10
$\# \# \$ X G A I N=(0 . .3)$
0000
\#\# $\$ \mathrm{XL}=0$
\#\#\$YL= 0
\#\#\$YMAX a= 20727
\#\#\$YMIN_a=-21459
\#\#\$ZGOPTNS= <-DLABEL_CN>
\#\#\$ZL1 $=120$
\#\#\$ZL2 $=120$
\#\#\$ZL3 $=120$
\#\#\$ZL4 $=120$
\#\#END=
\#\#\$TP07=0
\#\#\$TPNAME0= <>

D.5.1 HMQC-NOESY pulse-program

\#include "bits.nt"
;Written by Jinfa Ying, 5/11/06
H-N Parallel evolution MQ
;NOESY transfer to the neightboring HN's
;1H detection
;modified from pareMQ NOE gsMQ2B.jfy
;p1 = 90 deg (10us) 1H pulse @pl1
;p7 = 90 deg (50us) 15N pulse @pl7
;p4 = selective 180 deg (23.7*2us) 13CA
. pulse @pl4 (f4) and @pl6 (f5)
\#define CARBON LABEL
\#define PROTON
\#define NITROGEN
"d11=50m"
"d12=1m"
"d25=p7*2.22-p1*2.11"
"d2=2.1m"
d $0=70 \mathrm{u} " \quad$;needed to place 180 N pulse, compensated in d3
"d10=2u"
"d28=3u"
"d29=d2*2-d28-p7*4.44-4u"

```
;--- p1*4.22+4u+d0= d6+p7*2+d9 for identical N/H durations
;--- d10*2+d6==d9 for zero 15N evolution to get 0/0 phase correction
"d9=p1*2.11+2u+d0*0.5+d10-p7" ;initial d0 set to 70u to keep d6 & d9 >0
"d6=p1*2.11+2u+d0*0.5-d10-p7"
"d3=d2*2-d0-p7*4.44-d28*2-4u" ;compensate the cs evolution for 1H 0/0 phase correction
"d7=d8-p27-310u" ;d8=noe mixing time
;"d7=d8-p27-p2-318u" ;d8=noe mixing time
"in28=in0"
"in29=in28"
"in9=in10"
"in6=in9"
ze
    1m RESET
2 d11 do:f3 do:f2
    d12 LOCK ON
3 d12 DEUT_OFF
d12 LOCK ON
5 d12 do:f2 do:f3
d12 do:f3
d12 do:f2
d 12 do:f2 do:f3
d12 do:f2 do:f3
1m DEUT_OFF
d1 LOCK ON
1m LOCK OFF
10u pl1:f1
10u pl7:f3
(p7 ph0):f3 ;kill Boltzman
50m
;goto 999
;WURST 13C dec on if 13C labeled
#ifdef CARBON_LABEL
    10u pl30:f2
    10u cpds4:f2
#endif
;---start 90-degree on hn ----------------------
    (p1 ph5):f1
    d28
    (d25 p1 ph0 2u p1*2.22 ph1 2u p1 ph0 d25):f1 (p7 ph0 2u p7*2.44 ph1 2u p7 ph0):f3
    d29
    (p7 ph6):f3
;---MQ and Parallel Evolution start
    (d10 p1 ph0 2u p1*2.22 ph1 2u p1 ph0 d10 d0):f1 (d10 d10 d6 p7*2 d9):f3
    (p7 ph0):f3
;---refocusing 1J(N-H)
    d3
    (p1 ph2):fl
;--------HN-HN NOE mixing---------
    10u do:f2 ;turn off the WURST 13C (ie CA and CO) decoupling
    d7
    p27:gp0
    300u pl11:fl
-------HN readout-----
(p11:sp11 ph0):f1 ;eburp2
5u
p20:gp3
100u pl2:fl
(p12:sp12 ph0):f1 ;reburp
5u
p20:gp3
100u pl31:f3
go=2 ph31 cpd2:f3
d12*0.25 do:f3 do:f2
```

```
    d12*0.25 LOCK ON
    d11 wr #0 if #0 zd
#ifdef NITROGEN
    d12*0.5 ip6
    lo to }3\mathrm{ times 2
        d12*0.5 ip31*2
        if "d9 > in9"
            {
            d12*0.25 dd9
            d12*0.25 id6
            }
            else
            {
            d12*0.5 id10
            }
    lo to 4 times 13
        d12*0.5 rd10 ;must appear before d6 & d9 are re-evaluated
        "d9=p1*2.11+2u+d0*0.5+d10-p7"
        "d6=p1*2.11+2u+d0*0.5-d10-p7"
#endif
#ifdef PROTON
        d12*0.5 ip5
    lo to }5\mathrm{ times 2
        d12*0.5 ip31*2
        if "d29 > in29"
            {
            d12*0.25 dd29
            d12*0.25 id28
            }
            else
            {
            d12*0.25 id0
            d12*0.25 id0 ;id0 twice to make nd0=2
            }
            "d9=p1*2.11+2u+d0*0.5+d10-p7" ;d6 & d9 must appear after id0
            "d6=p1*2.11+2u+d0*0.5-d10-p7"
    lo to }6\mathrm{ times }1
            ;d12*0.25 rd28
            ;d12*0.25 rd29
            ;d12*0.5 rd0 ;must appear before d6 & d9 are re-calculated
            ;"d9=p1*2.11+2u+d0*0.5+d10-p7"
            ;"d6=p1*2.11+2u+d0*0.5-d10-p7"
#endif
1m do:f2
1m do:f3
1m RESET
1m
exit
ph0=0
ph1=1
ph2=2
ph5=0
ph6=0 2
ph31=0 2
```


D.5.2 HMQC-NOESY parameters

```
##TITLE= Parameter file, XWIN-NMR
    Version 3.5
##JCAMPDX= 5.0
##DATATYPE= Parameter Values
##ORIGIN= Bruker Analytik GmbH
##OWNER= guest
$$ Fri Oct 27 04:07:32 2006 MESZ (UT+2h)
spektrum@nmr800.nmr.mpibpc.mpg.de
$$/u/data/momo/nmr/hvdac231006/4/acqus
##$AMP= (0..31)
```

100100100100100100100100100100100100100 100100100100100100100100100100100100100 100100100100100100
\#\#\$AQSEQ=1
\#\#\$AQ_mod= 3
\#\#\$AUNM= <au_zgonly>
\#\#\$AUTOPOS= <>
\#\#SBF1 $=800.15$
$\# \# \$ B F 2=201.197878$
\#\#\$BF3 $=81.078495$
\#\#\$BF4 $=800.15$
\#\#\$BF5 $=800.15$
\#\#\$BF6 $=800.15$
\#\#\$BF7 $=800.15$
\#\#SBF8 $=800.15$
\#\# $\$$ BYTORDA $=1$
\#\#\$CFDGTYP $=2$
\#\#\$CFRGTYP $=5$
\#\#SCHEMSTR $=$ <none>
\#\#\$CNST $=(0 . .31)$
1114019011111111111114.7558 .53 .517654
3912047.6370156 .5111
\#\#\$CPDPRG=<>
\#\# ${ }^{\text {CPDPRG1 }}=<$ dipsi2 $>$
\#\#SCPDPRG2 = < garp>
\#\#\$CPDPRG3 = <garp>
\#\#SCPDPRG4 $=$ <mlev>
\#\#SCPDPRG5 = <mlev>
\#\#SCPDPRG6= <mlev>
\#\#SCPDPRG7 $=<\mathrm{mlev}>$
\#\#\$CPDPRG8 = <mlev>
\#\# ${ }^{\text {SCPDPRGB }}=<>$
\#\#SCPDPRGT=<>
\#\#\$D $=(0 . .31)$
7e-05 $10.00210 .003969040 .001802 .26275 \mathrm{e}-050.11869$ 0.12 2.66275e-05 2e-06 $0.050 .0014 \mathrm{e}-06000.0005000$ $1 \mathrm{e}-051 \mathrm{e}-05000.002755 .38525 \mathrm{e}-05$
$0.0027503 \mathrm{e}-060.0040420400$
\#\#\$DATE= 1161607586
\#\#\$DBL $=(0 . .7)$
120120120120120120120120
\#\#\$DBP= (0..7)
150150150150150150150150
\#\#\$DBP07 $=0$
\#\#\$DBPNAM0 $=<>$
\#\#\$DBPNAM1 $=<>$
\#\#\$DBPNAM2 $=<>$
\#\#\$DBPNAM3 $=<>$
\#\#SDBPNAM4 $=<>$
\#\#\$DBPNAM5 = <>
\#\#\$DBPNAM6=<>
\#\#\$DBPNAM7 $=<>$
\#\#\$DBPOAL= (0..7)
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DBPOFFS $=(0 . .7)$
00000000
\#\#\$DE= 6
\#\#\$DECBNUC= <off>
\#\#\$DECIM $=16$
\#\# ${ }^{\text {SDECNUC }}=<$ off $>$
\#\#\$DECSTAT $=7$
\#\#\$DIGMOD $=1$
\#\#\$DIGTYP= 8
\#\#\$DL= (0..7)
120120120120120120120120
\#\#\$DP= (0..7)
150150150150150150150150
\#\#\$DP07=0
\#\#\$DPNAME0=<>
\#\#\$DPNAME1 $=<>$
\#\#SDPNAME2 $=<>$
\#\#SDPNAME3 $=<>$
\#\#\$DPNAME4=<>
\#\#\$DPNAME5=<>
\#\#\$DPNAME6=<>
\#\#\$DPNAME7= <>
\#\#\$DPOAL $=(0 . .7)$
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DPOFFS $=(0 . .7)$
00000000
\#\#SDQDMODE $=0$
$\# \# \$ D R=18$
\#\#SDS $=8$
\#\#\$DSLIST $=<$ SSSSSSSSSSSSSSS $>$ \#\#\$DSPFIRM $=0$
\#\# $\$$ DSPFVS $=12$
\#\#\$DTYPA=0
\#\#\$EXP $=<$ PS done $>$
\#\#\$F1LIST $=<11111111111111>$
\#\#\$F2LIST $=<22222222222222>$
\#\#\$F3LIST $=<333333333333333>$
\#\#\$FCUCHAN $=(0 . .9)$
0123000000
\#\#\$FL1 $=90$
\#\# $\$$ FL2 $=90$
\#\# ${ }^{2}$ FL3 $=90$
\#\#\$FL4 $=90$
\#\#\$FOV= 20
\#\#\$FQ1LIST $=<$ halih2o>
\#\#\$FQ2LIST $=$ <cbcaconh $>$
\#\#\$FQ3LIST $=<$ freqlist>
\#\#\$FQ4LIST $=$ <caco.vivi>
\#\#\$FQ5LIST $=$ <freqlist>
\#\#\$FQ6LIST $=$ <freqlist>
\#\#\$FQ7LIST $=$ <freqlist>
\#\#\$FQ8LIST = <freqlist>
\#\#\$FS= (0..7)
8383838383838383
\#\#\$FTLPGN=0
\#\#\$FW= 125000
\#\#\$FnMODE $=0$
\#\#\$GP031 $=0$
\#\#\$GPNAM0 $=<$ SINE.100>
\#\#\$GPNAM1 $=$ <SINE. $100>$
\#\#\$GPNAM10 = <SINE.100> \#\#\$GPNAM11 $=$ <SINE.100> \#\#\$GPNAM12 $=$ <SINE.100> \#\#\$GPNAM13 = <SINE.100> \#\#\$GPNAM14 = <SINE.100> \#\#\$GPNAM15 = <SINE.100> \#\#\$GPNAM16 = <SINE.100> \#\#\$GPNAM17 $=<$ SINE. $100>$ \#\#\$GPNAM18= <SINE.100> \#\#\$GPNAM19 = < SINE.100> \#\#\$GPNAM2 $=<$ SINE. $50>$ \#\#\$GPNAM20 = <SINE.100> \#\#\$GPNAM21 $=$ <SINE.100> \#\#\$GPNAM22 $=<$ SINE.100> \#\#\$GPNAM23 $=<$ SINE.100> \#\#\$GPNAM24 $=$ <SINE.100> \#\#\$GPNAM25=<SINE.100> \#\#\$GPNAM26 = <SINE.100> \#\#\$GPNAM27 $=<$ SINE.100> \#\#\$GPNAM28 $=<$ SINE.100> \#\#\$GPNAM29 = <SINE.100> \#\#\$GPNAM3 $=<$ SINE. $100>$ \#\#\$GPNAM30 $=$ <SINE.100> \#\#\$GPNAM31 = <SINE.100> \#\#\$GPNAM4 $=$ <SINE.100> \#\#\$GPNAM5 = < SINE.50> \#\#\$GPNAM6= <SINE.100> \#\#\$GPNAM7 $=<$ SINE. $100>$ \#\#\$GPNAM8 $=<$ SINE. $100>$ \#\#\$GPNAM9 = <SINE.100> $\# \# \$$ GPX $=(0 . .31)$
0000000000000000000000000000000 0
\#\#\$GPY= (0..31)
0000000000000000000000000000000 0
\#\#\$GPZ= (0..31)
603080555016.2191500000000000000000 00000
00
\#\#\$GRDPROG= <grad_out>
\#\#\$HDDUTY $=20$
\#\#\$HDRATE $=20$
\#\#\$HGAIN= (0..3)
0000
$\# \# \$ H L 1=200$
\#\#SHL2 $=40$
\#\#SHL3 $=90$
\#\#SHL4 $=90$
\#\#SHOLDER $=0$
\#\#SHPMOD= (0..7)
00000000
\#\#SHPPRGN= 0
\#\#SIN= (0..31)
$4.9 \mathrm{e}-050.0010 .0010 .0010 .0010 .0010 .0002120 .001$
0.0010 .0002120 .0002120 .0010 .0010 .0010 .0010 .001
0.0010 .0010 .0010 .0010 .0002320 .0010 .0010 .001
$0.0010 .0010 .0010 .0014 .9 \mathrm{e}-054.9 \mathrm{e}-050.00020 .001$
\#\#SINP= (0..31)
0000000000000000000000000000000 0
\#\#SINSTRUM= <spect>
\#\#SL= (0..31)
120125911111111164111111111111111
111
\#\#SLFILTER $=200$
\#\#SLGAIN= -5
\#\#SLOCKED= yes
\#\#SLOCKFLD= 7316
\#\#SLOCKGN= 127.800003051758
\#\#SLOCKPOW= -20
\#\#SLOCKPPM= 4.69999980926514
\#\#SLOCNUC= $<2 \mathrm{H}>$
\#\#SLOCPHAS= 309
\#\#SLOCSHFT= no
\#\#SLTIME $=0.200000002980232$
\#\#SMASR= 4200
\#\#SMASRLST $=$ <masrlst>
\#\#SNBL $=1$
\#\#SNC= -2
\#\#SNS= 26
\#\# $\mathrm{NNUCl}^{2}=<1 \mathrm{H}>$
$\# \#$ SNUC $2=<13 \mathrm{C}>$
\#\#SNUC3= $<15 \mathrm{~N}>$
\#\#\$NUC4=<off>
\#\#\$NUC5=<off>
\#\#\$NUC6=<off>
\#\#SNUC7= $<$ off $>$
\#\#\$NUC8=<off>
\#\#SNUCLEI= 0
\#\#SNUCLEUS= <off>
\#\#SO1=3763.10545
\#\#SO2 $=10663.4875340035$
\#\#SO3 $=9628.07128129839$
\#\#SO4= 0
\#\#SO5= 0
\#\#SO6 $=-300020000$
\#\#SO7 $=-300020000$
\#\#SO8 $=-300020000$
\#\#SOBSCHAN= (0..9)
0000000000
\#\#SOVERFLW= 0
\#\#SP= (0..31)
10.510 .252111 .818 .523 .135340357020002000256
500200000100010000500100048.58402000070

100020025002500
\#\#SPAPS=0
\#\#SPARMODE $=2$
\#\#\$PCPD= (0..9)
100100100142100100100100100100
\#\#SPHCOR= (0.31)
0000000000000000000000000000000
0
\#\#\$PHP= 1
\#\#SPH_ref= 0
\#\#SPL= (0.31)
120-1 120 120-3 $120120-612059.0615 .9612013 .46$ 1201207.3617 .81205 .519 .88120120120120120120 1201201201201206
\#\#\$POWMOD= 0
\#\#SPR= 1
\#\#\$PRECHAN= (0..15)
$-110-1-12-1-1-1-1-1-1-1-1-1-1$
\#\#\$PRGAIN=0
\#\#\$PROBHD $=<5 \mathrm{~mm}$ CPTCI $1 \mathrm{H}-13 \mathrm{C} / 15 \mathrm{~N}$ Z-GRD Z44909/0007
>
\#\#\$PROSOL= no
\#\#\$PULPROG= <noesy_hmqc.bax>
\#\#\$PW=0
\#\#\$QNP $=1$
\#\#\$RD $=0$
\#\#\$RECCHAN=(0..15)

\#\#\$RECPH=0
\#\#\$RG=256
\#\#\$RO=0
\#\#\$ROUTWD1 $=(0 . .23)$
000000000000000000001100
\#\#\$ROUTWD2 $=(0 . .23)$
000001000000000000000000
\#\#\$RPUUSED= (0..8)
000000000
\#\#\$RSEL= (0..9)
0215000000
\#\# $\$ \mathrm{~S}=(0 . .7)$
8383838383838383
\#\#\$SEOUT $=0$
\#\#\$SFO1 $=800.15376310545$
\#\#\$SFO2 $=201.208541487534$
\#\#\$SFO3 $=81.0881230712813$
\#\#\$SFO4 $=800.15$
\#\#\$SFO5 $=800.15$
\#\#\$SFO6 $=500.13$
\#\#\$SFO7 $=500.13$
\#\#\$SFO8= 500.13
\#\#\$SOLVENT = < D2O $>$
$\# \# \$ S P=(0 . .31)$
1120120403.11204112 .8020 .5216 .830012 .8150

150150150150150150150150150150150150150
150150
\#\#\$SP07=0
\#\#\$SPECTR $=0$
\#\#\$SPNAM0= <gauss>
\#\#\$SPNAM1 $=$ <Gaus1.1000>
\#\#\$SPNAM10=<gauss>
\#\#\$SPNAM11 = <E-BURP2>
\#\#\$SPNAM12 $=<$ ReBurp1000>
\#\#\$SPNAM13 = < gauss>
\#\#\$SPNAM14 = <gauss>
\#\#\$SPNAM15=<g3.256>
\#\#\$SPNAM16=<gauss>
\#\#\$SPNAM17 $=$ <gauss $>$
\#\#\$SPNAM18 = < gauss>
\#\#\$SPNAM19 = < gauss>
\#\#\$SPNAM2= <Gaus1.1000>
\#\#\$SPNAM20 $=$ <gauss>
\#\#\$SPNAM21 $=$ <gauss $>$
\#\#\$SPNAM22 $=$ <gauss>
\#\#\$SPNAM23 = <gauss>
\#\#\$SPNAM24 = < gauss>
\#\#\$SPNAM25 = <gauss>
\#\#\$SPNAM26=<gauss>
\#\#\$SPNAM27 = <gauss>
\#\#\$SPNAM28 = <gauss>
\#\#\$SPNAM29 = < gauss>
\#\#\$SPNAM3 $=<$ Crp60,0.5,20.1>
\#\#\$SPNAM30 $=$ <gauss $>$
\#\#\$SPNAM31 = < gauss>
\#\#\$SPNAM4 $=$ <gauss>
\#\#\$SPNAM5 $=<$ g3.256>
\#\#\$SPNAM6= <Gaus1.1000>
\#\#\$SPNAM7 $=<$ Crp60comp.4>
\#\#\$SPNAM8 $=<$ g4tr.256>
\#\#\$SPNAM9 $=<$ g3.256>
\#\#\$SPOAL $=(0 . .31)$

```
0.50.50.50.50.50.5 0.50.50.50.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.50.5
##$SPOFFS=(0..31)
0000032005.680-32005.6800023602360 00 -
200000000000000000000
##$SUBNAM0=<"">
##SSUBNAM1=<"">
##$SUBNAM2=<"">
##$SUBNAM3=<"">
##$SUBNAM4=<"">
##$SUBNAM5=<"">
##SSUBNAM6=<"">
##$SUBNAM7=<"">
##$SUBNAM8=<"">
##$SUBNAM9=<"">
##$SW= 13.9482119566605
##$SWIBOX= (0..15)
0120056000000000
##$SW_h= 11160.7142857143
##$TD= 1024
##$TD0=1
##$TE= 310
##$TE2= 300
##$TE3= 300
##$TEG= 300
##$TL= (0..7)
120120120 120120120 120 120
##$TP= (0..7)
150150150150150150150150
##$TP07= 0
##$TPNAME0 = <>
##$TPNAMEI=<>
##$TPNAME2=<>
##$TPNAME3= <>
##$TPNAME4=<>
##$TPNAME5=<>
```

\#\#\$TPNAME6= <>
\#\#\$TPNAME7 = < >
\#\#\$TPOAL = (0..7)
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$TPOFFS= (0..7)
00000000
\#\#\$TUNHIN= 0
\#\#\$TUNHOUT=0
\#\#\$TUNXOUT = 0
\#\#\$USERA1 = <user>
\#\#SUSERA2 $=$ <user>
\#\#\$USERA3 $=$ <user>
\#\#\$USERA4 = <user>
\#\#\$USERA5 = <user>
\#\#\$V9= 5
\#\#\$VALIST $=$ <valist>
\#\#\$VCLIST $=<$ CCCCCCCCCCCCCCC $>$
\#\#\$VD= 0
\#\#\$VDLIST $=<$ DDDDDDDDDDDDDDD $>$
\#\#\$VPLIST= <PPPPPPPPPPPPPPP>
\#\#\$VTLIST $=<$ TTTTTTTTTTTTTTT $>$
\#\#\$WBST $=1024$
\#\#\$WBSW = 10
$\# \# \$ X G A I N=(0 . .3)$
0000
\#\# $\$ \mathrm{XL}=0$
\#\#\$YL= 0
\#\#\$YMAX $a=17353$
\#\#\$YMIN_a=-11035
\#\#\$ZGOPTNS= <>
\#\#\$ZL1 $=120$
\#\#\$ZL2 $=120$
\#\#\$ZL3 = 120
\#\#\$ZL4 $=120$
\#\#END=

D.6.1 TROSY-HNCA pulse-program

```
;avance-version (04/01/07)
TROSY-HNCACB
;3D sequence with
; inverse correlation for triple resonance
    via TROSY and inept transfer steps
    F1(H) -> F3(N) -> F2(Caliph.,t1) -> F3(N,t2) -> F1(H,t3)
on/off resonance Ca and C=O pulses using shaped pulse
phase sensitive (t1)
;phase sensitive using Echo/Antiecho gradient selection (t2)
using constant time in t2
with H-1 180degree pulses in t1
;uncompensated version d}25=\textrm{d}2
;(use parameterset TRHNCACBETGP3D)
;
;T. Schulte-Herbrueggen & O.W. Sorensen, J. Magn. Reson. 144,
; 123-128 (2000)
;A. Eletsky, A. Kienhoefer & K. Pervushin,
; J. Biomol. NMR 20, 188-180 (2001)
;(M. Salzmann, G. Wider, K. Pervushin, H. Senn & K. Wuethrich,
; J. Am. Chem. Soc. 121, 844-848 (1999))
prosol relations=<triple>
```

\#include < Avance.incl>
\#include < Grad.incl>
\#include < Delay.incl>
define list<gradient>EA5 $=\{0.87501 .0000\}$
define list $<$ gradient $>$ EA7 $=\{1.00000 .6667\}$
define list<gradient>EA9 $=\{0.65951 .0000\}$

```
"d0=3u"
"d10=3u"
"d11=30m"
"d23=11m"
"d25=2.3m"
;"d26=2.1m"
"d26=2.3m"
"d28=3.6m"
"in30=in10"
"d30=d23/2-d25/2-p14/2-p16/2-d16/2-2u"
"DELTA=d0*4+p2*2+larger(p14,p22)-p14-4u"
"DELTA1=d26-p16-d16"
"DELTA2=d23-d16"
"DELTA3=d28-d16"
"DELTA4=d23/2-d25/2-p 14/2-d10+p21*2/3.1416"
"DELTA5=d23/2-d25/2-p14/2-d10-p16-d16-p11+p21*2/3.1416-8u"
"DELTA6=d25-p16-d16"
"DELTA7=d26-p11-p16-d16-8u"
"spoff2=0"
"spoff3=0"
"spoff5=bf2*(cnst2 1/1000000)-o2"
"spoff8=0"
aqseq }32
1 d11 ze
    d11 LOCKDEC_ON
2d11
3d11 H2_LOCK
    6m LOCKH OFF
    d1 pl1:f1
    50u LOCKH_ON
    d12 H2_PULSE
    50u UNBLKGRAMP
    4u pl0:f1
    (p11:sp1 ph2:r):f1
    4u
    4u pl1:f1
    (p1 ph3):f1
    p16:gp1
    d16
DELTA1
(center (p2 ph2) (p22 ph1):f3 )
DELTA1
p16:gp1
d16
(p1 ph2):f1
(p21 ph1):f3
d16
DELTA2
(center (p14:sp3 ph1):f2 (p22 ph1):f3 )
DELTA2
d16
(p21 ph2):f3
4u
4u pl4:f4
20u cpd4:f4
(p13:sp2 ph6):f2
d0
(p2 ph1):f1
d0
(center (p14:sp5 ph1):f2 (p22 ph1):f3 )
d0
```

```
(p2 ph1):f1
d0
(p14:sp3 ph1):f2
DELTA
(p14:sp5 ph1):f2
4u
(p13:sp8 ph9):f2
4u do:f4
20u
(p21 ph5):f3
d30
(p14:sp5 ph1):f2
d30
(center (p14:sp3 ph1):f2 (p22 ph1):f3 )
DELTA4
d10
(p14:sp5 ph1):f2
d10
DELTA5
p16:gp5*EA5
d16 pl0:f1
(p11:sp1 ph3:r):f1
4u
4u pl1:f1
(p1 ph7)
p16:gp6
d16
DELTA6
(center (p2 ph2) (p22 ph2):f3 )
DELTA6
p16:gp6
d16
(p1 ph1)
p16:gp7*EA7
d16
4u
(p21 ph1):f3
p16:gp8
d16
DELTA7 pl0:fl
(p11:sp1 ph4:r):f1
4u
4u pl1:f1
(center (p2 ph2) (p22 ph2):f3 )
4u pl0:f1
(p11:sp1 ph4:r):f1
4u
DELTA7
p16:gp8
d16 pl1:f1
(p21 ph8:r):f3
p16:gp9*EA9
d16
4u BLKGRAMP
go=2 ph31
d11 mc #0 to 2
    ; F1PH(rd10 & rd30 & ip9 & ip10, id0)
    F1PH(rd10 & rd30 & ip9, id0)
    F2EA(igrad EA5 & igrad EA7 & igrad EA9 & ip7*2 & ip8*2, id10 & dd30 & ip5*2 & ip31*2)
; F1EA(igrad EA5 & igrad EA7 & igrad EA9 & ip7*2 & ip8*2, id10 & dd30 & ip5*2 & ip31*2)
d11 H2 LOCK
d11 LOCKH_OFF
d11 LOCKDEDC_OFF
exit
ph1=0
```

```
ph2=1
ph3=2
ph4=3
ph5=0 2
ph6=0 0 2 2
ph7=3
ph8=3
ph9=0
ph10=1
ph31=0 2 2 0
;p10 : 120dB
pl1 : fl channel - power level for pulse (default)
pl3 : f3 channel - power level for pulse (default)
;sp1: f1 channel - shaped pulse 90 degree (H2O on resonance)
;sp2: f2 channel - shaped pulse 90 degree (Cali on resonance)
;sp3: f2 channel - shaped pulse 180 degree (Cali on resonance)
;sp5: f2 channel - shaped pulse 180 degree (C=O off resonance)
;sp8: f2 channel - shaped pulse 90 degree (Cali on resonance)
; for time reversed pulse
;p1: fl channel - 90 degree high power pulse
;p2 : f1 channel - 180 degree high power pulse
;p11: fl channel - 90 degree shaped pulse
;p13: f2 channel - 90 degree shaped pulse
;p14: f2 channel - 180 degree shaped pulse
;p16: homospoil/gradient pulse [1 msec]
;p21: f3 channel - 90 degree high power pulse
;p22: f3 channel - 180 degree high power pulse
;d0 : incremented delay (F1 in 3D) [3 usec]
;d1 : relaxation delay; 1-5 * T1
;d10: incremented delay (F2 in 3D) [3 usec]
;d11: delay for disk I/O [30 msec]
d16: delay for homospoil/gradient recovery
;d23: 1/(4J(NCa) [11 msec]
;d25: 1/(4J'(NH) [2.3 msec]
;d26: 1/(4J(NH) [2.3 msec]
;d28: 1/(8J(CaCb) [3.6 msec]
d30: decremented delay (F2 in 3D) = d23/2-d25/2-p14/2-p16/2-d16/2-2u
;cnst21: CO chemical shift (offset, in ppm)
cnst23: Caliphatic chemical shift (offset, in ppm)
o2p: Caliphatic chemical shift (cnst23)
;in0: 1/(4 * SW(Cali)) = (1/2) DW(Cali)
;nd0:4
;in10: 1/(4 * SW(N)) = (1/2) DW(N)
;nd10:4
in30: = in10
;NS: 8 * n
;DS: >= 16
;td1: number of experiments in F1
;td2: number of experiments in F2 td2 max =2 * d30 / in30
;FnMODE: States-TPPI (or TPPI) in F1
FnMODE: echo-antiecho in F2
```

;use gradient ratio: gp 1:gp 2:gp 3:gp 4:gp 5:gp 6:gp 7:gp 8: gp 9
; 2: 2: 2: 2: -80: 2: 30: 45:30.13
;for z-only gradients:
;gpz1: 2\%
;gpz2: 2\%
;gpz3: 2\%
;gpz4: 2\%
;gpz5: -80\%
;gpz6: 2\%
;gpz7: 30\%
gpz8: 45\%
;gpz9: 30.13\%
;use gradient files:
;gpnam1: SINE. 100
gpnam2: SINE. 100
;gpnam3: SINE. 100
;gpnam4: SINE. 100
;gpnam5: SINE. 100
;gpnam6: SINE. 100
;gpnam7: SINE. 100
;gpnam8: SINE. 100
;gpnam9: SINE. 100
;Processing
PHC0(F1): 90
;PHC0(F2): 22.5
;F1 reverse: true
;\$Id: trhncacbetgp3d,v 1.2 2004/01/22 14:59:03 ber Exp \$

D.6.2 TROSY-HNCA parameters

\#\#TITLE= Parameter file, XWIN-NMR
Version 3.5
\#\#JCAMPDX= 5.0
\#\#DATATYPE= Parameter Values
\#\#ORIGIN = UXNMR, Bruker Analytische Messtechnik GmbH
\#\#OWNER = demo
\$\$ Mon May 2 09:05:21 2005 CEST (UT+2h)
guest@nmr900
\$ \$/opt/xwinnmr/data/momo/nmr/hvdac1_april25/70/acqus
\#\#\$AMP= (0..31)
100100100100100100100100100100100100100
100100100100100100100100100100100100100
100100100100100100
\#\#\$AQSEQ $=0$
\#\# $\$$ AQ $\bmod =3$
\#\#\$AUNM $=$ <au_zgonly>
\#\#\$AUTOPOS=->>
\#\#\$BF1 $=900$
$\# \# \$ B F 2=226.30518$
$\# \#$ SBF $3=91.196208$
\#\#\$BF4=138.15548
\#\#\$BF5 $=600.13$
\#\#\$BF6 $=600.13$
$\# \# \$ B F 7=600.13$
\#\#\$BF8= 600.13
\#\#\$BYTORDA=1
\#\#\$CFDGTYP $=2$
\#\#\$CFRGTYP $=5$
\#\#\$CHEMSTR $=$ <none>
\#\# $\$$ SNST $=(0 . .31)$
1114019011111111111114.7558 .53 .517654
39120170156.5111
\#\#\$CPDPRG=<>
\#\#\$CPDPRG1 = <mlevsp $180>$
\#\#SCPDPRG2 $=<\mathrm{mlev}>$
\#\#SCPDPRG3 = <mlev>
\#\#\$CPDPRG4 $=$ <waltz16>
\#\#SCPDPRG5= <mlev>
\#\#\$CPDPRG6= <mlev>
\#\#SCPDPRG7 $=<\mathrm{mlev}>$
\#\#\$CPDPRG8 = <mlev>
\#\# ${ }^{\text {CPPDPRGB }}=<>$
\#\#\$CPDPRGT= <>
\#\#\$D $=(0 . .31)$
3e-06 10.0036000000 .120 .06 3e-06 0.03 2e-05 5e-06 000.00015
$005 \mathrm{e}-050000.01100 .00230 .002300 .00360$
0.0036450
\#\#SDATE= 1114699439
\#\#\$DBL= (0..7)
120120120120120120120120
\#\#\$DBP $=(0 . .7)$
150150150150150150150150
\#\#\$DBP07 $=0$
\#\#\$DBPNAM0 $=<>$
\#\#\$DBPNAM1 $=<>$
\#\#\$DBPNAM2 $=<>$
\#\#\$DBPNAM3 = <>

8383838383838383
\#\#\$FTLPGN=0
\#\#SFW= 125000
\#\#\$FnMODE $=0$
\#\#\$GP031 $=0$
\#\#\$GPNAM0= < sine.100>
\#\#\$GPNAM1 $=<$ SINE.100>
\#\#\$GPNAM10= <sine.100>
\#\#\$GPNAM11 $=$ <sine.100>
\#\#\$GPNAM12 $=$ <sine.100>
\#\#\$GPNAM13= <sine.100>
\#\#\$GPNAM14 = < sine.100>
\#\#\$GPNAM15=<sine.100>
\#\#\$GPNAM16 $=$ <sine.100>
\#\#\$GPNAM17 $=$ <sine. $100>$
\#\#\$GPNAM18= <sine.100>
\#\#\$GPNAM19 = < sine. 100 >
\#\#SGPNAM2 $=<$ SINE.100>
\#\#SGPNAM20 = < sine.100>
\#\#\$GPNAM21 = < sine.100>
\#\#\$GPNAM22 $=$ <sine.100>
\#\#\$GPNAM23 = < sine. 100 >
\#\#SGPNAM24=<sine.100>
\#\#\$GPNAM25=<sine.100>
\#\#\$GPNAM26=<sine.100>
\#\#\$GPNAM27 $=$ <sine.100>
\#\#\$GPNAM28 = < sine.100>
\#\#\$GPNAM29= <sine.100>
\#\#\$GPNAM3 $=<$ SINE.100 $>$
\#\#\$GPNAM30=<sine.100> \#\#\$GPNAM31 = < sine. 100 > \#\#\$GPNAM4 $=<$ SINE. $100>$ \#\#\$GPNAM5=<SINE.50> \#\#SGPNAM6 = < SINE.100> \#\#\$GPNAM7 $=<$ SINE.100> \#\#\$GPNAM8 $=<$ SINE.100> \#\#\$GPNAM9 = < SINE.100>
\#\#\$GPX= (0..31)
0000000000000000000000000000000 0
\#\#\$GPY= (0..31)
0000000000000000000000000000000 0
\#\#\$GPZ= (0..31)
$32184450-802304530.13000000000000000$
0000000
\#\#\$GRDPROG= <grad_out>
\#\#\$HDDUTY = 20
\#\#\$HDRATE $=20$
\#\#\$HGAIN $=(0 . .3)$
0000
\#\#\$HL1 $=128$
\#\#\$HL2 $=50$
\#\#\$HL3 $=16$
\#\#\$HL4 $=17$
\#\#\$HOLDER $=0$
\#\#\$HPMOD $=(0 . .7)$
00000000
\#\#\$HPPRGN= 0
\#\# $\$ \mathrm{IN}=(0 . .31)$
$3.945 \mathrm{e}-050.0010 .0010 .0010 .0010 .0010 .0010 .001$
$0.0010 .0019 .5175 \mathrm{e}-050.0010 .0010 .0010 .0010 .001$ 0.0010 .0010 .0010 .001 9.7e-05 0.0010 .0010 .0010 .001 $0.0010 .0010 .0019 .7 \mathrm{e}-050.0019 .5175 \mathrm{e}-050.001$ \#\# $\mathrm{SINP}=(0 . .31)$
0000000000000000000000000000000 0
\#\#\$INSTRUM = < spect>
\#\#\$L=(0..31)
1111111111111111111111111111111 1
\#\#SLFILTER $=150$
\#\#\$LGAIN $=-5$
\#\#\$LOCKED $=$ yes
\#\#\$LOCKFLD $=-4486$
\#\#\$LOCKGN $=132.699996948242$
\#\#\$LOCKPOW=-16
\#\#\$LOCKPPM $=4.69999980926514$
\#\#\$LOCNUC $=<2 \mathrm{H}>$
\#\#\$LOCPHAS= 124.2
\#\#\$LOCSHFT = no
\#\#\$LTIME $=0.150000005960464$
\#\#\$MASR=0
\#\#\$MASRLST $=$ <masrlst>
\#\#\$NBL= 1
\#\#\$NC= $=-2$
\#\#\$NS $=60$
\#\#\$NUC1 $=<1 \mathrm{H}>$
\#\#\$NUC2 $=<13 \mathrm{C}>$
\#\#\$NUC3 $=<15 \mathrm{~N}>$
\#\#\$NUC4=<2H>
\#\#\$NUC5 = <off>
\#\#\$NUC6=<off>
\#\#\$NUC7 $=<$ off $>$
\#\#\$NUC8 $=<$ off $>$
\#\#\$NUCLEI= 0
\#\#\$NUCLEUS $=<$ off $>$
\#\#\$O1 $=4233.6$
$\# \# \$ \mathrm{O} 2=11994.17454$
\#\#\$O3 $=10829.5497$
\#\#\$O4=1004.11275474244
\#\#\$O5= 0
\#\#\$O6= 0
\#\#\$O7 $=200000000$
\#\# $\$ \mathrm{O} 8=200000000$
\#\#\$OBSCHAN= (0..9)
0000000000
\#\#\$OVERFLW=0
\#\#\$P= (0..31)
10.510 .7521 .511 .823 .623 .13570200035701000 20004002562000001000005002634.268 .4500500
05510.50000
\#\#\$PAPS= 2
\#\#\$PARMODE $=2$
\#\#\$PCPD $=(0 . .9)$
100100100100260100100100100100
\#\#\$PHCOR $=(0 . .31)$
0000000000000000000000000000000
0
\#\#\$PHP=1
\#\#\$PH_ref=0
\#\#\$PL= (0..31)
$120-1$-2 -4 -6 12012012012059.0615 .9612013 .46
$1201207.3617 .8-65.519 .88120120120120120120$
120120120120120120
\#\#\$POWMOD $=0$
\#\#\$PR= 1
\#\#\$PRECHAN=(0..15)
-1-1-1-1 0-1 1-1-1-1 4-1-1-1-1-1
\#\#\$PRGAIN $=0$
\#\#\$PROBHD $=<5 \mathrm{~mm}$ CPTXI 1H-13C/15N/2H Z-GRD
Z44919/0005
>
\#\#\$PROSOL= no
\#\#\$PULPROG= <trhnca_tr_d.rtf>
\#\#\$PW= 0
\#\#\$QNP $=1$
\#\#\$QS= (0..7)83 83838383838322
\#\#\$QSB= (0..7)83 83838383838383
\#\#\$RD $=0$
\#\#\$RECCHAN = (0..15)

- 1 - 1 - $-1-1-1-1-1-1-1-1-1-1-1-1-1$
\#\#\$RECPH= 0
\#\#\$RG= 1024
\#\# $\mathrm{R} \mathrm{RO}=0$
\#\#\$ROUTWD1 = (0..23)
000000000000000000001100
\#\#\$ROUTWD2 $=(0 . .23)$
000001000000000000101100 $\# \# \$ R P U U S E D=(0 . .8)$

000000000
\#\#SRSEL=(0..9)
01250100000
$\# \# \$ S=(0 . .7)$
834838383838383
\#\#\$SEOUT $=0$
\#\#SSFO1 $=900.0042336$
\#\#SSFO2 $=226.31717417454$
\#\#SSFO3 $=91.2070375497$
\#\#\$SFO4 $=138.156484112755$
\#\#\$SFO5= 600.13
\#\#\$SFO6 $=600.13$
\#\#\$SFO7= 800.13
\#\#\$SFO8= 800.13
\#\#SSOLVENT $=<\mathrm{H} 2 \mathrm{O}>$
\#\# $\$$ SP $=(0 . .31)$
120352.61 .63 .81 .61202 .82 .68 .661206412012 .4

150150150150150150150150150150150150150
150150150
\#\# $\$$ SP07 $=0$
\#\#\$SPECTR $=0$
\#\# $\$$ SPNAM $0=<$ Gaus $1.1000>$
\#\# ${ }^{\text {SPNAM1 }}=$ <Sinc1.1000>
\#\#SSPNAM10=<Q5.1000>
\#\#\$SPNAM11 = < Gaus1.1000>
\#\# SSPNAM12 $=<$ Q5tr.1000 $>$
\#\#\$SPNAM13 = <Crp60comp.4>
\#\#\$SPNAM14 = < Gaus1.1000>
\#\#SSPNAM15 = <Q3.1000>
\#\#SSPNAM16=<gauss>
\#\#SSPNAM17=<gauss>
\#\#\$SPNAM18 = < gauss>
\#\#\$SPNAM19=<gauss>
\#\#\$SPNAM2 $=$ <Q5.1000>
\#\#SSPNAM20 $=$ <gauss>
\#\#SSPNAM21 = <gauss>
\#\#\$SPNAM22 $=$ <gauss>
\#\#\$SPNAM23 = <gauss>
\#\#\$SPNAM24=<gauss>
\#\#\$SPNAM25=<gauss>
\#\#SSPNAM26=<gauss>
\#\#SSPNAM27 $=$ <gauss $>$
\#\#SSPNAM28=<gauss>
\#\#SSPNAM29 $=$ <gauss $>$
\#\#\$SPNAM3 = <Q3.1000>
\#\#SSPNAM30 $=<$ gauss $>$
\#\#SSPNAM31 $=$ <gauss $>$
\#\#SSPNAM4 $=$ <Q5.1000>
\#\#SSPNAM5 $=<$ Q3.1000 $>$
\#\#\$SPNAM6 $=$ <Gaus1.1000>
\#\#\$SPNAM7 $=<$ Q3.1000 $>$
\#\#\$SPNAM8 $=<$ Q5tr.1000 $>$
\#\#SSPNAM9 = <Q3.1000>
\#\#SSPOAL $=(0 . .31)$
0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5
0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5
0.50 .5
\#\#\$SPOFFS $=(0 . .31)$
0000027835.54000000000000000000000 00000
\#\#\$SUBNAM0=<"">
\#\#\$SUBNAM1 = <"">
\#\#\$SUBNAM2=<"">
\#\#\$SUBNAM3= <"">
\#\#\$SUBNAM4=<"">
\#\#\$SUBNAM5=<"">
\#\#\$SUBNAM6=<"">
\#\#SSUBNAM7=<"">
\#\#\$SUBNAM8= <"">
\#\#\$SUBNAM9=<"">
\#\#\$SW= 11.9731237550542
\#\#\$SWIBOX $=(0 . .15)$
01440560001000000
\#\#\$SW_h= 10775.8620689655
\#\#\$TD= 1024
\#\#\$TD $0=1$
\#\#\$TE= 310
\#\#\$TE2 $=300$
\#\#\$TE3 $=300$
\#\#\$TEG= 300
\#\#\$TL= (0..7)
10120120120120120120120
\#\#\$TP= (0..7)
150150150150150150150150
\#\#\$TP07=0
\#\#\$TPNAME $0=<>$
\#\#\$TPNAME1 = <>
\#\#\$TPNAME2 $=<>$
\#\#\$TPNAME3 $=<>$
\#\#\$TPNAME4 = <>
\#\#\$TPNAME5 $=<>$
\#\#\$TPNAME6=<>
\#\#\$TPNAME7 $=<>$
\#\#\$TPOAL = (0..7)
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$TPOFFS $=(0 . .7)$
00000000
\#\#\$TUNHIN= 0
\#\#\$TUNHOUT $=0$
\#\#\$TUNXOUT $=0$
\#\#\$USERA1 = <user>
\#\#SUSERA2 $=<$ user $>$
\#\#\$USERA3 $=$ <user $>$
\#\#\$USERA4 = <user>
\#\#SUSERA5= <user>
\#\#\$V9 = 5
\#\#\$VALIST $=$ <valist>
\#\#\$VCLIST $=<$ CCCCCCCCCCCCCCC $>$
\#\#\$VD $=0$
\#\#\$VDLIST $=<$ DDDDDDDDDDDDDDD $>$
\#\#\$VPLIST $=<$ PPPPPPPPPPPPPPP $>$
\#\#\$VTLIST $=$ <TTTTTTTTTTTTTTT $>$
\#\#\$WBST $=1024$
\#\#\$WBSW=4
\#\#\$WS= (0..7)8383838383838383
$\# \# \$$ XGAIN $=(0 . .3)$
0000
\#\# $\$ \mathrm{XL}=3$
\#\#\$YL= 3
\#\#\$YMAX $\mathrm{a}=16987$
\#\#\$YMIN_- $\mathrm{a}=-18691$
\#\#\$ZGOPTNS= <-DLABEL CN>
\#\#\$ZL1 $=120$
\#\#\$ZL2 $=120$
\#\#\$ZL3 $=120$
\#\#\$ZL4 $=120$
\#\#END=

D.7.1 TROSY-MQ-HNCOCA pulse-program

This pulse-program was modified from the standard Bruker trhncocaetgp3d pulseprogram with a multiple quantum carbon evolution time kindly provided by Roland Riek, Salk Institute, San Diego

```
;trhncocaetgp3d
;avance-version (04/01/07)
;TROSY-HNCOCA
;3D sequence with
; inverse correlation for triple resonance
    via TROSY and inept transfer steps
    F1(H) -> F3(N) -> F2(Ca) -> F2(C=O,t1)
        -> F2(Ca) -> F3(N,t2) -> F1(H,t3)
;on/off resonance }\textrm{Ca}\mathrm{ and C=O pulses using shaped pulse
;phase sensitive (t1)
;phase sensitive using Echo/Antiecho gradient selection (t2)
;using constant time in t2
;with H-1 180degree pulses in t1
;uncompensated version d25=d26
;(use parameterset TRHNCOCAETGP3D)
;T. Schulte-Herbrueggen & O.W. Sorensen, J. Magn. Reson. 144,
; 123-128 (2000)
;A. Eletsky, A. Kienhoefer & K. Pervushin,
; J. Biomol. NMR 20, 188-180 (2001)
;(M. Salzmann, G. Wider, K. Pervushin, H. Senn & K. Wuethrich,
; J. Am. Chem. Soc. 121, 844-848 (1999))
prosol relations=<triple>
#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>
define list<gradient> EA3 ={0.8750 1.0000 }
define list<gradient> EA5 = {1.0000 0.6667}
define list<gradient> EA7 ={0.6595 1.0000 }
#define GRADIENT3 10u p23:gp8 190u pl2:f2
;p23=700u
;gp8=45%
;"d0=3u"
;"d10=3u"
;"d11=30m"
;"d6=10u+d0"!!
;"d7=10u-d0"!!
"d6=10u+6u"
"d7=10u-6u"
"d9=p22"
;"d0=in0*3/2-5u"
"d0=in0*6/2-p15/2-p13*0.6366"
;"d22=4m"
"d22=4.5m"
"d23=12m"
"d25=2.3m"
"d26=2.3m"
"d14=5m-p21-200u"
;;"d15=d14+p13-p14/2" ;maybe use different shaped pulses (like Riek)
;"d15=d14+p13-p15/2"
"in30=in10"
"d30=d23/2-d25/2-p14/2-p16/2-d16/2-2u"
;"d8=DELTA3-p13-54u"
"d8=d22-p14-p16-d16-4u-p13-54u+p14"
;"DELTA=d0*4+p2*2+larger(p14,p22)-p14-4u"
"DELTA1=d26-p16-d16"
"DELTA2=d23-p16-d16"
"DELTA3=d22-p14-p16-d16-4u"
```

"DELTA4=d23/2-d25/2-p14/2-d10+p21*2/3.1416"
"DELTA $5=\mathrm{d} 23 / 2-\mathrm{d} 25 / 2-\mathrm{p} 14 / 2-\mathrm{d} 10-\mathrm{p} 16-\mathrm{d} 16-\mathrm{p} 11+\mathrm{p} 21 * 2 / 3.1416-8 \mathrm{u} "$
"DELTA6=d25-p16-d16"
"DELTA7=d26-p11-p16-d16-8u"
;"spoff2=0"
;"spoff3=0"
;":spoff5=bf2*((cnst22-cnst21)/1000000)"
;"spoff5=0"
;"spoff7=bf2*((cnst21-cnst22)/1000000)"
;"spoff8=0"
;"spoff9=bf2*((cnst21-cnst22)/1000000)"
$; "$ spoff10 $=\mathrm{bf} 2 *((\mathrm{cnst} 21-\mathrm{cnst2} 2) / 1000000)$ "
aqseq 321
1 d11 ze
d11 LOCKDEC_ON
d11 pl17:f4
2 d 11
3 d11 H2_LOCK
9m LOCKH_OFF
d1 pl1:f1;fq=cnst21(bf ppm):f2
50u UNBLKGRAD
d12 H2_PULSE
4u pl0:f1
(p11:sp1 ph2:r):f1
4 u
4u pl1:f1
(p1 ph3):f1
p16:gp1
d16
DELTA1
(center (p2 ph2) (p22 ph1):f3)
DELTA1
p16:gp1
d16
(p1 ph2):f1
(p21 ph1):f3
p16:gp2
d16
DELTA2
(center (p14:sp6 ph1):f2 (p22 ph1):f3) ;sp3 to sp6, CO 180 with offset
DELTA2
p16:gp2
d16 pl2:f2
(p21 ph2):f3
;"(p13:sp9 ph6):f2 ; sp 2 to $\mathrm{sp} 9, \mathrm{CO}$
; 4 u
; (p14:sp7 ph1):f2 ;sp5 to sp7, CA toCO !!!
;;p16:gp1
;"d16
;"DELTA3
;;(p14:sp5 ph1):f2 ;sp3 to sp5, Co to Ca !!!
;"4u
;;(p14:sp7 ph1):f2 ;sp5 to sp7, Ca to Co !!!
;";DELTA3
;;"8
;;p16:gp1
;"d16
;";(p13:sp8 ph2):f2
4 u
30u fq=cnst22(bf ppm):f2
10u cpd4:f4
(p5 ph6):f2 ;co hard power
GRADIENT3
(d14 p13:sp2 ph7 d0 p15:sp5 d0 p13:sp8 ph1 d14):f2 ;(d15 d0 5u p15:sp5):f2 ;ca co GRADIENT3

```
    (p5 ph1):f2 ;co hard power
    ;(p5 ph6):f2 ;co hard power
    ;GRADIENT3
    ;(d14 p13:sp2 ph7 d0 d0 10u p13:sp8 ph1 d14):f2 (d15 d0 5u p15:sp5):f2 ;ca co
    ;GRADIENT3
    ;(p5 ph1):f2 ;co hard power
    ;;(p5 ph6):f2 ;co hard power
    ;(p13:sp10 ph6):f2 ;co shaped pulse
    ;GRADIENT3
    ;(d14 p5 ph7 d0 d0 10u p5 ph1 d14):f2 (d15 d0 5u p14:sp7 pl2):f2 ;ca co
    ;GRADIENT3
    ;(p13:sp11 ph1):f2 ;co shaped pulse
    ;;(p5 ph1):f2 ;co hard power
;;10u ;pl2:f2
;(p13:sp2 ph7):f2 ;ca
;;(p15 ph7):f2 ;ca hard power
;;"6
;;d9
;;(p14:sp3 ph1):f2 ;ca
;;d7
;;d0
;;(center (p2 ph1):f1 (p22 ph1):f3 )
;;(p22 ph1):f3
;;"d0
#;(center (p2 ph1):f1 (p14:sp7 ph1):f2 ) ;co
;;(p14:sp7 ph1):f2 ;co
;:d0
;;(center (p2 ph1):f1 (p22 ph1):f3 )
;;(p22 ph1):f3
;;d0
;;4u
;;d7
;(p14:sp3 ph1):f2 ;ca
;;d6
;;"9
;;DELTA
;;(p14:sp7 ph1):f2 ;co
;2u
;;2u ;pl2:f2
#;(p15 ph1):f2 ; ca hard power
;;(p13:sp8 ph1):f2 ;ca
4u do:f4
30u fq=cnst21(bf ppm):f2
20u
;;(p13:sp2 ph2):f2
;4u
;(p14:sp7 ph1):f2 ;sp5 to sp7, Ca to Co !!!
;p16:gp1
;d16
;;d8
;DELTA3
;(p14:sp5 ph1):f2 ;sp3 to sp5, Co to Ca !!!
;4u
;(p14:sp7 ph1):f2 ;sp5 to sp7, Ca to Co !!!
;:DELTA3
;d8
;p16:gp1
;d16
;(p13:sp10 ph1):f2 ;sp8 to sp10, CO
(p21 ph5):f3
d30
(p14:sp7 ph1):f2 ;ca without offset
d30
(center (p14:sp6 ph1):f2 (p22 ph1):f3 ) ;co 180
DELTA4
d10
(p14:sp7 ph1):f2
d10
```

```
DELTA5
p16:gp3*EA3
d16 pl0:f1
(p11:sp1 ph3:r):f
(p11:sp1 ph1:r):fl
4u
4u pl1:f1
(p1 ph8)
p16:gp4
d16
DELTA6
(center (p2 ph2) (p22 ph2):f3 )
DELTA6
p16:gp4
d16
(p1 ph1)
p16:gp5*EA5
d16
4u
(p21 ph1):f3
p16:gp6
d16
DELTA7 pl0:f1
(p11:sp1 ph4:r):fl
4u
4u pl1:f1
(center (p2 ph2) (p22 ph2):f3 )
4u pl0:f1
(p11:sp1 ph4:r):f1
4u
DELTA7
p16:gp6
d16 pl1:f1
(p21 ph9:r):f3
p16:gp7*EA7
d16
4u BLKGRAMP
go=2 ph31
d11 mc #0 to 2
    F1PH(rd10 & rd30 & ip7, id0)
    F2EA(igrad EA3 & igrad EA5 & igrad EA7 & ip8*2 & ip9*2, id10 & dd30 & ip5*2 & ip31*2)
d11 H2 LOCK
d11 LOCKH_OFF
d11 LOCKDEC_OFF
exit
ph1=0
ph2=1
ph3=2
ph4=3
ph5=0 2
;ph5=2 0
ph6=0
;ph6=00002222
;ph7=0
ph7=00 02 2
ph8=3
ph9=3
ph31=022 0;2 0002
;ph31=20020220
;pl0 : 120dB
;pl1 : f1 channel - power level for pulse (default)
;pl3 : f3 channel - power level for pulse (default)
;sp1: f1 channel - shaped pulse 90 degree (H2O on resonance)
;sp2: f2 channel - shaped pulse 90 degree (on resonance)
```

;sp3: f2 channel - shaped pulse 180 degree (on resonance)
;sp5: f2 channel - shaped pulse 180 degree (Ca off resonance)
;sp7: f2 channel - shaped pulse 180 degree ($\mathrm{C}=\mathrm{O}$ off resonance)
;sp8: f2 channel - shaped pulse 90 degree (on resonance)
; for time reversed pulse
;p1: f1 channel-90 degree high power pulse
;p2 : f1 channel-180 degree high power pulse
;p11: f1 channel - 90 degree shaped pulse
;p13: f2 channel - 90 degree shaped pulse
;p14: f2 channel - 180 degree shaped pulse
;p16: homospoil/gradient pulse [1 msec]
;p21: f3 channel-90 degree high power pulse
;p22: f3 channel-180 degree high power pulse
;d0 : incremented delay (F1 in 3D) [3 usec]
;d1 : relaxation delay; 1-5 * T1
; d 10 : incremented delay (F 2 in 3D)
[3 usec]
;d11: delay for disk I/O [30 msec]
;d16: delay for homospoil/gradient recovery

;d22: $1 /(4 \mathrm{~J}(\mathrm{COCa})$	$[4 \mathrm{msec}]$
;d23: $1 /(4 \mathrm{~J}(\mathrm{NCO})$	$[12 \mathrm{msec}]$
;d25: $1 /(4 \mathrm{~J}(\mathrm{NH})$	$[2.3 \mathrm{msec}]$
;d26: $1 /(4 \mathrm{~J}(\mathrm{NH})$	$[2.3 \mathrm{msec}]$

;d30: decremented delay (F2 in 3D) = d23/2-d25/2-p14/2-p16/2-d16/2-2u
;cnst21: CO chemical shift (offset, in ppm)
;cnst22: Calpha chemical shift (offset, in ppm)
;o2p: Calpha chemical shift (cnst22)
;in0: $1 /(4$ * SW $(\mathrm{Ca}))=(1 / 2) \mathrm{DW}(\mathrm{Ca}) ;$ now in0=1/(2 *SW $(\mathrm{Ca}))$
;nd0: 4 ;now 2
;in10: $1 /(4 * \operatorname{SW}(\mathrm{~N}))=(1 / 2) \mathrm{DW}(\mathrm{N})$
;nd10: 4
;in30: $=$ in 10
;NS: 8 * n
;DS: >= 16
;td1: number of experiments in F1
;td2: number of experiments in F2 td2 max $=2 * \mathrm{~d} 30 / \mathrm{in} 30$
;FnMODE: States-TPPI (or TPPI) in F1
;FnMODE: echo-antiecho in F2
;use gradient ratio: gp $1:$ gp 2 : gp 3 : gp 4 : gp $5:$ gp 6 : gp 7
; 2: 2: -80: 2: 30: 45:30.13
;for z-only gradients:
;gpz1:2\%
;gpz2: 2\%
;gpz3: -80\%
;gpz4: 2\%
;gpz5: 30\%
;gpz6: 45\%
;gpz7: 30.13\%
;use gradient files:
;gpnam1: SINE. 100
;gpnam2: SINE. 100
;gpnam3: SINE. 100
;gpnam4: SINE. 100
;gpnam5: SINE. 100
;gpnam6: SINE. 100
;gpnam7: SINE. 100
;Processing
;PHC0(F2): 22.5
;\$Id: trhncocaetgp3d,v 1.2 2004/01/22 14:59:05 ber Exp \$

D.7.2 TROSY-MQ-HNCOCA parameters

\#\#TITLE $=$ Parameter file, TOPSPIN
Version 1.3
\#\#JCAMPDX $=5.0$
\#\#DATATYPE= Parameter Values
\#\#ORIGIN= UXNMR, Bruker Analytische Messtechnik GmbH
\#\#OWNER= demo
\$ 2006-01-23 09:11:42.219 +0100 nmrsu@nmr600av
\$\$/opt/topspin/data/momo/nmr/hvdac_160106/53/acqus
\#\#\$AMP= (0..31)
100100100100100100100100100100100100100 100100100100100100100100100100100100100 100100100100100100
\#\#\$ANAVPT= -1
\#\#\$AQSEQ= 0
\#\#\$AQ_mod= 3
\#\#\$AUNM= <au_zgonly>
\#\#\$AUTOPOS= <>
\#\#\$BF1 $=599.9$
\#\#\$BF2 $=150.844975$
$\# \# \$ B F 3=60.787339$
\#\#SBF4 $=92.088303$
\#\#\$BF5 $=599.9$
\#\#\$BF6 $=599.9$
\#\#\$BF7= 599.9
\#\#\$BF8 = 599.9
\#\#\$BYTORDA $=1$
\#\#\$CFDGTYP= 2
\#\# ${ }^{\text {CCFRGTYP }}=5$
\#\#SCHEMSTR $=$ <none>
\#\#\$CNST $=(0 . .63)$
1114019011111111111114.7558 .53 .554172
39120170156.5111111111111111111111

11111111111
111
\#\#\$CPDPRG=<>
\#\#\$CPDPRG1 $=$ <mlevsp180>
\#\#SCPDPRG2 $=<\mathrm{mlev}>$
\#\#\$CPDPRG3 $=<\mathrm{mlev}>$
\#\#\$CPDPRG4= <garp>
\#\#\$CPDPRG5 = <mlev>
\#\#SCPDPRG6= <mlev>
\#\#SCPDPRG7 $=<\mathrm{mlev}>$
\#\#\$CPDPRG8 = <mlev>
$\# \#$ SCPDPRGB $=<>$
\#\# ${ }^{\text {SCPDPRGT }=<>~}$
\#\#\$D= (0..63)
6.360437e-06 $10.00360001 .6 \mathrm{e}-054 \mathrm{e}-060.002842$
$0.0001114 \mathrm{e}-060.032 \mathrm{e}-055 \mathrm{e}-060.00474450 .060 .00020$
$05 \mathrm{e}-05000.00450 .01200 .00230 .00230000 .004098$
000000000000000000000000
000000000
\#\#\$DATE $=1137694485$
\#\#\$DBL= (0..7)
120120120120120120120120
\#\#\$DBP=(0..7)
150150150150150150150150
\#\#\$DBP07 $=0$
\#\#\$DBPNAM0 $=<>$
\#\#SDBPNAM1 $=<>$
\#\#\$DBPNAM2 $=<>$
\#\#SDBPNAM3 $=<>$
\#\#\$DBPNAM4 = <>
\#\#\$DBPNAM5 = <>
\#\#\$DBPNAM6=<>
\#\#\$DBPNAM7 $=<>$
\#\#\$DBPOAL $=(0 . .7)$
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$DBPOFFS $=(0 . .7)$
00000000
$\# \#$ SDE $=15$
\#\#\$DECBNUC $=<$ off $>$
\#\#\$DECIM $=16$
\#\# ${ }^{\text {SDECNUC }}=<$ off $>$
\#\#\$DECSTAT $=4$
\#\#\$DIGMOD $=1$
\#\#\$DIGTYP $=8$
\#\#\$DL= (0..7)
10120120120120120120120
\#\#\$DP= (0..7)
150150150150150150150150
\#\#\$DP07 $=0$
\#\#\$DPNAME0=<>
\#\#\$DPNAME1 $=<>$
\#\#\$DPNAME2 $=<>$
\#\#\$DPNAME3 $=<>$
\#\#\$DPNAME4=<>
\#\#\$DPNAME5=<>
\#\#\$DPNAME6 $=<>$
\#\#\$DPNAME7 = < >
\#\#\$DPOAL $=(0 . .7)$
0.50 .50 .50 .50 .50 .50 .50 .5
$\# \# \$ D P O F F S=(0 . .7)$
00000000
\#\#\$DQDMODE $=0$
$\# \# \$ D R=18$
\#\#\$DS= 8
\#\#\$DSLIST $=<$ SSSSSSSSSSSSSSSS $>$
\#\#\$DSPFIRM $=0$
\#\#\$DSPFVS= 12
\#\#\$DTYPA $=0$
\#\#\$EXP=<>
\#\#\$F1LIST $=<111111111111111>$
\#\#\$F2LIST $=<22222222222222>$
\#\#\$F3LIST $=<333333333333333>$
\#\#\$FCUCHAN= (0..9)
0213400000
\#\#\$FL1 $=90$
\#\# ${ }^{2}$ FL2 $=90$
\#\#\$FL3 $=90$
\#\#\$FL4 $=90$
\#\#\$FOV=20
\#\#\$FQ1LIST $=<$ freqlist $>$ \#\#SFQ2LIST $=<$ freqlist> \#\#\$FQ3LIST $=$ <freqlist> \#\#\$FQ4LIST $=$ < freqlist> \#\#\$FQ5LIST $=$ <freqlist> \#\#\$FQ6LIST $=$ <freqlist> \#\#SFQ7LIST = < freqlist> \#\#\$FQ8LIST $=$ <freqlist> $\# \# \$$ FRQLO3 $=1892985.61151079$
\#\#\$FRQLO3N= 0
\#\#\$FS= (0..7)
8383838383838383
\#\#\$FTLPGN=0
$\# \# \$ F W=125000$
\#\#\$FnMODE= 0
\#\#\$GP031 $=0$
\#\#\$GPNAM0 $=$ <sine. 100 > \#\#\$GPNAM1 $=<$ SINE.100 $>$ \#\#\$GPNAM10 = < sine.100> \#\#\$GPNAM11 = <sine.100> \#\#\$GPNAM12 $=<$ sine.100> \#\#\$GPNAM13 $=<$ SINE. $100>$ \#\#\$GPNAM14 $=$ <SINE.100> \#\#\$GPNAM15 = <SINE.50> \#\#\$GPNAM16=<sine.100> \#\#\$GPNAM17 = <sine.100> \#\#\$GPNAM18 = <sine.100> \#\#\$GPNAM19 = <sine.100> \#\#\$GPNAM2 $=$ <SINE.100> \#\#\$GPNAM20 = < sine.100> \#\#\$GPNAM21 $=<$ sine.100> \#\#\$GPNAM22 $=$ <sine.100> \#\#\$GPNAM23 = < sine.100> \#\#\$GPNAM24 = <sine. 100> \#\#\$GPNAM25=<sine.100> \#\#\$GPNAM26=<sine.100> \#\#\$GPNAM27 $=<$ sine.100> \#\#\$GPNAM28= <sine.100> \#\#\$GPNAM29 = <sine.100> \#\#\$GPNAM3 $=<$ SINE.100> \#\#\$GPNAM30= <sine.100> \#\#\$GPNAM31 = < sine. 100> \#\#\$GPNAM4 = <SINE.100> \#\#\$GPNAM5 $=<$ SINE.100> \#\#\$GPNAM6 = < SINE.100> \#\#\$GPNAM7 $=<$ SINE.100 $>$ \#\#\$GPNAM8 $=<$ SINE.100 $>$
\#\#\$GPNAM9= <SINE.100>
\#\#\$GPX $=(0 . .31)$
0000000000000000000000000000000
0
\#\# $\$$ GPY $=(0 . .31)$
0000000000000000000000000000000 0
\#\#\$GPZ= (0..31)
$32020-802304530.134500004550700000000$
000000000
\#\#\$GRDPROG= <grad_out>
\#\#\$GRPDLY=-1
\#\#SHDDUTY $=20$
\#\#\$HDRATE $=20$
\#\#\$HGAIN = (0..3)
0000
\#\#\$HL1 $=24$
\#\#\$HL2 $=40$
\#\#\$HL3 $=16$
\#\#\$HL4 = 17
\#\#\$HOLDER $=0$
\#\#\$HPMOD $=(0 . .7)$
00000000
\#\#\$HPPRGN=0
\#\# $\$$ IN $=(0 . .31)$
0.0001370 .0010 .0010 .0010 .0010 .0010 .0010 .001 0.0010 .0010 .000146850 .0010 .0010 .0010 .0010 .001 0.0010 .0010 .0010 .001 9.7e-05 0.0010 .0010 .0010 .001
$0.0010 .0010 .0019 .7 \mathrm{e}-050.0010 .000146850 .001$
\#\# $\mathrm{SINP}=(0 . .31)$
0000000000000000000000000000000 0
\#\#\$INSTRUM = <spect>
\#\#\$L $=(0 . .31)$
1111111111111111111111111111111
1
\#\#SLFILTER $=200$
\#\#\$LGAIN=-15
\#\#\$LOCKED $=$ yes
\#\#\$LOCKFLD= 2992
\#\#SLOCKGN = 120.699996948242
\#\#\$LOCKPOW $=-28$
\#\#\$LOCKPPM $=4.69999980926514$
\#\#SLOCNUC $=<2 \mathrm{H}>$
$\# \# \$$ LOCPHAS $=208.3$
\#\#\$LOCSHFT= no
\#\#\$LOCSW=0
\#\#\$LTIME= 0.136000007390976
\#\#\$MASR $=0$
\#\#\$MASRLST $=$ <masrlst>
\#\#\$NBL= 1
\#\#\$NC= $=-2$
\#\#\$NS $=268$
\#\#\$NUC1 $=<1 \mathrm{H}>$
\#\#\$NUC2 $=<13 \mathrm{C}>$
\#\#\$NUC3 $=<15 \mathrm{~N}>$
\#\#\$NUC4 $=<2 \mathrm{H}>$
\#\#\$NUC5 = <off>
\#\#\$NUC6= <off>
\#\#\$NUC7 $=<$ off $>$
\#\#\$NUC8 = <off>
\#\#\$NUCLEI $=0$
\#\#\$NUCLEUS $=<$ off $>$
\#\# ${ }^{\text {SO1 }}=2816.00000005255$
\#\#\$O2 $=7994.99999999398$
\#\#\$O3 $=7203.2996715$
\#\#\$O4 $=433.000000001016$
\#\#\$O5= 200230000
\#\#\$O6= 200230000
$\# \# \$ \mathrm{O} 7=200230000$
\#\#\$O8= 200230000
$\# \# \$$ OBSCHAN $=(0 . .9)$
0000000000
\#\#\$OVERFLW $=0$
\#\# $\$$ P $=(0 . .63)$
12.459 .1218 .241530212550500255010002000400 3003001000150005002655.5111700620100055
12.450 .1007680000000000000000000000 0000000000
\#\#\$PAPS= 2
\#\#\$PARMODE $=2$
\#\#\$PCPD $=(0 . .9)$
1005580280150100100100100100
\#\# $\$$ PHCOR $=(0 . .31)$
0000000000000000000000000000000
0
\#\#\$PHP=1
\#\#\$PH_ref= 0
\#\#\$PL= (0..63)
120 -3 -4.5 -4.5 12012012012012060.1513 .05541
$25.0966115 .91201205 .919 .2-1719.90387120120$
12012012012012012013.5120120120120120120

120120120120120120120120120120120120120
120120120120120120120120120120120120120
120120120
\#\#\$POWMOD $=0$
\#\#\$PR= 1
\#\#\$PRECHAN $=(0 . .15)$
-1 2 -1-1 03 4-1-1-1-1-1-1-1 -1-1
\#\#\$PRGAIN $=0$
\#\#\$PROBHD $=<5 \mathrm{~mm}$ CPTXI Z-GRD Z44866/0047
$>$
\#\#\$PROSOL= no
\#\#\$PULPROG = <trhncocaetgp3d_2hmq130106_p7> \#\#\$PW=0
\#\#\$PYNM $=$ <acqu.py>
\#\#\$PYNMP=<proc.py>
\#\#\$QNP $=1$
\#\#\$QS= (0..7)8383838383838322
\#\#\$QSB= (0..7)8383838383838383
\#\#\$RD= 0
\#\#\$RECCHAN= (0..15)
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
\#\#\$RECPH=0
\#\#\$RG=2048
\#\#\$RO = 0
\#\#\$ROUTWD1 $=(0 . .23)$
000000000000000000001100
\#\#\$ROUTWD2 $=(0 . .23)$
000001000000000000101100
\#\#\$RPUUSED= (0..8)
000000000
\#\#\$RSEL= (0..9)
0125600000
\#\# $\$ \mathrm{~S}=(0 . .7)$
834838383838383
\#\#\$SEOUT $=0$
\#\#\$SFO1 $=599.902816$
\#\#SSFO2 $=150.85297$
\#\#\$SFO3 $=60.7945422996715$
\#\#\$SFO4= 92.088736
\#\#\$SFO5 $=800.13$
\#\#\$SFO6= 800.13
\#\#\$SFO7= 800.13
\#\#\$SFO8= 800.13
\#\#\$SOLVENT $=<\mathrm{H} 2 \mathrm{O}+\mathrm{D} 2 \mathrm{O}>$
\#\# $\$$ SP $=(0 . .31)$
$13.234-4.1-3.735 .3-3.73-3.73-3.73-4.1-4.1-4.1120$
13.25 .913 .2
13.5150150150150150150150150150150150150

150150150150
\#\#\$SP07=0
\#\#\$SPECTR $=0$
\#\#\$SPNAM0 $=<$ Q5tr.1000>
\#\#\$SPNAM1 $=$ <Sinc1.1000> \#\#\$SPNAM10 $=<$ Q5.1000 $>$
\#\#\$SPNAM11 $=$ <Q5tr.1000>
\#\#\$SPNAM12 $=$ <Q5tr.1000>
\#\#\$SPNAM13 $=<$ Crp60,0.5,20.1>
\#\#\$SPNAM14 $=<$ Q5.1000 $>$
\#\#SSPNAM15 = <Q3.1000>
\#\#SSPNAM16 $=<$ gauss $>$
\#\#SSPNAM17= <gauss>
\#\#SSPNAM18 = < gauss>
\#\#SSPNAM19 = <gauss> \#\#\$SPNAM2 $=<$ Q5.1000 $>$
$\# \#$ SSPNAM $20=<$ gauss $>$
\#\#\$SPNAM21= <gauss>
\#\#SSPNAM22 $=$ <gauss $>$
\#\#\$SPNAM23 = < gauss>
\#\#SSPNAM24 = <gauss>
\#\#\$SPNAM25=<gauss>
\#\#\$SPNAM26= <gauss> \#\#SSPNAM27 $=$ <gauss $>$ \#\#\$SPNAM28= <gauss> \#\#SSPNAM29= <gauss> \#\# $\$$ SPNAM3 $=<$ Q3.1000 $>$ \#\#SSPNAM30=<gauss> \#\#SSPNAM31 $=$ <gauss $>$ \#\#\$SPNAM4 $=<$ Q5.1000> \#\#SSPNAM5 = <Q3.1000> \#\#\$SPNAM6 $=<$ Q3.1000 $>$ \#\#\$SPNAM7=<Q3.1000> \#\#SSPNAM8 $=<$ Q5tr.1000 $>$ \#\#SSPNAM9 $=<$ Q3.1000 $>$ \#\# $\$$ SPOAL $=(0 . .31)$
0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5 0.50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5 0.50 .5
\#\# $\$$ SPOFFS $=(0 . .31)$
$00-17850000178500-178500178501785000000$ 000000000000000
\#\#\$SUBNAM0=<"">
\#\#\$SUBNAM1=<"">
\#\#\$SUBNAM2=<"">
\#\#SSUBNAM3 = <"">
\#\#SSUBNAM4=<"">
\#\#SSUBNAM5=<"">
\#\#\$SUBNAM6=<"">
\#\#\$SUBNAM7=<"">
\#\#SSUBNAM8=<"">
\#\#\$SUBNAM9=<"">
\#\#\$SW= 14.9904376434794
\#\#\$SWIBOX $=(0 . .15)$
0144056000000000
\#\#\$SW h= 8992.80575539568
\#\#\$TD= 1024
\#\#STD0 $=1$
\#\#\$TE= 313
\#\#\$TE2 $=300$
\#\#\$TE3 $=300$
\#\#\$TEG= 300
\#\#\$TL= (0..7)
10120120120120120120120
\#\#\$TP= (0..7)
150150150150150150150150
\#\#\$TP07 $=0$
\#\#STPNAME $0=<>$
\#\#\$TPNAME1 $=<>$
\#\#\$TPNAME2 $=<>$
\#\#\$TPNAME3 $=<>$
\#\#\$TPNAME4 = <>
\#\#\$TPNAME5=<>
\#\#\$TPNAME6= <>
\#\#\$TPNAME7 $=<>$
\#\#\$TPOAL= (0..7)
0.50 .50 .50 .50 .50 .50 .50 .5
\#\#\$TPOFFS= (0..7)
00000000
\#\#\$TUNHIN = 0
\#\#\$TUNHOUT $=0$
\#\#\$TUNXOUT $=0$
\#\#SUSERA1 = <user>
\#\#\$USERA2 $=$ <user>
\#\#SUSERA3 $=$ <user >
\#\#SUSERA4 = <user>
\#\#\$USERA5=<user>
\#\#\$V9= 5
\#\#\$VALIST $=$ < valist>
\#\#\$VCLIST $=<$ CCCCCCCCCCCCCCC $>$
\#\#\$VD $=0$
\#\#\$VDLIST $=<$ DDDDDDDDDDDDDDD $>$
\#\#\$VPLIST = <PPPPPPPPPPPPPP>
\#\#\$VTLIST $=$ <TTTTTTTTTTTTTTT $>$
\#\#\$WBST $=1024$
\#\#\$WBSW= 4
\#\#\$WS= (0..7)8383838383838383
\#\#\$XGAIN= (0..3)
0000
\#\# $\$ \mathrm{XL}=3$
\#\#\$YL= 3
\#\#\$YMAX_a= 94649
\#\#\$YMIN_a= -82515
\#\#\$ZGOPTNS $=<$-DLABEL_CN $>$
\#\#\$ZL1 $=120$
\#\#\$ZL2 $=120$
\#\#\$ZL3 $=120$
\#\#\$ZL4 $=120$
\#\#END=

Curriculum Vitae

Personal data

Name
Date of birth
Place of birth
Citizenship

Education

1985-1989
1989-1998
07/1998
1998-2003
10/2000
10-12/2001

10/2002
11/2002-6/2003

10/2003-7/2007

Monika Bayrhuber
07.10.1978

Kiel
German

Primary school Gettorf
Gymnasium Kronshagen
General qualification for university entrance
Chemistry studies at the Christian-Albrechts-university of Kiel Intermediate diploma in chemistry

Internship at the University of Edinburgh in the group of Prof. Dr. Sabine Flitsch

Final examinations in chemistry
Diploma thesis with the title "Synthesis and functional investigation of photo switchable Norbornadien- and Quadricyclan-systems as complex ligands an carrier for alkaline earth ions" in the group of Prof. Dr. Rainer Herges at the Christian-Albrechts-University of Kiel

Ph.D. thesis with the title "Structural and functional characterisation of a membrane protein and a membrane protein-targeting toxin by solution NMR" in the departement of NMR-based structural biology of Prof. Dr. Christian Griesinger at the Max Planck Institute for Biophysical Chemistry in Göttingen

Lebenslauf

Persönliche Daten

Name
Geburtstag
07.10.1978

Geburtsort
Staatsangehörigkeit
Kiel
deutsch

Ausbildung

1985-1989 Grundschule Gettorf
1989-1998
07/1998
1998-2003
10/2000
10-12/2001

10/2002
Diplomsprüfungen
11/2002-6/2003
Diplomarbeit mit dem Titel "Synthese und Untersuchung der Eigenschaften photoschaltbarer Norbornadien- und Quadricyclan-Systeme als Komplexliganden für ErdalkaliIonen" in der Gruppe von Prof. Dr. Rainer Herges an der Christian-Albrechts-Universität zu Kiel

10/2003-7/2007 Doktorarbeit mit dem Titel "Strukturelle und funktionelle Characterisierung von einem Membranprotein und einem Membraneprotein bindendem Toxin mittels Lösungs-NMR" in der Abteilung NMR-basierte Strukturbiologie von Prof. Dr. Christian Griesinger am Max Planck Institute für Biophysikalische Chemie in Göttingen

