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ABBREVIATIONS

DCPM dicyclopropylmethyl; 

DIEA N,N-diisopropylethylamine;

DMAP 4-dimethylaminopyridine;

EDC N'-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride;

Fmoc 9-fluorenylmethyloxycarbonyl;

FmocOSu O-(9-fluorenylmethyloxycarbonyl)-1-hydroxypyrrolidine-2,5-dione;

HATU O-(7-azabenzotriazole-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate;

HOAt 7-aza-1-hydroxybenzotriazole;

MeZ 4-methylbenzyloxycarbonyl;

MeZOSu O-(4-methylbenzyloxycarbonyl)-1-hydroxypyrrolidine-2,5-dione;

MOM methoxymethyl;

Teoc (2-trimethylsilylethyl)-oxycarbonyl;

TeocOSu O-[(2-trimethylsilylethyl)-oxycarbonyl]-1-hydroxypyrrolidine-2,5-dione;

TMP 2,4,6-collidine;

Z benzyloxycarbonyl;

ZOSu O-benzyloxycarbonyl-1-hydroxypyrrolidine-2,5-dione.
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INTRODUCTION

The exploration of microorganisms as sources of medicinally relevant compounds has a much 

shorter  and  less  well-known  history  than  the  use  of  substances  of  plant  or  animal  origin. 

Nevertheless,  from  the  time  of  the  discovery  of  the  antibacterial  effect  of  penicillin  by 

A. Flemming  in  1928[1] and  the  beginning  of  its  widespread  application  and  manufacturing 

during the Second World War, such substances, which are produced by bacteria and fungi, have 

been attracting an ever increasing attention of scientists. Among all the chemical entities, which 

are  “manufactured”  by  these  miniature  “pharmaceutical  factories”,  the  so-called  secondary 

metabolites  occupy  a  special  role.  Secondary  metabolites  are  those  naturally  produced 

substances,  which do not play an apparent role in the internal economy of an organism that 

produces them. In microorganisms the ability to produce such compounds may have evolved 

because of certain selection advantages conferred upon them as a result of the interactions of the 

compounds  with  specific  receptors  in  other  organisms.  Although  almost  20 000  microbial 

metabolites and approximately 100 000 plant products have been described so far, secondary 

metabolites still appear to be an inexhaustible source of lead structures for new antimicrobials, 

antiviral, antitumor and immunosuppressive drugs as well as plant protecting agents. In addition, 

numerous  secondary  metabolites,  such  as  Benzylpenicillin[2],  Cephalosporin,  Erythromycin, 

Strobilurin, etc. were lead structures that later became the basis for synthetic and semi-synthetic 

derivatives with improved pharmacological properties.[3] Some of these compounds play a key 

role not only in defense mechanisms of microorganisms, but may be used as signal substances 

for intercellular communication with a function similar to those of hormones and pheromones in 

higher organisms.[4] There are a lot of processes during the life cycle of a bacterium, which are 

regulated  by  such  substances.  For  example,  they  regulate  the  metabolic  capability  and  the 

quorum sensing[5] in Gram-negative pathogenic bacteria,  the competence[6] and sporulation in 

Bacillus, the sporulation, multicellular differentiation and motility in Myxococcus, the antibiotic 

production, morphological differentiation and sporulation in Streptomyces and Erwinia, and gene 

transfer  mechanisms  in  Enterococcus.[7,8,9] It  appears  to  be  very  attractive  to  employ  the 

knowledge  about  such  compounds  either  in  terms  of  controlling  cellular  proliferation  or 

conversely to increase the production of a particular secondary metabolite. The latter possibility 

was first realized in the 1960s, when several metabolites of Actinomycetes were shown to control 

the production of antibiotics and the morphological differentiation (aerial mycelium formation) 

even  in  nanomolar  concentrations.  All  these  compounds  were  structurally  very  similar 

2,3-disubstituted γ-butyrolactones, which nevertheless showed remarkably different spectra of 
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action: a so-called A-factor (Khokhlov factor) stimulated the production of Streptomycin,  so-

called IM-type regulators stimulated the production of Staphylomycin  and so-called VB-type 

regulators stimulated Virginiamycin production in different Streptomyces species.[10,11] There are 

also  modified  homoserine  lactones,  i.e.  N-(β-ketocaproyl)-(S)-homoserine  lactone  (KHL)  of 

V. fischeri, which can stimulate the Carbapenem antibiotic biosynthesis in E. carovora, and the 

B-factor of  A. mediterranei, an adenosine derivative, which induces Rifamycin B synthesis in 

Nocardia species.[12] 

The  peptolide  Hormaomycin  1 was  isolated  from  Streptomyces  griseoflavus,  strain  W-384, 

during the screening of intermolecular signal substances by Zäner et al. in 1989.[13,14] It was the 

first  ever  discovered  such  substance  with  a  peptide  structure,  which  induced the  antibiotics 

production and aerial  mycelium formation not only in the producing strain itself,  but also in 

other  Streptomyces species. Its e. g. the production of Hydroxystreptomycin in  S. flaveolus, of 

Streptolin in  S. fridae, of Tirandamycin in  S. griseoflavus, strain 1306, and of Bafilomycin in 

S. griseus. A significant increase in the antibiotics production was observed already at a 0.05 µg/

L concentration of Hormaomycin. This compound also showed strong antibiotic activity against 

coryneform[15] bacteria (MIC = 0.0005 µg/mL for Arthrobacter oxydans).[16]
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Figure 1. Structure and absolute configuration of Hormaomycin. I (S)-Ile; 

II (2S,3R)-(βMe)Phe; III (R)-a-Thr; IV (1'R,2'R)-(3-Ncp)Ala; 

V (2S,4R)-4-(Z)-(4-Pe)Pro; VI Chpca. 

The constitution of this cyclic depsipeptide showed features unusual even for this structurally 

flexible  class  of  compounds.  Initial  structural  investigations  performed  by  Zeeck et al.[14,16,17] 
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disclosed that along with one residue of the proteinogenic (S)-isoleucine [Ile],  Hormaomycin 

contains  two  units  of  3-(2S,3R)-methylphenylalanine  [(βMe)Phe,  MeF],  one  of 

(2R)-allo-threonine  [a-Thr]  as  well  as  two  moieties  of  3-(trans-2'-nitrocyclopropyl)alanine 

[(3-Ncp)Ala] and one of 4-(Z)-propenylproline [(4-Pe)Pro]. The side chain of 1 is terminated 

with a residue of 5-chloro-1-hydroxypyrrole-2-carboxylic  acid [Chpca]  (Figure 1).  The latter 

three elements had never been found in any natural product before. A partial assignment of the 

absolute configuration of the (3-Ncp)Ala residues in 1 was later made by Zindel and de Meijere.
[18,19] The retention times of the derivatized synthetically prepared enantiomerically pure mixtures 

of the diastereomers of 3-(trans-2'-nitrocyclopropyl)alanine were compared with the derivatized 

components in the total hydrolysate of natural Hormaomycin. These experiments unambiguously 

proved  that  both  (3-Ncp)Ala  residues  in  the  cyclic  depsipeptide 1 have  the  same  (1'R,2'R) 

configuration in the 2-nitrosubstituted cyclopropyl moiety and the opposite configurations at the 

α-carbons.  However,  the  assignment  as  to  which  diastereomer  of  the  (3-Ncp)Ala  residue  is 

incorporated in the ring of  1 and which is attached in the side-chain, remained unsolved. To 

clarify  the  situation,  feeding  experiments  with  enantiomerically  pure  deuterium-labelled 

3-(trans-2'-nitrocyclopropyl)alanine were carried out. (2S,1'RS,2'RS)-3,3-Dideuterio-3-(trans-2'-

nitrocyclopropyl)alanine was first synthesized by Loscha[20] and the correspondingly deuterium-

labelled Hormaomycin  was indeed obtained after  the appropriate feeding experiments,  which 

were  carried  out  by  Alvermann.[21] 1H-, 2H-NMR  and  MS-ESI  spectra  of  these  labelled 

compounds unequivocally showed that the labelled amino acid had been incorporated twice. The 

possible explanation for this fact is that the (2S)-epimer initially administered, can later in the 

cell be epimerized by a specific enzyme, an epimerase, before the assembly of the peptide chain 

of  Hormaomycin  starts,  or  during  this  process,  after  the  amino  acid  has  been  bound to  the 

multienzyme  complex.  The  relative  and  absolute  configuration  of  the  4-(Z)-propenylproline 

moiety remained unclear, and no attempts to elucidate it had been made before Zlatopolski et al.
[22] provided  this  amino  acid  in  deuterium-labelled  form  for  feeding  experiments.  This 

investigation disclosed the absolute configuration for the 4-(Z)-propenylproline moiety as well as 

for the (2R)- and the (2S)-3-(1'R,2'R)-(2'-nitrocyclopropyl)alanine residues.

While several synthetic accesses to D-allo-threonine and (2S,3R)-3-methylphenylalanine have 

been reported in the literature,  the enantio- and diastereoselective synthesis  of the previously 

unknown 3-(trans-2'-nitrocyclopropyl)alanine  has  mainly  been  investigated  in  our  group.  At 

first, (2RS,1'S,2'S)-, (2RS,1'R,2'R)- and (2S,1'RS,2'RS)-3-(trans-2'-nitrocyclopropyl)alanines were 

successfully prepared.[18,23] Unfortunately,  a great number of steps and a relatively low overall 

yield strongly decreased the preparative value of this synthetic route. In fact, this procedure even 
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did  not  enable  one  to  obtain  any  enantiomerically  pure  diastereomer  of 

3-(trans-2'-nitrocyclopropyl)alanine. The improvement of the originally reported procedure was 

connected  with  the  progress  in  the  preparation  of  the  enantiomerically  pure 

(1'R,2'R)-(2'-nitrocyclopropyl)methanol which served as the key intermediate in this synthesis 

developed  by  Brandl  and  de Meijere et al.[24] Finally,  all  four  possible  diastereomers  of 

3-(trans-2'-nitrocyclopropyl)alanine  were  synthesized  by  Larionov  and  de Meijere, et al.[25] in 

enantiomerically  pure  form  and  in  good  to  excellent  yields.  Significant  progress  was  also 

achieved in the preparation of 4-(Z)-propenylproline.  This compound was first prepared from 

5-(2-dimethylaminopropyl)piperidone-2  in  1958,  but  only  as  a  mixture  of  all  four  possible 

stereoisomers  along with  all  possible  stereoisomers  of  4-allylproline.[26] The  procedure  more 

recently proposed by Melotto[27] allowed one to prepare 4-(Z)-propenylproline as an individual 

compound starting from N,O-diprotected pyroglutamic acid. The protocol, eventually developed 

by Zlatopolskiy,  starts  from  natural  (2S,4R)-4-hydroxyproline  and  leads  to 

(2S,4R)-4-(Z)-propenylproline of good purity and,  after 8 steps,  with an overall yield of more 

than  10%.[28] Initially,  N-Boc-protected[29] (2S,4R)-4-hydroxyproline  2 was  converted  to  the 

corresponding prolinol 3 by sodium borohydride reduction of the mixed anhydride prepared with 

ethyl chloroformate. The primary hydroxy group of the resulting diol was selectively protected 

with tBuMe2SiCl,[30] and the secondary hydroxy group was converted to a methanesulfonyloxy 

group to be SN2-substituted with cyanide with inversion of the configuration. The resulting nitrile 

6 was  reduced  to  the  corresponding  aldehyde  7 with  di-n-butylaluminum  hydride  and  the 

(Z)-configured  double  bond  was  installed  by  a  Wittig  alkenation  with 

triphenylethylphosphonium bromide. The hydroxy group in the aminoalcohol 8 was deprotected 

with  tetrabutylammonium  fluoride  and  the  hydroxymethyl  group  in  9 was  oxidized  to  the 

carboxylic  acid  functionality  with  Jones  reagent  to  give  the  N-Boc-protected 

(2S,4R)-4-(Z)-propenylproline 10.
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Scheme 1. Synthetic route to (2S,4R)-4-(Z)-propenylproline moiety.

Prior  to  the  work  of  Zlatopolskiy,[28] no  procedure  for  the  synthesis  of 

N-hydroxypyrrolecarboxylic  acids or  N-hydroxypyrrolecarboxamides had been reported in the 

literature.  An  attempted  synthesis  of  5-chloro-1-hydroxypyrrole-2-carboxylic  acid  by  Ritzau 

turned out unsuccessful.[31] 

Structure-activity  relationships  for  Hormaomycin  were  investigated  to  some  extent  using 

analogues  obtained  by modification  of  the  natural  compound  and also  by precursor-induced 

biosynthesis  employing  certain  synthetic  amino  acids.  The  cleavage  of  the  lactone  ring  of 

Hormaomycin  with  potassium carbonate in  methanol,  which  was  carried  out  by  Rössner,[16] 

produced only biologically inactive material. The same author performed a hydrogenation of the 

natural depsipeptide over a palladium on charcoal catalyst in methanol, which not only led to 

reduction of the double bond in the 4-(Z)-propenylproline moiety,  but also an elimination of 
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water and the reductive dehalogenation of the Chpca fragment as well as partial reduction of the 

nitro groups in both (3-Ncp)Ala residues. The resulting mixture of Hormaomycin-like substances 

did not show any antibiotic activity. Later, a fine tuning of the hydrogenation conditions of the 

native  depsipeptide  allowed  Ritzau[31] to  successfully  prepare  a  Hormaomycin  analogue 

containing a 4-propylproline instead of the original 4-(Z)-propenylproline moiety. This analogue 

did initiate the aerial mycelium formation in Streptomyces species even more pronouncedly than 

native Hormaomycin. It also showed antibiotic activity against coryneform bacteria, although its 

activity  was  noticeably  lower  than  that  of  the  unmodified  depsipeptide.  The  same  author 

prepared  an  analogue  of  Hormaomycin,  which  contained  a  bromine  instead  of  a  chlorine 

substituent in the Chpca fragment. This substitution caused only a little loss of the capability to 

induce the formation of the aerial  mycelium, but a drastic decrease of the antibiotic activity. 

Feeding  experiments  with  synthetic  2-(trans-2'-nitrocyclopropyl)glycine[32] and 

3-(trans-2'-methoxycarbonylcyclopropyl)alanine[33] enabled Alvermann[21] to obtain both possible 

Hormaomycin  analogues  containing  a  2-(trans-2'-nitrocyclopropyl)glycine  residue  instead  of 

one (3-Ncp)Ala  moiety  and depsipeptides  with both  (3-Ncp)Ala fragments  being  substituted 

either  by  2-(trans-2'-nitrocyclopropyl)glycine  or  by  3-(trans-2'-methoxycarbonylcyclopro-

pyl)alanine moieties. All these analogues did not display any Hormaomycin-like activity. 

As was already mentioned,  Hormaomycin contains two moieties of 3-(trans-2'-nitrocyclopro-

pyl)alanine.  Aliphatic  nitro  compounds are  very rare  in  nature,  in  fact,  less  than thirty such 

compounds have been isolated till now, and among them is the dipeptide nitropeptine 11 isolated 

from  S. xanthochromogenus,  which  displayed  noticeable  antifungal  activity.[34] One  might 

therefore be tempted to suppose that the unique biological activity of Hormaomycin would be 

connected with its nitro group containing fragments. 3-(trans-2'-Nitrocyclopropyl)alanine itself 

(at least as a mixture of all possible isomers) was already tested and turned out to be inactive, but 

this inactivity might be due to the low capability of many amino acids to permeate across cell 

walls in the absence of a special transport mechanism because of their low lipophilicity. It was 

also  known,  that  one  of  the  new  potent  inhibitors  of  influenza  neuraminidase,  compound 

A-315675 12, contains a 4-(Z)-propenylproline fragment.[35] Therefore a more detailed study of 

the role of this fragment for the biological activity of Hormaomycin would be necessary. 
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Figure 2. Nitropeptine 11 and the natural product A-315675 12.

There is significant interest in the preparation of modified proteins containing unnatural amino 

acids, in particular, fluorinated amino acid analogues, and this is due, on the one hand, to the 

possibility  of  solving  a  number  of  fundamental  problems  related  to  the  studies  of  protein 

structures as well  as structure-property relationships,  and, on the other hand, to the probable 

practical application of these proteins.[36,37,38] The replacement of amino acid residues in proteins 

by  their  analogues  may  give  rise  to  proteins  with  new  properties  and,  in  particular,  may 

favorably change the properties of well-known proteins toward their practical use. In particular, 

their  lipophilicity, their  substrate  specificity,  their  stability,  their  pKa values,  their in  vivo 

availability and improved permeation capability through certain body barriers, as well as their 

temperature optimum of action and folding kinetics can be modified.[39,40,41,42,43] Transport rates of 

peptides through membranes  in vivo  are known to be enhanced by increasing the lipophilicity. 

The site specific incorporation of highly lipophilic amino acids and amino acid analogues into 

biologically active peptides appears to be a major aim in modern peptide chemistry.

Fluorinated  amino  acids  and  derived  peptides  –  both  analogues  of  naturally  occurring 

compounds  and  synthetic  substances  –  claim  an  extraordinary  interest  in  chemistry  and 

biochemistry as well as in medicinal research because of their enormous variety of biological 

activities.[44,45] Thus  the  replacement  of  the  phenylalanine  residues  in  PvuII-endonuclease  by 

3-fluorophenylalanine leads to a twice as high specific activity compared to that of the native 

enzyme,  while  the  introduction  of  4-fluorophenylalanine  reduces  it  fourfold.[46] An  X-ray 

diffraction structure analysis of glutathione transferase M-1, in which Tyr residues were replaced 

by  3-fluorotyrosine  has  revealed  multiple  conformational  changes  in  the  structure  of  the 

modified enzyme, which changed its spectral and kinetic characteristics.[47]

Because  of  the  high  electron  density,  the  trifluoromethyl  group  is  capable  to  participate  in 

hydrogen bonding[48] and may act also as a coordination site in metal complexes. Furthermore, 

11 12
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the fluorine atoms can serve as powerful NMR labels for spectroscopic studies of metabolism 

and conformation.

The replacement of substantial  amino acids in microbial  proteins by synthetic analogues is a 

route to the preparation of compounds with potentially increased biological activity based on 

previously known microbial products.

The previously achieved progress in the synthesis of the Hormaomycin and its analogues as well 

as the investigation of the structure-activity relationships for these compounds which is briefly 

described above has lead to a list of desirable goals for the presented research: 

– Synthesis  of Hormaomycin  and its  all-peptide analogue to obtain enough material for 

in vivo biological tests.

– Synthesis of new Hormaomycin analogues, containing (2R)- and (2S)-3-(1'S,2'R)-(2'-flu-

oromethylcyclopropyl)alanine  moieties  instead  of  (2R)- and  (2S)-3-(1'R,2'R)-(2'-nitro-

cyclopropyl)alanine.

– Synthesis of (2R)- and (2S)-3-(1'S,2'R)-(2'-fluoromethylcyclopropyl)alanines (mono-, di- 

and trifluoromethyl derivatives).

– Development  of  new improved  protocols  for  the  synthesis  of  (R)-allo-threonine  and 

β-methylphenylalanine moieties.



9

MAIN PART

Once  the  absolute  configuration  of  the  native  Hormaomycin  had  been  established  and  the 

strategy of the synthesis and the route to Hormaomycin were developed by Zlatopolskiy,[49] the 

main aim of the present work was to synthesize 2'-fluoromethyl-substituted cyclopropylalanines 

and  build  the  corresponding  Hormaomycin  analogues  to  test  their  biological  activities  to 

contribute to a wider knowledge of the structure-activity relations.

1. (Mono-, (Di- and (Trifluoromethyl)-substituted cyclopropylalanines

1.1. Development of a general protocol

Fluoromethyl-substituted cyclopropylalanines  have never  been described before.  Like for the 

approach to 2'-nitrocyclopropylalanines,[25] the Belokon’ method was chosen as a  viable access 

route to all of the fluoromethyl-substituted cyclopropylalanines, employing the Ni(II)-complex 

of the Schiff base derived from glycine and (S)- or (R)-2-[(N-benzylprolyl)amino]benzophenone 

13 as a reusable chiral auxiliary (Figure 3). In general,  the configuration of the stereocenter, 

formed upon alkylation of C-2 of the glycine moiety, is the same as the configuration of the C-2 

atom  of  the  proline  moiety;  other  stereocenters  are  neither  generated  nor  involved  in  this 

transformation. 

N
N

O

N

O
O

Ni N
N

O

N

O
O

Ni
R S

Figure 3. The  Ni(II)-complexes  of  the  Schiff  base  derived  from  glycine  and  (R)-  or  

(S)-2-[(N-Benzylprolyl)amino]benzophenone  [(R)-  and  (S)-Belokon’  glycine 

complexes, (R)- and (S)-BGC].

2'-Fluoromethyl-substituted  cyclopropylmethyl  iodides  were  intended  to  be  obtained  by 

transformation  of  the  corresponding  alcohols,  obtained  by  reduction  of  the  corresponding 

carboxylates (Scheme 2). The fluoro-derivatives could be obtained from corresponding oxygen-

13
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functionalised  derivatives  by  treatment  with  different  fluorinating  reagents,  e. g.  with  the 

pyridine-HF  complex[50] for  tertiary  alcohols,  with  N,N-diethyl-α,α-difluoro-

(m-methylbenzyl)amine[51] for sugars and with Xenon difluoride for aryl perfluoroalkyl sulfides.
[52] 

H3–nFnC CO2R
LiAlH4,
Et2O

I2, PPh3, imidazole,
Et2O, MeCN

H3–nFnC
OH

H3–nFnC
I

Scheme 2. Synthetic route to trans-fluoromethyl-substituted cyclopropylmethyl iodides.

Without taking into account the most exotic reagents (like XeF2
 or MoF6

[53]), almost all other 

fluorinating agents should be suitable to achieve the target. The most universal one is SF4, as it 

successfully converts carboxylic acids to trifluoromethyl derivatives,[54] aldehydes and ketones to 

the corresponding difluorides[55] and alcohols to  monofluorides  (Scheme 3).  However,  SF4 is 

problematic in handling because of its low boiling point (–40 °C)[56] and its extreme corrosireness 

to  glass.  With  SF4 it  is  necessary  to  use  steel  autoclaves  (the  usual  reaction  temperature  is 

+130 °C,  but  +200 °C and even +270 °C[54] can  be  required  for  some compounds)  for  such 

transformations.

R OH

O

R

F

R1 R2

O

R1 R2

OH

+ 2 SF4
– 2 SOF2
– HF

+ SF4
– SOF2

+ SF4
– SOF2
– HF

R1

R2

R3

F
F

FF

F

R1

R2

R3

Scheme 3. Fluorinations with SF4.

Other  fluoro  derivatives  of sulfur  (IV) which  have  been  widely  used  in  recent  years  for 

fluorinatuons  of  organic  compounds  are  the  dialkylaminosulfur  trifluorides.  They  were  first 

prepared  in  1964[57] and  first  used  as  nucleophilic  fluorination  agents  in  1973.[58] These 
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substances  are  liquid  under  normal  conditions  and,  as  a  rule,  are  able  to  bring  about  such 

transformations  under  much  milder  conditions.  More  recent  publications  brought  forward 

bis(2-methoxyethyl)aminosulfur  trifluoride  (Deoxo–Fluor®)  14 as  a  thermally stable  and soft 

fluorinating  agent,  which  ought  to  be  applicable  for  virtually  all  of  the  above  mentioned 

transformations.[59] Unfortunately, the neat reagent is not available in Germany, so a solution of 

14 in THF (50% w/w) was used initially.

N

O

O

S
F

F

F

14

Deoxo-Fluor®.

The synthetic route outlined in  Scheme 4[60] was initially designed to access all three desired 

2-fluoromethyl-substituted cyclopropanecarboxylates.

MeO2C CO2Me

LiOOH,
H2O

MeO2C CO2H

BH3*Me2S,
THF

MeO2C

Swern
oxidation

OH

MeO2C
O

Deoxo–Fluor®
MeO2C

MeO2C
F

MeO2C
F

F

F

F
F

Deoxo–Fluor®

Deoxo–Fluor®

Scheme 4. Synthetic route to 2-fluoromethylcyclopropanecarboxylates.

15

17

18 19

2120

16
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1.2. Attempted syntheses according to the proposed synthetic route

The very first attempt to access methyl  trans-2-monofluoromethylcyclopropanecarboxylate  19 

from  the  corresponding  alcohol  18 gave  unexpected  results:  the  target  monofluoromethyl-

substituted ester was obtained in very low yield (only 14%), and a mixture of derivatives 24 was 

obtained  (~31%  using  peak  intensities  in  ESI-MS,  main  component  with  n=5)  as  well  as 

compounds 22 (15%) and 23 (12%). 

MeO2C
OH

MeO2C
F

MeO2C
O F

MeO2C
O F

MeO2C
O

n=3 – 11

4

4 2

F
4 n

Deoxo-Fluor® ,
THF

Scheme 5. The  reaction  of  Deoxo-Fluor® in  THF solution  with  methyl  2-hydroxymethyl-

cyclopropanecarboxylate at ambient temperature.

The latter  products are apparently formed by THF ring cleavage and a formal  insertion of a 

1,4-butanediol moiety into the C–OH bond before transformation to a C–F bond. The closest 

previously  observed  analogues  of  the  observed  reaction  are  the  incorporation  of  THF  into 

cycloadducts of tetracyanoethylene to dispiro[2.0.2.4]deca-7,9-diene,[61] and the reaction of alkyl 

chlorosulfinates with THF.[62] 

The formation of products 22 – 24 can be rationalized assuming primary attack of the reagent 14 

by the alcohol  18 molecule  to form the HF molecule  and the amidoester  26 which,  in turn, 

produces target fluoride 19 and di-(2-methoxyethyl)-fluorosulfinamide 27. The latter attaches on 

the oxygen of a tetrahydrofurane molecule to yield an oxonium ylide  28 which would first be 

attached either by a molecule of the hydroxymethylcyclopropanecarboxylate to yield the new 

ylide 29 or by another molecule of tetrahydrofurane to furnish 30. Nucleofilic transfer of fluorine 

from sulfur to the vicinal carbon in  29 would yield  22, and analogously 23 would come about 

from  30 after  reaction with  18. Further consecutive reactions of  30 with tetrahydrofuran and 

1918

22

23

24
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eventually with 18 and fluorine transfer would lead to the higher oligomeric products of type 24 

(Scheme 6).

O
S
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N F
R

R

F
S
F

N F
R

R
E

HO

R = 2-methoxyethyl
E = CO2Me

F
S–N

R

R
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F
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R

R
E

O

F

– HF

S
O

N F
R

R
E

F

F
F
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O
N

R

R

F

E
O
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S–

O
N

R
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O+H O
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O
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N
R

R
H SO2

O+

S–

O
N

R

R

F

O

S–

O
N

R

R

O

F
O+

HO
E

O

S–

O
N

R

R

O

F
O+

n–1

n–2 steps

O
EF

2

HO
E O

EF
n

Scheme 6. Mechanistic  rationalization  of  the  oligoether  formation  upon  reaction  of 

2-(hydroxymethyl)cyclopropanecarboxylate with Deoxo-Fluor® in tetrahydrofuran.

When  the  Deoxo-Fluor® reagent  was  employed  as  a  solution  in  toluene  (50% w/w), 

transformation  of  the  alcohol  18 to  the  fluoride  19 occured  smoothly  (47% yield),  and  the 

14
2518

26 27 19

27 28

29 22

28

30 23

31 24
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carbaldehyde under the same conditions furnished the 2-(difluoromethyl)cyclopropanecarboxyl-

ate in 51% yield.

The attempted transformation of the carboxylic acid 16 to the trifluoromethyl derivative with this 

Deoxo-Fluor® solution was not successful. The acid was easily converted to the acyl fluoride, the 

latter, however, did not react any further with the fluorination reagent, not even at reflux.

An alternative route to  trans-2-(trifluoromethyl)cyclopropylmethanol is by way of the Claisen 

condensation  product  of  diethyl  succinate  with  ethyl  trifluoroacetate[63] according  to  known 

procedure. However, the previously used conditions were modified for two of the four steps in 

order to achieve a better overall yield[64] (Scheme 7).

OEt
OEt

O

O

F3C OEt

O
Na

neat

60% OEt
OEt

O

O

F3C

O
H3BO3, 170 °C

neat

53%

OEt

O

F3C

O
NaBH4, 0 °C

Et2O

98% OEt

O

F3C

OH
TsCl

pyridine

90%

OEt

O

F3C

OTs
KOtBu, 60 °C

DMSO

F3C CO2H

F3C S
O O

74%

F3C CO2H F3C CO2Et

KOtBu,
THF,

reflux, 4 h
47%

KOtBu,
THF

0 °C, 24 h
17%

KOtBu, 60 °C
DMSO

Scheme 7. Synthesis of  trans-2-trifluoromethylcyclopropane carboxylic  acid (yields are given 

after work-up).

32 33 34

35 36

37 38

39

4038
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Surprisingly,  the reduction of the ketoester  35 to the hydroxyester  36 proceeded very slowly 

under the previously described conditions (H2/PtO2) – in several attempts (2 h, 24 h and 72 h) the 

yield of 36 was never better than 60%, and about 25% of the ketoester 35 was recovered. Yet, 

the  reduction  of  35 with  crushed  sodium  borohydride  in  diethyl  ether  gave  quantitative 

conversion and an excellent yield of 36.

The final step, the attempted intramolecular 1,3-dehydrotosylation with potassium tert-butoxide 

in dimethylsulfoxide, also gave an unexpected result. The intermolecular condensation product 

39 of the expected cyclopropanecarboxylate 40 with dimethylsulfoxide rather than 40 or the free 

acid  38, was obtained in 74% yield.  Among several other base/solvent combinations tested – 

NaOEt/EtOH, NaOMe/MeOH, KOtBu/tBuOH, NaH/THF and KOtBu/THF the last one gave the 

best yield (up to 45% at reflux) of the target acid 38, as well as of the corresponding ethyl ester 

40 (~17% at 0 °C); the latter was not obtained using any other solvent/base combinations.

F3C CO2H

F2HC CO2Me

FH2C CO2Me

F3C
OH

F2HC
OH

FH2C
OH

H3C
OH38%

4%

88%

3%

3%
3%

Scheme 8. Reductions of  trans-2-fluoromethylcyclopropane carboxylic acid and esters with an 

excess of LiAlH4 (2 equiv. LiAlH4 in Et2O, reflux).

The  conversion  of  the  carboxylic  acid  38 and  esters  21,  19 to  the  corresponding 

cyclopropylmethyl  alcohols  was  attempted  according  to  the  standard protocol  by adding  the 

substrate to a twofold excess of LiAlH4 in diethyl ether under reflux. (2-Trifluoromethylcyclo-

propyl)methanol 41 thus was obtained in excellent yield (88%), but the difluoromethyl-  42 and 

especially  monofluoromethylcyclopropylmethanol  43,  respectively,  were  obtained  from  the 

corresponding methyl cyclopropanecarboxylates  21 and  19, respectively, in much poorer yield 

(3% and 4%, respectively). In the case of monofluoride the main product was trans-2-methyl-

19

41

21

38

42

43

44
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cyclopropylmethanol 44 (38%). In the case of the difluoride 21, a mixture of the mono- 43 and 

difluoromethylcyclopropylmethanol  42 along with the non-fluorinated alcohol  44 was obtained 

in a ratio of approximately 1:1:1 (Scheme 8).

To  avoid  this  overreduction,  inverce  addition  of  1.1  equivalent  of  LiAlH4 in  diethyl  ether 

solution (ca. 1 M) to the solution of the ester or the acid (in the case of the trifluoride) in diethyl 

ether (ca. 1 M) was practiced. This way, the desired alcohols were obtained in good yields (76%, 

82% and 88% for 43, 42 and 41 respectively).

The racemic  trans-2-fluoromethylcyclopropylmethanols  upon treatment  with iodine/triphenyl-

phosphine in the presence of imidasole were smoothly converted to corresponding iodides in 

very good yields (Scheme 9).

FnH3–nC
OH

I2, PPh3, imidazole
Et2O/MeCN FnH3–nC

I

n 1 2 3  n 1 2 3
 43 42 41   45 46 47
    Yield (%): 91 88 90

Scheme 9. Synthesis  of  trans-2-(fluoromethyl)cyclopropylmethyl  iodides  from  the 

corresponding cyclopropylmethanols.

Alkylation  of  the  glycine  equivalents  derived  from  (R)-  and  (S)-2-[(N-

benzylprolyl)amino]benzophenone [(R)- and (S)-BGC 13] as reusable chiral auxiliaries with the 

racemic iodides 45 – 47, employing the protocol of Larionov and de Meijere et al,[25] in each case 

led  to  a  mixture  of  diastereomeric  products,  which  could  be  separated  by  column 

chromatography.  Unfortunately,  the  diastereomers  could  not  be  separated  by  fractional 

crystallization  as  was previously reported for  the corresponding 3-(trans-2-nitrocyclopropyl)-

alanine  derivatives.[25] Absolute  configuration  of  the  Belokon'  (2S,1'R,2'S)-3-(2'-

trifluoromethylcyclopropy)lalanine complex was determined by a single crystal X-ray analysis.
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N

N

O

O

O

NNiFnH3–nC
I

rac-, trans-

NaH,
DMF, MeCN

N

N

O

O

O

NNi

FnH3–nC

N

N

O

O

O

NNi

FnH3–nC

1) HCl, H2O, MeOH, ref lux
2) ion-exchange chromatography

NH2

O OH

FnH3–nC NH2

O OH

FnH3–nC

(2S, 1'S, 2'R) -3-(2'- fluoromethyl-
cyclopropyl)alanines

(2S, 1'R, 2'S) -3-(2'- fluoromethyl-
cyclopropyl)alanines

Scheme 10. Synthesis  of  (2S)-3-(trans-2'-fluoromethylcyclopropyl)alanines  by  alkylation  of 

the  (S)-configured  Belokon'  glycine  complex  [(S)-BGC  13]  with  the  racemic 

trans-2-fluoromethylcyclopropylmethyl iodides 45 – 47. For details see Table 1.

Table 1. Yields of products of reaction of corresponding racemic iodides with (S)- and (R)-

BGC 13 (% BGC).

Iodide

Yield (% on BGC)

(S)-BGC (R)-BGC

2S, 1'S, 2'R 2S, 1'R, 2'S 2R, 1'S, 2'R 2R, 1'R, 2'S

45 43.7 44.8 46.7 42.3

46 44.7 48.3 47.3 45.4

47 45.5 49.1 43.7 42.4

(S)-13
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The  separated  target  Ni  complexes  were  decomposed  by  treatment  with  refluxing  aqeous-

methanolic HCl to give, after ion-exchange chromatography, the corresponding (2S,1'S,2'R)- [see 

Scheme  10,  derived  from  (S)-BGC]  and  (2R,1'S,2'R)-3-(2'-fluoromethylcyclopropyl)alanines 

[derived from (R)-BGC] in good to excellent yields. The chiral auxiliary was recovered as the 

hydrochloride of 2-[(N-benzylprolyl)amino]benzophenone (~95%).

2. New  and  improved  syntheses  of  some  other  non-proteinogenic  amino 

acids

2.1. (R)-allo-Threonine

(R)-allo-threonine is commercially available, but extremely expensive (from 77.80 € for 250 mg 

from Alpha Aesar to 60.80 € for 25 mg from Fluka). Therefore a simple and inexpensive access 

to (R)-allo-threonine was desirable. 

There are at least three principally different ways to approach this target amino acid:

1) Separation of the mixture of all four stereoisomers to provide individual substances or 

at least pairs of enantiomers, which should be resolved.

2) Preparation of mixture of two diastereomers and subsequent separation.

3) Enantioselective synthesis of the target stereoisomer from an achiral or from a chiral 

precursor.

One of the best ways to obtain the target amino acid in a diastereomerically pure state is by in  

vitro synthesis under enzyme catalysis.[65,66,67,68]

An enantioselective  synthesis  of  (R)-allo-threonine  from an  achiral  precursor  employing  the 

Sharpless  asymmetric  epoxidation[69] or  an  asymmetric  aldol  reaction  under  catalysis  with  a 

chiral gold complex[70] also should be possible.

The  synthesis  of  (R)-allo-threonine  from  (R)-threonine  as  a  chiral  precursor  was  used  by 

Zlatopolskiy.[71] Although (R)-threonine is  less expensive (21 – 37 € for 5 g) than the target 

amino acid, the conversion requires five steps, and the overall yield is not better than 72%.

The  separation  of  the  mixture  of  all  four  stereoisomers,  produced  by  a  non–stereoselective 

synthesis, is well known, but tedious.[72,73,74,75]

The  separation  of  diastereomers  is  much  easier  and  does  not  require  chiral  phases  for 

chromatography, one just has to determine an appropriate derivative and the proper conditions 
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for  satisfactory  separation.  In  fact,  the  synthesis  of  threonine  diastereomers  by  aldol-type 

condensation of acetaldehyde with the enolates of glycine equivalents is well described in the 

literature.[76, 77] The question is just to choose the route with the best enantiomeric/diastereomeric 

excess. The yield is not so important,  because the starting materials  are inexpensive and the 

chiral auxiliary or catalyst  should be recycled. The Belokon' protocols are among the best to 

access enantiomerically pure non-proteogenic amino acids. Nickel(II) or copper(II) complexes of 

the Schiff bases derived from glycine and (S)- or (R)-2-N-(N'-benzylprolyl)aminobenzophenone 

(BPB),[78,79] aminoacetophenone (BPA)[80] or aminobenzaldehyd (BPH)[81] can be used as chiral 

nucleophilic  glycine  equivalents  in  reactions  with alkyl  halides  or carbonyl  compounds.  The 

most versatile one is the nickel (II) aminobenzophenone derivative.

It  is  interesting  that  nickel(II) complexes  of  Schiff  bases  derived  from 2-bromoglycine  and 

(S)-BPB can be used as electrophilic glycine equivalents.[82]

Alkylations  of  the  nickel(II) complexes  of  Schiff  bases  derived  from  glycine  and  (S)-  or 

(R)-BPB 13 with alkyl halides virtually yields a single stereoisomer, in which the configuration 

of the newly formed stereogenic centerat C-2 of the amino acid moiety is the same as that in the 

proline moiety of the chiral auxiliary in the starting material.

In the reaction of enolate of this chiral glycine equivalent with aldehydes the situation is more 

complicated. The reaction of (S)-BGC with acetaldehyde under strongly basic conditions lead to 

(R)-threonine (inverse configuration relative to that of the proline moiety of  (S)-BGC due to 

epimerization on C-2), but when a weaker base like triethylamine was employed, a mixture of 

(R)-threonine and (S)-allo-threonine[83] was obtained.

The  hypothesis  that  the  reaction  of  BGC  with  aldehydes  under  strongly  basic  conditions 

proceeds  in  two  steps  and  is  thermodimacally  controlled  was  corroborated  by  experimental

tests.[84] The initially formed main product in the aldol reaction of acetaldehyde with BGC had 

the same configuration at C-2 as the proline unit in BGC, but the product ratio changed in time 

from 95:5 after 30 s through 70:18 after 10 min to 5:95 after 24 h at ambient temperature. This 

epimerization comes along with possible rearrangement in the Ni complex. The newly formed 

hydroxide group of the product can coordinate the Ni atom liberating the carboxylate moiety and 

thus  making  the  proton  at  C-2  accessible  to  base  attack  (Scheme  11).  In  order  to  obtain 

(R)-allo- threonine, it is necessary to carry out the aldol reaction of (R)-BGC with an excess of 

acetaldehyde under strongly basic conditions at low temperature and quench the reaction after a 

short time to avoid epimerisation.
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This modified protocol indeed gave the (R)-allo- threonine in relatively poor yield (7.5% for Ni 

complex, 6% for amino acid), but with high enantiomeric purity in two steps. Bearing in mind 

that the starting materials are inexpensive and the chiral auxiliary is reusable (≥ 95% recovery), 

this protocol represents one of the best route to the extremely expensive (R)-allo- threonine.

N

N

O

O

(R)
O

NNi
NaH MeCHO

N

N

(R)

O

O

(R)

O

NNi

N

N

ONa

O

(R)
O

NNi

H

N

N

(R)

(R)
O

(R)

O

NNi
NaH

N

N

(R)
O

(R)

O

NNi N

N

(S)

(R)
O

O

NNi

[H+]

[H+]

Thermodynamically more stable

H
H

H
(R)NaO

H
NaO

O

NaO
NaO

H
NaO

O

slowly

Scheme 11. Mechanism of epimerisation of the threonine Belokon' complex.

It is also possible to obtain the (R)-allo-threonine starting from (R)-BGC and acetaldehyde under 

thermodynamic  control  (Et3N  as  base,  (S)-threonine : (R)-allo-threonine  =  1:7),  but  it  is 

necessary to leave the reaction mixture for two months for the reaction to go to completion.[85]

(R)-13
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2.2. β-Methylphenylalanines

(2S,3R)-3-Methylphenylalanine (L-β–methylphenylalanine, (βMe)Phe, MeF) is a constituent of 

the peptidolactone Hormaomycin and is contained in the molecule twice. Thus it is required for 

the synthesis of Hormaomycin and the analogues envisaged here. In addition, a versatile protocol 

for  the  preparation  of  other  β-alkylarylalanines  would  be  desirable  for  incorporation  in 

Hormaomycin analogues as well as in other peptides, as the incorporation of conformationally 

constrained  α-amino  acids  into  peptides  is  frequently  used  to  study  structure-activity 

relationships.[86, 87, 88] In this context, special attention should be paid to constrained analogues of 

phenylalanine such as these β–methylphenylalanines, since the naturally occurring phenylalanine 

unit is directly involved in a large number of molecular recognition processes.[89, 90] 

In all cases, the three-dimensional arrangement of the phenylalanine residue is crucial in eliciting 

the desired response. The residue can be conformationally constrained by introducing an alkyl 

group at the β-position of an phenylalanine residue without significantly perturbing the backbone 

conformation.  In  particular,  aromatic  β-methyl-α-amino  acids  have  been  incorporated  into 

peptides[89, 91, 92, 93] and confer on these systems a conformational side-chain rigidity that is very 

valuable  for  the  study  of  both  the  specific  topochemical  arrays  of  the  side  chains  and 

topochemical nature of the binding site.

The preparation of analogues of β-methylphenylalanine in enantiopure form is a challenging area 

in  synthetic  organic  chemistry.  Several  strategies  have  been  developed,  and  these  include 

classical resolution,[94] enzymatic resolution in conjunction with HPLC,[91] or HPLC separation of 

derived  peptides,[92] chiral  preparative  HPLC separation,[95] asymmetric  synthesis  from chiral 

precursors[96, 97] including the stereoselective alkylation of aromatic compounds with triflates of 

threonine  stereoisomers,[98] the  chiral  auxiliary  approach[99,
 
100, 101, 102] and  enantioselective 

hydrogenation over a chiral catalyst.[103, 104]

All  these approaches  ought  to be applicable  to  prepare unsubstituted  β-methylphenylalanine. 

Separation  protocols  are  suitable  to  approach  any  substituted  amino  acid,  which  can  be 

synthesized. A stereoselective synthesis requires an optically active precursor, which, in turn, 

should be prepared or purchased; in many cases, these precursors are quite expensive or difficult 

to prepare. Chiral auxiliary approaches are better, and routes employing a chiral catalyst even 

better, although requires optically active auxiliaries or catalysts may have to be prepared. 
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To the best of our knowledge, synthetic way to  β-methylphenylalanine using so-called “Evans 

amide” as chiral auxiliary is the most common approach to β-branched arylalanines and could be 

shown by Scheme 12:
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THF, H2O2 H2/Pd

Overall yield ~ 45%

Scheme 12. The classic “Evans” approach to (2S, 3R)-β-methylphenylalanine.

The crucial step in the “Evans” sequence is the Michael addition of the organometallic (usually – 

arylcuprate)  reagent  to  the  crotonoyl  moiety  attached  to  the  chiral  auxiliary.  The  respective 

arylcuprate can be produced from the corresponding arylmagnesium halide and CuBr × Me2S 

complex.  The organomagnesium reagent  can be easily obtained from the corresponding aryl 

halide  and  metallic  magnesium,  or,  in  difficult  situations,  by  the  Knochel  protocol  with 

iPrMgCl × LiCl with subsequent transmetallation with CuCN × 2 LiCl,[105, 106] but in the case of 

oligohalogen-substituted arenes it could lead to mixtures of organometallic compounds and, in 

turn, mixtures of products.

The  “Evans”  route,  with  the  employment  of  phenylmagnesium  bromide  has  led  to 

β-methylphenylalanine in eight steps (including the transmetallation) with an overall  yield of 

approx. 45% (based on the crotonated chiral auxiliary)[107, 108].

In view of the good performance of the Belokon' protocol for various eletrophilic reagents, it was 

straightforward to apply this approach to β-methylphenylalanines as well (Scheme 13).
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Towards this, the (S)-configured Belokon' glycine complex (S)-BGC, (S)-13 was alkylated with 

1-phenylethyl iodide and various analogues with substituents in the aryl moiety, all in racemic 

form. 

The diastereomeric Ni(II) complex products obtained in each case, could be separated by column 

chromatography, and the pure diastereomeres were decomposed with aqueous-methanolic HCl 

solution to furnish the target amino acids which were purified by ion-exchange chromatography. 

The obtained yields were very good (Table 2).

Table 2. Substituted  β-methylphenylalanines  by  alkylation  of  the  Belokon'  glycine 
complex  (S)-BGC  with  1-arylethyl  iodides  (yields  based  on  used  (S)-BGC, 
d.e. ≥ 98%). See Scheme 13.

X Product Yield (%) Product Yield (%)
H (2S, 3S)-48 35 (2S,3R)-48 38

o–Cl (2S, 3S)-49 30 (2S,3R)-49 33

m–Cl (2S, 3S)-50 34 (2S,3R)-50 35

p–Cl (2S, 3S)-51 33 (2S,3R)-51 33

p–F (2S, 3S)-52 37 (2S,3R)-52 36
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Scheme 13. A new general route to (2S,3R)-β-methylarylalanines by alkylation 

of the Belokon' glycine complex (S)-BGC with 1-arylethyl iodides. 

For details see Table 2.
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3. Hormaomycin and its all-peptide analogue

The total syntheses of Hormaomycin  1 itself  and its all-peptide aza-analogue 53, developed by 

B. Zlatopolskiy,[109, 110] were  reproduced  in  order  to  provide  large  enough  quantities  (39  and 

25 mg, respectively) for biological tests of their antimalarial activities[111].

NH
O

NH

O

HN

O2N

O

HN
O

HNNHN
OO O

HN

O N Cl
HO

NO2

Figure 4. The all-peptide analogue of Hormaomycin, which showed the best antiparasitic 

activity in vitro.[111]

At first sight, the oligopeptide assembly leading to Hormaomycin does no appear to be a very 

complicated problem. “State of the art” peptide coupling methodology[112]  allows one to prepare 

almost  any  peptides,  that  do  not  contain  extremely  sterically  congested  fragments  such  as 

α,α-dialkyl amino acids, N-alkyl amino acids or even more challenging N-aryl amino acids. With 

a  proper  choice  of  the  coupling  reagent,  solvent  and  other  experimental  conditions,  the 

oligopeptides are obtained in high yields and in high optical purities. As almost all amino acids, 

which  comprise  Hormaomycin  itself  and  its  anticipated  analogues,  are  β-branched  with  the 

exception  of  3-(2'-nitrocyclopropyl)alanine  and  the  3-(2'-fluoromethylcyclopropyl)alanines, 

HATU, as well as the combination of EDC and 7-aza-1-hydroxybenzotriazole (HOAt)[113] were 

used  for  each  condensation  step  to  ensure  high  yields.  The  most  unusual  fragment  in 

Hormaomycin is the ester bond between the secondary (4-Pe)Pro moiety and the hydroxy group 

of a-Thr. Among several methods described in the literature for the creation of such bonds, the 

dialkylaminopyridine-promoted carbodiimide-mediated esterification was chosen.[114]

53
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On the other hand, the reactivities of the double bond in the 4-(Z)-propenylproline residue and 

the nitrogroups in the nitrocyclopropylalanine moieties as well as, what is not so obvious, the 

ester bond between the propenylproline and (R)-allo-threonine residues make a proper choice of 

the protecting groups and also the conditions for their deprotection a real challenge. Thus, the 

presence of the double bond hampers the application of catalytic hydrogenolysis and HBr/AcOH 

reagent for the deprotection of peptides containing the propenylproline residue. The aliphatic 

nitrogroup in (3-Ncp)Ala is not compatible with reductive cleavage conditions, and the threonine 

ester bond is sensitive to alkaline and basic conditions.[115] Because of this base sensitivity the 

Fmoc strategy is unsuitable for the depsipeptide fragment, and other protecting groups had to be 

chosen for the ester moiety as well as for manipulations of intermediates that contain it.

The key step in the synthesis of Hormaomycin is the formation of the macrocycle. The greater 

facility, with which amide bonds can be formed, a consequence of the superior nucleophilicity of 

the  amine  over  the  hydroxy  group,  makes  macrolactamization  the  preferred  mode  for  ring 

closure. The amide bond between the (βMe)Phe and Ile residues appears to be least suitable for 

this cyclization because of the possibility of a  cyclo-[Ile-(4-Pe)Pro] diketopiperazine formation 

(β-position to the ester bond) as well as significant epimerization and expected low yield, which 

are connected with the bulk of the side chains of these amino acids. To form the bond between 

a-Thr  and  (βMe)Phe  as  the  last  one  is  more  preferable,  because  racemization  would  be 

suppressed by the urethane protection, and between the (βMe)Phe and (R)-(3-Ncp)Ala residues 

cyclization  would  proceed  faster,  since  these  residues  have  opposite  configurations  at  their 

α-centers.[116] A ring closure forming the amide bond between Ile and (4-Pe)Pro should go along 

with a larger degree of epimerization, because proline is more basic than any primary amino 

acid, and that between (R)-(3-Ncp)Ala and (βMe)Phe is also less preferable, since the bulky side 

chain of the latter shields its amino group. 
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MeF (R)NcpA MeF Ile

Fmoc--OH

Fmoc--ODCPM

H--ODCPM

H--OH

Z--OH

H--OH Z ODCPM

Fmoc--OH ODCPMH

H--OH Fmoc ODCPM

Fmoc--OH ODCPMH

Fmoc ODCPM

a
67%

b
81%

c, d
91%

e
92%

f, d
59%

e
79%

c, d
91%

Scheme 14. Synthesis  of  tetrapeptide  precursor  66 of  Hormaomycin  and  its  all-peptide 

analogue.

a) oxalyl  chloride,  pyridine/dicyclopropylmethanol,  DMAP,  CH2Cl2, 0→20 °C,  20  h; 

b) ZOSu, NaHCO3, acetone/water, 2h; c) 50% Et2NH/THF, 20 °C, 1 h; d) EDC, HOAt, DIEA, 

2,4,6-collidine, CH2Cl2, 0→20 °C, 14 h; e) FmocOSu, NaHCO3, acetone/water, 4 h; f) H2, Pd/

C, EtOAc, 20 °C, 40 min.

54

55 56

57 58

59 60

61 62

55 63

64 65
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water/dioxane, 20 °C, 3 h
90%

HO

CO2H

NH
MeZ

All-Br, K2CO3, MeCN,
85 °C, 3 h, 60 °C, 16 h

84%

MeZ
EDC, 4-pyrrolidinopyridine,

CH2Cl2, 0-20 °C, 16 h
83%

N
Boc

O

O

CO2All

NH [Pd(PPh3)4],
N-methylaniline,
DME, 20 °C, 1 h

90%

MeZ

N
Boc

O

O

CO2H

NHMeZ

Scheme 15. Synthesis of diprotected ester acid 71.
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100%
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100%
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Scheme 16. Synthesis of Hormaomycin 1.

a) 50%  Et2NH/THF,  20 °C,  1 h;  b) HATU,  HOAt,  DIEA,  TMP,  CH2Cl2,  0→20 °C,  24 h; 

c) 2 M HCl in EtOAc, 20°C, 45 min; d) HATU, DIEA,TMP, CH2Cl2, 0→20 °C, 16 h; e) anisole, 

TFA, 20 °C, 2 h; f) TeocOSu, NaHCO3, N,N-Dimethylaminopropylamine, water/acetone, 20 °C, 

2 h; g) HATU, HOAt, DIEA, TMP, CH2Cl2, 20 °C, 6 h; h) TFA, 20 °C, 1 h; i) HATU, HOAt, 

DIEA, TMP, CH2Cl2, 20 °C, 4 h; j) MgBr2 · Et2O, EtSH, CH2Cl2, 20 °C, 3.5 h.
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Having in mind to ring-close an acyclic precursor already containing the ester bond between the 

(4-Pe)Pro and the  a-Thr residues, by forming the peptide bond between the Ile and (4-Pe)Pro 

moieties,  the  dicyclopropylmethyl  ester  of  Ile  56 was  condensed  with  N-Z-protected 

(βMe)Phe-OH  57.  After  removal  of  the  Z group  from  the  N-terminus  of  the  resulting 

dipeptide 60 by  catalytic  hydrogenation,  the  latter  was  coupled  with 

N-Fmoc-protected-(2R,1'R,2'R)-(3-Ncp)Ala-OH  61 to  yield  the  tripeptide  63,  which,  in  turn, 

after deprotection with Et2NH/THF, was coupled with  N-Fmoc-protected (βMe)Phe-OH  64 to 

give the N,C-protected tetrapeptide 66.

In the case of Hormaomycin  1 itself,  the 4-pyrrolidinopyridine-catalyzed condensation of the 

N-Boc-protected (4-Pe)Pro-OH 69 and N,C-protected a-Thr 118 gave the ester  70, which, after 

palladium-promoted removal of the allyl group, was coupled with the tetrapeptide 66 using the 

HATU reagent in the presence of HOAt to give the hexadepsipeptide 73.

CO2H

CONH2

H2N

MeZOSu,
NaHCO3,

acetone/H2O
91% CO2H

CONH2

N
H

PhI(OTFA)2,
pyridine,

DMF/H2O
87%

MeZ

CO2H

NH2

N
H

SOCl2,
MeOH
83%

MeZ
CO2Me

NH3
+Cl-

N
H

MeZ

Scheme 17. Synthesis  of  N-(4-methylbenzyloxycarbonyl-protected)  methyl (2R)-2,3-

diaminopropionate.

In the case of the all-peptide analogue 53, the Nα-MeZ-protected 2,3-diaminopropionic acid ester 

86 was  obtained  (Scheme  17)  as  the  hydrochloride  by  esterification  with  methanol  of  the 

intermediate  85,  which  in  turn  was  prepared  in  79%  yield  over  two  steps  starting  from 

(R)-asparagine 83 by initial acylation with MeZOSu and subsequent oxidation of the amide 84 

with iodobenzene bis(trifluoroacetate) in close analogy to the published procedure.[117]

83 84

85 86
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Scheme 18. Synthesis of diprotected dipeptide acid 88.

The diamino ester 86 was coupled with the  N-Boc-protected (2S,3R)-4-(Z)-propenylproline  10 

using EDC and HOAt to give the intermediate dipeptide methyl ester 97. Treatment of the latter 

with tetrabutylammonium hydroxide[118] gave the dipeptide acid 98 (70% yield over two steps), 

which  was  coupled  with  the  O-dicyclopropylmethyl  (DCPM) protected  tetrapeptide  66 after 

deprotection of its terminal amino groups, to yield the branched hexapeptide 89 (59%).

These intermediates, the hexadepsipeptide 73 and the hexapeptide 89, should not to be purified 

by column chromatography, because the DCPM protective group is labile towards silica gel.

The  DCPM  and  Boc  groups  were  removed  from  the  termini  of  the  hexadepsipeptide/ 

hexapeptide (the ESI-MS spectrum showed that the MeZ group stayed intact), and the cyclizing 

peptide condensation succeeded under high dilution conditions, using the HATU reagent. The 

cyclodepsipeptide  75 and cyclopeptide  91 were obtained in 53% and 34%, respectively,  yield 

after HPLC purification. 

10 86

87 88
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Chpca (S)NcpA (4-Pe)Pro Dap
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b
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c
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e
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d
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Scheme 19. Synthesis of Hormaomycin all-peptide analogue 53.

a) HATU, HOAt, DIEA, TMP, CH2Cl2, 0→20 °C, 24 h; b) 2 M HCl in EtOAc, 20°C, 45 min; 

c) HATU,  DIEA,  TMP,  CH2Cl2,  0→20 °C,  16  h,  d)  anisole,  TFA,  20 °C,  2  h;  e) TeocOSu, 

NaHCO3, N,N-Dimethylaminopropylamine, water/acetone, 20 °C, 2 h; f) HATU, HOAt, DIEA, 

TMP, CH2Cl2, 20 °C, 6 h; g) TFA, 20 °C, 1 h; h) HATU, HOAt, DIEA, TMP, CH2Cl2, 20 °C, 

4 h; i) MgBr2·Et2O, EtSH, CH2Cl2, 20 °C, 3.5 h. 

To complete the assembly of the target compounds, the N-MeZ-protected cyclic intermediates 75 

and  91 were  deprotected  and  first  coupled  with  N-Teoc-protected 
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(2S,1'R,2'R)-(3-Ncp)Ala-OH 78. After removal of the Teoc-group, the intermediates 80 and 94 in 

turn were coupled with the 1-OMOM-protected 5-chloro-1-hydroxypyrrole-2-carboxylic acid 81. 

Finally,  the  MOM  group  was  removed  by  treatment  with  MgBr2 Et⋅ 2O  and  EtSH  in 

dichloromethane to give the target compounds 1 (Scheme 16) and 53 (Scheme 19) in 28% and in 

13%, respectively, yield over 8 steps. 

4. Hormaomycin analogues with fluoromethyl-substituted cyclopropylalanine 

residues

Once  sufficient  quantities  of  (2S,1'S,2'R)-  and  (2R,1'S,2'R)-3-(2'-fluoromethylcyclopropyl)ala-

nine,  N-Boc-protected  (2S,4R)-4-(Z)-propenylproline,  as  well  as  the  O-MOM  protected 

5-chloro-1-hydroxypyrrole-2-carboxylic  acid,  (R)-allo-threonine  and  (2S, 3R)-β-

methylphenylalanine  had  been  prepared,  the  assembly  of  the  Hormaomycin  analogues  with 

3-(2'-fluoromethylcyclopropyl)alanine residues could be initiated. 

The same sequence that was developed by Zlatopolskiy for the synthesis of Hormaomycin and 

its aza–analogue, was successfully employed toward the synthesis of these new Hormaomycin 

analogues as well.

To prepare  the  Hormaomycin  with  fluoromethyl-substituted  cyclopropylalanine  moieties, the 

dicyclopropylmethyl ester of Ile 54, was condensed with N-Z-protected (βMe)Phe-OH 55. After 

removal  of  the  Z  group  from  the  N-terminus  of  the  resulting  dipeptide  60 by  catalytic 

hydrogenation,  the  latter  was  coupled  with  N-Fmoc-protected  (2R,1'R,2'R)-(3-(mono-,  di-  or 

tri-)fluoromethylcyclopropyl)alanines  97 a-c to  yield  tripeptides  98 a-c,  which,  in  turn,  after 

deprotection with Et2NH/THF, were coupled with  N-Fmoc-protected (βMe)Phe-OH 64 to give 

N,C-protected tetrapeptides 100 a-c. 

The 4-pyrrolidinopyridine-catalyzed condensation of the N-Boc-protected (4-Pe)Pro-OH 10 and 

N,C-protected a-Thr 69 gave the ester 70, which, after palladium-promoted removal of the allyl 

group, was coupled with the tetrapeptides using the HATU reagent in the presence of HOAt to 

give the corresponding hexadepsipeptides 101 a-c.

The  DCPM and  Boc  groups  were  removed  from the  termini  of  the  hexadepsipeptides  (the 

ESI-MS  spectrum  showed  that  the  MeZ  group  stayed  intact),  and  the  cyclizing  peptide 

condensation  succeeded  under  high  dilution  conditions,  using  the  HATU  reagent.  The 

cyclodepsipeptides  103 a-c were obtained in 53, 60 and 54%, respectively,  yield over 8 steps, 

after HPLC purification. 
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To complete the assembly of the corresponding Hormaomycin analogues, the N-MeZ-protected 

cyclic  intermediates  103 a-c were  deprotected  and  first  coupled  with  the  corresponding 

N-Teoc-protected (2S,1'R,2'R)-(3-(mono-, di- or tri-)fluoromethylcyclopropyl)alanines  105 a-c. 

After  removal  of  the  Teoc  group,  the  intermediates  107 a-c in  turn  were  coupled  with  the 

1-OMOM-protected 5-chloro-1-hydroxypyrrole-2-carboxylic acid  81. Finally, the MOM group 

was removed by treatment with MgBr2 Et⋅ 2O and EtSH in dichloromethane to give after HPLC 

purification the target compounds 109 a-c in 84, 82 and 72%, respectively (Scheme 20).

Because  it  was  found,  that  MeZ-protected  cyclohexadepsipeptide  core  of  the  native 

Hormaomycin  has  a  significant  antiparasitic  activity,  N-acetylated  110 c and 

N-trifluoroacetylated  111 c derivatives  were  prepared  by  coupling  the  deprotected  cyclic 

intermediate 104 c with acetic and trifluoroacetic acid.

MeF (R)FmcpA MeF Ile

H--OH Z ODCPM

Fmoc--OH ODCPMH

H--OH Fmoc ODCPM

Fmoc--OH ODCPMH

Fmoc ODCPM

a
73, 78, 92%

b, c
72, 65, 81%

a
79%

d, c
88, 81, 93%

Scheme 20. Synthesis  of  the  tetrapeptide  precursors  of  Hormaomycin  analogues  with 

a: monofluoromethyl-,  b: difluoromethyl-,  c: trifluoromethylcyclopropylalanine 

residues.

a) FmocOSu, NaHCO3, acetone/water, 4 h; b) H2, Pd/C, EtOAc, 20 °C, 40 min; c) EDC, HOAt, 

DIEA, 2,4,6-collidine, CH2Cl2, 0→20 °C, 14 h; d) 50% Et2NH/THF, 20 °C, 1 h.
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Chpca (S)FmcpA (4-Pe)Pro
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Scheme 21. Synthesis  of  of  Hormaomycin  analogues  with  a: monofluoromethyl-, 

b: difluoromethyl-, c: trifluoromethylcyclopropylalanine residues.

a) 50% Et2NH/THF, 20 °C, 1 h; b) HATU, HOAt, DIEA, TMP, CH2Cl2, 0→20 °C, 24 h; c) 2M 

HCl in EtOAc, 20°C, 45 min; d) HATU, DIEA,TMP, CH2Cl2, 0→20 °C, 16 h; e) anisole, TFA, 

20 °C, 2 h; f) TeocOSu, NaHCO3,  N,N-Dimethylaminopropylamine, water/acetone, 20 °C, 2 h; 

g) HATU, HOAt, DIEA, TMP, CH2Cl2, 20 °C, 6 h; h) TFA, 20 °C, 1 h; i) HATU, HOAt, DIEA, 

TMP, CH2Cl2, 20 °C, 4 h; j) MgBr2·Et2O, EtSH, CH2Cl2, 20 °C, 3.5 h.
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5. Biological activity of Hormaomycin and analogues

Malaria (lat.:  mala aria = bad air) is an infection caused by human-pathogenic Protozoen. The 

pathogens are transferred by the female  Anopheles gnat, leading to a primary infection of the 

liver. In the following ‘blood phase’ of the illness erythrocytes are injured, in which the parasites 

are  developing.  During  the  release  of  the  Protozoen from  the  infected  erythrocytes,  cell 

destruction is occurred, that lead to the characteristic fever. The Plasmodium falciparum causes 

the heaviest of the four observed disease pictures, called Malaria tropica. This pathogen causes 

the storage of specific proteins in the erythrocytes membranes,  which lead to an adhering of 

infected blood cells at  pre-venous capillaries.  It causes thrombosis at the blood flow leading 

finally  to  death.  Currently  approx.  2.2  billion  humans  live  in  Plasmodium-endemic  regions, 

approximately 500 million of them get sick with malaria annually.  The estimated number of 

deaths  caused  by malaria  is  1.5–3.0 million  annually.  Despite  these,  only five medicines  of 

altogether 1300 developed since 1975 are used in malaria treating. 

Anti-malaria active substances from plants:

― Quinine  was  the  first  chemically  pure  substance  in  the  malaria  therapy.  The  natural 

substance was first isolated in 1820 from the crust of the  Cinchona tree resident in the 

Andes. Indians used the crust for the fever lowering, giving the first example of the often 

successful  ethnomedical  approach  to  the  active  substance  search.  On  the  basis  of  the 

structure of the Quinine synthetic analogues were developed.

― In the traditional Chinese medicine the Wormwood (Artemisia annua) has been used for 

more than 1500 years for the treatment of bleeding and against fever. The isolation of the 

active  component,  Artemisinin,  was  succeeded  in  1972,  but  the  substance,  like  many 

natural substances from plants, can be isolated only in very small yields, which causes high 

costs.

Anti-malaria active substances from microorganisms:

― Tetracyclines (like e.g. Doxycyclin) are antibacterial substances from microorganisms, that 

show a high  activity  against  Gram-positive  and negative  organisms  as  well  as  against 

Plasmodium. 

― Another  antibacterially  effective  secondary  metabolite  with  an  activity  against 

Plasmodium is Borrelidin. 
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― Among all  secondary metabolites  active  against  Plasmodium falciparum Gramicidin  D 

holds an outstanding position with a subnanomolar activity and small toxicity. From the 

chemical point of view, it is the linear peptide, that is able to form ion channels in cell 

membranes. 

There are some cyclic peptides, antiplasmoidale activities of which have been proved. Examples 

for this are Enniatine and Hormaomycin. 

Resistance of  Plasmodium falciparum against medicines is developing, like that observed for 

bacteria. In Africa most strains are Chloroquin-resistant, at the same time the effectiveness of 

Artemisinin in Asia slowly decreases. 

So, it is necessary to provide new medicines for malaria treating and Hormaomycin is one of the 

best drug candidates.

Biological activity of Hormaomicyn and analogues was tested at the group of Dr. Marcel Kaiser 

(Parasite Chemotherapy group, Swiss Tropical Institute, Basel).

Activity table (IC-50[119] for substances and parasites, concentration in µg/ml):

Compound
Leishmania donovani axen

strain MHOM-ET-67/L82

Plasmodium falciparum 

strain K1

Miltefosine 0.143 —

Chloroquine ― 0.089

103 c 2.125 0.042

110 c 1.730 0.151

109 c 0.205 0.183

111 c 2.370 0.265

Chloroquine/Artemisinin ― 0.045

53 4.8 0.023

91 -- 0.061

Positions suggested for in vivo studies are marked yellow. Reference drugs are marked cyan.

file:///F:/_2Publication_/
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Compounds identification: 

110 c: Acetylated cyclohexadepsipeptide with 

(2R,1’R,2’R)-3-(2’-Trifluoromethylcyclopropyl)alanine (R-tFmcpA).

NH
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111 c: Trifluoroacetylated cyclohexadepsipeptide with 

(2R,1’R,2’R)-3-(2’-Trifluoromethylcyclopropyl)alanine (R-tFmcpA). 
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EXPERIMENTAL PART 

6. General remarks

1H NMR:  Bruker AM 250 (250 MHz),  Varian Unity 300 (300 MHz),  Inova 500 (500 MHz), 

Inova 600 (600 MHz).  1H chemical  shifts  are  reported  in  ppm relative  to  residual  peaks  of 

deuterated  solvents:  δ (ppm) = 2.49 for [D5]DMSO,  4.65 for HOD in D2O,  7.26 for CHCl3, 

1.73 and 3.55 for [D7]THF, 3.35 for CHD2OD. Higher–order NMR spectra were approximately 

interpreted  as  first-order  spectra,  if  possible.  For  the characterization  of  the observed signal 

multiplicities the following abbreviations have been applied: s = singlet, d = doublet, t = triplet, 

q = quartet, quin = quintet, m = multiplet, as well as b = broad. 

13C  NMR  [additional  DEPT (Distortionless  Enhancement  by  Polarization  Transfer)  or 

APT (Attached  Proton  Test)]:  Bruker AM 250 (62.9 MHz),  AMX 300 (75.5 MHz)  or 

Varian Unity 300 (75.5 MHz),  Inova 500 (125.7 MHz),  Inova 600 (125.7 MHz)  instruments. 
13C chemical  shifts  are  reported  relative  to  peaks  of  deuterated  solvents: 

δ (ppm) = 39.5 for [D6]DMSO,  77.0 for CDCl3,  25.5 and 3.55 for [D8]THF,  3.35 for CD3OD or 

to  methanol  in  D2O (δ = 49.5 ppm).  The  following  abbreviations  were  applied: 

DEPT: + = primary  or  tertiary  (positive  signal  in  DEPT),  – = secondary  (negative  signal  in 

DEPT), Cquat = quaternary (no signal in DEPT); APT: + = primary or tertiary (positive signal in 

DEPT), – = secondary or quaternary (negative signal in APT). 

IR measured  as  KBr pellets  or  thin  films  between KBr plates  on a  Bruker  IFS 66 (FT-IR) 

spectrometer. 

MS: EI-MS: Finnigan MAT 95, 70 eV, high resolution EI-MS spectra with perfluorkerosene as 

reference substance; DCI-MS: Finnigan MAT 95, 200 eV, reactant gas NH3; ESI-MS: Finnigan 

LCQ. HPLC-MS: pump: Flux Instruments Rheos 4000; degasser: Flux Instruments ERC 3415α; 

detector: Linear UVIS-205; data system: Flux Instruments Janeiro; ESI: Finnigan LCQ, positive 

and negative ion mode; data system: Finnigan LCQ Xcalibur; column: Crom Superspher 100 

RP-18 endcapped (4 µm, 2 x 100 mm); HPLC conditions: eluent A: H2O (0.1% TFA), eluent B: 

MeCN  (0.1%  TFA).  Analytical  HPLC:  instrument  Instrumentelle  Analytik  Goebel  GmbH, 

autosampler  SA 360,  pump 420, detector  Celeno DAD UV, software Geminyx  Version 1.91, 

column  Nucleodur® C18  (250 mm × 3  mm,  5 µm,  100 Å),  flow rate  0.5 ml/min.  Preparative 

HPLC:  instrument  Jasco,  pump  Jasco  PU–1587,  detector  Jasco  UV–1575,  Software  Jasco-
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BORWIN  HSS–2000,  column  Nucleodur® C18  (250 mm × 20  mm,  5 µm,  100 Å),  flow  rate 

18.0 ml/min.

Optical  rotations:  Perkin-Elmer 241 digital  polarimeter,  1-dm cell;  optical  rotation values are 

given in 10–1 deg cm2 g–1; concentrations (c) are given in g/100 mL. 

M.p.: Büchi 510 capillary melting point apparatus, uncorrected values. 

TLC:  Macherey-Nagel  pre-coated  sheets,  0.25  mm Sil  G/UV254.  The  chromatograms  were 

viewed under UV light and/or by treatment with phosphomolybdic acid (10% in ethanol),  or 

ninhydrine (0.2% in ethanol), or I2 vapor.

Column  chromatography:  Merck  silica  gel,  grade  60,  230–400  mesh  and  Baker  silica gel,

40–140 mesh. 

Elemental  analyses:  Mikroanalytisches  Laboratorium  des  Instituts  für  Organische  und 

Biomolekulare Chemie der Universität Göttingen. 

Starting  materials:  Anhydrous  solvents  were  prepared  according  to  standard  methods  by 

distillation over drying agents and were stored under nitrogen. All other solvents were distilled 

before use. 

All  reactions  were carried out with magnetic  stirring and, when employing air-  or moisture- 

sensitive materials, in flame-dried glassware under argon or nitrogen.

7. General synthetic protocols

7.1. Deprotection of N-Fmoc-protected peptides (GP 1)

The  respective  protected  peptide  (1 mmol)  was  taken  up  with  acetonitrile  or  THF (2 mL), 

diethylamine (2 mL)  was  added,  and  the  resulting  mixture  left  at  ambient  temperature  for 

40 min. All volatiles were evaporated under reduced pressure, the residue was taken up with 

toluene (2 × 5 mL), which was evaporated under reduced pressure to remove the last traces of 

diethylamine.  The  obtained  crude  N-deprotected  peptide  was  directly  used  in  the  next 

condensation step. 

7.2. Peptide  condensation  step  for  the  preparation  of  peptides  using  

EDC/HOAt - mediated coupling (GP 2)

EDC  (1.03 mmol)  and  HOAt  (1.05 mmol)  were  added  to  a  cooled  (4 °C)  solution  of  the 

respective  N-protected  amino  acid (1 mmol)  in  anhydrous  CH2Cl2 (3 mL).  After  20 min,  the 

solution  of  the  appropriate  crude  N-deprotected  peptide  (0.97 mmol)  and  TMP (3 mmol)  in 
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anhydrous CH2Cl2 (1 mL) was added at the same temperature. The temperature was allowed to 

reach 20 °C and stirring was continued for 15 h. Then the reaction mixture was diluted with 

diethyl  ether  or  ethyl  acetate  (30 mL)  and  washed  with  water  (2 × 5 mL),  1 M KHSO4 

(3 × 5 mL), water (2 × 5 mL), 5% aqueous NaHCO3 solution (3 × 5 mL), water (3 × 5 mL), brine 

(2 × 5 mL),  dried over MgSO4, filtered and concentrated under reduced pressure. The residue 

was purified by column chromatography or recrystallization.

7.3. Preparation  of  hexadepsipeptides  and  hexapeptides using  HATU/HOAt 

mediated coupling (GP 3)

Deprotected according to GP 1 tetrapeptide (0.100 mmol) was dissolved in anhydrous CH2Cl2 

(3 mL), ester acid / dipeptide acid (0.110 mmol), HATU (0.107 mmol) and HOAt (0.110 mmol) 

were  added  and  the  reaction  mixture  was  cooled  to  4 °C.  DIEA  (0.110  mmol)  and  TMP 

(0.300 mmol) were then added, the mixture was allowed to warm to 20 °C and stirring continued 

for an additional 15 h. The mixture was then taken up with Et2O (40 mL) and after usual aqueous 

work-up  (GP  2)  the  organic  layer  was  concentrated  to  leave  crude 

hexadepsipeptide / hexapeptide  ,  which  was  purified  by  recrystallization  and/or  column 

chromatography.

7.4. Preparation of cyclohexadepsipeptides (GP 4)

The respective acyclic hexadepsipeptide (105 µmol) was deprotected by stirring with 2 M HCl 

solution in ethyl acetate (2 mL) at 20 °C for 1 h in dark place and followed concentration under 

reduced pressure to solid residue. The deprotected material was then dissolved in CH2Cl2 (1.0 L). 

The  solution  was  cooled  to  4 °C  (internal  temperature),  HATU  (122 µmol)  and  HOAt 

(104 µmol)  were added,  the  mixture  was stirred for  30 min,  and  then the  solution  of  DIEA 

(305 µmol) in  CH2Cl2 (50 mL, over a period of 30 min). The cooling bath was removed, and 

stirring was continued for an additional 2 h at ambient temperature. Then the reaction mixture 

was cooled again to 4 °C and second portions of HATU (122 µmol) and HOAt (104 µmol) were 

added, followed by a solution of DIEA (305 µmol) in CH2Cl2 (50 mL, over a period of 30 min). 

The temperature was allowed to reach 20 °C, and stirring was continued for 15 h. After this, the 

solvent  was  removed  under  reduced  pressure,  the  residue  was  taken  up  with  diethyl  ether 

(50 mL),  subjected to the usual aqueous work-up (see GP 2) and concentrated under reduced 

pressure, to give the crude product, which was finally purified by preparative HPLC. 
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7.5. Deprotection of N-MeZ protected cyclohexadepsipeptides (GP 5)

The respective  N-MeZ protected cyclodepsipeptide (10 µmol) was treated with 10% anisole in 

TFA (1 mL) in the dark for 2 h. All volatiles were then removed under reduced pressure at 20 

°C. The solid residue was taken up with toluene (2 × 10 mL),  which was distilled off  under 

reduced pressure to remove the last traces of anisole and TFA. The resulting crude deprotected 

depsipeptide was directly used for the appropriate coupling reaction. 

7.6. Preparation of  heptadepsipeptides  and  Hormaomycines  using 

HATU/HOAt mediated coupling (GP 6)

Deprotected  according  to  GP  5 depsidipeptide  (0.100  mmol)  was  dissolved  in  anhydrous 

CH2Cl2 (4  mL),  N-protected  amino  acid  (0.320  mmol),  HATU  (0.300  mmol)  and 

HOAt (0.300 mmol)  were  added  and  the  reaction  mixture  was  cooled  to  4 °C. 

DIEA (0.102 mmol)  and  TMP  (0.900  mmol)  were  then  added  as  a  solution  in  anhydrous 

CH2Cl2 (2  mL),  the  mixture  was  allowed  to  warm  to  20 °C  and  stirring  continued  for  an 

additional 15 h. The mixture was then taken up with EtOAc (100 mL) and after usual aqueous 

work-up (GP  2)  the organic  layer  was  concentrated  to  leave  crude depsipeptide,  which was 

purified by recrystallization and/or chromatography.

7.7. Removal of the MOM ether group using MgBr2•Et2O and EtSH (GP 7)

MgBr2•Et2O (1 mmol) and EtSH (0.5 mmol) were added to a vigorously stirred solution of the 

respective  O-MOM  protected  derivative  (0.1 mmol)  in  CH2Cl2 (15 mL),  and  stirring  was 

continued for an additional 3.5 h (TLC control was impossible as the starting material and the 

product in all cases showed exactly the same Rf in all tested solvent systems). The mixture was 

then  taken  up  with  EtOAc  (40  mL)  and  washed  with  1 M KHSO4 (3 × 10 mL),  water 

(5 × 10 mL),  brine  (2 × 5 mL),  dried  over  MgSO4,  filtered  and  concentrated  under  reduced 

pressure.  The residue  was purified  first  by crystallization  and the  crude  product  was  finally 

purified with HPLC. 

7.8. Reduction with LiAlH4 (reverse addition) (GP 8)

A solution of LiAlH4 in diethyl ether (1 M, 6 mL, 6 mmol) was added dropwise to the cooled 

(dry  ice/acetone  bath)  solution  of  the  respective  carbonyl  compound  (20 mmol  for  ketones, 

10 mmol for esters, 7,5 mmol for carboxylic acid) in diethyl ether (20 ml) and the mixture was 

stirred for an additional 30 min at –78 °C. The flask was immersed to ice/water bath, the mixture 

was  stirred  for  an  additional  2 hour  and  the  saturated  aqueous  NH4Cl  solution  was  added 

dropwise under vigorous stirring (carefully – foam!) till H2 gas evolution ceased. The mixture 
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was stirred for an additional 15 min, filtered with suction through Celite® pad, filter cake was 

washed with diethyl ether (3 × 50 ml), combined filtrates concentrated under reduced pressure, 

giving the target alcohol.

7.9. Conversion alcohols to iodides (GP 9)

The  respective  racemic  alcohol (12 mmol)  was  added  to  the  solution  of  triphenylphosphine 

(5.5 g, 21 mmol) and imidazole (1.5 g, 22 mmol) in corresponding solvent mixture and the solu-

tion was cooled down to –5 °C (internal  temperature,  ice/salt  bath).  The solid  iodine (6.0 g, 

24 mmol) was added as one portion and the mixture was stirred for an additional 30 min at this 

temperature, bath was removed and the mixture was stirred at ambient temperature for 3 hour. 

The mixture was poured to pentane (200 ml) under vigorous stirring and the resulting mixture 

was washed with 20% (w/w) aqueous Na2S2O3 × 5 H2O (100 mL), upper pentane layer was sepa-

rated, water layer was extracted with pentane (2 × 50 mL) and discarded. Combined pentane so-

lution (washing and extracts) was washed with 20% (w/w) aqueous Na2S2O3 × 5 H2O (100 mL), 

brine (100 mL),  dried over MgSO4,  filtered and concentrated under reduced pressure to give 

crude product as colorless liquid containing solid. This was purified with the column chromatog-

raphy (silica gel, eluting with pentane), giving the pure corresponding target iodide.

7.10. Alkylation of the Ni(II)-complexes of Schiff bases, derived from glycine and  

(S)-  or  (R)-2-[(N-Benzylprolyl)amino]benzophenone  (Belokon'  glycine 

complexes; (S)- or (R)-BGC) (GP 10)

The  respective  Belokon'  glycine  complex  (BGC)  (2.00 g,  4.02 mmol)  was  suspended  in 

DMF/MeCN mixture (2 + 4 mL) and degassed in two freeze-pump-thaw cycles (dry ice/acetone 

bath) under stirring, then NaH (60% in oil, 193 mg, 4.8 mmol) was added to the cold mixture 

and the system was thawed to 0°C under stirring till the color of the reaction mixture changed 

from orange to dark-brown. The mixture was frozen, the respective racemic iodide (4.22 mmol) 

was added with stirring, the bath was removed and the mixture was left to warm to 0 °C with 

stirring. When ice cover on flask started to thaw, the flask was immersed in an ice/water bath, 

and  stirring  was  continued  until  all  starting  BGC  had  been  consumed  (TLC  monitoring, 

chloroform/acetone 7:1,  Rf=0.12). After ca.  1 h, 60% aqueous acetic  acid (2 mL) was added 

dropwise. After an additional 10 min of stirring, the mixture was poured into vigorously stirred 

H2O  (100 mL).  The  resulting  suspension  was  stirred  for  ca. 1 h,  and  the  crude  product 

(diastereomeric mixture) was filtered off, the filter cake was washed with H2O (3 × 10 mL) and 

dried overnight over P2O5 under reduced pressure. The diastereomers were separated by column 

chromatography (silica gel, eluting with ethyl acetate).
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7.11. Decomposition  of  Belokon'  amino  acid  complexes  to  obtain  

enantiomerically pure amino acids (GP 11)

6 M HCl (50 mL) was added to a refluxing solution of the respective Belokon' amino acid com-

plex (1 mmol) in methanol (25 mL), the mixture was heated at reflux for an additional 10 min 

and concentrated under reduced pressure to leave behind a wet hydrochloride salt. The residue 

was treated with H2O (100 mL), precipitated ligand  (2-[(N-Benzylprolyl)amino]benzophenone) 

as a hydrochloride salt was filtered off, washed with H2O (3 × 30 mL), dried and collected for re-

cycling. The filtrate was combined with the washings, neutralized to pH = 6.0 with 5% aqueous 

ammonia and extracted with CHCl3 (3 × 30 mL). The aqueous fraction was concentrated to ca. 

10 mL and neutralized with 5% aqueous ammonia to pH = 6.5. The amino acid was separated 

from the nickel salts by elution of the neutralized concentrate through an H+-form DOWEX ion-

exchange resin column (ca. 150 g of resin) with 5–7% aqueous ammonia. The fraction of the elu-

ate that showed red pigmentation on developing with ninhydrin, was collected. This was concen-

trated under reduced pressure at 40–45 °C. The crude amino acid was dissolved in minimal vol-

ume of hot  water,  the hot  turbid solution was filtered  and diluted  with an equal  volume of 

ethanol. The precipitate, formed after storing at –20 °C for 1 h, was filtered off, washed with 

cold ethanol (10 mL), and dried in vacuo at 40 °C to give the target amino acid.

8. (Fluoromethylcyclopropyl)alanines

8.1. (Trifluoromethylcyclopropyl)alanines

Racemic diethyl 2-trifluoroacetyl succinate (34):[120] Ethyl trifluoroacetate 32 (31.0 g, 220 mmol) 

and  diethyl  succinate  33 (76.0 g,  440 mmol)  were  mixed  in  a  250-mL 

round-bottomed flask and sodium metal (thin plates, 5.0 g, 220 mmol) was 

added  in  one  portion.  The  mixture  was  heated  at  reflux  with  vigorous 

stirring for 12 h, the reflux condenser was replaced by distillation head, 

and all volatiles were distilled out (ethanol at ambient pressure and excess 

of  diethyl  succinate  at reduced  pressure).  After  the  mixture  had  cooled  down  to  ambient 

temperature, the black tar residue was treated with 5 M aqueous H2SO4 (150 mL), the organic 

layer was separated, the water layer was extracted with diethyl ether (3 × 50 mL), the combined 

organic  phases  were  washed  with  water  (3 × 50 mL),  dried  over  MgSO4,  filtered  and 

concentrated under reduced pressure. The viscous black residue was fractioned through a 15-cm 

Vigreux  column  in  vacuo,  giving  8.1 g  of  a  predistillate  (the  product  and  starting  diethyl 

succinate), 35.6 g main fraction (the target product) and 3.4 g of tail distillate (the target product 
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O

O
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and  the  side  product,  diethyl  2,5-dioxo-cyclohexane-1,4-dicarboxylate).  Yield  35.6 g, 

131.7 mmol,  59.8%.  1H NMR  (250 MHz,  CDCl3):  δ = 1.20  (t,  J = 7.1 Hz,  3 H),  1.22  (t, 

J = 7.1 Hz, 3 H), 2.85 – 3.15 (m, 2 H), 4.11 (q, J = 7.1 Hz, 2 H), 4.19 (q, J = 7.1 Hz, 2 H), 4.27 – 

4.38  (m,  1 H);  13C  NMR (62.9 MHz,  CDCl3):  δ = 13.67,  13.89,  32.42,  48.45,  61.54,  62.66, 

115.09 (q, J = 291.2 Hz), 166.03, 169.97, 186.81 (q, J = 36.9 Hz).

Diethyl  2,5-dihydroxycyclohexa-1.4-diene-1.4-dicarboxylate  (side  product  of  34):  1H NMR 

(250 MHz,  CDCl3):  1.30 (t,  J = 7.1 Hz,  6 H),  3.16 (s,  4 H),  4.23 (q, 

J = 7.1 Hz, 4 H), 12.2 (s, 2 H); 13C NMR (62.9 MHz, CDCl3): 14.2 (+), 

28.5 (–), 60.7 (–), 93.2 (Cquat), 168.4 (Cquat), 171.3 (Cquat).

Ethyl  5,5,5-Trifluoro-4-oxovalerate  (35)[64]:  Racemic  diethyl  2-trifluoroacetosuccinate  34 

(35.1 g,  130 mmol)  was  mixed  with  boric  acid  (8.1 g,  130 mmol)  in  a 

round-bottomed flask, equipped with a distillation head, and the mixture 

was stirred at 170 °C (bath temperature) overnight. The distilled ethanol 

was discarded, the residue was fractioned over a 15-cm Vigreux column in  

vacuo, giving the target ester as a colorless liquid (13,7 g, 69 mmol, 53 %). 

B. p. : 50–55 °C/10–11 mbar;  1H NMR (250 MHz, CDCl3):  δ = 1,23 (t,  J = 7.2 Hz, 3 H), 2.68 (t, 

J = 6.3 Hz,  2 H),  3.01  (t,  J = 6.3 Hz,  2 H),  4.13  (q,  J = 7.2 Hz,  2 H);  13C NMR  (250 MHz, 

CDCl3): δ = 14.00,  26.90,  31.40,  61.10,  115.50 (q, J = 291.0 Hz),  171.20,  190.10 (q, J  = 

36.0 Hz).

Racemic  ethyl  5,5,5-Trifluoro-4-oxivalerate  (36)[64]:  To  a  solution  of  racemic  ethyl  5,5,5-

trifluoro-4-oxovalerate  35 (15,8 g, 79,7 mmol) in anhydrous diethyl ether 

(160 mL),  cooled  in  an  ice/salt  bath,  was  added  crushed  sodium 

borohydride  (1.51 g,  40.0 mmol)  in  one portion.  The  cold  mixture  was 

stirred for 10 min, the bath was removed, and the mixture was stirred for 

4 h. 1 M aq. KHSO4 (50 mL) was added slowly (carefully – foam!), the 

organic layer was separated, and the water layer was extracted with diethyl ether (3 × 30 mL). 

The combined organic layers were dried over MgSO4, filtered and concentrated under reduced 

pressure,  giving  the  target  hydroxyester  (15.6 g,  77.9 mmol,  97.8%)  as  yellowish  liquid. 

1H NMR (250 MHz, CDCl3):  δ = 1,25 (t,  J = 7.1 Hz,  3 H),  1.80–2.12  (m,  2 H),  2.54 (t, 

J = 7.1 Hz,  2 H),  3.38–3.76  (bs,  1 H),  3.91–4.07  (m,  1 H),  4.14  (q,  J = 7.1 Hz,  2 H); 
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13C NMR: δ = 9.03,  19.58,  24.57,  56.08,  64.59 (q, J = 31.2 Hz),  124.90 (q, J = 281.9 Hz), 

173.83.

Racemic ethyl 5,5,5-Trifluoro-4-tosyloxivalerate (37):  To a solution of ethyl  5,5,5-trifluoro-4-

hydroxyvalerate  36 (5.87 g,  29.3 mmol)  in  anhydrous  pyridine  (30 mL), 

cooled in ice/salt bath was added tosyl chloride (11.2 g, 58.6 mmol) as one 

portion,  followed  by DMAP (0.72 g,  5.9 mmol).  The  cold  mixture  was 

stirred for 10 min, the bath was removed, and the mixture was stirred at 

ambient  temperature  for 20 h.  Water (5 mL) was added,  the mixture was stirred for 30 min, 

poured into a vigorously stirred mixture of water (50 mL) and diethyl ether (100 mL) and stirred 

for an additional 10 min. The organic phase was separated, washed with aq. 6 M HCl (50 mL), 

water  (50 mL),  dried  over  MgSO4,  filtered  and concentrated  under  reduced pressure to  give 

target ester (9.3 g, 26.4 mmol, 90%) as light yellow viscous liquid. 1H NMR (250 MHz, CDCl3): 

δ = 1,27 (t,  J = 7.14 Hz, 3 H), 1.93–2.08 (m, 1 H), 2.11–2.25 (m, 1 H), 2.44 (s, 3 H), 2.50 (t, 

J = 7.20 Hz, 2 H), 4.15 (q,  J = 7.14 Hz, 2 H), 4.93–5.08 (m, 1 H), 7.34 (d,  J = 8.25 Hz, 2 H), 

7.78  (d,  J = 8.32 Hz,  2 H);  13C NMR (62.9 MHz,  CDCl3):  δ = 14.07,  21.63,  23.65  (q, 

J = 1.7 Hz),  28.23,  60.82,  75.40  (q,  J = 33.0 Hz),  127.90,  129.86,  130.78  (q,  J = 243.5 Hz), 

145.57, 156.52, 171.82.

Racemic  trans-2-trifluoromethylcyclopropanecarboxylic  acid  (38):  The  solution  of  the  ethyl 

5,5,5-trifluoro-4-tosyloxivalerate  37 (6.4 g,  18 mmol)  in  anhydrous 

THF (10 mL) was added via  syringe during 3 hour to  vigorously stirred 

refluxing  solution  of  potassium  tert-butoxide  (9.0 g,  80 mmol)  in 

anhydrous  THF (50 mL) under  N2-flow and the solution was refluxed for 4 h. The resulting 

mixture after cooling was diluted with water (100 mL) and organics were distilled out under 

reduced pressure. Alkaline water phase was washed with diethyl  ether (3 × 30 mL),  acidified 

with aqueous 6 M HCl to pH~1 and extracted with diethyl ether (5 × 50 mL). Combined extracts 

were dried over MgSO4, filtered and concentrated under reduced pressure, giving crude product 

as black tar.  Molecular  distillation of this  crude product gives target  acid as colorless liquid 

(1.3 g,  8.4 mmol,  47%).  1H NMR (250 MHz, CDCl3):  δ = 1.25–1.48 (m,  2 H),  1.97–2.11  (m, 

1 H),  2.12–2.29  (m,  1 H),  10.36  (bs,  1 H);  13C NMR (62.9 MHz,  CDCl3):  δ = 10.83  (–,  q, 

J = 3.2 Hz),  16.56 (+,  q,  J = 2.6 Hz),  22.56 (+,  q,  J = 38.3 Hz),  124.50 (–,  q,  J = 271.2 Hz), 

177.70.
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Racemic  2-Methanesulfinyl-1-(trans-2-trifluoromethyl-cyclopropyl)-ethanone  (39):  Potassium 

tert-butoxide  (4.9 g,  44 mmol)  was  dissolved  in  anhydrous  DMSO 

(30 mL)  under  N2-flow at  ambient  temperature  and the solution was 

stirred  for  1 hour.  The  solution  of  the  ethyl  5,5,5-trifluoro-4-

tosyloxyvalerate  37 (3.4 g, 10.0 mmol)  in 5 ml of anhydrous DMSO 

was added dropwise and the resulting mixture was stirred for 24 hours at 50°C and 12 hours at 

60°C (bath temperature). The mixture was diluted with water (50 mL) and washed with diethyl 

ether (5 × 20 mL), organic phases were discarded. The resulting alkaline solution was acidified 

with aqueous HCl (6 M) to  pH~1 and extracted  with diethyl  ether  (10 × 20 mL).  Combined 

organic  phases  were  washed  with  water  (3 × 50 mL),  dried  over  MgSO4,  filtered  and 

concentrated under reduced pressure, giving crude product as viscous dark oil containing solid. 

The molecular distillation of the crude product gives the yellow liquid, solidifying when stored at 

ambient  temperature  to  waxy  solid  (6.6 g,  31 mmol,  70%).  1H NMR (250 MHz, CDCl3): 

δ = 1.30–1.42 (m, 2 H), 2.07 (s, 2 H), 2.08 (s, 3 H), 2.11–2.22 (m, 1 H), 2.65–2.75 (m, 1 H); 
13C NMR (62.9 MHz, CDCl3):  δ = 12.85, 21.20, 23.17, 61.82, 126.09 (q, J=270.3 Hz), 155.62; 

MS-EI  (77  eV):  m/z  (%)  214  (10,  M+),  137  (14,  M–CH2SOCH3+),  109  (8,  M–

COCH2SOCH3+), 89 (10, C4H3F2+), 77 (100, CH3SOCH2+).

Racemic ethyl  trans-2-trifluoromethylcyclopropanecarboxylate  (40):  The solution of the ethyl 

5,5,5-trifluoro-4-tosyloxivalerate (9.4 g,  26 mmol)  in  anhydrous 

THF (20 mL) was added via syringe during 1 hour to vigorously stirred 

solution of potassium tert-butoxide (14.9 g, 133 mmol) in anhydrous THF 

(100 mL) under N2-flow and the solution was stirred for 24 hours. The resulting mixture was 

concentrated under reduced pressure at ambient temperature and diluted with water (100 mL). 

Alkaline water solution was extracted with diethyl ether (5 × 50 mL), combined extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure, giving crude product as 

black  tar.  Molecular  distillation  of  this  crude  product  gives  target  ester  as  colorless  liquid 

(0.81 g,  4.4 mmol,  17%).  Water  phase  work-up  gives  no  other  products,  but  tar. 
1H NMR (250 MHz, CDCl3):  δ = 1.18–1.41  (m, 2 H),  1.27 (t,  J = 7.1 Hz,  3 H),  1.93–2.30  (m, 

2 H), 4.08–4.29(q, J = 7.1 Hz, 2 H); 13C NMR (62.9 MHz, CDCl3):  δ = 10.18 (–, q, J = 2.5 Hz), 

13.93 (+),  16.71 (+,  q,  J = 2.9 Hz),  21.85 (+,  q,  J = 37.8 Hz),  61.27 (–),  124.78 (–,  q, 

J = 266.7 Hz), 171.24 (–).

Racemic  (2-Trifluoromethyl-cyclopropyl)  methanol(41): Racemic  trans-2-trifluoromethyl-

cyclopropanecarboxylic  acid  (3.4 g,  18.6 mmol)  was  reduced  with  the 
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lithium aluminum hydride in diethyl ether (1.13 M, 8.3 mL, 9.4 mmol) according to GP 8, giving 

target alcohol as colorless liquid (2.3 g, 16.4 mmol, 88%).  1H NMR (250 MHz, CDCl3): 0.70–

0.83 (m,  1 H),  0.94–1.06 (m,  1 H),  1.39–1.58 (m,  2 H),  1.95 (bd,  J = 19.7 Hz,  1 H),  3.40–

3.70 (m,  2 H);  13C NMR (62.9 MHz,  CDCl3):  6.28,  17.44,  17.86 (q, J=37.0 Hz),  63.68, 

126.09 (q, J=270.3 Hz).

Racemic  trans-(2-Trifluoromethylcyclopropyl)methyl  iodide (47):  Racemic  trans-(2-

trifluoromethylcyclopropyl)methanol (1.7 g,  12 mmol)  was  iodinated 

according  to  GP 9 with  triphenylphosphine  (5.5 g,  21 mmol),  imidazole 

(1.5 g,  22 mmol)  and  solid  iodine  (6.0 g,  24 mmol)  in  diethyl 

ether/acetonitrile  mixture  (36 + 24 ml),  giving  the  target  iodide  as  slightly  yellowish  liquid 

(2.7 g,  11 mmol,  90%). TLC:  Rf = 0.36,  pentane;  1H NMR (250 MHz, CDCl3):  0.75–0.87 (m, 

1 H), 1.21–1.33 (m, 1 H), 1.41–1.57 (m, 1 H), 1.63–1.79 (m, 1 H), 3.03–3.21 (m, 2 H); 13C NMR 

(62.9 MHz,  CDCl3):  6.76,  13.51 (q,  J = 3.0 Hz),  19.42 (q, J = 2.7 Hz),  25.06, 

130.00 (q, J = 280.5 Hz)

(R)-Belokon'  3-(2-trifluoromethylcyclopropyl)alanine  complex  [(R)-B(tFmcpA)C,  

(2R,1'S,2'R)-112]:  (R)-BGC (3.17 g, 6.4 mmol) was alkylated 

with  racemic  trans-(2-trifluoromethylcyclopropyl)me-

thyliodide  47 (1.67 g,  6.7 mmol)  according  to  GP 10 using 

NaH (60% in oil, 305 mg, 7.6 mmol) in DMF/MeCN mixture 

(3 + 6 mL)  during  4  hour,  giving  after  chromatographycal 

separation (silica gel, eluted with EtOAc), (2R,1'S,2'R) component (1.73 g, 2.79 mmol, 43.7% on 

(R)-BGC,  d.e.≥98%),  (2R,1'R,2'S)  component  (1.68 g,  2.71 mmol,  42.4%  on  (R)-BGC, 

d.e.≥98%) and mixed fractions (0.17 g, 0.27 mmol, 4.3% on (R)-BGC) as well as products of the 

anion oxidation (0.12 g). For (2R,1'S,2'R) component 1H NMR (250 MHz, CDCl3): δ = –0.15– –

0.09 (m, 1 H), 0.80–0.86 (m, 1 H), 0.90–0.98 (m, 1 H), 1.10–1.16 (m, 1 H), 1.76–1.84 (m, 1 H), 

2.04–2.13 (m,  1 H),  2.13–2.21 (m,  1 H),  2.43–2.52 (m,  1 H),  2.57–2.71 (m,  2 H),  3.46 (dd, 

J = 5.6 Hz,  11.1 Hz,  1 H),  3.49–3.60 (m,  3 H),  3.92 (dd,  J = 3.5 Hz,  9.1 Hz,  1 H),  4.42 (d, 

J = 12.7 Hz, 1 H), 6.56–6.65 (m, 2 H), 6.86 (d,  J = 7.6 Hz, 1 H), 7.11 (ddd,  J = 1.8 Hz, 6.8 Hz, 

8.6 Hz,  1 H),  7.17 (t,  J = 7.5 Hz,  1 H),  7.25–7.29 (m,  1 H),  7.33 (t,  J = 7.7 Hz,  2 H),  7.41–
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7.46 (m, 1 H), 7.47–7.54 (m, 2 H), 8.05 (d, J = 7.1 Hz, 2 H), 8.09 (d, J = 8.7 Hz, 1 H); 13C NMR 

(125.7 MHz, CDCl3): δ=8.41, 11.74, 20.09 (q,  J = 36.9 Hz,), 23.93, 30.70, 38.41, 57.24, 63.17, 

69.52, 70.11, 120.70, 123.74, 125.93 (q, J = 270.3 Hz,), 126.23, 127.32, 127.35, 128.84, 128.89, 

128.90, 129.05, 129.84, 131.48, 132.28, 133.12, 133.24, 133.69, 142.35, 170.75, 178.65, 180.45; 

MS-ESI:  (positive)  m/z (%)  1882 (100,  3M+Na+),  1263 (66,  2M+Na+),  810 (25,  2M+Na–

C13H12+), 642 (15, M+Na+), 620 (3, M+H+), (negative) m/z (%) 618 (100, M–H−), 528 (40, 

M–C7H7−).

(2R,1'S,2'R)-3-(2-trifluoromethylcyclopropyl)alanine  [(R)tFmcpA,  R-96 c]:  Compound 

(2R,1'S,2'R)-112 (980 mg, 1.58 mmol) was decomposed and the amino 

acid was separated and purified according to GP 11 to give pure target 

amino acid R-96 c (275 mg, 1.39 mmol, 88%). [α]D
20 –20.0 (c = 0.2 in 

MeOH);  1H NMR  (250 MHz,  CD3OD):  δ = 0.75–0.87 (m,  1 H),  0.94–1.07 (m,  1 H),  1.31–

1.44 (m,  1 H),  1.47–1.67 (m,  2 H),  2.06–2.22 (m,  1 H),  3.54–3.63 (m,  1 H),  4.94 (bs,  3 H); 
13C NMR (62.9 MHz, CD3OD): δ = 9.64, 13.10, 20.12 (q, J = 36.9 Hz), 34.88, 55.99, 127.80 (q, 

J = 269.6 Hz), 173.72; MS-EI (70 eV): m/z (%) 152 (100,  M–CO2H+),  74 (75, C2H4NO2+)); 

MS-ESI: (positive) m/z (%) 198 (100, M+H+), (negative) m/z (%) 196 (60, M–H−).

(S)-Belokon'  3-(2-trifluoromethylcyclopropyl)alanine  complex  [(S)-B(tFmcpA)C,  

(2S,1'S,2'R)-113]:  (S)-BGC  (645 mg,  1.29 mmol)  was 

alkylated with racemic  (2-trifluoromethylcyclopropyl)methyl 

iodide  47 (340 mg,  1.36 mmol)  according  to  GP 10 using 

NaH (60% in oil, 62 mg, 1.55 mmol) in DMF/MeCN mixture 

(1 + 2 mL)  during  4 h,  giving  after  chromatographycal 

separation  (silica  gel,  eluted  with  EtOAc),  (2S,1'R,2'S) 

component  (393 mg,  634 µmol,  49.1%  on  (S)-BGC, 

d.e.≥98%),  (2S,1'S,2'R)  component  (364 mg,  587 µmol, 

45.5% on (S)-BGC, d.e.≥98%) and mixed fractions (33 mg, 53 µmol, 4.1% on (S)-BGC). For 

(2S,1'S,2'R)  component  1H NMR (250 MHz, CDCl3):  δ = 0.43–0.61  (m,  2 H),  1.00–1.13  (m, 

1 H), 1.40–1.70 (m, 2 H), 1.99–2.26 (m, 3 H), 2.40–2.78 (m, 2 H), 3.33–3.65 (m, 4 H), 3.99 (dd, 

J = 8.9 Hz, 3.3 Hz, 1 H), 4.46 (d, J = 12.6 Hz, 1 H), 6.58–6.71 (m, 2 H), 6.84(d, J = 7.5 Hz, 1 H), 

7.09–7.23 (m,  2 H),  7.29–7.40 (m,  3 H),  7.41–7.63 (m,  3 H),  8.04–8.12 (m,  3 H);  13C NMR 

(62.9 MHz, CDCl3): δ = 23.89 (q,  J = 1.3 Hz), 30.67, 38.77, 57.24, 60.33, 63.21, 69.68, 70.14, 
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77.29, 120.74, 125.58 (q, J = 237.9 Hz), 126.24, 127.28, 128.35, 128.54, 128.86, 128.88, 128.89, 

129.25, 129.90, 131.45, 131.93, 132.09, 132.24, 133.14, 133.34, 133.62, 142.27, 156.25, 156.27, 

156.32, 170.47, 178.68, 180.43.

(2S,1'S,2'R)-3-(2-trifluoromethylcyclopropyl)alanine  [(S)tFmcpA,  S-96 c]:  Compound 

(2S,1'S,2'R)-113 (210 mg, 339 µmol) was decomposed and the amino 

acid was separated and purified according to GP 11 to give pure target 

amino acid  c (61 mg, 311 µmol, 92%).

8.2. (Difluoromethylcyclopropy)lalanines

Racemic  monomethyl  cyclopropane-trans-1,2-dicarboxylate  (16)[121]:  The  LiOH × H2O (4.2 g, 

100 mmol)  solution  in  methanol  (100 mL)  was  added  dropwise  for 

1 hour to vigorously stirred solution of racemic dimethyl cyclopropane-

trans-1,2-dicarboxylate 15 (15.8 g, 100 mmol) in THF (400 mL) under 

N2-flow and the resulting mixture was stirred for an additional 1 h. Solvents were evaporated 

under reduced pressure at ambient temperature, the residue was diluted with water (80 mL) and 

washed  with  diethyl  ether.  Organic  phases  were  discarded,  water  phase  was  acidified  with 

concentrated aqueous HCl (37%, 10 mL), saturated with solid NaCl and extracted with diethyl 

ether (3 × 50 mL). Combined organic phases were dried over MgSO4, filtered and concentrated 

under  reduced pressure,  giving  clear  oil,  solidifying  when dried  in  vacuo overnight  (12.1 g, 

84 mmol,  84%).  1H NMR  (250 MHz,  CDCl3):  δ = 1.42–1.57 (m,  2 H),  2.11–2.27 (m,  2 H), 

3.71 (s,  3 H),  9.76 (bs,  1 H);  13C NMR  (62.9 MHz,  CDCl3):  δ = 15.87,  22.07,  22.75,  52.31, 

171.86, 178.13.

Racemic methyl trans-2-hydroxymethylcyclopropanecarboxylate (18)[122]: The borane – dimethyl 

sulfide  complex  (10 M in Me2S,  10.8 mL,  108 mmol)  was  added 

dropwise for 30 min to cold (ice/water bath) solution of the racemic 

monomethyl  cyclopropane-trans-1,2-dicarboxylate  16 (12.9 g, 

90 mmol) in THF (40 mL) and the resulting mixture was left to stir in melting bath overnight. 

The mixture was re-cooled  (ice/water  bath) and methanol  (5 mL) was added dropwise under 

stirring. After H2 gas evolution ceased,  the mixture was diluted with methanol (100 mL) and 

concentrated under reduced pressure, this dilution-concentration procedure was repeated 3 times, 

giving crude product as clear oil (11.9 g), which was purified with chromatography (silica gel, 

eluted with Et2O) to give pure hydroxyester  18 as colorless clear oil (11.1 g, 85 mmol, 95%). 

TLC:  Rf=0.26 (Et2O);  1H NMR  (250 MHz,  CDCl3):  1.06–1.29 (m,  2 H),  1.36–1.50 (m,  2 H), 
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1.99–2.25 (m, 2 H), 3.65 (s, 3 H), 4.58 (bs, 1 H); 13C NMR (62.9 MHz, CDCl3): 12.7, 18.1, 24.2, 

51.8, 64.3, 174.5.

Racemic methyl trans-2-formylcyclopropanecarboxylate (20)[121]: To a vigorously stirred solution 

of  oxalyl  chloride  (5.23 g,  3.5 mL,  41.2 mmol)  in  anhydrous  CH2Cl2 

(70 mL) cooled to –78 °C (dry ice/acetone bath) under nitrogen flow, was 

added a  solution of anhydrous  DMSO (6.89 g,  6.3 mL,  88.2 mmol)  in 

anhydrous CH2Cl2 (3 mL) at  such a rate that the temperature of the reaction mixture did not 

exceed –70 °C (about 40 min). After the mixture was stirred at –70 °C for an additional 30 min, 

a  solution  of  the  racemic  methyl  trans-2-hydroxymethylcyclopropanecarboxylate  18 (4.44 g, 

34.1 mmol) was added dropwise under vigorous stirring keeping the temperature of the reaction 

mixture under –70 °C. The mixture was stirred at  this  temperature for an additional  1 h and 

anhydrous triethylamine (17.2 g, 24 mL, 170 mmol) was gradually added at –78 °C. After the 

addition was complete, the cooling bath was removed and the stirred mixture was allowed to 

reach room temperature.  Then water (20 mL) was added and the mixture was acidified with 

aq. 12 M HCl (15 mL) at 0 °C (ice/salt bath). The organic layer was separated and the aqueous 

phase was extracted with diethyl ether (3 × 20 mL). Combined organic layers were washed with 

water (20 mL), brine (2 × 20 mL), dried over MgSO4, filtered and concentrated under reduced 

pressure, giving the target aldehyde as colorless clear oil (4.19 g, 32.7 mmol, 96%).  1H NMR 

(250 MHz,  CDCl3):  1.38-1.66 (m, 2H),  2.08-2.53 (m, 2H),  3.68 (s, 3H),  9.27 (d, 4.2 Hz); 
13C NMR (62.9 MHz, CDCl3): 14.8, 21.9, 30.5, 52.2, 171.5, 198.1.

Racemic methyl trans-2-difluoromethylcyclopropanecarboxylate (21): The reaction was provided 

in PTFE flask. Deoxo-Fluor® 14 solution in toluene (50% w/w, 26.4 g, 

59.7 mmol)was  added under  N2-flow with  stirring  to  the  solution  of 

racemic  methyl  trans-2-formyl-cyclopropanecarboxylate  20 (4.5 g, 

35.1 mmol)  in  anhydrous  CH2Cl2 (6 ml).  Ethanol  (0.1 mL)  was  added  and  the  mixture  was 

stirred for 48 hours at ambient temperature. Resulting solution was poured to vigorously stirred 

sat. aq. NaHCO3 (150 mL), stirred till CO2 gas evolution ceased, organic phase was separated, 

water phase was extracted with CH2Cl2 (3 × 50 mL), combined organic phases were dried over 

MgSO4, filtered and concentrated under reduced pressure. The crude product was purified with 

the column chromatography (silica gel, eluted with pentane/diethyl ether 4:1) to give pure target 

difluoroester  21 as  colorless  liquid  (2.7 g,  18.0 mmol,  51%).  1H NMR (250 MHz,  CDCl3): 

δ = 1.09–1.21 (m,  1 H),  1.21–1.33 (m,  1 H),  1.82–2.00 (m,  2 H),  3.69 (s,  3 H),  5.76 (td, 

J = 57.3 Hz,  3.4 Hz,  1 H);  13C NMR (62.9 MHz,  CDCl3):  δ = 9.7 (–,  t,  J=4.3 Hz),  15.5 (+,  t, 
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J=4.4 Hz),  22.8 (+,  t,  J=27.0 Hz),  51.9 (+),  114.6 (+,  t,  J=239.0 Hz),  172.5 (–);  MS–

EI (70eV): m/z  (%)  150.1 (10%, M+),  149.1 (9%, M–H+),  119.1 (100%, M–MeO+), 

99.1 (29%, C5H4FO+), 91.1 (30%, M–CO2Me+), 59.0 (28%, C3H4F+), .

Racemic  trans-(2-difluoromethylcyclopropyl)  methanol  (42):  Racemic  methyl 

trans-2-difluoromethylcyclopropanecarboxylate  21 (2.52 g,  16.8 mmol) 

was reduced with the lithium aluminum hydride in diethyl ether (1.13 M, 

7.4 mL, 8.4 mmol) according to GP 9. The crude product was purified 

with the column chromatography (silica gel, eluted with pentane/diethyl ether 1:1) to give the 

target difluoroalcohol 42 as colorless liquid (1.68 g, 13.8 mmol, 82%). TLC: Rf = 0.17 (pentane/

Et2O=4:1);  1H NMR (600 MHz,  CDCl3):  δ = 0.58–0.63 (m,  1 H),  0.76–0.80 (m,  1 H),  1.15–

1.24 (m,  1 H),  1.26–1.32 (m,  1 H),  2.57 (bs,  1 H),  3.40–3.53 (m,  2 H),  5.56 (td,  J = 57.4 Hz, 

4.5 Hz, 1 H);  13C NMR (125.7 MHz, CDCl3): δ = 5.48 (–, t,  J=4.5 Hz), 16.58 (+, t,  J=4.0 Hz), 

18.59 (+, t, J=27.1 Hz), 64.42 (–), 116.78 (+, t, J=237.5 Hz).

Racemic  trans-(2-difluoromethylcyclopropyl)methyl  iodide  (46):  Racemic  trans-(2-

difluoromethylcyclopropyl) methanol 42 (1.68 g, 13.8 mmol) was iodinated 

according to GP 9 with triphenylphosphine (6.26 g, 23.9 mmol), imidazole 

(1.71 g,  25.1 mmol)  and  solid  iodine  (6.75 g,  26.5 mmol)  in  diethyl 

ether/acetonitrile  mixture  (41 + 27 ml),  giving  the  target  iodide  as  slightly  yellowish  liquid 

(2.81 g,  12.1 mmol,  88%).  TLC:  Rf = 0.17,  pentane;  1H NMR (300 MHz,  CDCl3):  δ = 0.63–

0.74 (m, 1 H), 1.06–1.16 (m, 1 H), 1.16–1.33 (m, 1 H), 1.48–1.61 (m, 1 H), 3.04–3.17 (m, 2 H), 

5.63 (td,  J = 57.4 Hz,  3.9 Hz,  1 H);  13C NMR  (125.7 MHz,  CDCl3):  δ = 8.60 (–),  12.95 (–,  t, 

J = 4.5 Hz),  18.85 (+,  t,  J=4.6 Hz),  25.73 (+,  t,  J=26.7 Hz),  115.70 (+,  t,  J=238.4 Hz);

MS–EI (70 eV):  m/z  (%)  105,1 (100%, M-I+),  85.1 (20%, C5H6F+),  77.0 (30%, C4H10F+), 

59.1 (95%, C3H4F+), 41.2 (31%, C3H5+).

(R)-Belokon'  3-(2-difluoromethylcyclopropyl)alanine  complex  [(R)-B(dFmcpA)C,  

(2R,1'S,2'R)-114]:  (R)-BGC  (2.00 g,  4.02 mmol)  was 

alkylated  with  racemic  trans-(2-difluoromethylcyclopro-

pyl)methyl  iodide  46 (980 mg,  4.22 mmol)  according  to 

GP 10 using NaH (60% in oil, 193 mg, 4.8 mmol) in DMF/

MeCN mixture (2 + 4 mL) during 1 h, giving (2R,1'S,2'R) 

component  (1.14 g,  1.90 mmol,  47.3%  on  (R)-BGC, 

d.e.≥98%),  (2R,1'R,2'S)  component  (1.10 g,  1.82 mmol, 

45.4%  on  (R)-BGC,  d.e.≥98%)  and  mixed  fractions 
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(0.107 g,  0.18 mmol,  4.4%  on  (R)-BGC).  For  (2R,1'S,2'R)  component  [α]D
20 = –2830.0° 

(c=0.2, CHCl3); 1H NMR (600 MHz, CDCl3): δ= –0.3 – –0.2 (m, 1 H), 0.6–0.7 (m, 1 H), 0.9–1.0 

(m, 1 H), 1.0–1.1 (m, 1 H), 1.4–1.5 (m, 1 H), 2.0–2.1 (m, 1 H), 2.1–2.2 (m, 1 H), 2.4–2.5 (m, 

1 H), 2.55–2.7 (m, 2 H), 3.4–3.5 (m, 1 H), 3.5–3.6 (m, 2 H), 3.55 (d, J = 12.7 Hz, 1 H), 3.90 (dd, 

J = 3.5 Hz, 9.6 Hz, 1 H),  4.43 (d,  J = 12.7 Hz, 1 H),  5.51 (td, J = 57.4 Hz, 4.4 Hz, 1 H),  6.55–

6.65 (m, 2 H), 6.87 (d, J = 7.2 Hz, 1 H), 7.07–7.12 (m, 1 H), 7.12–7.20 (m, 1 H), 7.22–7.28 (m, 

1 H), 7.28–7.36 (m, 2 H), 7.38–7.44 (m, 1 H), 7.46–7.54 (m, 2 H), 8.00–8.50 (m, 3 H); 13C NMR 

(125.7 MHz,  CDCl3):  δ=7.23 (–),  11.01 (+,  t,  J = 4.5Hz),  20.94 (+,  t,  J = 26.9 Hz),  23.95 (–), 

30.66 (–),  39.07 (–),  57.21 (–),  63.10 (–),  69.84 (+),  70.08 (+),  116.73 (+,  t,  J = 238.0 Hz), 

120.66 (+),  123.70 (+),  126.23 (–),  127.31 (+),  127.35 (+),  128.11 (+),  128.80 (+),  128.85 (+), 

128.92 (+)  128.97 (+),  129.77 (+),  129.81 (+),  131.46 (+),  132.17 (+),  133.07 (+),  133.23 (–), 

133.61 (–),  142.24 (–),  170.45 (–),  178.79 (–),  180.39 (–);  MS-ESI:  (positive)  m/z  (%) 

624.2 (100%,  M+Na+),  1225.0 (90%,  2M+Na+),  1827.4 (55%,  3M+Na+),  602.2 (16%,

M+H+).

(2R,1'S,2'R)-3-(2-difluoromethylcyclopropyl)alanine  (R-96 b):  (2R,1'S,2'R)-B(dFmcpA)C 

(730 mg,  1.21 mmol)  was  decomposed  and  the  amino  acid  was 

separated and purified according to GP 11 to give pure target amino 

acid  (210 mg,  1.17 mmol,  97%). [α]D
20 = +30.4°  (c=0.5,  H2O); 

1H NMR (600 MHz, D2O): δ = 1.21–1.30 (m, 1 H), 1.63–1.75 (m, 1 H), 1.98–2.08 (m, 1 H), 3.81 

(t,  J = 6.0 Hz, 1 H), 5.67 (td,  J = 57.1 Hz, 4.8 Hz, 1 H); MS-ESI: (positive) m/z (%) 180 (100, 

M+H+), (negative) m/z (%) 357 (100, 2M–H−), 178 (55, M–H−). 

(S)-Belokon'  3-(2-difluoromethylcyclopropyl)alanine  complex  [(S)-B(dFmcpA)C,  

(2S,1'S,2'R)-115]:  (S)-BGC  (756 mg,  1.52 mmol)  was 

alkylated  with  racemic  trans-(2-difluoromethylcyclopro-

pyl)methyl  iodide  46 (370 mg,  1.60 mmol)  according  to 

GP 10 using NaH (60% in oil, 73 mg, 1.82 mmol) in DMF/

MeCN  mixture  (1 + 2 mL)  during  1  hour,  giving 

(2S,1'R,2'S)  component  (442 mg,  734 µmol,  48,3%  on 

(S)-BGC,  d.e.≥98%),  (2S,1'S,2'R)  component  (409 mg, 

679 µmol,  44.7%  on  (S)-BGC,  d.e.≥98%)  and  mixed 

fractions  (40 mg,  67 µmol,  4.4%  on  (S)-BGC).  For  (2S,1'S,2'R)  component  [α]D
20 = +2200° 

(c=0.2, CHCl3); 1H NMR (600 MHz, CDCl3): δ = 0.25–0.37 (m, 1 H), 0.37–0.41 (m, 1 H), 0.85–

0.95 (m, 1 H), 1.30–1.45 (m, 2 H), 2.00–2.10 (m, 1 H), 2.10–2.19 (m, 1 H), 2.19–2.23 (m, 1 H), 
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2.43–2.53 (m,  1 H),  2.60–2.70 (m,  1–H),  3.40–3.47 (m,  1–H),  3.47–3.6 (m,  2 H),  3.53 (d, 

J = 12.7 Hz, 1 H), 3.90–3.97 (m, 1 H), 4.41 (d, J = 12.7 Hz, 1 H), 5.41 (td,  J = 57.2 Hz, 4.1 Hz, 

1 H),  6.55–6.60 (m,  1 H),  6.60–6.65 (m,  1 H),  6.78–6.83 (m,  1 H),  7.08–7.12 (m,  1 H),  7.12–

7.17 (m, 1 H), 7.25–7.38 (m, 3 H), 7.39–7.46 (m, 1 H), 7.46–7.57 (m, 2 H), 8.00–8.10 (m, 3 H); 
13C NMR (125.7 MHz, CDCl3): δ = 8.38 (–, t, J = 4.2 Hz), 11.38 (+, dd, J=4 Hz, 5 Hz), 20.10 (+, 

dd, 26.1 Hz, 28.0 Hz), 23.85 (–), 30.67 (–), 39.18 (–), 57.19 (–), 63.16 (–), 69.96 (+), 70.15 (+), 

116.44 (+, t,  J=32.0 Hz), 120.66 (+), 123.66 (+), 126.25 (–), 127.33 (+), 127.44 (+), 128.13 (+), 

128.81 (+),  128.85 (+),  129.04 (+),  129.12 (+),  129.83 (+),  131.29 (+),  131.45 (+),  132.15 (+), 

133,11 (+),  133.28 (–),  133.62 (–),  142.29 (–),  170.33 (–),  178.76 (–),  180.36 (–);  MS-ESI: 

(positive)  m/z  (%)  1828 (55%, 3M+Na+),  1225 (100%, 2M+Na+),  624 (70%,  M+Na+), 

602 (14%, M+H+), (negative) m/z (%) 600 (100%, M–H−).

(2S,1'S,2'R)-3-(2-difluoromethylcyclopropyl)alanine  (S-96 b):  (2S,1'S,2'R)-B(dFmcpA)C 

(180 mg,  299 µmol)  was  decomposed  and  the  amino  acid  was 

separated and purified according to GP 11 to give pure target amino 

acid  (50 mg,  278 µmol,  93%).  [α]D
20 = –16.0° (c=0.3  in  H2O); 

1H NMR  (600 MHz,  D2O):δ = 0.65–0.75 (m,  1 H),  0.90–1.00 (m, 

1 H),  1.10–1.20 (m,  1 H),  1.30–1.41 (m,  1 H),  1.80–1.88 (m,  1 H),  2.01–2.08 (m,  1 H), 

3.87 (dd, J = 6.6 Hz, 5.4 Hz, 1 H), 4.72 (bs, 3 H), 5.76 (td, J = 57.2 Hz, 4.8 Hz, 1 H); 13C NMR 

(125.7 MHz,  D2O):  δ = 6.93 (–,  dd,  J = 5.6 Hz,  3.3 Hz), 10.10 (+,  dd,  J = 5.9 Hz,  3.5 Hz), 

19.92 (+, t,  J = 27.1 Hz), 117.99 (+, t,  J = 235.4 Hz), 174.20 (–); MS-ESI: (positive) m/z (%) 

180.0 (100%, M+H +).

8.3. Monoluoromethylcyclopropylalanines

Racemic  methyl  trans-2-monofluoromethylcyclopropanecarboxylate  (19):  The  reaction  was 

provided in PTFE flask. Deoxo-Fluor® solution in toluene (50% w/w, 

24.3 g,  55.0 mmol)  was  added  under  N2-flow  with  stirring  to  the 

solution of racemic methyl  trans-2-hydroximethyl-cyclopropanecarbo-

xylate 18 (6.5 g, 50.0 mmol) in anhydrous CH2Cl2 (5 ml) and the mixture was stirred overnight at 

ambient  temperature.  Resulting  solution  was  poured  to  vigorously  stirred  sat. aq. NaHCO3 

(150 mL), stirred till CO2 gas evolution ceased, organic phase was separated, water phase was 

extracted with CH2Cl2 (3 × 50 mL), combined organic phases were dried over MgSO4, filtered 

and  concentrated  under  reduced  pressure.  The  crude  product  was  purified  with  the  column 

chromatography  (silica  gel,  eluted  with  pentane/diethyl  ether  4:1)  to  give  pure  target 
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monofluoroester  as  colorless  liquid  (3.1 g,  23.6 mmol,  47%).  1H NMR  (250 MHz,  CDCl3): 

δ = 0.80–0.98 (m,  1 H),  1.15–1.37 (m,  1 H),  1.60–1.72 (m,  1 H),  1.73–1.92 (m,  1 H),  3.67 (s, 

3 H), 4.18 (ddd, J = 7.2 Hz, 9.8 Hz, 48.2 Hz, 1 H), 4.40 (ddd, J = 6.0 Hz, 9.8 Hz, 48.2 Hz, 1 H); 
13C NMR (62.9 MHz,  CDCl3):  δ = 12.1 (–,  d,  J = 7.0 Hz),  18.0 (+,  d,  J = 5.8 Hz),  21.3 (+,  d, 

J = 24.7 Hz), 51.8 (+), 84.7 (–, d,  J = 168.7 Hz), 173.46 (–, d,  J = 1.7 Hz); MS-EI (70 eV): m/z 

(%)  132.1 (25%, M+),  131.1 (20%, M–H+),  101.0 (100%,  M–MeO+),  71.0 (30%, C4H4F+), 

47.1 (80%, C2H4F+).

Racemic  trans-(2-monofluoromethylcyclopropyl)  methanol  (43):  Racemic  methyl 

trans-2-monofluoromethylcyclopropanecarboxylate  19 (2.2 g, 

16.7 mmol) was reduced with the lithium aluminum hydride in diethyl 

ether (1.13 M, 7.4 mL, 8.4 mmol) according to GP 8. The crude product 

was purified with the column chromatography (silica gel, eluted with pentane/diethyl ether 1:1) 

to  give  the target  monofluoroalcohol  as  colorless  liquid  (1.33 g,  12,8 mmol,  76%).  1H NMR 

(600 MHz, CDCl3): 0.47–0.55 (m, 2 H), 1.00–1.11 (m, 2 H), 2.64–2.74 (bs, 1 H), 3.33–3.49 (m, 

2 H), 4.07–4.31 (m,  2 H);  13C NMR (125.7 MHz, CDCl3): 7.59 (–, d,  J = 7.3 Hz), 16.49 (+, d, 

J = 25.1 Hz), 19.21 (+, d, J = 5.7 Hz), 65.31 (–, d, J = 1.3 Hz), 86.90 (–, d, J = 165.8 Hz).

Racemic  trans-(2-monofluoromethylcyclopropyl)methyl  iodide  (45):  Racemic  trans-(2-

monofluoromethylcyclopropyl)  methanol  43 (1.33 g,  12.8 mmol)  was 

iodinated according to GP 9 with triphenylphosphine (5.81 g, 22.2 mmol), 

imidazole (1.58 g, 23.3 mmol) and solid iodine (6.25 g, 24.6 mmol) in diethyl ether/acetonitrile 

mixture (38 + 25 ml), giving the target iodide as light yellow liquid (2.50 g, 17.7 mmol, 91%). 

TLC: Rf = 0.11, pentane;  1H NMR (300 MHz, CDCl3): 0.59–0.68 (m, 1 H), 0.82–0.91 (m, 1 H), 

1.11–1.25 (m, 1 H), 1.26–1.38 (m, 1 H), 3.13 (d, J = 7.6 Hz, 2 H), 4.22 (dd, J = 7.0 Hz, 48.4 Hz, 

2 H); 13C NMR (125.7 MHz, CDCl3): 10.54 (–, d, J = 0.9 Hz) 15.40 (–, d, J = 7.0 Hz), 21.38 (+, 

d,  J = 6.6 Hz),  24.06 (+,  d,  J = 25.2 Hz),  85.96 (–,  d,  J = 167.6 Hz);  MS-EI (70 eV):  m/z (%) 

41.2 (100%, C3H5+), 87.1 (38%, M–I+), 67.1 (36%, C5H7+).

(R)-Belokon'  3-(2-monofluoromethylcyclopropyl)alanine  complex  [(R)-B(mFmcpA)C,  

(2R,1'S,2'R)-116]:  (R)-BGC  R-13 (2.40 g,  4.8 mmol)  was 

alkylated with racemic trans-(2-monofluoromethylcyclopro-

pyl)methyl  iodide  45 (1.07 g,  5.0 mmol)  according  to 

GP 10, using NaH (60% in oil, 230 mg, 5.7 mmol) in DMF/

MeCN  mixture  (2.5 + 5 mL)  during  3 h,  giving  after 

chromatographycal  separation  (silica  gel,  eluted  with 
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EtOAc) (2R,1'S,2'R) component (1.31 g, 2.24 mmol, 46.7% on (R)-BGC, d.e.≥98%), (2R,1'R,2'S) 

component  (1.19 g, 2.03 mmol,  42.3% on (R)-BGC, d.e.≥98%) and mixed fractions (0.102 g, 

0.17 mmol, 3.6% on (R) - BGC).

(2R,1'S,2'R)-3-(2-monofluoromethylcyclopropyl)alanine  (R-96 a):  (2R,1'S,2'R)-B(mFmcpA)C 

(1.11 g,  1.90 mmol)  was  decomposed  and  the  amino  acid  was 

separated and purified according to GP 11 to give pure target amino 

acid (172 mg, 1.06 mmol, 96%).

(S)-Belokon'  3-(2'-monofluoromethylcyclopropyl)alanine  complex  [(S)-B(mFmcpA)C,  

(2S,1'S,2'R)-117]:  (S)-BGC  S-13 (2.40 g,  4.8 mmol)  was 

alkylated  with  racemic  trans-(2-monofluoromethyl-

cyclopropyl)methyl  iodide  45 (1.07 mg,  5.0 mmol) 

according  to  GP 10,  using  NaH  (60%  in  oil,  230 mg, 

5.7 mmol) in DMF/MeCN mixture (2.5 + 5 mL) during 3 h, 

giving after chromatographycal separation (silica gel, eluted 

with  EtOAc)  (2S,1'R,2'S)  component  (1.25 g,  2.15 mmol, 

44.8%  on  (S)-BGC,  d.e.≥98%),  (2S,1'S,2'R) component 

(1.23 g,  2.10 mmol,  43.7% on (S)-BGC, d.e.≥98%) and mixed fractions  (143 mg,  244 µmol, 

5.1% on (S)-BGC).

(2S,1'S,2'R)-3-(2-monofluoromethylcyclopropyl)alanine  (S-96 a):  (2S,1'S,2'R)-B(mFmcpA)C 

(1.20 g,  2.05 mmol)  was  decomposed  and  the  amino  acid  was 

separated and purified according to GP 11 to give pure target amino 

acid (311 mg, 1.93 mmol, 94%).
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9. Hormaomycin and its all-peptide aza-analogue

9.1. Hormaomycin

N-Fmoc Isoleucine dicyclopropylmethyl ester (Fmoc-Ile-ODCPM, 56):[109] To a stirred ice-cold 

solution  of  N-Fmoc  protected  isoleucine  54 (3.53 g,  10.0 mmol)  in 

anhydrous  CH2Cl2 (35 mL)  oxalyl  chloride  (3.17 g,  25.0 mmol)  and  then 

DMF (15 drops) were added and stirring continued at the same temperature 

for 2 h. The mixture was then allowed to warm to 20 °C and stirred for an 

additional 1 h. Solvents were removed under reduced pressure at ambient 

temperature and the crude acylchloride was dried at 0.01 Torr for 2 h and 

used further without purification. The acylchloride was dissolved in anhydrous CH2Cl2 (35 mL) 

and the mixture of pyridine/dicyclopropylmethanol (1:1 v/v, 5.2 mL) was then added. After 40 

min DMAP (0.02 g) was added to the mixture and stirring continued overnight under N2-flow. 

The reaction mixture was then diluted with diethyl ether (150 mL), washed with aq. 1 M KHSO4 

(3 × 20 mL), water (2 × 20 mL), aq. 5% NaHCO3 (3 × 20 mL), water (3 × 20 mL), brine (2 × 20 

mL),  dried  over  MgSO4,  filtered  and concentrated  under  reduced pressure.  The  residue  was 

purified  by  column  chromatography  (EtOAc/hexane  1:10  (0.5%  Et3N),  Rf = 0.24).  The 

appropriate  fractions  were  pooled,  concentrated  under  reduced  pressure,  taken  up  with 

Et2O/hexane 1:1 (100 mL), washed with water (3 × 20 mL), 3% aqueous NaHCO3 (3 × 20 mL), 

water (3 × 20 mL), brine (2 × 10 mL), dried, filtered and concentrated under reduced pressure to 

give  di-protected  amino  acid (3.0 g,  6.7 mmol,  67%)  as  a  turbid  oil.  [α]D
20 –3.8  (c = 0.26, 

CHCl3); 1H NMR (250 MHz, CDCl3): δ = 0.16–0.38 (m, 4 H), 0.38–0.51 (m, 2 H), 0.51–0.64 (m, 

2 H), 0.94 (t, J = 7.5 Hz, 3 H), 0.96 (d, J = 7,5 Hz, 3 H), 1.02–1.16 (m, 2 H), 1.17–1.34 (m, 1 H), 

1.39–1.47 (m,  1 H),  1.86–2.09 (m,  1 H),  3.90 (t,  J = 8,8 Hz,  1 H),  4.20–4.27 (m,  1 H),  4.34–

4.44 (m, 3 H), 5,36 (d,  J = 9,8 Hz, 1 H), 5,16 (d,  J = 6,0 Hz, 1 H), 7,23–7,46 (m, 4 H), 7,6 (d, 

J = 7,5 Hz, 2 H), 7,76 (d,  J = 8,3 Hz, 2 H);  13C NMR (62,9 MHz, CDCl3): δ = 2.4, 2.6, 2.9 (–), 

11.6 (+), 14.5, 15.3 (+), 14.6 (+), 24.9 (–), 38.1 (+), 47.1 (+), 58.3 (+), 66.8 (–), 83.4 (+), 119.8, 

125.0, 126.9, 127.5 (+), 141.1 (Cquat), 143.7, 143.8 (Cquat), 156.0 (Cquat), 171.5, (Cquat).

N-Z-(2S,3R)-β-Methylphenylalanine (Z-MeF, 57):[109] A solution of ZOSu (489 mg, 1.96 mmol) 

in acetone (6 mL) was added to a vigorously stirred solution of 3-(2S,3R)-

methylphenylalanine  55 (359 mg,  2.00 mmol)  and  NaHCO3 (505 mg, 

6.00 mmol) in water (6 mL); stirring was continued for 2 h (if an emulsion 

formed,  acetone  and/or  water  were  added  to  obtain  a  homogeneous 
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solution).Acetone was then removed under reduced pressure, the residual fraction was diluted 

with water (25 mL) and washed with diethyl ether (3 × 10 mL). The organic fraction was back-

extracted  with  aq. 5% NaHCO3 (3 × 10 mL),  the  pH  of  the  combined  water  fractions  was 

adjusted to ~1 with aq. 1 M HCl and the resulting emulsion was extracted with diethyl  ether 

(2 × 50 mL).  The  organic  layer  was  washed  with  aq. 1 M KHSO4 (2 × 10 mL),  water 

(5 × 10 mL),  brine  (2 × 10 mL),  dried  over  MgSO4,  filtered  and  concentrated  under  reduced 

pressure. The residual oil was dissolved in diethyl ether (3 mL) and dicyclohexylamine (342 mg, 

1.88 mmol) was added followed by hexane (20 mL) and the resulting precipitate was filtered and 

crystallized twice from EtOAc/hexane to give the dicyclohexylammonium salt of the target N-

protected amino acid (800 mg, 1.62 mmol, 81%) as a white solid. To obtain an analytical sample, 

a small quantity of the dicyclohexylammonium salt dissolved in EtOAc and washed twice with 

aq. 1 M KHSO4,  three  times  with  water,  twice  with  brine  to  give,  after  prolonged  drying 

at 0.02 Torr and 60 °C, the target N-protected amino acid.  M.p. 77–79 °C; [α]D
20 17.3 (c=0.76, 

CHCl3);  1H NMR (250 MHz,  CDCl3):  δ = 1.31,  1.36  (2 × d,  J = 7.0 Hz,  3 H),  3.27–4.01  (m, 

1 H), 4.43–4.68 (m, 1 H), 4.74–5.20 (m, 2 H), 5.30 (d, J = 9.0 Hz, 0.75 H), 6.25 (d, J = 8.8 Hz, 

0.25 H),  7.03–7.35  (m,  10 H),  7.30–7.90  (bs,  1 H);  13C NMR  (62.9 MHz,  CDCl3):  δ = 14.3, 

15.8 (+), 41.5, 41.8 (+), 59.1, 59.8 (+), 67.0, 67.4 (–), 127.0 (+), 127.5 (+), 127.6 (+), 127.9 (+), 

128.0 (+), 128.3, 128.3 (+), 135.2, 135.9 (Cquat), 140.9, 141.4 (Cquat), 156.0, 157.1 (Cquat), 175.1, 

175.4 (Cquat). 

Z-MeF-Ile-ODCPM  (60):[109] The  di-protected  isoleucine  56 (334 mg,  750 µmol)  was  N-

deprotected according to GP 1 and the resulting amino ester was coupled 

with  N-Z-protected  β-methylphenylalanine  57 (223 mg,  710 µmol) 

employing EDC (140 mg, 730 µmol), HOAt (100 mg, 730 µmol) and TMP 

(260 mg, 2,13 mmol) in CH2Cl2 (5 mL) according to GP 2. After 6 h, the 

reaction mixture was subjected usual aqueous work-up and the resulting 

crude  product  was  triturated  with  pentane  and  then  purified  by 

crystallization from hexanes to give target dipeptide (336 mg, 640 µmol, 

91%) as a white solid.  Rf = 0.17, EtOAc/hexanes 1:6 (0.5% Et3N); m.p. 

105–106 °C; [α]D
20 9,0 (c = 0.31, CHCl3); 1H NMR (250 MHz, CDCl3): δ = 0.23–0.41 (m, 4 H), 

0.41–0.53 (m,  2 H),  0.53–0.64 (m,  2 H),  0.81 (d,  J = 6.8 Hz,  3 H),  0.89 (t,  J = 7.3 Hz,  3 H), 

0.95–1.21 (m,  3 H),  1.35 (d,  J = 7.3 Hz,  3 H),  1.37–1.48 (m,  1 H),  1.71–1.90 (m,  1 H),  3.15–

3.22 (m, 1 H), 3.90 (t,  J = 8.5 Hz, 1 H), 4.26–4.42 (m, 2 H), 5.09 (s, 2 H), 5.42 (d,  J = 9.0 Hz, 

1 H), 6.06 (d,  J = 7.5 Hz, 1 H), 7.15–7.30 (m, 6 H), 7.30–7.40 (m, 4 H);  13C NMR (62.9 MHz, 

CDCl3): δ = 2.4, 2.7 (–), 11.4 (+), 14.3, 14.5 (+), 14.8 (+), 16.7 (+), 24.9 (–), 37.9 (+), 42.2 (+), 
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56.1 (+), 60.1 (+), 66.5 (–), 82.9 (+), 126.5, 127.4, 127.5, 127.6, 128.0 (+), 128.1 (+), 136.2, 

141.9 (Cquat), 156.1 (Cquat), 170.2, 170.5 (Cquat).

N-Fmoc-(2R,1'R,2'R)-3-(2'-Nitrocyclopropyl)alanine [(R)NcpA, 61]:[109] A solution of FmocOSu 

(0.416 g, 1.36 mmol) in acetone (7 mL) was added to a vigorously stirred 

solution  of  (2R,1'R,2'R)-3-(trans-2'-nitrocyclopropyl)alanine 

(2R,1'R,2'R)-59 (0.2 g, 1.15 mmol) and NaHCO3 (0.202 g, 2.40 mmol) in 

water (5 mL) (if precipitate formed acetone and/or water were added to 

obtain homogeneous solution) and stirring continued for an additional 3 h. Acetone was then 

removed under reduced pressure and pH of the residual water solution was adjusted to ~1 with 

aq. 1 M KHSO4. The resulting emulsion was extracted with Et2O (30 mL) and the ethereal layer 

was then back extracted with aq. 5% NaHCO3 (5 × 10 mL). Combined aqueous fractions were 

washed  with  Et2O  (2 × 10  mL),  acidified  to  pH~2  with  aq. 1 M KHSO4 and  the  resulting 

emulsion  was  extracted  with  Et2O  (4 × 10  mL).  The  organic  phase  was  washed  with 

aq. 1 M KHSO4 (2 × 10 mL), water (3 × 10 mL), brine (2 × 5 mL), dried over MgSO4, filtered 

and concentrated  under  reduced pressure.  The  residue  was  triturated  with  cold  pentane  and 

filtered. The resulting semisolid was dried at 0.02 Torr for prolonged time to give 61 (0.423 g, 

93%) as a white foam. Rf = 0.08 EtOAc/hexanes 1:1; m.p. (softening) 50–57 °C; [α]D
20 56.7 (c = 

0.36,  CHCl3);  1H NMR (250 MHz,  CDCl3):  δ = 0.71–0.82 (m,  0.4 H),  1.11 (m,  0.6 H),  1.17–

1.51 (m, 1 H), 1.75–2.13 (m, 2 H), 3.61–3.76 (m, 1 H), 3.76–3.89 (m, 1 H), 3.99–4.27 (m, 2 H), 

4.27–4.56 (m, 2 H), 4.56–4.69 (m, 1 H), 4.71–4.87 (m, 1 H), 5.48 (d,  J = 7.0 Hz, 0.6 H), 7.01–

7.13 (m,  0.4 H),  7.23–7.42 (m,  5 H),  7.42–7.61 (m,  2 H),  7.75 (d,  J = 7.5 Hz,  2 H); 
13C NMR (62.9 MHz, CDCl3): δ = 17.3, 17.6, 21.4, 22.0 (+), 32.8, 33.2, 46.8 (+), 53.0 (+), 59.0 

(+), 66.7, 67.0, 119.8 (+), 124.2, 124.4 (+), 124.8 (+), 126.9, 127.6 (+), 141.1 (Cquat),  143.0, 

143.3 (Cquat), 143.3, 143.5 (Cquat), 155.9, 156.8 (Cquat), 173.8, 174.6 (Cquat).

Fmoc-(R)NcpA-MeF-Ile-ODCPM (63):[109] Dipeptide 60 (0.35 g, 0.67 mmol) was taken up with 

EtOAc (10 mL) and hydrogenated over 10% Pd/C (0.15 g) 

under  ambient  pressure  of  hydrogen  for  2 h.  The  reaction 

mixture was filtered through a pad of Celite and concentrated 

under  reduced  pressure  to  give  deprotected  dipeptide  62, 

which was directly used for the coupling with  61 (274 mg, 

0.69 mmol), using EDC (137 mg, 0.72 mmol), HOAt (96 mg, 

0.71  mmol)  and  TMP (0.25  mL,  2.02  mmol)  according  to 

GP 2 to give tripeptide 63 (405 mg, 79%) as a colorless solid 
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after 2 recrystallizations from THF/hexanes 1:1. Rf = 0.52, EtOAc/hexanes 2:3; m.p 151–155 °C, 

[α]D
20 3.8 (c = 0.26, CHCl3); 1H NMR (250 MHz, CDCl3): δ = 0.20–0.38 (m, 4 H), 0.37–0.49 (m, 

2 H), 0.49–0.62 (m, 2 H), 0.80 (d, J = 7.0 Hz, 3 H), 0.86 (t, J = 7.5 Hz, 3 H), 0.94–1.20 (m, 4 H), 

1.33–1.49 (m,  1 H),  1.34 (d,  J = 7.0 Hz,  3 H),  1.50–1.68 (m,  1 H),  1.71–1.85 (m,  2 H),  1.85–

2.05 (m, 2 H), 3.15–3.29 (m, 1 H), 3.79 (t,  J = 8.6 Hz, 1 H), 4.01–4.1 (m, 1 H), 4.16–4.29 (m, 

1 H),  4.26–4.43 (m,  3 H),  4.49 (dd,  J = 10.3 Hz,  7.0 Hz,  1 H),  4.57–4.65 (m,  1 H),  5.58 (d, 

J = 8.3 Hz, 1 H), 6.14 (d, J = 7.8 Hz, 1 H), 6.84 (d, J = 8.0 Hz, 1 H), 7.12–7.31 (m, 5 H), 7.33 (d, 

J = 7.8 Hz,  2 H),  7.36–7.45 (m,  2 H),  7.58 (d,  J = 7.0 Hz,  2 H),  7.77 (d,  J = 7.3 Hz,  2 H); 
13C NMR (62.9 MHz, CDCl3): δ = 2.4, 2.7 (–), 11.4 (+), 14.1, 14.4 (+), 14.8 (+), 16.7 (+), 17.7 

(–), 21.97 (+), 24.9 (–), 33.9 (–), 38.1 (+), 41.7 (+), 46.8 (+), 53.8 (+), 56.2 (+), 58.5 (+), 58.8 

(+), 67.0 (–), 83.1 (+), 119.7, 124.8, 126.6, 127.3, 127.4, 128.2, 128.3, 140.96, 141.49 (Cquat), 

141.5 (Cquat), 143.5, 143.6 (Cquat), 155.9 (Cquat), 169.8, 170.5, 171.0 (Cquat).

N-Fmoc-(2S,3R)-β-Methylphenylalanine  (Fmoc-MeF,  64):  A  solution  of  FmocOSu  (810 mg, 

2.40  mmol)  in  acetone  (12 mL)  was  added  to  a  vigorously  stirred 

solution of 3-(2S,3R)-β-methylphenylalanine  55 (358 mg, 2.00 mmol) 

and  NaHCO3 (520 mg,  6.20 mmol)  in  water  (8 mL);  stirring  was 

continued for 5 h (if an emulsion formed, acetone and/or water were 

added to obtain a homogeneous solution).Acetone was then removed under reduced pressure, the 

residual fraction was diluted with water (25 mL) and washed with diethyl ether (3 × 10 mL). The 

organic  fraction  was  back-extracted  with  5% aqueous  NaHCO3 (3 × 10 mL),  the  pH of  the 

combined water fractions was adjusted to 1 with aq. 1 M KHSO4 and the resulting emulsion was 

extracted  with  diethyl  ether  (3 × 30 mL).  Combined  organic  layers  were  washed  with 

aq. 1 M KHSO4 (2 × 10 mL), water (5 × 10 mL), brine (2 × 10 mL), dried over MgSO4, filtered 

and concentrated under reduced pressure to give, after prolonged drying at 0.02 Torr and 60 °C, 

the target  N-protected amino acid  64 as colorless foam (636 mg, 1.58 mmol, 79%). M.p. 77–

79 °C; [α]D
20 17.3 (c=0.76, CHCl3);  1H NMR (250 MHz, CDCl3):  δ = 1.40 (d,  J = 7.2 Hz, 3 H), 

3.24–3.39 (m, 1 H), 4.13–4.24 (m, 1 H), 4.32 (dd, J = 10.1 Hz, 6.8 Hz, 2 H), 4.38–4.49 (m, 1 H), 

4.64 (dd,  J = 9.2 Hz,  5.6 Hz,  1 H),  5.30 (d,  J = 9.2 Hz,  1 H),  7.10–7.36 (m,  6 H),  7.41 (t, 

J = 7.2 Hz,  2 H),  7.57 (d,  J = 7.4 Hz,  1 H),  7.77 (d,  J = 7.3 Hz,  2 H);  13C NMR  (62.9 MHz, 

CDCl3):  δ = 14.3, 15.8 (+), 41.5, 41.8 (+), 59.1, 59.8 (+), 67.0, 67.4 (–), 127.0 (+), 127.5 (+), 

127.6 (+), 127.9 (+), 128.0 (+), 128.3, 128.3 (+), 135.2, 135.9 (Cquat), 140.9, 141.4 (Cquat), 156.0, 

157.1 (Cquat), 175.1, 175.4 (Cquat).
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Fmoc-MeF-(S)NcpA-MeF-Ile-ODCPM (66):[109] The tripeptide  63 (0.420 g, 0.549 mmol)  was 

deprotected  according  to  GP 1 and  the  resulting 

product  65 was  then  directly  coupled  with  N-Fmoc-

protected  β-methylphenylalanine  64 (0.242 g, 

0.603 mmol)  according to GP 2 using EDC (0.114 g, 

0.595 mmol), HOAt (0.080 g, 0.592 mmol) and TMP 

(0.200 g, 1.650 mmol) in CH2Cl2 (3 mL). After 1 h, a 

precipitate  appeared  in  the  reaction  mixture  and 

anhydrous  DMF  (2  mL)  was  added  to  obtain 

homogeneous solution. After 15 h the reaction mixture 

was  concentrated  under  reduced  pressure.  The 

resulting  solid  was  washed  with  water  (100 mL),  5% aqueous  NaHCO3 (100 mL),  water 

(100 mL), Et2O (100 mL), pentane (50 mL), dried at 0.5 Torr and then crystallized twice from 

THF/hexanes to give 66 (0.430 g, 85%) as an off-white solid. Rf = 0.29, CHCl3/MeOH 70:1; m.p 

210–215 °C (decomp.), [α]D
20 –26.3 (c = 0.32, THF); 1H NMR (250 MHz, [D8]THF): δ = 0.22–

0.57 (m, 7 H), 0.67–0.90 (m, 2 H), 0.78–0.86 (m, 1 H), 0.81 (d, J = 6.5 Hz, 3 H), 0.83 (t, J = 7.3 

Hz, 3 H), 0.92–1.19 (m, 4 H), 1.20 (d, J = 7.3 Hz, 3 H), 1.32 (d, J = 7.0 Hz, 3 H), 1.30–1.50 (m, 

4 H),  3.07–3.16 (m,  1 H),  3.18–3.31 (m,  1 H),  3.81 (t,  J = 8.5 Hz,  1 H),  3.89–4.01 (m,  1 H), 

4.13–4.41 (m,  5 H),  4.41–4.51 (m,  1 H),  4.55–4.68 (m,  1 H),  6.97–7.40 (m,  16 H),  7.48 (d, 

J = 8.5 Hz,  1 H),  7.58 (d,  J = 8.3 Hz,  1 H),  7.63–7.70 (m,  2 H),  7.77 (d,  J = 7.8 Hz,  2 H); 
13C NMR (62.9 MHz, [D8]THF): δ = 3.3, 3.5, 3.6, 3.7 (–,), 12.2 (+), 15.6, 15.9 (+), 16.1 (+), 17.7 

(+), 18.7 (+), 18.9 (–), 23.2 (+), 26.2 (–), 35.0 (–), 39.1 (+), 42.8 (+), 44.1 (+), 48.5 (+), 52.8 (+), 

57.4 (+), 59.3 (+), 60.2 (+), 62.1 (+), 67.8 (–,), 83.4 (+), 126.3, 126.4, 127.5, 127.7, 128.1, 128.6, 

129.1, 129.1, 129.3, 129.4 (+), 142.5 (Cquat), 144.1 (Cquat), 144.4 (Cquat), 145.4, 145.6 (Cquat), 157.8 

(Cquat), 171.1, 171.5, 171.9, 172.1 (Cquat).

MeZ-a-Thr-OH (68):[109] NaHCO3 (0.180 g, 2.14 mmol) and then a solution of MeZOSu (0.608 g, 

2.31 mmol) in dioxane (7 mL) were added to a vigorously stirred solution of 

(R)-allo-threonine  67 (0.25  g,  2.10  mmol)  in  water  (7  mL)  and  stirring 

continued for 3 h (if precipitate formed dioxane and/or water were added to 

obtain  homogeneous  solution).  The  mixture  was  then  concentrated  under 

reduced pressure, diluted with water (40 mL) and washed with CH2Cl2 (4 × 10 mL). pH of the 

water fraction was adjusted to ~2 with solid KHSO4 and the resulting emulsion was extracted 

with EtOAc (2 × 40 mL). The organic layer was washed with water (4 × 20 mL), brine (2 × 10 

mL),  dried  and  concentrated  under  reduced  pressure.  The  residue  was  recrystallized  from 
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Et2O/hexanes and then from CH2Cl2/hexanes to give  68 (0.175 g, 39%) as a white solid. The 

mother liquor from the second crystallization was concentrated and recrystallized again from 

Et2O/hexanes to give a second crop of 68 (0.23 g, 90% overall yield). Rf = 0.13 EtOAc/hexanes 

(2% AcOH), 3 runs; m.p. 78–80 °C; [α]D
20 24.6 (c = 0.32, CHCl3); 1H NMR (250 MHz, CDCl3): 

δ = 1.27 (d,  J = 6.5 Hz,  3 H),  2.34 (s,  3 H),  3.70–4.40 (bs,  1 H),  4.05–4.27 (m,  1 H),  4.33–

4.44 (m,  1 H),  5.07 (s,  2 H),  5.77 (d,  J = 7.5 Hz,  1 H),  7.15 (d,  J = 8.0 Hz,  2 H),  7.24 (d, 

J = 8.0 Hz, 2 H);  13C NMR (62.9 MHz, CDCl3): δ = 18.7 (+), 21.1 (+), 59.3 (+), 67.4 (–), 69.0 

(+), 128.3, 129.2 (+), 132.7, 138.1 (Cquat), 156.9 (Cquat), 173.3 (Cquat). 

MeZ-a-Thr-OAll (69):[109] A suspension of dried K2CO3 (0.034 g, 0.247 mmol) in a solution of 

the  N-protected acid  68 (0.12 g, 0.449 mmol) and allyl  bromide (0.08 mL, 

0.946 mmol) in anhydrous MeCN (4 mL) was vigorously stirred in a sealed 

tube at 85 °C for 2 h. The mixture was then allowed to cool to 60 °C and 

stirring continued for an additional 16 h. The reaction mixture was cooled to 

20 °C, and Et2O (50 mL) and water (20 mL) were then added. The organic layer was washed 

with water (4 × 10 mL),  sat. aq. NaHCO3 (2 × 10 mL),  brine (2 × 5 mL),  dried over MgSO4, 

filtered  and  concentrated  under  reduced  pressure.  The  residual  oil  was  triturated  with 

Et2O/pentane 1:2 to give a white solid. Then more pentane was added to complete precipitation 

and the precipitate was filtered off and dried under reduced pressure (0.116 g, 84%). Rf = 0.16 

EtOAc/hexanes  1:3;  m.p.  47–48 °C;  [α]D
20 –20.4  (c  =  0.30,  CHCl3);  1H NMR  (250 MHz, 

CDCl3):  δ = 1.20 (d,  J = 6.5 Hz,  3 H),  2.35 (s,  3 H),  2.74 (d,  J = 6.3 Hz,  1 H),  4.09–4.26 (m, 

1 H), 4.47 (dd,  J = 7.5 Hz, 3.8 Hz, 1 H), 4.67 (d, J = 5.3 Hz, 2 H), 5.08 (s, 2 H), 5.20–5.41 (m, 

2 H), 5.66 (d, J = 7.3 Hz, 1 H), 5.83–5.97 (m, 1 H), 7.17 (d, J = 8.0 Hz, 2 H), 7.26 (d, J = 8.0 Hz, 

2 H); 13C NMR (62.9 MHz, CDCl3): δ = 18.7 (+), 20.9 (+), 59.3 (+), 65.9 (–), 67.4 (–), 68.4 (+), 

118.7 (–), 128.0, 128.9 (+), 132.8 (+), 132.8, 137.7 (Cquat), 156.4 (Cquat), 169.9 (Cquat).

Boc-(4-Pe)Pro-[MeZ-a-Thr]-OAll (70):[109] EDC (0.324 g, 1.69 mmol)  was added to a cooled 

(4 °C)  solution  of  the  N-Boc-protected  (2S,4R)-4-(Z)-

propenylproline  118 (0.340  g,  1.33  mmol),  the  N,C-

protected  amino  acid  69 (0.400 g,  1.30  mmol)  and  4-

pyrrolidinopyridine  (0.250  g,  1.69  mmol)  in  anhydrous 

CH2Cl2 (3 mL).  The temperature was allowed to reach 20 °C, and stirring was continued for 

15 h. Then the reaction mixture was diluted with Et2O (30 mL) and washed with aq. 1 M KHSO4 

(3 × 5 mL), water (2 × 5 mL), aq. 3% NaHCO3 (3 × 5 mL), water (3 × 5 mL), brine (2 × 5 mL), 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 
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column chromatography (silica gel, eluted with EtOAc/hexane 1:6) to give 70 (0.588 g, 83%) as 

a turbid oil.  Rf = 0.43 (EtOAc/hexane 1:3); [α]D
20 –35.4 (c = 0.28, CHCl3); 1H NMR (250 MHz, 

CDCl3): δ = 1.34 (d, J = 6.5 Hz, 3 H), 1.36 + 1.39 (2 × s, 9 H), 1.64 (dd, J = 1.5 Hz, 7.0 Hz, 3 H), 

1.63–1.81 (m,  1 H),  2.21–2.46 (m,  1 H),  2.33 + 2.35 (2 × s,  3 H),  2.93–3.19 (m,  2 H),  3.51–

3.67 + 3.69–3.83 (2 × m, 1 H), 4.10–4.27 (m, 1 H), 4.48–4.65 (m, 1 H), 4.68 (d, J = 5.2 Hz, 2 H), 

4.97–5.13 (m, 2 H), 5.17–5.43 (m, 4 H), 5.54 (dq, J = 10.2 Hz, 7.0 Hz, 1 H), 5.80–6.01 (m, 1 H), 

6.42 (d,  J = 9.2 Hz, 1 H), 7.13 + 7.17 (2 × d,  J = 7.9 Hz, 2 H), 7.23 + 7.25 (d,  J = 7.9 Hz, 2 H); 
13C NMR (62.9 MHz, CDCl3):  δ = 12.8 (+),  15.8,  16.3 (+),  20.8 (+), 27.9 (+),  35.3,  36.1 (+), 

35.8, 36.9 (–), 51.1, 51.3 (–), 57.0, 57.4 (+), 59.0, 59.1 (+), 65.5, 66.0 (–), 66.4, 67.0 (–), 70.8, 

70.8 (+), 79.6, 79.7 (Cquat) 118.2, 118.9 (–), 126.3, 126.3 (+), 127.9 (+), 128.7, 128.8 (+), 129.0, 

129.1 (+), 130.9, 131.2 (+), 132.7, 133.1 (Cquat), 137.2, 137.6 (Cquat), 153.0, 153.5 (Cquat), 

155.4, 155.9 (Cquat), 168.4, 168.4 (Cquat), 171.6, 171.9 (Cquat).

Boc-(4-Pe)Pro-[MeZ-a-Thr]-OH  (71):[109] Pd[P(Ph)3]4 (0.034 g,  2.94 µmol)  was  added  to  a 

vigorously stirred solution of ester 70 (0.108 g, 0.198 mmol) 

and  N-methyl  aniline (0.08 mL, 0.738 mmol) in DME (3.5 

mL)  and  the  resulting  suspension  was  stirred  at  ambient 

temperature for 2 h. The reaction mixture was then diluted 

with  Et2O  (40  mL),  washed  with  aq. 1 M KHSO4 (3 × 10 

mL), water (10 × 10 mL), brine (2 × 10 mL), dried over MgSO4, filtered and concentrated under 

reduced pressure. The residue was taken up with Et2O/hexanes 1:2, filtered, concentrated and 

purified by column chromatography (silica gel, eluted with EtOAc/hexanes 1:2 + 1.5% AcOH, 

Rf =  0.34)  to  give  71 (0.121  g,  90%)  as  an  yellow  oil.

[α]D
20 –71.7  (c  =  0.32,  CHCl3);  1H NMR (250 MHz, CDCl3):  δ = 1.35 + 1.40 (2 × s,  9 H), 

1.41 + 1.43 (2 × d, J = 5.7 Hz, 3 H), 1.63 + 1.65 (2 × dd, J = 1.5 Hz, 6.7 Hz, 3 H), 1.67–1.86 (m, 

1 H),  2.24–2.49 (m,  1 H),  2.33 + 2.34 (2 × s,  3 H),  2.91–3.20 (m,  2 H),  3.40–4.30 (bs,  1 H), 

3.61–3.73 (m, 1 H), 4.11–4.29 (m, 1 H), 4.51 (dd, J = 8.6 Hz, 3.5 Hz, 1 H), 5.05 (s, 2 H), 5.15–

5.31 (m,  1 H),  5.31–5.44 (m,  1 H),  5.45–5.60 (m,  1 H),  5.63 + 6.46 (2 × d,  J = 9.2 Hz,  1 H), 

7.13 + 7.17 (2 × d,  J = 7.9 Hz, 2 H), 7.21 + 7.22 (2 × d,  J = 7.9 Hz, 2 H);  13C NMR (62.9 MHz, 

CDCl3): δ = 13.0 (+), 15.8, 16.3 (+), 21.0 (+), 28.1 (+), 35.5, 36.2 (+), 36.0, 37.0 (–), 51.3, 

51.6 (–), 57.0, 57.5 (+), 59.1, 59.3 (+), 66.8, 67.0 (–), 71.2, 71.4 (+), 80.5, 80.6 (Cquat), 126.5, 

126.5 (+), 128.1 (+), 128.1 (+), 128.9, 129.0 (+), 132.8, 133.0 (Cquat), 137.6, 137.9 (Cquat), 153.7, 

154.2 (Cquat), 155.8, 156.4 (Cquat), 171.2, 171.7 (Cquat), 172.0, 172.2 (Cquat).
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Boc-(4-Pe)Pro-[MeZ-a-Thr]-MeF-(S)NcpA-MeF-Ile-ODCPM (73):  Tetrapeptide  66 (180  mg, 

0.21 mmol) was deprotected according to GP 1 in THF 

(2 mL), taken up with anhydrous CH2Cl2 (5 mL), ester 

acid  71 (0.114 g,  0.23  mmol),  HATU (96 mg,  0.25 

mmol) and HOAt (31 mg, 0.23 mmol) were added and 

the reaction mixture was cooled to 4 °C. After this, a 

solution  of  DIEA  (29  mg,  0,22  mmol)  and  TMP 

(75 mg, 0.62 mmol) in CH2Cl2 (2 mL) were added at 

the same temperature within 5 min.  The temperature 

was allowed to reach 20 °C, and stirring continued for 

an additional 15 h. After aqueous work-up according to 

GP 2 and two recrystallizations  from EtOAc/hexanes 

1:2, depsipeptide 73 (185 mg, 79%) was obtained as a 

colorless powder. Rf = 0.46 (EtOAc/hexanes 1:1); m.p. 125–127 °C, [α]D
20 –29.0 (c = 0.2, THF); 

1H NMR (600 MHz, CDCl3): δ = 0.27–0.33 (m, 1 H), 0.33–0.44 (m, 3 H), 0.44–0.49 (m, 1 H), 

0.49–0.57 (m,  2 H),  0.59–0.65 (m,  1 H),  0.75 (d,  J = 6.8 Hz,  3 H),  0.89 (t,  J = 7.3 Hz,  3 H), 

0.95–1.11 (m,  4 H),  1.11–1.60 (m,  5 H),  1.24 (d,  J = 7.5 Hz,  3 H),  1.27 (d,  J = 7.5 Hz,  3 H), 

1.36 (s, 9 H), 1.43 (d,  J = 6.5 Hz, 3 H), 1.66 (dd,  J = 6.9 Hz, 1.7 Hz, 3 H), 1.68–1.76 (m, 1 H), 

1.80–1.90 (m, 1 H), 2.30 (s, 3 H), 2.35–2.42 (m, 1 H), 3.06–3.13 (m, 1 H), 3.13 (t,  J = 10.5 Hz, 

1 H), 3.18–3.31 (m, 2 H), 3.67 (dd, J = 10.2 Hz, 7.8 Hz, 1 H), 3.80–3.84 (m, 1 H), 4.02–4.07 (m, 

1 H),  4.14 (dd,  J = 10.7 Hz,  6.2 Hz,  1 H),  4.33 (dd,  J = 8.9 Hz,  4.6 Hz,  1 H),  4.37 (dd, 

J = 9.5 Hz, 2.2 Hz, 1 H), 4.45 (dd,  J = 9.9 Hz, 6.9 Hz 1 H), 4.57 (dt,  J = 9.6 Hz, 5.1 Hz, 1 H), 

4.62 (t,  J = 10.3 Hz, 1 H), 4.96–5.06 (m,  2 H), 5.22–5.28 (m,  1 H), 5.46–5.51 (m,  1 H), 5.52–

5.58 (m,  1 H),  6.54 (d,  J = 8.2 Hz,  1 H),  6.89 (d,  J = 8.9 Hz,  1 H),  6.99 (d,  J = 9.6 Hz,  1 H), 

7.06–7.12 (m,  2 H),  7.14–7.25 (m,  12 H)  7.49 (d,  J = 9.8 Hz,  1 H),  7.86 (d,  J = 5.9 Hz,  1 H); 
13C NMR (62.9 MHz, CDCl3): δ = 2.48 (–), 2.82 (–), 2.90 (–), 3.01 (–), 11.59 (+), 13.20 (+), 

14.16 (+), 14.64 (+), 15.57 (+), 17.77 (+), 18.41 (–), 18.86 (+), 19.43 (+), 21.11 (+), 21.77 (+), 

25.23 (–), 26.85 (–), 28.23 (+), 31.46 (–), 31.53 (–), 36.28 (–), 36.32 (+), 37.30 (+), 40.45 (+), 

42.00 (+), 50.62 (+), 52.08 (+), 56.43 (+), 59.30 (+), 59.49 (+), 61.01 (+), 61.62 (+), 61.99 (+), 

66.89 (–), 70.53 (+), 80.93 (Cquat),  83.24 (+), 127.00 (+), 127.06 (+), 127.10 (+), 127.60 (+), 

127.69  (+),  128.47  (+),  128.63  (+),  128.68  (+),  128.82  (+),  128.93  (+),  133.21 (Cquat), 

137.83 (Cquat),  141.73 (Cquat),  141.90 (Cquat),  154.76 (Cquat),  155.75 (Cquat),  170.38 (Cquat), 

170.43 (Cquat),  170.79 (Cquat),  171.37 (Cquat),  173.41 (Cquat),  174.06 (Cquat);  MS-ESI: (positive), 

m/z (%) 1163 (100, M+Na+); (negative), m/z (%) 1138 (50, M–H−), 1175 (50, M+Cl−).
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N-MeZ protected cyclohexadepsipeptide (75): To the hexadepsipeptide 74 (0.188 g, 0.165 mmol) 

2 M HCl  in  EtOAc (2  mL)  was  added,  the  reaction 

mixture was stirred for 45 min at ambient temperature 

in  the  dark  place  and  then  was  concentrated  under 

reduced pressure without any heating. The residue was 

triturated with dry Et2O to give deprotected material 74 

as a white solid [0.160 g; MS-ESI: positive mode, m/

z (%) = 997 (100, M+H+), 1019 (5, M+Na+); negative 

mode, m/z (%) = 995 (50, M–H−)], which was taken 

up  with  anhydrous  CH2Cl2 (1.5 L)  and  cyclized 

employing  HATU (2 × 0.073 g,  2 × 0.192 mmol)  and 

HOAt  (2 × 0.022 g,  2 × 0.163 mmol)  and  solution  of 

DIEA (2 × 0.062 g, 2 × 0.480 mmol) in CH2Cl2 (2 × 50 mL) according to GP 4 for 16 h. After 

this, the solvent was removed under reduced pressure, the residue was taken up with Et2O (50 

mL),  and  after  usual  aqueous  work-up  (GP 2),  drying  and  filtration,  the  organic  layer  was 

concentrated under reduced pressure. The residue was purified first by column chromatography 

(acetone/hexanes  1:3,  Rf =  0.17)  and  then  by  recrystallization  (Et2O/pentane)  to  give  crude 

product (0.12 g), which was finally purified by preparative HPLC to give cyclodepsipeptide 75 

(86 mg, 53% on 2 steps) as a white solid. Preparative HPLC: isocratic, 70% B, tR = 19.3 min, 

purity > 98%; analytical HPLC: gradient 20% → 100% B for 20 min, then isocratic 100% B for 

5 min tR = 16.7 min, purity > 98%; [α]D
20 –15.5 (c = 0.20, CHCl3); 1H NMR (600 MHz, CDCl3): 

δ = 0.61–0.67 (m, 1 H), 0.72 (d,  J = 6.6 Hz, 3 H), 0.71–0.77 (m, 1 H), 0.79 (t,  J = 7.2 Hz, 3 H), 

1.04–1.12 (m,  1 H),  1.23 (d,  J = 6.6 Hz,  3 H),  1.27–1.34 (m,  1 H),  1.37 (d,  J = 6.6 Hz,  3 H), 

1.37–1.43 (m, 1 H), 1.45–1.54 (m, 1 H), 1.54–1.57 (m, 1 H), 1.57 (d, J = 6.6 Hz, 3 H), 1.65 (dd, 

J = 6.6 Hz, 1.5 Hz, 3 H), 1.66–1.76 (m, 2 H), 2.20–2.25 (m, 1 H), 2.35 (s, 3 H), 3.01–3.07 (m, 

1 H), 3.15–3.28 (m, 2 H), 3.54 (dq, J = 7.2 Hz, 6.6 Hz, 1 H), 3.71 (dd, J = 6.0 Hz, 5.4 Hz, 1 H), 

3.74–3.77 (m, 1 H), 3.98 (dd, J = 10.5 Hz, 6.3 Hz, 1 H), 4.01–4.08 (m, 1 H), 4.46–4.54 (m, 2 H), 

4.52–4.55 (m, 1 H), 4.67–4.70 (m, 1 H), 5.03 (d,  J = 12.0 Hz, 1 H), 5.15 (d,  J = 12.0 Hz, 1 H), 

5.19–5.25 (m,  1 H),  5.39 (qd,  J = 6.6 Hz,  1.8 Hz,  1 H),  5.56 (dq,  J = 10.8 Hz,  6.6 Hz,  1 H), 

5.96 (d, J = 5.3 Hz, 1 H), 6.20 (d, J = 7.4 Hz, 1 H), 6.28 (d, J = 9.7 Hz, 1 H), 6.49 (d, J = 9.4 Hz, 

1 H),  7.11–7.37 (m,  14 H)  7.32 (d,  J = 7.4 Hz,  1 H),  7.45 (d,  J = 8.7 Hz,  1 H);  13C NMR 

(150.8 MHz, CDCl3):  δ = 10.3 (+),  13.3 (+),  14.6 (+),  17.3 (–),  17.7 (+),  18.4 (+),  21.2 (+), 

21.3 (+), 24.7 (–), 32.0 (–), 35.4 (–), 36.6 (+), 39.4 (+), 44.5 (+), 52.5 (–), 53.3 (+), 54.6 (+), 

58.6 (+), 59.0 (+), 59.4 (+), 60.1 (+), 60.7 (+), 67.2 (–), 72.6 (+), 127.1 (+), 127.2 (+), 127.5 (+), 
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127.6  (+),  128.3  (+),  128.6 (+),  128.8  (+),  129.2  (+),  127.8  (+),  128.0  (+),  133.2  (Cquat), 

137.9 (Cquat),  140.9 (Cquat),  142.6 (Cquat),  156.3 (Cquat),  169.0 (Cquat),  170.3 (Cquat),  170.6 (Cquat), 

171.1 (Cquat), 171.4 (Cquat), 173.1 (Cquat).

N-Teoc-(2S,1'R,2'R)-3-(2'-Nitrocyclopropyl)alanine (78):[109] A solution of TeocOSu (0.358 g, 

1.38 mmol) in acetone (5 mL) was added to a vigorously stirred solution 

of  (2S,1'R,2'R)-3-(2'-nitrocyclopropyl)alanine 76 (0.200  g,  1.15  mmol) 

and NaHCO3 (0.202 g, 2.40 mmol) in water (7 mL) (if emulsion formed 

acetone and/or water were added to obtain homogeneous solution) and 

stirring  continued  for  a  further  2  h.  N,N-dimethylaminopropylamine 

(0.055 mL, 0.44 mmol) was then added. After an additional 10 min acetone was removed under 

reduced pressure and pH of the residual water solution was adjusted to 2–3 with aq. 1 M KHSO4. 

The resulting emulsion was extracted with Et2O (50 mL) and the ethereal layer was washed with 

aq. 1 M KHSO4 (2 × 10 mL),  water  (10 × 10  mL),  brine  (2 × 5  mL),  dried,  filtered  and 

concentrated under reduced pressure. The residual oil (0.300 g) was dissolved in Et2O (5 mL) 

and cyclohexylamine  (0.094 g,  0.95 mmol)  was added. The mixture was concentrated under 

reduced pressure and treated with boiling hexanes. The resulting precipitate was filtered off and 

washed with Et2O/pentane 1:4 to give cyclohexylammonium salt of 78 (0.386 g, 81%) as a white 

solid.  Rf = 0.24  EtOAc/hexanes  1:3  (2%  AcOH);  [α]D
20 22.80  (c  =  0.46,  CHCl3)  for 

cyclohexylammonium salt;  1H NMR (250 MHz, CDCl3): δ = 0.04 (s, 9 H), 1.00 (dd, J = 9.5 Hz, 

7.3 Hz, 2 H), 1.09–1.18 (m, 1 H), 1.20–1.43 (m, 5 H), 1.50–1.70 (m, 2 H), 1.70–1.90 (m, 3 H), 

1.90–2.19 (m,  4 H),  2.80–3.05 (m,  1 H)  3.95–4.23 (m,  4 H),  5.88 (d,  J = 8.1 Hz,  1 H),  7.25–

8.10 (bs, 3 H); 13C NMR (62.9 MHz, CDCl3): δ = –1.9 (+), 17.3 (–), 17.3 (–), 22.0 (+), 33.1, 33.3 

(–), 52.7, 53.2 (+), 59.0 (+), 63.7, 64.8 (–), 156.4, 157.4 (Cquat), 174.5, 174.8 (Cquat). 

N-Teoc  protected  heptadepsipeptide  (79):[109] An  ethereal  solution  (50  mL)  of  the 

cyclohexylammonium  salt  of  N-Teoc 

protected  (2S,1'R,2'R)-3-(2'-nitrocyclopro-

pyl)alanine  78 (8.1  mg,  19.41  µmol)  was 

washed with aq. 1 M H2SO4 (3 × 5 mL), aq. 

1 M KHSO4 (2 × 5 mL),  water  (3 × 5 mL), 

brine  (2 × 5 mL),  dried,  filtered  and 

concentrated  under  reduced  pressure.  The 

resulting  N-protected  amino  acid  78 was 

dried at 0.02 Torr for 2 h and then coupled 
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with the depsipeptide 77 [obtained after deprotection of N-MeZ protected cyclodepsipeptide 75 

(9.5 mg, 9.71 µmol) with 10% anisole in TFA (1.1 mL) for 2 h according to GP 5] using HATU 

(7.4 mg, 19.46 µmol), HOAt (2.6 mg, 19.24 µmol), DIEA (1.25 mg, 9.67 µmol) and TMP (7.04 

mg, 58.10 µmol) in CH2Cl2 (0.7 mL) according to GP 6 for 15 h. The mixture was then diluted 

with EtOAc/Et2O 1:1 (20 mL) to give after usual aqueous work-up (GP 2) the crude product 79 

(8.0 mg, 73%, Rf = 0.43 acetone/hexanes 1:2) as a colorless glass which was used for the next 

step without any characterization. 

MOM-O-protected Hormaomycin (82):[109] Teoc group was cleaved from the compound 79 (8.0 

mg, 7.08 µmol) with TFA (0.6 mL) for 1 h. 

The mixture was concentrated under reduced 

pressure  at  20 °C  and  then  taken  up  with 

toluene (3 × 15 mL) which was distilled off 

to  remove  the  last  traces  of  TFA.  The 

resulting  deprotected  depsipeptide  80 was 

coupled  with  O-MOM  protected  acid  81 

(2.9 mg, 14.10 µmol) using HATU (5.4 mg, 

14.20 µmol),  DIEA  (0.92  mg,  7.12  µmol) 

and TMP (5.14 mg, 42.42 µmol) in CH2Cl2 

(1 mL)  according  to  GP 6 for  2.5 h.  The 

mixture was then taken up with Et2O (20 mL) and the crude product obtained after usual aqueous 

work-up  (GP 2)  was  crystallized  from  CH2Cl2 / pentane  to  give  O-MOM  protected 

Hormaomycin 82 (8.0 mg, 96%, Rf = 0.36 acetone/hexanes 1:2) as a colorless glass which was 

used for the next step without any characterization.

Hormaomycin (1):  O-MOM protected Hormaomycin  82 (8.0 mg, 6.82 µmol) was deprotected 

using MgBr2 × Et2O (52 mg,  201.36 µmol) 

and  EtSH (0.10  mL,  1.9 mmol)  in  CH2Cl2 

(10  mL)  according  to  GP 7 for  3  h.  The 

mixture was taken up with EtOAc and the 

crude product obtained after  usual aqueous 

work-up  was  crystallized  from 

CH2Cl2 / pentane  to  give  1 (5.5  mg,  72%, 

50% on 5 steps from  75) as a white solid, 

which was finally purified with preparative 
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HPLC.  Rf = 0.24 acetone/hexanes  3:7;  Preparative  HPLC: isocratic,  62% B for 15 min,  then 

gradient 62%→100% B for 1 min, then isocratic 100%B for 4 min, then gradient 100%→62% B 

for 1 min,  then isocratic  62% B for 10 min,  tR = 5.7 min,  purity > 98%; analytical  HPLC: 

gradient 20% → 100% B for 20 min, then isocratic 100% B for 5 min tR = 15.3 min, purity > 

98%; [α]D
20 20.0 (c = 0.1, MeOH);  1H NMR (600 MHz, CDCl3): δ = –0.71 – –0.63 (m, 1 H), –

0.20–0.10 (m,  1 H),  0.23–0.32 (m,  1 H),  0.49–0.56 (m,  1 H),  0.88 (t,  J = 7.4 Hz,  3 H),  0.95–

1.01 (m,  1 H), 1.02 (d,  J = 6.9 Hz,  3 H),  1.04–1.14 (m,  1 H),  1.17–1.35 (m,  1 H),  1.30  (d, 

J = 7.0 Hz, 3 H), 1.39 (d,  J = 7.3 Hz, 3 H), 1.47–1.54 (m, 1 H), 1.53 (d,  J = 6.9 Hz, 3 H), 1.55–

1.62 (m, 1 H), 1.67 (dd, J = 6.9 Hz, 1.6 Hz, 3 H), 1.75–1.84 (m, 2 H), 1.85–1.94 (m, 3 H), 2.30–

2.40 (m, 1 H), 2.88–2.91 (m, 1 H), 2.96–3.02 (m, 1 H), 3.22–3.31 (m, 2 H), 3.43–3.50 (m, 1 H), 

3.62–3.70 (m, 1 H), 3.93–4.00 (m, 1 H), 4.01–4.08 (m, 1 H), 4.26 (dd, J = 11.5 Hz, 6.0 Hz, 1 H), 

4.38 (dd,  J = 10.6 Hz,  10.6 Hz, 1 H),  4.46 (dd,  J = 9.4 Hz, 4.5 Hz,  1 H),  4.57 (dd,  J = 9.3 Hz, 

2.3 Hz,  1 H),  4.66 (dd,  J = 9.0 Hz,  9.0 Hz,  1 H),  5.08–5.14 (m,  1 H),  5.22–5.28 (m,  1 H), 

5.40 (qd,  J = 6.9 Hz,  2.4 Hz,  1 H),  5.58–5.65 (m,  1 H),  6.13 (d,  J = 4.7 Hz,  1 H),  6.56 (d, 

J = 6.5 Hz, 1 H), 6.80 (d, J = 9.3 Hz, 1 H), 6.82 (d, J = 4.7 Hz, 1 H), 6.98–7.03 (m, 1 H), 7.09–

7.18 (m,  5 H),  7.20–7.27 (m,  7 H),  8.05 (d,  J = 9.1 Hz,  1 H),  9.06 (d,  J = 9.3 Hz,  1 H); 
13C NMR (150.8 MHz, CDCl3): δ = 10.50 (+), 13.24 (+), 13.33 (+), 14.94 (+), 16.99 (+), 17.41 

(–), 17.74 (+), 20.00 (+), 21.66 (+), 24.90 (–), 26.88 (–), 33.02 (–), 35.03 (–), 35.51 (–), 36.66 

(–), 37.97 (+), 39.24 (+), 41.75 (+), 50.99 (+), 51.79 (+), 52.78 (–), 54.61 (+), 54.93 (+), 58.11 

(+), 59.12 (+), 59.86 (+), 60.04 (+), 61.37 (+), 69.07 (+), 103.59 (+), 109.85 (+), 119.86 (Cquat), 

121.55 (Cquat), 126.98 (+), 127.17 (+), 127.44 (+), 127.47 (+), 127.67 (+), 128.33 (+), 128.49 (+), 

128.64 (+),  141.55 (Cquat),  142.11 (Cquat),  159.27 (Cquat),  168.54 (Cquat),  168.73 (Cquat),  169.75 

(Cquat), 170.74 (Cquat), 171.26 (Cquat), 171.55 (Cquat), 172.86 (Cquat); MS-ESI: positive, m/z = 292 

(100), 1151 (80, M+Na+); negative, m/z = 1127 (100, M–H−).

9.2. All-peptide aza-analogue of Hormaomycin

MeZ-(R)-Asn-OH  (84):[110] NaHCO3 (0.520 g,  6.18 mmol)  and  then  a  solution  of  MeZOSu 

(0.775 g,  2.97 mmol)  in  acetone  (7 mL)  were  added  to  a  vigorously 

stirred solution of (R)-aspargine (0.442 g, 2.94 mmol) in water (10 mL), 

and  stirring  was  continued  for  3 h  (if  a  precipitate  formed,  acetone 

and/or water was added to obtain a homogeneous solution). The mixture 

was then concentrated under reduced pressure, diluted with water (40 mL) and washed with 

CH2Cl2 (3 × 10 mL). The pH of the water fraction was adjusted to ~1 with solid KHSO4, the 
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resulting precipitate was filtered off, washed with H2O (5 × 20 mL), Et2O (5 × 20 mL) and dried 

to give 84 (0.75 g, 2.67 mmol, 91%) as a colorless solid. M.p. 181–183 °C; [α]D
20 = 6.5 (c = 1.00, 

DMF);  1H NMR (500 MHz, [D6]acetone):  δ = 2.30 (s, 3 H), 2.50–3.55 (bs, 3 H), 2.65–2.85 (m, 

2 H), 4.39–4.53 (m, 1 H), 5.03 (s, 2 H), 6.39–6.61 (bs, 1 H), 7.15 (d,  J = 8.0 Hz, 2 H), 7.26 (d, 

J = 8.0 Hz, 2 H); 13C NMR (125.7 MHz, [D6]DMSO): δ = 20.7 (+), 36.7 (–), 50.5 (+), 65.3 (–), 

127.8 (+), 128.8 (+), 133.8 (Cquat), 137.0 (Cquat), 155.7 (Cquat), 170.7 (Cquat), 173.0 (Cquat).

Nα-MeZ-2,3-diaminopropionic  acid  (MeZ-Dap-OH,  85):[110] Iodobenzene  bis(trifluoroacetate) 

(1.46  g,  3.40  mmol)  and  84 were  suspended  by  stirring  in  50%  (v/v) 

aqueous DMF (20 mL). After 15 min, pyridine (0.367 g, 4.64 mmol) was 

added,  and the mixture  was stirred for  an additional  5 h.  The emulsion 

formed was evaporated at 40–45 °C under reduced pressure. The residue 

was  taken  up  with  water  (2 × 15  mL),  which  was  evaporated  under  reduced  pressure.  The 

residual  oil  was  taken up in  water  (50 mL)  and washed with chloroform (3 × 10 mL).  The 

aqueous layer was once more concentrated in vacuo, and the residue was dissolved in ethanol 

(20 mL). The pH value was adjusted to about 7 with pyridine, and the formed suspension was 

left at 4 °C for 12 h. The precipitate was filtered off and washed with ether (5 × 20 mL) to give, 

after  drying,  Nα-protected  diamino  acid  85 (0.51  g,  87%) as  a  colorless  powder.  Rf =  0.32 

(MeCN/AcOH/H2O 10:1:1);  m.p. 210–216 °C (decomp.);  [α]D
20 38.1 (c=0.31,  0.1 N HCl);  1H 

NMR (300 MHz, DCl in D2O):  δ = 2.28 (s, 3 H), 3.28 (dd,  J = 12.6 Hz, 9.6 Hz, 1 H), 3.49 (dd, 

J = 12.6 Hz, 4.5 Hz, 1 H), 4.44–4.55 (m, 1 H), 5.07 (s, 2 H), 7.22 (d,  J = 7.5 Hz, 2 H), 7.28 (d, 

J = 7.5 Hz, 2 H).

MeZ-Dap-OMe hydrochloride (86):[110] To a solution of thionyl chloride (0.52 mL, 7.26 mmol) in 

anhydrous MeOH (10 mL) at –20 °C was added with stirring after 10 min 

the amino acid 85 (0.50 g, 1.98 mmol). The resulting thick suspension was 

stirred at 20 °C for 24 h to give a clear solution, which was then left at –

20 °C for 16 h. Et2O (40 mL) was added to complete the precipitation, and 

the solid was filtered off to give 86 (0.47 g, 78%) as long colorless needles. The mother liquor 

was concentrated, and the residue was recrystallized from MeOH/Et2O to give a second crop of 

86 (26  mg,  83% overall  yield).  M.p.  159–161 °C;  [α]D
20 =  32.3 (c=0.86,  DMSO);  1H NMR 

(250 MHz, [D6]DMSO): δ = 2.28 (s, 3 H), 2.98–3.29 (m, 2 H), 3.66 (s, 3 H), 4.37–4.49 (m, 1 H), 

5.08 (s, 2 H), 7.17 (d, J = 7.9 Hz, 2 H), 7.25 (d, J = 7.9 Hz, 2 H), 7.52 (d, J = 8.3 Hz, 1 H), 8.15–

8.55 (bs, 3 H); 13C NMR (62.9 MHz, [D6]DMSO): δ = 21.0 (+), 39.2 (–), 52.0 (+), 52.8 (+), 66.0 

(–), 128.2 (+), 129.1 (+), 133.8 (Cquat), 137.4 (Cquat), 156.3 (Cquat), 173.6 (Cquat).
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Boc-(4-Pe)Pro-[MeZ-Dap]-OMe (87):[110] Compound 86 (0.127 g, 0.42 mmol) was coupled with 

the  N-Boc  protected  (4-propenyl)proline  10 (0.11 g, 

0.431 mmol) by treatment with EDC (85 mg, 0.44 mmol), 

HOAt (60 mg, 0.44 mmol) and TMP (0.314 g, 2.59 mmol) 

in CH2Cl2 (5 mL) according to GP 2 for 16 h. The crude 

product  obtained  after  the  usual  aqueous  workup  (GP 2) 

was  further  purified  by  column  chromatography (silica  gel,  eluted  with  acetone/hexane  2:5, 

Rf=0.13) to give an oily residue which was triturated with pentane to furnish the dipeptide ester 

87 (0.14 g, 66%) as a colorless solid. The mother liquor was cooled to 4 °C, and the precipitate 

was filtered off to give a second crop of the 87 (10 mg, 71% overall yield). M.p. 160–162 °C; 

[α]D
20 –41.4  (c=0.35,  CHCl3);  1H NMR  (300 MHz,  CDCl3):  δ = 1.40 (s,  9 H),  1.64 (dd, 

J = 6.9 Hz, 1.8 Hz, 3 H), 1.78–2.04 (m, 1 H), 2.11–2.57 (m, 1 H), 2.34 (s, 3 H), 2.97–3.15 (m, 

1 H), 2.99 (dd, J = 9.3 Hz, 9.1 Hz, 1 H), 3.51–3.92 (m, 3 H), 3.75 (s, 3 H), 4.12 (dd, J = 8.2 Hz, 

8.1 Hz, 1 H), 4.34–4.51 (m, 1 H), 5.02 (d,  J = 12.3 Hz, 1 H), 5.08 (d,  J = 12.3 Hz, 1 H), 5.17–

5.30 (m,  1 H),  5.52 (dq,  J = 10.5 Hz,  6.9 Hz,  1 H),  5.74–6.17 (bs,  1 H),  6.43–6.85 (bs,  1 H), 

7.14 (d,  J = 8.1 Hz, 2 H), 7.33 (d,  J = 8.1 Hz, 2 H);  13C NMR (75.5 MHz, CDCl3):  δ = 13.2 (+), 

21.2 (+), 28.3 (+), 36.0 (+), 38.1 (–), 40.8 (–), 41.5 (–), 52.4 (–), 52.7 (+), 54.3 (+), 60.8 (+), 61.4 

(+), 67.0 (–), 80.7 (Cquat), 126.5 (+), 128.3 (+), 129.1 (+), 129.4 (+), 133.2 (Cquat), 137.9 (Cquat), 

154.4, 155.1 (Cquat), 156.3 (Cquat), 170.2, 171.0 (Cquat), 170.9, 173.0 (Cquat).

Boc-(4-Pe)Pro-[MeZ-Dap]-OH (88):[110] A  40%  aqueous  solution  of  tetra-n-butylammonium 

hydroxide (0.20 g, 0.31 mmol) was added dropwise to an 

ice-cold  solution  of  the  dipeptide  ester  87 (0.13 g, 

0.26 mmol) in THF (2.0 mL) within 3 min, and stirring was 

continued at the same temperature for an additional 45 min 

(TLC  monitoring  to  detect  complete  consuming  of  the  starting  material).  A  aq. 1 M H2SO4 

(1 mL) was then added, and the mixture was diluted with Et2O (50 mL). The organic layer was 

separated and washed with aq. 1 M KHSO4 (2 × 10 mL), water (5 × 10 mL), brine (2 × 5 mL), 

dried over MgSO4 and filtered. The filtrate was concentrated under reduced pressure to give the 

crude product  which was finally purified by column chromatography (silica  gel,  eluted with 

acetone/hexane  4:7  +2% AcOH,  Rf=0.36)  to  give  dipeptide  acid  88 (0.126  g,  99%)  as  an 

extremely viscous turbid oil.  1H NMR (250 MHz, CDCl3):  δ = 1.31 + 1.41 (2 × s, 9 H), 1.65 (d, 

J = 6.0 Hz,  3 H),  1.75–1.98 (m,  1 H),  2.33 (s,  3 H),  2.21–2.53 (m,  1 H),  2.93–3.21 (m,  2 H), 

3.44–3.60 (m,  2 H),  3.60–4.03 (m,  1 H),  4.03–4.24 (m,  2 H),  4.30–4.39 + 4.41–4.54 (2 × bs, 

N
Boc

H
N

O

CO2Me

NHMeZ

N
Boc

H
N

O

CO2Me

NHMeZ



71

1 H), 5.04 (s, 2 H), 5.15–5.32 (m, 1 H), 5.55 (dq, J = 10.8 Hz, 7.0 Hz, 1 H), 6.25 (d, J = 6.5 Hz, 

1 H), 7.12 (d, J = 7.5 Hz, 2 H), 7.22 (d, J = 7.5 Hz, 2 H), 7.42–7.65 (bs, 1 H). 

Boc-(4-Pe)Pro-[MeZ-Dap]-MeF-(S)NcpA-MeF-Ile-ODCPM (89):[110] Tetrapeptide  66 (180 mg, 

0.21 mmol) was deprotected according to GP 1 in THF 

(2 mL),  taken  up  with  anhydrous  CH2Cl2 (5 mL), 

dipeptide  acid 88 (0.114  g,  0.23  mmol),  HATU 

(96 mg,  0.25 mmol)  and  HOAt  (31 mg,  0.23 mmol) 

were  added  and  the  reaction  mixture  was  cooled  to 

4 °C.  After  this,  a  solution  of  DIEA  (29 mg, 

0.22 mmol)  and  TMP  (75 mg,  0.62 mmol)  in 

CH2Cl2 (2 mL)  were  added  at  the  same  temperature 

within 5 min.  The temperature was allowed to reach 

20 °C,  and stirring continued for  an additional  15 h. 

After  aqueous  work-up  according  to  GP 2 and  two 

recrystallizations from EtOAc/hexanes 1:2, triprotected 

peptide 89 (185 mg, 79%) was obtained as a colorless powder. Rf = 0.46 (EtOAc/hexanes 1:1); 

m.p. 125–127 °C, [α]D
20 –29.0 (c = 0.2, THF);  1H NMR (600 MHz, CDCl3): δ = 0.27–0.33 (m, 

1 H), 0.33–0.44 (m, 3 H), 0.44–0.49 (m, 1 H), 0.49–0.57 (m, 2 H), 0.59–0.65 (m, 1 H), 0.75 (d, 

J = 6.8 Hz,  3 H),  0.89 (t,  J = 7.3 Hz,  3 H),  0.95–1.11 (m,  4 H),  1.11–1.60 (m,  5 H),  1.24 (d, 

J = 7.5 Hz,  3 H),  1.27 (d,  J = 7.5 Hz,  3 H),  1.36 (s,  9 H),  1.43 (d,  J = 6.5 Hz,  3 H),  1.66 (dd, 

J = 6.9 Hz, 1.7 Hz, 3 H), 1.68–1.76 (m, 1 H), 1.80–1.90 (m, 1 H), 2.30 (s, 3 H), 2.35–2.42 (m, 

1 H), 3.06–3.13 (m, 1 H), 3.13 (t,  J = 10.5 Hz, 1 H), 3.18–3.31 (m, 2 H), 3.67 (dd,  J = 10.2 Hz, 

7.8 Hz,  1 H),  3.80–3.84 (m,  1 H), 4.02–4.07 (m,  1 H),  4.14 (dd,  J = 10.7 Hz,  6.2 Hz,  1 H), 

4.33 (dd,  J = 8.9 Hz,  4.6 Hz,  1 H),  4.37 (dd,  J = 9.5 Hz,  2.2 Hz,  1 H),  4.45 (dd,  J =  9.9 Hz, 

6.9 Hz 1 H), 4.57 (dt,  J = 9.6 Hz, 5.1 Hz, 1 H), 4.62 (t,  J = 10.3 Hz, 1 H), 4.96–5.06 (m, 2 H), 

5.22–5.28 (m, 1 H), 5.46–5.51 (m, 1 H), 5.52–5.58 (m, 1 H), 6.54 (d,  J = 8.2 Hz, 1 H), 6.89 (d, 

J = 8.9 Hz,  1 H),  6.99 (d,  J = 9.6 Hz,  1 H),  7.06–7.12 (m,  2 H),  7.14–7.25 (m,  12 H)  7.49 (d, 

J = 9.8 Hz, 1 H), 7.86 (d, J = 5.9 Hz, 1 H); 13C NMR (62.9 MHz, CDCl3): δ = 2.48 (–), 2.82 (–), 

2.90 (–), 3.01 (–), 11.59 (+), 13.20 (+), 14.16 (+), 14.64 (+), 15.57 (+), 17.77 (+), 18.41 (–), 

18.86 (+), 19.43 (+), 21.11 (+), 21.77 (+), 25.23 (–), 26.85 (–), 28.23 (+), 31.46 (–), 31.53 (–), 

36.28 (–), 36.32 (+), 37.30 (+), 40.45 (+), 42.00 (+), 50.62 (+), 52.08 (+), 56.43 (+), 59.30 (+), 

59.49 (+), 61.01 (+), 61.62 (+), 61.99 (+), 66.89 (–), 70.53 (+), 80.93 (Cquat), 83.24 (+), 127.00 

(+), 127.06 (+), 127.10 (+), 127.60 (+), 127.69 (+), 128.47 (+), 128.63 (+), 128.68 (+), 128.82 

(+),  128.93  (+),  133.21 (Cquat),  137.83 (Cquat),  141.73 (Cquat),  141.90 (Cquat),  154.76 (Cquat), 
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155.75 (Cquat),  170.38 (Cquat),  170.43 (Cquat),  170.79 (Cquat),  171.37 (Cquat),  173.41 (Cquat),  174.06 

(Cquat).

N-MeZ  protected  cyclohexapeptide  (91):[110] To  the  hexapeptide  89 (0.188  g,  0.165  mmol) 

2 M HCl  in  EtOAc  (2  mL)  was  added,  the  reaction 

mixture was stirred for 45 min at ambient temperature 

in  the  dark  place  and  then  was  concentrated  under 

reduced pressure without any heating. The residue was 

triturated with dry Et2O to give deprotected material 90 

as a white solid, which was taken up with anhydrous 

CH2Cl2 (1.5 L)  and  cyclized  employing  HATU 

(2 × 0.073 g, 2 × 0.192 mmol) and HOAt (2 × 0.022 g, 

2 × 0.163 mmol)  and solution  of  DIEA (2 × 0.062 g, 

2 × 0.480 mmol) in CH2Cl2 (2 × 50 mL) according to 

GP 4 for  16 h.  After  this,  the  solvent  was  removed 

under reduced pressure, the residue was taken up with 

Et2O (50 mL), and after usual aqueous work-up (GP 2), drying and filtration, the organic layer 

was  concentrated  under  reduced  pressure.  The  residue  was  purified  first  by  column 

chromatography  (silica  gel,  eluted  with  acetone/hexanes  2:3,  Rf =  0.31)  and  then  by 

recrystallization (Et2O/pentane) to give crude product (0.12 g), which was finally purified by 

preparative  HPLC to  give  cyclohexapeptide  91 (86  mg,  53% on  2  steps)  as  a  white  solid. 

Preparative HPLC: isocratic, 70% B for 30 min, tR = 21.5 min, purity > 98%; analytical HPLC: 

isocratic,  62% B for, tR = 22.9 min,  purity > 98% [α]D
20 –15.5 (c = 0.20, CHCl3);  1H NMR 

(600 MHz,  CDCl3):  δ = 0.61–0.67 (m,  1 H),  0.72 (d,  J = 6.6  Hz,  3 H),  0.71–0.77 (m,  1 H), 

0.79 (t,  J = 7.2 Hz,  3 H),  1.04–1.12 (m,  1 H),  1.23 (d,  J = 6.6 Hz,  3 H),  1.27–1.34 (m,  1 H), 

1.37 (d,  J = 6.6 Hz, 3 H), 1.37–1.43 (m, 1 H), 1.45–1.54 (m, 1 H), 1.54–1.57 (m, 1 H), 1.57 (d, 

J = 6.6 Hz,  3 H),  1.65 (dd,  J = 6.6 Hz,  1.5 Hz,  3 H),  1.66–1.76 (m,  2 H),  2.20–2.25 (m,  1 H), 

2.35 (s,  3 H),  3.01–3.07 (m,  1 H),  3.15–3.28 (m,  2 H),  3.54 (dq,  J = 7.2 Hz,  6.6 Hz,  1 H), 

3.71 (dd, J = 6.0 Hz, 5.4 Hz, 1 H), 3.74–3.77 (m, 1 H), 3.98 (dd, J = 10.5 Hz, 6.3 Hz, 1 H), 4.01–

4.08 (m, 1 H), 4.46–4.54 (m, 2 H), 4.52–4.55 (m, 1 H), 4.67–4.70 (m, 1 H), 5.03 (d, J = 12.0 Hz, 

1 H), 5.15 (d, J = 12.0 Hz, 1 H), 5.19–5.25 (m, 1 H), 5.39 (qd, J = 6.6 Hz, 1.8 Hz, 1 H), 5.56 (dq, 

J = 10.8 Hz,  6.6 Hz,  1 H),  5.96 (d,  J =  5.3 Hz,  1 H),  6.20 (d,  J =  7.4 Hz,  1 H),  6.28 (d,  J = 

9.7 Hz, 1 H), 6.49 (d,  J = 9.4 Hz, 1 H), 7.11–7.37 (m, 14 H) 7.32 (d,  J = 7.4 Hz, 1 H), 7.45 (d, 

J = 8.7 Hz, 1 H); 13C NMR (150.8 MHz, CDCl3): δ = 10.3 (+), 13.3 (+), 14.6 (+), 17.3 (–), 17.7 

(+), 18.4 (+), 21.2 (+), 21.3 (+), 24.7 (–), 32.0 (–), 35.4 (–), 36.6 (+), 39.4 (+), 44.5 (+), 52.5 (–), 
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53.3 (+), 54.6 (+), 58.6 (+), 59.0 (+), 59.4 (+), 60.1 (+), 60.7 (+), 67.2 (–), 72.6 (+), 127.1 (+), 

127.2 (+), 127.5 (+), 127.6 (+), 128.3 (+), 128.6 (+), 128.8 (+), 129.2 (+), 127.8 (+), 128.0 (+), 

133.2 (Cquat), 137.9 (Cquat), 140.9 (Cquat), 142.6 (Cquat), 156.3 (Cquat), 169.0 (Cquat), 170.3 (Cquat), 

170.6 (Cquat), 171.1 (Cquat), 171.4 (Cquat), 173.1 (Cquat); MS-ESI: positive mode, m/z (%) = 1001 

(100, M+Na+); negative mode, m/z (%) = 977 (100, M–H−).

N-Teoc  protected  heptapeptide  (93):[110] An  ethereal  solution  (50  mL)  of  the 

cyclohexylammonium  salt  of  N-Teoc 

protected  (2S,1'R,2'R)-3-(2'-nitrocyclopro-

pyl)alanine  78 (8.1  mg,  19.41  µmol)  was 

washed with aq. 1 M H2SO4 (3 × 5 mL), aq. 

1 M KHSO4 (2 × 5 mL),  water  (3 × 5 mL), 

brine  (2 × 5 mL),  dried,  filtered  and 

concentrated  under  reduced  pressure.  The 

resulting  N-protected  amino  acid  78 was 

dried at 0.02 Torr for 2 h and then coupled 

with the cyclohexapeptide 92 [obtained after 

deprotection  of  N-MeZ  protected 

cyclohexapeptide 91 (9.5 mg, 9.71 µmol) with 10% anisole in TFA (1.1 mL) for 2 h according to 

GP 5] using HATU (7.4 mg, 19.46 µmol), HOAt (2.6 mg, 19.24 µmol), DIEA (1.25 mg, 9.67 

µmol) and TMP (7.04 mg, 58.10 µmol) in CH2Cl2 (0.7 mL) according to GP  6 for 15 h. The 

mixture was  then diluted with EtOAc/Et2O 1:1 (20 mL) to give after usual aqueous work-up 

(GP 2) the crude product  79 (8.0 mg, 73%,  Rf = 0.43 acetone/hexanes 1:2) as a colorless glass 

which was used for the next step without any characterization. 

MOM-O-protected  Hormaomycin  all-

peptide  analogue (95):[110] Teoc  group was 

cleaved from the compound 93 (8.0 mg, 7.08 

µmol)  with  TFA  (0.6  mL)  for  1  h.  The 

mixture  was  concentrated  under  reduced 

pressure  at  20 °C  and  then  taken  up  with 

toluene (3 × 15 mL) which was distilled off 

to  remove  the  last  traces  of  TFA.  The 

resulting  deprotected  peptide  94 was 

coupled with O-MOM protected acid 81 (2.9 
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mg, 14.10 µmol)  using HATU (5.4 mg, 14.20 µmol),  DIEA (0.92 mg, 7.12 µmol)  and TMP 

(5.14 mg, 42.42 µmol) in CH2Cl2 (1 mL) according to GP 6 for 2.5 h. The mixture was then 

taken up with Et2O (20 mL) and the crude product obtained after usual aqueous work-up (GP 2) 

was  crystallized  from CH2Cl2 / pentane  to  give  O-MOM protected  all-peptide  Hormaomycin 

analogue 95 (8.0 mg, 96%, Rf = 0.36 acetone/hexanes 1:2) as a colorless glass which was used 

for the next step without any characterization.

Hormaomycin  all-peptide  analogue  (53):[110] O-MOM  protected  all-peptide  Hormaomycin 

analogue  95 (8.0  mg,  6.82  µmol)  was 

deprotected  using  MgBr2 × Et2O  (52 mg, 

201 µmol) and EtSH (0.10 mL, 1.9 mmol) in 

CH2Cl2 (10 mL) according to GP 7 for 3 h. 

The mixture was taken up with EtOAc and 

the  crude  product  obtained  after  usual 

aqueous  work-up  (GP 2)  was  crystallized 

from CH2Cl2 / pentane to  give  53 (5.5  mg, 

72%, 50% on 5 steps from  91) as a white 

solid,  which  was  finally  purified  with 

preparative  HPLC.  Rf = 0.24 

acetone/hexanes 3:7; preparative HPLC: isocratic, 75% B for 12 min, then gradient 62%→90% 

B for 1 min, then isocratic 90%B for 2 min, then gradient 90%→75% B for 1 min, then isocratic 

75% B for 14 min, tR = 10.4 min, purity > 98%; analytical HPLC: isocratic, 75% B tR = 7.3 min 

[α]D
20 61.0 (c = 0.1, MeOH);  1H NMR (600 MHz, CDCl3): δ = –0.60 – –0.54 (m, 1 H), –0.20–

0.02 (m,  1 H),  0.25–0.31 (m,  1 H),  0.52 (ddd,  J = 13.8 Hz,  4.8 Hz,  4.8 Hz,  1 H),  0.89 (t, 

J = 7.2 Hz,  3 H),  0.98–1.05 (m,  2 H),  1.07 (d,  J = 7.2 Hz),  1.26–1.32 (m,  1 H)  1.30 (d, 

J = 7.2 Hz, 3 H), 1.40 (d, J = 7.2 Hz, 3 H), 1.54–1.60 (m, 1 H), 1.67 (d, J = 6.6 Hz, 3 H), 1.67–

1.75 (m, 2 H), 1.84–1.93 (m, 3 H), 1.95–2.01 (m, 1 H), 2.20–2.27 (m, 1 H), 2.85–2.88 (m, 1 H), 

3.04 (dq,  J = 10.5 Hz,  7.2 Hz,  1 H),  3.18–3.30 (m,  2 H),  3.33 (d,  J = 13.8  Hz,  1 H),  3.47–

3.51 (m,  1 H),  3.68 (dq,  J = 4.8 Hz,  7.2 Hz,  1 H),  3.93 (dd,  J = 12.0 Hz,  5.4 Hz,  2 H),  3.94–

3.98 (m,  1 H),  4.02–4.05 (m,  1 H),  4.11–4.23 (m,  1 H),  4.33 (dd,  J = 10.5 Hz,  10.5 Hz,  1 H), 

4.47 (dd, J = 9.6 Hz, 4.8 Hz, 1 H), 4.50 (dd, J = 9.0 Hz, 3.0 Hz, 1 H), 4.60–4.68 (m, 2 H), 5.14–

5.20 (m, 1 H), 5.24–5.30 (m, 1 H), 5.61 (dq, J = 10.8 Hz, 6.6 Hz, 1 H), 6.15 (d, J = 4.8 Hz, 1 H), 

6.46 (d,  J = 6.6 Hz,  1 H),  6.78–6.83 (bs,  1 H),  6.83 (d,  J = 4.8 Hz,  1 H),  7.02–7.06 (m,  2 H), 

7.10–7.19 (m,  6 H),  7.20–7.24 (m,  5 H),  7.32 (d,  J = 9.0 Hz,  1 H),  8.17 (d,  J = 7.8 Hz,  1 H), 
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8.75 (d,  J = 8.4 Hz, 1 H), 10.75–11.15 (bs, 1 H);  13C NMR (150.8 MHz, CDCl3): δ = 10.3 (+), 

13.2 (+), 13.3 (+), 14.8 (+), 16.9 (–), 17.1 (–), 17.5 (+), 20.0 (+), 21.6 (+), 25.1 (–), 32.9 (–), 35.0 

(–), 35.7 (–), 36.3 (+), 37.8 (+), 38.0 (–), 39.1 (+), 41.6 (+), 50.9 (+), 51.8 (+), 52.0 (+), 53.0 (–), 

54.5 (+), 58.0 (+), 59.2 (+), 60.0 (+), 60.3 (+), 63.5 (+), 103.6 (+), 109.8 (+),119.9 (Cquat), 121.6 

(Cquat), 126.9 (+), 127.3 (+), 127.4 (+), 127.6 (+), 127.8 (+), 127.9 (+), 128.5 (+), 128.6 (+), 141.3 

(Cquat), 142.1 (Cquat), 159.2 (Cquat), 168.4 (Cquat), 169.5 (Cquat), 170.3 (Cquat), 170.8 (Cquat), 171.7 

(Cquat), 172.4 (Cquat), 172.5 (Cquat); MS (ESI): (positive) m/z (%): 1137 (100, M+Na+), 1115 (32, 

M+H+), (negative) m/z (%): 1113 (72, M–H–).
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10. Hormaomycin  analogues  containing  (fluoromethylcyclopropyl)alanine 

moieties

10.1. (Trifluoromethylcyclopropyl)alanyl-Hormaomycin

N-Fmoc-(2R,1'R,2'R)-3-(2'-Trifluoromethylcyclopropyl)alanine  (Fmoc-(R)tFmcpA-OH, 97 c):  A 

solution of Fmoc-OSu (459 mg, 1.36 mmol) in acetone (7 mL) was added to a 

vigorously stirred solution of (2R,1'R,2'R)-3-(2'-trifluoromethylcyclopropyl)ala-

nine R-96 c (225 mg, 1.14 mmol) and NaHCO3 (0.202 g, 2.40 mmol) in water 

(5 mL) (if a precipitate formed, acetone and/or water was added to obtain a 

homogeneous solution) and stirring continued for an additional 3 h. Acetone 

was  then  removed  under  reduced  pressure,  and  the  pH  of  the  residual  water  solution  was 

adjusted  to  1  with  aq. 1 M KHSO4.  The  resulting  emulsion  was  extracted  with  diethyl  ether 

(30 mL)  and  the  ethereal  layer  was  back-extracted  with  aq. 3% NaHCO3 (5 × 10 mL).  The 

combined aqueous fractions were washed with diethyl ether (2 × 10 mL), acidified to pH~2 with 

aq. 1 M KHSO4, and the resulting emulsion was extracted with diethyl ether (4 × 10 mL). The 

organic  phase  was  washed  with  aq. 1 M KHSO4 (2 × 10 mL),  water  (3 × 10 mL),  brine 

(2 × 5 mL), dried, filtered and concentrated under reduced pressure. The residue was triturated 

with cold pentane and filtered. The resulting extremely viscous oil was dried at 0.02 Torr for 

prolonged time to give the target protected amino acid  97 c (390 mg, 0.930 mmol, 82%) as a 

colorless foam.  Rf = 0.08 (EtOAc/hexane 1:1); m.p. (softening) 50–57 °C; [α]D
20 –56.7 (c=0.36, 

CHCl3);  1H NMR (600 MHz,  CDCl3):  0.38–0.44 + 0.57–0.64 + 0.79–0.86  (3 × m,  1 H),  0.91–

0.97 + 1.00–1.09  (2 × m,  1 H),  1.14–1.22 + 1.26–1.34  (2 × m,  1 H),  1.35–1.53 + 1.85–1.88 

(2 × m,  1 H),  1.80–1.85 (m,  1 H),  3.75–3.79 + 4.53–4.67 (2 × m,  1 H),  3.95–4.01 + 4.47–4.52 

(2 × m,  1 H),  4.16–4.23 (m,  1 H),  4.36–4.47 (m,  1 H),  5.52 (d,  J  = 7.9 Hz,  0.7 H),  6.76 (d, 

J = 5.9 Hz, 0.3 H), 7.27–7.31 (m, 2 H), 7.35–7.41 (m, 2 H), 7.51 (t, J = 8.1 Hz, 0.6 H), 7.58 (t, 

J = 8.4  Hz,  1.4 H),  7.74  (d,  J =  7.4  Hz,  2 H),  7.85–8.65  (bs,  1 H);  13C NMR (125.7 MHz, 

CDCl3): δ = 7.94 (–), 11.46 (+), 19.73 (+, q,  J = 37.0 Hz), 34.65 (–), 47.10 (+), 53.48 + 53.82 

(+), 67.14 + 67.87 (–), 120.00 (+), 124.97 (+), 125.96 (–, q,  J = 272.4 Hz), 127.07 (+), 127.76 

(+), 141.32 (Cquat), 143.51 (Cquat), 143.76 (Cquat), 155.79 + 156.71 (Cquat), 174.96 + 175.79 (Cquat);

MS-ESI:  (positive)  m/z  (%)  1302  (35,  3M-H+2Na+),  861  (100,  2M+Na+),  442  (M+Na+),

(negative) m/z (%) 837 (100, 2M–H−), 418 (16, M–H−), 222 (14, M–FmOH–H−), 196 (15, 

FmOH−).
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Fmoc-(R)tFmcpA-MeF-Ile-ODCPM (98 c): Dipeptide 60 (434 mg, 834 µmol) was taken up with 

EtOAc (20 mL) and hydrogenated over 10% Pd/C (250 mg) under 

ambient  pressure  of  hydrogen  for  2 h.  The  reaction  mixture  was 

filtered  through a pad of  Celite® and concentrated  under  reduced 

pressure to give deprotected dipeptide  62, which was directly used 

for  the  coupling  with  Fmoc-(R)tFmcpA-OH  97 c  (360 mg, 

860 µmol),  using  EDC  (172 mg,  896 µmol),  HOAt  (120 mg, 

883 µmol) and TMP (310 µL, 2.5 mmol) according to GP 2. During 

reaction  the  white  precipitate  appeared.  The  mixture  was  diluted 

with diethyl ether (50 mL), stirred for 30 min and filtered, giving the 

crude  product  (1st crop,  473 mg after  drying  in  vacuo).  The  filtrate  was  concentrated  under 

reduced pressure at ambient temperature and diluted with diethyl ether (20 mL) giving the crude 

product  (2nd crop,  130 mg  after  drying  in  vacuo).  The  residing  filtrate  was  subjected  usual 

aqueous work-up according to GP 2 to give the last portion of crude product (3rd crop, 100 mg 

after drying  in vacuo). Combined crude product was re-crystallized from THF/hexane and the 

resulting  off-white  solid  was  dissolved  in  chloroform (50 mL)  and  subjected  usual  aqueous 

work-up according to GP 2 to give the pure tripeptide as white solid (535 mg, 679 µmol, 81%). 

Rf = 0.52;  EtOAc/hexane  2:3;  m.p.  151–155°C;  [α]D
20 –3,8  (c  =0.26,  CHCl3); 

1H NMR (500 MHz, CDCl3):  δ = 0.28–0.40  (m, 4 H),  0.43–0.53  (m, 2 H),  0.57–0.66  (m, 3 H), 

0.88 (d,  J  = 6.7 Hz, 3 H), 0.90 (t,  J = 7.4 Hz, 3 H), 0.94–1.00 (m, 1 H), 1.03–1.13 (m, 2 H), 

1.13–1.22 (m, 2 H), 1.30–1.50 (m, 2 H), 1.41 (d, J = 6.8 Hz, 3 H), 1.58–1.70 (m, 1 H), 1.81–1.97 

(m, 2 H), 3.28–3.38 (m, 1 H), 3.86 (t, J = 8.4 Hz, 1 H), 4.28 (t, J = 6.9 Hz, 1 H), 4.39–4.48 (m, 

3 H), 4.48–4.57 (m, 1 H), 4.76 (t, J = 8.0 Hz, 1 H), 5.76 (d, J = 7.7 Hz, 1 H), 6.40 (d, J = 7.5 Hz, 

1 H), 7.11 (d, J = 8.1 Hz, 1 H), 7.20–7.34 (m, 5 H), 7.35 (t, J = 7.4 Hz, 2 H), 7.46 (t, J = 7.4 Hz, 

2 H), 7.60 (t, J = 8.0 Hz, 2 H), 7.79 (d, J = 7.5 Hz, 2 H); 13C NMR (125.7 MHz, CDCl3) δ = 2.57; 

2.90, 8.18, 11.62,14.39, 14.66, 15.07, 15.07, 16.86, 19.70 (q,  J=37.1 Hz), 25.14, 35.08, 38.13, 

42.05, 47.07, 54.69,56.46, 58.79, 67.18, 83.44, 119.94, 124.99, 127.06, 127.55, 127.71, 128.54, 

141.23, 141.28, 141.70, 143.57, 143.78, 155.95, 169.64, 170.55, 170.94.
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Fmoc-MeF-(R)tFmcpA-MeF-Ile-ODCPM (100 c):  The tripeptide  98 c (394 mg, 500 µmol) was 

deprotected  according  to  GP 1 and  the  resulting  C-

protected  tripeptide  99 c was  then  directly  coupled 

with Fmoc-MeF-OH 64 (211 mg, 525 µmol) according 

to GP 2 using EDC (99 mg, 518 µmol), HOAt (70 mg, 

512 µmol)  and TMP (175 mg,  1440 µmol)  in  CH2Cl2 

(3  mL).  After  16 h the  reaction  mixture  was diluted 

with chloroform (50 mL) and subjected usual aqueous 

work-up  according  to  GP 2 to  give  the  crude 

tetrapeptide,  which  was  twice  re-crystallized  from 

THF/hexane, giving the pure target tetrapeptide as off-

white  solid  (440 mg,  463 µmol,  93%).  Rf = 0.29;  CHCl3/MeOH  70:1;  m.p.  210–215 °C 

(decomp.); [α]D
20 –26,3 (c  = 0.32, THF);  1H NMR (250 MHz, CDCl3): δ = 0.22–0.36 (m, 4 H), 

0.41 (t,  J = 8.9 Hz,  3 H),  0.48–0.61 (m,  2 H),  0.62–0.71 (m,  1 H),  0.76 (d,  J = 6.9 Hz,  3 H), 

0.82 (t,  J = 7.3 Hz, 3 H), 0.92–1.09 (m, 4 H), 1.09–1.18 (m, 1 H), 1.22–1.46 (m, 2 H), 1.26 (d, 

J = 6.9 Hz,  3 H),  1.39 (d,  J = 6.6 Hz,  3 H),  1.71–1.89 (m,  1 H),  3.09–3.36 (m,  3 H),  3.81 (t, 

J = 8.4  Hz,  1 H),  4.15–4.33 (m,  3 H),  4.35–4.64 (m,  3 H),  4.62 (t,  J = 8.3 Hz,  1 H),  5.95 (d, 

J = 7.1 Hz,  1 H),  6.40 (d,  J = 7.4 Hz,  1 H),  7.08–7.45 (m,  16 H),  7.57 (t,  J = 8.9  Hz,  2 H), 

7.76 (d, J = 7.3 Hz, 2 H); 13C NMR (62.9 MHz, CDCl3): δ = 3.3 (–), 3.5 (–), 3.6 (–), 3.7 (–), 12.2 

(+), 15.6 (+), 15.9 (+), 16.1 (+), 17.7 (+), 18.7 (+), 18.9 (–), 23.2 (+), 26.2 (–), 35.0 (–), 39.1 (+), 

42.8 (+), 44.1 (+), 48.5 (+), 52.8 (+), 57.4 (+), 59.3 (+), 60.2 (+), 62.1 (+), 67.8 (–), 83.4 (+), 

115,1 (+, q, J = 291.4 Hz), 126.4 (+), 127.5 (+), 127.7 (+), 128.1 (+), 128.6 (+), 129.1 (+), 129.1 

(+),  129.3 (+),  129.4 (+),  142.5 (Cquat),  144.1 (Cquat),  144.4 (Cquat),  145.4 (Cquat),  145.6 (Cquat), 

157.8 (Cquat), 171.1 (Cquat), 171.5 (Cquat), 171.9 (Cquat), 172.1 (Cquat). 
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Boc-(4-Pe)Pro-[MeZ-a-Thr]-MeF-(S)tFmcpA-MeF-Ile-ODCPM (101 c):  The tetrapeptide  100 c 

(332 mg,  350 µmol)  was  N-deprotected  according  to 

GP 1 with diethylamine (5 mL) and THF (5 mL), taken 

up with anhydrous CH2Cl2 (5 mL), the solution of the 

ester  acid  71 (194 mg,  385 µmol),  HATU  (160 mg, 

420 µmol)  and  HOAt  (53 mg,  385µmol)  in  CH2Cl2 

(3 mL) was added, and the reaction mixture was cooled 

to 4 °C. After this, a solution of DIEA (65 µL, 48 mg, 

368 µmol) and TMP (140 µL, 127 mg, 1050 µmol) in 

CH2Cl2 (2 mL)  was  added  at  the  same  temperature 

within 5 min.  The temperature was allowed to reach 

20 °C,  and  stirring  was  continued  for  an  additional 

15 hours.  After  aqueous  work-up  according  to  GP 2 and  two  recrystallizations  from 

EtOAc/hexane (1:2), the target hexadepsipeptide 101 c (390 mg, 321 µmol, 92%) was obtained 

as a colorless solid. Rf = 0.46 (EtOAc/hexane 1:1); m.p. 125–127 °C; [α]D
20 –29.0 (c=0.2, THF); 

1H NMR  (250 MHz,  CDCl3):  δ = 0.24–0.68 (m,  12 H),  0.75 (d,  J = 6.9 Hz,  3 H),  0.88 (t, 

J = 7.1 Hz,  3 H),  0.98–1.17 (m,  5 H),  1.18–1.46 (m,  1 H),  1.24 (d,  J = 6.6 Hz,  3 H),  1.27 (d, 

J = 6.7 Hz, 3 H), 1.36 (s, 9 H), 1.40 (d, J = 6.7 Hz, 3 H), 1.68 (d, J = 7.0 Hz, 3 H), 1.75–1.94 (m, 

2 H),  2.29–2.46 (m,  1 H),  2.32 (s,  3 H),  3.07–3.33 (m,  4 H),  3.68 (t,  J = 8.6 Hz, 1 H),  3.93 (t, 

J = 8.3 Hz,  1 H),  4.18–4.27 (m,  1 H),  4.32–4.54 (m,  4 H),  4.64 (t,  J = 9.6 Hz,  1 H),  4.95–

5.13 (m,  2 H),  5.20–5.34 (m,  1 H),  5.44–5.63 (m,  2 H),  6.60 (d,  J = 7.7 Hz,  1 H),  6.70 (d, 

J = 8.8 Hz,  1 H),  6.82 (d,  J = 8.4 Hz,  1 H),  7.05–7.37 (m,  14 H),  7.45 (d,  J = 10.1 Hz,  1 H), 

7.76 (d, J = 8.1 Hz, 1 H); 13C NMR (62.9 MHz, CDCl3): δ = 2.48 (–), 2.82 (–), 2.90 (–), 3.01 (–), 

11.59 (+), 13.20 (+), 14.16 (+), 14.64 (+), 15.57 (+), 17.77 (+), 18.41 (–), 18.86 (+), 19.43 (+), 

21.11 (+), 21.77 (+), 25.23 (–), 26.85 (–), 28.23 (+), 31.46 (–), 31.53 (–), 36.28 (–), 36.32 (+), 

37.30 (+), 40.45 (+), 42.00 (+), 50.62 (+), 52.08 (+), 56.43 (+), 59.30 (+), 59.49 (+), 61.01 (+), 

61.62 (+), 61.99 (+), 66.89 (–), 70.53 (+), 80.93 (Cquat), 83.24 (+), 116,2 (+, q, J = 287.3 Hz), 

127.00 (+), 127.06 (+), 127.10 (+), 127.60 (+), 127.69 (+), 128.47 (+), 128.63 (+), 128.68 (+), 

128.82  (+),  128.93  (+),  133.21 (Cquat),  137.83 (Cquat),  141.73 (Cquat),  141.90 (Cquat), 

154.76 (Cquat),  155.75 (Cquat),  170.38 (Cquat),  170.43 (Cquat),  170.79 (Cquat), 

171.37 (Cquat), 173.41 (Cquat), 174.06 (Cquat).
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N-MeZ-protected  cyclohexadepsipeptide 103 c (Cyclo-F36-MeZ):  The  hexadepsipeptide

Boc-(4-Pe)Pro-[MeZ-a-Thr]-MeF-(S)tFmcpA-MeF-

Ile-ODCPM (300 mg, 247 µmol) was ends-deprotected 

by  treating  with  2 M HCl  solution  in  ethyl  acetate 

(5 mL). The reaction mixture was stirred for 20 min in 

dark place (Al foil jacket) at ambient temperature and 

all volatiles were removed under reduced pressure  in  

vacuo without any heating. The residue was triturated 

with anhydrous diethyl ether to give the hydrochloride 

of  the  deprotected  material  as  a  colorless  solid 

(232 mg,  220 µmol,  89%).  The  ends-deprotected 

hexadepsipeptide, HATU (110 mg, 288 µmol) and HOAt (33 mg, 244 µmol) were dissolved in 

cold (4°C, internal temperature) anhydrous CH2Cl2 (2,5 L), and the solution of DIEA (120 µL, 

93 mg, 720 µmol) in CH2Cl2 (100 mL) was added dropwise within 1 hour, the cooling bath was 

removed and the mixture was stirred for 2 hours at ambient temperature. Then the mixture was 

cooled again to 4°C (internal temperature), the second portions of HATU (110 mg, 288 µmol) 

and HOAt (33 mg, 244 µmol) were added, followed with dropwise addition of the solution of 

DIEA (120 µL,  93 mg,  720 µmol)  in  CH2Cl2 (100 mL)  within 1 hour.  The cooling bath was 

removed and the mixture was stirred for 18 hours at  ambient  temperature.  The mixture was 

concentrated under reduced pressure, subjected to aqueous work-up according to GP 2 to give 

the crude protected cyclohexadepsipeptide (180 mg, 180 µmol, 73%) which was finally purified 

with the HPLC to give pure product (132 mg, 132 µmol,  54%).  Preparative HPLC: isocratic, 

82% B for 25 min, tR = 15.4 min, purity > 98%; analytical HPLC: gradient 20% → 100% B for 

20 min, then isocratic 100% B for 5 min tR = 11.9 min, purity > 98%; [α]D
20 –15.5 (c = 0.20, 

CHCl3);  1H NMR (600 MHz, CDCl3): δ = 0.61–0.67 (m, 1 H), 0.72 (d,  J = 6.6 Hz, 3 H), 0.71–

0.77 (m,  1 H),  0.79 (t,  J = 7.2 Hz,  3 H),  1.04–1.12 (m,  1 H),  1.23 (d,  J = 6.6 Hz,  3 H),  1.27–

1.34 (m, 1 H), 1.37 (d, J = 6.6 Hz, 3 H), 1.37–1.43 (m, 1 H), 1.45–1.54 (m, 1 H), 1.54–1.57 (m, 

1 H),  1.57 (d,  J = 6.6 Hz,  3 H),  1.65 (dd,  J = 6.6 Hz,  1.5 Hz, 3 H),  1.66–1.76 (m,  2 H),  2.20–

2.25 (m,  1 H),  2.35 (s,  3 H),  3.01–3.07 (m,  1 H),  3.15–3.28 (m,  2 H),  3.54 (dq,  J = 7.2 Hz, 

6.6 Hz,  1 H),  3.71 (dd,  J = 6.0 Hz,  5.4 Hz,  1 H),  3.74–3.77 (m,  1 H),  3.98 (dd,  J = 10.5 Hz, 

6.3 Hz, 1 H), 4.01–4.08 (m, 1 H), 4.46–4.54 (m, 2 H), 4.52–4.55 (m, 1 H), 4.67–4.70 (m, 1 H), 

5.03 (d,  J = 12.0 Hz, 1 H), 5.15 (d,  J = 12.0 Hz, 1 H), 5.19–5.25 (m, 1 H), 5.39 (qd,  J = 6.6 Hz, 

1.8 Hz, 1 H), 5.56 (dq,  J = 10.8 Hz, 6.6 Hz, 1 H), 5.96 (d,  J = 5.3 Hz, 1 H), 6.20 (d,  J = 7.4 Hz, 

1 H),  6.28 (d,  J = 9.7 Hz,  1 H),  6.49 (d,  J = 9.4 Hz,  1 H),  7.11–7.37 (m,  14 H)  7.32 (d, 
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J = 7.4 Hz, 1 H), 7.45 (d, J = 8.7 Hz, 1 H); 13C NMR (150.8 MHz, CDCl3): δ = 10.3 (+), 13.3 (+), 

14.6 (+), 17.3 (–), 17.7 (+), 18.4 (+), 21.2 (+), 21.3 (+), 24.7 (–), 32.0 (–), 35.4 (–), 36.6 (+), 39.4 

(+), 44.5 (+), 52.5 (–), 53.3 (+), 54.6 (+), 58.6 (+), 59.0 (+), 59.4 (+), 60.1 (+), 60.7 (+), 67.2 (–), 

72.6 (+), 127.1 (+), 127.2 (+), 127.5 (+), 127.6 (+), 128.3 (+), 128.6 (+), 128.8 (+), 129.2 (+), 

127.8 (+), 128.0 (+), 133.2 (Cquat), 137.9 (Cquat), 140.9 (Cquat), 142.6 (Cquat), 156.3 (Cquat), 169.0 

(Cquat), 170.3 (Cquat), 170.6 (Cquat), 171.1 (Cquat), 171.4 (Cquat), 173.1 (Cquat).

N-Teoc-(2S,1'S,2'R)-3-(2'-Trifluoromethylcyclopropyl)alanine  (Teoc-(S)tFmcA-OH,  105 c):  A 

solution of TeocOSu (43 mg, 164 µmol) in acetone (1 mL) was added 

to  a  vigorously  stirred  solution  of  (2S,1'S,2'R)-3-(2'-

trifluoromethylcyclopropyl)alanine  S-96 c (27 mg,  137 µmol)  and 

NaHCO3 (24 mg, 286 µmol) in water (1 mL) (if an emulsion formed, 

acetone and/or water was added to obtain a homogeneous solution), 

and  stirring  was  continued  for  another  2 h.  N,N-dimethylaminopropylamine  (8 µL,  6,4 mg, 

52 µmol)  was  then  added.  After  an  additional  10 min  acetone  was  removed  under  reduced 

pressure and the pH of the residual water solution was adjusted to 2–3 with aq. 1 M KHSO4. The 

resulting emulsion was extracted with diethyl ether (50 mL), and the ethereal layer was washed 

with  aq. 1 M KHSO4 (2 × 10 mL),  water  (3 × 10 mL),  brine  (2 × 5 mL),  dried  over  MgSO4, 

filtered and concentrated under reduced pressure. The residual oil was dried overnight in vacuo 

to give glass-like product (38 mg, 111 µmol, 81%). Rf  = 0.24 [EtOAc/hexane 1:3 (2% AcOH)]; 

[α]D
20 22.80 (c = 0.46, CHCl3);  1H NMR (250 MHz, CDCl3):  δ = 0.04 (s, 9H), 1.00 (dd,  J  = 

9.5 Hz, 7.3 Hz, 2 H), 1.11–1.18 (m, 1 H), 1.60–1.95 (m, 2 H), 1.98–2.19 (m, 2 H), 4.14–4.23 (m, 

3 H),  4.33–4.59  (m,  1 H),  5.33–5.46  (m,  1 H),  7.08–7.25  (bs,  1 H); 
13C NMR (62.9 MHz, CDCl3): δ = –1.9 (+), 10.2 (–), 17.3 (–), 22.0 (+), 33.1 + 33.3 (–), 52.7 (+), 

53.2 (+),  59.0 (+),  63.7 (+), 64.8 (–), 115.6 (q,  J = 271.4 Hz),  157.4 (Cquat),  174.5 + 174.8 

(Cquat). 
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Teoc-(S)tFmcpA-Cyclo-F36  (106 c):  N-MeZ-protected  cyclohexadepsipeptide  103 c (25 mg, 

25 µmol) was deprotected with 10% anisole in TFA 

(1.1 mL) in the dark at ambient temperature for 2 h, 

the  residue  was  treated  with  toluene  (5 mL), 

concentrated under reduced pressure and the residue 

was  dried  in  vacuo at  ambient  temperature  for 

2 hours.  The  solution  of  Teoc-(S)tFmcpA-OH 

105 c, HATU (29 mg, 75 µmol) and HOAt (10 mg, 

75 µmol)  in  CH2Cl2 (1.5 mL)  was  added at  4 °C, 

followed with DIEA (3 5 mg,  27 µmol)  and TMP 

(27 mg, 225 µmol) solution in CH2Cl2 (1.5 mL) and 

the mixture was stirred at ambient temperature for 

15 h. The reaction mixture was then diluted with diethyl ether (50 mL) and the crude product 

obtained  after  the  usual  aqueous  work-up  (GP 2)  was  purified  by  crystallization  from 

CH2Cl2/pentane  to  give  Teoc-(S)tFmcpA-Cyclo-F36  (106 c) (29 mg,  24,7 µmol,  99%)  as  a 

colorless solid (Rf = 0.43, acetone/hexane 1:2)  which was used for the next step without any 

characterization.

MOM-O-protected Trifluoromethylcyclopropylalanyl  Hormaomycin (MOM-O-F3Horm, 108 c): 

Teoc  group was cleaved from the  compound 

106 c (8.0 mg, 7.08 µmol) with TFA (0.6 mL) 

for 1 h.  The mixture  was concentrated under 

reduced pressure  at  20 °C and then  taken up 

with toluene (3 × 15 mL) which was distilled 

off  to  remove  the  last  traces  of  TFA.  The 

resulting  deprotected  depsipeptide  107 c was 

coupled  with  O-MOM  protected  acid  81 

(2.9 mg,  14.10  µmol)  using  HATU (5.4  mg, 

14.20 µmol), DIEA (0.92 mg, 7.12 µmol) and 

TMP (5.14 mg, 42.42 µmol) in CH2Cl2 (1 mL) 

according to GP 6 for 2.5 h. The mixture was 

then taken up with Et2O (20 mL) and the crude product obtained after usual aqueous work-up 

(GP 2)  was  crystallized  from  CH2Cl2 / pentane  to  give  O-MOM  protected 
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trifluoromethylcyclopropylalanyl Hormaomycin 108 c (8.0 mg, 96%, Rf = 0.36 acetone/hexanes 

1:2) as a colorless glass which was used for the next step without any characterization.

Trifluoromethylcyclopropylalanyl Hormaomycin (F3Horm, 109 c):  O-MOM protected trifluoro-

methylcyclopropylalanyl  Hormaomycin 108 c 

(8.0  mg,  6.82  µmol)  was  deprotected  using 

MgBr2 × Et2O  (52 mg,  201  µmol)  and  EtSH 

(0.10  mL,  1.9 mmol)  in  CH2Cl2 (10  mL) 

according  to  GP 7 for  3 h.  The  mixture  was 

taken  up  with  EtOAc  and  the  crude  product 

obtained  after  usual  aqueous  work-up  was 

crystallized  from  CH2Cl2 / pentane  to  give 

109 c as  a  white  solid,  which  was  finally 

purified with preparative HPLC. Yield 5.5 mg 

(72%, 55% over 5 steps from 103 c). Rf = 0.24 

acetone/hexanes 3:7; preparative HPLC: isocratic, 82% B for 30 min, tR = 16.8 min, purity > 

98%; analytical HPLC: gradient 20% → 100% B for 20 min, then isocratic 100% B for 5 min 

tR = 15.3  min,  purity  >  98%;  [α]D
20 20.0  (c  =  0.1,  MeOH);  1H  NMR  (600  MHz,

CDCl3):  δ  =  –0.95 – –0.89 (m,  1 H),  –0.41 – –0.33 (m,  1 H),  –0.11 – 0.01 (m,  2 H),  0.05–

0.09 (m, 1 H), 0.47–0.56 (m, 2 H), 0.86 (t,  J = 7.1 Hz, 1 H), 0.89 (t,  J = 7.4 Hz, 3 H), 1.01 (d, 

J = 6.8 Hz,  3 H),  1.03–1.09 (m,  2 H),  1.25–1.34 (m,  1 H),  1.30 (d,  J = 7.1 Hz,  3 H),  1.52 (d, 

J = 6.9 Hz, 3 H), 1.66 (dd,  J = 7.1 Hz, 1.7 Hz, 3 H), 1.79 (q,  J = 11.7 Hz, 1 H), 1.84 (bs, 1 H), 

1.87–1.95 (m,  1 H),  1.97–2.04 (m,  1 H),  2.31–2.37 (m,  1 H),  2.96–3.05 (m,  1 H),  3.03 (dq, 

J = 11.2 Hz, 6.8 Hz, 1 H), 3.06–3.20 (m, 2 H), 3.21–3.30 (m, 2 H), 3.45–3.53 (m, 1 H), 3.66 (dq, 

J = 7.1 Hz, 5.0 Hz, 1 H), 3.72–3.83 (m, 1 H), 3.89–4.02 (m, 2 H), 4.27 (dd, J = 10.6 Hz, 5.9 Hz, 

1 H), 4.35 (t, J = 10.4 Hz, 1 H), 4.50 (dd, J = 9.3 Hz, 4.7 Hz, 1 H), 4.54 (dd, J = 9.2 Hz, 2.4 Hz, 

1 H),  4.63 (t,  J = 9.3 Hz, 1 H),  5.15 (td,  J = 9.1 Hz, 6.2 Hz, 1 H),  5.25 (tt,  J = 8.8 Hz, 1.8 Hz, 

1 H), 5.35 (qd,  J = 6.9 Hz, 2.3 Hz, 1 H), 5.61 (dq,  J = 10.8 Hz, 6.9 Hz, 1 H), 5.95, 6.09 (2 × d, 

J = 4.5 Hz, J = 4.7 Hz, 1 H), 6.37, 6.79 (2 × d,  J = 4.9 Hz, J = 4.7 Hz, 1 H), 6.43 (d,  J = 7.7 Hz, 

1 H),  6.88 (d,  J = 9.8 Hz,  1 H),  7.07–7.32 (m,  12 H),  7.41 (d,  J = 9.6 Hz,  1 H),  9.17 (d, 

J = 9.2 Hz,  1 H);  13C NMR (150.8 MHz,  CDCl3):  δ  =  8.69  (–,  q,  J = 6.2 Hz),  9.84(–,  q, 

J = 4.7 Hz), 10.41 (+), 11.07 (+), 11.84 (+), 13.31, 13.60, 14.10, 14.80, 17.13 (–), 17.93 (+), 

18.57(+, q,  J = 38.5 Hz), 19.47(+, q,  J = 36.9 Hz), 22.68 (+), 25.05 (+), 29.64 (–), 29.69 (–), 

31.91 (–), 34.56 (–), 35.51 (–), 36.67 (–), 36.71 (+), 37.86 (+) 39.42 (+), 41.76, 42.11, 43.45, 

44.57, 51.44 (+), 52.68 (+), 52.75 (–), 54.65 (+), 54.93 (+), 59.86 (+), 60.17 (+), 61.36 (+), 
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64.28, 66.56, 69.07 (+), 103.29 (+), 109.25 (+), 119.28, 121.63, 126.93 (+), 127.31 (+), 127.44 

(+), 127.55 (+), 127.63 (+), 128.19 (+), 128.45 (+), 128.67 (+), 141.68 (Cquat), 141.97 (Cquat), 

159.14  (Cquat),  168.72  (Cquat),  168.92  (Cquat),  170.07  (Cquat),  170.68  (Cquat),  171.21 

(Cquat),  171.69  (Cquat),  172.65  (Cquat);  HRMS:  M+H+ calculated  1175.48021  measured 

1175.47956;  M+NH4+ calculated  1192.50676  measured  1192.50686;  M+Na+ calculated 

1197.46216 measured 1197.46120.

10.2. (Difluoromethylcyclopropyl)alanyl-Hormaomycin

N-Fmoc-(2R,1'R,2'R)-3-(2'-Difluoromethylcyclopropyl)alanine (Fmoc-(R)dFmcpA-OH, 97 b): A 

solution of Fmoc-OSu (459 mg, 1.36 mmol) in acetone (7 mL) was added to a 

vigorously stirred solution of (2R,1'R,2'R)-3-(2'-difluoromethyl cyclopropyl) 

alanine  R-96 b (225 mg, 1.14 mmol) and NaHCO3 (0.202 g, 2.40 mmol) in 

water  (5 mL) (if  a precipitate  formed,  acetone  and/or  water  was added to 

obtain a homogeneous solution) and stirring continued for an additional 3 h. 

Acetone was then removed under reduced pressure, and the pH of the residual water solution 

was adjusted to 1 with aq. 1 M KHSO4. The resulting emulsion was extracted with diethyl ether 

(30 mL)  and  the  ethereal  layer  was  back-extracted  with  3% aq.  NaHCO3 (5 × 10 mL,  TLC 

control for the completeness of extraction was necessary). The combined aqueous fractions were 

washed with diethyl ether (2 × 10 mL), acidified to pH 2 with aq. 1 M KHSO4, and the resulting 

emulsion  was extracted  with diethyl  ether  (4 × 10 mL).  The organic phase was washed with 

aq. 1 M KHSO4 (2 × 10 mL),  water  (3 × 10 mL),  brine  (2 × 5 mL),  dried,  filtered  and 

concentrated under reduced pressure. The residue was triturated with cold pentane and filtered. 

The resulting extremely viscous oil was dried at 0.02 Torr for prolonged time to give the target 

protected  amino  acid  97 b (390 mg,  0.930 mmol,  78%)  as  a  colorless  foam.  Rf = 0.08 

(EtOAc/hexane  1:1);  m.p.  (softening)  50–57 °C;  [α]D
20 –56.7  (c = 0.36,  CHCl3);  1H NMR 

(600 MHz,  CDCl3):  0.38–0.44 + 0.57–0.64 + 0.79–0.86 (3 × m,  1 H),  0.91–0.97 + 1.00–

1.09 (2 × m,  1 H),  1.14–1.22 + 1.26–1.34 (2 × m,  1 H),  1.35–1.53 + 1.85–1.88 (2 × m,  1 H), 

1.80–1.85 (m,  1 H),  3.75–3.79 + 4.53–4.67 (2 × m,  1 H),  3.95–4.01 + 4.47–4.52 (2 × m,  1 H), 

4.16–4.23 (m, 1 H), 4.36–4.47 (m, 1 H), 5.52 (d, J = 7.9 Hz, 0.7 H), 6.76 (d, J = 5.9 Hz, 0.3 H), 

7.27–7.31 (m, 2 H), 7.35–7.41 (m, 2 H), 7.51 (t,  J = 8.1 Hz, 0.6 H), 7.58 (t,  J = 8.4 Hz, 1.4 H), 

7.74 (d,  J = 7.4  Hz,  2 H),  7.85–8.65 (bs,  1 H);  13C NMR  (125.7 MHz,  CDCl3):  δ = 7.94  (–), 

11.46 (+), 19.73 (+, q, J = 37.0 Hz), 34.65 (–), 47.10 (+), 53.48 + 53.82 (+), 67.14 + 67.87 (–), 

120.00  (+),  124.97  (+),  125.96  (–,  q,  J = 272.4 Hz),  127.07  (+),  127.76  (+),  141.32  (Cquat), 

143.51 (Cquat), 143.76 (Cquat), 155.79 + 156.71 (Cquat), 174.96 + 175.79 (Cquat); MS-ESI: (positive) 
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m/z (%): 1302 (35, 3M-H+2Na+), 861 (100, 2M+Na+), 442 (M+Na+), (negative) m/z (%): 837 

(100, 2M–H−), 418 (16, M–H−), 222 (14, M–FmOH–H−), 196 (15, FmOH−).

Fmoc-(R)dFmcpA-MeF-Ile-ODCPM (98 b):  Dipeptide  60 (434 mg,  834 µmol)  was  taken  up 

with EtOAc (20 mL)  and hydrogenated over 10% Pd/C (250 mg) 

under ambient pressure of hydrogen for 2 h. The reaction mixture 

was  filtered  through  a  pad  of  Celite® and  concentrated  under 

reduced  pressure  to  give  deprotected  dipeptide  62,  which  was 

directly  used  for  the  coupling  with  Fmoc-(R)dFmcpA-OH  97 b 

(360 mg,  860 µmol),  using  EDC  (172 mg,  896 µmol),  HOAt 

(120 mg,  883 µmol)  and  TMP  (310 µL,  2.5 mmol)  according  to 

GP 2. During reaction the white precipitate appeared. The mixture 

was  diluted  with  diethyl  ether  (50 mL),  stirred  for  30 min  and 

filtered, giving the crude product (1st crop, 173 mg after drying  in  

vacuo). The filtrate was concentrated under reduced pressure at ambient temperature and diluted 

with diethyl ether (20 mL) and subjected usual aqueous work-up according to GP 2 to give the 

last portion of crude product (2nd crop, 112 mg after drying in vacuo). Combined crude product 

was  re-crystallized  from  THF/hexane  and  the  resulting  off-white  solid  was  dissolved  in 

chloroform (50 mL) and subjected usual aqueous work-up according to GP 2 to give the pure 

tripeptide 98 b as white solid (253 mg, 320 µmol, 65%). Rf = 0.52; EtOAc/hexane 2:3; m.p. 151–

155 °C;  [α]D
20 –3,8  (c = 0.26,  CHCl3); 1H NMR (500 MHz, CDCl3):  δ = 0.28–0.40 (m,  4 H), 

0.43–0.53 (m,  2 H),  0.57–0.66 (m,  3 H),  0.88 (d,  J = 6.7 Hz,  3 H),  0.90 (t,  J = 7.4 Hz,  3 H), 

0.94–1.00 (m, 1 H),  1.03–1.13 (m,  2 H),  1.13–1.22 (m,  2 H),  1.30–1.50 (m,  2 H),  1.41 (d, 

J = 6.8 Hz,  3 H),  1.58–1.70 (m,  1 H),  1.81–1.97 (m,  2 H),  3.28–3.38 (m,  1 H),  3.86 (t, 

J = 8.4 Hz,  1 H),  4.28 (t,  J = 6.9 Hz,  1 H),  4.39–4.48 (m,  3 H),  4.48–4.57 (m,  1 H),  4.76 (t, 

J = 8.0 Hz, 1 H), 5.76 (d,  J = 7.7 Hz, 1 H), 6.40 (d,  J = 7.5 Hz, 1 H), 7.11 (d,  J = 8.1 Hz, 1 H), 

7.20–7.34 (m, 5 H), 7.35 (t, J = 7.4 Hz, 2 H), 7.46 (t, J = 7.4 Hz, 2 H), 7.60 (t, J = 8.0 Hz, 2 H), 

7.79 (d,  J = 7.5 Hz,  2 H);  13C NMR (125.7 MHz,  CDCl3):  δ = 2.57,  2.90,  8.18,  11.62,  14.39, 

14.66, 15.07, 15.07, 16.86, 19.70 (t, J = 37.1 Hz), 25.14, 35.08, 38.13, 42.05, 47.07, 54.69,56.46, 

58.79, 67.18, 83.44, 119.94, 124.99, 127.06, 127.55, 127.71, 128.54, 141.23, 141.28, 141.70, 

143.57, 143.78, 155.95, 169.64, 170.55, 170.94; HRMS: for M+H+ calculated 770.33752, found 

770.39756.
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Fmoc-MeF-(R)dFmcpA-MeF-Ile-ODCPM (100 b): The tripeptide 98 b (394 mg, 500 µmol) was 

deprotected  according  to  GP 1 and  the  resulting 

C-protected tripeptide  99 b was then directly coupled 

with Fmoc-MeF-OH 64 (211 mg, 525 µmol) according 

to GP 2 using EDC (99 mg, 518 µmol), HOAt (70 mg, 

512 µmol)  and TMP (175 mg,  1440 µmol)  in  CH2Cl2 

(3 mL).  After 16 h the reaction mixture was diluted 

with chloroform (50 mL) and subjected usual aqueous 

work-up  according  to  GP 2  to  give  the  crude 

tetrapeptide,  which  was  twice  re-crystallized  from 

THF/hexane, giving the pure target tetrapeptide  100 b 

as off-white solid (440 mg, 463 µmol, 81%).  Rf = 0.29; CHCl3/MeOH 70:1; m.p. 210–215 °C 

(decomp.); [α]D
20 –16.0 (c=0.5 in THF); 1H NMR (500 MHz, [D8]THF): δ = 0.23–0.32 (m, 4 H), 

0.32–0.39 (m,  2 H),  0.40–0.55 (m,  4 H),  0.82 (d,  J = 7.0 Hz,  3 H),  0.83 (d,  J = 7.3 Hz,  3 H), 

0.82–0.91 (m, 1 H), 0.94–1.05 (m, 3 H), 1.08–1.19 (m, 2 H), 1.22 (d,  J = 7.1 Hz, 3 H), 1.32 (d, 

J = 7.0 Hz, 3 H), 1.36–1.47 (m, 2 H), 2.63 (bs, 1 H), 3.17 (dq, J = 9.2 Hz, 7.2 Hz, 1 H), 3.29 (dq, 

J = 7.2 Hz, 7.1 Hz, 1 H), 3.82 (t,  J = 8.28, 1 H), 4.18–4.25 (m, 2 H), 4.25–4.31 (m, 1 H), 4.33–

4.40 (m, 2 H), 4.41–4.48 (m, 1 H), 4.65–4.71 (m, 1 H), 5.40 (td, J = 57.5 Hz, 4.8 Hz, 1 H), 7.02–

7.08 (m,  1 H),  7.09–7.29 (m,  12 H),  7.30–7.36 (m,  3 H),  7.49 (t,  J =  9.3 Hz,  2 H),  7.63 (d, 

J = 7.5 Hz,  1 H),  7.67 (d,  J = 7.7 Hz,  1 H),  7.76 (d,  J = 7.6 Hz,  2 H);  13C NMR (125.7 MHz, 

[D8]THF): δ =2.76 (–), 2.98 (–), 3.04 (–), 3.21 (–), 7.67 (–), 11.68 (+), 11.99 (+, t,  J = 4.2 Hz), 

15.11 (+),  15.36 (+),  15.60 (+),  17.04 (+),  18.02 (+),  21.13 (+,  t,  J = 27.1 Hz),  25.80 (–), 

36.03 (–), 38.53 (+), 42.03 (+), 43.33 (+), 48.06 (+), 53.44 (+), 56.91 (+), 58.78 (+), 61.62 (+), 

67.28 (–), 82.82 (+),  118.34 (+, t,  J = 236.9 Hz), 120.34 (+), 120.35 (+), 125.92 (+), 125.96 (+), 

126.83 (+),  127.17 (+),  127.57 (+),  127.60 (+),  128.08 (+),  128.49 (+),  128.59 (+),  128.69 (+), 

128.84 (+),  142.02 (–),  142.05 (–),  143.87  (–),  144.12 (–),  145.01 (–),  145.10 (–),  157.27 (–), 

170.64 (–), 171.46 (–), 171.50 (–);  HRMS: for C55H65O7N4F2 ([M+H]+) calculated: 931.48158; 

measured: 931.48094.

NH

O
O

O
NH

O

HN

F2HC

O

HN
Fmoc



87

Boc-(4-Pe)Pro-[MeZ-a-Thr]-MeF-(S)dFmcpA-MeF-Ile-ODCPM (101 b): The tetrapeptide 100 b 

(200 mg,  215 µmol)  was  N-deprotected  according  to 

GP 1 with diethylamine (5 mL) and THF (5 mL), taken 

up with anhydrous CH2Cl2 (5 mL), the solution of the 

ester  acid  71 (119 mg,  235 µmol),  HATU  (98 mg, 

256 µmol)  and  HOAt  (32 mg,  235µmol)  in  CH2Cl2 

(3 mL) was added, and the reaction mixture was cooled 

to  4 °C.  After  this,  a  solution  of  DIEA  (30 mg, 

225 µmol)  and  TMP  (77 mg,  635 µmol)  in  CH2Cl2 

(2 mL)  was  added  at  the  same  temperature  within 

5 min.  The temperature  was allowed to  reach  20 °C, 

and stirring was continued for an additional 15 h. After 

aqueous  work-up  according  to  GP 2 and  two 

recrystallizations from EtOAc/hexane (1:2), the crude hexadepsipeptide was finally purified with 

column chromatography (silica gel). All impurities were eluted out with EtOAc/hexane (1:1) and 

the substance was eluted out with methanol. After solvent evaporation under reduced pressure C-

deprotected hexadepsipeptide 102 b (236 mg, 198 µmol, 90%) was obtained as a colorless solid. 

Rf = 0.46 (THF); [α]D
20 –18.5 (c=0.2, THF);  1H NMR (600 MHz, [D8]THF):  δ = 0.23–0.30 (m, 

1 H),  0.30–0.37 (m,  0.5 H),  0.37–0.43 (m,  0.5 H),  0.44–0.53 (m,  1 H),  0.79–1.02 (m,  2 H) 

0.84 (d, J = 7.3 Hz, 3 H), 0.86 (d, J = 7.1 Hz, 3 H), 1.13 (d, J = 6.1 Hz, 2 H), 1.16 (d, J = 5.9 Hz, 

2 H),  1.20 (t,  J = 5.4 Hz, 2 H), 1.28 (t,  J = 6.0 Hz, 2 H),  1.37 + 1.39 (2 s, 9 H), 1.42–1.53 (m, 

2 H),  1.64 (t,  J = 6.7 Hz,  2 H),  1.78–1.87 (m,  1 H),  2.26–2.33 (m,  1 H),  2.27 (s,  3 H),  2.91–

3.60 (bs, 1 H), 2.93 (t,  J = 10.3 Hz, 1 H), 2.99 (t,  J = 10.2 Hz, 1 H), 3.05 (q,  J = 8.6 Hz, 1 H), 

3.16 (q, J = 8.7 Hz, 1 H), 3.17–3.28 (m, 2 H), 3.35–3.46 (m, 2 H), 3.64 (dd, J = 10.0 Hz, 7.5 Hz, 

1 H), 4.07–4.35 (m, 3 H), 4.55–4.72 (m, 3 H), 4.91 (d, J = 12.3 Hz, 1 H), 5.04 (dd, J = 24.1 Hz, 

12.2 Hz,  1 H),  5.19–5.36 (m,  3 H),  5.45–5.53 (m,  1 H),  6.90 (d,  J = 8.1 Hz,  0.6 H),  6.97 (d, 

J = 8.7 Hz, 0.4 H), 7.03–7.29 (m, 14 H), 7.40 (d, J = 7.0 Hz, 0.5 H), 7.45 (d, J = 6.4 Hz, 0.5 H), 

7.53–7.64 (m,  2 H),  7.93 (d,  J = 5.4 Hz,  0.6 H),  7.97 (d,  J = 6.1 Hz,  0.4 H);  13C NMR 

(125.7 MHz, [D8]THF): δ = 7.79, 11.71, 11.96, 12.02, 12.99, 13.06, 15.78, 21.00, 21.01, 25.60, 

25.89, 28.43, 28.49, 35.08, 35.38, 36.39, 36.64, 37.12, 37.67, 38.08, 41.30, 41.55, 42.38, 52.01, 

52.45, 53.77, 53.88, 60.18, 67.74, 79.44, 80.04, 116.61, 118.49, 120.37, 126.39, 126.54, 126.76, 

126.78, 127.09, 127.15, 128.37, 128.40, 128.57, 128.59, 128.77, 128.85, 129.43, 129.47, 130.69, 

130.94, 134.93, 137.85, 143.87, 144.00, 153.38, 154.52, 156.96, 157.22, 169.91, 169.94, 170.87, 
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170.92,  171.35,  171.45,  171.93,  172.15,  172.41;  MS-ESI:  (positive)  m/z  (%)  1101.57

(100, M+H+).

N-MeZ-protected  cyclohexadepsipeptide 103 b (Cyclo-F26-MeZ):  The hexadepsipeptide  101 b 

(136 mg, 122 µmol) was ends-deprotected by treating 

with  2 M HCl  solution  in  ethyl  acetate  (5 mL).  The 

reaction mixture was stirred for 20 min in dark place 

(Al foil jacket) at ambient temperature and all volatiles 

were removed under reduced pressure in vacuo without 

any heating. The residue was triturated with anhydrous 

diethyl  ether  to  give  the  hydrochloride  of  the 

deprotected material 102 b as a colorless solid. HRMS 

for  (M+H+):  calculated  1001.51943,  measured 

1001.51859.  The  ends-deprotected  hexadepsipeptide 

102 b, HATU (54 mg, 142 µmol) and HOAt (16 mg, 121 µmol) were  dissolved in cold (4 °C, 

internal temperature) anhydrous CH2Cl2 (1,5 L), and the solution of DIEA (46 mg, 354 µmol) in 

CH2Cl2 (100 mL) was added dropwise within 1 h, the cooling bath was removed and the mixture 

was stirred for 2 h at ambient temperature. Then the mixture was cooled again to 4 °C (internal 

temperature), the second portions of HATU (54 mg, 142 µmol) and HOAt (16 mg, 121 µmol) 

were added, followed with dropwise addition of the solution of DIEA (46 mg, 354 µmol)  in 

CH2Cl2 (100 mL) within 1 h. The cooling bath was removed and the mixture was stirred for 18 h 

at  ambient  temperature.  The  mixture  was concentrated  under  reduced  pressure,  subjected  to 

aqueous work-up according to GP 2 to give the crude protected cyclohexadepsipeptide (118 mg, 

120 µmol, 98%) which was finally purified with the HPLC to give pure product 103 b (72 mg, 

73 µmol, 60%). Preparative HPLC: isocratic, 60% B for 8 min, then gradient 60%→100% B for 

6 min, then isocratic 100% B for 11 min, tR = 17.2 min, purity > 98%; analytical HPLC: isocratic 

60% B for 10 min, then gradient 60% → 100% B for 20 min, then isocratic 100% B for 15 min 

tR = 27.8 min, purity > 98%; [α]D
20 –20.0 (c = 0.15, THF); 1H NMR (600 MHz, [D8]THF): δ = –

0.05–0.02 (m,  1 H),  0.12–0.18 (m,  1 H),  0.27–0.34 (m,  1 H),  0.34–0.39 (m,  1 H),  0.74 (d, 

J = 6.6 Hz,  3 H),  0.79 (t,  J = 7.5 Hz,  3 H),  1.10–1.24 (m,  2 H),  1.20 (d,  J = 7.2,  3 H) 1.28 (d, 

J = 7.2 Hz, 3 H),  1.36–1.47 (m,  1 H),  1.49 (d,  J = 6.9 Hz, 3 H),  1.60–1.70 (m,  1 H),  1.66 (dd, 

J = 1.7 Hz, 6.9 Hz, 3 H), 1.95–2.04 (m, 1 H), 2.12–2.18 (m, 1 H), 2.30 (s, 3 H), 2.88–2.96 (m, 

1 H),  3.12–3.17 (m,  1 H),  3.22–3.31 (m,  1 H),  3.45–3.51 (m,  1 H),  3.70–3.76 (m,  1 H),  3.83–

3.88 (m, 1 H), 4.17–4.23 (m, 1 H), 4.40–4.46 (m, 1 H), 4.52–4.70 (m, 4 H), 4.93–4.99 (m, 1 H), 
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4.99–5.02, 5.07–5.14 (2×m, 2 H), 5.27–5.33 (m, 1 H), 5.36–5.41 (m, 1 H), 5.51–5.58 (m, 1 H), 

6.74–6.82 (m,  1 H),  7.07–7.22 (m,  9 H),  7.23–7.29 (m,  5 H),  7.30–7.40 (m,  1 H),  7.64 (d, 

J = 8.5 Hz,  1 H),  7.69 (d,  J = 7.8 Hz,  1 H),  7.80–7.90,  8.18–8.22 (2×m,  1 H);  13C NMR 

(125.7 MHz, [D8]THF): δ = 7.89 (–), 7.94 (–), 10.40 (+), 11.56, 11.61 (+), 13.15 (+), 13.20 (+), 

15.32 (+), 18.45 (+), 18.60 (+), 21.07 (+), 20.45, 21.43 (+, t,  J = 27.5 Hz), 30.42 (–), 31.12 (–), 

34.85 (–), 35.95 (–), 36.07 (+), 37.29 (+), 39.19 (+), 46.26 (+),  52.52 (–), 54.81 (+), 55.01 (+), 

58.88 (+),  60.25 (+),  60.66 (+),  61.70 (+),  73.01 (+),  118.17,  118.70 (+,  t,  J = 236.3 Hz), 

126.81 (+),  126.90 (+),  126.96 (+),  127.55 (+),  128.07 (+),  128.47 (+),  128.50 (+),  128.59 (+), 

128.65 (+),  128.72 (+),  128.94 (+),  129.46 (+),  129.71 (+),  130.70 (+),  135.35 (–),  137.67 (–), 

143.81 (–),  144.84 (–),  156.58 (–),  168.96 (–),  170.94 (–),  171.04 (–),  171.35 (–),  172.90 (–), 

172.90 (–); MS–ESI: positive – 1005.6 (100%, M+Na +); negative – 981.4 (100%, M–H −).

N-Teoc-(2S,1'S,2'R)-3-(2'-Difluoromethylcyclopropyl)alanine  (Teoc-(S)dFmcpA-OH,  105 b):  A 

solution  of  TeocOSu  (59 mg,  228 µmol)  in  acetone  (1 mL)  was 

added  to  a  vigorously  stirred  solution  of  (2S,1'S,2'R)-3-(2'-

difluoromethylcyclopropyl)alanine  S-96 b (34 mg,  190 µmol)  and 

NaHCO3 (34 mg,  396 µmol)  in  water  (1 mL)  (if  an  emulsion 

formed, acetone and/or water was added to obtain a homogeneous 

solution), and stirring was continued for another 2 h.  N,N-dimethylaminopropylamine (10 µL, 

7.5 mg,  73 µmol)  was  then  added.  After  an  additional  10 min  acetone  was  removed  under 

reduced  pressure  and  the  pH  of  the  residual  water  solution  was  adjusted  to  2–3  with 

aq. 1 M KHSO4.  The  resulting  emulsion  was  extracted  with  diethyl  ether  (50 mL),  and  the 

ethereal  layer  was  washed  with  aq. 1 M KHSO4 (2 × 10 mL),  water  (3 × 10 mL),  brine 

(2 × 5 mL), dried over MgSO4, filtered and concentrated under reduced pressure. The residual oil 

was dried overnight in vacuo to give glass-like product 105 b (41 mg, 127 µmol, 67%). Rf = 0.24 

(EtOAc/hexane 1:3 +2% AcOH); [α]D
20 = 22.80 (c = 0.46, CHCl3); 1H NMR (250 MHz, CDCl3, 

as cyclohexylammonium salt):  δ = 0.01 (s, 9 H), 0.38–0.57 (m, 1 H), 0.65–0.80 (m, 1 H), 0.85–

1.49 (m, 9 H), 1.50–1.85 (m, 5 H), 1.85–2.03 (m, 2 H), 2.72–3.00 (m, 1 H), 3.89–4.22 (m, 3 H), 

5.50 (td,  J =  57.6 Hz,  4.1 Hz,  1 H),  5.71 (d,  J = 7.3 Hz,  1 H),  7.35 (bs,  3 H);  13C NMR 

(62.9 MHz,  CDCl3,  as  cyclohexylammonium  salt):  δ = –1.36,  7.24,  11.23,  17.39,  19.58 (t, 

J = 24.0 Hz), 24.04, 24.74, 30.67, 35.36, 50.21, 55.84, 62.78, 117.02 (t,  J = 237.5 Hz), 156.25, 

177.41. 
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Teoc-(S)dFmcpA-Cyclo-F26  (106 b):  N-MeZ-protected  cyclohexadepsipeptide  103 b (62 mg, 

63 µmol)  was  deprotected  with  10% 

anisole  in  TFA  (4 mL)  in  the  dark  at 

ambient  temperature  for  2  h,  the  residue 

was  treated  with  toluene  (5 mL), 

concentrated  under  reduced  pressure  and 

the residue was dried  in vacuo at ambient 

temperature  for  2 hours.  The  solution  of 

Teoc-(S)dFmcpA-OH  105 b (31 mg, 

96 µmol),  HATU  (72 mg,  189 µmol)  and 

HOAt  (26 mg,  190 µmol)  in  CH2Cl2 

(3 mL) was added at 4 °C, followed with DIEA (8.4 mg, 65 µmol) and TMP (69 mg, 568 µmol) 

solution in CH2Cl2 (5.5 mL) and the mixture was stirred at ambient temperature for 15 h. The 

reaction mixture was then diluted with diethyl ether (50 mL) and the crude product obtained after 

the usual aqueous work-up (GP 2) was purified by column chromatography (silica gel, eluted 

with EtOAc/hexane 1:1) to give  Teoc-(S)dFmcpA-Cyclo-F26 (106 b) (53 mg, 46.5 µmol, 74%) 

as  a  colorless  solid.  Rf = 0.34,  EtOAc/hexane  1:1;  [α]D
20 =  –7.0 (c  =  0.3,  CHCl3);  1H NMR 

(500 MHz, CDCl3): δ = –0.15– –0.02 (m, 2 H), 0.01–0.02 (m, 1 H), 0.05 (s, 9 H), 0.06–0.10 (m, 

1 H),  0.28–0.42 (m,  2 H),  0.43–0.58 (m,  2 H),  0.78–0.88 (m,  2 H),  0.90 (t,  J = 7.3 Hz,  3 H), 

0.96 (d, J = 6.8 Hz, 3 H), 1.02 (t, J = 8.5Hz, 2 H), 1.07–1.20 (m, 3 H), 1.26 (d, J = 7.1 Hz, 3 H), 

1.31 (d,  J = 7.2 Hz,  3 H),  1.54 (d,  J = 6.8 Hz,  3 H),  1.63 (d,  J = 6.8 Hz,  3 H),  1.71 (dd, 

J = 11.8 Hz, 23.4 Hz,  1H), 1.86–1.95 (m, 1 H), 2.15–2.35 (m, 3 H), 3.11–3.27 (m, 1 H), 3.23 (t, 

J = 9.6 Hz,  1 H),  3.62–3.69 (m,  1 H),  3.71–3.82 (m,  1 H),  4.02–4.18 (m,  3 H),  4.20–4.30 (m, 

1 H),  4.34–4.41 (m,  1 H),  4.48–4.57 (m,  1 H),  4.58–4.70 (m,  2 H),  4.74 (d,  J = 8.9 Hz,  1 H), 

5.17 (td,  J = 60 Hz, 5.0 Hz,   1H), 5.19–5.25 (m, 1 H), 5.27–5.34 (m, 1 H), 5.47 (td,  J = 55 Hz, 

4.6 Hz,  1 H),  5.53–5.61 (d,  J = 8.9 Hz,  1 H),  6.64 (d,  J = 8.5 Hz,  1 H),  7.00–7.40 (m, 14H), 

8.16 (s,  1 H);  13C NMR (125.7 MHz, CDCl3):  δ = –1.47 (+), 7.00 (–, t,  J = 2.6 Hz), 7.44 (–, t, 

J = 4.2 Hz), 10.12 (+), 10.40 (+), 10.60 (+), 13.27 (+), 13.54 (+), 15.27 (+), 17.58 (–), 17.93 (+), 

18.33 (+), 20.35 (+), 20.57 (+), 20.79 (+), 24.82 (–), 34.70 (–), 35.50 (–), 36.51 (+), 37.07 (+), 

39.16 (+), 43.65 (+), 52.61 (–), 53.38 (+), 53.96 (+), 54.70 (+), 55.90 (+), 59.05 (+), 59.68 (+), 

61.02 (+),  63.41 (–),  71.45 (+),  117.01 (+,  t,  J = 237.3 Hz),  117.24 (+,  t,  J = 237.7 Hz), 

126.83 (+),  126.90 (+),  127.20 (+),  127.61 (+),  127.75 (+),  127.99 (+),  128.44 (+),  128.58 (+), 

128.63 (+),141.79 (–),  156.34 (–),  168.38 (–),  170.09 (–),  170.75 (–),  171.17 (–),  171.27 (–), 
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171.90 (–); MS-ESI: (positive) m/z (%) 1163 (100, M+Na+), (negative) m/z (%) 1139 (100, M–

H−). 

MOM-O-protected  difluoromethylcyclopropylalanyl  Hormaomycin  (MOM-O-F2Horm, 108 b): 

Teoc  group  was  cleaved  from  the 

compound 106 b (8.0 mg, 7.08 µmol) with 

TFA (0.6 mL)  for  1  h.  The  mixture  was 

concentrated  under  reduced  pressure  at 

20 °C  and  then  taken  up  with  toluene 

(3 × 15  mL)  which  was  distilled  off  to 

remove  the  last  traces  of  TFA.  The 

resulting  deprotected  depsipeptide  107 b 

was coupled with  O-MOM protected acid 

81 (2.9 mg, 14.10 µmol) using HATU (5.4 

mg,  14.20  µmol),  DIEA  (0.92  mg,  7.12 

µmol)  and TMP (5.14 mg, 42.42 µmol)  in CH2Cl2 (1 mL) according to GP 6 for 2.5 h. The 

mixture was then taken up with Et2O (20 mL) and the crude product obtained after usual aqueous 

work-up (GP 2)  was  crystallized  from CH2Cl2 / pentane  to  give  O-MOM protected  difluoro-

methylcyclopropylalanyl Hormaomycin 108 b (8.0 mg, 90%, Rf = 0.36 acetone/hexanes 1:2) as a 

colorless  glass.  1H NMR (500 MHz,  CDCl3):  δ = –0.47 – –0.37 (m,  2 H),  0.15–0.26 (m,  4 H), 

0.45–0.55 (m,  2 H),  0.80–0.92 (m,  3 H),  0.87 (t,  J = 7.3 Hz, 3 H),,  1.01 (d,  J = 6.8 Hz, 3 H), 

1.05–1.15 (m,  1 H),  1.20–1.28 (m,  2 H),  1.26 (d,  J = 7.1 Hz,  3 H),  1.37 (d,  J = 7.2 Hz,  3 H), 

1.56 (d, J = 6.9 Hz, 3 H), 1.66 (d, J = 6.9Hz, 3 H), 1.70–1.82 (m, 3 H), 1.85–1.95 (m, 1 H), 2.31–

2.38 (m, 1 H), 2.80–2.89 (m, 1 H), 3.20–3.30 (m, 2 H), 3.65–3.70 (m, 1 H), 3.73 (s, 3 H), 3.82–

3.88 (m, 1 H), 3.91–3.99 (m, 1 H), 4.21–4.29 (m, 2 H), 4.62–4.73 (m, 3 H), 5.05 (td, J = 55.0 Hz, 

5.0 Hz, 1 H), 5.08–5.14 (m, 1 H), 5.22–5.27 (m, 1 H), 5.30–5.37 (m, 1 H), 5.43–5.48 (m, 1 H), 

5.52–5.59 (m,  2 H),  5.60–5.67 (m,  1 H),  6.12 (d,  J = 4.7Hz, 1 H),  6.77–6.87 (m,  2 H),  7.02–

7.10 (m,  3 H),  7.11–7.17 (m,  3 H),  7.20–7.28 (m,  3 H),  7.24–7.43 (m,  2 H),  7.55 (d, 

J = 9.5Hz, 1 H),  8.86 (d,  J = 9.5Hz, 1 H);  13C NMR  (125.7 MHz,  CDCl3):  δ = 6.82 (–,  t, 

J = 3.4 Hz), 8.18 (–, t,  J = 4.2 Hz), 10.01 (+, t,  J = 4.4 Hz), 10.72 (+), 10.94 (+, t,  J = 4.7 Hz), 

13.31 (+),  13.50 (+),  14.09 (+),  15.07 (+),  17.45 (+),  18.55 (+),  19.69 (+,  t,  J = 26.9 Hz), 

20.24 (+,  t,  J = 27.8 Hz),  24.94 (–),  26.90 (–),  29.68 (–),  35.51 (–),  36.00 (–),  36.72 (+), 

37.07 (–), 38.62 (+), 39.54 (+), 43.14 (+), 50.96 (+), 52.65 (+), 52.72 (–), 54.70 (+), 54.90 (+), 

59.26 (+),  59.41 (+),  59.97 (+),  61.44 (+),  70.11 (+),  104.24 (+),  106.05 (–),  111.15 (+), 
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116.70 (+,  t,  J = 237.5 Hz),  117.51 (+,  t,  J = 237.8 Hz),  119.36 (–),  121.83 (–),  126.72 (+), 

126.96 (+),  127.31 (+),  127.51 (+),  127.53 (+),  128.25 (+),  128.37 (+),  128.64 (+),  142.14 (–), 

142.54 (–),  158.11 (–),  168.84 (–),  169.99 (–),  170.17 (–),  170.92 (–),  171.32 (–),  171.43 (–), 

171.90 (–); MS-ESI: (positive) m/z (%) 1205 (100, M+Na+), (negative) m/z (%) 1181 (100, M–

H−).

Difluoromethylcyclopropylalanyl Hormaomycin (F2Horm,  109 b):  O-MOM protected difluoro-

methylcyclopropylalanyl  Hormaomycin 

108 b (35 mg, 29.5 µmol) was deprotected 

using  MgBr2 × Et2O  (204 mg,  788 µmol) 

and  EtSH  (50  µL,  0.7 mmol)  in  CH2Cl2 

(17 mL)  according  to  GP 7 for  3 h.  The 

mixture was taken up with EtOAc and the 

crude product obtained after usual aqueous 

work-up  was  crystallized  from 

CH2Cl2 / pentane to give  109 b (33 mg) as 

a  white  solid,  which  was  finally  purified 

with preparative HPLC. Rf = 0.24 acetone/

hexanes  3:7;  preparative  HPLC: isocratic,  82% B for  25 min,  tR = 15.4 min,  purity > 98%; 

analytical HPLC: isocratic 60% B for 10 min, then gradient 60% → 100% B for 20 min, then 

isocratic 100% B for 15 min tR = 28.8 min, purity > 98%; [α]D
20 20.0 (c = 0.1, MeOH); 1H NMR 

(250 Mhz,  CDCl3):  δ = –0.62 – –0.50 (m,  2 H),  –0.18 – –0.08 (m,  1 H),  –0.07–0.01 (m,  1 H), 

0.31–0.50 (m, 2 H), 0.86 (d, J = 6.3 Hz, 3 H), 0.92 (t, J = 7.3 Hz, 3 H), 1.03 (d, J = 6.5 Hz, 3 H), 

1.11–1.19 (m,  2 H),  1.21–1.40 (m,  5 H),  1.47 (d,  J = 7.1 Hz,  3 H),  1.54 (d,  J = 6.8 Hz,  3 H), 

1.69 (m, J = 6.7 Hz, 3 H), 1.78–1.85 (m, 2 H), 1.91–2.05 (m, 2 H), 2.34 (dd, J = 7.1 Hz, 7.4 Hz, 

2 H), 2.95–3.17 (m, 1 H), 3.18–3.32 (m, 1 H), 3.33–3.59 (m, 3 H), 3.70 (dd,  J = 4.7Hz, 6.7 Hz, 

1 H),  3.91–4.47 (m,  3 H),  4.51–4.75 (m,  3 H),  5.02–5.18 (m,  1 H),  5.22–5.42 (m,  2 H),  5.56–

5.73 (m, 1 H), 6.14 (d,  J = 4.6 Hz, 1 H), 6.57–6.78 (m, 2 H), 6.82 (d,  J = 4.7 Hz, 1 H), 6.98 (d, 

J = 9.8 Hz,  1 H),  7.10–7.37 (m,  10 H),  7.90 (d,  J = 9.3 Hz,  1 H),  9.17 (d,  J = 8.9 Hz,  1 H); 
13C NMR (62.9 MHz, CDCl3):  δ = 6.82 (–), 8.18 (–), 10.43 (+), 13.33 (+), 14.92 (+), 17.18 (+), 

17.94 (+), 18.72 (+), 19.65 (+), 20.02 (+), 22.68 (+), 24.98 (+), 29.11 (+), 29.35 (–), 29.68 (–), 

31.42 (–), 31.91 (–), 33.66 (–), 35.53 (+),  36.64 (–),  37.62 (+), 39.14 (+),  41.63 (+), 47.03 (+), 

51.87 (+), 52.65 (–), 52.88 (+), 54.67 (+), 54.85 (+), 59.43 (+), 61.03 (+), 61.33 (+), 69.11 (+), 

103.62 (+,  t,  J = 235.7 Hz),  109.46 (+,  t,  J = 237.3 Hz),  111.15 (+),  119.13 (–),  121.67 (–), 
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126.78 (+),  127.23 (+),  127.45 (+),  127.64 (+),  127.94 (+),  128.20 (+),  128.49 (+),  128.87 (+), 

141.70 (–),  141.88 (–),  168.56 (–),  169.03 (–),  170.10 (–),  170.45 (–),  171.39 (–),  171.63 (–), 

171.90 (–), 172.62 (–);  MS-ESI: (positive) m/z (%) 1161 (100, M+Na+),  (negative)  m/z (%) 

1137 (100, M–H−).

10.3. (Monofluoromethylcyclopropyl)alanyl-Hormaomycin

N-Fmoc-(2R,1'R,2'R)-3-(2'-Monofluoromethylcyclopropyl)alanine  (Fmoc-(R)mFmcpA-OH, 

97 a): A solution of Fmoc-OSu (459 mg, 1.36 mmol) in acetone (7 mL) was 

added to a vigorously stirred solution of (2R,1'R,2'R)-3-(2'-monofluoromethyl 

cyclopropyl)  alanine  R-96 a (225 mg,  1.14  mmol)  and  NaHCO3 (0.202 g, 

2.40 mmol) in water (5 mL) (if a precipitate formed, acetone and/or water 

was added to obtain a homogeneous solution) and stirring continued for an 

additional 3 h. Acetone was then removed under reduced pressure, and the pH of the residual 

water solution was adjusted to 1 with aq. 1 M KHSO4. The resulting emulsion was extracted with 

diethyl  ether  (30 mL)  and  the  ethereal  layer  was  back-extracted  with  aq. 3% NaHCO3 

(5 × 10 mL).  The  combined  aqueous  fractions  were  washed  with  diethyl  ether  (2 × 10 mL), 

acidified to pH 2 with aq. 1 M KHSO4, and the resulting emulsion was extracted with diethyl 

ether  (4 × 10 mL).  The  organic  phase  was  washed  with  aq. 1 M KHSO4 (2 × 10 mL),  water 

(3 × 10 mL),  brine  (2 × 5 mL),  dried,  filtered  and  concentrated  under  reduced  pressure.  The 

residue was triturated with cold pentane and filtered. The resulting extremely viscous oil was 

dried at  0.02 Torr  for  prolonged time to  give the target  protected  amino acid  97 a (390 mg, 

0.930 mmol, 73%) as a colorless foam. Rf=0.08 (EtOAc/hexane 1:1); m.p. (softening) 50–57 °C; 

[α]D
20 –56.7 (c=0.36, CHCl3);  1H NMR (600 MHz, CDCl3): 0.38–0.44 + 0.57–0.64 + 0.79–0.86 

(3 × m,  1 H),  0.91–0.97 + 1.00–1.09 (2 × m,  1 H),  1.14–1.22 + 1.26–1.34 (2 × m,  1 H),  1.35–

1.53 + 1.85–1.88 (2 × m, 1 H), 1.80–1.85 (m, 1 H), 3.75–3.79 + 4.53–4.67 (2 × m, 1 H), 3.95–

4.01 + 4.47–4.52 (2 × m,  1 H), 4.16–4.23 (m,  1 H),  4.36–4.47 (m,  1 H), 5.52 (d,  J  = 7.9 Hz, 

0.7 H), 6.76 (d, J = 5.9 Hz, 0.3 H), 7.27–7.31 (m, 2 H), 7.35–7.41 (m, 2 H), 7.51 (t, J = 8.1 Hz, 

0.6 H), 7.58 (t, J = 8.4 Hz, 1.4 H), 7.74 (d,  J = 7.4 Hz, 2 H), 7.85–8.65 (bs, 1 H);  13C NMR 

(125.7 MHz, CDCl3):  δ = 7.94 (–), 11.46 (+), 19.73 (+, d,  J = 37.0 Hz), 34.65 (–), 47.10 (+), 

53.48 + 53.82 (+), 67.14 + 67.87 (–), 120.00 (+), 124.97 (+), 125.96 (–, d, J = 272.4 Hz), 127.07 

(+),  127.76  (+),  141.32  (Cquat),  143.51  (Cquat),  143.76  (Cquat),  155.79 + 156.71  (Cquat), 

174.96 + 175.79  (Cquat);  MS-ESI:  (positive)  m/z  (%):  1302  (35,  3M-H+2Na+),  861  (100, 
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2M+Na+), 442 (M+Na+), (negative) m/z (%): 837 (100, 2M–H−), 418 (16, M–H−), 222 (14, 

M–FmOH–H−), 196 (15, FmOH−).

Fmoc-(R)mFmcpA-MeF-Ile-ODCPM (98 a):  Dipeptide  60 (434 mg,  834 µmol)  was  taken up 

with EtOAc (20 mL)  and hydrogenated over 10% Pd/C (250 mg) 

under ambient pressure of hydrogen for 2 h. The reaction mixture 

was  filtered  through  a  pad  of  Celite® and  concentrated  under 

reduced  pressure  to  give  deprotected  dipeptide  62,  which  was 

directly  used  for  the  coupling  with  Fmoc-(R)mFmcpA-OH  97 a 

(360 mg,  860 µmol),  using  EDC  (172 mg,  896 µmol),  HOAt 

(120 mg,  883 µmol)  and  TMP  (310 µL,  2.5 mmol)  according  to 

GP 2.  The  mixture  was  diluted  with  chloroform  (50 mL)  and 

subjected usual aqueous work-up according to GP 2 to give the pure 

tripeptide  98 a as white solid (535 mg, 679 µmol, 72%).  Rf = 0.52; 

EtOAc/hexane 2:3; m.p. 151–155°C; [α]D
20 –3,8 (c =0.26, CHCl3); 1H NMR (500 MHz, CDCl3): 

δ = 0.28–0.40 (m, 4 H), 0.43–0.53 (m, 2 H), 0.57–0.66 (m, 3 H), 0.88 (d, J = 6.7 Hz, 3 H), 0.90 

(t, J = 7.4 Hz, 3 H), 0.94–1.00 (m, 1 H), 1.03–1.13 (m, 2 H), 1.13–1.22 (m, 2 H), 1.30–1.50 (m, 

2 H), 1.41 (d, J = 6.8 Hz, 3 H), 1.58–1.70 (m, 1 H), 1.81–1.97 (m, 2 H), 3.28–3.38 (m, 1 H), 3.86 

(t, J = 8.4 Hz, 1 H), 4.28 (t, J = 6.9 Hz, 1 H), 4.39–4.48 (m, 3 H), 4.48–4.57 (m, 1 H), 4.76 (t, J = 

8.0 Hz, 1 H), 5.76 (d, J = 7.7 Hz, 1 H), 6.40 (d, J = 7.5 Hz, 1 H), 7.11 (d, J = 8.1 Hz, 1 H), 7.20–

7.34 (m, 5 H), 7.35 (t, J = 7.4 Hz, 2 H), 7.46 (t, J = 7.4 Hz, 2 H), 7.60 (t, J = 8.0 Hz, 2 H), 7.79 

(d,  J  = 7.5 Hz, 2 H);  13C NMR (125.7 MHz, CDCl3) δ = 2.57; 2.90, 8.18, 11.62,14.39, 14.66, 

15.07, 15.07, 16.86, 19.70 (q, J=37.1 Hz), 25.14, 35.08, 38.13, 42.05, 47.07, 54.69,56.46, 58.79, 

67.18, 83.44, 119.94, 124.99, 127.06, 127.55, 127.71, 128.54, 141.23, 141.28, 141.70, 143.57, 

143.78, 155.95, 169.64, 170.55, 170.94.

Fmoc-MeF-(R)mFmcpA-MeF-Ile-ODCPM (100 a): The tripeptide 98 a (394 mg, 500 µmol) was 

deprotected  according  to  GP 1 and  the  resulting 

C-protected tripeptide  99 a was then directly coupled 

with Fmoc-MeF-OH 64 (211 mg, 525 µmol) according 

to GP 2 using EDC (99 mg, 518 µmol), HOAt (70 mg, 

512 µmol)  and TMP (175 mg,  1440 µmol)  in  CH2Cl2 

(3  mL).  After  16 h the  reaction  mixture  was diluted 

with chloroform (50 mL) and subjected usual aqueous 

work-up  according  to  GP 2 to  give  the  crude 
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tetrapeptide,  which  was  twice  re-crystallized  from  THF/hexane,  giving  the  pure  target 

tetrapeptide  100 a as off-white solid  (440 mg, 463 µmol, 88%).  Rf = 0.29; CHCl3/MeOH 70:1; 

m.p.  210–215 °C (decomp.);  [α]D
20 –26,3 (c  = 0.32, THF);  1H NMR (250 MHz, CDCl3): δ = 

0.22–0.36 (m, 4 H), 0.41 (t, J = 8.9 Hz, 3 H), 0.48–0.61 (m, 2 H), 0.62–0.71 (m, 1 H), 0.76 (d, J 

= 6.9 Hz, 3 H), 0.82 (t, J = 7.3 Hz, 3 H), 0.92–1.09 (m, 4 H), 1.09–1.18 (m, 1 H), 1.22–1.46 (m, 

2 H) 1.26 (d, J = 6.9 Hz, 3 H), 1.39 (d, J = 6.6 Hz, 3 H), 1.71–1.89 (m, 1 H), 3.09–3.36 (m, 3 H), 

3.81 (t, J = 8.4 Hz, 1 H), 4.15–4.33 (m, 3 H), 4.35–4.64 (m, 3 H), 4.62 (t, J = 8.3 Hz, 1 H), 5.95 

(d,  J = 7.1 Hz, 1 H), 6.40 (d,  J = 7.4 Hz, 1 H), 7.08–7.45 (m, 16 H), 7.57 (t,  J = 8.9 Hz, 2 H), 

7.76 (d, J = 7.3 Hz, 2 H); 13C NMR (62.9 MHz, CDCl3): δ = 3.3 (–), 3.5 (–), 3.6 (–), 3.7 (–), 12.2 

(+), 15.6 (+), 15.9 (+), 16.1 (+), 17.7 (+), 18.7 (+), 18.9 (–), 23.2 (+), 26.2 (–), 35.0 (–), 39.1 (+), 

42.8 (+), 44.1 (+), 48.5 (+), 52.8 (+), 57.4 (+), 59.3 (+), 60.2 (+), 62.1 (+), 67.8 (–), 83.4 (+), 

115,1 (+, q, J = 291.4 Hz), 126.4 (+), 127.5 (+), 127.7 (+), 128.1 (+), 128.6 (+), 129.1 (+), 129.1 

(+),  129.3 (+),  129.4 (+),  142.5 (Cquat),  144.1 (Cquat),  144.4 (Cquat),  145.4 (Cquat),  145.6 (Cquat), 

157.8 (Cquat), 171.1 (Cquat), 171.5 (Cquat), 171.9 (Cquat), 172.1 (Cquat). 

Boc-(4-Pe)Pro-[MeZ-a-Thr]-MeF-(S)mFmcpA-MeF-Ile-ODCPM (101 a):  The  tetrapeptide 

100 a (332 mg,  350 µmol)  was  N-deprotected 

according  to  GP 1,  taken  up with anhydrous  CH2Cl2 

(5 mL),  the  solution  of  the  ester  acid  71 (194 mg, 

385 µmol),  HATU  (160 mg,  420 µmol)  and  HOAt 

(53 mg,  385µmol)  in CH2Cl2 (3 mL) was added, and 

the reaction mixture was cooled to 4 °C. After this, a 

solution of DIEA (65 µL, 48 mg, 368 µmol) and TMP 

(140 µL,  127 mg,  1050 µmol)  in  CH2Cl2 (2 mL)  was 

added  at  the  same  temperature  within  5  min.  The 

temperature was allowed to reach 20 °C, and stirring 

was  continued  for  an  additional  15 hours.  After 

aqueous  work-up  according  to  GP 2  and  two 

recrystallizations  from  EtOAc/hexane  (1:2),  the  target  hexadepsipeptide  101 a (390 mg, 

321 µmol,  86%)  was  obtained  as  a  colorless  solid.  Rf=0.46  (EtOAc/hexane  1:1);  m.p. 125–

127 °C; [α]D
20 –29.0 (c=0.2, THF); 1H NMR (250 MHz, CDCl3): δ = 0.24 – 0.68 (m, 12 H), 0.75 

(d, J = 6.9 Hz, 3 H), 0.88 (t, J = 7.1 Hz, 3 H), 0.98 – 1.17 (m, 5 H), 1.18 – 1.46 (m, 1 H), 1.24 (d, 

J = 6.6 Hz, 3 H), 1.27 (d, J = 6.7 Hz, 3 H), 1.36 (s, 9 H), 1.40 (d, J = 6.7 Hz, 3 H), 1.68 (d, J = 

7.0 Hz, 3 H), 1.75 – 1.94 (m, 2 H), 2.29 – 2.46 (m, 1 H), 2.32 (s, 3 H), 3.07 – 3.33 (m, 4 H), 3.68 

(t, J = 8.6 Hz, 1 H), 3.93 (t, J = 8.3 Hz, 1 H), 4.18 – 4.27 (m, 1 H), 4.32 – 4.54 (m, 4 H), 4.64 (t, 
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J = 9.6 Hz, 1 H), 4.95 – 5.13 (m, 2 H), 5.20 – 5.34 (m, 1 H), 5.44 – 5.63 (m, 2 H), 6.60 (d, J = 

7.7 Hz, 1 H), 6.70 (d, J = 8.8 Hz, 1 H), 6.82 (d, J = 8.4 Hz, 1 H), 7.05 – 7.37 (m, 14 H), 7.45 (d, 

J = 10.1 Hz, 1 H), 7.76 (d, J = 8.1 Hz, 1 H); 13C NMR (62.9 MHz, CDCl3): δ = 2.48 (–), 2.82 (–), 

2.90 (–), 3.01 (–), 11.59 (+), 13.20 (+), 14.16 (+), 14.64 (+), 15.57 (+), 17.77 (+), 18.41 (–), 

18.86 (+), 19.43 (+), 21.11 (+), 21.77 (+), 25.23 (–), 26.85 (–), 28.23 (+), 31.46 (–), 31.53 (–), 

36.28 (–), 36.32 (+), 37.30 (+), 40.45 (+), 42.00 (+), 50.62 (+), 52.08 (+), 56.43 (+), 59.30 (+), 

59.49 (+), 61.01 (+), 61.62 (+), 61.99 (+), 66.89 (–), 70.53 (+), 80.93 (Cquat), 83.24 (+), 116,2 (+, 

q, J = 287.3 Hz), 127.00 (+), 127.06 (+), 127.10 (+), 127.60 (+), 127.69 (+), 128.47 (+), 128.63 

(+),  128.68  (+),  128.82  (+),  128.93  (+),  133.21 (Cquat),  137.83 (Cquat),  141.73 (Cquat), 

141.90 (Cquat),  154.76 (Cquat),  155.75 (Cquat),  170.38 (Cquat),  170.43 (Cquat),  170.79 (Cquat), 

171.37 (Cquat), 173.41 (Cquat), 174.06 (Cquat).

N-MeZ-protected  cyclohexadepsipeptide 103 a (Cyclo-F16-MeZ):  The  hexadepsipeptide  101 a 

(300 mg, 247 µmol) was ends-deprotected by treating 

with  2 M HCl  solution  in  ethyl  acetate  (5 mL).  The 

reaction mixture was stirred for 20 min in dark place 

(Al foil jacket) at ambient temperature and all volatiles 

were  removed  in  vacuo without  any  heating.  The 

residue was triturated with anhydrous diethyl ether to 

give  the  hydrochloride  of  the  deprotected  material 

102 a as  a colorless  solid (232 mg,  220 µmol,  89%). 

The ends-deprotected hexadepsipeptide  102 a, HATU 

(110 mg,  288 µmol)  and  HOAt  (33 mg,  244 µmol) 

were  dissolved  in  cold  (4 °C,  internal  temperature) 

anhydrous  CH2Cl2 (2,5 L),  and  the  solution  of  DIEA (120 µL,  93 mg,  720 µmol)  in  CH2Cl2 

(100 mL) was added dropwise within 1 hour, the cooling bath was removed and the mixture was 

stirred for 2 hours at ambient temperature. Then the mixture was cooled again to 4 °C (internal 

temperature), the second portions of HATU (110 mg, 288 µmol) and HOAt (33 mg, 244 µmol) 

were  added,  followed  with  dropwise  addition  of  the  solution  of  DIEA  (120 µL,  93 mg, 

720 µmol) in CH2Cl2 (100 mL) within 1 hour. The cooling bath was removed and the mixture 

was stirred for 18 hours at ambient temperature. The mixture was concentrated under reduced 

pressure,  subjected  to  aqueous  work-up  according  to  GP 2 to  give  the  crude  protected 

cyclohexadepsipeptide (180 mg, 180 µmol, 73%) which was finally purified with the HPLC to 

give pure product 103 a (132 mg, 132 µmol, 49%).
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N-Teoc-(2S,1'S,2'R)-3-(2'-Monofluoromethylcyclopropyl)alanine  (Teoc-(S)mFmcA-OH,  105 a): 

A solution of TeocOSu (43 mg, 164 µmol) in acetone (1 mL) was 

added  to  a  vigorously  stirred  solution  of  (2S,1'S,2'R)-3-(2'-

monofluoromethylcyclopropyl)alanine  S-96 a (27 mg,  137 µmol) 

and NaHCO3 (24 mg,  286 µmol)  in water (1 mL) (if  an emulsion 

formed, acetone and/or water was added to obtain a homogeneous 

solution),  and stirring was continued for another  2 h.  N,N-dimethylaminopropylamine  (8 µL, 

6,4 mg,  52 µmol)  was  then  added.  After  an  additional  10 min  acetone  was  removed  under 

reduced  pressure  and  the  pH  of  the  residual  water  solution  was  adjusted  to  2–3  with 

aq. 1 M KHSO4.  The  resulting  emulsion  was  extracted  with  diethyl  ether  (50 mL),  and  the 

ethereal  layer  was  washed  with  aq. 1 M KHSO4 (2 × 10 mL),  water  (3 × 10 mL),  brine 

(2 × 5 mL), dried over MgSO4, filtered and concentrated under reduced pressure. The residual oil 

was dried overnight in vacuo to give glass-like product 105 a (38 mg, 111 µmol, 71%). Rf=0.24 

[EtOAc/hexane 1:3 (2% AcOH)]; [α]D
20 = 22.80 (c = 0.46, CHCl3); 1H NMR (250 MHz, CDCl3): 

δ = 0.04 (s, 9 H), 1.00 (dd,  J = 9.5 Hz, 7.3 Hz, 2 H), 1.11–1.18 (m, 1 H), 1.60–1.95 (m, 2 H), 

1.98–2.19 (m, 2 H), 4.14–4.23 (m, 3 H), 4.33–4.59 (m, 1 H), 5.33–5.46 (m, 1 H), 7.08–7.25 (bs, 

1 H);  13C NMR (62.9 MHz, CDCl3):  δ = –1.9 (+), 10.2 (–), 17.3 (–), 22.0 (+), 33.1 + 33.3 (–), 

52.7  (+),  53.2  (+),  59.0  (+),  63.7  (+),  64.8  (–),  115.6 (d,  J = 271.4 Hz),  157.4  (Cquat), 

174.5 + 174.8 (Cquat). 

Teoc-(S)mFmcpA-Cyclo-F16  (106 a):  N-MeZ-protected  cyclohexadepsipeptide  103 a (25 mg, 

25 µmol)  was  deprotected  with  10% 

anisole  in  TFA  (1.1 mL)  in  the  dark  at 

ambient  temperature  for  2  h,  the  residue 

was  treated  with  toluene  (5 mL), 

concentrated  under  reduced  pressure  and 

the residue was dried  in vacuo at ambient 

temperature  for  2 hours.  The  solution  of 

Teoc-(S)mFmcpA-OH  105 a,  HATU 

(29 mg,  75 µmol)  and  HOAt  (10 mg, 

75 µmol) in CH2Cl2 (1.5 mL) was added at 

4 °C,  followed  with  DIEA  (3 5 mg, 

27 µmol) and TMP (27 mg, 225 µmol) solution in CH2Cl2 (1.5 mL) and the mixture was stirred 

at  ambient  temperature  for  15 h.  The  reaction  mixture  was  then  diluted  with  diethyl  ether 

(50 mL) and the crude product obtained after the usual aqueous work-up (GP 2) was purified by 
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crystallization  from  CH2Cl2/pentane  to  give  Teoc-(S)mFmcpA-Cyclo-F26  (106 a) (29 mg, 

24,7 µmol, 89%) as a colorless solid (Rf = 0.43, acetone/hexane 1:2) which was used for the next 

step without any characterization.

MOM-O-protected  monofluoromethylcyclopropylalanyl  Hormaomycin  (MOM-O-F1Horm, 

108 a):  Teoc group was cleaved from the 

compound 106 a (8.0 mg, 7.08 µmol) with 

TFA (0.6 mL)  for  1  h.  The  mixture  was 

concentrated  under  reduced  pressure  at 

20 °C  and  then  taken  up  with  toluene 

(3 × 15  mL)  which  was  distilled  off  to 

remove  the  last  traces  of  TFA.  The 

resulting  deprotected  depsipeptide  107 a 

was coupled with  O-MOM protected acid 

81 (2.9 mg, 14.10 µmol) using HATU (5.4 

mg,  14.20  µmol),  DIEA  (0.92  mg,  7.12 

µmol) and TMP (5.14 mg, 42.42 µmol) in 

CH2Cl2 (1 mL) according to GP 6 for 2.5 h. The mixture was then taken up with Et2O (20 mL) 

and  the  crude  product  obtained  after  usual  aqueous  work-up  (GP 2)  was  crystallized  from 

CH2Cl2 / pentane to give O-MOM protected monofluoromethylcyclopropylalanyl Hormaomycin 

108 a (8.0 mg, 93%, Rf = 0.36 acetone/hexanes 1:2) as a colorless glass which was used for the 

next step without any characterization.

Monofluoromethylcyclopropylalanyl Hormaomycin (F1Horm, 109 b): O-MOM protected mono-

fluoromethylcyclopropylalanyl  Hormao-

mycin 108 a (8.0  mg,  6.82  µmol)  was 

deprotected  using  MgBr2 × Et2O  (52 mg, 

201.36  µmol)  and  EtSH  (0.10  mL, 

1.9 mmol) in CH2Cl2 (10 mL) according to 

GP  7 for 3 h.  The mixture was taken up 

with EtOAc and the crude product obtained 

after  usual  aqueous  work-up  was 

crystallized from CH2Cl2 / pentane to give 

109 a (5.5 mg, 78%, 50% on 5 steps from 

103 a) as a white solid, which was finally 
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purified with preparative HPLC. Rf = 0.24 acetone/hexanes  3:7; analytical  HPLC: column B, 

isocratic, 65% MeCN in H2O for 15 min, then gradient 65→99% MeCN in H2O for 5 min, then 

isocratic, 99% MeCN, flow rate = 0.5 mL/min, tR = 14.54 min, purity > 92%; preparative HPLC: 

isocratic, 62% MeCN in H2O (+ 0.1% TFA) for 7 min, then gradient 65→99% MeCN in H2O 

(+ 0.1% TFA) for 10 min, then isocratic, 62% MeCN in H2O (+ 0.1% TFA), flow rate = 18 mL/

min, tR = 12.54 min; [α]D
20 20.0 (c = 0.1, MeOH); 1H NMR (600 MHz, CDCl3): δ = –0.71 – –

0.63 (m, 1 H), –0.20–0.10 (m, 1 H), 0.23–0.32 (m, 1 H), 0.49–0.56 (m, 1 H), 0.88 (t, J = 7.4 Hz, 

3 H), 0.95–1.01 (m, 1 H), 1.02 (d, J = 6.9 Hz, 3 H), 1.04–1.14 (m, 1 H), 1.17–1.35 (m, 1 H), 1.30 

(d,  J = 7.0 Hz, 3 H), 1.39 (d,  J = 7.3 Hz, 3 H), 1.47–1.54 (m, 1 H), 1.53 (d,  J = 6.9 Hz, 3 H), 

1.55–1.62 (m, 1 H), 1.67 (dd, J = 6.9 Hz, 1.6 Hz, 3 H), 1.75–1.84 (m, 2 H), 1.85–1.94 (m, 3 H), 

2.30–2.40 (m, 1 H), 2.88–2.91 (m, 1 H), 2.96–3.02 (m, 1 H), 3.22–3.31 (m, 2 H), 3.43–3.50 (m, 

1 H), 3.62–3.70 (m, 1 H), 3.93–4.00 (m, 1 H), 4.03 (ddd, J = 6.8 Hz, 3.4 Hz, 3.4 Hz, 1 H), 4.26 

(dd, J = 11.5 Hz, 6.0 Hz, 1 H), 4.38 (dd, J = 10.6 Hz, 10.6 Hz, 1 H), 4.46 (dd, J = 9.4 Hz, 4.5 Hz, 

1 H), 4.57 (dd,  J = 9.3 Hz, 2.3 Hz, 1 H), 4.66 (dd,  J = 9.0, 9.0 Hz, 1 H), 5.08–5.14 (m, 1 H), 

5.22–5.28 (m, 1 H), 5.40 (qd, J = 6.9 Hz, 2.4 Hz, 1 H), 5.58–5.65 (m, 1 H), 6.13 (d, J = 4.7 Hz, 

1 H), 6.56 (d, J = 6.5 Hz, 1 H), 6.80 (d, J = 9.3 Hz, 1 H), 6.82 (d, J = 4.7 Hz, 1 H), 6.98–7.03 (m, 

1 H), 7.09–7.18 (m, 5 H), 7.20–7.27 (m, 7 H), 8.05 (d,  J = 9.1 Hz, 1 H), 9.06 (d,  J = 9.3 Hz, 

1 H); 13C NMR (150.8 MHz, CDCl3): δ = 10.50 (+), 13.24 (+), 13.33 (+), 14.94 (+), 16.99 (+), 

17.41 (–), 17.74 (+), 20.00 (+), 21.66 (+), 24.90 (–), 26.88 (–), 33.02 (–), 35.03 (–), 35.51 (–), 

36.66 (–), 37.97 (+), 39.24 (+) 41.75 (+), 50.99 (+), 51.79 (+), 52.78 (–), 54.61 (+), 54.93 (+), 

58.11 (+), 59.12 (+), 59.86 (+), 60.04 (+), 61.37 (+), 69.07 (+), 103.59 (+), 109.85 (+), 119.86 

(Cquat), 121.55 (Cquat), 126.98 (+), 127.17 (+), 127.44 (+), 127.47 (+), 127.67 (+), 128.33 (+), 

128.49 (+), 128.64 (+), 141.55 (Cquat), 142.11 (Cquat), 159.27 (Cquat), 168.54 (Cquat), 168.73 (Cquat), 

169.75 (Cquat), 170.74 (Cquat), 171.26 (Cquat), 171.55 (Cquat), 172.86 (Cquat); MS-ESI: positive, m/z 

= 292 (100), 1151 (80, M+Na+); negative, m/z = 1127 (100, M–H−).
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11. Other new non-proteinogenic amino acids

11.1. β-Methylphenylalanine

Racemic 1-phenylethanol  (118):  Acetophenone (12.0 g,  100 mmol)  was reduced with LiAlH4 

solution  according  to  GP 8,  giving  the  target  racemic  alcohol  as  colorless 

liquid  (10.8 g,  88 mmol,  88%);  1H NMR (250 MHz, CDCl3):  δ = 1.49 (d, 

J = 6.5 Hz,  3 H),  2.20 (d,  J = 3.1,  1 H),  4.82–4.92 (m,  1 H),  7.23–7.44 (m, 

5 H); 13C NMR (62.9 MHz, CDCl3): δ = 25.12, 70.33, 125.35, 127.41, 128.45, 145.77.

Racemic  1-iod-1-phenylethane  (119):  Racemic  1-phenyl  ethanol  118 (10.8 g,  88 mmol)  was 

iodinated  according  to  GP 9 using  triphenylphosphine  (40.0 g,  153 mmol), 

imidazole  (10.9 g,  160 mmol)  and  iodine  (43.1 g,  170 mmol)  in  diethyl 

ether/acetonitrile  mixture  (260 + 175 ml),  giving  the  target  iodide  119 as 

yellowish  liquid  (18.9 g,  81.7 mmol,  92,8%);  1H NMR  (250 MHz,  CDCl3):  δ = 2.25 (d, 

J = 7.1 Hz,  3 H),  5.44 (q,  J = 7.1,  1 H),  7.24–7.38 (m,  3 H),  7.44–7.55 (m,  2 H);  13C NMR 

(62.9 MHz, CDCl3): δ = 26.27, 28.99, 126.56, 127.95, 128.71, 145.32.

(S)-Belokon' (2S,3R)-β-methylphenylalanine complex [(S)-BFC, (2S,3R)-120]: (S)-BGC (10.0 g, 

20 mmol)  was  was  alkylated  with  the  racemic  1-iod-1-

phenylethane 119 (4.9 g, 21 mmol) according to GP 10 using NaH 

(60%  in  oil,  1.0 g,  25 mmol)  in  DMF/MeCN  mixture 

(10 + 20 mL), giving (2S,3R) component (3.78 g, 6.3 mmol, 63% 

on  (S)-BGC),  (2S,3S) component  (3.13 g,  5.2 mmol,  52%  on 

(S)-BGC)  and  mixed  fractions  (3.87 g,  6.4 mmol,  64%  on 

(S)-BGC)  as  well  as  products  of  the  anion  oxidation  (0.94 g); 

(2S,3R)  component:  1H NMR (500 MHz, CDCl3):  δ = 1,13 (d, 

J = 7.34 Hz,  3 H),  1.34–1.51 (m,  2 H),  1.69–2.01 (m,  2 H),  2.22 (q,  J = 7.90 Hz,  2 H),  2.71–

2.95 (m, 2 H), 3.25 (t, J = 8.72 Hz, 1 H), 3.39 (d, J = 12.62 Hz, 1 H), 3.49 (d, J = 5.49 Hz, 3 H), 

4.12 (d, J = 3.17 Hz, 1 H), 4.23 (d, J = 12.56 Hz, 1 H), 6.62–6.78 (m, 2 H), 6.99–7.07 (m, 1 H), 

7.08–7.70 (m,  13 H),  7.98 (d,  J = 8.28 Hz,  2 H),  8.26 (d,  J = 8.56 Hz,  1 H);  13C NMR 

(125.7 MHz, CDCl3): δ = 18.27 (+), 22.92 (–), 30.67 (–), 44.84 (+), 50.56 (+, MeOH), 57.19 (–), 

63.45 (–),  70.28 (+),  75.48 (+),  120.39 (+),  123.07 (+),  125.90 (–),  127.09 (+),  127.53 (+), 

127.89 (+),  128.37 (+),  128.46 (+),  128.57 (+),  128.61 (+),  128.75 (+),  128.79 + 129.08 (+), 

129.38 (+),  129.60 (+),  131.47 (+),  131.85 + 131.87 (+),  131.95 + 132.03 (+),  132.28 (+), 
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132.78 (–),  133.17 (–),  133.48 (+),  134.30 (–),  141.04 (–),  142.90 (–),  171.02 (–),  177.37 (–), 

180.36 (–);  [α]D
20=+2190.0°  (c=0.2  in  CHCl3);  MS-ESI  (MeOH):  1827.6 (85%, 3M+Na+), 

1225.1 (70%,  2M+Na+),  1205.0 (20%,  2M+H+),  624.3 (100%,  M+Na+),  602.3 (48%, 

M+H+).

(2S,3R)-β-methylphenylalanine (MeF, 55): (S)-BFC (3.78 g, 6.3 mmol) was decomposed and the 

amino acid was separated and purified according to GP 11 to give pure 

target  amino  acid  (0.67 g,  3.7 mmol,  59%);  1H NMR (300 MHz, D2O): 

δ = 1.43 (d,  J = 7.3 Hz,  3 H),  3.57 (qd,  J = 7.3 Hz,  5.0 Hz,  1 H),  3.98 (d, 

J = 5.0 Hz, 1 H), 4.72 (bs, 3 H), 7.36–7.53 (m, 5 H); 13C NMR (125.7 MHz, 

D2O):  δ = 13.81 (+),  39.46 (+),  60.75 (+),  127.81 (+),  127.86 (+),  129.17 (+),  140.38 (–), 

173.24 (–); [α]D
20 –7.4 (c=0.5 in H2O); MS-ESI (MeOH): (positive) m/z (%) 180 (100, M+H+), 

(negative) m/z (%) 178 (100, M–H−).

11.2. Substituted β-methylphenylalanines

Racemic  1-(p-chlorophenyl)ethanol  (121):  p-Chloroacetophenone  (3.10 g,  20 mmol)  was 

reduced  with  LiAlH4 solution  according  to  GP 8,  giving  the  target 

racemic  alcohol  121 as  colorless  liquid  (3.07 g,  19.6 mmol,  98%); 
1H NMR (250 MHz, CDCl3): δ = 1.42 (d, J = 6.5 Hz, 3 H), 2.65 (bs, 1 H), 

5.36 (dq, J = 3.0 Hz, 6.5 Hz, 1 H), 7.20–7.35 (m, 4 H), 13C NMR (62.9 MHz, CDCl3): δ = 25.12, 

69.50, 126.70, 128.43, 132.85, 144.14.

Racemic 1-iod-1-(p-chlorophenyl)ethane (122):  Racemic 1-(p-chlorophenyl)ethanol  121 (3.0 g, 

19.2 mmol)  was  iodinated  according  to  GP 9 using  triphenylphosphine 

(6.7 g,  25.5 mmol),  imidazole  (2.0 g,  30 mmol)  and  iodine  (9.4 g, 

37.0 mmol) in toluene/acetonitrile mixture (100 + 20 ml). The mixture was 

heated  to  reflux  for  30 min  before  work-up,  diluted  with  tert-buthyl  methyl  ether  (50 mL), 

washed with 10% w/w aqueous NaHSO3 (3 × 50 mL),  H2O (50 mL) and brine (50 mL), dried 

over MgSO4, and concentrated under reduced pressure. Crude iodide was purified with column 

chromatography (silica gel, eluted with pentane), giving the target iodide 122 as yellowish liquid 

(5.01 g, 18.8 mmol,  98%); TLC: pentane,  Rf = 0.28;  1H NMR (250 MHz, CDCl3): δ = 2.19 (d, 

J = 7.1 Hz,  3 H),  5.36 (q,  J = 7.1 Hz,  1 H),  7.23–7.41 (m, 4H),  13C NMR (62.9 MHz,  CDCl3): 

δ = 24.35, 28.81, 127.85, 128.82, 133.38, 143.88; MS-EI (70 eV): m/z (%) 141 (30, M(37Cl)–I+), 

139 (100, M(35Cl)–I+), 103 (50, C8H7+), 77 (18, C6H5+).
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(S)-Belokon'  (2S,3R)-beta-methyl(p-chlorophenyl)alanine  complex  [(S)-BpCFC  (2S,3R)-123]: 

(S)-BGC (3.45 g, 6.9 mmol)  was alkylated with the racemic 1-

iod-1-(p-chlorophenyl)ethane 122 (1.95 g,7.3 mmol) according to 

GP 10 using NaH (60% in oil, 0.33 g, 8.3 mmol) in DMF/MeCN 

mixture  (3.5 + 7.0 mL),  giving  after  chromatogarphy  (2S,3R) 

component  (1.77 g,  2.8 mmol,  40.3% on  (S)-BGC,  d.e.≥98%), 

(2S,3S) component  (1.83 g,  2.9 mmol,  41.6%  on  (S)-BGC, 

d.e.≥98%)  and  mixed  fractions  (0.67 g,  1.1 mmol,  15,2%  on 

(S)-BGC)  as  well  as  products  of  the  anion  oxidation  (0.11 g);  (2S,3R)  component: 

TLC: Rf = 0.17 (EtOAc); 1H NMR (250 MHz, CDCl3): δ = 1.07 (d, 7.3 Hz), 1.45–1.65 (m, 1 H), 

1.80–2.06 (m, 2 H), 2.14–2.36 (m, 3 H), 2.70–2.90 (m, 2 H), 3.29 (t,  J = 8.6 Hz, 1 H), 3.40 (d, 

J=12.5 Hz, 1 H), 4.10 (d,  J=3.1 Hz, 1 H),  4.24 (d,  J=12.5 Hz, 1 H), 6.62–6.74 (m, 2 H), 7.00–

7.06 (m, 1 H), 7.08–7.19 (m, 2 H), 7.22–7.37 (m, 5 H), 7.42–7.63 (m, 5 H), 7.94–8.03 (m, 2 H), 

8.22–8.30 (m,  1 H);  13C NMR (62.9 MHz,  CDCl3):  18.02,  22.69,  30.67,  44.18,  50.38,  57.40, 

63.53, 70.18, 75.05, 106.97, 113.70, 120.39, 122.98, 125.66, 126.94, 127.64, 128.52, 128.76, 

129.09, 129.62, 130.61, 131.32, 132.32, 133.12, 133.41, 133.51, 134.04, 139.37, 142.69, 171.12, 

177.14, 180.32.

(2S,3R)-β-methyl(p-chlorophenyl)alanine  [(2S,3R)-51]:  (S)-BpCFC  (2S,3R)-122 (1.70 g, 

2.7 mmol)  was  decomposed  and  the  amino  acid  was  separated  and 

purified  according  to  GP 11 to  give  pure  target  amino  acid  (512 mg, 

2.4 mmol, 89%); 1H NMR (300 MHz, D2O): δ = 1.43 (d, J = 7.3 Hz, 3 H), 

3.57 (qd,  J = 7.3 Hz,  5.0 Hz,  1 H),  3.98 (d,  J = 5.0 Hz,  1 H),  4.72 (bs, 

3 H),  7.36–7.53 (m,  5 H);  13C NMR  (125.7 MHz,  D2O):  δ = 13.81 (+), 

39.46 (+),  60.75 (+),  127.81 (+),  127.86 (+),  129.17 (+),  140.38 (–),  173.24 (–);  [α]D
20 –

7.4 (c=0.5 in H2O); MS-ESI (MeOH): positive 180.0 (100%), negative 178.2 (100%).

Racemic  1-(m-chlorophenyl)ethanol  (124):  m-Chloroacetophenone  (3.10 g,  20 mmol)  was 

reduced with LiAlH4 solution according to GP 8, giving the target racemic 

alcohol  124 as  colorless  liquid  (3.09 g,  19.7 mmol,  98%); 
1H NMR (250 MHz,  CDCl3):  δ = 1.44 (d,  J = 6.4 Hz,  3 H),  2.48 (bs,  1 H), 

4.81 (dq,  J=6.4 Hz,  3.3 Hz,  1 H),  7.16–7.30 (m,  3 H),  7.32–7.36 (m,  1 H); 
13C NMR (62.9 MHz, CDCl3): δ = 25.12, 59.59, 123.48, 125.54, 127.41, 129.70, 134.22, 147.77; 

MS-EI (70 eV):  m/z  (%)  158 (10%,  M(37Cl)+),  156 (30%,  M(35Cl)+),  143 (25%,  M(37Cl)–
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O+H+), 141 (100%, M(35Cl)–O+H+, M(37Cl)–OH+), 139.1 (45%, M(35Cl)–OH+), 121.1 (15%, 

M–Cl+), 115.1 (13%, C6H6
37Cl+), 113.1 (40%, C6H6

35Cl+), 77.1 (75%, C6H5+).

Racemic 1-iod-1-(m-chlorophenyl)ethane (125): Racemic 1-(m-chlorophenyl)ethanol 124 (3.0 g, 

19.2 mmol) was iodinated according to GP 9 using triphenylphosphine (6.7 g, 

25.5 mmol),  imidazole  (2.0 g,  30 mmol)  and  iodine  (9.4 g,  37.0 mmol)  in 

toluene/acetonitrile mixture (100 + 20 ml).  The mixture was heated to reflux 

for  30 min  before  work-up,  diluted  with  tert-buthyl  methyl  ether  (50 mL), 

washed with 10% w/w aqueous NaHSO3 (3 × 50 mL),  H2O (50 mL) and brine (50 mL), dried 

over MgSO4, and concentrated under reduced pressure. Crude iodide was purified with column 

chromatography (silica, eluted with pentane), giving the target iodide  125 as yellowish liquid 

(5.04 g,  18.9 mmol,  98%); TLC:  Rf = 0.28,  pentane;  1H NMR (250 MHz, CDCl3):  δ = 2.19 (d, 

J = 7.1 Hz, 3 H),  5.31 (q,  J = 7.1 Hz, 1 H), 7.20–7.35 (m,  3 H), 7.41–7.44 (m,  1 H);  13C NMR 

(62.9 MHz, CDCl3): δ = 23.72, 28,67, 124.80, 126.67, 128.01, 129.92, 134.28, 147.21.

(S)-Belokon'  beta-methyl(m-chlorophenyl)alanine  complex  [(S)-BmCFC,  (2S,3R)-126]: 

(S)-BGC (3.45 g, 6.9 mmol) was alkylated with racemic 1-iod-1-

(m-chlorophenyl)ethane  (1.95 g,7.3 mmol)  according  to  GP 10 

using NaH (60% in oil, 0.33 g, 8.3 mmol) in DMF/MeCN mixture 

(3.5 + 7.0 mL),  giving  (2S,3R)  component  (1.83 g,  2.9 mmol, 

41.6%  on  (S)-BGC,  d.e.≥98%),  (2S,3S)  component  (1.62 g, 

2.5 mmol,  36.9%  on  (S)-BGC,  d.e.≥98%)  and  mixed  fractions 

(0.87 g, 1.4 mmol, 19.8% on (S)-BGC) as well as products of the 

anion  oxidation  (0.18 g).  (2S,3R)-Component:  1H NMR (250 MHz,  CDCl3):  δ = 1.11 (d, 

J = 7.3 Hz,  3 H),  1.43–1.64 (m,  1 H),  1.73–2.02 (m,  2 H),  2.27 (q,  J = 7.6 Hz,  2 H),  2.75–

2.94 (m, 2 H), 3.27 (t,  J = 8.6 Hz, 1 H), 3.42 (d,  J = 12.6 Hz, 1 H), 4.05–4.16 (m, 1 H), 4.25 (d, 

J = 12.6 Hz, 1 H), 6.62–6.74 (m,  2 H), 6.98–7.06 (m,  1 H), 7.08–7.19 (m,  2 H), 7.19–7.35 (m, 

5 H),  7.37–7.46 (m,  3 H),  7.46–7.66 (m,  3 H),  7.93–8.00 (m,  2 H),  8.26–8.32 (m,  1 H); 
13C NMR (62.9 MHz, CDCl3): 30.84, 44.62, 57.25, 63.45, 70.30, 75.18, 120.46, 123.17, 125.81, 

127.86, 128.68, 128.91, 129.25, 131.52, 143.05, 143.34, 177.12, 180.39, 209,51.

(2S,3R)-β-methyl(p-chlorophenyl)alanine  [(2S,3R)-50]:  (S)-BmCFC  (2S,3R)-126 (1.80 g, 

2.8 mmol)  was  decomposed  and the amino acid  was separated  and 

purified according to GP 11 to give pure target amino acid (573 mg, 

2,7 mmol,  96%); 1H NMR (300 MHz, D2O):  δ = 1.43 (d,  J = 7.3 Hz, 

3 H),  3.57 (qd,  J = 7.3 Hz,  5.0 Hz,  1 H),  3.98 (d,  J = 5.0 Hz,  1 H), 
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4.72 (bs,  3 H),  7.36–7.53 (m,  5 H);  13C NMR  (125.7 MHz,  D2O):  δ = 13.81 (+),  39.46 (+), 

60.75 (+), 127.81 (+), 127.86 (+), 129.17 (+), 140.38 (–), 173.24 (–); [α]D
20 –7.4 (c=0.5 in H2O); 

MS-ESI (MeOH): positive 180.0 (100%), negative 178.2 (100%).

Racemic  1-(o-chlorophenyl)  ethanol  (127):  o-Chloroacetophenone  (3.10 g,  20 mmol)  was 

reduced with LiAlH4 solution  according  to  GP 8,  giving  the  target  racemic 

alcohol 127 as colorless liquid (2.98 g, 19.0 mmol, 95%); 1H NMR (250 MHz, 

CDCl3): δ = 1.46 (d, J = 6.3 Hz, 3 H), 2.50 (bs, 1 H), 5.26 (q, J = 6.3 Hz, 1 H), 

7.12–7.34 (m,  3 H),  7.53–7.60 (m,  1 H);  13C NMR (62.9 MHz, CDCl3): 

δ = 23.43,  66.81,  126.33,  127.12,  128.29,  129.28,  131.48,  142.99;  MS-EI (70 eV):  m/z  (%) 

158.2 (4%,  M(37Cl)+),  156.2 (12%,  M(35Cl)+),  143.1 (18%,  M(37Cl)–O+H+),  141.1 (55%, 

M(35Cl)–O+H+), 115.1 (10%, C6H6
37Cl+), 113.1 (30%, C6H6

35Cl+), 77.1 (100%, C6H5+).

Racemic 1-iod-1-(o-chlorophenyl) ethane (128): Racemic 1-(o-chlorophenyl)ethanol 127 (2.9 g, 

18.5 mmol)  was  iodinated  according  to  GP 7 using  triphenylphosphine  (6.7 g, 

25.5 mmol),  imidazole  (2.0 g,  30.0 mmol)  and  iodine  (9.4 g,  37.0 mmol)  in 

toluene/acetonitrile mixture (100 + 20 ml). The mixture was heated to reflux for 

30 min before work-up, diluted with  tert-buthyl methyl  ether (50 mL), washed 

with  10% w/w  aqueous  NaHSO3 (3 × 50 mL),  H2O  (50 mL)  and  brine  (50 mL),  dried  over 

MgSO4,  and  concentrated  under  reduced  pressure.  Crude  iodide  was  purified  with  column 

chromatography (silica gel, eluted with pentane), giving the target iodide 128 as yellowish liquid 

(4.82 g,  18.1 mmol,  98%);  TLC: pentane,  Rf = 0.28;  1H NMR (250 MHz, CDCl3):  δ = 2.25 (d, 

J = 7.1 Hz,  3 H),  5.72 (q,  J = 7.1 Hz,  1 H),  7.15–7.35 (m,  3 H),  7.60–7.67 (m,  1 H); 
13C NMR (62.9 MHz, CDCl3): δ = 20.54, 27.75, 127.50, 127.57, 128.93, 129.89, 132.05, 142.11; 

MS-EI (70 eV): m/z (%) 141.1 (33%, M(37Cl)–I+), 139.1 (100%, M(35Cl)–I+), 103.1 (100%, M–

(H+Cl+I)+), 77.1 (75%, C6H5+).

(S)-Belokon'  β-methyl(o-chlorophenyl)alanine  complex  [(S)-BoCFC,  (2S,3R)-129]:  (S)-BGC 

(3.08 g,  6.2 mmol)  was  alkylated  with  racemic  1-iod-1-(o-

chlorophenyl)ethane  128 (1.74 g, 6.5 mmol) according to GP 10 

using  NaH  (60%  in  oil,  0.30 g,  7.4 mmol)  in  DMF/MeCN 

mixture  (3.0 + 6.0 mL),  giving  (2S,3R)  component  [1.64 g, 

2.6 mmol,  41.6%  on  (S)-BGC,  d.e.≥98%],  (2S,3S)  component 

[1.49 g,  2.3 mmol,  37.7%  on  (S)-BGC,  d.e.≥98%]  and  mixed 

fractions  [0.76 g,  1.2 mmol,  19.2%  on  (S)-BGC]  as  well  as 

products of the anion oxidation (0.12 g).

OH

Cl

N
N

O

N

O
O

Ni Cl

I

Cl

127

128

129



105

(2S,3R)-β-Methyl(o-chlorophenyl)alanine  [(2S,3R)-49]:  (S)-BoCFC  (2S,3R)-129 was 

decomposed and the amino acid was separated and purified according to 

GP 9 to give pure target amino acid (513 mg, 2,4 mmol, 96%).

Racemic  1-(p-fluorophenyl)ethanol  (130):  p-Fluoroacetophenone  (2.76 g,  20.0 mmol)  was 

reduced with LiAlH4 solution according to GP 8, giving the target racemic 

alcohol 130 as colorless liquid (2.72 g, 19.4 mmol, 97%); TLC: Rf = 0.27, 

pentane;  1H NMR (250 MHz, CDCl3):  δ = 1.45 (d,  J = 6.5 Hz,  3 H), 

2.30 (bs,  1 H),  4.85 (q,  J = 6.5 Hz,  1 H),  6.96–7.08 (m,  2 H),  7.25–7.37 (m,  2 H); 
13C NMR (62.9 MHz, CDCl3): δ = 25.20 (+), 69.65 (+), 115.16 (+, d,  J = 21.3 Hz), 126.98 (+, d, 

J = 8.1 Hz), 141.45 (Cquat, d, J = 3.1 Hz), 162.00 (Cquat, d, J = 245.1 Hz); MS-EI (70 eV): m/z (%) 

140.1 (22%, M+),  125.1 (100%,  C8H10F+),  97.1 (60%, C6H6F+),  77.1 (20%, C6H5+), 

43.2 (24%, C2H3O+).

Racemic 1-iod-1-(p-fluorophenyl)ethane (131):  Racemic 1-(p-fluorophenyl)ethanol  130 (2.5 g, 

17.8 mmol)  was  iodinated  according  to  GP 9 using  triphenylphosphine 

(8.1 g,  30.7 mmol),  imidazole  (2.2 g,  32.6 mmol)  and  iodine  (9.0 g, 

35.6 mmol)  in  diethyl  ether/acetonitrile  mixture  (50 + 35 ml),  giving  the 

target  iodide  131 as  yellowish  liquid  (4.31 g,  17.2 mmol,  96,8%);  TLC:  Rf = 0.37  pentane; 
1H NMR (250 MHz, CDCl3): δ = 2.20 (d, J = 7.1, 3 H), 5.40 (q, J = 7.1 Hz, 1 H), 6.92–7.06 (m, 

2 H), 7.36–7.48 (m, 2 H);  13C NMR (62.9 MHz, CDCl3): δ = 24.85 (+), 29.13 (+), 115.54 (+, d, 

J = 21.6 Hz), 128.20 (+, d, J = 8.3 Hz), 141.24 (Cquat), 161.86 (Cquat, d, J = 247.2 Hz).

(S)-Belokon'  β-methyl(p-fluorophenyl)alanine  complex  [(S)-BpFFC,  (2S,3R)-132]: (S)-BGC 

(2.84 g,  5.7 mmol)  was  alkylated  with  racemic  1-iod-1-(p-

fluorophenyl)ethane  131 (1.50 g, 6.0 mmol)  according to GP 10 

using NaH (60% in oil, 0.28 g, 6.8 mmol) in DMF/MeCN mixture 

(3.0 + 6.0 mL),  giving  (2S,3R)  component  [1.53 g,  2.5 mmol, 

43.2%  on  (S)-BGC,  d.e.≥98%],  (2S,3S)  component  [1.63 g, 

2.6 mmol,  46.1%  on  (S)-BGC,  d.e.≥98%]  and  mixed  fractions 

[0.33 g, 0.52 mmol, 9.2% on (S)-BGC] as well as products of the 

anion oxidation (0.13 g) after chromatography (silica gel, eluted 

with ethyl  acetate).  1H NMR (250 MHz, CDCl3):  δ = 1.85–2.02 (m,  1 H), 2.03–2.21 (m,  1 H), 

2.06 (d,  J = 7.1 Hz, 3 H) 2.50–2.75 (m, 1 H), 2.80–2.98 (m, 1 H), 3.31–3.52 (m, 4 H), 3.59 (d, 
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J = 12.7 Hz,  1 H),  4.09 (d,  J = 5.0 Hz,  1 H),  4.39 (d,  J = 2.6 Hz,  1 H),  6.50–6.71 (m,  5 H), 

6.75 (t,  J = 8.6 Hz, 2 H), 7.01–7.17 (m, 2 H), 7.22–7.34 (m, 4 H), 7.47–7.58 (m, 2 H), 8.04 (d, 

J = 7.3 Hz,  2 H),  8.20 (d,  J = 8.6 Hz,  1 H);  13C NMR  (62.9 MHz,  CDCl3):  δ = 16.12,  23.27, 

30.71, 43.94, 46.16, 56.71, 63.19, 70.39, 75.66, 114.83 (d, J = 21.0 Hz), 120.63, 123.13, 126.31, 

127.46, 128.20, 128.75, 128.88, 128.94, 129.09 (d, J = 7.9 Hz), 129.58, 131.43, 133.04, 133.52, 

133.75, 134.48 (d, J = 269.7 Hz), 142.39, 170.75, 176.73, 180.14.

(2S,3R)-β-Methyl-(p-fluorophenyl)alanine  [(2S,3R)-52]:  (S)-BpFFC  (2S,3R)-132 was 

decomposed and the amino acid was separated and purified according to 

GP 11 to give pure target amino acid (433 mg, 2,2 mmol, 94%).

11.3. (R)-allo-Threonine

(R)-Belokon'  (R)-allo-Threonine  complex  [(R)-BTC,  133]:  (R)-BGC (21.4 g,  43.0 mmol)  was 

suspended in DMF/MeCN mixture (20 + 40 mL) and degassed with 

two freeze-pump-thaw cycles (dry ice/acetone bath) under stirring, 

then NaH (60% in oil, 2.0 g, 50 mmol) was added to cold mixture 

and  the  system  was  thawed  to  0 °C  under  stirring  till  H2  gas 

evolution  ceased.  The♣ mixture  was frozen,  acetaldehyde  (2.0 g, 

45 mmol) was added under stirring and system was left to warm to 

0 °C on air under stirring. When ice cover on flask started to thaw, 

60%  aqueous  acetic  acid  (4.5 mL)  was  added.  After  additional 

10 min stirring the mixture was concentrated under reduced pressure (bath temp ~50 °C) and 

liquid residue was poured into a vigorously stirred mixture of H2O (0.5 L) and CHCl3 (100 mL). 

Organic layer was separated and washed with H2O (2 × 100 mL), combined water phases were 

extracted with CHCl3 (3 × 50 mL), combined organic phases were concentrated under reduced 

pressure to ~20 ml and left overnight at ambient temperature to crystallize. Crystals were filtered 

out, washed with cold CHCl3 (~10 ml)  and recrystallized from CHCl3, giving orange crystals, 

uniform by TLC (1.76 g, 3.2 mmol, 7.5%); 1H NMR (250 MHz, CDCl3): δ = 1.08 (d, J = 6.5 Hz, 

3 H), 1.94–2.12 (m, 3 H), 2.25–2.59 (m, 2 H), 2.67–2.84 (m, 1 H), 3.38–3.61 (m, 1 H), 3.45 (dd, 

J = 11.1 Hz, 5.8 Hz, 1 H), 3.55 (d, 12.6 Hz, 1 H), 3.75–3.97 (m, 3 H), 4.42 (d, J = 12.6 Hz, 1 H), 

6.65 (d,  J = 3.87 Hz, 2 H), 6.95 (m, 1 H), 7.09–7.23 (m, 2 H), 7.35 (t,  J = 7.52 Hz, 2 H), 7.41–
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7.56 (m,  3 H),  8.06 (d,  J = 7.02 Hz,  2 H),  8.14 (d,  J = 8.61 Hz,  1 H);  1H NMR  (250 MHz, 

[D6]DMSO):  δ = 0.88 (d,  J = 6.3 Hz,  3 H),  1.81–2.18 (m,  2 H),  2.29–2.40 (m,  2 H),  3.45–

3.58 (m, 3 H), 3.61–3.87 (m, 2 H), 4.04 (d, J = 12.2 Hz, 1 H), 6.12 (d, J = 5.1 Hz, 1 H), 6.54 (d, 

J = 7.8 Hz,  1 H),  6.64 (t,  J = 7.1 Hz,  1 H),  7.02–7.19 (m,  3 H),  7.30–7.62 (m,  6 H),  7.99 (d, 

J = 8.6 Hz,  1 H),  8.35 (d,  J = 7.4 Hz,  2 H),  hydroxyl  sygnal  is  masked with H2O absorption; 
13C NMR (62.9 MHz, [D6]DMSO):  δ = 20.19, 22.61, 30.24, 57.43, 62.38, 69.27, 69.71, 75.82, 

119.78, 123.20, 126.05, 127.24, 127.75, 128.20, 128.31, 128.46, 128.86, 128.96, 129.38, 130.96, 

131.45, 131.55, 132.48, 134.01, 134.76, 142.61, 169.08, 174.67, 180.18.

(2R,3R)-2-Amino-3-hydroxybutyric  acid  [(R)-allo-Threonine,  67]:  (R)-Belokon'  (R)-allo-

Threonine complex  133 (1.76 g,  3.2 mmol)  was decomposed and the amino 

acid was separated according to GP 11 to give the target amino acid (351 mg, 

2.9 mmol, 92%).

11.4. 1-Hydroxy-5-chloropyrrole-2-carboxylic acid

2,6-Dichloropyridine-1-oxide (134):[123] 2,6-dichloropyridine (11.10 g; 75.5 mmol) was dissolved 

in  trifluoroacetic  acid  (88 mL)  at  ambient  temperature  under  stirring  and 

aqueous H2O2 (30% in H2O, 16 mL) was added dropwise during 10 min. and 

the mixture was carefully heated to reflux. Additional portions of H2O2 (2 mL 

each) were added twice after 1 h and 2 h. The mixture was refluxed for 3 h 

under stirring, then the heating bath was removed and after short (~15 min) air-cooling the reflux 

condenser was changed to distillation head. The solvent mixture was distilled out under reduced 

pressure (bath temperature ≤ 50 °C) and liquid dark red-brown residue was poured to ice/water 

mixture (200 mL) under stirring.  Solid K2CO3 was added portionswise to vigorously stirring 

mixture (carefully–foam!) till CO2 gas evolution ceased, then solid NaCl (about 60g) was added 

to saturation. The precipitate formed was filtered off, wet precipitate was dissolved in CH2Cl2 

(50 mL) and last drops of water phase were separated in separation funnel. Combined water 

phases were extracted with CH2Cl2 (5 × 50 ml).  Extracts  and the solution of precipitate  were 

combined,  dried  over  MgSO4,  filtered  and  concentrated  under  reduced  pressure  at  ambient 

temperature till first crystals appeared. The solution was homogenized with CH2Cl2 (~1 mL) and 

diluted with hexane (150 mL). The precipitate formed was filtered off, washed on filter  with 

pentane (2 × 50 mL) and dried in vacuo overnight, giving target product 134 (9.11 g, 55.5 mmol, 

73.5%) as white solid. Starting 2,6-dichloropyridine (2.09 g, 14.1 mmol, 18.7%) was recovered 

from filtrate; TLC: Rf = 0.12 EtOAc:hexane 1:1.
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2-Amino-6-chloropyridine-1-oxide(135):[28] 2,6-dichloropyridine-1-oxide  134 (4.50  g;  27.4 

mmol) was placed to thick-wall ampoule (250 mL), covered with 75 mL of 

methanolic ammonia solution (25% w/w, obtained by anhydrous gaseous 

ammonia condensation in absolute methanol), sealed and heated at 105 °C 

(bath temperature) under stirring. After 24 h the mixture was cooled in ice/

water bath, the ampoule was open and solvents were removed at the reduced pressure. The dark-

brown crystalline residue was treated with methanol/chloroform mixture (1:4, 10 mL), NH4Cl 

precipitate was filtered out, washed with chloroform (3 × 5 mL) and discarded, the filtrate was 

concentrated under reduced pressure and residing oil was purified with column chromatography 

(methanol/chloroform  mixture,  1:10),  giving  target  product  135 as  off-white  solid  (2.32 g, 

16.0 mmol, 58.6%); TLC: MeOH:CHCl3=1:10, Rf=0.3; m.p.=133-134 °C.

2-Azido-6-chloropyridine-1-oxide (136):[28] 2-amino-6-chloropyridine-1-oxide  135 (4.33 g, 30.0 

mmol)  was  dissolved  in  10%  aqueous  HCl  (96 mL)  at  +5 °C  (inner 

temperature, during the reaction time reagents addition rates were selected not 

to overheat the reaction mixture higher than +5 °C) under vigorous stirring, 

the mixture was stirred for additional 15 min and aq. NaNO2 (2.5 M, 13 mL, 

32.5 mmol)  was  added dropwise.  The mixture  was stirred for  15 min  and aq. NaN3 (2.5 M, 

13 ml, 32.5 mmol) was added dropwise, cooling bath was removed and the mixture was left to 

stir  and  warm  to  ambient  temperature.  The  reaction  mixture  was  extracted  with  CH2Cl2 

(8 × 50 mL), combined extracts were dried over MgSO4, filtered and concentrated under reduced 

pressure to ~100 mL, diluted with hexane (300 mL) and concentrated under reduced pressure to 

~50 mL. The precipitate was filtered off, washed with hexane (3 × 10 mL) and dried in vacuo, 

giving target product 136 as a pale-yellow crystalline solid (4.42g, 25.9 mmol, 86.4%); m.p. 82–

83 °C (decomp.);  1H NMR (250 MHz, CDCl3):  δ = 6.85 (dd,  J = 8.3 Hz, 1.8 Hz, 1 H), 7.12 (dd, 

J = 8.3 Hz, 1 H), 7.25 (dd, J = 8.3 Hz, 1.8 Hz, 1 H).

5-Chloro-1-hydroxy-1H-pyrrole-2-carbonitrile  (137):  2-Azido-6-chloropyridine-1-oxide  136 

(3.91 g;  22.9 mmol)  was  dissolved  in  toluene  (150 mL),  the  system was 

degassed, filled with N2 and the solution was refluxed and stirred under N2 

flow for 30 min. The reaction mixture was filtered through silica gel (50 mL) 

to remove tar products; the silica gel on filter was washed with toluene (200 mL), filtrates were 

combined and the toluene was removed under reduced pressure. Light-brown crystal residue was 

dissolved in minimum chloroform volume and filtered  through silica  gel  (50 mL).  Traces  of 

starting material and side products were washed out with chloroform (TLC control), the product 
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was eluted with ethyl acetate/hexane mixture (1:3). Eluate concentration under reduced pressure 

gives target product 137 as off-white crystals (2.47 g, 17.3 mmol, 76%) uniform by TLC; m.p. 

100–101 °C;  1H NMR (250 MHz, CDCl3):  δ = 6.03 (d,  J = 5.0 Hz,  1 H),  6.66 (d,  J = 5.0 Hz, 

1 H),

8.94 (s, 1 H).

5-Chloro-1-methoxymethoxy-1H-pyrrole-2-carbonitrile  (138):[28] 5-Chloro-1-hydroxy-1H-

pyrrole-2-carbonitrile  137 (1.0g,  7.0mmol),  and  TEBAC  (110 mg, 

0.5 mmol) were dissolved in CH2Cl2 (15 mL) and aqueous NaOH solution 

(24% w/w, 2.2 mL) was added dropwise under vigorous stirring at ambient 

temperature.  Chloro-methoxy-methane  (MOM-Cl,  1.6g,  14 mmol)  was 

added as  one  portion  and stirring  was  continued  for  30 min.  The  mixture  was  diluted  with 

CH2Cl2 (20ml) and organic layer was separated. Water layer was diluted with H2O (10 mL) and 

extracted with CH2Cl2 (3 × 10mL). Combined organic layers were concentrated under reduced 

pressure giving 1.29g crude product, which was purified with the column chromatography (silica 

gel, eluted with EtOAc:hexane 1:7), giving the target product  138 as colorless liquid (1.15 g, 

6.3 mmol,  88.0%);  1H NMR  (250 MHz,  CDCl3):  δ = 3.73 (s,  3 H),  5.17 (s,  2 H),  6.05 (d, 

J = 4.8 Hz, 1 H), 6.64 (d, J = 4.8 Hz, 1 H).

5-Chloro-1-methoxymethoxy-1H-pyrrole-2-carboxamide  (139):[28] 5-Chloro-1-

methoxymethoxy-1H-pyrrole-2-carbonitrile  138 (3.53g,  18.9 mmol), 

and  tetrabutylammonium  hydrosulfate  (1.35 g,  3.9 mmol)  were 

dissolved  in  CH2Cl2 (40 mL)  in  250-ml  round-bottomed  flask  under 

vigorous stirring, the solution of 2.0 g NaOH in 8.0 mL H2O was added, 

followed  with  aqueous  H2O2 solution  (30%,  14 mL;  carefully–foam!).  The  mixture  was 

vigorously stirred for 30 min, organic layer was separated, water layer was washed with CH2Cl2 

(10 mL), saturated with solid NaCl and extracted with CH2Cl2 (2 × 20mL). Combined organic 

layers were concentrated under reduced pressure. The residue (4.88g) was purified with column 

chromatography (silica gel, eluted with EtOAc: hexane 1:1), giving the target product as light-

yellow extremely viscose oil (3.65 g). The crystalline product was obtained after dissolving the 

product  in  diethyl  ether  (10 mL)  and  precipitation  with  hexane  (100 mL).  The  crystalline 

precipitate was filtered out, rinsed with pentane (3 × 10 mL) and dried in vacuo, giving the target 

product 139 as white solid (3.18 g, 15.5 mmol, 82.2%); m.p.: 60–61 °C.
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Di-tert-butyl  [5-Chloro-1-(methoxymethoxy)pyrrol-2-yl]carbonylimidodicarbamate  (140):[28] 

The  solution  of  4-pyrrolidino pyridine  (0.22 g,  1.5 mmol)  in 

anhydrous acetonitrile (20 mL) was added dropwise to vigorously 

stirred solution of 5-chloro-1-methoxymethoxy-1H-pyrrole-2-car-

boxamide  139 (3.45 g,  16.9 mmol) and di-tert-butyl  pyrocarbo-

nate (22.1 g, 101.2 mmol) in anhydrous acetonitrile (65 mL) and 

the stirring was continued for 1.5 hour. Solvents were evaporated 

under reduced pressure, oily yellowish residue was purified with column chromatography (silica 

gel,  eluted  with  ethyl  acetate/hexane  1:8),  giving  the  target  product  140 as  colorless  oil, 

solidified while drying in vacuo overnight to white solid (5.46 g, 13.5 mmol, 79.8%); m.p.: 62–

69 °C.

5-Chloro-1-methoxymethoxy-1H-pyrrole-2-carboxylic  acid  (81):[28] Di-tert-butyl  [5-Chloro-1-

(methoxymethoxy)pyrrol-2-yl]carbonylimidodicarbamate  140 (5.42 g, 

13.4 mmol)  was  dissolved  in  dioxane  (65 mL)  under  stirring  at 

55 °C (bath temperature) and aq. 1 M NaOH (18 mL) was added as one 

portion. The mixture was stirred overnight, and then all volatiles were 

removed under reduced pressure.  Paste-like residue was dissolved in  H2O (150 mL)  and the 

solution  was  washed  with  CH2Cl2 (3 × 50 mL).  Water  layer  was  separated,  acidified  with 

aq. 1M KHSO4 to pH~2 and extracted with CH2Cl2 (3 × 50 mL). Combined organic layers were 

concentrated  under  reduced  pressure,  giving  2.08g  crude  product  as  pink  solid,  which  was 

purified with flash-chromatography (silica gel, eluted with diethyl ether) to give target product 

81 as  colorless  solid  (2.05 g,  10.0 mmol,  74.6%);  m.p.:  123–124 °C;  1H NMR  (250 MHz, 

CDCl3):  δ = 3.68 (s,  3 H),  5.25 (s,  2 H),  6.06 (d,  J = 5.0 Hz,  1 H),  6.95 (d,  J = 5.0 Hz,  1 H), 

11.75 (bs, 1 H). 

11.5. (2S,4R)-N-Boc-4-(Z)-Propenylproline

(2S,4R)-N-Boc-4-Hydroxyproline  (2):[124] (2S,4R)-4-Hydroxyproline  (32.8 g,  250 mmol)  was 

dissolved in H2O (170 mL) with stirring, THF (340 mL) and the solution of 

NaOH (11.0 g, 275 mmol) in H2O (100 mL) were successively added with 

vigorous  stirring,  followed  with  di-tert-butyl  dicarbonate  (82.6 g, 

367 mmol)  and the mixture  was left  to  stir  overnight.  The mixture  was 

acidified  with  aq. 1M KHSO4 to  pH~2,  organic  layer  was  separated, 

aqueous layer was extracted with ethyl  acetate (3 × 100 mL), combined extracts were washed 
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with brine (2 × 20 mL), dried over MgSO4, filtered and concentrated under reduced pressure to 

give  crude  N-protected  amino  acid  as  colorless  sypup.  The  syrup  was  dissolved  in  EtOAc 

(300 mL) and back-extracted with aq. 10% NaOH (3 × 100 mL). Organic layer was discarded, 

combined aqueous phases were acidified with aq. 1M KHSO4 to pH~2 and extracted with diethyl 

ether  (3 × 100 mL).  Combined  extracts  were  washed  with  aq. 1M KHSO4 (3 × 100 mL)  and 

brine (2 × 100 mL), dried over MgSO4, filtered and concentrated under reduced pressure giving 

target  N-protected amino acid  2 as  glass-like solid (50.2 g, 217 mmol,  87%); TLC:  Rf = 0.18 

(ethyl acetate/ hexane 1:1 + 5% acetic acid).

(2S,4R)-N-Boc-4-Hydroxyprolinol  (3):[28] To  a  solution  of  (2S,4R)-N-Boc-4-Hydroxyproline  2 

(50.2 g,  217 mmol)  and  triethylamine  (33.6 mL,  239 mmol)  in 

CH2Cl2 (600 mL)  was  added  at  –30 °C  ethyl  chloroformate  (21.9 mL, 

229 mmol),  and  the  mixture  was  stirred  for  40 min.  To  this  mixture 

tetrabutylammonium  bromide  (7.44 g,  23.1 mmol)  was  added  and  then 

carefully,  by  small  portions  a  suspension  of  NaBH4 (35.0 g,  925 mmol)  in  ice-cold  water 

(44 mL).  The  reaction  mixture  was  allowed  to  warm  to  –10 °C  and  stirred  for  1 h.  The 

temperature  of the mixture was further increased to  0 °C, and stirring was continued at  this 

temperature for 1 h. The pH value of the aqueous layer was then carefully adjusted to 5–6 with 

50% acetic acid, the mixture was stirred till H2 gas evolution ceased and filtered through Celite® 

pad.  The  organic  layer  was  separated,  and  the  aqueous  layer  was  extracted  with  CH2Cl2 

(3 × 20 mL). The aqueous layer was discarded, and the combined organic fractions were dried 

over  MgSO4,  filtered,  concentrated  under  reduced pressure,  and the residue was purified  by 

column chromatography (silica gel, eluted with EtOAc/hexane 2:1, Rf = 0.13) to give the target 

diol  3 (21.44 g, 98.7 mmol, 45%) as a colorless syrup. [α]D
20 –58.8 (c = 1.0, EtOH);  1H NMR 

(250 MHz,  CDCl3):  δ = 1.47 (s,  9 H),  1.57–1.80 (m,  1 H),  1.89–1.98 (bs,  1 H),  1.98–2.11 (m, 

1 H),  3.35–3.63 (m,  3 H),  3.70 (t,  J = 9.4 Hz,  1 H),  4.04–4.25 (m,  1 H),  4.29–4.45 (m,  1 H), 

4.95–5.09 (bs,  1 H);  13C  NMR  (62.9  MHz,  CDCl3):  δ = 28.3 (+),  37.3  (–),  54.9 + 55.6  (–), 

57.7 + 58.6 (+), 63.8 + 66.4 (–), 68.8 (+), 80.4 (Cquat), 155.0 + 156.9 (Cquat).

(2S,4R)-N-Boc-O-TBDMS-4-Hydroxyprolinol  (4):[125] (2S,4R)-N-Boc-4-Hydroxyprolinol  3 

(3.28 g,  15 mmol)  was  dissolved  under  N2-flow  in  ice-cold 

vigorously stirred mixture of triethyl amine (2.5 mL, 1.8 g, 18 mmol) 

and  CH2Cl2 (100 mL),  DMAP (0.1 g)  was  added,  followed  with 

TBDMS-Cl toluene solution (55.2% w/w, 4.55 g, 16 mmol) and the 

mixture was left to stir at ambient temperature overnight. The mixture was diluted with diethyl 
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ether (300 mL) to form precipitate, which was filtered out; filter cake was washed with diethyl 

ether (3 × 20 mL) and discarded. Combined filtrates were concentrated under reduced pressure to 

give oily residue, which was purified with the column chromatography (silica gel, eluted with 

ethyl acetate/hexane 1:3) to give target product 4 as colorless oil (2.2 g, 6.6 mmol, 44%).

(2S,4R)-N-Boc-O-TBDMS-4-Mesyloxyprolinol (5):[28] To  a  solution  of  (2S,4R)-N-Boc-O-

TBDMS-4-Hydroxyprolinol 4 (2.26 g, 6.8 mmol) and triethylamine 

(1.4 mL, 10.2 mmol) in CH2Cl2 (6 mL) at –78 °C was added mesyl 

chloride (0.7 mL, 1.05 g, 9.2 mmol) within 5 min. The mixture was 

allowed to warm to 0 °C and stirred for an additional 3 h, before 

aq. sat. NaHCO3 (5 mL)  was  added.  The  reaction  mixture  was  extracted  with  diethyl  ether 

(3 × 20 mL),  combined  extracts  were  washed  with  H2O  (3 × 20 mL),  aq. 1M KHSO4 

(3 × 20 mL), H2O (3 × 20 mL), brine  (2 × 20 mL) and dried over MgSO4. Concentration under 

reduced  pressure  gave  the  target  product  5 (2.53 g,  6.2 mmol,  94%)  as  a  light  yellow  oil.

Rf =  0.53  (EtOAc/hexane,  2:5);  [α]D
20 –38.5  (c = 0.55,  CHCl3);  1H  NMR  (250  MHz, 

CDCl3): δ = –0.01 (s, 6 H), 0.85 (s, 9 H), 1.44 (s, 9 H), 2.30–2.49 (m, 2 H), 3.02 (s, 3 H), 3.44–

3.63 (m, 2 H), 3.63–4.15 (m, 3 H), 5.25–5.33 (m, 1 H);  13C NMR (75.5 MHz, C2D2Cl4, 353 K): 

δ = –5.7 (+),  17.8 (Cquat),  25.6 (+),  28.3 (+),  34.8 (–),  38.4 (+),  52.4 (–), 57.0 (+),  63.4 (–), 

78.9 (+), 79.6 (Cquat), 153.6 (Cquat).

(2S,4S)-N-Boc-O-TBDMS-4-Cyanoprolinol (6):[28] A sealed round-bottomed flask, containing a 

solution  of  the  mesyl  ester  5 (2.53 g,  6.2 mmol)  and 

tetrabutylammonium  cyanide  (3.44 g,  12.8 mmol)  in  anhydrous 

MeCN (3 mL) was immersed to an oil-bath which was preheated to 

65–68 °C. The mixture was stirred for 6 h, diluted with ethyl acetate/

hexane mixture (1:4, 25 mL), washed with water (5 × 5 mL) and brine (2 × 5 mL), dried over 

MgSO4 and filtered through a pad of silica gel (1 cm). The solvents were removed under reduced 

pressure, and the residue was purified by column chromatography (silica gel, eluted with EtOAc/

hexane 1:3, Rf = 0.50) to give target nitrile 6 (1.31 g, 62%) as a yellowish oil which solidified to 

a  colorless  solid  upon  seeding.  M.p. 55–58 °C;  [α]D
20 –25.9  (c = 0.9,  CHCl3);  1H NMR 

(300 MHz, C2D2Cl4, 358 K):  δ = 0.10 (s, 6 H), 0.94 (s, 9 H), 1.48 (s, 9 H), 2.29–2.46 (m, 2 H), 

2.90–3.01 (m,  1 H),  3.42 (dd,  J = 8.2 Hz,  10.6 Hz,  1 H),  3.74 (dd,  J = 3.0 Hz,  9.8 Hz,  1 H), 

3.79–3.95 (m, 2 H), 3.96 (dd, J = 8.2 Hz, 10.6 Hz, 1 H); 13C NMR (75.5 MHz, C2D2Cl4, 358 K): 

δ = –5.6 (+),  17.9 (Cquat),  25.7 (+),  26.3 (+),  28.2 (+),  31.9 (–),  49.8 (–),  57.8 (+),  62.9 (–), 

80.0 (Cquat), 119.8 (Cquat), 153.2 (Cquat).
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(2S,4S)-N-Boc-O-TBDMS-4-Formylprolinol  (7):[28] A  1 M solution  of  DIBAH  in  hexane 

(36.3 mL, 36.3 mmol) was added dropwise at –30 °C over 10 min 

to  a  stirred  solution  of  the  (2S,4S)-N-Boc-O-TBDMS-4-

cyanoprolinol 6 (9.15 g, 26.9 mmol) in anhydrous CH2Cl2 (90 mL). 

The reaction  mixture  was stirred at  –30 to  –20 °C for  2 h,  then 

methanol (2.5 mL) was added dropwise at 0 °C within 3 min, and stirring was continued at the 

same temperature for 15 min. A saturated aqueous NH4Cl solution (8.5 mL) was added, and the 

mixture was allowed to warm to 20 °C. After 45 min,  the reaction mixture was diluted with 

diethyl  ether  (80 mL),  saturated  aqueous  potassium sodium tartrate  (14 mL)  was  added  and 

vigorous stirring was continued for an additional 1 h. The phases were separated, and the organic 

fraction was washed twice with a solution of citric acid (5.14 g, 26.72 mmol) in water (120 mL), 

with water (5 × 50 mL), brine (2 × 20 mL), dried over MgSO4, filtered and concentrated under 

reduced pressure.  The residue was taken up with hexane (30 mL),  filtered  through a  pad of 

Celite® and concentrated  under  reduced pressure to  give the target  aldehyde 7 (8.76 g,  95% 

crude) as a colorless oil, which was used for the next step without further purification. Rf = 0.37 

(EtOAc/hexane, 1:4); 1H NMR (250 MHz, CDCl3): δ = 0.03 (s, 6 H), 0.86 (s, 9 H), 1.43 (s, 9 H), 

1.78–2.20 (m, 1 H), 2.22–2.41 (m, 1 H), 2.78–3.12 (m, 1 H), 3.45–4.02 (m, 5 H), 9.63 (s, 1 H).

(2S,4R)-N-Boc-4-(Z)-Propenylprolinol  (9):[28] A  freshly  prepared  solution  of  tBuOK  (10.0 g, 

89.3 mmol)  in  THF  (100 mL)  was  added  to  a  suspension  of 

ethyltriphenylphosponium bromide (40.0 g, 107.6 mmol) in THF (50 mL) 

at  0 °C.  The cooling bath was removed,  and stirring continued for  an 

additional 2 h. The mixture was cooled to –78°C (dry ice/acetone bath), 

and  a  solution  of  (2S,4S)-N-Boc-O-TBDMS-4-formylprolinol  7 (8.8  g,  25.5  mmol)  in  THF 

(30 mL) was added dropwise within 2 h. Stirring was continued at the same temperature for an 

additional 24 h, and then the mixture was allowed to warm to 20 °C for 24 h. After 48 h, the 

reaction flask was  immersed into an ice/water  bath,  and aq. sat. Na2SO4 (50 mL) was added. 

Organic layer was separated, water layer was washed with THF (2 × 50 mL), combined organic 

phases were concentrated under reduced pressure, yellow oily residue was taken up with CH2Cl2/

diethyl  ether mixture (1:4, 200 mL),  precipitate was filtered out through the pad of silica gel 

(5 cm) and filter cake was washed with CH2Cl2/diethyl ether mixture (1:4, 100 mL), filtrate was 

concentrated under reduced pressure, the residue was dissolved in diethyl  ether (20 mL),  the 

solution was filtered, concentrated under reduced pressure, the residue was dissolved in diethyl 

ether  /hexane  mixture  (1:1,  20 mL),  the  solution  was  filtered,  concentrated  under  reduced 

pressure, the residue was dissolved in hexane (20 mL), the solution was filtered, concentrated 
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under reduced pressure, the residue was dissolved in pentane (20 mL), the solution was filtered, 

concentrated, and the residue was finally purified by column chromatography (silica gel, eluted 

with  EtOAc/  hexane  1:8,  Rf = 0.51)  to  give  pure  (2S,4R)-N-Boc-O-TBDMS-4-(Z)-

propenylprolinol  8 (5.3 g), which was dissolved in THF (10 mL) and deprotected by treating 

with the tetra-n-butylammonium fluoride trihydrate (6.25 g, 19.8 mmol) with stirring at ambient 

temperature. After 2 h, the mixture was diluted with diethyl ether (100 mL), washed with water 

(5 × 20 mL), brine (2 × 20 mL), dried over MgSO4, concentrated under reduced pressure, and the 

residue  was  purified  by  column  chromatography  (silica  gel,  eluted  with  EtOAc/hexane  2:5, 

Rf = 0.32)  to  give  target  unsaturated  alcohol  9 (1.70 g,  7.0 mmol,  28%  over  2  steps  from 

aldehyde) as a colorless oil which solidified into a colorless solid upon seeding. M.p. 41–43 °C; 

[α]D
20 –47.9 (c = 0.97,  CHCl3);  1H NMR (250 MHz,  CDCl3):  δ = 1.16–1.27 (m,  1 H),  1.46 (s, 

9 H), 1.65 (dd, J = 6.9 Hz, 0.8 Hz, 3 H), 2.06–2.19 (m, 1 H), 2.83–2.96 (m, 1 H), 2.85–3.10 (m, 

1 H),  3.52–3.77 (m,  3 H),  3.96(dd,  J = 14.9 Hz,  7.6 Hz,  1 H),  5.11–2.24 (m,  1 H),  5.30 (dd, 

J = 8.9 Hz,  1.8 Hz,  1 H),  5.52 (dq,  J = 9.8 Hz,  6.9 Hz,  1 H);  13C NMR  (62.9 MHz,  CDCl3): 

δ = 13.2 (+),  28.4 (+),  35.2 (+),  35.8 (–),  52.7 (–),  61.1 (+),  67.6 (–),  80.4 (Cquat),  126.3 (+), 

129.8 (+), 156.8 (Cquat).

(2S,4R)-N-Boc-4-(Z)-Propenylproline (10):[28] A 2.67 M solution of Jones reagent[126] (30.5 mL, 

81.4 mmol)  was  added to  a  solution  of  unsaturated  alcohol  9 (1.96 g, 

8.14 mmol)  in  freshly  distilled  acetone  (670 mL)  at  4 °C  (inner 

temperature)  within  1 h,  and  the  mixture  was  stirred  at  the  same 

temperature for an additional 4 h. Isopropyl  alcohol  (10 mL) was then 

added dropwise within 10 min, and the mixture was allowed to warm to 20 °C. Organic solution 

was decanted out of inorganic solid, latter was washed with diethyl ether (100 ml) and combined 

organics  was  concentrated  under  reduced  pressure  at  ambient  temperature  to  ca. 20 mL. 

Inorganic solid precipitate  was dissolved in water (100 mL) and extracted with diethyl  ether 

(2 × 50 mL).  Extracts  were  combined  with  the  organic  concentrate,  washed  with  water 

(2 × 50 mL), dried over MgSO4, filtered, concentrated under reduced pressure, giving the crude 

product (2.15 g) as colorless oil. This was dissolved in diethyl ether (100 mL) and extracted with 

saturated aqueous NaHCO3 solution (5 × 40 mL). The combined aqueous fractions were washed 

with diethyl ether (2 × 50 mL), the pH of the aqueous fractions was carefully adjusted to 2.5–3 

with solid KHSO4, the formed emulsion was extracted with diethyl ether (2 × 100 mL) and the 

organic  fraction  was  washed  with  aq. 1 M KHSO4 (3 × 50 mL),  water  (3 × 50 mL),  brine 

(2 × 20 mL), dried over MgSO4, filtered and concentrated under reduced pressure. The residue 

was finally purified by column chromatography (silica gel, eluted with EtOAc/hexane 1:3 + 2% 
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AcOH, Rf = 0.27) to give the target unsaturated amino acid 10 (1.44 g, 69%) as a colorless solid. 

M.p. 84–85 °C; [α]D
20 –84.4 (c = 0.86, CHCl3); 1H NMR (250 MHz, CDCl3): δ = 1.42, 1.48 (2 s, 

9 H), 1.66 (d,  J = 6.8 Hz, 3 H), 1.72–1.84, 1.93–2.12 (m, 1 H), 2.27–2.54 (m, 1 H), 2.87–3.24 

(m,  2 H),  3.64–3.86 (m,  1 H),  4.25 + 4.35 (2 × dd,  J = 8.3 Hz, 8.3 Hz, 1 H), 5.26 (ddq,  J = 

9.6 Hz, 8.5 Hz, 1.8 Hz, 1 H), 5.52 (dq, J = 8.5 Hz, 6.8 Hz, 1 H), 10.30–11.40 (bs, 1 H). 13C NMR 

(62.9 MHz, CDCl3):  δ = 13.1 (+), 28.1 + 28.3 (+), 35.7 + 36.1 (+), 36.2 + 37.3 (–), 51.4 + 51.9 

(–),  58.9 + 59.1  (+),  80.6  (Cquat),  126.6 + 126.9  (+),  129.0 + 129.2  (+),  153.6  +154.8  (Cquat), 

177.3 + 178.4 (Cquat).
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SUMMARY 

Hormaomycin  1 and its all-peptide aza-analogue  53 were synthesized in quantities of 39  and 

34 mg respectively, using the protocol developed by B. Zlatopolskiy, to have enough material for 

in vitro and in vivo biological tests.

(R)-allo-Threonine 67 was prepared on a multigram scale employing a modified Belokon' proto-

col providing kinetically controlled conditions for an aldol reaction between the glycine complex 

enolate and acetaldehyde.

A new synthesis of  β-methyl(haloaryl)alanines  48 – 52 was developed on the basis of the Be-

lokon'  protocol  using commercially  available  haloacetophenones  as  starting materials  for the 

preparation of 1-(haloaryl)ethyl iodides to alkylate the (S)-configured Belokon' glycine complex 

(S)-BGC 13. β-Methylphenylalanine (2S,3R)-48 was prepared on a multigram scale according to 

this protocol.

(2R)-  and  (2S)-3-(1'S,2'R)-(2'-Fluoromethylcyclopropyl)alanines  [mono- (R-96 a and  S-96 a), 

di- (R-96 b and S-96 b) and trifluoromethyl (R-96 c and S-96 c) derivatives] were prepared em-

ploying  the  protocol  developed  by  O. Larionov  for  the  preparation  of  3-(2-trans-nitrocyclo-

propyl)alanines.[25]

New Hormaomycin analogues 109 a-c, containing (2R)- and (2S)-3-(1'S,2'R)-(2'-fluoromethylcy-

clopropyl)alanine  moieties  instead  of  (2R)-  and  (2S)-3-(1'R,2'R)-(2'-nitrocyclopropyl)alanine 

were synthesized, and their in vitro antimalarial activities were tested. The activities turned out 

to be comparable to the one for native Hormaomycin and in the case of the MeZ-protected cyclic 

peptidolactone core with (2R)-3-(1'S,2'R)-(2'-trifluoromethylcyclopropyl)alanine 103 c twice bet-

ter than that of the reference drug Chloroquine against the malaria parasite  Plasmodium falci-

parum strain K1.
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β-Methylphenylalanines
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SPECTRAL DATA

1. NMR
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Hormaomycin 1

1H NMR (600 MHz, CDCl3)

13C NMR (150.8 MHz, CDCl3)
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Hormaomycin all-peptide aza-analogue 53

1H NMR (600 MHz, CDCl3)

13C NMR (150.8 MHz, CDCl3)
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(2R,1'S,2'R)-3-(2'-trifluoromethylcyclopropyl)alanine

1H NMR (600 MHz, CD3OD)

13C NMR (125.7 MHz, CD3OD)
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(2S,1'S,2'R)-3-(2'-difluoromethylcyclopropyl)alanine

1H NMR (600 MHz, D2O)

13C NMR (125.7 MHz, D2O)
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(Trifluoromethylcyclopropyl)alanyl Hormaomycin

1H NMR (600 MHz, CDCl3)

13C NMR (125.7 MHz, CDCl3)
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2. X-Ray

Belokon' (2S,1'S,2'R)–3–(2'–trifluoromethylcycloprpopyl)alanine complex
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Table 1. Crystal data and structure refinement for dk25.

Identification code dk25

Empirical formula C32H30F3N3NiO3

Formula weight 620.30

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Tetragonal

Space group P 43 21 2 

Unit cell dimensions a = 9.9745(2) Å α = 90°.

b = 9.9745(2) Å β = 90°.

c = 57.255(2) Å γ = 90°.

Volume 5696.4(2) Å3

Z 8

Density (calculated) 1.447 Mg/m3

Absorption coefficient 0.740 mm–1

F(000) 2576

Crystal size 0.52 × 0.14 × 0.10 mm3

Theta range for data collection 2.49 to 25.49°.

Index ranges –11<=h<=11, –12<=k<=11, –68<=l<=69

Reflections collected 35391

Independent reflections 5151 [R(int) = 0.0644]

Completeness to theta = 25.49° 98.3 % 

Absorption correction Semi–empirical from equivalents

Max. and min. transmission 0.9297 and 0.6996

Refinement method Full–matrix least–squares on F2

Data / restraints / parameters 5151 / 0 / 379

Goodness–of–fit on F2 1.144

Final R indices [I>2sigma(I)] R1 = 0.0480, wR2 = 0.0945

R indices (all data) R1 = 0.0571, wR2 = 0.0968

Absolute structure parameter 0.03(2)

Largest diff. peak and hole 0.466 and –0.706 e.Å–3
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Table 2. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 × 103) 

for dk25. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom x y z U(eq)
Ni(1) 650(1) 5721(1) 9554(1) 18(1)
O(1) 1058(3) 6987(3) 9783(1) 23(1)
O(2) 1591(3) 9151(3) 9834(1) 27(1)
O(3) –1249(3) 2638(3) 9289(1) 35(1)
N(1) 93(3) 4427(3) 9789(1) 22(1)
N(2) 250(3) 4424(3) 9332(1) 20(1)
N(3) 1218(3) 6989(3) 9339(1) 17(1)
C(1) –754(5) 4990(4) 9980(1) 35(1)
C(2) –2129(5) 5080(5) 9871(1) 40(1)
C(3) –2244(4) 3720(5) 9748(1) 32(1)
C(4) –794(4) 3408(4) 9670(1) 23(1)
C(5) –621(4) 3446(4) 9410(1) 25(1)
C(6) 872(4) 4348(4) 9114(1) 22(1)
C(7) 886(5) 3121(4) 8984(1) 29(1)
C(8) 1604(5) 3014(4) 8779(1) 34(1)
C(9) 2324(5) 4076(5) 8691(1) 35(1)

C(10) 2283(4) 5285(4) 8807(1) 26(1)
C(11) 1550(4) 5446(4) 9017(1) 20(1)
C(12) 1543(4) 6797(4) 9124(1) 18(1)
C(13) 1267(4) 8361(4) 9443(1) 21(1)
C(14) 1327(4) 8193(4) 9709(1) 22(1)
C(15) 22(4) 9203(4) 9377(1) 20(1)
C(16) –1261(4) 8621(4) 9468(1) 21(1)
C(17) –2486(4) 9515(4) 9476(1) 25(1)
C(18) –1814(4) 9061(4) 9700(1) 26(1)
C(19) –3768(4) 8888(5) 9408(1) 30(1)
C(20) 1351(4) 3822(4) 9893(1) 27(1)
C(21) 2408(4) 3540(4) 9709(1) 25(1)
C(22) 2419(4) 2358(4) 9583(1) 33(1)
C(23) 3324(5) 2169(5) 9403(1) 43(1)
C(24) 4265(6) 3142(6) 9352(1) 53(1)
C(25) 4304(5) 4315(6) 9483(1) 49(1)
C(26) 3367(4) 4514(5) 9661(1) 34(1)
C(27) 1940(4) 7937(4) 8962(1) 19(1)
C(28) 1088(4) 8283(4) 8779(1) 25(1)
C(29) 1483(5) 9227(5) 8616(1) 31(1)
C(30) 2731(5) 9841(4) 8638(1) 33(1)
C(31) 3571(4) 9531(4) 8822(1) 31(1)
C(32) 3168(4) 8568(4) 8986(1) 24(1)

F(1) –4847(3) 9639(3) 9465(1) 47(1)
F(2) –3841(3) 8699(3) 9176(1) 47(1)
F(3) –3995(3) 7678(3) 9506(1) 46(1)
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Table 3. Selected bond lengths [Å] and angles [°] for dk25.

Ni(1)–N(3) 1.855(3) C(4)–C(5) 1.496(5) C(19)–F(2) 1.345(4)
Ni(1)–N(2) 1.860(3) C(6)–C(11) 1.403(5) C(19)–F(3) 1.348(5)
Ni(1)–O(1) 1.864(3) C(6)–C(7) 1.431(5) C(19)–F(1) 1.351(5)
Ni(1)–N(1) 1.942(3) C(7)–C(8) 1.379(6) C(20)–C(21) 1.517(6)
O(1)–C(14) 1.303(5) C(8)–C(9) 1.377(7) C(21)–C(22) 1.382(6)
O(2)–C(14) 1.220(5) C(9)–C(10) 1.378(6) C(21)–C(26) 1.391(6)
O(3)–C(5) 1.237(5) C(10)–C(11) 1.415(5) C(22)–C(23) 1.381(6)
N(1)–C(1) 1.495(5) C(11)–C(12) 1.480(5) C(23)–C(24) 1.382(8)
N(1)–C(4) 1.510(5) C(12)–C(27) 1.517(5) C(24)–C(25) 1.389(8)

N(1)–C(20) 1.515(5) C(13)–C(14) 1.532(5) C(25)–C(26) 1.398(7)
N(2)–C(5) 1.382(5) C(13)–C(15) 1.547(5) C(27)–C(32) 1.384(6)
N(2)–C(6) 1.396(4) C(15)–C(16) 1.499(5) C(27)–C(28) 1.392(5)

N(3)–C(12) 1.290(4) C(16)–C(18) 1.506(5) C(28)–C(29) 1.384(6)
N(3)–C(13) 1.494(5) C(16)–C(17) 1.513(5) C(29)–C(30) 1.393(6)

C(1)–C(2) 1.509(7) C(17)–C(19) 1.477(6) C(30)–C(31) 1.381(6)
C(2)–C(3) 1.534(6) C(17)–C(18) 1.516(5) C(31)–C(32) 1.402(6)
C(3)–C(4) 1.545(6)

N(3)–Ni(1)–N(2) 94.78(13) N(3)–C(12)–C(27) 122.4(3)
N(3)–Ni(1)–O(1) 86.47(12) C(11)–C(12)–C(27) 115.4(3)
N(2)–Ni(1)–O(1) 178.60(12) N(3)–C(13)–C(14) 107.4(3)
N(3)–Ni(1)–N(1) 177.93(14) N(3)–C(13)–C(15) 111.8(3)
N(2)–Ni(1)–N(1) 87.14(13) C(14)–C(13)–C(15) 109.7(3)
O(1)–Ni(1)–N(1) 91.60(12) O(2)–C(14)–O(1) 125.3(4)

C(14)–O(1)–Ni(1) 116.2(2) O(2)–C(14)–C(13) 120.2(4)
C(1)–N(1)–C(4) 104.6(3) O(1)–C(14)–C(13) 114.6(3)

C(1)–N(1)–C(20) 109.2(3) C(16)–C(15)–C(13) 112.9(3)
C(4)–N(1)–C(20) 113.3(3) C(15)–C(16)–C(18) 120.5(3)
C(1)–N(1)–Ni(1) 114.8(2) C(15)–C(16)–C(17) 118.2(3)
C(4)–N(1)–Ni(1) 107.7(2) C(18)–C(16)–C(17) 60.3(3)

C(20)–N(1)–Ni(1) 107.5(2) C(19)–C(17)–C(16) 116.2(4)
C(5)–N(2)–C(6) 122.2(3) C(19)–C(17)–C(18) 118.7(4)

C(5)–N(2)–Ni(1) 113.7(2) C(16)–C(17)–C(18) 59.6(3)
C(6)–N(2)–Ni(1) 123.8(3) C(16)–C(18)–C(17) 60.1(2)

C(12)–N(3)–C(13) 120.7(3) F(2)–C(19)–F(3) 106.0(4)
C(12)–N(3)–Ni(1) 127.7(3) F(2)–C(19)–F(1) 105.8(3)
C(13)–N(3)–Ni(1) 111.6(2) F(3)–C(19)–F(1) 105.2(3)

N(1)–C(1)–C(2) 103.5(3) F(2)–C(19)–C(17) 111.5(3)
C(1)–C(2)–C(3) 101.9(4) F(3)–C(19)–C(17) 114.5(3)
C(2)–C(3)–C(4) 104.0(3) F(1)–C(19)–C(17) 113.0(4)
C(5)–C(4)–N(1) 111.2(3) N(1)–C(20)–C(21) 112.1(3)
C(5)–C(4)–C(3) 112.9(3) C(22)–C(21)–C(26) 119.2(4)
N(1)–C(4)–C(3) 106.4(3) C(22)–C(21)–C(20) 121.8(4)
O(3)–C(5)–N(2) 126.5(3) C(26)–C(21)–C(20) 119.0(4)
O(3)–C(5)–C(4) 119.0(4) C(23)–C(22)–C(21) 120.7(5)
N(2)–C(5)–C(4) 114.5(3) C(22)–C(23)–C(24) 120.4(5)

N(2)–C(6)–C(11) 121.7(3) C(23)–C(24)–C(25) 119.7(5)
N(2)–C(6)–C(7) 121.0(4) C(24)–C(25)–C(26) 119.7(5)
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C(11)–C(6)–C(7) 117.3(3) C(21)–C(26)–C(25) 120.2(5)
C(8)–C(7)–C(6) 120.8(4) C(32)–C(27)–C(28) 120.1(4)
C(9)–C(8)–C(7) 121.7(4) C(32)–C(27)–C(12) 120.8(3)

C(8)–C(9)–C(10) 118.7(4) C(28)–C(27)–C(12) 119.0(3)
C(9)–C(10)–C(11) 121.6(4) C(29)–C(28)–C(27) 120.2(4)
C(6)–C(11)–C(10) 119.8(4) C(28)–C(29)–C(30) 119.5(4)
C(6)–C(11)–C(12) 123.0(3) C(31)–C(30)–C(29) 120.9(4)

C(10)–C(11)–C(12) 117.2(3) C(30)–C(31)–C(32) 119.4(4)
N(3)–C(12)–C(11) 122.1(3) C(27)–C(32)–C(31) 119.9(4)

Table 4. Anisotropic displacement parameters (Å2 × 103) for dk25. The anisotropic displacement 
factor exponent takes the form: –2π2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]
Atom U11 U22 U33 U23 U13 U12

Ni(1) 23(1) 16(1) 17(1) 0(1) –2(1) 0(1)
O(1) 32(2) 17(1) 21(1) 1(1) –2(1) –5(1)
O(2) 31(2) 21(2) 30(2) –4(1) –3(1) –6(1)
O(3) 51(2) 26(2) 27(2) –1(1) –8(1) –15(2)
N(1) 29(2) 19(2) 17(2) 3(1) 0(1) 1(2)
N(2) 24(2) 15(2) 21(2) 4(1) –3(1) –1(2)
N(3) 17(2) 16(2) 17(2) 0(1) –3(1) 2(1)
C(1) 50(3) 23(2) 31(2) 0(2) 14(2) –3(2)
C(2) 40(3) 31(3) 48(3) 3(2) 20(2) 11(2)
C(3) 28(3) 37(3) 30(2) 6(2) –2(2) –4(2)
C(4) 26(2) 17(2) 25(2) 5(2) –1(2) –8(2)
C(5) 29(2) 20(2) 26(2) 3(2) –6(2) 4(2)
C(6) 25(2) 16(2) 24(2) –3(2) –8(2) 6(2)
C(7) 49(3) 15(2) 24(2) 2(2) –6(2) 3(2)
C(8) 51(3) 21(2) 30(2) –5(2) 1(2) 10(2)
C(9) 47(3) 33(3) 24(2) –5(2) 6(2) 14(2)

C(10) 35(3) 29(3) 15(2) –2(2) 1(2) 2(2)
C(11) 23(2) 15(2) 22(2) 1(2) –4(2) 6(2)
C(12) 11(2) 22(2) 21(2) 2(2) –5(2) 0(2)
C(13) 22(2) 16(2) 24(2) –1(2) 4(2) –1(2)
C(14) 17(2) 24(2) 26(2) –2(2) 0(2) –3(2)
C(15) 27(2) 17(2) 16(2) –2(2) 1(2) 1(2)
C(16) 23(2) 16(2) 24(2) –2(2) –3(2) 4(2)
C(17) 23(2) 22(2) 30(2) 0(2) 2(2) 5(2)
C(18) 23(2) 33(3) 22(2) –2(2) –2(2) 2(2)
C(19) 27(2) 40(3) 24(2) 2(2) 2(2) 6(2)
C(20) 33(3) 24(2) 23(2) 5(2) –10(2) –3(2)
C(21) 22(2) 28(2) 24(2) 7(2) –10(2) 6(2)
C(22) 28(3) 27(3) 43(2) 9(2) –10(2) 7(2)
C(23) 39(3) 41(3) 50(3) –6(2) –9(2) 20(3)
C(24) 46(3) 59(4) 54(3) 8(3) 10(3) 23(3)
C(25) 29(3) 45(3) 74(4) 14(3) 8(3) 2(3)
C(26) 31(3) 26(3) 44(3) 6(2) –11(2) 5(2)
C(27) 21(2) 16(2) 18(2) –5(2) 2(2) 0(2)
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Atom U11 U22 U33 U23 U13 U12

C(28) 28(2) 24(2) 23(2) 4(2) –1(2) 2(2)
C(29) 46(3) 28(2) 20(2) 0(2) –1(2) 4(2)
C(30) 45(3) 21(2) 31(2) 2(2) 17(2) 1(2)
C(31) 30(2) 24(2) 40(2) –1(2) 10(2) –2(2)
C(32) 21(2) 24(2) 28(2) –3(2) 5(2) 2(2)

F(1) 27(1) 67(2) 46(2) 0(1) 0(1) 19(1)
F(2) 30(2) 80(2) 31(1) –11(1) –6(1) –4(1)
F(3) 31(2) 48(2) 59(2) 10(1) –3(1) –10(1)

Table  5.  Hydrogen  coordinates  ( × 104)  and  isotropic  displacement  parameters  (Å2 × 103)  for 

dk25.

Atom x y z U(eq)
H(1A) –430 5886 10029 42
H(1B) –760 4389 10118 42
H(2A) –2184 5831 9759 48
H(2B) –2834 5189 9992 48
H(3A) –2852 3778 9611 38
H(3B) –2582 3023 9856 38
H(4A) –546 2494 9727 27
H(7A) 394 2371 9040 35
H(8A) 1603 2186 8697 41
H(9A) 2838 3978 8552 41

H(10A) 2759 6029 8745 32
H(13A) 2095 8831 9389 25
H(15A) 131 10122 9439 24
H(15B) –31 9268 9204 24
H(16A) –1433 7664 9425 25
H(17A) –2354 10473 9430 30
H(18A) –1297 9735 9790 31
H(18B) –2283 8384 9796 31
H(20A) 1118 2976 9974 32
H(20B) 1723 4447 10011 32
H(22A) 1797 1669 9620 39
H(23A) 3300 1364 9315 52
H(24A) 4884 3009 9228 63
H(25A) 4962 4978 9451 59
H(26A) 3386 5319 9750 41
H(28A) 233 7871 8767 30
H(29A) 908 9453 8490 37
H(30A) 3007 10482 8525 39
H(31A) 4413 9966 8837 38
H(32A) 3738 8349 9113 29
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Belokon' (2S,1'R,2'S)–3–(2'–difluoromethylcycloprpopyl)alanine complex

Table 1. Crystal data and structure refinement for DK33.

Identification code dk33

Empirical formula C32H31F2N3NiO3 × CH3OH × H2O

Formula weight 651.36

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21 
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Unit cell dimensions a = 9.2565(6) Å α = 90°.

b = 11.8858(6) Å β = 90.67(3)°.

c = 14.020(1) Å γ = 90°.

Volume 1542.4(5) Å3

Z 2

Density (calculated) 1.403 Mg/m3

Absorption coefficient 0.687 mm–1

F(000) 682

Crystal size 0.33 × 0.22 × 0.08 mm3

Theta range for data collection 1.45 to 29.50°.

Index ranges –12<=h<=12, –16<=k<=16, –19<=l<=19

Reflections collected 16960

Independent reflections 8238 [R(int) = 0.0657]

Completeness to theta = 29.50° 99.6 % 

Absorption correction Numerical

Max. and min. transmission 0.9101 and 0.7030

Refinement method Full–matrix least–squares on F2

Data / restraints / parameters 8238 / 1 / 532

Goodness–of–fit on F2 1.009

Final R indices [I>2sigma(I)] R1 = 0.0487, wR2 = 0.1122

R indices (all data) R1 = 0.0542, wR2 = 0.1203

Absolute structure parameter 0.008(11)

Largest diff. peak and hole 0.733 and –0.498 e.Å–3

Table 2. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 × 103) 

for DK33. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom x y z U(eq)
Ni(1) 6637(1) 6446(1) 6486(1) 22(1)
O(1) 6124(3) 4947(2) 6282(2) 30(1)
O(2) 6366(3) 3228(2) 6888(2) 33(1)
O(3) 6212(3) 9717(2) 6378(2) 37(1)
F(1) 3635(2) 3038(2) 10665(2) 52(1)
F(2) 5499(3) 2441(2) 11481(1) 45(1)
N(1) 5336(3) 6946(2) 5473(2) 23(1)
N(2) 7204(3) 7937(2) 6611(2) 23(1)
N(3) 7775(3) 5924(2) 7494(2) 22(1)
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Atom x y z U(eq)
C(1) 3886(3) 6393(3) 5495(2) 27(1)
C(2) 3156(4) 6952(3) 6339(2) 34(1)
C(3) 3586(4) 8180(3) 6219(2) 37(1)
C(4) 5026(3) 8166(2) 5674(2) 26(1)
C(5) 6227(3) 8684(2) 6253(2) 26(1)
C(6) 8506(3) 8276(2) 7030(2) 24(1)
C(7) 9127(4) 9322(2) 6794(2) 29(1)
C(8) 10420(4) 9675(2) 7193(2) 30(1)
C(9) 11153(3) 9014(3) 7854(2) 27(1)

C(10) 10608(4) 7967(3) 8075(2) 26(1)
C(11) 9284(3) 7582(2) 7674(2) 22(1)
C(12) 8817(3) 6436(3) 7944(2) 22(1)
C(13) 7327(3) 4784(2) 7793(2) 25(1)
C(14) 6564(4) 4254(2) 6932(2) 27(1)
C(15) 6288(3) 4840(2) 8651(2) 25(1)
C(16) 6127(3) 3697(2) 9111(2) 25(1)
C(17) 5959(3) 3622(2) 10178(2) 27(1)
C(18) 7360(4) 3275(3) 9732(2) 29(1)
C(19) 5052(4) 2705(3) 10571(2) 33(1)
C(20) 5991(3) 6763(2) 4511(2) 24(1)
C(21) 7481(3) 7251(3) 4425(2) 29(1)
C(22) 8695(4) 6612(4) 4676(2) 41(1)
C(23) 10067(4) 7065(5) 4615(3) 61(1)
C(24) 10253(6) 8161(7) 4305(3) 81(2)
C(25) 9038(6) 8823(4) 4048(3) 63(1)
C(26) 7681(5) 8347(3) 4101(2) 39(1)
C(27) 9624(3) 5890(2) 8759(2) 24(1)
C(28) 10658(4) 5072(3) 8583(2) 30(1)
C(29) 11461(4) 4622(3) 9341(3) 37(1)
C(30) 11249(4) 4989(3) 10260(2) 36(1)
C(31) 10219(4) 5811(3) 10439(2) 31(1)
C(32) 9412(3) 6263(2) 9690(2) 27(1)

O(1W) 6817(4) 1184(2) 7878(2) 55(1)
O(1S) 4185(5) 1132(2) 8736(2) 62(1)
C(1S) 3302(6) 1648(4) 8054(3) 62(1)

Table 3. Selected bond lengths [Å] and angles [°] for DK33.

Ni(1)–N(2) 1.856(2) C(2)–C(3) 1.523(5) C(17)–C(19) 1.486(4)
Ni(1)–N(3) 1.859(2) C(3)–C(4) 1.545(5) C(17)–C(18) 1.504(5)
Ni(1)–O(1) 1.865(2) C(4)–C(5) 1.501(4) C(20)–C(21) 1.503(4)
Ni(1)–N(1) 1.944(2) C(6)–C(7) 1.410(4) C(21)–C(26) 1.392(5)
O(1)–C(14) 1.290(4) C(6)–C(11) 1.414(4) C(21)–C(22) 1.398(5)
O(2)–C(14) 1.235(4) C(7)–C(8) 1.381(4) C(22)–C(23) 1.383(6)
O(3)–C(5) 1.240(4) C(8)–C(9) 1.386(4) C(23)–C(24) 1.385(9)

F(1)–C(19) 1.378(4) C(9)–C(10) 1.379(4) C(24)–C(25) 1.415(9)
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F(2)–C(19) 1.372(3) C(10)–C(11) 1.418(4) C(25)–C(26) 1.380(6)
N(1)–C(1) 1.495(4) C(11)–C(12) 1.480(4) C(27)–C(28) 1.389(4)

N(1)–C(20) 1.501(4) C(12)–C(27) 1.504(4) C(27)–C(32) 1.395(4)
N(1)–C(4) 1.506(4) C(13)–C(14) 1.527(4) C(28)–C(29) 1.396(4)
N(2)–C(5) 1.359(4) C(13)–C(15) 1.551(4) C(29)–C(30) 1.376(5)
N(2)–C(6) 1.395(4) C(15)–C(16) 1.512(4) C(30)–C(31) 1.390(5)

N(3)–C(12) 1.299(3) C(16)–C(17) 1.509(4) C(31)–C(32) 1.390(4)
N(3)–C(13) 1.478(3) C(16)–C(18) 1.513(4) O(1S)–C(1S) 1.393(5)

C(1)–C(2) 1.523(4)

N(2)–Ni(1)–N(3) 95.16(10) N(3)–C(12)–C(11) 121.6(2)
N(2)–Ni(1)–O(1) 176.25(10) N(3)–C(12)–C(27) 121.8(3)
N(3)–Ni(1)–O(1) 86.47(9) C(11)–C(12)–C(27) 116.6(2)
N(2)–Ni(1)–N(1) 87.09(10) N(3)–C(13)–C(14) 106.4(2)
N(3)–Ni(1)–N(1) 176.16(11) N(3)–C(13)–C(15) 111.1(2)
O(1)–Ni(1)–N(1) 91.47(9) C(14)–C(13)–C(15) 110.2(2)

C(14)–O(1)–Ni(1) 115.05(19) O(2)–C(14)–O(1) 123.3(3)
C(1)–N(1)–C(20) 109.0(2) O(2)–C(14)–C(13) 120.9(3)
C(1)–N(1)–C(4) 104.3(2) O(1)–C(14)–C(13) 115.7(2)

C(20)–N(1)–C(4) 112.8(2) C(16)–C(15)–C(13) 110.9(2)
C(1)–N(1)–Ni(1) 113.54(18) C(17)–C(16)–C(18) 59.7(2)

C(20)–N(1)–Ni(1) 111.02(18) C(17)–C(16)–C(15) 119.2(2)
C(4)–N(1)–Ni(1) 105.99(17) C(18)–C(16)–C(15) 117.8(3)
C(5)–N(2)–C(6) 122.3(2) C(19)–C(17)–C(18) 116.5(3)

C(5)–N(2)–Ni(1) 113.8(2) C(19)–C(17)–C(16) 118.4(3)
C(6)–N(2)–Ni(1) 123.94(19) C(18)–C(17)–C(16) 60.3(2)

C(12)–N(3)–C(13) 120.0(2) C(17)–C(18)–C(16) 60.03(19)
C(12)–N(3)–Ni(1) 128.6(2) F(2)–C(19)–F(1) 104.7(3)
C(13)–N(3)–Ni(1) 111.29(18) F(2)–C(19)–C(17) 110.3(3)

N(1)–C(1)–C(2) 103.3(2) F(1)–C(19)–C(17) 111.6(3)
C(1)–C(2)–C(3) 102.3(3) N(1)–C(20)–C(21) 113.4(2)
C(2)–C(3)–C(4) 105.8(3) C(26)–C(21)–C(22) 118.8(3)
C(5)–C(4)–N(1) 110.8(2) C(26)–C(21)–C(20) 120.9(3)
C(5)–C(4)–C(3) 111.4(2) C(22)–C(21)–C(20) 120.4(3)
N(1)–C(4)–C(3) 105.7(2) C(23)–C(22)–C(21) 120.5(4)
O(3)–C(5)–N(2) 127.1(3) C(22)–C(23)–C(24) 120.3(5)
O(3)–C(5)–C(4) 118.2(3) C(23)–C(24)–C(25) 120.0(4)
N(2)–C(5)–C(4) 114.6(2) C(26)–C(25)–C(24) 118.7(5)
N(2)–C(6)–C(7) 120.6(2) C(25)–C(26)–C(21) 121.7(4)

N(2)–C(6)–C(11) 122.1(2) C(28)–C(27)–C(32) 119.6(3)
C(7)–C(6)–C(11) 117.3(3) C(28)–C(27)–C(12) 120.3(3)
C(8)–C(7)–C(6) 121.8(3) C(32)–C(27)–C(12) 119.9(3)
C(7)–C(8)–C(9) 120.9(3) C(27)–C(28)–C(29) 119.7(3)

C(10)–C(9)–C(8) 119.0(3) C(30)–C(29)–C(28) 120.7(3)
C(9)–C(10)–C(11) 121.2(3) C(29)–C(30)–C(31) 119.8(3)
C(6)–C(11)–C(10) 119.8(3) C(30)–C(31)–C(32) 120.0(3)
C(6)–C(11)–C(12) 123.5(2) C(31)–C(32)–C(27) 120.2(3)

C(10)–C(11)–C(12) 116.7(2)
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Table 4. Hydrogen bonds for DK33 [Å and °].

D–H...A d(D–H) d(H...A) d(D...A) <(DHA)
 O(1S)–H(1OS)...O(1W) 1.04(4) 1.79(4) 2.731(6) 148(3)
 O(1W)–H(1OW)...O(2) 0.95(7) 1.88(7) 2.827(3) 171(7)

 O(1W)–H(2OW)...O(3)#1 0.91(8) 1.88(8) 2.784(4) 169(7)

Symmetry transformations used to generate equivalent atoms: 

#1 x,y–1,z 

Table  5.  Anisotropic  displacement  parameters  (Å2 × 103)  for  DK33.  The  anisotropic 
displacement factor exponent takes the form: –2π2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]

_____________________________________________________________________________

Atom U11 U22 U33 U23 U13 U12

Ni(1) 23(1) 20(1) 22(1) 1(1) –6(1) –2(1)
O(1) 37(1) 24(1) 27(1) 0(1) –11(1) –2(1)
O(2) 43(1) 22(1) 32(1) –2(1) –8(1) –4(1)
O(3) 45(1) 24(1) 41(1) –2(1) –14(1) 8(1)
F(1) 28(1) 59(1) 71(2) 23(1) 4(1) –2(1)
F(2) 52(1) 51(1) 32(1) 15(1) –9(1) –10(1)
N(1) 22(1) 23(1) 23(1) –2(1) –5(1) 3(1)
N(2) 26(1) 22(1) 22(1) 1(1) –6(1) –2(1)
N(3) 24(1) 18(1) 24(1) 1(1) –3(1) 0(1)
C(1) 20(1) 35(1) 27(1) –2(1) –4(1) –5(2)
C(2) 29(2) 45(2) 29(1) –3(1) 0(1) –5(2)
C(3) 32(2) 39(2) 41(2) –8(1) 2(1) 2(2)
C(4) 26(2) 27(1) 24(1) –1(1) –4(1) 1(1)
C(5) 30(2) 23(1) 24(1) 2(1) –7(1) –1(1)
C(6) 24(1) 23(1) 24(1) –1(1) –2(1) 4(1)
C(7) 34(2) 25(1) 26(1) 7(1) –6(1) –5(1)
C(8) 32(2) 28(1) 30(1) 0(1) 0(1) –13(1)
C(9) 24(1) 34(1) 24(1) –4(1) 0(1) –8(1)

C(10) 25(2) 27(1) 25(1) –1(1) –4(1) –5(1)
C(11) 23(1) 23(1) 19(1) 0(1) –2(1) –4(1)
C(12) 22(1) 22(1) 23(1) –4(1) –3(1) 3(1)
C(13) 27(2) 20(1) 27(1) 3(1) –7(1) –2(1)
C(14) 28(2) 24(1) 30(1) 0(1) –5(1) –3(1)
C(15) 26(2) 23(1) 26(1) 2(1) –3(1) 2(1)
C(16) 26(2) 23(1) 26(1) 2(1) –5(1) –3(1)
C(17) 28(2) 25(1) 27(1) 3(1) –5(1) 1(1)
C(18) 27(2) 30(1) 31(1) 7(1) –4(1) 4(1)
C(19) 32(2) 33(2) 33(2) 7(1) –7(1) –4(1)
C(20) 23(1) 28(1) 21(1) –2(1) –5(1) 0(1)
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Atom U11 U22 U33 U23 U13 U12

C(21) 27(2) 39(2) 21(1) –6(1) 0(1) –1(1)
C(22) 29(2) 59(3) 33(2) –12(2) –2(1) 9(2)
C(23) 25(2) 115(4) 44(2) –28(2) –1(2) 1(2)
C(24) 41(3) 157(6) 44(2) –32(3) 16(2) –48(4)
C(25) 71(3) 83(3) 35(2) –12(2) 13(2) –46(3)
C(26) 45(2) 44(2) 28(2) –4(1) 3(1) –11(2)
C(27) 22(1) 25(1) 26(1) 3(1) –5(1) –2(1)
C(28) 27(2) 32(2) 33(2) –2(1) –3(1) 6(1)
C(29) 32(2) 35(2) 43(2) 3(1) –11(1) 9(1)
C(30) 34(2) 36(2) 39(2) 7(1) –16(1) –2(1)
C(31) 35(2) 35(2) 22(1) 4(1) –8(1) –4(1)
C(32) 24(1) 31(2) 26(1) 0(1) –6(1) –3(1)

O(1W) 89(2) 32(1) 43(1) –2(1) –20(2) 6(1)
O(1S) 102(3) 50(2) 36(1) 8(1) –7(2) –22(2)
C(1S) 73(3) 68(3) 45(2) 9(2) –12(2) –40(3)

Table 6. Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2 × 10  3) for 

DK33.

Atom x y z U(eq)
H(1S) 2334 1757 8315 75
H(2S) 3238 1171 7485 75
H(3S) 3712 2380 7882 75

H(101) 3390(40) 6510(30) 4920(20) 23(7)
H(102) 4100(50) 5470(30) 5500(30) 39(11)
H(201) 3540(40) 6630(30) 6940(20) 30(9)
H(202) 2050(50) 6820(30) 6260(30) 43(11)
H(301) 2800(50) 8590(30) 5870(30) 35(10)
H(302) 3730(40) 8560(30) 6840(20) 17(7)

H(4) 4940(40) 8560(20) 5060(20) 17(7)
H(7) 8770(40) 9700(30) 6390(20) 18(8)
H(8) 10870(40) 10430(30) 6960(20) 23(8)
H(9) 12170(50) 9280(30) 8140(30) 36(10)

H(10) 11130(30) 7540(20) 8496(19) 4(6)
H(13) 8100(40) 4270(30) 7980(20) 18(7)

H(151) 5360(40) 5130(30) 8470(20) 25(9)
H(152) 6730(30) 5390(30) 9090(20) 14(7)
H(16) 5480(40) 3200(30) 8770(20) 23(8)
H(17) 5950(40) 4260(30) 10520(20) 25(8)

H(181) 8190(50) 3740(30) 9790(30) 37(10)
H(182) 7630(40) 2350(30) 9760(30) 31(9)
H(19) 4910(50) 2070(30) 10190(30) 34(10)

H(20A) 5270(40) 7110(30) 4050(20) 26(8)
H(20B) 6080(50) 5990(30) 4360(30) 41(11)

H(22) 8530(50) 5900(40) 4850(30) 43(12)
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Atom x y z U(eq)
H(23) 10960(50) 6320(40) 4850(30) 60(13)
H(24) 11300(60) 8520(50) 4280(40) 77(16)
H(25) 9180(7) 9650(5) 3830(4) 80(17)
H(26) 6880(40) 8820(30) 3900(20) 23(9)
H(28) 10740(40) 4840(30) 7910(30) 30(10)
H(29) 12180(40) 4070(30) 9200(30) 31(9)
H(30) 11920(50) 4710(30) 10790(30) 39(11)
H(31) 10010(40) 5960(20) 11070(20) 16(7)
H(32) 8610(40) 6830(30) 9810(30) 31(9)

H(1OW) 6740(90) 1840(60) 7500(50) 108(16)
H(2OW) 6620(80) 780(60) 7340(50) 108(16)
H(1OS) 5040(40) 890(30) 8310(30) 28(9)
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(R)-Belokon' (R)-allo-Threonine complex [(R)-BTC, 133]
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Table 1. Crystal data and structure refinement for dk14.

Identification code dk14

Empirical formula C29H29N3NiO4 × 3CHCl3

Formula weight 900.37

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group P212121

Unit cell dimensions a = 10.3057(3) Å α = 90°.

b = 16.3778(5) Å β = 90°.

c = 22.3882(7) Å γ = 90°.

Volume 3778.8(2) Å3

Z 4

Density (calculated) 1.583 Mg/m3

Absorption coefficient 1.191 mm–1

F(000) 1832

Crystal size 0.46 × 0.04 × 0.02 mm3

Theta range for data collection 1.54 to 27.50°.

Index ranges –13<=h<=13, –21<=k<=21, –29<=l<=29

Reflections collected 39822

Independent reflections 8679 [R(int) = 0.0734]

Completeness to theta = 27.50° 100.0 % 

Absorption correction Multi–scan

Max. and min. transmission 0.9766 and 0.6104

Refinement method Full–matrix least–squares on F2

Data / restraints / parameters 8679 / 0 / 442

Goodness–of–fit on F2 1.056

Final R indices [I>2sigma(I)] R1 = 0.0523, wR2 = 0.1207

R indices (all data) R1 = 0.0763, wR2 = 0.1319

Absolute structure parameter –0.01(2)

Largest diff. peak and hole 0.943 and –0.977 e.Å–3
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Table 2. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 × 103) 

for dk14. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom x y z U(eq)
Ni(1) 1621(1) 7738(1) 1538(1) 18(1)
O(1) 1901(3) 6843(2) 1026(1) 20(1)
O(2) 2393(3) 6539(2) 84(1) 21(1)
O(3) 384(4) 8930(3) 2948(2) 44(1)
O(4) –288(3) 7772(2) 382(1) 23(1)
N(1) 906(4) 7036(2) 2154(2) 24(1)
N(2) 1504(4) 8592(2) 2075(2) 23(1)
N(3) 2163(3) 8384(2) 907(2) 19(1)
C(1) –103(5) 6470(4) 1913(2) 36(1)
C(2) –1229(5) 7041(4) 1784(2) 39(1)
C(3) –1254(5) 7569(4) 2344(2) 38(1)
C(4) 175(5) 7590(3) 2559(2) 29(1)
C(5) 705(4) 8448(3) 2551(2) 27(1)
C(6) 2226(4) 9319(3) 2030(2) 23(1)
C(7) 2512(5) 9803(3) 2537(2) 31(1)
C(8) 3249(5) 10506(3) 2491(2) 32(1)
C(9) 3713(5) 10775(3) 1944(2) 34(1)

C(10) 3449(5) 10311(3) 1446(2) 28(1)
C(11) 2725(4) 9589(3) 1476(2) 23(1)
C(12) 2582(4) 9127(3) 913(2) 18(1)
C(13) 2014(4) 7946(2) 333(2) 16(1)
C(14) 2107(4) 7037(3) 475(2) 18(1)
C(15) 708(4) 8148(3) 40(2) 19(1)
C(16) 668(5) 7890(3) –609(2) 28(1)
C(17) 1948(4) 6563(3) 2472(2) 25(1)
C(18) 3116(4) 7075(3) 2621(2) 20(1)
C(19) 4111(4) 7139(3) 2199(2) 22(1)
C(20) 5197(4) 7616(3) 2317(2) 25(1)
C(21) 5293(5) 8037(3) 2853(2) 32(1)
C(22) 4322(5) 7973(3) 3268(2) 30(1)
C(23) 3227(4) 7486(3) 3154(2) 25(1)
C(24) 2990(4) 9539(3) 347(2) 20(1)
C(25) 4193(5) 9347(3) 99(2) 23(1)
C(26) 4582(5) 9712(3) –427(2) 30(1)
C(27) 3791(5) 10279(3) –705(2) 37(1)
C(28) 2598(5) 10470(3) –452(2) 36(1)
C(29) 2207(5) 10109(3) 72(2) 30(1)
C(1S) –2507(5) 9689(3) 1036(3) 37(1)
Cl(1) –3508(2) 9117(1) 1511(1) 53(1)
Cl(2) –878(2) 9638(1) 1264(1) 52(1)
Cl(3) –3050(1) 10702(1) 1021(1) 45(1)

C(2S) 3213(5) 4962(3) 1011(2) 32(1)
Cl(4) 1987(1) 4515(1) 1453(1) 31(1)
Cl(5) 4603(1) 5146(1) 1447(1) 43(1)
Cl(6) 3602(2) 4345(1) 401(1) 53(1)

C(3S) 856(7) 2611(4) 613(3) 56(2)
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Atom x y z U(eq)
Cl(7) 2278(3) 2266(2) 926(1) 97(1)
Cl(8) –368(3) 1910(2) 776(1) 126(1)
Cl(9) 948(4) 2770(2) –127(1) 158(2)

Table 3. Selected bond lengths [Å] and angles [°] for dk14.

Ni(1)–N(2) 1.848(4) C(4)–C(5) 1.508(7) C(21)–C(22) 1.370(7)
Ni(1)–N(3) 1.853(4) C(6)–C(7) 1.414(6) C(22)–C(23) 1.405(7)
Ni(1)–O(1) 1.883(3) C(6)–C(11) 1.415(7) C(24)–C(29) 1.378(6)
Ni(1)–N(1) 1.940(4) C(7)–C(8) 1.384(7) C(24)–C(25) 1.395(6)
O(1)–C(14) 1.291(5) C(8)–C(9) 1.386(8) C(25)–C(26) 1.380(6)
O(2)–C(14) 1.231(5) C(9)–C(10) 1.377(6) C(26)–C(27) 1.384(7)
O(3)–C(5) 1.235(6) C(10)–C(11) 1.399(6) C(27)–C(28) 1.390(8)

O(4)–C(15) 1.421(5) C(11)–C(12) 1.478(6) C(28)–C(29) 1.374(7)
N(1)–C(4) 1.487(6) C(12)–C(24) 1.496(6) C(1S)–Cl(3) 1.750(5)
N(1)–C(1) 1.495(6) C(13)–C(14) 1.526(6) C(1S)–Cl(1) 1.754(6)

N(1)–C(17) 1.503(6) C(13)–C(15) 1.533(6) C(1S)–Cl(2) 1.757(6)
N(2)–C(5) 1.367(6) C(15)–C(16) 1.513(6) C(2S)–Cl(6) 1.746(5)
N(2)–C(6) 1.407(6) C(17)–C(18) 1.506(6) C(2S)–Cl(5) 1.759(5)

N(3)–C(12) 1.290(6) C(18)–C(23) 1.375(6) C(2S)–Cl(4) 1.764(5)
N(3)–C(13) 1.480(5) C(18)–C(19) 1.397(6) C(3S)–Cl(9) 1.680(8)

C(1)–C(2) 1.519(8) C(19)–C(20) 1.391(6) C(3S)–Cl(7) 1.720(7)
C(2)–C(3) 1.522(8) C(20)–C(21) 1.388(7) C(3S)–Cl(8) 1.744(7)
C(3)–C(4) 1.550(7)

N(2)–Ni(1)–N(3) 94.71(16) N(3)–C(12)–C(11) 121.6(4)
N(2)–Ni(1)–O(1) 174.34(15) N(3)–C(12)–C(24) 120.8(4)
N(3)–Ni(1)–O(1) 86.21(14) C(11)–C(12)–C(24) 117.6(4)
N(2)–Ni(1)–N(1) 87.83(17) N(3)–C(13)–C(14) 106.6(3)
N(3)–Ni(1)–N(1) 174.48(16) N(3)–C(13)–C(15) 111.0(3)
O(1)–Ni(1)–N(1) 91.75(15) C(14)–C(13)–C(15) 110.8(3)

C(14)–O(1)–Ni(1) 114.6(3) O(2)–C(14)–O(1) 123.7(4)
C(15)–O(4)–H(4O) 109.5 O(2)–C(14)–C(13) 120.9(4)

C(4)–N(1)–C(1) 104.3(4) O(1)–C(14)–C(13) 115.4(4)
C(4)–N(1)–C(17) 112.9(3) O(4)–C(15)–C(16) 112.1(4)
C(1)–N(1)–C(17) 110.3(4) O(4)–C(15)–C(13) 108.0(3)
C(4)–N(1)–Ni(1) 105.3(3) C(16)–C(15)–C(13) 112.0(4)
C(1)–N(1)–Ni(1) 112.0(3) C(18)–C(17)–N(1) 112.9(4)

C(17)–N(1)–Ni(1) 111.7(3) C(23)–C(18)–C(19) 119.3(4)
C(5)–N(2)–C(6) 121.3(4) C(23)–C(18)–C(17) 122.1(4)

C(5)–N(2)–Ni(1) 114.5(3) C(19)–C(18)–C(17) 118.6(4)
C(6)–N(2)–Ni(1) 124.1(3) C(20)–C(19)–C(18) 120.3(4)

C(12)–N(3)–C(13) 120.0(4) C(21)–C(20)–C(19) 120.0(4)
C(12)–N(3)–Ni(1) 129.2(3) C(22)–C(21)–C(20) 119.8(5)
C(13)–N(3)–Ni(1) 110.7(3) C(21)–C(22)–C(23) 120.5(4)

N(1)–C(1)–C(2) 102.6(5) C(18)–C(23)–C(22) 120.1(4)
C(1)–C(2)–C(3) 101.9(4) C(29)–C(24)–C(25) 119.7(4)
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C(2)–C(3)–C(4) 104.7(4) C(29)–C(24)–C(12) 121.3(4)
N(1)–C(4)–C(5) 112.1(4) C(25)–C(24)–C(12) 119.0(4)
N(1)–C(4)–C(3) 106.1(4) C(26)–C(25)–C(24) 120.0(5)
C(5)–C(4)–C(3) 111.2(4) C(25)–C(26)–C(27) 120.3(5)
O(3)–C(5)–N(2) 127.8(5) C(26)–C(27)–C(28) 119.2(5)
O(3)–C(5)–C(4) 119.3(4) C(29)–C(28)–C(27) 120.8(5)
N(2)–C(5)–C(4) 112.9(4) C(28)–C(29)–C(24) 120.0(5)
N(2)–C(6)–C(7) 121.8(4) Cl(3)–C(1S)–Cl(1) 109.3(3)

N(2)–C(6)–C(11) 121.2(4) Cl(3)–C(1S)–Cl(2) 110.9(3)
C(7)–C(6)–C(11) 116.9(4) Cl(1)–C(1S)–Cl(2) 111.1(3)
C(8)–C(7)–C(6) 121.4(5) Cl(6)–C(2S)–Cl(5) 110.3(3)
C(7)–C(8)–C(9) 121.4(4) Cl(6)–C(2S)–Cl(4) 111.2(3)

C(10)–C(9)–C(8) 118.1(5) Cl(5)–C(2S)–Cl(4) 110.1(3)
C(9)–C(10)–C(11) 122.2(5) Cl(9)–C(3S)–Cl(7) 113.9(5)
C(10)–C(11)–C(6) 120.0(4) Cl(9)–C(3S)–Cl(8) 110.5(4)

C(10)–C(11)–C(12) 116.5(4) Cl(7)–C(3S)–Cl(8) 108.3(4)
C(6)–C(11)–C(12) 123.5(4)

Table 4. Anisotropic displacement parameters (Å2 × 103) for dk14. The anisotropic displacement 

factor exponent takes the form: –2π2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]

Atom U11 U22 U33 U23 U13 U12

Ni(1) 16(1) 25(1) 14(1) –1(1) 1(1) 0(1)
O(1) 19(2) 25(2) 16(1) 1(1) 1(1) –1(1)
O(2) 22(2) 19(2) 21(2) –3(1) 2(1) –1(1)
O(3) 28(2) 72(3) 32(2) –27(2) 9(2) 3(2)
O(4) 14(1) 33(2) 21(1) 4(1) –2(1) –1(1)
N(1) 17(2) 40(2) 15(2) 4(2) 0(2) –6(2)
N(2) 19(2) 32(2) 18(2) –1(2) –1(2) 4(2)
N(3) 14(2) 24(2) 20(2) –4(2) –1(2) 3(2)
C(1) 20(2) 60(4) 28(3) –2(2) –1(2) –16(2)
C(2) 18(2) 75(4) 25(2) 17(3) –7(2) –16(2)
C(3) 15(2) 57(4) 44(3) 14(3) 0(2) 0(2)
C(4) 22(2) 46(3) 18(2) 4(2) 3(2) –3(2)
C(5) 17(2) 43(3) 20(2) –8(2) –2(2) 5(2)
C(6) 16(2) 30(2) 23(2) –11(2) –6(2) 7(2)
C(7) 28(3) 37(3) 27(3) –11(2) –8(2) 11(2)
C(8) 39(3) 29(2) 29(2) –13(2) –15(2) 13(2)
C(9) 36(3) 26(2) 38(3) –12(2) –14(2) 4(2)

C(10) 27(2) 23(2) 32(2) –4(2) –5(2) 3(2)
C(11) 17(2) 25(2) 25(2) –8(2) –4(2) 4(2)
C(12) 12(2) 19(2) 24(2) –1(2) 0(2) 1(2)
C(13) 15(2) 19(2) 15(2) –1(2) 0(2) –3(2)
C(14) 14(2) 22(2) 17(2) 2(2) –1(2) –5(2)
C(15) 16(2) 22(2) 19(2) 5(2) –2(2) –2(2)
C(16) 25(2) 37(3) 22(2) –3(2) 1(2) 4(2)
C(17) 22(2) 30(2) 23(2) 1(2) 0(2) –2(2)
C(18) 16(2) 20(2) 25(2) 6(2) –2(2) 2(2)
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Atom U11 U22 U33 U23 U13 U12

C(19) 17(2) 30(2) 19(2) 4(2) 0(2) 1(2)
C(20) 18(2) 24(2) 32(2) 4(2) 1(2) 1(2)
C(21) 22(2) 30(3) 44(3) –2(2) –7(2) 0(2)
C(22) 31(3) 27(3) 32(3) –8(2) –6(2) 2(2)
C(23) 21(2) 31(2) 23(2) 3(2) 2(2) 1(2)
C(24) 21(2) 18(2) 19(2) –1(2) –4(2) –4(2)
C(25) 26(2) 21(2) 23(2) –2(2) 2(2) –1(2)
C(26) 26(3) 39(3) 25(2) –2(2) 4(2) –1(2)
C(27) 42(3) 42(3) 28(3) 8(2) 0(2) –14(2)
C(28) 31(3) 35(3) 41(3) 16(2) –13(2) –2(2)
C(29) 31(3) 25(2) 33(3) 5(2) –4(2) 1(2)
C(1S) 41(3) 30(3) 40(3) –7(2) –2(3) 4(2)
Cl(1) 52(1) 45(1) 64(1) 21(1) 2(1) –5(1)
Cl(2) 33(1) 62(1) 62(1) 4(1) 0(1) 12(1)
Cl(3) 41(1) 27(1) 67(1) 8(1) 7(1) 3(1)

C(2S) 29(3) 24(2) 43(3) 7(2) –8(2) 1(2)
Cl(4) 27(1) 31(1) 33(1) 6(1) 1(1) 1(1)
Cl(5) 29(1) 35(1) 65(1) –5(1) –10(1) –4(1)
Cl(6) 56(1) 66(1) 37(1) –10(1) 13(1) –11(1)

C(3S) 50(4) 39(3) 80(5) 8(3) –1(4) –8(3)
Cl(7) 103(2) 75(1) 112(2) –16(1) –50(2) 35(1)
Cl(8) 132(2) 161(3) 85(2) –77(2) 71(2) –107(2)
Cl(9) 175(3) 186(3) 114(2) 104(2) –52(2) –100(3)

Table  5.  Hydrogen  coordinates  ( × 104)  and  isotropic  displacement  parameters  (Å2 × 103)  for 

dk14.

Atom x y z U(eq)
H(4O) –1015 7901 241 27
H(1A) –347 6050 2211 43
H(1B) 201 6196 1544 43
H(2A) –2052 6736 1734 47
H(2B) –1067 7373 1422 47
H(3A) –1824 7325 2652 46
H(3B) –1568 8125 2251 46
H(4A) 220 7372 2976 34
H(7A) 2191 9641 2917 37
H(8A) 3440 10811 2841 39
H(9A) 4201 11266 1914 40

H(10A) 3769 10487 1069 33
H(13A) 2736 8103 58 19
H(15A) 580 8753 58 23
H(16A) –178 8032 –780 42
H(16B) 801 7299 –637 42
H(16C) 1355 8173 –830 42
H(17A) 1585 6333 2845 30



153

Atom x y z U(eq)
H(17B) 2222 6101 2216 30
H(19A) 4044 6855 1831 26
H(20A) 5873 7654 2030 30
H(21A) 6029 8369 2932 38
H(22A) 4390 8259 3636 36
H(23A) 2561 7441 3446 30
H(25A) 4745 8964 292 28
H(26A) 5396 9574 –598 36
H(27A) 4060 10535 –1065 45
H(28A) 2047 10854 –643 43
H(29A) 1396 10252 245 36
H(1SA) –2575 9459 623 44
H(2SA) 2886 5497 858 38
H(3SA) 627 3141 808 67

 Table 6. Hydrogen bonds for dk14 [Å and °].

D–H...A d(D–H) d(H...A) d(D...A) <(DHA)
O(4)–H(4O)...O(2)#1 0.84 2.02 2.842(4) 167.4

Symmetry transformations used to generate equivalent atoms: 

#1 x–1/2,–y+3/2,–z 
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Belokon' (2S,3S)–β–methylphenylalanine complex
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 Table 1. Crystal data and structure refinement for dk24.

Identification code dk24

Empirical formula C35H33N3NiO3 × CH3OH

Formula weight 634.40

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group P 21 21 21 

Unit cell dimensions a = 8.5832(5) Å α = 90°.

b = 15.6673(9) Å β = 90°.

c = 23.0536(14) Å γ = 90°.

Volume 3100.1(3) Å3

Z 4

Density (calculated) 1.359 Mg/m3

Absorption coefficient 0.670 mm–1

F(000) 1336

Crystal size 0.44 × 0.05 × 0.03 mm3

Theta range for data collection 1.57 to 27.50°.

Index ranges –11<=h<=11, –20<=k<=20, –29<=l<=29

Reflections collected 30404

Independent reflections 7118 [R(int) = 0.1278]

Completeness to theta = 27.50° 100.0 % 

Absorption correction None

Max. and min. transmission 0.9802 and 0.7569

Refinement method Full–matrix least–squares on F2

Data / restraints / parameters 7118 / 0 / 530

Goodness–of–fit on F2 0.880

Final R indices [I>2sigma(I)] R1 = 0.0412, wR2 = 0.0691

R indices (all data) R1 = 0.0805, wR2 = 0.0785

Absolute structure parameter –0.003(13)

Largest diff. peak and hole 0.432 and –0.449 e.Å–3 
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Table 2. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 × 103) 

for dk24. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom x y z U(eq)
Ni(1) 2054(1) 9205(1) 8575(1) 20(1)
O(1) 988(3) 8645(2) 7982(1) 26(1)
O(2) –724(3) 8848(2) 7268(1) 31(1)
O(3) 5523(3) 9569(2) 9650(1) 32(1)
N(1) 3170(3) 8165(2) 8772(1) 23(1)
N(2) 3123(3) 9736(2) 9178(1) 20(1)
N(3) 791(3) 10126(2) 8417(1) 20(1)
C(1) 3683(4) 7635(2) 8268(2) 28(1)
C(2) 4977(5) 8140(3) 8009(2) 34(1)
C(3) 5862(4) 8458(3) 8549(2) 40(1)
C(4) 4656(4) 8460(2) 9041(2) 27(1)
C(5) 4469(4) 9320(2) 9327(1) 25(1)
C(6) 2561(4) 10441(2) 9496(1) 22(1)
C(7) 3320(4) 10734(2) 10007(1) 28(1)
C(8) 2701(5) 11377(2) 10333(2) 31(1)
C(9) 1339(5) 11774(3) 10182(2) 34(1)

C(10) 600(4) 11522(2) 9682(2) 30(1)
C(11) 1206(4) 10870(2) 9321(1) 23(1)
C(12) 352(3) 10717(2) 8779(1) 21(1)
C(13) –2(4) 10052(2) 7849(1) 21(1)
C(14) 58(4) 9111(2) 7679(1) 25(1)
C(15) 811(4) 10641(2) 7391(1) 23(1)
C(16) –223(4) 10760(3) 6856(2) 34(1)
C(17) 2459(4) 10362(2) 7250(1) 22(1)
C(18) 2775(4) 9750(2) 6827(1) 25(1)
C(19) 4306(4) 9511(2) 6703(2) 27(1)
C(20) 5523(4) 9877(2) 6990(2) 28(1)
C(21) 5231(4) 10488(3) 7409(2) 32(1)
C(22) 3717(4) 10736(3) 7538(1) 26(1)
C(23) –1059(4) 11243(2) 8656(1) 21(1)
C(24) –2483(4) 10956(2) 8866(1) 25(1)
C(25) –3839(4) 11411(2) 8761(1) 27(1)
C(26) –3779(4) 12155(2) 8434(2) 27(1)
C(27) –2367(4) 12443(2) 8228(2) 27(1)
C(28) –1009(4) 11995(2) 8338(1) 23(1)
C(29) 2144(5) 7639(2) 9163(2) 29(1)
C(30) 1379(4) 8146(2) 9640(2) 24(1)
C(31) 2088(5) 8289(2) 10171(1) 28(1)
C(32) 1397(4) 8795(2) 10586(2) 30(1)
C(33) –35(4) 9173(3) 10477(2) 32(1)
C(34) –790(4) 9025(2) 9954(2) 30(1)
C(35) –74(4) 8512(2) 9538(2) 26(1)
O(1S) –2649(3) 7889(2) 6589(2) 87(1)
C(1S) –2335(6) 8264(5) 6031(3) 125(3)
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Table 3. Selected bond lengths [Å] and angles [°] for dk24.

Ni(1)–N(3) 1.841(3) C(4)–C(5) 1.508(5) C(20)–C(21) 1.383(5)
Ni(1)–N(2) 1.861(3) C(6)–C(11) 1.402(4) C(21)–C(22) 1.388(5)
Ni(1)–O(1) 1.865(2) C(6)–C(7) 1.423(4) C(23)–C(28) 1.389(4)
Ni(1)–N(1) 1.944(3) C(7)–C(8) 1.364(5) C(23)–C(24) 1.390(4)
O(1)–C(14) 1.287(4) C(8)–C(9) 1.370(5) C(24)–C(25) 1.386(4)
O(2)–C(14) 1.232(4) C(9)–C(10) 1.373(5) C(25)–C(26) 1.390(5)
O(3)–C(5) 1.235(4) C(10)–C(11) 1.416(5) C(26)–C(27) 1.377(5)
N(1)–C(4) 1.492(4) C(11)–C(12) 1.469(4) C(27)–C(28) 1.384(5)
N(1)–C(1) 1.495(4) C(12)–C(23) 1.492(4) C(29)–C(30) 1.507(5)

N(1)–C(29) 1.507(4) C(13)–C(14) 1.525(5) C(30)–C(31) 1.384(5)
N(2)–C(5) 1.370(4) C(13)–C(15) 1.566(5) C(30)–C(35) 1.393(5)
N(2)–C(6) 1.411(4) C(15)–C(17) 1.516(4) C(31)–C(32) 1.378(5)

N(3)–C(12) 1.302(4) C(15)–C(16) 1.531(5) C(32)–C(33) 1.387(5)
N(3)–C(13) 1.481(4) C(17)–C(18) 1.395(4) C(33)–C(34) 1.389(5)

C(1)–C(2) 1.489(5) C(17)–C(22) 1.395(4) C(34)–C(35) 1.394(5)
C(2)–C(3) 1.543(6) C(18)–C(19) 1.396(5) O(1S)–C(1S) 1.439(7)
C(3)–C(4) 1.535(5) C(19)–C(20) 1.362(5)

N(3)–Ni(1)–N(2) 95.05(12) N(3)–C(12)–C(11) 121.1(3)
N(3)–Ni(1)–O(1) 86.25(11) N(3)–C(12)–C(23) 120.4(3)
N(2)–Ni(1)–O(1) 178.45(11) C(11)–C(12)–C(23) 118.5(3)
N(3)–Ni(1)–N(1) 173.33(12) N(3)–C(13)–C(14) 106.7(3)
N(2)–Ni(1)–N(1) 87.57(11) N(3)–C(13)–C(15) 110.2(3)
O(1)–Ni(1)–N(1) 91.06(11) C(14)–C(13)–C(15) 112.4(3)

C(14)–O(1)–Ni(1) 115.8(2) O(2)–C(14)–O(1) 124.4(3)
C(4)–N(1)–C(1) 104.1(3) O(2)–C(14)–C(13) 120.1(3)

C(4)–N(1)–C(29) 114.8(3) O(1)–C(14)–C(13) 115.4(3)
C(1)–N(1)–C(29) 109.5(3) C(17)–C(15)–C(16) 113.8(3)
C(4)–N(1)–Ni(1) 105.0(2) C(17)–C(15)–C(13) 113.0(3)
C(1)–N(1)–Ni(1) 115.5(2) C(16)–C(15)–C(13) 110.9(3)

C(29)–N(1)–Ni(1) 108.1(2) C(18)–C(17)–C(22) 118.0(3)
C(5)–N(2)–C(6) 122.0(3) C(18)–C(17)–C(15) 122.0(3)

C(5)–N(2)–Ni(1) 113.0(2) C(22)–C(17)–C(15) 120.0(3)
C(6)–N(2)–Ni(1) 124.7(2) C(17)–C(18)–C(19) 120.7(3)

C(12)–N(3)–C(13) 119.3(3) C(20)–C(19)–C(18) 120.7(3)
C(12)–N(3)–Ni(1) 127.0(2) C(19)–C(20)–C(21) 119.4(3)
C(13)–N(3)–Ni(1) 112.6(2) C(20)–C(21)–C(22) 120.9(4)

C(2)–C(1)–N(1) 103.6(3) C(21)–C(22)–C(17) 120.4(3)
C(1)–C(2)–C(3) 102.4(3) C(28)–C(23)–C(24) 119.0(3)
C(4)–C(3)–C(2) 105.4(3) C(28)–C(23)–C(12) 122.9(3)
N(1)–C(4)–C(5) 111.6(3) C(24)–C(23)–C(12) 118.0(3)
N(1)–C(4)–C(3) 105.6(3) C(25)–C(24)–C(23) 120.8(3)
C(5)–C(4)–C(3) 113.3(3) C(24)–C(25)–C(26) 119.7(3)
O(3)–C(5)–N(2) 128.2(3) C(27)–C(26)–C(25) 119.6(3)
O(3)–C(5)–C(4) 117.9(3) C(26)–C(27)–C(28) 120.8(3)
N(2)–C(5)–C(4) 113.9(3) C(27)–C(28)–C(23) 120.0(3)
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C(11)–C(6)–N(2) 120.6(3) C(30)–C(29)–N(1) 113.8(3)
C(11)–C(6)–C(7) 117.6(3) C(31)–C(30)–C(35) 118.4(3)
N(2)–C(6)–C(7) 121.7(3) C(31)–C(30)–C(29) 122.6(3)
C(8)–C(7)–C(6) 121.0(3) C(35)–C(30)–C(29) 118.9(3)
C(7)–C(8)–C(9) 121.9(4) C(32)–C(31)–C(30) 121.3(4)

C(8)–C(9)–C(10) 118.5(4) C(31)–C(32)–C(33) 120.0(4)
C(9)–C(10)–C(11) 122.1(4) C(32)–C(33)–C(34) 120.0(4)
C(6)–C(11)–C(10) 118.8(3) C(33)–C(34)–C(35) 119.2(3)
C(6)–C(11)–C(12) 125.5(3) C(30)–C(35)–C(34) 121.0(3)

C(10)–C(11)–C(12) 115.7(3)

Table 4. Anisotropic displacement parameters (Å2 × 103) for dk24. The anisotropic displacement 

factor exponent takes the form: –2π2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]

Atom U11 U22 U33 U23 U13 U12

Ni(1) 24(1) 18(1) 20(1) 0(1) –3(1) 1(1)
O(1) 27(1) 23(1) 27(1) –2(1) –7(1) 2(1)
O(2) 32(1) 33(1) 29(2) –8(1) –8(1) –1(1)
O(3) 26(1) 33(1) 37(2) –2(1) –7(1) 0(1)
N(1) 23(2) 25(1) 20(2) –3(1) –3(1) 3(1)
N(2) 21(2) 20(1) 19(1) 1(1) 0(1) 1(1)
N(3) 21(1) 21(2) 18(2) –1(1) –2(1) –2(1)
C(1) 33(2) 25(2) 26(2) –5(2) –3(2) 12(2)
C(2) 34(2) 39(2) 29(2) –4(2) 4(2) 8(2)
C(3) 33(2) 45(2) 42(2) –7(2) 6(2) 0(2)
C(4) 29(2) 26(2) 26(2) 3(2) –5(2) –1(2)
C(5) 25(2) 27(2) 24(2) 2(2) –1(1) –2(2)
C(6) 28(2) 20(2) 17(2) 1(1) 3(1) –8(1)
C(7) 27(2) 31(2) 28(2) –3(2) –1(1) –3(2)
C(8) 36(2) 34(2) 22(2) –4(2) –3(2) –6(2)
C(9) 50(3) 29(2) 23(2) –8(2) –1(2) 2(2)

C(10) 36(2) 26(2) 28(2) 0(2) 1(2) 0(2)
C(11) 30(2) 23(2) 16(2) 2(2) 0(1) –2(2)
C(12) 26(2) 18(2) 20(2) 2(2) 3(1) –2(2)
C(13) 21(2) 24(2) 18(2) –4(1) –2(1) 7(2)
C(14) 22(2) 24(2) 28(2) –4(2) 0(1) –2(2)
C(15) 28(2) 22(2) 19(2) 1(2) –1(1) 1(2)
C(16) 30(2) 44(2) 27(2) 6(2) –3(2) 14(2)
C(17) 25(2) 22(2) 18(2) 5(1) 2(1) –1(1)
C(18) 28(2) 23(2) 23(2) 0(1) 0(2) –2(2)
C(19) 32(2) 21(2) 27(2) 0(2) 3(2) 2(2)
C(20) 27(2) 32(2) 25(2) 7(2) 4(2) 4(2)
C(21) 31(2) 38(2) 26(2) –3(2) –1(2) –4(2)
C(22) 31(2) 30(2) 19(2) –4(2) 0(1) 1(2)
C(23) 26(2) 17(2) 20(2) –2(1) –1(1) 1(1)
C(24) 32(2) 20(2) 21(2) 0(1) –2(1) –3(2)
C(25) 28(2) 29(2) 24(2) –6(2) 2(2) 0(2)
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Atom U11 U22 U33 U23 U13 U12

C(26) 30(2) 24(2) 26(2) –8(2) –7(2) 8(2)
C(27) 37(2) 19(2) 24(2) –3(2) –1(2) 4(2)
C(28) 31(2) 18(2) 21(2) –5(1) 1(2) 1(2)
C(29) 39(2) 21(2) 26(2) 4(1) –1(2) 0(2)
C(30) 26(2) 21(2) 24(2) 7(1) 0(2) –4(2)
C(31) 26(2) 25(2) 31(2) 8(1) –2(2) –1(2)
C(32) 34(2) 30(2) 25(2) 3(2) 1(2) –6(2)
C(33) 34(2) 31(2) 31(2) 3(2) 8(2) –5(2)
C(34) 23(2) 29(2) 36(2) 11(2) 2(2) –2(2)
C(35) 26(2) 26(2) 25(2) 9(2) 1(2) –5(2)
O(1S) 40(2) 114(3) 107(3) –78(3) 1(2) –3(2)
C(1S) 68(4) 219(8) 88(5) –93(5) –24(3) 49(5)

Table  5.  Hydrogen  coordinates  ( × 104)  and  isotropic  displacement  parameters  (Å2 × 103)  for 

dk24.

Atom x y z U(eq)
H(1OS) –2088 8124 6841 104

H(1S) –1229 8415 6006 150
H(2S) –2970 8779 5983 150
H(3S) –2592 7853 5725 150
H(1A) 2800(40) 7562(19) 7978(13) 20(8)
H(1B) 4130(40) 7080(20) 8455(15) 32(9)
H(2A) 5730(50) 7770(30) 7699(17) 56(12)
H(2B) 4560(40) 8670(20) 7786(15) 34(10)
H(3A) 6930(40) 8070(20) 8677(15) 52(11)
H(3B) 6360(40) 8940(20) 8469(16) 38(12)

H(4) 4900(40) 8070(30) 9346(17) 48(12)
H(7) 4370(40) 10450(20) 10095(13) 25(9)
H(8) 3310(40) 11550(20) 10627(14) 24(9)
H(9) 920(40) 12210(20) 10396(15) 28(10)

H(10) –380(30) 11841(19) 9577(12) 14(8)
H(13) –1240(40) 10206(19) 7887(13) 21(8)
H(15) 1010(30) 11220(20) 7618(13) 20(9)

H(161) –430(40) 10200(30) 6623(16) 49(12)
H(162) 280(40) 11200(20) 6548(16) 42(11)
H(163) –1230(30) 10991(18) 6955(11) 9(7)
H(18) 1920(30) 9494(17) 6604(12) 16(8)
H(19) 4420(30) 9070(20) 6402(14) 24(8)
H(20) 6610(40) 9770(20) 6916(14) 29(10)
H(21) 6150(40) 10730(30) 7590(16) 57(12)
H(22) 3480(30) 11154(19) 7886(13) 16(8)
H(24) –2450(30) 10482(19) 9103(13) 17(8)
H(25) –4830(40) 11220(20) 8952(15) 38(11)
H(26) –4820(30) 12457(18) 8357(11) 9(7)
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Atom x y z U(eq)
H(27) –2460(40) 12950(20) 8013(14) 29(10)
H(28) –10(40) 12220(20) 8236(15) 34(11)

H(291) 2830(40) 7190(20) 9332(14) 34(10)
H(292) 1190(40) 7360(20) 8881(15) 48(11)
H(31) 3080(50) 8000(30) 10253(17) 67(14)
H(32) 1950(40) 8878(19) 10950(14) 32(9)
H(33) –710(40) 9550(20) 10782(15) 32(10)
H(34) –1890(40) 9240(20) 9864(14) 48(10)
H(35) –680(40) 8380(20) 9135(15) 31(10)

Table 6. Hydrogen bonds for dk24 [Å and °].

D–H...A d(D–H) d(H...A) d(D...A) <(DHA)
 O(1S)–H(1OS)...O(2) 0.84 1.90 2.727(4) 166.1
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Table 1.  Crystal data and structure refinement for sw005.

Identification code sw005

Empirical formula C35H32ClN3NiO3

Formula weight 636.80

Temperature 100(2) K

Wavelength 1.54178 Å

Crystal system orthorhombic

Space group P 21 21 21

Unit cell dimensions a = 8.0379(16) Å α = 90°.

b = 15.338(3) Å β = 90°.

c = 24.070(5) Å γ = 90°.

Volume 2967.4(10) Å3

Z 4
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Density (calculated) 1.425 Mg/m3

Absorption coefficient 2.103 mm–1

F(000) 1328

Crystal size 0.40 × 0.25 × 0.03 mm3

Theta range for data collection 3.42 to 61.04°.

Index ranges –8<=h<=8, –13<=k<=17, –26<=l<=27

Reflections collected 21464

Independent reflections 4364 [R(int) = 0.0350]

Completeness to theta = 61.04° 96.9 % 

Max. and min. transmission 0.9396 and 0.4868

Refinement method Full–matrix least–squares on F2

Data / restraints / parameters 4364 / 0 / 389

Goodness–of–fit on F2 1.040

Final R indices [I>2sigma(I)] R1 = 0.0215, wR2 = 0.0515

R indices (all data) R1 = 0.0230, wR2 = 0.0525

Absolute structure parameter –0.008(12)

Largest diff. peak and hole 0.135 and –0.204 e.Å–3

Table  2.   Atomic  coordinates  ( × 104)  and  equivalent  isotropic  displacement  parameters 

(Å2 × 103) for sw005.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)
C(1) 10555(3) 10303(1) 2012(1) 27(1)
C(2) 11820(3) 10222(1) 2401(1) 37(1)
C(3) 11444(3) 10002(1) 2947(1) 40(1)
C(4) 9809(3) 9884(1) 3104(1) 35(1)
C(5) 8540(3) 9973(1) 2721(1) 28(1)
C(6) 8910(2) 10166(1) 2170(1) 21(1)
C(7) 7555(2) 10205(1) 1743(1) 21(1)
N(8) 7104(2) 9491(1) 1492(1) 18(1)
C(9) 6799(3) 11047(1) 1615(1) 22(1)

C(10) 7575(3) 11794(1) 1834(1) 29(1)
C(11) 7010(3) 12621(1) 1731(1) 34(1)
C(12) 5570(3) 12719(1) 1416(1) 33(1)
C(13) 4747(3) 12009(1) 1204(1) 29(1)
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x y z U(eq)
C(14) 5344(3) 11151(1) 1282(1) 22(1)
N(15) 4598(2) 10432(1) 1015(1) 20(1)
C(16) 3098(2) 10501(1) 752(1) 21(1)
O(17) 2038(2) 11077(1) 801(1) 28(1)
C(18) 2705(2) 9740(1) 376(1) 21(1)
C(19) 1383(2) 9135(1) 614(1) 25(1)
C(20) 1661(2) 8304(1) 281(1) 25(1)
C(21) 3542(2) 8232(1) 268(1) 22(1)
N(22) 4190(2) 9169(1) 281(1) 18(1)
C(23) 5042(2) 9375(1) –261(1) 21(1)
C(24) 5769(3) 10280(1) –267(1) 23(1)
C(25) 4908(3) 10992(1) –484(1) 28(1)
C(26) 5606(3) 11826(1) –450(1) 37(1)
C(27) 7119(3) 11953(2) –191(1) 39(1)
C(28) 7997(3) 11250(1) 14(1) 35(1)
C(29) 7323(3) 10421(1) –30(1) 26(1)
O(30) 6896(2) 8369(1) 720(1) 20(1)
C(31) 7904(2) 8102(1) 1104(1) 19(1)
O(32) 8789(2) 7453(1) 1075(1) 22(1)
C(33) 7893(2) 8649(1) 1633(1) 19(1)
C(34) 6928(2) 8161(1) 2108(1) 21(1)
C(35) 8142(3) 7582(1) 2436(1) 26(1)
C(36) 5420(3) 7673(1) 1894(1) 21(1)
C(37) 3845(2) 8048(1) 1913(1) 27(1)
C(38) 2473(3) 7605(2) 1712(1) 34(1)
C(39) 2621(3) 6789(2) 1481(1) 32(1)
C(40) 4193(3) 6420(1) 1459(1) 27(1)

Cl(41) 4435(1) 5391(1) 1153(1) 39(1)
C(42) 5580(3) 6838(1) 1666(1) 23(1)

Ni(43) 5684(1) 9377(1) 894(1) 18(1)

Table 3.   Bond lengths [Å] and angles [°] for sw005.

C(1)–C(2) 1.387(3) N(15)–Ni(43) 1.8617(15) C(28)–C(29) 1.388(3)
C(1)–C(6) 1.392(3) C(16)–O(17) 1.233(2) C(28)–H(28) 0.9500
C(1)–H(1) 0.9500 C(16)–C(18) 1.509(3) C(29)–H(29) 0.9500
C(2)–C(3) 1.390(4) C(18)–N(22) 1.498(2) O(30)–C(31) 1.296(2)
C(2)–H(2) 0.9500 C(18)–C(19) 1.523(3) O(30)–Ni(43) 1.8749(13)
C(3)–C(4) 1.380(4) C(18)–H(18) 1.0000 C(31)–O(32) 1.225(2)
C(3)–H(3) 0.9500 C(19)–C(20) 1.522(3) C(31)–C(33) 1.525(3)
C(4)–C(5) 1.383(3) C(19)–H(19A) 0.9900 C(33)–C(34) 1.571(3)
C(4)–H(4) 0.9500 C(19)–H(19B) 0.9900 C(33)–H(33) 1.0000
C(5)–C(6) 1.390(3) C(20)–C(21) 1.517(3) C(34)–C(36) 1.514(3)
C(5)–H(5) 0.9500 C(20)–H(20A) 0.9900 C(34)–C(35) 1.538(3)
C(6)–C(7) 1.499(3) C(20)–H(20B) 0.9900 C(34)–H(34) 1.0000
C(7)–N(8) 1.302(2) C(21)–N(22) 1.529(2) C(35)–H(35A) 0.9800
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C(7)–C(9) 1.460(3) C(21)–H(21A) 0.9900 C(35)–H(35B) 0.9800
N(8)–C(33) 1.479(2) C(21)–H(21B) 0.9900 C(35)–H(35C) 0.9800

N(8)–Ni(43) 1.8441(15) N(22)–C(23) 1.506(2) C(36)–C(37) 1.391(3)
C(9)–C(10) 1.406(3) N(22)–Ni(43) 1.9298(16) C(36)–C(42) 1.399(3)
C(9)–C(14) 1.427(3) C(23)–C(24) 1.507(3) C(37)–C(38) 1.382(3)

C(10)–C(11) 1.370(3) C(23)–H(23A) 0.9900 C(37)–H(37) 0.9500
C(10)–H(10) 0.9500 C(23)–H(23B) 0.9900 C(38)–C(39) 1.375(3)
C(11)–C(12) 1.392(3) C(24)–C(29) 1.391(3) C(38)–H(38) 0.9500
C(11)–H(11) 0.9500 C(24)–C(25) 1.393(3) C(39)–C(40) 1.385(3)
C(12)–C(13) 1.373(3) C(25)–C(26) 1.400(3) C(39)–H(39) 0.9500
C(12)–H(12) 0.9500 C(25)–H(25) 0.9500 C(40)–C(42) 1.379(3)
C(13)–C(14) 1.414(3) C(26)–C(27) 1.380(3) C(40)–Cl(41) 1.753(2)
C(13)–H(13) 0.9500 C(26)–H(26) 0.9500 C(42)–H(42) 0.9500
C(14)–N(15) 1.409(2) C(27)–C(28) 1.380(3)
N(15)–C(16) 1.367(2) C(27)–H(27) 0.9500

C(2)–C(1)–C(6) 119.9(2) C(23)–N(22)–C(21) 109.53(14)
C(2)–C(1)–H(1) 120.1 C(18)–N(22)–Ni(43) 106.36(11)
C(6)–C(1)–H(1) 120.1 C(23)–N(22)–Ni(43) 110.17(11)
C(1)–C(2)–C(3) 120.0(2) C(21)–N(22)–Ni(43) 112.49(11)
C(1)–C(2)–H(2) 120.0 N(22)–C(23)–C(24) 112.18(14)
C(3)–C(2)–H(2) 120.0 N(22)–C(23)–H(23A) 109.2
C(4)–C(3)–C(2) 119.9(2) C(24)–C(23)–H(23A) 109.2
C(4)–C(3)–H(3) 120.0 N(22)–C(23)–H(23B) 109.2
C(2)–C(3)–H(3) 120.0 C(24)–C(23)–H(23B) 109.2
C(3)–C(4)–C(5) 120.4(2) H(23A)–C(23)–H(23B) 107.9
C(3)–C(4)–H(4) 119.8 C(29)–C(24)–C(25) 118.62(18)
C(5)–C(4)–H(4) 119.8 C(29)–C(24)–C(23) 119.11(17)
C(4)–C(5)–C(6) 120.0(2) C(25)–C(24)–C(23) 122.22(18)
C(4)–C(5)–H(5) 120.0 C(24)–C(25)–C(26) 119.7(2)
C(6)–C(5)–H(5) 120.0 C(24)–C(25)–H(25) 120.2
C(5)–C(6)–C(1) 119.73(19) C(26)–C(25)–H(25) 120.2
C(5)–C(6)–C(7) 120.50(18) C(27)–C(26)–C(25) 120.6(2)
C(1)–C(6)–C(7) 119.76(17) C(27)–C(26)–H(26) 119.7
N(8)–C(7)–C(9) 122.03(17) C(25)–C(26)–H(26) 119.7
N(8)–C(7)–C(6) 119.17(16) C(28)–C(27)–C(26) 120.2(2)
C(9)–C(7)–C(6) 118.79(16) C(28)–C(27)–H(27) 119.9

C(7)–N(8)–C(33) 120.52(15) C(26)–C(27)–H(27) 119.9
C(7)–N(8)–Ni(43) 127.87(13) C(27)–C(28)–C(29) 119.3(2)

C(33)–N(8)–Ni(43) 111.25(11) C(27)–C(28)–H(28) 120.4
C(10)–C(9)–C(14) 118.91(17) C(29)–C(28)–H(28) 120.4
C(10)–C(9)–C(7) 117.19(17) C(28)–C(29)–C(24) 121.6(2)
C(14)–C(9)–C(7) 123.90(16) C(28)–C(29)–H(29) 119.2

C(11)–C(10)–C(9) 122.6(2) C(24)–C(29)–H(29) 119.2
C(11)–C(10)–H(10) 118.7 C(31)–O(30)–Ni(43) 115.20(11)
C(9)–C(10)–H(10) 118.7 O(32)–C(31)–O(30) 125.45(17)

C(10)–C(11)–C(12) 118.34(19) O(32)–C(31)–C(33) 119.77(16)
C(10)–C(11)–H(11) 120.8 O(30)–C(31)–C(33) 114.75(16)
C(12)–C(11)–H(11) 120.8 N(8)–C(33)–C(31) 106.87(14)
C(13)–C(12)–C(11) 121.16(19) N(8)–C(33)–C(34) 111.82(15)
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C(13)–C(12)–H(12) 119.4 C(31)–C(33)–C(34) 110.39(15)
C(11)–C(12)–H(12) 119.4 N(8)–C(33)–H(33) 109.2
C(12)–C(13)–C(14) 121.7(2) C(31)–C(33)–H(33) 109.2
C(12)–C(13)–H(13) 119.1 C(34)–C(33)–H(33) 109.2
C(14)–C(13)–H(13) 119.1 C(36)–C(34)–C(35) 113.43(16)
N(15)–C(14)–C(13) 121.57(17) C(36)–C(34)–C(33) 112.53(15)
N(15)–C(14)–C(9) 121.17(16) C(35)–C(34)–C(33) 109.60(16)
C(13)–C(14)–C(9) 117.15(17) C(36)–C(34)–H(34) 107.0

C(16)–N(15)–C(14) 121.79(15) C(35)–C(34)–H(34) 107.0
C(16)–N(15)–Ni(43) 114.06(12) C(33)–C(34)–H(34) 107.0
C(14)–N(15)–Ni(43) 123.48(13) C(34)–C(35)–H(35A) 109.5
O(17)–C(16)–N(15) 128.29(17) C(34)–C(35)–H(35B) 109.5
O(17)–C(16)–C(18) 117.87(17) H(35A)–C(35)–H(35B) 109.5
N(15)–C(16)–C(18) 113.77(16) C(34)–C(35)–H(35C) 109.5
N(22)–C(18)–C(16) 112.17(15) H(35A)–C(35)–H(35C) 109.5
N(22)–C(18)–C(19) 104.95(14) H(35B)–C(35)–H(35C) 109.5
C(16)–C(18)–C(19) 113.10(16) C(37)–C(36)–C(42) 118.31(18)
N(22)–C(18)–H(18) 108.8 C(37)–C(36)–C(34) 120.88(17)
C(16)–C(18)–H(18) 108.8 C(42)–C(36)–C(34) 120.80(17)
C(19)–C(18)–H(18) 108.8 C(38)–C(37)–C(36) 120.8(2)
C(20)–C(19)–C(18) 102.15(16) C(38)–C(37)–H(37) 119.6

C(20)–C(19)–H(19A) 111.3 C(36)–C(37)–H(37) 119.6
C(18)–C(19)–H(19A) 111.3 C(39)–C(38)–C(37) 121.3(2)
C(20)–C(19)–H(19B) 111.3 C(39)–C(38)–H(38) 119.4
C(18)–C(19)–H(19B) 111.3 C(37)–C(38)–H(38) 119.4

H(19A)–C(19)–H(19B) 109.2 C(38)–C(39)–C(40) 117.8(2)
C(21)–C(20)–C(19) 102.59(16) C(38)–C(39)–H(39) 121.1

C(21)–C(20)–H(20A) 111.2 C(40)–C(39)–H(39) 121.1
C(19)–C(20)–H(20A) 111.2 C(42)–C(40)–C(39) 122.29(19)
C(21)–C(20)–H(20B) 111.2 C(42)–C(40)–Cl(41) 118.69(17)
C(19)–C(20)–H(20B) 111.2 C(39)–C(40)–Cl(41) 119.02(16)

H(20A)–C(20)–H(20B) 109.2 C(40)–C(42)–C(36) 119.51(19)
C(20)–C(21)–N(22) 105.74(15) C(40)–C(42)–H(42) 120.2

C(20)–C(21)–H(21A) 110.6 C(36)–C(42)–H(42) 120.2
N(22)–C(21)–H(21A) 110.6 N(8)–Ni(43)–N(15) 94.91(7)
C(20)–C(21)–H(21B) 110.6 N(8)–Ni(43)–O(30) 86.07(6)
N(22)–C(21)–H(21B) 110.6 N(15)–Ni(43)–O(30) 174.53(6)

H(21A)–C(21)–H(21B) 108.7 N(8)–Ni(43)–N(22) 175.85(6)
C(18)–N(22)–C(23) 111.90(14) N(15)–Ni(43)–N(22) 88.38(6)
C(18)–N(22)–C(21) 106.33(14) O(30)–Ni(43)–N(22) 90.89(6)
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Table  4.  Anisotropic  displacement  parameters  (Å2 × 103)for  sw005.  The  anisotropic 

displacement factor exponent takes the form: –2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]

U11 U22 U33 U23 U13 U12

C(1) 30(1) 18(1) 32(1) –6(1) –2(1) –2(1)
C(2) 31(1) 22(1) 58(2) –14(1) –11(1) 1(1)
C(3) 55(2) 20(1) 46(2) –8(1) –29(1) 7(1)
C(4) 57(2) 22(1) 26(1) –2(1) –13(1) 2(1)
C(5) 38(1) 20(1) 25(1) –3(1) –4(1) 1(1)
C(6) 29(1) 12(1) 22(1) –4(1) –3(1) 0(1)
C(7) 23(1) 19(1) 20(1) 1(1) 3(1) –1(1)
N(8) 21(1) 13(1) 21(1) 0(1) 2(1) 1(1)
C(9) 31(1) 16(1) 18(1) 0(1) –1(1) 0(1)

C(10) 40(1) 20(1) 26(1) –2(1) –8(1) –1(1)
C(11) 49(2) 16(1) 36(1) –3(1) –9(1) –4(1)
C(12) 49(1) 17(1) 34(1) –1(1) –5(1) 7(1)
C(13) 38(1) 19(1) 29(1) –1(1) –6(1) 4(1)
C(14) 31(1) 16(1) 18(1) 0(1) 0(1) 2(1)
N(15) 24(1) 16(1) 20(1) 0(1) 0(1) 0(1)
C(16) 22(1) 18(1) 23(1) 5(1) 3(1) 0(1)
O(17) 25(1) 20(1) 39(1) 0(1) 1(1) 6(1)
C(18) 22(1) 20(1) 22(1) 2(1) –2(1) 5(1)
C(19) 20(1) 24(1) 32(1) 0(1) 0(1) 0(1)
C(20) 21(1) 23(1) 31(1) 0(1) –2(1) –2(1)
C(21) 23(1) 16(1) 26(1) –3(1) –2(1) –3(1)
N(22) 18(1) 15(1) 22(1) 1(1) 2(1) –1(1)
C(23) 24(1) 22(1) 18(1) –1(1) 1(1) 1(1)
C(24) 27(1) 23(1) 18(1) 0(1) 7(1) 1(1)
C(25) 36(1) 28(1) 21(1) 3(1) 8(1) 6(1)
C(26) 60(2) 20(1) 31(1) 5(1) 16(1) 8(1)
C(27) 56(2) 27(1) 34(1) –3(1) 15(1) –12(1)
C(28) 39(1) 34(1) 33(1) –3(1) 9(1) –14(1)
C(29) 29(1) 26(1) 24(1) 1(1) 6(1) –5(1)
O(30) 21(1) 17(1) 22(1) –2(1) –2(1) 0(1)
C(31) 18(1) 17(1) 22(1) 1(1) 1(1) –5(1)
O(32) 19(1) 18(1) 28(1) –2(1) 1(1) 4(1)
C(33) 17(1) 15(1) 25(1) 0(1) –4(1) 1(1)
C(34) 25(1) 17(1) 21(1) 0(1) 0(1) 2(1)
C(35) 27(1) 22(1) 27(1) 4(1) –6(1) –2(1)
C(36) 22(1) 21(1) 21(1) 7(1) 3(1) 1(1)
C(37) 26(1) 25(1) 30(1) 10(1) 3(1) 3(1)
C(38) 20(1) 42(1) 41(1) 22(1) 2(1) 2(1)
C(39) 24(1) 38(1) 33(1) 17(1) –5(1) –8(1)
C(40) 30(1) 27(1) 24(1) 6(1) 1(1) –9(1)

Cl(41) 43(1) 36(1) 40(1) –8(1) –2(1) –17(1)
C(42) 23(1) 23(1) 24(1) 5(1) 0(1) –1(1)

Ni(43) 20(1) 15(1) 20(1) –1(1) –2(1) 1(1)
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Table  5.  Hydrogen  coordinates  ( × 104)  and  isotropic  displacement  parameters  (Å2 × 103)  for 
sw005.

x y z U(eq)
H(1) 10811 10451 1638 32
H(2) 12943 10318 2294 44
H(3) 12312 9932 3211 48
H(4) 9554 9742 3479 42
H(5) 7416 9903 2833 33

H(10) 8530 11722 2062 34
H(11) 7585 13115 1872 40
H(12) 5151 13288 1347 40
H(13) 3749 12097 1000 35
H(18) 2310 9968 10 26

H(19A) 1555 9035 1016 30
H(19B) 251 9371 553 30
H(20A) 1155 7794 468 30
H(20B) 1196 8355 –98 30
H(21A) 3913 7931 –74 26
H(21B) 3952 7902 594 26
H(23A) 4230 9318 –568 26
H(23B) 5941 8945 –326 26

H(25) 3852 10911 –654 34
H(26) 5034 12309 –607 44
H(27) 7557 12525 –155 46
H(28) 9052 11334 184 42
H(29) 7937 9936 106 31
H(33) 9065 8755 1755 23
H(34) 6511 8616 2370 26

H(35A) 7531 7265 2725 38
H(35B) 8996 7947 2610 38
H(35C) 8671 7165 2184 38

H(37) 3711 8614 2066 32
H(38) 1407 7871 1733 41
H(39) 1677 6488 1341 38
H(42) 6636 6560 1654 28
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Table 6.  Torsion angles [°] for sw005.

C(6)–C(1)–C(2)–C(3) 0.3(3) C(29)–C(24)–C(25)–C(26) –1.0(3)
C(1)–C(2)–C(3)–C(4) –1.6(3) C(23)–C(24)–C(25)–C(26) 176.43(17)
C(2)–C(3)–C(4)–C(5) 0.9(3) C(24)–C(25)–C(26)–C(27) –1.7(3)
C(3)–C(4)–C(5)–C(6) 1.2(3) C(25)–C(26)–C(27)–C(28) 3.1(3)
C(4)–C(5)–C(6)–C(1) –2.6(3) C(26)–C(27)–C(28)–C(29) –1.7(3)
C(4)–C(5)–C(6)–C(7) 175.87(18) C(27)–C(28)–C(29)–C(24) –1.1(3)
C(2)–C(1)–C(6)–C(5) 1.8(3) C(25)–C(24)–C(29)–C(28) 2.4(3)
C(2)–C(1)–C(6)–C(7) –176.63(17) C(23)–C(24)–C(29)–C(28) –175.07(18)
C(5)–C(6)–C(7)–N(8) –86.7(2) Ni(43)–O(30)–C(31)–O(32) 179.03(14)
C(1)–C(6)–C(7)–N(8) 91.7(2) Ni(43)–O(30)–C(31)–C(33) 1.12(19)
C(5)–C(6)–C(7)–C(9) 94.2(2) C(7)–N(8)–C(33)–C(31) –148.24(16)
C(1)–C(6)–C(7)–C(9) –87.4(2) Ni(43)–N(8)–C(33)–C(31) 25.46(17)

C(9)–C(7)–N(8)–C(33) –179.76(17) C(7)–N(8)–C(33)–C(34) 90.9(2)
C(6)–C(7)–N(8)–C(33) 1.1(2) Ni(43)–N(8)–C(33)–C(34) –95.44(15)

C(9)–C(7)–N(8)–Ni(43) 7.7(3) O(32)–C(31)–C(33)–N(8) 164.80(16)
C(6)–C(7)–N(8)–Ni(43) –171.41(13) O(30)–C(31)–C(33)–N(8) –17.2(2)
N(8)–C(7)–C(9)–C(10) –168.78(18) O(32)–C(31)–C(33)–C(34) –73.4(2)
C(6)–C(7)–C(9)–C(10) 10.3(3) O(30)–C(31)–C(33)–C(34) 104.65(18)
N(8)–C(7)–C(9)–C(14) 10.7(3) N(8)–C(33)–C(34)–C(36) 81.08(19)
C(6)–C(7)–C(9)–C(14) –170.22(17) C(31)–C(33)–C(34)–C(36) –37.8(2)

C(14)–C(9)–C(10)–C(11) –1.3(3) N(8)–C(33)–C(34)–C(35) –151.71(16)
C(7)–C(9)–C(10)–C(11) 178.2(2) C(31)–C(33)–C(34)–C(35) 89.45(18)

C(9)–C(10)–C(11)–C(12) 2.6(3) C(35)–C(34)–C(36)–C(37) 139.08(18)
C(10)–C(11)–C(12)–C(13) –1.1(3) C(33)–C(34)–C(36)–C(37) –95.8(2)
C(11)–C(12)–C(13)–C(14) –1.8(3) C(35)–C(34)–C(36)–C(42) –41.7(2)
C(12)–C(13)–C(14)–N(15) –173.16(19) C(33)–C(34)–C(36)–C(42) 83.5(2)

C(12)–C(13)–C(14)–C(9) 3.1(3) C(42)–C(36)–C(37)–C(38) 0.0(3)
C(10)–C(9)–C(14)–N(15) 174.72(17) C(34)–C(36)–C(37)–C(38) 179.25(18)
C(7)–C(9)–C(14)–N(15) –4.7(3) C(36)–C(37)–C(38)–C(39) –0.8(3)

C(10)–C(9)–C(14)–C(13) –1.6(3) C(37)–C(38)–C(39)–C(40) 0.4(3)
C(7)–C(9)–C(14)–C(13) 178.96(18) C(38)–C(39)–C(40)–C(42) 0.9(3)

C(13)–C(14)–N(15)–C(16) –12.0(3) C(38)–C(39)–C(40)–Cl(41) –178.58(15)
C(9)–C(14)–N(15)–C(16) 171.86(16) C(39)–C(40)–C(42)–C(36) –1.7(3)

C(13)–C(14)–N(15)–Ni(43) 158.05(15) Cl(41)–C(40)–C(42)–C(36) 177.77(14)
C(9)–C(14)–N(15)–Ni(43) –18.1(2) C(37)–C(36)–C(42)–C(40) 1.2(3)
C(14)–N(15)–C(16)–O(17) –17.3(3) C(34)–C(36)–C(42)–C(40) –178.03(17)

Ni(43)–N(15)–C(16)–O(17) 171.77(15) C(7)–N(8)–Ni(43)–N(15) –22.72(16)
C(14)–N(15)–C(16)–C(18) 165.75(16) C(33)–N(8)–Ni(43)–N(15) 164.15(12)

Ni(43)–N(15)–C(16)–C(18) –5.17(19) C(7)–N(8)–Ni(43)–O(30) 151.88(16)
O(17)–C(16)–C(18)–N(22) 170.58(15) C(33)–N(8)–Ni(43)–O(30) –21.24(12)
N(15)–C(16)–C(18)–N(22) –12.1(2) C(7)–N(8)–Ni(43)–N(22) –165.1(9)
O(17)–C(16)–C(18)–C(19) –71.0(2) C(33)–N(8)–Ni(43)–N(22) 21.7(10)
N(15)–C(16)–C(18)–C(19) 106.34(18) C(16)–N(15)–Ni(43)–N(8) –162.12(12)
N(22)–C(18)–C(19)–C(20) –38.25(18) C(14)–N(15)–Ni(43)–N(8) 27.13(14)
C(16)–C(18)–C(19)–C(20) –160.83(16) C(16)–N(15)–Ni(43)–O(30) 97.8(7)
C(18)–C(19)–C(20)–C(21) 42.26(19) C(14)–N(15)–Ni(43)–O(30) –73.0(7)
C(19)–C(20)–C(21)–N(22) –30.77(19) C(16)–N(15)–Ni(43)–N(22) 15.35(12)
C(16)–C(18)–N(22)–C(23) –98.07(17) C(14)–N(15)–Ni(43)–N(22) –155.40(14)
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C(19)–C(18)–N(22)–C(23) 138.74(15) C(31)–O(30)–Ni(43)–N(8) 11.66(12)
C(16)–C(18)–N(22)–C(21) 142.37(15) C(31)–O(30)–Ni(43)–N(15) 112.2(6)
C(19)–C(18)–N(22)–C(21) 19.19(18) C(31)–O(30)–Ni(43)–N(22) –165.51(12)

C(16)–C(18)–N(22)–Ni(43) 22.28(16) C(18)–N(22)–Ni(43)–N(8) 122.0(9)
C(19)–C(18)–N(22)–Ni(43) –100.90(13) C(23)–N(22)–Ni(43)–N(8) –116.6(9)
C(20)–C(21)–N(22)–C(18) 7.30(19) C(21)–N(22)–Ni(43)–N(8) 5.9(10)
C(20)–C(21)–N(22)–C(23) –113.78(17) C(18)–N(22)–Ni(43)–N(15) –20.61(11)

C(20)–C(21)–N(22)–Ni(43) 123.34(14) C(23)–N(22)–Ni(43)–N(15) 100.86(12)
C(18)–N(22)–C(23)–C(24) 64.54(19) C(21)–N(22)–Ni(43)–N(15) –136.63(12)
C(21)–N(22)–C(23)–C(24) –177.81(15) C(18)–N(22)–Ni(43)–O(30) 164.81(11)

Ni(43)–N(22)–C(23)–C(24) –53.56(17) C(23)–N(22)–Ni(43)–O(30) –73.72(12)
N(22)–C(23)–C(24)–C(29) 83.0(2) C(21)–N(22)–Ni(43)–O(30) 48.80(12)
N(22)–C(23)–C(24)–C(25) –94.5(2)
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Table 1.  Crystal data and structure refinement for sw007.

Identification code sw007_1

Empirical formula C35H32FN3NiO3

Formula weight 620.35

Temperature 100(2) K

Wavelength 1.54178 Å

Crystal system orthorhombic

Space group P 21 21 21

Unit cell dimensions a = 11.146(2) Å α = 90°.

b = 19.625(4) Å β= 90°.

c = 26.276(5) Å γ = 90°.

Volume 5748(2) Å3

Z 8
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Density (calculated) 1.434 Mg/m3

Absorption coefficient 1.372 mm–1

F(000) 2592

Crystal size 0.25 × 0.15 × 0.10 mm3

Theta range for data collection 2.81 to 60.02°.

Index ranges –11<=h<=12, –20<=k<=14, –29<=l<=26

Reflections collected 40395

Independent reflections 7958 [R(int) = 0.0404]

Completeness to theta = 60.02° 95.4 % 

Max. and min. transmission 0.8750 and 0.7255

Refinement method Full–matrix least–squares on F2

Data / restraints / parameters 7958 / 0 / 777

Goodness–of–fit on F2 1.024

Final R indices [I>2sigma(I)] R1 = 0.0253, wR2 = 0.0615

R indices (all data) R1 = 0.0275, wR2 = 0.0628

Absolute structure parameter –0.032(14)

Largest diff. peak and hole 0.371 and –0.244 e.Å–3

Table 2. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 × 103) 
for sw007. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)
Ni(01) 8667(1) 909(1) 9527(1) 24(1)
Ni(02) 2579(1) 7972(1) 8358(1) 26(1)
O(003) 2613(2) 5999(1) 8385(1) 34(1)
O(004) 2427(2) 9973(1) 8393(1) 32(1)
F(005) 2685(1) 7881(1) 10638(1) 44(1)
O(006) 8806(1) 85(1) 9178(1) 27(1)
N(007) 8671(2) 1707(1) 9909(1) 24(1)
N(008) 10048(2) 1254(1) 9169(1) 25(1)
F(009) 7167(1) 2101(1) 7733(1) 50(1)
O(010) 7830(1) –889(1) 9017(1) 31(1)
C(011) 2819(2) 6611(1) 8394(1) 28(1)
O(012) 9513(1) 2802(1) 9872(1) 31(1)
C(013) 4499(2) 7733(1) 9504(1) 30(1)
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x y z U(eq)
O(014) 2013(1) 7085(1) 8442(1) 30(1)
C(015) 6853(2) 704(1) 10273(1) 23(1)
C(016) 4801(2) 6788(1) 8868(1) 29(1)
N(017) 7345(2) 528(1) 9842(1) 24(1)
C(018) 2310(2) 9351(1) 8416(1) 27(1)
C(019) 4643(2) 479(1) 10409(1) 26(1)
C(020) 1337(2) 9059(1) 8752(1) 32(1)
C(021) 10064(2) 2007(1) 9242(1) 27(1)
C(022) 3733(2) 57(1) 10574(1) 30(1)
C(023) 8168(2) 1761(1) 10401(1) 25(1)
C(024) 3939(2) 9025(1) 7856(1) 26(1)
C(025) 4900(2) 8566(1) 7757(1) 25(1)
C(026) 6146(2) 681(1) 8805(1) 25(1)
C(027) 2812(2) 6991(1) 10044(1) 33(1)
C(028) 5836(2) 286(1) 10483(1) 24(1)
C(029) 11224(2) 992(1) 9956(1) 25(1)
C(030) 4104(2) 6871(1) 8358(1) 27(1)
C(031) 5843(2) 9398(1) 7196(1) 34(1)
C(032) 7249(2) 1827(1) 11406(1) 30(1)
C(033) 3985(2) –552(1) 10818(1) 32(1)
C(034) 3175(2) 7623(1) 10200(1) 33(1)
N(035) 3017(2) 8857(1) 8197(1) 26(1)
C(036) 4872(2) 9826(1) 7269(1) 33(1)
C(037) 8098(2) 2289(1) 11238(1) 31(1)
C(038) 9991(2) 1125(1) 8594(1) 29(1)
C(039) 6582(2) 478(1) 8332(1) 30(1)
C(040) 4952(2) 7868(1) 7951(1) 26(1)
C(041) 6093(2) –312(1) 10744(1) 27(1)
N(042) 1087(2) 8334(1) 8618(1) 33(1)
C(043) 6046(2) 7437(1) 7852(1) 27(1)
C(044) 8548(2) 2258(1) 10750(1) 30(1)
C(045) 6035(2) 6970(1) 7451(1) 28(1)
C(046) 5841(2) 8770(1) 7434(1) 31(1)
C(047) 6927(2) 951(2) 7966(1) 35(1)
C(048) 4006(2) 8005(1) 9944(1) 33(1)
C(049) 7306(2) 1275(1) 10573(1) 24(1)
C(050) 9391(2) 2215(1) 9716(1) 26(1)
C(051) 10558(2) 567(1) 10279(1) 28(1)
C(052) 3942(2) 9648(1) 7591(1) 31(1)
C(053) 5163(3) 6049(1) 8948(1) 39(1)
C(054) 155(2) 8712(2) 7786(1) 36(1)
C(055) 9525(2) 2290(1) 8748(1) 30(1)
C(056) 11226(2) 1196(1) 11009(1) 34(1)
C(057) 6366(2) 1856(1) 8540(1) 35(1)
C(058) 764(3) 7986(2) 9120(1) 52(1)
C(059) 6863(2) 1331(1) 11074(1) 28(1)
C(060) 11147(2) 919(1) 9386(1) 29(1)
C(061) 7899(2) –326(1) 9221(1) 26(1)
C(062) 11921(2) 1499(1) 10175(1) 30(1)
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x y z U(eq)
C(063) –523(2) 9303(2) 7759(1) 46(1)
N(064) 4048(2) 7591(1) 8191(1) 25(1)
C(065) 5785(2) 175(1) 9211(1) 26(1)
C(066) 4174(2) 7092(1) 9329(1) 26(1)
C(067) 11931(2) 1595(1) 10697(1) 32(1)
C(068) 3316(2) 6727(1) 9604(1) 32(1)
C(069) 6037(2) 1374(1) 8902(1) 33(1)
C(070) 905(2) 8541(2) 7382(1) 37(1)
C(071) 10073(2) 1823(1) 8350(1) 32(1)
C(072) 6871(2) –53(1) 9545(1) 25(1)
C(073) 314(3) 9560(2) 6943(1) 53(1)
C(074) 6825(2) 1624(2) 8087(1) 37(1)
C(075) 10547(2) 672(1) 10800(1) 30(1)
C(076) 5171(2) –733(1) 10911(1) 30(1)
C(077) 7915(2) 6503(1) 7725(1) 35(1)
C(078) 7035(2) 7449(1) 8175(1) 31(1)
C(079) 989(2) 8968(2) 6967(1) 47(1)
C(080) 876(3) 8514(2) 9525(1) 60(1)
C(081) –451(3) 9725(2) 7337(1) 54(1)
C(082) 7948(2) 6977(2) 8117(1) 37(1)
C(083) 5109(2) –446(1) 9007(1) 34(1)
C(084) 6959(2) 6511(1) 7386(1) 33(1)
C(085) 1702(3) 9029(1) 9316(1) 41(1)
C(086) 68(2) 8257(1) 8250(1) 42(1)

Table 3.   Bond lengths [Å] and angles [°] for sw007.

Ni(01)–N(017) 1.8484(18) C(026)–C(065) 1.511(3) C(055)–H(05G) 0.9900

Ni(01)–N(007) 1.8618(19) C(027)–C(034) 1.369(4) C(056)–C(067) 1.379(3)

Ni(01)–O(006) 1.8651(16) C(027)–C(068) 1.386(3) C(056)–C(075) 1.389(3)

Ni(01)–N(008) 1.9273(19) C(027)–H(02D) 0.9500 C(056)–H(05H) 0.9500

Ni(02)–N(035) 1.853(2) C(028)–C(041) 1.388(3) C(057)–C(074) 1.373(4)

Ni(02)–N(064) 1.853(2) C(029)–C(062) 1.387(3) C(057)–C(069) 1.392(3)

Ni(02)–O(014) 1.8640(17) C(029)–C(051) 1.403(3) C(057)–H(05I) 0.9500

Ni(02)–N(042) 1.934(2) C(029)–C(060) 1.507(3) C(058)–C(080) 1.492(4)

O(003)–C(011) 1.224(3) C(030)–N(064) 1.480(3) C(058)–H(05J) 0.9900

O(004)–C(018) 1.230(3) C(030)–H(03A) 1.0000 C(058)–H(05K) 0.9900

F(005)–C(034) 1.372(3) C(031)–C(046) 1.381(3) C(059)–H(05L) 0.9500



174

O(006)–C(061) 1.298(3) C(031)–C(036) 1.384(4) C(060)–H(06A) 0.9900

N(007)–C(050) 1.376(3) C(031)–H(03B) 0.9500 C(060)–H(06B) 0.9900

N(007)–C(023) 1.412(3) C(032)–C(059) 1.376(3) C(061)–C(072) 1.524(3)

N(008)–C(021) 1.490(3) C(032)–C(037) 1.382(3) C(062)–C(067) 1.385(3)

N(008)–C(060) 1.504(3) C(032)–H(03C) 0.9500 C(062)–H(06C) 0.9500

N(008)–C(038) 1.533(3) C(033)–C(076) 1.391(3) C(063)–C(081) 1.387(4)

F(009)–C(074) 1.373(3) C(033)–H(03D) 0.9500 C(063)–H(06D) 0.9500

O(010)–C(061) 1.230(3) C(034)–C(048) 1.368(4) C(065)–C(083) 1.530(3)

C(011)–O(014) 1.299(3) C(036)–C(052) 1.383(3) C(065)–C(072) 1.560(3)

C(011)–C(030) 1.524(3) C(036)–H(03E) 0.9500 C(065)–H(06E) 1.0000

O(012)–C(050) 1.231(3) C(037)–C(044) 1.379(3) C(066)–C(068) 1.396(3)

C(013)–C(048) 1.388(3) C(037)–H(03F) 0.9500 C(067)–H(06F) 0.9500

C(013)–C(066) 1.387(3) C(038)–C(071) 1.516(3) C(068)–H(06G) 0.9500

C(013)–H(01A) 0.9500 C(038)–H(03G) 0.9900 C(069)–H(06H) 0.9500

C(015)–N(017) 1.304(3) C(038)–H(03H) 0.9900 C(070)–C(079) 1.377(4)

C(015)–C(049) 1.460(3) C(039)–C(047) 1.392(3) C(070)–H(07A) 0.9500

C(015)–C(028) 1.504(3) C(039)–H(03I) 0.9500 C(071)–H(07B) 0.9900

C(016)–C(053) 1.520(3) C(040)–N(064) 1.306(3) C(071)–H(07C) 0.9900

C(016)–C(066) 1.521(3) C(040)–C(043) 1.506(3) C(072)–H(07D) 1.0000

C(016)–C(030) 1.558(3) C(041)–C(076) 1.390(3) C(073)–C(081) 1.378(4)

C(016)–H(016) 1.0000 C(041)–H(04A) 0.9500 C(073)–C(079) 1.385(4)

N(017)–C(072) 1.480(3) N(042)–C(086) 1.500(3) C(073)–H(07E) 0.9500

C(018)–N(035) 1.376(3) N(042)–C(058) 1.527(3) C(075)–H(07F) 0.9500

C(018)–C(020) 1.510(3) C(043)–C(078) 1.392(3) C(076)–H(07G) 0.9500

C(019)–C(022) 1.380(3) C(043)–C(045) 1.396(3) C(077)–C(084) 1.387(4)

C(019)–C(028) 1.397(3) C(044)–H(04B) 0.9500 C(077)–C(082) 1.388(4)

C(019)–H(01C) 0.9500 C(045)–C(084) 1.379(3) C(077)–H(07H) 0.9500

C(020)–N(042) 1.491(3) C(045)–H(04C) 0.9500 C(078)–C(082) 1.384(4)

C(020)–C(085) 1.539(3) C(046)–H(04D) 0.9500 C(078)–H(07I) 0.9500



175

C(020)–H(02A) 1.0000 C(047)–C(074) 1.362(4) C(079)–H(07J) 0.9500

C(021)–C(050) 1.510(3) C(047)–H(04E) 0.9500 C(080)–C(085) 1.474(4)

C(021)–C(055) 1.535(3) C(048)–H(04F) 0.9500 C(080)–H(08A) 0.9900

C(021)–H(02B) 1.0000 C(049)–C(059) 1.409(3) C(080)–H(08B) 0.9900

C(022)–C(033) 1.384(3) C(051)–C(075) 1.385(3) C(081)–H(08C) 0.9500

C(022)–H(02C) 0.9500 C(051)–H(05A) 0.9500 C(082)–H(08D) 0.9500

C(023)–C(044) 1.404(3) C(052)–H(05B) 0.9500 C(083)–H(08E) 0.9800

C(023)–C(049) 1.427(3) C(053)–H(05C) 0.9800 C(083)–H(08F) 0.9800

C(024)–N(035) 1.403(3) C(053)–H(05D) 0.9800 C(083)–H(08G) 0.9800

C(024)–C(052) 1.408(3) C(053)–H(05E) 0.9800 C(084)–H(08H) 0.9500

C(024)–C(025) 1.423(3) C(054)–C(063) 1.387(4) C(085)–H(08I) 0.9900

C(025)–C(046) 1.409(3) C(054)–C(070) 1.394(4) C(085)–H(08J) 0.9900

C(025)–C(040) 1.464(3) C(054)–C(086) 1.513(4) C(086)–H(08K) 0.9900

C(026)–C(069) 1.388(3) C(055)–C(071) 1.519(3) C(086)–H(08L) 0.9900

C(026)–C(039) 1.393(3) C(055)–H(05F) 0.9900

N(017)–Ni(01)–N(007) 95.73(8) C(048)–C(034)–F(005) 118.7(2) O(010)–C(061)–C(072) 120.9(2)
N(017)–Ni(01)–O(006) 86.36(8) C(027)–C(034)–F(005) 117.9(2) O(006)–C(061)–C(072) 114.6(2)
N(007)–Ni(01)–O(006) 174.24(8) C(018)–N(035)–C(024) 121.5(2) C(067)–C(062)–C(029) 120.8(2)
N(017)–Ni(01)–N(008) 176.23(8) C(018)–N(035)–Ni(02) 114.40(15)C(067)–C(062)–H(06C) 119.6
N(007)–Ni(01)–N(008) 88.03(8) C(024)–N(035)–Ni(02) 124.01(16)C(029)–C(062)–H(06C) 119.6
O(006)–Ni(01)–N(008) 89.91(7) C(031)–C(036)–C(052) 121.1(2) C(054)–C(063)–C(081) 120.6(3)
N(035)–Ni(02)–N(064) 95.23(9) C(031)–C(036)–H(03E) 119.4 C(054)–C(063)–H(06D) 119.7
N(035)–Ni(02)–O(014) 172.41(7) C(052)–C(036)–H(03E) 119.4 C(081)–C(063)–H(06D) 119.7
N(064)–Ni(02)–O(014) 87.16(8) C(044)–C(037)–C(032) 121.1(2) C(040)–N(064)–C(030) 120.4(2)
N(035)–Ni(02)–N(042) 87.88(8) C(044)–C(037)–H(03F) 119.4 C(040)–N(064)–Ni(02) 128.90(17)
N(064)–Ni(02)–N(042) 172.78(8) C(032)–C(037)–H(03F) 119.4 C(030)–N(064)–Ni(02) 110.66(14)
O(014)–Ni(02)–N(042) 90.60(8) C(071)–C(038)–N(008) 105.37(19)C(026)–C(065)–C(083) 114.08(18)
C(061)–O(006)–Ni(01) 115.52(14)C(071)–C(038)–H(03G) 110.7 C(026)–C(065)–C(072) 112.26(18)
C(050)–N(007)–C(023) 121.07(19)N(008)–C(038)–H(03G) 110.7 C(083)–C(065)–C(072) 110.5(2)
C(050)–N(007)–Ni(01) 114.28(14)C(071)–C(038)–H(03H) 110.7 C(026)–C(065)–H(06E) 106.5
C(023)–N(007)–Ni(01) 123.70(16)N(008)–C(038)–H(03H) 110.7 C(083)–C(065)–H(06E) 106.5
C(021)–N(008)–C(060) 112.03(18)H(03G)–C(038)–H(03H)108.8 C(072)–C(065)–H(06E) 106.5
C(021)–N(008)–C(038) 106.97(17)C(047)–C(039)–C(026) 121.4(2) C(013)–C(066)–C(068) 118.2(2)
C(060)–N(008)–C(038) 109.60(17)C(047)–C(039)–H(03I) 119.3 C(013)–C(066)–C(016) 119.9(2)
C(021)–N(008)–Ni(01) 107.17(13)C(026)–C(039)–H(03I) 119.3 C(068)–C(066)–C(016) 121.7(2)
C(060)–N(008)–Ni(01) 108.11(13)N(064)–C(040)–C(025) 121.8(2) C(056)–C(067)–C(062) 120.4(2)
C(038)–N(008)–Ni(01) 113.00(14)N(064)–C(040)–C(043) 118.4(2) C(056)–C(067)–H(06F) 119.8
O(003)–C(011)–O(014) 125.1(2) C(025)–C(040)–C(043) 119.8(2) C(062)–C(067)–H(06F) 119.8
O(003)–C(011)–C(030) 120.3(2) C(028)–C(041)–C(076) 120.4(2) C(027)–C(068)–C(066) 121.2(2)
O(014)–C(011)–C(030) 114.6(2) C(028)–C(041)–H(04A) 119.8 C(027)–C(068)–H(06G) 119.4
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C(048)–C(013)–C(066) 121.4(2) C(076)–C(041)–H(04A) 119.8 C(066)–C(068)–H(06G) 119.4
C(048)–C(013)–H(01A) 119.3 C(020)–N(042)–C(086) 113.0(2) C(026)–C(069)–C(057) 121.2(2)
C(066)–C(013)–H(01A) 119.3 C(020)–N(042)–C(058) 105.55(19)C(026)–C(069)–H(06H) 119.4
C(011)–O(014)–Ni(02) 115.01(15)C(086)–N(042)–C(058) 109.4(2) C(057)–C(069)–H(06H) 119.4
N(017)–C(015)–C(049) 121.8(2) C(020)–N(042)–Ni(02) 105.87(14)C(079)–C(070)–C(054) 119.9(3)
N(017)–C(015)–C(028) 119.4(2) C(086)–N(042)–Ni(02) 112.67(15)C(079)–C(070)–H(07A) 120.0
C(049)–C(015)–C(028) 118.74(18)C(058)–N(042)–Ni(02) 110.10(17)C(054)–C(070)–H(07A) 120.0
C(053)–C(016)–C(066) 112.68(19)C(078)–C(043)–C(045) 118.5(2) C(038)–C(071)–C(055) 103.28(18)
C(053)–C(016)–C(030) 110.61(19)C(078)–C(043)–C(040) 121.7(2) C(038)–C(071)–H(07B) 111.1
C(066)–C(016)–C(030) 114.53(19)C(045)–C(043)–C(040) 119.5(2) C(055)–C(071)–H(07B) 111.1
C(053)–C(016)–H(016) 106.1 C(037)–C(044)–C(023) 121.9(2) C(038)–C(071)–H(07C) 111.1
C(066)–C(016)–H(016) 106.1 C(037)–C(044)–H(04B) 119.1 C(055)–C(071)–H(07C) 111.1
C(030)–C(016)–H(016) 106.1 C(023)–C(044)–H(04B) 119.1 H(07B)–C(071)–H(07C)109.1
C(015)–N(017)–C(072) 120.85(19)C(084)–C(045)–C(043) 121.0(2) N(017)–C(072)–C(061) 107.32(18)
C(015)–N(017)–Ni(01) 128.11(16)C(084)–C(045)–H(04C) 119.5 N(017)–C(072)–C(065) 110.66(18)
C(072)–N(017)–Ni(01) 111.02(13)C(043)–C(045)–H(04C) 119.5 C(061)–C(072)–C(065) 111.72(17)
O(004)–C(018)–N(035) 128.1(2) C(031)–C(046)–C(025) 121.9(2) N(017)–C(072)–H(07D) 109.0
O(004)–C(018)–C(020) 118.8(2) C(031)–C(046)–H(04D) 119.1 C(061)–C(072)–H(07D) 109.0
N(035)–C(018)–C(020) 112.9(2) C(025)–C(046)–H(04D) 119.1 C(065)–C(072)–H(07D) 109.0
C(022)–C(019)–C(028) 119.5(2) C(074)–C(047)–C(039) 117.6(2) C(081)–C(073)–C(079) 119.9(3)
C(022)–C(019)–H(01C) 120.2 C(074)–C(047)–H(04E) 121.2 C(081)–C(073)–H(07E) 120.0
C(028)–C(019)–H(01C) 120.2 C(039)–C(047)–H(04E) 121.2 C(079)–C(073)–H(07E) 120.0
N(042)–C(020)–C(018) 110.96(18)C(034)–C(048)–C(013) 117.8(2) C(047)–C(074)–C(057) 123.6(2)
N(042)–C(020)–C(085) 103.89(19)C(034)–C(048)–H(04F) 121.1 C(047)–C(074)–F(009) 118.7(2)
C(018)–C(020)–C(085) 112.8(2) C(013)–C(048)–H(04F) 121.1 C(057)–C(074)–F(009) 117.6(3)
N(042)–C(020)–H(02A)109.7 C(059)–C(049)–C(023) 118.8(2) C(051)–C(075)–C(056) 119.7(2)
C(018)–C(020)–H(02A) 109.7 C(059)–C(049)–C(015) 116.3(2) C(051)–C(075)–H(07F) 120.1
C(085)–C(020)–H(02A) 109.7 C(023)–C(049)–C(015) 124.97(18)C(056)–C(075)–H(07F) 120.1
N(008)–C(021)–C(050) 111.64(19)O(012)–C(050)–N(007) 128.2(2) C(033)–C(076)–C(041) 119.7(2)
N(008)–C(021)–C(055) 104.18(18)O(012)–C(050)–C(021) 118.3(2) C(033)–C(076)–H(07G) 120.1
C(050)–C(021)–C(055) 113.91(19)N(007)–C(050)–C(021) 113.5(2) C(041)–C(076)–H(07G) 120.1
N(008)–C(021)–H(02B) 109.0 C(075)–C(051)–C(029) 120.9(2) C(084)–C(077)–C(082) 119.2(2)
C(050)–C(021)–H(02B) 109.0 C(075)–C(051)–H(05A) 119.5 C(084)–C(077)–H(07H) 120.4
C(055)–C(021)–H(02B) 109.0 C(029)–C(051)–H(05A) 119.5 C(082)–C(077)–H(07H) 120.4
C(019)–C(022)–C(033) 121.0(2) C(036)–C(052)–C(024) 121.6(2) C(082)–C(078)–C(043) 120.2(2)
C(019)–C(022)–H(02C) 119.5 C(036)–C(052)–H(05B) 119.2 C(082)–C(078)–H(07I) 119.9
C(033)–C(022)–H(02C) 119.5 C(024)–C(052)–H(05B) 119.2 C(043)–C(078)–H(07I) 119.9
C(044)–C(023)–N(007) 121.9(2) C(016)–C(053)–H(05C) 109.5 C(070)–C(079)–C(073) 120.6(3)
C(044)–C(023)–C(049) 117.36(19)C(016)–C(053)–H(05D) 109.5 C(070)–C(079)–H(07J) 119.7
N(007)–C(023)–C(049) 120.59(19)H(05C)–C(053)–H(05D) 109.5 C(073)–C(079)–H(07J) 119.7
N(035)–C(024)–C(052) 121.5(2) C(016)–C(053)–H(05E) 109.5 C(085)–C(080)–C(058) 105.2(2)
N(035)–C(024)–C(025) 121.2(2) H(05C)–C(053)–H(05E) 109.5 C(085)–C(080)–H(08A) 110.7
C(052)–C(024)–C(025) 117.3(2) H(05D)–C(053)–H(05E) 109.5 C(058)–C(080)–H(08A) 110.7
C(046)–C(025)–C(024) 119.3(2) C(063)–C(054)–C(070) 119.2(3) C(085)–C(080)–H(08B) 110.7
C(046)–C(025)–C(040) 116.6(2) C(063)–C(054)–C(086) 120.0(2) C(058)–C(080)–H(08B) 110.7
C(024)–C(025)–C(040) 124.0(2) C(070)–C(054)–C(086) 120.8(2) H(08A)–C(080)–H(08B)108.8
C(069)–C(026)–C(039) 118.4(2) C(071)–C(055)–C(021) 101.93(18)C(073)–C(081)–C(063) 119.7(3)
C(069)–C(026)–C(065) 119.4(2) C(071)–C(055)–H(05F) 111.4 C(073)–C(081)–H(08C) 120.1
C(039)–C(026)–C(065) 122.2(2) C(021)–C(055)–H(05F) 111.4 C(063)–C(081)–H(08C) 120.1
C(034)–C(027)–C(068) 117.9(2) C(071)–C(055)–H(05G) 111.4 C(078)–C(082)–C(077) 120.7(2)
C(034)–C(027)–H(02D) 121.0 C(021)–C(055)–H(05G) 111.4 C(078)–C(082)–H(08D) 119.6
C(068)–C(027)–H(02D) 121.0 H(05F)–C(055)–H(05G) 109.2 C(077)–C(082)–H(08D) 119.6
C(041)–C(028)–C(019) 119.6(2) C(067)–C(056)–C(075) 119.7(2) C(065)–C(083)–H(08E) 109.5
C(041)–C(028)–C(015) 119.13(19)C(067)–C(056)–H(05H) 120.1 C(065)–C(083)–H(08F) 109.5
C(019)–C(028)–C(015) 121.2(2) C(075)–C(056)–H(05H) 120.1 H(08E)–C(083)–H(08F) 109.5
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C(062)–C(029)–C(051) 118.2(2) C(074)–C(057)–C(069) 117.7(3) C(065)–C(083)–H(08G) 109.5
C(062)–C(029)–C(060) 120.9(2) C(074)–C(057)–H(05I) 121.1 H(08E)–C(083)–H(08G)109.5
C(051)–C(029)–C(060) 120.9(2) C(069)–C(057)–H(05I) 121.1 H(08F)–C(083)–H(08G) 109.5
N(064)–C(030)–C(011) 107.36(19)C(080)–C(058)–N(042) 106.6(2) C(045)–C(084)–C(077) 120.2(2)
N(064)–C(030)–C(016) 112.04(18)C(080)–C(058)–H(05J) 110.4 C(045)–C(084)–H(08H) 119.9
C(011)–C(030)–C(016) 112.32(18)N(042)–C(058)–H(05J) 110.4 C(077)–C(084)–H(08H) 119.9
N(064)–C(030)–H(03A)108.3 C(080)–C(058)–H(05K) 110.4 C(080)–C(085)–C(020) 102.7(2)
C(011)–C(030)–H(03A) 108.3 N(042)–C(058)–H(05K) 110.4 C(080)–C(085)–H(08I) 111.2
C(016)–C(030)–H(03A) 108.3 H(05J)–C(058)–H(05K) 108.6 C(020)–C(085)–H(08I) 111.2
C(046)–C(031)–C(036) 118.6(2) C(032)–C(059)–C(049) 122.4(2) C(080)–C(085)–H(08J) 111.2
C(046)–C(031)–H(03B) 120.7 C(032)–C(059)–H(05L) 118.8 C(020)–C(085)–H(08J) 111.2
C(036)–C(031)–H(03B) 120.7 C(049)–C(059)–H(05L) 118.8 H(08I)–C(085)–H(08J) 109.1
C(059)–C(032)–C(037) 118.4(2) N(008)–C(060)–C(029) 112.42(18)N(042)–C(086)–C(054) 114.3(2)
C(059)–C(032)–H(03C) 120.8 N(008)–C(060)–H(06A) 109.1 N(042)–C(086)–H(08K) 108.7
C(037)–C(032)–H(03C) 120.8 C(029)–C(060)–H(06A) 109.1 C(054)–C(086)–H(08K) 108.7
C(022)–C(033)–C(076) 119.7(2) N(008)–C(060)–H(06B) 109.1 N(042)–C(086)–H(08L) 108.7
C(022)–C(033)–H(03D) 120.2 C(029)–C(060)–H(06B) 109.1 C(054)–C(086)–H(08L) 108.7
C(076)–C(033)–H(03D) 120.2 H(06A)–C(060)–H(06B) 107.9 H(08K)–C(086)–H(08L)107.6
C(048)–C(034)–C(027) 123.4(2) O(010)–C(061)–O(006) 124.6(2)

Table  4.  Anisotropic  displacement  parameters  (Å2 × 103)for  sw007.  The  anisotropic 
displacement factor exponent takes the form: –2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]

U11 U22 U33 U23 U13 U12

Ni(01) 23(1) 26(1) 25(1) –1(1) 2(1) 0(1)
Ni(02) 30(1) 25(1) 24(1) 0(1) 3(1) –2(1)
O(003) 44(1) 23(1) 36(1) –1(1) 7(1) –7(1)
O(004) 35(1) 27(1) 36(1) 0(1) 0(1) 2(1)
F(005) 56(1) 45(1) 30(1) –6(1) 14(1) 3(1)
O(006) 26(1) 26(1) 29(1) –1(1) 3(1) 0(1)
N(007) 22(1) 26(1) 25(1) 0(1) 0(1) 1(1)
N(008) 27(1) 23(1) 25(1) 0(1) –1(1) 3(1)
F(009) 54(1) 52(1) 44(1) 24(1) –12(1) –14(1)
O(010) 37(1) 26(1) 29(1) –2(1) –1(1) 0(1)
C(011) 38(1) 27(2) 20(1) –2(1) 4(1) –4(1)
O(012) 31(1) 23(1) 38(1) –3(1) 2(1) 1(1)
C(013) 33(1) 31(2) 26(1) 5(1) 1(1) –1(1)
O(014) 32(1) 29(1) 30(1) –2(1) 4(1) –3(1)
C(015) 21(1) 25(2) 23(1) 3(1) –3(1) 3(1)
C(016) 33(1) 27(2) 27(1) 2(1) 0(1) 2(1)
N(017) 24(1) 25(1) 21(1) 1(1) –3(1) 3(1)
C(018) 30(1) 25(2) 25(1) 1(1) –5(1) 1(1)
C(019) 27(1) 28(2) 25(1) 3(1) 1(1) 3(1)
C(020) 40(1) 26(2) 30(1) 1(1) 6(1) 4(1)
C(021) 22(1) 26(2) 33(1) 0(1) 2(1) 2(1)
C(022) 21(1) 35(2) 33(1) –1(1) –1(1) 3(1)
C(023) 22(1) 27(2) 25(1) –2(1) –4(1) 7(1)
C(024) 33(1) 27(2) 19(1) –2(1) –2(1) –7(1)
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U11 U22 U33 U23 U13 U12

C(025) 31(1) 22(2) 22(1) –1(1) 2(1) –2(1)
C(026) 22(1) 27(2) 27(1) –1(1) –4(1) 1(1)
C(027) 37(1) 34(2) 27(1) 4(1) 4(1) 0(1)
C(028) 25(1) 28(2) 20(1) –1(1) 2(1) –1(1)
C(029) 21(1) 23(2) 32(1) 0(1) –2(1) 5(1)
C(030) 34(1) 22(2) 25(1) 0(1) 6(1) 1(1)
C(031) 41(1) 33(2) 28(1) 2(1) 5(1) –9(1)
C(032) 32(1) 35(2) 22(1) –1(1) –2(1) 6(1)
C(033) 32(1) 30(2) 33(1) –3(1) 6(1) –5(1)
C(034) 38(1) 39(2) 23(1) 0(1) 3(1) 10(1)
N(035) 31(1) 26(1) 22(1) 0(1) 0(1) –1(1)
C(036) 46(2) 26(2) 27(1) 4(1) –1(1) –5(1)
C(037) 34(1) 31(2) 27(1) –8(1) –6(1) 4(1)
C(038) 30(1) 34(2) 24(1) –1(1) 3(1) –2(1)
C(039) 34(1) 28(2) 29(1) 2(1) –4(1) 1(1)
C(040) 32(1) 29(2) 19(1) –1(1) –2(1) –3(1)
C(041) 26(1) 31(2) 24(1) –1(1) 2(1) 6(1)
N(042) 39(1) 27(1) 33(1) 1(1) 10(1) –4(1)
C(043) 29(1) 27(2) 24(1) 4(1) 4(1) –3(1)
C(044) 26(1) 31(2) 32(1) –1(1) –3(1) 3(1)
C(045) 28(1) 31(2) 26(1) 4(1) 2(1) –2(1)
C(046) 35(1) 30(2) 26(1) 1(1) 2(1) –4(1)
C(047) 33(1) 45(2) 26(1) 4(1) –2(1) 2(1)
C(048) 41(1) 29(2) 30(1) –3(1) –1(1) 1(1)
C(049) 21(1) 27(1) 24(1) 1(1) 0(1) 3(1)
C(050) 22(1) 24(2) 33(1) 3(1) –4(1) 2(1)
C(051) 25(1) 21(2) 38(1) 1(1) –4(1) 1(1)
C(052) 41(2) 27(2) 23(1) 1(1) –1(1) 0(1)
C(053) 53(2) 31(2) 33(1) 1(1) 3(1) 8(1)
C(054) 24(1) 39(2) 45(1) –4(1) –6(1) –1(1)
C(055) 29(1) 28(2) 33(1) 6(1) 1(1) 1(1)
C(056) 32(1) 35(2) 34(1) –2(1) –2(1) 2(1)
C(057) 41(1) 26(2) 38(1) 4(1) –17(1) –3(1)
C(058) 70(2) 40(2) 47(2) 10(1) 34(1) 9(2)
C(059) 27(1) 32(2) 25(1) 1(1) –1(1) 3(1)
C(060) 26(1) 27(2) 34(1) 3(1) 1(1) 5(1)
C(061) 27(1) 31(2) 22(1) 3(1) –4(1) 2(1)
C(062) 25(1) 28(2) 36(1) 4(1) 1(1) 3(1)
C(063) 37(2) 54(2) 48(2) –6(1) –3(1) 11(2)
N(064) 34(1) 22(1) 20(1) –2(1) 1(1) –4(1)
C(065) 23(1) 32(2) 25(1) –2(1) –2(1) 0(1)
C(066) 30(1) 26(2) 23(1) 4(1) –3(1) 2(1)
C(067) 29(1) 29(2) 39(1) –6(1) –2(1) –3(1)
C(068) 39(1) 29(2) 27(1) 1(1) 1(1) –4(1)
C(069) 31(1) 37(2) 30(1) –2(1) –9(1) 3(1)
C(070) 32(1) 42(2) 38(1) –11(1) –5(1) 3(1)
C(071) 30(1) 35(2) 31(1) 4(1) 4(1) 1(1)
C(072) 28(1) 24(1) 23(1) –1(1) 0(1) –2(1)
C(073) 54(2) 63(2) 43(2) 9(2) –18(1) –3(2)
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U11 U22 U33 U23 U13 U12

C(074) 32(1) 41(2) 37(1) 16(1) –9(1) –8(1)
C(075) 28(1) 27(2) 35(1) 7(1) 2(1) 2(1)
C(076) 36(1) 25(2) 30(1) 4(1) 5(1) 2(1)
C(077) 33(1) 31(2) 42(1) 11(1) 10(1) 2(1)
C(078) 31(1) 32(2) 30(1) 4(1) 1(1) –5(1)
C(079) 40(2) 68(2) 32(1) –8(1) –6(1) –1(2)
C(080) 58(2) 80(3) 41(2) 19(2) –8(1) –12(2)
C(081) 56(2) 53(2) 53(2) –2(2) –14(2) 17(2)
C(082) 31(1) 41(2) 38(1) 10(1) –2(1) –5(1)
C(083) 33(1) 34(2) 34(1) 4(1) –6(1) –9(1)
C(084) 37(1) 30(2) 32(1) 2(1) 9(1) –2(1)
C(085) 68(2) 31(2) 24(1) 3(1) 6(1) 9(2)
C(086) 28(1) 39(2) 57(2) –1(1) 10(1) –5(1)

Table  5.  Hydrogen  coordinates  ( × 104)  and  isotropic  displacement  parameters  (Å2 × 103)  for 
sw007.

x y z U(eq)
H(01A) 5072 7991 9318 36
H(016) 5566 7049 8826 35
H(01C) 4458 898 10245 31
H(02A) 588 9335 8714 38
H(02B) 10915 2163 9271 32
H(02C) 2921 185 10519 36
H(02D) 2232 6740 10232 39
H(03A) 4531 6603 8089 32
H(03B) 6498 9533 6988 40
H(03C) 6938 1852 11742 36
H(03D) 3350 –844 10922 38
H(03E) 4844 10250 7095 40
H(03F) 8376 2633 11463 37
H(03G) 10668 833 8483 35
H(03H) 9229 898 8501 35
H(03I) 6645 5 8258 36

H(04A) 6904 –433 10810 33
H(04B) 9132 2582 10646 35
H(04C) 5382 6970 7218 34
H(04D) 6492 8468 7377 37
H(04E) 7224 811 7644 42
H(04F) 4239 8442 10064 40
H(05A) 10110 201 10138 33
H(05B) 3289 9954 7634 37
H(05C) 5557 6001 9279 58
H(05D) 5719 5910 8678 58
H(05E) 4447 5759 8938 58
H(05F) 8639 2258 8749 36
H(05G) 9764 2770 8692 36
H(05H) 11204 1278 11365 40
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x y z U(eq)
H(05I) 6277 2330 8604 42
H(05J) –67 7808 9106 63

H(05K) 1317 7602 9187 63
H(05L) 6277 1013 11187 34
H(06A) 11870 1123 9230 35
H(06B) 11137 428 9298 35
H(06C) 12398 1784 9964 35
H(06D) –1043 9420 8032 56
H(06E) 5219 419 9443 32
H(06F) 12426 1938 10842 39
H(06G) 3073 6290 9487 38
H(06H) 5732 1521 9221 39
H(07A) 1358 8131 7391 45
H(07B) 9612 1840 8028 39
H(07C) 10918 1949 8280 39
H(07D) 6601 –418 9785 30
H(07E) 379 9852 6656 64
H(07F) 10076 387 11014 36
H(07G) 5350 –1143 11087 36
H(07H) 8539 6177 7688 42
H(07I) 7084 7782 8436 37
H(07J) 1513 8855 6695 56

H(08A) 85 8719 9602 71
H(08B) 1206 8312 9841 71
H(08C) –926 10126 7319 65
H(08D) 8604 6977 8347 44
H(08E) 4427 –294 8801 51
H(08F) 4819 –721 9293 51
H(08G) 5650 –721 8796 51
H(08H) 6941 6199 7110 40
H(08I) 2549 8886 9355 49
H(08J) 1588 9476 9484 49

H(08K) –692 8358 8430 50
H(08L) 34 7776 8136 50

Table 6.  Torsion angles [°] for sw007.

N(017)–Ni(01)–O(006)–C(061) 11.08(15) C(024)–C(025)–C(046)–C(031) –1.9(3)
N(007)–Ni(01)–O(006)–C(061) 122.6(7) C(040)–C(025)–C(046)–C(031) 175.0(2)
N(008)–Ni(01)–O(006)–C(061) –168.31(15) C(026)–C(039)–C(047)–C(074) 0.1(3)
N(017)–Ni(01)–N(007)–C(050) –166.44(15) C(027)–C(034)–C(048)–C(013) 0.2(4)
O(006)–Ni(01)–N(007)–C(050) 82.5(8) F(005)–C(034)–C(048)–C(013) 179.5(2)
N(008)–Ni(01)–N(007)–C(050) 13.31(15) C(066)–C(013)–C(048)–C(034) –0.7(3)
N(017)–Ni(01)–N(007)–C(023) 24.62(17) C(044)–C(023)–C(049)–C(059) 1.6(3)
O(006)–Ni(01)–N(007)–C(023) –86.5(8) N(007)–C(023)–C(049)–C(059) 177.35(19)
N(008)–Ni(01)–N(007)–C(023) –155.63(17) C(044)–C(023)–C(049)–C(015) –176.8(2)
N(017)–Ni(01)–N(008)–C(021) 155.7(12) N(007)–C(023)–C(049)–C(015) –1.1(3)
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N(007)–Ni(01)–N(008)–C(021) –20.47(13) N(017)–C(015)–C(049)–C(059) –167.7(2)
O(006)–Ni(01)–N(008)–C(021) 164.91(13) C(028)–C(015)–C(049)–C(059) 8.9(3)
N(017)–Ni(01)–N(008)–C(060) –83.4(12) N(017)–C(015)–C(049)–C(023) 10.8(3)
N(007)–Ni(01)–N(008)–C(060) 100.47(15) C(028)–C(015)–C(049)–C(023) –172.6(2)
O(006)–Ni(01)–N(008)–C(060) –74.15(14) C(023)–N(007)–C(050)–O(012) –15.1(3)
N(017)–Ni(01)–N(008)–C(038) 38.1(13) Ni(01)–N(007)–C(050)–O(012) 175.60(18)
N(007)–Ni(01)–N(008)–C(038) –138.05(16) C(023)–N(007)–C(050)–C(021) 167.21(18)
O(006)–Ni(01)–N(008)–C(038) 47.33(16) Ni(01)–N(007)–C(050)–C(021) –2.0(2)
O(003)–C(011)–O(014)–Ni(02) –172.36(17) N(008)–C(021)–C(050)–O(012) 167.16(19)
C(030)–C(011)–O(014)–Ni(02) 8.8(2) C(055)–C(021)–C(050)–O(012) –75.2(3)
N(035)–Ni(02)–O(014)–C(011) 113.2(6) N(008)–C(021)–C(050)–N(007) –14.9(3)
N(064)–Ni(02)–O(014)–C(011) 4.65(14) C(055)–C(021)–C(050)–N(007) 102.7(2)
N(042)–Ni(02)–O(014)–C(011) –168.48(14) C(062)–C(029)–C(051)–C(075) 3.4(3)
C(049)–C(015)–N(017)–C(072) 179.95(19) C(060)–C(029)–C(051)–C(075) –174.3(2)
C(028)–C(015)–N(017)–C(072) 3.4(3) C(031)–C(036)–C(052)–C(024) –0.3(4)
C(049)–C(015)–N(017)–Ni(01) 1.7(3) N(035)–C(024)–C(052)–C(036) 177.6(2)
C(028)–C(015)–N(017)–Ni(01) –174.86(15) C(025)–C(024)–C(052)–C(036) –3.5(3)
N(007)–Ni(01)–N(017)–C(015) –16.2(2) N(008)–C(021)–C(055)–C(071) –39.4(2)
O(006)–Ni(01)–N(017)–C(015) 158.43(19) C(050)–C(021)–C(055)–C(071) –161.3(2)
N(008)–Ni(01)–N(017)–C(015) 167.7(11) C(020)–N(042)–C(058)–C(080) –1.8(3)
N(007)–Ni(01)–N(017)–C(072) 165.40(14) C(086)–N(042)–C(058)–C(080) –123.6(3)
O(006)–Ni(01)–N(017)–C(072) –19.99(14) Ni(02)–N(042)–C(058)–C(080) 112.1(2)
N(008)–Ni(01)–N(017)–C(072) –10.7(13) C(037)–C(032)–C(059)–C(049) 0.3(4)
O(004)–C(018)–C(020)–N(042) 163.1(2) C(023)–C(049)–C(059)–C(032) –1.3(3)
N(035)–C(018)–C(020)–N(042) –21.1(3) C(015)–C(049)–C(059)–C(032) 177.3(2)
O(004)–C(018)–C(020)–C(085) –80.8(3) C(021)–N(008)–C(060)–C(029) 64.6(2)
N(035)–C(018)–C(020)–C(085) 95.0(2) C(038)–N(008)–C(060)–C(029) –176.8(2)
C(060)–N(008)–C(021)–C(050) –94.8(2) Ni(01)–N(008)–C(060)–C(029) –53.3(2)
C(038)–N(008)–C(021)–C(050) 145.12(18) C(062)–C(029)–C(060)–N(008) –97.6(3)
Ni(01)–N(008)–C(021)–C(050) 23.7(2) C(051)–C(029)–C(060)–N(008) 80.1(3)
C(060)–N(008)–C(021)–C(055) 141.87(17) Ni(01)–O(006)–C(061)–O(010) 179.72(17)
C(038)–N(008)–C(021)–C(055) 21.8(2) Ni(01)–O(006)–C(061)–C(072) 0.9(2)
Ni(01)–N(008)–C(021)–C(055) –99.70(16) C(051)–C(029)–C(062)–C(067) –2.0(3)
C(028)–C(019)–C(022)–C(033) 0.8(3) C(060)–C(029)–C(062)–C(067) 175.8(2)
C(050)–N(007)–C(023)–C(044) –12.3(3) C(070)–C(054)–C(063)–C(081) –0.7(4)
Ni(01)–N(007)–C(023)–C(044) 155.89(17) C(086)–C(054)–C(063)–C(081) 179.9(3)
C(050)–N(007)–C(023)–C(049) 172.2(2) C(025)–C(040)–N(064)–C(030) 176.55(18)
Ni(01)–N(007)–C(023)–C(049) –19.6(3) C(043)–C(040)–N(064)–C(030) –0.3(3)
N(035)–C(024)–C(025)–C(046) –176.5(2) C(025)–C(040)–N(064)–Ni(02) –1.6(3)
C(052)–C(024)–C(025)–C(046) 4.6(3) C(043)–C(040)–N(064)–Ni(02) –178.44(14)
N(035)–C(024)–C(025)–C(040) 6.8(3) C(011)–C(030)–N(064)–C(040) –154.51(18)
C(052)–C(024)–C(025)–C(040) –172.1(2) C(016)–C(030)–N(064)–C(040) 81.7(2)
C(022)–C(019)–C(028)–C(041) –3.1(3) C(011)–C(030)–N(064)–Ni(02) 23.95(19)
C(022)–C(019)–C(028)–C(015) 175.2(2) C(016)–C(030)–N(064)–Ni(02) –99.82(18)
N(017)–C(015)–C(028)–C(041) 80.9(3) N(035)–Ni(02)–N(064)–C(040) –11.33(19)
C(049)–C(015)–C(028)–C(041) –95.7(3) O(014)–Ni(02)–N(064)–C(040) 161.44(19)
N(017)–C(015)–C(028)–C(019) –97.4(3) N(042)–Ni(02)–N(064)–C(040) –126.5(7)
C(049)–C(015)–C(028)–C(019) 86.0(3) N(035)–Ni(02)–N(064)–C(030) 170.38(14)
O(003)–C(011)–C(030)–N(064) 159.75(18) O(014)–Ni(02)–N(064)–C(030) –16.85(14)
O(014)–C(011)–C(030)–N(064) –21.4(2) N(042)–Ni(02)–N(064)–C(030) 55.2(8)
O(003)–C(011)–C(030)–C(016) –76.6(3) C(069)–C(026)–C(065)–C(083) 139.1(2)
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O(014)–C(011)–C(030)–C(016) 102.2(2) C(039)–C(026)–C(065)–C(083) –40.6(3)
C(053)–C(016)–C(030)–N(064) –163.25(19) C(069)–C(026)–C(065)–C(072) –94.2(2)
C(066)–C(016)–C(030)–N(064) 68.1(3) C(039)–C(026)–C(065)–C(072) 86.1(3)
C(053)–C(016)–C(030)–C(011) 75.8(3) C(048)–C(013)–C(066)–C(068) 1.0(3)
C(066)–C(016)–C(030)–C(011) –52.8(3) C(048)–C(013)–C(066)–C(016) –175.4(2)
C(019)–C(022)–C(033)–C(076) 1.7(3) C(053)–C(016)–C(066)–C(013) 134.2(2)
C(068)–C(027)–C(034)–C(048) –0.1(4) C(030)–C(016)–C(066)–C(013) –98.2(3)
C(068)–C(027)–C(034)–F(005) –179.4(2) C(053)–C(016)–C(066)–C(068) –42.1(3)
O(004)–C(018)–N(035)–C(024) –7.2(3) C(030)–C(016)–C(066)–C(068) 85.5(3)
C(020)–C(018)–N(035)–C(024) 177.40(18) C(075)–C(056)–C(067)–C(062) 3.2(4)
O(004)–C(018)–N(035)–Ni(02) 176.56(18) C(029)–C(062)–C(067)–C(056) –1.3(4)
C(020)–C(018)–N(035)–Ni(02) 1.2(2) C(034)–C(027)–C(068)–C(066) 0.5(4)
C(052)–C(024)–N(035)–C(018) –21.7(3) C(013)–C(066)–C(068)–C(027) –0.9(3)
C(025)–C(024)–N(035)–C(018) 159.4(2) C(016)–C(066)–C(068)–C(027) 175.4(2)
C(052)–C(024)–N(035)–Ni(02) 154.10(17) C(039)–C(026)–C(069)–C(057) –0.8(3)
C(025)–C(024)–N(035)–Ni(02) –24.8(3) C(065)–C(026)–C(069)–C(057) 179.6(2)
N(064)–Ni(02)–N(035)–C(018) –159.97(15) C(074)–C(057)–C(069)–C(026) –1.2(4)
O(014)–Ni(02)–N(035)–C(018) 92.0(6) C(063)–C(054)–C(070)–C(079) 1.7(4)
N(042)–Ni(02)–N(035)–C(018) 13.50(15) C(086)–C(054)–C(070)–C(079) –178.8(2)
N(064)–Ni(02)–N(035)–C(024) 23.93(17) N(008)–C(038)–C(071)–C(055) –28.7(2)
O(014)–Ni(02)–N(035)–C(024) –84.1(6) C(021)–C(055)–C(071)–C(038) 41.8(2)
N(042)–Ni(02)–N(035)–C(024) –162.60(17) C(015)–N(017)–C(072)–C(061) –154.60(19)
C(046)–C(031)–C(036)–C(052) 3.1(4) Ni(01)–N(017)–C(072)–C(061) 23.9(2)
C(059)–C(032)–C(037)–C(044) 0.3(4) C(015)–N(017)–C(072)–C(065) 83.3(2)
C(021)–N(008)–C(038)–C(071) 4.2(2) Ni(01)–N(017)–C(072)–C(065) –98.19(17)
C(060)–N(008)–C(038)–C(071) –117.5(2) O(010)–C(061)–C(072)–N(017) 165.01(19)
Ni(01)–N(008)–C(038)–C(071) 121.91(16) O(006)–C(061)–C(072)–N(017) –16.2(2)
C(069)–C(026)–C(039)–C(047) 1.4(3) O(010)–C(061)–C(072)–C(065) –73.5(3)
C(065)–C(026)–C(039)–C(047) –179.0(2) O(006)–C(061)–C(072)–C(065) 105.3(2)
C(046)–C(025)–C(040)–N(064) –169.8(2) C(026)–C(065)–C(072)–N(017) 65.2(2)
C(024)–C(025)–C(040)–N(064) 7.0(3) C(083)–C(065)–C(072)–N(017) –166.16(18)
C(046)–C(025)–C(040)–C(043) 7.0(3) C(026)–C(065)–C(072)–C(061) –54.3(3)
C(024)–C(025)–C(040)–C(043) –176.2(2) C(083)–C(065)–C(072)–C(061) 74.3(2)
C(019)–C(028)–C(041)–C(076) 3.0(3) C(039)–C(047)–C(074)–C(057) –2.2(4)
C(015)–C(028)–C(041)–C(076) –175.4(2) C(039)–C(047)–C(074)–F(009) 179.6(2)
C(018)–C(020)–N(042)–C(086) –94.4(2) C(069)–C(057)–C(074)–C(047) 2.8(4)
C(085)–C(020)–N(042)–C(086) 144.1(2) C(069)–C(057)–C(074)–F(009) –179.0(2)
C(018)–C(020)–N(042)–C(058) 146.1(2) C(029)–C(051)–C(075)–C(056) –1.6(4)
C(085)–C(020)–N(042)–C(058) 24.6(2) C(067)–C(056)–C(075)–C(051) –1.7(4)
C(018)–C(020)–N(042)–Ni(02) 29.4(2) C(022)–C(033)–C(076)–C(041) –1.9(3)
C(085)–C(020)–N(042)–Ni(02) –92.11(18) C(028)–C(041)–C(076)–C(033) –0.5(3)
N(035)–Ni(02)–N(042)–C(020) –23.84(14) C(045)–C(043)–C(078)–C(082) –4.1(3)
N(064)–Ni(02)–N(042)–C(020) 91.8(7) C(040)–C(043)–C(078)–C(082) 170.4(2)
O(014)–Ni(02)–N(042)–C(020) 163.60(13) C(054)–C(070)–C(079)–C(073) –1.3(4)
N(035)–Ni(02)–N(042)–C(086) 100.09(17) C(081)–C(073)–C(079)–C(070) –0.2(4)
N(064)–Ni(02)–N(042)–C(086) –144.3(7) N(042)–C(058)–C(080)–C(085) –23.0(3)
O(014)–Ni(02)–N(042)–C(086) –72.47(17) C(079)–C(073)–C(081)–C(063) 1.3(4)
N(035)–Ni(02)–N(042)–C(058) –137.47(18) C(054)–C(063)–C(081)–C(073) –0.8(4)
N(064)–Ni(02)–N(042)–C(058) –21.8(8) C(043)–C(078)–C(082)–C(077) 2.5(4)
O(014)–Ni(02)–N(042)–C(058) 49.97(18) C(084)–C(077)–C(082)–C(078) 0.6(4)
N(064)–C(040)–C(043)–C(078) –95.6(3) C(043)–C(045)–C(084)–C(077) 0.4(3)
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C(025)–C(040)–C(043)–C(078) 87.5(3) C(082)–C(077)–C(084)–C(045) –2.1(4)
N(064)–C(040)–C(043)–C(045) 78.9(3) C(058)–C(080)–C(085)–C(020) 37.9(3)
C(025)–C(040)–C(043)–C(045) –98.0(3) N(042)–C(020)–C(085)–C(080) –38.9(3)
C(032)–C(037)–C(044)–C(023) 0.1(4) C(018)–C(020)–C(085)–C(080) –159.2(2)
N(007)–C(023)–C(044)–C(037) –176.8(2) C(020)–N(042)–C(086)–C(054) 49.5(3)
C(049)–C(023)–C(044)–C(037) –1.1(3) C(058)–N(042)–C(086)–C(054) 166.8(2)
C(078)–C(043)–C(045)–C(084) 2.7(3) Ni(02)–N(042)–C(086)–C(054) –70.4(3)
C(040)–C(043)–C(045)–C(084) –172.0(2) C(063)–C(054)–C(086)–N(042) –101.4(3)
C(036)–C(031)–C(046)–C(025) –2.0(3) C(070)–C(054)–C(086)–N(042) 79.1(3)
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