Entwicklung katalytischer Kreuzkupplungs- und Hydroaminierungsreaktionen

Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen

vorgelegt von

Andreas Althammer

aus Bad Reichenhall

Göttingen 2008

<u>Erklärung</u>

Diese Dissertation wurde im Sinne der Promotionsordnung der math.-nat. Fakultäten der Georg-August-Universität vom 13. September 2006 von Herrn Professor Dr. Lutz Ackermann betreut und von Herrn Professor Dr. Ulf Diederichsen vor der Fakultät für Chemie vertreten.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

Göttingen, 09. September 2008

.....

Andreas Althammer

Dissertation eingereicht am 09. September 2008

Referent: Prof. Dr. Lutz Ackermann Koreferent: Prof. Dr. Ulf Diederichsen Tag der mündlichen Prüfung: 21.10.2008 Die vorliegende Arbeit entstand in der Zeit von Januar 2006 bis Oktober 2008 unter der Anleitung von Herrn Professor Dr. Lutz Ackermann am Institut für Organische und Biomolekulare Chemie der Georg-August-Universität in Göttingen, sowie am Department Chemie und Biochemie der Ludwig-Maximilians-Universität in München.

Ich danke besonders meinem Doktorvater Prof. Dr. Lutz Ackermann für seine uneingeschränkte Unterstützung bei der Bearbeitung der interessanten und herausfordernden Themenstellungen, seine stete Diskussionsbereitschaft und die hervorragende fachliche Betreuung. Ich danke ihm herzlich für die Möglichkeit zur Teilnahme an zahlreichen Konferenzen und des Vertrauens zur Präsentation vieler unserer Forschungsergebnisse.

Herrn Prof. Dr. Ulf Diederichsen danke ich für die freundliche Übernahme des Zweitgutachtens, sowie den Herren Prof. Dr. Dr. h.c. Lutz F. Tietze, Jun.-Prof. Dr. Christian Ducho, Prof. Dr. Dietmar Stalke und Prof. Dr. Franc Meyer für das Interesse an dieser Arbeit und die Teilnahme am Dissertationskolloquium.

Der DFG (Emmy Noether-Programm) danke ich für die finanzielle Unterstützung.

Anna Noll, Sebastian Barfüßer, René Sandmann, Sabine Fenner und Dr. Robert Born danke ich herzlich für das sorgfältige und zügige Korrekturlesen dieser Arbeit.

Allen ehemaligen und gegenwärtigen Mitgliedern und Praktikanten des Arbeitskreises Ackermann danke ich für die gute Atmosphäre und die großartige Zeit. Ein besonderer Dank gilt Lutz, Ludwig, Robert, Christian, Sabine, Michael und Rubén, für die phantastische Zusammenarbeit bei gemeinsamen Projekten.

Danke an alle Mitglieder des AK Knochel, für die stete Hilfsbereitschaft, Chemikalienspenden, dem stimulierenden "Seminar" in Salzburg und dem Spaß in Japan.

Mein großer Dank gilt für tatkräftige Unterstützung im Laboralltag bzw. administrative Aufgaben Vladimir Malakhov, Simon Matthe und Yulia Tsvik in München, sowie Stefan Beußhausen, Karsten Rauch und Gabriele Keil-Knepel in Göttingen.

Bedanken möchte ich mich bei den Mitarbeitern der analytischen Abteilungen des Departments Chemie und Biochemie der LMU München, sowie des Instituts für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, für die gewissenhafte Durchführung der Analytik. Im besonderen: Dr. David Stephenson, Frau Claudia Dubler, Dr. Werner Spahl, Dr. Peter Mayer, Herrn Reinhard Machinek, Dr. Holm Frauendorf, Herrn Frank Hambloch und Herrn Olaf Senge.

Herrn Dr. Kai Lamottke danke ich sehr für das "Asyl" im 4. Stock, die Bereitstellung eines Büros, seine langjährige Freundschaft und hervorragende Mentorenschaft.

Bei Nadine, Julia und Inge möchte ich mich ganz besonders für ihre Freundschaft, ein allzeit offenes Ohr und die kulinarischen Köstlichkeiten bedanken.

Von ganzem Herzen möchte ich mich aber vor allem bei meiner Großmutter, meinen Eltern und meinem Bruder Stefan für den emotionalen Rückhalt und finanzielle Unterstützung während meiner gesamten Studienzeit bedanken. Im Rahmen dieser Dissertation sind bisher folgende Publikationen entstanden:

- "Cross-Coupling Reactions of Aryl and Vinyl Chlorides catalyzed by a Palladium Complex derived from an Air-Stable *H*-Phosphonate", L. Ackermann, C. J. Gschrei, A. Althammer, M. Riederer, *Chem. Commun.* 2006, 1419–1421.
- "One-Pot 2-Aryl/Vinylindole Synthesis Consisting of a Ruthenium-Catalyzed Hydroamination and a Palladium-Catalyzed Heck Reaction using 2-Chloroaniline", L. Ackermann, A. Althammer, *Synlett* 2006, 3125–3129.
- 3) "Air-Stable PinP(O)H as Preligand for Palladium-Catalyzed Kumada Couplings of Unactivated Tosylates", L. Ackermann, A. Althammer, *Org. Lett.* **2006**, *8*, 3457–3460.
- 4) "A Diaminochloro-phosphine for Palladium-Catalyzed Arylations of Amines and Ketones", L. Ackermann, J. H. Spatz, C. J. Gschrei, R. Born, A. Althammer, *Angew. Chem.* **2006**, *118*, 7789–7792; *Angew. Chem. Int. Ed.* **2006**, *45*, 7627–7630.
- 5) "Domino N–H and C–H Bond Activation: Palladium-Catalyzed Synthesis of Annulated Heterocycles using Dichloro(hetero)arenes", L. Ackermann, A. Althammer, *Angew. Chem.* **2007**, *119*, 1652–1654; *Angew. Chem. Int. Ed.* **2007**, *46*, 1627–1629.
- 6) "Hydroaminations of Unactivated Alkenes with Basic Alkylamines: Group 4 Metal Halide Catalysts and Brønsted-Acid Organocatalysts", L. Ackermann, L. T. Kaspar, A. Althammer, *Org. Biomol. Chem.* **2007**, 1975–1978.
- 7) "[RuCl₃(H₂O)_n]-Catalyzed Direct Arylations with Bromides as Electrophiles", L. Ackermann, A. Althammer, R. Born, *Synlett* **2007**, 2833–2836.
- 8) "[RuCl₃(H₂O)_n]-Catalyzed Direct Arylations", L. Ackermann, A. Althammer, R. Born, *Tetrahedron (Symposia in Print)* **2008**, *64*, 6115–6124.
- "Phosphoric Acid Diesters as Efficient Catalysts for Hydroaminations of Nonactivated Alkenes and an Application to Asymmetric Hydroaminations", L. Ackermann, A. Althammer, *Synlett* 2008, 995–998.
- "Assisted Ruthenium-Catalyzed C–H Bond Activation: Carboxylic Acids as Cocatalysts for Generally Applicable Direct Arylations in Apolar Solvents", L. Ackermann, R. Vicente, A. Althammer, *Org. Lett.* 2008, *10*, 2299–2302.
- 11) "Palladium-Catalyzed Direct Arylations of Heteroarenes with Tosylates and Mesylates", L. Ackermann, A. Althammer, S. Fenner, *Angew. Chem.*; *Angew. Chem. Int. Ed., zur Veröffentlichung angenommen.*

In liebevollem Gedenken an meine Mutter

Helga Althammer

*22.02.1957 - [†]25.06.2004

Je mehr Du gedacht, je mehr Du getan hast, desto länger hast Du gelebt.

Immanuel Kant

Inhaltsverzeichnis

Abkürzun	gsverzeichnis	. iv
1	Allgemeiner Teil	1
1.1	Hydroaminierungsreaktionen	1
1.1.1	Allgemeines	1
1.1.2	Hydroaminierung von Alkinen	1
1.1.3	Intramolekulare Hydroaminierung elektronisch nicht-aktivierter Alkene	3
1.2	Kreuzkupplungsreaktionen	4
1.2.1	Chlorarene als Elektrophile in Kreuzkupplungsreaktionen	4
1.2.2	Kumada–Corriu-Kreuzkupplungen mit (Pseudo)Halogenarenen	7
1.2.3	Suzuki–Miyaura-Kreuzkupplungen mit Chlorarenen	9
1.2.4	Sekundäre Phosphanoxide als Ligandvorläufer in übergangsmetallkatalysierten	
	Kreuzkupplungsreaktionen mit Chlorarenen.	11
1.2.5	Heteroatomsubstituierte sekundäre Phosphanoxide (HASPO) und	
	Diaminochlorphosphane als Ligandvorläufer in Kreuzkupplungsreaktionen	14
126	Die Koordinationschemie heteroatomsubstituierter sekundärer Phosphanoxide	18
13	Direkte Arvlierungen	21
131	Strategien direkter Arylierungen als Alternative zu traditionellen"	<u> </u>
1.5.1	Kreuzkupplungsreaktionen	21
132	Intra- und intermolekulare direkte Arvlierungen	$\frac{21}{22}$
1.3.2	Direkte Arvlierung von Heterocyclen	26
1.3.3	Dirigiorando Gruppon in der direkten Arulierung nicht aktivierter Arene	20
1.3.4	Aufgebengtellung	29
2	Freshnings and Dislawsion	20
J 2 1	Ergeonisse und Diskussion	30
3.I 2.1.1	Eintopi-Synthese von 2-Aryi/Aikenyi-Indolen	38
3.1.1	Einfuhrung	38
3.1.2	Reaktionsoptimierung	39
3.1.3	Anwendungsbreite der sequentiellen Eintopf-Indolsynthese	41
3.2	Intramolekulare Brønsted-säurekatalysierte Hydroaminierung von Alkenen	44
3.2.1	Einführung	44
3.2.2	Darstellung der Aminoalkene	45
3.2.3	Synthese der BINOL-Phosphorsäurediester	46
3.2.4	Reaktionsoptimierung der Brønsted-säurekatalysierten Hydroaminierung	47
3.2.5	Anwendungsbreite der Brønsted-säurekatalysierten intramolekularen Hydro-	
	aminierungsreaktion von Aminoalkenen	50
3.3	Palladiumkatalysierte Kumada-Corriu-Kreuzkupplungen mit Chlorarenen	53
3.3.1	Einführung	53
3.3.2	Reaktionsoptimierung durch den Vergleich verschiedener HASPO-Präliganden	53
3.3.3	Kumada–Corriu-Kreuzkupplungen mit Chlorarenen	55
3.4	Palladiumkatalysierte Kumada–Corriu-Kreuzkupplungen mit (Hetero)Aryl-	
	tosylaten	57
3.4.1	Einführung	57
3.4.2	Synthese kommerziell nicht erhältlicher Startmaterialien	57
3.4.3	Reaktionsoptimierung der palladiumkatalysierten Kumada–Corriu-	
	Kreuzkupplung mit (Hetero)Aryltosylaten	61
344	Anwendungsbreite der palladiumkatalysierten Kumada–Corriu-Kreuzkunnlung	
5.1.1	mit (Hetero)Arvltosvlaten	63
35	Palladiumkatalysierte Suzuki–Miyaura-Kreuzkunnlungen mit Chlorarenen	69
351	Finfihrung	69
5.5.1		51

3	8.5.2	Suzuki–Miyaura-Kreuzkupplungen von Chlorarenen mit einem	60
2.6		Diaminochlorphosphan als Ligandvorläufer	. 69
3.6		Palladiumkatalysierte Synthese anellierter <i>N</i> -Heterocyclen über Domino-	
_		N–H/C–H-Bindungsaktivierungen	. 74
3	8.6.1	Einführung	. 74
3	8.6.2	Reaktionsoptimierung der Dominoreaktion	. 74
3	8.6.3	Anwendungsbreite der Dominoreaktion zum Aufbau anellierter N-Heterocycler	n76
3	8.6.4	Reaktionsoptimierung der Dominoreaktion für primäre Amine	. 78
3	8.6.5	Darstellung funktionalisierter ortho-Dichlorarene	. 79
3	8.6.6	Anwendungsbreite der Dominoreaktion zur Synthese N–H-ungeschützter Carbazole	79
3	867	Dominoreaktion zur Synthese von <i>Murravafolin A</i>	83
37		Palladiumkatalysierte C–H-Bindungsfunktionalisierung mit Aryltosylaten	84
3.7	371	Einführung	84
3	372	Synthese kommerziell nicht erhältlicher Startmaterialien	84
3	373	Reaktionsoptimierung der direkten Arvlierung von Benzoxazol mit Tosylaten	86
3	374	Direkte nalladiumkatalysierte Arylierung von Benzoxazol mit Arylsulfonaten	91
3	375	Palladiumkatalysierte direkte Arylierung von Phenyloxazol und Koffein mit	. 71
2		Arvitosvlaten	93
3	876	Palladiumkatalysierte direkte Arylierungen von 1.2.3-Triazolen mit Tosylaten	95
38		Ligandfreie rutheniumkatalysierte direkte Arylierung von Arenen	99
5.0	881	Finführung	. // 00
2	887	Synthese kommerziell nicht erhältlicher Startmaterialien	.)) 00
2	883	Pyridin als dirigierende Gruppe in rutheniumkatalysierten direkten Arylierunge	
2	0.0.5	i yndin als unglefende Gruppe in futhemulikatarysleften unekten / i ynefunge	101
3	884	Oxazolin als dirigierende Gruppe in rutheniumkatalysierten direkten Arylierun	σen
2	.0.1		103
3	885	Rutheniumkatalysierte direkte Arylierungen von Pyrazolen und Ketiminen	105
39	.0.0	Rutheniumkatalysierte direkte Arylierungen in Toluol	107
3.5	391	Finführung	107
3	392	Synthese kommerziell nicht verfügbarer Startmaterialien	108
3	393	Reaktionsontimierung durch den Vergleich verschiedener Cokatalysatoren	108
3	394	Anwendungsbreite der rutheniumkatalysierten direkten Arylierung mit	100
2		(Pseudo)Halogenarenen als Elektronhile in Toluol als Solvens	111
4		Zusammenfassung und Ausblick	114
5		Vorhemerkungen zum experimentellen Teil	120
<i>5</i> .		Allgemeine Arbeitsvorschriften	126
61		Allgemeine Arbeitsvorschrift zur Fintonf-Indolsynthese (AAV 1)	120
6.2		Allgemeine Arbeitsvorschrift zur intramolekularen Brønsted-säurekatalvsierter	ו <i>ב</i> ט ו
0.2		Hydroaminierung von Alkenen (AAV 2)	1 126
63		Allgemeine Arbeitsvorschrift zur nalladiumkatalysierten Kumada–Corriu-	120
0.5		Kreuzkunnlung von Chlorarenen (AAV 3)	127
64		Allgemeine Arbeitsvorschrift zur Darstellung von Arvlsulfonaten ($A \Delta V A$)	127
6.5		Allgemeine Arbeitsvorschrift zur palladiumkatalysierten Kumada_Corriu-	1 / /
0.5		Kreuzkupplung von Aryltosylaten (AAV 5)	127
6.6		Allgemeine Arbeitsvorschrift zur nalladiumkatalwsierten Suzuki-Miyaura-	1 / /
0.0		Kreuzkunnlung von Chlorarenen ($\Delta \Delta V 6$)	128
67		Allgemeine Arbeitsvorschrift zur nellediumketelwsierten Synthese von M Dhon	1∠0 vl.
0.7		substituierten anellierten Heterogyalen ($\Lambda \Lambda V 7$)	יי 17₽
68		Allgemeine Arbeitsvorschrift zur nellediumketelwsierten Synthese von	120
0.0		N-unsubstituierten Carbazolen (AAV 8)	129

6.9	Allgemeine Arbeitsvorschrift zur Darstellung von 1,2,3-Triazolen (AAV 9)	129
6.10	Allgemeine Arbeitsvorschrift zur palladiumkatalysierten direkten Arylierung	g von
	Benzoxazol mit Tosylaten und Pivalinsäure als Additiv (AAV 10)	130
6.11	Allgemeine Arbeitsvorschrift zur palladiumkatalysierten direkten Arylierung	g von
	5-Phenyloxazol, Koffein und 1,2,3-Triazolen mit Tosylaten (AAV 11)	130
6.12	Allgemeine Arbeitsvorschrift zur ligandfreien rutheniumkatalysierten direkte	en
	Arylierung mit Bromarenen in NMP (AAV 12)	130
6.13	Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten direkten Arylierung	g mit
	2,4,6-Trimethylbenzoesäure als Additiv in Toluol (AAV 13)	131
7	Experimente	132
8	Kristallographischer Anhang	271
9	Literaturverzeichnis	279

Abkürzungsverzeichnis

AAV	Allgemeine Arbeitsvorschrift	et al.	et alumni
Ac	Acetyl	eV	Elektronenvolt
acac	Acetylacetonat	EWG	elektronenziehende Gruppe
Ad	Adamantyl	Fa.	Firma
Alk	Alkyl	FID	Flammenionisationsdetektor
aq.	wässrig	g	Gramm
Äquiv.	Äquivalente	GC	Gaschromatographie
Ar	Aryl	ges.	gesättigt
ATR	Abgeschwächte Totalreflexion	h	Stunde
BINAP	2,2°-Bis-(diphenylphosphino)-	i	iso
	1,1`-binaphthyl	HASPO	heteroatomsubstituiertes
Bn	Benzyl		sekundäres Phosphanoxid
br	breit	Hept	Heptyl
Bu	Butyl	HIMes	1,3-Bis-(2,4,6-trimethyl-
bzw.	beziehungsweise		phenyl)imidazolium
°C	Grad Celsius	HIPr	1,3-Bis-(2,6-di <i>iso</i> propyl-
ca.	circa		phenyl)imidazolium
cm	Zentimeter	НМРТ	Hexamethylphosphorsäure-
COD	1 5-Cyclooctadien		triamid
Cn [*]	n^{5} -CsMes	HR	Hochauflösung
Cy	Cyclohexyl	HSIMes	1 3-Bis-(2 4 6-trimethyl-
δ	chemische Verschiebung	11011100	phenyl)imidazolinium
d	Dublett	HSIPr	1 3-Bis-(2 6-di/sopropyl-
DAOP	Diaminooxyphosphan	110111	nhenyl)imidazolinium
Dave-Phos	2-Dicyclohexylphosphino-2`-	Hz	Hertz
Dave Thos	N N-dimethylaminohiphenyl	IR	Infrarotspektroskopie
dba	Dibenzylidenaceton	J	Konplungskonstante
DCC	Dicyclohexylcarbodiimid	kat	katalytisch
DIRAI	Disobutylaluminiumhydrid	kcal	Kilocalorie
DG	dirigierende Gruppe	L	Ligand
	Diisopropylethylamin	I	Liter
	$N N_{\rm D}$ imethylacetamid		Lithiumdi <i>i</i> sonronylamid
DME	1.2 Dimethoxyethan	m	mata
	N N Dimethylethylendiamin	M	Metall
DMEDA	N N Dimethylformamid	IVI M	molar
	1.2 Dimethyl 2.4.5.6	m	Multiplett
DMFU	1,5-Diffettiyi-5,4,5,0-	ш ГМ/ ⁺ 1	Molokülpook
DMCO	Dimethylaulfoxid	[IVI] mbor	Millibor
DMSU	1 2 Dig (dinhanylnhaanhina)	Mo	Mathyl
uppe	1,2-BIS-(dipitenyiphospinito)-	Me Phos	2 Dievelohevylphosphino 2
dnnf	1 2 Dis (dinhanylnhasnhina)	WIC-1 1105	2-Dicyclonexylphosphillo-2 -
uppi	ferrocen	Mes	Mesityl
\mathbf{F}^+	Flaktronhil	ma	Milligramm
	Enentiomaranübargahuga	min	Minuto
ee EDG	alaktrononsahiahanda Crumpa	mI	Millilitar
EDG	Elaktronanstaßionisation	MOM	Methoxymethyl
EI	Elektronongrowionigation		Mombronnumanualauum
ESI E4	Electronensprayionisation		Magangaltremetric
Et	Etnyi	IMD	massenspektrometrie

MW	Mikrowelle
n	normal
n.b.	nicht bestimmt
NHC	N-heterocyclisches Carben
NMP	N-Methyl-2-pyrrolidon
NMR	Kernresonanzspektroskopie
0	ortho
Oct	Octvl
OMs	Mesvlat
ÖPV	Ölpumpenvakuum
OTf	Triflat
OTs	Tosvlat
n	para
Pent	Pentvl
Ph	Phenyl
Pin	Pinakol
nnm	narts per million
Pr	Propyl
11 0	Quartett
quint	Quartett
D	Quinteti Post
K roo	Rest
lac	Singulatt
5 Sahmh	Salmalabarajah
Schille.	Sentett
S Dhag	2 Disvalahavvlnhasnhina
5-Phos	2. C. dimetherwhichervl
T	2 ,0 -dimethoxyolphenyi
1	Trinlatt
l	Inplett
	tertiar Totas a hertelenen seinen flerenid
I BAF	1 1 2 2 Tetrachlandham
ICE	1,1,2,2-1 etrachlorethan
<i>leri</i>	tertiar Tetus has have
	I etranyaroiuran
IMEDA	$N_{1}N_{1}N_{2}N_{3}N_{4}$ - 1 etramethyl-
TMO	
TMS TOE	
	Umsatzzani
TON	Umsatzfrequenz
	2-Propylphosphorsaureannydrid
UM	Übergangsmetall
UV	Ultraviolett
W	Watt
X	(Pseudo)Halogen
Xantphos	4,5-Bis-(diphenylphosphin)-
	9,9-dimethylxanthen
X-Phos	2-Dicyclohexylphosphino-
	2`,4`,6`-tri <i>iso</i> propylbiphenyl
Y	(Pseudo)halogen
Zers.	Zersetzung

1 Allgemeiner Teil

1.1 Hydroaminierungsreaktionen

1.1.1 Allgemeines

Neben übergangsmetallkatalysierten Kreuzkupplungen besitzen u. a. Hydrierungen, Hydroformylierungen, Oligo- und Telomerisierungen, sowie die Entwicklung von Reaktionen zur Addition von Nucleophilen an ungesättigte C–C-Bindungen einen hohen Stellenwert auch für industrielle Prozesse.¹ Die Hydroaminierungsreaktion, die direkte Addition von Aminen an Alkine, Allene oder Alkene, eröffnet hierbei einen atomökonomischen² Zugang zu diversen Aminderivaten und *N*-Heterocyclen (Schema 1.1).³

Schema 1.1: Hydroaminierung von Alkinen (a) bzw. Alkenen (b).

Die inhärent hohe Aktivierungsenergie⁴ dieser Reaktion führt noch immer zu intensiver Forschungstätigkeit, um ökonomische und ökologisch-nachhaltige Katalysatoren zu etablieren. Mittlerweile sind zahlreiche katalytische System beschrieben, deren Nachteile oftmals in einer beschränkten Anwendungsbreite, Hydrolyseempfindlichkeit und hohen Kosten liegen.

1.1.2 Hydroaminierung von Alkinen

Katalytische Hydroaminierungen von Alkinen werden im Wesentlichen von frühen Übergangsmetallkomplexen dominiert, wovon im Folgenden einige ausgewählte Vertreter präsentiert werden.⁵

1992 veröffentlichte *Bergman* eine zirkoniumkatalysierte Hydroaminierungsreaktion mit Anilinen (Schema 1.2).⁶

Schema 1.2: Zirkonocenkatalysierte Hydroaminierung von Alkinen nach Bergman.⁶

Die durchgeführten mechanistischen Studien zur zirkonium-⁷ und der später entdeckten titankatalysierten⁸ Hydroaminierung identifizierten einen *in-situ* geformten Imido-Metall-Komplex sowie eine reversible [2+2]-Cycloaddition mit Bildung eines Azametallacyclobutans als Schlüsselelemente in diesem Katalysecyclus. Aufbauend auf diesen Erkenntnissen wurden effiziente Titan-basierte katalytische Systeme für Hydroaminierungsreaktionen entwickelt.⁹ *Ackermann* etablierte mit einem System bestehend aus katalytischen Mengen der Bulkchemikalien TiCl₄ und *tert*-Butylamin¹⁰ einen ökonomisch und ökologisch attraktiven Katalysator für Hydroaminierungsreaktionen von Alkinen¹¹ und Alkenen¹². Unserer Arbeitsgruppe gelang es, diese vorgestellte anwenderfreundliche Methodik mit preiswerten 2-Chloranilinen **4** zu bedeutsamen, sequentiellen Indolsynthesen auszubauen (Schema 1.3).^{13,14}

Schema 1.3: Sequentielle Indolsynthese nach Ackermann.¹³

Diese Indoleintopfsynthese beinhaltet im ersten Schritt eine titankatalysierte *anti*-Markownikow Hydroaminierung zum Enamin-Additionsprodukt **6**. Abschließend ergibt eine palladiumkatalysierte, cyclisierende Aza-Heck-Reaktion^{30,32,33} das gewünschte Indolderivat **9** mit hoher Regioselektivität.

1.1.3 Intramolekulare Hydroaminierung elektronisch nicht-aktivierter Alkene

Neben der intermolekularen¹⁵ Hydroaminierung können intramolekulare Varianten zum Aufbau wichtiger Heterocyclen genutzt werden. Die intramolekulare Hydroaminierung von elektronisch nicht-aktivierten Olefinen ist hierbei mit diversen Übergangsmetallkatalysatoren möglich. So können sekundäre^{16,17} und primäre¹⁸ Aminoalkene mit Komplexen der Gruppe IV erfolgreich cyclisiert werden. *Schafer* zeigte, dass der kommerziell erhältliche, aber luftempfindliche Titantetrakisdimethylamidokomplex als Präkatalysator für primäre Amine **10** verwendet werden kann (Schema 1.4).¹⁹

Schema 1.4: Titankatalysierte intramolekulare Hydroaminierung nicht-aktivierter Aminoalkene **10** mit geminaler Disubstitution nach *Schafer*.¹⁹

Derartige Cyclisierungen werden durch den vorhandenen geminalen Dialkyleffekt bzw. Thorpe-Ingold-Effekt erleichtert.²⁰

2005 berichtete *Widenhoefer*, dass intramolekulare Hydroaminierungen nicht-aktivierter sekundärer Amine mit einem Platinkatalysator bestehend aus $[PtCl_2(H_2C=CH_2)]_2$ und Triphenylphosphan (**12a**) möglich sind.²¹ Weiterhin beschrieben *Roesky* und *Blechert* den Zinkkatalysator **14** zur intramolekularen Hydroaminierung von Alkenen. Von Nachteil erwies sich jedoch die Herstellung von **14** aus Aminotroponimin (**13**) und pyrophorem Dimethylzink (Schema 1.5).²²

Schema 1.5: Synthese des Blechert–Roesky-Katalysators 14.²²

Zudem musste für eine ausreichende katalytische Aktivität oftmals kostenintensives $[PhNMe_2H][B(C_6F_5)_4]$ (15) als "Aktivator" zugesetzt werden.²³

Erst kürzlich berichtete unsere Arbeitsgruppe von einer präparativ einfachen Hydroaminierungsreaktion von primären nicht-aktivierten Aminoalkenen mit katalytischen Mengen ZrCl₄ in Kombination mit LDA zum Aufbau des wichtigen Pyrrolidin-Heterocyclus (Schema 1.6).²⁴

Schema 1.6: Intramolekulare $ZrCl_4$ -katalysierte Hydroaminierung eines nicht-aktivierten Alkens 16 nach Ackermann.²⁴

Da diese Methodik auf Grund ihrer Mechanismus nicht auf sekundäre Amine anwendbar ist, zielte eine nachfolgende Optimierung auf die Verwendung von Brønsted-Säuren als Katalysatoren ab.^{25,26} Bemerkenswerterweise wurde die intramolekulare Hydroaminierung elektronisch nicht-aktivierter Aminoalkene **18** mit katalytischen Mengen an preiswertem Ammoniumtrifluoracetat (0.12 €/mmol, SIGMA-ALDRICH, 2008) effizient ermöglicht (Schema 1.7).²⁴

Schema 1.7: Brønsted-säurekatalysierte intramolekulare Hydroaminierung nicht-aktivierter Alkene nach *Ackermann*.²⁴

Unter Verwendung dieser Methodik wurden wichtige Funktionalitäten toleriert. Zudem konnten ebenso primäre Aminoalkene eingesetzt werden. Eine geminale Disubstitution erwies sich bemerkenswerterweise als nicht notwendig.

1.2 Kreuzkupplungsreaktionen

1.2.1 Chlorarene als Elektrophile in Kreuzkupplungsreaktionen

In den frühen 1970er Jahren wurde mit den ersten Arbeiten von *Kochi*²⁷, *Kumada*²⁸ und *Corriu*²⁹ zu katalytischen Kreuzkupplungsreaktionen von Grignard-Verbindungen **20** mit Aryl- und Alkenylhalogeniden der Grundstein zu einem der nützlichsten Verfahren der C–C-Verknüpfungen gelegt. Kreuzkupplungen können effizient zum Aufbau von Biarylstrukturen,

welche in Pharmazeutika, Herbiziden, Naturstoffen und funktionalen Materialien aufzufinden sind, genutzt werden.³⁰ Durch die geschickte Wahl der Reaktanden, Reaktionsbedingungen und Katalysatoren sind den Synthesen von organischen Materialien oder Transformationen an hoch komplexen Naturstoffen³¹ kaum Grenzen gesetzt.^{32,33}

Chlorarene haben bislang nur in geringem Maß Einzug in industrielle Prozesse gefunden, da bis vor wenigen Jahren keine allgemein anwendbaren Methoden für ihren Einsatz in Kreuzkupplungsreaktionen bekannt waren. Den Vorzügen einer einfachen Zugänglichkeit und geringerer Kosten, steht die hohe relative Stabilität der C–Cl-Bindung gegenüber.³⁴ Die oxidative Addition an Übergangsmetallkatalysatoren ist bei einer erhöhten C–Cl-Bindungs-dissoziationsenergie von 96 kcal/mol, gegenüber jenen der C–Br- (81 kcal/mol) und der C–I-Bindung (65 kcal/mol), erheblich erschwert.³⁵

der Kreuzkupplungsreaktionen Die erfolgt Bennenung nach dem verwendeten metallorganischen Nucleophil. Aufgrund ihrer breiten Anwendbarkeit und hohen Toleranz gegenüber funktionellen Gruppen, sind die am häufigsten eingesetzten palladiumkatalysierten Kupplungen die Suzuki-Miyaura- (Organoborverbindungen) und die Stille-Kreuzkupplung (Organostannane). Daneben sind vor allem die Kumada-Corriu- (Magnesiumorganyle), die Negishi- (Zink- und Aluminiumorganyle) und die Hiyama-Kreuzkupplungsreaktionen (Siliciumorganyle) von Bedeutung. Vereinfacht betrachtet können die meisten Kreuzkupplungen über einen gemeinsamen Katalysecyclus beschrieben werden (Schema 1.8).^{30,32,33} Zu Beginn erfolgt die oxidative Addition des Elektrophils **21** an die katalytisch aktive Übergangsmetallspezies 22. Insbesondere für die weniger reaktiven Chlorarene wird dieser Schritt häufig als geschwindigkeitsbestimmend angenommen. Durch eine Transmetallierungsreaktion überträgt das metallorganische Nucleophil 24 seinen organischen Rest auf das Übergangsmetallzentrum von 23. Der resultierende Komplex 25 unterliegt abschließend einer reduktiven Eliminierung zum arylierten Produkt 26 und regeneriert den katalytisch aktiven Komplex 22.

Schema 1.8: Verallgemeinerter Katalysecyclus der übergangsmetallkatalysierten Kreuzkupplungsreaktionen zur Arylierung metallorganischer Verbindungen 24.

Neben zahlreichen Palladium(II)- oder Nickel(II)-Komplexen als Katalysatorvorläufer können auch Metall(0)-Komplexe, wie [Pd(dba)₂] oder [Ni(COD)₂], direkt eingesetzt werden.

Durch die Entwicklung neuer Katalysatorsysteme, basierend auf elektronenreichen, sperrigen Phosphanen **12** und Carbenen **8**, können auch die reaktionsträgeren Chlorarene **27** in zunehmendem Maße als Substrate für Kreuzkupplungen eingesetzt werden. Ursachen für diese erhöhte katalytische Aktivität begründen sich auf dem Vorliegen monokoordinierter, elektronenreicher Übergangsmetallkomplexe, welche eine erleichterte oxidative Addition ermöglichen.³⁶ Für die Kupplung von Chlorarenen **27** wurden unterschiedliche Liganden entwickelt, wobei der Einsatz elektronenreicher, stabilisierender Phosphane **12** dominiert. Die Nachteile dieser Phosphan-basierten Systeme stellen oftmalig ihre Sensitivität gegenüber Luftsauerstoff, die hohen Preise durch patentrechtliche Ansprüche und ihre aufwendige Synthesen dar. Aus diesen Gründen ist die Suche nach preiswerten, modular zugänglichen und benutzerfreundlichen Katalysatoren für die katalytische Umsetzung anspruchvoller Chlorarene **27** von fortwährendem Interesse.³⁷

1.2.2 Kumada–Corriu-Kreuzkupplungen mit (Pseudo)Halogenarenen

Die für Kreuzkupplungsreaktionen benötigten Organometallverbindungen werden häufig durch Ummetallierungen ausgehend von Lithium- oder Magnesiumorganylen gewonnen.³⁸ Trotz der limitierten Toleranz der Grignard-Reagenzien **20**³⁹ gegenüber funktionellen Gruppen, stellt ihr direkter Einsatz eine attraktive Alternative dar, um zusätzliche Syntheseoperationen zu vermeiden. Vielfältig funktionalisierte Grignard-Verbindungen 20 können durch eine Iod⁴⁰- oder Brom⁴¹-Magnesium-Austauschreaktion generiert werden, so dass die Kumada-Corriu-Reaktion wieder zunehmend an Beachtung gewinnt.^{42,43} Kürzlich Martìn, Esterund Nitrilfunktionalitäten in einer gelang es Buchwald und palladiumkatalysierten Kumada-Corriu-Kreuzkupplung in einem Temperaturbereich von -20 bis -60 °C zu tolerieren (Schema 1.9).⁴⁴ Diese Methode verwendete Dave-Phos (12b) als stabililisierendem Liganden, und ist jedoch auf den Einsatz von Iodarenen 28 beschränkt.

Schema 1.9: Tieftemperatur-Kumada–Corriu-Kreuzkupplung mit einem funktionalisierten Iodaren 28a.⁴⁴

Palladiumkatalysierte Kumada–Corriu-Kreuzkupplungen deaktivierter Chlorarene **27** gelangen bereits 1999 der Gruppe von *Nolan*.⁴⁵ In Gegenwart des *N*-heterocyclischen Carbenvorläufers⁴⁶ (NHC) HIPrCl (**8a**) konnte das sterisch anspruchsvolle Mesitylgrignard-Reagenz (**20a**) effizient mit dem elektronenreichem 4-Chloranisol (**27a**) gekuppelt werden, obschon bei einer Reaktionstemperatur von 80 °C die Toleranz funktioneller Gruppen erheblich vermindert war (Schema 1.10).

Schema 1.10: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplung mit elektronisch deaktiviertem Chloraren **27a** unter Verwendung des Imidazoliumchlorids **8a** als Ligandvorläufer.⁴⁵

Ein vorteilhafter Ersatz für die kostenintensiven Palladiumkomplexe in Kumada–Corriu-Kreuzkupplungen sind preiswerte Nickel(II)-Salze, welche oftmals als Katalysatoren eingesetzt werden können. *Herrmann* und Mitarbeiter berichteten 2000 von einer nickelkatalysierten Kumada–Corriu-Kreuzkupplung deaktivierter Chlorarene **27** mit Arylgrignard-Reagenzien **20**, die bereits bei Umgebungstemperatur effizient verlief.⁴⁷ Mit luftstabilem [Ni(acac)₂] in Gegenwart des Imidazoliumsalzes HIPrCl (**8a**) als Ligandvorläufer, gelang die Umsetzung des elektronenreichen Chlorarens **27a** in hoher GC-Ausbeute (Schema 1.11).

Schema 1.11: Nickelkatalysierte Kumada–Corriu-Kreuzkupplung nach Herrmann mit 8a als Ligandvorläufer.⁴⁷

Unter den Halogenarenen stellen die Fluorarene **29** aufgrund der extremen Stärke der C–F-Bindung (126 kcal/mol), die am wenigsten reaktiven und damit anpruchsvollsten Elektrophile in Kreuzkupplungsreaktionen dar.⁴⁸ Ein entscheidender Beitrag zum Einsatz dieser Substratklasse in Kreuzkupplungsreaktionen wurde von der Gruppe um *Herrmann* geleistet, die erneut unter Verwendung des NHC-Vorläufers **8a** und [Ni(acac)₂] zeigen konnte, dass Fluorarene **29** in Kumada–Corriu-Kreuzkupplungen in mittleren Ausbeuten zu den gewünschten Biphenyl-Verbindungen reagierten.⁴⁹

Neben den "klassisch" verwendeten Halogenarenen werden im zunehmenden Maße auch Pseudohalogenarene, wie Sulfonate und Phosphate, als Elektrophile in Kreuzkupplungsreaktionen eingesetzt.⁵⁰ Unter den Sulfonaten fanden bislang überwiegend Triflate **30** und Nonaflate **31** Anwendung in Kreuzkupplungsreaktionen, da derartige fluorierte Verbindungen sehr reaktive Abgangsgruppen darstellen.⁵¹ Wegen ihrer kostengünstigen Darstellung⁵² und höherer Hydrolysestabilität, stellen Tosylate **32**, im Vergleich zu den entsprechenden Triflaten **30**, wesentlich attraktivere Substrate für Arylierungsreaktionen dar. Jedoch bedingt die erhöhte Stabilität der meist hochkristallinen Tosylate **32** den Einsatz spezieller Liganden, um einen erfolgreichen Umsatz in Kreuzkupplungen zu ermöglichen.⁵³

Bislang konnte nur *Hartwig* ein allgemein anwendbares Katalysatorsystem, welches elektronenarme und elektronisch deaktivierte arylische⁵⁴ und alkenylische⁵⁵ Tosylate in Kumada–Corriu-Reaktionen umzusetzen vermag, präsentieren. Die Kreuzkupplungen wurden

effizient durch ein elektronenreiches Josiphos-Analogon **12c** bereits bei Umgebungstemperatur katalysiert (Schema 1.12). Die Inkompatibilität mit wichtigen stickstoffhaltigen Heteroarenen, wie Pyridinen und Chinolinen, stellt jedoch eine erhebliche Limitierung dieses Systems dar.

Schema 1.12: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplung mit Tosylat 32a nach Hartwig.⁵⁴

1.2.3 Suzuki–Miyaura-Kreuzkupplungen mit Chlorarenen

Die palladiumkatalysierte Kreuzkupplungsreaktion, unter Verwendung von Boronsäuren, Boronsäureestern und Boronaten als metallorganische Nucleophile, nach *Suzuki* und *Miyaura* stellt eine der bedeutsamsten Methodiken zur Knüpfung von C–C-Bindungen dar und ermöglicht eine hohe Toleranz gegenüber synthetisch wichtigen funktionellen Gruppen.^{56,57} Diese Reagenzien zeichnen sich oftmals als temperatur-, luft- und feuchtigkeitsstabile Feststoffe aus, was sie für benutzerfreundliche Anwendungen sehr attraktiv macht.⁵⁸ Desweiteren sind sie kommerziell in hoher Anzahl verfügbar und reagieren zu toxikologisch unbedenklichen, leicht abtrennbaren Nebenprodukten.

Allerdings war bis 1998 keine generell anwendbare Methode zur palladiumkatalysierten Kupplung mit elektronisch nicht-aktivierten Chlorarenen **27** bekannt.^{34,59} Für die erfolgreiche Umsetzung mit Boronsäuren mussten hierzu erst geeignete katalytische Systeme entwickelt werden. Der Gruppe von *Buchwald* gelang es, mit dem elektronenreichen Phosphan-Liganden Dave-Phos (**12b**) sowohl elektronenarme als auch elektronenreiche Chlorarene **27** unter milden Reaktionsbedingungen bei Umgebungstemperatur umzusetzen (Schema 1.13).⁶⁰

Schema 1.13: Suzuki–Miyaura-Kreuzkupplung von 4-Chloranisol (27a) nach *Buchwald* mit Dave-Phos (12b) als Ligand. 60

Unabhängig davon präsentierten *Littke* und *Fu* mit $[Pd_2(dba)_3]$ und dem sterisch stark gehinderten, elektronenreichen Tri-*tert*-butylphosphan (**12d**) ein Katalysatorsystem, das elektronisch deaktivierte Chlorarene **27** in Suzuki–Miyaura-Kreuzkupplungsreaktionen umzusetzen vermochte.⁶¹ Diese Methode erforderte jedoch erhöhte Temperaturen und ebenso die Verwendung einer teuren Cäsiumbase zur Aktivierung der Boronsäure **33** als nucleophileres Boronat.⁶¹ In Kooperation mit EVONIK-DEGUSSA entwickelte *Beller* ein System bestehend aus $[Pd(OAc)_2]$ und *n*-BuPAd₂ (**12e**), das im Fall elektronisch aktivierter Chlorarene **27** eine Reduzierung der Katalysatorbeladung auf beachtliche 0.001 mol% ermöglichte, und hierbei eine Umsatzzahl von bis zu 69000 erzielte.⁶²

Ab 1998 wurde ebenfalls über das Potential *N*-heterocyclischer Carbene **8** als Liganden in Suzuki–Miyaura-Kreuzkupplungen berichtet.⁶³ *Nolan* setzte NHC-Vorläufer **8b** ein, um durch Deprotonierung in der Reaktionslösung einen katalytisch aktiven NHC-Komplex *in-situ* zu generieren (Schema 1.14).⁶⁴

Schema 1.14: Suzuki–Miyaura-Kreuzkupplung mit Imidazoliumchlorid 8b als Ligandvorläufer nach Nolan.⁶⁴

Für dieses katalytische System, welches analog zu sterisch anspruchsvollen Phosphan-Liganden ein äquimolares Palladium-Ligand-Verhältniss als leistungsstärkste Kombination kennzeichnete, wurde der aktive Katalysator als monokoordiniert postuliert, dessen Zentrum als 12-Valenzelektronenspezies vorliegt.³⁶

Seither wurden diese Systeme hinsichtlich Stabilität, Effizienz (TON, TOF) und Anwendbarkeit für den Umsatz von hochfunktionalisierten und elektronisch deaktivierten Chlorarenen sowie anspruchsvollen Chlorheteroarenen⁶⁵ weiterentwickelt. Der Aufbau hochsubstituierter Biaryle mit mindestens drei *ortho*-ständigen Substituenten, welche den Zugang zu axial chiralen Verbindungen⁶⁶ eröffnen, stellte hierbei eine enorme Herausforderung an das Ligandendesign dar. Der Gruppe von *Buchwald* gelang hier eine erste katalytische, asymmetrische Suzuki–Miyaura-Reaktion mit einem chiralen BINAP-Liganden.⁶⁷ Die Methode ergab die Produkte in guten isolierten Ausbeuten unter Verwendung von Brom-, Iod- und aktivierten Chlorarenen, obgleich die Enantiomerenüberschüsse noch verbesserungswürdig waren. Die Darstellung tetra-*ortho*-substituierter Biaryle, ausgehend von deaktivierten Chloraromaten **27**, gelang derselben Gruppe mit einem vom Phenanthren

abgeleiteten Phosphan-Liganden **12f** (Schema 1.15).⁶⁸ Eine Kristallstrukturanalyse des isolierten Palladiumkomplexes belegte die Stabilisierung der monokoordinierten Spezies durch π -Wechselwirkungen.

Schema 1.15: Tetra-ortho-substituiertes Biaryl durch eine Suzuki–Miyaura-Reaktion nach Buchwald.⁶⁸

Glorius verwendete von Bioxazolinen abgeleitete NHC-Liganden **8** in Suzuki–Miyaura-Kreuzkupplungsreaktionen von Chlorarenen **27** zum Aufbau hochsubstituierter Biaryle.⁶⁹ Die raumerfüllenden Cycloalkan-Substituenten ermöglichten hierbei durch flexible Konformationsänderungen die Annäherung voluminöser Substrate an das Palladiumzentrum. Allerdings konnte der NHC-Vorläufer nicht direkt eingesetzt werden, sondern musste durch Deprotonierung mit Kaliumhydrid und KO*t*-Bu unter Inertgas-Bedingungen vorab aktiviert werden.

1.2.4 Sekundäre Phosphanoxide als Ligandvorläufer in übergangsmetallkatalysierten Kreuzkupplungsreaktionen mit Chlorarenen

Die in Kreuzkupplungsreaktionen eingesetzten elektronenreichen Phosphanliganden oder deren Komplexe haben den gravierenden Nachteil, dass sie oftmals nicht luftstabil sind oder ihre Nutzung durch patentrechtliche Ansprüche eingeschränkt ist. Tertiäre Phosphane können in "maskierter" Form als BH₃-Addukte⁷⁰ oder Phosphoniumsalze⁷¹ als Ligandvorläufer eingesetzt werden. Eine andere Strategie benutzt tertiäre Phosphanoxide, die *in-situ* zu den Phosphanen reduziert werden müssen.⁷² 2001 beschrieb *Li* als benutzerfreundliche Alternative luftstabile sekundäre Phosphanoxide **34** als Ligandvorläufer, die er in Kreuzkupplungen als potente Ligandenvorläufer verwenden konnte.⁷³ Vorteilhafterweise können diese Verbindungen, im Vergleich zu den mit zusätzlichem Syntheseaufwand "geschützten" tertiären Phosphanen, direkt in katalytischen Reaktionen eingesetzt werden.

Die Reaktivität der sekundären Phosphanoxide **34** resultiert aus einem in Lösung vorliegenden Tautomerengleichgewicht mit ihren entsprechenden phosphinigen Säuren **35**,

welche mit Übergangsmetallen katalytisch aktive Komplexe bilden (siehe Kapitel 1.2.5). Das elektronisch deaktivierte 4-Chloranisol (**27a**) konnte bei 100 °C mit CsF als Lewis-Base in einer palladiumkatalysierten Suzuki–Miyaura-Kupplung nahezu quantitativ umgesetzt werden. Ebenso gelang dies in einer Kumada–Corriu-Kreuzkupplungsreaktion mit $[Ni(COD)_2]$ als Übergangsmetallquelle bereits bei Umgebungstemperatur (Schema 1.16). Zusätzlich konnte die Aktivität von *t*-Bu₂P(O)H (**34a**) in Buchwald–Hartwig-Aminierungen und C–S-Bindungsknüpfungen mit Chlorarenen **27** demonstriert werden.⁷³

Schema 1.16: Palladiumkatalysierte Suzuki–Miyaura- (a) und nickelkatalysierte Kumada–Corriu-Kreuzkupplung (b) nach *Li* unter Verwendung des sekundären Phosphanoxids **34a** als Ligandvorläufer.⁷³

Die nachfolgend synthetisierten, von *t*-Bu₂P(O)H (**34a**) abgeleiteten, luftstabilen Pd(II)-Komplexe **35a-35c** wurden zudem erfolgreich in Heck-, sowie in C–N- und C–S-Bindungsknüpfungsreaktionen eingesetzt (Abbildung 1.1).^{74 31}P-NMR-Untersuchungen deuten darauf hin, dass die katalytisch aktive Spezies durch Dissoziation und Deprotonierung der eingesetzten Vorläufer **35** entsteht und als einkerniger, anionischer und daher elektronenreicher Komplex vorliegen könnte.

Abbildung 1.1: Strukturen der Palladium(II)-Komplexe 35a, 35b und 35c.⁷⁴

In vergleichbarer Aktivität zu ihrer *in-situ* Generierung⁷³, konnten ebenso die isolierten Komplexe **35** Negishi- und Suzuki–Miyaura-Kreuzkupplungsreaktionen mit Chlorarenen **27** katalysieren.^{75,76} Zudem fanden die Palladium-Komplexe Anwendung in Kumada–Corriu-Kreuzkupplungen mit Chlorarenen **27**, wobei die Reaktionen bereits bei Umgebungstemperatur abliefen (Schema 1.17).⁷⁷ Die strukturell analogen, luftstabilen Phosphansulfide

36 waren in nickelkatalysierten Kumada-Kreuzkupplungen mit deaktivierten Chlorarenen **27** ebenso aktiv.⁷⁸

Schema 1.17: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplung mit Chloraren 27b bei Umgebungstemperatur. 77_a

Wolf und Mitarbeiter untersuchten das Anwendungsspektrum der POPd-Komplexe **35** in unterschiedlichen Kreuzkupplungsreaktionen,⁷⁹ von denen hier nur die Hiyama-Reaktion mit Arylsiloxanen **37** in Wasser näher besprochen wird.⁸⁰ Es gelang, die Arylsiloxane **37** mit POPd1 (**35a**) bei erhöhten Reaktionstemperaturen mit elektronisch aktivierten Chlorarenen **27** umzusetzen (Schema 1.18). Von Vorteil waren der Verzicht auf organische Lösungsmittel und der Einsatz von preisgünstigem NaOH als Base. Zusätzlich konnte mit dem luft- und wasserstabilen Katalysator **35a** die Reaktion ohne Schutzgasatmosphäre durchgeführt werden.

Schema 1.18: Hiyama-Kreuzkupplung eines aktivierten Chlorarens 27c in Wasser nach Wolf.⁸⁰

Erst kürzlich berichtete *Buchwald* von einer generell anwendbaren Methode für die Suzuki-Miyaura-Kreuzkupplung von Chlorarenen **27** mit 2-Pyridinboronaten **38**.⁸¹ Diese Substrate waren bislang nicht effizient in Suzuki–Miyaura-Reaktionen umsetzbar, da elektronenarme Heteroarylboronsäuren unter den typischen Reaktionsbedingungen nur langsam eine Transmetallierung eingehen. Stattdessen führt die konkurrierende Hydrodeborierung zu einer schnellen Zersetzung des Nucleophils. In Kombination mit Lithiumtri*iso*propyl-2pyridinboraten **38** und preiswertem KF als aktivierender Base konnten mit dem luftstabilem Phosphanoxid **35a** als Ligandvorläufer eine Vielzahl an elektronenarmen und elektronenreichen Brom- und Chlor(hetero)arenen zur Reaktion gebracht werden (Schema 1.19).

Schema 1.19: Palladiumkatalysierte Suzuki–Miyaura-Kreuzkupplung mit sekundärem Phosphanoxid **34a** nach *Buchwald*.⁸¹

1.2.5 Heteroatomsubstituierte sekundäre Phosphanoxide (HASPO) und Diaminochlorphosphane als Ligandvorläufer in Kreuzkupplungsreaktionen

Für die Synthese der alkyl- oder arylsubstituierten Phosphanoxide **34** werden die entsprechenden metallierten Verbindungen benötigt, was den flexiblen Zugang zu diesen Ligandvorläufern deutlich limitiert.^{73,75} Vorteilhaft dagegen ist die in unserem Arbeitskreis entwickelte Ligandklasse der <u>h</u>eteroatomsubstituierten <u>s</u>ekundären <u>P</u>hosphan<u>o</u>xide (HASPO) **39**,⁸² die präparativ einfach, modular und kostengünstig aus den entsprechenden Diolen, Diaminen oder Aminoalkoholen darstellbar ist (Schema 1.20). ^{83,84} Hierzu werden diese, wie für die Diamine **40** in Schema 1.20 gezeigt, in Anwesenheit von Triethylamin als Base mit preiswertem Phosphortrichlorid (**41**) umgesetzt, wodurch zuerst die Diaminochlorphosphane **42** entstehen. Diese können als hochkristalline Verbindungen isoliert werden oder in einem Eintopf-Verfahren zu den Phosphanoxiden **39** hydrolysiert werden. In analoger Weise führt die Umsetzung mit Schwefelwasserstoff⁸⁵ zu den jeweiligen, ebenso luftstabilen Phosphansulfiden **36**.⁸⁶

Schema 1.20: Modularer Zugang zu HASPO-Präliganden 39 aus Diaminen 40 nach Ackermann.⁸⁴

2005 berichteten *Ackermann* und *Born* über den erstmaligen Einsatz eines HASPO-Präliganden **39** in Kreuzkupplungen von elektronenarmen wie -reichen Chlor(hetero)arenen **27**, wobei Biaryle mit bis zu zwei *ortho*-Substituenten aufgebaut werden konnten (Schema 1.21).^{84,87}

Schema 1.21: Palladiumkatalysierte Suzuki–Miyaura-Kreuzkupplung mit HASPO **39a** als Ligandvorläufer nach *Ackermann*.⁸⁴

Ebenso wurde ein von *Enders* beschriebenes TADDOL-Derivat **39b**⁸⁸ erfolgreich als Ligandvorläufer verwendet. Desweiteren gelang es unserem Arbeitskreis zu zeigen, dass auch das Diaminochlorphosphan **42a** als effizienter Ligandvorläufer palladiumkatalysierte Buchwald– Hartwig-Aminierungen, α -Arylierungen von enolisierbaren Ketonen, Suzuki–MiyauraKreuzkupplungen und nickelkatalysierte Kumada–Corriu-Kreuzkupplungsreaktionen zu vermitteln vermag (Schema 1.22).⁸⁴ In sämtlichen Kupplungsreaktionen konnten elektronenreiche Chlorarene **27** umgesetzt werden, wobei unter Verwendung der nucleophilen Base NaO*t*-Bu die Bandbreite an tolerierten funktionellen Gruppen jedoch noch limitiert war.

Schema 1.22.: Katalytische Kreuzkupplungen von Chloraren **27a** unter Verwendung von Diaminochlorphosphan **42b** als Ligandvorläufer nach *Ackermann*.⁸⁴

Mechanistische Studien durch *Born* und *Ackermann* zum Wirkmechanismus des Katalysators belegten, dass Alkoxid-Basen unter Salzeliminierung mit dem Chlorphosphan **42b** zum entsprechenden Diaminooxyphosphan (DAOP) **43a** reagierten (Abbildung 1.2). Das synthetisierte DAOP **43a** zeigte als Ligandvorläufer mit 4-Chloranisol (**27a**) in einer Buchwald–Hartwig-Aminierung vergleichbare Aktivität wie das Chlorphosphan **42b**.⁸⁴

43a

Abbildung 1.2: Diaminooxyphosphan (DAOP) 43a.⁸⁴

In der Literatur ist der Brønsted-Säure-induzierte Zerfall von Diaminooxyphosphanen **43** unter Eliminierung von Isobuten **44** zu Phosphanoxiden **39** beschrieben (Schema 1.23).⁸⁹ Eine analoge Zerfallsreaktion führte vermutlich nach Koordination von **43a** an das Lewis-saure Übergangsmetall zur katalytisch aktiven Spezies.

Schema 1.23: Thermischer Zerfall des Diaminooxyphosphans 43b zum HASPO 39c.^{89a}

2006 verwendete unsere Gruppe das mittlerweile kommerziell erhältliche,⁹⁰ sterisch anspruchsvolle Diaminochlorphosphan **42a** als Präligand in C–C- und C–N-Bindungsknüpfungsreaktionen.^{91,92} Damit war eine Möglichkeit zum Aufbau sterisch stark gehinderter Diarylamine **3** mit elektronisch deaktivierten Chlorarenen **27** eröffnet (Schema 1.24). Die Methodik war ebenso auf alkylsubstituierte Amine anwendbar. Zudem erwies sich Chlorphosphan **42a** als geeigneter Ligandenvorläufer, um enolisierbare Ketone in α -Position zu arylieren.^{92,93}

Schema 1.24: Palladiumkatalysierte Aminierung mit anspruchsvollen Substraten nach Ackermann.⁹²

Ein *in-situ* genierter Katalysator aus HASPO **39d** und [Ni(acac)₂], erwies sich als hochwirksam in Kumada–Corriu-Kreuzkupplungen zwischen Chlorarenen **27** und Arylmagnesiumhalogeniden **20** bei Umgebungstemperatur.^{91,94} Die Reaktionsbedingungen ließen sich auch erfolgreich auf die Umsetzung wenig reaktiver Fluorarene **29** übertragen, wobei dieser Katalysator in Aktivität und Selektivität ein bereits von *Herrmann*^{47,49} beschriebenes System übertraf (Schema 1.25).⁹²

Schema 1.25: Nickelkatalysierte Kumada–Corriu-Kreuzkupplung von 3-Chlor-(**27e**) und 3-Fluorpyridin (**29a**) bei Umgebungstemperatur mit HASPO **39d** als Ligandvorläufer nach *Ackermann*.⁹²

Später demonstrierte *Tamao* die Fähigkeit von Diphosphan-Nickel-Komplexen zur Aktivierung polyfluorierter Arene und Alkene.⁹⁵ *Nakamura* gelang es unter Einsatz eines bidentaten Liganden hohe isolierte Ausbeuten in Kumada–Corriu-Kreuzkupplungsreaktionen⁹⁶ mit Fluorarenen **29** zu erzielen.⁹⁷ Ein postulierter heterobimetallischer Mechanismus, in dem das Magnesium-Atom in der Nähe des Fluors präkoordiniert in einem heterobimetallischen Komplex vorliegt, wurde durch quantenmechanische Rechnungen gestützt (Abbildung 1.3).

Abbildung 1.3: Postulierter Übergangszustand einer C(sp²)–F-Aktivierung nach Nakamura.⁹⁶

Das von TADDOL⁸⁸ abgeleitete *H*-Phosphonat **39b** ermöglichte als luftstabiler Präligand palladiumkatalysierte Hiyama- und Stille-Kreuzkupplungen unter Erhalt sensitiver Funktionalitäten, wie Ester-, Nitril-, Carbonyl- und Nitrogruppen (Schema 1.26).^{93,98} Mit diesem katalytischen System konnten ebenso Chlorarene **27** mit Boronsäuren **33** gekuppelt werden, obgleich die milde Lewis-Base TBAF durch nucleophileres Kalium-*tert*-butoxid ersetzt werden musste.⁹⁸

Schema 1.26: Hiyama- und Stille-Kreuzkupplung mit HASPO 39b als Ligandvorläufer nach Ackermann.⁹⁸

Auch andere Forschungsgruppen erkannten das Potential der HASPO-Präliganden in Kreuzkupplungsreaktionen und entwickelten nachfolgend katalytische Systeme. Knochel und Mitarbeiter verwendeten Diethylphosphit (39e) in Negishi-Kreuzkupplungen mit einer geringen Nickelbeladung von 0.05 mol[%].⁹⁹ Der Zusatz von 4-(Dimethylamino)pyridin und N-Ethylpyrrolidon als Cokatalysatoren war jedoch essentiell, um funktionalisierte Zinkorganyle mit Aryltriflaten, Brom- und elektronisch aktivierten Chlorarenen bei Umgebungstemperatur umzusetzen. Die Gruppe von Gao verwendete ein sterisch anspruchsvolles, hydrolyseunempfindliches Chlorphosphan 42b, mit dem sich palladiumkatalysierte Suzuki-Miyaura-Kreuzkupplungen von Chlorarenen 27 in guten isolierten Ausbeuten durchführen ließen (Schema 1.27).¹⁰⁰ Die Reaktivität wurde von den Autoren auf die bereits von *Ackermann* und *Born* beschriebene Reaktion eines Alkoxids mit Chlorphosphanen **42** zurückgeführt.^{84,89a}

Schema 1.27: Chlorphosphan 42b als Ligandvorläufer in Suzuki-Kreuzkupplungen nach Gao.¹⁰⁰

HASPO-Systeme, die aus unsymmetrisch-substituierten Diaminen zugänglich sind und einen stereogenen Phosphor besitzen, wurden erstmals von *Hamada* in einer asymmetrischen palladiumkatalysierten allylischen Substitutionsreaktion eingesetzt.^{101,102} Bemerkenswerter-weise sind diese Präliganden sowie ihre Komplexe in Lösung konfigurationsstabil, wobei über ihr Potential in asymmetrischen Kreuzkupplungsreaktionen bislang keine Arbeiten erschienen sind (Abbildung 1.4).¹⁰³

Abbildung 1.4: Chirales Diaminophosphanoxid 39f von Hamada.¹⁰¹

1.2.6 Die Koordinationschemie heteroatomsubstituierter sekundärer Phosphanoxide

Ähnlich zu den Dialkyl- und Diarylphosphanoxiden **34**,¹⁰⁴ stehen die heteroatomsubstituierten sekundären Phosphanoxide **39** im tautomeren Gleichgewicht mit ihren jeweiligen trivalenten Phosphorverbindungen **45**.¹⁰⁵ Bei Umgebungstemperatur dominieren die pentavalenten Spezies **39**, woraus die Luftstabilität dieser Substanzklasse resultiert. In Anwesenheit eines späten Übergangsmetalls kann durch die Koordination des trivalenten Phosphor-Atoms eine Gleichgewichtsverschiebung erreicht werden.^{105,106} Nach Deprotonierung resultiert ein phosphorgebundener Phosphito-Ligand, der über eine intramolekulare Wasserstoffbrücke mit einem weiteren phosphorgebundenen, neutralen Phosphit einen bidentaten anionischen Komplex **46** ausbilden kann (Schema 1.28).^{82,107}

Schema 1.28: Die tautomeren Formen 39 und 45 von HASPOs und die Bildung eines Übergangsmetallkomplexes 46.⁸²

Im Folgenden werden hier ausgewählte Beispiele zur Darstellung von HASPO-Komplexen vorgestellt.¹⁰⁸ Neben der Verwendung der Phosphanoxide **39** als Ausgangsverbindungen, führt die Hydrolyse von Chlorphosphanen 42 zu den entsprechenden sekundären Phosphiten. Ausgehend von Trialkylphosphiten 47 kann nach erfolgter Koordination an ein spätes Übergangsmetall durch eine Arbuzov-artige Dealkylierung das Phosphito-Anion dargestellt werden.¹⁰⁹ Dieser Mechanismus lag vermutlich auch bei der Bildung der katalytisch aktiven Spezies DAOP 43a in den Buchwald-Hartwig-Aminierungsreaktionen vor (siehe Kapitel 1.1.5).⁸⁴ Kläui synthetisierte ausgehend von Trimethylphosphit (**49a**) und dem Ruthenium- η^6 -Arenkomplex einkernigen Phosphit/Phosphito-Ruthenium-Komplex **48** einen 51 (Schema 1.29).¹¹⁰ Derselbe Ruthenium-Komplex konnte auch durch Reaktion mit Dimethylphosphonat (50) unter HCl-Eliminierung erhalten werden (Schema 1.29).¹¹¹

Schema 1.29: Synthese eines Phosphit/Phosphito-Ruthenium-Komplexes **51** aus Trimethylphosphit (**49**)¹¹⁰ und Dimethylphosphonat (**50**) nach *Kläui*.¹¹¹

Kürzlich wurde die Synthese eines zweikernigen Palladiumkomplexes **54** mit bidentaten Phosphit/Phosphito-Liganden beschrieben (Schema 1.30).^{104,112}

Schema 1.30: Synthese eines zweikernigen Phosphit/Phosphito-Palladium(II)-Komplexes 54.¹¹²

Werden Komplexe dieser bidentaten Phosphit/Phosphito-Liganden mit Lewis-Säuren, wie BF₃, TMSCl oder Übergangsmetallsalzen behandelt, so kann das acide, verbrückende Proton ersetzt werden (Schema 1.31).¹¹³

Schema 1.31: Bildung des Komplexes 56 nach Werner.¹¹³

Die mögliche *in-situ* Ausbildung derartiger heterobimetallischer Komplexe in Anwesenheit metallorganischer Reagenzien sollte daher in Betracht gezogen werden. Diese Beispiele zeigen, dass anionische, elektronenreiche Komplexe aus luftstabilen *H*-Phosphonaten **39** über verschiedene Wege zugänglich sind.

1.3 Direkte Arylierungen

1.3.1 Strategien direkter Arylierungen als Alternative zu "traditionellen" Kreuzkupplungsreaktionen

"Klassische" Kreuzkupplungen benötigen zur Knüpfung von C(sp²)–C(sp²)-Bindungen Aryl(pseudo)halogenide als Elektrophile und stöchiometrische Mengen organometallischer Nucleophile.^{30,33} Diese Metallorganyle sind jedoch oftmals nicht kommerziell erhältlich oder stellen kostenintensive Ausgangsmaterialien dar, deren mangelnde Langzeitstabilität eine zusätzliche Limitierung für synthetische Anwendungen mit sich bringen kann. Zudem verursachen ihre teils aufwendigen Synthesen¹¹⁴ und deren anschließende Umsetzungen die Bildung unerwünschter, oftmals toxischer Nebenprodukte. Eine ökonomisch wie ökologisch vielversprechende Alternative hierzu bieten direkte Arylierungsstrategien durch Aktivierung von C-H-Bindungen.^{30a,115} Da im Sinne einer direkten Arvlierung unterschiedliche C-H-Bindungen adressiert werden können, ist die Entwicklung regioselektiver Methoden für die präparative organische Synthesechemie von enormer Bedeutung.¹¹⁶ Die regioselektive direkte Arylierung kann hierbei durch sterische Wechselwirkungen, oder über elektronische Effekte in aromatischen Heterocyclen,¹¹⁷ oder mittels elektronegativer¹¹⁸ Substituenten am Aren gesteuert werden. Die große Herausforderung liegt jedoch in der Entwicklung regioselektiver direkter Arylierungsmethodiken elektronisch nicht-aktivierter Arene.¹¹⁹ Ein möglicher Lösungsansatz hierzu stellt die Verwendung von dirigierenden Gruppen dar, die entweder permanent am Aren verbleiben, oder abspaltbar bzw. einfach zu derivatisieren sind (Schema 1.32).¹²⁰

Schema 1.32: Strategien zur intermolekularen, direkten Arylierung in *ortho*-Position zu einer dirigierenden Gruppe (DG).

Das Reaktionsprinzip basiert auf der Koordination des Katalysators an eine dirigierende Gruppe (DG), wodurch die selektive *ortho*-Funktionalisierung an Arenen ermöglicht wird. Dabei können als Reaktionspartner metallorganische Reagenzien (A), Arene (B) und (Pseudo)halogenide (C) eingesetzt werden (Schema 1.32). Unter Verwendung äquimolarer Mengen metallorganischer Verbindungen (A) werden zwar nicht die fundamentalen Nachteile der traditionellen Kreuzkupplungsreaktionen vermieden, jedoch wird auch dieser Ansatz mit regem Interesse weiterentwickelt.^{121,122} Oxidative Kupplungen¹²³ zwischen zwei elektronisch nicht-aktivierten Arenen (B) erfordern den stöchiometrischen Einsatz von Oxidationsmitteln, wie Kupfer(II)-salzen¹²⁴ oder Oxon.¹²⁵ Neben der angestrebten regioselektiven¹²⁶ direkten Arylierung, bietet sich Luftsauerstoff als preiswertestes und umweltfreundlichstes Oxidationsmittel an.¹²⁷ Die Verwendung von (Pseudo)halogeniden (C) in der direkten Arylierung von Heterocyclen, sowie unter Verwendung dirigierender Gruppen zur C–H-Bindungsaktivierung nicht-aktivierter Arene, steht jedoch überragend im Fokus aktueller Forschungsaktivitäten.

1.3.2 Intra- und intermolekulare direkte Arylierungen

Obwohl elektronisch nicht-aktivierte Arene, aufgrund ihrer geringen Nucleophilie, reaktionsträge Reaktionspartner für direkte Arylierungen darstellen, wurden beträchtliche Fortschritte zu deren Verwendung in intra- und intermolekularen direkten Arylierungen erreicht. Ein erstes Beispiel einer intramolekularen direkten Arylierung wurde 1982 von *Ames* berichtet. Unter Einsatz der heterocyclischen Verbindung **57** wurde anstelle des erwarteten Heck-Reaktionsproduktes, das cyclisierte Produkt **58** gemäß einer intramolekularen direkten Arylierungsreaktion erhalten (Schema 1.33).¹²⁸

Schema 1.33: Palladiumkatalysierte intramolekulare direkte Arylierung nach Ames.¹²⁸

Desweiteren konnte diese Methode zum Aufbau anellierter Benzofuran-Derivate ausgeweitet werden, wobei die Reaktionsbedingungen mit einer hohen Katalysatorbeladung und bei Temperaturen von 170 °C noch optimierungsbedürftig waren.¹²⁹ Durch Verwendung von Phenolen, die mit Cäsiumcarbonat *in-situ* zu reaktiveren Phenolaten reagieren, waren *Rawal*

und Mitarbeiter in der Lage, unter milden Reaktionsbedingungen intramolekulare Arylierungen mit hoher Selektivität in *ortho*-Stellung zur Hydroxy-Gruppe durchzuführen (Schema 1.34).¹³⁰

Schema 1.34: Intramolekulare direkte Arylierung nach Rawal.¹³⁰

Nach einem intensiven Screening-Verfahren fanden *Fagnou* und Mitarbeiter einen generell anwendbaren Palladiumkatalysator zur intramolekularen direkten Arylierung.¹³¹ Mit Dave-Phos (**12b**) als elektronenreichem Biphenyl-Phosphanliganden und polar-aprotischem Dimethylacetamid als Lösungsmittel, konnten funktionalisierte Bromarene **61** mit einer Palladiumbeladung von 0.1 mol% effizient umgesetzt werden (Schema 1.35). Die Synthese eines siebengliedrigen heterocyclischen Analogons wurde hingegen mit einem elektronenarmen Phosphan-Liganden bewerkstelligt.

Schema 1.35: Intramolekulare C–H-Bindungsfunktionalisierung mit Bromaren 61 nach Fagnou.¹³¹

Die Limitierung des Katalysators, eine exklusive Anwendbarkeit auf Bromarene **61** als Elektrophile, wurde durch den Einsatz des NHC-Präliganden **8a**¹³² aufgehoben und anschließend mit der Verwendung des luftstabilen Tricyclohexylphosphonium-Salzes **12h** zu einem breit einsetzbaren katalytischen System optimiert.¹³³ Funktionalisierte Brom- und Chlorarene konnten direkt zur Synthese etlicher Carbo- und Heterocyclen, wie dem Indol **9a**, erfolgreich verwendet werden (Schema 1.36).

Schema 1.36: Intramolekulare Arylierung von Chlorid 27i zu Indol 9a nach Fagnou.¹³³

Bislang wurde das Potential der intramolekularen C–H-Bindungsaktivierung lediglich an kleineren, ausgewählten Molekülen demonstriert, da die Anwendbarkeit dieser Methode, im Vergleich zu "traditionellen" Kreuzkupplungen, erst in den letzten Jahren zunehmend erkannt und genutzt wurde. Mittlerweile konnte auch in Totalsynthesen über den Schlüsselschritt einer direkten Arylierung, wie von *Gilvocarcin M, Korupensamin A, Benanomycin B* und *Frondosin B*, erfolgreich berichtet werden.¹³⁴ So präsentierte *Trauner* kürzlich eine palladiumkatalysierte Synthese von racemischem *Rhazinilam* (64), einem hochaktiven Tubulin-Inhibitor. Mittels direkter Arylierung des iodierten Startmaterials 29b gelang es, ein neungliedriges Ringsystem 63 in beachtlicher isolierter Ausbeute von 47% darzustellen, welches abschließend zu *rac-Rhazinilam* 64 weiter umgesetzt wurde (Schema 1.37).¹³⁵

Schema 1.37: Direkte Arylierung als Schlüsselschritt in der Synthese von rac-Rhazinilam (64) nach Trauner.¹³⁵

Carbazol-Derivate 65 stehen aufgrund ihrer biologischen Aktivität im Interesse aktueller Forschungsunternehmungen.¹³⁶ Die Gruppe von Fagnou wählte zur Synthese des zytotoxischen Alkaloids Mukonin (65a) einen Zugang über eine dreistufige Reaktionssequenz.¹³³ Das gewünschte Produkt konnte nach palladiumkatalvsierter intramolekularer direkter Arylierung in einer Gesamtausbeute von 75% erhalten werden, jedoch musste für die Buchwald-Hartwig-Aminierung mit 2-Chloranilin (4a) zuerst ein kostenintensives Triflat $30a^{52}$ synthetisiert werden (Schema 1.38).

Schema 1.38: Synthese von Carbazol Mukonin (65a) nach Fagnou.¹³³

Von modernen Reaktionen werden neben kostengünstigen Startmaterialien und einer hohen Chemo-, Regio- und Stereoselektivität, ebenso Anforderungen an eine effiziente und ökologische Durchführbarkeit gestellt. Katalytische Verfahren können hierzu einen wesentlichen Beitrag leisten, insbesondere wenn sie im Rahmen von Dominoreaktionen Anwendung finden. Unter Dominoreaktionen werden Prozesse verstanden, in denen unter identischen Bedingungen von zwei oder mehr nacheinander ablaufenden Transformationen, in denen unter Bindungsknüpfung oder Fragmentierung die jeweils nachfolgende Reaktion an den im vorhergehenden Schritt gebildeten Funktionalitäten erfolgt.^{137,138}

2002 berichtete die Gruppe von *Bedford* über einen Dominoprozess zur Darstellung von *N*-substituierten Carbazolen **65**, der auf einer übergangsmetallkatalysierten Buchwald– Hartwig-Aminierungsreaktion eines Bromarens **61b** und einer cyclisierenden direkten Arylierung mit einem Chloranilin **67** beruht (Schema 1.39).¹³⁹ Die resultierenden Carbazole **65** konnten in moderaten Ausbeuten isoliert werden, obgleich der Zugang zu funktionalisierten Verbindungen durch die verwendete nucleophile Base NaO*t*-Bu erheblich beschränkt war. Ebenso konnten unter Einsatz preiswerter Chlorarene **27** bzw. primärer Aniline bisher keine N–H-freien Carbazole **65** synthetisiert werden.

Schema 1.39: Synthese von N-substituierten Carbazolen 65 via Dominoreaktion nach Bedford.¹³⁹

1.3.3 Direkte Arylierung von Heterocyclen

Die modulare Synthese und Funktionalisierung heterocyclischer Verbindungen sind von großer Relevanz für die medizinische Chemie sowie in den Materialwissenschaften.¹⁴⁰ Eine moderne Variante, welche diese Anforderungen adressiert, stellt die palladiumkatalvsierte direkte C-H-Bindungsfunktionalisierung heterocyclischer Verbindungen dar.¹¹⁷ Seit der ersten intermolekularen direkten Arylierung eines Imidazols im Jahr 1984, wurden zahlreiche heterocyclische Verbindungen im Sinne einer direkten C-H-Bindungsaktivierung funktionalisiert, um zusätzliche synthetische Anstrengungen zur Darstellung halogenierter oder metallierter Ausgangsmaterialien zu vermeiden.^{117,141} Pionierarbeiten von Ohta¹⁴² stimulierten etliche Forschungsgruppen zur Untersuchung elektronenreicher,¹¹⁶ als auch elektronenarmer¹⁴³ Heterocyclen in direkten Arylierungsreaktionen. Daugulis¹⁴⁴ zeigte eine direkte Arylierung verschiedener Heterocyclen mit Iodarenen 28 auf, die ausschließlich durch Kupfer(I)-iodid katalysiert wurde.¹⁴⁵ Dem vorteilhaften Einsatz eines preiswerten Kupfersalzes stand jedoch die Verwendung der stark nucleophilen Base LiOt-Bu gegenüber. Die meisten Strategien zur palladium-¹¹⁷ oder rhodiumkatalysierten¹⁴⁶ direkten Funktionalisierung heterocyclischer Verbindungen zielen auf die Verwendung von (Pseudo)Halogenarenen ab, wobei über den generellen Einsatz preiswerter Chlorarene 27 bislang wenig berichtet wurde. 2007 präsentierte Daugulis eine Methode zur direkten C-H-Bindungsfunktionalisierung mit funktionalisierten Chlorarenen 27.¹⁴⁷ Dazu setzte er das von *Beller⁶²* entwickelte Phosphan *n*-BuPAd₂ (12e) in Kombination mit [Pd(OAc)₂] als Katalysator ein. Dieses System erlaubte mit der milden anorganischen Base Kaliumphosphat die Anwesenheit sensitiver funktioneller Gruppen und konnte erfolgreich auf die direkte Arylierung verschiedener elektronenreicher Heteroaromaten, wie Koffein¹⁴⁸ (**68**), angewendet werden (Schema 1.40).

Schema 1.40: Palladiumkatalysierte direkte Arylierung von Koffein (68) mit Chloraren 27k nach Daugulis.¹⁴⁷

Neben den gängigen Halogenarenen können ebenso Pseudohalogenarene in palladiumkatalysierten direkten Arylierungsreaktionen von heteroaromatischen Verbindungen eingesetzt werden. Beispielsweise war die Gruppe von *Doucet* in der Lage, Aryltriflate **30** mit elektronenreichen Heterocyclen umzusetzen.¹⁴⁹ Als optimale Bedingungen beschrieben sie ein katalytisches System bestehend aus [Pd(OAc)₂] und Triphenylphosphan (**12a**) in Kombination mit den milden Basen Kaliumacetat oder Cäsiumcarbonat bei erhöhter Temperatur (Schema 1.41).

Schema 1.41: Direkte Arylierung von Benzoxazol 69 mit Aryltriflat 30b nach Doucet.¹⁴⁹

Die Autoren hoben hervor, dass nur elektronenreiche Triflate **30** die Arylierungsprodukte in mässigen bis guten Ausbeuten ergaben. Hingegen wurden mit funktionalisierten, elektronisch-aktivierten Substraten überwiegend nur die jeweiligen Phenole, durch Hydrolyse, erhalten. Erhebliche Mengen an Homokupplungsprodukten der jeweiligen Elektrophile verminderten zudem die Effizienz dieser Methodik. Die preiswerteren, stabileren Aryltosylate **32**⁵² konnten jedoch bisher nicht erfolgreich in palladiumkatalysierten direkten Arylierungsreaktionen umgesetzt werden.

1,2,3-Triazole stellen wichtige Substrukturen in vielen Substanzen mit vielversprechendem biologischem Potential, wie beispielsweise anti-allergischer, anti-bakterieller und anti-HIV Aktivität, dar.¹⁵⁰ Daher wurden bereits zahlreiche Synthesestrategien entwickelt, unter denen *Huisgens* 1,3-diploare [3+2]-Cycloaddition von Aziden **70** und Alkinen **1** zu den bedeutensten zählt.¹⁵¹ Nachdem diese pericyclische Reaktion meist bei erhöhter Temperatur durchgeführt werden muss und zudem Regioisomerengemische, bei der Umsetzung unsymmetrisch substituierter Alkine erhalten werden, zielten moderne katalytische Weiterentwicklungen auf eine Vermeidung jener Nachteile ab. Mit dem Einsatz preiswerter Kupfer(I)-Katalysatoren konnten *Meldal* und *Sharpless* selektiv 1,4-disubstituierte 1,2,3-Triazole **72** in exzellenten Umsätzen durch eine "Click-Reaktion" mit Aziden **70** und terminalen Alkinen **71** darstellen (Schema 1.42, (a)).^{152,153,154} Zudem wurde in Kooperation mit *Jia*¹⁵⁵ eine komplementäre, ruthenium(II)-katalysierte Methodik zum Aufbau 1,5-disubstituierter 1,2,3-Triazole **73** entwickelt (Schema 1.42, (b)).¹⁵⁶

Schema 1.42: Komplementäre kupfer-(a) und rutheniumkatalysierte (b) Triazolsynthesen.

Während die Methode durch ihre generelle Anwendbarkeit auf terminale Alkine 71 synthetisch wertvoll ist, werden bei Umsetzungen unsymmetrisch-substituierter interner Alkine 1 jedoch in der Regel schwer trennbare Regioisomerengemische erhalten.¹⁵⁷ Ein vollständig 1,2,3-Trizolen ist über Zugang zu substituierten konventionelle Kreuzkupplungsreaktionen möglich, für die jedoch vorab synthetisierte 5-Halo-1,2,3-triazole oder sehr reaktive metallierte Triazole benötigt werden.¹⁴¹ Eine aussichtsreiche Alternative hierzu bietet die direkte Arylierung, die von Gevorgvan und Mitarbeitern an 1,2,3-Triazolen mit Bromarenen 61 unter palladiumkatalysierten Jeffrey-Bedingungen vorgestellt wurden.¹⁵⁸ Experimentelle Studien und Berechnungen legen einen elektrophilen aromatischen substitutionsartigen Mechanismus nahe, in dem die Arylpalladiumverbindung zuerst von dem elektronenreichen Triazol 74 angegriffen wird (Schema 1.43). Die nachfolgende Eliminierung von HBr aus dem kationischen Intermediat 75 resultiert in der Organopalladiumspezies 76, deren abschließende reduktive Eliminierung das arylierte Produkt 77 freisetzt und den eigentlichen Katalysator-Komplex regeneriert.

Schema 1.43: Postulierter Mechanismus für die direkte Arylierung von 1,2,3-Triazolen 74 nach *Gevorgyan*.¹⁵⁸ *Ackermann* und Mitarbeiter hingegen beschrieben die Verwendung von preiswerten Chlorarenen 27 in einer palladiumkatalysierten C–H-Bindungsfunktionalisierung von divers substituierten 1,2,3-Triazolen.^{159,160} Die generelle Anwendbarkeit konnte durch die Kompatibilität sensitiver funktioneller Gruppen, wie einem Ester-Derivat 271, und sterisch anspruchsvoller Substrate erfolgreich demonstriert werden, wobei die vollständig substituierten Triazole 77 in guten bis sehr guten isolierten Ausbeuten erhalten wurden (Schema 1.44).

Schema 1.44: Palladiumkatalysierte direkte Arylierung von 1,2,3-Triazol 72a mit Chloraren 271 nach Ackermann.¹⁵⁹

1.3.4 Dirigierende Gruppen in der direkten Arylierung nicht-aktivierter Arene

Das Konzept der regioselektiven C–H-Bindungsfunktionalisierung unter Verwendung dirigierender Gruppen geht auf *Kleimann* und *Dubeck* zurück, die Azobenzol (**78**) mit einer stöchiometrischen Menge Cp₂Ni (**79**) umsetzten (Schema 1.45).¹⁶¹ Die koordinierende Lewisbasische Azo-Gruppe lenkte die C–H-Bindungsinsertion des Übergangsmetalls zu dem resultierenden Metallacyclus **80**.

Schema 1.45: Regioselektive C–H-Bindungsaktivierung mittels dirigierender Gruppe.¹⁶¹

In analoger Weise kann die Regiokontrolle in katalytischen C–H-Bindungsfunktionalisierungen gesteuert werden: Durch die Ausbildung eines Metallacyclus wird die *ortho*-ständige C–H-Bindung aktiviert und selektiv nachfolgend funktionalisiert. Die Anwesenheit freier Elektronenpaare in der dirigierenden Gruppe ist hierbei essentiell, um eine erfolgreiche Cyclometallierung, durch Präkoordination an dem Übergangsmetall, zu ermöglichen. Bei unsymmetrisch substituierten Pronucleophilen kann die Arylierung unter sterischer Kontrolle an der weniger gehinderten C–H-Bindung selektiv verlaufen.¹⁶²

1993 berichteten *Murai, Kakiuchi* und *Chatani* über eine eindrucksvolle Anwendung dieses Konzepts, in der verschiedene (hetero)aromatische Ketone rutheniumkatalysiert mit Olefinen umgesetzt wurden.¹⁶³ Unter Verwendung von Palladium- und Rhodiumkatalysatoren konnten etliche Pronucleophile mit sauerstoff- oder stickstoffhaltigen dirigierenden Grukpppen erfolgreich mit Halogenarenen umgesetzt werden.^{115,162,164} *Sanford* und Mitarbeiter berichteten über direkte Arylierungen an Substraten, die über ein Stickstoffatom an das Metall koordinieren. *N*-heterocyclisch- und amidsubstituierte Aromaten können hierbei mit hypervalenten Iodverbindungen **82** aryliert und die erzielten Regioselektivitäten über den Substitutionsgrad gesteuert werden (Schema 1.46).¹⁶⁵ Die Verwendung hypervalenter Iodverbindungen **82** war essentiell, da diese gleichzeitig als Oxidationsmittel in einem postulierten Pd(II)/Pd(IV)-Katalysecyclus fungieren.

Schema 1.46: Palladiumkatalysierte direkte Arylierung von Pyridin 81a mit der hypervalenten Iodverbindung 82 nach *Sanford*.¹⁶⁵

Daugulis präsentierte eine ligandfreie palladiumkatalysierte Arylierung von sp²- und sp³-C– H-Bindungen in Pyridinen, Chinolinen und Pyrazolen mit Iodarenen **28** (Schema 1.47).¹⁶⁶ Allerdings war die Zugabe stöchiometrischer Mengen Silberacetat nötig, um das entstandene Iodid abzufangen und die katalytisch aktive Palladiumspezies zu regenerieren.¹³³

Schema 1.47: Palladiumkatalysierte direkte C(sp³)–H-Bindungsfunktionalisierung nach *Daugulis*.¹⁶⁶

Neben den bedeutenden rhodium-^{164b} und palladiumkatalysierten C–H-Bindungstransformationen erwiesen sich die wesentlich preiswerteren Rutheniumkatalysatoren als potent in direkten Arylierungen mit Halogenarenen. Die Gruppe von *Oi* konnte 2-Phenylpyridin (**81b**) mit funktionalisierten Brom- und Iodarenen in Anwesenheit katalytischer Mengen des dimeren [RuCl₂(C₆H₆)]₂-Komplexes und PPh₃ (**12a**) als stabilisierendem Liganden umsetzen (Schema 1.48).¹⁶⁷

Schema 1.48: Rutheniumkatalysierte Arylierung von 2-Phenylpyridin (81b) mit Halogenbenzolen 21 nach Oi.¹⁶⁷

Die besten Umsätze wurden mit Kaliumcarbonat als Base und dem polar-aprotischen Lösungsmittel NMP erreicht. Während mit äquimolaren Mengen Brombenzol (61b) überwiegend das Monoarylierungsprodukt **86a** erhalten wurden, konnte mit einem Überschuss an Elektrophil das diarylierte Produkt **87a** selektiv dargestellt werden. Bei Verwendung des weniger reaktiven Chlorbenzols (**27m**) konnten nur 31% des monoarylierten Produkts **86a** erhalten werden. Weiterhin konnten *Oi* und Mitarbeiter den vorgestellten Katalysator erfolgreich bei *ortho*-Arylierungen und *ortho*-Alkenylierungen aromatischer, acyclischer Imine **88** einsetzen, wobei unsubstituierte Pronucleophile ein Gemisch aus monound difunktionalisierten Produkten ergaben.¹⁶⁷ Dirigierende Gruppen, welche nur vorübergehend installiert sind bzw. einfach in andere wichtige Funktionalitäten transformiert werden können, sind für die Synthesechemie besonders wertvoll. Neben Iminen **88** trifft dies auch auf die Oxazoline **89** zu, die zu verschiedenen wertvollen Funktionalitäten derivatisiert werden können (Schema 1.49).¹⁶⁸

Schema 1.49: Ausgewählte Beispiele zur Derivatisierung von Oxazolinen 89.¹⁶⁸

Seit den Arbeiten von *Murai*¹⁶⁹ sind Oxazoline **89** als leistungsfähige dirigierende Gruppen etabliert und wurden von *Oi* und Mitarbeitern ebenso effizient in rutheniumkatalysierten direkten Arylierungsreaktionen mit Bromarenen¹⁷⁰ und -heteroarenen¹⁷¹ eingesetzt.

Schema 1.50 illustriert zwei mögliche Mechanismen (Cyclen A und B), welche für die rutheniumkatalysierte direkte Arylierung von Aromaten mit stickstoffhaltigen dirigierenden Gruppen vorgeschlagen wurden. Im Katalysecvclus A wird erst durch eine oxidative Addition des Halogenarens 21 an den Rutheniumkomplex 98 das Arylrutheniumintermediat 99 gebildet, welches dann, gelenkt durch die dirigierende Gruppe, über ortho-Ruthenierung des Pronucleophils 100 den entsprechenden Ruthenacyclus 101 bildet. Abschließend wird durch reduktive Eliminierung das Produkt 102 erzeugt und der katalytisch aktive Rutheniumkomplex 98 regeneriert. Im Katalysecyclus B wird zuerst der Ruthenacyclus 103 gebildet, an den danach das Halogenaren 21 oxidativ addiert, wodurch das Intermediat 101 entsteht, welches analog zu Cyclus A durch reduktive Eliminierung in das Produkt 102 und den Komplex 98 übergeht.

Schema 1.50: Mögliche Reaktionsmechanismen der rutheniumkatalysierten direkten Arylierung.¹⁷⁰

Obwohl beide Reaktionswege für plausibel erachtet werden, favorisieren Oi und Mitarbeiter in neueren Arbeiten den Katalysecyclus B,¹⁷¹ wobei eine mögliche Beteiligung von Zwischenstufen nicht ausgeschlossen werden radikalischen konnte. Diese Arylierungsmethodik war jedoch auf die Verwendung von Bromiden oder Iodiden als beschränkt, bis Ackermann 2005 über eine generell anwendbare Elektrophile rutheniumkatalysierte direkte C-H-Bindungsaktivierung mit elektronenreichen und -armen Chlorarenen 27 berichtete.¹⁷² Mit [RuCl₂(*p*-Cymol)]₂ als Rutheniumvorläufer und dem $(34b)^{173}$ Bis-(1-adamantyl)phosphanoxid einfach zugänglichen, luftstabilen als stabilisisierenden Ligand konnte 2-Phenylpyridin (81b) bereits nach wenigen Stunden mit Chlorarenen 27 doppelt aryliert werden. Hierbei wurden funktionelle Gruppen wie enolisierbare Ketone und Ester toleriert (Schema 1.51, (a)). Der Einsatz von Iminen 88 als dirigierenden Gruppen hingegen ergab, nach abschließender saurer Hydrolyse, selektiv die monofunktionalisierten Acetophenonderivate 104 (Schema 1.51, (b)).

Schema 1.51: Rutheniumkatalysierte selektive direkte Arylierung mit Chlorarenen 27 nach *Ackermann* (Ar = 4 MeOC₆H₄).¹⁷²

Allerdings war es mit Chlorarenen 27 nicht möglich, Phenylpyridine 81 oder -pyrazole 105 selektiv einfach zu arylieren. Unserer Gruppe gelang es jedoch mit dem HASPO-Präliganden 39d und dem erstmaligen Einsatz von Aryltosylaten 32 als Elektrophile in direkten C–H-Bindungsfunktionalisierungen, selektiv die monoarylierten Produkte zu synthetisieren (Schema 1.52).^{86,174,175}

Schema 1.52: Selektive rutheniumkatalysierte Monoarylierung eines Arens **100** unter Verwendung von Aryltosylaten **32** als Elektrophile nach *Ackermann*.¹⁷⁵

Desweiteren konnten wir zeigen, dass Chlorarene 27^{176} in der direkten Arylierung von Alkenen umgesetzt werden können.^{174,177} Neben [RuCl₂(*p*-Cymol)]₂ und (1-Ad)₂P(O)H (**34b**) als *in-situ* gebildetes Katalysatorsystem, erwies sich vor allem der Ruthenium(IV)-alkyliden-Metathesekatalysator **106** als hochaktiv (Schema 1.53). Zahlreiche Alkenylpyridine und Alkenylpyrazole konnten direkt aryliert werden, wobei die gebildeten Alkene **102a** eine zu Heck- bzw. Kreuzmetatheseprodukten komplementäre Stereoselektivität aufwiesen.

Schema 1.53: Rutheniumkatalysierte direkte Alkenarylierung mit Chlorarenen **27** unter Verwendung des Grubbs-I-Carbens **106** als Katalysator nach *Ackermann*.¹⁷⁷

Abschließend demonstrierten *Ackermann* und Mitarbeiter das Potential rutheniumkatalysierter direkter C–H-Bindungsfunktionalisierungen in der sequentiellen Katalyse anhand einer direkten Arylierungs/Hydrosilylierungssequenz.¹⁷⁷ Hierbei wurden alkenylische und aromatische Pyridine **81**, Pyrazole **105** und Oxazoline **89** mit zahlreichen chlorsubstituierten Phenonen **107** aryliert und anschließend durch Zugabe von Triethylsilan effizient silyliert (Schema 1.54).

Schema 1.54: Rutheniumkatalysierte Reaktionssequenz bestehend aus direkter Arylierung und Hydrosilylierung nach *Ackermann*.¹⁷⁷

2 Aufgabenstellung

Die effiziente Knüpfung von C–N-Bindungen durch katalytische Hydroaminierungsmethodiken ist von großem Interesse. Ein erstes Ziel dieser Arbeit war daher die Optimierung einer sequentiellen Hydroaminierungs-Heck-Reaktion zum Aufbau des wichtigen Indol-Heterocyclus **9** ausgehend von kostengünstigen 2-Chloranilinderivaten **4** (Schema 2.1).

Schema 2.1: Sequentielle Indol-Eintopfsynthese.

Daneben sollte eine übergangsmetallfreie, asymmetrische Hydroaminierungsreaktion von elektronisch nicht-aktivierten Alkenen entwickelt werden.

Gegenstand dieser Arbeit war zudem die Entwicklung effizienter Arylierungsstrategien zum Aufbau wichtiger Biaryl-Substrukturen, welche in zahlreichen Naturstoffen und funktionalen Materialien aufzufinden sind.

Eine Möglichkeit zur Darstellung dieses Strukturmotivs sind die übergangsmetallkatalysierten Kreuzkupplungen zwischen metallierten Arenen und Halogenarenen. Diaminophosphanoxid **39d** hat sich bereits als potenter Ligandvorläufer in C–C-Bindungsknüpfungsreaktionen von Chlor- und Fluorarenen,^{84,92} sowie Tosylaten¹⁷⁵ als Elektrophile bewährt. Die Anwendbarkeit der ebenso luftstabilen *H*-Phosphonate **110** als Präliganden in palladiumkatalysierten Kumada–Corriu-Reaktionen mit unreaktiven (Pseudo)Halogenarenen sollte untersucht werden (Abbildung 2.1).¹⁷⁸

Da Suzuki–Miyaura-Kreuzkupplungsreaktionen eine hohe Kompatibilität gegenüber wichtigen funktionellen Gruppen aufweisen, sollte die Anwendungsbreite mit dem inzwischen kommerziell erhältlichen Chlorphosphan-Ligandvorläufer **42a** mit Chlor(hetero)arenen **27** als Elektrophile geprüft werden (Abbildung 2.1).

Abbildung 2.1: Diaminophosphanoxid 39d, H-Phosphonate 110 und Diaminochlorphosphan 42a.

Eine vorteilhafte Alternative zu traditionellen Kreuzkupplungen mit metallorganischen Reagenzien stellen direkte Arylierungen dar. Erstmals sollte durch eine Dominoreaktion mit preisgünstigen *ortho*-Dichlor(hetero)arenen **112** eine schutzgruppenfreie Synthese biologisch aktiver *N*-Heterocyclen **113** ermöglicht werden (Schema 2.2).

Schema 2.2: Dominoreaktion zur Synthese anellierter N-Heterocyclen.

Eine weitere Aufgabenstellung dieser Arbeit lag in der Entwicklung einer palladiumkatalysierten direkten Arylierung diverser C–H-acider Heterocyclen unter erstmaliger Verwendung hydrolysestabiler Tosylate **32** (Schema 2.3).

Schema 2.3: Palladiumkatalysierte direkte Arylierung mit Tosylaten 32.

Im Fokus der Arbeit stand ebenfalls die Entwicklung einfacher und kostengünstiger Katalysatorsysteme für rutheniumkatalysierte direkte Arylierungen mit verschiedenen dirigierenden Gruppen **100** und (Pseudo)halogen(hetero)arenen **21** (Schema 2.4).

Schema 2.4: Rutheniumkatalysierte direkte Arylierung.

3 Ergebnisse und Diskussion

3.1 Eintopf-Synthese von 2-Aryl/Alkenyl-Indolen

3.1.1 Einführung

Indolderivate stellen eine der am weitesten verbreiteten Heterocyclenklassen sowohl in natürlich vorkommenden, als auch in synthetischen biologisch aktiven Stoffen dar.¹⁷⁹ Als populäre Vertreter seien hier die essentielle Aminosäure L-Tryptophan (108), der Neurotransmitter Serotonin (109), das Alkaloid Strychnin (110) sowie das Antidepressivum Vilazodon[®] (**111**) aufgeführt (Abbildung 3.1). Die zentrale Bedeutung des Indolgerüsts führt noch immer zur Entwicklung moderner Methoden zum gezielten Aufbau dieser Substanzklasse, samt anschließenden Funktionalisierungsreaktionen.¹⁸⁰ Auch in unserem Arbeitskreis wurde von katalytischen Verfahren zur effizienten Indolsynthese berichtet.^{13,14,181} Im Folgenden wird eine sequentielle Eintopf-Methodik vorgestellt, die einen regioselektiven Zugang zu N-ungeschützten 2-Aryl/Alkenyl-substituierten Indolen ermöglicht. Der Fokus lag hierbei auf der Verwendung von 2-Chloranilinderivaten 4, da diese erheblich preiswertere Startmaterialien darstellen (2-Chloranilin (4a): 6 €/mol),¹⁰ als die korrespondierenden *ortho*-(**112a**): 157 €/mol)¹⁰ Bromverbindungen (2-Bromanilin oder die für *Larock*`s Indolsynthese¹⁸² häufig benötigten *ortho*-Iodaniline (2-Iodanilin (**113a**): 662 €/mol).¹⁰

Abbildung 3.1: Indolderivate L-Tryptophan (108), Serotonin (109), Strychnin (110) und Vilazodon[®] (111).

3.1.2 Reaktionsoptimierung

Die Optimierung der angestrebten Indolsynthese wurde anhand einer Testreaktion mit *ortho*-Chloranilin (**4a**) und Tolan (**1a**) in Toluol als Lösungsmittel bei 105 °C durchgeführt (Tabelle 3.1). Da der erste Schritt eine metallkatalysierte Hydroaminierungsreaktion beinhaltet, waren zunächst Versuche zur Bestimmung eines geeigneten Übergangsmetallkatalysators nötig. Zunächst erfolgt hierbei eine Hydroaminierung zum Enamin **109**, dem formalen Markownikow-Additionsprodukt, welches im tautomeren Gleichgewicht mit Imin **114** steht. Nachfolgend wurde mit dem NHC-Vorläufer **8a**¹⁸³ eine Aza-Heck-Reaktion bei 105 °C durchgeführt.

Tabelle 3.1: Optimierung der Eintopf-Indolsynthese.^[a]

[a] Reaktionsbedingungen: **4a** (1.0 mmol), **108** (1.5 mmol), [ÜM] (*kat.*), PhMe, 105 °C, 20 h; [Pd(OAc)₂] (5.0 mol%), HIPrCl (**8a**) (5.0 mol%), KOt-Bu (2.0 mmol), PhMe, 105 °C, 24 h.

Bei Verwendung von $[FeCl_3(H_2O)_6]$ als potentiellem Katalysator¹⁸⁴ für die angestrebte Hydroaminierungsreaktion konnte weder für das terminale Alkin **108a**, noch für das interne Alkin **108b** ein Umsatz zu **9b** bzw. **9c** festgestellt werden (Einträge 1 und 2). Platinchlorid¹⁸⁵ ermöglichte zwar eine Umsetzung sowohl von Phenylacetylen (**108a**) als auch Tolan (**108b**),

jedoch waren die Nebenreaktionen bei Verwendung des terminalen Alkins 108a zu stark ausgeprägt, um den geringen Umsatz zu Indol 9b eindeutig zu bestimmen (Eintrag 3). 2,3-Diphenylindol (9c) konnte unter Platinkatalyse in mäßiger Ausbeute von 24% isoliert werden (Eintrag 4). Die Verwendung von katalytischen Mengen [Ru₃(CO)₁₂] zur Hydroaminierung von Anilinen mit terminalen Alkinen ist beschrieben.¹⁸⁶ Wakatsuki und Mitarbeiter erkannten dabei den entscheidenden Reaktivitätsgewinn durch Verwendung katalytischer Mengen acider Ammoniumsalze mit schwach koordinierenden Gegenanionen.²³ Als bestes Ammoniumsalz wurde NH₄PF₆ identifiziert, welches vermutlich den [Ru₃(CO)₁₂]-Cluster wirksam aufzubrechen vermag. Bis dato wurde für dieses katalytische System weder die Anwendung auf interne Alkine, noch für einen sequentiellen Prozess beschrieben. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass ein derartiger Katalysator die gewünschte Hydroaminierung mit nachfolgender Heck-Cyclisierung in 60% bzw. 89% Ausbeute die gewünschten Indolderivate ergab (Einträge 5 und 6). In beiden Fällen konnten demnach erfolgreich ein terminales als auch ein internes Alkin umgesetzt werden. Zuletzt wurde der Einfluß einiger stabilisierender Liganden für den palladiumkatalysierten Aza-Heck-Cyclisierungsschritt betrachtet (Tabelle 3.2). Triphenylphosphan (12a) lieferte das Produkt 9c in einer geringen Ausbeute von 24% (Eintrag 1). Die Verwendung des elektronenreichen Tricyclohexylphosphans (12h) und eines als [HBF₄]-Addukt maskierten Phosphans 12d ergab 2,3-Diphenylindol (9c) in 44% bzw. 32% isolierten Ausbeuten (Einträge 2 und 3). Unter den eingesetzten NHC-Vorläufern 8 wurde das sterisch anspruchsvolle Imidazoliumsalz 8a als potentester Präligand gefunden, welches das gewünschte Indol 9c in guter Ausbeute von 89% ergab (Eintrag 7).

Tabelle 3.2: Optimierungsstudie zur palladiumkatalysierten Aza-Heck-Reaktion.^[a]

Eintrag	L		Isolierte Ausbeute
1	PPh ₃	12a	24%
2	PCy ₃	12h	44%
3	[Pt-Bu ₃ •HBF ₄]	12d	32%
4	Me Me	8c	15%
5	Me Me	8b	19%
6	<i>i</i> -Pr Cl <i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr	8d	31%
7	(- Pr) = (- Pr) + Pr	8a	89%

[a] Reaktionsbedingungen: **4a** (1.0 mmol), **108b** (1.5 mmol), [Ru₃(CO)₁₂] (1.0 mol%), [NH₄PF₆] (3.0 mol%), PhMe, 105 °C, 20 h. [Pd(OAc)₂] (5.0 mol%), Ligand (5.0 mol%), KO*t*-Bu (2.0 mmol), PhMe, 105 °C, 24 h.

3.1.3 Anwendungsbreite der sequentiellen Eintopf-Indolsynthese

Anhand der optimierten Reaktionsparameter wurde nun die Anwendungsbreite des Syntheseprotokolls mit diversen *ortho*-Halogenanilinen und substituierten Alkinen untersucht (Tabelle 3.3).

Tabelle 3.3: Darstellung von 2-Aryl/Alkenylindolen über rutheniumkatalysierte Hydroaminierungs-, palladiumkatalysierte Heck-Reaktion-Sequenz.^[a]

Ergebnisse und Diskussion

[a] Reaktionsbedingungen: 115 (1.0 Äquiv.), 108 (1.5 Äquiv.), KOt-Bu (2.0 Äquiv.), PhMe, 105 °C. A: [Ru₃(CO)₁₂] (1.0 mol%), [NH₄PF₆] (3.0 mol%), [Pd(OAc)₂] (5.0 mol%), **8a** (5.0 mol%), 20 °C. B: [Ru₃(CO)₁₂] (1.0 mol%), [NH₄PF₆] (3.0 mol%), [Pd(OAc)₂] (5.0 mol%), **8a** (5.0 mol%). C: [Ru₃(CO)₁₂] (1.0 mol%), [NH₄PF₆] (3.0 mol%), [Pd(OAc)₂] (1.0 mol%), **8a** (1.0 mol%). D: [Ru₃(CO)₁₂] (3.0 mol%), [NH₄PF₆] (9.0 mol%), [Pd(OAc)₂] (10.0 mol%), **8a** (10.0 mol%). E: [Ru₃(CO)₁₂] (1.0 mol%), [NH₄PF₆] (3.0 mol%), [NH₄PF₆] (3.0 mol%), [Pd(OAc)₂] (10.0 mol%), **8a** (10.0 mol%). E: [Ru₃(CO)₁₂] (1.0 mol%), [NH₄PF₆] (3.0 mol%), [Pd(OAc)₂] (10.0 mol%), [B] GC-Umsatz.

In sämtlichen Fällen konnte eine praktisch vollständige Hydroaminierung zu den Additionsprodukten 116 durch GC-MS-Analyse gefunden werden. Zudem wurde die exklusive Regioselektivät der in Position 2 funktionalisierten Indole 9 bestätigt. Bei angestrebten Versuchen, die Hydroaminierung bei Umgebungstemperatur durchzuführen, wurden die gewünschten Produkte nur in Spuren detektiert (Einträge 1 und 3). Wurde die Palladiumbeladung auf 1.0 mol% reduziert, konnte 9c in immer noch 60% Ausbeute isoliert werden (Eintrag 5). Bei Verwendung des unsymmetrischen Alkins 108c wurde jedoch kein Indol 9d gebildet (Eintrag 6). Für einen erfolgreichen Reaktionsumsatz unter Verwendung des Cyclohexenylsubstituierten Alkins 108d, war sowohl eine Erhöhung der Ruthenium- als auch der Palladiumbeladung essentiell. Das Indol 9e konnte jedoch nur in 49% Ausbeute erhalten werden (Eintrag 8). Die Methode konnte zudem auf 2-Bromanilin (112a) angewandt werden. Die isolierten Ausbeuten waren mit 78% bzw. 73% zufriedenstellend (Einträge 9 und 10). Methylsubstituiertes Chloranilin 4b ergab mit Phenylacetylen (108) das Indolderivat 9f in guter Ausbeute von 75% (Eintrag 11). Zudem konnte das Alkin 108d mit alkenvlischer Funktionalität in moderatem GC-Umsatz von 55% zum Indol 9g umgesetzt werden, sofern zehn mol% Palladiumkatalysator verwendet wurden (Eintrag 12). In der Medizinalchemie nehmen fluorierte Wirkstoffe¹⁸⁷ einen hohen Stellenwert ein, so dass Anilinderivat 4c mit Alkin 108d zur Reaktion gebracht wurde (Eintrag 13). Das mit einer Trifluormethylgruppe substituierte Indol 9h konnte jedoch nur in mäßiger Ausbeute von 35% rein isoliert werden. Die chemoselektive Umsetzung von Anilin 115 generierte ein Indol 9i mit Chlorsubstituent in sehr guter Ausbeute von 87% (Eintrag 14), welches für eine nachfolgende Funktionalisierung weiter verwendet werden kann.

3.2 Intramolekulare Brønsted-säurekatalysierte Hydroaminierung von Alkenen

3.2.1 Einführung

Der Pyrrolidin-Heterocyclus ist Bestandteil vieler in der Natur vorkommender Verbindungen, wie der essentiellen Aminosäure L-Prolin (118), dem Alkaloid Nikotin (119), sowie dem synthetisch erzeugten Wirkstoff Captopril[®] (120), einem ACE-Hemmer gegen Hypertonie (Abbildung 3.2).¹⁴⁰ Zusätzlich findet es in modifizierter Form im Enders'schen SAMP (121)/RAMP-Verfahren als chirales Auxiliar in der enantioselektiven Synthese Anwendung (Abbildung 3.2).¹⁸⁸ In unserem Arbeitskreis konnte erst kürzlich von einer leistungsstarken, kostengünstigen Hydroaminierungsmethodik berichtet werden, die den Aufbau von Pyrrolidinderivaten unter Brønsted-Säure-Katalyse ermöglicht.²⁴ Hydroaminierungen repräsentieren für die chemische und pharmazeutische Industrie hochinteressante Reaktionen, da breit verfügbare Ausgangsmaterialien mit 100%-iger Atomökonomie² zu wichtigen Produkten umgewandelt werden können.¹ In einem ausführlichen Screening-Verfahren fand Kaspar, dass katalytische Mengen Ammoniumtrifluoracetat die Cyclisierung nicht-aktivierter Aminoalkene zu den gewünschten Pyrrolidinen mit hoher funktioneller Gruppentoleranz ermöglichte.¹⁸⁹ Bemerkenswerterweise verlief diese Reaktion ebenso mit einem BINOL-Derivat der Phosphorsäure in moderater Ausbeute. Diese Befunde begründeten die Motivation, eine bis dato unbekannte asymmetrische, säurekatalysierte Hydroaminierungsreaktion nicht-aktivierter Aminoalkene zu entwickeln. Der Schwerpunkt sollte hierbei auf der katalytischen Verwendung substituierter BINOL-Phosphorsäurediester liegen, die bereits in zahlreichen Transformationen als potente Organokatalysatoren Verwendung fanden.¹⁹⁰

Abbildung 3.2: Natürliche und synthetische Pyrrolidinderivate.

3.2.2 Darstellung der Aminoalkene

Die Synthese der benötigten Pent-4-enylamine **124** verlief jeweils in drei Schritten. So wurde das durch nucleophile Substitution mit Allylbromid erhaltene Pentenylnitril **123** in guter Ausbeute von 88% zu 2,2-Diphenylpent-4-enylamin (**124a**) reduziert (Schema 3.1).²¹

Schema 3.1: Synthese von 2,2'-Diphenylpent-4-enylamin (124a).²¹

Der Zugang zu den sekundären Pent-4-enylaminen **125**, die als funktionalisierte Startmaterialien für die Pyrrolidinsynthese benötigt wurden, konnte durch reduktive Aminierung der jeweiligen Aldehyde mit Pentenylamin **124a** in mittlerer bis guter Ausbeute realisiert werden (Schema 3.2).²¹

Schema 3.2: Reduktive Aminierung zur Synthese von sekundären Aminoalkenen 125.²¹

Zur Synthese des *N*-arylierten sekundären Pentenylamins **125c** wurde **124a** mit 4-Bromanisol (**61c**) in einer palladiumkatalysierten Aminierungsreaktion umgesetzt. Das Produkt **125c** konnte mit PCy_3 (**12h**) als Ligand und KO*t*-Bu als Base nur in unbefriedigender Ausbeute erhalten werden (Schema 3.3).

Schema 3.3: Palladiumkatalysierte Aminierung zur Darstellung von 125c.

3.2.3 Synthese der BINOL-Phosphorsäurediester

Die Synthesen einer Vielzahl funktionalisierter, vom BINOL-abgeleiteter Phosphorsäurediester sind in der Literatur ausführlich beschrieben, so dass im Folgenden nur die allgemeinen Prinzipien zum Aufbau derartiger Katalysatoren aufgezeigt werden (Schema 3.4).¹⁹⁰

Schema 3.4: Synthesen von 3,3'-disubstituierten (R)-BINOL-Phosphorsäurediester.¹⁹⁰

Zur Darstellung der 3,3'-diarylierten Phosphorsäurediester wird enantiomerenreines BINOL **126** zuerst methyliert. Die erhaltenen Methoxyether-Funktionalitäten **127** erlauben nun eine selektive *ortho*-dirigierte Lithiierung. TMEDA wird als Additiv zugesetzt, um die Reaktivität von *n*-Butyllithium zu erhöhen. Die resultierende lithiierte Spezies wird *in-situ* mit Trimethoxyboran umgesetzt, um nach Hydrolyse im saurem Milieu die entsprechende Boronsäure **128** zu erhalten. Durch die Wahl verschiedener Bromarene **61** oder Iodarene **28**, in der sich anschließenden Suzuki–Miyaura-Kreuzkupplung ist es nun möglich, die katalytische Aktivität und Selektivität der Brønsted-Säuren zu modifizieren. Durch abschließende Etherspaltung mit Bortribromid und Umsetzung der resultierenden 3,3'-diarylierten BINOL-Verbindungen in Pyridin mit POCl₃, wird der arylierte BINOL-Phosphorsäurediesters **131** nach *MacMillan* wird im ersten Schritt eine MOM-Schutzgruppe installiert, die ebenso eine *ortho*-dirigierte Metallierung mit *n*-Butyllithium ermöglicht. Nachfolgend wird diese mit sterisch anspruchsvollen Triphenylsilylchlorid zur Reaktion

gebracht.¹⁹¹ Abschließende Schutzgruppenabspaltung mit konzentrierter Salzsäure und Umsetzung mit POCl₃ ergibt Diester **131**.

3.2.4 Reaktionsoptimierung der Brønsted-säurekatalysierten Hydroaminierung

Um ein geeignetes Katalysatorsystem für die angestrebte Hydroaminierung nicht-aktivierter Alkene zu finden, wurde das Testsubstrat Benzylpent-4-enylamin (**125a**) mit katalytischen Mengen verschiedener acyclischer Phosphorsäurediester **133** in unterschiedlichen Lösungsmitteln bei 130 °C umgesetzt (Tabelle 3.4).

Tabelle 3.4: Optimierung der intramolekularen Hydroaminierung mit Phosphorsäurediester 133.^[a]

,Bn Ph√ ^{−NH}	R R OH (<i>kat.</i>)	PhN ^{_Bn}
Ph	Solvens, 130 °C, 20 h	Ph
125a		132a

Eintrag	Katalysator		[mol%]	Solvens	Isolierte Ausbeute
1				1,4-Dioxan ^[b]	
2	MeO、_∽O MeO ^{⊂P⊂} OH	133a	20.0	1,4-Dioxan ^[b]	40%
3	<i>n</i> -BuO、O <i>n</i> -BuO ^{P_} OH	133b	20.0	1,4-Dioxan ^[b]	27%
4	BnO、O BnO´ Ṕ⊂OH	133c	20.0	1,4-Dioxan ^[b]	26%
5	PhO、O PhO ^{´_P´} OH	133d	20.0	1,4-Dioxan ^[b]	46%
6		133d	20.0	Me ₂ CO ^[b]	< 3% ^[c]
7		133d	20.0	MTBE ^[b]	< 2% ^[c]
8		133d	20.0	PhMe ^[b]	< 6% ^[c]
9		133d	20.0	MeCN ^[b]	34%
10		133d	20.0	NMP	32%
11		133d	20.0	$CH_2Cl_2^{[b]}$	< 12% ^[c]
12		133d	20.0	CHCl ₃ ^[b]	26%
13		133d	20.0	CCl ₄ ^[b]	6% ^[c]
14		133d	20.0	$1,2-Cl_2C_2H_4^{[b]}$	22%
15		133d	20.0	1,1,2,2-Cl ₄ C ₂ H ₂	88%
16		133d	10.0	1,1,2,2-Cl ₄ C ₂ H ₂	73%
17		133d	5.0	1,1,2,2-Cl ₄ C ₂ H ₂	31%

[a] Reaktionsbedingungen: 125a (1.0 Äquiv.), Katalysator (5.0-20.0 mol%), Solvens, 130 °C, 20 h.

[b] Reaktionen wurden in einem Druckrohr durchgeführt. [c] GC-Umsatz.

Aminoalken 125a wurde Die Hydroaminierung von von den acyclischen Phosphorsäurediester 133 a-d in mäßigen Ausbeuten in 1,4-Dioxan als Lösungsmittel katalysiert (Einträge 2 bis 5). Als aktivster Katalysator wurde der Phenyldiester 133d bestimmt, mit dem einige weitere Lösungsmittel getestet wurden (Einträge 6 bis 17). Mit 1,1,2,2-Tetrachlorethan (TCE) konnte das Hydroaminierungsprodukt in guter Ausbeute von 88% erhalten werden (Eintrag 15). Eine Katalysatorbeladung von nur zehn mol% ermöglichte eine Ausbeute von 73% (Eintrag 16). Ein Versuch, die Menge des Phosphorsäurediesters 133d auf fünf mol% zu reduzieren, verringerte ebenso die Ausbeute auf 31% (Eintrag 17). Mit TCE als bestem Lösungsmittel, welches vorteilhafterweise eine Durchführung der bei 130 °C in gewöhnlichen Schlenk-Kolben Reaktionen zuließ, wurde nun konsequenterweise das Potential cyclischer BINOL-substituierter Diester in der intramolekularen Hydroaminierung von Aminoalken 125a untersucht. Hierbei sollte auch eine mögliche stereochemische Induktion überprüft werden (Tabelle 3.5). Die Bestimmung der Enantiomerenüberschüsse erfolgte nach einer von Hultzsch beschriebenen Methode.¹⁹² Dazu wurde das erhaltene Pyrrolidin 132a durch eine heterogene Hydrierung mit Pearlman's-Katalysator debenzyliert und das resultierende sekundäre Amin mit enantiomerenreinem Mosher-Säurechlorid 135 in einem NMR-Rohr umgesetzt. Die gebildeten diastereomeren Amide 136 wurden ¹⁹F-NMR spektroskopisch bei 60 °C analysiert. So konnte über die gemessenen Integrale der Enantiomerenüberschuß ermittelt werden.¹⁹³

Tabelle 3.5: BINOL-Phorphorsäurediester zur intramolekularen Hydroaminierung von 125a.^[a]

Eintre e	D		Colmona	Isolier	Isolierte	ee-
Eintrag	ĸ	M01%	Solvens	I[C]	Ausbeute	Überschuss
1	H [p]	20.0 134a	1,4-Dioxan	130	33%	n.b.
2	134a	10.0 134a	TCE	130	78%	0%
3	C_6H_5	20.0 134b	1,4-Dioxan	130	13% ^[c]	n.b.
4	134b	10.0 134b	TCE	130	47%	0%
5	$4-C_6H_4F$	20.0 134c	1,4-Dioxan	130	< 5% ^[c]	n.b.
6	134c	10.0 134c	TCE	130	55%	3%
7	2-Naphthyl	20.0 134d	1,4-Dioxan	130	< 5% ^[c]	n.b.
8	134d	10.0 134d	TCE	130	64%	5%
9	9-Anthracenyl	20.0 134e	1,4-Dioxan	130	22%	n.b.
10	134e	10.0 134e	TCE	130	82%	7%
11	9-Phenanthryl	20.0 134f	1,4-Dioxan	130	19% ^[c]	n.b.
12	134f	10.0 134f	TCE	130	91%	8%
13		20.0 134g	1,4-Dioxan	130	72%	17%
14	3,5-(CF ₃) ₂ -C ₆ H ₃	20.0 134g	1,4-Dioxan	110	24% ^[c]	n.b.
15	134g	20.0 134g	NMP	130	71%	4%
16		20.0 134g	TCE	130	93%	8%
17		20.0 134h	1,4-Dioxan	130	95%	5%
18	C'DI.	10.0 134h	TCE	130	97%	0%
19	51Pn ₃	20.0 134h	TCE	100	60%	9%
20	134n	10.0 134h	TCE	100	29% ^[c]	n.b.
21		10.0 134h	1,2-Dichlorbenzol	130	95%	10%

[a] Reaktionsbedingungen: **125a** (1.0 Äquiv.), **134** (10.0-20.0 mol%), Solvens, 100-130 °C, 20 h.

[b] (S)-Atropisomer. [c] GC-Umsatz.

Es wurden BINOL-Phosphorsäurediester **134** mit unterschiedlich sterisch anspruchsvollen Resten auf ihre Aktivität und Enantioselektivität untersucht (Tabelle 3.5). Die verwendeten Lösungsmittel waren 1,4-Dioxan, TCE, NMP und 1,2-Dichlorbenzol, wobei die katalytische Aktivität in TCE mit sämtlichen Katalysatorsystemen am höchsten war. Jedoch konnte nur geringste stereochemische Induktion bei Verwendung dieses chlorierten Lösungsmittels beobachtet werden. Der höchste Enantiomerenüberschuß von 17% wurde mit der von *Akiyama* erstmals eingesetzten Phosphorsäure **134g** in 1,4-Dioxan als Lösungsmittel erzielt (Eintrag 13).¹⁹⁰ Entscheidend für die Enantioselektivität ist hierbei keine asymmetrische Protonierung, sondern dass das Phosphat-Anion im Kontaktionenpaar mit der protonierten Form von **125a** vorliegt.^{190,194} Erst diese resultierende chirale Umgebung ermöglicht die Cyclisierung zum Pyrrolidin-Heterocyclus unter bevorzugter Ausbildung eines Enantiomers. Bei Verwendung von *(R)*-3,3'-Bis[3,5-bis(trifluormethyl)phenyl]-1,1'-binaphthyl-2,2'- diylhydrogenphosphat (**134g**) konnte die Konfiguration des im Überschuss vorliegenden Enantiomers **136a** zu (*S*) eindeutig bestimmt werden (Abbildung 3.3).

Abbildung 3.3: ¹⁹F-NMR-Spektrum von 136.

Versuche, den Enantiomerenüberschuss durch Temperaturerniedrigung auf 110 °C zu verbessern, resultierten nur in einem wesentlich geringeren Reaktionsumsatz (Eintrag 14). Die arylierten BINOL-Phosphorsäurediester **134b** und **134c**, sowie die sterisch sehr anspruchsvollen Katalysatoren **134d**, **134e** und **134f** ergaben das gewünschte Pyrrolidin **132a** nur mit geringen Umsätzen. Es konnte beobachtet werden, dass diese Katalysatorsysteme in 1,4-Dioxan nur mäßig löslich waren und demnach nur begrenzt für eine erfolgreiche Hydroaminierungsreaktion zur Verfügung standen. Die beste katalytische Aktivität konnte mit MacMillan's Katalysator **134h** bereits mit einer Beladung von zehn mol% erzielt werden. Das Potential der silylierten Phosphorsäure **134h** für die stereoselektive Darstellung von Hydroaminierungsprodukt **132a** war jedoch nur mäßig in den verwendeten Lösungsmittel und Temperaturbereichen (Einträge 17 bis 21).

3.2.5 Anwendungsbreite der Brønsted-säurekatalysierten intramolekularen Hydroaminierungsreaktion von Aminoalkenen

Die folgenden Beispiele illustrieren das Potential der entwickelten BINOL-Phosphorsäurediester katalysierten intramolekularen Hydroaminierung von nicht-aktivierten Alkenen. Da die Reaktivität in TCE am besten war, wurden die folgenden Cyclisierungen zu den Pyrrolidin-Derivaten **132** mit diesem Solvens durchgeführt (Tabelle 3.6). Wichtige Funktionalitäten, wie Ether-, Nitro- und Estergruppen, als auch ein Chlor-Substituent, wurden in dieser Reaktion toleriert und ergaben die gewünschten Produkte in exzellenten Ausbeuten von 96-97% (Einträge 1 bis 4). Die Spiro-Verbindung **125f** konnte nur mit einer erhöhten Katalysatorbeladung von 20 mol% **134h** umgesetzt werden, wobei eine säulenchromatographische Reinigung nicht erfolgreich war (Eintrag 5). Die geringe Tendenz zur Cyclisierung von Startmaterial **125g** ist vermutlich durch das Fehlen einer geminalen Di-Substitution zu erklären (Eintrag 6).²⁰ Das primäre Aminoalken **125h** konnte ebenso nicht effizient zur Reaktion gebracht werden (Eintrag 7). Die Methode war nicht auf *N*-benzylierte Substrate beschränkt, sondern konnte erfolgreich auf ein *N*-alkyliertes **125i** und die *N*-arylierten Aminoalken **125j** und **125k** angewandt werden (Einträg 8 bis 10).

 Tabelle 3.6: Intramolekulare säurekatalysierte Hydroaminierung nicht-aktivierter Alkene 125.^[a]

Eintrag	125		Produkt		Isolierte Ausbeute
1	Ph NH Ph	125b	Ph N Me OMe	132b	96%
2	Ph NO ₂	125c	Ph N Me NO ₂	132c	97%
3	Ph Ph NH Ph	125d	Ph N CO ₂ Me	132d	95%

Eintrag	125		Produkt		Isolierte Ausbeute
4	Ph NH Ph	125e	Ph N N Cl	132e	96%
5	Bn NH	125f	N ^{Bn} Me	132f	53% ^[b,c]
6	Bn NH	125g	N ^{Bn} Me	132g	16% ^[b,c]
7	Ph NH ₂ Ph	125h	Ph N ^H Ph Me	132h	7% ^[b,c]
8	Ph Ph	125i	Ph N ^{-n-Oct} Ph Me	132i	93%
9	Mes Ph Ph	125j	Ph Mes Ph Me	132j	85% ^[c]
10	Ph NH Ph	125k	Ph N Ph Me	132k	95%

[a] Reaktionsbedingungen: **125** (0.5 mmol), **134h** (10.0 mol%), TCE, 130 °C, 20 h. [b] **134h** (20.0 mol%). [c] GC-Umsatz.

3.3 Palladiumkatalysierte Kumada–Corriu-Kreuzkupplungen mit Chlorarenen

3.3.1 Einführung

Die Verwendung von Chlorarenen 27 als Reaktionspartner in übergangsmetallkatalysierten Kreuzkupplungsreaktionen steht in den vergangenen Jahren verstärkt im Augenmerk aktueller Forschungsarbeiten.³⁴ Bedeutende Fortschritte auf dem Gebiet der Ligandenentwicklung erlauben heutzutage eine Vielzahl an synthetisch nützlichen Transformationen mit anspruchsvollen Chloriden in katalytischen Reaktionen. Li beispielsweise verwendete sekundäre alkylsubstituierte Phosphanoxide 34 als stabilisierende Ligandvorläufer in palladiumkatalvsierten Kumada–Corriu-Kreuzkupplungen von Chlorarenen 27.⁷³ Unserer Gruppe gelang es nach einem intensiven Liganden-Screening, ein hocheffektives und selektives katalytisches System vorzustellen. Unter Einsatz des Heteroatom-substituierten sekundären Phosphanoxides (HASPO) **39d** und preiswertem [Ni(acac)₂] konnten neben Chlorarenen **27** sogar Fluorarene 29 in Kumada–Corriu-Kreuzkupplungsreaktionen bei Umgebungstemperatur umgesetzt werden.⁹² Aufbauend auf Studien von Gschrei und Ackermann zur Verwendung von HASPO-Präliganden in Hiyama-, Stille- und Suzuki–Miyaura-Kreuzkupplungen,⁹³ wird im Folgenden ersten Mal gezeigt, dass ein luftstabiler HASPO-Präligand effizient für zum palladiumkatalysierte Kumada-Corriu-Kupplungen von Chlorarenen 27 eingesetzt werden kann.

3.3.2 Reaktionsoptimierung durch den Vergleich verschiedener HASPO-Präliganden

Die in unserem Arbeitskreis entwickelten N,N-disubstituierten [1,3,2]-Diazaphospholan-2oxide **39** zeichnen sich durch ihren präparativ einfachen und modularen Zugang, sowie ihre Luft- und Feuchtigkeitsinertheit aus.^{82,84} Dieselben Vorteile weist das, von *Enders* entwickelte, vom TADDOL-abgeleitete⁸⁸ *H*-Phosphonat **39b** auf. Neben diesem wurde das sterisch anspruchsvolle sekundäre Phosphanoxid (1-Ad)₂P(O)H (**34b**) untersucht. Die Optimierungsstudien bezüglich Palladiumvorläufer, Palladium-Ligand-Verhältnis und der verwendeten Präliganden wurden anhand der Testreaktion zwischen 3-Chlorpyridin (**27e**) und 4-Anisylmagnesiumbromid (**20e**) durchgeführt (Tabelle 3.7).

Hierzu wurde eine Lösung aus [Pd(OAc)₂] und dem jeweiligen Liganden in THF vorgelegt, nach wenigen Minuten die in THF vorliegende Grignard-Verbindung **20** zugegeben und fünf

Minuten gerührt, um den Katalysator zu generieren. Abschließend wurde das Arylchlorid **27** zugegeben und die Reaktionslösung für vier Stunden auf 60 °C erhitzt.

		[Pd(C	$DAc)_2]/L = 1/2$		
N N	+ BrMgOMe	TH	⁼ , 60 °C, 4 h		OMe
27e	20e				26i
Eintrag	L		[mol%]	Т	Isolierte Ausbeute
1	H, ∠O t-Bu [−] N [−] t-Bu	39g	10.0	60 °C	73%
2	H, O Mes N N-Mes	39 a	10.0	60 °C	81%
3	$\bigvee_{i-\Pr}^{i-\Pr} \underset{N}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset$	39d	10.0	60 °C	85%
4	H, O	34b	10.0	60 °C	82%
5		39b	5.0	60 °C	89%
6	Dh	39b	10.0	60 °C	98%
7		39b	20.0	60 °C	90%
8		39b	4.0	60 °C	96% ^[b]
9		39b	2.0	60 °C	62% ^[c]
10	Pn	39b	4.0	20 °C	31% ^[c,d]

Tabelle 3.7: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplung von 3-Chlorpyridin (**27e**) unter Verwendung verschiedener luftstabiler Ligandenvorläufer.^[a]

[a] Reaktionsbedingungen: **27** (1.0 mmol.), **20** (1.5 mmol), [Pd(OAc)₂] (5.0 mol%), THF, 60 °C, 4 h. [b] [Pd(OAc)₂] (2.0 mol%). [c] [Pd(OAc)₂] (1.0 mol%). [d] GC-Umsatz.

Sämtliche getesteten Präliganden wiesen ausreichende katalytische Aktivität auf, um die Kreuzkupplungsreaktion in mittleren bis quantitativen Umsätzen zu ermöglichen. Als potentester Präligand wurde das TADDOL-*H*-Phosphonat (**39b**) bestimmt, mit dem ebenso eine Reduzierung der Palladiumbeladung auf zwei mol% erreicht werden konnte, um das Produkt in vergleichbarer Ausbeute von 96% zu isolieren (Eintrag 8). Eine weitere Verringerung der Katalysatormenge auf 1.0 mol% führte jedoch zu einer geringeren Ausbeute von 62% (Eintrag 9). Das optimale Palladium-Ligand-Verhältnis konnte zu 1/2 bestimmt werden (Eintrag 6). Wurde die Kreuzkupplung bei Umgebungstemperatur durchgeführt, so

beobachtete man einen verringerten Reaktionsumsatz von 31% nach vier Stunden Reaktionszeit (Eintrag 10).

3.3.3 Kumada–Corriu-Kreuzkupplungen mit Chlorarenen

Mit diesem aktiven Katalysatorsystem wurden nachfolgend verschiedene Chlorarene **27** mit Arylmagnesiumverbindungen **20** zur Reaktion gebracht (Tabelle 3.8).

 Tabelle 3.8: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplungen von Chlor(hetero)arenen 27.^[a]

			[Pd(OAc) ₂] (2.0 m (39b) (4.0 mol%	10%) %)	
	(Hetero)AryI–CI + Y	Mg─∕∕R	THF, 60 °C, 4-2	3 h	₽R
	27	20		26	5
Fintrag	27	20	<i>t</i> [b]	Produkt	Isolierte
Entrag	21	20	ιμ	TTOUUKI	Ausbeute
1	CI NCI	CIMg	4		95%
	27e	20d		26 q	
2	К N—СІ	Me BrMg	21	Me N=	95%
	27e	20c		26r	
3	CI N	CIMg	6		99%
	27n	20d		26s	
4	Me	BrMg	OMe 23	Me	65%
	27k	20e		26c	
5	MeO	CIMg	23	MeO	83%
	27a	20d		26d	
6	Me	BrMg	OMe 23	Me OMe	73%
	270	20e		26f	
7	MeO CI MeO	CIMg	23	MeO MeO MeO	95%
_	27p	20d		26 u	

Eintrag	27	20	<i>t</i> [h]	Produkt	Isolierte Ausbeute
8	MeO CI MeO	BrMg — Me	18	MeQ MeQ MeQ	86%
	27p	20b		26v	
9	Me CI	BrMg OMe	21	Me OMe	61%
	27q	20e		26f	

[a] Reaktionsbedingungen: **27** (1.0 mmol), **20** (1.5 mmol), [Pd(OAc)₂] (2.0 mol%), **39b** (4.0 mol%), THF, 60 °C, 4-23 h.

Die Verwendung von 2- oder 3-chlorsubstituierten Pyridinen 27e und 27n ergab die gewünschten arylierten Produkte in hervorragenden isolierten Ausbeuten von 95-99% (Einträge 1 bis 3). Auch elektronenreiche, und daher für eine oxidative Addition deaktivierte Chlorarene 27 wurden erfolgreich unter Verwendung dieses Katalysatorsystems umgesetzt, wobei längere Reaktionszeiten hingenommen werden mussten. Die dargestellten Biphenyle wurden in mittleren bis sehr guten Ausbeuten isoliert (Einträge 4 bis 8). Sterisch anspruchsvolle *ortho*-Substituenten am Elektrophil wurden toleriert, jedoch war die isolierte Ausbeute des arylierten Produkts 26f mit 61% nur moderat (Eintrag 9). Das sterisch sehr anspruchsvolle Mesitylgrignard-Reagenz (20a) ließ sich unter den gewählten Reaktionsbedingungen nicht umsetzen, was die Notwendigkeit für weitere Ligandenoptimierungen nahe legt, um einen Zugang zu hochsubstituierten Biphenylen zu eröffnen.

Die bemerkenswerte katalytische Aktivität des HASPO-Palladiumkomplexes liegt vermutlich in der Deprotonierung des tautomeren Phosphits durch die stark basischen Grignard-Verbindungen **20** begründet.⁸² Eine ausführlichere Betrachtung unter Einbeziehung möglicher heterobimetallischer Komplexe wird in Kapitel 3.4 gegeben.

3.4 Palladiumkatalysierte Kumada–Corriu-Kreuzkupplungen mit (Hetero)Aryltosylaten

3.4.1 Einführung

Neben Halogenarenen können auch Pseudohalogenide, wie Sulfonate oder Phosphate, als Elektrophile in Kreuzkupplungsreaktionen erfolgreich eingesetzt werden. Hier finden überwiegend Triflate **30** und Nonaflate **31** Anwendung.⁵⁰ Da Aryltosylate **32** und -mesylate **137** aus kostengünstigen Startmaterialien zugänglich sind und nur in geringem Maße hydrolyselabil sind, ist deren Verwendung vorteilhaft.⁵² Im Fall der Tosylate **32** handelt es sich außerdem in aller Regel um hochkristalline Verbindungen. Die erhöhte Stabilität von Tosylaten **32** bedingt jedoch eine geringe Reaktivität,⁵¹ weshalb bislang nur verhältnismäßig wenige katalytische Systeme für Kreuzkupplungsrektionen von Aryltosylaten **32** beschrieben wurden.⁵³

3.4.2 Synthese kommerziell nicht erhältlicher Startmaterialien

Die folgenden kommerziell nicht verfügbaren (Hetero)Arylsulfonate **139** wurden gemäß Tabelle 3.9 synthetisiert. Nach einer Vorschrift von *Hu* wurden die in CH₂Cl₂ gelösten Phenole **66** unter den Reaktionsbedingungen mit Triethylamin als Base deprotoniert und mit dem jeweiligen Sulfonylchlorid **138** umgesetzt.¹⁹⁵ Eine Vielzahl funktionalisierter (Hetero)-Arylsulfonate **139** konnte derart in mittleren bis exzellenten Ausbeuten durch abschließende säulenchromatographische Reinigung oder Umkristallisation erhalten werden.

 Tabelle 3.9: Synthese der (Hetero)Arylsulfonate 139.^[a]

(Hetero)Aryl–OH + Cl–SO₂-R
$$\xrightarrow{\text{NEt}_3, \text{ CH}_2\text{Cl}_2}$$
 (Hetero)Aryl–OSO₂-R
66 138 139

Eintrag	66	R	Produkt	Isolierte Ausbeute
1	ОН	<i>p</i> -Tol 138a	OTs	96%
2	66b MeO-ОН 66c	<i>p</i> -Tol 138a	32b MeO-OTs 32c	80%
3	МеО МеО	<i>p-</i> Tol 138a	MeO MeO	99%
4	66d OMe OH	<i>p-</i> Tol 138a	32d OMe OTs	98%
5	Me OH	<i>p</i> -Tol 138a	Me OTs	99%
6	Me 66g	<i>p</i> -Tol 138a	Me 32g	90%
7	Me 66g	Ph 138b	Me 139b	87%
8	Me 66g	CF ₃ 138c	Me 139c	31% ^[b]
9	Me 66g	2,4,6-(Me) ₃ C ₆ H ₂ 138d	Me OSO ₂ Mes	70%

Eintrag	66	R	Produkt	Isolierte Ausbeute
	Me		Me	
10	————————————————————————————————————	<i>p</i> -Tol	√────────────────────────────────────	770/
10	Me	138 a	Me	////0
	66h		32h	
11		<i>p</i> -Tol		90%
	Me 66i	138 a	Me 32;	
			32I	
	⟨Он	<i>p</i> -Tol	OTs	
12	Me ₂ N	1 38 a	∕ Me₂N	84%
	66j		32j	
	г	<i>p</i> -Tol		
13		138a		92%
	66k		32k	
14	F₃C-√ОН	<i>p</i> -Tol	F ₃ C-	000/
14	661	138 a	321	0070
15	ОН	<i>p</i> -Tol	OTs	0.00/
15	F₃Ć	138 a	F ₃ Ć	9870
	66m		32m	
	Он	Ма	-OMs	
16	F₂C	138o	FaC	92%
	66m	1300	1 39 e	
		T 1		
17	Br	<i>p</i> -101	Br	75%
	66n	1508	32n	
	сі—	<i>p</i> -Tol		
18		138 a	22-	64%
	000		320	
	⟨∕−он	<i>p</i> -Tol	 	
19	cı	138 a	cı	82%
	66p		32p	
	—он	T 1	√────────────────────────────────────	
20		<i>p</i> -Tol		96%
	66a	1388	32a	

[a] Reaktionsbedingungen: 66 (1.0 Äquiv.), 138 (1.2 Äquiv.), NEt₃ (2.0 Äquiv.), CH₂Cl₂.

[b] Trifluormethylsulfonsäureanhydrid (**138c**).

Zudem sollten unterschiedliche HASPO-Präliganden in der Kreuzkupplung von Tosylaten **32** untersucht werden, da eine Vielzahl an Diolen **144** preiswert zugänglich ist. Einer Synthesevorschrift von *Munoz* folgend wurden die cyclischen luftstabilen *H*-Phosphonate **110** gemäß Schema 3.5 dargestellt.¹⁹⁶ Die Diole **144** wurden hierbei mit P_4O_6 (**143**) umgesetzt, welches *in-situ* aus Phosphoniger Säure (**140**) und *N*,*N*-Dicyclohexlycarbodiimid (**141**) gebildet wurde. Mit dieser Methode konnten die HASPO-Präliganden mit unterschiedlichen Substituenten und verschiedenen Ringgrößen in mittleren bis guten Ausbeuten im Multigramm-Maßstab synthetisiert werden.

Schema 3.5: Darstellung der HASPO-Präliganden 110.

3.4.3 Reaktionsoptimierung der palladiumkatalysierten Kumada–Corriu-Kreuzkupplung mit (Hetero)Aryltosylaten

Erste Vorversuche hatten gezeigt, dass TADDOLP(O)H (**39b**) als Präligand mit [Pd(dba)₂] als Palladiumquelle in Kumada–Corriu-Kreuzkupplungen Potential zur erfolgreichen Umsetzung von Aryltosylaten **32** mit Grignard-Verbindungen **20** aufweist.⁸⁶ Um ein optimales Katalysatorsystem für die Umsetzung elektronenarmer und elektronenreicher Tosylate 32 zu finden, welches zudem Lewis-basische Stickstoffatome toleriert, wurde die katalytische Aktivität verschiedener HASPO-Präliganden in der Reaktion von Phenyltosylat (32b) mit 4-Methoxyphenylmagnesiumbromid (20e) untersucht (Tabelle 3.10). Als Lösungsmittel wurden bei erhöhten Temperaturen THF, Toluol und 1,4-Dioxan verwendet. In Abwesenheit eines Liganden wurde kein Umsatz registriert (Eintrag 1). Der NHC-Vorläufer 8a ergab das gewünschte Produkt nur mit moderatem GC-Umsatz (Eintrag 2). Komplexe der HASPO-Präliganden 39g, 39a, 39d und 34b die bereits vielversprechende Ergebnisse in Kreuzkupplungsreaktionen^{84,92} und direkten Arylierungen¹⁷⁵ von Aromaten geliefert hatten, zeigten unter den vorliegenden Bedingungen nur mäßige Aktivität (Einträge 3 bis 6). Der Einsatz des H-Phosphonats TADDOLP(O)H (39b) lieferte das Biphenyl 26d hingegen in guter Ausbeute von 83% (Eintrag 7). Durch einen Wechsel zu 1,4-Dioxan als Lösungsmittel bei 80 °C Reaktionstemperatur gelang es sogar mit einer geringen Katalysatorbeladung von 0.5 mol%, die Ausbeute auf 90% zu erhöhen (Eintrag 8). Mit diesem bislang besten erzielten Ergebnis als Basis wurde die Aktivität der zuvor dargestellten H-Phosphonate 110 evaluiert, wobei sich das HASPO PinP(O)H (110a)¹⁹⁷ als überlegen herausstellte. Zudem wurde selbst nach

Reduzierung der Palladiumbeladung auf 0.5 mol% das Kupplungsprodukt **26d** in hervorragender Aubeute von 93% isoliert (Eintrag 15).

Tabelle 3.10: Ligandenoptimierung der palladiumkatalysierten Kumada–Corriu-Kreuzkupplung vonPhenyltosylat (**32b**) mit 4-Anisyl-Grignard (**20e**).

		Mo —	[Pd(dba) ₂]/L	= 1/2		
		NNE	Solvens, T, 22 h			
32b	20e				26d	
Eintrag	L		[Pd(dba) ₂] [mol%]	Solvens	<i>T</i> [°C]	Isolierte Ausbeute
1			5.0	THF	60	<2% ^[b]
2	$ \begin{array}{c} \stackrel{i-\Pr}{\swarrow} CI \stackrel{\ominus}{\swarrow} \stackrel{i-\Pr}{\bigvee} \\ \stackrel{i-\Pr}{\bigvee} \stackrel{i-\Pr}{\bigvee} \stackrel{i-\Pr}{\bigvee} \\ \stackrel{i-\Pr}{\downarrow} \stackrel{i-\Pr}{\bigvee} \stackrel{i-\Pr}{\bigvee} \\ \stackrel{i-\Pr}{\downarrow} \stackrel{i-\Pr}{\bigvee} \stackrel$	8a	1.0	THF	60	40% ^[b]
3	H, O <i>t-</i> Bu ⁻ N ⁻ <i>t-</i> Bu	39g	5.0	THF	60	15% ^[b]
4	HO Mes=NN-Mes	39a	5.0	THF	60	49%
5	$ \begin{array}{c} \stackrel{i-Pr}{\swarrow} H, & O \\ \stackrel{i-Pr}{\swarrow} N, & \stackrel{i-Pr}{\swarrow} \\ \stackrel{i-Pr}{\swarrow} V, & \stackrel{i-Pr}{\checkmark} \\ \end{array} $	39d	5.0	THF	60	3% ^[b]
6	H, P	34b	1.0	THF	60	61%
7	Ph Ph Me O _ O _ O	39b	5.0	THF	60	83%
8	Me O O H Ph Ph	39b	0.5	1,4-Dioxan	80	90%
9	O、H O ^P O Me Me Me	110c	1.0	1,4-Dioxan	80	80%

Eintrag	L		[Pd(dba) ₂] [mol%]	Solvens	<i>T</i> [°C]	Isolierte Ausbeute
10	Q, H Me Me Me Me	110e	1.0	1,4-Dioxan	80	88%
11		110b	1.0	1,4-Dioxan	80	87%
12	O, H O ^{PO} O Ph Ph Ph Ph	110d	1.0	1,4-Dioxan	80	68%
13	O、 H	110a	0.5	THF	60	61%
14		110a	0.5	Toluol	80	67%
15	Me / Me Me Me	110a	0.5	1,4-Dioxan	80	93%

[a] Reaktionsbedingungen: **32b** (1.0 mmol), **20e** (1.5 mmol), [Pd(dba)₂] (0.5-5.0 mol%), Ligand (1.0-10.0 mol%), Solvens, 60-80 °C, 22 h. [b] GC-MS-Umsatz.

3.4.4 Anwendungsbreite der palladiumkatalysierten Kumada–Corriu-Kreuzkupplung mit (Hetero)Aryltosylaten

Mit $[Pd(dba)_2]$ und PinP(O)H (**110a**)¹⁹⁷ als aktivstem katalytischen System, wurde die Umsetzung unterschiedlicher Tosylate **32** in Kumada–Corriu-Kreuzkupplungen untersucht. Zunächst wurden elektronenarme, halosubstituierte Tosylate mit verschiedenen Grignard-Reagenzien zur Reaktion gebracht (Tabelle 3.11). Das fluorierte Tosylat **32k** konnte in guten Ausbeuten chemoselektiv umgesetzt werden (Einträge 1 und 2). Interessanterweise wurden Chlorsubstituenten am Aryltosylat toleriert, was einen selektiven Zugang zu chlorierten Biphenylstrukturen in 88-89% isolierter Ausbeute ermöglichte (Einträge 3 bis 5). Mittels GC-MS-Untersuchungen konnte hierbei kein Hinweis auf eine potentielle Aktivierung der C–Cl-Bindung nachgewiesen werden. Im Gegensatz hierzu fungierte bei Verwendung des Bromderivats **32n** ausschließlich das Bromid als Abgangsgruppe, wobei das tosylierte Biphenyl **111e** in 88% Ausbeute erhalten wurde (Eintrag 6).

Tabelle 3.11: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplungen mit elektronenarmen Tosylaten 32.^[a]

Eintrag	EWG	R	[Pd(dba) ₂] [mol%]	<i>T</i> [°C]	Produkt	Isolierte Ausbeute
1	4-F 32k	4-MeO 20e	2.5	80	F	93%
2	4-F 32k	3-MeO 20f	2.5	80	F OMe	78%
3	4-Cl 320	4-MeO 20e	2.5	80	CI-OMe 27a	88%
4	3-Cl 32p	4-MeO 20e	2.5	80	CI 111c	87%
5	2-Cl 32 q	4-MeO 20e	2.5	80	Cl 111d	89%
6	4-Br 32n	Н 20d	2.5	80	TsO-	88%
7	4-CF ₃ 32 I	4-Ме 20b	0.5	80	F ₃ C	91%
8	4-CF ₃ 321	4-MeO 20e	0.5	80	F ₃ C — OMe	92%
9	3-CF ₃ 32m	4-Me 20b	0.5	80	F ₃ C 111h	87%
10 11	3-CF ₃ 32m	4-MeO 20e	0.5 1.0	80 20	F ₃ C	94% 95%

[a] Reaktionsbedingungen: **32** (1.0 mmol), **20** (1.5 mmol), [Pd(dba)₂] (0.5-2.5 mol%), PinP(O)H (**110a**) (1.0-5.0 mol%), 1,4-Dioxan, 20-80 °C, 22 h.

Trifluormethylsubstituierte Biaryle wurden selbst mit geringerer Palladiummenge in exzellenten Ausbeuten von 87-94% dargestellt (Einträge 7 bis 10). Zudem konnte gezeigt

werden, dass die Kumada–Corriu-Kreuzkupplung mit 1.0 mol% Katalysatorbeladung bereits bei Umgebungstemperatur effizient verläuft (Eintrag 11).

Die Anwendung des Katalysators auf anspruchsvolle elektronenreiche Aryltosylate **32** stand nachfolgend im Interesse. Mit einer konstanten Katalysatorbeladung von 2.5 mol% konnten elektronisch deaktivierte Tosylate mit Grignard-Reagenzien erfolgreich umgesetzt werden (Tabelle 3.12).

Tabelle 3.12: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplungen mit elektronenreichen Tosylaten 32.	a]
---	----

		VMa -	[Pd(dba) ₂] (2.5 mol%) PinP(O)H (110a) (5.0 mol%)	
EDG	UIS +	R	1,4-Dioxan, 80 °C, 22 h	EDG
32		20		111
Eintrag	EDG	R	Produkt	Isolierte
				Ausbeute
1	4-MeO	Н	MeO	03%
1	32c	20d	111j	9570
	4-Me	4-MeO		
2	32f	20e		94%
			111k	
	2-Me	4-MeO		
3	32i	20e	Me	92%
			1111	
	2-Me	3-MeO		
4	32i	20f	Me OMe	86%
			111m	
			MeO	
-	2-Me	2-MeO		
5	32i	20g		57% [8]
			111n	
6	2-MeO	Н		93%
	32e	20d	OMe	
			1110	

[a] Reaktionsbedingungen: **32** (1.0 mmol), **20** (1.5 mmol), [Pd(dba)₂] (2.5 mol%), PinP(O)H (**110a**) (5.0 mol%), 1,4-Dioxan, 80 °C, 22 h. [b] GC-Umsatz.

Eine mögliche Aktivierung der Methoxygruppen¹⁹⁸ konnte in keiner der durchgeführten Kreuzkupplungen beobachtet werden. Ebenso gelang es, einfach *ortho*-substituierte Biphenyle in präparativ guten Ausbeuten zu isolieren (Einträge 3, 4, 6 und 9). Beim Versuch, ein di-*ortho*-substituiertes Biphenyl aufzubauen, wurde ein geringer Umsatz von 57% erzielt, wobei das Kreuzkupplungsprodukt **111n** nicht rein isoliert werden konnte (Eintrag 5).

Abschließend sollte die Anwendungsbreite im Hinblick auf heteroarylische Tosylate⁵⁴ mit Lewis-basischen Stickstoffatomen⁶⁵ untersucht werden (Tabelle 3.13). Eine mögliche inhibierende Wirkung auf die katalytisch-aktive Spezies wurde bei Verwendung von Pyridinund Chinolintosylaten nicht beobachtet. Die arylierten Heterocyclen wurden ausnahmslos in guten bis exzellenten Ausbeuten erhalten (Einträge 1 bis 6).

		[Pd(PinP(O	(dba) ₂] (2.5 mol%))H (110a) (5.0 mol%)	
Heteroaryl-OIs	+ YMg	R 1,4-D	Dioxan, 80 °C, 22 h	aryl—R
32	20			111
Fintrag	32	R	Produkt	Isolierte
Emtrag	52	K	TTOULK	Ausbeute
1	OTs N 32u	4-MeO 20e	∕N →OMe 111s	99%
2	OTs N 32u	2-Me 20c	Me N	92%
3	N-OTs 32v	4-MeO 20e	111t	98%
4	N-OTs 32v	2-Me 20c		85%
5	N-OTs 32w	2-МеО 20g	MeO N 111w	98%
6	Signal Si	4-MeO 20e	M Me 111x	91% ^[b]

					F. 1
Tabelle 3 13. Palladiumkatal	vsierte Kumada_Corriu	-Kreuzkunnlungen	mit heteroarvli	schen Toss	laten 32 ^[a]
Laberte 5.15. Lanaurumkatar	ysiene Kumada Comu	-Kieuzkuppiungen	mit neteroaryn	senen 10s	1aten 52.

Die vorgestellten Beispiele illustrieren die breite Anwendbarkeit des entwickelten Katalysatorsystems für elektronenarme, elektronenreiche und heteroarylische Tosylate in Kumada–Corriu-Kreuzkupplungsreaktionen. Der Präligand PinP(O)H (**110a**) zeichnet sich hierbei, neben seiner hohen katalytischen Aktivität und Luftstabilität, ebenso durch seinen einfachen Zugang aus preiswerten Startmaterialien und ein geringes Molekulargewicht aus.¹⁹⁷

[[]a] Reaktionsbedingungen: **32** (1.0 mmol), **20** (1.5 mmol), [Pd(dba)₂] (2.5 mol%), PinP(O)H (**110a**) (5.0 mol%), 1,4-Dioxan, 80 °C, 22 h. [b] GC-Umsatz.

Das hohe katalytische Potential des HASPO-Komplexes resultiert vermutlich aus einer Deprotonierung des tautomeren Phosphits **112** nach dessen Koordination an Palladium durch stark basische Organomagnesiumverbindungen **20** (Schema 3.6). Der daraus gebildete wasserstoffbrückenstabilisierte, anionische Ligand **113** bzw. der heterobimetallische Komplex **114** ermöglicht die effiziente Umsetzung mit (Hetero)Aryltosylaten **32**.

Schema 3.6: Tautomerengleichgewicht und hypothetische Komplexbildung mit PinP(O)H (110a) in der palladiumkatalysierten Kumada–Corriu-Kreuzkupplung mit Aryltosylaten 32.

3.5 Palladiumkatalysierte Suzuki–Miyaura-Kreuzkupplungen mit Chlorarenen

3.5.1 Einführung

Die Suzuki–Miyaura-Kreuzkupplung gehört zu den wertvollsten und am häufigsten verwendeten Kreuzkupplungsreaktionen in der organischen Synthesechemie, da sie eine ausgezeichnete Toleranz gegenüber funktionellen Gruppen aufweist.^{56,57} Zudem stellen die verwendeten Boronsäuren, Boronsäureester und Borate meist präparativ einfach zugängliche Startmaterialien dar, die durch ihre hohe Stabilität langfristig lagerbar sind.⁵⁸ Die Entwicklung allgemein anwendbarer Katalysatorsysteme für die Umsetzung von Chlorarenen **27** stellt hierbei einen wichtigen Schwerpunkt aktueller Forschungsanstrengungen dar.³⁴

In unserer Arbeitsgruppe konnte die erfolgreiche Verwendung von HASPO **39g** und Diaminochlorphosphan **42b** als Ligandvorläufer in palladiumkatalysierten Suzuki–Miyaura-Kreuzkupplungen mit Chlorarenen **27** aufgezeigt werden.⁸⁴ Eine erhebliche Limitierung der funktionellen Gruppentoleranz lag jedoch durch die Verwendung von KO*t*-Bu als Base vor. Später etablierte unsere Arbeitsgruppe das sterisch anspruchsvolle Diaminochlorphosphan **42a** als hochpotenten Ligandvorläufer in palladiumkatalysierten Buchwald–Hartwig-Aminierungen und α -Arylierungen von Ketonen mit Chlorarenen **27**.⁹² Die katalytische Aktivität des mittlerweile kommerziell verfügbaren Diaminochlorphosphans **42a**⁹⁰ in Suzuki–Miyaura-Kreuzkupplungen unter milden Reaktionsbedingungen sollte daher studiert werden.

3.5.2 Suzuki–Miyaura-Kreuzkupplungen von Chlorarenen mit einem Diaminochlorphosphan als Ligandvorläufer

Ausgehend von vorangegangenen Optimierungsstudien durch *Born* dem es, unter Verwendung des Diaminochlorphosphans **42a** in 1,4-Dioxan als Lösungsmittel und wasserfreiem Cäsiumfluorid als aktivierender Base, möglich war, ein tri-*ortho*-substituiertes Biaryl aufzubauen, wurde das Anwendungsspektrum auf funktionalisierte Chlor(hetero)arene **27** weiterführend untersucht (Tabelle 3.14).¹⁷⁴ Zusätzliche Versuche zur Optimierung der Katalyseaktivität durch Lösungsmittelvariation und dem Ersatz der teueren Lewis-Base CsF durch kostengünstigere Alternativen, wie NaF, KF, Carbonate, Hydroxide oder Phosphate, brachten jedoch keine signifikante Verbesserung.

Tabelle 3.14: Palladiumkatalysierte Suzuki–Miyaura-Kreuzkupplungen mit Diaminochlorphosphan **42a** als Ligandvorläufer.^[a]

Eintrag	115	33	Produkt	Isolierte Ausbeute	
14	CI N	(HO) ₂ B		88% ^[f]	
	27e	33a	26 q		
15	H-N CI	(HO) ₂ B	N	91%	
	27w	33 a	26y		
16	<i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr 61d	(HO) ₂ B-	<i>i</i> -Pr <i>i</i> -Pr 26z	80%	
	MeO		MeQ		
17	Сі	(HO) ₂ B		89%	
	МеО́ 27р	33c	MeÓ MeÓ 111r		
18	CI	(HO) ₂ B	OMe	56%	
	27w	USU	1110		
19	CI	(HO) ₂ B MeO 33c	MeO	93%	
	27x		116 a		
20	Me CI	(HO) ₂ B	Me	55%	
	Me	33 a	Me		
	2/d		26j		
21	С	(HO) ₂ B		83%	
	117	ме 33d	ме 116b		

 [a] Reaktionsbedingungen: 115 (1.0 Äquiv.), 33 (1.5 Äquiv.), [Pd2(dba)3] (1.0 mol%), 42a (4.0 mol%),

 1,4-Dioxan, 80 °C, 20 h. [b] [Pd2(dba)3] (0.5 mol%). [c] 60 °C. [d] [Pd(OAc)2] (2.0 mol%).

 [e] [Na2PdCl4] (2.0 mol%). [f] KOt-Bu anstatt CsF.

Die Tabelle 3.14 verdeutlicht die Kompatibilität des entwickelten Katalysators mit wichtigen Funktionalitäten, die erst in Kombination mit der milden anorganischen Base Cäsiumfluorid ermöglicht werden konnte.

Mit 4-Chlorphenyltosylat (320) als eingesetztem Substrat konnte gezeigt werden, dass unter den gegebenen Reaktionsbedingungen das Chlorid eine bessere Abgangsgruppe als Tosylat darstellt (Eintrag 1). Die Verwendung von Keton 27r ergab das gewünschte Produkt 26w in praktisch quantitativer Ausbeute (Eintrag 2). Ebenso wurde durch die milden Reaktionsbedingungen ein enolisierbares Keton als funktionelle Gruppe toleriert (Eintrag 3). Das Produkt 26x konnte in einer hervorragenden Ausbeute von 99% isoliert werden. Eine Reduzierung der Katalysatorbeladung auf 1.0 mol% Palladium, oder Temperaturerniedrigung auf 60 °C, lieferte das Biphenyl 26x in immer noch guten Ausbeuten von 81% bzw. 70% (Einträge 2 und 3). Der verwendete Palladium(0)-vorläufer konnte ebenso durch einfache Palladium(II)-Salze ersetzt werden. [Na₂PdCl₄] war hierbei katalytisch leistungsstärker als [Pd(OAc)₂], was die isolierten Ausbeuten von 95% versus 74% widerspiegeln (Einträge 7 und 8). Desweiteren konnten Substrate mit Ester- und Cyanofunktionalitäten effizient umgesetzt werden (Einträge 9 und 10). Die hohe Toleranz gegenüber einer ungeschützten Aldehydgruppe erlaubte die Darstellung von 4-Biphenylcarbaldehyd (260) in guter Ausbeute von 86% (Eintrag 11). Die Arylierungsprodukte ausgehend von 2-Chlorpyridin (27n) und 2-Chlorchinolin (27v) wurden in sehr guten Ausbeuten von 85% und 90% isoliert (Einträge 12 und 13). Um 3-Chlorpyridin 27e erfolgreich zu funktionalisieren, war die Verwendung von Kalium-tert-butylat als Base essentiell. Das Produkt 26q konnte in einer Ausbeute von 88% erhalten werden (Eintrag 14).⁸⁴ Bei Verwendung von CsF konnte das gewünschte Produkt 26q nur in Spuren gaschromatographisch nachgewiesen werden. 4-Chlorpyridin (27w) wurde in seiner kommerziell erhältlichen Form als Hydrochlorid direkt in der Suzuki-Miyaura-Reaktion mit Phenylboronsäure (33a) eingesetzt und ergab den funktionalisierten Heterocyclus 26y in guter Ausbeute von 91% (Eintrag 15).

Die Methodik ist nicht auf Chloride **27** beschränkt, wie anhand der Umsetzung der sterisch anspruchsvollen Bromverbindung **61d** demonstriert werden konnte (Eintrag 16). Desweiteren wurden einige elektronenreiche Chlorarene **27** erfolgreich gekuppelt (Einträge 17 und 18). Sterisch anspruchsvolles 1-Chlornaphthalin (**27x**) und 2,6-Dimethylchlorbenzol (**27d**) wurden effizient zu den gewünschten Produkten in Ausbeuten von 93% und 55% unter milden Bedingungen umgesetzt (Einträge 19 und 20). Bemerkenswerterweise konnte das alkenylische Chlorid **117** mit *ortho*-Tolylboronsäure (**33d**) in guter isolierter Ausbeute von 83% aryliert werden (Eintrag 21). Die sterisch sehr anspruchsvolle Mesitylboronsäure (**33e**) reagierte unter den gewählten Bedingungen jedoch nicht.

Da die hier vorgestellten Suzuki-Miyaura-Kreuzkupplungen, mit Ausnahme von 3-Chlorpyridin (27e) (Eintrag 14), in Abwesenheit einer Alkoxidbase erfolgreich

durchführbar sind, erscheint die Beteiligung eines Diaminooxyphosphans (DAOP) **43c** an der Bildung der katalytisch aktiven Spezies wenig wahrscheinlich (siehe Kapitel 1.2.5). Der dreiwertige Phosphor des Diaminochlorphosphans **42a** koordiniert demnach entweder direkt an das Palladium, oder es erfolgt eine Insertion des Übergangsmetalls in die P–Cl-Bindung.^{107,174}

3.6 Palladiumkatalysierte Synthese anellierter *N*-Heterocyclen über Domino-N–H/C–H-Bindungsaktivierungen

3.6.1 Einführung

Anellierte N-Heterocyclen stellen wichtige Substrukturen in zahlreichen biologisch aktiven Verbindungen dar und sind daher von großer Relevanz für die medizinische Chemie.¹⁴⁰ Als prominente Beispiele seien hier Indol (Benzo[b]pyrrol) 9, Carbazol (Benzo[b]indol) 65 und Chinolin (Benzo[b]pyridin) 118 aufgeführt, für deren Darstellung und gezielte Funktionalisierung zahlreiche Synthesestrategien entwickelt wurden. Ein wichtiger Fortschritt auf diesem Gebiet war die Entwicklung von Methoden für den allgemeinen Einsatz einfach zugänglicher, aber weniger reaktiver Chlorarene 27^{34,35} in intra- und intermolekularen direkten Arylierungen, die ökonomische und umweltschonendere Alternativen zu "traditionellen" Kreuzkupplungsreaktionen bieten.^{115,134} Bislang wurde allerdings nur ein begrenzter Dominoprozess beschrieben, welcher auf einer übergangsmetallkatalvsierten Kupplung eines Bromids und einer direkten Arylierung mit einem Chlorid beruht.¹³⁹ Hieraus ergab sich die Motivation, eine Dominoreaktion zu entwickeln, die eine regioselektive Synthese anellierter *N*-Heterocyclen Verwendung kostengünstiger unter 1,2-Dichlor(hetero)arene 112 ermöglicht.

3.6.2 Reaktionsoptimierung der Dominoreaktion

Um die geplante Dominotransformation zu verwirklichen, wurden aus verschiedenen Liganden *in-situ* gebildete Palladiumkomplexe in der Umsetzung von 1,2-Dibrombenzol (**120a**) mit Diphenylamin (**119**) in Toluol als Lösungsmittel bei erhöhter Reaktionstemperatur untersucht (Tabelle 3.15). Nach erfolgter Aminierung sollte eine abschließende Cyclisierung von Intermediat **121** mittels C–H-Bindungsfunktionalisierung das Carbazol **65c** als Endprodukt ergeben.

N ^H +	Br [Pd(OAc) ₂] L (10.0 Base, PhMe,	(5.0 mol%) 9 mol%) 105 °C, 18 h	Br N Ph	
119 Eintree	120a		121	65c
Eintrag	L		Base	Isolierte Ausbeute
1	SHIMesCl	8c	NaOt-Bu	9% ^[b]
2	HIMesCl	8b	NaOt-Bu	6% ^[b]
3	SHIPrCl	8d	NaOt-Bu	80%
4	HIPrCl	8a	NaOt-Bu	94%
5	PPh ₃	12a	NaOt-Bu	94%
6	$P(p-Tol)_3$	12j	NaOt-Bu	95%
7	P(o-Tol) ₃	12g	NaOt-Bu	6% ^[b]
8	PCy ₃	12h	NaOt-Bu	96%
9	PCy ₃	12h	KOAc	
10	PCy ₃	12h	K ₂ CO ₃	
11	PCy ₃	12h	K_3PO_4	8% ^[b]

Tabelle 3.15: Optimierung der Domino-N-H/C-H-Bindungsaktivierunge	n. ^[a]
---	-------------------

[a] Reaktionsbedingungen: **119** (1.2 mmol), **120a** (1.0 mmol), Base (3.0 mmol), [Pd(OAc)₂] (5.0 mol%), Ligand (10.0 mol%), Toluol, 105 °C, 18 h. [b] GC-Umsatz.

Neben NHC-Vorläufern **8** wurden elektronenreiche Phosphane **12** mit unterschiedlichem sterischen Anspruch getestet. Sämtliche Reaktionen mit markantem Umsatz wurden aufgearbeitet, da neben dem gewünschten Carbazol **65c** in einigen Fällen auch nichtcyclisierte Aminierungsprodukte bzw. hydro-dehalogenierte Verbindungen massenspektrometrisch detektiert wurden. Imidazolium-Salz **8a** und preiswertes Triphenylphosphan (**12a**) katalysierten die Reaktion mit jeweils 94% isolierter Ausbeute (Einträge 4 und 5). Eine geringfügige Verbesserung konnte mit dem *para*-tolylsubstituierten Phosphan **12j** erzielt werden (Eintrag 6). Wurde hingegen Tri-*ortho*-tolylphosphan (**12g**) als Ligand verwendet, so brach der Reaktionsumsatz auf 6% ein (Eintrag 7). Das beste Ergebnis, von 96% isolierter Ausbeute an *N*-Phenylcarbazol (**65c**), wurde mit dem elektronenreichen PCy₃ (**12h**) erreicht (Eintrag 8). Versuche die nucleophile Base NaO-*t*Bu durch mildere Basen, wie KOAc, K₂CO₃, oder K₃PO₄ zu ersetzen, waren jedoch nicht erfolgreich (Einträge 9 bis 11).

3.6.3 Anwendungsbreite der Dominoreaktion zum Aufbau anellierter N-Heterocyclen

Nachfolgend wird die Anwendungsbreite der optimierten Methode mit Diphenylamin (**119**) und verschiedenen 1,2-dihalogensubstituierten Elektrophilen **120** demonstriert (Tabelle 3.16).

Tabelle 3.16: Synthese anellierter N-Heterocyclen mit 1,2-Dihalogenverbindungen 120.^[a]

[[]a] Reaktionsbedingungen: **122** (1.2 mmol), **120** (1.0 mmol), NaO*t*-Bu (3.0 mmol), [Pd(OAc)₂] (5.0 mol%), PCy₃ (**12h**) (10.0 mol%), PhMe, 105 °C, 18 h. [b] HIPrCl (**8a**).

Neben der bereits beschriebenen Möglichkeit, das Dibromid **120a** in dieser Carbazolsynthese einzusetzen, konnten auch 1-Chlor-2-iodbenzol (**120b**) und 1-Brom-2-chlorbenzol (**120c**) erfolgreich verwendet werden (Einträge 1 und 2). Selbst das preiswerte 1,2-Dichlorbenzol (**120d**) lieferte effizient in 85% Ausbeute das gewünschte Carbazol **65c** (Eintrag 3).¹⁹⁹ Die Methode ist nicht auf Halogenarene beschränkt, was durch die erfolgreiche Verwendung von Pyrazin-Derivat **120e** eindrucksvoll bestätigt werden konnte (Eintrag 4). Da Carboline häufig in biologisch aktiven Verbindungen auftreten, ist es bemerkenswert, dass Dichlorpyridin **120f** in einer hoch regioselektiven Reaktion zum trifluormethylsubstituierten Heterocyclus **65e** umgesetzt wurde (Eintrag 5).²⁰⁰ Die eindeutige Festlegung der Konnektivität über NMR-Experimente gestaltete sich problematisch. Jedoch wurden Einkristalle der Verbindung **65e** erhalten, so dass die Struktur über eine Röntgenkristallstrukturanalyse bestimmt werden konnte (Abbildung 3.4).

Abbildung 3.4: ORTEP-Darstellung des Carbolins 65e.

Weiterhin war das Indolderivat **65f** durch eine direkte Alkenylierung unter Verwendung von Dibromalken **120g** in 77% bzw 78% isolierter Ausbeute zugänglich (Einträge 6 und 7). Biologisch aktive Carbazole weisen häufig eine unsubstituierte N–H-Funktionalität auf.¹³⁶ Bisherige Carbazolsynthesen auf der Basis sequentieller direkter Arylierungen tolerierten jedoch bislang primäre Amine als Ausgangsmaterialien nicht. Folgerichtig erforderten diese auf C–H-Bindungsfunktionalisierungen beruhenden Zugänge zu natürlich vorkommenden Carbazolen aufwendige Schützungs-/Entschützungsstrategien.²⁰¹ Auch unter den in Tabelle 3.16 aufgeführten Reaktionsbedingungen wurde mit dem primären Amin **122a** keine direkte Arylierung erreicht. Das nach einem exklusiven Aminierungsschritt gebildete Produkt **123** wurde in 94% isoliert (Eintrag 8).

3.6.4 Reaktionsoptimierung der Dominoreaktion für primäre Amine

Um einen Zugang zu *N*-ungeschützen Carbazolen in einer direkten Arylierungs-Dominoreaktion zu eröffnen, wurden verschiedene Base-Lösungsmittel-Kombinationen untersucht (Tabelle 3.17).

Tabelle 3.17 Optimierungsstudie zur Synthese N-ungeschützte	r Carbazole 65 . ^[a]
---	--

Me	CI		Pd(OAc) ₂] (5.0 m Cy ₃ (12h) (10.0 m	ol%) 10l%)	Me
	NH ₂ Br		Base, Solvens <i>T</i> , 18 h	5	N H
122a		120c			65g
Eintrag	Solvens	Base	$T[^{\circ}C]$	c [M]	Isolierte
Emung	Solvens	Duse		C [m]	Ausbeute
1	NMP	K_3PO_4	130	1.0	25% ^[b]
2	NMP	K_3PO_4	130	0.5	69%
3	NMP	K_3PO_4	130	0.1	81%
4	NMP	K_3PO_4	100	0.1	53%
5	NMP	K_2CO_3	130	0.1	76%
6	DMF	K_3PO_4	130	0.1	6% ^[b]
7	DMPU	K_3PO_4	130	0.1	< 2% ^[b]
8	DMA	K_3PO_4	130	0.1	79%
9	DMA	K_2CO_3	130	0.1	60%
10	DMA	Cs_2CO_3	130	0.1	51%

[a]Reaktionsbedingungen: **122a** (1.2 mmol), **120c** (1.0 mmol), [Pd(OAc)₂] (5.0 mol), (**12h**) (10 mol%), Base (2.2 mmol), Solvens, 100-130 °C,18 h. [b] GC-Umsatz.

Die Substitution von Toluol durch polar-aprotische Lösungsmittel, wie *N*-Methylpyrrolidon (NMP) oder Dimethylacetamid (DMA) war entscheidend für die erfolgreiche Verwendung von *para*-Toluidin (**122a**) in der angestrebten Dominoreaktion mit Haloaren **120c** (Tabelle 3.17). Vorteilhafterweise konnten nun auch mildere anorganische Basen verwendet werden, wobei sich K₃PO₄ als am besten geeignet herausstellte. Da bei höherer Verdünnung durchgeführte Reaktionen bessere Ausbeuten lieferten, wurden sämtliche Versuche bei einer Konzentration von 0.1 M bezüglich des Haloarens **120c** erprobt (Eintrag 3). Eine Temperaturabsenkung auf 100 °C führte zu einer geringeren Ausbeute des Produkts **65g** von 53% (Eintrag 4). Während DMF und DMPU die Katalyse inhibierten, konnte mit NMP als Solvens und der Base Kaliumphosphat das gewünschte *N*-ungeschützte Carbazol **65g** in guter Ausbeute von 81% isoliert werden (Eintrag 3). Bei Verwendung anderer Basen, wie K₂CO₃

und Cs₂CO₃, wurden in DMA verminderte Umsätze festgestellt. Zudem traten verstärkt Aminierungs- und Hydrodehalogenierungs-Nebenprodukte auf (Einträge 9 und 10).

3.6.5 Darstellung funktionalisierter ortho-Dichlorarene

Der Ersatz der starken Base NaOt-Bu durch milderes K₃PO₄ legte die Verwendung funktionalisierter 1,2-Dichlorarene 120 in der entwickelten Carbazol-Synthese nahe. Ausgehend von kommerziell erhältlicher 3,4-Dichlorbenzoesäure (124) wurden deshalb Substrate mit wichtigen funktionellen Gruppen hergestellt (Schema 3.7). Die Estersubstituierte Verbindung 120h wurde in guter Ausbeute von 88% in einer säurekatalysierten Veresterung mit Ethanol erhalten. Zur Darstellung von Benzophenonderivat 120i wurde die Benzoesäure 124 bei 0 °C mit Phenyllithium umgesetzt. Das gewünschte Keton 120i konnte in mäßiger Ausbeute von 39% isoliert werden. Zum Aufbau einer Amid-Funktionalität wurde die Benzoesäure 124 mit dem cyclischen Phosphorsäureester T3P[®] (2-Propylphosphorsäureanhydrid) **125**²⁰² als Kupplungsreagenz und Morpholin (126) bei Umgebungstemperatur umgesetzt. Das Produkt 120j konnte nach Umkristallisieren in 66% Ausbeute isoliert werden.

Schema 3.7: Synthese der funktionalisierten ortho-Dichlorarene 120h, 120i und 120j.

3.6.6 Anwendungsbreite der Dominoreaktion zur Synthese N–H-ungeschützter Carbazole

Es konnten verschiedenartige elektronenreiche Amine **122** in mittleren bis guten Ausbeuten zu den gewünschten *N*-ungeschützten Carbazolen **65** umgesetzt werden (Tabelle 3.18). Dabei

wurden sogar sterisch anspruchsvollere Anilinderivate **122** toleriert (Einträge 7, 8 und 9). Unter den Reaktionsbedingungen reagierten sowohl iodierte **120b** als auch bromierte Chlorarene **120c** in vergleichbaren Ausbeuten wie das kostengünstige 1,2-Dichlorbenzol (**120d**) (Einträge 13 *versus* 14 und 15). Die geringere Ausbeute bei Verwendung von 2-Chloriodbenzol (**120b**) resultierte vermutlich aus der verstärkten Tendenz zur Ausbildung der hydrodehalogenierten Verbindung (Eintrag 12). Ein fluorsubstituiertes Carbazol **65n** konnte ebenfalls in guter Ausbeute von 80% isoliert werden (Eintrag 15).²⁰³

[Pd(OAc)₂] (5.0 mol%) PCy3 (12h) (10.0 mol%) R K₃PO₄, NMP N H 130 °C, 18 h 122 120 65 Isolierte Eintrag 122 120 Produkt Ausbeute Me Me CI 1 77% Ņ NH₂ CI H 120d 122a 65g CI 122b 2 53% 120b CI Ņ 3 67% Н ΝH₂ Br 65h 122b 120c CI CI 4 81% 122b 120d CI 5 74% MeO Br MeO 120c NH_2 6 CI 71% Н 122c 65i CI 120d

Tabelle 3.18: Palladiumkatalysierte Dominoreaktion zur Darstellung von N–H-Carbazolen 65.^[a]

Ergebnisse und Diskussion

Eintrag	122	120	Produkt	Isolierte Ausbeute
7	NH ₂ Me 122d	CI Br 120c	Me H 65j	56%
8	Me NH ₂	Cl Br 120c	Me	66%
9	Ме 122е	CI 120d	Ме Н 65k	63%
10	Ma	CI Br 120c	Me	63%
11	Me ² → NH ₂ 11 122f	CI CI 120d	н́ 651	75%
12		Сі 120b		69%
13	NH ₂ OMe	Br Br 120a	MeO H	68%
14	1 24 g	CI CI 120d	Join 1	64%
15	F 122h	CI Br 120c	F H	80%
16	NH ₂ OMe 122g	CI Br 120k	MeO H 650	80%

[a] Reaktionsbedingungen: **122** (1.2 mmol), **120** (1.0 mmol), [Pd(OAc)₂] (5.0 mol%), PCy₃ (**12h**) (10.0 mol%), K₃PO₄ (3.0 mmol), NMP, 130 °C, 18 h.

Bei Verwendung der Bromverbindung **120k** wurde eine hoch regioselektive Bildung des Carbazols **650** beobachtet (Eintrag 16). Die Annahme, dass im ersten Schritt der Aminierung das Bromid als bessere Abgangsgruppe fungiert und im abschließenden Cyclisierungsschritt das Chlorid ersetzt wird, konnte durch Röntgeneinkristallstrukturanalyse bestätigt werden (Abbildung 3.5, links). Die eingangs synthetisierten Startmaterialien **120h** und **120i** wurden den Reaktionsbedingungen unterworfen, wobei die funktionalisierten Carbazole **65** in mittleren bis guten Ausbeuten erhalten wurden (Einträge 17 bis 19). Nachdem NMR-spektroskopische Untersuchungen eine eindeutige Strukturaufklärung nur unter Vorbehalt ermöglichten, wurde eine Röntgeneinkristallstruktur des *N*-ungeschützten Carbazols **65q** angefertigt (Abbildung 3.5, rechts).

Abbildung 3.5: ORTEP-Darstellungen der Carbazole 650 (links) und 65q (rechts).

Hierbei sollte in den Verbindungen **120h**, **120i** und **120j** die schwächste C–Cl-Bindung, also Position 4, durch die Präsenz mesomerer elektronenziehender Gruppen für die Aminierungsreaktion aktiviert werden. Auch die Umsetzung der amidfunktionalisierten Dichlorverbindung **120j** lieferte nur ein einziges Produkt. Das Carbazol **65t** wurde in guter Ausbeute von 71% nach erfolgter Säulenchromatographie erhalten (Eintrag 21), und seine Konnektivität mittels Einkristallstrukturanalyse eindeutig bestimmt (Abbildung 3.6).

Abbildung 3.6: ORTEP-Darstellung des Carbazols 65t.

3.6.7 Dominoreaktion zur Synthese von Murrayafolin A

Abschließend konnte die erarbeitete Vorschrift zur effizienten Synthese des cytotoxischen Naturstoffes *Murrayafolin A* (**65p**) genutzt werden,¹³⁶ ohne Schutzgruppentransformationen anwenden zu müssen (Schema 3.8). Das durch palladiumkatalysierte Hydrierung einfach zugängliche 2-Methoxy-4-methylanilin (**122i**), konnte in das gewünschte Alkaloid unter Verwendung von 1,2-Dichlorbenzol (**120d**) in guter isolierter Ausbeute von 72% umgesetzt werden.

Schema 3.8: Synthese von Murrayafolin A (65p) über Domino-N-H/C-H-Bindungsfunktionalisierungen.

3.7 Palladiumkatalysierte C–H-Bindungsfunktionalisierung mit Aryltosylaten

3.7.1 Einführung

Die gezielte Synthese heterocyclischer Verbindungen stellt einen wesentlichen Aspekt in der präparativen organischen Chemie dar. Eine Vielzahl an wertvollen Synthesestrategien für heterocyclische Systeme wurde bereits etabliert, deren Optimierung hinsichtlich Effizienz und Anwendungsbreite unter Verwendung kostengünstiger Substrate von großer Bedeutung ist. Einen Ansatz für die kombinatorische Chemie bieten hierbei Multikomponentenreaktionen (MCRs), in denen drei oder mehr Startmaterialien zu einem Produkt selektiv reagieren.²⁰⁴ Die beispielhafte Weiterentwicklung der 1,3-dipolaren Cycloaddition von Aziden 70 mit Alkinen 1 nach Huisgen¹⁵¹ zur regioselektiven kupfer-¹⁵² oder komplementären rutheniumkatalysierten¹⁵⁵ [3+2]-Cycloaddition ("Click"-Reaktionen), ermöglichte hierbei einen regioselektiven und effizienten Zugang zu disubstituierten 1,2,3-Triazolen 72. "Traditionelle" Kreuzkupplungen von halogenierten oder metallierten heterocyclischen Substraten erfordern den stöchiometrischen Einsatz hochreaktiver, metallorganischer Reagenzien, was den Zugang mittels dieser Strategien wesentlich beschränkt.¹⁴¹ Neue Impulse auf dem Gebiet der direkten Arylierung von Heteroaromaten haben in den letzten Jahren in der Synthesechemie besonders an Bedeutung gewonnen, da die direkte Funktionalisierung von C-H-Bindungen sowohl ökologisch als auch ökonomisch aussichtsreich ist.¹¹⁵ Aufbauend auf der ersten erfolgreichen Verwendung von Aryltosylaten 32 in der dirigierten direkten C-H-Aktivierung mit Rutheniumkatalysatoren,¹⁷⁵ sollte eine bislang unbekannte Methodik zur direkten Arylierung von Heteroarenen mit preiswerten und divers zugänglichen Tosylaten 32 entwickelt werden.

3.7.2 Synthese kommerziell nicht erhältlicher Startmaterialien

Die folgenden in der direkten Arylierung verwendeten Heterocyclen wurden gemäß literaturbekannter Vorschriften dargestellt. 5-Phenyloxazol (**130**) konnte durch eine van-Leussen-Synthese in nahezu quantitativer Ausbeute von 99% erhalten werden (Schema 3.9).²⁰⁵

Schema 3.9: Darstellung von 5-Phenyloxazol (130).²⁰⁵

Die benötigten 1,2,3-Triazole wurden nach einer Vorschrift von *Liang* synthetisiert (Schemata 3.10 und 3.11).²⁰⁶ Zur Darstellung der 1,4-diarylierten Triazole **72a** bis **72d** wurden Iodarene **28** in einer Eintopfreaktion mit Natriumazid (**131**) und dem jeweiligen terminalen Alkin **71** in einer deoxygenierten Mischung aus Wasser und DMSO bei Umgebungstemperatur umgesetzt. Als Katalysator diente Kupferiodid mit *N*,*N*-Dimethylethylen-1,2-diamin (**132**) als Ligand sowie Natriumascorbat. Die gewünschten *N*-arylierten 1,2,3-Triazole **72** konnten in hohen Ausbeuten von 78-95% isoliert werden (Schema 3.10).

Schema 3.10: Synthese der diarylsubstitiuierten 1,2,3-Triazole 72a, 72b, 72c und 72d.²⁰⁶

Zur Synthese von **72e** wurde das nach abgelaufener "Click"-Reaktion erhaltene Rohprodukt mit einer TBAF-Lösung behandelt, um nach Abspaltung der TMS-Gruppe das monosubstituierte Triazol **72e** in einer Gesamtausbeute von 56% zu erhalten (Schema 3.11).

Schema 3.11: Synthese des monoarylierten 1,2,3-Triazols.

Bei der Aufarbeitung aller 1,2,3-Triazole **72** wurde durch mehrmaliges Waschen mit wässriger Ammoniak-Lösung explizit auf die vollständige Entfernung des Kupfers geachtet.

3.7.3 Reaktionsoptimierung der direkten Arylierung von Benzoxazol mit Tosylaten

Die direkte Funktionalisierung von Benzoxazol (69) mit Iod-²⁰⁷ und Bromarenen²⁰⁸ stellt eine wertvolle Synthesemethodik dar. Erst kürzlich berichtete die Gruppe um Daugulis von einer palladiumkatalysierten C-H-Bindungsfunktionalisierung mit Chlorarenen 27.¹⁴⁷ Die Verwendung von Pseudohalogeniden in direkten Arylierungen ist jedoch bislang auf den Einsatz kostenintensiver, hydrolyselabiler Triflate 30 erheblich begrenzt.¹⁴⁹ Es erschien deshalb lohnenswert, preiswerte Tosylate 32 in direkten C-H-Bindungstransformationen einzusetzen. Um ein geeignetes Katalysatorsystem für die anspruchsvolle direkte Arylierung von Benzoxazol (69) mit dem für eine oxidative Addition nicht-aktiviertem Arvltosvlat 32g zu finden, wurden zuerst verschiedene Liganden in Anwesenheit der milden anorganischen Base K₂CO₃ in DMF als Lösungsmittel verglichen (Tabelle 3.19). Ohne Ligand zeigte die Reaktion keinerlei Umsatz (Eintrag 1). NHC-Vorläufer 8a, sowie die elektronenreichen Phosphane 12j, 12h und 12d stellten inaktive Katalysatorsysteme dar (Einträge 2 bis 5). Ebenso konnte mit dem CataCXium[®]-Ligand *n*-BuAd₂P (12e), welcher bereits in der palladiumkatalysierten direkten Funktionalisierung verschiedener C-H-acider Heterocyclen mit Chlorarenen 27 erfolgreich eingesetzt wurde,¹⁴⁷ das Produkt 69b nur in Spuren detektiert werden (Eintrag 6). Katalysatoren der arvlsubstituierten bidentaten Phosphanliganden BINAP (12k), dppf (12l), dppe (12m) und Xantphos (12n) zeigten verschwindend geringe Aktivität (Einträge 7 bis 10). Mit einem Wechsel zu den von Buchwald und Mitarbeitern entwickelten elektronenreichen Biphenylphosphanliganden Dave-Phos (12b) und S-Phos (12o) konnte das Produkt 69b in moderaten Ausbeuten isoliert werden (Einträge 11 und 12). Interessanterweise konnte nur unter Verwendung von X-Phos (12p) eine höhere isolierte Aubeute von 41% erzielt werden, während ein Komplex des tert-butylsubstituierten Analogons 12q inaktiv war (Einträge 13 und 14).

-

	C	DTs [Pd(OA	.c) ₂] (5.0 mol% 10.0 mol%))	
	N I		K ₂ CO ₃	N N	
		Me DMF,	100 °C, 20 h		
	69 3	2g		69b	Ме
Eintrag	L	Ausbeute ^[b]	Eintrag	L	Ausbeute ^[b]
1		0%	8	dppf 12l	1% ^[c]
2	HIPrCl 8a	0%	9	dppe 12m	1% ^[c]
3	(<i>p</i> -Tol) ₃ P 12j	0%	10	$Me Me$ $Ph_2P PPh_2$ $H2n$	3% ^[c]
4	РСу ₃ 12h	6%	11	Me_2N PCy_2 $12b$	26% ^[d]
5	<i>t</i> -Bu ₃ P•HBF ₄ 12d	3%	12	OMe Cy ₂ P OMe 120	32% ^[d]
6	<i>n-</i> BuAd ₂ P 12e	4%	13	$\overbrace{Cy_2P}^{i_1Pr} i_2Pr$	41% ^[d]
7	<i>rac-</i> BINAP 12k	0% ^[c]	14	$i_{7} Pr$	3%

Tabelle 3.19: Ligand-Optimierung der palladiumkatalysierten direkten Arylierung von Benzoxazol (69) mit nicht-aktiviertem Tosylat **32**g.^[a]

[a] Reaktionsbedigungen: **69** (0.5 mmol), **32g** (0.6 mmol), $[Pd(OAc)_2]$ (5.0 mol%), Ligand (10.0 mol%), K₂CO₃ (0.75 mmol), DMF, 100 °C, 20 h. [b] *n*-Tridecan als interner Standard. [c] Ligand (5.0 mol%). [d] isolierte Ausbeute.

Da die Verwendung von **12p** in palladiumkatalysierten Kreuzkupplungen mit Tosylaten **32** literaturbekannt und wesentlich vom Lösungsmittel abhängig ist,^{53b} zielte die nächste Optimierung auf eine Untersuchung verschiedener Solventien ab (Tabelle 3.20). Toluol und

tert-Butanol, sowie die polar-aprotischen Lösungsmittel DMPU, NMP und DMA wurden als ungeeignet identifiziert (Einträge 1 bis 5). Die entscheidende Verbesserung konnte durch eine Lösungsmittelkombination aus 1,4-Dioxan oder DMF mit trockenem *tert*-Butanol erreicht werden (Einträge 7 und 9). Die beste isolierte Ausbeute von 65% wurde in einem Gemisch aus *tert*-Butanol und DMF bei 100 °C erzielt (Eintrag 9).

	N +	OTs X-	[Pd((Phos Solv	DAc) ₂] (5.0 n s (120) (10.0 K ₂ CO ₃ ens, 100 °C,	nol%) 9 mol%) 20 h	
	69	32g			69b	Me
Eintrag	Solvens	Isolierte Ausbeute		Eintrag	Solvens	Isolierte Ausbeute
1	PhMe	8% ^[b]		6	1,4-Dioxan	38%
2	t-BuOH	[b]		7	1,4-Dioxan/ t -BuOH = 2/1	62%
3	DMPU	5% ^[b]		8	DMF	41%
4	NMP	5% ^[b]		9	DMF/t-BuOH = 2/1	65%
5	DMA	18% ^[b]				

Tabelle 3.20: Studien zum Lösungsmittel in der direkten Arylierung mit Tosylat 32g.^[a]

[a] Reaktionsbedingungen: **69** (0.5 mmol), **32g** (0.6 mmol), [Pd(OAc)₂] (5.0 mol%),

X-Phos (120) (10.0 mol%), K₂CO₃ (0.75 mmol), Solvens, 100 °C, 20 h. [b] GC-Umsatz.

In Anlehnung an Arbeiten von *Echavarren* und *Maseras*,²⁰⁹ sowie der Gruppe um *Fagnou*,²¹⁰ die Carbonat- oder Carboxylat-Vorläufer als Additive in palladiumkatalysierten direkten Arylierungen verwendeten, wurde der Effekt sterisch anpruchsvoller Carbonsäuren **133** untersucht (Tabelle 3.21). Der substöchiometrische Zusatz von Pivalinsäure **133d** zeigte eine beachtliche Reaktivätssteigerung. So konnte das arylierte Produkt **69b** in exzellenter Ausbeute von 97% dargestellt werden (Eintrag 5). Eine genauere Betrachtung zur Verwendung von Carbonsäuren **133** als Cokatalysatoren in direkten Arylierungen wird in Kapitel 3.9.3 gegeben.

Tabelle 3.21: Carbonsäuren 133 als katalytische Additive in der C-H-Bindungsaktivierung.^[a]

[a] Reaktionsbedingungen: **69** (0.5 mmol), **32g** (0.6 mmol), [Pd(OAc)₂] (5.0 mol%), X-Phos (**12o**) (10.0 mol%), R-CO₂H **133** (15.0 mol%), K₂CO₃ (0.75 mmol), DMF, *t*-BuOH, 100 °C, 20 h.

Die Verwendung anderer Carbonat-Basen, wie KHCO₃, Na₂CO₃ und Cs₂CO₃, sowie KOAc und K₃PO₄, ergaben in der direkten Funktionalisierung erheblich geringere Umsätze als Kaliumcarbonat (Tabelle 3.22, Einträge 1 bis 6). Die organische Hünig-Base inhibierte die Reaktion nahezu vollständig (Eintrag 7).

	N > +	OTs [F X-P Me	Pd(OAc) ₂] (5.0 mol%) Phos (12o) (10.0 mol%) CO ₂ H (133d) (15.0 mo Base	6) 1%)	
6	9	32g	100 °C, 20 h	(69b
Eintrag	Base	Isolierte Ausbeute	Eintrag	Base	Isolierte Ausbeute
1	K ₂ CO ₃	97%	5	KOAc	48%
2	KHCO ₃	79%	6	K ₃ PO ₄	18% ^[a]
3	Na ₂ CO ₃	46%	7	NEt(<i>i</i> -Pr) ₂	6% ^[a]
4	Cs_2CO_3	24%			

Tabelle 3.22: Einfluss von Basen auf die direkte Arylierung von Benzoxazol (69).^[a]

[a] Reaktionsbedingungen: 69 (0.5 mmol), 32g (0.6 mmol), [Pd(OAc)₂] (5.0 mol%),

X-Phos (120) (10.0 mol%), *t*-BuCO₂H (133d) (15.0 mol%), Base (0.75 mmol), DMF, *t*-BuOH, 100 °C, 20 h. [b] GC-Umsatz.

Durch einen Vergleich unterschiedlicher Palladiumvorläufer konnte [Pd(OAc)₂] als aktivste Palladiumquelle bestimmt werden (Tabelle 3.23). Eine Reduzierung der Katalysatorbeladung auf 2.5 mol% ergab das Produkt **69b** in einer guten Ausbeute von 84% (Eintrag 2). Eine geringere Menge an Palladium katalysierte die Reaktion nur noch zu 52% (Eintrag 3). Bemerkenswerterweise gelang die direkte Arylierung mit weniger reaktivem Palladiumchlorid in sehr guter Aubeute von 91% (Eintrag 4).³² Mit einem Tetrachloropalladat-Komplex wurde das Produkt in einer mittleren Ausbeute von 73% isoliert (Eintrag 5). Unter Verwendung eines Palladium(0)-Komplexes konnte das Produkt **69b** nur in Spuren gaschromatographisch detektiert werden (Eintrag 6).

	~ N,	OIS	[Pd]/X-F <i>t</i> -BuCO ₂ H	Phos (12o) = (133d) (15.0	: 1/2 • mol%)	∕~_N	
6	> + 9	Me 32g	DN 10	K ₂ CO ₃ //F, <i>t-</i> BuOH)0 °C, 20 h		0 69b	Me
Eintrag	Palladium-	[mol%]	Isolierte	Eintrag	Palladium-	[mol%]	Isolierte
	quene		Ausseule		quene		Ausseule
1	[Pd(OAc) ₂]	5.0	97%	4	[PdCl ₂]	5.0	91%
1 2	$[Pd(OAc)_2]$ $[Pd(OAc)_2]$	5.0 2.5	97% 84%	4	[PdCl ₂] [Na ₂ PdCl ₄]	5.0 5.0	91% 73%

Tabelle 3.23: Palladium-Vorläufer in der direkten Arylierung mit Tosylat 32g.^[a]

[a] Reaktionsbedingungen: **69** (0.5 mmol), **32g** (0.6 mmol), [Pd]/X-Phos (**12o**) = 1/2, *t*-BuCO₂H (**133d**) (15.0 mol%), K₂CO₃ (0.75 mmol), DMF, *t*-BuOH, 100 °C, 20 h. [b] GC-Umsatz.

Die optimierten Reaktionsbedingungen wurden nachfolgend auf verschiedene Sulfonate **138** angewandt, um erste Aussagen über die Substratbreite und Reaktivität verschiedener Abgangsgruppen zu erhalten (Tabelle 3.24).⁵¹ Das Triflat **139c** reagierte in sehr guter Ausbeute zum gewünschten Produkt **69b** (Eintrag 5). Es wies eine vergleichbare Reaktivität zu dem reaktionsträgeren Tosylat **32g** auf und führte bei gleicher Palladiumbeladung von 2.5 mol%, zu 88% *versus* 84% isolierter Ausbeute (Einträge 2 und 6). Benzolsulfonat **139b** zeigte sich unter den Bedingungen ebenso als geeignete Abgangsgruppe (Eintrag 7). Das Sulfonat mit einer sterisch anspruchsvollen Mesitylgruppe **139d** konnte zu akzeptablen 53% **69b** umgesetzt werden (Eintrag 8). Das sterisch noch stärker gehinderte Sulfonat **139f** reagierte in mäßigen 39% zum funktionalisierten Heterocyclus **69b** (Eintrag 10).

N.		[Pd(OAc) ₂]/X-Phos (12 <i>t</i> -BuCO ₂ H (133d) (15.0	N /		
69 138 Me		K ₂ CO ₃ DMF, <i>t</i> -BuOH <i>T</i> , 20 h		69b Me	
Eintrag	R	[Pd(OAc) ₂] [mol%]	<i>T</i> [°C]	Isolierte Ausbeute	
1	<i>p</i> -Tolyl	5.0	100	97%	
2	<i>p</i> -Tolyl	2.5	100	84%	
3	<i>p</i> -Tolyl	2.5	100	52%	
4	<i>p</i> -Tolyl	5.0	80	63%	
5	CF ₃	5.0	100	91%	
6	CF ₃	2.5	100	88%	
7	Ph	5.0	100	91%	
8	Mes	5.0	100	53%	
9	2,4,6-(<i>i</i> -Pr) ₃ -C ₆ H ₂	5.0	100	14% ^[b]	
10	Me	5.0	100	39% ^[b]	

Tabelle 3.24: Sulfonate in der direkten Arylierung von Benzoxazol (69).^[a]

[a] Reaktionsbedingungen: **69** (0.5 mmol), **138** (0.6 mmol), [Pd]/X-Phos (**120**) = 1/2, *t*-BuCO₂H (**133d**) (15.0 mol%), K₂CO₃ (1.5 Äquiv.), DMF, *t*-BuOH, 80-100 °C, 20 h. [b] GC-Umsatz.

3.7.4 Direkte palladiumkatalysierte Arylierung von Benzoxazol mit Arylsulfonaten

Unter den optimierten Reaktionsbedingungen wurde Benzoxazol (69) mit verschiedenen Aryltosylaten **32** umgesetzt (Tabelle 3.25). Durch die milden Reaktionsbedingungen konnte eine Estergruppe toleriert werden. Das Produkt wurde in 89% Ausbeute erhalten (Eintrag 1). Das Benzophenonderivat 69d ließ sich ebenfalls in guter Ausbeute isolieren (Eintrag 2). Beim Einsatz der elektronisch aktivierten Fluorsubstituierten Tosylate **32m** und **32k** konnte jeweils eine gute Ausbeute von 82% bzw. 78% erzielt werden (Einträge 3 und 4). Die elektronenreichen, deaktivierten Tosylate **32c**, **139i**, **32h** und **32d** wurden effizient in 82% bis 85% isolierten Ausbeuten umgesetzt (Einträge 5 bis 8). Die Reaktion eines mit einer Aminogruppe substituierten Tosylats **32j** ergab den Heterocyclus **69k** in einer hohen Ausbeute von 88% (Eintrag 9). Eine geplante Reaktion mit Acetophenonderivat **32t** ergab nur geringen Umsatz des Oxazols **69**. Vermutlich wurde die enolisierbare Acetylgruppe unter den gegebenen Reaktionsbedingungen in α -Position aryliert und somit das Elektrophil unter den Reaktionsbedingungen polymerisiert.

	OTs	[Pc X-Ph	d(OAc) ₂] (5.0 mol%)		
		t-BuCC	D_2H (133d) (15.0 mol%)	,N,	
	+		K ₂ CO ₃	$\lfloor \rangle$	
	~ 0 ~ ~ R ¹		DMF, t-BuOH	6	⊼) c_k
	05 52		100 °C, 20 h	0.	, C-K
Eintrag	Tosylat		Produkt		Isolierte Ausbeute
1	MeO ₂ C-OTs	32r		69c	89%
2	O Ph	139h		69d	83%
3	F ₃ C	32m	CF ₃	69e	82%
4	F	32k	ſ N F	69f	78%
5	MeO	32c	OMe	69g	86%
6	OTs	139i		69h	82%
7	Me OTs Me	32h	Me O Me	69i	95%
8	MeO OTs MeO	32d	OMe OMe OMe	69j	92%
9	Me ₂ N	32j	N NMe ₂	69k	88%

 Tabelle 3.25: Palladiumkatalysierte direkte Arylierung von Benzoxazol (69) mit Aryltosylaten 32.^[a]

Reaktionsbedingungen: **69** (0.5 mmol), **32** (0.6 mmol), [Pd(OAc)₂] (5.0 mol%), X-Phos (**120**) (10.0 mol%), *t*-BuCO₂H (**133d**) (15.0 mol%), K₂CO₃ (0.75 Äquiv.), DMF, *t*-BuOH, 100 °C, 18-22 h.

Abschließend wurde die erstmalige Verwendung von Arylmesylaten **137** in palladiumkatalysierten C–H-Bindungsfunktionalisierungen erprobt, da derartige Verbindungen aus atomökonomischer² Sicht besonders interessante Substrate darstellen. Mit elektronenarmen Mesylaten **137** gelang es, die funktionalisierten Benzoxazole **69e** und **69c** in mittleren Ausbeuten von 52% und 60% zu isolieren (Schema 3.12).

Schema 3.12: Palladiumkatalysierte direkte Arylierung von Benzoxazol (69) mit Arylmesylaten 137.

3.7.5 Palladiumkatalysierte direkte Arylierung von Phenyloxazol und Koffein mit Aryltosylaten

Für Benzoxazol (69) wurde erst kürzlich in direkten palladiumkatalysierten Arylierungsreaktionen mit Iodarenen 28 ein alternativer Ringöffnungsmechanismus diskutiert.²¹¹ Um die generelle Anwendungsbreite der gefunden Methode zu erweitern, wurden Aryltosylate 32 mit 5-Phenyloxazol (130), für das ein konzertierter Metallierungs-Deprotonierungs-Mechanismus plausibel erscheint, zur Reaktion gebracht (Tabelle 3.26). Das elektronenenreiche Tosylat 32h reagierte in guter Ausbeute zum Produkt 130a (Eintrag 1). Wurde auf die Verwendung von Pivalinsäure 133d verzichtet, so konnte sogar eine geringe Erhöhung der Ausbeute zu 75% beobachtet werden (Eintrag 2). Daher wurde in den folgenden Experimenten von dem Einsatz eines Cokatalysators abgesehen. Das elektronenreiche Tosylat 139j konnte in einer Ausbeute von 68% zu Derivat 130c umgesetzt werden (Eintrag 4). Das sterisch anspruchvolle 1-Naphthyltosylat (139k) reagierte effizient in 77% isolierter Ausbeute zu dem gewünschten Produkt 130d (Eintrag 5). Derartige mit konjugierten π -Systemen versehene Oxazolverbindungen sind in der Materialforschung von großem Interesse.²¹² Ausgehend von Koffein (68), einem Stimulanz des zentralen Nervensystems, konnten einige Derivate mittels der entwickelten Methodik dargestellt werden (Einträge 7 bis 11).¹⁴⁸ In einem intramolekularen Konkurrenzexperiment mit Chlorsubstituierten Tosylat 320 wurde chemoselektiv das Chlorid als Abgangsgruppe substituiert (Eintrag 11). Das resultierende Koffeinderivat 68d wurde in 69% Ausbeute erhalten und stellt eine interessante Verbindung für nachfolgende Funktionalisierungen dar.

($ \begin{array}{c} $	Ts Pd(OAc) ₂ (5.0 m X-Phos (12o) (10.0 DMF, <i>t</i> -BuOI R ¹ K ₂ CO ₃ , 100 °C, 10	ol%) $H \rightarrow X$ $H \rightarrow X$ 6-20 h 114b	\mathbb{R}^{1}
Eintrag	114	32	Produkt	Isolierte Ausbeute
1 2	Ph O 130	Me Me 32h	Ph N Me Me	72% ^[b] 74%
3	Ph 0 130	Me ₂ N 32j	Ph NMe ₂ 130b	81%
4	Ph O 130	MeO MeO MeO 139j	Ph OMe OMe 0Me 130c	68%
5	Ph O 130	OTs 139k	Ph O I I I I I I I I I I I I I I I I I I	77%
6	Ph 0 130	Me 32i	Ph N Me 130e	65%
7	$Me \\ N \\ N \\ Me \\ N \\ O \\ Me \\ 68$	OTs 32b	$Me \\ N \\ N \\ Me^{-N} \\ O \\ Me \\ 68b$	58%

Tabelle 3.26: Palladiumkatalysierte direkte Arylierung von Phenyloxazol (**130**) und Koffein (**68**) mit Aryltosylaten **32**.^[a]

[a] Reaktionsbedingungen: **114** (0.5 mmol), **32** (0.6 mmol), [Pd(OAc)₂] (5.0 mol%), X-Phos (**120**) (10.0 mol%), K₂CO₃ (0.75 mmol), DMF, *t*-BuOH, 100 °C, 18-22 h. [b] *t*-BuCO₂H (**133d**) (15.0 mol%).

3.7.6 Palladiumkatalysierte direkte Arylierungen von 1,2,3-Triazolen mit Tosylaten

Metallkatalysierte 1,3-dipolare Cycloadditionen ermöglichen den Zugang zu zahlreichen 1,2,3-Triazolen **72**.¹⁵² Die hohe Selektivität und generelle Anwendbarkeit dieser Synthesemethode blieb jedoch auf terminale Alkine **71** beschränkt, was den regioselektiven Zugang zu trisubstituierten 1,2,3-Triazolen **77** erschwerte. Erst kürzlich konnte in unserem Arbeitskreis ein Protokoll zur Verwendung von preiswerten Chlorarenen **27** in direkten Arylierungsreaktionen von 1,2,3-Triazolen **72** entwickelt werden.¹⁵⁹ Aufbauend auf der hier entwickelten Methode wurden verschiedene diarylsubstituierte Triazole **72** mit funktionalisierten Tosylaten **32** umgesetzt (Tabelle 3.27). Auch bei Verwendung dieser Substratklasse konnte interessanterweise auf den Einsatz katalytischer Mengen Pivalinsäure **133d** verzichtet werden (Eintrag 2). Die Verwendung von Tosylaten mit elektronenschiebenden Methyl-, Methoxyoder Aminosubstituenten ergab die funktionalisierten Triazole **77** in mittleren bis exzellenten Ausbeuten von 54-99% (Einträge 4 bis 11). Auch das fluorsubstituierte Tosylat **32k**, sowie die mit Estergruppen versehenene Elektrophile **32r** und **32s** reagierten effizient zu den regioselektiv triarylierten Triazolderivaten **77** (Einträge 12 und 13). Das monoarylierte Triazol **72e** wurde selektiv in Position 5 funktionalisiert, was einen elektrophilen substitutionsartigen Mechanismus nahe legt (Einträge 19 und 20). Bei der Verwendung des Chlorsubstituierten Tosylats 320 erfolgte die Reaktion chemoselektiv unter Abspaltung des Chlorids (Eintrag 18). Hierbei wurde das Produkt 770 in einer guten Ausbeute von 78% isoliert.

	R ¹ N Ar 72	OTs R ² 32	Pd(OAc) ₂ X-Phos (12c DMF, K ₂ CO ₃ , 100	(5.0 mol%) (10.0 mol%) <i>t</i> -BuOH $0^{\circ}C$, 17-22 h $R^{2 \int_{U}}$	R ¹ N Ar 77	l N
Eintrag	72		R ²	Produkt		Isolierte Ausbeute
1 2	n-Bu N N Ph	72a	Н 32b	n-Bu N N Ph	77a	75% ^[a] 77%
3	n-Bu N N Ph	72a	4-F 32k	n-Bu N N Ph	77b	62%
4	n-Bu N N Ph	72a	4-Me 32f	n-Bu N Me Ph	77c	90%
5	n-Bu N N Ph	72a	3-NMe ₂ 32j	n-Bu N N Ph Me ₂ N	77d	98%
6	n-Bu N N Ph	72a	3,5-(MeO) ₂ 32d	MeO MeO MeO	77e	94%
7	n-Bu N N Me	72b	4-Me 32f	n-Bu N Me Me	77f	80%
8	n-Bu N N Me	72b	4-MeO 32c	MeO Me	77g	54%

 Tabelle 3.27: Palladiumkatalysierte direkte Funktionalisierung von 1,2,3-Triazolen 72 mit Aryltosylaten 32.^[a]
Eintrag	72		R ²	Produkt		Isolierte Ausbeute
9	n-Bu N N Me	72b	3,5-(MeO) ₂ 32d	MeO MeO MeO MeO MeO	77h	84%
10	n-Bu N N Me	72b	3,4,5-(MeO) ₃ 139j	MeO MeO MeO MeO MeO	77i	87%
11	n-Hex N N OMe	72c	3,5-(MeO) ₂ 32d	n-Hex MeO MeO OMe	77j	99%
12	Ph N N OMe	72d	4-CO ₂ Me 32r	MeO ₂ C	77k	72%
13	Ph N N OMe	72d	3,5-(CO ₂ Me) ₂ 32r	MeO ₂ C MeO ₂ C MeO ₂ C OMe	771	81%
14 15 16	Ph N N OMe	72d	3-NMe ₂ 32s	Ph N N N Me ₂ N	77m	97% 87% ^[c] 79% ^[d]
17	Ph N N OMe	72d	3,4,5-(MeO) ₃ 139j	MeO MeO MeO OMe	77n	94%

[a] Reaktionsbedingungen: **77** (0.5 mmol), **32** (0.6 mmol), [Pd(OAc)₂] (5.0 mol%), X-Phos (**120**) (10.0 mol%), K₂CO₃ (0.75 mmol), DMF, *t*-BuOH, 100 °C, 18-22 h. [b] *t*-BuCO₂H (**133d**) (15.0 mol%). [c] [Pd(OAc)₂] (2.5 mol%). [d] 80 °C.

3.8 Ligandfreie rutheniumkatalysierte direkte Arylierung von Arenen

3.8.1 Einführung

2001 berichtete die Gruppe von *Oi* über eine rutheniumkatalysierte direkte Arylierung von Arenen.^{167,170,171} Die erzielte Regioselektivität dieser C–H-Bindungsfunktionalisierung mit Bromarenen **61** als Elektrophile wurde durch einen 2-Pyridylsubstituenten bestimmt. Die Verwendung anderer dirigierender Gruppen, wie Iminen **88**, Oxazolinen **89** und Pyrazolen **105**, mit anspruchsvollen Chlorarenen **27** und Tosylaten **32** als Elektrophile, konnte hingegen mit den sekundären Phosphanoxiden **34b** und **39d** als Präliganden in unserem Arbeitskreis demonstriert werden.^{172,175} Die Entwicklung eines ligandfreien katalytischen Systems, welches auf einer preiswerten Rutheniumquelle basiert, wird im Folgenden aufgezeigt.

3.8.2 Synthese kommerziell nicht erhältlicher Startmaterialien

Die folgenden in der rutheniumkatalysierten direkten Arylierung verwendeten Substrate waren kommerziell nicht erhältlich. Sie wurden gemäß den Schemata 3.13-3.16 synthetisiert. Einer Vorschrift von *Clarke* und *Wood* folgend, wurde 2-Methylbenzonitril (**140**) in 2-Aminoethanol (**141**) gelöst und in Gegenwart substöchiometrischer Mengen der Lewis-Säure Zinkchlorid durch Mikrowellenbestrahlung erhitzt (Schema 3.13).²¹³ Die geringe isolierte Ausbeute des Oxazolins **89a** wurde aufgrund der kurzen Reaktionszeit und der preiswerten Ausgangsmaterialien in Kauf genommen.

Schema 3.13: Synthese von 2-Aryloxazolin 89a.²¹³

Die kommerziell erhältliche Carbonsäure **142** wurde mit Thionylchlorid versetzt und in Ethanol unter Rückfluß erhitzt (Schema 3.14). Das Ethoxycarbonylsubstituierte Furan **61e** wurde in sehr guter Ausbeute von 94% isoliert.²¹⁴

$$Br \xrightarrow{O} CO_2H \xrightarrow{SOCl_2, EtOH} Br \xrightarrow{O} CO_2Et$$
142
61e: 94%

Schema 3.14: Darstellung von Bromfuran 61e.²¹⁴

N-Phenylpyrazol (**105a**) ließ sich gemäß einer Vorschrift von *Buchwald* durch eine kupferkatalysierte Aminierungsreaktion aus Iodbenzol (**28d**) und 1*H*-Pyrazol (**143**) synthetisieren (Schema 3.15).²¹⁵ Als Katalysator diente hierbei preiswertes Kupfer(I)-iodid und *N*,*N*-Dimethylethylen-1,2-diamin (DMEDA) (**132**) als Ligand.

Schema 3.15: Synthese von *N*-Phenylpyrazol (105a) durch eine kupferkatalysierte Aminierung.²¹⁵

Um das Ketimin **88a** zu erhalten, wurden *p*-Anisidin (**122c**) und Acetophenon (**144**) in Anwesenheit von Triethylamin bei 0 °C umgesetzt (Schema 3.16). Als wasserentziehendes Reagenz wurde Titantetrachlorid verwendet und **88a** wurde in 86% Ausbeute nach Umkristallisation isoliert.²¹⁶

Schema 3.16: TiCl₄-vermittelte Kondensation zu Ketimin 88a.²¹⁶

3.8.3 Pyridin als dirigierende Gruppe in rutheniumkatalysierten direkten Arylierungen

Rutheniumkomplexe können erfolgreich als Katalysatoren in der direkten Arylierung von Arenen eingesetzt werden. Voraussetzung hierfür ist die Anwesenheit einer Lewis-basischen, stickstoffhaltigen dirigierenden Gruppe.¹⁷⁰ In einer ersten Testreaktion zwischen 2-Phenylpyridin (81b) und 4-Bromacetophenon (61f) konnte mit [RuCl₂(p-Cymol)]₂ als Rutheniumquelle, K₂CO₃ als Base und NMP als Lösungsmittel das gewünschte Produkt 145a in einer hervorragenden Ausbeute von 97% isoliert werden (Tabelle 3.28, Eintrag 1). Da der Fokus auf der Entwicklung eines preiswerten Katalysatorsystems lag, wurden als Übergangsmetallquellen ebenso [RuCl₃] und [RuCl₃(H₂O)_n] eingesetzt (Einträge 2 und 3). Bemerkenswerterweise katalysierte der wasserhaltige Rutheniumkomplex die direkte Arylierung mit sehr guter Ausbeute von 90% (Eintrag 3), während [RuCl₃] 145a lediglich in 49% isolierter Ausbeute ergab (Eintrag 2). Mit diesem gefundenen, preisgünstigen Rutheniumsalz wurden die nachfolgenden Reaktionen zwischen Phenylpyridin 81b und funktionalisierten Bromarenen 61 durchgeführt. Die milden Reaktionsbedingungen ermöglichten die Toleranz synthetisch wertvoller Funktionalitäten, wie einer Ester- und Nitrilgruppe (Einträge 4, 5, 6, 8 und 9). Die funktionalisierten Produkte konnten in moderaten 51% bis exzellenten 95% erhalten werden. Ein Versuch, die Reaktion mit elektronischaktivierten Bromaren 61g bei einer niedrigeren Temperatur durchzuführen, verringerte die Ausbeute zu 56% (Eintrag 5). Ein Chlorsubstituent wurde ebenfalls toleriert und das Produkt 145d konnte mit einer Ausbeute von 69% erhalten werden (Eintrag 7). Auch eines mit einer elektronenschiebenden Methoxygruppe versehenes Bromaren 61c konnte zu dem gewünschten Produkt umgesetzt werden (Eintrag 10). Die Ausbeute von 145g konnte mit 4-Iodanisol (28e) als Substrat zu 73% verbessert werden (Eintrag 11). Zudem reagierte ein elektronenreiches, ortho-substituiertes Bromaren 611 in guter Ausbeute zum arylierten Produkt 145h (Eintrag 12). Bislang wurden nur wenige Beispiele zur Verwendung von Haloheteroarenen als Elektrophile in der rutheniumkatalysierten C-H-Bindungsaktivierung berichtet.¹⁷¹ Durch eine Erhöhung der Katalysatorbeladung auf zehn mol% gelang die selektive Monoarylierung von 2-Phenylpyridin (81b) mit Bromfuran 61e (Eintrag 13).

Tabelle 3.28: Direkte *ortho*-Arylierung von 2-Phenylpyridin (81b) mit [RuCl₃(H₂O)_n].^[a]

[[]a] Reaktionsbedingungen: 81b (1.0 mmol), 61 (2.2 mmol), [RuCl₃(H₂O)_n] (5.0 mol%), K₂CO₃ (3.0 mmol), NMP, 120 °C, 22 h. [b] [RuCl₂(*p*-Cymol)]₂ (2.5 mol%). [c] [RuCl₃] (5.0 mol%).
[d] 100 °C. [e] 4-Iodanisol (28e). [f] [RuCl₃(H₂O)_n] (10.0 mol%).

3.8.4 Oxazolin als dirigierende Gruppe in rutheniumkatalysierten direkten Arylierungen

Um die Anwendungsbreite des vorgestellten Katalysatorsystems zu erweitern, wurde *ortho*-Tolyloxazolin (**89a**) mit verschiedenen Bromarenen **61** umgesetzt (Tabelle 3.29). Analog zu 2-Phenylpyridin (**81b**) konnte Oxazolin **89a** sowohl mit elektronenarmen (Einträge 1 bis 6) wie elektronenreichen Bromarenen **61** funktionalisiert werden (Eintrag 7). Die milden Reaktionsbedingungen ermöglichten unter Einsatz der anorganischen Base K₂CO₃, die Toleranz eines enolisierbaren Ketons (Eintrag 1). Ebenso konnten Ester- und Nitrilfunktionalitäten erfolgreich eingesetzt werden (Einträge 2 und 3). Die Verwendung der weniger reaktiven chlorierten oder tosylierten Anisole **27a** und **32c** ergaben das Produkt **147g** in akzeptablen Ausbeuten von 54% bzw. 47% (Einträge 8 und 9). Die chemoselektive Aktivierung des Bromids generierte **147f** in mittlerer isolierter Ausbeute (Eintrag 6). Ein elektronenschiebender *ortho*-Substituent am Elektrophil stellte kein Hemmnis für die Reaktion dar und das Arylierungsprodukt **147h** wurde in moderater Ausbeute erhalten (Eintrag 10).

0 Me 89:	h + Br a 61	[RuC	Cl ₃ (H ₂ O) _n] (5.0 mol%) ► Me. K ₂ CO ₃ , NMP 120 °C, 22 h	0 N 147	R R
Eintrag	R		Produkt		Isolierte Ausbeute
1	4-C(O)Me	61f	Me Me	147a	68%
2	4-CO ₂ Me	61m	Me CO ₂ Me	147b	68%
3	4-CN	61h	O N CN Me	147c	59%
4	3-CO ₂ Me	61n	Me CO ₂ Me	147d	77%
5	3,5-(CF ₃) ₂	610	Me CF ₃ CF ₃ CF ₃	147e	46%
6	2-Cl	61p	Me Cl	147f	62%
7 8 9	4-OMe	61c	Me OMe	147g	65% 54% ^[b] 47% ^[c]

 $\textbf{Tabelle 3.29:} Direkte \ Arylierung \ von \ 2-Aryloxazolin \ \textbf{89a} \ mit \ [RuCl_3(H_2O)_n].^{[a]}$

Eintrag	R		Produkt		Isolierte Ausbeute
10	2-OMe	611	Me OMe	147h	51%

[[]a] Reaktionsbedingungen: **89a** (1.0 mmol), **61** (1.2 mmol), [RuCl₃(H₂O)_n] (5.0 mol%), K₂CO₃ (1.5 mmol), NMP, 120 °C, 22 h. [b] 4-Chloranisol (**27a**). [c] 4-Anisyltosylat (**32c**).

3.8.5 Rutheniumkatalysierte direkte Arylierungen von Pyrazolen und Ketiminen

Nachfolgend wurden Pyrazol **105a** und Ketimin **88a** unter den optimierten Reaktionsbedingungen mit Bromarenen **61** zur Reaktion gebracht (Tabelle 3.30 und 3.31). Auch bei Verwendung dieser Pronucleophile wurden sowohl funktionalisierte als auch ein elektronisch deaktiviertes Bromaren in präparativ nützlichen Ausbeuten umgesetzt. Pyrazol **105a** wurde zweifach aryliert und die Produkte konnten in 52-64% Ausbeuten isoliert werden (Einträge 1 bis 3).

Eintrag	61		Produkt	Isolierte Ausbeute
3	4-OMe	61c	MeO OMe OMe	55%

[a] Reaktionsbedingungen: **105a** (1.0 mmol), **61** (2.2 mmol), $[RuCl_3(H_2O)_n]$ (5.0 mol%), K_2CO_3 (3.0 mmol), NMP, 120 °C, 22 h.

Eine potentielle doppelte direkte Arylierung von Ketimin **88a** wurde selbst bei Verwendung eines Überschusses an Bromaren **61f** nicht erreicht (Tabelle 3.31, Eintrag 2). Das Acetophenon-Derivat **104b** wurde in vergleichbarer Ausbeute nach saurer Aufarbeitung erhalten. Der Befund, dass Ketimine selektiv monoaryliert werden, steht in Einklang mit der von *Ackermann* beschriebenen rutheniumkatalysierten Arylierungsmethodik unter Verwendung des Ligandvorläufers (1-Ad)₂P(O)H (**34b**) und Chlorarenen **27**.¹⁷²

Eintrag	61			Produkt	Isolierte Ausbeute
4	4-OMe 61c	OMe Me N	88a	Me O OMe I04a	56% ^[b]

[a] Reaktionsbedingungen: **88a** (1.0 mmol), **61** (2.2 mmol), [RuCl₃(H₂O)_n] (5.0 mol%), K₂CO₃ (3.0 mmol), NMP, 120 °C, 4 Å MS, 22 h. [b] **61** (1.2 mmol). [c] **61** (5.0 mmol).

3.9 Rutheniumkatalysierte direkte Arylierungen in Toluol

3.9.1 Einführung

Die Katalysatorsysteme basierend auf [RuCl₂(*p*-Cymol]₂ und den Phosphanoxid-Präliganden **34b** und **39d** hatten sich für die direkte Arylierung aromatischer C–H-Bindungen mit Chlorarenen **27** und Aryltosylaten **32** etabliert.^{172,175} Die in der Literatur beschriebene Ausbildung definierter Ruthena-Metallacyclen mit Natriumacetat²¹⁷ warf hingegen die Frage auf, ob die hohe katalytische Aktivität der (HA)SPO-Präliganden auf einem unterstützten intramolekularen Protonenabstraktions-Mechanismus beruht (Schema 3.17, links).²⁰⁹ In analoger Weise könnte ein konzertierter Cyclometallierungs-Deprotonierungsprozss durch Zugabe substöchiometrischer Mengen einer Carbonsäure ermöglicht werden (Schema 3.17, rechts).²¹⁰ Die Suche nach einem geeigneten Cokatalysator, welcher den effizienten Einsatz von (Pseudo)Halogenarenen in direkten Arylierungsreaktionen ermöglichte, war folglich eine lohnenswerte Herausforderung.

Schema 3.17: Postulierte Übergangszustände in einem Deprotonierungs/Metallierungs-Mechanismus.

3.9.2 Synthese kommerziell nicht verfügbarer Startmaterialien

Einer Vorschrift Herrmann folgend wurde 2-Chlorpyridin von (27n)mit ortho-Tolylmagnesiumbromid (**20c**) in einer nickelkatalysierten Kumada–Corriu-Kreuzkupplung bei Umgebungstemperatur umgesetzt (Schema 3.18).⁴⁷ Mit dem NHC-Vorläufer 8a ließ sich das gewünschte Produkt 2-(ortho-Tolyl)pyridin (111t) in hoher Ausbeute von 96% isolieren.

Schema 3.18: Synthese von Pyridin 111t durch eine nickelkatalysierte Kumada–Corriu-Kreuzkupplung.⁴⁷

3.9.3 Reaktionsoptimierung durch den Vergleich verschiedener Cokatalysatoren

Um die aufgestellte Hypothese zu prüfen, wurden verschiedene potentielle Cokatalysatoren als Additive in der rutheniumkatalysierten direkten Arylierung untersucht (Tabelle 3.32). Bislang waren rutheniumkatalysierte direkte Arylierungen auf die Verwendung des toxischen N-Methylpyrrolidons (NMP) als polarem-aprotischem Solvens limitiert.¹²⁰ Vicente konnte in vorangegangenen Studien den vorteilhaften Ersatz von NMP durch Toluol als preisgünstigem Lösungsmittel in rutheniumkatalysierten C–H-Aktivierungen demonstrieren.²¹⁸ Eine Testreaktion mit [RuCl₂(p-Cymol)]₂ als Rutheniumquelle ergab in der Reaktion von 2-(ortho-Tolyl)pyridin (111t) und dem elektronenreichen 4-Bromanisol (61c) das Produkt 149 mit geringem Umsatz zu 18% (Eintrag 1). Katalytische Mengen an NMP oder Triphenylphosphan (12a) konnten hierbei den Umsatz nahezu verdoppeln (Einträge 2 und 3). Mit dem sterisch anspruchsvollen Phosphanoxid 34b wurde das Pyridinderivat in 71% Ausbeute isoliert (Eintrag 4). Ebenso wurden die Phosphorsäurediester 133a und 133d eingesetzt, welche das Produkt 149 in Ausbeuten von 45% bzw. 65% lieferten (Einträge 5 und 6). Nachfolgend verschiedene Carbonsäuren wurden 133 verwendet, wobei mit zunehmender Substituentengröße, eine Erhöhung der isolierten Ausbeute verzeichnet wurde (Einträge 7 bis 10). Das in-situ gebildete Pivalat (133d) zeichnete sich als bislang aktivstes Additiv aus (Eintrag 10). Nach experimentellen und theoretischen Arbeiten von Fagnou, fungiert das basische Pivalat-Anion (133d) in der Palladiumkatalyse als eine Art Protonentransferreagenz vom Pronucleophil zur stöchiometrisch eingesetzten Carbonat-Base.²¹⁰ Mit 30 mol% Pivalinsäure (**133d**) wurde das Pyridinderivat **149** in bemerkenswerter Ausbeute von 97% erhalten (Eintrag 11). Neben sterischen Faktoren konnte durch Verwendung substituierter Benzoesäuren der Einfluss der Basizität der in Lösung vorliegenden Carboxylat-Anionen auf die C–H-Bindungsfunktionalisierung bestimmt werden (Einträge 12 bis 13). Hierbei stellten acidere Benzoesäuren mit elektronenziehenden Fluorsubstituenten effektivere Additive dar (Einträge 14 und 15). Ein signifikanter sterischer Faktor wurde durch Verwendung von *ortho*-Tolylcarbonsäure (**133g**) aufgezeigt (Eintrag 16). Mit der sterisch abgeschirmten Mesitylcarbonsäure (**133c**) wurde eine exzellente Ausbeute von 99% erzielt (Eintrag 17). Unter Einsatz der preiswerteren Rutheniumquelle [RuCl₃(H₂O)_n] wurde das Produkt **149** in wesentlich geringerer Ausbeute von 50% erhalten (Eintrag 18).

Tabelle 3.32: Effekt von Additiven auf rutheniumkatalysierte direkte Arylierungen in Toluol als Lösungsmittel.^[a]

Me	+ [RuCl ₂ (<i>p</i> -Cy Additiv (10	mol)] ₂ (2.5 mol%)).0-30.0 mol%)	→ Me	N OMe
	∫ K₂CO₃, PhM OMe	Ие, 120 °С, 18 h		
111t	61c		·	149
Emtrag	Auuuv		[11101 %0]	Isonerte Ausbeute
1				18% [6]
2	Me		20.0	31% ^[b]
3	PPh ₃	12a	10.0	37%
4	H, P	34b	10.0	71%
5	MeO、O MeO ^{CO} H	133a	10.0	45%
6	PhO _P O PhO ^{PC} OH	133d	10.0	65%
7	Me Me Me	133e	10.0	86%
8	CO2H	133 a	10.0	89%
9	CO ₂ H	133b	10.0	92%
10	Me	133d	10.0	93%
11	Me CO ₂ H Me	133d	30.0	97%

Eintrag	Additiv		[mol%]	Isolierte Ausbeute
12	MeO-CO ₂ H	133f	30.0	72%
13	Me-CO ₂ H	133g	30.0	78%
14	F-CO ₂ H	133h	30.0	83%
15	F ₃ C CO ₂ H	133i	30.0	85%
16	CO ₂ H Me	133j	30.0	97%
17	∕—́Me	133c	30.0	99%
18	Me CO ₂ H	133c	30.0	50% ^[c]

[[]a] Reaktionsbedingungen: **111t** (0.5 mmol), **61c** (0.6 mmol), Additiv (10.0-30.0 mol%), K_2CO_3 (2.0 mmol), PhMe, 120 °C, 18 h. [b] GC-Umsatz. [c] [RuCl₃(H₂O)_n] (5.0 mol%).

Die Gruppen von *Echavarren* und *Fagnou* postulierten die zentrale Bedeutung eines Deprotonierungs-Metallierungs-Mechanismus in palladiumkatalysierten direkten C–H-Bindungsaktivierungsreaktionen.^{209,210,219} Das *in-situ* generierte Mesitylcarboxylat (**133c**) scheint die Protonenabstraktion in der rutheniumkatalysierten direkten Arylierung am besten zu bewerkstelligen und dient vermutlich als eine Art Protonentransferreagenz (Abbildung 3.7).²²⁰

Abbildung 3.7: Postulierter Übergangszustand des Deprotonierungs-Metallierungs-Mechanismus an Arenen.

Ein möglicher Einfluss unterschiedlicher Basen auf die Aktivität des gefundenen katalytischen Systems war zusätzlich von Interesse (Tabelle 3.33). Mit KHCO₃ konnte das Produkt **149** in guter Ausbeute von 95% erhalten werden (Eintrag 2). Ein Wechsel zu KOAc oder K_3PO_4 führte zur deutlichen Abnahme der katalytischen Aktivität. Das Produkt wurde lediglich in Ausbeuten von 67% bzw. 32% isoliert (Einträge 3 und 4). Ebenso war die Effektivität durch den Austausch von K_2CO_3 durch Li₂CO₃, Na₂CO₃ oder Cs₂CO₃ als Base reduziert (Einträge 5 bis 7). Nur Na₂CO₃ ermöglichte die direkte Arylierung noch in guter Ausbeute von 85% (Eintrag 6). Interessanterweise konnte gezeigt werden, dass die Methodik

nicht auf die Verwendung anorganischer Basen beschränkt war, obschon mit der Hünig-Base nur eine moderate Ausbeute von 52% erzielt werden konnte (Eintrag 8).

Me +	Br	[RuCl ₂ (<i>p</i> -Cymol)] ₂ MesCO ₂ H (133c) (3 Base, PhMe, 120	(2.5 mol%) 30.0 mol%) ▶ • ℃, 18 h	Me	OMe
111t	61c			149	
Eintrag	Base	Isolierte Ausbeute	Eintrag	Base	Isolierte Ausbeute
		Ausbeute			Ausbeute
1	K_2CO_3	99%	5	Li ₂ CO ₃	23% ^[a]
2	KHCO ₃	95%	6	Na ₂ CO ₃	85%
3	KOAc	67%	7	Cs_2CO_3	44%
4	K_3PO_4	32%	8	<i>i</i> -PrNEt ₂	52%

Tabelle 3.33: Einfluss der Base auf rutheniumkatalysierte direkte Arylierungen.^[a]

[a] Reaktionsbedingungen: **111t** (0.5 mmol), **61c** (0.6 mmol), MesCO₂H (**133c**) (30.0 mol%), Base (1.0 mmol), PhMe, 120 °C, 18 h. [a] GC-Umsatz.

3.9.4 Anwendungsbreite der rutheniumkatalysierten direkten Arylierung mit (Pseudo)Halogenarenen als Elektrophile in Toluol als Solvens

Die Anwendungsbreite des katalytisch hochaktiven Systems bestehend aus [RuCl₂(p-Cymol)]₂ und Mesitylcarbonsäure (133c) wurde in der direkten Arylierung mit substituierten (Pseudo)Halogenarenen untersucht (Tabelle 3.34). Elektronenreiches Bromanisol 61c reagierte mit den Pyridinderivaten 111t und 81b bereits bei 100 °C zu den gewünschten Produkten in sehr guten Ausbeuten von 89% und 90% (Einträge 1 und 5). Auch das reaktionsträgere Chlorid 27a und Tosylat 32c reagierten mit 111t in guten isolierten Ausbeuten (Einträge 2 und 3). Das Oxazolinderivat 89a konnte ebenso erfolgreich funktionalisiert werden. Mit der milden Base K₂CO₃ konnten (enolisierbare) Keton-, Esterund Cyanofunktionalitäten toleriert werden. Die arylierten Produkte wurden bei Verwendung der Brom- oder Chlorarene in sehr guten Ausbeuten von 86% bis 94% erhalten (Einträge 6 bis 13). Es konnte zudem gezeigt werden, dass bereits bei einer Temperatur von 100 °C das anisylsubstituierte Phenyloxazolin **147g** in akzeptabler Ausbeute darstellbar war (Eintrag 17). Das sterisch und elektronisch anspruchsvolle 2-Chloranisol (27w) reagierte in guter isolierter Ausbeute von 73% zu Produkt 147h (Eintrag 20). Auch die Verwendung von 1,2,3-Triazol als dirigierende Gruppe konnte in rutheniumkatalysierten direkten Arylierungsreaktionen bewerkstelligt werden. Ein Benzophenonsubstituiertes Triazol 150 wurde in mittlerer Ausbeute von 63% erhalten (Eintrag 21). Die Methodik erlaubte zudem die sehr erfolgreiche Verwendung des funktionalisierten Furans **61e**, welches das substituierte Produkt **151** in bemerkenswerter isolierter Ausbeute von 95% ergab (Eintrag 22). Die komplementären Regioselektivitäten, die durch Verwendung von Palladium-¹⁵⁹ oder Rutheniumkatalysatoren in dieser Arbeit erzielt werden konnten, stellen somit einen wichtigen Beitrag zu modernen Arylierungsreaktionen dar.

		[RuCl ₂ (<i>p</i> -Cymol)] ₂ (2.5 m MesCO ₂ H (133c) (30.0 m	ol%) DG hol%) Ar A	DG r Ar
	+ K	[∫] K₂CO₃, PhMe 80-120 °C, 16-18 h	K I	K I
10	00 21		102a	102b
Eintrag	100	21	Produkt	Isolierte
				Ausbeute
1	N N	4-BrC ₆ H ₄ OMe 61c	N OMe	89% ^[b]
2	Me	$4-ClC_6H_4OMe$ 27a	Me	87%
3		$4\text{-}\mathrm{TsOC}_{6}\mathrm{H}_{4}\mathrm{OMe}\ \mathbf{32c}$		70%
	111t		149	
4 5	81b	4-BrC ₆ H ₄ OMe 61c	MeO OM 145g	e 97% 90% ^[b]
6 7 8 9	Me 89a	4-BrC ₆ H ₄ C(O)Me 61f 4-BrC ₆ H ₄ C(O)Me 61f 4-ClC ₆ H ₄ C(O)Me 27s 4-TsOC ₆ H ₄ C(O)Me 32t	Me 147a	90% ^[b] 51% ^[c] 92% ^[b] 75%
10	Ne 89a	4-ClC ₆ H ₄ C(O)Ph 27r	Me Ph 147i	94% ^[b]

Tabelle 3.34: Rutheniumkatalysierte direkte Arylierung mit (Pseudo)Halogenarenen.^[a]

Eintrag	100	21	Produkt	Isolierte Ausbeute
11	N Me 89a	4-BrC ₆ H ₄ CO ₂ Et 61g	Me CO ₂ Et	99%
12 13	Me 89a	4-BrC ₆ H₄CN 61h 4-ClC ₆ H₄CN 27u	Me CN 147c	86% 71%
14 15 16 17 18	Me 89a	4-BrC ₆ H ₄ OMe 61c 4-BrC ₆ H ₄ OMe 61c 4-ClC ₆ H ₄ OMe 27a 4-ClC ₆ H ₄ OMe 27a 4-TsOC ₆ H ₄ OMe 32c	Me OMe 147g	98% 95% ^[b] 91% 66% ^[b] 51%
19	Me 89a	4-BrC ₆ H ₄ Me 61q	Me Me 147j	96%
20	Me 89a	2-ClC ₆ H₄OMe 27w	Me Me Me Me Me Me Me Me	73%
21	n-Bu N N Me	4-BrC ₆ H ₄ C(O)Ph 61r	n-Bu N Me 150	63%
22	n-Bu N N Me 72f	Br O CO ₂ Et 61e	N = 151	95%

[a] Reaktionsbedingungen: **100** (0.5 mmol), **21** (0.6-1.1 mmol), MesCO₂H (**133c**) (30.0 mol%), Base (1.0-1.5 mmol), PhMe, 120 °C, 16-18 h. [b] 100 °C. [c] 80 °C.

4 Zusammenfassung und Ausblick

Trotz der Entwicklung zahlreicher Katalysatoren im Bereich der Hydroaminierung fehlt es immer noch an benutzerfreundlichen und allgemein anwendbaren Methoden. In dieser Arbeit wurde ein sequentielles Protokoll zur Synthese von 2-Aryl/Alkenyl-Indolen **9** ausgehend von preiswerten 2-Chloranilinen **115** und Alkinen **108** entwickelt (Schema 4.1).²²¹

Schema 4.1: Eintopf-Indolsynthese über rutheniumkatalysierte Hydroaminierung und palladiumkatalysierte Heck-Reaktion.²²¹

Eine im Rahmen der vorliegenden Arbeit entwickelte Brønsted-säurekatalysierte intramolekulare Hydroaminierungsreaktion nicht-aktivierter Alkene **125** eröffnete eine atomökonomische Darstellung funktionalisierter Pyrrolidin-Derivate **132** (Schema 4.2).²²²

Schema 4.2: Intramolekulare säurekatalysierte Hydroaminierung nicht-aktivierter Alkene 125.²²²

Hervorzuheben ist zusätzlich, dass mit einer modifizierten Variante ein enantiomerenangereicherter Zugang zu einem Pyrrolidinderivat ermöglicht wurde.

Die Suche nach einem selektiveren Phosphorsäurediester-Katalysator durch Variation der Arensubstituenten oder Abänderung des axial-chiralen Rückgrats, z. B. mit partiell hydriertem H₈-BINOL oder mit VAPOL- bzw. TADDOL-Strukturen, könnte die Enantioselektivität entscheidend verbessern. Darüber hinaus könnte die Acidität der Katalysatoren durch Übergang zu den entsprechenden *N*-Trifluormethylsulfonyl-phosphoramiden erhöht werden.

Trotz erheblicher Fortschritte der letzten Jahre ist die Entwicklung von generell anwendbaren katalytischen Systemen für Kreuzkupplungsreaktionen der preiswerten und einfach zugänglichen Chlorarene **27** von fortwährender Bedeutung. Im ersten Teilprojekt dieser Arbeit wurde die palladiumkatalysierte Kumada–Corriu-Kreuzkupplung von Chlorarenen **27** unter Verwendung des luftstabilen *H*-Phosphonats TADDOLP(O)H (**39b**) demonstriert (Schema 4.3). Neben Heteroarylchloriden konnten ebenso elektronenreiche deaktivierte Substrate erfolgreich eingesetzt werden.⁹⁸

Schema 4.3: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplung von Chlorarenen 27 mit HASPO 39b als luftstabilem Ligandvorläufer.⁹⁸

Zukünftig sollte das Anwendungsspektrum auf alkenyl- und alkylsubstituierte Grignard-Reagenzien ausgedehnt werden. Um eine höhere Toleranz funktioneller Gruppen in Kumada– Corriu-Kreuzkupplungen zu gewährleisten, könnten Tieftemperaturexperimente den entscheidenden Erfolg bringen.

Durch den Einsatz des luftstabilen *H*-Phosphonats PinP(O)H (**110a**) gelang die Aktivierung elektronenarmer und elektronenreicher, sowie heteroarylischer Tosylate **32** in einer palladiumkatalysierten Kumada–Corriu-Kreuzkupplung (Schema 4.4).²²³ Weiterhin zeichnete sich der mittlerweile kommerziell verfügbare HASPO-Präligand PinP(O)H (**110a**)¹⁹⁷ durch seine einstufige Synthese aus preiswerten Startmaterialien aus.

Schema 4.4: Palladiumkatalysierte Kumada–Corriu-Kreuzkupplung mit HASPO PinP(O)H (**110a**) als Präligand unter Verwendung von Tosylaten **32** als Elektrophile.²²³

Nachfolgende Forschungsaktivitäten sollten auf ein weiteres Ligandendesign abzielen, um einen Zugang zu hochsubstituierten Biarylen zu eröffnen. Eine große Herausforderung besteht in der Umsetzung von nicht-aromatischen Sulfonaten und sollte daher im Hinblick auf eine asymmetrische Reaktionsführung vorangetrieben werden.

Aufbauend auf vorangegangenen Ergebnissen wurde in dieser Arbeit die palladiumkatalysierte Suzuki–Miyaura-Kreuzkupplung von funktionalisierten Chlorarenen **115** mit Arylboronsäuren **33** untersucht. Unter Verwendung des von unserer Arbeitsgruppe entwickelten, kommerziell erhältlichen Diaminochlorphosphans **42a**⁹⁰ als Ligandvorläufer und dem Einsatz der milden, anorganischen Base CsF wurden zahlreiche funktionelle Gruppen toleriert (Schema 4.5).

Schema 4.5: Palladiumkatalysierte Suzuki–Miyaura-Kreuzkupplung von Chloriden 115 mit 42a als Ligandvorläufer und CsF als Base.

Eine ökonomisch wie ökologisch sinnvolle Alternative zu etablierten Kreuzkupplungsreaktionen stellen moderne direkte Arylierungsstrategien mittels C–H-Bindungsaktivierung dar. In einem Teilprojekt gelang die Synthese *N*-substituierter anellierter Heterocyclen durch eine neuartige palladiumkatalysierte Dominoreaktion unter Verwendung preiswerter *ortho*-Dihalogenverbindungen **120** (Schema 4.6).²²⁴

Schema 4.6: Synthese anellierter *N*-Heterocyclen mit 1,2-Dihalogenverbindungen 120.²²⁴

Da ein cyklisches alkenylisches Dibromid unter den gegebenen Reaktionsbedingungen reagierte, könnten nachfolgende Studien eine allgemein anwendbare Indolsynthese ermöglichen.

Außerdem konnte die Anwendungsbreite effizient auf biologisch aktive *N*-ungeschützte Carbazolderivate **65** ausgeweitet werden. Zahlreiche primäre Amine **122** konnten so mit funktionalisierten *ortho*-Dichlorarenen **120** regioselektiv und ohne aufwendige Schutzgruppenoperationen direkt zu den Heterocyclen umgesetzt werden (Schema 4.7).²²⁴

Schema 4.7: Palladiumkatalysierte Dominoreaktion zur Darstellung von N-ungeschützen Carbazolen 65.²²⁴

Ziel weiterer Arbeiten sollte es deshalb sein, diesen Dominoprozess auf Phenole und Thiole als Nucleophile und Pseudohalogenarene als Elektrophile auszuweiten.

In der vorliegenden Arbeit gelang es zudem erstmals, in palladiumkatalysierten direkten Arylierungen verschiedene Heterocyclen mit Tosylaten **32** zu funktionalisieren (Schema 4.8). Der Katalysator bestehend aus $[Pd(OAc)_2]$ und X-Phos (**120**) ermöglichte dabei die Toleranz wichtiger funktioneller Gruppen. Zudem konnten elektronisch deaktivierte und sterisch anspruchsvolle Tosylate **32** erfolgreich eingesetzt werden.

Schema 4.8: Palladiumkatalysierte direkte Arylierung von Heterocyclen mit Tosylaten 32.

Erste Versuche zur Verwendung der ökonomischeren Mesylate **137** lieferten vielversprechende Resultate, so dass deren genereller Einsatz in weiteren Studien forciert werden sollte.

Die regioselektive Arylierung einer C–H-Bindung kann durch die Verwendung einer dirigierenden Gruppe ermöglicht werden. Die Entwicklung eines benutzerfreundlichen, kostengünstigen Katalysators basierend auf der preiswerten Rutheniumquelle [RuCl₃(H₂O)_n] ermöglichte ohne Zugabe eines stabilisierenden Liganden den Einsatz zahlreicher Bromarene **61** als Elektrophile (Schema 4.9).²²⁵ Neben Pyridinen **81** konnten Oxazoline **89**, Pyrazole **105** und Ketimine **88** als dirigierende Gruppen verwendet werden.

Schema 4.9: Direkte *ortho*-Arylierung mit [RuCl₃(H₂O)_n].²²⁵

Abschließend wurde das Potential einer rutheniumkatalysierten direkten Arylierung mit Chloriden, Bromiden und Tosylaten als Elektrophile demonstriert. Das gefundene katalytische System bestehend aus $[RuCl_2(p-Cymol)]_2$ und substöchiometrischen Mengen Mesitylcarbonsäure (**133c**) ermöglicht neue Arylierungen in Toluol als Lösungsmittel. Die milden Reaktionsbedingungen erlaubten die Anwesenheit synthetisch wertvoller funktioneller Gruppen (Schema 4.10).²¹⁸

Schema 4.10: Rutheniumkatalysierte direkte Arylierung mit (Pseudo)Halogen(hetero)arenen 21 in Toluol als Lösungsmittel.²¹⁸

Da die direkte Funktionalisierung bereits bei 80 °C Reaktionstemperatur verlief, sollten Anstrengungen zur enantioselektiven Aktivierung von C–H-Bindungen unternommen werden.

5. Vorbemerkungen zum experimentellen Teil

Allgemeines

Sämtliche Reaktionen unter Verwendung von sauerstoff- oder feuchtigkeitsempfindlichen Reagenzien wurden unter Schutzgas (Stickstoff) durchgeführt. Die verwendeten Glasgeräte wurden zuvor mehrfach im Ölpumpenvakuum mit einem Heißluftgebläse (650 °C) ausgeheizt und nach dem Abkühlen mit Stickstoff befüllt. Als Druckrohr wurde ein *Ace-Thred pressure tube* von ACE GLASS INC. mit einem zulässigen Druckbereich von 0-11 bar verwendet. Die zum Transfer von Reagenzien und Lösungsmitteln verwendeten Spritzen und Kanülen wurden vor Gebrauch mehrfach mit Stickstoff gespült. Der Reaktionsverlauf wurde mittels GC(-MS) verfolgt.

Vakuum

Folgende	nicht	korrigierte	Enddrücke	wurden	für	die	verwendeten	Vakuumpumpen
gemessen:								
Membranpumpenvakuum (MPV):			4 mbar.					
Ölpumpen	vakuur	n (ÖPV):		10 ⁻¹ mb	ar.			

Lösungsmittel

Mit Hilfe der nachfolgend aufgeführten Standardverfahren wurden die Lösungsmittel/Reagenzien, die zur Ausführung hydrolyseempfindlicher Reaktionen benötigt wurden, getrocknet und unter Schutzgasatmosphäre aufbewahrt.

1,2-Dichlorethan wurde am MPV destilliert und mit aktiviertem 4 Å Molsieb getrocknet.

Dichlormethan wurde über Calciumhydrid zum Sieden erhitzt (5 h) und anschließend in einer Umlaufapparatur destilliert.

Diethylether wurde über Calciumchlorid und Natrium vorgetrocknet und anschließend über Natrium/Benzophenon in einer Umlaufapparatur destilliert.

Di*iso***propylethylamin** (**DIPEA**) wurde über Kaliumhydroxid gerührt (6 h) und anschließend destilliert.

N,*N*-Dimethylacetamid (DMA) wurde über Calciumhydrid vorgetrocknet (12 h bei Umgebungstemperatur, 1 h bei 100 °C) und anschließend destilliert.

Dimethylformamid (**DMF**) wurde über Calciumhydrid zum Sieden erhitzt (14 h) und anschließend im MPV destilliert.

1,3-Dimethyl-3,4,5,6-tetrahydro-2-(1*H***)-pyrimidinon (DMPU)** wurde über Calciumhydrid vorgetrocknet (12 h bei Umgebungstemperatur, 1 h bei 100 °C) und anschließend destilliert.

1,4-Dioxan wurde über Natrium getrocknet und destilliert.

Ethanol wurde über Natrium/Phtalsäurediethylester unter Rückfluss erhitzt (6 h) und anschließend destilliert.

n-Hexan wurde über Natrium getrocknet und anschließend in einer Umlaufapparatur destilliert.

Methanol wurde über Magnesium unter Rückfluss erhitzt und anschließend destilliert.

Pyridin wurde 12 h über Kaliumhydroxid gerührt und nachfolgend bei Normaldruck destilliert.

Tetrahydrofuran (**THF**) wurde über Calciumchlorid und Natrium vorgetrocknet und anschließend über Natrium/Benzophenon in einer Umlaufapparatur destilliert.

tert-Butanol wurde zuerst deoxygeniert und anschließend in einer Umlaufapparatur über Natrium getrocknet und destilliert.

1,1,2,2-Tetrachlorethan (**TCE**) wurde am MPV destilliert und mit aktiviertem 4 Å Molsieb getrocknet.

Triethylamin wurde über Kaliumhydroxid gerührt (6 h) und anschließend destilliert.

Toluol wurde über Kaliumhydroxid vorgetrocknet und in einer Umlaufapparatur über Natrium/Benzophenon destilliert.

N-Methylpyrrolidinon (NMP) wurde von ACROS ORGANICS mit > 99.5% Reinheit, extra dry, < 0.005% Wasser, erhalten, unter Schutzgas gelagert und direkt eingesetzt.

Lösungsmittel für die Aufarbeitung der Reaktionen und Laufmittel für säulenchromatographische Trennungen wurden vor Gebrauch am Rotationsverdampfer destilliert.

Reagenzien

Kommerziell erhältliche Chemikalien wurden bei einer Reinheit von > 97% direkt eingesetzt.

n-Butyllithium wurde als 1.6 M Lösung in *n*-Hexan von CHEMETALL eingesetzt.

Phenyllithium wurde als 1.5 M Lösung in *n*-Bu₂O von CHEMETALL eingesetzt.

Phenylmagnesiumchlorid wurde als 1.8 M Lösung in THF von CHEMETALL eingesetzt.

4-Methylphenylmagnesiumbromid wurde als 1.0 M Lösung in THF von SIGMA-ALDRICH eingesetzt.

2-Methylphenylmagnesiumbromid wurde als 1.0 M Lösung in THF von SIGMA-ALDRICH eingesetzt.

4-Methoxyphenylmagnesiumbromid wurde als 0.5 M Lösung in THF von SIGMA-ALDRICH eingesetzt.

3-Methoxyphenylmagnesiumbromid wurde als 1.0 M Lösung in THF von SIGMA-ALDRICH eingesetzt.

2-Methoxyphenylmagnesiumbromid wurde als 1.0 M Lösung in THF von SIGMA-ALDRICH eingesetzt.

CsF wurde vor Einsatz in Suzuki–Miyaura-Kreuzkupplungen am ÖPV getrocknet (160 °C, 8 h) und unter Stickstoff gelagert.

9,9-Dimethyl-4-oxo-2,2,6,6-tetraphenyl-3,5,8,10-tetraoxa-4-phosphabicyclo[5.3.0]decan

(TADDOLP(O)H) (39b) wurde von Dipl.-Chem. Christian J. Gschrei zur Verfügung gestellt.

N,*N*'-Bis-(2,6-di*iso*propylphenyl)-ethan-1,2-diamin (**40a**), 1,3-Di-*tert*-butyl-[1,3,2]-diaza-phospholan-2-oxid (**39g**) und 1,3-Dimesityl-[1,3,2]-diazaphospholan-2-oxid (**39a**) wurden von Dr. Robert Born zur Verfügung gestellt.

[Pd(dba)₂] wurde von Vladimir Malakhov synthetisiert.

Die folgenden Verbindungen wurden von Dr. Ludwig T. Kaspar freundlicherweise zur Verfügung gestellt: 1,3-Bis-(2,6-di*iso*propylphenyl)imidazoliniumchlorid (**8d**), 1,3-Bis-(2,4,6-trimethylphenyl)-imidazoliumchlorid (**8b**), 1,3-Bis-(2,4,6-trimethylphenyl)imidazoliniumchlorid (**8c**), (4-Methoxybenzyl)-(2,2-diphenylpent-4-enyl)-amin (**125b**), (4-Nitrobenzyl)-(2,2-diphenylpent-4-enyl)-amin (**125c**), (4-Methoxycarbonylbenzyl)-(2,2-diphenylpent-4-enyl)-amin (**125b**).

Die folgenden Tosylate wurden von Dipl.-Chem. Sabine Fenner zur Verfügung gestellt: 1-Naphthyltosylat (139k), 2-Naphthyltosylat (139i) und 3,4,5-Trimethoxyphenyltosylat (129j).

4-Butyl-1-(2-methylphenyl)-1*H*-1,2,3-triazol (**72f**) wurde von Dr. Rubén Vicente zur Verfügung gestellt.

Folgende Verbindungen wurden nach Literaturvorschriften hergestellt:

1,3-Bis-(2,6-di*iso*propylphenyl)imidazoliumchlorid (**8a**),²²⁶ Bisadamantylphosphanoxid (**34b**),¹⁷³ 1,3-Bis-(2,6-di*iso*propylphenyl)-[1,3,2]diazaphospholan-2-oxid (**39d**),⁸⁴ (*R*)-(–)-3,3`-Bis-[3,5-bis(trifluormethyl)phenyl]-1,1`-binaphthyl-2,2`-diylhydrogenphosphat (**134g**)¹⁹⁰ und (*R*)-(–)-3,3`-Bis(triphenylsilyl)-1,1`-binaphthyl-2,2`-diylhydrogenphosphat (**134h**).¹⁹¹

Gehaltsbestimmung metallorganischer Reagenzien

Die Konzentrationen der metallorganischen Reagenzien wurden durch Titration ermittelt:

- Lithiumorganyle nach der Methode von Paquette.²²⁷
- Grignardverbindungen nach der Methode von Knochel.²²⁸

Chromatographie

Säulenchromatographische Trennungen wurden mit Kieselgel der Firma MERCK (*Geduran*, Si 60, Korngröße 0.040-0.063 mm) durchgeführt.

Für die Dünnschichtchromatographie (DC) wurden DC-Fertigplatten Kieselgel 60 F_{254} der Firma MERCK eingesetzt. Die Analyse der Chromatogramme erfolgte durch Bestrahlen der DC-Platten mit UV-Licht ($\lambda = 254$ nm und/oder 366 nm) sowie durch Eintauchen der DC-Platte in eine basische Kaliumpermanganatlösung (3.0 g KMnO₄, 20.0 g K₂CO₃ und 0.3 g KOH in 300 mL Wasser) oder eine saure Cer(IV)-Lösung (15.0 g Ce(SO₄)₂, 19.0 g H₃P[(Mo₃O₁₀)₄] und 45 mL konz. H₂SO₄ in 700 mL Wasser) und anschließendem Erwärmen mit einem Heißluftgebläse auf 150–250 °C.

Gaschromatographie

Zur Reaktionsverfolgung mittels Gaschromatographie (GC) standen folgenden Geräte zur Verfügung: Ein Gaschromatograph *5890 Series II* der Firma HEWLETT & PACKARD mit FID-Detektor. Säule: *HP Ultra-2*, 5 % Phenylmethylpolysiloxan, 12 m × 0.2 mm × 0.33 μ m. Ein Gaschromatograph *CP-3380* der Firma VARIAN mit FID-Detektor. Säule: *Chrompack CP-Sil 5 CB*, 25 m × 0.25 mm. Abhängig von den Retentionszeiten wurden *n*-Decan oder *n*-Tridecan als interner Standard eingesetzt.

Zur Reaktionsverfolgung mittels Gaschromatographie-Massenspektrometrie-Kopplung (GC-MS) standen Gaschromatographen *HP 6890* mit massenselektiven Detektoren *HP 5973* der Firma HEWLETT & PACKARD zur Verfügung. Säulen: *DB-5MS*, 5 % Phenylmethylpolysiloxan, 15 m × 0.25 mm × 0

Kernresonanzspektroskopie (NMR)

Kernresonanzspektren wurden an den Geräten ARX 200, AC 300, XL 400 und AMX 600 der Firma BRUKER, sowie Mercury 300, Unity 300, Inova 500 und Inova 600 der Firma VARIAN gemessen. Die skalaren Kopplungskonstanten (J) sind in Hz angegeben. Die chemischen Verschiebungen sind als δ -Werte in ppm bezogen auf Tetramethylsilan gegen den Restprotonengehalt des verwendeten Lösungsmittels bzw. dessen Kohlenstoffatome angegeben:

CDCl ₃ :	¹ H-NMR: 7.26 ppm	¹³ C-NMR: 77.0 ppm
d ₆ -DMSO:	¹ H-NMR: 2.29 ppm	¹³ C-NMR: 39.5 ppm
C_6D_6 :	¹ H-NMR: 7.27 ppm	¹³ C-NMR: 128.0 ppm

Zur Charakterisierung der beobachteten Signalintensitäten wurden nachfolgende Abkürzungen bzw. Kombinationen dieser verwendet: s (Singulett), d (Dublett), t (Triplett), q (Quartett), quint (Quintett), sept (Septett), m (Multiplett), br (breites Signal).

Infrarotspektroskopie (IR)

IR-Spektren wurden mit einem PERKIN ELMER *1420 Infrared Spectrometer* oder mit einem BRUKER *IFS 66* Spektrometer aufgenommen. Die Absorptionen wurden in Wellenzahlen (cm⁻¹) angegeben und erstrecken sich auf einen Aufnahmebereich von 4000–400 cm⁻¹. Feststoffe wurden als Presslinge einer KBr-Verreibung, Öle und Flüssigkeiten als Filme zwischen NaCl-Platten gemessen. Des Weiteren wurden IR-Spektren mit der ATR-Einheit *Spectrum BX-59343* der Firma PERKIN ELMER mit dem Detektor *Dura SampIR II* der Firma SMITHS DETECTION aufgenommen.

Zur Charakterisierung der beobachteten Banden wurden nachfolgende Abkürzungen benutzt: vs (sehr stark), s (stark), m (mittel), w (schwach), br (breites Signal).

Massenspektrometrie (MS)

EI-Messungen wurden an einem *Finnigan MAT 95* durchgeführt, wobei die Elektronenstoß Ionisation (EI) bei einer Quellentemperatur von 250 °C und einer Elektronenenergie von 70 eV durchgeführt wurde. ESI-Messungen wurden an einem *Bruker APEX IV* durchgeführt. Angegeben wurden die Quotienten aus Masse zu Ladung (m/z) und in Klammern die relativen Intensitäten bezogen auf den intensivsten Peak.

Schmelzpunkte

Schmelzpunktbestimmungen wurden mit dem Gerät *Melting Point B-540* der Firma BÜCHI und an einem BÜCHI Schmelzpunktbestimmungsapparat nach *Dr. Tottoli* durchgeführt. Die angegebenen Temperaturen sind nicht korrigiert.

Reaktionen unter Mikrowellenbestrahlung

Reaktionen unter Mikrowellenbestrahlung wurden in einem Mikrowellenreaktor des Typs *Discover* der Firma CEM durchgeführt. Die verwendeten Reaktionsparameter sind in den jeweiligen Arbeitsvorschriften aufgeführt.

6 Allgemeine Arbeitsvorschriften

6.1 Allgemeine Arbeitsvorschrift zur Eintopf-Indolsynthese (AAV 1)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden zu einer Lösung aus $[Ru_3(CO)_{12}]$ (1.0 mol%) und NH₄PF₆ (3.0 mol%) in Toluol (1.0 mL), das 2-Haloanilin **115** (1.0 Äquiv.) und das Alkin **108** (1.5 Äquiv.) gegeben und für 18 h auf 105 °C erhitzt. Der Reaktionsverlauf wird mittels GC-MS verfolgt. Die abgekühlte Reaktionsmischung wird mit KO*t*-Bu (2.0 Äquiv.), $[Pd(OAc)_2]$ (5.0 mol%), HIPrCl (**8a**) (5.0 mol%) und Toluol (2.0 mL) versetzt und 24 h bei 105 °C erwärmt. Zur abgekühlten Reaktionsmischung werden Et₂O (50 mL) und H₂O (50 mL) hinzugefügt und die wässrige Phase wird mit Et₂O (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (50 mL) gewaschen, über MgSO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.2 Allgemeine Arbeitsvorschrift zur intramolekularen Brønsted-säurekatalysierten Hydroaminierung von Alkenen (AAV 2)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden das Aminoalken **125** (1.0 Äquiv.) und die Brønsted-Säure **134h** (10.0 mol%) in TCE (2.0 mL) bei 130 °C für 23 h gerührt. Die abgekühlte Reaktionsmischung wird mit ges. NaHCO₃-Lösung (15 mL) und Et₂O (50 mL) versetzt und die wässrige Phase wird mit Et₂O (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.3 Allgemeine Arbeitsvorschrift zur palladiumkatalysierten Kumada–Corriu-Kreuzkupplung von Chlorarenen (AAV 3)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden [Pd(OAc)₂] (2.0 mol%) und TADDOLP(O)H (**39b**) (4.0 mol%) in THF (2.0 mL) gelöst und 5 min bei Umgebungstemperatur gerührt. Das Arylmagnesiumhalogenid **20** (1.5 Äquiv.) wird über eine Spritze zugetropft und weitere 5 min bei dieser Temperatur gerührt. Anschließend wird das Chloraren **27** (1.0 Äquiv.) zugegeben und die Reaktionsmischung 4-23 h bei 60 °C erwärmt. Der Reaktionsverlauf wird mittels GC-MS verfolgt. Die abgekühlte Reaktionsmischung wird mit ges. NH₄Cl-Lösung (10 mL) versetzt und in Et₂O (50 mL) aufgenommen. Die wässrige Phase wird mit Et₂O (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (2 × 50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.4 Allgemeine Arbeitsvorschrift zur Darstellung von Arylsulfonaten (AAV 4)

Unter Stickstoff wird in einem Rundkolben zu CH_2Cl_2 (50 mL) unter Rühren das Phenol **66** (1.0 Äquiv.) sowie trockenes NEt₃ (2.0 Äquiv.) gegeben. Anschließend wird das Sulfonylchlorid **138** (1.2 Äquiv.) bei 0 °C sukzessive zugefügt und 12 h bei Umgebungstemperatur gerührt. Die Reaktionslösung wird vorsichtig mit verd. HCl (2 M) neutralisiert und die wässrige Phase mit CH_2Cl_2 (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden nacheinander mit ges. Na₂CO₃-Lösung (30 mL) und ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel wird am Rotationsverdampfer entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch (*n*-Pentan/Et₂O im angegebenen Verhältnis), oder durch Umkristallisation aus EtOH in der Siedehitze, gereinigt und am ÖPV getrocknet.

6.5 Allgemeine Arbeitsvorschrift zur palladiumkatalysierten Kumada–Corriu-Kreuzkupplung von Aryltosylaten (AAV 5)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden [Pd(dba)₂] (0.5-2.5 mol%) und PinP(O)H (**110a**) (1.0-

5.0 mol%) in 1,4-Dioxan (4.0 mL) gelöst und 5 min bei Umgebungstemperatur gerührt. Das Arylmagnesiumhalogenid **20** (1.5 Äquiv.) wird über eine Spritze zugetropft und weitere 5 min bei dieser Temperatur gerührt. Anschließend wird das Aryltosylat **32** (1.0 Äquiv.) zugegeben und die Reaktionsmischung 18-22 h bei 80 °C erwärmt. Der Reaktionsverlauf wird mittels GC-MS verfolgt. Die abgekühlte Reaktionsmischung wird mit ges. NH₄Cl-Lösung (10 mL) versetzt und in Et₂O (50 mL) aufgenommen. Die wässrige Phase wird mit Et₂O (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (2 × 50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.6 Allgemeine Arbeitsvorschrift zur palladiumkatalysierten Suzuki–Miyaura-Kreuzkupplung von Chlorarenen (AAV 6)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden [Pd₂(dba)₃] (1.0 mol%) und Diaminochlorphosphan **42a** (4.0 mol%) in 1,4-Dioxan (5.0 mL) gelöst und 10 min bei Umgebungstemperatur gerührt. Dann werden CsF (3.0 Äquiv.), die Arylboronsäure **33** (1.5 Äquiv.) und das Halogenaren **115** (1.0 Äquiv.) zugegeben. Die Reaktionsmischung wird bei 80 °C gerührt und der Reaktionsverlauf wird mittels GC-MS verfolgt. Die abgekühlte Reaktionsmischung wird in Et₂O (50 mL) und H₂O (50 mL) aufgenommen und die wässrige Phase wird mit Et₂O (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel wird im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.7 Allgemeine Arbeitsvorschrift zur palladiumkatalysierten Synthese von *N*-Phenylsubstituierten anellierten Heterocyclen (AAV 7)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr wird eine Lösung aus $[Pd(OAc)_2]$ (5.0 mol%), PCy₃ (**12h**) (10.0 mol%), NaO*t*-Bu (3.0 Äquiv.), dem Anilin **110** (1.2 Äquiv.) und dem 1,2-Dihalogenid **120** (1.0 Äquiv.) in Toluol (10.0 mL) für 18 h bei 105 °C gerührt. Zur abgekühlten Reaktionsmischung werden Et₂O (25 mL) und H₂O (25 mL) hinzugefügt und die wässrige Phase wird mit Et_2O (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (50 mL) gewaschen, über MgSO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.8 Allgemeine Arbeitsvorschrift zur palladiumkatalysierten Synthese von *N*-unsubstituierten Carbazolen (AAV 8)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden [Pd(OAc)₂] (5.0 mol%), PCy₃ (**12h**) (10.0 mol%), fein gemörsertes K₃PO₄ (3.0 Äquiv.), das primäre Anilin **122** (1.2 Äquiv.) und das 1,2-Dihalogenaren **120** (1.0 Äquiv.) in NMP (10.0 mL) suspendiert und 18 h auf 130 °C erhitzt. Die abgekühlte Reaktionsmischung wird in Et₂O (50 mL) und H₂O (50 mL) aufgenommen und die wässrige Phase wird mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (2×50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel wird im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.9 Allgemeine Arbeitsvorschrift zur Darstellung von 1,2,3-Triazolen (AAV 9)

Zu einer deoxygenierten Lösung aus DMSO (40 mL) und H₂O (10 mL) werden das Iodaren **28** (1.0 Äquiv.), das Alkin **71** (1.0 Äquiv.), NaN₃ (**131**) (1.05 Äquiv.), Natriumascorbat (10.0 mol%), DMEDA (**132**) (15.0 mol%) und zuletzt CuI (10 mol%) gegeben und bei Umgebungstemperatur 16 h gerührt. Das Reaktionsgemisch wird mit H₂O (50 mL) versetzt und mit CH₂Cl₂ (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden anschließend so oft mit 2 M NH₃-Lösung gegengeschüttelt, bis eine Blaufärbung der wässrigen Phase ausbleibt. Die organische Phase wird mit ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel wird unter verminderten Druck abdestilliert. Der erhaltene Rückstand wird mittels säulenchromatographischer Reinigung auf Kieselgel (*n*-Pentan/Et₂O im angegebenen Verhältnis) gereinigt und am ÖPV getrocknet.

6.10 Allgemeine Arbeitsvorschrift zur palladiumkatalysierten direkten Arylierung von Benzoxazol mit Tosylaten und Pivalinsäure als Additiv (AAV 10)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden [Pd(OAc)₂] (5.0 mol%), X-Phos (120) (10.0 mol%), *t*-BuCO₂H (133d) (15.0 mol%), Benzoxazol (69) (1.0 Äquiv.), Tosylat 32 (1.2 Äquiv.), K₂CO₃ (1.5 Äquiv.) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) suspendiert und 18-22 h bei 100 °C erhitzt. Der Reaktionsverlauf wird mittels GC-MS verfolgt. Die abgekühlte Reaktionsmischung wird in Et₂O (50 mL) und H₂O (50 mL) aufgenommen und die wässrige Phase wird mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung $(2 \times 50 \text{ mL})$ gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel wird Vakuum entfernt. Das Rohprodukt im erhaltene wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.11 Allgemeine Arbeitsvorschrift zur palladiumkatalysierten direkten Arylierung von 5-Phenyloxazol, Koffein und 1,2,3-Triazolen mit Tosylaten (AAV 11)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden [Pd(OAc)₂] (5.0 mol%), X-Phos (**12o**) (10.0 mol%), das Pronucleophil **68/72/130** (1.0 Äquiv.), Tosylat **139** (1.2 Äquiv.), K₂CO₃ (1.5 Äquiv.) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) suspendiert und 16-22 h bei 100 °C erhitzt. Der Reaktionsverlauf wird mittels GC-MS verfolgt. Die abgekühlte Reaktionsmischung wird in Et₂O (50 mL) und H₂O (50 mL) aufgenommen und die wässrige Phase wird mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (2×50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel wird im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.12 Allgemeine Arbeitsvorschrift zur ligandfreien rutheniumkatalysierten direkten Arylierung mit Bromarenen in NMP (AAV 12)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden $[RuCl_3(H_2O)_n]$ (5.0 mol%), das Pronucleophil **100** (1.0 Äquiv.), Arylbromid **61** (1.2-2.2 Äquiv.), K₂CO₃ (1.5-3.0 Äquiv.) in NMP (2.0 mL)

suspendiert und 22 h bei 120 °C erhitzt. Der Reaktionsverlauf wird mittels GC-MS verfolgt. Die abgekühlte Reaktionsmischung wird in Et₂O (50 mL) und H₂O (50 mL) aufgenommen und die wässrige Phase wird mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (2×50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel wird im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (*n*-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

6.13 Allgemeine Arbeitsvorschrift zur rutheniumkatalysierten direkten Arylierung mit 2,4,6-Trimethylbenzoesäure als Additiv in Toluol (AAV 13)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Rohr werden [RuCl₂(*p*-Cymol)]₂ (2.5 mol%), 2,4,6-Trimethylbenzoesäure (133c) (24.6 mg, 30.0 mol%), das Pronucleophil 100 (1.0 Äquiv.), Elektrophil 21 (1.5-2.5 Äquiv.), K₂CO₃ (2.0-3.0 Äquiv.) in Toluol (2.0 mL) suspendiert und 16-20 h bei 120 °C Der Reaktionsverlauf wird mittels GC-MS verfolgt. Die erhitzt. abgekühlte Reaktionsmischung wird in Et₂O (50 mL) und H₂O (50 mL) aufgenommen und die wässrige Phase wird mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch gereinigt (n-Pentan/Et₂O im angegebenen Verhältnis) und am ÖPV getrocknet.

7 Experimente

Darstellung von 2-Phenylindol (9b)

Nach AAV 1 werden 2-Chloranilin (**4a**) (152 mg, 1.19 mmol), Phenylacetylen (**108a**) (203 mg, 1.99 mmol), [Ru₃(CO)₁₂] (6.4 mg, 0.01 mmol, 1.0 mol%), NH₄PF₆ (4.9 mg, 0.03 mmol, 3.0 mol%) in Toluol (1.0 mL) 18 h bei 105 °C und nach Zugabe von KO*t*-Bu (224 mg, 2.00 mmol), [Pd(OAc)₂] (11.2 mg, 0.05 mmol, 5.0 mol%), HIPrCl (**8a**) (21.3 mg, 0.05 mmol, 5.0 mol%) und Toluol (2.0 mL) weitere 24 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O =10/1 \rightarrow 8/1) ergibt **9b** (138 mg, 60%) als leicht gelblichen Feststoff (Schmb.: 191.2-192.3 °C, Lit.:²²⁹ 192 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.34 (s, br, 1H), 7.67 (dt, *J* = 8.5, 1.5 Hz, 3H), 7.49-7.39 (m, 3H), 7.53 (dt, *J* = 7.5, 1.5 Hz, 1H), 7.21 (dt, *J* = 7.4, 1.5 Hz, 1H), 7.14 (dt, *J* = 7.4, 1.5 Hz, 1H), 6.84 (dd, *J* = 2.4, 0.8 Hz, 1H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 137.8 (C_q), 136.8 (C_q), 132.3 (C_q), 129.2 (C_q), 129.0 (CH), 127.7 (CH), 125.1 (CH), 122.3 (CH), 120.6 (CH), 120.2 (CH), 110.9 (CH), 100.0 (CH). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3049 (s), 2639 (m), 1599 (w), 1456 (s), 1446 (m), 1351 (m), 1298 (m), 1240 (w), 1074 (m), 796 (s), 738 (vs). **MS** (70 eV, EI) *m/z* (relative Intensität): 193 (100) [M⁺], 165 (14), 96 (4). **HR-MS** (EI) für C₁₄H₁₁N: berechnet: 193.0891, gefunden: 193.0899. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²²⁹

Darstellung von 2,3-Diphenylindol (9c)

Nach AAV 1 werden 2-Chloranilin (**4a**) (133 mg, 1.04 mmol), Diphenylacetylen (**108b**) (267 mg, 1.50 mmol), $[Ru_3(CO)_{12}]$ (6.4 mg, 0.01 mmol, 1.0 mol%), NH_4PF_6 (4.9 mg,
0.03 mmol, 3.0 mol%) in Toluol (1.0 mL) 18 h bei 105 °C und nach Zugabe von KO*t*-Bu (224 mg, 2.00 mmol), [Pd(OAc)₂] (11.2 mg, 0.05 mmol, 5.0 mol%), HIPrCl (**8a**) (21.3 mg, 0.05 mmol, 5.0 mol%) und Toluol (2.0 mL) weitere 24 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 10/1→6/1) ergibt **9c** (248 mg, 89%) als schwach gelblichen Feststoff (Schmb.: 129.8-130.0 °C, Lit.:²³⁰ 126.0-126.5 °C).

¹**H-NMR** (400 MHz, CDCl₃): δ = 8.23 (s, 1H), 7.71 (d, *J* = 8.6 Hz, 1H), 7.49-7.14 (m, 13H). ¹³**C-NMR** (100 MHz, CDCl₃): δ = 135.8 (C_q), 135.0 (C_q), 134.0 (C_q), 132.7 (C_q), 130.1 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.1 (C_q), 127.7 (CH), 126.2 (C_q), 122.7 (CH), 120.4 (CH), 119.7 (CH), 115.0 (CH), 110.8 (CH). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3396 (vs), 3052 (s), 1600 (m), 1533 (w), 1455 (s), 1439 (m), 1371 (m), 1328 (m), 1249 (s), 1152 (m), 1070 (s), 1011 (s), 965 (m), 919 (s), 828 (vs). **MS** (70 eV, EI) *m/z* (relative Intensität): 269 (100) [M⁺], 254 (5), 165 (7), 133 (3). **HR-MS** (EI) für C₂₀H₁₅N: berechnet: 269.1204, gefunden: 269.1202.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³⁰

Darstellung von 2-Cyclohex-1-enyl-1*H*-indol (9e)

Nach AAV 1 werden 2-Chloranilin (**4a**) (130 mg, 1.02 mmol), 1-Ethinylcyclohex-1-en (**108c**) (159 mg, 1.50 mmol), [Ru₃(CO)₁₂] (19.2 mg, 0.03 mmol, 3.0 mol%), NH₄PF₆ (14.7 mg, 0.09 mmol, 9.0 mol%) in Toluol (1.0 mL) 18 h bei 105 °C und nach Zugabe von KO*t*-Bu (224 mg, 2.00 mmol), [Pd(OAc)₂] (22.5 mg, 0.10 mmol, 10.0 mol%), HIPrCl (**8a**) (42.5 mg, 0.10 mmol, 10.0 mol%) und Toluol (2.0 mL) weitere 22 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 30/1$) ergibt **9e** (98 mg, 49%) als gelben Feststoff (Schmb.: 140.5-141.3 °C, Lit.:²³¹ 141-142 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.98 (s, br, 1H), 7.46 (dd, J = 7.8, 0.6 Hz, 1H), 7.20 (dd, J = 8.1, 0.9 Hz, 1H), 7.03-6.95 (m, 2H), 6.35 (s, br, 1H), 6.08-5.97 (m, 1H), 2.39-2.35 (m, 2H), 2.17-2.14 (m, 2H), 1.72-1.58 (m, 4H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.9 (C_q), 136.9 (C_q), 129.6 (C_q), 129.4 (CH), 123.0 (C_q), 122.4 (CH), 120.8 (CH), 120.1 (CH), 110.8 (CH), 99.1 (CH), 26.5 (CH₂), 25.9 (CH₂), 23.0 (CH₂), 22.6 (CH₂).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2922 (m), 1454 (s), 1413 (m), 1261 (m), 1078 (br), 1010 (m), 786 (vs), 745 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 197 (100) [M⁺], 182 (11), 168 (31), 154 (9), 130 (14), 117 (14).

HR-MS (EI) für C₁₄H₁₅N: berechnet: 197.1204, gefunden: 197.1198.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³¹

Darstellung von 5-Methyl-2-phenyl-1H-indol (9f)

Nach AAV 1 werden 2-Chlor-4-methylanilin (4b) (142 mg, 1.00 mmol), Phenylacetylen (**108a**) (153 mg, 1.50 mmol), $[Ru_3(CO)_{12}]$ (6.4 mg, 0.01 mmol, 1.0 mol%), NH₄PF₆ (4.9 mg, 0.03 mmol, 3.0 mol%) in Toluol (1.0 mL) 18 h bei 105 °C und nach Zugabe von KO*t*-Bu (224 mg, 2.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol, 5.0 mol%), HIPrCl (**8a**) (21.3 mg, 0.05 mmol, 5.0 mol%) und Toluol (2.0 mL) weitere 24 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 30/1) ergibt **9f** (155 mg, 75%) als leicht gelblichen Feststoff (Schmb.: 214.5-215.2 °C, Lit.:²³² 213-215 °C)).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.23 (s, br, 1H), 7.68-7.62 (m, 2H), 7.49-7.40 (m, 3H), 7.36-7.27 (m, 2H), 7.04 (dd, *J* = 8.2, 1.7 Hz, 1H), 6.77 (dd, *J* = 2.2, 0.8 Hz, 1H), 2.46 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 137.9 (C_q), 135.2 (C_q), 132.5 (C_q), 129.5 (C_q), 129.4 (CH), 129.0 (CH), 127.5 (C_q), 125.0 (CH), 124.0 (CH), 120.3 (CH), 110.5 (CH), 99.6 (CH), 21.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2916 (w), 1473 (m), 1447 (s), 1315 (s), 1205 (m), 1027 (m), 877 (m), 796 (vs), 757 (vs), 739 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 207 (100) [M⁺], 204 (5), 104 (3).

HR-MS (EI) für C₁₅H₁₃N: berechnet: 207.1048, gefunden: 207.1042.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³²

Darstellung von 2-Cyclohex-1-enyl-6-(trifluormethyl)-1*H*-indol (9h)

Nach AAV 1 werden 2-Chlor-5-(trifluormethyl)anilin (**4c**) (200 mg, 1.02 mmol), 1-Ethinylcyclohex-1-en (**108c**) (159 mg, 1.50 mmol), [Ru₃(CO)₁₂] (14.7 mg, 0.03 mmol, 3.0 mol%), NH₄PF₆ (14.7 mg, 0.09 mmol, 9.0 mol%) in Toluol (1.0 mL) 19 h bei 105 °C und nach Zugabe von KO*t*-Bu (224 mg, 2.00 mmol), [Pd(OAc)₂] (22.5 mg, 0.10 mmol, 10.0 mol%), HIPrCl (**8a**) (42.5 mg, 0.10 mmol, 10.0 mol%) und Toluol (2.0 mL) weitere 22 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 30/1) ergibt **9h** (94 mg, 35%) als gelben Feststoff (Schmb.: 205.1-206.4 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.31 (s, br, 1H), 7.63-7.59 (m, 1H), 7.56 (s, 1H), 7.30 (d, *J* = 8.6 Hz, 1H), 6.49 (s, 1H), 6.23-6.19 (m, 1H), 2.50-2.43 (m, 2H), 2.30-2.22 (m, 2H), 1.84-1.77 (m, 2H), 1.75-1.66 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 142.4 (C_q), 135.2 (C_q), 131.5 (C_q), 129.0 (C_q), 125.5 (d, *J* = 272.5 Hz, C_q), 124.7 (CH), 123.9 (q, *J* = 31.8 Hz, CH), 120.8 (CH), 116.7 (q, *J* = 3.5 Hz, C_q), 108.0 (q, *J* = 4.5 Hz, CH), 99.0 (CH), 26.2 (CH₂), 25.8 (CH₂), 22.7 (CH₂), 22.3 (CH₂).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -60.92$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2935 (w), 1617 (w), 1462 (m), 1334 (s), 1315 (s), 1156 (vs), 1089 (vs), 1052 (vs), 823 (vs), 660 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 265 (100) [M⁺], 250 (12), 236 (23), 198 (15), 185 (12), 168 (6), 122 (4).

HR-MS (EI) für C₁₅H₁₄F₃N: berechnet: 265.1078, gefunden: 265.1062.

Darstellung von 5-Chlor-2-phenyl-1*H*-indol (9i)

Nach AAV 1 werden 2-Brom-4-chloranilin (**112b**) (207 mg, 1.02 mmol), Phenylacetylen (**108a**) (165 mg, 1.62 mmol), $[Ru_3(CO)_{12}]$ (6.4 mg, 0.01 mmol, 1.0 mol%), NH₄PF₆ (4.9 mg, 0.03 mmol, 3.0 mol%) in Toluol (1.0 mL) 18 h bei 105 °C und nach Zugabe von KO*t*-Bu (224 mg, 2.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol, 5.0 mol%), HIPrCl (**8a**) (21.3 mg, 0.05 mmol, 5.0 mol%) und Toluol (2.0 mL) weitere 23 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 15/1 \rightarrow 10/1) ergibt **9i** (202 mg, 87%) als orangefarbenen Feststoff (Schmb.: 195.8-196.4 °C, Lit.:²³² 193-195 °C).

¹**H-NMR** (600 MHz, CDCl₃): δ = 8.25 (s, br, 1H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.50 (s, 1H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.23-7.19 (m, 1H), 7.06 (dd, *J* = 8.2, 1.8 Hz, 1H), 6.67 (s, 1H).

¹³**C-NMR** (150 MHz, CDCl₃): δ = 139.5 (C_q), 135.4 (C_q), 132.1 (C_q), 130.5 (C_q), 129.3 (CH), 128.3 (CH), 126.1 (C_q), 125.5 (CH), 122.7 (CH), 120.2 (CH), 112.1 (CH), 99.8 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3062 (s), 1734 (m), 1574 (m), 1453 (vs), 1310 (m), 1180 (m), 1063 (s), 820 (m), 757 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 227 (100) [M⁺], 192 (11), 165 (12, 114 (5).

HR-MS (EI) für C₁₄H₁₀ClN: berechnet: 227.0502, gefunden: 227.0492.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³²

Darstellung von N-Benzyl-N-(2,2-diphenylpent-4-enyl)amin (125a)

In einem Schlenkkolben werden 2,2-Diphenylpent-4-enylamin (**124a**) (7.121 g, 30.01 mmol) und Benzaldehyd (3.342 g, 31.60 mmol) in MeOH (70 mL) gelöst und 4 h bei Umgebungstemperatur gerührt. Anschließend wird sukzessive NaBH₄ (1.702 g, 45.0 mmol) zugegeben und 16 h bei Umgebungstemperatur gerührt. Die Reaktionsmischung wird in H₂O

(100 mL) und Natronlauge (1.0 M, 50 mL) aufgenommen und die wässrige Phase mit CH₂Cl₂ (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 7/1) gereinigt und am ÖPV getrocknet. Verbindung **125a** (8.645 g, 88%) wird als farbloser Feststoff (Schmb.: 47.4-48.8 °C, Lit.:²¹ 46-48 °C) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.48-7.15 (m, 15H), 5.35 (ddt, *J* =17.1, 9.6, 7.2 Hz, 1H), 4.98 (md, *J* = 17.1 Hz, 1H), 4.90 (md, *J* = 9.6 Hz, 1H), 3.72 (s, 2H), 3.20 (s, 2H), 3.04 (d, *J* = 7.2 Hz, 2H), 0.86 (s, br, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 148.6$ (C_q), 140.7 (C_q), 134.9 (CH), 128.2 (CH), 128.1 (CH), 127.9 (CH), 127.9 (CH), 126.7 (CH), 125.9 (CH), 117.6 (CH₂), 55.3 (CH₂), 54.2 (CH₂), 50.2 (C_q), 41.6 (CH₂).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3300 (w), 3056 (w), 2899 (w), 2817 (m), 1492 (w), 1443 (m), 1436 (m), 1104 (w), 1027 (w), 914 (m), 746 (m), 695 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 327 (2) [M⁺], 165 (5), 120 (100), 91 (88).

HR-MS (EI) für C₂₄H₂₅N: berechnet: 327.1987, gefunden: 327.1989.

Die analytischen Daten sind im Einklang mit den publizierten Werten.²¹

Darstellung von N-n-Octyl-N-(2,2-diphenylpent-4-enyl)amin (125b)

In einem Schlenkkolben werden 2,2-Diphenylpent-4-enylamin (**124a**) (1.097 g, 4.62 mmol) und *n*-Octanal (0.622 g, 4.85 mmol) in MeOH (20 mL) gelöst und 4 h bei Umgebungstemperatur gerührt. Anschließend wird sukzessive NaBH₄ (0.265 g, 7.00 mmol) zugegeben und 14 h bei Umgebungstemperatur gerührt. Die Reaktionsmischung wird in H₂O (50 mL) und Natronlauge (1.0 M, 10 mL) aufgenommen und die wässrige Phase mit CH₂Cl₂ (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 20/1) gereinigt und im ÖPV getrocknet. Verbindung **125b** (0.855 g,

53%) wird als farbloses Öl erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.30-7.21 (m, 5H), 7.18-7.12 (m, 5H), 5.36 (ddt, *J* = 17.1, 9.6, 7.3 Hz, 1H), 5.05-4.88 (m, 2H), 3.17 (s, 2H), 2.99 (d, *J* = 7.1 Hz, 2H), 2.49 (t, *J* = 7.0 Hz, 2H), 1.41-1.04 (m, 13H), 0.86 (m, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 146.9 (C_q), 135.0 (C_q), 128.1 (CH), 127.9 (CH), 125.9 (CH), 117.5 (CH₂), 56.0 (CH₂), 50.4 (CH₂), 50.1 (CH₂), 41.7 (CH), 31.8 (CH₂), 29.8 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 27.2 (CH₂), 22.6 (CH₃), 14.0 (CH₂).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3320 (w), 3066 (w), 2899 (w), 2803 (m), 1456 (w), 1443 (m), 1406 (m), 1104 (w), 1027 (w), 924 (m), 766 (m), 697 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 349 (2) [M⁺], 334 (2), 250 (4), 178 (13), 165 (15), 142 (100), 128 (11).

HR-MS (EI) für C₂₅H₃₅N: berechnet: 349.2770, gefunden: 349.2764.

Darstellung von N-4-(4-Methoxyphenyl)-N-(2,2-diphenylpent-4-enyl)amin (125c)

In einem Schlenkkolben wird 2,2-Diphenylpent-4-enylamin (**124a**) (855 mg, 3.60 mmol) in Toluol (6.0 mL) gelöst, mit [Pd(dba)₂] (17.3 mg, 0.03 mmol), PCy₃ (**12h**) (16.8 mg, 0.06 mmol), KO*t*-Bu (505 mg, 4.50 mmol) und 4-Bromanisol (**61c**) (561 mg, 3.00 mmol) versetzt und für 12 h bei 80 °C erhitzt. Die abgekühlte Reaktionsmischung wird mit H₂O (30 ml) und Et₂O (50 mL) versetzt und die separierte wässrige Phase mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel im Vakuum entfernt. Das erhaltene Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 200/1 \rightarrow 20/1) gereinigt und am ÖPV getrocknet. Verbindung **125c** (350 mg, 27%) wird als farbloses viskoses Öl erhalten. ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.43-7.17$ (m, 10H), 6.76 (d, J = 9.7 Hz, 2H), 6.54 (d, J = 9.7 Hz, 2H), 5.50-5.32 (m, 1H), 5.10-4.94 (m, 2H), 3.73 (s, 3H), 3.70 (s, 2H), 3.05 (d, J = 6.7 Hz, 2H), 2.89 (s, br, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 152.1 (C_q), 145.8 (C_q), 142.6 (C_q), 134.2 (CH), 128.2 (CH), 128.0 (CH), 126.3 (CH), 118.3 (C_q), 114.7 (CH), 114.6 (CH), 55.7 (CH₃), 51.4 (CH₂), 49.9 (CH₂), 42.0 (CH₂).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3350 (w), 3058 (w), 2898 (w), 1611 (w), 1540 (vs), 1466 (m), 1248 (s), 1178 (s), 1034 (m), 914 (w), 759 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 343 (2) [M⁺], 162 (45), 134 (100), 91 (6).

HR-MS (EI) für C₂₄H₂₅NO: berechnet: 343.1936, gefunden: 343.1941.

Darstellung von N-1-Benzyl-2-methyl-4,4-diphenylpyrrolidin (132a)

Nach AAV 2 werden *N*-Benzyl-(2,2-diphenylpent-4-enyl)amin (**125a**) (164 mg, 0.50 mmol) und **134h** (43.3 mg, 0.05 mmol) in TCE (2.0 mL) umgesetzt und 23 h bei 130 °C gerührt. Das Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 30/1) gereinigt. Verbindung **132a** (159 mg, 97%) wird als farbloser Feststoff (Schmb.: 70.6-72.2 °C, Lit.:²¹ 71-72 °C) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.42-7.37 (m, 15H), 4.12 (d, *J* = 13.3 Hz, 1H), 3.70 (d, *J* = 10.0 Hz, 1H), 3.30 (d, *J* = 13.3 Hz, 1H), 2.99-2.83 (m, 3H), 2.25 (dd, *J* = 12.2, 7.2 Hz, 1H), 1.21 (d, *J* = 6.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 150.5 (C_q), 148.6 (C_q), 139.9 (C_q), 128.6 (CH), 128.2 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 127.2 (CH), 126.8 (CH), 125.8 (CH), 125.4 (CH), 66.4 (CH₂), 59.7 (CH), 58.0 (CH₂), 52.5 (C_q), 47.9 (CH₂), 19.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3061 (m), 3029 (m), 2960 (s), 2924 (s), 2788 (vs), 1491 (m), 1445 (m), 1373 (w), 730 (w), 695 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 327 (18) [M⁺], 312 (75), 147 (100), 91 (64), 56 (98).

HR-MS (EI) für C₂₄H₂₅N: berechnet: 327.1987, gefunden: 327.2002.

Die analytischen Daten sind im Einklang mit den publizierten Werten.²¹

Darstellung von N-1-(4-Methoxybenzyl)-2-methyl-4,4-diphenylpyrrolidin (132b)

Nach AAV 2 werden *N*-1-(4-Methoxybenzyl)-*N*-(2,2-diphenylpent-4-enyl)amin (**125b**) (179 mg, 0.50 mmol) und **134h** (43.3 mg, 0.05 mmol) in TCE (2.0 mL) umgesetzt und 23 h bei 130 °C gerührt. Das Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 15/1) gereinigt. Verbindung **132b** (172 mg, 96%) wird als farbloser Feststoff (Schmb.: 84.9-85.4 °C) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.32-7.18 (m, 11H), 7.15-7.12 (m, 1H), 6.91-6.88 (m, 2H), 4.05 (d, *J* = 13.2 Hz, 1H), 3.84 (s, 3H), 3.66 (d, *J* = 9.7 Hz, 1H), 3.23 (d, *J* = 13.7 Hz, 1H), 2.94 (dd, *J* = 12.8, 7.9 Hz, 1H), 2.85-2.79 (m, 2H), 2.23 (dd, *J* = 13.2, 7.9 Hz, 1H), 1.19 (d, *J* = 6.2 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.5 (C_q), 151.5 (C_q), 150.6 (C_q), 132.1 (C_q), 129.7 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 127.2 (CH), 125.8 (CH), 125.4 (CH), 113.6 (CH), 66.3 (CH₂), 59.5 (CH), 57.3 (CH₂), 55.2 (CH₃), 52.5 (C_q), 48.0 (CH₂), 19.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2962 (s), 2798 (s), 1521 (vs), 1498 (m), 1443 (s), 1231 (vs), 1041 (m), 816 (s), 770 (m), 701 (vs).

MS (70 eV, EI) m/z (relative Intensität): 357 (17) [M⁺], 342 (35), 176 (59), 120 (100), 56 (52).

HR-MS (EI) für C₂₅H₂₇NO: berechnet: 357.2093, gefunden: 357.2097.

Darstellung von 2-Methyl-1-N-(4-nitrobenzyl)-4,4-diphenylpyrrolidin (132c)

Nach AAV 2 werden *N*-(4-Nitrobenzyl)-*N*-(2,2-diphenylpent-4-enyl)amin (**125c**) (186 mg, 0.50 mmol) und **134h** (43.3 mg, 0.05 mmol) in TCE (2.0 mL) umgesetzt und 23 h bei 130 °C gerührt. Das Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 10/1) gereinigt. Verbindung **132c** (181 mg, 97%) wird als orangefarbener Feststoff (Schmb.: 127.3-128.5 °C, Lit.:²¹ 126-127 °C) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.18-8.17 (m, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.29-7.14 (m, 10H), 4.12 (d, J = 14.1 Hz, 1H), 3.61 (d, J = 9.7 Hz, 1H), 3.43 (d, J = 14.1 Hz, 1H), 2.95-2.90 (m, 2H), 2.86 (d, J = 9.7 Hz, 1H) , 2.31-2.27 (m, 1H), 1.19 (d, J = 5.7 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 150.0 (C_q), 148.3 (C_q), 148.2 (C_q), 147.0 (C_q), 129.0 (CH), 128.2 (CH), 127.9 (CH), 127.3 (CH), 127.0 (CH), 126.0 (CH), 125.6 (CH), 123.5 (CH), 66.4 (CH₂), 59.7 (CH), 57.3 (CH₂), 52.7 (C_q), 47.6 (CH₂), 19.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2964 (m), 2793 (m), 1598 (w), 1514 (s), 1490 (m), 1342 (vs), 844 (w), 763 (w), 737 (w), 702 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 372 (16) [M⁺], 357 (70), 192 (100), 177 (7), 115 (7), 91 (5), 56 (84).

HR-MS (EI) für C₂₄H₂₄N₂O₂: berechnet: 372.1838, gefunden: 372.1818.

Die analytischen Daten sind im Einklang mit den publizierten Werten.²¹

Darstellung von *N*-1-(4-Methoxycarbonylbenzyl)-2-methyl-4,4-diphenylpyrrolidin (132d)

Nach AAV 2 werden *N*-(4-Methoxycarbonylbenzyl)-*N*-(2,2-diphenylpent-4-enyl)amin (**125d**) (193 mg, 0.50 mmol) und **134h** (43.3 mg, 0.05 mmol) in TCE (2.0 mL) umgesetzt und 23 h bei 130 °C gerührt. Das Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 30/1) gereinigt. Verbindung **132d** (183 mg, 95%) wird als orangefarbener Feststoff (Schmb.: 67.1-68.4 °C, Lit.:²¹ 66-68 °C) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.74$ (d, J = 8.4 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 7.25-7.08 (m, 10H), 4.08 (d, J = 13.7 Hz, 1H), 3.89 (s, 3H), 3.59 (d, J = 9.7 Hz, 1H), 3.31 (d, J = 13.7 Hz, 1H), 2.90 (dd, J = 12.8, 7.5 Hz, 1H), 2.86-2.81 (m, 1H), 2.77 (d, J = 9.7 Hz, 1H), 2.22 (dd, J = 12.8, 7.5 Hz, 1H), 1.15 (d, J = 6.2 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 166.9 (C_q), 150.1 (C_q), 148.3 (C_q), 145.5 (C_q), 129.4 (CH), 128.5 (C_q), 128.2 (CH), 127.9 (CH), 127.6 (CH), 127.1 (CH), 126.9 (CH), 125.6 (CH), 125.3 (CH), 66.2 (CH₂), 59.5 (CH), 57.5 (CH₂), 52.4 (C_q), 51.8 (CH₃), 47.6 (CH₂), 19.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2932 (w), 2895 (w), 1719 (vs), 1435 (w), 1275 (s), 1108 (m), 757 (m), 699 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 385 (15) [M⁺], 350 (67), 205 (100), 149 (18), 121 (6), 91 (5), 56 (80).

HR-MS (EI) für C₂₆H₂₇NO₂: berechnet: 385.2042, gefunden: 385.2057.

Die analytischen Daten sind im Einklang mit den publizierten Werten.²¹

Darstellung von N-1-(4-Chlorbenzyl)-2-methyl-4,4-diphenylpyrrolidin (132e)

Nach AAV 2 werden *N*-(4-Chlorbenzyl)-*N*-(2,2-diphenylpent-4-enyl)amin (**125e**) (181 mg, 0.5 mmol) und **134h** (43.3 mg, 0.05 mmol) in TCE (2.0 mL) umgesetzt und 23 h bei 130 °C gerührt. Das Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 30/1) gereinigt. Verbindung **132e** (174 mg, 96%) wird als farbloser Feststoff (Schmb.: 96.2-97.4 °C) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.39-7.14 (m, 14H), 4.06 (d, *J* = 13.3 Hz, 1H), 3.65 (d, *J* = 9.7 Hz, 1H), 3.27 (d, *J* = 13.2 Hz, 1H), 2.99-2.86 (m, 2H), 2.81 (d, *J* = 9.7 Hz, 1H), 2.26 (dd, *J* = 12.2, 7.1 Hz, 1H), 1.19 (d, *J* = 6.2 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 150.3 (C_q), 148.5 (C_q), 138.6 (C_q), 132.4 (C_q), 129.8 (CH), 128.3 (CH), 128.1 (CH), 127.8 (CH), 127.3 (CH), 127.1 (CH), 125.8 (CH), 125.5 (CH), 66.3 (CH₂), 59.6 (CH), 57.2 (CH₂), 52.5 (C_q), 47.8 (CH₂), 19.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3062 (w), 2962 (s), 2798 (s), 1489 (vs), 1444 (m), 1373 (m), 1013 (m), 802 (m), 763 (m), 700 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 361 (12) [M⁺], 346 (53), 181 (84), 125 (43), 56 (100).

HR-MS (EI) für C₂₄H₂₄ClN: berechnet: 361.1597, gefunden: 361.1581.

Darstellung von 1-N-n-Octyl-2-methyl-4,4-diphenylpyrrolidin (132i)

Nach AAV 2 werden *N-n*-Octyl-(2,2-diphenylpent-4-enyl)amin (**125i**) (175 mg, 0.50 mmol) und **134h** (43.3 mg, 0.05 mmol) in TCE (2.0 mL) umgesetzt und 23 h bei 130 °C gerührt. Das Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = 30/1) gereinigt. Verbindung **132i** (162 mg, 93%) wird als gelbliches Öl erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.37-7.08 (m, 10H), 3.90 (d, *J* = 10.6 Hz, 1H), 2.92-2.72 (m, 3H), 2.69-2.57 (m, 1H), 2.19-2.06 (m, 2H), 1.63-1.48 (m, 2H), 1.39-1.21 (m, 10H), 1.10 (d, *J* = 5.7 Hz, 3H), 0.91 (t, *J* = 6.7 Hz, 3H).

¹³C-NMR (75 MHz, CDCl₃): δ = 150.9 (C_q), 148.9 (C_q), 128.1 (CH), 127.9 (CH), 127.4 (CH), 127.2 (CH), 125.7 (CH), 125.4 (CH), 66.8 (C_q), 60.3 (CH), 54.1 (CH₂), 52.5 (CH₂), 48.0 (CH₂), 31.9 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 28.9 (CH₂), 27.7 (CH₂), 22.6 (CH₂), 19.4 (CH₃), 14.2 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3412 (w), 3068 (w), 2951 (m), 2800 (m), 1649 (w), 1495 (w), 1462 (m), 1118 (w), 992 (w), 733 (s), 696 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 349 (32) [M⁺], 250 (100), 193 (7), 178 (15), 165 (13), 154 (92).

HR-MS (EI) für C₂₅H₃₅N: berechnet: 349.2770, gefunden: 349.2768.

Darstellung von 1-N-(4-Methoxyphenyl)-2-methyl-4,4-diphenylpyrrolidin (132k)

Nach AAV 2 werden *N*-4-(4-Methoxyphenyl)-*N*-(2,2-diphenylpent-4-enyl)amin (**125k**) (172 mg, 0.50 mmol) und **134h** (43.3 mg, 0.05 mmol) in TCE (2.0 mL) umgesetzt und 23 h bei 130 °C gerührt. Das Rohprodukt wird säulenchromatographisch an Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 30/1$) gereinigt. Verbindung **132k** (163 mg, 95%) wird als gelbliches Öl erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.36-7.01 (m, 10H), 6.88 (md, *J* = 7.8 Hz, 2H), 6.69-6.61 (m, 2H), 4.08-3.96 (m, 2H), 3.81 (s, 3H), 3.74-3.63 (m, 1H), 2.81-2.70 (m, 1H), 2.56-2.43 (m, 1H), 1.18 (d, *J* = 5.4 Hz, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 151.0 (C_q), 147.2 (C_q), 146.6 (C_q), 141.8 (C_q), 135.6 (CH), 128.3 (CH), 128.2 (CH), 127.3 (CH), 126.3 (C_q), 114.8 (CH), 113.8 (CH), 61.2 (CH), 55.8 (CH), 52.9 (CH₂), 52.3 (CH₃), 46.9 (CH₂), 19.6 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3028 (w), 2968 (m), 2949 (w), 2783 (w), 1610 (w), 1501 (vs), 1454 (w), 1243 (s), 1177 (m), 1035 (m), 838 (m), 734 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 343 (26) [M⁺], 328 (100), 174 (35), 115 (3). **HR-MS** (EI) für C₂₄H₂₅NO: berechnet: 343.1936, gefunden: 343.1937.

Darstellung von 3-(4-Methoxyphenyl)pyridin (26i) mit 3-Chlorpyridin (27e)

Nach AAV 3 wird 3-Chlorpyridin (**27e**) (117 mg, 1.03 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), $[Pd(OAc)_2]$ (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 4 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 10/1 \rightarrow 1/1) ergibt **26i** (187 mg, 98%) als schwach gelben Feststoff (Schmb.: 61.5-62.4 °C, Lit.:²³³ 62-63 °C).

Darstellung von 3-(4-Methoxyphenyl)pyridin (111u) mit 3-Pyridintosylat (32v)

Nach AAV 5 wird 3-Pyridintosylat (**32v**) (250 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $10/1 \rightarrow 1/1$) ergibt **111u** (182 mg, 98%) als schwach gelben Feststoff.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.81 (dd, J = 2.4, 0.8 Hz, 1H), 8.56 (dd, J = 4.8, 1.6 Hz, 1H), 7.85 (ddd, J = 7.9, 2.4, 1.7 Hz, 1H), 7.53 (md, J = 8.8 Hz, 2H), 7.35 (ddd, J = 7.8, 4.7, 0.9 Hz, 1H), 7.04 (md, J = 8.9 Hz, 2H), 3.86 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.7 (C_q), 148.0 (C_q), 147.9 (C_q), 136.2 (CH), 133.8 (CH), 130.3 (CH), 128.2 (CH), 123.4 (CH), 114.5 (CH), 55.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2927 (s), 2841 (m), 1520 (s), 1478 (s), 1284 (vs), 1254 (vs), 1183 (s), 1030 (s), 803 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 185 (100) [M⁺], 170 (38), 155 (2), 153 (5), 141 (17), 115 (4), 89 (2), 63 (2).

HR-MS (EI) für C₁₂H₁₁NO: berechnet: 185.0841, gefunden: 185.0837.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³³

Darstellung von 3-Phenylpyridin (26q)

Nach AAV 3 wird 3-Chlorpyridin (**27e**) (114 mg, 1.00 mmol) mit Phenylmagnesiumchlorid (**20d**) (0.85 mL, 1.50 mmol), [Pd(OAc)₂] (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 4 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt **26q** (147 mg, 95%) als gelbliches Öl.

Darstellung von 3-Phenylpyridin (26q) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 3-Chlorpyridin (**27e**) (107 mg, 0.94 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und KO*t*-Bu (337 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 18 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 10/1 \rightarrow 3/1) ergibt **26q** (128 mg, 88%) als gelbliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.85 (dd, J = 2.4, 0.7 Hz, 1H), 8.59 (dd, J = 4.8, 1.6 Hz, 1H), 7.87 (ddd, J = 7.9, 2.3, 1.7 Hz, 1H), 7.60–7.56 (m, 2H), 7.51–7.33 (m, 4H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 148.4 (CH), 148.3 (CH), 137.8 (C_q), 136.6 (C_q), 134.3 (CH), 129.0 (CH), 128.0 (CH), 127.1 (CH), 123.5 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3400 (w), 3055 (m), 1528 (m), 1473 (s), 1450 (s), 1407 (vs), 1277 (w), 1076 (m), 1024 (s), 1006 (s), 913 (w).

MS (70 eV, EI) m/z (relative Intensität): 155 (100) [M⁺], 127 (7), 102 (5), 77 (3). **HR-MS** (EI) für C₁₁H₉N: berechnet: 155.0735, gefunden: 155.0739. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³⁴

Darstellung von 3-(2-Methylphenyl)pyridin (26r)

Nach AAV 3 wird 3-Chlorpyridin (**27e**) (114 mg, 1.00 mmol) mit 2-Tolylmagnesiumchlorid (**20c**) (1.50 mL, 1.50 mmol), [Pd(OAc)₂] (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 21 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 2/1$) ergibt **26r** (160 mg, 95%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.62-8.56 (m, 2H), 7.66 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.39-7.18 (m, 5H), 2.28 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.8 (CH), 148.0 (CH), 138.0 (C_q), 137.5 (C_q), 136.5 (CH), 135.5 (C_q), 130.5 (CH), 129.8 (CH), 128.1 (CH), 126.0 (CH), 123.0 (CH), 20.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3401 (w), 3023 (w), 1471 (s), 1407 (s), 1277 (w), 1104 (w), 1027 (m), 1002 (s), 815 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 169 (100) [M⁺], 141 (10), 115 (11), 84 (5).

HR-MS (EI) für C₁₂H₁₁N: berechnet: 169.0891, gefunden: 169.0893.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³⁵

Darstellung von 2-Phenylpyridin (26s) mit 2-Chlorpyridin (27n)

Nach AAV 3 wird 2-Chlorpyridin (**27n**) (114 mg, 1.00 mmol) mit Phenylmagnesiumchlorid (**20d**) (0.85 mL, 1.50 mmol), [Pd(OAc)₂] (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 6 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $30/1 \rightarrow 10/1$) ergibt **26s** (154 mg, 99%) als farbloses Öl.

Darstellung von 2-Phenylpyridin (81b) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 2-Chlorpyridin (**27n**) (115 mg, 1.01 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 30/1 \rightarrow 10/1) ergibt **81b** (135 mg, 86%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): *δ* = 8.69-8.67 (m, 1H), 7.99-7.95 (m, 2H), 7.76-7.69 (m, 2H), 7.49-7.37 (m, 3H), 7.24-7.19 (m, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.5 (C_q), 149.6 (CH), 139.3 (C_q), 136.7 (CH), 128.9 (CH), 128.7 (CH), 126.9 (CH), 122.1 (CH), 120.6 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3064 (m), 3008 (w), 1587 (m), 1469 (vs), 1450 (vs), 1425 (s), 746 (s), 698 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 155 (100) [M⁺], 127 (21), 115 (8), 102 (19).

HR-MS (EI) für C₁₁H₉N: berechnet: 155.0735, gefunden: 155.0713.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³⁶

Darstellung von 4-Methoxy-4`-methylbiphenyl (26c) mit 4-Chlortoluol (27k)

Nach AAV 3 wird 4-Chlortoluol (**27k**) (127 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), $[Pd(OAc)_2]$ (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 23 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 100/1 \rightarrow 50/1) ergibt **39b** (129 mg, 65%) als farblosen Feststoff (Schmb.: 107.8-108.4 °C, Lit.:²³³ 109 °C).

Darstellung von 4-Methoxy-4`-methylbiphenyl (111k) mit 4-Methylphenyltosylat (32f)

Nach AAV 5 wird 4-Methylphenyltosylat (32f) (263 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (20e) (3.00 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C

umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/0 \rightarrow 200/1$) ergibt **111k** (186 mg, 94%) als farblosen Feststoff.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.54-7.50$ (md, J = 8.8 Hz, 2H), 7.48-7.44 (md, J = 8.0 Hz, 2H), 7.22 (d, J = 7.7 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 2.39 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 158.9$ (C_q), 137.9 (C_q), 136.3 (C_q), 133.7 (C_q), 129.4 (CH), 127.9 (CH), 126.6 (CH), 114.1 (CH), 55.3 (CH₃), 21.0 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 2958 (w), 2915 (w), 1608 (m), 1501 (vs), 1289 (m), 1251 (s), 1182 (m), 1039 (m), 809 (vs). **MS** (70 eV, EI) *m/z* (relative Intensität): 198 (100) [M⁺], 183 (45), 155 (23), 99 (3). **HR-MS** (EI) für C₁₄H₁₄O: berechnet: 198.1045, gefunden: 198.1051.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³³

Darstellung von 4-Methoxybiphenyl (26d) mit 4-Chloranisol (27a)

Nach AAV 3 wird 4-Chloranisol (**27a**) (143 mg, 1.00 mmol) mit Phenylmagnesiumchlorid (**20d**) (0.85 mL, 1.50 mmol), [Pd(OAc)₂] (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 23 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/0 \rightarrow 200/1$) ergibt **26d** (153 mg, 83%) als farblosen Feststoff (Schmb.: 85.1-86.1 °C, Lit.:²³⁷ 86.0-87.5 °C).

Darstellung von 4-Methoxybiphenyl (111j) mit Phenyltosylat (32b)

Nach AAV 5 wird Phenyltosylat (**32b**) (248 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumchlorid (**20e**) (3.00 mL, 1.50 mmol), $[Pd(dba)_2]$ (2.9 mg, 0.005 mmol) und **110a** (1.6 mg, 0.010 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111j** (172 mg, 93%) als farblosen Feststoff.

Darstellung von 4-Methoxybiphenyl (111j) mit 4-Methoxyphenyltosylat (32c)

Nach AAV 5 wird 4-Methoxyphenyltosylat (**32c**) (278 mg, 1.00 mmol) mit Phenylmagnesiumchlorid (**20d**) (1.0 mL, 1.50 mmol), $[Pd(dba)_2]$ (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111j** (173 mg, 93%) als farblosen Feststoff.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.58-7.53 (m, 4H), 7.45 (t, *J* = 7.3 Hz, 2H), 7.34 (tt, *J* = 7.3 Hz, 1H), 7.00 (md, *J* = 8.9 Hz, 2H), 3.86 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.1 (C_q), 140.8 (C_q), 133.8 (C_q), 128.7 (CH), 128.1 (CH), 126.7 (CH), 126.6 (CH), 114.2 (CH), 55.3 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3066 (m), 3034 (m), 2962 (m), 1608 (s), 1532 (m), 1489 (vs), 1289 (m), 1252 (vs), 1202 (m), 1036 (vs), 834 (vs), 762 (vs). **MS** (70 eV, EI) *m/z* (relative Intensität): 184 (100) [M⁺], 169 (34), 141 (22), 115 (10), 89 (1), 76 (3), 63 (2).

HR-MS (EI) für $C_{13}H_{12}O$: berechnet: 184.0888, gefunden: 184.0885.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³⁷

Darstellung von 4-Methoxy-3`-methylbiphenyl (26f)

Nach AAV 3 wird 3-Chlortoluol (**270**) (127 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumchlorid (**20e**) (3.00 mL, 1.50 mmol), $[Pd(OAc)_2]$ (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 23 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 1/0→50/1) ergibt **26f** (144 mg, 73%) als farblosen Feststoff (Schmb.: 48.1-49.5 °C, Lit.:²³⁸ 49-51 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.55$ (md, J = 8.8 Hz, 2H), 7.34-7.29 (m, 3H), 7.15 (d, J = 7.1 Hz, 1H), 7.01 (md, J = 8.8 Hz, 2H), 3.86 (s, 3H), 2.42 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.1 (C_q), 140.8 (C_q), 138.3 (C_q), 133.9 (C_q), 129.4 (CH), 128.6 (CH), 128.1 (CH), 127.5 (CH), 123.8 (CH), 114.1 (CH), 55.3 (CH₃), 41.7 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3033 (w), 2956 (m), 1607 (s), 1517 (s), 1486 (m), 1252 (vs), 1030 (m), 838 (s), 787 (vs). **MS** (70 eV, EI) *m/z* (relative Intensität): 198 (100) [M⁺], 183 (42), 155 (22), 115 (4), 77 (1).

HR-MS (EI) für $C_{14}H_{14}O$: berechnet: 198.1045, gefunden: 198.1044.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³⁸

Darstellung von 3,5-Dimethoxybiphenyl (26u) mit 3,5-Dimethoxychlorbenzol (27p)

MeO MeO

Nach AAV 3 wird 3,5-Dimethoxychlorbenzol (**27p**) (173 mg, 1.01 mmol) mit Phenylmagnesiumchlorid (**20d**) (0.85 mL, 1.50 mmol), $[Pd(OAc)_2]$ (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 23 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1 \rightarrow 50/1) ergibt **26u** (204 mg, 95%) als farblose Flüssigkeit.

Darstellung von 3,5-Dimethoxybiphenyl (111p) mit 3,5-Dimethoxyphenyltosylat (32d)

Nach AAV 5 wird 3,5-Dimethoxyphenyltosylat (**32d**) (309 mg, 1.00 mmol) mit Phenylmagnesiumchlorid (**20d**) (1.00 mL, 1.50 mmol), $[Pd(dba)_2]$ (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1 \rightarrow 100/1) ergibt **111p** (205 mg, 95%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.58-7.62 (m, 5H), 7.34-7.47 (m, 2H), 6.76 (m, 1H), 3.86 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.0 (C_q), 143.5 (C_q), 141.2 (C_q), 128.7 (CH), 127.5 (CH), 127.2 (CH), 105.5 (CH), 99.3 (CH), 55.4 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3059 (w), 2937 (w), 2837 (m), 1591 (vs), 1574 (s), 1499 (m), 1415 (m), 1202 (s), 1150 (vs), 1063 (m), 914 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 214 (100) [M⁺], 185 (21), 170 (8), 155 (4), 141 (8), 128 (13), 115 (5).

HR-MS (EI) für $C_{14}H_{14}O_2$: berechnet: 214.0994, gefunden: 214.0973. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²³⁹

Darstellung von 3,5-Dimethoxy-4`-methylbiphenyl (26v)

MeO MeO

Nach AAV 3 wird 3,5-Dimethoxychlorbenzol (**27p**) (173 mg, 1.00 mmol) mit 4-Tolylmagnesiumchlorid (**20b**) (1.50 mL, 1.50 mmol), $[Pd(OAc)_2]$ (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 18 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1 \rightarrow 100/1) ergibt **26v** (197 mg, 86%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.50 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 6.75 (d, *J* = 2.2 Hz, 2H), 6.48 (t, *J* = 2.2 Hz, 1H), 3.86 (s, 6H), 2.41 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.0 (C_q), 143.4 (C_q), 138.3 (C_q), 137.3 (C_q), 129.4 (CH), 127.0 (CH), 105.3 (CH), 99.0 (CH), 55.4 (CH₃), 21.1 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 2997 (w), 2836 (w), 1591 (vs), 1568 (m), 1454 (m), 1312 (s), 1202 (m), 1150 (vs), 1063 (m), 992 (w), 807 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 228 (100) [M⁺], 199 (17), 184 (8), 141 (6), 115 (2). **HR-MS** (EI) für C₁₅H₁₆O₂: berechnet: 228.1150, gefunden: 228.1150. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁰

Darstellung von 4-Methoxy-2`-methylbiphenyl (26f) mit 2-Chlortoluol (27q)

Nach AAV 3 wird 2-Chlortoluol (27q) (128 mg, 1.02 mmol) mit 4-Methoxyphenylmagnesiumchlorid (20e) (3.00 mL, 1.50 mmol), [Pd(OAc)₂] (4.5 mg, 0.02 mmol) und **39b** (20.5 mg, 0.04 mmol) in THF (2.0 mL) 21 h bei 60 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/0 \rightarrow 100/1$) ergibt **26v** (123 mg, 61%) als farblosen Feststoff (Schmb.: 48.1-49.5 °C, Lit.:¹⁹⁵ 51.3-52.2 °C).

Darstellung von 4-Methoxy-2`-methylbiphenyl) (1111) mit 2-Methylphenyltosylat (32i)

Nach AAV 5 wird 2-Methylphenyltosylat (**32i**) (263 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), $[Pd(dba)_2]$ (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 21 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111l** (192 mg, 92%) als leicht gelbliche Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.25-7.21 (m, 6H), 6.95 (md, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 2.27 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.5 (C_q), 141.5 (C_q), 135.5 (C_q), 134.4 (C_q), 130.3 (CH), 130.2 (CH), 129.9 (CH), 126.9 (CH), 125.7 (CH), 113.5 (CH), 55.3 (CH₃), 20.5 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 2935 (w), 2043 (w), 1613 (s), 1484 (s), 1380 (vs), 1244 (s), 1107 (m),

1039 (s), 866 (m), 834 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 198 (100) [M⁺], 183 (18), 155 (14), 128 (7), 55 (2).

HR-MS (EI) für C₁₄H₁₄O: berechnet: 198.1045, gefunden: 198.1028.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁹⁵

Darstellung von Phenyltosylat (32b)

Nach AAV 4 wird Phenol (**66b**) (1.881 g, 20.00 mmol) mit **138a** (4.576 g, 24.00 mmol) und NEt₃ (4.20 g, 40.00 mL) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $30/1 \rightarrow 5/1$) ergibt **32b** (4.760 g, 96%) als farblosen Feststoff (Schmb.: 95.5-96.3 °C, Lit.:²⁴¹ 95-96 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.70 (d, J = 8.3 Hz, 2H), 7.27-7.21 (m, 5H), 6.99-6.96 (m, 2H), 2.44 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.7 (C_q), 145.5 (C_q), 132.5 (C_q), 129.8 (CH), 129.7 (CH), 128.6 (CH), 127.2 (CH), 122.5 (CH), 21.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3002 (w), 1927 (w), 1594 (m), 1450 (m), 1377 (vs), 1296 (w), 1175 (vs), 1092 (m), 1021 (m), 916 (m), 861 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 248 (44) [M⁺], 155 (86), 91 (100), 65 (18).

HR-MS (EI) für C₁₃H₁₂O₃S: berechnet: 248.0507, gefunden: 248.0503.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴¹

Darstellung von 4-Methoxyphenyltosylat (32c)

Nach AAV 4 wird 4-Methoxyphenol (66c) (2.483 g, 20.00 mmol) mit 138a (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 3/1) ergibt 32c (4.4.71 g, 80%) als farblosen Feststoff (Schmb.: 65.4-66.3 °C, Lit.:¹⁹⁵ 66-67 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.68 (md, J = 8.4 Hz, 2H), 7.30 (md, J = 8.1 Hz, 2H), 6.87 (md, J = 9.1 Hz, 2H), 6.76 (md, J = 9.1 Hz, 2H), 3.76 (s, 3H), 2.44 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.3 (C_q), 145.4 (C_q), 143.2 (C_q), 132.4 (C_q), 129.8 (CH), 128.7 (CH), 123.5 (CH), 114.6 (CH), 55.7 (CH₃), 21.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2973 (s), 1592 (m), 1500 (vs), 1457 (s), 1442 (s), 1347 (vs), 1294 (m), 1249 (vs), 1149 (s), 1026 (m), 841 (s), 680 (m), 584 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 278 (52) [M⁺], 123 (100), 91 (7), 65 (4).

HR-MS (EI) für C₁₄H₁₄O₄S: berechnet: 278.0613, gefunden: 278.0621.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁹⁵

Darstellung von 3,5-Dimethoxyphenyltosylat (32d)

Nach AAV 4 wird 3,5-Dimethoxyphenol (**66d**) (3.083 g, 20.00 mmol) mit **138a** (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt **66d** (6.102 g, 99%) als farblosen Feststoff (Schmb.: 42-43 °C, Lit.:¹⁹⁵ 43-44 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.72 (md, *J* = 8.4 Hz, 2H), 7.30 (md, *J* = 8.0 Hz, 2H), 6.31 (m, 1H), 6.13 (d, *J* = 2.3 Hz, 2H), 3.66 (s, 6H), 2.42 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.9 (C_q), 150.9 (C_q), 145.3 (C_q), 132.4 (C_q), 129.6 (CH), 128.4 (CH), 100.6 (CH), 99.2 (CH), 55.3 (CH₃), 21.5 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3105 (m), 1930 (w), 1615 (vs), 1588 (vs), 1475 (s), 1432 (s), 1379 (vs), 1298 (m), 1207 (vs), 1160 (vs), 1092 (s), 1018 (m), 965 (s), 852 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 308 (32) [M⁺], 244 (49), 216 (25), 201 (14), 155 (28), 125 (23), 91 (100), 65 (11). **HR-MS** (EI) für C₁₅H₁₆O₅S: berechnet: 308.0718, gefunden: 308.0711.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁹⁵

Darstellung von 2-Methoxyphenyltosylat (32e)

Nach AAV 4 wird 2-Methoxyphenol (66e) (2.480 g, 20.00 mmol) mit 138e (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $15/1 \rightarrow 1/1$) ergibt 32e (5.541 g, 98%) als farblosen Feststoff (Schmb.: 85.2-85.7 °C, Lit.:¹⁹⁵ 86-87 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.74 (md, *J* = 8.3 Hz, 2H), 7.29 (md, *J* = 8.0 Hz, 2H), 7.23-7.11 (m, 2H), 6.92-6.79 (m, 2H), 3.55 (s, 3H), 2.44 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 151.8 (C_q), 144.9 (C_q), 138.4 (C_q), 133.3 (C_q), 129.3 (CH), 128.6 (CH), 128.0 (CH), 124.0 (CH), 120.6 (CH), 112.7 (CH), 55.5 (CH₃), 21.6 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3095 (w), 2941 (w), 1930 (w), 1598 (s), 1500 (vs), 1456 (m), 1363 (vs), 1307 (s), 1258 (s), 1156 (vs), 1044 (s), 931 (m), 867 (s), 759 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 278 (68) [M⁺], 155 (10), 123 (100), 95 (27), 77 (12), 65 (12).

HR-MS (EI) für C₁₄H₁₄O₄S: berechnet: 278.0613, gefunden: 278.0614.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁹⁵

Darstellung von 4-Methylphenyltosylat (32f)

Nach AAV 4 wird 4-Methylphenol (**66f**) (1.081 g, 10.00 mmol) mit **138a** (2.288 g, 12.00 mmol) und NEt₃ (2.1 mL, 20.00 mmol) in CH₂Cl₂ (25 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 2/1$) ergibt **32f** (2.591 g, 99%) als farblosen Feststoff (Schmb.: 62.9-63.6 °C, Lit.:¹⁹⁵ 58-60 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.70 (md, J = 8.3 Hz, 2H), 7.31 (md, J = 8.6 Hz, 2H), 7.06 (md, J = 8.6 Hz, 2H), 6.85 (md, J = 8.6 Hz, 2H), 2.45 (s, 3H), 2.30 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 147.5 (C_q), 145.2 (C_q), 136.9 (C_q), 132.5 (C_q), 130.0 (CH), 129.7 (CH), 128.5 (CH), 122.0 (CH), 21.7 (CH₃), 20.9 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2969 (w), 1506 (s), 1377 (vs), 1199 (m), 1176 (vs), 1158 (s), 1094 (m), 865 (m), 830 (m), 789 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 263 (7), 262 (49) [M⁺], 156 (7), 155 (70), 107 (26), 92 (10), 91 (100), 79 (8), 77 (12), 65 (14).

HR-MS (EI) für C₁₄H₁₄O₃S: berechnet: 262.0664, gefunden: 262.0644.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁹⁵

Darstellung von 3-Methylphenyltosylat (32g)

Nach AAV 4 wird 3-Methylphenol (66g) (2.161 g, 20.00 mmol) mit 138a (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $20/1 \rightarrow 2/1$) ergibt 32g (4.735 g, 90%) als farblosen Feststoff (Schmb.: 50.4-51.2 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.72 (md, J = 8.3 Hz, 2H), 7.32 (md, J = 8.3 Hz, 2H), 7.14 (t, J = 7.8 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 6.86 (s, 1H), 6.73 (md, J = 7.8 Hz, 1H), 2.45 (s, 3H), 2.29 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.6 (C_q), 145.2 (C_q), 139.9 (C_q), 132.6 (C_q), 129.6 (CH), 129.2 (CH), 128.5 (CH), 127.8 (CH), 123.0 (CH), 119.1 (CH), 21.7 (CH₃), 21.2 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3088 (w), 1364 (vs), 1189 (vs), 1180 (vs), 1128 (s), 1092 (s), 932 (s), 827 (m), 816 (s), 808 (m), 787 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 262 (44) [M⁺], 198 (7), 156 (8), 155 (83), 107 (6), 92 (9), 91 (100), 79 (5), 77 (9), 65 (15).

HR-MS (EI) für C₁₄H₁₄O₃S: berechnet: 262.0664, gefunden: 262.0670.

Darstellung von 3-(Methylphenyl)benzolsulfonat (139b)

Nach AAV 4 wird 3-Methylphenol (**66g**) (2.161 g, 20.00 mmol) mit **138b** (4.239 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 5/1$) ergibt **139b** (4.320 g, 87%) als farblosen Feststoff (Schmb.: 54-55 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.64 (md, J = 8.3 Hz, 2H), 7.37 (md, J = 8.3 Hz, 2H), 7.14 (m, 2H), 7.11-7.03 (m, 1H), 6.89 (s, 1H), 6.75 (md, J = 7.8 Hz, 1H), 2.32 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 150.6 (C_q), 147.2 (C_q), 139.9 (C_q), 130.2 (CH), 129.6 (CH), 129.2 (CH), 128.5 (CH), 127.8 (CH), 123.0 (CH), 119.1 (CH), 21.2 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3088 (w), 1364 (vs), 1189 (vs), 1180 (vs), 1128 (s), 1092 (s), 932 (s), 827 (m), 816 (s), 808 (m), 787 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 248 (13) [M⁺], 183 (11), 141 (15), 140 (71), 91 (100).

HR-MS (EI) für C₁₃H₁₂O₃S: berechnet: 248.0507, gefunden: 248.0502.

Darstellung von 3-Methylphenyltriflat (139c)

Nach AAV 4 wird 3-Methylphenol (**66g**) (1.082 g, 10.00 mmol) mit **138c** (3.391 g, 12.00 mmol) und NEt₃ (2.1 mL, 20.00 mmol) in CH₂Cl₂ (25 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $25/1 \rightarrow 15/1$) ergibt **139c** (740 mg, 31%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.33-7.28 (m, 1H), 7.20-7.16 (m, 1H), 7.07-7.04 (m, 2H), 2.38 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.6 (C_q), 140.9 (C_q), 130.3 (CH), 129.1 (CH), 121.8 (CH), 118.5 (q, *J* = 320.8 Hz, C_q), 118.2 (CH), 21.3 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -72.91$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3080 (vs), 2929 (s), 2870 (s), 1946 (w), 1833 (w), 1766 (w), 1217 (vs), 931 (s), 834 (vs), 784 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 240 (100) [M⁺], 175 (45), 107 (100), 91 (41), 77 (86).

HR-MS (EI) für C₈H₇F₃O₃S: berechnet: 240.0668, gefunden: 240.0669.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴²

Darstellung von 3-(Methylphenyl)-2,4,6-(trimethylphenyl)sulfonat (139d)

Nach AAV 4 wird 3-Methylphenol (**66g**) (1.621 g, 15.00 mmol) mit **138d** (4.232 g, 18.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 20/1) ergibt **139d** (3.041 g, 70%) als farblosen Feststoff (Schmb.: 75-76 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.11-6.98 (m, 2H), 6.96 (s, 2H), 6.83 (s, 1H), 6.69 (d, *J* = 9.0 Hz, 1H), 2.54 (s, 6H), 2.30 (s, 3H), 2.26 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.3 (C_q), 143.3 (C_q), 140.4 (C_q), 139.8 (C_q), 131.7 (CH), 130.7 (C_q), 129.1 (CH), 127.7 (CH), 122.9 (CH), 118.8 (CH), 22.7 (CH₃), 21.2 (CH₃), 21.1 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2362 (w), 1607 (m), 1487 (m), 1457 (m), 1365 (s), 1190 (s), 1178 (s), 1129 (s), 928 (s), 787 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 290 (8) [M⁺], 183 (15), 119 (100), 91 (13), 77 (9). **HR-MS** (EI) für C₁₆H₁₈O₃S: berechnet: 290.0977, gefunden: 290.0984.

Darstellung von 3,5-Dimethylphenyltosylat (32h)

Nach AAV 4 wird 3,5-Dimethylphenol (**66h**) (3.651 g, 30.00 mmol) mit **138a** (6.902 g, 36.00 mmol) und NEt₃ (6.3 mL, 60.00 mmol) in CH_2Cl_2 (75 mL) 12 h bei Umgebungstemperatur umgesetzt. Umkristallisation aus EtOH ergibt **32h** (6.382 g, 77%) als farblosen Feststoff (Schmb.: 82-83 °C, Lit.:²⁴³ 84-85 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.71 (md, *J* = 8.3 Hz, 2H), 7.29 (md, *J* = 8.0 Hz, 2H), 6.84 (md, *J* = 0.6 Hz, 1H), 6.58 (md, *J* = 0.6 Hz, 2H), 2.43 (s, 3H), 2.21 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.5 (C_q), 145.1 (C_q), 139.4 (C_q), 132.7 (C_q), 129.6 (CH), 128.7 (CH), 128.5 (CH), 119.8 (CH), 21.7 (CH₃), 21.1 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3057 (br), 2923 (br), 1591 (s), 1468 (br), 1372 (s), 1266 (s), 897 (w), 739 (s), 672 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 276 (55) [M⁺], 184 (20), 155 (71), 121 (9), 91 (100).

HR-MS (EI) für C₁₅H₁₆O₃S: berechnet: 276.0820, gefunden: 276.0814.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴³

Darstellung von 2-Methylphenyltosylat (32i)

Nach AAV 4 wird 2-Methylphenol (**66i**) (2.160 g, 20.00 mmol) mit **138a** (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $20/1 \rightarrow 3/1$) ergibt **32i** (4.738 g, 90%) als farblosen Feststoff (Schmb.: 46.9-48.1 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.75 (md, J = 8.3 Hz, 2H), 7.32 (md, J = 8.6 Hz, 2H), 7.17-7.08 (m, 3H), 7.01-6.98 (m, 1H), 2.46 (s, 3H), 2.08 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 148.8 (C_q), 145.7 (C_q), 133.7 (C_q), 132.0 (C_q), 132.0 (CH), 130.2 (CH), 128.8 (CH), 127.3 (CH), 127.3 (CH), 122.7 (CH), 22.1 (CH₃), 16.7 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3098 (w), 1488 (w), 1382 (vs), 1374 (vs), 1196 (s), 1181 (s), 1156 (m), 1106 (w), 1090 (s), 874 (s), 817 (w), 803 (m), 789 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 262 (37) [M⁺], 156 (6), 155 (69), 107 (16), 92 (9), 91 (100), 79 (6), 78 (6), 77 (19), 65 (20), 51 (7).

HR-MS (EI) für C₁₄H₁₄O₃S: berechnet: 262.0664, gefunden: 262.0682.

Darstellung von 3-(N,N-Dimethylamino)phenyltosylat (32j)

Nach AAV 4 wird 3-(*N*,*N*-Dimethylamino)phenol (**66j**) (2.890 g, 21.07 mmol) mit **138a** (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (60 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 1/1$) ergibt **32j** (5.181 g, 84%) als violetten Feststoff (Schmb.: 77.5-78.3 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.72$ (md, J = 8.2 Hz, 2H), 7.31-7.25 (m, 2H), 7.05 (t, J = 8.2 Hz, 1H), 6.60-6.50 (m, 1H), 6.33-6.21 (m, 2H), 2.85 (s, 6H), 2.43 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 151.8 (C_q), 150.7 (C_q), 145.0 (C_q), 132.7 (C_q), 129.6 (CH), 129.5 (CH), 128.5 (CH), 110.9 (CH), 109.6 (CH), 106.3 (CH), 40.3 (CH₃), 21.6 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3087 (w), 2361 (m), 1611 (vs), 1568 (vs), 1368 (vs), 1195 (s), 1133 (s), 997 (m), 894 (m), 779 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 291 (19) [M⁺], 263 (88), 248 (11), 234 (100), 91 (76).

HR-MS (EI) für C₁₅H₁₇NO₃S: berechnet: 291.0929, gefunden: 291.0923.

Darstellung von 4-Fluorphenyltosylat (32k)

Nach AAV 4 wird 4-Fluorphenol (**66k**) (1.681 g, 15.00 mmol) mit **138a** (3.432 g, 18.00 mmol) und NEt₃ (3.2 mL, 30.50 mmol) in CH₂Cl₂ (40 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 10/1$) ergibt **32k** (3.675, 92%) als farblosen Feststoff (Schmb.: 55-56 °C, Lit.:²⁴⁴ 56-57 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.68 (md, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.99-6.93 (m, 4H), 2.45 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.1 (d, J = 246.5 Hz, C_q), 145.7 (C_q), 145.5 (C_q), 132.1 (C_q), 130.3 (CH), 128.7 (CH), 124.2 (d, J = 8.7 Hz, CH), 116.5 (d, J = 23.8 Hz, CH), 21.9 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -114.57$ (tt, J = 8.6, 5.4 Hz).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3079 (w), 1598 (s), 1499 (vs), 1374 (s), 1161 (s), 1092 (s), 1013 (m), 872 (s), 807 (s), 694 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 266 (55) [M⁺], 155 (86), 111 (2), 91 (100), 65 (10).

HR-MS (EI) für C₁₃H₁₁FO₃S: berechnet: 267.0486, gefunden: 267.0487.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁴

Darstellung von 4-(Trifluormethyl)phenyltosylat (32l)

Nach AAV 4 wird 4-(Trifluormethyl)phenol (**66l**) (1.630 g, 10.00 mmol) mit **138a** (2.292 g, 12.00 mmol) und NEt₃ (2.1 mL, 40.00 mmol) in CH₂Cl₂ (25 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $75/1 \rightarrow 25/1$) ergibt **32l** (2.783 g, 88%) als farblosen Feststoff (Schmb.: 56-57 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.70 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 2.44 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 151.9 (C_q), 145.8 (C_q), 132.0 (C_q), 129.9 (CH), 129.2 (q, *J* = 33.1 Hz, C_q), 128.5 (CH), 127.0 (q, *J* = 3.8 Hz, CH), 123.6 (q, *J* = 272.6 Hz, C_q), 122.8 (CH), 21.7 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -62.43$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3056 (m), 1508 (m), 1379 (s), 1180 (br), 1132 (m), 1066 (m), 866 (s), 815 (m), 741 (s), 552 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 316 (8) [M⁺], 155 (77), 91 (100), 65 (17).

HR-MS (EI) für C₁₄H₁₁F₃O₃S: berechnet: 316.0381, gefunden: 316.0371.

Darstellung von 3-(Trifluormethyl)phenyltosylat (32m)

Nach AAV 4 wird 3-(Trifluormethyl)phenol (66m) (3.242 g, 20.00 mmol) mit 138a (4.576 g, 24.00 mmol) und NEt₃ (4.20 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $10/1 \rightarrow 5/1$) ergibt 32m (6.193 g, 98%) als farblosen Feststoff (Schmb.: 63-64 °C, Lit.:¹⁹⁵ 62-64 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.71 (d, J = 8.5 Hz, 2H), 7.53-7.41 (m, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.24-7.18 (m, 2H), 2.46 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.6 (C_q), 145.9 (C_q), 132.2 (q, *J* = 33.1 Hz, C_q), 131.9 (C_q), 130.3 (CH), 129.9 (CH), 128.5 (CH), 126.0 (CH), 123.8 (q, *J* = 4.2 Hz, CH), 123.1 (q, *J* = 273.1 Hz, C_q), 119.7 (q, *J* = 8.3 Hz, CH), 21.7 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -60.62$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3075 (w), 2928 (w), 1597 (m), 1492 (m), 1447 (s), 1381 (s), 1326 (vs), 1279 (m), 1197 (vs), 1090 (s), 906 (s), 815 (m), 774 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 316 (15) [M⁺], 155 (98), 91 (100), 65 (16).

HR-MS (EI) für C₁₄H₁₁F₃O₃S: berechnet: 316.0381, gefunden: 316.0353.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁹⁵

Darstellung von 3-(Trifluormethyl)phenylmesylat (139e)

Nach AAV 4 wird 3-(Trifluormethyl)phenol (66m) (3.242 g, 20.00 mmol) mit 138e (2.749 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $30/1 \rightarrow 10/1$) ergibt 139e (4.410 g, 92%) als farblosen Feststoff (Schmb. 36-37 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.62-7.45 (m, 4H), 3.18 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 148.9 (CH), 132.8 (q, *J* = 36.4 Hz, C_q), 130.7 (CH), 125.6 (CH), 124.2 (q, *J* = 3.4 Hz, C_q), 123.1 (d, *J* = 271.3 Hz, C_q), 119.3 (q, *J* = 3.8 Hz, CH), 37.9 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -62.76$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3105 (m), 1652 (s), 1450 (m), 1382 (s), 1326 (vs), 1197 (vs), 1129 (vs), 1086 (s), 909 (s), 814 (m), 696 (m).

MS (70 eV, EI) m/z (relative Intensität): 240 (71) [M⁺], 209 (12), 162 (3), 131 (100), 91 (26). **HR-MS** (EI) für C₈H₇F₃O₃S: berechnet: 240.0068, gefunden: 240.0062.

Darstellung von 4-Bromphenyltosylat (32n)

Nach AAV 4 wird 4-Bromphenol (**66n**) (3.461 g, 20.00 mmol) mit **138a** (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 3/1$) ergibt **32n** (4.931 g, 75%) als farblosen Feststoff (Schmb.: 78.1-79.4 °C)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.70$ (md, J = 8.4 Hz, 2H), 7.40 (md, J = 9.0 Hz, 2H), 7.32 (md, J = 8.0 Hz, 2H), 6.86 (md, J = 9.0 Hz, 2H), 2.45 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 148.6 (C_q), 145.6 (C_q), 132.7 (CH), 132.0 (C_q), 129.8 (CH), 128.5 (CH), 124.1 (CH), 120.5 (C_q), 21.7 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3100 (w), 3068 (w), 2922 (w), 1816 (w), 1596 (m), 1479 (s), 1364 (vs), 1212 (m), 1198 (s), 1011 (m), 830 (vs), 818 (s), 751 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 328 (66) ([M⁺], ⁸¹Br), 326 (66) ([M⁺, ⁷⁹Br], 171 (8), 155 (96), 145 (20), 91 (100), 89 (11), 65 (35).

HR-MS (EI) für $C_{13}H_{11}^{79}$ BrO₃S: berechnet: 325.9612, gefunden: 325.9626.

HR-MS (EI) für $C_{13}H_{11}^{81}$ BrO₃S: berechnet: 327.9592, gefunden: 327.9600.

Darstellung von 4-Chlorphenyltosylat (320)

Nach AAV 4 wird 4-Chlorphenol (660) (2.572 g, 20.00 mmol) mit 138a (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $2/1 \rightarrow 1/1$) ergibt 32o (3.581 g, 64%) als farblosen Feststoff (Schmb.: 70.1-70.8 °C, Lit.:²⁴⁵ 71 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.73 (md, *J* = 8.4 Hz, 2H), 7.35 (md, *J* = 8.0 Hz, 2H), 7.29 (md, *J* = 8.8 Hz, 2H), 7.26 (md, *J* = 8.7 Hz, 2H), 2.48 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 148.0 (C_q), 145.6 (C_q), 132.8 (C_q), 132.0 (C_q), 129.8 (CH), 129.7 (CH), 128.5 (CH), 123.8 (CH), 21.7 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3094 (w), 3067 (w), 1903 (w), 1659 (w), 1596 (m), 1485 (s), 1377 (vs), 1295 (w), 1201 (m), 1173 (vs), 1089 (m), 867 (s), 819 (m), 711 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 282 (39) [M⁺], 155 (100), 127 (4), 99 (10), 91 (92), 65 (13).

HR-MS (EI) für C₁₃H₁₁ClO₃S: berechnet: 282.0117, gefunden: 282.0117.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁵

Darstellung von 3-Chlorphenyltosylat (32p)

Nach AAV 4 wird 3-Chlorphenol (66p) (2.572 g, 20.00 mmol) mit 138a (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/0 \rightarrow 5/1$) ergibt 32p (4.615 g, 82%) als farblosen Feststoff (Schmb.: 47-48 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.65 (md, *J* = 8.3 Hz, 2H), 7.26-7.21 (m, 2H), 7.18-7.10 (m, 2H), 6.97-6.93 (m, 1H), 6.85-6.78 (m, 1H), 2.38 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 150.3 (C_q), 146.1 (C_q), 135.2 (C_q), 132.5 (C_q), 130.7 (CH), 130.3 (CH), 128.9 (CH), 127.8 (CH), 123.4 (CH), 121.1 (CH), 22.1 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3071 (w), 1582 (m), 1462 (m), 1349 (vs), 1194 (s), 1067 (m), 1015 (w), 883 (s), 868 (s), 789 (m), 668 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 282 (12) [M⁺], 155 (67), 91 (100).

HR-MS (EI) für C₁₃H₁₁Cl₃S: berechnet: 282.0117, gefunden: 282.0113.

Darstellung von 2-Chlorphenyltosylat (32q)

Nach AAV 4 wird 2-Chlorphenol (**66q**) (2.571 g, 20.00 mmol) mit **138a** (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/9 \rightarrow 5/1$) ergibt **32q** (5.420 g, 96%) als farblosen Feststoff (Schmb.: 74-75 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.79 (md, *J* = 8.4 Hz, 2H), 7.28-7.06 (m, 6H), 2.37 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 146.1 (C_q), 146.0 (C_q), 133.1 (C_q), 131.1 (CH), 130.1 (CH), 129.0 (CH), 128.2 (CH), 128.1 (CH), 128.0 (C_q), 124.6 (CH), 22.1 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 2980 (w), 1596 (m), 1471 (s), 1372 (vs), 1295 (w), 1178 (vs), 1158 (s), 1090 (s), 1031 (m), 867 (s), 760 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 282 (11) [M⁺], 155 (63), 91 (100). **HR-MS** (EI) für C₁₃H₁₁Cl₃S: berechnet: 282.0117, gefunden: 282.0115.

Darstellung von 4-Tosylbenzoesäuremethylester (32r)

Nach AAV 4 wird 4-Hydroxybenzoesäuremethylester (**66r**) (3.043 g, 20.00 mmol) mit **138a** (24.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 3/1) ergibt **32r** (6.091 g, 99%) als farblosen Feststoff (Schmb.: 94.6-95.2 °C, Lit.:²⁴⁶ 93-94 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.96 (dt, *J* = 8.9, 2.5 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.06 (dt, *J* = 8.9, 2.5 Hz, 2H), 3.89 (s, 3H), 2.44 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 165.9 (C_q), 152.9 (C_q), 145.7 (C_q), 132.1 (C_q), 131.2 (CH), 129.8 (CH), 128.9 (C_q), 128.4 (CH), 122.3 (CH), 52.3 (CH₃), 21.7 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3073 (w), 2957 (w), 1724 (vs), 1598 (m), 1498 (m), 1438 (m), 1378 (vs), 1279 (vs), 1158 (vs), 1091 (s), 1014 (m), 959 (w), 872 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 306 (47) [M⁺], 275 (13), 155 (100), 91 (66). **HR-MS** (EI) für C₁₅H₁₄O₅S: berechnet: 306.0562, gefunden: 306.0542. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁶

Darstellung von 4-Mesylbenzoesäuremethylester (139f)

MeO₂C-OMs

Nach AAV 4 wird 4-Hydroxybenzoesäuremethylester (**66r**) (3.043 g, 20.00 mmol) mit **138e** (2.749 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $2/1 \rightarrow 1/3$) ergibt **139f** (4.236 g, 92%) als farblosen Feststoff (Schmb.: 88-89 °C, Lit.:²⁴⁰ 90-91 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.10 (md, *J* = 8.9 Hz, 2H), 7.35 (md, *J* = 8.8 Hz, 2H), 3.92 (s, 3H), 3.18 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 165.8 (C_q), 152.4 (C_q), 131.7 (CH), 129.2 (C_q), 121.9 (CH), 52.4 (CH₃), 37.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3057 (w), 1724 (s), 1604 (m), 1501 (m), 1374 (s), 1153 (m), 1017 (w), 970 (m), 874 (s), 542 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 230 (74) [M⁺], 199 (46), 152 (100), 121 (100), 92 (12).

HR-MS (EI) für C₉H₁₀O₅S: berechnet: 230.0249, gefunden: 230.0243.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁰

Darstellung von 5-Tosyl-1,3-benzoedicarbonsäuredimethylester (32s)

MeO₂C -OTs MeO₂C

Nach AAV 4 wird Dimethyl-5-hydroxyisophthalat (**66s**) (4.202 g, 20.00 mmol) mit **138a** (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH_2Cl_2 (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Umkristallisation aus EtOH ergibt **32s** (6.492 g, 89%) als farblosen Feststoff (Schmb.: 129.7-130.3 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.57-8.54 (m, 1H), 7.84 (d, *J* = 1.5 Hz, 2H), 7.72 (md, *J* = 8.3 Hz, 2H), 7.33 (md, *J* = 8.4 Hz, 2H), 3.92 (s, 6H), 2.45 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 164.8 (C_q), 149.5 (C_q), 145.9 (C_q), 132.3 (C_q), 131.9 (C_q), 129.9 (CH), 129.1 (CH), 128.4 (CH), 127.6 (CH), 52.6 (CH₃), 21.7 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3001 (m), 2956 (m), 1723 (vs), 1596 (s), 1457 (s), 1433 (s), 1376 (s), 1204 (vs), 1204 (s), 1105 (m), 1091 (s), 1004 (m), 915 (s), 876 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 364 (29) [M⁺], 333 (15), 178 (10), 155 (100), 91 (89), 65 (9).

HR-MS (EI) für C₁₇H₁₆O₇S: berechnet: 364.0617, gefunden: 364.0627.

Darstellung von 4-Tosylacetophenon (32t)

Nach AAV 4 wird 4-Hydroxyacetophenon (**66t**) (2.721 g, 20.00 mmol) mit **138a** (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt **32t** (5.212 g, 99%) als hellgelben Feststoff (Schmb.: 68.4-69.3 °C, Lit.:¹⁹⁵ 68-69 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.89 (md, *J* = 8.9 Hz, 2H), 7.70 (md, *J* = 8.3 Hz, 2H), 7.32 (md, *J* = 8.0 Hz, 2H), 7.08 (md, *J* = 8.8 Hz, 2H), 2.57 (s, 3H), 2.45 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 196.6 (C_q), 153.0 (C_q), 145.7 (C_q), 135.7 (C_q), 132.1 (C_q), 130.0 (CH), 129.9 (CH), 128.4 (CH), 122.5 (CH), 26.6 (CH₃), 21.7 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3071 (w), 3007 (w), 1681 (vs), 1596 (s), 1499 (m), 1400 (m), 1379 (vs), 1360 (s), 1270 (s), 1202 (s), 1176 (vs), 1156 (s), 1015 (w), 876 (s), 798 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 290 (49) [M⁺], 275 (13), 155 (95), 121 (3), 91 (100), 77 (4), 65 (12).

HR-MS (EI) für $C_{15}H_{14}O_4S$: berechnet: 290.0613, gefunden: 290.0619.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁹⁵

Darstellung von 2-(4-Toluolsulfonyl)pyridin (32u)

Nach AAV 4 wird 2-Hydroxypyridin (66u) (1.902 g, 20.00 mmol) mit 138a (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 3/1$) ergibt 32u (4.288 g, 86%) als hellgelben Feststoff (Schmb.: 43-44 °C, Lit.:²⁴⁷ 45 °C).
¹**H-NMR** (300 MHz, CDCl₃): δ = 8.14-7.93 (m, 2H), 7.84 (md, *J* = 8.6 Hz, 2H)), 7.33 (md, *J* = 8.6 Hz, 2H), 7.24–7.11 (m, 2H), 2.45 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 156.3 (C_q), 148.3 (CH), 145.4 (C_q), 141.0 (CH), 134.0 (C_q), 130.0 (CH), 127.9 (CH), 125.4 (CH), 123.4 (CH), 20.9 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3062 (w), 1590 (m), 1571 (m), 1464 (m), 1429 (s), 1368 (vs), 1204 (m), 1167 (vs, br), 1088 (s), 866 (vs), 799 (s), 726 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 249 (33) [M⁺], 155 (88), 91 (100), 65 (12).

HR-MS (EI) für C₁₂H₁₁NO₃S: berechnet: 249.0460, gefunden: 249.0458.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁷

Darstellung von 3-(4-Toluolsulfonyl)pyridin (32v)

Nach AAV 4 wird 3-Hydroxypyridin (66v) (1.427 g, 15.00 mmol) mit 138a (3.432 g, 18.00 mmol) und NEt₃ (3.2 mL, 30.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt 32v (2.715 g, 73%) als bräunlichen Feststoff (Schmb.: 80.1-80.9 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.49 (dd, J = 4.7, 1.4 Hz, 1H), 8.15 (d, J = 2.6 Hz, 1H), 7.70 (md, J = 8.4 Hz, 2H), 7.51-7.46 (md, J = 8.4 Hz, 1H), 7.34 (s, 1H), 7.31 (t, J = 2.2 Hz, 1 H), 7.29 (md, J = 4.7 Hz, 1 H), 2.45 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 148.0 (CH), 146.5 (C_q), 146.0 (C_q), 143.8 (CH), 131.6 (C_q), 130.4 (CH), 130.0 (CH), 128.5 (CH), 124.2 (CH), 21.7(CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 1594 (w), 1476 (m), 1422 (s), 1373 (s), 1200 (s), 1175 (vs), 1091 (m), 1024 (w), 858 (s), 823 (s), 745 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 249 (42) [M⁺], 157 (5), 156 (9), 155 (97), 92 (8), 91 (100), 65 (10).

HR-MS (EI) für $C_{12}H_{11}NO_3S$: berechnet: 249.0460, gefunden: 249.0453.

Darstellung von 6-(4-Toluolsulfonyl)chinolin (32w)

Nach AAV 4 wird 6-Hydroxychinolin (66w) (2.903 g, 20.00 mmol) mit 138a (4.576 g, 24.00 mmol) und NEt₃ (4.2 mL, 40.00 mmol) in CH₂Cl₂ (50 mL) 12 h bei Umgebungstemperatur umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n* Pentan/Et₂O = $5/1 \rightarrow 0/1$) ergibt 32w (5.485 g, 92%) als hellbraunen Feststoff (Schmb.: 98.6-99.0 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 8.93$ (dd, J = 4.3, 1.7 Hz, 1H), 8.10 (dd, J = 8.3, 1.3 Hz, 1H), 8.02 (d, J = 8.8Hz, 1H), 7.74 (md, J = 8.2 Hz, 2H), 7.57-7.54 (m, 1H), 7.47-7.40 (m, 1H), 7.35-7.25 (m, 3H), 2.46 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 151.7 (CH), 147.5 (C_q), 146.9 (C_q), 145.9 (C_q), 136.2 (CH), 132.5 (C_q), 131.7 (CH), 130.1 (C_q), 128.8 (CH), 128.6 (CH), 124.9 (CH), 122.1 (CH), 120.2 (CH), 22.0 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3063 (s), 1597 (m), 1499 (vs), 1370 (vs), 1301 (m), 1173 (s), 1128 (w), 1090 (m), 915 (m), 792 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 299 (45) [M⁺], 135 (6), 155 (72), 116 (46), 91 (100). **HR-MS** (EI) für C₁₆H₁₃NO₃S: berechnet: 299.1616, gefunden: 299.1626.

Darstellung von 2-Oxo-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan (PinP(O)H) (110a)

Eine Lösung aus Phosphoniger Säure (**140**) (1.640 g. 40.00 mmol) in THF (40 mL) wird auf einmal zu einer Lösung aus Pinakol (4.724 g, 40.00 mmol) und *N*,*N*-Dicyclohexyl-carbodiimid (**141**) (16.506 g, 80.00 mmoL) in THF (120 mL) gegeben. Die Suspension wird bei Umgebungstemperatur gerührt und der Reaktionsverlauf wird mittels ³¹P-NMR verfolgt. Nach 2 h wird das Reaktionsgemisch für 1 h im Ultraschallbad belassen. Der entstandene Harnstoff **142** wird abfiltriert und das Lösungsmittel unter verminderten Druck abdestilliert.

Das Rohprodukt wird mit *i*-Pr₂O (60 mL) gewaschen und anschließend in EtOAc (40 mL) gelöst, filtriert und das Lösungsmittel am Vakuum entfernt. **110a** (3.532 g, 54%) wird als farbloser Feststoff (Schmb.: 99.2-100.1 °C, Lit.:¹⁹⁶ 98-102 °C) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.20 (d, J = 706.4 Hz, 1H), 1.44 (s, 6H), 1.34 (s, 6H).

¹³C-NMR (75 MHz, CDCl₃): δ = 88.8 (C_q), 25.0 (d, J = 3.7 Hz, CH₃), 24.3 (d, J = 5.5 Hz, CH₃).

³¹**P-NMR** (81 MHz, CDCl₃): δ = 17.65 (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2982 (m), 1399 (m), 1378 (s), 1266 (s), 1173 (m), 1141 (vs), 1016 (w), 918 (vs), 861 (vs), 817 (m), 757 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 164 (5) [M⁺], 149 (70), 122 (23), 106 (57), 83 (29), 65 (12), 59 (100).

HR-MS (EI) für C₆H₁₃O₃P: berechnet: 164.0602, gefunden: 164.0597.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁹⁶

Darstellung von 4-Fluor-4`-methoxybiphenyl (111a)

Nach AAV 5 wird 4-Fluorphenyltosylat (**32k**) (267 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111a** (188 mg, 93%) als farblosen Feststoff (Schmb.: 87.3-87.8 °C, Lit.:²⁴⁸ 86-88 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.53-7.46 (m, 4H), 7.10 (dd, *J* = 8.6, 8.7 Hz, 2H), 6.97 (dd, *J* = 8.8, 8.7 Hz, 2H), 3.85 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.9 (d, J = 244.2 Hz, C_q), 158.9 (C_q), 136.7 (d, J = 3.5 Hz, C_q), 132.5 (C_q), 128.0 (d, J = 8.0 Hz, CH), 127.8 (CH), 115.3 (d, J = 21.1 Hz, CH), 114.1 (CH), 55.2 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -117.15$ (m).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3790 (w), 3015 (m), 2965 (m), 2842 (m), 1599 (vs), 1498 (vs), 1441 (s), 1326 (m), 1289 (m), 1231 (m), 1181 (m), 1037 (s), 824 (m).

MS (70 eV, EI) m/z (relative Intensität): 202 (100) [M⁺], 187 (55), 159 (65), 133 (46). **HR-MS** (EI) für C₁₃H₁₁FO: berechnet: 202.0794, gefunden: 202.0790. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁸

Darstellung von 4-Fluor-3`-methoxybiphenyl (111b)

Nach AAV 5 wird 4-Fluorphenyltosylat (**32k**) (267 mg, 1.00 mmol) mit 3-Methoxyphenylmagnesiumbromid (**20f**) (1.50 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 20 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111b** (158 mg, 78%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.58-7.51 (m, 2H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.19-7.05 (m, 4H), 6.93-6.88 (m, 1H), 3.87 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 162.5 (d, J = 246.7 Hz, C_q), 159.9 (C_q), 141.7 (C_q), 137.2 (CH), 129.8 (CH), 129.7 (d, J = 64.8 Hz, CH), 128.7 (d, J = 8.1 Hz, CH), 119.5 (CH), 115.6 (d, J = 21.4 Hz, C_q), 112.6 (d, J = 28.7 Hz, CH), 55.3 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -115.98$ (m).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3041 (m), 2957 (s), 2939 (m), 1965 (m), 1600 (vs), 1576 (vs), 1514 (s), 1480 (m), 1295 (m), 1218 (m), 1170 (s), 1096 (m), 868 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 202 (100) [M⁺], 187 (50), 159 (69), 133 (41).

HR-MS (EI) für C₁₃H₁₁FO: berechnet: 202.0794, gefunden: 202.0795.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁹

Darstellung von 4-Chloro-4`-methoxybiphenyl (27a)

Nach AAV 5 wird 4-Chlorphenyltosylat (**320**) (283 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **27a** (192 mg, 88%) als farblosen Feststoff (Schmb.: 111.1-111.3 °C, Lit.:²⁵⁰ 110-111 °C).

¹**H-NMR** (600 MHz, CDCl₃): δ = 7.52-7.50 (m, 4H), 7.41-7.36 (m, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H). ¹³**C-NMR** (150 MHz, CDCl₃): δ = 159.4 (C_q), 139.3 (C_q), 132.7 (C_q), 132.5 (C_q), 128.8 (CH), 128.0 (CH), 127.9 (CH), 114.3 (CH), 55.3 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3790 (w), 3011 (m), 2839 (m), 1603 (s), 1580 (s), 1522 (m), 1481 (m), 1395 (vs), 1287 (s), 1297 (vs), 1179 (s), 1036 (m), 998 (m), 819 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 218 (100) [M⁺], 205 (13), 204 (5), 203 (46), 177 (12), 176 (5), 175 (41), 149 (11), 139 (21).

HR-MS (EI) für C₁₃H₁₁ClO: berechnet: 218.0498, gefunden: 218.0482.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁰

Darstellung von 3-Chlor-4`-methoxybiphenyl (111c)

Nach AAV 5 wird 3-Chlorphenyltosylat (**32p**) (283 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 18 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111c** (191 mg, 87%) als farblosen Feststoff (Schmb.:52.3-52.6 °C, Lit.:²⁵¹ 50-52 °C).

¹**H-NMR** (600 MHz, CDCl₃): $\delta = 7.54$ (dd, J = 8.0, 1.9 Hz, 1H), 7.50 (md, J = 8.5 Hz, 2H), 7.44-7.41 (m, 1H), 7.40 (dd, J = 8.1, 1.9 Hz, 1H), 7.29-7.26 (m, 1H), 6.98 (md, J = 9.1 Hz, 2H), 3.86 (s, 3H).

¹³**C-NMR** (150 MHz, CDCl₃): δ = 142.7 (C_q), 134.6 (C_q), 132.3 (C_q), 129.9 (CH), 128.1 (C_q), 126.8 (CH), 126.6 (CH), 124.8 (CH), 114.3 (CH), 113.9 (CH), 55.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3075 (w), 2955 (w), 1605 (m), 1580 (m), 1513 (s), 1466 (vs), 1392 (s), 1307 (s), 1289 (m), 1251 (s), 1182 (s), 1101 (m), 1019 (m), 835 (m), 762 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 218 (100) [M⁺], 203 (28), 175 (31), 139 (18), 63 (3).

HR-MS (EI) für $C_{13}H_{11}$ ClO: berechnet: 218.0498, gefunden: 218.0490. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵¹

Darstellung von 2-Chlor-4`-methoxybiphenyl (111d)

Nach AAV 5 wird 2-Chlorphenyltosylat (**32q**) (283 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1 \rightarrow 100/1) ergibt **111d** (195 mg, 89%) als gelbliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.48-7.45 (m, 1H), 7.40 (md, *J* = 8.6 Hz, 2H), 7.35-7.24 (m, 3H), 6.99 (md, *J* = 8.6 Hz, 2H), 3.87 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.1 (C_q), 140.1 (C_q), 132.6 (C_q), 131.8 (CH), 131.4 (C_q), 130.6 (CH), 129.9 (CH), 128.2 (CH), 126.8 (CH), 113.5 (CH), 55.3 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 2934 (w), 2835 (w), 1610 (m), 1578 (m), 1514 (s), 1465 (vs), 1439 (m), 1294 (m), 1153 (s), 1176 (s), 1073 (m), 1034 (m), 829 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 218 (100) [M⁺], 203 (21), 175 (25), 139 (19). **HR-MS** (EI) für C₁₃H₁₁ClO: berechnet: 218.0498, gefunden: 218.0505.

Darstellung von 4-Tosylbiphenyl (111e)

Nach AAV 5 wird 4-Bromphenyltosylat (**32n**) (327 mg, 1.00 mmol) mit Phenylmagnesiumchlorid (**20d**) (1.00 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 100/1 \rightarrow 25/1) ergibt **111e** (285 mg, 88%) als farblosen Feststoff (Schmb.: 176-177 °C, Lit.:^{53a} 176-177 °C).

Darstellung von 4-Tosylbiphenyl (111e) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 4-Chlorphenyltosylat (**320**) (283 mg, 1.00 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), [Pd₂(dba)₃] (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $100/1 \rightarrow 25/1$) ergibt **111f** (233 mg, 72%) als farblosen Feststoff.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.75 (md, J = 8.4 Hz, 2H), 7.54-7.31 (m, 9H), 7.05 (md, J = 8.6 Hz, 2H), 2.46 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.1 (C_q), 145.5 (C_q), 140.3 (C_q), 139.9 (C_q), 132.5 (C_q), 129.9 (CH), 129.0 (CH), 128.7 (CH), 128.4 (CH), 127.8 (CH), 127.2 (CH), 122.8 (CH), 21.9 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3069 (w), 1599 (w), 1379 (s), 1194 (m), 1176 (s), 1159 (m), 866 (m), 847 (m), 771 (s), 550 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 324 (56) [M⁺], 169 (100), 141 (13), 115 (6), 91 (11), 65 (2).

HR-MS (EI) für C₁₉H₁₆O₃S: berechnet: 324.0820, gefunden: 324.0814.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.^{53a}

Darstellung von 4`-Methyl-4-(trifluormethyl)biphenyl (111f)

Nach AAV 5 wird 4-(Trifluormethyl)phenyltosylat (**32l**) (215 mg, 0.91 mmol) mit 4-Tolylmagnesiumbromid (**20b**) (1.50 mL, 1.50 mmol), $[Pd(dba)_2]$ (2.9 mg, 0.005 mmol) und **110a** (1.6 mg, 0.010 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111f** (215 mg, 91%) als farblosen Feststoff (Schmb.: 121.2-121.3 °C, Lit.:⁵⁴ 120-121 °C)).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.70-7.67 (s, br, 4H), 7.51 (md, *J* = 8.2 Hz, 2H), 7.30-7.26 (m, 2H), 2.43 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 144.7 (C_q), 138.1 (C_q), 136.9 (CH), 129.7 (CH), 129.0 (q, *J* = 32.3 Hz, C_q), 127.2 (CH), 127.1 (d, *J* = 4.7 Hz, CH), 125.7 (q, *J* = 3.8 Hz, C_q), 125.6 (q, *J* = 272.2 Hz, C_q), 21.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -67.78$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3035 (w), 2923 (w), 2863 (m), 1910 (m), 1798 (vs), 1615 (s), 1565 (s), 1501 (m), 1398 (m), 1322 (m), 1202 (s), 1140 (m), 1071 (w), 851 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 236 (100) [M⁺], 217 (7), 167 (37), 152 (7), 115 (2), 91 (3).

HR-MS (EI) für C₁₄H₁₁F₃: berechnet: 236.0813, gefunden: 236.0810.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.⁵⁴

Darstellung von 4-Methoxy-4-(trifluormethyl)biphenyl (111g)

Nach AAV 5 wird 4-(Trifluormethyl)phenyltosylat (**32l**) (317 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), $[Pd(dba)_2]$ (2.9 mg, 0.005 mmol) und **110a** (1.6 mg, 0.010 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111g** (232 mg, 92%) als farblosen Feststoff (Schmb.: 124.1-124.5 °C, Lit.:²⁵² 124 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.70-7.62 (s, br, 4H), 7.55(md, *J* = 9.1 Hz, 2H), 7.01 (md, *J* = 9.1 Hz, 2H), 3.87 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.8 (C_q), 144.3 (C_q), 132.0 (C_q), 128.7 (CH) (q, *J*=32.4 Hz, C_q), 128.5 (CH), 125.6 (q, *J*=3.8 Hz, CH), 124.7 (q, *J*=272.2 Hz, C_q), 114.4 (CH), 55.4 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -62.73$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3031 (w), 2966 (s), 2553 (m), 1669 (m), 1601 (m), 1532 (s), 1499 (vs), 1325 (s), 1277 (m), 1166 (m), 1119 (m), 1073 (m), 999 (s), 827 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 252 (100) [M⁺], 237 (23), 209 (57), 183 (10), 159 (4).

HR-MS (EI) für C₁₄H₁₁F₃O: berechnet: 252.0762, gefunden: 252.0774.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵²

Darstellung von 4`-Methyl-3-(trifluormethyl)biphenyl (111h)

$$\overbrace{F_3C} He$$

Nach AAV 5 wird 3-(Trifluormethyl)phenyltosylat (**32m**) (317 mg, 1.00 mmol) mit 4-Tolylmagnesiumbromid (**20b**) (1.50 mL, 1.50 mmol), $[Pd(dba)_2]$ (2.9 mg, 0.005 mmol) und **110a** (1.6 mg, 0.010 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan = 1) ergibt **111h** (206 mg, 87%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.83 (s, br, 1H), 7.79-7.74 (m, 1H), 7.62-7.48 (m, 4H), 7.29 (d, *J* = 7.9 Hz, 2H), 2.42 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 141.9 (C_q), 137.9 (C_q), 131.1 (d, *J* = 32.1 Hz, C_q), 130.2 (CH), 129.7 (CH), 129.2 (CH), 127.0 (CH), 124.2 (d, *J* = 272.0 Hz, C_q), 123.6 (q, *J* = 4.1 Hz, C_q), 21.1 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -62.99$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3030 (m), 2925 (m), 1901 (s), 1611 (s), 1484 (s), 1438 (vs), 1330 (m), 1258 (m), 1178 (vs), 1156 (s), 1110 (m), 1034 (m), 1015 (m), 897 (s), 784 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 236 (100) [M⁺], 217 (7), 165 (37), 151 (3), 115 (3), 91 (11).

HR-MS (EI) für C₁₄H₁₁F₃: berechnet: 236.0813, gefunden: 236.0819.

Darstellung von 4`-Methoxy-3-(trifluormethyl)biphenyl (111i)

Nach AAV 5 wird 3-(Trifluormethyl)phenyltosylat (**32m**) (317 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), $[Pd(dba)_2]$ (2.9 mg, 0.005 mmol) und **110a** (1.6 mg, 0.010 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan) ergibt **111i** (237 mg, 94%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = .83-7.77 (m, 1H), 7.76-7.68 (m, 1H), 7.60-7.50 (m, 4H), 7.00 (dt, *J* = 9.0, 2.3 Hz, 2H), 3.87 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.7 (C_q), 141.6 (C_q), 132.2 (C_q), 131.2 (d, *J* = 31.7 Hz, C_q), 129.9 (CH), 129.2 (CH), 128.2 (CH), 124.2 (q, *J* = 272.1 Hz, C_q), 123.4 (q, *J* = 3.8 Hz, CH), 123.3 (q, *J* = 3.8 Hz, CH), 114.4 (CH), 55.4 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -61.53$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3039 (w), 2939 (w), 1611 (s), 1520 (s), 1486 (s), 1441 (s), 1335 (vs),

1298 (m), 1249 (br), 1125 (s), 1027 (s), 901 (m), 834 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 252 (100) [M⁺], 209 (38), 183 (5), 139 (3).

HR-MS (EI) für C₁₄H₁₁F₃O: berechnet: 252.0762, gefunden: 252.0741.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵³

Darstellung von 3`-Methoxy-2-methylbiphenyl (111m)

Nach AAV 5 wird 2-Methylphenyltosylat (**32i**) (263 mg, 1.00 mmol) mit 3-Methoxyphenylmagnesiumbromid (**20f**) (1.50 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 20 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111m** (170 mg, 86%) als schwach gelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.38-7.24 (m, 5H), 6.96-6.88 (m, 3H), 3.85 (s, 3H), 2.31 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.3 (C_q), 143.4 (C_q), 141.8 (C_q), 135.3 (C_q), 130.3 (CH), 129.6 (CH), 129.0 (CH), 127.3 (CH), 125.7 (CH), 121.7 (CH), 114.8 (CH), 112.3 (CH), 55.2 (CH₃), 20.4 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2954 (w), 2833 (m), 1580 (s), 1475 (vs), 1418 (s), 1316 (m), 1276 (vs), 1210 (m), 1177 s), 1045 (m), 1021 (m), 856 (s), 782 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 198 (100) [M⁺], 167 (48), 155 (16), 128 (9).

HR-MS (EI) für C₁₄H₁₄O: berechnet: 198.1045, gefunden: 198.1032.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁴

Darstellung von 2-Methoxybiphenyl (110o) mit 2-Methoxyphenyltosylat (32e)

Nach AAV 5 wird 2-Methoxyphenyltosylat (**32e**) (279 mg, 1.00 mmol) mit Phenylmagnesiumchlorid (**20d**) (1.00 mL, 1.50 mmol), $[Pd(dba)_2]$ (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **110o** (171 mg, 93%) als schwach gelbes Öl.

Darstellung von 2-Methoxybiphenyl (110o) durch Suzuki-Miyaura-Kreuzkupplung

Nach AAV 6 wird 2-Chloranisol (**27w**) (138 mg, 0.97 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1) ergibt **111o** (100 mg, 56%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.55 (md, J = 8.2 Hz, 2H), 7.43 (td, J = 7.3, 0.9 Hz, 2H), 7.37-7.32 (m, 3H), 7.05 (td, J = 7.3, 0.9 Hz, 1H), 7.00 (d, J = 8.8 Hz, 1H), 3.82 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 156.5 (C_q), 138.5 (C_q), 130.9 (CH), 130.7 (C_q), 129.5 (CH), 128.6 (CH), 127.9 (CH), 126.9 (CH), 120.8 (CH), 111.2 (CH), 55.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3791 (w), 2935 (w), 2833 (m), 1596 (s), 1503 (m), 1481 (vs), 1462 (s), 1429 (m), 1257 (vs), 1179 (s), 1054 (m), 1025 (m), 799 (s).

MS (70 eV, EI) m/z (relative Intensität): 184 (100) [M⁺], 169 (46), 152 (6), 141 (28), 115 (23).

HR-MS (EI) für C₁₃H₁₂O: berechnet: 184.0888, gefunden: 184.0885.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁵

Darstellung von 3,5,4'-Trimethoxybiphenyl (111q)

Nach AAV 5 wird 3,5-Dimethoxyphenyltosylat (**32d**) (309 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), $[Pd(dba)_2]$ (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1 \rightarrow 25/1) ergibt **111q** (233 mg, 95%) als leuchtend gelben Feststoff (Schmb.: 61.3-61.5 °C, Lit.:²⁵⁶ 61-62 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.55 (md, J = 2.9 Hz, 1H), 7.52 (md, J = 2.9 Hz, 1H), 7.00 (md, J = 2.9 Hz, 1H), 6.97 (md, J = 2.9 Hz, 1H), 6.72 (d, J = 2.4 Hz, 2H), 6.45 (md, J = 2.4 Hz, 1H), 3.86 (s, br, 9H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.0 (C_q), 159.3 (C_q), 143.0 (C_q), 133.6 (C_q), 128.1 (CH), 114.1 (CH), 105.0 (CH), 98.7 (CH), 55.3 (CH₃), 55.2 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3078 (w), 1996 (s), 1834 (vs), 1576 (vs), 1515 (s), 1440 (m), 1349 (m), 1292 (s), 1206 (m), 1150 (m), 1027 (s), 991 (m), 860 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 244 (100) [M⁺], 229 (14), 201 (12), 171 (4), 155 (3), 115 (7).

HR-MS (EI) für C₁₅H₁₆O₃: berechnet: 244.1099, gefunden: 244.1075.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁶

Darstellung von 3,5,2'-Trimethoxybiphenyl (111r) mit 3,5-Dimethoxyphenyltosylat (32d)

Nach AAV 5 wird 3,5-Dimethoxyphenyltosylat (**32d**) (309 mg, 1.00 mmol) mit 2-Methoxyphenylmagnesiumbromid (**20g**) (1.50 mL, 1.50 mmol), $[Pd(dba)_2]$ (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt.

Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $200/1 \rightarrow 50/1$) ergibt **111r** (223 mg, 93%) als schwach gelbes Öl.

Darstellung von 3,5,2'-Trimethoxybiphenyl (111r) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 3,5-Dimethoxychlorbenzol (**27p**) (173 mg, 1.00 mmol) mit 2-Methoxyphenylboronsäure (**33c**) (228 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 200/1 \rightarrow 50/1) ergibt **111r** (219 mg, 89%) als farbloses Öl.

¹H-NMR (300 MHz, CDCl₃): δ = 7.38-7.28 (m, 2H), 7.07-6.96 (m, 2H), 6.68 (d, *J* = 2.4 Hz, 2H), 6.51-6.47 (m, 1H), 3.83 (s, 6H), 3.82 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃): δ = 160.3 (C_q), 156.4 (C_q), 140.4 (C_q), 130.7 (C_q), 130.6 (CH), 128.7 (CH), 120.7 (CH), 111.2 (CH), 107.8 (CH), 99.2 (CH), 55.5 (CH₃), 55.3 (CH₃). IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3053 (w), 2999 (m), 2933 (s), 1910 (w), 1592 (vs), 1499 (s), 1416 (s), 1331 (s), 1202 (vs), 1178 (m), 1149 (vs), 1064 (vs), 1013 (s), 925 (w). MS (70 eV, EI) *m/z* (relative Intensität): 244 (100) [M⁺], 229 (18), 213 (52), 198 (10), 171 (14), 155 (7), 125 (7), 115 (16).

HR-MS (EI) für $C_{15}H_{16}O$: berechnet: 244.1099, gefunden: 244.1088.

Darstellung von 2-(4-Methoxyphenyl)pyridin (111s)

Nach AAV 5 wird 2-Pyridintosylat (**32u**) (250 mg, 1.00 mmol) mit 4-Methoxyphenylmagnesiumbromid (**20e**) (3.00 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 10/1 \rightarrow 5/1) ergibt **111s** (183 mg, 99%) als schwach gelben Feststoff (Schmb.: 53.2-53.5 °C, Lit.:²⁵⁷ 54 °C). ¹**H-NMR** (600 MHz, CDCl₃): δ = 8.66 (ddd, J = 4.1, 1.8, 1.0 Hz, 1H), 7.97 (md, J = 8.9 Hz, 2H), 7.74-7.67 (m, 2H), 7.17 (ddd, J = 6.9, 4.9, 1.7 Hz, 1H), 7.0 (md, J = 8.9 Hz, 2H), 3.86 (s, 3H). ¹³**C-NMR** (150 MHz, CDCl₃): δ = 160.4 (C_q), 157.1 (C_q), 149.5 (C_q), 136.6 (CH), 132.0 (CH), 128.1 (CH), 121.4 (CH), 119.8 (CH), 114.1 (CH), 55.3 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 2558 (w), 1768 (m), 1607 (s), 1563 (s), 1363 (vs), 1316 (s), 1248 (m), 1179 (m), 1114 (s), 884 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 185 (100) [M⁺], 170 (38), 155 (2), 153 (5), 141 (17), 115 (4). **HR-MS** (EI) für C₁₂H₁₁NO: berechnet: 185.0841, gefunden: 185.0843. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁷

Darstellung von 2-(2-Methylphenyl)pyridin (111t) mit 2-Pyridintosylat (32u)

Nach AAV 5 wird 2-Pyridintosylat (**32u**) (250 mg, 1.00 mmol) mit 2-Tolylmagnesiumbromid (**20c**) (1.50 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $10/1 \rightarrow 5/1$) ergibt **111t** (155 mg, 92%) als farblose Flüssigkeit.

Darstellung von 2-(-2-Methylphenyl)-pyridin (111t) durch nickelkatalysierte Kumada– Corriu-Kreuzkupplung

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten Schlenk-Kolben werden [Ni(acac)₂] (112 mg, 0.44 mmol) und HIPrCl (**8a**) (188 mg, 0.44 mmol) in THF (15.0 mL) suspendiert und 10 min bei Umgebungstemperatur gerührt. Dann wird 2-Chlorpyridin (**27n**) (1.705 g, 15.00 mmol) zugegeben und über eine Spritze wird 2-Methylphenylmagnesiumbromid (**20c**) (22.50 mL, 22.50 mmol, 1.0 M in THF) zugetropft. Die Reaktionsmischung wird 14 h bei Umgebungstemperatur gerührt. Die Reaktion wird durch Zutropfen von H₂O (10 mL) gestoppt, in Et₂O (70 mL) und H₂O (50 mL) aufgenommen und die wässrige Phase wird mit Et₂O (2 × 100 mL) extrahiert. Die vereinigten organischen Phasen werden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wird im Vakuum entfernt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $10/1 \rightarrow 2/1$) und Trocknung am ÖPV ergibt **111t** (2.437 g, 96%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 8.73$ (dq, J = 4.9, 0.9 Hz, 1H), 7.76 (td, J = 7.7, 1.9 Hz, 1H), 7.45-7.40 (m, 2H), 7.33-7.23 (m, 4H), 2.40 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 160.0$ (C_q), 149.2 (CH), 140.4 (C_q), 136.0 (CH), 135.7 (C_q), 130.7 (CH), 129.6 (CH), 128.2 (CH), 125.8 (CH), 124.0 (CH), 121.5 (CH), 20.2 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3058 (w), 2958 (w), 1586 (m), 1469 (m), 1424 (m), 1024 (m), 794 (m), 746 (vs), 635 (m), 619 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 169 (78) [M⁺], 168 (100), 139 (7), 115 (6), 83 (24), 51 (4).

HR-MS (EI) für C₁₂H₁₁N: berechnet: 169.0891, gefunden: 169.0877.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁷

Darstellung von 3-(2-Methylphenyl)pyridin (111v)

Nach AAV 5 wird 3-Pyridintosylat (**32v**) (250 mg, 1.00 mmol) mit 2-Tolylmagnesiumbromid (**20c**) (1.50 mL, 1.50 mmol), [Pd(dba)₂] (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 20 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 2/1$) ergibt **111v** (144 mg, 85%) als gelbliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.62-8.56 (m, 2H), 7.66 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.39-7.18 (m, 5H), 2.28 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.8 (CH), 148.0 (CH), 138.0 (C_q), 137.5 (C_q), 136.5 (CH), 135.5 (C_q), 130.5 (CH), 129.8 (CH), 128.1 (CH), 126.0 (CH), 123.0 (CH), 20.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3401 (w), 3023 (w), 1471 (s), 1407 (s), 1277 (w), 1104 (w), 1027 (m), 1002 (s), 815 (m).

MS (70 eV, EI) m/z (relative Intensität): 169 (100) [M⁺], 141 (10), 115 (11), 84 (5). **HR-MS** (EI) für C₁₂H₁₁N: berechnet: 169.0891, gefunden: 169.0893. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁸

Darstellung von 6-(2-Methoxyphenyl)chinolin (111w)

Nach AAV 5 wird 6-Chinolintosylat (**32w**) (300 mg, 1.00 mmol) mit 2-Methoxyphenylmagnesiumbromid (**20g**) (1.50 mL, 1.50 mmol), $[Pd(dba)_2]$ (14.4 mg, 0.025 mmol) und **110a** (8.2 mg, 0.050 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 10/1→5/1) ergibt **111w** (231 mg, 98%) als rotes viskoses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.91 (dd, J = 4.3, 1.4 Hz, 1H), 8.22-8.10 (m, 2H), 7.98-7.89 (m, 2H), 7.47-7.35 (m, 3H), 7.13-7.01 (m, 2H), 3.84 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 156.6 (C_q), 150.2 (CH), 147.4 (C_q), 137.0 (CH), 136.2 (C_q), 131.8 (CH), 131.0 (C_q), 129.8 (CH), 129.1 (CH), 128.6 (CH), 128.2 (CH), 127.8 (C_q), 121.1 (CH), 121.0 (CH), 111.3 (CH), 55.6 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3017 (m), 2956 (w), 2834 (w), 1934 (m), 1597 (s), 1454 (vs), 1433 (s), 1355 (s), 1293 (m), 1248 (m), 1118 (vs), 1025 (s), 943 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 235 (100) [M⁺], 234 (42), 220 (45), 192 (11), 191 (12), 165 (9), 139 (4).

HR-MS (EI) für C₁₆H₁₃NO: berechnet: 235.0997, gefunden: 235.0997.

Darstellung von 2-Chlor-1,3-bis-(2,6-diisopropylphenyl)-[1,3,2]diazaphospholan (42a)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten 250 mL-Schlenk-Kolben werden N,N'-Bis-(2,6-diisopropylphenyl)-ethan-1,2diamin (40a) (2.100 g, 5.51 mmol) und NEt₃ (8.58 g, 84.8 mmol) in CH₂Cl₂ (100 mL) gelöst und auf 0 °C gekühlt. Dann wird PCl₃ (41) (766 mg, 5.58 mmol) langsam über eine Spritze zugetropft und 2 h bei Umgebungstemperatur gerührt. Der Reaktionsverlauf wird mittels ³¹P-NMR-Spektroskopie verfolgt. Nach vollständigem Umsatz wird das Lösungsmittel unter Schutzgasatmosphäre im Vakuum über eine Kühlfalle entfernt und Et₂O (25 mL) zugegeben. Die Suspension wird unter Stickstoff über eine Schlenkfritte (Porengröße 4) filtriert, der Filterkuchen wird verworfen und das Lösungsmittel des Filtrats wird unter Schutzgasatmosphäre am Vakuum entfernt. Der zurückbleibende Feststoff wird durch Dekantieren mittels einer Spritze mit *n*-Hexan $(2 \times 4.0 \text{ mL})$ gewaschen, im Vakuum getrocknet und unter Stickstoffatmosphäre aufbewahrt. Verbindung 42a (1.461 g, 60%) wird als farbloser Feststoff erhalten.

¹**H-NMR** (300 MHz, C₆D₆): δ = 7.20-7.06 (m, 6H), 4.06 (sept, *J* = 6.6 Hz, 2H), 3.91-3.84 (m, 2H), 3.41 (sept, *J* = 6.6 Hz, 2H), 3.28-3.17 (m, 2H), 1.45 (d, *J* = 6.6 Hz, 6H), 1.25-1.17 (m, 18H).

¹³C-NMR (75 MHz, CDCl₃): δ = 149.9 (d, *J* = 3.5 Hz, C_q), 147.6 (d, *J* = 3.5 Hz, C_q), 134.9 (d, *J* = 12.0 Hz, C_q), 128.2 (CH), 125.0 (CH), 124.0 (CH), 54.8 (d, *J* = 9.4 Hz, CH₂), 29.0 (d, *J* = 5.3 Hz, CH), 28.5 (CH), 25.4 (CH₃), 25.2 (CH₃), 24.5 (CH₃), 24.3 (CH₃). ³¹P-NMR (81 MHz, C₆D₆): δ = 157.32 (s).

Die analytischen Daten stehen im Einklang mit den publizierten Werten.⁸⁴

Darstellung von 4-Phenylbenzophenon (26w) durch Suzuki-Miyaura-Kreuzkupplung

Nach AAV 6 wird 4-Chlorbenzophenon (**27r**) (217 mg, 1.00 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), [Pd₂(dba)₃] (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 19 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/0 \rightarrow 200/1$) ergibt **26w** (254 mg, 98%) als schwach gelben Feststoff (Schmb.: 104.2-105.1 °C, Lit.:²⁴⁸ 105-106 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.91 (md, J= 8.6 Hz, 2H), 7.85 (md, J= 8.4 Hz, 2H), 7.71 (md, J= 8.6 Hz, 2H), 7.66 (md, J= 8.1 Hz, 2H), 7.62-7.57 (m, 1H), 7.55-7.45 (m, 4H), 7.45-7.37 (m, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 193.7 (C_q), 145.2 (C_q), 139.9 (C_q), 137.7 (C_q), 136.2 (C_q), 132.3 (CH), 130.7 (CH), 129.9 (CH), 128.9 (CH), 128.3 (CH), 128.1 (CH), 127.2 (CH), 126.9 (CH).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3052 (w), 3037 (w), 1644 (vs), 1602 (s), 1578 (w), 1401 (m), 1318 (s), 1291 (s), 1275 (m), 1150 (m), 1005 (w), 940 (s), 852 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 259 (16), 258 (73) [M⁺], 181 (100), 152 (30), 105 (20), 77 (14).

HR-MS (EI) für C₁₉H₁₄O: berechnet: 258.1045, gefunden: 258.1056.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁴⁸

Darstellung von 4-Acetylbiphenyl (26x) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 4-Chloracetophenon (**27s**) (154 mg, 0.94 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), [Pd₂(dba)₃] (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $30/1 \rightarrow 15/1$) ergibt **26x** (195 mg, 99%) als farblosen Feststoff (Schmb.: 112-113 °C, Lit.:²⁵⁹ 111.2-112.4 °C).

¹**H-NMR** (300 MHz, CDCl₃): *δ* = 8.04 (md, *J* = 8.7 Hz, 2H), 7.70 (md, *J* = 8.7 Hz, 2H), 7.65-7.61 (m, 2H), 7.51-7.38 (m, 3H), 2.65 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 197.7 (C_q), 145.8 (C_q), 139.9 (C_q), 135.9 (C_q), 128.9 (CH), 128.9 (CH), 128.2 (CH), 127.3 (CH), 127.2 (CH), 26.6 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3055 (m), 1681 (s), 1605 (s), 1404 (m), 1357 (m), 1265 (vs), 844 (m), 766 (s), 699 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 196 (44) [M⁺], 181 (100), 152 (61).

HR-MS (EI) für C₁₄H₁₂O: berechnet: 196.0888, gefunden: 196.0895.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁹

Darstellung von Ethyl-4-phenylbenzoat (26p) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 4-Chlorethylbenzoat (**27t**) (185 mg, 1.00 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 18 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 20/1) ergibt **26p** (222 mg, 98%) als farblosen Feststoff (Schmb.: 47-48 °C, Lit.:²⁶⁰ 46-47 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.10 (md, J = 8.2 Hz, 2H), 7.68-7.57 (m, 4H), 7.51-7.34 (m, 3H), 4.39 (q, J = 7.4 Hz, 2H), 1.40 (t, J = 7.3 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 166.5 (C_q), 145.5 (C_q), 140.0 (C_q), 130.0 (CH), 129.2 (C_q), 128.9 (CH), 128.1 (CH), 127.2 (CH), 127.0 (CH), 60.9 (CH₂), 14.3 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3212 (w), 3069 (m), 1567 (m), 1473 (s), 1400 (m), 1323 (s), 1277 (w), 1076 (m), 1095 (s), 1006 (s), 878 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 226 (62) [M⁺], 198 (32), 181 (100), 152 (57), 127 (9).

HR-MS (EI) für C₁₅H₁₄O₂: berechnet: 226.0994, gefunden: 226.0986.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁰

Darstellung von 4-Phenylbenzonitril (26w) durch Suzuki-Miyaura-Kreuzkupplung

Nach AAV 6 wird 4-Chlorbenzonitril (**27u**) (138 mg, 1.00 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **33a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 21 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 25/1 \rightarrow 15/1) ergibt **26w** (172 mg, 96%) als farblosen Feststoff (Schmb.: 84-85 °C, Lit.:²⁶¹ 86-87 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.73-7.63 (m, 4H), 7.61-7.54 (m, 2H), 7.51-7.31 (m, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 145.7 (C_q), 139.1 (C_q), 132.5 (CH), 129.1 (CH), 128.7 (CH), 127.8 (CH), 127.3 (CH), 119.0 (C_q), 110.9 (C_q). **IR** (KBr) $\tilde{\nu}$ (cm⁻¹): 3400 (vs), 3015 (s), 2980 (m), 2450 (w), 2226 (m), 2100 (m), 1856 (m), 1601 (s), 1545 (s), 1440 (m), 1320 (m), 1067 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 179 (100) [M⁺], 151 (24), 126 (13), 113 (7). **HR-MS** (EI) für C₁₃H₉N: berechnet: 179.0735, gefunden: 179.0721. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶¹

Darstellung von 4-Phenylbenzaldehyd (260) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 4-Chlorbenzaldehyd (**27h**) (141 mg, 1.00 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 20 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 30/1) ergibt **26o** (158 mg, 86%) als gelblichen Feststoff (Schmb.: 58-59 °C, Lit.:²⁶² 58-59 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 10.06 (s, 1H), 7.98 (md, *J* = 8.2 Hz, 2H), 7.75 (md, *J* = 8.2 Hz, 2H), 7.65 (md, *J* = 7.1 Hz, 2H), 7.53-7.40 (m, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 191.9 (CH), 147.1 (C_q), 139.6 (C_q), 135.2 (C_q), 130.3 (CH), 129.0 (CH), 128.4 (CH), 127.6 (CH), 127.2 (CH). IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3029 (m), 2925 (w), 2725 (s), 1688 (s), 1601 (vs), 1120 (m), 954 (m), 746 (s), 717 (s). MS (70 eV, EI) *m/z* (relative Intensität): 181 (100) [M⁺], 152 (84), 126 (21), 115 (9). HR-MS (EI) für C₁₃H₁₀O: berechnet: 182.0732, gefunden: 187.0721. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶²

Darstellung von 2-Phenylchinolin (26s) durch Suzuki-Miyaura-Kreuzkupplung

Nach AAV 6 wird 2-Chlorchinolin (**27v**) (164 mg, 1.00 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 25/1) ergibt **26s** (186 mg, 90%) als farblosen Feststoff (Schmb.: 84-85 °C, Lit.:²⁶³ 83.5-84.0 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.24-8.12 (m, 4H), 7.86 (d, J = 8.8 Hz, 1H), 7.81 (dd, J = 8.2, 1.4 Hz, 1H), 7.64 (dt, J = 7.4, 1.5 Hz, 1H), 7.56-7.43 (m, 4H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.4 (C_q), 148.2 (C_q), 139.7 (C_q), 136.8 (CH), 129.8 (CH), 129.7 (CH), 129.3 (CH), 128.8 (CH), 127.6 (CH), 127.4 (CH), 127.2 (C_q), 126.3 (CH), 119.0 (CH).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 2929 (s), 1756 (m), 1588 (s), 1496 (vs), 1440 (m), 1292 (s), 1243 (vs), 1031 (vs), 965 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 205 (100) [M⁺], 176 (23), 151 (13), 102 (32).

HR-MS (EI) für C₁₅H₁₁N: berechnet: 205.0891, gefunden: 205.0897.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶³

Darstellung von 4-Phenylpyridin (26y) durch Suzuki–Miyaura-Kreuzkupplung

$$N \rightarrow \langle \rangle$$

Nach AAV 6 wird 4-Chlorpyridin Hydrochlorid (**27e**) (115 mg, 1.00 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 20 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 5/1 \rightarrow 1/1) ergibt **26y** (141 mg, 91%) als schwach gelben Feststoff (Schmb.: 77-78 °C, Lit.:⁶⁵ 77-78 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.65 (dd, *J* = 4.6, 1.6 Hz, 2H), 7.65-7.58 (m, 2H), 7.51-7.38 (m, 5H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 150.2 (CH), 148.2 (C_q), 138.2 (C_q), 128.9 (CH), 126.8 (CH), 121.4 (CH).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3056 (m), 3030 (s), 1548 (m), 1433 (s), 1407 (vs), 1256 (w), 1077 (m), 1011 (s), 917 (w).

MS (70 eV, EI) m/z (relative Intensität): 155 (100) [M⁺], 140 (8), 127 (15), 115 (13), 102 (11).

HR-MS (EI) für C₁₁H₉N: berechnet: 155.0735, gefunden: 155.0727.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.⁶⁵

Darstellung von 2,4,6-Tri*iso*propylbiphenyl (26z) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 2,4,6-Tri*iso*propylbrombenzol (**61d**) (280 mg, 0.99 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 20 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan) ergibt **26z** (221 mg, 80%) als farblosen Feststoff (Schmb.: 119-120 °C, Lit.:²⁶⁴ 117-119 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.43-7.31 (m, 3H), 7.21-7.16 (m, 2H), 7.06 (s, 2H), 2.95 (sept, J = 7.0 Hz, 1H), 2.60 (sept, J = 7.0 Hz, 2H), 1.31 (d, J = 7.2 Hz, 6H), 1.08 (d, J = 7.0 Hz, 12H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 147.8 (C_q), 146.6 (C_q), 140.8 (C_q), 137.1 (C_q), 129.7 (CH), 127.8 (CH), 126.4 (CH), 120.5 (CH), 34.3 (CH), 30.2 (CH₃), 24.2 (CH₃), 24.1 (CH).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3078 (m), 3005 (m), 2942 (m), 1483 (m), 1411 (m), 1353 (w), 1001 (w), 790 (s), 777 (w), 712 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 280 (91) [M⁺], 265 (79), 237 (28), 223 (25), 191 (18), 181 (100), 165 (38), 152 (18).

HR-MS (EI) für C₂₁H₂₈: berechnet: 280.2191, gefunden: 280.2184.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁴

Darstellung von 1-(2-Methoxyphenyl)naphthalin (116a) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 1-Chlornaphthalin (**27x**) (158 mg, 0.97 mmol) mit 2-Methoxyphenylboronsäure (**33c**) (228 mg, 1.50 mmol), [Pd₂(dba)₃] (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 20 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n* Pentan/Et₂O = $1/0 \rightarrow 200/1$) ergibt **116a** (211 mg, 93%) als farblosen Feststoff (Schmb.: 92-93 °C, Lit.:²⁶⁵ 91-92 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.92-7.84 (m, 2H), 7.62-7.58 (m, 1H), 7.55-7.51 (m, 1H), 7.48-7.35 (m, 4H), 7.30 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.13-7.03 (m, 2H), 3.70 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.2 (C_q), 137.0 (C_q), 133.5 (C_q), 132.1 (C_q), 131.9 (CH), 129.5 (C_q), 129.0 (CH), 128.1 (CH), 127.6 (CH), 127.3 (CH), 126.4 (CH), 125.6 (CH), 125.5 (CH), 125.3 (CH), 120.5 (CH), 111.0 (CH), 55.5 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3020 (w), 2834 (m), 1607 (s), 1515 (s), 1473 (s), 1280 (vs), 1175 (vs), 1036 (s), 829 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 274 (100) [M⁺], 219 (45), 203 (21), 189 (52), 165 (15).

HR-MS (EI) für $C_{17}H_{14}O$: berechnet: 234.1045, gefunden: 234.1032. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁵

Darstellung von 2,6-Dimethylbiphenyl (26j) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 2,6-Dimethylchlorbenzol (**27d**) (140 mg, 0.97 mmol) mit Phenylboronsäure (**33a**) (183 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan) ergibt **26j** (100 mg, 55%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.45 (mt, *J* = 8.2 Hz, 2H), 7.35 (m, 1H), 7.20-7.00 (m, 5H), 2.04 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 141.9 (C_q), 141.1 (C_q), 136.0 (C_q), 129.0 (CH), 128.4 (CH), 127.3 (CH), 127.0 (CH), 126.6 (CH), 20.8 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 3058 (m), 3021 (m), 2922 (m), 1463 (m), 1443 (m), 1378 (w), 1008 (w), 767 (s), 743 (w), 703 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 182 (100) [M⁺], 178 (6), 167 (75), 152 (16), 115 (4).

HR-MS (EI) für C₁₄H₁₄: berechnet: 182.1096, gefunden: 182.1104.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁵⁹

Darstellung von Cyclopent-1-enyl-2-methylbenzol (116b) durch Suzuki–Miyaura-Kreuzkupplung

Nach AAV 6 wird 1-Chlorcyclopenten (**117**) (105 mg, 1.02 mmol) mit 2-Tolylboronsäure (**33**) (204 mg, 1.50 mmol), $[Pd_2(dba)_3]$ (9.2 mg, 0.010 mmol), **42a** (17.8 mg, 0.040 mmol) und CsF (456 mg, 3.00 mmol) in 1,4-Dioxan (4.0 mL) 22 h bei 80 °C umgesetzt.

Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan) ergibt **116b** (134 mg, 83%) als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.20-7.10 (m, 4H), 5.77 (m, 1H), 2.70-2.58 (m, 2H), 2.55-2.43 (m, 2H), 2.35 (s, 3H), 2.02-1.88 (m, 2H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 143.2 (C_q), 138.2 (C_q), 135.5 (C_q), 130.4 (CH), 129.3 (CH), 128.0 (CH), 126.4 (CH), 125.5 (CH), 36.6 (CH₂), 33.6 (CH₂), 23.7 (CH₂), 21.1 (CH₃). **IR** (NaCl) $\tilde{\nu}$ (cm⁻¹): 2939 (w), 2845 (m), 1491 (s), 1467 (m), 1021 (s), 914 (s), 789 (w), 734 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 158 (68) [M⁺], 143 (100), 128 (34), 115 (24). **HR-MS** (EI) für C₁₂H₁₄: berechnet:158.1096, gefunden: 158.1084.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁶

Darstellung von 9-Phenyl-9H-carbazol (65c)

Nach AAV 7 werden Diphenylamin (**119**) (203 mg, 1.20 mmol), 1,2-Dichlorbenzol (**120d**) (147 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), NaO*t*-Bu (288 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in Toluol (10.0 mL) 18 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan) ergibt **65c** (206 mg, 85%) als gelben Feststoff (Schmb.: 91.2-91.6 °C, Lit.:²⁶⁷ 161-163 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.19-8.17 (m, 2H), 7.66-7.57 (m, 4H), 7.52-7.46 (m, 1H), 7.44-7.41 (m, 4H), 7.34-7.29 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 140.9 (C_q), 137.7 (C_q), 129.8 (CH), 127.3 (CH), 127.1 (CH), 125.9 (CH), 123.2 (C_q), 120.3 (CH), 119.9 (CH), 109.7 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3791 (m), 3640 (vs), 3035 (br), 1934 (w), 1585 (vs), 1491 (vs), 1475 (vs), 1335 (m), 1232 (s), 1027 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 243 (100) [M⁺], 242 (14), 241 (14), 166 (2), 121 (2).

HR-MS (EI) für C₁₈H₁₃N: berechnet: 243.1048, gefunden: 243.1022.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁷

Darstellung von 5-Phenyl-5*H*-pyrazin[2,3-b]indol (65d)

Nach AAV 7 werden Diphenylamin (**119**) (203 mg, 1.20 mmol), 2,3-Dichlorpyrazin (**120e**) (156 mg, 1.05 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), NaO*t*-Bu (288 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in Toluol (10.0 mL) 18 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $30/1 \rightarrow 5/1$) ergibt **65d** (239 mg, 93%) als gelben Feststoff (Schmb.: 162.7-163.7 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.56 (d, J = 2.8 Hz, 1H), 8.43 (md, J = 7.9 Hz, 1H), 8.39 (d, J = 2.8 Hz, 1H), 7.66-7.46 (m, 7H), 7.43 (dt, J = 7.3, 1.6 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 146.0 (C_q), 141.7 (C_q), 140.1 (CH), 137.8 (CH), 136.8 (C_q), 135.2 (C_q), 130.0 (CH), 129.6 (CH), 128.3 (CH), 127.3 (CH), 122.0 (CH), 121.9 (CH), 120.2 (C_q), 110.9 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2923 (m), 1620 (m), 1594 (m), 1499 (s), 1452 (s), 1405 (vs), 1325 (s), 1169 (vs), 1103 (s), 746 (m), 693 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 245 (100) [M⁺], 217 (4), 190 (6), 164 (3), 144 (2), 122 (12).

HR-MS (EI) für C₁₆H₁₁N₃: berechnet: 245.0953, gefunden: 245.0955.

Darstellung von 9-Phenyl-2-(trifluormethyl)-9H-pyrido[2,3-b]indol (65e)

Nach AAV 7 werden Diphenylamin (**119**) (203 mg, 1.20 mmol), 2,3-Dichlor-5-(trifluormethyl)pyridin (**120f**) (220 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), NaOt-Bu (288 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in Toluol (10.0 mL) 18 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 100/1 \rightarrow 15/1) ergibt **65d** (289 mg, 93%) als hellgelben Feststoff (Schmb.: 108.3-109.6 °C). ¹**H-NMR** (300 MHz, CDCl₃): δ = 8.75 (m, 1H), 8.61 (s, 1H), 8.18-8.16 (m, 1H), 7.65-7.63 (m, 4H), 7.55-7.49 (m, 3H), 7.43-7.38 (m, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 153.1 (C_q), 143.6 (q, *J* = 4.1 Hz, C_q), 141.0 (C_q), 135.5 (C_q), 129.8 (CH), 128.2 (CH), 128.0 (C_q), 128.3 (d, *J* = 272.2 Hz, C_q), 127.3 (CH), 125.5 (q, *J* = 4.1 Hz, CH), 123.0 (CH), 121.6 (C_q), 121.3 (CH), 120.2 (CH), 119.1 (d, *J* = 32.1 Hz, CH), 110.9 (CH).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -60.42$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3147 (w), 3059 (w), 2890 (w), 1600 (s), 1501 (s), 1407, (s) 1340 (vs), 1266 (vs), 1144 (s), 1101 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 312 (84) [M⁺], 311 (100), 293 (8), 242 (18), 156 (15), 146 (11).

HR-MS (EI) für $C_{18}H_{11}F_3N_2$: berechnet: 312.0874, gefunden: 312.0886.

Darstellung von 4-Phenyl-1,2,3,4-tetrahydrocyclopenta[b]indol (65f)

Nach AAV 7 werden Diphenylamin (**119**) (203 mg, 1.20 mmol), 1,2-Dibromcyclopenten (**120g**) (230 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), NaOt-Bu (288 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in Toluol (10.0 mL) 18 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 1/0 \rightarrow 300/1) ergibt **65f** (175 mg, 77%) als gelben Feststoff (Schmb.: 91.2-92.0 °C).

¹**H-NMR** (600 MHz, CDCl₃): δ = 7.53-7.50 (m, 3H), 7.47-7.45 (m, 3H), 7.36-7.33 (m, 1H), 7.17-7.12 (m, 2H), 2.95-2.90 (m, 4H), 2.57 (quint, *J* = 7.1 Hz, 2H).

¹³**C-NMR** (150 MHz, CDCl₃): δ = 145.6 (C_q), 140.9 (C_q), 129.0 (C_q), 129.4 (C_q), 126.1 (CH), 125.0 (CH), 124.8 (CH), 120.9 (CH), 120.4 (CH), 120.1 (C_q), 118.6 (CH), 110.8 (CH), 28.3 (CH₂), 26.2 (CH₂), 25.6 (CH₂).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3043 (w), 2960 (w), 2903 (m), 2848 (m), 1597 (s), 1498 (vs), 1446 (vs), 1371 (vs), 1075 (s), 758 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 233 (100) [M⁺], 232 (72), 218 (11), 217 (11), 128 (3).

HR-MS (EI) für $C_{17}H_{15}N$: berechnet: 233.1204, gefunden: 233.1202. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁸

Darstellung von 2-Chlor-(N-p-tolyl)anilin (123)

Nach AAV 7 wird 4-Methylanilin (**122a**) (129 mg, 1.20 mmol), 2-Chlorbrombenzol (**120c**) (192 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), NaO*t*-Bu (288 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in Toluol (10.0 mL) 18 h bei 105 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 100/1 \rightarrow 50/1) ergibt **123** (105 mg, 94%) als gelbliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.34 (dd, J = 8.3, 1.7 Hz, 1H), 7.20-7.06 (m, 6H), 6.77 (dt, J = 7.2, 1.7 Hz, 1H), 6.04 (s, br, 1H), 2.35 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 141.0 (C_q), 138.7 (C_q), 132.7 (C_q), 129.9 (CH), 129.6 (CH), 127.4 (CH), 121.3 (CH), 120.8 (C_q), 119.7 (CH), 114.7 (CH), 20.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3421 (w), 2893 (br), 2602 (m), 1592 (s), 1500 (m), 1320 (vs), 1106 (vs), 1033 (s), 745 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 217 (100) [M⁺], 216 (20), 182 (26), 180 (10), 167 (23), 91 (7).

HR-MS (EI) für C₁₃H₁₂ClN: berechnet: 217.0658, gefunden: 217.0666.

Darstellung von 3-Methyl-9H-carbazol (69g)

Nach AAV 8 wird 4-Methylanilin (**122a**) (129 mg, 1.20 mmol), 1,2-Dichlorbenzol (**120c**) (147 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K_3PO_4 (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt.

Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $100/1 \rightarrow 30/1$) ergibt **65g** (140 mg, 77%) als bräunlichen Feststoff (Schmb.: 205.4-207.0 °C, Lit.:²⁶⁹ 205-207 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.05 (d, J = 8.4 Hz, 1H), 7.92 (s, br, 1H), 7.88 (s, 1H), 7.40 (d, J = 4.0 Hz, 2H), 7.32 (d, J = 7.9 Hz, 1H), 7.25-7.21 (m, 2H), 2.54 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.8 (C_q), 137.7 (C_q), 128.7 (C_q), 127.1 (CH), 125.6 (CH), 123.5 (C_q), 123.2 (C_q), 120.2 (CH), 120.2 (CH), 119.2 (CH), 110.5 (CH), 110.2 (CH), 21.4 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3853 (m), 3402 (vs), 2915 (s), 1826 (m), 1457 (s), 1333 (m), 1239 (m), 1026 (s), 804 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 181 (100) [M⁺], 180 (81), 178 (8), 152 (13), 91 (9), 77 (6).

HR-MS (EI) für C₁₃H₁₁N: berechnet: 181.0891, gefunden: 181.0886.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁹

Darstellung von 3,4-Dichlorbenzoesäureethylester (120h)

Eine Lösung aus 3,4-Dichlorbenzoesäure (**124**) (3.821 g, 20.00 mmol), konzentrierter H₂SO₄ (4.903 g, 50.03 mmol) in EtOH (100 mL) wird für 12 h bei 95 °C unter Rückfluß erhitzt. Das Reaktionsgemisch wird mit 2 M Natronlauge neutralisiert und mit EtOAc (2×50 mL) extrahiert. Trocknen der vereinigten organischen Phasen über MgSO₄, Filtration und Entfernen der Lösungsmittel im Vakuum, liefert einen farblosen Rückstand, dessen Umkristallisation aus EtOH in der Siedehitze **120h** (1.821 g, 83%) als farblosen Feststoff (Schmb.: 37.2-37.7 °C) ergibt.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.12-8.10 (m, 1H), 7.89-7.84 (m, 1H), 7.53 (m, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 164.7 (C_q), 137.4 (C_q), 132.8 (C_q), 131.5 (CH), 130.5 (CH), 130.3 (CH), 128.6 (C_q), 61.6 (CH₂), 14.2 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3415 (br), 2983 (w), 1710 (vs), 1584 (vs), 1409 (vs), 1270 (vs), 1242 (vs), 1021 (m), 756 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 218 (33) [M⁺], 217 (21), 190 (45), 175 (82), 173 (100), 145 (50), 109 (29), 75 (13).

HR-MS (EI) für C₉H₈Cl₂O₂: berechnet: 217.9901, gefunden: 217.9913.

Darstellung von 3,4-Dichlorbenzophenon (120i)

In einem Schlenkkolben wird zu einer Lösung aus 3,4-Dichlorbenzoesäure (**124**) (3.821 g, 20.00 mmol) in Et₂O (100 mL) langsam Phenyllithium (25.0 mL, 38.00 mmol, 1.52 M in *n*-Bu₂O) bei 0 °C zugetropft. Die Lösung wird für 2 h bei dieser Temperatur weitergerührt und danach vorsichtig mit ges. NH₄Cl-Lösung (40 mL) versetzt. Die separierte wässrige Phase wird mit Et₂O (2 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden am Rotationsverdampfer entfernt. Der erhaltene Rückstand wird säulenchromatographisch auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 30/1) gereinigt. **120i** (1.971 g, 39%) wird als farbloser Feststoff (Schmb.: 101.8-102.6 °C) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.90 (d, J = 2.6 Hz, 1H), 7.79-7.75 (m, 2H), 7.65-7.48 (m, 5H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 194.2 (C_q), 137.2 (C_q), 137.0 (C_q), 136.7 (C_q), 132.9 (C_q), 132.7 (CH), 131.8 (CH), 130.4 (CH), 129.9 (CH), 129.0 (CH), 128.5 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3084 (m), 1653 (vs), 1581 (s), 1382 (m), 1272 (s), 1246 (s), 1033 (m), 961 (m), 697 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 195 (100) [M⁺], 194 (51), 180 (34), 97 (5).

HR-MS (EI) für C₁₃H₈Cl₂O: berechnet: 249.9952, gefunden: 249.9978.

Darstellung von N-(3,4-Dichlorphenylcarbonyl)morpholin (120j)

In einem Schlenkkolben werden zu einer Lösung aus 3,4-Dichlorbenzoesäure (**124**) (3.821 g, 20.00 mmol) in CH₂Cl₂ (50 mL) T3P[®] (**125**) (19.082 g, 34.01 mmol, 56.7 Gew.-% in EtOAc), Morpholin (**126**) (2.265 g, 26.00 mmol) und NEt₃ (6.072 g, 60.02 mmol) 14 h bei Umgebungstemperatur gerührt. Die Lösung wird mit Et₂O (50 mL) und H₂O (70 mL) versetzt und die abgetrennte wässrige Phase mit Et₂O (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden am Rotationsverdampfer entfernt. Der erhaltene Rückstand wird mittels Umkristallisation aus EtOH in der Siedehitze gereinigt. **120j** (3.431 g, 66%) wird als farbloser kristalliner Feststoff (Schmb.: 98.2-98.9 °C) erhalten.

¹H-NMR (300 MHz, CDCl₃): δ = 7.52-7.48 (m, 2H), 7.25-7.22 (m, 1H), 3.82-2.93 (s, br, 8H).
¹³C-NMR (75 MHz, CDCl₃): δ = 168.2 (Cq), 135.3 (Cq), 134.6 (Cq), 133.4 (Cq), 130.9 (CH), 129.6 (CH), 126.7 (CH), 67.0 (CH₂).
IR (ATR) ν (cm⁻¹): 3083 (w), 1595 (vs), 1443 (vs), 1310 (s), 1129 (s), 1078 (m), 1033 (s), 1000 (m), 961 (m).
MS (70 eV, EI) *m/z* (relative Intensität): 259 (38) [M⁺], 258 (45), 175 (75), 173 (100), 145 (41), 109 (20).
HR-MS (EI) für C₁₁H₁₁Cl₂NO₂: berechnet: 259.0167, gefunden: 259.0143.

Darstellung von 9H-Carbazol (65h)

Nach AAV 8 werden Anilin (**122b**) (112 mg, 1.20 mmol), 1,2-Dichlorbenzol (**120d**) (138 mg, 0.94 mmol), [Pd(OAc)₂] (11.2 mg, 0.05 mmol), K₃PO₄ (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt.

Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan) ergibt **65h** (127 mg, 81%) als farblosen Feststoff (Schmb.: 246.2-246.8 °C, Lit.:²⁶⁹ 245-247 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.12 (d, *J* = 7.9 Hz, 2H), 8.06 (s, br, 1H), 7.48 (s, br, 1H), 7.47-7.45 (m, 3H), 7.33-7.25 (m, 2H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.5 (C_q), 125.8 (CH), 123.4 (C_q), 120.3 (CH), 119.4 (CH), 110.6 (CH). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3414 (w), 3050 (m), 1601 (s), 1450 (vs), 1325 (s), 1233 (m), 1068 (s), 746 (vs). **MS** (70 eV, EI) *m/z* (relative Intensität): 167 (100) [M⁺], 91 (23), 65 (4). **HR-MS** (EI) für C₁₂H₉N: berechnet: 167.0735, gefunden: 167.0763.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁹

Darstellung von 3-Methoxy-9H-carbazol (65i)

Nach AAV 8 werden 4-Methoxyanilin (**122c**) (148 mg, 1.20 mmol), 1,2-Dichlorbenzol (**120d**) (147 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K_3PO_4 (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 10/1) ergibt **65i** (140 mg, 71%) als bläulichen Feststoff (Zersetzung: 139 °C, Lit.:²⁶⁹ 140 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.06 (d, J = 7.9 Hz, 1H), 7.89 (s, br, 1H), 7.56 (d, J = 2.6 Hz, 1H), 7.41-7.39 (m, 2H), 7.31 (d, J = 8.8 Hz, 1H), 7.26-7.19 (m, 1H), 7.08 (dd, J = 1.8 Hz, 1H), 3.94 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 153.9 (C_q), 140.3 (C_q), 134.4 (C_q), 125.8 (CH), 123.8 (C_q), 123.3 (C_q), 120.2 (CH), 119.0 (CH), 115.0 (CH), 111.3 (CH), 110.7 (CH), 103.2 (CH), 56.1 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3419 (vs), 2932 (s), 1457 (vs), 1280 (m), 1198 (vs), 1166 (s), 1033 (m), 818 (s), 746 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 197 (79) [M⁺], 182 (100), 154 (32), 127 (10), 69 (2).

HR-MS (EI) für $C_{13}H_{11}NO$: berechnet: 197.0841, gefunden: 197.0849. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁹

Darstellung von 1-Methyl-9H-carbazol (65j)

Nach AAV 8 werden 2-Methylanilin (**122d**) (129 mg, 1.20 mmol), 1-Brom-2-chlorbenzol (**120c**) (200 mg, 1.04 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K_3PO_4 (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 100/1 \rightarrow 70/1) ergibt **65j** (105 mg, 56%) als braunen Feststoff (Schmb.: 123.5-124.5 °C, Lit.:²⁶⁹ 124-125 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.09 (d, *J* = 8.4 Hz, 1H), 7.97-7.90 (m, 2H), 7.48-7.45 (m, 1H), 7.44 (dt, *J* = 7.2, 1.0 Hz, 1H), 7.28-7.24 (m, 2H), 7.20-7.17 (m, 1H), 2.59 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.6 (C_q), 139.1 (C_q), 126.6 (CH), 125.9 (CH), 124.1 (C_q), 123.1 (C_q), 120.7 (CH), 120.0 (C_q), 119.8 (CH), 119.7 (CH), 118.2 (CH), 110.9 (CH), 17.1 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3407 (vs), 2970 (m), 1863 (w), 1604 (m), 1450 (s), 1322 (s), 1233 (s), 1117 (m), 749 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 181 (27) [M⁺], 169 (100), 131 (41), 119 (33).

HR-MS (EI) für C₁₃H₁₁N: berechnet: 181.0891, gefunden: 181.0895.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁶⁹

Darstellung von 1,3-Dimethyl-9H-carbazol (65k)

Nach AAV 8 werden 2,4-Dimethylanilin (**122e**) (145 mg, 1.20 mmol), 1,2-Dichlorbenzol (**120d**) (147 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K_3PO_4 (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt.

Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $70/1 \rightarrow 15/1$) ergibt **65k** (123 mg, 63%) als farblosen Feststoff (Schmb.: 91.3-91.6 °C, Lit.:²⁷⁰ 90-92 °C).

¹**H-NMR** (600 MHz, CDCl₃): δ = 8.04 (d, J = 8.8 Hz, 1H), 7.86 (s, br, 1H), 7.74 (s, 1H), 7.45-7.43 (m, 1H), 7.40 (dd, J = 7.1, 0.8 Hz, 1H), 7.24-7.21 (m, 1H), 7.08 (s, 1H), 2.54 (s, 3H), 2.52 (s, 3H).

¹³**C-NMR** (150 MHz, CDCl₃): δ = 139.7 (C_q), 137.1 (C_q), 128.9 (C_q), 127.9 (CH), 124.5 (C_q), 123.7 (C_q), 123.0 (C_q), 120.3 (CH), 119.3 (CH), 119.2 (CH), 117.8 (CH), 110.6 (CH), 21.4 (CH₃), 16.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3750 (s), 3410 (vs), 3049 (vs), 2963 (s), 2917 (s), 2852 (m), 2732 (m), 1844 (s), 1733 (m), 1495 (s), 1449 (s), 1229 (m), 1012 (m), 743 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 195 (100) [M⁺], 194 (51), 180 (34), 97 (5), 77 (2).

HR-MS (EI) für C₁₄H₁₃N: berechnet: 195.1048, gefunden: 195.1045.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷⁰

Darstellung von 2-Methyl-9H-carbazol (65l)

Nach AAV 8 werden 3-Methylanilin (**122f**) (129 mg, 1.20 mmol), 1,2-Dichlorbenzol (**120d**) (147 mg, 1.00 mmol), [Pd(OAc)₂] (11.2 mg, 0.05 mmol), K₃PO₄ (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 15/1$) ergibt **65l** (136 mg, 75%) als farblosen Feststoff (Zersetzung: 230 °C, Lit.:²⁷¹ 232 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.04 (d, J = 7.9 Hz, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.89 (s, br, 1H), 7.39 (d, J = 3.5 Hz, 1H), 7.27-7.24 (m, 1H), 7.21 (s, 1H), 7.20 (m, 1H), 7.08 (d, J = 7.9 Hz, 1H), 2.54 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.9 (C_q), 139.5 (C_q), 136.0 (C_q), 125.3 (CH), 123.4 (C_q), 121.1 (C_q), 121.0 (CH), 120.0 (CH), 120.0 (CH), 119.3 (CH), 110.7 (CH), 110.5 (CH), 22.0 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3396 (vs), 2912 (s), 1605 (m), 1459 (s), 1439 (s), 1325 (m), 1241 (w), 997 (w), 725 (s). MS (70 eV, EI) *m/z* (relative Intensität): 181 (100) [M⁺], 152 (13), 127 (8), 90 (6), 63 (5). HR-MS (EI) für C₁₃H₁₁N: berechnet: 181.0891, gefunden: 181.0873. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷¹

Darstellung von 1-Methoxy-9H-carbazol (65m)

Nach AAV 8 werden 2-Methoxyanilin (**122g**) (148 mg, 1.20 mmol), 1,2-Dichlorbenzol (**120d**) (150 mg, 1.02 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K_3PO_4 (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 30/1) ergibt **65m** (129 mg, 64%) als gräulichen Feststoff (Schmb.: 72.7-74.0 °C, Lit.:²⁷¹ 71-73 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.26 (s, br, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.49-7.40 (m, 2H), 7.24 (m, 1H), 7.18 (t, J = 7.9 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H), 4.03 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 145.7 (C_q), 139.2 (C_q), 129.8 (C_q), 125.7 (CH), 124.5 (C_q), 123.7 (C_q), 120.5 (CH), 119.7 (CH), 119.4 (CH), 112.8 (CH), 110.9 (CH), 105.9 (CH), 55.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3853 (s), 3412 (vs), 3005 (m), 2604 (w), 1889 (w), 1577 (s), 1434 (s), 1254 (m), 1094 (s), 853 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 197 (100) [M⁺], 182 (69), 166 (9), 154 (46), 139 (9), 127 (6).

HR-MS (EI) für C₁₃H₁₁NO: berechnet: 197.0841, gefunden: 197.0821.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷¹

Darstellung von 1-Fluor-9H-carbazol (65n)

Nach AAV 8 werden 2-Fluoranilin (**122h**) (133 mg, 1.20 mmol), 1-Brom-2-chlorbenzol (**120c**) (192 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K_3PO_4 (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 1/0 \rightarrow 200/1) ergibt **65n** (148 mg, 80%) als farblosen Feststoff (Zersetzung: 164 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.14 (s, br, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.86-7.98 (m, 1H), 7.45 (d, J = 4.4 Hz, 2H), 7.27 (dd, J = 7.9, 4.4 Hz, 1H), 7.16-7.12 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.1 (q, J = 242.7 Hz, C_q), 139.5 (C_q), 127.9 (CH), 126.9 (q, J = 25.2 Hz, CH), 126.5 (CH), 123.2 (CH), (q, J = 4.2 Hz, C_q), 120.6 (CH), 120.0 (CH), 119.7 (q, J = 7.3 Hz, CH), 115.9 (q, J = 3.3 Hz, C_q), 111.0 (CH), 110.8 (CH).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -133.31$ (m).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3394 (vs), 1581 (s), 1454 (m), 1391 (m), 1313 (s), 1246 (s), 1149 (m), 1051 (s), 739 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 185 (100) [M⁺], 164 (21), 158 (13), 92 (7).

HR-MS (EI) für C₁₂H₈FN: berechnet: 185.0651, gefunden: 185.0638.

Darstellung von 1-Methoxy-7-methyl-9H-carbazol (650)

Nach AAV 8 werden 2-Methoxyanilin (**122g**) (148 mg, 1.20 mmol), 1-Brom-2-chlor-5methylbenzol (**120k**) (147 mg, 0.94 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K₃PO₄ (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 15/1) ergibt **650** (172 mg, 80%) als farblosen Feststoff (Schmb.: 172.6-174.4 °C).
¹**H-NMR** (300 MHz, CDCl₃): δ = 8.15 (s, br, 1H), 7.94 (d, *J* = 7.4 Hz, 1H), 7.65 (d, *J* = 7.4 Hz, 1H), 7.25 (s, 1H), 7.15 (t, d, *J* = 8.2 Hz, 1H), 7.07 (d, *J* = 8.2 Hz, 1H), 6.89 (d, *J* = 7.4 Hz, 1H), 4.02 (s, 3H), 2.54 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 145.6 (C_q), 139.6 (C_q), 135.8 (C_q), 129.6 (C_q), 124.4 (C_q), 121.4 (CH), 120.9 (C_q), 120.2 (CH), 119.6 (CH), 112.6 (CH), 111.0 (CH), 105.5 (CH), 55.5 (CH₃), 22.0 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3401 (vs), 2833 (m), 1576 (m), 1504 (m), 1436 (m), 1323 (m), 1241 (s),

1100 (m), 933 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 211 (100) [M⁺], 197 (10), 196 (68), 168 (53), 167 (15), 138 (5), 83 (8).

HR-MS (EI) für C₁₄H₁₃NO: berechnet: 211.0997, gefunden: 211.0984.

Darstellung von 3-Ethoxycarboxyl-9H-carbazol (65p)

Nach AAV 8 werden Anilin (**122b**) (112 mg, 1.20 mmol), 3,4-Dichlorbenzoesäureethylester (**120h**) (219 mg, 1.00 mmol), [Pd(OAc)₂] (11.2 mg, 0.05 mmol), K₃PO₄ (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 5/1$) ergibt **65p** (148 mg, 62%) als farblosen Feststoff (Schmb.: 162.1-163.0 °C, Lit.:²⁷² 162.0-162.6 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.78 (s, 1H), 8.39 (s, br, 1H), 8.13-8.05 (m, 2H), 7.43-7.31 (m, 3H), 7.27-7.21 (m, 1H), 4.42 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 194.1 (C_q), 167.5 (C_q), 142.3 (C_q), 139.9 (C_q), 127.4 (CH), 126.5 (CH), 123.2 (CH), 122.8 (C_q), 121.7 (CH), 120.6 (C_q), 120.2 (CH), 111.0 (CH), 110.2 (CH), 60.7 (CH₂), 14.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3287 (vs), 2979 (m), 1681 (vs), 1599 (s), 1364 (s), 1334 (s), 1263 (vs), 1100 (m), 1032 (w), 910 (w), 724 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 239 (91) [M⁺], 224 (13), 211 (27), 194 (100), 166 (44), 139 (22).

HR-MS (EI) für $C_{15}H_{13}NO_2$: berechnet: 239.0946, gefunden: 239.0933. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷²

Darstellung von 3-Ethoxycarboxyl-6-methyl-9H-carbazol (65q)

Nach AAV 8 werden 4-Methylanilin (**122a**) (219 mg, 1.20 mmol), 3,4-Dichlorbenzoesäureethylester (**120h**) (219 mg, 1.00 mmol), [Pd(OAc)₂] (11.2 mg, 0.05 mmol), K₃PO₄ (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 5/1$) ergibt **65q** (136 mg, 57%) als orangefarbenen Feststoff (Schmb.: 166.8-168.9 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.73 (m, 1H), 8.26 (s, br, 1H), 8.08-8.05 (m, 1H), 7.86 (s, 1H), 7.34-7.29 (m, 1H), 7.28-7.19 (m, 2H), 4.39 (q, *J* = 7.1 Hz, 2H), 2.48 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 167.5 (C_q), 142.5 (C_q), 138.1 (C_q), 129.7 (C_q), 127.8 (CH), 127.2 (CH), 123.5 (C_q), 122.9 (CH), 122.7 (C_q), 121.4 (C_q), 120.5 (CH), 110.5 (CH), 110.0 (CH), 60.7 (CH₂), 21.4 (CH₃), 14.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3302 (vs), 2979 (m), 1680 (vs), 1606 (s), 1365 (m), 1289 (s), 1260 (s), 1136 (m), 1021 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 253 (100) [M⁺], 238 (10), 225 (45), 208 (90), 180 (81), 164 (3), 152 (23), 103 (7).

HR-MS (EI) für C₁₆H₁₅NO₂: berechnet: 253.1103, gefunden: 253.1123.

Darstellung von 3-Phenylcarbonyl-9H-carbazol (65r)

Nach AAV 8 werden Anilin (**122b**) (112 mg, 1.20 mmol), 3,4-Dichlorbenzophenon (**120i**) (215 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K_3PO_4 (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 3/1) ergibt **65r** (209 mg, 77%) als gelben Feststoff (Schmb.: 162.1-163.0 °C, Lit.:²⁷³ 162-163 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 8.59$ (d, J = 1.6 Hz, 1H), 8.43 (s, br, 1H), 8.08 (d, J = 7.3 Hz, 1H), 8.01-7.97 (m, 1H), 7.87 (m, 1H), 7.85-7.84 (m, 1H), 7.61 (dd, J = 7.3, 2.4 Hz, 1H), 7.55-7.46 (m, 5H), 7.31-7.27 (m, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 196.7 (C_q), 142.5 (C_q), 140.2 (C_q), 139.2 (C_q), 131.7 (CH), 129.9 (CH), 129.2 (C_q), 128.6 (CH), 128.2 (C_q), 126.6 (CH), 123.9 (C_q), 123.4 (CH), 123.0 (CH), 120.7 (CH), 120.4 (CH), 111.0 (CH), 110.2 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3238 (vs), 3060 (m), 1566 (m), 1409 (m), 1327 (s), 1268 (vs), 1234 (m), 1069 (m), 1015 (w), 783 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 271 (100) [M⁺], 242 (11), 194 (83), 166 (56), 139 (41), 121 (13).

HR-MS (EI) für C₁₉H₁₃NO: berechnet: 271.0997, gefunden: 271.0994.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷³

Darstellung von 3-Phenylcarbonyl-6-methyl-9H-carbazol (65s)

Nach AAV 8 werden 4-Methylanilin (**122a**) (129 mg, 1.20 mmol), 3,4-Dichlorbenzophenon (**120i**) (251 mg, 1.00 mmol), [Pd(OAc)₂] (11.2 mg, 0.05 mmol), K₃PO₄ (637 mg, 3.00 mmol)

und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 2/1$) ergibt **65s** (218 mg, 76%) als gelben Feststoff (Schmb.: 217.4-219.6 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.51 (s, 1H), 8.29 (s, br, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.86-7.79 (m, 3H), 7.59-7.21 (m, 6H), 2.48 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 196.7 (C_q), 142.5 (C_q), 139.0 (C_q), 138.2 (C_q), 131.7 (CH), 129.9 (CH), 129.0 (C_q), 128.8 (C_q), 128.4 (CH), 128.2 (CH), 128.0 (CH), 124.0 (CH), 123.6 (C_q), 122.8 (C_q), 120.6 (CH), 110.6 (CH), 110.2 (CH), 21.4 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3254 (vs), 1642 (m), 1567 (vs), 1442 (m), 1312 (m), 1290 (s), 1276 (s), 1169 (m), 1078 (m), 807 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 285 (85) [M⁺], 208 (100), 180 (45), 152 (17), 105 (7), 77 (9).

HR-MS (EI) für $C_{20}H_{15}NO$: berechnet: 285.1154, gefunden: 285.1167.

Darstellung von 3-(Morpholinylcarbonyl)-6-methyl-9H-carbazol (65t)

Nach AAV 8 werden 4-Methylanilin (**122a**) (129 mg, 1.20 mmol), 3,4-Dichlorphenylmorpholinylcarbonyl (**120j**) (260 mg, 1.00 mmol), $[Pd(OAc)_2]$ (11.2 mg, 0.05 mmol), K₃PO₄ (637 mg, 3.00 mmol) und PCy₃ (**12h**) (28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 0/1) ergibt **65t** (109 mg, 71%) als farblosen Feststoff (Schmb.: 261.8-263.2 °C).

¹**H-NMR** (300 MHz, d_6 -DMSO): $\delta = 11.32$ (s, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.94 (m, 1H), 7.48-7.47 (m, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.26-7.23 (m, 1H), 7.15 (dd, J = 8.2, 1.6 Hz, 1H), 3.62 (s, br, 8H), 3.35 (s, 3H).

¹³**C-NMR** (75 MHz, d_6 -DMSO): δ = 169.8 (C_q), 139.2 (C_q), 138.6 (C_q), 132.2 (C_q), 127.5 (CH), 127.4 (C_q), 123.0 (C_q), 121.9 (CH), 120.1 (CH), 119.8 (C_q), 117.2 (CH), 110.8 (CH), 109.8 (CH), 66.1 (CH₂), 21.0 (CH₃).

IR (ATR) \tilde{v} (cm⁻¹): 3157 (vs), 2985 (m), 2916 (m), 2850 (m), 1599 (s), 1579 (m), 1452 (vs), 1435 (m), 1359 (s), 1271 (m), 1109 (m), 805 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 294 (38) [M⁺], 208 (100), 180 (35), 152 (13), 77 (6). **HR-MS** (EI) für C₁₈H₁₈N₂O₂: berechnet: 294.1368, gefunden: 294.1350.

Darstellung von 2-Methoxy-4-methylanilin (122i)

In einem Schlenkkolben wird 2-Methoxy-4-methylnitrobenzol (**127**) (836 mg, 5.00 mmol), in Ethanol (30.0 mL) gelöst, mit Palladium/Kohle (265mg, 0.05 mmol, 10 Gew.-%) versetzt und unter Wasserstoffatmosphäre (1.0 bar) 17 h bei Umgebungstemperatur umgesetzt. Das Lösungsmittel wird im Vakuum entfernt. Säulenchromatographische Reinigung des Rohprodukts auf Kieselgel (Et₂O) ergibt **122i** (665 mg, 97%) als rote Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 6.68-6.59 (m, 3H), 3.86 (s, 3H), 3.41 (s, br, 2H), 2.29 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 140.7 (C_q), 135.5 (C_q), 128.3 (C_q), 121.4 (CH), 115.2 (CH), 118.8 (CH), 55.7 (CH₃), 21.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3449 (m), 3365 (m), 2936 (w), 1623 (vs), 1590 (s), 1519 (s), 1465 (vs), 1279 (s), 1158 (m), 1037 (s), 864 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 137 (66) [M⁺], 122 (100), 91 (46).

HR-MS (EI) für C₈H₁₁NO: berechnet: 137.0841, gefunden: 137.0837.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷⁴

Darstellung von 1-Methoxy-3-methyl-9H-carbazol (Murrayafolin A) (65p)

Nach AAV 8 werden 2-Methoxy-4-methylanilin (**122i**) (165 mg, 1.20 mmol), **120d** (147 mg, 1.00 mmol), [Pd(OAc)₂] (11.2 mg, 0.05 mmol), K₃PO₄ (637 mg, 3.00 mmol) und PCy₃ (**12h**)

(28.9 mg, 0.10 mmol) in NMP (10.0 mL) 18 h bei 130 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 30/1$) ergibt **65p** (152 mg, 72%) als grauen Feststoff (Schmb.: 52.3-53.1 °C, Lit.:²⁷⁵ 52-54 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.20 (s, br, 1H), 8.08 (d, br, *J* = 7.7 Hz, 1H), 7.54 (s, br, 1H), 7.48-7.23 (m, 3H), 6.79 (s, br, 1H), 4.04 (s, 3H), 2.60 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 145.3 (C_q), 139.4 (C_q), 129.4 (C_q), 127.9 (C_q), 125.4 (CH), 124.3 (C_q), 123.5 (C_q), 120.4 (CH), 119.1 (CH), 112.5 (CH), 110.9 (CH), 107.6 (CH), 55.4 (CH₃), 21.9 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3414 (s), 3054 (w), 2917 (br), 1587 (s), 1503 (s), 1449 (s), 1303 (vs), 1228 (s), 1104 (s), 825 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 211 (100) [M⁺], 196 (77), 168 (42), 166 (29), 139 (5), 105 (7).

HR-MS (EI) für C₁₄H₁₃NO: berechnet: 211.0997, gefunden: 211.0975.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷⁵

Darstellung von 5-Phenyloxazol (130)

In einem Schlenk-Kolben wird eine Lösung aus Benzaldehyd (**128**) (1.592 g, 15.00 mmol), *p*-Toluolsulfonylisocyanid (**129**) (3.221 g, 16.50 mmol) und K₂CO₃ (4.414 g, 30.00 mmol) in MeOH (80 mL) 6 h unter Rückfluss bei 90 °C erhitzt. Die abgekühlte Reaktionsmischung wird mit ges. NaCl-Lösung (50 mL) versetzt und mit CH₂Cl₂ (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) und Trocknung am ÖPV ergibt **130** (2.170 g, 99%) als gelben Feststoff (Schmb.: 39-40 °C, Lit.:²⁰⁵ 38-40 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.89 (s, 1H), 7.64 (md, *J* = 7.2 Hz, 2H), 7.45-7.37 (m, 2H), 7.36-7.27 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 151.6 (C_q), 150.4 (C_q), 128.9 (CH), 128.6 (CH), 127.8 (CH), 124.4 (CH), 121.5 (CH).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3212 (s), 3054 (s), 2900 (m), 2290 (m), 1650 (m), 1499 (s), 965 (m), 763 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 145 (100) [M⁺], 117 (42), 105 (23), 90 (58), 77 (31).

HR-MS (EI) für C₉H₇NO: berechnet 145.0528, gefunden: 145.0518.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁰⁵

Darstellung von 4-*n*-Butyl-1-phenyl-1*H*-1,2,3-triazol (72a)

N^{≤N}, N

Nach AAV 9 werden Iodbenzol (3.060 g, 15.00 mmol) mit *n*-Hex-1-in (1.232 g, 15.00 mmol), NaN₃ (**131**) (1.024 g, 15.75 mmol), Natriumascorbat (297 mg, 1.50 mmol), DMEDA (**132**) (198 mg, 2.25 mmol) und CuI (286 mg, 1.50 mmol) in DMSO (40 mL) und H₂O (10 mL) umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $15/1 \rightarrow 3/1$) ergibt **72a** (2.807 g, 93%) als orangefarbenen Feststoff (Schmb.: 35-36 °C, Lit.:²⁷⁶ 35-36 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.72-7.66 (m, 3H), 7.52-7.43 (md, J = 8.1 Hz, 2H), 7.42-7.34 (m, 1H), 2.78 (t, J = 7.9 Hz, 2H), 1.70 (quint, J = 7.4 Hz, 2H), 1.40 (tq, J = 7.9, 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.0 (C_q), 137.1 (C_q), 129.7 (CH), 128.4 (CH), 120.2 (CH), 118.9 (CH), 31.3 (CH₂), 25.3 (CH₂), 22.3 (CH₂), 13.8 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 2121 (s), 2916 (s), 1653 (m), 1536 (s), 1500 (vs), 1413 (m), 1224 (vs), 1108 (s), 739 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 201 (7), 172 (11), 158 (12), 144 (13), 130 (100), 117 (5), 104 (6), 93 (7).

HR-MS (ESI) für $C_{12}H_{15}N_3 \cdot H^+$: 202.1339, gefunden: 202.1339.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷⁶

Darstellung von 4-*n*-Butyl-1-(3-methylphenyl)-1*H*-1,2,3-triazol (72b)

Nach AAV 9 werden 3-Iodtoluol (3.271 g, 15.00 mmol) mit *n*-Hex-1-in (1.232 g, 15.00 mmol), NaN₃ (**131**) (1.024 g, 15.75 mmol), Natriumascorbat (297 mg, 1.50 mmol), DMEDA (**132**) (198 mg, 2.25 mmol) und CuI (286 mg, 1.50 mmol) in DMSO (40 mL) und H₂O (10 mL) umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $15/1 \rightarrow 3/1$) ergibt **72b** (3.068 g, 95%) als gelben Feststoff (Schmb.: 35-36 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.70 (s, 1H), 7.55 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 2.79 (t, *J* = 8.0 Hz, 2H), 2.43 (s, 3H), 1.76-1.66 (m, 2H), 1.48-1.36 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 149.0 (C_q), 139.8 (C_q), 137.2 (C_q), 129.4 (CH), 129.1 (CH), 121.0 (CH), 118.8 (CH), 117.4 (CH), 31.5 (CH₂), 25.3 (CH₂), 22.3 (CH₂), 21.4 (CH₃), 13.8 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3129 (m), 29310 (s), 2860 (m), 1615 (s), 1596 (s), 1001 (m), 1498 (m), 1043 (vs), 876 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 215 (4) [M⁺], 144 (100), 91 (44).

HR-MS (ESI) für $C_{13}H_{17}N_3 \cdot H^+$: berechnet: 216.1495, gefunden: 216.1495.

Darstellung von 4-n-Hexyl-1-(4-methoxyphenyl)-1H-1,2,3-triazol (72c)

Nach AAV 9 werden 4-Iodanisol (**28e**) (3.510 g, 15.00 mmol) mit *n*-Oct-1-in (1.653 g, 15.00 mmol), NaN₃ (**131**) (1.024 g, 15.75 mmol), Natriumascorbat (297 mg, 1.50 mmol), DMEDA (**132**) (198 mg, 2.25 mmol) und CuI (286 mg, 1.50 mmol) in DMSO (40 mL) und H₂O (10 mL) umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 2/1$) ergibt **72c** (3.385 g, 87%) als farblosen Feststoff (Schmb.: 54-55 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.63-7.54 (m, 3H), 6.97 (md, *J* = 9.1 Hz, 2H), 3.83 (s, 3H), 2.75 (t, *J* = 7.6 Hz, 2H), 1.69 (quint, *J* = 7.4 Hz, 2H), 1.43-1.21 (m, 6H), 0.83 (m, *J* = 7.4 Hz, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.5 (C_q), 148.9 (C_q), 134.3 (CH), 130.8 (C_q), 121.8 (CH), 118.8 (CH), 114.5 (CH), 55.4 (CH₃), 31.4 (CH₂), 29.2 (CH₂), 28.7 (CH₂), 25.5 (CH₂), 22.4 (CH₂), 13.8 (CH₃). **IR** (KBr) $\tilde{\nu}$ (cm⁻¹): 3128 (s), 2954 (vs), 2933 (br), 1613 (m), 1521 (vs), 1462 (s), 1220 (s), 1107 (m), 831 (vs). **MS** (70 eV, EI) *m/z* (relative Intensität): 259 (3) [M⁺], 216 (18), 203 (25), 188 (31), 174 (15),

160 (100), 147 (13), 134 (15), 123 (17), 107 (11).

HR-MS (EI) für C₁₅H₂₁N₃O: berechnet: 259.1685, gefunden: 259.1678.

Darstellung von 1-(4-Methoxyphenyl)-4-phenyl-1*H*-1,2,3-triazol (72d)

Nach AAV 9 werden 4-Iodanisol (**28e**) (3.510 g, 15.00 mmol) mit Phenylacetylen (**71a**) (1.532 g, 15.00 mmol), NaN₃ (**131**) (1.024 g, 15.75 mmol), Natriumascorbat (297 mg, 1.50 mmol), DMEDA (**132**) (198 mg, 2.25 mmol) und CuI (286 mg, 1.50 mmol) in DMSO (40 mL) und H₂O (10 mL) umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $2/1 \rightarrow 0/1$) ergibt **72d** (2.940 g, 78%) als farblosen Feststoff (Schmb.: 35-36 °C, Lit.:²⁷⁷ 36-37 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.11 (s, 1H), 7.93-7.88 (m, 2H), 7.68 (md, *J* = 9.0 Hz, 2H), 7.49-7.41 (m, 2H), 7.35 (td, *J* = 7.4, 1.3 Hz, 1H), 7.02 (md, *J* = 8.7 Hz, 2H), 3.86 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.8 (C_q), 148.1 (C_q), 130.5 (C_q), 130.3 (C_q), 128.9 (CH), 128.3 (CH), 125.7 (CH), 122.0 (CH), 117.8 (CH), 114.3 (CH), 55.5 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3168 (s), 2984 (vs), 2433 (br), 1698 (m), 1525 (vs), 1482 (s), 1221 (s), 1117 (m), 851 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 251 (3) [M⁺], 223 (100), 208 (87), 180 (69), 152 (32), 116 (21).

HR-MS (EI) für C₁₅H₁₃N₃O: berechnet: 251.1059, gefunden: 251.1051.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷⁷

Darstellung von 1-(4-Methoxyphenyl)-1H-1,2,3-triazol (72e)

Nach AAV 9 werden 4-Iodanisol (**28e**) (3.511 g, 15.00 mmol) mit 1-Trimethylsilylacetylen (**108e**) (1.473 g, 15.00 mmol), NaN₃ (**131**) (1.024 g, 15.75 mmol), Natriumascorbat (297 mg, 1.50 mmol), DMEDA (**132**) (198 mg, 2.25 mmol) und CuI (286 mg, 1.50 mmol) in DMSO (40 mL) und H₂O (10 mL) umgesetzt. Das erhaltene Rohprodukt wird in THF (30 mL) gelöst, mit TBAF-Lösung (20.0 ml, 20.00 mmol, 1.0 M in THF) versetzt und 20 h bei Umgebungstemperatur gerührt. Das Reaktionsgemisch wird mit H₂O (30 mL) versetzt, mit CH₂Cl₂ (3×50 mL) extrahiert und die vereinigten organischen Phasen werden nacheinander mit ges. NH₄Cl-Lösung (50 mL), 1 M NaOH-Lösung (50 mL) und ges. NaCl-Lösung (30 mL) gewaschen. Die organische Phase wird über Na₂SO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Säulenchromatographische Reinigung des Rückstands auf Kieselgel (*n*-Pentan/Et₂O = 1/1→0/1) ergibt nach Trocknung am ÖPV **72e** (1.481 g, 56%) als gelblichen Feststoff (Schmb.: 76-77 °C, Lit:²⁷⁸ 77-78 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.89-7.86 (m, 1H), 7.78-7.76 (m, 1H), 7.58 (md, *J* = 8.7 Hz, 2H), 6.98 (md, *J* = 8.7 Hz, 2H), 3.82 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.2 (C_q), 134.5 (CH), 130.8 (C_q), 122.4 (CH), 122.1 (CH), 114.9 (CH), 55.9 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3143 (vs), 2961 (m), 1612 (s), 1458 (s), 1304 (m), 1195 (s), 1042 (s), 984 (vs), 792 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 175 (37) [M⁺], 147 (46), 132 (100), 104 (24).

HR-MS (EI) für C₉H₉N₃O: berechnet: 175.0746, gefunden: 175.0739.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷⁸

Darstellung von2-(3-Methylphenyl)benzoxazol (69b)

Nach AAV 10 wird 3-Methylphenyltosylat (**32g**) (157 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 30/1$) ergibt **69b** (101 mg, 97%) als farblosen Feststoff (Schmb.: 84-85 °C, Lit.:²⁷⁹ 81-82 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.11-8.07 (m, 1H), 8.05-8.00 (md, *J* = 7.4 Hz, 1H), 7.80-7.72 (m, 1H), 7.60-7.53 (m, 1H), 7.43-7.29 (m, 4H), 2.44 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.4 (C_q), 150.9 (C_q), 142.2 (C_q), 139.0 (C_q), 132.6 (CH), 129.0 (CH), 128.4 (CH), 127.2 (C_q), 125.3 (CH), 125.1 (CH), 124.9 (CH), 120.1 (CH), 110.8 (CH), 21.3 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3181 (vs), 2872 (w), 1653 (m), 1552 (s), 1454 (s), 1246 (s), 1058 (s), 761 (s), 721 (m), 687 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 209 (100) [M⁺], 180 (20), 152 (7), 116 (14).

HR-MS (ESI) für $C_{14}H_{11}NO \cdot H^+$: berechnet: 210.0913, gefunden: 210.0913.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁷⁹

Darstellung von 2-(4-Methoxycarbonyl)benzoxazol (69c)

Nach AAV 10 wird 4-Methoxycarbonylphenyltosylat (**32r**) (184 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 20/1) ergibt **69c** (113 mg, 89%) als farblosen Feststoff (Schmb.: 189-190 °C, Lit.:²⁸⁰ 191-192 °C). ¹**H-NMR** (300 MHz, CDCl₃): δ = 8.32 (md, *J* = 8.9 Hz, 2H), 8.17 (md, *J* = 8.6 Hz, 2H), 7.83-7.73 (m, 1H), 7.63-7.55 (m, 1H), 7.41-7.32 (m, 2H), 3.95 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 166.3 (C_q), 161.9 (C_q), 150.8 (C_q), 142.0 (C_q), 133.0 (C_q), 131.0 (C_q), 130.1 (CH), 127.5 (CH), 125.7 (CH), 124.9 (CH), 120.3 (CH), 110.8 (CH), 52.4 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3092 (s), 2926 (m), 2852 (m), 1717 (m), 1605 (m), 1265 (m), 1109 (m), 1054 (m), 745 (m).

MS (70 eV, EI) m/z (relative Intensität): 253 (100) [M⁺], 222 (96), 194 (30), 111 (14).

HR-MS (EI) für C₁₅H₁₁NO₃: berechnet: 253.0739, gefunden: 253.0733.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁸⁰

Darstellung von 2-(4-Phenylcarbonylphenyl)benzoxazol (69d)

Nach AAV 10 wird 4-Tosylbenzophenon (**139h**) (217 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**120**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 25/1$) ergibt **69d** (123 mg, 83%) als farblosen Feststoff (Schmb.: 146-147 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.36 (md, *J* = 8.7 Hz, 2H), 7.94 (md, *J* = 8.6 Hz, 2H), 7.87-7.74 (m, 3H), 7.66-7.56 (m, 2H), 7.56-7.46 (m, 2H), 7.43-7.33 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 195.9 (C_q), 161.9 (C_q), 150.9 (C_q), 142.0 (C_q), 139.8 (C_q), 137.1 (C_q), 132.8 (CH), 130.5 (CH), 130.4 (C_q), 130.0 (CH), 128.5 (CH), 127.4 (CH), 125.7 (CH), 124.9 (CH), 120.3 (CH), 110.8 (CH).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3054 (m), 1653 (vs), 1599 (vs), 1453 (m), 1410 (m), 1055 (m), 923 (m), 865 (m), 661 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 299 (100) [M⁺], 222 (58), 194 (12), 105 (25), 77 (11).

HR-MS (EI) für C₂₀H₁₃NO₂: berechnet: 299.0946, gefunden: 299.0942.

Darstellung von 2-(3-Trifluormethylphenyl)benzoxazol (69e)

Nach AAV 10 wird 3-(Trifluormethyl)tosylat (**32m**) (190 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1) ergibt **69e** (108 mg, 82%) als farblosen Feststoff (Schmb.: 119-120 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.56-8.48 (s, 1H), 8.42 (d, *J* = 7.8 Hz, 1H), 7.84-7.73 (m, 2H), 7.66 (md, *J* = 7.8 Hz, 1H), 7.63-7.55 (m, 1H), 7.44-7.31 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 161.5$ (C_q), 150.8 (C_q), 141.8 (C_q), 131.6 (q, J = 32.9 Hz, C_q), 130.6 (d, J = 0.9 Hz, CH), 129.5 (CH), 129.1 (C_q), 127.9 (q, J = 3.9 Hz, CH), 125.7 (CH), 124.9 (CH), 124.5 (q, J = 3.9 Hz, CH), 123.7 (q, J = 272.6 Hz, C_q), 120.3 (CH), 110.8 (CH).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -62.90$ (s).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 1700 (w), 1616 (m), 1558 (m), 1457 (m), 1332 (br), 1112 (br), 914 (w), 746 (m), 654 (w).

MS (70 eV, EI) m/z (relative Intensität): 263 (100) [M⁺], 244 (6), 235 (15), 92 (24), 63 (84). **HR-MS** (EI) für C₁₄H₈F₃N: berechnet: 263.0558, gefunden 263.0552

Darstellung von 2-(4-Fluorphenyl)benzoxazol (69f)

Nach AAV 10 wird 4-Fluorphenyltosylat (**32k**) (160 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), $[Pd(OAc)_2]$ (5.6 mg, 0.025 mmol), X-Phos (**120**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische

Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $100/1 \rightarrow 50/1$) ergibt **69f** (83 mg, 78%) als farblosen Feststoff (Schmb.: 94-95 °C, Lit.:²⁸¹ 92-95 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.30-8.18 (m, 2H), 7.80-7.71 (m, 1H), 7.61-7.52 (m, 1H), 7.39-7.29 (m, 2H), 7.26-7.15 (m, 2H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 164.8 (d, J = 252.7 Hz, C_q), 162.1 (C_q), 150.7 (C_q), 142.0 (C_q), 129.8 (d, J = 8.9 Hz, CH), 125.1 (CH), 124.6 (CH), 123.4 (d, J = 3.3 Hz, C_q), 119.9 (CH), 116.2 (d, J = 22.2 Hz, CH), 110.5 (CH). ¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -107.49 (tt, J = 8.5, 5.2 Hz). **IR** (KBr) $\tilde{\nu}$ (cm⁻¹): 3061(m), 1622 (vs), 1499 (s), 1453 (m), 1415 (m), 1235 (br), 1156 (m), 1056 (m), 845 (m), 630 (w).

MS (70 eV, EI) *m/z* (relative Intensität): 213 (100) [M⁺], 185 (18), 121 (6), 106 (2), 63 (29).

HR-MS (EI) für $C_{13}H_8$ FNO: berechnet: 213.0590, gefunden: 213.0583. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁸¹

Darstellung von 2-(4-Methoxyphenyl)benzoxazol (69g)

Nach AAV 10 wird 4-Methoxyphenyltosylat (**32c**) (167 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $15/1 \rightarrow 10/1$) ergibt **69g** (97 mg, 86%) als farblosen Feststoff (Schmb.: 100-101 °C, Lit.:²⁸¹ 100-101 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.18 (md, *J* = 8.4 Hz, 2H), 7.75-7.70 (m, 1H), 7.55-7.51 (m, 1H), 7.34-7.28 (m, 1H), 7.01 (md, *J* = 8.4 Hz, 2H), 3.84 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.0 (C_q), 162.4 (C_q), 150.7 (C_q), 141.9 (C_q), 129.4 (CH), 124.6 (CH), 124.5 (CH), 119.5 (CH), 119.4 (C_q), 114.3 (CH), 110.4 (CH), 55.1 (CH₃). **IR** (KBr) $\tilde{\nu}$ (cm⁻¹): 3376 (m), 2361 (w), 1671 (vs), 1606 (s), 1454 (s), 1320 (m), 1256 (vs), 1170 (s), 1020 (s), 832 (s), 730 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 225 (100) $[M^+]$, 210 (42), 182 (41), 127 (13). **HR-MS** (ESI) für C₁₄H₁₁NO₂•H⁺: berechnet: 226.0863, gefunden: 226.0862. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁸¹

Darstellung von 2-(2-Naphthyl)benzoxazol (69h)

Nach AAV 10 wird 2-Naphthyltosylat (**139i**) (179 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**120**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1) ergibt **69h** (100 mg, 82%) als farblosen Feststoff (Schmb.: 113–114 °C, Lit.:²⁰⁸ 114-116 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.77 (s, 1H), 8.31 (dd, J = 8.7 Hz, 1.7 Hz, 1H), 8.05-7.93 (m, 2H), 7.93-7.85 (m, 1H), 7.80 (dd, J = 6.1 Hz, 3.0 Hz, 1H), 7.66-7.51 (m, 3H), 7.44-7.32 (m, 2H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.2 (C_q), 150.8 (C_q), 142.1 (C_q), 134.7 (C_q), 132.9 (C_q), 128.9 (CH), 128.8 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 126.9 (CH), 125.2 (CH), 124.7 (CH), 124.3 (C_q), 123.9 (CH), 120.0 (CH), 110.6 (CH).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 1616 (m), 1559 (vs), 1454 (m), 1362 (m), 1245 (vs), 1130 (m), 1051 (m), 954 (m), 823 (m), 790 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 245 (100) [M⁺], 153 (21), 127 (14), 92 (4), 63 (29).

HR-MS (EI) für $C_{17}H_{11}NO$: berechnet: 245.0841, gefunden 245.0834.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁰⁸

Darstellung von 2-(3,5-Dimethylphenyl)benzoxazol (69i)

Nach AAV 10 wird 3,5-Dimethylphenyltosylat (**32h**) (166 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1) ergibt **69i** (106 mg, 95%) als farblosen Feststoff (Schmb.: 121-122 °C, Lit.:¹⁴⁴ 123-125 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.87-7.80 (m, 1H), 7.77-7.72 (m, 1H), 7.58-7.52 (m, 1H), 7.36-7.30 (m, 2H), 7.17-7.12 (m, 1H), 2.40 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.4 (C_q), 150.7 (C_q), 142.1 (C_q), 138.5 (C_q), 133.3 (CH), 126.8 (CH), 125.2 (CH), 124.9 (CH), 124.4 (CH), 119.8 (CH), 110.5 (CH), 21.1 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 2951 (s), 2855 (s), 1551 (s), 1452 (vs), 1243 (s), 1184 (s), 1004 (m), 930 (s), 858 (s), 741 (s), 683 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 223 (100) [M⁺], 208 (16), 194 (8), 111 (15).

HR-MS (ESI) für $C_{15}H_{13}NO \cdot H^+$: berechnet: 224.1070, gefunden: 224.1069.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁴⁴

Darstellung von 2-(3,5-Dimethoxyphenyl)benzoxazol (69j)

Nach AAV 10 wird 3,5-Dimethoxyphenyltosylat (**32d**) (185 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), $[Pd(OAc)_2]$ (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 21 h bei 100 °C umgesetzt. Säulenchromatographische

Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 15/1$) ergibt **69j** (117 mg, 92%) als farblosen Feststoff (Schmb.: 103-104 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.79-7.72 (m, 1H), 7.60-7.53 (m, 1H), 7.39 (m, 2H), 7.36-7.31 (m, 2H), 3.86 (s, 6H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.0 (C_q), 161.0 (C_q), 150.7 (C_q), 141.9 (C_q), 128.7 (C_q), 125.2 (CH), 124.6 (CH), 120.0 (CH), 110.6 (CH), 105.2 (CH), 104.6 (CH), 55.6 (CH₃). **IR** (KBr) $\tilde{\nu}$ (cm⁻¹): 3356 (vs), 2753 (m), 1598 (m), 1532 (s), 1457 (s), 1209 (m), 1158 (s), 1036 (m), 748 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 255 (100) [M⁺], 225 (27), 210 (12), 195 (19), 182 (11), 169 (21), 127 (29). **HR-MS** (ESI) für C₁₅H₁₃NO₃•H⁺: berechnet: 256.0968, gefunden: 256.0968.

Darstellung von 2-[3-(N,N-Dimethylamino)phenyl]benzoxazol (69k)

Nach AAV 10 wird 3-(*N*,*N*-Dimethylamino)phenyltosylat (**32j**) (175 mg, 0.60 mmol) mit Benzoxazol (**69**) (60 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol), *t*-BuCO₂H (**133d**) (7.7 mg, 0.075 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 50/1 \rightarrow 15/1) ergibt **69k** (105 mg, 88%) als farblosen Feststoff (Schmb.: 47-48 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.79-7.73 (m, 1H), 7.64-7.53 (m, 3H), 7.40-7.29m (m, 3H), 6.95-6.86 (m, 1H), 3.05 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.8 (C_q), 150.7 (C_q), 150.5 (C_q), 142.1 (C_q), 129.5 (CH), 127.8 (CH), 127.7 (C_q), 124.3 (CH), 119.9 (CH), 116.0 (CH), 115.7 (CH), 111.1 (CH), 110.5 (CH), 40.7 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3223 (vs), 2553 (m), 1578 (m), 1539 (s), 1476 (vs), 1229 (s), 1118 (m), 1056 (m), 748 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 238 (100) [M⁺], 223 (32), 195 (25), 145 (13), 118 (30).

HR-MS (ESI) für $C_{15}H_{14}N_2O \cdot H^+$: berechnet: 239.1179, gefunden: 239.1177.

Darstellung von 5-Phenyl-2-(3,5-dimethylphenyl)oxazol (130a)

Nach AAV 11 wird 3,5-Dimethylphenyltosylat (**32h**) (166 mg, 0.60 mmol) mit **130** (73 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 10/1) ergibt **130a** (92 mg, 74%) als farblosen Feststoff (Schmb.: 99-100 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.79-7.70 (m, 4H), 7.50-7.40 (m, 3H), 7.37-7.30 (m, 1H), 7.09 (s, 1H), 2.40 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.4 (C_q), 151.0 (C_q), 138.4 (C_q), 132.1 (CH), 128.9 (CH), 128.3 (CH), 128.0 (C_q), 127.1 (C_q), 124.1 (CH), 124.0 (CH), 123.3 (CH), 21.4 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3385 (vs), 3096 (s), 2913 (m), 2340 (m), 1653 (m), 1489 (m), 946 (m), 760 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 249 (100) [M⁺], 221 (24), 193 (14), 179 (43), 144 (21), 124 (25).

HR-MS (ESI) für $C_{17}H_{15}NO \cdot H^+$: berechnet: 250.1226, gefunden: 250.1227.

Darstellung von 5-Phenyl-2-[3-(N,N-dimethylamino)phenyl]oxazol (130b)

Nach AAV 11 wird 3-(*N*,*N*-Dimethylamino)phenyltosylat (**32j**) (175 mg, 0.60 mmol) mit **130** (73 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 10/1) ergibt **130b** (90 mg, 72%) als farblosen Feststoff (Schmb.: 103-104 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.74-7.68 (m, 2H), 7.52-7.37 (m, 5H), 7.36-7.28 (m, 2H), 6.82 (dd, *J* = 8.2, 2.4 Hz, 1H), 3.02 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.9 (C_q), 151.0 (C_q), 150.7 (C_q), 129.5 (CH), 128.9 (CH), 128.3 (CH), 128.2 (C_q), 128.1 (C_q), 124.2 (CH), 123.3 (CH), 114.7 (CH), 114.6 (CH), 110.0 (CH), 40.6 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3320 (vs), 2808 (s), 1601 (vs), 1583 (s), 1490 (s), 1354 (s), 1133 (s), 993 (s), 781 (s), 686 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 264 (100) [M⁺], 249 (32), 221 (22), 165 (17), 132 (44).

HR-MS (ESI) für $C_{17}H_{16}N_2O \cdot H^+$: berechnet: 265.1335, gefunden: 265.1336.

Darstellung von 5-Phenyl-2-(3,4,5-trimethoxyphenyl)oxazol (130c)

Nach AAV 11 wird 3,4,5-Trimethoxyphenyltosylat (**139j**) (166 mg, 0.60 mmol) mit **130** (73 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**120**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 21 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $10/1 \rightarrow 3/2$) ergibt **130c** (106 mg, 68%) als rötlichen Feststoff (Schmb.: 114-115°C, Lit.:²⁰⁵ 113-115 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.72-7.67(m, 2H), 7.47-7.39 (m, 3H), 7.36-7.29 (m, 3H), 3.95 (s, 6H), 3.90 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.0 (C_q), 153.6 (C_q), 151.3 (C_q), 140.5 (C_q), 128.6 (CH), 128.4 (CH), 128.0 (C_q), 124.2 (CH), 123.4 (CH), 122.8 (C_q), 103.7 (CH), 61.0 (CH₃), 56.3 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3221 (s), 2835 (s), 2361 (m), 1590 (vs), 1498 (vs), 1335 (s), 1235 (s), 1130 (vs), 999 (s), 842 (s), 726 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 311 (100) [M⁺], 296 (82), 268 (23), 253 (20), 238 (17), 182 (34), 155 (37), 140 (24).

HR-MS (ESI) für $C_{18}H_{17}NO_4 \bullet H^+$: berechnet:312.1230, gefunden: 312.1231.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁰⁵

Darstellung von 5-Phenyl-2-(1-naphthyl)oxazol (130d)

Nach AAV 11 wird 2-Naphthyltosylat (**139k**) (179 mg, 0.60 mmol) mit **130** (73 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**120**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 21 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 25/1$) ergibt **130d** (105 mg, 77%) als farblosen Feststoff (Schmb.: 105-106 °C, Lit.:²⁰⁵ 106-107 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 9.93$ (d, J = 8.4 Hz, 1H), 8.30 (dd, J = 7.4, 1.2 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.77 (md, J = 7.2 Hz, 2H), 7.66 (dt, J = 6.8, 1.4 Hz, 1H), 7.61-7.52 (m, 3H), 7.46 (dt, J = 7.2, 1.2 Hz, 2H), 7.35 (dt, J = 7.2, 1.2 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.0 (C_q), 150.9 (C_q), 133.9 (C_q), 131.1 (C_q), 130.1 (C_q), 128.9 (CH), 128.6 (CH), 128.5 (CH), 128.0 (C_q), 127.7 (CH), 127.6 (CH), 126.3 (CH), 126.1 (CH), 124.9 (CH), 124.3 (CH), 123.9 (CH), 123.4 (CH).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3121 (vs), 2269 (m), 1569 (m), 1469 (s), 1418 (s), 1103 (m), 953 (m), 720 (s), 688 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 217 (100) [M⁺], 242 (21), 215 (29), 166 (25), 139 (31).

HR-MS (ESI) für $C_{19}H_{13}NO \cdot H^+$: berechnet: 272.1070, gefunden: 272.1070.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁰⁵

Darstellung von 5-Phenyl-2-(2-methylphenyl)oxazol (130e)

Nach AAV 11 wird 2-Methylphenyltosylat (**32i**) (157 mg, 0.60 mmol) mit **130** (73 mg, 0.50 mmol), $[Pd(OAc)_2]$ (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C

umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $75/1 \rightarrow 50/1$) ergibt **130e** (77 mg, 65%) als farblosen Feststoff (Schmb.: 86-87 °C, Lit.:²⁰⁵ 89-90 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.11-8.04 (m, 1H), 7.74-7.66 (m, 2H), 7.49-7.38 (m, 3H), 7.36-7.25 (m, 4H), 2.74 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 161.6 (C_q), 150.8 (C_q), 137.3 (C_q), 131.7 (CH), 129.9 (CH), 128.9 (CH), 128.8 (CH), 128.4 (CH), 128.1 (C_q), 126.4 (C_q), 126.0 (CH), 124.2 (CH), 123.1 (CH), 22.1 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3082 (vs), 2362 (m), 1589 (m), 1478 (s), 1448 (s), 1123 (m), 953 (m), 722 (s), 690 (vs).

MS (70 eV, EI) *m/z* (relative Intensität): 235 (100) [M⁺], 206 (11), 179 (36), 165 (14), 130 (29), 117 (15).

HR-MS (ESI) für C₁₆H₁₃NO•H⁺: berechnet: 236.1070, gefunden: 236.1070.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁰⁵

Darstellung von 1,3,7-Trimethyl-8-phenyl-3,7-dihydro-1*H*-purin-2,6-dion (68b)

Nach AAV 11 wird Phenyltosylat (**32b**) (149 mg, 0.60 mmol) mit **68** (97 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/1 \rightarrow 1/2$) ergibt **68b** (78 mg, 58%) als farblosen Feststoff (Schmb.: 180-181 °C, Lit.:²⁸² 180-181 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.69-7.62 (m, 2H), 7.55-7.46 (m, 3H), 4.02 (s, 3H), 3.63 (s, 3H), 3.42 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 155.5 (C_q), 152.0 (C_q), 151.7 (C_q), 148.2 (C_q), 130.3 (CH), 129.1 (CH), 128.9 (CH), 128.3 (C_q), 108.5 (C_q), 33.9 (CH₃), 29.7 (CH₃), 28.0 (CH₃). **IR** (KBr) $\tilde{\nu}$ (cm⁻¹): 3400 (m), 2941 (m), 2361 (m), 1691 (vs), 1653 (vs), 1541 (s), 1447 (s), 1039 (m), 760 (m). **MS** (70 eV, EI) m/z (relative Intensität): 270 (100) [M⁺], 241 (11), 193 (18), 170 (21), 158 (7), 135 (12), 104 (15).

HR-MS (ESI) für $C_{14}H_{14}N_4O_2 \cdot H^+$: berechnet: 271.1190, gefunden: 271.1190.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁸²

Darstellung von 8-(4-Methylphenyl)-3,7-dihydro-1,3,7-trimethyl-1*H*-purin-2,6-dion (68a)

Nach AAV 11 wird 4-Methylphenyltosylat (**32f**) (157 mg, 0.60 mmol) mit **68** (97 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/3$) ergibt **68a** (108 mg, 76%) als farblosen Feststoff (Schmb.: 193-194 °C, Lit.:¹⁴⁷ 193-194 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.55 (md, *J* = 8.4 Hz, 2H), 7.32-7.27 (m, 2H), 4.01 (s, 3H), 3.59 (s, 3H), 3.40 (s, 3H), 2.41 (s, 3H).

¹³C-NMR (75 MHz, CDCl₃): δ = 155.5 (C_q), 152.2 (C_q), 151.6 (C_q), 148.1 (C_q), 140.7 (C_q), 129.6 (CH), 129.0 (CH), 125.3 (C_q), 108.3 (C_q), 33.9 (CH₃), 29.8 (CH₃), 27.9 (CH₃), 21.4 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3350 (m), 2922 (m), 2371 (w), 1692 (vs), 1651 (vs), 1551 (s), 1467 (s), 1051 (m), 750 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 284 (100) [M⁺], 255 (8), 226 (5), 184 (11), 141 (7), 118 (14).

HR-MS (ESI) für $C_{15}H_{16}N_4O_2 \cdot H^+$: berechnet: 285.1346, gefunden: 285.1346.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁴⁷

Darstellung von 8-(3,5-Dimethylphenyl)-3,7-dihydro-1,3,7-trimethyl-1*H*-purin-2,6-dion (68c)

Nach AAV 11 wird 3,5-Dimethylphenyltosylat (**32h**) (166 mg, 0.60 mmol) mit **68** (97 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/1 \rightarrow 1/2$) ergibt **68c** (119 mg, 80%) als farblosen Feststoff (Schmb.: 210-211 °C, Lit.:¹⁴⁷ 211-212 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.26-7.22 (m, 2H), 7.14-7.10 (m, 1H), 4.01 (s, 3H), 3.61 (s, 3H), 3.40 (s, 3H), 2.67 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 155.5 (C_q), 152.4 (C_q), 151.6 (C_q), 148.0 (C_q), 138.6 (C_q), 132.1 (CH), 127.9 (C_q), 126.8 (CH), 108.3 (C_q), 33.9 (CH₃), 29.8 (CH₃), 27.9 (CH₃), 21.3 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3290 (m), 2952 (s), 2923 (vs), 2853 (s), 1692 (vs), 1655 (vs), 1531 (s), 1462 (s), 1050 (m), 747 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 298 (100) [M⁺], 269 (8), 240 (7), 193 (15), 149 (10), 132 (14), 106 (15).

HR-MS (ESI) für $C_{16}H_{18}N_4O_2 \cdot H^+$: berechnet: 299.1503, gefunden: 299.1502.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁴⁷

Darstellung von 8-(4-Tosylphenyl)-3,7-dihydro-1,3,7-trimethyl-1*H*-purin-2,6-dion (68d)

Nach AAV 11 wird 4-Chlorphenyltosylat (**320**) (170 mg, 0.60 mmol) mit **68** (97 mg, 0.50 mmol), $[Pd(OAc)_2]$ (5.6 mg, 0.025 mmol), X-Phos (**120**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 20 h bei 100 °C

umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/1 \rightarrow 0/1$) ergibt **68d** (151 mg, 69%) als farblosen Feststoff (Schmb.: 147-148 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.74 (md, *J* = 8.8 Hz, 2H), 7.64 (md, *J* = 8.8 Hz, 2H), 7.37-7.30 (m, 2H), 7.16 (md, *J* = 8.8 Hz, 2H), 4.03 (s, 3H), 3.59 (s, 3H), 3.41 (s, 3H), 2.45 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 155.5 (C_q), 151.6 (C_q), 150.8 (C_q), 150.6 (C_q), 148.1 (C_q), 145.7 (C_q), 132.1 (C_q), 130.6 (CH), 129.9 (CH), 128.5 (CH), 127.2 (C_q), 123.0 (CH), 123.0 (CH), 108.7 (C_q), 33.9 (CH₃), 29.8 (CH₃), 28.0 (CH₃), 21.7 (CH₃). **IR** (KBr) $\tilde{\nu}$ (cm⁻¹): 3353 (s), 2940 (w), 2362 (w), 1696 (vs), 1654 (vs), 1542 (s), 1377 (m), 1158 (m), 865 (m), 668 (m). **MS** (70 eV, EI) *m/z* (relative intensity) 440 (73) [M⁺], 426 (13), 412 (58), 286 (100), 270 (11), 194 (17), 149 (9).

HR-MS (ESI) für $C_{21}H_{20}N_4O_5S \cdot H^+$: berechnet: 441.1227, gefunden: 441.1227.

Darstellung von 4-*n*-Butyl-1,5-diphenyl-1*H*-1,2,3-triazol (77a)

Nach AAV 11 wird Phenyltosylat (**32b**) (149 mg, 0.60 mmol) mit **72a** (101 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $10/1 \rightarrow 5/1$) ergibt **77a** (100 mg, 72%) als farblosen Feststoff (Schmb.: 102-103 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.40-7.32 (m, 6H), 7.30-7.25 (m, 2H), 7.18-7.11 (m, 2H), 2.74 (t, *J* = 7.8 Hz, 2H), 1.71 (quint, *J* = 7.8 Hz, 2H), 1.35 (tq, *J* = 7.5, 7.5 Hz, 2H), 0.88 (t, *J* = 7.2 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 146.1 (C_q), 136.7 (C_q), 133.9 (C_q), 129.6 (CH), 129.1 (CH), 128.9 (CH), 128.8 (CH), 128.7 (CH), 127.5 (C_q), 124.8 (CH), 31.7 (CH₂), 24.7 (CH₂), 22.4 (CH₂), 13.8 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3502 (s), 2952 (m), 2360 (w), 1652 (m), 1599 (s), 1504 (vs), 1369 (m), 1253 (s), 1199 (m), 910 (m), 760 (s).

MS (70 eV, EI) m/z (relative Intensität): 277 (4) [M⁺], 249 (25), 206 (100), 144 (21), 115 (28), 103 (84).

HR-MS (ESI) für $C_{18}H_{19}N_3 \cdot H^+$: berechnet: 278.1652, gefunden: 278.1652.

Darstellung von 4-*n*-Butyl-5-(4-fluorphenyl)-1-phenyl-1*H*-1,2,3-triazol (77b)

Nach AAV 11 wird 4-Fluorphenyltosylat (**32k**) (160 mg, 0.60 mmol) mit **72a** (100 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 5/1) ergibt **77b** (91 mg, 62%) als gelblichen Feststoff (Schmb.: 93-94 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.37.7.31 (m, 3H), 7.27-7.22 (m, 2H), 7.15-7.01 (m, 4H), 2.69 (t, *J* = 7.8 Hz, 2H), 1.69 (quint, *J* = 7.2 Hz, 2H), 1.32 (tq, *J* = 7.5, 7.3 Hz, 2H), 0.86 (t, *J* = 7.6 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 162.9$ (d, J = 250.0 Hz, C_q), 146.2 (C_q), 136.6 (C_q), 132.9 (C_q), 131.5 (d, J = 7.6 Hz, CH), 129.2 (CH), 128.8 (CH), 124.8 (CH), 123.6 (d, J = 3.6 Hz, C_q), 116.1 (d, J = 22.4 Hz, CH), 31.7 (CH₂), 25.1 (CH₂), 22.4 (CH₂), 13.9 (CH₃).

¹⁹**F-NMR** (MHz, CDCl₃): $\delta = -111.5$ (tt, J = 8.4, 5.4 Hz).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3256 (m), 2358 (w), 1598 (s), 1506 (vs), 1436 (s), 1236 (vs), 1120 (s), 844 (vs), 775 (s), 686 (m).

MS (70 eV, EI) m/z (relative Intensität): 295 (7) [M⁺], 267 (22), 224 (88), 144 (19), 121 (100), 104 (42).

HR-MS (ESI) für C₁₈H₁₈FN₃•H⁺: berechnet: 296.1558, gefunden: 296.1557.

Darstellung von 4-*n*-Butyl-5-(4-methylphenyl)-1-phenyl--1*H*-1,2,3-triazol (77c)

Nach AAV 11 wird 4-Methylphenyltosylat (**32f**) (157 mg, 0.60 mmol) mit **72a** (101 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (XX) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 19 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 7/1$) ergibt **77c** (131 mg, 90%) als hellgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.39-7.21$ (m, 5H), 7.14 (md, J = 8.0 Hz, 2H), 7.02 (md, J = 8.0 Hz, 2H), 2.70 (t, J = 8.0 Hz, 2H), 2.34 (s, 3H), 1.69 (quint, J = 7.4 Hz, 2H), 1.59 (tq, J = 7.9, 7.6 Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 146.0 (C_q), 138.9 (C_q), 136.9 (C_q), 133.9 (C_q), 129.5 (CH), 129.4 (CH), 129.1 (CH), 128.6 (CH), 124.8 (CH), 124.5 (C_q), 31.7 (CH₂), 28.8 (CH₂), 22.4 (CH₂), 21.3 (CH₃), 13.8 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 2956 (vs), 2929 (vs), 1358 (w), 1598 (s), 1501 (vs), 1459 (s), 1236 (s), 1105 (s), 1100 (s), 876 (s), 745 (s).

MS (70 eV, EI) m/z (relative Intensität): 291 (3) [M⁺], 263 (24), 220 (81), 144 (15), 130 (16), 117 (100).

HR-MS (ESI) für $C_{19}H_{21}N_3 \cdot H^+$: berechnet: 292.1808, gefunden: 292.1808.

Darstellung von 3-(4-n-Butyl-1-phenyl-1H-1,2,3-triazol-5-yl)-N,N-dimethylanilin (77d)

Nach AAV 11 wird 3-(*N*,*N*-Dimethylamino)phenyltosylat (**32j**) (175 mg, 0.60 mmol) mit **72a** (100 mg, 0.50 mmol), $[Pd(OAc)_2]$ (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h

bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 3/2$) ergibt **77d** (157 mg, 98%) als orangefarbenes Öl.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.36-7.28$ (m, 5H), 7.22-7.15 (m, 1H), 6.70 (d, J = 8.0 Hz, 1H), 6.51-6.39 (m, 2H), 2.83 (s, 6H), 2.77-2.70 (m, 2H), 1.72 (quint, J = 7.7 Hz, 2H), 1.37 (tq, J = 7.8, 7.6 Hz, 2H), 0.88 (t, J = 7.9 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 150.2 (C_q), 146.0 (C_q), 137.1 (C_q), 134.5 (C_q), 129.4 (CH), 129.0 (CH), 128.5 (CH), 128.2 (C_q), 124.7 (CH), 117.7 (CH), 113.6 (CH), 112.8 (CH), 40.3 (CH₃), 31.9 (CH₂), 24.9 (CH₂), 22.4 (CH₂), 13.8 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 2954 (vs), 2809 (s), 1948 (w), 1605 (vs), 1498 (s), 1232 (s), 1070 (s), 780 (s), 661 (m).

MS (70 eV, EI) m/z (relative Intensität): 320 (34) [M⁺], 292 (19), 249 (90), 233 (8), 204 (6), 171 (14), 146 (100), 131 (35).

HR-MS (ESI) für $C_{20}H_{24}N_4 \cdot H^+$: berechnet: 321.2074, gefunden: 321.2073.

Darstellung von 4-n-Butyl-5-(3,5-dimethoxyphenyl)-1-phenyl-1H-1,2,3-triazol (77e)

Nach AAV 11 wird 3,5-Dimethoxyphenyltosylat (**72a**) (185 mg, 0.60 mmol) mit **72a** (100 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 20 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 3/2$) ergibt **72a** (158 mg, 94%) als farblosen Feststoff (Schmb.: 103-104 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.38-7.28$ (m, 5H), 6.43 (d, J = 2.3 Hz, 1H), 6.25 (d, J = 2.4 Hz, 2H), 3.65 (s, 6H), 2.77-2.70 (m, 2H), 1.70 (quint, J = 7.5 Hz, 2H), 1.36 (tq, J = 6.4, 6.4 Hz, 2H), 0.88 (t, J = 7.2 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.8 (C_q), 146.1 (C_q), 136.8 (C_q), 133.7 (C_q), 129.3 (C_q), 129.2 (CH), 128.7 (CH), 124.9 (CH), 107.6 (CH), 100.8 (CH), 55.1 (CH₃), 31.7 (CH₂), 24.9 (CH₂), 22.6 (CH₂), 13.8 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3415 (s), 2957 (m), 1635 (s), 1616 (vs), 1499 (vs), 1435 (s), 1168 (vs), 1004 (s), 867 (m), 700 (m). **MS** (70 eV, EI) m/z (relative Intensität): 337 (3) [M⁺], 309 (25), 266 (100), 217 (8), 163 (92), 148 (47), 130 (19), 119 (17), 104 (24).

HR-MS (EI) für $C_{20}H_{23}N_3O_2$: berechnet: 337.1790, gefunden: 337.1784.

Darstellung von 4-n-Butyl-1-(3-methylphenyl)-5-(4-methylphenyl)-1H-1,2,3-triazol (72f)

Nach AAV 11 wird 4-Methylphenyltosylat (**32f**) (157 mg, 0.60 mmol) mit **72b** (108 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 20 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 5/1) ergibt **77f** (122 mg, 80%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.24-7.11$ (m, 5H), 7.02 (md, J = 8.1 Hz, 2H), 6.95-6.90 (m, 1H), 2.74-2.67 (m, 2H), 2.34 (s, 3H), 2.20 (s, 3H), 1.74-1.62 (m, 2H), 1.34 (tq, J = 7.8, 7.5 Hz, 2H), 0.86 (t, J = 7.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 145.9 (C_q), 139.3 (C_q), 138.8 (C_q), 136.8 (C_q), 133.9 (C_q), 129.4 (CH), 129.3 (CH), 129.2 (CH), 128.7 (CH), 125.6 (CH), 124.5 (C_q), 121.8 (CH), 31.8 (CH₂), 24.8 (CH₂), 22.4 (CH₂), 21.3 (CH₃), 21.2 (CH₃), 13.8 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 3027 (m), 2955 (vs), 2922 (vs), 1610 (s), 1507 (s), 1494 (vs), 1236 (m), 1106 (m), 1001 (m), 821 (s), 695 (s).

MS (70 eV, EI) m/z (relative Intensität): 305 (3) [M⁺], 277 (35), 234 (87), 220 (9), 158 (11), 144 (17), 117 (100).

HR-MS (ESI) für $C_{20}H_{23}N_3 \cdot H^+$: berechnet: 338.1863, gefunden: 338.1864.

Darstellung von 4-*n*-Butyl-5-(4-methoxyphenyl)-1-(3-methylphenyl)-1*H*-1,2,3-triazol (77g)

Nach AAV 11 wird 4-Methoxyphenyltosylat (**32c**) (167 mg, 0.60 mmol) mit **72b** (108 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 22 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 4/1$) ergibt **77g** (87 mg, 54%) als gelben Feststoff (Schmb.: 94-95 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.23-7.09$ (m, 3H), 7.05 (md, J = 8.4 Hz, 2H), 6.96-6.90 (m, 1H), 6.85 (md, J = 8.5 Hz, 2H), 3.79 (s, 3H), 2.74-2.65 (m, 2H), 2.31 (s, 3H), 1.68 (quint, J = 8.2 Hz, 2H), 1.33 (tq, J = 7.8, 7.8 Hz, 2H), 0.88 (t, J = 7.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.1 (C_q), 146.0 (C_q), 139.6 (C_q), 137.0 (C_q), 134.0 (C_q), 131.1 (CH), 129.7 (CH), 129.0 (CH), 125.7 (CH), 122.1 (CH), 119.8 (C_q), 114.5 (CH), 55.6 (CH₃), 31.9 (CH₂), 25.1 (CH₂), 22.7 (CH₂), 21.5 (CH₃), 14.1 (CH₃).

IR (KBr) \tilde{v} (cm⁻¹): 2856 (s), 1944 (w), 1494 (m), 1377 (s), 1250 (s), 1184 (m), 1119 (m), 835 (s), 696 (m).

MS (70 eV, EI) m/z (relative intensity): 321 (5) [M⁺], 293 (18), 250 (31), 158 (4), 144 (6), 133 (100).

HR-MS (ESI) für C₂₀H₂₃N₃O•H⁺: berechnet: 322.1914, gefunden: 322.1914.

Darstellung von 4-*n*-Butyl-5-(3,5-dimethoxyphenyl)-1-(3-methylphenyl)-1*H*-1,2,3-triazol (77h)

Nach AAV 11 wird 3,5-Dimethoxyphenyltosylat (**32d**) (185 mg, 0.60 mmol) mit **72b** (108 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $50/1 \rightarrow 4/1$) ergibt **77h** (148 mg, 84%) als farblosen Feststoff (Schmb.: 111-112 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.24-7.21$ (m, 2H), 7.18-7.14 (m, 1H), 7.01-6.94 (m, 1H), 6.44-6.41 (m, 1H), 6.27-6.23 (m, 2H), 3.66 (s, 6H), 2.76-2.71 (m, 2H), 2.32 (s, 3H), 1.70 (quint, J = 7.0 Hz, 2H), 1.35 (tq, J = 7.8, 7.8 Hz, 2H), 0.88 (t, J = 7.8 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 160.7$ (C_q), 145.9 (C_q), 139.3 (C_q), 136.6 (C_q), 133.8 (C_q), 129.5 (CH), 129.3 (C_q), 128.7 (CH), 125.4 (CH), 121.8 (CH), 107.6 (CH), 11.0 (CH), 55.3 (CH₃), 31.7 (CH₂), 24.8 (CH₂), 22.5 (CH₂), 21.3 (CH₃), 13.8 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3300 (m), 2952 (m), 1619 (s), 1587 (vs), 1491 (m), 1333 (m), 1206 (m), 1168 (vs), 1060 (m), 1026 (s), 843 (m).

MS (70 eV, EI) m/z (relative Intensität): 351 (4) [M⁺], 323 (41), 280 (100), 217 (11), 163 (82), 148 (43), 133 (20).

HR-MS (ESI) für $C_{21}H_{25}N_3O_2 \bullet H^+$: berechnet: 352.2020, gefunden: 352.2020.

Darstellung von 4-*n*-Butyl-5-(3,4,5-trimethoxyphenyl)-1-(3-methylphenyl)-1*H*-1,2,3-triazol (77i)

Nach AAV 11 wird 3,4,5-Trimethoxyphenyltosylat (**139j**) (203 mg, 0.60 mmol) mit **72b** (108 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 3/1$) ergibt **77i** (165 mg, 87%) als gelbliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.73-7.11$ (m, 3H), 7.02-6.94 (m, 1H), 6.31 (s, 2H), 3.84 (s, 3H), 3.66 (s, 6H), 2.77-2.70 (m, 2H), 2.31 (s, 3H), 1.72 (quint, J = 7.9 Hz, 2H), 1.37 (tq, J = 7.1, 7.1 Hz, 2H), 0.89 (t, J = 7.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 153.2$ (C_q), 145.6 (C_q), 139.3 (C_q), 138.3 (C_q), 136.7 (C_q), 133.8 (C_q), 129.5 (CH), 128.8 (CH), 125.5 (CH), 122.6 (C_q), 121.9 (CH), 106.9 (CH), 61.0 (CH₃), 56.0 (CH₃), 31.9 (CH₂), 24.9 (CH₂), 22.5 (CH₂), 21.2 (CH₃), 13.8 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 2997 (s), 2955 (vs), 2871 (s), 2837 (w), 1606 (m), 1585 (vs), 1504 (vs), 1410 (s), 1238 (s), 1005 (s), 788 (m).

MS (70 eV, EI) m/z (relative Intensität): 381 (16) [M⁺], 353 (28), 338 (46), 310 (30), 193 (100), 163 (19), 144 (12), 133 (11).

HR-MS (ESI) für C₂₂H₂₇N₃O₃•H⁺: berechnet: 382.2125, gefunden: 382.2125.

Darstellung von 4-*n*-Hexyl-5-(3,5-dimethoxyphenyl)-1-(4-methoxyphenyl)-1*H*-1,2,3triazol (77j)

Nach AAV 11 wird 3,5-Dimethoxyphenyltosylat (**32d**) (185 mg, 0.60 mmol) mit **72c** (130 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 2/1$) ergibt **77j** (196 mg, 99%) als gelbliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.21 (md, *J* = 8.9 Hz, 2H), 6.84 (md, *J* = 8.9 Hz, 2H), 6.45-6.40 (m, 1H), 6.25 (d, *J* = 2.3 Hz, 2H), 3.78 (s, 3H), 3.67 (s, 6H), 2.75-2.66 (m, 1H), 1.70 (quint, *J* = 7.5 Hz, 2H), 1.36-1.18 (m, 6H), 0.83 (t, *J* = 6.7 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 160.7$ (C_q), 159.6 (C_q), 146.0 (C_q), 133.7 (C_q), 130.0 (C_q), 129.4 (C_q), 126.1 (CH), 114.1 (CH), 107.7 (CH), 100.6 (CH), 55.5 (CH₃), 55.3 (CH₃), 31.6 (CH₂), 29.6 (CH₂), 29.1 (CH₂), 25.2 (CH₂), 22.5 (CH₂), 14.0 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 3002 (m), 2954 (vs), 2856 (s), 2054 (w), 1594 (s), 1517 (vs), 1423 (s), 1302 (s), 1254 (s), 1118 (s), 837 (s), 689 (m).

MS (70 eV, EI) m/z (relative Intensität): 395 (3) [M⁺], 367 (25), 324 (13), 296 (100), 188 (21), 177 (14), 163 (78), 148 (48), 134 (35).

HR-MS (ESI) für $C_{23}H_{29}N_3O_3 \cdot H^+$: berechnet: 396.2282, gefunden: 396.2283.

Darstellung von Methyl-4-[1-(4-methoxyphenyl)-4-phenyl-1*H*-1,2,3-triazol-5-yl]-benzoat (77k)

Nach AAV 11 wird 4-Tosylbenzoesäuremethylester (**32r**) (184 mg, 0.60 mmol) mit **77d** (126 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 21 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 3/1$) ergibt **77k** (138 mg, 72%) als gelben Feststoff (Schmb.: 163-164 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.99 (md, J = 7.8 Hz, 2H), 7.57-7.50 (m, 2H), 7.33-7.25 (m, 5H), 7.18 (md, J = 8.8 Hz, 2H), 6.85 (md, J = 8.8 Hz, 2H), 3.90 (s, 3H), 3.79 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 166.3 (C_q), 160.0 (C_q), 145.0 (C_q), 132.7 (C_q), 132.4 (C_q), 130.7 (C_q), 130.4 (C_q), 130.1 (CH), 130.0 (CH), 129.1 (C_q), 128.6 (CH), 128.1 (CH), 127.4 (CH), 126.6 (CH), 114.5 (CH), 55.5 (CH₃), 52.3 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3255 (m), 2841 (w), 1701 (vs), 1559 (m), 1498 (vs), 1287 (s), 1250 (s), 1180 (m), 994 (m), 835 (s), 774 (m).

MS (70 eV, EI) m/z (relative Intensität): 385 (5) [M⁺], 357 (82), 342 (17), 314 (15), 254 (11), 209 (10), 190 (23), 165 (100), 152 (19).

HR-MS (ESI) für $C_{23}H_{19}N_3O_3 \cdot H^+$: berechnet: 386.1499, gefunden: 386.1499.

Darstellung von Dimethyl-5-[1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazol-5-yl)isophthalat (77l)

Nach AAV 11 wird 3,5-Dimethylbenzoattosylat (**32r**) (219 mg, 0.60 mmol) mit **72d** (121 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 21 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $2/1 \rightarrow 1/1$) ergibt **77l** (179 mg, 81%) als gelblichen Feststoff (Schmb.: 159-160 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.68 (m, 1H), 8.05 (d, J = 1.7 Hz, 2H), 7.54-7.47 (m, 2H), 7.31-7.25 (m, 3H), 7.19 (md, J = 8.9 Hz, 2H), 6.84 (md, J = 8.9 Hz, 2H), 3.87 (s, 6H), 3.77 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 165.1 (C_q), 160.0 (C_q), 145.1 (C_q), 135.3 (CH), 131.9 (C_q), 131.5 (C_q), 131.3 (CH), 130.2 (C_q), 129.2 (C_q), 128.8 (C_q), 128.6 (CH), 128.2 (CH), 127.1 (CH), 126.7 (CH), 114.5 (CH), 55.5 (CH₃), 52.7 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3112 (m), 2960 (m), 1734 (vs), 1607 (m), 1496 (vs), 1438 (vs), 1329 (m), 1255 (vs), 991 (s), 836 (m), 756 (s).

MS (70 eV, EI) m/z (relative Intensität): 444 (7) [M⁺], 415 (100), 400 (16), 372 (14), 267 (11), 223 (28), 190 (21), 165 (31), 152 (29).

HR-MS (ESI) für $C_{25}H_{21}N_3O_5 \cdot H^+$: berechnet: 444.1554, gefunden: 444.1553.

Darstellungvon3-[1-(4-Methoxyphenyl)-4-phenyl-1H-1,2,3-triazol-5-yl]-N,N-dimethylanilin (77m)

Nach AAV 11 wird 3-*N*,*N*-(Dimethylamino)phenyltosylat (**32s**) (175 mg, 0.60 mmol) mit **72d** (126 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 2/1$) ergibt **77m** (180 mg, 97%) als gelblichen Feststoff (Schmb.: 157-158 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.68-7.58 (m, 2H), 7.32-7.20 (m, 5H), 7.16-7.10 (m, 1H), 6.84 (md, J = 8.8 Hz, 2H), 6.69 (dd, J = 7.8, 1.9 Hz, 1H), 6.54-6.41 (m, 2H), 3.77 (s, 3H), 2.78 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.6 (C_q), 150.2 (C_q), 144.1 (C_q), 134.4 (C_q), 131.0 (C_q), 129.8 (CH), 129.6 (C_q), 128.5 (CH), 128.2 (CH), 127.6 (CH), 127.2 (CH), 126.4 (CH), 118.1 (CH), 114.1 (CH), 113.1 (C_q), 55.3 (CH₃), 40.4 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3379 (m), 2838 (w), 1689 (s), 1554 (m), 1541 (vs), 1370 (m), 1252 (vs), 1183 (s), 1128 (m), 992 (s), 834 (m).

MS (70 eV, EI) m/z (relative Intensität): 370 (21) [M⁺], 342 (100), 327 (28), 299 (19), 208 (45), 190 (26), 165 (76), 152 (31).

HR-MS (ESI) für $C_{23}H_{22}N_4O \cdot H^+$: berechnet: 371.1866, gefunden: 371.1867.

Darstellung von 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-4-phenyl-1*H*-1,2,3-triazol (77n)

Nach AAV 11 wird 3,4,5-Trimethoxyphenyltosylat (**139j**) (203 mg, 0.60 mmol) mit **72d** (126 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 18 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 1/1$) ergibt **77n** (196 mg, 94%) als gelben Feststoff (Schmb.: 127-128 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.65-7.59$ (m, 2H), 7.35-7.22 (m, 5H), 6.88 (md, J = 8.9 Hz, 2H), 6.35 (s, 2H), 3.86 (s, 3H), 3.80 (s, 3H), 3.58 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 150.8$ (C_q), 153.4 (C_q), 144.2 (C_q), 138.5 (C_q), 133.6 (C_q), 130.8 (C_q), 129.6 (C_q), 128.4 (CH), 127.9 (CH), 127.2 (CH), 126.3 (CH), 122.6 (C_q), 114.1 (CH), 107.2 (CH), 61.0 (CH₃), 56.0 (CH₃), 55.5 (CH₃).

IR (KBr) $\tilde{\nu}$ (cm⁻¹): 3173 (m), 2937 (br), 2829 (m), 1600 (vs), 1581 (vs), 1489 (vs), 1329 (s), 1237 (s), 1090 (s), 843 (s), 713 (m).

MS (70 eV, EI) m/z (relative Intensität): 417 (9) [M⁺], 389 (82), 374 (100), 226 (10), 211 (12), 183 (15), 155 (26), 139 (20), 127 (28).

HR-MS (ESI) für $C_{24}H_{23}N_3O_4 \bullet H^+$: berechnet: 418.1761, gefunden: 418.1762.
Darstellung von 4-[1-(4-Methoxyphenyl)-1H-1,2,3-triazol-5-yl]phenyl-4-tosylat (770)

Nach AAV 11 wird 4-Chlorphenyltosylat (**32o**) (170 mg, 0.60 mmol) mit **72e** (88 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 20 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/1 \rightarrow 1/3$) ergibt **77o** (164 mg, 78%) als farbloses hochviskoses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.81 (s, 1H), 7.67 (md, J = 8.4 Hz, 2H), 7.31-7.26 (m, 2H), 7.20 (md, J = 8.7 Hz, 2H), 7.13 (md, J = 8.4 Hz, 2H), 6.94 (md, J = 8.7 Hz, 2H), 6.90 (md, J = 8.7 Hz, 2H), 3.83 (s, 3H), 2.42 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.2 (C_q), 149.9 (C_q), 145.7 (C_q), 136.5 (C_q), 133.3 (CH), 132.1 (C_q), 129.9 (CH), 129.8 (CH), 129.2 (C_q), 128.5 (CH), 126.5 (CH), 125.8 (C_q), 123.0 (CH), 114.6 (CH), 55.1 (CH₃), 21.7 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 3010 (br), 1609 (m), 1518 (vs), 1478 (s), 1372 (vs), 1255 (s), 1200 (vs), 1093 (s), 867 (vs), 675 (m).

MS (70 eV, EI) m/z (relative Intensität): 422 (18) [M⁺], 367 (15), 278 (13), 238 (100), 214 (19), 132 (7).

HR-MS (ESI) für $C_{22}H_{19}N_3O_4S \cdot H^+$: berechnet: 422.1169, gefunden: 422.1168.

Darstellung von 1-(4-Methoxyphenyl)-5-(2-naphthyl)-1H-1,2,3-triazol (77p)

Nach AAV 11 wird 2-Naphthyltosylat (**139l**) (179 mg, 0.60 mmol) mit **72e** (88 mg, 0.50 mmol), [Pd(OAc)₂] (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und

 K_2CO_3 (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 21 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 2/1) ergibt **77p** (135 mg, 90%) als gelbes viskoses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.93 (s, 1H), 7.83-7.73 (m, 4H), 7.53-7.46 (m, 2H), 7.29 (md, *J* = 8.7 Hz, 2H), 7.20 (dd, *J* = 8.7, 1.8 Hz, 1H), 6.89 (md, *J* = 8.9 Hz, 2H), 3.82 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 160.0 (C_q), 137.6 (C_q), 133.4 (CH), 133.0 (C_q), 132.9 (C_q), 129.6 (C_q), 128.5 (CH), 128.2 (CH), 128.1 (CH), 127.7 (CH), 127.1 (CH), 126.8 (CH), 126.5 (CH), 125.5 (CH), 124.1 (C_q), 114.5 (CH), 55.5 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 3126 (m), 2960 (br), 2051 (w), 1609 (s), 1442 (vs), 1302 (s), 1248 (s), 993 (m), 862 (m).

MS (70 eV, EI) m/z (relative Intensität): 301 (47) [M⁺], 273 (100), 258 (86), 230 (48), 202 (32), 166 (51), 139 (91).

HR-MS (ESI) für $C_{19}H_{15}N_3O \cdot H^+$: berechnet: 302.1288, gefunden: 302.1289.

Darstellung von 1-(4-Methoxyphenyl)-5-(2-methylphenyl)-1H-1,2,3-triazol (77q)

Nach AAV 11 wird 2-Methylphenyltosylat (**32i**) (157 mg, 0.60 mmol) mit **72e** (88 mg, 0.50 mmol), $[Pd(OAc)_2]$ (5.6 mg, 0.025 mmol), X-Phos (**12o**) (23.8 mg, 0.050 mmol) und K₂CO₃ (104 mg, 0.75 mmol) in DMF (2.0 mL) und *t*-BuOH (1.0 mL) 20 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 2/1) ergibt **77q** (68 mg, 51%) als farbloses viskoses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.73 (s, 1H), 7.33-7.25 (m, 1H), 7.22-7.08 (m, 5H), 6.81 (md, *J* = 9.1 Hz, 2H), 3.77 (s, 3H), 1.96 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.6 (C_q), 137.3 (C_q), 136.7 (C_q), 134.1 (CH), 130.6 (CH), 130.5 (CH), 129.8 (C_q), 129.6 (CH), 126.8 (C_q), 126.0 (CH), 125.1 (CH), 114.2 (CH), 55.4 (CH₃), 19.8 (CH₃).

IR (NaCl) $\tilde{\nu}$ (cm⁻¹): 3312 (m), 1610 (s), 1501 (vs), 1457 (s), 1254 (s), 1116 (s), 1027 (vs), 850 (vs), 744 (m). MS (70 eV, EI) m/z (relative Intensität): 265 (11) [M⁺], 236 (100), 222 (16), 193 (11), 115 (19), 104 (82). HR-MS (ESI) für C₁₆H₁₅N₃O•H⁺: berechnet: 266.1288, gefunden: 266.1287.

Darstellung von 2-(2-Methylphenyl)-4,5-dihydrooxazol (89a)

In einem Rundkolben werden 2-Methylbenzonitril (140) (5.863 g, 50.0 mmol), 2-Aminoethanol (141) (17.32 g, 283.3 mmol) und ZnCl₂ (1.38 g, 10.0 mmol) unter Rühren für 45 min mittels Mikrowellenbestrahlung (200 W) unter Rückfluß bei 175 °Cerhitzt. Die abgekühlte Reaktionslösung wird mit ges. NH₄Cl-Lösung (70 mL) versetzt. Es wird mit Et₂O (3×60 mL) extrahiert und die vereinigten organischen Phasen werden mit ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet, abfiltriert und im Vakuum eingeengt. **89a** wird nach säulenchromatographischer Reinigung (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) und Trocknung am ÖPV als farblose Flüssigkeit (1.854 g, 23 %) erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.81 (d, *J* = 7.9 Hz, 1H), 7.36-7.38 (m, 1H), 7.25-7.17 (m, 2H), 4.37 (t, *J* = 9.7 Hz, 2H), 4.09 (t, *J* = 9.7 Hz, 2H), 2.59 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 165.0 (C_q), 138.7 (C_q), 131.1 (CH), 130.4 (CH), 129.8 (CH), 127.2 (C_q), 125.5 (CH), 66.7 (CH₂), 55.4 (CH₂), 21.7 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3208 (w), 2971 (m), 2930 (m), 2877 (m), 1643 (vs), 1454 (m), 1352 (s), 1326 (w), 1246 (s), 1196 (m), 1071 (m), 1045 (vs), 945 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 161 (100) [M⁺], 130 (15), 104 (38), 90 (12), 65 (5). **HR-MS** (EI) für C₁₀H₁₁NO: berechnet: 161.0841, gefunden: 161.0845. Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁸³

Darstellung von 2-Brom-5-ethoxycarbonylfuran (61e)

Zu einer Lösung aus 5-Bromfuranyl-2-carbonsäure (142) (5.729 g, 30.00 mmol) in EtOH (60 mL) wird Thionylchlorid (4.912 g, 41.41 mmol) zugetropft und 5 h unter Rückfluß bei 110 °C erhitzt. Das Lösungsmittel wird unter verminderten Druck entfernt und der erhaltene Rückstand wird mit H₂O (60 mL) versetzt und mit Et₂O (3×80 mL) extrahiert. Die vereinigten organischen Phasen werden nacheinander mit ges. NaHCO₃-Lösung (50 mL) und ges. NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. **61e** (6.172 g, 94%) wird als orangefarbene Flüssigkeit erhalten.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.12 (d, *J* = 3.6 Hz, 1H), 6.46 (d, *J* = 3.6 Hz, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.1 (C_q), 146.8 (C_q), 127.5 (C_q), 120.1 (CH), 114.2 (CH), 61.5 (CH₂), 14.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3073 (s), 2965 (m), 1736 (vs), 1667 (vs), 1264 (m), 1110 (s), 1048 (m), 791 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 220 (45) ([M⁺], ⁸¹Br), 218 (45) ([M⁺], ⁷⁹Br), 192 (87), 190 (88), 175 (97), 173 (100), 148 (22), 146 (23), 119 (20), 117 (21), 95 (31).

HR-MS (EI) für C₇H₇⁷⁹BrO₃: berechnet: 217.9579, gefunden: 217.9583.

HR-MS (EI) für C₇H₇⁸¹BrO₃: berechnet: 219.9558, gefunden: 219.9551.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²¹⁴

Darstellung von 1-N-Phenylpyrazol (105a)

In einem mit Septum und Magnetrührstäbchen versehenen und mit Stickstoff befüllten Schlenkkolben werden 1*H*-Pyrazol (**143**) (681 mg, 10.00 mmol), CuI (200 mg, 1.05 mmol)

und K₂CO₃ (2.902 g, 21.00 mmol) in Toluol (10.0 mL) suspendiert und anschließend Iodbenzol (**28d**) (2.469 g, 12.10 mmol) und *N*,*N* -Dimethylethylen-1,2-diamin (**132**) (172 mg, 2.00 mmol) zugegeben und 24 h bei 105 °C gerührt. Die erkaltete Reaktionsmischung wird in Et₂O (80 mL) und H₂O (50 mL) aufgenommen und die wässrige Phase wird mit Et₂O (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden solange mit 2 M NH₃-Lösung gegengeschüttelt bis eine Blaufärbung der wässrigen Phase ausbleibt. Anschließend wird über MgSO₄ getrocknet, filtriert und die Lösungsmittel werden im Vakuum entfernt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 30/1→4/1) und Trocknung am ÖPV ergibt **105a** (1.326 g, 92%) als hellgelbe Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.95 (dd, J = 4.6, 2.3 Hz, 1H), 7.76-7.70 (m, 3H), 7.52-7.47 (m, 2H), 7.36-7.27 (m, 1H), 6.54 (dd, J = 4.6, 2.3 Hz, 1H).

¹³C-NMR (75 MHz, CDCl₃): δ = 141.1 (CH), 140.2 (C_q), 129.5 (CH), 126.8 (CH), 126.5 (CH), 119.2 (CH), 107.6 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3140 (m), 3050 (m), 2924 (w), 1600 (s), 1520 (s), 1393 (s), 1332 (m), 1198 (vs), 1120 (vs), 1046 (s), 936 (s), 914 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 144 (100) [M⁺], 68 (66).

HR-MS (EI) für C₉H₈N₂: berechnet: 144.0687, gefunden: 144.0690.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁸⁴

Darstellung von 4-Methoxy-N-(1-phenylethyliden)phenylimin (88a)

In einem mit Septum und Magnetrührstäbchen versehenen, ausgeheizten und mit Stickstoff befüllten 100 mL-Schlenk-Kolben werden 4-Methoxyanilin (**122c**) (2.960 g, 24.01 mmol), Acetophenon (**144**) (2.403 g, 20.00 mmol) und NEt₃ (4.082 g, 40.3 mmol) in CH₂Cl₂ (50 mL) gelöst und auf 0 °C gekühlt. Dann wird über eine Spritze langsam TiCl₄ (1.10 mL, 9.972 mmol) zugetropft und 30 min bei 0 °C gerührt. Die Reaktionslösung wird 20 h bei Umgebungstemperatur gerührt, mit ges. Na₂CO₃-Lösung (60 mL) versetzt und der ausgefallene Feststoff über eine Fritte abgetrennt. Umkristallisation aus EtOH in der Siedehitze und Trocknung am ÖPV ergibt **88a** (3.875 g, 86%) als hellgelben Feststoff (Schmb.: 86-87 °C, Lit.:²⁸⁵ 86 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.01-7.97 (m, 2H), 7.46-7.42 (m, 3H), 6.92 (d, *J* = 8.5 Hz, 2H), 6.78 (d, *J* = 8.5 Hz, 2H), 3.81 (s, 3H), 2.27 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 165.4 (C_q), 156.0 (C_q), 152.0 (C_q), 139.8 (C_q), 130.3 (CH), 128.3 (CH), 127.1 (CH), 120.7 (CH), 114.3 (CH), 55.4 (CH₃), 17.3 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 2834 (w), 1626 (m), 1602 (s), 1512 (m), 1501 (vs), 1268 (m), 1220 (vs), 1200 (m), 1142 (s), 1026 (m), 834 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 225 (47) [M⁺], 210 (100), 181 (7), 91 (13). **HR-MS** (EI) für C₁₅H₁₅NO: berechnet: 225.1154, gefunden: 225.1151.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.²⁸⁵

Darstellung von 1-(4-Acetyl-2`-pyridin-2-yl-1,1`:3``,1``-terphenyl-4``-yl)ethanon (145a)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (160 mg, 1.03 mmol) mit 4-Bromacetophenon (**61f**) (438 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/3$) ergibt **145a** (361 mg, 90%) als gelblichen Feststoff (Schmb.: 200.5-201.5 °C, Lit.:¹⁷² 198-199 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.30 (d, *J* = 5.0 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 4H), 7.56 (dd, *J* = 8.6, 6.4 Hz, 1H), 7.50-7.45 (m, 2H), 7.31 (dt, *J* = 7.7, 1.8 Hz, 1H), 7.18 (d, *J* = 8.1 Hz, 4H), 6.94 (ddd, *J* = 7.5, 4.8, 0.9 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 1H), 2.56 (s, 6H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 197.7 (C_q), 157.9 (C_q), 148.7 (CH), 146.3 (C_q), 140.9 (C_q), 138.3 (C_q), 135.3 (CH), 135.1 (CH), 129.8 (CH), 129.7 (CH), 128.5 (CH), 127.8 (CH), 126.6 (CH), 121.4 (CH), 26.5 (CH₃).

IR (ATR) \tilde{v} (cm⁻¹): 3053 (w), 2919 (m), 1680 (vs), 1605 (vs), 1268 (s), 958 (m), 809 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 391 (68) [M⁺], 390 (100), 348 (13).

HR-MS (EI) für C₂₇H₂₁NO₂: berechnet: 391.1572, gefunden: 391.1567.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷²

Darstellung von 2`-Pyridin-2-yl-1,1`:3`,1``-terphenyl-4-4``-dibenzoesäureethylester (145b)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (155 mg, 1.00 mmol) mit 4-Brombenzoesäureethylester (**61g**) (504 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 3.00 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt **145b** (424 mg, 94%) als farblosen Feststoff (Schmb.: 160.2-161.1 °C, Lit.:¹⁷² 160 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.30 (d, *J* = 4.9 Hz, 1H), 7.84 (d, *J* = 8.5 Hz, 4H), 7.56 (dd, *J* = 8.7, 6.3 Hz, 1H), 7.50-7.45 (m, 2H), 7.31 (dt, *J* = 7.7, 1.7 Hz, 1H), 7.16 (d, *J* = 8.5 Hz, 4H), 6.94 (ddd, *J* = 7.4, 4.8, 1.0 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 4H), 1.36 (t, *J* = 7.1 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 166.4 (C_q), 157.9 (C_q), 148.7 (CH), 146.0 (C_q), 141.0 (C_q), 138.3 (C_q), 135.3 (C_q), 129.8 (CH), 129.5 (CH), 128.9 (CH), 128.5 (CH), 128.4 (CH), 126.7 (CH), 121.4 (CH), 60.9 (CH₂), 14.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3060 (m), 2981 (m), 1714 (s), 1609 (vs), 1277 (m), 1101 (s), 1021 (s), 769 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 451 (75) [M⁺], 450 (100), 422 (11), 394 (17).

HR-MS (EI) für C₂₉H₂₅NO₄: berechnet: 451.1784, gefunden: 451.1773.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷²

Darstellung von 2`-Pyridin-2-yl-[1,1`;3`,1``]terphenyl-4,4``-dinitril (145c)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (155 mg, 1.00 mmol) mit 4-Brombenzonitril (**61h**) (400 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 3.00 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt **145c** (304 mg, 85%) als farblosen Feststoff (Schmb.: 164.5-165.2 °C).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 8.33$ (d, J = 4.8 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.48-7.44 (m, 6H), 7.36 (t, J = 7.7 Hz, 1H), 7.19-7.17 (m, 4H), 7.00 (d, J = 6.0 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 157.3 (C_q), 149.0 (CH), 145.9 (C_q), 140.3 (C_q), 138.3 (C_q), 135.5 (CH), 131.5 (CH), 130.2 (CH), 130.0 (CH), 128.8 (CH), 126.5 (CH), 121.7 (CH), 118.7 (C_q), 110.4 (C_q).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3056, 2230, 1675, 1463, 775, 703

MS (70 eV, EI) *m/z* (relative Intensität): 358 (12), 357 (62) [M⁺], 356 (100).

HR-MS (EI) für C₂₅H₁₅N₃: berechnet: 357.1266, gefunden: 357.1267.

Darstellung von 2-(4,4^{``}-Dichlor-[1,1[`];3[`],1^{``}]terphenyl-2[`]-yl)pyridin (145d)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (155 mg, 1.00 mmol) mit Brom-4-chlorbenzol (**61i**) (421 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 3.00 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 2/1$) ergibt **145d** (259 mg, 69%) als farbloses viskoses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.35 (d, *J* = 4.6 Hz, 1H), 7.52 (t, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 4H), 7.02 (d, *J* = 8.3 Hz, 4H), 6.97 (t, *J* = 6.1 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.3 (C_q), 148.8 (CH), 140.7 (C_q), 138.8 (C_q), 138.4 (C_q), 135.2 (CH), 132.5 (C_q), 130.8 (CH), 129.6 (CH), 128.4 (CH), 127.9 (CH), 126.6 (CH), 121.2 (CH).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3072 (w), 3018 (m), 1603 (m), 1450 (vs), 1012 (s), 743 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 376 (78), 375 (64) [M⁺], 374 (100), 338 (20), 152 (21).

HR-MS (EI) für C₂₃H₁₅Cl₂N: berechnet: 375.0582, gefunden: 375.0602.

Darstellung von 2`Pyridin-2-yl-[1,1`;3`,1``]terphenyl-3,3``-dibenzoesäureethylester (145e)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (160 mg, 1.03 mmol) mit 3-Brombenzoesäureethylester (**61j**) (504 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 3.00 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 2/1$) ergibt **145e** (440 mg, 95%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.31 (d, J = 4.8 Hz, 1H), 7.84-7.82 (m, 4H), 7.57-7.55 (m, 1H), 7.49 (d, J = 7.6 Hz, 2H), 7.30 (dt, J = 7.7, 1.6 Hz, 1H), 7.26-7.24 (m, 2H), 7.20 (t, J = 7.8 Hz, 2H), 6.91-6.87 (m, 2H), 4.30 (q, J = 7.1 Hz, 4H), 1.33 (t, J = 7.1 Hz, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 166.4 (C_q), 158.2 (C_q), 148.7 (CH), 141.5 (C_q), 140.9 (C_q), 138.6 (C_q), 135.1 (CH), 133.9 (CH), 130.6 (CH), 130.1 (C_q), 129.7 (CH), 128.5 (CH), 127.7 (CH), 127.6 (CH), 126.8 (CH), 121.1 (CH), 60.8 (CH₂), 14.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2941 (s), 2223 (w), 1675 (m), 1602 (vs), 1485 (vs), 1300 (s), 1255 (s), 1213 (m), 1152 (vs), 1013 (s), 833 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 452 (24), 451 (100) [M⁺], 450 (79), 422 (30), 406 (10), 404 (12), 394 (12).

HR-MS (EI) für C₂₉H₂₅NO₄: berechnet: 451.1784, gefunden: 451.1780.

Darstellung von 2`-Pyridin-2-yl-1,1`:3`,1``-terphenyl-3-3``-dinitril (145f)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (145 mg, 0.93 mmol) mit 3-Brombenzonitril (**61j**) (400 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt **145f** (169 mg, 51%) als farblosen Feststoff (Schmb.: 144.6-145.1 °C, Lit.:¹⁷² 145-146 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.30 (d, J = 4.9 Hz, 1H), 7.84 (d, J = 8.5 Hz, 4H), 7.56 (dd, J = 8.7, 6.3 Hz, 1H), 7.50-7.45 (m, 2H), 7.31 (dt, J = 7.7, 1.7 Hz, 1H), 7.16 (d, J = 8.5 Hz, 4H), 6.94 (ddd, J = 7.4, 4.8, 1.0 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 4.33 (q, J = 7.1 Hz, 4H), 1.36 (t, J = 7.1 Hz, 6H,).

¹³C-NMR (75 MHz, CDCl₃): δ = 166.4 (C_q), 157.9 (C_q), 148.7 (CH), 146.0 (C_q), 141.0 (C_q), 138.3 (C_q), 135.3 (C_q), 129.8 (CH), 129.5 (CH), 128.9 (CH), 128.5 (CH), 128.4 (CH), 126.7 (CH), 121.4 (CH), 60.9 (CH₂), 14.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3066 (w), 2230 (m), 1583 (s), 1426 (vs), 795 (vs), 698 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 357 (56) [M⁺], 356 (100), 354 (6).

HR-MS (EI) für C₂₅H₁₅N₃: berechnet: 357.1266, gefunden: 357.1233.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷²

Darstellung von 2-(4,4^{**}-Dimethoxy-1,1^{*}:3^{*},1^{**}-terphenyl-2^{*}yl)pyridin (145g)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (145 mg, 0.93 mmol) mit 4-Bromanisol (**61c**) (411 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $5/1 \rightarrow 1/1$) ergibt **145g** (208 mg, 61%) als farblosen Feststoff (Schmb.: 163.1-163.9 °C, Lit.:¹⁷² 163 °C).

Darstellung von 2-(4,4``-Dimethoxy-1,1`:3`,1``-terphenyl-2`yl)pyridin (145g) in Toluol

Nach AAV 13 wird 2-Phenylpyridin (**81b**) (78 mg, 0.50 mmol), 4-Bromanisol (**61c**) (411 mg, 2.20 mmol), $[\text{RuCl}_2(p\text{-}\text{Cymol})]_2$ (7.7 mg, 0.0012 mmol), K_2CO_3 (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 18 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 5/1 \rightarrow 1/1) ergibt **145g** (178 mg, 97%) als farblosen Feststoff.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.36 (d, *J* = 4.5 Hz, 1H), 7.48 (dd, *J* = 8.9, 6.2 Hz, 1H), 7.45-7.35 (m, 2H), 7.33 (dt, *J* = 7.8, 1.6 Hz, 1H), 7.01 (d, *J* = 8.5 Hz, 4H), 6.92 (dd, *J* = 7.6, 5.1 Hz, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.70 (d, *J* = 8.5 Hz, 4H), 3.74 (s, 6H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.2 (C_q), 158.2 (C_q), 148.5 (CH), 141.4 (C_q), 138.4 (C_q), 135.0 (CH), 134.0, (CH), 130.6 (CH), 129.1 (CH), 128.1 (CH), 126.7 (CH), 113.1 (CH), 55.1 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3037 (m), 1609 (w), 1582 (m), 1513 (s), 1233 (vs), 1183 (m), 1040 (s), 806 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 367 (95) [M⁺], 366 (100), 353 (21), 352 (92).

HR-MS (EI) für C₂₅H₂₁NO₂: berechnet: 367.1572, gefunden: 367.1552.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷²

Darstellung von 2-(2,2^{*}-Dimethoxy-[1,1^{*};3^{*},1^{*}]terphenyl-2^{*}-yl)pyridin (145h)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (157 mg, 1.01 mmol) mit 2-Bromanisol (**61l**) (4.11 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 3.00 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 2/1$) ergibt **145h** (241 mg, 65%) als farblosen Feststoff (Schmb.: 186.2-187.3 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.15 (d, J = 4.2 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 7.7 Hz, 2H), 7.21 (t, J = 7.8 Hz, 2H), 7.19-7.14 (m, 3H), 6.94-6.85 (m, 3H), 6.78 (t, J = 7.4 Hz, 1H), 6.65 (s, br, 2H), 3.43 (s, br, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.5 (C_q), 156.0 (C_q), 147.4 (CH), 140.2 (CH), 137.9 (C_q), 133.5 (CH), 131.9 (CH), 130.8 (CH), 130.0 (CH), 128.1 (CH), 127.5 (C_q), 125.6 (C_q), 120.2 (CH), 120.1 (CH), 110.0 (CH), 54.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3042 (m), 2213 (w), 1593 (vs), 1467 (s), 1245 (vs), 1185 (vs), 1178 (m), 823 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 367 (5) [M⁺], 337 (69), 336 (100), 320 (20).

HR-MS (EI) für C₂₅H₂₁NO₂: berechnet: 367.1572, gefunden: 367.1571.

Darstellung von 5-(2-Pyridin-2-yl-phenyl)furan-2-ethylester (146a)

Nach AAV 12 wird 2-Phenylpyridin (**81b**) (155 mg, 1.00 mmol) mit 2-Brom-5ethoxycarbonylfuran (**61e**) (482 mg, 2.20 mmol), $[RuCl_3(H_2O)_n]$ (25.2 mg, 0.10 mmol) und K₂CO₃ (415 mg, 3.00 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 2/1$) ergibt **146a** (189 mg, 64%) als bräunliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.61-8.59 (m, 1H), 7.80-7.77 (m, 1H), 7.63 (dt, *J* = 7.8, 1.9 Hz, 1H), 7.45-7.38 (m, 3H), 7.25-7.20 (m, 2H), 6.95 (d, *J* = 3.8 Hz, 1H), 5.79 (d, *J* = 3.5 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.0 (C_q), 158.6 (C_q), 156.3 (C_q), 149.1 (C_q), 143.6 (C_q), 138.8 (C_q), 136.5 (CH), 130.4 (CH), 128.9 (CH), 128.7 (CH), 128.3 (CH), 128.1 (CH), 124.4 (CH), 122.3 (CH), 119.2 (CH), 110.6 (CH), 60.7 (CH₂), 14.3 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3040 (w), 2872 (m), 2238 (m), 1678 (vs), 1120 (s), 904 (s), 814 (m). **MS** (70 eV, EI) *m/z* (relative Intensität): 294 (12), 293 (21) [M⁺], 220 (100), 191 (38), 163 (7).

HR-MS (EI) für C₁₈H₁₅NO₃: berechnet: 293.1052, gefunden: 293.1024.

Darstellung von 2-(4`-Methoxy-3-methylbiphenyl)pyridin (149)

Nach AAV 13 wird 2-*ortho*-Tolylpyridin (**111t**) (84 mg, 0.50 mmol), 4-Bromanisol (**61c**) (140 mg, 0.75 mmol), $[\operatorname{RuCl}_2(p-\operatorname{Cymol})]_2$ (7.7 mg, 0.0012 mmol), $K_2\operatorname{CO}_3$ (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 18 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 10/1→4/1) ergibt **149** (135 mg, 99%) als gelbliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.63 (ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 7.45 (dt, J = 7.6, 1.9 Hz, 1H), 7.32-7.19 (m, 3H), 7.11 (ddd, J = 8.8, 6.2, 1.1 Hz, 1H), 6.99 (dt, J = 8.8, 2.9 Hz, 2H), 6.88 (td, J = 7.7, 1.0 Hz, 1H), 6.65 (dt, J = 8.8 Hz, 2.9 Hz, 2H), 3.71 (s, 3H), 2.16 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 159.5 (C_q), 158.1 (C_q), 148.4 (CH), 140.8 (C_q), 136.7 (C_q), 136.2 (C_q), 134.0 (CH), 130.7 (C_q), 129.1 (CH), 128.1 (CH), 127.6 (CH), 125.8 (CH), 121.4 (CH), 113.1 (CH), 76.8 (CH), 55.1 (CH₃), 20.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3001 (m), 2956 (w), 2835 (m), 2539 (vs), 2044 (s), 1887 (m), 1161 (vs), 1515 (vs), 1378 (s), 1292(m), 1253 (s), 1110 (m), 1034 (m), 835 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 275 (48) [M⁺], 274 (100), 260 (33), 231 (23),

130 (12), 115 (18).

HR-MS (EI) für C₁₉H₁₇NO: berechnet: 275.1310, gefunden: 275.1328.

Darstellung von 2-[6-Methyl-2-(4-methylcarbonylphenyl)-phenyl]oxazolin (147a)

Nach AAV 12 wird 2-*ortho*-Tolyloxazolin (**89a**) (166 mg, 1.03 mmol) mit 4-Bromacetophenon (**61f**) (239 mg, 1.20 mmol), $[RuCl_3(H_2O)_n]$ (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 3/1 \rightarrow 1/1) ergibt **147a** (197 mg, 68%) als gelblichen Feststoff (Schmb.: 88.7-89.1 °C, Lit.:¹⁷⁵ 88-89 °C).

Darstellung von 2-[6-Methyl-2-(4-methylcarbonylphenyl)phenyl]oxazolin (147a) in Toluol

Nach AAV 13 wird 2-*ortho*-Tolyloxazolin (**98a**) (82 mg, 0.51 mmol), 4-Bromacetophenon (**61f**) (149 mg, 0.75 mmol), $[\operatorname{RuCl}_2(p-\operatorname{Cymol})]_2$ (7.7 mg, 0.0012 mmol), $\operatorname{K}_2\operatorname{CO}_3$ (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 20 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 1/1→1/4) ergibt **147a** (140 mg, 98%) als gelben Feststoff.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.96 (md, J = 8.6 Hz, 2H), 7.50 (md, J = 8.6 Hz, 2H), 7.42-7.33 (m, 1H), 7.30-7.18 (m, 2H), 4.15 (t, J = 8.6 Hz, 2H), 3.85 (t, J = 8.7 Hz, 2H), 2.62 (s, 3H), 2.42 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 197.8 (C_q), 164.1 (C_q), 146.2 (C_q), 140.8 (C_q), 137.8 (C_q), 135.8 (C_q), 129.7 (CH), 129.6 (CH), 128.6 (CH), 128.1 (CH), 128.0 (C_q), 127.0 (CH), 67.2 (CH₂), 55.1 (CH₂), 25.6 (CH₃), 19.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3064 (m), 2878 (s), 1679 (m), 1606 (vs), 1402 (s), 1357 (m), 1269 (vs), 1253 (s), 1186 (m), 1045 (m), 932 (s), 844 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 279 (17) [M⁺], 278 (100), 234 (3), 165 (3).

HR-MS (EI) für C₁₈H₁₇NO₂: berechnet: 279.1259, gefunden: 279.1197.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷⁵

Darstellung von 2-[6-Methyl-2-(4-phenylcarbonylphenyl)phenyl]oxazolin (147i) in Toluol

Nach AAV 13 wird 2-*ortho*-Tolyloxazolin (**89a**) (82 mg, 0.51 mmol), 4-Brombenzophenon (**27r**) (196 mg, 0.75 mmol), $[RuCl_2(p-Cymol)]_2$ (7.7 mg, 0.0012 mmol), K_2CO_3 (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 18 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 1/1→1/3) ergibt **147i** (164 mg, 94%) als hellbraunen Feststoff (Schmb.: 124.9-125.5 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.87-7.78 (m, 4H), 7.63-7.45 (m, 5H), 7.43-7.21 (m, 3H), 4.18 (t, *J* = 9.3 Hz, 2H), 3.88 (t, *J* = 9.3 Hz, 2H), 2.44 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 196.4 (C_q), 164.2 (C_q), 145.6 (C_q), 140.9 (C_q), 137.9 (C_q), 137.8 (C_q), 136.1 (C_q), 132.3 (CH), 130.0 (CH), 130.0 (CH), 129.7 (CH), 129.6 (CH), 128.4 (CH), 128.3 (CH), 128.1 (C_q), 127.1 (CH), 67.3 (CH₂), 55.2 (CH₂), 19.8 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3063 (w), 3031 (w), 2879 (m), 1943 (w), 1655 (vs), 1605 (s), 1461 (m), 1447 (m), 1349 (m), 1314 (s), 1277 (vs), 1253 (s), 1148 (m), 1048 (s), 976 (w), 934 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 341 (25) [M⁺], 340 (100), 296 (3), 191 (1), 165 (3), 105 (9), 77 (11).

HR-MS (EI) für C₂₃H₁₉NO₂: berechnet: 341.1416, gefunden: 341.1391.

Darstellung von 2-[6-Methyl-2-(4-methoxycarbonylphenyl)-phenyl]oxazolin (147b)

Nach AAV 12 wird 2-*ortho*-Tolyloxazolin (**89a**) (161 mg, 1.00 mmol) mit 4-Brombenzoesäuremethylester (**61m**) (258 mg, 1.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $1/1 \rightarrow 1/2$) ergibt **147b** (236 mg, 68%) als gelben Feststoff (Schmb.: 116.5-117.1 °C, Lit.:¹⁷⁵ 115-117 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.96 (md, *J* = 8.6 Hz, 2H), 7.50 (md, *J* = 8.6 Hz, 2H), 7.41-7.33 (m, 1H), 7.29-7.17 (m, 2H), 4.15 (t, *J* = 9.4 Hz, 2H), 3.85 (t, *J* = 9.4 Hz, 2H), 2.62 (s, 3H), 2.42 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 167.0 (C_q), 164.1 (C_q), 146.2 (C_q), 140.8 (C_q), 137.8 (C_q), 135.7 (C_q), 129.7 (CH), 129.6 (CH), 129.4 (C_q), 128.6 (CH), 128.1 (CH), 127.0 (CH), 67.2 (CH₂), 55.1 (CH₂), 29.6 (CH₃), 19.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3064 (m), 2878 (w), 1726 (s), 1666 (s), 1610 (vs), 1460 (m), 1436 (s), 1314 (s), 1280 (vs), 1196 (m), 1042 (m), 932 (s), 856 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 295 (17) [M⁺], 294 (100), 264 (3), 250 (4), 191 (2), 165 (3).

HR-MS (EI) für C₁₈H₁₇NO₃: berechnet: 295.1208, gefunden: 295.1182.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷⁵

Darstellung von 2-[6-Methyl-2-(4-ethoxycarbonylphenyl)-phenyl]oxazolin (147j) in Toluol

Nach AAV 13 wird 2-*ortho*-Tolyloxazolin (**89a**) (74 mg, 0.46 mmol), 4-Brombenzoesäureethylester (**61g**) (172 mg, 0.75 mmol), $[RuCl_2(p-Cymol)]_2$ (7.7 mg, 0.0012 mmol), K₂CO₃ (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 17 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 3/1 \rightarrow 1/1) ergibt **147j** (140 mg, 99%) als dunkelgelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.05 (md, *J* = 8.1 Hz, 2H), 7.48 (md, *J* = 7.5 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.26 (d, *J* = 7.2 Hz, 1H), 7.22 (d, *J* = 7.2 Hz, 1H), 4.40 (q, *J* = 4.4 Hz, 2H), 4.14 (t, *J* = 9.4 Hz, 2H), 3.85 (t, *J* = 9.4 Hz, 2H), 2.42 (s, 3H), 1.41 (t, *J* = 9.5 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 168.8 (C_q), 164.4 (C_q), 146.1 (C_q), 141.2 (C_q), 138.0 (C_q), 129.9 (CH), 129.8 (CH), 129.5 (CH), 129.4 (C_q), 128.6 (CH), 128.3 (C_q), 127.3 (CH), 67.5 (CH₂), 61.2 (CH₂), 55.4 (CH₂), 20.2 (CH₃), 14.6 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3064 (w), 2979 (w), 2912 (m), 1720 (m), 1680 (vs), 1476 (vs), 1364 (s), 1256 (vs), 1134 (s), 912 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 309 (25) [M⁺], 308 (100), 280 (16), 264 (6), 165 (7), 152 (4).

HR-MS (EI) für C₁₉H₁₉NO₃: berechnet: 309.1365, gefunden: 309.1321.

Darstellung von 2-[2-(4-Cyanophenyl)-6-methylphenyl]oxazolin (147c)

Nach AAV 12 wird 2-*ortho*-Tolyloxazolin (**89a**) (165 mg, 1.02 mmol) mit 4-Brombenzonitril (**61h**) (218 mg, 1.20 mmol), $[RuCl_3(H_2O)_n]$ (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg,

1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/3$) ergibt **147c** (158 mg, 59%) als bräunlichen Feststoff (Schmb.: 102.2-103.4 °C, Lit.:¹⁷⁵ 103-104 °C).

Darstellung von 2-[2-(4-Cyanophenyl)-6-methylphenyl]oxazolin (147c) in Toluol

Nach AAV 13 wird 2-*ortho*-Tolyloxazolin (**89a**) (74 mg, 0.46 mmol), 4-Brombenzonitril (**61h**) (137 mg, 0.75 mmol), $[RuCl_2(p-Cymol)]_2$ (7.7 mg, 0.0012 mmol), K_2CO_3 (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 18 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 3/1 \rightarrow 1/1) ergibt **147c** (104 mg, 86%) als gelben Feststoff.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.66 (md, J = 8.6 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 7.44-7.34 (m, 1H), 7.32-7.25 (m, 1H), 7.21-7.14 (m, 1H), 4.17 (t, J = 9.5 Hz, 2H), 3.87 (t, J = 9.4 Hz, 2H), 2.43 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.9 (C_q), 146.0 (C_q), 140.1 (C_q), 138.0 (C_q), 131.8 (CH), 130.1 (CH), 129.7 (CH), 129.2 (CH), 128.0 (C_q), 126.9 (CH), 118.9 (C_q), 111.0 (C_q), 67.3 (CH₂), 55.1 (CH₂), 19.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2885 (w), 2231 (s), 1651 (vs), 1459 (m), 1346 (s), 1255 (m), 1047 (s), 969 (s), 932 (s), 848 (m), 790 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 262 (18) [M⁺], 261 (100), 217 (13), 190 (11), 177 (3), 151 (2).

HR-MS (EI) für C₁₇H₁₄N₂O: berechnet: 262.1106, gefunden: 262.1085.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷⁵

Darstellung von 2-[6-Methyl-2-(3-methoxycarbonylphenyl)-phenyl]oxazolin (147d)

Nach AAV 12 wird 2-*ortho*-Tolyloxazolin (**89a**) (163 mg, 1.01 mmol) mit 3-Brombenzoesäuremethylester (**61n**) (258 mg, 1.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K_2CO_3 (207 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 3/1 \rightarrow 1/3) ergibt **147d** (230 mg, 77%) als farbloses Öl.

¹**H-NMR** (600 MHz, CDCl₃): δ = 8.06 (s, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.39-7.35 (m, 1H), 7.32-7.28 (m, 1H), 7.20-7.15 (m, 1H), 4.09 (t, *J* = 9.5 Hz, 2H), 3.84 (s, 3H), 3.78 (t, *J* = 9.5 Hz, 2H), 2.35 (s, 3H). ¹³**C-NMR** (150 MHz, CDCl₃): δ = 167.0 (C_q), 164.2 (C_q), 141.4 (C_q), 140.8 (C_q), 137.7 (C_q), 132.9 (CH), 130.0 (C_q), 129.6 (CH), 129.4 (CH), 128.3 (CH), 128.2 (C_q), 128.1 (CH), 128.1 (CH), 127.1 (CH), 67.2 (CH₂), 55.2 (CH₂), 52.1 (CH₃), 19.8 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3064 (m), 2952 (m), 1723 (s), 1664 (s), 1581 (vs), 1437 (m), 1347 (m), 1313 (w), 1256 (vs), 1121 (s), 1044 (m), 972 (s). **MS** (70 eV, EI) *m/z* (relative Intensität): 295 (23) [M⁺], 294 (100), 250 (6), 178 (4), 165 (8). **HR-MS** (EI) für C₁₈H₁₇NO₃: berechnet: 295.1208, gefunden: 295.1174.

Darstellung von 2-[6-Methyl-2-[3,5-(ditrifluormethyl)phenyl]phenyl]oxazolin (147e)

Nach AAV 12 wird 2-*ortho*-Tolyloxazolin (**89a**) (161 mg, 1.00 mmol) mit 3,5-(Bistrifluormethyl)brombenzol (**61o**) (352 mg, 1.20 mmol), $[RuCl_3(H_2O)_n]$ (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/2$) ergibt **147e** (170 mg, 46%) als farbloses Öl

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.91 (s, 2H), 7.84 (s, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.33-7.32 (m, 1H), 7.27-7.25 (m, 1H), 4.20 (t, *J* = 9.7 Hz, 2H), 3.87 (t, *J* = 9.7 Hz, 2H), 2.25 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 163.9 (C_q), 143.3 (C_q), 138.9 (C_q), 138.6 (C_q), 131.6 (q, *J* = 33.2 Hz, C_q), 130.7 (CH), 130.4 (q, *J* = 68.7 Hz, CH), 130.2 (CH), 128.9 (CH), 128.6 (C_q), 127.2 (CH), 123.6 (q, *J* = 272.7 Hz, C_q), 121.1 (q, *J* = 3.8 Hz, CH), 67.5 (CH₂), 55.5 (CH₂), 20.0 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -63.56$ (s).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2874 (w), 1694 (m), 1453 (s), 1367 (s), 1265 (vs), 1148 (m), 1111 (m), 1021 (s), 956 (m), 867 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 373 (100) [M⁺], 324 (21), 317 (23), 233 (17).

HR-MS (EI) für C₁₈H₁₃F₆NO: berechnet: 373.0901, gefunden: 373.0917.

Darstellung von 2-[6-Methyl-2-(2-chlorphenyl)phenyl]oxazolin (147f)

Nach AAV 12 wird 2-*ortho*-Tolyloxazolin (**89a**) (161 mg, 1.00 mmol) mit Brom-2chlorbenzol (**61p**) (230 mg, 1.20 mmol), $[RuCl_3(H_2O)_n]$ (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 5/1 \rightarrow 2/1) ergibt **147f** (167 mg, 62%) als gelbliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.31-7.28 (m, 4H), 7.22-7.11 (m, 3H), 4.12 (t, *J* = 9.1 Hz, 2H), 3.82 (t, *J* = 9.1 Hz, 2H), 2.36 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 164.5 (CH), 141.0 (CH), 139.9 (C_q), 137.9 (C_q), 124.2 (CH) = 122.5 (CH) = 122.4 (CH) = 122.2 (CH) = 122.6 (CH) = 12

134.2 (CH), 133.5 (CH), 133.4 (CH), 132.2 (C_q), 131.3 (C_q), 130.0 (CH), 129.8 (C_q), 129.6 (C_q), 128.4 (C_q), 127.3 (C_q), 67.7 (CH₂), 55.4 (CH₂), 19.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3056 (m), 1654 (w), 1489 (m), 1351 (s), 1265 (vs), 1003 (s), 943 (m), 856 (m), 767 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 271 (21) [M⁺], 270 (100), 242 (14), 161 (17), 104 (9).

HR-MS (EI) für C₁₆H₁₄ClNO: berechnet: 271.0764, gefunden: 271.0765.

Darstellung von 2-[6-Methyl-2-(4-methoxyphenyl)phenyl]oxazolin (147g)

Nach AAV 12 wird 2-*ortho*-Tolyloxazolin (**89a**) (161 mg, 1.00 mmol) mit 4-Bromanisol (**61c**) (224 mg, 1.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt **147g** (174 mg, 65%) als gelbes Öl.

Darstellung von 2-[6-Methyl-2-(4-methoxyphenyl)phenyl]oxazolin (147g) in Toluol

Nach AAV 13 wird 2-*ortho*-Tolyloxazolin (**89a**) (74 mg, 0.46 mmol), 4-Bromanisol (**61c**) (140 mg, 0.75 mmol), $[\operatorname{RuCl}_2(p-\operatorname{Cymol})]_2$ (7.7 mg, 0.0012 mmol), $K_2\operatorname{CO}_3$ (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 19 h bei 100 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 1/1 \rightarrow 1/2) ergibt **147g** (117 mg, 95%) als gelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.37-7.28$ (m, 3H), 7.18 (md, J = 8.1 Hz, 2H), 6.90 (md, J = 8.8 Hz, 2H), 4.15 (t, J = 9.3 Hz, 2H), 3.91-3.81 (m, 5H), 2.40 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 164.6 (C_q), 158.8 (C_q), 141.5 (C_q), 137.4 (C_q), 133.6 (C_q), 129.5 (CH), 129.4 (CH), 128.5 (CH), 128.1 (C_q), 127.1 (CH), 113.4 (CH), 67.1 (CH₂), 55.2 (CH₃), 55.0 (CH₂), 19.7 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3062 (m), 2933 (w), 1884 (s), 1666 (s), 1610 (vs), 1514 (s), 1461 (m), 1346 (m), 1291 (m), 1248 (m), 1180 (s), 937 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 267 (17) [M⁺], 266 (100), 222 (4), 152 (2).

HR-MS (EI) für $C_{17}H_{17}NO_2$: berechnet: 267.1225, gefunden: 267.1259. Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷⁵

Darstellung von 2-[6-Methyl-2-(4-methylphenyl)phenyl]oxazolin (147j) in Toluol

Nach AAV 13 wird 2-*ortho*-Tolyloxazolin (**89a**) (80 mg, 0.50 mmol), 4-Bromtoluol (**61q**) (128 mg, 0.75 mmol), $[\operatorname{RuCl}_2(p-\operatorname{Cymol})]_2$ (7.7 mg, 0.0012 mmol), $K_2\operatorname{CO}_3$ (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 18 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 3/1 \rightarrow 1/1) ergibt **147j** (120 mg, 96%) als bräunliches Öl.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.34-7.31$ (m, 3H), 7.20 (d, J = 7.6 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 4.15 (t, J = 9.5 Hz, 2H), 3.87 (t, J = 9.5 Hz, 2H), 2.41 (s, 3H), 2.38 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 164.5 (C_q), 142.0 (C_q), 138.3 (C_q), 137.4 (C_q), 136.7 (C_q), 129.4 (CH), 128.8 (CH), 128.7 (CH), 128.1 (C_q), 128.2 (CH), 127.2 (CH), 67.1 (CH₂), 55.2 (CH₂), 21.2 (CH₃), 19.8 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2921 (w), 1661 (m), 1514 (m), 1460 (vs), 1249 (s), 1040 (s), 971 (vs), 936 (vs), 895 (vs), 870 (m).

MS (70 eV, EI) m/z (relative Intensität): 251 (13) [M⁺], 250 (100), 206 (13), 165 (7).152 (2). **HR-MS** (EI) für C₁₇H₁₇NO: berechnet: 251.1310, gefunden: 251.1286.

Darstellung von 2-[6-Methyl-2-(2-methoxyphenyl)phenyl]oxazolin (147h)

Nach AAV 12 wird 2-*ortho*-Tolyloxazolin (**89a**) (161 mg, 1.00 mmol) mit 2-Bromanisol (**61l**) (224 mg, 1.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 1/1$) ergibt **147h** (136 mg, 51%) als graufarbenen Feststoff (Schmb.: 63-64 °C, Lit.:¹⁷⁵ 64-65 °C).

Darstellung von 2-[6-Methyl-2-(2-methoxyphenyl)phenyl]oxazolin (147h) in Toluol

Nach AAV 13 wird 2-*o*-Tolyloxazolin (**89a**) (78 mg, 0.48 mmol), 2-Chloranisol (**27w**) (107 mg, 0.75 mmol), $[\operatorname{RuCl}_2(p\text{-}\operatorname{Cymol})]_2$ (7.7 mg, 0.0012 mmol), K_2CO_3 (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 20 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 1/1→1/3) ergibt **147h** (95 mg, 73%) als graufarbenen Feststoff.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.37-7.17 (m, 5H), 6.99-6.89 (m, 2H), 4.05 (t, *J* = 9.3 Hz, 2H), 3.84-3.73 (m, 5H), 2.43 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 164.5 (C_q), 156.5 (C_q), 138.7 (C_q), 137.2 (C_q), 130.7 (CH), 130.2 (C_q), 129.0 (CH), 128.9 (CH), 128.8 (CH), 128.5 (CH), 128.2 (CH), 120.1 (CH), 110.6 (CH), 66.9 (CH₂), 55.5 (CH₃), 55.1 (CH₂), 20.1 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3063 (s), 2891 (m), 1667 (m), 1496 (m), 1432 (s), 1340 (vs), 1234 (m), 1078 (m), 1035 (m), 1020 (s), 935 (s), 894 (m), 761 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 266 (10) [M-H⁺], 237 (15), 236 (100), 192 (13), 165 (5).

HR-MS (EI) für C₁₇H₁₇NO₂: berechnet: 267.1259, gefunden: 267.1251.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷⁵

Darstellung von 1-[4-Acetyl-2`-pyrazol-1-yl-(1,1`;3`,1``)-terphenyl-4``-yl]ethanon (148a)

Nach AAV 12 wird 1-Phenyl-1*H*-pyrazol (**105a**) (148 mg, 1.03 mmol) mit 4-Bromacetophenon (**61f**) (438 mg, 2.20 mmol), $[RuCl_3(H_2O)_n]$ (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 3.00 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 3/1 \rightarrow 1/1) ergibt **148a** (232 mg, 64%) als graufarbenen Feststoff (Schmb.: 164.1-165.1 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.83 (dt, J = 8.4, 1.8 Hz, 4H), 7.65-7.52 (m, 3H), 7.37 (d, J = 1.8 Hz, 1H), 7.20 (dt, J = 8.4, 1.8 Hz, 4H), 7.06 (d, J = 2.3 Hz, 1H), 6.08 (t, J = 2.2 Hz, 1H), 2.57 (s, 6H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 197.6 (C_q), 143.3 (C_q), 139.9 (CH), 139.4 (C_q), 136.4 (C_q), 135.9 (C_q), 132.3 (CH), 130.5 (CH), 129.4 (CH), 128.4 (CH), 128.1 (CH), 106.7 (CH), 26.6 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 1675 (s), 1607 (m), 1267 (vs), 847 (m), 834 (m), 811 (s), 754 (s), 705 (vs), 626 (s), 608 (m), 601 (m), 591 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 380 (48) [M⁺], 379 (100), 365 (6), 337 (10), 293 (5), 175 (7), 146 (5), 43 (7).

HR-MS (EI) für C₂₅H₂₀N₂O₂: berechnet: 380.1525, gefunden: 380.1498.

Darstellung von 2`-Pyrazol-1-yl-(1,1`;3`,1``)-terphenyl-4,4``-dicarbonsäuredimethylester (148b)

Nach AAV 12 wird 1-Phenyl-1*H*-pyrazol (**105a**) (144 mg, 1.00 mmol) mit 4-Brombenzoesäuremethylester (**61m**) (473 mg, 2.20 mmol), $[RuCl_3(H_2O)_n]$ (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 1.50 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $3/1 \rightarrow 2/1$) ergibt **148b** (214 mg, 52%) als farblosen Feststoff (Schmb.: 144.2-145.6 °C).

¹**H-NMR** (600 MHz, CDCl₃): δ = 7.92 (d, *J* = 8.2 Hz, 4H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.55-7.50 (m, 2H), 7.36 (s, 1H), 7.16 (d, *J* = 8.1 Hz, 4H), 7.05 (s, 1H), 6.06 (s, 1H), 1.34 (s, 6H).

¹³**C-NMR** (150 MHz, CDCl₃): δ = 164.0 (C_q), 143.0 (CH), 140.7 (CH), 137.5 (C_q), 137.2 (C_q), 134.1 (C_q), 130.0 (CH), 128.2 (C_q), 127.0 (CH), 125.9 (CH), 106.6 (CH), 104.3 (CH), 120.9 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 1719 (s), 1609 (s), 1435 (m), 1401 (vs), 1313 (m), 1277 (m), 1188 (m), 1103 (s), 1018 (w), 770 (m), 708 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 412 (43) [M⁺], 411 (100), 381 (5), 351 (6), 292 (4), 265 (2), 175 (2), 147 (2).

HR-MS (EI) für $C_{25}H_{20}N_2O_4$: berechnet: 412.1423, gefunden: 412.1408.

Darstellung von 1-(4,4``-Dimethoxy-1,1`:3`,1``-terphenyl-2`yl)-1*H*-pyrazol (148c)

1030 (s), 843 (m), 835 (m), 800 (s), 762 (m).

Nach AAV 12 wird 1-Phenyl-1*H*-pyrazol (**105a**) (148 mg, 1.03 mmol) mit 4-Bromanisol (**61c**) (411 mg, 2.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (415 mg, 3.00 mmol) in NMP (2.0 mL) 22 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 4/1 \rightarrow 1/1) ergibt **148c** (200 mg, 55%) als farblosen Feststoff (Schmb.: 132.4-133.3 °C, Lit.:¹⁷⁵ 133-135 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.55-7.50 (m, 1H), 7.45-7.42 (m, 3H), 7.09 (d, *J* = 2.4, 0.6 Hz, 1H), 7.03 (dt, *J* = 9.6, 2.5 Hz, 4H), 6.76 (dt, *J* = 9.6, 2.5 Hz, 4H), 6.10-6.09 (m, 1H), 3.77 (s, 6H.

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.8 (C_q), 140.1 (C_q), 139.2 (CH), 136.2 (C_q), 132.4 (CH), 131.1 (C_q), 129.6 (CH), 129.3 (CH), 129.0 (CH), 113.5 (CH), 106.0 (CH), 55.1 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 1608 (s), 1515 (m), 1462 (s), 1280 (s), 1241 (m), 1183 (m), 1039 (vs), **MS** (70 eV, EI) m/z (relative Intensität): 355 (100) [M-H⁺], 341 (6), 311 (4), 297 (2), 269 (2). **HR-MS** (EI) für C₂₃H₂₀N₂O₂: berechnet: 356.1525, gefunden: 356.1537. Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷⁵

Darstellung von 4-Acetyl-2-(4`-acetyl)phenylethanon (104b)

Nach AAV 12 wird 4-Methoxy-*N*-(1-phenylethyliden)phenylimin (**88a**) (225 mg, 1.00 mmol) mit 4-Bromacetophenon (**61f**) (229 mg, 1.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) mit aktivierten 4 Å Molsieb (100 mg) 22 h bei 120 °C umgesetzt. Die erkaltete Reaktionslösung wird mit 2 M HCl (100 mL) versetzt und 4 h bei Umgebungstemperatur gerührt. Aufarbeitung des Reaktionsgemisches und säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $8/1 \rightarrow 2/1$) ergibt **104b** (162 mg, 68%) als gelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.99 (d, *J* = 8.3 Hz, 2H), 7.58 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.52 (dt, *J* = 7.5, 1.4 Hz, 1H), 7.45 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.41 (d, *J* = 7.5, 1.3 Hz, 2H), 7.35 (dd, *J* = 7.5, 1.3 Hz, 1H), 2.62 (s, 3H), 2.11 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 203.5 (C_q), 197.5 (C_q), 145.6 (C_q), 140.3 (C_q), 139.4 (C_q), 136.1 (C_q), 130.9 (CH), 130.2 (CH), 128.9 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 30.2 (CH₃), 26.5 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3070 (m), 2945 (s), 1690 (m), 1623 (vs), 1476 (vs), 1300 (s), 1179 (s), 1035 (s), 771 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 238 (78) [M⁺], 223 (100), 195 (25), 181 (45), 152 (27).

HR-MS (EI) für C₁₆H₁₄O₂: berechnet: 238.0994, gefunden: 238.0981.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷²

Darstellung von 2-(4`-Ethylbenzoat)phenylethanon (104c)

Nach AAV 12 wird 4-Methoxy-*N*-(1-phenylethyliden)phenylimin (**88a**) (225 mg, 1.00 mmol) mit 4-Brombenzoesäureethylester (**61g**) (275 mg, 1.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) mit aktivierten 4 Å Molsieb (100 mg) 22 h bei 120 °C umgesetzt. Die erkaltete Reaktionslösung wird mit 2 M Salzsäure (100 mL) versetzt und 4 h bei Umgebungstemperatur gerührt. Aufarbeitung des Reaktionsgemisches und säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 4/1 \rightarrow 3/1) ergibt **104c** (173 mg, 65%) als gelbes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.10 (d, *J* = 8.2 Hz, 2H), 7.59 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.51 (dt, *J* = 7.4, 1.6 Hz, 1H), 7.45 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 1.4 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.08 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 203.8 (C_q), 166.2 (C_q), 154.4 (C_q), 140.5 (C_q), 139.5 (C_q), 130.9 (CH), 130.2 (CH), 129.8 (C_q), 129.7 (CH), 128.8 (CH), 128.1 (CH), 128.0 (CH), 61.1 (CH₂), 30.4 (CH₃), 14.3 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 3059 (s), 2988 (m), 1716 (vs), 1656 (vs), 1244 (m), 1100 (s), 1028 (m), 790 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 268 (60) [M⁺], 267 (18), 239 (21), 223 (33), 181 (100).

HR-MS (EI) für C₁₇H₁₆O₃: berechnet: 268.1099, gefunden: 268.1087.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷²

Darstellung von 2-(4'-Methoxyphenyl)phenylethanon (104a)

Nach AAV 12 wird 4-Methoxy-*N*-(1-phenylethyliden)phenylimin (**88a**) (225 mg, 1.00 mmol) mit 4-Bromanisol (**61c**) (224 mg, 1.20 mmol), [RuCl₃(H₂O)_n] (12.6 mg, 0.050 mmol) und

K₂CO₃ (207 mg, 1.50 mmol) in NMP (2.0 mL) mit aktiviertem 4 Å Molsieb (100 mg) 22 h bei 120 °C umgesetzt. Die erkaltete Reaktionslösung wird mit 2 M HCl (100 mL) versetzt und 4 h bei Umgebungstemperatur gerührt. Aufarbeitung des Reaktionsgemisches und säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = $4/1 \rightarrow 3/1$) ergibt **104a** (196 mg, 56%) als farblosen Feststoff (Schmb.: 83.4-84.5 °C, Lit.:¹⁷² 83-84 °C).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.45-7.35 (m, 2H), 7.31-7.25 (m, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 3.74 (s, 3H), 1.91 (s, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 205.5 (C_q), 159.5 (C_q), 140.8 (C_q), 140.0 (C_q), 132.9 (CH), 130.6 (CH), 130.0 (CH), 129.9 (CH), 127.7 CH), 126.9 (CH), 114.0 (CH), 55.2 (CH₃), 30.3 (CH₃).

IR (ATR) \tilde{v} (cm⁻¹): 3055 (m), 2981 (m), 1683 (s), 1600 (s), 1267 (vs), 1013 (s), 840 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 268 (10) [M⁺], 253 (65), 211 (100).

HR-MS (EI) für C₁₅H₁₄O₂: berechnet: 226.0994, gefunden: 226.0987.

Die analytischen Daten stehen im Einklang mit den publizierten Werten.¹⁷²

Darstellung von 4-*n*-Butyl-1-[(2-methylphenyl)-6-(4-benzophenon)]-1*H*-1,2,3-triazol (150)

Nach AAV 13 wird 4-*n*-Butyl-1-(2-methylphenyl)-1*H*-1,2,3-triazol (**72f**) (100 mg, 0.46 mmol), 4-Brombenzophenon (**61r**) (196 mg, 0.75 mmol), $[\text{RuCl}_2(p\text{-Cymol})]_2$ (7.7 mg, 0.0012 mmol), K₂CO₃ (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 18 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 5/1 \rightarrow 2/1) ergibt **150** (115 mg, 63%) als farbloses Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.75-7.71 (m, 2H), 7.66 (dt, *J* = 8.3, 1.9 Hz, 2H), 7.61-7.35 (m, 6H), 7.20 (dt, *J* = 8.3, 1.9 Hz, 2H), 7.01 (s, 1H), 2.65 (t, *J* = 7.5 Hz, 2H), 2.15 (s, 3H), 1.58-1.48 (m, 2H), 1.27-1.15 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 196.0 (C_q), 148.1 (C_q), 142.0 (C_q), 138.5 (C_q), 137.3 (C_q), 136.5 (C_q), 136.4 (C_q), 134.6 (C_q), 132.4 (CH), 130.8 (CH), 130.0 (CH), 130.0 (CH), 129.9 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 123.0 (CH), 31.4 (CH₂), 25.0 (CH₂), 21.9 (CH₂), 17.7 (CH₃), 13.7 (CH₃).

IR (ATR) $\tilde{\nu}$ (cm⁻¹): 2956 (m), 2930 (s), 1659 (s), 1606 (m), 1481 (vs), 1315 (vs), 1278 (vs), 1039 (vs), 786 (s), 742 (m), 703 (m).

MS (70 eV, EI) *m/z* (relative Intensität): 395 (1) [M⁺], 394 (1), 367 (25), 324 (23), 311 (14), 278 (11), 262 (6), 218 (6), 165 (6), 105 (100), 77 (29).

HR-MS (ESI) für $C_{26}H_{25}N_3O \cdot H^+$: berechnet: 396.2076, gefunden: 396.2074.

Darstellung von 4-*n*-Butyl-1-[(2-methylphenyl)-6-(5-ethylcarboxylat)-furan]-1*H*-1,2,3-triazol (151)

Nach AAV 13 wird 4-*n*-Butyl-1-(2-methylphenyl)-1*H*-1,2,3-triazol (**72f**) (103 mg, 0.48 mmol), 2-Brom-5-ethoxycarbonylfuran **61e** (164 mg, 0.75 mmol), $[\text{RuCl}_2(p\text{-Cymol})]_2$ (7.7 mg, 0.0012 mmol), K₂CO₃ (138 mg, 1.00 mmol) und Mesitylcarbonsäure (**133c**) (24.6 mg, 0.15 mmol) in Toluol (2.0 mL) 18 h bei 120 °C umgesetzt. Säulenchromatographische Reinigung auf Kieselgel (*n*-Pentan/Et₂O = 4/1) ergibt **151** (161 mg, 95%) als gelbfarbenes Öl.

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.90-7.87 (m, 1H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.34-7.28 (m, 2H), 6.94 (dd, *J* = 3.7, 0.6 Hz, 1H), 5.15 (d, *J* = 3.9 Hz, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 2.81 (t, *J* = 7.5 Hz, 2H), 2.00 (s, 3H), 1.69 (quint, *J* = 7.6 Hz, 2H), 1.41-1.31 (m, 5H), 0.92 (t, *J* = 7.5 Hz, 3H).

¹³**C-NMR** (75 MHz, CDCl₃): δ = 158.7 (C_q), 152.4 (C_q), 149.3 (C_q), 144.4 (C_q), 137.2 (C_q), 133.1 (C_q), 131.4 (CH), 130.8 (CH), 128.0 (C_q), 125.9 (CH), 122.9 (CH), 119.8 (CH), 110.4 (CH), 61.3 (CH₂), 31.7 (CH₂), 25.4 (CH₂), 22.4 (CH₂), 17.4 (CH₂), 14.6 (CH₃), 14.0 (CH₃). **IR** (ATR) $\tilde{\nu}$ (cm⁻¹): 3135 (m), 2958 (w), 2872 (w), 1717 (m), 1653 (m), 1576 (s), 1372 (vs), 1269 (s), 1216 (s), 1144 (m), 950 (s).

MS (70 eV, EI) *m/z* (relative Intensität): 353 (8) [M⁺], 310 (20), 269 (28), 224 (31), 210 (87), 180 (100), 167 (32), 127 (36).

HR-MS (ESI) für $C_{20}H_{22}N_3O_3 \cdot H^+$: berechnet: 353.1739, gefunden: 353.1741.

8 Kristallographischer Anhang

Kristallstrukturanalyse von 9-Phenyl-2-(trifluormethyl)-9H-pyrido[2,3-b]indol (65e)

Datensatz: kn461; Summenformel: $C_{18}H_{11}F_3N_2$; Molekulargewicht: 312.29; 200 K; Strahlung Mo-K_a; $\lambda = 0.71073$ Å; gemessene Indizes $-21 \le h \le 22$, $-14 \le k \le 14$, $-20 \le 1 \le 20$; monoklin; Raumgruppe C2/c; a = 17.6821(6) Å, $\alpha = 90^{\circ}$; b = 11.6822(4) Å, $\beta = 121.7783(17)^{\circ}$; c = 16.0590(5) Å, $\gamma = 90^{\circ}$; Volumen 2819.96(17) Å³; Z = 8; $\rho = 1.471$ g/cm³; Absorbtionskoeffizient $\mu = 0.116$ mm⁻¹; F(000) 1280; Kristallabmessungen 0.18 × 0.20 × 0.23 mm; 5596 gesammelte Reflexe, 2883 unabhängige Reflexe; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 3.5°, 26.4°; F² = 1.04; [I > 2.0 σ (I)] 2022; R(int) 0.020; verfeinerte Parameter R = 0.0424, wR2 = 0.1157; Restelektronendichte min = -0.22, max = 0.17 e Å³.

Atom	X	у	Z	$U(eq) [Å^2]$
F2	0.20840(9)	-0.23671(10)	0.79677(9)	0.0726(5)
F3	0.25836(7)	-0.13443(10)	0.92502(9)	0.0720(4)
N1	-0.01359(8)	0.20132(11)	0.60995(9)	0.0357(4)
N2	0.11671(8)	0.14126(11)	0.76010(9)	0.0383(4)
C1	-0.08500(10)	0.14576(13)	0.52970(11)	0.0353(5)
C2	-0.15858(11)	0.19346(16)	0.44775(11)	0.0422(5)
C3	-0.22070(11)	0.11899(17)	0.37869(13)	0.0478(6)
C4	-0.20986(12)	0.00103(17)	0.38942(13)	0.0492(6)
C5	-0.13597(11)	-0.04641(15)	0.47038(12)	0.0440(5)
C6	-0.07293(10)	0.02693(13)	0.54204(11)	0.0361(5)
C7	0.00897(10)	0.00914(13)	0.63458(11)	0.0343(5)
C8	0.04318(10)	0.11912(13)	0.67406(11)	0.0335(5)
C9	0.05637(11)	-0.08417(14)	0.68964(12)	0.0388(5)
C10	0.13336(10)	-0.06390(13)	0.77999(12)	0.0376(5)
C11	0.16017(11)	0.04766(14)	0.81176(12)	0.0395(5)
C12	0.18378(11)	-0.16317(15)	0.84207(13)	0.0467(5)
C13	-0.00263(10)	0.32263(13)	0.62020(11)	0.0365(4)
C14	-0.06890(13)	0.38854(16)	0.61787(14)	0.0502(6)
C15	-0.06083(16)	0.50617(17)	0.62209(15)	0.0659(7)
C16	0.01319(18)	0.55666(18)	0.63026(16)	0.0734(8)
C17	0.07941(16)	0.49049(18)	0.63433(15)	0.0640(7)
C18	0.07155(12)	0.37264(15)	0.62832(12)	0.0463(6)

Tabelle 8.1: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter E(eq) von **65e**. U(eq) ist definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

 Tabelle 8.2: Bindungslängen [Å] von 65e.

Atome	Abstand	Atome	Abstand
F1-C12	1.339(3)	C10-C12	1.482(2)
F2-C12	1.338(2)	C13-C14	1.386(3)
F3-C12	1.333(2)	C13-C18	1.378(3)
N1-C1	1.401(2)	C14-C15	1.380(3)
N1-C8	1.379(2)	C15-C16	1.377(4)
N1-C13	1.428(2)	C16-C17	1.376(4)
N2-C8	1.332(2)	C17-C18	1.382(3)
N2-C11	1.343(2)	C2-H2	0.95(2)
C1-C2	1.390(2)	С3-Н3	0.95(2)
C1-C6	1.403(2)	C4-H4	0.97(2)
C2-C3	1.382(3)	C5-H5	0.973(19)
C3-C4	1.389(3)	С9-Н9	0.967(19)
C4-C5	1.384(3)	C11-H11	0.981(19)
C5-C6	1.396(2)	C14-H14	0.93(3)
C6-C7	1.443(2)	C15-H15	0.97(3)
C7-C8	1.419(2)	C16-H16	0.95(2)
C7-C9	1.375(2)	C17-H17	0.95(3)
C9-C10	1.391(2)	C18-H18	0.95(2)
C10-C11	1.389(2)		

Tabelle 8.3: Bindungswinkel [°] von 65e.

Atome	Winkel	Atome	Winkel
C1-N1-C8	108.26(12)	F2-C12-F3	105.74(17)
C1-N1-C13	124.59(13)	F2-C12-C10	112.91(15)
C8-N1-C13	127.14(13)	F3-C12-C10	113.78(15)
C8-N2-C11	114.28(14)	N1-C13-C14	119.12(17)
N1-C1-C2	128.76(15)	N1-C13-C18	119.76(17)
N1-C1-C6	109.40(14)	C14-C13-C18	121.07(16)
C2-C1-C6	121.84(15)	C13-C14-C15	119.2(2)
C1-C2-C3	117.35(17)	C14-C15-C16	120.0(2)
C2-C3-C4	121.69(18)	C15-C16-C17	120.4(2)
C3-C4-C5	120.93(18)	C16-C17-C18	120.3(3)
C4-C5-C6	118.52(16)	C13-C18-C17	119.0(2)
C1-C6-C5	119.66(15)	С1-С2-Н2	121.2(12)
C1-C6-C7	106.47(14)	С3-С2-Н2	121.4(12)
C5-C6-C7	133.87(15)	С2-С3-Н3	118.8(12)
C6-C7-C8	106.87(13)	С4-С3-Н3	119.5(12)
C6-C7-C9	135.85(15)	С3-С4-Н4	120.4(12)
C8-C7-C9	117.27(15)	С5-С4-Н4	118.6(12)
N1-C8-N2	124.64(14)	С4-С5-Н5	119.7(11)
N1-C8-C7	108.99(14)	С6-С5-Н5	121.8(11)
N2-C8-C7	126.35(14)	С7-С9-Н9	122.8(11)
C7-C9-C10	117.78(15)	С10-С9-Н9	119.4(11)
C9-C10-C11	120.02(15)	N2-C11-H11	115.7(10)
C9-C10-C12	118.69(14)	C10-C11-H11	120.0(10)
C11-C10-C12	121.27(16)	C13-C14-H14	116.4(16)
N2-C11-C10	124.31(16)	C15-C14-H14	124.3(16)
F1-C12-F2	105.06(15)	C14-C15-H15	121.4(15)
F1-C12-F3	105.99(15)	C16-C15-H15	118.6(15)
F1-C12-C10	112.64(18)	C15-C16-H16	122.7(19)
C17-C16-H16	117(2)	C13-C18-H18	117.5(14)
C16-C17-H17	120.0(15)	C17-C18-H18	123.5(14)
C18-C17-H17	119.7(15)		

Kristallstrukturanalyse von 1-Methoxy-7-methyl-9H-carbazol (650)

Datensatz: kn484; Summenformel: C₁₄H₁₃NO; Molekulargewicht: 211.26; 200 K; Strahlung Mo-K_a; $\lambda = 0.71073$ Å; gemessene Indizes $-14 \le h \le 14$, $-10 \le k \le 10$, $-32 \le 1 \le 32$; orthorhombisch; Raumgruppe Pbca; a = 11.2663(2) Å; b = 7.7271(2) Å; c = 24.9442(5) Å; Volumen 2171.54(8) Å³; Z = 8; $\rho = 1.292$ g/cm³; Absorbtionskoeffizient $\mu = 0.081$ mm⁻¹; F(000) 896; Kristallabmessungen $0.04 \times 0.08 \times 0.21$ mm; 4590 gesammelte Reflexe, 2475 unabhängige Reflexe; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 3.3°, 27.5°; F² = 1.04; [I > 2.0 σ (I)] 1720; R(int) 0.025; verfeinerte Parameter R = 0.0440, wR2 = 0.1232; Restelektronendichte min = -0.17, max = 0.20 e Å³.

Tabelle 8.4: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter E(eq) von **650**. U(eq) ist definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Atom	Х	у	Z	$U(eq) [Å^2]$
H1	-0.0811(17)	0.309(2)	0.3071(7)	0.062(5)
H3	0.0867(13)	0.139(2)	0.4773(7)	0.049(4)
H4	0.2659(15)	0.005(2)	0.4461(7)	0.065(6)
H5	0.3100(15)	-0.014(2)	0.3542(6)	0.051(4)
H8	0.3043(15)	0.0080(19)	0.2388(6)	0.047(4)
Н9	0.2512(14)	0.061(2)	0.1468(6)	0.054(5)
H11	-0.0566(15)	0.295(2)	0.1952(5)	0.040(4)
H131	-0.0524(19)	0.350(3)	0.4895(8)	0.083(7)
H132	-0.189(2)	0.356(3)	0.4691(9)	0.097(7)
H133	-0.118(2)	0.167(3)	0.4824(9)	0.101(8)
H141	-0.019(3)	0.254(3)	0.1002(10)	0.106(9)
H142	0.089(2)	0.136(4)	0.0818(11)	0.127(10)
H143	0.103(2)	0.321(4)	0.0928(11)	0.130(10)

Tabelle 8.5: Bindungslängen [Å] von 650

Atome	Abstand	Atome	Abstand
O-C2	1.3687(19)	C10-C14	1.509(2)
O-C13	1.415(2)	C10-C11	1.379(2)
N-C1	1.3813(19)	C11-C12	1.391(2)
N-C12	1.3830(19)	С3-Н3	1.008(17)
N-H1	0.907(18)	C4-H4	0.986(17)
C1-C6	1.4015(19)	С5-Н5	0.971(16)
C1-C2	1.395(2)	C8-H8	-0.979(16)
C2-C3	1.382(2)	С9-Н9	1.018(15)
C3-C4	1.404(2)	C11-H11	0.958(16)
C4-C5	1.371(2)	C13-H131	1.00(2)
C5-C6	1.403(2)	C13-H132	0.99(2)
C6-C7	1.4422(19)	C13-H133	1.00(2)
C7-C12	1.4131(18)	C14-H141	0.97(3)
C7-C8	1.3979(19)	C14-H142	0.96(3)
C8-C9	1.381(2)	C14-H143	0.93(3)

Atome	Abstand		
C9-C10	1.405(2)		
abelle 8.6: Bindungsw	inkel [°] von 650.		
Atome	Winkel	Atome	Winkel
C2-O-C13	117.60(13)	N-C12-C7	108.63(12)
C1-N-C12	108.56(12)	N-C12-C11	129.41(13)
C12-N-H1	127.4(11)	С2-С3-Н3	119.1(9)
C1-N-H1	124.0(11)	С4-С3-Н3	120.7(9)
N-C1-C6	109.70(13)	С3-С4-Н4	119.1(10)
N-C1-C2	128.16(13)	С5-С4-Н4	118.7(10)
C2-C1-C6	122.15(13)	С4-С5-Н5	121.4(9)
O-C2-C3	126.60(14)	С6-С5-Н5	120.2(9)
C1-C2-C3	117.82(13)	С7-С8-Н8	120.0(9)
O-C2-C1	115.57(13)	С9-С8-Н8	121.1(9)
C2-C3-C4	120.23(14)	С8-С9-Н9	120.7(9)
C3-C4-C5	122.14(15)	С10-С9-Н9	117.3(9)
C4-C5-C6	118.40(14)	C10-C11-H11	119.7(8)
C5-C6-C7	134.53(13)	C12-C11-H11	121.6(8)
C1-C6-C7	106.21(12)	O-C13-H131	110.4(12)
C1-C6-C5	119.26(14)	O-C13-H132	106.5(13)
C6-C7-C12	106.90(11)	O-C13-H133	108.4(13)
C6-C7-C8	134.38(12)	H131-C13-H132	108.8(18)
C8-C7-C12	118.71(12)	H131-C13-H133	106.2(18)
C7-C8-C9	118.92(13)	H132-C13-H133	116.6(19)
C8-C9-C10	121.92(14)	C10-C14-H141	114.3(15)
C11-C10-C14	120.02(14)	C10-C14-H142	114.6(17)
C9-C10-C11	119.85(14)	C10-C14-H143	112.8(17)
C9-C10-C14	120.13(14)	H141-C14-H142	110(2)
C10-C11-C12	118.63(13)	H141-C14-H143	102(2)
C7-C12-C11	121.95(13)	H142-C14-H143	101(2)

Kristallstrukturanalyse von 3-Ethoxycarbonyl-6-methyl-9H-carbazol (65q)

Datensatz: kn482; Summenformel: C₁₆H₁₅NO₂; Molekulargewicht: 253.30; 200 K; Strahlung Mo-K_{α}; $\lambda = 0.71073$ Å; gemessene Indizes $-9 \le h \le 9$, $-10 \le k \le 10$, $-13 \le l \le 12$; triklin; Raumgruppe P-1; a = 7.7584(3) Å, $\alpha = 89.322$ (3)°; b = 8.2588(5) Å, $\beta = 82.931(4)$ °; c = 11.4011(6) Å, $\gamma = 67.686(3)$; Volumen 670.20(6) Å³; Z = 2; $\rho = 1.255$ g/cm³; Absorbtionskoeffizient $\mu = 0.083$ mm⁻¹; F(000) 268; Kristallabmessungen $0.02 \times 0.08 \times 0.18$ mm; 4705 gesammelte Reflexe, 2567 unabhängige Reflexe; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 3.2°, 26.0°; F² = 1.03; [I > 2.0 σ (I)] 1943; R(int) 0.024; verfeinerte Parameter R = 0.0440, wR2 = 0.1200; Restelektronendichte min = -0.20, max = 0.16 e Å³.

Tabelle 8.7: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter E(eq) von 65q.	U(eq)
ist definiert als ein Drittel der Spur des orthogonalen U_{ii} -Tensors.	

Atom	X	у	Z	$U(eq) [Å^2]$
01	0.32524(15)	-0.02120(14)	0.69775(10)	0.0498(4)
O2	0.40467(14)	-0.14399(13)	0.51421(10)	0.0511(4)
Ν	-0.30368(18)	0.53113(16)	0.44192(12)	0.0441(4)
C1	-0.2775(2)	0.49559(19)	0.32152(14)	0.0432(5)
C2	-0.3808(3)	0.5893(2)	0.23491(16)	0.0530(6)
C3	-0.3232(3)	0.5241(3)	0.11984(17)	0.0601(7)
C4	-0.1668(3)	0.3694(2)	0.08854(15)	0.0577(6)
C5	-0.0658(2)	0.2768(2)	0.17638(14)	0.0495(5)
C6	-0.1191(2)	0.33887(19)	0.29371(13)	0.0414(5)
C7	-0.04658(19)	0.27923(18)	0.40409(13)	0.0380(4)
C8	0.10413(19)	0.13714(18)	0.43559(13)	0.0386(4)
C9	0.13825(19)	0.12257(18)	0.55258(13)	0.0391(4)
C10	0.0187(2)	0.24841(19)	0.63940(14)	0.0423(5)
C11	-0.1335(2)	0.3878(2)	0.61081(14)	0.0438(5)
C12	-0.1657(2)	0.40396(18)	0.49312(13)	0.0396(4)
C13	-0.1090(4)	0.3069(4)	-0.03973(19)	0.0798(9)
C14	0.3012(2)	-0.02686(19)	0.58357(14)	0.0416(5)
C15	0.4807(2)	-0.1642(2)	0.73722(17)	0.0534(6)
C16	0.5000(4)	-0.1138(3)	0.8586(2)	0.0759(9)

Tabelle 8.8: Bindungslängen [Å] von 65q.

Atome	Abstand	Atome	Abstand
O1-C14	1.341(2)	C9-C14	1.470(2)
O1-C15	1.446(2)	C10-C11	1.371(2)
O2-C14	1.2156(19)	C11-C12	1.391(2)
N-C1	1.381(2)	C15-C16	1.491(3)
N-C12	1.369(2)	C2-H2	0.953(16)
N-H1	0.91(2)	С3-Н3	1.00(2)
C1-C2	1.386(2)	C5-H5	1.013(16)
C1-C6	1.411(2)	C8-H8	0.994(16)
C2-C3	1.379(3)	C10-H10	1.009(18)
C3-C4	1.400(3)	C11-H11	0.977(16)
C4-C5	1.386(2)	C13-H131	0.98(3)
C4-C13	1.512(3)	С13-Н132	0.97(4)
C5-C6	1.394(2)	C13-H133	0.98(4)
C6-C7	1.446(2)	C15-H151	1.015(16)
C7-C8	1.387(2)	C15-H152	0.99(2)
C7-C12	1.420(2)	C16-H161	1.02(2)
C8-C9	1.387(2)	C16-H162	0.99(3)
C9-C10	1.409(2)	C16-H163	0.99(2)

Tabelle 8.9: Bindungswinkel [°	von 65q .
--------------------------------	------------------

Atome	Winkel	Atome	Winkel
C14-O1-C15	116.94(13)	O1-C14-O2	122.83(14)
C1-N-C12	109.36(13)	O1-C14-C9	112.82(13)
C12-N-H1	125.9(13)	O2-C14-C9	124.35(14)
C1-N-H1	124.6(12)	O1-C15-C16	107.04(15)
N-C1-C6	109.00(13)	C1-C2-H2	118.5(10)
C2-C1-C6	121.57(15)	С3-С2-Н2	123.9(10)
N-C1-C2	129.43(15)	С2-С3-Н3	120.2(13)
C1-C2-C3	117.59(17)	C4-C3-H3	117.2(13)
C2-C3-C4	122.62(19)	C4-C5-H5	118.2(9)
C3-C4-C5	119.02(16)	C6-C5-H5	121.7(9)
C5-C4-C13	121.04(18)	С7-С8-Н8	121.6(9)
C3-C4-C13	119.94(19)	С9-С8-Н8	119.0(9)
C4-C5-C6	120.07(15)	C9-C10-H10	118.4(9)
C1-C6-C5	119.13(14)	C11-C10-H10	120.4(9)
C1-C6-C7	106.35(13)	C10-C11-H11	121.4(10)

Atome	Winkel	Atome	Winkel
C5-C6-C7	134.53(14)	C12-C11-H11	120.3(10)
C6-C7-C8	134.44(14)	C4-C13-H131	113(2)
C8-C7-C12	119.17(13)	C4-C13-H132	114(2)
C6-C7-C12	106.39(13)	C4-C13-H133	113(2)
C7-C8-C9	119.35(13)	H131-C13-H132	103(3)
C8-C9-C14	118.47(13)	H131-C13-H133	106(3)
C8-C9-C10	120.49(14)	H132-C13-H133	108(3)
C10-C9-C14	121.04(14)	O1-C15-H151	107.2(9)
C9-C10-C11	121.18(14)	O1-C15-H152	109.1(10)
C10-C11-C12	118.28(14)	C16-C15-H151	113.1(10)
C7-C12-C11	121.49(14)	C16-C15-H152	110.2(12)
N-C12-C7	108.89(13)	H151-C15-H152	110.0(14)
N-C12-C11	129.61(14)	C15-C16-H161	113.0(13)
C15-C16-H162	111.8(16)	H161-C16-H163	105(2)
C15-C16-H163	112.8(13)	H162-C16-H163	108(2)
H161-C16-H162	106.3(19)		

Kristallstrukturanalyse von 3-(Morpholinylcarbonyl)-6-methyl-9H-carbazol (65t)

Datensatz: kn460; Summenformel: C₁₈H₁₈N₂O₂; Molekulargewicht: 294.35; 200 K; Strahlung Mo-K_a; $\lambda = 0.71073$ Å; gemessene Indizes $-14 \le h \le 14$, $-11 \le k \le 11$, $-32 \le 1 \le 32$; orthrhombisch; Raumgruppe Pbca; a = 11.8483(2) Å; b = 9.5696(2) Å; c = 25.9457(5) Å; Volumen 2941.81(10) Å³; Z = 8; $\rho = 1.329$ g/cm³; Absorbtionskoeffizient $\mu = 0.088$ mm⁻¹; F(000) 1248; Kristallabmessungen $0.02 \times 0.12 \times 0.20$ mm; 5590 gesammelte Reflexe, 2987 unabhängige Reflexe; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 3.2°, 26.4°; F² = 1.02; [I > 2.0 σ (I)] 2197; R(int) 0.025; verfeinerte Parameter R = 0.0386, wR2 = 0.1009; Restelektronendichte min = -0.15, max = 0.16 e Å³.

Tabelle 8.10: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter E(eq) von **65t**. U(eq) ist definiert als ein Drittel der Spur des orthogonalen U_{ii}-Tensors.

definiert dis ein Dritter der opar des orthogonaten en rensols.				
Atom	X	у	Z	U_{eq} [Å ²]
01	0.15997(8)	0.45931(11)	0.32619(4)	0.0434(3)
O2	-0.19395(9)	0.23094(12)	0.27832(5)	0.0502(4)
N1	0.13386(11)	0.99063(12)	0.37478(5)	0.0379(4)
N2	-0.01985(10)	0.42020(12)	0.30283(5)	0.0361(4)
C1	0.07588(12)	1.08362(15)	0.40580(5)	0.0347(5)
C2	0.10176(13)	1.22190(16)	0.41769(6)	0.0394(5)
C3	0.02722(13)	1.29418(17)	0.44845(6)	0.0425(5)
C4	-0.07159(13)	1.23326(16)	0.46826(6)	0.0397(5)
C5	-0.09607(13)	1.09597(16)	0.45608(6)	0.0385(5)
C6	-0.02269(12)	1.01936(15)	0.42448(5)	0.0337(4)
C7	-0.02327(12)	0.87916(14)	0.40396(5)	0.0334(4)
C8	-0.09485(13)	0.76365(16)	0.40859(6)	0.0385(5)
C9	-0.06945(12)	0.64178(16)	0.38283(6)	0.0385(5)
Atom	Х	у	Z	U_{eq} [Å ²]
------	--------------	-------------	------------	----------------------------
C10	0.02826(12)	0.63140(15)	0.35194(5)	0.0337(4)
C11	0.10212(12)	0.74354(15)	0.34784(5)	0.0335(4)
C12	0.07529(11)	0.86611(14)	0.37352(5)	0.0331(4)
C13	-0.14702(16)	1.3181(2)	0.50290(7)	0.0511(6)
C14	0.06081(11)	0.49842(15)	0.32577(5)	0.0331(4)
C15	-0.12807(12)	0.46997(16)	0.28292(7)	0.0393(5)
C16	-0.21969(13)	0.36792(18)	0.29674(8)	0.0487(6)
C17	-0.08937(14)	0.18424(18)	0.29940(8)	0.0481(6)
C18	0.00666(13)	0.27905(16)	0.28502(7)	0.0407(5)

Tabelle 8.11: Bindungslängen [Å] von 65t.

Atome	Abstand	Atome	Abstand
O1-C14	1.2331(16)	C10-C14	1.493(2)
O2-C16	1.428(2)	C11-C12	1.3859(19)
O2-C17	1.426(2)	C15-C16	1.504(2)
N1-C1	1.3826(19)	C17-C18	1.502(2)
N1-C12	1.3793(18)	C2-H2	0.967(17)
N2-C14	1.3520(18)	С3-Н3	1.012(17)
N2-C15	1.4621(19)	C5-H5	0.983(16)
N2-C18	1.462(2)	C8-H8	0.999(17)
N1-H1	0.974(19)	С9-Н9	1.008(16)
C1-C2	1.393(2)	C11-H11	0.988(15)
C1-C6	1.406(2)	C13-H131	1.00(2)
C2-C3	1.377(2)	C13-H132	0.97(2)
C3-C4	1.405(2)	C13-H133	1.02(2)
C4-C13	1.505(2)	C15-H151	1.007(16)
C4-C5	1.382(2)	C15-H152	0.996(17)
C5-C6	1.402(2)	C16-H161	1.005(19)
C6-C7	1.4434(19)	C16-H162	1.03(2)
C7-C8	1.398(2)	C17-H171	1.02(2)
C7-C12	1.4153(19)	C17-H172	0.984(19)
C8-C9	1.377(2)	C18-H181	0.980(17)
C9-C10	1.412(2)	C18-H182	1.011(16)
C10-C11	1.389(2)		

Tabelle 8.12: Bindungswinkel [°] von 65t.

Atome	Winkel	Atome	Winkel
C16-O2-C17	110.17(13)	C7-C12-C11	122.16(12)
C1-N1-C12	108.65(12)	N1-C12-C7	109.01(12)
C14-N2-C15	126.52(12)	N1-C12-C11	128.84(13)
C14-N2-C18	119.93(12)	N2-C14-C10	119.31(12)
C15-N2-C18	112.20(12)	O1-C14-N2	120.62(13)
C1-N1-H1	126.9(11)	O1-C14-C10	120.05(12)
C12-N1-H1	123.9(11)	N2-C15-C16	109.71(13)
C2-C1-C6	121.47(13)	O2-C16-C15	111.23(13)
N1-C1-C6	109.38(12)	O2-C17-C18	111.93(14)
N1-C1-C2	129.12(13)	N2-C18-C17	108.47(13)
C1-C2-C3	117.68(14)	C1-C2-H2	119.7(10)
C2-C3-C4	122.55(15)	С3-С2-Н2	122.7(10)
C3-C4-C5	119.05(14)	С2-С3-Н3	120.8(9)
C3-C4-C13	119.29(14)	С4-С3-Н3	116.7(9)
C5-C4-C13	121.65(14)	C4-C5-H5	118.5(9)
C4-C5-C6	120.04(14)	С6-С5-Н5	121.4(9)
C5-C6-C7	134.33(13)	С7-С8-Н8	120.4(10)
C1-C6-C5	119.21(13)	С9-С8-Н8	119.9(9)

Atome	Winkel	Atome	Winkel
C1-C6-C7	106.46(12)	С8-С9-Н9	121.1(9)
C6-C7-C8	134.90(13)	С10-С9-Н9	117.9(9)
C6-C7-C12	106.49(12)	C10-C11-H11	120.7(9)
C8-C7-C12	118.59(13)	C12-C11-H11	121.1(9)
C7-C8-C9	119.67(14)	C4-C13-H131	110.8(11)
C8-C9-C10	120.95(14)	C4-C13-H132	110.8(12)
C11-C10-C14	117.45(12)	C4-C13-H133	108.6(12)
C9-C10-C14	122.01(13)	H131-C13-H132	109.4(16)
C9-C10-C11	120.39(13)	H131-C13-H133	108.9(16)
C10-C11-C12	118.20(13)	H132-C13-H133	108.2(17)
N2-C15-H151	106.3(9)	O2-C17-H171	109.1(10)
N2-C15-H152	109.8(9)	O2-C17-H172	104.9(10)
C16-C15-H151	109.3(9)	C18-C17-H171	109.3(10)
C16-C15-H152	111.7(9)	C18-C17-H172	111.2(10)
H151-C15-H152	109.9(13)	H171-C17-H172	110.5(15)
O2-C16-H161	106.1(10)	N2-C18-H181	110.2(10)
O2-C16-H162	106.5(10)	N2-C18-H182	109.0(8)
C15-C16-H161	110.1(10)	C17-C18-H181	110.9(10)
C15-C16-H162	111.1(10)	C17-C18-H182	110.0(9)
H161-C16-H162	111.7(15)	H181-C18-H182	108.2(13)

9 Literaturverzeichnis

- ¹ M. Beller, J. Seayad, A. Tillack, H. Jiao, *Angew. Chem.* **2004**, *116*, 3448–3478; *Angew. Chem. Int. Ed.* **2004**, *43*, 3368–3398.
- ² a) B. M. Trost, *Science* **1991**, *254*, 1471–1474. b) B. M. Trost, *Angew. Chem.* **1995**, *107*, 285–307; *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 259–281.
- ³ T. E. Müller, M. Beller, *Chem. Rev.* **1998**, *98*, 675–703.
- ⁴ a) I. Bytschkov, S. Doye, *Eur. J. Org. Chem.* **2003**, 935–946. b) D. Steinborn, R. Taube, *Z. Chem.* **1986**, *26*, 349–359.
- ⁵ a) F. Pohlki, S. Doye, *Chem. Soc. Rev.* **2003**, *32*, 104–114. b) T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, *Chem. Rev.* **2008**, DOI: 10.1021/cr0306788.
- ⁶ P. Walsh, A. Baranger, R. G. Bergman, J. Am. Chem. Soc. **1992**, 114, 1708–1719.
- ⁷ A. Baranger, P. Walsh, R. G. Bergman, J. Am. Chem. Soc. **1993**, 115, 2753–2763.
- ⁸ J. S. Johnson, R. G. Bergman, J. Am. Chem. Soc. **2001**, 123, 2923–2924.
- ⁹ Ausgewählte Beispiele zu titankatalysierten Hydroaminierungsreaktionen: a) Y. Shi, J. T. Ciszewski, A. L. Odom, *Organometallics* **2001**, *20*, 3967–3969. b) A. Tillack, H. Jiao, I. Garcia Castro, C. G. Hartung, M. Beller, *Angew. Chem.* **2002**, *114*, 2646–2648; *Angew. Chem. Int. Ed.* **2002**, *41*, 2541–2543. c) Z. Zhang, L. L. Schafer, *Org. Lett.* **2003**, *5*, 4733–4736.
- ¹⁰ Chemikalienkatalog ACROS, **2008**: TiCl₄: 11.7 €/mol, *t*-BuNH₂: 2.0 €/mol.
- ¹¹ a) L. Ackermann, *Organometallics* **2003**, *22*, 4367–4368. b) L. Ackermann, L. T. Kaspar, *J. Org. Chem.* **2007**, *72*, 6149–6153.
- ¹² a) L. Ackermann, L. T. Kaspar, C. J. Gschrei, Org. Lett. 2004, 6, 2515–2518. b) L. T. Kaspar, B. Fingerhut, L. Ackermann, Angew. Chem. 2005, 117, 6126–6128; Angew. Chem. Int. Ed. 2005, 44, 5972–5974.
- ¹³ a) L. Ackermann, L. T. Kaspar, C. J. Gschrei, *Chem. Commun.* **2004**, 2824–2825. b) L. Ackermann, R. Sandmann, A. Villar, L. T. Kaspar, *Tetrahedron (Symposia in Print)* **2008**, *64*, 769–777.
- ¹⁴ Für eine TiCl₄/*t*-BuNH₂-katalysierte Fischer-Indol-Synthese: L. Ackermann, R. Born, *Tetrahedron Lett.* **2004**, *45*, 9541–9544.
- ¹⁵ K. C. Hultzsch, Adv. Synth. Catal. **2005**, 347, 367–391.
- ¹⁶ P. D. Knight, L. Munslow, P. N. O'Shaughnessy, P. Scott, *Chem. Commun.* 2004, 894–895.
- ¹⁷ D. V. Gribkov, K. C. Hultzsch, Angew. Chem. 2004, 116, 5659–5663; Angew. Chem. Int. Ed. 2004, 43, 5542–5546.
- ¹⁸ Ausgewählte Beispiele für intramolekulare Hydroaminierungsreaktionen sekundärer Aminoalkene: a) M. C. Wood, D. C. Leitch, C. S. Yeung, J. A. Kozak, A. A. Schafer, *Angew. Chem.* **2007**, *119*, 358–362; *Angew. Chem. Int. Ed.* **2007**, *46*, 354–358. b) H. Kim, P. H. Lee, T. Livinghouse, *Chem. Commun.* **2005**, 5205–5207. c) C. Mueller, C. Loos, N. Schulenberg, S. Doye, *Eur. J. Org. Chem.* **2006**, 2499–2503. d) B. D. Stubbert, T. J. Marks, *J. Am. Chem. Soc.* **2007**, *129*, 6149–6167.
- ¹⁹ J. A. Bextrud, J. D. Beard, D. C. Leitch, L. L. Schafer, *Org. Lett.* **2005**, *7*, 1959–1963.
- ²⁰ M. E. Jung, G. Pizzi, *Chem. Rev.* **2005**, *105*, 1735–1766.
- ²¹ C. F. Bender, R. A. Widenhoefer, J. Am. Chem. Soc. 2005, 127, 1070–1071.
- ²² A. Zulys, M. Dochnahl, D. Hollmann, K. Löhnwitz, J.-S. Herrmann, P. W. Roesky, S. Blechert, *Angew, Chem.* **2005**, *117*, 7972–7976; *Angew. Chem. Int. Ed.* **2005**, *44*, 7794–7798.

- ²³ Für einen Aufsatz über schwach koordinierende Anionen: I. Krossing, I. Raabe, *Angew. Chem.* **2004**, *116*, 2116–2142; *Angew. Chem. Int. Ed.* **2004**, *43*, 2066–2090.
- ²⁴ L. Ackermann, L. T. Kaspar, A. Althammer, *Org. Biomol. Chem.* **2007**, *5*, 1975–1978.
- ²⁵ Ausgewählte Beispiele für intramolekulare (a-b) und intermolekulare (c-d) Hydroaminierungsreaktionen mit Brønsted-Säuren: a) B. Schlummer, J. F. Hartwig, Org. Lett. 2002, 4, 1471–1474. b) C. M. Haskins, D. W. Knight, Chem. Commun. 2005, 3162–3164. c) Z. Li, J. Zhang, C. Brouwer, C.-G. Yang, N. W. Reich, C. He, Org. Lett. 2006, 8, 4175–4178. d) D. C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya, J. F. Hartwig, Org. Lett. 2006, 8, 4179–4182.
- ²⁶ Brønsted-säurekatalysierte Hydroaminierungen mit Anilinen: a) L. L. Anderson, J. Arnold, R. G. Bergman, J. Am. Chem. Soc. 2005, 127, 14542–14543. b) A. E. Cherian, G. J. Domski, J. M. Rose, E. B. Lobkovsky, G. W. Coates, Org. Lett. 2005, 7, 5135–5137.
- ²⁷ M. Tamura, J. Kochi, J. Am. Chem. Soc. **1971**, 93, 1487–1489.
- ²⁸ K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. **1972**, 94, 4374–4376.
- ²⁹ R. J. P. Corriu, J. P. Masse, J. Chem. Soc. Chem. Commun. **1972**, 144–145.
- ³⁰ a) L. Ackermann (Ed.), *Modern Arylation Methods*, Wiley-VCH, Weinheim, *im Druck*.
 b) A. de Meijere, F. Diederich (Eds.), *Metal-Catalyzed Cross-Coupling Reactions*, 2. Aufl., Wiley-VCH, Weinheim, 2004.
- ³¹ K. C. Nicolaou, P. G. Bulger, D. Sarlah, *Angew. Chem.* **2005**, *117*, 4516–4563; *Angew. Chem. Int. Ed.* **2005**, *44*, 4462–4489.
- ³² J. Tsuji, *Palladium Reagents and Catalysts*, 2. Aufl., Wiley, Chichester, **2004**.
- ³³ M. Beller, C. Bolm (Eds.), *Transition Metals for Organic Synthesis*, 2. Aufl., Wiley-VCH, Weinheim, **2004**.
- ³⁴ A. F. Littke, G. C. Fu, Angew. Chem. **2002**, 114, 4350–4386; Angew. Chem. Int. Ed. **2002**, 41, 4176–4211.
- ³⁵ V. V. Grushin, H. Alper, *Chem. Rev.* **1994**, *94*, 1047–1062.
- ³⁶ U. Christmann, R. Vilar, Angew. Chem. **2005**, 117, 370–378; Angew. Chem. Int. Ed. **2005**, 44, 366–374.
- ³⁷ Zur wirtschaftlichen Bedeutung von Kreuzkupplungen in der chemischen Industrie: *C&EN*, **2004**, *82* (36).
- ³⁸ P. Knochel (Ed.), *Handbook of Functionalized Organometallics*, Wiley-VCH, Weinheim, **2005**.
- ³⁹ V. Grignard, Ann. Chim. **1901**, 24, 433–490.
- ⁴⁰ Übersicht zu funktionalisierten Grignard-Reagenzien *via* Iod-Magnesium-Austausch-reaktionen: P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, *Angew. Chem.* 2003, *115*, 4438–4456; *Angew. Chem. Int. Ed.* 2003, *42*, 4302–4320.
- ⁴¹ Brom-Magnesium-Austauschreaktionen mittels *i*-PrMgCl•LiCl: A. Krasovskiy, P. Knochel, Angew. Chem. 2004, 116, 3396–3399; Angew. Chem. Int. Ed. 2004, 43, 3333–3336.
- ⁴² Kürzlich erschien eine Arbeit zur LiCl-unterstützten oxidativen Addition von Magnesium: F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, *Angew. Chem* 2008, 120, 6907–6911; *Angew. Chem. Int. Ed.* 2008, 47, 6802–6806.
- ⁴³ CLARIANT stellt ca. 70% der benötigten Biaryle über palladiumkatalysierte Kumada– Corriu-Kreuzkupplungen her: siehe Ref. 37.
- ⁴⁴ R. Martìn, S. L. Buchwald, J. Am. Chem. Soc. **2007**, 129, 3844–3845.

- ⁴⁵ J. Huang, S. P. Nolan, J. Am. Chem. Soc. **1999**, 121, 9889–9890.
- ⁴⁶ A. J. Arduengo III, H. V. R. Dias, R. L. Harlow, M. Kline, J. Am. Chem. Soc. **1992**, 114, 5530–5534.
- ⁴⁷ V. P. W. Böhm, T. Weskamp, C. W. K. Gstöttmayr, W. A. Herrmann, *Angew. Chem.* **2000**, *112*, 1672–1674; *Angew. Chem. Int. Ed.* **2000**, *39*, 1602–1604.
- ⁴⁸ M. Hudlicky, *Chemistry of Organic Fluorine Compounds*, Prentice-Hall, New York, **1992**.
- ⁴⁹ V. P. W. Böhm, T. Weskamp, C. W. K. Gstöttmayr, W. A. Herrmann, *Angew. Chem.* **2001**, *113*, 3500–3503; *Angew. Chem. Int. Ed.* **2001**, *40*, 3387–3389.
- ⁵⁰ A. Zapf, M. Beller, *Chem. Commun.* **2005**, 431–440.
- ⁵¹ Die Abgangsgruppentendenz in S_N-Reaktionen verhält sich indirekt proportional zum pK_a der korrespondierenden Säure; pK_a (Methansulfonsäure) = -1.9, pK_a (4-Toluolsulfonsäure) = -2.8, pK_a (Benzolsulfonsäure) = -5.9, pK_a (Trifluormethylsulfonsäure) = -14.9; E. P. Serjeant, B. Dempsey (Eds.), *Ionization Constants of Organic Acids in Solution*, Pergamon, Oxford, UK, **1979**.
- ⁵² Preise: *p*-Toluolsulfonylchlorid: 8.70 €/mol, Trifluormethylsulfonsäureanhydrid: 928 €/mol; SIGMA-ALDRICH, 2008.
- ⁵³ Ausgewählte Beispiele für Tosylate in Kreuzkupplungsreaktionen: a) Suzuki-Miyaura-Reaktion: H. N. Nguyen, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 11818–11819. b) Buchwald-Hartwig-Aminierung: X. Huang, K. W. Anderson, D. Zim, L. Jiang, A. Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 6653–6655. c) Sonogashira-Kreuzkupplung: D. Gelman, S. L. Buchwald, Angew. Chem. 2003, 115, 6175–6178; Angew. Chem. Int. Ed. 2003, 42, 5993–5996.
- ⁵⁴ A. H. Roy, J. F. Hartwig, J. Am. Chem. Soc. **2003**, 125, 8704–8705.
- ⁵⁵ M. E. Limmert, A. H. Roy, J. F. Hartwig, J. Org. Chem. **2005**, 70, 9364–9370.
- ⁵⁶ N. Miyaura, A. Suzuki, *Chem. Rev.* **1995**, *95*, 2457–2483.
- ⁵⁷ S. R. Chemler, D. Trauner, S. J. Danishefsky, *Angew. Chem.* **2001**, *113*, 4676–4701; *Angew. Chem. Int. Ed.* **2001**, *40*, 4544–4568.
- ⁵⁸ D. G. Hall (Ed.), *Boronic Acids*, Wiley-VCH, Weinheim, **2005**.
- ⁵⁹ Nickelkatalysierte Suzuki–Miyaura-Kreuzkupplungen von Chlorarenen: a) A. F. Indolese, *Tetrahedron Lett.* **1997**, *38*, 3513–3516. b) S. Saito, S. Oh-tani, N. Miyaura, J. Org. Chem. **1997**, *62*, 8024–8030. c) C. Chen, L.-M. Yang, *Tetrahedron Lett.* **2007**, *48*, 2427–2430.
- ⁶⁰ D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. **1998**, 120, 9722–9723.
- ⁶¹ a) A. F. Littke, G. C. Fu, Angew. Chem. 1998, 110, 3586–3587; Angew. Chem. Int. Ed. 1998, 37, 3387–3388. b) A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020–4028.
- ⁶² A. Zapf, A. Ehrentraut, M. Beller, Angew. Chem. 2000, 112, 4314–4317; Angew. Chem. Int. Ed. 2000, 39, 4153–4155.
- ⁶³ W. A. Herrmann, C.-P. Reisinger, M. Spiegler, J. Organomet. Chem. **1998**, 557, 93–96.
- ⁶⁴ C. Zhang, J. Huang, M. L. Trudell, S. P. Nolan, J. Org. Chem. **1999**, 64, 3805–3805.
- ⁶⁵ Die Kreuzkupplung von Chlorheteroarenen ist oftmals durch konkurrierende Koordination derselben an den Katalysator erschwert: N. Kudo, M. Perseghini, G. C. Fu, *Angew. Chem.* **2006**, *118*, 1304–1306; *Angew. Chem. Int. Ed.* **2006**, *45*, 1282–1284.
- ⁶⁶ Ein aktueller Aufsatz zu atropisomeren Biarylen: G. Bringmann, A. J. Price Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, *Angew. Chem.* **2005**, *117*, 5518–5563; *Angew. Chem. Int. Ed.* **2005**, *44*, 5384–5427.

- ⁶⁷ J. Yin, S. L. Buchwald, J. Am. Chem. Soc. 2000, 122, 12051–12052.
- ⁶⁸ J. Yin, M. P. Rainka, X.-X. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 1162– 1163.
- ⁶⁹ G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195–15201.
- ⁷⁰ M. Ohff, J. Holz, M. Quirmbach, A. Börner, *Synthesis* **1998**, 1391–1415.
- ⁷¹ M. R. Netherton, G. C. Fu, *Org. Lett.* **2001**, *3*, 4295–4298.
- ⁷² T. Livinghouse, L. McKinstry, *Tetrahedron* **1994**, *50*, 6145–6154.
- ⁷³ G. Y. Li, Angew. Chem. 2001, 113, 1561–1564; Angew. Chem. Int. Ed. 2001, 40, 1513–1516.
- ⁷⁴ G. Y. Li, G. Zheng, A. F. Noonan, J. Org. Chem. **2001**, 66, 8677–8681.
- ⁷⁵ G. Y. Li, J. Org. Chem. **2002**, 67, 3643–3650.
- ⁷⁶ Mikrowellenunterstützte Suzuki–Miyaura-Kreuzkupplung unter Verwendung von [POPd1] mit Chlorarenen: G. Miao, P. Ye, L. Yu, C. M. Baldino, J. Org. Chem. 2005, 70, 2332–2334.
- ⁷⁷ a) G. Y. Li, J. Organomet. Chem. 2002, 653, 63–68. b) Synthese tri-ortho-substituierter Biaryle mittels [POPd]-katalysierter Kumada–Corriu-Kreuzkupplung bei Umgebungstemperatur: C. Wolf, H. Xu, J. Org. Chem. 2008, 73, 162–167.
- ⁷⁸ G. Y. Li, W. J. Marshall, *Organometallics* **2002**, *21*, 590–591.
- ⁷⁹ a) Heck-, Stille-, Suzuki-Miyaura-Kreuzkupplungen: C. Wolf, R. Lerebours, J. Org. Chem. 2003, 68, 7077-7084. b) C-N- und C-S-Bindungsknüpfungsreaktionen: C. Wolf, K. Ekoue-Kovi, Eur. J. Org. Chem. 2006, 1917-1925. c) Stille-Kreuzkupplung: R. Lerebours, A. C. Soto, C. Wolf, J. Org. Chem. 2005, 70, 8601-8604. d) Sonogashira-Kreuzkupplung: C. Wolf, R. Lerebours, Org. Biomol. Chem. 2004, 2, 2161-2164.
- ⁸⁰ a) C. Wolf, R. Lerebours, E. H. Tanzini, *Synthesis* 2003, 2069–2073. b) C. Wolf, R. Lerebours, *Org. Lett.* 2004, 6, 1147–1150. c) C. Wolf, R. Lerebours, *Synthesis* 2005, 2287–2292.
- ⁸¹ K. L. Billingsley, S. L. Buchwald, *Angew. Chem.* **2008**, *120*, 4773–4776; *Angew. Chem. Int. Ed.* **2008**, *47*, 4695–4698.
- ⁸² L. Ackermann, *Synthesis* **2006**, 1557–1571.
- ⁸³ V. J. Blazis, K. J. Koeller, C. D. Spilling, J. Org. Chem. **1995**, 60, 931–940.
- ⁸⁴ L. Ackermann, R. Born, *Angew. Chem.* **2005**, *117*, 2497–2500; *Angew. Chem. Int. Ed.* **2005**, *44*, 2444–2447.
- ⁸⁵ A. De la Cruz, K. J. Koeller, N. P. Rath, C. D. Spilling, J. C. F. Vasconcedos, *Tetrahedron* **1998**, *54*, 10513–10524.
- ⁸⁶ A. Althammer, *Diplomarbeit*, Ludwig-Maximilians-Universität München, **2005**.
- ⁸⁷ R. Born, *Diplomarbeit*, Ludwig-Maximilians-Universität München, **2004**.
- ⁸⁸ D. Enders, L. Tedeschi, J. W. Bats, *Angew. Chem.* **2000**, *112*, 4774–4776; *Angew. Chem. Int. Ed.* **2000**, *39*, 4605–4607.
- ⁸⁹ a) É. E. Nifant'ev, A. I. Zavalishina, S. F. Sorokina, A. A. Borisenko, E. I. Smirnova, I. V. Gustova, *Zh. Obshch. Khim.* **1977**, *47*, 1960. b) L. K. Sal'keeva, M. T. Nurmagambetova, O. S. Kurmanaliev, T. K. Gazizov, *Russ. J. Gen. Chem.* **2003**, *73*, 183–186.
- ⁹⁰ 2-Chloro-1,3-bis(2,6-di*iso*propyl)-1,3,2-diazaphospholidine (**42a**), kommerziell erhältlich bei SIGMA-ALDRICH, Bestellnummer: 694207.
- ⁹¹ J. H. Spatz, *Diplomarbeit*, Ludwig-Maximilians-Universität München, **2005**.

- ⁹² L. Ackermann, J. H. Spatz, C. J. Gschrei, R. Born, A. Althammer, *Angew. Chem.* 2006, 118, 7789–7792; *Angew. Chem. Int. Ed.* 2006, 45, 7627–7630.
- ⁹³ C. J. Gschrei, *Diplomarbeit*, Ludwig-Maximilians-Universität München, **2006**.
- ⁹⁴ L. Ackermann, R. Born, J. H. Spatz, D. Meyer, *Angew. Chem.* 2005, 117, 7382–7386; *Angew. Chem. Int. Ed.* 2005, 44, 7216–7219.
- ⁹⁵ T. Saeki, Y. Takashima, K. Tamao, *Synlett* **2005**, 1771–1774.
- ⁹⁶ N. Yoshikai, H. Mashima, E. Nakamura, J. Am. Chem. Soc. **2005**, 127, 17978–17979.
- ⁹⁷ Für eine nickelkatalysierte Suzuki–Miyaura-Kreuzkupplung von polyfluorierten Arenen:
 a) T. Schaub, M. Backes, U. Radius, *J. Am. Chem. Soc.* 2006, *128*, 14964–14965. b) T. Schaub, P. Fischer, A. Steffen, T. Braun, U. Radius, A. Mix, *J. Am. Chem. Soc.* 2008, *130*, 9304–9317.
- ⁹⁸ L. Ackermann, C. J. Gschrei, A. Althammer, M. Riederer, *Chem. Commun.* 2006, 1419– 1421.
- ⁹⁹ A. Gavryushin, C. Kofink, G. Manolikakes, P. Knochel, Org. Lett. 2005, 7, 4871–4874.
- ¹⁰⁰ W. Mai, G. Lv, L. Gao, *Synlett* **2007**, 2247–2251.
- ¹⁰¹ a) T. Nemoto, T. Matsumoto, T. Masuda, T. Hitomi, K. Hatano, Y. Hamda, J. Am. Chem. Soc. 2004, 126, 3690–3691. b) T. Nemoto, T. Masuda, T. Matsumoto, Y. Hamada, J. Org. Chem. 2005, 70, 7172–7178. c) T. Nemoto, Y. Hamada, Chem. Rec. 2007, 7, 150–158.
- ¹⁰² Zur Synthese von HASPOs mit chiralem Kohlenstoffrückgrat: K. J. Koeller, C. D. Spilling, *Tetrahedron Lett.* **1991**, *32*, 6297–6300.
- ¹⁰³ Eine kurze Übersicht zu chiralen Phosphanoxiden als Ligandvorläufer: N. V. Dubrovina, A. Börner, Angew. Chem. 2004, 116, 6007–6010; Angew. Chem. Int. Ed. 2004, 43, 5883–5886.
- ¹⁰⁴ K. R. Dixon, A. D. Rattray, *Can. J. Chem.* **1971**, *49*, 3997–4004.
- ¹⁰⁵ L. D. Quinn, *A Guide to Organophosphorous Chemistry*, Wiley-Interscience, New-York, **2000**.
- ¹⁰⁶ J. Chatt, B. T. Heaton, J. Chem. Soc. A **1968**, 2745–2757.
- ¹⁰⁷ L. Ackermann, *Synlett* **2007**, 507–526.
- ¹⁰⁸ Zur Koordinationschemie sekundärer Phosphanoxide: a) D. M. Roundhill, R. P. Sperline, W. Beaulieu, *Coord. Chem. Rev.* 1978, 26, 263–279. b) B. Walther, *Coord. Chem. Rev.* 1984, 60, 67–105. c) T. Appleb, J. D. Woolins, *Coord. Chem. Rev.* 2002, 235, 121–140.
- ¹⁰⁹ T. B. Brill, S. J. Landon, *Chem. Rev.* **1984**, *84*, 577–585.
- ¹¹⁰ W. Kläui, E. Buchholz, *Inorg. Chem.* **1988**, *27*, 3500–3506.
- ¹¹¹ W. Kläui, E. Buchholz, Angew. Chem. **1988**, 100, 603–604; Angew. Chem. Int. Ed. Engl. **1988**, 27, 580–581.
- ¹¹² I. Pryjomska, H. Bartosz-Bechowski, Z. Ciunik, A. M. Trzeciak, J. J. Ziolkowski, *Dalton Trans.* **2006**, 213–220.
- ¹¹³ H. Werner, T. N. Khac, *Angew. Chem.* **1977**, *89*, 332–333; *Angew. Chem. Int. Ed. Engl.* **1977**, *16*, 324–325.
- ¹¹⁴ A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, *Angew. Chem.* **2000**, *112*, 4584–4606; *Angew. Chem. Int. Ed.* **2000**, *39*, 4414–4435.
- ¹¹⁵ G. Dyker (Ed.), *Handbook of C–H Transformations*, Wiley-VCH, Weinheim, **2005**.
- ¹¹⁶ Ausgewählte Übersichtsartikel: a) K. Godula, D. Sames, *Science* **2006**, *312*, 67–72. b) F. Kakiuchi, N. Chatani, *Adv. Synth. Catal.* **2003**, *345*, 1077-1101.
- ¹¹⁷ a) I. V. Seregin, V. Gevorgyan, *Chem. Soc. Rev.* **2007**, *36*, 1173–1193. b) T. Satoh, M. Miura, *Chem. Lett.* **2007**, *36*, 200–205.

- ¹¹⁸ a) M. Lafrance, C. N. Rowley, T. K. Woo, K. Fagnou, *J. Am. Chem. Soc.* **2006**, *128*, 8754–8756. b) M. Lafrance, D. Shore, K. Fagnou, *Org. Lett.* **2006**, *22*, 5097–5100.
- ¹¹⁹ Intramolekulare direkte C(sp³)-Arylierung mit Chlorarenen: M. Lafrance, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. **2007**, *36*, 200–205.
- ¹²⁰ L. Ackermann, *Chelation-Assisted Arylation via C-H Bond Cleavage*, in *Directed Metalation*, N. Chatani (Ed.), Springer, Heidelberg-Berlin, **2007**, 35–60.
- ¹²¹ C(sp³)–H-Bindungsfunktionalisierung mit Arylboronsäureestern: S. J. Pastine, D. V. Gribkov, D. Sames, J. Am. Chem. Soc. **2006**, 128, 14220–14221.
- ¹²² a) F. Kakiuchi, Y. Matsuura, S. Kann, N. Chatani, J. Am. Chem. Soc. 2005, 127, 5936–5945. b) F. Kakiuchi, S. Kann, K. Igi, N. Chatani, J. Am. Chem. Soc. 2003, 125, 1698–1699.
- ¹²³ E. M. Beccalli, G. Broggini, M. Melli, S. Sottocornola, *Chem. Rev.* 2007, 107, 5319– 5365.
- ¹²⁴ D. R. Stuart, K. Fagnou, *Science* **2007**, *316*, 1172–1175.
- ¹²⁵ K. L. Hull, E. L. Lanni, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 14047–14049.
- ¹²⁶ K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2007, 129, 11904–11906.
- ¹²⁷ R. Giri, N. Maugel, J.-J. Li, D.-H. Wang, S. P. Breazzano, L. B. Saunders, J.-Q. Yu, J. Am. Chem. Soc. 2007, 129, 3510–3511.
- ¹²⁸ D. E. Ames, B. Bull, *Tetrahedron* **1982**, *38*, 383–387.
- ¹²⁹ a) D. E. Ames, A. Opalko, *Synthesis* **1983**, 234–235. b) D. E. Ames, A. Opalko, *Tetrahedron* **1984**, *40*, 1919–1925.
- ¹³⁰ D. D. Hennings, S. Iwasa, V. H. Rawal, J. Org. Chem. **1997**, 62, 2–3.
- ¹³¹ L.-C. Campeau, M. Parisien, M. Leblanc, K. Fagnou, *J. Am. Chem. Soc.* **2004**, *12*, 9186–9187.
- ¹³² L.-C. Campeau, P. Thansandote, K. Fagnou, *Org. Lett.* **2005**, *7*, 1857–1860.
- ¹³³ L.-C. Campeau, M. Parisien, A. Jean, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 581–590.
- ¹³⁴ Eine Übersicht: L.-C. Campeau, K. Fagnou, *Chem. Commun.* **2006**, 1253–1264.
- ¹³⁵ A. L. Bowie, C. C. Hughes, D. Trauner, *Org. Lett.* **2005**, *7*, 5207–5209.
- ¹³⁶ Eine exzellente Übersicht zu Synthesen und biologischen Aktiväten von Carbazolen: H.-J. Knölker, K. R. Reddy, *Chem. Rev.* 2002, *102*, 4303–4428.
- ¹³⁷ L. F. Tietze, G. Brasche, K. M. Gericke, *Domino Reactions in Organic Synthesis*, Wiley-VCH, Weinheim, **2006**.
- ¹³⁸ Eine palladiumkatalysierte Domino-Indolsynthese: T. Jensen, H. Pedersen, B. Bang-Andersen, R. Madsen, M. Jørgensen, *Angew. Chem.* 2008, 120, 902–904; *Angew. Chem. Int. Ed.* 2008, 47, 888–890.
- ¹³⁹ R. S. Bedford, C. S. J. Cazin, *Chem. Commun.* **2002**, 2310–2311.
- ¹⁴⁰ T. Eicher, S. Hauptmann, *The Chemistry of Heterocycles*, 2. Auflage, Wiley-VCH, Weinheim, **2005**.
- ¹⁴¹ Eine Übersicht zu Kreuzkupplungsreaktionen von halogenierten und metallierten Heterocyclen: M. Schnürch, R. Flasik, A. F. Khan, M. Spina, M. D. Mihovilovic, P. Stanetty, *Eur. J. Org. Chem.* **2006**, 3285–3307.
- ¹⁴² Y. Akita, A. Inoue, K. Yamamoto, A. Ohta, T. Kurihara, M. Shimizu, *Heterocycles* **1985**, *23*, 2327–2333.
- ¹⁴³ Zur Verwendung von N-Oxiden in direkten Arylierungsreaktionen: J.-P. Leclerc, K. Fagnou, Angew. Chem. 2006, 118, 7945–7950; Angew. Chem. Int. Ed. 2006, 45, 7781–7786.

- ¹⁴⁴ H.-Q. Do, O. Daugulis, J. Am. Chem. Soc. 2007, 129, 12404–12405.
- ¹⁴⁵ Für eine elegante kupferkatalysierte "Click"-Reaktion/direkte Arylierungs-Sequenz aus unseren Laboratorien: L. Ackermann, H. K. Potukuchi, D. Landsberg, R. Vicente, *Org. Lett.* **2008**, *10*, 3081–3084.
- ¹⁴⁶ Rhodiumkatalysierte direkte Arylierungen: a) X. Wang, B. S. Lane, D. Sames, J. Am. Chem. Soc. 2005, 127, 4996–4997. b) S. Yanagisawa, T. Sudo, R. Noyori, K. Itami, J. Am. Chem. Soc. 2006, 128, 11748–11749.
- ¹⁴⁷ H. A. Chiong, O. Daugulis, Org. Lett. **2007**, *9*, 1449–1451.
- ¹⁴⁸ Koffein-Derivate in der Medizinalchemie: K. A. Jacobsen, D. Shi, C. Gallo-Rodriguez, M. Manning, C. Müller, J. W. Daly, J. L. Neumeyer, L. Kiriasis, W. Pfleiderer, *J. Med. Chem.* **1993**, *36*, 2639–2644.
- ¹⁴⁹ J. Roger, H. Doucet, Org. Biomol. Chem. **2008**, *6*, 169–174.
- ¹⁵⁰ M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. E. Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. B. Hester, D. K. Hutchinson, J. Morris, R. J. Reischer, C. W. Ford, G. E. Zurenko, J. C. Hamel, R. D. Schaadt, D. Stapert, B. H. Yagi, *J. Med. Chem.* **2000**, *43*, 953–970.
- ¹⁵¹ R. Huisgen, Angew. Chem. **1963**, 75, 604–637; Angew. Chem. Int. Ed. Engl. **1963**, 2, 565–598.
- ¹⁵² "Click"-Reaktionen: H. C. Kolb, M. G. Finn, K. B. Sharpless, *Angew. Chem.* **2001**, *113*, 2056–2075; *Angew. Chem. Int. Ed.* **2001**, *41*, 2110–2113.
- ¹⁵³ V. V. Rostovtsev, L. Green, V. V. Fokin, K. B. Sharpless, *Angew. Chem.* **2002**, *114*, 2708–2711; *Angew. Chem. Int. Ed.* **2002**, *41*, 2596–2599.
- ¹⁵⁴ C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. **2002**, 67, 3057–3064.
- ¹⁵⁵ L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. Jia, J. Am. Chem. Soc. 2005, 127, 15998–15999.
- ¹⁵⁶ Kürzlich wurde über den kupferkatalysierten Zugang zu 2-substituierten 1,2,3-Triazolen berichtet: J. Kalisiak, K. B. Sharpless, V. V. Fokin, *Org. Lett.* **2008**, *10*, 3171–3174.
- ¹⁵⁷ L. K. Rasmussen, B. C. Boren, V. V. Fokin, Org. Lett. 2007, 9, 5337–5339.
- ¹⁵⁸ S. Chuprakov, N. Chernyak, A. S. Dudnik, V. Gevorgyan, *Org. Lett.* **2007**, *9*, 2333–2336.
- ¹⁵⁹ L. Ackermann, R. Vicente, R. Born, *Adv. Synth. Catal.* **2008**, *350*, 741–748.
- ¹⁶⁰ Für eine direkte Arylierungsmethodik mit Chlorarenen unter Mikrowellenbestrahlung: M. Iwasaki, H. Yorimitsu, K. Oshima, *Chem. Asian J.* 2007, *2*, 1430–1435.
- ¹⁶¹ J. P. Kleinman, M. Dubeck, J. Am. Chem. Soc. **1963**, 85, 1544–1545.
- ¹⁶² D. Alberico, M. E. Scott, M. Lautens, *Chem. Rev.* **2007**, *107*, 174–238.
- ¹⁶³ S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani, *Nature* **1993**, *366*, 529–531.
- ¹⁶⁴ a) Amide als dirigierende Gruppen: D. Shabashov, O. Daugulis, Org. Lett. 2006, 8, 4947–4949. b) Phenole als dirigierende Gruppen: R. B. Bedford, S. J. Coles, M. B. Hursthouse, M. E. Limmert, Angew. Chem. 2003, 115, 116–118; Angew. Chem. Int. Ed. 2003, 42, 112–114.
- ¹⁶⁵ D. Kalyani, N. R. Deprez, L. V. Desai, M. S. Sanford, J. Am. Chem. Soc. **2005**, 127, 7330–7331.
- ¹⁶⁶ D. Shabashov, O. Daugulis, Org. Lett. **2005**, 7, 3657–3659.
- ¹⁶⁷ S. Oi, S. Fukita, N. Hirata, N. Watanuki, S. Miyano, Y. Innoue, *Org. Lett.* **2001**, *3*, 2579–2581.

- ¹⁶⁸ a) M. Reumann, A. I. Meyers, *Tetrahedron* **1985**, *41*, 837–860. b) T. G. Gant, A. I. Meyers, *Tetrahedron* **1994**, *50*, 2297–2360.
- ¹⁶⁹ Y. Ie, N. Chatani, T. Ogo, D. R. Marshall, T. Fukuyama, F. Kakiuchi, S. Murai, *J. Org. Chem.* **2000**, *65*, 1475–1488.
- ¹⁷⁰ S. Oi, E. Aizawa, Y. Ogino, Y. Ioue, J. Org. Chem. 2005, 70, 3113–3119.
- ¹⁷¹ S. Oi, R. Funayama, T. Hattori, Y. Inoue, *Tetrahedron* **2008**, *64*, 6051–6059.
- ¹⁷² L. Ackermann, Org. Lett. **2005**, 7, 3123–3125.
- ¹⁷³ J. R. Goerlich, A. Fischer, P. G. Jonas, R. Schmutzler, Z. Naturforsch. B. **1994**, 49, 801–811.
- ¹⁷⁴ R. Born, *Dissertation*, Ludwig-Maximilians-Universität München, **2008**.
- ¹⁷⁵ L. Ackermann, A. Althammer, R. Born, *Angew. Chem.* **2006**, *118*, 2681–2685; *Angew. Chem. Int. Ed.* **2006**, *45*, 2519–2522.
- ¹⁷⁶ Zur Verwendung von Bromarenen: S. Oi, K. Sakai, Y. Inoue, *Org. Lett.* 2005, *7*, 4009–4011.
- ¹⁷⁷ L. Ackermann, R. Born, P. Álvarez-Bercedo, *Angew. Chem.* **2007**, *119*, 6482–6485; *Angew. Chem. Int. Ed.* **2007**, *46*, 6364–6367.
- ¹⁷⁸ L. Ackermann, R. Born, J. H. Spatz, A. Althammer, C. J. Gschrei, *Pure Appl. Chem.* **2006**, *78*, 209–214.
- ¹⁷⁹ G. R. Humphrey, J. T. Kuethe, *Chem. Rev.* **2006**, *106*, 2975–3011.
- ¹⁸⁰ S. Cacchi, G. Fabrizi, *Chem. Rev.* **2005**, *105*, 2873–2920.
- ¹⁸¹ L. Ackermann, Org. Lett. **2005**, 7, 439–442.
- ¹⁸² R. C. Larock, E. K. Yum, J. Am. Chem. Soc. **1991**, 113, 6689–6690.
- ¹⁸³ W. A. Herrmann, Angew. Chem. **2002**, 114, 1342–1363; Angew. Chem. Int. Ed. **2002**, 41, 1290–1309.
- ¹⁸⁴ K. Komeyama, T. Morimoto, K. Takaki, *Angew. Chem.* **2006**, *118*, 3004–3007; *Angew. Chem. Int. Ed.* **2006**, *45*, 2938–2941.
- ¹⁸⁵ J.-J. Brunet, N. C. Chu, O. Diallo, S. Vincendeau, J. Mol. Catal. A: Chem. **2005**, 240, 245–248.
- ¹⁸⁶ M. Tokunaga, M. Eckert, Y. Wakatsuki, *Angew. Chem.* **1999**, *111*, 3416–3419; *Angew. Chem. Int. Ed.* **1999**, *38*, 3222–3225.
- ¹⁸⁷ a) K. Müller, C. Faeh, F. Diederich, *Science* **2007**, *317*, 1881–1885. b) Sonderheft: *Curr. Top. Med. Chem.* **2006**, *14*, 1445–1566.
- ¹⁸⁸ D. Enders, A. S. Denmir, B. E. M. Rendenbach, *Chem. Ber.* **1987**, *120*, 1731–1735.
- ¹⁸⁹ L. T. Kaspar, *Dissertation*, Ludwig-Maximilians-Universität München, **2007**.
- ¹⁹⁰ T. Akiyama, *Chem. Rev.* **2007**, *107*, 5713–5758.
- ¹⁹¹ R. I. Storer, D. E. Carrera, Y. Ni, D. MacMillan, J. Am. Chem. Soc. 2006, 128, 84–86.
- ¹⁹² P. H. Martínez, K. C. Hultzsch, F. Hampel, *Chem. Commun.* **2006**, 2221–2223.
- ¹⁹³ J. A. Dale, D. L. Dull, H. S. Mosher, J. Am. Chem. Soc. **1969**, 34, 2453–2459.
- ¹⁹⁴ P. von Zezschwitz, *Nachr. Chem.* **2008**, *7*, 764–767.
- ¹⁹⁵ Z. Tang, Q. S. Hu, J. Am. Chem. Soc. 2004, 126, 3058–3059.
- ¹⁹⁶ A. Munoz, C. Hubert, J.-L. Luche, J. Org. Chem. **1996**, 61, 6015–6017.
- ¹⁹⁷ 4,4,5,5-Tetramethyl-1,3,2-dioxaphospholane-2-oxide (**110a**), kommerziell erhältlich bei SIGMA-ALDRICH, Bestellnummer: 686344.
- ¹⁹⁸ a) J. W. Dankwardt, Angew. Chem. 2004, 116, 2482–2486; Angew. Chem. Int. Ed. 2004, 43, 2428–2432. b) M. Tobisu, T. Shimasaki, N. Chatani, Angew. Chem. 2008, 120, 4944–4947; Angew. Chem. Int. Ed. 2008, 47, 4866–4869.

- ¹⁹⁹ Preise: 1,2-Dichlorbenzol: 0.05 €/mol, 1,2-Dibrombenzol: 91.14 €/mol, 1,2-Diiodbenzol: 4160.04 €/mol; SIGMA-ALDRICH, 2008
- ²⁰⁰ Ein Aufsatz zu regioselektiven Kreuzkupplungsreaktionen mehrfach halogenierter Heterocyclen: S. Schröter, C. Stock, T. Bach, *Tetrahedron* 2005, *61*, 2245–2267.
- ²⁰¹ R. H. Hoffmann, *Synthesis* **2006**, 3531–3541.
- ²⁰² K. Klose, M. Bienert, C. Mollenkopf, D. Wehle, C.-w. Zhang, L. A. Carpino, P. Henklein, *Chem. Commun.* **1999**, 1847–1848.
- ²⁰³ Eine zweistufige Tandemreaktion zur Darstellung fluorierter Carbazole: R. B. Bedford, M. Betham, J. P. H. Charmant, A. L. Weeks, *Tetrahedron (Symposia in Print)* 2008, 64, 6038–6050.
- ²⁰⁴ I. Ugi, C. Steinbrückner, *Angew. Chem.* **1960**, *72*, 267–268.
- ²⁰⁵ F. Besselièvre, F. Mahuteau-Betzer, D. S. Grierson, S. Piguel, J. Org. Chem. 2008, 73, 3278–3280.
- ²⁰⁶ J. Andersen, S. Bolvig, X. Liang, *Synlett* **2005**, 2941–2947.
- ²⁰⁷ N. S. Nandurkar, M. J. Bhanushali, M. D. Bhor, B. M. Bhanage, *Tetrahedron Lett.* 2008, 49, 1045–1048.
- ²⁰⁸ F. Derridj, S. Djebbar, O. Benali-Baitich, H. Doucet, J. Organomet. Chem. **2008**, 693, 135–144.
- ²⁰⁹ a) D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128. 1066–1067. b) D. García-Cuadrado, P. De Mendozza, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2007, 129, 6880–6886.
- ²¹⁰ M. Lafrance, K. Fagnou, J. Am. Chem. Soc. **2006**, 128, 16494–16497.
- ²¹¹ R. S. Sanchez, F. A. Zhuravlev, J. Am. Chem. Soc. 2007, 129, 5824–5825.
- ²¹² Ausgewählte Aufsätze: a) J. E. Anthony, *Angew. Chem.* 2008, *120*, 664–682. *Angew. Chem. Int. Ed.* 2008, *47*, 452–483. b) M. D. Watson, A. Fechtenkötter, K. Müllen, *Chem. Rev.* 2001, *101*, 1267–1300. c) U. Mitschke, P. Bäuerle, *J. Mater. Chem.* 2000, *10*, 1471–1507.
- ²¹³ D. S. Clarke, R. Wood, Synth. Commun. **1996**, 26, 1335–1340.
- ²¹⁴ R. A. S. Chandraratna, *Eur. Pat. Appl.* **1988**, 272–921.
- ²¹⁵ J. C. Antilla, J. M. Baskin, T. E. Barder, S. L. Buchwald, J. Org. Chem. 2004, 69, 5578– 5587.
- ²¹⁶ M. Periasamy, G. Srinivas, P. Bharathi, J. Org. Chem. **1999**, 64, 4204–4205.
- ²¹⁷ D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, R. D. Russell, *Dalton Trans.* **2003**, 4132–4138.
- ²¹⁸ L. Ackermann, R. Vicente, A. Althammer, *Org. Lett.* **2008**, *10*, 2299–2302.
- ²¹⁹ S. I. Gorelsky, D. Lapointe, K. Fagnou, J. Am. Chem. Soc. **2008**, 130, 10848–10843.
- ²²⁰ Experimentelle und quantenmechanische Studien zu rutheniumkatalysierten C-H-Aktivierungen mit Bromarenen: I. Özdemir, S. Demir, B. Çetinkaya, C. Gourlaouen, F. Maseras, C. Bruneau, P. H. Dixneuf, J. Am. Chem. Soc. **2008**, 130, 1156–1157.
- ²²¹ L. Ackermann, A. Althammer, *Synlett* **2006**, 3125–3219.
- ²²² L. Ackermann, A. Althammer, *Synlett* **2008**, 995–998.
- ²²³ L. Ackermann, A. Althammer, *Org. Lett.* **2006**, *8*, 3457–3460.
- ²²⁴ L. Ackermann, A. Althammer, Angew. Chem. 2007, 119, 1652–1654; Angew. Chem. Int. Ed. 2007, 46, 1627–1629.
- ²²⁵ a) L. Ackermann, A. Althammer, R. Born, *Tetrahedron (Symposia in Print)* **2008**, *64*, 6115–6124. b) L. Ackermann, A. Althammer, R. Born, *Synlett* **2007**, 2833–2836.

- ²²⁶ A. J. Arduengo III, R. Kraftczyk, R. Schmutzler, *Tetrahedron* **1999**, *55*, 14523–14534.
- ²²⁷ H. S. Li, L. A. Paquette, Synth. Commun. **1994**, 24, 2503–2506.
- ²²⁸ A. Krasovskiy, P. Knochel, *Synthesis* **2006**, 890–891.
- ²²⁹ X. Wang, D. V. Gribkov, S. D. Sames, J. Org. Chem. **2007**, 72, 1476–1481.
- ²³⁰ A. Fürstner, D. N. Jumbam, *Tetrahedron* **1992**, *48*, 5991–6010.
- ²³¹ C. Koradin, W. Dohle, A. L. Rodriguez, B. Schmid, P. Knochel, *Tetrahedron* 2003, *59*, 1571–1588.
- ²³² I. W. Davies, J. H. Smitrovich, R. Sidler, C. Qu, V. Gresham, C. Bazard, *Tetrahedron* **2005**, *61*, 6425–6437.
- ²³³ C. L. Cioffi, W. T. Spencer, J. J. Richards, R. J. Herr, J. Org. Chem. 2004, 69, 2210– 2212.
- ²³⁴ S. Shi, Y. Zhang, J. Org. Chem. 2007, 72, 5927–5930.
- ²³⁵ H.-C. Shen, S. Pal, J.-J. Lian, R. S. Liu, J. Am. Chem. Soc. **2003**, 125, 15762–15770.
- ²³⁶ S.Y. Liu, M. Choi, G. C. Fu, *Chem. Commun.* **2001**, 2408–2409.
- ²³⁷ W. M. Seganish, P. DeShong, J. Org. Chem. 2004, 69, 1137–1143.
- ²³⁸ M. Feuerstein, H. Doucet, M. Santelli, J. Organomet. Chem. **2003**, 687, 327–331.
- ²³⁹ C. G. Dol, P. C. J. Kamer, P. W. N. M. van Leeuwen, *Eur. J. Org. Chem.* **1998**, *2*, 359–364.
- ²⁴⁰ V. Percec, G. M. Golding, J. Smidrkal, O. Weichold, J. Org. Chem. 2004, 69, 3447– 3452.
- ²⁴¹ L. W. Xu, C.-G. Xia, Synth. Commun. **2004**, *34*, 1199.
- ²⁴² D.-Y. Lee, J. F. Hartwig, *Org. Lett.* **2005**, *7*, 1162–1172.
- ²⁴³ H. Rottondorf, S. Sternhell, Aust. J. Chem. **1963**, 16, 647–657.
- ²⁴⁴ I. Shimao, K. Fujimori, S. Oae, *Bull. Chem. Soc. Jpn.* **1982**, *55*, 1538–1542.
- ²⁴⁵ J. H. Chai, B. C. Lee, J. Org. Chem. **2002**, 67, 1277–1281.
- ²⁴⁶ R. Giles, A. B. Hughes, M. V. Sargent, J. Chem. Soc. Perkins Trans. 1 1991, 1581–1588.
- ²⁴⁷ M. R. Del Giudice, G. Settimj, M. Delfini, *Tetrahedron* **1984**, *40*, 4067–4080.
- ²⁴⁸ L. R. Moore, K. H. Shaughnessy, Org. Lett. **2004**, *6*, 225–228.
- ²⁴⁹ M. Lourak, R. Vanderesse, Y. Fort, P. J. Caubere, J. Org. Chem. **1989**, 54, 4844–4848.
- ²⁵⁰ M. Dai, B. Liang, C. Wang, J. Chen, Z. Yang, Org. Lett. **2004**, *6*, 221–224.
- ²⁵¹ J. Dewar, J. Chem. Soc. **1959**, 4265–4269.
- ²⁵² S. E. Denmark, M. H. Ober, *Org. Lett.* **2003**, *5*, 1357–1360.
- ²⁵³ D. Badone, M. Baroni, R. Cardamone, A. Ielmini, U. J. Guzzi, *J. Org. Chem.* **1997**, *62*, 7170–7173.
- ²⁵⁴ B. H. Lipshutz, K. Siegman, E. Garcia, F. J. Kayser, J. Am. Chem. Soc. 1993, 115, 9276–9282.
- ²⁵⁵ R. K. Arvela, N. E. Leadbeater, Org. Lett. **2004**, *6*, 2649–2652.
- ²⁵⁶ G. Cotterill, J. Chem. Soc. Perkin Trans. 1 **1974**, 2423–2428.
- ²⁵⁷ A. Nunez, A. Sanchez, C. Burgos, J. Alvarez-Builla, *Tetrahedron* **2004**, *60*, 6217–6224.
- ²⁵⁸ H.-C. Shen, S. Pal, J.-J. Lian, R. S. Liu, J. Am. Chem. Soc. **2003**, 125, 15762–15770.
- ²⁵⁹ J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. **1999**, 121, 9550–9561.
- ²⁶⁰ I. Sapountzis, W. Lin, C. C. Kofink, C. Despotopoulou, P. Knochel, Angew. Chem. 2005, 117, 1682–1685; Angew. Chem. Int. Ed. 2005, 44, 1654–1657.
- ²⁶¹ N. E. Leadbeater, R. J. Smith, Org. Lett. **2006**, *8*, 4589–4591.

- ²⁶² J. V. Kingston, J. G. Verkade, J. Org. Chem. **2007**, 72, 2816–2822.
- ²⁶³ R. P. Korivi, C.-H. Cheng, J. Org. Chem. **2006**, 71, 7079–7082.
- ²⁶⁴ S. D. Walker, T. E. Barder, J. R. Martinelli, S. L. Buchwald, Angew. Chem. 2004, 116, 1907–1912; Angew. Chem. Int. Ed. 2004, 43, 1871–1876.
- ²⁶⁵ Y. Terao, H. Wakui, M. Nomoto, T. Satoh, M. Miura, M. Nomura, *J. Org. Chem.* **2003**, *68*, 5236–5243.
- ²⁶⁶ C. Dai, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 2719–2723.
- ²⁶⁷ A. Kuwahara, K. Nakano, K. Nozaki, J. Org. Chem. **2005**, 70, 413–419.
- ²⁶⁸ M. C. Willis, G. N. Brace, I. P. Holmes, *Angew. Chem.* **2005**, *117*, 407–410; *Angew. Chem. Int. Ed.* **2005**, *44*, 403–406.
- ²⁶⁹ H.-J. Knölker, M. Bauermeister, J. B. Pannek, *Chem. Ber.* **1992**, *125*, 2783–2793.
- ²⁷⁰ M. Kuroki, Y. Tsunashima, J. Het. Chem. **1981**, 18, 709–714.
- ²⁷¹ T. Martin, C. J. Moody, J. Chem. Soc. Perkin Trans. 1 1988, 235–240.
- ²⁷² C.-Y. Liu, P. Knochel, Org. Lett. **2005**, 7, 2543–2546.
- ²⁷³ S. M. Bonesi, M. A. Ponce, R. Erra-Balsells, J. Het. Chem. **2005**, 42, 867–875.
- ²⁷⁴ H.-J. Knölker, M. Bauermeister, J. Chem. Soc. Chem. Commun. **1990**, 664–665.
- ²⁷⁵ H.-J. Knölker, M. Bauermeister, *Tetrahedron* **1993**, 11221–11236.
- ²⁷⁶ T. Sakamoto, D. Uchiyama, Y. Kondo, H. Yamanka, *Heterocycles* **1993**, *35*, 1273–1278.
- ²⁷⁷ C.-Z. Tao, X. Cui, J. Li, A.-X. Liu, L. Liu, Q.-X. Guo, *Tetrahedron Lett.* 2007, 48, 3525– 3529.
- ²⁷⁸ L. Di Nunno, A. Scilimati, *Tetrahedron* **1986**, *42*, 3913–3920.
- ²⁷⁹ T. Fukuhara, C. Hasegawa, S. Hara, *Synthesis* **2007**, 1528–1534.
- ²⁸⁰ C. Chen, Y.-J. Chen, *Tetrahedron Lett.* **2004**, *45*, 113–115.
- ²⁸¹ N. Barbero, M. Carril, R. SanMartín, E. Domínguez, *Tetrahedron* 2007, 63, 10425– 10432.
- ²⁸² K. Vollmann, C. E. Müller, *Heterocycles* **2002**, *57*, 871–880.
- ²⁸³ L. N. Pridgen, J. Org. Chem. **1982**, 47, 4319–4323.
- ²⁸⁴ M. Taillefer, N. Xia, A. Ouali, Angew. Chem. 2007, 119, 952–954; Angew. Chem. Int. Ed. 2007, 46, 934–936.
- ²⁸⁵ C.-Y. Zhou, P. W. H. Chan, C.-M. Che, Org. Lett. **2006**, *8*, 325–328.

Lebenslauf

Andreas Althammer

Wohnort:	Maria-Göppert-Weg 7, D-37077 Göttingen
Geburtsdatum:	22. September 1979
Geburtsort:	Bad Reichenhall
Staatsangehörigkeit	deutsch

Promotion

01/2006-10/2008	"Entwicklung katalytischer Kreuzkupplungs- und Hydroaminierungs-
	reaktionen", Arbeitskreis Prof. Dr. Lutz Ackermann (München und Göttingen)
seit 05/2007	Wissenschaftlicher Angestellter
	Institut für Organische und Biomolekulare Chemie der GEORG-AUGUST-
	UNIVERSITÄT, Göttingen
	Lehraufgaben: Betreuung des organisch-chemischen Fortgeschrittenenprakti-
	kums, Leitung von Ubungsseminaren zu Vorlesungen in organischer Chemie,
01/2006 04/2007	Wissenschaftlichen Angestallter
01/2006-04/2007	Wissenschaftlicher Angestellter
	Lebraufachen: Anleitung von Bacheler, Arbeiten bzw. Eerschungenrektike
	hegleitende Diplomerheitsbetreuung
	begienende Dipiomarbensberredung
	Studium der Chemie
10/2000-11/2005	LUDWIG-MAXIMILIANS-UNIVERSITÄT (LMU), München
30.11.2005	Abschluss: Diplom (Note: 1.5)
	Spezialfach: Analytische Chemie
06/2005-11/2005	Diplomarbeit
	"Luftstabile Sekundäre Phosphanoxide als Ligandenvorläufer für
	übergangsmetallkatalysierte Kreuzkupplungsreaktionen", Arbeitskreis Prof.
	Dr. Lutz Ackermann, LMU, München, Department Chemie und Biochemie,
	(Note: 1.0)
10/2002	Vordiplom Chemie (Note: 2.0)
	Zivildienst
07/1999-06/2000	AWO-Seniorenzentrum, Laufen
	Schulbildung
09/1990-06/1999	ROTTMAYR-GYMNASIUM, Laufen
16.06.1999	Abschluss: Abitur (Note: 2.4)
	Hauptfächer: Chemie und Französisch
09/1986-07/1990	Grundschule, Feldkirchen

Nebentätigkeiten

04/2003-08/2005	Studentische Hilfskraft		
	Leitung eines Übungsseminars zur Grundvorlesung Organische Chemie,		
	Betreuung diverser Praktika, Department Chemie und Biochemie der LMU,		
	München		
08/2004-09/2004	Werkstudent		
	Medizinalchemie der F. HOFFMANN-LA ROCHE AG, Basel (Schweiz)		
07/2000-10/2001	Werkstudent		
	Analytik-Labor der DRAGENOPHARM APOTHEKER PÜSCHL GMBH & CO KG,		
	Tittmoning		
	Sprachkenntnisse		
Deutsch:	Muttersprache		
Englisch:	fließend		

Französisch: in Wort und Schrift

Publikationsverzeichnis

- 14) "Palladium-Catalyzed Direct Arylations of Heteroarenes with Tosylates and Mesylates", L. Ackermann, A. Althammer, S. Fenner, *Angew. Chem.*; *Angew. Chem. Int. Ed., zur Veröffentlichung angenommen.*
- "Assisted Ruthenium-Catalyzed C–H Bond Activation: Carboxylic Acids as Cocatalysts for Generally Applicable Direct Arylations in Apolar Solvents", L. Ackermann, R. Vicente, A. Althammer, Org. Lett. 2008, 10, 2299–2302.
- 12) "Phosphoric Acid Diesters as Efficient Catalysts for Hydroaminations of Nonactivated Alkenes and an Application to Asymmetric Hydroaminations", L. Ackermann, A. Althammer, *Synlett* **2008**, 995–998.
- 11) "[RuCl₃(H₂O)_n]-Catalyzed Direct Arylations", L. Ackermann, A. Althammer, R. Born, *Tetrahedron (Symposia in Print)* **2008**, *64*, 6115–6124.
- 10) "[RuCl₃(H₂O)_n]-Catalyzed Direct Arylations with Bromides as Electrophiles", L. Ackermann,
 A. Althammer, R. Born, *Synlett* 2007, 2833–2836.
- 9) "Hydroaminations of Unactivated Alkenes with Basic Alkylamines: Group 4 Metal Halide Catalysts and Brønsted-Acid Organocatalysts", L. Ackermann, L. T. Kaspar, A. Althammer, *Org. Biomol. Chem.* **2007**, 1975–1978.
- "Domino N-H and C-H Bond Activation: Palladium-Catalyzed Synthesis of Annulated Heterocycles using Dichloro(hetero)arenes", L. Ackermann, A. Althammer, *Angew. Chem.* 2007, 119, 1652–1654; *Angew. Chem. Int. Ed.* 2007, 46, 1627–1629.
- "A Diaminochloro-phosphine for Palladium-Catalyzed Arylations of Amines and Ketones", L. Ackermann, J. H. Spatz, C. J. Gschrei, R. Born, A. Althammer, *Angew. Chem.* 2006, *118*, 7789–7792; *Angew. Chem. Int. Ed.* 2006, *45*, 7627–7630.
- 6) "Air-Stable PinP(O)H as Preligand for Palladium-Catalyzed Kumada Couplings of Unactivated Tosylates", L. Ackermann, A. Althammer, *Org. Lett.* **2006**, *8*, 3457–3460.
- 5) "One-Pot 2-Aryl/Vinylindole Synthesis Consisting of a Ruthenium-Catalyzed Hydroamination and a Palladium-Catalyzed Heck Reaction using 2-Chloroaniline", L. Ackermann, A. Althammer, *Synlett* **2006**, 3125–3129.

- "Cross-Coupling Reactions of Aryl and Vinyl Chlorides catalyzed by a Palladium Complex derived from an Air-Stable *H*-Phosphonate", L. Ackermann, C. J. Gschrei, A. Althammer, M. Riederer, *Chem. Commun.* 2006, 1419–1421.
- "Catalytic Arylation Reactions by C–H Bond Activation with Aryl Tosylates", L. Ackermann, A. Althammer, R. Born, *Angew. Chem.* 2006, 118, 2681–2685; *Angew. Chem. Int. Ed.* 2006, 45, 2619–2622.
- "Air-Stable Phosphine Oxides as Preligands for Catalytic Activation Reactions of C–Cl-, C– F- and C–H-Bonds", L. Ackermann, R. Born, J. H. Spatz, A. Althammer, C. J. Gschrei, *Pure Appl. Chem.* 2006, 78, 209–214.
- 1) "Selective Functionalization in Positions 2 and 3 of Indole *via* an Iodine-Copper Exchange Reaction", X. Yang, A. Althammer, P. Knochel, *Org. Lett.* **2004**, *10*, 1665–1667.

Vorträge und Sonstiges

- 5) "Sustainable Arylation Reactions using Aryl Chlorides and Tosylates", BASF AG, Ludwigshafen, September **2008**.
- 4) "Sustainable Arylation Reactions using Aryl Chlorides and Tosylates", F. HOFFMANN-LA ROCHE AG, Basel (Schweiz), Mai **2008**.
- 3) "Hochschule trifft Industrie", A. Althammer, L. Ackermann, *Nachr. Chem.* 2008, 56, 71.
- 2) "Arylation Reactions with Aryl Chlorides and Tosylates", 5. HOCHSCHULE TRIFFT INDUSTRIE, Zeuthen, September **2007**.
- "Direct Arylation Reactions *via* C–H-Bond Activation with Aryl Chlorides and Tosylates", 1. GÖTTINGER CHEMIE FORUM, Göttingen, Mai 2007.

Posterpräsentationen

- "Ruthenium- and Palladium-Catalyzed Direct Arylations with Aryl Chlorides and Tosylates",
 A. Althammer, L. Ackermann, 2. EUCHEMS CONGRESS, Turin (Italien), September 2008.
- "Direct Arylation Reactions *via* C–H Bond Activation with Aryl Chlorides and Tosylates", A. Althammer, L. Ackermann, 2. GÖTTINGER CHEMIE FORUM, Göttingen, Juli 2008.
- "Rutheniumkatalysierte direkte Arylierungen mittels C–H-Bindungsaktivierung", R. Born, P. Álvarez-Bercedo, A. Althammer, R. Vicente, L. Ackermann, 5. HOCHSCHULE TRIFFT INDUSTRIE, Zeuthen, September 2007.
- 5) "Direct Arylation Reactions *via* C–H Bond Activation with Aryl Chlorides and Tosylates", A. Althammer, L. Ackermann, (Posterpreis), OMCOS14, Nara (Japan), August **2007**.
- "Direct Arylation Reactions *via* C–H Bond Activation with Aryl Chlorides and Tosylates", A. Althammer, L. Ackermann, 4. HEIDELBERG FORUM OF MOLECULAR CATALYSIS, Heidelberg, Juni 2007.
- "Heteroatom-Substituted Secondary Phosphine Oxides (HASPOs) as Preligands in Cross-Coupling Reactions with Tosylates", A. Althammer, C. J. Gschrei, L. Ackermann, INDUSTRIETAG, München, Oktober 2006.
- "Heteroatom-Substituted Secondary Phosphine Oxides (HASPOs) as Preligands in Cross-Coupling Reactions with Tosylates", A. Althammer, C. J. Gschrei, L. Ackermann, 15. ORCHEM, Bad Nauheim, September 2006.
- 1) "Struktur und Bindung in Thiazyldihalogeniden", S. Herler, E. Kessenich, A. Althammer, A. Schulz, GDCH-Kongress, München, Oktober **2003**.