
Residual density validation

and the structure of Labyrinthopeptin A2

Katharina Anna Christina Meindl

Göttingen 2008





Residual density validation

and the structure of Labyrinthopeptin A2

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten
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dafür, dass er das Romanescomodell zur Verfügung gestellt hat.
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Summary

The present work is divided into two main parts. The first part deals with the

analysis and validation of the residual density. For the quantification and analysis

the concept of the fractal dimension is employed. For this purpose several new

descriptors were developed and implemented into a program called “jnk2RDA”. For

testing the influence of the experimental resolution on the descriptors ideal simulated

data were created to exclude the influence of any unknown sources of error. It could

be shown that the fractal dimension of the residual density is strongly dependent

on the resolution of the data. For simulating a more “realistic” case Gaussian noise

was added to the ideal data. It was seen that the fractal dimension of the zero

residual density is relatively independent on the amount of noise whereas the flatness

(maximum and minimum residual density values) decreases with increasing noise.

Several parameters describing the electron density were varied from their refined

values for simulated and for experimental data to investigate their influence on

the residual density. It could be shown that each parameter has its individual

influence on the distribution of the residual density and on its fractal dimension

distribution and that the shape of the fractal dimension distribution can help to

identify which parameter could be set to a more appropriate value. It was seen that

the manipulation of parameters for experimental data does not necessarily show the

expected results as the sources of error cannot always be identified and controlled.

The progression of a multipole refinement starting from the Independent Atom

Model to the final Multipole Model was monitored with the residual density de-

scriptors and it could be shown that the parameters which contribute most to the

improved description of the electron density are the monopole and multipole popu-

lation parameters. An investigation of the influence of extinction correction on the

residual density showed that the refinement of an even relatively small extinction

parameter can improve the residual density remarkably. This improvement can be

very large compared to any model improvement even including what can be achieved

by refining the multipole population parameters.

It was shown that the size and resolution of the residual density grid has an

enormous impact on the residual density descriptors. The optimum grid has a
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resolution that is in a certain relation to the experimental resolution and which is

proportional to the cell axes. For properly chosen values the computing effort and

memory demand are minimized and the obtained information is maximized.

The residual density descriptors were applied to verify the correct refinement on

data of a disordered structure with multipole methods. It was shown that the

residual density did not only improve in the molecular region when the disorder is

taken into account but also for the whole unit cell.

A new method was developed which allows for the correction of negative intensity

observations that can occur for several reasons in an X-ray crystallography measure-

ment. This new algorithm is a very effective way to correct the data and to make it

possible that also negative observed intensities are included in the refinement, which

is especially important for high resolution data. No such treatment is existing yet

for small molecule crystallography.

The second part of this work presents a new lantibiotic (called labyrinthopeptin

A2) consisting of 18 amino acids, which shows new structural features. This cyclic

peptide contains the amino acid lanthionine, two unusual cis peptide bonds and

new intramolecular links. The Cα atoms of two alanine residues are bonded to the

Cβ atoms of two neighbored alanine residues. This leads to quaternary substituted

Cα atoms which is an uncommon structural motif. Despite the small rings in A2

consisting of only four amino acids the dihedral angles lie all in allowed regions in

the Ramachandran plot. The peptide can formally be divided into two segments

each containing two rings, the main chains of which are structurally very similar,

which was shown by an overlay of the corresponding atoms.
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Zusammenfassung

Die vorliegende Arbeit ist in zwei Teile untergliedert. Der erste Teil beschäftigt

sich mit der Analyse und Überprüfung der Residualdichte. Für die Quantifizierung

und Analyse wurde das Konzept der fraktalen Dimension verwendet. Zu diesem

Zweck wurden verschiedene neue Deskriptoren entwickelt und in ein Programm na-

mens “jnk2RDA” implementiert. Um den Einfluss der experimentellen Auflösung

auf die Deskriptoren zu untersuchen wurden ideale Daten erzeugt um unbekannte

Fehlerquellen auszuschliessen. Es konnte gezeigt werden, dass die fraktale Dimension

der Residualdichte stark von der Auflösung der Daten abhängt. Um realistischere

Bedingungen zu simulieren wurden die idealen Daten Gauss-verrauscht. Es zeigte

sich, dass die fraktale Dimension der Nullresidualdichte relativ unabhängig von der

Menge des Rauschens ist, wogegen die Breite der Verteilung (maximale und mini-

male Restdichtewerte) mit ansteigendem Rauschen abnimmt.

Verschiedene Parameter, die die Elektronendichte beschreiben, wurden ausgehend

von ihren verfeinerten Werten für ideale und für experimentelle Daten variiert. Es

konnte gezeigt werden, dass jeder Parameter einen individuellen Einfluss auf die

Verteilung der Residualdichte und auf die Verteilung von deren fraktaler Dimension

hat. Ausserdem kann die Form der Kurve der fraktalen Dimension bei der Identi-

fizierung von Parametern helfen, die unter Umständen noch weiter angepasst werden

können. Es zeigte sich, dass die Änderungen der Parameter für experimentelle Daten

nicht immer die erwarteten (den idealen Daten entsprechenden) Ergebnisse zeigen,

da in experimentellen Daten meist Fehler enthalten sind, die nicht immer identifiziert

und kontrolliert werden können.

Der Verlauf einer Multipolverfeinerung, ausgehend vom IAM Modell bis hin zum

finalen Multipolmodell, wurde mit den Residualdichtedeskriptoren beobachtet, und

es zeigte sich, dass die Parameter, die den grössten Beitrag zur Verbesserung der

Beschreibung der Elektronendichte liefern, die Mono- und Multipolpopulationspa-

rameter sind. Eine Untersuchung des Einflusses der Extinktionskorrektur auf die

Residualdichte zeigte, dass sogar die Verfeinerung von relativ kleinen Extinktionspa-

rametern die Residualdichte enorm verbessern (reduzieren) kann. Diese Verbesserung
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kann sogar deutlich grösser sein als diejenige, die durch Einführung der Multipolpa-

rameter erzielt wird.

Es konnte gezeigt werden, dass die Auflösung des Residualdichtegrids die Resi-

dualdichtedeskriptoren beeinflusst. Die optimale Gridauflösung hängt von der ex-

perimentellen Auflösung ab und ist proportional zu den Zellkanten. Für opti-

mal gewählte Werte kann bei gleichbleibendem Informationsgehalt der rechnerische

Aufwand minimiert werden.

Eine Anwendung der Residualdichtedeskriptoren war die Bestätigung der Multi-

polverfeinerung einer fehlgeordneten Struktur. Es konnte gezeigt werden, dass sich

unter Berücksichtigung der zweiten Molekülposition nicht nur die Residualdichte in

der Nähe der Atome verbessert hat sondern in der gesamten Einheitszelle.

Ausserdem wurde eine neue Methode entwickelt, mit der negativ beobachtete In-

tensitäten korrigiert werden können, die bei einer Röntgenstrukturanalyse jederzeit

auftreten können. Dieser neue Algorithmus kann die Daten auf eine sehr effektive

Art korrigieren und ermöglicht die Verwendung aller (auch negativ beobachteter)

Daten bei der Verfeinerung, was vor allem bei hochaufgelösten Messungen wichtig

ist. Bisher gibt es solche Korrekturen nur für niedrig-aufgelöste Proteindaten aber

nicht in der Kleinmolekülkristallographie.

Im zweiten Teil der Arbeit wird ein neues Lantibiotikum (Labyrinthopeptin A2)

vorgestellt, das aus 18 Aminosäuren aufgebaut ist und neue strukturelle Eigen-

schaften besitzt. Das zyklische Peptid enthält die Aminosäure Lanthionin, zwei

ungewöhnliche cis-Peptidbindungen und neuartige intramolekulare Verknüpfungen.

Dabei sind die Cα-Atome von zwei Alaninresten an die Cβ-Atome von zwei benach-

barten Alaninresten gebunden. Das führt zu quartär substituierten Cα-Atomen, was

in Peptiden und Proteinen ein seltenes Strukturmotiv ist. Trotz der kleinen Ringe

in A2, die teilweise nur aus vier Aminosäuren bestehen, liegen die Diederwinkel

alle in erlaubten Regionen im Ramachandran-Plot. Das Peptid kann formal in zwei

Segmente aufgeteilt werden, die je aus zwei Ringen aufgebaut sind, deren Hauptket-

ten strukturell sehr ähnlich sind, was durch eine Überlagerung der entsprechenden

Atome gezeigt werden konnte.
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1 Introduction

X-ray crystallography serves as an important tool to investigate the molecular struc-

ture of many chemical compounds. Knowing the exact structure is essential to

understand the mechanism of reactions. Also, atomic radii, bond lengths and the

bonding situation in molecules are determined with the help of X-ray crystallo-

graphy. Getting a detailed knowledge of the structural situation of a molecule is

especially important for macromolecules when information about activity or the

mechanism for recognition and binding of substrates is investigated. This helps to

show how pharmaceuticals interact with their targets and how the structure can be

modified to improve this interaction.

The present work is divided into two main parts. The first part deals with the

analysis and validation of high resolution X-ray datasets. In the last years the

methods for exact measurements to very high resolution have improved remarkably,

while the utilities for characterizing the data have not been adapted to the new

requirement. The quality measures are mostly the same as for conventional refine-

ments, where the challenge is the correct assignment of the atom type, but not the

determination of the details like the second derivative of the electron density. It is

clear that more exact measurements are more and more sensitive towards statistical

and systematical errors, which might originate from the measurement, the data pro-

cessing or modeling or maybe even from too idealized assumptions made by theory.

Additionally, some standard procedures like the omission of negative intensity ob-

servations have to be reconsidered, as any systematic exclusion of data increases the

systematic error. Thus, it is important to have analysis tools allowing for a global

as well as a local analysis of the deviations of the model from the data, which may

not only be used for the evaluation of the final model, but which also facilitate the

decisions on how to proceed at certain stages of the refinement.

During this work a program called jnk2RDA was developed that allows the eval-

uation of the residual density distribution. Some general background on X-ray crys-

tallography (section 2.1) and on Multipole Methods (section 2.2) is given. As the
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program uses the concept of the so-called “fractal dimension” the topic “fractals” will

be briefly introduced in section 3.1.2 and it will be shown how their dimension is

determined. In section 3.3.1 the program jnk2RDA is briefly introduced and it is

described which file formats it can process. Some new descriptors of the residual

density were developed which are described in section 3.2. Different algorithms that

can be used to evaluate the fractal dimension distribution of the residual density

are introduced (see section 3.3.2) one of which was developed during this work. It

is shown that this new algorithm is more efficient than the others. In section 3.3.4

the optimization of the program jnk2RDA is described in detail and an example

output file is shown (section 3.3.5). The program is tested on simulated ideal data

(section 3.5.1) and on experimental data (section 3.5.2) of the same compound. The

dependence of the program on the experimental resolution and the grid resolution

is investigated. A chapter on the application of the program on data of a disordered

structure which was refined with the Multipole Model follows in section 3.5.4. The

influence of the incorporation of negative intensities into the refinement was tested

for which purpose a program was written that corrects the set of observed reflections

for negative intensities (section 3.5.5).

The second part of the work deals with the crystallization and refinement of

the crystal structure of a lantibiotic called labyrinthopeptin A2 that shows new

structural features. In sections 4.1 and 4.2 antibiotics in general and the biosynthetic

pathway of lantibiotics are briefly introduced. The crystallization procedure of A2

with protein crystallization methods is described (section 4.3.2) and the structure

solution and refinement that could be performed with small molecule methods (direct

methods) due to the relatively high resolution of 1 Å. A2 is a cyclic peptide consisting

of five rings. It has two unusual cis peptide bonds and two quaternary Cα atoms

that are bridged to the Cβ atoms of neighboring alanine residues. The peptide shows

slight antibiotic, antiviral and more pronounced analgetic activity.

Apart from the main program jnk2RDA more software was developed to allow for

the manipulation of the data files. For example factor int sig adds Gaussian noise

to a list of observed intensities and histomatch fco corrects high resolution data

from negative intensity observations. A more detailed description and an overview

of these programs is given in section 5.
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2 Theoretical Background

2.1 X-ray crystallography [1]

X-rays are electromagnetic waves with wavelengths of about λ = 0.5− 3.0 Å. They

are produced when electrons of high energy, which were accelerated from a cath-

ode towards an anode of a certain material like Mo or Cu, suddenly hit the anode.

This leads to the emission of X-rays of characteristic wavelengths. In a crystal the

atoms are arranged regularly in repeating units. The smallest unit which builds up

the crystal just by translation is called the unit cell. The monochromated X-rays

are directed towards the crystal where they are scattered by the electrons in the

molecules. As the X-rays are considered as waves they can be described with an

amplitude F and a phase Φ.

F = |F| eiΦ = FeiΦ (2.1)

The amplitude of the vector F is its modulus |F| and is denoted F . The amplitude

contains information on the amount of electrons present in the unit cell, whereas the

phase contains information on their relative position to each other. For convenience

reasons the scattered waves are considered as reflections at so-called lattice planes.

Only for certain angles θ between the X-ray source and the lattice planes reflections

can be observed. This relation is given by the Bragg equation [2]

nλ = 2d sin θ (2.2)

with n = an integer number, λ = wavelength, d = distance between the lattice planes

(resolution), θ = scattering angle. The detected reflections are described with their

indices h, k and l that denote their orientation relative to the unit cell, and their

intensity I. According to the kinematical theory of scattering [3] the intensity I of
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the reflections is proportional to the square of the amplitude F

I ∝ F 2 (2.3)

Unfortunately, the phase information is lost during the measurement. This is called

the phase problem in crystallography. Several methods that have been developed to

solve this phase problem will be described later.

As the beam is scattered by all atoms in the crystal each atom contributes to

each reflection. Thus, the structure factor Fhkl can be expressed as the summation

over all atomic structure factors Fi. The individual atomic structure factors Fi are

composed of the atomic scattering factor fi and the phase shift Φi caused by this

atom. Fig. 2.1 shows a representation of an atomic scattering factor in the Argand

diagram. In the case of atomic structure factors Fi the amplitude is the atomic

scattering factor fi. For a scattering angle θ = 0° the atomic scattering factor fi

is normalized to the number of the electrons of the atom and it decreases with

increasing resolution.

(a) atomic structure factor Fi (b) total structure factor F as a sum of
all Fi

Figure 2.1: Projection of the structure factor F in the Argand diagram.

Fhkl =
∑
i

fi{cos[2π(hxi + kyi + lzi)] + i sin[2π(hxi + kyi + lzi)]} (2.4)

h, k and l are the Miller indices of the lattice planes and xi, yi and zi are the coor-

dinates of atom i. The structure factor can also be calculated from the contribution
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of the electron density ρ in small volume elements. The Fourier transformation is

Fhkl = |Fhkl| eiΦhkl =
∫
V
ρ(xyz)e2πi(hx+ky+lz)dV (2.5)

When the Fourier backtransformation is applied the electron density can be cal-

culated from the summation over all individual structure factors in the volume V

with

ρ(xyz) = 1
V

∑
hkl

Fhkle
−2πi(hx+ky+lz)

= 1
V

∑
hkl

Fhkle
iΦhkle−2πi(hx+ky+lz)

(2.6)

As already mentioned the amplitudes Fhkl can be calculated from the measured

intensities of the reflections, but the information on the phase Φ is lost.

“Direct methods” are one of several possibilities to reconstruct the phases. They

can be applied mainly for small molecules with up to about 1000 atoms and when

data up to atomic resolution are (d ≤ 1.2 Å) are available. Direct methods are based

on the relation between intensities and phases and the assumption that the electron

density is always positive and that its maxima are distributed evenly in the crystal.

A fundamental contribution to direct methods had the Sayre equation [4] from which

the triplet phase relation can be derived [5, 6]. It is based on the relation between

phases of three independent but strong reflections

Φh+h′,k+k′,l+l′ ≈ Φh,k,l + Φh′,k′,l′ (2.7)

Direct methods were developed in more detail by Karle and Hauptman [7–9]. From

the initial phases an initial model can be calculated.

Other methods for the determination of phases for larger molecules like proteins

are the isomorphous replacement methods like SIR or MIR, which allow to get the

phases from a heavy atom derivative. Anomalous dispersion methods are based

on the anomalous signal that heavy atoms show for certain wavelengths (SAD and

MAD). If a structurally similar compound is available Molecular Replacement can

be the method of choice.

The structure factors derived from the observed intensities I are denoted Fobs and

the calculated structure factors Fcalc. They are scaled to each other by the scale
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factor k

k =
∑
hkl F

2
obs∑

hkl F
2
calc

(2.8)

This scale factor is always necessary when the Fcalc are set into relation to the Fobs

but it will not specifically be mentioned in the following equations.

With the initial model and phases an improved model can be calculated by a

least-squares refinement of the model parameters, from which new and improved

amplitudes and phases are obtained. This process is iteratively repeated. The model

is calculated such that the squared difference in the weighted squared amplitudes

minimizes if the refinement is performed against F 2.

∑
hkl

w(F 2
obs − F 2

calc)2 = Min. (2.9)

The factor w weights the intensities according to their accuracy and reliability,

i.e. the uncertainties in their measurement are accounted for. In the simplest case

the weights w are

w = 1
σ2(F 2

obs)
(2.10)

In the refinement program SHELXL [10, 11] this weighting scheme is extended to min-

imize the differences in the squares of the errors for reflections in different intensity

ranges.

w = 1
σ2(F 2

obs) + (aP )2 + bP
(2.11)

with

P = 2F 2
calc +Max(F 2

obs, 0)
3 (2.12)

The values for a and b are proposed by SHELXL during the refinement.

For the minimization of the sum of the squared differences of the squared structure

factors different parameters for each atom have to be refined. For a normal small

molecule Independent Atom Model (IAM) these are nine parameters per atom (three

coordinates x, y, z and six anisotropic displacement parameters Uij).
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For a comparison how well the model agrees with the observed data R-factors are

calculated. The conventional R1-factor is based on a comparison of the amplitudes F

R1 =
∑
hkl ||Fobs| − |Fcalc||∑

hkl |Fobs|
(2.13)

If the R1 is weighted the wR1 is obtained:

wR1 =

√√√√∑hkl w ||Fobs| − |Fcalc||
2∑

hkl w |Fobs|
2 (2.14)

As the refinement is usually performed against the squared amplitudes F 2 an R2-

factor can be calculated as

R2 =

√√√√∑hkl(F 2
obs − F 2

calc)2∑
hkl(F 2

obs)2 (2.15)

Normally, the weights are applied in the refinement, thus, the weighted wR2 is given

as

wR2 =

√√√√∑hkl w(F 2
obs − F 2

calc)2∑
hkl w(F 2

obs)2 (2.16)

An additional quality criterion is the goodness of fit GooF .

GooF = S =

√√√√∑hkl w(F 2
obs − F 2

calc)2

(n− p) (2.17)

with n = number of reflections and p = total number of parameters refined. The

GooF not only considers the weighted error in the squared difference F 2
obs−F 2

calc but

also the degree of overdetermination of the parameters with the difference (n − p).
If the structure was refined completely and correctly and the weighting scheme was

applied properly the GooF should give a value close to 1.

For unproblematic small molecule structures theR1-factor can reach values smaller

than 0.05 and the wR2 values less than 0.15.

Another R-factor that is used in this work is the Rint. It is calculated from the

summation over all reflections which are averaged over at least one symmetry equiv-
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alent.

Rint =
∑ |F 2

obs − 〈F 2
obs〉|∑

F 2
obs

(2.18)

The Rint describes the deviation of a reflection from its symmetry equivalents.

In X-ray crystallography there are several approaches to describe the electron

density in a crystal. One of them is the conventional Independent Atom Model

(IAM). It describes a spherical electron density around the atoms and does not

account for charge transfer and bonding between atoms. Thus, quite high residual

electron densities remain after an IAM refinement. The higher the resolution of the

experiment the more distinct are these residuals.

2.2 Multipole formalism

The multipole approach accounts for the distribution of the electrons in bonds and

in lone pairs. It also allows for charge transfer between atoms. It uses an aspherical

model for the description of the electron density based on the nucleus centered finite

multipole expansion which was first developed by Stewart [12–15] and modified by

Hansen and Coppens [16]. This formalism is implemented into the program package

XD [17], from which mainly the least-squares program XDLSM, the Fourier transfor-

mation program XDFOUR and the graphics program XDGRAPH were used in this

work.

In the multipole model the total molecular electron density is decomposed into

pseudoatomic contributions. Each pseudoatom is further decomposed into the fol-

lowing components

ρatomic(r) = ρc + Pνκ
3ρv(κr) + ρd(κ′r) (2.19)

where ρc is the (frozen) core density, ρv is the spherical valence density and ρd is the

deformation density. Pν are the monopole population parameters and the κ and κ’

values account for the radial expansion and contraction of the spherical valence and

deformation density, respectively.

The deformation density can be described as

ρd(κ′r) =
lmax∑
l=0

κ′3Rl(κ′r)
l∑

m=−l
Plmylm(r

r
) (2.20)
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where the Rl describe the radial distribution of the electron density

Rl(r) = ζnl+3

(nl + 2)!r
nle−ζlr (2.21)

and the ylm are normalized real spherical harmonic functions which describe the

angular dependence of the density. Plm are the multipole population parameters.

The coefficients nl are positive integer values with nl ≥ l according to Poisson’s

equation [18] and the ζ are energy-optimized single-Slater orbital exponents. [19, 20]

Additional to the three positional and the six harmonic vibration parameters

that are to be refined in the Independent Atom Model, in the Multipole Model the

parameters for the monopole and multipole populations Pν and Plm, respectively,

and the radial expansion/contraction parameters κ and κ’ can be refined, which

allows a much more accurate description of the measured electron density.

Fig. 2.2 shows a graphic representation of the multipolar functions ylm according

to Eq. 2.20. The radial part Rl(r), the expansion/contraction parameter κ’ and

the multipole population parameters Plm were set to 1 for the calculation. For

the monopolar function l = 0, for the dipolar functions l = 1, for the quadrupolar

functions l = 2, for the octupolar functions l = 3 and for the hexadecapolar functions

l = 4. m is going from −l to +l which leads to one monopolar, three dipolar, five

quadrupolar, seven octupolar and nine hexadecapolar functions ylm.
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y00

y1−1 y10 y11

y2−2 y2−1 y20 y21 y22

y3−3 y3−2 y3−1 y30 y31 y32 y33

y4−4 y4−3 y4−2 y4−1 y40 y41 y42 y43 y44

Figure 2.2: Multipolar functions ylm describing the valence deformation density; monopolar
function: y00, dipolar functions: y1m, quadrupolar functions: y2m, octupolar functions: y3m,
hexadecapolar functions: y4m; Figures were generated with MolIso [21].
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3 Residual Density Analysis

3.1 Quantification of the residual density distribution

At the end of a least-squares refinement on X-ray data there must always be a check

or better several different independent checks on the results. Possible errors must

be uncovered and the correctness of the model must be assured. For proteins and

peptides, where the resolution is relatively low and the depth of detail in the struc-

ture is not very high, the quality measures differ from the methods for evaluation of

the data for moderate (high) resolution measurements of small molecules.

The usual quality measures like the R-factors (Eqs. 2.13, 2.16) are global measures

of quality. They describe, how the model as a whole fits the experimental data. The

agreement between theory and experiment increases, when e.g. a wrong atom type

is replaced by the correct type. This usually also changes the vibration parameters.

In high resolution experiments, however, the changes are much more subtle. While

the replacement of an atom is a discontinuous act, which also changes the total scat-

tering power emerging from that particular point in the unit cell, in high resolution

experiments the question is rather of the type if there are 4.4 or 4.6 electrons to

be assigned to that scatterer, for example. This number can change in a continu-

ous way. Moreover, parameter correlations e.g. between the mentioned monopole

population and thermal vibration, make it difficult to determine this number. It is,

however, easy to imagine that those small model parameter changes often affect the

total R-factors only moderately. On the other hand, it is exactly these parameters,

which after a converged refinement themselves determine the physical and chemi-

cal interpretation of the electron density distribution (e.g. within the framework of

QTAIM). For this reason it would be helpful to allow the quality measures to become

local also, such that the minor changes in the overall R-factors can be magnified and

such that a change in the residual density distribution due to a model parameter

change can be visualized and quantified.

All of the following new developed residual density descriptors can be evaluated

for the unit cell as a whole as well as for any subvolume of the unit cell. Moreover,
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the ideal values (the limiting values for the ideal case of Fobs = Fcalc for the whole

experimental resolution) for each subvolume as well as for the whole unit cell can

be given easily. In this way, the total error can be decomposed in errors emerging

from the different parts of the unit cell. In this sense, the descriptors are global and

local. In the following paragraphs these residual density descriptors are introduced.

The residual density is the difference density for observed data Fobs and calculated

data Fcalc when the applied phase Φ is the calculated phase Φcalc for both sets of

structure factors. The residual density ρ0 is defined as

ρ0(xyz) = 1
V

∑
hkl

(Fobs − Fcalc)eiΦcalce−2πi(hx+ky+lz) (3.1)

Two important properties that are required from the residual density for a successful

refinement are flatness and featurelessness. The flatness describes the range of the

residual density in terms of its maximum and minimum values (highest peak and

deepest hole). It can be easily calculated by a peak search analysis of the residual

density and should of course be as small (flat) as possible. But the determination

of the featurelessness is so far based on highly subjective criteria. It is determined

by a visual inspection of certain planes in the unit cell which contain the heaviest

atoms of the structure and when the distribution of the residual density seems to be

statistical it is called featureless. Unfortunately, features in the vicinity of lighter

atoms or in regions where no atoms are expected to be can be overlooked and the

residual density is misleadingly termed featureless. Moreover, no number is assigned

to the property featureless. Thus, it is necessary to find a possibility to characterize

the residual density for the whole unit cell and quantify it for comparison of one

model with the other or different structures with each other.

3.1.1 Histograms

One possibility to inspect the residual density for the whole unit cell is to plot a

histogram for the distribution of the residual density values. Fig. 3.1 shows such a

histogram for a residual density distribution of S(NtBu)3
[22].
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Figure 3.1: Histogram representation of the residual density distribution (see section 5).

For the distribution of the residual density a Gauss function is assumed to be a

valid approximation if no systematic error is present [23]. The histogram in Fig. 3.1

does look Gaussian-like as it has one maximum, it is symmetrically distributed and

the shape changes from convex to concave and back (bell-shaped). The amount of

the residuals in the periphery, however, is not apparent due to the high frequency

of residuals close to zero.

Thus, a logarithmic scale of the frequency of the residuals might reveal the details

for the high and low residual density values. Fig. 3.2 shows the same histogram as

above on a logarithmic scale for the frequency.

Figure 3.2: Logarithmic histogram representation of the residual density distribution (see sec-
tion 5).
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By taking the logarithm of a Gauss function the resulting graph should be a

parabola. In contrast to Fig. 3.1 it can now be seen in Fig. 3.2 that the underlying

distribution is far from being a Gaussian due to features in the periphery. There are

systematic errors present in the residual density which can be seen in the deviation

of the graph from a parabolic shape especially in the region of the very high (and

low) residual density values. A problem that remains is the upper boundary of the

histogram. The maximum value of about 4.3 in this case has no special meaning and

might change for a different structure or even for the same structure if the residual

density grid size is varied. Comparability of different structures or models is not

given, thus, another descriptor for the residual density and its featurelessness has to

be found.

This problem can be solved when the residual density (at different isovalues) is

regarded as a fractal and its dimension is calculated.

3.1.2 Fractal dimension

The term fractal was coined by Mandelbrot (from the latin word frangere, fractus: to

break, broken) [24, 25] who found that those irregularly shaped objects have merited

interest although they cannot be described with the usual measures because their

geometry cannot be described with the usual Euclidean dimensions.

3.1.2.1 Mathematical fractals

Fractals are often characterized by a high degree of self-similarity, which means that

each detail from the original object can also be seen at any degree of magnification [26].

They have infinite length and are constructible by iteration.

Cantor dust One of the most famous fractals is the Cantor dust [27–31]. It is gen-

erated by starting from a line with unit length [0,1] and iteratively taking out the

middle third of each resulting line. This can be done infinitely often and the object

decreases from a line to an infinite set of points (Fig. 3.3). Thus, the dimension

of the object is not that of a line anymore, but is more than that of a point as is

consists of an infinite number of points.
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Figure 3.3: Iterative procedure of generating the Cantor dust with initiator (top) and generator
(second line) applied iteratively five times.

Sierpinski triangle Another very famous fractal is the Sierpinski gasket or Sierpin-

ski triangle [32, 33]. It can be generated by starting from a triangle and subsequently

removing the middle equilateral triangle of the newly generated triangle (Fig. 3.4).

The perimeter of the resulting white area thus increases to infinity.

Figure 3.4: Iterative procedure of generating the Sierpinski triangle; the initiator is the black
triangle on the left hand side; the generator is applied iteratively six times; steps 3–5 are not shown.
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Sierpinski carpet Very similar to the Sierpinski gasket is the Sierpinski carpet [32, 33].

It is constructed by starting from a square from which the middle square is removed.

This is repeated for the resulting squares ad infinitum (Fig. 3.5). Here again, the

area of the white parts has an infinitely large circumference.

Figure 3.5: Iterative procedure of generating the Sierpinski carpet; the initiator is the black cube
on the left hand side; the generator is applied iteratively five times; steps 3 and 4 are not shown.

Koch curve Another famous fractal is the Koch curve from which the Koch snow-

flake can be constructed [34, 35]. The Koch curve is generated by subsequently re-

placing the middle third of a line with the corresponding other two sides that form

an equilateral triangle (Fig. 3.6). Three Koch curves put together form the Koch

snowflake (Fig. 3.7).
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Figure 3.6: Iterative procedure of generating the Koch curve; the initiator is the topmost line;
the generator is applied iteratively five times.
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Figure 3.7: Koch snowflake generated from three Koch curves.

Peano curve The Peano curve is a continuous curve that completely fills a

2-dimensional plane [36]. It is built up by dividing a line into three segments and

putting a square up and below the middle segment.

Figure 3.8: Peano curve. [37]

Mandelbrot set A really beautiful example of artificial fractals is the Mandelbrot

set [24, 25]. It is constructed in the complex plane by an iteration according to

zn+1 = z2
n + c (3.2)

where c is a complex number and the starting value z0 is 0. The iteration is processed

for the complex plane e.g. from c = (−2 − 2i) to c = (2 + 2i). If after a certain

number of iterations the resulting value for z converges to a constant value, i.e. the

sequence is bounded, this point belongs to the Mandelbrot set, otherwise, if the

sequence diverges, it does not. In Fig. 3.9 the values of the Mandelbrot set are

drawn in black and the color coding of the other values describes the number of

iterations that were necessary to exceed a threshold value that was set as boundary.

The magnification of the last image in Fig. 3.9 relative to the first one is about

1010 : 1.
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start zoom1 zoom2

zoom3 zoom4 zoom5

zoom6 zoom7 zoom8

zoom9 zoom10 zoom11

zoom12 zoom13 zoom14

Figure 3.9: Mandelbrot set with 14 steps of zooming into it; the color coding shows the number
of iterations necessary to reach divergence. [38]

Julia set The Julia set is created similar to the Mandelbrot set [39]. It is also

calculated in a complex plane by an iterative procedure according to Eq. 3.2 which

represents a simple form of the Julia set for a quadratic polynomial. z and c are

complex numbers. Unlike for the Mandelbrot set, c is a constant and z is varied
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from z = (−2 − 2i) to z = (2 + 2i). The Mandelbrot set and the Julia set are

strongly correlated. If the Julia set is calculated for a value of c that is part of the

Mandelbrot set the resulting Julia set is connected, otherwise it is disconnected. For

real values of c the Julia set is mirrored about a plane perpendicular to the complex

plane containing the real axis otherwise it has a twofold axis perpendicular to the

complex plane intersecting the origin. In Fig. 3.10 a Julia set was created with

c = (−0.52 + 0.58i) with a maximum number of iterations of 100 for z = (−2− 2i)
to z = (2 + 2i). The converging sets of z are drawn in black, all others in white.

Figure 3.10: Julia set for a quadratic polynomial with c = (−0.52 + 0.58i).

The twofold symmetry is changed to a sevenfold symmetry for a Julia set created

with a polynomial of seventh order (Fig. 3.11). The colors indicate the number of

iterations until divergence was reached.

Figure 3.11: Julia set for a polynomial of seventh order with c = (−0.74543 + 0.11301i).
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For this Julia set the corresponding equation is

zn+1 = z7
n + c (3.3)

with c = (−0.74543 + 0.11301i) for z = (−2− 2i) to z = (2 + 2i).
All those fractals are perfectly self-similar, that is subsections of the object are

similar to the whole object. They are highly detailed even after multiple magnifica-

tion. The dimension of those objects is not obvious, but in any case it exceeds its

topological dimension.

3.1.2.2 Fractals in nature

Fractals can not only be constructed mathematically and be drawn by computers but

they exist also in nature. However, the self-similarity is not given strictly anymore

as the size of the building blocks is limited. Natural fractals can e.g. be found in

the human body in the surface of the brain, pulmonary vessels or the systems of

blood vessels. Other fractals in nature are mountains, clouds, river networks or the

branches of trees. Two examples, a fern and a romanesco broccoli, are shown in

Fig. 3.12. Parts of the whole are similar to the whole when the part is magnified,

but only up to about 3–5-fold magnification.

(a) fern (b) romanesco

Figure 3.12: Fractals in nature.

Very important examples for natural fractals are coastlines. A geographical prob-

lem that was solved with the help of the concept of the fractal dimensionality is

the measurement of coastlines. At the beginning of the last century the scientist

Lewis Fry Richardson was interested in determining the exact length of frontiers.

By the attempt to show that the tendency to war in different regions is dependent

on shapes, length and contiguities of these regions he discovered that he could not
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find exact numbers for the length of frontiers. By examining maps and measuring

the length of the frontiers with polygons, which have equal sides and have their

corners on the frontier, he discovered that for the side of the polygon approaching

zero the length of the frontier would increase to infinity. [40, 41] The smaller the ruler

the finer are the details that can be measured by it (see Fig. 3.13). And as there

is in principle almost no limit in the size of the ruler there is also almost no limit

in the length of the frontier. A ruler of a length of 500 km results in a length for

the coastline of the main island of Great Britain of 2600 km, a ruler of 100 km in a

length of 3800 km, a ruler of 54 km in a length of 5770 km and a ruler of 17 km in a

length of 8640 km [42].

Figure 3.13: Coastline of the main island of Great Britain measured with rulers of different
length.

When Richardson plotted the logarithm of the length g of the compass versus the

logarithm of the total length L(g) he found a linear correlation between the two,

from which he derived the following empirical formula that was revived (in 1967) by

Mandelbrot [43]

L(g) ∝ g1−D (3.4)

with D being the dimension of the frontier. As the frontier can be described as a line

the dimension must have a magnitude around 1, but the dimension D can also be a

non-integer value larger than 1. Richardson analyzed the borders of several countries

and determined the fractal dimensions of the west coastline of Great Britain to be

D = 1.25, the land frontier of Germany (in 1900) D = 1.15 and D = 1.02 for the

coast of South Africa. The more irregular the land frontier is the more the dimension

deviates from 1. In contrast to the irregularly shaped land borders a circle has a
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perimeter of finite length and can be measured exactly, which leads to a fractal

dimension of its length of 1.

In Fig. 3.14 the log-log-representation of the scale versus the total length of the

coastline of Great Britain and a circle with comparable perimeter are plotted ac-

cording to the values found by Peitgen et al. [42]. The slope of the graph corresponds

to the exponent of Eq. 3.4, which is 1−D. The slope of the red line is −0.36 whereas

the slope of the blue line is −0.01. This leads to a fractal dimension of the coastline

of D = 1.36 and to a (fractal) dimension of the circle of D = 1.01. Although the

west coast of Britain is more irregularly shaped than the east coast Richardson found

a lower value for the fractal dimension of the west coast than Peitgen et al. found

for the whole island (1.25 compared to 1.36). This might be due to the fact that

Richardson had an older map which might have shown less details than the map

used by Peitgen et al.. A less detailed map leads to a lower value for D.

Figure 3.14: log-log-plot for the coastline of Britain (red) and a circle (blue).

Another possibility instead of determining the length of the coastline by measuring

it with a compass is to evaluate the length with a box-counting method.

In this approach the structure of which the dimension is to be determined is

covered by a grid built up by boxes.
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(a) 20× 20 boxes (b) 40× 40 boxes

Figure 3.15: Coastline of Britain on two different grids; the boxes containing the coastline are
plotted in gray.

The number of boxes N(ε) which contain e.g. the coastline of Great Britain are

counted and set into relation to the length ε of the boxes. The fractal dimension

determined by this method is called box-counting dimension or Hausdorff dimen-

sion (sometimes Hausdorff-Besicovitch dimension) df and is defined in the limit of

infinitesimal small boxes [44, 45].

df = lim
ε→0

logN(ε)
log 1

ε

(3.5)

Fig. 3.15(a) shows the coastline of Great Britain covered by a grid of 20× 20 boxes.

The gray boxes contain the coastline. For the 20 × 20 grid this number is 105,

whereas the 40× 40 grid in Fig. 3.15(b) has 215 gray boxes that cover the coastline.

For Fig. 3.15(a) df = log 105
log 20 = 1.55, whereas for Fig. 3.15(b) the fractal dimension is

df = log 215
log 40 = 1.46. One can see that for the finer grid with smaller boxes the fractal

dimension decreases and approaches slowly the value of D = 1.36 that was found

with the method of Richardson.

3.1.3 The dimension of fractals

According to Eq. 3.5 the dimension of the fractals that were introduced in the

previous sections can be calculated easily (see Fig. 3.16). For the Cantor dust, of

which the construction started from a line and ended in a set of points, the fractal

dimension can be calculated to be 0.6309. The Sierpinski triangle and the Sierpinski

carpet started from a plane from which subsequently parts were removed and thus

their fractal dimensions are 1.5850 and 1.8928, respectively. The Koch curve was
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constructed from a line which was modified such that its dimension exceeds 1 and is

1.2619. The Peano curve also started from a line and is arranged such that it even

completely fills a plane and has a dimension of 2.

Cantor dust

df = log 2
log 3 = 0.6309

Sierpinski triangle

df = log 3
log 2 = 1.5850

Sierpinski carpet

df = log 8
log 3 = 1.8928

Koch curve

df = log 4
log 3 = 1.2619

Peano curve

df = log 9
log 3 = 2

Figure 3.16: Hausdorff dimension of some mathematical fractals.
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3.1.4 The fractal dimension of the residual density

The distribution of the residual density in the unit cell can also be considered as

an irregularly shaped line (if it is drawn in a 2-dimensional plot) or plane (in the

3-dimensional case) and thus its quantification by its fractal dimension can give a

number that is on an absolute scale and allows a comparison of residual densities of

different structures. In the hypothetical case where no noise is present in the data

and the model describes perfectly the electron density (Fobs = Fcalc) which is present

in the unit cell the iso-surface of ρ0 = 0 eÅ-3 completely fills the unit cell. In this

case, the dimension of the residual density value ρ0 = 0 eÅ-3 is 3. This can also be

calculated easily with the box-counting dimension: if the unit cell with the residual

density is covered by a 10×10×10 grid then each of the resulting boxes contains the

zero-surface. This leads to a number of filled boxes N(ε) of 1000 and a box size ε of
1
10 . According to Eq. 3.5 it follows that df = log 1000

log 10 = 3. If no model errors but only

noise was present in the data the extension of the zero-residual density decreases and

its dimension is reduced. Instead, positive and negative residual density appears.

Fig. 3.17 shows the fractal dimension distribution for a simulated data set with

limited experimental resolution where only noise is present in the data. As was

expected, the shape of the distribution is that of a parabola. The upper limit for

the fractal dimension distribution is 3 for a space-filling distribution of the zero

residual density and this value decreases to a non-integer value for any deviation of

the absolute ideal case, which corresponds to the real case. The height of the graph

denotes the featurelessness (the higher the maximum at ρ0 = 0 eÅ-3 the less features

are in the distribution of the residual density) and the width of the base line denotes

the flatness (∆ρ0 = ρ0,max − ρ0,min).
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Figure 3.17: Ideal parabolic shape for the fractal dimension distribution if only Gaussian noise
is present.

3.2 Development of new descriptors

For the characterization of the residual density the following descriptors were devel-

oped:

3.2.1 Gross residual density and gross residual electrons

To quantify the total amount of residual density the gross residual density and gross

residual electrons were introduced.

The gross residual density ρgross is the integral over all absolute values ρ0 of the

residual density.

ρgross = 1
2V

∫
V
|ρ0(xyz)| dV (3.6)

For a residual density grid this turns into a summation of the moduli of all N resid-

ual density values ρ0 from the grid.

ρgross = 1
2N

N∑
i=1
|ρ0(i)| (3.7)

The factor 1
2 corrects for the fact that one misplaced electron causes a negative
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residual electron in the region where it is wrongly put and one positive residual

electron where it actually should be.

The gross residual electrons egross are simply calculated from the gross residual

density by taking the volume under consideration into account

egross = V · ρgross = V

2N

N∑
i=1
|ρ0(i)| (3.8)

The gross residual electrons reflect the noise contained in the data, inadequate data

processing and density model errors. It showed to be independent of the grid size

but it can be artificially reduced when the experimental resolution is truncated. For

the best model egross should be reduced to a minimum although it would never reach

a value of 0 e due to the noise that will remain present in the data.

3.2.2 Net residual density and net residual electrons

The net residual density ρnet is the integral over all residual density values. In con-

trast to the gross residual density the values are taken with their corresponding signs.

ρnet = 1
V

∫
V
ρ0(xyz)dV (3.9)

For a grid this corresponds to a summation over all residual density values:

ρnet = 1
N

N∑
i=1

ρ0(i) (3.10)

By taking again the volume into account the net residual electrons enet are obtained.

enet = V · ρnet = V

N

N∑
i=1

ρ0(i) (3.11)

In contrast to the gross residual electrons a value of 0 e should be obtained for

enet if the volume under consideration is the volume of the unit cell (for a detailed

calculation of this value see appendix A.1). F000 is the structure factor resulting

from a diffraction of the electron cloud at a Bragg angle of θ = 0°, but unfortunately

it cannot be measured as it is obscured by the primary beam, which is hidden by

the beam stop. F000 corresponds to the number of electrons in the unit cell and

thus the mean contribution of all other structure factors to the integration of the

electron density over the unit cell is 0. The scale factor is calculated such that
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the measured structure factors are scaled to the observed structure factors, i.e. the

number of electrons that are described by both F000 are equal. The integration over

their difference, which is the residual density, must be zero for the unit cell. Thus,

enet, which (in principle) corresponds to the integration over the residual density,

must also be 0 for the unit cell. If F000 could be measured exactly (also without

contribution of noise) the scale factor that scales the calculated structure factors

Fcalc to the observed structure factors Fobs could be calculated instead of being

refined and enet would exactly describe the noise contained in the data, which does

not average out. If enet is calculated for a volume smaller than the unit cell it also

should be zero if no noise or model errors are present but as this is not the case

it will have a non-zero value that can be positive or negative, which quantifies the

excess or missing number of electrons in this volume.

As indeed enet was always zero within the exactness of the given values (four

decimal places) its value will not be given in all following tables where the residual

density descriptors for the whole unit cell are shown.

For a given grid of residual density there are some limitations on ρgross and egross,

and ρnet and enet, respectively, following from Eqs. 3.7, 3.8 and Eqs. 3.10, 3.11:

−ρgross ≤ 1
2ρnet ≤ ρgross and −egross ≤ 1

2enet ≤ egross.

3.3 Implementation of the new descriptors

3.3.1 jnk2RDA

A software called ’jnk2RDA’ was written to perform the analysis of the residual den-

sity grids. It calculates the fractal dimension distribution from ρ0,min to ρ0,max and

plots a graphical representation into a PostScript file. It also prints out the fractal

dimension at ρ0 = 0 eÅ-3, the number of gross residual electrons egross and the net

residual electrons enet as well as the values for ρ0,min, ρ0,max and their difference ∆ρ0.

Moreover, the residual density values for which df (ρ0) = 2 is valid are calculated

from a linear interpolation. Also some information on the grid size (the number of

nx, ny, nz), the multipole model that was used for the refinement (MODEL), the

two models that were used for the calculation of the Fourier file xd.fou (FOUR) and

the XDFOUR section from the xd.mas file are printed.

jnk2RDA was written in Perl and can be used under the operating systems Linux

and Windows. It processes residual density grid files from XDFOUR, XDFFT,

MoPro [46, 47] (if the file is given in XPLOR format) and grid files written by Tonto [48].

When the program is called it first asks for the format of the grid file and then for the

name. The default option is a grid file from XDFOUR with the name ’xd fou.grd’,
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which can be chosen by twice hitting the ENTER button. If the input file is in

XDFOUR format also some information from the xd.mas file is read in, assumed

that it is in the same folder as the grid file. These are the unit cell, the title of the

project and the whole XDFOUR section. If no xd.mas file is found the program

prints a corresponding message.

From the XDFOUR grid file the parameters nx, ny and nz are read in. Further-

more, the number of objects is read in. If this number is 0 it is assumed that the

grid comprises the whole unit cell (calculated with the option “cryst” for the limits

from 0 to 1 in x-, y-, and z-direction), otherwise this gives the number of atoms in

the asymmetric unit. In this case it is assumed that the grid was calculated only for

a part of the unit cell (i.e. the grid was calculated with the option “3-points”). This

information is important for the calculation of the volume under consideration. If

the grid is for a part of the unit cell its volume must be calculated from the size of

the cuboid which is given in the XDFOUR file. Otherwise, if the grid was calculated

for the unit cell, the values at the boundary planes repeat and must not be counted

twice. All this is taken into account by jnk2RDA.

For a MoPro grid file the unit cell dimensions are read in from the file. The six

numbers in line 6 are the cell axes a, b and c and the cell angles α, β and γ. The

grid is assumed to be calculated for the whole unit cell. The number of grid points

along the axes is read in from line 5 of the grid file. There are nine numbers in this

line where the third number is nz, the sixth number is ny and the ninth number is

nx.

If an input file from Tonto is chosen, the user has the choice between reading in

two grid files or one. When two files are read in their values are subtracted from

each other which allows for the determination of e.g. difference densities. If only one

file is entered it is assumed that this file contains residual density values and it is

processed accordingly.

Finally, the residual density values (for a XD file six values per line are assumed)

are read in and evaluated. In the present XD version the grid values are calculated

in planes along the z-direction, with the x-direction varying fastest. jnk2RDA can

handle 2-dimensional as well as 3-dimensional grids. Whether the residual density

has been calculated for a plane or a cuboid is determined by the value of nz: if nz

is 1 the dimension is 2, for all values of nz larger than 1 the dimension is 3. For the

evaluation of the residual density values several algorithms were investigated which

are presented in the following.
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3.3.2 Box counting algorithm

In the box counting algorithm, which is a standard procedure well-known from the

literature [44], the three-dimensional residual density is covered by cuboids. Those

are formed by reducing eight neighboring grid values forming the corners of a cuboid

to a single value, which could be −1, 0 or 1. A value of −1 is assigned when all

contributing values are smaller, and +1 when they are larger than the level of residual

density under consideration, respectively. A value of 0 is assigned when at least one

of the eight grid points in this cuboid corresponds to the value under consideration

or when from two neighboring values in x-, y-, and z-direction, respectively, one is

smaller and the other one is larger than the value of the level under consideration.

This is done for all residual density levels from the lowest to the highest residual

density value in steps of 0.01 eÅ-3. In the two-dimensional case quadrangles are

taken instead of cuboids. An example for how the number of boxes which contain

the level of residual density under consideration is determined is shown in Fig. 3.18.

Fig. 3.18(a) shows the distribution of the zero line of the residual density in a

plane in the molecule. The residual density grid was calculated by a Fourier back

transformation with the program XDFOUR. The 25× 25 grid was plotted with the

program MAPVIEW which is part of the XD2006 program package. Fig. 3.18(b)

shows the same plane with an overlay of grid lines. 25 × 25 grid points are thus

reduced to 24 × 24 boxes. In Fig. 3.18(c) the boxes containing the zero line are

plotted in gray. Counting the gray boxes gives N(ε) = 504 resulting in a fractal

dimension according to Eq. 3.5 of df (0) = log 504
log 24 = 1.9580. In Fig. 3.18(d) the grid

resolution is increased to 50 × 50 grid points which reduce to 49 × 49 boxes. It

can easily be seen that increasing the grid resolution decreases the relative number

of gray boxes. The fractal dimension thus reduces to df (0) = log 1759
log 49 = 1.9201.

Increasing the grid resolution to a 50 × 50 grid results in a relative decrease in the

number of boxes that contain at least one point of the zero line.
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(a) zero residual density line in a 25×25
grid

(b) overlay of the line in the plane with
boxes forming a 25× 25 grid

(c) boxes containing the zero line are
marked in gray

(d) the box resolution was increased to
50× 50 grid points

Figure 3.18: 2-dimensional residual density grids with different grid sizes for the exemplification
of the box counting algorithm.

Although the box-counting algorithm is a standard technique for the determina-

tion of the fractal dimension it turned out to be not very efficient for our purposes.

Thus, a modification of the box-counting algorithm was developed to meet the

requirements with respect to accuracy and efficiency. This algorithm was called

line-counting algorithm and is described in detail in the following section.

3.3.3 Line-counting algorithm

In the line-counting algorithm consecutive values in the residual density grid file are

compared. If the value under consideration lies between them the counter for this
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value is increased by one. This procedure is performed in x-, y- and z-direction

for all existing residual density levels in steps of 0.01 eÅ-3. Fig. 3.19 demonstrates

this procedure for a 2-dimensional plot of the residual density. As an example the

zero residual density value (blue line in Fig. 3.19) is evaluated. The black lines con-

nect each two consecutive values which are separated by the zero residual density

line and their number is counted. In the given example for a 25× 25 grid this gives

a value for N(ε) of 574. 1
ε

is calculated from the number of grid points nx and ny with

1
ε

= log
√

2(nx − 1)(ny − 1) (3.12)

for a 2-dimensional grid. According to Eq. 3.5 this yields a fractal dimension of

df (0) = log 574
log
√

24·24+24·24 = 1.8024. For the line-counting algorithm the denominator is

calculated by taking the logarithm of the square root of all possible lines connecting

two consecutive values in the 2-dimensional case, and taking the logarithm of the

cubic root in case of a 3-dimensional grid. The value for df (0), calculated with

the line-counting algorithm, is found to be systematically decreased by about 0.2 in

comparison to the box-counting algorithm. That different methods for calculating

the fractal dimension result in slightly different values for df is well-known from the

literature [49].

Figure 3.19: Line-counting algorithm on a 25 × 25 grid.

3.3.4 Optimization of the program jnk2RDA

The first version of jnk2RDA used the box-counting algorithm and stored all the

residual density values in memory before evaluating them. This was very CPU time

and memory consuming. The analysis of a 100× 100× 100 grid took about 25 min
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on an AMD Dual Opteron (64 Bit) processor with 2.4 GHz and 4 GB RAM and a

200× 200× 200 grid could not even be evaluated because the program was aborted

by the operating system due to memory overflow.

At this stage the line-counting algorithm was used instead of the box-counting

algorithm. This sped up the processing of a 100 × 100 × 100 grid by a factor of

almost 200 from 25 min to 8 s. The 200 × 200 × 200 grid could now be analyzed

within 72 s. But a 400 × 400 × 400 grid was still too big to be evaluated with

jnk2RDA. As the value for df (0) still was not converged further optimization was

required. So far, all values of the grid were stored simultaneously in memory.

A new version was written that now processes the data when they are read in. For

the evaluation of the grid points in x-direction only the two consecutive values have

to be stored in memory at the same time. For evaluation in y-direction only two

consecutive blocks of nx values each are stored in the memory and for evaluation in

z-direction two consecutive blocks of nx×ny values are stored at the same time. So a

3-dimensional residual density grid is reduced to a 2-dimensional memory problem.

For the above-mentioned 400× 400× 400 grid this means that instead of 64 000 000

only 320 000 numbers have to be stored simultaneously in memory. As the residual

density values are evaluated in a stepwidth of 0.01 eÅ-3 they are converted to integer

values by multiplying them with the reciprocal of the stepwidth (100 in this case)

which reduces the number of characters that have to be stored. By conversion into

integers the problem of internal storage of floating point numbers is bypassed, too.

The largest grid that was evaluated with jnk2RDA had a size of 1280× 1280× 1280
and it took about 3 h to analyze it. For such large grids the limiting factor is the

size of the file (the 1280 × 1280 × 1280 grid file had a size of 36 GB) and not the

CPU time or memory demand of jnk2RDA. For large grids XDFOUR needs much

longer for the Fourier transformation than jnk2RDA needs to evaluate the data.

3.3.5 Example output file from jnk2RDA

Fig. 3.20 shows a typical output file from jnk2RDA. The name of the PostScript file

is derived from the input grid file by just concatenating the name of the grid file

with the ending “ jnk2rda.ps”. If the xd.mas file is present in the folder with the

grid file some information on the data is printed in the .ps file like the title of the

project on top of the page, and in the left gray box the multipole model that was

used for the refinement (MODEL), the two models for which the structure factors

are calculated (FOUR) and the XDFOUR section. In the right gray box the values

for df (0), ρ0,min(d = 2), ρ0,max(d = 2), ρ0,min, ρ0,max, ∆ρ0 and the grid size in nx,

ny and nz are printed. Below this box the values for egross and enet are given. In
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the bottom line the name of the program (jnk2RDA), the path to the grid file, the

name of the grid file and the date when the grid was analyzed are printed.

The fractal dimension distribution in this example file shows an ideal parabolic

shape that is obtained if only Gaussian noise is present in the data.
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Figure 3.20: Example output file from jnk2RDA.
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3.4 The prediction of the number of gross residual

electrons in the whole unit cell

The number of gross residual electrons in the unit cell can under certain assumptions

be calculated from the modulus squared of the Fourier-coefficients of the residual

density by the following equation:

egross = 1√
2π

√∑
hkl

|∆F |2 (3.13)

For a detailed derivation of this equation see appendix A.2.

3.5 Results and Discussion

3.5.1 Application of new descriptors to simulated data

3.5.1.1 Influence of the crystallographic resolution

Noise-free ideal simulated data were generated from the model for testing the pure

influence of the variation of different parameters on the residual density. Those data

are ideal and noise-free in the sense that Fobs = Fcalc for all data up to sin θ/λ =
1.14 Å-1. For this purpose, XDLSM was run to generate an xd.fco file which contains

F 2
obs and F 2

calc. The F 2
calc were extracted from the xd.fco file with the program

fco2hkl and pasted into the xd.hkl file. With those ideal F 2
obs ten cycles of a least-

squares refinement of all parameters against F 2 with no σ(I) cutoff (I > 0σ(I))
were performed with XDLSM. The final R-factor that was achieved by applying this

procedure was 0.01 %. Although the option “cycle 0” in XD should only perform a

structure factor calculation the Fobs and the Fcalc are not identical but can deviate

by 0.01, which could come from rounding errors and leads to the observed numerical

error. To investigate the dependence of df (0) on the crystallographic resolution

several data files with ideal structure factor sets were generated for different re-

solutions. This was done by calculating initial reflections with an intensity of 1.0

and a corresponding σ of 1.0 with the program invent hkl (see section 5) up to

the desired resolution. With these data XDLSM was run with the option “cycle

0” to calculate the ideal structure factors for the input multipole model. Then

the Fcalc were transferred to the xd.hkl file with fco2hkl. As the structure factors

that were used as Fobs were calculated from the Fcalc the resulting R-value from a

subsequent least-squares refinement with XDLSM (10 cycles) was not more than
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0.01 %. Residual density grid files (50× 50× 50 grid points for the whole unit cell)

were calculated with XDFOUR for the calculated resolution range and the data were

analyzed with jnk2RDA. The results are given in Table 3.1.

sin θ/λ d df (0) egross ρ0,min ρ0,max ∆ρ0

(Å-1) (Å) (e) (eÅ-3) (eÅ-3) (eÅ-3)

0.80 0.63 2.7093 0.1058 −0.00 0.00 0.00
0.90 0.56 2.7383 0.1475 −0.00 0.00 0.00
1.00 0.50 2.7647 0.1970 −0.00 0.00 0.00
1.10 0.45 2.7901 0.2986 −0.00 0.00 0.00
1.14 0.44 2.7956 0.3361 −0.00 0.00 0.00
1.20 0.42 2.8083 0.4096 −0.01 0.01 0.02
1.30 0.38 2.8193 0.5802 −0.01 0.01 0.02
1.40 0.36 2.8293 0.7970 −0.01 0.01 0.02
1.50 0.33 2.8365 1.0307 −0.02 0.01 0.03

Table 3.1: Residual density descriptors applied to simulated data for different resolutions for
S(NtBu)3.

From Table 3.1 it can be seen that df (0) increases steadily with increasing resolu-

tion and egross as well as ∆ρ0 increase, too. Although the residual density values for

the lower resolution are all smaller than ±0.01 eÅ-3 df (0) does not reach the value

of 3. Instead, even though the residual density values for higher resolution data

increase up to about ±0.02 eÅ-3 the fractal dimension df (0) reaches larger values

than with the “flatter” residual density. With increasing resolution of the data the

number of reflections increases drastically (the reflection file for 0.8 Å-1 contains 6795

entries, for 0.9 Å-1 the number is already 9654 and the file with 1.5 Å-1 comprises

38980 reflections) and thus the aforementioned numerical errors introduced by XD

accumulate. This causes the increase in the number of egross and ∆ρ0. With in-

creasing resolution it occurs more often that two neighboring residual density values

change their sign and it is the frequency of the change in sign of two neighboring

values that contributes to the fractal dimension. Thus the fractal dimension in-

creases for increasing resolution and constant grid size. This also explains why the

theoretical value of 3 for df (0) for residual density of 0 eÅ-3 all over the unit cell is

never reached. This would require all consecutive values to have opposite sign and

is quite unlikely to happen. The resolution of the experimental data was 1.14 Å-1

and the fractal dimension for this resolution was calculated to be 2.7956. This is

the maximum value that could be reached for df (0) if no noise and no model errors

were present in the data for the given experimental resolution and residual density

grid size.
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3.5.1.2 Influence of Gaussian noise

Noise in the data is unavoidable due to counting statistics, cosmological radiation,

thermal or shot noise generating unwanted currents and voltages, thus, its influ-

ence on the residual density, the fractal dimension, egross and on the flatness was

investigated. As the noise in the data can to a good approximation be assumed

to be Gaussian distributed [23], again ideal data were calculated and Gaussian ran-

dom numbers which should represent the noise were added to the ideal intensities.

The ideal data were generated for a resolution of 1.14 Å-1 (which corresponds to the

experimental resolution) according to the procedure that was already described in

the previous section. The noise (Ierrorhkl ) was added to the ideal intensities (I idealhkl )

by generating Gaussian random numbers with the polar form of the Box-Muller

transform [50] which results in the new noise-containing intensities Inoisehkl .

Inoisehkl = I idealhkl + Ierrorhkl (3.14)

The error intensity is distributed according to a Gaussian probability density func-

tion (RandomGN).

Ierrorhkl = p1

√
I idealhkl RandomGN(x) (3.15)

with

RandomGN(x) = 1√
2πσ

e−
(x−µ)2

2σ2

σ = 1

µ = 0

p1 is an adjustable noise control parameter with 0 ≤ p1 ≤ 1.

Ierrorhkl assumes positive and negative values with the same probability. Several

hkl files with different noise levels (controlled by p1, see Eq. 3.15) were created with

factor int sig (see section 5). The standard deviation of the intensities was set to 1.0.

A structure factor calculation with XDLSM (“cycle 0” with an exclusion of negative

intensities) was performed and the residual density grid files were calculated with

XDFOUR (grid size 50× 50× 50 for the whole unit cell). The results were analyzed

with jnk2RDA and are shown in Table 3.2 and Fig. 3.21.
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Figure 3.21: Ideal parabolic shape for the fractal dimension distribution in the presence of
Gaussian noise and absence of model errors.

p1 df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

0.000 2.7956 0.3361 −0.00 0.00 0.00
0.222 2.7693 8.3803 −0.12 0.12 0.24
0.444 2.7678 16.4095 −0.22 0.23 0.45
0.666 2.7663 23.8102 −0.31 0.37 0.68
0.888 2.7647 30.9192 −0.41 0.46 0.87

Table 3.2: Residual density descriptors applied to simulated data for different amount of Gaussian
noise for S(NtBu)3.

As can be seen from Table 3.2 the fractal dimension decreases with increasing

noise. It does not decrease linearly as one could expect but it drops down from

df (0) = 2.7956 to 2.7693 when noise is introduced and then remains quite stable at

this value. The decrease of df (0) when p1 is increased from 0.000 to 0.222 results

from the reduction of the space the zero residual density can fill. As a consequence

df (0) is decreased. A further increase of noise with no adjustment of the parameters

(“cycle 0” in XDLSM) only increases the values of the residual density but does

not change the spatial distribution. Thus a further increase in p1 does not decrease

df (0) with the same ratio. With more noise present in the data also the flatness

decreases as can be seen from the increase of ∆ρ0. The ratio of ρ0,min to ρ0,max is

not balanced, ρ0,max tends to be slightly larger than ρ0,min. This results from the

criterion for observed intensities which includes all structure factors with a positive
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intensity but excludes the negative ones. As the introduced noise can have positive

as well as negative values this leads to some negative intensities. The corresponding

structure factors Fobs are omitted from the calculation of the residual density and

this leads to a bias towards the positive residual density values. The gross residual

electrons for p1 = 0.222 (egross = 8.3803 e) are of about the same magnitude as for

the experiment (egross = 8.3961 e), which means that also the noise (if only Gaussian

noise is present in the data) is of about the same magnitude. Thus, the value of the

fractal dimension for p1 = 0.222 (df (0) = 2.7693) can be seen as the upper limit for

df (0) for experimental data on S(NtBu)3 if only noise remained after modeling the

data.

3.5.1.3 Analysis of the impact of change of model parameters on the residual

density

To investigate the impact of several parameters of the multipole model on the resid-

ual density ideal noise-free data from the fully refined model of S(NtBu)3 were cal-

culated for a resolution of sin θ/λ = 1.14 Å-1 and some of the multipole parameters

were changed to values deliberately deviating from the original ones. These param-

eters were the scale factor, the anisotropic displacement parameters Uij of the sulfur

atom, the expansion/contraction parameters of the spherical valence (κ) and the

aspherical deformation density (κ’) of the sulfur atom and the anomalous dispersion

values ∆f ′ and ∆f ′′ of the sulfur atom. The original values for the respective pa-

rameters are given in Table 3.3, the starting distribution of the residual density is

shown in Fig. 3.22(a) for the main plane of the molecule and in Fig. 3.22(b) for a

50× 50× 50 grid over the whole unit cell.

Ideal data were generated with the program fco2hkl (see section 5) by replacing

the F 2
obs with their corresponding F 2

calc from the final refinement and writing them

into a new reflection file xd.hkl.

For all subsequent parameter manipulations the parameters were all changed in-

dependent of each other and no refinement was performed (“cycle 0” in XDLSM).

Only positive intensities were used for the refinement (I/σ(I) > 0). Two Fourier

transformations with XDFOUR were applied to calculate one grid with 50×50 data

points in a plane containing the molecule and another grid of 50×50×50 data points

covering the complete unit cell. The figures on the left hand side show the residual

density in the plane containing the molecule and were drawn with XDGRAPH. The

figures on the right hand side show the fractal dimension distribution which was

produced with jnk2RDA on the 50× 50× 50 residual density grid for the unit cell.
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(a) XDGRAPH projection of the resid-
ual density of simulated ideal data

(b) fractal dimension distribution of the residual
density of simulated ideal data

Figure 3.22: Residual density after the multipole refinement of S(NtBu)3 on ideal, noise-free data
for sin θ/λ ≤ 1.14 Å-1; (a) gray dotted lines: zero residual density.

df (0) 2.7972
egross (e) 0.3136
ρ0,min (eÅ-3) −0.00
ρ0,max (eÅ-3) 0.00
∆ρ0 (eÅ-3) 0.00
κ 1.088207
κ′ 1.192135
Uij (Å2) U11: 0.011311 U22: 0.012366 U33: 0.024020

U12: −0.005632 U13: 0.000134 U23: −0.006742
∆f ′ 0.1246
∆f ′′ 0.1234
Scale factor k 0.100000E+01

Table 3.3: Original values of S for simulated ideal data of S(NtBu)3.

As the data are ideal in the sense that the Fobs correspond to the Fcalc the residual

density is flat and featureless as expected. df (0) is at its optimal value for the given

resolution if no noise was present and egross takes its minimum value. That the value

of egross is not equal to zero results from the fact that despite the option “cycle 0”
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XD calculates new intensities F 2
calc that can slightly deviate (by 0.01) from the F 2

obs.

The flatness is zero as the residual density values do not exceed ±0.01 eÅ-3.

Manipulation of the scale factor k

As the measured structure factors Fobs are on an arbitrary scale whereas the calcu-

lated structure factors Fcalc are calculated such that F000 corresponds to the total

number of electrons in the unit cell they must be brought on the same scale to be

comparable to each other. The scale factor k is determined during the refinement

and scales the Fcalc to the Fobs.

Fobs = k · Fcalc (3.16)

As the data are ideal, i.e. the Fobs correspond to the Fcalc, the starting value for the

scale factor is 1. An increase in the scale factor scales the Fcalc higher than they

should be and thus increases the negative residual density as Fobs − Fcalc decreases

(i.e. gets more negative). Fig. 3.23(a) shows the main plane of the molecule after

an increase in the scale factor by 1 %, in Fig. 3.23(b) the corresponding fractal

dimension distribution is shown. From both figures it can be seen that the negative

residual density increased which occurs mainly at the atomic positions.

A decrease in the scale factor results in an increase in the positive residual density

as Fobs is scaled to higher values which leads to positive values for Fobs − Fcalc. The

values for the residual density descriptors for both an increase as well as a decrease

of the scale factor are given in Table 3.4.
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(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.23: Residual density after an increase in the scale factor k in S(NtBu)3 by 1 %; (a) red
dashed lines: negative residual density, gray dotted lines: zero residual density, contour spacing:
0.1 eÅ-3.

scale factor df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−1 % 0.99000 2.5947 1.7257 −0.02 1.02 1.04
orig 1.00000 2.7972 0.3136 −0.00 0.00 0.00

+1 % 1.01000 2.5936 1.6917 −1.00 0.02 1.02

Table 3.4: Residual density descriptors for a change of the scale factor in simulated data on
S(NtBu)3.

Both a decrease and an increase in the scale factor lead to a decrease in df (0),
while the other descriptors, egross and ∆ρ0, both increase with a changed (decreased

as well as increased) scale factor. This behavior indicates an increase of features in

the residual density. Thus, the optimum is characterized by extremal values of the

descriptors.

Manipulation of anisotropic displacement parameters

The atoms in a molecule are not at fixed locations in the crystal as they are vi-

brating around their equilibrium positions. This leads to a statistically more diffuse

distribution of the electrons with respect to the mean nuclear positions. Thus, the

scattering power of the electrons decreases faster with increasing Bragg angle. This

decrease is expressed by an exponential function. If the vibration of the atoms is



3 Residual Density Analysis 52

assumed to be isotropic the following equation is valid

fiso = fe−2π2Ud∗2
(3.17)

with fiso being the corrected atomic scattering factor, f being the original atomic

scattering factor, U being the isotropic displacement parameter and d∗ being the

reciprocal of the resolution d (the distance between two lattice planes). To describe

the motion of the atoms more realistically it is necessary to assume an anisotropic

displacement

faniso = fe−2π2(U11h2a∗2+U22k2b∗2+U33l2c∗
2+2U23klb∗c∗+2U13hla∗c∗+2U12hka∗b∗) (3.18)

where faniso is the corrected atomic scattering factor, the Uij denote the anisotropic

displacement parameters, h, k and l are the Miller indices, and a∗, b∗ and c∗ are the

reciprocals of the cell axes a, b and c.

As can be seen from Eqs. 3.17 and 3.18 a larger thermal displacement parameter

leads to a reduction of the atomic form factor for d∗ > 0 and thus to a lower intensity.

So, artificially increasing the Uij decreases the Fcalc. This effect is even stronger at

higher scattering angles as the motion approaches the atoms more to each other

and virtually increases the resolution which leads to an additional phase shift. Also,

by an increase of the thermal displacement parameter the density is shifted further

away from the nucleus which decreases Fcalc and leads to a positive residual density

near the atom and to a slightly (less distinct) negative residual density in regions

further away from it.
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(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.24: Residual density after an increase in the Uij of S in S(NtBu)3 by 5 %; (a) blue solid
lines: positive residual density, red dashed lines: negative residual density, gray dotted lines: zero
residual density, contour spacing: 0.1 eÅ-3.

U11 U22 U33 U12 U13 U23

(Å2) (Å2) (Å2) (Å2) (Å2) (Å2)

−10 % 0.010180 0.011129 0.021618 −0.005069 0.000121 −0.006068
−5 % 0.010745 0.011748 0.022819 −0.005350 0.000127 −0.006405
−2 % 0.011085 0.012119 0.023540 −0.005519 0.000131 −0.006607
−1 % 0.011198 0.012242 0.023780 −0.005576 0.000133 −0.006675

orig 0.011311 0.012366 0.024020 −0.005632 0.000134 −0.006742
+1 % 0.011424 0.012490 0.024260 −0.005688 0.000135 −0.006809
+2 % 0.011537 0.012613 0.024500 −0.005745 0.000137 −0.006877
+5 % 0.011877 0.012984 0.025221 −0.005914 0.000141 −0.007079

+10 % 0.012442 0.013603 0.026422 −0.006195 0.000147 −0.007416

Table 3.5: Change of Uij of S in S(NtBu)3.
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df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−10 % 2.7891 4.3730 −6.04 1.00 7.04
−5 % 2.7894 2.1407 −2.96 0.49 3.45
−2 % 2.7930 0.8759 −1.17 0.19 1.36
−1 % 2.7962 0.5208 −0.59 0.10 0.69

orig 2.7972 0.3136 −0.00 0.00 0.00
+1 % 2.7954 0.5273 −0.09 0.58 0.67
+2 % 2.7930 0.8754 −0.19 1.15 1.34
+5 % 2.7880 2.1070 −0.45 2.84 3.29

+10 % 2.7828 4.5341 −0.87 5.49 6.36

Table 3.6: Residual density descriptors for a change of Uij of S in simulated data of S(NtBu)3.

Fig. 3.24 shows the residual density in the main plane of the molecule (Fig. 3.24(a))

and the fractal dimension distribution for the whole unit cell (Fig. 3.24(b)) for an

artificial increase in the anisotropic displacement parameters by 5 %. Fig. 3.24(a)

shows a high concentration of positive residual density at the center of the atom,

surrounded by a large amount of negative residual density, which again is surrounded

by positive residual density. This behavior repeats by moving away further from the

center of the atom.

A decrease in the Uij would have the opposite effect, namely a decrease in the

residual density near the core followed by an increase and so on.

When the anisotropic displacement parameters are changed df (0) decreases while

the other residual density descriptors are increased. This behavior reflects the in-

crease in the features. Again, the optimum value is characterized by extremal values

of the descriptors.

κ effects

κ is a radial screening parameter which considers the expansion or contraction of the

spherical valence density Pν in the multipole refinement. A value less than 1 denotes

an expansion of the density whereas a value greater than 1 models a contraction of

the spherical valence density.

ρ(r) = ρc(r) + Pνρv(κr) + ρd(κ′r) (3.19)

The value for κ of the sulfur atom in S(NtBu)3 was changed to different values
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(increased as well as decreased) and held fixed at this value (the values are shown

in Table 3.7).

The plot for the residual density in the main plane of the molecule for a decrease

in κ by 20 % is shown in Fig. 3.25(a) and the fractal dimension distribution of the

corresponding residual density in the unit cell is shown in Fig. 3.25(b).

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.25: Residual density after a decrease in the κ parameter of S in S(NtBu)3 by 20 %; (a)
blue solid lines: positive residual density, gray dotted line: zero residual density, contour spacing:
0.1 eÅ-3.

κ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.544103 2.4199 13.7135 −0.15 1.31 1.46
−20 % 0.870566 2.4840 4.9861 −0.09 0.67 0.76
−10 % 0.979386 2.5467 2.3248 −0.04 0.37 0.41
−1 % 1.077325 2.7762 0.4098 −0.01 0.04 0.05

orig 1.088207 2.7972 0.3136 −0.00 0.00 0.00
+1 % 1.099089 2.7773 0.4091 −0.04 0.01 0.05

+10 % 1.197028 2.6117 1.8206 −0.44 0.05 0.49
+20 % 1.305848 2.5418 3.7344 −0.96 0.10 1.06
+50 % 1.632311 2.5330 10.0942 −2.89 0.27 3.16

Table 3.7: Residual density descriptors for a change of κ of S in simulated data of S(NtBu)3.

When the radial screening parameter κ at the sulfur atom is decreased the density

is distributed in space more extended and diffuse. As a consequence, the concentra-

tion of the density near the position of the nucleus is decreased and the concentration

apart from the center of the atom is increased. This causes a high positive residual
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density (Fobs − Fcalc > 0) around the nucleus of the sulfur atom (blue solid lines in

Fig. 3.25(a)). The shape of the fractal dimension distribution for a wrong value of

κ turned out to be very characteristic.

It can be seen from Table 3.7 that an increase as well as a decrease in κ leads to

a decrease in df (0) and an increase in egross and ∆ρ0. This reflects the deviation of

κ from the original ideal value.

κ’ effects

κ’ is the radial expansion/contraction parameter for the deformation valence density.

ρ(r) = ρc(r) + Pνρv(κr) + ρd(κ′r) (3.20)

ρd(κ′r) =
∑
l

Rl(κ′r)
l∑

m=−l
Plmylm(r

r
) (3.21)

Just like the radial expansion/contraction parameter κ a value greater than 1 for κ’

denotes a contraction of the deformation density whereas a value less than 1 denotes

an expansion of the density. In principle each of the multipole parameters Plm can

be scaled with its own κ’ parameter but in the case of this study only one κ’ was used

for all multipoles (l values from 0 to 4). The value was varied from −50 % to +50 %

of the original value to investigate the effects originating from a wrong value of κ’

on the residual density. The results are listed in Table 3.8 and the corresponding

plots for an increase in κ’ of 50 % are shown in Fig. 3.26.
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(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.26: Residual density after an increase in κ’ of S in S(NtBu)3 by 50 %; (a) blue solid
lines: positive residual density, red dashed lines: negative residual density, gray dotted lines: zero
residual density, contour spacing: 0.1 eÅ-3.

κ′ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.596067 2.6386 1.3381 −0.20 0.24 0.44
−20 % 0.953708 2.7514 0.6623 −0.11 0.13 0.24
−10 % 1.072922 2.7637 0.5286 −0.04 0.12 0.16
−5 % 1.132528 2.7866 0.3743 −0.03 0.04 0.07

orig 1.192135 2.7972 0.3136 −0.00 0.00 0.00
+5 % 1.251742 2.7880 0.3709 −0.04 0.04 0.08

+10 % 1.311349 2.7783 0.4483 −0.08 0.07 0.15
+20 % 1.430562 2.7610 0.6115 −0.17 0.14 0.31
+50 % 1.788202 2.7303 1.1483 −0.48 0.39 0.87

Table 3.8: Residual density descriptors for a change of κ′ of S in simulated data of S(NtBu)3.

As the deformation valence density is anisotropically distributed a deviation from

the ideal value simultaneously increases the positive as well as the negative residual

density. Density is shifted from regions where it is actually present to regions where

less density should be present. An increase in κ’ of the sulfur atom decreases the

expansion of the deformation valence density corresponding to the multipoles which

describe the threefold symmetry around the sulfur atom. As these multipoles shift

density from the interbond regions to the bonding regions, an artificially increased κ’

leads to a negative residual density along the bonds and a positive residual density

between the bonds.
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The threefold symmetry in the residual density is caused by constraints that were

applied to the multipoles due to the threefold symmetry of the molecule and for the

sake of reduction of parameters.

As was expected for the change of κ’ towards values deviating from the ideal

ones df (0) decreases whereas egross and ∆ρ0 increase. The features in the residual

density have increased as the changed model does not describe the data properly,

anymore. In summary, the optimum is again characterized by extremal values of

the descriptors.

Anomalous dispersion effects

When the energy of the photons in the X-ray beam is in resonance with the contin-

uum excitation energy level of an electron in the crystal this leads to ionization by

absorption of a photon e.g. by removing an electron from the K-edge of an atom, and

subsequent emission of X-rays, e.g. Kα radiation, by electronic relaxation. Due to

the implied energy transfer, this is an inelastic scattering process called anomalous

dispersion as opposed to the elastic scattering which does not change the energy

of the photons. Anomalous dispersion causes an extra phase shift and a change in

intensity. It consists of a real part ∆f ′ which is parallel to the amplitude and an

imaginary part ∆f ′′ which is perpendicular to the amplitude. The real part adds a

positive or (which occurs more often) negative value to the atomic scattering factor

f whereas the imaginary part always causes a positive phase shift.

fanom = f + ∆f ′ + ∆f ′′ (3.22)

Figure 3.27: Change of the atom form factor when anomalous dispersion occurs.
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For a certain atom and a given wavelength of the X-rays these values are constant

and are tabulated e.g. in Table 4.2.6.8 in the International Tables Volume C [51].

The anomalous scattering of sulfur at Mo-Kα radiation is slightly positive for both

∆f ′ and ∆f ′′ and as the values are relatively small but significant a change should

have a considerable impact on the residual density.

The ∆f ′ and ∆f ′′ values were changed in the SCAT table in the xd.mas file

(DELF’ and DELF”, respectively) and a calculation of the structure factors was

performed (XDLSM with the option “cycle 0”).

Both contributions to the anomalous scattering ∆f ′ and ∆f ′′ were varied simul-

taneously and independent of each other to investigate the individual influence of

the parameters on the residual density.

Simultaneous change of ∆f ′ and ∆f ′′ For the simultaneous variation of ∆f ′ and

∆f ′′ both values were changed in the SCAT table in the xd.mas file. The resulting

values are shown in Table 3.9 and Fig. 3.28 shows the residual density in the main

plane of the molecule and the fractal dimension distribution for the whole unit cell,

respectively.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.28: Residual density after an increase in ∆f ′ and ∆f ′′ of S in S(NtBu)3 by 50 %; (a) red
dashed lines: negative residual density, gray dotted lines: zero residual density, contour spacing:
0.1 eÅ-3.
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∆f ′/∆f ′′ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.0623/0.0617 2.7628 0.8652 −0.09 1.16 1.25
−20 % 0.0997/0.0987 2.7832 0.4593 −0.04 0.46 0.50
−10 % 0.1121/0.1111 2.7921 0.3633 −0.02 0.23 0.25

orig 0.1246/0.1234 2.7972 0.3136 −0.00 0.00 0.00
+10 % 0.1371/0.1357 2.7937 0.3645 −0.23 0.02 0.25
+20 % 0.1495/0.1481 2.7854 0.4606 −0.46 0.04 0.50
+50 % 0.1869/0.1851 2.7675 0.8785 −1.16 0.09 1.25

Table 3.9: Residual density descriptors for a change of ∆f ′ and ∆f ′′ of S in simulated data of
S(NtBu)3.

An increase in ∆f ′ and ∆f ′′ of S increases the atomic structure factor of the

sulfur atoms. This leads to an increase of Fcalc and thus an increase in the negative

residual density. This can be seen from Fig. 3.28 as negative residual density appears

near the nucleus of the sulfur atom. The residual density descriptors also reflect the

wrong description of the data. As can be seen (Table 3.9), both an increase and a

decrease in ∆f ′ and ∆f ′′ decrease the fractal dimension df (0), whereas egross and

∆ρ0 are increased.

Change of ∆f ′ To investigate the real and the imaginary part of the anomalous

dispersion separately both values were varied independent of each other.

For investigating the pure influence of the real part only ∆f ′ was varied in the

SFAC section of the xd.mas file while ∆f ′′ was kept at its original value.

Fig. 3.29(a) shows the residual density distribution in the main plane of the

molecule for an increase in ∆f ′ about 50 % and Fig. 3.29(b) shows the respective

fractal dimension distribution for the whole unit cell. In Table 3.10 the results of

variations in ∆f ′ from −50 % to +50 % are given.
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(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.29: Residual density after an increase in ∆f ′ of S in S(NtBu)3 by 50 %; (a) red dashed
lines: negative residual density, gray dotted lines: zero residual density, contour spacing: 0.1 eÅ-3.

∆f ′/∆f ′′ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.0623/0.1234 2.7735 0.7480 −0.09 1.13 1.22
−20 % 0.0997/0.1234 2.7881 0.4304 −0.04 0.45 0.49
−10 % 0.1121/0.1234 2.7934 0.3553 −0.02 0.23 0.25

orig 0.1246/0.1234 2.7972 0.3136 −0.00 0.00 0.00
+10 % 0.1371/0.1234 2.7956 0.3562 −0.23 0.02 0.25
+20 % 0.1495/0.1234 2.7894 0.4334 −0.45 0.03 0.48
+50 % 0.1869/0.1234 2.7675 0.8785 −1.16 0.09 1.25

Table 3.10: Residual density descriptors for a change of ∆f ′ of S in simulated data of S(NtBu)3.

Fig. 3.28 is reminiscent of Fig. 3.29 and so are Tables 3.9 and 3.10. This suggests

that ∆f ′ is the dominating factor.

Change of ∆f ′′ For the sole variation of ∆f ′′ the corresponding entry in the SFAC

section in the xd.mas file was varied whereas ∆f ′ was kept fixed. Fig. 3.30(a)

shows the residual density plot for the main plane of the molecule and Fig. 3.30(b)

shows the respective fractal dimension distribution. In Table 3.11 all values for the

variation of ∆f ′′ from −50 % to +50 % are listed.
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(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.30: Residual density after an increase in ∆f ′′ of S in S(NtBu)3 by 50 %; (a) gray dotted
lines: zero residual density.

∆f ′/∆f ′′ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.1246/0.0617 2.7774 0.4047 −0.01 0.02 0.03
−20 % 0.1246/0.0987 2.7917 0.3324 −0.00 0.01 0.01
−10 % 0.1246/0.1111 2.7956 0.3186 −0.00 0.01 0.01

orig 0.1246/0.1234 2.7972 0.3136 −0.00 0.00 0.00
+10 % 0.1246/0.1357 2.7962 0.3194 −0.01 0.00 0.01
+20 % 0.1246/0.1481 2.7926 0.3359 −0.01 0.00 0.01
+50 % 0.1246/0.1851 2.7758 0.4392 −0.04 0.01 0.05

Table 3.11: Residual density descriptors for a change of ∆f ′′ of S in simulated data of S(NtBu)3.

The plots in Fig. 3.30 and the values in Table 3.11 confirm the principal influence

of the real part of the anomalous dispersion ∆f ′ on the residual density.

Although in general both parameters ∆f ′ and ∆f ′′ affect both the amplitude and

the phase of the structure factors, and both the amplitude and the phase contribute

to the residual density, only the change of ∆f ′ had a significant influence on the

residual density.

For simultaneous as well as independent changes in ∆f ′ and ∆f ′′ it was observed

that all residual density descriptors behave in an expected way, i.e. df (0) decreases

whereas egross and ∆ρ0 increase. They perfectly account for the deterioration in the

parameters due to the manipulated values.
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3.5.2 Application of new descriptors to experimental data

3.5.2.1 Progression of a multipole refinement

During a multipole refinement several parameters are introduced which describe the

distribution of the electron density more adequately than a conventional Indepen-

dent Atom Model (IAM). Normally, these parameters are added and refined in a

stepwise manner because otherwise convergence might not be reached when some

parameters are strongly correlated. The parameters to be refined are the coordinates

and thermal motion parameters as well as the radial extension/contraction param-

eters κ and κ’ for the spherical valence density and the deformation density and

the monopole- and multipole population parameters Pν and Plm, respectively. To

investigate the influence of the individual parameters on the residual density it was

analyzed after each step of the multipole refinement of S(NtBu)3
[22] (see Fig. 3.31).

Data of the fully refined IAM were used and the individual instruction files (xd.mas)

for the multipole refinement were kindly provided by Dr. Dirk Leusser.

Figure 3.31: Lewis diagrams of the most dominant mesomeric structures of S(NtBu)3.

For each refinement step a least-squares refinement against F 2 with XDLSM was

performed with ten cycles or until convergence was reached. Only data with I >

3σ(I) were used for the refinement. The residual density grid was calculated with

XDFOUR for a 50×50×50 grid over the whole unit cell and no resolution cutoff was

applied for the Fourier transformation. The fractal dimension df (0) for the starting

model was 2.6681, egross was 11.5432 e and the flatness ∆ρ0 was 1.29 eÅ-3. Eight

main refinement steps were applied. The results of the residual density analysis are

illustrated in Fig. 3.32 and listed in Table 3.12.

In the first step the scale factor as well as the coordinates of all atoms, the

anisotropic displacement parameters for the non-hydrogen (non-H) atoms and the

isotropic displacement parameters for the H atoms were refined for the IAM model

from the SHELX refinement with conventional scattering factors (IAM). From the

fractal dimension distribution it can be seen that there are still many errors which

influence the negative as well as the positive residual density. In the IAM the atoms
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are considered uncharged and spherical, therefore, neither charge transfer nor re-

distribution of electrons due to chemical bonding are accounted for. This causes

shoulders in the positive residual density region (Fobs > Fcalc due to bonding and

non-bonded electrons which are not described by the model) as well as in the neg-

ative residual density region (Fobs < Fcalc because all electrons around the atoms

were placed close to the nuclei).

In the next step a high order (sin θ/λ > 0.6 Å-1) refinement of the scale factor,

the coordinates and the vibrational parameters of the non-hydrogen atoms was per-

formed (xyz + Uij non-H (sin θ/λ > 0.6 Å-1)). As the information about the inner

electrons is contained mainly in the high resolution reflections [52] the coordinates

can be determined more exactly when the resolution is restricted to high order data

(high-pass filtering). On the other hand this also means that less information about

the bonding electrons is contained in the high order data which is the reason that no

features in the residual density distribution are seen and df (0) increased to 2.7669,

egross decreased to 4.9590 e and ∆ρ0 decreased to 0.45 eÅ-3. As will be seen in sec-

tion 3.5.2.3 a truncation in the high order data leads to an improvement in the

residual density descriptors for two independent reasons: the contribution to the

error resulting from the difference Fobs − Fcalc is effectively zero for an omitted ob-

servation. This holds not only true for the truncation of the high order data but also

for the low order data as was the case here. Furthermore, when the number of model

parameters is kept fixed and the number of observations is reduced, the flexibility of

the model has effectively increased. This leads to an additional improvement if the

model parameters are adjusted. Both effects improve the agreement between model

and data. There is, however, one important difference in the truncation of high

order data and low order data: the first acts like a low-pass filter, i.e. only the low

frequency components pass and the high frequency components are omitted. This

leads to a smoother distribution of the residual density, averaging out the details

and emphasizing the main features. As this decreases the number of zero-crossings

of the residual density the fractal dimension df (0) is also decreased. For the high-

pass filter, i.e. when the low order data are omitted, the opposite is the case: the

main features in the residual density are omitted whereas the details are empha-

sized. This leads to an increase of zero-crossings of the residual density and df (0)
increases. Therefore, df (0) increases for high-pass filtered data and decreases for

low-pass filtered data, whereas egross and ∆ρ0 decrease only under data truncation.

This can be seen from the comparison of row 2 in Table 3.12 and Table 3.22.

In a subsequent refinement step the scale factor, the monopole populations Pν

for all atoms and the expansion/contraction parameters κ for the spherical valence
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density of the non-hydrogen atoms were refined against all data with I > 3σ(I) for

the whole resolution range (Pν + κ non-H). The refinement leads to a pronounced

reduction of the monopole populations for few atoms (the sulfur atom and the carbon

atoms) and to a slight increase for many atoms (nitrogen and hydrogen atoms).

This step reduces mainly the negative residual density as the monopoles and κ only

account for the amount and the radial distribution of the valence electrons but not

for their angular distribution. Thus, the polarization of the pseudo atoms is still not

described properly, however, charge transfer and a change in the radial functions is

accounted for. Compared to the first refinement step, the fractal dimension decreases

and the gross residual electrons increase, so both indicate a deterioration of the model

(df (0) = 2.6111, egross = 13.4689 e), whereas the flatness increases (∆ρ0 = 0.85 eÅ-3)

and so indicates an improvement of the model. These apparently contradicting

results reflect both the model improvement (charge transfer and the radial functions)

and deficiency (the lack of allowing for non-spherical changes).

In consequence, taking asphericities into account by introducing multipole pop-

ulation parameters Plm and a refinement together with the scale factor and the

monopole population parameters Pν for all atoms, the distribution of the residual

density shows a clear improvement of the model. There are no distinct shoulders in

the positive nor in the negative residual density region anymore (Pν + Plm all). The

residual density descriptors also indicate a progress in the model (df (0) = 2.6592,

egross = 9.0711 e and ∆ρ0 = 0.71 eÅ-3). The distribution of the electron density in

the bonds and of the non-bonding electrons is now modeled much more adequately.

The refinement of the scale factor and the expansion/contraction parameter κ’

of the aspherical deformation density of the non-hydrogen atoms (κ’ non-H) does

not result in a great improvement of the model and the residual density descriptors

(df (0) = 2.6596, egross = 8.9324 e and ∆ρ0 = 0.71 eÅ-3).

In the next step the scale factor and the coordinates of all atoms as well as the

anisotropic displacement parameters for the non-hydrogen atoms and the isotropic

displacement parameters for hydrogen atoms were refined. The hydrogen atoms

were shifted along the C–H vectors to distances derived from neutron diffraction

experiments (C–H distance of 1.085 Å [53]) (xyz + Uij non-H + RESET). The flatness

increases to ∆ρ0 = 0.67 eÅ-3, but as the description of the monopoles and multipoles

of the hydrogen atoms does not fit to the changed coordinates anymore, a shoulder in

the positive residual density region appears again and a deterioration of the model is

indicated by the decrease in the fractal dimension (df (0) = 2.6133) and the increase

in the gross residual electrons (egross = 12.1039 e).
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When the scale factor, the monopole- and the multipole population parameters for

all atoms and the expansion/contraction parameters κ for the non-hydrogen atoms

are refined (Pν + Plm + κ), the model is given the possibility to account for charge

transfer and asphericities around all atoms simultaneously, resulting in a distinct

reduction of the residual density. The fractal dimension increases to df (0) = 2.6918,

the gross residual electrons decrease to egross = 7.3794 e and the flatness is increased

to ∆ρ0 = 0.61 eÅ-3.

The final refinement of the scale factor, Pν , Plm, the expansion/contraction pa-

rameters for the spherical valence (κ) and the aspherical deformation density (κ’)

of the non-hydrogen atoms (Pν + Plm + κ + κ’) leads to the highest value for the

fractal dimension (df (0) = 2.6922), the lowest value for the gross residual electrons

(egross = 7.1992 e) and the best value for the flatness with ∆ρ0 = 0.57 eÅ-3 (apart

from the second step in which Fourier truncation is involved).

In total, the fractal dimension increased from 2.6681 to 2.6922, the gross resid-

ual electrons decreased from 11.5432 e to 7.1992 e and the flatness increased from

1.29 eÅ-3 to 0.57 eÅ-3. The improvement in the residual density can also be seen in

Fig. 3.33 which represents the residual density in a plane containing the heaviest

atoms in the molecule before (Fig. 3.33(a)) and after (Fig. 3.33(b)) the multipole re-

finement. This clearly shows that the multipole model describes the electron density

more adequate than the spherical Independent Atom Model. However, the shape

of the fractal dimension distribution is not parabolic, which should be the case if

the remaining errors came from Gaussian noise in the data, only. This deviation in

the shape from the ideal case results from a disorder in the molecule by rotation

about 60° around the sulfur atom which was too small to be modeled but big enough

to show up in the residual density (the occupation factor of the second position is

assumed to be less than 1 %).
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• IAM (Starting model)
• xyz + Uij non-H (sin θ/λ > 0.6 Å-1)
• Pν + κ non-H
• Pν + Plm all
• κ’ non-H
• xyz + Uij non-H + RESET
• Pν + Plm + κ

• Pν + Plm + κ + κ’ (Final model)

Figure 3.32: Fractal dimension distribution for the individual steps of a multipole refinement on
S(NtBu)3.

df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

IAM 2.6681 11.5432 −0.74 0.55 1.29
xyz + Uij non-H (sin θ/λ > 0.6 Å-1) 2.7669 4.9590 −0.19 0.26 0.45
Pν + κ non-H 2.6111 13.4689 −0.33 0.52 0.85
Pν + Plm all 2.6592 9.0711 −0.31 0.40 0.71
κ’ non-H 2.6596 8.9324 −0.29 0.42 0.71
xyz + Uij non-H + RESET 2.6133 12.1039 −0.25 0.42 0.67
Pν + κ + Plm 2.6918 7.3794 −0.26 0.35 0.61
Pν + Plm + κ + κ’ 2.6922 7.1992 −0.24 0.33 0.57

Table 3.12: Residual density descriptors applied to the individual steps of a multipole refinement
on S(NtBu)3.

Fig. 3.33 shows the residual densities around the sulfur atom in S(NtBu)3 before

the IAM refinement (Fig. 3.33(a)) and after the multipole refinement (Fig. 3.33(b)).

The green and the olive green lines in Fig. 3.32 show the fractal dimension distribu-

tion for the residual densities for the whole unit cell corresponding to the residual

densities in Figs. 3.33(a) and 3.33(b), respectively.
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(a) XDGRAPH projection of the residual den-
sity in the molecular plane after an IAM re-
finement

(b) XDGRAPH projection of the residual den-
sity in the molecular plane after a multipole
refinement

Figure 3.33: Residual density before and after the multipole refinement for S(NtBu)3; blue solid
lines: positive residual density, red dashed lines: negative residual density, gray dotted lines: zero
residual density, contour spacing 0.1 eÅ-3.

3.5.2.2 Analysis of the impact of a change of model parameters on the

residual density

For a comparison of the effect of the change of multipole parameters on ideal sim-

ulated and on experimental data, the same parameters as in section 3.5.1.3 were

changed for the fully refined multipole model of S(NtBu)3. For the simulated data

the only source of error was the respective manipulated parameter, thus the change

in the residual density is caused only by this one error. For experimental data,

however, not all the errors are known and thus it cannot be predicted how exactly

the residual density is influenced due to a possible interference of several sources of

error.

The respective parameters were again the scale factor k, the anisotropic displace-

ment parameters Uij of the sulfur atom, the expansion/contraction parameters of

the spherical valence (κ) and the aspherical deformation density (κ’) of the sulfur

atom and the anomalous dispersion values ∆f ′ and ∆f ′′ of the sulfur atom. The

original values for the respective parameters are given in Table 3.13. The starting

distribution of the residual density is shown in Fig. 3.34(a) for the main plane of the

molecule and in Fig. 3.34(b) for a 50× 50× 50 grid over the whole unit cell.

For all subsequent parameter manipulations the parameters were again all changed

independent of each other and no refinement was performed (“cycle 0” in XDLSM).

Two Fourier transformations with XDFOUR were applied to calculate one grid with
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50 × 50 data points in a plane around the molecule and one grid of 50 × 50 ×
50 data points covering the complete unit cell. The figures on the left hand side

show the residual density in the plane containing the molecule and were drawn

with XDGRAPH. The figures on the right hand side show the fractal dimension

distributions which were produced with jnk2RDA on the 50 × 50 × 50 residual

density grid for the whole unit cell.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.34: Residual density after the multipole refinement of S(NtBu)3; (a) blue solid lines:
positive residual density, red dashed lines: negative residual density, gray dotted lines: zero residual
density, contour spacing: 0.1 eÅ-3.

df (0) 2.7363
egross (e) 8.3961
ρ0,min (eÅ-3) −0.32
ρ0,max (eÅ-3) 0.37
∆ρ0 (eÅ-3) 0.69
κ 1.088409
κ′ 1.188396
Uij (Å2) U11: 0.011310 U22: 0.012365 U33: 0.024019

U12: −0.005632 U13: 0.000134 U23: −0.006741
∆f ′ 0.1246
∆f ′′ 0.1234
scale factor k1 0.188459E+01
scale factor k2 0.209647E+01

Table 3.13: Original values of S in S(NtBu)3; the grid resolution was 50× 50× 50.
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Manipulation of the scale factor k

As the data for S(NtBu)3 were collected at two different detector positions (-31°
and -80° in 2θ, respectively), the refinement was performed in two different batches.

The low order batch contains the data with sin θ/λ < 0.625 Å-1 while the high order

batch describes data with sin θ/λ > 0.625 Å-1 [22]. This procedure results in two

different scale factors (k1 and k2) which in this study were changed simultaneously.

Fig. 3.35(a) shows the main plane of the molecule after an increase in the two scale

factors of 1 %, in Fig. 3.35(b) the corresponding fractal dimension distribution is

shown. From both figures it can be seen that the negative residual density increased

which occures mainly at the atomic positions.

A decrease in the scale factor(s) results in an increase in the positive residual

density as Fobs is scaled to higher values which leads to positive values for Fobs−Fcalc.
The values for the residual density descriptors for both an increase as well as a

decrease of the scale factor are given in Table 3.14.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.35: Residual density after an increase in the scale factors k1 and k2 in S(NtBu)3 by
1 %; (a) blue solid lines: positive residual density, red dashed lines: negative residual density, gray
dotted lines: zero residual density, contour spacing: 0.1 eÅ-3.

k1/k2 df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−1 % 1.86574/2.07551 2.7326 8.8613 −0.28 1.31 1.59
orig 1.88459/2.09647 2.7363 8.3961 −0.32 0.37 0.69

+1 % 1.90344/2.11743 2.7342 8.5977 −0.75 0.35 1.10

Table 3.14: Residual density descriptors for a change of both scale factors for experimental data
of S(NtBu)3.
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Both a decrease and an increase in the scale factor lead to a decrease in df (0),
while the other descriptors, egross and ∆ρ0, both increase with a changed (decreased

as well as increased) scale factor. This behavior indicates an increase of features

in the residual density. Just like in the case of simulated data the optimum is

characterized by extremal values of the descriptors.

Manipulation of anisotropic displacement parameters

The anisotropic displacement parameters Uij of the sulfur atom were changed in the

range from −50 % to +50 % (see Table 3.15). Fig. 3.36 shows the residual density

in the plane of the molecule (Fig. 3.36(a)) and the fractal dimension distribution

for the whole unit cell (Fig. 3.36(b)) for an artificial increase in the anisotropic dis-

placement parameters of 5 %. Fig. 3.36(a) shows a high concentration of positive

residual density at the center of the atom, surrounded by a large amount of nega-

tive residual density, which again is surrounded by positive residual density. This

behavior corresponds exactly to the behavior of the simulated data for a change in

Uij (see section 3.5.1.3).

A decrease in the Uij has the opposite effect on the residual density and the

respective descriptors, as can be seen from Table 3.16.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.36: Residual density after an increase in the Uij of S in S(NtBu)3 by 5 %; (a) blue solid
lines: positive residual density, red dashed lines: negative residual density, gray dotted lines: zero
residual density, contour spacing: 0.1 eÅ-3.
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U11 U22 U33 U12 U13 U23

(Å2) (Å2) (Å2) (Å2) (Å2) (Å2)

−10 % 0.010179 0.011129 0.021617 −0.005069 0.000121 −0.006067
−5 % 0.010745 0.011747 0.022818 −0.005350 0.000127 −0.006404
−1 % 0.011197 0.012241 0.023779 −0.005576 0.000133 −0.006674

orig 0.011310 0.012365 0.024019 −0.005632 0.000134 −0.006741
+1 % 0.011423 0.012489 0.024259 −0.005688 0.000135 −0.006808
+5 % 0.011876 0.012983 0.025220 −0.005914 0.000141 −0.007078

+10 % 0.012441 0.013602 0.026421 −0.006195 0.000147 −0.007415

Table 3.15: Change of Uij of S in S(NtBu)3.

df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−10 % 2.7443 9.6512 −5.55 0.88 6.43
−5 % 2.7377 8.6671 −2.57 0.49 3.06
−1 % 2.7364 8.3773 −0.39 0.38 0.77

orig 2.7363 8.3961 −0.32 0.37 0.69
+1 % 2.7378 8.4636 −0.32 0.84 1.16
+5 % 2.7432 9.0837 −0.62 3.02 3.64

+10 % 2.7499 10.3525 −1.01 5.61 6.62

Table 3.16: Residual density descriptors for a change of Uij of S in experimental data of S(NtBu)3.

When the anisotropic displacement parameters are changed all of the residual

density descriptors are increased. For df (0) it can be said that for small changes

in the residual density (small changes in the Uij) the introduction of new features

increases the total amount of zero residual density which increases df (0) although no

improvement in the model was achieved. This demonstrates that for experimental

data, where there is no full control over the errors that affect the residual density,

not the absolute value of df (0) is a measure of the features of the residual density,

but the relative change to its optimum value: df (0) assumes an extremal value for

the optimal model, may it be a maximum or a minimum.

That df (0) sometimes increases with a model of minor quality is in complete

analogy to other measures of quality like the agreement factors, as sometimes a

lower R-factor corresponds to a physically meaningless model. As an example, the

displacement parameters may account for the disordered part of a structure. In this

case it is in the responsibility of the crystallographer to reject the model despite

its lower R-value. In much the same way, df (0) just quantifies the total amount of
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zero residual density regardless of its origin from a “natural” source (like noise) or

from model artifacts. The source of the residual density, however, can be deduced

from the shape of the residual density distribution. Furthermore, very often small

changes in df (0) are accompanied by large changes in egross and ∆ρ0.

The increase in egross and ∆ρ0 shows that the anisotropic displacement parameters

had been refined to their ideal values. Obviously, an error of about 5 % in Uij is

a massive model error, which would not arise naturally in a high resolution X-ray

study.

κ effects

The value for κ of the sulfur atom in S(NtBu)3 was changed to different values

(increased as well as decreased) and held fixed at this value (values shown in Ta-

ble 3.17). A structure factor calculation with XDLSM with the option “cycle 0” was

performed and a 50×50×50 residual density grid for the whole unit cell was created

with XDFOUR and was analyzed with jnk2RDA. The plot for the residual density

in the main plane of the molecule for a decrease in κ by 20 % is shown in Fig. 3.37(a)

and the fractal dimension distribution of the corresponding residual density in the

unit cell is shown in Fig. 3.37(b).

κ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.544205 2.6223 16.8137 −0.30 1.56 1.86
−20 % 0.870727 2.7082 10.4451 −0.32 0.81 1.13
−10 % 0.979568 2.7273 9.0473 −0.33 0.55 0.88
−1 % 1.077525 2.7361 8.4040 −0.32 0.37 0.69

orig 1.088409 2.7363 8.3961 −0.32 0.37 0.69
+1 % 1.099293 2.7363 8.4065 −0.32 0.37 0.69

+10 % 1.197250 2.7320 8.9755 −0.60 0.37 0.97
+20 % 1.306091 2.7216 9.9671 −1.07 0.36 1.43
+50 % 1.632614 2.6779 13.9731 −2.87 0.37 3.24

Table 3.17: Residual density descriptors for a change of κ of S in experimental data of S(NtBu)3.
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(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.37: Residual density after a decrease in κ of S in S(NtBu)3 by 20 %; (a) blue solid
lines: positive residual density, red dashed lines: negative residual density, gray dotted lines: zero
residual density, contour spacing: 0.1 eÅ-3.

The more extended and diffuse distribution of density causes a high positive resid-

ual density (Fobs−Fcalc > 0) around the nucleus of the sulfur atom (blue solid lines

in Fig. 3.37(b)) and a slightly negative residual density (Fobs − Fcalc < 0) further

away from it (red dashed lines in Fig. 3.37(b)). The shape of the fractal dimension

distribution for a wrong value of κ turned out to be very characteristic.

In the case of the κ parameter it can be seen from Table 3.17 that an increase as

well as a decrease in κ leads to a decrease in df (0) and an increase in egross and ∆ρ0.

This indicates that the original κ has already been at its optimal value.

κ’ effects

Like in the study on simulated data only one value for κ’ was used for all the

multipoles (l going from 0 to 4). The value was varied from −50 % to +50 % of the

original value to investigate the effects originating from a wrong value of κ’ on the

residual density. The results are listed in Table 3.18 and the corresponding plots for

an increase in κ’ of 50 % are shown in Fig. 3.38 for a particular example.
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κ′ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.594198 2.7339 8.6774 −0.33 0.38 0.71
−20 % 0.950717 2.7355 8.4761 −0.32 0.37 0.69
−10 % 1.069556 2.7361 8.4236 −0.32 0.37 0.69
−5 % 1.128976 2.7364 8.4057 −0.32 0.37 0.69

orig 1.188396 2.7363 8.3961 −0.32 0.37 0.69
+5 % 1.247816 2.7369 8.3966 −0.32 0.37 0.69

+10 % 1.307236 2.7373 8.4028 −0.32 0.37 0.69
+20 % 1.426075 2.7371 8.4381 −0.32 0.37 0.69
+50 % 1.782594 2.7348 8.6348 −0.46 0.49 0.95

Table 3.18: Residual density descriptors for a change of κ′ of S in experimental data of S(NtBu)3.

Again, the threefold symmetry in the residual density plot (Fig. 3.38) reflects

the threefold symmetry that was applied for constraining the multipole population

parameters Plm.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.38: Residual density after an increase in κ’ of S in S(NtBu)3 by 50 %; (a) blue solid
lines: positive residual density, red dashed lines: negative residual density, gray dotted lines: zero
residual density, contour spacing: 0.1 eÅ-3.

In the case of a change of κ’ the fractal dimension df (0) does not give a clear hint

what value of κ’ is the best one. df (0) increases slightly for increased values for κ’

(at least up to 10 % increase). The highest value for df (0) is at +10 %. The flatness
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∆ρ0 remains unchanged for an extremely wide range of κ’ values. The gross residual

electrons egross have their minimum at the original value.

Anomalous dispersion effects

The ∆f ′ and ∆f ′′ values were changed in the SCAT table in the xd.mas file (DELF’

and DELF”, respectively) and a calculation of the structure factors was performed

(XDLSM with the option “cycle 0”).

Both contributions to the anomalous scattering ∆f ′ and ∆f ′′ were varied simul-

taneously and independent of each other to investigate the individual influence of

the parameters on the residual density.

Simultaneous variation in ∆f ′ and ∆f ′′ For a simultaneous change in ∆f ′ and

∆f ′′ the respective values were changed in the SCAT section in the xd.mas file.

Table 3.19 shows the results for changes from −50 % to +50 %. Fig. 3.39 shows

the residual density distribution in the plane containing the molecule and the cor-

responding fractal dimension distribution for an increase in ∆f ′ and ∆f ′′ by 50 %.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.39: Residual density after an increase in ∆f ′ and ∆f ′′ of S in S(NtBu)3 by 50 %; (a)
blue solid lines: positive residual density, red dashed lines: negative residual density, gray dotted
lines: zero residual density, contour spacing: 0.1 eÅ-3.
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∆f ′/∆f ′′ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.0623/0.0617 2.7375 8.6605 −0.33 1.41 1.74
−20 % 0.0997/0.0987 2.7366 8.4933 −0.32 0.73 1.05
−10 % 0.1121/0.1111 2.7363 8.4410 −0.32 0.51 0.83

orig 0.1246/0.1234 2.7363 8.3961 −0.32 0.37 0.69
+10 % 0.1371/0.1357 2.7365 8.3595 −0.32 0.37 0.69
+20 % 0.1495/0.1481 2.7365 8.3336 −0.39 0.37 0.76
+50 % 0.1869/0.1851 2.7358 8.2911 −0.84 0.37 1.21

Table 3.19: Residual density descriptors for a change of ∆f ′ and ∆f ′′ of S in experimental data
of S(NtBu)3.

Change in ∆f ′ Table 3.20 shows the results for an individual change in ∆f ′ from

−50 % to +50 %. Fig. 3.40 shows the residual density distribution in the plane

containing the molecule and the corresponding fractal dimension distribution for an

increase in ∆f ′ by 50 %.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.40: Residual density after an increase in ∆f ′ of S in S(NtBu)3 by 50 %; (a) blue solid
lines: positive residual density, red dashed lines: negative residual density, gray dotted lines: zero
residual density, contour spacing: 0.1 eÅ-3.
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∆f ′/∆f ′′ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.0623/0.1234 2.7374 8.5641 −0.32 1.39 1.71
−20 % 0.0997/0.1234 2.7363 8.4543 −0.32 0.72 1.04
−10 % 0.1121/0.1234 2.7364 8.4218 −0.32 0.50 0.82

orig 0.1246/0.1234 2.7363 8.3961 −0.32 0.37 0.69
+10 % 0.1371/0.1234 2.7366 8.3779 −0.32 0.37 0.69
+20 % 0.1495/0.1234 2.7365 8.3690 −0.39 0.37 0.76
+50 % 0.1869/0.1234 2.7360 8.3698 −0.81 0.37 1.18

Table 3.20: Residual density descriptors for a change of ∆f ′ of S in experimental data of
S(NtBu)3.

Change in ∆f ′′ Table 3.21 shows the results for an individual change in ∆f ′′ from

−50 % to +50 %. Fig. 3.41 shows the residual density distribution in the plane

containing the molecule and the corresponding fractal dimension distribution for an

increase in ∆f ′′ by 50 %.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.41: Residual density after an increase in ∆f ′′ of S in S(NtBu)3 by 50 %; (a) blue solid
lines: positive residual density, red dashed lines: negative residual density, gray dotted lines: zero
residual density, contour spacing: 0.1 eÅ-3.
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∆f ′/∆f ′′ df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

−50 % 0.1246/0.0617 2.7364 8.4817 −0.32 0.37 0.69
−20 % 0.1246/0.0987 2.7363 8.4330 −0.32 0.37 0.69
−10 % 0.1246/0.1111 2.7364 8.4148 −0.32 0.37 0.69

orig 0.1246/0.1234 2.7363 8.3961 −0.32 0.37 0.69
+10 % 0.1246/0.1357 2.7365 8.3772 −0.32 0.37 0.69
+20 % 0.1246/0.1481 2.7364 8.3578 −0.32 0.37 0.69
+50 % 0.1246/0.1851 2.7362 8.3002 −0.32 0.37 0.69

Table 3.21: Residual density descriptors for a change of ∆f ′′ of S in experimental data of
S(NtBu)3.

For simultaneous as well as independent changes in ∆f ′ and ∆f ′′ it was observed

that all residual density descriptors, df (0), egross and ∆ρ0, increased when ∆f ′

and ∆f ′′, respectively, were decreased (see Table 3.19). For an increase of the

anomalous dispersion of S up to 20 % df (0) increases slightly, but at higher values it

decreases again, whereas egross decreases steadily when ∆f ′ and ∆f ′′ are increased.

As expected, the flatness ∆ρ0 decreases for increasing as well as for decreasing values

for ∆f ′ and ∆f ′′. The increase in df (0) for decreasing ∆f ′ and ∆f ′′ as well as the

decreasing value of egross for increasing ∆f ′ and ∆f ′′ are quite unexpected results

and are somewhat counterintuitive. The number of egross can only decrease when

the average residual density decreases (see Eq. 3.8).

A closer look at the residual density file shows that this is caused by an increase in

frequency of very small residual density values (±0.02 eÅ-3 around 0) and a decrease

of small values (± 0.3 to 0.7 eÅ-3 around 0). As there is no total control of the sources

of error in the experiment and as different sources of error may interfere, a change in

a subset of parameters might partially compensate for the non-modeled, unknown

or unaccounted sources of error, thereby generating changes in the residual density,

which are characteristic of the source of error instead of the changed parameters.

As can be seen from Table 3.9 the simulated data show the expected results: for

increasing or decreasing ∆f ′ and ∆f ′′ the fractal dimension df (0) decreases which

indicates a deterioration of the model, whereas the gross residual electrons and ∆ρ0

increase. One significant difference between the measured and the simulated data is

a tiny, not modeled disorder.

It is remarkable that each of the parameter manipulations results in a character-

istic shape in the fractal dimension distribution. This is a big advantage compared

to ∆ρ0 which cannot give any information about the source of error but only the
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width of the residual density distribution. Thus, df (0) is much more appropriate to

describe model inadequacies and features than ∆ρ0.

3.5.2.3 Influence of the truncation of the experimental resolution

To investigate the electronic situation in a molecule an X-ray experiment is per-

formed at high resolution to analyze fine details in the atomic properties. Unfortu-

nately, the signal to noise ratio decreases with increasing resolution. Furthermore,

the number of reflections increases rapidly with increasing resolution (as a rule of

thumb: 80/d3 unique reflections per non-hydrogen atom for organic centrosymmetric

structures and 40/d3 reflections for non-centrosymmetric structures, respectively).

This leads to residual densities being more and more affected by noise with increas-

ing resolution. Thus, it has become common habit to employ the whole resolution

for the refinement, but to truncate the data for creating the Fourier maps. As a con-

sequence, not only the high-frequency noise is filtered out but presumably also the

discrepancy between the model and the high-order data. To determine the influence

of the truncation in resolution (on the residual density) several residual density grids

of the fully refined model for S(NtBu)3 with resolution cutoffs at 1.14 Å-1, 1.00 Å-1

and 0.80 Å-1 were generated and analyzed with jnk2RDA. The grids were calculated

with XDFOUR for the Fourier backtransformation in the XDFOUR section in the

xd.mas file. The original resolution of the data set is 1.14 Å-1. Figs. 3.42 and 3.43

show residual density plots for the truncation at 1.00 Å-1 and 0.80 Å-1, respectively.

Table 3.22 shows the corresponding values for the residual density descriptors.
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(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.42: Residual density after application of a resolution cutoff for the Fourier synthesis at
(sin θ/λ)max = 1.00 Å-1 in S(NtBu)3; for a comparison with the untruncated data see Fig. 3.34; (a)
blue solid lines: positive residual density, red dashed lines: negative residual density, gray dotted
lines: zero residual density, contour spacing: 0.1 eÅ-3.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.43: Residual density after application of a cutoff for the Fourier synthesis at
(sin θ/λ)max = 0.80 Å-1 in S(NtBu)3; (a) blue solid lines: positive residual density, red dashed
lines: negative residual density, gray dotted lines: zero residual density, contour spacing: 0.1 eÅ-3.
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cutoff at resolution (sin θ/λ)max df (0) egross ρ0,min ρ0,max ∆ρ0

(Å-1) (e) (eÅ-3) (eÅ-3) (eÅ-3)

no cutoff (1.14) 2.7366 8.3851 −0.32 0.37 0.69
1.00 2.6989 7.2521 −0.23 0.32 0.55
0.80 2.6543 6.2673 −0.15 0.21 0.36

Table 3.22: Applied cutoff in the resolution for the Fourier grid in S(NtBu)3.

The residual density distribution calculated from a truncated resolution at 1.00 Å-1

(Fig. 3.42) shows significantly decreased features (compared with Fig. 3.34). egross

decreases from 8.3851 e to 7.2521 e and ∆ρ0 decreases from 0.69 eÅ-3 to 0.55 eÅ-3.

The features in the main plane of the molecule (Fig. 3.42) get much smoother and

the width of the fractal dimension distribution gets smaller. But on the other hand

the fractal dimension df (0) decreases from 2.7366 to 2.6989. As the model param-

eters were not adjusted this exclusively reflects the truncation of the high-order

components. Compared to an increase in df (0) of 0.0241 from the IAM to the fully

refined multipole model (see Table 3.12) the loss in df (0) due to Fourier truncation

is substantial and even overcompensates the gain from the refinement. Also, that

the gross residual electrons decrease without a change in the model shows that this

is only a phony improvement.

The differences in the absolute values for df (0) in Tables 3.12 and 3.22 result from

the fact that no I/σ(I) cutoff was applied here. A refinement against data with

I > 3σ(I) is comparable to a refinement against data truncated in the resolution, as

the I/σ(I) ratio decreases for increasing resolution. As was shown in section 3.5.1.1

this leads to lower values for df (0).
For a truncation at even lower resolution (0.80 Å-1) the features disappear almost

completely (compare Figs. 3.34 and 3.43). egross decreases to 6.2643 e and ∆ρ0 to

0.36 eÅ-3. But again the fractal dimension df (0) decreases to 2.6543 which shows

that no improvement in the model was achieved.

For consistency reasons the residual density should always be described for the

same resolution as the model and its corresponding parameters. It is inconsistent

to refine a density model against the whole data range and to show residual density

plots based on a truncated data set.

3.5.2.4 Extinction effects

Extinction occurs for crystals of high quality and when the mosaicity of the crystal is

relatively low. Then the scattered beam is less divergent than it would be with high
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mosaicity and can serve itself as a primary beam which can cause further diffraction

effects. Extinction is observed especially at low angles for strong reflections. There

are two different extinction effects, primary and secondary extinction. Primary

extinction means that the diffracted beam itself can serve as a primary beam for

further diffraction (Fig. 3.44(a)). Secondary extinction means that the incident beam

is weakened by strong diffraction at the first lattice planes such that only a weakened

beam reaches deeper planes. This reflection thus loses intensity already before being

diffracted by all planes (Fig. 3.44(b)). Secondary extinction is assumed to play the

major role but as the two forms of extinction cannot be distinguished easily both

are corrected simultaneously with an empirical extinction correction factor χ. In

SHELXL this is done by

Fcalc(corr) = k
Fcalc

(1 + 0.001 · χ · F 2
calc · λ3/ sin 2θ) 1

4
(3.23)

with k = scale factor, χ = extinction coefficient, λ = wavelength, θ = diffraction

angle.

With Cu radiation extinction occurs more often because of the higher intensity yield.

Shock-cooling of the crystal (e.g. to 100 K) reduces the probability of extinction

as the mosaicity is increased.

(a) primary extinction (b) secondary extinction

Figure 3.44: Illustration of primary and secondary extinction.

To investigate the effects of extinction on the residual density two “*.hkl” files

from the IAM refinement of bullvalene trisepoxide (C10H10O3) [54] were generated

with SHELXL: one which was corrected for extinction and another one which was

not. The option “list 6” together with “exti” in SHELXL generates a “*.fcf” file with

corrected intensities. Without giving the option “exti”, “list 6” produces a “*.fcf”
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file with no correction for extinction. The two reflection files were converted into

a SHELX format “*.hkl” file and imported into XD with XDINI. A least-squares

refinement against F 2 with ten cycles of XDLSM (MODEL -2 2 1 0) was performed

for each of the two test sets. XDFOUR was used to generate residual density grid

files for the whole unit cell for subsequent analysis with jnk2RDA.

Figure 3.45: Fractal dimension distribution of the residual density of bullvalene trisepoxide
without extinction correction.
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Figure 3.46: Fractal dimension distribution of the residual density of bullvalene trisepoxide with
extinction correction.

correction for extinction df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

off 2.4129 30.2552 −0.36 0.29 0.65
on 2.5228 11.0321 −0.16 0.12 0.28

Table 3.23: Residual-density descriptors applied to experimental data for bullvalene trisepoxide
to study the effects of the extinction correction as implemented in SHELXL.

As can be seen from Figs. 3.45 and 3.46 and Table 3.23 the extinction correction

has a pronounced effect on the residual density although the extinction coefficient χ

for bullvalene trisepoxide was refined by SHELXL to be only 0.04935(240). The gross

residual electrons decrease from 30.2552 e to 11.0321 e, the fractal dimension df (0)
increases from 2.4129 to 2.5228 and the residual density gets much flatter (decrease

in ∆ρ0 from 0.65 eÅ-3 to 0.28 eÅ-3). No such distinct change in the descriptors was

observed for the adjustment of any other single parameter nor for the total difference

between IAM and MM.

3.5.2.5 Grid size effects

According to Eq. 3.5 the fractal dimension is only defined in the limit ε→ 0. This

definition, however, refers to mathematical fractals, only, which exist in unlimited
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detail. In contrast, natural fractals like coastlines or the residual density distribution

exist only on limited scales. For example, the shortest possible ruler for measuring

the length of the coastline is an atom, which has a finite size. In analogy, the

experimentally accessible details of the residual density distribution are limited by

the experimental resolution. In consequence, it is not necessary to calculate df (0)
for unlimited spatial resolution but it is not a priori clear which spatial resolution

is sufficient. Therefore, the influence of the size of the residual density grid on the

values for df was examined. However, there are limits as the grid files which are

written by XDFOUR become quite large for increasing grid size. A 50 × 50 × 50
grid has about 2 MB, a 100 × 100 × 100 grid has a size of about 17 MB and a

1000×1000×1000 grid has already a size of 17 GB. For a typical unit cell of a small

molecule structure of size a = 10 Å, b = 10 Å, c = 10 Å the 1000× 1000× 1000 grid

corresponds to a distance of 0.01 Å between the grid points, which is far from being

an infinitesimal small grid spacing but on the other hand it is only a small fraction

of the resolution d.

Again, the fully refined model (refined against experimental data) of S(NtBu)3

was used for the test of the grid size effect. Six grids were generated with XDFOUR

with 503, 1003, 2003, 5003, 7503 and 10003 grid points, respectively. As can be seen

from Fig. 3.47 and Table 3.24 with increasing grid size df (0) decreases steadily while

∆ρ0 increases. This is in analogy to the decreasing fractal dimension of the coastline

of Britain with decreasing edge length in the box-counting algorithm (compare with

Fig. 3.15 and the related text): more features in the coastline were observed with

decreasing size of the ruler. The same is valid for the residual density: with increasing

resolution of the grid the calculated values describe the features in greater detail than

a coarse grid with averaged values of the residual density. As more features appear

with a finer grid the minimum and maximum values in the residual density (ρ0,min,

ρ0,max) can be determined more reliably. This is the reason why ∆ρ0 increases from

0.69 eÅ-3 for the 50×50×50 grid to 0.78 eÅ-3 for the 1000×1000×1000 grid. df (0)
decreases from 2.7367 for the 50× 50× 50 grid to 2.4445 for the 1000× 1000× 1000
grid. The gross residual electrons are virtually independent on the grid size. They

remain stable for different grid sizes with a value of 8.38 e. As the value for ∆ρ0 does

not change anymore for an increase in grid size from the 500× 500× 500 grid to the

1000 × 1000 × 1000 grid (∆ρ0 = 0.78 eÅ-3) the residual density values seem to be

converged up to the second decimal place. But the fractal dimension df (0) is still not

converged even for the 1000×1000×1000 grid. As the file with 10003 grid points has

already a size of 17 GB it is not very efficient to calculate even larger grids. In view

of the definition of the fractal dimension (Eq. 3.5) the slow convergence is expected
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due to the logarithm involved. Moreover, the residual density values themselves

still change with the grid size which prevents a faster convergence. However, for a

comparison of different models only the relative changes are of importance. Finally,

for a limited resolution in reciprocal space it seems inappropriate to enforce the limit

ε→ 0 in real space.

• 50 × 50 × 50
• 100 × 100 × 100
• 200 × 200 × 200
• 500 × 500 × 500
• 750 × 750 × 750

• 1000 × 1000 × 1000

Figure 3.47: Fractal dimension for different grid sizes; the first three grids and the last three
grids each form a block; within the first block ρ0 converges, whereas within the second block the
convergence of df (0) becomes visible.

nx = ny = nz df (0) egross ρ0,min(df (ρ0) = 2) ρ0,max(df (ρ0) = 2) ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3) (eÅ-3) (eÅ-3)

50 2.7367 8.3849 −0.0708 0.0761 −0.32 0.37 0.69
100 2.6472 8.3794 −0.0741 0.0796 −0.34 0.39 0.73
200 2.5703 8.3794 −0.0751 0.0807 −0.35 0.41 0.76
500 2.4913 8.3794 −0.0754 0.0809 −0.36 0.42 0.78
750 2.4628 8.3794 −0.0754 0.0810 −0.36 0.42 0.78

1000 2.4445 8.3794 −0.0754 0.0810 −0.36 0.42 0.78

Table 3.24: Residual density descriptors for a change of the grid size in S(NtBu)3.

An interesting detail of Fig. 3.47 is that the values of ρ0,min and ρ0,max for

df (ρ0) = 2 remain surprisingly stable for the different grid sizes. They deviate

by less than 0.005 eÅ-3 (Table 3.24) although df (0) and ∆ρ0 change considerably.

By the averaging process taking place in the calculation of the residual density for

spatially limited subvolumes of the unit cell, the frequency of small residual density

values is overestimated whereas the frequency of large residual density values is un-

derestimated. This leads to the characteristic behavior in ∆ρ0 and in df (0). The
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residual density values for which df (ρ0) = 2 is valid mark the border between under-

and overestimation.

3.5.2.6 Grid resolution effects

For the calculation of the residual density grid with XDFOUR the user is free in the

choice of the size of the grid. The number of grid points along the axes of the desired

plane or cuboid can be chosen independent of each other. As was seen in the previous

section, for a given set of structure factors Fobs and Fcalc the value of df (0) decreases

for increasing grid size. In other words: df (0) is always overestimated for finite ε.

For a given fixed number of the grid size N(ε) = nx × ny × nz, different choices

of nx, ny and nz can be made leading to the same grid size N(ε) but representing

different spatial resolutions. Therefore, the combination of nx, ny and nz leading

to the lowest value for df (0) is the most efficient choice. Thus, several grids were

calculated with XDFOUR with values for nx, ny and nz being in proportion to the

cell axes a, b and c. For this study a different structure than S(NtBu)3 was chosen

because the cell parameters of S(NtBu)3 were not very different from each other

(a = 9.3228 Å, b = 9.3455 Å, c = 10.6675 Å) which makes it difficult to see an

effect of the permutation of nx, ny and nz. Octamethylcyclotetrasilazane [c-{Me2Si-

N(H)}4] [55] (OMCTS) crystallizes in the monoclinic space group P2/c with the cell

constants a = 11.5216 Å, b = 6.3499 Å, c = 22.6282 Å, β = 90.474°. Residual density

grids with varying values for nx, ny and nz were calculated with XDFOUR for the

fully refined multipole model of OMCTS. In proportion to the cell constants the

chosen values were x = 115, y = 63 and z = 226. Besides the grids with different

sizes in nx, ny and nz also the grids with equal sizes were calculated.

nx, ny, nz N(ε) df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

zzz 11 543 176 2.5368 29.1488 −0.25 0.26 0.51
xyz 1 637 370 2.5722 29.1485 −0.25 0.25 0.50
yxz 1 637 370 2.5902 29.1488 −0.24 0.26 0.50
zyx 1 637 370 2.5983 29.1522 −0.25 0.25 0.50
xxx 1 520 875 2.5989 29.1511 −0.25 0.25 0.50
zxy 1 637 370 2.6230 29.1379 −0.24 0.24 0.48
yzx 1 637 370 2.6249 29.1489 −0.24 0.25 0.49
xzy 1 637 370 2.6330 29.1385 −0.24 0.24 0.48
yyy 250 047 2.6457 29.1411 −0.24 0.24 0.48

Table 3.25: Residual density descriptors for a varying grid resolution for OMCTS.
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Figure 3.48: Fractal dimension df (0) for a variation of the grid resolution; the grid sizes nx, ny, nz
are varied proportional to the cell axes a, b, c.

A comparison of the three different grids with identical numbers for nx, ny and nz

(nx = ny = nz = 63, 115 and 226, respectively) shows the same result as was seen

in the previous section, namely the decrease of df (0) for increasing N(ε) (2.6457 for

nx = ny = nz = 63 and 2.5368 for nx = ny = nz = 226) accompanied by an increase

in ∆ρ0 (0.48 eÅ-3 for nx = ny = nz = 63 and 0.51 eÅ-3 for nx = ny = nz = 226). But

the difference in overall grid points and thus the difference in computing time and

memory space is quite large (11 543 176 grid points and a file size of 201 MB for the

2263 grid and 250 047 grid points and a file size of 4.37 MB for the 633 grid). The

calculation and analysis of a grid with a spatial resolution in proportion to the unit

cell axes turned out to be much more efficient. The grid with nx = 115, ny = 63

and nz = 226 is a good compromise between computing efforts and convergence

requirement: it gives the second smallest value for the fractal dimension in total and

the smallest value for the grids with constant N(ε) (df (0) = 2.5722) and has only a

file size of 28.6 MB with a moderate number of grid points of N(ε) = 1 637 370.

3.5.3 Residual density descriptors at the density model and

parameter optimum

A topic that has to be dealt with is the expected values of the residual density

descriptors at the optimum. From a phenomenological point of view, the descriptors

in most cases assumed extremal values for the optimum parameters in the application
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to theoretical and experimental data. This tendency is particularly distinct in the

application to theoretical data, whereas in the application to experimental data it is

less obvious. As mentioned earlier, the experimental data are influenced by errors,

not all of which might be known or even controlled. One unconsidered error in the

experimental data is e.g. the small disorder. The interference of different sources of

error can lead to unexpected values for the residual density descriptors.

It is expected that df (0) assumes its maximum or minimum for the parameter

optimum, depending on whether the source of error acting effectively leads to the

artificial construction or destruction of zero residual density values. Most of the

parameters from the multipole model belong to the first group. Therefore, as a rule

of thumb, it can be stated that a maximum value in df (0) is expected to characterize

the optimum multipole model.

egross is expected to be at its minimum value for the model and parameter optimum

in exactly the same sense in which the usual agreement factors are expected to be at

a minimum. The comparison with the agreement factors is vital, because it is well

known that the R-value can be lowered artificially at the expense of the physical

or chemical meaning of the model or by e.g. data truncation. The same holds for

egross.

The only exception for egross being at its minimum is in the simultaneous and

separate variation of ∆f ′ and ∆f ′′ (for the sulfur atom) for experimental data,

exclusively. It is assumed that this exceptional behavior possibly can be traced

back to the non-modeled disorder or to further sources of error. This assumption is

suggested by the expected behavior for theoretical data, in which full control of all

sources of error can be anticipated.

3.5.4 Analysis of the refinement of a disordered and

non-centrosymmetric structure

Usually, it is very difficult to refine a disordered structure with multipole meth-

ods because of the high correlation between parameters such as positional and

thermal motion parameters with the monopole- and multipole population param-

eters. These problems occur especially when the disorder is such that the two

(or more) disordered entities share the same positional parameters, as is the case

in N -phenylpyrrole. N -phenylpyrrole H4C4N(C6H5) (PP) (Fig. 3.49) crystallizes

in the non-centrosymmetric orthorhombic space group P212121 with the cell axes

a = 5.6405 Å, b = 7.5996 Å, c = 17.6532 Å. There is one molecule in the asymmetric

unit which is disordered by a 2-fold rotation axis. The occupation factors for the

two disordered positions were 90 % and 10 %, respectively.
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Figure 3.49: N -phenylpyrrole (PP) with the two disordered positions of the molecule. The
main domain (occupation factor 90 %) is plotted in black, the minor domain (10 %) in white. The
anisotropic displacement parameters are shown on the 50 % probability level.

The static disorder in PP was refined with multipole methods [56]. To prove the

reliability of the disorder modeling the residual densities for both models (the one

which does not take the disorder into account and the one which does) were analyzed

with jnk2RDA. For this purpose two residual density grids were calculated with

XDFOUR. Fig. 3.50 shows the results for the model where only the main domain

was refined.

(a) XDGRAPH projection of the residual
density in the molecular plane

(b) fractal dimension distribution of the resid-
ual density for the whole unit cell

Figure 3.50: Residual density of PP without refinement of the disorder; (a) blue solid lines:
positive residual density, red dashed lines: negative residual density, gray dotted lines: zero residual
density, contour spacing: 0.1 eÅ-3.

In Fig. 3.50(a) the residual density in the plane of the molecule is shown. The grid

was calculated in a plane of 10 Å · 6 Å with a resolution of 100× 60 grid points. In

Fig. 3.50(b) the corresponding fractal dimension distribution of the residual density

for the whole unit cell (with a resolution of 56 × 76 × 176 grid points) is plotted.

It can be clearly seen from both figures that the residual density is far from being
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flat and featureless. The unmodeled positions for the second domain are clearly

visible as positive residual density (blue solid lines) between the atomic positions of

the modeled domain and as negative residual density (red dashed lines) around the

atomic positions. The positive residual density at the atomic positions of the first

domain come from the anisotropic displacement parameters that were determined

as too high due to the second position of the molecule that was not refined. The

positive residual density of the second domain is compensated for by increased values

for Uij. This behavior was already described in section 3.5.1.3 and can also be seen

from the fractal dimension distribution. The unmodeled second domain of PP shows

up as a shoulder in the positive residual density region, whereas the main domain,

which is refined with a too high occupation factor, contributes to the shoulder in

the negative residual density region. The fractal dimension df (0) is 2.5770, egross is

16.0809 e and ∆ρ0 is 0.98 eÅ-3.

refinement of disorder df (0) egross ρ0,min ρ0,max ∆ρ0

(e) (eÅ-3) (eÅ-3) (eÅ-3)

no 2.5770 16.0809 −0.34 0.64 0.98
yes 2.6286 6.7356 −0.12 0.15 0.27

Table 3.26: Residual density descriptors for N -phenylpyrrole with and without the refinement
of the disorder.

(a) XDGRAPH projection of the residual
density in the molecular plane

(b) fractal dimension distribution of the resid-
ual density for the whole unit cell

Figure 3.51: Residual density of PP with refinement of the disorder; (a) blue solid lines: positive
residual density, gray dotted lines: zero residual density, contour spacing: 0.1 eÅ-3.

In Fig. 3.51 the residual density in the plane containing the two domains of PP

(Fig. 3.51(a)) and the corresponding residual density distribution for the whole unit
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cell (Fig. 3.51(b)) are shown. The fractal dimension df (0) increased to 2.6286,

egross decreased to 6.7356 e and ∆ρ0 decreased to 0.27 eÅ-3. The residual density

descriptors show that the features in the residual density decreased not only in the

region around the molecule but in the whole unit cell (see also Table 3.26). The

refinement of the second disordered position perfectly describes the electron density

in the unit cell. No distinct features are present in the residual density anymore.

Although the refinement of disordered molecules with multipole methods is usually

avoided due to possible correlations in the parameters sometimes no other crystal

is available and the crystallographer has no other choice. In this case, however, the

residual density analysis showed that it is possible to refine a disordered structure

successfully with the multipole method.

3.5.5 Correction for negative intensity observations

One of the several problems that can occur with an X-ray measurement is the pres-

ence of negative intensity observations. This happens when the background is mea-

sured to be larger than the signal, e.g. due to counting statistics. This is of particular

importance for weak reflections. For the refinement these reflections are normally

omitted or set to zero which introduces an error. Usually, the number of negative

intensity observations becomes larger for higher resolution.

French and Wilson [23] have introduced a method to overcome this problem for

protein structures. Due to the large unit cells, there is usually an abundance of

reflections even at low resolution for protein structures. This renders them ideal for

statistical approaches. French and Wilson compare the actual intensity distribution

from the measurement including negative intensity observations to an idealized non-

negative intensity distribution, which was determined once for the centrosymmetric

and for the non-centrosymmetric case [57]. Several assumptions, such as homoatomic-

ity and independence as well as uniformity of atomic density distributions, underly

the derivation of the idealized distributions. The space group is not taken into ac-

count. By employing Bayesian statistics the measured intensities are corrected for

the prior knowledge that the intensity must be non-negative and that its probability

density distribution should be reminiscent of the idealized distribution. In this cor-

rection procedure, the negative intensity observations are shifted to positive values,

whereas observations of strong positive reflections remain almost unchanged. As a

result a reflection file with non-negative intensity observations only is obtained.

For high resolution structures where data are available up to a resolution exceed-

ing the atomic resolution by far (e.g. d = 0.5 Å) an algorithm was developed and

implemented into a program called histomatch fco (see section 5) which uses the his-
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togrammatic distribution of the observed and the calculated structure factors Fobs

and Fcalc for the adjustment of negative intensity observations.

Histogram matching is a method widely used in protein crystallography for den-

sity modification and phase improvement [58]. In histogram matching the frequency

distribution of the electron density versus the electron density values is plotted in a

histogram. Surprisingly, the shape of this distribution depends only on the resolution

and the temperature factor but not on the content of the unit cell. Thus, the distri-

bution of the electron density resulting from phases calculated from e.g. a Multiple

Isomorphous Replacement (MIR) experiment can be fitted with an electron density

distribution calculated e.g. from atomic positions from any other protein molecule

if only the molecular region is taken [59] or from a protein structure with similar

size of the unit cell and a similar number of atoms [60] provided the resolution is the

same. The fitted electron density is more exact than the original one and so are the

resulting phases.

In the program histomatch fco the observed intensities F 2
obs are sorted in descend-

ing order and are stored together with their corresponding hkl indices. The calcu-

lated intensities F 2
calc are sorted accordingly. Then, the F 2

obs, which comprise negative

intensity observations, are substituted by the F 2
calc, which are only positive, whereas

the set of hkl is kept fixed. The distribution of the intensities remains the same,

i.e. the largest F 2
obs is replaced by the largest F 2

calc, the second largest F 2
obs with the

second largest F 2
calc, and so on. It might be expected that this results just in a

replacement of the F 2
obs by their corresponding F 2

calc and thus simply equates to an

exchange of the measured parameters by the calculated ones. But it turned out that

only about 1 % of the F 2
obs are replaced by their corresponding F 2

calc.

The intensity file of S(NtBu)3 has been corrected for negative intensities with the

program histomatch fco. The number of F 2
obs that have been replaced by their F 2

calc

(the ones with the same hkl indices) was 108, which is 0.59 %, only. A subsequent re-

finement against the new data was performed with XDLSM (with the option “sigobs

0”).
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(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.52: Residual density before application of the intensity correction; (a) blue solid lines:
positive residual density, red dashed lines: negative residual density, gray dotted lines: zero residual
density, contour spacing: 0.1 eÅ-3.

(a) XDGRAPH projection of the resid-
ual density in the molecular plane

(b) fractal dimension distribution of the residual
density for the whole unit cell

Figure 3.53: Residual density after application of the intensity correction; (a) blue solid lines:
positive residual density, red dashed lines: negative residual density, gray dotted lines: zero residual
density, contour spacing: 0.1 eÅ-3.

The R2-value decreased from 2.32 % to 2.10 %, the number of data used in the

refinement increased from 17520 to 18250 as there were no negative intensities

anymore. df (0) increased from 2.7366 to 2.7423, egross decreased from 8.3851 e

to 8.2609 e and ∆ρ0 remained the same (0.71 eÅ-3). Interestingly, the features in

the residual density did not disappear. This can be seen mainly from Fig. 3.53 as

the positive residual density that stems from the unrefined disorder (the blue lines
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between each pair of nitrogen atoms, generated by rotation of 60° about the sul-

fur atom). The comparison with the residual density before the histogram matching

(Fig. 3.52) shows that the presence and even the intensity of the features have almost

not changed.
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4 Labyrinthopeptin A2

4.1 Introduction

Since the discovery of penicillin in 1928 by Alexander Fleming antibiotics have gained

much importance in the medical area. With their help many infectious illnesses could

be defeated and without antibiotics many people would have died and still would die

from bacterial diseases. Antibiotics are metabolites produced primarily by bacteria

or fungi to inhibit the growth of other microorganisms or even to kill them. This is

a natural defense against competitors for food and nutrients. Antibiotics can act in

three different modes of action: bacteriostatic, i.e. they prevent the growth of the

bacteria, bactericidal, i.e. the bacteria are killed, or bacteriolytic, i.e. the bacteria

are killed and their cell wall is destroyed. Antibiotics are among the most widely

prescribed drugs. From about 8000 up to date known antibiotics only 1 % are used

in medical treatment. Antibiotics are very diverse in their structures and thus also

in their mechanisms to defeat bacteria. Some of the most important antibiotics

are β-lactams, glycopeptides, polyketides or polypeptide antibiotics. There are also

some classes of antibiotics that are prescribed less often as they are used as reserve

if other antibiotics fail. This is due to the big problem of resistance that arises

with antibiotics. Bacteria are able to develop mechanisms to avoid the knock-out by

antibiotics. There are different forms of resistance, for example the modification of

the target, i.e. the antibiotic does not recognize it anymore, or modification of the

antibiotic itself such that it cannot act anymore, or posttranslational modification

of the target protein, i.e. the strength of the binding of the antibiotic is reduced.

Some bacteria are also able to produce efflux proteins that pump the antibiotic out

of the cell.

The many existing different bacteria constantly develop new strategies to make

the antibiotics useless. Bacteria have actually already developed resistance against

the reserve antibiotics, therefore, it is of major importance to handle the use of the

antibiotics with care and not to use them too casually. It is not just useless but even

dangerous to prescribe antibiotics against viral diseases as antibiotics are ineffective



4 Labyrinthopeptin A2 98

against viruses. Especially in hospitals the rapid spread of resistant bacteria is an

enormous problem and the patients cannot get the help they need. Besides a careful

usage of antibiotics the persistent development and research for new antibiotics

is of considerable importance. Antibiotics with new modes of action or several

different modes of action have a big advantage compared to antibiotics with only

one mechanism. [61–63]

4.2 Lantibiotics [64–69]

Lantibiotics (lanthionine containing antibiotics) are small antimicrobial peptides

(< 5 kDa) [66, 67] that are produced by Gram positive bacteria and the antibacte-

rial activity of which is directed towards other Gram positive bacteria. They are

ribosomally synthesized and posttranslationally modified by enzymes. They con-

tain unusual amino acids such as lanthionine (Lan) or methyllanthionine (MeLan)

(Fig. 4.1) or dehydrated amino acids.

(a) (2S,6R)-lanthionine (Lan) (b) (2S,3S,6R)-3-methyllanthionine (MeLan)

Figure 4.1: Lanthionine and methyllanthionine.

The peptide sequence which is encoded by the gene is called prelantibiotic. It

consists of an N-terminal leader sequence and a C-terminal prolantibiotic which

undergoes several modifications. The amino acids serine and cysteine are precursors

for lanthionine while threonine and cysteine are precursors for methyllanthionine.

Serine and threonine are dehydrated enzymatically to form the α, β-unsaturated

amino acids 2,3-didehydroalanine (Dha) and 2,3-didehydrobutyrine (Dhb) (Fig. 4.2),

respectively.
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(a) 2,3-didehydroalanine (Dha) (b) (Z)-2,3-didehydrobutyrine (Dhb)

Figure 4.2: The α, β-unsaturated amino acids Dha and Dhb.

Those unsaturated amino acids can be modified further when neighboring cys-

teines add with their thiol groups stereospecifically to the double bond of those

unsaturated amino acids to form monosulfide bonds which introduce intramolecular

rings to the peptide. The resulting thioether amino acids Lan and MeLan are in

meso (DL) configuration which means that a D-alanine residue is introduced from

the L-serine (see Fig. 4.3). Lanthionine was first isolated by Horn et al. in 1941

when they treated wool with sodium carbonate [70]. They chose the name lanthion-

ine because it was isolated from wool and contains sulfur.
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Figure 4.3: Formation of the thioether amino acids Lan and MeLan from Ser and Thr, respec-
tively.

After the modification process the leader sequence is removed by a protease and

the biologically active peptide is secreted. Interestingly, Ser and Thr are also found

in the leader peptide but these residues are not modified, whereas Cys is only found

in the prolantibiotic [65, 67,69]. The function of the leader is not clarified yet, but sev-

eral roles are suggested: protection of the producing strain from the antimicrobial

activity by keeping the peptide inactive, assisting in transport of the modifying en-

zymes towards their target and acting as a recognition sequence for the biosynthetic

enzymes.

About 50 lantibiotics are known to date [69]. They are divided into three different

classes depending on their shape and biosynthetic pathway. Class I lantibiotics, such
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as nisin and subtilin, are modified by two enzymes, which are called LanB and LanC.

LanB is responsible for the dehydration of Thr and Ser, whereas the role of LanC

is the thioether formation. Class II lantibiotics only have one modifying enzyme

called LanM. Members of this class are e.g. cinnamycin and mersacidin. Class I

lantibiotics are more linear than class II lantibiotics. Class III lantibiotics have no

significant antibiotic activity but have other modes of action. [71]

One advantage of the antibiotic activity of lantibiotics is the diversity in their effec-

tiveness. The mode of action of lantibiotics is permeabilization of the cell membrane

by pore formation on one hand and binding to lipid II, a biosynthetic intermediate

responsible for the formation and stabilization of the cell wall, on the other hand.

By binding to lipid II lantibiotics inhibit the cross-linking of lipid II which disturbs

the formation of a stable cell wall.

One of the best studied lantibiotics is nisin, produced by the Gram positive bac-

terium Lactococcus lactis and used as food-preservative. Although it is already used

for more than 40 years now, no resistances against it have been detected, yet [69],

which might be due to the diversity of the mode of action of this lantibiotic.

Some other important lantibiotics are epidermin, lacticin 481, cinnamycin or mer-

sacidin.

Labyrinthopeptin A2 (from the greek word labyrinthos) is a lantibiotic which is

produced by the Gram positive strain Actinomadura namibiensis [72]. It consists of

18 amino acids and is strongly hydrophobic. It has two lanthionines and a disulfide

bridge between two cysteines which form five rings (A, B, A’, B’, C) (see Fig. 4.4).

It also has an unchanged threonine which was not modified enzymatically. The

leader sequence was found to consist of 20 amino acids. A2 has been characterized

as a class III lantibiotic because of its structural features and as it shows only slight

antibacterial but more distinct analgetic activity. [73, 74]
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Figure 4.4: Structure of labyrinthopeptin A2 with the denotation of the rings.

4.3 Crystallization

4.3.1 Basics and principles in crystallization of macromolecules

Crystallization of a protein depends on many different factors. Variation of pH, con-

centration and kind of buffer, concentration and kind of salt, temperature, dielectric

constant, protein concentration and many more can decide on whether crystals grow

or not. A phase diagram as shown in Fig. 4.5 can visualize the influence of e.g. the

salt concentration and the protein concentration on formation of crystals. In this

diagram, the concentration of salt and protein are varied, while all other parame-

ters are kept constant. The area of undersaturation is separated by the solubility

curve from the area of supersaturation. If the concentration of the protein is so low

that the solution is undersaturated, the protein cannot crystallize. Supersaturation

is essential for the formation of crystals. The supersaturation zone can be subdi-

vided into three zones. In the precipitation zone, the protein will precipitate as an

amorphous solid, but not in crystalline form. In the nucleation zone, the protein

nucleates in form of many small crystals. It can happen that saturation is reached

but no crystal big enough for an X-ray diffraction measurement has formed. One

has then the possibility to put a small crystal in a protein solution with a con-

centration that corresponds to conditions of the metastable zone, as in this zone

crystallization may only happen when e.g. seeds of small crystals are introduced to

this solution. Crystals can grow under these conditions slow enough to form few big

crystals suitable for X-ray diffraction without nucleation of new crystals. [75]
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Figure 4.5: Schematic phase diagram for the crystallization of a protein.

4.3.1.1 Hanging drop vapor diffusion method

By the hanging drop vapor diffusion method the peptide solution is mixed in a drop

on a siliconized cover slide with the reagent solution, which consists of salt, buffer,

precipitant or other additives. The drop is equilibrated against a solution containing

the reagents. As the concentration of the reagents in the drop is much lower than

in the solution an equilibrium is reached by evaporation of water which moves from

the drop into the solution (see Fig. 4.6). This leads to a supersaturation of the

protein in the drop, which hopefully results in crystallization of the protein. This

method can only be used if the drop is not too big as otherwise it would drop into

the reagent solution instead of being equilibrated.

Figure 4.6: Hanging drop vapor diffusion crystallization.

4.3.1.2 Sitting drop vapor diffusion method

The sitting drop vapor diffusion method is similar to the hanging drop vapor diffusion

method. Here again, a solution containing the peptide and the reagent solution are
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equilibrated against each other (Fig. 4.7). As the drop is sitting on a bridge this

method is suitable especially for large drops and drops containing reagents with a

low surface tension.

Figure 4.7: Sitting drop vapor diffusion crystallization.

4.3.1.3 Cryocrystallography

When the measurement is performed at room temperature there are several problems

that can occur. One is that radiation damage can destroy the crystal before the

measurement can be finished successfully. Radiation damage occurs by primary

interaction between the beam and the molecules in the crystal. The energy of the

beam produces heat and thus increases the thermal vibration of the molecules, and

this energy is also sufficient to break certain bonds in the molecules. Radicals that

are produced in this way can then further diffuse through the crystal and cause

even more damage. [76, 77] When the crystal is cooled down to 100 K the problem of

radiation damage is less distinct. But as proteins often contain a lot of water care

must be taken when the crystal is cooled down. It must be avoided that water freezes

to ice and thus cracks the crystal. This can be achieved by soaking the crystal in

an anti-freeze agent (cryoprotectant) and flash-cooling it down to 100 K. [78, 79] The

anti-freeze agent prevents the water from freezing to ordered ice but water forms

a vitreous glass, instead. When the molecules in the protein crystal are frozen

vibration is reduced which allows the crystal to diffract to higher resolution. Also

the degree of disorder (at least of dynamic disorder) is reduced at lower temperatures.

4.3.2 Crystallization conditions for A2

Crystallization conditions for A2 were found by screening with the Jena Bioscience [80]

JBScreen Classic 8 when the conditions of the two neighboring wells D4 (60 % w/v

ethanol, 1.5 % w/v PEG 6000, 0.05 M sodium acetate) and D5 (60 % w/v ethanol,

0.10 M sodium chloride) were accidentally mixed. As the concentration of the result-

ing solution was not exactly known for this reason, a 24 well plate was set up with

http://www.jenabioscience.com
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varying conditions for ethanol, PEG 6000, sodium acetate and sodium chloride. The

composition which yielded the best crystals was a reservoir mixture of 60 % ethanol,

0.75 % PEG 6000, 0.025 M sodium acetate and 0.05 M sodium chloride. For the

crystallization the peptide was dissolved in 0.02 M TRIS of pH 8.2 with a concentra-

tion of 7 mg/ml. For the drop 2µl of peptide were mixed with 2µl of the reservoir

solution. Crystals grew within one week to a size of 0.125 × 0.075 × 0.025 mm3 at

room temperature by using the sitting drop vapor diffusion method. A crystal of

A2 is shown in Fig. 4.8. The crystals were soaked for a few seconds in a solution

containing 15 % 2,3-butanediol as a cryoprotectant. Subsequently, the crystal was

flash frozen in liquid nitrogen and transferred quickly to the diffractometer.

Figure 4.8: Crystal of labyrinthopeptin A2.

X-ray data were collected on a Bruker three circle diffractometer equipped with

a rotating anode with mirror-monochromated Cu-Kα radiation (λ = 1.54178 Å).

Intensities were measured with a SMART 6000 detector to a resolution of 1 Å.

4.4 Data processing and structure

Integration, absorption correction and scaling of the data was performed with the

programs SAINT [81] and SADABS [82]. The space group was determined with the

program XPREP [83]. The structure was solved by direct methods with the program

SHELXD [84]. The initial assignment of the non-hydrogen atoms of A2 was done

by hand with the program XP [85]. All subsequent comparison of the model (σA-

weighted 2Fobs−Fcalc map [86]) with the measured density and the difference density

(σA-weighted Fobs−Fcalc map) was done with COOT [87]. A least-squares refinement

against F 2 for all data was performed with the program SHELXL [10]. Restraints

for the distances and angles of the residues were applied according to Engh and

Huber [88]. SHELXWAT [11] was used to place oxygen atoms to non-interpreted

maxima in the electron density map. As after this procedure there were still some
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significant residual density peaks present, which were in a possible hydrogen bond

distance to other water molecules, those residual density peaks were converted to

oxygen atoms by hand.

A sodium atom is coordinated (in an octahedral geometry) by oxygen atoms from

the peptide as well as from oxygen atoms from water molecules. The asymmetric

unit also contains one acetate molecule. The peptide has a solvent (water) content of

about 20 %. The peptide crystallizes in the orthorhombic space group P21212 with

the cell constants a = 41.136 Å, b = 12.885 Å, c = 25.590 Å. There is one molecule

of A2 in the asymmetric unit. Crystallographic details are given in Tables 4.1 and

4.2.

molecular formula C86H109.5N20O49.5S4Na
space group P21212
cell parameters (Å) a = 41.136

b = 12.885
c = 25.590

resolution (Å) 1.00 (1.10–1.00)
measured reflections 268732 (43178)
independent reflections 14199
completeness (%) 100 (100)
redundancy 18.87 (12.15)
mean I/σ(I) 27.57 (3.22)
Rint (%) 5.95 (57.24)

Table 4.1: Data collection statistics for labyrinthopeptin A2; values in parentheses denote the
outer resolution shell.

Final R1 (F > 4σ(F )) (%) 11.39
Final R1 (all data) (%) 13.25
Final wR2 (%) 29.00
GooF 1.255
Flack x parameter [89] 0.0251(326)
Number of peptide atoms 163
Number of solvent atoms 43
Number of metal ions 1
solvent content (%) 18.7

Table 4.2: Refinement statistics for labyrinthopeptin A2.
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Figure 4.9: Structure of A2; the rainbow colored chain traces the Cα atoms from the N- towards
the C-terminus.

A2 consists of 18 amino acids with the sequence Ala1–Asp2–Trp3–Ala4–Leu5–

Trp6–Glu7–Cys8–Cys9–Ala10–Thr11–Gly12–Ala13–Leu14–Phe15–Ala16–Cys17–

Cys18 (see Figs. 4.9 and 4.10).

Figure 4.10: Amino acid sequence of the lantibiotic A2 with intramolecular connections and
denotation of the rings.

Cys9 and Cys18 are connected by a disulfide bridge. Ala4 and Cys8 as well as

Ala13 and Cys17 each form the amino acid lanthionine and thus are connected by

a mono sulfide bridge. Ala4 and Ala13 are amino acids with quaternary Cα atoms

that are coordinated not only three-fold (which is normally typical for peptides and

proteins) but even four-fold. This leads to a novel structural motif of two directly

connected rings and to the existence of five rings in the molecule which are labeled

A, B, A’, B’ and C. The rings A and A’ consist of the amino acids Ala1–Asp2–Trp3–

Ala4 (ring A) and Ala10–Thr11–Gly12–Ala13 (ring A’) and the ring closure is due to

the quaternary amino acids Ala4 and Ala13, respectively. Rings B and B’ are closed

by the amino acid lanthionine and are built up by Ala4–Leu5–Trp6–Glu7–Cys8 (ring

B) and Ala13–Leu14–Phe15–Ala16–Cys17 (ring B’). Ring C is formed by the linkage

of the disulfide bridge between Cys9 and Cys18 and consists of Cys9–Ala10–Thr11–

Gly12–Ala13–Leu14–Phe15–Ala16–Cys17–Cys18. As the small rings A and A’ are
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built up from only 4 amino acids each (11 atoms) this leads to the rare motif of a

cis-peptide bond between Asp2 and Trp3 in the A-ring and Thr11 and Gly12 in the

A’-ring, respectively. The rings A and B, and A’ and B’, respectively, are connected

via the two amino acids that contain a quaternary Cα, Ala4 and Ala13, respectively.

A second position for the atoms CB, OG1 and CG2 in Thr11 could be determined

and was refined to an occupation factor of 50 %. The positions of the sulfur atoms

in Cys9 and Cys18 are disordered, too, and build an alternative orientation for the

disulfide bridge (see Fig. 4.11).

Figure 4.11: Structure of labyrinthopeptin A2 with refined disordered regions.

The electron density in the region of the residues from Leu14 to Ala16 is quite

flexible, but was not refined as disordered because no distinct two positions for each

atom could be determined. This region seems to be dynamically disordered.

4.4.1 Nomenclature of the atoms in the residues in A2

The atoms in A2 were labeled according to the IUPAC nomenclature on amino

acids [90]. An overview on the nomenclature that is used throughout the text is

given in Fig. 4.12.



4 Labyrinthopeptin A2 109

Figure 4.12: Amino acids in labyrinthopeptin A2 with respective nomenclature of the atoms; in
atom names consisting of two letters the first letter denotes the atom type and the second letter
is the abbreviation for the respective greek letter (A = α, B = β, G = γ, D = δ, E = ε, Z = ζ,
H = η).
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4.4.2 Ramachandran plot

For a structure validation of A2 a Ramachandran plot [91] was created with the

program PROCHECK [92]. This plot provides a consistency check for the dihedral

angles ϕ and ψ. It was shown [93] that there are only a few sets of ϕ and ψ which

are allowed in proteins for all amino acids except for glycine due to steric clashes.

The Ramachandran plot can be divided into three main regions (A, B and L) which

are further subdivided into regions depending on how favored the corresponding

angle sets are. The colors indicate the preference for the respective regions. The

most favored regions A, B and L are in dark red, the additional allowed regions a, b

and l are in dark yellow and the generously allowed regions ˜a, ˜b and ˜l are in light

yellow. Amino acids in the A-regions (A, a and ˜a) are mainly found in right handed

α-helices, those in the B-regions (B, b and ˜b) in β-strands and the amino acids in

the L-regions (L, l and ˜l) mainly in left handed α-helices. All dihedral angles in A2

lie within the allowed regions (see Fig. 4.13).

Figure 4.13: Ramachandran plot for labyrinthopeptin A2; amino acids involved in cis bonds are
highlighted.

4.4.3 Cis peptide bonds

The peptide bond between two amino acids in proteins or peptides is formed when

the carboxyl group of one amino acid and the amino group of the other amino

acid react with each other under cleavage of water. Due to its partial double

bond character the peptide bond is planar and there is a rotational barrier be-

tween the trans (ω = 180°) and cis (ω = 0°) conformation [90] (Fig. 4.14) of about
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13–20 kcal/mol [94–96] (for an overview on the nomenclature of the dihedral angles

see Fig. 4.15).

(a) trans peptide bond (b) cis peptide bond

Figure 4.14: Trans and cis peptide bonds.

Figure 4.15: Torsion angles in a peptide bond; ϕ: ’C–N–Cα–C, ψ: N–Cα–C–N’, ω: Cα–C–N’–
C’α; the prime before and after an atom name means that the corresponding atom is part of the
preceding and succeeding residue relative to the discussed amino acid, respectively.

Due to steric repulsion of the two Cα carbon atoms the cis conformation is energet-

ically less favored. An energy difference between cis and trans of 0.5 kcal/mol [94, 96,97]

was found for Xaa–Pro (i.e. any amino acid bonded to proline) peptide bonds and

of 2.5–4 kcal/mol [94, 96,97] for Xaa–nonPro bonds (Fig. 4.16). The reason for the

lower energy difference in cis Xaa–Pro peptide bonds is that the Cδ atom in the

proline also interacts with the Cα atom in the other amino acid. From the energy

differences in cis and trans conformations it can be calculated that about 30 % of all

Xaa–Pro and 1.5 % of all Xaa–nonPro peptide bonds should be in cis conformation.

The values found (2.5–4 % and 0.03–0.05 %) are much smaller. One reason for this

discrepancy could be that at low resolution it can easily happen that a cis confor-

mation is overlooked and refined as a trans bond. This is also in accordance with

the resolution dependence of the frequency of detected cis peptide bonds [97, 98].
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(a) trans Xaa-Pro peptide bond (b) cis Xaa-Pro peptide bond

Figure 4.16: Trans and cis Xaa-Pro peptide bonds.

Cis peptide bonds occur very rarely, only about 0.3 % of all peptide bonds are

cis and more than 80 % among them are Xaa–Pro cis bonds [94, 96–98]. This makes

0.003–0.005 % of all peptide bonds cis Xaa–nonPro (amide) peptide bonds and 4.7–

6.5 % cis Xaa–Pro (imide) bonds. In A2 two of the 17 peptide bonds are in cis

conformation, Asp2–Trp3 (ω = 14.419°) and Thr11–Gly12 (ω = 1.293°) (Table 4.3

and Fig. 4.17).
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ω

(°)
Ala1-Asp2 172.0
Asp2-Trp3 14.4
Trp3-Ala4 173.5
Ala4-Leu5 172.3
Leu5-Trp6 −178.1
Trp6-Glu7 176.6
Glu7-Cys8 −179.1
Cys8-Cys9 164.7
Cys9-Ala10 178.0
Ala10-Thr11 −172.1
Thr11-Gly12 1.3
Gly12-Ala13 169.2
Ala13-Leu14 −173.0
Leu14-Phe15 −178.1
Phe15-Ala16 174.7
Ala16-Cys17 178.1
Cys17-Cys18 −177.6/−168.9

Table 4.3: ω torsion angles in labyrinthopeptin A2; the two values for the ω angle between Cys17
and Cys18 result from the disorder in Cys18.

Figure 4.17: Cis peptide bonds between Asp2 and Trp3 and between Thr11 and Gly12 in
labyrinthopeptin A2.

Jabs et al. [98] found that cis peptide bonds in small rings occur more frequently

than in acyclic systems. They searched the CSD (Cambridge Structural Database [99])

and found 269 out of 527 (> 50 %) peptide bonds in cyclic molecules to be in cis

conformation, preferrably in small rings with not more than 12 atoms in the ring.



4 Labyrinthopeptin A2 114

In small rings like the A and A’ rings in A2, which consist of 11 atoms each, the

cis bond is formed for sterical reasons. If the peptide bonds Asp2–Trp3 and Thr11–

Gly12 in A2 were in trans conformation the carbonyl oxygen atoms or the amine

hydrogen atoms would be directed towards the center of the ring which is not pos-

sible for steric reasons. Jabs et al. also found all residues N-terminal and most

residues C-terminal to the cis peptide bond to be in the B-region of the Ramachan-

dran plot. In contrast to these findings, in A2 the N-terminal residue Trp3 is in the

A-region whereas Gly12 lies in a special region as is expected for glycine, anyway.

The C-terminal residue Thr11 is also in the A-region whereas Asp2 indeed lies in the

B-region. According to Jabs et al. the majority of the ψ1/ϕ2 angles lie in the region

of (ψ1,ϕ2) = (+110.3°,−136.2°) and (ψ1,ϕ2) = (+158.3°,−102.0°). This corresponds

to the angle pairs of (+80°,−150°) and (+150°,−80°), which have been calculated in

a conformational study to be the only possible angles in a cis petide bond. In con-

trast to these findings the (ψ1,ϕ2) angles in A2 have the values (−70.1°,−87.4°) for

Asp2–Trp3 and (−41.2°,88.0°) for Thr11–Gly12 (see Table 4.4). In the Ramachan-

dran plot the positions of the ϕ and ψ angles for Asp2, Trp3, Thr11 and Gly12 are

marked with a circle (see Fig. 4.13).

Jabs et al. reported that none of their investigated structures showed a positive

ϕ angle at the C-terminus of the cis peptide bond. Both of the C-terminal ϕ angles

in A2 are negative, indeed (ϕ(Asp2) = −125.1°, ϕ(Thr11) = −61.8°; see Table 4.4).
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ϕ ψ

(°) (°)
Ala1 126.3
Asp2 −125.1 70.1
Trp3 −87.5 −13.5
Ala4 56.8 53.5
Leu5 −96.2 −41.7
Trp6 −153.6 148.4
Glu7 51.2 51.1
Cys8 −88.4 145.6
Cys9 −72.5 −27.2
Ala10 −134.3 123.0
Thr11 −61.8 −41.2
Gly12 88.0 −140.1
Ala13 66.3 25.2
Leu14 −77.1 −32.9
Phe15 −161.8 129.9
Ala16 59.8 28.0
Cys17 −138.7 −5.4/−7.8
Cys18 −101.2/−78.6

Table 4.4: ϕ and ψ torsion angles in labyrinthopeptin A2; the two values for the ϕ and ψ angles
between Cys17 and Cys18 result from the disorder in Cys18.

In cis peptide bonds the Cα–C–N’ as well as the C–N’–C’α angles are found to

be widened compared to non cis peptide bonds [98]. The reason for this finding is

a steric repulsion of the two neighboring Cα atoms. This holds true for A2 as the

CA 2–C 2–N 3 and CA 11–C 11–N 12 angles are 121.3° and 126.2°, respectively.

Except for the C-terminal disordered residue Cys18 those angles are much larger

than all the other Cα–C–N’ angles in A2. Also the angles between C 2–N 3–CA 3

(127.3°) and C 11–N 12–CA 12 (128.7°) are widened compared to the corresponding

other angles in A2 (except for the respective angle between Cys17 and Cys18, again;

see Table 4.5).
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Cα–C–N’ C–N’–Cα’
(°) (°)

Ala1–Asp2 115.1 126.0
Asp2–Trp3 121.3 127.3
Trp3–Ala4 120.0 121.0
Ala4–Leu5 117.0 122.1
Leu5–Trp6 118.7 122.6
Trp6–Glu7 116.6 122.0
Glu7–Cys8 114.2 121.4
Cys8–Cys9 116.1 118.6
Cys9–Ala10 117.0 121.7
Ala10–Thr11 116.8 115.7
Thr11–Gly12 126.2 128.7
Gly12–Ala13 114.5 121.7
Ala13–Leu14 117.2 119.3
Leu14–Phe15 117.1 124.8
Phe15–Ala16 117.0 120.8
Ala16–Cys17 118.7 123.6
Cys17–Cys18 123.2/117.8 127.5/109.4

Table 4.5: Cα–C–N’ and C–N’–C’α angles in labyrinthopeptin A2; the respective angles for the
amino acids involved in the cis peptide bonds (Asp2/Trp3 and Thr11/Gly12) are larger than the
corresponding angles in trans peptide bonds; the two values for the angles between Cys17 and
Cys18 result from the disorder in Cys18.

4.4.4 Quaternary D amino acids

Naturally occurring amino acids are normally in the L conformation (see Fig. 4.18).

D amino acids often originate from L amino acids which were posttranslationally

modified to D amino acids.

(a) L amino acid (b) D amino acid

Figure 4.18: L and D isomers of amino acids.

In the case of A2 the two D amino acids result from the formation of the lan-

thionine from an L-serine and an L-cysteine (see Fig. 4.3). During the formation

of lanthionine a water molecule is cleaved off from the serine which leads to a dou-
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ble bond in the resulting amino acid. The attack of the cysteine is such that the

conformation of the amino acid is changed into the D form. The Cα atoms in A2

that come from the L-serine are the two D amino acids Ala4 and Ala13. These two

amino acids are not only in the rare D form but their Cα atoms are also quater-

nary coordinated. Only few quaternary amino acids are structurally determined.

Bunkóczi et al. report on crystal structures of cephaibols that possess amino acids

with quaternary Cα atoms with two methyl residues. [100] But in contrast to Ala4

and Ala13 in A2 these methyl residues do not form bridges to other atoms. In A2

the quaternary Cα atoms connect the A ring with the B ring by linking CA 4 with

CB 1, and the A’ ring with the B’ ring by linking CA 13 with CB 10, respectively.

By a search in the CSD (version 5.29) no similar structural motif was found.

4.4.5 Comparison of the rings in A2

4.4.5.1 Overlay of the rings A and A’

The residues Ala1–Ala4 were aligned with the residues Ala10–Ala13 to analyze the

similarities between the A and the A’ ring. For a comparison of the structural

features of A and A’ a pair-fitting was performed with the program PyMOL [101].

An alignment of CA 1:CA 10, CB 1:CB 10, N 4:N 13, CA 4:CA 13 shows (see

Fig. 4.19) that the rings A and A’ deviate mainly in the residues with the cis

peptide bonds (Asp2/Trp3 and Thr11/Gly12).

Figure 4.19: Overlay of ring A with A’ in labyrinthopeptin A2.

The residues Thr11 and Gly12 are mainly oriented above the plane in which the

ring atoms lie, whereas the residues Asp2 and Trp3 are oriented below the plane.

The difference in the involved angles between rings A and A’ is shown in Table 4.6.

This might be due to the bigger flexibility in ring A’ because of Gly12.
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ring A ring A’
(°) (°)

CB 1–CA 1–C 1 112.5 CB 10–CA 10–C 10 111.8
CA 1–C 1–N 2 115.1 CA 10–C 10–N 11 116.7
C 1–N 2–CA 2 126.0 C 10–N 11–CA 11 115.7
N 2–CA 2–C 2 106.8 N 11–CA 11–C 11 113.2
CA 2–C 2–N 3 121.3 CA 11–C 11–N 12 126.2
C 2–N 3–CA 3 127.3 C 11–N 12–CA 12 128.7
N 3–CA 3–C 3 116.0 N 12–CA 12–C 12 108.3
CA 3–C 3–N 4 120.0 CA 12–C 12–N 13 114.5
C 3–N 4–CA 4 121.0 C 12–N 13–CA 13 121.7
N 4–CA 4–C 1 113.0 N 13–CA 13–C 10 111.2
CA 4–CB 1–CA 1 116.5 CA 13–CB 10–CA 10 115.2

Table 4.6: Angles in the A and A’ rings in labyrinthopeptin A2.

For an alignment of the complete ring without the side chain atoms (CA 1:CA 10,

C 1:C 10, CB 1:CB 10, N 2:N 11, CA 2:CA 11, C 2:C 11, N 3:N 12, CA 3:CA 12,

C 3:C 12, N 4:N 13, CA 4:CA 13) an RMSD of 0.690 Å was calculated.

4.4.5.2 Overlay of the rings B and B’

The residues Ala4 to Cys8 in ring B were superimposed with the corresponding

residues Ala13 to Cys17 in ring B’ to compare similarities and differences in both

rings.

Figure 4.20: Overlay of ring B with B’ in labyrinthopeptin A2.
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For the investigation of the angles and the orientation of respective atoms in the

two rings the alignment was done for the atoms C 5:C 14, N 6:N 15, CA 6:CA 15,

C 6:C 15, N 7:N 16, CA 7:CA 16. The biggest differences in the angles are in

the atoms of the two lanthionines, especially the two sulfur atoms (Ala4/Cys8 and

Ala13/Cys17; see Fig. 4.20). The values for the angles are shown in Table 4.7.

ring B ring B’
(°) (°)

CB 4–CA 4–C 4 108.2 CB 13–CA 13–C 13 109.3
CA 4–C 4–N 5 117.0 CA 13–C 13–N 14 117.2
C 4–N 5–CA 5 122.1 C 13–N 14–CA 14 119.3
N 5–CA 5–C 5 111.9 N 14–CA 14–C 14 117.2
CA 5–C 5–N 6 118.7 CA 14–C 14–N 15 117.1
C 5–N 6–CA 6 122.6 C 14–N 15–CA 15 124.8
N 6–CA 6–C 6 106.5 N 15–CA 15–C 15 110.6
CA 6–C 6–N 7 116.6 CA 15–C 15–N 16 117.0
C 6–N 7–CA 7 122.0 C 15–N 16–CA 16 120.8
N 7–CA 7–C 7 109.2 N 16–CA 16–C 16 113.7
CA 7–C 7–N 8 114.2 CA 16–C 16–N 17 118.7
C 7–N 8–CA 8 121.4 C 16–N 17–CA 17 123.6
N 8–CA 8–CB 8 111.1 N 17–CA 17–CB 17 109.3
CA 8–CB 8–SG 8 114.3 CA 17–CB 17–SG 17 114.5
CB 8–SG 8–CB 4 100.7 CB 17–SG 17–CB 13 99.7
SG 8–CB 4–CA 4 111.9 SG 17–CB 13–CA 13 113.7

Table 4.7: Angles in the B and B’ rings in labyrinthopeptin A2.

The RMSD value for the alignment of the two rings B and B’ without their

side chain atoms (CA 4:CA 13, C 4:C 13, CB 4:CB 13, N 5:N 14, CA 5:CA 14,

C 5:C 14, N 6:N 15, CA 6:CA 15, C 6:C 15, N 7:N 16, CA 7:CA 16, C 7:C 16,

N 8:N 17, CA 8:CA 17, CB 8:CB 17, SG 8:SG 17) was calculated to be 0.781 Å.

4.4.5.3 Overlay of the rings AB and A’B’

For comparison of the relative orientation of the AB ring to the A’B’ ring an

alignment of the two quaternary Cα atoms and their bonding atoms (CB 1:CB 10,

N 4:N 13, CA 4:CA 13, C 4:C 13, CB 4:CB 13) was performed (see Fig. 4.21). As

already indicated by the individual alignments of rings A/A’ and B/B’ they deviate

only slightly in their orientation. The angles in the two ring systems between rings

A and B, and A’ and B’ are 87.7° and 90.4°, respectively. They were calculated

from the dihedral angles between the planes spanned by N 4/N 13, CA 4/CA 13
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and CB 1/CB 10 and the planes of C 4/C 13, CA 4/CA 13 and CB 4/CB 13, re-

spectively.

Figure 4.21: Overlay of ring AB with A’B’ in labyrinthopeptin A2.

An alignment of the atoms CA 1:CA 10, C 1:C 10, CB 1:CB 10, N 2:N 11,

CA 2:CA 11, C 2:C 11, N 3:N 12, CA 3:CA 12, C 3:C 12, N 4:N 13, CA 4:CA 13,

CA 4:CA 13, C 4:C 13, CB 4:CB 13, N 5:N 14, CA 5:CA 14, C 5:C 14, N 6:N 15,

CA 6:CA 15, C 6:C 15, N 7:N 16, CA 7:CA 16, C 7:C 16, N 8:N 17, CA 8:CA 17,

CB 8:CB 17, SG 8:SG 17 yielded an RMSD of 0.951 Å.

4.4.6 Surface

The solvent accessible surface [102] was calculated with the program PyMOL (see

Fig. 4.22). The solvent accessible surface is calculated by rolling a solvent molecule

of a radius of 1.4 Å (approximating the radius of a water molecule) over the van der

Waals surface of the peptide [103]. The area that the center of the sphere can touch

is defined as the solvent accessible surface. For one single molecule of A2 this area

was calculated to be 1916.3 Å2.
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(a) front view (b) back view

Figure 4.22: Solvent accessible surface of labyrinthopeptin A2.

To investigate whether two molecules of A2 (which are generated by rotating

about the twofold axis) come close enough to each other to build a buried surface

(the surface which is covered by the close contact of two molecules and which is

not accessible by the solvent anymore) two pdb files were produced by rotating one

molecule about a twofold axis in both directions. The solvent accessible surfaces of

those two“dimers”were calculated with the program PyMOL and resulted in a value

of 3463.0 Å2 for one dimer and 3103.4 Å2 for the other dimer. The buried surface

can now be calculated with

BS = 2 · S1M− S2M

2 (4.1)

with BS: buried surface, S1M: surface of one molecule, S2M: surface of a dimer. This

gave a value of 369.7 Å2 for one dimer and 729.3 Å2 for the other dimer, which corre-

sponds to 19.3 % and 38.1 % of the solvent accessible surface of the single molecule,

respectively. The first value is maybe too small to suggest a real dimerization of A2,

but the other value for the buried surface shows that the contact between the two

symmetry equivalent molecules is quite close.

4.4.7 Charge

The total charge of A2 was calculated with the program pep charge (see section 5)

(see Fig. 4.23). Under crystallization conditions (pH = 8.2) it has a charge of −2,

which results from the deprotonated acidic functions of the residues Asp2, Glu7 and

Cys18 and the protonated N-terminal residue Ala1. As there is also one metal ion

(the positively charged sodium atom) and a half acetate molecule in the asymmetric
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unit there remains an overall negative charge of 1.5 in the asymmetric unit. But it

could be possible that not each Asp2 or Glu7 is deprotonated due to hydrogen bonds

to other molecules. However, this could not be detected due to the fuzzy solvent

region and the limited resolution of 1 Å of the electron density.

Figure 4.23: Calculated charge of labyrinthopeptin A2 over a pH range of 0.0 to 14.0.

4.4.8 Hydrogen bonds

For investigating the hydrogen network present in A2 a hydrogen bond table was

calculated by SHELXL. The calculated angles and distances are shown in Table 4.8.

D-H d(D-H) d(H..A) <DHA d(D..A) A

N-H1 1 0.910 2.153 133.50 2.857 O 1009
N-H1 1 0.910 2.478 163.14 3.359 O 1038
N-H2 1 0.910 1.905 152.77 2.746 O 10
N-H3 1 0.910 1.968 156.09 2.824 O 1007
N-H 2 0.880 2.179 133.31 2.856 O 2 [−x,−y + 1, z]
N-H 3 0.880 1.875 164.38 2.733 OXT 200 [−x,−y + 1, z]
N-H 3 0.880 2.133 165.34 2.993 O 200
N-H 3 0.880 2.569 134.78 3.249 O 200 [−x,−y + 1, z]
N-H 3 0.880 2.589 140.43 3.315 OXT 200
NE1-HE1 3 0.880 2.180 156.02 3.005 O 7 [−x,−y + 1, z]
NE1-HE1 3 0.880 2.469 113.18 2.929 O 6 [−x,−y + 1, z]
N-H 4 0.880 2.208 139.07 2.930 O 2 [−x,−y + 1, z]
N-H 5 0.880 2.186 144.11 2.944 O 1004

Table 4.8: Hydrogen bonds in labyrinthopeptin A2.
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D-H d(D-H) d(H..A) <DHA d(D..A) A

N-H 6 0.880 2.078 167.86 2.944 O 1004
NE1-HE1 6 0.880 2.271 144.66 3.031 O1 18b [−x+ 1/2, y − 1/2,−z]
N-H 7 0.880 1.943 145.31 2.713 O 1010
N-H 8 0.880 2.161 165.50 3.021 O 1012
N-H 9 0.880 1.898 166.79 2.762 OD1 2 [−x,−y + 1, z]
N-H 10 0.880 2.170 149.98 2.965 OD2 2 [−x,−y + 1, z]
N-H 11 0.880 2.048 168.85 2.917 OE1 7 [−x+ 1/2, y − 1/2,−z]
OG1-HG1 11a 0.840 2.481 114.73 2.933 O 1010 [−x+ 1/2, y − 1/2,−z]
OG1-HG1 11b 0.840 2.225 171.86 3.059 O 8 [−x+ 1/2, y − 1/2,−z]
N-H 12 0.880 2.066 147.06 2.845 O 1007
N-H 13 0.880 1.906 164.24 2.763 OE2 7 [−x+ 1/2, y − 1/2,−z]
N-H 14 0.880 2.527 167.66 3.392 O 1001 [−x+ 1/2, y − 1/2,−z]
N-H 15 0.880 2.951 145.96 3.713 SG 17
N-H 16 0.880 2.080 130.91 2.738 O 1032 [x, y + 1, z]
N-H 16 0.880 2.589 177.77 3.468 O 1024
N-H 17 0.880 2.085 167.87 2.951 O 1013
N-H 18a 0.880 2.256 134.23 2.938 O 1013
N-H 18b 0.880 2.204 127.17 2.824 O 1013

Table 4.8: Hydrogen bonds in labyrinthopeptin A2 (cont.).

It can be seen that there are only two intramolecular hydrogen bonds in A2. One

bond is between NH 2 and O 10 and the other one is between NH 15 and SG 17.

Intermolecular hydrogen bonding occurs much more often between A2 and its sym-

metry equivalents. Additional to the bonding between and within A2 there is also

a hydrogen bonding network to the many water molecules (which are represented

by their oxygen atoms and have the residue numbers from 1000 upwards) and the

acetate ions (the two acetate oxygen atoms are denoted O 200 and OXT 200, re-

spectively) present in the unit cell.

4.4.9 Crystal packing

A2 crystallizes in the orthorhombic space group P21212 with one molecule in the

asymmetric unit which makes four molecules in the unit cell. The crystal packing

along the a-axis is shown in Fig. 4.24(a) and along the b-axis in Fig. 4.24(b).
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(a) view along the a-axis (b) view along the b-axis

Figure 4.24: Crystal packing in labyrinthopeptin A2.

It can be seen that the molecules are arranged such that channels are formed

in which the solvent molecules are distributed. The water molecules arrange quite

regularly everywhere in the interspaces in the unit cell but no solvent can be found

in the region around the hydrophobic residues Phe14 and Trp3/Leu5.
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5 List of developed programs

• factor int sig reads in a file called xd mit fcalc.hkl and adds Gaussian noise

according to the polar form of the Box-Muller transform to the F 2
obs (which

should be ideal data generated by fco2hkl); p1, µ and σ are variables that can

be set to any value; a file called xd.hkl is written

• fco2hkl reads in a xd.fco file and writes a xd.hkl format file (xd mit fcalc.hkl)

with F 2
calc as F 2

obs; if a xd.hkl file is present the header is read in and copied to

the xd mit fcalc.hkl file

• histogram reads in a xd fou.grd file and counts the frequency of the values;

a PostScript file with a histogram representation of the values is printed

• histomatch fco reads in a xd.fco file and sorts the F 2
calc as well as the F 2

obs

together with their hkl indices in descending order; the F 2
obs are replaced by the

F 2
calc and written to a xd.hkl format file called xd.hkl histocorr; an information

on how many F 2
obs have been replaced by their corresponding F 2

calc is printed

to the screen

• invent hkl asks the user for the unit cell (a, b, c, α, β, γ), the wavelength λ,

lower and upper limits for the resolution (in Å-1) and the space group; unique

reflections for the given resolution range are calculated with intensities and

corresponding standard deviations of 1; systematic absences are omitted; the

output is written to a xd.hkl file called k2.hkl

• jnk2RDA reads in grid files written by XDFOUR, XDFFT, MoPro or Tonto;

it calculates the fractal dimension distribution for the residual density; a more

detailed description on the program is given in the text (see section 3.3.1);

writes a PostScript file with a graphic representation of the fractal dimension

distribution

• log histogram reads in a xd fou.grd file and counts the frequency of the

residual density values; calculates the logarithm of the frequency and writes a

PostScript file with a graphical representation of the distribution
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• pep charge reads in an amino acid sequence in upper case or lower case and

the pH, either from a file (the amino acid sequence can span multiple lines,

the pH must be given in an extra line) or typed in by hand; calculates the

total charge for this sequence and charges for each amino acid; the N-terminus

and the C-terminus can have protective groups (entered as ’-’); it prints the

total charge for the sequence for a pH range from 0.0 to 14.0 in steps of 0.2

to a file called pep charge.out (space separated); additionally, a PostScript file

(called pep charge.ps) with a graphical output for the total charge vs. the pH

is written
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Appendix

A.1 The net residual electrons in the unit cell

Let the Fouriertransform of the electron density be denoted

ρ(xyz) = 1
VUC

∑
hkl

Fhkle
−2πi(hx+ky+lz)

= 1
VUC

F000 +
∑

hkl/{000}
Fhkle

−2πi(hx+ky+lz)


(A.1)

Integration over the unit cell yields:

∫
VUC

ρ(xyz) dV = 1
VUC

∫
VUC

F000 +
∑

hkl/{000}
Fhkle

−2πi(hx+ky+lz)

 dV

= 1
VUC

(F000VUC)

= F000

(A.2)

This equation states that the total scattering power in the unit cell is given by

F(000). Accordingly for the residual density:

ρ0(xyz) = 1
VUC

∑
hkl

∆Fhkle
−2πi(hx+ky+lz)

= 1
VUC

∆F000 +
∑

hkl/{000}
∆Fhkle

−2πi(hx+ky+lz)


(A.3)
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Integration over the unit cell yields

∫
VUC

ρ0(xyz) dV = enet(VUC)

=
∫
VUC

1
VUC

∆F000 +
∑

hkl/{000}
∆Fhkle

−2πi(hx+ky+lz)

 dV
=

∫
VUC

∆F000 dV

=
∫
VUC

(F000,a − F000,b) dV

(A.4)

=
∫
VUC

ρ(xyz)a dV −
∫
VUC

ρ(xyz)b dV

Eq. A.2= Na −Nb

≡ 0

This equation states that the integration over the net residual electrons of the whole

unit cell must vanish identically.

A.2 Gross residual electrons in the whole unit cell

derived from the Fourier coefficients of the

residual density

The number of gross residual electrons is remarkably stable with respect to changes

in the grid. Therefore, it might be a good assumption that egross is a property of

the set of ∆F alone. This leads to the question how to calculate

egross = 1
2

∫
V
|ρ0(xyz)|dV (A.5)

from the set ∆F . It will be investigated if the integral of the modulus of ρ0(xyz),
which assumes positive and negative values, can be calculated from the given Fourier
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coefficients of its Fourier series. By Parseval’s theorem, the modulus squared of any

(even complex valued) function can be calculated by summation over the squares of

its Fourier series:

∫
VUC
|ρ0(xyz)|2 dV =

∑
hkl

|∆F |2 (A.6)

where VUC denotes the volume of the unit cell. If the normalized probability density

function (PDF ) of ρ0 is known (or can be approximated), i.e. the way ρ0 is dis-

tributed in terms of its probability rather than in terms of the spatial distribution,

the expectation values can be calculated as follows:

〈|ρ0|〉 =
∫ ∞
−∞

PDF (ρ0)|ρ0| dρ0 (A.7)

〈
|ρ0|2
〉

=
∫ ∞
−∞

PDF (ρ0)|ρ0|2 dρ0 (A.8)

The result from Eq. A.8 is identified with the result from Eq. A.6 and egross is cal-

culated from the ratio of Eq. A.7 and the square root of Eq. A.8. To obtain the

desired value for egross from the set of ∆F a (normalized, as the total probability

must be one) Gaussian probability density function for the residual density function

is assumed:

PDF (ρ0)dρ0 = 1
σ
√

2π
e−

ρ2
0

2σ2 dρ0 (A.9)

The expectation values are calculated:

〈|ρ0|〉 =
∫ ∞
−∞

1
σ
√

2π
e−

ρ2
0

2σ2 |ρ0| dρ0 =
√

2
π
σ (A.10)

〈
|ρ0|2
〉

=
∫ ∞
−∞

1
σ
√

2π
e−

ρ2
0

2σ2 |ρ0|2 dρ0 = σ2 (A.11)
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from which follows

〈|ρ0|〉√〈
|ρ0|2
〉 =

√
2
π

(A.12)

For the desired integral it follows that

∫
VUC
|ρ0(xyz)| dV =

√
2
π

√∫
VUC
|ρ0(xyz)|2 dV

=
√

2
π

√∑
hkl

|∆F |2

(A.13)

where the last equation follows from Parseval’s theorem. Finally, one obtains:

egross = 1√
2π

√∑
hkl

|∆F |2 (A.14)

Care has to be taken in the evaluation of the sum: the set of ∆F usually comprises

the unique reflections whereas the sum must be taken for the Fourier series deter-

mining ρ0. For example, if the sum runs from −hmax to hmax, −kmax to kmax, and

from 0 to lmax, a factor 2 comes in for the evaluation of the whole sum from the list

of unique reflections. In a shorthand notation:

∑
hkl

−→ 2 ·
hmax∑
−hmax

kmax∑
−kmax

lmax∑
0

(A.15)

Or even shorter:

∑
hkl

−→ 2 ·
∑
uq

(A.16)

where “uq” abbreviates “unique”.

Generalization: The factor
√

2
π

connects the integrals over the modulus and the

squared modulus of the residual density for the particular case of a Gaussian distri-

bution. As mentioned above, this factor can be calculated for any given distribution,

e.g. also for Poisson statistics. The main concern here is the Gaussian function for
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the reason that a Gaussian function is a good approximation to the limiting case of

very good data and a very good model.

Table A.1 shows the respective values for egross, calculated for a 93×93×107 grid

on simulated data with and without the evaluation of the residual density grid. The

results for egross obtained by explicit calculation of the residual density grid and

subsequent summation according to Eq. 3.8 are listed in the second column of the

table. The third column shows the result of the summation of the moduli squared

of ∆F over the set of unique reflections. The result for egross from the implicit

calculation from the set of ∆F = Fobs−Fcalc according to the equation given above

(Eq. A.14) follows in the fourth column. In this case a factor of 2 in the evaluation

of the sum leads to the final equation egross = 1√
π

√∑
uq |∆F |2.

In summary: egross can be predicted from the set of ∆F without the explicit calcu-

lation of a residual density grid. The underlying assumption is a Gaussian residual

density distribution.

p1 egross
a
∑
uq |∆F |

2
egross

b R1 R2 wR1(w = 1)
(e) (e)

0.222 8.2942 218.3111 8.3361 0.0231 0.0180 0.0182
0.333 12.3017 479.1582 12.3499 0.0339 0.0270 0.0270
0.444 16.2007 829.9207 16.2534 0.0443 0.0359 0.0355
0.666 23.6000 1757.4060 23.6516 0.0638 0.0534 0.0517
0.888 30.6022 2953.0915 30.6594 0.0818 0.0705 0.0669
0.999 33.8519 3615.1465 33.9225 0.0899 0.0788 0.0740

Table A.1: Calculation of egross for the whole unit cell witha and withoutb evaluation of the
residual density grid (grid size 93×93×107) for ideal data on S(NtBu)3 with noise controlled by p1;
the underlying residual density is distributed according to a Gaussian; the index “uq” abbreviates
“unique”.

A.3 The gross residual electrons in the unit cell, in a

part of the unit cell and standard quality

measures

According to the last paragraph, the number of gross residual electrons for the whole

unit cell can be calculated from the modulus squared of the Fourier series coefficients

of ρ0. This suggests a connection between egross and standard quality measures. In

contrast to the quality measures R1, R2 and wR2 the quality measure wR1 employs

directly the (weighted) sum of residuals, which is minimized during the least squares
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refinement:

wR1 =

√√√√∑hkl w |∆F |2∑
hkl wF

2
obs

(A.17)

Omitting the weights (i.e. w is set to 1) and regarding the denominator as a nor-

malization constant CN , which is fixed for a given set of observed data, this yields

RLS =

√√√√∑hkl |∆F |2

CN
(A.18)

where the index “LS” abbreviates “least squares”. Written in this form the similarity

to Eq. A.14 is obvious. It follows that the quality measure egross|V (the notation

should emphasize for the present paragraph the dependence of the number of egross

on the volume it is evaluated for; therefore, egross|V reads: the gross residual electrons

in the volume V) is a local extension to the quality measure RLS in the following

sense: For a given and unaltered set of Fobs, the measures egross|VUC and RLS are

linearly dependent. In the same way the number of gross residual electrons is cu-

mulative for N disjoint volumes V = ∑i Vi: egross|V = ∑N
i=1 egross|Vi so is the global

descriptor RLS composed of local contributions from disjoint parts of the unit cell:

RLS|V = ∑N
i=1RLS|Vi

As a consequence, the model for which egross is at minimum is the same model for

which the unweighted square root of the residual sum
√∑

hkl |∆F |2 is at minimum

and egross is able to decompose the total residual sum into its spatial components.

In summary: egross|V is a local and a global measure unlike RLS, which is a global

measure, exclusively. For evaluation with respect to the whole unit cell egross|VUC and

RLS describe the same entity in real- and in reciprocal space. For evaluation with

respect to a part of the unit cell, egross|V effectively describes the additive contribution

of that part of the unit cell to RLS (apart from a factor of proportion).

A.4 Prediction of df(0) from experimental resolution

and grid resolution

By its oscillating nature, a Fourier series terminating with a coefficient cmax can

generate only a limited number of zero (or any other constant) values. This number

is related to the termination order by a factor 2, as a 2π periodic function like

a sin(x) or a cos(x) wave introduces at maximum 2 zeros, a sin(2x) or a cos(2x)
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introduces at maximum 4 zeros, and a sin(nx) or a cos(nx) introduces at maximum

2n zeros.

Figure A.1: 2π periodic cosine functions cos(nx), generating 2n zero values; for clarity the
functions are scaled by 1, 0.5 and 0.25 for n = 1, n = 2 and n = 3, respectively.

For applications to the residual density analysis this obviously means that the

maximum area of e.g. the residual density value zero is determined by the exper-

imental resolution. The value zero is chosen as this value occurs most frequently

for an ordinary refinement and for the reason that this maximum value does not

depend on the variance of the noise. As seen earlier, this value depends (for a per-

fect model) only on the spatial grid as given by the numbers nx, ny and nz, and by

the experimental resolution as given by hmax, kmax and lmax. Furthermore, during

a refinement it would be helpful to predict a reasonable value for df (0), which can

or should be reached under ideal circumstances. Every deviation from this idealized

value, may it be positive or negative, can then be interpreted as an introduction of

features. The equation is:

df (0; ε) = log [2hmax(ny − 1)(nz − 1) + 2kmax(nx − 1)(nz − 1) + 2lmax(nx − 1)(ny − 1)]
log
[

3
√

3(nx − 1)(ny − 1)(nz − 1)
]

(A.19)

where ε is related to the number of grid points nx, ny and nz (see Eq. 3.12).

A.4.1 Derivation

For the derivation of equation Eq. A.19 it is useful to regard the unit cell as being

deformed into a cube and the edges rescaled to unit length. This assumption is not

necessary and it does not limit the results in any way, it just simplifies the derivation.

The positive integer number hmax gives the largest index for h, which, according to
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the preceding paragraph, determines the maximum number of zero areas introduced

in the direction of the normal vector which points in the x-direction to be 2hmax.
As in this case a normalized cube is assumed, this area is 2hmax times the unit area.

This area is covered by (ny − 1)(nz − 1) lines which all contribute. The other two

terms of the sum in the enumerator work analogously for the y- and the z-directions.

In the denominator of Eq. A.19 the number in brackets of which the cubic root

is taken just counts the total number of lines existing. The finer the spatial grid is

chosen, the larger this number becomes.

A.4.2 Discussion

From Eq. A.19 it can be seen that df (0) = 3 can be approached, if the spatial grid

is chosen in the following way:

nx = 2hmax + 1

ny = 2kmax + 1

nz = 2lmax + 1

(A.20)

Putting these numbers in Eq. A.19 leads to:

df (0) = log [3(nx − 1)(ny − 1)(nz − 1)]
log
[

3
√

3(nx − 1)(ny − 1)(nz − 1)
] = 3 (A.21)

i.e. for a spatial grid chosen coarse enough a value of df (0) = 3 can be realized. The

coarseness is given by the Nyquist frequency. It is not meaningful to choose a coarser

grid because then the spatial resolution is not sufficient to describe all information

contained in the experiment. The above equation, however, does not take this case

into account. For meaningful results it requires the spatial grid to be at least of the

indicated size. Therefore, if the spatial resolution is chosen according to the Nyquist

sampling theorem, df (0) = 3 holds for the best possible model. All derivations from

this value are due to model errors and data quality limitations or limitations of the

applied theory or numerical errors. These introduce the deviations from 3, which

manifest themselves as features in the residual density.
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Figure A.2: df (0) as predicted by Eq. A.19 for a perfect model and unspecified noise as a function
of the experimental resolution hmax = kmax = lmax = m varying between 10 and 25 and for spatial
grid resolutions of nx = ny = nz = n = 51, 55, 60 and 61 from top to bottom; for m = 25 and
n = 51 the fractal dimension approaches 3; the shape of the curve is concave.

The other asymptotic behavior lies in the limits lim
nx→∞

, lim
ny→∞

and lim
nz→∞

. For sim-

plicity, it is assumed that nx = ny = nz = n and hmax = kmax = lmax = m. Again,

the validity of the results is not limited by this assumptions.

lim
n→∞

df (0;n) = lim
n→∞

log [6m(n− 1)2]
log
[

3
√

3(n− 1)3
] = 2 (A.22)

The value 2 is obtained if the rule of l’Hospital was used.

Figure A.3: df (0) as predicted by Eq. A.19 for a perfect model and unspecified noise as a
function of the spatial grid resolution with nx = ny = nz = n varying between 51 and 200 and for
experimental resolutions hmax = kmax = lmax = m = 15, 20, 24 and 25 from bottom to top; for
lim
n→∞

all curves approach df (0) = 2; the shape of the curve is convex.
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Fig. A.4 shows both of the discussed limits in one graph with a convex shape in

the direction of increasing spatial resolution and a concave shape in the direction of

increasing experimental resolution.

Figure A.4: df (0) as predicted by Eq. A.19 for a perfect model and unspecified noise as a
function of the spatial grid resolution with nx = ny = nz varying between 50 and 200 and of
the experimental resolution hmax = kmax = lmax varying between 10 and 25; following a line
of constant experimental resolution results in a convex line, whereas following a line of constant
spatial resolution results in a concave line; the inclined lines indicate contours of constant fractal
dimension.



List of Publications 145

List of Publications

[1] T. Kurahashi, Y.-T. Wu, K. Meindl, S. Rühl, A. de Meijere, “Cyclopentenones
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[12] G. Seibert, L. Vértesy, J. Wink, I. Winkler, R. Süssmuth, G. Sheldrick,

K. Meindl, M. Broenstrup, H. Hoffmann, H. Guehring, L. Toti, “Antibacterial

and antiviral peptides from Actinomadura namibiensis”, WO 2008/040469 A1,

2008.

[13] F. Mert-Balci, J. Conrad, K. Meindl, T. Schulz, D. Stalke, U. Bei-

fuss, “Microwave-Assisted Three-Component Reaction for the Synthesis of

Pyrido[2’,1’:2,3]imidazo[4,5-c]isoquinolin-5(6H )-ones”, Synthesis 2008, 3649-

3656.

[14] B. Dittrich, M. A. Spackman, K. Meindl, J. Henn, F. P. A. Fabbiani, “Azulene

revisited: Lessons from the classical example of disorder”, in preparation.

[15] A. Stasch, S. P. Sarish, B. Nekouieshahraki, H. W. Roesky, K. Meindl,

F. Dall’Antonia, T. Schulz, D. Stalke, “Synthesis and Characterization of Alkynyl

Complexes of Group 1 and 2 Metals”, in preparation.

[16] K. Meindl#, T. Schmiederer#, A. Reicke, S. Keller, G. Nicholson, L. Vértesy,
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11/1998− 10/2003 Hauptstudium der Chemie an der Friedrich-Alexander-

Universität Erlangen-Nürnberg
11/2002 Diplomhauptprüfung
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