Synthesis of Potentially Biologically Active Cyclopropane- and Spirocyclopropane-annelated Oligoazaheterocycles

Dissertation
zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen
vorgelegt von
Martina Gensini
aus

Florenz (Italien)

Göttingen 2002

Referent:
Korreferent:

Tag der mündlichen Prüfung: 30 Januar 2003

Die vorliegende Arbeit wurde in der Zeit von April 2000 bis Dezember 2002 im Institut für Organische Chemie der Georg-August-Universität Göttingen angefertigt.

Meinem Lehrer, Herrn Prof. A. de Meijere, danke ich herzlich für die Überlassung des interessanten Themas, für die hilfreichen Diskussionen und für die Unterstützung dieser Arbeit.

Herrn Prof. Dr. A. Brandi danke ich herzlich für die hilfreichen Diskussionen und seine stetige Unterstützung.

Herrn Dr. M. Es-Sayed danke ich herzlich für die vielen hilfreichen Anregungen und die Möglichkeit einer industriellen Zusammenarbeit.

To my parents

TABLE OF CONTENTS

A. Introduction 1
B. Main Part 12

1. Synthesis of 3-Azabicyclo[3.1.0]hex-1-ylamines by Ti-Mediated Intra- molecular Reductive Cyclopropanation 12
1.1. Synthesis of N, N-dialkylamides from L-serine 12
1.2. Synthesis of endo- and exo-($2 R$)- N, N-dialkyl-3-benzyl-2-(tert-butyldimethyl- silyloxymethyl)-3-azabicyclo[3.1.0]hex-1-ylamines 15
2. Synthesis of 1-Amino-3-azabicyclo[3.1.0]hexanes and 1-Amino-3-azabi- cyclo[4.1.0]heptanes 18
2.1. \quad Synthesis of N, N-dialkylamides from bromoacetyl bromide 18
2.2. Ti-mediated reductive intramolecular cyclopropanation of N, N-dialkylamides 19
3. Ti-Mediated Intramolecular Reductive Cyclopropanation of Carbonitriles 23
3.1. Considerations 23
3.2. Synthesis of 2-allylaminoacetonitriles 24
3.3. Synthesis of 3-substituted-3-azabicyclo[3.1.0]hex-1-ylamine from 2-allylaminoacetonitriles 25
3.4. Attempted synthesis of 3-azabicyclo[4.1.0]heptane systems from nitrile derivatives 27
4. Synthesis of 3-Aryl-3-azabicyclo[3.1.0]hex-1-ylamine Derivatives 29
4.1. Introduction 29
4.2. Nucleophilic aromatic substitution with 3-azabicyclo[3.1.0]hex-1-ylamine 32
4.3. Pd-catalyzed cross-coupling of 3-azabicyclo[3.1.0]hex-1-ylamines 34
4.4. Pd-catalyzed aromatic substitution of 3-methyl-3-azabicyclo[3.1.0]hex-1-yl- amine hydrochloride 37
4.5. Synthesis of 5-chloropyridin-3-yl derivatives 39
4.6. Attempted synthesis of aniline derivatives 41
5. Elaboration of the 3-Aryl-3-azabicyclo[3.1.0]hex-1-ylamine Skeleton 43
5.1. Synthesis of trifluoroethylderivates 43
5.2. Synthesis of urea derivatives 46
5.3. Synthesis of N-methyl- N-aryl-3-azabicyclo[3.1.0]hex-1-ylamines 47
6. Elaboration of endo- and exo-(2R)-N,N-Dialkyl-3-benzyl-2-(tert-butyl- dimethylsilyloxymethyl)-3-azabicyclo[3.1.0]hex-1-ylamines 49
6.1. Attempted synthesis of endo-(2R)-2-(aminomethyl)-3-(5-chloropyridin-3-yl)- N, N-dimethyl-3-azabicyclo[3.1.0]hex-1-ylamine hydrochloride 49
6.2. Attempted synthesis of natural amino acid analogues 51
6.2.1. Considerations 51
6.2.2. Attempted oxidation of the hydroxy function in endo- and exo-(2R)-N,N-di-
alkyl-3-benzyl-2-(hydroxymethyl)-3-azabicyclo[3.1.0]hex-1-ylamines 52
7. Synthesis of Tri- and Tetracyclic Azaheterocycles by Ti-Mediated Intra- molecular Reductive Cyclopropanation 55
7.1. Considerations 55
7.2. Synthesis of tetracyclic derivatives 56
7.2.1. Synthesis of N, N-dibenzyl-indolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b- amine 56
7.2.2. Synthesis of (8aS)-N,N-dibenzyl-8,8a-dihydroindole[1,2-a]cyclopropa- [1,2-c]pyrrolidin-8b-amines 57
7.3. Synthesis of tricyclic derivative 58
7.3.1. Synthesis of N, N-dibenzyl-1,1a,2,6b-tetrahydrocyclopropa[1,2-a]pyrrolizin- 6b-amine 58
7.3.2. Synthesis of (6aS)-N,N-dibenzyl-perhydrocyclopropa[1,2-a]pyrrolizin- 6b-amine 59
8. 1,3-Dipolar Cycloadditions of Nitrones to Bicyclopropylidenes 61
8.1. Considerations 61
8.2. Attempted synthesis of perhydropyrrolo[2,3-c]pyridine derivatives 63
8.3. Synthesis of spirocyclopropane-annelated β-lactams 65
8.3.1. Considerations 65
8.3.2. Synthesis of 5-methyl-6-phenyl-5-azaspiro[2.3]hexan-4-one and 5-methyl-6-(pyrid-2-yl)-5-azaspiro[2.3]hexan-4-one 67
8.4. 1,3-Dipolar cycloadditions of nitrones to cyclopropylidenespiropentane and 7-cyclopropylidenedispiro[2.0.2.1]heptane and subsequent thermal rearrangement 69
8.4.1. Considerations 69
8.4.2. 1,3-Dipolar cycloaddition of 3,4-dihydroisoquinoline N-oxide and 7-cyclopropylidenedispiro[2.0.2.1]heptane 71
8.4.3. One pot 1,3-dipolar cycloaddition and subsequent thermal rearrangement 73
C. Exparimental Part 78
9. General Notes 78
10. Procedure for the Synthesis Spectral Data of the Compounds 80
2.1. General procedures 80
2.2. Synthesis of 3-azabicyclo[3.1.0]hex-1-ylamines by Ti-mediated intra- molecular reductive cyclopropanation of L -serine derivatives 86
2.3. Synthesis of 3-azabicyclo[3.1.0]hex-1-ylamines by Ti-mediated intra- molecular reductive cyclopropanation of glycine derivatives 93
2.4. Synthesis of 3-azabicyclo[3.1.0]hex-1-ylamines by Ti-mediated intra- molecular reductive cyclopropanation of nitriles 104
2.5. Synthesis of 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamines by nucleophilic aromatic substitution 109
2.6. Synthesis of 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamines by Pd-catalyzed cross-coupling 112
2.7. Synthesis of trifluoroethyl derivatives 119
2.8. Synthesis of N-methyl- N-aryl-3-azabicyclo[3.1.0]hex-1-ylamines 123
2.9. Elaboration of endo- and exo-(2R)- N, N-dialkyl-3-benzyl-2-(tert-butyl- dimethylsilyloxymethyl)-3-azabicyclo[3.1.0]hex-1-ylamines 127
2.10. Synthesis of tetracyclic azaheterocycles by Ti-mediated intramolecular reductive cyclopropanation 131
2.11. Synthesis of tricyclic azaheterocycles by Ti-mediated intramolecular reductive cyclopropanation 136
2.12. 1,3-Dipolar cycloadditions of nitrones to bicyclopropylidenes 143
D. SUMMARY 157
E. References 164
F. Spectral Data 175
11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra 176
12. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra 191
13. NOESY spectra 205
G. Crystal Data 207

A. InTRODUCTION

Heterocyclic compounds containing nitrogen are not only widely distributed in nature, but naturally occurring and synthetic ones also have an enormous range of applications. They are used as optical brightening agents, as antioxidants, as pigments and many of these compounds display important biological activities. ${ }^{[1]}$ A large number of natural and synthetic N heterocyclic compounds have found applications as pharmaceuticals and agrochemicals. Their synthesis, therefore, has attracted much interest and a large variety of synthetic methodologies have been developed. [1]

A central concept in pharmaceutical chemistry is that of the pharmacophore, a specific three-dimensional arrangement of essential chemical groups common to active molecules, which is recognized by a single receptor. Sheridan ${ }^{[2]}$ has proposed that the essential groups in a pharmacophore are: a cationic center (e. g. a protonated sp^{3}-hybridized nitrogen), an electronegative atom capable of forming a hydrogen bond, and an atom or a point that, together with the electronegative atom, defines a line along which the hydrogen bond may form. The cationic and the electronegative centers are often represented by N -atoms, while the third group can be defined by a π-system (such as an aromatic ring). Therefore, the interest in N -containing compounds has primarily been focusing on the inter-nitrogen ($\mathrm{N}-\mathrm{N}$) distances in the supposed binding conformation of the ligand.[3]

Over the years, many new structures have been found in natural products, which have shown biological activity, but many of these proved to be toxic. Thus, the chemist has been encouraged to synthesize structurally related analogues in the search for ligands which show a higher specificity and are, therefore, less toxic.

Current interest in neuronal nicotinic acetylcholine receptors, for which nicotine 1 (Figure 1) is a selective ligand, and their potential as therapeutic targets is considerable. The
development of pharmacophores for the nicotinic receptors requires the study of the structure-activity relationships and a geometrical approach in the introduction of functional groups which may influence the conformation. ${ }^{[2,3]}$

The attention of many organic chemists was drawn to the area of nicotine analogues in 1992 by the discovery of the natural product epibatidine $\mathbf{2}$ (Figure 1), ${ }^{[4]}$ the skeleton of which is a 7-azabicyclo[2.2.1]heptane ring system. ${ }^{[5]}$ The alkaloid 2 contains a 6 -chloro-3-pyridyl unit as the hydrogen bond acceptor component in the general pharmacophore model, and it has powerful analgesic effects. This has stimulated a remarkable level of interest in spite of its toxicity.[4] Another compound containing the 6-chloro-3-pyridyl fragment is imidacloprid (3, Figure 1), widely used for treatment of soil and green plants. ${ }^{[6]}$ The latter, being an agonist of the nicotinic acetylcholine receptor, is nowadays one of the most active insecticides. Barlocco ${ }^{[7]}$ reported that the epibatidine analogue diazabicyclo[3.2.1]octane derivative $\mathbf{4}$ has similar analgesic properties and a similar mechanism of action as $\mathbf{2}$. Key features of $\mathbf{4}$ are the 4-chloropyridazinyl system connected to one nitrogen atom and the rigid conformation of the molecule.

4

5

Figure 1. Structures of selected biologically active N-containing compounds.

With the development of new computational methods and more powerful computers it is nowadays possible to investigate the interaction between binding sites and substrates. Molecular modelling demonstrated that in substrates for the nicotine receptor, the $\mathrm{N}-\mathrm{N}$ distances and the orientation of the chloroaromatic substituents play an important role in their affinity for the receptor itself. Thus, organic chemists were stimulated to synthesize new compounds with rigidified structures bearing two or more nitrogen atoms held at a well-defined distance between the pharmacophore groups. ${ }^{[7]}$ An example for the successful application of this approach is the synthetic trifluoromethyl-tropanone cyanohydrine 5 (Figure 1) ${ }^{[8]}$ which has high activity as a ligand for the nicotinic receptor.

The discovery of insecto-acaricides with novel modes of action is very important because of insect resistances to compounds which have been in use for several decades, such as carbamate classes of cholinesterase-inhibiting insecticides.[9] Pyrazoline systems, for example, were reported by Salgado ${ }^{[10]}$ to act by blocking the sodium channel of neurons, a novel insecticidal mode of action. The first commercially available compounds of this class were reported by Philips-Duphar,[11] e. g. PH 60-416 (Figure 2). Recently, DuPont reported the highly active and less toxic oxadiazine analogue indoxacarb 7 (Figure 2), [9] which presents a combination of chloro- and trifluoromethoxy-substituted phenyl groups and a formal urea function as biologically active moieties.

6
PH 60-41

7
Indoxacarb

Figure 2. Structure of PH 60-41 (Philips-Duphar) and Indoxacarb (DuPont).

In the last 30 years specific interest has been directed towards the cyclopropyl group as a special substituent in biologically active molecules. Natural and synthetic molecules bearing a cyclopropyl moiety are endowed with a large spectrum of biological properties. ${ }^{[12]}$ In addition, the rigidity of the three-membered ring makes this group a unique structural unit for the preparation of molecules with defined orientation of pendant functional groups.[13] An interesting example of this class of molecules is the 3-azabicyclo[3.1.0]hexane ring system, which contains a fused cyclopropyl group and is also common to a number of biologically active compounds. Some examples of molecules containing this skeleton are 3,4methanoproline 8, which displays gametocidic activity in cereals, bicifadine $\mathbf{9}$, which shows analgetic and antidepressant activity and the highly active antibiotic trovafloxacin $\mathbf{1 0},[14]$ which has a potent activity against Gram-negative, Gram-positive and anaerobic bacteria, and against penicillin-resistant Streptococcus pneumoniae. Trovafloxacin 10 contains as a substituent on C-7 of the naphthyridinon moiety the 3-azabicyclo[3.1.0]hex-6-ylamine (11), which is interesting as a rigid scaffold with two nitrogen atoms held at a well-defined distance (Figure 3).

8

3,4-Methanoproline

9
Bicifadine

10
Trovafloxacin

11

Figure 3. Structures containing the 3-azabicyclo[3.1.0]hexane ring system.

In view of the biological activity of compounds containing 11, its synthesis has attracted some attention. A few methods have been reported for the synthesis of $\mathbf{1 4}$, the N-tert-butoxy-carbonyl-protected form of 11.[15] The rhodium acetate-catalyzed addition of ethyl diazoacetate to N-protected pyrroline is known to give a $2 / 1$ mixture of exo : endo bicyclic carboxylic esters. ${ }^{[14 \mathrm{c}]}$ Brighty ${ }^{[14 \mathrm{~d}]}$ reported that the uncatalyzed addition of ethyl diazoacetate to N-benzylmaleimide $\mathbf{1 2}$ afforded exo-3-azabicyclo[3.1.0]hexane $\mathbf{1 3}$ as a single diastereomer in 36% yield (Schema 1). Amine $\mathbf{1 4}$ was prepared from imide $\mathbf{1 3}$ by a sequence of steps in which a modified Curtius rearrangement was involved.

Schema 1. Synthesis of exo-3-azabicyclo[3.1.0]hex-6-ylamine 14 accroding to Brighty et
 $(\mathrm{PhO})_{2} \mathrm{PON}_{3}, t \mathrm{BuOH}$, vi. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$.

An alternative preparation of amine $\mathbf{1 4}$ was reported by Braish ${ }^{[16]}$ in which the treatment of N -benzylmaleimide (12) with bromonitromethane and dimethyl-1,3,4,5-tetrahydropyrimidine (DMTHP) gave exo-15 as the only product in 36% yield (Scheme 2). The two carbonyl groups in 15 were then reduced prior to selective reduction of the nitro group, otherwise opening of the cyclopropane ring occurred.

Scheme 2. Synthesis of exo-3-azabicyclo[3.1.0]hex-6-ylamine 14 according to Braish et al.[16] a) i. BH_{3}, ii. $\mathrm{H}_{2}, \mathrm{Pt} / \mathrm{C}$, iii. $\mathrm{Boc}_{2} \mathrm{O}$, iv. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$.

Recently, a synthetically useful reaction in which a titanacyclopropane intermediate acts in a formal sense as a 1,2-dicarbanionic equivalent, and thus leads to the formation of two new carbon-carbon bonds, has been developed by Kulinkovich, ${ }^{[17]}$ allowing the conversion of esters to cyclopropanols. A very useful adaptation of the original protocol has been developed by de Meijere ${ }^{[18]}$ for the highly versatile preparation of cyclopropylamines with such titanium 1,2-dicarbanionic equivalents.

By application of this method, the unprotected exo-3-azabicyclo[3.1.0]hex-6-ylamines (11) and the mono-tert-butoxycarbonyl-protected derivative 19 have been prepared in only two steps from N-protected pyrrolines $\mathbf{1 6}$ as well as $\mathbf{1 7}$ and N, N-dibenzylformamide (18) in 87 and 85% yield, respectively (Scheme 3). ${ }^{[19,20]}$

Scheme 3. Synthesis of the exo-3-azabicyclo[3.1.0]hex-6-ylamine (11) and its 3-tertbutoxycarbonyl derivative 19 according to de Meijere.[20]

Cha ${ }^{[21]}$ and Sato ${ }^{[22]}$ independently reported the olefin exchange-mediated intramolecular Kulinkovich hydroxycyclopropanation of ω-vinyl-substituted carboxylates and carboxamides which leads to the formation of bi- and tricyclic cyclopropane-annelated systems. Sato,[22a] moreover, applied this method for the preparation of 1-hydroxy-3-azabicyclo[3.1.0]hexanes 22 and 23 by intramolecular cyclopropanation of N-(2-alkenyl)amino esters 20 and 21 with titanium tetraisopropoxide and isopropylmagnesium chloride (Scheme 4).

Scheme 4. Ti-mediated intramolecular cyclopropanation of esters 20 and $21($ TBDMSO $=$ tert-butyldimethylsilyloxy).

The synthesis of 1 -amino-3-azabicyclo[3.1.0]hexane, structurally related to the amine 11, was reported by Joullié et al, ${ }^{[23]}$ as an application of the intramolecular reductive cyclopropanation of N-allyl- α-aminocarboxylic acid N, N-dimethylamides. Some derivatives (26 and 27, Scheme 5) were prepared as a mixture of endo- and exo-diastereomers in a ratio of 2:1 by treatment of amides 24 and $\mathbf{2 5}$ with chlorotitanium triisopropoxide and cyclopentylmagnesium chloride in good yields (Scheme 5).

Scheme 5. Ti-mediated intramolecular cyclopropanation of amides 24 and $\mathbf{2 5}$.

1-Amino-3-azabicyclo[3.1.0]hexane (28), as an isomer of 11, and 1-amino-3-azabicyclo[3.1.0]heptane (29) (Figure 4) could be interesting structures from a pharmaceutical point of view. Due to the position of the substituents, the distance between the nitrogen atoms in $\mathbf{2 8}$ and 29 is different from that one in diamine 11. Thus, the isomers 28 and 29 are likely to display altered biological activities. In order to be able to utilize these scaffolds in combinatorial approaches to libraries of compounds 30-33 containing at least two different aromatic or heteroaromatic substituents and alkyl substituents on the two nitrogen atoms, the latter would have to be chemically addressable individually and selectively.

$28 n=1$
$29 n=2$

$30 n=1, \mathrm{R}^{1}=$ alkyl, $\mathrm{R}^{2}=$ aryl
$31 n=2, \mathrm{R}^{1}=$ alkyl, $\mathrm{R}^{2}=$ aryl
$32 n=1, \mathrm{R}^{1}=$ aryl, $\mathrm{R}^{2}=$ alkyl
$33 n=2, \mathrm{R}^{1}=$ aryl, $\mathrm{R}^{2}=$ alkyl

Figure 4. 1-Amino-3-azabicyclo[3.1.0]hexane (28), 3-azabicyclo[4.1.0]heptane (29) and their derivatives.

Accordingly, a synthetic protocol ought to be developed, which would allow one to prepare a variety of tri- and monoprotected derivatives with the 3-azabicyclo-[3.1.0]hexane $\mathbf{3 9}$ and the homologous 3-azabicyclo[4.1.0]heptane 40 skeleton by intramolecular cyclopropanation of N-allyl and N-homoallyl alkylamides of types 35-38 (Scheme 6). The latter ought to be accessable from natural amino acids or, in the case of glycine derivatives, simply from bromoacetyl bromide (34).

Scheme 6. Strategy for the synthesis of 1-amino-3-azabicyclo[3.1.0]hexanes and homologues 39-42.

The O-protected 2-hydroxymethyl-1-amino-3-azabicyclo[3.1.0]hexane derivative 41, which has an interesting additional functionality for further elaboration, ought to be accessable along this route from the natural amino acid L-serine. Oxidation of the liberated hydroxy function in 41, for example, may give amino-substituted analogues 47 of the natural 3,4-methanoproline 8. Moreover, it should be possible to attach aromatic and heteroaromatic substituent s to compounds 28 and 29 in order to obtain new ligands for the nicotinic receptors (e. g. 30-33 and 43) and new analogues such as 44 and $\mathbf{4 5}$ of indoxacarb (7).

43

$32 n=1$ $33 n=2$

$44 \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{CF}_{3}$

$39 n=1, \mathrm{R}^{2}=\mathrm{H}$
$40 n=2, \mathrm{R}^{2}=\mathrm{H}$
$41 n=1, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OR}$
$42 n=2, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OR}$

$45 \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{CF}_{3}$

46

$30 n=1$
$31 n=2$

47

Scheme 7. Strategies for the further elaboration of the 3-azabicyclo[3.1.0]hexane and the 3-azabicyclo-[3.1.0]heptane skeletons.

The aims of this project can be summarized as follows:

- Synthesis of 2-hydroxymethyl-3-azabicyclo[3.1.0]hex-1-ylamine 41 and further elaboration of the hydroxy function.
- Synthesis of 1-amino-3-azabicyclo[3.1.0]hexane (28) and 1-amino-3-azabicyclo[4.1.0]heptane (29) and study of their reactivity in nucleophilic aromatic substitution.
- Investigation of intramolecular reductive cyclopropanations for the synthesis of oligocyclic compounds with the 3-azabicyclo[3.1.0]hexane skeleton.
- Synthesis of trifluoromethyl derivatives of type $\mathbf{4 3}$ as analogues of compound 5.
- Synthesis of indoxacarb analogues of types 44 and 45.
- Study on the 1,3-dipolar cycloaddition of nitrones to highly strained alkenes and subsequent thermal rearrangement of the resulting cycloadducts for the synthesis of spirocyclopropane-annelated azaheterocycles.

B. Main Part

1. Synthesis of 3-Azabicyclo[3.1.0]hex-1-ylamines by Ti-Mediated Intramolecular Reductive Cyclopropanation

1.1. Synthesis of N,N-dialkylamides from L-serine

The first aim of this project was the development of a synthetic method for the synthesis of 3-azabicyclo[3.2.1]hexane and 3-azabicyclo[4.2.1]heptane derivatives by Ti-mediated intramolecular reductive cyclopropanation, which may be applied to different types of substrates. Initially this transformation was investigated with the natural amino acid L-serine (48) as the starting material for the synthesis of the corresponding amides, precursors for the intramolecular cyclopropanation. L-Serine (48) was transformed into its methyl ester (49, 93%)[24], and this protected as the tert-butyldimethylsilyl ether ${ }^{[25]} \mathbf{5 0}$ by treatment with tert-butyldimethylsilyl chloride (TBDMSCl), N, N-dimethylaminopyridine (DMAP) and $\mathrm{Et}_{3} \mathrm{~N}$ in 65% yield (Scheme 8).

Scheme 8. Transformations of L-serine.

When compound 50 was treated with PhCHO and NaBH_{4} in $\mathrm{MeOH},[26]$ the N-benzyl derivative 51-TBDMS and the O-deprotected derivative $\mathbf{5 1}-\mathrm{H}$ were obtained in a ratio of $1: 1.1$. The alcohol $\mathbf{5 1 - H}$ could be removed by column chromatography, but its formation as the major product limited the use of this method. The problem of the partial deprotection of compound $\mathbf{5 1}$ was solved by performing the reductive N-alkylation on serine methyl ester hydrochloride (49), followed by TBDMS protection (Scheme 9). The hydrochloride 49 was converted into the N-benzyl derivative 52 in 87% yield. ${ }^{[26]}$ Protection of the hydroxy function was carried out by treatment with $\mathrm{TBDMSCl}, \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DMAP}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give compound 51-TBDMS in 75\% yield. ${ }^{[25]}$ The latter was transformed into the N-allyl- N-benzyl derivative 53 in 82% yield, when allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN were used.[27] The methyl ester 53 was then converted into the corresponding N, N-dimethyl amide $\mathbf{5 4}$ by treatment with AlMe_{3}, $\mathrm{HNMe}_{2} \cdot \mathrm{HCl}$ in benzene/THF[23] in 51% yield (Scheme 9).

Scheme 9. Synthesis of N, N-dimethylamide 54.

The possibility to prepare N, N-dibenzyl derivatives was also considered, in order to be able to deprotect the amino group after intramolecular cyclopropanation of the corresponding amide. The synthesis of such derivatives required a different set of reactions than was used for the N, N-dimethylamides (Scheme 10). N,N-dibenzylamide 56 was prepared starting from N-benzylserine (55) in a "one-pot" synthesis by treatment with TBDMSCl and imidazole (Im-H) in DMF at ambient temperature for $24 \mathrm{~h},[28]$ followed by treatment with dicyclohexylcarbodiimide (DCC), hydroxybenzotriazole (HOBT) and $\mathrm{HNBn}_{2}{ }^{[29]}$ at ambient temperature for 24 h in 49% overall yield. The desired N -allyl derivative 57 was obtained from the N, N-dibenzylamide 56 in 64% yield using allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN (Scheme 10).[27]

Scheme 10. Synthesis of (S)-2-(allylbenzylamino)-N,N-dibenzyl-3-(tert-butyldimethylsilyloxy)propionamide 57.

1.2. Synthesis of endo- and exo-(2R)-N,N-dialkyl-3-benzyl-2-(tert-butyldimethylsilyloxy-methyl)-3-azabicyclo[3.1.0]hex-1-ylamines

Under the conditions published by Joullié ${ }^{[23]}$ for the reductive intramolecular cyclopropanation of α-substituted N-allylglycine N, N-dimethylamides \quad [4.50 equiv. c PentMgCl, 1.00 equiv. $\mathrm{ClTi}(\mathrm{OiPr})_{3}, \mathrm{THF}, 20^{\circ} \mathrm{C}$, see Section A], the serine N, N-dimethylamide 54 and the N, N-dibenzylamide 57 did not cyclize to the corresponding bicyclic diamines. However, the target 1-amino-3-azabicyclo[3.1.0]hexane derivatives $\mathbf{5 8}$ and $\mathbf{5 9}$ were obtained from the amides 54 and 57 applying a slightly different protocol [1.50 equiv. methyltitanium triisopropoxide, $\mathrm{MeTi}(\mathrm{OiPr})_{3}$, instead of $\mathrm{ClTi}(\mathrm{Oi} \operatorname{Pr})_{3}$ and 5.00 equiv. Of cyclohexylmagnesium bromide, $c \mathrm{HexMgBr}$, instead of $c \mathrm{PentMgCl}$] in 89 and 83% yield, respectively (Scheme 11). The observed diastereoselectivity was endo-58 : exo-58 = $2: 1$ and endo-59 : exo-59 $=2.5: 1$.

Scheme 11. Intramolecular reductive cyclopropanation of N-allyl- N-benzyl aminoserine N, N-dialkylcarboxamides 54 and 57.

Earlier experiments ${ }^{[30]}$ had disclosed that $\mathrm{MeTi}(\mathrm{OiPr})_{3}$ gave consistently better yields of cyclopropylamines from N, N-dialkylcarboxamides. This was confirmed for the conversion of esters to cyclopropanols when ligand exchange was involved in the generation of the reactive titanium intermediate.[31] Cyclohexylmagnesium bromide also gave better yields and purer products than cyclopentylmagnesium halides (bromide or chloride).[20b]

The formation of the endo- and exo-isomers can be explained on the basis of the following mechanism (Scheme 12).[23]

Scheme 12. Mechanism and explanation of diastereoselectivity in the Ti-mediated intramolecular cyclopropanation of amide 54 and 57.

The titanacyclopropane intermediate $\mathbf{6 0}$, formed in the reaction between $\mathrm{MeTi}(\mathrm{OiPr})_{4}$ and $c \mathrm{HexMgBr}$, undergoes ligand exchange with the allyl moiety of $\mathbf{5 4}$ and $\mathbf{5 7}$ to give the titanacyclopropane intermediate 61 and 62. The latter undergo titanacyclopropane ring expansion by insertion of the amide carbonyl group between titanium and the most highly substituted carbon atom. The more favorable conformation 61 has the hydroxymethyl group anti to the hydrogen of the most highly substituted carbon atom of the titanacyclopropane and to the NR_{2} group. The titanacyclopropane ring expansion in the intermediate $\mathbf{6 1}$ may lead to the formation of a titanaoxacyclopentane of type $\mathbf{6 3}$ which, through the intermediate iminium ion 65, leads to the endo-isomer as the major product. In the case of N, N-dibenzyl derivatives the more severe steric interaction in the intermediate of type 62, which leads to the formation of the exo-isomer, may explain the diastereoselectivity observed.
2. Synthesis of 1-Amino-3-azabicyclo[3.1.0]hexanes and 1-Amino-3-azabicyclo[4.1.0]heptanes

2.1. Synthesis of N,N-dialkylamides from bromoacetyl bromide

The results obtained in Section 1 stimulated the application of the intramolecular cyclopropanation towards the synthesis of the bicyclic amines $\mathbf{2 8}$ and $\mathbf{2 9}$ (see Section A).

The N-allylglycine N, N-dialkylamides 70-73 were prepared from 2-bromoacetamides $\mathbf{6 7}$ and 68 by nucleophilic substitution ${ }^{[32,33]}$ with the appropriately N-substituted allyl- or homoallylamine in good yields (Table 1).

Table 1. Synthesis of amides 70-73.

R^{1}	$\mathrm{R}^{2}, \mathrm{R}^{3}$	n	Base	Solv.	Product	Yield (\%)
Bn	Bn, Bn	1	$\mathrm{Et}_{3} \mathrm{~N}$	THF	$\mathbf{7 0}$	98
Bn	Bn, Me	1	$\mathrm{Et}_{3} \mathrm{~N}$	THF	$\mathbf{7 1}$	85
Me	Bn, Bn	1	$\mathrm{Et}_{3} \mathrm{~N}$	THF	$\mathbf{7 2}$	93
Bn	Bn, Bn	2	NaH_{2}	DMF	$\mathbf{7 3}$	76
Boc	Bn, Bn	1	$\mathrm{Et}_{3} \mathrm{~N}$	THF	$\mathbf{7 4}$	$\mathbf{-}$
Boc	Ph, Ph	1	$\mathrm{Et}_{3} \mathrm{~N}$	THF	$\mathbf{7 5}$	$\mathbf{-}$

The preparation of amides 74 and 75 containing the N-tert-butoxycarbonyl (Boc) group required a different synthetic approach, because the N-allyl- N-tert-butoxycarbonylamine reacted sluggish in the nucleophylic substitution with bromoacetamides 67 and 69 (Table 1).

Compounds 74 and 75 were obtained by treating 2-bromoacetamides $\mathbf{6 7}$ as well as $\mathbf{6 9}$ with allylamine in THF followed by N-Boc-protection of the amino group in 57 and 54% yield, respectively (Scheme 13). ${ }^{\text {[34] }}$

Scheme 13. Synthesis of N-Boc-protected amides 74 and 75.

2.2. Ti-mediated reductive intramolecular cyclopropanation of N, N-dialkylamides

The amides 70-75 were subjected to the optimized conditions for the reductive intramolecular cyclopropanation of serine derivatives. The targets 1 -amino-3-azabicyclo[3.1.0]hexane and 1-amino-3-azabicyclo[4.1.0]heptane derivatives 76-81 were obtained from the corresponding amides in moderate to good yields, when $\mathrm{MeTi}(\mathrm{OiPr})_{3}$ (1.50 equiv.) and $c \mathrm{HexMgBr}$ (5.00 equiv.) were used (Table 2). Only in the case of compound 75 the formation of the desired product $\mathbf{8 1}$ was not observed.

Table 2. Intramolecular cyclopropanation of amides 70-75.

The structural features of the homologous $N, N, 3$-tribenzyl-3-azabicyclo[3.1.0]hex-1-ylamine (76) and $N, N, 3$-tribenzyl-3-azabicyclo[4.1.0]hept-1-ylamine (79) were established by X-ray crystal structure analyses (Figure 5). The structural parameters of the two compounds are very similar, and in both cases the two phenyl rings of the dibenzylamino fragment are orthogonal with respect to each other. The N-benzyl group on the heterocycle in both cases adopts an equatorial position bending the envelope of the azacyclopentane moiety in 76 and the chair of the azacyclohexane in 79 in such a way that the whole azabicyclo[3.1.0]hexane and azabicyclo[4.1.0]heptane systems adopt boat conformations.

Figure 5. Molecular structures of N,N,3-tribenzyl-3-azabicyclo[3.1.0]hex-1-ylamine 76 and $N, N, 3$-tribenzyl-3-azabicyclo[4.1.0]hept-1-ylamine 79 in the crystal (top) and their superpositions (bottom).

Both compounds are racemates and therefore crystallized in a centrosymmetric space group. The geometry of the molecules and their packing in the crystals are quite similar, however the conformations of the molecules are different, as demonstrated by the superpositions of
molecules with their 3-membered ring carbon and their nitrogen atoms of the dibenzylamino groups held at the same places (Figure 5). Molecule 76 has an $a p$ orientation (with respect to the heterocycle) of the quasi-equatorial $\mathrm{N} 2-\mathrm{C} 20$ bond [dihedral angle $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 20-\mathrm{C} 21=-$ $163.0(1)^{\circ}$] and an $s c$ orientation of the quasi-axial N2-C13 bond [angle C2-N2-C13-C14 = $\left.69.7(1)^{\circ}\right]$. In contrast, molecule 79 has an $a p$ orientation of the quasi-axial bond N2-C14 and an $s c$ orientation of the quasi-equatorial bond $\mathrm{N} 2-\mathrm{C} 7$ [dihedral angles $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 14-\mathrm{C} 15=-$ $169.9(1)^{\circ}$ and $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8=66.0(1)^{\circ}$, respectively].

The unprotected diamine hydrochlorides $\mathbf{2 8 - H C l}, \mathbf{2 9 - H C I}$ and partially unprotected diamine hydrochlorides $\mathbf{8 2 - H C l}, \mathbf{8 3 - H C l}$ and $\mathbf{8 4}$ were obtained from the corresponding amines $\mathbf{7 6} \mathbf{- 8 0}$ by catalytic hydrogenation in the presence of an $\mathrm{HCl} / \mathrm{iPrOH}$ solution in MeOH (Table 3).

Table 3. Deprotection of the benzyl-protected 3-azabicyclo[3.1.0]hex-1-ylamines 76, 77, 78, 80 and $N, N, 3$-tribenzyl-3-azabicyclo[4.1.0]hept-1-ylamine (79).

${ }^{\text {a }}$ Compound 84 was obtained as a free base.

3. Ti-Mediated Intramolecular Reductive Cyclopropanation of Carbonitriles

3.1. Considerations

The derivatives discussed in Section 2 still do not allow one to fully control the introduction of potential aryl substituents on the primary amino group. The best way to solve this problem would be by way of a one-step preparation of the bicyclic diamines with a protected secondary and an unprotected primary amino group which, according to the logic of the titanium-mediated transformation, might be achieved using nitriles as starting materials. Early attempts to convert aliphatic nitriles into primary cyclopropylamines under the action of Grignard reagents and $\mathrm{Ti}(\mathrm{OiPr})_{4}$ were met only with very moderate success. ${ }^{[35]}$ Szymoniak et al., however, found that nitriles do react with in situ generated titanacyclopropane intermediates to form remarkably stable azatitanacyclopentane intermediates which only upon activation by an added Lewis acid (LA) like boron trifluoride etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ eventually undergo ring contraction to the Lewis acid-complexed primary cyclopropylamines. Aqueous work-up under basic conditions then furnished the primary cyclopropylamines in moderate to good yields.[36] In an independent development it was found that in particular aromatic nitriles could be converted to primary cyclopropylamines by treatment with dialkylzinc reagents in the presence of $\mathrm{Ti}(\mathrm{OiPr})_{4}$ and addition of lithium isopropoxide (LiOiPr) or lithium iodide (LiI).[37]

3.2. Synthesis of 2-allylaminoacetonitriles

Some nitriles for an intramolecular application of this protocol were synthesized. Treatment of chloroacetonitrile (85) with allylamine, $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF followed by protection with $\mathrm{Boc}_{2} \mathrm{O}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH afforded the nitrile 86 in 35% overall yield (Scheme 14).[38] Compound 87 was prepared from chloroacetonitrile (85) by initial amination using 4-methoxybenzylamine $\left(\mathrm{PMBNH}_{2}\right)$ in EtOAc, followed by treatment with allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN in 46% overall yield. N-Allyl- N-benzylacetonitrile (88) was prepared according to a published procedure.[39]

Scheme 14. Synthesis of nitriles $\mathbf{8 6}$ and $\mathbf{8 7}$.

3.3. Synthesis of 3-substituted 3-azabicyclo[3.1.0]hex-1-ylamines from 2-allylaminoacetonitriles

The intramolecular reductive cyclopropanation of nitriles 86-88 upon treatment with $\mathrm{MeTi}(\mathrm{OiPr})_{3}$ (1.10 equiv.) and $c \mathrm{HexMgBr}$ (2.00 equiv.) with subsequent addition of a Lewis acid did indeed provide the 3-tert-butoxycarbonyl-3-azabicyclo[3.1.0]hex-1-ylamine (84), 3-(4-methoxybenzyl)-3-azabicyclo[3.1.0]hex-1-ylamine (90) and 3-benzyl-3-azabicyclo-[3.1.0]hex-1-ylamine (91), albeit in moderate yields (Table 4).

Table 4. Intramolecular reductive cyclopropanation of N-allylaminocarbonitriles 86-88.

While only traces of the product 91 were detected under the conditions developed by Szymoniak et al. to accelerate the ring contraction of the intermediate azatitanacyclopentene

89, i. e. addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a Lewis acid at ambient temperature, compound 91 could be obtained by heating the reaction mixture at $70^{\circ} \mathrm{C}$ for 2 h . The reaction, however, proceeded more cleanly and gave the bicyclic diamine 91 in 48% yield, when the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 3 h after addition of 2 equivalents of lithium iodide. No by-products could be isolated except for unidentified oligomeric materials. The structure of the diamine 91 was confirmed by an X-ray crystal structure analysis of its hemihydrochloride $91 \cdot 0.5 \mathrm{HCl}$ (Figure 6).

The structure of $\mathbf{9 1} \cdot 0.5 \mathrm{HCl}$ is another example of the conformational flexibility of this class of compounds. The unit cell contains two independent molecules, both are partially disordered. The independent molecules are different conformers. The dihedral angle C6-N5-C7-C8, describing the conformation of the benzyl group relative to the bicyclic system, is $172.5(2)^{\circ}$ in one independent molecule and $-72.8(2)^{\circ}$ in the second one. Molecules in crystals of $91 \cdot 0.5 \mathrm{HCl}$ are linked to each other by a network of hydrogen bonds of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ types, forming a layered structure (Figure 6).

Figure 6. Molecular structure (left) and packing (right) of the 3-benzyl-3-azabicyclo[3.1.0]hex-1-ylamine hemihydrochloride $\mathbf{9 1} \cdot 0.5 \mathrm{HCl}$ in the crystal (displacement ellipsoids are shown at the 50% probability level).

3.4. Attempted synthesis of 3-azabicyclo[4.1.0]heptane systems from nitrile derivatives

In contrast to the behavior of nitriles 86-88, the homologous N-allyl- N-benzyl-3-aminopropionitrile (93) and N-homoallyl- N-benzyl-2-aminoacetonitrile (95), the synthesis of which is described in Scheme 15, gave predominantly the 1-benzyl-4-methylpiperidin-3one (98) ${ }^{[40]}$ (45\%) and 1-benzyl-3-methylpiperidin-4-one (99) ${ }^{[41]}$ (35\%) resulting from hydrolysis of the intermediate azatitanacyclopentenes 96 and 97, respectively. Apparently the
intermediates $\mathbf{9 6}$ and $\mathbf{9 7}$ are particularly stable under the used reaction conditions, and only traces of the corresponding 3-azabicyclo[4.1.0]heptane derivatives were obtained (Scheme 16).

Scheme 15. Synthesis of N-allyl- N-benzyl-3-aminopropionitrile (93) and N-homoallyl-N-benzyl-2-aminoacetonitrile (95)

96

97

98 (45\%)

Scheme 16. Intermediate azatitanacyclopentenes $\mathbf{9 6}$ and $\mathbf{9 7}$ and their hydrolysis products $\mathbf{9 8}$ and 99 .

4. Synthesis of 3-Aryl-3-azabicyclo[3.1.0]hex-1-ylamine Derivatives

4.1. Introduction

Aromatic amines play an important role in many areas including pharmaceuticals, agrochemicals, photography, pigments and electronic materials.[42] In the last 25 years the advent of Pd-catalyzed cross-coupling reactions introduced a new concept of carbon-carbon bond formation. The strategies developed by Kumada, Stille, Suzuki, Negishi, Heck and Sonogashira are now widely used.[43]

The Pd-catalyzed cross-coupling reactions were applied for the first time to the formation of carbon-heteroatom bonds by Kosugi and Migita in 1983.[44] They reported that N, N-diethylanilines can be prepared from the $\mathrm{PdCl}_{2}\left[\mathrm{P}(o \text {-tolyl })_{3}\right]_{2}$-catalyzed reaction of aryl bromides and N, N-diethylaminotributylstannane. During the following 10 years no example of such reactions was reported, until Buchwald et al. and Hartwig et al. started their investigations in this field. They demonstrated that using $\mathrm{Pd}(\mathrm{dba})_{2}$ and $\mathrm{P}(o \text {-tolyl })_{3}$ in the presence of a base such as sodium tert-butoxide $(\mathrm{NaO} t \mathrm{Bu})$ the reaction proceeds without the use of stannanes. ${ }^{[45]}$ However, such conditions presented problems in the reaction of primary amines and were of limited use in the synthesis of aminopyridines. The latter are important compounds, they have been used as acyl transfer reagents in organic chemistry ${ }^{[46]}$, as ligands in organometallic chemistry[47], as fluorescent dyes ${ }^{[48]}$ and as central nervous system stimulants. [49] The current methods for the preparation of aminopyridines are based on nucleophilic aromatic substitution of halopyridines. However, this process usually gives low yields and requires activated substrates and high temperatures.[50] Attempts to apply $\operatorname{Pd}(0)$ complexes in the cross-coupling reaction of bromopyridines have been unsuccessful. ${ }^{[50]}$ It has been shown that these pyridines inhibit the $\mathrm{Pd}(0) / \mathrm{P}(o \text {-tolyl })_{3}$-catalyzed amination of aryl
bromides by displacing a $\mathrm{P}(o \text {-tolyl })_{3}$ ligand, forming inactive trans-bis(pyridyl)palladium complexes. ${ }^{[51]}$ Buchwald et al. found that using chelating bisphosphines, 3-bromopyridines could be converted to their aminated derivatives in good yields, even in the presence of primary amines. ${ }^{[52]}$ They showed that chelating bisphosphines do not undergo ligand exchange with pyridines (thus preventing deactivation of the catalyst) and inhibit side reactions such as β-hydride elimination from an amidopalladium intermediate. Several examples ${ }^{[53]}$ have been reported which show the catalyst generated from $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $(\pm)-2,2^{\prime}$-bis(diphenylphosphino)-1,1'-binaphthyl $[(\pm)-$ BINAP, 100, Figure 7$]$ to be the most general system for the cross-coupling reaction of a wide variety of substrates including 3-bromopyridines and primary amines.

100
(\pm)-BINAP

101
dppf

102
2-(di-tert-butylphosphino)biphenyl

Figure 7. Ligands for Pd-catalyzed cross-coupling aminations.

In the same period Hartwig et al. reported on the use of 1,1 '-bis(diphenylphosphino)ferrocene (dppf, 101) as a chelating ligand for Pd-catalyzed amination of aryl halides. ${ }^{[54]}$ Complexes of 101 and $\operatorname{Pd}(0)$ prefer reductive elimination over β-hydride elimination. It is assumed that this preference ${ }^{[55]}$ results from chelation and a large bite angle rather than from steric effects.

In 1999 Buchwald et al. reported the development of catalysts of the third generation, such as 2-(di-tert-butylphosphino)-biphenyl (102) which, in combination with $\operatorname{Pd}(\mathrm{OAc})_{2}$, is able to effect even the amination of chloropyridines in high yields.[56]

The catalytic cycle for the Pd-catalyzed cross-coupling amination for $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and ligand L is believed to be similar to that postulated for many Pd-catalyzed C-C bond forming processes (Scheme 17).[53]

113

Scheme 17. Catalytic cycle for the Pd-catalyzed cross-coupling amination.

The initial reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(\mathbf{1 0 3})$ and $\mathrm{L}_{n}(\mathbf{1 0 4})$ leads to the formation of the complex 105 which probably undergoes dissociation of a dba ligand to complex 106. Oxidative addition of an aryl bromide $\mathbf{1 0 7}$ to $\mathbf{1 0 6}$ gives complex 108. Coordination of the amine $\mathbf{1 0 9}$ to $\mathbf{1 0 8}$,
followed by deprotonation induced by $\mathrm{NaO} t \mathrm{Bu}$ as a base, may form amido complex 114, which undergoes reductive elimination to form the target compound $\mathbf{1 1 5}$ and to regenerate the $\operatorname{Pd}(0)$ catalyst. Alternatively, Hartwig et al. have demonstrated that by addition of the amine 109 to $\left(\mathrm{L}_{n}\right) \operatorname{Pd}(\mathrm{Ar})(\mathrm{O} t \mathrm{Bu})\left(\mathbf{1 1 3}, \mathrm{L}_{n}=\mathrm{dppf}\right)$, the aryl amine is formed via intermediate 114.[55] Thus, it can be postulated that the reaction proceeds via complex $\mathbf{1 1 3}$ when $\mathrm{NaO} t \mathrm{Bu}$ (111) is used as a base.

4.2. Nucleophilic aromatic substitution with 3-azabicyclo[3.1.0]hex-1-ylamine

Belov ${ }^{[57]}$ observed that exo-6-tert-butoxycarbonylamino-3-azabicyclo[3.1.0]hexane underwent nucleophilic aromatic substitution with highly active heteroaromatic chlorides under thermal conditions in good yields.

In this project, the reactivity toward nucleophilic aromatic substitution was studied with the 3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (28-HCI), its partially protected derivatives $\mathbf{8 2}-\mathbf{H C l}-\mathbf{8 4}-\mathbf{H C l}$ and the 3-azabicyclo[4.1.0]hept-1-ylamine dihydrochloride ($\mathbf{2 9} \mathbf{- H C l})$. Nucleophilic aromatic substitution of amine $\mathbf{2 8 - H C l}$ may lead to a mixture of mono-, di- and triarylsubstituted products. Indeed, reaction of amine $\mathbf{2 8 - H C l}$ with 2-chloropyrazine as well as 3,6-dichloropyridazine in MeCN , in a sealed tube at $80^{\circ} \mathrm{C}$ for 1 d (entries 1 and 3, Table 5), gave products 116 and 117 in 16 and 35% yield, respectively, after aqueous work up and chromatographic purification. The 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamines were formed as the sole products and no traces of 1-aryl amino derivatives were observed.

Table 5. Nucleophilic aromatic substitution with $\mathbf{2 8 - H C I}, \mathbf{8 2 - H C I}$ and $\mathbf{2 9 - H C l}$.

Upon heating in N, N-dimethylacetamide (DMAA) at $130^{\circ} \mathrm{C}$ for 3 h and performing a simple filtration without aqueous work up, better yields were observed. Due to the significantly shorter reaction times, extensive decomposition of starting material is prevented, and no product was lost in the aqueous phase during the work up. Even in the case of N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine hydrochloride (82-HCI) (entry 5, Table 5), in which the presence of two secondary amines should give a competitive nucleophilic substitution, the exclusive formation of the 3-aryl derivative $\mathbf{1 1 8}$ was detected.

4.3. Pd-catalyzed cross coupling of 3-azabicyclo[3.1.0]hex-1-ylamines

The introduction of a pyrid-3-yl function was of great interest in order to synthesize new possible nicotinic receptor ligands (see Section A). As reported in Section 4.1, the aromatic substitution of 3-halopyridines requires Pd-catalysis. It was considered first to apply Buchwald's protocol ${ }^{[53]}$ to the reaction of $\mathbf{8 2 - \mathbf { H C l }}$ with 3-bromopyridine as well as 5-bromopyrimidine in the presence of NaOt Bu (3.50 equiv.) and a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($2 \mathrm{~mol} \%$) and (\pm)-BINAP ($4 \mathrm{~mol} \%$) as a catalyst in toluene (Table 6).

Table 6. Pd-catalyzed cross-coupling reactions of $\mathbf{2 8}-\mathbf{H C l}$ and $\mathbf{8 2 - H C l}$.

The reaction was complete within 3 h at $80^{\circ} \mathrm{C}$ (TLC control), and the target molecules $\mathbf{1 2 0}$ and $\mathbf{1 2 1}$ were obtained in 37 and 26% yield, respectively (Table 6). Change of the solvent improved the yield and $\mathbf{1 2 0}, \mathbf{1 2 1}$ and $\mathbf{1 2 3}$ were obtained in 67,61 and 63% yield, respectively, when 1,2-dimethoxyethane (DME) and a catalyst mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ and (\pm)-BINAP ($10 \mathrm{~mol} \%$) were used. Also in this case, the 3 -substituted arylamines were obtained as the sole products.

An alternative approach to compound of $\mathbf{1 2 0}$ would be to introduce the pyridin-3-yl substituent directly in the amide 125, as the starting material for the Ti-mediated intramolecular reductive cyclopropanation (Scheme 18).

124

Scheme 18. A strategy for the synthesis of the amide $\mathbf{1 2 5}$.

Compound 124 was synthesized according to Putman et al. ${ }^{[58]}$ in a Pd-catalyzed cross-coupling of allylamine and 3-bromopyridine, which involved $\mathrm{PdCl}_{2}(\mathrm{dppf}) / \mathrm{dppf}$ as a catalyst system, in 65% yield. Alkylation of amine $\mathbf{1 2 4}$ with N-benzyl- N-methylbromoacetamide (68) was attempted by treatment with $\mathrm{Et}_{3} \mathrm{~N}$ in THF, but heating at $40^{\circ} \mathrm{C}$ for 1 d only led to quantitative recovery of starting materials. Initially this poor reactivity was thought to be a result of the reduced acidity of the NH proton in $\mathbf{1 2 4}$. However, the use of stronger bases such as $\mathrm{NaH}, n \mathrm{BuLi}$ and $\mathrm{LiN}(\mathrm{SiMe})_{2}$ did not give the desired product either (Scheme 19).

1) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$
2) $68,40^{\circ} \mathrm{C}, 1 \mathrm{~d}$

Scheme 19. Attempted synthesis of the amide 125.

Another possible approach was the use of amine $\mathbf{1 2 6}$ in the Pd-catalyzed crosscoupling of 3-bromopyridine, but even in this case the reaction did not take place, and unreacted starting materials were recovered (Scheme 20).

Scheme 20. Attempted synthesis of amide $\mathbf{1 2 5}$ from amine 126.

4.4. Pd-catalyzed aromatic substitution of 3-methyl-3-azabicyclo[3.1.0]hex-1-ylamine hydrochloride

The high selectivity observed in the arylations in Sections 4.2 and 4.3 indicated that this approach did not allow the synthesis of 1-arylamino derivatives. In fact, the primary amine 83-HCl did not react with 2-chloropyrazine as well as 3,6-dichloropyridazine to give compounds 127 and 128, respectively (Scheme 21).

Scheme 21. Attempted synthesis of compounds $\mathbf{1 2 7}$ and 128.

Thus, the next idea was to perform the Pd-catalyzed cross coupling with highly reactive heterocycles, in analogy to the results reported in Section 4.3. However, the reaction with 3-bromopyridine, 5-bromopyrimidine and 3,6-dichloropyridazine, using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathbf{1 0 0}$ as a catalytic system, did not proceed and the formation of any desired products was not observed (Table 7).

Table 7. Attempted Pd-catalyzed amination of $\mathbf{8 3 - H C l}$.

Unfortunately, this approach did not lead to the target compounds even when a combination of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathbf{1 0 2}$ and the highly reactive 3,6-dichloropyridazine was employed. Amine 83$\mathbf{H C l}$ underwent twofold substitution only in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathbf{1 0 0}$ with 6-chloropyrazine, and compound $\mathbf{1 3 1}$ was isolated in 35% yield (Scheme 22). In line with this unexpected result, compound 131 was obtained in 62% yield as a crystalline solid when 2 equivalents of 6-chloropyrazine were used.

Scheme 22. Synthesis of 3-methyl- N, N-di(pyrazin-2-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (131).

4.5. Synthesis of 5-chloropyridin-3-yl derivatives

It is known that 3-chloro- and 3,5-dichloropyridines do not undergo nucleophilic aromatic substitution with amines. ${ }^{[53,54]}$ Therefore, these pyridines appeared to be good candidates to be employed in a Pd-catalyzed cross-coupling reactions as described by Buchwald et al. and Hartwig et al..

Table 8. Pd-catalyzed amination of 3,5-dichloropyridine.

Amine	Cat.	Ligand	Solvent	Product	Yield [\%]
$28-\mathbf{H C l}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$		DME	132	-
$82-\mathrm{HCl}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$		100		
$82-\mathrm{HCl}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	100	$n \mathrm{Bu}_{4} \mathrm{NCI}$	133	-
$82-\mathrm{HCl}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	102	DME	133	38
$28-\mathrm{HCl}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	102	DME	132	41

Amines $\mathbf{2 8 - H C l}$ and $\mathbf{8 2 - H C l}$ were heated with 3,5 -dichloropyridine at $80^{\circ} \mathrm{C}$ in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathbf{1 0 0}$, but the desired products $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$ were not formed, even when the phase transfer catalyst $n \mathrm{Bu}_{4} \mathrm{NCl}$ was added. Hartwig et al. ${ }^{[59]}$ reported that the saturated carbene ligands, used by Grubbs et al. in ruthenium complexes for olefin metathesis, ${ }^{[60]}$ led to fast reactions in the Pd-catalyzed coupling of aryl chlorides with amines. But even when ligand 134 was used in combination with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, the desired reaction did not take place (Table 8).

The desired results were obtained when $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used in combination with 2-(di-tert-butylphosphino)-biphenyl (102) to provide the 3-substituted amines $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$ in 38 and 40% yield, respectively (Table 8).

Amine $\mathbf{1 3 3}$ was further elaborated by introduction of an additional amino substituent to provide a fourth nitrogen atom in the molecule. After heating the amine $\mathbf{1 3 3}$ and 1-chloro-2-dimethylaminoethane hydrochloride in EtOH for 3 h at $80^{\circ} \mathrm{C}$, compound $\mathbf{1 3 5}$ was isolated in 48\% yield (Scheme 23).

133

135

Scheme 23. Synthesis of N-(2-dimethylaminoethyl)- N-methyl-3-(5-chloropyridin-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (135).

4.6. Attempted synthesis of aniline derivatives

In this context the Pd-catalyzed cross coupling of aryl bromides with amines $\mathbf{8 3 - H C I}$ and $\mathbf{8 4}$, using $\mathrm{NaO} t \mathrm{Bu}$ (1.40 equiv.) and a variety of catalytic systems in toluene at $110^{\circ} \mathrm{C}$ was also investigated. Again, the primary amine proved to be inert under any catalytic conditions, and the desired products were not obtained.

Table 9. Pd-catalyzed cross-coupling of aryl bromides.

Amine	ArX	Cat.	Ligand	Solvent	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	Product
$83-\mathrm{HCl}$		$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	100	toluene	110	136
$83-\mathrm{HCl}$		$\mathrm{Pd}(\mathrm{OAc})_{2}$	100	toluene	110	136
84		$\mathrm{Pd}(\mathrm{OAc})_{2}$	102	DME	80	137

This lack of reactivity must be attributed to the bulk of the bicyclic system, which may retard the insertion of the palladium species to yield intermediate $\mathbf{1 1 0}$ (Scheme 17) and interrupt the catalytic cycle.

Buchwald et al. have recently reported that aryl iodides can undergo copper-catalyzed coupling with alkylamines in the presence of diols.[61]

Amine 82-HCl did indeed react with iodobenzene upon treatment with $\mathrm{CuI}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (2.00 equiv.) and 1,2-propanediol (2.00 equiv.) in 2-propanol at $80^{\circ} \mathrm{C}$ to yield phenylamine 139 in 53\% yield (Scheme 24).

Scheme 24. Cu-catalyzed amination with amine 82-HCI.

5. Elaboration of the 3-Aryl-3-azabicyclo[3.1.0]hex-1-ylamine Skeleton

5.1. Synthesis of trifluoroethyl derivatives

Further elaboration of the primary amines $\mathbf{1 1 6}, \mathbf{1 1 7}, \mathbf{1 2 2}$ and $\mathbf{1 2 3}$ was studied in order to obtain compounds bearing a combination of trifluoroethyl and aryl substituent on the amino functions, as analogs of compound 5 (see Section A). Direct alkylation of $\mathbf{1 1 7}$ with alkyl bromides may give dialkylated compounds as major or unique products. Belov ${ }^{[57]}$ observed that reductive alkylation of exo-6-amino-3-azabicyclo[3.1.0]hexane with aliphatic carbonyl compounds in the presence of sodium triacetoxyborohydride $\left[\mathrm{NaBH}(\mathrm{OAc})_{3}\right]$ and molecular sieves ($3 \AA$), led to monoalkylated derivatives in good yields.

In the next approach it was decided to apply the same conditions to amine $\mathbf{1 1 7}$. The latter was treated with trifluoroacetaldehyde methyl hemiacetal (commercially available equivalent and source of trifluoroacetaldehyde) and molecular sieves ($3 \AA$) in 1,2-dichloroethane at ambient temperature for 30 min , then with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ at $50^{\circ} \mathrm{C}$ for 12 h (Scheme 25).

117

Scheme 25. Synthesis of trifluoroethyl derivative 140-H.

Instead of the desired compound $\mathbf{1 4 0} \mathbf{- C l}$, the imine $\mathbf{1 3 9}$ was isolated in 52% yield. The imine function in $\mathbf{1 3 9}$ was then reduced with LiAlH_{4} in THF with concomitant reduction of the aryl chloride to give compound $\mathbf{1 4 0} \mathbf{- H}$ in $\mathbf{3 7 \%}$ yield (Scheme 25).

The synthesis of trifluoroethyl derivatives could be achieved in a two-step process: first formation of the imine at $50^{\circ} \mathrm{C}$, then reduction by adding a suspension of LiAlH_{4} in THF carefully at $0^{\circ} \mathrm{C}$ to the imine (Scheme 26).


```
\(116 \mathrm{Ar}=\) pyrazin-2-yl
\(117 \mathrm{Ar}=6\)-chloropyridazin-3-yl
122 Ar \(=\) pyrid-3-yl
\(123 \mathrm{Ar}=\) pyrimidin-5-yl
```

$139 \mathrm{Ar}=6$-chloropyridazin-3-yl (92\%)
$141 \mathrm{Ar}=$ pyrid-3-yl (78\%)
$142 \mathrm{Ar}=$ pyrimidin-5-yl (70\%)

143 Ar = pyrazin-2-yl (72\%)

140-CI Ar = 6-chloropyridazin-3-yl (79\%)
$144 \quad \mathrm{Ar}=$ pyrid-3-yl (56\%)
$145 \quad \mathrm{Ar}=$ pyrimidin-5-yl (55\%)
146 Ar = pyrazin-2-yl (73\%)
Scheme 26. Synthesis of trifluoroethyl derivatives 140-CI, 144-146.

Such conditions prevented the loss of the chlorine substituent from the aryl moiety in compound 140 and improved the yields. The imines $\mathbf{1 3 9}, 141,142$ and 143 were used directly in the next step without further purification to provide compounds $140-\mathrm{Cl}, 144,145$ and 146 in $73,44,39$ and 53% overall yield, respectively.

5.2. Synthesis of urea derivatives

Preparation of indoxacarb analogs (see Section A) of type $\mathbf{1 4 7}-\mathbf{1 4 9}$ was achieved by treatment of amines $\mathbf{1 4 0}-\mathbf{C l}$, and $\mathbf{1 4 6}$ with the corresponding isocyanate in toluene at $50^{\circ} \mathrm{C}$. The products, isolated as crystals, were purified by chromatography or by recrystallization and were obtained in excellent yields.

Table 10. Synthesis of urea derivatives $\mathbf{1 4 7} \mathbf{- 1 4 9}$.

Amine 116, 117, 122, 123, 132 have been used in combinatorial chemistry with 48 types of isocyanates for the synthesis of a library of compounds, the biological tests of which are currently in progress.

5.3. Synthesis of N-methyl-N-aryl-3-azabicyclo[3.1.0]hex-1-ylamines

One possible way to attach an aryl group onto the 1 -amino group of the 3-azabicyclo[3.1.0]hexane is to synthesize an amide precursor of type $\mathbf{1 5 0}$ (Scheme 27).

150

151

Scheme 27. Strategy for the synthesis of 3-azabicyclo[3.1.0]hex-1-ylamines of type $\mathbf{1 5 1}$.

Amides 154-156 were synthesized according to the procedure reported in Section 2.1 from 2-bromoacetylamides $\mathbf{1 5 2}$ and $\mathbf{1 5 3}$ in 35, 50 and 38% overall yield, respectively (Scheme 28).

$152 \mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}$
$153 \mathrm{R}^{1}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$

2) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$
$\mathrm{MeOH}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$
or
2') $\mathrm{PMBCl}, \mathrm{MeCN}$ $20^{\circ} \mathrm{C}, 2 \mathrm{~d}$

$154 \mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{2}=\operatorname{Boc}(35 \%)$
$155 R^{1}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\operatorname{Boc}(50 \%)$
$156 \mathrm{R}^{1}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{PMB}(38 \%)$

Scheme 28. Synthesis of amides 154-156 (PMB = p-methoxybenzyl).

Ti-mediated intramolecular reductive cyclopropanation of amides $\mathbf{1 5 4}$ and $\mathbf{1 5 5}$ was not successful, and unreacted starting materials were partially recovered. Only the reaction of amide 156 gave the desired product 159 in 54\% yield (Table 11).

Table 11. Ti-mediated reductive cyclopropanation of amides 154-156.

Removal of the PMB group in the 3-azabicyclo[3.1.0]hex-1-ylamine $\mathbf{1 5 9}$ was investigated in order to obtain a target molecule which could be further elaborated. Amine $\mathbf{1 6 0}$ was obtained in 10% yield when 1-chloroethyl chloroformate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used, and in 22% yield upon treatment with dichlorodicyanodihydroquinone (DDQ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 29).[62]

1) 1-chloroethyl chloroformiate,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$
2) MeOH , reflux, 40 min .
or
1') $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

159

160

Scheme 29. Deprotection of the 3-azabicyclo[3.1.0]hex-1-ylamine 159.
6. Elaboration of endo- and exo-(2R)-N,N-Dialkyl-3-benzyl-2-(tert-butyldimethyl-silyloxymethyl)-3-azabicyclo[3.1.0]hex-1-ylamines
6.1. Attempted synthesis of endo-(2R)-2-(aminomethyl)-3-(5-chloropyrid-3-yl)-N,N-dimethyl-3-azabicyclo[3.1.0]hex-1-ylamine hydrochloride

In line with the aim of this project, the skeleton of compound 58 appeared to be a good candidate for the introduction of a combination of a further amino function and a chloropyrid-3-yl residue in order to increase the ligand capacity of such structures (see Section A).

Scheme 30. Synthesis of endo-(2R)-3-(5-chloropyrid-3-yl)-2-(hydroxymethyl)- N, N-dimethyl-3-azabicyclo[3.1.0]hex-1-ylamine (endo-163).

Amine endo-58 was debenzylated by catalytic hydrogenation in 92% yield, and the resulting secondary amine underwent Pd-catalyzed cross coupling with 3,5-dichloropyridine under the optimized conditions reported in Section $4.5\left[\mathrm{Pd}(\mathrm{OAc})_{2} / 2\right.$-(di-tert-butylphosphino)biphenyl (102) and $\mathrm{NaO} t \mathrm{Bu}$ in DME , to give compound endo- $\mathbf{1 6 2}$ in 75% yield. The latter was
deprotected by treatment with $\mathrm{Bu}_{4} \mathrm{NF}$ in THF at ambient temperature for 2 h to furnish the alcohol endo-163 in 85% yield (Scheme 30). The structure of compound endo- $\mathbf{1 6 3}$ was confirmed by an X-ray crystal structure analysis (Figure 8).

Figure 8. Molecular structure of endo-(2R)-3-(5-chloropyrid-3-yl)-2-(hydroxymethyl)-N,N-di-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (endo-163) in the crystal.

Alcohol endo-163 was transformed into the azide endo-164 according to a Mitsunobu protocol[63] $\left(\mathrm{HN}_{3} / \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{PPh}_{3}\right.$ and DEAD in THF) in 73% yield (Scheme 31$)$. The latter was reduced by catalytic hydrogenation in the presence of $\mathrm{HCl} / \mathrm{MeOH}$ to give the bicyclic amine hydrochloride endo-165. The latter was obtained as a yellow oil, which, after being exposed to the air for only a few hours, became dark, and the attempted purification failed. The ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ showed only broad signals and also in the ${ }^{13} \mathrm{C}$-NMR spectrum a
complex system of signals was observed. Only the mass-spectrometric-analysis revealed the molecular peak belonging to the desired product.

Scheme 31. Attempted synthesis of the tetraaza derivative endo-165.

6.2. Attempted synthesis of natural amino acid analogues

6.2.1. Considerations

Natural cyclopropane amino acids bearing a bicyclic structure are known (see Section A). 3,4-Methanoproline $8^{[64]}$ was extracted from the seeds of Aesculus parviflora and its synthesis was reported by Sasaki et al.[65] and by Witkop et al..[66] Recently, Krass ${ }^{[67]}$ reported the synthesis of the related structure 166. (2S)-3-Aminoproline (167) is another interesting amino acid and was isolated by Hatanaka et al.[68] from Morchella esculenta and related species (Figure 9). Its total synthesis has been reported by Baldwin et al..[69]

8

166

167

168

Figure 9. Structure of amino acids structurally related to 168.

The bicyclic skeletons $\mathbf{5 8}$ and $\mathbf{5 9}$ obtained by Ti-mediated intramolecular cyclopropanation (see Section 1.2) appeared to be good candidates for the synthesis of analogues of type $\mathbf{1 6 8}$ of such amino acids, bearing simultaneously a cyclopropane moiety and an amino group in position 3 (proline numbering).
6.2.2. Attempted oxidation of the hydroxy function in endo- and exo-(2R)-N,N-dialkyl-3-benzyl-2-(hydroxymethyl)-3-azabicyclo[3.1.0]hex-1-ylamines

Deprotection of the hydroxy function in compounds exo-58, endo-59 and exo-59 was carried out by treatment with $\mathrm{Bu}_{4} \mathrm{NF}$ in THF at ambient temperature, and the desired products exo-169, endo-170 and exo-170 were isolated in 90,95 and 78% yield, respectively (Scheme 32).

Scheme 32. Deprotection of the trialkylsilyl-protected hydroxy function in exo-58, endo-59 and exo-59.

In the first attempt to perform an oxidation of the primary alcohol, the method reported by Kordes for the synthesis of an α-cyclopropylamino acid was applied.[70] By treatment of compound exo- $\mathbf{1 6 9}$ with KMnO_{4} and NaOH in tert-butyl alcohol and water at ambient temperature for 12 h , a complex mixture of products was obtained and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed no cyclopropyl proton signals. Even attempted oxidation with Jones reagent (Table 12) at ambient temperature ${ }^{[71]}$ or at $0{ }^{\circ} \mathrm{C}^{[72]}$ did not lead to the desired product (Table 12). In all cases even the formation of the corresponding aldehyde was not detected.

Table 12. Attempted synthesis of amino acids from alcohols $\mathbf{1 6 9}$ and $\mathbf{1 7 0}$.

To assure that the steric or electronic effects of the N-benzyl group were not the cause of the problematic oxidation of the alcohol function, oxidation of a differently substituted structure was attempted.

Thus, compound endo-170 was deprotected by catalytic hydrogenolysis and protected as the bis-tert-butoxycarbonylamino derivative endo-173 (Scheme 33).[72] Even in this case, the attempted oxidation with KMnO_{4} or the Jones reagent did not give the desired product endo-174, and unreacted starting material was recovered.

Scheme 33. Attempted synthesis of the N-Boc-protected amino acid endo-174.

7. Synthesis of Tri- and Tetracyclic Azaheterocycles by Ti-Mediated Intramolecular Reductive Cyclopropanation

7.1. Considerations

As reported in Sections 1 and 2, a variety of azabicyclo[3.1.0]hexane and azabicyclo[4.1.0]heptane systems can be synthesized by Ti-mediated intramolecular reductive cyclopropanation of N, N-dialkylamides, readily available from natural amino acids or bromoacetyl bromide with simple transformations.

Sato et al.[22a] reported that pyrrole- and indole-2-carboxylic esters underwent intramolecular cyclopropanation to give tri- and tetracyclic cyclopropanols. Consequently, it was tried to apply such a transformation to a suitable N, N-dialkylamide of type $\mathbf{1 7 5}$ which would lead to tricyclic and even tetracyclic systems of type 176 in a few steps (Scheme 34).

Scheme 34. Strategy for the synthesis of oligocyclic azabicyclo[3.1.0]hexane systems.

7.2. Synthesis of tetracyclic derivatives

7.2.1. Synthesis of N,N-dibenzyl-indolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine

The first investigation concerned the synthesis of the tetracyclic compound $\mathbf{1 7 9}$ from amino acid 177. The amide 178 was prepared from indole-2-carboxylic acid (177) by treatment with $\mathrm{HNBn}_{2}, \mathrm{DCC}$ and HOBT, and then with allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 67% yield. Intramolecular cyclopropanation of amide $\mathbf{1 7 8}$ under the optimized conditions [1.50 equiv. $\mathrm{MeTi}(\mathrm{OiPr})_{3}$ and 5.00 equiv. $\left.c \mathrm{HexMgBr}\right]$ gave the desired product 179 in 79% yield (Scheme 35).

179

Scheme 35. Synthesis of N, N-dibenzyl-indolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine (179).

7.2.2. Synthesis of (8aS)-N,N-dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]-pyrrol-

 idin-8b-amineThese results triggered the idea to apply such a protocol to an indoline derivative of type $\mathbf{1 8 2}$ in order to synthesize enantiopure compounds and to study the diastereoselectivity of the cyclopropanation process. Sato et al. [22a] reported that the proline methyl ester derivative did not undergo intramolecular cyclopropanation. This was attributed to a disfavoring of the transition state for ring closure because of a preference for the ester and N-allyl group to be aligned anti. The idea that a fused aromatic ring might favor the ring closure suggested to attempt the intramolecular cyclopropanation of the amide 182, derived from N-tert-butoxycarbonyl-indoline-2-carboxylic acid (180). Applying the established set of reactions to the acid 180, the bicyclic compounds ($1 \mathrm{a} S, 8 \mathrm{a} S, 8 \mathrm{~b} R$)-183 and ($1 \mathrm{a} R, 8 \mathrm{a} S, 8 \mathrm{~b} S$)-183 obtained in 61% yield as a 1:1 mixture which was separated by column chromatography (Scheme 36).

Scheme 36. Synthesis of (8aS)-N,N-dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]-pyrrolidin-8b-amine (183).

7.3. Synthesis of tricyclic derivatives

7.3.1. Synthesis of N,N-dibenzyl-1,1a,2,6b-tetrahydrocyclopropa[1,2-a]pyrrolizin-6b-amine

For the synthesis of tricyclic compounds the same set of transformations was investigated with pyrrole and proline derivatives.

Pyrrole-2-carboxylic acid (184) was converted to the N, N-dibenzylamide $\mathbf{1 8 5}$ by treatment with HNBn_{2}, DCC and HOBT in 89% yield, then to compound 186 by N-alkylation with allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 75% yield. Intramolecular cyclopropanation of amide the $\mathbf{1 8 6}$ under the optimized conditions [1.50 equiv. $\mathrm{MeTi}(\mathrm{Oi} \operatorname{Pr})_{3}$ and 5.00 equiv. $c \mathrm{HexMgBr}$] gave the desired product 187 in 78\% yield (Scheme 37).

Scheme 37. Synthesis of N, N-dibenzyl-1,1a,2,6b-tetrahydrocyclopropa[1,2- a]pyrrolizin-6b-amine (187).

7.3.2. Synthesis of (6aS)-N,N-dibenzyl-perhydrocyclopropa[1,2-a]pyrrolizin-6b-amine

The result obtained in the cyclopropanation of the indoline derivative $\mathbf{1 8 2}$ initiated the idea to study the behavior of the corresponding proline derivative. Treatment of L-(N-tert-butoxycarbonyl)proline (188) with HNBn_{2}, DCC and HOBT , followed by deprotection with TFA gave the amine $\mathbf{1 8 9}$ in 62% overall yield. When the latter was treated with allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$, the doubly alkylated compound 191 was obtained instead of the desired compound 190 (Scheme 38). The deprotection in position 2 occurred quantitatively under the reaction conditions employing $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base at $60^{\circ} \mathrm{C}$, with racemization at $\mathrm{C}-2$, as revealed from the optical activity measurement $[\alpha]_{D}^{20}=0.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$, and no traces of compound 190 were detected. The NMR spectra revealed signals for the two different allyl groups, and in the APT spectrum a $\mathrm{C}_{\text {quat }}$ signal for $\mathrm{C}-2$ was observed instead of the CH -signal. This result was surprising, since it is well documented literature that the deprotection of position 2 of proline derivatives requires much stronger bases, such as lithium diisopropylamide.[73]

191

Scheme 38. Attempted synthesis of the amide 190.

Compound 190 was then synthesized performing another set of transformations. By treatment of L-proline (188) with allyl bromide and KOH in $i \mathrm{PrOH},{ }^{[74]}$ then with HNBn_{2}, DCC and HOBT, the amide 190 was obtained in 61% overall yield. Ti-mediated intramolecular reductive cyclopropanation of the latter afforded compounds ($1 \mathrm{a} S, 6 \mathrm{a} S, 6 \mathrm{~b} R$)-192 and ($1 \mathrm{a} R, 6 \mathrm{a} S, 6 \mathrm{~b} S)-192$ in 70% yield as a $3.3: 1$ mixture which was separated by column chromatography (Scheme 39).

188

1) Allyl bromide,
$\mathrm{KOH}, \mathrm{iPrOH}$

(1aS,6aS,6bR)-192
(1aR,6aS,6bS)-192

Scheme 39. Synthesis of (6aS)-N,N-dibenzyl-perhydrocyclopropa[1,2-a]pyrrolizin-6b-amine (192).

The pyrrolizidine system is common in a variety of natural compounds, some of which have also a benzo-fused ring, and their synthesis has been widely reported in the literature.[75] The intramolecular reductive cyclopropanation of amides 178, 182, 186 and 190 provides an easy access to analogues of such systems, with an additional annelated-cyclopropane, even in enantiomerically pure form.

8. 1,3-Dipolar Cycloadditions of Nitrones to Bicyclopropylidenes

8.1. Introduction

1,3-Dipolar cycloadditions constitute the most general method for the synthesis of fivemembered heterocycles.[76a] Among the large variety of 1,3-dipolar cycloadditions of nitrones to double bonds, cycloadditions to methylenecyclopropane (193, Figure 10) ${ }^{[76 \mathrm{~b}]}$, its spirocyclo-propanated analogs $(\mathbf{1 9 4}, 195){ }^{[77]}$ and bicyclopropylidene $(\mathbf{1 9 6})^{[78]}$ have been of special interest in the last 15 years. Nitrones add to such alkenes (193-195) regioselectively forming mainly cycloadducts of type 197 in which the oxygen atom is attached to a carbon atom of a cyclopropane ring.

Figure 10. Structures of alkenes 193-196 and cycloadducts 197.

Bicyclopropylidene (196) is a uniquely strained tetrasubstituted alkene ${ }^{[79]}$, which has shown an unusually high reactivity towards electron-deficient cycloaddends. ${ }^{[80]}$ Bicyclopropylidene (196) is easily available on a large scale from methyl cyclopropanecarboxylate by the synthesis optimized by de Meijere et al., ${ }^{[81]}$ which applies the Ti-mediated cyclopropanation, developed by Kulinkovich ${ }^{[82]}$, as the key step.

It is known ${ }^{[83]}$ that tetraalkyl-substituted alkenes do not cycloadd nitrones at all and isobutene and its derivatives react slowly. Various nitrones 198 indeed react with bicyclopropylidene
(196)[80] at ambient or slightly elevated temperature to furnish bis(spirocyclo-propane)-annelated isoxazolidines of type 199 in high yield (Scheme 40). The cycloadducts of type 199 are prone to undergo thermal rearrangement (so called Brandi-Guarna reaction ${ }^{[84]}$) by homolytic cleavage of the $\mathrm{N}-\mathrm{O}$ bond, followed by opening of the adjacent cyclopropane ring and eventual reclosure of the resulting diradical. This type of transformation provides a large variety of oligospirocyclopropane-annelated azaheterocycles of type $\mathbf{2 0 2}$ (Scheme 40).[80,85]

Scheme 40. 1,3-Dipolar cycloaddition and subsequent thermal rearrangement sequence.

Tetrahydropyridones of type 202 are interesting compounds, which, when appropriately transformed, are known to undergo ring expansion of the cyclopropyl group.[86] Certain derivatives have also been extensively studied with respect to their properties of being aza-analogues of the Illudine 203[87] and Ptaquilosin (204) ${ }^{[88]}$ sesquiterpenes, and they have shown interesting biological activities in being able to cleave a DNA plasmid (Figure 11). [89]

203-OH Illudine $S(R=O H)$

203-H Illudine $M(R=H)$

Figure 11. Structure of Illudines 203 and Ptaquilosin 204.

8.2. Attempted synthesis of perhydropyrrolo[2,3-c]pyridine derivatives

Funke ${ }^{[86 b]}$ reported that spirocyclopropane-annelated azaheterocycles bearing a ketimine function α to the cyclopropane ring undergo rearrangement at high temperature under vacuum.

In this context it was of interest to investigate whether the tetrahydropyridone 205, synthesized according to the published procedure, ${ }^{[80]}$ when converted to the imine 206, would undergo such a transformation which ought to lead to perhydropyrrolo[2,3-c]pyridine systems of type 210 .

Therefore, compound $\mathbf{2 0 5}$ was heated with BnNH_{2} and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in benzene, in the presence of molecular sieves ($3 \AA$), at $60^{\circ} \mathrm{C}$ for 20 h to yield the imine 206 in 50% yield (Scheme 41). ${ }^{[90]}$ The latter immediately turned dark when heated at $200^{\circ} \mathrm{C}$, and its polymerization took place already at atmospheric pressure without formation of compound 207.

Scheme 41. Attempted synthesis of the pyrrolo[2,3-c]pyridine system 207.

De Meijere et al.[91] reported that the cyclopropylimine moiety of spirocyclopropaneannelated 1-cyclopropyl-2-azaazulenes underwent nucleophilic attack by iodide and subsequent borohydride reduction of the resulting iminium-eneammonium salts to give hexahydrospiro[cyclohepta[a]pyrrolizine-5,1'-cyclopropane] systems. Compound 206 appeared to be a good candidate for such a transformation, so it was transformed into the hydrochloride $\mathbf{2 0 8}$ by treatment with $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}$. The latter was treated with NaI in MeCN at $90^{\circ} \mathrm{C}$ for 18 h to give compound 209, which was directly treated with NaBH_{4} in MeOH at $40^{\circ} \mathrm{C}$, but after stirring at ambient temperature for 12 h , a complex mixture of products was obtained, and this could not be separated by column chromatography, so that the assignment of their structures was not possible (Scheme 42).

Scheme 42. Attempted synthesis of the perhydropyrrolo[2,3-c]pyridine system 210.

8.3. Synthesis of spirocyclopropane-annelated β-lactams

8.3.1. Considerations

β-Lactams are important structures present in such important natural compounds as penicillins and cephalosporines.[92] Recently Brandi et al. reported a new synthesis of β-lactams based on ring contraction of 5-spirocyclopropane-annelated isoxazolidines of type 211 in the presence of protic acids. ${ }^{[93]}$ This process occurs with elimination of ethylene, analogous to the enzymatic conversion of 1-aminocyclopropanecarboxylic acid into ethylene during the plant growth regulation and the maturation of fruits. ${ }^{[12 b]}$ The proposed mechanism is believed to proceed in analogy with the Hofmann-Löffler reaction[94] of protonated chloro amines.[93] Initially an $\mathrm{N}-\mathrm{O}$ bond homolysis in the protonated isoxazolidine $\mathbf{2 1 2}$ may lead to the diradical cation 213. The latter could rearrange to the protonated amino ketone 214, stabilized by a
strong intramolecular hydrogen bond, which prevents the intramolecular diradical coupling or 1,5-hydrogen shift which usually occur in such systems. ${ }^{[95]}$ Ring closure may lead to azetidin 215, and then to ethylene (216) and the β-lactam 217 through a radical fragmentation (Scheme 43).

Scheme 43. First proposed mechanism for the β-lactam formation.[93]

In case the $\mathrm{N}-\mathrm{O}$ bond cleavage occurs in a heterolytic manner, 212 may rearrange through a cyclopropane ring enlargement to $\mathbf{2 1 8}$, analogous to the cyclopropylcarbinyl cation behavior. The resulting azaoxaspiroheptane $\mathbf{2 1 9}$ may lead to the formation of $\mathbf{2 1 6}$ and $\mathbf{2 1 7}$ by a formal retro-Paterno-Büchi reaction (Scheme 44).[96]

Scheme 44. Second proposed mechanism for the β-lactam formation.[93]

8.3.2 Syntheses of 5-methyl-6-phenyl-5-azaspiro[2.3]hexan-4-one and 5-methyl-6-(pyrid-2-yl)-5-azaspiro[2.3]hexan-4-one

Only a few synthesis of spirocyclopropane-annelated β-lactams are known, based, for example, on $[2+2]$ cycloadditions between ketene imines and isocyanates.[97] Some examples of 6-spirocyclopropane-annelated penicillins have also been reported.[98]

In this context the transformation reported by Brandi et al.[93] was investigated with the isoxazolidines 220 and 221, derived from the 1,3-dipolar cycloaddition of benzylidenemethylamine oxide and methylpyridin-2-ylmethyleneamine oxide to bicyclopropylidene (196).[${ }^{[80]}$ Treatment of compounds 220 and 221 with trifluoroacetic acid (TFA) in MeCN at $70^{\circ} \mathrm{C}$ for 40 min , followed by stirring for 12 h in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, gave lactams 222 and 223 in 96 and 98\% yield, respectively (Scheme 45).

$$
\begin{aligned}
220 \mathrm{R} & =\mathrm{C}_{6} \mathrm{H}_{5} \\
221 \mathrm{R} & =\text { pyrid }-2-\mathrm{yl}
\end{aligned}
$$

$$
\begin{aligned}
& 222 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}(96 \%) \\
& 223 \mathrm{R}=\text { pyrid-2-yl (98\%) }
\end{aligned}
$$

Scheme 45. Syntheses of 5-methyl-6-phenyl-5-azaspiro[2.3]hexan-4-one (222) and 5-methyl-6-(pyrid-2-yl)-5-azaspiro[2.3]hexan-4-one (223).

The structures of compounds $\mathbf{2 2 2}$ and $\mathbf{2 2 3}$ were established by spectroscopic analyses. Particularly significant were the absorptions of the $\mathrm{C}=\mathrm{O}$ moieties in the IR spectrum ($1751 \mathrm{~cm}^{-1}$ for both compounds) and the presence of four cyclopropyl proton signals in the ${ }^{1} \mathrm{H}$-NMR spectrum.

Spirocyclopropane-annelated β-lactams of types $\mathbf{2 2 2}$ and $\mathbf{2 2 3}$ could be interesting systems as precursors to β-amino acids and β-peptides bearing a 1,1 -disubstituted cyclopropane ring in position 2. Such β-peptides in which $\mathrm{R}^{1}=\mathrm{H}$ have recently been reported by Seebach et al.[99] (Scheme 46).

Scheme 46. Spiropropane-annelated β-lactams as potential precursor of interesting β-peptides.

8.4. 1,3-Dipolar cycloadditions of nitrones to cyclopropylidenespiropentane and 7cyclopropylidenedispiro[2.0.2.1]heptane and subsequent thermal rearrangement

8.4.1. Considerations

The 1,3-dipolar cycloaddition of various nitrones to the highly strained cyclopropylidenespiropentane (225) and 7-cyclopropylidenedispiro[2.0.2.1]heptane (226) ${ }^{[100,101]}$ (Figure 12) and the thermal rearrangement of the intermediate isoxazolidines has been studied in this project in order to investigate the influence of an additional spirocyclopropane ring on bicyclopropylidene (196) upon the selectivity of cycloaddition. This reaction also could lead to the formation of new tetrahydropyridinone derivatives with up to three spiroannelated cyclopropane rings, which can be of interest as analogues of Illudines 203 and Ptaquilosin (204, Figure 11).[102]

Figure 12. Structures of cyclopropylidenespiropentane (225) and 7-cyclopropylidenedispiro[2.0.2.1]heptane (226).

The reaction of bicyclopropylidenes $\mathbf{2 2 5}$ and $\mathbf{2 2 6}$ with nitrones of type $\mathbf{2 2 7}$ might result in the formation of several products 232-239, as shown in Scheme 47.

227
$225 n=0$
$226 n=1$
$\downarrow \Delta$

$232 n=0$
$235 n=1$
$237 n=1$
$239 n=1$

Scheme 47. 1,3-Dipolar cycloadditions of nitrone 227 to cyclopropylidenespiropentane (225) and 7-cyclopropylidenedispiro[2.0.2.1]heptane (226), and the thermal rearrangement of the formed isoxazolidines 228-231
8.4.2. 1,3-Dipolar cycloaddition of 3,4-dihydroisoquinoline N-oxide and 7 -cyclopropylidenedispiro[2.0.2.1]heptane

Initially, the 1,3-dipolar cycloaddition of nitrone 240 to 7-cyclopropylidenedispiro[2.0.2.1]heptane (226) was investigated. The reaction was performed at ambient temperature within 7 days and resulted in the formation of cycloadducts 241 and 242 in a ratio of $\mathbf{2 4 1} / \mathbf{2 4 2}=1: 1.2$ (1:1.1 after chromatographic separation) (Scheme 48).

Scheme 48. a) $\mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 7 \mathrm{~d}$; b) p-xylene, $140^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

The slight predominance of cycloadduct $\mathbf{2 4 2}$ is in line with the previously published results for the alkenes 193-195[89b], but the regioselectivity in this current case is relatively poor, as a comparable quantity of the isomer 241 was also obtained. Upon heating the perspirocyclopropanated isoxazolidine 241 in p-xylene at $140^{\circ} \mathrm{C}$ for 5 h , it rearranged cleanly to the pyridinone 243 (80% yield), the structure of which was proved by X-ray diffraction (Figure 1). The isomeric compound 242 under these conditions gave a mixture of the
trispirocyclopropanated benzoquinolizinone 244 and the non-cyclized dihydroisoquinoline derivative 245 (77% yield, ratio $1: 3$). The latter apparently arose by a 1,5 -hydrogen shift of the hydrogen adjacent to the nitrogen atom in the intermediate diradical of type 231b (Scheme 49) [103].

Scheme 49. Rearrangement of isoxazolidine 231.

Spirocyclopropanated isoxazolidines of type 231 are known to undergo a highly chemo- and regioselective sequence of ring openings.[104] The initially formed diradical intermediate 231a (Scheme 49) as an oxygen-analogue of a cyclopropylmethyl radical immediately undergoes the well-known rapid rearrangement $[105]$ to a buten- 4 -yl radical forming the diradical of type 231b. This, in turn, intramolecularly recombines to give the trispirocyclopropanated skeleton of type 237. A diradical of type 231b would also be capable to rearrange further leading to a diradical of type 231c. Cyclization of the latter would form an azepinone derivatives. ${ }^{[106]}$ However, such a product was not detected in the rearrangement of the isoxazolidine of type 231. This indicates that intramolecular radical recombination in 231b is faster than the second cyclopropylmethyl to homoallyl radical ring opening.

8.4.3. One-pot 1,3-dipolar cycloaddition and subsequent thermal rearrangement

The one-pot reaction of nitrone 240 and bicyclopropylidene $226\left(120^{\circ} \mathrm{C}, 1 \mathrm{~d}\right)$ furnished a mixture of products $\mathbf{2 4 3} \mathbf{- 2 4 5}$, from which 243 was isolated in 28% yield (Table 13). Unfortunately, compounds 244 and 245 could not be separated completely, and their yields were estimated from NMR spectra of enriched fractions to be 11 and 32% yield, respectively. The formation of byproducts of type 235 (Scheme 47) was not observed. Further cycloaddition of nitrones $\mathbf{2 4 6}$ and 249[107] to bicyclopropylidene derivatives $\mathbf{2 2 5}$ and 226 with subsequent thermal rearrangement was carried out as one-pot reactions in order to increase the overall yield of the final products and to avoid cycloreversion of the intermediate isoxazolidines. ${ }^{[76 \mathrm{a}]}$ The results are presented in Table 13.

Table 13. One-pot 1,3-dipolar cycloaddition and subsequent thermal rearrangement sequence.
Alkene

The reactions of nitrones 246 and 249 were carried out in o-xylene at $120^{\circ} \mathrm{C}$ for 1 d . The products were obtained as mixtures of isomers, which were easily separated by chromatography on silica gel and isolated in $68,77,74$ and 80% total yield, respectively (Table 1). No open-chain isomers were observed for compounds 246 and 249. Compounds 252 and 254 were obtained as a mixture of two diastereoisomers due to the stereogenicity of

C-3 (piperidinone numbering). The molecular structure of compounds 243, 248 and trans-252 were rigorously proved by X-ray crystal structure analysis (Figure 13).

trans-252

Figure 13. Molecular structures of compounds 243, 248 and trans-252 in the crystals.

The previously observed regioselectivity in 1,3-dipolar cycloadditions of nitrones to methylenecyclopropane and its spirocyclopropanated analogues to predominantly yield oxazolidines of type 197, in which the oxygen atom is attached to a cyclopropane ring, can be rationalized on the basis of steric as well as electronic effects. The long-lasting controversial debate about whether 1,3-dipolar cycloadditions occur stepwise via dipolar intermediates ${ }^{[108]}$
or in a concerted fashion, ${ }^{[109]}$ has now been solved in favor of a more or less concerted reaction mode. ${ }^{[110]}$ The degree of concertedness undoubtedly depends on the nature and the pattern of substituents on both the 1,3-dipole and the alkene substrate. In case of the particularly nucleophilic methylenecyclopropane and bicyclopropylidene ${ }^{[100]}$ it is reasonable to assume that the nitrone approaches the alkene faster and thus more closely at any time with its electrophilic end and leading to a dipolar transition structure of types I or II (Figure 14).

I

II

Figure 14. Separate charges in transition states in the initial electrophilic addition.

According to experimental and computational results on the bromination of spirocyclopropanated methylenecyclopropanes 193, 194, 195 and bicyclopropylidenes 196, $\mathbf{2 2 5}, \mathbf{2 2 6}[111]$ and the relative stabilities of spirocyclopropanated cyclopropyl cations,[112] a transition structure of type II ought to be favored. However, the outcome of the nitrone cycloaddition to $\mathbf{2 2 5}$ and $\mathbf{2 2 6}$ is quite surprising: while the adducts of nitrones $\mathbf{2 4 0}$ and $\mathbf{2 4 6}$ to 226 are formed with the thus expected regioselectivity (Scheme 48), those of $\mathbf{2 4 9}$ to $\mathbf{2 2 6}$ as well as $\mathbf{2 4 6}$ and $\mathbf{2 4 9}$ to $\mathbf{2 2 5}$ are formed with a reversed regioselectivity. Even the fact that the cycloadducts 241 and 242 from 240 and 226 are obtained in almost equal amounts, is noteworthy, as the significant steric bulk of the dispiroheptyl moiety should also favor the transition structure II. Both the electronic as well as the steric arguments should also hold for
the last three examples in Table 13, yet the experimental results are just opposite. The high diastereoselectivities in the addition of the enantiomerically pure nitrone $\mathbf{2 4 9}$ to $\mathbf{2 2 5}$ and $\mathbf{2 2 6}$ is due to the anti approach of the alkenes towards the nitrone which leads to the cis relationship of the tert-butoxy group and the bridgehead hydrogen in the final products 250/251 and 254/255.

C. Experimental Part

1. General Notes

IR: Bruker IFS 66 (FT-IR). - ${ }^{1} \mathrm{H}$-NMR: Bruker AM 250 (250 MHz), Varian UNITY-300 $(300 \mathrm{MHz}) ; \delta(\mathrm{ppm})=0.00$ for tetramethylsilane, 2.50 for $\left[\mathrm{D}_{6}\right]$-dimethylsulfoxide, 4.78 for $\left[\mathrm{D}_{4}\right]$-methanol, 7.26 for deuterochloroform. The signals were characterized: $\mathrm{s}=$ singlet, $\mathrm{bs}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{ps} \mathrm{t}=\mathrm{pseu}$ a triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ double of doublets, $\mathrm{ddd}=$ double of $\mathrm{dd}, \mathrm{dt}=$ double of triplets, $\mathrm{m}=$ multiplet, $c \mathrm{Pr}-\mathrm{H}=$ cyclopropyl proton, $\mathrm{Ar}-\mathrm{H}=$ aromatic proton, $*=$ the assignment is exchangeable. $-{ }^{13} \mathrm{C}-\mathrm{NMR}$: Bruker AM 250 (62.9 MHz), Varian UNITY-300 (75.5 MHz); $\delta(\mathrm{ppm})=0$ for tetramethylsilane, 39.5 for $\left[\mathrm{D}_{6}\right]$-dimethylsulfoxide, 49.0 for $\left[\mathrm{D}_{4}\right]$-methanol, 77.0 for deuterochloroform. The characterization was performed with the help of DEPT (Distortionless Enhancement by Polarization Transfer) or APT (Attached Proton Test), where $+=$ primary or tertiary (positive-DEPT signal), $-=$ secondary (negative DEPT-signal), $\mathrm{C}_{\text {quat }}=$ quaternary carbon atom (zero DEPT-signal) or $+=$ primary or tertiary (positive APT-signal), $-=$ secondary or quaternary carbon atom (negative APT-signal). The signals were characterized: $c \mathrm{Pr}-\mathrm{C}=$ cyclopropyl carbon, $\mathrm{Ar}-\mathrm{C}=$ aromatic carbon, $*=$ the assignment is exchangeable. -MS : Varian MAT 731, MAT CH 7. - High resolution MS (HRMS): Varian MAT 311, INCOS 50 with Varian 34000 (GC-MS) using preselected ion peak matching at $\mathrm{R}=10000$ to be within $\pm 2 \mathrm{ppm}$. - Thin layer chromatography (TLC): Macherey-Nagel Alugram ${ }^{\circledR}$ SIL G/UV 254 0.25 mm silica gel with fluorescent indicator. - Developer: molybdenum phosphoric acid solution (10% in ethanol) or ninhydrine (300 mg ninhydrine, 3.00 g acetic acid, 100 mL n-butanol). - Column chromatography: Merck Silica gel 60 ($0.063-0.200 \mathrm{~mm}, 70-230$ mesh

ASTM). - Melting point: melting point instrument according to Dr. Tottoli (Büchi); all measured values are uncorrected. - Elemental analysis: the Mikroanalytisches Laboratorium des Instituts für Organische Chemie der Universität Göttingen. - X-Ray structure analysis of compounds 76, 79 and 91 were measured with Brucker CCD SMART 1 K and SMART 6000 diffractometers, measurement made by Dr. D. S. Yufit, University of Duram, Duhram, South Rd. DM1 3LE, UK. X-Ray structure analysis of compounds endo-163, 243, 248 and trans-252 were measured with IPDS II diffractometer, measurement made by D. Vidović, Instituts für Anorganische Chemie der Universität Göttingen, Göttingen, DE. - Solvents were dried and purified according to the conventional methods of the laboratory under nitrogen atmosphere. All the reactions, which were performed not in an aqueous solution, were carried out under Argon atmosphere. Unless specified otherwise, solutions of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaHCO}_{3}$ and NaCl were saturated aqueous solutions. All chemicals were used as commercially available, unless otherwise noted. - Abbreviations: $\mathrm{Ac}=$ acetate, $\mathrm{Ar}=\operatorname{aryl},(\pm)-\mathrm{BINAP}=(\pm)-2,2^{\prime}-$ bis $($ diphenyl-phosphino $) 1,1$ '-binaphthyl, $\mathrm{Bn}=$ benzyl, $\mathrm{Boc}=$ tert-butoxycarbonyl, $\mathrm{ClTi}(\mathrm{Oi} \operatorname{Pr})_{3}=$ chlorotitanium triisopropoxyde, $\mathrm{dba}=$ dibenzylideneacetone, $\mathrm{DCC}=$ dicyclohexylcarbodiimide, $\mathrm{DCE}=1,2$-dichloroethane, $\mathrm{DEAD}=$ diethylazodicarboxylate, $\mathrm{DMAA}=\mathrm{N}, \mathrm{N}$-dimethylacetamide, $\mathrm{DMAP}=N, N$-dimethylaminopyridine, $\mathrm{DMF}=$ dimethylformamide, DPPF $=1,1^{\prime}$-bis-(diphenylphosphino)ferrocene, $c \mathrm{HexMgBr}=$ cyclohexylmagnesium bromide, HOBT = hydroxybenzotriazole, $\operatorname{Im}-\mathrm{H}=$ imidazole, $\mathrm{Me}=$ methyl, $\mathrm{MeCN}=$ acetonitrile, $\mathrm{MeTi}(\mathrm{OiPr})_{3}=$ methyltitanium triisopropoxyde, $c \mathrm{PentMgCl}=$ cyclopentylmagnesium chloride, $\mathrm{Ph}=$ phenyl, $\mathrm{PMB}=4$-methoxybenzyl, $t \mathrm{Bu}=$ tert-butyl, $\mathrm{THF}=$ tetrahydrofuran, TBAF $=$ tetrabutyl-ammonium fluoride, TBDMS = tert-butyldimethysilyl,

The following substances were prepared according to literature: $\mathrm{MeTi}(\mathrm{OiPr})_{3}$ according to methyl (S)-2-amino-3-hydroxypropionate hydrochloride (49) according to Giacomelli et al.,[24] methyl (S)-2-amino-3-(tert-butyldimethylsilyloxy)propionate (50) according to Reez, ${ }^{[113]}$ Baldwing et al., ${ }^{[25]}$ methyl (S)-2-benzylamino-3-hydroxypropionate (52) according to Green et al.,[26] 2-bromoacetamides 67-69 according to Ohta et al.,[32a] N-allyl-N-benzylamine according to Sigano et al., ${ }^{[32 b]} N$-benzylbut-3-enylamine according to Pandit et al.,[33a] N-allyl- N-benzylacetonitrile (88) according to Zecchi et al.,[39] 5-methyl-4-phenyl-5-azaspiro[2.5]octan-8-one (205) and 8-methyl-9-phenyl-7-aza-8-azadispiro[2.0.2.3]nonane (220) according to Brandi and de Meijere, ${ }^{[80]}$ cyclopropylidene-spiropentane (225) and 7-cyclopropylidenedispiro[2.0.2.1]heptane (226) according to de Meijere,[101] 3,4dihydroisoquinoline N-oxide (240) according to Murahashi,[114] methyl-pyridin-2-yl-methylene-amine oxide (246) according to Brandi and de Meijere, ${ }^{[106] ~(4 S)-4-(t e r t-b u t o x y)-~}$ 3,4-dihydro-2 H -pyrrole- N -oxide (249) according to Brandi. [108]

2. Procedures for the Synthesis and Spectral Data of the Compounds

2.1. General procedures

Preparation of 2-(allylbenzylamino)propionic acid derivatives. General Procedure 1 (GP 1): Allyl bromide (1.40 equiv.) was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of the corresponding 2-(benzylamino)propionic acid derivative (1.00 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.00 equiv.) in anhydrous $\mathrm{MeCN}(8.0 \mathrm{~mL})$. After the addition was complete, the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h . EtOAc (8.0 mL) and a sat. aq. NaHCO_{3} solution $(8.0 \mathrm{~mL})$ were added, the organic phase was separated, washed with brine $(10 \mathrm{~mL})$ and dried over MgSO_{4}. After evaporation of
the solvent under reduced pressure the crude product was purified by column chromatography on silica gel.

Preparation of 2-(alkylallylamino)-N-alkyl-N-benzylacetamides. General Procedure 2 (GP 2): Triethylamine (2.00 equiv.) and alkylbenzylamine (1.10 equiv.) were added dropwise at $0^{\circ} \mathrm{C}$ to a solution of N-alkyl- N-benzylbromoacetamides (1.00 equiv.) in anhydrous THF $(25 \mathrm{~mL})$. After the addition was complete, the reaction mixture was stirred at ambient temperature for an additional 20 h . Water (10 mL) and EtOAc (10 mL) were added, the organic phase was separated, washed with sat. aq. NaHCO_{3} solution (20 mL), brine (30 mL) and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure the crude product was purified by column chromatography on silica gel.

Preparation of 3-azabicyclo[3.1.0]hex-1-ylamine and 3-azabicyclo[4.1.0]hept-1-ylamine. General Procedure 3 (GP 3): Cyclohexylmagnesium bromide (5.00 equiv.) was added dropwise at ambient temperature to a well-stirred solution of N, N-dialkylpropionamide (1.00 equiv.) and $\operatorname{MeTi}(\mathrm{Oi} \operatorname{Pr})_{3}$ (1.50 equiv.) in anhydrous THF (30 mL). After the addition was complete, the mixture was stirred for 12 h , then poured into ice-cold water (10 mL), and stirred for an additional 1 h . The mixture was filtered through Celite ${ }^{\circledR}$, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined ethereal phases were washed with sat. aq. NaHCO_{3} solution (50 mL), brine $(50 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was removed and the residue was purified by column chromatography on silica gel.

Preparation of 3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride. General Procedure 4 (GP 4): A solution of N-benzyl-protected 3-azabicyclo[3.1.0]hex-1-ylamine (1.00 equiv.) and HCl (6.00 equiv., 5.0 m solution in $i \mathrm{PrOH}$) in $\mathrm{MeOH}(15 \mathrm{~mL})$ was stirred under hydrogen atmosphere (1 bar) and Pd / C catalysis at $20^{\circ} \mathrm{C}$. The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The product was obtained as a colorless solid and purified by recrystallization from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} 2$: 1 .

Preparation of 3-azabicyclo[3.1.0]hex-1-ylamines from nitriles. General Procedure 5 (GP 5): Cyclohexylmagnesium bromide (2.00 equiv.) was added dropwise at ambient temperature to a well-stirred solution of allylaminoacetonitrile (1.00 equiv.) and $\mathrm{MeTi}(\mathrm{Oi} \operatorname{Pr})_{3}$ (1.10 equiv.) in anhydrous THF (40 mL). After the addition was complete, the reaction was stirred at $20^{\circ} \mathrm{C}$ for 2 h , then LiI (2.00 equiv.) was added in one portion. The mixture was stirred at $70^{\circ} \mathrm{C}$ for an additional 3 h , cooled to $0{ }^{\circ} \mathrm{C}$, quenched with 10% aq. NaOH solution (5.0 mL) and the mixture was filtered through Celite ${ }^{\circledR}$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 20 \mathrm{~mL})$, the combined organic phases were washed with brine $(30 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

Preparation of 3-hydroxymethylderivatives. General Procedure 6 (GP 6): Tetrabutylammonium fluoride hydrate (4.00 equiv.) was added to a solution of tert-butyldimethylsilylalcohol (1.00 equiv.) in THF (10 mL) and the mixture was stirred at ambient temperature for 2 h . EtOAc $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ were added, the aqueous layer was separated and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (30 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

Preparation of 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamine by nucleophylic substitution. General Procedure 7 (GP 7): 3-Azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (1.10 equiv.), heterocycle (1.00 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (4.00 equiv.) in DMAA (4.0 mL) were heated at $130^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

Preparation of 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamine by Pd-catalyzed cross-coupling. General Procedure 8 (GP 8): 3-Azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (1.10 equiv.), heterocycle (1.00 equiv.), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%),(\pm)-\mathrm{BINAP}(10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (4.00 equiv) and NaOt Bu (3.50 equiv.) in $\mathrm{DME}\left(8.0 \mathrm{~mL}\right.$), were heated at $80^{\circ} \mathrm{C}$ for 1 d . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

Preparation of 3-(5-chloropyrid-3-yl)-azabicyclo[3.1.0]hex-1-ylamine. General Procedure 9 (GP 9): 3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (1.10 equiv.), 3,5-dichloropyridine (1.00 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$), 2-(di-tert-butylphosphino)-biphenyl ($10 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{~N}$ (3.00 equiv.) and NaOt Bu (1.40 equiv.) in anhydrous $\mathrm{DME}\left(4.0 \mathrm{~mL}\right.$) were heated at $80^{\circ} \mathrm{C}$ for 1 d . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

Preparation of dibenzylamides from the corresponding carboxylic acid derivatives. General Procedure 10 (GP 10): Dibenzylamine (2.50 equiv.) was added dropwise to a suspension of DCC (2.50 equiv.), HOBT (1.00 equiv.) and carboxylic acid (1.00 equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 2 d . EtOAc $(10 \mathrm{~mL})$ was added, the mixture was filtered through Celite ${ }^{\circledR}$, and the solvent was removed under reduced
pressure. EtOAc (10 mL) was added, the organic phase was washed with aq. $5 \% \mathrm{HCl}$ solution $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

Deprotection of N-tert-butoxycarbonyl derivatives. General Procedure 11 (GP 11): TFA (5.00 equiv.) was added to a well-stirred solution of N -tert-butoxycarbonyl derivative (1.00 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The reaction mixture was stirred at ambient temperature for 12 h , cooled in ice-bath and a sat. aq. NaHCO_{3} solution (20 mL) was carefully added. The organic phase was separated, washed with $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$ and dried over MgSO_{4}. The product was used without further purification.

Preparation of N-trifluoroethyl derivatives. General Procedure 12 (GP 12): Trifluoroacetaldehyde monomethylacetale (5.00 equiv.) and molecular sieves ($3 \AA$) were added at ambient temperature to a solution of amine (1.00 equiv.) in DCE (10 mL). The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 12 h , filtered through Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The residue was dissolved in anhydrous THF (20 mL), cooled to $0^{\circ} \mathrm{C}$, and LiAlH_{4} (1.10 equiv., solution in THF) was added. The reaction mixture was stirred at ambient temperature for 1 d , then quenched carefully with an aq. 3 m NaOH solution (10 mL). The aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$, the organic phase washed with brine (20 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.

One-pot 1,3-dipolar cycloaddition/thermal rearrangement process. General Procedure 13 (GP 13): A solution of nitrone (1.00 equiv.) and alkene (1.20 equiv.) in o-xylene (4.0 mL) was heated at $120^{\circ} \mathrm{C}$ for 1 d . The solvent was removed by elution with petroleum ether through a pad of silica gel, and the residue was recovered by eluition with MeOH and the solvent was removed. The crude oil was purified by chromatography on silica gel.

Preparation of N -allyl-N-(tert-butoxycarbonyl)glycine derivatives. General Procedure 14 (GP 14): Allyl amine (1.00 equiv.) first, then 2 -bromoacetamide (1.00 equiv.) were added dropwise at $0{ }^{\circ} \mathrm{C}$ to a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.00 equiv.), NaI (2.00 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (24.0 mmol) in anhydrous DMF (30 mL). The reaction mixture was stirred at ambient temperature for 16 h , Celite ${ }^{\circledR}$ was added and the mixture was filtered. Water (30 mL), and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ were added to the filtrate. The aqueous layer was separated, cooled to $0{ }^{\circ} \mathrm{C}$, saturated with NaCl and extracted with $\mathrm{EtOAc}(5 \times 30 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and the solvent was removed. A solution of the resulting amine (1.00 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (1.40 equiv.) and $\mathrm{Boc}_{2} \mathrm{O}$ (1.20 equiv.) in $\mathrm{MeOH}\left(50 \mathrm{~mL}\right.$) was heated for 4 h at $60^{\circ} \mathrm{C}$, the solvent was removed and water (20 mL) was added. The aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$, the organic phase was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel.
2.2. Synthesis of 3-azabicyclo[3.1.0]hex-1-ylamines by Ti-mediated intramolecular reductive cyclopropanation of L-serine derivatives

Methyl (S)-2-(Allylbenzylamino)-3-(tert-butyldimethylsilyloxy)propionate (53): The ester 53 $(1.14 \mathrm{~g}, 82 \%)$ was obtained from methyl (S)-2-benzyl-amino-3-(tert-butyldimethylsilyloxy) propionate (51TBDMS, $1.11 \mathrm{~g}, 3.71 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.03 \mathrm{~g}, 7.42 \mathrm{mmol})$
 and allyl bromide ($0.5 \mathrm{~mL}, 5.40 \mathrm{mmol}$) according to GP 1 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 10\right)=0.50 .-\mathrm{IR}(\mathrm{film}): v=3064 \mathrm{~cm}^{-1}, 2953,2884,1739$, 1472, 1257, 1106. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.01\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.85[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.16\left(\mathrm{dd},{ }^{2} J=14.5,{ }^{3} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.33-3.35(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.60-3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, 2-\mathrm{H}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81-3.99(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}, 3-\mathrm{H}\right), 5.09-5.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.79-5.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.22-7.38(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=-5.2\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $18.1\left[\mathrm{C}_{\text {quat }}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.7\left[+, 3 \mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 51.1\left(+, \mathrm{OCH}_{3}\right), 54.5\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right)$, 55.1 (-, $\left.\mathrm{CH}_{2} \mathrm{Ph} *\right), 62.7$ (-, C-3), 63.6 (+, C-2), $117.1\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.8(+, \mathrm{Ar}-\mathrm{C}), 128.1(+$, $2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 128.5(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 136.6\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 140.1\left(\mathrm{C}_{\mathrm{quat}}, \mathrm{Ar}-\mathrm{C}\right), 172.2\left(\mathrm{C}_{\text {quat }}\right.$, $\mathrm{C}=\mathrm{O}$).
(S)-2-(Allylbenzylamino)-3-(tert-butyldimethylsilyloxy)-N,N-dimethylpropionamide

Trimethylalluminium ($12.2 \mathrm{~mL}, 24.4 \mathrm{mmol}, 2.0 \mathrm{~m}$ solution in hexane) was added at $5^{\circ} \mathrm{C}$ over a period of 1 h to a solution of $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}(2.00 \mathrm{~g}, 24.5 \mathrm{mmol})$ in anhydrous benzene
 $(10 \mathrm{~mL})$. The solution was stirred at $20^{\circ} \mathrm{C}$ for 2 h and transferred to a solution (precooled to
$5^{\circ} \mathrm{C}$) of methyl (S)-2-(allylbenzylamino)-3-(tert-butyldimethylsilyloxy)-propionate (53, $1.11 \mathrm{~g}, 3.06 \mathrm{mmol})$ in a mixture of anhydrous benzene $(50 \mathrm{~mL})$ and anhydrous THF (15 mL). After the addition was complete, the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 d , then cooled in an ice bath and carefully quenched with an aq. $10 \% \mathrm{NaOH}$ solution (50 mL). EtOAc (10 mL) was added, the organic phase was washed with brine (10 mL), dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography of the residue gave the amide $54(587 \mathrm{mg}, 51 \%)$ as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 1\right)=0.58 .-[\alpha]_{D}^{20}=-11.4$ $\left(c=1.0, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{film}): ~ v=3063 \mathrm{~cm}^{-1}, 2928,1699,1494,1361,1257,1102 .-$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.07\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.88[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.23-3.33(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.75-4.02\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, 2-\mathrm{H}, 3-\mathrm{H}\right), 5.06-5.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.73-$ $5.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.17-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=-5.4\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.1\left[\mathrm{C}_{\text {quat }}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.8[+, 3 \mathrm{C}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 35.4\left(+, \mathrm{NCH}_{3}\right), 37.2\left(+, \mathrm{NCH}_{3}\right), 54.2\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right), 54.6\left(-, \mathrm{CH}_{2} \mathrm{Ph}^{*}\right)$, 59.4 (+, C-2), $62.1(-, \mathrm{C}-3), 116.9\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.6$ (+, Ar-C), 128.0 (+, 2 C, Ar-C), 128.6 $(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 136.9\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 140.2\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 172.1\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{CI}$, $70 \mathrm{eV}), m / z(\%): 377$ (100) [$\left.\mathrm{M}^{+}+\mathrm{H}\right], 337$ (3), 287 (5), 232 (3). - HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}^{+}\right]$376.2546, found 376.2546.
(S)-2-Benzylamino-N,N-dibenzyl-3-(tert-butyldimethylsilyloxy)propionamide (56): Tertbutyldimethylsilylchloride $\quad(300 \mathrm{mg}, \quad 1.10 \mathrm{mmol}, \quad 55 \%$ solution in toluene) was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of (S)-2-benzylamino-3-hydroxypropionic acid

($\mathbf{5 5}, 390 \mathrm{mg}, 2.00 \mathrm{mmol})$ and $\mathrm{Im}-\mathrm{H}(150 \mathrm{mg}, 2.20 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$. After the addition
was complete, the mixture was stirred at ambient temperature for 2 d to give crude (S)-2-benzylamino-3-(tert-butyldimethyl-silyloxy)propionic acid. DCC ($310 \mathrm{mg}, 1.50 \mathrm{mmol}$), HOBT ($150 \mathrm{mg}, 1.10 \mathrm{mmol}$), and $\mathrm{HNBn}_{2}(0.30 \mathrm{~mL}, 1.50 \mathrm{mmol})$ were then added, and stirring was continued for an additional 16 h . EtOAc (10 mL) was added, the mixture was filtered through Celite ${ }^{\circledR}$, and the solvent was removed under reduced pressure. EtOAc (10 mL) was again added, and the organic phase was washed with $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, brine (5 mL), dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography of the residue gave (S)-2-benzylamino- N, N-dibenzyl-3-(tert-butyldimethylsilyloxy)propionamide (56, $236 \mathrm{mg}, 48 \%$) as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 1\right)=0.60$. -$[\alpha]_{D}^{20}=-12.0\left(c=0.50, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(f i l m): ~ v=3032 \mathrm{~cm}^{-1}, 2929,2856,1656,1453,1115$, 785. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.05\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.09\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.90$ [s, $9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $2.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.50\left(\mathrm{~d},{ }^{2} J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.75-3.97(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, 2,3-\mathrm{H}\right), 4.15\left(\mathrm{~d},{ }^{2} J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.26\left(\mathrm{~d},{ }^{2} J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.00\left(\mathrm{~d},{ }^{2} J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.33\left(\mathrm{~d},{ }^{2} J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.19-7.41(\mathrm{~m}, 15 \mathrm{H}$, Ar-H). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=-5.5\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.3$ $\left[\mathrm{C}_{\text {quat }}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.9\left[+, 3 \mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 48.9\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 49.4\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 51.9(-$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 59.0$ (+, C-2), 66.0 (-, C-3), 126.6 (+, Ar-C), 127.0 (+, Ar-C), 127.4 (+, Ar-C), 127.6 (+, Ar-C), 128.1 (+, Ar-C), 128.3 (+, Ar-C), 128.4 (+, 3 C, Ar-C), 128.6 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.9$ (+, 2 C, Ar-C), 129.1 (+, $2 \mathrm{C}, \operatorname{Ar-C}), 136.9\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 137.1\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 139.9\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $174.7\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 488(26)\left[\mathrm{M}^{+}\right], 473$ (71), 343 (18), 264 (100), 91 (44) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right] .-\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ (488.75): calcd. C 73.72, H 8.25, N 5.73 ; found C 73.58, H 8.33, N 5.54.
(S)-2-(Allylbenzylamino)-N,N-dibenzyl-3-(tert-butyldimethylsilyloxy)propionamide (57): The amide 57 ($139 \mathrm{mg}, 64 \%$) was obtained from (S)-N,N-di-benzyl-2-benzylamino-3-(tert-butyldimethylsilyloxy)-
propionamide (56, $200 \mathrm{mg}, \quad 410 \mu \mathrm{~mol}), \quad \mathrm{K}_{2} \mathrm{CO}_{3} \quad(113 \mathrm{mg}$,
 $820 \mu \mathrm{~mol})$ and allyl bromide $(50 \mu \mathrm{~L}, 570 \mu \mathrm{~mol})$ according to GP 1 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.\quad 1: 5\right)=0.60 .-[\alpha]_{D}^{20}=-2.0 \quad\left(c=0.90, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{film}): \quad v=3028$ $\mathrm{cm}^{-1}, 2927,2855,1652,1452,1256,1099 .-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.10[\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.12\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.94\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.25\left(\mathrm{dd},{ }^{2} J=14.0,{ }^{3} J=7.7 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \quad \mathrm{CH} 2 \mathrm{CH}=\mathrm{CH}_{2}\right), 3.44\left(\mathrm{dd}, 2 J=14.0, \quad 3 \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.71(\mathrm{~d}$, $\left.{ }^{2} J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.87\left(\mathrm{dd},{ }^{3} J=5.4,{ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.95\left(\mathrm{~d},{ }^{2} J=14.8 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.02-4.24\left(\mathrm{~m}, 4 \mathrm{H}, 3-\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.66\left(\mathrm{~d},{ }^{2} J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.03-$ $5.21\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.70-5.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.08-7.39(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (62.9 MHz, CDCl_{3}, additional DEPT): $\delta=-5.4\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.3\left[\mathrm{C}_{\text {quat }}\right.$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.9\left[+, 3 \mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 47.8\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 49.0\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 53.9\left(-, \mathrm{CH}_{2} \mathrm{Ph} *\right)$, $54.5\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right), 59.7(-, \mathrm{C}-3), 60.1(+, \mathrm{C}-2), 117.8\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.6(+, 2 \mathrm{C}$, Ar-C), 126.9 (+, Ar-C), 127.2 (+, Ar-C), 128.1 (+, 5 C, Ar-C), 128.5 (+, 2 C, Ar-C), 128.6 (+, $2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 128.9(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 136.2\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 136.9\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 137.4\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $139.6\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 171.8\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=528(15)\left[\mathrm{M}^{+}\right]$, 513 (35), 437 (33) [$\left.\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 383$ (12), 304 (100), 91 (25) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ (528.81): calcd. C 74.95, H 8.39, N 5.30; found C 75.08, H 8.22, N 5.21 .
endo- and exo-(2R)-3-Benzyl-2-(tert-butyldimethylsilyloxymethyl)-N,N-dimethyl-3-azabi-cyclo[3.1.0]hex-1-ylamine (58): The amines $\mathbf{5 8}(1.83 \mathrm{~g}, 89 \%)$ were obtained from the N, N-dimethylamide $54(2.15 \mathrm{~g}, 5.70 \mathrm{mmol})$, $\mathrm{MeTi}(\mathrm{OiPr})_{3} \quad(2.06 \mathrm{~g}, \quad 8.60 \mathrm{mmol})$ and $c \mathrm{HexMgBr} \quad(35 \mathrm{~mL}$,
 $34.0 \mathrm{mmol}, 1.0 \mathrm{~m}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) according to GP 3 in an endolexo ratio of 2 : 1. Endo-58: Colorless oil, $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.29 .-[\alpha]_{D}^{20}=+13.8\left(c=1.0, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}($ film $):$ $v=2927 \mathrm{~cm}^{-1}, 2855,1453,1257,1100 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.61\left(\mathrm{dd},{ }^{2} J=4.3,{ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 0.91\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.04(\mathrm{pst}$, $\left.{ }^{2} J=4.0,{ }^{3} J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.26-1.33(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.35\left(\mathrm{dd},{ }^{2} J=9.0,{ }^{3} J=4.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 4-\mathrm{H}), 2.47\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.71\left(\mathrm{~d},{ }^{2} J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.02\left(\mathrm{t},{ }^{3} \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $2-\mathrm{H}), 3.30\left(\mathrm{~d},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.70\left(\mathrm{dd},{ }^{2} J=10.5,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.89$ (dd, $\left.{ }^{2} J=10.5,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.21\left(\mathrm{~d},{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.18-7.28(\mathrm{~m}, 5$ $\mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=-5.4\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $14.7(-, c \operatorname{Pr}-\mathrm{C}), 18.3\left[\mathrm{C}_{\text {quat }}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.3(+, c \operatorname{Pr}-\mathrm{C}), 26.0\left[+, 3 \mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 42.0[+$, $\left.2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 54.2(-, \mathrm{C}-4), 54.3\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 58.7\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 62.5(+, \mathrm{C}-2), 65.3(-$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 128.0$ (+, Ar-C), 128.5 (+, 2 C, Ar-C), 128.7 (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 139.8\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right) .-$ MS (EI, 70 eV), m/z (\%): 360 (12) [$\left.\mathrm{M}^{+}\right], 316$ (66), 229 (79), 215 (100), 123 (11), 91 (21) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$. - HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}^{+}\right] 360.2597$, found 360.2597. exo-58: Colorless oil, $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.77 .-[\alpha]_{D}^{20}=+34.9 \quad\left(c=1.0, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}($ film $)$: $v=3027 \mathrm{~cm}^{-1}, 2925,1461,1254,1042 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07[\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.08\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.66\left(\mathrm{dd},{ }^{2} J=3.5,{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 0.85-0.89(\mathrm{~m}$, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.94\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.57-1.64(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.21\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $2.61\left(\mathrm{~d},{ }^{2} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.01-3.06(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.78\left(\mathrm{~d},{ }^{2} J=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$,
$\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.85-3.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.00\left(\mathrm{~d},{ }^{2} J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30-7.22(\mathrm{~m}, 5 \mathrm{H}$, Ar-H). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=-5.5\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 14.1$ $(-, c \operatorname{Pr}-\mathrm{C}), 18.1\left[\mathrm{C}_{\text {quat }}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.9(+, c \mathrm{Pr}-\mathrm{C}), 26.9\left[+, 3 \mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 43.3[+, 2 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 52.5\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 53.4(-, \mathrm{C}-4), 54.4\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 61.0(+, \mathrm{C}-2), 64.5\left(-, \mathrm{CH}_{2} \mathrm{O}\right)$, 126.4 (+, Ar-C), 128.0 (+, $3 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.1$ (+, Ar-C), 139.6 ($\left.\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}$, $70 \mathrm{eV}), m / z(\%): 360(6)\left[\mathrm{M}^{+}\right], 316$ (25), 229 (53), 215 (100), 123 (26), 110 (29), 91 (21) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$. - HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}^{+}\right]$360.2597, found 360.2597.
endo- and exo-(2R)-N,N,3-Tribenzyl-2-(tert-butyldimethylsilyloxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (59): The amines 59 ($265 \mathrm{mg}, 83 \%$) were obtained from N, N-dibenzylamide $57(330 \mathrm{mg}, 620 \mu \mathrm{~mol})$, $\mathrm{MeTi}(\mathrm{O} i \operatorname{Pr})_{3}(206 \mathrm{mg}, 858 \mu \mathrm{~mol})$ and $c \mathrm{HexMgBr}(3.5 \mathrm{~mL}$,
 $2.87 \mathrm{mmol}, 0.80 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) according to GP 3 in an endolexo ratio of $2.5: 1$. endo-59: Colorless oil, $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 10: 1\right)=0.20 .-[\alpha]_{D}^{20}=+3.6\left(c=0.50, \mathrm{CHCl}_{3}\right) .-$ IR (film): $v=3027 \mathrm{~cm}^{-1}, 2927,1453,1256,873,698 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=0.15\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.17\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.53\left(\mathrm{dd},{ }^{3} J=4.0,{ }^{2} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{H}\right), 0.85-0.91(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.02\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.86\left(\mathrm{dd},{ }^{3} J=3.5,{ }^{3} J=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 4-\mathrm{H}), 2.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.25\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.37(\mathrm{~d}$, $\left.{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.75\left(\mathrm{dd},{ }^{2} J=10.5,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.84(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), $3.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.92\left(\mathrm{dd},{ }^{2} J=10.5,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.06(\mathrm{~d}$, $\left.{ }^{2} J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.18-7.32(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=-5.2\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 13.9(-, c \mathrm{Pr}-\mathrm{C}), 18.4\left[\mathrm{C}_{\text {quat }}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.4$ $(+, c \operatorname{Pr}-\mathrm{C}), 26.1\left(+, 3 \mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 53.1(-, \mathrm{C}-4), 53.2\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 56.8\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right)$,
58.1 (-, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 62.5$ (+, C-2), 64.8 (-, $\mathrm{CH}_{2} \mathrm{O}$), 126.6 (+, Ar-C), 126.7 (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 127.9$ $(+, 5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.0(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.9(+, 5 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 131.8\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 139.1\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $140.6\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 512(6)\left[\mathrm{M}^{+}\right], 421(40)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right]$, 381 (100), 367 (39), 316 (25), 276 (19), 91 (44) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{OSi}$ (512.81): calcd. C 77.29, H 8.65, N 5.46; found C 77.12, H 8.55, N 5.51.
exo-59: Colorless solid, $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 10: 1\right)=0.32$, m.p. $54-56^{\circ} \mathrm{C} . ~-[\alpha]_{D}^{20}=+17.0$ $\left(c=0.50, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{KBr}): v=3027 \mathrm{~cm}^{-1}, 2926,1452,1255,1099,697 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.06\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.12\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.78-0.84(\mathrm{~m}, 2 \mathrm{H}$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{H}\right), 0.89\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.60-1.66(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.50\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right)$, $2.81\left(\mathrm{t},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 2.86\left(\mathrm{dd},{ }^{3} J=3.4,{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.60-3.84(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.90-3.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.15-7.37(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$ (62.9 MHz, CDCl_{3}, additional DEPT): $\delta=-5.3\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 14.6(-, c \mathrm{Pr}-\mathrm{C}), 18.0$ $\left[\mathrm{C}_{\text {quat }}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 24.3(+, c \mathrm{Pr}-\mathrm{C}), 26.1\left[+, 3 \mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.9(-, \mathrm{C}-4), 30.2\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $51.7\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 52.1\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 54.6\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 61.7\left(-, \mathrm{CH}_{2} \mathrm{O}\right), 65.9(+, \mathrm{C}-2), 126.3$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 126.7$ (+, Ar-C), 127.9 (+, 6 C, Ar-C), 128.1 (+, 5 C, Ar-C), 129.5 (+, Ar-C), $138.1\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 140.9\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 512(3)\left[\mathrm{M}^{+}\right], 421$ (50) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 381$ (100), 367 (51), 316 (27), 276 (33), 91 (9) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{OSi}$ (512.81): calcd. C 77.29, H 8.65, N 5.46; found C 77.07, H 8.42, N 5.55.
2.3. Synthesis of 3-azabicyclo[3.1.0]hex-1-ylamines by Ti-mediated intramolecular reductive cyclopropanation of glycine derivatives

2-(Allylbenzylamino)-N,N-dibenzylacetamide (70): The amide 70 ($37.9 \mathrm{~g}, 93 \%$) was obtained from the N, N-dibenzylamide $67(33.7 \mathrm{~g}, 106 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(28 \mathrm{~mL}$, 202 mmol) and allylbenzylamine ($17.3 \mathrm{~g}, 117 \mathrm{mmol}$) according to
 GP 2 as a colorless oil. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.33$. $-\mathrm{IR}($ film $)$:
$v=3028 \mathrm{~cm}^{-1}, 2922,1650,1494,1451,1213,1076,734 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=3.27\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.40(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 3.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.49$ (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.13-5.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.88\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=6.6\right.$, ${ }^{3} J=10.2,{ }^{3} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $7.06-7.38(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}(62.9 \mathrm{MHz}$, CDCl_{3}, additional DEPT): $\delta=47.6\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 49.3(-, \mathrm{C}-2), 55.7\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 57.0(-$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 58.1\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 118.7\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.5(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 127.0$ (,$\left.+ \mathrm{Ar}-\mathrm{C}\right), 127.3$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.1$ (+, $4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.5$ ($+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.6$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 129.1$ (+, $2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 135.0\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 136.6\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 137.2\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 138.3\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $171.0\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$. - MS (EI, 70 eV$), m / z(\%): 384$ (6) $\left[\mathrm{M}^{+}\right], 343$ (14), 293 (48) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 160(78), 91$ (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right] .-\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ (384.52): calcd. C 81.21, H 7.34, N 7.28; found C 81.04, H 7.11, N 7.09.

2-(Allylbenzylamino)-N-benzyl-N-methylacetamide (71): The amide 71 ($3.15 \mathrm{~g}, 85 \%$) was obtained from the N-benzyl- N-methylamide $68(2.90 \mathrm{~g}$, $12.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~mL}, 24.0 \mathrm{mmol})$ and allylbenzylamine $(1.95 \mathrm{~g}, 13.2 \mathrm{mmol})$ according to GP 2 as a colorless oil.
 $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 1\right)=0.39$. - IR (film): $v=3028 \mathrm{~cm}^{-1}, 2920,2836,1646,1452,1261$,

1103, 699. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a major rotamer/minor rotamer ratio of $1.5: 1): \delta=2.86\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor, NCH_{3}), $2.88\left(\mathrm{~s}, 3 \mathrm{H}\right.$, major, $\left.\mathrm{NCH}_{3}\right), 3.20-3.23(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.33(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 3.69\left(\mathrm{~s}, 2 \mathrm{H}\right.$, minor, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.74\left(\mathrm{~s}, 2 \mathrm{H}\right.$, major, $\mathrm{CH}_{2} \mathrm{Ph}$), $4.54\left(\mathrm{~s}, 2 \mathrm{H}\right.$, minor, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}\right.$, major, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 5.12-5.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.77-5.95 (m, $\left.1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.05-7.38(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT, observed as a major rotamer/minor rotamer ratio of $1.5: 1): \delta=33.6(+$, minor, NCH_{3}), 34.6 (+, major, NCH_{3}), 50.8 (-, major, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 52.8 (-, minor, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 55.8$ (-, major, C-2), $56.0(-$, minor, $\mathrm{C}-2), 57.1\left(-\right.$, major, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 57.3(-$, minor, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, $58.1\left(-\right.$, major, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 58.2\left(-\right.$, minor, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 118.3$ (-, minor, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$, 118.4 (-, major, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 126.5$ (+, Ar-C), 127.0 (+, Ar-C), 127.2 (+, Ar-C), 128.2 (+, 2 C , Ar-C), 128.5 (+, 2 C, Ar-C), 128.7 (+, Ar-C), 129.2 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 135.2$ (+, minor, $\left.C \mathrm{H}=\mathrm{CH}_{2}\right), 135.3\left(+\right.$, major, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 136.9\left(\mathrm{C}_{\text {quat }}\right.$, minor, Ar-C), $137.3\left(\mathrm{C}_{\text {quat }}\right.$, major, Ar-C), $138.5\left(\mathrm{C}_{\text {quat }}\right.$, minor, $\left.\operatorname{Ar-C}\right), 138.7\left(\mathrm{C}_{\text {quat }}\right.$, major, $\left.\operatorname{Ar-C}\right), 170.7\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}$, $70 \mathrm{eV}), m / z(\%): 308$ (7) $\left[\mathrm{M}^{+}\right], 267$ (14), 217 (48) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 160$ (88), 91 (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (308.43): calcd. C 77.88, H 7.84, N 9.08; found C 77.99, H 7.97, N 8.89 .

2-(Allylmethylamino)-N,N-dibenzylacetamide (72): The amide 72 (19.0 g, 98\%) was obtained from the N, N-dibenzylamide $67(20.0 \mathrm{~g}, 63.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ $(17 \mathrm{~mL}, 126 \mathrm{mmol})$ and allylmethylamine $(6.57 \mathrm{~mL}, 69.0 \mathrm{mmol})$
 according to GP 2 as a colorless oil. R_{f} (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ $1: 2)=0.28 .-\operatorname{IR}(f i l m): v=3029 \mathrm{~cm}^{-1}, 2919,2788,1649,1451,1233,699 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.29$
(s, 2 H, 2-H), $4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.08-5.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.82$ (ddt, ${ }^{3} J=6.5,{ }^{3} J=10.3,{ }^{3} J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $7.15-7.39(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(62.9 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=42.6 \quad\left(+, \quad \mathrm{NCH}_{3}\right), 47.8 \quad(-$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 49.5(-, \mathrm{C}-2), 59.7\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 60.8\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 118.3\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.7$ (+, 2 C, Ar-C), 127.4 (+, Ar-C), 127.5 (+, Ar-C), 128.3 (+, 2 C, Ar-C), 128.6 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C})$, $128.9(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 135.0\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 136.8\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 137.3\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 170.7$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 308$ (7) [$\left.\mathrm{M}^{+}\right], 279$ (11), 217 (3) [$\left.\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 91$
(26) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right], 84$ (100). $-\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (308.43): calcd. C 77.88, H 7.84, N 9.08; found C 77.59, H 7.61, N 8.97.

N,N-Dibenzyl-2-[(benzyl)(but-3-enyl)amino]acetamide (73): A solution of N-benzyl-but-3-enylamine $(322 \mathrm{mg}, \quad 2.00 \mathrm{mmol})$ in anhydrous DMF (3.0 mL) was added at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{NaH}(104 \mathrm{mg}$, $2.60 \mathrm{mmol}, 60 \%$ suspension in mineral oil) in anhydrous DMF $(4.0 \mathrm{~mL})$. The reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, the N, N-dibenzylamide $\mathbf{6 7}$ ($732 \mathrm{mg}, 2.30 \mathrm{mmol}$) was then added in one portion, and stirring was continued at ambient temperature for an additional 2 h . The reaction mixture was cooled with an ice-bath, and a 2: 1 mixture of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and 25% aq. $\mathrm{NH}_{4} \mathrm{OH}$ solution (6 mL) was added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$, the combined organic phases were washed with brine (20 mL) and dried over MgSO_{4}. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to give the amide $72(605 \mathrm{mg}$, 76%) as a yellow oil. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.37$. $-\mathrm{IR}($ film $): ~ v=3062 \mathrm{~cm}^{-1}, 3028,2921$, 1650, 1451, 1211, 698. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.20-2.29\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 2.71$ (ps t, $\left.3 J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{H}\right), 3.37(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$,
$4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.92-5.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.82\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=6.7,{ }^{3} \mathrm{~J}=10.2\right.$, ${ }^{3} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), 7.05-7.39(m, $\left.15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=31.4\left(-, \mathrm{C}-2\right.$ '), $47.8\left(-, \mathrm{C}-1\right.$ '), $49.3(-, \mathrm{C}-2), 53.6\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 56.8(-$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 58.4\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 115.8\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.4(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 127.2(+, \mathrm{Ar}-\mathrm{C}), 127.3$ (+, Ar-C), 127.4 (+, Ar-C), 128.2 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.3$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.6$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C})$, $128.8(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 129.2(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 136.5\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 136.7\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 137.2$ $\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 138.4\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 171.1\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 398$ (3) $\left[\mathrm{M}^{+}\right], 357$ (37), 174 (82), 91 (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right]$. - HRMS (EI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+}\right]$ 398.2358, found 398.2358 .

2-[(Allyl)(tert-butoxycarbonyl)amino)-N,N-dibenzylacetamide (74): Triethylamine (1.3 mL , 9.10 mmol) and allyl amine ($286 \mathrm{mg}, 5.01 \mathrm{mmol}$) were added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the N, N-dibenzylamide 67 $(1.45 \mathrm{~g}, 4.56 \mathrm{mmol})$ in anhydrous THF (15 mL). After the addition
 was complete, the reaction mixture was stirred at ambient temperature for an additional 12 h . Sat. aq. NaHCO_{3} solution $(10 \mathrm{~mL})$ and EtOAc $(10 \mathrm{~mL})$ were added, the organic phase was separated, washed with brine (20 mL), dried over MgSO_{4} and concentrated under reduced pressure to give an oil which was used without further purification. This oil was taken up in a mixture of $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ and dioxane $(15 \mathrm{~mL})$, and to this solution were added a solution of $\mathrm{NaOH}(160 \mathrm{mg}, 4.00 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(7.0 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(1.09 \mathrm{~g}, 5.00 \mathrm{mmol})$. The mixture was stirred for 2 d , concentrated to about 50% of its original volume, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography of the residue gave the amide $74(1.02 \mathrm{~g}, 57 \%)$ as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.2: 1\right)=0.59 .-\mathrm{IR}($ film $)$:
$v=3031 \mathrm{~cm}^{-1}, 2978,1700,1652,1448,1172 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.40[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.64-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.88(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 4.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.04-5.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.05-7.32(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=28.3\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $43.0\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 48.4(-, \mathrm{C}-2), 50.7\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 60.3\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 79.1 \quad\left[\mathrm{C}_{\text {quat }}\right.$, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 115.5\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.4(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 127.6(+, \mathrm{Ar}-\mathrm{C}), 127.9(+, \mathrm{Ar}-\mathrm{C}), 128.0$ $(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.6(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 129.0(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 135.0\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 135.7\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $136.4\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 155.8\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 167.4\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$.

2-(Allyl-tert-butoxycarbonylamino)-N,N-diphenylacetamide (75): The amide 75 ($6.00 \mathrm{~g}, 54 \%$) was obtained from $\mathrm{K}_{2} \mathrm{CO}_{3}(8.15 \mathrm{~g}, 58.7 \mathrm{mmol})$, $\mathrm{NaI}(9.00 \mathrm{~g}$, $60.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(16.0 \mathrm{~mL}, 117 \mathrm{mmol})$, allyl amine (2.25 mL , $30.0 \mathrm{mmol}), N, N$-diphenylamide $69(8.07 \mathrm{~g}, 30.0 \mathrm{mmol})$ and
 $\mathrm{Boc}_{2} \mathrm{O}(7.20 \mathrm{~g}, 33.0 \mathrm{mmol})$ according to GP 14 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $2: 1)=0.80 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a major rotamer/minor rotamer ratio of $1.1: 1): \delta=1.45\left[\mathrm{~s}, 9 \mathrm{H}\right.$, major, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49\left[\mathrm{~s}, 9 \mathrm{H}\right.$, minor, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.80(\mathrm{~s}, 2 \mathrm{H}$, 2-H), 3.91-4.00 (m, 2 H, CH2 CH=CH2$), 5.06-5.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.70-5.81(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.24-7.31(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT, observed as a major rotamer/minor rotamer ratio of $1.1: 1): \delta=28.4\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 49.0$ (-, major, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 49.3\left(-\right.$, minor, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $50.5(-$, minor, $\mathrm{C}-2)$, 50.8 (- , major, C-2), $80.0\left[\mathrm{C}_{\text {quat }}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 116.4\left(-\right.$, major, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 117.2\left(-\right.$, minor, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 126.1$ $(+, 4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.5(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 129.7(+, 4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 134.2\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 134.6\left(\mathrm{C}_{\text {quat }}\right.$, $2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 155.8\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 168.6\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$.

N,N,3-Tribenzyl-3-azabicyclo[3.1.0]hex-1-ylamine (76): The amine 76 ($32.0 \mathrm{~g}, 58 \%$) was obtained from the N, N-dibenzylamide $70(57.0 \mathrm{~g}, \quad 150 \mathrm{mmol})$, $\mathrm{MeTi}(\mathrm{OiPr})_{3}(54.1 \mathrm{~g}, 225 \mathrm{mmol})$ and $c \mathrm{HexMgBr}(930 \mathrm{~mL}, 750 \mathrm{mmol}$, 0.80 M solution in $\mathrm{Et}_{2} \mathrm{O}$) according to GP 3 as a colorless solid.
 $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.56$, m.p. $76-79^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=3022 \mathrm{~cm}^{-1}, 2929,2793,1493$, 1454, 1210, 735. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.56-0.60(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.97-1.04$ ($\mathrm{m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), $2.20\left(\mathrm{dd},{ }^{2} J=8.5,{ }^{3} J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 2.71\left(\mathrm{~d},{ }^{2} J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right)$, $2.74\left(\mathrm{~d},{ }^{2} J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 2.96\left(\mathrm{~d},{ }^{2} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.75$ (d, $\left.{ }^{2} J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.85\left(\mathrm{~d}, 2 J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.23-7.41(\mathrm{~m}, 15 \mathrm{H}$, Ar-H). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=16.5$ (-, $\left.c \mathrm{Pr}-\mathrm{C}\right), 24.4$ (+ , $\left.{ }_{c} \operatorname{Pr}-\mathrm{C}\right), 49.8\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 50.8\left(-, \mathrm{C}-2^{*}\right), 54.2\left(-, \mathrm{C}-4^{*}\right), 56.9\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 59.4(-$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 126.7(+, 3 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 127.9(+, 4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.1$ (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 128.5(+, 2 \mathrm{C}$, Ar-C), 128.9 (+, 4 C, Ar-C), 139.2 ($\left.\mathrm{C}_{\text {quat }}, ~ A r-C\right), 140.1$ ($\left.\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV})$, $m / z(\%): 368$ (18) $\left[\mathrm{M}^{+}\right], 277$ (100) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 158$ (16), 91 (67) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2}$ (368.52): calcd. C 84.74, H 7.66, N 7.60; found C 84.70, H 7.51, N 7.50.

N,3-Dibenzyl-N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (77): The amine 77 (10.3 g, 56\%) was obtained from the N-benzyl- N-methylamide 71 ($19.4 \mathrm{~g}, 63.0 \mathrm{mmol}$), $\mathrm{MeTi}(\mathrm{O} i \operatorname{Pr})_{3}(23.0 \mathrm{~g}, 96.0 \mathrm{mmol})$ and $c \mathrm{HexMgBr}(308 \mathrm{~mL}, 315 \mathrm{mmol}$, 1.0 m solution in $\mathrm{Et}_{2} \mathrm{O}$) according to GP 3 as a colorless oil. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.45$. - IR (film): $v=3026 \mathrm{~cm}^{-1}, 2896,2787$,
 1452, 1378, 1027. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.71$ (dd, ${ }^{2} J=3.7,{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $c \operatorname{Pr}-\mathrm{H}), 1.16\left(\mathrm{pst},{ }^{2} J=3.9,{ }^{3} J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.35-1.41(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}$,
NCH_{3}), $2.44\left(\mathrm{dd},{ }^{2} J=8.6,{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 2.61\left(\mathrm{~d},{ }^{2} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 2.84(\mathrm{~d}$, $\left.{ }^{2} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 2.93\left(\mathrm{~d},{ }^{2} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.56-3.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.80(\mathrm{~d}$, $\left.{ }^{2} J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.21-7.34(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=17.0(-, c \operatorname{Pr}-\mathrm{C}), 24.2(+, c \operatorname{Pr}-\mathrm{C}), 39.2\left(+, \mathrm{NCH}_{3}\right), 50.3\left(-, \mathrm{C}-4^{*}\right), 52.1$ $\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 54.8\left(-, \mathrm{C}-2^{*}\right), 59.6\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 59.8\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 126.8(+, \mathrm{Ar}-\mathrm{C}), 128.1(+$, $4 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 128.5$ (+, $2 \mathrm{C}, \operatorname{Ar-C}), 128.8(+, 3 \mathrm{C}, \operatorname{Ar-C}), 139.5\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 139.7\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C). - MS (EI), m/z (\%): 292 (39) [M $\left.{ }^{+}\right], 201$ (40) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 173$ (46), 158 (43), 91 (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$ (292.43): calcd. C 82.15, H 8.27, N 9.58; found C 81.91, H 8.06, N 9.37 .

N,N-Dibenzyl-3-methyl-3-azabicyclo[3.1.0.]hex-1-ylamine (78): The amine 78 (193 mg, 66\%) was obtained from the N, N-dibenzylamide 72 ($308 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{MeTi}(\mathrm{OiPr})_{3}(351 \mathrm{mg}, 1.46 \mathrm{mmol})$ and $c \mathrm{HexMgBr}(5.0 \mathrm{~mL}, 5.00 \mathrm{mmol}$, 1.0 M solution in $\mathrm{Et}_{2} \mathrm{O}$) according to GP 3 as a colorless oil.
 $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 15: 1+1 \% \mathrm{NH}_{3}\right)=0.50$. - IR (film): $v=3027 \mathrm{~cm}^{-1}, 2885,2776,1453$, 1198, 748. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.53\left(\mathrm{dd},{ }^{2} J=4.0,{ }^{3} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right)$, 0.88 (ps t, $\left.{ }^{2} J=4.3,{ }^{3} J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.05-0.98(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.11\left(\mathrm{dd},{ }^{2} J=8.8\right.$, $\left.{ }^{3} J=3.5, \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.61\left(\mathrm{~d},{ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 2.94(\mathrm{~d}$, $\left.{ }^{2} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 2.70\left(\mathrm{~d},{ }^{2} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.78(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 7.19-7.34 (m, $\left.10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=16.8(-, c \operatorname{Pr}-\mathrm{C}), 24.8(+, c \operatorname{Pr}-\mathrm{C}), 42.0\left(+, \mathrm{NCH}_{3}\right), 50.5\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 53.2\left(-, \mathrm{C}-2^{*}\right), 56.7$ $\left(-, \mathrm{C}-4^{*}\right), 56.8\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 126.8$ (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 127.9$ (+, $\left.4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 128.9$ (+, 4 C , Ar-C), $139.9\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right)$. - MS (EI, 70 eV$), m / z(\%): 292(13)\left[\mathrm{M}^{+}\right], 201(100)\left[\mathrm{M}^{+}-\right.$
$\left.\mathrm{C}_{7} \mathrm{H}_{7}\right], 158$ (14), 91 (44) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right]$. - HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right]$292.1939, found 292.1939.

N,N,3-Tribenzyl-3-azabicyclo[4.1.0]hept-1-ylamine (79): The amine 79 (1.10 g, 59\%) was obtained from the N, N-dibenzylamide $73(1.94 \mathrm{~g}, \quad 4.87 \mathrm{mmol})$, $\mathrm{MeTi}(\mathrm{OiPr})_{3}(1.76 \mathrm{~g}, 7.33 \mathrm{mmol})$ and $c \mathrm{HexMgBr}(19.5 \mathrm{~mL}, 19.5 \mathrm{mmol}$, 1.0 m solution in $\mathrm{Et}_{2} \mathrm{O}$) according to GP 3 as a colorless solid.
 $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 5: 1\right)=0.52$, m.p. $=82-84^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): ~ v=3027 \mathrm{~cm}^{-1}, 2912,2770$, 1452, 1124, 753. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.49\left(\mathrm{dd},{ }^{2} J=3.9,{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $c \operatorname{Pr}-\mathrm{H}), 0.57\left(\mathrm{dd},{ }^{2} J=3.8,{ }^{3} J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 0.73-0.82(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.49-1.60(\mathrm{~m}$, $\left.1 \mathrm{H}, 4-\mathrm{H}^{*}\right), 1.67-1.80\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}^{*}\right), 1.99-2.06\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}^{*}\right), 2.15-2.24\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}^{*}\right)$, $2.62\left(\mathrm{~d},{ }^{2} J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.04\left(\mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.74$ (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.16-7.53 (m, $\left.15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=19.8(+, c \operatorname{Pr}-\mathrm{C}), 19.9(-, c \operatorname{Pr}-\mathrm{C}), 24.3(-, \mathrm{C}-5), 42.8\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.5(-, \mathrm{C}-4)$, $52.9(-, \mathrm{C}-2), 55.9\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 63.0\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 126.6$ (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 126.7$ (+, Ar-C), 127.9 (+, 4 C, Ar-C), 128.2 (+, 2 C, Ar-C), 128.7 (+, 2 C, Ar-C), 129.2 (+, 4 C, Ar-C), 139.3 $\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 140.4\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 382(15)\left[\mathrm{M}^{+}\right], 291$ (22) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 210(24), 166$ (12), 91 (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$.

N,N-Dibenzyl-3-(tert-butoxycarbonyl)-3-azabicyclo[3.1.0]hex-1-ylamine (80): The amine $\mathbf{8 0}$ ($262 \mathrm{mg}, 43 \%$) was obtained from the N, N-dibenzylamide 74 (635 mg , $1.61 \mathrm{mmol}), \mathrm{MeTi}(\mathrm{OiPr})_{3}(581 \mathrm{mg}, 2.42 \mathrm{mmol})$ and $c \mathrm{HexMgBr}(10 \mathrm{~mL}$, $8.00 \mathrm{mmol}, 0.8 \mathrm{~m}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) according to GP 3 as a colorless oil,
 $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.56$. - IR (film) $: v=3027 \mathrm{~cm}^{-1}, 2978,2862,1692,1401,1116 .-$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a major rotamer/minor rotamer ratio of $1.2: 1$): $\delta=0.35\left(\mathrm{ps} \mathrm{t},{ }^{2} J=4.7,{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 0.78-0.83(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.00-1.03(\mathrm{~m}$, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.45\left[\mathrm{~s}, 9 \mathrm{H}\right.$, major, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49\left[\mathrm{~s}, 9 \mathrm{H}\right.$, minor, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.08-3.12(\mathrm{~m}, 1 \mathrm{H}$, 4-H), $3.19\left(\mathrm{~d},{ }^{2} J=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, major, $\left.2-\mathrm{H}\right), 3.27\left(\mathrm{~d},{ }^{2} J=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, minor, 2-H), $3.40(\mathrm{~d}$, ${ }^{2} J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor, $\left.2-\mathrm{H}\right), 3.54\left(\mathrm{~d},{ }^{2} J=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, major, 2-H), $3.58-3.87(\mathrm{~m}, 5 \mathrm{H}$, 4-H, $\mathrm{CH}_{2} \mathrm{Ph}$), 7.22-7.32 (m, $\left.10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT, observed as a major rotamer/minor rotamer ratio of $1.2: 1)$: $\delta=18.7(-$, minor, $c \operatorname{Pr}-\mathrm{C}), 18.9$ (-, major, $c \operatorname{Pr}-\mathrm{C}$), 24.3 (+ , minor, $c \operatorname{Pr}-\mathrm{C}$), 24.7 (+ , major, $c \operatorname{Pr}-\mathrm{C}$), 28.4 [,+ 3 C , major, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.5\left[+, 3 \mathrm{C}\right.$, minor, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 44.6 (-, major, C-4), 44.9 (-, minor, C-4), 47.6 (-, minor, $\mathrm{C}-2), 48.0$ (-, major, $\mathrm{C}-2), 50.0\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 56.8\left(-\right.$, minor, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 56.9$ (-, major, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 79.3\left[\mathrm{C}_{\text {quat }}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 127.0(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.1(+, 4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 129.0(+, 4 \mathrm{C}$, Ar-C), $139.5\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right), 155.1\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 378$ (23) $\left[\mathrm{M}^{+}\right], 287(38)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 231$ (100), 187 (23), 91 (59) [$\left.\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right], 57$ (62).

3-Azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (28-HCI): The dihydrochloride 28-HCI ($156 \mathrm{mg}, 91 \%$) was obtained from the 3-azabicyclo[3.1.0]hexane 76 $(368 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{HCl}(1.2 \mathrm{~mL}, 6.00 \mathrm{mmol}, 5.0 \mathrm{~m}$ solution in $i \mathrm{PrOH})$ by use of $5 \% \mathrm{Pd} / \mathrm{C}(184 \mathrm{mg})$ according to GP 4 as a colorless
 solid. M.p. $200-203{ }^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): ~ v=3441 \mathrm{~cm}^{-1}, ~ 2882, ~ 2534,1588$, 1452, 1217. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.20-1.26(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.41$ (pst, ${ }^{2} J=8.2$, $\left.{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 2.15-2.22(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 3.34\left(\mathrm{~d},{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 3.56-$ $3.68\left(\mathrm{~m}, 3 \mathrm{H}, 2,4-\mathrm{H}^{*}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, additional DEPT): $\delta=14.3(-$, $c \operatorname{Pr}-\mathrm{C}), 22.4(+, c \operatorname{Pr}-\mathrm{C}), 40.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.6(-, 2 \mathrm{C}, \mathrm{C}-2,4) .-\mathrm{MS}(\mathrm{CI}, 70 \mathrm{eV}): m / z$
$(\%)=197 \quad(10) \quad\left[2 \mathrm{M}^{+}+\mathrm{H}\right], \quad 116$
(33) $\left[\mathrm{M}^{+}+18\right], \quad 99 \quad(100) \quad\left[\mathrm{M}^{+}+\mathrm{H}\right] .-$
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$ (171.07): calcd. C 35.11, H 7.07, N 16.38; found C 35.20, H 6.97, N 16.67.

N-Methyl-3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (82-HCI): The dihydrochloride 82-HCI (3.91 g , 96%) was obtained from the 3 -azabicyclo[3.1.0]hexane $77(6.44 \mathrm{~g}, 22.0 \mathrm{mmol})$ and $\mathrm{HCl}(22 \mathrm{~mL}, 130 \mathrm{mmol}, 6.0 \mathrm{~m}$ solution in $i \mathrm{PrOH})$ by use of $5 \% \mathrm{Pd} / \mathrm{C}(3.22 \mathrm{~g})$ according to GP 4 as a colorless solid
 M.p. $192-195^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=3423 \mathrm{~cm}^{-1}, 2924,2680,2550,1580$, 1411. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=1.15\left(\mathrm{dd},{ }^{2} J=5.0,{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.55(\mathrm{dt}$, $\left.{ }^{2} J=2.0,{ }^{3} J=8.9,{ }^{3} J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 2.36(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.41$ (d, $\left.{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.63\left(\mathrm{dd},{ }^{2} J=11.5,{ }^{3} J=4.5, \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.69\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 2-\mathrm{H}), 3.78\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, additional DEPT): $\delta=14.3(-, c \operatorname{Pr}-\mathrm{C}), 22.8(+, c \operatorname{Pr}-\mathrm{C}), 34.4\left(+, \mathrm{NCH}_{3}\right), 47.7\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 48.2\left(-, \mathrm{C}-2^{*}\right), 49.6$ (-, C-4*). - MS (EI, 70 eV), m/z (\%): 112 (4) $\left[\mathrm{M}^{+}\right], 97$ (2), 83 (100), 68 (21). $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$ (185.09): calcd. C 38.93, H 7.62, N 15.13; found C 38.74, H 7.51, N 14.96.

3-Methyl-3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (83-HCI): The dihydrochloride $\mathbf{8 3 - H C l}(2.60 \mathrm{~g}, 95 \%)$ was obtained from the 3 -azabicyclo[3.1.0]hexane $78(4.30 \mathrm{~g}, 14.7 \mathrm{mmol})$ and $\mathrm{HCl}(7.6 \mathrm{~mL}, 45.6 \mathrm{mmol}$, 6.0 M solution in $i \mathrm{PrOH}$) by use of $5 \% \mathrm{Pd} / \mathrm{C}(2.16 \mathrm{~g})$ according to
 GP 4 (6 h reaction time) as a colorless solid. M.p. $227-230^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=3437 \mathrm{~cm}^{-1}$, 2868, 2654, 1456, 1158. - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , [D $\left.\mathrm{D}_{6}\right]-\mathrm{DMSO}$): $\delta=1.37\left(\mathrm{ps} \mathrm{t}^{2}{ }^{2} J=8.0\right.$, $\left.{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.68(\mathrm{dd}, 2 J=6.8,3 J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.13-2.19(\mathrm{~m}, 1 \mathrm{H}$, c Pr-H), 2.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.28 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $3.38-3.50(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 3.55$ (d,
$\left.{ }^{2} J=11.3 \mathrm{~Hz}, \quad 1 \mathrm{H}, 2-\mathrm{H}\right), 3.73\left(\mathrm{~d},{ }^{2} J=11.3 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad 2-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.5 MHz , [D ${ }_{6}$]-DMSO, additional DEPT): $\delta=11.7(-, c \operatorname{Pr}-\mathrm{C}), 19.4(+, c \operatorname{Pr}-\mathrm{C}), 38.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 39.5$ $\left(+, \mathrm{NCH}_{3}\right), 55.7(-, 2 \mathrm{C}, \mathrm{C}-2,4) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 112(15)\left[\mathrm{M}^{+}\right], 82$ (9), 69 (100), 44 (15). $-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$ (185.09): calcd. C 38.93, H 7.62, N 15.13; found C 38.88, H 7.51, N 15.18.

3-Azabicyclo[4.1.0]hept-1-ylamine dihydrochloride (29-HCI): The dihydrochloride 29-HCl ($407 \mathrm{mg}, 99 \%$) was obtained from the 3-azabicyclo[4.1.0]heptane 79 $(850 \mathrm{mg}, 2.22 \mathrm{mmol})$ and $\mathrm{HCl}(2.5 \mathrm{~mL}, 15.0 \mathrm{mmol}, 6.0 \mathrm{M}$ solution in $i \mathrm{PrOH})$ by use of $5 \% \mathrm{Pd} / \mathrm{C}(425 \mathrm{mg})$ according to GP $4(14 \mathrm{~h}$ reaction
 time) as a colorless solid. M.p. $175-177^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=3430 \mathrm{~cm}^{-1}, 2956,1616,1471$, 1046. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.12-1.21(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.37\left(\mathrm{dt},{ }^{2} J=2.5\right.$, $\left.{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.70-1.78(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.95\left(\mathrm{dt},{ }^{3} J=4.5,{ }^{3} J=4.5,{ }^{4} J=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 5-\mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.88(\mathrm{dq}, 3 J=4.5,4 J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.18-3.24(\mathrm{~m}, 1 \mathrm{H}$, 4-H), 3.32 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 3.57 (dd, $\left.{ }^{2} J=19.0,{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 3.72\left(\mathrm{~d},{ }^{2} J=19.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 2-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, additional APT$): \delta=15.2(+, c \mathrm{Pr}-\mathrm{C}), 15.9(-$, $c \operatorname{Pr}-\mathrm{C}), 19.7(-, \mathrm{C}-5), 30.1\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 39.7\left(-, \mathrm{C}-4^{*}\right), 45.2\left(-, \mathrm{C}-2^{*}\right) .-\mathrm{MS}(\mathrm{CI}, 70 \mathrm{eV})$, m / z (\%): 112 (11) $\left[\mathrm{M}^{+}\right], 95$ (19), 82 (100), 71 (43), 42 (38). - HRMS (EI) calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}$ $\left[\mathrm{M}^{+}\right]$112.1000, found 112.1000. $-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$ (185.09): calcd. C 38.93, H 7.62; found C 39.04, H 7.40.

2.4. Synthesis of 3-azabicyclo[3.1.0]hex-1-ylamines by Ti-mediated intramolecular reductive cyclopropanation of nitriles

[(Allyl)(tert-butoxycarbonyl)amino]acetonitrile (86): Chloroacetonitrile (85, 1.90 g , 25.0 mmol) and allyl amine ($1.90 \mathrm{~mL}, 25.0 \mathrm{mmol}$) were added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(7.00 \mathrm{~g}, 51.0 \mathrm{mmol})$, NaI

$(7.50 \mathrm{~g}, 50.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(14 \mathrm{~mL}, 100 \mathrm{mmol})$ in anhydrous DMF
$(50 \mathrm{~mL})$. After the addition was complete, the reaction mixture was stirred at ambient temperature for $20 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and Celite ${ }^{\circledR}(1.00 \mathrm{~g})$ were added, and the solid was filtered off. Ice-cold water (30 mL) was added to the filtrate, the aqueous layer was separated, cooled to $0^{\circ} \mathrm{C}$, saturated with NaCl and extracted with EtOAc $(4 \times 20 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, and removal of the solvent gave (N-allylamino)acetonitrile as a brown oil pure enough to be used without further purification. $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 36.0 \mathrm{mmol})$ and a solution of $\mathrm{Boc}_{2} \mathrm{O}(6.00 \mathrm{~g}, 27.5 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ were added at $0^{\circ} \mathrm{C}$ to a solution of (N -allylamino) acetonitrile in $\mathrm{MeOH}(50 \mathrm{~mL}$). The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h and the solvent was removed. Water (30 mL) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with brine (30 mL), dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography of the residue gave the nitrile $\mathbf{8 6}(1.70 \mathrm{~g}, 35 \%)$ as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.2: 1\right)=0.33$. $-\mathrm{IR}($ film $): ~ v=2980 \mathrm{~cm}^{-1}, 2249,1699,1401$, 1250, 1168. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.40\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $3.88-4.19(\mathrm{~m}, 4 \mathrm{H}$, 2-H, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.23-5.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.68-6.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=28.1\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.5(-$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right), 48.7\left(-, \mathrm{C}-2^{*}\right), 81.8\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 115.9\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 119.2\left(\mathrm{C}_{\text {quat }}\right.$,
$\mathrm{C} \equiv \mathrm{N}), 132.1\left(+, C H=\mathrm{CH}_{2}\right), 158.5\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 196(2)\left[\mathrm{M}^{+}\right]$, 140 (25), 123 (12), 57 (100), 41 (46). - HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$196.1212, found 196.1212.
[N-Allyl-N-(4-methoxybenzyl)-amino]acetonitrile (87): A solution of chloroacetonitrile (85, $1.84 \mathrm{~g}, 50.0 \mathrm{mmol})$ and $\mathrm{PMBNH}_{2}(13.7 \mathrm{~g}, 100 \mathrm{mmol})$ in EtOAc $(15 \mathrm{~mL})$ was heated for 1 d at $45^{\circ} \mathrm{C}$. The reaction mixture was filtered
 and the solvent was removed under reduced pressure. The residue was solved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(7.6 \mathrm{~mL}, 55.0 \mathrm{mmol})$ and allyl bromide $(4.3 \mathrm{~mL}$, 50.0 mmol) were added to this solution and the reaction was heated for 1 d at $45^{\circ} \mathrm{C}$. EtOAc $(50 \mathrm{~mL})$ and a sat. aq. NaHCO_{3} solution (50 mL) were added, the organic phase was separated, washed with brine (50 mL) and dried over MgSO_{4}. Evaporation of the solvent under reduced pressure and purification by column chromatography gave the nitrile $\mathbf{8 7}$ $(8.42 \mathrm{~g}, 78 \%)$ as a colorless oil. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.41 .-\mathrm{IR}($ film $): v=2935 \mathrm{~cm}^{-1}$, 2836, 2245, 1612, 1513, 1248, 1035. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.22(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.41(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.23-5.89(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.78-5.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.88-6.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}$, Ar-H). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=40.5(-, \mathrm{C}-2), 55.2(-$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 57.1\left(+, \mathrm{OCH}_{3}\right), 57.5\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 113.9\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 114.7\left(\mathrm{C}_{\text {quat }}, \mathrm{C} \equiv \mathrm{N}\right)$, 119.4 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 129.0\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 130.2(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 134.2\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 157.5$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 216$ (13) $\left[\mathrm{M}^{+}\right], 135$ (68), 121 (100), 77 (20). $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ (216.10): calcd. C 72.19, H 7.46; found C 72.32, H 7.47.

3-tert-Butoxycarbonyl-3-azabicyclo[3.1.0]hex-1-ylamine (84): The amine 84 (162 mg, 41\%) was obtained from the nitrile $86(393 \mathrm{mg}, 2.00 \mathrm{mmol}), \mathrm{MeTi}(\mathrm{Oi} \operatorname{Pr})_{3}$ ($721 \mathrm{mg}, 3.00 \mathrm{mmol}$), $c \mathrm{HexMgBr}(4.0 \mathrm{~mL}, 4.00 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) and $\mathrm{LiI}(535 \mathrm{mg}, 4.00 \mathrm{mmol})$ according to GP 5 as a colorless solid.
 Alternatively, the amine $\mathbf{8 4}$ ($100 \mathrm{mg}, 76 \%$) was prepared from 3-azabicyclo[3.1.0]hexane $\mathbf{8 0}$ ($250 \mathrm{mg}, 0.660 \mathrm{mmol}$) by use of $5 \% \mathrm{Pd} / \mathrm{C}(125 \mathrm{mg})$ according to GP 4 as a colorless solid. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 1+1 \% \mathrm{NH}_{3}\right)=0.33$, m.p. $57-59^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=3505 \mathrm{~cm}^{-1}, 2973$, 2881, 1684, 1411, 1172. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=0.46$ (ps t, ${ }^{2} J=4.7,{ }^{3} J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.88-0.94(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.32-1.35(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.40\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.62\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.17-3.21\left(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 3.43\left(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}^{*}\right), 3.63-3.76(\mathrm{~m}, 1 \mathrm{H}$, 4-H*). - ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT, observed as a major rotamer/minor rotamer ratio of $2: 1$): $\delta=17.4(-, c \operatorname{Pr}-\mathrm{C}), 23.4$ (+, minor, $c \operatorname{Pr}-\mathrm{C}), 23.9$ (+ , major, $c \operatorname{Pr}-\mathrm{C}), 28.4$ $\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.8\left(\mathrm{C}_{\text {quat }}\right.$, major, $\left.c \mathrm{Pr}-\mathrm{C}\right), 41.2\left(\mathrm{C}_{\text {quat }}\right.$, minor, $\left.c \mathrm{Pr}-\mathrm{C}\right), 48.1(-$, major, C-2*), $48.5\left(-\right.$, minor, $\left.\mathrm{C}-2^{*}\right), 54.0\left(-\right.$, minor, $\left.\mathrm{C}-4^{*}\right), 54.4\left(-\right.$, major, $\left.\mathrm{C}-4^{*}\right), 79.2\left[\mathrm{C}_{\text {quat }}\right.$, minor, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 79.4\left[\mathrm{C}_{\text {quat }}\right.$, major, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 154.6\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 198$ (3) $\left[\mathrm{M}^{+}\right], 142$ (30), 125 (14), 69 (100), 57 (48). - HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left[\mathrm{M}^{+}\right]$198.1368, found 198.1368 .

3-(4-methoxybenzyl)-3-azabicyclo[3.1.0]hex-1-ylamine (90): The amine 90 (181 mg, 48\%) was obtained from the nitrile $87(372 \mathrm{mg}, 2.00 \mathrm{mmol}), \mathrm{MeTi}(\mathrm{Oi} \operatorname{Pr})_{3}$ ($530 \mathrm{mg}, 2.20 \mathrm{mmol}$), $c \mathrm{HexMgBr}(4.0 \mathrm{~mL}, 4.00 \mathrm{mmol}, 1.0 \mathrm{~m}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) and LiI ($535 \mathrm{mg}, 4.00 \mathrm{mmol}$) according to GP 5 as a colorless oil.
 $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 1+1 \% \mathrm{NH}_{3}\right)=0.25$. - IR (film): $v=2925 \mathrm{~cm}^{-1}, 2853,1513,1250$, 1032. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.14-1.19(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.51\left(\mathrm{ps} \mathrm{t},{ }^{2} J=4.4\right.$,
$\left.{ }^{3} J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.70-1.76(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.55\left(\mathrm{dd},{ }^{2} J=8.3,{ }^{3} J=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.4-\mathrm{H}^{*}\right), 2.73\left(\mathrm{~d},{ }^{2} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{*}\right), 2.97\left(\mathrm{~d},{ }^{2} J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 3.19\left(\mathrm{~d},{ }^{2} J=8.2 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.21-7.25(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.60-7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=25.8(-, c \operatorname{Pr}-\mathrm{C}), 29.7(+, c \operatorname{Pr}-\mathrm{C}), 46.9\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 53.2\left(-, \mathrm{C}-4^{*}\right), 54.3\left(-, \mathrm{C}-2^{*}\right), 55.3$ $\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 113.5(+, 2 \mathrm{C}, \mathrm{Ph}-\mathrm{C}), 113.9(+, 2 \mathrm{C}, \mathrm{Ph}-\mathrm{C}), 129.1\left(\mathrm{C}_{\text {quat }}, \mathrm{Ph}-\mathrm{C}\right), 129.8\left(\mathrm{C}_{\text {quat }}\right.$, Ph-C). - MS (EI, 70 eV), $m / z(\%): 218$ (13) $\left[\mathrm{M}^{+}\right], 150$ (8), 121 (100) 69 (17).

3-Benzyl-3-azabicyclo[3.1.0]hex-1-ylamine (91): The amine 91 (181 mg, 48\%) was obtained from the nitrile $\mathbf{8 8}(372 \mathrm{mg}, 2.00 \mathrm{mmol}), \mathrm{MeTi}(\mathrm{Oi} \operatorname{Pr})_{3}(721 \mathrm{mg}, 3.00 \mathrm{mmol})$, $c \mathrm{HexMgBr}\left(4.0 \mathrm{~mL}, 4.00 \mathrm{mmol}, 1.0 \mathrm{~m}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ and $\mathrm{LiI}(535 \mathrm{mg}$, 4.00 mmol) according to GP 5 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$
 $\left.8: 1+1 \% \mathrm{NH}_{3}\right)=0.25 .-\mathrm{IR}($ film $): \quad v=3278 \mathrm{~cm}^{-1}, 3061,2925,2787,1452,1156 .-$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.64(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.09\left(\mathrm{ps} \mathrm{t},{ }^{2} J=4.2,{ }^{3} J=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $c_{\text {Pr-H) }}$, 1.16-1.21 (m, $\left.1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 2.28\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.32\left(\mathrm{~d},{ }^{2} J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 2.49$ (dd, $\left.{ }^{2} J=8.6,{ }^{3} J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 2.83\left(\mathrm{~d},{ }^{2} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.00\left(\mathrm{~d},{ }^{2} J=8.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 2-\mathrm{H}$), 3.58 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $7.20-7.28$ (m, $\left.5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=15.4(-, c \operatorname{Pr}-\mathrm{C}), 23.7(+, c \operatorname{Pr}-\mathrm{C}), 40.7\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 54.7\left(-, \mathrm{C}-2^{*}\right)$, 59.1 (-, C-4*), $61.2\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 126.8$ (+, Ar-C), 128.1 (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 128.6$ (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right)$, $139.0\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C). - MS (EI, 70 eV$), m / z(\%): 188$ (24) [$\left.\mathrm{M}^{+}\right], 120$ (32), 97 (17) [$\mathrm{M}^{+}-$ $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right], 91$ (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right], 69$ (86). - HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right]$188.1313, found 188.1302 .
(N-Allyl-N-benzylamino)propionitrile (93): Allyl amine ($7.5 \mathrm{~mL}, 100 \mathrm{~mol}$) and 3-butenenitrile (93, $10 \mathrm{~mL}, 150 \mathrm{mmol}$) were heated for 2 d at $35^{\circ} \mathrm{C}$. Removal of the volatile reagents under vacuum gave (N-allylamino) propionitrile
 $(10.0 \mathrm{~g}, 90 \%)$ as a colorless oil. $\mathrm{K}_{2} \mathrm{CO}_{3}(7.50 \mathrm{~g}, 54.0 \mathrm{mmol})$ and benzyl bromide ($4.7 \mathrm{~mL}, 39.6 \mathrm{mmol}$) were added to a solution of (N-allylamino) propionitrile $(4.00 \mathrm{~g}, 36.0 \mathrm{mmol})$ in $\mathrm{MeCN}(150 \mathrm{~mL})$. The reaction mixture was stirred for 12 h at ambient temperature, a sat. aq. NaHCO_{3} solution (50 mL) and EtOAc (50 mL) were added. The organic phase was separated, was washed with brine (50 mL) and dried over MgSO_{4}. The residue was purified by chromatography and the nitrile $93(6.10 \mathrm{~g}, 85 \%)$ was obtained as a colorless oil. R_{f} (hexane/Et $\mathrm{t}_{2} \mathrm{O} 2: 1$) $=0.41$. $-\mathrm{IR}($ film $): v=3016 \mathrm{~cm}^{-1}, 2811,2248,1453$, 1129, 741. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.42\left(\mathrm{t},{ }^{3} J=7.0,{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}\right), 2.81$ ($\mathrm{t},{ }^{3} J=7.0,{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$), $3.14-3.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 5.18-5.29 (m, 2 H, CH=CH2), $5.88\left(\mathrm{ddt},{ }^{2} J=17.0,{ }^{3} J=10.0,{ }^{4} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 7.24-7.39 (m, 5 H, Ar-H). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=16.4(-$, $\mathrm{C}-2), 48.7\left(-, \mathrm{C}-3^{*}\right), 56.8\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right), 58.2\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 118.1\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 118.9$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{C} \equiv \mathrm{N}\right), 127.3(+$, Ar-C), $128.4(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.7(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 135.1(+$, $\left.C H=\mathrm{CH}_{2}\right), 138.6\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 200(6)\left[\mathrm{M}^{+}\right], 160(68), 91$ (100), 41 (8). $-\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}$ (200.10): calcd. C 77.96, H 8.05; found C 77.69, H 8.06.
2.5. Synthesis of 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamines by nucleophilic aromatic substitution

3-(Pyrazin-2-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (116): The amine 116 ($698 \mathrm{mg}, 36 \%$) was obtained from 3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (28-Cl, $1.90 \mathrm{~g}, 11.0 \mathrm{mmol}$), 2-chloropyrazine ($1.0 \mathrm{~mL}, 11.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($9.10 \mathrm{~mL}, \quad 66.0 \mathrm{mmol}$) according to GP 7 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} \quad 10: 1+1 \% \mathrm{NH}_{3}\right)=0.26 .-{ }^{1} \mathrm{H}-\mathrm{NMR} \quad(250 \mathrm{MHz}$,
 CDCl_{3}): $\delta=0.58$ (ps t, ${ }^{2} J=4.7,{ }^{2} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 1.05 (ddd, ${ }^{3} J=1.5,{ }^{3} J=5.0$, $\left.{ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.53-1.60(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.06\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.34(\mathrm{~d}$, $\left.{ }^{2} J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.56-3.58(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.90\left(\mathrm{~d},{ }^{2} J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.77-7.81$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.98-8.00 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT): $\delta=18.8(-, c \operatorname{Pr}-\mathrm{C}), 24.0(+, c \operatorname{Pr}-\mathrm{C}), 41.4\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.2(-, \mathrm{C}-4), 55.1(-, \mathrm{C}-2)$, 130.6 (+, Ar-C), 132.0 (+, Ar-C), 142.0 (+, Ar-C), 153.3 (C quat, $\mathrm{Ar}-\mathrm{C})$.

3-(6-Chloropyridazin-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (117): The amine 117 (270 mg, 64\%) was obtained from 3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride ($\mathbf{2 8} \mathbf{- C l}, 350 \mathrm{mg}, 2.06 \mathrm{mmol}$), 3,6-dichloropyridazine ($298 \mathrm{mg}, 2.06 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($1.1 \mathrm{~mL}, 8.24 \mathrm{mmol}$) according to GP 7 as a yellow solid. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+1 \% \mathrm{NH}_{3}\right)=0.33$, m.p. $138-141^{\circ} \mathrm{C} .-\operatorname{IR}(\mathrm{KBr}):$ $v=3365 \mathrm{~cm}^{-1}, 3051,2853,1594,1471,1165,836 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$,
 CDCl_{3}): $\delta=0.50\left(\mathrm{pst},{ }^{2} J=4.7,3 J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.02-0.97(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.49-$ 1.53 (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), $1.90\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.33\left(\mathrm{dd},{ }^{2} J=10.0,{ }^{3} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.52-$ $3.53(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.86\left(\mathrm{~d},{ }^{2} J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.53\left(\mathrm{~d},{ }^{3} J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.08$
$\left(\mathrm{d},{ }^{3} J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.6(-$, $c \operatorname{Pr}-\mathrm{C}), 23.8(+, c \operatorname{Pr}-\mathrm{C}), 41.3\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.6(-, \mathrm{C}-4), 55.3$ (-, C-2), 114.6 (+, Ar-C), $128.3\left(+, \quad\right.$ Ar-C), $145.6\left(\mathrm{C}_{\text {quat }}, \quad\right.$ Ar-C), $157.0\left(\mathrm{C}_{\text {quat }}, \quad\right.$ Ar-C). $-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), \quad \mathrm{m} / \mathrm{z}$ (\%): 212/210 (9/27) $\left[\mathrm{M}^{+}\right], 196 / 194(10 / 32), 175(28)\left[\mathrm{M}^{+}-\mathrm{Cl}\right], 169$ (100), 107 (25), 69 (37). $-\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{Cl}$ (210.64): calcd. C 51.31, H 5.26, N 26.60 ; found C 51.04, H 5.11, N 26.46 .

3-(6-Chloropyridazin-3-yl)-N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (118): The amine 118 (110 mg, 49\%) was obtained from N-methyl-3-azabicyclo-[3.1.0]hex-1-ylamine dihydrochloride $(\mathbf{8 2}-\mathbf{H C l}, \quad 256 \mathrm{mg}, 1.40 \mathrm{mmol})$, 3,6-dichloropyridazine ($209 \mathrm{mg}, 1.40 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL}, 8.50 \mathrm{mmol})$ according to GP 7 as a colorless oil $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 15:1 + $\left.1 \% \mathrm{NH}_{3}\right)=0.22 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.54\left(\mathrm{pst},{ }^{2} J=4.7\right.$,
 $\left.{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.01\left(\mathrm{ddd},{ }^{3} J=1.4,{ }^{3} J=5.0,{ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.61-1.66(\mathrm{~m}$, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.46-3.55(\mathrm{~m}, 3 \mathrm{H}, 2,4-\mathrm{H}), 3.87(\mathrm{~d}$, $\left.{ }^{2} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.56\left(\mathrm{~d},{ }^{3} J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.10\left(\mathrm{~d},{ }^{3} J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.5(-, c \operatorname{Pr}-\mathrm{C}), 22.6(+, c \operatorname{Pr}-\mathrm{C}), 33.3$ $\left(+, \mathrm{NCH}_{3}\right), 47.4\left(\mathrm{C}_{\text {quat }}, c\right.$ Pr-C), $49.6(-, \mathrm{C}-4), 51.3(-, \mathrm{C}-2), 114.7(+, \mathrm{Ar}-\mathrm{C}), 128.4(+, \mathrm{Ar}-\mathrm{C})$, $145.7\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 156.3\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right)$. - MS (EI, 70 eV$), m / z(\%): 226 / 224(11 / 37)\left[\mathrm{M}^{+}\right]$, 210/208 (9/28) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 189(38)\left[\mathrm{M}^{+}-\mathrm{Cl}\right], 142(20), 95(36), 82(100)$.

3-(6-chloropyridazin-3-yl)-3-azabicyclo[3.1.0]hept-1-ylamine (119): The amine $\mathbf{1 1 9}$ ($90.0 \mathrm{mg}, 57 \%$) was obtained from 3-azabicyclo[4.1.0]hept-1-ylamine dihydrochloride $(\mathbf{2 9 - H C l}, 160 \mathrm{mg}, 700 \mu \mathrm{~mol}), 3,6$-dichloropyridazine $(149 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(700 \mu \mathrm{~L}, 5.00 \mathrm{mmol})$ according to GP 7 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+1 \% \mathrm{NH}_{3}=0.23\right.$. -IR (film): $v=3310 \mathrm{~cm}^{-1}, 2930,1662,1442,1265,735 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$,
 CDCl_{3}): $\delta=0.45$ (ps t, $\left.{ }^{2} J=5.4,{ }^{3} J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 0.69\left(\mathrm{dd},{ }^{3} J=5.2,{ }^{3} J=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{H}\right), 1.12-1.21(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.75-1.94\left(\mathrm{~m}, 3 \mathrm{H}, 5-\mathrm{H}, \mathrm{NH}_{2}\right), 2.05-2.16(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H})$, 3.15-3.26 (m, 1 H, 4-H), 3.42-3.49 (m, 1 H, 4-H), $3.52\left(\mathrm{~d},{ }^{2} J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.22(\mathrm{~d}$, $\left.{ }^{2} J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.75\left(\mathrm{~d},{ }^{3} J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.14\left(\mathrm{~d},{ }^{3} J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=16.4(-, c \operatorname{Pr}-\mathrm{C}), 18.5(+, c \operatorname{Pr}-\mathrm{C}), 22.2$ $(-, \mathrm{C}-5), 33.1\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 41.7(-, \mathrm{C}-4), 49.9(-, \mathrm{C}-2), 114.5(+, \mathrm{Ar}-\mathrm{C}), 128.6(+, \mathrm{Ar}-\mathrm{C})$, $145.7\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 158.3\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 226 / 224(20 / 58)\left[\mathrm{M}^{+}\right]$, 189 (100) $\left[\mathrm{M}^{+}-\mathrm{Cl}\right], 142$ (33), 82 (86). - HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{Cl}\left[\mathrm{M}^{+}\right]$224.0829, found 224.0829 .
2.6. Synthesis of 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamines by Pd-catalyzed cross-coupling

N-Methyl-3-(pyrid-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (120): The amine $\mathbf{1 2 0}$ (100 mg, 53\%) was obtained from N-methyl-3-azabicyclo-[3.1.0]hex-1-ylamine dihydrochloride ($\mathbf{8 2} \mathbf{- H C l}, 201 \mathrm{mg}, 1.10 \mathrm{mmol}$), 5-bromopyridine (0.10 mL , $1.00 \mathrm{mmol}), \quad \mathrm{Pd}_{2}(\mathrm{dba})_{3}(46.0 \mathrm{mg}, \quad 50.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%), \quad(\pm)$-BINAP ($62.3 \mathrm{mg}, 100 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}, 2.20 \mathrm{mmol})$ and $\mathrm{NaO} t \mathrm{Bu}$ ($288 \mathrm{mg}, 3.00 \mathrm{mmol}$) in toluene $(5.0 \mathrm{~mL})$ and DMF $(5.0 \mathrm{~mL})$ according to
 GP 8 as a yellow oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 15: 1+1 \% \mathrm{NH}_{3}\right)=0.21 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, CDCl_{3}): $\delta=0.62\left(\mathrm{pst},{ }^{2} J=4.6,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 0.97$ (ddd, ${ }^{2} J=3.8,{ }^{3} J=8.6$, $\left.{ }^{4} J=1.1, \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.57-1.64(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.96$ (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 2.48(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.25-3.40(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.65\left(\mathrm{~d},{ }^{2} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, 2-H), 6.72-6.77 (m, 1 H, Ar-H), 7.02-7.08 (m, 1 H, Ar-H), 7.90-7.92 (m, 2 H, Ar-H).${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.3$ (,$- c \mathrm{Pr}-\mathrm{C}$), 22.7 (,$+ c \mathrm{Pr}-\mathrm{C}$), 33.4 $\left(+, \mathrm{NCH}_{3}\right), 47.5\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 50.0(-, \mathrm{C}-4), 51.8(-, \mathrm{C}-2), 118.0(+, \mathrm{Ar}-\mathrm{C}), 123.4(+, \mathrm{Ar}-\mathrm{C})$, 134.3 (+, Ar-C), 137.6 (+, Ar-C), 143.9 (Cquat ${ }_{\text {q }}$ Ar-C). - MS (EI, 70 eV), m / z (\%): 189 (28) $\left[\mathrm{M}^{+}\right], 174$ (4) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 82$ (100), 49 (32). - HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3}\left[\mathrm{M}^{+}\right]$ 189.1266, found 189.1266.

N-Methyl-3-(pyrimidin-5-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (121): The amine $\mathbf{1 2 1}$ (115 mg, 61\%) was obtained from N-methyl-3-azabicyclo-[3.1.0]hex-1-ylamine dihydrochloride $(\mathbf{8 2}-\mathbf{H C l}, \quad 200 \mathrm{mg}, \quad 1.10 \mathrm{mmol})$, 5-bromopyrimidine $(159 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(46.0 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $5 \mathrm{~mol} \%),(\pm)-\mathrm{BINAP}(62.3 \mathrm{mg}, 100 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}$, 2.20 mmol) and $\mathrm{NaOt} \mathrm{Bu}(288 \mathrm{mg}, 3.00 \mathrm{mmol})$ according to GP 8 as a
 yellow oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 1+1 \% \mathrm{NH}_{3}\right)=0.21$. $-\mathrm{IR}(\mathrm{film}): v=3304 \mathrm{~cm}^{-1}, 3045$, 2851, 1573, 1200, 723. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=0.54$ (ps t, ${ }^{2} J=4.7,{ }^{3} J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 0.95 (ddd, $\left.{ }^{3} J=5.0,{ }^{3} J=8.7,{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.55-1.62(\mathrm{~m}, 1 \mathrm{H}$, ${ }_{c} \operatorname{Pr}-\mathrm{H}$), 2.22 (br s, $1 \mathrm{H}, \mathrm{NH}$), 2.42 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.22\left(\mathrm{dd},{ }^{2} J=8.7,{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{*}\right)$, $3.31-3.33(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.58\left(\mathrm{~d},{ }^{2} J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 7.91(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}$, Ar-H). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.5$ (-, $\left.c \mathrm{Pr}-\mathrm{C}\right)$, 22.6 (+ , $c \operatorname{Pr}-\mathrm{C}), 33.4\left(+, \mathrm{NCH}_{3}\right), 47.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.7(-, \mathrm{C}-4), 51.4(-, \mathrm{C}-2), 139.6(+, 2 \mathrm{C}$, Ar-C), 141.4 (C $\left.\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 147.4$ (+, Ar-C). - MS (EI, 70 eV), m/z (\%): 190 (40) [M $\left.{ }^{+}\right], 175$ (5) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 108$ (7), 82 (100). $-\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4}$ (190.14): calcd. C 63.13, H 7.42, N 29.45; found C 62.90, H 7.18, N 29.20.

3-(Pyrid-3-yl)-azabicyclo[3.1.0]hex-1-ylamine (122): The amine $\mathbf{1 2 2}$ ($222 \mathrm{mg}, 63 \%$) was obtained from 3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (28-HCl, $350 \mathrm{mg}, 2.06 \mathrm{mmol})$, 5 -bromopyridine $(286 \mathrm{mg}, 1.87 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($85.6 \mathrm{mg}, 93.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), (\pm)-BINAP ($116.4 \mathrm{mg}, 190 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{Et}_{3} \mathrm{~N}(0.60 \mathrm{~mL}, 4.12 \mathrm{mmol})$ and $\mathrm{NaO} t \mathrm{Bu}(630 \mathrm{mg}, 6.55 \mathrm{mmol})$ according to

GP 8 as a yellow oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+1 \% \mathrm{NH}_{3}\right)=0.22 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$,
CDCl_{3}): $\delta=0.64\left(\mathrm{pst},{ }^{2} J=4.6,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.00\left(\mathrm{ddd},{ }^{3} J=4.9,{ }^{3} J=8.6\right.$, $\left.{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.51-1.56(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.18\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.14(\mathrm{~d}$, $\left.{ }^{3} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{*}\right), 3.34-3.44(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.69\left(\mathrm{~d},{ }^{2} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 6.74-$ 6.77 (m, 1 H, Ar-H), 7.04-7.09 (m, $1 \mathrm{H}, \operatorname{Ar-H}$), 7.91-7.94 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT): $\delta=18.6(-, c \operatorname{Pr}-\mathrm{C}), 24.1(+, c \operatorname{Pr}-\mathrm{C}), 41.5\left(\mathrm{C}_{\text {quat }}\right.$, c Pr-C), 50.2 (-, C-4), 56.2 (-, C-2), 118.2 (+, Ar-C), 123.5 (+, Ar-C), 134.4 (+, Ar-C), 137.7 $(+, \operatorname{Ar}-\mathrm{C}), 143.9\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 175(40)\left[\mathrm{M}^{+}\right], 107(100)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{3}\right], 86$ (42), 69 (52).

3-(Pyrimidin-5-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (123): The amine 123 (222 mg, 63\%) was obtained from 3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride ($\mathbf{2 8} \mathbf{- H C l}, 350 \mathrm{mg}, 2.06 \mathrm{mmol}$), 5-bromopyrimidine ($286 \mathrm{mg}, 1.87 \mathrm{mmol}$), $\operatorname{Pd}_{2}(\mathrm{dba})_{3}(85.6 \mathrm{mg}, 93.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%),(\pm)-\operatorname{BINAP}(116.4 \mathrm{mg}, 190 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}(0.60 \mathrm{~mL}, 4.12 \mathrm{mmol})$ and $\mathrm{NaOtBu}(630 \mathrm{mg}, 6.55 \mathrm{mmol})$
 according to GP 8 as a yellow oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+1 \% \mathrm{NH}_{3}\right)=0.22$. - IR (film): $v=3274 \mathrm{~cm}^{-1}, 3042,2844,1573,1445,1197,723 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.65$ (ps t, $\left.{ }^{2} J=4.7,{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.06\left(\mathrm{ddd},{ }^{2} J=5.0,{ }^{3} J=8.6,{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{H}\right), 1.56-1.63(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.96\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.20\left(\mathrm{dd},{ }^{2} J=8.7,{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, 4-H), 3.41-3.43 (m, 2 H, 2,4-H), 3.71 (d, ${ }^{2} J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 8.01 (s, 2 H, Ar-H), 8.57 (s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.8(-, c \operatorname{Pr}-\mathrm{C}), 24.1(+$, $c \operatorname{Pr}-\mathrm{C}), 41.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.9(-, \mathrm{C}-4), 55.8(-, \mathrm{C}-2), 139.8(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 141.4\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), 147.5 (+, Ar-C). - MS (EI, 70 eV), m/z (\%): 176 (23) [M $\left.{ }^{+}\right], 135$ (14), 108 (13), 95 (13), 69 (100). $-\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4}$ (176.22): calcd. C 61.34, H 6.86, N 31.79; found C 61.42, H 6.68, N 31.99.

3-Methyl-N,N-di(pyrazin-2-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (131): The amine $\mathbf{1 3 1}$ ($166 \mathrm{mg}, \quad 62 \%$) was obtained from 3-methyl-3-azabicyclo-[3.1.0]hex-1-ylamine dihydrochloride ($\mathbf{8 3} \mathbf{- H C l}, 204 \mathrm{mg}, 1.10 \mathrm{mmol}$), 2-chloropyrazine $\quad(0.20 \mathrm{~mL}, \quad 2.00 \mathrm{mmol}), \quad \mathrm{Pd}_{2}(\mathrm{dba})_{3} \quad(46.0 \mathrm{mg}$, $50.0 \mu \mathrm{~mol}, ~ 5 \mathrm{~mol} \%),(\pm)-\mathrm{BINAP}(62.3 \mathrm{mg}, ~ 100 \mu \mathrm{~mol}, ~ 10 \mathrm{~mol} \%)$, $\mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}, 2.20 \mathrm{mmol})$ and $\mathrm{NaOtBu}(336 \mathrm{mg}, 3.50 \mathrm{mmol})$
 according to GP 8 as a yellow solid. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+1 \% \mathrm{NH}_{3}\right)=0.38$, m. p. 209$211^{\circ} \mathrm{C}$. - IR (KBr): $v=3066 \mathrm{~cm}^{-1}, 2876,2766,1576,1416,1162,1002,833 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.86\left(\mathrm{dd},{ }^{2} J=4.9,{ }^{3} J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.61\left(\mathrm{pst},{ }^{2} J=5.0\right.$, $\left.{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.78-1.84(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.78-2.83(\mathrm{~m}, 2 \mathrm{H}$, 2,4-H*), 3.01 (d, $\left.{ }^{2} J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 3.38\left(\mathrm{~d},{ }^{2} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{*}\right), 8.19-8.25(\mathrm{~m}, 4 \mathrm{H}$, Ar-H), 8.71 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=17.8(-$, $c \operatorname{Pr}-\mathrm{C}), 26.9(+, c \operatorname{Pr}-\mathrm{C}), 41.3\left(+, \mathrm{NCH}_{3}\right), 45.3\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 56.1\left(-, \mathrm{C}-4^{*}\right), 57.3\left(-, \mathrm{C}-2^{*}\right)$, 138.1 (+, 2 C, Ar-C), 138.2 (+, 2 C, Ar-C), 141.9 (+, 2 C, Ar-C), 158.3 (C quat $^{2} 2$ C, Ar-C). MS (EI, 70 eV), $m / z(\%): 268(60)\left[\mathrm{M}^{+}\right], 224(36), 198(61), 175(40)\left[\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2}\right]$, 94 (100), 79 (36). - HRMS (EI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6}\left[\mathrm{M}^{+}\right]$268.1436, found 268.1436.

3-(5-Chloropyrid-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (132): The amine 132 (172.0 mg, 41\%) was obtained from 3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride $(\mathbf{2 8}-\mathbf{H C l}, 340 \mathrm{mg}, 2.20 \mathrm{mmol}), 3,5$-dichloropyridine $(296 \mathrm{mg}, \quad 2.00 \mathrm{mmol}), \quad \mathrm{Pd}(\mathrm{OAc})_{2}, \quad(22.4 \mathrm{mg}, \quad 100 \mu \mathrm{~mol}, \quad 5 \mathrm{~mol} \%)$, 2-(di-tert-butylphosphino)biphenyl ($60.0 \mathrm{mg}, 200 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$
 $(0.80 \mathrm{~mL}, 6.00 \mathrm{mmol})$ and $\mathrm{NaOt} \mathrm{Bu}(270 \mathrm{mg}, 2.80 \mathrm{mmol})$ according to GP 9 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 15: 1+1 \% \mathrm{NH}_{3}\right)=0.36 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.56(\mathrm{pst}$,
$\left.{ }^{2} J=4.6,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 0.98-1.05(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.41-1.51(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, 2.01 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 3.20 (d, $\left.{ }^{2} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{*}\right), 3.20-3.38(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.59(\mathrm{~d}$, $\left.{ }^{2} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 6.70-6.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.70-7.73$ (m, 1 H, Ar-H), 7.79-7.83 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.8(-, c \operatorname{Pr}-\mathrm{C}), 24.1(+$, $c \operatorname{Pr}-\mathrm{C}), 41.5\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 50.3\left(-, \mathrm{C}-4^{*}\right), 56.2\left(-, \mathrm{C}-2^{*}\right), 117.7(+, \mathrm{Ar}-\mathrm{C}), 132.0\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), 132.3 (+, Ar-C), 135.9 (+, Ar-C), 144.5 (C quat, $\operatorname{Ar-C}) .-\mathrm{MS}(E I, 70 \mathrm{eV}), m / z$ (\%): 211/209 (12/38) [$\left.\mathrm{M}^{+}\right], 168$ (10) [$\left.\mathrm{M}^{+}-\mathrm{Cl}\right], 141$ (28), 94 (46), 69 (100). - HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{Cl}\left[\mathrm{M}^{+}\right]$209.0720, found 209.0720.

3-(5-Chloropyrid-3-yl)-N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (133): The amine $\mathbf{1 3 3}$ ($75.0 \mathrm{mg}, \quad 34 \%$) was obtained from N-methyl-3-azabicyclo-[3.1.0]hex-1-ylamine dihydrochloride ($\mathbf{8 2} \mathbf{- H C l}, 204 \mathrm{mg}, 1.10 \mathrm{mmol}$), 3,5-dichloropyridine $(148 \mathrm{mg}, \quad 1.00 \mathrm{mmol}), \quad \mathrm{Pd}(\mathrm{OAc})_{2}, \quad(11.2 \mathrm{mg}$, $50.0 \mu \mathrm{~mol}, \quad 5 \mathrm{~mol} \%$), 2-(di-tert-butylphosphino)biphenyl (30.0 mg , $100 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}(0.40 \mathrm{~mL}, 3.00 \mathrm{mmol})$ and $\mathrm{NaOt} t \mathrm{Bu}$
 $(135 \mathrm{mg}, 1.40 \mathrm{mmol})$ according to GP 9 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+\right.$ $1 \% \mathrm{NH}_{3}$) $=0.43 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.59\left(\mathrm{pst},{ }^{2} J=4.6,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $c \operatorname{Pr}-\mathrm{H}$), 1.00 (ddd, $\left.{ }^{2} J=4.9,{ }^{3} J=8.6,{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.59-1.65(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, 1.88 (br s, $1 \mathrm{H}, \mathrm{NH}$), $2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.26\left(\mathrm{~d},{ }^{2} J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{*}\right), 3.27-3.29(\mathrm{~m}$, $2 \mathrm{H}, 2,4-\mathrm{H}), 3.61\left(\mathrm{~d},{ }^{2} J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{*}\right), 6.71-6.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77-7.85(\mathrm{~m}, 2 \mathrm{H}$, Ar-H). - ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.6$ (,$- c \mathrm{Pr}-\mathrm{C}$), 22.7 (+ , $c \operatorname{Pr}-\mathrm{C}), 33.5\left(+, \mathrm{NCH}_{3}\right), 47.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 50.2\left(-, \mathrm{C}-4^{*}\right), 52.0\left(-, \mathrm{C}-2^{*}\right), 117.6(+, \mathrm{Ar}-\mathrm{C})$, $132.0\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), 132.3 (+, Ar-C), 135.9 (+, Ar-C), 144.5 (C quat, $\operatorname{Ar-C).~-~MS~(EI,~} 70 \mathrm{eV}$),
m / z (\%): 225/223 (13/33) $\left[\mathrm{M}^{+}\right], 141$ (9), 82 (100). - HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Cl}\left[\mathrm{M}^{+}\right]$ 223.0876, found 223.0876.

N-(2'-Dimethylaminoethyl)-N-methyl-3-(5-chloropyrid-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (135): A solution of the amine 133 (72.0 mg , $320 \mu \mathrm{~mol}$), 1-chloro-2-dimethylaminoethane hydrochloride ($54.0 \mathrm{mg}, 370 \mu \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(89.0 \mathrm{mg}, 640 \mu \mathrm{~mol})$ in EtOH (4.0 mL) was heated at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was filtered through Celite ${ }^{\circledR}$ and the solvent was removed under
 reduced pressure. Column chromatography of the residue gave compound $\mathbf{1 3 5}$ (41.0 mg , 44%) as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+1 \% \mathrm{NH}_{3}\right)=0.34 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, CDCl_{3}): $\delta=0.64\left(\mathrm{pst},{ }^{2} J=4.5,3 J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.08-1.14(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.70-$ $1.76(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.28-2.44\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}^{*}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 2.65-2.86 (m, 2 H, 2'-H*), 3.32-3.46 (m, 4 H, 2,4-H), 6.75-6.77 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.80-7.88$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=20.7$ (,$- c \mathrm{Pr}-\mathrm{C}$), 24.0 $(+, c \operatorname{Pr}-\mathrm{C}), 40.0\left(+, \mathrm{NCH}_{3}\right), 45.6\left(-, \mathrm{C}-1^{\prime *}\right), 45.8\left(+, 2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 49.9\left(-, \mathrm{C}-2^{\prime *}\right), 52.6$ $\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 53.3(-, \mathrm{C}-4), 57.7(-, \mathrm{C}-2), 117.6(+, \mathrm{Ar}-\mathrm{C}), 132.0\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 132.4(+$, Ar-C), 136.0 (+, Ar-C), $144.7\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C). - MS (EI, 70 eV$), m / z(\%): 296 / 294(<1 / 2)\left[\mathrm{M}^{+}\right]$, 238/236 (<1/6), 191 (3), 154 (2), 58 (100).

N-Methyl-3-phenyl-3-azabicyclo[3.1.0]hex-1-ylamine (138): A mixture of N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (28-HCl, $200 \mathrm{mg}, 1.10 \mathrm{mmol})$, iodobenzene $(0.10 \mathrm{~mL}, 1.00 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{~mL}$, 2.20 mmol), $\mathrm{CuI}(10.4 \mathrm{mg}, 55.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), ethyleneglycol (0.10 mL , 2.00 mmol) and $\mathrm{K}_{3} \mathrm{PO}_{4}(424 \mathrm{mg}, 2.00 \mathrm{mmol})$ in 2-propanol (2.0 mL) was heated at $80^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was filtered and concentrated
 under reduced pressure. Column chromatography on silica gel of the residue gave the amine $138(100 \mathrm{mg}, 53 \%)$ as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+1 \% \mathrm{NH}_{3}\right)=0.43$. IR (film): $v=3319 \mathrm{~cm}^{-1}, ~ 3058, ~ 2949,1670,1599,1364,752 .{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, CDCl_{3}): $\delta=0.69\left(\mathrm{pst},{ }^{2} J=4.5,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 0.97\left(\mathrm{dd},{ }^{2} J=4.6,{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $c_{\text {Pr-H) }}$, 1.60-1.66 (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 1.82 (br s, $1 \mathrm{H}, \mathrm{NH}$), 2.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.26(\mathrm{~d}$, $\left.{ }^{2} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.33\left(\mathrm{dd},{ }^{2} J=8.5,{ }^{3} J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.43\left(\mathrm{~d},{ }^{3} J=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, 2-H), $3.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.54-6.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.67-6.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.19-7.25 (m, 1 H, Ar-H). - ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.3$ (-, c Pr-C), $20.9\left(+, c\right.$ Pr-C), $33.8\left(+, \mathrm{NCH}_{3}\right), 50.3\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 60.9(-, \mathrm{C}-4), 66.1(-, \mathrm{C}-2)$, 111.8 (+, 2 C, Ph-C), 116.3 (+, Ph-C), 129.1 (+2 C, Ph-C), 153.1 ($\left.\mathrm{C}_{\text {quat }}, \mathrm{Ph}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}$, 70 eV), m / z (\%): 188 (55) [$\left.\mathrm{M}^{+}\right], 173$ (5) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 82$ (100), 77 (21). - HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right]$188.1313, found 188.1313.

2.7. Synthesis of trifluoroethyl derivatives

[3-(6-Chloropyridazin-3-yl)-3-azabicyclo[3.1.0]hex-1-yl]-2,2,2-trifluoro-1-ethanimine (139): The imine 139 ($717 \mathrm{mg}, 95 \%$) was obtained from the amine 117 ($547 \mathrm{mg}, \quad 2.60 \mathrm{mmol}$), trifluoroacetaldehyde methyl hemiacetale $(1.70 \mathrm{~g}, 13.0 \mathrm{mmol})$ and molecular sieves ($3 \AA$) according to GP 12 as a colorless oil. $\quad R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} \quad 15: 1\right)=0.49 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz, CDCl_{3}): $\delta=1.26$ (ps t, ${ }^{2} J=4.6,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$),
 $1.69-1.78$ (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.28-2.37(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 3.56-3.64(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.68-3.76$ (m, $1 \mathrm{H}, 4-\mathrm{H}), 3.82\left(\mathrm{~d},{ }^{2} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.07\left(\mathrm{~d},{ }^{2} J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.79(\mathrm{~d}$, $\left.{ }^{3} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.34\left(\mathrm{~d},{ }^{3} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.62\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{F}}=3.7 \mathrm{~Hz}\right.$, $\left.\mathrm{N}=\mathrm{CHCF}_{3}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=21.5(-, c \mathrm{Pr}-\mathrm{C}), 27.7(+$, $c \operatorname{Pr}-\mathrm{C}), 48.4$ (-, C-4), 48.6 (-, C-2), $52.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 114.9$ (+, Ar-C), $119.0\left(\mathrm{C}_{\text {quat }}, \mathrm{q}\right.$, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{F}}=274 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CHCF}_{3}\right), 128.6(+, \operatorname{Ar-C}), 145.9\left(+, \mathrm{q},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=38.7 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CHCF}_{3}\right), 146.4$ $\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 157.3\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 292 / 290(25 / 74) \quad\left[\mathrm{M}^{+}\right]$, 251/249 (34/100), 196/194 (25/80), 142 (21), 40 (32).
N-(2', 2', 2^{\prime}-Trifluoroethyl)-3-(6-chloropyridazin-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine ($\mathbf{1 4 0}-\mathbf{C l}$): The amine $\mathbf{1 4 0 - C l}$ ($570 \mathrm{mg}, 79 \%$) was obtained from the imine 139 ($717 \mathrm{mg}, 2.47 \mathrm{mmol}$) and $\mathrm{LiAlH}_{4}(3.7 \mathrm{~mL}$ of a 0.70 m solution in THF, 2.60 mmol) according to GP 12 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 40: 1+1 \% \mathrm{NH}_{3}\right)=0.20 .-{ }^{1} \mathrm{H}-\mathrm{NMR} \quad(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.26\left(\mathrm{ps} \mathrm{t},{ }^{2} J=4.6,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.69-1.78$

(m, 1 H, cPr-H), 2.28-2.37(m, 1 H, cPr-H), 3.29(q, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{F}}=9.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 3.43(\mathrm{~d}$,
$\left.{ }^{2} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.58(\mathrm{~s}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.94\left(\mathrm{~d},{ }^{2} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.58(\mathrm{~d}$, $\left.{ }^{3} J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.16\left(\mathrm{~d},{ }^{3} J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.8(-, c \operatorname{Pr}-\mathrm{C}), 24.3(+, c \operatorname{Pr}-\mathrm{C}), 46.3(-, \mathrm{C}-4), 48.8(-, \mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=39.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 49.4(-, \mathrm{C}-2), 52.4\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 114.7(+, \mathrm{Ar}-\mathrm{C}), 120.4\left(\mathrm{C}_{\text {quat }}\right.$, $\left.\mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=281.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 128.6(+, \mathrm{Ar}-\mathrm{C}), 146.1\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 157.2\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right) .-$ MS (EI, 70 eV), $m / z(\%): 294 / 292$ (15/48) [$\left.\mathrm{M}^{+}\right], 253 / 251$ (20/63), 222 (25), 142 (48), 41 (100).

N-(2',2',2'-trifluoroethyl)-3-(pyrid-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (144): First the imine 141 ($150 \mathrm{mg}, 78 \%$) was obtained from the amine $\mathbf{1 2 2}$ (130 mg , $740 \mu \mathrm{~mol})$, trifluoroacetaldehyde methyl hemiacetale $(483 \mathrm{mg}$, 3.70 mmol) and molecular sieves ($3 \AA$) as a colorless oil which was used without further purification. The amine $144(72.0 \mathrm{mg}, 58 \%)$ was obtained from the imine $141(150 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and LiAlH_{4}
 $(23.0 \mathrm{mg}, 500 \mu \mathrm{~mol})$ according to GP 12 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $\left.40: 1+1 \% \mathrm{NH}_{3}\right)=0.32 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.73\left(\mathrm{ps} \mathrm{t},{ }^{2} J=4.6,{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.08$ (ddd, $\left.{ }^{2} J=4.8,{ }^{3} J=8.7,{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.69-1.75(\mathrm{~m}, 1 \mathrm{H}$, ${ }_{c}$ Pr-H), $3.21-3.45\left(\mathrm{~m}, 6 \mathrm{H}, 2,4-\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CF}_{3}, \mathrm{NH}\right), 3.71\left(\mathrm{~d},{ }^{2} J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.78-6.83$ (m, 1 H, Ar-H), 7.09-7.14 (m, 1 H, Ar-H), 7.94-7.98 (m, 2 H, Ar-H). - ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT): $\delta=18.6(-, c \operatorname{Pr}-\mathrm{C}), 24.4(+, c \operatorname{Pr}-\mathrm{C}), 46.3\left(\mathrm{C}_{\text {quat }}\right.$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{C}\right), 49.1\left(-, \mathrm{q},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=28.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 49.8(-, \mathrm{C}-4), 53.0(-, \mathrm{C}-2), 118.5(+, \mathrm{Ar}-\mathrm{C})$, $123.7\left(+\right.$, Ar-C), $124.2\left(\mathrm{C}_{\text {quat }}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=278.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 134.0(+, \mathrm{Ar}-\mathrm{C}), 137.6(+$,

Ar-C), $142.3\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right) .-\mathrm{MS}(E I, 70 \mathrm{eV}), m / z(\%): 257$ (52) [M+$\left.{ }^{+}\right], 216$ (8), 176 (18), 150 (31), 107 (100).
[3-(pyrimidin-5-yl)-3-azabicyclo[3.1.0]hex-1-yl]-2,2,2-trifluoro-1-ethanimine (142): The imine $\mathbf{1 4 2}$ ($184 \mathrm{mg}, 72 \%$) was obtained from the amine $\mathbf{1 2 3}$ (173 mg , 1.00 mmol), trifluoroacetaldehyde methyl hemiacetale (640 mg , 5.00 mmol) and molecular sieves ($3 \AA, 1.50 \mathrm{~g}$) according to GP 12 as a colorless oil. $\quad R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} \quad 15: 1+1 \% \mathrm{NH}_{3}\right)=0.59$. -

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30\left(\mathrm{pst},{ }^{2} J=5.3,{ }^{3} J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.66-1.71$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.24-2.32(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 3.47\left(\mathrm{dd},{ }^{2} J=9.1,{ }^{3} J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.54-$ $3.63(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.79\left(\mathrm{~d},{ }^{2} J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.63\left(\mathrm{q},{ }^{3} J_{\mathrm{H}, \mathrm{F}}=3.3 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CHCF}_{3}\right)$, 8.09 (s, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.61 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=21.5(-, c \operatorname{Pr}-\mathrm{C}), 27.9(+, c \operatorname{Pr}-\mathrm{C}), 43.4(-, \mathrm{C}-4), 48.9(-, \mathrm{C}-2), 55.0\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 119.8$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=278 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CHCF}_{3}\right), 140.1(+, 2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 141.5\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 146.0(+, \mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=38.7 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CHCF}_{3}\right), 147.9$ (+, Ar-C).
N-($2^{\prime}, 2^{\prime}, 2^{\prime}$-trifluoroethyl)-3-(pyrimidin-5-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (145): The amine $\mathbf{1 4 5}$ ($102 \mathrm{mg}, 55 \%$) was obtained from the imine $\mathbf{1 4 2}$ (185 mg , $720 \mu \mathrm{~mol})$ and $\mathrm{LiAlH}_{4}(28.0 \mathrm{mg}, 720 \mu \mathrm{~mol})$ according to GP 12 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 40: 1+1 \% \mathrm{NH}_{3}\right)=0.30 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz, CDCl_{3}): $\delta=0.67$ (ps t, ${ }^{2} J=4.7,{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 1.06-1.10 (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.68-1.72(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}$,
 NH), 3.21-3.38 (m, 5 H, 2,4-H, NCH NFF_{3}), $3.67\left(\mathrm{~d},{ }^{2} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.97(\mathrm{~s}, 2 \mathrm{H}$,

Ar-H), $8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.6(-$, $c \operatorname{Pr}-\mathrm{C}), 24.3$ (,$+ c \operatorname{Pr}-\mathrm{C}), 46.3\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 48.7\left(-, \mathrm{q},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=32.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 49.5(-$, C-4), $52.5(-, \mathrm{C}-2), 124.2\left(\mathrm{C}_{\text {quat }}, \mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=278 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 139.8(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 141.3$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 147.6$ (+, Ar-C). - MS (EI, 70 eV), $m / z(\%): 258$ (54) [$\left.{ }^{+}\right], 217$ (14), 151 (74), 95 (27), 84 (100). - HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{~F}_{3}\left[\mathrm{M}^{+}\right] 258.1092$, found 258.1092.

N-(2',2', 2'-trifluoroethyl)-3-(pyrazin-2-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (146): First the imine $\mathbf{1 4 3}$ ($152 \mathrm{mg}, \mathbf{7 2 \%}$) was obtained from the amine $\mathbf{1 1 6}$ (144 mg , $820 \mu \mathrm{~mol}$), trifluoroacetaldehyde methyl hemiacetale $(533 \mathrm{mg}$, 4.10 mmol) and molecular sieves ($3 \AA$) as a colorless oil which was used without further purification. The amine 146 ($110 \mathrm{mg}, 73 \%$) was obtained from the imine $143(148 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and LiAlH_{4}
 $(0.90 \mathrm{~mL}, 610 \mu \mathrm{~mol}, 0.70 \mathrm{~m}$ solution in THF) according to GP 12 as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.63$ (ps t, ${ }^{2} J=4.5,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), $1.08-1.16$ (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.63-1.77$ (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 3.24-3.60\left(\mathrm{~m}, 6 \mathrm{H}, 2,4-\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CF}_{3}, \mathrm{NH}\right), 3.91$ (d, $\left.{ }^{2} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.68-7.82(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 8.01$ (s, $\left.1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT): $\delta=18.7(-, c \operatorname{Pr}-\mathrm{C}), 24.3(+, c \operatorname{Pr}-\mathrm{C}), 46.5\left(\mathrm{C}_{\text {quat }}\right.$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{C}\right), 48.8\left(-, \mathrm{q},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=28.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 49.7(-, \mathrm{C}-4), 55.0(-, \mathrm{C}-2), 128.2\left(\mathrm{C}_{\text {quat }}, \mathrm{q}\right.$, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{F}}=278 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CF}_{3}\right), 130.2(+, \mathrm{Ar}-\mathrm{C}), 132.5(+, \mathrm{Ar}-\mathrm{C}), 145.7(+, \mathrm{Ar}-\mathrm{C}), 153.5\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C).

1-[3-(pyrazin-2-yl)-3-azabicyclo[3.1.0]hex-1-yl]-3-phenyl-1-(2',2',2'-trifluoroethyl)-urea (149): Phenylisocyanate ($50 \mu \mathrm{~L}, 450 \mu \mathrm{~mol}$) was added to a solution of the amine $147(110 \mathrm{mg}, 430 \mu \mathrm{~mol})$ in toluene $(5.0 \mathrm{~mL})$ and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 d . The solvent was removed and the residue was purified by column chromatography on silica gel. Compound 149 ($240 \mathrm{mg}, 98 \%$) was obtained as a colorless solid. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$
 $\left.50: 1+1 \% \mathrm{NH}_{3}\right)=0.37$, m. p. $228-229^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18-1.24$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.41-1.54(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.24-2.38(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 3.50-3.82(\mathrm{~m}, 5 \mathrm{H}$, 2',4*-H), 4.10-4.21 (m, $2 \mathrm{H}, 2-\mathrm{H}^{*}$), 7.08-7.29 (m, $\left.5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.81-7.90$ (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $8.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=377(44)\left[\mathrm{M}^{+}\right], 212(30), 151$ (52), 93 (86), 87 (100). The NMR spectra for the urea derivatives 147 and 148 are the same as the correspondent starting amine, except for the aromatic signals.
2.8. Synthesis of N-methyl-N-aryl-3-azabicyclo[3.1.0]hex-1-ylamines by Ti-mediated intramolecular reductive cyclopropanation

2-(Allyl-tert-butoxycarbonylamino)-N-methyl-N-phenylacetamide (154): The amide $\mathbf{1 5 4}$ ($602 \mathrm{mg}, 33 \%$), was obtained from $\mathrm{K}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}, 12.0 \mathrm{mmol})$, $\mathrm{NaI}(1.80 \mathrm{~g}, 12.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL}, 24.0 \mathrm{mmol})$, allyl amine ($0.30 \mathrm{~mL}, \quad 6.00 \mathrm{mmol}$), N-methyl- N-phenyl(bromoacetyl)amide (152, $1.36 \mathrm{~g}, 6.00 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(1.57 \mathrm{~g}, 7.20 \mathrm{mmol})$
 according to GP 14 as a colorless oil. $R_{\mathrm{f}}(\mathrm{EtOAc} / \mathrm{cyclohexane} 2: 1)=0.42$. $-\mathrm{IR}($ film $)$: $v=2975 \mathrm{~cm}^{-1}, 2931,1700,1596,1392,1246,1170,702 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a major rotamer/minor rotamer ratio of $2: 1$): $\delta=1.43\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.25$
(s, 3 H , major, NCH_{3}), 3.26 ($\mathrm{s}, 3 \mathrm{H}$, minor, NCH_{3}), 3.57 ($\mathrm{s}, 2 \mathrm{H}$, minor, 2-H), 3.69 (s, 2 H , major, $2-\mathrm{H}$), 3.87 (d, $3 \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, major, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, minor, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.05-5.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.61-5.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $7.14-$ 7.43 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$-NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT, observed as a major rotamer/minor rotamer ratio of $2: 1): \delta=28.3\left[+, 3 \mathrm{C}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.5\left(+, \mathrm{NCH}_{3}\right), 48.0(-$, major, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 48.1 (-, minor, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 50.3 (-, minor, C-2), 50.7 (-, major, C-2), $79.9\left[\mathrm{C}_{\text {quat }}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 116.3\left(-\right.$, major, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 117.0\left(-\right.$, minor, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 127.3$ $(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.1(+, \mathrm{Ar}-\mathrm{C}), 130.0(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 131.9\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 134.1\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $155.1\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 168.5\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 304(3)\left[\mathrm{M}^{+}\right], 248$ (14) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{H}\right], 231$ (11), 204 (33), 134 (15), 107 (16), 70 (47), 57 (59) $\left[\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right], 43$ (100). - HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$304.1787, found 304.1787. $-\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ (304.30): calcd. C 67.08, H 7.95; found: C 67.00, H 7.85.

2-(Allyl-tert-butoxycarbonylamino)-N-methyl-N-(4-chlorophenyl)acetamide (155): The amide $155(1.69 \mathrm{~g}, 50 \%)$ was obtained from $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}$, $20.0 \mathrm{mmol}), \quad \mathrm{NaI}(3.00 \mathrm{~g}, \quad 20.0 \mathrm{mmol}), \quad \mathrm{Et}_{3} \mathrm{~N} \quad(5.5 \mathrm{~mL}$, 40.0 mmol), allyl amine ($0.75 \mathrm{~mL}, 10.0 \mathrm{mmol}$), N -methyl -N -(4chlorophenyl)amide $153(2.62 \mathrm{~g}, \quad 10.0 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}$ $(2.62 \mathrm{~g}, 12.0 \mathrm{mmol})$ according to GP 14 as a colorless oil. $R_{\mathrm{f}}(\mathrm{EtOAc} / \mathrm{cyclohexane} 2: 1)=0.50 .-\mathrm{IR}($ film $): ~ v=2977 \mathrm{~cm}^{-1}, 2931,1683,1491,1247$, 1170. - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a major rotamer/minor rotamer ratio of $1.2: 1): \delta=1.42\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.22$ ($\mathrm{s}, 3 \mathrm{H}$, major, NCH_{3}), 3.24 ($\mathrm{s}, 3 \mathrm{H}$, minor, NCH_{3}), 3.56 (s, 2 H , minor, 2-H), 3.67 (s, 2 H , major, 2-H), 3.87-3.91 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.06-
$5.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.61-5.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.08-7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.35-7.41$ (m, $2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT, only one rotamer was observed): $\delta=28.3\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.5\left(+, \mathrm{NCH}_{3}\right), 47.9\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 50.6(-, \mathrm{C}-2)$, $80.0\left[\mathrm{C}_{\text {quat }}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 116.3\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 128.7(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 129.9\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 130.2$ $(+, 2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 133.9\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 134.1\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 154.3\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 168.4\left(\mathrm{C}_{\text {quat }}\right.$, $\mathrm{C}=\mathrm{O}$). - MS (EI, 70 eV), $m / z(\%): 338 / 340(3 /<1)\left[\mathrm{M}^{+}\right], 282 / 284(14 / 5)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{6}\right]$, 238/240 (33/10), 141 (37), 84 (99), 57 (100).

2-(Allyl-4-methoxybenzylamino)-N-methyl-N-(4-chlorophenyl)acetamide (156): The amide $156(1.18 \mathrm{~g}, 33 \%)$ was obtained from $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}$, $20.0 \mathrm{mmol}), \mathrm{NaI}(3.00 \mathrm{~g}, 20.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(5.5 \mathrm{~mL}, 40.0 \mathrm{mmol})$, allyl amine ($0.80 \mathrm{~mL}, 10.0 \mathrm{mmol}$), N-methyl- N-(4-chlorophenyl)amide $153(2.62 \mathrm{~g}, 10.0 \mathrm{mmol})$ and 4-methoxybenzylchloride $(1.87 \mathrm{~g}, 12.0 \mathrm{mmol})$ according to GP 14 as a colorless oil.
 $R_{\mathrm{f}}($ cyclohexane/EtOAc $1: 1)=0.24$. Alternatively the amide $\mathbf{1 5 6}(1.08 \mathrm{~g}, 61 \%)$ was obtained from N-methyl- N-(4-chlorophenyl)amide 153 ($1.31 \mathrm{~g}, 5.00 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.8 \mathrm{~mL}, 20.0 \mathrm{mmol})$ and N-allyl- N-(4-methoxybenzyl)amine ($780 \mathrm{mg}, 5.00 \mathrm{mmol}$) according to GP 2. - IR (film): $v=3069 \mathrm{~cm}^{-1}, 2934,2835,1661,1512,1249,1092,837 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.20(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}), 3.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.02-$ $5.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.64-5.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.79-7.24(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=37.4\left(+, \mathrm{NCH}_{3}\right), 55.2\left(+, \mathrm{OCH}_{3}\right), 56.8$ $\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right), 57.1\left(-, \mathrm{C}-2^{*}\right), 58.1\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 117.8\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 128.2(+, 2 \mathrm{C}$, Ar-C), 128.4 (+, Ar-C), 128.6 (+, Ar-C), 129.7 (+, 2 C, Ar-C), 129.9 (+, 2 C, Ar-C), 130.3 (+,
$\left.C \mathrm{H}=\mathrm{CH}_{2}\right), 131.6\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 135.6\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 138.6\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 141.9\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right)$, $170.5\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 358 / 360(14 / 5)\left[\mathrm{M}^{+}\right], 317 / 319(5 / 2), 237 / 239$ (20/6) $\left[\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right], 190$ (15), 121 (100).

N-(4-Chlorophenyl)-3-(4-methoxybenzyl)-N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (159): The amine 159 ($656 \mathrm{mg}, 41 \%$) was obtained from the amide $\mathbf{1 5 6}$ $(1.90 \mathrm{~g}, 5.30 \mathrm{mmol}), \quad \mathrm{MeTi}(\mathrm{OiPr})_{3}(1.90 \mathrm{~g}, 7.94 \mathrm{mmol})$ and $c \mathrm{HexMgBr}\left(25 \mathrm{~mL}, \quad 25.0 \mathrm{mmol}, \quad 1.0 \mathrm{~m}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ according to GP 3 as a colorless oil. R_{f} (hexane/ $\mathrm{Et}_{2} \mathrm{O}$
 $3: 1)=0.36$. - IR (film): $\quad v=2907 \mathrm{~cm}^{-1}, \quad 2786,1597,1496,1245,1037 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz, CDCl_{3}): $\delta=0.81-0.86(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.51\left(\mathrm{pst},{ }^{2} J=4.3,{ }^{3} J=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ${ }_{c} \operatorname{Pr}-\mathrm{H}$), 1.63-1.69 (m, 1 H, $c \operatorname{Pr}-\mathrm{H}$), $2.41\left(\mathrm{~d},{ }^{3} J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 2.64\left(\mathrm{dd},{ }^{2} J=8.4\right.$, $\left.{ }^{3} J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 2.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.97-3.01(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.07\left(\mathrm{~d},{ }^{2} J=8.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 2-\mathrm{H}), 3.57\left(\mathrm{~d},{ }^{2} \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.75-6.87(\mathrm{~m}, 4 \mathrm{H}$, Ar-H), 7.14-7.22 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.3(-, c \operatorname{Pr}-\mathrm{C}), 26.4(+, c \operatorname{Pr}-\mathrm{C}), 36.9\left(+, \mathrm{OCH}_{3}\right), 48.0\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 52.6(-, \mathrm{C}-4), 54.3$ (-, C-2), $55.2\left(+, \mathrm{NCH}_{3}\right), 58.6\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 113.5(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 114.0(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 121.4$ (C $\left.\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 128.6(+, 2 \mathrm{C}, \operatorname{Ar-C}), 129.7(+, 2 \mathrm{C}, \operatorname{Ar-C}), 131.1\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 147.7\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), 158.6 ($\left.\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right)$.
2.9. Further elaboration of endo- and exo- N,N-dialkyl-3-benzyl-2-(tert-butyldimethyl-silyloxymethyl)-3-aza-bicyclo[3.1.0]hex-1-ylamines
endo-(2R)-2-(tert-butyldimethylsilyloxymethyl)-N,N-dimethyl-3-azabicyclo[3.1.0]hex-1-yldimethylamine (endo-161): A solution of the amine endo-58 ($360 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{MeOH}(40 \mathrm{~mL})$ was stirred under hydrogen atmosphere (1 bar) at $20^{\circ} \mathrm{C}$ for 4 h under $\mathrm{Pd} / \mathrm{C}(10 \%)$
 catalysis (180 mg). The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated under reduced pressure. The amine endo-161 (248 $\mathrm{mg}, 92 \%$) was obtained as a colorless oil. -$[\alpha]_{D}^{20}=-7.2\left(c=0.60, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.03\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $0.68-0.76(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.86\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.96-0.99(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.25-1.32$ (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.39\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.77\left(\mathrm{~d},{ }^{2} J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.03\left(\mathrm{dd},{ }^{2} J=10.8\right.$, $\left.{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.39-3.42(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.70\left(\mathrm{dd},{ }^{2} J=10.4,{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{O}$), 3.88 (dd, ${ }^{2} J=10.4,{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=-4.3\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 13.1(-, c \mathrm{Pr}-\mathrm{C}), 18.1\left[\mathrm{C}_{\text {quat }}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 24.4$ $(+, c \operatorname{Pr}-\mathrm{C}), 25.8\left[+, 3 \mathrm{C}, \operatorname{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 42.0\left[+, 2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 47.1(-, \mathrm{C}-4), 53.1\left(\mathrm{C}_{\text {quat }}\right.$, $c \mathrm{Pr}-\mathrm{C}), 57.1(+, \mathrm{C}-2), 63.7\left(-, \mathrm{CH}_{2} \mathrm{O}\right)$.

Endo-(2R)-2-(tert-butyldimethylsilyloxymethyl)-3-(5-chloropyridin-3-yl)-N,N-dimethyl-3-aza-bicyclo[3.1.0]hex-1-ylamine (endo-162): The amine endo-162 ($264 \mathrm{mg}, 75 \%$) was obtained from the amine endo- $\mathbf{1 6 1}$ $(250 \mathrm{mg}, \quad 580 \mu \mathrm{~mol}), \quad \operatorname{Pd}(\mathrm{OAc})_{2} \quad(10.4 \mathrm{mg}, \quad 50.0 \mu \mathrm{~mol}$, $5 \mathrm{~mol} \%$), 2-(di-tert-butylphosphino)biphenyl $\quad(30.0 \mathrm{mg}$,
 $100 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{NaOtBu}(125 \mathrm{mg}, 1.30 \mathrm{mmol})$ according to GP 9 as a colorless oil.
$R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1+1 \% \mathrm{NH}_{3}\right)=0.33 .-[\alpha]_{D}^{20}=+12.0\left(c=0.50, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{film}):$ $v=2931 \mathrm{~cm}^{-1}, 1656,1462,1255,1099 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.07[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.79-0.82(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.95\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.02-1.21(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, 1.66-1.73 (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.43$ [s, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.24-3.61$ (m, $\left.3 \mathrm{H}, 2,4-\mathrm{H}\right), 3.78-3.99$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 7.18 (s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.90-7.98$ (m, $\left.2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=-5.4\left[+, 2 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.2(-, c \operatorname{Pr}-\mathrm{C}), 25.4(+, c \operatorname{Pr}-\mathrm{C}), 25.9\left[\mathrm{C}_{\text {quat }}\right.$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.3\left[+, 3 \mathrm{C}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 42.1\left[+, 2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 52.6(-, \mathrm{C}-4), 58.9\left(\mathrm{C}_{\text {quat }}\right.$, $\left.{ }_{c} \mathrm{Pr}-\mathrm{C}\right), 59.1$ (+, C-2), 64.5 (-, $\mathrm{CH}_{2} \mathrm{O}$), 118.9 (+, Ar-C), 133.6 (+, Ar-C), 136.5 (+, Ar-C), $144.8\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 157.5\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C). - MS (EI, 70 eV$), m / z(\%): 383 / 381(3 / 9)\left[\mathrm{M}^{+}+\mathrm{H}\right]$, 339/337 (9/22), 314 (43), 257 (100), 236 (44), 201 (46), 183 (70).

Endo-(2R)-3-(5-chloropyrid-3-yl)-2-(hydroxymethyl)-N,N-dimethyl-3-azabicyclo[3.1.0]hex-1ylamine (endo-163): The alcohol endo-163 ($95.0 \mathrm{mg}, 96 \%$) was obtained from the ether endo- $\mathbf{1 6 2}(140 \mathrm{mg}, 370 \mu \mathrm{~mol})$ and TBAF $(466 \mathrm{mg}, 1.48 \mathrm{mmol})$ according to GP 6. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1+\right.$ $\left.1 \% \quad \mathrm{NH}_{3}\right)=0.30 .-[\alpha]_{D}^{20}=+15.0 \quad\left(c=0.20, \quad \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}-\mathrm{NMR}$
 (250 MHz, CDCl_{3}): $\delta=0.88-0.99(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.12-1.17(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.71-1.78(\mathrm{~m}$, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.43\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.33(\mathrm{dd}, 3 J=5.1,3 J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.54(\mathrm{~d}$, $\left.{ }^{2} J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.74-3.96\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 7.01(\mathrm{~d}, 4 J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.91-7.97 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=18.2$ (-, $\left.{ }_{c} \operatorname{Pr}-\mathrm{C}\right), 21.8(+, c \operatorname{Pr}-\mathrm{C}), 41.9\left[+, 2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.7(-, \mathrm{C}-4), 58.4(+, \mathrm{C}-2), 58.9\left(\mathrm{C}_{\text {quat }}\right.$, c Pr-C), $63.2\left(-, \mathrm{CH}_{2} \mathrm{O}\right), 119.5(+, \mathrm{Ar}-\mathrm{C}), 133.8(+, \mathrm{Ar}-\mathrm{C}), 136.8(+, \mathrm{Ar}-\mathrm{C}), 145.2\left(\mathrm{C}_{\text {quat }}\right.$,
$\operatorname{Ar}-\mathrm{C}), 157.1\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 269 / 267(6 / 21)\left[\mathrm{M}^{+}\right], 238 / 236$ (33/100), 193/191 (11/19), 126 (18), 109 (33).

Endo-(2R)-2-(azidomethyl)-3-(5-chloropyrid-3-yl)-N,N-dimethyl-3-azabicyclo[3.1.0]hex-1ylamine (endo-164): A solution of DEAD ($433 \mu \mathrm{~mol}, 0.10 \mathrm{~mL}$) in THF (2.0 mL), $\mathrm{HN}_{3}(0.40 \mathrm{~mL}, 440 \mu \mathrm{~mol}, 1.1 \mathrm{~m}$ solution in benzene) and a solution of the alcohol endo-163 ($100 \mathrm{mg}, 370 \mu \mathrm{~mol}$) in anhydrous THF (5.0 mL) were added to a suspension of PPh_{3}
 $(116 \mathrm{mg}, 444 \mu \mathrm{~mol})$ in anhydrous THF $(8.0 \mathrm{~mL})$, precooled at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at ambient temperature for 12 h . The solvent was removed, the residue was purified by chromatography, the azide endo-164 ($90.0 \mathrm{mg}, 73 \%$) was obtained as a colorless oil and was used in the following reaction without further purification. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $40: 1)=0.31$.

Endo-(2R)-2-(aminomethyl)-3-(5-chloropyrid-3-yl)-N,N-dimethyl-3-azabicyclo-[3.1.0]-hex-1ylamine hydrochloride (endo-165): A solution of the azide endo-164 ($90.0 \mathrm{mg}, 307 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(6.0 \mathrm{~mL})$ was stirred under hydrogen atmosphere (1 bar) at $20^{\circ} \mathrm{C}$ for 3 h under Pd / C (10\%) catalysis (180 mg). The reaction mixture was filtered
 through Celite ${ }^{\circledR}$ and concentrated until half of the volume. The solution was cooled at $0^{\circ} \mathrm{C}, \mathrm{HCl}(1.0 \mathrm{~mL}, 6.00 \mathrm{mmol}, 6.0 \mathrm{~m}$ solution in MeOH$)$ was added and stirring was continued for 30 min . Removal of the solvent under reduced pressure gave 94.0 mg of a yellow oil, which became immediately black. Attempted purification did not give any positive result. The NMR spectra showed a complex system of signals, only the MS
spectrum presented the molecular peak belonging to the amine. - MS (EI): $m / z(\%)=268 / 266$ (1/13) $\left[\mathrm{M}^{+}\right], 249(30), 236(100), 202(40), 109(60)$.
endo-(2R)-N,N,3-Tribenzyl-2-(hydroxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (endo-169): The alcohol endo- $\mathbf{1 6 9}$ ($62.0 \mathrm{mg}, 90 \%$) was obtained from the amine endo-58 ($100 \mathrm{mg}, 280 \mu \mathrm{~mol}$) and TBAF ($293 \mathrm{mg}, 1.12 \mathrm{mmol}$) according to GP 6 as a colorless oil. R_{f} (hexane/Et $\mathrm{t}_{2} \mathrm{O} 1: 2$) $=0.28$.-

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.78-0.81(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.09-1.19(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, 1.29-1.41 (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.38-2.45(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H})$, 2.98-3.03 (m, 1 H, 2-H), $3.29\left(\mathrm{~d},{ }^{2} J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.81-3.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), $7.18-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=13.1(-, c \operatorname{Pr}-\mathrm{C}), 17.8(+, c \operatorname{Pr}-\mathrm{C}), 41.9\left(+, 2 \mathrm{C}, \mathrm{NCH}_{3}\right), 54.5\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 57.6(-, \mathrm{C}-4)$, $61.8\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 62.8\left(-, \mathrm{CH}_{2} \mathrm{O}\right), 65.8(+, \mathrm{C}-2), 127.0(+, \mathrm{Ar}-\mathrm{C}), 128.2(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.5$ (+, 2 C, Ar-C), 138.6 ($\mathrm{C}_{\text {quat }}$, Ar-C).
endo-(2R)-N,N,3-Tribenzyl-2-(hydroxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (endo-170): The alcohol endo-170 ($362 \mathrm{mg}, 95 \%$) was obtained from the amine endo-59 ($490 \mathrm{mg}, 960 \mu \mathrm{~mol}$) and TBAF $(1.21 \mathrm{~g}, 3.84 \mathrm{mmol})$ according to GP 6 as a colorless solid. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 1: 2\right)=0.43$,
 m. p. $56-59{ }^{\circ} \mathrm{C} .-[\alpha]_{D}^{20}=-6.2\left(c=1.0, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.70-$ 0.81 (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.98-1.09(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.99-2.11(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.08-2.15(\mathrm{~m}$, $1 \mathrm{H}, 4-\mathrm{H}), 2.62-2.71(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.18-3.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.30-$ $3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.80-4.03\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.18-7.32(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$-NMR
(62.9 MHz, CDCl_{3}, additional DEPT): $\delta=14.1(-, c \operatorname{Pr}-\mathrm{C}), 22.6(+, c \operatorname{Pr}-\mathrm{C}), 51.8\left(\mathrm{C}_{\text {quat }}\right.$, c Pr-C), $53.5(-, \mathrm{C}-4), 56.9\left(-, 3 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 61.1\left(-, \mathrm{CH}_{2} \mathrm{O}\right), 61.9(+, \mathrm{C}-2), 126.6(+, 2 \mathrm{C}$, Ar-C), 127.1 (+, Ar-C), 128.1 (+, 4 C, Ar-C), 128.3 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.8$ (+, $4 \mathrm{C}, \mathrm{Ar}-\mathrm{C})$, 128.9 (+, 2 C, Ar-C), 138.1 ($\left.\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 140.1\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z$ (\%): 398 (15) $\left[\mathrm{M}^{+}\right], 307$ (74) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 277$ (27), 202 (16), 91 (100) [$\left.\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right] .-$ $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ (398.54): calcd. C 81.37, H 7.59, N 7.03; found C 81.44, H 7.37, N 6.91.
exo-(2R)-N,N,3-Tribenzyl-2-(hydroxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (exo-170): The alcohol exo-170 (120 mg, 78\%) was obtained from the amine exo-59 ($200 \mathrm{mg}, 390 \mu \mathrm{~mol}$) and TBAF ($492 \mathrm{mg}, 1.56 \mathrm{mmol}$) according to GP 6 as a colorless solid. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 5: 1\right)=0.48 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right): \delta=0.83-0.91(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.18-1.29(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.23-2.35(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H})$, 2.68 (m, 1 H, 2-H), 3.46-3.51 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.53-3.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.90-4.12(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.23-7.42$ (m, $\left.15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$.
endo-(2R)-N,3-(di-tert-butoxycarbonyl)-2-(hydroxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (endo-173): A solution of the alcohol endo-170 (475 mg , 1.20 mmol) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was stirred under hydrogen atmosphere $(1 \mathrm{bar})$ at $20^{\circ} \mathrm{C}$ for 3 d under $\mathrm{Pd} / \mathrm{C}(10 \%)$ catalysis (238 mg). The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated under reduced
 pressure. The obtained salt was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL}, 4.76 \mathrm{mmol})$, DMAP $(15.0 \mathrm{mg}, 100 \mu \mathrm{~mol})$ and $\mathrm{Boc}_{2} \mathrm{O}(780 \mathrm{mg}, 3.57 \mathrm{mmol})$ were added to this solution and the mixture was stirred at ambient temperature for 12 h . EtOAc $(20 \mathrm{~mL})$ and a sat. aq. NaHCO_{3} solution (20 mL), the aqueous layer was separated and extracted with EtOAc
$(2 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(40 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. The amine endo-173 (268 mg, 88\%) was obtained as a white solid. M. p. $169-171^{\circ} \mathrm{C} .-[\alpha]_{D}^{20}=-8.8\left(c=0.90, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz, CDCl_{3}): $\delta=0.75-0.91(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.38\left[\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.58-1.62(\mathrm{~m}$, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.21-3.40(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.57-3.70(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.78-$ 3.91 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$). - ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=14.1(-, c \operatorname{Pr}-\mathrm{C})$, $21.0(+, c \operatorname{Pr}-\mathrm{C}), 28.2\left[+, 6 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 50.4(-, \mathrm{C}-4), 60.0\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 64.0(+, \mathrm{C}-2), 65.2$ $\left(-, \mathrm{CH}_{2} \mathrm{O}\right), 80.5\left[\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 157.0\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 157.1\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{DCI}$, $\left.\mathrm{NH}_{3}, 70 \mathrm{eV}\right), m / z(\%): 674(5)\left[2 \mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right], 657(11)\left[2 \mathrm{M}+\mathrm{H}^{+}\right], 346(64)\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right], 329$ (100) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$.
2.10. Synthesis of tetracyclic azaheterocycles by Ti-mediated intramolecular reductive cyclopropanation

1-Allyl-N,N-dibenzyl-1H-indole-2-carboxamide (178): N,N-dibenzyl-1H-indole-2-carboxamide was obtained from $\mathrm{HNBn}_{2}(1.6 \mathrm{~mL}, 8.55 \mathrm{mmol})$, DCC $(1.76 \mathrm{~g}, \quad 8.55 \mathrm{mmol}), \quad$ HOBT $(462 \mathrm{mg}, \quad 3.42 \mathrm{mmol})$ and indole-2-carboxylic acid $(\mathbf{1 7 7}, 551 \mathrm{mg}, 3.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ according to GP 10 as a colorless oil, which was used
 without further purification. The amide 178 ($545 \mathrm{mg}, 42 \%$) was obtained from N, N-dibenzyl- 1 H -indole-2-carboxamide $(1.10 \mathrm{~g}, 3.42 \mathrm{mmol}$), allyl bromide $(0.40 \mathrm{~mL}$, $4.79 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(945 \mathrm{mg}, 6.84 \mathrm{mmol})$ according to GP 1 as a colorless solid. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 2\right)=0.53$, m. p. $121-128^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=3064 \mathrm{~cm}^{-1}, 3029,2917$, $1630,1523,1451,1244,962 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.73\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.91-$
$5.13\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.94-6.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.70(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 7.07-$ $7.56(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=46.6(-, 2 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 47.0\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 103.7(+, \mathrm{C}-3), 110.3(+, \mathrm{Ar}-\mathrm{C}), 116.5\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 120.4$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 121.7 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 123.5$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 126.4$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 127.6$ (+, $3 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 128.8\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right), 131.0\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 134.1(+, 2 \mathrm{C}, \operatorname{Ar-C}), 136.1(+$, $\left.C H=\mathrm{CH}_{2}\right), 136.6\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 137.6\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $165.1\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV})$, m / z (\%): 380 (100) $\left[\mathrm{M}^{+}\right], 196$ (17), 184 (81), 157 (55), 91 (62), 56 (29). $-\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (380.30): calcd. C 82.07, H 6.36; found: C 81.86, H 6.59 .

N,N-Dibenzyl-indolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine (179): The amine 179 ($202 \mathrm{mg}, 79 \%$) was obtained from the N, N-dibenzylamide $\mathbf{1 7 8}$ ($270 \mathrm{mg}, \quad 710 \mu \mathrm{~mol}), \quad \mathrm{MeTi}(\mathrm{O} i \operatorname{Pr})_{3}(256 \mathrm{mg}, \quad 1.06 \mathrm{mmol})$ and $c \mathrm{HexMgBr}\left(3.5 \mathrm{~mL}, 3.55 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}$) according
 to GP 3 as a colorless oil. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 10: 1\right)=0.55$. $-\mathrm{IR}($ film $): v=3024 \mathrm{~cm}^{-1}, 2928$, 1510, 1398, 1114. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=0.85$ (ps t, ${ }^{2} J=5.0,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $c \operatorname{Pr}-\mathrm{H}), 1.32-1.37(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.49-1.59(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 3.61\left(\mathrm{dd},{ }^{2} J=10.0\right.$, ${ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}$), $3.70\left(\mathrm{~d},{ }^{2} J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}\right), 4.03\left(\mathrm{~d},{ }^{2} J=13.0 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.15\left(\mathrm{~d},{ }^{2} J=13.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.12-7.36(\mathrm{~m}, 13 \mathrm{H}$, Ar-H), 7.62-7.66 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=24.2(-, c \operatorname{Pr}-\mathrm{C}), 30.6(+, c \operatorname{Pr}-\mathrm{C}), 45.8\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.6\left(-, \mathrm{NCH}_{2} \mathrm{CH}\right), 57.8(-, 2 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 93.4$ (+, Ar-C), 108.9 (+, Ar-C), 119.2 (+, Ar-C), 120.4 (+, Ar-C), 120.5 (+, Ar-C), 127.1 ($+, 2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 128.1$ ($+, 4 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 129.2(+, 4 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 132.6\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right)$, $132.7\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 139.6\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right), 143.2\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right) .-\mathrm{MS}(\mathrm{EI}): m / z(\%)=464$
(1) $\left[\mathrm{M}^{+}\right], 273$ (100), 168 (6), 91 (32). $-\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2}$ (364.30): calcd. C 85.68, H 6.64; found: C 85.44, H 6.50.
(S)-N,N-Dibenzyl-1-(tert-butoxycarbonyl)-2,3-dihydro-1H-indole-2-carboxamide (181-Boc): The amide 181-Boc ($1.50 \mathrm{~g}, 89 \%$) was obtained from N-Boc-indoline-2-carboxilic acid (180, $1.00 \mathrm{~g}, 3.80 \mathrm{mmol}$), DCC $(1.96 \mathrm{~g}, 9.50 \mathrm{mmol})$, HOBT $(513 \mathrm{mg}, 3.80 \mathrm{mmol})$ and HNBn_{2}
 $(1.8 \mathrm{~mL}, 9.50 \mathrm{mmol})$ according to GP 10 as a colorless oil. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 2: 1\right)=0.35$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, observed as a major rotamer/minor rotamer ratio of $1.2: 1$): $\delta=1.41\left[\mathrm{~s}, 9 \mathrm{H}\right.$, minor, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.63\left[\mathrm{~s}, 9 \mathrm{H}\right.$, major, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.91-3.25(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H})$, $4.41-4.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64-4.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.10-5.28(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 6.80-7.23$ ($\mathrm{m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=28.4[+, 3 \mathrm{C}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $49.2(-, \mathrm{C}-3), 49.8\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 50.1\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 59.1(+, \mathrm{C}-2), 79.7$ [C $\mathrm{C}_{\text {quat }}$, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 114.8(+, \mathrm{Ar}-\mathrm{C}), 122.2(+, \mathrm{Ar}-\mathrm{C}), 126.8(+, \mathrm{Ar}-\mathrm{C}), 127.3$ (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 127.7(+$, Ar-C), 128.6 (+, 2 C, Ar-C), 129.0 (+, 2 C, Ar-C), 129.2 (+, 2 C, Ar-C), 129.8 (+, 2 C, Ar-C), $130.2\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $137.1\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right), 155.3\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 157.2\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 175.5$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 442(14)\left[\mathrm{M}^{+}\right], 342(15), 224$ (7), 118 (100), 91 (23) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$.
(S)-N,N-Dibenzyl-2,3-dihydro-1H-indole-2-carboxamide (181): The amine 181 (1.14 g, 98\%) was obtained from the amide 181-Boc ($1.50 \mathrm{~g}, 3.39 \mathrm{mmol}$) and TFA ($1.3 \mathrm{~mL}, 17.0 \mathrm{mmol}$) according to GP 11 as a colorless oil. $-[\alpha]_{D}^{20}=-64.0 \quad\left(c=1.0, \quad \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}-\mathrm{NMR} \quad(250 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right): \delta=3.25\left(\mathrm{dd},{ }^{2} J=15.7,{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 3.44\left(\mathrm{dd},{ }^{2} J=15.7,{ }^{3} J=10.6 \mathrm{~Hz}\right.$,
$1 \mathrm{H}, 3-\mathrm{H}), 4.25-4.42\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65-4.75\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.98(\mathrm{~d}$, $\left.{ }^{2} J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.76-6.81(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.12-7.45(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=35.5(-, \mathrm{C}-3), 48.2\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 49.1(-$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 58.2$ (+, C-2), 111.5 (+, Ar-C), 119.9 (+ , Ar-C), 124.3 (+, Ar-C), 126.7 (+, 2 C , Ar-C), 127.3 (+, Ar-C), 127.6 (+, Ar-C), 127.9 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.4$ (+, Ar-C), 128.8 (+, 3 C ,
 $\mathrm{C}=\mathrm{O})$. - MS (EI, 70 eV), $m / z(\%): 342$ (8) [$\left.\mathrm{M}^{+}\right], 270$ (29), 189 (19), 155 (28), 118 (100), 90 (48).
(S)-N,N-Dibenzyl-1-allyl-2,3-dihydro-1H-indole-2-carboxamide (182): The amide $\mathbf{1 8 2}$ $(1.15 \mathrm{~g}, 89 \%)$ was obtained from the amide $\mathbf{1 8 1}(1.10 \mathrm{~g}$, $3.39 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(940 \mathrm{mg}, 6.78 \mathrm{mmol})$ and allyl bromide $(0.40 \mathrm{~mL}, 4.75 \mathrm{mmol})$ according to GP 1 as a colorless oil. R_{f}
 $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 2\right)=0.31 .-[\alpha]_{D}^{20}=-36.0\left(c=0.35, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}$ (film): $v=3030 \mathrm{~cm}^{-1}, 2925,1657,1453,1208,747 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=3.04-3.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.73\left(\mathrm{dd},{ }^{2} J=15.7,3 \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 3.98(\mathrm{dd}$, $\left.{ }^{2} J=15.7,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.49-4.65\left(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.83\left(\mathrm{~d},{ }^{2} J=14.5 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.10-5.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.75-5.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.51-6.68(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.98(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=34.1(-, \mathrm{C}-3), 48.7\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 49.4\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 50.1\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 63.6(+, \mathrm{C}-2)$, 107.4 (+, Ar-C), 117.9 (-, $\mathrm{CH}=\mathrm{CH}_{2}$), 118.3 (+, Ar-C), 124.1 (+, Ar-C), 126.5 (+, Ar-C), 126.6 (+, Ar-C), 127.6 (+, Ar-C), 127.8 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.5$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.7$ (+, 2 C , Ar-C), $129.0(+, 2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 133.4\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right), 136.4\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 137.2\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right)$,
$151.1\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $156.4\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 172.9\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 382$ (8) $\left[\mathrm{M}^{+}\right], 270$ (10), 158 (100), 117 (20). $-\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ (382.30): calcd. C 81.64, H 6.85; found C 81.58, H 6.97.
(1aS,8aS,8bR)- and (1aR,8aS,8bS)-N,N-Dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine (183): The amines 183 ($223 \mathrm{mg}, 61 \%$) were obtained from the amide $\mathbf{1 8 2}$ ($382 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{MeTi}(\mathrm{OiPr})_{3}$ ($361 \mathrm{mg}, 1.50 \mathrm{mmol}$) and $c \mathrm{HexMgBr}(5.0 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0 \mathrm{~m}$
 solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ according to GP 3 in an $(1 \mathrm{a} S, 8 \mathrm{a} S, 8 \mathrm{~b} R)-\mathbf{1 8 3} /(1 \mathrm{a} R, 8 \mathrm{a} S, 8 \mathrm{~b} S)-\mathbf{1 8 3}$ ratio of $1: 1$. $(1 \mathrm{a} S, 8 \mathrm{a} S, 8 \mathrm{~b} R)-183:$ Colorless oil, $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 5\right)=0.66 .-[\alpha]_{D}^{20}=-7.7 \quad(c=0.35$, CHCl_{3}). - IR (film): $v=3026 \mathrm{~cm}^{-1}, 2920,1480,1263,1028,749 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, CDCl_{3}): $\delta=0.18\left(\mathrm{pst},{ }^{2} J=5.0,3 J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 0.58-0.64(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.97-$ $1.03(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 3.00\left(\mathrm{~d},{ }^{2} J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 3.15\left(\mathrm{dd},{ }^{3} J=11.3,{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, 6-H), 3.28-3.32 (m, 2 H, 1-H), $3.80\left(\mathrm{~d},{ }^{2} J=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.97\left(\mathrm{~d},{ }^{2} J=13.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.74 (ddd, $\left.{ }^{3} J=5.2,{ }^{3} J=8.8,{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.34\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ar-H), $6.65\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1,{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.97-7.37$ (m, $\left.12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$ (62.9 MHz, CDCl_{3}, additional DEPT): $\delta=14.0(-, c \operatorname{Pr}-\mathrm{C}), 28.1(+, c \operatorname{Pr}-\mathrm{C}), 33.1(-, \mathrm{C}-1), 53.1$ $(-, \mathrm{C}-6), 55.3\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 57.1\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 60.8(+, \mathrm{C}-2), 109.2(+, \mathrm{Ar}-\mathrm{C}), 118.5(+$, Ar-C), 124.4 (+, Ar-C), 127.0 (+, 2 C, Ar-C), 127.5 (+, Ar-C), 128.1 (+, 4 C, Ar-C), 128.9 (+, $4 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 130.1\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 139.9\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right), 143.2\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}$, $70 \mathrm{eV}), m / z(\%): 366(47)\left[\mathrm{M}^{+}\right], 275(100)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 170(48), 91(84)\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-\mathrm{HRMS}$ (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right]$366.2096, found 366.2096.
$(1 \mathrm{a} R, 8 \mathrm{a} S, 8 \mathrm{~b} S)-183:$ Colorless oil, $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 5\right)=0.33, \quad[\alpha]_{D}^{20}=-3.3 \quad(c=0.3$, CHCl_{3}). - IR (film): $v=3016 \mathrm{~cm}^{-1}, 2919,1462,1257,1027,769 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.75\left(\mathrm{pst},{ }^{2} J=4.7,{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.30\left(\mathrm{dd},{ }^{2} J=9.1,{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $c \operatorname{Pr}-\mathrm{H}), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.83\left(\mathrm{dd},{ }^{2} J=16.0,{ }^{3} J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 3.22-3.28(\mathrm{~m}$, $2 \mathrm{H}, 6-\mathrm{H}), 3.56\left(\mathrm{dd},{ }^{2} J=16.0,{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 3.69\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 3.71(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.90\left(\mathrm{dd},{ }^{3} J=8.2,{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.87(\mathrm{t}$, ${ }^{3} J=7.4, \quad 3 J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, ~ \mathrm{Ar}-\mathrm{H}$), $7.08-7.34(\mathrm{~m}, 12 \mathrm{H}, \quad \operatorname{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}(62.9 \mathrm{MHz}$, CDCl_{3}, additional DEPT $): \delta=21.0(-, c \operatorname{Pr}-\mathrm{C}), 28.6(+, c \operatorname{Pr}-\mathrm{C}), 33.1(-, \mathrm{C}-1), 55.0\left(\mathrm{C}_{\text {quat }}\right.$, $\left.{ }_{c} \mathrm{Pr}-\mathrm{C}\right), 56.4$ (-, C-6), 56.9 (-, $2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}$), 72.7 (+, C-2), 113.9 (+, Ar-C), 121.2 (+, Ar-C), 124.4 (+, Ar-C), 126.9 (+, 3 C, Ar-C), 127.4 (+, Ar-C), 128.2 (+, 4 C, Ar-C), 128.7 (+, 3 C, Ar-C), 133.1 ($\left.\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 140.1\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \operatorname{Ar-C}\right), 154.3\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV})$, $m / z(\%): 366(24)\left[\mathrm{M}^{+}\right], 275(100)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 170$ (48), 130 (47), 91 (84) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-$ HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right]$366.2096, found 366.2096.
2.11. Synthesis of tricyclic azaheterocycles by Ti-mediated intramolecular reductive cyclopropanation

N,N-Dibenzyl-1H-pyrrole-2-carboxamide (185): The amide 185 (1.31 g, 89\%) was obtained from pyrrole-2-carboxilic acid (184, $556 \mathrm{mg}, 5.00 \mathrm{mmol})$, DCC $(2.60 \mathrm{~g}, 12.5 \mathrm{mmol})$, HOBT ($676 \mathrm{mg}, 5.00 \mathrm{mmol}$) and $\mathrm{HNBn}_{2}(2.4 \mathrm{~mL}$, $12.5 \mathrm{mmol})$ according to GP 10 , as a colorless solid. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane
 $1: 1)=0.38$, m. p. $140-144^{\circ} \mathrm{C} .-\operatorname{IR}($ film $): v=3258 \mathrm{~cm}^{-1}, 3030,2905,1600,1576,1424$, 1129. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.89\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 6.16-6.18(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H})$,
6.48-6.50 (m, 1 H, 3-H), 6.91-6.93 (m, $1 \mathrm{H}, 5-\mathrm{H}), 7.18-7.48$ (m, 10 H, Ar-H), 11.41 (br s, $1 \mathrm{H}, \mathrm{NH}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=47.6\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 109.7 (+, Ar-C), 112.7 (+, Ar-C), 122.1 (+, Ar-C), 124.1 (C quat, $\operatorname{Ar}-\mathrm{C}), 126.9$ (+, $2 \mathrm{C}, \operatorname{Ar-C})$, 127.5 (+, 4 C, Ar-C), 128.9 (+, Ar-C), 128.9 (+, $3 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 136.8$ (C $\mathrm{quat}, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 163.6$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 290(30)\left[\mathrm{M}^{+}\right], 199(70)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 106$ (100), 91 (52) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right] .-\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ (290.20): calcd. C 78.59, H 6.25; found C 78.38, H 6.42.

1-Allyl-N,N-dibenzyl-1H-pyrrole-2-carboxamide (186): The amide 186 ($1.11 \mathrm{~g}, 75 \%$) was obtained from the amine $\mathbf{1 8 5}(1.30 \mathrm{~g}, 4.48 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.24 \mathrm{~g}$, $8.96 \mathrm{mmol})$ and allyl bromide $(0.50 \mathrm{~mL}, 6.27 \mathrm{mmol})$ according to GP 1 as a colorless oil. $\quad R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 2\right)=0.46$. $-\mathrm{IR}($ film $)$:
 $v=3029 \mathrm{~cm}^{-1}, 2925,1623,1464,1240,987,734 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.74$ (s, $4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{Ph}$), $4.91-4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.01-5.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.97-$ $6.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H=\mathrm{CH}_{2}, 4-\mathrm{H}\right), 6.42\left(\mathrm{dd},{ }^{3} J=3.8,{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 6.80-6.82(\mathrm{~m}, 1 \mathrm{H}$, 5-H), 7.24-7.41 (m, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=49.0\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 50.7\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 107.1(+, \mathrm{Ar}-\mathrm{C}), 112.6(+, \mathrm{Ar}-\mathrm{C}), 116.5(-$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 124.4\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 125.9$ (,$\left.+ \mathrm{Ar}-\mathrm{C}\right), 127.4(+, 4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.7(+, 3 \mathrm{C}, \mathrm{Ar}-\mathrm{C})$, $135.3(+, 3 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 136.4\left(+, C H=\mathrm{CH}_{2}\right), 137.0\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 163.6\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-$ MS (EI, 70 eV), $m / z(\%): 330$ (91) $\left[\mathrm{M}^{+}\right], 239$ (22) $\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 134$ (100), 106 (61), 91 (56)
$\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$- HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+}\right]$330.1732, found 330.1732.

N,N-Dibenzyl-1,1a,2,6b-tetrahydrocyclopropa[1,2-a]pyrrolizin-6b-amine (187): The amine 187 (224 mg, 78\%) was obtained from the amide 186 (300 mg , $910 \mu \mathrm{~mol}), \mathrm{MeTi}(\mathrm{Oi} \operatorname{Pr})_{3}(327 \mathrm{mg}, 1.36 \mathrm{mmol})$ and $c \operatorname{HexMgBr}(4.6 \mathrm{~mL}$, $4.55 \mathrm{mmol}, 1.0 \mathrm{~m}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) according to GP 3 as a colorless oil.
 $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 5: 1\right)=0.74$. - IR (film): $v=3028 \mathrm{~cm}^{-1}, 2924,1530,1392,745 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz, CDCl_{3}): $\delta=0.72\left(\mathrm{pst},{ }^{2} J=4.6,{ }^{3} J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 0.84-1.38(\mathrm{~m}, 2 \mathrm{H}$, ${ }_{c} \operatorname{Pr}-\mathrm{H}$), $3.50-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.96\left(\mathrm{~d},{ }^{2} J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.11(\mathrm{~d}$, $\left.{ }^{2} J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.84-5.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.20-6.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.42-6.50$ (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.18-7.37$ (m, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=23.8(-, c \operatorname{Pr}-\mathrm{C}), 29.6(+, c \operatorname{Pr}-\mathrm{C}), 47.9\left(-, \mathrm{NCH}_{2} \mathrm{CH}\right), 49.7\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 57.7(-$, $\left.2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 99.7$ (+, Ar-C), 111.2 (+, Ar-C), 113.5 (+, Ar-C), 126.9 (+, $\left.2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right), 128.1$ (+, $4 \mathrm{C}, \operatorname{Ar-C}), 129.3(+, 4 \mathrm{C}, \operatorname{Ar-C}), 131.9\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 136.0\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 139.8\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C). - MS (EI, 70 eV), m / z (\%): 314 (1) [$\left.\mathrm{M}^{+}\right], 223$ (14) [$\left.\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 197$ (61), 106 (38), 91 (100) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$. - HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right]$314.1783, found 314.1783. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ (314.30): calcd. C 84.15, H 7.06; found C 84.44, H 7.37.
(S)-N,N-Dibenzyl-1-(tert-butoxycarbonyl)-2-pyrrolidinecarboxamide (189-Boc): The amide 189-Boc ($2.85 \mathrm{~g}, 72 \%$) was obtained from N-Boc-proline ($\mathbf{1 8 8}, 2.15 \mathrm{~g}$, $10.0 \mathrm{mmol}), \operatorname{DCC}(5.16 \mathrm{~g}, 25.0 \mathrm{mmol}), \operatorname{HOBT}(1.35 \mathrm{~g}, 10.0 \mathrm{mmol})$ and $\mathrm{HNBn}_{2}(4.8 \mathrm{~mL}, 25.0 \mathrm{mmol})$ according to GP 10 as a colorless
 solid. $R_{\mathrm{f}}($ Cyclohexane $/$ EtOAc $1: 1)=0.42$, m. p. $128-131^{\circ} \mathrm{C} .-[\alpha]_{D}^{20}=+28.8 \quad(c=1.0$, CHCl_{3}). - IR (KBr): $v=3030 \mathrm{~cm}^{-1}, ~ 2973, ~ 1684, ~ 1651, ~ 1403, ~ 1164, ~ 706 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, observed as a major rotamer/minor rotamer ratio of $1.2: 1$): $\delta=1.38[\mathrm{~s}$,

9 H , major, $\left.\left.\left.\mathrm{C}(\mathrm{CH})_{3}\right)_{3}\right], 1.50\left[\mathrm{~s}, 9 \mathrm{H} \text {, minor, } \mathrm{C}(\mathrm{CH})_{3}\right)_{3}\right], 1.81-2.04(\mathrm{~m}, 4 \mathrm{H}, 3,4-\mathrm{H}), 3.41-3.66$ $(\mathrm{m}, 2 \mathrm{H}, 5-\mathrm{H}), 4.40-4.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60-4.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.80-4.89(\mathrm{~m}, 1 \mathrm{H}$, 2-H), 7.20-7.37 (m, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT, observed as a major rotamer/minor rotamer ratio of $1.2: 1): \delta=23.4(-$, minor, $\mathrm{C}-4), 24.5(-$, major, C-4), $28.4\left[+\right.$, minor, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.5\left[+\right.$, major, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.2$ (-, major, $\left.\mathrm{C}-3\right), 31.5(-$, minor, C-3), 47.0 (-, C-5), 48.8 (-, minor, $\mathrm{CH}_{2} \mathrm{Ph}$), 49.0 (-, major, $\mathrm{CH}_{2} \mathrm{Ph}$), 49.7 (-, minor, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 50.2\left(-\right.$, major, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 56.0(+$, major, $\mathrm{C}-2), 56.4(+$, minor, $\mathrm{C}-2), 79.4$ [$\mathrm{C}_{\text {quat }}$, major, $\left.\left.\left.C(\mathrm{CH})_{3}\right)_{3}\right], 79.9\left[\mathrm{C}_{\text {quat, }} \text {, major, } C(\mathrm{CH})_{3}\right)_{3}\right], 126.7(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 126.8(+, \mathrm{Ar}-\mathrm{C}), 127.5$ (+, Ar-C), 127.9 (+, Ar-C), 128.5 (+, Ar-C), 128.8 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.9$ (+, 2 C, Ar-C), 136.5 $\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 137.2\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 155.3\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.0\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}$, $70 \mathrm{eV}), m / z(\%): 394(2)\left[\mathrm{M}^{+}\right], 303(21)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 170(36), 114(100), 91(83)\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$, 70 (96). $-\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$ (394.50): calcd. C 73.07, H 7.67; found: C 72.83, H 7.46.
(S)-N,N-Dibenzyl-2-pyrrolidinecarboxamide (189): The amine 189 ($355 \mathrm{mg}, 99 \%$) was obtained from the amide $\mathbf{1 8 9 - B o c}$ ($501 \mathrm{mg}, 1.22 \mathrm{mmol}$) and TFA $(0.50 \mathrm{~mL}, 6.34 \mathrm{mmol})$ according to GP 11 as a colorless oil. $-[\alpha]_{D}^{20}=-77.0 \quad\left(c=0.50, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
 $\delta=1.69-1.84\left(\mathrm{~m}, 3 \mathrm{H}, 3,4-\mathrm{H}^{*}\right), 1.98-2.08\left(\mathrm{~m}, 1 \mathrm{H}, 3,4-\mathrm{H}^{*}\right), 2.77-2.86(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.91(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 3.19-3.29(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.94-3.99(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.25\left(\mathrm{~d},{ }^{2} J=14.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.34\left(\mathrm{~d},{ }^{2} J=23.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.58\left(\mathrm{~d},{ }^{2} J=23.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.91(\mathrm{~d}$, $\left.{ }^{2} J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.15-7.34(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=26.6(-, \mathrm{C}-4), 31.4(-, \mathrm{C}-3), 47.9(-, \mathrm{C}-5), 48.1\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 49.1(-$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 58.5$ (+, C-2), 126.6 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}$), 127.4 (+, Ar-C), 127.8 (+, Ar-C), 128.1 (+, 2 C ,

Ar-C), 128.6 (+, 2 C, Ar-C), 129.0 (+, 2 C, Ar-C), 136.0 ($\mathrm{C}_{\text {quat }}$, Ar-C), 137.0 ($\mathrm{C}_{\text {quat, }}, \operatorname{Ar-C),~}$ $174.8\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$.
rac-N,N-Dibenzyl-1,2-diallyl-2-pyrrolidinecarboxamide (191): Compound 191 (1.32 g, 33\%) was obtained from the amine $189(3.15 \mathrm{~g}, 10.7 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.00 \mathrm{~g}$, $21.4 \mathrm{mmol})$ and allyl bromide ($1.40 \mathrm{~mL}, 16.1 \mathrm{mmol}$) according to GP 1 as $\quad \mathrm{a} \quad$ colorless \quad oil. $R_{\mathrm{f}}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} \quad 10: 1\right)=0.48 .-[\alpha]_{D}^{20}=0.0$
 $\left(c=1.0, \mathrm{CHCl}_{3}\right) .-\mathrm{IR}(\mathrm{film}): v=3067 \mathrm{~cm}^{-1}, 2977,2812,1633,1413,1190,916 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$ at $100^{\circ} \mathrm{C}$): $\delta=1.78-1.84(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.03-2.18(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H})$, 2.20-2.39 (m, $2 \mathrm{H}, 3-\mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 2.61-2.70 (m, $1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 2.90 (dd, $\left.{ }^{2} J=13.1,{ }^{3} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.09-3.21\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}^{*}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.45-3.56(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right), 4.60\left(\mathrm{~d}, 2 \mathrm{~J}=18.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.98-5.19\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, $\left.\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.63-5.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.97-6.11(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $7.15-7.38(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right.$ at $100^{\circ} \mathrm{C}$, additional APT): $\delta=21.7(-, \mathrm{C}-4), 32.3(-, \mathrm{C}-3), 37.1\left(-, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 49.7(-$, $\left.\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 50.0\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 51.9\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 65.2\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-2\right), 115.7 \quad(-$, $\left.\mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 116.8\left(-, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 126.7(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 127.2(+, 4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.2$ $(+, 4 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 136.2\left(+, \mathrm{CCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 136.5\left(+, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 137.6\left(\mathrm{C}_{\text {quat }}, 2 \mathrm{C}\right.$, Ar-C), $174.6\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 374(<1)\left[\mathrm{M}^{+}\right], 150$ (100), 91 (14) $\left[\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$.
(S)-1-Allylproline hydrochloride (190-OH): A mixture of L-proline (192, $20.0 \mathrm{~g}, 174 \mathrm{mmol}$) and $\mathrm{KOH}(29.2 \mathrm{~g}, 521 \mathrm{mmol})$ in $i \operatorname{PrOH}(100 \mathrm{~mL})$ was heated at $40^{\circ} \mathrm{C}$ for 30 min , then allyl bromide $(18 \mathrm{~mL}, 208 \mathrm{mmol})$ was added and the solution stirred at the same temperature for $19 \mathrm{~h} . \mathrm{HCl}(22 \mathrm{~mL}$ of a 37% aq. solution) and $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ were added, the mixture
 stirred for 3 h and then filtered. After removal of the solvent under reduced pressure a yellow solid was obtained and was washed several times with acetone. The hydrochloride $\mathbf{1 9 0} \mathbf{- O H}$ $(18.3 \mathrm{~g}, 68 \%)$ was obtained as a colorless solid, m. p. $205-209^{\circ} \mathrm{C} .-[\alpha]_{D}^{20}=-60.2(c=1.0$, $\mathrm{MeOH}) .-\mathrm{IR}(\mathrm{KBr}): \quad v=3480 \mathrm{~cm}^{-1}, ~ 3004,2849,1734,1444,1226,953 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=1.70-2.01\left(\mathrm{~m}, 3 \mathrm{H}, 3,4-\mathrm{H}^{*}\right), 2.24-2.35\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}^{*}\right), 2.96-3.08$ (m, $1 \mathrm{H}, 5-\mathrm{H}), 3.42-3.52(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.58-3.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.94(\mathrm{dd}, 3 \mathrm{~J}=6.7$, $\left.{ }^{3} J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.26-5.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.67-5.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, additional DEPT): $\delta=23.9(-, \mathrm{C}-4), 29.8(-, \mathrm{C}-3), 55.5(-$, C-5*), $58.3\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{*}\right)$, $68.1(+, \mathrm{C}-2), 125.8\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 128.8\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $172.0\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 155(2)\left[\mathrm{M}^{+}\right], 110$ (100), 70 (18), 41 (33).
(S)-N,N-Dibenzyl-1-allyl-2-pyrrolidinecarboxamide (190): The amide 190 ($4.65 \mathrm{~g}, 89 \%$) was obtained from the acid $\mathbf{1 9 0 - O H}(3.00 \mathrm{~g}, 15.6 \mathrm{mmol})$, DCC (3.40 g , $16.4 \mathrm{mmol})$, $\mathrm{HOBT}(2.22 \mathrm{~g}, \quad 16.4 \mathrm{mmol})$ and $\mathrm{HNBn}_{2}(4.5 \mathrm{~mL}$, $22.8 \mathrm{mmol})$ according to GP 10 as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right)=0.30$. -
 $[\alpha]_{D}^{20}=-75.0\left(c=1.0, \mathrm{CHCl}_{3}\right) .-\operatorname{IR}($ film $): v=3030 \mathrm{~cm}^{-1}, 2972,1651,1453,1211,732 .-$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.71-1.76\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}^{*}\right), 1.87-2.04\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}^{*}\right)$, $2.25-2.35\left(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}^{*}\right), 3.01\left(\mathrm{dd},{ }^{2} J=13.1,{ }^{3} J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.18-3.25(\mathrm{~m}, 1 \mathrm{H}$,

5-H), 3.34-3.50 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.41-4.49 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, 2-\mathrm{H}\right) 4.74$ (d, $\left.{ }^{2} J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.97-5.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.85-5.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 7.12-7.39 (m, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=22.8(-$, $\left.\mathrm{C}-3^{*}\right), 29.6\left(-, \mathrm{C}-4^{*}\right), 48.1(-, \mathrm{C}-5), 49.0\left(-, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 53.1\left(-, \mathrm{CH}_{2} \mathrm{Ph}\right), 57.3(-$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 63.5(+, \mathrm{C}-2), 116.8\left(-, \mathrm{CH}=\mathrm{CH}_{2}\right), 126.3(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 127.2$ (+, Ar-C), $127.4(+$, Ar-C), 128.3 (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.4$ (+, $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.7$ ($+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 135.8\left(+, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $136.6\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 137.3\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 173.8\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 334$ (2) $\left[\mathrm{M}^{+}\right], 110$ (100), 91 (10), 41 (33). $-\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ (334.20): calcd. C 79.00, H 7.84; found: C 78.89, H 7.64.
(1aS, $6 a S, 6 b R$)- and (1aR, $6 a S, 6 b S$)-N,N-Dibenzyl-perhydrocyclopropa[1,2-a]pyrrolizin-6b-ylamine (192): The amines 192 ($224 \mathrm{mg}, 70 \%$) were obtained from the amide 190 ($334 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{MeTi}(\mathrm{OiPr})_{3}(370 \mathrm{mg}, 1.40 \mathrm{mmol})$
 and $c \mathrm{HexMgBr}\left(5.0 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ according to GP 3 in an $(1 \mathrm{a} S, 6 \mathrm{a} S, 6 \mathrm{~b} R)-\mathbf{1 9 2} /(1 \mathrm{a} R, 6 \mathrm{a} S, 6 \mathrm{~b} S)-\mathbf{1 9 2}$ ratio of $3.3: 1$. $(1 \mathrm{a} R, 6 \mathrm{a} S, 6 \mathrm{~b} S)-\mathbf{1 9 2}$: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} \quad 20: 1\right)=0.25 .-[\alpha]_{D}^{20}=-21.6 \quad\left(c=0.80, \quad \mathrm{CHCl}_{3}\right) .-$ IR (film): $v=3020 \mathrm{~cm}^{-1}, 2910,1465,1241,1032 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.59$ (ps t, $\left.{ }^{2} J=5.3,{ }^{3} J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 0.94-1.00(\mathrm{~m}, 1 \mathrm{H}, ~ c \operatorname{Pr}-\mathrm{H}), 1.10-1.17(\mathrm{~m}, 1 \mathrm{H}$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{H}\right), 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.04-2.50(\mathrm{~m}, 4 \mathrm{H}, 4,5,6-\mathrm{H}), 2.60\left(\mathrm{~d},{ }^{2} J=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $2-\mathrm{H}), 3.40-3.46(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.52-3.56(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 3.66\left(\mathrm{~d},{ }^{2} J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.83\left(\mathrm{~d},{ }^{2} J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 7.15-7.34(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=19.3(-, c \operatorname{Pr}-\mathrm{C}), 27.7(-, \mathrm{C}-5), 29.4(-$, C-6), $30.1(+, c \operatorname{Pr}-\mathrm{C}), 53.5\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 54.3(-, \mathrm{C}-2), 55.2(-, \mathrm{C}-4), 57.0\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right)$,
62.4 (+, CHN), 127.1 (+, 2 C, Ar-C), 128.2 (+, 4 C, Ar-C), 128.9 (+, 4 C, Ar-C), 139.4 (C quat , $2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 318$ (6) [M+$\left.{ }^{+}\right], 250(10), 227(100)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 124$ (60), 91 (80) $\left[\mathrm{C}_{7} \mathrm{H}_{7}^{+}\right]$. - HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right]$318.2096, found 318.2096. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}$ (318.20): calcd. C 82.97, H 8.23; found: C 82.73, H 8.08. (1aS, $6 \mathrm{aS}, 6 \mathrm{~b} R$)-192: Colorless solid, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)=0.10$, m. p. $128-132^{\circ} \mathrm{C} .-[\alpha]_{D}^{20}=-40.0$ $\left(c=0.25, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.26\left(\mathrm{t},{ }^{2} J=4.9,{ }^{3} J=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $c \operatorname{Pr}-\mathrm{H}), 0.71-0.80(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.97-1.04(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.57-1.96$ (m, $3 \mathrm{H}, 5,6-\mathrm{H}$), 2.12-2.24 (m, $1 \mathrm{H}, 5-\mathrm{H}), 2.28-2.42(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 2.89-3.03(\mathrm{~m}, 2 \mathrm{H}, 2,4-\mathrm{H}), 3.70(\mathrm{~d}$, $\left.{ }^{2} J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.79\left(\mathrm{~d},{ }^{2} J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.24\left(\mathrm{t},{ }^{2} J=7.3,{ }^{3} J=7.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CHN}$), $7.18-7.35(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=19.1(-, c \operatorname{Pr}-\mathrm{C}), 28.0(-, \mathrm{C}-5), 29.8(-, \mathrm{C}-6), 30.5(+, c \operatorname{Pr}-\mathrm{C}), 54.3(-, \mathrm{C}-2), 55.1(-, \mathrm{C}-4)$, $57.1\left(-, 2 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}\right), 57.9\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 61.4(+, \mathrm{CHN}), 126.8(+, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 128.0(+, 4 \mathrm{C}$, Ar-C), 128.9 (+, 4 C, Ar-C), 140.1 ($\left.\mathrm{C}_{\text {quat }}, 2 \mathrm{C}, \mathrm{Ar}-\mathrm{C}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 318$ (5) $\left[\mathrm{M}^{+}\right], 250(1), 227(100)\left[\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right], 123$ (18), 91 (75) [$\left.\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right]$. - HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}\left[\mathrm{M}^{+}\right] 318.2096$, found 318.2096.

2.12. 1,3-Dipolar cycloadditions of nitrones to bicyclopropylidenes

8-Benzylimino-5-methyl-4-phenyl-5-azaspiro[2.5]octan (206): Benzyl amine (1.0 mL, $8.60 \mathrm{mmol})$ and $\mathrm{BF}_{3}\left(0.20 \mathrm{~mL}\right.$ of a 8.0 m solution in $\mathrm{Et}_{2} \mathrm{O}$, 1.60 mmol) were added to a solution of the tetrahydropiperidone $205(1.85 \mathrm{~g}, 8.60 \mathrm{mmol})$ in benzene $(20 \mathrm{~mL})$, in the presence of
 molecular sieves ($3 \AA$). The mixture was heated at $70^{\circ} \mathrm{C}$ for 1 d . The solvent was removed, the residue was purified by column chromatography and the imine $206(1.31 \mathrm{~g}, 50 \%)$ was
obtained as a colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)=0.46 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=0.41-0.47(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.55-0.61(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.04-1.11(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.15-$ $1.21(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.68-2.79(\mathrm{~m}, 3 \mathrm{H}, 6,7-\mathrm{H}), 2.96-3.04(\mathrm{~m}, 1 \mathrm{H}$, 6-H), $3.31(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.38-7.20(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (62.9 MHz, CDCl_{3}, additional DEPT): $\delta=9.5(-, c \operatorname{Pr}-\mathrm{C}), 15.3(-, c \operatorname{Pr}-\mathrm{C}), 28.5\left(+, \mathrm{NCH}_{3}\right)$, $28.8(-, \mathrm{C}-7), 44.1\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 50.7\left(-, \mathrm{C}-6^{*}\right), 53.6\left(-, \mathrm{CH}_{2} \mathrm{Ph}^{*}\right), 73.8(+, \mathrm{C}-4), 126.3(+$, Ar-C), 127.1 (+, Ar-C), 127.4 (+, 2 C, Ar-C), 127.9 (+, 2 C, Ar-C), 128.4 (+, 2 C, Ar-C), 128.7 (+, 2 C, Ar-C), $139.7\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $140.5\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 171.4\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{N}\right)$.

5-Methyl-6-phenyl-5-azaspiro[2.3]hexan-4-one (222): A solution of the isoxazolidine 220 ($150 \mathrm{mg}, 700 \mu \mathrm{~mol}$) and TFA ($0.10 \mathrm{~mL}, 840 \mu \mathrm{~mol}$) in $\mathrm{MeCN}(3.0 \mathrm{~mL})$ was heated at $70{ }^{\circ} \mathrm{C}$ for 40 min , then $\mathrm{K}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}, 1.05 \mathrm{mmol})$ was added and the mixture was stirred at ambient temperature for 12 h . The mixture was filtrated through a pad of Celite ${ }^{\circledR}$, the solvent was removed
 the residue purified by chromatography on silica gel. The β-lactam 222 ($128 \mathrm{mg}, 98 \%$) was obtained as colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)=0.66$. $-\mathrm{IR}(\mathrm{film}): v=3001 \mathrm{~cm}^{-1}, 2902$, $1751,1456,1386,1172,1039 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.42\left(\mathrm{dt},{ }^{2} J=7.8,{ }^{3} J=7.8\right.$, $\left.{ }^{3} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.08-1.18(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.25-1.35(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 4.63 (s, $1 \mathrm{H}, 6-\mathrm{H}$), 7.20-7.37 (m, $\left.2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.38-7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT): $\delta=7.6(-, c \mathrm{Pr}-\mathrm{C}), 8.6(-, c \mathrm{Pr}-\mathrm{C}), 27.7\left(+, \mathrm{NCH}_{3}\right)$, $40.2\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 64.4(+, \mathrm{C}-6), 127.3(+, 2 \mathrm{C}, \operatorname{Ar}-\mathrm{C}), 128.9(+, 3 \mathrm{C}, \mathrm{Ar}-\mathrm{C}), 135.1\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $175.2\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 187(59)\left[\mathrm{M}^{+}\right], 158(7)\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}\right]$,

129 (100), 118 (48), 115 (56). - HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}\left[\mathrm{M}^{+}\right]$187.0997, found 187.0997.

5-Methyl-6-(pyrid-2-yl)-5-azaspiro[2.3]hexan-4-one (223): A solution of the isoxazolidine 221 ($400 \mathrm{mg}, 1.85 \mathrm{mmol}$) and TFA ($0.20 \mathrm{~mL}, 2.22 \mathrm{mmol}$) in MeCN $(5.0 \mathrm{~mL})$ was heated at $70{ }^{\circ} \mathrm{C}$ for 40 min , then $\mathrm{K}_{2} \mathrm{CO}_{3}(385 \mathrm{mg}$, 2.80 mmol) was added and the mixture was stirred at ambient
 temperature for 12 h . The mixture was filtrated through a pad of Celite ${ }^{\circledR}$, the solvent was removed the residue purified by chromatography on silica gel. The β-lactam 223 (335 mg, 96\%) was obtained as colorless oil. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)=0.38$. IR (film): $v=3003 \mathrm{~cm}^{-1}$, 2924, 1751 ($\mathrm{C}=\mathrm{O}$), 1472, 1291. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=0.30-0.39(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.98-1.05(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.13-1.31(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.91(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.72(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 7.21-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$, $7.75\left(\mathrm{dt},{ }^{3} J=7.8,{ }^{3} J=7.8,{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 8.53-8.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT): $\delta=6.7(-, c \operatorname{Pr}-\mathrm{C}), 8.2(-, c \mathrm{Pr}-\mathrm{C}), 27.8\left(+, \mathrm{NCH}_{3}\right)$, $40.7\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 64.7$ (+, C-6), 120.6 (+, Ar-C), 123.1 (+, Ar-C), 137.1 (+, Ar-C), 149.5 $(+, \operatorname{Ar}-\mathrm{C}), 157.4\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 173.0\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$. - MS (EI, 70 eV$), m / z(\%): 188(9)\left[\mathrm{M}^{+}\right]$, 159 (54) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}\right], 145$ (16) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{4}\right], 130$ (100), 119 (19), 78 (27). $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ (188.20): calcd. C 70.20, H 6.43; found: C 70.31, H 6.56.

Tetraspiro[cyclopropane-1,1'-cyclopropane-2', 1"-cyclopropane-3', 1 "'"-(1""',5"", $6^{\prime \prime \prime \prime},-10 b^{\prime \prime \prime \prime}-$ tetrahydro-2H-isoxazolo[3,2-a]isoquinoline)- $1^{\prime \prime \prime}, 2^{\prime \prime \prime \prime}$-cyclopropane] (241) and tetraspiro-[cyclopropane-1, $1^{\prime \prime \prime \prime}-\left(1^{\prime \prime \prime \prime}, 5^{\prime \prime \prime \prime}, 6^{\prime \prime \prime \prime}, 10 b^{\prime \prime \prime \prime}-\right.$ tetrahydro-2H-isoxazolo[3,2-a]-isoquinoline)$2^{\prime}, 1$ "-cyclopropane-2", 1 "'-cyclopropane-3", 1 ""'-cyclopropane] (242): A solution of nitrone $240(206 \mathrm{mg}, 1.40 \mathrm{mmol})$ and alkene $226(231 \mathrm{mg}, 1.75 \mathrm{mmol})$ in benzene $(4.0 \mathrm{~mL})$ was stirred at ambient temperature for 7 d . The solvent was removed and the residue was purified by column chromatography to yield the isoxyzolidines $\mathbf{2 4 1}$ and $\mathbf{2 4 2}$ ($281 \mathrm{mg}, 72 \%$ combined yield) in a 241/242 ratio of $1: 1.1$.

241: Colorless solid, $\quad R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.\quad 1: 1\right)=0.55, \quad$ m.p. $98-101^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr})$: $v=3106 \mathrm{~cm}^{-1}, 2982,2853,1492,1454,1233 .-{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=(-0.39)-(-0.31)(\mathrm{m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}),(-0.02)-0.12(\mathrm{~m}, 1 \mathrm{H}$, ${ }_{c}$ Pr-H), 0.26-0.34 (m, $\left.1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 0.58-0.91$ (m, $\left.7 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.05-$
 1.09 (m, 2 H, cPr-H), 2.77-2.84 (m, $\left.1 \mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}\right), 3.04-3.26\left(\mathrm{~m}, 3 \mathrm{H}, 5^{\prime \prime \prime}, 66^{\prime \prime \prime}-\mathrm{H}\right), 4.84(\mathrm{~s}, 1 \mathrm{H}$, 10b'"-H), 7.06-7.17 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT): $\delta=2.0(-, c \operatorname{Pr}-\mathrm{C}), 3.7(-, c \operatorname{Pr}-\mathrm{C}), 3.8(-, c \operatorname{Pr}-\mathrm{C}), 4.0(-, c \operatorname{Pr}-\mathrm{C}), 4.1(-, c \operatorname{Pr}-\mathrm{C}), 8.1(-, c \operatorname{Pr}-\mathrm{C})$, $17.9\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 18.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 28.9(-, \mathrm{C}-6$ '"' $), 33.8\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.5(-, \mathrm{C}-5 " ")$, $66.4\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 68.0\left(+, \mathrm{C}-10 \mathrm{~b}^{\prime \prime \prime}\right), 125.4$ (+, Ar-C), 126.7 (+, Ar-C), 127.6 (+, Ar-C), 128.3 (+, Ar-C), 132.6 ($\mathrm{C}_{\text {quat }}$, Ar-C), $133.8\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C). $-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 279$ (53) $\left[\mathrm{M}^{+}\right], 278(18)\left[\mathrm{M}^{+}-\mathrm{H}\right], 250(68), 222(84), 130(76), 91$ (100). - HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}\left[\mathrm{M}^{+}\right]$279.1623, found 279.1623. $-\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ (279.20): calcd. C 81.73, H 7.58; found C 81.63, H 7.33.

242: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $\left.1: 1\right)=0.45$. - IR (film): $v=3066 \mathrm{~cm}^{-1}, 2982,2852$, 1494, 1339, 1008. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-0.03)-0.11$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.61-0.96(\mathrm{~m}, 11 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.84-2.91(\mathrm{~m}, 1 \mathrm{H}$, 6""-H), 3.08-3.22 (m, 3 H, 5"", 6 ""-H), 4.62 (s, 1 H, 10b""-H), 6.79-
 6.82 (m, 1 H, Ar-H), 7.06-7.17 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=2.4$ (,$- c \operatorname{Pr}-\mathrm{C}$), 3.8 (,$- c \operatorname{Pr}-\mathrm{C}$), 4.7 (,$- c \operatorname{Pr}-\mathrm{C}$), 5.3 (,$- c \operatorname{Pr}-\mathrm{C}), 5.4$ (,$- c \operatorname{Pr}-\mathrm{C}), 5.5(-$, $c \operatorname{Pr}-\mathrm{C}), 17.4\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 18.8\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 28.5\left(-, \mathrm{C}-6^{\prime \prime \prime}\right), 29.9\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.3(-$, C-5"'"), 67.6 (+, C-10b""), 70.6 ($\left.\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 125.9$ (+, Ar-C), 126.0 (+, Ar-C), 127.1 (+, Ar-C), 128.4 (+, Ar-C), $131.9\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $132.6\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right) .-\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}(279.20)$: calcd. C 81.73, H 7.58, N 5.02; found C 81.60, H 7.74, N 5.16.

Trispiro[cyclopropane-1,1'-cyclopropane-3', $1^{\prime \prime-}$-cyclopropane-2', $1^{\prime \prime \prime}-\left(1^{\prime \prime \prime}, 3^{\prime \prime \prime}, 4^{\prime \prime}, 6^{\prime \prime \prime}, 7^{\prime \prime \prime}, 11 b^{\prime \prime \prime}-\right.$ hexahydro-2H-pyrido[2,1-a] isoquinoline)]-2"'-one (243), trispiro[triscyclopropane-1,1"': $\left.1^{\prime}, 3^{\prime \prime \prime}: 1^{\prime \prime}, 4^{\prime \prime \prime}-\left(1^{\prime \prime \prime}, 3^{\prime \prime \prime}, 4^{\prime \prime \prime}, 6^{\prime \prime \prime}, 7^{\prime \prime \prime}, 11 b^{\prime \prime \prime}-h e x a h y d r o-2 H-p y r i d o[2,1-a] i s o q u i n o l i n e\right)\right]-2-o n e$
and 1-cyclopropylcyclopropyl-1-(3,4-dihydro-1-isoquinolinyl)-1-cyclopropylmethanone (245): Compounds 243, 244 and 245 ($298 \mathrm{mg}, 71 \%$ combined yield) were obtained from nitrone $240(221 \mathrm{mg}, 1.28 \mathrm{mmol})$ and alkene $\mathbf{2 2 6}(248 \mathrm{mg}, 1.88 \mathrm{mmol})$ according to GP 13 in a 243/244/245 ratio of $2.7: 1: 3$.

Alternatively, compound $\mathbf{2 4 3}$ ($20 \mathrm{mg}, 80 \%$) was prepared by heating the isoxazolidine $\mathbf{2 4 1}$ ($25.0 \mathrm{mg}, 89.0 \mu \mathrm{~mol}$) in p-xylene (1.0 mL) at $140^{\circ} \mathrm{C}$ for 5 h . Compounds 244 and 245 (20 $\mathrm{mg}, \mathbf{7 7 \%}$ combined yield) were obtained as inseparable mixture from the isoxazolidine $\mathbf{2 4 2}$ in a 244/245 ratio of $1: 3$, following the same procedure.

243: Colorless solid, $\quad R_{\mathrm{f}}($ EtOAc/hexane $5: 1)=0.42$, m.p. $122-124^{\circ} \mathrm{C} .-\operatorname{IR}(\mathrm{KBr})$: $v=3093 \mathrm{~cm}^{-1}, 2983,2865,1713,1485,1263,1121 .-{ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz, CDCl_{3}): $\delta=0.48-0.56(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.67-0.98(\mathrm{~m}$, $4 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.00-1.06$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.39-1.52(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H})$,
 2.20-2.36 (m, 2 H, 7"'-H), 2.67-3.09 (m, 5 H, 3 '", 4 '", 6 "'-H), 3.40-3.53 (m, 1 H, 4"'-H), 4.04 (s, $1 \mathrm{H}, 11 \mathrm{~b} "-\mathrm{H}), 6.61\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.08-7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$ (62.9 MHz, CDCl_{3}, additional DEPT): $\delta=3.8(-, c \operatorname{Pr}-\mathrm{C}), 4.2(-, c \operatorname{Pr}-\mathrm{C}), 4.4(-, c \operatorname{Pr}-\mathrm{C}), 4.6(-$, c Pr-C), $22.8\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 24.6\left(-, \mathrm{C}-7{ }^{\prime \prime \prime}\right), 30.3\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 37.7\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 40.7(-$, C-3'"*), 46.0 (-, C-4'"*), 49.9 (-, C-6"'*), 64.4 (+, C-11b"'*), 126.1 (+, Ar-C), 126.7 (+, Ar-C), 126.9 (+, Ar-C), 128.6 (+, Ar-C), 134.7 (C $\left.\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 135.4$ ($\left.\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 207.4$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 279(100)\left[\mathrm{M}^{+}\right], 278(48)\left[\mathrm{M}^{+}-\mathrm{H}\right], 250(25), 158$ (83), 145 (40), 132 (37), 105 (23).

244 and 245: Colorless oil, $R_{\mathrm{f}}($ EtOAc/hexane $5: 1)=0.29$. $-\mathrm{IR}(\mathrm{film}): v=3070 \mathrm{~cm}^{-1}, 3005$, 2938, 2898, 1673, 1618, 1334, 1062, 1018. - ¹H-NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=(-0.38)-(-0.32)(\mathrm{m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$ of 244), $(-0.18)-(-0.12)$ (m, $2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$ of 245), (-0.02)-0.04 (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$ of 244), $0.22-$ 1.53 (m, $c \operatorname{Pr}-\mathrm{H}$), 2.69-2.74 (m, $2 \mathrm{H}, 4 \mathrm{"}$ - -H of 245), 3.06-3.24 (m, 4 H , 6"', 7 "'-H of 244), 3.63-3.69 (m, $2 \mathrm{H}, 3$ "'-H of 245), 4.82 (s, 1 H , 11 b "'-H of 244), 7.04-7.53 (m, 8 H, Ar-H). - ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (62.9 MHz , CDCl_{3}, additional DEPT): $\delta=2.0(-, c \operatorname{Pr}-\mathrm{C}), 3.7(-, c \mathrm{Pr}-\mathrm{C}), 4.2(-$,

 3 C, $c \operatorname{Pr}-\mathrm{C}), 8.1$ (,$- c \operatorname{Pr}-\mathrm{C}), 11.9$ (+, $c \operatorname{Pr}-\mathrm{C}$ of 245), 14.3 (-, $3 \mathrm{C}, c \operatorname{Pr}-\mathrm{C}), 14.5$ (-, $3 \mathrm{C}, c \operatorname{Pr}-\mathrm{C})$, $17.8\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 18.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 25.8\left(-, \mathrm{C}-7{ }^{\prime \prime \prime}\right), 28.9\left(-, \mathrm{C}-7{ }^{\prime \prime}\right), 33.1\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right)$, 37.7 ($\left.\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 47.1$ (-, C-6"'), 49.5 (-, C-6"'), 66.4 (+, C-1 of 244), 67.9 ($\left.\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right)$, 125.4 (+, Ar-C), 125.9 (+, Ar-C), 126.7 (+, Ar-C), 126.9 (+, Ar-C), 127.4 (+, Ar-C), 127.6 (+,

Ar-C), 128.3 (+, Ar-C), 129.7 ($\mathrm{C}_{\text {quat }}$, Ar-C), 130.6 (+, Ar-C), 132.5 ($\left.\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 133.8$ $\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 137.5\left(\mathrm{C}_{\text {quat }}, \operatorname{Ar}-\mathrm{C}\right), 165.2\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{N}\right), 207.4\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}$, $70 \mathrm{eV}), m / z(\%): 279(16)\left[\mathrm{M}^{+}\right], 278(22)\left[\mathrm{M}^{+}-\mathrm{H}\right], 250(100), 222(14), 170(14), 115(6) .-$ HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}\left[\mathrm{M}^{+}\right]$279.1623, found 279.1623. - $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ (279.20): calcd. C 81.73, H 7.58; found C 81.83, H 7.75.

9-Methyl-8-(pyrid-2-yl)-9-azatrispiro[2.0.24.0.5 $\left.{ }^{7} .0^{3}\right]$ dodecan-12-one (247) and 12-methyl-11-(pyrid-2-yl)-12-azatrispiro[2.0.2 $\left.2^{4} \cdot 1 \cdot 2^{8} \cdot 2^{3}\right]$ dodecan-7-one (248): Compounds 247 and 248 ($111 \mathrm{mg}, 68 \%$ combined yield) were obtained from nitrone 246 ($82.3 \mathrm{mg}, 610 \mu \mathrm{~mol}$) and alkene $226(100 \mathrm{mg}, 760 \mu \mathrm{~mol})$ according to GP 13 in a 247/248 ratio of $1: 3.7$.

247: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)=0.32$. $-\mathrm{IR}($ film $): ~ v=3070 \mathrm{~cm}^{-1}, 2926,2804$, 1700, 1589, 1435, 1274. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-0.40)-$ (-0.33) (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.20-0.28(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.69-0.74$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.79-0.99$ (m, $4 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), $1.24-1.33$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.45-2.71(m, $\left.3 \mathrm{H}, 10,11-\mathrm{H}\right), 2.77-2.82(\mathrm{~m}, 1 \mathrm{H}$,
 $10-\mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 7.05\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.11-7.16$ (m, $\left.1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.57-$ 7.64 (m, 1 H, Ar-H), 8.51-8.53 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=2.2(-, c \operatorname{Pr}-\mathrm{C}), 4.5(-, c \operatorname{Pr}-\mathrm{C}), 4.9(-, c \operatorname{Pr}-\mathrm{C}), 5.3(-, c \operatorname{Pr}-\mathrm{C}), 22.9\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right)$, $33.5\left(\mathrm{C}_{\text {quat }}, c\right.$ Pr-C), $36.9\left(\mathrm{C}_{\text {quat }}, c\right.$ Pr-C), $39.5(-, \mathrm{C}-11), 43.1\left(+, \mathrm{NCH}_{3}\right), 46.8(-, \mathrm{C}-10), 71.5$ (+, C-8), 121.8 (+, Ar-C), 123.5 (+, Ar-C), 135.4 (+, Ar-C), 148.8 (,+ Ar-C), $157.0\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $207.4\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 268(24)\left[\mathrm{M}^{+}\right], 267(50)\left[\mathrm{M}^{+}-\mathrm{H}\right]$, 253 (51), 226 (87), 212 (88), 190 (66), 184 (94), 182 (100), 168 (56), 154 (45), 106 (40), 79 (34). - HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+}\right]$268.1576, found 268.1576 (HRMS).

248: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)=0.49$. - IR (film): $v=3068 \mathrm{~cm}^{-1}, 2924,1700$, 1579, 1430, 1270. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-0.49)-(-0.43)$ $(\mathrm{m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}),(-0.17)-(-0.09)(\mathrm{m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}),(-0.04)-0.16(\mathrm{~m}$, $2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.28-0.47(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.95-1.02(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$,
 $1.12-1.30(\mathrm{~m}, 3 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.45-1.53(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.73-1.81(\mathrm{~m}$, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.86(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{H}), 7.13-7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29-7.33$ (m, 1 H, Ar-H), $7.61\left(\mathrm{dt},{ }^{3} J=7.7,{ }^{3} J=7.7,4 J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 8.64-8.71(\mathrm{~m}, 1 \mathrm{H}$, Ar-H). $-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=6.4$ (,$- c \mathrm{Pr}-\mathrm{C}$), $7.6(-, c \operatorname{Pr}-\mathrm{C})$, 10.7 (-, $c \operatorname{Pr}-\mathrm{C}), 17.6(-, c \operatorname{Pr}-\mathrm{C}), 22.9(-, c \operatorname{Pr}-\mathrm{C}), 25.7(-, c \operatorname{Pr}-\mathrm{C}), 25.9\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 28.5$ $\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 41.1\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 41.3\left(+, \mathrm{NCH}_{3}\right), 73.2(+, \mathrm{C}-11), 122.0(+, \mathrm{Ar}-\mathrm{C}), 135.7(+$, Ar-C), 149.0 (+ , Ar-C), $158.0\left(+\right.$, Ar-C), $161.2\left(\mathrm{C}_{\text {quat }}, \mathrm{Ar}-\mathrm{C}\right), 211.2\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}$, $70 \mathrm{eV}), m / z(\%): 268(64)\left[\mathrm{M}^{+}\right], 267(58)\left[\mathrm{M}^{+}-\mathrm{H}\right], 253(47), 239(90), 200(22), 190(100)$, 174 (17), 130 (33), 117 (14). - HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+}\right]$268.1576, found 268.1576.
(1"'S,8a"'R)-1"'-tert-Butoxytrispiro[cyclopropane-1, 1'-cyclopropane-2', 1 "-cyclopropane-3',8"'-perhydroindolizine]-7"'-one $[(1 " ' S, 8 a=1 R)-250]$ and (1 "'S,8a"'R)-1"'-tert-Butoxytri-spiro[triscyclopropane-1,5"':1', $6^{\prime \prime \prime}: 1^{\prime \prime}, 8^{\prime \prime \prime}-$ perhydroindolizine]-7"'-one [(1"'S,8a"'R)-251]: Compounds 250 and 251 (135 mg , 77\% combined yield) were obtained from nitrone 249 ($96.0 \mathrm{mg}, 610 \mu \mathrm{~mol})$ and alkene $226(100 \mathrm{mg}, 760 \mu \mathrm{~mol})$ according to GP 13 in a $\mathbf{2 5 0} \mathbf{2 5 1}$ ratio of $1.6: 1$.
(1"'S,8a"'R)-250: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)=0.28, \quad[\alpha]_{D}^{20}=+28.4(c=0.50$, CHCl_{3}). - IR (film): $v=3065 \mathrm{~cm}^{-1}, 2976,2798,1700,1473,1362$, 1192, 1046. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.62-0.93(\mathrm{~m}, 5 \mathrm{H}$, ${ }_{c}$ Pr-H), 0.98-1.29(m, $\left.3 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}\right), 1.21\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.76-1.88$
 (m, $\left.1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 1.96-2.11\left(\mathrm{~m}, 1 \mathrm{H}, 2{ }^{2} \mathrm{l}-\mathrm{H}\right), 2.29-2.39(\mathrm{~m}, 2 \mathrm{H}, 6 \mathrm{l}$ "-H), 2.61-2.72(m, 2 H ,
 1 "'-H). - ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=4.1(-, c \operatorname{Pr}-\mathrm{C}), 5.5(-, c \operatorname{Pr}-\mathrm{C})$, $6.0(-, c \operatorname{Pr}-\mathrm{C}), 6.9(-, c \operatorname{Pr}-\mathrm{C}), 23.7\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 27.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 29.2\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 34.5 (-, C-2'"). 38.2 ($\left.\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 39.3$ (-, C-6"'), 48.8 (-, C-5"'), 52.3 (-, C-3'"), 70.9 (+, C-8a"'), $72.9(+, \mathrm{C}-1$ "' $), 73.6\left[\mathrm{C}_{\text {quat }}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 208.3\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z$ (\%): 289 (3) $\left[\mathrm{M}^{+}\right], 232(100)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right], 190$ (5), 147 (5), 105 (6), 57 (14) $\left[\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right] .-$ HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]$289.2042, found 289.2042. - $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}$ (289.20): calcd. C 74.75, H 9.41, N 4.84; found C 74.62, H 9.23, N 4.35.
(1"'S,8a"'R)-251: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)=0.50,[\alpha]_{D}^{20}=-96.0(c=0.50$, CHCl_{3}). - IR (film): $v=3067 \mathrm{~cm}^{-1}, 2973,2929,1700,1457,1363$, 1088. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.10-0.19(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, $0.49-0.57(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.61-0.70(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.81-0.90(\mathrm{~m}$,
 $4 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.03-1.30(\mathrm{~m}, 4 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.22\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.42-1.46(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H})$, $1.58-1.73$ (m, $\left.1 \mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}\right), 1.96-2.07$ (m, $\left.1 \mathrm{H}, 2^{2}{ }^{\prime \prime}-\mathrm{H}\right), 2.85$ (d, $\left.{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}^{\prime \prime}-\mathrm{H}\right), 2.91-$ 2.99 (m, $1 \mathrm{H}, 3$ "'-H), 3.11-3.21 (m, $\left.1 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}\right), 3.80-3.89(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{l}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, additional DEPT): $\delta=6.8(-, c \operatorname{Pr}-\mathrm{C}), 8.0(-, c \operatorname{Pr}-\mathrm{C}), 10.4(-, c \mathrm{Pr}-\mathrm{C}), 14.9$ $(-, c \operatorname{Pr}-\mathrm{C}), 19.1(-, c \operatorname{Pr}-\mathrm{C}), 20.1(-, c \operatorname{Pr}-\mathrm{C}), 28.8\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.3\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 30.9$ $\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 33.8\left(-, \mathrm{C}-2\right.$ "''). $40.4\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 47.8$ (-, C-3"'), $69.9\left(+, \mathrm{C}-8 \mathrm{a}^{\prime \prime \prime}\right), 73.9$
$\left[\mathrm{C}_{\text {quat }}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 77.3\left(+, \mathrm{C}-1{ }^{\prime \prime \prime}\right), 211.1\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 289$ (45) $\left[\mathrm{M}^{+}\right], 232(98)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right], 204(71), 100(33), 57(100)\left[\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right]$. - HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]$289.2042, found 289.2042.
cis- and trans-7-Methyl-6-(pyrid-2-yl)-7-azatrispiro[2.1.55]decan-10-one (252) and 5-Methyl-4-(pyrid-2-yl)-5-azadispiro[2.1.2.33]decan-10-one (253): Compounds 252 and 253 ($129 \mathrm{mg}, 72 \%$ combined yield) were obtained from nitrone $225(100 \mathrm{mg}, 740 \mu \mathrm{~mol})$ and alkene $246(98.0 \mathrm{mg}, 920 \mu \mathrm{~mol})$ according to GP 13 in a trans-252/cis-252/253 ratio of 1.3:1.3:1. trans-252: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} \quad 30: 1\right)=0.53 .-\mathrm{IR}$ (film): $v=3068 \mathrm{~cm}^{-1}, 2925,2850,1700,1588,1435,1276,1064 .-$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.74-0.93(\mathrm{~m}, 4 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.15-$ $1.24(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.38-2.44(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H})$,
 2.55-2.73 (m, 2 H, 7,8-H), 2.89-2.99 (m, $1 \mathrm{H}, 7-\mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.10-7.19(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), 7.63 (dt, $\left.{ }^{3} J=7.6,3 J=7.6,{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 8.57-8.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=5.3(-, c \operatorname{Pr}-\mathrm{C}), 5.6(-, c \operatorname{Pr}-\mathrm{C}), 16.2(-$, $c \operatorname{Pr}-\mathrm{C}), 30.7\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 36.3\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 39.5(-, \mathrm{C}-8), 43.4\left(+, \mathrm{NCH}_{3}\right), 47.6(-, \mathrm{C}-7)$, 72.3 (+, C-5), 122.0 (+, Ar-C), 123.4 (+, Ar-C), 135.8 (+, Ar-C), 149.0 (+, Ar-C), 157.8 $\left(\mathrm{C}_{\text {quat }}\right.$, Ar-C), $207.4\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 242(7)\left[\mathrm{M}^{+}\right], 242(17)\left[\mathrm{M}^{+}-\right.$ $\mathrm{H}], 227(22)\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 212(98), 185(58), 164(57)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right], 158$ (100), 124 (70), 78 (19) $\left[\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}^{+}\right]$. - HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+}-\mathrm{H}\right]$ 241.1341, found 241.1341. cis-252: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)=0.32$. $-\mathrm{IR}(\mathrm{film}): v=3074 \mathrm{~cm}^{-1}, 3001$, 2933, 1676, 1588, 1435, 1074. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.30-0.39(\mathrm{~m}, 1 \mathrm{H}$, $c \operatorname{Pr}-\mathrm{H}), 0.62-0.74(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.80-1.19(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.38-1.59(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$,
$2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.50\left(\mathrm{~d},{ }^{2} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right), 2.97\left(\mathrm{~d},{ }^{2} J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}\right), 3.40-$ 3.49 (m, $1 \mathrm{H}, 7-\mathrm{H}), 3.62\left(\mathrm{~d},{ }^{2} \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 3.91(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.12-7.20(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), $7.52-7.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.55-8.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=12.4(-, c \operatorname{Pr}-\mathrm{C}), 15.1(-, c \operatorname{Pr}-\mathrm{C}), 23.0(-, c \operatorname{Pr}-\mathrm{C}), 27.1\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right)$, $30.6\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 43.8\left(+, \mathrm{NCH}_{3}\right), 47.0(-, \mathrm{C}-8), 57.2(-, \mathrm{C}-7), 73.9(+, \mathrm{C}-5), 123.4(+$, Ar-C), 123.6 (+, Ar-C), 135.8 (+, Ar-C), 148.9 (+, Ar-C), 157.9 (C $\left.\mathrm{C}_{\text {quat }}, \operatorname{Ar-C}\right), 207.9$ (C $\mathrm{C}_{\text {quat }}$, $\mathrm{C}=\mathrm{O}) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z(\%): 242(16)\left[\mathrm{M}^{+}\right], 227(18)\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 214(100)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right], 172(51), 164(78)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right], 136$ (50), 78 (35) [$\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}^{+}\right]$. - HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+}\right]$242.1419, found 242.1419. $-\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ (242.20): calcd. C 74.39, H 7.49; found C 74.46, H 7.45.

253: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)=0.41$. -IR (film): $v=3079 \mathrm{~cm}^{-1}, 3001,2925$, 1675, 1589, 1436, 1387, 1073. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=0.33-0.41(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.65-0.72(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.81-0.94$ (m, 2 H, cPr-H), 1.03-1.27 (m, 2 H, cPr-H), 1.47-1.61 (m, 2 H,
 ${ }_{c} \operatorname{Pr}-\mathrm{H}$), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.53\left(\mathrm{~d},{ }^{2} J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}\right), 2.98\left(\mathrm{~d},{ }^{2} J=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $10-\mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 7.15-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66\left(\mathrm{dt},{ }^{3} J=7.7,{ }^{3} J=7.7,{ }^{4} J=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.57-8.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=12.5(-, c \operatorname{Pr}-\mathrm{C}), 15.2(-, c \operatorname{Pr}-\mathrm{C}), 22.5(-, c \operatorname{Pr}-\mathrm{C}), 23.1(-, c \operatorname{Pr}-\mathrm{C}), 29.6\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 30.7$ $\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 43.8\left(+, \mathrm{NCH}_{3}\right), 57.3(-, \mathrm{C}-10), 74.0(+, \mathrm{C}-8), 122.2(+, \mathrm{Ar}-\mathrm{C}), 123.5(+$, Ar-C), 135.9 (+, Ar-C), 149.0 (+, Ar-C), 158.0 ($\mathrm{C}_{\text {quat }}$, Ar-C), $209.5\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}$, $70 \mathrm{eV}), m / z(\%): 242(11)\left[\mathrm{M}^{+}\right], 214(100)\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}\right], 185(22), 172(62), 164(75)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right], 136$ (40), 78 (20) [$\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}^{+}\right]$. - HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+}\right]$242.1419,
found 242.1419. - $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ (242.20): calcd. C 74.39, H 7.49, N 11.57; found C 74.19 , H 7.68, N 11.51.
cis-(1 "S,8a"R)- and trans-(l"S,8a"R)-1"-tert-Butoxydispiro[cyclopropane-1,1'-cyclopropane-2',8"-perhydroindo-lizine]-7"-one [cis- and trans-254] and (1"S,8a"R)-1"-tert-Butoxydispiro-[biscyclopropane-1,6":1',8"-perhydroindolizine]-7"-one [(1"'S,8a"'R)-255]: Compounds 254 and $\mathbf{2 5 5}(128 \mathrm{mg}, 80 \%$ combined yield) were obtained from nitrone $249(100 \mathrm{mg}, 610 \mu \mathrm{~mol})$ and alkene $\mathbf{2 2 5}(81.0 \mathrm{mg}, 760 \mu \mathrm{~mol})$ according to GP 13 in a trans $\mathbf{- 2 5 4 *} / \mathbf{2 5 5} /$ cis $\mathbf{- 2 5 4 *}$ ratio of 2:1.5:1.
trans-254*: Colorless oil, $\quad R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)=0.27 .-[\alpha]_{D}^{20}=-22.0 \quad(c=0.50$, CHCl_{3}). - IR (film): $v=3066 \mathrm{~cm}^{-1}, 2974,1717,1365,1191,1113 .-$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.67-0.74(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.79-$ $0.96(\mathrm{~m}, 3 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.02-1.07(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.17[\mathrm{~s}, 9 \mathrm{H}$,
 $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.62\left(\mathrm{~d},{ }^{3} J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 1.66-1.77(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 2.13-2.31(\mathrm{~m}, 2 \mathrm{H}, 6 \mathrm{H}-\mathrm{H}), 2.46-2.59\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}^{*}\right), 2.66-2.76$ (m, 2 H , 3",5"-H*), 2.90-3.01 (m, $2 \mathrm{H}, 8 \mathrm{a}$ ",5"-H*), 3.87-3.97 (m, $1 \mathrm{H}, 1^{1 "-H) . ~-~}{ }^{13} \mathrm{C}-\mathrm{NMR}$ (62.9 MHz , CDCl_{3}, additional DEPT): $\delta=5.7(-, c \operatorname{Pr}-\mathrm{C}), 6.0(-, c \operatorname{Pr}-\mathrm{C}), 16.6(-, c \operatorname{Pr}-\mathrm{C}), 27.7\left(\mathrm{C}_{\text {quat }}\right.$, $c \operatorname{Pr}-\mathrm{C}), 28.8\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.4\left(-, \mathrm{C}-2{ }^{\prime \prime}\right) .35 .0\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 38.0(-, \mathrm{C}-6 \mathrm{\prime} \mathrm{\prime}), 47.6(-$, $\left.\mathrm{C}-3{ }^{* *}\right), 53.4\left(-, \mathrm{C}-5{ }^{\prime *}\right), 69.2\left(+, \mathrm{C}-8 \mathrm{a}^{\prime}\right), 73.9\left[\mathrm{C}_{\text {quat }}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 75.5(+, \mathrm{C}-1 "), 208.5\left(\mathrm{C}_{\text {quat }}\right.$, $\mathrm{C}=\mathrm{O}$). - MS (EI, 70 eV), m / z (\%): 263 (3) [$\left.\mathrm{M}^{+}\right], 240$ (2), 206 (100) [$\left.\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right], 166$ (15), 57 (10) $\left[\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right]$. - HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]$263.1885, found 263.1885.
cis-254*: Colorless oil, $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)=0.47 .-[\alpha]_{D}^{20}=+35.4\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$-\operatorname{IR}($ film $): ~ v=3058 \mathrm{~cm}^{-1}, 2978,1716,1356,1190,1109 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta=0.47-0.53(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.65-0.73(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.03-1.11(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.18[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.21-1.29(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{2}-\mathrm{H}\right), 1.69-1.75(\mathrm{~m}$, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz},, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 2.07-2.36(\mathrm{~m}, 2 \mathrm{H}, 6 "-\mathrm{H}), 2.40-2.54(\mathrm{~m}, 2 \mathrm{H}$, $\left.3^{\prime \prime}-\mathrm{H}^{*}\right), 2.74\left(\mathrm{~d}, 3 \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime \prime}-\mathrm{H}^{*}\right), 2.96-3.03\left(\mathrm{~m}, 1 \mathrm{H}, 5{ }^{\prime \prime}-\mathrm{H}^{*}\right), 3.14-3.22(\mathrm{~m}, 1 \mathrm{H}$, $8 \mathrm{a}-\mathrm{H}), 4.24\left(\mathrm{dt},{ }^{3} \mathrm{~J}=3.0,{ }^{3} \mathrm{~J}=8.4,{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{1 "-H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=3.6(-, c \operatorname{Pr}-\mathrm{C}), 6.9(-, c \operatorname{Pr}-\mathrm{C}), 13.4(-, c \operatorname{Pr}-\mathrm{C}), 25.1\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 29.1$ $\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.4(-, \mathrm{C}-2 ") .35 .9\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 40.2(-, \mathrm{C}-6 "), 50.6(-, \mathrm{C}-3 " *), 53.1(-$, C-5"*), $71.3(+, 2 \mathrm{C}, 1$ ", $8 \mathrm{a} "-\mathrm{C}), 74.2\left[\mathrm{C}_{\text {quat }}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 209.5\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV})$, $m / z(\%): 263(1)\left[\mathrm{M}^{+}\right], 240(2), 206(100)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right], 57(6)\left[\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right] .-$HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]$263.1885, found 263.1885.
(1"S,8a"R)-255: Colorless oil $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)=0.37 .-[\alpha]_{D}^{20}=+12.0 \quad(c=1.0$, CHCl_{3}). - IR (film): $v=3062 \mathrm{~cm}^{-1}, 2973,2803,1700,1457,1364$, 1192. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta=0.61-0.69(\mathrm{~m}, \quad 1 \mathrm{H}$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{H}\right), 0.86-1.15(\mathrm{~m}, 4 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.17\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.19-$
 $1.54(\mathrm{~m}, 3 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.62-1.73\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 2.15-2.27(\mathrm{~m}, 1 \mathrm{H}, 2 "-\mathrm{H}), 2.42-2.53(\mathrm{~m}, 1 \mathrm{H}$, $\left.3^{\prime \prime}-\mathrm{H}\right), 2.63\left(\mathrm{~d}, 2^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, 5 "-\mathrm{H}\right), 2.81\left(\mathrm{~d}, 3^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 "-\mathrm{H}\right), 2.98(\mathrm{~d}$, $\left.{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 3.11\left(\mathrm{dt},{ }^{3} J=8.8,{ }^{3} J=8.8,{ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}=\mathrm{H}\right.$), $3.86(\mathrm{dt}$, $\left.{ }^{3} J=4.5,{ }^{3} J=8.2,{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 "-\mathrm{H}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, additional DEPT): $\delta=13.4(-, c \operatorname{Pr}-\mathrm{C}), 13.9(-, c \operatorname{Pr}-\mathrm{C}), 17.3(-, c \operatorname{Pr}-\mathrm{C}), 24.7(-, c \operatorname{Pr}-\mathrm{C}), 27.3\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 28.8$ $\left[+, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.2\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 33.2(-, \mathrm{C}-2$ " $) .53 .3\left(-, \mathrm{C}-3{ }^{\prime *}\right), 59.6\left(-, \mathrm{C}-5{ }^{\prime \prime *}\right), 70.1$ (+, C-8a"), $74.2(+, \mathrm{C}-1$ " $), 77.2\left[\mathrm{C}_{\text {quat }}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 212.0\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}), m / z$ (\%): 263 (3) $\left[\mathrm{M}^{+}\right], 206$ (100) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right], 190$ (3), 163 (6), 57 (5) [$\left.\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right]$- HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]$263.1885, found 263.1885.

D. SUMMARY

In the first part of this project the Ti-mediated intramolecular reductive cyclopropanations of 2-allylamino- N, N-dialkylpropionamides were investigated towards the synthesis of 1 -amino-3-azabicyclo[3.1.0]hexane and 1-amino-3-azabicyclo[4.1.0]heptane derivatives. The N, N dialkylamides $\mathbf{5 4}$ and $\mathbf{5 7}$ were prepared starting from the natural amino acid L-serine. Such amides underwent the Ti-mediated intramolecular reductive cyclopropanation in the presence of $\mathrm{MeTi}(\mathrm{OiPr})_{3}$ (1.50 equiv) and $c \mathrm{HexMgBr}$ (5.00 equiv) to yield a mixture of endo- and exo-(2R)-N,N-dialkyl-3-benzyl-2-(tert-butyldimethylsilyloxymethyl)-3-azabicyclo[3.1.0]hex-1-ylamines 58 and $\mathbf{5 9}$ in an endo-58/exo-58 ratio of $2: 1$ and an endo-59/exo-59 ratio of 2.5 : 1. The N, N-dialkylpropionamides $70-75$ were synthesized from bromoacetyl bromide, and their intramolecular cyclopropanations gave the $N, N, 3$-trialkyl-3-azabicyclo[3.1.0]hex-1-ylamines 76-78, 80 and $N, N, 3$-tribenzyl-3-azabicyclo[4.1.0]hept-1-ylamine (79). The unprotected diamine hydrochlorides $\mathbf{2 8 - H C l}, \mathbf{2 9 - H C I}$ and the partially unprotected diamines $82-\mathrm{HCl}, 83-\mathbf{H C l}$ and 84 were obtained from the corresponding amines $76-80$ by catalytic hydrogenation in isopropanol solution in the presence of hydrogen chloride. The synthesis of such bicyclic diamines with a protected secondary and an unprotected primary amino group was achieved by Ti-mediated intramolecular reductive cyclopropanation of carbonitriles 86$\mathbf{8 8}$ by treatment with $\mathrm{MeTi}(\mathrm{OiPr})_{3}$ (1.10 equiv) and $c \mathrm{HexMgBr}$ (2.00 equiv) in the presence of LiI (2.0 equiv) as Lewis acid at $70^{\circ} \mathrm{C}$. Compounds $\mathbf{8 4}, \mathbf{9 0}$ and $\mathbf{9 1}$ were obtained in yields ranging from 41 to 48%. Attempted syntheses of azabicyclo[4.1.0]heptane derivatives starting from N-allyl- N-benzyl-3-aminopropionitrile and N-homoallyl- N-benzyl-2-amino-acetonitrile failed. Products 98 and 99 resulting from the hydrolysis of the intermediate azatitanacyclopentenes 96 and 97 could be isolated, and only traces of the azabicyclo[4.1.0]heptane derivatives were obtained.

The possibility of preparing a library of 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamines and 1-aryl-3-azabicyclo[3.1.0]hex-1-ylamines on the basis of the diamine hydrochlorides $\mathbf{2 8} \mathbf{- H C l}$, $\mathbf{8 2}-\mathbf{H C l}$ and $\mathbf{8 3 - H C l}$ has been studied. The combination of an aza-heteroaromatic substituent and the rigid 3-azabicyclo[3.1.0]hexane system was of interest in view of new potential ligands for the nicotinic receptors. The unique 3 -aryl-3-azabicyclo[3.1.0]hex-1-ylamines 116119 were obtained by nucleophylic aromatic substitution with the 3-azabicyclo[3.1.0]hex-1-ylamine hydrochlorides $\mathbf{2 8}-\mathbf{H C l}, \mathbf{8 2}-\mathbf{H C l}$ on highly active halo-substituted heterocycles such as 2-chloropyrazine and 3,6-dichloropyridazine. The introduction of pyridin-3-yl substituents required palladium catalysis. The 3-aryl-3-azabicyclo[3.1.0]hex-1-ylamines 120$\mathbf{1 2 3}$ were obtained from the corresponding 3-azabicyclo[3.1.0]hex-1-yl-amine hydrochlorides 28-HCl and $\mathbf{8 2 - H C l}$ and 3-bromopyridines using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} /(\pm)$-BINAP as a catalytic system. The synthesis of a 1-aryl-substituted amine was successful only in the case of the amine hydrochloride $\mathbf{8 3 - H C l}$, and the doubly substituted 3-methyl- N, N-di-(pyrazin-2-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (131) was obtained in 62% yield. The introduction of the 5-chloropyridin-3-yl group required the use of the $\operatorname{Pd}(\mathrm{OAc})_{2} / 2-$ (di-tert-butylphosphino)-biphenyl catalyst system, and 3-(5-chloropyrid-3-yl)-3-azabicyclo-[3.1.0]hex-1-ylamine (132) as well as 3-(5-chloropyrid-3-yl)-N-methyl-3-azabicyclo[3.1.0]-hex-1-ylamine (133) were obtained in 38 and 41% yield, respectively.

The trifluoroethylamino derivatives 140, 144-146, analogues of the trifluoromethyltropanone cyanohydrine, were obtained from the 3-aryl-3-azabicyclo[3.1.0]hexane derivatives in a twostep reductive alkylation by use of trifluoroacetaldehyde methyl hemiacetal. The attempted Pd-catalyzed cross-coupling of the amines $\mathbf{8 3 - H C l}, \mathbf{8 4}$ with bromoaryl derivatives for the synthesis of 1-aryl-3-azabicyclo[3.1.0]hexane derivatives failed. Thus, the Ti-mediated intramolecular reductive cyclopropanation of an N-methyl- N-arylpropionamide was tested
and
N-(4-chlorophenyl)-3-(4-methoxybenzyl)- N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (159) was obtained in 54\% yield.

Further elaboration of the endo-(2R)-N,N-dimethyl-3-benzyl-2-(tert-butyldimethylsilyloxy-methyl)-3-azabicyclo[3.1.0]hex-1-ylamine endo-58 led to the synthesis of the chloropyridylsubstituted bicyclic triamine endo-165 which was unstable and decomposed partially upon exposure to air. Unfortunately, attempted oxidation of the deprotected hydroxymethyl groups in the endo- and exo-(2R)-N,N-dialkyl-3-benzyl-2-(tert-butyl-dimethylsilyloxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamines $\mathbf{5 8}$ and $\mathbf{5 9}$ with KMnO_{4} in tert-butyl alcohol and with Jones reagent failed. Even the attempted oxidation of the bis-(tert-butoxycarbonyl) derivative endo- $\mathbf{1 7 3}$ did not lead to the desired new analogues of some natural amino acids.

The tri- and tetracyclic derivatives $\mathbf{1 7 9}, \mathbf{1 8 3}, \mathbf{1 8 7}$ and $\mathbf{1 9 2}$ containing ring-annelated azabicyclo[3.1.0]hexane systems were prepared from indole, indoline, pyrrole and proline N-allyl derivatives by Ti-mediated intramolecular reductive cyclopropanation in yields ranging from 61 to 78%. The N-allylindoline derivative and the N-allylproline derivative gave mixtures of two diastereomers $(1 \mathrm{a} S, 8 \mathrm{a} S, 8 \mathrm{~b} R)-\mathbf{1 8 3}$ and $(1 \mathrm{a} R, 8 \mathrm{a} S, 8 \mathrm{~b} S)-\mathbf{1 8 3}$ in a ratio of $1: 1$ as well as $(1 \mathrm{a} S, 6 \mathrm{a} S, 6 \mathrm{~b} R)-192$ and $(1 \mathrm{a} R, 6 \mathrm{a} S, 6 \mathrm{~b} S)-192$ in a ratio of $3.3: 1$.

In a second part of this project a new synthesis of spirocyclopropane-annelated β-lactams was studied. By treatment of the isoxazolidines 220 and 221, synthesized by 1,3-dipolar cycloaddition of benzylidenemethylamine oxide and methylpyridin-2-ylmethyleneamine oxide onto bicyclopropylidene, with trifluoroacetic acid, the β-lactams 222 and 223 were obtained in excellent yields with elimination of ethylene.

Finally, the 1,3-dipolar cycloaddition of various nitrones to the highly strained cyclopropylidenespiropentane and 7-cyclopropylidenedispiro[2.0.2.1]heptane and subsequent thermal rearrangement of the intermediate isoxazolidines was investigated. Such processes led to the formation of new tetrahydropyridone derivatives $\mathbf{2 4 3}, \mathbf{2 4 4}, \mathbf{2 4 7}, \mathbf{2 4 8}, \mathbf{2 5 0} \mathbf{- 2 5 5}$ with up to three spirocyclopropane-annelated rings, in yields ranging from 68 to 80%.

In a collaboration with the Bayer AG company the biological activity tests of compounds 28$\mathbf{H C l}, 29-\mathbf{H C l}, 76-79$ and their derivatives are currently in progress.

Bn	Compound	R^{1}	$\mathrm{R}^{2}, \mathrm{R}^{3}$	n
O $\quad 58 \mathrm{R}=\mathrm{Me}$	70	Bn	Bn, Bn	1
H $59 \mathrm{R}=\mathrm{Bn}$	71	Bn	Bn, Me	1
TBDMSO NR_{2}	72	Me	Bn, Bn	1
Bn^{-N}	73	Bn	Bn, Bn	2
	74	Boc	Bn, Bn	1
$54 \mathrm{R}=\mathrm{Me}$	75	Boc	Ph, Ph	1

Compound	R^{1}	$\mathrm{R}^{2}, \mathrm{R}^{3}$	
76	Bn	Bn, Bn	1
77	$B n$	Bn, Me	
78	Me	Bn, Bn	
79	Bn	$B n, B n$	2
80	Boc	Bn, Bn	
81	Boc	Ph, Ph	1

28, 29, 82-84

Compound	R^{1}	R^{2}	n
$\mathbf{2 8 - H C l}$	H	H	1

$82-\mathrm{HCl}$ Me H 1
83-HCl H Me 1
29-HCl H H 2
84 ${ }^{\text {a }}$ H Boc 1
${ }^{\text {a }}$ Compound 84 was obtained as a free base.

86 R = Boc
$87 R=P M B$
$88 \mathrm{R}=\mathrm{Bn}$

$84 \mathrm{R}=\mathrm{Boc}$
$90 R=P M B$
$91 R=B n$

96

97

98

99

131

$\begin{aligned} 116 \mathrm{R} & =\mathrm{H}, n=1, \\ \mathrm{Ar} & =\text { pyrazin-2-yl }\end{aligned}$
$117 \mathrm{R}=\mathrm{H}, n=1$,
Ar = 6-chloropyridazin-3-yl
$118 \mathrm{R}=\mathrm{Me}, n=1$,
Ar = 6-chloropyridazin-3-yl
$119 \mathrm{R}=\mathrm{H}, n=2$,
Ar $=6$-chloropyridazin-3-yl

$120 \mathrm{R}=\mathrm{Me}$,
Ar $=$ pyridin $-3-\mathrm{yl}$
$121 \mathrm{R}=\mathrm{Me}$,
Ar $=$ pyrimidin-5-yl
$122 \mathrm{R}=\mathrm{H}$,
Ar $=$ pyridin-3-yl
$123 \mathrm{R}=\mathrm{H}$,
Ar $=$ pyridin-3-yl

$132 \mathrm{R}=\mathrm{H}$
$133 \mathrm{R}=\mathrm{Me}$

140-CI Ar $=6$-chloropyridazin-3-yl
144 Ar = pyrid-3-yl
145 Ar = pyrimidin-5-yl
$146 \quad \mathrm{Ar}=$ pyrazin-2-yl

159

endo-165

endo-173

179

183

243

244

$$
222 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}
$$

$$
243
$$

247

$$
223 \text { R = pyrid-2-yl }
$$

248

250

251

252

253

254

255

E. References

[1] [1a] General reviews: Comprehensive Heterocyclic Chemistry, Eds.: A. R. Katritzky, C. W. Rees, Pergamon Press, New York, 1984. - ${ }^{[1 b]}$ Advances in Heterocyclic Chemistry, Ed.: A. R. Katritzky, Academic Press, New York, 1963-1996.
[2] [2a] R. P. Sheridan, R. Nilakantan, J. S. Dixon, R. Venkataraghavan, J. Med. Chem. 1986, 29, 899-906. $-{ }^{[2 b]}$ S. F. Nielsen, E. O. Nielsen, G. M. Olsen, T. Liljefors, D. Peters, J. Med. Chem. 2000, 43, 2217-2226.
[3] [3a] W. H. Beers, E. Reich, Nature 1970, 228, 917-922. - [3b] R. A. Glennon, J. L. Herndon, M. Dukar, Med. Chem. Res. 1994, 4, 461-473. - [3c] J. E. Tønder, J. B. Hansen, M. Begtrup, I. Petterson, K. Rimvall, B. Christensen, U. Ehrbar, P. H. Olesen, J. Med. Chem. 1999, 42, 4970-4980.
[4] T. F. Spande, H. M. Garaffo, M. W. Edwards, H. J. C. Yeh, L. Pannell, J. W. Daly, J. Am. Chem. Soc. 1992, 114, 3475.
[5] J. R. Malpass, D. A. Hemmings, A. L. Wallis, S. R. Fletcher, S. Patel, J. Chem. Soc. Perkin Trans. 1 2001, 1044-1050.
[6] A. F. Grapov, Russ. Chem. Rev. 1999, 68, 697-707.
[7] D. Barlocco, G. Cignarella, D. Tondi, P. Vianello, S. Villa, A. Bartolini, C. Ghelardini, N. Galeotti, D. J. Anderson, T. A. Kuntzweiler, D. Colombo, L. Toma, J. Med. Chem. 1998, 41, 674.
[8] I. Hodgkinson, WO Patent 00/34275, 2000.
[9] S. McCann, G. Annis, R. Shapiro, D. Piotrowski, G. Lahm, J. Long, K. Lee, M. Hughes, B. Myers, S. Griswold, B. Reeves, R. March, P. Sharpe, P. Lowder, W. Barnette, K. Wing, Pest. Manag. Sci. 2001, 57, 153-164.
[10] V. L. Salgado, Pestic. Sci. 1990, 28, 389-411.
[11] R. Mulder, K. Wellinga, German Patent DE 2304 584, 1973.
[12] [12a] H.-W. Liu and C. T. Walsh in The Chemistry of the cyclopropyl group, Ed.: Z. Rappoport, Wiley 1987, 959-1021. - [12b] J. Salaün, Top. Curr. Chem. 2000, 207, 167.
[13] W. A. Donaldson, Tetrahedron 2001, 57, 8589-8627.
[14] [14a] K. E. Brighty, WO Patent 91/02526, 1991; EU Patent 413455 A2, 1991, Chem. Abstr. 1991, 115, 232216. - [14b] US Patent 5,164.402, 1992, Chem. Abstr. 1993, 119, 117227. - [14c] M. Marinozzi, B. Natalini, N. H. Ni, G. Costantino, R. Pellicciari, C. Thomsen, Il Farmaco 1995, 50, 327. - ${ }^{[14 d]}$ K. E. Brighty, M. J. Castaldi, Synlett 1996, 1100-1102.
[15] [15a] V. Butz, E. Vilsmaier, Tetrahedron 1993, 49, 6031-6044. - [15b] E. Vilsmaier, C. Tetzlaff, V. Butz, G. Maas, Tetrahedron 1991, 47, 8133-8144. - [15c] T. Goerz, E. Vilsmaier, Synthesis 1998, 739-743. - [15d] P. E. O'Bannon, W. P. Dailey, J. Org. Chem. 1991, 56, 2258-2260. - [15e] J. Yu, J. R. Falck, J. Org. Chem. 1992, 57, $3757-$ 3759.
[16] T. F. Braish, M. Castaldi, S. Chan, D. E. Fox, T. Keltonic, J. McGarry, J. M. Hawkins, T. Norris, P. R. Rose, J E. Sieser, B. J. Sitter, H. Watson, Synlett 1996, 1097-1099.
[17] [17a] O. G. Kulinkovich, S. V. Sviridov, D. A. Vasilevski, T. S. Prityskaya, Zh. Org. Khim. 1989, 25, 2244-2245; J. Org. Chem. USSR 1990, 25, 2027-2028. - [17b] O. G. Kulinkovich, D. A. Vasilevski, A. I. Savchenko, S. V. Sviridov, J. Org. Chem. USSR 1992, 27, 1249-1251. - [17c] O. G. Kulinkovich, S. V. Sviridov, D. A. Vasilevski, T. S. Prityskaya, Zh. Org. Khim. 1991, 27, 294-296; J. Org. Chem. USSR 1991, 27, 250253.
[18] [18a] V. Chaplinski, A. de Meijere, Angew. Chem. 1996, 108, 491-492; Angew. Chem. Int. Ed. Engl. 1996, 35, 413-414. - [18b] V. Chaplinski, H. Winsel, M. Kordes, A. de Meijere, Synlett 1997, 111-114.
[19] Reviews: [19a] O. G. Kulinkovich, A. de Meijere, Chem. Rev. 2000, 100, 2789-2834. ${ }^{[19 b]}$ B. Breit, J. Prakt. Chem. 2000, 342, 211-214. - [19c] F. Sato, H. Urabe, S. Okamoto, Chem. Rev. 2000, 100, 2835-2886. - [19d] F. Sato, H. Urabe, S. Okamoto, Synlett 2000, 753-775. - [19e] A. de Meijere, S. I. Kozhushkov, A. I. Savchenko, in Titanium and Zirconium in Organic Synthesis, Ed.: I. Marek, 2002, pp. 390-434.
[20] [20a] A. de Meijere, V. Chaplinski, A. Kourdioukov, Ger. Offen DE 19647615.1 (Cl. C07C211/35, 20 May 1998, Appl. 19647615.118 Nov 1996), Chem. Abstr. 1998, 129, 16045. - [20b] A. de Meijere, C. M. Williams, V. Chaplinski, A. Kourdioukov, S. V. Sviridov, A. I. Savchenko, M. Kordes, C. Stratmann, Chem. Eur. J. 2002, 8, 3789 3801.
[21] [21a] J. Lee, C. H. Kang, H. Kim, J. K. Cha, J. Am. Chem. Soc. 1996, 118, 291-292. [21b] J. Lee, J. K. Cha, J. Org. Chem. 1997, 62, 1584-1585. - [21c] J. Sun U, J. Lee, J. K. Cha, Tetrahedron Lett. 1997, 38, 5233-5236.
[22] [22a] S. Okamoto, M. Iwakubo, K. Kobayashi, F. Sato, J. Am. Chem. Soc. 1997, 119, 6984-6990. - [22b] A. Kasatkin, K. Kobayashi, S. Okamoto, F. Sato, Tetrahedron Lett. 1996, 37, 1849-1855.
[23] [23a] B. Cao, D. Xiao, M. M. Joullié, Org. Lett. 1999, 1, 1799-1801. - [23b] B. Cao, D. Xiao, M. M. Joullié, Org. Lett. 2000, 2, 1009.
[24] M. Falorni, C. Collu, S. Conti, G. Giacomelli, Tetrahedron Asymmetry 1996, 7, 293299.
[25] [25a] J. E. Baldwin, S. C. M. Turner, M. G. Moloney, Tetrahedron 1995, 51, $9411-$ 9424. - [25b] K. Goodall, A. F. Parsons, Tetrahedron 1995, 51, 6739-6758.
[26] C. M. Thompson, J. A. Frick, D. L. C. Green, J. Org. Chem. 1990, 55, 111-116.
[27] M. I. Kemp, R. J. Whitby, S. J. Coote, Synthesis 1998, 557-568.
[28] J. E. Baldwin, A. C. Spivey, C. J. Schofield, Tetrahedron Asymmetry 1990, 1, 881884.
[29] E. Carceller, M. Merlos, M. Giral, C. Almansa, J. Bartrolí, J. G. Rafanell, J. Forn, J. Med. Chem. 1993, 2984-2997.
[30] V. Chaplinski, H. Winsel, M. Kordes, A. de Meijere, Synlett 1997, 111-114.
[31] J. C. Lee, M. J. Sung, J. K. Cha, Tetrahedron Lett. 2002, 42, 2059-2061.
[32] [32a] Y. Aoyagi, R. Asakura, N. Kondoh, R. Yamamoto, T. Kuromatsu, A. Shimura, A. Ohta, Synthesis 1996, 970-974. - [32b] D. F. Harvey, D. M. Sigano, J. Org. Chem. 1996, 61, 2268-2272. $-{ }^{[32 c]}$ T. Kawabata, T. Minami, T. Hiyama, J. Org. Chem. 1992, 57, 1864-1873.
[33] [33a] K. M. J. Brands, A. A. P. Meekel, U. K. Pandit, Tetrahedron 1991, 47, 20052026. - ${ }^{[33 b]}$ E. Lorthiois, I. Marek, J. F. Normant, J. Org. Chem. 1998, 63, 24422450.
[34] M. le Bail, D. J. Aitken, F. Vergne, H. P. Husson, J. Chem. Soc. Perkin Trans.l 1997, 1681-1689.
[35] Under typical conditions for the preparation of N, N-dialkylcyclopropylamines, nitriles gave primary cyclopropylamines at best in 15% yield: ${ }^{[35 a}$ N. V. Masalov, H. Winsel, O. G. Kulinkovich, A. de Meijere, Org. Lett. 2003, 5, 753-755. - ${ }^{[35 b]}$ H. Winsel, Diplomarbeit, Universität Göttingen, 1997.
[36] P. Bertus, J. Szymoniak, Chem. Commun. 2001, 1792-1793.
[37] S. Wiedemann, H. Winsel, I. Marek, A. de Meijere, to be published.
[38] S. Schleich, G. Helmchen, Eur. J. Org. Chem. 1999, 2515-2521.
[39] [39a] G. Brogini, L. Garanti, G. Molteni, G. Zecchi, Tetrahedron 1998, 54, 1485914868. - [39b] C.-C. Yang, H.-M. Tai, P.-J. Sun, J. Chem. Soc. Perkin Trans. 1 1997, 2843-2850.
[40] E. A. Mistryukov, N. I. Aronova, V. F. Kucherov. Izv. Akad. Nauk SSSR, Ser. Khim. 1961, 932-933; Bull. Acad. Sci. USSR, Div. Chem. Sci (Engl. Transl.) 1961, 866-868.
[41] M. A. Iorio, P. Ciuffa, G. Damia, Tetrahedron 1970, 26, 5519-5527.
[42] J. P. Wolf, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc. Chem. Res. 1998, 31, 805818 and references cited therein.
[43] Metal-catalyzed Cross-coupling Reactions, Eds.: F. Diederich, P. J. Stang, WileyVCH, Weinheim, 1998.
[44] M. Kosugi, M. Kameyama, T. Migita, Chem. Lett. 1983, 927-928.
[45] [45a] J. Louie, J. F. Hartwig, Tetrahedron Lett. 1995, 36, 3609-3612. - [45b] A. S. Guram, R. A. Rennels, S. L. Buchwald, Angew. Chem. 1995, 107, 1456-1459; Angew. Chem. Int. Ed. Engl. 1995, 34, 1348-1350.
[46] [46a] W. Steglich, G. Höfle, Angew.Chem. Int. Ed. Engl. 1969, 8, 981. - [46b] G. Höfle, W. Steglich, Synthesis 1972, 619.
[47] R. Kempe, P. Arndt, Inorg. Chem. 1996, 35, 2644-2649.
[48] K. Araki, T. Mutai, Y. Shigemitsu, M. Yamada, T. Nakajiama, S. Kuroda, I. Shimao, J. Chem. Soc. Perkin Trans. 2 1996, 613-617.
[49] P. Lechat, S. Tesleff and W. C. Bowman in Aminopyridines and Similarly Acting Drugs, Pergamon, Oxford, 1982.
[50] S. Wagaw, S. L. Buchwald, J. Org. Chem. 1996, 61, 7240-7241.
[51] F. Paul, J. Pratt, J. F. Hartwig, Organometallics 1995, 14, 3030.
[52] J. P. Wolfe, S. Wagaw, S. L. Buchwald, J. Am. Chem. Soc. 1996, 118, 7215-7216.
[53] J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 2000, 65, 1144-1157.
[54] M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 7217-7218.
[55] G. Mann, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 13109-13110.
[56] J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, , S. L. Buchwald, J. Org. Chem. 2000, 65, 1158-1174.
[57] Dr. V. Belov, Universitaet Goettingen 2000, unpublished results.
[58] S. J. Figueroa, Y. Liu, J. M. Muchowski, D. G. Putman, Tetrahedron Lett. 1998, 39, 1313-1316.
[59] S. R. Stauffer, S. Lee, J. P. Stambuli, S. I. Hauck, J. F. Hartwig, Org. Lett. 2000, 2, 1423-1426.
[60] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 2000, 2, 1423-1426.
[61] F. Y. Kwong, A. Klopars, S. L. Buchwald, Org. Lett. 2002, 581-584.
[62] B. V. Yang, D. O'Rourche, J. Li, Synlett 1993, 195-196.
[63] H. Wolff in Organic Reactions, Vol. III, Ed.: R. Adams, Wiley, New York, 1947, pp. 4296-4298.
[64] L. Fowden, A. Smith, Phytochemistry 1969, 8, 437-443.
[65] I. Sagnard, N. A. Sasaki, A. Chiaroni, C. Riche, P. Potier, Tetrahedron Letters 1995, 18, 3149-3152.
[66] Y. Fujimoto, F. Irreverre, J. M. Karle, I. L. Karle, B. Witkop, J. Am. Chem. Soc. 1971, 93, 3471-3477.
[67] N. Krass, Dissertation, Universitaet Hamburg 1989.
[68] S. Hatanaka, Phytochemistry 1969, 8, 1305-1308.
[69] J. E. Baldwin, R. M. Adlington, D. W. Gollins, C. R. A. Godfrey, Tetrahedron 1995, 51, 5169-5180.
[70] [70a] M. Kordes, Dissertation, Universitaet Goettingen 1999. - [70b] K. Shimamoto, Y. Ohfune, J. Med. Chem. 1996, 39, 407-423.
[71] N. A. Sasaki, M. Dockner, A. Chiaroni, C. Riche, P. Potier, J. Org. Chem. 1997, 62, 765-770.
[72] A. Barco, S. Benetti, G. Spalluto, J. Org. Chem. 1992, 57, 6279-6286.
[73] D. Seebach, M. Boes, R. Naef, W. B. Scheweizer, J. Am. Chem. Soc. 1983, 116, 53905398.
[74] Y. N. Belokon, V. I. Taravov, M. G. Ryzhov, Tetrahedron: Asymmetry 1998, 9, 42494252.
[75] [75a] H. Ishibashi, N. Uemura, H. Nakatani, M. Okazaki, T. Sato, N. Nakamura, M. Ikeda, J. Org. Chem. 1993, 58, 2360-2368. $-{ }^{[75 b]} \mathrm{F}$. Ziegler, M. Belema, J. Org. Chem. 1994, 59, 7962-7967. - [75c] A. G. H. Wee, J. Slobodian, J. Org. Chem. 1996, 61, 2897-2900. $-[75 \mathrm{~d}]$ T. A. Chappie, R. M. Weekly, M. C. McMills, Tetrahedron Lett. 1996, 37, 6523-6526. - [75e] J. Lee, J. D. Ha, J. K. Cha, J. Am. Chem. Soc. 1997, 119, 8127-8128. $-[75 f]$ E. M. Beccalli, G. Broggini, C. La Rosa, D. Passarella, T. Pilati, A. Terraneo, G. Zecchi, J. Org. Chem. 2000, 65, 8924-8932.
[76] [76a] G. Bianchi, R. Gandolfi, 1,3-Dipolar Cycloaddition Chemistry, Vol. 2, Ed.: A. Padwa, Wiley, New York, 1984, p. 451. - [76b] Review: A. Brandi, A. Goti, Chem. Rev. 1998, 98, 589-636.
[77] Review: A. de Meijere, S. I. Kozhushkov, A. F. Khlebnikov, Top. Curr. Chem. 2000, 207, 89-147.
[78] Review: A. Goti, F. M. Cordero, A. Brandi, Top. Curr. Chem. 1996, 178, 1-58.
[79] [79a] P. Le Perchec, J. M. Conia, Tetrahedron Lett. 1970, 1587. - [79b] L. Fitjer, J. M. Conia, Angew. Chem. 1973, 85, 347; Angew. Chem. Int. Ed. Engl. 1973, 12, 332.$\left.{ }^{[79 c}\right]$ A. H. Schmidt, U. Schirmer, J. M. Conia, Chem. Ber. 1976, 109, 2588.
[80] A. Goti, B. Anichini, A. Brandi, S. I. Kozhushkov, C. Gratkowski, A. de Meijere, J. Org. Chem. 1996, 61, 1665-1672.
[81] [81a] A. de Meijere, S. I. Kozhushkov, T. Spaeth, N. S. Zefirov, J. Org. Chem. 1993, 58, 502-505. - [81b] A. de Meijere, S. I. Kozhushkov, T. Spaeth, Org. Synth. 2000, 78, 142-151.
[82] O. G. Kulinkovich, S. V. Sviridov, D. A. Vasilevski, Synthesis 1991, 234.
[83] P. Gruenanger, P. Vita-Finzi, Isoxazoles-Part One. In: The Chemistry of Heterocyclic Compounds, Eds.: E. C. Taylor, A. Weissberger, Wiley, New York, 1991.
[84] A. Hassner, C. Stumer, Organic Synthesis Based on Name Reactions-2nd Ed., Tetrahedron Organic Chemistry Series, 22; Pergamon, Oxford (UK), 2002. p. 42.
${ }^{[85 a]}$ C. Zorn, A. Goti, A. Brandi, K. Johnsen, M. Noltemeyer, S. I. Kozhushkov, A. de Meijere, J. Org. Chem. 1999, 64, 755-763. - [85b] B. Anichini, A. Goti, A. Brandi, S. I. Kozhushkov, A. de Meijere, J. Chem. Soc. Chem. Commun. 1997, 261-262.
[86] [86a] A. Brandi, S. Cicchi, M. Brandl, S. I. Kozhushkov, A. de Meijere, Synlett 2001, 3, 433-435. - ${ }^{[86 \mathrm{~b}]}$ C. Funke, Dissertation, Universitaet Göttingen, 2000. - ${ }^{[86 \mathrm{c}]}$ C. Funke, M. Es-Sayed, A. de Meijere, Org. Lett. 2000, 2, 4249-4251.
[87] T. Kushida, M. Uesugi, Y. Sugiura, H. Kigoshi, H. Tanaka, J. Hirokawa, M. Ojika, K. Yamada, J. Am. Chem. Soc. 1994, 116, 479-486.
[88] [88a] M. J. Kelner, T. McMorris, W. T. Beck, J. M. Zamora, R. Taetle, Cancer Res. 1987, 47, 3186-3189. - [88b] M. J. Kelner, T. McMorris, R. Taetle, J. Natl. Cancer Inst. 1990, 82, 1562-1565. $-{ }^{[88 c]}$ T. C. McMorris, M. J. Kelner, W. Wang, L. A. Estes, M. A. Montoya, R. Taetle, J. Org. Chem. 1992, 57, 6876-6883.
[89] [89a] A. Goti, B. Anichini, A. Brandi, A. de Meijere, L. Citti, S. Nevischi, Tetrahedron Lett. 1995, 36, 5811-5814. - [89b] C. Zorn, B. Anichini, A. Goti, A. Brandi, S. I. Kozhushkov, A. de Meijere, L. Citti, J. Org. Chem. 1999, 64, 7846-7855.
[90] N. Irako, Y. Hamada, Tetrahedron 1995, 51, 12731-12744.
[91] K. Giller, M. S. Baird, A. de Meijere, Synlett 1992, 524-526.
[92] S. C. M. Fell, M. J. Pearson, G. Burton, J. Bateson, J. Chem. Soc. Perkin Trans. I 1991, 1361-1363, and references therein.
[93] [93a] F. M. Cordero, F. Pisaneschi, A. Goti, J. Ollivier, J. Salaün, A. Brandi, J. Am. Chem. Soc. 2000, 122, 8075-8076. - [93b] V. Paschetta, F. M. Cordero, R. Paugam, J. Ollivier, A. Brandi, J. Salaün, Synlett 2001, 8, 1233-1236.
[94] [94a] L. Stella, Angew. Chem. Int. Ed. Engl. 1983, 22, 337-350. - [94b] M. E. Wolff, Chem. Rev. 1963, 63, 55-64.
[95] A. Brandi, F. M. Cordero, F. De Sarlo, A. Goti, A. Guarna, Synlett 1993, 1-8.
[96] Review: G. Jones, II. Org. Photochem. 1981, 5, 1-22.
[97] [97a] S. R. Fletcher, I. T. Kay, J. Chem. Soc. Chem. Comm. 1978, 903-904. - [97b] A. K. Bose, Y. H. Chiang, M. S. Manhas, Tetrahedron Lett. 1972, 40, 4091-4094.${ }^{[97 c]}$ A. Battaglia, G. Barbaro, P. Giorgianni, J. Org. Chem. 1985, 50, 5368-5370.
[98] [98a] C. J. Suckling, Angew. Chem. 1988, 100, 555-570; Angew. Chem. Int. Ed. Engl. 1988, 27, 537-552. - [98b] J. H. Bateson, A. W. Guest, Tetrahedron Lett. 1993, 34, 1799-1802. - [98c] J. C. Sheehan, E. Chacko, Y. S. Lo, D. R Ponzi, E. Sato, J. Org. Chem. 1978, 43, 4856-4859.
[99] S. Abele, P. Seiler, D. Seebach, Helv. Chim. Acta 1999, 82, 1559-1571.
[100] Review: A. de Meijere, S. I. Kozhushkov, A. F. Khlebnikov, Top. Curr. Chem. 2000, 207, 89-147.
[101] Review: A. de Meijere, S. I. Kozhushkov, Chem. Rev. 2000, 100, 93-142.
[102] For a recent review on biologically active cyclopropane derivatives see: J. Salaün, Top. Curr. Chem. 2000, 207, 1-67.
[103] [103a] A. Brandi, F. M. Cordero, F. De Sarlo, A. Goti, A. Guarna, Synlett 1993, 18. [103b] F. M. Cordero, A. Brandi, C. Querci, A: Goti, F. De Sarlo, A. Guarna, J. Org.

Chem. 1990, 55, 1762-1767. [103c] A. Brandi, S. Garro, A. Guarna, A. Goti, F. M. Cordero, F. De Sarlo, J. Org. Chem. 1988, 53, 2430-2434.
[104] E. Ochoa, M. Mann, D. Sperling, J. Fabian, Eur. J. Org. Chem. 2001, 4223-4231.
[105] [105a] D. C. Nonhebel, Chem. Soc. Rev. 1993, 347-359. [105b] J. Walton, in Carbocyclic Three-Membered Ring Compounds, Vol. E17, Ed.: A. de Meijere, Thieme, Stuttgart, 1996. ${ }^{[105 c]}$ S. Y. Choi, M. Newcomb, Tetrahedron 1995, 51, 657664. [105d] H. Venkatesan, M. M. Greenberg, J. Org. Chem. 1995, 60, 10531059. [105e] D. J. Hastings, A. C. Weedon, J. Org. Chem. 1991, 56, 63266331. [105f] D. Becker, N. Haddad, Y. Sahali, Tetrahedron Lett. 1989, 30, 2661-2664.
[106] For a synthesis of spiroazepinones see: A. de Meijere, M. von Seebach, S. I. Kozhushkov, R. Boese, D. Blaeser, S. Cicchi, T. Dimoulas, A. Brandi, Eur. J. Org. Chem. 2001, 3789-3795.
[107] S. Cicchi, M. Marradi, A, Goti, A. Brandi, Tetrahedron Lett. 2001, 37, 6503-6506.
[108] [108a] R. A. Firestone, J. Org. Chem. 1968, 33, 2285-2290. [108b] R. A. Firestone, J. Org. Chem. 1972, 37, 2181-2191. ${ }^{[108 c]}$ R. A. Firestone, J. Org. Chem. 1972, 37, 2181-2182. [108d] R. A. Firestone, Tetrahedron 1977, 33, 3009-3039.
[109] [109a] R. Huisgen, J. Org. Chem. 1968, 33, 2291-2297. [109b] R. Huisgen, J. Org. Chem. 1976, 41, 403-419. [109c] K. N. Houk, Acc. Chem. Res. 1995, $28,81$.
[110] C. Di Valentin, M. Freccero, R. Gandolfi, A. Rastelli, J. Org. Chem. 2000, 65, 61126120.
[111] S. Kozhushkov, T. Späth, T. Fiebig, B. Galland, M.-F. Ruasse, P. Xavier, Y. Apeloig, A. de Meijere, J. Org. Chem. 2002, 67, 4100-4114.
[112] S. I. Kozhushkov, T. Späth, M. Kosa, Y. Apeloig, D. S. Yufit, A. de Meijere, Eur. J. Org. Chem. 2003, 21, 4234-4242.
[113] M. T. Reez, Organotitanium Reagents in Organic Synthesis, 1. Ed. Springer, Berlin, 1986, 258-259. M. T. Reez, J. Westermann, R. Steinbach, B. Wenderoth, Chem. Ber. 1985, 118, 1421-1440.
[114] S.-I. Murahashi, H. Mitsui, T. Shiota, T. Tsuda, S. Watanabe, J. Org. Chem. 1990, 55, 1736-1744.
F. Spectral Data

1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra 176
2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra 191
3. NOESY spectra 205

1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra

endo-(2R)-3-Benzyl-2-(tert-butyldimethylsilyloxymethyl)-N,N-dimethyl-3-azabi-cyclo[3.1.0]hex-1-ylamine (endo-58)

endo-(2R)-N,N,3-Tribenzyl-2-(tert-butyldimethylsilyloxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (endo-59)

exo-(2R)-N,N,3-Tribenzyl-2-(tert-butyldimethylsilyloxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (exo-59)

$N, N, 3$-Tribenzyl-3-azabicyclo[3.1.0]hex-1-ylamine (76)

$N, 3$-Dibenzyl- N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (77)

$N, N, 3-T r i b e n z y l-3$-azabicyclo[4.1.0]hept-1-ylamine (79)

3-Azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (28-HCI)

N-Methyl-3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (82-HCI)

3-Methyl-3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (83-HCI)

3-Azabicyclo[4.1.0]hept-1-ylamine dihydrochloride (29-HCI)

3-Benzyl-3-azabicyclo[3.1.0]hex-1-ylamine (91)

3-(6-Chloropyridazin-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (117)

3-(6-Chloropyridazin-3-yl)-3-azabicyclo[4.1.0]hept-1-ylamine (119)

N-Methyl-3-(pyrid-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (120)

N-Methyl-3-(pyrimidin-5-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (121)

3-(Pyrid-3-yl)-azabicyclo[3.1.0]hex-1-ylamine (122)

3-Methyl- N, N-di(pyrazin-2-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (131)

3-(5-Chloropyrid-3-yl)- N -methyl-3-azabicyclo[3.1.0]hex-1-ylamine (133)

N-(2',2',2'-trifluoroethyl)-3-(pyrimidin-5-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (145)

N, N-Dibenzyl-indolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine (179)

(1aS,8aS,8bR)-N,N-Dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine [(1aS,8aS,8bR)-183]

(1a $R, 8 \mathrm{a} S, 8 \mathrm{~b} S)$ - N, N-Dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine [(1aR,8aS,8bS)-183]

rac- N, N-Dibenzyl-1,2-diallyl-2-pyrrolidinecarboxamide (191)

(1aS,6aS,6bR)-N,N-Dibenzyl-perhydrocyclopropa[1,2-a]pyrrolizin-6b-ylamine [(1aS,6aS,6bR)-192]

5-Methyl-6-(pyrid-2-yl)-5-azaspiro[2.3]hexan-4-one (223)

12-methyl-11-(pyrid-2-yl)-12-azatrispiro[2.0.2 $\left.2^{4} \cdot 1 \cdot 2^{8} .2^{3}\right]$ dodecan-7-one (248)

(1"'S,8a"'R)-1"'-tert-Butoxytrispiro[cyclopropane-1,1'-cyclopropane-2',1"-cyclo-propane-3',8"'-perhydroindolizine]-7"'-one [(1"'S,8a"'R)-250]

(1"'S,8a"'R)-1"'-tert-Butoxytrispiro[triscyclopropane-1,5"':1',6"':1",8"'-perhydro-indolizine]-7"'-one [(1"'S,8a"'R)-251]

trans-7-Methyl-6-(pyrid-2-yl)-7-azatrispiro[2.1.55]decan-10-one (trans-252)

5-Methyl-4-(pyrid-2-yl)-5-azadispiro[2.1.2.3³]decan-10-one (253)

2. ${ }^{13}$ C-NMR spectra

endo-(2R)-3-Benzyl-2-(tert-butyldimethylsilyloxymethyl)- N, N-dimethyl-3-azabi-cyclo[3.1.0]hex-1-ylamine (endo-58)

endo-(2R)-N,N,3-Tribenzyl-2-(tert-butyldimethylsilyloxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (endo-59)

exo-(2R)-N,N,3-Tribenzyl-2-(tert-butyldimethylsilyloxymethyl)-3-azabicyclo-[3.1.0]hex-1-ylamine (exo-59)

$N, N, 3$-Tribenzyl-3-azabicyclo[3.1.0]hex-1-ylamine (76)

$N, 3$-Dibenzyl- N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (77)

N,N,3-Tribenzyl-3-azabicyclo[4.1.0]hept-1-ylamine (79)

3-Azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (28-HCl)

N -Methyl-3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (82-HCI)

3-Methyl-3-azabicyclo[3.1.0]hex-1-ylamine dihydrochloride (83-HCI)

3-Azabicyclo[4.1.0]hept-1-ylamine dihydrochloride (29-HCI)

3-Benzyl-3-azabicyclo[3.1.0]hex-1-ylamine (91)

3-(6-Chloropyridazin-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (117)

3-(6-Chloropyridazin-3-yl)-3-azabicyclo[4.1.0]hept-1-ylamine (119)

N-Methyl-3-(pyrid-3-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (120)

N-Methyl-3-(pyrimidin-5-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (121)

3-(Pyrid-3-yl)-azabicyclo[3.1.0]hex-1-ylamine (122)

3-Methyl- N, N-di(pyrazin-2-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (131)

3-(5-Chloropyrid-3-yl)- N-methyl-3-azabicyclo[3.1.0]hex-1-ylamine (133)

N-(2',2',2'-trifluoroethyl)-3-(pyrimid-5-yl)-3-azabicyclo[3.1.0]hex-1-ylamine (145)

[^0]
(1aS,8aS,8b R)-N,N-Dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine [(1aS,8aS,8bR)-183]

(1aR,8aS,8bS)-N,N-Dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine [(1aR,8aS,8bS)-183]

rac- N, N-Dibenzyl-1,2-diallyl-2-pyrrolidinecarboxamide (191)

(1aS,6aS,6bR)-N,N-Dibenzyl-perhydrocyclopropa[1,2-a]pyrrolizin-6b-ylamine [(1aS,6aS,6bR)-192]

5-Methyl-6-(pyrid-2-yl)-5-azaspiro[2.3]hexan-4-one (223)

(1"'S,8a"'R)-1"'-tert-Butoxytrispiro[cyclopropane-1,1'-cyclopropane-2',1"-cyclopro-pane-3',8"'-perhydroindolizine]-7"'-one [(1"'S,8a"'R)-250]

(1"'S,8a"'R)-1"'-tert-Butoxytrispiro[triscyclopropane-1,5"':1',6"':1",8"'-perhydroindo-lizine]-7"'-one [(1"'S,8a"'R)-251]

5-Methyl-4-(pyrid-2-yl)-5-azadispiro[2.1.2.3³]decan-10-one (253)

3. NOESY spectra

(1aS,8aS, $8 \mathrm{~b} R)$ - N, N-Dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine [(1aS,8aS,8bR)-183]

(1a $R, 8 \mathrm{a} S, 8 \mathrm{~b} S)$ - N, N-Dibenzyl-8,8a-dihydroindolo[1,2-a]cyclopropa[1,2-c]pyrrolidin-8b-amine [(1aR,8aS,8bS)-183]

(1aS,6aS,6bR)-N,N-Dibenzyl-perhydrocyclopropa[1,2-a]pyrrolizin-6b-ylamine [(1aS,6aS,6bR)-192]

(1aR,6aS,6bS)-N,N-Dibenzyl-perhydrocyclopropa[1,2-a]pyrrolizin-6b-ylamine [(1aR,6aS,6bS)-192]

G. Crystal Data

1. endo-(2R)-3-(5-Chloropyrid-3-yl)-2-(hydroxymethyl)-N,N-dimethyl-3-azabicyclo-[3.1.0]hex-1-ylamine (endo-163)

Table 1. Crystal data and structure refinement for endo-163.

Empirical formula	C13 H19 Cl N3 O
Formula weight	268.76
Temperature	133(2) K
Wavelength	0.71073 A
Crystal system, space group	monoclinic, P 2(1)
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=8.6507(10) \AA & \alpha=90 \mathrm{deg} . \\ \mathrm{b}=7.2148(5) \AA & \beta=107.121(9) \mathrm{deg} . \\ \mathrm{c}=10.8359(13) \AA & \gamma=90 \mathrm{deg} . \end{array}$
Volume	646.33(12) \AA^{3}
Z, Calculated density	2, $1.381 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.288 \mathrm{~mm}^{-1}$
F(000)	286
Theta range for data collection	1.97 to 24.70 deg.
Index ranges	$-10<=\mathrm{h}<=10,-8<=\mathrm{k}<=8,-12<=1<=10$
Reflections collected / unique	$7346 / 2164[\mathrm{R}(\mathrm{int})=0.0330]$
Observed reflections	2100 [$1>2$ sigma(I) $]$
Completeness to $\theta=24.70$	99.5\%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2164 / 1 / 167
Goodness-of-fit on F^{2}	1.035
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0253, \mathrm{wR} 2=0.0660$
R indices (all data)	$\mathrm{R} 1=0.0262, \mathrm{wR} 2=0.0665$
Absolute structure parameter	0.03(5)
Largest diff. peak and hole	0.203 and $-0.347 \mathrm{e}^{-3}{ }^{-3}$

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (A^{2}) for endo-163. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
Atom	$0.2431(1)$	$0.5466(1)$	$0.8112(1)$	$0.02721(12)$
Cl	$0.5134(2)$	$0.4326(2)$	$0.5117(1)$	$0.0255(3)$
$\mathrm{O}(1)$	$0.1177(2)$	$0.4703(2)$	$0.3183(1)$	$0.0224(3)$
$\mathrm{N}(1)$	$0.3723(2)$	$0.6304(2)$	$0.1226(1)$	$0.0231(3)$
$\mathrm{N}(2)$	$-0.1524(2)$	$0.4624(2)$	$0.5221(2)$	$0.0264(3)$
$\mathrm{N}(3)$	$0.2718(2)$	$0.5140(2)$	$0.1742(1)$	$0.0212(4)$
$\mathrm{C}(1)$	$0.2859(2)$	$0.5102(2)$	$0.3188(2)$	$0.0199(4)$
$\mathrm{C}(2)$	$-0.0021(2)$	$0.4916(3)$	$0.1910(2)$	$0.0254(4)$
$\mathrm{C}(3)$	$0.0972(2)$	$0.4928(2)$	$0.0985(2)$	$0.0250(4)$
$\mathrm{C}(4)$	$0.2127(2)$	$0.3334(3)$	$0.1050(2)$	$0.0273(4)$
$\mathrm{C}(5)$	$0.4060(2)$	$0.3620(2)$	$0.3953(2)$	$0.0226(4)$
$\mathrm{C}(6)$	$0.5446(2)$	$0.5898(3)$	$0.1755(2)$	$0.0305(4)$
$\mathrm{C}(7)$	$0.3402(2)$	$0.8278(2)$	$0.1339(2)$	$0.0273(4)$
$\mathrm{C}(8)$	$0.0692(2)$	$0.4773(2)$	$0.4285(2)$	$0.0211(3)$
$\mathrm{C}(9)$	$-0.0963(2)$	$0.4593(3)$	$0.4205(2)$	$0.0239(4)$
$\mathrm{C}(10)$	$-0.0485(2)$	$0.4845(2)$	$0.6400(2)$	$0.0251(4)$
$\mathrm{C}(11)$	$0.1149(2)$	$0.5067(2)$	$0.6556(2)$	$0.0225(4)$
$\mathrm{C}(12)$	$0.1778(2)$	$0.5019(2)$	$0.5524(2)$	$0.0207(3)$
$\mathrm{C}(13)$				

Table 3. Bond lengths [pm] and angles [deg] for endo-163.

$\mathrm{Cl}-\mathrm{C}(12)$	$174.8(2)$	$\mathrm{C}(1)-\mathrm{C}(4)$	$149.9(2)$
$\mathrm{O}(1)-\mathrm{C}(6)$	$142.2(2)$	$\mathrm{C}(1)-\mathrm{C}(5)$	$151.5(2)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$137.7(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$153.7(2)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$146.9(2)$	$\mathrm{C}(2)-\mathrm{C}(6)$	$155.0(2)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$148.2(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$150.0(2)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$143.5(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$151.1(3)$
$\mathrm{N}(2)-\mathrm{C}(7)$	$146.1(2)$	$\mathrm{C}(9)-\mathrm{C}(13)$	$140.5(2)$
$\mathrm{N}(2)-\mathrm{C}(8)$	$146.3(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$141.5(2)$
$\mathrm{N}(3)-\mathrm{C}(10)$	$132.7(2)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$138.3(2)$
$\mathrm{N}(3)-\mathrm{C}(11)$	$133.8(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$138.1(2)$

$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(3)$	$119.96(14)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$113.38(13)$
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(2)$	$122.59(13)$	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$104.10(13)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)$	$113.81(13)$	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$108.57(13)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(7)$	$113.26(13)$	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$60.43(11)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(8)$	$112.67(13)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.74(15)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(8)$	$111.05(14)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$59.40(11)$
$\mathrm{C}(10)-\mathrm{N}(3)-\mathrm{C}(11)$	$119.17(15)$	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(2)$	$112.77(14)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	$118.35(14)$	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(13)$	$122.97(15)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	$117.74(14)$	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.31(15)$
$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(5)$	$60.17(11)$	$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{C}(10)$	$116.73(15)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.20(13)$	$\mathrm{N}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	$123.96(16)$
$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.68(13)$	$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.38(15)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$113.79(14)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$122.03(16)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$102.54(12)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{Cl}$	$119.76(13)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$111.79(13)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Cl}$	$118.21(13)$

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (A^{2}) endo-163.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} \mathrm{a}^{* 2} \mathrm{U} 11+\ldots+2 \mathrm{hk}\right.$ $a^{*} b^{*}$ U12]

Atom	U11	U22	U33	U23	U 13	U 12
C 1	$0.0299(2)$	$0.0335(2)$	$0.01775(19)$	$0.00054(18)$	$0.00623(14)$	$0.00517(18)$
$\mathrm{O}(1)$	$0.0188(6)$	$0.0375(7)$	$0.0186(6)$	$-0.0001(5)$	$0.0030(5)$	$0.0012(5)$
$\mathrm{N}(1)$	$0.0185(6)$	$0.0298(8)$	$0.0174(7)$	$0.0009(6)$	$0.0031(5)$	$-0.0013(6)$
$\mathrm{N}(2)$	$0.0217(7)$	$0.0272(8)$	$0.0209(7)$	$0.0028(6)$	$0.0069(5)$	$-0.0005(6)$
$\mathrm{N}(3)$	$0.0214(7)$	$0.0272(8)$	$0.0325(8)$	$-0.0015(7)$	$0.0109(6)$	$-0.0008(6)$
$\mathrm{C}(1)$	$0.0230(8)$	$0.0222(11)$	$0.0166(7)$	$0.0016(6)$	$0.0031(6)$	$-0.0003(6)$
$\mathrm{C}(2)$	$0.0199(7)$	$0.0227(10)$	$0.0172(7)$	$-0.0004(6)$	$0.0058(6)$	$-0.0011(6)$
$\mathrm{C}(3)$	$0.0226(7)$	$0.0313(10)$	$0.0196(8)$	$0.0006(7)$	$0.0019(6)$	$-0.0047(7)$
$\mathrm{C}(4)$	$0.0231(8)$	$0.0315(10)$	$0.0176(8)$	$0.0005(7)$	$0.0018(6)$	$-0.0057(7)$
$\mathrm{C}(5)$	$0.0330(9)$	$0.0288(9)$	$0.0192(8)$	$-0.0031(7)$	$0.0065(7)$	$-0.0049(8)$
$\mathrm{C}(6)$	$0.0233(8)$	$0.0233(8)$	$0.0194(8)$	$-0.0003(7)$	$0.0034(7)$	$-0.0010(7)$
$\mathrm{C}(7)$	$0.0246(8)$	$0.0346(11)$	$0.0332(9)$	$0.0032(8)$	$0.0101(7)$	$-0.0008(7)$
$\mathrm{C}(8)$	$0.0288(9)$	$0.0243(9)$	$0.0278(9)$	$0.0050(7)$	$0.0068(7)$	$-0.0024(7)$
$\mathrm{C}(9)$	$0.0237(8)$	$0.0186(8)$	$0.0214(8)$	$0.0014(6)$	$0.0071(6)$	$0.0012(6)$
$\mathrm{C}(10)$	$0.0215(8)$	$0.0251(9)$	$0.0244(9)$	$-0.0004(7)$	$0.0059(6)$	$0.0007(7)$
$\mathrm{C}(11)$	$0.0279(8)$	$0.0257(9)$	$0.0256(8)$	$0.0009(7)$	$0.0137(7)$	$0.0012(7)$
$\mathrm{C}(12)$	$0.0265(8)$	$0.0199(9)$	$0.0203(8)$	$0.0012(6)$	$0.0058(6)$	$0.0029(6)$
$\mathrm{C}(13)$	$0.0204(7)$	$0.0197(8)$	$0.0217(8)$	$0.0018(6)$	$0.0058(6)$	$0.0013(6)$

Table 5. Hydrogen coordinates and isotropic displacement parameters (A^{2}) for endo-163.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1 \mathrm{O})$	$0.598(3)$	$0.440(4)$	$0.502(2)$	$0.047(8)$
$\mathrm{H}(3 \mathrm{~A})$	-0.2566	0.4501	0.5119	0.032
$\mathrm{H}(2 \mathrm{~A})$	0.3188	0.6353	0.3573	0.024
$\mathrm{H}(3 \mathrm{~B})$	-0.0629	0.6090	0.1860	0.030
$\mathrm{H}(3 \mathrm{C})$	-0.0796	0.3869	0.1727	0.030
$\mathrm{H}(4 \mathrm{~A})$	0.0556	0.5620	0.0154	0.030
$\mathrm{H}(5 \mathrm{~A})$	0.2445	0.3047	0.0265	0.033
$\mathrm{H}(5 \mathrm{~B})$	0.2038	0.2246	0.1581	0.033
$\mathrm{H}(6 \mathrm{~A})$	0.3442	0.2573	0.4163	0.027
$\mathrm{H}(6 \mathrm{~B})$	0.4700	0.3137	0.3401	0.027
$\mathrm{H}(7 \mathrm{~A})$	0.5629	0.4570	0.1667	0.046
$\mathrm{H}(7 \mathrm{~B})$	0.5811	0.6243	0.2670	0.046
H(7C)	0.6055	0.6607	0.1282	0.046
H(8A)	0.2241	0.8514	0.0978	0.041
H(8B)	0.3998	0.9003	0.0865	0.041
H(8C)	0.3753	0.8639	0.2252	0.041
H(10A)	-0.1719	0.4442	0.3375	0.029
H(11A)	-0.0873	0.4849	0.7134	0.030
H(13A)	0.2907	0.5147	0.5647	0.025

The crystal data (without structure factors) for the structures 76, 79, 91, 243, 248 and trans252 which are reported in this work are available as "supplementary pubblication no. CCDC178102 (76), CCDC-178103 (79), CCDC-178104 (91), CCDC-199272 (243), CCDC-199270 (248), CCDC-199271 (trans-252)". Copies of these data can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223/336-033; e-mail: deposit@ccdc.cam.ac.uk.

Table 6: Crystal data and structure refinement for compounds 76, 79 and 91.

Structure	76	79	91
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \times 0.5 \mathrm{HCl}$
Formula weight	368.50	382.53	206.50
Temperature [K]	100.0(2)	100(2)	120(2)
Wavelength	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Orthorhombic
Space group	P -1	P -1	Aba 2
a $[\AA]$	5.9783(2)	6.0829(4)	10.2447(3)
b [Å]	10.6105(4)	9.8909(6)	39.482(1)
c [\AA]	16.7535(7)	18.028(1)	11.5005(3)
$\alpha\left[{ }^{\circ}\right]$	84.071(2)	96.586(2)	90
$\beta\left[{ }^{\circ}\right]$	87.981(2)	90.077(2)	90
$\gamma\left[{ }^{\circ}\right]$	76.457(2)	91.642(2)	90
Volume [\AA^{3}]	1027.58(7)	1077.0(1)	4651.7(2)
Z	2	2	16
Density $\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.191	1.180	1.179
$\mu\left[\mathrm{mm}^{-1}\right]$	0.069	0.068	0.181
$F(000)$	396	412	1776
Crystal size [mm^{3}]	$0.42 \times 0.30 \times 0.22$	$0.42 \times 0.28 \times 0.06$	$0.55 \times 0.54 \times 0.04$
θ range for data $\left.{ }^{\circ}{ }^{\circ}\right]$	1.98 to 30.40	2.07 to 29.50	2.06 to 27.50
Reflections collected	12029	12494	15492
Ind. Reflectons	5541	5730	5318
Final R indice	0.0409	0.0475	0.0421

Table 7: Crystal data and structure refinement for compounds 243, 248 and trans-252.

Structure	243	248	trans-252
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$	$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	279.37	536.70	243.32
Temperature [K]	133(2)	133(2)	133(2)
Wavelength	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	$\mathrm{P}-1$	$\mathrm{P}-1$	P2(1)/c
a [\AA]	7.6835(15)	$9.7459(19)$	9.0831(18)
b [\AA]	9.960(2)	10.996(2)	$9.5608(19)$
c [\AA]	10.877(2)	13.920(3)	15.107(3)
$\alpha\left[{ }^{\circ}\right]$	102.94(3)	93.50(3)	90
$\beta\left[{ }^{\circ}\right]$	109.76(3)	99.88(3)	93.22
$\gamma\left[{ }^{\circ}\right]$	99.29(3)	90.36(3)	90
Volume [\AA^{3}]	737.5(3)	1466.7(5)	1309.8(5)
Z	2	2	4
Density [$\mathrm{Mg} / \mathrm{m}^{3}$]	1.258	1.215	1.234
$\mu\left[\mathrm{mm}^{-1}\right]$	0.077	0.076	0.078
$\mathrm{F}(000)$	300	576	524
θ range for data [$\left.{ }^{\circ}\right]$	2.09 to 24.75	2.37 to 24.61	2.52 to 24.75
Reflections collected	8158	7181	7340
Ind. Reflectons	1803	4341	1629
Final R indices	0.0451	0.0509	0.0447

Acknowledgments

I would like to thank Professor A. de Meijere for giving me the possibility to do my Ph.D. in his group.
For the scientific lectures I wish to thank the Professors G. F. Kahl, J. Magull, A. de Meijere at the Georg August Universität Göttingen, Prof. A. Brandi and all the professors at the Università degli Studi di Firenze, Italy.

I am very grateful to Mr. Machinek for the measurements of the NMR spectra. I thank Dr. Frauendorf and Mrs. Udvarnoki for the measurement of the mass spectra and Mr. Hamblock for the measurements of the elemental analyses. I am very grateful to Dr. D. S. Yufit (Durham, UK) and Mr. D. Vidović (Göttingen) for the measurement of the X-ray structures.

I am very grateful to Dr. Sergei I. Kozhushkov for his help in the lab and for his interesting and fruitful discussions.

I would like to thank Dr. Mazen Es Sayed, Dr. Andrei Leonov, Dr. Vladimir Belov, Dr. Andrei Savchenko, Dr. Alexander F. Klebnikov and Dr. Franca Cordero for the fruitful discussions and their help.

I thank Rolf, Heiko, Hermann, Farina and James for the careful correction of this work.
I wish to thank all the members of the group of Prof. de Meijere, especially Boris, Michael Limbach, Björn, Jelena, Maria, Hermann, Sandra, Shamil and Vesta. I thank my laborcollegues Malte, Heiko, Viktor, Oleg, Tula, Karin, Alessandra and Daniel for a lot of fun. I thank Farina, Heiko and James for the tee-breaks and for their friendship.

I thank Mrs. G. Keil Knepel, Mr. S. Beußhausen and Mr. Carsten Rauch for helping me in any problem.

I wish to thank Ilaria, Leda, Luisa, Marta, Novella and Patrizia for their friendship also many kilometers far away.

I wish to thank Francesco for understanding my bad days and never leaving me alone.
Finally, I would like to thank my father, my mother and my sister for their love and support. Without them my studies would have not been possible.

Lebenslauf

Am 30. März 1975 wurde ich als zweites Kind von Giuliana, geb. Olivieri, und Sergio Gensini in Florenz (Italien) geboren.

Von September 1981 bis Juli 1986 besuchte ich die Don Minzoni Grundschule in Florenz und wechselte dann im September 1986 zur Guicciardini Mittelschule in Florenz, wo ich bis Juli 1989 verblieb. Von September 1989 bis Juli 1994 besuchte ich das humanistische Liceo Ginnasio Galileo in Florenz, wo ich im Juli 1994 das Abitur bestand.

Im Oktober 1994 nahm ich das Studium der Chemie an der Universitá degli Studi di Firenze in Florenz auf.

Unter der wissenschaftlichen Leitung von Herrn Prof. Dr. A. Brandi fertigte ich meine Diplomarbeit zu dem Thema "Sintesi di alcaloidi indolizidinici con controllo della stereochimica relativa ed assoluta" an. Am 20 Dezember 1999 wurde mir der akademische Grad Diplom-Chemikerin zuerkannt.

Seit April 2000 arbeite ich im Arbeitkreis von Herrn Prof. Dr. A. de Meijere an meiner Dissertation zum Thema "Synthesis of Potentially Biologically Active Cyclopropane- and Spirocyclopropane-annelated Oligoazaheterocycles".

Von Februar bis April 2002 arbeitete ich als Werks-Student, in Rahmen meiner Doktorarbeit, bei dem Pflanzenschutz Landwirtschaftszentrum der Firma Bayer AG in Monheim.

Von Oktober 2001 bis Januar 2002 war ich als wissenschaftliche Angestellte zur Betreuung im Chemischen Praktikum für Mediziner- und Zahnmediziner beschäftigt.

Von April bis Juli 2002 war ich zur Betreuung im organisch-chemischen Grundpraktikum beschäftigt.

Von Oktober bis November 2002 nahm ich erfolgreich an einem Kurs zur allgemeinen Pharmakologie und Toxikologie teil.

[^0]: N, N-Dibenzyl-indolo[1,2- a]cyclopropa[1,2-c]pyrrolidin-8b-amine (179)

