Massenspektrometrische und quantenchemische Studien radikalischer Polymerisationen zur Initiierung mit Peroxycarbonaten

Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen

vorgelegt von

Olaf Janßen

aus Wilhelmshaven

Göttingen 2008

D 7 Referent: Prof. Dr. M. Buback Korreferent: Prof. Dr. S. Schmatz Tag der mündlichen Prüfung: 23.01.2009 Meiner Familie.

Inhaltsverzeichnis

1	1 ZUSAMMENFASSUNG		1
2	2 EINLEITUNG UND ZIELSETZU	NG	3
3	3 THEORETISCHE GRUNDLAGE	N	7
	3.1 Grundlagen der Massenspektron	netrie	7
	3.1.1 Elektrospray-Ionisationsverfa	hren (ESI)	9
	3.1.2 Massenanalysatoren		11
	3.2 Quantenchemische Methoden		14
	3.2.1 Methoden zur näherungsweise	en Lösung der Schrödingergleichung	14
	3.2.2 Dichtefunktionaltheorie		15
	3.2.3 Basissätze		17
	3.2.4 Basissatzeffekte		17
4	4 MATERIALIEN UND METHODE	EN	19
	4.1 Experimentelle Techniken		19
	4 1 1 Aufbau und Betrieb des Finni	gan Massenspektrometers (Ion Trap)	19
	4.1.2 Aufbau und Betrieb des FT-IC	CR-Massenspektrometers (FT-ICR-MS)	19
	4.1.3 Gelpermeationschromatograp	hie (GPC)-Analyse	20
	4.2 Verwendete Chemikalien	·····	21
	4.2.1 Initiatoren		21
	4.2.2 Monomere		22
	4.2.3 Lösungsmittel		22
	4.3 Polymersynthese		23
5	5 MASSENSPEKTROMETRISCHE	ANALYSE	
	VON POLYMEREM MATERIAL	/ •••••••••••••••••••••••••••••••••••••	25
	5.1 Voraussetzung für die massensp	ektrometrische Untersuchung von Polymeren	27
	5.2 Festlegung der polymeren Endg	ruppe während der Polymerisation	28
	5.3 Interpretation der Massenspektre	en	30
6	6 QUALITATIVE ENDGRUPPENU	INTERSUCHUNG VON POLYMEREN:	
	PEROXYDICARBONATE		33
	6.1 Diethylperoxydicarbonat (F-PD	C)	
	6.2 Di- <i>n</i> -tetradecylperoxydicarbona	t (<i>n</i> TD-PDC)	37
	6.3 Di- <i>n</i> -hexadecylperoxydicarbona	t (nHD-PDĆ)	39
	6.4 Di- <i>iso</i> -propylperoxydicarbonat ((<i>i</i> P-PDC)	41
	6.5 Di-sec-butylperoxydicarbonat (s	B-PDC)	44
	6.6 Di-(2-ethylhexyl)peroxydicarbo	nat (2EH-PDC)	47
	6.7 Di-(2,2-diethylbutyl)peroxydica	rbonat (2EB-PDC)	55
	6.8 Schlussfolgerung		57

7 E	RGEBNISSE AUS QUANTENCHEMISCHEN RECHNUNGEN	59
7.1	Methodik	60
7.2	Decarboxylierung der Alkoxycarbonyloxylradikale	62
7.	2.1 Strukturen der Alkoxycarbonyloxylradikale	63
7.	2.2 Strukturen der Übergangszustände	65
7.	2.3 Thermochemie der Decarboxylierung	67
7.	2.4 Decarboxylierungsbarrieren	69
7.	2.5 Schlussfolgerung	71
7.3	Intramolekulare 1,5-Wasserstoffverschiebungen	72
7.	3.1 Struktur der Übergangszustände	73
7.	3.2 Thermochemie der intramolekularen 1,5-Wasserstoffverschiebung	75
7.	3.3 Schlussfolgerung	77
8 Q T	UALITATIVE ENDGRUPPENUNTERSUCHUNG VON POLYMEREN: <i>ERT</i> -ALKYLPEROXYCARBONATE	79
8.1	Zerfallsschema der <i>tert</i> -Alkylperoxycarbonate	80
8.2	<i>tert</i> -Butylperoxymethylcarbonat (TBPMC)	82
8.3	tert-Butylperoxy-2-Naphthylcarbonat (TBPNC)	85
8.4	tert-Butylperoxy-(2-ethylhexyl)carbonat (TBPEHC)	89
8.	4.1 Massenpektrometrische Endgruppenanalyse eines Poly(MMA)-Polymers	89

ANHANG 109

Massenspektrometrische Endgruppenanalyse eines Poly(EMA)-Polymers 95

Massenspektrometrische Endgruppenanalyse eines Poly(MMA)-Polymers 98 Massenspektrometrische Endgruppenanalyse eines Poly(EMA)-Polymers 102

8.4.2

8.5.1

8.5.2

8.5

8.6

9

1 Zusammenfassung

In der vorliegenden Arbeit wurden durch radikalische Polymerisation in Benzol-Lösung mit mehreren Peroxycarbonaten als Initiator hergestellte Polymethylmethacrylate durch Elektrospray-Ionisations-Massenspektrometrie (ESI-MS) untersucht. Die massenspektrometrische Charakterisierung von Polymer-Endgruppen erlaubt Rückschlüsse auf die beim Initiierungsprozess entstehenden radikalischen Spezies und auf die Folgereaktionen dieser Radikale vor der Addition an ein Monomermolekül. Außerdem wurden Dichtefunktionaltheorie-Rechnungen zur Bestimmung der Fragmentierungskinetik der im Initiatorzerfall primär entstehenden Radikale durchgeführt.

Die massenspektrometrische Endgruppenuntersuchung bei Initiierung mit Dialkylperoxydicarbonaten zeigte, dass die primär entstehenden Alkoxycarbonyloxylradikale im Zeitintervall bis zum Startschritt des Kettenwachstums nicht signifikant decarboxylieren. Lediglich für das aus Di-(2-ethylhexyl)peroxydicarbonat (2EH-PDC) gebildete Primärradikal werden im Massenspektrum auf Decarboxylierung hinweisende Endgruppen beobachtet, die aus intramolekularer 1,5-Wasserstoffübertragung resultieren. Die Untersuchung der Modellsubstanz Di-(2,2-diethylbutyl)peroxydicarbonat (2EB-PDC) weist darauf hin, dass die intramolekulare 1,5-Wasserstoffverschiebung vermutlich unter Ausbildung eines tertiären kohlenstoffzentrierten Radikals erfolgt.

Eine systematische DFT-Studie für verschiedene Alkoxycarbonyloxylradikale ergab in Übereinstimmung mit den experimentellen Befunden hohe Decarboxylierungsbarrieren. Ferner wurden Aktivierungsbarrieren für die intramolekulare 1,5-Wasserstoffverschiebung unterschiedlicher Alkoxycarbonyloxylradikale bestimmt.

Die ESI-MS-Methodik wurde auch zur Untersuchung der aktiven Spezies bei der Initiierung *tert*-Butylperoxymethylcarbonat (TBPMC), mit tert-Butylperoxy-2-Naphthylcarbonat (TBPNC), *tert*-Butylperoxy-2-ethylhexylcarbonat (TBPEHC) und *tert*-Amylperoxy-2-ethylhexylcarbonat (TAPEHC) eingesetzt. Während bei TBPMC keine Decarboxylierung der primär gebildeten Alkoxycarbonyloxylradikale beobachtet wurde, decarboxyliert das aus TBPNC entstehende Aryloxycarbonyloxylradikal quantitativ. Wie beim 2EH-PDC tritt bei TBPEHC und TAPEHC entstehenden Carbonyloxylradikale teilweise den aus Decarboxylierung auf. Aufgrund der hohen Anzahl radikalischer Spezies mit teils identischer Molmasse kam es zu Signalüberlagerungen, die durch zusätzliche Polymerisationen von Ethylmethacrylat zweifelsfrei aufgelöst werden konnten.

2 Einleitung und Zielsetzung

Kunststoffe bzw. synthetische Polymere können zu Recht als Werkstoffe des 21. Jahrhunderts bezeichnet werden. Sie finden Anwendung in allen Bereichen des täglichen Lebens. Der Anwendungsbereich erstreckt sich vom vielseitigen Verpackungsmaterial, über die Verwendung in Haushaltsgeräten, als Textilfaser oder als Beschichtungsmaterial jeglicher Art (z.B. Farben und Lacke) bis hin zum Einsatz als High-Tech-Material in der Medizintechnik (biokompatible Kunststoffe)^[1] und in der modernen Elektrotechnik (Flüssigkristalline Polymere).^[2] Ein besonderes Merkmal synthetischer Polymere sind deren vielseitige technische Eigenschaften, wie Formbarkeit und Elastizität, die sich im Herstellungsprozess in weiten Bereichen modifizieren lassen. Des Weiteren zeichnen sie sich durch eine im Vergleich zu Metallen oder Gläsern relativ günstige Produktionsweise ohne großen Rohstoffeinsatz aus. Diese Vorteile synthetischer Polymere führten auch zu der herausragenden Bedeutung, die die kunststofferzeugende Industrie zu einem wichtigen Zweig der chemischen Industrie werden ließ. In Deutschland wurden im Jahr 2007 ca. 21 Millionen Tonnen Kunststoffe hergestellt und damit ein Umsatz von ca. 23 Milliarden Euro erzielt.^[3]

Die dem Verwendungszweck anzupassenden Werkstoffeigenschaften führen dazu, dass man in Bezug auf synthetische Polymere auch von maßgeschneiderten Werkstoffen^[4] sprechen kann. Bei Polymeren sind einige Produkteigenschaften, wie z.B. die Glastemperatur oder Beständigkeit gegenüber Lösungsmitteln, von der Zusammensetzung und Mikrostruktur der Polymere abhängig und werden daher durch den Herstellungsprozess festgelegt. Die detaillierte Kenntnis der Kinetik der radikalischen Polymerisation und deren Teilschritte ist daher von besonderer Bedeutung.^[5] In den letzten Jahrzehnten wurden unter anderen von Buback et al. die einzelnen Teilschritte sehr umfassend durch Verwendung moderner Methoden in weiten Zustandsbereichen untersucht.

Ein in diesem Zusammenhang wichtiger Teilschritt ist die Initiierung radikalischer Polymerisationen. Am häufigsten werden über thermischen oder photochemischen Zerfall von Initiatoren Radikale gebildet, die durch Anlagerung an ein Monomermolekül das Kettenwachstum der radikalischen Polymerisation starten können. Eine wichtige Größe ist dabei die Initiatoreffektivität. Sie gibt an, welcher Anteil der gebildeten Radikale tatsächlich Kettenwachstum startet. Durch Nebenreaktionen, wie etwa die Umwandlung primär gebildeter Initiatorradikale in stabilere Radikale, wird die Initiatoreffektivität maßgeblich beeinflusst. Der thermische^[6-15] und photochemische^[16, 17] Zerfall von Initiatoren in Lösung ist bereits ausgiebig untersucht worden.

Der eigentliche Startschritt ist dagegen weniger intensiv erforscht. Die aus dem Initiator entstehenden Primärradikale können direkt an die Doppelbindung addieren oder durch Fragmentierungsreaktionen in andere radikalische Spezies zerfallen. Die sekundären Initiatorradikale können ebenfalls Kettenwachstum initiieren. Die Fragmentierungsreaktionen stehen im Gegensatz zu den Untersuchungen in Lösung dabei in Konkurrenz zu den Additionsreaktionen. Abhängig von der Struktur des Initiators und der Geschwindigkeit der Fragmentierungsreaktionen können bei der Initiierung auch mehrere radikalische Spezies auftreten, die sich an ein Monomer anlagern. Da die initiierenden Radikale als Endgruppen im Polymer verbleiben, gibt die detaillierte Untersuchung der Struktur und Konzentration der spezifischen Endgruppen Auskunft über den Zerfallsmechanismus der Primärradikale im Reaktionsgeschehen der radikalischen Polymerisation. Des Weiteren werden die Eigenschaften besonders bei niedermolekularen Polymeren auch durch die Art der Endgruppen mitbestimmt.

Für die Charakterisierung der Endgruppen steht neben der Kernresonanz-Spektroskopie (NMR) insbesondere die Massenspektrometrie zur Verfügung. Jedoch waren Polymere lange Zeit aufgrund ungeeigneter Ionisationsverfahren für massenspektrometrische Untersuchungen nicht zugänglich. Erst durch die Entwicklung schonender Ionisationsverfahren, wie die Elektrospray-Ionisation (ESI) oder die Matrix-unterstützte Laser Desorption/Ionisation (MALDI) durch Fenn et al.^[18] und von Tanaka et al.^[19], Hillenkamp et al.^[20, 21], war die Untersuchung synthetischer Polymere möglich. Im Laufe der Jahre haben sich beide Methoden in der modernen Analytik durchgesetzt. Dies wird durch eine Vielzahl an Veröffentlichungen besonders im Zusammenhang mit der Untersuchung von komplexen Biomolekülen, wie Nukleinsäuren und Proteinen, belegt. Die herausragende Bedeutung dieser neuen Ionisationsverfahren wurde auch durch die Verleihung des Nobelpreises im Jahre 2002 an Fenn und Tanaka unterstrichen.^[22, 23]

In jüngeren Arbeiten von Buback et al. wurde ESI-MS für die Endgruppenuntersuchung synthetischer Polymere eingesetzt. Aus der Art und Konzentration der detektierten Endgruppen im Polymer konnten Rückschlüsse auf die Zerfallsmechanismen der verwendeten Initiatoren gezogen werden. In diesem Zusammenhang wurden bereits Peroxypivalate^[24], Peroxyacetate^[25] und Diacylperoxide^[26] untersucht. Es liegen auch weitere Untersuchungen aus anderen Arbeitsgruppen zu photochemischen Initiatoren^[27-29] vor.

Im Mittelpunkt der hier vorgestellten Arbeiten standen detaillierte Endgruppenuntersuchungen überwiegend an MMA-Polymeren, um Informationen über die Art der initiierenden Radikale und damit über den Zerfallsmechanismus der Primärradikale zu erhalten. Die analysierten Polymerproben wurden unter Verwendung verschiedener thermisch zerfallender Dialkylperoxydicarbonate und *tert*-Alkylperoxycarbonate hergestellt. Die experimentellen Untersuchungen wurden durch quantenchemische DFT-Studien zu den Zerfallsreaktionen der entstehenden Initiatorradikale begleitet.

Nach der Darstellung der theoretischen Grundlagen und der verwendeten experimentellen Techniken in Kapitel 3 und 4, sollen in Kapitel 5 auf die Grundvoraussetzungen für die massenspektrometrische Untersuchung von Polymeren sowie die Vorgehensweise bei der Interpretation der erhaltenen Massenspektren eingegangen werden. In Kapitel 6 werden die Ergebnisse der massenspektrometrischen Endgruppenuntersuchung von MMA-Polymeren, die unter Verwendung verschiedener Dialkylperoxydicarbonate hergestellt wurden, vorgestellt. In Kapitel 7 liegt der Fokus auf DFT-Rechnungen zu Decarboxylierungs- und Wasserstoffübertragungsreaktionen, die für die beim Zerfall der Peroxycarbonate entstehenden Alkoxycarbonyloxylradikale möglich sind. In Kapitel 8 wird die Endgruppenbestimmung mittels ESI-MS auf Polymere ausgeweitet, die durch tert-Alkylperoxycarbonate initiiert werden. Abschließend erfolgt in Kapitel 9 ein kurzer Ausblick auf zukünftige Arbeiten.

3 Theoretische Grundlagen

3.1 Grundlagen der Massenspektrometrie

Die Massenspektrometrie ist aus der modernen apparativen Analytik chemischer Substanzen nicht mehr wegzudenken und hat sich vor allem in der Charakterisierung von Biomolekülen etabliert. Die Verbesserung der Ionisierungsprozesse hin zu "weicheren", nicht fragmentierenden Methoden und die Ausweitung der Detektionsgrenzen hat in der jüngsten Vergangenheit dazu geführte, dass Massenspektrometrie auch in der Polymeranalytik angewendet wird.^[30-35]

Grundlegend in der Massenspektrometrie sind die Wechselwirkungen von Ionen in der Gasphase mit magnetischen oder elektrischen Feldern. Die Ablenkung eines geladenen Teilchens in einem magnetischen bzw. elektrischen Feld ist von der Ladungszahl z und von der Masse m des Moleküls abhängig. Basierend hierauf wird in der Massenspektrometrie in einer Vielzahl von experimentellen Anordnungen eine Trennung von chemischen Substanzen nach ihrem Masse-zu-Ladungsverhältnis (m/z-Verhältnis) erreicht. Ein Massenspektrometer ist allgemein aus fünf Komponenten aufgebaut (siehe Abbildung 3-1).

Abbildung 3-1: Schematischer Aufbau eines Massenspektrometers.^[36]

Im Probeneinlass und in der Ionisationskammer wird das Analytmolekül ionisiert und in die Gasphase überführt. Im Massenanalysator findet die Trennung in einem magnetischen oder elektrischen Feld nach dem m/z-Verhältnis statt. Schließlich werden die Ionen am Detektor nachgewiesen, die Daten elektronisch erfasst und das Ergebnis der Messung dem Nutzer zur weiteren Auswertung in Form eines Massenspektrums ausgegeben.

In den letzten beiden Jahrzehnten wurden viele verschiedene Ionisierungsverfahren^[37] entwickelt und in der Analytik etabliert. Die Methodenauswahl hängt von der Fragestellung und dem Ziel der Untersuchungen ab. Makromoleküle werden bevorzugt mit ,weichen' Ionisationsmethoden untersucht, d.h. Methoden bei denen die Analytmoleküle nicht fragmentiert werden und die Detektion des Molekülpeaks möglich ist. Bei ,harten' Ionisationsmethoden erlaubt die Analytse der Molekülfragmente Rückschlüsse auf die chemische Struktur des Analytmoleküls, was bei der Charakterisierung von Naturstoffen beispielsweise hilfreich ist. Neben Elektronenstoßionisation (EI),^[38] Feldionisation (FI),^[39] chemischer Ionisation (CI),^[40] Desorptionsverfahren wie Felddesorption (FD),^[39] FAB (*fast atom bombardment*)^[41-43] sind ,weiche' Ionisationsmethoden wie Elektrospray-Ionisation (ESI)^[18, 44] und MALDI (*matrix-assisted laser desorption ionization*)^[19, 45, 46] in der Analytik von Biomolekülen fest etabliert. Durch die Vergabe des Nobelpreises an Fenn (ESI)^[22] und Tanaka (MALDI)^[23] im Jahr 2002 wurde die Bedeutung dieser Methoden in der Analytik gewürdigt.

Typische Methoden zur Massentrennung sind Sektorfeldmassenspektrometer, Flugzeitmassenspektrometer (*time of flight*, ToF)^[47, 48], Quadrupolmassenspektrometer^[49], Quadrupolionenfallen (*ion trap*)^[50] und Ionen-Zyklotron-Resonanz-Spektrometer (ICR)^[51-53]. In dieser Arbeit wurden zur Analyse von synthetischen Polymeren die ESI-Ionisationsmethode sowie die Quadrupolionenfalle und ein ICR-Gerät zur Massentrennung verwendet. Im Folgenden wird auf diese Techniken näher eingegangen.

3.1.1 Elektrospray-Ionisationsverfahren (ESI)

Das Elektrospray-Ionisationsverfahren zählt zu den "weichen' Ionisierungsmethoden, in denen das Analytmolekül bei der Ionisierung nicht fragmentiert wird. Für die Analyse von Polymeren, die aus einer Mischung von Molekülen unterschiedlicher Kettenlängen und somit unterschiedlicher Molmassen bestehen, ist dieses Verfahren von großer Bedeutung, denn die Interpretation des Fragmentspektrums synthetischer Polymere ist unter Berücksichtigung der Molekulargewichtsverteilung beim Einsatz von herkömmlichen Ionisationstechniken äußerst kompliziert. Der ESI-Prozess wurde von Fenn et al.^[18, 54] entwickelt und beruht auf dem Prinzip eines Sprühprozesses. Über eine Stahlkapillare, an deren Spitze eine elektrische Spannung anliegt, werden die gelösten Analytmoleküle in die Ionisationskammer gesprüht.

Mikroskopisch betrachtet lässt sich der Ionisierungsprozess in vier Schritte unterteilen:

- 1. Bildung kleiner, hochgeladener Elektrolyttröpfchen
- 2. Abnahme des Tröpfchendurchmessers durch Verdampfen des Lösungsmittels, bei gleichzeitigem Anstieg der Oberflächenladungsdichte.
- Coulombexplosionen in kleine hochgeladene Tröpfchen (siehe Abbildung 3-2; oben) bzw. kontinuierliche Abgabe solvatisierter Analytionen (siehe Abbildung 3-2; unten)
- 4. Emission desolvatisierter Ionen

Abbildung 3-2: Darstellung der verschiedenen Modellvorstellungen zur Ionisierung beim ESI-Prozess am Beispiel positiv geladener Analytionen.

Diese vier Schritte werden im Folgenden näher erläutert. Durch Anlegen einer Gleichspannung von 2 - 8 kV zwischen der Edelstahlkapillare und dem Einlass zum Analysator entsteht am Ende der Kapillare ein Kegel des versprühten Lösungsmittels. Bei der Messung positiver Ionen wird die Spannung so angelegt, dass die positiv geladenen Analytionen in Richtung des Massenanalysators beschleunigt werden. Die Detektion negativ geladener Analytionen erfolgt über eine Umpolung der angelegten Spannung. Durch die Oberflächenspannung der Lösung und die Beschleunigung der geladenen Teilchen in Richtung des Massenanalysators bildet sich am Ende der Kapillare der so genannte Taylorkonus aus. Wenn die anliegende Spannung ausreichend hoch ist, um die Oberflächenspannung des Lösungsmittels zu überwinden, verjüngt sich der Konus zu einem Flüssigkeitsfilament aus vielen Tröpfchen. In diesen Mikrotröpfchen herrscht aufgrund der elektrostatischen Ladungstrennung ein Überschuss an positiven Ladungen. Durch Verdampfen des Lösungsmittels im Inertgasgegenstrom (Stickstoff) verkleinert sich der Tröpfchenradius, bis es bei Überschreitung des Rayleighlimits aufgrund der Abstoßung der gleichnamigen Ladungen zu einer Coulomb-Explosion kommt. Die Stabilität der Tröpfchen kann über die Rayleighgleichung beschrieben werden, wobei ε_0 der Dielektrizitätskonstante im Vakuum entspricht:

$$Q^{2} = 64 \cdot \pi \cdot \varepsilon_{0} \cdot \sigma \cdot r^{3}$$

$$r_{\text{stabil}} \geq \sqrt{\frac{Q^{2}}{64 \cdot \pi \cdot \varepsilon_{0} \cdot \sigma}}$$

$$(3.1)$$

Ein Tröpfchen mit dem Radius r ist so lange stabil, wie dessen Ladung Q die Oberflächenspannung σ ausgleicht. Es kommt zur Bildung von freien, gasförmigen, Analytionen, für deren Erklärung zwei theoretische Modelle entwickelt wurden.

Das ältere Modell wird als *charge-residue model* (CRM) oder als *single ion in droplet theory* (SIDT)^[55] bezeichnet und geht von einer Serie von Coulomb-Explosionen aus, bei denen extrem kleine Tröpfchen mit einem Radius von etwa einem Nanometer gebildet werden, welche lediglich ein Analytmolekül enthalten (siehe Abbildung 3-2; oben). Durch Kollision mit Stickstoffmolekülen des Inertgasstroms auf dem Weg zum Massenanalysator werden diese Tröpfchen vollständig vom Lösungsmittel befreit.^[56]

Das Ionen-Emissionsmodell (ion evaporation model, IEM-Theorie)^[57, 58] nimmt hochgeladene Tröpfchen von mit einem Durchmesser von 8 nm an, aus denen freie Analytionen kontinuierlich in die Gasphase freigesetzt werden (siehe Abbildung 3-2; unten). Durch Coulomb-Abstoßung ordnen sich die Ladungen gleichmäßig verteilt an der Oberfläche des Tröpfchens an. Dadurch nimmt die Ladungsdichte an der Oberfläche rasant zu. Die an der Oberfläche lokalisierten Analytmoleküle werden als geladene Teilchen aus dem Tropfen in die Gasphase emittiert. Die kontinuierliche Emission wird durch die gleichzeitig erfolgende Evaporation von Lösungsmittelmolekülen aufrechterhalten. Unterschiedliche experimentelle Befunde lassen sich mit jeweils einer der beiden Modellvorstellungen erklären. Man geht davon aus, dass bei der Ionisierung von Polymermolekülen die Kombination aus beiden Theorien die realen Vorgänge beschreibt.^[59] Dabei wird für niedermolekulare Analytmoleküle mit einem Molekulargewicht bis etwa 500 g·mol⁻¹ das IEM-Modell und für höhermolekulare Teilchen das CRM-Modell favorisiert.^[60]

3.1.2 Massenanalysatoren

Fourier-Transformations-Ionen-Zyklotron-Resonanz-Massenspektrometrie (FT-ICR-MS)

Die Grundlage der FT-ICR-Massenspektrometrie besteht in der Zyklotron-Kreisbewegung von Ionen im homogenen Magnetfeld. Dabei weisen negativ und positiv geladene Teilchen entgegen gesetzte Flugrichtungen auf. Wird ein Teilchen der Masse *m* und der bewegten elektrischen Ladung *q* in ein Magnetfeld \vec{B}_0 gebracht, das senkrecht zur Bewegungsrichtung \vec{v} der Ladung steht, wirkt auf die Ladung die Lorentzkraft \vec{F}_L mit:

$$\vec{F}_{\rm L} = m \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = q \vec{v} \times \vec{B}_0 \tag{3.2}$$

Ist das Magnetfeld räumlich homogen und wird die bewegte Ladung weder beschleunigt noch abgebremst, resultiert daraus für das Analytion eine stabile Kreisbahn. Für die Kreisfrequenz, die als Zyklotronfrequenz ω_c bezeichnet wird, ergibt sich:

$$\omega_{\rm c} = \frac{q \cdot B_0}{m} \tag{3.3}$$

Somit besitzen alle Ionen des gleichen m/z-Verhältnisses unabhängig von ihrer ursprünglichen Geschwindigkeit dieselbe Zyklotronfrequenz, ω_c . Durch Anlegen eines elektrischen Wechselfeldes orthogonal zum Magnetfeld wird eine Zyklotronresonanz erzeugt (siehe Abbildung 3-3).

Abbildung 3-3: Zyklotronresonanzeffekt. Das Ion wird durch Anregung (links) auf eine höhere Kreisbahn (rechts) gehoben, wo es später detektiert werden kann.

Stimmt die Frequenz des eingestrahlten Wechselfeldes mit der Zyklotronfrequenz ω_c des Analytions überein, tritt der Resonanzfall ein und der Radius der Zyklotronkreisbahn wird durch die Aufnahme von Energie aus dem Wechselfeld vergrößert (siehe Abbildung 3-3, links). Ionen anderer m/z-Verhältnisse werden nicht beschleunigt und verbleiben auf der inkohärenten, kleineren Kreisbahn. Die angeregten, auf höherer Kreisbahn oszillierenden Ionen induzieren nun einen Wechselstrom, dessen Frequenz exakt der Eigenfrequenz der zu bestimmenden Ionen entspricht. Bei der FT-ICR-Massenspektrometrie erfolgt die Detektion der Ionen durch Messung dieses Induktionsstroms (Abbildung 3-3 (rechts)). Bei gleichzeitiger Einstrahlung verschiedener Frequenzen gelingt eine massenunabhängige Anregung von Ionen, daher wird diese auch als Breitbandanregung (broadband excitation) bezeichnet. Mit Hilfe dieser Anregung ist es möglich, nicht erwünschte Ionen durch Kollision mit der Wand der Zelle zu eliminieren. Die Analyse der einander überlagernden Signale erfolgt über Fourier-Transformation, wobei die Intensität in eine Frequenzdomäne und diese dann in eine Massendomäne transformiert wird. Erstmals wurde dies in den siebziger Jahren von M. B. Comisarow und A. G. Marshall auf die in der Massenspektrometrie bereits bekannte Ion-62] Zyklotron-Resonanz-Technik angewendet.^{[61,} Die Anwendung der Fourier-Transformationstechnik ermöglicht eine sehr hohe Auflösung in der Massendomäne (m/z), die eine Bestimmung der elementaren Zusammensetzung^[63, 64] von Molekül- und Fragmentionen erlaubt. Die Kopplung des FT-ICR-Massenspektrometers mit der ElektrosprayIonisationstechnik ermöglicht die hochaufgelöste massenspektrometrische Analyse von polymerem Material, das aus einem Gemisch unterschiedlicher Polymerketten besteht.

Ionenfalle (LCQ-ion trap)^[44]

Der zweite verwendete Analysator ist eine Ionenfalle (LCQ-ion trap), deren Massenspektren zwar nicht die hohen Auflösungen des FT-ICR-MS aufweisen, aber aufgrund der vergleichsweise unkomplizierten Probenpräparation und experimentellen Durchführung als Standardmethode verwendet wird. Die Trennung der Ionen erfolgt nach ihrer Masse in einem elektrischen Quadrupolfeld. Das Feld wird durch drei rotationssymmetrische Elektroden erzeugt: zwei Endkappenelektroden und eine mittlere Ringelektrode. Durch Erzeugung eines zeitlich variablen Feldes hält die Ionenfalle die geladenen Teilchen auf bestimmten, ihrem m/z-Verhältnis entsprechenden zyklischen Kreisbahnen, wodurch sie für eine gewisse Zeit akkumuliert werden können. Um ein Massenspektrum der in der Ionenfalle aufbewahrten Ionenpopulation aufzunehmen, wird die elektrische Einstellung des Quadrupols stetig verändert, so dass die Ionen nach steigendem m/z-Verhältnis aus der Ionenfalle geschleudert werden und auf den Detektor prallen.

3.2 Quantenchemische Methoden

Die Berechnung von Molekülgeometrien, Schwingungsfrequenzen und der Energetik von Molekülen ist nicht exakt möglich. Die Theoretische Chemie liefert jedoch mit Näherungsverfahren Methoden zur Berechnung dieser Größen. In diesem Abschnitt sollen Näherungsverfahren erläutert werden, die sich insbesondere für die Berechnung größerer Systeme, wie z. B. Peroxidmoleküle, eignen. Für einen generellen Überblick sei auf geeignete Lehrbücher verwiesen.^[65]

3.2.1 Methoden zur näherungsweisen Lösung der Schrödingergleichung

Theoretische Untersuchungen zur Bestimmung der Potenzialparameter der interessierenden Systeme basieren auf der Lösung der zeitunabhängigen Schrödingergleichung.

$$\hat{H}_{\text{Mol}}\Psi = E\Psi \tag{3.4}$$

Mit dieser Eigenwertgleichung können die entsprechende Wellenfunktion Ψ und die Eigenwerte bestimmt werden. Der Hamiltonoperator \hat{H}_{Mol} des Moleküls hat die Form:

$$\hat{H}_{Mol} = \hat{T}_{K} + \hat{T}_{e} + \hat{V}_{Ke}(\vec{Q},\vec{q}) + \hat{V}_{KK}(\vec{Q}) + \vec{V}_{ee}(\vec{q})$$
(3.5)

und enthält sowohl die kinetische Energie der Kerne und der Elektronen als auch die verschiedenen Terme der potentiellen Energie für die repulsiven und attraktiven Wechselwirkungen zwischen Kernen und Elektronen. Mit der Born-Oppenheimer-Näherung^[66] lässt sich die Bewegung der Kerne von der Elektronenbewegung separieren. Dabei wird davon ausgegangen, dass die Elektronen sich aufgrund ihrer kleineren Masse sehr viel schneller als die Kerne bewegen. Bei der Bewegung der Kerne passen sich die Elektronen instantan an die neue Kernkonfiguration an. Die Berechnung der Energieeigenwerte lässt sich dann in zwei Schritte aufteilen:

- Die Lösung der elektronischen Schrödingergleichung bei fixierten Kernkoordinaten \vec{Q} .
- Die Lösung der Kernschrödingergleichung im Potenzial $V(\vec{Q})$ aus dem ersten Schritt.

Ein näherungsweises Lösungsverfahren der elektronischen Schrödingergleichung ist das Self-Consistent-Field (SCF) Verfahren^[67, 68], welches auf der Hartree-Fock-Theorie (HF)^[69, 70] basiert. Hierbei wird jedes Elektron im Potenzialfeld der Kerne und in einem effektiven Potenzial der übrigen Elektronen mittels einer Einteilchen-Schrödingergleichung beschrieben. Das Gesamtpotenzial wird dann selbstkonsistent berechnet.

HF-Verfahren rechnen mit nur einer Slaterdeterminante und berücksichtigen keine Elektronenkorrelation. Sie sind für chemische Reaktionen, bei denen Bindungen gebrochen bzw. neu geknüpft werden, nicht geeignet.

Zu den Methoden, die explizit Elektronenkorrelation berücksichtigen, gehören CI (configuration interaction), MRCI (multi reference configuration interaction), MP (Møller Plesset) Störungstheorie 2. oder 4. Ordnung^[71] und DFT (density functional theory).^[72] Für komplexe elektronische Strukturen wie sie bei den untersuchten Peroxycarbonaten und ihren Fragmentierungsreaktionen auftreten, wird bei den meisten dieser Verfahren eine Beschreibung höherer Ordnung notwendig. Dies führt zu einem sehr hohen Rechenaufwand. Eine Möglichkeit, die Elektronenkorrelation zu berücksichtigen und den Rechenaufwand gegenüber dem HF-Verfahren nur minimal zu steigern, bietet die Dichtfunktionaltheorie.

3.2.2 Dichtefunktionaltheorie

Die Dichtefunktionaltheorie basiert auf der Strategie, Elektronenkorrelation über generelle Funktionale der Elektronendichte zu beschreiben. Hohenberg und Kohn bewiesen die Existenz eines Funktionals $E[\rho]$, welches exakt die Grundzustandsenergie und Elektronendichte $\rho[r]$ am Punkt r exakt beschreibt.^[73] Somit bewiesen sie die Möglichkeit, die Energie eines Systems direkt aus $\rho[r]$ zu berechnen, ohne die Schrödingergleichung zu lösen. Allerdings gibt das Hohenberg-Kohn-Theorem das Funktional $E[\rho]$ selbst noch nicht an. Ausgehend von den Arbeiten von Kohn und Sham^[72] wird die elektronische Energie von annähernden Funktionalen derzeitiger DFT-Methoden mit mehreren Termen beschrieben.

$$E = E^{\rm T} + E^{\rm V} + E^{\rm J} + E^{\rm XC}, \qquad (3.6)$$

Hierbei stellt E^{T} die kinetische Energie der Elektronen dar, E^{V} beschreibt die potenzielle Energie der Kern-Elektron- und Kern-Kern-Wechselwirkung, E^{J} berücksichtigt die Elektron-Elektron-Abstoßung und E^{XC} enthält alle verbleibenden Effekte. Bis auf die Kern-Kern-Wechselwirkung sind alle Ausdrücke Funktionale der Elektronendichte ρ . Die Energiebeiträge E^{T} , E^{V} , und E^{J} entsprechen der klassischen Energie der Elektronendichteverteilung ρ . Der Energiebeitrag E^{XC} besteht aus der Austauschwechselwirkungsenergie (für α und β Spin Elektronendichten) und der dynamischen Korrelationsenergie der Elektronen. Üblicherweise wird E^{XC} in zwei Teile gegliedert, wobei $E^{X}(\rho)$ oft als der Austauschwechselwirkungsanteil und $E^{C}(\rho)$ als der Korrelationsanteil bezeichnet wird.

$$E^{\rm XC}(\rho) = E^{\rm X}(\rho) + E^{\rm C}(\rho) \tag{3.7}$$

Tatsächlich handelt es sich bei $E^{X}(\rho)$ und $E^{C}(\rho)$ um die Anteile der Wechselwirkungen zwischen Elektronen gleichen bzw. gemischten Spins. Beide Anteile können entweder von der Elektronendichte allein (lokale Funktionale) oder der Elektronendichte und ihrem Gradienten abhängen (gradientenkorrigierte Funktionale).

BLYP ist ein oft verwendetes DFT-Funktional. Es kombiniert das von Becke^[74] entwickelte gradientenkorrigierte Austauschfunktional mit dem gradientenkorrigierten Korrelations-funktional von Lee, Yang und Parr.^[75]

Da die Austauschenergie bereits in der HF-Methode berechnet wird, die Korrelation jedoch unberücksichtigt bleibt, wird in den so genannten Hybridfunktionalen der HF-Austauschterm mit dem EXC-Term der DFT-Funktionale kombiniert^[76, 77], wobei $c_{\rm HF}$ und $c_{\rm DFT}$ Konstanten darstellen.

$$E_{\rm hybrid}^{\rm XC} = c_{\rm HF} E_{\rm HF}^{\rm XC} + c_{\rm DFT} E_{\rm hybrid}^{\rm XC}$$
(3.8)

Das Drei-Parameter-Funktional B3LYP^[76] ist ein solches Hybridfunktional. Es basiert auf Beckes Austauschfunktional und dem Korrelationsfunktional von Lee, Yang und Parr. Die Parameter entsprechen denen des Hybridfunktionals B3PW91 mit dem Korrelationsfunktional von Perdew und Wang^[78] und wurden von Becke durch Anpassung an Daten wie Atomisierungsenergien, Ionisierungpotenziale, Protonenaffinitäten und Atomenergien aus abinitio Rechnungen mit der G1-Methode bestimmt. G1 ist eine Komponentenmethode zur Energieberechnung aus 7 einzelnen Berechnungschritten. Sie kann hohe Genauigkeit bei verringerter Rechenzeit gegenüber einer oft unpraktikablen einzelnen Rechnung hohen Niveaus erreichen.^[77]

3.2.3 Basissätze

Eine weitere Näherung wird bei der Beschreibung der Molekülorbitale als Linearkombination eines Satzes von Einelektronen-Funktionen, die als Basisfunktionen dienen, gemacht, wobei $c_{\mu i}$ die Koeffizienten der normierten Basisfunktionen χ_{μ} sind.

$$\Psi_{i} = \sum_{\mu=1}^{N} c_{\mu i} \chi_{\mu} \tag{3.9}$$

Die Beschreibung der Basisfunktionen mittels Gaußfunktionen ist in Gaussian3.0 und anderen ab-initio Programmen verwirklicht, da die Integration über eine Linearkombination von Gaußfunktionen sehr schnell durchzuführen ist.^[79]

Diese Funktionen haben folgende Form:

$$g(\alpha, r) = c \cdot x^{l} \cdot y^{m} \cdot z^{n} \cdot \exp(-\alpha \cdot r^{2}). \qquad (3.10)$$

Hierbei beschreibt α die radiale Größe der Funktion, r den Ortsvektor in kartesischen Koordinaten x, y und z, und c dient der Normierung der gesamten Funktion. Linearkombinationen dieser primitiven Gaußfunktionen werden benutzt, um die kontrahierten Gaußfunktionen zu bilden, welche schließlich als Basisfunktionen dienen:

$$\chi_{\mu} = \sum_{p} d_{\mu p} g_{p} , \qquad (3.11)$$

wobei die Koeffizienten $d_{\mu p}$ Konstanten sind.

3.2.4 Basissatzeffekte

Die Beschreibung der Aufenthaltswahrscheinlichkeit der Elektronen mittels Atom-Orbitalen ist eine Näherung an das wirkliche quantenmechanische Bild, in dem Elektronen eine endliche Wahrscheinlichkeit besitzen, sich an jeder beliebigen Stelle im Raum zu befinden. Eine Annäherung an dieses Limit wird mit der Lockerung der Restriktionen für die Elektronen erreicht.

Eine Erhöhung des Basissatzes, d. h. die Möglichkeit der Elektronen, sich auch in höheren Quantenzuständen aufzuhalten, führt demnach zu einer verbesserten Beschreibung des gesamten Systems. Eine ausführliche Beschreibung von Basissätzen findet sich bei Pople^[80] und Foresman.^[77] Die in der vorliegenden Arbeit verwendeten Split-Valence Basissätze, bei denen die Elektronen eines Atoms in innere und äußere Elektronen getrennt sind, sollen im Folgenden kurz beschrieben werden.

Double-Zeta-Split-Valence-Basissätze: Die Elektronen werden in Elektronen der inneren Schalen und der äußeren Schale (Valenzelektronen) eingeteilt. Zusätzlich werden die Valenzelektronen in innere und äußere Elektronen unterteilt.

- 6-31G(d): Die Elektronen aus inneren Schalen werden mittels der Kontraktion aus 6 primitiven Gaußfunktionen, die Valenzelektronen mittels der Kontraktion aus drei primitiven Gaußfunktionen für die äußeren Elektronen beschrieben. Zusätzlich werden d-Funktionen bei Schweratomen verwendet (polarisierter Basissatz). Dieser Basissatz ist sehr gebräuchlich für mittelgroße Systeme und ist auch als 6-31G* bekannt.
- 6-31G(d,p): Wie bei 6-31G(d) mit zusätzlichen p-Funktionen an den Wasserstoffatomen, auch bekannt als 6-31G**.
- 6-31+G(d,p): Wie bei 6-31G(d,p) mit diffusen Funktionen an den Schweratomen.
 Diffuse Funktionen sind größere Funktionen des s- und p-Typs, die den Elektronen erlauben, einen größeren Raum einzunehmen.

Triple-Zeta-Split-Valence-Basissätze: Gegenüber den Double-Zeta-Split-Valence-Basissätzen werden die Valenzelektronen in drei Gruppen aufgeteilt.

- 6-311+G(d,p): Wie bei 6-31+G(d,p), allerdings werden die Valenzelektronen mit der Kontraktion aus drei primitiven Gaußfunktionen f
 ür die inneren und jeweils zwei Gaußfunktionen f
 ür die äußeren Elektronen beschrieben.
- 6-311+G(2d,p): Wie 6-311+G(d,p) mit zwei d-Funktionen für Schweratome.
- 6-311+G(2df,2pd): Wie 6-311+G(d,p) mit zwei d-Funktionen und einer f-Funktion für Schweratome und zwei p-Funktionen und einer p-Funktion für die Wasserstoffatome.

4 Materialien und Methoden

4.1 Experimentelle Techniken

4.1.1 Aufbau und Betrieb des Finnigan Massenspektrometers (Ion Trap)

Die ESI-MS-Spektren wurden an einem Finnigan LCQ-Ionenfallen Massenspektrometer (Thermo Finnigan, San Jose, USA) gemessen. Dabei wurden die Spektren in einem Bereich von 200 - 2000 m/z bei einer Sprühspannung von 4.5 kV und einer Kapillartemperatur von 200° C aufgenommen. Die Polymer-Probe wurde in einer Konzentration von etwa $100 \,\mu\text{g}\cdot\text{mL}^{-1}$ in einem (3:1)-Gemisch aus Dichlormethan und Methanol gelöst. Zur Verbesserung des Signal-zu-Rausch-Verhältnisses wurden etwa 200 Einzelspektren koaddiert. Von diesen Standardparametern abweichende Einstellungen werden ggf. im Text erwähnt.

4.1.2 Aufbau und Betrieb des FT-ICR-Massenspektrometers (FT-ICR-MS)

Das für hochauflösende Massenspektren genutzte FT-ICR-Massenspektrometer (7 Tesla APEX IV) besteht aus einer externen ESI-Ionenguelle (APOLLOP), der Ionentransferoptik und einer ICR-Ionenfalle (INFINITY). Die untersuchten Polymerproben wurden in einem Dichlormethan/Methanol-Gemisch (1:1, v/v), unter Zugabe weniger Tropfen einer 5 mM Ammoniumacetat-Lösung, gelöst. Eine zugegebene, externe Standardsubstanz diente für die interne Kalibrierung der gemessenen Massenspektren. Die Analytlösung wurde über eine Spritzenpumpe mit einer Flussrate von 2 µL·min⁻¹ in das Massenspektrometer eingeführt. Für einen optimalen Ionisierungsvorgang diente eine 4.2 kV Elektrospray-Spannung, eine 100 V Spannung am Kapillarende und ein Vernebelungsgasdruck von 30 psi. Das Trocknungsgas Stickstoff hatte eine Temperatur von 300 °C. Die aufgefangenen Ionen wurden im Hexapol-Bereich für 0.05 bis 0.3 s akkumuliert und dann in die ICR-Zelle transferiert, wo diese über Breitbandanregung in einem Massenbereich von m/z 200 bis 1700 gemessen wurden. Bei interner Kalibrierung werden trotz des verwendeten Breitbandmodus die Peakmaxima mit einer Präzisionen von 0.5 ppm bestimmt. Dadurch kann dem Signal eines Ions kleiner als 1500 Da mit Hilfe eines vom Steuerrechner des Massenspektrometers bereit gestellten Hilfsprogramms eine eindeutige Summenformel zugeordnet werden. Die Datenerfassung und Datenverarbeitung erfolgt am PC unter Verwendung des Programms XMASS (Version 3.1).

4.1.3 Gelpermeationschromatographie (GPC)-Analyse

Die Molekulargewichtsverteilungen der synthetisierten Polymer-Proben wurden durch Gelpermeationschromatographie (GPC) oder Größenausschluss-Chromatographie (Size-SEC) Exclusion-Chromatography; gemessen. Bei dieser Standardmethode der Polymeranalytik erfolgt die Auftrennung der Polymere in Lösung nach dem Größenausschlussprinzip. Ein Differentialrefraktometer (RI) und/oder wahlweise ein UV-Detektor wurden zur Detektion der getrennten Polymerfraktionen eingesetzt. Der UV-Detektor setzt eine UV-aktive Gruppe im Molekül voraus und wird daher vorrangig bei der Analyse von Polystyrol-Proben verwendet. Für den RI-Detektor gilt, dass die Intensität des Signals proportional zur Massenkonzentration des Polymers in der mobilen Phase ist. Bei der Bestimmung der absoluten Molmassenverteilung mit Hilfe der GPC ist eine Kalibrierung erforderlich, die über eng verteilte Polystyrolstandards ($M_p = 4 \cdot 10^2 - 3 \cdot 10^6 \text{ g} \cdot \text{mol}^{-1}$) der Firma Polymer Standards Service (PSS, Mainz) erfolgte. Die mittlere Molmassen dieser Standardpolymere wurden durch Absolutmethoden (Lichtstreuung, Osmometrie) bestimmt. Über polymerspezifische Mark-Houwink-Koeffizienten kann die Polystyrol-Kalibrierkurve zu einer Kalibrierungkurve für andere Homopolymere umgerechnet werden. Eine Auswahl von Mark-Houwink-Koeffizienten für die in dieser Arbeit hergestellten Polymere ist in Tabelle 4-1 aufgelistet.

Arbeit untersteinten Forymere in TTH .			
Polymer	$K / \mathrm{mL} \cdot \mathrm{g}^{-1}$	а	Referenz
Polystyrol	$1.41 \cdot 10^{-2}$	0.700	[81]
Polymethylmethacrylat	$1.29 \cdot 10^{-2}$	0.688	[82]

Tabelle 4-1: Mark-Houwink-Koeffzienten K und α für die in dieser Arbeit untersuchten Polymere in THF.

Die in dieser Arbeit genutzte GPC-Anlage bestand aus einer Waters 515 HPLC-Pumpe, einem JASCO AS-2055 Autosampler, einer Säulenkolonne und einem Detektorensystem. Die Trennung der Proben erfolgte durch eine Vorsäule und drei Trennsäulen ((1) PSS SDV, 8 x 50 mm, 5 μ ; (2) PSS SDV, 8 x 300 mm, 5 μ , 10⁵ Å; (3) PSS SDV, 8 x 300 mm, 5 μ , 10⁴ Å; (4) PSS SDV, 8 x 300 mm, 5 μ , 100 Å). Die Detektion erfolgte durch einen RI- (Waters 2410) und einen UV/VIS-Detektor (Viskotek VE3210). Die Molmassenverteilungen wurden mit Tetrahydrofuran bei 35°C als Eluationsmittel, bei einem Fluss von 1.0 mL·min⁻¹ und einer Polymerkonzentration von 3 mg·mL⁻¹ gemessen. Als interner Standard diente Toluol. Die erhaltenen Daten wurden mit dem Programm WINGPC 6.20 (PSS) bearbeitet.

4.2 Verwendete Chemikalien

4.2.1 Initiatoren

Die in dieser Studie untersuchten Initiatoren wurden freundlicherweise von der Firma AKZO Nobel, Deventer (NL) in hoher Reinheit zur Verfügung gestellt. Die Initiatorproben wurden ohne weitere Reinigung in den radikalischen Polymerisationen eingesetzt. Die Reinheiten der Initiatorlösungen sind in den Tabellen angegeben.

Dialkylperoxydicarbonate

Di(2-ethylhexyl)peroxydicarbonat (2EH-PDC)

Abbildung 4-1: Untersuchte Dialkylperoxydicarbonate

Tabelle 4-2: Reinheiten der verwendeten Dialkylperoxydicarbonate

Initiator	Gewichtsanteil / %	Lösungsmittel
E-PDC	11.0	Chlorbenzol
nTD-PDC	96.0	—
nTD-PDC	99.3	—
<i>i</i> P-PDC	7.2	Chlorbenzol
sB-PDC	9.7	Chlorbenzol
2EH-PDC	97.0	—
2EB-PDC	9.3	Chlorbenzol

tert-Alkylperoxycarbonate

tert-Butylperoxymethylcarbonat (TBPMC)

tert-Butylperoxy(2-ethylhexyl)carbonat (TB2EHC)

tert-Butylperoxy-2-naphtylcarbonat (TBPNC)

tert-Amylperoxy(2-ethylhexyl)carbonat (TBP2EHC)

... .

Tabelle 4-3: Reinheiten der untersuchten tert-Alkylperoxymonocarbonate

Bezeichnung	Gewichtsanteil %	Losungsmittel
TBPMC	> 99	—
TBPNC	> 99	—
TBPEHC	> 99	—
TAPEHC	94	—

4.2.2 Monomere

Methylmethacrylat (MMA); Fluka, 99.0 %, stabilisiert mit Hydrochinon-monomethylether.

Ethylmethacrylat (EMA), Fluka, 99.0 %, stabilisiert mit Hydrochinon.

Die verwendeten Monomere wurden über Vakuumdestillation vom Stabilisator abgetrennt.

4.2.3 Lösungsmittel

In den Lösungspolymerisationen wurde Benzol (Fluka, 99.7 %) als Lösungsmittel eingesetzt.

4.3 Polymersynthese

Die jeweils untersuchten Polymerproben wurden mittels Lösungspolymerisationen hergestellt. Dazu wurden Monomer ($c_{Monomer} = 3.0 \text{ mol} \cdot \text{L}^{-1}$) und Initiator ($c_{Initiator} = 0.1 \text{ mol} \cdot \text{L}^{-1}$) in Benzol gelöst. Zum Entgasen wurde nacheinander die Lösung eingefroren, die vorliegende Gasphase an einer Hochvakuumpumpe (Edwards, EXC 120) evakuiert und die Lösung anschließend wieder aufgetaut. Diese Prozedur wurde drei Mal wiederholt. Danach wurde die vom Sauerstoff befreite Polymerisationslösung in einer Glove-Box (Braun, Lab Master 130) in 4 mL Schraubdeckelgläser gefüllt. Die Polymerisationen wurden in einem auf die Polymerisationstemperatur vorgeheizten Thermoblock (Rotilabo, Block Heater H 250) durchgeführt. Nach 10 - 20 min wurden die polymerisierten Proben aus dem Heizblock entnommen und in einem Eisbad rasch abgekühlt. Die kalten Proben wurden in Schnappdeckelgläser umgefüllt und das Lösungsmittel im Abzug verdampft. Zur vollständigen Trocknung wurden die Proben an einer Vakuumpumpe getrocknet. Anschließend wurde der Umsatz gravimetrisch überprüft. Vor der massenspektrometrischen Untersuchung der Proben wurde mittels Gelpermeationschromatographie (GPC) die Molekulargewichtsverteilung bestimmt.

Die Temperaturen der jeweiligen Polymerisationsexperimente wurden auf die Kinetik des jeweiligen Initiators abgestimmt, so dass der Radikalfluss in allen Experimenten stets vergleichbar war. Um Polymere mit kleinen Molmassen herzustellen, wurde eine relativ hohe Initiatorkonzentration $c_{\text{Ini}} = 0.1 \text{ mol} \cdot \text{L}^{-1}$ gewählt. Die Polymerisationstemperatur wurde so ausgewählt, dass die Halbwertszeit des Initiatorzerfalls 6 Minuten betrug.^[83]

24 5 Massenspektrometrische Analyse von polymerem Material

5 Massenspektrometrische Analyse von polymerem Material

Der Schwerpunkt dieser Arbeit liegt auf der massenspektrometrischen Endgruppenanalyse von synthetischen Polymeren. Massenspektrometrische Methoden werden im großen Umfang in der Bioanalytik zur Untersuchung von Substanzen, z.B. Naturstoffen, eingesetzt, die sich im Gegensatz zu den Polymeren dadurch auszeichnen, dass sie eine definierte Masse m aufweisen. Bei Polymeren werden für jede Ladung z mehrere m/z-Werte im Massenspektrum beobachtet.

Abbildung 5-1: Typisches Massenspektrum eines MMA-Homopolymers im Bereich der Detektionsgrenzen von m/z 200 bis 2000.

Bei synthetischen Polymeren handelt es sich um ein Gemisch aus Polymeren mit unterschiedlicher Kettenlänge, was zu einer Vielzahl von Signalen im Massenspektrum führt. Das typische Massenspektrum eines Methylmethacrylat-Polymers (Poly(MMA)), das im Rahmen dieser Arbeit unter Verwendung eines Peroxydicarbonat als Initiator hergestellt und untersucht wurde, ist in Abbildung 5-1 gezeigt. Aufgrund der sich wiederholenden Monomereinheiten im Polymer, werden auch im Massenspektrum sich wiederholende Signalserien beobachtet. Die Abstände der Signale entsprechen der Masse einer Monomereinheit. Im Folgenden werden die Bereiche dieser sich wiederholenden Signale als Monomerwiederholungseinheit bezeichnet. Bei einheitlicher Ionisierung entspricht die Anzahl der Signalserien im gesamten Massenspektrum der Anzahl der polymeren Spezies mit unterschiedlicher Endgruppenzusammensetzung. Zur Charakterisierung der Endgruppen genügt daher die Analyse einer Monomerwiederholungseinheit. Es gilt dabei zu beachten, dass jeder Peak in der untersuchten Monomerwiederholungseinheit zu einer Serie von Signalen gehört, die auf polymere Spezies mit identischer Endgruppenzusammensetzung hinweisen. Die identifizierten Signale einer Monomerwiederholungseinheit sollten daher zur Überprüfung auch in anderen Monomerwiederholungseinheiten zugeordnet werden können. Somit kann die irrtümliche Zuordnung zu Störsignalen verhindert werden.

Das in Abbildung 5-1 dargestellte Massenspektrum eines MMA-Homopolymers weist eine charakteristische Verteilung auf, welche jedoch nicht identisch mit der Molekulargewichtsverteilung des Polymers sein muss. Aufgrund unterschiedlicher Detektionsgrenzen handelt es sich hierbei nur um einen Ausschnitt der gesamten Verteilung, die zuvor mit Gelpermeationschromatographie bestimmt wurde. Die Form der Verteilung in der Massenspektrometrie resultiert aus Massendiskriminierungen während des Ionisierungsprozesses. Erfahrungsgemäß liegt das Maximum der Verteilung bei Poly(MMA)-Proben zwischen m/z 700 und 1000, unabhängig von der Molmassenverteilung der untersuchten Probe.

In diesem Kapitel soll zunächst auf die Voraussetzungen für die massenspektrometrische Charakterisierung von Homopolymeren eingegangen werden (Abschnitt 5.1). Im Anschluss folgt in Abschnitt 5.2 die kinetische Betrachtung einer radikalischen Polymerisation, unter Berücksichtigung der Teilschritte bzw. Reaktionen die Einfluss auf die Endgruppenzusammensetzung im Polymer nehmen. Diese Betrachtung erfolgt in Relation zu der Zeitskala der Lebensdauer der während der Polymerisation gebildeten radikalischen Spezies. Abschließend wird das Vorgehen bei der Interpretation von Massenspektren einer Polymerprobe in Abschnitt 5.3 detailliert erläutert.

5.1 Voraussetzung für die massenspektrometrische Untersuchung von Polymeren

Für die erfolgreiche massenspektrometrische Untersuchung eines Polymers müssen drei Grundvoraussetzungen erfüllt sein:

(1.) Zunächst wird für das polymere Material im für die massenspektrometrische Untersuchung verwendeten Lösungsmittelgemisch eine ausreichende Löslichkeit vorausgesetzt. In den in dieser Arbeit durchgeführten Messungen wurde ein Dichlormethan-Methanol-Gemisch verwendet. Ausfallendes Polymer aus der Lösung während des Sprühprozesses führt zur Verstopfung der dünnen Kapillare an der Spitze der Ionenquelle, wodurch die Substanz nicht massenspektrometrisch untersucht werden kann (beispielsweise bei Polyethylen).

(2.) Es muss ausreichend polymeres Material im Detektionsbereich des Massenanalysators vorhanden sein. Die in dieser Arbeit verwendeten Analysatoren detektieren in einem Bereich von m/z 200 – 2000. Bei Proben mit einer breiten Molekulargewichtsverteilung (Polydispersitätsindex (PDI) > 1.5) ist dies trotz eines Zahlenmittels M_n der Verteilung bis zu 5000 g·mol⁻¹ gegeben. Daher tritt diese Problematik vor allem bei Proben mit einem M_n .Wert von über 5000 g·mol⁻¹ oder bei Polymeren, die in einer kontrollierten radikalischen Polymerisation synthetisiert wurden und über eine schmale Molekulargewichtsverteilung verfügen auf. Bei kontrolliert hergestellten Polymeren muss M_n dann unterhalb von 2500 g·mol⁻¹ liegen.

(3.) Als drittes wird eine hohe Ionisierungswahrscheinlichkeit der Polymerkette vorausgesetzt. Die Ionisierungswahrscheinlichkeit variiert abhängig von dem Monomer, aus dem die Polymerketten aufgebaut sind. Allgemein gilt: Je größer der Anteil von polaren Gruppen (z.B. Ester-, Ether- und Hydroxygruppen) im Monomer ist, desto besser wird die Polymerkette ionisiert. Typischerweise werden Poly(meth)acrylate und Polyvinylester über Anlagerung von Natriumkationen ionisiert, die im verwendeten Lösungsmittel enthalten sind. In hochauflösenden ESI-FT-ICR-MS-Experimenten hilft die Zugabe von Ammoniumacetat vor allem das Signal-zu-Rausch-Verhältnis zu verbessern. Die Ammoniumaddukte durchlaufen stabilere Zyklotronkreisbahnen in der ICR-Zelle und werden folglich besser detektiert.^[60]

Die Vorgehensweise zur massenspektrometrischen Untersuchung von Polymeren wurde in der Literatur in Übersichtsartikeln beschrieben.^[31-33] Der Schwerpunkt dieser Artikel lag auf der allgemeinen Verwendung der Massenspektrometrie in der Polymeranalytik. Erste

detaillierte massenspektrometrische Endgruppenuntersuchungen unter Berücksichtigung der relevanten Initiatorkinetik sind von Buback et al. durchgeführt worden.^[24-26]

5.2 Festlegung der polymeren Endgruppe während der Polymerisation

Die Endgruppen im Polymer werden im Wesentlichen durch zwei Phasen der radikalischen Polymerisation bestimmt. Die Endgruppen leiten sich meist aus den beim Initiatorzerfall entstehenden radikalischen Spezies ab. Daher wird im Zeitraum zwischen Radikalbildung und Kettenstart über Folgereaktionen der Primärradikale Einfluss auf die Gestalt der Endgruppen genommen. Des Weiteren bestimmt der Abbruch des Kettenwachstums wie viele und welche Endgruppen im Polymer verbleiben.

Abbildung 5-2: Zeitskala der Initiatorzerfallsprozesse und der radikalischen Polymerisation am Beispiel eines Peroxyesters.^[84]

In Abbildung 5-2 sind am Beispiel eines Peroxyesters die Reaktionen dargestellt, die in dem Zeitintervall von Initiatorzerfall bis zur Terminierung der Makroradikale Einfluss auf die Gestalt der Endgruppen nehmen. Nach einer Bindungsspaltung im Initiator werden im Lösungsmittelkäfig Initiatorradikale als primäre Dissoziationsprodukte gebildet. Je nach Reaktivität der Primärradikale zerfallen diese bereits im Lösungsmittelkäfig, wie es für Peroxypivalate beobachtet wurde, oder sie diffundieren aus dem Lösungsmittelkäfig heraus

und fragmentieren ausserhalb. Die Diffusion aus dem Lösungsmittelkäfig heraus vollzieht sich üblicherweise in der Zeitspanne von einer Nanosekunde.

In Abbildung 5-2 werden die möglichen Fragmentierungsreaktionen der primären Initiatorradikale am Beispiel eines Peroxyesters gezeigt. Die primären Dissoziationsprodukte RCOO• und R*C(CH₃)₂O• können abhängig von den Substituenten R und R* über β -Spaltungen in die sekundären Initiatorradikale R*• und R• zerfallen. Nachfolgend können für die entstandenen Radikale weitere β -Spaltungen, intramolekulare Umlagerungen oder Übertragungsreaktionen zu Transferagenzien (T, z.B. Lösungsmittel- oder Monomermoleküle) eingehen. Diese Fragmentierungsreaktionen geschehen auf einer Nano- bis Millisekundenzeitskala. Der anschließende Initiierungsschritt, d.h. die Anlagerung an ein Monomer, führt zur Bildung des Makroradikals RM•. Erst jetzt ist die Endgruppe im Polymer festgelegt. Nach Abschluss des Kettenwachstums wird über die Terminierungsmechanismen der Makroradikale bestimmt, wie viele Endgruppen eine polymere Spezies besitzt. Bei Kombination zweier Makroradikale entsteht ein Polymer mit zwei Endgruppen. Bei der Disproportionierung, die mit der Wasserstoffübertragung zwischen Makroradikalen einhergeht, entstehen zwei Polymere mit jeweils einer Endgruppe.

Da die massenspektrometrische Polymeranalyse die Bestimmung der polymeren Endgruppen erlaubt, können Rückschlüsse auf das Auftreten der oben genannten Folgereaktionen und die Art der Terminierung gezogen werden.

Darüber hinaus können aus den Signalintensitäten in den Massenspektren die Verhältnisse der Geschwindigkeitskoeffizienten von Konkurrenzreaktionen, wie beispielsweise das Verhältnis von Terminierung über Disproportionierung und Kombination, bestimmt werden. Voraussetzung für diese Quantifizierung ist die Zulässigkeit der Konzentrationsbestimmung der Polymerketten aus den Massenspektren. Diese Annahme wurde in früheren Arbeiten^[85, 86] bereits geprüft.

5.3 Interpretation der Massenspektren

Aufgrund der regulären Polymerstruktur wiederholen sich innerhalb einer jeden Monomerwiederholungseinheit im Massenspektrum die Signale einer bestimmten polymeren endgruppentragenden Spezies. Für die vollständige Analyse des Endgruppenspektrums genügt daher die Untersuchung einer Monomerwiederholungseinheit. Im Beispiel der Poly(MMA)-Probe umfasst dieser Bereich aufgrund des Molekulargewichts von Methylmethacrylat (M_{MMA} =100.05 Dalton [Da]) einen Massenbereich von etwa 100 Da. Eine Monomerwiederholungseinheit der in Abbildung 5-1 untersuchten Probe ist in Abbildung 5-3 gezeigt.

Abbildung 5-3: Darstellung einer Monomerwiederholungseinheit aus dem ESI-Massenspektrum einer Poly(MMA)-Probe im Bereich von m/z 660 – 760.

In der abgebildeten Monomerwiederholungseinheit sind zwei Signale zu beobachten. Das untersuchte Polymer besteht aus zwei Arten von Polymerketten mit unterschiedlicher Endgruppenzusammensetzung. Aufgrund der beiden Terminierungsarten bei radikalischen Polymerisationen entstehen für jede initiierende Spezies zwei polymere Terminierungsprodukte. Bei zwei initiierenden Spezies wird neben den jeweiligen Disproportionierungsund Kombinationsprodukten noch eine fünfte polymere Spezies im Massenspektrum detektiert, die aus der Kreuzkombination zweier Makroradikale mit unterschiedlichen Endgruppen hervorgeht. Bei mehreren initiierenden Spezies in einem System kann aufgrund der Kombinatorik auf eine Vielzahl von Signalen aus Disproportionierung, Kombination und Kreuzkombination geschlossen werden.
Allgemein kann die Anzahl der Signale (S) mit Hilfe der Formel (5.1) ermittelt werden, wobei n für die Anzahl unterschiedlicher radikalischer Fragmente steht, die Kettenwachstum initiieren können.

$$S(n) = \frac{n^2 + 3n}{2}$$
(5.1)

In einem System mit zwei initiierenden radikalischen Spezies müssen demnach 5 Signale beobachtet werden. Bei drei initiierenden Spezies erhöht sich die Anzahl auf insgesamt 9 Signale. Die in Abbildung 5-3 beobachteten Signale bestehen nicht aus einzelnen Linien. Eine Vergrößerung des Kombinationssignals (siehe Abbildung 5-4) zeigt ein Muster von Isotopenpeaks, die auf ¹³C-Isotope zurückgeführt werden können. Das natürliche Vorkommen von ¹³C-Isotopen liegt bei 1.1 %.^[87] Das gezeigte Kombinationssignal detektiert eine polymere Spezies, die aus 38 Kohlenstoffatomen besteht. Nach der Binomialverteilung^[3] liegt die Wahrscheinlichkeit bei 26.2 %, dass eines dieser Atome ein ¹³C-Atom ist, und bei 4.9 %, dass zwei ¹³C-Atome in der Polymerkette enthalten sind. Daher wird für Kombinationsprodukte das gezeigte Isotopenmuster mit abnehmender Intensität beobachtet.

Abbildung 5-4: Vergrößerung des Kombinationssignals aus Abbildung 5-3.

Das in Abbildung 5-5 gezeigte Disproportionierungssignal weist ebenfalls eine charakteristische Form des Isotopenmusters auf. In dem Disproportionierungssignal werden zwei polymere Spezies derselben Kettenlänge detektiert. Die Disproportionierung erfolgt per Übertragung eines Wasserstoffatoms zwischen zwei propagierenden Makroradikalen. Diese Reaktion führt zu zwei Arten von Polymeren, deren Spezies mit jeweils gleicher Kettenlänge und Endgruppe sich exakt um die Masse von zwei Wasserstoffatomen (2 Da) unterscheiden. Eine Überlagerung der Signale beider Spezies unter Berücksichtigung der ¹³C-Isotopensignale führt zu dem in Abbildung 5-5 dargestellten Signal.

Eine Abweichung von den hier gezeigten Isotopenmustern im Massenspektrum einer Polymerprobe weist auf Peaküberlagerungen im Massenspektrum hin und muss bei der Interpretation der Spektren berücksichtigt werden.

Abbildung 5-5: Vergrößerung des Disproportionierungssignals aus Abbildung 5-3.

Die Bezeichnung der Signale in dieser Arbeit wurde stets so gewählt, dass die Endgruppen welche direkt aus den Primärradikalen des Initiators hervorgehen mit Großbuchstaben bezeichnet werden. Die Endgruppen der aus den Primärradikalen fragmentierten sekundären Initiatorradikale werden mit den entsprechenden Kleinbuchstaben versehen. Kommt es zu einer weiteren Fragmentierung der sekundären Initiatorradikale werden die entstehenden Radikale in alphabetischer Reihenfolge fortlaufend mit Kleinbuchstaben bezeichnet.

6 Qualitative Endgruppenuntersuchung von Polymeren: Peroxydicarbonate

Symmetrische Peroxydicarbonate finden industriell Verwendung als Initiatoren bei der radikalischen Polymerisation von Ethen und Vinylchlorid,^[88-90] wo sie bei vergleichsweise niedrigen Temperaturen eingesetzt werden.^[91] Besonders bei kurzkettigen Polymeren können die Produkteigenschaften durch die Art der Endgruppen beeinflusst werden. Eine detaillierte Studie der Reaktivität der beim Zerfall von symmetrischen, aliphatischen Peroxydicarbonaten auftretenden radikalischen Spezies (siehe Abbildung 6-1) soll hier vorgestellt werden.^[92]

Abbildung 6-1: Allgemeines Zerfallsschema symmetrischer Dialkylperoxydicarbonate

Aufgrund der Molekülsymmetrie ergibt sich für Dialkylperoxydicarbonate ein vergleichsweise einfaches Zerfallsschema (siehe Abbildung 6-1). Während des primären Zerfallsschrittes werden durch homolytische Spaltung der Peroxobindung zwei identische Sauerstoff-zentrierte Alkoxycarbonyloxylradikale Q gebildet. Diese primären Initiatorradikale können in einem nachfolgenden Schritt unter Abspaltung von CO₂ und Bildung eines Sauerstoff-zentrierten Alkoxylradikals q reagieren. Jedoch wird hierbei vorausgesetzt, dass das Zeitintervall bis zur Addition der primären Initiatorradikale an ein Monomermolekül ausreichend groß ist, damit die Decarboxylierung erfolgen kann.

Der thermische Zerfall verschiedener Dialkylperoxydicarbonate wurde in der jüngeren Vergangenheit bereits mit anderen Methoden mehrfach untersucht.^[93-96] Dabei wurde festgestellt, dass aufgrund des negativen, induktiven Effekts der Alkoxylgruppe die Decarboxylierungsgeschwindigkeit der primär gebildeten Initiatorradikale vergleichsweise klein ist. In Gegenwart von Monomeren und Wasserstoff-übertragenden Substraten, z.B. Lösungsmitteln, sind Alkoxycarbonyloxylradikale reaktiver bezogen auf die Addition an das Monomer bzw. die Abstraktion von Wasserstoffatomen.^[93] Für Dicyclohexylperoxydicarbonat^[95] Di-(4-*tert*-butylcyclohexyl)peroxydicarbonat^[96] wurde und ein radikalisch induzierter Zerfallsmechanismus vorgeschlagen. Dabei findet eine intermolekulare Wasserstoff-Abstraktion vom α-Wasserstoff des Cyclohexanrings eines anderen Peroxydicarbonates statt. Eine spektroskopische Studie^[97] unter Verwendung der Blitzlicht-Photolyse bestätigte die Beobachtung, dass sich Alkoxycarbonyloxylradikale im Vergleich zur Decarboxylierung, reaktiver in Addition- und in intermolekularen Übertragungsreaktionen verhalten. Ebenfalls konnten mit dieser Studie erstmals Geschwindigkeitskoeffizienten für unimolekulare und bimolekulare Reaktionen bestimmt werden. Abschließend sei dieser Stelle auf an ESR-Untersuchungen verschiedener Alkoxycarbonyloxylradikale hingewiesen, die mit Hilfe von "spin-traps" (Radikalfänger) detektiert wurden. Im Fall von Di-*n*-propyl, Di-*iso*-propylund Di-sec-butylperoxydicarbonat^[98] wurden mit dieser Methode bei 160 Κ ausschließlich Alkoxycarbonyloxylradikale nachgewiesen.

Eine weitere ESR-Studie,^[99] die sich mit der Untersuchung der beim Zerfall von Di-(2-ethylhexyl)peroxydicarbonat und Di-(4-tert-butylcyclohexyl)peroxydicarbonat entstehenden Radikale beschäftigte, neben den entsprechenden konnte Alkoxycarbonyloxylradikalen noch sekundäre und tertiäre kohlenstoff-zentrierte Radikale nachweisen. Die Präsenz dieser sekundären und tertiären Kohlenstoff-zentrierten Radikale wurde dem Auftreten von intramolekularen Wasserstoffübertragungs-reaktionen zugeschrieben.^[99] Jedoch sei an dieser Stelle angemerkt, dass diese Untersuchung mit einer vergleichsweise hohen Radikalkonzentration und ohne Anwesenheit von Monomeren durchgeführt wurde. Daher scheint hier der Reaktionspfad bezüglich der Decarboxylierung im Vergleich zu Additions- und Transferreaktionen begünstigt zu sein. Auf das System einer radikalischen Polymerisation bezogen, stellen sich die kinetischen Zusammenhänge deshalb anders dar. Eine Untersuchung der im Initiierungsprozess auftretenden Radikale während der Polymerisation ist daher erforderlich. Die hier vorgestellte Endgruppenanalyse von Polymeren mittels ESI-MS macht dies möglich. Im Folgenden werden die Ergebnisse der massenspektrometrischen Endgruppenuntersuchung verschiedener Dialkylperoxydicarbonate erläutert: Diethylperoxydicarbonat (E-PDC), Di-*n*-tetradecylperoxydicarbonat (*n*TD-PDC), Di-*n*-hexadecylperoxydicarbonat (*n*HD-PDC), Di-*iso*-propylperoxydicarbonat (*i*P-PDC), Di-sec-butylperoxydicarbonat (sB-PDC), sowie Di-(2-ethylhexyl)peroxydicarbonat (2EH-PDC). Die hier vorgestellten, kommerziell erhältlichen Initiatoren werden, abhängig von den Halbwertszeiten des Initiatorzerfalls, bei Temperaturen zwischen 75 °C und 85 °C untersucht. Vor einer abschließenden Diskussion der erhaltenen Ergebnisse werden die Ergebnisse der Modellsubstanz Di-(2,2-diethylbutyl)peroxydicarbonat vorgestellt.

6.1 Diethylperoxydicarbonat (E-PDC)

In Abbildung 6-2 ist der vergrößerte Ausschnitt aus einem ESI-Massenspektrum eines MMA-Homopolymers, welches unter Verwendung des Initiators Diethylperoxydicarbonat (E-PDC) bei 75 °C in Benzol-Lösung synthetisiert wurde, dargestellt. Der hier abgebildete Ausschnitt umfasst den Massenbereich von 100 Da und entspricht im Fall von MMA $(M = 100.05 \text{ g} \cdot \text{mol}^{-1})$ einer Monomerwiederholungseinheit, deren Analyse für die massenspektrometrische Endgruppenbestimmung ausreicht. Der vorliegende Ausschnitt zeigt den Bereich maximaler Signalintensität.

Abbildung 6-2: Aussschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt durch MMA-Lösungspolymersiation ($c_{MMA} = 3.0 \text{ mol}\cdot\text{L}^{-1}$) in Benzol bei 75 °C unter Verwendung von Diethylperoxydicarbonat (E-PDC, $c_{Ini} = 0.10 \text{ mol}\cdot\text{L}^{-1}$) als Initiator.

Im Spektrum sind drei deutliche Signale erkennbar, welche eindeutig zugeordnet werden können. Das Signalpaar bei m/z 711.5 und m/z 713.5, mit der Bezeichnung (A) versehen,

weist auf zwei polymere Spezies hin, die aus der Terminierung mittels Disproportionierung hervorgegangen sind und jeweils eine Ethoxycarbonyloxylgruppe **A** als Endgruppe tragen. Der Unterschied von 2 Da in der Masse erklärt sich aus der Wasserstoffübertragung, die bei der Disproportionierung zweier Makroradikale stattfindet. Dabei entstehen eine Spezies mit terminaler Doppelbindung und eine weitere Spezies mit einem gesättigten Kettenende.

Ethoxycarbonyloxylradikal A

Ethoxylradikal a

Im Folgenden werden solche Signale gemeinsam als Disproportionierungspeak bezeichnet. Das dritte Signal (**AA**) bei m/z 701.3 entspricht einem Kombinationsprodukt zweier Makroradikale, die jeweils durch ein Ethoxy-carbonyloxylradikal **A** initiiert wurden. Bei genauerer Analyse der Monomerwiederholungseinheit entdeckt man außerdem ein sehr schwaches Signal bei m/z 657.2. Dieses Signal (**Aa**) geht auf eine polymere Spezies zurück, welche aus der Kreuzkombination zweier Makroradikale mit unterschiedlichen Endgruppen hervorging. Im vorliegenden Fall kombiniert ein Makroradikal mit einer Ethoxycarbonyloxyl-Endgruppe **A** mit einem weiteren Makroradikal, welches seinerseits durch ein Ethoxylradikal **a** initiiert wurde. Das Ethoxylradikal **a** entsteht durch Decarboxylierung des primären Initiatorradikals **A**. Weitere Signale, die auf die Präsenz von Ethoxyl-Endgruppen **a** schließen lassen, wie der theoretisch berechnete Kombinationspeak (**aa**) bei m/z^{theo}</sup> 713.4 und der Disproportionierungspeak (**a**) bei m/z^{theo}</sup> 667.3 und 669.3, können nicht beobachtet werden.

Somit lässt sich unter Berücksichtigung der extremen Intensitätsunterschiede folgern, dass beim thermischen Zerfall von E-PDC nahezu ausschließlich primäre Initiatorradikale, d.h. Ethoxycarbonyloxylradikale **A**, gebildet werden. Eine anschließende Decarboxylierung zum Ethoxylradikal **a** findet vor dem ersten Anlagerungsschritt an das Monomer bei den vorliegenden Reaktionsbedingungen nur in sehr geringen Anteilen statt, was sich in der äußerst niedrigen Signalintensität des Kreuzkombinationspeaks (**Aa**) widerspiegelt. Die Vergleichbarkeit der Intensitäten der beobachteten Signale ist aufgrund der nur minimalen strukturellen Unterschiede in den Endgruppen der korrespondierenden polymeren Spezies gewährleistet. Von stark unterschiedlichen Ionisierungswahrscheinlichkeiten kann hier nicht ausgegangen werden, da die Ionisierung der polymeren Spezies entlang der Kette erfolgt. Einen Einfluss der Endgruppe auf die Ionisierung ist nur bei kleinen Oligomeren denkbar.

Eine detaillierte Auflistung der zugeordneten Signale mit Angabe der experimentell gemessenen und theoretisch erwarteten Massen der detektierten Spezies ist in Tabelle 6-1 zu finden.

Initiator	Peak	Endgruppen		$(m/z)^{\text{theo}}$	$(m/z)^{\exp}$
F_PDC	(A)	Ethoxycarbonyloxyl	_	711.3/713.3	711.5/713.5
E-I DC	(AA)	Ethoxycarbonyloxyl	Ethoxycarbonyloxyl	701.3	701.3
	(Aa)	Ethoxycarbonyloxyl	Ethoxyl	657.3	657.2
#TD PDC	(B)	<i>n</i> -Tetradecoxycarbonyloxyl	—	1179.6/1181.6	1179.7/1181.7
nid-pdc	(BB)	<i>n</i> -Tetradecoxycarbonyloxyl	<i>n</i> -Tetradecoxycarbonyloxyl	1237.8	1237.6
	(Bb)	<i>n</i> -Tetradecoxycarbonyloxyl	<i>n</i> -Tetradecoxyl	1193.8	1193.5
"UD DDC	(C)	<i>n</i> -Hexadecoxycarbonyloxyl	_	1207.7/1209.7	1207.6/1209.7
<i>n</i> nd-rdC	(CC)	<i>n</i> -Hexadecoxycarbonyloxyl	n-Hexadecoxycarbonyloxyl	1193.8	1193.7
	(Cc)	n-Hexadecoxycarbonyloxyl	n-Hexadecoxyl	1149.8	1149.6

Tabelle 6-1: Zuordnung der Signale aus den ESI-Massenspektren von Poly(MMA)-Proben, aus Lösungspolymerisationen in Benzol unter Verwendung von Peroxydicarbonat-Initiatoren.

6.2 Di-*n*-tetradecylperoxydicarbonat (*n*TD-PDC)

Abbildung 6-3 zeigt den vergrößerten Ausschnitt eines ESI-Massenspektrums einer Poly(MMA)-Probe, die in Benzol-Lösung bei 85 °C unter Verwendung von Di-*n*-tetradecylperoxydicarbonat (*n*TD-PDC) als Initiator synthetisiert wurde. Die sich anschließende qualitative Analyse bezieht sich zunächst auf einen Massenbereich, der einer Monomerwiederholungseinheit entspricht. Da im Bereich maximaler Signalintensität nicht alle Signale aufgrund der hohen Molmassen der Endgruppen beobachtet werden können, wurde ein Bereich hoher Signalintensität gewählt, in dem alle Signale auftreten.

Abbildung 6-3: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt durch MMA-Lösungspolymersiation ($c_{MMA} = 3.0 \text{ mol} \cdot \text{L}^{-1}$) in Benzol bei 85 °C unter Verwendung von Di-*n*-tetradecylperoxydicarbonat (*n*TD-PDC, $c_{Ini} = 0.10 \text{ mol} \cdot \text{L}^{-1}$) als Initiator.

Im gezeigten Ausschnitt des ESI-Spektrums zwischen m/z 1160 und m/z 1260 sind drei Signale besonders intensiv. Des Weiteren kann ein weiteres Signal mit deutlich niedrigerer Intensität beobachtet werden. Die intensiven Signale bei m/z 1179.7 und m/z 1181.7 können eindeutig dem Disproportionierungspeak (**B**) zugeordnet werden. Beide Signale stehen in Verbindung mit polymeren Spezies, die jeweils eine *n*-Tetradecoxy-

n-Tetradecoxycarbonyloxylradikal B

n-Tetradecoxylradikal **b**

carbonyloxyl-Endgruppe **B** tragen und sich aufgrund der bei der Disproportionierung stattfindenden Wasserstoffübertragung um 2 Da unterscheiden. Der Kombinationspeak (BB) kann dem dritten Signal bei m/z 1237.6 zugeordnet werden. Die hier detektierte Spezies trägt zwei n-Tetradecoxycarbonyloxyl-Endgruppen B. Zusätzlich wird ein Signal bei m/z 1193.5 beobachtet. Dieses Signal lässt sich als Kreuzkombinationspeak (Bb) identifizieren. Das hier detektierte Oligomer trägt eine *n*-Tetradecoxycarbonyloxylgruppe **B**, sowie eine weitere *n*-Tetradecoxylgruppe **b** als Endgruppen. Das für *n*TD-PDC beobachtete Endgruppenspektrum ähnelt in Art und Intensität der Signale den Endgruppen, die im ESI-Massenspektrum von E-PDC beobachtet wurden. Da also hauptsächlich Signale von Spezies beobachtet werden, die *n*-Tetradecoxycarbonyloxyl-Endgruppen **B** enthalten und der Kreuzkombinationspeak (Bb) eine sehr kleine Intensität zeigt, kann angenommen werden, vorherrschenden Bedingungen hauptsächlich dass bei den *n*-Tetradecoxycarbonyloxylradikale B die Polymerisation initiieren. Die Decarboxylierungsgeschwindigkeit der intermediär auftretenden, primären Initiatorradikale ist klein im Vergleich zur Anlagerungsgeschwindigkeit dieser Radikale an das Monomer.

Eine detaillierte Zuordnung aller auftretenden Signale in Abbildung 6-3 unter Angabe der experimentell bestimmten und theoretisch zu erwartenden Massen findet sich in Tabelle 6-1.

6.3 Di-*n*-hexadecylperoxydicarbonat (*n*HD-PDC)

In Abbildung 6-4 ist ein vergrößerter Ausschnitt eines ESI-Massenspektrums einer Poly(MMA)-Probe dargestellt. Die untersuchte Poly(MMA)-Probe wurde in einer MMA-Lösungspolymerisation in Benzol bei 84 °C unter Verwendung von Di-*n*-hexadecylperoxydicarbonat als Initiator synthetisiert. Für eine eingehende Endgruppenanalyse wird der Massenbereich des ESI-Massenspektrums bei maximaler Signalintensität analysiert. Er entspricht einer Monomerwiederholungseinheit und zeigt Signale für sämtliche terminierte Spezies mit unterschiedlichen Endgruppen.

Abbildung 6-4: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt mittels MMA-Lösungspolymerisation ($c_{MMA} = 3.0 \text{ mol}\cdot\text{L}^{-1}$) in Benzol bei 84 °C unter Verwendung von Di-*n*-hexadecylperoxydicarbonat (*n*HD-PDC, $c_{Ini} = 0.10 \text{ mol}\cdot\text{L}^{-1}$) als Initiator.

Wie bei E-PDC und *n*TD-PDC treten im vorliegenden Massenspektrum drei Signale auf. Außerdem kann bei genauerer Analyse ein weiteres, sehr schwaches Signal einer polymeren Spezies zugeordnet werden. Der Kombinationspeak (**CC**) zweier Makroradikale, die jeweils eine *n*-Hexadecoxycarbonyloxyl-Endgruppe **C** enthalten, ist dem Signal bei *m/z* 1193.7 zuzuordnen. Die Signale bei *m/z* 1207.7 und *m/z* 1209.7 können eindeutig dem Disproportionierungspeak (**C**) zugeordnet werden. Das schwache Signal (**Cc**) bei *m/z* 1149.6 kann einem polymeren Kreuzkombinationsprodukt zugeordnet werden. Dieses Produkt durch Kombination zweier Radikale, die entsteht eine *n*-Hexadecoxycarbonyloxyl-Endgruppe C bzw. eine *n*-Hexadecoxyl-Endgruppe c tragen. Da im vorliegenden Massenspektrum wie bei den vorangegangenen Peroxydicarbonaten im Wesentlichen nur Alkoxycarbonyloxyl-Endgruppen beobachtet werden, kann man daraus schließen, dass während der Initiierung durch nHD-PDC hauptsächlich primäre Initiatorradikale das Kettenwachstum starten. Die Decarboxylierung ist auch hier gegenüber der Addition des primären Initiatorradikals an ein Monomer sehr langsam. Die detaillierte Zuordnung aller beobachteten Signale mit Angabe der experimentell bestimmten und theoretisch erwarteten Massen ist in Tabelle 6-1 angegeben.

Die Massenauflösung des Kombinationspeaks (CC) bei *m/z* 1193.7 erscheint schlechter als in den vorherigen Abbildungen. Um auszuschließen, dass eine Überlappung mit anderen Signalen zu einer solchen Signalverbreiterung geführt hat, wurde die vorliegende Poly(MMA)-Probe nochmals mittels hochauflösender FT-ICR-Massenspektrometrie untersucht. Der betreffende Ausschnitt des gemessenen hoch-aufgelösten Massenspektrums der Ammonium-ionisierten Poly(MMA)-Probe ist in Abbildung 6-5 gezeigt.

Abbildung 6-5: FT-ICR-ESI-Massenspektrum einer NH_4^+ -ionisierten Poly(MMA)-Probe, welche in Benzol-Lösung bei 84 °C unter Verwendung von *n*HD-PDC als Initiator hergestellt wurde. Abgebildet ist ein vergrößerter m/z-Bereich für den Kombinationspeak (**CC**).

Das Hauptsignal befindet sich bei m/z 1188.8438. Der Massenunterschied von etwa 5 Da zu der experimentell bestimmten Masse des Hauptsignals des Kombinationspeaks (CC) in Abbildung 6-4 ergibt sich aus den unterschiedlichen Gegenionen. Im Gegensatz zum hier verwendeten Ammomium-Kation, diente im Massenspektrum in Abbildung 6-4 das Natrium-Kation als Gegenion. Jeweils im Abstand von 1 Da zeigen sich weitere Signale mit

abnehmender Intensität. Diese Isotopenpeaks werden durch ¹³C-Isotope hervorgerufen, die in den detektierten Spezies enthalten sind. Das Fehlen weiterer Signale zwischen den Isotopenpeaks lässt darauf schließen, dass keine Überlagerung mit anderen Signalen vorliegt und die getroffene Zuordnung zum Kombinationspeak (CC) korrekt ist.

6.4 Di-*iso*-propylperoxydicarbonat (*i*P-PDC)

Für die Untersuchung von Di-*iso*-propylperoxydicarbonat (*i*P-PDC) wurde eine Poly(MMA)-Probe durch MMA-Lösungspolymerisation in Benzol bei 82 °C synthetisiert. Ein vergrößerter Ausschnitt des gemessenen ESI-Massenspektrums ist in Abbildung 6-6 dargestellt. Der Massenbereich entspricht einer MMA-Monomerwiederholungseinheit.

Abbildung 6-6: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt durch MMA-Lösungspolymerisation ($c_{MMA} = 3.1 \text{ mol} \cdot \text{L}^{-1}$) in Benzol bei 82 °C unter Verwendung von Di-*iso*-propoxyperoxydicarbonat (*i*P-PDC, $c_{Ini} = 0.10 \text{ mol} \cdot \text{L}^{-1}$) als Initiator.

Im ESI-Massenspektrum werden drei intensive Signale beobachtet, die im Abstand von jeweils 2 Da als Signalgruppe erscheinen. Des Weiteren findet man fünf Signale mit niedrigeren Intensitäten. Die drei intensiven Signale lassen sich eindeutig dem Disproportionierungspeak (**D**) bei m/z 925.5 und 927.5 und dem Kombinationspeak (**DD**) bei m/z 929.5 zuordnen. In beiden Peaks werden polymere Spezies detektiert, die *iso*-Propoxycarbonyloxyl-

iso-Propoxycarbonyloxylradikal D

tragen. Weiterhin lässt sich das Signal bei *m/z* 985.5 Endgruppen **D** dem Kreuzkombinationspeak (\mathbf{Dd}) zuordnen. Diese Spezies enthält neben der iso-Propoxycarbonyloxy-Endgruppe **D** auch eine terminale iso-Propoxylgruppe **d**. Aufgrund der niedrigen Intensität des Kreuzkombinationspeak (Dd) lässt sich das typische Isotopenmuster eines Kombinationspeaks in dem vorliegenden Ausschnitt nur schwer erkennen. Im Bereich von m/z 900 lässt sich eine Signalgruppe, die aus drei Signalen besteht, beobachten. Dem allgemeinen Zerfallsschema folgend lassen sich die Signale jedoch keiner der zu erwartenden Spezies zuordnen. Die Disproportionierungs- und Kombinationspeaks (d) und (dd), welche auf polymere Spezies hinweisen, die ein bzw. zwei iso-Propoxyl-Endgruppen **d** enthalten, sollten theoretisch bei m/z 941.5 bzw. bei m/z 981.5 und m/z 983.5 zu beobachten sein. Die fehlenden Signale sind mit einer sehr niedrigen Konzentration von Makroradikalen, initiiert durch d, zu erklären. Das Disproportionierungssignal (d) ist in dem Fall aufgrund der niedrigen Intensität nicht zu beobachten und ein Kombinationsprodukt von zwei d-initiierten Makroradikalen statistisch gesehen unwahrscheinlich. Der Initiator iP-PDC wurde vom Hersteller gelöst in Diethylenglykolbis(allylcarbonat) n bereitgestellt. Die im Initiierungsprozeß gebildeten Radikale können durch Addition an die Doppelbindungen mit dem Lösungsmittel reagieren. Dadurch ensteht ein neues Radikal, welches an ein Monomermolekül addieren kann. Es verhält sich wie ein Comonomer.

Solvens - Diethylenglykolbis(allylcarbonat) **n** $C_{12}H_{18}O_7$; M = 274.11 gmol⁻¹

Die beobachtete Signalgruppe bei m/z 900 lässt sich nun unter Berücksichtigung der Masse des Solvensmoleküls **n** dem Disproportionierungspeak (**Dn**) bei m/z 999.5 und m/z 1001.5 und dem Kombinationspeak (**DDn**) bei m/z 1003.4 zuordnen. Diese Signale deuten auf polymere Terminierungsprodukte in denen ein bzw. zwei *iso*-Propoxycarbonyloxyl-Endgruppen **D** und dazu noch ein Solvensmolekül **n** eingebaut sind.

Nachdem bisher alle Signale eindeutig zugeordnet werden können, verbleibt nun bei m/z 953.4 ein Signal, welches aufgrund des Isotopenmusters zwar als ein Kombinationsprodukt identifiziert werden kann, jedoch keiner polymeren Spezies mit Sicherheit zugerechnet werden kann. Ausschließen kann man polymere Spezies, die mehrere

iso-Propoxycarbonyloxyl-Endgruppen **D** oder mehrere Solvensmoleküle **n** enthalten: (**DDD**) m/z^{theo} 932.4, (**DDnn**) m/z^{theo} 977.4, (**DDDn**) m/z^{theo} 1006.4, (**DDDDn**) m/z^{theo} 1009.4. Weitere sekundäre Zerfallsprodukte des *iso*-Propoxycarbonyloxyl-Radikals **D** oder des *iso*-Propoxylradikals **d** kommen nicht in Betracht. Da die *iso*-Propoxycarbonyloxyl-Endgruppe **D** ein tertiäres Wasserstoffatom trägt, erscheint es eventuell möglich, dass dieses Wasserstoffatom bei einer bereits einpolymerisierten Endgruppe nachträglich abstrahiert wird und somit eine weitere, unbekannte Fragmentierung der Endgruppe auslöst. Andererseits wäre denkbar, dass an einem eingebauten Solvensmolekül **n** nachträgliche, durch Wasserstoffübertragung induzierte Fragmentierungsreaktionen auftreten.

Trotz der fehlenden Zuordnung des letzten Signals lässt sich zusammenfassen, dass bei der Initiierung mit *i*P-PDC fast ausschließlich polymere Spezies gebildet werden, die *iso*-Propoxycarbonyloxyl-Endgruppen **D** tragen. Auch hier gilt, dass die Decarboxylierungsgeschwindigkeit im Vergleich zur Additionsgeschwindigkeit an Doppelbindungen signifikant kleiner sein muss.

Eine detaillierte Zuordnung der Signale mit Angabe experimentell beobachteter und theoretisch berechneter Massen findet sich in Tabelle 6-2.

Initiator	Peak	Endgruppen		$(m/z)^{\text{theo}}$	$(m/z)^{\exp}$
D DDC	(D)	iso-Propoxycarbonyloxyl	_	925.4 / 927.4	925.5 / 927.6
<i>i</i> r-r <i>D</i> C	(DD)	iso-Propoxycarbonyloxyl	iso-Propoxycarbonyloxyl	929.4	929.5
	(Dd)	iso-Propoxycarbonyloxyl	iso-Propoxyl	985.5	985.5
	(Dn)	iso-Propoxycarbonyloxyl	—	999.4 / 1001.4	999.5 / 1001.5
	(DDn)	iso-Propoxycarbonyloxyl	iso-Propoxycarbonyloxyl	1003.4	1003.4
B DDC	(E)	sec-Butoxycarbonyloxyl	_	739.4 / 741.4	739.5 / 741.5
SD-I DC	(EE)	sec-Butoxycarbonyloxyl	sec-Butoxycarbonyloxyl	757.4	757.5
	(Ee)	sec-Butoxycarbonyloxyl	sec-Butoxyl	713.4	713.4
	(Ef)	sec-Butoxycarbonyloxyl	C_3H_5	781.4	781.5
	(f)	C_3H_5	—	763.4 / 765.4	763.6 / 765.6
	(ff)	C_3H_5	C_3H_5	705.4	705.4

Tabelle 6-2: Zuordnungen der Signale in ESI-Massenspektren zweier Poly(MMA)-Proben aus MMA-Lösungspolymerisationen in Benzol unter Verwendung von Di-iso-propylperoxydicarbonat (*i*P-PDC) bzw. Di-sec-butylperoxydicarbonat (*s*B-PDC) als Initiatoren.

6.5 Di-sec-butylperoxydicarbonat (sB-PDC)

Für die massenspektrometrische Endgruppenanalyse von Di-*sec*-butylperoxydicarbonat (*s*B-PDC) wurden Poly(MMA)-Proben mittels MMA-Lösungspolymerisation in Benzol bei 82 °C unter Verwendung von *s*B-PDC als Initiator hergestellt. Ein vergrößerter Ausschnitt eines gemessenen ESI-Massenspektrums ist in Abbildung 6-7 dargestellt. Der Massenbereich im vorliegenden Ausschnitt wurde so gewählt, dass er im Bereich maximaler Signalintensität einer Monomerwiederholungseinheit entspricht.

Abbildung 6-7: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt durch MMA-Lösungspolymerisation ($c_{MMA} = 3.0 \text{ mol} \cdot \text{L}^{-1}$) in Benzol bei 82 °C unter Verwendung von Di-*iso*-propoxyperoxydicarbonat (*s*B-PDC, $c_{Ini} = 0.10 \text{ mol} \cdot \text{L}^{-1}$) als Initiator.

Zu beobachten sind vier intensive Signale. Weitere fünf Signale mit zum Teil sehr niedrigen Intensitäten können ebenfalls polymeren Spezies zugeordnet werden. Die drei intensivsten Signale bei m/z 739.5/741.5 und m/z 757.5 lassen sich eindeutig polymeren Terminierungsprodukten zuweisen, die aus Makroradikalen mit sec-Butoxycarbonyloxyl-Endgruppen Ε hervorgehen. findet Man den Disproportionierungspeak (E) bei m/z 739.5 und m/z 741.5 und den Kombinationspeak (EE) bei m/z 757.5. Des Weiteren liegt bei m/z 781.5 5 ein Signal, dass sich aufgrund des Isotopenmusters klar als Kombinationspeak identifizieren lässt.

Jedoch handelt es sich hier nicht um den Kreuzkombinationspeak (Ee) einer polymeren

Endgruppe e trägt. Diese Spezies kann dem deutlich schwächeren Signal (Ee) bei m/z 713.4 das zugeordnet werden. Bezogen auf allgemeine für Dialkylperoxydicarbonate (siehe Abbildung 6-1) lässt sich der Kombinationspeak bei m/z781.5 keiner zu erwarteten Spezies zu ordnen. Um weitere Informationen zu erhalten wurde ein hochaufgelöstes FT-ICR-Massenspektrum mit Natrium-Ionisierung aufgenommen. Der betreffende Kombinationspeak wurde bei m/z 781.3991 detektiert. Diesem Signal lässt sich aufgrund der präzisen Massenbestimmung mit großer Sicherheit folgende Summenformel zuordnen: C₃₈H₆₂O₁₅Na. Bei Berücksichtigung eines Natrium-Kations als Gegenion und sechs Methylmethacrylat-Einheiten ($C_5H_8O_2$) verbleibt die Summenformel $C_8H_{14}O_3$ für beide Endgruppen. Da die intensivsten Signale bereits polymeren Spezies zugeordnet werden konnten, die sec-Butoxycarbonyloxyl-Endgruppen E enthalten, kann auch bei dem betreffenden Kombinationspeak angenommen werden, dass die sec-Butoxycarbonyloxyl-Gruppe eine der beiden Endgruppen ist. Bei Einbeziehung einer Endgruppe E ergibt sich C₃H₅ für die zweite, unbekannte Endgruppe. Die Summenformel C₃H₅ lässt auf ein Allylradikal als Endgruppe schließen. Die Bildung eines Allylradikals aus einer sec-Butoxycarbonyloxyl-Endgruppe lässt sich mit bekannten Fragmentierungreaktionen nicht erklären. Daher erscheint eine nachträgliche Fragmentierung einer sec-Butoxycarbonyloxyl-Endgruppe E nicht plausibel. Da aus dem Massenspektrum nicht die Struktur sondern nur die Massen und damit die Summenformel hervorgeht, kann nicht genau abgeleitet werden wie viele Monomereinheiten eine entsprechende polymere Spezies enthält.

Daher ist es möglich, dass bei der Ableitung der Summenformel für die unbekannte Endgruppe zu viele Monomereinheiten berücksichtigt wurden. Dadurch erscheint eine Summenformel von C₈H₁₃O₂ ebenso plausibel. Allgemein sind weitere Summenformel nach dem Schema $C_{5n+3}H_{8n+5}O_{2n}$ denkbar.

Für die weitere Endgruppenanalyse des beschriebenen Massenspektrums (siehe Abbildung 6-7) wird der Einfachheit halber der unbekannten Endgruppe f die Summenformel C_3H_5 zugewiesen und der Kombinationspeak bei m/z 781.5 mit (Ef) bezeichnet. Weitere Signale bei m/z 763.6/765.6 und m/z 705.4 lassen sich dem Disproportionierungspeak (f) und dem Kombinationspeak (ff) zuordnen. Die hier detektierten Terminierungsprodukte beinhalten zwei bzw. eine Endgruppe mit der Summenformel C₃H₅. Desweiteren konnte das Kreuzkombinationsprodukt aus zwei Makroradikalen, welche die Endgruppe f bzw. die sec-Butoxyl-Endgruppe e beinhalten, bei m/z 737.5 identifiziert werden. Demnach werden alle möglichen Terminierungsprodukte mit f-Endgruppen im Massenspektrum detektiert. Daher kann angenommen werden, dass die Endgruppen **f** in signifikantem Ausmaß im Zeitintervall des Initiierungsprozess oder aus nachträglich fragmentierten Endgruppen der Polymers gebildet werden. Die qualitative Aussage stützt sich unter anderem auf die Detektion des Kombinationssignals (**ff**). Im Falle einer niedrigen Konzentration an **f**-Radikalen, wäre eine Kombination zweier Makroradikale mit **f**-Endgruppen aus statistischen Gründen äußerst unwahrscheinlich. Auch wäre die gleichzeitige Fragmentierung zweier Endgruppen eines Kombinationsprodukts zu einer Spezies **ff** fragwürdig.

Kommt man auf die Frage der möglichen Summenformel zurück, lässt sich an dieser Stelle noch Folgendes anmerken. Eine mögliche Summenformel, größer als $C_8H_{13}O_2$, kann als unwahrscheinlich betrachtet werden, da in einem relativ niedrigen Massenbereich Kombinationsprodukte mit Beteiligung von **f**-Endgruppen detektiert werden. Bei einer Summenformel größerer Masse erscheinen die Kombinationspeaks aufgrund der größeren Massen der Endgruppen im Massenspektrum zu höheren Massen hin verschoben, im Vergleich zu einem Disproportionierungspeak mit gleicher Anzahl von Monomereinheiten.

Zusammenfassend kann man für *s*B-PDC schlussfolgern, dass bei der Initiierung mit *s*B-PDC hauptsächlich primäre Initiatorradikale, also *sec*-Butoxycarbonyloxyl-Radikale **E**, das Kettenwachstum starten. Decarboxylierte Initiatorradikale **e** finden sich nur in sehr begrenztem Umfang als Endgruppen in Kombinationsprodukten im Polymer wieder. Die Decarboxylierungsgeschwindigkeit des *sec*-Butoxycarbonyloxyl-Radikals ist demnach klein gegenüber der Anlagerungsgeschwindigkeit ans Monomer. Weiterhin treten bei der Initiierung mit *s*B-PDC Radikale **f** in signfikantem Umfang auf, die der Summenformel C₃H₅ bzw. C₈H₁₃O₂ gehorchen, deren Bildung ausgehend von bekannten radikalischen Spezies bzw. Endgruppen nicht erklärt werden kann. Das Auftreten des Allylradikal kann eventuell auf Verunreinigungen oder auf Oxidation der *sec*-Butoxycarbonyloxyl-Endgruppe zurück geführt werden.

6.6 Di-(2-ethylhexyl)peroxydicarbonat (2EH-PDC)

Als letztes Beispiel der kommerziell erhältlichen Peroxydicarbonate wurde Di-(2-ethylhexyl)peroxydicarbonat untersucht. Für die massenspektrometrische Endgruppenanalyse wurden Poly(MMA)-Proben durch MMA-Lösungspolymerisation in Benzol bei 85 °C hergestellt. Der vergrößerte Ausschnitt aus einem gemessenen ESI-Massenspektrum ist in Abbildung 6-8 gezeigt. Zu sehen ist der Massenbereich einer Monomerwiederholungseinheit bei maximaler Signalintensität.

Abbildung 6-8: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt in einer MMA-Lösungspolymerisation ($c_{MMA} = 3.0 \text{ mol}\cdot\text{L}^{-1}$) in Benzol bei 85 °C unter Verwendung von Di-(2-ethylhexyl)peroxydicarbonat (2EH-PDC, $c_{Ini} = 0.10 \text{ mol}\cdot\text{L}^{-1}$) als Initiator.

Im gezeigten Ausschnitt werden vier intensive Signale beobachtet. Außerdem konnten zwei weitere Spezies mit niedrigen Signalintenstitäten detektiert werden. Das Signalpaar bei m/z 895.5 und m/z 897.5 konnte dem Disproportionierungspeak (G) zugewiesen werden. Die

detektierten polymeren Spezies enthalten jeweils eine 2-Ethylhexoxycarbonyloxyl-Endgruppe G. Bei m/z 869.5 wird der Kombinationspeak (GG) beobachtet. Das an dieser Stelle detektierte Terminierungsprodukt wurde durch Kombination zweier Makroradikale mit der Endgruppe G gebildet. Das Signal bei m/z 824.5 kann dem Kreuzkombinationspeak (Gh) zugeordnet werden. Die betreffende polymere Spezies trägt sowohl eine Endgruppe

G, als auch eine 2-Ethylhexoxyl-Endgruppe h. Auf die abweichende Bezeichnung h statt g

wird im späteren Verlauf dieses Kapitels nochmals Bezug genommen. Die 2-Ethylhexoxyl-Endgruppe **h**, welche aus der Decarboxylierung des primären Initiatorradikals resultiert, wird ebenfalls als Endgruppe in anderen Signalen detektiert. Bei m/z 851.5/853.5 und m/z 881.4 finden sich Signale niedriger Intensität, die dem Disproportionierungspeak (**h**) und dem Kombinationspeak (**hh**) zugewiesen werden können. Die entsprechenden Terminierungsprodukte enthalten eine bzw. zwei **h**-Endgruppen. Zusammenfassend lässt sich feststellen, dass auch bei 2EH-PDC im Zeitintervall von der Enstehung bis zur Addition an ein Monomer bei den vorliegenden Bedingungen die Mehrheit der primären Initiatorradikale nicht decarboxylieren.

Im Vergleich mit den vorab erläuterten Ergebnissen der anderen untersuchten Peroxydicarbonate stellt man bei 2EH-PDC aber fest. dass einen der zum Kreuzkombinationspeak (Gh) deutlich intensiver gemessen wird und dass noch weitere Signale detektiert werden, die auf Endgruppen aus dem decarboxylierten Initiatorradikal zurückgehen. Für einen genaueren Vergleich der Peroxydicarbonate untereinander können aufgrund fehlender Disproportionierungs- und Kombinationspeaks (q) und (qq) lediglich die jeweiligen Kreuzkombinationspeaks (Qq) herangezogen werden.

Initiator	Signale	Wert (%)
E-PDC	(Aa)/(AA)	5.3
<i>n</i> TD-PDC	(Bb)/(BB)	13.2
nHD-PDC	(Cc)/(CC)	13.7
<i>i</i> P-PDC	(Dd)/(DD)	6.5
sB-PDC	(Ee)/(EE)	8.3
2EH-PDC	(Gh)/(GG)	45.5

Tabelle 6-3: Verhältnis der Peakhöhen der (Kreuz-)Kombinationssignale (Qq)/(QQ)

In Tabelle 6-3 sind für alle untersuchten Initiatoren die Verhältnisse der Peakhöhen der jeweiligen Kreuzkombinations- und Kombinationspeaks angegeben. Es wird angenommen, dass der hier bestimmte Quotient (**Qq**)/(**QQ**) mit dem Anteil an primären Initiatorradikalen proportional ist, die eine nachfolgende Decarboxylierung eingehen. Es fällt auf, dass der Quotient beim 2EH-PDC mit 45.5 % deutlich am größten ist. Weiter ist zu beobachten, dass der Quotient ausgehend von E-PDC mit 5.3 % über *i*P-PDC und *s*B-PDC bis zu *n*TD-PDC und *n*HD-PDC auf bis zu ca. 13 % ansteigt. Die vorliegenden Werte scheinen in sich konsistent zu sein, da für *n*TD-PDC und nH-PDC, die sich strukturell kaum voneinander unterscheiden, nahezu gleiche Werte bestimmt werden. Im Vergleich der Werte untereinander

ist eindeutig abzuleiten, dass die Struktur der jeweiligen Seitenketten Einfluss auf den Quotienten (Qq)/(QQ) haben. Ein genauerer struktureller Vergleich von 2EH-PDC mit den anderen Peroxydicarbonaten soll an dieser Stelle nur für E-PDC, *n*TD-PDC und *n*HD-PDC erfolgen. Die aliphatischen Seitenketten der genannten Peroxydicarbonate sind allesamt linear oder an der α -Stelle unverzweigt. Dagegen liegen bei *i*P-PDC und *s*B-PDC α -verzweigte Seitenketten vor. Ein Vergleich mit diesen Werten erfolgt später. Verglichen mit E-PDC, *n*TD-PDC und *n*HD-PDC unterscheidet sich 2EH-PDC nur durch die Länge der Seitenkette und insbesondere durch die β -Ethylseitenkette.

Aufgrund der speziellen Struktur des beim Zerfall von 2EH-PDC entstehenden 2-Ethylhexoxycarbonyloxylradikals **G** sind verschiedene Fragmentierungsreaktionen parallel zur Decarboxylierung denkbar. In Abbildung 6-9 sind die möglichen Fragmentierungsreaktionen mit den entsprechenden Übergangszuständen gezeigt.

Abbildung 6-9: Mögliche Fragmentierungsreaktionen des 2-Ethylhexoxycarbonyloxylradikals. Ein möglicher Mechanismus von Reaktion IV ist in Abbildung 6-10 gezeigt.

Wie bereits erläutert würde bei der Decarboxylierung über C-O-Bindungsspaltung (I) des 2-Ethylhexoxycarbonyloxylradikals G das 2-Ethylhexoxylradikal h gebildet. Im Vergleich mit E-PDC, *n*TD-PDC und *n*HD-PDC kann man ausschließen, dass Reaktion (I) bei 2EH-PDC zu einer verstärkten Bildung von decarboxylierten Endgruppen führt.

Wie von Mekarbane und Tabner^[99] vorgeschlagen, ist eine intramolekulare 1,5-Wasserstoffverschiebung (**II**, im Folgenden Wasserstoffübertragung 1 genannt) vom tertiären Wasserstoffatom an β -Position der Hexylseitenketten zum terminalen Sauerstoff der Carbonatgruppe möglich. Der damit gebildete Kohlensäureester ist instabil und zerfällt über einen konzertierten Mechanismus (Abbildung 6-10) unter Abspaltung von CO₂ zu einer terminalen Hydroxygruppe. Die radikalische Funktion wird bei dieser Reaktion vom Carbonat-Sauerstoff zum tertiären Kohlenstoffatom übertragen. Das dabei gebildete 3-(Hydroxymethyl)-hept-7-ylradikal **h'** ist stabiler als die Ausgangsverbindung. Die Bildung eines tertiären Kohlenstoff-zentrierten Radikals kann daher als besondere Triebkraft dieser Reaktion angesehen werden.

Im Übrigen erscheint eine weitere intramolekulare 1,5-Wasserstoffübertragung (III, im Folgenden Wasserstoffübertragung 2 genannt) von der Ethylseitenkette zum inneren Sauerstoffatom der Carbonatgruppe plausibel. Dabei wird ebenfalls intermediär ein Kohlensäureester gebildet, der anschließend durch Freisetzung von CO₂ in eine terminale Hydroxygruppe zerfällt. Ein Mechanismus für den Zerfall eines Kohlensäureesters in einem protischen Solvens ist in Abbildung 6-10 gezeigt. Durch diese Reaktion wird das vorher Sauerstoff-zentrierte Alkoxycarbonyloxylradikal in ein primäres Kohlenstoff-zentriertes Radikal (3-(Hydroxymethyl)-hept-1-yl-Radikal h'') umgewandelt.

Abbildung 6-10: Mechanismus für den Zerfall von Kohlensäureestern^[100].

Für das in Reaktion **III** gebildete Kohlenstoff-zentrierte Radikal **h**" ist ein weitere intramolekulare 1,5-Wasserstoffverschiebung hin zu einem sekundären Kohlenstoff-zentrierten Radikal denkbar (siehe Abbildung 6-11).

Abbildung 6-11: Mögliche Folgereaktion des in Abbildung 6-9 gebildeten Initiatorradikals h".

Da für das 2-Ethylhexyoxycarbonyloxylradikal **G** mehrere Reaktionsmöglichkeiten bestehen, bei denen verschiedene sekundäre Initiatorradikale gebildet werden, die nicht der Struktur in Abbildung 6-1 entsprechen, wurde in diesem Beispiel von der üblichen Nomenklatur für sekundäre Initiatorradikale abgewichen. Insbesondere auch deshalb, weil sich bei den intramolekularen Übertragungsreaktionen der Charakter der radikalischen Spezies ändert.

Zurückkommend auf den Vergleich mit den E-PDC, nTD-PDC und nHD-PDC stellt man fest, dass für die entsprechenden Alkoxycarbonyloxylradikale der drei Initiatoren die oben beschriebenen, alternativen Reaktionswege aufgrund der strukturellen Unterschiede nicht bestehen oder nur geringen Stabilitätsgewinn bringen. Der niedrige Wert für E-PDC erklärt sich dadurch, dass das korrespondierende Ethoxycarbonyloxylradikal A nicht in der Lage ist die zweite intramolekulare Wasserstoffübertragung zu vollziehen. Bei der ersten intramolekularen Wasserstoffübertragung würde lediglich ein primäres Kohlenstoffzentriertes Radikal gebildet werden. Bei nTD-PDC und nHD-PDC stellt sich die Situation etwas anders dar. Aufgrund der linearen Tetradecyl- bzw. Hexadecylseitenkette sind beide intramolekulare Wasserstoffübertragungsreaktionen möglich. In beiden Fällen werden aus den Sauerstoff-zentrierten Alkoxycarbonyloxylradikalen sekundäre Kohlenstoff-zentrierte Radikale gebildet, worin eine Triebkraft für die Übertragungsreaktion gesehen werden kann. Im Vergleich zu E-PDC sind die beschriebenen Übertragungsreaktionen für die primären Initiatorradikale von *n*TD-PDC und *n*HD-PDC begünstigt, was sich ebenfalls in den größeren Werten für die bestimmten Quotienten (13.2 % und 13.7 %) widerspiegelt. Für die massenspektrometrische Endgruppenbestimmung bei 2EH-PDC besteht nun die Schwierigkeit zu erkennen, welcher Reaktionsweg vom 2-Ethylhexoxycarbonyloxylradikal beschritten wird. Vergleicht man die Strukturen der möglichen sekundären Initiatorradikale h, h' und h" stellt man fest, dass die Summenformel und damit auch die Massen aller drei radikalischen Spezies identisch sind. Aus dem oben gezeigten Massenspektrum (Abbildung 6-8) lassen sich keine weiteren Rückschlüsse auf den konkreten Mechanismus der Fragmentierung zum sekundären Initiatorradikal ziehen. Wie bereits erläutert, bestehen zwischen den verglichenen Initiatoren keine strukturellen Unterschiede, was die unmittelbare Umgebung der Carbonatgruppe betrifft. Bei den verglichenen Initiatoren liegt an dieser Stelle ein primäres Kohlenstoffatom vor.

Aus früheren Arbeiten^[7] zum Zerfall von Peroxyestern ist bekannt, dass der Charakter des α -ständigen Kohlenstoffatoms des Carbonyloxylradikals R(CO)O* starken Einfluss auf dessen Dissoziationskinetik hat. Bei tertiären Carbonyloxylradikalen, wie sie beispielsweise bei Peroxypivalaten auftreten, wird eine instantane Decarboxylierung beobachtet. Diese

Beobachtung spiegelt sich auch in den massenspektrometrisch detektierten Endgruppen bei Peroxypivalat-initiierten MMA-Polymersiationen wieder. Ist jedoch das α-ständige Kohlenstoffatom primärer Natur führt dies zu einem langlebigen Carbonyloxylradikal.

Des Weiteren konnte in den Untersuchungen zu den Peroxyestern festgestellt werden, dass die Aktivierungsenergie der Peroxobindungsspaltung durch nachgelagerte β-Spaltungsreaktionen, wie beispielsweise Decarboxylierung, beeinflusst wird. Die Triebkraft in diesem Zusammenhang stellt die Umwandlung von Sauerstoff-zentrierten Radikalen zu energetisch günstigeren Kohlenstoff-zentrierten Radikalen dar. Unter Berücksichtigung dieser Untersuchungsergebnisse zu den Peroxyestern, ist nun für das 2-Ethylhexoxycarbonyloxylradikal eine nachgelagerte intramolekulare Wasserstoffübertragung von der β -Ethylseitenkette auf das Sauerstoff-zentrierte Radikal als Triebkraft für die Decarboxylierung denkbar. Zwar ist in Abbildung 6-9 diese nachgelagerte Übertragungsreaktion nicht gezeigt, aber in der Struktur des decarboxylierten Initiatorradikals h leicht nachvollziehbar. Im Rahmen dieser Wasserstoffverschiebung wird die Spezies h in die Spezies h" transformiert. Aufgrund der nachgelagerten Umwandlung eines Sauerstoffzentrierten Radikals in ein Kohlenstoff-zentriertes Hydroxyalkylradikal wäre die Decarboxylierung der primären Initiatorradikale nach dem Schema in Abbildung 6-1 bei 2EH-PDC begünstigt. Jedoch kann man die Decarboxylierung mit anschließender Wasserstoffverschiebung auch als konzertierte Reaktion betrachtet werden, dies entspricht dann dem Reaktionspfad III in Abbildung 6-9. Im Laufe dieser Reaktion wird das primäre Initiatorradikal G direkt in die Spezies h" transformiert. Das bei der Übertragungsreaktion gebildete Radikal h" ist ein primäres Kohlenstoff-zentriertes Radikal. Radikale dieser Art werden üblicherweise als energetisch höher liegend und deren Bildung daher als unwahrscheinlich betrachtet. An dieser Stelle soll jedoch angemerkt werden, dass sich diese Aussage auf Reaktionen zwischen unterschiedlichen Kohlenstoff-zentrierten Radikalen bezieht, wobei primäre in sekundäre, als auch sekundäre in tertiäre Radikale umgewandelt werden. Im Allgemeinen gilt, dass Kohlenstoff-zentrierte Radikale stabiler sind als Sauerstoff-zentrierte Radikale. Und innerhalb der Gruppe der Kohlenstoff-zentrierten Radikale nimmt die Stabilität von tertiären über sekundäre zu primären Radikalen ab.^[100] Die Triebkraft dieser Reaktionen kann anhand der Betrachtung der entsprechenden C-H-Bindungsdissoziationsenergien BDE (siehe Tabelle 6-4) verstanden werden.

Bindung	BDE (kJ·mol ⁻¹)
C ₃ H ₇ CH ₂ –H	425
C ₂ H ₅ CH(CH ₃)–H	411
(CH ₃) ₃ C–H	404
С ₂ Н ₅ О–Н	438

 Tabelle 6-4: Bindungsdissoziationsenergien (BDE) relevanter C-H- und O-H-Bindungen^[101, 102]

Die Differenz der C-H-Bindungsdissoziationsenergien korreliert mit dem Energiegewinn dieser Reaktionen. Für die Umwandlung eines primären in ein sekundäres Kohlenstoffzentriertes Radikal ergibt sich somit ein Wert von etwa 14 kJ·mol⁻¹. Die Bildung eines tertiären aus einem sekundären Kohlenstoff-zentrierten Radikal bringt einen Energiegewinn von 7 kJ·mol⁻¹. Die energetische Triebkraft der oben erläuterten intramolekularen Übertragungsreaktion ergibt sich jedoch aus der Berücksichtigung der BDE einer alkoholischen O-H-Bindung und der BDE einer primären C-H-Bindung. Die Differenz ergibt einen Energiegewinn von etwa 13 kJ·mol⁻¹. Dieser Energiebetrag überschreitet den jeweiligen Energiegewinn bei den Umwandlungsreaktionen zwischen Kohlenstoff-zentrierten Radikals ein größerer Energiegewinn von 34 kJ·mol⁻¹.

Trotz des Energiegewinns bei der Bildung des tertiären Kohlenstoff-zentrierten Radikals, scheint diese Wasserstoffübertragungsreaktion aufgrund von sterischen Problemen im Übergangszustand von geringerer Bedeutung zu sein. Die geringe Flexibilität der gesamten Carbonatgruppe, auch bedingt durch einen OCO Bindungswinkel von etwa 120°,^[103] kann die Ausbildung eines sechsgliedrigen Übergangszustandes behindern. Die strukturellen Vorraussetzungen der Carbonatgruppe erscheinen daher nicht adäquat in diesem Zusammenhang.

Es gilt nun experimentell zu prüfen, welche der vorgeschlagenen Übertragungsreaktionen beim 2-Ethylhexoxycarbonyloxylradikal entscheidend ist. Aufgrund der schwachen Intensität der Disproportionierungssignale (**h**) war dies mit Tandem-Massenspektrometrie nicht möglich zusätzliche Strukturinformationen bezüglich der Endgruppe **h** zu gewinnen.

Über ¹³C-NMR-Experimente wurde versucht ein quaternäres C-Atom in der Endgruppe zu detektieren, welches bei der Initiierung durch das tertiäre Kohlenstoff-zentrierte Radikal entstehen würde. Zu diesem Zweck wurden 2EH-PDC-initiierte Polystyrol-Proben, die im Gegensatz zu Poly(MMA) keine quaternären Kohlenstoffatome in der Polymerkette enthalten, NMR-spektroskopisch untersucht. Aufgrund der ohnehin niedrigen Intensität der

entsprechenden NMR-Signale und Überlappungen mit Signalen der Polymerkette, konnte weder ein quaternäres C-Atom detektiert werden, noch konnten alle Signale der eingebauten Endgruppen eindeutig zugeordnet werden. Für die Zuordnung der ¹³C-NMR-Signale wurden die experimentell bestimmten Daten mit simulierten Daten für die verschiedenen möglichen Endgruppen **h**, **h'** und **h''** verglichen.

Um die Frage, welche intramolekulare Wasserstoffübertragungsreaktion stattfindet, eindeutig zu klären, erscheint es als zielführend eine Modellsubstanz zu untersuchen, die strukturell bedingt eine der beiden Übertragungsreaktionen bevorzugt. In Abbildung 6-12 sind für diese Studie Modellsubstanzen gezeigt. Der Initiator Di-(2,2-diethylbutyl)geeignete peroxydicarbonat dient als Modellsubstanz für die intramolekulare Wasserstoffübertragung unter Beteiligung der Ethylseitenketten. Aufgrund des quaternären Kohlenstoffatoms ist für das entsprechende Alkoxycarbonyloxylradikal die Wasserstoffübertragung I nicht möglich. Zudem sollte aufgrund der erhöhten Anzahl von Ethylseitenketten an β -Position die Wasserstoffübertragung II deutlich begünstigt sein. Bei dem Initiator Di-(2-methylpropyl)peroxydicarbonat sind die Verhältnisse genau entgegen gesetzt. Strukturell bedingt ist hier für das korrespondierende primäre Initiatorradikal die zweite Wasserstoffübertragung aufgrund fehlender β -Ethylseitenketten nicht möglich, aber die Bildung eines tertiären Kohlenstoffzentrierten Radikals ist dennoch gewährleistet.

Di-(2-methylpropyl)peroxydicarbonat

Abbildung 6-12: Modellsubstanzen zur Untersuchung der unterschiedlichen, intramolekularen Wasserstoffübertragungsreaktionen.

6.7 Di-(2,2-diethylbutyl)peroxydicarbonat (2EB-PDC)

Die Modellsubstanz Di-(2,2-diethylbutyl)peroxydicarbonat (2EB-PDC) wurde zur Herstellung einer PMMA-Probe als Initiator bei 85 °C in einer MMA-Lösungspolymerisation eingesetzt. Der Ausschnitt eines ESI-Massenspektrums dieser Poly(MMA)-Probe ist in Abbildung 6-13 dargestellt. Der Ausschnitt umfasst den Massenbereich einer Monomerwiederholungseinheit bei maximaler Signalintensität.

Abbildung 6-13: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt in Benzol-Lösung unter Verwendung der Modellsubstanz Di-(2,2-diethylbutyl)-peroxydicarbonat (2EB-PDC, $c_{\text{Ini}} = 0.10 \text{ mol}\cdot\text{L}^{-1}$, $c_{\text{MMA}} = 3.0 \text{ mol}\cdot\text{L}^{-1}$) bei 85 °C.

Im gezeigten Massenspektrum sind drei Signale deutlich zu erkennen. Das Signalpaar bei m/z 895.5 und m/z 897.5 kann dem Disproportionierungspeak (J) zugeordnet werden. In den entsprechenden Terminierungsprodukten ist jeweils eine 2,2-Diethylbutoxycarbonyloxyl-Endgruppe J eingebaut. Das dritte verbleibende Signal bei m/z 869.4 lässt sich dem Kombinationspeak (JJ) zuweisen. Die hier Spezies polymeren detektierten, tragen zwei 2,2-Diethylbutoxycarbonyloxyl-Endgruppen. Weitere Signale, insbesondere solche die auf 3,3-Diethyl-4-

2,2-Diethylbutoxycarbonyloxylradikal J

3,3-Diethyl-4-hydroxy-butylradikal k

hydroxybutyl-Endgruppen k hinweisen, können im gezeigten Massenspektrum nicht zugeordnet werden. Zu Beginn wurde erwartet, dass aufgrund der höheren Anzahl der

 β -Ethylseitenketten im 2,2-Diethylbutoxycarbonyloxylradikal **J** die Reaktionswahrscheinlichkeit der intramolekularen Wasserstoffübertragungsreaktion **II** gegenüber dem 2-Ethylhexoxycarbonyloxylradikal **G** erhöht sei. Demnach hätten die Signale, welche auf Endgruppen aus sekundären Initiatorradikalen hinweisen, im Vergleich zum 2EH-PDC intensiver ausfallen müssen. Die Analyse des Massenspektrums von 2EB-PDC bringt genau das Gegenteil hervor. Weder der Kreuzkombinationspeak (**Jk**) bei m/z 825.4, noch der Disproportionierungspeak (**k**) bei m/z 851.5 / 853.5 werden beobachtet. Außer den bereits zugeordneten Signalen finden sich im Massenspektrum noch zwei Signale mit sehr kleiner Intensität. Sie lassen sich keiner der erwarteten Spezies erkennen.

Für das sekundäre Initiatorradikal **k** wäre eine weitere Fragmentierungsreaktion zu einem Hydroxyalkylradikal **l** unter Abspaltung eines Ethen-Moleküls denkbar (siehe Abbildung 6-14). Die Triebkraft dieser Reaktion wäre die Bildung eines tertiären Kohlenstoff-zentrierten Radikals, sowie eines thermodynamisch stabilen Ethen-Moleküls. Aber auch solche Endgruppen lassen sich die verbliebenen Signale nicht zuordnen.

Abbildung 6-14: Mögliche Fragmentierungsreaktion für das sekundäre Initiatorradikal k.

Trotz noch fehlender Zuweisung zweier Signale geringer Intensität lässt sich bezogen auf die vorgeschlagene intramolekulare Wasserstoffübertragung **II** für 2EB-PDC folgendes feststellen. Auch bei strukturell-begünstigten Bedingungen im primären Initiatorradikal **J**, fragmentiert diese radikalische Spezies im Zeitintervall zwischen Entstehung und Anlagerung an ein Monomer nicht über eine intramolekulare Wasserstoffübertragung zum sekundären Initiatorradikal **k** oder einem Folgeprodukt von **k**.

6.8 Schlussfolgerung

Die Ergebnisse der massenspektrometrischen Analyse von MMA-Homopolymeren zeigen für die Initiatoren E-PDC, *n*TD-PDC, *n*HD-PDC und *i*P-PDC, dass das primär gebildete Alkoxycarbonyloxylradikal zwischen Entstehung und Anlagerung an ein Monomer in nur sehr geringem Ausmass über CO₂-Abspaltung zu einem Alkoxylradikal decarboxyliert. Lediglich schwach detektierte Kreuzkombinationssignale von Alkoxycarbonyloxyl-Endgruppen mit den entsprechenden Alkoxyl-Endgruppen weisen auf die Anwesenheit von Alkoxylradikalen hin. Dem Anschein nach hat auch die Molekülstruktur in unmittelbarer Umgebung zum Sauerstoff-zentrierten Radikal keinen signifikanten Einfluss auf die Decarboxylierungsdynamik. Das zeigt der Vergleich der ESI-MS-Untersuchungen von E-PDC-initiierten mit *i*P-PDC-initiierten Polymeren, wo sich in unmittelbarer Nachbarschaft zum Sauerstoff-zentrierten Radikal ein primäres bzw. ein sekundäres Kohlenstoffatom befindet. Über einen Vergleich der Peakhöhen der einzelnen "Homo"-Kombinations- zu den Kreuzkombinationssignalen (QQ)/(Qq) konnte der Rückschluss gezogen werden, dass in der Reihe E-PDC < *i*P-PDC < *n*TD-PDC < *n*HD-PDC das Ausmass der Decarboxylierung leicht zunimmt.

In der massenspektrometrischen Untersuchung von sB-PDC-initiierten MMA-Polymeren wurde gezeigt, dass das primär gebildete *sec*-Butoxycarbonyloxylradikal im Zeitintervall zwischen Entstehung und Anlagerung an ein Monomer ebenfalls nur in geringem Umfang decarboxyliert. Neben dem Primärradikal wird eine zweite radikalische Spezies, mit der Summenformel C₃H₅, eindeutig nachgewiesen. Deren Entstehung aus *s*B-PDC ist jedoch bislang nicht zweifelsfrei geklärt.

Im Gegensatz zu den bisherigen Beobachtungen, konnte bei der Untersuchung von 2EH-PDC-initiierten Polymeren eine deutlich stärkere Decarboxylierung des entsprechenden Alkoxycarbonyloxylradikals festgestellt werden. Dieser Unterschied wird im strukturellen Vergleich mit E-PDC und *n*TD-PDC im Wesentlichen dem Einfluss der Ethylseitenkette an β -Position zugeschrieben. Eine einfache CO₂-Abspaltung als Mechanismus der Decarboxylierung scheint in diesem Fall nicht plausibel. Stattdessen wurden zwei intramolekulare 1,5-Wasserstoffverschiebungen als mögliche Reaktionswege vorgeschlagen (siehe Abbildung 6-9). Dabei steht die Bildung eines tertiären Kohlenstoff-zentrierten Radikals an der Ethylseitenkette.

Um Rückschlüsse auf den möglichen Mechanismus ziehen zu können, wurde die Modellsubstanz Di-(2,2-diethylbutyl)peroxydicarbonat untersucht, die aufgrund ihrer Struktur nur die zweite intramolekulare 1,5-Wasserstoffverschiebung eingehen kann. Die massenspektrometrische Untersuchung zeigte jedoch, dass während des Initiierungsprozess keine decarboxylierten Initiatorradikale gebildet werden.

deutet für auf Dies 2EH-PDC den Mechanismus der intramolekularen 1,5-Wasserstoffverschiebung tertiären 3-(Hydroxymethyl)heptylradikal. zum Dieser Mechanismus bedarf allerdings weiterer Verifizierung, beispielsweise durch die Modellsubstanz Di-(2-methylpropyl)peroxydicarbonat.

7 Ergebnisse aus quantenchemischen Rechnungen

Neben der massenspektrometrischen Endgruppenanalyse sollen in dieser Arbeit auch theoretische Studien einen Beitrag zur Aufklärung der Initiierungsmechanismen der aus Peroxycarbonaten entstehenden Alkoxycarbonyloxylradikale leisten. Im Mittelpunkt dieser theoretischen Studien steht die Decarboxylierung der Alkoxycarbonyloxylradikale. Die in den Alkoxycarbonyloxylradikalen enthaltene Carbonatgruppe weist klar auf eine mögliche Decarboxylierungsreaktion hin.

In früheren Arbeiten wurde bereits die Decarboxylierung von Aryloxycarbonyloxylradikalen, welche aus aromatischen Peroxycarbonaten entstehen, experimentell und theoretisch untersucht.

Aus DFT-Rechnungen^[104] wurden für verschiedene Aryloxycarbonyloxylradikale sehr hohe exotherme Reaktionsenthalpien und besonders niedrige Decarboxylierungsbarrieren bestimmt. Experimentell^[16] wurden für diese Aryloxycarbonyloxylradikale besonders schnelle Decarboxylierungen beobachtet.

Im Folgenden soll näher auf die Methodik bei der Durchführung der theoretischen Untersuchung eingegangen werden. Danach schliesst sich die Vorstellung der Ergebnisse aus DFT-Rechnungen zu den Decarboxylierungen der Alkoxycarbonyloxylradikale an.

Abschliessend wird als weitere Fragmentierungsreaktion die intramolekulare 1,5-Wasserstoffverschiebung verschiedener Alkoxycarbonyloxylradikale untersucht.

7.1 Methodik

Für die systematische DFT-Studie zu den Alkoxycarbonyloxylradikalen und deren Fragmentierungsreaktionen wurden die Radikale als isolierte Moleküle betrachtet. Intermolekulare Wechselwirkungen oder Solvenspotenziale für Lösungsmittel wurden nicht berücksichtigt. Dennoch sollten die erzielten Ergebnisse auf Moleküle in einer apolaren oder schwach protischen Umgebung, wie sie bei den Lösungspolymerisationen in Benzol vorliegen, anwendbar sein.

Die Geometrieoptimierungen und Frequenzrechnungen wurden unter Zugrundelegung von Energien und Energiegradienten aus der Dichtefunktionaltheorie durchgeführt. Dabei wurde überwiegend das UB3LYP-Funktional^[76, 105, 106] verwendet. In dem UB3LYP-Funktional sind Beckes nicht-lokales 3-Parameter-Austausch-Funktional^[76] mit dem nicht-lokalen Korrelations-Funktional^[75] von Lee, Yang und Parr kombiniert. Für Vergleichszwecke wurde vereinzelt zusätzlich mit dem PBE1PBE^[107]- und mit dem MPW1PW91^[108]-Funktional gerechnet. In den Rechnungen wurden folgende Basissätze verwendet: 6-31G(d), 6-31+G(d,p), 6-311+G(d,p), 6-311+G(2d,p) und 6-311+G(2df,2pd). Für alle Rechnungen wurde das Programmpaket Gaussian03^[79] und für die Erstellung der Inputs bzw. für die Auswertung der Outputs das Programm GaussView3.0^[109] verwendet.

Die Grundzustände der studierten Alkoxycarbonyloxylradikale sowie die Übergangszustandsund Produktgeometrien der betrachteten Reaktionen wurden auf UB3LYP/6-31G(d)-Niveau voll optimiert. Die berechneten Geometrien wurden sukzessive mit höheren Basissätzen bis zum 6-311+G(2d,p)-Niveau verfeinert. Nach jeder Geometrieoptimierung erfolgte eine Frequenzrechnung. Das Fehlen imaginärer Frequenzen wurde als Kriterium gedeutet, dass die jeweilige Struktur dem Grundzustandminimum entspricht.

Bei der Berechnung der Reaktionsenthalpien wurden unter Berücksichtigung der thermischen Korrekturbeiträge H_{corr} die Differenzen der berechneten elektronischen Energien E_0 gebildet:

$$\Delta H^{\circ}(298\mathrm{K}) = \sum_{\mathrm{Produkte}} (E_0 - H_{\mathrm{corr}}) - \sum_{\mathrm{Edukte}} (E_0 - H_{\mathrm{corr}})$$
(7.1)

In der thermischen Korrektur H_{corr} der Enthalpie sind die translatorischen, rotatorischen, vibratorischen und elektronischen Anteile der thermischen Energie berücksichtigt, welche sich aus den entsprechenden Zustandssummen berechnen lassen.^[110]

Die Übergangszustände der betrachteten Reaktionen wurden mit Hilfe der TS (transition state) Routine von Gaussian $03^{[79]}$ gefunden. Mit der IRC (intrinsic reaction coordinate) Routine^[111, 112] wurde überprüft, ob die gefundene Übergangszustandsgeometrie der gesuchten Reaktionskoordinate entspricht. Die so bestimmten Übergangszustände besitzen jeweils eine imaginäre Schwingungfrequenz ω_{TS} , die die Bewegung auf der Reaktionskoordinate darstellt.

Des Weiteren wurden für auf dem 6-311+G(d,p)-Niveau voroptimierte Geometrien singlepoint Energieberechnung mit höheren Basissätzen (6-311+G(2df,2pd)) durchgeführt.

Für die Berechnung von Geschwindigkeitskoeffizienten werden die Differenzen der Nullpunktsenergien von Grund- und Übergangszuständen, die Reaktionsbarrieren, benötigt. Die Nullpunktskorrektur E_{ZPE} kann aus einer Frequenzrechnung in Gaussian03 bestimmt werden. Für die Reaktionsbarriere E_0 gilt:

$$E_{0} = \sum_{\text{Prod}} (E_{0} + E_{\text{ZPE}}) - \sum_{\text{Ed}} (E_{0} + E_{\text{ZPE}})$$
(7.2)

Diese Studie umfasst auch Rechnungen für Radikale, welche längerkettige, lineare oder teils verzweigte Alkylketten tragen. Für diese Moleküle sind aufgrund der Rotation um die C-C-Bindungsachse eine Vielzahl von Konformeren möglich. Die Berechnungen von Reaktionenthalpien und Aktivierungsbarrieren erfolgen jedoch nur unter Berücksichtigung der stabilsten Konformere. Zu diesem Zweck wurden für das n-Hexoxycarbonyloxylradikal und das 2-Ethylhexoxycarbonyloxylradikal Energieberechnungen in Abhängigkeit des Diederwinkels einer entsprechenden C-C-Bindung durchgeführt, um das stabilste Rotamer bezüglich der untersuchten Bindung zu ermitteln. Diese Prozedur wurde ausgehend von der Carbonatgruppe aufeinanderfolgend für jede C-C-Bindung durchgeführt. Somit wurde das stabilste Rotamer bezogen auf das gesamte Molekül bestimmt.

7.2 Decarboxylierung der Alkoxycarbonyloxylradikale

In Kapitel 6 wurden die Ergebnisse der experimentellen Untersuchungen verschiedener Dialkylperoxydicarbonate bereits vorgestellt. Im Fokus dieser Studien stand unter anderem die Decarboxylierung der primär gebildeten Alkoxycarbonyloxylradikale. Diese experimentellen Studien sollen nun durch die Ergebnisse aus quantenchemischen Rechnungen ergänzt werden. In der vorliegenden DFT-Studie soll die Decarboxylierung verschiedener Alkoxycarbonyloxylradikale systematisch untersucht werden. Dazu wurde die Betrachtung der in Kapitel 6 beobachteten Alkoxycarbonyloxyloxylradikale durch weitere Radikale ergänzt. Um sehr hohen Rechenaufwand zu vermeiden, werden die in Kapiel 6 beobachteten *n*-Tetradecoxy- und *n*-Hexadecoxycarbonyloxylradikale in dieser Studie durch *n*-Hexoxycarbonyloxylradikale repräsentiert. Ergänzt wird diese Studie durch einen Vergleich von *n*-, *sec*- und *tert*-Butoxycarbonyloxylradikalen. Die untersuchten Alkoxycarbonyloxylradikale sind in Abbildung 7-1 gezeigt.

Abbildung 7-1: Übersicht über die untersuchten Alkoxycarbonyloxylradikale.

Zunächst werden die optimierten Strukturen der Grund- und Übergangszustände vorgestellt. Danach erfolgt die Diskussion der berechneten Reaktionsenthalpien und Decarboxylierungsbarrieren. Abschliessend sollen die theoretischen Ergebnisse mit den experimentellen Beobachtungen verglichen werden. ī

7.2.1 Strukturen der Alkoxycarbonyloxylradikale

Die untersuchten Alkoxycarbonyloxylradikale zeigen alle C_1 -Symmetrie. Weder für diese Radikale, noch für die entsprechenden Dialkylperoxydicarbonate liegen experimentelle Strukturdaten vor. In den früheren Arbeiten^[113] zum Zerfall von Dibenzoylperoxid zeigte der Vergleich von DFT-berechneten Strukturdaten mit Ergebnissen aus Röntgenbeugungsexperimenten für das Peroxid gute Übereinstimmung. Daher wird davon ausgegangen, dass auch die hier berechneten Geometrien hinreichend genau sind.

Ein Vergleich der berechneten Strukturparameter für das Ethoxycarbonyloxylradikal in Abhängigkeit vom Basissatz (siehe Tabelle 7-1) zeigt, dass die Einbeziehung diffuser Funktionen für Schweratome und der Wechsel zu einem Triple-Zeta-Split-Valence-Basissatz nur noch minimale Veränderungen bringen. Bereits im 6-311+G(d,p)-Niveau konvergieren die Strukturdaten.

 Tabelle
 7-1:
 Vergleich
 berechneter
 Strukturparameter
 f
 ür
 das
 Ethoxycarbonyloxylradikal
 in

 Abhängigkeit vom Basissatz.

	6-31G(d)	6-31G(d,p)	6-31+G(d,p)	6-311+G(d,p)	6-311+G(2d,p)
<i>R</i> _{0-CO2} / Å	1.322	1.322	1.320	1.317	1.316
<i>R</i> _{R-O} / Å	1.460	1.460	1.465	1.465	1.464
α(OCO) / °	115.1	115.1	114.9	115.1	114.9

Für weitere Vergleiche der berechneten Radikalgeometrien werden nur noch die im UB3LYP/6-311+G(d,p)-Niveau gerechneten Geometrien herangezogen. In Tabelle 7-2 findet sich eine Übersicht der für die Decarboxylierung wichtigen Strukturparameter in den Grundzuständen der untersuchten Alkoxycarbonyloxylradikale.

Für das Ethoxycarbonyloxylradikal (siehe Abbildung 7-2) lässt sich feststellen, dass beide C-O-Bindungen der CO₂-Einheit mit ählichen Bindungslängen berechnet wurden. Die

C(1)-O(3)-Bindung ist im Gegensatz dazu aufgrund der sterischen Wechselwirkung mit dem Ethoxyrest etwas verlängert. Die C-O-Bindunglänge im Alkoxyrest (R-O(3)) zeigt mit 1.465 Å den größsten Wert. Der O-C-O-Winkel beträgt 115.1°. Die CO₂-Gruppe liegt dabei in einer Ebene mit den Kohlenstoffatomen der Ethylseitenkette.

Abbildung 7-2: Optimierte Grundzustandgeometrie des Ethoxycarbonyloxylradikals (UB3LYP/6-311+G(d,p))

$\begin{bmatrix} R & O_{(2)} \\ O_{(3)} - C_{(1)} \end{bmatrix}$		Bindungsl	ängen in Å		Bindungswinkel in °		
$\mathbf{O}_{(1)}$ R =	O(1)C(1)	O(2)C(1)	O(3)C(1)	O(3)R	O(2)C(1)O(1)	RO(3)C(1)	
Grundzustände							
C_2H_5	1.245	1.263	1.317	1.465	115.1	117.2	
<i>i</i> -C ₃ H ₇	1.246	1.265	1.314	1.482	114.5	121.6	
<i>n</i> -C ₄ H ₉	1.246	1.263	1.316	1.464	115.0	117.2	
sec-C ₄ H ₉	1.247	1.264	1.314	1.483	114.5	121.6	
tert-C ₄ H ₉	1.246	1.266	1.313	1.500	114.3	122.8	
<i>n</i> -C ₆ H ₁₃	1.246	1.262	1.316	1.465	115.0	117.3	
CH ₂ CH(C ₂ H ₅)C ₄ H ₉	1.247	1.263	1.315	1.467	115.0	117.1	
Übergangszustände							
C_2H_5	1.181	1.218	1.644	1.421	147.2	116.1	
<i>i</i> -C ₃ H ₇	1.182	1.220	1.633	1.427	146.3	120.5	
<i>n</i> -C ₄ H ₉	1.182	1.219	1.637	1.415	146.7	116.4	
sec-C ₄ H ₉	1.183	1.220	1.631	1.423	146.0	120.4	
tert-C ₄ H ₉	1.183	1.219	1.636	1.438	146.4	121.6	
<i>n</i> -C ₆ H ₁₃	1.182	1.219	1.638	1.415	146.7	116.4	
CH ₂ CH(C ₂ H ₅)C ₄ H ₉	1.185	1.219	1.623	1.413	145.8	115.8	

Tabelle 7-2: Vergleich der berechneten Strukturparameter der Grund- und Übergangszustände für die Decarboxylierung der Alkoxycarbonyloxylradikale (Basissatz: 6-311+G(d,p)).

Im Folgenden sollen berechnete Strukturdaten für die Grundzustände der studierten Alkoxycarbonyloxylradikale verglichen werden. Bei den C-O-Bindungslängen der Carbonatgruppe treten keine signifikanten Unterschiede auf. Die berechneten C-O-Bindungslängen der CO₂-Einheit unterscheiden sich bei allen untersuchten Radikalen nur minimal. Bei der C-O-Bindung der Alkoxygruppe (R-O(3)) treten deutliche Unterschiede auf. Für das tBuOCO₂-Radikal beträgt der Wert dieser Bindgungslänge 1.500 Å. Die C-O-Bindungslänge nimmt in der Reihe *t*BuOCO₂ > *s*BuO CO₂ \approx *i*PrO CO₂ > Rest stetig ab. Diese Abnahme der C-O-Bindungslänge ist eindeutig mit der sterischen Wechselwirkung zwischen dem Alkoxylrest und der Carbonatgruppe zu erklären. Bei *t*BuOCO₂ liegt ein tertärer Alkoxyrest vor, während *s*BuOCO₂ und *i*PrOCO₂ sekundäre Alkoxylreste tragen. Die restlichen Alkoxycarbonyloxylradikale tragen an der α -Position zur Carbonatgruppe durchgehend primäre Alkylreste. Während die C-O-Bindungslänge zunimmt, nehmen die CO₂-Öffnungswinkel in der gleichen Reihe stetig ab. Der RO(3)C(1)-Winkel (siehe

65

Tabelle 7-2) dagegen nimmt in dieser Reihenfolge wiederum zu. Die Veränderungen beider Winkel gehen wieder sterische Wechselwirkungen zwischen Alkylrest und Carbonatgruppe zurück. Es lässt sich daher zusammenfassen, dass mit zunehmender sterischer Wechselwirkung zwischen der Carbonatgruppe und dem Alkylrest die C-O-Bindung im Alkoxyfragment verlängert wird. Gleichzeitig wird ein abnehmender CO₂-Öffnungswinkel bestimmt. Des Weiteren führt eine höhere sterische Beanspruchung zu einem größeren Bindungswinkel zwischen Carbonatgruppe und Alkylrest.

Hinweis: Die berechneten Geometrien der Grundzustände aller untersuchter Alkoxycarbonyloxylradikale finden sich im Anhang.

7.2.2 Strukturen der Übergangszustände

Die für die Decarboxylierung relevanten Strukturparameter der berechneten Geometrien der Übergangszustände der Alkoxycarbonyloxylradikale sind ebenfalls in Tabelle 7-2 dargestellt. Im Vergleich zu den Grundzuständen stellt man generell fest, dass die Decarboxylierung mit einer Verkürzung der Carbonylbindungen und der Aufweitung des OCO-Winkels in der CO₂-Einheit einhergeht. Diese Parameter nähern sich dabei den Werten 1.16 Å und 180° für das freie CO₂ an. Gleichzeitig kommt es zu einer geringfügigen Verkürzung der C-O-Bindung im Alkoxyrest. Bei den berechneten Carbonylbindungslängen in der CO₂-Einheit werden für alle Alkoxycarbonyloxylradikale nahezu gleiche Werte bestimmt. Auch bei den OCO-Winkeln werden keine signifikanten Abweichungen festgestellt, die sich auf strukturelle Unterschiede zurückführen lassen. Einzig in den berechneten C-O-Bindungslängen der Alkoxyreste (R-O(3)) werden Unterschiede festgestellt, die sich wie bereits bei der Diskussion der Grundzustandsgeometrien erwähnt auf die sterischen Wechselwirkung zwischen Carbonatgruppe und Alkylrest zurückführen lassen. In der Reihe *t*BuOCO₂ > *s*BuOCO₂ \approx *i*PrO CO₂ > Rest nimmt diese C-O-Bindungslänge geringfügig ab.

In Abbildung 7-3 sind die Geometrien des Ethoxycarbonyloxylradikals im Grund- und Übergangszustand der Decarboxylierung gezeigt. Aus den berechneten Strukturparametern geht eine deutliche Aufweitung des CO₂-Öffnungswinkels und eine starke Verlängerung der O-CO₂-Bindungslänge hervor. In der gezeigten Abbildung ist außerdem ersichtlich, dass die CO₂-Gruppe sich aus der Ebene mit den Kohlenstoffatomen der Ethylseitenkette um die O-CO₂-Bindungsachse herausgedreht hat.

Abbildung 7-3: Geometrien des Ethoxycarbonyloxylradikals im Grund- und Übergangszustand der Decarboxylierung, sowie Darstellung der Schwingungsmode im Übergangszustand mit der imaginären Frequenz ω_{TS} .

Die genauen Geometrien der übrigen berechneten Übergangszustände sind im Anhang dargestellt.

Im Vergleich mit den Grundzuständen lässt sich für alle untersuchten Alkoxycarbonyloxylradikale feststellen, dass diese produktähnliche Übergangszustände der Decarboxylierung besitzen. Dies steht im Gegensatz zu den Ergebnissen für die bereits untersuchten Aryloxycarbonyloxylradikale, wo eduktähnliche Übergangszustände berechnet wurden.^[104, 113]

Die Bewegung über den Übergangszustand wird durch die berechnete imaginäre Frequenz der Normalmoden des Übergangszustands beschrieben. Für das Ethoxycarbonyloxylradikal ist diese Schwingungsmode in Abbildung 7-3 dargestellt. Die imaginäre Schwingungsfrequenz ω_{TS} beträgt 587*i* cm⁻¹. Deutlich ist die Bewegung entlang der O-CO₂-Bindungsachse zu erkennen, welche zur Abspaltung der CO₂-Einheit führt. In Tabelle 7-3 sind lediglich kurz die Wellenzahlen der Normalmoden der Decarboxylierung entlang der entsprechenden Reaktionskoordinate aufgeführt. Die berechneten Wellenzahlen liegen in einem engen Bereich von 567*i* - 587*i* cm⁻¹. Für die Aryloxycarbonyloxylradikale wurden deutlich kleinere Wellenzahlen (126*i* und 257*i* cm⁻¹) bestimmt.

 Tabelle 7-3:
 Berechnete
 Wellenzahlen
 der
 Normalmoden
 der
 Decarboxylierung
 entlang
 der

 Reaktionskoordinate aller untersuchten
 Alkoxycarbonyloxylradikale.
 Image: State S

	EtOCO ₂	<i>i</i> PrOCO ₂	<i>n</i> BuOCO ₂	sBuOCO ₂
$\omega_{\rm TS}$ / cm ⁻¹	587 <i>i</i>	570 <i>i</i>	577 <i>i</i>	567 <i>i</i>
	<i>t</i> BuOCO ₂	<i>n</i> HexOCO ₂	2EtHexOCO ₂	_
7.2.3 Thermochemie der Decarboxylierung

Die Reaktionsenthalpien der Decarboxylierung wurden für die untersuchten Alkoxycarbonyloxylradikale nach der Formel (7.1) berechnet. Sie sind in Tabelle 7-2 enthalten. Ein Vergleich mit Literaturwerten ist für die untersuchten Alkoxycarbonyloxylradikale nicht möglich.

Für das Ethoxycarbonyloxylradikal wurden die Geometrieoptimierungen und die Energieberechnungen zum Vergleich außer mit dem B3LYP-Funktional noch mit zwei weiteren Funktionalen (PBE1PBE^[107] und MPW1PW91^[108]) durchgeführt. Das PBE1PBEund das MPW1PW91-Funktional eignen sich gut zur Berechnung von Übergangszuständen. Bei der Berechnung von Grundzuständen werden mit dem B3LYP-Funktional bessere Ergebnisse erzielt.^[114] Die mit den unterschiedlichen Funktionalen bestimmten Reaktionsenthalpien und Aktivierungsbarrieren sind in Tabelle 7-4 aufgeführt. Die mit dem PBE1PBE- und dem MPW1PW91-Funktional berechneten Decarboxylierungsbarrieren liegen deutlich über denen mit dem B3LYP-Funktional bestimmten Werten. Dagegen werden die Reaktionsenthalpien absolut Allgemein gesehen kleiner berechnet. werden Aktiverungsbarrieren in DFT-Rechnungen häufig überschätzt. Es erscheint daher sinnvoll für weitere Betrachtungen nur die Ergebnisse der B3LYP-Rechnungen zu diskutieren.

					Aktivierung	gsbarriere
	Basissatz	$\Delta E_{ m el}$	ΔE_0	$\Delta_{\rm R} H^{\circ}$ (298 K)	$E_{ m el}$	E_0
B3LYP	6-31G(d)	-0.2	-3.7	-2.9	14.6	13.1
	6-31+G(d,p)	-2.8	-6.5	-5.5	14.3	12.6
	6-311+G(d,p)	-6.5	-10.2	-9.2	12.7	11.1
	6-311+G(2d,p)	-5.6	-9.4	-8.4	13.3	11.6
PBE1PBE	6-31G(d)	2.3	-1.2	-0.3	16.4	15.0
	6-31+G(d,p)	0.3	-3.4	-2.4	16.1	14.5
	6-311+G(d,p)	-3.0	-6.6	-5.7	14.7	13.2
	6-311+G(2d,p)	-2.0	-5.7	-4.7	15.3	13.7
MPW1PW91	6-31G(d)	1.0	-2.4	-1.6	16.3	14.8
	6-31+G(d,p)	-1.0	-4.6	-3.6	16.0	14.4
	6-311+G(d,p)	-4.4	-8.0	-7.0	14.5	13.1
	6-311+G(2d,p)	-3.4	-7.2	-6.1	15.1	13.5

Tabelle 7-4: Berechnete Reaktionsenergien und Decarboxylierungsbarrieren (in kcal·mol⁻¹) für das Ethoxycarbonyloxylradikal unter Berücksichtigung verschiedener Basissätze und Verwendung unterschiedlicher DFT-Methoden.

	Basissatz	$\Delta E_{ m el}$	ΔE_0	Δ _R H° (298 K)
EtOCO ₂	6-31G(d)	-0.2	-3.7	-2.9
-	6-31+G(d,p)	-2.8	-6.5	-5.5
	6-311+G(d,p)	-6.5	-10.2	-9.2
	6-311+G(2d,p)	-5.6	-9.4	-8.4
<i>i</i> PrOCO ₂	6-31G(d)	-1.3	-4.2	-3.5
	6-31+G(d,p)	-4.3	-7.1	-6.5
	6-311+G(d,p)	-7.9	-10.7	-10.0
	6-311+G(2d,p)	-7.2	-10.0	-9.4
<i>n</i> BuOCO ₂	6-31G(d)	-0.3	-3.5	-2.9
	6-31+G(d,p)	-2.7	-6.2	-5.5
	6-311+G(d,p)	-6.5	-10.0	-9.2
	6-311+G(2d,p)	-5.6	-9.0	-8.3
sBuOCO ₂	6-31G(d)	-1.9	-4.7	-4.1
	6-31+G(d,p)	-4.6	-7.5	-6.8
	6-311+G(d,p)	-8.2	-11.1	-10.4
	6-311+G(2d,p)	-7.5	-10.4	-9.7
<i>t</i> BuOCO ₂	6-31G(d)	-6.8	-4.9	-5.6
	6-31+G(d,p)	-4.0	-6.2	-5.6
	6-311+G(d,p)	-7.6	-9.7	-9.1
	6-311+G(2d,p)	-6.9	-9.0	-8.4
<i>n</i> HexOCO ₂	6-31G(d)	-0.3	-3.5	-2.9
	6-31+G(d,p)	-2.7	-6.1	-5.4
	6-311+G(d,p)	-6.5	-9.9	-9.2
	6-311+G(2d,p)	-5.5	-9.0	-8.3
2EtHexOCO ₂	6-31G(d)	-2.3	-5.4	-4.8
	6-31+G(d,p)	-4.3	-7.1	-6.7
	6-311+G(d,p)	-8.0	-10.8	-10.3
	6-311+G(2d,p)	-7.0	-9.9	-9.5

Tabelle 7-5: Berechnete Reaktionsenergien und -enthalpien (in kcal·mol⁻¹) der Decarboxylierung aller untersuchten Alkoxycarbonyloxylradikale unter Berücksichtigung unterschiedlicher Basissätze.

Die bestimmten Reaktionsenthalpien weisen auf eine exotherme Decarboxylierungsreaktion hin. Für größere Basissätze werden absolut größere Werte berechnet. Die Unterschiede zwischen den Reaktionsenthalpien der verschiedenen Alkoxycarbonyloxylradikale sind minimal und liegen innerhalb der Genauigkeit solcher Rechnungen. Sie lassen sich auch nicht durch strukurelle Unterschiede erklaren. Die festgestellte Exothermie der Decarboxylierung wiederspricht der festgestellten produktähnlichen Struktur der Übergangszustände. Nach dem Hammond-Postulat^[115] sollten exotherme Reaktionen eduktähnliche Übergangszustände vorweisen. Bei den Untersuchungen^[113] zu den Aryloxycarbonyloxylradikalen wurden eduktähnlichen Übergangszustände berechnet und eine weitaus deutlichere Exothermie der Decarboxylierung festgestellt. In der gleichen Studie wurden für die untersuchten Aroyloxylradikale ebenfalls produktähnliche Übergangszustände teilweise bei leichter Exothermie der Decarboxylierung gefunden. Offenbar werden bei DFT- Rechnungen bestimmte Energiebeiträge überschätzt, so dass sich daraus eine scheinbare Exothermie bei den untersuchten Alkoxycarbonyloxylradikalen ergibt.

7.2.4 Decarboxylierungsbarrieren

Nach Formel (7.2) wurden die Decarboxylierungsbarrieren der untersuchten Alkoxycarbonyloxylradikale bestimmt. Sie sind in Tabelle 7-6 aufgeführt.

Tabelle 7-6: Berechnete Decarboxylierungsbarrieren (in kcal·mol⁻¹) der untersuchten Alkoxycarbonyloxylradikale unter Berücksichtigung unterschiedlicher Basissätze.

	Basissatz	$E_{\rm el}$	E_0		Basissatz	$E_{\rm el}$	E_0
EtOCO ₂	6-31G(d)	14.6	13.1	<i>t</i> BuOCO ₂	6-31G(d)	12.6	11.5
	6-31+G(d,p)	14.3	12.6		6-31+G(d,p)	12.2	10.7
	6-311+G(d,p)	12.7	11.1		6-311+G(d,p)	10.8	9.3
	6-311+G(2d,p)	13.3	11.6		6-311+G(2d,p)	11.3	9.9
	6-311+G(2df,2pd)	13.4	11.8		6-311+G(2df,2pd)	10.5	9.1
<i>i</i> PrOCO ₂	6-31G(d)	12.7	11.0	<i>n</i> HexOCO ₂	6-31G(d)	13.6	12.0
	6-31+G(d,p)	12.2	10.4		6-31+G(d,p)	13.5	11.8
	6-311+G(d,p)	10.8	9.1		6-311+G(d,p)	12.0	10.3
	6-311+G(2d,p)	11.2	9.5		6-311+G(2d,p)	12.6	10.9
	6-311+G(2df,2pd)	10.7	9.1		6-311+G(2df,2pd)	12.8	11.1
<i>n</i> BuOCO ₂	6-31G(d)	13.6	12.0	2EtHexOCO ₂	6-31G(d)	12.4	10.5
	6-31+G(d,p)	13.5	11.7		6-31+G(d,p)	12.5	10.7
	6-311+G(d,p)	12.0	10.3		6-311+G(d,p)	11.1	9.4
	6-311+G(2d,p)	12.6	10.9		6-311+G(2d,p)	11.7	9.9
	6-311+G(2df,2pd)	12.8	11.0		6-311+G(2df,2pd)	10.7	9.0
sBuOCO ₂	6-31G(d)	12.1	10.4				
	6-31+G(d,p)	11.8	9.9				
	6-311+G(d,p)	10.3	8.5				
	6-311+G(2d,p)	10.8	9.0				
	6-311+G(2df,2pd)	11.0	9.2				

Beim Vergleich der berechneten Decarboxylierungsbarrieren können keine großen Unterschiede festgestellt werden. Die Basissatzabhängigkeit ist ebenfalls nur minimal. Für größere Basissätze werden 1 - 2 kcal·mol⁻¹ kleinere Decarboxylierungsbarrieren bestimmt. Es sei darauf hingewiesen, dass die Genauigkeit von DFT-Rechnungen bei etwa 1 kcal·mol⁻¹ liegt. Daher ist eine genaue Abstufung zwischen den verschiedenen Alkoxy-carbonyloxylradikalen bezüglich der Höhe der Decarboxylierungsbarrieren bei den minimalen Unterschieden nur sehr grob möglich. Unabhängig vom Basissatz ergibt sich dann in etwa folgende Reihenfolge in den Decarboxylierungsbarrieren:

 $EtOCO_2 > nBuOCO_2 \approx nHexOCO_2 > 2EtHexOCO_2 \approx tBuOCO_2 \approx iPrOCO_2 \approx sBuOCO_2$.

gesehen wurden für das Ethoxycarbonyloxylradikal die Absolut höchsten Decarboxylierungsbarrieren bestimmt. Die niedrigsten Decarboxylierungsbarrieren errechneten sich für das sec-Butoxycarbonyloxylradikal. Dieses Ergebnis verwundert, da bei der Diskussion der Grund- und Übergangszustandsgeometrien die größten Unterschiede für das tert-Butoxycarbonyloxylradikal beobachtet wurden. Aufgrund der großen sterischen Wechselwirkungen zwischen der Carbonatgruppe und dem tert-Butylrest und der sich daraus ableitenden instabileren Struktur im Vergleich zu den anderen Alkoxycarbonyloxylradikalen, wäre eine deutlich niedrigere Decarboxylierungsbarriere zu erwarten gewesen. Für das 2-Ethylhexoxycarbonyloxylradikal

In Abbildung 7-4 sind für die isomeren *n*-, *sec-* und *tert*-Butoxylcarbonyloxylradikale die Energien der Grund- und Übergangszustände, sowie der Produkte der Decarboxylierung gegen den Verlauf der Reaktionskoordinate aufgetragen. Die Energien sind stets auf den Grundzustand des *n*-Butoxycarbonyloxylradikals bezogen, dessen Energie gleich Null gesetzt wurde. Die Reaktionskordinate verläuft bei der Decarboxylierung im Wesentlichen entlang der O-CO₂-Bindung.

Abbildung 7-4: Potentialschema der Decarboxylierung der isomeren Butoxycarbonyloxylradikale (Alle Energien sind auf den Grundzustand des *n*-Butoxycarbonyloxylradikals bezogen).

Alle drei Decarboxylierungsreaktionen zeigen den typischen Anstieg der Energie zum Übergangszustand und dann den steilen Abfall hin zu den Produkten. Der Energieverlauf der Decarboxylierung des n-Butoxycarbonyloxylradikals liegt stets oberhalb der Energien des sec-Butoxycarbonyloxylradikals. Die Energien des sec-Butoxycarbonyloxylradikals dagegen liegen energetisch höher als die des tert-Butoxycarbonyloxylradikals. Lediglich die Energieunterschiede zwischen den isomeren Butoxycarbonyloxylradikalen bzw. zwischen deren Übergangszustände und Produkte verändern sich im Verlauf der Reaktion. Im Grundzustand besteht ein großer Energieunterschied zwischen dem sec-Butoxycarbonyloxylund dem tert-Butoxycarbonyloxylradikal, das energetisch gesehen niedriger liegt. Dieser Energieunterschied relativiert sich dagegen aufgrund der niedrigeren Decarboxylierungsbarriere des sec-Butoxycarbonyloxylradikals im Übergangszustand. Der Unterschied des sec-Butoxycarbonyloxylradikals zum *n*-Butoxycarbonyloxylradikal erscheint dagegen jetzt größer. In den Produkten zeigen sich zwischen den einzelnen Isomeren wieder gleich große Energiedifferenzen.

Für die bereits untersuchten Aryloxycarbonyloxylradikale wurden deutlich niedrigere Decarboxylierungsbarrieren von maximal 2 kcal·mol⁻¹ bestimmt.

7.2.5 Schlussfolgerung

Die Decarboxylierung verschiedener Alkoxycarbonyloxylradikale wurde systematisch mit Hilfe von DFT-Rechnungen untersucht. Die berechneten Übergangszustände der Decarboxylierung wurden für alle untersuchten Radikale gefunden und mit höheren Basissätzen verfeinert. In den für die Decarboxylierung wichtigen strukturellen Parametern wurden keine signifikanten Unterschiede beobachtet. Ein geringer Einfluss von sterisch anspruchsvollen Alkylsubstituenten, z.B. bei dem tert-Butoxycarbonyloxylradikal, auf Strukturparameter konnte beobachtet und erklärt werden. Für alle einzelne Alkoxycarbonyloxylradikale wurden vergleichsweise niedrige exotherme Reaktionsenthalpien bestimmt. Die berechneten Decarboxylierungsbarrieren wurden auf ca. 8.5 bis 12 kcal·mol⁻¹ bestimmt. Im Vergleich zu den aromatischen Peroxycarbonaten liegen diese Reaktionsbarrieren relativ hoch. In den berechneten Reaktionsenthalpien und Decarboxylierungsbarrieren wird nur tendenziell eine strukturelle Abhängigkeit beobachtet.

Im Vergleich mit den aromatischen Peroxycarbonaten lässt sich für die Alkoxycarbonyloxylradikale annehmen, dass keine Decarboxylierung stattfindet. Die experimentell bei den Dialkylperoxydicarbonaten beobachteten Unterschiede bei der Entstehung von sekundären Initiatorradikalen lassen sich nicht über den hier untersuchten strukturellen Einfluss der Alkylsubstituenten auf die direkte Decarboxylierung erklären. Es liegt daher nahe, dass andere Fragmentierungsreaktionen bei den entsprechenden Primärradikalen zu decarboxylierten Initiatorradikalen führen.

7.3 Intramolekulare 1,5-Wasserstoffverschiebungen

In Kapitel 7.2 wurden die Decarboxylierung verschiedener Alkoxycarbonyloxylradikale untersucht. Abhängig von der Struktur der Substituenten sind jedoch weitere Fragmentierungsreaktionen denkbar. In diesem Abschnitt sollen die intramolekularen 1,5-Wasserstoffverschiebungen dreier Alkoxycarbonyloxylradikale untersucht werden (siehe Abbildung 7-5).

Abbildung 7-5: Intramolekulare 1,5-Wasserstoffverschiebungen verschiedener Alkoxycarbonyloxylradikale unter Ausbildung kohlenstoffzentrierter Radikale.

7-5 In Abbildung sind die möglichen 1,5-Wasserstoffverschiebungen für das sec-Butoxycarbonyloxylund das 2-Ethylhexoxycarbonyloxyl-, das iso-Propoxycarbonyloxylradikal gezeigt. Die jeweiligen intramolekularen 1,5-Wasserstoffverschiebungen führen je über einen sechsgliedrigen Übergangszustand unter Einbeziehung der Carbonatgruppe zur Ausbildung kohlenstoffzentrierter Radikale. Die enstehenden Kohlensäureester sind sehr instabil und zerfallen unter CO₂-Abspaltung zu einer terminalen Hydroxygruppe. Für das Verständnis der Zerfallsmechanismen dieser Alkoxycarbonyloxylradikale ist die Wasserstoffverschiebung sehr wichtig, da aus sauerstoffzentrierten Radikalen weniger reaktive kohlenstoffzentrierte Radikale gebildet werden. Für eine systematische Untersuchung dieser Reaktion sind die untersuchten Radikale gezielt ausgesucht worden. Es wurden drei Alkoxycarbonyloxylradikale ausgewählt, bei denen über eine intramolekulare Wasserstoffverschiebung abhängig von der Struktur des Alkylrestes entweder tertiäre, sekundäre oder primäre kohlenstoffzentrierte Produktradikale entstehen.

Für das *sec*-Butoxycarbonyloxylradikal ist ebenfalls eine zweite intramolekulare Wasserstoffverschiebungen unter Ausbildung eines primären kohlenstoffzentrierten Radikals denkbar. Aufgrund der höheren Stabilität des sekundären Produktradikals in Abbildung 7-5 ist die zweite intramolekulare Wasserstoffverschiebung unwahrscheinlich. Sie soll in dieser theoretischen Studie nicht berücksichtigt werden.

Nach der Vorstellung der optimierten Übergangszustände werden die berechneten Reaktionsenergien und Reaktionsbarrieren diskutiert.

7.3.1 Struktur der Übergangszustände

Die für die intramolekulare 1,5-Wasserstoffverschiebung wichtigen strukturellen Parameter der berechneten Geometrien der Übergangszustände und teilweise für die Grundzustände der untersuchten Alkoxycarbonyloxylradikale sind in Tabelle 7-7 dargestellt. Die Geometrien der Übergangszustände sind in Abbildung 7-6 gezeigt. Im Übergangszustand sind im Vergleich zum Grundzustand die C-H-Bindung des übertragenden Wasserstoffatoms und die C-O-Bindung der Carbonatgruppe verlängert. Während die C-H-Bindung relativ stark gestreckt ist, kann bei der C-O-Bindung nur eine leichte Verlängerung beobachtet werden. Des Weiteren wird der OCO-Winkel der Carbonatgruppe so weit gestaucht, dass er in allen Übergangszuständen kleiner als 120° ist. Die vollständigen Geometrien sind im Anhang zu finden.

Tabelle 7-7: Berechnete struktu	relle Parameter der Grund	l- und Übergangszustände	e der untersuchten
Alkoxycarbonyloxylradikale (UI	33LYP/6-311+G(d,p)).		

$\begin{array}{c c} H(1) & R1 \\ O(1) & C(1) \\ & \\ C(3) & C(2) \end{array}$	Bindungslängen (Å)		Bindungswinkel (°)			
0 0(2) R2	C(1)H(1)	C(3)O(1)	O(1)H(1)	H(1)C(1)C(2)	O(1)C(3)O(2)	O(1)H(1)C(1)
Übergangszustand						
<i>i</i> PrOCO2	1.276	1.333	1.255	97.2	117.1	148.5
sBuOCO2	1.249	1.327	1.303	96.4	117.1	149.0
2EtHexOCO2	1.227	1.320	1.364	95.3	116.9	148.0
Grundzustand						
<i>i</i> PrOCO2	1.091	1.246	_	111.7	126.7	—
sBuOCO2	1.094	1.247	_	109.5	126.7	—
2EtHexOCO2	1.098	1.247		107.4	125.5	—

Der Vergleich der berechneten Übergangszustände zeigt, dass im Fall des *iso*-Propoxycarbonyloxylradikals die C-H-Bindungslänge kleiner ist als die O-H-Bindungslänge. In den Übergangszuständen von *s*BuOCO₂ und 2EtHexOCO₂ verhalten sich die Bindungslängen umgekehrt, dort ist die O-H-Bindungslänge kleiner als die C-H-Bindungslänge. Die studierten Carbonyloxylradikale unterscheiden sich stark in den C-H- und O-H-Bindungslängen. Bei den anderen Strukturparametern sind keine großen Unterschiede zu beobachten.

Abbildung 7-6: Berechnete Geometrien des (a) *iso*-Propoxycarbonyloxylradikals, (b) des *sec*-Butoxycarbonyloxylradikals und (c) des 2-Ethoxycarbonyloxylradikals im Übergangszustand der intramolekularen 1,5-Wasserstoffverschiebung (UB3LYP/6-311+G(d,p)).

7.3.2 Thermochemie der intramolekularen 1,5-Wasserstoffverschiebung

Die nach Formel (7.1) berechneten Reaktionsenthalpien der intramolekularen 1,5-Wasserstoffverschiebung verschiedener Alkoxycarbonyloxylradikale sind in Tabelle 7-8 enthalten. Für alle Carbonyloxylradikale lässt sich für die Reaktionsenthalpie ein starker Basissatzeffekt Berücksichtigung zusätzlicher p-Funktionen den Wasserstoffatomen bei an im 6-31+G(d,p)-Niveau feststellen. Dieser Effekt ist verständlich, da das Wasserstoffatom maßgeblich an der Reaktion beteiligt ist. Höhere Basissätze zeigen keinen signifikanten Einfluss auf die Reaktionenthalpie. Für alle Alkoxycarbonyloxylradikale wird eine leichte Exothermie der intramolekularen Wasserstoffübertragung beobachtet. Jedoch ist die Exothermie bei 2EtHexOCO₂ deutlich stärker ausgeprägt als bei *i*PrOCO₂, wo die Zahlenwerte im Rahmen der Genauigkeit von DFT-Rechnungen auch auf eine thermoneutrale Reaktion hinweisen. Der Anstieg der berechneten Reaktionsenthalpie von iPrOCO2 über sBuOCO₂ hin zu 2EtHexOCO₂ ist plausibel, da die Bildung eines tertiären kohlenstoffzentrierten Radikals gegenüber der Bildung eines primären kohlenstoffzentrierten Radikals begünstigt ist.

Tabelle 7-8: Berechnete Reaktionsenergien und -enthalpien (in kcal·mol⁻¹) der intramolekularen 1,5-Wasserstoffverschiebung der untersuchten Alkoxycarbonyloxylradikale in Abhängigkeit vom Basissatz.

	Basissatz	$E_{ m el}$	E_0	$\Delta_{\rm R} H^{\rm o}$ (298 K)
<i>i</i> PrOCO ₂	6-31G(d)	3.5	2.8	3.0
	6-31+G(d,p)	-1.9	-2.4	-2.2
	6-311+G(d,p)	-2.2	-2.7	-2.5
	6-311+G(2d,p)	-2.4	-2.8	-2.6
sBuOCO ₂	6-31G(d)	-1.5	-2.1	-1.8
	6-31+G(d,p)	-6.7	-7.3	-7.0
	6-311+G(d,p)	-7.0	-7.6	-7.3
	6-311+G(2d,p)	-7.2	-7.7	-7.4
2EtHexOCO ₂	6-31G(d)	-7.5	-7.6	-7.3
	6-31+G(d,p)	-11.8	-11.7	-11.5
	6-311+G(d,p)	-12.0	-11.9	-11.7
	6-311+G(2d,p)	-12.0	-12.0	-11.8

Nach Formel (7.2) wurden ebenfalls die Reaktionsbarrieren der intramolekularen Wasserstoffverschiebungen für die verschiedenen Alkoxycarbonyloxylradikale berechnet (siehe Tabelle 7-9). Beim Vergleich der Ergebnisse in Abhängigkeit des verwendeten Basissatz wird bei allen Alkoxycarbonyloxylradikalen ein starker Effekt zusätzlicher p-Funktionen am Wasserstoffatom im 6-31+G(d,p)-Niveau festgestellt. Dieser Effekt ist, wie

schon bei der Diskussion der Reaktionsenthalpien erwähnt, aufgrund der zentralen Position des Wasserstoffatoms verständlich. Höhere Basissätze zeigen keinen signifikanten Effekt auf die Reaktionsbarriere. Für die intramolekulare Wasserstoffverschiebung des 2-Ethylhexoxy-carbonyloxylradikals mit Bildung eines tertiären kohlenstoffzentrierten Radikals wird eine relativ niedrige Reaktionbarriere von ca. 7.5 kcal·mol⁻¹ berechnet. Die Reaktionsbarrieren nehmen in der Reihe 2EtHexOCO₂ < sBuOCO₂ < iPrOCO₂ zu. Die Reaktionsbarriere des *iso*-Propoxycarbonyloxylradikals liegt mit ca. 13.5 kcal·mol⁻¹ deutlich höher.

	Basissatz	$E_{\rm el}$	E_0
<i>i</i> PrOCO ₂	6-31G(d)	19.6	16.1
	6-31+G(d,p)	16.6	13.2
	6-311+G(d,p)	16.9	13.6
	6-311+G(2d,p)	16.5	13.2
sBuOCO ₂	6-31G(d)	15.5	12.0
	6-31+G(d,p)	12.7	9.3
	6-311+G(d,p)	13.0	9.6
	6-311+G(2d,p)	12.7	9.3
2EtHexOCO ₂	6-31G(d)	11.9	8.8
	6-31+G(d,p)	9.9	7.3
	6-311+G(d,p)	10.3	7.6
	6-311+G(2d,p)	10.2	7.4

Tabelle 7-9: Berechnete Reaktionsbarrieren (in kcal·mol⁻¹) der intramolekularen 1,5-Wasserstoffverschiebung der untersuchten Alkoxycarbonyloxylradikale.

Im Vergleich mit den in Kapitel 7.2 berechneten Decarboxylierungsbarrieren lässt sich feststellen, dass beim iso-Propoxycarbonyloxylradikal für die Reaktionsbarriere der Wasserstoffverschiebung ein höherer Wert als für die Decarboxylierungsbarriere berechnet wurde. Daher kann man annehmen, dass das entsprechende Radikal eher decarboxyliert als eine Wasserstoffverschiebung einzugehen. Beim sec-Butoxycarbonyloxylradikal sind die Reaktionsbarriere der Wasserstoffverschiebung und die Decarboxylierungsbarriere in etwa gleich hoch. Ein besonderer Effekt zeigt sich beim 2-Ethylhexoxycarbonyloxylradikal. In diesem Fall wurde im Vergleich zur Decarboxylierungsbarriere eine um etwa 2 kcal·mol⁻¹ kleiner Reaktionsbarriere für die Wasserstoffverschiebung bestimmt. Die Wasserstoffverschiebung ist daher scheinbar gegenüber der Decarboxylierung begünstigt.

7.3.3 Schlussfolgerung

Intramolekulare 1,5-Wasserstoffverschiebungen wurden für verschiedene Alkoxycarbonyloxylradikale untersucht. Für das iso-Propoxycarbonyloxyl-, das sec-Butoxycarbonyloxyl- und das 2-Ethylhexoxycarbonyloxylradikal konnten die Geometrien der entsprechenden Übergangszustände der intramolekularen Wasserstoffverschiebung gefunden und mit höheren Basissätzen optimiert werden. Die berechneten Reaktionsenthalpien lassen auf eine leichte Exothermie der Wasserstoffverschiebung schliessen. Im Vergleich der Reaktionsenthalpien nimmt die Exothermie in der Reihe *i*POCO2 < *s*BuOCO₂ < 2EtHexOCO₂ zu. Die berechneten Reaktionsbarrieren der intramolekularen 1,5-Wasserstoffverschiebung zeigen eine umgekehrte Tendenz. Für die Reaktionsbarrieren der Wasserstoffverschiebung wurden Werte zwischen 7.5 und 13.5 kcal·mol⁻¹ bestimmt, wobei diese in der Reihe *i*POCO2 > $sBuOCO_2$ > $2EtHexOCO_2$ abnehmen.

Im Vergleich mit den Werten der Decarboxylierung, wurde festgestellt, dass für das 2-Ethylhexoxycarbonyloxylradikal die Reaktionsbarriere der intramolekularen 1,5-Wasserstoffverschiebung signifikant kleiner ist als für die direkte Decarboxylierung. Diese Beobachtung stützt die in Kapitel 6 geäußerte Vermutung, dass beim 2EH-PDC die Decarboxylierung über eine intramolekulare 1,5-Wasserstoffverschiebung mit Bildung eines tertiären kohlenstoffzentrierten Radikals erfolgt.

8 Qualitative Endgruppenuntersuchung von Polymeren: *tert*-Alkylperoxycarbonate

Die *tert*-Alkylperoxycarbonate gehören der Initiatorgruppe der Peroxycarbonate an. Wie Dialkylperoxydicarbonate werden sie industriell in der radikalischen Polymerisation von Ethen und Vinylchlorid eingesetzt werden.^[88-90] In der Vergangenheit wurde der thermische Zerfall verschiedener *tert*-Alkylperoxycarbonate in Lösung bereits untersucht.^[93, 95, 99, 116] In diesem Zusammenhang sind auch die Arbeiten von Buback et al. zum photochemischen und thermischen Zerfall verschiedener *tert*-Alkylperoxycarbonate^[113, 117] und Dialkylperoxy-dicarbonate^[118] in weiten Temperatur- und Druckbereichen von Interesse.

In diesem Kontext fanden auch experimentelle und theoretische Arbeiten zum photoinduzierten Zerfall aromatischer tert-Butylperoxycarbonate statt.^[104, 113, 119] Über zeitaufgelöste "pump-probe"-Experimente wurden für die aus *tert*-Butylperoxyphenylcarbonat (TBPPC) und tert-Butylperoxy-2-Naphthylcarbonat (TBPNC) entstehenden Aryloxycarbonyloxylradikale sehr schnelle Decarboxylierungsreaktionen auf einer Pikosekunden-Zeitskala beobachtet.

Die in dieser Studie untersuchten *tert*-Alkylperoxycarbonate zerfallen im Vergleich zu den Dialkylperoxydicarbonaten bei wesentlich höheren Temperaturen. Eine Halbwertszeit von 6 Minuten wird von den *tert*-Alkylperoxycarbonaten erst bei Temperaturen um die 140 °C erreicht. Trotz der veränderten Dissoziationsdynamik reichte es lediglich die Temperatur anzupassen, um eine ausreichende Menge an oligomerem Material zu erhalten, die mit ESI-Massenspektrometrie untersucht wurde. Die Polymersynthesen wurde angepasst an die veränderte Zerfallskinetik bei Temperaturen zwischen 134 °C und 140 °C in Benzol durchgeführt. Die Monomerkonzentration $c_{\rm MMA}$ betrug jeweils 3.0 mol·L⁻¹. Die Initiatorkonzentration $c_{\rm Ini}$ wurde bei 0.1 mol·L⁻¹ belassen. Die nach Reaktionszeiten von 15 - 30 Minuten erhaltenen Polymer-Proben wurde von Lösungsmittel und Restmonomer befreit und anschließend massenspektrometrisch untersucht.

In diesem Kapitel sollen aus den massenspektrometrisch detektierten Endgruppen Rückschlüsse auf die Folgereaktionen der aus den *tert*-Alkylperoxycarbonaten entstehenden Primärradikale gezogen werden. Im ersten Schritt soll das komplexe Zerfallsschema der untersuchten *tert*-Alkylperoxycarbonate erläutert werden. Im Anschluss werden die Massenspektren verschiedener Polymerproben, die unter Verwendung der untersuchten *tert*-Alkylperoxycarbonate hergestellt wurden, präsentiert und mit den Ergebnissen bereits untersuchter Peroxyacetate und Peroxydicarbonate verglichen.

8.1 Zerfallsschema der tert-Alkylperoxycarbonate

Das Zerfallsschema der in dieser Arbeit vorgestellten *tert*-Alkylperoxycarbonate gestaltet sich komplizierter als bei den Dialkylperoxydicarbonaten (siehe Kapitel 6). Bei der Benennung der radikalischen Spezies wird der üblichen Nomenklatur gefolgt. Die nach dem Initiatorzerfall primär gebildeten Radikale werden mit Großbuchstaben versehen. Die in Folgereaktionen aus Primärradikalen entstehenden sekundären Initiatorradikale werden mit Kleinbuchstaben versehen. Es sei vorab auch darauf hingewiesen, dass die Benennung der Radikale und Endgruppen sowie der detektierten Signale neu erfolgt. Es besteht kein Zusammenhang zu den in Kapitel 6 geführten Benennungen. Das Zerfallsschema (siehe Abbildung 8-1) wird im Folgenden erläutert.

Abbildung 8-1: Zerfallsschema der untersuchten *tert*-Alkylperoxycarbonate.

Nach der homolytischen Spaltung der Peroxobindung entstehen zwei unterschiedliche Primärradikale. Je nach *tert*-Alkoxyrest wird zum einen entweder das *tert*-Butoxylradikal **A** oder das *tert*-Amylradikal **E** gebildet. Zum anderen entstehen abhängig vom eingesetzten Initiator die Carbonyloxyl-Radikal **B** – **D** als zweites Primärradikal. In dieser massenspektrometrischen Analyse soll der Einfluss der beiden Molekülhälften des Initiators auf das resultierende Endgruppenspektrum untersucht werden. Je nach Struktur der Primärradikale sind weitere Folgereaktionen möglich. Innerhalb dieser Folgereaktionen werden teilweise Sauerstoff-zentrierte Radikale in stabilere Kohlenstoff-zentrierte Radikale umgewandelt. Die verschiedenen Folgereaktionen werden der Reihe nach erläutert:

- Das 2-Naphthyloxycarbonyloxylradikal C zerfällt unter CO₂-Abspaltung (Decarboxylierung) in das 2-Naphthyloxylradikal c.
- Das 2-Ethylhexoxycarbonyloxylradikal D wird über eine intramolekulare 1,5-Wasserstoffverschiebung unter gleichzeitiger CO₂-Abspaltung in ein Kohlenstoffzentriertes Radikal h umgewandelt (siehe Kapitel 6.6).
- 3. Nach β -Spaltung bilden die *tert*-Alkoxylradikale **A** und **E** ein stabiles Acetonmolekül und entsprechende Alkylradikale **f** und **g**.
- Ein C-C-Bindungsbruch in β-Position zum Sauerstoffatom unter Eliminierung eines Ketons, ungleich Aceton, führt unabhängig vom betrachteten Alkoxylradikal zu einem Methylradikal f als sekundäres Initiatorradikal.
- 5. Weiterhin können Sauerstoff-zentrierte Radikale besonders bei höheren Temperaturen von anderen Reaktanden in der Lösung, beispielsweise Lösungsmittelmolekülen, ein Wasserstoffatom abstrahieren. Eine Wasserstoffabstraktion zum Lösungsmittel ist in dieser Studie durch die Wahl von Benzol als Lösungsmittel bewusst vermieden worden. Jedoch besteht für Alkoxylradikale die Möglichkeit von einem Monomermolekül ein Wasserstoff zu abstrahieren. Bei der Reaktion mit Methacrylaten (z.B. MMA) findet diese Wasserstoffabstraktion bevorzugt an der an der α-Methylgruppe der Doppelbindung statt. Durch die Doppelbindung wird das gebildete Radikal Mesomerie-stabilisiert, es hat dann allylischen Charakter. Diese Reaktion tritt besonders in Gegenwart von *tert*-Butoxyl-Radikalen auf.

8.2 *tert*-Butylperoxymethylcarbonat (TBPMC)

In Abbildung 8-2 ist der vergrößerte Ausschnitt des ESI-Massenspektrum einer Poly(MMA)-Probe, hergestellt in einer TBPMC-initiierten MMA-Lösungspolymerisation bei 140 °C, gezeigt. Dargestellt ist der Massenbereich, der einer Monomerwiederholungseinheit bei maximaler Signalintensität entspricht.

Abbildung 8-2: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt durch MMA-Lösungspolymerisation ($c_{MMA} = 3.0 \text{ mol} \cdot \text{L}^{-1}$) in Benzol bei 140 °C unter Verwendung von *tert*-Butylperoxymethylcarbonat (TBPMC, $c_{Ini} = 0.10 \text{ mol} \cdot \text{L}^{-1}$) als Initiator.

Im Massenspektrum werden sechs Signalgruppen beobachtet, die jeweils aus mehreren ¹³C-Isotope, Disproportionierungspaare wobei bestehen. Signalen und zufällige Überlagerungen zu den einzelnen Linien führen. Die intensivsten Signale eines Signalpaars sich aufgrund bei *m/z* 897.6/899.6 lassen des Isotopenmusters leicht dem Disproportionierungssignal (B) zuordnen. Die hier detektierten Terminierungsprodukte enthalten jeweils eine Methoxycarbonyloxyl-Endgruppe B und unterscheiden sich wegen der Wasserstoffübertragung um 2 Da. Für polymere Spezies mit Methoxycarbonyloxyl-Endgruppen **B** lassen sich weitere (Kreuz-)Kombinationssignale zuordnen. Bei m/z 873.4 einer erscheint der Kombinationspeak **(BB)** die polymeren Spezies, zwei Methoxycarbonyloxyl-Endgruppen trägt. Weitere Kreuzkombinationspeaks, die sich B-Endgruppen zuweisen lassen, werden bei m/z 871.4 und m/z 813.4 gemessen. Der Kombinationspeak (AB) bei m/z 871.4 enthält neben der B-Endgruppe noch eine tert-Butoxyl-Endgruppe A. Dem Signal bei m/z 813.4 wird der Kombinationspeak (Bf) zugewiesen. Die zweite Endgruppe der hier detektierten **Spezies** ist die Methylgruppe Abgesehen f. vom Kombinationssignal (AB)wird die tert-Butoxyl-Endgruppe A auch in den Spezies bei detektierten m/z 811.4, m/z 869.4 und m/z 895.5 gefunden. Bei m/z 811.4 befindet sich das Kombinations-

Methoxycarbonyloxylradikal B Methylmethacrylatradikal m

signal (Af) eines Terminierungsprodukts mit jeweils einer *tert*-Butoxyl- und Methyl-Endgruppe. Bei m/z 869.4 wird das Kombinationssignal (AA) einer polymeren Spezies mit zwei *tert*-Butoxylendgruppen detektiert. Des Weiteren findet man bei m/z 895.5 das erste Signal des Disproportionierungspeaks (A) von *tert*-Butoxyl-initiierten Makroradikalen. Vom Disproportionierungspeak (A) ist nur das erste Signal zu sehen, weil das zweite Signal m/z^{theo} 897.5 mit dem Disproportionierungspeak (B) überlappt bzw. sich darunter verbirgt. Für die im Massenspektrum bereits identifizierten Methyl-Endgruppen **f** wird sowohl ein Disproportionierungspeak (**f**) bei m/z 837.6/839.6, als auch ein Kombinationspeak (**ff**) bei m/z 853.5 gemessen. Das schwache Signal (**m**) bei m/z 821.6/823.6 wird als Disproportionierungspeak identifiziert, und einer polymeren Spezies zugeordnet, die keine vom Initiator freigesetzte Endgruppe trägt. Diese Polymerkette trägt ein Methylmethacrylatradikal **m** als Endgruppe. Durch Wasserstoffabstraktion wird die Radikalfunktion von einem Initiatorradikal auf ein Monomermolekül übertragen. Dieses Monomerradikal initiiert dann endgruppenfreie Makroradikale.

In dem in Abbildung 8-2 gezeigten Massenspektrum wurden vier verschiedene initiierende Spezies als Endgruppen im Polymer nachgewiesen. Nach Formel (5.1) müssten demnach insgesamt 14 Signale beobachtet werden. Zugeordnet werden jedoch nur zehn Signale. Die Kombinationssignale (Am), (Bm), (cm) und (mm) werden aufgrund der geringen Konzentration an Monomerradikalen m und der daraus resultierenden geringen Kombinationswahrscheinlichkeit mit anderen radikalischen Spezies besonders mit weiteren Monomerradikalen nicht beobachtet. Aufgrund der beobachteten Endgruppen kann man nun für TBPMC über die auftretenden initiierenden Spezies bei den gewählten Polymerisationsbedingungen folgendes zusammenfassen. Die beim Initiatorzerfall entstehenden *tert*-Butoxylradikale **A** fragmentieren im Zeitintervall zwischen Entstehung und Anlagerung an ein Monomer teilweise über β -Spaltung zum Methylradikal **f**. In dieser Zeitspanne erfolgt keine Decarboxylierung des Methoxycarbonyloxyl-Radikals zum Methoxylradikal. Es verhält sich somit ähnlich zum Ethoxycarbonyloxyl-Radikal (siehe Abschnitt 6.1). Im Übrigen werden durch Wasserstoffabstraktionsreaktionen MMA-Radikale gebildet.

Eine detaillierte Zuordnung aller Signale mit Angabe der experimentell gemessenen und theoretische berechneten Massen findet sich in Tabelle 8-1.

Tabelle 8-1: Zuordnung aller aufgrund der Kombinatorik denkbaren Signale im Massenspektrum einer Na⁺-ionisierten Poly(MMA)-Probe, welche bei 140 °C unter Verwendung von TBPMC hergestellt wurde. Nicht detektierte oder zugeordnete Signale sind kursiv gehalten.

Peak	Endgruppen		$(m/z)^{\text{theo}}$	$(m/z)^{\exp}$
(A)	tert-Butoxyl	_	895.4/897.4	895.5/897.6
(Am)	tert-Butoxyl	—	895.5	
(AA)	tert-Butoxyl	tert-Butoxyl	869.5	869.4
(AB)	tert-Butoxyl	Methoxycarbonyloxyl	871.4	871.4
(Ac)	tert-Butoxyl	Methyl	811.4	811.4
(B)	Methoxycarbonyloxyl	_	897.4/899.4	897.6/899.6
(Bm)	Methoxycarbonyloxyl	—	897.4	
(BB)	Methoxycarbonyloxyl	Methoxycarbonyloxyl	873.4	873.4
(Bc)	Methoxycarbonyloxyl	Methyl	813.4	813.4
(c)	Methyl	_	837.4/839.4	837.6/839.6
(cm)	Methyl	—	837.4	
(cc)	Methyl	Methyl	853.5	853.5
(mm)	—	—	821.4	821.6
(m)	_	_	821.4/823.4	821.6/823.6

8.3 *tert*-Butylperoxy-2-Naphthylcarbonat (TBPNC)

Für die massenspektrometrische Endgruppenanalyse von TBPNC-initiiertem Polymer wurde eine Poly(MMA)-Probe durch MMA-Lösungspolymerisation in Benzol bei 139 °C hergestellt. Das gemessene ESI-Massenspektrum ist in Abbildung 8-3 gezeigt. Die im Ausschnitt gezeigten Signale im Bereich maximaler Signalintensität liegen innerhalb einer Monomerwiederholungseinheit.

Abbildung 8-3: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt durch MMA-Lösungspolymerisation ($c_{MMA} = 3.0 \text{ mol}\cdot\text{L}^{-1}$) in Benzol bei 139 °C unter Verwendung von *tert*-Butylperoxy-2-Naphthylcarbonat (TBPNC, $c_{Ini} = 0.10 \text{ mol}\cdot\text{L}^{-1}$).

Im gezeigten Massenspektrum werden sieben Signalgruppen mit unterschiedlicher Intensität detektiert. Alle Signale konnten im Initiierungsprozess entstehenden radikalischen Spezies zugeordnet werden. Das primär aus TBPNC gebildete *tert*-Butoxylradikal **A** konnte als Endgruppe den in drei Kombinationssignalen detektierten polymeren Spezies zugewiesen

werden. In den Kombinationssignalen (Af) und (Ac) bei m/z 711.4 und m/z 739.4 finden sich in den entsprechenden Terminierungsprodukten neben der tert-Butoxyl-Endgruppe noch das Methylradikal f bzw. das 2-Naphthyloxylradikal c als Endgruppe wieder. Das Methylradikal entsteht der β -Spaltung aus des tert-Butoxylradikals.

2-Naphthyloxylradikal c

Methylmethacrylatradikal m

Das 2-Naphthyloxylradikal wird bei der Decarboxylierung des ebenfalls primär entstehenden 2-Naphthyloxycarbonyloxylradikals C gebildet. Beides sind demnach sekundäre Initiatorradikale. Des Weiteren konnte der tert-Butoxyl-Endgruppe der Kombinationspeak (Am) bei m/z 795.4 zugeordnet werden. Im Gegensatz zu den anderen Kombinationssignalen trägt die hier detektierte polymere Spezies lediglich eine vom Initiator abgeleite Endgruppe (tert-Butoxyl). Die zweite Endgruppe besteht aus einem Monomerradikal m. Das hier gebildete Methylmethacrylatradikal m entsteht bei der Wasserstoffabstraktion durch Radikale am Monomer (Transfer zum Monomer). Dieses Monomerradikal kann dann endgruppenfreie Makroradikale initiieren. In massenspektrometrischen Untersuchungen zu tert-Butylperoxyacetat^[25] wurde für das *tert*-Butoxylradikal bereits eine hohe Tendenz zu Wasserstoffabstraktionsreaktionen beobachtet.^[120] Daher kann man auch hier davon ausgehen, dass die Übertragung der Radikalfunktionalität durch das tert-Butoxylradikal erfolgte.

Das polymere Kombinationsprodukt **Am** wird im gleichen *m/z*-Bereich detektiert, wie die Disproportionierungsprodukte von *tert*-Butoxyl-initiierten Makroradikalen. Eine Überlappung der Signale ist daher anzunehmen. In den Arbeiten zu *tert*-Butylperoxyacetat^[25] wurden solche Signale über Simulationen bereits als Linearkombinationen der angesprochenen Disproportionierungs- und Kombinationspeaks erklärt. Das Isotopenmuster des hier gemessenen Signals entspricht deutlich dem eines Kombinationspeaks. Daher kann man zunächst annehmen, dass in der Linearkombination die Intensität des (**A**)-Signals.

Den bereits zusammen mit der *tert*-Butoxyl-Endgruppe detektierten Endgruppen der sekundären Initiatorradikale lassen sich noch weitere Signale im gezeigten Massenspektrum zuordnen. Für das 2-Naphthyloxylradikal **c** finden sich Kombinationssignale bei m/z 709.3 (**cc**), bei m/z 765.3 (**cm**) und bei m/z 781.3 (**cf**). Die Signale (**cc**) und (**cf**) deuten auf Terminierungsprodukte zweier **c**-initiierter Makroradikale bzw. zwischen jeweils einem **c**-und einem **f**-Endgruppen-tragenden Makroradikal hin. Im Kombinationssignal (**cm**) wird erneut ein Monomerradikal als Endgruppe nachgewiesen. Das Isotopenmuster ähnelt stark dem des (**Am**)-Signals. Daher wird auch hier angenommen, dass in der Linearkombination mit dem Disproportionierungssignal (**c**) das (**cm**)-Signal bezüglich der Intensität überwiegt.

Dem Methylradikal lassen sich schließlich noch die Kombinationssignale (**fm**) bei m/z 737.4 und (**ff**) bei m/z 753.3 zuweisen. Aufgrund des Isotopenmusters lässt sich das verbliebene Signalpaar bei m/z 721.5 und m/z 723.4 weder einem Kombinations- noch einem Disproportionierungssignal zuweisen. Aufgrund theoretisch berechneter Massen, lässt sich das Signal mit polymeren Kombinations- und Disproportionierungsprodukten aus endgruppenfreien, d. h. Monomerradikal-initiierten Makroradikalen erklären. Das veränderte Isotopenmuster erklärt sich wiederum aus einer Linearkombination des Disproportionierungssignals (**m**) mit dem Kombinationssignal (**mm**). Aufgrund der konkreten Isotopensignalverteilung lässt sich ein leichtes Übergewicht von (**m**) in der Linearkombination ableiten. Signale, die auf die Präsenz von 2-Naphthyloxycarbonyloxyl-Endgruppen **C** hinweisen, werden im Massenspektrum nicht beobachtet.

Im gezeigten Massenspektrum werden ausschließlich Signale detektiert. deren Intensitätsmuster auf Kombinationssignale hinweisen. Entgegen den Erwartungen werden keine Disproportionierungssignale, die auf polymere Spezies mit einer einzelnen Endgruppe hinweisen, beobachtet. Dies ist jedoch nur scheinbar der Fall. Wie in Kapitel 5.3 bereits erläutert werden in einem Disproportionierungssignal zwei polymere Spezies detektiert, die jeweils eine vom Initiator resultierende Endgruppe tragen. Sie unterscheiden sich in ihrer Masse um 2 Da aufgrund der Wasserstoffübertragung. Dabei wird einerseits eine terminale Doppelbindung gebildet und andererseits ein gesättigtes Kettenende. Die selektive Beobachtung von Kombinationssignalen lässt sich nur dadurch erklären, dass die Makroradikale im vorliegenden System nur durch Wasserstoffabgabe hin zu einer terminalen Doppelbindung reagieren. Es ist nicht plausibel zu erklären, warum es keine Disproportionierungsreaktion unter Beteiligung von Makroradikalen geben sollte. Plausibel erscheint einzig die Erklärung, dass die Makroradikale selektiv unter Wasserstoffabgabe disproportionieren. Denkbar ist, dass tert-Butoxylradikale bei der höheren Temperatur besonders reaktiv gegenüber Wasserstoffabstraktionen sind und nicht mit dem Makroradikal kombinieren. Durch Wasserstoffabstraktion würde tert-Butanol gebildet, welches im Massenspektrum nicht detektiert wird bzw. als Endgruppe im Polymer erscheint.

Im Massenspektrum der vorliegenden Probe konnten vier unterschiedliche Endgruppen detektiert und somit vier radikalische Spezies, die Kettenwachstum initiieren, identifiziert werden. Nach Formel (5.1) sollten insgesamt 14 Signale beobachtet werden. Die eindeutige Zuordnung erfolgte bisher für zehn Signale. Die fehlenden Disproportionierungssignale wurden bereits durch selektive Wasserstoffabgabe hin zu einer terminalen Doppelbindung erklärt. Das Kombinationssignal (AA) wird im Massenspektrum nicht beobachtet. Daher muss die Kombinationswahrscheinlichkeit zweier *tert*-Butoxylradikal-initiierter Makroradikale aufgrund deren niedrigen Konzentration sehr klein sein.

Zusammenfassend lässt sich für die während der Initiierung bei den hier gewählten Bedingungen auftretenden radikalischen Spezies folgendes feststellen. Im Zeitintervall zwischen Entstehung und Anlagerung an ein Monomer zerfällt das primär gebildete *tert*-Butoxyl-Radikal über β -Spaltung in ein stabileres Methylradikal. Des Weiteren überträgt das *tert*-Butoxylradikal die Radikalfunktionalität auf das Monomer. Das zweite primär gebildete 2-Naphthyloxycarbonyloxyl-Radikal decarboxyliert vollständig innerhalb des Initiierungsprozesses, bevor es in der Lage ist Kettenwachstum zu starten.

Eine detaillierte Zuordnung der beobachteten Signale mit Angabe der experimentell bestimmten und theoretisch berechneten Massen findet sich in Tabelle 8-2.

Tabelle 8-2: Zuordnung aller aufgrund der Kombinatorik denkbaren Signale im Massenspektrum einer Na⁺-ionisierten Poly(MMA)-Probe, die bei 139 °C unter Verwendung von TBPNC hergestellt wurde. Nicht detektierte oder zugeordnete Signale sind kursiv dargestellt.

Peak	Endgruppen		$(m/z)^{\text{theo}}$	$(m/z)^{\exp}$
(A)	tert-Butoxyl		795.4/797.4	
(Am)	tert-Butoxyl		795.4	795.4
(AA)	tert-Butoxyl	tert-Butoxyl	769.4	
(Ac)	tert-Butoxyl	2-Naphtoyl	739.4	739.4
(Af)	tert-Butoxyl	Methyl	711.4	711.4
(c)	2-Naphtoyl	_	765.3/767.3	_
(cm)	2-Naphtoyl	—	765.3	765.3
(cc)	2-Naphtoyl	2-Naphtoyl	709.3	709.3
(cf)	2-Naphtoyl	Methyl	781.4	781.3
(f)	Methyl	_	737.4/739.4	
(fm)	Methyl		737.4	737.4
(ff)	Methyl	Methyl	753.4	753.3
(m)	_	_	721.3/723.3	721.5/723.4
(mm)	—	—	721.3	721.5

8.4 *tert*-Butylperoxy-(2-ethylhexyl)carbonat (TBPEHC)

8.4.1 Massenpektrometrische Endgruppenanalyse eines Poly(MMA)-Polymers

Für die massenspektrometrische Endgruppenanalyse wurde der Initiator *tert*-Butylperoxy-(2-ethylhexyl)carbonat in einer MMA-Lösungspolymerisation in Benzol bei 139 °C eingesetzt. Der Ausschnitt eines Massenspektrums dieser Poly(MMA)-Probe ist in Abbildung 8-4 im Bereich maximaler Intensität gezeigt. Abgebildet sind alle Signale einer Monomerwiederholungseinheit.

Abbildung 8-4: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt durch MMA-Lösungspolymersiation ($c_{MMA} = 3.0 \text{ mol}\cdot\text{L}^{-1}$) in Benzol bei 137 °C unter Verwendung von tert-Butylperoxy-(2-ethylhexyl)carbonat (TBPEHC; $c_{Ini} = 0.10 \text{ mol}\cdot\text{L}^{-1}$) als Initiator.

Im gezeigten Massenspektrum werden insgesamt sieben Signalgruppen gemessen. Im Folgenden wird die Zuordnung der Signale zu polymeren Terminierungsprodukten detailliert

erläutert. Die Zuordnung beginnt mit dem ersten Signal bei *m/z* 911.6. Das Isotopenmuster des Signals deutet auf ein polymeres Kombinationsprodukt. Ausgehend von den entstehenden Initiatorradikalen lassen sich dem Kombinationssignal zwei verschiedene polymere Spezies mit jeweils zwei

Endgruppen zuweisen. Zum einen ist eine Zuordnung zu einer polymeren Spezies Af, die eine tert-Butoxyl-Endgruppe A und eine Methyl-Endgruppe f trägt. Die hier detektierten Methylradikale entstehen über β -Spaltung aus den *tert*-Butoxylradikalen. Als zweites kann dem Signal ein Terminierungsprodukt Df aus einem Methyl-initiierten Makroradikal und einem Makroradikal mit einer 2-Ethylhexoxycarbonyloxyl-Endgruppe D zuweisen. Diese uneindeutige Zuweisung ist damit begründet, dass die Masse einer 2-Ethylhexoxycarbonyloxyl-Endgruppe D der Masse einer tert-Butoxyl-Endgruppe addiert der eines Methylmethacrylatmoleküls entspricht. mit Aufgrund der identischen Summenformeln sind die Massen und damit die Signale exakt identisch und lassen sich auch durch die Messung eines hochaufgelösten Massenspektrums nicht getrennt voneinander detektieren. Der getrennte Nachweis beider Endgruppen A und D ist nur durch Variation des eingesetzten Monomers möglich, worauf im späteren Verlauf noch einmal Bezug genommen wird. Bevor die Zuordnung der restlichen Signale erfolgt, soll noch auf die Beobachtung eines sehr schwachen Signals bei m/z 909.6 eingegangen werden. Dieses Nebensignal wird im Abstand von -2 Da zum oben zugeordneten Kombinationssignal gemessen. Solche Nebensignale im Abstand von -2 Da werden auch bei weiteren Signalen im Massenspektrum beobachtet. Diese zusätzlichen Signale können durch Übertragungsreaktionen von radikalischen Spezies auf gebildetes Polymer erklärt werden (siehe Abbildung 8-5).

Abbildung 8-5: Illustration des Transfermechanismus zum Polymer. Die gestrichelten Pfeile zeigen die möglichen Wasserstoffabstraktionspositionen an.

Diese Übertragungsreaktion lässt sich wie folgt darstellen. Ein vom Initiator gebildetes Radikal abstrahiert von einer Polymerkette ein Wasserstoffatom. Diese Wasserstoffabstraktion ist an drei Stellen entlang der Poly(MMA)-Kette denkbar. Möglich erscheint die Übertragung der Radikalfunktionalität auf die Methylgruppe im Esterrest, auf die α -Methylgruppe der Hauptkette und direkt auf die CH₂-Einheit der Polymerkette. Bei den beiden zuerst genannten Stellen werden nach Wasserstoffabstraktion primäre Kohlenstoffzentrierte Radikale gebildet. An der CH2-Einheiten entlang der Polymerkette würden sekundäre Kohlenstoff-zentrierte Radikale gebildet. Im Vergleich der Radikalstabilitäten der entstehenden Radikal, erscheint die Übertragungsreaktion zur CH2-Einheit gegenüber den anderen Molekülpositionen bevorzugt zu sein. Ausgehend vom gebildeten Radikal in der Polymerkette werden über erneutes Kettenwachstum weitere Monomermoleküle angelagert. Bei der nun folgenden Makroradikalterminierung über Disproportionierung erfolgt entweder die Ausbildung einer terminalen Doppelbindung oder eines gesättigten Kettenendes. Die polymere Spezies mit der terminalen Doppelbindung wird im Massenspektrum im Abstand von -2 Da vom eigentlichen Kombinationssignal detektiert. Die polymere Spezies mit dem gesättigten Kettenende wird zusammen mit dem ursprünglichen Kombinationsprodukt bei gleichem m/z -Verhältnis nachgewiesen.

Wie bereits bei der Transferreaktion zum Monomer in Kapitel 8.3, kann diese Transferreaktion zum Polymer dem *tert*-Butoxylradikal zugeschrieben werden. Im weiteren Verlauf werden erneut Endgruppen nachgewiesen, die auf Monomerradikale **m** hinweisen.

Die Signalzuordnung wird nun mit Signalen fortgesetzt, die sich der tert-Butoxyl- und der 2-Ethylhexoxycarbonyloxyl-Endgruppe zuordnen lassen. Das bei m/z 925.6 detektierte Kombinationssignal (Ah), (Dh) kann auf polymere Spezies mit einer A- bzw. D-Endgruppe und einer weiteren h-Endgruppe zurückgeführt werden die aus der Fragmentierung des entsprechenden Alkoxycarbonyloxyl-Radikals resultiert. Wie bereits in Kapitel 6.6 erläutert, wird für das 2-Ethylhexoxycarbonyloxyl-Radikal D angenommen, dass die Decarboxylierung nicht direkter CO₂-Abspaltung sondern über unter eine intramolekulare 1,5-Wasserstoffverschiebung erfolgt. Daraus resultiert eine Umwandlung des Sauerstoffzentrierten Radikals in ein Kohlenstoff-zentriertes Radikal. Des Weiteren beobachtet man bei ein Kombinationssignal (AA), (AD), (DD), in dem *m/z* 969.6 die möglichen Kombinationsprodukte aus A-initiierten und D-initiierten Makroradikalen nachgewiesen werden. Dieses Kombinationssignal überlagert teilweise mit dem Signal (**fh**) bei m/z 967.6. bei *m/z* 995.7 Schließlich lassen sich dem Signalpaar und *m/z* 997.7 die Disproportionierungspeaks (A) und (D), sowie die Kombinationspeaks (Am) und (Dm) zuordnen. Die möglichen Kombinationssignale (**Am**) und (**Dm**) entstehen bei der Terminierung von Primärradikal-initiierten Makroradikalen mit endgruppenfreien Makroradikalen, die durch ein Monomerradikal **m** initiiert werden. Die Monomerradikale werden in Transferreaktionen durch das *tert*-Butoxylradikal gebildet. Das hier beobachtete Signalpaar muss wieder als Linearkombination der genannten Disproportionierungs- und Kombinationssignale verstanden werden (siehe Kapitel 8.3).

Die bereits detektierte Methyl-Endgruppe findet sich in den Kombinationssignalen (ff) bei m/z 953.6 und (fh) bei m/z 967.6 wieder. Es werden polymere Spezies detektiert, die zwei Methyl-Endgruppen bzw. eine Methyl- und eine 3-(Hydroxymethyl)heptyl-Endgruppe tragen. Das Kombinationssignal (fh) wird teilweise von dem Kombinationsignal (AA), (AD), (DD) überlagert. Außerdem werden Methyl-initiierte Spezies im Disproportionierungspeak (f) bei m/z 937.6 und m/z 939.6 detektiert. Aufgrund der Gestalt des Isotopenmusters muss auch bei diesem Signalpaar eine Überlagerung der Disproportionierungspeaks (f) mit dem Kombinationspeak (fm) angenommen werden. Die verbleibenden Signale bei m/z 951.6 und m/z 981.7 weisen auf h-Endgruppen hin. Für das Signal bei m/z 951.6 wird angenommen, dass es Teil eines Signalpaares ist. Das zweite Signal wird demnach bei m/z 953.6 vermutet und von dem Kombinationssignal (ff) überlagert. Unter Annahme eines Signalpaares erfolgt hier die Zuordnung zum Disproportionierungspeak (h) bzw. das Kombinationssignal (hm). Da das Isotopenmuster des Signalpaares nicht vollständig beobachtet werden kann, ist eine Aussage über den Disproportionierungs- und Kombinationsanteil nicht möglich. Dem Signal bei m/z 981.7 kann noch das Kombinationssignal (**hh**) zugewiesen werden. Die bereits in anderen Signalen als Endgruppe nachgewiesenen Monomerradikale helfen bei der Identifizierung der bei m/z 921.6 und m/z 923.6 detektierten Spezies. Hier lassen sich die Disproportionierungs- und Kombinationssignale (m) und (mm) endgruppenfreier Polymerketten zuordnen. Eine detaillierte Zuordnung der beobachteten Signale unter Angabe experimentell gemessener und theoretisch berechneter Massen findet sich in Tabelle 8-3.

Den fünf, hier als Endgruppen identifizierten radikalischen Spezies, die während des Initiierungsprozess gebildet werden, müssten theoretisch nach Formel (5.1) 20 Signale innerhalb einer Monomerwiederholungseinheit zugeordnet werden können. Aufgrund von Signalüberlappungen und Übereinsstimmungen in den Summenformeln bestimmter Endgruppen reduziert sich die Anzahl der separat beobachteten Signale jedoch auf 10 Signale. Beobachtete Signalüberlappungen können, falls nötig, mit hochauflösenden Methoden der Massenspektrometrie separiert werden. Treten jedoch Endgruppen auf, die unter Berücksichtigung einer Monomereinheit identische Summenformeln zeigen, dann können die

entsprechenden polymeren Spezies auch mit hochauflösender Massenspektrometrie nicht separat detektiert werden. Die *tert*-Butoxyl-Endgruppe hat unter Berücksichtigung einer Monomereinheit die gleiche Masse wie die 2-Ethylhexoxycarbonyloxyl-Endgruppe. Daher fallen die Kombinationssignale (AA), (AD) und (DD) auf einen einzige *m/z* -Wert zusammen. Genauso verhält es sich für die Kombinationspeaks (Ah) und (Dh), sowie für (Af) und (Df). Die Disproportionierungssignale (A) und (D) fallen mit dem Kombinationssignalen (Am) und (Dm) zusammen. So reduziert die Anzahl der unterscheidbaren Signale auf 13. Für die Methyl- und 3-(Hydroxymethyl)heptylradikale kommt es zu Überlagerungen der entsprechenden Disproportionierungssignale mit den Kombinationssignalen (fm) bzw. (hm). Daher reduziert sich die Anzahl der unterscheidbaren Signale nochmals um 3 auf 10 Signale. Kein Signal fehlt im Sinne, dass es nicht detektiert wird. Die Reduzierung der Signalanzahl ergibt sich ausschliesslich aus Signalüberlappungen.

Eine Auflistung aller beobachteten Signale mit Angabe der experimentell bestimmten und theoretisch berechneten Massen findet sich in Tabelle 8-3.

Damit in diesem Beispiel die tert-Butoxyl- und 2-Ethylhexoxycarbonyloxyl-Endgruppen separat detektiert werden können, muss die Polymer-Probe mit einem anderen Monomer synthetisiert werden. Aufgrund des veränderten Molekulargewichts des Monomeren, fallen die entsprechenden Signale der Endgruppen nicht mehr zusammen. Verwendet man zudem der ein Monomer mit größerer Molmasse wird Massenbereich einer Monomerwiederholungseinheit zusätzlich aufgespreizt. In Systemen mit mehreren initiierenden radikalischen Spezies hilft dies ggf. Überlappungen zu vermeiden. Bezogen auf Untersuchung von TBPEHC wurde statt Methylmethacrylat das Monomer die Ethylmethacrylat verwendet, das sich in seiner Propagationskinetik nicht stark von MMA unterscheidet^[121, 122]. Des Weiteren besteht der Vorteil der Verwendung von EMA darin, dass aufgrund der ähnlichen Polarität der Monomere für Poly(EMA) eine ebenfalls gute Ionisierungswahrscheinlichkeit vorliegt. Die Resultate der massenspektrometrischen Untersuchung des PMMA-Polymers werden mit den Ergebnissen des EMA-Massenspektrums gemeinsam in Kap. 8.4.2 erläutert und zusammengefasst.

Peak	Endgruppen		$(m/z)^{\text{theo}}$	$(m/z)^{\exp}$
(A)	tert-Butoxyl		995.5/997.5	995.7/997.7
(Am)	<i>tert</i> -Butoxyl		995.5	995.7
(AA)	<i>tert</i> -Butoxyl	<i>tert</i> -Butoxyl	969.5	969.6
(AD)	<i>tert</i> -Butoxyl	2-Ethylhexoxycarbonyloxyl	969.5	969.6
(Af)	<i>tert</i> -Butoxyl	3-(Hydroxymethyl)heptyl	911.5	911.6
(Ah)	<i>tert</i> -Butoxyl	Methyl	925.6	925.6
(D)	2-Ethylhexoxycarbonyloxyl		995.5/997.5	995.7/997.7
(Dm)	2-Ethylhexoxycarbonyloxyl		995.5	995.7
(DD)	2-Ethylhexoxycarbonyloxyl	2-Ethylhexoxycarbonyloxyl	969.5	969.6
(Df)	2-Ethylhexoxycarbonyloxyl	Methyl	911.5	911.6
(Dh)	2-Ethylhexoxycarbonyloxyl	3-(Hydroxymethyl)heptyl	925.6	925.6
(f)	Methyl		937.5/939.5	937.6/939.6
(fm)	Methyl		937.5	937.6
(ff)	Methyl	Methyl	953.5	953.6
(fh)	Methyl	3-(Hydroxymethyl)heptyl	967.6	967.6
(h)	3-(Hydroxymethyl)heptyl		951.5/953.5	951.6/953.6
(hm)	3-(Hydroxymethyl)heptyl		951.5	951.6
(hh)	3-(Hydroxymethyl)heptyl	3-(Hydroxymethyl)heptyl	967.6	967.6
(m)			921.5/923.5	921.8/923.6
(mm)			921.4	921.8

Tabelle 8-3: Zuordnung aller aufgrund der Kombinatorik denkbaren Signale im Massenspektrum einer Na⁺-ionisierten Poly(MMA)-Probe (siehe Abbildung 8-4), hergestellt durch MMA-Lösungspolymerisation bei 137 °C bei Verwendung von TBPEHC als Initiator.

8.4.2 Massenspektrometrische Endgruppenanalyse eines Poly(EMA)-Polymers

In Abbildung 8-6 ist der Ausschnitt des Massenspektrums einer Poly(EMA)-Probe gezeigt, die in Benzol bei 137 °C unter Verwendung von tert-Butylperoxy-(2-ethylhexyl)carbonat als Initiator hergestellt wurde. Abgebildet ist ein Massenbereich der eine Monomerwiederholungseinheit bei maximaler Signalintensität umfasst.

Abbildung 8-6: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(EMA)-Probe, hergestellt in EMA-Lösungspolymerisation ($c_{EMA} = 3.0 \text{ mol} \cdot L^{-1}$) in Benzol bei 137 °C unter Verwendung von tert-Butylperoxy-(2-ethylhexyl)carbonat (TBPEHC, $c_{Ini} = 0.10 \text{ mol} \cdot L^{-1}$) als Initiator.

Aufgrund des veränderten Molekulargewichts des Monomers ist der Ausschnitt im Vergleich zum PMMA-Massenspektrums auf 112 Da gespreizt. Im gezeigten Massenspektrum werden 6 Signalgruppen beobachtet. Das Methylradikal **f** und das 3-(Hydroxymethyl)heptylradikal **h** wurden bereits im Poly(MMA)-Massenspektrum separat als Endgruppen nachgewiesen. Die detaillierte Erklärung der entsprechenden Signale entfällt daher an dieser Stelle (siehe Zuordnung in Abbildung 8-6). Im MMA-Massenspektrum konnten aufgrund identischer Massen die Disproportionierungssignale (**A**) und (**D**), die auf polymere Spezies mit *tert*-Butoxyl- bzw. 2-Ethoxycarbonyloxyl-Endgruppen hinwiesen, nicht getrennt detektiert werden. Im gezeigten EMA-Massenspektrum wird der Disproportionierungspeaks (**A**) dem Signal bei *m/z* 1007.8 zugeordnet. Das zweite Signal des Disproportionierungspeaks (**A**) wird jedoch vom Kombinationssignal (**Df**) bzw. (**Dh**) bei *m/z* 1009.7 überlagert. Der Disproportionierungspeak (**D**) wird im EMA-Massenspektrum bei *m/z* 1107.7/1109.8 zweifelsfrei detektiert. Hier zeigt sich, dass der Einsatz eines anderen Monomeren helfen 96 8 Qualitative Endgruppenuntersuchung von Polymeren: *tert*-Alkylperoxycarbonate

kann, sich überlagernde Signale getrennt zu detektieren. Im Signal (**m**),(**mm**) bei m/z 1047.7/1049.7 werden endgruppenfreie polymere Spezies nachgewiesen. Es ist daher davon auszugehen, dass die den Disproportionierungspeaks zugeordneten Signalen, ebenfalls Anteile von den Kombinationspeaks (**Am**) bzw. (**Dm**) beinhalten. Des weiteren können die *tert*-Butoxyl- und 2-Ethoxycarbonylxoxyl-Endgruppen in den Kombinationssignalen (**Df**),(**Dh**) bei m/z 1009.7 bzw. im Signal (**Af**),(**Ah**) bei m/z 1023.6 getrennt detektiert werden. Die uneindeutige Zuordnung der Signale zu den Kombinationsprodukten mit den entsprechenden **f**- und **h**-initiierten Makroradikalen, beruht auf identische Massen der **f**- und **h**-Endgruppen bei Berücksichtigung einer Monomereinheit. Hierauf soll jedoch nicht ausführlich eingegangen werden.

Bei fünf initiierenden Spezies im System müssten nach Formel (5.1) 20 Signale zu beobachten sein. Aufgrund von Signalüberlappungen in Folge identischer Massen und den Signalüberlappungen der Disproportionierungssignale mit den jeweiligen Kombinationssignalen mit den endgruppenfreien polymeren Spezies, reduziert sich die Anzahl getrennt nachweisbarer Signale auf zehn. Aufgrund von Überlagerungen mit Signalen höherer Intensität konnten die Kombinationssignale (AA) und (AD) nicht zugeordnet werden. Des weiteren wurde der Kombinationspeak (DD) im Massenspektrum nicht detektiert.

Eine detaillierte Zuordnung aller beobachteten Signale mit Angabe experimentell gemessener und theoretisch erwarteter Massen findet sich in Tabelle 8-4.

Zusammenfassend lässt sich für die bei TBPEHC-initiierten Polymerisationen von EMA und MMA auftretenden radikalischen Spezies folgern, dass beide primär gebildeten Initiatorradikale Kettenwachstum starten und als Endgruppe in das Polymer eingebaut werden. Beide Primärradikale zerfallen im Zeitintervall zwischen ihrer Entstehung und der Anlagerung an ein Monomer teilweise über Fragmentierungsreaktionen in sekundäre Initiatorradikale, die ebenfalls als Endgruppen im Polymer detektiert werden. Das *tert*-Butoxylradikal zerfällt zum Teil über β -Spaltung unter Acetonabspaltung zu einem Methylradikal. Des Weiteren werden Monomerradikale nachgewiesen, die aus der Wasserstoffabstraktion des *tert*-Butoxylradikals mit dem Monomeren resultieren. Das ebenfalls primär gebildete 2-Ethylhexoxycarbonyloxylradikal decarboxyliert, wie in Kapitel 6.8 bereits erläutert, über eine intramolekulare 1,5-Wasserstoffverschiebung zum 3-(Hydroxymethyl)heptylradikal. Außerdem konnte an diesem Beispiel gezeigt werden, dass

die Verwendung eines anderen Monomeren (z.B. EMA statt MMA) helfen kann sich überlagernde Signale getrennt zu detektieren.

Tabelle 8-4: Zuordnung der beobachteten Signale des ESI-Massenspektrums einer Na⁺-ionisierten Poly(EMA)-Probe (siehe Abbildung 8-6), hergestellt durch TBPEHC-initiierter MMA-Lösungspolymerisation bei 137 °C.

Peak	Endgruppen		$(m/z)^{\text{theo}}$	$(m/z)^{\exp}$
(A)	tert-Butoxyl	_	1007.6/1009.6	1007.8/1009.7
(Am)	<i>tert</i> -Butoxyl		1007.6	1007.8
(AA)	tert-Butoxyl	tert-Butoxyl	1081.7	_
(A D)	tert-Butoxyl	2-Ethylhexoxycarbonyloxyl	1067.6	_
(Af)	<i>tert</i> -Butoxyl	3-(Hydroxymethyl)heptyl	1023.6	1023.6
(Ah)	<i>tert</i> -Butoxyl	Methyl	1023.6	1023.6
(D)	2-Ethylhexoxycarbonyloxyl		1107.7/1109.7	1107.7/1109.8
(Dm)	2-Ethylhexoxycarbonyloxyl		1107.7	1107.7
(DD)	2-Ethylhexoxycarbonyloxyl	2-Ethylhexoxycarbonyloxyl	1053.6	—
(Df)	2-Ethylhexoxycarbonyloxyl	Methyl	1009.6	1009.7
(Dh)	2-Ethylhexoxycarbonyloxyl	3-(Hydroxymethyl)heptyl	1009.6	1009.7
(f)	Methyl		1063.6/1065.6	1063.7/1065.8
(fm)	Methyl		1063.6	1063.7
(ff)	Methyl	Methyl	1079.7	1079.7
(fh)	Methyl	3-(Hydroxymethyl)heptyl	1079.7	1079.7
(h)	3-(Hydroxymethyl)heptyl		1063.6/1065.6	1063.7/1065.8
(hm)	3-(Hydroxymethyl)heptyl		1063.6	1063.7
(hh)	3-(Hydroxymethyl)heptyl	3-(Hydroxymethyl)heptyl	1079.7	1079.7
(m)			1047.6/1049.6	1047.7/1049.7
(mm)			1047.6	1047.7

8.5 *tert*-Amylperoxy-(2-ethylhexyl)carbonat (TAPEHC)

8.5.1 Massenspektrometrische Endgruppenanalyse eines Poly(MMA)-Polymers

In Abbildung 8-7 ist der Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe gezeigt, die in MMA-Lösungspolymersiation bei 134 °C unter Verwendung von *tert*-Amylperoxy-(2-ethylhexyl)carbonat als Initiator synthetisiert wurde. Der dargestellte Ausschnitt im Bereich maximaler Signalintensität umfasst alle Signale einer Monomerwiederholungseinheit.

Abbildung 8-7: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe, hergestellt durch MMA-Lösungspolymerisation ($c_{MMA} = 3.5 \text{ mol·L}^{-1}$) bei 134 °C unter Verwendung von *tert*-Amylperoxy-(2-ethylhexyl)carbonat (TAPEHC, $c_{Ini} = 0.10 \text{ mol·L}^{-1}$).

Im gezeigten Massenspektrum beobachtet man sieben Signalgruppen, deren Zuordnung im Folgenden detailliert erläutert wird. Der Initiator zerfällt erwartungsgemäß in die primären Initiatorradikale, in das *tert*-Amyloxylradikal **E** und in das 2-Ethylhexoxycarbonyloxylradikal **D**. Signale die auf die Präsenz von *tert*-Amyloxyl-Endgruppen hinweisen, werden im Massenspektrum nicht beobachtet. Diese Beobachtung lässt darauf schließen, dass die *tert*-Amyloxylradikale vor der Anlagerung an ein Monomer in sekundäre Initiatorradikale fragmentieren. Unabhängig davon wird , wie bereits bei TBPEHC-initiierten Polymeren, das 2-Ethylhexoxycarbonyloxylradikal als Endgruppe polymerer Spezies im Massenspektrum beobachtet. Bei m/z 1095.7 und m/z 1097.7 wird das Disproportionierungssignal (**D**) einer Polymerkette mit einer 2-Ethylhexoxycarbonyloxyl-Endgruppe detektiert. Das schwache

Kombinationssignal **(DD)** bei *m/z* 1069.6 weist auf Terminierungsprodukte zweier D-initiierter Makroradikale hin. Für die D-Endgruppe werden weitere Kombinationssignale bei *m*/*z* 1011.7 *m/z* 1025.7 und detektiert. Das Signal bei *m/z* 1011.7 dem Kreuzkann

kombinationssignal (Df) zugeordnet werden. Hier wird eine polymere Spezies detektiert, die sowohl ein D-Endgruppe als auch eine Methyl-Endgruppe trägt. Auf den Nachweis von Methyl-Endgruppen soll im späteren Verlauf noch einmal eingegangen werden. Außerdem können dem Signal bei m/z 1025.7 die Kombinationssignale (**Dg**) und (**Dh**) zugewiesen werden. Die ensprechenden Terminierungsprodukte entstehen aus der Kombination eines Dinitiierten Makroradikals mit einem Ethyl-initiierten bzw. h-initiierten Makroradikal. Die in dem untersuchten System nachgewiesenen Ethyl- bzw. 3-(Hydroxymethyl)heptyl-Endgruppen haben unter Berücksichtigung einer MMA-Einheit identische Summenformeln und damit gleiche Molekulargewichte. Wie bei TBPEHC führt dies dazu, dass die erwähnten Endgruppen nicht separiert voneinander nachgewiesen werden können. Für die separate Detektion der Ethyl- und der 3-(Hydroxymethyl)heptyl-Endgruppen wird in Kapitel 8.5.2 die massenspektrometrische Analyse einer TAPEHC-initiierten Poly(EMA)-Probe erläutert. Die nicht separat zu detektierenden Endgruppen g und h werden ebenfalls in dem Disproportionierungssignal (g),(h) bei m/z 1051.7/1053.7 und in dem Kombinationssignal (gg),(gh),(hh) bei 1081.6 nachgewiesen. Die zu beobachtenden Intensitätsmuster der Isotopenpeaks stützen die Zuordnung als Disproportionierungs- bzw. Kombinationssignale. Für beide Endgruppen findet sich ebenfalls ein Kombinationssignal (fg).(fh) bei m/z 1067.6. welches auf polymere Spezies deutet, die jeweils neben einer g- bzw. h-Endgruppe noch eine Methyl-Endgruppe f trägt. Die Methyl-Endgruppe wurde bereits in Kombination mit der 2-Ethylhexoxycarbonyloxyl-Endgruppe detektiert. Die Präsenz einer Methyl-Endgruppe wurde nicht erwartet und erscheint für TAPEHC zunächst nicht plausibel. Aus den massenspektrometrischen Endgruppenanalysen von tert-Amylperoxypivalat (TAPP)^[24] und *tert*-Amylperoxyacetat (TAPA)^[25] wurde geschlossen, dass das *tert*-Amylradikal selektiv über β -Spaltung unter Freisetzung von Aceton zum Ethylradikal fragmentiert. Der zweite Reaktionsweg wird nicht bestritten. Ber der Anaylse von TAPP wurden ausschließlich

100 8 Qualitative Endgruppenuntersuchung von Polymeren: *tert*-Alkylperoxycarbonate

Signale der tert-Butyl- und Ethyl-Endgruppen resultierend aus den entsprechenden Primärradikalen gefunden. Dagegen wurden im ESI-Massenspektrum von einer TAPAinitiierten Poly(MMA)-Probe Signale detektiert, die auf die Präsenz von Methyl- und Ethyl-Endgruppen schließen lassen. Der Nachweis von Methyl-Endgruppen wurde auf die Decarboxylierung des primär aus TAPA entstehenden Ethanoyloxylradikals zurückgeführt. Die TAPP-initiierten Polymerproben wurden bei 90 °C hergestellt. Das tert-Amylperoxyacetat wurde als Initiator bei 135 °C eingesetzt. Es erscheint gegebenenfalls möglich, dass das tert-Amyloxylradikal bei 90 °C selektiv in das Ethylradikal zerfällt, während es bei 135 °C teilweise auch die β -Spaltung zum Methylradikal eingeht. Bei der massenspektrometrischen Endgruppenanalyse von TAPA konnte nicht genau differenziert werden aus welchem Primärradikal das Methylradikal gebildet wurde. Möglicherweise entstehen dort ebenfalls Methylradikale aus dem tert-Amyloxylradikal. Im untersuchten Ausschnitt des ESI-Massenspektrums der TAPEHC-initiierten Poly(MMA)-Probe werden noch weitere Signale, die auf die Präsenz von Methyl-Endgruppen hinweisen gefunden. Dem Signal bei m/z 1037.6/1039.6 wird der Disproportionierungspeak (f) zugewiesen. Die hier detektierten, polymeren Spezies tragen jeweils nur eine Methyl-Endgruppe. Das auf Disproportionierungs-produkte hin. Das Isotopenmuster weist entsprechende Kombinationssignal (ff) bei m/z 1053.7 wird durch das Disproportionierungssignal überlagert und kann daher nicht gertrennt detektier werden. Abschließend sei auf das Signal bei m/z1021.7/1023.7 hingewiesen. Es lässt sich dem Disproportionierungssignal (m) und dem Kombinationssignal (mm) von endgruppenfreien Polymerketten zuordnen. Als initiierende Spezies treten Methylmethacrylat-Radikale auf, die aus Übertragungsreaktionen von Initiatorradikalen auf das Monomer hervorgehen.

Eine detaillierte Zuordnung der beobachteten Signale mit Angabe der experimentell bestimmten und theoretisch berechneten Massen ist in Tabelle 8-5 gezeigt.

Peak	Endgruppen		$(m/z)^{\text{theo}}$	$(m/z)^{\exp}$
(D)	2-Ethylhexoxycarbonyloxyl	_	1095.6/1097.6	1095.7/1097.7
(DD)	2-Ethylhexoxycarbonyloxyl	2-Ethylhexoxycarbonyloxyl	1069.6	1069.6
(Df)	2-Ethylhexoxycarbonyloxyl	Methyl	1011.6	1011.7
(Dg)	2-Ethylhexoxycarbonyloxyl	Ethyl	1025.6	1025.7
(Dh)	2-Ethylhexoxycarbonyloxyl	3-(Hydroxymethyl)heptyl	1025.6	1025.7
(f)	Methyl		1037.5/1039.5	1037.6/1039.6
(ff)	Methyl	Methyl	1053.6	—
(fg)	Methyl	Ethyl	1067.6	1067.6
(fh)	Methyl	3-(Hydroxymethyl)heptyl	1067.6	1067.6
(g)	Ethyl		1051.6/1053.6	1051.7/1053.7
(gg)	Ethyl	Ethyl	1081.7	1081.6
(gh)	Ethyl	3-(Hydroxymethyl)heptyl	1081.7	1081.6
(h)	3-(Hydroxymethyl)heptyl		1051.6/1053.6	1051.7/1053.7
(hh)	3-(Hydroxymethyl)heptyl	3-(Hydroxymethyl)heptyl	1081.7	1081.6
(m)	—		1021.5/1023.5	1021.7/1023.7
(mm)		_	1023.5	1023.7

Tabelle 8-5: Zuordnung der beobachteten Signale des ESI-Massenspektrums einer Na⁺-ionisierten Poly(MMA)-Probe (siehe Abbildung 8-7),die durch MMA-Lösungspolymerisation bei 134 °C unter Verwendung von TAPEHC als Initiator hergestellt wurde.

8.5.2 Massenspektrometrische Endgruppenanalyse eines Poly(EMA)-Polymers

In Abbildung 8-8 ist der Ausschnitt eines Massenspektrums einer Poly(EMA)-Probe, die durch EMA-Lösungspolymerisation in Benzol bei 134 °C unter Verwendung von TAPEHC als Initiator eingesetzt wurde, gezeigt. Zu sehen ist ein Massenbereich bei maximaler Signalintensität, der einer Monomerwiederholungseinheit entspricht.

Abbildung 8-8: Ausschnitt des ESI-Massenspektrums einer Na⁺-ionisierten Poly(EMA)-Probe, erhalten aus einer EMA-Lösungspolymerisation ($c_{\text{EMA}} = 3.0 \text{ mol}\cdot\text{L}^{-1}$) bei 134 °C in Benzol unter Verwendung von TAPEHC ($c_{\text{Ini}} = 0.1 \text{ mol}\cdot\text{L}^{-1}$).

Im gezeigten Massenspektrum werden im Bereich einer Monomerwiederholungseinheit sieben Signalgruppen beobachtet. Wie bereits die massenspektrometrische Endgruppenanalyse der Poly(MMA)-Probe ergeben hat, ist auch bei der Poly(EMA)-Probe das primär aus dem Initiator gebildete tert-Amyloxylradikal E nicht als Endgruppe im Polymer enthalten. Das zweite primäre Initiatorradikal kann jedoch als Endgruppe in einigen Signal nachgewiesen werden. Bei m/z 1107.8/1109.8 wird das Disproportionierungssignal (**D**) beobachtet, welches durch ein Kombinationssignal bei m/z 1107.8 teilweise überlagert wird. Terminierungsprodukte tragen jeweils Die hier detektierten eine 2-Ethylhexoxycarbonyloxyl-Endgruppe **D**. Des weiteren wird diese Endgruppe in folgenden Kombinationspeaks nachgewiesen: in (**DD**) bei m/z 1167.5, in (**Dg**) bei m/z 1137.7 und in (**Df**),(**Dh**) bei m/z 1123.7. Da das 2-Ethylhexoxycarbonyloxylradikal bereits in der Analyse der Poly(MMA)-Probe als Endgruppe separat nachgewiesen konnte, soll eine ausführliche Erläuterung der jeweiligen polymeren Spezies an dieser Stelle entfallen. Die genaue
Endgruppenanalyse der Poly(MMA)-Probe wurde durch übereinstimmende Massen der 3-(Hydroxymethyl)heptyl-Endgruppe und der Ethyl-Endgruppe unter Berücksichtigung einer MMA-Einheit erschwert. Bei der Analyse der Poly(EMA)-Probe wird nun festgestellt, dass die Masse der 3-(Hydroxymethyl)heptyl-Endgruppe und die der Methyl-Endgruppe, unter Berücksichtigung einer MMA-Einheit, übereinstimmen. Aus diesem Sachverhalt resultiert, dass diese Endgruppen nicht separat detektiert werden können. Beide Endgruppen werden gemeinsam in dem Disproportionierungssignal (f),(h) bei m/z 1063.8/1065.9 und in dem Kombinationssignal (ff),(fh),(hh) bei m/z 1079.8 nachgewiesen werden. Das Ethyl-Radikal g findet sich jedoch separat bei m/z 1077.8/1079.8 im Disproportionierungssignal (g) des Polymers wieder. Das Disproportionierungssignal wird bei m/z 1079.8 teilweise durch das Kombinationssignal (ff),(fh),(hh) überlagert. Das entsprechende Kombinatiossignal (gg) einer polymeren Spezies mit zwei Ethyl-Endgruppen lässt sich bei m/z 1107.8 nachweisen. Die Kreuzkombinationsprodukte aus Ethyl-initiierten Makroradikalen mit Methyl- bzw. hinitiierten Makroradikalen werden in dem Kombinationssignal (fg),(gh) bei m/z 1093.7 detektiert. Das schwache Signal bei m/z 1161.5 kann einer endgruppenfreien Polymerspezies zugeordnet. Das Isotopenmuster des Kombinationssignals (mm) ist aufrund der geringen Intensität nur schwer als solches zu interpretieren. Die hier detektierten, endgruppenfreien Polymerspezies wurden durch Ethylmethacrylatradikale initiiert, deren Entstehung aus der Übertragung der Radikalfunktionalität von einem Initiatorradikal auf ein Monomermolekül erklärt werden kann.

Eine detaillierte Zurdnung aller beobachteten Signale ist mit Angabe der experimentell gemessenen und theoretisch berechneten Massen in Tabelle 8-6 aufgelistet.

Abschließend lässt sich für die massenspektrometrischen Endgruppenanalysen aller TAPEHC-initiierten Polymer-Proben folgendes zusammenfassen. Das primär gebildete *tert*-Amyloxylradikal **E** wird nicht als Endgruppe in den Polymeren gefunden. Demnach fragmentiert das *tert*-Amyloxylradikal nach seiner Entstehung noch vor der Anlagerung an ein Monomeres über zwei mögliche β -Spaltungen in ein sekundäres Initiatorradikal. Als Produkte dieser β -Spaltungen werden das Methyl- und das Ethylradikal **f** und **g** als Endgruppen nachgewiesen. Das primär gebildete 2-Ethylhexoxycarbonyloxylradikal **D** wird ebenfalls als Endgruppe im Polymer detektiert. In dem Zeitintervall zwischen Entstehung und Addition an ein Monomer decarboxyliert das 2-Ethylhexoxycarbonyloxylradikal über eine intramolekulare 1,5-Wasserstoffverschiebung zum 3-(Hydroxymethyl)heptylradikal. Das

3-(Hydroxymethyl)-heptylradikal **h** wird aufgrund von Übereinstimmungen mit der Massen anderer Endgruppen in beiden Polymeren nicht separat als Endgruppe nachgewiesen. Jedoch lässt sich aus den Untersuchungen zu TBPEHC-initiierten Polymerisationen ableiten, dass auch in diesem System **h**-Radikale als initiierende Spezies auftreten.

Tabelle 8-6: Zuordnung der beobachteten Signale des ESI-Massenspektrums einer Na⁺-ionisierten Poly(EMA)-Probe (siehe Abbildung 8-8),die durch MMA-Lösungspolymerisation bei 134 °C unter Verwendung von TAPEHC als Initiator hergestellt wurde.

Peak	Endgruppen		$(m/z)^{\text{theo}}$	$(m/z)^{\exp}$
(D)	2-Ethylhexoxycarbonyloxyl	_	1107.7/1109.7	1107.8/1109.8
(DD)	2-Ethylhexoxycarbonyloxyl	2-Ethylhexoxycarbonyloxyl	1167.7	1167.5
(Df)	2-Ethylhexoxycarbonyloxyl	Methyl	1123.7	1123.7
(Dg)	2-Ethylhexoxycarbonyloxyl	Ethyl	1137.6	1137.7
(Dh)	2-Ethylhexoxycarbonyloxyl	3-(Hydroxymethyl)heptyl	1123.7	1123.7
(f)	Methyl		1063.6/1065.6	1063.8/1065.9
(ff)	Methyl	Methyl	1079.6	1079.8
(fg)	Methyl	Ethyl	1093.7	1093.7
(fh)	Methyl	3-(Hydroxymethyl)heptyl	1079.7	1079.8
(g)	Ethyl		1077.7/1079.7	1077.8/1079.8
(gg)	Ethyl	Ethyl	1107.7	1107.8
(gh)	Ethyl	3-(Hydroxymethyl)heptyl	1093.7	1093.7
(h)	3-(Hydroxymethyl)heptyl	_	1063.6/1065.6	1063.8/1065.9
(hh)	3-(Hydroxymethyl)heptyl	3-(Hydroxymethyl)heptyl	1079.7	1079.8

8.6 Schlussfolgerung

Die massenspektrometrische Endgruppenanalyse von Polymerproben aus radikalischen Polymerisationen bietet einen direkten Nachweis der während der Initiierung mit *tert*-Alkylperoxycarbonaten entstehenden initiierenden radikalischen Spezies. In den aus den Beobachtungen abgeleiteten Zerfallschemata wird deutlich, dass die primär gebildeten Initiatorradikale abhängig von deren Struktur durch Folgereaktionen in weitere radikalische Spezies zerfallen können, bevor diese ein Kettenwachstum initiieren.

In den Massenspektren aller mit *tert*-Butylperoxycarbonaten initiierten Polymere werden neben den *tert*-Butoxyl-Endgruppen, noch Methyl-Endgruppen und endgruppenfreie Polymerketten detektiert. Die primär gebildeten *tert*-Butoxylradikale reagieren teilweise über β -Spaltung und unter Freisetzung von Aceton zu Methylradikalen. Parallel dazu sind *tert*-Butoxylradikale, aufgrund ihrer verlängerten Lebensdauer in der Lage, durch Wasserstoffabstraktion die Radikalfunktion auf das Monomere zu übertragen. Die gebildeten Monomerradikale initiieren das Wachstum endgruppenfreier Polymerketten. Im Gegensatz dazu werden bei der TAPEHC-initiierten Polymerproben keine *tert*-Amyloxylradikal als Endgruppe gefunden. Aufgrund der raschen Ethyl-Abspaltung ist deren Lebensdauer verkürzt. Das *tert*-Amyloxylradikal reagiert hauptsächlich durch Freisetzung von Aceton zum Ethylradikal als β -Spaltungsfragment des *tert*-Amyloxylradikals nachgewiesen.

Die ebenfalls primär gebildeten Carbonyloxylradikale decarboxylieren abhängig von der Struktur des Substituenten unterschiedlich stark zum Alkoxyl- bzw. Aroxylradikal. Das beim Zerfall von TBPMC entstehende Methoxycarbonyloxylradikal decarboxyliert im Zeitintervall zwischen Entstehung und Anlagerung an das Monomer nicht. Daher werden in den TBPMCinitiierten Polymeren keine Methoxy-Endgruppen nachgewiesen. Im Gegensatz dazu decarboxyliert das aus TBPNC entstehende 2-Naphthyloxycarbonyloxylradikal vollständig und zeitlich noch vor der möglichen Anlagerung an ein Monomer. Dem entsprechend werden in den Massenspektren der Polymere ausschließlich 2-Naphthyloxylradikale als Endgruppen beobachtet. Im Vergleich zu TBPMC und TBPNC nimmt das aus TBPEHC und TAPEHC primär entstehende 2-Ethylhexoxycarbonyloxylradikal eine Zwischenstellung ein, da es nur teilweise decarboxyliert. Aufgrund der verzweigten Alkylkette an β -Position wird über eine intramolekulare 1,5-Wasserstoffverschiebung ein tertiäres Kohlenstoff-zentriertes Radikal gebildet. Des weiteren konnte an zwei Beipielen erfolgreich gezeigt werden, dass sich überlagernde Signale durch den Einsatz eines anderen Monomeren schliesslich doch getrennt 106 8 Qualitative Endgruppenuntersuchung von Polymeren: *tert*-Alkylperoxycarbonate

detektierte werden können. Dies ist speziell in solchen Fällen von Bedeutung, wo aufgrund identischer Massen auch mit hochauflösender Massenspektrometrie kein Ergebnis erzielt wird.

9 Ausblick

Es wurden detaillierte massenspektrometrische Endgruppenuntersuchungen von Proben aus Peroxycarbonat-initiierten radikalischen Polymerisationen von Methylmethacrylat vorgestellt. Für Dialkylperoxydicarbonate und *tert*-Alkylperoxycarbonate wurden auf diese Weise die während des Initiierungsprozess ablaufenden Fragmentierungsreaktionen der entstehenden primären Initiatorradikale studiert. Für 2EH-PDC wurde für das primär gebildete 2-Ethylhexoxycarbonyloxylradikal zusätzlich eine Fragmentierung unter CO₂-Abspaltung beobachtet. Der Mechanismus dieser intramolekularen 1,5-Wasserstoffverschiebung ist noch nicht vollständig geklärt. Die Untersuchung der Modellsubstanz Di-(2-methylpropyl)-peroxydicarbonat sollte klären, ob intramolekulare 1,5-Wasserstoffübertragungen unter Ausbildung primärer, sekundärer und tertiärer kohlenstoffzentrierter Radikale erfolgen können.

Neben den bereits untersuchten Initiatorgruppen sollten in folgenden Arbeiten weitere thermische Initiatoren, wie beispielsweise Dialkylperoxide und multifunktionelle Initiatoren - wenn möglich unter Variation von Temperatur und Druck - studiert werden. Die Untersuchung zusätzlicher Ethylmethacrylat-Proben hat für Systeme mit einer Vielzahl initiierender Spezies die eindeutige Zuordnung der Massenspektren von Polymethylmethacrylatproben ermöglicht. Es sollte versucht werden, Messungen für weitere Monomere auszuführen. Bei unpolaren Polymeren sollte außerdem versucht werden, durch polare Substituenten, z.B. para-Methoxystyrol, die Ionisierbarkeit dieser Polymere zu verbessern, um den Einsatz zusätzlicher Reagenzien, z.B. von Silbernitrat bei Polystyrol, zu vermeiden.

In dieser Arbeit wurden DFT-Rechnungen zu den Folgereaktionen der Alkoxycarbonyloxylradikale durchgeführt. Ähnliche Arbeiten liegen für tertiäre Alkoxylradikale und für Aryloxycarbonyloxylradikale vor. Diese theoretischen Studien mittels DFT sollten in zukünftigen Arbeiten auf Folgereaktionen anderer Primärradikalarten, z.B. solcher aus multifunktionellen Initiatoren, ausgeweitet werden. Ein Problem beim Vergleich berechneter Geschwindigkeitskoeffizienten bestand darin, geeignete Geschwindigkeitskoeffizienten für die Anlagerung von sauerstoffzentrierten Radikalen an Doppelbindungen zu finden. In der Literatur^[123] wurden bisher ausschließlich kohlenstoffzentrierte Radikale untersucht. Die theoretische Untersuchung der Anlagerung von verschiedenen sauerstoffzentrierten Radikalen an Doppelbindungen wäre daher wünschenswert, um die Ergebnisse zu den Folgereaktionen besser vergleichen zu können.

Anhang

Anhang I Abkürzungsverzeichnis

Abkürzung Bedeutung

2EB-PDC	Di(2,2-diethylbutyl)peroxydicarbonat
2EH-PDC	Di(2-ethylhexyl)peroxydicarbonat
BDE	Bindungsdissoziationsenergie
С	molare Stoffmengenkonzentration
C _{Ini}	Initiatorkonzentration
CRM	charge-residue model
DFT	Dichtefunktionaltheorie
EI	Elektronenstoss-Ionisation
EMA	Ethylmethacrylat
E-PDC	Diethylperoxydicarbonat
ESI-MS	Elektrospray-Ionisations-Massenspektrometrie
ESR	Elektronenspinresonanz
FAB	fast atom bombardement
FD	Felddesorption
FI	Feldionisation
FT-ICR	Fourier-Transformations-Ionen-Zyklotron-Resonanz
GPC	Gelpermeationschromatographie
HF	Hartree-Fock-Methode
IEM	Ionen-Emissionsmodell
<i>i</i> P-PDC	Di(iso-propyl)peroxydicarbonat
Κ, α	Mark-Houwink-Parameter
т	Masse
m/z	Masse-zu-Ladung-Verhältnis
m/z^{exp}	experimentell gemessenes Masse-zu-Ladung-Verhältnis
m/z^{theo}	theoretisch berechnetes Masse-zu-Ladung-Verhältnis
MALDI	Matrix-unterstützte Laser Desorption/Ionisation

Abkürzung Bedeutung

MMA	Methylmethacrylat
$M_{ m n}$	Zahlenmittel des Molekulargewichts
<i>n</i> HD-PDC	n-Hexadecylperoxydicarbonat
NMR	Kernspinresonanz
nTD-PDC	<i>n</i> -Tetradecylperoxydicarbonat
PDI	Polydispersitätsindex
PMMA	Poly(methylmethacrylat)
Q, q	Ladung
r	Radius
RI	refraction index
sB-PDC	Di(sec-butyl)peroxydicarbonat
SEC	size exclusion chromatography
Т	Temperatur
TAPA	tert-Amylperoxyacetat
ТАРЕНС	tert-Amylperoxy-2-ethylhexylcarbonat
TAPP	tert-Amylperoxypivalat
TBPEHC	tert-Butylperoxy-2-ethylhexylcarbonat
TBPMC	tert-Butylperoxymethylcarbonat
TBPNC	tert-Butylperoxy-2-Naphthylcarbonat
TBPPC	tert-Butylperoxyphenylcarbonat
ToF	time of flight

<u>110</u>

Anhang II Quantenchemische Rechnungen

A. Geometrien der Alkoxycarbonyloxylradikale im Grund und Übergangs-

zustand der Decarboxylierung.

Ethoxycarbonyloxylradikal

Abbildung-A.1: Berechnete Geometrien des Ethoxycarbonyloxylradikals im Grund- und übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)); Darstellung der Schwingungsmode im Übergangszustand mit der imaginären Schwingungsfrequenz ω_{TS} .

Tabelle-A.1: Berechnete Geometrien des Ethoxycarbonyloxylradikals im Grund- und Übergangszustand (UB3LYP/6-311+G(d,p)).

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel Diederwinkel (°) (°)		A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Grundz	ustand			
1	С						
2	0	1.263			1		
3	0	1.245	115.1		1	2	
4	0	1.317	125.5	180	1	3	2
5	С	1.465	117.2	0	4	1	3
6	Н	1.091	108.3	58.9	5	4	1
7	Н	1.091	108.3	-58.9	5	4	1
8	С	1.513	107.1	180	5	4	1
9	Н	1.093	109.3	180	8	5	4
10	Н	1.092	111.0	-60.5	8	5	4
11	Н	1.092	111.0	60.5	8	5	4
			Übergang	szustand			
1	С						
2	0	1.218			1		
3	0	1.181	147.2		1	2	
4	0	1.644	115.4	-179.5	1	3	2
5	С	1.421	116.1	-91.2	4	1	3
6	Н	1.094	110.6	17.0	5	4	1
7	Н	1.095	107.6	-102.8	5	4	1
8	С	1.531	107.4	138.8	5	4	1
9	Н	1.093	108.5	178.0	8	5	4
10	Н	1.091	110.7	-62.6	8	5	4
11	Н	1.091	110.8	58.6	8	5	4

(1) Abstand des Atoms I zu Atom A; (2) Winkel zwischen Atom I und Atom B; (3) Winkel der Flächen, die von den Atomen I-A-B und A-B-C aufgespannt werden.

iso-Propoxycarbonyloxylradikal

Abbildung-A.2: Berechnete Geometrien des *iso*-Propoxycarbonyloxylradikals im Grund- und übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)); Darstellung der Schwingungsmode im Übergangszustand mit der imaginären Schwingungsfrequenz ω_{TS} .

Tabelle-A.2: Berechnete Geometrien des *iso*-Propoxycarbonyloxylradikals im Grund- und Übergangszustand (UB3LYP/6-311+G(d,p)).

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
		Gr	undzustar	nd			
1	С						
2	Н	1.090			1		
3	С	1.522	109.3		1	2	
4	Н	1.091	111.7	-179.0	3	1	2
5	Н	1.093	108.9	-59.3	3	1	2
6	Н	1.092	110.7	59.4	3	1	2
7	С	1.522	114.9	-55.7	1	3	4
8	Н	1.091	111.7	55.7	7	1	3
9	Н	1.092	110.7	177.3	7	1	3
10	Н	1.093	108.9	-64.0	7	1	3
11	0	1.482	111.0	127.0	1	3	7
12	С	1.314	121.6	-65	11	1	3
13	0	1.246	126.7	0	12	11	1
14	0	1.265	118.8	-180	12	11	1
		Über	gangszust	and			
1	С						
2	н	1.103			1		
3	С	1.522	109.9		1	2	
4	н	1.093	111.0	-179.0	3	1	2
5	н	1.093	109.4	-60.1	3	1	2
6	н	1.091	111.3	59.6	3	1	2
7	С	1.534	114.3	-179.2	1	3	6
8	н	1.092	109.5	60.3	7	1	3
9	н	1.091	110.7	-179.8	7	1	3
10	Н	1.093	109.6	-59.6	7	1	3
11	0	1.427	113.9	126.2	1	3	7
12	С	1.633	120.5	-25.1	11	1	3
13	0	1.220	98.2	-80.7	12	11	1
14	0	1.182	115.5	100.9	12	11	1

n-Butoxycarbonyloxylradikal

Abbildung-A. 3: Berechnete Geometrien des *n*-Butoxycarbonyloxylradikals im Grund- und übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)); Darstellung der Schwingungsmode im Übergangszustand mit der imaginären Schwingungsfrequenz ω_{TS} .

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Grund	dzustand			
1	С						
2	Н	1.094			1		
3	Н	1.094	107.7		1	2	
4	С	1.531	111.2	122.0	1	3	2
5	Н	1.096	109.4	178.0	4	1	3
6	Н	1.096	109.4	62.0	4	1	3
7	С	1.534	112.6	-60.0	4	1	3
8	Н	1.095	110.0	58.8	7	4	1
9	Н	1.095	110.0	-58.8	7	4	1
10	С	1.517	111.9	-180	7	4	1
11	Н	1.092	111.9	61.2	10	7	4
12	Н	1.092	111.9	-61.2	10	7	4
13	0	1.464	107.3	-180	10	7	4
14	С	1.316	117.2	-180	13	10	7
15	0	1.246	125.4	0	14	13	10
16	0	1.263	119.5	-180	14	13	10
17	Н	1.093	111.1	180	1	4	7

Tabelle-A.3: Berechnete Geometrien des *n*-Butoxycarbonyloxylradikals im Grund- und Übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)).

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
1	С						
2	Н	1.094			1		
3	Н	1.094	107.7		1	2	
4	С	1.532	111.2	122.1	1	3	2
5	Н	1.096	109.5	177.9	4	1	3
6	Н	1.096	109.4	61.8	4	1	3
7	С	1.533	112.4	-60.1	4	1	3
8	Н	1.095	110.6	58.7	7	4	1
9	Н	1.094	110.5	-59.8	7	4	1
10	С	1.532	112.0	178.9	7	4	1
11	Н	1.101	109.5	61.8	10	7	4
12	Н	1.095	112.2	-58.6	10	7	4
13	0	1.415	111.7	176.2	10	7	4
14	С	1.637	116.4	107.7	13	10	7
15	0	1.182	115.3	96.3	14	13	10
16	0	1.219	98.0	-84.2	14	13	10
17	Н	1.093	111.1	179.9	1	4	7

Fortsetzung Tabelle-A.3

sec-Butoxycarbonyloxylradikal

Abbildung-A.4: Berechnete Geometrien des *sec*-Butoxycarbonyloxylradikals im Grund- und Übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)); Darstellung der Schwingungsmode im Übergangszustand mit der imaginären Schwingungsfrequenz ω_{TS} .

Tabelle-A.4:	Berechnete	Geometrie	des	sec-Butoxycarbonyloxylradikals	im	Grundzustand	der
Decarboxylier	ung (UB3LY	P/6-311+G(d,p))				

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Grur	ndzustand			
1	С						
2	Н	1.092			1		
3	С	1.522	109.4		1	2	
4	Н	1.091	111.8	-178.4	3	1	2
5	Н	1.093	109.0	-58.5	3	1	2
6	Н	1.092	110.7	60.1	3	1	2
7	С	1.528	114.7	-55.4	1	3	4
8	Н	1.094	109.5	58.1	7	1	3
9	Н	1.096	106.2	-56.5	7	1	3
10	0	1.484	110.8	127.5	1	3	7
11	С	1.314	121.6	-64.0	10	1	3
12	0	1.247	126.7	-1.2	11	10	1
13	0	1.264	118.8	179.0	11	10	1
14	С	1.531	114.2	55.6	7	1	10
15	Н	1.094	111.3	57.5	14	7	1
16	Н	1.092	110.5	177.2	14	7	1
17	Н	1.092	111.7	-62.9	14	7	1

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Überga	angszustand			
1	С						
2	Н	1.103			1		
3	С	1.522	110.2		1	2	
4	Н	1.093	111.1	-178.1	3	1	2
5	Н	1.092	109.5	-59.0	3	1	2
6	Н	1.091	111.1	60.7	3	1	2
7	С	1.546	113.9	-179.0	1	3	6
8	Н	1.095	107.1	61.7	7	1	3
9	Н	1.095	106.6	-53.2	7	1	3
10	0	1.423	113.8	126.6	1	3	7
11	С	1.631	120.4	-26.9	10	1	3
12	0	1.183	115.4	101.2	11	10	1
13	0	1.220	98.6	-80.4	11	10	1
14	С	1.527	114.4	55.8	7	1	10
15	Н	1.094	111.4	59.7	14	7	1
16	Н	1.093	110.3	179.2	14	7	1
17	Н	1.091	111.3	-61.0	14	7	1

Tabelle-A.5: Berechnete Geometrie des *sec*-Butoxycarbonyloxylradikals im Übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)).

tert-Butoxycarbonyloxylradikal

Abbildung-A.5: Berechnete Geometrien des *tert*-Butoxycarbonyloxylradikals im Grund- und Übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)); Darstellung der Schwingungsmode im Übergangszustand mit der imaginären Schwingungsfrequenz ω_{TS} .

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Grun	dzustand			
1	С						
2	Н	1.092			1		
3	н	1.092	108.6		1	2	
4	Н	1.092	108.6	-117.9	1	3	2
5	С	1.526	110.7	121.7	1	4	3
6	С	1.528	111.4	56.2	5	1	4
7	Н	1.093	109.1	60.8	6	5	1
8	Н	1.090	111.8	-179.4	6	5	1
9	Н	1.092	110.6	-58.0	6	5	1
10	С	1.528	111.4	127.1	5	1	6
11	Н	1.092	110.6	58.0	10	5	1
12	Н	1.090	111.8	179.4	10	5	1
13	Н	1.093	109.1	-60.8	10	5	1
14	0	1.500	102.1	-116.5	5	1	6
15	С	1.313	122.8	180	14	5	1
16	0	1.246	127.1	0	15	14	5
17	0	1.266	118.6	180	15	14	5
			Überga	ngszustand			
1	С						
2	Н	1.093			1		
3	Н	1.091	108.9		1	2	
4	Н	1.091	109.0	-118.8	1	3	2
5	С	1.547	110.7	121.9	1	4	3
6	С	1.537	110.5	56.8	5	1	4
7	Н	1.093	109.6	63.8	6	5	1
8	Н	1.091	109.9	-176.3	6	5	1
9	Н	1.091	110.6	-56.3	6	5	1
10	С	1.529	111.4	125.5	5	1	6
11	Н	1.092	111.2	57.6	10	5	1
12	Н	1.092	111.1	178.9	10	5	1
13	Н	1.092	109.6	-62.2	10	5	1
14	0	1.438	102.7	-114.1	5	1	6
15	С	1.636	121.6	-138.1	14	5	1
16	0	1.183	115.2	98.5	15	14	5
17	0	1.219	98.3	-83.1	15	14	5

Tabelle-A.6: Berechnete Geometrien des *tert*-Butoxycarbonyloxylradikals im Grund- undÜbergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)).

n-Hexoxycarbonyloxylradikal und 2-Ethoxyhexoxycarbonyloxylradikal

Abbildung-A.6: Berechnete Geometrien (a) des *n*-Hexoxycarbonyloxylradikals und (b) des 2-Ethoxycarbonyloxylradikals im Grund- und Übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)); Darstellung der Schwingungsmode im Übergangszustand mit der imaginären Schwingungsfrequenz ω_{TS} .

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Grun	dzustand			
1	С						
2	н	1.094			1		
3	Н	1.094	107.6		1	2	
4	Н	1.093	107.7	115.8	1	2	3
5	С	1.531	111.4	-122.1	1	4	2
6	Н	1.097	109.5	-58.0	5	1	4
7	Н	1.097	109.5	58.0	5	1	4
8	С	1.533	113.2	180	5	1	4
9	Н	1.097	109.3	-57.8	8	5	1
10	Н	1.097	109.3	57.8	8	5	1
11	С	1.533	113.4	180	8	5	1
12	Н	1.097	109.2	57.9	11	8	5
13	Н	1.097	109.2	-57.9	11	8	5
14	С	1.534	112.9	180	11	8	5
15	Н	1.095	110.1	58.8	14	11	8
16	Н	1.095	110.1	-58.8	14	11	8
17	С	1.517	111.8	180	14	11	8
18	Н	1.092	111.9	61.2	17	14	11
19	Н	1.092	111.9	-61.2	17	14	11
20	0	1.465	107.3	180	17	14	11
21	С	1.316	117.2	180	20	17	14
22	0	1.246	125.5	0	21	20	17
23	0	1.262	119.5	180	21	20	17
			Überga	ngszustand			
1	С						
2	Н	1.094			1		
3	Н	1.094	107.6		1	2	
4	Н	1.093	107.7	-115.8	1	3	2
5	С	1.531	111.3	122.1	1	4	3
6	Н	1.097	109.5	-58.0	5	1	4
7	Н	1.097	109.5	58.0	5	1	4
8	С	1.533	113.1	-180.0	5	1	4
9	Н	1.097	109.3	-57.9	8	5	1
10	Н	1.097	109.3	57.8	8	5	1
11	С	1.534	113.4	179.9	8	5	1
12	Н	1.097	109.2	57.8	11	8	5
13	Н	1.097	109.2	-58.1	11	8	5
14	С	1.532	112.7	179.9	11	8	5
15	Н	1.094	110.7	58.5	14	11	8
16	Н	1.094	110.5	-60.1	14	11	8
17	С	1.533	112.0	178.6	14	11	8
18	Н	1.101	109.4	61.4	17	14	11
19	Н	1.095	112.2	-59.1	17	14	11
20	0	1.415	111.7	175.8	17	14	11
21	С	1.638	116.4	106.4	20	17	14
22	0	1.182	115.2	96.3	21	20	17
23	0	1.219	98.1	-84.3	21	20	17

Tabelle-A.7: Berechnete Geometrien des *n*-Hexoxycarbonyloxylradikals im Grund- und Übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)).

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
	Grundzustand						
1	0						
2	С	1.247			1		
3	0	1.262	115.0		2	1	
4	0	1.316	125.5	180.0	2	1	3
5	С	1.466	117.1	0.4	4	2	1
6	С	1.525	109.3	-179.2	5	4	2
7	С	1.546	107.5	-175.6	6	5	4
8	С	1.534	114.2	160.3	7	6	5
9	С	1.533	113.2	178.2	8	7	6
10	С	1.531	113.2	179.2	9	8	7
11	С	1.547	113.0	60.4	6	5	4
12	С	1.533	115.5	-87.3	11	6	5
13	Н	1.095	110.8	-59.1	12	11	6
14	Н	1.094	110.5	-178.2	12	11	6
15	Н	1.090	112.0	61.2	12	11	6
16	Н	1.094	108.4	151.1	11	6	5
17	Н	1.097	108.8	36.7	11	6	5
18	Н	1.092	107.8	59.7	5	4	2
19	Н	1.093	108.2	-57.9	5	4	2
20	Н	1.097	109.6	38.9	7	6	5
21	Н	1.098	109.0	-76.8	7	6	5
22	Н	1.098	107.4	-59.6	6	5	4
23	Н	1.097	109.0	-60.0	8	7	6
24	Н	1.096	110.1	56.0	8	7	6
25	Н	1.097	109.3	57.0	9	8	7
26	Н	1.097	109.2	-58.6	9	8	7
27	Н	1.095	111.2	-60.0	10	9	8
28	Н	1.093	111.4	180.0	10	9	8
29	Н	1.095	111.2	59.9	10	9	8

Tabelle-A.8: Berechnete Geometrie des 2-Ethylhexoxycarbonyloxylradikals im Grundzustand derDecarboxylierung (UB3LYP/6-311+G(d,p)).

-

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Überga	ngszustand			
1	0						
2	С	1.219			1		
3	0	1.185	145.8		2	1	
4	0	1.623	98.7	-179.6	2	1	3
5	С	1.413	115.8	-91.7	4	2	1
6	С	1.551	110.4	-144.2	5	4	2
7	С	1.546	107.4	-173.3	6	5	4
8	С	1.535	113.9	160.6	7	6	5
9	С	1.534	113.0	178.9	8	7	6
10	С	1.531	113.1	179.2	9	8	7
11	С	1.541	112.4	62.8	6	5	4
12	С	1.531	115.4	-79.1	11	6	5
13	Н	1.094	111.0	-58.4	12	11	6
14	Н	1.093	110.5	-178.0	12	11	6
15	Н	1.092	112.0	62.2	12	11	6
16	Н	1.095	108.0	159.3	11	6	5
17	Н	1.097	108.9	44.9	11	6	5
18	Н	1.096	107.2	98.3	5	4	2
19	Н	1.096	110.6	-21.1	5	4	2
20	Н	1.097	109.6	39.2	7	6	5
21	Н	1.097	109.1	-76.6	7	6	5
22	Н	1.097	106.9	-57.0	6	5	4
23	Н	1.097	109.0	-59.4	8	7	6
24	Н	1.096	110.2	56.8	8	7	6
25	Н	1.097	109.3	57.0	9	8	7
26	Н	1.097	109.2	-58.7	9	8	7
27	Н	1.094	111.2	-60.1	10	9	8
28	Н	1.093	111.3	179.9	10	9	8
29	Н	1.094	111.2	59.8	10	9	8

 $\label{eq:constraint} \begin{array}{l} \textbf{Tabelle-A.9:} Berechnete Geometrie des 2-Ethylhexoxycarbonyloxylradikals im Übergangszustand der Decarboxylierung (UB3LYP/6-311+G(d,p)). \end{array}$

<u>B. Geometrien der Alkoxycarbonyloxylradikale im Übergangszustand der</u> intramolekularen 1,5-Wasserstoffverschiebung

iso-Propoxycarbonyloxylradikal

Abbildung-A.7: Berechnete Geometrie des *iso*-Propoxycarbonyloxylradikals im Übergangszustand der intramolekularen 1,5-Wasserstoffverschiebung (UB3LYP/6-311+G(d,p)).

Tabelle-A.10: Berechnete Geometrie des *iso*-Propoxycarbonyloxylradikals im Übergangszustand der intramolekularen 1,5-Wasserstoffverschiebung (UB3LYP/6-311+G(d,p)).

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Über	gangszustand			
1	С						
2	Н	1.095			1		
3	С	1.514	109.7		1	2	
4	н	1.276	97.2	155.1	3	1	2
5	Н	1.088	116.4	-90.4	3	1	2
6	Н	1.089	115.7	47.3	3	1	2
7	С	1.524	114.1	32.9	1	3	5
8	Н	1.093	111.2	56.5	7	1	3
9	Н	1.091	110.1	176.9	7	1	3
10	Н	1.093	110.0	-63.7	7	1	3
11	0	1.450	109.5	124.1	1	3	7
12	С	1.359	119.9	-46.1	11	1	3
13	0	1.333	117.1	15.6	12	11	1
14	0	1.201	121.6	-165.0	12	11	1

sec-Butoxycarbonyloxylradikal

Abbildung-A.8: Berechnete Geometrie des *sec*-Butoxycarbonyloxylradikals im Übergangszustand der intramolekularen 1,5-Wasserstoffverschiebung (UB3LYP/6-311+G(d,p)).

Tabelle-A.11: Berechnete Geometrie des sec-Butoxycarbonyloxylradikals im Übergangszustand der
intramolekularen 1,5-Wasserstoffverschiebung (UB3LYP/6-311+G(d,p)).

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
			Überga	ngszustand			
1	С						
2	Н	1.095			1		
3	С	1.523	109.7		1	2	
4	Н	1.093	111.2	-179.7	3	1	2
5	Н	1.093	110.1	-59.6	3	1	2
6	Н	1.091	110.1	59.9	3	1	2
7	С	1.525	113.8	-176.9	1	3	6
8	Н	1.249	96.4	81.0	7	1	3
9	Н	1.092	113.3	-28.5	7	1	3
10	0	1.451	110.3	124.0	1	3	7
11	С	1.360	119.8	-79.0	10	1	3
12	0	1.327	117.1	-16.6	11	10	1
13	0	1.203	121.4	164.3	11	10	1
14	С	1.510	117.7	70.4	7	1	10
15	Н	1.098	109.8	72.0	14	7	1
16	Н	1.092	111.5	-169.2	14	7	1
17	Н	1.092	111.8	-47.4	14	7	1

2-Ethylhexoxycarbonyloxylradikal

Abbildung-A.9: Berechnete Geometrie des 2-Ethylhexoxycarbonyloxylradikals im Übergangszustand der intramolekularen 1,5-Wasserstoffverschiebung (UB3LYP/6-311+G(d,p)).

Tabelle-A.12: Berechnete Geometrie des 2-Ethylhexoxycarbonyloxylradikals im Übergangszustand
der intramolekularen 1,5-Wasserstoffverschiebung (UB3LYP/6-311+G(d,p)).

Atom Nr.	Chem. Symb.	Abstand (Å)	Winkel (°)	Diederwinkel (°)	A ⁽¹⁾	B ⁽²⁾	C ⁽³⁾
	Übergangszustand						
1	С						
2	н	1.094			1		
3	н	1.093	108.5		1	2	
4	С	2.406	134.6	-121.4	1	3	2
5	0	1.204	150.5	39.6	4	1	3
6	С	1.528	91.6	163.6	1	4	5
7	Н	1.227	95.3	21.6	6	1	4
8	0	1.363	31.7	134.3	4	1	6
9	0	1.320	86.5	-164.7	4	1	8
10	С	1.523	113.5	155.8	6	1	8
11	Н	1.095	108.6	-48.3	10	6	1
12	Н	1.101	108.2	65.8	10	6	1
13	С	1.532	115.4	-171.4	10	6	1
14	Н	1.094	111.1	57.7	13	10	6
15	Н	1.092	110.3	177.0	13	10	6
16	Н	1.092	112.1	-63.2	13	10	6
17	С	1.525	115.0	-64.6	6	1	8
18	Н	1.094	109.3	161.0	17	6	1
19	Н	1.094	108.9	45.2	17	6	1
20	С	1.544	114.1	-76.8	17	6	1
21	Н	1.096	109.9	-59.9	20	17	6
22	Н	1.096	109.8	56.9	20	17	6
23	С	1.534	112.3	178.4	20	17	6
24	Н	1.096	109.2	-57.9	23	20	17
25	Н	1.096	109.2	57.8	23	20	17
26	С	1.531	113.0	179.9	23	20	17
27	Н	1.094	111.3	60.2	26	23	20
28	Н	1.093	111.2	-179.9	26	23	20
29	Н	1.094	111.3	-59.9	26	23	20

Literaturverzeichnis

- [1] E. Wintermantel, S.-W. Ha, *Medizintechnik mit biokompatiblen Werkstoffen und Verfahren*, Springer-Verlag, 3. Aufl., Berlin, Heidelberg, New York, **2002**.
- [2] L. C. Sawyer, R. T. Chen, M. G. Jamieson, I. H. Musselman, P. E. Russell, J. Mat. Sci. 1993, 28, 225.
- [3] *Kunststoffindustrie auf <u>www.vke.de</u>*, Plastics*Europe* Deutschland e.V, zugegriffen am 09.12.2008.
- [4] M. Buback, P. Vana, *Georgia Augusta* 2005, 4, 74.
- [5] K. Matyjaszewski, T. P. Davis, *Handbook of Radical Polymerization*, Wiley & Sons Inc., Hoboken, 2002.
- [6] R. Hiatt, Organic Peroxides, Wiley Interscienes Inc., New York, 1971.
- [7] M. Buback, D. Nelke, H. P. Vögele, Z. Phys. Chem. 2003, 93, 1169.
- [8] S. Patai, *The Chemistry of Peroxides*, Jon Wiley and Sons, New York, **1983**.
- [9] W. Ando, *Organic Peroxides*, Jon Wiley and Sons, Chichester, **1992**.
- [10] K. Fujimori, *Organic Peroxides*, John Wiley and Sons, New York, **1992**.
- [11] M. Buback, S. Klingbeil, J. Sandmann, M. B. Sderra, H. P. Vögele, H. Wackerbarth, L. Wittkowski, Z. Phys. Chem. 1999, 219, 199.
- [12] M. Buback, C. Hinton, Z. Phys. Chem. 1996, 193, 61.
- [13] M. Buback, C. Hinton, Z. Phys. Chem. 1997, 199, 229.
- [14] M. Buback, L. Wittkowski, Z. Phys. Chem. 1999, 210, 61.
- [15] M. Buback, J. Sandmann, Z. Phys. Chem. 2000, 214, 583.
- [16] B. Abel, J. Assmann, M. Buback, M. Kling, S. Schmatz, J. Schroeder, Angew. Chem. Int. Ed. 2003, 42, 300.
- [17] B. Abel, M. Buback, M. Kling, S. Schmatz, J. Schroeder, J. Am. Chem. Soc. 2003, 125, 13274.
- [18] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, *Science* 1989, 246, 64.
- [19] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, *Rapid Comm. Mass Spectrom.* 1988, 2, 151.
- [20] M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp, *Int. J. Mass Spectrom. Ion Process.* 1987, 78, 53.

• ••	
1 itorotury orzaia	hnia
	11115
Eliceratar (elizere)	min

- [21] A. Ingendoh, M. Karas, F. Hillenkamp, U. Giessmann, Int. J. Mass Spectrom. Ion Process. 1994, 131, 345.
- [22] J. B. Fenn, Angew. Chem. Int. Ed. 2003, 42, 3871.

126

- [23] K. Tanaka, Angew. Chem. Int. Ed. 2003, 42, 3860.
- [24] M. Buback, H. Frauendorf, P. Vana, J Polym Sci Part A: Polym Chem 2004, 42, 4266.
- [25] M. Buback, H. Frauendorf, F. Günzler, P. Vana, J Polym Sci Part A: Polym Chem 2007, 45, 2453.
- [26] M. Buback, H. Frauendorf, F. Gunzler, P. Vana, Polymer 2007, 48, 5590.
- [27] P. Vana, T. P. Davis, C. Barner-Kowollik, Aust. J. Chem. 2002, 55, 315.
- [28] C. Barner-Kowollik, P. Vana, T. P. Davis, J Polym Sci Part A: Polym Chem 2002, 40, 675.
- [29] Z. Szablan, T. M. Lovestead, T. P. Davis, M. H. Stenzel, C. Barner-Kowollik, *Macromolecules* 2007, 40, 26.
- [30] C. N. McEwen, P. M. Peacock, Anal. Chem. 2002, 74, 2743.
- [31] P. M. Peacock, C. N. McEwen, Anal. Chem. 2004, 76, 3417.
- [32] P. M. Peacock, C. N. McEwen, Anal. Chem. 2006, 78, 3957.
- [33] C. D. Hanton, Chem. Rev. 2001, 101, 527.
- [34] L. Prokai, Int. J. Polym. Anal. Charact. 2001, 6, 379.
- [35] J. H. Scrivens, A. T. Anthony, Int. J. Mass. Spectrom. 2000, 200, 261.
- [36] <u>http://www.ma.uni-</u> heidelberg.de/inst/ikc/proteomics/images/bildmsbauelemente 160.jpg.
- [37] G. J. Van Berkel, J. Mass. Spectrom. 2003, 9, 539.
- [38] T. D. Maerk, G. H. Dunn, *Electron Impact Ionization*, Springer-Verlag, New York, 1985.
- [39] H. D. Beckey, *Priciples of Field Ionization and Field Desorption Mass Spectromerty*, Pergamon, Oxford, 1977.
- [40] A. G. Harrison, *Chemical Ionization Mass Spectrometry*, CRC Press, Boca Ranton, 1992.
- [41] K. L. Bush, J. Mass. Spectrom. 1995, 30, 233.
- [42] M. V. Kosevich, V. S. Shelkovich, O. A. Boryak, V. V. Orlov, *Rapid Comm. Mass Spectrom.* 2003, 17, 1781.
- [43] C. Fenselau, R. J. Cotter, *Chem. Rev.* **1987**, *87*, 501.
- [44] S. J. Gaskell, J. Mass. Spectrom. 1997, 32, 677.
- [45] M. Karas, R. Krüger, Chem. Rev. 2003, 103, 427.

- [46] M. Karas, M. Glückmann, J. Schäfer, J. Mass. Spectrom. 2000, 35, 1.
- [47] M. Guilhaus, J. Mass. Spectrom. 1995, 30, 1519.
- [48] B. A. Mamyrin, J. Mass. Spectrom. 2001, 206, 251.
- [49] P. E. Miller, M. B. Denton, J. Chem. Educ. 1986, 63, 617.
- [50] R. E. March, J. Mass. Spectrom. 1997, 32, 351.
- [51] I. J. Amster, J. Mass. Spectrom. 1996, 31, 1325.
- [52] A. G. Marshall, C. L. Hendrickson, *International Journal of Mass Spectrometry* 2002, 215, 59.
- [53] A. G. Marshall, C. L. Hendrickson, G. S. Jackson, Mass Spectrom. Rev. 1998, 17, 1.
- [54] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, *Mass Spectrom. Rev.* 1990, 9, 37.
- [55] M. Dole, L. L. Mack, R. L. Hunes, R. C. Mobley, L. P. Ferguson, M. B. Alice, J. Chem. Phys. 1968, 49, 2240.
- [56] G. Schmelzeisen-Redeker, L. Buttering, F. W. Röllgen, Int. J. Mass. Spectrom. 1989, 90, 139.
- [57] J. V. Iribarne, B. A. Thompson, J. Chem. Phys. 1976, 64, 2287.
- [58] B. A. Thompson, J. V. Iribarne, J. Chem. Phys. 1979, 71, 4451.
- [59] P. Kerbarle, L. Tang, Anal. Chem. 1993, 65, 892.
- [60] H. Frauendorf, *Mündliche Mitteilungen*.
- [61] M. B. Comisarow, A. G. Marshall, Chem. Phys. Lett. 1974, 25, 282.
- [62] M. B. Comisarow, Adv. Mass Spectrom. 1978, 7, 1024.
- [63] C. L. Wilkins, Anal. Chem. 1990, 50, 483.
- [64] S. C. Beu, M. W. Senko, J. P. Quinn, F. W. McLafferty, J. Am. Soc. Mass Spectrom.
 1993, 4, 190.
- [65] F. Jensen, *Introduction to Computational Chemistry*, John Wiley & Sons, Chichester, **1999**.
- [66] M. Born, R. J. Oppenheimer, Ann. Phys. 1927, 84, 457.
- [67] G. G. Hall, Proc. Roy. Soc. 1951, A205, 541.
- [68] C. C. Roothaan, Rev. Mod. Phys. 1960, 32, 179.
- [69] D. R. Hartree, *The Calculation of Atomic Structures*, John Wiley & Sons, 1957.
- [70] V. Fock, Zeits. f. Physik **1930**, 61, 126.
- [71] C. Möller, M. S. Plesset, *Phys. Rev.* **1934**, *46*, 618.
- [72] W. Kohn, L. J. Sham, *Phys. Rev. A* **1965**, *140*, 1133.

128	Literaturverzeichnis
[73]	P. Hohenberg, W. Kohn, Phys. Rev. B 1964, 136, 864.
[74]	A. D. Becke, <i>Physical Review A</i> 1988, 38, 3098
[75]	C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
[76]	A. D. Becke, J. Chem. Phys. 1993, 98, 1372
[77]	J. B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods,
	Gaussian Inc., Pittburg, PA, 1996.
[78]	J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh,
	C. Fiolhais, Phys. Rev. B 1992, 46, 6671.
[79]	G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J.
	A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
	Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
	Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
	Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
	Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
	Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
	Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S.
	Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
	Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J.
	Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
	Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
	Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J.
	A. Pople, Gaussian, Inc., Wallingford CT, 2004.

- [80] J. A. Pople, Angew. Chem. 1999, 111, 2015.
- [81] C. Strazielle, H. Benoit, O. Vogl, Eur. Polym. J. 1978, 14, 331.
- [82] M. Stickler, D. Panke, W. Wunderlich, Macromol. Chem. Phys. 1987, 188, 2651.
- [83] *Initiators for High Polymers*, Akzo Nobel Chemicals, Deventer, 2006.
- [84] M. Buback, Vorlesung Technische Chemie I.
- [85] F. Günzler, *Dissertation*, Göttingen, 2007.
- [86] F. Huff, *Diplomarbeit*, Göttingen, 2008.
- [87] D. R. Lide, *Handbook of Chemistry and Physics, Vol. 84*, CRC Press, Cleveland, 2004.
- [88] T. Dietrich, M. Raetzch, E. Grimmer, *Plaste und Kautschuk* 1981, 28, 375.
- [89] T. Dietrich, M. Raetzsch, H. Claassen, *Plaste und Kautschuk* 1982, 29, 325.

- [90] T. Dietrich, M. Raetzsch, D. Kleine, M. Gebauer, B. Hamann, *Plaste und Kautschuk* **1984**, *41*, 1.
- [91] W. A. Strong, Ind. Eng. Chem. 1964, 56, 33.
- [92] M. Buback, H. Frauendorf, O. Janssen, P. Vana, J Polym Sci Part A: Polym Chem 2008, 46, 6071.
- [93] S. G. Cohen, D. B. Sparrow, J. Am. Chem. Soc. 1950, 72, 611.
- [94] H. C. McBay, O. Tucker, J. Org. Chem. 1954, 19, 869.
- [95] D. E. Van Sickle, J. Org. Chem. 1969, 34, 3446.
- [96] J. Sorba, D. Lefort, J. Fossey, F. Grisel, W. R. Sanderson, J. Chem. Soc., Perkin Trans. 2 1992, 1565.
- [97] J. Chateauneuf, J. Lusztyk, B. Maillard, K. U. Ingold, J. Am. Chem. Soc. 1988, 110, 6727.
- [98] D. J. Edge, J. K. Kochi, J. Am. Chem. Soc. 1973, 95, 2635.
- [99] P. G. Mekarbane, B. J. Tabner, *Journal of the Chemical Society, Perkin Transactions* 2 2000, 1465.
- [100] R. Brückner, "Reaktionsmechanismen", Elsevier, München, 2004.
- [101] J. A. Seetula, I. R. Slagle, J Chem Soc Faraday Trans 1997, 93, 1709.
- [102] J. Berkowitz, G. B. Ellison, D. Gutman, J Phys Chem 1994, 98, 2744.
- [103] A. F. Hollemann, E. Wiberg, N. Wiberg, *Lehrbuch der anorganischen Chemie*, 101 ed., Walter de Gruyter, Berlin, **1995**.
- [104] M. Kling, S. Schmatz, Phys. Chem. Chem. Phys. 2003, 5, 3891.
- [105] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Chem. Phys. 1994, 98, 11623.
- [106] P. J. Stephens, F. J. Devlin, C. S. Ashvar, K. L. Bak, P. R. Taylor, M. J. Frisch, ACS Symp. Ser. 1996, 629, 105.
- [107] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
- [108] C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664.
- [109] T. K. Roy Dennington II, John Millam, Ken Eppinnett, W. Lee Hovell, and Ray Gilliland, Semichem, Inc., Shawnee Mission, KS, 2003.
- [110] J. W. Ochterski, Thermochemistry in Gaussian, (help@gaussian.com), 2000.
- [111] C. Gonzales, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- [112] C. Gonzales, H. B. Schlegel, J. Chem. Phys. 1990, 94, 5523.
- [113] M. Kling, Dissertation, 2002.

- [114] S. Schmatz, Mündliche Mitteilungen.
- [115] G. S. Hammond, J. Am. Chem. Soc. 1955, 77, 334.
- [116] M. Bourgois, J. Champagnole, M. Filliatre, B. Maillard, J. J. Villenave, Bull Soc Chi France 1982, 3, 111.
- [117] F. D. Schott, *Diplomarbeit*, Göttingen, 1999.
- [118] S. Klingbeil, *Dissertation*, Göttingen, **1995**.
- [119] B. Abel, J. Assmann, M. Buback, C. Grimm, M. Kling, S. Schmatz, J. Schroeder, T. Witte, J. Phy. Chem. A 2003, 107, 9499.
- [120] M. Finn, R. Friedline, N. K. Suleman, C. J. Wohl, J. M. Tanko, J. Am. Chem. Soc.
 2004, 126, 7578.
- S. Beuermann, M. Buback, T. P. Davis, R. G. Gilbert, R. A. Hutchinson, O. F. Olaj,
 G. T. Russell, F. Schweer, A. M. V. Herk, *Macromol. Chem. Phys.* 1997, 198, 1545.
- [122] S. Beuermann, M. Buback, T. P. Davis, R. G. Gilbert, R. A. Hutchinson, A. Kajiwara,
 B. Klumperman, G. T. Russell, *Macromol. Chem. Phys.* 2000, 201, 1355.
- [123] L. R. Hanns Fischer, Angew. Chem. Int. Ed. 2001, 40, 1340.

Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. M. Buback für die interessante Themenstellung, für die wertvollen Diskussionen und die stete Förderung meiner Arbeit.

Ebenso möchte ich mich bei Herrn Prof. Dr. Philipp Vana für die Betreuung im ESI-Projekt und für die vielen hilfreichen Anregungen und wertvollen Diskussionen bedanken.

Ich bedanke mich bei Dr. Fabian Günzler und Felix Huff für die freundliche Zusammenarbeit und gegenseitige Hilfe im Rahmen des ESI-Projekts.

Ich danke der analytischen Abteilung des Instituts für Organische und Biomolekulare Chemie für die freundliche Unterstützung bei der Durchführung von ESI-MS-Messungen. Insbesondere möchte ich mich bei Herrn Dr. Holm Frauendorf, Frau Gabriele Krökel und Frau Györgyi Sommer-Udvarnoki bedanken.

Bei den Herren Dr. Rainer Oswald und Prof. Dr. Stefan Schmatz bedanke ich mich für die vielen Hilfestellungen und Diskussionen im Zusammenhang mit der Durchführung von DFT-Rechnungen. Herrn Prof. Dr. Stefan Schmatz danke ich außerdem für die Übernahme des Korreferats.

Ich bedanke mich bei allen aktiven und ehemaligen Mitgliedern der TuMChem- und der FPM-Gruppe für die freundliche Aufnahme und das tolle Arbeitsklima. Ich würde mich freuen, wenn die traditionelle Bosseltour nach mir auch weiter geführt wird.

Ich bedanke mich ebenfalls bei den Mitarbeitern der Firma Akzo Nobel, insbesondere bei Dr. Bart Fischer, John Meijer und Ben de Vries, für die interessanten Diskussionen, sowie für die Bereitstellung und teils speziellen Synthesen von Initiatorproben.

Der Deutschen Forschungsgemeinschaft danke ich für die finanzielle Unterstützung im Rahmen des Projekts Bu426/10 und des Europäischen Graduiertenkollegs 585. Volker Meyer, Andreas Knorr, Hans-Joachim Schlette und allen weiteren Mitarbeitern der Werkstätten gilt mein Dank für die stets schnelle Hilfe bei Reparaturen aller Art. Besondere Erwähnung gebührt auch Bernd Wichmann aus der Pumpenwerkstatt für seine Hilfe.

Ich danke meinen zahlreichen Bürokollegen für das sehr angenehme und entspannte Arbeitsklima. Besonderer Dank gilt: Björn, Duc, Fabian, Jens, Johannes, Moritz, Nils, Pascal, Silvia.

Für das Korrekturlesen bedanke ich mich bei Vera Kruse, Jens Schrooten und Johannes Barth

Bedanken möchte ich mich ebenfalls bei Julia, Lars, Marc, Michael, Mireille und Vera für die langjährige Freundschaft und den stets offenen Ohren und Armen, wenn es mal nicht so gut lief.

Bei meinen Eltern und meiner ganzen Familie bedanke ich mich besonders für seelischen Beistand und die materielle Unterstützung während meiner gesamten Ausbildung.

Abschließend sei meinem Freund Johannes für seine Unterstützung und die sehr schöne gemeinsame Zeit gedankt. Besonders bedanke ich mich für das Rund-um-Sorglos-Paket, das ich während der intensiven Schreibphase genießen durfte.

Lebenslauf

02.01.1979	geboren in Wilhelmshaven			
Schulbildung				
08/1986 - 07/1989	Grundschule in Wilhelmshaven			
08/1989 - 07/1998	Integrierte Gesamtschule Wilhelmshaven			
Zivildienst				
07/1998 - 07/1999	Rettungsdienst Friesland, Rettungswache Zetel			
Hochschulausbildung				
10/1999 - 07/2004	Studium der Chemie an der Georg-August-Universität Göttingen			
10/2001	Diplomvorprüfung im Fach Chemie, Gesamtnote: "Sehr gut"			
05/2003 - 07/2003	Erasmus-Aufenthalt in La Coruña/ Spanien bei Prof. C. Jiménez,			
10/2003 - 08/2004	Studentische Hilfskraft am Institut für Physikalische Chemie der Universität Göttingen, Betreuung von Vorlesungen und Praktika der Physikalischen Chemie			
10/2003 - 05/2004	Diplomarbeit im Arbeitskreis von Prof. Dr. M. Buback. Thema: "RAFT-Polymerisation von Styrol unter hohem Druck"			
07/2004	Diplomprüfung im Fach Chemie, Gesamtnote: "Sehr gut"			
10/2004 - 12/2004	Industriepraktikum bei der BASF AG, Ludwigshafen			
01/2005 - 01/2009	Wissenschaftlicher Mitarbeiter am Institut für Physikalische Chemie der Universität Göttingen			
01/2005 - 12/2008	Anfertigung einer Dissertation am Institut für Physikalische Chemie der Georg-August-Universität Göttingen unter der Anleitung von Prof. M.			
04/2005 - 10/2008	Kollegiat im DFG-geförderten Graduiertenkolleg 585 "Microstructural Control in Free-Radical Polymerization"			