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1. Summary 
 
Autophagy in Saccharomyces cerevisiae comprises diverse processes that transport 

cytoplasm and even organelles into the vacuolar lumen for degradation. During 

macroautophagy out of the pre- autophagosomal structure (PAS) autophagosomes 

are formed that fuse with the vacuole for degradation. During microautophagy cargo 

is directly engulfed by the vacuolar membrane.  

 
One aim of this study was to identify membrane sources needed for the formation of 

autophagosomes out of the PAS. Atg9 a transmembrane protein has been proposed 

to cycle between the PAS and a peripheral pool that may serve as a membrane 

source. In S. cerevisiae this pool has been described to colocalize in part with 

mitochondria. This was questioned in mammalian cells where this peripheral pool 

colocalizes with the trans Golgi network and endosomes. 

Another suitable candidate to follow the membrane flow is Atg8 that is covalently 

coupled to membranes via phosphatidylethanolamine (PE). 

This study describes for the first time a peripheral pool of Atg8 located at 

endosomes. Its formation is dependent on Atg1 and Atg27 as described for the Atg9 

peripheral pool. Atg8 is conjugated to PE at the peripheral pool. 

 
Micronucleophagy (piecemeal microautophagy of the nucleus; PMN) occurs at 

nucleus-vacuole (NV) junctions and results in the pinching-off and release of 

nonessential portions of the nucleus into the vacuole. In contrast to previous 

published results Krick et al. showed in a recent publication that PMN requires the 

core macroautophagy genes. They analysed the degradation of the PMN marker 

protein GFP-Osh1 by quantifying the release of hydrolase resistant free GFP in the 

vacuole using immuno-western blot analysis. In this study a microscopic assay was 

established which supports the finding that PMN is efficiently inhibited in atg mutant 

cells. A nuclear resident fluorescent protein (NLS-mCherry) is used as marker 

protein. Part of this fluorescent protein pinch-off the nucleus dependent on the 

autophagic machinery and is degraded in the vacuole.  

The release of PMN vesicles at the NV-junctions requires at least three membrane 

fusion events. Krick et al. reported that the standard homotypic vacuolar fusion 

machinery is not required for the formation of PMN vesicles. This study indicates the 

requirement of Cdc48 and its major substrate-recruiting factor Shp1 for efficient PMN 
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as well as macroautophagy. The human homologues of Cdc48 / Shp1 p97 / p47 are 

involved in human mitotic Golgi reassembly. This p97 / p47 complex is thought to 

extract a monoubiquitylated fusion inhibitor out of membranes and thereby mediate 

fusion. In this study the involvement of monoubiquitin in PMN as well as 

macroautophagy could be shown in S. cerevisiae.  

The ubiquitin deconjugation enzyme Ubp3 and its cofactor Bre5 are also required for 

PMN but not for the Cvt-pathway or autophagy. The vps class E genes vps27 and 

vps28 are also exclusively required for PMN. 

 

So far the fusion of the edges of double-membrane structures leading to 

autophagosomes was dubious, since neither NSF / Sec18 nor t-SNARES are 

required. Therefore a novel membrane fusion machinery requiring the Atg proteins 

has been proposed. In contrast this work supports the function of the previously 

excluded AAA+ ATPase Cdc48 in autophagic membrane fusion events.  

 



  Introduction 

3 

2. Introduction 
 

2.1 Yeast as model organism 
 
The baker’s yeast Saccharomyces cerevisiae belongs to the budding fungi. It is a 

single cell organism that has the typical compartment structure of eukaryotic cells like 

endoplasmic reticulum (ER), Golgi apparatus, peroxisomes, mitochondria, nucleus 

and vacuole (a homologue to the animal lysosome). S. cerevisiae cells have a simple 

lifespan. Two haploid yeast cells with different mating type (a and α) can mate and 

form a diploid cell. The diploid cells use mitotic division to bud. Under starvation 

conditions a meiotic cell division occurs. In this step asci are formed containing 4 

haploid spores. These asco-spores are more resistant to environmental influences. A 

change of growth conditions leads to budding of the spores as haploid yeast cells 

(Fig. 1). 

 

 
 
Fig. 1 Life cycle of Saccharomyces cerevisiae 
 
S. cerevisiae has 16 chromosomes consisting of 14 million basepairs with about 

6000 open reading frames (Goffeau, 1996). It is an ideal model organism for 

molecular genetics because of its haploid genome that can be easily modified 

genetically, its structured cellular compartments and only 90 min doubling time. 

Information gained in S. cerevisiae can often be transferred to higher eukaryotes. 
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2.2 The yeast vacuole 
 
The yeast vacuole is analogue to lysosomes in mammalian cells. It has an acetic pH 

and is rich in hydrolases. The yeast vacuole is the biggest organelle, occupying up to 

60% of the cell volume. 

It is involved in a wide variety of physiological processes, including pH and 

osmoregulation of the cell. During nitrogen starvation, amino acids are obtained by 

protein degradation in the vacuole. Diploid yeast cells lacking protease activities fail 

to sporulate. This indicates the importance of vacuolar proteolysis for survival and 

differentiation (Raymond, 1992).  

 
 

2.3 Delivery of proteins to the vacole 
 
Proteins can reach the vacuole by four transport routes: secretory pathway, 

endocytosis, multivesicular body (MVB) and autophagic pathways. Vacuolar resident 

proteins are either transported by the secretory, the MVB or the cytoplasm to vacuole 

targeting (Cvt) pathway, a selective variant of autophagy. Endocytosis and 

autophagic processes transport proteins and whole organelles destined for 

degradation to the vacuole.  

 
 

2.4 The secretory pathway  
 
In eukaryotic cells the secretory pathway is used to sort and transport proteins from 

their site of synthesis to several intracellular organelles, the plasma membrane or the 

periplasm. Proteins are synthesized on ER-bound ribosomes and translocated into 

the lumen of the ER. These proteins have an amino terminal clevage or non-

cleavage internal hydrophobic signal which targets the proteins to the ER membrane 

(Rapoport, 1996). Cleavage of the signal sequence releases the proteins into the ER 

lumen. N-liked carbohydrate addition occurs co-translationally. Proteins are then 

transported via vesicles to the Golgi complex, where they undergo additional post-

translational modifications of the carbohydrate side chains before their transport to 

the trans-Golgi network. 
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2.5. Autophagy 
 
In eukaryotes autophagy is a highly conserved process. It has been morphologically 

identified in the 1960s in mammalian cells. One breakthrough studying the molecular 

basis of autophagy was the identification of the first genes involved in this process 

(Tsukada and Ohsumi, 1993) (Thumm, 1994) in S. cerevisiae. These genes were 

termed autophagy-related (ATG) genes (Klionsky, 2003). Further ATG genes have 

been discovered studying cytoplasm to vacuole targeting (Cvt) pathway and 

pexophagy (peroxisome degradation) in S. cerevisiae and Pichia pastoris (Harding, 

1995) (Yuan, 1997).  

Up to now 31 ATG genes have been identified and most of them are required for all 

autophagic processes (except chaperone-mediated autophagy).  

 
 

2.5.1 Relevance of autophagy in eukaryots 
 
Cellular growth and cell development require well regulated protein synthesis as well 

as degradation. Eukaryotic cells have two different protein degradation pathways: the 

ubiquitin-proteasome degradation system and autophagy. Proteasomal degradation 

is constantly active and degrades short-lived proteins, which are polyubiquitinated. 

Autophagy in contrast is induced by nutrient limitation and degrades unselective 

cellular proteins and whole organelles. The recycling of these non-essential protein 

components allows the cell to synthesize proteins that are essential for survival under 

nutrient limited conditions. Besides cellular homeostasis (Yorimitsu and Klionsky, 

2005), autophagy is involved in cellular processes like autophagic programmed cell 

death (Yu, 2006), organelle homeostasis (Monastyrska and Klionsky, 2006), 

developmental processes (Ma, 2007) or ageing (Levine and Kroemer, 2009) (Mariño 

and López-Otín, 2008).  

Autophagy is also implicated in many human diseases, like breast, ovarian and 

prostate cancer (Chen and Karantza-Wadsworth, 2009), pathogen infections 

(Orvedahl and Levine, 2009), fungal pathogens (Palmer, 2008), cardiomyopathy 

(Nishida, 2009) and neurodegenerative diseases like Alzheimer´s, Parkinson´s and 

Huntington´s (Rubinsztein, 2005). 
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2.5.2 Autophagic processes 
 
Autophagic processes can be divided in three fundamentally different subtypes 

(Fig. 2): microautophagy, macroautophagiy and chaperone-mediated autophagy. For 

macroautophagic processes double membrane-layered vesicles are formed which 

contain diverse cargos (chapter 3.5.11). By fusion with the vacuolar membrane, a still 

monolayered vesicle is released into the vacuole, where it is degraded (chapter 

3.5.12.).  

During microautophagic processes invaginations of the vacuolar membrane are 

formed (chapter 3.5.15, 3.5.16 and 3.5.18). Chaperone-mediated autophagy is a 

mechanism allowing the degradation of cytosolic proteins via a protein complex in the 

lysosomal membrane (chapter 3.5.14) (Massey, 2004), (Majeski and Dice, 2004).  

 

 
 
Fig. 2 Schematic diagram of autophagy-related pathways  
((Huang and Klionsky, 2007) (Mühe, 2007); modified) 
 
 

2.5.3 The autophagic machinery  
 
The molecular machinerie of autophagy identified in yeast is also conserved in other 

eukaryotic cells. In S. cerevisiae the autophagic process can be separated into 

different steps: induction, vesicle nucleation, cargo recognition (for specific types of 

autophagy) and packaging, vesicle expansion and completion, Atg protein cycling, 

vesicle fusion with the vacuole, vesicle breakdown and cargo recycling. For example, 
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the Atg1 kinase complex is involved in induction, Atg11 and Atg19 are required for 

cargo recognition, Atg8 and Atg12 ubiquitin like conjugation systems are involved in 

vesicle formation and Atg23 and Atg27 are proteins participating in the Atg9 cycling 

step (Yorimitsu and Klionsky, 2005) (Xie and Klionsky, 2007). 

 
 

2.5.4 The pre-autophagosomal structure (PAS) 
 
Fluorescence microscopy has shown that most Atg proteins localize to the pre-

autophagosomal structure (PAS), which is considered to be the site of Cvt vesicle 

and autophagosome formation (Suzuki, 2001) (Suzuki, 2007). 16 ATG genes are 

essential for autophagosome formation (Atg1-Atg18 except Atg11 and Atg15) and all 

of these proteins show a PAS localization.  

 
 

2.5.5 Regulation and induction of autophagy 
 
Autophagy occurs at a basal level in growing cells but is induced by nutrient 

starvation, including nitrogen and carbon depletion. The protein kinase target of 

rapamycin (Tor) is a regulator that responds to the nitrogen level. Under nutrient-rich 

conditions, Tor kinase is active and inhibits autophagy, whereas Tor is inactive under 

nutrient-deficient conditions and autophagy is induced (Fig. 3). Tor kinase regulates 

the phosphorylation state of Atg13, which is important for the formation of the Atg1-

Atg13 complex. Atg13 is required for autophagy but not necessary for the Cvt-

pathway (Funakoshi, 1997) in contrast Atg1, a serine / threonine protein kinase, is 

essential for both, the Cvt-pathway and autophagy. For Atg1 and its kinase activity a 

more regulatory (Kamada, 2000) or structural role (Abeliovich, 2003) has been 

proposed, but this is still under debate. The Atg1-Atg13 complex interacts with 

several proteins as Vac8, Atg11, Atg20, Atg24 and Atg17, that is only strictly required 

for autophagy. But in atg17∆ cells the size of the vesicles is reduced from 300 -

 600 nm to 200 nm, causing a dramatic reduction in bulk autophagy because Atg17 

acts as a scaffold protein in PAS organization (chapter 3.5.10 and 3.5.11) (Kabeya, 

2005) (Cheong, 2005) (Suzuki, 2007). The interaction of Atg1-Atg13-Atg17 seems to 

be involved in size determination of the vesicles (Yorimitsu and Klionsky, 2005). The 

interaction of Atg17 with Atg29 and Atg31, both autophagy specific genes, has an 
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essential function in the organisation of the PAS for autophagosome formation 

(Kawamata, 2008). Atg11 is only required for the Cvt-pathway. 

 

 
 
Fig. 3 Regulatory complex for autophagy induction 
Atg20, Atg24, Atg11 and Vac8 might also be involved in autophagic induction, but a complete holo-
complex has not been identified. ((Yorimitsu and Klionsky, 2005); modified) 
 
 

2.5.6 The two ubiquitin like conjugation systems 
 
Both ubiquitin like conjugation systems are highly conserved in eukaryots and 

required for the biogenesis of autophagosomes. 

 
 

2.5.6.1 The Atg8-phosphatidylethanolamine conjugation system 
 
Atg8 consists of 117 amino acids and has a molecular weight of 13.6 kDa. 

Homologues of Atg8 are found from yeast to human (Lang, 1998) (Elazar, 2003). The 

structures of the mammalian homologues revealed that Atg8 family members contain 

two domains: an N-terminal helical domain (NHD; aa 1 - 24) and a C-terminal 

ubiquitin-like domain (ULD; aa 24 -117) (Fig. 4) (Paz, 2000) (Coyle, 2002) 

(Sugawara, 2004) (Nakatogawa, 2007). 

 

 
 
Fig. 4 Model of the three-dimensional structure of Atg8  
((Amar, 2006); modified) 
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Atg8 is coupled via an ubiquitine like reaction to phosphatidylethanolamine (PE) 

(Ichimura, 2000). The cystein protease Atg4 removes a C-terminal arginine residue 

of Atg8, exposing a glycine that is now accessible to the E1-like Atg7. Atg7 activates 

Atg8, that is then transferred to the E2 like Atg3 and in a second step covalently 

coupled to PE through an amide bond. Atg8-PE is located to the inside and outside 

of the forming and completed autophagosomes but the coupling of Atg8 to PE is a 

reversible event. Atg8 can be cleaved of from the outer membrane of the completed 

vesicle by Atg4 and be reused (Fig. 5). Atg8 is used as marker protein for 

autophagosomes. 

Atg21 is required for the efficient conjugation of Atg8 to PE under Cvt conditions 

whereas the specificity depends on the intracellular milieus such as cytosolic pH and 

acidic phospholipids (Strømhaug, 2004) (Oh-oka, 2008).  

In an in vitro system Atg8 mediates the tethering and hemifusion of membranes, 

what is modulated by the deconjugation enzyme Atg4. These membrane-tethering 

and hemifusion activities of Atg8 are required for the expansion of the 

autophagosomal membranes (Nakatogawa, 2007). 

 
 

2.5.6.2 The Atg12-Atg5 conjugation sytem 
 
During the coupling of Atg12 to Atg5 an irreversible isopeptide bond is formed 

(Mizushima, 1998). Two additional proteins are required for its formation. The E1 like 

Atg7 and Atg10 which functions like an E2 ubiquitin-conjugating enzyme. The Atg12-

Atg5 conjugate binds Atg16 and forms a homo-oligomer, which is functionally 

important for autophagy (Fig. 5) (Kuma, 2002). 
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Fig. 5 The two conjugation machineries  
((Yorimitsu and Klionsky, 2005); modified) 
 
 

2.5.7 The two phosphatidylinositol-3-kinase (PI3K) complexes 
 
Vps34, the only phosphatidylinositol 3-phosphate (PtdIns(3)P)-kinase in yeast, is 

required for autophagy. It formes two complexes: Complex I and Complex II (Kihara, 

2001). Complex I consists of Vps34, Atg14, Atg6/Vps30 and Vps15 and is required 

for the Cvt-pathway as well as autophagy. Complex II contains the same proteins, 

except that Atg14 is replaced by Vps38 (Fig. 6). Vps38∆ cells show defects in 

carboxypeptidase Y (CPY; Pcr1) sorting and the MVB-pathway, but no autophagic 

defects (Kihara, 2001).  

 

 
 
Fig. 6 The two Vps34 complexes in yeast  
((Yorimitsu and Klionsky, 2005); modified) 
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2.5.8 The Atg18, Atg21 and Ygr223c protein family 
 
Atg18, Atg21 and Ygr223c are highly homologous proteins, but have distinct 

functions in autophagy. Atg18 is essential for macroautophagy, the Cvt-pathway and 

micronucleophagy, while the function of Atg21 is restricted to the Cvt-pathway and 

micronucleophagy (Barth, 2001) (Barth, 2002). Ygr223c, a third member of this family 

of homologous proteins, is only required for efficient micronucleophagy (Krick, 

2008a). All three proteins have a WD-40 repeat and are expected to fold as seven 

bladed ß-propellers. As a common function WD-repeat proteins are thought to 

regulate the assembly of multiprotein complexes (Smith, 1999). All three homologues 

bind preferentially to PtdIns(3)P and PtdIns(3,5)P2 (Krick, 2006) (Krick, 2008a). 

Atg2 and Atg18 form a complex, that is dependent on PtdIns(3)P, Atg1, Atg9, Atg13 

and the recruitment of Atg17 to the PAS (Suzuki, 2007). This complex then recruits 

further Atg proteins to the PAS (Fig. 7) (Obara, 2008b).  

 
 

2.5.9 Atg9 cycling 
 
The integral membrane protein Atg9, containing 6 predicted transmembrane 

domains, cycles in S. cerevisiae between the PAS and a peripheral pool. Its origin is 

still under debate. In yeast the peripheral pool has in part been localized to 

mitochondria (Reggiori, 2005) but in contrast to the yeast system, mammalian Atg9 

cycles between the TGN (trans Golgi network) and late endosomes (Young, 2006) 

but not mitochondria (Yamada, 2005). 

In yeast the anterograde transport from mitochondria to the PAS depends on Atg11, 

Atg23, Atg27, a functional VTF complex, the early secretory pathway and actin. The 

retrograde transport requires the Atg1-Atg13-complex, a functional Vps34 kinase 

complex I and the Atg2-Atg18 complex (Fig. 7) (Reggiori and Klionsky, 2006) (He, 

2006) (Yen, 2007). This shuttling of Atg9 could contribute to the delivery of 

membrane material to the PAS (Reggiori, 2005). 
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Fig. 7 Cycling of S. cerevisiae Atg9 between the PAS and a peripheral pool  
((He, 2006) (Reggiori and Klionsky, 2006) (Yen, 2007); modified) 
 
Atg27 was described as an effector of Vps34, the only PtdIns 3-kinase in S. 

cerevisiae (Wurmser and Emr, 2002). Due to a sequencing error in the 

Saccharomyces Genome Database, the full length Atg27 contains 75 additional 

amino acids at the N terminus and is a transmembrane protein described to locate at 

the PAS, the mitochondria and the Golgi complex (Yen, 2007). The earlier detected 

PtdIns(3)P binding site of Atg27 does either not bind PtdIns(3)P or is at least not 

required for its localization (Yen, 2007). In atg1∆ atg27∆ double mutant cells the 

localization of Atg9 to a peripheral pool, which corresponds in part to mitochondria, is 

increased (Yen, 2007). 

 
 

2.5.10 The Cvt-pathway 
 
The Cvt-pathway is a selective transport pathway process of at least two specific 

cargoes the resident vacuolar hydrolases, aminopeptidase I (Ape1) and α-

mannosidase (Ams1) (Scott, 1997) (Hutchins and Klionsky, 2001). The Ape1 protein 

is synthesized as a pro form (pApe1) in the cytosol, where it forms a dodecameric 

complex that further assembles to a large oligomeric structure, called Ape1-complex. 

The Ape1-receptor protein Atg19 binds to the Ape1-complex to form the Cvt-

complex, which is dependent on Atg11 dependent recruited to the PAS (pre-

autophagosomal structure). This complex is sequestered within a double membrane 

layered vesicle. These vesicles are formed at the PAS and have a consistent size of 

140 - 160 nm in diameter and exclude bulk cytosolic material (Baba, 1997) (Fig. 2). 
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The Cvt vesicles fuse with the vacuole and a single-membrane vesicle (Cvt body) is 

released into the vacuolar lumen. The Cvt body is lysed and pApe1 is matured 

(mApe1).   
 
 

2.5.11 Macroautophagy 
 
Macroautophagy is a starvation induced degradative protein transport pathway. 

Autophagosomes are also formed at the PAS, but in contrast to the selective Cvt-

pathway, autophagosomes contain unspecific cytosolic material and whole 

organelles. Completed autophagosomes, measuring 300 – 900 nm in diameter, fuse 

with the vacuole and a single-membrane vesicle (autophagic body) is released into 

the lumen and degraded (Baba, 1994).  
 
 

2.5.12 Fusion and breakdown of vesicles in the vacuole 
 
The fusion of autophagosomes as well as Cvt vesicles with the vacuole requires the 

homotypic vacuolar fusion machinery. The degradation of the monolayered vesicles 

in the vacuole is dependent on two vacuolar proteases (Pep4 and Prb1) and an 

acidification of the vacuole (Takeshige, 1992) (Nakamura, 1997). Additionally the 

transmembrane protein Atg15 is required for the lysis step (Epple, 2001). Atg15 has 

a conserved lipase motive and is transported to the vacuole via the multi vesicular 

body (MVB) pathway (Epple, 2003).  

The autophagosomal cargo is degraded, recycled and reused for the synthesis of 

proteins essential for survival. 
 

Atg22 was described to be involved in the lysis step (Suriapranata, 2000). Recent 

reports point to an indirect role of Atg22 in the breakdown of the autophagic bodies 

inside the vacuole. Indeed Yang et al. demonstrated that Atg22 is a partially 

redundant vacuolar effluxer, that mediates the efflux of leucine resulting from 

autophagic degradation (Yang, 2006). The supply of amino acids by autophagy 

allows the maintenance of protein synthesis and viability during nitrogen starvation. 

Cells respond to nitrogen starvation by up-regulation of genes, including those for 

vacuolar proteases (such as Pep4, Prb1, and Prc1) (Gasch, 2000). Therefore atg22∆ 

cells lack leucine for the production of these proteases leading to indirect stabilization 

of the vesicles (Yang, 2006). 
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2.5.14 Chaperon-mediated autophagy 
 
Chaperone-mediated autophagy allows the degradation of cytosolic proteins that 

contain a particular pentapeptide consensus motif (KFERQ) via a protein complex in 

the lysosomal membrane (Massey, 2004), (Majeski and Dice, 2004) (Fig. 2). In 

human cell lines chaperone-mediated autophagy modulates the neuronal survival 

machinery. Dysregulation of this pathway is associated with Parkinson's disease 

(Yang, 2009). At present chaperone-mediated autophagy has only been discovered 

in mammalian cells. There is no similar process described in S. cerevisiae so far 

(Klionsky, 2007). 

 
 

2.5.15 Microautophagy 
 
During microautophagy, cytosolic components are directly engulfed by the vacuole 

by invagination of the organelle´s limiting membrane (Fig. 2).  

 
 

2.5.16 Pexophagy 
 
Peroxisomes are cell organelles important for the lipid metabolism. Peroxisomes 

differ in size and number dependent on physiological conditions of the cell. A shift 

from methanol to glucose containing medium induces the selective microautophagic 

degradation of peroxisomes. Micropexophagy is best characterized in the 

methylotrophic yeast Pichia pastoris (Farré and Subramani, 2004) (Dunn, 2005) 

(Sakai, 2006) and has not been described in S. cerevisiae so far. 

Macroautophagy and micropexophagy are morphologically very different processes 

(Fig. 2), but both depend on the same set of core Atg proteins. Micropexophagy 

requires an additional set of specific Atg proteins (e.g. Atg25, Atg26, Atg28, Atg30, 

Gcn1-3 and Pfk1) (Dunn, 2005) (Farré, 2008). During engulfment arm like extensions 

of the vacuolar membrane are formed around the peroxisome. The MIPA 

(micropexophagy-specific membrane apparatus), a double membrane cap-like 

structure, containing Atg8 and Atg26, is formed at the far end of the encircled 

peroxisome, where it is thought to mediate the vacuolar membrane fusion event 

(Dunn, 2005). 
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2.5.17 Mitophagy 
 
Mitophagy is a selctive variant of autophagy that degrades defective mitochondria 

and is reported to be involved in the cell death process (Tal, 2007). The 

mitochondrial protein Uth1 is selectively involved in mitophagy (Kissová, 2004). 

Additionally, Aup1 is required for efficient mitophagy. It localizes to the mitochondrial 

intermembrane space and may be part of a signal transduction mechanism that 

marks mitochondria for sequestration into autophagosomes (Tal, 2007). Primarily, 

Aup1 was identified in a screen for protein phosphatase homologues that functionally 

interact with Atg1 in yeast. 

 
 

2.5.18 Micronucleophagy (PMN) 
 
Piecemeal microautophagy of the nucleus (PMN) is a microautophagic process and 

was therefore named micronucleophagy (Krick, 2009).  

Micronucleophagy occurs at nucleus vacuole (NV) junctions, that are formed by 

interactions between Vac8 in the vacuolar membrane and Nvj1 in the inner and outer 

nuclear membrane (Pan, 2000) (Roberts, 2003) (Millen, 2008). During PMN a portion 

of the nucleus is extruded along the NV junctions into an invagination of the vacuolar 

membrane, forming a tethered bleb. Scission of the ER and fusion of the vacuolar 

membrane then releases a PMN vesicle into the vacuolar lumen, where it is 

degraded by resident hydrolases (Kvam and Goldfarb, 2007). The intravacuolar PMN 

vesicles are limited by three membrane layers. The outer membrane is derived from 

the vacuolar membrane, and the two inner layers from the nuclear envelope (Fig. 8).  
 

 
 

Fig. 8 Schematic illustration of PMN  
In stage I nucleus-vacuole (NV) junctions form. Then the nuclear ER bulges into invaginations of the 
vacuolar membrane (stage II), followed by fission of an ER-deduced vesicle (stage III). After fusion at 
the tips of the vacuolar membrane extensions (stage IV), a PMN vesicle is released into the vacuolar 
lumen, where it is finally degraded (stage V) ((Krick, 2008b); modified) 
. 
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PMN is induced by nutrient depletion and degrades nonessential portions of the 

nucleus (Krick, 2008b). Nvj1 recruits at least two additional proteins to the NV 

junctions: Tsc13 an enoyl-CoA reductase required for the synthesis of very-longchain 

fatty acids and Osh1 a homologoue to mammalian oxysterol-binding protein (OSBP) 

that may function in nonvesicular lipid trafficking (Fig. 9) (Kvam, 2005) (Kvam and 

Goldfarb, 2004).  

 

 
 
Fig. 9 Model of molecular composition of NV-junctions  
The hydrophobic N-terminus of Nvj1p links the inner- and outer-nuclear membranes by direct insertion 
(Millen, 2008). ONM = outer nuclear membrane; IMN = inner nuclear membrane ((Kvam and Goldfarb, 
2006a); modified) 
 
PMN has been categorized as an autophagic process based on morphological 

criteria and its induction under starvation conditions (Kvam and Goldfarb, 2007). First 

analysis by the Goldfarb lab neglected the involvement of the autophagic machinery 

in PMN. They measured the degradation of Nvj1-EYFP by western blot. Wild type 

and atg7∆ cells showed a slight reduction in the Nvj1-EYFP band but in pep4∆ Nvj1-

EYFP was stabilized (Roberts, 2003). 

In contrast Krick et al. showed using two independent biochemical assays that the 

efficient production of PMN vesicles depends on the core Atg proteins (Krick, 2008b). 

They used Nvj1-GFP and GFP-Osh1 as marker proteins and followed their 

degradation in the vacuole by detection of free GFP. Free GFP accumulates in the 

vacuole because of its resistance to vacuolar hydrolases. 

 
 

2.6 Membrane fusion 
 
Eukaryotic cells contain membrane-enclosed organelles that exchange proteins and 

lipids through vesicular transport.  

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) 
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have been identified as key components to drive membrane fusion. They localize to 

the vesicle and the acceptor membrane. During fusion the SNAREs on both 

membranes form a four helix bundle. The energy required for membrane fusion is 

provided by the free energy released during formation of the bundle (Jahn and 

Scheller, 2006). 

SNAREs contain a 60 - 70 amino acids conserved SNARE motif. At their C-terminal 

ends most SNAREs have a single transmembrane domain that is connected to the 

SNARE motif by a short linker. Dependent on the presence of arginine or glutamine 

in the SNARE motif they are called R- or Q-SNAREs (Fasshauer, 1998). Functional 

SNARE complexes are hetero-oligomeric, parallel four-helix bundles, requiring one of 

each Qa-, Qb-, Qc- and R-SNAREs (Jahn and Scheller, 2006). 

After fusion SNARE complexes exist in a biologically inactive configuration until the 

complex is dissociated. This recycling of SNARE complexes is mediated by the AAA+ 

(ATPases associated with various cellular activities) protein NSF (N-ethylmaleimide-

sensitive factor) by the dissociation of the helical bundle. To interact with SNAREs 

NSF requires a cofactor, the soluble NSF attachment protein (α-SNAP) (Fig. 10). 

In yeast the homologue of NSF is the Sec18 protein and Sec17 the corresponding α-

SNAP. 

 
 

Fig. 10 SNARE disassembly after fusion  
During fusion, the trans-complex relaxes into a cis-configuration. Cis-complexes are disassembled by 
the AAA+ (ATPases associated with various cellular activities) protein NSF (N-ethylmaleimide-
sensitive factor) together with SNAPs (soluble NSF attachment proteins) that function as cofactors. 
((Jahn and Scheller, 2006); modified) 
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2.6.1 Cdc48 dependent membrane fusion 
 
Cdc48 (the homologue of p97 in mammals) belongs to the family of AAA+ ATPases 

(ATPases associated with various cellular activities). It is a highly conserved protein 

involved in many different cellular processes, including ubiquitin-dependent protein 

degradation, fusion of homotypic membranes, nuclear envelope reassembly and cell 

cycle progression (Schuberth, 2004) (Wang, 2004a) (Woodman, 2003).  

The molecular mechanism of Cdc48/p97 action in all these processes is believed to 

be its “segregase” activity (Braun, 2002). Cdc48/p97 uses the energy provided by 

ATP hydrolysis to extract substrate proteins from protein complexes or lipid 

membranes (Schuberth and Buchberger, 2008). 

In order to provide specificity for its various cellular functions, Cdc48/p97 activity is 

tightly regulated by numerous different cofactors in the cell (Tab. 1). 

 
Tab. 1 Classification of Cdc48 cofactors in yeast  

Type of cofactor Identified proteins Function 
   

Substrate-recruiting 
- major 

Ufd1-Npl4 
Shp1 

Decision between major 
cellular pathways: protein 
degradation versus membrane 
fusion (and others) 

Substrate-recruiting 
- additional 

Ubx2, Ubx5, Dfm1*, 
Der1* 

Co-adaptors for specific 
pathways: improve substrate 
binding and/or provide 
additional spatial regulation 

Substrate-processing Otu1, Ufd2, Ufd3 Additional enzymatic activities; 
Regulation of substrate fate: 
stabilization versus 
degradation 

*protein with functional human homologues     ((Schuberth and Buchberger, 2008); modified) 
 

The UBX proteins are one family of such cofactors. The UBX domain is a general 

Cdc48/p97-binding module (Decottignies, 2004) (Hartmann-Petersen, 2004). 

Cdc48/p97 can either bind directly to ubiquitin or the UBX domain, which turned out 

to be a close structural homologue of ubiquitin itself (Buchberger, 2001). In yeast 

there are seven UBX proteins and three of them possess an amino-terminal UBA 

domain, which binds ubiquitylated proteins in vivo (Schuberth, 2004) (Fig. 11). 
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Fig. 11 UBX proteins of S. cerevisiae  
UBX (red) and UBA (yellow) domains are labelled. Significant homology outside these domains 
is indicated by similar colours. Shp1 (alias Ubx1); Ubx2 (alias Sel1); (taken from (Schuberth, 2004)) 
 
During the homotypic fusion of Golgi and ER membranes, Cdc48/p97 was suggested 

to act on mono- ubiquitinated substrates during the remodeling of SNARE complexes 

and/or their regulators (Latterich, 1995) (Rabouille, 1998) (Wang, 2004b). The 

required cofactor of the mamalian p97 is p47 (Fig. 12) (Kondo, 1997) and the 

corresponding yeast homologue is Shp1. 

 

 
 
Fig. 12 p97 - Golgi membrane reassembly in humans  
((Meyer, 2005); modified) 
 
For the degradation of ubiquitinated protein substrates out of the ER Cdc48/p97 

interacts with the heterodimeric substrate-recruiting cofactor Ufd1/Npl4. 

Simultaneous binding of Cdc48-Ufd1-Npl4 to the ER-membrane protein complex and 

the poly-ubiquitin chain on the substrate seems to trigger the segregase activity of 

Cdc48 which pulls substrates out of the ER (Braun, 2002) (Meyer, 2000) (Ye, 2001) 

(Jarosch, 2002) (Raasi and Wolf, 2007). 

In the literature these two major functional distinct CDC48 complexes have been 

described.  
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In contrast to the previously described function in membrane fusion shp1∆ cells have 

been found to exhibit defects in ubiquitin-dependent degradation pathways 

(Schuberth, 2004). Furthermore the p97 Ufd1-Npl4 complex is involved in the 

reformation of the nuclear envelope double-membrane structure after mitosis 

(Anderson and Hetzer, 2007). 

 
 

2.7 Aim of the study 
 
I. Autophagy starts at the pre- autophagosomal structure (PAS). Out of this structure 

double membrane layered vesicles are formed and transported to the vacuole, where 

their outer membranes fuse with the vacuole, releasing a monolayered vesicle into 

the vacuolar lumen. The PAS is believed to be an organelle-like membrane structure.  

The origin of the membrane source for the formation of Cvt- and autophagic vesicles 

is still unclear. The transmembrane protein Atg9 is supposed to be involved in the 

transport of membranes from a peripheral pool to the PAS, where the vesicles are 

formed. Aim of this study was to investigate the localization and characteristics of this 

peripheral pool. 

 

II. Micronucleophagy occurs at nucleus-vacuole (NV) junctions and results in the 

pinching-off and degradation of nonessential portions of the nucleus in the vacuole. 

In contrast to previous published results biochemical data from the Thumm lab 

indicated a strict requirement of the autophagic machinery in PMN. Therefore in this 

study a microscopy based assay should be established to support these results. 

Furthermore the molecular machinery for the membrane fusion events in autophagy 

and PMN should be analysed. 
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3. Materials and Methods 
 

3.1 Materials 
 

3.1.1 Saccharomyces cerevisiae strains 
 
Tab. 2 S. cerevisiae strains used in this study 

Strain Genotype Source 
   

atg1∆ atg27∆ WCG4a MATα atg1∆::KAN 
atg27∆::HIS3 

This study 

atg1∆ atg27∆ cGFP-Atg8 WCG4a MATα atg1∆::KAN 
atg27∆::HIS3 cGFP-Atg8 

This study 

atg1∆ atg27∆ Snf7-RFP WCG4a MATa atg1∆::KAN 
atg27∆::HIS3 snf7-RFP::KAN 

This study 

atg1∆ atg4∆ WCG4a MATα atg1∆::KAN 
atg4∆::HIS5 

 

atg1∆ atg4∆ atg27∆ WCG4a MATα atg1∆::KAN 
atg4∆::NAT atg27∆::HIS3 

This study 

atg1∆ cGFP-Atg8 WCG4a MATa atg1∆::KAN 
cGFP-Atg8 

This study 

atg1∆ vps4∆ atg27∆ WCG4a MATα atg1∆::KAN 
vps4∆::NAT atg27::HIS3 

This study 

atg27∆ WCG4a MATα atg27∆::HIS3 This study 

atg4∆ atg27∆ WCG4a MATα atg4∆::KAN 
atg27∆::HIS3 

This study 

atg8∆ WCG4a MATα atg8∆::KAN AG Thumm 

aut5delta WCG4a MATα atg15∆::KAN AG Thumm 

BY4741 MATa his3∆1 leu2∆0 
met15∆0 ura3∆0 

Euroscarf 

cdc48.3 BY BY4741 CDC48.3 
temperature sensitive at 36°C 

T. Prick u. E. Welter 

cdc48.3 WCG WCG4a CDC48.3 
temperature sensitive at 38°C 

This study 

cdc48-3 pep4∆::URA3 cdc48-3 
temperature sensitive at 36°C 

F. Madeo 

Snf7 S288C MATa                  
Snf7-RFP::KAN 

Falvo 
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Strain Genotype Source 
   

WCG4 WCG4a MATα his3-11,15 
leu2-3,112 ura3 

W. Heinemeyer, 
Stuttgart 

wt cGFP-Atg8 WCG4a MATα cGFP-Atg8 This study 

Y00379 BY4741 MATa myo4∆::KAN Euroscarf 
Y00399 BY4741 MATa spo7∆::KAN Euroscarf 
Y00560 BY4741 MATa sel1∆::KAN Euroscarf 
Y01375 BY4741 MATa ubx6∆::KAN Euroscarf 
Y01481 BY4741 MATa ice2∆::KAN Euroscarf 
Y02763 BY4741 MATa vps28∆::KAN Euroscarf 
Y03084 BY4741 MATa shp1∆::KAN Euroscarf 
Y03269 BY4741 MATa she3∆::KAN Euroscarf 
Y03298 BY4741 MATa ifa38∆::KAN Euroscarf 
Y03341 BY4741 MATa der1∆::KAN Euroscarf 
Y03592 BY4741 MATa rtn1∆::KAN Euroscarf 
Y03698 BY4741 MATa ubx5∆::KAN Euroscarf 
Y03788 BY4741 MATa ubx3∆::KAN Euroscarf 
Y03888 BY4741 MATa ufd2∆::KAN Euroscarf 
Y04004 BY4741 MATa doa4∆::KAN Euroscarf 
Y04247 BY4741 MATa dfm1∆::KAN Euroscarf 
Y04980 BY4741 MATa she2∆::KAN Euroscarf 
Y05063 BY4741 MATa doa1∆::KAN Euroscarf 
Y05281 BY4741 MATa elo3∆::KAN Euroscarf 
Y05381 BY4741 MATa vps27∆::KAN Euroscarf 
Y05447 BY4741 MATa yop1∆::KAN Euroscarf 
Y05721 BY4741 MATa ubx7∆::KAN Euroscarf 
Y05763 BY4741 MATa elo2∆::KAN Euroscarf 
Y06078 BY4741 MATa bre5∆::KAN Euroscarf 
Y06119 BY4741 MATa scs2∆::KAN Euroscarf 
Y06148 BY4741 MATa ubp3∆::KAN Euroscarf 
Y06200 BY4741 MATa ubx4∆::KAN Euroscarf 
YCV9 WCG4a MATα atg4∆::KAN 

atg8∆::KAN 
C. Voss 

YHB 1 WCG4a MATα atg18∆::KAN H. Barth 

YHB 4 WCG4a atg21∆::KAN H. Barth 
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Strain Genotype Source 
   

YMS30K1 WCG4a MATa atg1∆::KAN AG Thumm 
YMTA WCG4a MATa pep4∆::HIS3 M. Thumm 
YSR3 WCG4a MATa aut9∆::KAN S. Reiche  
YUE105-1B BY4741 MATa bsd2∆::KAN 

tul1∆::KAN 
U. Epple 

YUE37 WCG4a MATα atg1∆::KAN 
atg15∆::KAN 

U. Epple 

YUE40 WCG4a MATa atg1∆::KAN 
pep4∆::HIS3 

U. Epple 

YWO 0377 BWG1-7a MATa ura3-52 
leu2-3,112 his4-519 ade1-100 

C. Taxis 

YWO1018 BWG1-7a MATa ufd1_1 
pcr1_1 

C. Taxis 

YYH6 W303 MATa T. Rapoport 
YYH75 W303 CDC48.3 temperature 

sensitive at 34°C 
T. Rapoport 

YYW09 WCG4a MATα vac8∆::HIS3 Y. Mühe 

yYW10 WCG4a MATa atg11∆::HIS3 Y. Mühe 

 
 
Yeast strains for mating type determination 
 
Tab. 3 S. cerevisiae strains for mating type determination 

Strain Genotype Source 
   

YR312 Mata his1-123 test strain for 
mating type determination 

H. Rudolph, Stuttgart 

YR320 Matα his1-123 test strain for 
mating type determination 

H. Rudolph, Stuttgart 
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3.1.2 Escherichia coli strains 
 
Tab. 4 E. coli strain DH5α  

Strain Genotype Source 
   

DH5α F’ (Ф 80 (ΔlacZ) M15) Δ 
(lacZYA-argF) U169 recA1 
endA1 hsdR17 rk- mk + 
supE44 thi-1 gyrA relA 

Hanahan et al., 1983 

 
 

3.1.3 Plasmids 
 
Tab. 5 Plasmids used in this study 

Name Genotype Source 
   

GFP-Atg8 pRS316 CEN6 URA3 
GFP-ATG8 

Suzuki et al., 2001 

GFP-Atg8-cherry pRS316 CEN6 URA3 
GFP-Atg8-cherry 

This study 

GFP-Atg9 CEN6 URA3 MET25 GFP-
Atg9 

T. Lang 

Nab 2 NLS-2m Cherry pYX242 2µ LEU2 TPI 
Nab2NLS-2m cherry  

B. Timney and M. Rout at 
the Rockefeller University 

pGFP-Atg8-FG pRS316 CEN6 URA3 
GFP-Atg8-FG 

Suzuki et al., 2001 

pJH1 pRS313 CEN6 HIS3 
Ape1-RFP 

U. Epple 

POM42 POM40 URA3 yEGFP Euroscarf 
pFA6-natNT2 natNT2 Euroscarf; Janke et al., 

2004 
pRS315 pRS315 CEN6 LEU2 

empty vector 
K. Meiling-Wesse 

pRS315-APE1-RFP pRS315 CEN6 LEU2 
Ape1-RFP 

R. Krick 

pRS315-mRFP-2xFYVE pRS315 CEN6 LEU2 TEF 
mRFP-2xFYVE 

S. Henke 

pRS316-PGK-GFP pRS316 CEN6 URA3 
PGK-GFP   

P. Schlotterhose; Y. Mühe 

pRS416-GFP-OSH1 pRS416 CEN6 URA3 
GFP-Osh1 

Lowen et al. 2003 

pSH65 CRE-recombinase with 
GAL-promoter 
phleomycin resistance 

Euroscarf 

pUG23_Nvj1 pUG23 CEN6 HIS3 
MET25 Nvj1 

This study 

pUG23_Nvj1_GFP pUG23 CEN6 HIS2 This study 
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Name Genotype Source 
   

MET25 Nvj1-GFP 
pUG35_Nvj1 pUG35 CEN6 URA3 

MET25 Nvj1 
 

This study 

pUG35_Nvj1_GFP pUG35 CEN6 URA3 
MET25 Nvj1-GFP  

This study 

UbK29R YEP96 TRP1 Cup1 
ubiquitin (K29R) 

Horak J. 

UbK48R YEP96 TRP1 Cup1 
ubiquitin (K48R) 

Horak J. 

UbK63R YEP96 TRP1 Cup1 
ubiquitin (K63R) 

Horak J. 

Ub-noLys YEP96 TRP1 Cup1 
ubiquitin (no lysines) 

Horak J. 

YEp96 2µ TRP1 Cup1 Horak J. 

 

 

3.1.4 Oligonucleotides 
 
Tab. 6 Oligonucleotides used in this study 

Name Sequence 5`-3` 
  

Vps4∆::NAT  
Primer 1 vps4 ko NAT GAAGACAAAA ATAAAGCAGC ATAGAGTGCC 

TATAGTAGAT GGGGTACAAA TGCGTACGCTG 
CAGGTCGAC 

Primer 2 vps4 ko NAT CATGTACACA AGAAATCTAC ATTAGCACGT 
TAATCAATTG ACTAGTTACC ATCGATGAAT 
TCGAGCTCG 

  
Atg4∆::NAT  
Primer 1 Atg4 ko NAT GTTAGTAGAT GAAGAATGGA CGACTTCTTA 

TCACGTATAG GAGTGATATA CATGCGTACG 
CTGCAGGTCG AC 

Primer 2 Atg4 ko NAT GAATATATTA AAACAAGTAT ATATGCTTATG 
AACTAGTGAA TTCCTTACAC TA ATCGATG 
AATTCGAGCT CG 

  
Atg27∆::HIS  
Primer 1 Atg27 ko HIS TCTTCAATCG ATGCGATAGA TAAAGGTAAG 

GAAAGCTTTC ACGATGCGGA TCCCCGGGTT 
AATTAA 

Primer 2 Atg27 ko HIS GCACTGCTGT TGCAAAAATA TCGAATTGTA 
AGCCAGTAAA CTTATTTAGA ATTCGAGCTC 
GTTTAAAC 
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Name Sequence 5`-3` 
  

Chromosomal GFP-Atg8  
cGFP-Atg8 1f TAATTGTAAA GTTGAGAAAA TCATAATAAA 

AATAATTACT AGAGACATGT GCAGGTCGAC 
AACCCTTAAT 
 

cGFP-Atg8 2r (linker) CGCCTTCCTT TTTTCAAATG GATATTCAGA 
CTTAAATGTA GACTTGCGGC CGCATAGGCC  
ACT 

  
Plasmid GFP-Atg8-cherry  
GFP-Atg8-cherry 1f CGGGTTTTTG TATGTCACTT ACTCAGGAGA 

AAATACATTT GGCAGGATGG TGAGCAAGGG 
CGAGGAGG 

GFP-Atg8-cherry 2r GCTCGGAATT AACCCTCACT AAAGGGAACA 
AAAGCTGGGT ACCGGGCCTA CTTGTACAGC 
TCGTCCATGC 

  
Sequence Primer Atg8  
Atg8 seq 0f GGAGGCCGGT TATTTTCGG 
Atg8 seq 1f GAAGGCGGAG TCGGAGAG 
Atg8 seq 1r CTCTCCGACT CCGCCTTC 
Atg8 seq 2f GGACGGGTTT TTGTATGTCA C 
Atg8 seq 2r GTGACATACA AAAACCCGTC C 

  
Sequence Primer Atg9  
Atg9 seq 1f GATGATTCTG TGCCCAAAGT C 
Atg9 seq 1r GACTTTGGGC ACAGAATCAT C 
Atg9 seq 2f CTGAATTTAT CCTTGCCTAT TCC 
Atg9 seq 2r GGAATAGGCA AGGATAAATT CAG 
Atg9 seq 3f GCGATTCATT TCTCAACAAT AAG 
Atg9 seq 3r CTTATTGTTG AGAAATGAAT CGC 
Atg9 seq 4r CGGTTATTCT GTAAGATATG CC 
Atg9 seq 5f CCTTTGGATG TTTTATTTCT TCG 
Atg9 seq 6f GCAAGTATGC TATGTTTAAC ATG 
  
Sequence Primer RFP  
RFP seq1r CGTGGCCGTT CACGGAGC 

 
 

3.1.5 Media 
 
All media were prepared with deionised water (ddH2O) and autoclaved 20 min at 

121°C and 2 bar. To obtain solid media, 2% Bacto-Agar was added. The pH of the 

medium was adjusted with either NaOH or HCl. All percent values in this chapter are 

weight per volume (w/v). 
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3.1.5.1 YPD-medium, pH 5.5 
 
YPD is a rich medium for yeast cultures containing: 

1% Bacto® Yeast Extract 

2% Bacto® Pepton 

2% D-glucose 

 
 

3.1.5.2 CM-medium, pH 5.6 
 
CM-medium is a synthetic medium for yeast cultures consisting of: 

0.67%  Yeast Nitrogen Base w/o amino acids 

2%  D-glucose 

0.0117% L-alanine   0.0117% L-methionine* 

0.0117% L-arginine   0.0117% L-phenylalanine 

0.0117% L-asparagine   0.0117% L-proline 

0.0117% L-aspartic acid  0.0117% L-serine 

0.0117% L-cysteine   0.0117% L-threonine 

0.0117% L-glutamine   0.0117% L-tyrosine 

0.0117% L-glutamic acid  0.0117% L-valine 

0.0117% L-glycine   0.0117% myo-inositol 

0.0117% L-isoleucine   0.00117% p-aminobenzoic acid 

 
Depending on selection conditions the following supplements were added: 

0.3 mM L-histidine   0.4 mM L-tryptophan 

1.7 mM L-leucine   0.3 mM adenine 

1 mM  L-lysine   0.2 mM uracil** 

 
* For overexpression experiments using a MET25 promoter L-methionine was 
excluded from the drop out mix.  
** Uracil was resuspended in 0.5% sodium hydrogen carbonate solution. 
 
 

3.1.5.3 SD(-N)-medium 
 
Nitrogen free SD(-N)-medium was used as starvation medium for yeast cells. 

0.67%  Yeast Nitrogen Base w/o amino acid and w/o ammonium sulfate 

2%  D-glucose 
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3.1.5.4 1% potassium acetate  
 
1% potassium acetate medium was used to induce sporulation and tetrade formation 

of yeast cells and for carbon starvation. 

1%  potassium acetate 

 
 

3.1.5.5 MV-medium, pH 5.5 
 
MV-medium was used as a minimal medium to determine the mating type of a 

haploid yeast strain. 

0.67%  Yeast Nitrogen Base w/o amino acids 

2%  D-glucose 
 
 

3.1.5.6 LB-medium, pH 7.5 
 
LB-medium was used as standard growth medium for E. coli cultures. 

1%   Bacto® Trypton 

0.5%   Bacto® Yeast extract 

0.5%  sodium chloride 

For plasmid selection 75 µg / ml ampicillin was added. 

 
 

3.1.5.7 SOC-medium, pH 7.5 
 
SOC-medium was used as a regeneration medium for electroporated E. coli cells. 

2%   Bacto® Trypton 

0.5%   Bacto® Yeast extract 

0.4%  D-glucose 

10 mM sodium chloride   10 mM magnesium sulfate 

10 mM magnesium chloride  2.5 mM  potassium chloride 
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3.1.6 Antibodies 
 
Tab. 7 Antibodies used in this study 

Name of antibody Dilution Source 
   

anti-mouse-HRPO-conjugate 1 : 10000* Dianova, Hamburg 
anti-rabbit-HRPO-conjugate 1 : 5000* Medac, Hamburg 
mouse-anti-GFP 1 : 10000* Roche, Mannheim 
mouse-anti-PGK 1 : 10000 in TBST Molecular Probes, Leiden, 

NL 
rabbit-anti-Ape1p 1 : 3000* Eurogentech, Belgium 

* in TBST (20 mM Tris/HCl pH 7.6; 137 mM sodium chloride; 0.1% Tween 20 (w/v)) containing 1% 
skim milk powder (w/v) 
 
 

3.1.7 Commercial available Kits 
 
Tab. 8 Commercial available Kits used in this study 

Name of product Source 
  

ECL PlusTM Western Blotting Detection 
Reagents 

Amersham Biosciences, GB 

Gene Images Random-Prime Labeling 
Module-Kit 

GE Healthcare, Munich 

Gene Images CPD-Star Detection 
Module-Kit 

GE Healthcare, Munich 

RodeoTMECL Western Blotting Detection 
Kit 

USB, Staufen 

QIAquick Gel Extraction Kit Qiagen, Hilden 
QIAquick PCR Purification Kit Qiagen, Hilden 
Wizard PlusSV Miniprep Kit Promega, Mannheim 

 
 

3.1.8 Chemicals and consumables 
 
Tab. 9 Chemicals and consumables used in this study 

Name of product                                              Source 
 

Acetic acid       Riedel-De Haën, Seelze  
Acetone      Roth, Karlsruhe 
Adenine      Sigma, Deisenhofen 
Agarose NEEO      Roth, Karlsruhe 
L-alanine       Sigma, Deisenhofen 
Ammonium acetate    Roth, Karlsruhe 
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Name of product                                              Source 
 

Ammonium persulfate     Merck, Darmstadt 
Ampicillin      Boehringer Mannheim, Mannheim 
Antipain      Sigma-Aldrich, Deisenhofen 
Aprotinin      Merck, Darmstadt 
L-arginine       Sigma, Deisenhofen 
L-asparagine      Sigma, Deisenhofen 
L-aspartic acid      Sigma, Deisenhofen 
Bacto®- Agar      Becton Dickinson, Heidelberg 
Bacto®- Peptone      Becton Dickinson, Heidelberg 
Bacto®- Tryptone      Becton Dickinson, Heidelberg 
Bacto®- Yeast Extract     Becton Dickinson, Heidelberg 
Benzamidin      Merck, Darmstadt 
Bromphenolblue      Riedel-De Haën, Seelze 
Chloroform       Roth, Karlsruhe 
Chymostatin      Merck, Darmstadt 
CMAC (7-amino-4-chloromethylcoumarin) Invitrogen, Karlsruhe 
CompleteTM protease inhibitor    Roche, Mannheim 
Copper sulfate     Roth, Karlsruhe 
L-cysteine       Sigma, Deisenhofen 
DAPI (4',6-diamidino-2-phenylindole)  Sigma, Deisenhofen 
Deoxyadenosin-triphosphate (dATP)  NEB, Frankfurt 
Deoxycytidin-triphosphate (dCTP)  NEB, Frankfurt 
Deoxyguanosin-triphosphate (dGTP)  NEB, Frankfurt 
Deoxythymidin-triphosphate (dTTP)  NEB, Frankfurt 
1,4-Dithiothreitol (DTT)    Roth, Karlsruhe 
D-galactose       Roth, Karlsruhe 
D-glucose       Roth, Karlsruhe 
L-glutamine       Sigma, Deisenhofen 
L-glutamic acid      Sigma, Deisenhofen 
L-glycine       Sigma, Deisenhofen  
DMSO (dimethyl sulfoxide)   Merck, Darmstadt 
DNA-marker (1kb DNA-letter)    NEB, Frankfurt 
EDTA  (ethylenediaminetetraacetic acid) Sigma, Deisenhofen 
Ethanol      Roth, Karlsruhe 
Ethidiumbromid      Sigma, Deisenhofen 
Filterpaper GB 002 und GB 003    Heinemann, Göttingen 
FM4-64       Invitrogen, Karlsruhe 
Formaldehyde, 37%     Sigma, Deisenhofen 
Genticindisulfate (G418; kanamycin)  Roth, Karlsruhe 
Glass beads     Schütt, Göttingen 
Glycerol      Riedel-De Haën, Seelze 
Herring-sperm-DNA     Promega, Madison, USA 
L-histidine       Sigma, Deisenhofen 
Hoechst 33342      Molecular Probes, Freiburg 
Hybond-N +       Amersham Biosciences, GB 
Hybond-P       Amersham Biosciences, GB 
Immersion oil “Immersol” 518F   Zeiss, Göttingen 
Isobutanol       Sigma, Deisenhofen 
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Name of product                                              Source 
 

L-isoleucine      Sigma, Deisenhofen 
Isopropyl alcohol     Sigma, Deisenhofen 
Leupeptin      Merck, Darmstadt 
Liquidblock       GE Healthcare, Munich 
L-leucine       Sigma, Deisenhofen 
Lithium acetate     Sigma, Deisenhofen 
L-lysine       Sigma, Deisenhofen 
Magnesium chloride     Roth, Karlsruhe 
Magnesium sulfate     Roth, Karlsruhe 
2-mercaptoethanol (β-ME)    Roth, Karlsruhe 
Methanol       Roth, Karlsruhe 
L-methionine      Sigma, Deisenhofen 
MOPS  (3-(N-Morpholino)-2-hydroxypropansulfonsäure)    
       Roth, Karlsruhe 
Myo-inositol      Roth, Karlsruhe 
Nourseotricine (clonNAT)    Werner BioAgents, Jena 
Nonidet P40      Roche, Mannheim 
PEG (polyethylene glycol)    Sigma, Deisenhofen 
Pepstatin A       Merck, Darmstadt 
Phenol, TE-saturated (Roti®-Phenol)   Roth, Karlsruhe 
L-phenylalanine      Sigma, Deisenhofen 
PMSF  (phenylmethylsulphonyl fluoride) Merck, Darmstadt 
Poly-L-lysine      Sigma, Deisenhofen 
Potassium acetate     Merck, Darmstadt 
Potassium chloride    Merck, Darmstadt 
Potassium dihydrogen phosphate   Merck, Darmstadt 
Potassium hydrogen phosphate   Roth, Karlsruhe 
Precision Plus Protein All Blue Standards Biorad, Munich 
L-proline       Sigma, Deisenhofen 
Protogel, 30% acrylamide: 0,8% bis-acrylamide (37,5 : 1)     
       Biozym, Hessisch Oldendorf 
Bovine serum albumin (BSA)    Sigma, Deisenhofen 
RNAse A       Applichem, Darmstadt 
Hydrochloric acid 37%    Riedel-De Haën, Seelze 
L-serine       Sigma, Deisenhofen 
Sequencing buffer     Applied Biosystems, Darmstadt 
Skim milk powder     Granovita, Lüneburg 
Sodium acetate     Merck, Darmstadt 
Sodium azide     Riedel-De Haën, Seelze  
Sodium chloride     Roth, Karlsruhe 
Sodium citrate     Sigma, Deisenhofen 
Sodium dihydrogen phosphate    Roth, Karlsruhe 
Sodium dodecyl sulfate (SDS)   Sigma, Deisenhofen 
Sodium hydrogen phosphate   Roth, Karlsruhe 
Sodium hydroxide     Merck, Darmstadt 
D-sorbitol       Sigma, Deisenhofen 
D-sucrose      Roth, Karlsruhe 
Sterile filter: 0,2 µm pores    Sartorius, Göttingen 
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Name of product                                              Source 
 

          125 and 500 ml vacuum filtration Schleicher & Schuell, Dassel 
TEMED (1,2-Bis(dimethylamino)ethane) Merck, Darmstadt 
L-threonine       Sigma, Deisenhofen 
Trichloroacetic acid (TCA)    Roth, Karlsruhe 
Tris (tris(hydroxymethyl)aminomethane) Roth, Karlsruhe 
TritonX-100       Roth, Karlsruhe 
L-tryptophan      Sigma, Deisenhofen 
Tween 20      Sigma, Deisenhofen 
L-tyrosine       Sigma, Deisenhofen 
Uracil        Sigma, Deisenhofen 
L-valine       Sigma, Deisenhofen 
Yeast nitrogen base    Becton Dickinson, Heidelberg 
Difco Yeast nitrogen base w/o amino acids  Becton Dickinson, Heidelberg 
Difco Yeast nitrogen base w/o amino acids and ammonium 
       Becton Dickinson, Heidelberg 
Zymolyase T20     Seikagaku, Japan 
Zymolyase T100      Seikagaku, Japan 

 
 

3.1.9 Devices 
 
Tab. 10 Devices used in this study 

Name of product                                              Source 
 

Analysis scale      Sartorius, Göttingen 
Autoclav: TECNOCLAV 50   Tecnomara-Fedegari, Zürich, CH 
Autoclav: Tuttnauer 3870 EL   Systec, Wettenberg 
Axioscope2 mot plus microscope   Zeiss, Göttingen 
Bunsen burner flammy S    Schütt, Göttingen 
Centrifuge 5417C / 5415R    Eppendorf, Hamburg 
Centrifuge J2-MC     Beckmann, Krefeld 
DNA-gel electrophoresis apparatuses   Biorad, Munich 
Electrophoresis chamber for SDS-PAGE  Biorad, Munich 
Elektrophoresis Power Supply Consort E831 Topac, USA 
Electrophoresis system Mini PROTEAN 3 Biorag, Munich 
Elektroporator 2510     Eppendorf, Hamburg 
Hood       BDK Luft- und Reinraumtechnik, 
       Sonnenbrühl-Genkingen 
Hybridisation oven     Schütt, Göttingen 
Incubators      Hereaus, Hanau 
Inkubator 4200      Innova, USA 
Labshaker for diverse culture sizes  A. Kühner, Birsfelden, Schweiz 
LAS-3000 Intelligent Dark Box    Fuji/ Raytest, Benelux 
Leica TCS SP2 AOBS confocal LSM  Leica, Wetzlar 
Magnetic stirrer MR 3001     Heidolph, Kelheim 
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Name of product                                              Source 
 

Micromanipulator     Zeiss, Göttingen 
Microprocessor pH Meter 537    WTW, Weilheim 
Microwave R-939     Sharp, Hamburg 
Mini Trans-Blot Cell     Biorad, Munich 
Multivortex IKA VIBRAX VXR basic  IKA, Staufen 
Over head shaker REAX2    Heidolph, Kelheim 
Photometer       Eppendorf, Hamburg 
PCR Mastercycler gradient   Eppendorf, Hamburg 
Photostation for agarose gels    Canon-Kamera 
PowerPac Basic Power Supply   Biorad, Munich 
PowerPac HC Power Supply   Biorad, Munich 
Rotor JA 10      Beckmann, Krefeld 
Rotor JA 20      Beckmann, Krefeld 
Rotor TLA-100.3     Beckmann, Krefeld 
Table centrifuge 5804R    Eppendorf, Hamburg 
Thermomixer comfort     Eppendorf, Hamburg 
Trans-Blot Cell     Biorad, Munich 
Transilluminator Tl 1     Whatman Biometra, Göttingen 
Ultracentrifuge TL-100 and L8-M   Beckman, Krefeld 
Vacuum pump      Vacuubrand, Wertheim 
Vortex Genie2      Scientific Industries, USA 
Water bath SWB25     Thermo Electron, Karlsruhe 

 
 

3.2 Methods 
 

3.2.1 Cultivation of yeast cells 

3.2.1.1 Growth of yeast cultures  
 
Yeast liquid cultures were inoculated with cells from an agar plate using a sterile 

toothpick or from a pre-culture with a defined dilution. The cells were incubated 

overnight (14 - 16 h) on a shaker with 220 rpm at 30°C (if not pointed out otherwise).  

 
 

3.2.1.2 Short-term yeast storing 
 
To prepare short-term yeast stocks, yeast strains on agar plates were duplicated 

every 4 - 6 weeks, incubated for 1 - 2 days at 30°C and stored at 4°C. 
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3.2.1.3 Long-term yeast storing 
 
Long-term yeast stocks were prepared from fresh agar plates or liquid in 15% (v/v) 

glycerol solution and stored at -80°C. 

 
 

3.2.1.4 Cell density determinataion 
 
The cell density was measured using the optical density at 600 nm (OD600) in a 

dilution of 1 : 20 (using empty medium as reference). 1 OD600 of growing yeast cells 

correspond to 3 x 107 cells / ml. 

 
 

3.2.1.5 Yeast mating type determination 
 
To determine the mating type of a S. cerevisiae strain two tester strains YR312 

(Mat a) and YR320 (Mat α) were streaked in two separate lines on a MV-medium 

agar plate. Both strains have the rare His1 allele, while the other markers are wild 

type. To test a strain for its mating type it was streaked through each of the tester 

strain lines. The plates were incubated for 2 days at 30°C.  The tested strains will 

mate only with the tester strain of contrariwise mating type, resulting in a diploid 

strain that growth on MV-medium. 

 
 

3.2.2 Isolation of yeast DNA 

3.2.2.1 Isolation of chromosomal DNA 
 
To isolate chromosomal yeast DNA 1.5 ml of an overnight culture was harvested 

(RT, 13000 rpm, 1 min), washed with 500 µl ddH2O and resuspended in 200 µl 

breaking buffer (10 mM Tris/HCl pH 8.0; 100 mM sodium chloride; 1 mM EDTA; 1% 

(w/v) SDS; 2% (v/v) TritonX-100). 200 µl glass beads (0.4 – 0.5 mm; neutralised) and 

200 µl phenol/chloroform solution (50% (v/v) phenol; 50% (v/v) chloroform) were 

added and the reaction was mixed harsh four times for 1 min interrupted by 1 min on 

ice. Before centrifugation (RT, 13000 rpm, 5 min) 200 µl ddH2O were added. 200 µl 

of the upper fraction were transferred to a new reaction cup and the DNA was 

precipitated with 1 ml of ethanol (-20°C, 100%) for 10 min at -20°C. After 
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centrifugation (RT, 13000 rpm, 10 min) the sediment was resuspended in 400 µl 

ddH2O containing 3 µl RNAse A (10 mg / ml). The solution was incubated at 37°C for 

5 min and again precipitated for 10 min at -20°C using 10 µl 5 M ammonium acetate 

and 1 ml of ethanol (-20°C, 100%). The DNA was sedimented (RT, 13000 rpm, 10 

min), the supernatant quantitatively removed and the sediment dried for 5 min at 

37°C. The DNA sediment was resuspended in 30 µl ddH20 and stored at -20°C. 

 
 

3.2.2.2 Isolation of plasmid DNA (plasmid rescue) 
 
To isolate plasmid DNA, 2 ml yeast overnight culture were harvested (RT, 1 min, 

13000 rpm) and resuspended in breaking buffer (10 mM Tris/HCl pH 8.0; 100 mM 

sodium chloride; 1 mM EDTA; 1% (w/v) SDS; 2% (v/v) TritonX-100). 200 µl Phenol 

and 200 µl glass beads (0.4 – 0.5 mm; neutralised) were added and the solution was 

incubated on a shaker for 10 min at 4°C. After centrifugation (RT, 13000 rpm, 10 min) 

200 µl of the upper fraction were transferred to a new reaction cup. The DNA was 

precipitated using 1/10 volume 3 M sodium acetate solution and 2.5 times volume 

ice-cold ethanol (100%). The DNA sediment was washed with 70% ethanol, dried 

and resuspended in 30 µl ddH2O. This solution contained chromosomal DNA and 

plasmid DNA. DNA transformation in E. coli excluded chromosomal DNA resulting in 

enrichment of pure plasmid DNA (see chapter 3.2.6 Transformation of E. coli cells). 

 
 

3.2.3 Transformation of yeast cells 

3.2.3.1 High efficient transformation of yeast cells 
 
A 50 ml culture was prepared by dilution 1 : 10 from a log-phase pre-culture. Cells 

were grown to an OD600 of 0.5 – 0.8, harvested (RT, 2000 rpm, 5 min), washed two 

times with 10 ml ddH2O and once with 2.5 ml LiOAc-sorbitol-buffer (10 mM 

Tris/acetate pH 8.0; 100 mM lithiumacatate; 1 mM EDTA; 1 M D-sorbitol). The cells 

were resuspended in 100 µl LiOAc-sorbitol-buffer and incubated for 15 min at 30°C 

to make them competent. The cell suspension was separated in 50 µl aliquots and 

mixed with 300 µl PEG in Li-TE-buffer (10 mM Tris/acetate pH 8.0; 100 mM lithium 

acetate; 1 mM EDTA; 40% PEG 3350). 5 µl herring-sperm DNA (10 mg / ml) and    

1 - 5 µl of the DNA were added. The samples were first incubated for 30 min at 30°C 



  Material and Methods 

36 

and shifted for 15 min at 42°C, followed by a regeneration in 2 ml YPD-medium for 

1 - 4 h at 30°C at 220 rpm. The cells were sedimented (RT, 2000 rpm, 3 min), 

resuspended in water and spread on selection medium. 

 
 

3.2.3.2 “Quick and dirty” transformation of plasmid DNA in yeast 
 
For fast transformation of plasmid DNA in yeast, cells from an agar plate were 

resuspended in 300 µl PEG in Li-TE-buffer (100 mM lithium acetate; 10 mM Tris; 1 

mM EDTA, 40% (v/v) PEG 3350; pH 8.0 with acetic acid). 5 µl herring-sperm DNA 

(10 mg / ml) and 1 - 5 µl DNA were added and the samples were gently mixed and 

incubated as described in 3.2.3.1 High efficient transformation of yeast cells. 
 

3.2.4 E. coli cell culture 

3.2.4.1 Growth of E. coli cultures 
 
E. coli liquid cultures were inoculated with cells from an agar plate or from a long 

term culture. Liquid cultures were incubated overnight at 220 rpm, 37°C and then 

harvested (for example for plasmid isolations).  

 
 

3.2.4.2 E. coli long term storing 
 
To prepare a long term stock 500 µl E. coli overnight culture were mixed with 500 µl 

60% (v/v) glycerol and stored at -80°C. 

 
 

3.2.5 Preparation of electro-competent E. coli cells 
 
Competent cells can take up DNA from the outside of the cell. To produce these 

competent cells a main-culture of 600 ml LB-medium was inoculated 1 : 100 from an 

overnight pre-culture of E. coli strain DH5α. The cells were incubated at 37°C to an 

OD600 of 0.6 – 0.7, chilled on ice for 10 min and harvested (4°C, 6500 rpm, 8 min). 

Three washing steps followed: The  first with 1 l ice-cold ddH2O, the second with 0.5 l 

ice-cold ddH20 and the third with 20 ml 4°C cold 10% (v/v) glycerol (4°C, 6500 rpm, 



  Material and Methods 

37 

8 min). Finally the cells were resuspended in 2 ml cold 10% (v/v) glycerol, divided in 

40 µl aliquots and stored at -80°C.  

 
 

3.2.6 Transformation of E. coli cells 
 
In this study electroporation was used to transform E. coli cells. Electroporation is 

used to make the cell membrane more permeable to DNA by an electric impulse. 

Competent E. coli cells were thawn on ice and 1 - 2 µl of the transforming DNA was 

added. The sample was transferred to a pre-chilled electroporation cell and 

electroporated at 2500 V. 900 µl SOC-medium were immediately added to the cells 

and incubated for 1 h at 37°C, 220 rpm. 100 - 500 µl of these cells were spread on 

LB-plates containing ampicillin and incubated overnight at 37°C. 

 
 

3.2.7 Plasmid isolation from E. coli cells 

3.2.7.1 Plasmid isolation from E. coli cells by alkaline lysis 
 
To isolate plasmids from E. coi cells, 1.5 ml of an overnight culture was harvested 

(RT, 13000 rpm, 1 min) and the cells were resuspended in 100 µl solution 1 (25 mM 

Tris/HCl pH 8.0; 50 mM D-glucose; 10 mM EDTA). After adding 200 µl of solution 2 

(fresh mixed: 200 mM sodium hydroxide; 1% SDS (w/v)) and gently mixing, 150 µl of 

solution 3 (3 M potassium acetate; 2 M acetic acid) were added and mixed again. 

After centrifugation (RT, 13000 rpm, 5 min) the supernatant was transferred to a new 

reaction cup and the DNA was precipitated for 2 min with 900 µl ethanol (100%). The 

sample was centrifuged (RT, 13000 rpm, 5 min) and the DNA sediment was air dried. 

The plasmid DNA was resuspended in 50 µl ddH2O incubated with 0.5 µl RNAse A 

(10 mg / ml) for 30 min at room temperature. The DNA was stored at -20°C. 

 
 

3.2.7.2 Plasmid isolation from E. coli cells by Wizard Plus SV Kit 
 
To isolate small amounts of clean DNA the Wizard Plus SV Kit from Promega was 

used as described in the manufacturer’s manual. 
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3.2.7.3 Plasmid isolation fom E. coli cells by Quiagen Maxi Kit 
 
To isolate huge amounts of clean DNA the Qiagen Plasmid Maxi Kit from Qiagen 

was used as described in the manufacturer’s manual. The GFP-Osh1 plasmid was 

isolated using this kit. 

 
 

3.2.8 Restriction analysis of DNA 
 
DNA was digested with specific restriction enzymes to analyse and prepare DNA. For 

a 15 µl digestion 1 - 5 µl DNA, 1.5 µl buffer (10 x concentrated), often 0.15 µl BSA 

(100 x concentrated) and 2 - 10 U enzyme was used. The reaction was incubated for 

1 - 2 hours at optimal enzyme temperature. All reactions were done following the 

manufacturers advice from NEB. 9 µl of the reaction were mixed with 1 µl of DNA 

sample buffer (1M Tris/HCl H 8.0; 50% (v/v) glycerol; 0.1% (w/v) bromphenolblue). 

The digest was tested using DNA agarose gel electrophoreses. For preparative 

digestions the standard reaction was scaled up. 

 
 

3.2.9 DNA agarose gel electrophoreses 
 
DNA fragments can be separated by size in an electric field using agarose gels. 

Dependent on the expected size of the fragments agarose gels between 0.8 and 

1.5% (w/v) agarose with 1 µg / ml ethidiumbromide in TAE buffer (40mM Tris/acetate 

pH 8.1; 2 mM EDTA; 0.114% acetic acid) were taken and used to separate DNA in 

an electrophoresis chamber in TAE buffer. The DNA samples were prepared with 

DNA sample buffer (1M Tris/HCl H 8.0; 50% (v/v) glycerol; 0.1% (w/v) 

bromphenolblue) and separated for 25 min at 120 V. Incorporation of 

ethidiumbromide allowed the detection of the DNA under UV-light (λ = 254 nm). 

 
 

3.2.10 Gel extraction of DNA (Gel Extraction Kit) 
 
To purify DNA fragments from agarose gels the QIAEX II Gel Extraction Kit from 

Qiagen was used as described in the manufacturer’s manual. 
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3.2.11 Sizing of DNA fragments 
 
To determine the size of linearized DNA fragments the Standard TriDye 1 kb DNA 

Ladder (NEB, Frankfurt) was used. 
 
Tab. 11 Standard TriDye 1kb DNA Ladder 
Fragment 1 2 3 4 5 6 7 8 9 10 

Size (kb) 10 8 6 5 4 3 2 1.5 1 0.5 

 
 

3.2.12 Ligation of DNA fragments 
 
To ligate DNA fragments 2 - 6 µl insert DNA (prepared with restriction enzymes), 

0.5 - 3 µl vector DNA (prepared with corresponding restriction enzymes), 2.5 U T4-

DNA-ligase and 1 x ligation buffer (10 x concentrated) were filled to 10 µl with ddH2O 

and incubated overnight at 16°C. The enzyme ligated the overhanging DNA 

sequences or the blunt end fragments. Afterwards 1 - 2 µl of the sample were 

transformed into E. coli cells. Only circular plasmids enabled the E. coli cells to grow 

on selection plates. 

 
 

3.2.13 Polymerase chain reaction (PCR) 
 
The polymerase chain reaction allows the amplification of a DNA molecule using a 

DNA polymerase.  

A 100 µl PCR reaction contained 1 x PCR buffer (10 x concentrated), 100 pmol per 

oligonucleotide, 1 µl template DNA, 1 µl dNTP mix (25 mM each dNTP), up to 2 µl 

DMSO (for chromosomal DNA as template) and up to 5 U DNA polymerase. For 

small fragments Taq DNA polymerase (NEB) was used. To amplify longer DNA 

Fragments the proof reading polymerase Fideli Taq (USB) was used. This enzyme 

required special conditions (see manufacturers advice). Up to 30 cycles of DNA 

denaturation, oligonucleotide annealing and DNA synthesis followed. The program 

was specially designed for each experiment, depending on the oligonucleotides and 

the product size. The synthesized product could be analysed in an agarose gel 

electrophoresis. 
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3.2.14 DNA sequencing 
 
A sequencing reaction consisted of 1 µl template DNA (preferably plasmid DNA from 

a Wizard Plus SV Kit purification), 1 µl sequencing mix (polymerase; dNTP´s with 

fluorescent dyes; 30 mM magnesium chloride and buffer substances), 1 µl 

oligonucleotide (1 : 100 diluted; compared to usual PCR), 1.5 µl sequencing buffer 

and 6 µl ddH2O. The PCR program consisted of 25 cycles with a 10 s denaturation 

step at 95°C, an annealing step for 5 s at 50°C and an elongation step for 4 min at 

60°C. The PCR product was precipitated by adding 1 µl 3 M sodium acetate (pH 5.2), 

1 µl 125 mM EDTA and 50 µl ethanol (100%, RT). After centrifugation (RT, 13000 

rpm, 10 min) the sediment was washed with 70 % ethanol and air-dried. 15 µl 

formamide were added to stabilize the DNA. The reactions were analysed by the 

developmental biology of the Georg-August-Universität Göttingen. 

 
 

3.2.15 Gene deletion using homologue recombination  
 
The deletion of genes as described in Longtine et al. (1998) (Longtine, 1998) was 

used for the deletion of atg4, atg27 and vps4 in different background strains. A DNA 

fragment was amplified using the primers listed in chapter 3.1.4 Oligonucleotides. 
The primers had a 20 bp homologue region to the template (either a NAT cassette or 

a HIS3 cassette) and a 45 bp homologue region to the flanking regions of the gene 

origin. This PCR product was used in a high efficient transformation reaction as 

described in chapter 3.2.3.1. The yeast cells with the homologues integrated NAT or 

HIS3 cassette could be selected on medium containing nourseotricine (clonNAT) or 

lacking histidine. 
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3.2.16 Generating a CDC48.3 strain in WCG background 

3.2.16.1 Crossing of haploid yeast strains 
 
To obtain diploid yeast cells two strains with corresponding mating type were mixed 

on a agar plate and incubated for 6 h at 30°C.  
 
Tab. 12 Strains for the generation of CDC48.3 in WCG background 

Strain Genotype Source 
   

cdc48-3 MATa pep4∆::URA3 cdc48-3 
temperature sensitive at 36°C 

F. Madeo 

WCG4 WCG4a MATα his3-11,15 
leu2-3,112 ura3 

W. Heinemeyer, 
Stuttgart 

 
Then the cells were selected for diploids at 36.5°C on CM -HIS selection plates for 

2 days. 

 
 

3.2.16.2 Sporulation 
 
The diploid cells were shifted to fresh GNA agar plates (100 ml contain: 5 g D-

glucose; 3 g Difco nutrient broth; 1 g Difco yeast extract and 2% (w/v) agarose) for 

one day. Then the cells were transferred in 2 ml supplemented liquid sporulation 

medium (200 ml contain: 20 ml 10% (w /v) potassium acetate stock; 2 ml 0.5% (w/v) 

zinc acetate stock; 2 ml uracil solution (0,2 mM in 0.5% sodium hydrogen carbonate 

solution); 1 ml L-histidine solution (0.3 mM); 3.3 ml L-leucine solution (1,7 mM)) for 

5 days at 25°C. 

 
 

3.2.16.3 Random spores 
 
1 x 108 cells and asci of a sporulated culture were mixed with 180 µl ddH2O in a 

polypropylen tube. 20 µl of 5 mg / ml Zymolyase 20T in ZL-buffer (0.1 M sodium 

phosphate pH 6.5; 1.2 M sorbitol; 40% glycerol (w/v)) were added and the reaction 

was incubated for 30 min at 30°C while shaking. The cells were harvested 

(13000 rpm, 30 sec), washed once with water and resuspended in 100 µl ddH2O. 

Afterwards they were gently mixed for 2 min and the supernatant was discarded. The 
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reaction was washed two times with ddH2O and discarded again. 1 ml of sterile 

0.01% (v/v) NP-40 in ddH2O was added and the mixture was treated for 2 min with 

ultrasonic. The solution was diluted (1 : 10 - 1 : 10000) and spread on YPD plates.  

 
 

3.2.17 Chromosomal N-terminal fusion of GFP-Atg8 using the cre 
recombinase system  
 
A PCR product for homologue recombination of GFP between Atg8 and its promoter 

was constructed (Fig. 13 upper part and text). As template the plasmid POM42 and 

as primers the primers cGFP-Atg8 1f and cGFP-Atg8 2r were used. After homologue 

recombination (see 3.2.15 Gene deletion using homologue recombination) the URA 

selection cassette was recombined out of the chromosome by the induction of a cre 

recombinase (using the Plasmid pSH65) as describen in Gauss R., Yeast 2005 

(Gauss, 2005).  

 
Fig. 13 Construction of the chromosomal n-terminal fusion protein GFP-Atg8 
The construction took place in two steps. In the first step the homologue regions in light blue are 
required for recombination. They lie directly between the promoter region and atg8. In the second step 
a cre recombinase catalyses a homologue recombination between the two lox sites (in black). The 
arrows indicate open reading frames. 
 
All steps were followed by PCR.  
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3.2.18 Southern blot 
 
Chromosomal DNA fragments were digested with restriction enzymes and separated 

by agarose gel electrophoresis. Then the DNA was transferred to a PVDF membrane 

and analysed with a labled single strand probe.  

In a first step a specific DNA hybridisation probe was produced using the 

manufacturers advice (Gene ImagesTM Random-Prime Labeling Module-Kit). 20 µg 

chromosomal DNA was digested overnight with 10 U of a restriction enzyme in a total 

volume of 50 µl (chapter 3.2.8 Restriction digest). The fragments were separated in a 

0.8% agarose gel for 1,5 h at 90 V. Afterwards the gel was washed two times for 

8 min in acid-nicking-buffer (250 mM hydrochloric acid), once for 15 min in 

denaturing buffer (1.5 M sodium chloride; 500 mM sodium hydroxide) and for 1h in 

neutralisation buffer (500 mM Tris/HCl pH 7.0; 3 M sodium chloride). Then the DNA 

was transferred to a Hybond N+-nylon-membrane using a diffusion blot overnight 

with 6 x SSC buffer (90 mM sodium citrate; 900 mM sodium chloride; pH 7.0) 

(Fig. 14). After the transfer the DNA was cross-linked to the membrane using UV light 

(5 min on an UV table). The membrane could be stored at 4°C or used for 

hybridisation. 

 

 
 
Fig. 14 Diffusion blot 
 
The membrane was washed in hybridisation buffer (0.75 M sodium chloride; 75 mM 

sodium citrate; 0.1% (w/v) SDS; 5% (w/v) dextransulfate; 5% liquid block (from GE 

Healthcare)) which was preheated at 60°C for 3 - 5 h in a hybridisation oven at 60°C. 

The DNA hybridisation probe was added, after boiling for 5 min and chilling on ice for 

5 min, to the membrane and incubated overnight. The probe could be reused several 

times.  
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After hybridisation the membrane was washed for 15 min with wash buffer 1 

(150 mM sodium chloride, 15 mM sodium citrate, 0.1% (w/v) SDS) at 60°C and 

further washed for 15 min with wash buffer 2 (75 mM sodium chloride, 7.5 mM 

sodium citrate, 0.1% (w/v) SDS) at 60°C. The subsequent washing steps were 

performed with diluent buffer (300 mM sodium chloride, 100 mM Tris/HCl, pH 9.5) for 

5 min, with 10% liquid block for 60 min and with diluent buffer for 5 min at room 

temperature. The AP-conjugate was diluted 1 : 5000 in diluent buffer with 0.5% (w/v) 

BSA and incubated with the membrane for 1h (shaking, RT). After three washing 

steps with diluent buffer for 15 min, the DNA was detected using the Gene Images 

CDP-Star Detection Reagent from Amersham (see manufacturers advice).  

 
 

3.2.19 Alkaline lysis of yeast cells 
 
For alkaline lysis 2 OD600 of logarithmic, stationary or starved yeast cells were used. 

The cells were transferred to a reaction cup and sedimented at 3000 rpm for 5 min. 

The sediment was resuspended in 1 ml of cold ddH20 and mixed with 150 µl cold 

lysis-solution (fresh prepared: 1.85 M sodium hydroxide; 7.5% (v/v) ß-

mercaptoethanol). The reaction was mixed every 2 min and kept on ice. After 10 min 

of incubation 150 µl 50% trichloroacetic acid (w/v) were added and the reaction was 

incubated on ice for 10 min. The precipitated proteins were sedimented (4°C, 

13000 rpm, 10 min), washed twice with acetone and dried for 5 min at 37°C.  The 

sediment was resuspended in 100 µl 2 x Lämmli-buffer (116mM Tris/HCl pH 6.8; 

12% (w/v) glycerol; 3.42% SDS (w/v); a tip bromphenolblue; 1% ß-mercaptoethanol) 

by harsh vortexing for 30 min at 30°C. Before loading the probe on a polyacrylamide 

gel the cell debris was centrifuged to the bottom of the cup (RT, 13000 rpm, 5 min).  

 
 

3.2.20 SDS-Polyacrylamid-Gel-Electrophoreses (PAGE) 
 
The discontinuous SDS-PAGE was used as described in Laemmli et al. (Laemmli, 

1970) in a Mini-Protean III electrophoreses chamber from Biorad following the 

manufacturer advice. To separate the samples 8 - 12% acrylamide separating gels 

and 5% acrylamide collecting gels were used.  
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Tab. 13 Composition of SDS Polyacrylamid gels  
 10%separating gel 5% collecting gel 
ddH20 1.9 ml 3.0 ml 
1.5M Tris, pH 8.8 1.25 ml - 
0.5M Tris PH 6.8 - 1.25 ml 
Protogel 1.8 ml 0.7 ml 
10% (w /v) SDS 50 µl 50 µl 
10% (w /v) APS 50 µl 50 µl 
TEMED 2.5 µl 5 µl 
 

As molecular maker the “Precision Plus Protein All Blue Standards” marker from 

Biorad was used, consisting of the following molecular weights: 250 kDa, 150 kDa, 

100 kDa, 75 kDa, 50 kDa, 37.5 kDa, 25 kDa, 15 kDa, 10 kDa. After loading the gel 

(10µl / probe) and filling the gel chamber with SDS-running buffer (200 mM glycerol, 

25 mM Tris, 0.1% SDS) the gel run was started with 100 V. When the samples enter 

the collecting gel the voltage was raised to 150 V. The gel run was stopped after the 

bromphenolblue band reached the end of the gel, the collecting gel was cut off and 

the rest of the gel was used for western blot analysis. 

 
 

3.2.21 Western blot analysis using a trans blot cell 
 
As standard for western blot analysis a Mini Trans-Blot Cell from Biorad was used to 

blot 2 Gels on PVDF membranes. In bigger approaches up to 8 gels could be blotted 

at the same time in a Trans blot cell from Biorad. The transfer assembly was built up 

in a gel holder cassette as follows: 

 
Fig. 15 Cartoon of a gel holder cassette  
Two peaces of filter papers (GB 002) were aequilibrated in blotting buffer. The PVDF membrane was 
activated in methanole (100%) before usage. (picture taken from the Biorad manual) 
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This packed gel holder cassette was inserted into the buffer tank, which was filled 

with cold blotting buffer (192 mM glycerol; 25 mM Tris; 20% methanole; 4°C cold). 

The transfer time was at least 4 hours or overnight at 90 mA per gel. After the blotting 

process the PVDF-membrane was blocked in TBST (20 mM Tris/HCl pH7.6; 137 mM 

sodium chloride; 0.1% Tween 20 (w/v)) containing 10% (w/v) skim milk powder, to 

block up all unspecific binding sites on the membrane, for 1 h at room temperature or 

overnight at 4°C. The immunoblot was washed three times with 25 ml TBST for 5 

min. In the next step the blot was incubated with the primary (first) antibody in TBST 

at room temperature for at least one hour or overnight at 4°C. The immunoblot was 

washed three times with 25 ml TSBT for 5 min and then incubated with the second 

antibody (in TBST with 1% skim milk powder (w/v)) for 1 h. After six 5 min washing 

steps with TBST, the blot was developed with ECLTM Plus (Amersham) following the 

manufacturer´s advice. 

Afterwards the immunoblot was analysed using a LAS-3000 (Fujifilm). Quantitative 

statistics from blots were done using the AIDA Software, Version 4.06.116 (Raytest, 

2005). 

 
 

3.2.22 Stripping of once immunodetected membranes 
 
To remove an antibody from an already used immunoblot the membrane was air-

dried for 5 min. As first step the blot was washed with methanol and three times with 

TBST-buffer. Then the attached antibodies were denatured and washed of the 

membrane by a 10 min incubation with 10% acetic acid (v/v). The acetic acid was 

removed by washing five times using 25 ml TBST for 5 min. The method continued 

as described in chapter 3.2.21 with blocking in TBST containing 10% (w/v) skim milk 

powder. 

 
 

3.2.23 Subcellular fractionation 
 
For subcellular fractionation 60 OD600 of 4h SD(-N) starved cells (OD600 of 6) were 

harvested (2000 rpm, 5min) and incubated for 15 min in 30 ml DTT-buffer (10 mM 

Tris sulfate pH 9.4; 10 mM DTT). The cells were sedimented (RT ,2000 rpm, 5min), 

the supernatant discarded and the cells resuspended in 6 ml SP-buffer (1 M sorbitol; 
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20 mM PIPES pH 6.8). 120 µl of freshly solved Zymolyase T20 (10 mg / ml) in SP-

buffer were added and the reaction was incubated in a water bath at 30°C and 

20 rpm for 25 min. The spheroplasts were sedimented (RT, 3000 g, 15 min) and 

resuspended with a glass stick in 6 ml SP-buffer. After a second centrifugation (RT, 

3000 g, 3 min) the speroplasts were hypotonically lysed in lysis buffer (0.2 M sorbitol; 

20 mM PIPES pH 6.8; 5 mM MgCl2; 1x Complete protease inhibitor (Roche); 1 mM 

PMSF and 1 x protease inhibitor mix (1000 x concentrated stock 1 mg Antipain, 1 mg 

Aprotinin, 1 mg Benzamidin, 1 mg Pepstatin A, 1 mg Leupeptin, 1 mg Chymostatin in 

1 ml DMSO)). Lysates were generated by centrifugation at 500 g for 10 min. Low-

speed pellet P13 (13000 g pellet), high-speed pellet P100 (100000 g pellet) and high 

speed supernatants S100 (100000 g sup) were generated as described by Kirisako 

et al. (Kirisako, 2000). The sediments were resuspended in a corresponding volume 

of 2 x Laemmli buffer and processed for immunoblots. 

 
 

3.2.24 Sucrose gradient 
 
For a sucrose gradient 600 OD600 of 4 h SD(-N) starved cells (OD600 of 6) were 

harvested (500 g, 5 min, 4°C). Cells were washed with 30 ml ice-cold 10 mM sodium 

azide and centrifuged again (500 g, 5 min, 4°C). The sediment was resuspended in 

10 ml spheroplasting (SP) buffer (50 mM potassium dihydrogen phosphate pH 7.5; 

10 mM sodium azide; 40 mM ß-mercaptoethanol) containing 3 mg Zymolyase T100 

and incubated for 30 - 45 min at 30°C. All following steps were done at 4°C. The 

spheroplasts were centrifuged (500 g, 10 min, 4°C) and the sediment was 

resuspended with a glass stick in 10 ml SP-buffer. After a centrifugation (500 g, 

10 min, 4°C) the sediment was resuspended in lysis buffer (0.8 M sorbitol; 10 mM 

MOPS pH 7.2; 1 mM EDTA; PMSF and 1x protease inhibitor mix (1000x 

concentrated stock 1 mg Antipain, 1 mg Aprotinin, 1 mg Benzamidin, 1 mg Pepstatin 

A, 1 mg Leupeptin, 1 mg Chymostatin in 1 ml DMSO)) and homogenized with 40 

beats of a douncer. After preclearing (5000 rpm, 10 min, 4°C) the supernatant was 

applied on the top of a sucrose gradient (per step 1 ml of 18, 22, 26, 30, 34, 38, 42, 

46, 50, 54% sucrose (w/v)). After 3 h of ultracentrifugation (Beckman ultracentrifuge, 

SW41 rotor, 34000 rpm) 18 fractions each 610 µl were collected and precipitated with 

trichloroacetic acid. The sediments were washed two times with acetone and 

resuspended in 75 µl of 2 x Lämmli-buffer (116 mM Tris/HCl pH 6.8; 12% (w/v) 
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glycerol; 3.42% SDS (w/v); a tip bromphenolblue; 1% ß-mercaptoethanol) and 

processed for immunoblots. 

 
 

3.2.25 Measuring the breakdown of GFP fused proteins 

3.2.25.1 Measurement of the breakdown of GFP-Osh1p 
 
All deletion strains were transformed with pRS416-GFP-Osh1. These transformed 

cells were used for a pre-culture in selective medium (usually CM -URA) overnight at 

30°C at 220 rpm agitation. After 26 h of incubation the pre-culture was diluted 1 : 100 

as main-culture in the same selective medium and grown overnight at 30°C at 

220 rpm. The next morning the cells were harvested at an OD600 of 5 - 9. 20 OD600 

cells were washed with SD(-N) starvation medium, resuspended in 2ml SD(-N)-

medium and incubated at 30°C at 220 rpm. 200 µl samples (2 OD600 cells) were 

taken at the given time points (usually 0, 2, 4, 6 and 8h) and alkaline lysed (see 

chapter 3.2.19 Alkaline lysis of yeast cells). These samples were applied on 10% 

acrylamide gels containing 6 M urea, analysed with western blots using a trans blot 

cell (see chapter 3.2.21) and detected with ECLTM Plus (Amersham). After 

rapamycine-induced starvation the same washing steps were done with fresh CM-

medium containing rapamycine (0.2 µg / ml end concentration from a stock solution 

1 mg / ml rapamycine in DMSO). When using potassium acetate as starvation 

medium the cells were washed with 1% potassium acetate (w/v) or 1% potassium 

acetate (w/v) and 2% glucose. 

 
 

3.2.25.2 Measurement of the breakdown of GFP-Osh1p or GFP-Atg8 in 
temperature sensitive strains 
 
To measure the breakdown of GFP-Osh1 or GFP-Atg8 in temperature sensitive 

strains, the cells were transformed with the pRS416-GFP-Osh1 or GFP-Atg8 

plasmid. Transformed cells were taken from agar plates, inoculated as a pre-culture 

in liquid selection medium (usually CM -URA) and grown overnight at 23°C 

(permissive temperature) at 220 rpm. Once the cells reached a stationary culture 

(OD600 = 6 - 10), a 20 ml main-culture was started with a dilution of about 1 : 80 which 

was incubated overnight at 23°C at 220 rpm. The next morning the OD600 of the 
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cultures usually were between 4 and 8. 50 OD600 cells were taken, washed two times 

with 10 ml SD(-N)-medium and then resuspended again in 10 ml SD(-N)-medium. 

The sample was then divided in two equal parts. One was transferred to a water bath 

at 23°C (permissive temperature), 110 rpm and the other to a water bath at 34°C, 

36°C or 38°C (restrictive temperature), 110 rpm. 400 µl samples (2 OD600 cells) were 

taken at the given time points (0, 1, 2, 3 and 4h) and alkaline lysed (see chapter 

3.2.19 Alkaline lysis of yeast cells). These samples were applied on 10% acrylamide 

Geld containing 6 M urea, analysed with western blots using a trans blot cell (see 

chapter 3.2.21) and detected with ECLTM Plus (Amersham).  

 
 

3.2.26 Microscopy 

3.2.26.1 Fluorescence microscopy 
 
Most of the fluorescence microscopy was done using a Zeiss Axioskope 2. The 

pictures were taken with a digital camera (AxioCam MRm) and the AxioVision 

software (release 4.5, Zeiss). The images were converted and processed with Adobe 

Photoshop CS3 or Canvas X. Fluorescent pictures were taken with corresponding 

filter sets: GFP, RFP / Cy3 and DAPI. 

5 µl of yeast cells were taken at the indicated time points, dropped on a glass slide 

and covered with a cover slip.  

 
 

3.2.26.2 Laser scanning microscopy 
 
To visualize two fluorescent dyes simultaneously a Leica TCS SP2 AOBS confocal 

laser scanning microscope was used.  

 
 

3.2.26.3 Endosome and vacuole staining using the dye FM4-64 
 
Yeast cells were grown overnight to an OD600 of 0.5 – 6.0. 20 OD600 cells were 

sedimented (RT, 5 min, 2000 rpm) and resuspended in 1 ml YPD-medium containing 

2 µl of a FM4-64 solution (1 mg FM4-64 in 100 µl DMSO). The cells were incubated 

30 min at 30°C at 220 rpm shaking then transferred to fresh YPD-medium and 
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directly visualized in the microscope or shifted to starvation medium (SD-(N)) for up 

to 4 hours. For the visualisation a Cy-3 filter set was used. 

 
 

3.2.26.4 Vacuole staining of Cell tracker blue (CMAC)  
 
To visualize the vacuole the Cell tracker blue (CMAC) was used. 20 OD600 of yeast 

cells were harvested and resuspended in 1 ml YPD. 2 µl of a 10 mM Cell tracker blue 

CMAC solution (Invitrogen) were added and the cells were incubated for 30 min at 

30°C at 220rpm. The cells were then starved for up to 4 hours and analysed with a 

DAPI blue filter set. 
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4. Results 
 

4.1 Where are the autophagic membranes coming from? 
 
Double membrane layered vesicles are formed out of the pre-autophagosomal 

structure (PAS). Where these membranes come from has been addressed for a long 

time but not answered yet. Different cell components have been discussed as 

potential membrane sources (Reggiori, 2004) (Reggiori, 2005) (Young, 2006) 

(Obara, 2008a). Probably more than one membrane source is required: one for the 

constitutive Cvt-pathway and an additional one under nutrient limitation for the larger 

autophagosomes. 

 
Only two transmembrane proteins are known to locate at the PAS. These proteins 

are Atg27 that has been described to locate at the PAS, the mitochondria and the 

Golgi complex (Yen, 2007) and Atg9 that has been proposed to cycle between the 

PAS and mitochondria (Reggiori, 2005) dependent on Atg27. This cycling of Atg9 

could deliver lipids to the PAS and thus facilitate the formation of Cvt vesicles and 

autophagosomes. In atg1∆ atg27∆ double deletion cells the localization of Atg9 to its 

peripheral pool, which corresponds in part to mitochondria, is increased (Yen, 2007). 

 
 

4.1.1 Analysis of the peripheral Atg9 pool 
 
To enrich the peripheral pool of Atg9 several knockout strains in the WCG4a 

background were generated as described in chapter 3.2.15. All knockout strains were 

analyzed using southern blot analysis as described in 3.2.18 (data not shown).  

The resident vacuolar hydrolases, aminopeptidase I (Ape1) is synthesized as pro 

form (pApe1) in the cytosol and transported either constitutively via the Cvt pathway 

or via the starvation induced macroautophagy pathway to the vacuole. The protein is 

matured (mApe1) by proteinase A (pep4), which can be monitored by western blot.  

As additional control of the correct knockout strains were harvested at stationary 

phase and after 4 h starvation in SD(-N)-medium, alkaline lysed and prepared for 

immunoblots (Fig. 16 (A.)). A rabbit polyclonal Ape1 antibody was used for detection. 

 

One aim of this study was to review the actual localization of Atg9, since 
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mitochondria seem unlikely as a membrane source for the PAS.  

Atg9∆, atg1∆, atg1∆ atg27∆ and atg4∆ atg27∆ cells were transformed with GFP-Atg9 

and the PAS marker Ape1-RFP (Fig. 16 (B.)). 

 

 
 
Fig. 16 Verification of the autophagic phenotype of the atg27∆, atg4 atg27∆ and atg1∆atg27∆ 
strains using Ape1 (A.) or GFP-Atg9 (B.) as a marker. 
All strains in WCG background. (A.) Western blot of stationary and 4 hours SD(-N) starved alkaline 
lysed yeast cells. The full length (pApe1) and the matured form (mApe1) were detected using a 
polyclonal rabbit Ape1 antibody. (B.) Microscopy of stationary grown yeast cells carrying methionine 
inducible GFP-Atg9 (URA) and Ape1-RFP (LEU); medium: CM -URA -LEU +0,3mM MET. 
 
In wild type cells Ape1 was matured. The vacuolar proteinase A is required for the 

maturation of Ape1 in the vacuole and Atg1 for the formation of its transport vesicles, 

independent on the growth conditions. 

Atg27∆ cells showed only a small amount of mature Ape1 at stationary phase, but 

complete maturation after starvation. In atg8∆ cells the pro form accumulated but 

after 4 h starvation 20% of Ape1 was matured (Fig. 16 (A.)). 

The plasmid expressed GFP-Atg9 complemented the atg9∆ phenotype (after 4 h 

starvation the Ape1 signal was vacuolar; data not shown). In atg1∆ cells GFP-Atg9 

accumulated at the PAS. The atg1∆ atg27∆ strain showed a GFP-Atg9 co-

localization with the PAS marker Ape1 but had additional peripheral dots. This 

additional pool only existed in some cells and was not stable in further experiments. 

The atg4∆ atg27∆ strain lost the clear peripheral GFP-Atg9 pool (Fig. 16 (B.)).  



  Results 

53 

4.1.2 Identifying a peripheral Atg8 pool 
 
Problems with the stability of the peripheral GFP-Atg9 pool and the finding that the 

Atg8 protease Atg4 plays a role in the Atg9 cycling, led to the analysis of Atg8. Yeast 

cells were transformed with GFP-Atg8 and Ape1-RFP and analyzed after 4 h 

starvation in SD(-N)-medium (Fig. 17). 

 

 
 
Fig. 17 Identifying a peripheral pool of Atg8 in atg1∆ atg27∆ cells 
All strains in WCG background. Microscopic analysis of the localization of GFP-Atg8 in different 
knockout strains. Stationary grown yeast cells carrying GFP-Atg8 and Ape1-RFP were starved in  
SD(-N) for 4 h before visualization. 
 
The plasmid expressed GFP-Atg8 complemented the atg8∆ phenotype. As control, 

the atg1∆ strain was used that restricted Atg8 to the PAS shown by its colocalization 

with the PAS marker Ape1-RFP. In the atg1∆ atg27∆ strain GFP-Atg8 partially 

colocalized with the PAS and showed an additional peripheral pool. In contrast GFP-

Atg8 gave a diffuse and often vacuolar signal in atg27∆ cells. Atg4∆ atg27∆ cells only 

showed a diffuse cytosolic signal. 
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4.1.3 Lipidation of Atg8 is essential for its peripheral pool 
 
To analyze the lipidation state of Atg8 at its peripheral pool and the requirement of 

the modification machinery for this localization, two different GFP-Atg8 plasmids 

were used. A full length GFP-Atg8 and an additional GFP-Atg8*, lacking the C-

terminal arginine. This arginine is in vivo cleaved of by Atg4 before it is coupled to 

phosphatidylethanolamine (PE) in an ubiquitin like reaction with E1 / Atg3 and E2 / 

Atg7 (chapter 2.5.6.1). The maturation of Ape1p was tested under stationary and 

starvation conditions (Fig. 18 (A.)). 

The localization of GFP-Atg8 and GFP-Atg8* in atg4∆ atg8∆ cells was examined. 

Cells were cotransformed with GFP-Atg8 or GFP-Atg8* and Ape1-RFP (Fig. 18 (B.) 

upper part) or stained using FM4-64 as described in chapter 3.2.26.4 (Fig. 18 (B.) 

lower part). Cells were imaged after 4 h starvation in SD(-N)-medium. 

  

 
 
Fig. 18 Analysis of GFP-Atg8 and a GFP-Atg8 mutant lacking the C-terminal arginine (GFP-
Atg8*) 
All strains in WCG background. (A.) Complementation study of GFP-Atg8 and GFP-Atg8* using a 
polyclonal rabbit Ape1 antibody. (B.) Microscopic analysis of the localization of GFP-Atg8 and GFP-
Atg8* in the atg4∆ atg8∆ strain using the PAS marker Ape1-RFP (upper part) and the endosomal / 
vacuolar membrane marker FM4-64 (lower part). Cells were starved 4 h in SD(-N)-medium. 
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Both GFP-Atg8 constructs rescued the Ape1 maturation phenotype of atg8∆ cells but 

in atg4∆ atg8∆ cells only the GFP-Atg8* construct complemented the knockout 

phenotype (Fig. 18 (A.)).  

The plasmid carrying wild type GFP-Atg8 had a weak GFP signal but colocalized with 

the PAS maker Ape1-RFP. The mutant GFP-Atg8* accumulated at a ring around the 

vacuole. This ring signal colocalized with FM4-64, an endosomal / vacuolar 

membrane marker (Fig. 18 (B.)).  

 
 
A plasmid expressing a GFP-Atg8-cherry protein was constructed by insertion of the 

cherry sequence into the GFP-Atg8 plasmid. The cherry sequence was amplified in a 

PCR reaction using a plasmid containing NLS-mcherry as template and the primers 

GFP-Atg8-cherry 1f / GFP-Atg8-cherry 2r (chapter 3.2.13). The resulting PCR 

product was cotransformed with the linearized GFP-Atg8 plasmid  into atg8∆ yeast 

cells for homologous recombination. The plasmid was rescued and sequenced. 

 
Atg8 is coupled by its C-terminus to the inside and outside of autophagosomal 

membranes and its internal part reaches the vacuole. Because of the stability of GFP 

in the vacuole, the degradation of GFP-Atg8 can be visualised by immunoblots. The 

GFP-Atg8-cherry plasmid was constructed to differentiate between uncoupled (GFP 

and cherry signal colocalizing) and PE-coupled Atg8 (cherry is cleaved of Atg8; no 

colocalization of GFP and cherry).  

The GFP-Atg8-cherry plasmid was transformed in wt, atg8∆, atg1∆, atg1∆ atg27∆ 

and atg1∆ atg4∆ atg27∆ cells. The cells were starved, alkaline lysed at the indicated 

time points and prepared for immunoblots. The membranes were probed with 

monoclonal GFP antibody (Fig. 19 (A.)). The same cells were analysed in a 

microscope after 4 h starvation in SD(-N)-medium using a Cy3 and a GFP filter set 

(Fig. 19 (B.)). 
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Fig. 19 Lipidation of Atg8 is essential for the peripheral pool 
All strains in WCG background. (A.) Western blot of stationary (0 h) and SD(-N) starved (2 - 4 h) 
alkaline lysed yeast cells. The plasmid GFP-Atg8-cherry was detected using a mouse monoclonal 
GFP Antibody. Size of proteins: GFP = 240 aa = 26 kDa; GFP-Atg8 = 365 aa = 40 kDa; GFP-Atg8-
cherry = 594 aa = 65 kDa;  (B.) Microscopy of stationary yeast cells starved for 4 h in SD(-N) also 
carrying the GFP-Atg8-cherry plasmid. 
 
 
The GFP-Atg8-cherry plasmid showed free GFP, thus the plasmid complemented the 

atg8∆ phenotype in western blot analysis. Microscopy provided this by GFP 

accumulating in the vacuole in those cells. The construct only showed a diffuse 

microscopic cherry signal in all strains. In atg1∆ atg27∆ cells a peripheral GFP pool 

was visible. The peripheral pool vanished in the atg1∆ atg4∆ atg27∆ cells, where 

cherry was not cleaved of by Atg4 and was full length. Antibodies against the cherry 

protein were not specific and showed only cross reactions with high molecule weight 

in immunoblots (data not shown). 
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4.1.4 The peripheral pool of Atg8 localizes to a PI3P containing ring 
around the vacuole 
 
The atg8∆, atg1∆ and atg1∆ atg27∆ strains were transformed with the pGFP-Atg8 

plasmid. The cells were stained with the endosomal / vacuolar membrane marker 

FM4-64 as described in chapter 3.2.26.3 (Fig. 20 (A.)). 

In Fig. 20 (B.) the cells were cotransformed with GFP-Atg8 and a plasmid expressing 

a RFP-FYVE fusion protein. The FYVE domain binds to PI3P (Stenmark, 2002). The 

vacuole was additionally visualized using the vacuolar marker Cell tracker blue 

CMAC as described in chapter 3.2.26.4.  

 

 
 
Fig. 20 The peripheral pool of Atg8 localizes to a PI3P containing ring around the vacuole 
All strains in WCG background. (A.) Microscopic analysis of the localization of GFP-Atg8 in different 
knockout strains after 4 h starvation in SD(-N)-medium using the endosomal / vacuolar membrane 
marker FM4-64 and (B.) a combination of the RFP-tagged PI3P binding domain FYVE and the 
vacuolar marker Cell tracker blue CMAC. 
 
The GFP-Atg8 plasmid complemented the atg8∆ phenotype. As a control the atg1∆ 

strain was used that restricted Atg8 to the PAS. In the atg1∆ atg27∆ strain GFP-Atg8 

partially colocalized with the PAS and showed an additional peripheral pool that 

colocalized with FM4-64 (Fig. 20 (A.)) and RFP-FYVE (Fig. 20 (B.)).  
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4.1.5 The peripheral pool of Atg8 localizes to endosomes 
 
Vps4 is an AAA+ ATPase (Babst, 1997). It plays a critical role in the MVB sorting 

pathway by catalyzing the dissociation of all three ESCRT complexes from the 

endosome (Katzmann, 2001). Inactivation of Vps4 results in the accumulation of the 

ESCRT machinery on the endosomal surface leading to enlarged endosomal 

structures (Hurley and Emr, 2006).  

In the WCG4a atg1∆ atg27∆ strain the vps4 gene was deleted. A PCR reaction using 

the primers (Primer 1 vps4 ko NAT and Primer 2 vps4 ko NAT) and the pFA6-natNT2 

plasmid as template was performed. The resulting deletion cassette was used for 

homologues recombination in the WCG4a atg1∆ atg27∆ strain (chapter 3.2.15). The 

cells were grown on nourseotricin (clonNAT) and tested for correct integration using 

southern blot (chapter 3.2.18) (data not shown). 

The atg1∆ atg27∆ strain was used as a control for the normal size of the peripheral 

GFP-Atg8 dots. Together with atg1∆ atg27∆ vps4∆ cells they were cotransformed 

with GFP-Atg8 and Ape1-RFP and imaged (Fig. 21 (A.)). 
 
Snf7 is one of two major components of ESCRT-III that localizes to endosomal 

membranes (Hurley and Emr, 2006) and can therefore be used as an endosomal 

marker. 

Two strains atg1∆ atg27∆ (WCG4a MATα atg1Δ::KAN atg27Δ::HIS3) and Snf7-RFP 

(S288C MATa Snf7-RFP::KAN), carrying a pRS315 (LEU) plasmid, were crossed. 

The diploid cells were selected on CM –HIS -LEU and transferred to 1% potassium 

acetate for 5 days. The sporulated cells were used for random spores treatment as 

described in chapter 3.2.16.3 and then selected on CM –HIS –LEU +KAN to receive 

a haploid atg1∆ atg27∆ Snf7-RFP strain. The cells were tested by western blot 

analysis for maturation of Ape1 after 4 h SD(-N) starvation and their RFP signal in 

microscopy (data not shown). 

Atg1∆ atg27∆ and atg1∆ atg27∆ SNF7-RFP cells were transformed with GFP-Atg8 

and imaged after 4 h starvation in SD(-N) (Fig. 21 (B.)) 
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Fig. 21 Accumulation of the peripheral Atg8 pool in vps4∆ cells and colocalization with the 
endosomal protein SNF7. 
(A.) Microscopic analysis of the localization of GFP-Atg8 in different knockout strains using the PAS 
marker Ape1-RFP. The upper row of pictures shows atg1∆ atg27∆ cells, the lower two rows of pictures 
show atg1∆ atg27∆ vps4∆ cells. (B.) Microscopic analysis of GFP-Atg8 in an atg1∆ atg27∆ 
chromosomally Snf7-RFP tagged strain. 
 
The atg1∆ atg27∆ vps4∆ strain showed a clear accumulation of GFP-Atg8 at the 

peripheral dots compared to the atg1∆ atg27∆ strain (Fig. 21 (A.)).  

The chromosomal integrated Snf7-RFP colocalized with the GFP-Atg8 in the atg1∆ 

atg27∆ yeast (Fig. 21 (B.)). 
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4.1.6. Quantification of the Atg8 peripheral pool in different deletion 
strains 
 
GFP-Atg8 was transformed into atg1∆, atg1∆ atg27∆ double mutant and atg1∆ 

atg27∆ vps4∆ triple mutant cells. 

At least three independent experiments were quantified. Cells with clear GFP-Atg8 

dots were sorted into one of the following categories: one GFP-dot; two GFP-dots; 

more than two GFP-dots. 

 

 
 
Fig. 22 Quantification of the Atg8 peripheral pool in different deletion strains 
Data from at least three independent experiments (atg1∆ n=193; atg1∆ atg27∆ n=314; atg1∆ atg27∆ 
vps4∆ n=145) 
 
84% of atg1∆ cells had one GFP-Atg8 dot. Only 2% showed more than two dots. But 

40% of atg1∆ atg27∆ cells and even 46% of atg1∆ atg27∆ vps4∆ cells had more than 

two GFP-Atg8 dots. The amount of cells with more than one GFP-dot increased in 

cells lacking Atg1 Atg27 and additionally Vps4. 

 
 

4.1.7 Characterization of the Atg8 peripheral pool 
 
Kirisako et al. showed a shift in the distribution of GFP-Atg8* compared to wildtype 

GFP-Atg8 from P100 to P13 in atg4∆ atg8∆ cells in a subcellular fractionation 

experiment (Fig. 23 (A.)) (Kirisako, 2000). This shift represented the different 

localizations of wild type and mutant GFP-Atg8* in microscopy (Fig. 18 (B.)). The 

fractionation experiment was extended to analyze the peripheral pool in atg1∆ 
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atg27∆ cells compared to atg1∆ cells (Fig. 23 (A.)). GFP-Atg8 was transformed in 

atg1∆, atg1∆ atg27∆ and atg4∆ atg8∆ cells. As a control for experimental procedure 

atg4∆ atg8∆ cells were also transformed with GFP-Atg8*. In Fig. 23 (A.) stationary 

cells were harvested, converted to spheroplasts and hypotonically lysed. Lysates 

were cleared by centrifugation at 500 g for 10 min. Low-speed pellet P13 (13000 g 

pellet), high-speed pellet P100 (100000 g pellet) and high-speed supernatant S100 

(100000 g sup.) were generated as described by Kirisako et al. (Kirisako, 2000). The 

pellets were dissolved in corresponding volume of Laemmli buffer and processed for 

immunoblots (chapter 3.2.23). 

In Fig. 23 (B.) SD(-N) starved cells were harvested. Cells were converted to 

spheroplasts, solubilized in lysisbuffer and homogenized with 40 beats of a douncer. 

After preclearing, supernatant was applied on the top of a sucrose gradient (18%-

54% sucrose). After 3 h of ultracentrifugation 18 fractions were collected and 

precipitated. The pellets were dissolved in Laemmli buffer and processed for 

immunoblots (chapter 3.2.24). 

 

 
 
Fig. 23 Characterization of the Atg8 peripheral pool.  
All strains in WCG background. Cells expressing GFP-Atg8 from a plasmid were treated as described 
in chapter 3.2.23 (A.) Subcellular fractionation and 3.2.24 (B.) Sucrose gradient analyzed by western 
blot using a monoclonal GFP mouse antibody. 
 
In the subcellular fractionation experiment (Fig. 23 (A.)), no shift of plasmid 

expressed wild type GFP-Atg8 could be detected in the distribution pattern of atg1∆ 

compared to the double deletion atg1∆ atg27∆. 

In the sucrose gradient (Fig. 23 (B.)) also no shift in the distribution of Atg8 in atg1∆ 

atg27∆ cells compared to atg1∆ could be detected. The quality of the sucrose 
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gradient was tested using the endosomal marker Pep12 that was mainly located in 

fraction 5 and 6 in all four gradients (data not shown).  

In the subcellular fractionation as well as the sucrose gradient, a shift could be seen 

in atg4∆ atg8∆ cells expressing GFP-Atg8 and GFP-Atg8* used as a control for the 

successful experiment. 

4.1.8 Chromosomal integration of GFP-Atg8 
 
GFP-Atg8 was chromosomally integrated behind the endogenous Atg8 promoter 

using a Cre-Lox recombination strategy (chapter 3.2.17). The integration was done in 

WCG4a wt, atg1∆ and atg1∆ atg27∆ cells and verified by PCR (data not shown). 

All three strains were grown to stationary phase and shifted to SD(-N)-medium for 4 h 

before imaging.  

 

 
 
Fig. 24 Chromosomal integrated cGFP-Atg8 
YPD-medium (left) and CM-medium containing all amino acids (right) were used as growth medium. 
At stationary phase (OD600 = 6) cells were starved for 4 h in SD(-N) and photos were taken. 
 
GFP-Atg8 accumulated in the vacuole of wild type cells. Some cells showed one 

GFP-Atg8 dot. The majority of atg1∆ cells the GFP signal was restricted to a single 

dot. Atg1∆ atg27∆ cells often showed membranous GFP structures but rarely dots. 
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4.1.9 Comparison of plasmid GFP-Atg8 and chromosomal GFP-Atg8 
 

 
 
Fig. 25 Comparison of plasmid and chromosomal GFP-Atg8 
The proportions in this figure are not correct. The letters between GFP and Atg8 represent amino 
acids in single letter code. The lox site derives from the cre recombination (chapter 3.2.17), it is 69 bp 
long and leads to 23 additional amino acids in front of GFP.  
 
The two GFP-Atg8 differ in three points: the expression level, the remaining lox site 

between promoter and GFP and the linker connecting the GFP with Atg8. 
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4.2 Piecemeal microautophagy of the nucleus (PMN / 
micronucleophagy) 
 
In the yeast S. cerevisiae autophagy selective degradation of nearly all 

compartments by autophagy has been described. Even the nucleus is degraded in a 

microphagic process, which has been called piecemeal microautophagy of the 

nucleus (PMN), and is induced by nitrogen starvation (Roberts, 2003). PMN occurs 

at contact sites between the nucleus and the vacuole, the so called vacuolar 

junctions (NV-junctions) and are formed by a set of proteins. Nvj1 is anchored in the 

inner and outer nuclear membrane, spans the whole contact site and interacts on the 

vacuolar membrane with Vac8 (Fig. 9) (Millen, 2008). In vac8∆ cells, Nvj1 fails to 

concentrate into NV-junctions and instead encircled the nucleus. NV-junctions are 

absent in both nvj1∆ and vac8∆ cells (Pan, 2000). Therefore vac8∆ cells were used 

as negative-control for all PMN experiments in this study. Under starvation conditions 

Nvj1 enhances the recruitment of Tsc13 and Osh1. Both proteins are involved in the 

lipid metabolism of the cell (Kvam and Goldfarb, 2007). GFP-Osh1 has been shown 

to be a reliable molecular marker to follow nuclear degradation by PMN (Krick, 

2008b).  

The formation of PMN vesicles depends on these NV-junction proteins and more 

recently the autophagic machinery has been described to be involved in the PMN 

process (Krick, 2008b). 

 
 

4.2.1 Detection of intravacuolar free-floating PMN vesicles 
 
Studies concerning PMN were mainly focused on NV-junction proteins. Their 

degradation was followed using immunoblots and EM and microscopy.  

The nuclear content of PMN vesicles was traced using a NLS-mcherry fusion protein 

consisting of the nuclear localization sequence of Nab2 and a tandem repeat of the 

fluorescent mcherry protein. The lipase-like Atg15 protein is required for intravacuolar 

lysis of autophagic bodies and PMN vesicles. Atg1 is a core autophagic protein 

required for all known autophagic processes in S. cerevisiae (chapter 2.5.5). 

Atg15∆ and atg1∆ atg15∆ cells expressing NLS-mcherry were starved for 4 h in SD(-

N) and examined using videomicroscopy (Fig. 26 (A.)).  
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Atg15∆ cells expressing NLS-mcherry and the autophagosomal marker GFP-Atg8 

(Fig. 26 (B.)) or the cytosolic marker 3-phosphoglycerate kinase (PGK) (Fig. 26 (C.)) 

were starved for 4 h in SD-(N). Both images (shown in Fig. 26 (B) and Fig. 26 (C)) 

were taken simultaneously with a Leica TCS SP2 AOBS confocal laser scan 

microscope. 

 

 
 
Fig. 26 Detection of intravacuolar free-floating PMN vesicles by fluorescence microscopy.  
(A.) Videomicroscopy of atg15∆ cells expressing NLS-2mcherry. Cells were starved for 4 h in SD(-N). 
The imaging of picture 1 - 10 took about 2 sec and pictures 11 - 15 about 1 sec. Atg15∆ cells 
expressing NLS-mcherry and GFP-Atg8 (B.) or PGK-GFP (C.) were starved for 4 h in SD-(N) and 
imaged using a confocal laser scan microscope. 
 
In atg15∆ cells free floating red vesicles accumulated in the vacuole. The red 

fluorescent vesicles were absent in atg1∆ atg15∆ cells (Fig. 26 (A.)). 

Fig. 26 (B.) and Fig. 26 (C.) showed significantly more green than red fluorescent 

intravacuolar vesicles. The red and green vesicles did not overlap. 

 
 

4.2.2 PMN depends on the autophagic core machinery 
 
Krick et al. showed, using western blot analysis, that the degradation of GFP-Osh1 

depends on the core autophagic machinery (Krick, 2008b). 

PMN can also be visualized microscopically by NLS-mcherry (Fig. 26). Cells 

expressing NLS-mcherry and the autophagosome marker GFP-Atg8 were starved for 

4 h in SD(-N) medium in the presence of 1 mM proteinase B inhibitor PMSF. 
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Fig. 27 PMN depends on the autophagic core machinery 
The indicated mutant cells coexpressing NLS-mcherry and the autophagic marker GFP-Atg8 were 
starved for 4 h in SD(-N)-medium in the presence of 1 mM PMSF. White arrowheads indicate vesicles. 
  
In wild type, atg15∆ and pep4∆ cells red and green fluorescent vesicles accumulated 

in the vacuole. The vac8∆ cells showed green but no red vesicles in the vacuole. All 

other knockouts neither had a GFP nor a RFP signal in the vacuole, which is in 

accordance with the western blot analysis of PMN (shown in (Krick, 2008b) (Krick, 

2008a)). 

 
 

4.2.3 Quantification of PMN induction 
 
To find out the best stimulus for PMN induction different starvation media were 

tested. Stationary (OD600 = 6) wild type and vac8∆ cells expressing GFP-Osh1 were 

shifted to different starvation conditions: SD(-N)-media, 1% KAc (potassium acetate), 

1% KAc + 2% glucose and CM-medium containing rapamycin (0.2 µg / ml), a TOR 

(target of rapamycin) inhibitor leading to autophagy induction (chapter 2.5.5).  
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Fig. 28 Quantification of PMN induction 
All strains in WCG background. Upper part: Cells expressing GFP-Osh1 were shifted to different 
starvation conditions, were alkaline lysed at the indicated time points and analyzed by western blot 
analysis using a monoclonal GFP mouse antibody. Lower part: The free GFP-band of three 
independent experiments were quantified using the aida software. The 6 h value of the wild type strain 
in SD(-N) of each experiment was set to 100%. Values are shown with SED. 
 
SD(-N) caused the brightest free GFP signal. Until 4 h induction rapamycin treatment 

resulted in the same amount of free GFP. Then the GFP signal decreased drastically 

to 40%. In 1% potassium acetate the results showed a slower increase in free GFP 

compared to SD(-N) starvation. Addition of 2% glucose decreased the free GFP rate. 
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4.2.4 Cdc48.3 
 
Cdc48 belongs to the family of AAA+ ATPases. It is involved in many cellular 

processes like membrane fusion (chapter 2.6.1). The human homologue of Cdc48 is 

believed to extract ubiquitin conjugated fusion inhibitors out of complexes or lipid 

membranes and thus mediate fusion events (Schuberth and Buchberger, 2008). 

Therefore the involvement of Cdc48 in PMN membrane fusion events was tested. 

Crossing of the cdc48-3 and WCG4 (wild type in the lab) strain generated the 

Cdc48.3 temperature sensitive strain in WCG background as described in chapter 

3.2.16. The strain did not grow at 38°C which was set as restrictive temperature. The 

viability at this temperature in SD(-N)-medium for 4 h was not altered compared to 

wild type cells (data not shown). 

In the BY4741 background the Cdc48.3 strain showed a growth defects at 36°C. The 

restrictive temperature for W303 was 34°C. 

 
The experiments were conducted as described in chapter 3.2.25.2 in these three 

different backgrounds (WCG (I.); BY4741 (II.); W303 (III.)). The blots were reprobed 

with antibodies to 3-phosphoglycerate kinase (PGK) as loading control. The samples 

were loaded again, blotted and the maturation of Ape1 was tested using polyclonal 

Ape1 antibodies. 
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Fig. 29 (cont.) 
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Fig. 29 (cont.) 
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Fig. 29 Cdc48.3 (I.) WCG, (II.) BY4741 and (III.) W303 background 
(I.) All strains in WCG background. (II.) All strains in BY4741 background. (III.) All strains in W303 
background. Cells expressing GFP-Osh1 (A.) or GFP-Atg8 (B.). Cells were pre-cultured at 23°C, 
shifted to SD(-N)-medium, divided in two equal parts and incubated at 23 or 34°C (W303), 36°C 
(BY4741) or 38°C (WCG). Western blot analysis of alkaline lysed cells at indicated time points. Blots 
were probed using a GFP monoclonal antibody and reprobed using a monoclonal PGK antibody (I. 
and II.). In WCG background (I.) the maturation of Ape1p was detected with a polyclonal rabbit Ape1 
antibody. 
Quantification: The free GFP-signal was quantified: Quantificatin by aida software: (I.) three (A) or four 
(B) independent experiments; (II.) three (A) or two (B) independent experiments; (III.) one experiment 
(B) was quantified.The 4 h value of the wt cells at 23°C was set to 100% in each experiment. Values 
are shown with SED.  
 
(I.) WCG background: 

The degradation of GFP-Osh1 was normal in Cdc48.3 cells at the permissive 

temperature but a 50% reduction of free GFP was detectable at the restrictive 

temperature. 

The degradation of GFP-Atg8 was slightly reduced at the permissive temperature. 

This effect was drastically increased at 38°C. 
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Ape1 maturation was independent on the temperature. Wild type cells produced 

matured Ape1 and atg1∆ cells showed no maturation of Ape1. The PGK loading 

controls showed no significant difference between samples. 

 

(II.) BY4741 background: 

After PMN induction Cdc48.3 cells expressing GFP-Osh1 showed only small 

amounts of free GFP independent on the temperature. There was no difference in 

free GFP between 23°C and 38°C, but a significant decrease in free GFP compared 

to wild type. 

GFP-Atg8 degradation was low in Cdc48.3 cells even at the permissive temperature. 

An increase to the restrictive temperature reduced the free GFP. The PGK controls 

showed no significant difference between samples. 

 

(III.) W303 background: 

GFP-Osh1 showed no free GFP-signal in wild type. Cdc48.3 had a free GFP signal, 

which did not change between permissive and restrictive temperature. GFP-Atg8 

showed a reduction in free GFP at the restrictive temperature. 
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4.2.5 Cdc48 cofactors 

4.2.5.1 The substrate recruiting adaptor Shp1 is required for PMN and 
macroautophagy 
 
UBX proteins in general are cofactors for Cdc48 / p97 (chapter 3.6.1). In humans the 

homologues of the substrate recruiting adaptor Shp1 (p47) and Cdc48 (p97) control 

the fusion of homotypic Golgi membranes (Kondo, 1997). Ubx2 and Ubx5 are 

described as additional substrate recruiting factors for Cdc48 (Tab. 1) (Schuberth, 

2004) (Schuberth and Buchberger, 2008).  

Cells were transformed with GFP-Osh1 (Fig. 30 (A.) upper part and (Fig. 30 (B.)) or 

GFP-Atg8 (Fig. 30 (A.) lower part), grown to stationary phase and starved for up to 8 

h. Samples were taken at the indicated time points, alkaline lysed and prepared for 

immunoblots (chapter 3.2.25.1). 

 

 
 
Fig. 30 The Cdc48 substrate adaptor Shp1 is required for PMN and autophagy (A.), but non of 
the other ubx protein family members (B.) 
All strains were BY4741 background. Cells were transformed with GFP-Osh1 (A) upper blot and (B) or 
GFP-Atg8 (A.) lower two blots. Western blot of alkaline lysed stationary (0 h) and starved (2 – 8 h) 
SD(-N)) yeast cells. GFP-Osh1, GFP-Atg8 and free GFP were detected using a mouse monoclonal 
GFP antibody. The maturation of Ape1p was detected with a polyclonal rabbit Ape1 antibody. Three 
independent experiments showed comparable results. 
 
Ubx2∆, ubx3∆, ubx4∆, ubx5∆, ubx6∆ and ubx7∆ showed the same amount of free 

GFP as the corresponding wild type cells expressing GFP-Osh1. The free GFP was 

drastically reduced in shp1∆ cells expressing GFP-Osh1 or GFP-Atg8. Ape1 was 

matured in shp1∆ cells. 
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4.2.5.2 Other known complex partners and processing factors of Cdc48 
 
Despite the UBX family there are other known complex partners and processing 

factors of Cdc48. Der1 and Dfm1 are homologue proteins (Hitt and Wolf, 2004). They 

both interact with Cdc48 but are part of distinct complexes (Goder, 2008) involved in 

ER-associated protein degradation (ERAD). The trimeric Cdc48-Ufd1-Npl4 complex 

is the core component in the export of misfolded ER substrates (ERAD) (Raasi and 

Wolf, 2007). Ufd1 and Npl4 deletion strains are inviable, therefore a ufd1.1 point 

mutant lacking the ERAD function was analyzed (Jarosch, 2002). This mutant was 

also mutated in prc1 (prc1.1) that codes for the carboxypeptidase Y (CPY; proteinase 

C). Ufd2 and Ufd3 bind Cdc48 via the same region and compete for Cdc48 binding 

(Rumpf and Jentsch, 2006). Ufd2 promotes Cdc48 dependent degradation of 

ubiquitylated substrates whereas Ufd3 stabilizes substrates. The human UBX(-like) 

protein VCIP135 has been described as the only cofactor that cooperates with the 

p97-p47 complex in membrane fusion events (Uchiyama, 2002) (Kano, 2005). In 

contrast to VCIP135, the yeast homologue Otu1 has been characterized in Cdc48 

Ufd1-Npl4-dependent degradation processes (Rumpf and Jentsch, 2006), where it 

participates in the antagonistic interplay of Ufd2 and Ufd3. 

Cells were transformed with GFP-Osh1 (Fig. 31 (A.)) or GFP-Atg8 (Fig. 31 (B.)), 

grown to stationary phase and starved for up to 8 h. Samples were taken at the 

indicated time points, alkaline lysed and prepared for immunoblots (chapter 3.2.25.1).  
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Fig. 31 Complex partners and processing factors of Cdc48 
All strains except wt to ufd1.1 and ufd1.1 prc1.1 were BY4741 background. Cells were transformed 
with GFP-Osh1 (A.) or GFP-Atg8 (B.). Western blot of alkaline lysed stationary (0 h) and starved (2 – 
8 h SD(-N)) yeast cells. GFP-Osh1, GFP-Atg8 and free GFP were detected using a mouse 
monoclonal GFP antibody.  
 
Dfm1∆, der1∆, ufd2∆ and otu1∆ showed the same amount of free GFP as the 

corresponding wild type cells. The free GFP signal in cells expressing GFP-Osh1 

was reduced in ufd3∆ cells (this result was reproduced three times) (Fig. 31 (A.)) but 

only slightly affected in cells expressing GFP-Atg8 (Fig. 31 (B.)). The wild type in 

BWG1-7a background (wt to ufd1.1) expressed the GFP-Osh1 fusion protein at low 

level. The strain had hardly any free GFP. The ufd1.1 prc1.1 cells produced free 

GFP.  
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4.2.6 Monoubiquitin is required for PMN and autophagy 
 
Cdc48 in combination with Shp1 is described in the literature to interact with 

ubiquitinated proteins. Doa4 is a ubiquitin isopeptidase, required for recycling of 

ubiquitin from proteasom-bound polyubiquitinated proteins. Its deletion depletes the 

cellular ubiquitin level (Swaminathan, 1999) (Ren, 2008). 

Wild type and doa4∆ cells expressing GFP-Osh1 or GFP-Atg8 were starved in SD(-

N). Samples were taken, alkaline lysed and prepared for immunoblots (chapter 

3.2.25.1) (Fig. 32 (A.)). 

Even monoubiquitin- or polyubiquitin-conjugated proteins can interact with Cdc48 

complexes. Ubiquitin is bound on its C-terminal glycine to a target protein. For 

polyubiquitin chain formation the C-terminus of a free ubiquitin molecule is covalently 

bound to a intramolecular lysine (one letter code: K) of the target protein bound 

ubiquitin. Ubiquitin has 7 intracellular lysines, three of them are typically used for 

polyubiquitination (K29, K48 and K63).  

To investigate whether polyubiquitin conjugation is required for PMN, cells were 

cotransformed with pGFP-Osh1 and plasmids expressing modified ubiquitin 

molecules under the control of an inducible copper promoter. The ubiquitin molecules 

contained substitutions of lysines to arginines (one letter code: R) at position 29, 48, 

63 or all lysines. The cells were shifted to media containing 100 µM copper sulfate for 

3 h. After induction most of the ubiquitin in the cell was modified and used for normal 

ubiquitination, but could not be polyubiquitin conjugated at the modified position 

(dependent on the plasmid used). The cells were transferred to SD(-N) starvation 

medium and samples were collected at the indicated time points, alkaline lysed and 

prepared for immunoblots (chapter 3.2.25.1) (Fig. 32 (B.)).  
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Fig. 32 Monoubiquitin is required for PMN and autophagy 
(A.) All strains were BY4741 background. (B.) All strains were SEY background. Cells were 
transformed with GFP-Osh1 (A.) upper part and (B.) or GFP-Atg8 (A.) lower part. Western blot of 
alkaline lysed stationary (0 h) and starved (2 – 8 h SD(-N)) yeast cells. GFP-Osh1, GFP-Atg8 and free 
GFP were detected using a mouse monoclonal GFP antibody.  
 (A.) Three independent experiments and (B.) two independent experiments showed comparable 
results. 
 
Doa4∆ cells showed a clear reduction in free GFP signal compared to wild type. 

There was no difference in free GFP signal in control cells compared to one of the 

modified ubiquitins. Even for the ubiquitin molecule without any lysine the free GFP 

signal showed no decrease. This points to the requirement of monoubiquitin for PMN 

and autophagy. 
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4.2.7 Ubp3 and Bre5 are only required for PMN 
 
The ubiquitin protease Ubp3 and its cofactor Bre5 are required for selective 

autophagic degradation of the large 60S subunit of ribosomes upon starvation 

(ribophagy). Indeed the catalytic activity of the ubiquitin protease Ubp3 is necessary 

for its ribophagic function, implying that this process requires the cleavage of 

ubiquitin from a yet unknown substrate (Kraft, 2008). As ribophagy is a selective 

variant of autophagy the involvement of Ubp3 or Bre5 was tested in selective 

degradation of the nucleus. 

Wild type, vac8∆, ubp3∆ and bre5∆ cells were transformed with GFP-Osh1 (Fig. 33 

(A.)) or GFP-Atg8 (Fig. 33 (B.)). Stationary cells were shifted to SD(-N) starvation 

medium and samples were collected at the indicated time points, alkaline lysed and 

prepared for immunoblots (chapter 3.2.25.1).  

 

 
 
Fig. 33 Ubp3 and Bre5 are only required for PMN 
All strains were BY4741 background. Cells were transformed with GFP-Osh1 (A.) or GFP-Atg8 (B.). 
Western blot of alkaline lysed stationary (0 h) and starved (2 – 6 h SD(-N)) yeast cells. GFP-Osh1, 
GFP-Atg8 and free GFP were detected using a mouse monoclonal GFP antibody. (A.) Three 
independent experiments showed comparable results. 
 
In Fig. 33 (A.) ubp3∆ and bre5∆ cells showed a clear reduction in free GFP 

compared to wild type cells. In contrast the free GFP signal was comparable to wild 

type cells when GFP-Atg8 was expressed (Fig. 33 (B.)). 
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4.2.8 VPS class E genes are only required for PMN 
 
Vps27 and Vps28 belong to class E vps genes and are required for formation of 

multivesicular bodies in late endosomes. In class E mutant strains, the structure of 

the endosomes is abnormally enlarged and transport and retrieval from this 

compartment is severely affected. Class E mutants are not required for the Cvt-

pathway or autophagy (Reggiori, 2004), but could be involved in micronucleophagy. 

Wild type, vac8∆, vps27∆ and vps28∆ cells were transformed with GFP-Osh1 

(Fig. 34 (A.)) or GFP-Atg8 (Fig. 34 (B.)). Stationary cells were shifted to SD(-N) 

starvation medium and samples were collected at the indicated time points, alkaline 

lysed and prepared for immunoblots (chapter 3.2.25.1). 

 

 
 
Fig. 34 Vps27 and Vps28 are only required for PMN 
All strains were BY4741 background. Cells were transformed with GFP-Osh1 (A.) or GFP-Atg8 (B.). 
Western blot of alkaline lysed stationary (0 h) and starved (2 – 8 h SD(-N)) yeast cells. GFP-Osh1, 
GFP-Atg8 and free GFP were detected using a mouse monoclonal GFP antibody. (A.) Three 
independent experiments showed comparable results. 
 
The vps27∆ and vps28∆ strains showed a clear reduction in free GFP compared to 

wild type. In contrast the free GFP signal was comparable to wild type cells when 

GFP-Atg8 was expressed. 

 

Bsd2 and Tul1 are required for efficient ubiquitination of membrane proteins of the 

MVB pathway and contribute to the removal of misfolded membrane proteins 

(Hettema, 2004). 

Wild type, vac8∆ and bsd2∆ tul1∆ cells were transformed with GFP-Osh1. Stationary 
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cells were shifted to SD(-N) starvation medium and samples were collected at the 

indicated time points, alkaline lysed and prepared for immunoblots (chapter 3.2.25.1). 

 

 
 
Fig. 35 Further strains involved in MVB transport 
All strains were BY4741 background. Cells were transformed with GFP-Osh1. Western blot of alkaline 
lysed stationary (0 h) and starved (2 – 6 h SD(-N)) yeast cells. GFP-Osh1 and free GFP were detected 
using a mouse monoclonal GFP antibody. 
 

Bsd2∆ tul1∆ double mutant cells showed no reduction in free GFP compared to wild 

type cells. 
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4.2.9 The Fatty acid elongation machinery is not required for PMN 
 
Fatty acid elongation requires biochemical reactions that are catalyzed by Elo2, Elo3, 

Tsc13, and Ybr159 (Rössler, 2003). The products of this elongation machinery are so 

called very-long-chain fatty acids (VLCFAs), which have been proposed to promote 

highly curved membrane structures (Schneiter and Kohlwein, 1997). Kvam et al. 

speculated that VLCFAs may be required for the efficient biogenesis of highly curved 

PMN vesicles. They described a reduced vesicle size in Tsc13-1 mutant cells and 

Tsc13-1 cells lacking Elo3 (Kvam, 2005).  

Tsc13∆ cells are not viable and therefore were not used in this study. Wild type, 

vac8∆, elo2∆, elo3∆ and YBR159∆ cells were transformed with GFP-Osh1. 

Stationary cells were shifted to SD(-N) starvation medium and samples were 

collected at the indicated time points, alkaline lysed and prepared for immunoblots 

(chapter 3.2.25.1). 

 

 
 
Fig. 36 Fatty acid elongation machinery is not required for PMN 
Alls strains were BY4741 background. Cells were transformed with GFP-Osh1. Western blot of 
alkaline lysed stationary (0 h) and starved (2 – 8 h SD(-N)) yeast cells. GFP-Osh1 and free GFP were 
detected using a mouse monoclonal GFP antibody. 
 
Elo2∆, elo3∆ and YBR159∆ cells showed no reduction in free GFP compared to wild 

type cells. 
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4.2.10 Proteins involved in cortical ER inheritance are not required for 
PMN 
 
All proteins discussed in this chapter have been described to be involved in the 

inheritance of the cortical ER. The integral membrane proteins Yop1 and Rtn1 

generate the tubular structure of the endoplasmic reticulum (ER) (Hu, 2008).  

Scs2 and Ice2 are proteins, which are involved in cortical ER inheritance and in 

additional perturb septin assembly at the bud neck. Scs2 has a function in targeting 

Osh1 to NV-junctions, although it is not strictly required for the localization of GFP-

Osh1p (Loewen, 2003).  

Myo4 is a type V myosin motor protein, which is required for the delivery of cortical 

ER into daughter cells during bud formation in yeast. She2 and She3 interact with 

Myo4, but only She2 is required for cortical ER inheritance and acts as a linker 

between cargo proteins and Myo4 (Du, 2004). 

Wild type, vac8∆, rtn1∆, ice2∆, yop1∆, scs2∆, myo4∆, she2∆ and she3∆ cells were 

transformed with GFP-Osh1. Stationary cells were shifted to SD(-N) starvation 

medium and samples were collected at the indicated time points, alkaline lysed and 

prepared for immunoblots (chapter 3.2.25.1). 

 

 
 

 
 
Fig. 37 Proteins involved in cortical ER inheritance are not required for PMN 
All strains were BY4741 background. Cells were transformed with GFP-Osh1. Western blot of alkaline 
lysed stationary (0 h) and starved (2 – 6 h SD(-N)) yeast cells. GFP-Osh1 and free GFP were detected 
using a mouse monoclonal GFP antibody. 
 
Rtn1∆, ice2∆, yop1∆, scs2∆, myo4∆, she2∆ and she3∆ cells showed no reduction in 

free GFP compared to wild type cells. 
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4.2.11 Analysis of a mutant with misshaped nucleus 
 
In spo7∆ mutants the nucleus is misshaped exhibiting a single protrusion that may be 

degraded by PMN. The Spo7 protein is part of a phosphatase complex that 

represses phospholipid biosynthesis (Campbell, 2006). 

Wild type, vac8∆ and spo7∆ cells were transformed with GFP-Osh1. Stationary cells 

were shifted to SD(-N) starvation medium and samples were collected at the 

indicated time points, alkaline lysed and prepared for immunoblots (chapter 3.2.25.1). 

 

 
 
Fig. 38 Analysis of a mutant with misshaped nucleus 
All strains were BY4741 background. Cells were transformed with GFP-Osh1. Western blot of alkaline 
lysed stationary (0 h) and starved (2 – 6 h SD(-N)) yeast cells. GFP-Osh1 and free GFP were detected 
using a mouse monoclonal GFP antibody. 
 
Spo7∆ cells showed a reduction in free GFP in 2 of 3 experiments compared to wild 

type cells. 

 
 

4.2.12 Summary of strains required for PMN identified in this study  
 
Tab. 14 All strains were transformed with GFP-Osh1. 
Strain Free GFP Times  

reproduced 
   

Fig. 29 Cdc48.3 
cdc48.3 -  6* 
   
Fig. 30 Cdc48 substrate recruiting adaptors 
ubx1∆ / shp1∆ - 3 
ubx2∆ + 2 
ubx3∆ + 2 
ubx4∆ + 2 
ubx5∆ + 2 
ubx6∆ + 2 
ubx7∆ + 2 
 
 

  

Fig. 31 complex partners of Cdc48 
der1∆ + 1 
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Strain Free GFP Times  
reproduced 

dfm1∆ + 1 
otu1∆ + 1 
ufd1_1     +*** 1 
ufd2∆ + 1 
ufd3∆ / doa1∆ reduced 1 
   

Fig. 32 Ubiquitin 
doa4∆ - 3 
   

Fig. 33 Ubp3 and Bre5 
bre5∆ - 3 
ubp3∆ - 3 
   

Fig.34 VPS class E 
vps27∆ - 3 
vps28∆ - 3 
   

Fig. 35 Further strains involved in MVB 
bsd2∆ tul1∆ + 1 
   

Fig. 36 Fatty acid elongation machinery 
elo2∆ + 1 
elo3∆ + 1 
otu1∆ + 1 
   

Fig. 37 Cortical ER inheritance 
ice2∆ + 1 
myo4∆ + 1 
rtn1∆ + 1 
scs2∆ + 1 
she2∆ + 1 
she3∆ + 1 
yop1∆ + 1 
   

Fig. 38 Misshaped nucleus 
spo7∆ reduced** 3 
 
+ = with free GFP - = blocked / reduced free GFP 
* in two backgrounds (WCG4a and BY4741) 
** in 2 of 3 experiments 
*** problems with background 
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4.2.13 Summary of strains required for autophagy identified in this study  
 
Tab. 15 All strains were transformed with GFP-Atg8. 

 

 
+ = with free GFP - = blocked / reduced free GFP 
* in two backgrounds (WCG4a and BY4741) 
 
 

Strain Free GFP 
  

Fig. 29 Cdc48.3 
cdc48.3 -* 
  

Fig. 30 Cdc48 substrate recruiting adaptors 
ubx1∆ / shp1∆ - 
  

Fig. 31 complex partners of Cdc48 
ufd3∆ / doa1∆ reduced 
  

Fig. 32 Ubiquitin  
doa4∆ - 
  

Fig. 33 Ubp3 and Bre5 
bre5∆ + 
ubp3∆ + 
  

Fig. 34 VPS class E 
vps27∆ + 
vps28∆ + 
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5. Discussion 
 

5.1. Where are the autophagic membranes coming from? 
 
Autophagy starts at the pre- autophagosomal structure (PAS; phagophore assembly 

site). Out of this structure double membrane layered vesicles are formed and 

transported to the vacuole, where their outer membranes fuse with the vacuole, 

releasing a monolayered vesicle (autophagic body) into the vacuolar lumen. The PAS 

is believed to be an organelle-like membrane structure. Therefore a membrane 

source for the PAS itself and the formation of vesicles out of the PAS is required. 

Different cell compartments have been discussed as potential membrane sources 

(Ishihara, 2001) (Reggiori, 2004) (Reggiori, 2005) (Young, 2006) (Xie, 2008). The 

transmembrane protein Atg9 is suggested to be involved in transport of membrane to 

the PAS (Xie, 2008). It cycles between the PAS and a peripheral pool, which has 

been proposed to partially colocalizes with mitochondria (Reggiori, 2005) (Reggiori 

and Klionsky, 2006). Atg27 the second transmembrane protein located at the PAS is 

involved in the cycling of Atg9 (Yen, 2007). In atg27∆ and atg1∆ atg27∆ double 

knockout cells the localization of Atg9 to its peripheral pool is increased (Yen, 2007).  

In this study the stability of the peripheral GFP-Atg9 pool as well as the colocalization 

of this pool to mitochondria was not reproducibly stable (data not shown). But the 

peripheral GFP-Atg9 dots were completely lost in atg4∆ atg27∆ cells resulting in a 

diffuse signal (Fig. 16 (B.)). As Atg4 is required for the ubiquitin like conjugation of 

Atg8 to PE (phosphatidylethanolamine) (chapter 2.5.6.1 and Fig. 5) Atg8 is also a 

suitable candidate to follow the membrane flow.  

 
During autophagy Atg8 localizes to the PAS. In addition to PE conjugation and the 

Atg12–Atg5-Atg16 complex, its proper localization requires Atg9 and the autophagy-

specific phosphatidylinositol 3-kinase (PI3K) complex I (Xie, 2008). Atg8-PE is used 

as a common marker for autophagy. It is located to the inside and outside of the 

forming and completed autophagosomes but the coupling of Atg8 to PE is a 

reversible event. Atg8 is cleaved of from the outer membrane of the completed 

vesicles by Atg4 and is reused (Fig. 5). 

Furthermore, among the core autophagic machinery, Atg8 is the only protein, which 

has a significant elevated protein level when autophagy is induced (Kirisako, 1999). 
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The enhanced Atg8 level could somehow trigger an enhanced membrane flow. 

Legesse-Miller et al. showed that Atg8 plays an additional role in constitutive protein 

transport pathways from the ER to the Golgi. They demonstrated that overexpression 

of Atg8 leads to suppression of the temperature sensitive phenotype of the SNARE 

mutants bet1-1 and sec22-2 (Legesse-Miller, 2000). 

The results from Legese-Miller et al. were not reproducible in this study (data not 

shown).  

Wild type cells expressing GFP-Atg8 from a CEN plasmid showed a diffuse vacuolar 

GFP signal and in some cells a PAS dot. In atg1∆ cells Atg8 was restricted to the 

PAS (>75% of cells had a PAS signal). The double knockout strain atg1∆ atg27∆, 

that has been described to enrich GFP-Atg9 at a peripheral pool, showed also a PAS 

localization and an additional peripheral pool of GFP-Atg8 (Fig. 17). 

 
The peripheral pool of Atg8 was detected at a ring around the vacuole where PI3P is 

located (Fig. 20). In S. cerevisiae the endomembrane system resides around the 

vacuole and contains PI3P as a typical lipid component (Di Paolo and De Camilli, 

2006) (Gillooly, 2000). The endosomal localization of the peripheral pool of GFP-Atg8 

was confirmed by colocalization using the chromosomally tagged endosomal protein 

Snf7-RFP (Fig. 21 (B.)). In addition atg1∆ atg27∆ vps4∆ cells showed an 

accumulation of GFP-Atg8 at its peripheral pool compared to atg1∆ atg27∆ cells 

(Fig. 21 (A.)). Inactivation of Vps4 results in the enrichment of the ESCRT machinery 

on the surface of endosomes and enlargement of the compartment (class E 

compartment) (Babst, 1997). 

Thus all three results support a localization of the peripheral pool of Atg8 to 

endosomes. 

The quantification of the peripheral pool of Atg8 showed that 40% of atg1∆ atg27∆  

cells had more than two clear GFP dots. In contrast only 2% of the atg1∆ cells 

showed this phenotype. The deletion of Atg1 Atg27 and Vps4 additionally increased 

the number of cells showing a peripheral pool (Fig. 22). 

To confirm these microscopic results subcellular fractionation experiments were done 

as an independent approach. 

As control atg4∆ atg8∆ double deletion strains expressing either full length GFP-Atg8 

or GFP-Atg8*, lacking the C-terminal arginine were analysed. The cells showed the 

expected shift of GFP-Atg8 from P100 (100000 g pellet) to P13 (13000 g pellet) as 

previously described by Kirisako et al. (Kirisako, 2000). No shift could be detected in 
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atg1∆ atg27∆ cells compared to atg1∆ cells (Fig. 23 (A.)). An additional experiment 

using a sucrose gradient to separate the peripheral pool from the PAS pool showed 

no significant difference between the two strains (Fig. 23 (B.)). The quality of the 

gradient was tested using the endosomal marker Pep12 that, as expected, primarily 

located in the same fractions as the main peak of GFP-Atg8.  

Both fractionation experiments were unlikely to separate the PAS pool and the 

peripheral Atg8 pool. But they support the endosomal localization because of the 

overlap between Pep12 and GFP-Atg8 signal in the sucrose gradient. 

Up to now there are no other methods available to clearly separate the PAS from 

other membranous organelles. 

 
To investigate the involvement of the Atg8 conjugation machinery in the formation of 

the peripheral pool, two plasmids expressing a full length GFP-Atg8 and a GFP-

Atg8*, lacking the C-terminal arginine were analysed. In vivo this arginine has to be 

cleaved of by Atg4 before Atg8 can be coupled to PE in an ubiquitin like reaction 

(chapter 2.5.6.1 and Fig. 5). In atg4∆ atg8∆ cells expressing GFP-Atg8 the GFP 

signal was mainly cytosolic and only a rare PAS signal was detected because Atg8 

could not be coupled to PE (Fig. 18 (A.)). In contrast the GFP-Atg8* construct 

showed membranous structures colocalizing with the endosomal / vacuolar 

membrane marker FM4-64 (Fig 18 (B.)). 

A GFP-Atg8-cherry protein was created to investigate if the cleavage of Atg8 by Atg4 

and therefore the coupling to PE is required for the peripheral localisation of Atg8. 

The GFP-Atg8-cherry protein was expressed in different knockout cells. The cherry 

protein at the C-terminus of Atg8 did not influence the cleavage of GFP-Atg8-cherry 

by Atg4 (Fig. 19 (A)). In atg1∆ atg27∆ cells the GFP signal of GFP-Atg8-cherry was 

visible at the peripheral pool. This pool vanished in cells additionally lacking Atg4 

(Fig. 19 (B.)). But the GFP-Atg8-cherry only showed a diffuse microscopic cherry 

signal in all strains.  

These data suggest that Atg4 and therefore the lipidation of Atg8 is required for the 

efficient localization of Atg8 to the PAS as well as its peripheral pool. 

 
To show that the slight overexpression of the GFP-Atg8 from a CEN plasmid does 

not influence its localization, control strains as well as a atg1∆ atg27∆ strain 

expressing a chromosomally GFP-tagged Atg8 were constructed. 
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Atg1∆ atg27∆ cells often showed membranous GFP structures that did not resemble 

to endosomal structures but rarely dots (Fig. 24).  

The plasmid and chromosomal GFP-Atg8 differ only in three minor points: the 

expression level, the remaining lox site between promoter and GFP and the linker 

connecting GFP with Atg8 (Fig. 25). 

Only atg1∆ atg27∆ double mutant cells, expressing GFP-Atg8 from the plasmid, 

show a peripheral pool and not atg1∆ or atg27∆ single mutant cells. This result 

supports the assumption that the slight overexpression does not influence the 

localization, because the expression level is the same for all these strains. 

The lox site leads to 23 additional amino acids (aa) in front of GFP and  therefore 

may influence the folding of GFP but should not influence the function of Atg8, 

although this could not be excluded.  

The difference between the two linker regions connecting GFP and Atg8 maybe is an 

explanation for the detected differences in the localization of chromosomally and 

plasmid expressed GFP-Atg8. Instead of two aa seven aa are inserted. This linker is 

part of Atg8 and could influence the folding and function of Atg8, which could lead to 

a mislocalization. 

A direct detection of Atg8 with a specific antibody using immunogold EM in atg1∆ 

atg27∆ cells would be the best method to support the localization of Atg8 at 

endosomes. The antibody available for this study is not suitable for this purpose, 

because it hardly detects Atg8 in western blot or indirect immunofluorescence and 

has a high background signal (data not shown). The available antibody could be 

affinity purified or a new antibody could be generated. Alternatively a GFP 

monoclonal mouse antibody could be used in cells expressing GFP-Atg8 in 

immunogold EM, but this GFP-tagging could influence the correct localization of the 

fusion protein.  

In this study GFP-Atg8 expressed from a CEN plasmid showed a peripheral pool 

colocalizing with endosomes. These results are consistent with the localisation data 

from Atg9 in mammalian cells pointing to endosomes and TGN (trans Golgi network) 

(Young, 2006). 

 
Further studies concerning the peripheral pool of Atg8 could answer these 
questions:  
Which proteins are required for the cycling of Atg8? Is the peripheral pool of GFP-

Atg8 identical with the GFP-Atg9 pool? How do both cycling events correlate? Is 
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there more than one membrane source? May one peripheral pool serve as 

membrane source for the Cvt-pathway and the other for autophagy? 

 
 

5.2 Micronucleophagy in S. cerevisiae 
 

5.2.1 Micronucleophagy in S. cerevisiae requires the core autophagic 
genes 
 
Autophagy is a highly conserved process in eukaryotes. In S. cerevisiae the 

autophagic processes can be divided in two fundamentally different subtypes: 

microautophagy and macroautophagy. During macroautophagic processes double 

membrane-layered vesicles are formed, that contain cytosolic material as well as 

whole organells. Through fusion with the vacuolar membrane a still monolayered 

autophagic body is released into the vacuole. 

During microautophagic processes invaginations of the vacuolar membrane are 

formed, releasing a monolayered vesicle into the vacuole. The cargo of micro- and 

macroautophagic processes are degraded, recycled and reused for the synthesis of 

proteins strictly required for survival. 

 
Micronucleophagy (piecemeal microautophagy of the nucleus, PMN) is a bona fide 

microautophagic process. In S. cerevisiae Nvj1 forms contact sites between the 

nucleus and the vacuole. This protein spans the outer nuclear ER membrane and 

interacts with the inner nuclear ER membrane and Vac8 on the vacuolar 

membrane (Pan, 2000) (Millen, 2008). Micronucleophagy is induced by nutrient 

depletion. A tethered bleb is formed at the NV-junction, that is limited by three 

membrane layers: vacuolar membrane, outer nuclear membrane and inner nuclear 

membrane (Fig. 8 and 9). Upon induction of micronuclophagy Nvj1 recruits two 

additional proteins to the NV junctions (Kvam, 2005): Tsc13 and Osh1, which are 

both involved in the lipid metabolism of the cell.  

 
First studies suggested that the autophagic machinery is not required for PMN. The 

degradation of overexpressed marker proteins coupled to EYFP was measured in 

different yeast strains by quantifying the fusion protein using immunoblots. Atg7∆ 

cells showed comparable amounts of remaining fusion protein as wild type cells 

(Roberts, 2003) (Kvam, 2005) (Kvam and Goldfarb, 2006b). Atg7 is part of both 
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ubiquitin like conjugation systems during autophagy and is therefore strictly required 

for autophagic processes (Fig. 5). In contrast Krick et al. (Krick, 2008b) showed in a 

recent publication that PMN requires the core macroautophagy genes including Atg7. 

They analysed the degradation of the PMN marker protein GFP-Osh1 by quantifying 

the release of hydrolase resistant free GFP in the vacuole using western blot 

analysis. 

This study supports the latter finding using another molecular approach. To trace the 

nuclear content atg15∆ cells expressing a nuclear resident NLS-2mcherry fusion 

protein were imaged. Atg15 is a putative lipase, required for the breakdown of 

intravacuolar vesicles. After starvation atg15∆ cells showed intravacuolar free floating 

cherry vesicles in videomicroscopy. In cells lacking Atg15 and Atg1 no vesicles are 

formed. This result supported the finding that the core autophagic machinery is 

required for PMN because Atg1 is essential for autophagosom formation 

(Fig. 26 (A.)).  

The rare red PMN vesicles were clearly distinguishable from the highly enriched 

autophagosomes in the vacuole of atg15∆ cells (Fig. 26 (B.) and (C.)). 

To analyze further autophagic mutants to their PMN phenotype, the vesicles had to 

be stabilized in the vacuole. PMSF inhibits the vacuolar hydrolase proteinase B 

leading to an accumulation of NLS-2mcherry vesicles and autophagosomes in the 

vacuolar lumen of wild type cells (Fig. 27). Autophagic mutants showed no free 

floating vesicles even under these stabilizing conditions (Fig. 27). This is in 

agreement with the western blot analysis from Krick et al. (Krick, 2008b) showing that 

the autophagic machinery is indeed required for micronucleophagy. 

 
 

5.2.2 Induction of micronucleophagy 
 
Different starvation media were tested to identify the best induction conditions for 

PMN. A quantification of three independent experiments revealed that SD(-N)-

medium showed the highest amount of free GFP in western blot analysis. Rapamycin 

a TOR-kinase (target of rapamycin kinase) inhibitor and known to induce autophagy 

showed the same amount of free GFP up to 4 h starvation. Afterwards the free GFP 

signal decreased to 40% (Fig. 28). This indicates that rapamycin is either not stable 

over longer time periods or it also induces other proteins like hydrolases that 

increase the degradation of free GFP. 
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Potassium acetate induces autophagy using other signaling pathways as SD(-N) 

(unpublished data of the Thumm group) and showed a slower increase in free GFP 

compared to SD(-N) starvation. The addition of 2% glucose even decreased the free 

GFP measured.  

PMN is highest induced under nitrogen starvation conditions (SD(-N)) and was 

therefore used for all further experiments in this study. 

 
 

5.2.3 Membrane fusion in autophagy and PMN 
 
All autophagic processes need membrane fusion events. Little is known about the 

components required for the different membrane fusions.  

To set up a common fusion machinery, the two fusing membranes have to first 

undergo docking and priming, an ATP-dependent process (Klenchin and Martin, 

2000) (Geumann, 2008). The required energy for membrane fusion is delivered by 

interaction of the SNAREs (soluble NSF attachment protein receptor) from opposing 

membranes and formation of a four-helical bundel in a process termed „zippering“. 

After fusion, all fused SNAREs are located at the same membrane. They have to be 

disassembled to provide free SNARE molecules for further rounds of fusion, a 

process carried out by the AAA+ ATPase NSF (N-ethylmaleimide-sensitive fusion 

protein; homologue in S. cerevisiae: Sec18) and its cofactor α-SNAP (soluble NSF 

attachment protein; homologue in S. cerevisiae: Sec17), in an energy-dependent 

process (Jahn and Scheller, 2006). 

 
During PMN three membrane fusion events are necessary: fusion of the vacuolar 

membrane, the outer nuclear membrane and the inner nuclear membrane (Fig. 8).  

Krick et al. reported that the standard homotypic vacuolar fusion machinery is not 

required for the biogenesis of PMN vesicles. Some of the components seemed to be 

involved in PMN as Sec18 and Sec17, both fundamentally required for membrane 

fusion mediated by SNAREs, the HOPS complex, and the Rab-GTPase Ypt7, but 

this phenotype may only be due to the role of these components in vacuolar 

biogenesis (Krick, 2008b). The molecular composition of the machinery required for 

all three membrane fusion events is still unclear. 

 
Autophagy  also requires several membrane fusion events: membrane transport to 

the PAS (Atg9 / Atg8 cycling), sealing of the isolation membrane (autophagosome or 
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Cvt-vesicle formation) and fusion of the autophagosome with the vacuole. 

Ishihara et al. showed that Sec18 and Sec17 are required for the fusion of 

autophagosomes with the vacuole but are not involved in autophagosome formation 

(Ishihara, 2001). The involvement of these proteins in autophagy could also be 

indirect due to the role in vacuolar biogenesis as it is proposed for PMN. 
 

Cdc48, which shows significant homology with Sec18, is also an AAA+ ATPase 

known to be required for ER homotypic fusion (Latterich, 1995). In yeast the ER 

membranes also form the nuclear membrane making Cdc48 a likely candidate to 

mediate at least one membrane fusion event during PMN. 

Ishihara et al. showed that cdc48-3ts mutant cells cultured in SD(-N) at 34°C showed 

normal autophagic function compared to wild-type cells although ER fusion has been 

reported to be affected at this temperature (Latterich, 1995). Thus they concluded 

that Cdc48 is not required for autophagy (Ishihara, 2001). 

In this study Cdc48-3 was crossed into two backgrounds (WCG: standard strain in 

the lab and BY4741: commercial available and widely used). In parallel the original 

strain W303 from the Latterich lab was analysed. 

The restrictive temperature for each of the Cdc48.3 strains was determined using a 

growth phenotype. But the viability was not altered during the experiment at this 

temperature compared to wild type (data not shown). In the WCG background 

Cdc48.3 cells indeed showed a reduced PMN rate at the restrictive temperature but 

interestingly also an autophagic phenotype (Fig. 29 (I.)). This result could be 

reproduced in the BY4741 background even if the PMN and autophagic rate was 

also reduced at the permissive temperature (Fig. 29 (II.)).  

A similar temperature sensitive-phenotype has been reported from Ye et al.. They 

tested the involvement of Cdc48 in ER protein degradation. They used the 

membrane protein substrate H-2Kb, a major histocompatibility complex (MHC) class I 

heavy chain that is quickly degraded in yeast in a proteasome-dependent manner 

(Casagrande, 2000). They reported that a significant stabilization of H-2Kb was 

detected in the Cdc48 mutant (Cdc48-3), even at the permissive temperature. (Ye, 

2001).  

The wild type strain to the originally described Cdc48-3ts strain from Latterich et al. 

showed no PMN activity in the GFP-Osh1 assay. But autophagy was also reduced in 

the Latterich mutant strain at the restrictive temperature compared to wild type and 

the permissive temperature (Fig. 29 (III.)). 
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In contrast to Ishihara et al. this study suggests that Cdc48 is required for efficient 

autophagy and PMN. 

Both studies differ in the determination of the restrictive temperature. Probably the 

temperature chosen from Ishihara et al. had only been too low to show an autophagic 

phenotype in the Cdc48.3 mutant in the used background. 

 
Cdc48 is involved in many different cellular processes, including ubiquitin-dependent 

protein degradation and fusion of homotypic membranes (Ye, 2001) (Latterich, 1995) 

(chapter 2.6.1). The specificity and function of Cdc48 is regulated by different protein 

complexes (Tab. 1 Classification of Cdc48 cofactors in yeast). 

p97 (the human homologue of Cdc48) and p47 (the human homologue of Shp1) 

control the fusion of homotypic membranes (Kondo, 1997) while ubiquitin-dependent 

protein degradation pathways require the Cdc48/p97 Ufd1-Npl4 complex (Braun, 

2002) (Meyer, 2000) (Ye, 2001) (Jarosch, 2002). 

Shp1 (Ubx1) belongs to the UBX protein family, which consists in S. cerevisiae of 7 

proteins. UBX proteins have been described as general Cdc48 interacting proteins. 

This study showed that for autophagy as well as PMN, indeed Shp1, a major 

substrate-recruiting factor, was essential (Fig. 30). The constitutive Cvt-pathway was 

unaffected in shp1∆ cells as determined by normal Ape1 maturation (Fig 30 (A.) 

bottom).  

 
In addition to the UBX domain Shp1 possesses a ubiquitin-binding UBA domain that 

interacts with ubiquitylated proteins in vivo. 

Binding of the human homologue p47 to ubiquitylated proteins via the UBA domain is 

required for efficient p97 / p47-mediated Golgi membrane fusion in vitro (Meyer, 

2002). It has been further hypothesized that this ubiquitylated substrate serves as a 

fusion inhibitor and has to be extracted out of the membrane by p97 / p47 to mediate 

membrane fusion. It was postulated that Ufd1 / Npl4 targets multiubiquitylated 

substrates to Cdc48 destined for proteasomal degradation whereas p47 recruits 

monoubiquitylated substrates that should not be degraded (Meyer, 2002) (Wang, 

2004b).  

Loss of Doa4 depletes cellular ubiquitin levels, which causes many cellular defects, 

including loss of efficient MVB (multi vesicular body) sorting of some integral 

membrane proteins (Ren, 2008).  

Autophagy and PMN were drastically reduced in doa4∆ cells (Fig. 32 (A.)). Further 
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experiments with different ubiquitin mutants showed that polyubiquitination is not 

necessary for PMN (Fig. 32 (B.)). Therefore free uncoupled ubiquitin is required for 

both processes (see discussion 5.2.5). 

 
Ufd1 (ubiquitin fusion degradation) and Npl4 are both required for the Cdc48 protein 

degradation complex. Therefore a point mutant of Ufd1 (Ufd1.1), known to be 

defective in this function, was tested for PMN. But the corresponding wild type cells 

expressed the marker protein only at such low level that no free GFP was visible. 

Maybe the strain was contaminated or harmed during transport. In contrast the 

Ufd1.1 mutant cells showed free GFP and so Ufd1 may not be required for PMN. The 

Cdc48 additional substrate recruiting factors Dfm1 and Der1 and the substrate-

processing factor Otu1 were also not required for efficient PMN (Fig. 31). The human 

deubiquitylating enzyme VCIP135 is part of the human mitotic Golgi reassembly 

machinery and harbors a domain with clear homology to UBX domains (Fig. 39). It is 

categorised as a substrate processing factor of Cdc48 and its closest S. cerevisiae 

homologue is Otu1. Ufd3∆ cells showed a reproducibly reduced free GFP signal and 

thereby a reduced PMN rate, but only a slight decrease in autophagy (Fig. 31).  

Ufd3 (alias Doa1) contains seven WD40 repeats and two other functional domains. 

The central PFU domain of Ufd3 mediates interaction with ubiquitin whereas the C-

terminal PUL domain interacts with Cdc48 (Ren, 2008). Ufd3 as well as Doa4 play a 

role in sorting of ubiquitinated membrane proteins into multivesicular bodies. It 

interacts with the Vps27-Hse1 complex. The loss of Ufd3 or Doa4 decreases cellular 

ubiquitin levels (Ghislain, 1996) (Mullally, 2006), but the Doa4 deletion leads to a 

more severe phenotype. The defects observed in ufd3∆ cells in MVB sorting of 

ubiquitinated cargo are independent of lower ubiquitin levels, which indicates a more 

direct role for Ufd3 in controlling the MVB sorting process (Ren, 2008). Ufd3 has the 

ability to displace Ufd2 from Cdc48 and thereby prevent polyubiquitination (Rumpf 

and Jentsch, 2006). Ufd3 was required for PMN and autophagy whereas Ufd2 was 

not required for PMN and not tested for autophagy (Fig. 31).  

In contrast to Ufd3, no direct interaction or involvement of Doa4 with Cdc48 has been 

reported (Ren, 2008).  

The requirement of Ufd3 and Doa4 in autophagy and PMN should be verified and the 

question if the observed reductions in both processes are due to a direct role of one 

of the proteins or mediated via the low ubiquitin levels should be addressed. Thus 

udf3∆ and doa4∆ cells could be transformed with ubiquitin overexpressing plasmids 
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and then tested for their autophagy and PMN rate in further experiments. 

In Fig. 39 the hypothetic components required for membrane fusion of the human 

system (p97 (A.)) in mitotic Golgi reassembly are compared with the finding from this 

study concerning autophagy and PMN in S. cerevisiae (Cdc48 (B.)). 

 

 
 
Fig. 39 Composition of CDC48 complexes in membrane fusion events 
(A.) Hypothetic model complex for human mitotic Golgi (Meyer, 2005); (B.) Hypothetic Cdc48 model 
complex  for S. cerevisiae autophagy and PMN; requirement of Ufd3 has to be validated; Ub = 
ubiquitin; X = unknown fusion inhibitor 
 
The components shown in Fig. 39 (B.) are required for efficient PMN. Further 

experiments have to confirm their involvement in membrane fusion. One interesting 

question is which of the membrane fusion events is mediated by the Cdc48 complex. 

As described earlier in both processes (autophagy and PMN) at least three 

membrane fusion events have to proceed. Guan et al. published a protease 

protection assay for autophagy to distinguish between open and closed 

autophagosomes or fusion with the vacuole using pseudo-maturation of Ape1 via 

protease K (Guan, 2001) (Strømhaug, 2004). For this purpose a Ape1 maturation 

assay is not useful, because the Cvt-pathway, which transports Ape1 to the vacuole, 

is not impaired in Cdc48.3 or shp1∆ cells. Instead the pseudo-cleavage of GFP-Atg8 

by trypsine could be monitored what has to be first established. Another approach 

could be electromicrographs to distinguish between wild type, ypt7∆ (where the 

autophagosomal fusion with the vacuole is impaired) and e.g. shp1∆ cells. Using 

these two methods it would be possible to distinguish if autophagosomes are closed 

in shp1∆ cells and still fuse with the vacuolar membrane or accumulate in the cytosol. 

The latter experiment could also exclude the possibility that the autophagic defect of 

Cdc48.3 and shp1∆ cells is due to an indirect effect like the impairment of the ER 

itself. Because Reggior et al. showed that in some early secretory mutants no 

autophagosomes are formed at all (Reggiori, 2004).  
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5.2.4 Ubp3 and Bre5 are only required for PMN 
 
Kraft et al. observed that several GFP-fused ribosomal proteins of both 60S and 40S 

subunits, which were functional and correctly assembled into ribosomes, were 

delivered to and degraded in the vacuole of nitrogen starved yeast cells in an 

autophagy dependent manner. Thus they reported a selective autophagic process for 

ribosomes. Kraft et al. identified the ubiquitin deconjugation enzyme Ubp3 and its 

cofactor Bre5 as proteins required for the selective autophagic degradation of the 

60S subunit of ribosomes under starvation conditions. The catalytic activity of Ubp3 

is needed for ribophagy, implying the involvement of a deubiquination step from a yet 

unknown protein. Ubp3 and Bre5 are not required for unspecific macroautophagic 

breakdown of ribosomes (Kraft, 2008). 

Micronucleophagy was also significantly reduced in ubp3∆ and bre5∆ cells whereas 

macroautophagy was normal (Fig. 33). Thus Ubp3 and Bre5 are involved in two 

selective autophagic processes. But not all selective autophagic processes require 

theses proteins, as the Cvt-pathway is not significantly affected in ubp3∆ or bre5∆ 

cells (Kraft, 2008). The requirement of Ubp3 and Bre5 additionally supports the 

involvement of (mono-) ubiquitination for PMN. 

 
 

5.2.5 VPS class E genes are required for PMN 
 
Vps27 and Vps28 are involved in the formation of multivesicular bodies and belong to 

the class E subgroup of vacuolar sorting proteins that are supposed to regulate 

trafficking between endosomes and the vacuole (Piper, 1995). Vps27 contains two 

putative ubiquitin-interacting motifs and could play a role in the sorting of mono-

ubiquitinated proteins at endosomes (Stenmark, 2002) (Ren, 2008). Models suggest 

that the ubiquitinated cargo is captured by the Vps27-Hse1 complex. At a late stage 

of the sorting process, ubiquitin is removed from the cargo by the deubiquitinating 

enzyme Doa4 before incorporation of the cargo into intralumenal vesicles of the MVB 

pathway (Dupré and Haguenauer-Tsapis, 2001). As Ape1 is normally processed in 

VPS class E mutant strains, Reggiori et al. concluded that late endosomal functions 

are not required for the formation of Cvt- vesicles or autophagosomes (Reggiori, 
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2004). 

Autophagy was normal in vps27∆ and vps28∆ cells, but the PMN rate was clearly 

reduced in these strains (Fig. 34). Interestingly doa4∆ showed a phenotype for both 

processes (Fig. 32 (A.)), which could be due to the requirement of free ubiqitin for 

both processes. However this does not explain the involvement of Vps27 and Vps28 

exclusively for PMN. It is likely that membrane proteins needed for PMN are 

transported via the MVB pathway to the vacuole, where they either interact with the 

vacuolar membrane, participate in one of the membrane fusion events or in the 

generation of the NV-junction required for PMN vesicle formation.  

Hettema et al. showed that Bsd2 and Tul1 are required for efficient ubiquitination of 

membrane proteins in the MVB pathway and contribute to the removal of misfolded 

membrane proteins (Hettema, 2004). Both proteins were not required for PMN 

(Fig. 35). 

Other mutant strains exhibiting a MVB phenotype should be analyzed in further 

experiments. 

 
 

5.2.6 The fatty acid elongation machinery is not required for PMN 
 
Kvam et al. reported that the lumenal diameters of PMN blebs and vesicles are 

significantly reduced in tsc13-1 and tsc13-1 elo3∆ mutant cells (Kvam, 2005). Elo2, 

Elo3, Tsc13 and YBR159 are proteins required for the elongation of very-long-chain 

fatty acids (VLCFAs) that localize to NV-junctions in S. cerevisiae (Kohlwein, 2001). 

These VLCFAs are enriched in lipid rafts and other detergent-insoluble lipid 

microdomains (Eisenkolb, 2002) (Dupré and Haguenauer-Tsapis, 2003). VLCFAs 

have been proposed to promote the formation of highly curved membrane structures 

(Schneiter and Kohlwein, 1997). Kvam et al. speculate that VLCFAs may be required 

for the efficient biogenesis of highly curved PMN vesicles (Kvam, 2005). Tsc13 is an 

essential gene and was therefore not analyzed in this study. Cells lacking Elo2, Elo3 

or YBR159 showed the same PMN rate as wild type cells (Fig. 36).  

The structures Kvam et al. reported were visualized using an overexpressing Nvj1-

EYFP reporter-construct. However, tagging and overexpression of proteins of the 

NV-junction apparatus could disturb the normal PMN process and are supposed to 

influence the size of PMN vesicles. A yeast cell has a diameter of about 5 µm and its 

nucleus about 1.5 µm. The reported PMN vesicles in wild type cells overexpressing 
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Nvj1 were 1.44 µm in diameter and therefore as big as the whole nucleus (Kvam, 

2005) pointing to an aberrant size of PMN vesicles under these conditions. Kvam et 

al. further reported a reduction in the size of PMN vesicles to half in tsc13-1 elo3∆ 

mutant cells.  

The aberrant size of the PMN vesicles in wild type and mutant cells could be due to 

overexpression of Nvj1 because in EM (electromicrograph) studies PMN vesicles of 

wild type cells have a diameter of about 150 µm (a tenth of the size reported by 

Kvam et al.) (Roberts, 2003) (Krick, 2008b). To investigate if the fatty acid elongation 

machinery has an influence on the size of these vesicles, cells with native Nvj1 levels 

should be analyzed. GFP-Osh1 could be used as a non-essential component of the 

NV-junction (Kvam and Goldfarb, 2004) to monitor the PMN vesicle size in 

fluorescence microscopy. Another approach to clarify this issue could be EM pictures 

from the corresponding knockout strains. 

 
 

5.2.7 Proteins for cortical ER inharitance are not required for PMN 
 
The cortical ER (cER) inheritance can be divided into three different stages: first, 

cytoplasmic ER tubules move along actin cables into small buds of the mother-bud 

axis (proteins tested in this study: Myo4, She3); second, the first domain of the 

cortical ER forms by attachment to the plasma membrane at the bud tip (proteins 

tested in this study: Yop1 and Rtn1); and third, cER spreads around the entire bud to 

form a polygonal tubular network (proteins tested in this study: Scs2 and Ice2) 

(Loewen, 2007). 

Scs2, the yeast homolog of mammalian VAMP-associated protein, is further involved 

in targeting of Osh1 to cellular membranes, although Scs2 is not strictly required for 

the localization of GFP-Osh1 to NV junctions (Loewen, 2003). 

All proteins tested, involved in the inheritance of cortical ER, were not required for the 

PMN process (Fig. 37). 

 
 

5.2.8 Analysis of a mutant with misshaped nucleus 
 
Spo7∆ cells are described to have a misshaped nucleus and exhibit a single nuclear 

protrusion (Campbell, 2006). 
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These cells showed a reduction in PMN rate in two of three experiments (Fig. 38). 

The reduction was not drastic and probably an indirect effect. Perhaps the NV-

junctions can not be formed correctly as the nucleus is misshaped. The requirement 

of Spo7 has to be clarified in further experiments. 

 
Further studies concerning PMN could answer these questions:  
Is PMN a selective process? Which part of the nucleus is degraded? How specific 

and efficient is PMN? Which volume of the nucleus is degraded per time? How is the 

membrane curvature of PMN structures generated? In which step of PMN is the 

autophagic machinery involved? In which step of PMN is Cdc48 reqired? 
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