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1. Introduction 

Drosophila melanogaster has been extensively used as an excellent developmental model system 

to reveal genetic and molecular mechanisms that underlie early embryonic pattern formation. 

Almost twenty years after the first use of the Drosophila cuticle in screening for patterning mutants 

(Nüsslein-Volhard and Wieschaus, 1980), most of the elements of the hierarchical gene cascade 

governing the early developmental processes were identified and have then been analyzed in detail 

(reviewed in Ingham and Martinez Arias, 1992; St Johnston and Nüsslein-Volhard, 1992). Most of 

the studies however primarily focused on the clearly segmented trunk region. Understanding the 

segmented nature of the embryonic head and the mechanisms leading to patterning and 

establishment of the head structures advanced much slower. This is due to the inherent complexity 

of the embryonic head morphological aspects which makes them hard to understand (reviewed in 

Finkelstein and Perrimon, 1991). Particularly in Drosophila the highly evolved process of head 

involution makes the situation even more complicated and the effort to elucidate head patterning 

mechanisms even harder.  

1.1 Principles of early embryonic patterning in the trunk 

Early development and pattern formation in the central trunk region is maternally triggered by the 

deposition of maternal determinants which form functional gradients in the zygotic syncytium before 

cellularization. The integrated maternal systems specify the broad domains of gap gene expression 

along the antero/posterior (A/P) axis. Gap genes then activate the repetitive patterns of transcription 

of the pair-rule genes, which establish the initial parasegmental subdivisions of the trunk. The pair-

rule genes in turn define in a combinatorial manner the initial metameric expression domains of 

segment-polarity genes which further subdivide each parasegmental unit. More specifically, the pair-

rule genes initiate the transcription of wingless and engrailed/hedgehog in adjacent domains which 

subsequently regulate each-other to stabilize their expression in two adjacent but not overlapping 

stripes, thereby defining the parasegmental (PS) boundary ‘organizer’ (reviewed in Dinardo et al., 

1994). Further, the gap genes and the pair-rule genes in combination define the spatial domains of 

the homeotic selector genes which assign segment identity (reviewed in Akam, 1987). Gene 

activities of the segment polarity class mediate intra- and inter-parasegmental cell-signaling 

(reviewed in Martinez Arias, 1993; Perrimon, 1995) which is thought of crucial function in 

organizing the patterning within the presumptive segmental units leading to distinct cell-fate 

specification (reviewed in Sanson, 2001). Very recently however, functional role of segment polarity 

gene-mediated cell-cell interactions was restricted only to – still of substantial importance – 

stabilizing pre-specified cell identities (Vincent et al., 2008). This is performed by Wg and Hh 

patterning signals that prevent switch of already specified cell identities towards different ones; thus, 
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although incapable of inducing cell fates, stabilizing segment-polarity gene signaling allows for the 

differentiation process to act on the cells according to their current, already specified identity.  

1.2 Early embryonic head development – a comparative approach 

In contrast to the trunk, mechanisms underlying establishment of metamerization of the head 

region and anterior head patterning have been elucidated to a less extent (reviewed in Finkelstein 

and Perrimon, 1991). In principle, the embryonic head region is finally metamerized into the pre-

gnathal segments (ocular, antennal and intercalary) and the gnathal segments (mandibular, maxillary 

and labial). The pregnathal segments constitute the procephalic or anterior head region. All segments 

are posterior-marked by the ectodermal expression pattern of the segment polarity gene engrailed. 

All six segments, marked by the expression of engrailed (en) and hedgehog (hh) at their posterior 

edge, also display the respective anterior adjacent expression domains of wingless (wg) (Schmidt-Ott 

and Technau, 1992). The clypeolabral lobe at the anterior-most region of the embryo corresponds to 

a parasegmental unit rather than to a segment (Mohler et al., 1995; Seecomar et al., 2000). 

Expression domains of the segment polarity genes in the anterior head region provide an important 

molecular marker for the anterior head segments, helpful to analyze the otherwise difficult to assess 

effects of mutations on anterior head morphogenesis.  

Embryonic expression patterns of segment polarity genes in the head region are extensively 

conserved across different arthropod species (Rogers and Kaufman 1996, 1997 (Review)) providing 

a clear indication that some mechanisms of head development may also be phylogenetically 

conserved. Still, no systematic analyses and comparisons of the regulatory networks that underlie 

head development in diverse arthropod species have been undertaken so far. Thus, using a model 

organism other than Drosophila, namely the short-germ band insect Tribolium castaneum would 

make comparative analyses possible, which in turn would help to understand whether the so far 

revealed genetic network underlying Drosophila head development is conserved to some extent in 

other species or whether it rather reflects the highly evolved nature of higher Dipteran 

morphogenesis. In addition, Tribolium is a perfect system to study head development mechanisms as 

it lacks the complex process of head involution and the cuticular structures directly reflect the 

embryonic segmental organization of the head region. It therefore offers the advantage of relatively 

easy phenotypic analyses after reverse-genetics through the effective RNA interference procedure. 

Transgenesis has also been established in Tribolium allowing for the analysis of enhancers and cis-

regulatory elements (Bucher and Wimmer, 2005).  
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1.3 Head segmentation – role of the head gap genes 

The first debate among arthropodists about the segmented or not nature of the embryonic head 

region, and the exact number of segmental units that constitute it, was overcome after revealing the 

segmental ectodermal expression patterns of en and wg (Schmidt-Ott and Technau, 1992; Schmidt-

Ott et al., 1994a) from which all of them later during development contribute cells to neuromeres of 

the central nervous system. In fact the ectodermal segmental pattern of the anterior (procephalic) 

head region is well correlated to the segmental organization of the brain (Urbach and Technau, 

2003a), with the ocular segment corresponding to the protocerebrum, the antennal to the 

deutocerebrum and the intercalary to the tritocerebrum. Revealing the – distinct from the trunk – 

underlying gene networks, cascades and regulatory interactions at the molecular level that govern 

anterior head regionalization and segmentation remains in progress and comprises a fruitful ground 

for discovering and establishing novel principles of patterning in the field of Developmental 

Biology.  

It has been well argued so far that the two most posterior gnathal segments, namely the maxillary 

and the labial, develop like the rest of the trunk segments under the well established hierarchical 

gene segmentation cascade mentioned above. Development of the mandibular segment integrates 

inputs from both the head and the trunk patterning systems (Cohen and Jurgens, 1990; Vincent et al., 

1997; Grossniklaus et al., 1994). In principle, development of the anterior head region is under the 

control of the head gap-like genes orthodenticle (otd), empty-spiracles (ems), buttonhead (btd) and 

sloppy-paired (slp). In particular, otd, ems, and btd control the formation of the cephalic en and wg 

segmental patterns at germband extension stage (Cohen and Jürgens, 1990). However, due to the 

effect on segment polarity gene expression observed rather late in the developmental time window, 

it remained unclear if these genes act to integrate maternal information into blastodermal embryonic 

pattern in a way similar to the gap genes in the trunk, therefore these gene activities were referred to 

as anterior head gap-like (Mohler, 1995). Nevertheless, the deletion effects of mutations in the 

anterior head structures (Finkelstein and Perrimon, 1990) as well as the correlation between the 

combinatorial overlapping expression domains of the head gap genes and the functional domain-

requirements (reviewed in Finkelstein and Perrimon, 1991; Cohen and Jürgens, 1991) lead to the 

Fig. 1_1. a) Summary of the gene cascades governing anterior head and gnathal head morphogenesis. b, c) 
Segmental organization of the Drosophila and Tribolium embryonic head region revealed by the conserved 
expression pattern of the segment polarity gene engrailed. oc, ocular; an, antennal; ic, intercalary; mn, 
mandibular; mx, maxillary; lb, labial segment. 

a b
c 
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proposal of a combinatorial model controlling anterior head morphogenesis; a combinatorial 

controlling input from the head gap-like genes can subdivide the anterior head region into a defined 

number segments and in the absence of pair-rule gene patterning activity in the cephalic region may 

also directly activate the expression of the segment polarity genes, while the respective level of 

second-order regulation acting in the trunk being omitted. In addition, in account for the absence of 

homeotic selector gene activity in the anterior head region, the combinatorial controlling input 

directed from the head-gap genes was thought to define anterior head segment identities as well.  

Indeed, the anterior most cephalic segment expressing a gene of the ANT-C Hox cluster is the 

intercalary segment where labial is expressed (Abzhanov and Kaufman, 1999). labial however does 

not provide a homeotic selector gene activity. Rather, head phenotypic defects are secondary effects 

of impaired head involution (Merrill et al., 1989; Diederich et al., 1989). At least one of the head gap 

genes in Drosophila seems to have a functional role in anterior head-segment specification; ectopic 

expression of the homeodomain encoding gene ems causes homeotic transformation of mandibular 

derived structures into intercalary ones (Schöck et al., 2000). This kind of homeotic selector function 

of ems however requires btd (zinc finger; Wimmer et al., 1993; Schöck et al., 1999) to overcome the 

phenotypic suppression of ems function by other Hox gene activities (Macias and Morata, 1996). 

Moreover it acts in a way opposite to the posterior prevalence principle governing trunk homeotic 

segment transformations. In agreement with the combinatorial model, development of the intercalary 

segment requires btd and ems activities, but not otd. 

Grossniklaus and colleagues in 1994 further supported the combinatorial model while additionally 

introducing sloppy paired (slp) gene activity to participate in the functional combinatorial domains 

of overlapping head gap gene expression. slp is required for the establishment of the ocular, antennal 

and mandibular segments. More specifically, the existence of seven combinatorial expression 

domains was proposed, however not all of them could be correlated precisely with the actual 

functional requirements for segment establishment, nor was it possible to specify in detail the 

precise extent of some of these domains at blastoderm stage (Fig. 1_2). 

 

 

 

 

 

Fig. 1_2. Combinatorial mode of function 
of the head gap-like genes. Lower scheme 
is from Grossniklaus et al., 1994. Table 
summarizes the combinatorial model 
revised from Grossniklaus et al., 1994. 
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1.4 Unsolved questions regarding anterior head morphogenesis 

Subsequent studies however opposed the proposed function of the combinatorial model in 

assigning anterior head segment identities. Ectopic expression of buttonhead (under the control of 

hunchback promoter) did not affect anterior head segment identities, nor are the spatial limits of btd 

expression instructive for metamerization of the anterior head region (Wimmer et al., 1997). 

Therefore, btd activity was excluded from the proposed combinatorial code for the anterior head 

segment identity specification. In addition, heatshock-inducible ubiquitous expression of otd did not 

alter anterior head segment identities and only marginally affected expression patterns of the 

segment polarity genes (Gallitano-Mendel and Finkelstein, 1998). A further interpretation of the 

combinatorial model leading to metamerization of the anterior head region involved the 

blastodermal overlap in the early broad expression domains of the segment polarity genes wg and 

hh, as being defined by a presumptively direct head gap gene input (Mohler, 1995). Due to the 

mutual exclusiveness in the successive establishment of the expression domains and in the activities 

of these two genes, interference might generate their segmentally iterated expression pattern and 

subsequent metamerization of the anterior head region (Fig. 1_3). However, embryos mutant for 

either wg or hh develop the wild type number of anterior head segments (Gallitano-Mendel and 

Finkelstein, 1999).  

 

 

 

In addition, apart from a distinct initial activation mode (other than pair rule activity) also a 

distinct network of cross-regulatory interactions among segment polarity genes was revealed for 

each of the anterior head segments, differing from the typical maintenance cross-regulation in the 

trunk (Gallitano-Mendel and Finkelstein, 1999). This mechanism indicates a unique mode of 

establishment for each of the anterior head segments and it was suggested that it evolved to specify 

the high degree of structural diversity required for the anterior head morphogenesis. 

Further, data presented by Crozatier and colleagues (1996, 1999) support neither a direct 

activation of procephalic segment polarity gene expression by the head gap genes nor a simple 

combinatorial input for metamerization of the anterior head region and the assignment of the anterior 

head segment identities. Rather, their data argued for the functional role of second order regulators 

acting in the anterior head region. The helix-loop-helix COE factor Collier was the first introduced 

to act as a crucial transcription factor that is required for the establishment of segment polarity gene 

Fig. 1_3. Early blastodemal overlap (arrow in a) in 
the expression domains of wg and hh in the 
anterior head region and subsequent marking of 
the procephalic segments by the adjacent, 
mutually abutting  stripes of segment polarity gene 
expression (b).   a 

b 
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expression in the intercalary segment. collier expression is under the strict control by the head gap 

gene btd and functions to establish the PS0/PS(-1) parasegmental boundary and intercalary derived 

structures. Still, the proposed functions of Collier were indicated only in the context of the analyzed 

genetic interactions and the issue if regulation of segment polarity gene expression is under the 

direct control by the transcription factor activity in the intercalary segment remained open (Fig. 

1_4). 

  

 

 

 

 

 

1.5 Aim of the thesis: A bottom-up approach identifies the role of second-level regulators 

Overall, it still remains quite obscure how metamerization of the anterior head region succeeds, 

how the expression domains of the segment polarity genes are established in the absence of pair-rule 

input activity and how the procephalic segmental unit identities are specified. Further, what is the 

exact functional role and requirement of the head-gap and segment polarity genes in specifying 

naïve fields of cells into segmental unit identities and which are the additional ‘key-players’. Thus, 

analyzing and identifying key components of the underlying gene network will help to understand 

the genetic cascade and the functional interactions at the molecular level that govern anterior head 

morphogenesis. It seems that continuing research in the field of insect and arthropod (anterior) head 

morphogenesis will reveal additional key factors and functional molecular interactions involved in 

the patterning of the anterior head region and the establishment of the anterior head structures. 

Taking a bottom-up approach by revealing mechanisms that govern transcriptional regulation of 

segment polarity gene expression in the procephalic region has been exactly the aim of this thesis. 

Such an approach leads to the identification of transcription factors directly involved in the gene 

network(s) patterning each of the anterior head segments, since by directly controlling establishment 

of segment polarity gene expression they are consequently functional for metamerization of the 

anterior head region at a level corresponding to the second-order regulation mediated by the pair-

rule gene activity in the trunk. During this thesis it could be shown that activity of Collier in the gene 

Fig. 1_4. Function of the second-order regulator collier in 
patterning of the intercalary segment. Scheme is from 
Crozatier et al., 1999. col expression is controlled by the 
head gap gene btd. col regulates expression of cap `n` 
collar (cnc) in the anterior part of the mandibular segment 
and later during germ band extension it initiates a 
secondary site of cnc expression in the posterior part (in 
the hh expressing cells) of the intercalary segment. col is 
required for the establishment of segment polarity gene 
expression in the intercalary segment; since col expression 
does not overlap the wg expressing cells, positive 
regulation of  wg is thought to be mediated by a hh-
dependent mechanism (Crozatier et al., 1999). 
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network underlying establishment of the intercalary segment actually involves a direct 

transcriptional interaction with the downstream segment polarity gene target hh, thereby further 

supporting the critical function of second-order regulators in the patterning process of the anterior 

head region. In addition, since collier has an early parasegmental register of embryonic expression, 

means for restricting the positive function of the Collier activator to the posterior part of the 

intercalary segment were examined. Further research in that direction identified a physical protein 

interaction between Collier and the bZIP factor Cap `n` Collar, the biological relevance of which is 

addressed in this thesis. Working in that direction resulted from the functional dissection of segment 

polarity gene cis-regulatory regions which led to the isolation of an intercalary-specific cis-

regulatory element of hh. Thus, such a bottom-up approach seems quite promising for the 

identification of transcriptional control mechanisms underlying segment-polarity gene expression for 

the rest of the anterior head segments as well. 
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2. Results 

Developmental staging of Drosophila embryos was after Campos-Ortega and Hartenstein, 1997 

and Hartenstein, 1993 (Appendix). 

2.1 Functional dissection of cis-regulatory regions of segment polarity genes wg, en 
and hh in Drosophila melanogaster and Tribolium castaneum. 

In order to localize cis-regulatory information governing anterior-head segment-specific 

pattern of segment polarity gene expression in Drosophila melanogaster and Tribolium 

castaneum functional dissection of upstream or intronic genomic regions was performed. 

Results are presented starting from wg, en and hh in the two insect species and ending with 

dissection of the hh upstream region in Drosophila.  

2.1.1 Functional dissection of wg upstream enhancer in Drosophila 

In Drosophila melanogaster transcription of the wingless gene is triggered from two alternative 

transcription start sites, or two alternative promoters, producing two transcript variants. Transcript 

variant A, 2907 bp, found at genomic locus NM_078788 (NCBI Reference Sequence) and variant B, 

2656 bp, locus NM_164746. Transcription start site of transcript B is located within the first intron 

of transcript A (Fig. 2_1). Thus, the two generated polypeptides differ in their N-terminus, in 

particular isoform A extends by 53 aa at the N-terminus.  

A total of 10.216 kb of upstream sequence was cloned by Long Range PCR (§5.1.5) spanning 

region -8.094 kb upstream of tsA (transcription start site A) to +195 bp downstream of tsB. The full-

length upstream sequence was subcloned in front of a lacZ reporter and via piggyBac mediated 

transgenesis tested in vivo. At the same time a few subfragment-constructs were also prepared and 

assayed (Fig. 2_2). 

The full-length upstream sequence tested drives expression in the trunk stripes, also in the 

clypeolabral region and foregut primordium, but lacks cis-regulatory information for the cephalic 

head stripes (Fig. 2_3). Therefore, cis-regulatory information governing expression of wg in the 

anterior head region is not included in the 10 kb upstream enhancer that contains cis-regulatory 

elements sufficient for the trunk and the anterior most terminal expression pattern during germ band 

extension. At stage 6 the reporter trunk stripes appear in an odd pair-rule mode but have fully 

developed by stage 8.   
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The construct spanning 4.8 kb upstream of tsA, was not re-injected after a fist unsuccessful round, 

since it had already been tested by Lessing and Nusse, 1998. It contains elements sufficient for trunk 

expression, including the gnathal stripes, but not for the anterior cephalic region. A 5’ overlapping 

fragment (-6.7_-3.8 kb) was tested in combination with a hs43 basal promoter and shows only weak 

expression after T1 at stage 11 while it leads to minimal ectopic expression in the anterior head 

region at blastoderm stage (Fig. 2_4). Note that cis-elements controlling maintenance of gnathal 

segment-specific expression of wg are distinct from those for the rest of the trunk. 

Construct spanning (-8.1_-3.9 kb) ensures clypeolabrum expression and since fragment (-6.7_-3.8 

kb) does not mediate expression in that region, the 1.4 kb fragment (-8.1_-6.7 kb) contains cis-

elements necessary for clypeolabrum-specific expression of wg (Fig. 2_5). 

In search of cis-regulatory information governing expression of wg in the anterior head region, 8.4 

kb of further upstream enhancer sequence was isolated by long-range PCR, spanning region [-

16.212 kb_-7.813 kb] relative to tsA (using primers wg_upF2/wg_upR2; Table 5-1) and subcloned 

in front of 280 bp endogenous promoter region surrounding tsA [-159 bp_+121 bp] (Fig 2_2).  This 

8.4 kb sequence contains cis-elements also driving expression in the trunk stripes, overlapping to 

some degree the expression pattern produced by the (-8.1 kb) enhancer fragment. This result implies 

a degree of redundancy shared by the regions (-16 kb_-8.1 kb) and (-4.8 kb_tsA) (§3.1.3). It also 

contains cis-regulatory information for the antennal segment at stage 10 and for the ventral most part 

of the ocular segment (‘head blob’). A nascent conclusion from this observation is that regulation of 

the ocular-specific expression pattern of wg involves dorso-ventral differences (§3.1.2). Finally, 

intercalary-specific expression comes up rather late, at st. 11, missing early onset which is during 

stage 10 for wg. Therefore, region [-16.212 kb_-7.813 kb] lacks cis-regulatory information for the 

early temporal control of intercalary-specific expression of wg, i.e. it lacks elements required for 

activation and the establishment of wg expression in the intercalary segment, while cis-elements 

found in this upstream sequence are rather involved in maintenance of intercalary-specific wg 

expression (§3.1.4). 

 

 

 

 

                                                                                                                                  

Fig. 2_1.Transcriptional units of wg and the respective coding sequences 
(CDS) as depicted in Flybase.org. 
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Fig. 2_2. Functional dissection of the wg upstream region. Fragments (-8.1 kb_-3.9 kb) and (-6.7 kb_-3.8 kb) 
were tested in combination with the hs43 basal promoter. Fragment (-16.2 kb_-7.8 kb) was tested in combination 
with the endogenous promoter (-128_+121 bp) around the tsA. 
 

Fig. 2_3. Fragment 8.1 kb upstream 
of wg tsA (10.2 kb upstream of tsB) 
driving expression of the lacZ 
reporter (NBT/BCIP blue staining). 
FastRed staining marks expression 
of wg. Enhancer drives expression 
in the trunk and gnathal stripes but 
not in the anterior head region. (a,b), 
(c,d), (e,f), (g,h) and (i, j, k) are 
different focal planes of the same 
embryo respectively. an, antennal; 
oc, ocular; ic, intercalary; mn, 
mandibular; cl, clypeolabrum. 

Fig. 2_4. Fragment (-6.7 kb_-3.8 kb) 
upstream of wg tsA dives ectopic 
expression of the reporter at blastoderm 
stage (a,b) (blue in the DIC picture, black 
in the fluorescent). FastRed staining (red in 
the DIC picture (a) and white in the 
fluorescent (b,c)) marks expression of wg. 
At stage 11 (c) it drives partial expression 
in the trunk stripes but not in the gnathal, 
indicating the function of distinct 
maintenance regulatory elements. 
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2.1.2 Functional dissection of en cis-regulatory region 

The first intronic sequence of Dm_en had already been tested (Kassis, 1990); it functions as an 

enhancer which in combination with the endogenous promoter region drives expression in the trunk 

stripes. This was confirmed by subcloning and testing the first intron of en combined with the 

endogenous promoter sequence (-75_+55 bp) which also contains cis-regulatory elements that 

ensure or enhance spatial-specific expression (Orihara et al., 1999 and §3.3). In particular two 

GAGA elements found at -33 and -45 bp (Fig. 2_7) are thought to augment transcriptional 

Fig. 2_5. Fragment (-8.1_-3.9 kb) in combination with the hs43 promoter drives expression in the 
anterior terminal region corresponding to the clypeolabrum (cl). a,b wild-type (wt) embryos at 
blastoderm  stage. FastRed (white in the fluorescent pictures b, f) marks expression of wg. c, d, e, 
f  blastoderm stage. c, e different focal planes of the same embryo. g, stage 8. h, stage 9. 

Fig. 2_6. Fragment (-16.2_-7.8 kb) combined with the endogenous promoter region around tsA drives expression 
in the gnathal and trunk stripes during stage 10 (a, b, g, h); it also mediates expression in the antennal segment and 
the ventral part of the ocular segment, but not in the intercalary segment (g, h). g, h 40x magnification of the 
embryo depicted in b (stage 10). Intercalary expression is evident at stage 11 (c-f).  c, e and d, f are different focal 
planes of the same embryo respectively (stage 11). an, antennal; oc, ocular; ic, intercalary. 

g h 
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efficiency. Indeed, via piggyBac mediated transgenesis, in two independent lines, trunk expression 

pattern could be generated with this construct, which lacks however cis-regulatory information 

specific for the anterior head region (Fig. 2_8). It also seems to contain cis-elements for 

establishment of expression of the trunk stripes, but not for the gnathal stripes; reporter is expressed 

in the gnathal segments later, at stage 11, missing stage 10. Perhaps it is then driven by the same 

maintenance cis-elements that also control late expression in the rest of the trunk.  

In search of cis-elements controlling anterior head expression of en, an 8.8 kb upstream sequence 

was cloned (-8812_+165 bp) and tested in vivo (Fig. 2_9). This upstream region drives some 

expression in the trunk stripes, and starting from blastoderm stage it also drives ectopic expression in 

the anterior head region. Also later, during germ band elongation, reporter expression exhibits a loss 

of anterior parasegmental boundary in the trunk, which is reminiscent of anterior expansion of the 

endogenous en expression pattern in the case of mutants lacking anterior parasegmental repressor 

activity, such as slp (Cadigan et al., 1994). At stage 10 ectopic expression in the anterior parts of the 

mandibular and the maxillary segments is also detected (Fig. 2_9 i, j.).  

If the ectopic expression driven by the 8.8 kb upstream enhancer sequence is not due to a position 

effect caused by the insertion site, then it is possible that the 8.8 kb upstream sequence lacks specific 

negative-repression elements which, otherwise functional in the wild-type locus, ensure silencing of 

the endogenous engrailed expression in these ectopically driven reporter regions. However, this was 

not further examined and clarified since only one transgenic line was generated for that construct. 

Regarding the anterior head stripes, expression of the reporter could be observed only in the antennal 

segment. Therefore, cis-regulatory information driving the rest of the anterior head-segment 

expression should be searched elsewhere in the ~50 kb en locus. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2_7. Construct assaying the first intron of engrailed in combination with the endogenous 
promoter region (-75_+55 bp) driving expression of the lacZ reporter. In the promoter region two 
GAGA elements (CTCTC) and the Downstream Promoter Element (DPE) are depicted. 
Transcription start site C (+1). 
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Fig. 2_8. Embryos in a (st. 10) and c 
(st. 11) are depicted in false-colour in 
b and d respectively. First intron of en 
drives expression in the trunk stripes 
by late stage 10 (a, b) but not in the 
head region. Reporter is stained blue 
in the DIC picture (a,c) and green in 
false-colour (b,d). At stage 11 partial 
expression in the gnathal stripes is also 
detected (c,d).  

Fig. 2_9.  8.8 kb upstream of engrailed drives ectopic expression in the prospective procephalic region of early 
embryos (a-d).  e: fluorescent (FastRed) staining of the wt engrailed expression pattern; there is no expression 
of en in the prospective procephalic region of st. 6/7 embryos. The most anterior stripe of wt en expression 
detected (e) corresponds to the mandibular segment (mn); the maxillary stripe (mx) is also depicted. Ectopic 
expression in the trunk and the head region is also observed at later stages (f-m). g is 40x magnification of the 
embryo depicted in f (st. 8). i and j (fluorescent) are 40x magnification of the embryo depicted in h (DIC). 
Arrow in j depicts ectopic reporter expression in the anterior part of the mandibular segment. l, m are different 
focal planes of 40x magnification of the embryo depicted in k; reporter pattern exhibits loss of anterior 
parasegmental boundary of expression (PS: parasegment, S: segment).  Fluorescent staining in n marks the wt 
expression pattern of en at st. 11 embryos. 
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2.1.3 Determination of transcription-start sites and functional assay of segment polarity gene 

(wg, en, and hh) cis-regulatory regions in Tribolium castaneum. 

A similar isolation of cis-regulatory regions was performed in Tribolium castaneum. Transcription 

start sites were determined by 5’ RACE PCR. For wg and en there was one transcription start site 

determined, matching for both cases the insect transcription start site consensus 5’ TCAGT 3’ 

(Hultmark et al., 1986). For Tc_wg, by similarity to the Drosophila genomic organization, one more 

alternative transcription start site within the first intron of Tc_wg transcript A was predicted as 

putative (tsB). A 7.9 kb sequence upstream of Tc_wg_tsA was isolated by Long Range PCR, and the 

fragment XbaI (-7.4 kb)_SacII (+ 271 bp) was subcloned in an orientation-directed way driving 

expression of the lacZ reporter (2_10 A). This upstream sequence contains minimal cis-regulatory 

information driving only very weak expression in the gnathal stripes, ocular and antennal segments 

and in the posterior growth zone (Fig. 2_10 B). 

For Tc_hh, two transcription start sites were identified by 5’ RACE PCR (tsA, tsB). Only tsB 

matches the insect transcription start site consensus. Transcript B has a 5’ UTR of 62 bp, while 

transcript A has a 5’ UTR of 251 bp after removing by splicing a 3.4 kb intron (Fig. 2_11). A 5.2 kb 

EcoRI fragment spanning (-4941_+272 bp) relative to tsA (Fig. 2_11) did not contain sufficient cis-

regulatory information to drive specific expression of the reporter.  

For Tc_en, in comparison to the Drosophila situation, the first intron was tested in combination 

with the endogenous promoter region, determined by 5’ RACE PCR (Fig. 2_10). Dm_en and Tc_en 

have a similar genomic organization (two introns), and in silico analysis performed on the first 3.036 

kb intron of Tc_en predicts several putative homeodomain binding sites (TAATTA) which have been 

implicated as functional in the case of Dm_en 1st intron (Kassis, 1990). However first intronic 

sequence of Tc_en does not mediate specific expression and thus other regions of the locus should 

be tested.  
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Fig. 2_10. Transcription start site of Tc_wg was determined by 5’ RACE PCR (A). Construct (-7.4 kb_+271 bp) was 
tested via piggyBac transgenesis; it drives very weak expression in the gnathal stripes, ocular and antennal segments (B). 
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2.1.4 Functional dissection of Dm_hh cis-regulatory region 

Functional dissection of the hh upstream region in Drosophila is presented last in this section 

since further analysis ensued.  

Transcription start site (tss) of hh was identified by 5’ RACE PCR to be located +33 bp 

downstream of the tss reported in Lee et al., 1992. This may be due to a nucleotide polymorphism 

(T>C) that the used strain carries at position [-2] relative to the published tss. [+1] of the annotated 

EST (EK111112.5prime) is also affected by a polymorphism (G>C) found at -21 bp relative to the 

transcription start site identified by 5’ RACE PCR. hh transcript produced from the identified tss has 

a 5’ UTR of 353 nucleotides (Fig. 2_13). 

 

  

As a first step a 6.43 kb upstream sequence spanning region [-6.43 kb (NsiI site)_+265 bp] was 

tested. The full-length upstream enhancer drives expression early at blastoderm stage in a broad 

procephalic domain overlapping the endogenous anterior expression domain of hh. At st. 8 it drives 

trunk expression in an even pair-rule mode. During germ-band elongation the reporter gene is also 

expressed in the procephalic head stripes, meaning that the essential cis-regulatory elements 

controlling expression in the anterior head region are included in this 6.43 kb enhancer region (Fig. 

2_14).  The 6.43 kb upstream enhancer was further dissected into 5’ shorter fragments (Fig. 2_15 A) 

which were tested via piggyBac-mediated transgenesis. 

Fig. 2_11. Two transcription start sites or two alternative 
promoters were identified by 5’ RACE PCR for Tc_hh. 
Only tsB matches the insect transcription start site 
consensus TCAGT. 4.9 kb upstream of tsA does not 
mediate specific expression pattern. 

Fig. 2_12. Transcription start site of Tc_en was identified by 
5’ RACE PCR and matches the insect consensus. A GAGA 
element (blue and underlined) can be found. tss: transcription 
start site determined by 5’ RACE PCR. 
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Fig. 2_13. Nucleotide polymorphisms (red) may affect transcription start site (blue). (-392_-343 bp) relative to 
translation initiation codon. 
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Fragment -4.08 kb (PvuII restriction site) drives expression in the intercalary segment and the 

dorsal most part of the antennal segment (Fig. 2_15 II a-e). Fragment -3.17 kb (NheI site) retains 

expression only in the dorsal most part of the antennal segment (Fig. 2_15 II f). Therefore, enhancer 

sequence [-4.08 kb_3.17 kb] contains cis-regulatory information essential for controlling expression 

of hh in the intercalary segment.  

To test whether this enhancer element is also sufficient to ensure intercalary-specific expression of 

hh, fragment [-4.08 kb_3.077 kb] (‘α’) was subcloned and tested in combination with a hs43 basal 

promoter or with the endogenous promoter region (-120_+99 bp), respectively. Expression of the 

reporter was specifically driven in the intercalary segment, essentially when the construct contained 

the endogenous promoter region (Fig. 2_16). Therefore, enhancer fragment [-4.08 kb_3.077 kb] is 

sufficient and essential for controlling intercalary-specific expression of hh. This sequence and its 

functional subfragments will be referred from now on as the intercalary-specific cis-regulatory 

element (ic-CRE). It is also preliminary concluded that intercalary-specific expression of hh 

requires an enhancer-promoter specific interaction or that the hs43 TATA-box minimal promoter 

does not contain core elements required for the ic-CRE function (§3.3). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2_14. 6.43 kb upstream of hh drives expression in the early broad anterior domain corresponding to the 
presumptive procephalic region (a-c), and later it drives complete expression in the trunk and the anterior 
head region. Blue (NBT) staining marks the reporter expression. FastRed staining (fluorescent in c) marks 
expression of hh. c, fluorescent picture of b (DIC). a, b, c blastodermal stages. d, stage 7; e, stage 8; f, stage 
9; g, h stage 10. i, j late 10-11. 
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Fig. 2_15 (I) Functional dissection of 
the -6.43 kb upstream region of hh. 
Fragment -5.9 kb is functionally 
similar to the -6.43 kb upstream 
region. -4.08 kb drives expression in 
the intercalary segment, -3.17 kb does 
not. Dissection was performed using 
the depicted restrictions sites. 
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Fig. 2_15 (II) a-e: 4.08 kb 
subconstruct. f: 3.17 kb 
subconstruct. a: ectopic expression 
in the procephalic region at st. 6 
driven by the 4.08 kb upstream hh 
enhancer sequence. During germ 
band extension, 4.08 kb upstream 
of hh drives expression in the 
intercalary segment (b-e) and the 
anterior most portion of the 
antennal (circle in c, e) while 3.17 
kb upstream region (f) does not 
retain expression in the intercalary 
segment.  

II 
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c 

d 

Fig. 2_16. The ‘α’ fragment (-
4085_-3077 kb) in combination 
with the endogenous promoter (-
120_+99 bp) specifically drives 
expression in the intercalary 
segment and 2-3 cells of the 
mandibular and maxillary 
segment. a: st. 9 (ventral-lateral 
view); b-d; st. 10. b, ventral view; 
c, lateral – anterior to the left. d is 
40x magnification of c. 
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2.2 Analysis of the intercalary-specific cis-regulatory element of hh  

2.2.1 Dissection of the 1 kb ic-CRE 

The 1kb intercalary-specific cis-regulatory element [-4.08 kb_3.077 kb] was further dissected by 

testing overlapping subfragments in an effort to further localize crucial cis-regulatory information in 

a more defined context (Fig. 2_17). 

 

 

 
 
 
 
 
 

Two of the overlapping sub-constructs retain intercalary-expression (Fig. 2_18, 2_19); construct 

‘γ1’ 620 bp (-4085_-3465 bp) is expressed in the intercalary segment displaying an intercalary-

specific early onset at stage 8. At stage 10 it is specifically expressed in the intercalary segment, plus 

a few cells of the mandibular and maxillary which also exhibit reporter expression. Later, at stage 11 

it is de-repressed in the trunk (§3.4). Construct ‘F5_R4’ (-3799_-3464 bp) was the minimum 335 bp 

fragment to be tested that retains expression in the intercalary segment during germ-band extension 

stage 10 while later it is partially derepressed in the trunk, mainly in the gnathal stripes. It lacks 

however early onset at stage 8. 

Since two constructs, 5’ and 3’ overlapping the ‘F5_R4’, do not mediate intercalary-expression 

(Fig. 2_17), namely the fragment ‘F6_R5’ (-3946_3603 bp) and ‘γ2’ (-3653_-3077 bp), this allows 

for a preliminary conclusion; either sequences (-3799_-3654 bp) and (-3602_-3464 bp) contain cis-

regulatory elements that direct a synergistic positive input required to specify intercalary-specific 

expression, or the net outcome of positive (activator) and negative (repressor) binding sites is 

positive (activating) only in the context of the ‘F5_R4’  sequence. This kind of organization and 

function of enhancer elements or cis-regulatory modules is described in Segal et al., 2008.  

 
 
 
 
 

α fragment 1009 bp (- 4085_ - 3077 bp)

Intercalary element (- 4085_ - 3174bp)

β4 287 bp (-3363_-3077 bp)

β3  327 bp (- 4085_ - 3757 bp) γ2  577 bp (- 3653_ - 3077 bp) 

(F3_R2) 330bp (-3502_-3173 bp)(F6_R5) 344bp (-3946_-3603 bp)

(F5_R4)  335bp (-3799_-3465 bp) 

γ1  620 bp (- 4085_ - 3465 bp) 

α fragment 1009 bp (- 4085_ - 3077 bp)

Intercalary element (- 4085_ - 3174bp)

β4 287 bp (-3363_-3077 bp)

β3  327 bp (- 4085_ - 3757 bp) γ2  577 bp (- 3653_ - 3077 bp) 

(F3_R2) 330bp (-3502_-3173 bp)(F6_R5) 344bp (-3946_-3603 bp)

(F5_R4)  335bp (-3799_-3465 bp) 

γ1  620 bp (- 4085_ - 3465 bp) Fig. 2_17. Functional dissection of the 
intercalary-specific cis-regulatory 
element of hh by testing smaller 
overlapping subfragments of the ‘α’ 
fragment. Red are the ones that retain 
expression in the intercalary segment.    
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Fig. 2_18. The γ1 fragment retains 
expression in the intercalary  
segment while ensuring the early 
onset of expression at stage 8. Later 
at stage 11 reporter expression is 
derepressed in the trunk and gnathal 
segments (g). a, b different focal 
planes of the same embryo (st. 8). 
c,d st. 9; d is 40x magnificatioon of 
c. e,f st. 10; f is 40x magnification 
of e. g st. 11. 

st. 11 
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st. 10

st. 9 
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f
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Fig. 2_19. Fragment F5_R4 (-3799_-3465 bp) was the 
minimum to be tested that retains expression in the 
intercalary segment. It lacks however the early onset 
at stage 8. a, b st. 10, c late st. 10. Later at st. 11 
expression of the reporter is partially derepressed in 
the trunk (d). 
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2.2.2 Phylogenetic conservation and deletion mutant analysis of the ic-CRE 

The 335 bp minimum ic-CRE was submitted to phylogenetic analysis (12 Drosophilidae) using 

the UCSC Genome Browser (http://www.genome.ucsc.edu/cgi-bin/hgGateway) or the 

DrosophilaEvoprinterHD (http://evoprinter.ninds.nih.gov/). The sequence consists of six highly 

conserved blocks separated by less conserved DNA stretches (Fig. 2_20).  

To define functional cis-binding sites found within the ic-CRE, deletion mutant analysis was 

performed based on the phylogenetic footprint. Highly conserved sequences found within non-

coding regions usually have a functional role including specific recognition and binding by 

transcription factors; thus they potentially function as transcriptional elements (Bejerano et al., 

2005). As a first approach a series of deletion mutant constructs lacking each of the highly 

conserved blocks of the ic–CRE were cloned and tested in vivo. The deletion mutants versions of the 

ic-CRE sequence were constructed in the context of the minimum 335 bp ‘F5_R4’ (-3799_-3465 bp) 

ic-CRE fragment. Construction of the deletion mutant constructs is described in §5.1.3. From that 

point of the analysis and on the entire reporter constructs series were tested integrated at the same 

genomic site using the attP-attB site-specific integration system (§5.1.2). Reason for that was to 

avoid misinterpretation of results caused by integration site position effects; differences in 

transcriptional outcome driven by slightly divergent cis-regulatory sequences is significantly prone 

to position effects which can overcome the true transcriptional potential of the tested cis-driving 

sequence. Tested at the same attP landing site, the wild type sequence ‘γ1mF6_hhR4’ (-3888_-3465 

bp) retained expression in the intercalary segment (§2.5.1) and also a point mutant version of the 

minimum 335 bp ‘F5_R4’ ic-CRE (bearing a point mutation ccattag>ccaggag that affects the 

putative homeodomain site found within the fourth conservation block; §2.2.3) was driving 

expression in the intercalary segment.  

However, none of the deletion mutant constructs retained expression in the intercalary segment, 

either because functional cis-binding elements essential for intercalary-specific expression of hh lie 

within each of the highly conserved blocks, or due to disturbing inter-motif distances crucial for 

individual transcription factor binding and/or protein-protein interactions, or even for both reasons. 

Position and distance specificity are important determinants of cis-regulatory motifs in addition to 

evolutionary conservation (Vardhahabhuti et al 2007). Therefore, the performed deletion mutant 

analysis was not informative regarding precise location of intercalary-specific cis-regulatory 

information. Thus, another approach was followed, namely a comprehensive point mutant analysis. 

 

 
Fig. 2_20. (on the next site): 12 species alignment of the minimum ic-CRE sequence representing 12 
species phylogenetic conservation. The 12 species conservation blocks (I-VI) are depicted. 

http://www.genome.ucsc.edu/cgi-bin/hgGateway�
http://evoprinter.ninds.nih.gov/�
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2.2.3 In silico prediction of putative binding sites and site-directed point mutagenesis 

In silico analysis was performed on the ic-CRE to identify putative binding sites. A set of online 

publically available prediction tools were employed, namely the rVISTA 

(http://genome.lbl.gov/vista/rvista/submit.shtml), Match and P-Match (www.gene-

regulation.com/pub/programs.html) and MatInspector (http://www.genomatix.de/cgi-

bin/matinspector_prof/mat_fam.pl). These programs generate predictions on novel DNA sequences 

based on scoring against known position weight matrices (PWMs) of transcription factors which can 

be found in the TransFac Database (http://www.genome.jp/dbget-bin/www_bfind?transfac) or in the 

MatBase of Genomatrix (http://www.genomatrix.de). Position weight matrices used were of insect 

and vertebrate transcription factors, taking into consideration that high degree of percentage identity 

in protein primary sequence and more significantly in the DNA binding domain shared by 

homologues is permissive for similar DNA binding specificity. Results were further inspected 

manually, checked in correlation with literature reports and filtered through the phylogenetic 

footprint. 

In this paragraph predictions falling within each of the highly conserved blocks are depicted, their 

biological relevance is discussed and insertion of independent point mutations in the context of the 

335 bp minimum ic-CRE (‘F5_R4’) or the 450 bp (γ1mF5_hhR4) ic-CRE (§2.5.1) and their effects 

are also presented. Point mutations were all tested at the same genomic position (landing site 96E) 

using the attP-attB site-specific integration system (§5.1.2) 

Tables presented in this section with predictions and [core similarity; matrix similarity] scores are 

from MatInspector. Capitals used in the ‘Sequence’ column of the prediction tables depict the 4 

nucleotide core sequence. 

I II III IV V VI

II III IV V VI

III IV V VI

III IV V VI

V VII II III

I II III IV VI

I II III IV V

I II III IV V VI

Mutational analysis – Deletion constructs
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2
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4

5

6

7
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I II III IV V VI

Mutational analysis – Deletion constructs

wt

1

2

3

4

5

6

7

Fig. 2_21 A: Schematic representation of the highly conserved blocks (I-VI) and the deletion mutant constructs which were 
tested via site-specific recombination. None of them retained intercalary-expression. B: Sequence phylogenetic conservation 
(nucleotides in capitals) as depicted by the cis-Decoder. Nucleotides that disturb the 12 species conservation blocks may be 
filtered through the 7 species phylogenetic footprint (the red ones). The purple conservation block in the lower sequence 
encompasses the Collier binding site (§2.2.3). 

(A) (B)

http://genome.lbl.gov/vista/rvista/submit.shtml�
http://www.genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl�
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http://www.genome.jp/dbget-bin/www_bfind?transfac�
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As depicted in Fig. 2_22, for the 

first conservation block three main 

predictions are generated; the first 

regards a putative POU domain-

factor recognition site, the second a 

putative C/EBP site on the opposite 

strand, and the third a homeodomain 

site (core CTAAT). All three 

predicted sites partially overlap 

which would imply differential 

recognition by distinct transcription 

factors in distinct group of cells or 

during different developmental 

windows, or even competition for 

binding. Notably, a deletion mutant construct lacking the first conservation block (Fig. 2_21 A) is 

deficient of reporter expression, implying possible involvement of the predicted binding activities in 

functionality of the ic-CRE. 

    Submitting the second conservation 

block to MatInspector with core 

similarity cut-off (0.95) and matrix 

similarity cut-off optimized by the 

program generates predictions listed in 

the table of Fig. 2_23.  

Setting the matrix similarity cut-off value to 0.8 generates one more prediction which scores the 

binding matrix of Olf-1 (Olfactory factor 1) with a core similarity value 1 and matrix similarity 

value 0.819. This prediction does not come up when the matrix threshold is set to program-

optimized, as the optimal matrix-similarity cut-off value for Olf-1 matrix is 0.82. The predicted 

sequence displays two mismatches to the matrix (positions 14 and 18) which are actually nucleotide 

positions that disturb the 12 species conservation block. 

 

 

 

Fig. 2_23. In silico predictions in the second conservation block. 

Fig. 2_24. Alignment of the sequence 
of the second conservation block to the 
binding matrix of Olf-1. Interestingly, 
nucleotides that do not match the 
respective positions of the matrix 
(small red) are not conserved across 12 
species. 

Fig. 2_22. In silico predictions within the first conservation block 
and the respective position weight matrices. 
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  Olf-1/ Ebf (mouse Early B-cell factor) is the mammalian homolog of Dm_Collier. Factors share 

86% identities in their DNA binding domain that would allow for a similar DNA-binding specificity. 

Thus, the predicted Olf-1 site in the second conservation block was regarded as a putative Collier 

recognition site. Further analysis ensued to elucidate this putative direct DNA-protein interaction as 

it shows quite an interest from a functional aspect (§2.7). Two point mutations inserted in that block, 

depicted in Fig. 2_23, abolish reporter expression, indicating that the site is necessary in vivo for the 

ic-CRE transcriptional outcome. 

 

 

 

 

 

 

 

 

 

Submitting the 33 bp sequence of the third conservation block to MatInspector (Core similarity 

cut-off: 0.9; Matrix similarity cut-off: optimized to minimize false-positives, specified for each 

individual matrix by the program) mainly predicts two putative homeodomain binding sites (two 

cores underlined) as well as a putative POU domain recognition site and a putative forkhead-domain 

(winged-helix) recognition site overlapping the second homeodomain site (Fig. 2_25). Both core 

sequences of the putative recognition sites were simultaneously mutated in the context of the 450 bp 

ic-CRE enhancer fragment (§2.5.1). In spite of one mismatch to the binding matrix, possibility that 

the second site may as well be recognized by a fork head domain factor in vivo cannot be excluded. 

The second recognition site also scores the binding matrix of Pou domain family factors which have 

both activation and repression transcriptional potential. However, the mutation did not alter 

expression outcome of the ic-CRE (Fig. 2_26). Since several putative homeodomain binding sites 

are found within the ic-CRE as well as throughout the full-length upstream enhancer, potential roles 

Fig. 2_25. Predictions of MatInspector within the third conservation block (Table in A) and alignment of the 
sequence of the third conservation block to some of the scoring PWMs (B). 

A

B
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of homeodomain proteins in development and means of determining DNA binding specificity and 

transcriptional outcome are further discussed in §3.5. 

 

 

 

 

 

 

 

 

 

 

Sequence [-3664_-3596 bp] was considered to consist of two highly conserved blocks (12 

Drosophila species) separated by 2 bp. Submitting this 69 bp sequence to MatInspector generates 

predictions listed in the table of Fig. 2_27. (Core similarity cut-off: 0.9; Matrix similarity cut-off 

optimized). In the 4th sequence block interesting predictions include a putative fork-head domain 

(winged helix) recognition site ATGTCAACAT and a homeodomain binding site (core TAAT). The 

putative fork-head domain recognition site scores the binding matrix of XFD3. This factor is 

member of the Xenopus fork-head domain related multigene family. DNA binding specificity has 

been studied for three representative members of the family. XD-1 and -3 bind consensus 

ANNGT(C/A)AACA while XFD-2 binds consensus ANNRT(C/A)AACA (Kaufmann et al., 1995).  

Homologues of fork head domain (winged-helix) factors in Drosophila include Forkhead (fkh), 

Crocodile (croc), Sloppy paired 1 and 2 (slp1, slp2) (Grossniklaus et al., 1994), FoxK/Mnf (Mnf) 

(Casas-Tinto et al., 2008) and Biniou/FoxF (biniou) (Popichenco et al., 2007). The predicted 

sequence resembles a site protected in DNaseI footprint assay by Slp1 found in the proximal 

promoter of ftz (TCTTCGATGTCAACACACC) (Yu et al., 1999). Crocodile binding consensus is quite 

different (arTAAAtAtnn) (Häcker et al., 1995) and more similar to a site footprinted by Fkh found 

Fig. 2_27. In silico prediction results in the 4th and 5th blocks (-3664_-3596 bp) (A) and alignment of the sequence of 
the 4th conservation block to some of  the PWMs (B).  

A

B

Fig. 2_26. 450 bp ic-CRE_homeo mut. Point 
mutations disrupting the core sequences of the 
putative homeodomain sites within the third 
conservation block do not affect expression outcome 
of the ic-CRE. a, b two embryos at st. 10.  a, ventral-
lateral view; b, ventral. 

b a 
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in a krüppel enhancer (ATCCTTTTGTAAATATTAATGT) (Hoch and Jäckle, 1998). Consensus 

binding sequence recognized by Dm_Biniou is RYAAAYA (Popichenco et al., 2007; Peterson et al., 

1997), thus it conforms more to binding specificities of Fkh and Croc. A putative fork head domain 

binding site is also found within the single conservation block of (-3914_-3888 bp) (Fig. 2_37) and 

might be responsible for restriction of the (γ1mF5_hhR4) 450 bp ic-CRE expression outcome 

strikingly in the intercalary segment, in contrast to the (γ1_mF6_hhR4) which is also expressed in 

some cells of the mandibular and maxillary. Since croc is not expressed in the gnathal segments, it is 

more likely that the site is recognized by a distinct winged helix factor with a repression effect 

outside the intercalary segment. 

The point mutation disrupting the putative fork head domain recognition site of the fourth 

conservation block (caaca>cttca, Fig. 2_27 A) both in the context of the minimum 335 ‘F5_R4’ ic-

CRE sequence as well as in the context of the 450 bp ‘γ1mF5_hhR4’ ic-CRE abolished expression 

of the reporter (§2.3). 

Furthermore, the putative homeodomain site predicted in the fourth conservation block scores the 

binding matrix of the vertebrate factor PHOX2A (Paired-like homeobox 2a; Fig. 2_27 A) which 

contains a paired-like box homeodomain most similar to that of Dm_Aristaless. Other homologues 

are encoded by genes including PHDP (putative homeodomain protein), paired, homeobrain and 

gooseberry. 

The predicted homeodomain site also scores the binding matrix of the vertebrate homeodomain 

transcription factor GSH2 (‘Genomic Screen’ GS homeobox 2; Hsieh-Li et al, 1995). Gsh-2 is the 

vertebrate homolog of Drosophila homeodomain transcription factor Ind (ind) (intermediate 

neuroblasts defective) which is involved in embryonic brain development, neuroblast fate 

determination, procephalic ectoderm development and during stages 9-10 is expressed in the 

neuroectoderm of the intercalary segment (tritocerebral neuroblast subset) (Urbach and Technau, 

2004).  

The predicted site (cTAATGGATGt rev. compl.) also resembles binding consensus sequence of 

Labial (Ebner et al., 2005) which is the homolog of the mammalian HoxA1 (Mann and Chan, 1996) 

(§2.4). Introducing a point mutation in the putative homeodomain site of the fourth conservation 

block (ccattag>ccaggag) in the context of the 335 bp minimum ic-CRE did not affect reporter 

expression. That might also be due to functional redundancy shared with the putative homeodomain 

binding sites of the third and first block.  
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The fourth conservation block consisting of one putative fork-head domain binding site and one 

homeodomain site is reminiscent of a {HNF1 _HOXC } cis-regulatory module where Pbx2/Prep1 

homeodomain-heterodimer by binding to the homeodomain site interferes with binding of 

HNF1alpha (fork-head factor) to its adjacent recognition site. This results in downregulation of 

HNF1alpha-mediated activation (Gregory and Mackenzie, 2002).  

 

 

 

 

Submitting the sixth conservation block to MatInspector predicts a putative Zeste recognition site 

(sequence matches binding consensus CRCTCR in the reverse-complement orientation). The 

overlapping seven nucleotide sequence TGATTGA conforms to the eight nucleotide PCE (Pbx 

consensus element) sequence [TGATTGAT] (Knoepfler and Kamps, 1997) and it is also predicted by 

the program scoring the binding matrix of Hox-Pbx complexes (Lu et al., 1994).  Interestingly, this 

‘7 bp element’ is also present in the endogenous hh promoter region (position +60_+54) (§3.3), 

while it is encountered only once in the 6.43 kb upstream hh enhancer, exactly at this position falling 

within the sixth conservation block of the ic-CRE (position -3539_-3533). Two conserved putative 

Zeste sites can be found also in the promoter as well as at other positions of the enhancer (§3.3, 3.4).  

Pbx is the mammalian homolog of Dm_Exd (extradenticle) which is involved in embryonic brain 

development (tritocerebral commisure is missing in mutants; Nagao et al., 2000). Pbx proteins are 

members of the TALE superclass (three amino-acids loop extension) of atypical homeodomain 

proteins. TALE members are characterized by a three-residue insertion in the first helix of the 

homeodomain being involved in interaction with Hox homologs partners, resulting in cooperative 

DNA binding to target sites. In Drosophila such a functional interaction between Exd and Hth 

(homothorax) has been reported (Ebner et al., 2005). In addition, Pbx homologues share a PBC 

domain (for Pbx and ceh-20) directly upstream adjacent to the TALE homeodomain (Bürglin, 1997). 

Finally, a C-terminal tail conserved in Exd improves affinity of monomeric Pbx1 DNA binding 

(Green et al., 1998). This C-terminal tail is termed the ‘Hox cooperativity motif’ (HCM) as it also 

enhances cooperative DNA binding by the minimal Pbx1-TALE homeodomain with a Hox homolog 

partner (Chang et al, 1995; Jabet et al., 1999). 

Fig. 2_28. In silico predictions 
in the sixth conservation block. 
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Point mutation inserted in the sixth conservation block in the context of the 335 bp minimum ic-

CRE sequence (TGATTGAGTG>TGATTCATTG) abolished reporter expression. However, the same 

point mutation in the context of the 450 bp ic-CRE causes late derepression of reporter expression 

both in ectopic cells of the intercalary and the rest of the trunk (Fig. 2_29; §3.4). Ectopic expression 

in dorsal epidermal cells (and cells of the amnioserosa) in early embryos is also observed.  

 
 
 

 

 

 

 
 
 
 
 

 

2.3 Transcriptional response of the ic-CRE expression to Slp1 activity 

Due to the great similarity to the Slp1 footprinted site (Yu et al., 1999), the predicted fork-head 

domain binding sequence found within the fourth conservation block of the 335 bp ic-CRE (§2.2.3) 

was tested in mobility shift assays using in vitro expressed Slp1 protein. This did not however lead 

to specific complex formation, meaning that the particular DNA sequence is not in vitro recognized 

by Slp1. Still, site-directed point mutagenesis of this site (TCAACA>TCTTCA) in the context of the 

335 bp ic-CRE caused loss of reporter expression. The mutation effect was also verified in the 

context of the 450 bp ic-CRE. Therefore, the identified site is bound in vivo, possibly by a member 

of the Drosophila winged-helix factors super-family, and this interaction may as well be involved in 

specifying expression outcome of the ic-CRE. Possibility that the site is recognized in vivo by Slp1, 

even with small affinity, and that this interaction contributes to positive transcriptional outcome of 

the ic-CRE, cannot be excluded for two reasons: a) the 450 bp ic-CRE was tested in slp1 loss-of-

function background using maternal {pnos_GAL4/GCN4_bcd 3’ utr} input driving expression of a 

UAS-slp1 hairpin (VDRC). Detection of the reporter transcripts in the intercalary segment is 

reduced (Fig. 2_30) (but not abolished as in heatshock-induced collier antisense RNA production; 

§2.7.1) in response to downregulation of Slp1 expression and activity after RNAi (still transcript 

Fig. 2_29. 450_bp ic-CRE_zeste point mut.  Progress of the derepression effect of the point mutation on 
expression of the reporter during development. a, st. 8; b, st. 9; c-f, st. 10. g-i, st. 11. d, e ventral-lateral and 
dorso-lateral views of the same embryo, respectively. At early embryos (a, b) reporter is ectopically 
expressed in some dorsal epidermal cells (b) and cells of the amnioserosa. Expression of the reporter in 
intercalary segment is increased in intensity (c) in comparison to the pattern driven by the wild-type sequence 
(Fig. 2.35 III). At later stages, apart from the gradual trunk derepression effect (c-i) reporter is also 
ectopically expressed in cells of the intercalary lobes that do not express hh (g-i). 

f 

a b c 

d e 

g h i 
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remnants are detectable by in situ hybridization Fig. 2_30). b) Although it has been shown to 

function as a transcriptional repressor of the ftz promoter (Yu et al, 1999), Slp1 has been postulated 

to exert a direct activating function on wingless expression (Cadican et al., 1994), meaning that an as 

yet unidentified intrinsic activation potential cannot be excluded. 

slp1 expression in the intercalary segment of stage 10-11 embryos overlaps only the wg expressing 

cells of the anterior part of the intercalary segment but not the hh expressing cells of the posterior 

part of the segment. However, the ic-CRE positive response to Slp1 activity does not seem likely to 

be mediated by wg signaling activity for two reasons: i) wg expression in the intercalary segment 

comes up later (st.10) than the relatively early hh expression onset (st. 8), therefore wg activity 

should not be involved, at least not in the establishment of the intercalary hh expression pattern ii) 

wg signaling activity has actually been implicated to restrict rather than to maintain hh expression in 

the cells of the posterior part of the intercalary segment, in the context of an anterior head-segment-

specific cross-regulatory interaction (Gallitano-Mendel and Finkelstein, 1999). However, in early 

embryos (6-8) slp1 RNA transcription is detected in the procephalic domain overlapping the 

presumptive intercalary anlage (Grossniklaus et al., 1994). Thus, it is possible that Slp1 protein still 

present in cells of the intercalary segment is involved in the establishment of hh expression in the 

posterior part of the segment. Nevertheless, in the case of en posterior segment polarity gene 

expression, Slp1 activity has been implicated in repressing it (while required for anterior wg 

activation). However, it cannot be excluded that hh and en are independently and differentially 

regulated by Slp1 in the intercalary segment. In any case, further analysis should be performed to 

verify or to exclude transcriptional responses of the ic-CRE and endogenous hh expression to Slp1 

activity in the intercalary segment.  

 

 

 

 

 

 

 

Fig. 2_30. 450_bp ic-CRE expression (blue, NBT) is 

reduced in response to slp1 RNAi (compare with Fig. 

2_35 III).  a-c, three embryos at st. 10; d, st. 11. a, b 

ventral-lateral; c, ventral. d, lateral (dorsal-up, 

anterior-left). Weak FastRed staining marks remnants 

of slp1 transcripts after RNAi 
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2.4 The ic-CRE does not respond to Labial activity 

As mentioned in §2.2.3, the putative homeodomain binding site found within the fourth 

conservation block of the 335 bp ic-CRE (TAATGGATGT rev. compl.) resembles Labial binding 

consensus  (TGATGGATKT; Ebner et al., 2005). One more site resembling binding specificity of 

Labial is found at position (-3797_-3806 bp reverse complement) GGATGGATGT just 5’ of the first 

conservation block (Fig. 2_22, 2_20). labial belongs to the ANTC-Hox cluster and marks the 

intercalary segment across arthropod species (Abzhanof and Kaufman, 1999). Therefore, it was 

interesting to test if expression outcome of the ic-CRE would respond to Labial activity, although 

affecting the putative homeodomain site by point mutagenesis (§2.2.3) did not alter intercalary-

expression of the ic-CRE. Expression of the ic-CRE was not affected either when tested in a labial 

loss-of-function mutant background (lab14, Diederich et al., 1989). Also the endogenous hh 

expression pattern seems unaltered in those mutants. labial is expressed anterior to the PS0/PS(-1) 

parasegmental border, actually overlapping the wg expressing cells of the intercalary segment and 

abutting the intercalary hh stripe (Fig. 2_31 a,b). By in situ hybridization it was not possible to 

detect anterior derepression of hh or the ic-CRE expression pattern in labial null mutants. This 

however has to be repeated with a more critical examination for anterior expansion of only one or 

two cells. This is exactly the overlap between expression of the Collier activator (§2.7.1) in the 

posterior part of the intercalary segment and Labial in the anterior (Fig. 2_31, c, d). 

 

 

 

 

 

2.5 Temporal control of the ic-CRE early onset of expression 

During dissection analysis of the 1 kb ic-CRE, it became apparent that the minimum 335 bp 

element ‘F5_R4’ (-3799_3465 bp) lacks the early onset of hh expression at stage 8 (Fig. 2_32) while 

the ‘γ1’ 620 bp (-4085_-3465 bp) construct ensures it (§2.2.1). 

Therefore, intercalary-specific expression of hh is not only under the 

control of spatial cis-regulatory information, but also involves 

temporal control.  

Fig. 2_31. labial (Fastred staining – fluorescent, red arrow) abuts the hh cells in the intercalary segment (a, b).  
 c, d: Fluorescent immunostaining Alexa 488 (green) Collier, Cy3 (red) Labial. c anterior-up, d anterior-left, dorsal-
up. Collier and Labial overlap by 1-2 cells. 

Fig. 2_32.  Early procephalic detection of hh expression in the intercalary anlage 
(arrow). hh-NBT, en-FastRed). 
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2.5.1    5’ dissection of the enhancer in order to localize temporal control cis-elements 

In order to localize cis-regulatory elements conferring the early onset of the ic-CRE expression, 

being presumptively also involved in the initial activation process of the endogenous hh expression 

in the intercalary segment, a series of 5’ shorter constructs were tested, spanning region (-4085 kb_-

3799 bp), while ending at the same 3’ point (-3465 bp) (Fig. 2_35 I). These constructs were designed 

based on the phylogenetic footprint of that region, in a means that during ‘cutting-off’ 5’ fragments, 

highly conserved blocks were not disrupted (Fig. 2_37). Two conclusions could be made from this 

analysis: a) Positive and negative elements controlling late trunk derepression are in a way dispersed 

throughout the dissected enhancer fragment (§3.4) b) Sequence (-4014_-3985 bp) is required to 

ensure early onset of the reporter expression in the intercalary segment (Fig. 2_35 II). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 2_35 I. 5’ dissection of the γ1 fragment in order to localize cis-regulatory elements that generate the 
early onset of intercalary-expression (arrow) at stage 8.  

Fig. 2_35 II. Sequence  (-4014_-3985 bp) ensures the early onset of expression.  
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2.5.2 HMG activity possibly involved in specifying the early onset of hh expression in the 

intercalary segment 

Fragment (-4014_-3985 bp) that ensures early onset of hh expression in the intercalary segment 

consists of two highly conserved blocks GGATCAAAaGG and GTTGACAAAt, separated by a 6 bp 

stretch. Both sequences resemble the binding motif of HMG-box protein factors [WCAAAS] (reported 

in NCBI CDD Database; cd01388 ‘SOX-TCF_HMG-box’; Love et al., 1995; Werner et al., 1995). 

In addition, they both conform to the consensus binding sequence of HMG-box proteins of the SOX 

subclass [WWCAAW] (Churchill et al., 1995; Lefebvre et al., 2007). 

In silico prediction on the 50 bp DNA sequence (-4019_-3970 bp) using MatInspector 

(http://www.genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl) also generates a hit in the first 

block [GGATCAAAaGG] scoring the binding matrix of dTCF (Drosophila T-cell factor homolog or 

Pangolin) which is [WTCAAAS] (MatInspector; Lee and Frasch 2000) (Core 4 nucleotide-sequence 

used by MatInspector underlined). The non-conserved ‘a’ nucleotide that disturbs the conservation 

block does not match the matrix at the corresponding position (S) (G/C). Still, the site strongly 

resembles consensus binding sequence of dTCF as determined by PCR-based binding site selection 

[GATCAAAGG] (van de Wetering et al., 1997) which matches well the canonical Lef1/TCF binding 

motif [WWTCAAAGG]; (van de Wetering et al., 1991; van de Wetering et al., 1993) . Only this first 

block, and not the second one, scores in silico the binding matrix of dTCF, as it seems that a T 

γ1_mF5 450 bp    
[-3914_-3465 bp] 

Fig. 2_35 III. ‘γ1_mF5’ 450 bp fragment drives 
expression specifically in the intercalary 
segment during st. 9-11. a, b different focal 
planes of the same embryo (st. 9). d is 40x 
magnification of embryo depicted in c (st. 10). 
e late 10. f stage 11.  

http://www.genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl�
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residue filling the (second) W position of the general HMG-box consensus binding sequence 

WCAAAS (or WWCAAW) is a prerequisite for specific recognition by the HMG-box of dTCF.  

Notably, juxtaposed to the second highly conserved block, one more putative HMG binding site 

(TACAAAC) is found in the reverse-complement orientation, matching the WCAAAS consensus. This 

sequence is filtered through 11 species phylogenetic conservation, with D. yakuba species sequence 

being divergent (i.e. not in capitals in Fig. 2_37). 

Based on the above in silico analysis performed, recognition of the 30 bp sequence conferring 

early expression onset of the ic-CRE by dTCF as a first candidate was tested in vitro in mobility 

shift assay. dTCF was expressed in vitro in a cell-free expression system (§5.7). Recognition of the 

DNA sequence of the putative site and binding resulting in mobility shift was tested for the wild-

type 35 oligo spanning region (-4016_-3982 bp) and for a mutated version removing an ‘A’ from the 

first block sequence so that it perfectly matches the dTCF binding consensus (Fig. 2_36). The wt 

oligo generates only a very weak shift complex. The optimal sequence is recognized by dTCF 

producing a shift complex which is merely competed by 100x molar excess of wt oligos 

corresponding to each of the highly conserved blocks (‘21 bp TCF’ site and ‘18 bp HMG site’ 

competitors). Thus, dTCF in vitro does not efficiently bind the oligo sequence of the first 

conservation block, despite the in silico prediction scoring the binding matrix of dTCF. This is most 

probably because at the corresponding position 7 of the dTCF binding consensus (WTCAAAS) the wt 

oligo sequence bears an A instead of a ‘strong’ S(G/C) nucleotide. This is also supported by 

recognition and binding in vitro of the optimal mutant probe (GGATCAAAaGG> GGATCAAAGG). 

Therefore, occurrence of a ‘strong’ (G/C) nucleotide at position 7 of the matrix seems to be a 

prerequisite for specific recognition and binding by the HMG-box domain of dTCF.  

In vitro dTCF does not recognize either the second conservation block sequence (GTTGACAAAtg) 

as it can be concluded by the competition experiment. This is most probably because the second 

conserved sequence resembles dTCF binding consensus [WTCAAAS]only at positions 3, 4, 5, 6 

(CAAA) but not at positions 1 (W>G), 2 (T>A) and 7 (S>A). Nevertheless, the second conservation 

block sequence could be recognized in vivo by another member of the HMG domain family, as it 

still conforms to the consensus binding sequences WCAAAS or WWCAAW, with one mismatch to the 

last or to the first nucleotide residue, respectively (§3.2).  

In conclusion, region (-4014_-3975 bp) consists of three highly conserved blocks, the first two (-

4014_-3985 bp) filtered through 12 species conservation, the third through 11 species conservation. 

All conform to the consensus binding sequence of HMG-domain proteins. Specifically, the first 

block scores with one mismatch the binding matrix of dTCF HMG-box protein (Pangolin), the wt 
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oligo sequence however is not shifted in EMSA by in vitro expressed dTCF. Since from the 5’ 

dissection analysis it is concluded that fragment (-4014_-3985 bp) can confer early onset of the ic-

CRE expression, and also supported from the in silico analysis, involvement of HMG activity in the 

early temporal control of intercalary-specific expression of hh and proposal of another candidate 

distinct from dTCF are issues further discussed in §3.2.  

 

 

 

 

 

 

 

 

A summary of the ic-CRE components presented in §2.2-2.5 is depicted in Fig. 2_37. 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 2_36. Only the mutated version of the probe (optimal) that 
perfectly matches the dTCF binding consensus generates 
substantial shift complex formation (lane 2) which is merely 
competed by the wild-type sequences (lanes 3, 4 competition at 
100x molar excess). 

Fig. 2_37. A summary of the ic-CRE sequence (-4014_-3465 bp) and its components mentioned in §2.2-2.5. 
Short blue arrows mark 5’ ends of Forward and Reverse primers spanning the Collier site used in qPCR (§ 2.7.3). 

tccGGATCAAAaGGagcccgGTTGACAAAtgtttgtatgcacgcacacatcgagacacttgggatga

gaacctttttctgcccagttacttggacgctggctgtgAATGTTTATGTTacaagccccctgcccat

tttgctcctgaactgaaaccattcagtggctgttcgtgcctttatggtggcaaattcaccggaatac

cggaggcacatccatCCATTTGCCTAATTTCtAtttcggcagCAAtTCCCCAAtGGCaTTTcACtta

GATTTATGTGAATTAAACagcctgaacacagccacttccccttcccctttccattttcccttccacg

acccaatcccaatccCTGGTAGCCGTAAATGTCAACATCCATTAGAGACCtcAAACCGTTAGTGGCA

TTTGTCGCACGCTATGAggcaggccgaaagcaaccgccgCAGTCACAacacaagagtcccacaactc

gcagcATGATTGAGTGcCtGaTTCTcgGAAtcaaatcgaaatcagcattgacttgatatgagaaccg
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GATTTATGTGAATTAAACagcctgaacacagccacttccccttcccctttccattttcccttccacg

acccaatcccaatccCTGGTAGCCGTAAATGTCAACATCCATTAGAGACCtcAAACCGTTAGTGGCA
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2.6 Further dissection of the hh upstream enhancer 

As mentioned in §2.1.4, a 6.43 kb upstream enhancer sequence of hh confers expression of the 

reporter also in the other two procephalic segments, namely the ocular and the antennal. In an effort 

to localize cis-regulatory information governing hh expression in these two segments, enhancer 

region [-6.43 kb_-4 kb] was further dissected by testing shorter overlapping subfragments of ~600 

bp size (Fig. 2_38). However, none of these fragments could mediate segment-specific embryonic 

expression pattern which raised the question if this is due to disrupting individual cis-binding 

elements during the dissection analysis, or because a high degree of synergy between individual cis-

elements dispersed along different regions the enhancer is required to determine anterior head 

segment-specific expression in the ocular and the antennal segments. If this second possibility is 

indeed a prerequisite to be fulfilled, then a molecular mechanism mediating functional interactions 

among distant enhancer elements (and/or with core promoter elements) has to be considered 

(§3.1.5). 
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Fig. 2_38. Full-length upstream enhancer of hh (-6.43 kb) sufficiently drives head and trunk segmented 
expression pattern of the reporter (Fig. 2_14).  Overlapping fragments (a-h) of ~600 bp spanning hh 
upstream enhancer (-6.43_-4.08 kb) do not mediate specific expression pattern. The ic-CRE (-4.083_-3.174 
kb) is marked. Green bar at -3.77 kb represents the functional identified Collier binding site (§2.7). In total 
four conserved putative zeste sites can be  found in the 6.43 kb upstream enhancer (CRCTCR). 
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2.7 Analysis of Collier DNA-binding activity on the ic-CRE 

In silico analysis performed on the ic-CRE sequence revealed a site within the second 

conservation block that scores the binding matrix of the COE-HLH factor Olf-1 (Olfactory factor 1) 

(§2.2.3). 

Olf-1/ Ebf (Early B cell factor) is the mammalian homolog of Dm_Collier (Crozatier et al., 1996). 

Because of the high degree of percentage identity in the DNA binding domain shared by the 

homologues which reaches up to 86% implying a similar DNA binding specificity, the predicted 

sequence was regarded as a putative Collier recognition site. Further analysis was performed to 

elucidate this putative DNA-protein interaction as it shows quite an interest from a functional aspect; 

Collier was proposed to function as an activator of segment polarity gene expression in the 

intercalary segment and was the first candidate factor proposed to act as a second-level regulator in 

patterning of the anterior head region, while being under the strict control of btd (Crozatier et al., 

1999; Crozatier et al., 1996). Intercalary-specific expression pattern of segment polarity genes is lost 

in collier null mutants. Since Collier expression does not overlap with wg expressing cells of the 

intercalary segment, dependence of wg expression upon Collier is most probably mediated by the hh 

pathway. Also the question whether Collier-dependent intercalary-expression of hh depends on a 

direct interaction at protein-DNA level that triggers transcriptional activation of hh in the posterior 

cells of the intercalary segment was left open. 

Identifying a Collier DNA-binding site, functional within the ic-CRE, would explain functional 

dependence of hh upon Collier activity specifically in the intercalary segment. Analysis further 

proceeded to prove that the underlying molecular mechanism involves a direct protein DNA-

interaction leading to transcriptional control of segment polarity gene expression. That would further 

support the role of Collier as a second level regulator in the anterior head region, without of course 

excluding the possibility that head gap-like genes may also contribute a transcriptional control input 

in procephalic segment polarity gene expression.  

2.7.1. Intercalary-specific expression of hh mediated by the ic-CRE is under positive 
regulatory control exerted by Collier 

To determine whether the ic-CRE expression outcome is under positive control by Collier like the 

endogenous hh intercalary-pattern, the 450 bp ic-CRE was brought into a collier loss-of-function 

mutant background (col1; Crozatier et al., 1999; Fig 2_38). col1 bears a nucleotide substitution 

(G>A) that eliminates a splice acceptor site resulting in the non-removal of intron 6 and the 

production of a truncated protein ending at aminoacid position 228.  
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The 450 bp (γ1mF5_hhR4) ic-CRE driving tGFP reporter expression was also crossed to a 

generated transgenic line that produces heatshock-inducible ColA_CDS_antisense RNA (line 

HS.ColA_antisense #M3, §5.3). Remnants of collier transcripts are still detectable by FastRed 

staining but ic-CRE expression is abolished (Fig. 2_40).  

Abolishment of the ic-CRE-mediated reporter expression, as well as the intercalary expression 

pattern of hh, in col loss-of-function mutant background supports that intercalary-specific expression 

of hh is under positive regulatory function of Collier, mediated by the ic-CRE transcriptional 

activating input.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

2.7.2 In vitro analysis of Collier-DNA binding interaction 

Recognition of the Collier-binding site identified in silico within the ic-CRE was tested in vitro in 

mobility shift assays. The first mobility shift assays were performed using crude nuclear embryonic 

extracts (0-10.5 h, §5.8). A 31 bp oligo encompassing the putative Collier binding site was used as a 

probe (cggcagCAAtTCCCCAAtGGCaTTTcACtta) (-3777_-3747 bp). The oligo is recognized 

by the extracts resulting in formation of three complexes (two major and one minor – slower 

migrating – one; Fig. 2_41) which are competed by including increasing amounts of unlabeled 
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Fig. 2_39.  Probes; hh, lacZ (NBT); tgfp (Fred). collier null embryos specifically lack intercalary expression  
pattern of hh and ic-CRE expression is abolished. Dig-labeled probe of lacZ is also added in the hybridization 
to distinguish the nulls, as the second chromosome balancer carries a twist-lacZ insertion. b (st. 9),  anterior-
left; c (st. late 10), anterior-up. 

(CyO-twist-lacZ )                  

Fig. 2_40. Heat-shock inducible transgenic RNAi to knock-down collier activity. b: The ic-CRE mediated expression 
is abolished (no NBT staining against DIG-labeled probe of the tgfp reporter) while remnants of collier transcripts 
are still detectable (weak FastRed staining against the Fluo-labeled probe of collier). c: ic-CRE mediated expression 
is retained in embryos that have been heat-shocked but do not bear the HS.ColA_antisense insertion (genotype from 
the crossing scheme is ic-CRE/TM2) 

ic-CRE
ic-CRE

x HS.ColA antisense
TM2

ic-CRE
HS.ColA antisense 50%

ic-CRE
ic-CRE

x HS.ColA antisense
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Fig. 2_42.  Alignment of the 
annotated Collier isoforms. Collier 
A and Collier B share the same N-
terminal 528 aa. Collier B has a 
His-rich (11/29 aa) C-terminus. 

competitor at 50x, 100x, and 150x molar excess. Complex formation was downregulated after 

preincubating the extract with an antibody against Collier, without however leading to supershift 

band detection (not shown). That observation triggered hypothesis that Collier activity present in the 

crude extracts might be involved in formation of the detected complexes, which was further 

explored and supported by chromatin immunoprecipitation experiments using the anti-Col and 

cross-linked chromatin extracted from (~2-10.5 h ael) embryos (§5.4). Further EMSA experiments 

were performed using proteins expressed in vitro in a cell-free transcription and translation system 

(§5.7). For that purpose the open reading frame of Collier protein was cloned. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

In D. melanogaster two Collier isoforms are present resulting from a developmentally regulated 

alternative splicing event (Crozatier et al., 1996). Specifically, the two protein isoforms share the 

same first 528 aa and differ in the last 29 aa for Collier A (Col2; Crozatier et al., 1996) and 47 aa for 

Collier B (Col1) which constitute a His-rich C-terminus specific for the B isoform. Calculated MW 

for the two proteins are 60.5 and 62.5 kD respectively. Collier C isoform included in the alignment 

of Fig. 2_42 is encoded from a weakly supported annotated transcript in Flybase. However, by using 

Fig. 2_41.  Mobility shift assay with 
crude nuclear extracts and the 31bp 
Collier site – oligo probe. Two major 
complexes are generated (a, b) and 
one minor (c). Lane 1, 2, 3: 
Competition at 150x, 100x, and 50x 
molar excess, respectively. 
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a forward primer specific for the 5’ of the coding sequence of Col_C open reading frame, it was not 

possible to isolate it by PCR from Drosophila embryonic cDNA pool and only the open reading 

frames of A (Col2) and B (Col1) isoforms were cloned. As reported in Crozatier et al. (1996), two 

major transcripts of length 3.9 and 3.4 kb, containing the respective open reading frames of ColB 

1725 nucleotides and ColA 1671 nucleotides, were detected on developmental northern blots. ColB 

transcript is first detected at 4 h after egg lay, while both transcripts display a peak between 8-16 

hours of development. The ColA and ColB cDNAs differ from each other by 465 nucleotides which 

are removed by a developmentally regulated splicing event (Crozatier et al., 1996). This results in 

two isoform-specific C-terminal regions (depicted in the alignment of Fig. 2_42; 29 aa C-terminus 

for ColA and 47 aa His-rich C-terminus for ColB).  The intronic for Collier A, still coding for 

Collier B, 465 bp sequence (Fig. 2_43) was cloned (with primers ColB_specific_F/Rev; Table 5-1.1) 

in order to generate a labeled antisense RNA probe that specifically hybridizes with transcripts of 

Collier B in in situ whole-mount embryonic hybridization. Cytoplasmic transcripts detected with this 

probe are only of ColB while detectable nuclear dots correspond to total nascent transcripts (nuclear-

dot staining is not distinguishable between ColA and ColB cell-group-specific expression). No 

tissue-specific or cell-group specific difference in the expression of the two splicing isoforms could 

be indicated from double in situ hybridization assays using the ColB-specific probe and a Fluo-probe 

that detects both transcripts (ColA_CDS_antisense). Therefore, both proteins were considered to be 

potentially involved in regulation of the ic-CRE and the endogenous hh expression in the intercalary 

segment, and they were both expressed in vitro to be used in EMSAs.  

 

 
 
 
 
 
 

EMSAs were performed testing two oligo sequences; the wild-type and an ‘optimal’ mutant 

version of probe that bears two nucleotide exchanges so that it perfectly matches the binding matrix 

of Olf-1 (§2.2.3) (Fig. 2_44 a.) Both probes generate formation of a complex shift with the two 

Collier splicing protein isoforms (Fig. 2_44 b). The optimal probe is recognized with slightly higher 

affinity. One major complex is formed (C1) which is most probably due to Collier homodimer 

and/or heterodimer binding when both proteins are present in the reaction. Dimerization upon 

binding is mediated by the Helix-Loop-Helix (HLH) motif present in all members of the COE 

transcription factor family (Daburon et al., 2008; §3.6). In the case of Collier B one faster migrating 

Fig. 2_43. Organization of ColA and ColB transcriptional units (col is referred as kn; knot in Flybase). Light 
blue and black bars correspond to coding sequence (exon 11 is the last common exon of the two splicing 
isoforms). Grey bars are untranslated regions of the transcribed mRNA. Lines are intronic regions. The 465 bp 
sequence depicted was subloned from the ColB cDNA to be used as a template for a ColB-specific antisense 
RNA probe. 



                                                                                                                                                      Results 

                                                              43

complex (C2) is detectable which is most probably due to Collier B binding also as a monomer. 

Modest monomeric binding activity has also been reported for the mammalian homolog EBF (Early 

B-cell factor) (Hagman et al., 1995). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

It is also apparent that the homodimer of Collier A binds the oligo with more affinity than the 

homodimer of Collier B and that the AB heterodimer binds with intermediate affinity (compare 

complex C1 intensity in lanes 2 and 4 with lane 6 and the amount of free unbound probe in each case 

in Fig. 2_44 b).  

Differential binding affinities of the homodimers and their heterodimer situation was further 

examined in titration experiments. While keeping steady the amount of Collier B, adding additional 

amounts of Collier A leads to increase of C1 complex formation, while C2 formation decreases. This 

is presumptively due to heterodimerization of Collier B to Collier A protein molecules, with the 

heterodimer situation binding the oligo sequence with less affinity than the homodimer of Collier A, 

since while keeping steady the amount of this factor, increasing the presence of Collier B attenuates 

C1 complex formation (Fig. 2_45 a).  

Fig. 2_44. a) Alignment of the wild-type and optimal Collier recognition sequences (-3777_-3747 bp) to the Olf-1 
binding matrix. Capitals represent 12 species conservation. b) Mobility shift assay with the two in vitro expressed 
Collier isoforms and the wild type and optimal sequence probes. Both probes lead to complex shift formation with 
both proteins. The optimal probe is recognized and bound with slightly higher affinity. In the case of Collier B one 
faster migrating complex can be detected (C2). 

cggcagCAAtTCCCCAAtGGCaTTTcACtta

cggcagCAAtTCCCCAAGGGCTTTTcACtta

Col site 31 bp wt

Col site 31 bp optimal

cggcagCAAtTCCCCAAtGGCaTTTcACtta

cggcagCAAtTCCCCAAGGGCTTTTcACtta

Col site 31 bp wt

Col site 31 bp optimal

a)  

b)  
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Specificity of Collier-DNA complex formation was assessed in competition experiments using 

unlabeled wild type or point mutant sequence versions of oligo competitors at 100x molar excess 

(Fig 2_46). Although presence of the wild type competitor can reduce probe-complex formation 

(lanes 2, 8), an oligo bearing mutation in the core of the binding site is not recognized, thus 

incapable of competition at 100x molar excess (lanes 4, 10). A sequence mutated  5’ of the core 

competes shift formation, but not as efficiently as the wild type version, implying that the affected 

nucleotides are recognized and participate in strengthening DNA binding as well (lanes 3, 9). 

Notably, the same point mutations in vivo, both tested in the context of the 335 bp minimum ic-CRE 

abolish reporter expression (§2.2.3). Competition events affect likewise formation of the C2 

complex, implying that specific DNA interaction in vitro can be mediated by Collier B monomers as 

well.  

Ability of a monoclonal anti-Col antibody (gift from Michelle Crozatier and Alain Vincent, 

Toulouse, France) to super-shift Collier-DNA complex was also tested (§5.8). Preincubation with 

anti-Col leads to partial supershift of the C1 complex (Fig. 2_47). This means that the anti-Col used 

is, at least in vitro, able to recognize and stably bind to the protein factor while the latter is in 

binding complex with a DNA oligo sequence. Since the anti-Col recognizes the transcription factor 

in the DNA-binding conformation this suggests that the same antibody can be used in chromatin 

immunoprecipitation experiments after in vivo crosslinking. 

 

 

Fig. 2_45. a) Titration experiment. C1 homodimer/heterodimer, C2 ColB monomer (at the height of the black 
spot).  The AB heterodimer binds the oligo with intermediate affinity, lesser than the A homodimer and 
greater than the B homodimer. b) Overexposed gel to show that heterodimer binding prevails over Collier B 
monomer binding. 

a) b) 
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2.7.3 In vivo occupancy of the identified Collier binding site within the ic-CRE 

To address the question whether the identified Collier binding site is occupied by Collier in vivo, 

chromatin immunoprecipitation followed by quantitative real-time PCR was performed (§5.4, 5.5). 

As described in §5.5, enrichment ratios of the identified Collier binding site in the anti-Col sample 

over the negative control region (amplicon within the second exon of caudal) were assessed and 

compared to the enrichment ratios obtained from the mock IP in two independent experiments (A 

and B, using independently isolated starting material; Fig. 2_48).  

 

 

 

 

 

Fig. 2_46 Competition experiment using wild type and mutant versions of oligo sequences.  
Competitor ‘mut2’ which bears a mutation in the core of the binding site does not compete; 
competitor ‘mut1’ bearing a mutation at the 5’ of the binding sequence competes but not as 
efficiently as the wild-type version. Sequence of oligo3 competitor is found at position (-3674_-
3650 bp) within the ic-CRE; this sequence (or its mutant version) does not compete, thus it is not 
recognized by Collier. 

Fig. 2_47 Supershift 
reaction. Arrow depicts 
the supershift band. 
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Fig. 2_48. ChIP results. In Experiment A 0.5 µl and 2.2 µl of monoclonal anti-Col (~4.5 µg/µl), 1 and 3 µl of 
anti-BP102 (~10 µg) were used respectively. In Experiment B 1.9 µl of a-Col (~8.6 µg) and 2.6 µl of a-BP102 
(~8.6 µg) were used. 
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Occupancy of the identified binding site is enriched in the anti-Col IP samples, in contrast to the 

mock IP’s where the ratios are around 1. The identified, as occupied by Collier in vivo, binding site 

could be further used as a proven endogenous positive site for data normalization in ChIP 

experiments followed by qPCR from transgenic embryos bearing either the wild-type ic-CRE 

sequence or the point-mutant versions affecting the Collier site. It could also be used for 

normalization when testing immunoprecipitated chromatin sample enrichment for novel Collier 

binding sites in a genome-wide distribution search. 

2.7.4 In vitro analysis of Collier interaction with other in silico predicted putative recognition 
sites  

It is expected that cis-regulatory modules controlling sub-patterns of the whole complex 

expression patterns of developmental genes are enriched in stronger binding sites for key-input 

transcription factors, recognized and bound with high affinity by the factor protein molecules (Segal 

et al., 2008). Nevertheless, weaker binding sites also contribute to the overall net expression 

outcome of a spatial-controlling module. Characteristic of these weaker binding sites is short-range 

homotypic clustering, usually within ~200 bp, which facilitates cooperative binding (Segal et al., 

2008).  

In silico analysis was performed to detect additional novel putative Collier binding sites within the 

hh upstream enhancer, in the vicinity of the identified functional binding site (-3777_-3747 bp), 

which would suggest an additional contributing input to the ic-CRE transcriptional outcome. 

Recognition of the novel – predicted in silico – putative sites by Collier protein was tested in vitro in 

competition EMSAs (Fig. 2_54 b).  

The 6.43 kb upstream enhancer of hh was submitted to rVISTA analysis 

(http://genome.lbl.gov/vista/rvista/submit.shtml) scanning for sites matching the binding matrix of 

Olf-1. By setting the highest possible combination of values of core-similarity cut-off and matrix-

similarity cut-off (0.95; 0.85), so that at least one prediction is generated, only one site is predicted 

which is the identified functional Collier binding site CAATTCCCCAATGGCAT (-3771_-3755 bp) 

found within the ic-CRE. Lowering the matrix similarity threshold only by 0.05, that is using 

combination similarity cut-off (core; matrix) (0.95; 0.8), instead of (0.95; 0.85), then three additional 

predictions are generated, including two distant binding sites: GAGACACTTGGGATGAG at (-3963_-

3947 bp) and CACACCACGGGGAAGCG at (-2872_-2856bp), and one promoter-proximal site 

CACTTCCCTTGCGCATA at (-212_-196 bp). These three predicted sequences were re-aligned with 

the already identified functional site using MEME (http://meme.nbcr.net/meme4_1/cgi-

bin/meme.cgi) to generate a novel motif (Motif A) (Fig. 2_49).       

http://genome.lbl.gov/vista/rvista/submit.shtml�
http://meme.nbcr.net/meme4_1/cgi-bin/meme.cgi�
http://meme.nbcr.net/meme4_1/cgi-bin/meme.cgi�
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Using the Motif A to scan the 6.43 kb upstream enhancer by rVISTA predicts sites (-2856_-2872 

bp) and (-212_-196 bp) with core cut-off value 0.95. Threshold has to be lowered to 0.9 to generate 

the functional Collier binding site (-3771_-3755 bp) prediction. This is because core of the binding 

matrix has been repositioned. Therefore, the above alignment was manually corrected to generate a 

slightly distinct position weight matrix (Motif B) (Fig. 2_50) which if used to scan in silico the 

enhancer, the functional Collier binding site (-3771_-3755 bp) comes up with the highest core 

similarity cut-off.  

 

 

 

 

 

Notably, if in the alignment apart from the 17 nucleotide long sequences (which are the output of 

rVISTA prediction using the Olf-1 binding matrix) also surrounding nucleotides are included, in the 

respective context of the Olf-1 22 bp binding matrix (Fig. 2_24), then one strong consensus motif is 

generated by MEME shared by all set sequences, which perfectly matches the 5’ half of Motif B 

(nucleotide positions 1-8; Fig. 2_50). This is depicted in Fig. 2_51. 

 

 

 

Fig. 2_49. Three novel predictions in the 6.43 
kb upstream region were aligned with the 
functional Collier binding site (-3771_-3755 
bp) using MEME to generate Motif A. 

Fig. 2_50. After manual 
correction of the alignment  
depicted in Fig. 2_49 Motif B is 
generated. This can be further 
corrected for small sample input.  

(-3773_-3752 bp)  AG CAATTCCC CAATGGCATTTC functional Collier binding site
(-214_-193 bp)    TC CACTTCCC TTGCGCATAAGG
(-3945_-3966 bp)  TT CTCATCCC AAGTGTCTCGAT
(-2854_ -2875bp)  TG CGCTTCCC CGTGGTGTGGGT

(-3773_-3752 bp)  AG CAATTCCC CAATGGCATTTC functional Collier binding site
(-214_-193 bp)    TC CACTTCCC TTGCGCATAAGG
(-3945_-3966 bp)  TT CTCATCCC AAGTGTCTCGAT
(-2854_ -2875bp)  TG CGCTTCCC CGTGGTGTGGGT

Fig. 2_51. Including surrounding nucleotides in the 
alignment of Fig. 2_50 generates a strong motif by MEME 
which matches the 5’ half of Motif B.  
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If finally the vertebrate Olf-1 binding matrix and the new in silico generated ‘Drosophila Collier 

Motif B’ are compared, they can be finely aligned around an anchor position nucleotide G (position 

15 of the Olf-1 matrix) spaced with 4 nucleotides from the core TCCC (Fig. 2_52). 

 

 

 

 

 

If the novel ‘Drosophila Collier motif’ is used to scan the upstream enhancer then one additional 

site is predicted which consists of two tandem repeats of the 5’ half of the binding motif 

(overlapping by one nucleotide). Interestingly, this prediction found at position (-3714_-3701 bp) 

also falls within the ic-CRE in a distance of 35 nucleotide bases downstream of the functional 

Collier binding site. Although not phylogenetically conserved, clustering with the strong Collier 

binding site would imply that these weaker predicted sites might contribute as well to Collier 

positive input on the ic-CRE transcriptional outcome (if they are indeed bound by Collier protein 

molecules in vivo, perhaps by monomers, since they conform to the 5’ half of the Drosophila 

binding motif; the second one with a mismatch) (Fig. 2_53).  

 

 

 

 

In conclusion four additional putative Collier recognition sites were predicted, two of them falling 

within the ic-CRE, [sites (-3947_-3964 bp); ‘compet1’ and (-3714_-3701 bp); compet2] in a distance 

170 bp upstream and 35 bp downstream of the functional Collier binding site, respectively (Fig. 

2_54_a). Notably, all three sites found within the ic-CRE are within the typical range of homotypic-

clustering (~200 bp). The third additional predicted site is a distant element positioned downstream 

of the ic-CRE (- 2856_ -2872 bp; ‘compet3’) and the fourth is a promoter-proximal element (-212_-

196 bp; ‘compet4’). 

Fig. 2_52. Alignment of the functional Collier 
binding site (-3777_-3747 bp) to the mammalian 
homolog binding matrix and to the novel in silico 
generated Drosophila Collier motif. The novel 
motif was generated from the alignment of four 
binding sites, the functional one plus three sites 
predicted from scanning Drosophila hh upstream 
region with rVISTA using the Olf-1 matrix and 
(0.95; 0.8) (core; matrix) similarity cut-off. 

Fig. 2_53. Alignment of the novel prediction, generated by 
scanning the full-length upstream enhancer using  the in 
silico generated Dm_Col_motif, with the MEME motif of 
Fig. 2_51.  

-3714 cacttccccttccc -3701-3714 cacttccccttccc -3701
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The four novel predicted binding sites were used as competitors at 100x molar excess in mobility 

shift assay (Fig. 2_54 b) with the functional binding site-probe (Fig. 2_44, 2_46). However these 

sequences were not as efficient in competition as the (100x) wt competitor (Fig. 2_46) (only a very 

weak competition effect can be observed in the case of competitor 1 – compare free probe and C1 

intensity, lane #3 vs. #4, Fig. 2_54 b), meaning that the sites are not efficiently recognized by Collier 

in vitro. Still, if the sites are recognized even with minor affinity in vivo, homotypic clustering 

within the ic-CRE would suggest that they may contribute to the overall net transcriptional outcome 

of the ic-CRE.  

On the other hand, from the total five sites predicted in silico within the 6.43 kb upstream 

enhancer only the one (the functional Collier binding site at position (-3773_-3752 bp) within the ic-

CRE) that is predicted with the highest matrix similarity cut-off is specifically and with high affinity 

recognized by the factor in vitro (Fig. 2_44, 2_46). 

 

 

 

 

 

 

 

 
 
 

 

 
 
 

Fig. 2_54 a) Summary of the in silico predictions of putative Collier recognition sites within the -6.43 kb hh 
upstream enhancer. Black is the functional Collier binding site found within the ic-CRE. b) Competition assay 
with the novel in silico predicted oligo sequences. Blue spot marks the Col B monomer complex, arrow depicts 
the free probe. Only a minor competition effect can be observed (compare C1 complex intensity and free probe 
between lane 3 and lane 4). 

a) 

b) 
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2.8 Restriction of the activator function of Collier to the posterior part of the 
intercalary segment 

Up to now a line of results has been presented supporting that Collier-dependent intercalary-

specific expression of hh is succeeded through direct involvement of Collier in transcriptional 

activation of hh in the intercalary segment: 

• Presence of a Collier binding site in the intercalary-specific cis-regulatory element of hh 

which is functional in vitro (generating specific Collier-DNA complex formation in EMSAs), as 

well as in vivo, including enrichment in anti-Col ChIP sample and functionality in the point 

mutagenesis screen; insertion of point mutations in that site in the context of the ic-CRE sequence 

causes loss of reporter expression. This is due to abolishment of recognition and binding of the 

mutated site by Collier in vivo, as it can be inferred in vitro by competition EMSAs (Fig. 2_46). 

• Expression of the ic-CRE, as well as the endogenous intercalary-specific hh expression 

pattern, is abolished in col loss-of-function mutant backgrounds (§2.7.1). 

Supporting a role of Collier functioning as a direct transcriptional activator of hh in the intercalary 

segment triggers the question of how positive transcriptional regulatory input is restricted to the 

posterior part of the intercalary segment. In situ hybridization and immunostaining reveals that 

Collier is not expressed solely in the hh expressing cells of the posterior part of the intercalary 

segment but its expression pattern exceeds also into the anterior most part of the mandibular 

segment. Therefore, an underlying molecular mechanism ensures that positive regulatory input 

directed by Collier on the ic-CRE expression outcome is restricted in the hh expressing cells of the 

posterior part of the intercalary segment. Presumptively the same mechanism may be involved in 

defining posterior segmental boundary of intercalary-specific expression of hh. Considering a 

synergistic positive regulatory input from a factor(s) absent from the anterior most part of the 

mandibular segment, required for Collier to conduct in a synergistic fashion its positive regulatory 

function, is one possibility. The second is to consider the presence of a negative regulatory factor in 

the anterior most part of the mandibular segment which inhibits or competes positive regulatory 

function of Collier in that region.   

2.8.1 ic-CRE expression under negative regulation of CncB in the anterior part of the 
mandibular segment 

Among genes being expressed in the embryonic head region, cap `n` collar (cnc) displays a well 

characterized expression pattern (Crozatier et al., 1999; Veraksa et al, 2000; Seecoomar et al., 2000) 

that would finely serve the second possibility; cnc is required for the development of the 

hypopharyngeal lobes, structures that derive from progenitor cells of the anterior part of the 

mandibular segment (Seecoomar et al., 2000), and by stage 10 it is expressed throughout the 
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mandibular compartment precisely abutting the hh expressing cells of the posterior part of the 

intercalary segment. Therefore, by stage 10 expression domains of collier and cnc overlap only in 

the anterior most part of the mandibular segment which is exactly the domain where Collier fails to 

activate the ic-CRE (Fig. 2_67). 

There is one more reason why cnc could be involved in a negative regulatory aspect of the ic-CRE 

expression, preventing it from being expressed in the anterior most part of mandibular segment; after 

initiation of cnc expression in the posterior part of the intercalary segment with onset at stage 10, 

triggered by Collier activity (Crozatier et al., 1999), reporter expression driven by the ic-CRE is 

greatly reduced to 2-3 cells in the intercalary segment by the end of stage 11 (Fig. 2_55). Expression 

of the endogenous intercalary hh stripe also gradually diminishes by late stage 11 (Fig. 2_56). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2_55. ic-CRE_tgfp (NBT), cnc (Red). Progressive reduction in the detection of the ic-CRE-mediated  
expression with onset during st. 10. a, b (st. 9 lateral view) and c, d (early st. 10 ventral-lateral view) are different 
focal planes of the same embryo respectively. e early st. 10 ventral view, f st. 10; g, h, i  different embryos at st. 11. 
g, ventral view; h, i lateral views, anterior to the left, dorsal – up. 

Fig.2_56. Panel I (a-d): Gradual diminishing in the intercalary ectodermal stripe 
of hh expression (arrow) in wild type embryos. a, b same embryo stage 10. c, late 
10. d, st. 11. Decrease can also be observed for the antennal  and ocular stripes 
(focal plane allows to note the difference in the intensity of the ocular stripe 
between b and c). 

an 

an 

oc oc 

an 

Fig.2_56 Panel II (a-h). Observation of the 
gradual decrease in intensity of the 
procephalic ectodermal stripes. Double 
staining hh-cnc.  a, c, h ventral views. b, d, e, f 

ventral-lateral. g, lateral. a, b 
‘snapshots’ during stage 10, c, 
d, e, late 10. f, g st. 11. h end of 
st. 11. Arrow depicts the 
reduced in intensity intercalary 
stripe (intercalary spot) at stage 
11. The antennal and ocular 
ectodermal stripes also 
progressivelly decrease in 
intensity (note the difference in 
the intensity of the antennal 
stripe between e and f). 
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Moreover, it has been reported that cnc is also involved in negative regulation of another gene, 

namely Deformed; CncB inhibits both the function of Deformed protein and Dfd expression in the 

anterior part of the mandibular segment although this effect is likely to be indirect rather than 

resulting from direct CncB-dependent transcriptional repression of Dfd transcription (McGinnis et 

al., 1998; Veraksa et al., 2000). Nevertheless, an observation of a CncB-Dfd protein-protein 

interaction as it could be inferred from GST-pull down immunoprecipitation was reported in 

Veraksa et al., (2000). 

In Drosophila melanogaster three Cnc isoforms are expressed throughout development (McGinnis 

et al., 1998). cncA transcript is ubiquitously present in 0-2 h embryos due to maternal contribution; 

cncB is absent from 0-2 h but present in all other embryonic stages, detected throughout the 

mandibular segment and labral region; cncC is present in 0-2 h embryos, barely detected in 2-12 and 

later low level ubiquitous expression is detected in 12-24 h embryos. The three produced protein 

isoforms share the same C-terminus bZIP domain (Fig. 2_57_a). Only CncB displays a key-function 

in head development (McGinnis et al., 1998). 

 

 

 

 

Question if CncB could indeed be involved in a negative regulation aspect of the ic-CRE-mediated 

expression in the anterior part of the mandibular segment was addressed by following approaches in 

vitro and in vivo.  

2.8.2 In vitro analysis of Collier-CncB interaction and effect on Collier-DNA binding complex 
formation 

As a first approach, the 450 bp sequence of the intercalary-specific cis-regulatory element [-4.08 

kb_3.077 kb] was examined for the presence of putative CncB recognition sites, conditionally 

overlooking transcriptional activation potential as an intrinsic characteristic of CncB (Veraksa et al., 

2000). CncB was shown to bind in heterodimers with small Maf protein (Maf-S) consensus 

sequence TGCTGA(G/T)TCAT with the TGCTGAG half site being contacted by Maf-S and the 

GTCAT half-site by Cnc homologues (Veraksa et al., 2000). Binding is highly cooperative and 

results in transcriptional activation of target sequences. Although no site matching Maf-S contacting 

b

Fig. 2_57. a) Schematic representation of the three Cnc isoforms. b) Fluorescent immunostaining detects CncB 
expression in the mandibular compartment and around the stomodeum at stage 10 (anterior up). 
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consensus sequence could be found within the 450 bp ic-CRE, still an imperfect putative site for 

CncB, TTCAC, is juxtaposed 3’ of the Collier binding site (Fig. 2_58). 

CncB as well as the shortest CncA isoforms were both expressed in vitro to be used in mobility 

shift assays using as a probe a 35 bp oligo sequence containing both the identified functional Collier 

binding site and the putative Cnc recognition site. CncB (or CncA) could not specifically recognize 

and bind the probe when alone included in the reaction, in agreement with Veraksa et al. (2000) 

reporting that CncB binding to its cognate site requires an adjacent recognition sequence 

cooperatively bound by Maf-S. When both Collier and Cnc factors are included in the reaction, apart 

from the characterized Collier-DNA shift complex, no additional complex could be detected that 

would imply synergistic binding with Collier. On the contrary, including CncB (or CncA) in the 

binding reaction caused decrease in the Collier-DNA shift complex formation (compare C1 complex 

intensity of line 8 with lanes 3, 4 and lane 7 with lanes 1, 2 in Fig. 2_58). 

 

 

 

 

 

 

 

 

Because this small effect indicates that, at least in vitro and on that specific DNA sequence, Cnc 

homologues seem to interfere with Collier binding to its cognate site, additional analysis was 

performed. Firstly, another well characterized member of the Drosphila bZIP superfamily, namely 

Dm_C/EBP (Slbo) was tested for generating a similar interference effect with Collier DNA binding 

activity. DNA binding specificity of C/EBP is TKNNGCAAT and two putative 5’ and 3’ degenerated 

bZIP sites are found upstream of the Collier binding site, lying on opposite strands and separated by 

a 10 bp sequence (position (-3798_-3765 bp); Fig. 2_59). The 34 bp sequence (-3798_-3765 bp) 

containing the two bZIP sites was labeled to be used as a positive target binding sequence-probe for 

in vitro expressed C/EBP in order to test for functionality of the expressed protein. Indeed, C/EBP 

C1 

Fig. 2_58. Cnc homologues prevent Collier-DNA complex formation. Line 9 contains 4 µl of TNT mock. 



                                                                                                                                                      Results 

                                                              54

binding reaction leads to the formation of a specific complex formation mediated by homodimers 

(lane 1, Fig. 2_59), but in contrast to CncB or CncA, including C/EBP factor in the binding reaction 

of Collier to its cognate site (using Collier probe [-3778_3744 bp]) does not efficiently interfere with 

Collier complex formation (Fig. 2_59). This result implies that ability of CncB for interaction with 

Collier, resulting in interference of Collier DNA binding to its cognate site, may be an intrinsic 

property of Cnc homologues not shared by all members of Drosophila bZIP superfamily (§3.7.1). 

Moreover, and in correlation with the study reported by Bengal et al., 1992 (§3.7.1), Cnc 

homologues are also capable of interacting with C/EBP and causing reduction of its binding to the 

positive target sequence (Fig. 2_60).  

 

 

 

 

 

 

 

 

Interference of Collier DNA-binding to its cognate site caused by interaction with CncB was 

further titrated showing that increasing amounts of CncB factor included in the binding reaction 

attenuates complex formation (Fig. 2_61). To further examine if CncB can act in vitro as an inhibitor 

of Collier DNA-binding in a dominant way, ‘competition’ shift assays were performed; Collier 

DNA-binding complex formation was allowed to reach the dynamic equilibrium and then challenged 

with addition of the same amount of CncB for gradually longer incubation time periods prior to 

immediate gel loading. As depicted in Figure 2_62, in vitro interaction of CncB with Collier 

resembles a kind of ‘sequestering’ function of CncB partially preventing free unbound Collier 

protein molecules of the dynamic DNA-binding state from re-associating with DNA. Thus, CncB 

seems to function as a dominant inhibitor of Collier DNA-binding activity in vitro, presumptively as 

an antagonist of its transcriptional activation potential in vivo (§3.7.1, §3.7.2).  

 

Fig. 2_59. C/EBP does not interfere with Collier-DNA complex  formation. Fig. 2_60. CncA and CncB reduce 
C/EBP complex shift. 

bZIP 
homodimer C1 Col homodimer/heterodimer 

C2 ColB monomer bZIP 
homodimer 
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2.8.3 In vivo analysis of Collier-CncB interaction; negative regulatory effect of CncB function 
on the ic-CRE transcriptional outcome 

A physical interaction between Collier and CncB inferred in vitro from the electrophoretic 

mobility shift assays could be further supported by in vivo co-immunoprecipitation from crude 

nuclear extracts (§5.6). After in vivo anti-Col IP and immunoblotting, CncB specific band detection 

on the blot corresponding to co-immunoprecipitated CncB suggests that stable interactions between 

Collier and CncB can exist (§3.7.1). The result was reproduced in three independent experiments. 

Two independent a-Cnc blots are depicted in Fig. 2_63. 

 

 

 

 

 

 

To examine if the observed physical interaction between Collier and CncB is involved in vivo in a 

negative regulatory aspect of ic-CRE expression in the anterior part of the mandibular segment, the 

element was tested in an ectopic CncB background. Background was created by crossing the 

maternal driver {pnos_GAL4/GCN4_ bcd 3’ UTR} (insertion ‘P21B’; Janody et al., 2000) to a UAS-

CncB line (Veraksa et al., 2000), thus causing ectopic expression of CncB in an embryonic anterior 

Fig. 2_61. Increasing concentration of 
CncB attenuates Collier-DNA complex 
formation. 

Fig. 2_62. Collier-DNA complex formation was challenged 
with CncB for gradual longer incubation times before 
loading the gels. I and II are from two independent 
experiments.  

III

Fig. 2_63. a-Cnc blots from two 
independent experiments (A, B). 
Blue arrow marks the co-
immmunopreicipited CncB 
isoform in the a-Col IP from 
crude embryonic nuclear 
extracts. The black arrow marks 
the CnCB ~90 kDa isoform 
detected in the nuclear extracts.  

In both cases the co-immunoprecipitated in the a-Col IP and the immunoprecipitated in the a-CncB IP band (blue arrow) is 
detected at ~112 KDa,  higher than the ~90 kDa CncB band detected in the extracts (black arrow), probably due to 
secondary modifications during the IP procedure. The blue spot marks an additional band (~105 kDa) immunoprecipitated 
with a-CncB and co-immunoprecipitated with a-Col during the second experiment. In the nuclear extract lane of a-Cnc blot A 
two additional higher bands (~123, ~126 kDa) are detected presumably because of aggregate formation after boiling or secondary 
modifications not detected in B. 

A B
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gradient. As shown in Fig. 2_64, expression of the ic-CRE is almost abolished in this ectopic CncB 

background, most prominently in embryos that receive a double dose of maternal driver input 

(mothers homozygous for the driver on the second chromosome). Transcription of the endogenous 

hh intercalary stripe is also partially suppressed (Fig. 2_65).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2_64. NBT: ic-CRE_tgfp, 
FRED: cnc (i, ii, iii); col (iv) 
i,ii wt background 

iii, ic_CRE_tgfp/ UAS_CncB/ 
pnos_GAL4/GCN4_bcd 3’ UTR 

 iv, ic_CRE_tgfp/ UAS_Col/ 
pnos_GAL4/GCN4_bcd 3’UTR 

  
i wt 

ii wt

iii UAS-CncB

iv UAS-Col

ic-CRE expression outcome is 
greatly reduced (arrow in iii) in 
ectopically expressed CncB 
background while it remains 
unaltered in ectopically 
expressed Collier using the  
same maternal driver. 

ii wt 

iv UAS_CncB 

an

mn mn 

icic 

iii UAS_CncB 

i wt 

Fig. 2_65. hh (NBT)_cnc (Fred) 
i, ii  wt background 
iii, iv  UAS_CncB/ 
pnos_GAL4/GCN4_bcd 3’ UTR 
Transcription of the endogenous hh in 
the intercalary segment is also 
partially suppressed when ectopic 
procephalic expression of CncB is 
driven early in development using the 
pnos_GAL4/GCN4_bcd 3’UTR 
maternal driver. Embryos in i, iii and 
ii, iv are of approximately the same 
stage. 
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Therefore, it is concluded that CncB function seems to direct a negative regulatory input in the 

intercalary-specific transcriptional control of hh expression in vivo (§3.7.1). This conclusion is 

consistent with the overlap in the expression patterns of Collier and CncB in the anterior most part 

of the mandibular segment where the ic-CRE is not activated (Fig. 2_67_c).  

Overlap between col and cnc expression in the presumptive anterior mandibular region is apparent 

from blastoderm stage; at st. 5/6 collier exhibits a posterior border of parasegmental register of 

expression which is abutting the mandibular stripe of hh cells, while cnc is detected in the 

mandibular hh cells exceeding in addition two rows of cells anterior thereto (Fig. 2_66_d and 

Crozatier et al., 1999). At stage 10, the posterior parasegmental border of col expression has been 

shifted anteriorly and col and cnc overlap only in the anterior most part of the mandibular segment 

(Fig. 2_67_a, b). An anterior parasegmental border of col expression however is evident defined by 

the wg cells of the intercalary segment (Fig. 2_66 e, f). By stage, 10 cnc (CncB) is expressed 

throughout the mandibular compartment precisely abutting the hh positive cells of the posterior part 

of the intercalary segment and the hh cells of the mandibular segment (Fig. 2_68_a). During stage 

10, a secondary site of cnc transcription is initiated by Collier activity in the hh expressing cells of 

the posterior part of the intercalary segment (Fig. 2_68_b; and Crozatier et al., 1999; Seecoomar et 

al., 2000). Notably from that stage on, detection of hh in epidermal cells of the intercalary ectoderm 

is gradually reduced until ‘turning off’ by the end of stage 11, in a way similar to the antennal and 

ocular hh procephalic ectodermal stripes (Fig. 2_56). Detection of the ic-CRE-driven transcripts is 

also greatly reduced (Fig. 2_55). Expression of cnc in the anterior most part of the mandibular 

segment is also under positive regulation by collier (Seecoomar et al., 2000); collier null mutants 

apart from lacking the late (stage 10-11) cnc expression in the posterior part of the intercalary 

segment (Crozatier et al., 1999), they also lack cnc expression in the anterior most cells of the 

mandibular compartment which are the progenitors of the hypopharyngeal lobes (Seecoomar et al., 

2000). Later during development (stage 11) transcription of collier is restricted to cells of the 

posterior part of the intercalary segment while being under positive auto-regulation control 

(Crozatier et al., 1999) (Fig. 2_69), meaning that the overlap between col and cnc expression in the 

anterior part of the mandibular segment is gradually reduced. Co-expression of Collier and CncB in 

the anterior most part of the mandibular segment by stage 10 and later co-expression in the posterior 

part of the intercalary segment is also revealed by fluorescent immunostaining (Fig. 2_70). 
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450 ic-CRE_cncB Col_cncB st. 9-10 Col_cncB 

a b c

Fig. 2_67. a, b: Overlap in the expression domains of col and cncB in the anterior most part of the mandibular 
segment. Red arrow in b depicts overlap of col and cnc expression in the anterior most part of the mandibular 
segment during  stages 9-10. This is the region where Collier fails to activate the ic-CRE (c); cncB (red) expression 
abuts the ic-CRE reporter expression (blue) in the hh expressing cells of the posterior part of the intercalary 
segment. 

ic 

an 

mx
mn 

c

ic 

an 

mx a 

m
n 

oc 

ic

mxb m
n 

an 

oc 

Fig. 2_68. cnc (NBT) hh (FastRed). cnc expression in the mandibular compartment abuts the intercalary stripe of hh 
expressing cells (a). Early at stage 10 (a, flat preparation; b, ventral-lateral view) a secondary site of cnc expression  
is initiated by collier activity in the hh expressing cells of the posterior part of the intercalary segment (see text for 
citation). Expression of cnc in the hh expressing cells of the posterior part of the intercalary segment becomes evident 
at late stage 10 (c).  

hh_col cnc_hh m
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m
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col_cnc col_cnc 
c d

Fig. 2_66. Parasegmental register of collier expression. a, b st. 6; c,d st. 5/6. 
a,b col and cnc expression overlap by 1-2 rows of cells while col (blue) 
exceeds two rows of cells anterior thereto (intercalary anlage). c: collier 
precisely abuts the mandibular hh stripe that defines the posterior 
parasegmental border of expression. d: cnc overlaps the mandibular hh stripe  

e  st. 10 

f  st. 11 

an 

oc 

oc 

and exceeds one row of cells anterior thereto. e (st.10) and f (st.11): anterior parasegmental border of col 
expression is defined by abutting the wg expressing cells of the anterior part of the intercalary segment. 
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Fluorescent immunostainings also revealed that only a small fraction of the expressed Collier 

protein is nuclear in contrast to CncB that seems exclusively targeted to the nucleus. In silico 

analysis of the primary protein sequences for prediction of nuclear localization signals (NLS) 

(http://cubic.bioc.columbia.edu/cgi/var/nair/resonline.pl) generates no results for Collier while CncB 

contains a NLS (RRRGKNKVAAQNCRKRK aa 622-638) within the bZIP domain (aa 617-680). 

Interestingly, Collier carries a perfect SUMOylation motif in the very N-terminus, predicted with the 

highest threshold value (Ren et al., 2009; http://sumosp.biocuckoo.org/prediction.php). Protein 

sequence TSLKEEP at position 44 matches the motif Ψ-K-X-E. Additional members of the COE 

factor family contain a SUMOylation motif at this conserved position (see sequence alignment of 

‘Additional File 2’ from Daburon et al., 2008). Apart from antagonizing ubiquitin-mediated 

degradation and modifying transcriptional activation/repression potential of transcription factors, 

sumoylation has also been implicated in protein nucleo-cytoplasmic translocation (reviewed in Zhao, 

2007). Alternatively, in the absence of a nuclear localization signal, Collier import in the nucleus 

may be realized by heterodimerization with a protein that carries a NLS, possibly a distinct HLH 

factor. That would increase probability that Collier enters into combinatorial control mechanisms, 

which nevertheless has already been implicated in muscle specification (Dubois et al., 2007) 

(§3.7.2). 

Although in the ectopic CncB expression system a negative regulatory aspect involved in 

transcriptional control of procephalic hh expression became apparent (Fig. 2_65), still it was not 

Fig. 2_69. cnc (FastRed),  col (NBT). Gradual 
decrease in the overlap of expression initially 
evident in the anterior most part of the 
mandibular segment (a). During development 
towards st. 11 col expression is gradually 
getting restricted to the anterior part of the 
parasegment 0, i.e. to the posterior part of the 
intercalary segment, while being under positive 
autoregulation (see text for citation). 

Fig. 2_70. Fluorescent immunostaining of Col and CncB – single focal planes. Anterior-left, dorsal-up (a, b). Arrow 
in (a) marks the cephalic furrow. c, d: anterior-left, ventral focal planes. Alexa 488 (green) Collier; Cy3 (red) CncB; 
Hoechst (blue) – nuclear staining. a (st. 8), b (st. 9/10), c st 10: overlap of expression in the anterior most part of the 
mandibular segment. d, st. 11 Col has been restricted to the posterior part of the intercalary segment. CncB exhibits 
nuclear localization while Collier is detected both in the nucleus and the cytoplasm. 

a b c d 

a b 

http://cubic.bioc.columbia.edu/cgi/var/nair/resonline.pl�
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possible to detect posterior derepression in cnc loss-of-function background (§3.7.1). Expression of 

the ic-CRE was tested both in homozygotes of cnc mutation K22 (loss-of-function; Veraksa et al., 

2000) and in mutation VL110 which lacks the entire cnc open reading frame and it was generated 

following imprecise P element excision (Mohler et al., 1995) (§5.3). No cnc transcripts are detected 

by in situ hybridization in VL110 null mutants. In addition, in these in situ hybridization stainings 

abnormal persistence of hh transcripts in ectodermal cells of the intercalary lobes of late stage 11 

null mutant embryos could be observed (Fig. 2_71; §3.7.1). Irregular persistence of the ic-CRE 

driven transcripts in the intercalary lobes of stage 11 VL110 mutant embryos could also be detected 

(Fig. 2_72). These data serve as further evidence for a repressive role of CncB on hh expression in 

the posterior part of the intercalary segment. 
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Fig. 2_71. hh-NBT, cnc-FastRed. In each panel:  i,ii wt. iii, iv VL110 nulls. Arrow marks intercalary hh 
expression. In panel A: i, ii and iii, iv are different focal planes of the same embryo respectively. 
Detection (arrow in iii, iv) of irregular persistence of hh transcripts in cells of the intercalary lobes at st. 
11 in  the VL110 embryos. 

Fig. 2_72. ic-CRE_tgfp, NBT; cnc, FastRed. a, wt;  b, VL110. 
Detection of irregular persistance of ic-CRE driven transcripts in 
the intercalary lobes of stage 11 VL110 mutant embryos (arrow in 
b). The 335 bp minimum ic-CRE which shows partial trunk 
derepression at st. 11 was used in these experiments. 

a 

b 
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3. Discussion 

3.1 Conclusions regarding cis-regulatory information governing expression 
of segment polarity genes in the anterior head region.  

3.1.1 Distinct spatial cis-regulatory elements control procephalic expression of segment polarity 

genes 

One first conclusion extracted from the outcome of functional dissection of segment polarity gene 

enhancers is that cis-regulatory information governing procephalic expression is distinct from cis-

information controlling expression in the rest of the embryo. For example, anterior head-segment 

specific cis-elements are not included in a total of 8.1 kb enhancer sequence upstream of wingless 

transcriptional unit, which sufficiently drives expression in the trunk and the anterior most terminal 

embryonic region (clypeolabrum) (§2.1.1.). The intronic enhancer of engrailed is functional only for 

the gnathal and trunk stripes but not for the anterior head region (§2.1.2). An opposite example 

stands for the 6.43 kb upstream sequence of hedgehog which acts as an early enhancer only for the 

presumptive procephalic region but not for the rest of the trunk where expression is only mediated at 

postblastodermal stages by this element (Fig. 2_14 a-c). In addition, a 1 kb enhancer element of hh 

that drives expression specifically in the intercalary segment was isolated and further functionally 

analyzed (§2.2). 

3.1.2 Dorso-ventral distinct cis-regulatory information underlying transcription of segment polarity 

genes within procephalic segmental units 

8.4 kb sequence upstream of wg, spanning region [-16.2_-7.8 kb], contains cis-regulatory 

information that drives expression only in the ventral part of the ocular segment (Fig. 2_6 g,h). In 

more primitive insects the anterior procephalic expression domain of wg splits into expression 

subdomains, namely the median protocerebral neuroectoderm expression domain (mpn), the dorsal 

protocerebral (dpn) and the ventral protocerbral neuroectoderm domain (vpn) (Liu et al., 2006). It 

corresponds to a true segmental unit, i.e. the ocular segment (Schmidt-Ott and Technau, 1992) based 

on data of the phylogenetically conserved expression profile of engrailed (Schmidt-Ott and al., 

1994a; Urbach and Technau 2003a). On the contrary, in Drosophila the anterior procephalic 

expression domain of wingless in the ocular segment remains intact constituting the ‘head blob’. The 

ventral protocerebral neuroectodermal domain has been specifically lost in Drosophila and, as it is 

reported in Liu et al., 2006, the contiguous protocerebral neuroectoderm domain or head blob may 

be equivalent either to a) the median or the dorsal protocerebral neuroectoderm expression domain 

b) the primordial yet non-dissociated protocerebral ectoderm domain of the primitive insects. Data 
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indicating dorso-ventral distinct cis-regulatory information controlling expression of wg within the 

ocular segment would rather support the second possibility with the ventral-specific expression 

subdomain of the contiguous wg head blob most likely corresponding to the median protocerebral 

expression domain of the primitive insects, with respect to topological orientation. 

In the case of hedgehog procephalic expression pattern, dorso-ventral differences in regulation 

reported as well elsewhere (Gallitano-Mendel and Finkelstein, 1999) can be in fact reflected on 

transcriptional level of control;  although the 6.43 kb upstream enhancer sequence of hh sufficiently 

drives expression in all procephalic segments, -3.17 kb sequence drives expression only in the dorsal 

most part of the antennal segment (Fig. 2.15 c), indicating again that transcriptional control of 

segment polarity genes in the procephalic region involves dorso- and ventral-specific cis-regulatory 

elements functional within the very same segmental unit. In a developmental physiological context, 

this molecular mechanism may potentially be involved in ensuring that distinct cell-fates will arise 

from dorsal and ventral parts of the ocular and antennal segments. Nevertheless, and at least in the 

case of dorsal epidermal embryonic patterning, functionality of segment polarity genes has been 

implicated in stabilizing pre-existing cell-fates rather than being involved in de novo cell-type 

specification (Vincent et al., 2008). 

3.1.3 Redundancy in cis-regulatory information controlling gnathal and trunk expression could not 

be observed for procephalic control of segment polarity gene expression 

During functional dissection of cis-regulatory regions it became apparent that extended enhancer 

fragments share a high degree of redundancy; cis-elements controlling expression of segment 

polarity genes in the gnathal and trunk segments are dispersed along extended enhancer regions. For 

example, two non-overlapping fragments of the wingless upstream enhancer, namely regions [-

16.2_-7.8 kb] and -4.8 kb upstream of wg transcriptional unit, both drive expression of the reporter 

in the trunk in overlapping but not totally coincident expression patterns (Fig. 2_6 and Lessing and 

Nusse, 1998). This result indicates that the two distant enhancer regions are functionally redundant 

to some extent. The same was true for the first intron of engrailed which drives expression in the 

trunk and gnathal stripes as well as the 8.8 kb upstream enhancer sequence does (§2.1.2). On the 

other hand, during the functional dissection analysis, no case became apparent that would imply 

redundancy in cis-regulatory information controlling procephalic expression of segment polarity 

genes. This outcome underlines once more that distinctive DNA-protein interactions within the 

context of transcriptional regulatory mechanisms are involved in the establishment of procephalic 

segment polarity gene expression.  
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Collectively, implication of distinct transcriptional mechanisms controlling procephalic segment-

polarity gene expression is in agreement with the previously described implication of discrete gene 

networks and regulatory interactions in patterning of the anterior head region and formation of the 

procephalic segments (reviewed in Rogers and Kaufman, 1997; Gallitano-Mendel and Finkelstein, 

1997).   

3.1.4 Procephalic expression of segment polarity genes is also under temporal control 

Furthermore, additional cis-regulatory elements are involved in temporal control of distinct spatial 

sub-patterns of the whole expression pattern of segment polarity genes throughout development. 

That could be also observed particularly for control of procephalic expression pattern during the 

functional enhancer dissection analysis. 

Intercalary stripe of reporter expression driven by the wg upstream enhancer [-16.2_-7.8 kb] is 

present at stage 11 but not at stage 10 (Fig. 2_6). This delay in reporter expression coming-up may 

indicate that intercalary-specific wg expression is under the control of independently operating or 

co-operating cis-binding elements recognized by distinct transcription factors during different 

developmental time windows. If such ‘early control’ elements and ‘late control’ elements exist, then 

the enhancer region tested lacks the early cis-controlling elements. An alternative interpretation is 

that only one type of intercalary-specific cis-regulatory elements lies within the [-16.2_-7.8 kb] 

upstream enhancer of wg, but the early activation step requires synergistic function of cis-binding 

elements not included in this upstream enhancer sequence tested.  

Such a molecular mechanism seems to actually underlie the temporal control of the early onset of 

intercalary specific-expression of hh (§2.5); Although enhancer fragment [-3914_-3465 bp] drives 

specific expression in the intercalary segment during stages 9-11, early onset at stage 8 is ensured by 

enhancer sequence [-4014_-3985 bp] which acts as an additional temporal control element. 

3.1.5 Search of antennal- and ocular-specific cis-regulatory information in the hh upstream region 

As presented in §2.6, in an effort to localize cis-regulatory elements that control expression of hh 

in the antennal and ocular segments, eight (~600 bp) partially overlapping subfragments spanning 

region [-6.43_-4 kb] were tested. However, none of them mediated specific expression of the 

reporter (the constructs were assayed by the attB-attP site specific integration system using the attP 

landing site ‘96E ’ which was functional for the ic-CRE expression outcome). Failure during this 

enhancer dissection analysis to confine cis-regulatory information that would mediate segment-

specific embryonic expression raised the question if this is due to disrupting individual cis-binding 

elements during the dissection analysis, or because a high degree of synergy between individual cis-
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elements dispersed along different regions of the enhancer is required to determine anterior head 

segment-specific expression in the ocular and antennal segments. If this second possibility is indeed 

a prerequisite to be fulfilled, then a molecular mechanism mediating functional interactions among 

distant enhancer elements (and/or with core promoter elements) has to be considered. Could it be 

that the putative zeste site found within the ic-CRE is involved in a ‘looping mechanism’ serving 

such interactions? Or is it rather the overlapping 7 bp element recognized in vivo by (a) factor(s) 

mediating a similar effect? Notably, this 7 bp element is present once in the promoter and at a single 

distant position within the full-length upstream enhancer which leads to speculations whether this 

could be the positional point for a loop-formation. In the light of very recent publications, 

considering the occurrence of promoter elements in the upstream enhancer sequence (including the 

PCE-resembling 7 bp element which is found only once in the full-length upstream enhancer within 

the ic-CRE, §3.3) triggers the postulation that maybe the ic-CRE could also function as a distant 

centre of general transcription factor (GTF) recruitment, thus facilitating promoter transcription 

initiation (Szutorisz et al., 2005; Kim et al., 2006; Krysinska et al., 2007). 

Moreover, regarding antennal-specific transcriptional regulation of hh, elements controlling 

expression in the most dorsal part of that segment are included in the [-3.17 kb] enhancer region 

(§2.1.4) which lacks however elements controlling expression in the rest of the segment, implying 

that segment-specific cis-regulatory information may indeed be dispersed along the full-length 

upstream enhancer. 

In order to address the above assumptions, a series of reporter constructs have been prepared 

aiming to elucidate transcriptional mechanisms controlling hh expression in the antennal and ocular 

segments. That is: a) testing enhancer fragment [-6.43_-4 kb] in combination with the endogenous 

promoter region in order to confirm that the cis-elements required for antennal and ocular expression 

are indeed sufficiently included in that region. Then further dissection in a different way from that 

originally employed could be followed to isolate segment-specific cis-information in a more defined 

context (i.e. dissection generating 5’ and 3’ nested deletion series) b) Additionally three more 

reporter constructs bearing point mutations affecting independently the 7 bp enhancer element, the 

overlapping zeste site found within the ic-CRE and the functional Collier binding site have been 

generated (Fig. 3_1). 
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Fig. 3_1. Full-length upstream enhancer of hh (-6.43 kb) sufficiently drives head and trunk segmented 
expression pattern of the reporter (Fig. 2_14).  Overlapping subfragments (a-h) of ~600 bp spanning hh upstream 
enhancer   (-6.43_-4.08 kb) do not mediate specific expression pattern. The intercalary cis-regulatory element 
(ic-CRE) (-4.083_-3.174 kb) is marked. Green bar at -3.77 kb represents the functional identified Collier binding 
site. In total, four conserved putative zeste sites (CRCTCR) can be found in the full-length upstream enhancer.  
Constructs generated to be tested are d: wild type; a, b, c,: point mutant versions.  Construct d aims to elucidate 
whether the cis-regulatory elements that control procephalic expression of hh in the antennal and ocular 
segments are sufficiently included within the region (-6.43_-3.17 kb) (tested in combination with the endogenous 
promoter region (-120_+99 bp)). Construct (a) disrupting the functional identified Collier binding site in the 
context of the full-length upstream enhancer is expected to affect expression of the reporter specifically in the 
intercalary segment. Construct (c) aims to elucidate a potential role of the conserved 7 bp element (blue bar) 
partially overlapping the zeste site of the ic-CRE, and found once in the full-length upstream enhancer sequence 
and once in the promoter. Construct (b) assayed allows to compare expression outcome of c with the mutant 
version that affects the overlapping zeste site (-3.54 kb) in the context of the -6.43 kb upstream enhancer. 
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3.2 Functional role of HMG-box factors in transcriptional regulation during 
early embryonic development in regard to the early onset of the ic-CRE 
expression 

One mechanism involved in transcriptional control underlying patterning during early embryonic 

development is regulation of chromatin structure in order to facilitate assembly of multiple protein-

DNA complexes and DNA-bound protein-protein interactions. Members of the High Mobility Group 

(HMG)-domain superfamily are involved in modulating chromatin structure by displaying a 

functional architectural role; although they may be either incapable of direct transactivation (in the 

case of several SOX subfamily members; Kamachi et al., 1995; Yuan et al., 1995) or they may 

contain a transactivation domain functional only in a specific context of protein-protein interactions 

(in the case of Lef-1; Giese et al., 1993), the property of the HMG proteins to induce strong DNA 

bending upon binding (Giese et al., 1997; Dragan et al., 2004) suggests that they can facilitate 

assembly and stabilization of transcription factor-DNA complexes. 

The HMG domain constitutes a discrete DNA-binding structure of ~80 aa. The superfamily can be 

divided in two subgroups; members of the TCF/SOX/MATA group contain a single sequence-

specific HMG domain which binds in the minor groove of DNA recognizing variants of the motif 

sequence WWCAAAG (Laudet et al., 1993). Members of the HMG/UBF subgroup have multiple 

HMG domains which bind DNA in a less sequence-specific manner (Grosschedl et al., 1994; 

Soullier et al., 1999). Both sequence-specific (SS) and non-sequence-specific (NSS) HMG-box 

proteins can modify chromatin structure by bending and unwinding DNA (Giese et al., 1997; Dragan 

et al. 2004), meaning that their functional role is basically architectural, i.e., to facilitate 

simultaneous binding of other sequence-specific transcription factors. An example stands for 

sequence-specific binding of the Sox2 HMG-box protein which participates in complexes with POU 

domain factors to facilitate transcription during early embryonic development (Dailey and Basilico, 

2001). A consequence of their architectural role is that DNA-recognition and binding by the HMG-

box factors leads to transcriptional activation only in a specific transcription factor-binding site 

context (Giesse and Grosshedi, 1993).  

SOX proteins (Sry-related High-mobility-group Box) are related to the mammalian testis 

determining factor SRY, sharing at least 60% identities in their HMG-box DNA-binding domains 

(Laudet et al., 1993). Sox family members have been implicated in cell fate specification and 

differentiation, in processes such as male differentiation, neurogenesis and skeletogenesis (reviewed 

in Lefebvre et al., 2007). In Drosophila eight Sox genes have been identified and their expression 

patterns determined (Cremazy et al., 2001). 
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In §2.5.2, results supporting the role of HMG-related activity in temporal control of the early onset 

of the ic-CRE expression are presented. After 5’ dissection of the enhancer sequence [-4085_-3799 

bp] it came up that fragment [-4014_-3985 bp] is essential for ensuring early onset of reporter 

expression in the intercalary anlage at stage 8 (Fig 2_35_B). This 30 bp element consists of two 

highly conserved (12 sp.) blocks GGATCAAAaGG and GTTGACAAAt (Capitals represent 

conserved residues). Both conform to the general HMG-box binding consensus [WCAAAS] (NCBI 

Conserved Domain Database; ‘cd01388 Sox-TCF_HMG-box’; Love et al., 1995; Werner et al., 

1995) with one mismatch being in both cases a non-conserved nucleotide. Additionally, 3’ 

juxtaposed to the second block one more putative HMG-box recognition site TACAAAC lies in 

reverse complement orientation (-3977_-3983) matching the WCAAAS consensus. This sequence is 

filtered through 11 species phylogenetic conservation, with the D. yakuba species sequence being 

divergent (i.e. not in capitals in Fig. 2_37). 

 In particular the first conservation block GGATCAAAaGG scores the binding matrix of 

dTCF/Pangolin [WTCAAAS](MatInspector; Lee and Frasch 2000). It also strongly resembles the 

consensus binding sequence of dTCF determined by PCR-based site selection [GATCAAAGG] (van 

de Wetering et al., 1997), which matches the canonical binding site consensus of the mammalian 

Lef1/TCF [WWTCAAAGG] (van de Wetering et al., 1993). The predicted site displays only one 

mismatch to dTCF binding consensus which is the additional non-conserved A. Indeed, the wild type 

sequence is recognized in vitro by dTCF with very low affinity, but a mutated version of the probe 

removing the extra A leads to specific shift complex formation with in vitro expressed dTCF (Fig. 

2_36). It is interesting that the one extra A in the sequence that distorts matching to dTCF consensus 

(WTCAAAS) and abolishes in vitro recognition and binding, is not phylogenetically filtered and 

disturbs the conservation block. Nevertheless, 11 Drosophila species carry an A at position 7 and it’s 

only D. grimshawi that carries a C instead. In vivo, it is likely that the site is recognized by another 

member of the HMG family as it still strongly conforms to the WWCAAW HMG-box binding 

consensus (Lee and Frasch, 2000).  

Although in vitro expressed dTCF does not efficiently recognize in EMSAs any of the wild-type 

HMG-box putative binding sequences (found within the DNA stretch that confers the early onset of 

ic-CRE expression), it cannot currently be excluded that in vivo the ubiquitously expressed dTCF 

contributes to regulation of the ic-CRE expression outcome through direct binding. It was not 

however possible to detect a delay in the onset of reporter expression in the intercalary segment, 

controlled by the ‘γ1_mF3_hh R4 550 bp’ enhancer fragment (Fig. 2_35_I) in a loss-of-function 

background; dTCF activity was down-regulated by RNAi (UAS-pangolin hairpin (VDRC) driven 

from the maternal driver {pnos-GAL4/GCN4_bcd 3’ UTR}, §5.3). Regarding the resolved function 
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of dTCF/Pangolin as a wingless signaling effector (van de Wetering et al., 1997; Lee and Frasch, 

2000), even if dTCF activity is involved in the early establishment of intercalary-specific expression 

of hh in vivo, then it is certainly independent of upstream wingless activity, since onset of wingless 

expression in the intercalary segment succeeds hh.  

Furthermore, both highly conserved block sequences of the 30 bp fragment conferring early onset 

of the ic-CRE expression, plus the 3’ juxtaposed site (found at reverse-complement orientation), 

they all strongly resemble consensus binding sequence of the Sox-subfamily of HMG-box proteins 

[WWCAAW](reviewed in Lefebvre et al., 2007  and references therein; Churchill et al., 1995). 

Specificity of DNA sequence, which consists of a cluster of three putative HMG-box recognition 

sites, in combination with previously reported critical functions of HMG-box factors in 

transcriptional regulation during early embryonic development (for example, Dailey and Basilico, 

2001), supports that Drosophila HMG-box activity, perhaps other than dTCF, may indeed be 

involved in the establishment of hh expression in the procephalic intercalary segment anlage, 

ensuring the early onset of expression at stage 8. 

Interestingly, one of the previously characterized Drosophila Sox homologues (Cremazy et al., 

2001), Dichaete/Fish/Sox70D displays an early embryonic expression pattern that would recruit it as 

a very good candidate for being directly involved in the early activation steps of the ic-CRE 

expression. At stages 5/6 it is expressed in a procephalic ventral-lateral region, corresponding to the 

presumptive intercalary anlage, overlapping the early anterior procephalic expression domain of hh 

(Nambu and Nambu, 1996; Russell et al., 1996). During stages 7-10 strong expression is detected in 

the procephalic neuroectoderm including the intercalary segment. Defects appearing in the 

tritocerebrum anlage (Sorriano and Russell, 2000) of homozygous mutants indicate that the early 

embryonic function of Dichaete is involved in the establishment of cell-fates within the intercalary 

segment.  

Moreover, Dichaete null mutants exhibit severe segmentation defects, including organization of 

head structures (Nambu and Nambu, 1996), and Sox-HMG-box function of Dichaete has been 

implicated in segment-specific transcriptional regulation of pair-rule as well as independently 

segment polarity gene expression. For example, loss of wg expression in the maxillary and labial 

segments was reported. Although it was suggested that it is rather unlikely that Dichaete is required 

for the initial activation of segment polarity gene expression, at least not in the gnathal and trunk 

segments, still a potential involvement in temporal control of the ic-CRE early onset of expression 

remains to be clarified. Nevertheless, it was proposed that Dichaete may directly modulate 

regulatory function of transcriptional complexes required for segment polarity gene expression. In 

addition, Sox-domain proteins can physically associate with transcription factors from divergent 
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families (reviewed in Wilson and Koopman, 2002) and by providing their strong DNA-bending 

properties they facilitate the assembly and stabilization of transcription factors-DNA binding 

complexes, thus providing a crucial architectural role in the establishment and coordination of 

transcriptional regulatory interactions.  

Finding of a cluster of three HMG-box sites in the DNA stretch conferring early onset of the ic-

CRE expression, all conforming to the SOX DNA-binding sequence consensus, as well as early 

procephalic ectodermal expression pattern of Dichaete Sox-encoding gene overlapping the anterior 

procephalic broad expression domain of hh and reported function of Dichaete in the development of 

the intercalary segment and transcriptional regulation of segment polarity genes wg and en, would 

all in a concert constitute reasonable directions to examine if Sox function of the Dichaete candidate 

is involved in ensuring early onset of the ic-CRE expression. This would subsequently lead to 

examine whether the Sox function of Dichaete is also involved in early procephalic transcriptional 

regulation of hh expression. 

3.3 Molecular basis of an enhancer-promoter specific interaction 

As mentioned in §2.1.4, transcriptional outcome of the intercalary-specific cis-regulatory element 

depends on the presence of the endogenous promoter region (-120 bp_+99 bp) in the reporter 

construct. The ic-CRE is not functional in combination with a hs43 TATA-box (TATAAA) minimal 

promoter (Thummel and Pirrotta, 1991). In silico analysis and phylogenetic footprint of the 220 bp 

TATA-less endogenous hh promoter sequence used in the functional reporter constructs generates 

the following predictions; 

 

 

 

 

• An Initiator element (Inr); Consensus TCAKTY (Lim et al., 2004) 

• A Downstream Promoter Element (DPE); RGWYV(T) (Butler and Kadonaga, 2001) 

• Three putative Zeste recognition sites CRCTCR 

• A Motif Ten Element (MTE) overlapping the third putative zeste site and the first two    

nucleotide residues of the DPE; Consensus CSARCSSAACGS (Lim et al., 2004) 

• A putative GAGA factor recognition element; GAGAG  (Orihara et al., 1999) 

CtCgaggcgatagtgtgtGTGTgcgtgtgtgtttgtgtgagctaaaaggcc

TAGGGTTCTTGAAAGCACCCTCGTcgtactcgtacttatactcgcattcgt

attcgctgccgtacTCGTACTCGCActcGAacactctgcgcgcaCGaTACt
CcGCTCGGAAATGTCATTTGTCAATCACaGTGCGAGCGCAACGGTTGTCCG

AaccGAGAGctaaCT +99 bp

+1

Inr 7 bp element DPEzestezeste

MTE

-120 bp CtCgaggcgatagtgtgtGTGTgcgtgtgtgtttgtgtgagctaaaaggcc

TAGGGTTCTTGAAAGCACCCTCGTcgtactcgtacttatactcgcattcgt

attcgctgccgtacTCGTACTCGCActcGAacactctgcgcgcaCGaTACt
CcGCTCGGAAATGTCATTTGTCAATCACaGTGCGAGCGCAACGGTTGTCCG

AaccGAGAGctaaCT +99 bp

+1

Inr 7 bp element DPEzestezeste

MTE

CtCgaggcgatagtgtgtGTGTgcgtgtgtgtttgtgtgagctaaaaggcc

TAGGGTTCTTGAAAGCACCCTCGTcgtactcgtacttatactcgcattcgt

attcgctgccgtacTCGTACTCGCActcGAacactctgcgcgcaCGaTACt
CcGCTCGGAAATGTCATTTGTCAATCACaGTGCGAGCGCAACGGTTGTCCG

AaccGAGAGctaaCT +99 bp

+1

Inr 7 bp element DPEzestezeste

MTE

-120 bp

Fig. 3_2. In silico analysis of the hh promoter region. Capitals represent conserved nucleotides.  
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The presumptive function of the in silico identified elements is presented later in this section. 

Additionally, one more phylogenetically conserved 7 bp sequence [TCAATCA] is found at +54, 3’ 

juxtaposed to the Inr element (Fig. 3_2). Interestingly, this highly conserved ‘7 bp element’ is also 

present only once in the full-length upstream enhancer, falling within the ic-CRE sequence (position 

-3533_-3539 bp) where it partially overlaps on opposite strand a putative zeste site (§2.2.3). 

Sequence of the 7 bp element in the reverse complement orientation resembles an eight nucleotide 

sequence TGATTGAT which was identified as the PCE (Pbx consensus element). Although the PCE 

is present in many eukaryotic promoters its function and relevance in transcriptional regulation 

remains unknown (Knoepfler and Kamps, 1997). Interestingly here, it is also present at a distant 

position (-3539_-3532; TGATTGAg) falling within the ic-CRE. 

In order to identify functional sites mediating interaction of the ic-CRE with the endogenous hh 

promoter, a series of constructs bearing point mutations have been generated. Because of several 

reports implicating Zeste to display in many cases a key function in mediating enhancer-promoter 

interactions (presented later in this paragraph), the focus was initially placed on the predicted 

conserved putative zeste sites which match consensus sequence CRCTCR, and they are present both 

in the promoter and the ic-CRE sequence (§2.2.3). As mentioned in §2.2.1, a 344 bp fragment 

(‘F6_R5’) 5’ overlapping the 335 bp ‘F5_R4’ fragment fails to drive reporter expression in the 

intercalary segment, although it contains the functional activating Collier binding site (§2.7). 

Interestingly, this fragment lacks the sixth conservation block of the minimum ic-CRE consisting of 

the zeste site and the overlapping 7 bp element (§2.2.3). A point mutation disrupting the zeste 

recognition site in the context of the 335 bp minimum ic-CRE abolishes reporter expression. 

However, the same point mutation also affects the 7 bp element, therefore it cannot be excluded that 

loss of reporter expression is not due to preventing Zeste binding, but rather because disrupting the 

function of the 7 bp element. Thus, in a new round of point mutagenesis screen in the context of the 

450 bp ‘γ1_mF5’ ic-CRE sequence (§2.5.1) two additional point mutations have been constructed 

that independently affect the 7 bp element (atgattgagtgc>acagttgagtgc) and the putative zeste site 

(atgattgagtgc>atgattgacatc) (sequenced in the attB vector). Additionally, two point mutations have 

been generated in the context of the promoter that independently affect the 7 bp element, and the 

DPE (Listed in Table 5-1.4). The two mutant versions of the promoter can be combined either with 

the ic-CRE sequence or with the full-length upstream enhancer to study effects on the transcriptional 

outcome after integration of the reporter constructs at the same genomic position using the attP-attB 

site-specific recombination system. This will shed some light on functionality of individual core 

promoter elements of the hh promoter region. Also in combination with the results from the 

enhancer point mutagenesis screen affecting separately the 7 bp element and the zeste site found 

within the ic-CRE enhancer, conclusions can be easier extracted regarding the prerequisite in ic-

CRE expression for a promoter-specific interaction .  
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During functional dissection of the hh upstream enhancer, it became evident that the 1 kb 

intercalary-specific cis-regulatory element [-4.08_-3.077 kb] as well as the overlapping 

subfragments that retain expression in the intercalary segment (‘γ1 620 bp; F5_R4 335 bp’, §2.2.1) 

were functional only when combined with the endogenous promoter region (-120 bp_+99 bp) but 

not with a hs43 basal promoter. Since expression outcome of a distinct cis-regulatory module, 

namely the wingless clypeolabrum-specific distant enhancer element (Fig. 2_5) was feasible in 

combination with the hs43 basal promoter, it was concluded that transcriptional outcome of the hh 

intercalary-specific cis-regulatory element depends on a functional specific interaction or 

‘communication’ with the hh promoter, and that the observed specificity is not due to failure or 

inability of the hs43 basal promoter to respond to potential activators and/or functional enhancers-

input activity. 

In order to understand the molecular basis of this enhancer-promoter specificity, focus was 

initially placed on the specific characteristics or discrete core elements of the hh endogenous 

promoter. One major difference between the hs43 minimal promoter and the hh promoter region is 

that the hs43 basal promoter has a functional TATA-box (TATAAA) (Thummel and Pirrotta, 1991) 

while the hh promoter is a TATA-less promoter and instead the presence of a Downstream Promoter 

Element (DPE) is one of its crucial core elements. Core promoters that contain either a TATA or a 

DPE motif typically depend on these elements for core promoter transcriptional activity (by 

assembly of the basal transcriptional machinery) and are therefore termed TATA- or DPE- 

dependent promoters (Butler and Kadonaga, 2001). Both the TATA-box element plus the DPE are 

recognition sites for binding by TFIID. Addition of a DPE at its normal downstream position in a 

TATA-dependent promoter may compensate in vitro for a mutation in the TATA motif. Occurrence 

of the DPE motif in Drosophila core promoters is as common as the TATA-box (Kutach and 

Kadonaga, 2000). 

A study reported in Butler and Kadonaga (2001) revealed occurrence of transcriptional enhancers 

in Drosophila that are specific for promoters containing either DPE or TATA box elements. More 

specifically, the hypothesis tested was the following: is it possible that some transcriptional 

enhancers function specifically either with a TATA-box or with a DPE and what is the molecular 

basis of such specificity? In a genomic screen (using a double recombination transgenic system and 

enhancer trapping) some enhancers were identified as DPE-specific, some as TATA-specific and 

some as non-specific. Importantly, the DPE- or the TATA-specific enhancers appeared to activate 

transcription only from its cognate core promoter. A similar mechanism could also underlie 

promoter-specificity of the hh ic-CRE; this is not the case for the wg clypeolabrum-specific enhancer 

which also functions with a TATA-box hs43 promoter. The wg endogenous promoter is also TATA-

less but notably there is no detectable DPE sequence matching consensus RGWYV(T). The only 
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detected core promoter element in the wg promoter sequence is the Initiator element (Inr) 

[TCAKTY], here typically encompassing the transcription start site (A +1).  

Specificity of some enhancer elements for DPE-core promoters versus TATA-box promoters 

indicates that the core promoter functions not only to specify transcription initiation but also as a 

transcriptional regulatory element. Enhancer-promoter specificity extends beyond preference for 

either DPE or TATA-box core element; in other cases transcription from a TATA-less, Inr-

containing core promoter was found to strictly depend on the Inr core element even if a TATA-box 

is added at the functional position of -30 (Garraway et al., 1996). The initiator element (Inr) 

TCAKTY typically encompasses the transcription start site (the A is typically designated the +1 of 

the core promoter) which functions either by itself or in conjugation with a TATA-box or with a 

DPE motif to direct accurate transcription initiation. Collectively, it is inevitable to consider the 

activity of all core promoter elements (TATA, Inr, BRE (Gershon et al., 2008), and DPE) in 

regulation of enhancer function. In other words, core promoters not only mediate initiation of 

transcription by the basal transcriptional machinery but also function as regulatory elements in 

determining transcriptional outcome of enhancers. They are indispensable active components of the 

regulatory mechanism of gene activity. In any case, requirement of an enhancer for its cognate core 

promoter constitutes one additional level of specificity that has to be fulfilled in regulation ensuring 

spatial- and temporal-specific expression outcome of gene activity. 

Specificity between enhancers and promoters was also observed in other cases (Li and Noll, 1994; 

Merli et al., 1996) but it was not clarified whether the enhancer-promoter specific interaction effect 

on the transcriptional outcome is caused by proximal-promoter sequences containing recognition 

sites and bound by sequence-specific transcription factors (others than basal transcriptional 

machinery components) or whether it is rather due to functional presence of specific core-promoter 

elements. In the study of Butler and Kadonaga (2001) data presented made it clear that the enhancer-

promoter specificities observed in vivo were dependent upon functional DPE versus TATA-box core 

element requirement.  

The mechanistic basis or the molecular interactions underlying enhancer-core promoter specificity 

has just began to get resolved. Two examples from the most recent literature are mentioned below: 

a) Transcription factors (sequence specific) that bind to the DPE-specific enhancers might 

recruit basal transcription factor NC2 (Negative Cofactor 2) which activates DPE-

transcription and represses TATA-transcription (Willy et al., 2000). Still, the biochemical 

basis of NC2- core element-dependent DPE-activation or TATA-repression mechanisms has 

just become to get elucidated (Hsu et al., 2008), and it is yet unknown which factors recruit 
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NC2 and what is their binding specificity (or their sequence-specific recognition sites) within 

the DPE-dependent enhancer elements. Nevertheless, the proposed mechanism can at least 

explain the reason why DPE-specific transcriptional enhancers fail to activate transcription 

from TATA-box promoters.  

b) At this very moment there is only one recently reported case of a sequence-specific 

transcription factor, which binds distant control enhancer elements in vivo, and for which the 

inherent transcriptional activation potential was proven to depend upon a specific core-

promoter element; Caudal was shown to function as a DPE-specific transcriptional activator 

in Drosophila Schneider S2 transfection assays (Gershon et al., 2008) in correlation with the 

fact that identified downstream gene targets all contain TATA-less, DPE-dependent 

promoters. 

Could it be that the observed specificity of the hh ic-CRE for the endogenous promoter region, 

versus the hs43 basal promoter, actually lies on DPE-specific input activity for one of the crucial 

transcription factors controlling transcriptional outcome of the ic-CRE? In particular, could Collier 

function as a DPE-specific activator failing to trigger transcription from a TATA-dependent core-

element promoter? A first experimental approach would be S2 transfection assays co-transfecting 

plasmids expressing the two Collier isoforms with reporter constructs bearing the identified 

functional Collier binding site (in tandem repeats for increased occupancy and hence efficiency) in 

combination with different core-element-dependent promoter sequence versions. Nevertheless, in 

order to determine if the ic-CRE specificity for the hh promoter region versus the TATA-box hs43 

promoter lies on a functional dependence upon the DPE core element, a mutated version of the 

promoter disrupting the DPE has been created to be tested (Table 5-1.4). However, it has been 

shown that loss of transcriptional activity upon mutation of a DPE (or a TATA-box) can be 

compensated by the addition of a discrete downstream core promoter element, namely the Motif Ten 

Element (MTE; Lim et al, 2004). The hh promoter actually already contains an MTE (Fig. 3_2) at a 

potentially functional downstream position, partially overlapping the first two nucleotides of the 

DPE sequence. In addition, it was reported that the MTE functions greatly synergistically with the 

DPE (as well as with the TATA-box). Therefore, in an effort to resolve the underlying molecular 

mechanism of the ic-CRE dependence upon the hh promoter, two additional mutated versions of the 

promoter sequence should be generated, i.e. disrupting independently the MTE and in the last 

mutated version both the MTE and the DPE. In conclusion, results from this promoter mutant 

analysis should indicate if functional specificity of the ic-CRE for the endogenous TATA-less 

promoter sequence, versus the TATA-box hs43 basal promoter, actually depends upon the DPE, or 

on synergism also with the MTE core element, and it is not due to the presence in the proximal 

promoter sequence (within the -120_+99 bp region) of binding sites recognized by sequence specific 

transcription factors (such as the Zeste or the GAGA sites). Nevertheless, it cannot currently be 
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excluded that the latter contribute as well to the transcriptional outcome of the intercalary-specific 

enhancer element, as it is in the following discussed. 

One additional feature of the hh promoter region used in the functional reporter constructs, absent 

from the hs43 promoter, is a phylogenetically conserved GAGA element (GAGAG) found at position 

+89 (Fig. 3_2). GAGA elements are also present in the endogenous en promoter and they are 

thought to augment reporter expression pattern driven by the en intronic stripe enhancer (Orihara et 

al., 1999). Drosophila GAGA factors (GAGAG element binding) are encoded by the Trithorax-like 

gene (Trl) which has been shown to be required for expression of several genes of a broad spectrum 

of developmental roles (Farkas et al., 2000; Farkas et al., 1994). GAGA facilitates enhancer-

promoter communication by bringing distal enhancer elements into close distance of proximal- and 

core- promoter elements, thereby looping out the intervening DNA.  

In §3.2, role of HMG proteins as chromatin remodeling factors employing their strong DNA 

bending properties upon sequence specific or less specific DNA binding is pointed out. Although 

GAGA factors do not exhibit DNA bending properties, still their function is involved in 

establishment and/or maintenance of chromatin architecture; major reason why GAGA factors are 

needed for initiation of RNA polymerase II transcription is because they can relieve chromatin 

repression (Mahmoudi et al., 2002 and references therein). On the other hand GAGA function is also 

involved in heterochromatin-mediated silencing, since Trl mutations enhance position effect 

variegation (Farkas et al., 1994). Function of GAGA factors to mediate enhancer looping depends on 

their N-terminal POZ/BTB domain (poxvirus and zinc figer/broad complex tramtrack bric-a-brac) 

which mediates protein-protein interactions. The zinc-finger DNA binding domain of GAGA 

recognizes and specifically binds to the GAGAG element. Usually multiple GAGA elements are 

found in the vicinity of promoter sequences. Therefore, the POZ domain mediates multimerization 

into higher order GAGA oligomers that bind the multiple sites in a co-operative manner (Katsani et 

al., 1999). Function of GAGA factors depends exactly on this property of the formed GAGA 

oligomers with their ability to bind two DNA molecules simultaneously, thus facilitating enhancer 

looping and enhancer-promoter communication in cis or even in trans (Mahmoudi et al., 2002). 

Furthermore, presence of GAGA binding sites not only in the promoter proximity but also in distal 

control elements further facilitates long-range interactions mediated by GAGA. Indeed, in the case 

of the hh cis-regulatory region, a GAGA site found at +89 is not the only one as three additional 

sites can be found within the 1 kb ic-CRE element (-4025(rev), -3250(rev), -3126bp) (and some 

more dispersed along the 6.43 kb upstream enhancer). However, since the 450 bp ic-CRE sequence 

(-3914_-3465 bp) or the minimum 335 bp ic-CRE sequence do not contain any GAGA sites, and 

with only one GAGA site within the promoter (+89) it seems unlikely that in the case of the ic-CRE 

mediated expression enhancer-promoter specificity is due to GAGA mediated enhancer-promoter 
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communication. Nevertheless, it cannot be excluded that expression of the 1 kb ic-CRE is a bit 

stronger than the 450 bp ic-CRE outcome because of enhancer-promoter communication facilitated 

by GAGA function; the three sites found in the 1 kb ic-CRE sequence and the one site in the 

promoter, in the context of the reporter construct, may allow for the formation of a GAGA oligomer 

which might participate in higher order – expanding – chromatin pressure-relieving complexes in 

vivo. 

Another striking characteristic of the used endogenous promoter not shared by the hs43 basal 

promoter is the presence of zeste sites (CRCTCR). As shown in Fig. 3_2, three putative zeste sites 

are found within the hh promoter region used in the functional reporter constructs, one of them 

overlapping the MTE. In addition, four conserved putative zeste sites are found within the 6.43 kb 

upstream enhancer (Fig. 3_1); the third one falls within the ic-CRE while overlapping the ‘7 bp 

element’. Finding of zeste sites both in the promoter and the enhancer sequence of hh is consistent 

with the primary knowledge about Zeste being a sequence-specific factor that binds to enhancers and 

promoters of many developmental genes (Benson and Pirrotta, 1988; Pirrotta et al., 1988). Zeste is 

thought to regulate gene expression through modulating chromatin structure due to its role in 

transvection and position effect variegation (Judd, 1995). In vitro studies have shown that Zeste 

molecules, by cooperative binding to multiple sites, can form higher-order oligomers which provide 

a protein bridge among distant DNA regions (Benson and Pirrotta, 1988; Chen and Pirrotta, 1993). 

Thus, in a way similar to the GAGA-mediated function discussed above, enhancer and promoter-

proximal bound Zeste protein molecules contact each other and loop out the intervening DNA. Zeste 

protein also supports interchromosomal enhancer-promoter interactions (transvection) which 

requires both DNA binding and self interaction (Bickel and Pirrotta, 1990). Since in the context of 

the 335 bp minimum enhancer fragment disruption of the putative zeste site abolishes reporter 

expression, and since zeste sites are also present in the promoter sequence, a first postulation was 

that a functional zeste-mediated enhancer-promoter interaction might underlie the displayed 

enhancer-promoter specificity. Still, this would not explain why the activating 335 bp enhancer 

fragment juxtaposed to the promoter sequence in the context of the reporter construct would require 

a zeste-mediated interaction since it seems that juxtaposing the two elements overcomes requirement 

for looping out intervening DNA. However, perhaps both enhancer-bound and proximal-promoter 

bound Zeste molecules are co-required to establish or enhance or stabilize a transcriptional synergy 

between the enhancer and the proximal promoter by facilitating simultaneous interactions between 

protein factors bound to these regulatory elements (i.e. the Collier activator and a X regulator bound 

at a promoter-proximal position) with the core promoter general transcriptional machinery (DPE-

dependent). That would result in augmentation of the transcriptional outcome directed by the 

minimum ic-CRE. This idea was based on the outcome of a previous study proving that Zeste-

mediated activation by a developmental enhancer does not result from cooperative Zeste binding to 
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distal and proximal-promoter sites, nor results in increase of proximal-promoter-bound Zeste (Laney 

and Biggin, 1997); although Zeste-mediated enhancer activation is independent of cooperative Zeste 

binding to distal and promoter-proximal elements, still both are required for an efficient 

transcriptional outcome of Ubx reporter constructs, indicating an underlying functioning synergistic 

molecular mechanism. The perspective that expression outcome of the minimum ic-CRE depends on 

a Zeste-mediated function was still prominent even after it turned out that expression is retained in a 

zeste null mutant background (za; data not shown); zeste gene is largely redundant and specific Ubx 

reporter constructs as well as the endogenous gene do not respond to zeste loss-of-function. It was 

concluded that this is due to functional presence of distinct cis-regulatory elements occupied by yet 

unknown factors that redundantly share the function of Zeste (Laney and Biggin, 1996).  

Unfortunately, the above scenario implicating a Zeste-mediated mechanism underlying 

transcriptional outcome of the ic-CRE collapsed when it turned out that disrupting the enhancer 

zeste site in the context of the 450 bp ic-CRE sequence did not affect the intercalary expression 

pattern (actually it seems it increased in intensity (Fig. 2_29_c)) and additionally caused 

derepression of the reporter in the trunk which accumulates (increases) during germ band extension 

towards late stages of development (followed up until late stage 11, Fig. 2_29). At the same time it 

became necessary to reconsider a potential functional role for the overlapping 7 bp element which 

was also affected by the enhancer zeste-site disrupting point mutation (§2.2.3). Therefore, in order to 

elucidate the issue, two novel mutations in the context of the 450 bp ic-CRE sequence have been 

generated that independently affect the putative zeste recognition nucleotides and some of the ‘7 bp 

element’ recognition nucleotides of the two overlapping sites (mentioned above –  third paragraph of 

this section – Fig. 2_37; Table 5-1.5). Moreover, due to the recently observed derepression effect 

caused by the zeste mutation in the context of the 450 bp ic-CRE (Fig. 2_29) it became necessary to 

consider a role for zeste function in repression of the reporter expression in the trunk. 

3.4 Repression as a regulatory mechanism in development in regard to the 
late derepression effect of some specific ic-CRE sequences 

The derepression effect caused by the zeste mutation in the context of the 450 bp ic-CRE fragment 

is reminiscent of the late derepression pattern displayed by the ‘γ1 620 bp’ enhancer fragment (-

4085_-3465 bp) (Fig. 2_18_g) in contrast to the well defined intercalary-specific pattern driven by 

the full-length 1 kb ic-CRE ‘α’ fragment (-4085_-3077) (§2.2.1) or the 450 bp ‘γ1mF5_hhR4’ ic-

CRE. In addition, the minimum 335 bp ic-CRE also exhibits partial derepression effect at stage 11 

(Fig. 2_19) but this is not as prominent as in the case of the ‘γ1_620 bp’ fragment or in the case of 

the zeste mutation in the context of the 450 bp ic-CRE sequence. Since in all cases trunk 

derepression gradually increases and becomes more prominent during germ band extension reaching 
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a maximum by the end of stage 11, it seems like a failure in the maintenance mechanism of a  

repressed (or silenced) state initially established in the cells of the ectodermal trunk stripes. In other 

words, the derepression effect resembles a kind of a loss in epigenetic ‘cell memory’ like in the case 

of Polycomb group (PcG) activity-mediated gene silencing. The fact that the mutation disrupting the 

zeste recognition site causes a similar gradually established derepression effect further enhances 

possibility that regulation of hh expression, at least in the case of the trunk pattern, involves PcG-

mediated repression mechanisms.  

A few recent studies have implicated a role of the otherwise positive transcriptional regulators, 

Zeste and GAGA in repression mediated by Polycomb (Hur et al., 2002; Mulholland et al., 2003; 

Mahmoudi et al., 2003; Dejardin and Cavalli, 2004). In the model proposed for Ubx transgenic 

reporter repression (Hur et al, 2002) both Zeste and GAGA factors display dual transcriptional 

activities (positive and negative) in a complex mechanism that chooses which kind of maintenance 

system (trxG-activation or PcG-repression) will be targeted to a specific promoter. Basic component 

that allows this mechanism to function is the intrinsic function of Zeste proteins to bind promoter-

proximal sites regardless of whether the promoter is actively transcribed or not (Hur et al., 2002 

citing Laney and Biggin, 1997). If the gene is targeted for activation (by sequence-specific 

transcription factors bound to distant/proximal functional spatial-control elements) early in the 

embryo then the proximal-promoter bound Zeste participates in the activating transcriptional 

initiation complexes formed at the promoter region. In the complexed situation, Zeste protein 

surfaces and that what would otherwise be exposed is now masked and not contacted by PcG 

proteins or PcG-recruiting factors. GAGA role in PcG-mediated repression is incorporated in this 

scenario in a similar way. This model is further supported by the fact that GAGA has been isolated 

in complex with PcG proteins from nuclear extracts (Horard et al., 2000) and also Zeste is part of a 

Polycomb-containing complex (Saurin et al., 2001). In addition, PcG proteins are frequently 

attached to promoter regions that contain proximal GAGA and Zeste recognition sites (this specific 

site composition is also the case for the endogenous hh promoter region), as it was shown in the case 

of the Ubx promoter (Orlando et al., 1998). Since PcG proteins do not exhibit sequence specificity 

maybe they are recruited via GAGA- and Zeste-mediated protein interactions. 

In a slightly alternative model (Mulholland et al., 2003) Zeste function in PcG-mediated repression 

depends on the intrinsic biochemical property of Zeste which has functionally separated activation 

and repression transcriptional potential (Rosen et al., 1998). Authors suggest that when incorporated 

in a PcG complex, Zeste protein may attain a configuration that exposes only surfaces responsible 

for transcriptional repression. This is further supported by an experimental result in vitro; including 

Zeste in a Polycomb-containing complex (‘PRC1’) results in greater repression of transcription from 



                                                                                                                                    Discussion 

                                                              78

templates that contain no Zeste recognition sites. In this model GAGA role is incorporated only as a 

PcG-recruiting factor, which nevertheless results in a repression effect. 

In the case of the intercalary specific cis-regulatory element of hh, the question arises why in the 

context of the 335 bp minimum ic-CRE sequence (Fig. 3_3) disrupting the zeste site causes silencing 

of the reporter while in the context of the 450 bp ic-CRE element (Fig. 3_3) the same mutation 

causes late trunk derepression. First of all, it is noticeable that this derepression effect caused by the 

point mutation is reminiscent of the late de-repression pattern displayed by the wild type sequence 

‘γ1 620 bp’ enhancer fragment (Fig. 3_3; Fig. 2_18_g) in contrast to the intercalary-specific pattern 

driven by the full-length 1 kb ic-CRE α fragment (Fig. 3_3; Fig. 2_16).  A first conclusion that can 

be drawn from this observation is that the sequence spanning (-3465_-3077 bp; Fig. 3_3) may act as 

a PcG-responsive element (PRE). As mentioned above, PcG proteins do not display sequence 

specificity and are rather recruited by sequence-specific binding factors, for which very little is 

currently known. GAGA and Zeste proteins as recruiting factors were discussed above. Two GAGA 

sites (GAGAG) (-3250(rev);-3126) but no Zeste elements (CRCTCR) can be found in this fragment 

(Fig. 3_3). Other sequence specific recruiting factors are Pleiohomeotic (Pho) (Fritch et al., 1999), 

with footprinting core consensus GCCAK (Mahmoudi et al., 2003), and Pho-like (Brown et al., 

2003). Pho and Pho-like recruit both PcG and TrxG. In addition, DSP1 (Dorsal Switch Protein 1; 

Dejardin and Cavalli, 2005) and Grainyhead (Blastyak et al, 2006) cooperate with Pho in recruiting 

PcG proteins and thus promoting silencing. Binding consensus of Grainyhead is [YGGTTT(T/M)] 

(Transfac M00110; Dynlacht et al., 1989). Interestingly, several sites matching the Pho binding 

sequence consensus (total seven) and three sites matching the Grainyhead consensus are found 

within the 1 kb ic-CRE sequence (Fig. 3_3), but none in the promoter.  

 

 

 

 

 

 

 

Fig. 3_3. Late (st. 11) trunk derepression effect of some ic-CRE subfragment sequences. Green bars: GAGA 
sites (GAGAG), Red bar: Zeste site (CRCTCR), Blue bars: Pho sites (GCCAK), Purple bars: Grainyhead sites 
(YGGTTT(T/M)) (the second lighter purple is CGGTTTg). Disrupting the Zeste site in the context of the 
450 bp ic-CRE sequence causes late trunk derepression (Fig. 2_29). 
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The recruitment of PcG-mediated repression requires binding sites for early repressors (such as 

Hunchback and Kruppel) which actually start the repression process in the cells of the pregastrual 

embryos where they are expressed. The early repressor binding sites are also found within the PREs. 

Within the 1 kb ic-CRE sequence of hh such putative early repressor binding sites can be found for 

Hairy and Knirps. Notably, not only Hox genes but also other developmental control gene 

expression is subject to PREs-mediated regulation. Analysis of a PRE binding site-context has been 

performed in the case of en (Brown et al, 2005). In addition, PREs contain binding sites not only for 

early repressors but also activators (Tillib et al., 1999) (in the 1 kb ic-CRE sequence putative sites 

for Paired can be found). In the case of regulation of Ubx maintenance of expression it was 

suggested that multiple regulatory maintenance modules are essential in a coordinated mode of 

function for the proper maintenance of the embryonic expression patterns. Each of the modules 

contains both PcG-responsive elements (PREs; responsible for establishing and maintaining stable 

gene silencing) and trxG-responsive elements (TREs; in charge to counteract silencing and enable 

gene activation). Further dissection of such a regulatory maintenance module of Ubx indicated that 

independent protein complexes are formed at juxtaposed but separable DNA sequences of elements 

that respond to PcG-negative or trxG-positive regulatory maintaining activity. In the most recently 

published study employing genome-wide ChIP-on-Chip analysis (Schuettengruber et al., 2009) it 

was revealed that several DNA sequence-features discriminate between PcG- and Trx-N-terminal-

fragment-bound chromosomal regions, indicating that the underlying sequence contains critical 

information to drive PREs and TREs towards silencing or activation. Furthermore, an isolated 

upstream en element that can act as a PRE and mediate PcG silencing is also activating the 

endogenous promoter by receiving signals from distant enhancers (Devido et al., 2008). It was 

concluded that engrailed PREs can mediate a looping mechanism and thus facilitate both positive 

and negative interactions between distant elements.  

Perhaps, a similar complex mechanism underlies establishment and maintenance of hh trunk 

expression with maintenance regulatory modules occupying the full length upstream enhancer, and 

involving overlapping positive and negative regulatory elements. Finding of several dispersed along 

the enhancer binding sites for ‘primary’ recruiters (such as GAGA, Zeste, Pho, Pho-like, Dsp1) 

indicates that these DNA binding proteins may serve as platforms to assist PcG and trxG binding 

(Schuettengruber et al., 2009); PcG (negative) and trxG (positive) responsiveness input signals are 

then coordinately integrated into an ‘orchestrated’ promoter transcriptional outcome, perhaps by the 

involvement of a looping mechanism, which leads to the accurate hh expression pattern. 

While the -4.08 kb region (Fig. 2_15) as well as the isolated 1 kb ic-CRE sequence (Fig. 2_16) is 

silent in the trunk, overlapping subfragments that derepress may not contain the DNA elements that 

would allow proper PcG responsiveness or may reflect isolated trxG-independently-functioning 
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responsive elements (Fig. 3_3). Separable but closely situated DNA sequences, specifically 

recognized by binding factors, still in distinct total DNA sequence context, may create a differential 

PcG- or trxG- recruiting environment, or even integrate competitive signals. Thus, although the 1 kb 

isolated ‘α’ element (Fig. 3_3) integrates into promoter transcriptional outcome a presumptively 

PcG-repressive response, the ‘γ1 620 bp’ subfragment (Fig. 3_3) represents an isolated trxG element 

that, in the absence of the 3’ half ic-CRE [-3465_-3077 bp; Fig. 3_3] (which presumptively acts as a 

competitive PcG-responsive sequence) integrates into transcriptional outcome a signal that reflects 

positive maintaining regulation of the endogenous hh expression pattern. The idea that the 3’ half ic-

CRE sequence (-3465_-3077 bp) might function as an antagonizing PcG-responsive element 

(functional in the context of the full length enhancer and participating in coordination to specify the 

accurate maintaining expression pattern) is supported by the fact that trunk expression outcome 

driven by the 5’ half ic-CRE sequence [γ1 620 bp subfragment] is much stronger than the 

endogenous hh expression pattern and even ectopic in cells posterior to the normal segment polarity 

stripes (Fig. 2_18_g). (This is also the case for the ectopic expression and late trunk derepression 

displayed by the zeste mutation in the context of the 450 bp ic-CRE (Fig. 2_29) which further 

suggests Zeste-dependent PcG-responsive function of the enhancer). 

Moreover, in distinct sequence-contexts Zeste protein may be a component of differentially 

formed recruiting complexes and either required to maintain active chromatin states (Dejardin and 

Cavalli, 2004; Schuettengruber et al., 2009) or acting cooperatively with Pho and GAGA as a crucial 

determinant of PcG-mediated repression, as discussed above. Furthermore, when incorporating a 

potential role for GAGA factors (one site in the promoter and three sites within the 1 kb ic-CRE 

sequence), one should consider apart from its property to recruit PcG components to PHO-sites-

containing PREs (Mahmoudi et al., 2003) also its positive chromatin remodelling – via nucleosome 

disruption – function connected to Trx recruitment to promoters (Schuettengruber et al., 2009 and 

references therein). In addition, some of the sequence-specific bound factors that serve as a platform 

for PcG- or trxG- protein recruitment may have an intrinsic activation or repression potential 

themselves, which additionally may be defined by secondary protein-protein interactions (which in 

turn differentially establish on distinct DNA sequence contexts). Therefore a potential antagonistic 

input effect has also to be integrated from the primarily DNA-bound transcription factors. That 

might be for example part of the reason why in the case of some ic-CRE sequences, derepression 

effect is exerted rather gradually during development; if transcription factors (bound to negative 

spatial control cis-regulatory elements) act as repressors in the trunk but serve as a platform for 

trxG-proteins recruitment then an antagonistic effect takes place and primary trunk-specific 

repressor activity is gradually overcome by trxG-mediated positive maintaining regulation. Since 

PcG and trxG maintaining mechanisms expand and establish over long chromatin regions, in such a 
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case a ‘long-range’ activating mechanism would have to antagonize a ‘short-range’ (resulting from 

an enhancer-promoter-interaction) repression mechanism. 

A slightly different idea would be the following: The 1 kb ic-CRE contains a PRE component, or 

it exerts an intrinsic PcG-responsive activity, as it can be supported by the presence of multiple 

predicted Pho sites (seven in total), three Grainyhead sites, one Zeste site and three GAGA sites. 

This PRE activity is responsible to confer silencing of the 1 kb ic-CRE in the trunk dependent on 

Pho activity (Fujioka et al., 2008). However, on slightly different isolated (and partially overlapping) 

sub-fragment sequences of the 1 kb element distinct trunk-expression-controlling primary 

transcriptional states establish (due to distinguishable binding site context) that differentially 

regulate activity of a Pho-containing complex to mediate (trxG-) activation or (PcG-) silencing 

(Fujioka et al., 2008). However, in order to explain the observed late trunk derepression effect with 

such a scenario, a prerequisite would be that at the same time transgenic embryos exhibit the early 

trunk expression pattern; this feature does not regard the ectodermal segment-polarity trunk stripes 

although it can be observed in some dorsal epidermal ectopically reporter-expressing cells of early 

embryos (Fig. 2_29 b). Collectively and conclusively, perhaps different sets of cells in the trunk 

employ different mechanisms to establish and maintain epigenetic cell memory.  

Finally, the detail that the derepression effect is observed only in the trunk segments and 

ectopically in cells of the intercalary segment but not in the anterior procephalic region is in good 

agreement i) with the fact that the most anterior segment expressing Hox genes is the intercalary and 

ii) with the possibility that homeodomain recognition sequences might serve as binding sites for 

factors that recruit or facilitate recruitment of trxG and PcG protein complex effectors.  

3.5 Functional role of homeodomain proteins in development 

In silico analysis identified several putative homeodomain recognition sites within the ic-CRE 

sequence (§2.2.3). However, none of the point mutations in the third or the fifth conservation block 

affected expression outcome of the ic-CRE. Moreover, each of the homeodomain sequences 

generated predictions for several putative recognition factors. This is due to the very similar DNA-

binding properties shared by the homeodomain transcription factors; very fine structural and other 

means of determinants are employed in vivo to specify the precise DNA binding specificity (Noyes 

et al., 2008).  

The putative homeodomain sequence within the fifth conservation block also resembles the 

binding site of Labial which is the homolog of the mammalian HoxA1 (Mann and Chan, 1996). 

labial belongs to the ANT-C Hox cluster and marks the intercalary segment which is the anterior 

most segment expressing a Hox gene. Hox genes encode a subclass of homeodomain transcription 
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factors being involved in cell-fate specification along the A/P axis (reviewed Pearson et al., 2005; 

Wiellette and McGinnis, 1999). Due to homeotic transformations in loss-of-function backgrounds, 

Hox factors act as regional selectors. Homeodomain proteins bind DNA with relatively low DNA 

binding specificity in vitro as well as in vivo (Carr and Biggin, 1999; Liang and Biggin, 1998). 

Nevertheless, individual Hox mutations have specific phenotypes; Hox target selection is enhanced 

by co-factors complex formation which determines DNA binding specificity (Ebner et al, 2005). 

Still, these enhanced target-selectivity complexes consist of factors which show a broad 

developmental spectrum of expression, so the question remains how cell group-specific 

transcriptional regulation is achieved.  A recently reported mechanism involves direct competition 

exerted between a Hox protein complex (Exd/Hth/Abd) and a repressor (Senseless) for the same 

DNA binding sites on a cell-group-specific (sensor organ precursors) cis-regulatory element, with 

the transcriptional outcome dependent upon relative DNA binding occupancies (Li-Kroeger et al., 

2008). Although Hox/co-factors complexes regulate gene expression by either activating and/or 

repressing transcription, with even the possibility of a single Hox input performing both functions in 

the same group of cells, transcriptional outcome is determined by collaboration with additional 

factors and such a mechanism underlies Hox-mediated cell-type specification (Kroeger et al., 2008 

and references therein). 

Not only Hox, but also in principle DNA binding specificity of homeodomain proteins is modified 

by forming homodimers, heterodimers or even higher-order complexes, with recognition properties 

being further specified by protein-protein interactions. In addition, not only intermolecular but also 

intramolecular interactions perform as DNA-binding specificity determinants, while single amino 

acid changes at DNA-contacting residues are sufficient to alter specificity (Noyes et al., 2008). 

Nevertheless, this does not mean that the defined specificity determinants prevent homeodomains 

from binding in vivo to non-target sites with minor affinity. In fact, ChIP experiments showed that 

homeodomain proteins do not bind in vivo only within specific enhancer elements of known targeted 

function but also occupy several sites scattered between enhancers and promoters as well as 

throughout long genomic regions, in agreement with their low DNA binding specificity in vitro 

(Carr and Biggin, 1999). In addition, they bind to sequences of genes not expected to be targets, 

collectively indicating that most developmental control genes of Drosophila embryogenesis are 

regulated to a lesser or greater extent by homeodomain factors (Liang and Biggin, 1998). These 

observations challenged the previously established belief that homeodomain proteins acts as gene-

target specific activators and repressors; their widely observed binding occupancy, allowed by their 

low DNA binding specificities, may not be related to direct control or contribution to the 

transcriptional outcome of nearby promoters, but may instead be involved in a distinct process of 

great biological significance. As proposed by Dorsett (1999) widely distributed homeodomain 

proteins could help fulfill the function of enhancer-facilitators, participating in higher order protein-
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complexes with the Drosophila factor Chip (Chi), to facilitate and promote intrachromosomal 

enhancer-promoter communication. This function of facilitators is slightly distinct from the looping 

formation mediated by GAGA and Zeste (§3.3), as it involves Chip-mediated multimeric- and 

cooperative homeodomain protein binding to multiple sites along the enhancer; this results in 

formation of a series of smaller loops that brings distant enhancer elements close to the promoter. 

Interestingly, Chip function is involved in regulation of several segmentation genes and embryos 

lacking maternal Chip show segmentation defects (Morcillo et al., 1997).  

In the point mutagenesis screen (§2.2.3), affecting the putative homeodomain binding sites in the 

context of the ic-CRE sequence, expression of the reporter was not altered, despite their 

phylogenetic conservation implying a functional role. Perhaps, this is due to functional redundancy 

shared by individual homeodomain sites within the isolated enhancer fragment or it could also be 

that they are not involved in controlling the transcriptional outcome of the ic-CRE. Perhaps they 

have a functional regulatory role in the context of the endogenous hh gene locus, consistent with 

their scattered distribution along the full-length upstream enhancer sequence. 

3.6 Transcription factor Collier mediates direct transcriptional control of 
segment polarity gene expression in the intercalary segment 

After functional isolation of the intercalary-specific cis-regulatory element of hh, sequence of the 

ic-CRE was submitted to in silico analysis (§2.2.3). One of the predictions scored the binding matrix 

of the mammalian Helix-Loop-Helix COE transcription factor Olfactory-1 (Olf-1)/EBF (Early B-

Cell factor) (Wang et al., 1993) which is the mammalian homolog of Dm_Collier (Crozatier et al., 

1996). Olf-1/EBF and Collier share 86% identities in their DNA binding domains which would 

allow for a similar DNA binding specificity. Therefore, the predicted sequence was regarded as a 

putative Collier recognition site found within the ic-CRE. This prediction displayed quite an interest 

from a functional aspect, since Collier was the first factor to be introduced as a second-level 

regulator in the anterior head region. More specifically, the genetic interaction that was examined 

involves collier as an activator of segment polarity gene expression in the intercalary segment while 

being under the strict control of the head gap gene buttonhead (Crozatier et al., 1996).  

During early embryonic development, at blastoderm stage (st. 5/6) collier is expressed in a domain 

extensively overlapping the mandibular segment anlage but slightly anteriorly displaced (Crozatier 

et al, 1996 and Fig. 2_66). During germ band elongation, at stage 10, collier is expressed in cells of 

the En intercalary spot (Crozatier et al., 1996), consequently it overlaps the hh expressing cells of 

the intercalary segment. At stage 10-11 it is clear that it precisely abuts the wg expressing cells of 

the intercalary segment (Fig. 2_66 e, f). At the same time, during germ band extension, it is also 
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expressed in cells directly posterior to the En intercalary spot which belong to the anterior most part 

of the mandibular segment. The cells of the anterior compartment of the mandibular segment are the 

hypopharyngeal progenitors (Seecoomar et al., 2000); Collier activity was reported to be required 

for the formation of the hypopharyngeal lobes in late germ band, while activating expression of cap 

`n` collar early in development in cells of the anterior compartment of the mandibular segment (in 

the hypopharyngeal progenitors cells) (Seecoomar et al., 2000). Collectively, col appears to be 

specifically expressed in cells of the posterior part of the intercalary segment and cells of the anterior 

part of the mandibular segment, which in whole comprises a region corresponding to the 

presumptive parasegment 0 (Jürgens et al., 1996; Martinez-Arias et al., 1985). Moreover, 

mandibular and intercalary-derived larval structures are affected in collier null mutants (Crozatier et 

al., 1996; Crozatier et al., 1999; Seecoomar et al., 2000). This result, in combination with the fact 

that collier activity is required for the establishment of segment polarity gene expression in the 

intercalary segment, led to the conclusion that collier has a parasegmental register of expression, 

while being a segment-specific patterning gene required for the establishment of the PS(-1)/PS0 

parasegmental border and formation of the intercalary segment (Crozatier et al., 1999). 

Identification of a functional Collier binding site within the intercalary-specific cis-regulatory 

element of hh further supports that Collier functions as a second-order regulator of embryonic head 

development in the procephalic region. Providing evidence that Collier directly recognizes and 

occupies the identified binding site, and that the established protein-DNA interaction is functional 

for the transcriptional outcome of the ic-CRE, leads to characterizing the segment polarity gene hh 

as a direct downstream activation target of Collier activity in the intercalary segment. In this 

direction, further analysis ensued in vitro and in vivo to prove that the predicted Collier recognition 

site is in fact a functional target-binding sequence in vivo, inevitably setting the ic-CRE under the 

direct transcriptional control by Collier. First of all, expression outcome of the ic-CRE, in 

concurrence with the endogenous intercalary-specific expression pattern of hh, depends on wild type 

Collier activity, since both are abolished in loss-of-function backgrounds (§2.7.1). Expression of the 

ic-CRE was tested in a collier null mutation (col1; Crozatier et al., 1999) and also in a generated 

transgenic line producing antisense RNA against the coding sequence of the Collier A isoform, thus 

leading to RNAi-mediated knocking down of the collier gene activity (Fig. 2_40). Second, the in 

silico predicted Collier recognition site was proven functional for transcriptional outcome of the ic-

CRE, since insertion of a point mutation disrupting the site abolished expression of the reporter in 

the point mutagenesis screen (§2.2.3). Third, the binding site is enriched in chromatin 

immunoprecipitation samples with an anti-Col specific antibody (§2.7.3). Fourth, the site is 

specifically recognized in mobility shift assays with in vitro expressed Collier protein (§2.7.2). 

Specific complex formation is down-regulated in the presence of wild type competitor but not with a 

mutant version bearing the same mutation that abolished expression of the reporter in vivo. 
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Collier is one of the primarily independently cloned members of the discrete COE family of 

transcription factors (Dubois and Vincent, 2001). COE stands for Collier/ Olfactory-1 (rat)/ Early B 

cell factor (mouse). Additional members of the family include the mammalian EBF-2 and EBF-3, 

the Xenopus XCOE2 and XCOE3, the Zebrafish ZCOE2 and the Caenorhabditis elegans Unc-3. In 

general, COE proteins have various functions in different organisms. For example the mammalian 

COE homologues play a role in B-cell differentiation and also in neuronal differentiation (Hagman 

et al., 1993; Wang and Reed., 1993). All three COEs are expressed in olfactory neurons (precursor 

neuronal cells and mature olfactory neurons) as well as in the developing nervous system during 

embryogenesis.  In Xenopus the Xebf2/Xcoe2 homolog functions as an early embryonic regulator 

during primary neurogenesis (involved in the transcriptional cascade specifying primary neurons; 

Dubois et al., 1998), while the Xebf3/Xcoe3 functions as a regulator of neuronal differentiation 

(Pozzoli et al., 2001). The Zebrafish homolog is also expressed during primary neurogenesis, at later 

stages in anterior brain neurons and it also marks olfactory placodes (Bally-Cuif et al., 1998). In 

Drosophila apart from the anterior head patterning and development of the intercalary segment 

(Crozatier et al., 1996,1999), Collier function has also been involved in imaginal-disk derived wing 

vein specification (Crozatier et al., 2002), in combinatorial specification of a single muscle lineage 

(along with a yet unknown factor; Crozatier and Vincent., 1999), and finally in specification and 

regulation of a single hemocyte type differentiation involved in immuno-response (lamellocytes; 

Crozatier et al., 2004). Later in embryogenesis, collier is also expressed in subsets of neurons of the 

CNS and PNS (Crozatier et al., 1996) and a critical combinatorial function of collier is involved in 

neuronal differentiation (Baumgardt et al., 2007). The nematode homolog unk-3 is required in 

axonal guidance and/or neuronal differentiation (Prasad et al., 1998). Collectively, the COE family 

is involved in neurogenesis both in vertebrates and invertebrates. 

The COE family members contain a Helix-Loop-Helix dimerization motif and a discrete zinc 

finger DNA binding domain while they lack the N-terminal basic region which mediates DNA 

interactions conducted by the basic-HLH (bHLH) transcription factors. In vitro, EBF factors (mouse, 

rat homologues) bind as homo- or heterodimers an imperfect palindromic DNA consensus sequence 

(binding matrix depicted in §2.2.3; Hagman et al., 1991; Travis et al., 1993; Hagman et al., 1995). 

Significantly, the COE protein family members share a high degree of identities in their DNA 

binding domains which reaches up to 86% between the mammalian and the Drosophila homologues. 

This characteristic allows for a similar DNA binding specificity and it was shown that both Collier 

and the Xenopus homologues recognize and bind cognate target sequences of the mammalian 

homolog EBF1 in electrophoretic mobility shift assays (Daburon et al., 2008; Pozzoli et al., 2001). 

For this thesis, DNA-binding specificity of Collier for a novel endogenous site, identified as 

functional within the context of the intercalary-specific cis-regulatory element of hh, has been 
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analyzed and is presented in §2.7.1-2.7.3. Further, recognition efficiency for additional putative sites 

predicted in silico within the full-length upstream enhancer of hh was assayed in vitro (§2.7.4). 

 

 

 

 

 

In more detail, the non-basic HLH COE proteins consist of i) an N-terminal DNA-binding domain 

(~210 aa) which shows high degree of primary sequence conservation (86% identity between the 

mammalian homolog and Dm_Collier), thus it is the signature of the COE family and it contains an 

atypical Zc coordination motif [H-X3-C-X2-C-X5-C] (Hagman et al., 1995) ii) a Helix-loop-Helix 

motif which mediates dimerization. All vertebrate homologues contain a duplication of the Helix2 

(H2ancestral-H2duplicate) which – although is not a prerequisite for dimerization – is postulated to 

increase partnership flexibility and thus functional versatility of the vertebrate COE proteins 

(Daburon et al., 2008) (Fig. 3_4) iii) a C-terminal domain without significant primary sequence 

conservation which in the case of EBF was proven to function as a transcriptional activation domain 

(Hagman et al., 1995). In addition, an Ig-like/Plectin/Transcription Factor (IPT) domain between the 

DBD and the HLH domain is present but the function of this domain remains unknown. Recent 

experimental data presented from Daburon et al. (2008) suggest that the presence of the IPT domain 

interferes with the ability of the H2d-H2a domain to mediate homophilic interactions, and thus 

interferes with dimerization of a truncated EBF form which lacks the H1 helix. The high degree of 

sequence conservation of the COE IPT domain suggests that it is subject to very stringent structural 

and functional constraints and the relative positioning to the HLH domain may substantially affect 

COE dimerization (Daburon et al., 2008). 

The mammalian homolog EBF/Olf-1 was initially isolated as a nuclear factor recognizing 

functionally important cis-regulatory sequences within the mb-1 promoter which is specifically 

expressed in early B-lymphocytes (Hagman and Travis., 1991). EBF/Olf-1 was further characterized 

in vitro to bind as a homodimer variations of the perfect palindromic DNA sequence 

ATTCCCNNGGGAAT (Hagman et al., 1993; Travis et al., 1993). As mentioned above, allowed by the 

high degree of conservation in the DNA binding domain, the Xenopus COE homologues also shift 

oligos encompassing a binding site of EBF1 (Pozzoli et al., 2001). The EBF1 recognition site that 

Fig. 3_4. Primary structure of COE members. 
Scheme is from Daburon et al., 2008 

Fig. 3_5. All members of the COE family exhibit a ten aminoacid 
residue signature-pattern which is located in the DNA binding domain 
and includes four cysteines that are part of a conserved zing finger 
motif. Pattern consensus is {C-S-R-C-C-[DE]-[KR]-S-C} is 
derived from the depicted alignment (Prosite Entry PS01345). 
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was used as a probe in this report is 5’-ACCCATGCTCTGGTCCCCAAGGAGCCTGTC-3’ (Kudrycki 

et al., 1993). It was in addition shown that Drosophila Collier can bind in EMSAs as a homodimer 

or heterodimer with EBF either to a 125 bp DNA fragment containing the  mb-1 promoter sequence 

(from -250 to -115), which includes the EBF binding site AGACTCaaGGGAAT, or to an oligo probe 

which contains the palindromic site ATTCCCaaGGGAAT (Daburon et al., 2008). The shift 

generated by Collier with the mb-1 probe was assigned to be due to homodimer binding complex 

formation since it migrates with the same mobility as the previously characterized EBF homodimer 

complex. In addition, authors report no evidence for faster migrating complexes that would 

correspond to monomer binding. Finally, Collier was shown to efficiently heterodimerize with EBF 

and authors report that heterodimer complex formation prevailed over EBF homodimer shift 

complex, without however concluding for sure if that observation was due to favored protein 

heterodimerization (over EBF homodimer formation) or rather due to higher DNA binding affinity 

of the heterodimer situation on the mb-1 sequence. Nevertheless, and since the duplicated H2d helix 

of EBF is not required for dimerization of the COE proteins, it was further suggested that inclusion 

of the helix duplication which occurred early in the vertebrate lineage may result in higher 

resourcefulness in partnership, thus increasing functional potential of the vertebrate COE 

homologues. 

As described in §2.7.2, DNA binding specificity of Collier was assayed for an endogenous 

Drosophila wild-type sequence which acts as a functional cis-regulatory element within the 

intercalary-specific hh enhancer fragment; in addition this sequence is enriched in anti-Col-specific 

chromatin IP samples (§2.7.3). Since an intercalary-specific expression pattern for ColA could not 

be concluded by double in situ hybridization using a conspecific and a ColB-specific RNA probe 

(§2.7.2), both isoforms were considered to be potentially involved in regulation of hh expression and 

both were assayed for DNA recognition and binding in EMSAs.  

Testing the potential of the two Collier isoforms to recognize the endogenous functional binding 

site revealed that both proteins generate a major shift complex which according to previous studies 

(Daburon et al., 2008) should be due to homodimer binding. In the case of Collier B, but not Collier 

A, one faster migrating complex of minor intensity can be detected which is most probably due to 

the ability of Collier B to bind the site also as a monomer. Monomer binding specificity with little 

affinity has also been reported for the mammalian homolog EBF (Hagman et al., 1995). Since the 

two Collier isoforms differ only in their very C-terminus (29 aa for ColA versus 47 aa for ColB) 

with the C-terminal region of the Collier B isoform constituting a histidine-rich stretch, perhaps 

monomer binding-complex formation observed in the case of ColB is stabilized by additional DNA 

contacts mediated by the ColB-specific C-terminal tail.  
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In addition, from the titration experiments (Fig. 2_45) it is concluded that at least in vitro and on 

that specific DNA binding sequence, Collier A/Collier B heterodimer situation binds the DNA oligo 

with intermediate affinity than the homodimers, lesser than the Collier A homodimer and higher 

than Collier B homodimer. It also appears that in the presence of Collier A protein, Collier B 

molecules prefer to heterodimerize leading to diminishment of monomer complex formation (Fig. 

2_45_b). 

In order to investigate whether apart from affecting DNA binding affinity of the protein, the 

isoform-specific C-terminal regions also possess differential transcriptional activation (or even 

negative) properties, the potential of the factors was assayed by in vitro transcription run-off assays 

using crude embryonic nuclear extracts as a source of RNA polymerase II and basal transcriptional 

machinery components (§5.9). However, most probably due to carry-over of general transcription 

factors from the in vitro transcription and translation reactions (TNT; §5.7), first assays performed 

with TNT-expressed Collier proteins could not lead to safely reproducible results in correlation with 

intrinsic control experiments (data not shown).  

A distinct experimental approach would be to check transactivation potential of the two Collier 

protein isoforms in S2 Schneider cells transfection assays using the functional binding site in repeats 

to drive expression of a luciferase reporter. With the same experimental setup and by using different 

core promoter elements in the transfected reporter constructs it could also be determined if Collier 

displays a specificity for a DPE core promoter element versus a TATA-box, which could underlie 

the reason why the ic-CRE expression outcome depends on the presence of the endogenous 

promoter region in the reporter construct whereas it is not functional with a hs43 basal promoter 

(§3.3). In a similar study it was recently determined that a key developmental regulator, Caudal, is 

actually a DPE-specific activator in concurrence with the observation that identified downstream 

target genes contain DPE-dependent promoters (Juven-Gershon et al., 2008).  

In regard with the analyzed DNA binding specificity of Collier, if the core sequence of the 

identified functional recognition site is used to perform a genome-wide scan analysis using the 

Genome Enhancer 2.0 (http://opengenomics.org/) allowing only for one subtle position 

(ABTCCCCAATGGC) still in agreement with the Olf-1 binding matrix (§2.7.2), then four predictions 

come up; a putative site predicted 360 bp upstream of unplugged; a site within the fourth intron of 

zipper (in both cases: ACTCCCCAATGGC); a site within the third intron of zinc finger homeodomain 

1 (zfh1) (AATTCCCCAATGGC); and a site within the second intron of CG42389 

(ATTCCCCAATGGC). Notably, all four predictions are within non-coding DNA sequence with 

zipper and zfh1 predictions displaying 8 species conservation. In addition, expression patterns of the 

first three mentioned genes coincide with subpatterns of collier expression and additionally they are 
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involved in developmental processes in which a functional role for Collier has also been implicated. 

Therefore, it is feasible that the three predictions could be direct downstream targets of Collier 

activity. More specifically, unplugged and zipper are both expressed in the CNS (Chiang et al., 

1995; Zhao et al., 1988; Cote et al., 1987). zipper encodes a putative integral membrane protein 

required for normal axon patterning during Drosophila neurogenesis. However, overlap in 

expression with subsets of CNS neuroblasts that express collier has to be confirmed by in situ 

hybridization assay. Moreover, Zipper protein is most similar to the metazoan smooth myosins 

(Ketchum et al., 1990) and it is also involved in muscle cell differentiation (Bloor et al., 2001). 

Collier is also involved in combinatorial control of muscle cell lineage specification (Crozatier and 

Vincent., 1999). zfh1 is expressed in CNS as well as in procephalic ventral ectoderm and procephalic 

mesoderm (Lai et al., 1991) where collier is also expressed (Seecoomar et al., 2000). Again, precise 

overlapping expression in sets of cells has to be confirmed by in situ hybridization assay but from a 

first glance in BDGP database it seems likely that collier and zfh1 expression patterns overlap in the 

procephalic region. Additionally, zfh1 function has been implicated in lymph gland development and 

immune response (Sellin et al., 2006), a process where collier is also involved (Crozatier et al., 

2004). 

3.7 Examine a means of restricting positive regulatory function of Collier to 
the posterior part of the intercalary segment 

Up to now, a line of results has been presented and analyzed supporting a positive regulatory 

function of Collier directly involved in the activation of the segment polarity gene hh in the posterior 

compartment of the intercalary segment (§2.7, §3.6). From the embryonic in situ hybridizations and 

fluorescent immunostainings and in agreement with the reports in literature (Crozatier et al., 1999; 

Seecoomar et al., 2000), expression pattern of collier is not strictly restricted to the ectoderm of the 

posterior part of the intercalary segment but also exceeds into the anterior most part of the 

mandibular segment. Moreover, it is also expressed in the procephalic mesoderm.  

In regard to the activating input exerted by Collier on the transcriptional outcome of the ic-CRE, 

the function of an underlying mechanism responsible for restricting ic-CRE-mediated expression 

only to the hh expressing cells of the posterior part of the intercalary segment has to be considered. 

This could be i) requirement of an additional synergistic activator involved in combinatorial positive 

regulation of the ic-CRE, presumptively of the endogenous intercalary-specific hh expression 

pattern, absent from the anterior part of the mandibular segment where Collier fails to directly 

activate target expression outcome ii) presence of a negative regulator in the anterior part of the 

mandibular segment inhibiting or competing with Collier positive function. 
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3.7.1 CncB as a negative regulator of the ic-CRE expression  

It could be extracted from the literature and further confirmed by in situ hybridization and 

immunostaining that the expression pattern of the bZIP factor encoding gene cap `n` collar (Mohler 

et al., 1995) would qualify as an optional candidate to fulfill the above second mentioned possibility. 

cnc is required for specification of the mandibular segmental identity by suppressing the maxillary 

structures-promoting function of Deformed (McGinnis et al., 1998). From among the three Cnc 

isoforms produced, only CncB displays this functional role in head development (McGinnis et al., 

1998; Veraksa et al., 2000).  

At blastoderm stage cnc is expressed in a domain corresponding to the mandibular anlage (Fig. 

2_66_d). At stage 10 it is expressed throughout the mandibular compartment precisely abutting the 

hh expressing cells of the intercalary segment (Fig. 2_68_a). Therefore, overlapping with collier 

expression is only in the anterior most cells of the mandibular segment (Fig. 2_67_a, b) where 

Collier fails to trigger the ic-CRE transcriptional outcome (Fig. 2_67_c). With onset at stage 10, a 

secondary site of cnc expression is initiated by Collier in the posterior cells of the intercalary 

segment (Fig. 2_68 and Crozatier et al., 1999). Consequent with the assumption that CncB could act 

as a negative regulator of Collier positive function, from late stage 10 on and by the end of stage 11, 

expression of the ic-CRE greatly diminishes in intensity to get restricted to 2-3 cells of the 

intercalary spot (Fig 2_55). Expression of the endogenous hh pattern in the intercalary segment is 

also decreased but this reduction is more gradual (Fig. 2_56). This difference in progress of 

expression pattern attenuation between the ic-CRE and the endogenous gene could be because 

expression of hh in the whole is also under the control of additional regulatory inputs, while a 

positive regulatory input exerted by Collier on the transcriptional outcome of solely 450 bp cis-

regulatory element could be more easily competed by a negative regulatory input of another factor, 

presumptively by CncB.  

Expression of cnc in the anterior most portion of the anterior compartment of the mandibular 

segment, which comprises the progenitors cells of the hypopharyngeal lobes, is also under positive 

regulatory control by Collier, since col null mutants lack cnc expression in the anterior most part of 

the mandibular segment from early gastrulation stage and the hypopharyngeal lobes subsequently 

fail to develop (Seecoomar et al., 2000).  

Collectively, the extent of overlap in the very early expression domains of col and cnc in the 

blastoderm ‘fate map’ (Fig 2_66_a, b and Crozatier et al., 1999; Seecoomar et al., 2000) would 

allow for the following conclusion; the anterior row of cells expressing only col will give rise to the 

posterior part of the intercalary segment – hh expressing cells – since collier null mutants 

specifically lack intercalary hh expression (Fig. 2_39). The middle 1-2 cells-wide row of the early 
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blastodermal overlapping expression domain will give rise to the hypopharyngeal lobes, which fail 

to form in collier null mutants; expression of cnc in col null mutants is also defected in the anterior 

most cells of the mandibular segment which are the progenitor cells of the hypopharyngeal lobes. 

Finally, the posterior row of cells expressing only cnc will give rise to the mandibular lobes which 

nevertheless normally form and normally express cnc in col nulls. Later in development, with onset 

during stage 10, a secondary site of cnc expression is initiated by collier activity in the hh cells of 

the posterior part of the intercalary segment. Notably as mentioned above, ectodermal expression of 

hh in the posterior part of the intercalary segment from that point on seems to gradually diminish. 

 Considering cnc function in a negative regulatory aspect opposing positive regulatory input 

activity of collier, and taken all together, it would not look unlikely that collier ensures attenuation 

of its own activating function, at a later maintenance phase of targets expression, by early enough 

turning on an antagonizing negative gene function.  As described in §2.8.1-2.8.3, it seems likely that 

the negative regulatory effect of CncB on the the ic-CRE expression outcome is indirect and most 

probably resulting from competing the positive regulatory input of Collier at the protein level, 

involving a physical protein-protein interaction. It is less likely that CncB is directly involved in 

transcriptional repression of the ic-CRE expression outcome. The following reasons support this 

conclusion: First, the ic-CRE-mediated expression pattern does not posteriorly expand, meaning it 

exhibits no posterior derepression in cnc null mutants (VL110; Mohler et al., 1995). Although this 

result could also postulate the presence of distinct bZIP factors that redundantly share a negative 

repressive function of CncB in the anterior most part of the mandibular segment, still it stands 

insubstantial to suggest that CncB inhibits ic-CRE expression in the anterior most part of the 

mandibular segment. Nevertheless, it seems rather safe to propose that CncB could potentially 

function to prevent or to soothe possibility that the ic-CRE is expressed in the anterior most part of 

the mandibular segment by competing with Collier positive regulatory input activity. The last can be 

supported by two experimental outcomes: a) expression outcome of the ic-CRE is greatly reduced, 

almost abolished in cnc gain-of-function background (Fig 2_64) by using a UAS/GAL4 system to 

ectopically drive procephalic CncB expression under the control of a double dose of maternal 

{pnos_GAL4/GCN4_ bcd 3’ utr } driver input; transcription of the endogenous hh intercalary stripe 

is also suppressed (Fig. 2_65) b) conversely, transcripts of hh and ic-CRE – reporter irregularly 

persist in the epidermal cells of the intercalary lobes of stage 11 cnc null mutant embryos (Fig. 2_71, 

2_72). 

Second, the above ‘competition’ scenario, involving function of CncB in antagonizing the positive 

regulatory input activity of Collier, could be further supported i) in vitro in mobility shift assays; 

including increasing amounts of CncB factor in the binding reaction attenuates complex formation 

generated by Collier with its cognate functional target – oligo sequence – found within the ic-CRE 
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(Fig. 2_61). CncB-mediated inhibition of Collier complex formation on this very specific DNA 

target sequence, which nevertheless lacks functional recognition sites for CncB, is exerted in a 

dominant negative way as it could be concluded by the EMSA competition assays (Fig. 2_62). 

Providing CncB factor to Collier-DNA-binding complex, that has reached the point of binding 

equilibrium, leads to progressive ‘stripping-off’ of Collier molecules from the DNA-protein 

complex, consequently causing attenuation of shift intensity. The described negative effect of CncB 

protein on Collier-DNA binding complex formation indicates that a physical interaction between 

CncB and Collier antagonizes Collier binding to its DNA target sequence. This physical interaction 

could be further supported by in vivo co-immunoprecipitation assays from crude embryonic nuclear 

extracts (§2.8.3). In addition, the antagonizing effect on binding of the HLH-factor Collier to its 

cognate site exerted by a competitive bZIP-factor CncB physical protein interaction is reminiscent of 

a previously described direct physical association between the factors c-Jun and MyoD in 

differentiating myoblasts (Bengal et al., Cell, 1992); in fact this interaction was biochemically 

proven to be mediated by the leucine zipper domain of c-Jun and the HLH domain of MyoD and it 

results in functional antagonism at the transcriptional level; in transfection assays the presence of c-

Jun inhibits transactivation by MyoD of a reporter linked to MyoD DNA-binding sites and vice-

versa. Furthermore, this interaction appeared to be primary sequence-specific since the bZIP protein 

Fos did not interact with MyoD, although Fos and c-Jun form heterodimers via the leucine zippers. 

In a similar way, described in §2.8.2, Drosophila bZIP factor C/EBP, which is ubiquitously 

expressed during embryogenesis (Rorth and Montell., 1992; Montell et al., 1992) does not 

efficiently interact with Collier and thus does not interfere with binding to its cognate site, although 

CncB and C/EBP interact, most probably by forming bZIP heterodimers which fail to shift an oligo 

that does not contain a recognition site for the CncB partner (Fig. 2_59, 2_60).  

In regard to the previously studied DNA-binding specificity of CncB, it was shown that it binds in 

heterodimers, in a highly cooperative manner with Maf-S bZIP-protein a consensus target sequence 

defined by PCR-based site selection (Veraksa et al., 2000). Multimers of the heterodimer recognition 

site result in transcriptional activation of a linked reporter in vivo in response to wild type CncB 

activity (Veraksa et al., 2000). Strong intrinsic transactivation potential of CncB was further proven 

in transfection assays (Veraksa et al., 2000). Mammalian bZIP homologues of the CNC-class have 

also been shown to possess transcriptional activation properties, and only those members that 

contain the BTB domain (such as Bach1 and Bach2) function primarily as transcriptional repressors 

(Veraksa et al., 2000 and references therein). Conclusively, function of CncB at a transcriptional 

level in vivo is more likely to result in activation of targets, requiring Maf-S as a cofactor. 

Nevertheless, the half site of the heterodimer consensus binding sequence which is contacted by 

CncB (KTCAT) matches the binding site of the C. elegans CNC homolog Skn-1 (Blackwell et al., 

1994) which binds DNA as a monomer. However, the putative recognition site found within the ic-
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CRE juxtaposed to the Collier cognate site was not recognized in vitro by CncB or CncA (§2.8.2). 

Collectively, it seems unlikely that CncB is directly involved in transcriptional control of the ic-CRE 

expression outcome.  

In spite of the intrinsic transcriptional activation properties of Cnc homologues, CncB acts to 

suppress both the expression and the homeotic selector (maxillary structures-promoting) function of 

Deformed in the mandibular segment (Mohler et al., 1995; McGinnis et al., 1998). Specifically, 

although CncB is not capable of repressing Dfd expression before stage 11, after that stage CncB 

represses the maintenance phase of Dfd transcription in the mandibular cells, most probably by 

interfering with positive regulatory function of Deformed protein within the Dfd autoactivation 

circuit, which is established during stages 9 and 10 (McGinnis et al., 1998; Veraksa et al., 2000; 

Zeng et al., 1994). Moreover, overexpression of CncB partially represses Dfd-responsive 

transcriptional target elements (McGinnis et al., 1998). Interestingly, Veraksa et al. (2000) report an 

observation of an interaction between CncB and Dfd proteins in GST pull-downs, with an as yet 

unclear biological relevance. In regard to the experimental outcomes of this thesis, perhaps the 

negative regulation of Dfd expression and function exerted by CncB results from CncB interfering 

with Dfd binding to its functional-target cis-regulatory elements in vivo, as a consequence of a direct 

physical interaction at protein level. 

 3.7.2 Collier in combinatorial control of the ic-CRE expression 

As described earlier in this section, combinatorial control of the ic-CRE involving apart from 

Collier an additional factor required to direct a positive synergistic input could be a distinct means of 

restricting expression outcome to the posterior part of the intercalary segment or it could also 

contribute to the restriction mechanism (§2.8.2, §2.8.3, §3.7.1). Experimental results that would line 

up to this conclusion are in the following discussed. First of all, the HLH domain of Collier de facto 

creates maximum prospect for cooperative partnership with other members of the extensive HLH 

family of transcription factors. Interestingly, primary sequence of Collier protein does not have a 

nuclear localization signal (NLS). That is most probably the reason why localization of Collier as 

revealed by fluorescent immunostaining is not strikingly nuclear, as it is for example in the case of 

the NLS-carrying CncB protein, but it is mainly detected in the cytoplasm (Fig. 2_70). Notably, 

Collier exhibits a perfect SUMOylation signal in the N-terminus which is highly conserved across 

the COE proteins. Apart from modification of transcriptional activation/repression potential of 

transcription factors, sumoylation has also been implicated in nucleo-cytoplasmic translocation of 

several proteins, although its function has only recently started to get resolved (reviewed in Zhao, 

2007). Another means of Collier import to the nucleus would be heterodimerization with a protein 

that carries an NLS, possibly a distinct HLH factor. 
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Second, it was not possible to detect ectopic expression of the ic-CRE in a Collier gain-of-function 

background (UAS-kn.M; Mohler et al., 2000 (Bloomington #9554)) driven by {pnos_GAL4/GCN4_3’ 

bcd utr} maternal input (Fig. 2_64 iv). Although this result could imply response of the ic-CRE to 

transcriptional repressors outside the posterior part of the intercalary segment, it could also implicate 

Collier involvement in positive combinatorial control of the ic-CRE expression outcome. Further, 

disrupting the Collier DNA-binding site was not the only mutation abolishing reporter expression in 

the intercalary segment. Interestingly, point mutations in a putative fork head recognition site found 

within the fourth conservation block of the ic-CRE also abolished reporter expression (§2.2.3). This 

fork head recognition sequence is a very good match of a site protected in DNaseI footprinting assay 

by Slp1, found within the proximal promoter sequence of ftz (Yu et al., 1999). Although the site was 

not efficiently recognized by Slp1 in EMSAs, still expression of the ic-CRE driven reporter is 

greatly reduced in response to slp1 loss-of-function via RNAi (Fig. 2_30). Positive response of the 

ic-CRE to Slp1 activity or a direct involvement of Slp1 in transcriptional control of the ic-CRE 

expression outcome has to be further elucidated. Furthermore, intercalary-expression of the 

endogenous hh in slp1 loss-of-function (null) background remains to be resolved, since in previous 

studies only effects on en and wg segment polarity gene expression were examined (Cadigan et al., 

1994). 

In addition, and as discussed in §3.6 the precise transactivation potential of the two Collier 

isoforms and their heterodimer form remains to be resolved by in vitro transcription assays and/or 

transfection assays. Taken all together, at the moment it cannot be excluded that apart from Collier, 

additional factors might as well contribute a positive input to the expression outcome of the ic-CRE, 

thus subsequently being involved in establishment and regulation of hh expression in the intercalary 

segment. Whether such factors act directly at transcriptional level, by recognizing and occupying 

binding sites on the ic-CRE sequence, consequently triggering activation of the promoter and 

contributing to the positive transcriptional outcome of the ic-CRE, or whether they rather act as co-

factors or co-regulators enhancing positive regulatory function of the Collier activator remains to be 

further elucidated.  

At the same time, a parallel functional mechanism that restricts expression of the ic-CRE to the 

posterior part of the intercalary segment potently involves a negative regulatory function exerted by 

CncB in the anterior most part of the mandibular segment, which is most probably indirectly exerted 

by competing with Collier binding to its cognate DNA regulatory element. High affinity recognition 

of the DNA-binding site by Collier allows for transactivation effect in the cells of the posterior part 

of the intercalary segment even though a very small fraction of the expressed Collier protein is 

nuclear localized. Conversely, nuclear accumulation of CncB in the anterior-most cells of the 

mandibular segment results in sequestering nuclear Collier from DNA binding. collier sets off 
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attenuation of its own positive function by initiating cncB expression in the cells of the posterior part 

of the intercalary segment during stage 10, thus triggering the DNA-binding competing mechanism 

at the onset of a ‘maintenance’ phase that leads to continuing soothing of target activation by the end 

of stage 11. 
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 Summary 

Head segmentation in insects, as reflected by the model system Drosophila melanogaster, is less 

well understood in comparison to the trunk. While the gnathal segments (mandibular, maxillary, 

labial) are patterned in a way similar to the trunk, distinct molecular mechanisms underlie the 

metamerization of the anterior head region into the procephalic (ocular, antennal, intercalary) 

segment anlagen (reviewed in Rogers and Kaufman, 1997). In that context, actually a unique mode 

of establishment for each of the procephalic segments has been suggested based on anterior head 

segment-specific cross-regulatory interactions among segment polarity genes (Gallitano-Mendel and 

Finkelstein, 1997). So far it remains unclear how the establishment of the procephalic segment 

polarity gene expression is controlled, although a functional input from the head gap-like genes has 

been elucidated and a second level of regulation in patterning of the anterior head region has been 

implicated (Crozatier et al., 1999). 

In this thesis, a bottom-up approach was employed to identify key components of the head 

segmentation gene network by the detection and functional dissection of cis-regulatory regions of 

the segment polarity genes wingless, hedgehog (hh) and engrailed in Drosophila and in a 

comparative approach also in the short-germ band red flour beetle Tribolium castaneum. During this 

study an intercalary-specific cis-regulatory element (ic-CRE) of Dm_hh was isolated, which further 

supports the theory of a unique establishment of each procephalic head segment. In silico analysis on 

the ic-CRE sequence identified a recognition site for the HLH-COE factor Collier. This binding site 

is essential for the function of the ic-CRE that also depends on collier activity. DNA-binding 

specificity of Collier to this endogenous sequence was further supported in vitro. Therefore, Collier 

directly controls expression of the segment polarity gene hh. Since collier itself is activated by the 

head gap-like gene buttonhead (Crozatier et al., 1999), Collier functions as a second order regulator 

in patterning of the intercalary segment. 

Furthermore, the ic-CRE also integrates temporal control; nested dissection led to the isolation of 

HMG-box binding sites required to ensure the early onset of expression. Regarding the means of 

restricting positive Collier activity to the posterior part of the intercalary segment, the effect of a 

physical interaction between Collier and the bZIP factor CncB was examined. The in vitro results 

indicate that CncB antagonizes DNA-binding of Collier to its target sequence, which is also 

reflected in vivo by a negative regulatory aspect of CncB misexpression on the ic-CRE-mediated 

expression. Moreover, functionality of the ic-CRE is exerted in vivo only in combination with the 

endogenous hh promoter, but not with a TATA-box basal promoter. This result indicates that the 

intercalary-specific transcriptional control of hh involves an enhancer-promoter specific interaction. 

However, the molecular basis of this mechanism remains to be further elucidated. 
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5. Materials and Methods 
 

Standard methods of Molecular Biology and Drosophila Biochemistry and Cell Biology employed 

during this thesis were essentially as described in i) Sambrook and Russel, Molecular Cloning, A 

Laboratory Manual, Third Edition, CSHL Press ii) Drosophila Protocols, edited by Sullivan, 

Ashburner, Hawley, 2000, CSHL Press. Experimental procedures modified from protocols of those 

two sources or not included therein are presented in this section. Preparation of solutions and 

chemicals was also as described in those two references.  

5.1 Procedures for functional dissection of cis-regulatory regions  

5.1.1 Cloning vectors 

turboGFP reporter [tgfp_SV40 952 bp sequence] was excised with AgeI (site T4 blunted)_AflII 

from pTGFP_PRL (EVROGEN) and inserted into PmlI (blunt)_AflII of pslaf1180af vector (Horn and 

Wimmer, 2000) to create pslaf_tgfp_af.2 (psltgfp.2) (map1). Internal NotI and XbaI after tgfp 

termination codon (TAA) of the original pTGFP_PRL were primarily destroyed (with restriction, T4 

blunting and religation) so that psltgfp.2 contains a single NotI site to be used in the polylinker. 

Promoter hs43 156 bp sequence was excised from pCasper_hs43_lacZ (Thummel and Pirotta, 1991) 

with XhoI_PstI(T4 blunt) and subcloned in XhoI_SpeI(T4 blunt) of psltgfp.2. Promoter sequences 

were cloned with primers XhoI_Forward/ SpeI_Reverse. cis-regulatory sequences to be tested were 

amplified with primers bearing restriction sites found within the polylinker of pslaf1180af  

(upstream of XhoI), T/A cloned in PCRII vector (Invitrogen), sequenced and subcloned in the 

psltgsp.2 vector. DNA sequences were isolated with PCR on genomic DNA template isolated with 

genomic DNA extraction ( 0-12 h embryos). 

5.1.2 Transgenesis 
 

For piggyBac-transgenesis, cassettes consisting of [cis-regulatory region_promoter_tGFP-SV40] 

were excised with AscI from psltgfp.2 and subcloned in pBac[3xP3_EGFPaf] (Horn and Wimmer, 

2000). piggyBac constructs were coinjected at 500ng/µl with helper plasmid providing transposase 

activity (phspBac) at 300ng/µl. The strain injected was Drosophila w- and procedure as desribed in 

Sullivan et al., 2000.  Briefly, 0-20 min embryo collections were dechorionated for two minutes in 

50% chlorix (if any chorion remained it was manually removed), embryos were extensively washed 

with salt free water and aligned on cover-slips (on a thin stripe of tape glue in heptane to immobilize 

them). After short desiccation embryos were covered with a thin layer of Voltalef oil (10 S) and 

injected using an Eppendorf Femtojet Microinjector (Eppendorf AG, Hamburg).  
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For site specific transgenesis using the attB-attP φC31 – mediated integration system (Bischof et 

al., 2007), the full-length attB sequence 314 bp was excised from pTA-attB (Calos MP, Stanford 

University, personal communication) with EcoRI; restriction generated ends were blunted with T4 

DNA polymerase and subcloned in pBac[3xP3_EGFPaf] linearized with BglII (T4 blunted) 

generating vector pBac_attB (map 2). Orientation was checked by colony PCR and confirmed with 

subsequent sequencing. Reporter cassettes were subcloned in the AscI of the pBac_attB vector (map 

2). Line injected was the one bearing the attP-landing site at position 96E of the 3rd chromosome 

(Ac. Num EF362408). This is a combined line carrying on the X chromosome a codon-optimized 

φC31 integrase driven under the control of vasa promoter (Bischof et al., 2007). Marker for the attP 

landing site insertion was 3xP3_RFP, while for the vasa-integrase insertion was 3xP3_eGFP. Since 

the attB construct also carries the EGFP marker, male offspring individuals of the [injected x w-] 

crossing are specifically selected for recombination events (integrase deficient). A combined line 

bearing the attP landing site on the 2nd chromosome (position 51D) was also tested but this line was 

not further used due to position effect causing ectopic mesodermal reporter expression.  

 

 

 

 

 

 

 

 

 

 

5.1.3 Construction of deletion mutants  
 

Deletion mutant constructs lacking highly conserved sequence blocks in the context of the 

minimum 335 bp ic-CRE (§2.2.2) were prepared in two-step cloning; 3’ part of the ic-CRE was 

amplified using primers NruI_Forward (mutF1-mutF6) (Table 5-1) and XhoI_hhR4 (Reverse) and 

subcloned in [psltgfp.2_hh_promoter (Xh_SpeI)]. 5’ part of the ic-CRE was amplified with primers 

BglIIF5 (Forward) and NruI_Reverse (mutR1-mutR5) (Table 5-1.3.) and subcloned in the vector 

containing the respective 3’part. Schematically the procedure is depicted in Fig. 5_2. 

 

Fig. 5_1. Vector maps. 
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5.1.4 Construction of point mutations 
 Constructs bearing point mutations in highly conserved blocks (§2.2.3) in the context of the 335 

bp minimum ic-CRE or in the context of the 450 bp ic-CRE sequence were generated by 

overlapping PCR site-directed point mutagenesis. Overlapping forward and reverse primers were 

designed bearing point mutations affecting targeted nucleotide positions. Fragments 

[BglIIF5_‘point_mut’Rev] or [BglIIγ1mF5_‘point_mut’Rev] and [‘point_mut’Forw_hhR4] were 

amplified in separate proofreading (Pfu polymerase) PCR reactions using minimum amount of 

plasmid or genomic template (~10ng). Product bands were excised from agarose gel, DNA was 

purified (Band excision protocol, QIAGEN) and eluted in 20 µl of TE pH 8.5. 2-3 µl of each elution 

of the corresponding 5’ and 3’ fragments were combined in a final 50 µl proofreading PCR reaction; 

after an initial round of denaturation and annealing (so that the overlapping 3’ and 5’ sequences of 

the fragments hybridize and function as primers for the next elongation round) full-length ic-CRE 

sequence was amplified with external primers BglIIF5_hhR4 (335 bp minimum ic-CRE) or with 

BglIIγ1mF5_hhR4 (450 bp ic-CRE). Procedure is schematically depicted in Figure 5_3. 

 

 

 

 

 

 

 

Fig. 5_2. Deletion mutant constructs. 
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5.1.5 Long Range PCR amplification 
Amplification of large genomic DNA sequences (8-13 kb) from Drosophila melanogaster and 

Tribolium castaneum (on isolated genomic DNA template) was performed using the High Fidelity 

PCR Enzyme mix of Fermentas which is a blend of Taq DNA polymerase and a thermostable DNA 

polymerase with proofreading activity. Parameters considered for Long Range PCR reactions were 

the following; 

Primer Design: Primers were 30-35 nucleotides long with Tm 68-72 °C for maximum specificity, 

GC% content 50-60%, maximum Tm difference between Forward and Reverse primers 2-4 °C. G-C 

rich stretches in the 3’ primer were avoided as this may increase non-specific priming. Amplicon 

sequence was checked for internal priming sites. Primers were used in 0.2 µM concentration in the 

PCR reaction. 

Template DNA: ~80-120 ng of Drosophila or Tribolium genomic DNA was used successfully as a 

template in long-range PCR 50 µl reactions. Template was first checked for integrity on agarose gel. 

During the DNA extraction procedure, sequential phenol – phenol-Sevag and CHCl3 extraction 

steps, as well as several 70% EtOH washing steps (with good hand-shaking – no vortex) after EtOH 

precipitation were performed to minimize contaminants and reduce salt presence. After preparation, 

DNA was completely air-dried and dissolved in TE buffer (10 mM Tris-HCl pH 8.0, 0.1 mM 

EDTA). For Long-Range PCRs repeated thawing-freezing was avoided. Instead, aliquots of genomic 

DNA template were kept. 0.5-1% DMSO was included in the PCR reaction to help amplification of 

GC-rich regions (DMSO functions as a ‘template melting’ reagent).  

Fig. 5_3. Overlapping PCR site-directed point mutagenesis procedure. 
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Cycling Conditions: A maximum of 2 minutes initial denaturation step and 20-25 seconds at 94 °C 

within the cycles were performed to minimize gradual loss of enzyme activity. Annealing 

temperatures were 2-5 °C lower than the lowest primer Tm. A few first cycles (5-7) were at an 

annealing temperature near the primers Tm and then the rest at [Tm-4°C] for increased specificity. 

Elongation was at 68°C, 1 min per kb (final elongation step 5-7 min). Number of cycles was 35-37.  

Typical Long Range 50 µl PCR Reaction (For amplification 8-12 kb) 

1x Buffer 

2-2.5 mM MgCl2 

0.2 mM dNTP 

0.2 µM primers 

100 ng genomic DNA 

2.5 units enzyme blend (0.5 µl Fermentas) 

1 % DMSO 

Reactions were set on ice, enzyme was added last, gently mixed, spinned-down. Reactions were 

placed directly from ice to denaturation temperature.  

5.1.6 Determination of transcription start sites 
Determination of transcription start sites of segment polarity genes in Drosophila and Tribolium, 

for subsequent cloning of promoter regions in the reporter constructs, was performed by 5’ RACE 

PCR. mRNA from 0-12 h embryos was isolated using the MicroPoly(A)Purist Kit (Ambion) or the 

protocol and the oligo(dT)-coated magnetic beads from Roche. cDNA RACE pools (5’) were 

synthesized using the SMART PCR RACE cDNA Synthesis Kit (ClonTech).  

5.2 Cloning of cDNA sequences  
Cloning of cDNA sequences encoding open reading frames of genes of interest was performed for 

RNA probe generation or for subsequent protein (transcription factor) expression. mRNA isolation 

was as described in §5.1.6 and cDNA pool was synthesized using the SMART PCR cDNA 

Synthesis Kit (ClonTech). In the case of protein expression, sequences encoding the complete open 

reading frame of factors of interest were isolated by proofreading PCR and subcloned in an 

orientation-directed way in the pTNT vector (Promega) (§5.7). 
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Table 5–1. Oligos (Operon) used as primers in cloning procedures 

 5-1.1  Primers used to clone open reading frames of transcription factors (cDNA pool template) that were 

expressed in vitro (TNT)  for  in vitro DNA-protein interaction assays (EMSA, in vitro transcription assay) 

Name  Sequence Len Tm Purpose 

Col_RA_F GCTTCAAGCTGCGTTCCGAAGAG 23 66 

Col_RA_R GGGCCTGCCAATAGCCTCATTTAGTAG 27 67.6

Cloning of Collier A 
isoform 557 aa 

Col_RB_F ATGGAGTGGGGCCGGAAGCTGTA 23 68 

Col_RB_R GGGAGTCCGGGAAATGCTTAAACG 24 66 

Cloning of Collier B 
isoform 575 aa 

ColBspecF TGTCCGCCGTGTCGTCGACGTG 22 70 

ColBspecR CGTTAATCGTGTGTTGTCTGTGGTGTTTTG 30 66 

Cloning of 465 bp fragment 
spliced out from ColA 
ORF, used as ColB specific 
probe 

CncBF_Xh CTCGAGACGAGATGTTGCAATCAGCGGTTC 30 70 

CncBR_RI GAATTCATTCCTTGCGGTGCTGCTGTTGC 29 69 
CncB ORF 805aa 

CncAF CTCGAGCTTCTGTCGCATGGTTGACAACAG 30 70 

CncAR GAATTCTCATTCCTTGCGGTGCTGCTGTTG 30 68.7
CncA ORF 533 aa 

Xh_LabF ctcgagTTCCGGCTGGACAATATGATGGAC 30 70 

RI_LabR gaattcATCGAAGAAAGCCCTTCAACTTTGC 31 66 
Labial ORF 629aa 

Zeste-F CTCGAGAAACAAACTCAAATGTCGGCGCAG 30 68.7

Zeste_R GAATTCGTCGCTTATGTCCTCCAGACCTCATG 32 70 
Zeste ORF 575 aa 

TCF_F CTCGAGTCAAAATCATGCCTCATACACACAG 31 67 

TCF_R GGTACCATGGCGATCAGTTATGAAACG 27 66 
TCF ORF (PanA) 751 aa 

Slp1_F CTCGAGATATCCGAATCAGAAAAATGGTGA 30 64.6

Slp1_R GGTACCTGCCAAGATTTAGCTGGATGGAAAC 31 68.6
Slp1 ORF 322 aa 

DmC/EBP_F CTCGAGCGCAACTGAAAATGCTTAACATG 29 66  

DmC/EBP_R GAATTCTGGCTTTAGCTGGAAGCGGCTAC 29 69  
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       5-1.2        Primers used during cloning of segment polarity genes cis-regulatory regions 

Dm_hhprom_F CAACGCGGAATGAACTCGAGGCGATAG 27 69 

Dm_hhprom_R AACTAGTTAGCTCTCGGTTCGGACAACCGTTG 32 67 

hh promoter [-120_+99] 
cloned XhoI_SpeI in the 
pslaftgfp.2  

Dm_wgpromF CTCGAGCAGGAGTCAGGGTATAGCTCCAC 29 65 

Dm_wgprom_R ACTAGTTTCGATAGAATACACTCGGCTCGCTCTAG 35 65 
wg promoter [-159_+121] 

Dm_enprom_F CCTCGAGCTCGCCCTCTCGCTCCCGCAC 28 73 

Dm_enprom_R TTACTAGTCTGTTGTTCCGACACGCACGTCTG 32 68 
en promoter [-104_+55] 

Dm_hhupF1 CGCTGAACTAGATTCGAACAAATTCATCAGCTCTG 35 68 

Dm_hhupR1 GCACTTCACTTTTGGCACACAGACACGCT 29 69 

Long Range PCR Dm_hh 

full-length upstream             

[-8842_+265] 

Dm_wgupF1 CTCGACGGCAAACAGAGAAGGCGAGGAGTGACT 33 73 

Dm_wgupR1 AGTCACTCCTCGCCTTCTCTGTTTGCCGTCGAG 33 73 

Long Range PCR Dm_wg 
full-length upstream              
[-8094_+193 (tsB)/_+2122 
(tsA)] 10.216 kb RI 
excised from PCRII vector, 
subcloned in the reporter 
cassette 

Dm_wgupF2 CGCTGCTCCAGATCATCAGCGTTGTACCAG 30 70 

Dm_wgupR2 GAATCGGAATCGGGTTGGCTCGACCTCAC 29 71.4

Cloning of [-16,212_-7,813 

kb] upstream of wg 

Dm_enupF CAGTTTCATAGGAACTGCTGCGCTCAGGTGTTCA 34 71.4

Dm_enupR TGGGTCACTTGACACTGAGCCACTGATTCTTCTGA 35 71.4

Dm_en upstream                

[-8811_+165] 

Tc_wgupF CATTCGGCATTCATAGAGGGCATTGTTTTGACGCT 35 69.4

Tc_wgupR ACCCAAGGCCGCTACGGTGCGGTAGCA 27 73.7

Cloning 10,188 kb of Tc_wg 

region (-8.088 kb upstream o

tsA) 

Tc_enintronF TTGGGTCTACTGCACGCGGTATTCGGA 27 69  

Tc_enintronR CTTGTCCTCACCGTTGGGTTTGGACGGT 28 70.5  

Tc_enpromF ATGCATGCTCAGAGAGAGACAGGCAAATGC 30 69  

Tc_enpromF GCGGCCGCACCACACTCAGCCA 22 72  

Tc_hhpromF AATCGGGCCGGCGTCAAGTAATCGTCCTG 29 71.6  
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Tc_hhpromF ACTAGTCTCCGAACGCACGCACCATCAGCACTC 33 70  

      5-1.3                     Dissection of the 1 kb ic-CRE and construction of  deletion mutations 

ahhF TCGCGAGCTGATAGCACAATGGACCCAC 28 68 

ahhR CTCGAGTATCTAAAAGCCAATTTCGATTGTGAC 33 64 

a fragment 1009 bp            

[-4085_-3077] cloned 

NruI_XhoI in the 

pslaf_hhprom_tgfp.2_af 

hhR4 CTCGAGATCGAAACAGCGACGGTTCTCATATC 32 68.4  

F5 AGATCTCCATTTGCCTAATTTCTATTTCGGCAG 33 65.5 F5_R4 335 bp 

γ1BglII_F AGATCTAGCTGATAGCACAATGGACCCACTGCA 33 69.6 γ1_hhR4 fragment 620 bp 

NruIicmutF1 TCGCGAGCAATTCCCCAATGGCATTTC 28 68  

NruIicmutF2 TCGCGAGATTTATGTGAATTAAACAGCCTGAAC 33 66  

NruImutR1 TTCGCGATCTAAGTGAAATGCCATTG 26 63  

NruImutF3 TCGCGAGCCTGAACACAGCCACTTC 25 67  

NruImutR2 TCGCGAGGATTGGGATTGGGTCG 24 67.3  

NruImutF4 TCGCGATCAAACCGTTAGTGGCATTTGTC 29 68  

NruImutR3 TCGCGAGGTCTCTAATGGATGTTGACATTTAC 32 66  

NruImutF5 TCGCGAGGCAGGCCGAAAGCAAC 23 69  

NruImutR4 TCGCGATCAGGCTGTTTAATTCACATAAATC 31 65  

NruImutF6 TCGCGAATCCCTGGTAGCCGTAAATGTCAAC 31 69  

XhoImutR5 TCGCGACTGCCTCATAGCGTGCGAC 65 69  

5-1.4            Overlapping primers used in  point mutagenesis of the hh promoter (external primers:    

DmhhpromF_DmhhpromR) 

zesteprom_mutF CAGGGAAATGTCATTTGTCAATCACAGTGCCTG
3

3 
68.4

zesteprom_mutR CAGGCACTGTGATTGACAAATGACATTTCCCTG 33 68.4

zeste mutation in the 

promoter 

DPEmutRev ACTAGTTAGCTCTCGGTTCGGACCCTCGTTG 31 70 
DPE mutation in the 
promoter – in combination 
with DmhhpromF 
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7bp_prom_mut

F 
CTCGGAAATGTCATTTGTCAACTGCAGTGCGAG 33 69.5

7bp_prom_mut

R 
CTCGCACTGCAGTTGACAAATGACATTTCCGAG 33 69.5

‘7bp element’ mutation in 

the promoter 

5-1.5      Overlapping primers used in point mutagenesis screen (external: F5_hhR4 or γ1mF5_hhR4) 

homeomutF CTTAGATCCATGTGAACCGAACAGCCTGAACAC 33 69.6

homeomuR GTGTTCAGGCTGTTCGGTTCACATGGATCTAAG 33 69.6

point mutation in the third 

block  

7bpmutF CACAACTCGCAGCACAGTTGAGTGCCTGATTC 32 71 

7bpmutR GAATCAGGCACTCAACTGTGCTGCGAGTTG 30 70 
to be injected 

zestemutnewF CACAACTCGCAGCATGATTGACATCCTGATTC 32 68 

zestemutnewRGAATCAGGATGTCAATCATGCTGCGAGTTGTG 32 68 
to be injected 

zestemutF CACAACTCGCAGCATGATTCATTGCCTGATTC 32 68.5

zestemutR GAATCAGGCAATGAATCATGCTGCGAGTTGTG 32 68.5

expression abolished in 

the 335 bp, derepressed in 

the 450 bp 

slpsitemutF GTAGCCGTAAATGTCTTCATCCATTAGAGACCTC 34 68 

slpsitemutR GAGGTCTCTAATGGATGAAGACATTTACGGCTAC 34 68 

4th conservation block 

expression abolished 

labsitemutF GTAAATGTCAACATCCAGGAGAGACCTCAAACC 33 68.4

labsitemutR GGTTTGAGGTCTCTCCTGGATGTTGACATTTAC 33 68.4

5th conservation block 

expression unaffected 

colsitemutF CTATTTCGGCAGCAATGAACCAATGGCATTTC 32 67 

colsitemutR GAAATGCCATTGGTTCATTGCTGCCGAAATAG 32 67 

2nd block,  expression 

abolished 

c/ebp_colsite_

mut2F 
CTATTTCGGCAAGAATTCCCCAATGGCATTTC 32 67 

c/ebp_colsite_

mut2R 
GAAATGCCATTGGGGAATTCTTGCCGAAATAG 32 67 

2nd block,  expression 

abolished 

5-1.6   Forward primers used in combination with hhR4 for 5’ dissection of the γ1 620 bp construct  (-4085_-

3077 bp) 

γ1mutF1 AGATCTGCACAATGATAACTATGCCGCTTACGAC 34 68 -4063 
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γ1mutF2 CTTTTTGACTCTCGTGCCGGTCCG 28 69 -4034 

γ1mutF3 AGATCTCCGGATCAAAAGGAGCCCGGTTG 29 70 -4014 

γ1mutF4 AGATCTGTTTGTATGCACGCACACATCGAGAC 32 68.5 -3985 

γ1mutF5 AGATCTCTGTGAATGTTTATGTTACAAGCCCCCTG 35 68 -3914 

γ1mutF6 AGATCTGCCCATTTTGCTCCTGAACTGAAACC 32 68.5 -3888 

  5-1.7                                                    Primers used in 5’ RACE PCRs 

Tc_wg5RC CCGACTGACCGTGAATCCGAACCCA 25 69.5  

Tc_hh5RC CGGAATCCCACAACTTTGCCACCCATC 27 69  

Tc_hh5RCnest CGAGCGATCTCGATCGCTGGTGGTGA 26 70  

Dm_hh5Race TTGGAGCTGGAACTGGAACTGGAACTG 27 64  

5-1.8  Primers used for constructs a-h (Fig. 2_38) spanning upstream enhancer sequence of hh. 

(NruI)Forward _(XhoI) or (SalI)Reverse. Fragments ~600 bp cloned in NruI_XhoI of psltgfp2_hhprom 

(XhoI_SpeI). 

ocF1 TTCGCGATTTTTCAGCTCTTTTGCATTGC 29 65 

ocR2 CTCGAGCGATACTCTATATAAGTGCCATGCAC 32 64 
a [-6430_-5822 bp] 

ocF2 TTCGCGACTGACTGACTGACTGACTGCCTG 31 70 

anR1 CTCGAGCTTAAGGGGTCTTAGAAAATTGCAC 31 64 
b [-6140-5546 bp] 

anF1 TCGCGAGCAACCCACTAAAGTGTGCATG 28 68 

anR2 CTCGAGAGCCACATGCGTCCACTTGGAG 28 70 
c [-5863_-5264 bp] 

anF2 TCGCGAGTGCAATTTTCTAAGACCCCTTAAGC 32 68.5

anR3 GTCGACTTAAGCTCTGCGGCTGCTGTTG 28 67.5
d [-5571_-4972 bp] 

anF3 TCGCGACACTCCAAGTGGACGCATG 26 69 

anR4 TGTCGACGAACATCGAGCATCGAGCAC 27 68.6
e [-5287_-4719 bp] 

anF4 TTCGCGAGGATGCCGATGCAGCAAC 25 69.5 f [-5013_-4425 bp] 
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anR5 CTCGAGCATCATATATTGCAGCGATCAAAC 30 64.5

anF5 TTCGCGATGCTCGATGTTCGTCGAG 25 68 

anR6 TCGCGAGGTGAGTAAGCAGTGCCCGTTG 28 70 
g [-4738_-4141 bp] 

anF6 TTCGCGAGTTTGATCGCTGCAATATATGATG 31 67.5

hhRevSal GTCGACGTCAACCGGGCTCCTTTTGATC 28 70 
h [-4449_-3989 bp] 

5.3 Transgenic RNAi and Drosophila strains 
Coding sequence of Collier A was cloned in antisense orientation into the EcoRI site of the 

polylinker of the pSLafHSaf (Schmid and Wimmer (2000), Göttingen). Cassette consisting of {heat-

shock promoter_ColA_antisense_heat-shock 3’ UTR} was excised with AscI and subcloned in the 

pBac_attB vector (map 2; Fig. 5_1). Construct was injected in the attP-96E combined line (§5.1.2) 

to generate transgenic line HS.ColA_antisense #M3. For heat-shock inducible embryonic RNAi, 

transgenic embryos were collected for 1,5 h @ rt, let to develop for 2,5 h,  heatshocked for 30-45 

min @ 37 °C, and then let to develop at rt (22 °C). For in situ hybridizations embryo collections 6-8 

hours after heatshock were dechorionated for 5-6 minutes instead of the three minutes of the 

standard protocol (§5.10) 

UAS-hairpins for cnc (Transformant ID 37674), slp1 (Transformant ID 15749) and pan 

(Transformant ID 3014) were ordered from VDRC stock centre (Vienna) and crossed to virgins 

homozygous on the second chromosome for the maternal driver {pnos-GAL4/GCN4-bcd 3’ UTR} 

(Janody et al., 2000) (insertion ‘P21B’) and for the ic-CRE (attB-96E insertion) homozygous on the 

third chromosome.  

Drosophila mutant alleles that were used as genetic background to examine expression outcome of 

the ic-CRE were the following; Col1 (Crozatier et al., 1999); cncK22 (Veraksa et al., 2000); VL110 

(Mohler et al., 1995); lab14 (Diederich et al., 1989); za (Laney and Biggin, 1996). Ectopic expression 

of collier and cncB was achieved using the lines UAS-kn (Mohler et al., 2000); UAS-CncB (Veraksa 

et al., 2000) driven under the control of the maternal driver {pnos-GAL4/GCN4-bcd 3’ UTR} 

(Janody et al., 2000) (insertion ‘P21B’). 

 

 

 

 

 

Fig. 5_4. Scheme is from Mohler et al., 1995. 
The mutation VL110 lacks the entire cnc 
open reading frame and was generated 
following imprecise P element excision 
(Mohler et al., 1995). 
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5.4 Chromatin immunoprecipitation 
Chromatin immunoprecipitation procedure was after a protocol published by Sandmann et al., 

2006 [Nature Protocols 1(6): 2839].  

Repetitive embryo collections (~2-9,5 hours ael) from large scale (w-) fly-populations (12-15 cages) 

were dechorionated for 2.5 min in 50% chlorix, washed, dried and resuspended in 10 ml PBT/ 1.5 g 

embryos. Agar plates were changed over a period of two days before the first used collection. 

Embryos in PBT solution were passed through Nitex membrane and dried by blotting on paper 

towels. Then the embryos were transferred with a spatula into a 50 ml Falcon tube containing 30 ml 

heptane, and 10 ml crosslinking solution containing 1.8% Formaldehyde v/v (MB Grade) was added. 

During the mild 15 min (shaking) fixation step protein-chromatin and protein-protein cross-linking 

takes place. Fixation time was essentially kept constant for all independent collections. Embryos 

were pelleted at 500 g for 1 min, supernanatant was removed and 30 ml stop solution (125 mM 

glycine) was added (shaking). After repelleting (500 g, 1min) they were washed twice with 50 ml 

PBT. Then they were dried (solution was passed through Nitex membrane and the remaining on the 

membrane embryos were blotted on paper towels), the batch was weighed and quick-frozen in liquid 

nitrogen. ChIP was started with ~ 150-200 mg of embryos per single IP. Batches were combined to 

make the required total weight, and resuspended in 1:10 volumes of cold PBT supplemented with 

protease inhibitors and 1 mM PMSF. Embryos were transferred in PBT (10 ml/ g embryos) in a pre-

cooled Dounce homogenizer kept on ice and 20 strokes with the Loose pestle were applied. The 

homogenate was centrifuged (400 g, 4 °C, 1 min). The supernatant was re-centrifuged (1100 g, 4 °C, 

10 min). The cell pellet was resuspended in 1:10 volumes of cold cell lysis buffer (supplemented 

with protease inhibitors and 1 mM PMSF). Then it was transferred in a Dounce homogenizer, 20 

strokes with the Tight pestle were applied. Nuclei were pelleted at 2000 g 4 °C 4 min and quick-

frozen in liquid nitrogen. For every single IP nuclei aliquots corresponding to ~200 mg of initial 

embryo weight were combined on ice by resuspending in a maximum volume of 1.8 ml cold nuclear 

lysis buffer. After splitting in 6x300 µl (maximum volume for efficient sonication) samples were 

sonicated using a pre-cooled Bioruptor sonicator (Diagenode) (samples are immerged in ice-water-

bath).  A range of different parameters were tested.  

Note: In Experiment A sonication using parameters [20 min; high settings] resulted in chromatin fragments 
200-500 bp size, while [10 min; high settings] did not cause sufficient fragmentation of chromatin. The latter 
batch of chromatin was not used in the immunoprecipitation. In Experiment B sonication for [20 min; medium 
settings] resulted in fragments around 500 bp while [17 min; high settings] resulted in fragmentation efficiency 
1- 2 kb (Fig 5_5).   

 

 

 

1 2 
Fig. 5_5. In Exp. B sonication for [20 min; medium settings] resulted in fragments 
around 500 bp (lane 1) while [17 min; high settings] resulted in fragmentation 
efficiency 1- 2 kb (lane 2).  The two samples were combined and used in the IP. All 
sonication steps were performed with 15 sec on/15 sec off. To assess shearing efficiency 
of sonication 2.5-3.5 µg of each sample were loaded on a 1% agarose gel. 
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After chromatin shearing using the Bioruptor, samples was centrifuged at 20000g, 4 °C, for 10 min. 

Supernatants were pooled, 50 µl were removed to assess quality, and the rest quick-frozen (in ~400 

µl aliquots). To assess fragmentation size on the 50 µl removed aliquot, 50 µl TE and 1.5 µl RNase 

A (10 mg/ml) were added and incubated for 45 min @37 °C. Then 2.5 µl SDS 20% and 2.5 µl 

Proteinase K (20 mg/ml) were added. Incubation was at 65-68 °C shaking for 6 h (this step reverses 

cross-links and extracts DNA from proteins), followed by Phenol-Sevag extraction and EtOH 

precipitation. DNA was resuspended in 30-40 µl TE. 2.5-3.5 µg were loaded on 1% agarose gel (Fig 

5_5). Before starting the ChIP procedure, the Protein G-sepharose beads were washed three times in 

RIPA buffer  (140 mM NaCl, 1% Triton X-100, 0.1 %SDS, 0.1% sodium deoxycholate, 10 mM 

Tris-HCL) (rotating in 1 ml 10 min 4 °C, 2000g 2 min 4 °C) and 50 % slurry in RIPA was prepared. 

An aliquot of the sonicated chromatin (~400 µl, 60-80 µg) was thawed and volume was adjusted to 

500 µl with cold TE. The following solutions were sequentially added (with gentle mix after each 

step to gradually equilibrate chromatin in the RIPA buffer conditions): 100 µl 10% Triton-X,  100 µl 

1% sodium deoxycholate, 100 µl 1% SDS, 100 µl 1.4 M NaCl, 10 µl 100 mM PMSF. 50 µl of 50% 

beads slurry was added to each sample, incubated for 1 h rotating at 4 °C (preclearing step).  Beads 

were pelleted at 2000 g for 2 min @4°C, chromatin supernatant was transferred to siliconized 

eppendorf tube while avoiding any bead carryover. A volume of sample corresponding to 1% input 

was removed and retained at 4 °C. Antibody (1-10 µg) was added (in the presence of 0.1% BSA) 

and incubated rotating o/n at 4 °C. The beads were also overnight blocked in 0.1% BSA, 0.05% 

sheared salmon sperm DNA in 1 ml RIPA. Next day, beads were pelleted and the 50% slurry in 

RIPA was restored. 100 µl of slurry was added to each immunoprecipitation sample; incubation was 

for 3 h rotating at 4 °C. The antigen-antibody complexes were pelletted (1000 g, 2 min), washed 

twice with 1 ml RIPA, four times with RIPA500 (RIPA containing 500 mM NaCl), once with LiCl,  

twice with TE (all solutions cold). After last washing step bead complexes were resuspended in 100 

µl TE. RNase treatment, reversing of the crosslinks and SDS-Proteinase K treatment were performed 

as described above, followed by Phenol, Phenol-Sevag and ChCl3 extractions. EtOH precipitation 

was with 1/10V NaAc pH 5.2 3M, 2.5-3V EtOH ABS, 250 mg/ml glycogen (carrier). Precipitation 

was at -80 °C 30 min, -20 °C 2 h or o/n. DNA was precipitated by centrifugation at full rpm 45 min 

4 °C, washed 3 times (with good shaking to resuspend DNA pellet) in 70% EtOH, air-dried (or 

under vacuum), and resuspended in 35 µl TE. DNA prepared the above way is of appropriate quality 

to be used as template in quantitative PCR reactions (§5.5). All samples were processed the same 

way, in the same volumes. For the mock IP, the mouse_anti-BP102 was used in the same amount 

and same dilution volume as for the mouse _anti-Col (specific IP sample). The anti-BP102 

recognizes Drosophila CNS axons (reveals connectives and commisures in immunostainings; Fujita 

et al., 1982). 
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5.5 Quantitative Real-Time PCR 
Enrichment of chromatin immunoprecipitated samples in specific DNA target sequences was 

assessed by quantitative real-time PCR (qPCR). QPCR is the most robust method to analyze 

chromatin IP samples; it does not quantify the amount of PCR product at the end of the PCR 

reaction as the conventional PCR densitometry, but instead the initial amount of template DNA is 

calculated from the kinetics of the PCR reaction (Ct extraction and a calibration line are used; Fig. 

5_6). SYBGreen fluorescent DNA-binding dye included in the reaction binds all newly synthesized 

double-stranded DNA complexes and fluoresces. Fluorescence accumulates as cycling of PCR 

continues and is measured at the end of each PCR cycle. Cycler and Software used were from 

BIORAD (Opticon Monitor Software – Chromo4 system). The fluorescence threshold was first 

defined by plotting fluorescence signal vs. cycle number and then the threshold line on the graph 

was set at a point were signal exceeds background noise and begins to increase exponentially. 

Because the detected and measured fluorescence signal reflects the amount of product, samples that 

initially have more template molecule copies (i.e units) will need less number of cycles (Ct) to reach 

the defined threshold. Thus the Ct value is inversely proportional to the log of the initial template 

units. This is due to the exponential nature of PCR amplification; doubling of fluorescence from one 

cycle to the next is directly proportional to the doubling of amplicons. Therefore samples generated 

by sequential 1:4 dilutions should have a difference of 2 in their Ct values. (For samples A, B if 

Concentration_UnitsB=Concentration_UnitsA/4 then CtB-CtA=2). This allows for the generation of 

a calibration line or standard curve from known initial sample dilutions against which Ct values of 

unknown samples are plotted. A very good reference describing analytically parameters to consider 

for ChIP followed by qPCR is from Haring et al., 2007. 

 

 

 

 

 

 

Design of primers for qPCR was done with Program Primer3 (http://frodo.wi.mit.edu/primer3/),  

setting the following parameters: Amplicon size 75-150 bp, Minimum primer Tm 59 °C, Optimal 60 

°C, Maximum 62 °C and maximum Tm difference within the primer set 0.5 °C. For qPCR two 

parameters are of extreme importance: i) amplicon sequence to be amplified must have a maximum 

size of 150 bp to ensure that each amplification round in the quantitative PCR reaction reaches 100% 

amplification efficiency b) different positive (for target sequence amplification) and negative-control 

primer sets should be tested for a series of input dilutions and appropriately designed to produce the 

Fig. 5_6. Difference in DNA amount 
quantification between conventional and qPCR. 
Picture is from http://www.eppendorfna.com/ 

http://frodo.wi.mit.edu/primer3/�
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same Ct value for a wide range of input sample template concentrations. If positive and negative 

primers should differ in their Ct values then it is crucial, for overcoming artifacts, that ChIP 

enrichment ratios (units_positive/units_negative) are normalized over the factor 

[Ct(pos)/Ct(neg)].The best two forward and two reverse primers (which were the output of the 

Primer3 Program on a given DNA sequence) were ordered and all 4 combinations were tested (on 

genomic DNA sample template or sonicated purified chromatin sample) for a broad series of 

dilutions starting from ~10 ng (1:4, 1:16, 1:64, 1:256, 1:1024). For assessing the ChIP samples, the 

best combination(s) of primers to be used should yield a single pick in the melting curve analysis 

(fluorescence plotted against temperature). This corresponds to a single denaturation event meaning 

that the primer set specifically amplifies a single target amplicon. In addition, for comparison 

purposes and extraction of the relative ratios, it was confirmed that different primer sets (for the 

target sequence and negative control sequence) displayed the same respective Ct values throughout 

the wide range of input dilutions. (If the Ct values of the different primer sets should differ and no 

alternative in the primer design exists then calculated sample units should be normalized against a 

factor regarding the difference between the Ct values. For example, if Ct values differ for positive 

and negative control sequences then Relative Ratio of Enrichment=Unitspos/Unitsneg x 

Ctpos/Ctneg.) Enrichment of the ChIP sample for target-sequence template molecules was estimated 

as a ratio over a negative control region. For this thesis, as a negative control, an amplicon within the 

second exon of caudal was picked since no Collier binding activity is expected in an extent of 2 kb 

around that region, which is approximately the maximum fragmentation size resulting from the 

sonication process (§5.4). 

Reactions were performed in 15 µl final volume in qPCR – 64 well-plates suitable for the Biorad 

machine. Reactions consist of 7.5 µl 2xSYBR Green I Master Mix (BioRad), 0.9 µl primer mix (0.5 

µmol) each, and 1 µl template. A master mix was first prepared, 14 µl were pipetted in each well and 

the 1 µl of template was added last. Reactions were pipetted in duplicates or triplets to extract mean 

values (and standard deviation). Program used was 10 min 95 °C (Hot Start) and 40 cycles of [15 sec 

95 °C denaturation and 1 min 60 °C annealing/extension] (End hold @4 °C ). 

Primers used  in quantitative real time PCRs after the ChIP experiments 

cad_2ndexF GAGCTGGAGAAGGAGTACTGCAC 23 62 

cad_2ndexR CGGTTCTGGAACCAGATCTTAAC 23 63 

negative control primer set- 

amplicon 111 bp within 

second exon of caudal 

col_ic_F ATCCATCCATTTGCCTAATTTCT 23 60 

col_ic_R CTGTGTTCAGGCTGTTTAATTCAC 24 60 

Targeting the Collier site 

within the ic-CRE, product 

size 89 bp (-3804_-3716 bp)

Table 5–2. 
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5.6 Coimmunoprecipitation of proteins from crude embryonic extracts 
Coimmunoprecipitation of protein factors from crude embryonic extracts was performed based on 

an immunoprecipitation protocol from Dr. Andreas Wodarz (Methods in Molecular Biology, 

Drosophila, Methods and Protocols, Edited by Dahmann C., 2008, Humana Press; Chapter 21, p. 

335-345) and on a nuclear extracts preparation protocol (edited by Sullivan et al., Drosophila 

Protocols, Chapter 31, p. 553-557). 

Embryos from large scale collections (~3-5 g) 1-10 h ael were dechorionated in 50% chlorix for  2 

min, washed thoroughly, dried (blotted on paper towels), weighed and transferred in a Dounce 

homogeniser. 3 ml of Buffer I (15mM Hepes pH 7.9, 10 mM KCl, 350 mM sucrose, 1.5 mM 

MgCl2, 0.1 mM EDTA, 0.5 mM EGTA, 1 mM DTT, 1 mM PMSF) was added per gram of 

embryos. All steps were carried on ice, in the presence of protein inhibitors, preferably in a cold 

room. After homogenization all steps were carried out as quickly as possible to minimize leakage of 

protein out of the nuclei. 10 strokes with the Loose pestle and 15 strokes with the Tight pestle were 

applied. Homogenate was filtered through a funnel lined with Miracloth (to remove debris and 

vitelline membranes) in 15 ml Falcon tubes. Nuclei were pelleted at 10000g @4 °C for 15 min 

(Sorvall SS-34). The supernatant was quick-frozen (corresponds to the cytoplasmic extract, but it 

usually also contains leaked-out nuclear proteins). The nuclei pellet was resuspended in Buffer I (1 

ml/embryos), briefly shaked for washing nuclei and repelletted at 10000g for 10 min. Supernatant 

was decanted, the tube was inversed to quickly blot on a paper, nuclei pellet  was weighed and 

resuspended  in nuclear extraction buffer (15 mM Hepes pH 7.9, 100 mM 100 KCl, 50 mM NaCl, 

0.1 mM EDTA, 0.1 mM EGTA, 1.5 mM MgCl2, 1 mM DTT, 1 mM PMSF) 1 ml /g nuclei. Proteins 

were extracted while gently shaking on ice for 45 min, followed by ultracentrifugation for 1h 

100,000 g (30,000 rpm AH 650 rotor). The thin lipid layer was aspirated, and the yellow-opaque 

liquid layer was transferred in a siliconized eppendorf. Protein concentration was assessed using a 

Nanodrop ND-1000 Spectrophotometer with protein settings ‘1 Abs/mg’. 0.8–1,5 mg of crude 

nuclear extract was used for each immunoprecipitation using 25-35 µg antibody anti-Col in a 

volume dilution 1:50 to 1:100. Same amount and same dilution of anti-BP102 was used in the mock 

immunoprecipitation. The final volume of the immunoprecipitation reaction was adjusted with IP 

buffer (25 mM Hepes pH 7.9, 10 mM Tris pH 8.0, 1 mM DTT, 1 mM PMSF, 100-150 mM NaCl) 

(maximum volume 1.2 ml). Immunoprecipitation was overnight, while gently rotating at 4 °C in the 

presence of protein inhibitors. Next day pre-equilibrated and pre-blocked (0.1% BSA in IP buffer) 

Protein G-sepharose or agarose beads were added to the immunoprecipitation reactions; 30-50 µl of 

50% slurry were added per ml of IP sample and incubation was at 4°C rotating for 3 h. Then the 

beads carrying the antibody-antigen complexes were spinned-down, supernatant was aspirated and 

beads were washed five times (10 min each) with ice-cold IP buffer. After last washing step, 20 µl of 

2x SDS sample buffer (100 mM Tris, pH 6.8, 4% SDS, 200 mM β-mercaptoethanol, 20% glycerol, 
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BB trace) was added to the beads and samples were heated to 95 °C for 5 min, briefly cooled on ice 

and spinned at maximum speed for 15 seconds. Supernatants, avoiding beads-carrying over, were 

subjected to SDS (8%) gel electrophoresis followed by semi-dry electroblotting (100 V, maximum 

mA, maximum Watts) for 1,5 h. Membrane used was from GE Healthcare (nitrocellulose Hybond 

ECL). Blot was briefly washed in TBS-Tw (TBS, 0.2% Tween), blocked in 3% nonfat dry milk plus 

2% BSA in TBS-Tw, and primary antibody was applied o/n @4°C (a-Cnc 1:5000, a-Col 1:3000), 

followed by TBS-T washings (4x), 2nd antibody application (a-mouse- or a-rb-HRP at 1:10000, 1 h rt 

in TBS-T, 3% BSA) and HRP detection using a Lumiglo substrate (Cell Signaling Technology, Inc). 

5.7 In vitro protein expression 
After cloning of the open reading frames – encoding cDNA sequences of transcription factors of 

interest in the pTNT vector (§5.2), recombinant plasmid DNA was EtOH-precipitated (1/10 V 

NaAc 3M pH 5.3) followed by three 70% EtOH washing steps. 8.5 µg of plasmid DNA was used 

as a template for in vitro transcription and translation using the TNT wheat germ cell SP6 system 

from Promega. Reaction was at 25 °C for 2 h, then put on ice and subsequently stored at -20 °C. 

Mock reactions were performed by using as template the same amount of pTNT plasmid DNA. To 

check efficiency of the in vitro protein expression 1 µl of the reaction was loaded on 8% SDS gel 

followed by immunoblotting using the appropriate antibody. 0.5-4.5 µl of the TNT expressed 

protein factor was used in DNA-protein interaction assays (§5.8, §5.9). 

 

5.8 Electrophoretic Mobility Shift Assay 
 
5.8.1 Preparation of labeled DNA fragment 

DNA oligos for upper and lower strand spanning the recognition site to be tested were ordered 

from Operon as HPLC purified. Sequences of the complementary oligos partially overlap leaving 3’ 

overhangs of 3-8 nucleotides in the double stranded form to be filled in by the 5’-3’ Klenow enzyme 

activity.  

Oligo stocks were dissolved to 100 pmoles/ µl (100 µM stock concentration) in ddsH2O (mQ). 

Then 5 µg of each oligo strand were mixed in 100 µl TE; 150 mM NaCl. Solution was mixed by 

vortexing, spinned-down and placed at 94 °C for one minute. Heat-block was turned off and left to 

reach room temperature (~8 hours) to allow for perfect annealing of the complementary strands. 

Concentration of the double-stranded oligo form is 100 ng/µl.  

200-300 ng of the ds-oligo form were used in the Klenow labeling reaction. Klenow enzyme used 

was from Biolabs (3’-5’ exo-) (New England BioLabs, NEB). Isotope (α-32P dCTP) was ordered 

from Hartman Analytic, Braunschweig. For Klenow labeling reaction of ds-oligos to be used in 

EMSAs the isotope used was of specific activity 800Ci/mmol. 
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Vfinal 20 µl Klenow labeling reaction 

2µl NEB2 buffer (NEB) 

2 µl d[AGT]P 2.5 mM each => final c= 0.25 mM 

200-300 ng of ds-oligo with 3’ overhangs 

1 µl Klenow (3’-5’ exo-) 5 units (NEB)  

1 µl α-32P dCTP 10 µCi 

Reaction was set on ice, enzyme was added last and incubation was at room temperature (22 °C) 

for 45 min. At the end of the incubation 30 µl of TE was added and probe was passed through G25 

column (GE Healthcare) to eliminate presence of unincorporated nucleotides. 1 µl of the probe was 

brought juxtaposed to a Geiger-Müller detector (Type EP15, Mini 900 Series, Thermo Scientific) 

(Perspective Instruments Ltd, UK) to assess counts per second (cps)/µl. By using fresh isotope (less 

than one half-time) and 200-300 ng of template the probe generated was 500-1000 cps/µl. A dilution 

in TE was prepared to adjust counts to 150 cps/µl and from this 1 µl was used in the EMSA 

reactions. In the final dilution the molecular concentration of the probe was also calculated (that was 

used to assess the amount of cold oligo competitors at the designated molar excess). Probes 

generated the above way were used at a concentration of ~0.05-0.2 pmoles in the EMSA reaction. 

150-200 cps enables signal detection using a Typhoon 9400 scanner (Amersham Biosciences; Image 

Quant 5.0 Software) after three hours of exposure at room temperature on a Phosphoimager Screen 

(Amersham Biosciences) or for autoradiography on X-ray film after over-night exposure at -80 °C.  

5.8.2 EMSA – Binding reaction 
EMSA reactions were set on ice in a final volume of 20µl including 1x Binding Buffer (10mM 

Hepes pH 7.9, 60mM KCl, 8.4 % glycerol, 1mM EDTA, 2.5mM MgCl2, 1mM DTT, 0.2µM ZnAc). 

polydIdC was added to a concentration 50-100 ng/µl and BSA (optional, MB grade, helps stabilize 

complex formation, helpful in super-shift reactions) to a final concentration 50-200 ng/µl. Protein 

factor was added (0.5-5 µl of TNT expressed protein or crude nuclear extract ~20 µg) and 

equilibrated in the binding buffer in the presence of dIdC for 10-15 min @ rt. Then the probe was 

added (150-200 cps) and binding reactions were incubated at room temperature for 30 min. For 

super-shift reactions antibody (0.5-1 µl anti-Col) and protein factor were preincubated for 20 min at 

rt and then probe was added. Binding reactions with crude nuclear extract were performed on ice for 

45 minutes to minimize nuclease activity that degrades probe, in the presence of 100-200 ng 

polydIdC. MgCl2 was also omitted (included in nuclear extraction buffer). [Embryonic crude 

nuclear extracts were prepared essentially as described in Sullivan et al, 2000 Drosophila Protocols, 

CSHL Press, Chapter 31, p. 553-557.] 

In the meanwhile the native gel was prerun at 4 °C at 120 V-10 mA to equilibrate in buffer 

conditions and minimize presence of Aps and Temed. Pre-ran buffer was exchanged with cooled-
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fresh buffer (0.25xTBE pH 8.3, 0.1% glycerol) before loading the samples. Native gel composition 

was 6% acrylamide 59:1, 0.25xTBE pH 8.3, 2.5% glycerol (7.5% APS, 0.04% Temed). Reactions 

were run for 1,5-2 h at 160V, 12 mA. (Bromophenol blue buffer consisting of 10mM Tris pH 8.0, 1 

mM EDTA ,10% glycerol, loaded at a separated lane or added in the free-probe reaction reaches at 

2/3 gel distance). Then the gel was dried on 3MM Whatman paper under vacuum (80°C) and 

exposed.  

 

Oligos used for mobility shift assays; after annealing either the 3’ overhangs (underlined) were filled in by Klenow 

emzymic activity to generate labeled probe or used as competitors in 50-150x molar excess.  

Name Sequence Len Purpose 

TCFsite_HMG GGTCCGGATCAAAAGGAGCCCGGTTGA 27 

TCFsite_HMG_Rev AACATTTGTCAACCGGGCTCCTTTTGAT 28 
§2.5.2 

TCFsite_optimal GGTCCGGATCAAAGGAGCCCGGTTGA 26  

TCFsite_optimal_Rev AACATTTGTCAACCGGGCTCCTTTGAT 27  

TCFsite_compet GGTCCGGATCAAAGGAGCCC   

TCFsite_competR GGGCTCCTTTTGATCCGGACC   

HMG_compet GCCCGGTTGACAAATGTT   

HMG_competR AACATTTGTCAACCGGGC   

Colsite_F TTTCGGCAGCAATTCCCCAATGGCATTT 28 §2.7.2 

Colsite_R TAAGTGAAATGCCATTGGGGAATTGCTG 28  

Colsite_optimal TTTCGGCAGCAATTCCCCAAGGGCTTTT   

Colsite_optimalRev TAAGTGAAAAGCCCTTGGGGAATTGCTG   

colsite_mut1 TTCGGCAAGGATTCCCCAATGGCATTTCAC   

colsite_mut1R GTGAAATGCCATTGGGGAATCCTTGCCGAA   

colsite_mut2 TTCGGCAGCAATGAACCAATGGCATTTCAC   

colsite_mut2R GTGAAATGCCATTGGTTCATTGCTGCCGAA   
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oligo3compet ATCCCAATCCCTGGTAGCCGTAAAT 25 -3674_-3650; Fig. 2_46 

oligo3competR ATTTACGGCTACCAGGGATTGGGAT 25  

oligo3mutcompet ATCCCAACGGCTTTTAGCCGTAAAT   

oligo3mutcompetR ATTTACGGCTAAAAGCCGTTGGGAT   

col_cnc_site TCGGCAGCAATTCCCCAATGGCATTT 26 §2.8.1 

col_cnc_siteRev ATCTAAGTGAAATGCCATTGGGGAATTG 28  

bZIPsite_F CCATTTGCCTAATTTCTATTTCGG  

bZIPsite_R GGAATTGCTGCCGAAATAGAAATTAGG  

positive target site for 

C/EBP binding shift 

oligo4_fkhsite_F GTAAATGTCAACATCCATTAGAGA  

oligo4_fkhsiteR GAGGTCTCTAATGGATGTT  

forkhead site in the 4th 

block matching Slp1 

binding site 

5.9 Run-off in vitro transcription assay  
In vitro transcription assays were preformed based on a Promega protocol (#TB123) on linear 

DNA template consisting of the wild-type enhancer fragment sequence (which contains binding sites 

for the transcription factors assayed), the endogenous promoter (-120_+100 bp) and the first 145 

nucleotides of the tgfp reporter. This linear DNA fragment was generated as a PCR product from 

primes F5 (Table 5-1.3) and tgfp_Rev (5’GTGCTCTTCATCTTGTTGGTCATG 3’) on plasmid 

DNA of the respective constructs. Run-off transcripts (245 nucleotides long) were run on urea-

denaturing gels.  

Preparation of DNA template: PCR product was excised from the agarose gel, DNA was extracted 

(Qiagen protocol) and further purified with EtOH precipitation (1/10 V NaAc 3M pH 5.2, 3 V EtOH 

ABS) and 3x 70% EtOH washing steps. After drying it was dissolved in 20 µl TE.  

Reactions were set in a final volume of 12.5 µl including 50 ng of DNA template and 2-4.5 µl of 

crude nuclear extract (Soluble Nuclear Fraction, SNF) as a source of RNA polymerase II and basal 

transcriptional machinery components (Sullivan et al. (2000), Drosophila Protocols, CSHP, Chapter 

31). Reactions also include 2.5 mM MgCl2, x µl Transcription buffer (20mM Hepes pH 7.9, 100mM 

NaCl, 0.2mM EDTA, 0.5mM DTT, 20% glycerol), 1µl of 12,5x rNTP (5mM rATP, 5mM rGTP, 

5mM rCTP, 0.3mM rUTP) and 0.4 µl α-32P rUTP of 1:500 stock dilution (800Ci/mmol; 10µCi/µl) 

(corresponds to 150 cps of fresh isotope). DNA template was preincubated with TNT-expressed 

protein factor at room temperature for 20 minutes. Then nuclear extract, rNTP mix and 150 cps α-32P 

rUTP were added and in vitro transcription reactions were incubated at 30 °C for 30 minutes. An 
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equal volume of stop (loading) buffer was added (98% deionized formamide, 10 mM EDTA, 

bromophenol blue and xylene cyanol trace) and reactions were terminated by placing at 90 °C for 10 

min (this also denatures secondary RNA forms). Reactions were placed shortly on ice and 

immediately loaded on urea denaturing gel. The gel was 6%, 7M Urea, 0.5xTBE. Reactions were 

run for 30-45 min 180 °C until BB dye reached the half of gel distance. Gel was dried under 

vacuum, 80 °C and exposed to PhosphoImager screen (Amersham).  

5.10 Whole mount embryo in situ hybridization 
Probe generation 

To generated Dig- or Fluo-labeled RNA probes for in situ hybridization cDNA sequences of genes 

of interest were cloned in the PCRII vector (Invitrogen) and antisense-RNA was generated from T7 

or Sp6 promoter (depending on insert orientation) using the respective RNA polymerase enzyme 

(from Roche, Fermentas or Ambion). Sequences of ~450 bp (minimum) to 1.2 kb were successfully 

used as probes. The template plasmid was first linearized at an appropriate restriction site 5’ of the 

insert, excised from agarose gel, DNA was extracted and further purified by EtOH precipitation. 1-2 

µg of linearized template was used in the in vitro transcription reaction (20-30 µl) according to the 

protocol of the enzyme’s company in the presence of 10% DIG-labeling or Fluo-labeling rNTP mix 

(Roche). After 2 h incubation @37 °C, RNA was precipitated either with LiCl precipitation or 

EtOH-NaAc precipitation. Labeled RNA probe was resuspended in 50-80 µl ddsH20 and 

subsequently stored in the presence of 50% deionized formamide (for RNase inactivation and 

greater RNA stability during long period storage) at -80 °C.  

Whole mount embryo fixation 

0-10.30 hour collections were dechorionated for 3 min in 50 % chlorix, extensively washed with 

tab-water and mQH20 and fixed for 20 minutes, shaking 200-250 rpm rt, in fixation solution [2ml 

heptane, 1.5ml PEM (0.1 M PIPES, 1mM MgCl2, 1 mM EGTA, pH 6.9 (KOH)) and 187.5 µl 

formaldehyde). Lower phase was removed with a pasteur pipette, and an equal volume of MeOH 

was added followed by vigorous shaking and/or vortexing to achieve devitellinization. Settled 

embryos were repeatedly washed with MeOH (in maximum volume) followed by an overnight 

washing at 4 °C.  

Fixed embryos can be stored in MeOH for long periods before in situ hybridization.  

Double in situ hybridization using two probes (DIG- and Fluo-) was based on a protocol from 

Gleich NR. and Patel N. SDS detergent-treatment of whole mount embryos allows for the RNA 

probes to penetrate membranes, while at the same time embryos retain most of their original 

morphology in comparison to Proteinase K treatment-based protocols.  
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First, MeOH-stored embryos (embryos volume ~ 30-50 µl in 1.5 ml eppendorf tube) were 

gradually rehydrated in PBS (137 mM NaCl, 2.68 mM KCl, 10.14  mM Na2HPO4, 1.76 mM 

K2HPO4, pH 7.2) (by 10 min sequential washings 3:1, 1:1, 1:4) followed by a 20 min (maximum 

duration) secondary fixation in PBS, 10% formaldehyde. Then embryos were washed several times 

(3-5) in PBT exchanges (PBS, 0.1% Tween-20), followed by a 30 min SDS treatment while rotating 

at room temperature ( 1% SDS, 0.5% Tween-20, 50 mM Tris-HCl pH 7.5, 1 mM EDTA, 150 mM 

NaCl). Next, PBT washes (3-5 times from 10 min each) were performed. Embryos were brought 

gradually to hybridization solution conditions (SDS-Hybe: 50% Formamide, 5xSSC pH 4.5, 0.1% 

Tween-20, 0.3 % SDS, 50 µg/ml heparin, 100 µg/ml sonicated salmon sperm DNA) by an 

intermediate washing step in PBT:SDS-Hybe 1:1 (10 min rt). Embryos were washed once for 10 min 

in SDS-Hybe followed by prehybridation treatment in 100-200 µl prewarmed SDS-Hybe at 65 °C 

for 1-2 hours. In the meanwhile, RNA probes were prepared in SDS-Hybe solution (0.55 µl from 

1:10 Dig-labeled probe dilution and 0.66 µl from 1:10 Fluo-labeled probe dilution in 50 µl 

hybridization volume were used). At the end of the prehybridation step, solution was aspirated from 

the embryos, probes were denatured for 1 min at 94 °C and shortly placed on ice before adding to 

the embryos. Hybridization was overnight at 65 or 68 °C.  

Next day, probes were removed and embryos were washed several times in SDS-Hybe at 

hybridization temperature (on a heat-block shaker). Then through sequential warm washes in SDS-

Hybe:PBT solution (4:1, 1:1, 1:4) they were gradually brought back to PBT condition (pH 7.2), 

followed by a few PBT washes at room-temprature. Embryos were blocked in BBT (PBT, 

0.1%BSA) and anti-DIG antibody conjugated to alkaline phosphatase (a-DIG-AP) (1:2000 in BBT) 

was added (incubation 1 h rt gentle rotating). After several (4x20min) washes in BBT/PBT solution 

embryos were equilibrated directly in staining AP-buffer (100 mM pH 9.5, 100 mM NaCl, 50 mM 

MgCl2, 0.1% Tween-20). NBT/BCIP substrate (Sigma) was used for staining which was followed 

under the binocular scope and stopped in PBT buffer. Several washes afterwards help remove 

backround. In the continue, for double in situ staining, AP activity of the first antibody was 

inactivated in (50% formamide, 0.1 %Tween-20, 0.3%SDS, 5xSSC) for 15 min @65 °C followed by 

several PBT washes (5X20 min) at rt. After a blocking washing step in BBT, the second antibody (a-

Fluo-AP) was added (1:2000) and incubated as mentioned above. For FastRed (Sigma) staining 

embryos were equilibrated in AP buffer pH 8.2 (5mM MgCl2, 100 mM NaCl, 0.1 mM Tween-20, 

35 mM Tris pH 9.5, 65 mM Tris pH 9.5). Stained embryos were kept in PBT at 4 °C.  

5.11 Fluoerescent Immunostaining (FIS) 
For fluorescent immunostainings embryos were subjected to a milder fixation than for in situ 

hybridization. After dechorionization embryos were transferred in 2 ml heptane and an equal volume 

of 3.7 % formaldehyde in PEM (0.1 M PIPES, 1mM MgCl2, 1 mM EGTA, pH 6.9 (KOH)) was 

added (1.9 ml PEM+100 µl formaldehyde 37%). Thus, final formaldehyde concentration is 1.85% 
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(while prior in situ staining embryos are fixed in 2% formaldehyde followed by an additional 

secondary fixation).  

Fixation was for 20 minutes at room temperature with shaking. Lower phase was removed with a 

pasteur pipette and an equal volume (2 ml) of MeOH was added. Embryos were devitellinized with 

vigorous shaking and/or vortexing and the settled ones were then washed with several MeOH 

exchanges. Embryos were additionally washed in MeOH over-night (rotating at 4°C).  

On the first day of FIS embryos were gradually rehydrated from MeOH in PBX (PBS, 

0.1%Triton-X) (4:1, 1:1, 1:4 and only PBX wash three times). Then they were blocked in BBX 

(PBX, 0.1% BSA) supplemented with 20% Western blocking reagent (Roche) for 1 h rotating rt. 

Primary antibodies were added in BBX; mouse_a-Col (monoclonal) was applied at 1:50 dilution, 

rb_a-Cnc at 1:200-1:300 and rb_a-Lab at 1:150. After overnight incubation with gentle shaking at 

4°C, embryos were washed several times with BBX at rt and secondary antibodies (Alexa 488 a-

mouse, Cy3 a-rabbit) were added at 1:300. Incubation was 1-2 h, rotating, rt. After several washes in 

PBX embryos were stored at 4 °C in PBX or PBT and mounted in glycerol for laser-scanning 

microscopy. During a PBX wash after 2nd antibody incubation, DAPI or Hoechst DNA-binding dye 

was added at a dilution 1:1000 for nuclear staining.  

5.12 Microscopy 
Embryos stained after in situ hybridization were mounted in glycerol (~90%) and documented 

with a Zeiss Axioplan 2 microscope (20x or 40x planes) using the ImageProPlus software (Version 

6.2; MediaCybernetics). Pictures of fluorescent immunostained embryos (single planes or merged 

stacks) were taken with a Zeiss LSM 510 as previously described (Smith, Current Protoc Microbiol, 

2006; Mavrakis et al., 2008, Curr Protoc Cell Biol).  
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APPENDIX 
 
Stages of embryonic Drosophila development by Volker Hartenstein (1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage 5: Embryogenesis starts with cleavage (stages 1- 4) during which the 
nucleus of the fertilized egg performs 13 rapid divisions. Most of the resulting 
nuclei become arranged in a single layer beneath the egg surface, and cell 
membranes are formed around the nuclei. This leads to the cellular blastoderm 
(stage 5), a homogeneous cellular sheet surrounding the central yolk. The 
germ-line cells, also called pole cells (pc), stand out as a cluster of 34-37 round 
cells at the posterior embryonic pole.  
 
Stage 8: During gastrulation (stages 6-8), cells within the polar caps and the 
mid-ventral part of the blastoderm invaginate. The three germ Layers are 
generated by this movement. Most of the cells that remain at the surface 
represent the ectoderm; the invaginating cells form the endoderm (anterior and 
posterior midgut rudiments) and the mesoderm. A narrow mid-dorsal partition 
of the blastoderm gives rise to the amnioserosa (as), a thin membrane that 
covers the germ band dorsally. Coincident with gastrulation is the beginning of 
germ-band elongation, a movement that pushes the posterior tip of the germ 
band upward and then toward anterior. Several transitory furrows are formed 
during germ-band elongation. The deepest one of these furrows (cephalic 
furrow, cf) completely surrounds the embryo. Anterior to the cephalic furrow 
lies the procephalon (pro); posterior to the cephalic furrow lies the segmented 
germ band (gb). At the posterior tip of the germ band lies the amnioproctodeal 
invagination (pr), a pocket formed by the invaginating posterior midgut 
rudiment (endoderm) and the surrounding ectoderm that becomes the hindgut.  
 
Stage 9: Following gastrulation, the germ band elongates further (stages 9-11). 
The ectoderm begins to split up into numerous different organ primordia 
(foregut and hindgut, CNS, epidermis). The cephalic furrow is still present; the 
other transient furrows have all but disappeared. 
 
Stage 11: This stage is characterized by the parasegmental furrows (psf) that 
subdivide the germ band into metameric units. The first three segments (md, 
mandible; mx, maxilla; lb, labium) appear as conspicuous protuberances, the 
gnathal buds. The clypeolabrum (cl) and hypopharyngeal lobe (hy) are 
protuberances of the procephalon (pro) that mark the rudimentary first (labral) 
and third (intercalary) head segment. Tracheal pits (tp) appear in segments T2 
to A8. The dorsal part of A8 gives rise to an additional invagination from 
which the posterior spiracle (ps) develops. The salivary gland invaginates from 
the ventral labium.  
 
Stage 12: This stage begins when the germ band starts to retract and ends when germ-band 
retraction is complete. The external landmarks of the ectoderm (i.e., metameric furrows, gnathal 
buds, tracheal pits) that had appeared in stage 11 remain basically very similar throughout stages 
12 and 13. A prominent feature of the head of a stage-12 embryo is the invaginating optic lobe (ol) 
and the dorsal ridge (dr), a protuberance formed by the dorsal part of the gnathal segments. During 
stage 12, important morphogenetic events take place in the endoderm and mesoderm.  
Stage 13: The end of germ-band retraction marks the stage in embryogenesis at which cells in most 
organ primordia begin to differentiate, as testified by the expression of specific structural and 
biochemical markers. The main morphogenetic events that shape the embryonic surface after 
germ-band retraction are dorsal closure and head involution. During dorsal closure, the epidermal 
primordium stretches in the transversal axis, thereby gradually closing the gap that had so far 
persisted in the dorsal germ band. Dorsal closure begins anteriorly and posteriorly and progresses 
to mid levels of the germ band. By the end of stage 13, only A9 and the gnathal segments (i.e., the 
dorsal ridge) are closed. Head involution, which begins with stage 14, is a complex movement 
during which most head structures (i.e., the procephalon and the gnathal segments) vanish from the 
surface into the interior of the embryo. (as) Amnioserosa; (A1, A9) first and ninth abdominal 
segment, respectively; (T1) first thoracic segment.  
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From Campos-Ortega and Hartenstein (1997). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All embryos are in lateral view (anterior to the left). 
Endoderm, midgut; mesoderm; central nervous system; 
foregut, hindgut and pole cells in yellow. 
 
(amg) (Anterior midgut rudiment; (br) brain; (cf) 
cephalic furrow; (cl) clypeolabrum; (df) dorsal fold; (dr) 
dorsal ridge; (es) esophagus; (gb) germ band; (go) 
gonads; (hg) hindgut; (lb) labial bud; (md) mandibular 
bud; (mg) midgut; (mg) Malpighian tubules; (mx) 
maxillary bud; (pc) pole cells; (pmg) posterior midgut 
rudiment; (pnb) procephalic neuroblasts; (pro) 
procephalon; (ps) posterior spiracle; (po) proventriculus; 
(sg) salivary gland; (stp) stomodeal plate; (st) 
stomodeum; (tp) tracheal pits; (vf) ventral furrow; (vnb) 
ventral neuroblasts; (vnc) ventral nerve  
Stage 5: Blastoderm with the pole cells (pc) at the 
posterior pole 
Stage 6: onset of gastrulation; anlagen that will 
invaginate during gastrulation: anterior midgut 
primordium anlage (am), mesoderm (ms), posterior 
midgut primordium (pm/pr). The cephalic furrow 
separates the procephalon from the prospective 
metameric germ band. Pole cells are included in the 
pm/pr. as, amnioserosa. anterior (atr) and posterior (ptr) 
transverse furrows are visible. 
Stage 7: Beginning of germ band elongation. atr and ptr 
transverse furrows are approaching each other; the 
amnioproctodeal invagination (api) has deepened.  
Stage 8: During stage 8 germ band elongation proceeds 
further.  
Stage 9: Germ band elongation enters slow phase. The 
stomodeal plate becomes evident (stp). 
Stage 10: Stomodeal invagination (st) takes place. 
Stage 11: Epidermal segmentation becomes evident.
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