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ABSTRACT 

 

Cellular prion protein (PrP
C
) is a glycosylated membrane glycoprotein mainly expressed in 

the central nervous system. Some still undefined molecular events can lead to the conversion 

of PrP
C 

into an abnormal conformer called scrapie prion protein (PrP
Sc

). PrP
Sc

 is characterized 

by increased β-sheet content, detergent insolubility, partial resistance to protease digestion 

and tendency to aggregate in the brain tissue.  

The conversion and subsequent aggregation of PrP
Sc 

in the brain tissue underlay pathogenesis 

of transmissible spongiform encephalopathies. In turn, sporadic Creutzfeldt-Jakob disease is 

most common form of human transmissible spongiform encephalopathie. The heterogeneous 

disease phenotype is mainly influenced by the methionine/valine (M/V) polymorphism at 

codon 129 in the human prion protein gene (PRNP gene) and by the presence of two major 

types of pathological, protease-resistant forms of the prion protein (PrP
Sc

) leading to 2 

different profiles in Western blot (type 1 and type 2). 

This thesis includes 2 original publications that investigate the physiology and the pathology 

of the human prion protein.  

In our first study, CSF proteome alterations in living, symptomatic sCJD patients with two 

different codon 129 genotypes (MM and VV) were analyzed using a proteomic approach 

consisted of 2D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass 

spectrometry analysis.  

CSF proteome profiling revealed up-regulation of 27 and down-regulation of 3 proteins in the 

MM-sCJD as well as the up-regulation of 24 proteins in the VV-sCJD when compared to 

control. Beside proteins showing common regulation for both codon 129 genotypes in sCJD, 

some proteins seem to be specifically regulated in certain genotype.  

Almost 40% of sCJD specifically regulated proteins in CSF are involved in glucose 

metabolism, regardless of codon 129 polymorphism. The validation phase of selected 

glycolytic enzymes using Western blot technique confirmed up-regulation of ALDOA, LDH 

and G6PI when compared to three different control groups (NDC, AD and VD). 

Furthermore, the immunolabeling showed that G6PI is present in reactive astrocytes in sCJD 

affected brain while it is predominantly localized in neurons in age-matched control brain. 

Additionally, decreased level of G6PI was found in the brain of MM1-sCJD subtype.  

With these data, for the first time the implication of G6PI in prion-induced pathology was 

demonstrated. 



The identification of sCJD-regulated proteins in CSF proteome alterations in living, 

symptomatic sCJD- patients will broaden our knowledge about pathological processes 

occurring in sCJD, as they are still not fully understood. Moreover, they could serve as 

protein source to identify novel biomarkers for differential sCJD diagnosis.  

In our second study, a proteomic approach was applied in order to reveal proteins, and thereby 

biological processes, affected by stable overexpression of human PrP
C
 in human 

neuroblastoma SH-SY5Y cell line. 

Densitometric analysis of silver stained 2D gels showed 18 differentially regulated proteins in 

SH-SY5Y cells overexpressing human PrP
C
. Between them, 13 proteins were up- and 5 

down-regulated. The PrP
C 

overexpression in SH-SY5Y cells affected mostly few biological 

processes such as signal transduction, cytoskeleton organization and protein folding. 

Proteomics gives a unique opportunity to analyze both physiological and pathological 

processes at the protein level on a global scale. Proteome analysis of SH-SY5Y human 

neuroblastoma cells stably overexpressing PrP
C
 revealed proteins whose expression is directly 

modulated through PrP
C 

and consequently physiological processes which are influenced by 

PrP
C 

level in cells. On the other hand side, identification of CSF proteome alterations in sCJD 

provides more information about pathological processes occurring in the brain and caused by 

presence of PrP
Sc

. Both these studies broaden our knowledge about still not fully understood 

pathobiology of PrP.    
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1.1. Cellular prion protein (PrP
C
)  

Cellular prion protein (PrP
C
) is a membrane glycoprotein, which has been found in all 

vertebrates and it is highly conserved in mammals (Wopfner et al., 1999). In humans, PrP
C 

is 

encoded by a single-copy gene (PRNP) on chromosome 20 (Sparkes et al., 1986). It is 

predominantly expressed in the brain, but also found in the heart and skeletal muscle, in 

follicular dentritic cells, and in some lymphocytes (Bendheim et al., 1992; Ford et al., 2002; 

McBride et al., 1992).  

PrP
C 

is synthesized in the rough endoplasmic reticulum (ER) and transited trough the Golgi 

apparatus on its way to the plasma membrane. The maturation of the primary translation 

product consists of the removal of 22 amino acids N-terminal signal sequence, the replacement 

of 23 amino acids at the C-terminus by a glycosylphosphatidyl inositol (GPI) anchor and the 

glycolysation of two asparagine residues (181N and 197N). The glycolysation sites are of 

variable occupancy and PrP exists in di-, mono- and unglycosylated forms, as shown by 

Western blot analysis (Figure 1).  

The structure of PrP
C
 comprises a globular domain containing three α-helices, one short anti-

parallel β-sheet and a single disulfide bond. The N-terminus contains five octapeptide repeats, 

which have high affinity for copper (II) ions. Moreover, it is highly flexible, thus does not 

adopt any stable tertiary structure (Riek et al., 1996; Brown et al., 1997a; Riek et al., 1997) 

(Figure 1). PrP
C
 is attached by the GPI anchor to lipid rafts on the outer cell surface, but it is 

also localized inside the cells (Knopman et al., 2003). PrP
C 

undergoes constitutively 

internalization and endocytosis which is reversibly stimulated by copper (II) ions (Pauly and 

Harris, 1998; Prado et al., 2004). 

1.2. Biological function of PrP
C
 

The exact biological function of PrP
C
 still remains obscure. However, several physiological 

roles have been proposed, in particular cell adhesion, signaling, regulation of cell death, 

neuroprotection, protection against oxidative stress and involvement in the metabolic 

functions related to its copper-binding properties.  

 



3 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic depiction of the PrP
C 

structure and its maturation 

The first evidence that PrP
C
 protects against cell death was obtained in murine hippocampal 

neurons exposed to serum deprivation. Under these conditions, cell death in Prnp
0/0 

cells was 

more prominent than in the control counterpart cells. Moreover, restoring of PrP
C
 expression 

in Prnp
0/0 

hippocampal cells followed by transfection with a Prnp gene protected these cells 

from serum deprivation-induced cell death in a similar manner to the well-known anti-

apoptotic protein Bcl-2 (Kuwahara et al., 1999). Moreover, apoptosis induced by 

microinjection of Bax into human fetal neurons was prevented by co-injection of PRNP gene 

(Bounhar et al., 2001). In sharp contrast to the data supporting a protective role of PrP
C
 is 

observation that overexpression of PrP
C
 leads to a gene dose-dependent unprovoked 

neurodegenerative genotype of transgenic mice (Westaway et al., 1994). Furthermore, ectopic 

PrP
C 

expression potentiated staurosporine-stimulated caspase 3-dependent apoptosis in both 

HEK 293 cells and inducible PrP
C
-transfected rabbit kidney epithelial cells (Paitel et al., 

2002). On the other hand side, increased cellular content of PrP
C 

in breast carcinoma MCF7 

cells did not affect staurosporine-induced cell death (Roucou et al., 2003). It is very likely that 

the role of PrP
C 

in cellular sensitivity to the cell death may differ among cell lines and depend 

on the availability of its interaction partners.  

The localization of PrP
C
 at the plasma membrane implies its function as a receptor triggering 

signals. In fact, PrP
C 

mediates activation of the cAMP/ protein kinase A (PKA) pathway 
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leading to neuroprotection in the retinal tissue (Chiarini et al., 2002; Martins et al., 1997). 

Furthermore, the activity of PI 3-kinase (PI3-K) was found to be higher in the brain of wild 

type than PrP-null mice and in neural cell lines transfected with Prnp gene when compared to 

parental cell lines. In Prnp-transfected cells, the activity of PI3-K as well as PrP
C
-induced

 

cytoprotection against oxidative stress was revoked by either copper chelation or deletion of 

the octarepeat domain. This suggests a major role that PrP
C 

copper-binding domain in PrP
C
-

mediated/induced upregulation of PI3-K (Vassallo et al., 2005). Moreover, PrP
C
-mediation of 

other signal transduction pathways involving mitogen-activated protein kinase/ extracellular 

signal-regulated kinase (MAPK/ERK), Fyn and Src kinases has been also reported (Chiarini et 

al., 2002; Schneider et al., 2003; Stuermer et al., 2004).  

An increasing number of studies support PrP
C 

role
 
in protection cells from oxidative stress. 

Certainly, the most compelling observation confirming this is the fact that cerebellar granular 

and neocortical cultured neurons from PrP-null mice are more susceptible than wild type 

counterpart neurons to treatment with oxidative stress inducing agents such as hydrogen 

peroxide, xanthine oxidase and copper ions (Brown et al., 1997b; Brown et al., 2002). In line 

with these cell culture results are in vivo studies showing that brain tissue from PrP-null mice 

exhibits biochemical changes indicating presence of oxidative stress (Wong et al., 2001). 

Moreover, brain lesions induced by hypoxia and ischemia are significantly larger in PrP-null 

mice when compared to wild type mice (Mclennan et al., 2004; Sakurai-Yamashita et al., 

2005; Spudich et al., 2005). Since both these pathological conditions probably cause neuronal 

cell death via oxidative damage, it can tie PrP
C 

to a neuroprotective function against oxidative 

stress. 

1.3. Scrapie prion protein (PrP
Sc

) 

1.3.1. Conversion of PrP
C
 into PrP

Sc
 

The precise molecular events leading to the conversion of PrP
C
 into the scrapie agent (PrP

Sc
) 

are still not well defined. It is known that this conversion involves a conformational change in 

which the α-helical content diminishes and β-sheet content increases (Pan et al., 1993). The 

most coherent and general model to date proposes that PrP fluctuates between a dominant 

native state, PrP
C
, and a series of minor conformations, one or a set of which can self-associate 

in an ordered manner to produce a stable structure, PrP
Sc

, composed of misfolded PrP 
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monomers. Once a stable “seed” structure is formed, PrP is then recruited leading to explosive 

autocatalytic PrP
Sc

 formation (Collinge et al., 2001) (Figure 2). This model would be 

extremely sensitive to three factors: 1) the total PrP concentration, 2) the equilibrium of the 

distribution between the native and self-associating conformation, and 3) the complementarity 

between conformers in aggregation step. These three theoretical predictions are manifest in the 

etiology of prion diseases. First, an inversely proportional relationship between PrP
C
 

expression and disease incubation period in transgenic mice was described in several studies  

(Prusiner et al., 1990; Büeler et al., 1993; Collinge et al., 1995; Telling et al., 1995). Second, 

the predisposition of PrP to adopt a misfolded form induced by rather subtle mutations in the 

protein sequence was found (Collinge et al., 1997). Finally, molecular homogeneity is required 

for efficient PrP
Sc

 propagation (Prusiner et al., 1990; Palmer et al., 1991).  

 

 

 

 

 

Figure 2. Schematic representation of PrP
C 

conversion into PrP
Sc

 

1.3.2. Properties of PrP
Sc

 

PrP
Sc

 is a β-sheet- rich protease resistant aggregating and infectious form of PrP
C
. Its tertiary 

conformation is still unresolved, mainly because of its tendency to form large heterogeneous 

aggregates which are recalcitrant to analysis by high-resolution techniques. The greatest 

infectivity of PrP
Sc 

is associated with 300-600 kDa particles consisting of 14-28 PrP 

molecules. Much less specific infectivity was detected for monomeric PrP or large fibrils 

(Silveira et al., 2005). Many evidences suggest that the infectious form(s) of PrP may not be 

the proximate cause of neuronal dysfunction and degeneration in prion diseases. It has been 

shown that mutant forms of PrP (nine octapeptide insertion or GGS mutations) associated with 

familial prion disease are pathogenic, but not infectious (Chiesa et al., 2003; Nazor et al., 
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2005). Furthermore, heterozygous transgenic mice expressing anchorless PrP inoculated with 

scrapie prions failed to develop typical clinical signs of scrapie infection. However, they were 

shown to replicate prion infectivity, albeit on lower level than wild type mice. Moreover, 

histopathological examination of brain tissue revealed a striking accumulation of extracellular 

protease-resistant PrP deposits with the characteristics of amyloid (Chesebro et al., 2005). 

Then again, homozygous transgenic mice, which express 2-fold more anchorless PrP than 

heterozygous transgenic mice, developed a fatal clinical disease upon scrapie infection. 

However, this disease differed markedly in incubation time, clinical signs and neuropathology 

from typical scrapie disease observed in wild type mice (Chesebro et al., 2010).   

Cellular mechanism which underlies prion neurotoxicity still remains obscure. Different 

hypotheses are postulated: 1) loss, 2) subversion or 3) gain of PrP function. If the main 

function of PrP
C 

is neuroprotection then loss of it upon conversion into or with PrP
Sc

 would 

lead to prion-induced neurodegeneration. Incompatible with a loss-of-function mechanism of 

PrP toxicity is the observation that genetic ablation of PrP
C
 expression has relatively little 

phenotypic effect and does not contribute to the development of any prion diseases features 

(Büeler et al., 1992; Manson et al., 1994; Mallucci et al., 2002). On the other hand, a 

dispensable biological activity of PrP
C
 under physiological conditions may become essential 

in pathological state due to cellular or organismal stress. The subversion-of-function 

hypothesis presumes that interaction with PrP
Sc

 converts PrP
C
 from a neuroprotective signal 

transducer into a neurotoxic signal transducer. Consistent with this hypothesis is the 

observation that cross-linking of PrP
C 

with anti-PrP antibodies induces apoptotic processes in 

neurons in vivo (Solforosi et al., 2004). Alternatively, PrP
Sc

 may bind to and block specific 

regions of PrP
C
, thereby altering the neuroprotective signaling properties. The

 

neurodegenerative phenotype of transgenic mice expressing PrPΔ32-121/134 suggests that 

specific domains of PrP are essential for its protective role and that deletion of these domains 

unmasks a neurotoxic activity, perhaps by altering interaction with critical signaling molecules 

(Behrens et al., 2002). These two above mentioned hypothesis stand in contrast to a toxic gain-

of-function mechanism, which is usually evoked to explain dominantly inherited 

neurodegenerative disorders including Alzheimer’s, Huntington’s, and Parkinson’s disease. In 

these cases, the protein aggregates accumulating in the brain are presumed to possess a novel 

neurotoxic activity that is independent of the normal physiological function of the parent 
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protein. Similarly, PrP
Sc

 aggregates may have a neurotoxic effect by blocking axonal transport 

or interfering with synaptic transmission. Moreover, PrP
Sc

 may disturb function of lysosomes 

and proteasome, where it accumulates, and/or increased ER stress.  

1.4. Prion diseases 

Prion diseases or transmissible spongiform encephalopathies (TSEs) are unique fatal 

neurodegenerative disorders of diverse phenotypes and forms affecting both humans and 

animals. The prototypic prion disease is scrapie, a naturally occurring disease affecting sheep 

and goats. More recently defined animal prion diseases include transmissible mink 

encephalopathy, chronic wasting diseases and bovine spongiform encephalopathy. Human 

prion diseases have been classified in three forms sporadic (sporadic Creutzfeldt-Jakob 

disease), familial (genetic Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker 

syndrome, fatal familial insomnia and genetic TSEs) and acquired by infection (iatrogenic 

CJD, variant CJD and Kuru). 

1.4.1. Animal prion diseases 

Scrapie occurring in sheep and goats was the first prion disease being recognized in Europe 

for over 200 years ago. However, only little is known about its natural routes of transmission. 

Scrapie is also the first TSE experimentally transmitted to primates, rodents, and other species 

(Wharton et al., 2005). 

To date chronic wasting disease (CWD) and transmissible mink encephalopathy of wild as 

well as captive deer and mink appear only in North America. Some evidences suggest that 

these prion diseases can spread through contamination of feed and water sources with urine, 

saliva and faeces. Moreover, soil and soil minerals can serve as a reservoir of TSE infectivity 

(Petersen et al., 2006). This brings a potential risk to cattle and also to humans although no 

evidence of natural transmission of CWD to non-cervids has been reported so far (Belay et al., 

2004).  

The first case of bovine spongiform encephalopathy (BSE) was recognized in 1986 in UK and 

spread next decade as a massive epidemic infecting about 1 million cows (Anderson et al., 

1996). Export of cattle and feed scattered BSE to countries around the world. The source of 

disease outbreak was evidently the contamination of meat-and-bone meal supplements with 
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scrapie-infected sheep carcasses. Thanks to the prohibition of feeding cattle with ruminant 

carcasses, the incidence of BSE diminished.   

1.4.2. Human prion diseases 

Sporadic Creutzfeldt-Jakob disease (CJD) is the most common form of human TSEs and 

accounts for about 85% of all cases. The annual incidence rate is 1-2 cases per million people 

worldwide. Unfortunately, the etiology of sporadic CJD remains unclear. The hypothesis 

favours either a spontaneous change of PrP structure or a somatic mutation in the PRNP gene 

leading to an abnormal form of the protein. Familial prion diseases are associated with 

autosomal dominant inheritance of mutations in the PRNP gene (Knight et al., 2006).  

Over 30 different mutations in the PRNP gene have been already reported, but only four point 

mutations, at codon 102, 178, 200 and 210, as well as insertions of five or six octapeptide 

repeats account for 95% of all familial cases (Mead et al., 2006) (Figure 3).  

 

 

 

 

 

 

 

 

 

 

Figure 3. The most common polymorphism and mutation sides in human PRNP gene 

 

In general, familial prion diseases are characterized by earlier age of onset and longer clinical 

course when compared to sporadic CJD. Patients affected by Gerstmann-Sträussler-Scheinker 

(GSS) syndrome, caused by the point mutation either at codon 102 (P102L) or at codon 105 

(P105L), developed progressive cerebellar ataxia and spastic paraparesis between 20-40
th

 year 

of life. Moreover, the presence of PrP-amyloid plaques in the brain is unique for this 

syndrome (Bugiani et al., 2000). Both, genetic CJD forms linked to E200K-129M and V210I-
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129M mutations show similar clinical and pathological features like sporadic CJD (Gambetti 

et al., 2003). The disease phenotype associated with the mutation at codon 178 is determined 

by the polymorphism at codon 129; D178N-129M causes fatal familial insomnia (FFI), while 

D178N-129V causes typical genetic CJD (Goldfarb et al., 1992). The clinical course of FFI is 

dominated by progressive insomnia, autonomic dysfunction and dementia. 

To the acquired forms of human prion diseases belong iatrogenic CJD (iCJD), variant CJD 

(vCJD) and Kuru. Transmission of iCJD from one person to another has occurred via medical 

or surgical treatment such as corneal transplants, dural grafts, growth hormone extracted from 

human pituitary glands and contaminated neurosurgical instruments (Gibbs et al., 1994; Lang 

et al., 1998; Will, 2003). Moreover, the increased susceptibility to iCJD has been found for 

methionine or valine homozygosity at codon 129 in the PRNP gene (Brown et al., 2000). 

vCJD is considered to be a result of BSE infectious agent entering human food chain. 

Biochemical analysis and transmission studies confirmed that vCJD and BSE are caused by 

the same scrapie prion strain (Collinge et al., 1996; Hill et al., 1997). The risk period in the 

UK fell approximately on 1980-1996, when the most of cases appeared (Knigt et al., 1999). 

The young age at onset, the prominence of psychiatric and sensory symptoms and the long 

disease duration distinguish vCJD from sporadic form. Furthermore, all vCJD cases tested to 

date have been homozygous for methionine at codon 129 (Will et al., 2000). Kuru had been 

transmitted through a ritual cannibalism. However, after abolition of a bereavement ceremony, 

in which highly infectious organs from dead relatives were primarily eaten by women and 

children, the spread of this disease has been greatly limited (Huillard d'Aignaux et al., 2002).  

1.4.2.1. Sporadic Creutzfeldt-Jakob disease 

Sporadic Creutzfeldt-Jakob disease (sCJD) is characterized by wide clinical and pathological 

variability. The disease phenotype is mainly influenced by the methionine/valine (M/V) 

polymorphism at codon 129 in the PRNP gene and by the presence of two major types of 

protease-resistant form of the PrP (type 1 and type 2). These two PrP
Sc

 types are 

distinguishable based on the molecular weight of unglycosylated form of PrP
Sc

 after proteinase 

K (PK) digestion. In PrP
Sc

 type 1, the unglycosylated form migrates at 21 kDa, while in PrP
Sc

 

type 2 it migrates at 19 kDa (Parchi et al., 1996). Different PK cleavage occurs probably due 

to existence of two major conformational states of PrP
Sc

.
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The major subtypes of sCJD are homozygous for methionine at codon 129 in PRNP gene with 

PrP
Sc 

type 1 (MM1-sCJD), homozygous for valine at codon 129 in PRNP gene with PrP
Sc 

type 

2 (VV2-sCJD) and heterozygous with PrP
Sc 

type 2 (MV2-sCJD), representing about 67%, 

15% and 9% of all sCJD cases, respectively (Figure 4).  

The most important differential diagnoses of sCJD include Alzheimer’s disease (AD), vascular 

dementia (VD), dementia with Lewy body, brain tumors and cerebellar degeneration (WHO, 

1998).
 

 

 

 

 

Figure 4. PrP
Sc

 types in sCJD [adapted from (Gambetti et al., 2003)] 

 

The MM1-sCJD subtype was previously described as myoclonic or “classic” CJD. The typical 

clinical features of this subtype are short disease duration of 4 months with cognitive 

impairment, mental and visual signs. For MV1 subtype, which is usually grouped together 

with MM1-sCJD, ataxia rather than cognitive decline is present at onset. Within the first 3 

months of disease course in about 80% of the MM1 and MV1-sCJD cases, periodic sharp 

wave complexes (PSWC) are detected in EEG (Parchi et al., 1999). MRI examination revealed 

the presence of basal ganglia hyperintensities in about 70% of MM1-sCJD cases (Meissner et 

al., 2009). Furthermore, the diagnostic test based on the presence of 14-3-3 protein in the 

cerebrospinal fluid (CSF) is positive in about 95% cases (Castellani et al., 2004; Sanchez-Juan 

et al., 2006). Similarly to other CJD forms, the histopathological features of these subtypes are 

spongiform degeneration, astrogliosis and neuronal loss. The spongiform degeneration is made 

of fine vacuoles and is fairly homogeneously distributed within the affected regions. The 

topography of the lesions shows that the cerebral neocortex, especially in the occipital lobe, is 

more severely affected than basal ganglia, thalamus and cerebellum while the brain stem is 

spared. PrP
Sc

 immunodetection shows a characteric punctate pattern of staining (synaptic) with 

a degree of intensity that is overall directly related to the severity of the affected brain regions. 

The immunostaining is often homogenous, but relatively large regions may remain either 

unstained or with variable staining intensities (Gambetti et al., 2003).   
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The VV2-sCJD subtype represents the cerebellar or ataxic variant, because ataxia is the most 

prominent presenting sign. With disease progression, dementia, myoclonus and pyramidal 

signs are developed. In contrast, cortical signs such as aphasia or apraxia are very rarely 

observed in this subtype. In the great majority of VV2-sCJD cases, EEG shows non-specific 

slowing while in less than 10% of cases PSWC are present (Gambetti et al., 2003). The basal 

ganglia hyperintensities occur in 77% of VV2-sCJD cases (Meissner et al., 2009). Moreover, 

the sensitivity of 14-3-3 is about 85% (Castellani et al., 2004; Sanchez-Juan et al., 2006). The 

lesion triad composed of fine spongiform degeneration, astrogliosis and neuronal loss is also 

present in VV2-sCJD subtype. Similarly to MM1-sCJD, the spongiform changes are made of 

fine vacuoles, but deeper cortical layers are preferentially affected. The topography of the 

lesions shows that the cerebral neocortex is usually more severely affected in the frontal than 

in the occipital lobe. The severity of the lesions depends on the disease duration so that the 

cerebral cortex is often spared in cases with rapid course. Overall, the cerebral neocortex is 

less affected than basal ganglia and thalamus, moreover, lesions are present in the brain stem, 

the dorsal regions and the substantia nigra. PrP
Sc

 immunohistochemistry displays the presence 

of focal aggregates looking like plaques. Moreover, the intense immunostaining is found along 

cell processes and is especially prominent in basal ganglia and thalamus. The hallmark of 

VV2-sCJD subtype is the immunostaining pattern of the cerebellum showing intense 

immunostaining of the Purkinje cells and the upper granule cell layers (Gambetti et al., 2003).  

The MV2-sCJD is phenotypically and histopathologically similar to the VV2-sCJD subtype, 

but easily distinguishable due to significantly longer disease duration with a mean duration of 

17 months and the presence of Kuru plaques in the cerebellum. However, cognitive, mental or 

pyramidal signs and myoclonus are often present in MV2-sCJD while they are absent in VV2-

sCJD subtype. The sensitivity of 14-3-3 test is about 60%, thus significantly lower than for 

other sCJD subtypes (Castellani et al., 2004; Sanchez-Juan et al., 2006). The hyperintensity of 

basal ganglia has been found in 77% of cases (Meissner et al., 2009). In contrast to VV2-

sCJD, MV2-sCJD subtype is characterized by the lack of any significant cerebellar cortical 

atrophy. 

The presentation of MM2-sCJD subtype is dominated by cognitive decline observed in all 

cases. The disease duration for this subtype is 3-4 times longer when compared to disease 

duration of MM1-sCJD subtype. The EEG shows non-specific slowing and 14-3-3 test is 
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positive in about 75% of MM2-sCJD cases (Gambetti et al., 2003; Castellani et al., 2004; 

Sanchez-Juan et al., 2006). The typical feature of this subtypes is the spongiform degeneration 

with large vacuoles which was previously identified as status spongiosis and more recently as 

coarse spongiosis (Parchi et al., 1996).  The vacuoles are several times larger than vacuoles 

found in MM1-sCJD and widespread in the cerebral cortex, basal ganglia and thalamus. They 

are often confluent resulting in the formation of tissue islands surrounded by vacuoles. The 

PrP
Sc

 immunostaining shows two basic patterns: an intense staining of the large vacuoles rim 

and a spotted staining with loose plaque formations (Budka et al., 1995). 

The VV1-sCJD subtype is the most uncommon one with characteristic features of early onset 

and dementia of frontotemporal type (Parchi et al., 1999). The EEG shows slowing, but not 

PSWC and 14-3-3 test are positive in all cases (Gambetti et al., 2003; Castellani et al., 2004; 

Sanchez-Juan et al., 2006). The basal ganglia hyperintensity was not detected in VV1-CJD 

subtype (Meissner et al., 2009). The hallmark of this subtype is dissociation between the 

histopathological lesions (severe fine spongiform degeneration, gliosis and occasionally 

neuronal loss) and synaptic pattern of PrP
Sc 

staining. The hippocampal cortex is more affected 

while thalamus and cerebellum are less affected when compared to MM1-sCJD (Gambetti et 

al., 2003).  

1.5. CSF proteomics and biomarker discovery in CJD 

Proteomic approach has been already applied for the investigation of CSF proteome changes 

in CJD and the searching for novel biomarkers. Interestingly, First reported biomarkers in CJD 

were proteins 130 and 131, later identified as proteins belonging to 14-3-3 family (Harrington 

et al., 1986; Hsich et al., 1996).  

Analyzing native CSF from MM1-sCJD, Piubelli and colleagues (Piubelli et al., 2006) 

detected 7 up-regulated and 6 down-regulated proteins. Besides sCJD-associated dysregulation 

in CSF, levels of ubiquitin, gelsolin and α-1-antichymotrypsin were also altered in CSF or/and 

blood of AD patients (Iqbal et al., 1997; Demeester et al., 2000; DeKosky et al., 2003; 

Puchades et al., 2003). This might suggest their role in general neurodegenerative processes 

caused by the presence of misfolded proteins in the brain. Similarly to the studies of Sanchez 

and colleagues (Sanchez et al., 2004) very high up-regulation of cystatin C, a inhibitor of 

cysteine proteinases, was found in CSF, thus this protein was proposed as a novel CJD 
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biomarker. Interestingly, gene encoding cystatin C was found be up-regulated in global 

expression profiling of sCJD affected brain (Xiang et al., 2005). 

In other studies, comparison of CSF patterns between CJD, AD and controls revealed 5 

protein spots present only in CJD. However, no further characterisation of these proteins was 

performed. Finally, Brechlin and colleagues (Brechlin et al., 2008) applied DIGE technology 

to investigate CSF in CJD, using fluorescent labelling, depleting albumin and IgG as well as 

including other dementia as controls significantly increased specificity of obtained results. 

Unfortunately, neither specific nor promising candidate for biomarker was detected in these 

studies.  

Furthermore, native CSF from sCJD and vCJD to CSF from other dementia was also already 

compared and 7 proteins with different abundance were found in two CJD forms. Between 

them, apolipoprotein E showed significantly higher level in vCJD comparing to sCJD (Choe et 

al., 2002). Apolipoprotein A1, apolipoprotein E and prostaglandin-H2-D-isomerase showed 

different levels in both schizophrenia and CJD (Choe et   al., 2002; Piubelli et al., 2006; 

Martins-De-Souza et al., 2010). These proteins are involved in cholesterol and phosholipid 

metabolism, thus the maintenance of cell membrane could be potentially altered in mental 

brain disorder as well as in fatal neurodegenerative brain disorder. In fact, one hypothesis 

postulates that schizophrenia is associated with disordered membrane lipid metabolism 

(Horrobin et al., 1994; Mahadik et al., 1994). Additionally, alterations in cholesterol 

metabolism in scrapie mice infected with ME7 strain have been also reported (Xiang et al., 

2007).  

Taken all together, emerging proteomics field give us tools to explore CSF proteome and 

reveal protein that may be involved in disease pathogenesis as well as give us a unique 

possibility to discover novel biomarkers of neurodegenerative disorders including human 

prion diseases.  
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2. FOCUS OF THE PRESENT WORK 

 

2.1. Codon 129 polymorphism specific CSF proteome pattern in sporadic Creutzfeldt-

Jakob disease and the implication of glycolytic enzymes in prion-induced pathology 

 

 

2.1.1. Aims of the project  

In this project, we determined CSF proteome alterations in living, symptomatic sCJD patients 

with two different codon 129 genotypes (MM and VV). This was acquired by applying a 

proteomic approach consisted of 2D Fluorescence Difference Gel Electrophoresis (2D-DIGE) 

and mass spectrometry.  

At the molecular level, TSEs are caused by the conversion of a host cellular glycoprotein, the 

prion protein (PrP
C
) into a pathological conformer called scrapie prion protein (PrP

Sc
), which 

tends to aggregate and accumulate in the brain tissue. The presence of pathological form of 

PrP induces brain proteome changes, which might be different in particular disease subtypes. 

We hypothesize that these alterations may also be reflected in CSF from symptomatic sCJD 

patients. 

A deep insight in prion-induced CSF proteome alterations in living symptomatic sCJD- 

patients will broaden our knowledge about pathological processes occurring in sCJD, as they 

are still not fully understood. Moreover, they could serve as protein source to identify novel 

biomarkers for a differential sCJD diagnosis.  
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2.2.2. Orginal publication 

 

 

The results described below are published in: 

 

Joanna Gawinecka, Jana Dieks, Abdul R. Asif, Julie Carimalo, Uta Heinemann, Jan-Hendrik 

Streich, Hassan Dihazi, Walter Schulz-Schaeffer, Inga Zerr. Codon 129 polymorphism 

specific CSF proteome pattern in sporadic Creutzfeldt-Jakob disease and the implication of 

glycolytic enzymes in prion-induced pathology. Journal of Proteome Research 2010 Sep 27. 

[Epub ahead of print] 
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Gawinecka and Inga Zerr. 
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Abstract 

 

Cerebrospinal fluid (CSF) contains a dynamic and complex mixture of proteins, which can 

reflect a physiological and pathological state of the central nervous system. In our present 

study we show CSF protein patterns from patients with the two most frequent subtypes of 

sporadic Creutzfeldt-Jakob disease (sCJD) defined by the codon 129 genotype (MM, MV and 

VV) and the protease-resistant form of prion protein (type1 and type 2). 

The densitometric analysis of 2D gels showed up-regulation of 27 and down-regulation of 3 

proteins in the MM-sCJD as well as the up-regulation of 24 proteins in the VV-sCJD as 

compared to non-demented control. Almost 40% of sCJD specific regulated proteins in CSF 

are involved in glucose metabolism, regardless of the codon 129 polymorphism. The increase 

in CSF levels of lactate dehydrogenase (LDH), glucose-6-phosphate isomerase (G6PI) and 

fructose-bisphosphate aldolase A (ALDOA) were validated on a larger group of sCJD patients 

including three possible codon 129 polymorphisms carriers and three control groups 

consisting of non-demented, neurological cases as well as patients suffering from Alzheimer’s 

disease or vascular dementia. Subsequently, the abundance of these glycolytic enzymes in the 

brain as well as their cellular localization were determined.  

This study demonstrates for the first time the implication of G6PI in prion-induced pathology 

as well as its cellular translocalization in sCJD. The identification of sCJD-regulated proteins 

in CSF of living symptomatic patients in our study can broaden our knowledge about 

pathological processes occurring in sCJD, as they are still not fully understood. 

 

Keywords: 

CJD, CSF, proteome, 2D DIGE, Creutzfeldt-Jakob disease, cerebrospinal fluid, 2-D 

Fluorescence Difference Gel Electrophoresis 
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Introduction 

 

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common form of human transmissible 

spongiform encephalopathies (TSEs), is characterized by wide clinical and pathological 

variability. Disease phenotype is mainly influenced by the methionine/valine (M/V) 

polymorphism at codon 129 in the human prion protein gene (PRNP gene) and by the 

presence of two major types of pathological, protease-resistant form of prion protein (PrP
Sc

) 

leading to 2 different profiles in Western blot (type 1 and type 2)
1
. The major subtypes of 

sCJD are homozygous for methionine at codon 129 in PRNP gene with PrP
Sc 

type 1 (MM1-

sCJD), homozygous for valine at codon 129 in PRNP gene with PrP
Sc 

type 2 (VV2-sCJD) and 

heterozygous for PrP
Sc 

type 2 (MV2-sCJD), representing about 67%, 15% and 9% of all sCJD 

cases, respectively. The clinical and pathological characteristics of these 6 molecular disease 

subtypes differ markedly with respect to symptoms at onset, localisation and type of the 

pathological changes as well as PrP
Sc

 deposition pattern
1, 2

. This might suggest the 

involvement of different molecular pathways in sCJD pathogenesis.  

At the molecular level, TSEs are caused by the conversion of a host cellular glycoprotein, the 

prion protein (PrP
C
) into an abnormal conformer called scrapie prion protein (PrP

Sc
). PrP

Sc
 is 

characterized by increased β-sheet content, detergent insolubility, partial resistance to protease 

digestion and tendency to aggregate in the brain tissue. PrP
Sc

 accumulation and aggregation 

may induce proteome changes in the central nervous system. Furthermore, these prion-induced 

alterations of the brain proteome may also be reflected in the CSF of sCJD patients. However, 

due to high dynamic range of protein abundance in CSF spanning twelve orders of magnitude
3
 

and the fact that around 10 very well known proteins (e.g. albumin, immunoglobulins, 

transferrin and haptoglobin) comprise up to 90-95% of the total protein content, depletion of 

the high abundant proteins is indispensible for in-depth exploration of sCJD-associated 

alterations in the CSF proteome. The brain proteome alterations found in CSF can serve as a 

source of potential CJD biomarkers. The first identified diagnostic biomarker by applying 

proteomic approach was the 14-3-3 protein, which was introduced for CJD diagnosis
4-7 

later 

on.  

In this study, we show CSF proteome patterns specific for MM and VV codon 129 genotype 

in sCJD acquired by the application of 2D Fluorescence Difference Gel Electrophoresis (2D-
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DIGE) approach. Moreover, the depletion of 12 high abundant proteins allowed a detailed 

view on proteome alterations induced by PrP
Sc 

in CSF in living, symptomatic patients. The 

identification of sCJD-regulated proteins broadens our knowledge about pathological 

processes occurring in sCJD which are still not fully understood. 

 

Patients, Materials and Methods 

 

1. Patients 

For 2D Fluorescence Difference Gel Electrophoresis (2D-DIGE) analysis 8 CSF samples from 

sCJD cases and 8 non-demented individuals were used. The sCJD group consisted of 4 

patients homozygous for the methionine (MM) at codon 129 and 4 patients homozygous for 

the valine (VV) with a mean age of 69±3 years and 68±4 years, respectively. According to the 

WHO criteria, 5 patients were classified as having “probable” sCJD and 3 others as having 

“definite” sCJD (two MM1 and one VV2 type in Parchi’s classification)
1
. The CSF samples 

were taken for diagnostic purposes. However, due to very rapid progress of sCJD and 

unspecific symptoms at the onset, at the time of lumbar puncture the disease was progressed to 

either the middle or late stage. The control group consisted of 8 individuals with a mean age of 

69±4 years and no signs of cognitive decline, which underwent lumbar puncture for various 

differential diagnostic purposes (Tab. 1). For both groups, CSF parameters did not show any 

evidence of blood-CSF barrier dysfunction, acute or chronic inflammation or intrathecal 

immuno response (Tab. 2). Furthermore, none of the sCJD and control patients was a heavy 

smoker, drug- or alcohol-abused. 

To confirm up-regulation of selected proteins by Western blot, CSF samples from 8 non-

demented controls (NDC), 8 patients suffering from vascular dementia (VD), 10 Alzheimer’s 

disease patients (AD) and 30 probable or definite sCJD patients (11 homozygous for MM, 9 

homozygous for VV and 10 heterozygous at codon 129) were analyzed. The diagnosis of VD 

and AD was determined according to diagnostic criteria of the National Institute of 

Neurological Disorders and Stroke and the Association Internationale pour la Recherché et 

l'Enseignement en Neurosciences (NINDS-AIREN), and the National Institute of Neurological 

and Communicative Disorders and the Stroke and the Alzheimer's Disease and Related 

Disorders Association (NINCDS-ADRDA), respectively. 
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Table 1. Detailed characteristics of sCJD and control patients in 2D-DIGE approach 

All sCJD patients fulfilled WHO criteria for diagnosis of either probable or definite sCJD, 

neurological controls did not show any cognitive decline and were age-matched with the sCJD 

patients. The mean age of MM-sCJD, VV-sCJD and NDC group was 69±3, 68±4 and 69±4 

years, respectively. The sCJD patients were characterized by the presence of 14-3-3 protein 

and elevated level of tau protein in CSF.  ( [
╓
 - disease stage when lumbar puncture for 

diagnostic purposes was performed;
 ¥ 

- presence of hyperintensities in basal ganglia;* - 

presence of periodic sharp wave complexes (PSWC); 
# 

- presence of 14-3-3 protein in CSF; 
§
 - 

tau level above 1300 pg/ml; F – female; M – male; n.d. – not determined] 

Nr Case 
Age 

[years] 

Sex 

 

Disease 

duration 

[month] 

Time point 

of lumbar 

puncture
╓
 

MRI
¥
 EEG* 14-3-3

#
 

Tau
§
 

[pg/ml] 

1 definite MM1-sCJD 67 F 4.5 middle stage + + + 2282 

2 definite MM1-sCJD 72 M 3.5 late stage - + + 24000 

3 probable MM-sCJD 65 M 3.5 middle stage - + + 14550 

4 probable MM-sCJD 70 M 8.5 late stage + - + 8351 

5 definite VV2-sCJD 66 F 3.5 middle stage + - + 18014 

6 probable VV-sCJD 67 F 7 middle stage + - + 24020 

7 probable VV-sCJD 64 M 11 late stage + - + 20000 

8 probable VV-sCJD 75 M 7 late stage - + + 1997 

9 lumbago 73 M n.d. n.d. n.d. n.d. n.d. n.d. 

10 polyneuropathy 71 M n.d. n.d. n.d. n.d. n.d. n.d. 

11 pseudodementia 68 F n.d. n.d. n.d. n.d. n.d. n.d. 

12 polyneuropathy 72 F n.d. n.d. n.d. n.d. n.d. n.d. 

13 depression 73 F n.d. n.d. n.d. n.d. n.d. n.d. 

14 polyneuropathy 62 F n.d. n.d. n.d. n.d. n.d. n.d. 

15 polyneuropathy 67 M n.d. n.d. n.d. n.d. n.d. n.d. 

16 polyneuropathy 68 F n.d. n.d. n.d. n.d. n.d. n.d. 
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To perform Western blot analyses, samples of frontal cortex from 6 pathologically confirmed 

sCJD cases as well as 6 non-neurological controls with only age-related changes in brain 

tissue were used. The post-mortem delay was around 24h for analyzed cases. For co-

localization studies, samples of frontal cortex from 3 pathologically confirmed sCJD cases, 3 

AD as well as 3 age-matched, non-neurological controls with only age-related changes in 

brain tissue were used. 

 

 

Table 2.CSF parameters of sCJD and control patients in 2D-DIGE approach 

For both, sCJD and control group CSF parameters were within normal, physiological range. 

 

2. 2D Fluorescence Difference Gel Electrophoresis (2D-DIGE) 

2.1. Sample Preparation 

Immediately after lumbar puncture, CSF samples were centrifuged at 1300xg for 10 min, snap 

frozen and stored at -80°C until analysis was performed. 2 ml of CSF were subjected to the 

depletion of 12 high abundant proteins (Albumin, IgG Total, IgM, IgA, Transferrin, Apo A-I, 

Apo A-II, α1-Acid Glycoprotein, α2-Microglobulin, α1-Antitrypsin, Haptoglobin and 

Fibrinogen) using ProteomeLab IgY-12 LC2 Proteome Partitioning Kit (Beckman Coulter). 

The procedure was performed according to manufacturer’s instruction.  

 

 

 

Cases 
protein concentration 

[mg/l] 

lactate 

[mmol/L] 
QAlb x 10

3
 cells/μl 

MM-sCJD 448±125 1,8±0,4 7,6±2 4±2 

VV-sCJD 275±59 1,6±0,1 4,2±0,2 1±1 

Controls 351±110 1,4±0,2 4,8±1,6 1±1 
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2.2. 2D-DIGE and Image Analysis 

25 μg of protein was precipitated overnight with acetone-methanol (8:1; vol:vol) at -20°C and 

centrifuged at 16 000xg for 15 min. The pellet was resuspended in lysis buffer containing 7 M 

Urea, 2.5 M Thiourea, 4% CHAPS, 30 mM TRIS and 5 mM magnesium acetate and 

subsequently labeled with 100 pmol of CyDye (GE Healthcare) as follows: pooled samples as 

internal standard with Cy2 as well as individual control and sCJD samples with Cy3 or Cy5. 

The dye-switch between control and sCJD samples was done in order to avoid dye-to-protein 

preferences. 

Labeling reaction was performed on ice in the dark for 30 min and terminated by adding 10 

mM Lysine before incubating for further 10 min. Equal volume of lysis buffer containing 

additionally 130 mM DTT and 0.4% 3-10 Bio-Lyte (Bio-rad) was added to the labeling 

mixture. After that samples were mixed together, diluted up to 350 μl with rehydration buffer 

composed of 7 M Urea, 2.5 M Thiourea, 4% CHAPS, 0.2% 3-10 Bio-Lyte and 65 mM DTT 

and loaded on ReadyStrip IPG nonlinear pH 3-10, 17 cm strip (Bio-rad). After 12 h of active 

rehydration at 50 V, isoelectric focusing was initiated at 500 V for 1h, followed by ramping at 

1000 V for 1 h and 5000 V for 2 h. The final focusing was carried out at 8000 V reaching the 

total of 60 000 Vh (PROTEAN IEF CELL, Bio-rad).  

Then the strips were equilibrated 2 times for 20 min in buffer containing 6 M Urea, 2% SDS, 

30% Glycerin and 150 mM Tris, pH 8.8, supplemented with 2% DTT in the first and with 

2.5% Iodoacetamide in the second equilibration step. SDS-PAGE was performed overnight 

with homogenous 12% polyacrylamide gel using PROTEAN II XL Vertical Electrophoresis 

Cell (Bio-rad). CyDye-labeled protein gels were scanned by three different lasers with band 

pass filtered emission wavelengths of 510 nm (Cy2), 575 nm (Cy3) and 665 nm (Cy5) using 

FLA-5100 imaging system (Fujifilm).  

Protein spot abundances within 20 CSF proteome patterns (4 MM-sCJD, 4 VV-sCJD, 8 NDC 

and 4 IS) were analyzed using the Delta2D software (v. 3.6) (DECODON). Differences in spot 

abundance detected by densitometric analysis were statistically evaluated using unpaired 

Student’s t test. Means and standard deviations were calculated from 4 sets of experiments. A 

protein spot was considered as differentially regulated when its densitometric analyses showed 

at least 2-fold change in abundance and when p-value was < 0.05 in unpaired Student’s t test. 
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2.3. Protein identification 

Gel plugs containing proteins of interest were manually excised from silver- or Coomassie-

stained gels and subjected to in-gel digestion. The detailed protocol of this procedure is given 

by Ramljak et al.
8
. In-gel digested peptides were chromatographically separated peptides (C18 

pepMap100 nano Series analytical column, LC Packings) and analyzed by ESI-Q-TOF Ultima 

Global mass spectrometer (Micromass). Data acquisition was performed using the MassLynx 

(v. 4.0) software and further processed on Protein- Lynx-Global-Server (v 2.1), (Micromass). 

The acquired data were searched against MSDB and SwissProt 2010_08 databases through the 

Mascot search engine using a peptide mass and MS/MS fragment mass tolerance of 0.5 Da. 

The searching criteria were set with one missed cleavage by trypsin allowed and protein 

modifications set to methionine oxidation and carbamidomethylcysteine when appropriate. 

 

3. Western blotting 

3.1. Brain homogenate  

Samples of frontal cortex were homogenized in 5 volumes of buffer containing 20 mM 

HEPES (pH 7.4), 320 mM sucrose, 1 mM Sodium Orthovanadate, 1 mM EDTA and Complete 

Protease Inhibitor Cocktail (Roche). Brain homogenates were centrifuged at 15000 rpm for 10 

min. Supernatants were collected and protein concentration was determined by BCA assay 

(Sigma).  

 

3.2. Western blotting 

30 μg of CSF protein or 20 μg of brain protein was separated on 12% SDS-PAGE gels and 

transferred to PVDF membranes. Membranes were blocked with 5% skimmed milk in 

phosphate buffer saline with 0.2% Triton X-100 (PBST) for 1 h at RT. Subsequently, the 

membranes were incubated overnight at 4°C with the following primary antibodies: mouse 

anti-G6PI (1:2000, Abcam), mouse anti-ALDOA (1:1000, Abcam), mouse anti-β-actin 

(1:2000, Abcam) or goat anti-LDH (1:500, Abcam). Thereafter, membranes were washed with 

PBST and incubated for 1 h at RT with corresponding horseradish peroxide-conjugated 

secondary antibodies: donkey anti-goat (1:5000, Santa Cruz Biotechnology), goat anti-mouse 
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(1:7500, Abcam). The immunoreactivity was detected after immersing the membranes into 

enhanced chemiluminescence (ECL) solution and expositing to ECL-Hyperfilm (Amersham 

Biosciences). Films were scanned, densitometric and statistic analysis was performed with 

both ImageJ (Image Processing and Data Analysis free software) and Sigmaplot (Exact 

Graphs and Data Analysis software, Systat), respectively. The protein-regulation was 

considered as specific for sCJD when p-value was lower than 0.05 in Kruskal-Wallis ANOVA 

test. 

 

4. Immunofluorescent staining 

Formalin-fixed and paraffin-embedded brain tissue sections were deparaffinized and 

rehydrated by washing three times for 3 min in xylol and for 2 min in 100%, 95%, 70% and 

50% isopropanol. Heat-induced antigen retrieval was performed by cooking in a microwave 

for 18 min in Tris/EDTA buffer at pH 9. Then brain sections were blocked with buffer 

containing 2% gelatin, 0.25% Triton-X and 1 mM Lysine for 1 h and lipofuscin-like 

autofluorescence was reduced with 0.5% Sudan black for 15 min. Subsequently, brain sections 

were incubated for 2 h with the following primary antibodies: goat anti-LDH (1:500, Abcam), 

mouse anti-G6PI (1:200, Abcam), mouse anti-ALDOA (1:150, Abcam), rabbit anti-GFAP 

(1:1000, DAKO), mouse anti-Neurofilament (1:100, DAKO) or rabbit anti-Neurofilament 

Light (1:200, Millipore). Brain sections were incubated for 1.5 h with the corresponding 

secondary antibodies: Cy3-labeled sheep anti-mouse (1:1000, Sigma), FITC-labeled goat anti-

rabbit (1:500, Sigma) or Cy3-labeled donkey anti-goat (1:500, J. Research). Nuclei labeling 

was performed with 2 μg/ml Hoechst 33342 solution for 10 min. Finally, brain sections were 

mounted with Mowiol and stored at 4°C in a dark box. All steps were carried out in a humid 

dark chamber at RT and each incubation step was followed by rinsing four times with Tris 

buffer saline with 0.05% Tween 20 (TBST). Microscopic examination of brain sections was 

performed with the Olympus BX51 microscope using a fluorescence unit. Images were 

acquired using Olympus XM 10 camera and processed using the Cell F-software (Olympus). 
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Results 

 

1. General observations 

In order to achieve better coverage of low abundant proteins, the immunodepletion of 12 of 

the most abundant CSF proteins (albumin, IgG, IgM, IgA, transferrin, Apo A-I, Apo A-II, α1-

Acid glycoprotein, α2-microglobulin, α1-antitrypsin, haptoglobin and fibrinogen) was 

performed. Then the fractions of low abundant CSF proteins were then subjected into labeling 

with CyDyes and separated by 2D-DIGE.  

Using Delta2D’s 100% spot matching approach, 539 protein spots were detected on CSF 2D 

patterns. Densitometric and statistical analysis revealed that 51 protein spots showed 

significantly different expression level in sCJD comparing to non-demented, neurological 

controls, which comprises 9.5% of all detected protein spots. These protein spots 

corresponded to 33 different proteins (Fig. 1). In MM-sCJD, 27 up-regulated and 3 down-

regulated proteins were found, whereas 24 up-regulated proteins were identified in the VV-

sCJD cases (Tab. 3). Twenty one proteins were commonly up-regulated in both codon 129 

polymorphisms. The group of MM-sCJD specific regulated proteins included: leucine-rich 

alpha-2-glycoprotein (LRG), actin, truncated form of complement C4-A, superoxide 

dismutase [Cu-Zn] (SOD-1), insulin-like growth factor-binding protein 6 (IGFBP-6), 

tetranectin, semaphorin-7A (Sema7A), protein FAM3C and transaldolase. The group of VV-

sCJD specific regulated proteins included: DJ-1 protein, fibrinogen alpha chain (FGA) and 

angiotensinogen (ANGT). 

When biological function was taken into consideration, the major alteration in CSF proteome 

was observed in proteins belonging to the glycolysis pathway or being involved in glucose 

metabolism. The remaining proteins fell into five functional groups: apoptosis / oxidative 

stress, signal transduction, amino acid / protein metabolism, immuno response / acute phase 

response signaling (APRS) and cell structure / transport (Fig. 2). 
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Nr Protein name 

MM genotype VV genotype 
UniProt 

Accession 

MW 

[kDa] 
pI Score 

Queries 

matched 

Coverage 

[%] 
fold of 

change 
p-value 

fold of 

change 
p-value 

1 14-3-3 protein zeta/delta 2.4 0.033 1.2 0.714 P63104 28 4.7 362 9 36 

2 4.8 0.055 3.1 0.003 194 7 25 

3 Leucine-rich alpha-2-glycoprotein 3.8 0.008 1.7 0.074 P02750 38 5.7 103 3 7 

4 2.2 0.038 1.5 0.46 70 4 10 

5 Actin,  aortic smooth muscle 4.7 0.036 2.3 0.267 P62736 42 5.2 70 4 11 

6 Gamma-enolase (NSE) 5.3 0.006 5.4 0.003 P09104 47 4.9 440 7 19 

7 
N(G),N(G)-dimethylarginine 

dimethylaminohydrolase 1 
3.2 5.7E-04 2,2 0.009 O94760 31 5.5 193 5 15 

8 L-lactate dehydrogenase B chain 2.7 0.005 2.9 0.006 P07195 37 5.7 376 9 27 

9 Malate dehydrogenase 18 0.001 6.5 0.016 P40925 36 6.9 118 4 13 

10 3.4 0.036 4.6 0.06 480 10 33 

11 5.6 0.001 3.2 0.003 333 9 32 

12 Phosphatidylethanolamine-binding 

protein 1 

2.8 6.4E-05 2 0.008 P30086 21 7.4 340 7 49 

13 1.9 0.088 2.4 0.005 265 7 45 

14 4.1 0.043 2.4 0.045 431 10 52 

15 Triosephosphate isomerase 2.1 0.012 2.5 0.022 P60174 66 6.5 89 3 14 

16 3.2 0.001 2 0.004 75 2 10 

17 Insulin-like growth factor-binding 

protein 6 

2 0.044 1.8 0.2 P24592 27 7.9 70 1 4 

18 Fructose-bisphosphate aldolase A 10.4 1E-07 10.7 9E-04 P04075 39 8.4 472 9 24 

19 15 4.8E-06 11.7 2.3-06 350 8 21 

20 4.7 1.2E-04 4.3 0.001 94 3 10 

21 Aspartate aminotransferase, 

cytoplasmic 

4.7 0.002 3.3 9.5E-04 P17174 46 6.6 440 15 34 

22 3.3 0.007 2.5 0.003 63 5 10 

23 Fructose-bisphosphate aldolase C 3.3 3.6E-04 3.1 0.018 P09972 39 6.6 60 3 8 

24 5.2 0.002 3.6 0.007 111 4 13 

25 3.2 0.044 3.2 0.049 57 3 10 

26 Alpha-enolase 13.1 9.4E-05 15.9 0.021 P06733 47 7.0 175 6 16 

27 5.3 0.008 6.9 0.005 143 5 13 

28 Glucose-6-phosphate isomerase 6.9 0.028 6.7 0.004 P06744 63 8.4 129 5 7 
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Table 3. List of sCJD-regulated proteins in CSF 

Protein spot was considered as sCJD-regulated when its densitometric analyses showed at least -fold change in abundance and when p-

value < 0.05 in unpaired Student’s t test 

Nr Protein name 

MM genotype VV genotype 
UniProt 

Accession 

MW 

[kDa] 
pI Score 

Queries 

matched 

Coverage 

[%] 
fold of 

change 
p-value 

fold of 

change 
p-value 

29 Pyruvate kinase isozymes M1/M2 7.4 0.001 4.1 0.01 P14618 58 7.9 556 17 30 

30 3.6 0.034 2.3 0.062 55 3 5 

31 Gelsolin 2.3 0.007 2.6 0.031 P06396 86 5.7 102 4 5 

32 Truncated form of Complement C4-A 

(gamma and beta chain) 

4.8 2.7E-04 1.5 0.068 P0C0L4 33 6.2 115 5 3 

33 2.4 0.028 1.1 0.731 76 9.2 867 23 11 

34 L-lactate dehydrogenase A chain 7 9.2E-04 4.1 0.004 P00338 37 8.5 151 4 12 

35 4.4 0.041 1.9 0.053 49 3 8 

36 Tetranectin 0.4 0.043 0.6 0.339 P05452 22 5.8 96 2 11 

37 Retinol-binding protein 4 3.9 0.011 3.2 0.212 P02753 23 5.3 161 6 29 

38 Protein DJ-1 13 0.076 25.9 0.001 Q99497 20 6.3 109 6 33 

39 Truncated form  of Desmoplakin 62 0.02 78.9 1E-04 P15924 331 6.4 63 2 <1 

40 Angiotensinogen 1.3 0.062 2.2 0.001 P01019 53 5.9 326 13 31 

41 Fibrinogen alpha chain 2.9 0.11 3.8 0.004 P02671 95 5.7 186 7 9 

42 
Aspartate aminotransferase, 

mitochondrial 

6.2 3.5E-04 3.1 0.006 P00505 47 9.1 63 5 13 

43 Phosphoglycerate kinase 1 12 1.8E-04 11.2 0.002 P00558 45 8.3 403 14 39 

44 Transketolase 3.2 0.02 7.4 0.01 P29401 68 7.6 156 7 13 

45 Superoxide dismutase [Cu-Zn] 2.8 0.037 3.2 0.128 P00441 16 5.7 192 2 16 

46 Protein FAM3C 0.3 0.048 0.5 0.213 Q92520 25 8.5 107 4 21 

47 Chitinase-3-like protein 1 3 0.002 2.7 0.056 P36222 43 8.6 50 3 9 

48 3.8 0.011 3.2 8.1E-04 95 4 10 

49 0.4 0.044 0.5 0.325 57 3 9 

50 Transaldolase 2 0.023 2.6 0.214 P37837 37 6.4 43 1 3 

51 Semaphorin-7A 2.6 0.02 1.3 0.1 O75326 75 7.6 98 6 10 
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Figure 1. 2D maps of depleted CSF from codon 129 genotype in MM-sCJD (panel A), VV-

sCJD (panel B), and NDC (panel C) patients acquired by the application of 2-D Fluorescence 

Difference Gel Electrophoresis (2-D DIGE) 

The densitometric and statistical analysis of CSF 2D maps revealed significantly different 

expression levels of 51 protein spots, which corresponded with to 33 different proteins. 
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Figure 2. The biological function of sCJD-regulated proteins in CSF 

The major alteration in CSF proteome was observed in proteins involved in the glycolysis 

pathway or involved in glucose metabolism. The remaining proteins fell into five functional 

groups: apoptosis / oxidative stress, signal transduction, amino acid / protein metabolism, 

immunoresponse / acute phase response signaling (APRS) and cell structure / transport. 

 

2. CSF level of enzymes involved in glucose metabolism  

Since we believe, that energy metabolism is strongly linked with cell death and survival, we 

focused particularly on three proteins related to glucose metabolism: glucose-6-phosphate 

isomerase (G6PI), lactate dehydrogenase (LDH) and fructose-bisphosphate aldolase A 

(ALDOA) in the following experiments. 

In order to validate our findings from 2D-DIGE experiments, we performed Western blot 

analysis using a larger group of sCJD and control patients. Control patients included non-

demented, neurological patients (NDC), patients suffering from vascular dementia (VD) and 

patients affected by Alzheimer’s disease (AD). 

An increase of G6PI level in CSF was observed for all three codon 129 genotypes in sCJD 

(MM-sCJD, MV-sCJD and VV-sCJD) compared to all control groups The observed mean 

fold of change in protein abundance was 3 for VV-sCJD and 2 for other codon 129 genotypes 

in sCJD (Fig 3A). 

The Western blot analysis revealed presence of two ALDOA isoforms slightly different in 

molecular weight. The isoform with lower molecular weight was predominant in NDC, VD 

and AD, whereas the dominance of the isoform with higher molecular weight was 

characteristic for sCJD. More than 3-fold of change in total ALDOA level were detected in 

MM-sCJD, MV-sCJD and VV-sCJD in comparison to NDC. Moreover, decreased ALDOA 
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concentration was found in VD, whereas its concentration in AD was found to be increased 

comparing to NDC (Fig 3B). 

Finally, an enormous increase in LDH abundance was detected in the CSF of sCJD patients in 

comparison to all three control groups. The mean fold of change was 20 times higher for MM-

sCJD and 40 times higher for VV-sCJD (Fig 3C).  

Using Kruskal-Wallis ANOVA test all above-mentioned changes of protein abundance in 

CSF were found to be statistically significant.  
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Figure 3.Levels of G6PI (Panel A), ALDOA (Panel B) and LDH (Panel C) in CSF 

3. Brain level of enzymes involved in glucose metabolism  

Subsequently, levels of G6PI, ALDOA and LDH were determined in the frontal cortex of the 

MM1-sCJD and the VV2-sCJD patients. Both ALDOA and LDH showed no significant 

alterations in protein abundance in both sCJD subtypes comparing to the age-matched, non-

demented controls (NDC) (Fig. 4A and 4B). The G6PI level was decreased by 2-fold in 

MM1-sCJD and it remained unchanged in VV2-sCJD comparing to NDC (Fig. 4C).  

The above-mentioned change of protein abundance in brain was statistical significant using 

Kruskal-Wallis ANOVA test. 
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Figure 4. Levels of ALDOA (Panel A), LDH (Panel B) and G6PI (Panel C) in brain 

 

4. Cellular localization of enzymes involved in glucose metabolism 

Pathological processes occurring in sCJD affect both neural populations of cells: glial cells 

(astrogliosis) and neurons (neuronal loss). Therefore, the next step of this study was the 

investigation of the cellular distribution of sCJD-regulated glycolytic enzymes. This was 

determined in paraffin-embedded sections of human frontal cortex by co-labeling of proteins 

of interest either with neuronal marker (Neurofilament – NF or NF-L) or astrocytic maker 

(Glial fibrillary acidic protein – GFAP). 

The intensive LDH immunoreactivity was found in the cytoplasm of astrocytes in sCJD, AD, 

and in NDC (Fig. 5A). In NDC and AD, G6PI immunostaining was present in both cell 

bodies and processes of all cortical layers, whereas in sCJD, the G6PI intense 

immunoreactivity was predominantly observed in reactive astrocytes (Fig. 5B and Fig. 6). 

Diffuse ALDOA immunostaining was predominantly found in neurons in the gray matter and 

in astrocytes in the white matter of NDC and AD. This stands in contrast to the distribution in 

sCJD where ALDOA immunoreactivity was mostly detected in neuronal cell bodies (Fig. 

5C).  
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Figure 5. Cellular localization of LDH (Panel A), G6PI (Panel B) and ALDOA (Panel C) in 

human frontal cortex 

LDH intensive immunoreactivity was found in cytoplasm of astrocytes in sCJD, AD, and in 

NDC (Panel A). The G6PI staining was co-localized with GFAP-positive cells only in sCJD 

(Panel B). ALDOA diffuse immunostaining was predominantly found in neurons in the gray 

matter and in astrocytes in the white matter of NDC, sCJD and AD (Panel C). DAPI-labeling 

was used to visualize nuclei. Scale bar: 20 µm. [NDC – non-demented, neurological patients; 

sCJD – sporadic CJD; AD – Alzheimer’s disease] 
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Figure 6. Cellular distribution of G6PI in human frontal cortex 

Although G6PI-positive neurons were indentified in sCJD brain, but the G6PI was mainly 

localized in reactive astrocytes. DAPI-labeling was used to visualize nuclei. Scale bar: 20 µm. 

[NDC – non-demented, neurological patients; sCJD – sporadic CJD;  

AD – Alzheimer’s disease] 

 

Discussion  

Analysis of CSF is challenging in terms of the high dynamic range of protein concentration. 

The dominance of particular proteins like albumin or immunoglobulins leads to many low 

abundant proteins remaining undetected by conventional techniques such as 2D gel 

electrophoresis and mass spectrometry. Therefore, for a more effective coverage of low 

abundance proteins, the immunodepletion of 12 of the most abundant CSF proteins (albumin, 

IgG, IgM, IgA, transferrin, Apo A-I, Apo A-II, α1-Acid glycoprotein, α2-microglobulin, α1-

antitrypsin, haptoglobin and fibrinogen) was performed. The fractions of low abundant CSF 

proteins were then subjected to labeling with CyDyes and separated by 2D-DIGE. The 

densitometric and statistical analysis of CSF 2D maps showed up-regulation of 27 and down-

regulation of 3 proteins in MM-sCJD as well as up-regulation of 24 proteins in VV-sCJD in 

comparison to non-demented neurological controls. Twenty one proteins showed common up-

regulation for both codon 129 polymorphisms in sCJD.  
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The leucine-rich alpha-2-glycoprotein (LRG), complement C4 and superoxide dismutase [Cu-

Zn] (SOD-1), which belong to the group of MM-sCJD differentially regulated proteins, were 

previously shown to be implicated in the PrP pathobiology.  

The exact biological function of LRG still remains unclear. However, recent studies have 

shown that LRG can bind cytochrome C, which displays a neurotoxic effect when released 

from cells during apoptotic death processes. Thus LRG may have neuroprotective properties 

and promote cell survival
9-11

. Furthermore, it has been shown that PrP106-126, a synthetic 

peptide corresponding to residues 106-126 of the human PrP sequence, which is used to 

mimic PrP
Sc

 neurotoxicity, induces an endoplasmic reticulum (ER) stress in primary culture 

of rat cortical neurons leading to mitochondrial cytochrome C release, caspase 3 activation 

and subsequent apoptotic neuronal death
12

. The increased expression level of the gene 

encoding LRG was found in mice intracerebrally infected with the Rocky Mountain 

Laboratory (RML) scrapie strain. However, no difference in expression level was found when 

mice were infected with the ME7 scrapie strain
13

. Taking altogether, these data suggest that 

LRG may play a role in prion-induced pathological processes in a scrapie strain-dependent 

manner.  

The C4 protein is essential for the activation of the complement system. Interestingly, active 

components of complement were detected in amyloid plaques in sCJD and GSS
14

. Existing 

evidences suggest that prion-induced neurodegenerative processes may not be mediated by 

complement and that it is very unlikely that it plays a protective role in the CNS during prion 

infection
15

. Nevertheless, expression profile studies performed in mice infected either with the 

ME7 or the RML scrapie strains revealed an up-regulation of genes encoding proteins 

involved in immuno response and participating in complement activation including C3 and 

C4. These findings might indicate that the enhancement of complement proteins and 

inflammatory factors may be important pathogenic events in prion disease
13

.  

The SOD-1 is a protein involved in protection against oxidative stress and cell death. The 

presence of oxidative stress events during prion infection was well proven by many studies. 

Moreover, the perturbation in SOD-1 level and activity as well as its involvement in PrP
Sc

-

induced
 
pathological processes have already been well described

16-18
. 

VV-sCJD specific regulated proteins include DJ-1 protein, fibrinogen alpha chain (FGA) and 

angiotensinogen (ANGT).  

The DJ-1 protein is abundantly expressed throughout the body and its biological implications 

are extremely diverse including fertility
19

, oncogenesis
20

 and protection against oxidative 

stress
21

. Moreover, mutations in the PARK7 gene encoding DJ-1 protein cause autosomal-
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recessive early-onset Parkinson’s disease
22

. It has also been reported that DJ-1 is required for 

the activity of the nuclear erythroid 2-related factor, a key player in the regulation of response 

to oxidative stress
23

. This could suggest a potential protective role of DJ-1 in VV-sCJD 

pathophysiology.  

The major role attributed to fibrinogen (FG) is the involvement in blood coagulation. 

However, it also displays a chaperone-like activity and is able to interact and suppress 

aggregation of a wide spectrum of stressed proteins. More interestingly, FG has been shown 

to inhibit fibril formation of yeast prion protein Sup35, which is known to share key features 

with the mammalian prion or amyloid proteins, suggesting a potential role of FG in protein 

misfolding diseases such as sCJD
24

. Supporting this idea, it has been also shown that FG 

fractioned from murine blood can bind PrP
Sc 

isolated from scrapie mice
25

.  

The angiotensinogen is a precursor molecule for angiotensins I, II and III belonging to renin-

angiotensin system (RAS). Beside classical functions of RAS such as regulation of water and 

salt homeostasis or blood pressure, RAS has been implied in memory and learning processes. 

Recently, many evidences have shown that brain RAS may be involved in Alzheimer’s 

disease, stroke, depression or emotional stress
26

. Moreover, an elevated level of ANGT in 

CSF has been found in multiple sclerosis indicating that it could be a potential biomarker of 

disease progression
27

. However, no relationship between ANGT and prion disease is known 

so far. 

The detection of regulated proteins specific for codon 129 genotype may confirm the 

hypothesis which assumes the involvement of different molecular pathways in sCJD 

pathogenesis depending on PrP
Sc

 strain.  

Some of the sCJD-altered proteins, which are found in these studies, are also previously 

reported as being associated either with prion protein or CJD. For instance, gelsolin, 14-3-3 

protein, gamma enolase (NSE), and L-lactate dehydrogenase B chain (LDH-B) have been 

described to be differentially regulated in CSF of sCJD patients
28, 29

. Moreover, proteins 

related to glucose metabolism such as malate dehydrogenase, alpha and gamma enolase, 

glucose-6-phosphate isomerase (G6PI), pyruvate kinase isozymes M1/M2 as well as LDH-B 

were identified as interaction partners of fully functional myc-tagged PrP in supramolecular 

complex studies
30

. In neuroblastoma cell-based disease model studies of PrP molecular 

network, 14-3-3 zeta protein and LDH-A were recognized as specific interactors of FLAG-

tagged PrP. Further proteins such as actin, N(G),N(G)-dimethylarginine 

dimethylaminohydrolase 1, malate dehydrogenase, triosephosphate isomerase, fructose-

bisphosphate aldolase A, alpha enolase, pyruvate kinase isozymes M1/M2 were also 
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indentified. However, they have been classified as unspecific interactors of PrP or its 

homologs, Shadoo and Doppel
31

. 

Global studies of cerebral gene expression profile revealed that the expression of genes 

encoding 14-3-3 protein (beta, eta and zeta isoform), NSE, malate dehydrogenase, 

cytoplasmic aspartate aminotransferase and retinol-binding protein 4 were down-regulated 

whereas expression of encoding gene actin was up-regulated
32

 in brains of sCJD patients. In 

these studies, CSF level of all above mentioned proteins were increased. It may occur due to 

release or secretion mechanism of protein content from impaired neural cells into the 

extracellular space and then eventually into CSF. Moreover, this hypothesis could explain 

dominant up-regulation of proteins in CSF from sCJD affected patients. However, this far-

reaching theory has to be proven by further investigations. 

 

Glycolytic enzymes in CJD 

Almost 40% of sCJD specific regulated proteins in CSF are involved in glucose metabolism, 

thus in energy metabolism. All these enzymes displayed up-regulation in sCJD regardless the 

codon 129 polymorphism. The increase in CSF level of glucose-6-phosphate isomerase 

(G6PI), lactate dehydrogenase (LDH) and fructose-bisphosphate aldolase A (ALDOA) was 

validated with further tests on a larger group of sCJD patients including three possible codon 

129 polymorphisms as well as on three different types of controls consisting of non-

demented, neurological controls (NDC), patients with vascular dementia (VD) and 

Alzheimer’s disease (AD). Subsequently, their abundance in the brain as well as their cellular 

localization was determined. 

The G6PI catalyzes the conversion of glucose-6-phosphate into fructose 6-phosphate, whereas 

ALDOA catalyzes hydrolysis of fructose 1,6-bisphospate into glyceraldehyde-3-phospate and 

dihydroxyacetone phosphate. Both enzymes belong to the second and fourth step of 

glycolysis, respectively. The LDH catalyzes the interconversion of lactate and pyruvate, 

which is formed in the final step of the glycolysis pathway.  

The G6PI level showed 2-3-fold increase in CSF for all three codon 129 polymorphisms in 

the sCJD. However, its level in brain was 2-fold decreased specifically in the MM1-sCJD 

subtype and remained unchanged in the VV2-sCJD. This could suggest that G6PI expression 

and/or secretion may be modulated in a PrP
Sc

 strain-dependent manner. Moreover, a shift in 

cellular distribution of G6PI was observed in sCJD. The intense immunoreactivity was 

predominantly localized in reactive astrocytes in sCJD, whereas in both control groups, NDC 
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and AD, it was mainly found in neurons. With this data we demonstrated for the first time the 

involvement of G6PI in prion-induced pathological process occurring in human brain.  

Besides its glycolytic function, G6PI shows an activity of extracellular cytokine and acts as a 

growth factor promoting the survival and neurite outgrowth of motor and sensory neurons
33

, 

as an autocrine motility factor inducing cell motility
34, 35

, and as a maturation factor to 

mediate the differentiation of myeloid precursor cells to mature monocytes
36

. The inhibition 

of G6PI expression caused an increased susceptibility to caspase-dependent apoptosis in PC12 

neuronal cells
37

. Furthermore, overexpression and subsequent secretion of G6PI protected 

NIH-3T3 fibroblasts against PI3K/Akt mediated apoptosis
38

.  

The positive G6PI immunostaining in astrocytes occurred two weeks after mechanical injury 

of murine cerebral cortex
39

 and its expression was shown to be elevated in the later stage of 

brain infection with rabies virus in C3H mice model
40

. This may suggest that detectable 

expression of G6PI in astrocytes is a response to signals coming from impaired neurons to 

increase their metabolism and prolong survival. The same motion of G6PI action might occur 

in sCJD-affected brain, but it is differentially modulated by different PrP
Sc

 strains. 

The enormous increase in LDH level in CSF did not correlate with its unchanged level in the 

brain. This discrepancy could be explained by LDH release in extracellular space, which 

always accompanies cell death. However, LDH in CSF from sCJD patients exhibited 

significantly higher level than those determined in other dementias and proposed as a 

potential CSF marker for sCJD differential diagnosis
41

. Moreover, as mentioned above, LDH 

is the interaction partner of cellular PrP
30, 31

 and its expression was found to be up-regulated 

when PrP
C 

was introduced into Prnp
0/0 

cells
8
. Therefore, the role of LDH in prion-induced 

pathological processes may not be restricted only to being the marker of cellular damage. 

According to an astrocyte-neuron lactate shuttle hypothesis (ANLSH), lactate is generated in 

an activity-dependent and glutamate-mediated manner by astrocytes and it is subsequently 

transported to active neurons, which are the target of the lactate use
42, 43

. In more details, this 

hypothesis postulates that neuronal activation increases the extracellular concentration of 

glutamate, which is then taken up via Na
+
-dependent transporters by astrocytes. Subsequently, 

elevated levels of glutamate and Na
+
 in astrocytes activate glutamine synthetase and Na

+
/K

+
 

ATPase, respectively. This triggers astrocytic ATP consumption leading to activation of 

glycolysis and lactate production. As the next step, the lactate is released from astrocytes and 

taken up by neurons, where it serves as a fuel for activity-related neuronal energy needs
44-48

. 

The cellular PrP regulates astrocytic α2/β2-Na
+
/K

+
 ATPase activity and glutamate-triggered, 

basigin-associated lactate transport in primary culture of astrocytes. The Na
+
/K

+
 ATPase 



39 

 

activity was found to be reduced in PrP-deficient astrocytes or by binding of a monoclonal 

PrP antibody to its octarepeat, which further leads to regulation of MCT1-mediated lactate 

transport and the glutamate-independent elevation of lactate transport. Moreover, the CSF 

level of lactate is elevated in PrP-deficient mice compared to wild-type mice
49

. The loss of 

PrP function in astrocytes of CJD-affected brain may result in elevated levels of extracellular 

lactate, thus neuronal damage followed by lactate-induced acidosis.  

The ALDOA displayed 3-fold increased CSF concentration for all three codon 129 

polymorphisms in sCJD. However, the elevated level of ALDOA was also found in AD. It 

suggests that ALDOA might also be implicated in pathological processes occurring in AD. 

The ALDOA abundance in the brain remained unchanged in MM1-sCJD and VV2-sCJD in 

comparison to the age-matched controls. Moreover, partial shift in its cellular distribution was 

observed in the sCJD. Diffuse ALDOA immunostaining was predominantly found in neurons 

in the gray matter and in astrocytes in the white matter of NDC and AD, whereas the ALDOA 

immunoreactivity in sCJD was only detected in neuronal cell bodies.  

It has been shown, that glyceraldehyde-3-phospahte (G-3-P), an enzymatic product of 

ALDOA, is implied in the protection of cells against apoptosis via the inhibition of caspase-3 

activity
50

. Moreover, neurotoxicity of doppel (Dpl), the PrP
C
 homolog, in Purkinje cells of the 

Ngsk Prnp
0/0

 mouse model varies according to aldolase C expression. The higher sensitivity 

to Dpl-induced neurotoxicity, thus increased cell loss, is characteristic for Purkinje cells from 

aldolase C-negative compartments of the cerebellum
51

. Summarizing, the presence of 

ALDOA in impaired neurons and its secretion may play an anti-apoptotic role in sCJD.  

It is very likely that immuno-positive neural cells are origin of glycolytic enzymes which 

were found in elevated levels in CSF. Nevertheless, based on our experiments, a conclusive 

correlation between cellular localization of investigated glycolytic enzymes and their elevated 

level in CSF cannot be demonstrated. This hypothesis should be addressed in future studies. 

Both, glycolysis and apoptosis are highly conserved and finely regulated multi-step processes 

maintaining cellular homeostasis. The activation of apoptotic pathway is dependent on energy 

status and, hence, apoptosis might be dependent on glucose metabolism. Based on numerous 

studies demonstrating that glucose metabolism is involved in cell death and survival, it is 

reasonable to speculate that these two crucial processes are linked. However, precise 

mechanisms underlying the regulation of glucose metabolism and the implication of 

glycolytic enzymes in apoptosis remain to be elucidated. 
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Concluding remarks 

In summary, this study shows that 2D-DIGE approach can be successfully applied to explore 

in depth alterations in CSF proteome caused by CNS disorders. Furthermore, the 

identification of sCJD-regulated proteins in CSF provided a new insight into prion-induced 

pathological processes occurring in the brain of living, symptomatic patients. Moreover, 

revealed proteins could serve as a source of novel potential, diagnostic marker(s) for sCJD. 

Therefore, it would be of great interest to test utility of selected proteins in early diagnosis of 

sCJD. Another appealing aspect of our study, which would require further investigation 

concern the role of G6PI as well as its cellular translocalization in sCJD. 
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2.2. Cellular prion protein overexpression disturbs cellular homeostasis in SH-SY5Y 

neuroblastoma cells but does not alter p53 expression: a proteomic study 

  

2.2.1. Aims of the project  

The aim of this study was to examine proteome and thereby biological processes affected by 

stable overexpression of human PrP
C
 in human neuroblastoma SH-SY5Y cell line.  

Many evidences indicate that PrP
C
-overexpression in different cells line leads to increased 

sensitivity to apoptotic stimuli or triggers neurodegeneration and myopathy. The observed 

pro-apoptotic properties of PrP
C
 seem to be related to the p53-dependent apoptotic pathway. 

Therefore, we applied a proteomic approach to reveal proteins which contribute to PrP
C
 

overexpression-mediated disturbances in cellular homeostasis as well as to investigate 

involvement of p53-dependent pathway in this pathological process.  
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Koch-Strasse 40, 37075 Göttingen, Germany

Abstract—The definite physiological role of the cellular prion
protein (PrPc) remains elusive. There is ample in vitro and in
vivo evidence suggesting a neuroprotective role for PrPc. On
the other hand, several in vitro and in vivo studies demon-
strated detrimental effects of PrPc overexpression through
activation of a p53 pathway. Recently, we reported that tran-
sient overexpression of PrPc in human embryonic kidney 293
cells elicits proteome expression changes which point to
deregulation of proteins involved in energy metabolism and
cellular homeostasis. Here we report proteome expression
changes following stable PrPc overexpression in human neu-
ronal SH-SY5Y cells. In total 18 proteins that are involved in
diverse biological processes were identified as differentially
regulated. The majority of these proteins is involved in cell
signaling, cytoskeletal organization and protein folding. An-
nexin V exhibited a several fold up-regulation following sta-
ble PrPc overexpression in SH-SY5Y cells. This finding has
been reproduced in alternative, mouse N2a and human SK-
N-LO neuroblastoma cell lines transiently overexpressing
PrPc. Annexin V plays an important role in maintenance of
calcium homeostasis which when disturbed can activate a
p53-dependent cell death. Although we did not detect
changes in p53 expression between PrPc overexpressing SH-
SY5Y and control cells, deregulation of several proteins in-
cluding annexin V, polyglutamine tract-binding protein-1,

spermine synthase and transgelin 2 indicates disrupted cel-
lular equilibrium. We conclude that stable PrPc overexpres-
sion in SH-SY5Y cells is sufficient to perturb cellular balance
but insufficient to affect p53 expression. © 2010 IBRO. Pub-
lished by Elsevier Ltd. All rights reserved.

Key words: prion protein, signal transduction, cytoskeleton,
protein folding, annexin V, transgelin 2.

In recent years numerous studies have focused on reveal-
ing the physiological function(s) of PrPc. Recognizing cel-
lular processes governed by PrPc might promote our un-
derstanding of molecular dysfunctions underlying the patho-
genesis of transmissible spongiform encephalopathies
mediated by the pathological isoform of PrPc. Strong evi-
dence suggests PrPc entailment in activation of distinct signal
transduction pathways (Mouillet-Richard et al., 2000; Chen et
al., 2003; Vassallo et al., 2005), copper metabolism (Pauly
and Harris, 1998; Kramer et al., 2001), anti-oxidant activ-
ities (Brown and Besinger, 1998; Wong et al., 2001), syn-
aptic transmission (Collinge et al., 1994) and modulation of
cell death (Kuwahara et al., 1999; Bounhar et al., 2001).
Despite PrPc’s involvement in diverse cellular activities its
exact physiological role is still not defined.

Various studies investigating the control of cell death
by PrPc have led to somewhat opposite conclusions. Ex-
tensive data documented anti-apoptotic, neuroprotective
properties of PrPc. Kuwahara and colleagues (1999) dem-
onstrated that serum-deprivation induced cell death was
more prominent in mouse prion protein knock-out (Prnp°/°)
hippocampal neurons than in the control Prnp�/� cells.
Furthermore, PrPc protected human neurons from apopto-
sis triggered by an overexpression of pro-apoptotic Bax
protein (Bounhar et al., 2001). In vivo studies confirmed
PrPc-mediated neuroprotection. PrPc-deficient mice are
more susceptible to acute seizures (Walz et al., 1999) and
exhibit significantly increased infarction volumes following
transient focal cerebral ischemia as compared to their
wild-type counterparts (Weise et al., 2004). These data are
apparently in contrast to other reports indicating that over-
expression of PrPc in different cell lines results in in-
creased sensitivity to apoptotic stimuli (Paitel et al., 2002,
2003). The observed PrPc-mediated hypersensitivity to ap-
optotic agents appears to be controlled via a p53-depen-
dent pathway (Paitel et al., 2004; Sunyach et al., 2007). In
vivo findings showed that PrPc overexpression triggers
severe degeneration in the central and peripheral nervous
system and causes primary myopathy in skeletal muscles
(Westaway et al., 1994; Huang et al., 2007; Chiesa et al.,

1 Present address: S. Ramljak, German Primate Center, Department
of Infectious Biology, Kellnerweg 4, 37077 Göttingen, Germany.
2 The first two authors equally contributed to this study.
*Corresponding author. Tel: �49-551-38-51151; fax: �49-551-38-
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Abbreviations: ADHX, alcohol dehydrogenase class III; ANXA5, an-
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FUMH, fumarate hydratase; GRB2, growth factor receptor bound protein
2; GSTO1, glutathione S-transferase omega-1; MTDC, bifunctional meth-
ylenetetrahydrofolate dehydogenase/cyclohydrolase; PA1B3, platelet-ac-
tivating factor acetylhydrolase IB subunit gamma; PDIA1, protein disulfide
isomerase precursor; PPID, 40 kDa peptidyl-prolyl cis–trans isomerase;
PQBP1, polyglutamine tract-binding protein-1; PRNP, human prion pro-
tein gene; PrPc, cellular prion protein; P/S, penicillin/streptomycin;
RD23B, UV excision repair protein RAD23 homolog B; RHG01, Rho
GTP-ase activating protein 1; sCJD, sporadic Creutzfeldt–Jakob disease;
SPSY, spermine synthase; TAGL2, transgelin; TCTP, translationally-con-
trolled tumor protein; 2-DE, two dimensional gel electrophoresis; 14-3-3G,
14-3-3 gamma.
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2008). The primary myopathy observed in PrPc-overex-
pressing mice appears to be related to a p53-dependent
pathway, too (Liang et al., 2009).

Using a proteome approach we demonstrated that
transient overexpression of human PrPc in human embry-
onic kidney (HEK) 293 cells evokes perturbed expression
of proteins involved in energy production and maintenance
of cellular homeostasis (Ramljak et al., 2008). The present
study employs proteomics techniques to examine pro-
teome and thereby biological processes affected by stable
overexpression of human PrPc in human neuroblastoma
SH-SY5Y cell line. The SH-SY5Y cell line is well charac-
terized and was previously used either as a model system
for studying the physiological role of PrPc (Watt et al.,
2007) or prion-induced neuronal death (Dupiereux et al.,
2006; Martínez and Pascual, 2007). We show that the
majority of differentially regulated proteins can be either
directly or indirectly associated with cell signaling, cy-
toskeletal organization or protein folding. Although the pro-
teome patterns of HEK 293 cells transiently overexpress-
ing PrPc (Ramljak et al., 2008) and SH-SY5Y cells stably
overexpressing PrPc were largely non-intersecting with re-
gard to affected protein groups, our results support the
view that sole overexpression of PrPc is sufficient to sub-
vert the cellular balance regardless of the cell type used
(HEK 293 vs. SH-SY5Y) or transfection procedure (tran-
sient vs. stable).

EXPERIMENTAL PROCEDURES

Plasmid construction and generation of stable
PrPc-overexpressing cells

SH-SY5Y human neuroblastoma cells were purchased from the
American Type Culture Collection (ATCC, USA). To generate
SH-SY5Y cells that constitutively and stably express full length
human PrPc, wild-type human prion protein gene (PRNP) was
cloned into the XhoI/XbaI site of the pCIneo vector (Promega,
Mannheim, Germany). The construct was verified by sequencing.
Consequently, SH-SY5Y cells were transfected with pCIneoPRNP
using Lipofectamin (Invitrogen, Karlsruhe, Germany) according to
the manufacturer’s instructions. Forty-eight hours after transfec-
tion cells were grown in Dulbecco’s modified Eagle medium
(DMEM; Biochrom, Berlin, Germany) supplemented with 10%
fetal calf serum (FCS, Biochrom), 1% penicillin/streptomycin (P/S,
Biochrom) and 1% L-glutamine (Biochrom) at 37 °C, 5% CO2

supply and 95% humidity. Six weeks after addition of 400 �g/mL
Geneticin (Gibco/Invitrogen, Karlsruhe, Germany) stably trans-
fected SH-SY5Y cells were selected and further maintained in the
same medium with a lower concentration of Geneticin (200 �g/
ml). Medium was exchanged every 4 days. An overexpression of
PRNP was checked by Western blot analysis. Parental SH-SY5Y
cells were grown without Geneticin in DMEM containing 10%
FCS, 1% P/S, 1% L-glutamine at 37 °C, 5% CO2 supply and 95%
humidity. The morphological features of transfected and non-
transfected SH-SY5Y cells were identical as shown by light mi-
croscopy (Fig. 1A, B).

Transient overexpression of PrPc in human
neuroblastoma SK-N-LO and mouse neuroblastoma
N2a cells

SK-N-LO human neuroblastoma (Cell lines service, Eppelheim,
Germany) and N2a mouse neuroblastoma cells (ATCC, USA)

were both transiently transfected with the pCMS-PRNP-EFGP
vector, bearing human PRNP (Ramljak et al., 2008). In parallel, an
empty pCMS-EGFP vector was used as a control. For the trans-
fection of 1–1.5�106 cells in a six well plate 2 �g of plasmid DNA
and 4–5 �l of Lipofectamine (Invitrogen) were dissolved in 250 �l
OptiMEM (Gibco/Invitrogen, Karlsruhe, Germany) for 5 min. Sta-
ble DNA complexes were formed after 15–20 min and added to
the transfection medium (Gibco OptiMEM containing 2% FCS).
After 6–8 h the transfection medium was replaced by fresh culture
medium. SK-N-LO cells were cultured in Alpha-MEM (Stem Cell
technologies, Grenoble, France) supplemented with 10% FCS
and 1% P/S (Biochrom). N2a cells were maintained under same
culture conditions as previously described for SH-SY5Y cell line.
Cells were collected 48 h post-transfection.

Sample preparation for two-dimensional
electrophoresis and Western blotting

Cell medium was removed from tissue culture flasks, cells were
washed twice with cold phosphate-buffered saline (PBS), scraped
and centrifuged at �4 °C, �4,000�g for 20 min. The supernatant
was decanted and the pellet was resuspended in cold PBS and
centrifuged once more at �4 °C, �4,000�g for 10 min. After
discarding the supernatant, the pellet was lysed in 7 M urea, 2 M
thiourea, 4% CHAPS, 2% ampholytes, 1% dithiothreitol (DTT) and
a protease inhibitor mixture (0.1 mM phenylmethylsulfonylfluoride,
10 �M N-tosyl-L-phenylalanyl-chloromethylketone and 10 �M
N-�-tosyl-L-lysinyl-chloromethylketone) was added. The lysate
was centrifuged in a microcentrifuge at 14000 rpm for 10 min at
�4 °C to remove cell debris. Proteins were quantified by the
Bradford assay (Bio-Rad, Munich, Germany).

Western blotting

For immunoblotting analysis, equal amounts of protein were di-
luted in 4� sample buffer, boiled for 5 min and loaded onto 12%
polyacrylamide gels. Following separation by gel electrophoresis,
proteins were electrophoretically transferred to polyvinylidene di-
fluoride membranes (AppliChem, Darmstadt, Germany) and sub-
sequently blocked with 5% (v/v) non-fat dry milk in PBS and 0.1%
Tween 20 (PBST) for 1 h at RT. Membranes were then incubated
with different primary antibodies anti-PrP 12F10 monoclonal an-
tibody (Krasemann et al., 1999; 1:1000), anti-annexin V polyclonal
antibody (Abcam, Cambridge, UK; 1:500), anti-14-3-3 gamma
polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA,
USA; 1:4000), anti-transgelin monoclonal antibody (Abcam,
1:625) and anti-� actin monoclonal antibody (Abcam, 1:10 000)
overnight at 4 °C, with gentle rocking. After extensive rinsing in
PBST, membranes were incubated with a peroxidase-conjugated
goat anti-mouse or anti-rabbit secondary antibody (Jackson Im-
munoResearch Laboratories Inc., West Grove, PA, USA; 1:2000;
1:5000) for 1 h at RT. Immunolabeled proteins were detected after
immersion of the membranes into enhanced chemiluminescence
(ECL) solution and exposition to ECL-Hyperfilm (Amersham Bio-
sciences, Buckinghamshire, UK). Densitometric measurements
were performed using the ArcSoft photo Studio 5 (ArcSoft Inc.)
and LabImage V 2.52a software. For each condition analyzed,
minimum three Western blots were prepared from three different
protein extractions.

Two dimensional electrophoresis

Protein samples were diluted with rehydration buffer containing 7
M urea, 2 M thiourea, 15 mM DTT, 4% CHAPS and 2% am-
pholytes for first-dimension isoelectric focusing. One-hundred and
thirty micrograms of protein were loaded on a 17 cm, pH 3–10
linear, immobilized pH gradient (IPG) strip (Bio-Rad). IPG strips
were focused until 32000 Vh were reached and were first reduced
for 25 min in the buffer containing 6 M urea, 2% sodium dodecyl
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sulfate (SDS), 30% glycerol, 2% DTT, and 0.375 M Tris–HCl (pH
8.8) and later alkylated in the same buffer supplemented with
2.5% iodoacetamide instead of DTT for further 25 min. Equili-
brated strips were placed on top of vertical 12% polyacrylamide
gels and electrophoresis was carried out at 100 V overnight (Pro-
tean xi 2-D Cell) at �4 °C. After second dimensional separation on
SDS-PAGE the gels were silver stained and scanned using the
ScanMaker 4. Densitometric analyses were carried out using the
Delta 2D v3.6 (Decodon, Greifswald, Germany) software. For
each condition analyzed, four gels were prepared from four differ-
ent protein extractions. Differences in spot abundance detected by
densitometric software were statistically evaluated using two-
sided unpaired Student’s t-test. Means and standard deviations
(SD) were calculated from four independent sets of experiments.
The differences in protein expression with P-values �0.05 were
considered significant.

Identification of protein/peptide sequence analysis

In-gel digestion was carried out according to a modified published
protocol (Shevchenko et al., 1996). Spots of interest were excised
from the silver stained gel into 1–2 mm2 slices, destained with 15
mM potassium ferricyanide/50 mM sodium thiosulfate (Sigma-
Aldrich, Steinheim, Germany) and then equilibrated with 50 mM
ammonium bicarbonate/50% acetonitrile (ACN) (Sigma-Aldrich).
Samples were dried for 15 min using the SpeedVac SVC100

(Savant Instruments, Farmingdale, NY, USA) vacuum concentra-
tor. Dried spots were rehydrated on ice with 10–20 �l of trypsin
digestion solution (Promega, Madison, WI, USA) for 45 min fol-
lowed by an overnight incubation at 37 °C in digestion solution
without trypsin. The peptides were first extracted with 0.1% triflu-
oracetic acid (TFA) for 30 min in the sonicating water bath Trans-
sonic 310/H (Elma®, Pforzheim, Germany) followed by extraction
with 30% ACN in 0.1% TFA and 60% ACN in 0.1% TFA. The
eluate was collected in Eppendorf tubes and dried with the Speed-
Vac. The extracted peptides were dissolved in 0.1% formic acid
and one microliter of each sample was introduced using a CapLC
auto sampler (Waters) onto a �-precolumnTM cartridge C18
pepMap (300 �m�5 mm; 5 �m partical size) and further sepa-
rated through a C18 pepMap100 nano SeriesTM (75 �m�15 cm;
3 �m partical size) analytical column (LC Packings). The single
sample run time was set for 60 min. The chromatographically
separated peptides were analyzed on a Q-TOF Ultima Global
(Micromass, Manchester, UK) mass spectrometer equipped with a
nanoflow ESI Z-spray source in positive ion mode. The data
acquisition was performed using MassLynx (v 4.0) software on a
Windows NT PC and data were further processed on Protein-
Lynx-Global-Server (v 2.2), (Micromass, Manchester, UK). Pro-
cessed data were searched against MSDB and Swiss-Prot data-
bases through the Mascot search engine using a peptide mass
tolerance and fragment mass tolerance of 0.5 Da. The search

Fig. 1. (A, B) PrPc-overexpressing and parental SH-SY5Y cells. No morphological changes were observed (light microscope 10�magnification)
between PrPc-overexpressing (A) and parental SH-SY5Y cells (B). (C) Western blot analysis of PrPc expression in SH-SY5Y cells. PrPc expression
was determined in 40 �g of proteins from the total cell lysates of SH-SY5Y cells stably overexpressing PrPc (pCIneoPRNP) and SH-SY5Y cells
expressing endogenous PrPc (control) by using 12F10 antibody. The highest band depicts diglycosylated, the middle band monoglycosylated and the
lowest band unglycosylated form of PrPc. Note high PrPc expression in SH-SY5Y cells transfected with pCIneoPRNP vector and low, faintly visible,
expression of endogenous PrPc in parental cells. Recombinant PrPc was used as a positive control (2 ng). The displayed Western blot is representative
of four independent experiments. (D) ELISA analysis of PrPc levels in SH-SY5Y cells stably transfected with pCIneoPRNP vector. PrPc levels in stably
transfected SH-SY5Y cells are expressed relatively to control PrPc levels observed in parental SH-SY5Y cells. Note markedly higher PrPc expression
in pCIneoPRNP transfected cells vs. parental cells. PrPc concentration was measured in 50 �g of proteins. Values represent the mean�SD of four
independent experiments (two-sided unpaired Student’s t-test *** P�0.001).
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criteria were set with one missed cleavage by trypsin allowed and
protein modifications set to methionine oxidation and carbam-
idomethylcysteine when appropriate.

ELISA

ELISA (enzyme-linked-immunosorbent assay) was carried out us-
ing commercially available BetaPrion BSE EIA Test Kit according
to supplier’s recommendations (Roboscreen, Leipzig, Germany).

RESULTS

Differential proteome analysis of human neuroblastoma
SH-SY5Y cells stably overexpressing human PrPc and
parental SH-SY5Y cells expressing only endogenous PrPc

was done to study protein expression changes occurring
due to permanent overexpression of PrPc. Western blot
analysis confirmed markedly higher PrPc expression in
SH-SY5Y cells stably overexpressing PrPc as compared to
control cells (Fig. 1C). PrPc level was further quantified by
ELISA in each cell lysate before proceeding to 2-DE. In
average, PrPc expression level was nearly 16-fold higher
(P�0.001) in PrPc overexpressing as compared to paren-
tal cells (Fig. 1D).

Densitometric analysis of silver stained 2-DE gels re-
vealed a total of 18 differentially regulated protein spots
between SH-SY5Y cells overexpressing PrPc and control
cells (Table 1). Threshold for identification of up-/down-
regulated proteins was set to at least 1.5 fold change.
According to this criterion 13 proteins were up- and five
proteins were down-regulated following PrPc overexpres-
sion in SH-SY5Y cells with respect to the control group.
Nine out of 18 differentially regulated proteins showed a
two-fold or higher regulation. The map of significantly reg-

ulated protein spots following 2-DE is shown in Fig. 2. In
this study an overexpression of PrPc influenced various
biological processes, especially, signal transduction, cy-
toskeleton organization and protein folding (Fig. 3). The
proteins directly or indirectly involved in signal transduction
displayed PrPc-induced up-regulation in SH-SY5Y cells:
14-3-3 gamma (1433G), growth factor receptor bound pro-
tein 2 (GRB2), Rho GTP-ase activating protein 1 (RHG01)
and platelet-activating factor acetylhydrolase IB subunit
gamma (PA1B3). Likewise, three proteins implied in cy-
toskeleton organization: transgelin 2 (TAGL2), translation-
ally-controlled tumor protein (TCTP) and RHG01were up-
regulated. Only one protein, UPF0027 (CV028), which
appears indirectly involved in cytoskeleton organization
was down-regulated in PrPc overexpressing neuroblas-
toma cells. Among three proteins assisting in protein fold-
ing two were down-regulated: 40 kDa peptidyl-prolyl cis–
trans isomerase (PPID) and FK506-binding protein 4
(FKBP4) whereas protein disulfide isomerase precursor
(PDIA1) was up-regulated by PrPc. Six out of eight remain-
ing proteins that participate in various biological processes
were up-regulated by PrPc: calcium and phospholipid bind-
ing protein, annexin V (ANXA5); polyglutamine binding
protein-1 (PQBP1) involved in induction of neuronal cell
death; oxidative stress protein, glutathione S-transferase
omega-1 (GSTO1); UV excision repair protein RAD23 ho-
molog B (RD23B) participating in DNA repair; alcohol de-
hydrogenase class III (ADHX) with yet undefined physio-
logical function in brain and mitochondrial protein, fumar-
ate hydratase (FUMH), implied in energy metabolism. On
the contrary, only two out of eight proteins categorized as
having other biological functions were down-regulated:

Table 1. List of proteins identified from 2-DE gels of SH-SY5Y cells. Eighteen different proteins were identified from 2-DE gels of parental and
SH-SY5Y cells stably transfected with pCIneoPRNP vector. The number of the spots corresponds to their location on the gel (Fig. 2). Number of
peptides matched, ion score, state change, fold change, significance (two-sided unpaired Student’s t-test), protein identification, abbreviations and
Swiss-Prot accession numbers have been given for each spot

Spot
no.

Peptides
matched

Score State
change

Fold
change

P value Protein ID Abbr. Acc. no.

43 6 95 1 4.23 0.049 Polyglutamine-binding protein 1 PQBP1 Q4VY36
115 8 134 1 2.52 0.005 Transgelin-2 TAGL2 P37802
131 15 259 1 1.69 0.007 Translationally-controlled tumor protein–human TCTP P13693
166 4 81 1 1.62 0.02 14-3-3 protein gamma 1433G P61981
216 14 185 1 1.67 0.03 Glutathione transferase omega-1 GSTO1 P78417
229 11 165 1 2.93 0.002 Annexin A5 ANXA5 P08758
412 6 150 1 1.70 0.03 Protein disulfide-isomerase precursor PDIA1 P07237
451 8 112 1 2.12 0.002 Rho GTPase-activating protein 1 RHG01 Q07960
486 2 73 1 1.53 0.04 Fumarate hydratase, mitochondrial precursor FUMH P07954
504 15 127 1 2.16 0.034 Growth factor receptor-bound protein 2 GRB2 P62993
510 7 67 1 2.01 0.05 Alcohol dehydrogenase class-3 ADHX P11766
569 3 36 1 1.73 0.02 Platelet-activating factor acetylhydrolase IB subunit gamma PA1B3 Q15102
597 11 159 1 1.70 0.043 UV excision repair protein RAD23 homolog B RD23B P54727

73 6 77 2 0.52 0.035 Bifunctional methylenetetrahydrofolate dehydogenase/
cyclohydrolase, mitochondrial precursor

MTDC P13995

251 6 54 2 0.55 0.012 Spermine synthase SPSY P52788
403 16 206 2 0.43 0.003 UPF0027 protein C22orf28 CV028 Q9Y3I0
446 3 58 2 0.45 0.009 FK506-binding protein 4 FKBP4 Q02790
513 14 151 2 0.40 0.018 40 kDa peptidyl-prolyl cis–trans isomerase PPID Q08752

Abbr., Abbreviation; Acc., Accession.
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spermine synthase (SPSY), an enzyme which catalyzes
production of a free radical scavenger spermine and mito-
chondrial protein, bifunctional methylenetetrahydrofolate
dehydogenase/cyclohydrolase (MTDC) that is most prob-
ably involved in folate metabolism.

To reinforce the results obtained by densitometric anal-
ysis of 2-DE, the expression of ANXA5, TAGL2 and 1433G
was additionally confirmed by Western blotting (Fig. 4A–
C). PrPc overexpression induced nearly 4-fold (P�0.01)
up-regulation of ANXA5 in SH-SY5Y cells, as inferred from
densitometric analysis of Western blot, although densito-
metric analysis of 2-DE showed 3-fold up-regulation. In
order to further verify our data in an independent set of
experiments we performed densitometric analyses of
Western blots following transient overexpression of PrPc in
mouse neuroblastoma N2a and alternative human neuro-
blastoma SK-N-LO cells which resulted in 2-fold (P�0.001)
and 1.8-fold (P�0.01) higher expression of ANXA5 in PrPc-
overexpressing as compared to control vector transfected
cells (Fig. 5A–D).

Western blot analysis revealed more than 260-fold
up-regulation of TAGL2 by PrPc (P�0.001) in SH-SY5Y
cells as compared to 2.5-fold up-regulation observed by
2-DE. We were not able to reproduce this result in two
additional cell lines (N2a and SK-N-LO), following transient
overexpression of PrPc, due to the complete lack of the
signal with two different TAGL2 antibodies.

An up-regulation of 1433G by PrPc in SH-SY5Y cells
was 1.6-fold following 2-DE analysis and was confirmed
by Western blotting as being 1.4-fold (P�0.01). The
other two cell lines used in this study did not show

Fig. 2. Silver stained 2-DE gel of SH-SY5Y cells stably overexpressing PrPc. Linear 17 cm IPG strips (pH 3–10) were loaded with 130 �g of proteins.
Labelling on the gel represents the location of the relevant spots. The protein identity of the spots is listed in Table 1.

Fig. 3. Schematic depiction of up-/down-regulated proteins following
stable overexpression of human PrPc in human neuroblastoma SH-
SY5Y cells. All 18 PrPc-regulated proteins are distributed into four
groups based on their biological function. Only RHG01 could be si-
multaneously categorized into two groups. Light grey colour indicates
up-regulated whereas dark grey colour indicates down-regulated pro-
teins. Short abbreviations given for each protein are explained in Table 1.
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1433G regulation following transient overexpression of
PrPc.

Although tumor suppressor oncogene p53 was not
detected as differentially regulated by PrPc overexpression
in SH-SY5Y cells by 2-DE, we performed additional West-
ern blot analysis showing that its expression indeed re-
mains unchanged between PrPc-overexpressing and con-
trol cells (Fig. 6). The reason to verify p53 expression by
additional Western blot analysis was that an increase in
p53 expression was already demonstrated in different cell
lines overexpressing PrPc. However, we did not detect
enhanced p53 expression following PrPc overexpression
in our cell model.

DISCUSSION

Proteins involved in cell signaling

As proof of principle the 14-3-3 gamma protein (1433G), a
well known cerebrospinal marker used for distinguishing

sporadic Creutzfeldt–Jakob disease (sCJD) from other de-
mentias (Van Everbroeck et al., 2005), exhibited PrPc-
induced up-regulation in SH-SY5Y cells. Proteins belong-
ing to the 14-3-3 family have significant influence on di-
verse signal transduction pathways, regulation of cell cycle
progression and apoptosis (Fu et al., 2000). The finding
that 1433G knock-out mice following intracerebral or intra-
peritoneal inoculation with the Rocky Mountain strain of
scrapie do not show changes in survival rates as com-
pared to wild-type mice (Steinacker et al., 2005), does not
exclude the importance that 1433G might have for the
physiological function of PrPc.

Besides 1433G, GRB2 was another signaling protein
found to be up-regulated following overexpression of PrPc

in the present study. A previous report demonstrated an
interaction between GRB2 and PrPc in yeast two-hybrid
system and co-purification in neuronal microsomal vesi-
cles (Spielhaupter and Schätzl, 2001). This adaptor protein
connects the signals from extracellular/transmembrane re-

Fig. 4. (A–C) Annexin V, transgelin 2 and 14-3-3 gamma are up-regulated following PrPc overexpression in SH-SY5Y cells. Western blot analysis
showing PrPc-mediated marked up-regulation of annexin V, ANXA5 (A), transgelin 2, TAGL2 (B) and 14-3-3 gamma, 1433G (C) in cells overex-
pressing PrPc (pCIneoPRNP) as compared to parental SH-SY5Y cells (control). �-actin expression below each Western blot is given as a control for
an equal protein load. The displayed Western blots are representatives of four independent experiments. Expression level of each protein displayed
by Western blot was quantified by densitometric analysis and is shown as a diagram. Data were normalized against �-actin and are given as a ratio
of each protein/�-actin�SD ** P�0.01; *** P�0.001.
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ceptors to intracellular signaling molecules and is essential
for the formation of signaling complexes.

RHG01 which also showed an enhanced expression
by PrPc-overexpressing cells belongs to small GTP-ases
of the Ras superfamily implied in the control of c-Jun
N-terminal kinase and p38 mitogen activated protein ki-
nase signaling cascades (Coso et al., 1995; Minden et al.,
1995). A recent analysis of protein microarray data re-
vealed that Rho GTP-ase activating protein 15 represents
one of the PrPc interacting proteins (Satoh et al., 2009).

PA1B3, which was likewise up-regulated by PrPc, be-
longs to platelet-activating factor acetylhydrolases (PAF-
AH). PAF-AH are not themselves signaling molecules but
after the cleavage of the acyl group at the sn-2 position
they inactivate platelet-activating factor (PAF) which is one
of the most effective lipid messengers (Prescott et al.,
2000). Identification of specific binding sites for PAF in

subcellular fractions of gerbil brain and rat cerebral cortex
suggests its physiological role in the brain (Domingo et al.,
1988; Marcheselli et al., 1990). Interestingly, the intracel-
lular PAF-AH can hydrolyze some oxidatively modified
phospholipids and take part in their removal (Hattori et al.,
1993). Thus, an up-regulation of PA1B3 by PrPc may
indicate an increased level of oxidized phospholipids in
PrPc overexpressing SH-SY5Y cells.

Proteins involved in cytoskeletal organization

The ability of PrPc to regulate microtubule dynamics and to
reorganise actin cytoskeleton is well documented (Dong et
al., 2008; Málaga-Trillo et al., 2009). TAGL2, a protein
involved in the organization and stability of the actin cy-
toskeleton (Goodman et al., 2003) displayed striking, by
Western blot validated, 260-fold up-regulation in PrPc-

Fig. 5. (A–D) Western blot analyses of PrPc and annexin V expression in mouse neuroblastoma N2a and human neuroblastoma SK-N-LO cells. PrPc

and annexin V expression was determined in 20 �g of proteins from the total cell lysates of N2a (Panels A, B) and SK-N-LO (Panels C, D) cells. Note
high PrPc expression in pCMS-PRNP-EGFP-transfected cells of both cell lines as compared to control (pCMS-EGFP) transfected cells (Panels A, C).
Panel (B) displays markedly higher annexin (Anxa5) expression in PrPc-overexpressing N2a cells than in the control cells (P�0.001). Panel (D) shows
likewise significant up-regulation of annexin (ANXA5) in PrPc-overexpressing SK-N-LO cells as compared to control cells (P�0.01). The displayed
Western blots are representatives of four (N2a) and three (SK-N-LO) independent experiments and were reproduced three times. �-actin expression
below each blot demonstrates an equal protein load.
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overexpressing cells as compared to control cells. Deletion
of the gene Scp1p encoding actin–bundling protein (ver-
tebrate SM22/transgelin) in budding yeast is characterized
by reduced production of reactive oxygen species and
highly significant increase in longevity (Gourlay et al.,
2004). Interestingly, transcriptome analysis following in-
duction of amyloid precursor protein intracellular domain
expression in human neuronal cell culture system revealed
increased transgelin gene synthesis. Moreover, transgelin
was significantly higher expressed in the frontal cortex of
Alzheimer disease patients as compared to their age-
matched controls (Müller et al., 2007). Transgelin can also
suppress the expression of the metallo-matrix proteinase
MMP-9 (Nair et al., 2006) which is involved in the extra-
cellular matrix remodelling. Perhaps, recently reported
PrPc-dependent down-regulation of MMP-9 transcript in
neuronal cells (Pradines et al., 2008) may be additionally
linked to an increase in transgelin expression. To our
knowledge this is the first time evidence for PrPc-induced
regulation of transgelin.

TCTP which exhibits properties of a tubulin binding
protein that associates with microtubules in a cell cycle-
dependent manner (Gachet et al., 1999), showed an up-
regulation by PrPc overexpression. Elevated levels of
TCTP lead to microtubule rearrangements (Gachet et al.,
1999). Noticeably, recombinant prion protein induces tu-
bulin oligomerization and thereby inhibits microtubule
assembly (Nieznanski et al., 2006). Furthermore, TCTP
interacts with the third cytoplasmic domain of Na�/K�-
ATPase alpha subunit in yeast two-hybrid system and inhib-
its it in a dose-dependent manner (Jung et al., 2004). An
overexpression of TCTP in vivo leads to inhibition of Na�/
K�-ATP-ase activity and intracellular Ca2� mobilization
(Kim et al., 2008). Interestingly, third cytoplasmic domain
of Na�/K�-ATP-ase alpha subunit was identified as a PrPc

interacting protein (Petrakis and Sklaviadis, 2006).
RHG01 besides its role as a signaling protein (see

Proteins involved in cell signaling) is also involved in the
regulation and assembly of actin cytoskeleton (Hall, 1998).

UPF0027 protein (CV028), more than a two-fold down-
regulated by PrPc in the present study, has so far unknown
function except that it interacts with vinculin (inferred from

physical interaction from http://www.expasy.org/uniprot/
Q9Y3I0), an actin filament binding protein that localizes in
focal adhesions (Le Clainche and Carlier, 2008).

Proteins involved in protein folding

Influence of PrPc overexpression on proteins involved in
protein folding is of special interest due to the fact that
prion diseases are triggered by the accumulation of mis-
folded prion protein. Our study documented a PrPc-in-
duced up-regulation of protein disulfide isomerase (PDI)
precursor (PDIA1), an endoplasmic reticulum (ER)-resi-
dent protein that functions as a chaperone catalyzing the
isomerization of intra- and intermolecular disulfide bonds.
An overexpression of PDIA1 could indicate a response to
disrupted ER homeostasis. Importantly, an overexpression
of PDI in brains of sCJD patients has also been reported
(Yoo et al., 2002).

Conversely, another protein exhibiting chaperone ac-
tivity, PPID, or cyclophilin 40 showed pronounced down-
regulation upon PrPc overexpression. The results of Co-
hen and Taraboulos (2003) are indicative of the role of
cyclophilins in the normal metabolism of PrPc. In detail, an
addition of the immunosuppressant cyclosporine A inhib-
ited the cyclophylin family of peptidyl-prolyl isomerases
(PPIases) in cultured cells which led to the accumulation of
proteasome-resistant “prion like” PrP species. The authors
also suggested that the possible weakening of PPIase
activity during aging may contribute to development of
sporadic prion diseases.

In analogy, FK506-binding protein 4 (FKBP4) which
exhibited more than a two-fold down-regulation by PrPc in
this study, belongs to a highly conserved family of chap-
erone proteins that bind immunosuppressive drugs and
have PPIase activity. FKBP4 is a part of the steroid recep-
tor complexes to which it is linked via 90 kDa Hsp
(Sanchez, 1990). Of interest, a microarray study revealed
more than a two-fold down-regulation of another member
of this family, FK506 binding protein 1B, in the frontal
cortex of sCJD (Xiang et al., 2005).

Proteins involved in other biological processes

ANXA5 belongs to the annexin family of calcium and phos-
pholipid-binding proteins with poorly understood physio-
logical role. ANXA5 was the only protein that displayed a
several fold up-regulation in human neuroblastoma SH-
SY5Y cell line stably overexpressing PrPc, in mouse N2a
and human SK-N-LO neuroblastoma cells, transiently
overexpressing PrPc, and in the previous study where PrPc

was likewise transiently overexpressed in HEK 293 cells
(Ramljak et al., 2008). Hence, PrPc-mediated ANXA5 reg-
ulation appears neither cell type specific, vector specific
nor dependent on transfection procedure (stable vs. tran-
sient). It was reported that ANXA5 knock-out DT-40 cells
exhibit defect in cytosolic Ca2� signaling and are therefore
resistant to certain apoptotic agents which induce apopto-
sis via a Ca2�-dependent pathway, such as staurosporine
(Hawkins et al., 2002). Conversely, an overexpression of
ANXA5 stimulates apoptotic events (Wang and Kirsch,
2006). Interestingly, it was repeatedly demonstrated that

Fig. 6. p53 immunoreactivity after PrPc overexpression in SH-SY5Y
cells. Western blot analysis displays no difference in the expression of
p53 between SH-SY5Y cells stably overexpressing PrPc (pCIneoPRNP)
and parental cells expressing only endogenous PrPc (control). This West-
ern blot is representative of four independent experiments. �-actin ex-
pression demonstrates an equal protein load.
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PrPc overexpression in different cell lines leads to an in-
creased staurosporine-evoked cell death via a p53 path-
way (Paitel et al., 2002, 2003, 2004). In the present study
we did not observe p53 regulation upon PrPc overexpres-
sion on 2-DE. Moreover, Western blot analysis confirmed
that the level of p53 expression indeed remains un-
changed indicating that the sole PrPc overproduction in
SH-SY5Y cells under basal conditions (no apoptotic agent
added) may not be enough to activate p53 pathway. Nev-
ertheless, it is tempting to speculate that there might be a
functional link between earlier reported higher responsive-
ness of PrPc-overexpressing cells to staurosporine and an
up-regulation of ANXA5. Moreover, gene expression pro-
filing in the frontal cortex of sCJD patients detected an
up-regulation of ANXA5 (Xiang et al., 2005) suggesting a
possible role for this protein in the pathophysiology of CJD.

Expression of PQBP1 was prominently enhanced after
PrPc-overexpression in SH-SY5Y cells as compared to
parental cells. PQBP-1 is a nuclear, ubiquitously ex-
pressed protein found primarily in neurons of central ner-
vous system with abundant levels registered in cerebellar
cortex, hippocampus and olfactory bulb (Waragai et al.,
1999). In vitro overexpression of PQBP-1 suppresses cell
growth and enhances cell susceptibility to a variety of
stress conditions (Waragai et al., 1999). Similarly, PQBP-1
overexpression in vivo results in late-onset neuronal re-
duction in CNS (Okuda et al., 2003). Induction of neuronal
cell death by PQBP-1 seems to occur via mitochondrial
stress, a key molecular event shared among distinct neu-
rodegenerative disorders (Marubuchi et al., 2005). An up-
regulation of PQBP-1 by PrPc let us assume that overex-
pression of PrPc in SH-SY5Y cells indeed disturbs cellular
balance.

GSTO1 is a member of glutathione S-transferase fam-
ily of enzymes that plays an important role in detoxification
processes by conjugating xenobiotic compounds with re-
duced glutathione. An up-regulation of GSTO1 in PrPc-
overexpressing SH-SY5Y cells indicates an increased ox-
idative stress. Likewise, we reported an up-regulation of
glutathione S-transferase P by moderate level of PrPc

overexpression in HEK 293 cells (Ramljak et al., 2008).
SPSY is an enzyme classified to a family of aminopro-

pyltransferases which catalyzes the addition of an amin-
opropyl group to polyamine spermidine in order to form
spermine. The expression of SPSY was down-regulated in
PrPc-overexpressing cells. Natural polyamines including
spermine are ubiquitously distributed in mammalian tis-
sues and are essential for cellular growth and differentia-
tion (Pegg and McCann, 1982). Spermine can act directly
as a free radical scavenger and can protect DNA from free
radical-induced oxidative damage (Ha et al., 1998). Fur-
ther, biological polyamines like spermine not only inhibit
nucleic acid-induced polymerization of prion protein (Bera
and Nandi, 2007) but their membrane targeting leads to
inhibition of PrPsc propagation and offers a possibility to
degrade pre-existing PrPsc aggregates in living cells (Win-
klhofer and Tatzelt, 2000). Down-regulation of spermine
synthase would obviously negatively interfere with the pro-
cess.

Interestingly, UV excision repair protein RAD23 ho-
molog B (RD23B) exhibited nearly two-fold up-regulation in
SH-SY5Y cells overexpressing PrPc. RAD23 proteins have
a role in both DNA repair and regulation of protein stability
(Glockzin et al., 2003; Brignone et al., 2004). A role for
RD23B in the nucleotide excision repair, one of the most
important DNA repair pathways which eliminates wide va-
riety of base lesions, was suggested (Sugasawa et al.,
1996). Therefore, the finding that decrease in SPSY ex-
pression by PrPc was accompanied by an increase in
RD23B expression might indicate enhanced susceptibility
of PrPc-overexpressing SH-SY5Y cells to DNA damage.

ADHX, two-fold up-regulated in PrPc-overexpressing
cells is the only class of these enzymes that is expressed
in adult human brain and whose primary function is not
ethanol oxidation. A possible explanation for an up-regu-
lation of this enzyme by PrPc is still to be elucidated.

FUMH, an enzyme of tricarboxylic acid cycle which
converts fumarate to malate, was up-regulated by PrPc

overexpression. Another mitochondrial enzyme MTDC
with unclear physiological function was down-regulated by
PrPc overproduction. Nevertheless, MTDC knock-out mice
die in utero suggesting its essential role during embryonic
development possibly related to mitochondrial folate-me-
tabolism (Di Pietro et al., 2002).

CONCLUSION

In summary, stable overexpression of PrPc in SH-SY5Y
human neuroblastoma cells regulates expression of pro-
teins involved in different cellular activities. The majority of
PrPc-regulated proteins is associated with cell signaling,
cytoskeletal organization and protein folding. Interplay be-
tween these protein groups governed by PrPc might hold
the key to PrPc cellular function. An up-regulation of
TAGL2, PQBP-1, PDIA1, GSTO1, ANXA5 as well as
down-regulation of PPID, FKBP4 and SPSY suggests dis-
turbed cellular homeostasis in PrPc-overexpressing SH-
SY5Y cells, but sole overexpression of PrPc is not enough
to alter p53 expression and to possibly activate a p53-
dependent apoptotic pathway in SH-SY5Y cells.

In the future experiments we intend to reveal the ef-
fects of staurosporine treatment on protein expression
changes and phosphorylation patterns in SH-SY5Y cells
overexpressing PrPc. The reason is repeatedly demon-
strated higher susceptibility of PrPc-overexpressing cells to
apoptotic agents such as staurosporine. Although it is
known that a pro-apoptotic phenotype of PrPc-overex-
pressing cells following the treatment with staurosporine is
controlled through a p53 pathway, other proteins involved
in the process as well as their phosphorylation patterns are
widely unknown.

An important issue of this and similar studies is the
comparison of data obtained either by proteomics or tran-
scriptome analysis in different experimental models. This
is mandatory in order to filter candidate proteins that might
play a decisive role in executing PrPc physiological func-
tion. In our opinion, ANXA5 could be one of the candidates
considering its up-regulation by PrPc in this study, using
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three different cell lines, two different vectors and two
different transfection procedures, in our previous study
(Ramljak et al., 2008) and after gene expression profiling in
the frontal cortex of sCJD patients (Xiang et al., 2005).
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3. DISCUSSION 

 

3.1. Codon 129 polymorphism specific CSF proteome pattern in sCJD 

Disease phenotype of sCJD is mainly influenced by the methionine/valine (M/V) 

polymorphism at codon 129 in the human prion protein gene (PRNP gene) and by the 

presence of two major types of pathological, protease-resistant forms of the prion protein 

(PrP
Sc

) leading to 2 different profiles in Western blot (type 1 and type 2). The clinical and 

pathological characteristics of these molecular subtypes markedly differ with respect to 

symptoms at onset, localisation and type of the pathological changes as well as PrP
Sc

 

deposition pattern (Parchi et al., 1999; Gambetti et al., 2003). This might suggest the 

involvement of different molecular pathways in sCJD pathogenesis. 

At the molecular level, TSEs are caused by the conversion of a host cellular glycoprotein, the 

prion protein (PrP
C
) into a pathological conformer called scrapie prion protein (PrP

Sc
), which 

tends to aggregate and accumulate in the brain tissue. The presence of the pathological form 

of PrP may induce brain proteome changes. In turn, these alterations may also be reflected in 

CSF. 

However, due to a high dynamic range of protein abundance in CSF spanning twelve orders 

of magnitude (Anderson et al., 1998) and the fact that around 10 very well known proteins 

(e.g. albumin, immunoglobulins, transferrin and haptoglobin) comprise up to 90-95% of the 

total protein contents, depletion of the high abundant proteins is indispensible for in-depth 

exploration of sCJD-associated alterations in CSF proteome.  

The densitometric and statistical analysis of CSF 2D maps showed up-regulation of 27 and 

down-regulation of 3 proteins in MM-sCJD as well as up-regulation of 24 proteins in VV-

sCJD in comparison to non-demented neurological controls. Twenty one proteins showed 

common up-regulation for both codon 129 polymorphism in sCJD. For instance, the leucine-

rich alpha-2-glycoprotein (LRG), complement C4 and superoxide dismutase [Cu-Zn] (SOD-

1), which belong to the group of MM-sCJD dysregulated proteins, were already shown to be 

implicated in the pathobiology of PrP (Milhavet et al., 2002; Milhavet et al., 2000; Mabbott et 

al., 2004; Xiang et al., 2004). The group of VV-sCJD specifically regulated proteins includes 

DJ-1 protein, fibrinogen alpha chain (FGA) and angiotensinogen (ANGT). The detection of 

regulated proteins specific for codon 129 genotype may confirm the hypothesis which 

assumes the involvement of different molecular pathways in sCJD pathogenesis depending on 

PrP
Sc

 strain. Moreover, the dominant up-regulation of proteins in CSF from sCJD-affected 



58 

 

patients may occur due to release or secretion mechanisms of the protein content from 

impaired neural cells into the extracellular space and then eventually into CSF. However, this 

far-reaching hypothesis has to be proved by further investigations. 

3.3. Implication of glycolytic enzymes in sCJD pathology 

Almost 40% of sCJD specific regulated proteins in CSF are involved in glucose metabolism, 

thus in energy metabolism. All these enzymes displayed up-regulation in sCJD regardless of 

codon 129 polymorphism. The increase in CSF level of glucose-6-phosphate isomerase 

(G6PI), lactate dehydrogenase (LDH) and fructose-bisphosphate aldolase A (ALDOA) was 

confirmed on a larger group of sCJD patients including three possible codon 129 

polymorphisms as well as on three different types of controls consisting of non-demented 

neurological controls (NDC), patients with vascular dementia (VD) and Alzheimer’s disease 

(AD). Subsequently, abundance of glycolytic enzymes in the brain as well as their cellular 

localization was determined. 

Additionally to the increased level of G6PI in CSF, its decreased level was found in the brain 

of MM1-sCJD subtype. Moreover, in NDC and AD control groups, G6PI is predominantly 

localized in neurons, while in sCJD a shift in cellular distribution is occurring and G6PI is 

mostly present in reactive astrocytes. With these data we demonstrate for the first time the 

involvement of G6PI in prion-induced pathological process. Furthermore, different regulation 

of G6PI in the brain could suggest that its expression and/or secretion may be modulated in a 

PrP
Sc

 strain-dependent manner.  

For ALDOA and LDH increase in CSF level did not correlate with unchanged level in the 

brain when compared to age-matched control group. Moreover, partial shift in ALDOA 

cellular distribution was observed in the sCJD. Diffuse ALDOA immunostaining was 

predominantly found in neurons in the grey matter and in astrocytes in the white matter of 

NDC and AD, whereas, the ALDOA immunoreactivity in the sCJD was mostly detected in 

neuronal cell bodies.  

Beside their glycolytic function, all three investigated enzymes play other role in cellular 

physiology. For instance, G6PI possesses an activity of extracellular cytokine and acts as a 

growth factor promoting the survival and neurite outgrowth of motor and sensory neurons, as 

well as an autocrine motility factor inducing cell motility (Gurney et al., 1986; Niinaka et al., 

1998; Watanabe et al., 1996). Furthermore, it has been shown that the inhibition of G6PI 

expression caused an increased susceptibility to caspase-dependent apoptosis in PC12 

neuronal cells as well as its overexpression and subsequent secretion of G6PI protected NIH-
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3T3 fibroblasts against PI3K/Akt mediated apoptosis (Romagnoli et al., 2003; Tsutsumi et al., 

2003). This finding indicates anti-apoptotic properties of G6PI. Moreover, the positive G6PI 

immunostaining in astrocytes occurred two weeks after mechanical injury of murine cerebral 

cortex and its expression was shown to be elevated in the later stage of the brain infection 

with rabies virus in C3H mice model (Decourt et al., 2005; Prosniak et al., 2003). This may 

suggest that expression of G6PI in astrocytes can be a response to signals coming from 

impaired neurons to increase their metabolism and prolong survival. Taken together, the same 

motion of G6PI action might occur in sCJD-affected brain, but might be differentially 

modulated by different PrP
Sc

 strains. 

LDH is an interaction partner of PrP
C 

and its expression was found to be up-regulated when 

PrP
C 

was introduced into Prnp
0/0 

cells (Ramljak et al., 2008; Rutishauser et al., 2009; Watts et 

al., 2009). Moreover, PrP
C
 deficiency in astrocytes leads to glutamate-independent elevation 

of lactate transport (Kleene et al., 2007). Therefore, it should be considered that LDH is 

possibly not only a marker of cellular damage, but could play a more specific role in prion-

induced pathological processes. We hypothesize that a loss or gain of PrP function in 

astrocytes of CJD-affected brain may result in elevated level of extracellular lactate leading to 

acidosis-induced damage in neurons.  

It has been shown, that glyceraldehyde-3-phosphate, an enzymatic product of ALDOA, is 

implied in the protection of cells against apoptosis via the inhibition of caspase-3 activity 

(Jang et al., 2009). Moreover, neurotoxicity of doppel (Dpl), PrP
C
 homolog, in Purkinje cells 

of the Ngsk Prnp
0/0

 mouse model varies according to aldolase C expression. The higher 

sensitivity to Dpl-induced neurotoxicity and subsequent increased cell loss, is characteristic 

for Purkinje cells from aldolase C-negative compartments of the cerebellum (Heitz et al., 

2008). Therefore, the presence of ALDOA in impaired neurons and its secretion might play 

an anti-apoptotic role in sCJD.  

Both, glycolysis and apoptosis are highly conserved and finely regulated multi-step processes 

maintaining cellular homeostasis. The activation of apoptotic pathway is dependent on energy 

status and, hence, apoptosis might be dependent on glucose metabolism. Based on numerous 

studies demonstrating that glucose metabolism is involved in cell death and survival, it is 

reasonable to speculate that these two crucial processes are linked. However, precise 

mechanisms underlying the regulation of glucose metabolism and the implication of 

glycolytic enzymes in apoptosis remain to be elucidated. 
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3.3. Disturbances in cellular homeostasis upon stably PrP
C
-overexpression in human 

neuroblastoma SH-SY5Y cells
 

Differential proteome analysis of human neuroblastoma SH-SY5Y cells stably overexpressing 

human PrP
C 

was performed to study protein expression changes upon permanent 

overproduction of PrP
C
.  

Densitometric analysis of silver stained 2D gels showed 18 differentially regulated proteins in 

SH-SY5Y cells overexpressing human PrP
C
. Between them, 13 proteins were up- and 5 

down-regulated. Few biological processes, especially, signal transduction, cytoskeleton 

organization and protein folding are influenced by overproduction of PrP
C 

in SH-SY5Y cells. 

To reinforce obtained results, the changes in expression were confirmed by Western blot for 

three selected proteins: annexin A5 (ANXA5), transgelin-2 (TAGL2) and 14-3-3 protein 

gamma (1433G). Additionally, in order to further verify our data, densitometric analysis of 

Western blots following transient overexpression of PrP
C 

in mouse neuroblastoma N2a and 

alternative human neuroblastoma SK-N-LO cells was performed. In both cell lines up-

regulation of ANXA5 was found as compared to cells transfected with control vector. For two 

remaining proteins, TAGL2 and 1433G, changes of their expression were reproduced neither 

in N2a nor in SK-N-LO cells.  

In different cell lines, PrP
C
-overproduction was shown to increase expression of the tumor 

suppressor oncogene p53 (Paitel et al., 2002; Paitel et al., 2003). Therefore, supplemental 

Western blot analysis was performed in order to verify p53 expression in stably PrP
C
 

overexpressing SH-SY5Y cells. However, no enhancement in p53 production following stable 

PrP
C
 overexpression was detected.  

To the proteins involved in signal transduction which expression was modulated by stable 

PrP
C 

overexpression in SH-SY5Y cells belong: 14-3-3 protein gamma (1433G), growth factor 

receptor bound protein 2 (GRB2), Rho GTP-ase activating protein 1 (RHG01), and platelet-

activating factor acetylhydrolase IB subunit gamma (PA1B3).  

Proteins belonging to the 14-3-3 family modulate diverse signal transduction pathways 

regulating cell cycle progression and apoptosis (Fu et al., 2000). The 14-3-3 protein gamma is 

a well known as CSF diagnostic marker for differential diagnosis of CJD (Van Everbroeck et 

al., 2005; Zerr et al., 1996) and expression of other 14-3-3 proteins (beta, eta and zeta 

isoform) was found to be decreased in sCJD-affected brain (Xiang et al., 2005). Moreover, 

14-3-3 proteins are interaction partners forming molecular complexes with PrP
C 

(Satoh et al., 

2006; Watts et al., 2009). Therefore, 14-3-3 proteins may have an impact on the physiological 

function of PrP
C
.  
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Growth factor receptor-bound protein 2 (GRB2) is another signaling protein which was found 

to be up-regulated in stable PrP
C 

overexpressing SH-SY5Y cells. This protein connects 

signals from extracellular/transmembrane receptors with intracellular signaling molecules and 

is crucial for the formation of signaling complexes. Furthermore, yeast two hybrid system and 

co-precipitation in neuronal microsomal vesicles showed that GRB2 directly interact with 

PrP
C 

(Spielhaupter and Schatzl, 2001). 

To the proteins involved in cytoskeleton organization and dysregulated through PrP
C
 

overexpression, belong: transgelin 2 (TAGL2), translationally-controlled tumor protein 

(TCTP) and Rho GTP-ase activating protein 1 (RHG01). 

The involvement of PrP
C
 in the regulation of microtubule dynamics and reorganization of 

actin cytoskeleton has been already reported (Dong et al., 2008; Málaga-Trillo et al., 2009). 

TAGL2, which displayed enormous up-regulation in Western blot analysis, is involved in the 

organization and stability of the actin cytoskeleton (Goodman et al., 2003). Interestingly, 

transcriptome studies following induction of amyloid precursor protein intracellular domain 

expression in human neuronal cells revealed increased expression of the gene encoding 

TAGL. Moreover, TAGL was significantly higher expressed in AD brain as compared to age-

matched controls (Müller et al., 2007). These findings suggest that TAGL2 might play some 

role in PrP pathophysiology.  

TCTP, which exhibits properties of tubulin-binding protein and is associated with 

microtubules in cell cycle-dependent manner, showed up-regulation induced by PrP
C
-

overexpression in SH-SY5Y cells. Its elevated level leads to microtubule rearrangements 

(Gachet et al., 1999). In contrast, recombinant PrP stimulates tubulin oligomerization and 

thereby inhibits microtubule assembly (Nieznanski et al., 2006). Moreover, TCTP was found 

to interact with the third cytoplasmic domain of Na
+
/K

+
-ATP-ase alpha subunit in yeast two-

hybrid system and inhibits it in dose-dependent manner (Jung et al., 2004). Interestingly, the 

third cytoplasmic domain of Na
+
/K

+
-ATP-ase alpha subunit is also an interaction partner of 

PrP
C 

(Petrakis and Sklaviadis, 2006).    

To the proteins involved in the signal transduction which expression was modulated by stable 

PrP
C 

overexpression in SH-SY5Y cells belong: 40 kDa peptidyl-prolyl cis-trans isomerase 

(PPID), FK506-binding protein 4 (FKBP4), and disulfide isomerase precursor (PDIA1).  

Due to the fact that prion diseases are triggered by accumulation of misfolded PrP, the 

influence of PrP
C 

overexpression on proteins involved in protein folding is of special interest. 

The expression of PDIA1, a chaperone catalyzing the isomerisation of intra- and 
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intermolecular disulfide bonds, was up-regulated in the analyzed cell model. Interestingly, an 

overexpression of PDIA1 was also found in sCJD-affected brain (Yoo et al., 2002).  

PPID, also known as cyclophilin 40, showed up-regulation upon PrP
C
-overexpression. It has 

been already shown that cyclophilins play a role in PrP
C
 metabolism. The inhibition of the 

cyclophilin family of peptidyl-propyl isomerases in cultured cells leads to the accumulation of 

proteasome-resistant scrapie-like PrP aggregates (Sunderland et al., 2003).  

3.4. Annexin A5 as molecular partner for PrP pathobiology 

The ANXA5 is the only protein which was up-regulated upon PrP
C
-overexpression in all three 

different neuroblastoma cells used in our study as well as in a previous work where PrP
C 

was 

transiently overexpressed in HEK 293 cells (Ramljak et al., 2008). Therefore, PrP
C
-mediated 

ANXA5 regulation appears neither cell type specific, vector specific nor dependent on 

transfection mode. Moreover, up-regulation of ANXA production was found in global gene 

expression profiling of sCJD-affected brain (Xiang et al., 2005). ANXA5 belongs to the 

family of calcium-dependent phospholipid-binding proteins, but its physiological role is still 

poorly understood. In vitro experiments showed that ANXA5 could be involved in apoptosis, 

blood coagulation as well as calcium singaling and transport (Yoshizaki et al., 1992; Gerke 

and Moss, 1997; Reutelingsperger et al., 1997). ANXA5 is also vulnerable to form voltage-

dependent calcium channels in phospholipid bilayer (Huber et al., 1992; Liemann et al., 

1996). Additionally to its cytoplasmic localization, ANXA5 can be secreted or can bind to 

phosphaditylserine on the outer cell surface. The presentation of phosphaditylserines on the 

cell surface occurs during apoptosis and it is a recognition signal for phagocytes. This process 

can provoke unnecessary coagulation and inflammatory response. ANXA5 can shield surface-

exposed phosphaditylserines, thus it can inhibit their pro-coagulant and pro-inflammation 

activity. However, it does not block completely phagocytosis of apoptotic bodies which can 

still be efficiently utilized (van Engeland et al., 1996; Reutelingsperger et al., 1997). Taken all 

together, ANXA might play a role in the pathophysiology of PrP.  

In conclusion, stable PrP
C 

overexpression in SH-SY5Y neuroblastoma cells disturbs cellular 

homeostasis, especially processes associated with cell signaling, cytoskeletal organization and 

protein folding. However, sole PrP
C
-overexpression is not enough to alter p53 expression and 

possibly activates p53-dependent apoptotic pathway.  
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The comparison between data obtained from different proteomic and transcriptomic 

experimental models allows filtering candidate proteins that might play a decisive role in the 

physiology and the pathology of PrP
C
. In our opinion, ANXA5 could be one of these 

candidates. 
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4. SUMMARY 

 

This thesis includes 2 original publications that investigate the physiology and the pathology 

of the human prion protein.  

In our first study, we analyzed CSF proteome alterations in living, symptomatic sCJD patients 

with two different codon 129 genotypes (MM and VV) using a proteomic approach consisted 

of 2D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry 

analysis.  

Densitometric analysis of 2D gels showed the up-regulation of 27 and down-regulation of 3 

proteins in the MM-sCJD as well as the up-regulation of 24 proteins in the VV-sCJD when 

compared to control. Beside proteins showing common regulation for both codon 129 

genotypes in sCJD, some proteins seem to be specifically regulated in certain genotype. The 

detection of these proteins may confirm the hypothesis which assumes the involvement of 

different molecular pathways in sCJD pathogenesis depending on PrP
Sc

 strain. 

Almost 40% of sCJD specifically regulated proteins in CSF are involved in glucose 

metabolism, regardless of codon 129 polymorphism. The validation phase of selected 

glycolytic enzymes using Western blot technique confirmed up-regulation of ALDOA, LDH 

and G6PI when compared to three different control groups (NDC, AD and VD). 

Furthermore, the immunolabeling showed that G6PI is present in reactive astrocytes in sCJD 

affected brain while it is predominantly localized in neurons in age-matched control brain. 

Additionally, decreased level of G6PI was found in the brain of MM1-sCJD subtype. With 

these data, we have demonstrated for the first time the implication of G6PI in prion-induced 

pathology. 

The identification of sCJD-regulated proteins in CSF proteome alterations in living, 

symptomatic sCJD- patients will broaden our knowledge about pathological processes 

occurring in sCJD, as they are still not fully understood. Moreover, they could serve as 

protein source to identify novel biomarkers for differential sCJD diagnosis.  

In our second study, we also applied a proteomic approach in order to reveal proteins, and 

thereby biological processes, affected by stable overexpression of human PrP
C
 in human 

neuroblastoma SH-SY5Y cell line. 

Densitometric analysis of silver stained 2D gels showed 18 differentially regulated proteins in 

SH-SY5Y cells overexpressing human PrP
C
. Between them, 13 proteins were up- and 5 
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down-regulated. The PrP
C 

overexpression in SH-SY5Y cells affected mostly few biological 

processes such as signal transduction, cytoskeleton organization and protein folding. 

An increased expression of tumor suppressor oncogene p53 caused by PrP
C 

overproduction 

was already demonstrated in different cell lines (Paitel et al., 2002; Paitel et al., 2003). 

Therefore, supplemental Western blot analysis was performed to verify p53 expression in SH-

SY5Y cells. However, no enhancement in its production following stable PrP
C
 overexpression 

was detected.  

The ANXA5 is the only one protein which was up-regulated upon PrP
C 

overexpression in 

three different neuroblastoma cells, and in a previous study where PrP
C 

was transiently 

overexpressed in HEK293 cells (Ramljak et al., 2008). Therefore, PrP
C
-mediated ANXA5 

regulation appears neither cell type specific, vector specific nor dependent on transfection 

mode. ANXA5 belongs to the family of calcium and phospholipid-binding proteins with 

poorly understood physiological role. However, ANXA5 up-regulation was found in gene 

expression profiling of sCJD-affected brain (Xiang et al., 2005) suggesting its possible role in 

the pathophysiology of sCJD.  

In conclusion, stable PrP
C 

overexpression in SH-SY5Y neuroblastoma cells is disturbing 

cellular homeostasis, especially processes associated with cell signaling, cytoskeletal 

organization and protein folding. However, sole PrP
C 

overexpression is not enough to alter 

p53 expression and possibly activate p53-dependent apoptotic pathway.  

The comparison between data obtained from different proteomic and transcriptomic 

experimental models allows filtering candidate proteins that might play a decisive role in the 

physiology and the pathology of PrP
C
. In our opinion, ANXA5 could be one of these 

candidates. 
 

Proteomics gives a unique opportunity to analyze both physiological and pathological 

processes at the protein level on a global scale. Proteome analysis of SH-SY5Y human 

neuroblastoma cells stably overexpressing PrP
C
 revealed proteins whose expression is directly 

modulated through PrP
C 

and consequently physiological processes which are influenced by 

PrP
C 

level in cells. On the other hand side, identification of CSF proteome alterations in sCJD 

provides more information about pathological processes occurring in the brain and caused by 

presence of PrP
Sc

. Both these studies broaden our knowledge about still not fully understood 

pathobiology of PrP.    
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