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Abbreviation  

ARMS    allele-specific tetra-primer amplification refractory mutation system 

ASTQ    allele-specific transcript quantification 

CD14    cluster of differentiation protein 14 

cDNA     complementary DNA 

CDK     cyclin dependent kinase 

CpG-DNA   cytosine-phosphate-guanine-DNA 

CTD     carboxyl-terminal domain 

DC     dendritic cell  

dsRNA    double-stranded  

EMSA    electrophoretic mobility shift assay 

gDNA     genomic DNA 

GPI     glycosyl phosphatidylinositol  

HaploChIP    haplotype-specific chromatin immunoprecipitation 

HCV     hepatitis C virus  

HWE     Hardy-Weinberg equilibrium 

IFN     interferon 

IKK     IκB kinase 

IL     interleukin  

IRAK     interleukin 1 receptor associated kinase  

IRF    interferon regulatory factor 

LD     linkage disequilibrium  

LPS     lipopolysaccharide  

LBP     LPS-binding protein 

MAF     minor allele frequency  

Med     mediator complex 

mCD14   membrane CD14 

MD2    myeloid differentiation protein 2 

mRNA    messenger RNA 

MyD88   myeloid differentiation factor 88 

NF    nuclear factor 

NK     natural killer 

PAMP    pathogen-associated molecular pattern  

PBMC    peripheral blood mononuclear cell  
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PCR     polymerase chain reaction  

pDC     plasmacytoid DC 

Pro     proline 

PRR     pathogen recognition receptor 

RNAPII   RNA polymerase II 

RFLP     restriction fragment length polymorphism 

rSNP     regulatory SNP  

sCD14    soluble CD14  

Ser     serine 

ser2-P/ser5-P   serine 2 / serine 5 phosphorylated 

SNP     single nucleotide polymorphism  

SNRPN    small nuclear ribonucleoprotein polypeptide N  

ssRNA    single-stranded RNA  

TFII     transcription factor II  

Thr     threonine 

TIR    Toll/interleukin 1 receptor 

TIRAP    TIR domain containing adaptor protein 

TLR    Toll-like receptor 

TNF     tumor necrosis factor  

TRAM    TIR domain containing adaptor molecule 

TRIF    TIR domain containing adaptor inducing IFN-β 

Tyr     tyrosine 
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1. Introduction 

 

1.1. Innate immune system 

The human host defence serves two main functions, (i) to generate immune response to invading 

pathogens and (ii) to suppress development of tumor cells (Tamura et al., 2008). The immune 

system has been traditionally divided into the innate and the adaptive part. While the adaptive 

component is organized in two specialized cell classes, T cells and B cells, that provide a very large 

and extremely diverse repertoire of antigen receptors, the effector mechanisms of the innate part of 

host immunity are activated immediately after infection and rapidly control the replication of the 

infecting pathogen (Medzhitov and Janeway, 2000). Recognition of invading pathogens is 

dependent on a limited number of pathogen recognition receptors (PRRs) that recognize pathogen-

associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) or viral nucleic acids 

(1.1.1). Signal transduction activated by these PRRs induces various target genes including type I 

interferons (IFNs), proinflammatory cytokines and chemokines. To carry out this task of cellular 

response a genetic regulatory network controlled by a specific set of transcription factors dependent 

on cell type and/or cellular stimuli is provided by the innate immune system (Akira et al., 2006; 

Szabo et al., 2006; Tamura et al., 2008). The functional diversity of transcription factors is 

dependent on its modification and/or interaction with other transcription factors activated in the 

same cell type and such regulatory networks are critical for host defence against extracellular 

pathogens as they rapidly alter the expression of relevant genes (Taniguchi et al., 2001). 

 

1.1.1. PRRs  

Invading pathogens are detected by PRRs, which recognize highly conserved structures only 

produced by microorganisms, like LPS, peptidoglucan, lipoteichoic acids, double-stranded RNA 

(dsRNA) and glucans. The PRRs are germ-line-encoded receptors which mean that their specificity 

for the classes of infectious pathogens is genetically predetermined. The expression of these 

receptors is not clonal. This fact accounts for the rapid kinetics of the innate immune response, thus 

once an effector cell identifies PAMPs the effector function can be performed immediately and not 

after proliferation of the acting cell (Medzhitov and Janeway, 2000; Szabo et al., 2006).  

PRRs can be classified by structure or by function. Structurally, these receptors belong to several 

protein families, such as leucine-rich repeat domains, calcium-dependent lectin domains and 

scavenger-receptor protein domains. Functionally, PRRs can be divided into three classes: secreted, 

endocytic and signalling (Medzhitov and Janeway, 2000).  
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On recognizing the pathogens, secreted PRRs flag the microbial cell for the complement system and 

phagocytes, endocytic PRRs mediate the uptake and delivery of the pathogens into lysosomes and 

signalling receptors activate signal-transduction pathways that induce the expression of a variety of 

immune-response genes (Medzhitov and Janeway, 2000).  

 

1.1.2. Toll-like receptors (TLRs) 

The Toll-like receptor (TLR) family is the best characterized class of PRRs in mammals and the 

number of TLR genes ranges between 10 and 15 in most mammalian species (Iwasaki and 

Medzhitov, 2004). TLRs are widely expressed on immune cells and recognition of PAMPs induces 

a prompt and potent innate immune response signalled through adaptor molecules, like myeloid 

differentiation factor 88 (MyD88), to activate transcription factors like nuclear factor (NF)-κB or 

interferon regulatory factors (IRFs) that induce expression of antibacterial or antiviral response 

genes.  

TLR1, TLR2, TLR4-6 are expressed on the cell surface and TLR3, TLR7-9 are located on the 

endosome-lysosome membrane. TLR1, TLR2 and TLR6 recognize bacterial lipopeptides while 

TLR4 and TLR5 are receptors for Gram-negative bacterial cell wall components such as LPS or 

flagellin, respectively. Intracellular TLRs detect viral-derived or synthetic dsRNA and viral-related 

single-stranded RNA (ssRNA) and unmethylated cytosine-phosphate-guanine DNA (CpG-DNA) of 

bacteria and viruses (Fig. 1), but ligands of TLR10, TLR12 and TLR13 are still unidentified 

(Beutler et al., 2006; Beutler, 2009; Seki and Brenner, 2008; Szabo et al., 2006; Takeda and Akira, 

2005).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: TLRs and their ligands  

TLR2 is essential in the recognition of microbial 

lipopeptides. TLR1 and TLR6 cooperate with 

TLR2 to discriminate subtle differences between 

triacyl and diacyl lipopeptides, respectively. 

TLR4 is the receptor for LPS. TLR9 is essential 

in CpG-DNA recognition. TLR3 is implicated in 

the recognition of viral dsRNA, whereas TLR7 

and TLR8 are involved in viral-derived ssRNA 

recognition (Alexopoulou et al., 2001; Heil et al., 

2004; Takeda and Akira, 2005). TLR5 recognizes 

flagellin (From Takeda and Akira, 2005).  
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1.1.3. TLR expression in different cell types 

The epithelial layer provides the first line of defence against invading pathogens. As a consequence, 

many TLRs are expressed on epithelial cells of the intestinal, respiratory and urogenital tracts. 

Microbial detecting by TLRs expressed by these cells leads to production of cytokines, chemokines 

and antimicrobial peptides (Iwasaki and Medzhitov, 2004). Many types of PRRs are expressed by 

dendritic cells (DCs), including C-type lectins, mannose receptors and TLRs. Studies of DC subsets 

revealed that TLRs have distinct expression patterns and there are also distinct differences in 

expression and responsiveness of certain TLRs in freshly isolated DCs versus in vitro-derived DCs.  

Plasmacytoid DCs (pDCs) express TLR7 and TLR9, whereas myeloid DCs (mDCs) express TLR1-

3, TLR5, TLR6 and TLR8. Human blood monocytes express TLR1, 2, 4 and 5. Only monocytes 

and in vitro-differentiated DCs express TLR4 and respond thus to LPS stimulation (Iwasaki and 

Medzhitov, 2004).  

TLRs are also expressed by liver cells. Hepatic pDCs also produce tumor necrosis factor (TNF) -α, 

interleukin (IL) -6 and IL-12 by TLR7 and TLR9 stimulation. In general, hepatic DCs are 

hyperresponsive to TLR ligands. Kupffer cells are the first cells to encounter gut-derived toxins 

including LPS, thus TLR4 signalling drives Kupffer cells to produce TNF-α, IL-6, -12, -18 and 

anti-inflammatory cytokine IL-10. IL-12 and IL-18 activate hepatic natural killer (NK) cells to 

increase the synthesis and release of antimicrobial IFN-γ. Kupffer cells also express TLR2, TLR3 

and TLR9. Hepatocytes express a very low level of TLR2-5 and their responses are fairly weak in 

vivo. Hepatic stellate cells (HSCs) express TLR4 and TLR9, while TLR2-5 are expressed by biliary 

epithelial cells (Seki and Brenner, 2008).  
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1.1.4. TLR signalling pathways 

All TLR members, except TLR3, are associated with the common adaptor molecule MyD88 to 

trigger inflammatory response such as TNF-α and IL-12. TLR3 and TLR4 utilize the 

Toll/interleukin-1 receptor (TIR) domain containing the adapter-inducing IFN-β (TRIF) molecule to 

induce type I IFN. TLR signalling pathways are MyD88-dependent or MyD88-independent/TRIF-

dependent (Fig. 2). The MyD88-dependet pathway leads to activation of the transcription factor 

NF-κB and induces expression of inflammatory cytokines like TNF-α, IL-6 and IL-12. TLR3 and 

TLR4 utilize the MyD88-independent component to induce IFN-β. Here, TRIF is used to activate 

an inhibitor of NF-κB, which leads to activation of IRF-3 followed by IFN-β production (Armant 

and Fenton, 2002; Seki and Brenner, 2008; Szabo et al., 2006; Takeda and Akira, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: TLR signalling pathways 

TLR signalling pathways originate from the cytoplasmic TIR domain. A TIR domain-containing adaptor, MyD88, 

associates with the cytoplasmic TIR domain of TLRs, and recruits IL-1 receptor-associated kinase (IRAK) to the 

receptor upon ligand binding. IRAK then activates tumor necrosis receptor-associated factor (TRAF)-6, leading to the 

activation of the inhibitor of NFκB (IκB) kinase (IKK) complex which consists of IKKα, IKKβ and NFκB essential 

modulator (NEMO)/IKKγ. The IKK complex phosphorylates IκB and results in nuclear translocation of NF-κB which 

induces expression of inflammatory cytokines. A second TIR domain containing adaptor protein (TIRAP), is involved 

in the MyD88-dependent signalling pathway via TLR2 and TLR4. In TLR3- and TLR4-mediated signalling pathways, 

activation of IRF-3 and induction of IFN-β are observed in a MyD88-independent manner. A third TIR domain-

containing adaptor, TRIF, is essential for the MyD88-independent pathway. Non-typical IKKs, IKKi/IKKε and the 

threonine protein kinase 1 (TBK1) mediate the activation of IRF-3 downstream of TRIF. A fourth TIR domain-

containing adaptor molecule (TRAM) is specific to the TLR4-mediated MyD88-independent/TRIF-dependent pathway 

(From Takeda and Akira, 2005).  
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1.1.5. TLR4-MD2-CD14 complex and LPS 

LPS is recognized by a receptor complex of TLR4, myeloid differentiation protein 2 (MD2) and the 

cluster of differentiation protein 14 (CD14), which are present on many mammalian cell types 

including macrophages and DCs (Miller et al., 2005; Seki and Brenner, 2008). Recognition of lipid 

A (endotoxin), a LPS component (Fig. 3a), requires an accessory protein, the LPS-binding protein 

(LBP), which delivers LPS to CD14, a high-affinity, glycosyl phosphatidylinositol (GPI)-anchored 

membrane protein that can also circulate in a soluble form. CD14 concentrates LPS for binding to 

the TLR4-MD2 complex (Fig. 3b). Upon binding of LPS, the intracellular domain of TLR4 recruits 

TIRAP and MyD88 for MyD88-dependent signalling, resulting in activation of NF-κB, while 

TRAM bridges TRIF for the MyD88-independent pathway to activate IRF-3 which induces type I 

IFN expression (Fig. 2) (Beutler, 2009; Godowski, 2005; Palsson-McDermott and O'Neill, 2004; 

Seki and Brenner, 2008). 

Although lipid A is an essential component of all Gram-negative bacterial membranes, it is highly 

diverse. Number and length of fatty-acid sides of lipid A were observed to be manifold and this 

variability could have profound implications for disease, particularly in humans, owing to an altered 

recognition by the TLR4 complex. In fact, structure-function analyses have indicated that number 

and length of acid side chains are critical for TLR4 signalling in humans (Miller et al., 2005). 

Humans evolved discriminatory mechanisms for different lipid A structures which could result in 

different infection disease outcomes. It was shown that the extracellular domain of TLR4 is less 

conserved than the cytoplasmatic signalling domain and that there is also a hypervariable 

extracellular domain (Fig. 3b) that can discriminate between different lipid A structures (Miller et 

al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Structure of LPS and TLR4 

(a) LPS is composed of lipid A, core oligosaccharide 

and O-antigen. (b) Components of the TLR4–MD2–

CD14 receptor complex. Different TLR4 regions are 

shown: leucine-rich repeats (LLRs), a hypervariable 

region (HYP) and the intracellular TIR domain. 

Membrane bound CD14 with a GPI-anchor (From Miller 

et al., 2005).  
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1.1.6. CD14 

CD14 is present on the surface of different myeloid cells and at very low numbers on B-

lymphocytes, basophils, mammary cells, placental trophoblasts and gingival fibroblasts. Although 

CD14 is not a transmembrane protein, but is attached to the plasma membrane via the GPI tail, 

there exists also a soluble CD14 (sCD14) molecule which is found in normal human serum and in 

culture supernatants of human monocytes and cell lines (Antal-Szalmas, 2000). The sCD14s have 

an important role in LPS-mediated activation of CD14-negative (but TLR4-positive) cells, like 

epithelial and smooth muscle cells (Arroyo-Espliguero et al., 2004; Palsson-McDermott and 

O'Neill, 2004). Differentiation of monocytes, in tissues, into macrophages is accompanied by a 

change in membrane CD14 (mCD14) numbers. The synthesis and expression of CD14 in 

monocytes, macrophages and neutrophils can be altered and regulated by several mediators. In 

neutrophils, TNF-α and LPS are known to rapidly upregulate CD14 expression, while in 

monocytes, expression is decreased by the anti-inflammatory cytokines IL-4 and IL-13 (Antal-

Szalmas, 2000).  

As mentioned before, CD14 is part of the multiprotein complex TLR4-MD2-CD14 and thus acts as 

a pattern recognition molecule that has a central role in innate immunity. It can interact in a non-

specific fashion with several ligands, including LPS from Gram-negative bacteria and components 

from Gram-positive bacteria and fungi. Both mCD14 and sCD14, together with LBP, are the first 

line screeners of microbial antigens and present them to the more pathogen-specific signalling 

receptor TLR4-MD2 (Arroyo-Espliguero et al., 2004; Kitchens and Thompson, 2005). 

 

1.1.7. IRF-1 

The IRF family was identified in the late 1980s and consists of nine members in mammals. This 

family was the first identified transcriptional regulators of type I IFN and IFN-inducible genes and 

is now recognized as playing a critical part in innate and adaptive immunity (Honda and Taniguchi, 

2006; Tamura et al., 2008). Many IRF members (IRF-1, IRF-3, IRF-5 and IRF-8) play a central role 

in cell growth, cell survival and oncogenesis, as well as in the regulation of gene expression in 

response to pathogen infection (IRF-1, IRF-3, IRF-4, IRF-5, IRF-7 and IRF-8) (Tamura et al., 

2008). In fact, IRF-1 is suggested to provide a link between the innate and adaptive immune system. 

First of all, IRF-1 induces many genes involved in the initial reaction to pathogen infection such as 

2´-, 5´- oligo adenylate synthetase (OAS), protein kinase R (PKR) and the inducible nitric oxide 

synthase (iNOS). IRF-1 also influences development and function of NK cells and, in addition, 

IRF-1 overexpression induces IFN-α and IFN-β transcription. These cytokines have stimulatory 

effects on macrophages and T cells (Kroger et al., 2002).  
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IRF-1 can also be activated by type I IFN (IFN-α and IFN-β) and type II IFN (IFN-γ). IRF-1 is 

constitutively localized in the nucleus and the consensus-binding sequence motif has been 

determined to be 5´- AANNGAAA -3´ (the consensus recognition sequence for each IRF) that 

appears within the promoter of several IRF-inducible genes (Kroger et al., 2002; Tamura et al., 

2008).  

 

1.2. RNA polymerase II (RNAPII) transcription cycle  

The carboxyl-terminal domain (CTD) of the largest subunit of the RNAPII is essential for 

transcription, because phosphorylation of the CTD was found to be a key event during messenger 

RNA (mRNA) metabolism. Phosphorylation of the CTD varies during the transcription cycle and 

several kinases that are capable of phosphorylation of the CTD have been discovered. The CTD 

consists of multiple repeats of a seven-amino-acid motif which is in turn made up of tyrosine (Tyr), 

serine (Ser), proline (Pro) and threonine (Thr). These amino acids form the consensus heptapeptide 

Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 (Chapman et al., 2007; Palancade and Bensaude, 2003; Prelich, 

2002). 

The functions of the CTD are quite complex as it is involved in all major steps of mRNA formation, 

including transcription initiation and elongation, capping, splicing, and 3´end processing (Fig. 4). A 

variety of kinases have been identified with phosphorylation activity mainly towards the amino 

acids serine 2 and serine 5 (Chapman et al., 2007; Prelich, 2002). In general, during mRNA 

metabolism, the unphosphorylated CTD interacts with a mediator complex (Med) (Fig. 4a) to form 

a preinitiation complex (Fig. 4b). Phosphorylation of the CTD is required to disrupt these 

interactions at elongation of transcription (Fig. 4d) and to assist the recruitment of pre-mRNA 

modification enzymes (Fig. 4f). Serine 5 is phosphorylated first in the initiation complex (Fig. 4c) 

by the cyclin-dependent kinase (CDK) 7, and serine 2 of the CTD phosphorylation is mediated by 

CDK9 upon entry into elongation (Palancade and Bensaude, 2003). Thus, differential 

phosphorylation of serine 2 and serine 5 at the 5´ and 3´ regions of genes appear to coordinate the 

localization of transcription- and RNA-processing factors to the elongation polymerase complex 

(Chapman et al., 2007).  
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Figure 4:  CTD phosphorylation during the transcription cycle 

(A) Recycling. The RNAPII core enzyme is not phosphorylated on the CTD. It may assemble with co-activators such as 

Med to form a holoenzyme. Premature CTD phosphorylation by CDK8 prevents the assembly of RNAPII on the 

promoter. (B) Preinitiation. The unphosphorylated RNAPII assembles onto the promoter sequences with general 

transcription factors, thus forming a preinititiation complex of transcription. The CTD is phosphorylated on serines at 

position 5 (5P) by the CDK7 subunit of general transcription factor II (TFII) H. (C) Initiation. Transcription begins. The 

phosphorylated CTD recruits the capping enzymes and the nascent transcript is capped at its 5´ end. (D) Elongation. 

Phosphorylation of the CTD on serines at position 2 (2P) by the CDK9 subunit of the positive transcription elongation 

factor b (P-TEFb) is required to elongate transcription. (E) RNA processing and transcription termination. The 

phosphorylated CTD recruits the splicing machinery to remove introns and, finally, recruits the cleavage and 

polyadenylation factors that cleave the transcript and add a polyadenylic tail at its 3´ end. This step signals transcription 

to terminate and RNAPII falls off its DNA template. The resulting mRNA is then exported to the cytoplasm. (F) To be 

recycled for another transcription round, RNAPII is dephosphorylated by the TFIIF-dependent CTD phosphatase 1 

(FCP1) (Modified from Palancade and Bensaude, 2003). 

 



1. Introduction 9 

 

1.3. Single nucleotide polymorphisms (SNPs)  

With completion of the Human Genome Project, a large number of subtle variations – 

polymorphisms - have been found (Kim and Misra, 2007). The most common type of genetic 

variations is the single nucleotide polymorphism (SNP) with more than 10 million reported in 

public databases, so far (Kubistova et al., 2009). A SNP is a single variation at a specific location in 

the genome that is by definition found in more than 1% of the population. Typically, genotypes of 

these polymorphisms are biallelic, very rarely tri- or tetraallelic, and the average overall frequency 

of SNPs in the human genome is approximately one per 1,000 bp (Kim and Misra, 2007).  

Within a population, a minor allele frequency (MAF) can be assigned for each SNP as a ratio of 

chromosomes in the population carrying the less common variant to those with the more common 

variant. There are marked differences between human populations in terms of the distribution of 

particular SNP variants, thus an SNP allele that is common in one geographical or ethnic group may 

be rarer in another (Kubistova et al., 2009).  

It was found that SNPs do occur less frequently in coding regions of the genome than in non-coding 

regions. SNPs, when present in regulatory sites of a gene, can affect rates of transcription causing 

changes in the production of encoded proteins or may have consequences for transcript 

splicing/stability, transcription factor binding or the sequence of non-coding RNA. On the other 

hand, SNPs located within coding regions can cause alterations in protein structure or function and 

are thus called non-synonymous. SNPs within a coding region will not necessarily change the 

amino acid sequence of the protein, due to degeneration of the genetic code, so polymorphisms in 

which both forms lead to the same polypeptide sequence are termed synonymous (Kim and Misra, 

2007; Kubistova et al., 2009).  

SNPs that have an effect on gene regulation, e.g. a functional effect on gene expression, are said to 

be regulatory SNPs (rSNPs). The rSNPs are potentially susceptibility SNPs for phenotypes, 

including diseases (Buckland, 2006). Regulation at the level of transcription initiation and RNA 

processing defines downstream biological effects. Such regulation occurs in cis, directly affecting 

the regulated gene, but it can act in trans by altering activity of downstream genes. Significant 

interindividual differences in gene expression patterns are common and may result from both 

environmental factors and cis- or trans-mediated genetic effects (Johnson et al., 2005).  

SNPs in immune response genes (e.g. TLRs, cytokines, or immunoglobulins) may have severe 

consequences, as these immune molecules are implicated in the pathogenesis of a large number of 

human diseases. Thus variations in the DNA sequence of these genes can affect whether or how 

humans develop diseases and respond to pathogens, chemicals or drugs (Kubistova et al., 2009).  
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The most commonly studied polymorphisms, nonsynonymous changes that alter amino acid coding, 

appear in many cases insufficient to account for interindividual differences in disease aetiology and 

response to therapies. Further, it is estimated that functional polymorphisms that are cis-regulatory 

in the human genome outnumber those that alter protein sequence, and that the bulk of regulatory 

polymorphisms remain to be discovered (Johnson et al., 2005). 

 

1.3.1. Methods for investigation of rSNPs 

Investigation of SNPs that might cause changes in cellular biological processes that induce disease 

states is performed in disease genetics studies. A typical approach are case-control association 

studies, where genotyping in a patient group and healthy control population is performed to 

investigate relationships between specific genotypes (SNPs) and phenotypic characteristics (Kim 

and Misra, 2007; Kubistova et al., 2009).    

The reporter gene assay is a widely used and very sensitive method for the study of promoter 

strength. Briefly, the promoter is cloned directly upstream of the reporter gene in a promoterless 

vector and introduced into cultured cells. The reporter gene is expressed in an extra chromosomal 

state and the protein activity can be quantified. Thus, the effect of isolated SNPs can be assayed. 

But, because the promoter is not in its natural chromatin environment and because of the different 

behaviour of cells in culture, the results are sometimes difficult to correlate to in vivo observations 

(Pampin and Rodriguez-Rey, 2007).  

The electrophoretic mobility shift assay (EMSA) is a major method for detecting DNA/protein 

interactions. A labelled double-stranded oligonucleotide is mixed with a nuclear extract prepared 

from cells that express transcription factors. The formation of DNA/protein complexes result in a 

retardation of mobility during electrophoresis and, thus, a separation from the free probe. The effect 

of an rSNP on transcription factor binding results in changes of electrophoretic mobility (Pampin 

and Rodriguez-Rey, 2007). 

Quantification of gene expression is another approach of functional studies to investigate rSNPs. 

These analyses rely on comparisons of the relative abundance of the mRNA between genotypic 

groups (Buckland, 2006).  

To circumvent intrinsic errors in interindividual comparison and to analyse allele-specific gene 

expression within its natural genomic environment, two techniques have been developed more 

recently: allele-specific transcript quantification (ASTQ) and haplotype-specific 

immunoprecipitation (HaploChIP).  
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For the first technique, a polymorphism in the transcribed region of a gene is used as a marker to 

distinguish between the allelic mRNA products of genes harbouring a putative regulatory 

polymorphism within their regulatory regions in one double heterozygous individual. The relative 

abundance of allelic mRNAs from a heterozygous individual is then quantified in allele-specific 

polymerase chain reactions (PCR). Both gene copies originate from the same tissue sample and 

identical environmental influences, so each allele should be equally expressed regardless of the 

absolute level of gene expression. The ratio of the abundance of each allele is therefore expected to 

be ~1. In samples that are heterozygous for a regulatory variant, mRNA originating from one 

chromosome will be expressed at a higher level than that from its sister chromosome and this is 

detected by changes in the ratio of the amount of each mRNA allele (Buckland, 2006).  

The second approach to measure allele-specific transcription in vivo, HaploChIP, investigates 

RNAPII binding to genomic DNA (gDNA) using an SNP in the promoter region as a marker. Here 

an antibody specific to serine 5 phosphorylated (ser5-P) RNAPII is added to fragments of cross-

linked DNA/protein complexes and the immunoprecipitated chromatin is measured for the relative 

amount of each precipitated allele. This method has the advantage of allowing the functional 

association of DNA variants in the promoter with changes in gene expression (Buckland, 2006; 

Knight et al., 2003; Pampin and Rodriguez-Rey, 2007).  

 

1.3.2. Association of the polymorphisms CD14 rs2569190 and IRF-1 rs2549009 with various 

disease conditions 

The CD14 rs2569190 (C/T) polymorphism was first identified by Baldini and colleagues. The 

homozygous TT genotype of this SNP was described as being associated with higher levels of 

sCD14 and decreased IgE levels in children who were skin test-positive for local aeroallergens 

(Baldini et al., 1999). Later, this SNP was found to influence CD14 gene expression via a 

differential effect on binding of transcription factors Sp1, Sp2 and Sp3 to gDNA in different cell 

types (LeVan et al., 2001). Also, a gene-environment interaction between T allele carriers and 

Helicobacter pylori antibodies on serum total IgE was observed in Finish children (Virta et al., 

2008). Further, the homozygous TT genotype was suggested to confer an increased risk of alcoholic 

liver disease progression, especially liver cirrhosis in a Finnish population (Jarvelainen et al., 2001), 

and it was found to be associated with mild cryptogenic chronic liver disease (Von Hahn et al., 

2008). The same genotype was later found to be associated with significantly higher sCD14 levels 

in patients with hepatitis C virus (HCV) infection (Meiler et al., 2005). Another study reported a 

possible relationship between CD14 rs2569190 TT genotype and the formation of portal lymphoid 

aggregates in chronic HCV infection (Askar et al., 2009). 
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The SNP rs2549009 (G/A) is located within the promoter region of the transcription regulator gene 

IRF-1. The homozygous genotype AA was associated with the outcome of HCV genotype 3 

infection (Wietzke-Braun et al., 2006). This genotype was also positively associated with Th1-type 

response in patients with chronic HCV infection, suggesting that this SNP variant might be 

beneficial for viral elimination in chronic HCV and IFN therapy (Saito et al., 2002).  

Additionally, it was shown that DNA constructs, containing the genetic polymorphism rs2549009, 

modified promoter activity in luciferase promoter assays (Saito et al., 2001; Schedel et al., 2008).  

 

1.4. Aims of this work 

The aim of this study is to determine whether the polymorphisms rs2569190, located within the 

CD14 gene, and rs2549009, located within the promoter region of the IRF-1 gene, confer any 

regulatory effect on transcriptional activity in their natural genomic context in human peripheral 

blood mononuclear cells (PBMC). For this purpose the technique HaploChIP, which assesses the 

relative binding frequency of RNAPII to allelic gene promoter regions at different stages of the 

transcription cycle by using RNAPII-specific antibodies, was established and applied. 
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2. Materials & Methods 

 

2.1. Blood donors  

For cross-linking of proteins to the DNA in PBMC (during the HaploChIP method see 2.3.) blood 

samples from a cohort of 13 healthy Caucasians (6 female, 7 male; mean age 30.0 years, range 23-

48) were taken. PBMC were prepared by Ficoll density centrifugation and isolated, and cross-linked 

cells were stored at -80°C for further analyses. CD14 rs2569190 and IRF rs2549009 heterozygotes 

(n=9; n=6) were identified (see 2.2.) and asked to give further blood samples of 30 ml venous blood 

for immunoprecipitation during HaploChIP. Experiments were performed at least two times each 

for independent replication. Later, these 13 donors were included in a larger cohort consisting of 42 

healthy Caucasians which was used for further functional and association studies by our research 

team (i.e. IRF-1 gene expression with regard to IRF-1 rs2549009 genotypes). 

 

2.2. Genotyping 

From whole blood samples, gDNA was purified using the QIAamp DNA Blood Mini Kit following 

the blood and body fluid spin protocol (Qiagen, Hilden, Germany). Genotyping was performed 

using 10-40 ng gDNA. Allelic discrimination of variant positions within the CD14, IRF-1 and the 

imprinted small nuclear ribonucleoprotein polypeptide N (SNRPN) gene was achieved by different 

SNP-specific assays (Tab. 1). 

 

Tab. 1: Genotyping of variant positions using different SNP-specific assays 

  gene and SNP # assay type reference 

  CD14 rs2549190 5´-nuclease assay (custom designed) (Maouzi, 2007) 

  CD14 rs5744455 

  CD14 rs2563298 

allele-specific tetra-primer amplification 

refractory mutation system- (ARMS-) PCR  

(Bregadze, 2010; Mertens 

et al., 2009) 

  IRF-1 rs2549009 5´-nuclease assay (custom designed) (Maouzi, 2007) 

  IRF-1 rs2549007 

  IRF-1 rs2706384 

allele-specific primer pairs this thesis 

  SNRPN rs705 
5´-nuclease assay (ABI genotyping assay 

C_2066555_10) 
(Mertens et al., 2009) 
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2.2.1. Discrimination of variant positions using 5´-nuclease assays 

Genotyping of variant positions by allelic discrimination in 5’-nuclease assays was carried out in 

the sequence detection system ABI StepOnePlus or ABI prism 7000 (Applied Biosystems, 

Darmstadt, Germany) according to supplier’s instructions. For genotyping of CD14 rs2549190 and 

IRF-1 rs2549009, custom designed 5´-nuclease assays were available from an earlier thesis. 

Discrimination of gDNA and transcript variants at SNP rs705 within the imprinted gene SNRPN 

was carried out using a commercially available genotyping assay (Applied Biosystems). 

 

2.2.2. Discrimination of variant positions using ARMS-PCR 

Amplification of ARMS-PCR via tetra-primers was performed using conventional PCR followed by 

analysis of PCR products in agarose gels. This method uses two outer primers and two inner 

primers, which are specific for the variant position of interest. One outer primer and one inner 

primer each are specific for the variant alleles of SNP, while both outer primers together generate a 

non-SNP- but gene-specific PCR product. Thus, it is possible to generate allele-specific as well as 

non-allele-specific amplicons in one reaction. Tetra-primers were designed using a software 

publicly provided by Ye and colleagues (Ye et al., 2001).  

Amplification CD14 rs5744455 was performed using 10-20 ng gDNA in a total of 25 µl GoTaq 

Master Mix (GoTaq Green-/Colorless- Master Mix, Promega GmbH, Mannheim, Germany) with 

0.18 µM primers each (rs574 tetra T f 5´-AAG GAA GGG GGA ATT TTT CTT TAG CCT-3´, 

rs574 tetra C r 5´-GGT AGA ATT AGG TTC AAG AAA AGG AAG GTG-3´, rs574 tetra for 5´-

CTG AGC AAC AGA GCA AGA CTC TAT CTC A-3´and rs574 tetra rev 5´-CAT TTC TTT GAC 

TTC TTC CTT GTC TTG G-3´). Cycling conditions were 3 min initial denaturation at 94° C, 40 

cycles of 1 min denaturation at 94° C and 1 min annealing at 62° C and 1 min elongation at 72° C.  

Genotyping of CD14 rs22563298 was performed similarly with 0.18 µM primers each (rs2563 tetra 

G f 5´-CCC ACC TTT ATT AAA ATC TTA AAG AAC AGG-3´, rs2563 tetra T r 5´-TAA AGG 

TCT GTT AAA TGA ATG ACA CGA AA-3´, rs2563 tetra for 5´-TTT GCC TAA GAT CCA 

AGA CAG AAT AAT G-3´and rs2563 tetra rev 5´-TTT CTT AGG GAG TTA GGA TGA AGA 

AAG C-3´) using identical cycling conditions except annealing at 60° C.  

For CD14 rs5744455 products of 277 bp for the outer primers, 142 bp for the C allele and 192 bp in 

size for the T allele were generated (Fig. 5a). PCR products in size of 247 bp for outer primers, 143 

bp for the G allele and 163 for the T allele were found for genotyping of CD14 rs2563298 (Fig. 5b). 

Thus, product patterns of 277/142, 277/142/192 and 277/192 bp correspond to CC, CT and TT 

genotypes of CD14 rs5744455. ARMS-PCR patterns of 247/143, 247/143/163 and 247/163 bp 

correspond to CD14 rs2563298 GG, GT and TT genotypes (Mertens et al., 2009). 



2. Materials & Methods 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.3. Discrimination of variant positions using allele-specific primers 

Discrimination of the polymorphisms rs2549007 and rs2706384 within the IRF-1 promoter region 

was achieved on gDNA from the larger cohort of healthy donors in real-time PCR using allele-

specific primers. For genotyping of the variant positions, primers were used that are able to 

distinguish between different alleles of the genetic polymorphisms. Therefore, allele-specific 

primers were designed modelled on tetra-primers, but applicable for real-time PCR (Ye et al., 

2001). Unlike ARMS-PCR, which also generates non-SNP-gene-specific PCR products for outer 

primers in this real-time PCR approach, only allele-specific products originate depending on the 

genotype for the respective donor (Fig. 6).  

IRF-1 rs2549007 genotyping was performed using 2 ng gDNA in a total volume of 10 µl using 0.30 

µM of primers each (IRF-1 rs254 for 5´-AGG CTT TCT GCC TTC TTC ACT T-3´ and IRF-1 

rs254 G r 5´-GTA TAT CTC CCG AAC GCA TGC-3´, or IRF-1 rs254 A r 5´-GGT ATA TCT 

CCC GAA CGC ATG T-3´) in standard SYBR green reactions (Plantinum SYBR GREEN qPCR 

SuperMix-UDG, Invitrogen GmbH, Darmstadt, Germany). Cycling conditions were 2 min initial 

denaturation for activation of the antibody blocked Taq DNA polymerase at 50°C, followed by 2 

min denaturation at 95°C and 45 cycles of 15 s at 95°C denaturation and 30s at 60°C annealing and 

extension. 

Genotyping of IRF-1 rs2706384 was also performed in standard SYBR green (Invitrogen) 

amplification reactions of 4 ng gDNA using 75 nM of primer pairs each (IRF-1 rs270 rev 5´-CTG 

TCC TCT CAC TCC GCC TTG TCC-3´ and IRF-1 rs270 C f 5´-CAA GTG CCC GGG CGA 

CCC-3´, or IRF-1 rs270 A f 5´-CAA GTG CCC GGG CGA CCA-3´). Cycling conditions were 

equal, but an annealing step at 67°C for 30 s was necessary.  

Figure 5: Discrimination of CD14 rs5744455 and CD14 rs2563298 using ARMS-PCR – agarose gel 

For analysis of PCR products for the variant position CD14 rs5744455 (a) and CD14 rs2563298 (b) agarose gels of 2% 

and 4 % were used, respectively. Amplicon size patterns indicate genotypes as outlined in the text.  
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Specificity of PCR products was validated by melting curve analyses. In addition to the allele-

specific PCR products, non-specific amplicons were also generated to a rather lesser amount (> 19-

fold difference), most probably due to unspecific binding of primers. Thus, the different genotypes 

GG, AG or AA for IRF-1 rs2549007 and CC, AC or AA for IRF-1 rs2706384 were assigned due to 

the very predominant amplification of the one or the other allele or to a rather equal amplification of 

both alleles, depending on the genotype for the respective donor (Fig. 6). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Genotyping of IRF-1 rs2549007 and IRF-1 rs2706384 using allele-specific primers in real time PCR 

Discrimination of variant positions within the promoter region of IRF-1 was achieved in real-time PCRs using allele-

specific primer for (a) IRF-1 rs2549007 and (b) IRF-1 rs2706384. In general, allele-specific primers generated PCR 

products with fluorescence signals of different intensities representing specific and unspecific binding of primers, 

depending on the respective genotype. Genotypes GG, AG or AA for IRF-1 rs2549007 (a) and CC, AC or AA for IRF-

1 rs2706384 (b) were determined by predominant or equal amplification of the variant alleles, respectively. 
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2.3. HaploChIP 

HaploChIP analysis comprised (a) cross-linking of proteins to the DNA and enzymatic shearing of 

chromatin, (b) an immunoprecipitation of chromatin fragments by antibodies with different 

specificities, and (c) a restriction endonuclease digestion of amplified chromatin fraction. 

 

2.3.1. Cross-linking and enzymatic shearing of chromatin 

Chromatin immunoprecipitation was conducted using the ChIP-IT Express kit (Active Motif, 

Rixensart, Belgium) according to the supplier’s protocol. In brief, 1-10x106 freshly isolated PBMC 

were cross-linked using 1% formaldehyde for 5-6 min (Fig. 7a). After isolation of nuclei (Fig. 7b) 

enzymatic digestion reactions were performed using a shearing cocktail for about 8-10 min at 37°C 

(Fig 7c). Sheared chromatin was then stored in aliquots at -80°C until further use for 

immunoprecipitation or as control ‘input’ DNA.  

 

2.3.2. Immunoprecipitation  

Sheared chromatin corresponding to 1x106 cells was subjected to immunoprecipitation by 4 µg of 

an (i) IgG-antibody directed against the transcriptionally inactive, ser5-P RNAPII (39097 clone 

4H8, Active Motif) or by a control mock antibody (53010 negative control mouse IgG 101226, 

Active Motif) (Fig. 7d). Antibody-bound protein/DNA complexes were captured through use of 

magnetic protein G-coated beads.  

(ii) Immunoprecipitation was also performed by IgM-antibodies directed against ser5-P (MMS-

134R clone H14, Covance, California, USA) or the transcriptionally active, serine 2 phosphorylated 

(ser2-P ) RNAPII (MMS-129R clone H5, Covance) or by an IgM-isotype (ITC0692 clone A16G8, 

Linaris GmbH, Wertheim-Bettingen, Germany) using 5 ng of an bridging anti-mouse-IgM antibody 

(315-005-020, Jackson ImmunoResearch, West Grove, Pennsylvania, USA) (Fig. 7d). The 

additional bridging step was necessary to allow immunoprecipitations by IgM antibodies and 

magnetic beads, which are specific for IgG antibodies because of its protein G coat. Bridging was 

performed by pre-treatment of 25 µl protein G magnetic beads with 5 µg of the anti-IgM antibody 

for 1 h at 4° C according to supplier’s instructions.  

Captured chromatin was then subjected to reverse-cross-linking and protease K digestion (Fig. 7e). 
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2.3.3. Restriction fragment length polymorphism (RFLP) analysis 

RFLP analysis included amplification of regions around CD14 rs2569190 or IRF-1 rs2549009, 

followed by SNP-dependent digestion. Non- and precipitated chromatin fragments (Fig. 7e) were 

used as templates for low cycle number or standard cycle number PCR reactions spanning CD14 

rs2569190 or IRF-1 rs2549009. PCR products were then subjected to digest reactions using 

respective SNP-specific endonucleases.  

 

2.3.3.1. Amplification of purified chromatin fragments 

Amplification spanning a region of 201bp around CD14 rs2569190 was performed using 8 µl 

captured and 0.8 µl non-captured material in a total of 100 µl GoTaq Master Mix (Promega GmbH) 

with 0.30 µM primers each (rs2569190 for 5´-GAC ACA GAA CCC TAG ATG CCC T-3´and 

rs2569190 rev 5´-GTG AAC TCT TCG GCT GCC TC-3´). Cycling conditions for (i) low cycle 

number PCR were 2 min initial denaturation at 94° C, 24-28 cycles of 30 s denaturation at 94° C 

and 1 min annealing and elongation at 60° C, followed by a final elongation step for 7 min at 60° C. 

(ii) Standard cycle number PCRs (40-45 cycles) were run under the same conditions.  

Amplification spanning IRF-1 rs2549009 (142bp) was performed using 4 µl antibody-captured and 

0.4 µl non-immunoprecipitated material in a total of 50 µl GoTaq Master Mix (Promega GmbH) 

with 0.30 µM of primers each (IRF rs2549 for 5´-CAG GAG GGT GAA AAG ATG GCC-3´and 

IRF rs2549 rev 5´-CGA GCG CTC CCA ATC CAC-3´). Cycling conditions were 3 min initial 

denaturation at 94° C, 45 cycles of denaturation at 94° C for 30 s, annealing for 30 s at 60° C and 

72° C elongation for 30 s, followed by a final elongation step at 72° C for 10 min. 

 

 

cell 

nucleus 

b c d e a 

Figure 7: Schematic overview of the HaploChIP technique 

The principle procedure of the HaploChIP technique taken from Version G (modified) of ChIP-ITTM Instruction Manual 

(Active Motif) is shown. After cross-linking of proteins to the DNA (a), isolated chromatin (b) was subjected to 

enzymatic shearing (c). Sheared chromatin fragments were than immunoprecipitated by different antibodies (d) and 

subjected to reverse-cross-linking and digestion with protease K (e). 
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Size of PCR products was determined in 1% agarose gels. Because of unspecific products, all PCR 

reactions were purified and concentrated by gel extraction using the PrepEase gel extraction kit 

(USB, Cleveland, OH, USA) according to supplier’s instructions.  

 

2.3.3.2. Restriction endonuclease digestion of amplicons  

SNP-specific endonucleases were used for allelic digestion of PCR products. Therefore, detection 

of highly specific enzymes was achieved using the software NEBcutter V2.0 (Vincze et al., 2003).  

For allelic digestion of CD14 PCR products, a region of 41 nt around CD14 rs2569190, 20 nt 

upstream and downstream, was analyzed for C allele- (Fig 8a) and T allele- (Fig 8b) specific 

endonucleases. The enzyme HaeIII was found to recognize a DNA sequence containing CD14 

rs2569190 C, while HpyCH4III (TaaI) was found to recognize a DNA sequence containing the T 

allele. 

Identification of suitable endonucleases for IRF-1 rs2549009 was performed similarly. Amongst 

others, the enzymes NciI (BcnI) and BstNI (MvaI) were indicated by the software (Fig 9) to be 

specific for a DNA sequence containing the IRF-1 rs2549009 wild-type allele G or variant allele A 

(for detailed recognition sequences see 5.3.). 
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Figure 8: Detection of CD14 rs2569190 C 

and T allele-specific endonucleases using 

the NEBcutter V2.0 

A region of 20 nt in both directions, upstream 

and downstream, of CD14 rs2549190 was 

analyzed for allele-specific endonucleases 

using the software NEBcutter V2.0. All 

commercially available endonucleases 

specific for the shown sequence are indicated. 

DNA sequences containing (a) the wild-type 

allele C and (b) the variant T, located at 

position 21 in the cut-out, are recognized by, 

amongst others, HaeIII and HpyCH4III 

(TaaI). 
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Digestion of CD14 rs2569190 was carried out in a total of 10 µl digestion reactions using 8 µl 

purified PCR product with 5 U endonucleases, HaeIII or TaaI (Fermentas GmbH, St. Leon-Rot, 

Germany) in respective buffers at 37° C or 65° C for at least for 4 h or overnight.  

Digestion of IRF-1 rs2549009 was performed similarly, using 5 U endonucleases, BcnI or MvaI 

(Fermentas GmbH) in a total of 10 µl and respective buffers at 37° C for 2-3 h. 

All digestion reactions were stopped and purified again using the PrepEase gel extraction kit (USB) 

following the PCR purification protocol. For digestion fragments see Fig. 10. 

a

b

a

b

Figure 9: Detection of IRF-1 rs2549009 

G and A allele-specific endonucleases 

using the NEBcutter V2.0 

A DNA sequence region of 20 nt upstream 

and downstream of IRF-1 rs2549009 was 

analyzed for allele-specific endonucleases 

using the software NEBcutter V2.0. All 

commercially available endonucleases 

specific for the shown sequence are given. 

DNA sequences containing (a) the wild-

type allele G or (b) the variant allele A, 

located at position 21 in the cut-out, are 

recognized by NciI (BcnI) or BstNI (MvaI). 
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Because of an excess of PCR products during the saturation stage of the amplification reaction, 

allelic amplicons might bind to each other independently of the single variant position during 

annealing, thus forming hybrids composed of one strand containing one allele and a complementary 

strand carrying complementary nucleotides of the other allele. Theoretically, up to 50% of 

amplicons might be hybrids. These hybrids could not be recognized and digested by the allele-

specific endonucleases (Fig. 10).  
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Figure 10: Digestion fragments 

(a) Digestion of CD14 rs2569190 PCR 

with HaeIII or TaaI resulted in specific 

digestion fragments for each reaction. (b) 

Digestion of IRF-1 rs2549009 PCR with 

BcnI or MvaI also resulted in different 

fragments of specific size for each variant 

allele. During PCR, hybrid (H) products 

were also found to be generated in 

addition to completely homologous 

double-stranded amplicons. In addition to 

the respective SNP-specific recognition 

sequence, SNP-independent DNA 

sequences within the amplicons were also 

digested by the restriction enzymes. The 

relative amount of digested and 

undigested fragments was then analyzed 

in a bioanalyzer. 
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2.3.3.3. Quantification of DNA fragments with a bioanalyzer 

All digested fragments were analyzed in the Agilent 2100 bioanalyzer using the DNA 1000 

LabChip kit (Agilent Technologies, Böblingen, Germany) according to the supplier’s instructions. 

The bioanalyzer uses a chip-based technology to separate and quantify nucleic acids. DNA 

fragments are separated according to their length in a gel within the chip and because of different 

fluorescence intensities, the software is able to calculate respective molarities for each fragment.  

1 µl of each cleaned digestion reaction, CD14 rs2569190/HaeIII or TaaI (Fig. 11a) or IRF-1 

rs2549190/BcnI or MvaI (Fig. 11b), was analyzed for the amount of digested and undigested PCR 

fragments. The relative amount of the respective variant allele fragments was calculated by given 

molarities for each fragment and PCR hybrid. 
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Calculation example for RFLP of CD14 rs2569190: 

With the given molarities for each digestion fragment, the ratio of CD14 rs2569190 promoter 

variants was calculated. C = CD14 rs2569190 C allele PCR fragments, T = CD14 rs2569190 T 

allele PCR fragments, H = hybrid of CD14 rs2569190 C and T allele PCR fragments 

 

Digestion with HaeIII:  (T + H) : C = 96.2 : 13.4 = 7.18 

Digestion with TaaI:    T : (H + C)= 42.1 : 31.9 = 1.32 

     T = 100% - C - H 

     T = 56.90%  C = 12.22%  H = 30.88% 

     T = (56.90% · 2 + 30.88%) : 2 = 72.34% 

     C = (12.22% · 2 + 30.88%) : 2 = 27.66%  

     ratio of CD14 rs2569190 T/C promoter variants = 2.61 

Figure 11a: CD14 rs2569190 RFLP 

analysis of output material from individual 

#3 using the Agilent 2100 bioanalyzer 

Output material (individual #3), was 

subjected to amplification spanning a region 

around CD14 rs2569190 SNP and yielding a 

product of 201bp in size. Amplicons were 

subjected to two different restriction enzyme 

digestions with TaaI and HaeIII. Digestion 

with TaaI (indicated in red) resulted in 

fragments of 135bp, 42bp and 24bp in size 

representing T allele DNA, while fragments 

of 177bp and 24bp represent C allele DNA. 

Digestion with HaeIII (indicated in blue) 

resulted in the undigested amplicon of 201bp 

in size for the T allele, while fragments of 

152bp and 49bp represent C allele DNA. 

Restriction digest analyses were carried out 

in a bioanalyzer. Ratios of T and C alleles 

were calculated from the molar quantities 

given for the respective fragments greater 

than 50 bp according to suppliers´ instruction 

for accurate measurement. 
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Calculation example for RFLP of IRF-1 rs2549009: 

With the given molarities for each digestion fragment, the ratio of IRF-1 rs2549009 promoter 

variants was calculated. G = IRF-1 rs2549009 G allele PCR fragments, A = IRF-1 rs2549009 G 

allele PCR fragments, H = hybrid of IRF-1 rs2549009 G and A allele PCR fragments 

 

Digestion with MvaI:   (G + H) : A = 86.8 : 28.8 = 3.01 

Digestion with BcnI:    G : (H + A)= 41.8 : 74.8 = 0.56 

     G = 100% - A - H 

     A = 24.9%  G = 35.9%  H = 39.2% 

     A = (24.9% · 2 + 39.2%) : 2 = 45.5% 

     G = (35.9% · 2 + 39.2%) : 2 = 55.5%  

     ratio of IRF-1 rs2549009 A/G promoter variants = 0.82

Figure 11b: Analysis of RFLP with the 

Agilent 2100 bioanalyzer using the example 

of H5 antibody captured HaploChIP 

material of individual #1 

HaploChIP material (individual #1), was 

subjected to amplification spanning a region 

around IRF-1 rs2549009 SNP and yielding a 

product of 142bp in size. Amplicons were 

subjected to two different restriction enzyme 

digestions with MvaI and BcnI. Digestion 

with MvaI (indicated in red) resulted in 

fragments of 69bp, 49bp and 24bp in size, 

representing A allele DNA, while fragments 

of 118bp and 24bp represent G allele DNA. 

Digestion with BcnI (indicated in blue) 

resulted in fragments of 91bp, 36bp and 

15bp in size representing A allele DNA, 

while fragments of 72bp, 36bp, 19bp and 

15bp represent G allele DNA. Restriction 

digest analyses were carried out in a 

bioanalyzer. Ratios of A and G alleles were 

calculated from the molar quantities given 

for the respective fragments greater than 50 

bp according to suppliers´ instruction for 

accurate measurement. 
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2.4. Sequencing of the CD14 gene  

First, three overlapping regions of the CD14 gene and nearby regions spanning 2,101 nucleotides 

(publication 6.1./Fig. 1) were amplified using two mixtures of 25ng gDNA from 5 different 

individuals (5ng gDNA per donor) each, heterozygous at CD14 rs2569190, as templates and 0.36 

µM of sequencing primers each (see Fig. 18 and 5.3.). Secondly, the first overlapping region (761 

nt) was amplified separately for each of the 10 individuals using 60ng gDNA and sequencing 

primer pair 1 (5.3.). All products were purified following the spin protocol of the QIAquick PCR 

Purification Kit (Qiagen) and sequenced by SeqLab (SeqLab, Göttingen, Germany) using an 

automated sequencer. Alignments and analyses were performed using the BLAST program of 

NCBI (National Institutes of Health, Bethesda, Md, USA) and version 2.01 of the software 

Chromas LITE (Technelysium Pty Ltd, Tewantin, QLD, Australia). 

 

2.5. ASTQ 

The functional impact of the CD14 and IRF-1 promoter SNPs were investigated in several in vivo 

studies. In addition to HaploChIP analyses, used to investigate the functional relevance of SNPs on 

promoter activity, the impact of the respective SNPs was determined by ASTQ. The ASTQ 

technique requires an additional SNP within the transcript as a marker to distinguish transcripts 

originating from the respective promoter variant. ASTQ of the CD14 and IRF-1 gene was 

performed in parallel within our research team as part of several medical theses (Aidery, 2010; 

Bregadze, 2010; Mansur, 2008). 

 

2.6. Haplotyping 

To relate HaploChIP results to those obtained by ASTQ, it was necessary to assign allelic 

transcripts to respective promoter variants. Therefore, haplotyping of different SNPs within the 

CD14 and IRF-1 gene was carried out on gDNA from individuals heterozygous in both the 

promoter variant and the ASTQ marker SNP.  

Additionally, other genetic variants within the CD14 and IRF-1 gene were also investigated for 

their linking to respective promoter polymorphisms.  

 

2.6.1. Haplotyping of polymorphisms within the CD14 gene 

Haplotyping of 4 genetic polymorphisms within the CD14 gene (rs5744455, rs2569190, rs4914, 

rs2563298) was performed on gDNA of the larger cohort using different geno-/haplotyping 

experiments.  
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In brief, allele-specific primers for CD14 rs5744455 or CD14 rs2569190 were used to generate 

amplicons of about 2,000 nt in size, spanning all the variant positions of interest. The CD14 

rs5744455 or CD14 rs2569190 allelic PCR products were used as templates for distinguishing of 

the remaining polymorphic positions in different genotyping assays (see 2.2.). Haplotyping was 

performed in a collaborative approach and also became part of a medical thesis (Bregadze, 2010; 

Mertens et al., 2009).      

 

2.6.2. Haplotyping of polymorphisms within the IRF-1 gene 

In genotyping experiments of the IRF-1 genetic variants rs2549009, rs2549007, rs2706384 and 

rs839, a correlation between IRF-1 rs2549009 genotypes and genotypes of the other genetic 

variants was observed. Thus, it was possible to assess haplotyping of these polymorphisms 

statistically, without further experiments. Therefore, linkage disequilibrium (LD) of haplotypes 

IRF-1 rs2549009 and rs839 or rs2549007 or rs2706384 was calculated using the software 

HaploView version 4.1 and expressed as D´ and r2 (Barrett et al., 2005). Unlike D´, which 

represents the difference between the observed and expected frequencies of haplotypes for two 

biallelic loci, r2 indicates the negative relation between LD and the physical distance of sites. Both 

only have a maximum of 1 if the two loci have the same allele frequencies and if there is a positive 

association between the most common alleles at the two loci (Awadalla et al., 1999; Hedrick and 

Kumar, 2001; Lazarus et al., 2002).  

 

2.7. Statistical analyses 

Correlation and linear regression analyses were performed using the software GraphPad Prism 

version 4.00 (GraphPad Software Inc, La Jolla, California, USA). P-values < 0.05 were considered 

significant. Total IRF-1 gene expression analysis with regard to IRF-1 rs2549009 promoter 

genotypes was determined using one-way ANOVA (Kruskal-Wallis test) also by applying the 

software GraphPad Prism version 4.00 (GraphPad Software). Exact test for Hardy-Weinberg 

equilibrium (HWE) and LD (D´and r2) were assessed by HaploView version 4.1 (Barrett et al., 

2005). HWE is a parameter for the genotypic frequency of two alleles of one gene locus.  

Calculated on the basis that the alleles A and a have the frequencies p and q (=1-p), the equilibrium 

genotypic frequencies are AA=p2, Aa=2pq and aa=q2 (Mayo, 2008).  
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3. Results & Discussion 

 

3.1. Establishing and applying HaploChIP to assess the transcriptional activity at CD14 

rs2569190 promoter variants in a natural genomic context 

Genetic variations within the TLR4 gene have been associated to individual endotoxin sensitivity 

(Arbour et al., 2000; El-Omar et al., 2008). It is also suggested that genetic polymorphisms within 

the CD14 gene, in particular CD14 rs2569190 SNP, do determine the outcome of LPS exposure 

(Baldini et al., 1999; Campos et al., 2005; Levan et al., 2008; Meiler et al., 2005; Virta et al., 2008). 

Thus, to address the question whether CD14 rs2569190 (C/T) has any functional impact on CD14 

promoter activity, HaploChIP analyses using antibodies directed against ser5-P or ser2-P isoforms 

of the RNAPII were conducted on ex vivo-derived PBMC from healthy Caucasians.  

Therefore, 13 healthy Caucasian blood donors were first of all genotyped at this variant position 

and the CD14 rs2569190 heterozygotes (n=9) were used for the investigation of the CD14 promoter 

activity. Genotype distribution was found to be in line with HWE (Tab. 2). Eleven of the 13 blood 

donors became part of a larger cohort consisting of altogether 42 healthy Caucasians used for 

further analyses of the functional impact of CD14 rs2569190 on CD14 transcription in collaboration 

(see 3.1.4). 

 

 

 

 

 

 

 

 

 

According to public databases (NCBI) two different transcript variants of the human CD14 gene 

exist (Fig. 12). The variant position CD14 rs2569190 which was formerly supposed to be located 

within the promoter region (at position -159 from transcription start point), is now assumed either to 

be located within the coding region (transcript variant 1: NM_000591.2) or within intron 1 

(transcript variant 2: NM_001040021.1). In experiments designed to determine the splice variant 

expressed in PBMC, transcript variant 2 was found to be the predominant splice variant, meaning 

that in PBMC CD14 rs2569190 is located within intron 1 of the CD14 gene (Bregadze, 2010; 

Mertens et al., 2009).  

Tab. 2: Genotype distribution among 13 healthy Caucasian blood donors

rs2569190 [C/T]

homozygous
CC

homozygous
TT

heterozygous
CT

MAF p a

2 (15.4%) 2 (15.4%)9 (69.2%) 0.500 0.300

a p exact test for Hardy-Weinberg equilibrium

Tab. 2: Genotype distribution among 13 healthy Caucasian blood donors

rs2569190 [C/T]

homozygous
CC

homozygous
TT

heterozygous
CT

MAF p a

2 (15.4%) 2 (15.4%)9 (69.2%) 0.500 0.300

a p exact test for Hardy-Weinberg equilibrium



3. Results & Discussion 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Schematic overview of the organization of the CD14 gene and transcript variant 

(a) The CD14 gene is located on chromosome 5. The gene and the nearby 5’ and 3’ regions contain four SNPs with 

MAFs > 0.1 as indicated in blue. Presence of these four SNPs was confirmed by sequencing the indicated region. (b) 

According to public database NCBI, two different transcript variants exist. In transcript variant 1, CD14 rs2569190 is 

located within the 5’ untranslated region (UTR) and because of its intronic location in variant 2, CD14 rs2569190 is 

absent from transcript variant 2 (Modified from Mertens et al., 2009). 
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3.1.1. CD14 rs2569190 RFLP analyses with low cycle number PCR 

To establish the HaploChIP technique, formalin-fixed and enzymatically sheared chromatin from 

heterozygous donors was immunoprecipitated by an IgG antibody specific for ser5-P RNAPII. This 

specifically captured material was subjected to RFLP analysis; including amplification of the 

immunoprecipitated material, digestion of PCR products with a SNP-specific endonuclease and 

analysis of digested fragments with a bioanalyzer (see 2.3.3.).  

As a measure to avoid the generation of hybrids, low cycle number PCRs with 24-28 cycles were 

carried out (see 2.3.3.2.). PCR reactions spanning a region around CD14 rs2569190 was performed 

using antibody-captured material (output). As a control for specific immunoprecipitation, non-

captured material (input) was also used as a PCR template. The software NEBcutter V2.0 was used 

to find a SNP-specific endonuclease that is able to distinguish between the CD14 rs2569190 variant 

alleles. The enzymes HaeIII and TaaI were found to be SNP-specific for the CD14 rs2569190 

promoter variants. The first enzyme recognizes and digests a DNA sequence containing the C allele, 

while the second enzyme is specific for a DNA sequence containing the T allele (see 2.3.3.2.). After 

digestion of PCR products (201bp) with the C allele-specific endonuclease, the amount of digested 

(CD14 rs2569190 C promoter variant) and undigested PCR products (CD14 rs2569190 T promoter 

variant) was determined with a bioanalyzer (Fig. 13). Ratios of T and C allele fragments were 

assessed by quantification of molarities for each fragment given by the 2100 bioanalyzer software.  

Additionally, as controls for complete and accurate digestion, RFLP analyses were also performed 

using gDNA from individuals homozygous for the wild-type or variant CD14 rs2569190 alleles. 

Expectedly, only material derived from CC homozygous individuals showed digested fragments of 

expected size (152bp and 49bp), while material from TT homozygotes exhibited only undigested 

PCR products in all samples tested. Input material was found to contain nearly the same amount of 

C and T promoter variants (T/C ratios 1.09 ± 0.05 - 1.13 ± 0.03). Output material, in contrast, 

exhibited a higher amount of CD14 rs2569190 T promoter variants (T/C ratios 1.91 ± 0.19 - 2.87 ± 

0.04) in all 5 heterozygous donors` samples tested (Mertens et al., 2009).  

These findings showed a preferential recruitment of the transcriptionally inactive RNAPII to the 

CD14 rs2569190 T allele captured by an IgG antibody specific for the ser5-P RNAPII. Thus, this 

data provides first evidence for a preferential transcription initiation of the variant CD14 rs2569190 

allele in ex vivo-derived PBMC from healthy Caucasians. 
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Figure 13: Analysis of the CD14 rs2569190 promoter activity in 5 healthy Caucasian blood donors with HaploChIP 

(a) Chromatin from 5 healthy blood donors was immunoprecipitated with an antibody specific for ser5-P RNAPII. 

Specifically captured and non-captured chromatin was subjected to RFLP analysis, including low cycle number PCRs 

and digestion reactions with HaeIII (specific for the CD14 rs2569190 C allele). Materials from digestion reactions were 

analysed with the 2100 bioanalyzer and T/C ratios were calculated by given molarities for each fragment. Material from 

homozygous donors (CC and TT) is shown as controls for complete and specific enzymatic activity (Mertens et al., 

2009). (b) Experiments were performed twice each, and mean ratios and standard deviations are given for HaploChIP 

analyses of CD14 rs2569190 heterozygous donors. 
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As a control, low cycle number PCR RFLP analysis was also performed with the enzyme TaaI 

specific for the T allele in CD14 rs2569190: PCR material from two individuals (#2 and #4) 

heterozygous in CD14 rs2569190 was subjected to TaaI digestion reaction. Analysis for the amount 

of digested fragments with the 2100 bioanalyzer revealed comparable results: more CD14 

rs2569190 T promoter fragments in output material (T/C ratio 2.54; 2.67), while input control 

showed T/C ratios of ~ 1 (T/C ratio 0.96; 1.06). Controls for accurate enzymatic digestion showed 

the expected fragments (135bp, 42bp and 24bp) in material from an individual homozygous for the 

variant T allele in CD14 rs2569190, as well as material from a CC homozygote, which was digested 

into fragments of the expected 177bp and 24bp (Fig. 14). 

Thus, with this additional experiment it was shown first, that RFLP analysis was performed with 

highly SNP-specific endonucleases and second, that PCR products (input and output material) 

contained nearly no hybrids that could falsify the generated results. 

 

 

 

 

 

 

 

 

 

 

 

 

Because of the continued reproducible results and the expected T/C ratios ~1 for input controls as 

well as the highly SNP-specific endonucleases the HaploChIP method was found to generate 

reliable results. But amplification of non- and immunoprecipitated material running low cycle 

number PCR was proved to be difficult. To avoid the development of hybrids it was necessary to 

stop PCR within the linear stage of amplification. Therefore, to spot the sufficient cycle numbers of 

the linear stage, real-time PCRs with input and output material were performed before RFLP. 

However, because of the different cycling conditions of the different PCR forms, it was not always 

possible to determine the sufficient cycling numbers.  

 

 

Figure 14: Analysis of HaploChIP material 

from two individuals (#2 and #4) with RFLP 

using TaaI 

Products of low cycle number PCRs from 

individual #2 and #4 that were also used for 

digestion with HaeIII (Fig. 13) were 

additionally subjected to digestion reactions 

with TaaI. As controls for accurate enzymatic 

activity material from homozygous donors (CC 

and TT) was used.  
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Thus, analysis of CD14 promoter activity by HaploChIP was conducted on material from 5 donors 

who were heterozygous in CD14 rs2569190 only. 

To obtain reliable results also with conventional PCR, an RFLP approach using two different 

digestion reactions at a time in combination with a respective calculation was tried. 

 

3.1.2. CD14 rs2569190 RFLP analyses with standard cycle number PCR 

Amplicons derived from output material subjected to PCRs of 40-45 cycles were digested by two 

different SNP-specific enzymes specific for the wild-type allele (HaeIII) or the variant allele (TaaI) 

in CD14 rs2569190. Digested fragments were analysed again in the 2100 bioanalyzer. By also 

taking the generation of hybrids into account, which were assumed to be neither digested by one or 

the other endonuclease, T/C ratios were calculated (for calculation example see 2.3.3.3.).  

As HaploChIP analyses with low cycle number PCRs, output material was found to contain more 

fragments from the CD14 rs2569190 T variant (T/C ratios 1.44 ± 0.03 - 2.70 ± 0.18) in all 9 

heterozygous donors (Fig. 15). Again, controls for specific enzymatic activity showed fragments of 

expected size. CC homozygous material was digested by HaeIII and resulted in fragments of 152bp 

and 49bp in size, while material from TT homozygotes were left undigested in sizes of 201bp. 

Digestion reaction with TaaI resulted in fragments of 135bp, 42bp and 24bp in size for TT 

homozygotes and fragments of 177bp and 24bp in size for CC homozygous donors (see 2.3.3.2.).  
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Figure 15: Analysis of the CD14 rs2569190 promoter activity in 9 healthy Caucasian blood donors with HaploChIP 

(a) Immunoprecipitated material from 9 heterozygous individuals was subjected to RFLP; including standard cycle 

number PCR (40-45 cycles) followed by digestion reactions of PCR products with SNP-specific enzymes. Digestion 

with HaeIII, which is specific for the C allele in CD14 rs2569190, is indicated in blue. Digestion with TaaI (given in 

red) is specific for the CD14 rs2569190 T variant (Fragments sizes see 2.3.3.3.). Material from digestion reactions were 

analysed with the 2100 bioanalyzer. T/C ratios were calculated by given molarities for each fragment and by taking 

hybrids into account. As controls for correct enzymatic activity, gDNA from homozygous (CC and TT) individuals was 

additionally subjected to RFLP analysis. (b) Experiments were performed twice each and mean ratios and standard 

deviations are given.  
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RFLP analysis, running PCRs with standard cycle numbers followed by digestion reactions with 

two different SNP-specific enzymes generated reproducible results similar to those achieved with 

low cycle number PCRs.  

These results indicate again a preferential recruitment of the transcriptionally inactive RNAPII to 

the CD14 rs2569190 T allele in PBMC from healthy Caucasians.  

These data on CD14 rs2569190 promoter activity achieved with HaploChIP are in line with in vitro 

experiments suggesting that a DNA element containing the T allele of CD14 rs2569190 favours 

transcription factor Sp1 and Sp2 binding and therefore promotes gene transcription - at least if the 

promoter variant is located within a plasmid, i.e. in a non-genomic environment (Baldini et al., 

1999; LeVan et al., 2001). 

 

3.1.3. Additional control – immunoprecipitation by a mock isotype (IgG) antibody 

Further, to exclude unspecific antibody binding to ser5-P RNAPII, chromatin from 3 heterozygous 

individuals was additionally immunoprecipitated by a mock isotype (IgG) antibody that should not 

recognize any human epitope specifically. Input, output and mock-captured material was again 

analysed via RFLP running standard cycle number PCRs (40-45 cycles), followed by digestion 

reactions with HaeIII and TaaI. Digested fragments were analysed again with the 2100 bioanalyzer 

and T/C ratios were calculated by given molarities for digested and undigested fragments. As 

expected, input and mock controls showed nearly equal amounts of CD14 rs2569190 T and C allele 

variant fragments (T/C ratios 1.02-1.21) and output material was found again to exhibit more CD14 

rs2569190 T allele fragments (T/C ratios 1.65-1.90). Here as well, controls for correct enzymatic 

activity were found to contain only fragments of expected size (Mertens et al., 2009). Experiments 

were repeated later for two individuals and revealed similar results (Fig. 16). 
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By additional immunoprecipitation with a mock isotype antibody, it was shown that output material 

was specifically captured (by an anti-ser5-P RNAPII antibody). These results of control materials 

confirm the assumption that the HaploChIP technique is a reliable tool for investigation of the 

activity of different CD14 promoter variants by assessing allelic transcription initiation.  

Figure 16: HaploChIP analysis with a mock isotype (IgG) antibody – control for antibody specificity 

(a) Chromatin from 3 different individuals heterozygous in CD14 rs2569190 was additionally immunoprecipitated by a 

mock isotype (IgG) antibody. After amplification of non- and immunoprecipitated materials (input, output and mock 

control) and digestion reactions with HaeIII (indicated in blue) and TaaI (indicated in red) digested fragments were 

analysed in the 2100 bioanalyzer (for fragment size see 2.3.3.2.). Ratios of CD14 rs2569190 T and C gene variants 

were calculated by taking the generation of hybrids into account. As controls for correct enzymatic activity, material 

from homozygous donors (CC and TT) were also subjected to RFLP analysis. (b) Experiments were performed up to 

two times und mean ratios and standard deviations are given. 
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3.1.4. Lack of correlation between CD14 rs2569190 promoter activity and allelic CD14 

transcription in PBMC 

Investigations of the CD14 rs2569190 promoter activity with the HaploChIP technique (both with 

low and standard cycle number PCRs) showed a preferential binding of the ser5-P RNAPII to the T 

allele of CD14 rs2569190 in PBMC from healthy individuals. Thus, it was expected that more 

CD14 transcripts would be found derived from the CD14 rs2569190 T allele than from the wild-

type allele in PBMC. 

Allele-specific CD14 transcription was analysed using the SNP rs4914 which is located within the 

CD14 transcript as a marker to distinguish CD14 transcripts derived from different promoter 

variants (Fig. 12). ASTQ was thus applied to material from individuals heterozygous both in CD14 

rs2569190 and in CD14 rs4914. To assign allelic CD14 rs4914 transcripts to respective CD14 

rs2569190 promoter variants, haplotyping was performed (see publication 6.1). However, no excess 

of allelic CD14 transcripts was detected in PBMC from 7 double-heterozygous (CD14 rs2569190 

and CD14 rs4914) donors (Bregadze, 2010; Mertens et al., 2009) (donors #6 and #7 were used for 

both analyses, HaploChIP and ASTQ). 

To address the question of whether another SNP than CD14 rs2569190 might influence CD14 

transcription, genotyping of variant positions within the 5´ and 3´ region of the CD14 gene with 

MAFs >0.1 (rs5744455 - rs2569190 - rs4914 - rs2563298) as well as geno-/haplotyping were 

performed using a combination of ARMS-PCR and genotyping assays (Fig. 12) in collaboration in 

our research team on material from a total of 42 healthy Caucasians (see publication 6.1).  

Genotype distribution of these 4 SNPs was found to be in line with HWE and MAFs (0.26 - 0.44 - 

0.15 - 0.27) were found to be similar to published MAFs for Caucasians at NCBI (0.30 - 0.47 - 0.17 

- 0.21). Additionally, total CD14 transcripts were found to be neither related to genotypes of the 

four variant positions of interest nor to C-T-C-G haplotype (the only one carrying the T allele of 

CD14 rs2569190) or non-C-T-C-G haplotypes in PBMC (Bregadze, 2010; Mertens et al., 2009). 

Taken together, no correlation between allele-specific CD14 promoter activity and gene 

transcription was found in PBMC of healthy Caucasians. 
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3.1.5. Validation of HaploChIP and ASTQ results using the imprinted gene SNRPN 

Because of a lack of correlation between CD14 rs2569190 promoter activity and allele-specific 

transcripts or CD14 transcription rate, control experiments for both methods - HaploChIP and 

ASTQ - were performed. Therefore, input and output material as well as genomic and 

complementary DNA (cDNA) were genotyped at the SNP SNRPN rs705 (G/A) within the 

transcript of the imprinted gene SNRPN. Control experiments were carried out in real-time PCRs 

using allele-specific probes for discrimination of the SNRPN rs705 variant alleles. While G and A 

variants were expected to be found in input and gDNA, output material and cDNA were expected to 

contain only one SNRPN rs705 variant because of monoallelic expression of the imprinted gene. 

For validation of HaploChIP results, non- and immunoprecipitated material from 10 blood donors 

was available. In the input material, one donor was found to be homozygous for the SNRPN rs705 

wild-type allele G, while 4 individuals were found to be homozygous for the variant allele A and 5 

donors were found to carry both variant alleles. All SNRPN rs705 heterozygotes were found to 

exhibit only the G or the A allele in output material, indicating a selective binding of the RNAPII to 

only one variant allele of SNRPN rs705, as expected for monoallelic expression (Fig. 17a). 

Validation of ASTQ experiments was conducted on material from 42 blood donors. In gDNA, 8 

blood donors exhibited the SNRPN rs705 homozygous GG genotype, while 17 individuals each 

were found to carry only the allele A or both variant alleles. As expected, all SNRPN rs705 

heterozygotes who carried both variant alleles in gDNA, showed only the G or the A allele 

expressed in cDNA, indicating here as well monoallelic expression of the imprinted gene SNRPN 

(Mertens et al., 2009). 

Additionally, all individuals (#a - #e) found to be heterozygous at SNRPN rs705 in input material 

contained not only one, but also the same variant allele in output material and in mature mRNA 

transcripts as well (Fig. 17b). Hence selective binding of the ser5-P RNAPII to only one variant 

allele of SNRPN rs705 seems to result in monoallelic expression of the preferred allele, as 

expected. 



3. Results & Discussion 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the expected monoallelic expression of the imprinted gene SNRPN in both output and cDNA, 

results from HaploChIP and ASTQ experiments could be confirmed. Thus, the non-consistent 

HaploChIP and ASTQ results might be due to the impact of a yet - undetected polymorphism or 

haplotype (see 3.1.6.) - or to other reasons (see 3.1.7.).  

 

 

 

 

Figure 17: Validation of HaploChIP and ASTQ results  

For validation of (a) HaploChIP and (b) ASTQ results, input and output material as well as genomic and cDNA were 

investigated for the presence of variant alleles at SNRPN rs705 (G/A) located within the transcript of the imprinted 

gene SNRPN. ∆CT values for SNRPN rs705 G (blue) and A (orange) alleles in output material and cDNA were 

significantly different to respective input and gDNA values, as expected for monoallelic gene expression.  
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3.1.6. Sequencing of the CD14 gene and flanking 5´ and 3´ prime region 

Furthermore, to address the question of whether any undetected SNP within the CD14 gene might 

influence ser5-P RNAPII binding to the promoter, PCR products of the CD14 gene and flanking 5´ 

and 3´ region from 10 individuals heterozygous in CD14 rs2569190 (partly taken from the larger 

cohort of 42 healthy Caucasians) were sequenced (Fig. 24) (see 2.4). First, two mixtures of CD14 

PCR products from each of 5 heterozygous individuals were sequenced. Both mixtures showed at 

least two possible unknown variant positions within the promoter region (Fig. 18a). Next, 

sequencing of single amplification products of the 5´ region of the CD14 gene from every 

individual revealed no additional variant position (Fig. 18b) (Mertens et al., 2009).  
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Figure 18: Sequencing of the 

CD14 gene and nearby regions 

Cut-outs of the sequenced 

promoter region of the CD14 gene 

are given. (a) Sequence of the 5´ 

region of CD14 from two 

mixtures of PCR products from 

each of 5 different individuals 

heterozygous in CD14 rs2569190 

is shown. Two possible unknown 

variant positions located at 

positions -103 and -86 (from 

transcription start point) were 

detected and are indicated by 

arrows. (b) Sequence analysis of 

the 5´ region of the CD14 gene for 

each of the 10 single individuals 

revealed no unknown SNPs. 

Cut-outs were taken from 

analyses of sequencing data 

performed with the software 

Chromas LITE.  
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3.1.7. HaploChIP analysis with antibodies specific for ser5-P/ser2-P RNAPII - CD14 

rs2569190 allele-specific initiation of transcription but absence of allelic elongation in PBMC 

PBMC were found to contain CD14 rs2569190 within intron 1, indicating that this SNP might not 

have any influence on mRNA stability, at least in PBMC (Bregadze, 2010; Mertens et al., 2009). A 

more likely effect of this SNP on transcription factor binding can be hypothesised. It has been 

shown in reporter gene assays and EMSA by LeVan et al. that the T allele benefits transcriptional 

activity in monocytic cells by an enhanced affinity to the activating transcription factors Sp1 and 

Sp2 (LeVan et al., 2001). In vivo, this effect might be seen in a stronger binding of ser5-P RNAPII 

to T allele variants and thus a stronger transcription initiation of the CD14 rs2569190 T allele in 

PBMC.  

Preferential recruitment of ser5-P RNAPII does not result in a higher transcription of the preferred 

allele. As mentioned before, it is known that phosphorylation of CTD at the largest subunit of 

RNAPII is a key event during mRNA metabolism. The phosphorylation at serine 2 is essential for 

transcription elongation (Palancade and Bensaude, 2003). It seems that the very preferential 

recruitment of RNAPII, phosphorylated on serines at position 5, to CD14 rs2569190 T allele 

variants does not necessarily lead to fully phosphorylation on serines at position 2 and thus does not 

result in a higher transcription rate of the preferred allele. It was shown that the ser5-P RNAPII pre-

assembles to gene promoters in mammalians, but however, does not generate mature mRNA 

transcripts. The control of gene expression was shown to depend on the transition from transcription 

initiation to elongation by phosphorylation at serines 2 at the RNAPII (Hargreaves et al., 2009). 

To determine whether the CD14 polymorphism rs2569190 has any effect on ser2-P RNAPII and 

therefore on allele-specific transcription elongation, HaploChIP analyses were performed using H5 

and H14 (IgM) antibodies as well as a mock isotype (IgM) antibody. Therefore, an additional 

bridging step before precipitation of chromatin was necessary (see 2.3.2.). HaploChIP material was 

then subjected to RFLP running standard cycle number PCRs followed again by digestion reactions 

with HaeIII and TaaI and analysis with the 2100 bionanlyzer. Therefore, input and 

immunoprecipitated material of three different individuals, one (#2) only heterozygous in CD14 

rs2569190 and two (#6 and #7) double heterozygous (CD14 rs2569190, CD14 rs4914), was 

available (Fig. 19).  

As expected, control material (input and mock control) contained nearly the same amount of CD14 

rs2569190 T and C gene variants (T/C ratio 0.89-1.16) and H14-immunoprecipitated material 

showed again about twice the number of CD14 rs2569190 T variant fragments (T/C ratio 1.74-

1.94), also indicating in this experiment that there is a preferential binding of the ser5-P RNAPII.  
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In contrast, H5-captured chromatin exhibited similar amounts of CD14 rs2569190 T and C gene 

variants (T/C ratio 0.91-1.01) as did the mock control.  

More precisely, nearly no difference in the amount of CD14 rs2569190 variant fragments was 

detected in specific- (H5) and unspecific- (mock) captured material. These results indicate an 

absence of a preferential recruitment of the transcriptionally active RNAPII to the CD14 rs2569190 

variants or the respective CD14 haplotypes. These results reflect the findings on allelic CD14 

transcription in PBMC, at least as evidenced in two double heterozygous individuals (#6, #7; also 

same individuals as in (Mertens et al., 2009). 

 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Differential recruitment of ser5-P and 

ser2-P RNAPII to the CD14 gene in PBMC 

HaploChIP analyses using antibodies directed 

against two phosphorylated isoforms of RNAPII for 

one individual heterozygous in CD14 rs2569190 

(#2) and for two donors double heterozygous in 

CD14 rs2569190 and CD14 rs4914 (#6, #7) are 

shown. Additionally, two homozygous controls (TT 

and CC) for complete and accurate digestion 

reactions are given. Enzymatic reactions with 

HaeIII are indicated in blue and with TaaI are 

marked in red (for fragment sizes representing T 

and C allele DNA see 2.3.3.2.) T/C ratios were 

calculated by given molarities and by taking 

hybrids into account. Complete experiments were 

performed once for each tested individual, so far. 
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It was shown that HaploChIP analysis with the ser5-P H14 antibody confirmed the results generated 

by an IgG antibody specific for ser5-P RNAPII: a higher amount of CD14 rs2569190 T gene 

variants in immunoprecipitated chromatin from heterozygous individuals. But H5-captured 

material, on the contrary, showed no accumulation of specific fragments, nor did controls (input and 

mock material). Taken together, with expected T/C ratios ~1 for input and mock controls, highly 

SNP-specific restriction enzymes for the CD14 polymorphism rs2569190 and antibodies that are 

able to distinguish between the inactive and active form of the RNAPII the HaploChIP method was 

established as a successful tool for investigating the activity of different CD14 promoter variants, 

assessing both allelic transcription initiation and elongation in PBMC. 

 

Due to the intronic location of CD14 rs2549190 in PBMC from the healthy cohort, an effect on 

mRNA stability can be ruled out. As mentioned before, an influence on transcription regulation in 

terms of an enhanced affinity to transcription factor binding, shown by in vitro experiments (LeVan 

et al., 2001), is more likely. But also an effect of CD14 rs2569190 on an intron-mediated regulation 

of CD14 gene expression is possible. It is known that introns can play a role in eukaryotic gene 

expression by harbouring enhancer elements or alternative promoters (Rose, 2008).  

But based on the fact that the T allele of CD14 rs2569190, or the C-T-C-G haplotype, seems only to 

be advantageous for transcription initiation but not for transcription elongation, and the lack of an 

allelic CD14 gene expression imbalance in PBMC (Bregadze, 2010; Mertens et al., 2009), 

endotoxin sensing appears not to rely on a functional relevance of CD14 rs2561910 in PBMC.  

Regulatory variants can have inconsistent effects in different tissues (Pastinen and Hudson, 2004). 

It has been shown that CD14 is differentially expressed in monocytes and hepatocytes and that the 

latter contribute to sCD14 production (Pan et al., 2000). Thus, it appears more likely that the 

association of CD14 rs2569190 with higher sCD14 levels and lower IgE levels is due to an effect of 

the SNP in other cells lines, like non-myeloid cells, e.g. liver cells (Mertens et al., 2009).  
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3.2. Establishing and applying HaploChIP to assess the transcriptional activity of IRF-1 

rs2549009 promoter variants in a natural genomic context 

According to public databases, the IRF-1 gene shows a high genetic variability in various ethnic 

populations. For the Caucasian population there are 25 variant positions with a MAF >0.1 within 

the IRF-1 gene and 5´ and 3´ region known so far (NCBI). Some IRF-1 polymorphisms have been 

associated with various disease conditions in different ethnic populations. For example, intronic 

variations have been identified as linked to an altered susceptibility to human immunodeficiency 

virus 1 (HIV-1) infection in a Kenyan cohort (Ball et al., 2007). Further, a different set of 

polymorphisms within the IRF-1 gene, amongst others the IRF-1 rs2549009 (G/A) SNP within the 

promoter region, was found to be associated with HCV infection in Caucasians (Fortunato et al., 

2008; Saito et al., 2002; Wietzke-Braun et al., 2006) (Fig. 20). Thus, to address the question of 

whether the variant position IRF-1 rs2549009, located at position -300 from the transcription 

starting point, confers any functional impact on IRF-1 promoter activity, HaploChIP analyses were 

performed on ex vivo-derived PBMC from healthy Caucasians. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Schematic overview of the organization of the IRF-1 gene und transcript 

In humans, the IRF-1 gene is located on chromosome 5. The gene and the nearby 5´ and 3´ region include 25 variant 

positions with a MAF > 0.1 known so far for the Caucasian population (NCBI). The variant position IRF-1 rs2549009 

and the ASTQ marker SNP IRF-1 rs839 are indicated in light blue within the chromosome (a), the gene (b), and the 

transcript (c). Two other SNPs at position -410 (IRF-1 rs2549007) and -415 (IRF-1 rs2706384) that have been 

described as in a strong LD with IRF-1 rs2549009 (Saito et al., 2001) are marked in dark blue. Intronic variations that 

have been described as associated with different virus diseases are given in green (Ball et al., 2007; Fortunato et al., 

2008) (Modified from Mertens et al., 2010). 

gene (ID 3659)

human chrom 5

SNP #

IRF-1

exon / intron structure

translated region

mRNA position with regard
to transcription start site

transcript (NM_002198.1)

rs2549009 

[G/A]

+1 +2035+1729

rs839

[G/A]

a

b

untranslated region

rs2070721 

[C/A]

rs2070729   

[C/A]

131.826.765 131.819.126 chrom position

rs41498144

[GT] 11-15 repeats
rs2070723 

[C/T]

rs2070728   

[G/A]
rs2706384 

[C/A]

rs2549007 

[G/A]

c

gene (ID 3659)

human chrom 5

SNP #

IRF-1

exon / intron structure

translated region

mRNA position with regard
to transcription start site

transcript (NM_002198.1)

rs2549009 

[G/A]

+1 +2035+1729

rs839

[G/A]

a

b

untranslated region

rs2070721 

[C/A]

rs2070729   

[C/A]

131.826.765 131.819.126 chrom position

rs41498144

[GT] 11-15 repeats
rs2070723 

[C/T]

rs2070728   

[G/A]
rs2706384 

[C/A]

rs2549007 

[G/A]

c



3. Results & Discussion 44 

 

Therefore, 13 healthy Caucasian blood donors were first of all genotyped at this variant position 

and IRF-1 rs2549009 heterozygous individuals (n=6) were used for the investigation of the allelic 

IRF-1 promoter activity. Genotype distribution was found to be in line with HWE (Tab. 3). Eleven 

of these 13 blood donors are part of a larger cohort of healthy Caucasians with available material 

from 41 donors that was used for further functional analyses of the transcriptional activity of the 

IRF-1 promoter variants (see 3.2.3). 

 

 

 

 

 

 

 

 

3.2.1. IRF-1 rs2549009 RFLP analyses with standard cycle number PCR 

Here, the HaploChIP technique was established and performed on formalin-fixed and enzymatically 

sheared chromatin available from 5 healthy IRF-1 rs2549009 heterozygotes. The question of 

whether IRF-1 rs2549009 has any functional impact on IRF-1 promoter activity was assessed by 

investigating the relative binding frequency of differentially phosphorylated RNAPII isoforms to 

IRF-1 promoter variants. (i) HaploChIP material was immunoprecipitated by the IgG antibody that 

is specific for ser5-P RNAPII. (ii) HaploChIP analysis was also performed by immunoprecipitation 

using the IgM antibodies that distinguish between transcriptionally inactive (H14) and active (H5) 

RNAPII and the mock isotype (IgM). For IgM antibodies, additional bridging between protein G 

magnetic beads and an anti-IgM-specific IgG antibody was necessary before precipitation of 

chromatin (see 2.3.2.). Antibody-captured and non-immunoprecipitated (input) chromatin was 

subjected to RFLP; this process included amplification (40-45 cycles) spanning a region around 

IRF-1 rs2549009, followed by digestion reactions of PCR products and analysis of digested 

material with the 2100 bioanalyzer. The software NEBcutter V 2.0 was again used to identify SNP-

specific endonucleases.  

MvaI, which recognizes and digests a DNA sequence containing IRF-1 rs2549009 A, was found, 

while BcnI was observed to be specific for a DNA sequence containing the IRF-1 rs2549009 wild-

type G (see 2.3.3.2.). For control of accurate digestion reactions, RFLP analyses were additionally 

performed using gDNA from individuals homozygous for the IRF-1 rs2549009 wild-type and the 

variant allele.  

Tab. 3: Genotype distribution among 13 healthy Caucasian blood donors

rs2549009 [G/A]

homozygous

GG
MAF p a

6 (46.2%) 1 (7.6%)6 (46.2%) 0.308 1.00

a p exact test for Hardy-Weinberg equilibrium

heterozygous

GA

homozygous

AA

Tab. 3: Genotype distribution among 13 healthy Caucasian blood donors

rs2549009 [G/A]

homozygous

GG
MAF p a

6 (46.2%) 1 (7.6%)6 (46.2%) 0.308 1.00

a p exact test for Hardy-Weinberg equilibrium

heterozygous

GA

homozygous

AA
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(i) Input material contained, as expected, nearly the same amount of IRF-1 rs2549009 A and G 

promoter variants (A/G ratios 1.00 ± 0.01 – 1.11 ± 0.03). But output material, that was 

immunoprecipitated by the IgG antibody directed against ser5-P RNAPII, exhibited a higher 

amount of IRF-1 rs2549009 A promoter variants (A/G ratios 1.24 ± 0.01 – 2.11 ± 0.31) in all 

samples tested. Controls for digestion reactions showed fragments of expected size (Fig. 21). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 21: HaploChIP analysis of the IRF-1 rs2549009 promoter activity  

(a) Formalin-fixed and enzymatically sheared chromatin from 5 healthy individuals, heterozygous in SNP IRF-1 

rs2549009, was immunoprecipitated with an antibody directed against ser5-P RNAPII. Non- and immunoprecipitated 

chromatin was subjected to amplification spanning a region around IRF-1 rs2549009. Products of 142bp in size were 

digested by two different restriction enzymes, MvaI and BcnI. Digestion with MvaI is indicated in red, while digestion 

with BcnI is shown in blue (Fragment sizes see 2.3.3.2.). Digestion analyses were carried out in a bioanalyzer. Material 

from homozygous individuals (AA and GG) is shown as controls for complete and specific enzymatic activity. (b) 

Experiments were performed twice; mean ratios and standard deviations are given for each individual. 
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(ii) Controls for accurate digestion with MvaI and BcnI showed digested fragments of expected size. 

Input and mock (IgM) control-captured material showed, as expected, almost no difference in IRF-1 

rs2549009 A and G promoter variants (A/G ratio 0.98 – 1.08). In all H14-captured material, the 

transcriptionally inactive ser5-P RNAPII was again found to preferentially bind the IRF-1 

rs2549009 A allele (A/G ratio 1.22 ± 0.08 – 1.40 ± 0.05) (see publication 6.2., page 71; Mertens et 

al., 2010). In contrast, the ratio of A and G promoter variants in H5-captured material was found to 

vary between 0.79 ± 0.01 (individual #1) and 1.24 ± 0.02 (individual #9). Some donors (#8; #10) 

showed almost no difference (A/G ratio 0.96 ± 0.04; 1.05 ± 0.05) in the amount of IRF-1 rs2549009 

A and G promoter fragments, while other individuals were found to exhibit a higher amount of the 

IRF-1 rs2549009 G or A promoter variant (Fig. 22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: HaploChIP analysis of the IRF-1 rs2549009 promoter activity: H5 antibody specific for ser2-P RNAPII 

(a) Immunoprecipitation by H5 antibody was conducted on chromatin from 5 healthy donors heterozygous in IRF-1 

rs2549009. HaploChIP material was subjected to RFLP; this included amplification spanning a region around IRF-1 

rs2549009 and digestion of PCR products. Digestion reactions were performed using MvaI (red) and BcnI (blue), 

followed by analysis of fragments in a bioanalyzer. IRF-1 rs2549009 A/G ratios were calculated by given molarities for 

each fragment by the 2100 bioanalyzer software. Accurate digestion reactions were controlled by material from IRF-1 

rs2549009 homozygous individuals (AA and GG) that was additionally subjected to RFLP. For fragment sizes see 

2.3.3.2. (b) Experiments were performed at least twice. Mean ratios and standard deviations are given (Modified from 

Mertens et al., 2010). 
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As expected, input and mock controls always showed A/G ratios of ~1, as did also the controls (AA 

and GG material) for accurate and specific digestion reactions, which exhibited only, as expected, 

fragments of expected size in all samples tested. These controls showed that immunoprecipitation 

by H14, H5 and IgG antibodies, despite the additional bridging step for H14 and H5, was specific. 

Additionally, RFLP analysis was performed using highly IRF-1 rs2549009 SNP-specific 

endonucleases, MvaI and BcnI. Thus, the HaploChIP method was established successfully as a tool 

to investigate the activity of the IRF-1 rs2549009 promoter variants by distinguishing 

phosphorylated isoforms of the RNAPII during the transcription cycle.  

 

The HaploChIP results show a preferential binding of the transcriptionally inactive RNAPII to IRF-

1 rs2549009 A promoter variant, but no preferential recruitment of the ser2-P enzyme to the one or 

the other IRF-1 rs2549009 promoter variant. This indicates that the IRF-1 rs2549009 A promoter 

variant may be advantageous for transcription initiation, but an allelic IRF-1 transcription 

elongation seems not to be solely controlled by this promoter polymorphism in PBMC (Mertens et 

al., 2010). The observation of a donor-dependent allele-specific ser2-P RNAPII activity is 

compatible with in vitro findings on IRF-1 promoter activity showing stronger promoter activity 

either of the one or the other allele, depending on the system. Saito et al. showed a stronger 

induction of gene expression for the IRF-1 rs2549009 variant allele A in unstimulated or IFN-

stimulated PLC/PRF/5 hepatoma cells, while less activity of a gene construct carrying the IRF-1 

rs2549009 A allele was found in ionomycin-stimulated Jurkat T cells by Schedel and colleagues 

(Saito et al., 2001; Schedel et al., 2008).  

 

3.2.2 Correlation between allele-specific IRF-1 rs2549009 promoter activity and allelic 

transcription of IRF-1 in PBMC 

A donor-dependent preferential recruitment of the ser2-P RNAPII to the IRF-1 rs2549009 promoter 

variants was shown with HaploChIP experiments, indicating differential allelic IRF-1 gene 

transcription elongation. Thus, it was also expected to find an allele-specific imbalance of gene 

expression in IRF-1 transcripts. The relative amount of allelic transcripts was therefore quantified 

using IRF-1 rs839, located within IRF-1 exon 10, as a marker SNP for ASTQ (Fig. 20). Assessing 

allelic IRF-1 transcripts to respective IRF-1 rs2549009 promoter variants haplotyping was 

performed on a total of 41 healthy Caucasians. Two independent read out assays for ASTQ 

analysis, (i) differently labelled allele-specific 5´nuclease assays and (ii) RFLP analyses, were 

conducted on material from IRF-1 rs839 heterozygous individuals.  
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Genotype distribution of IRF-1 rs839 was found to be in line with HWE, and MAF (0.366) was 

found to be close to that given at NCBI. On the basis of these findings, LD was calculated using the 

software HaploView version 4.1. With D´= 0.947 and r2 = 0.897 the IRF-1 exon 10 SNP rs839 was 

found to be a suitable polymorphism for assigning IRF-1 transcripts to respective IRF-1 rs2549009 

promoter variants. The wild-type alleles G and variant alleles A for both SNPs, IRF-1 rs2549009 

and IRF-1 rs839, were found to be in a high LD (Mertens et al., 2010). 

Some of the 16 IRF-1 rs839 heterozygous individuals showed an allelic expression imbalance for 

IRF-1 mRNAs. (i) The rs839 A/G ratios varied from 0.84 ± 0.04 (donor #12) to 1.13 ± 0.13 (donor 

#9) and similar results were detected by (ii) RFLP, where IRF-1 rs839 A/G ratios varied between 

0.87 and 1.06. Linear regression analysis of data derived from the two different read out assays 

revealed a close correlation with p = 0.003 and r = 0.71. These results provide first evidence for a 

bidirectional IRF-1 gene expression imbalance in PBMC (ASTQ experiments were performed by 

our research team members; Mertens et al., 2010).  

Further, the relative proportion of IRF-1 rs2549009 promoter variants bound to the transcriptionally 

active ser2-P RNAPII was found to correlate significantly (p = 0.0022; r = 0.99) to respective 

allele-specific IRF-1 transcripts (Fig. 23). In detail, donor #9 showed an IRF-1 rs2549009 A/G ratio 

of 1.22 in H5-immunoprecipitated material, indicating a preferential binding of the transcriptionally 

active RNAPII to the IRF-1 rs2549009 A promoter variant. The same donor also exhibited an IRF-1 

rs839 A/G transcript ratio of 1.13 in PBMC. Donors #1 and #4 showed higher amounts of both IRF-

1 rs2549009 G promoter variants (IRF-1 rs2549009 A/G ratio 0.80; 0.86) and respective IRF-1 

rs839 G transcripts (IRF-1 rs839 A/G ratio 0.92; 0.90). Almost no difference in the amount of 

allelic IRF-1 promoter variants and respective transcripts were found in PCMC from donors #8 and 

#10 (Mertens et al., 2010). 
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Figure 23: Close correlation between IRF-1 rs2549009 

promoter variants and respective IRF-1 rs839 

transcripts  

The relative binding of the active ser2-P RNAPII to IRF-

1 rs2549009 promoter variants was found to correlate 

significantly to respective allelic IRF-1 transcripts in 

PBMC from 5 healthy double-heterozygous (IRF-1 

rs2549009, IRF-1 rs839) Caucasians (Modified from 

Mertens et al., 2010). 
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The relative binding frequency of the transcriptionally active RNAPII to IRF-1 promoter variants (i) 

does not seem to be solely dependent on IRF-1 rs2549009 variants and (ii) was found to correlate to 

respective IRF-1 transcripts in freshly isolated PBMC from healthy Caucasians. These provide 

evidence for an IRF-1 gene expression imbalance that does not appear to be solely controlled by the 

IRF-1 rs2549009 promoter variant in PBMC.  

Allelic gene expression has been shown for up to 5% of human autosomal genes (Pastinen et al., 

2005) and whole genome linkage studies of total gene expression have suggested that 1-3% of 

human genes harbour common cis-acting variants (Buckland, 2004; Rockman and Wray, 2002; 

Serre et al., 2008). The small bidirectional imbalance in allele-specific IRF-1 promoter activity and 

gene transcription, assessed by HaploChIP and ASTQ, was found to be dependent on the respective 

donors. This finding is quite in accordance with observations by others. It has been reported that 

imbalances of a particular gene may only occur in some individuals (Buckland, 2004; Rockman and 

Wray, 2002). Further, also the ranges of allelic imbalances were found to vary a lot, not only 

between genes but also between individuals. Differences of less than 10% to 4.3-fold or higher have 

been reported (Buckland, 2004; Serre et al., 2008; Southam et al., 2007; Yan et al., 2002). 

 

3.2.3. Further functional studies on IRF-1 rs2549009 gene expression 

A parallel analysis of total IRF-1 gene expression revealed that total IRF-1 gene expression was not 

significantly different when related to IRF-1 rs2549009 promoter genotypes (p = 0.2709) in 41 

healthy Caucasians. A more detailed analysis within the group of 16 individuals heterozygous in 

IRF-1 rs2549009, however, revealed a close and positive relation (p = 0.0035, r = -0.68) between 

the relative amount of G allele transcripts and total IRF-1 mRNA levels in PBMC (these analyses 

were done in cooperation with our research team members; Mertens et al., 2010).  

 

3.2.4. LD between IRF-1 rs2549009 and neighbouring promoter polymorphisms 

The bidirectional allele expression imbalance in IRF-1 rs2549009 heterozgotes (Mertens et al., 

2010) indicates a gene expression regulation that is not solely controlled by IRF-1 rs2549009. IRF-

1 gene expression might be regulated by other genetic variants in cis or might be influenced by yet 

unidentified gene-environment interactions in trans (Mertens et al., 2010).  

Two other SNPs, IRF-1 rs2549007 and IRF-1 rs2706384 located 110 nt and 115 nt upstream of 

IRF-1 rs2549009 within the IRF-1 promoter region, have been described by Saito et al. as being in a 

high LD with IRF-1 rs2549009 in a Japanese population (Saito et al., 2002).  
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To address the question of whether these two SNPs might have any cis-regulatory relevance for 

IRF-1 gene expression in Caucasians, geno-/haplotyping was performed on gDNA samples from 40 

individuals of the healthy cohort.  

Genotype distribution of IRF-1 rs2549007 among the large healthy cohort was found to be in line 

with HWE, also MAF of IRF-1 rs2549007 was found to be similar to IRF-1 rs2549009 (see 3.2. and 

Tab. 4). On this basis LD was calculated again using the software HaploView version 4.1 and with 

D´= 1.0 and r2 = 0.947, these two SNPs were evaluated as being in a high LD. Therefore, any 

observations that were made for IRF-1 rs2549009 might be as well attributed to IRF-1 rs2549007 

(Mertens et al., 2010).  

Genotype distribution of IRF-1 rs2706384 was also found to be in line with HWE and MAF of IRF-

1 rs2706384 was found to be similar to IRF-1 rs2549009 (see 3.2. and Tab. 4) among the healthy 

cohort. Allelic LD for IRF-1 rs2549009 and IRF-1 rs2706384 was also calculated on this basis 

using the software HaploView version 4.1 and found to be close (D´= 0.926; r2 = 0.604). Thus, 

observations made for IRF-1 rs2549009 seem to be attributable to IRF-1 rs2706384 as well 

(Mertens et al., 2010). 

 

 

 

 

 

  

 

 

 

 

As expected, the two IRF-1 promoter SNPs rs2549007 and rs2706384 were found to be in a close 

LD to IRF-1 rs2549009 in our cohort, as well. Thus, at least an impact of these two other SNPs on 

IRF-1 gene expression can be ruled out.  

A contribution of gene-environment interaction to IRF-1 rs2549009-dependent gene expression is 

supported by comparing IRF-1 gene expression with its inducibility by IFN-α in ex vivo-derived 

PBMC from healthy and HCV-infected individuals (Mertens et al., 2010).  

As mentioned before, IRF-1 mRNA expression levels were not related to IRF-1 rs2549009 

promoter genotypes in healthy individuals (see 3.2.3.).  

 

Tab. 4: Genotype distributions among the healthy Caucasian cohort

rs2549007 [G/A]

rs2706384 [A/C]

ww vvwv MAF p a

18 (45.0%) 7 (17.5%)

25 (62.5%) 7 (17.5%)

15 (37.5%)

8 (20.0%)

0.362

0.275

0.302

0.154

a p exact test for Hardy-Weinberg equilibrium

w = wild-type; v = variant
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Also gene expression levels in ex vivo-derived PBMC from patients with chronic HCV infection 

were not found to be significantly different when compared to IRF-1 rs2549009 genotypes. But 

total IRF-1 mRNA levels in PBMC from chronic hepatitis C patients were significantly higher than 

in healthy individuals (Aidery, 2010). However, responsiveness of IRF-1 gene expression in PBMC 

to human recombinant IFN-α in vitro was found to be significantly higher in healthy individuals 

and, interestingly, more pronounced in IRF-1 rs2549009 AA homozygotes (Aidery, 2010).  

Thus, the findings of a positive relation of allelic and total IRF-1 gene expression (Aidery, 2010; 

Mertens et al., 2010) suggests a biological impact of IRF-1 rs2549009 on IRF-1 gene expression, 

that seems also to be controlled by a positive or negative regulation in trans (Mertens et al., 2010).  
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4. Summary 

The IRF-1 promoter SNP rs2549009 and the variant rs2569190 within the CD14 gene have been 

described as being associated with various disease conditions. In vitro experiments (EMSA; 

reporter gene assays) showed that the T allele of CD14 rs2569190 favours transcription factor 

binding and that DNA elements containing the respective variant allele promote gene transcription. 

The IRF-1 rs2549009-carrying DNA element induces allele-specific constitutive expression levels 

of a luciferase reporter in various cell lines. To determine whether these SNPs confer any functional 

effect on transcriptional activity in their natural genomic environment, analyses of allele-specific 

promoter activities were conducted by applying HaploChIP on ex vivo-derived PBMC. Therefore, 

antibodies were used that are directed against ser5-P and ser2-P isoforms of RNAPII that reflect 

binding and enzymatic activity at initiation and elongation stages of the transcription cycle, 

respectively.  

Ser5-P RNAPII was found to be preferentially recruited to the variant alleles of CD14 rs2569190 as 

well as of IRF-1 rs2549009, results that are in line with those from the above-mentioned in vitro 

experiments.  

The active RNAPII, on the contrary, was found to not be preferentially bound to the wild-type or 

variant allele of CD14 rs2569190. This finding is supported by (i) the absence of a CD14 mRNA 

expression imbalance and (ii) the absence of any relation of three other SNPs within the CD14 gene 

and allelic gene expression. Sequencing of the CD14 gene also failed to reveal any so-far unknown 

SNP that could influence CD14 promoter activity. The genetic variant CD14 rs2569190 thus might 

be advantageous for transcription initiation. Endotoxin sensitivity associated with this 

polymorphism, however, does not appear to rely on allele-specific CD14 gene transcription at least 

in PBMC (Mertens et al., 2009).  

Regarding IRF-1 rs2549009, a preferential binding of the ser2-P RNAPII to the G or A promoter 

variants or binding without any preference - depending on the donor - was observed in PBMC from 

healthy Caucasians. This finding actually accords with the varying results from different reporter 

gene assays and may explain the variance. Furthermore, the relative binding frequency of the active 

RNAPII to IRF-1 rs2549009 promoter variants was found to be closely related to the relative 

amount of allele-specific IRF-1 transcripts. These results provide evidence for a bidirectional IRF-1 

gene expression that does not appear to be solely controlled by IRF-1 rs2549009 in cis, but may 

rely on a yet undetected polymorphism or haplotype or on environmental control in trans (Mertens 

et al., 2010).  
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5. Supplementary material  

 

5.1. Genotyping 

CD14 

rs2569190 (C/T) 

forward primer                                             5´ CTA GAT GCC CTG CAG AAT CCT  3´ 

reverse primer                                              5´ CCC TTC CTT TCC TGG AAA TAT TGC A  3´                         

probe T                                                 VIC 5´ CCT GTT TAC GGT CCC CCT  3´ 

probe C                                               FAM 5´   CT GTT TAC GGC CCC CCT  3´ 

rs5744455 (C/T) 

rs574 tetra T f                                              5’ AAG GAA GGG GGA ATT TTT CTT TAG CCT 3’ 

rs574 tetra C r                                             5’ GGT AGA ATT AGG TTC AAG AAA AGG AAG GTG 3’ 

rs574 tetra for                                              5’ CTG AGC AAC AGA GCA AGA CTC TAT CTC A 3’ 

rs574 tetra rev                                              5’ CAT TTC TTT GAC TTC TTC CTT GTC TTG G 3’ 

rs2563298(G/T)  

rs2563 tetra T r                                            5’ TAA AGG TCT GTT AAA TGA ATG ACA CGA AA 3’ 

rs2563 tetra G f                                            5’ CCC ACC TTT ATT AAA ATC TTA AAG AAC AGG 3’  

rs2563 tetra for                                            5’ TTT GCC TAA GAT CCA AGA CAG AAT AAT G 3’ 

rs2563 tetra rev                                            5’ TTT CTT AGG GAG TTA GGA TGA AGA AAG C 3’ 

IRF-1 

rs2549009 (G/A)  

forward primer                                              5´ GGA CAA GGC GGA GTG AGA  3´ 

reverse primer                                               5´ GGC TGC CCG GGA CAG  3´     

probe A                                               FAM 5´ CCC CTG GCC CCA G  3´ 

probe G                                                 VIC 5´ CCC CCG GCC CCA G  3´                                                   

rs2549007 (G/A)  

forward primer                                              5´ AGG CTT TCT GCC TTC TTC ACT T 3´ 

reverse A primer                                           5´ GGT ATA TCT CCC GAA CGC ATG T 3´     

reverse G primer                                           5´ GTA TAT CTC CCG AAC GCA TGC 3´     
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rs2706384 (A/C)  

reverse primer                                               5´ CTG TCC TCT CAC TCC GCC TTG TCC  3´     

forward C primer                                          5´ CAA GTG CCC GGG CGA CCC  3´ 

forward A primer                                          5´ CAA GTG CCC GGG CGA CCA  3´ 

SNRPN 

rs705 

Detailed information not available. TaqMan® Genotyping Assays C_2066555_10 

 

 

5.2. HaploChIP 

CD14 

primer for RFLP analysis 

rs2569190 for                                              5´ GACACAGAACCCTAGATGCCCT 3´    

rs2569190 rev                                              5´ GTGAACTCTTCGGCTGCCTC 3´ 

 

enzymes for RFLP analysis 

TaaI  allele T        5´ ACN↓GT 3´   

         3´ TG↑NCA 5´ 

    

HaeIII  allele C        5´ GG↓CC 3´  

         3´ CC↑GG 5´  

IRF-1 

primer for RFLP analysis 

IRF rs254 for                                               5’ CAG GAG GGT GAA AAG ATG GCC  3´ 

IRF rs254 rev                                              5’ CGA GCG CTC CCA ATC CAC  3´ 

enzymes for RFLP analysis 
            
    

  MvaI allele A                                               5´ CC↓AGG 3´    

                                              3´    GGT↑CC 5´ 

 

BcnI  allele G                                            5´ CC↓CGG 3´   

                                 3´  GGG↑CC 5´ 
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5.3. Sequencing  

CD14 

primer for region 1 

for1                                                              5’ GCC GAG ATC ATG GCA 3’  

rev1                                                             5’ ACC CTG ATC ACC TCC CCA C 3’ 

primer for region 2 

for2                                                              5’ CCC CTC CCT GAA ACA TCC TT 3’ 

rev2                                                             5’ GAG TGT GCT TGG GCA ATG CT 3’ 

primer for region 3 

for3                                                              5’ GGA CTT GCA CTT TCC AGC TTG 3’ 

rev3                                                             5’ GCA CAT AGC AGA CAT CCA ATA AAG G 3’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Sequenced region of the CD14 gene and SNP positions within the gene and transcript 

CD14 sequence and SNP information are taken from ensemble (ENSG00000170458) and NCBI. Transcribed region 

(transcript variant 1: NM_000591.2) is indicated in orange. Flanking sequencing primers are given in grey and 

overlapping regions are marked in yellow. Known polymorphisms are given in green, while SNPs with a MAF > 0.1 

are additionally marked in blue. During sequencing of 10 different CD14 rs2569190 heterozygous individuals possible 

unknown variant positions within the promoter region were detected and are indicated in red. 
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5.4. Haplotyping 

CD14 

Allele-specific primer rs5744455 (C/T) 

rs574 tetra T f                                              5’ AAG GAA GGG GGA ATT TTT CTT TAG CCT 3’ 

rs574 tetra C f                                              5’ AAG GAA GGG GGA ATT TTT CTT TAG CCC 3’ 

CD14 tetra 3-rev                                          5’ TTT TCT TGA GGA GGA CAG ATA GGG TTT C 3’ 

Allele-specific primer rs2569190 (C/T) 

rs2569190 T f                                              5’ AAG GAA GGG GGA ATT TTT CTT TAG CCT 3’ 

rs2569190 C f                                              5’ AAG GAA GGG GGA ATT TTT CTT TAG CCC 3’ 
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