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SUMMARY 
 

Ether á go-go (Eag1) is a voltage gated potassium channel, apparently involved in a broad 

variety of cellular events. Results from this work show that in rat tissues the Eag1 protein 

is predominantly expressed in brain tissue where it undergoes N-linked glycosylation, 

a cotranslational modification known to affect biogenesis and functional properties 

of numerous plasma membrane proteins. Analogously, human Eag1 undergoes N-linked 

glycosylation when expressed in heterologous systems.  

The human Eag1, as expressed in CHO cells, and the rat Eag1 natively expressed in brain, 

each exist as two isoforms which harbour different asparagine-linked oligosaccharides. 

Examination of the carbohydrate attachments with endoglycosidases revealed two distinct 

complexes, the core-oligosaccharide and the complex-oligosaccharide, which contribute 

to the molecular masses of the hEag1 isoforms with 2-5 kDa and 20-25 kDa, respectively. 

Mutation of the asparagine residues in two of the six putative N-linked glycosylation 

motifs (N-X-S/T), Asn388 and Asn406 altered the glycosylation of hEag1 channels. However, 

single amino acid exchanges in the four remaining glycosylation motifs had no effect 

on hEag1 glycosylation.  

Asparagine 388 is the site of attachment of the core-oligosaccharide, which is sensitive 

to Endoglycosidase H and recognisable by Concanavalin A. Mutation of this site had 

no significant effect on the intracellular localisation and functional properties of hEag1 

channels, although interference with some other unidentified function cannot be excluded.  

Asparagine 406 carries the complex-oligosaccharide, which is resistant to Endoglycosidase H 

and unrecognisable by Concanavalin A. The attachment of the complex-oligosaccharide 

seems to have an important and complex function since mutation of the Asn406 results 

in an altered phenotype. Intracellular distribution of hEag1 lacking the complex-

oligosaccharide is strongly affected, showing a complex-perinuclear localisation instead 

of the widespread staining pattern. This is the case also for the hEag1 mutant lacking both 

glycosylation sites. 

Immunofluorescence experiments indicate that channel proteins lacking the complex-

oligosaccharides are, at least partially, trapped in the endoplasmatic reticulum. This can be 

explained, e.g., by folding problems due to the loss of oligosaccharide attachment. The altered 

intracellular localisation of the unglycosylated and the solely core-glycosylated protein is not 

likely due to the introduced mutation, since the same effect was obtained by expression 

of the wild-type protein in glycosylation deficient cells. 
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Although the unglycosylated protein is partially trapped in the endoplasmatic reticulum, significant populations of mutant channels must be expressed on the cell surface, since hEag1 potassium currents are also detectable in cells expressing unglycosylated channels, albeit with a strongly reduced amplitude. Loss of the core-oligosaccharide only has no significant effect on hEag1 current amplitude. 


Furthermore, loss of the complex-oligosaccharide results in a shift of the voltage-dependence towards more positive potentials, a phenomenon commonly observed in the case of desialylation of voltage-dependent sodium channels. 


Additionally PIAS1 was identified as a putative hEag1 interaction partner of the C-terminus of hEag1 by two independent Yeast-Two-Hybrid screens. PIAS1 is expressed in nuclei where it acts as inhibitor of STAT mediated gene-activation. The hypothesis that a membrane protein, or at least part of it, can functionally interact with a nuclear protein is controversial, although recently evidence for such interactions are accumulating. This is of particular interest for Eag1, given its involvement in cancer. 
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Although the unglycosylated protein is partially trapped in the endoplasmatic reticulum, 

significant populations of mutant channels must be expressed on the cell surface, since hEag1 

potassium currents are also detectable in cells expressing unglycosylated channels, albeit with 

a strongly reduced amplitude. Loss of the core-oligosaccharide only has no significant effect 

on hEag1 current amplitude.  

Furthermore, loss of the complex-oligosaccharide results in a shift of the voltage-dependence 

towards more positive potentials, a phenomenon commonly observed in the case of desialylation 

of voltage-dependent sodium channels.  

 

Additionally PIAS1 was identified as a putative hEag1 interaction partner of the C-terminus 

of hEag1 by two independent Yeast-Two-Hybrid screens. PIAS1 is expressed in nuclei where 

it acts as inhibitor of STAT mediated gene-activation. The hypothesis that a membrane 

protein, or at least part of it, can functionally interact with a nuclear protein is controversial, 

although recently evidence for such interactions are accumulating. This is of particular 

interest for Eag1, given its involvement in cancer.  
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1 INTRODUCTION 

1.1 Ion channels: focus on voltage gated potassium channels 

 

A fundamental feature of all living organisms is the separation of the aqueous internal milieu 

from its environment that is achieved by the cell membrane. The typical biological membrane 

is formed by a phospholipid bilayer that represents an enormous energy barrier to the 

movement of small ions across it. The cellular equilibrium, as well as diverse physiological 

functions, depends on the transport of ions through the cell membrane. Thus, during evolution 

a special class of proteins known as ion channels evolved to enable rapid ion flux through the 

membrane between the cell and its environment.  

Ion channels are present in almost all excitable and non-excitable cells of living organisms. 

They can be considered as embedded in the membrane, gated pores that are permeable only to 

selected ions. Thus, depending on their ionic selectivity, different groups of ion channels, for 

example sodium or potassium channels, can be distinguished.  

The flux of ions through the channel is passive and determined by electrostatic and diffusional 

driving forces across the membrane. Opening of the channel and thus regulation of ion flux 

can be provided by a variety of stimuli like ligand binding, mechanical impulses or changes in 

voltage gradient across the membrane. Accordingly, ion channels can be classified depending 

on the gating (opening or activation) mechanism into, for example, ligand-gated or voltage-

gated channels. 

 

Voltage-gated ion channels are the hallmark of excitable cells, although some are expressed in 

many different cell types. The signal for their activation is a change in membrane potential. 

Therefore, one common feature of these channels is the so-called voltage sensor or paddle, a 

partially transmembrane domain, consisting of a set of positively charged amino acids. Upon 

depolarisation of the membrane the positive charges of the voltage sensor move through the 

electrical field, which can be detected as a transient current (gating current), and drive 

allosteric changes in the channels structure transforming it from the closed to the open state 

(Stühmer et al., 1989; Papazian et al., 1991; Jiang et al., 2003 B).  

Voltage gated ion channels form a large family, whose members exhibit different ion 

selectivity and are therefore divided into groups, for example, calcium, potassium or sodium 

channels. 
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Introduction


1.1
Ion channels: focus on voltage gated potassium channels


A fundamental feature of all living organisms is the separation of the aqueous internal milieu from its environment that is achieved by the cell membrane. The typical biological membrane is formed by a phospholipid bilayer that represents an enormous energy barrier to the movement of small ions across it. The cellular equilibrium, as well as diverse physiological functions, depends on the transport of ions through the cell membrane. Thus, during evolution a special class of proteins known as ion channels evolved to enable rapid ion flux through the membrane between the cell and its environment. 


Ion channels are present in almost all excitable and non-excitable cells of living organisms. They can be considered as embedded in the membrane, gated pores that are permeable only to selected ions. Thus, depending on their ionic selectivity, different groups of ion channels, for example sodium or potassium channels, can be distinguished. 


The flux of ions through the channel is passive and determined by electrostatic and diffusional driving forces across the membrane. Opening of the channel and thus regulation of ion flux can be provided by a variety of stimuli like ligand binding, mechanical impulses or changes in voltage gradient across the membrane. Accordingly, ion channels can be classified depending on the gating (opening or activation) mechanism into, for example, ligand-gated or voltage-gated channels.


Voltage-gated ion channels are the hallmark of excitable cells, although some are expressed in many different cell types. The signal for their activation is a change in membrane potential. Therefore, one common feature of these channels is the so-called voltage sensor or paddle, a partially transmembrane domain, consisting of a set of positively charged amino acids. Upon depolarisation of the membrane the positive charges of the voltage sensor move through the electrical field, which can be detected as a transient current (gating current), and drive allosteric changes in the channels structure transforming it from the closed to the open state (Stühmer et al., 1989; Papazian et al., 1991; Jiang et al., 2003 B). 


Voltage gated ion channels form a large family, whose members exhibit different ion selectivity and are therefore divided into groups, for example, calcium, potassium or sodium channels.


According to the commonly accepted model, the fore-mentioned channels are based on the same architecture and classified as six-transmembrane one-pore voltage-gated channels. They consist of four repeats of a general motif forming (-subunit of the channel. In sodium and calcium channels those four motif-replicas are included in a single subunit. In contrast, potassium channels are built by four separate (-subunits which interact to form the central ion-conducting pore of the functional channel. The cluster of four subunits of the potassium channel (homo- or hetero-multimers) is topologically equivalent to the single (-subunit in Na+ or Ca+ channels (Fig. 1). 
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Fig. 1
Topology of voltage-gated ion channels.


A functional voltage gated potassium channel is formed by four (-subunits, each consisting of six transmembrane domains surrounding the central pore. Four identical (-subunits form homomultimeric, up to four different form heteromultimeric channels (only one example of heteromultimeric assembly is depicted). In sodium channels, the four subunits are linked together by intracellular loops (Modified from Terlau and Stühmer, 1998 and Choe et al., 1999).


A single subunit of voltage-gated ion channels consists of six regions (S1-S6) forming hydrophobic (-helices spanning the membrane. An exception is the transmembrane S4 domain that has a rather amphiphilic character, since it contains the voltage-sensor motif. The helices S5 and S6 are connected by an extracellular loop, which is partially immersed in the membrane (pore loop; P) that contributes to the selectivity filter of the channel. The N- and C-terminal domains of these channels are facing the cytosolic side of the membrane (Guy and Conti, 1990; MacKinnon, 1991; Armstrong and Hille, 1998; Jiang et al., 2003 A).


Due to the amphiphilic character and the large size of ion channels, it is relatively difficult to solve their three-dimensional structure by X-ray crystallography or nuclear magnetic resonance (NMR) techniques. Thus, limited information about structural arrangement of the voltage gated ion channels is available. 


Structural data of the pore region of the KcsA voltage gated K+ channel (consisting of only two transmembrane segments) from Streptomyces liviandis, have been obtained by X-ray crystallography (Doyle et al., 1998). The three-dimensional appearance of a sodium channel (Sato et al., 2001) and the Shaker potassium channel from Drosophila melanogaster (Sokolova et al., 2001) were resolved by electron microscopy. Consistent with the model, the Shaker channels appeared in a four-fold symmetric structure with large, transmembrane and small, cytoplasmatic domains linked through the so-called ‘connectors’. 


Very recently, a report presenting X-ray structure data of a voltage-dependent K+ channel (KvAP) was published by MacKinnon’s group (Jiang et al., 2003 A; Jiang et al., 2003 B). The crystal structure of the KvAP channel is basically in agreement with the previously described model, although few additional details, mainly related to the voltage gating, prompt to revise the traditional view on the channel structure. Instead of the classical S3 helix, two helices (S3a and S3b) separated by a loop (S3 loop) were identified. S3b and S4 were found to form a predominantly hydrophobic helix-turn-helix structure, called “voltage-sensor paddle”. The four paddles are positioned nearby the intracellular surface of the membrane, perpendicular to the channel pore, when the channel is closed. Changes in membrane potential move the paddles over large distances across the membrane from inside to outside resulting in channel opening.


1.2
Ether á go-go potassium channel


The ether á go-go (EAG) gene, which encodes for a voltage-dependent potassium channel, was first cloned from Drosophila melanogaster (dEAG; Warmke et al., 1991) via analysis of mutations affecting membrane excitability. Mutations of the Drosophila eag locus cause spontaneous, repetitive firing in motor neurones and enhanced transmitter release at the neuromuscular junction (Wu et al., 1983). Molecular studies and sequence comparison resulted in the classification of eag into a distinct potassium channel group: the EAG family. The discovery was followed by subsequent identification of other family members, divided in three subgroups (Warmke and Ganetzky, 1994): eag, erg (eag-related gene) and elk (eag-like K+ channels). 


Like other potassium channels, Eag1 channels are suggested to form tetramers build by the assembly of four subunits, each consisting of six putative transmembrane domains (Fig. 2). The tetramerisation is mediated by the C-terminal motif, a tetramerising coiled-coil (TCC) domain (Ludwig et al., 1997; Jenke et al., 2003). 


Mammalian Eag1 channels activate slowly and do not inactivate during a sustained depolarisation. Moreover, voltage dependent activation of Eag channels is strongly dependent on the holding potential. The time course of the activation is slowed down by negative prepulses, an effect similar to the Cole-Moore shift (Ludwig et al., 1994). 


Eag1 seems to have diverse and broad function in cellular processes. Besides its major expression in brain, Eag1 was found in a few other tissues, mainly in highly proliferating ones, like in the myoblasts at the onset of fusion (Occhiodoro et al., 1998) and in placenta, as well as in a high number of tumour tissues and tumour cell lines (Pardo et al., 1999 and Pardo personal communication). 


[image: image2.png]

Fig. 2
Schematic depiction of the single hEag1 (-subunit


S1-S6 represent transmembrane helices, P is the pore (or H5) region. The N- and C-terminus are believed to be located intracellularly. Characteristic domains are represented by coloured ellipses: 


· PAS
Per-Arnt-Sim domain


· cNBD
cyclic nucleotide binding domain


· NLS
nuclear localisation signal


· CaM
Calmodulin binding site


· RKR
endoplasmatic reticulum retention signal


· TCC
tetramerising coiled-coil domain


A correlation of Eag1 expression with the cell cycle is not only based on expression analysis. It has been described (Brüggemann et al., 1997; Pardo et al., 1998), that the electrophysiological properties of rat Eag are modified during the cell cycle, and the changes are initiated by a factor located downstream of MPF (mitosis-promoting factor). Moreover, cells expressing Eag show characteristics of malignant transformation and expression of Eag1 favours tumour progression when transfected cells are injected into SCID mice (Pardo et al., 1999).


Up to now, not much is known about regulation of Eag1 channels on the molecular level. The Eag1 sequence exhibits several characteristic features. In the N-terminal region, a PAS domain (Per-Arnt-Sim), usually used as a signal sensor domain in many signalling proteins, can be identified, although its function in Eag1 is unknown. In the C-terminal region, several domains such as the cyclic nucleotide binding domain (cNBD; Brüggemann et al., 1993), a nuclear localisation signal (NLS), or endoplasmatic reticulum retention signal (RKR) can be distinguished. 


Moreover, there are three proteins described to bind to the Eag1 protein: epsin, calmodulin and KCR1. Epsin is a protein involved mainly in endocytosis. Its binding to the C-terminus of rat Eag1 alters both activation and deactivation of Eag channels, but the significance of this interaction remains unknown (Piros et al., 1999). Calmodulin (CaM) binds to the defined sequence in the C-terminus of hEag1 and inhibits the potassium currents in a calcium-dependent manner. KCR1 binds to the C-terminus of rat Eag1, but its regulatory function remains unclear (Hoshi et al., 1998).


hEag1 channels form complex interactions with the cytoskeletal elements, which strongly influences channel properties (Camacho et al., 2000). Additionally, posttranslational modification sites are abundant and could contribute to the functional modulation of Eag1 channels.


1.3
Glycosylation


With the rationalisation that the human genome encodes only about 30 thousand different polypeptides (Venter et al., 2001), it was realised that the dynamic enzyme-catalysed chemical modifications of these polypeptides add a substantive complexity and regulational diversity to the cellular proteome. The addition of oligosaccharide structures to proteins and/or the subsequent modification of these structures is one of the metabolic events that significantly extend the protein divergence spectrum. Thus, glycosylation represents a level of variability that may be necessary for complex processes of higher organisms.


At the present stage of our knowledge an impressive variety of carbohydrate-peptide linkages have been described that are broadly distributed among proteins found in essentially all living organisms, ranging from eubacteria and archaebacteria (Lechner and Wieland 1989; Messner et al., 1997), plants and invertebrates (Wilson et al., 2002) to eukaryotes. Most of the soluble and membrane-bound proteins that are made in the ER, including those destined for transport to the Golgi apparatus, lysosomes, plasma membrane or extracellular space are glycoproteins.


Talking about oligosaccharide-peptide linkage it is important to distinguish between two distinct forms of the sugar attachment to the protein: glycosylation and glycation. 


Glycosylation is a highly regulated process, in which the oligosaccharyl chains are coupled to proteins by a glycosydic link formed in an enzyme-catalysed reaction. Although the sugar composition and the number and size of branches in the sugar tree varies among glycans bound to a protein, among glycoproteins, and among cell types, tissues and species, glycosylation is thought to be supervised and co-ordinated by a set of different mechanisms in only poorly understood pathways.


The term glycation, in contrast, describes a complex series of spontaneous reactions in which carbohydrates non-enzymaticaly react with primary amine groups followed by rearrangement to give a stable product (Cloos and Christgau, 2002).


According to Spiro (2002) glycopeptide bonds, which are widely distributed among glycoproteins, can be arranged in five quite distinct groups including N-linked glycosylation, O-linked glycosylation, glypiation (GPI-anchor), C-mannosylation and phosphoglycosylation.


1.3.1
N-linked glycosylation


N-linked glycosylation represents the most widely distributed carbohydrate-peptide bond and is the site of attachment for a large variety of oligosaccharides (Spiro, 1973). The glycopeptide linkage is established through the cotranslational transfer of preassembled oligosaccharide-complexes to specific Asn residues of proteins. The tripeptide consensus sequence Asn-Xaa-Thr/Ser (where Xaa can be any amino acid besides proline) is generally required for the reaction (Kornfeld and Kornfeld, 1985; Kasturi et al., 1995). Of all glycosylation sequons shared among different proteins it has been estimated that 90% are glycosylated (Gavel and von Heijne, 1990).


Biosynthesis of N-linked glycans begins at the donor molecule that is an activated lipid carrier, a dolichylpyrophosphate. Synthesis starts with the addition of an N-acetylglucosamine phosphate residue to the dolichyl phosphate, a reaction catalysed by N-Acetylglucosaminyl phosphate transferase (GPT; Burda and Aebi, 1999). 


Since the GPT enzyme is sensitive to the antibiotic tunicamycin (Tkacz and Lampen, 1975) this drug blocks the assembly of the lipid-linked precursor and thus acts as an inhibitor of the whole N-linked glycoprotein biosynthesis pathway. Although tunicamycin can also interfere with protein synthesis, or the glycolipid biosynthesis pathway (Guarnaccia et al., 1983; Yusuf et al., 1983), it is commonly used in studies of the N-linked glycosylation pathway.


After initiation of the glycosaccharide synthesis, the ‘core-oligosaccharide’ forming blocks consisting of consensus 14-sugar scaffolds are further assembled on the ER-membrane bound dolichylpyrophosphate precursor. Synthesis begins on the cytosolic side of the ER membrane, but the intermediate 7-sugar glyco-lipid complex becomes than flipped into the ER lumen where sugar chains are completed and finally transferred to an asparagine residue on a nascent polypeptide chain (Burda and Aebi, 1999). The transfer reaction is carried out by the oligosaccharyltransferase. 


The N-linked carbohydrate is the only, besides GPI anchor, that is transferred to the polypeptide en block, all other sugar-amino acid linkages are formed by enzymatic transfer of an activated monosaccharide directly to the protein (Spiro, 2002).


Following the co-translational transfer of sugars to the polypeptide, oligosacharides are immediately subjected to extensive modifications as the glycoproteins mature and are moved through ER via the Golgi complex to their final destinations inside or outside the cell. 


As the reticular pool of sugar modifying enzymes is relatively poor, the ER-residual core-glycans are homogenous and relatively simple (Fig. 3). The spectrum of glycoforms remains rather uniform until the glycoproteins reach the medial stacks of the Golgi apparatus where structural diversification is introduced through a series of nonuniform modifications. Assembled glycans are processed through the action of glycosyl-hydrolases and glycosyl-transferases to high-mannose, complex, or hybrid-type oligosaccharide structures. In mature glycoproteins N-linked glycan moieties are structurally diverse. This significant product micro-heterogeneity provides an excellent resource for the functional diversity in living organisms.
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Fig. 3
N-linked glycosylation in endoplasmatic reticulum and Golgi

1.3.2 Other glycosylation forms (O-linked glycosylation, glypiation, C-mannosylation and phosphoglycosylation)


O-linked glycosylation


O-linked glycosylation is a complex modification that is abundantly used on nuclear and cytoplasmatic proteins by almost all known organisms. In the O-linked glycoproteins, oligosaccharides are attached to the hydroxyl group of side chains of serine, threonine or hydroxylysine, although other amino acids can be used. O-glycosylation begins posttranslationally in the Golgi apparatus with an addition of a single monosaccharide to the protein (Van den Steen et al., 1998). Currently there is no O-linked amino acid consensus sequence identified, but it is believed that the reaction is dependent on the primary, secondary, and tertiary structure of the protein. O-linked glycosylation is a reversible posttranslational modification and thus seems to have diverse functional regulatory roles for the respective proteins (Vosseller et al., 2002; Zachara and Hart 2002, Hart, 1997, Wells et al., 2001).


GPI-anchor


In glypiation proteins are anchored to the outer leaflet of the plasma membrane through the carbohydrate-lipid complex including glycosylphosphatidylinositol (GPI). GPI-anchors are biosynthesised in the ER and are widely distributed among biologically important cell surface glycoproteins of different species (Doering et al., 1990). GPI-anchored proteins are involved in fundamental processes such as signal transduction, cell membrane processing, homeostasis, and immune responses, as well as the pathobiology of cancers and infectious diseases (Nosjean et al., 1997).


C-mannosylation and phosphoglycosylation


C-mannosylation is a recently described carbohydrate-protein bond involving the attachment of an alpha-mannosyl residue to the C-2 of Trp through a C-C bond (de Beer et al., 1995). In phosphoglycosylation the sugar is linked to serine or threonine via a phosphodiester bond (Haynes, 1998).


1.3.3
Function of N-linked glycosylation


The diverse complexity of N-linked oligosaccharide structures allows them to play various biological roles. Their purposes seem to range from trivial to crucial, depending on the glycoconjugate, the oligosaccharide structure and the biological context.


The single important function of N-linked glycosylation is the promotion of proper folding of newly synthesised polypeptides in the ER (Gavel and von Heijne, 1990; Helenius, 1994). When glycosylation is inhibited, the most commonly observed effect is generation of misfolded, aggregated proteins that fail to reach a functional state and are consequently degraded (Gavel and von Heijne, 1990; Helenius, 1994; Varki, 1993).


N-linked oligosaccharides are large hydrophobic structures, thus, by virtue of their size alone, the addition of the glycan moulds to the protein backbone can dramatically alter the structure, and consequently the function of the polypeptide architecture to which they are attached. N-linked glycans can affect protein structure in two ways. First, since the addition of carbohydrates occurs cotranslationally to the nascent polypeptide, it can have a great impact on the protein folding process. Second, the carbohydrates can stabilise the mature protein (Imperiali and O'Connor, 1999). In general, glycoproteins are more stable than their corresponding unglycosylated counterparts, even if no major structural changes are associated with the glycosylation. 


Since cells are capable of producing a wide variety of oligosaccharyl structures, sophisticated mechanisms exist to ensure that the correct structures are added to the numerous glycoproteins that are assembled. The ER contains a high concentration of soluble and membrane bound molecular chaperones and folding enzymes controlling the folding process of proteins. Two of the chaperones, the lectins calnexin (membrane bound) and calreticulin (soluble) bind transiently to almost all newly synthesised unfolded glycoproteins, slowing down the rate and thus increasing the efficiency of their folding (Ou et al., 1993; Helenius and Aebi, 2001). In some cases inhibition of the initial glycosylation disrupts protein folding to such an extent that it induces the ‘unfolded protein response’, a complex process characterised by the up-regulation of several chaperones in the endoplasmatic reticulum. 


Although glycosylation enhances proper folding of proteins, it is not necessary for structure formation. Other chaperones, such as BiP (Binding protein) can bind to unglycosylated proteins controlling their proper folding (Ellgaard et al., 1999; Molinari and Helenius, 2000). 

Another function of N-linked glycosylation is protection from degradation by intracellular proteases. Simply because of their size, glycans can shield large regions of protein surfaces, providing protease protection for the attached protein. This property of the N-linked glycans is well studied in lysosomes. The lysosomal membrane contains an assortment of highly glycosylated proteins, among others LAMP and LIMP family members containing up to 20 N-linked glycans each. These glycans have been shown to shield the underlying Lamp-1 and Lamp-2 polypeptides from their proteolytic environment in the lysosome (Kundra and Kornfeld, 1999) since their deglycosylation resulted in a rapid degradation.


Glycosylation might also serve to enhance thermal stability (Olsen et al., 1991) or to influence the solubility of proteins as well as affect the intracellular transport and localisation of the glycoprotein. In Lutropin receptor, for example, elimination of the glycosylation site causes a loss of surface expression (Ji et al., 1990). Also trafficking of ion channels is often strongly dependent on glycosylation. For example, it has been reported that N-linked glycosylation is required for the cell surface expression of ligand-gated channels including ATP purinergic receptors: P2X1 (Rettinger et al., 2000) and P2X2 (Torres et al., 1998).


In the secretory pathway glycans have a common role in promoting protein folding, quality control, and certain sorting events at early steps. Later, Golgi enzymes perform complex sugar modifications prepare for the spectrum of novel functions that mature proteins display. Once expressed in fully mature form on the cell surface N-linked glycans can play a more global role, modulating the function of host proteins at the targeted sites.


Sugars extending into the extracellular space are large moieties and, like in the cytosol, able to provide a ‘fence’ around an individual protein molecule so that interaction with other proteins attached to the membrane is hampered. The ‘coating’ of many plasma-membrane proteins by oligosaccharides can on the one side protect the polypeptide chain from recognition by antibodies, on the other, be involved in recognition events as such glycoconjugates can serve as ligands for receptors on other cells or pathogens. It is known that certain oligosaccharides act as highly specific receptors for a variety of viruses, bacteria, parasites and toxins, and serve as antigens for autoimmune responses (Varki, 1993). They also play role in T-cell recognition of antigen presenting cells and in formation of ‘immunological synapse’ (Rudd et al., 1999).


Since cells are covered with a dense coat of sugars it is postulated that oligosaccharides must be critical determinants of cell-cell and cell-matrix interactions, however their involvement in these processes is not well documented. In the most cases oligosaccharides seem to play an indirect role in cell-cell contacts, directing folding and transport of the functional proteins rather than having a direct function in the cellular contact. 


Addition of N-linked sialic acid seems to be particularly important in cell-cell adhesion and cell migration (reviewed by Rutishauser, 1996). However, rather O- than N-linked glycosylation seems to play a straightforward role in adhesion processes.


Glycosylation can, also be required for proper function of a protein at the targeted site, such as binding to ligands or receptors. For example, mutation of one of the glycosylation sites in MCHR1 (Melanin-concentrating hormone receptor) has been shown to significantly lower the ligand binding (Saito et al., 2003).


1.4
N-linked glycosylation and ion channels


Ion channels are transmembrane proteins that do not differ in their origin and processing from other membrane proteins. Thus, glycosylation has to be considered as an important posttranslational modification when studying ion channel function.


With the increase of our knowledge about ion channels there is an enormous expansion of reports describing the importance of glycosylation on channel proteins. It starts with a simple fact that differential glycosylation contributes to the diversity of ion channel function. 


Glycosylation has been shown to modulate the functional properties of many ion channels. For example, inhibition of N-linked glycosylation altered the voltage dependence of channel gating of some voltage-gated ion channels, such as Kv1.1 and KvLQT/minK K+ (IsK) (Freeman et al., 2000; Thornhill et al., 1996) or sodium channels (Zhang et al., 1999). It can also modulate open probability or pH sensitivity of channels. The ROMK1 inward rectifier K+ channel showed reduced open probability when N-linked glycosylation is inhibited (Schwalbe et al., 1995), whereas expression of KvLQT/minK K+ channels in nonglycosylating cells affected not only the gating properties but also the pH sensitivity of the channel (Freeman et al., 2000).


However, in most cases glycosylation is playing a more complex role in modulating different aspects of ion channel biogenesis, trafficking and/or function. 


So, for example, N-linked glycosylation increases the stability of Shaker potassium channels but has little effect on acquisition of the native structure. It has been shown that the rapid degradation of nonglycosylated Shaker channels involves cytoplasmatic proteasomes (Khanna et al., 2001). N-linked glycosylation resulted, moreover, in faster trafficking of the Shaker protein from the endoplasmatic reticulum to the Golgi (de Souza et al., 2002), but no information about the effects of N-glycosylation on the electrophysiological properties of channels are available.


Another well-studied example is HERG, a voltage gated potassium channel. It has been reported that N-linked glycosylation is required for expression of HERG channels in the cell membrane (Petrecca et al., 1999) and plays an important role in HERG channel stability (Gong et al., 2002). Mutations affecting glycosylation of HERG channels were also found in the patients with LQT syndrome (a HERG associated cardiac disorder) demonstrating a physiological significance of the glycosylation process (Satler et al., 1998; Zhou, 1998 B). Moreover, a HERG mutant, lacking one of two functional glycosylation sites (N629), failed to generate HERG currents when expressed in mammalian cells (Gong et al., 2002).


Those and many other examples suggest that N-linked glycosylation is playing an important role in proper functioning of many membrane proteins including ion channels. The diversity of glycans attached to ion channels may regulate a variety of cellular activities, beginning with modulation of the protein spectrum expressed on the plasma membrane, up to the regulation of cell responses to extrinsic stimuli.


1.5
Aim of the study


The primary goal of this study was the analysis of Eag1 on the protein level, its expression pattern and eventual posttranslational modifications. Since we found that rat Eag1 undergoes N-linked glycosylation in brain, a common and powerful modification of plasma membrane proteins, the following questions evaluated: 


· does the human Eag1 also undergo N-linked glycosylation


· what is the function of the N-linked glycosylation of hEag1 channels


To study this we decided to use two expression models: CHO cells for the biochemical characterisation and Xenopus laevis oocytes for the functional analysis. We used both site directed mutagenesis and internal block of the glycosylation pathway, as well as different biochemical and electrophysiological methods, in order to investigate the N-linked glycosylation of hEag1 channels.


The aims of the study were:


· to identify sites responsible for oligosaccharide attachment


· to propose a model of N-linked glycosylation of hEag1 channels


· to study the effects of attached oligosaccharide(s) on the intracellular localisation of hEag1


· to investigate functional effects of N-linked glycosylation of hEag1 channels.


Franz Möller�
1-introduction-OK.doc�
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According to the commonly accepted model, the fore-mentioned channels are based on the 

same architecture and classified as six-transmembrane one-pore voltage-gated channels. They 

consist of four repeats of a general motif forming α-subunit of the channel. In sodium and 

calcium channels those four motif-replicas are included in a single subunit. In contrast, 

potassium channels are built by four separate α-subunits which interact to form the central 

ion-conducting pore of the functional channel. The cluster of four subunits of the potassium 

channel (homo- or hetero-multimers) is topologically equivalent to the single α-subunit in 

Na+ or Ca+ channels (Fig. 1).  

 
 

 
 
Fig. 1 Topology of voltage-gated ion channels. 
A functional voltage gated potassium channel is formed by four α-subunits, each consisting of six 
transmembrane domains surrounding the central pore. Four identical α-subunits form homomultimeric, up to 
four different form heteromultimeric channels (only one example of heteromultimeric assembly is depicted). In 
sodium channels, the four subunits are linked together by intracellular loops (Modified from Terlau and Stühmer, 
1998 and Choe et al., 1999). 
 

 

A single subunit of voltage-gated ion channels consists of six regions (S1-S6) forming 

hydrophobic α-helices spanning the membrane. An exception is the transmembrane 

S4 domain that has a rather amphiphilic character, since it contains the voltage-sensor motif. 

The helices S5 and S6 are connected by an extracellular loop, which is partially immersed in 

the membrane (pore loop; P) that contributes to the selectivity filter of the channel. The 

N- and C-terminal domains of these channels are facing the cytosolic side of the membrane 

(Guy and Conti, 1990; MacKinnon, 1991; Armstrong and Hille, 1998; Jiang et al., 2003 A). 
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Due to the amphiphilic character and the large size of ion channels, it is relatively difficult to 

solve their three-dimensional structure by X-ray crystallography or nuclear magnetic 

resonance (NMR) techniques. Thus, limited information about structural arrangement of the 

voltage gated ion channels is available.  

Structural data of the pore region of the KcsA voltage gated K+ channel (consisting of only 

two transmembrane segments) from Streptomyces liviandis, have been obtained by X-ray 

crystallography (Doyle et al., 1998). The three-dimensional appearance of a sodium channel 

(Sato et al., 2001) and the Shaker potassium channel from Drosophila melanogaster 

(Sokolova et al., 2001) were resolved by electron microscopy. Consistent with the model, the 

Shaker channels appeared in a four-fold symmetric structure with large, transmembrane and 

small, cytoplasmatic domains linked through the so-called ‘connectors’.  

Very recently, a report presenting X-ray structure data of a voltage-dependent K+ channel 

(KvAP) was published by MacKinnon’s group (Jiang et al., 2003 A; Jiang et al., 2003 B). 

The crystal structure of the KvAP channel is basically in agreement with the previously 

described model, although few additional details, mainly related to the voltage gating, prompt 

to revise the traditional view on the channel structure. Instead of the classical S3 helix, two 

helices (S3a and S3b) separated by a loop (S3 loop) were identified. S3b and S4 were found 

to form a predominantly hydrophobic helix-turn-helix structure, called “voltage-sensor 

paddle”. The four paddles are positioned nearby the intracellular surface of the membrane, 

perpendicular to the channel pore, when the channel is closed. Changes in membrane 

potential move the paddles over large distances across the membrane from inside to outside 

resulting in channel opening. 

 

 

1.2 Ether á go-go potassium channel 

 

The ether á go-go (EAG) gene, which encodes for a voltage-dependent potassium channel, 

was first cloned from Drosophila melanogaster (dEAG; Warmke et al., 1991) via analysis of 

mutations affecting membrane excitability. Mutations of the Drosophila eag locus cause 

spontaneous, repetitive firing in motor neurones and enhanced transmitter release at the 

neuromuscular junction (Wu et al., 1983). Molecular studies and sequence comparison 

resulted in the classification of eag into a distinct potassium channel group: the EAG family. 

The discovery was followed by subsequent identification of other family members, divided 
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in three subgroups (Warmke and Ganetzky, 1994): eag, erg (eag-related gene) and elk 

(eag-like K+ channels).  

Like other potassium channels, Eag1 channels are suggested to form tetramers build by the 

assembly of four subunits, each consisting of six putative transmembrane domains (Fig. 2). 

The tetramerisation is mediated by the C-terminal motif, a tetramerising coiled-coil (TCC) 

domain (Ludwig et al., 1997; Jenke et al., 2003).  

Mammalian Eag1 channels activate slowly and do not inactivate during a sustained 

depolarisation. Moreover, voltage dependent activation of Eag channels is strongly dependent 

on the holding potential. The time course of the activation is slowed down by negative 

prepulses, an effect similar to the Cole-Moore shift (Ludwig et al., 1994).  

Eag1 seems to have diverse and broad function in cellular processes. Besides its major 

expression in brain, Eag1 was found in a few other tissues, mainly in highly proliferating 

ones, like in the myoblasts at the onset of fusion (Occhiodoro et al., 1998) and in placenta, as 

well as in a high number of tumour tissues and tumour cell lines (Pardo et al., 1999 and Pardo 

personal communication).  

 

 
 
Fig. 2 Schematic depiction of the single hEag1 α-subunit 
S1-S6 represent transmembrane helices, P is the pore (or H5) region. The N- and C-terminus are believed to be 
located intracellularly. Characteristic domains are represented by coloured ellipses:  
• PAS Per-Arnt-Sim domain 
• cNBD cyclic nucleotide binding domain 
• NLS nuclear localisation signal 
• CaM Calmodulin binding site 
• RKR endoplasmatic reticulum retention signal 
• TCC tetramerising coiled-coil domain 
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A correlation of Eag1 expression with the cell cycle is not only based on expression analysis. 

It has been described (Brüggemann et al., 1997; Pardo et al., 1998), that the 

electrophysiological properties of rat Eag are modified during the cell cycle, and the changes 

are initiated by a factor located downstream of MPF (mitosis-promoting factor). Moreover, 

cells expressing Eag show characteristics of malignant transformation and expression of Eag1 

favours tumour progression when transfected cells are injected into SCID mice (Pardo et al., 

1999). 

 

Up to now, not much is known about regulation of Eag1 channels on the molecular level. The 

Eag1 sequence exhibits several characteristic features. In the N-terminal region, a PAS 

domain (Per-Arnt-Sim), usually used as a signal sensor domain in many signalling proteins, 

can be identified, although its function in Eag1 is unknown. In the C-terminal region, several 

domains such as the cyclic nucleotide binding domain (cNBD; Brüggemann et al., 1993), a 

nuclear localisation signal (NLS), or endoplasmatic reticulum retention signal (RKR) can be 

distinguished.  

Moreover, there are three proteins described to bind to the Eag1 protein: epsin, calmodulin 

and KCR1. Epsin is a protein involved mainly in endocytosis. Its binding to the C-terminus of 

rat Eag1 alters both activation and deactivation of Eag channels, but the significance of this 

interaction remains unknown (Piros et al., 1999). Calmodulin (CaM) binds to the defined 

sequence in the C-terminus of hEag1 and inhibits the potassium currents in a calcium-

dependent manner. KCR1 binds to the C-terminus of rat Eag1, but its regulatory function 

remains unclear (Hoshi et al., 1998). 

hEag1 channels form complex interactions with the cytoskeletal elements, which strongly 

influences channel properties (Camacho et al., 2000). Additionally, posttranslational 

modification sites are abundant and could contribute to the functional modulation of Eag1 

channels. 

 

 

1.3 Glycosylation 

 

With the rationalisation that the human genome encodes only about 30 thousand different 

polypeptides (Venter et al., 2001), it was realised that the dynamic enzyme-catalysed 

chemical modifications of these polypeptides add a substantive complexity and regulational 
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diversity to the cellular proteome. The addition of oligosaccharide structures to proteins 

and/or the subsequent modification of these structures is one of the metabolic events that 

significantly extend the protein divergence spectrum. Thus, glycosylation represents a level of 

variability that may be necessary for complex processes of higher organisms. 

At the present stage of our knowledge an impressive variety of carbohydrate-peptide linkages 

have been described that are broadly distributed among proteins found in essentially all living 

organisms, ranging from eubacteria and archaebacteria (Lechner and Wieland 1989; Messner 

et al., 1997), plants and invertebrates (Wilson et al., 2002) to eukaryotes. Most of the soluble 

and membrane-bound proteins that are made in the ER, including those destined for transport 

to the Golgi apparatus, lysosomes, plasma membrane or extracellular space are glycoproteins. 

 

Talking about oligosaccharide-peptide linkage it is important to distinguish between two 

distinct forms of the sugar attachment to the protein: glycosylation and glycation.  

 

Glycosylation is a highly regulated process, in which the oligosaccharyl chains are coupled to 

proteins by a glycosydic link formed in an enzyme-catalysed reaction. Although the sugar 

composition and the number and size of branches in the sugar tree varies among glycans 

bound to a protein, among glycoproteins, and among cell types, tissues and species, 

glycosylation is thought to be supervised and co-ordinated by a set of different mechanisms in 

only poorly understood pathways. 

 

The term glycation, in contrast, describes a complex series of spontaneous reactions in which 

carbohydrates non-enzymaticaly react with primary amine groups followed by rearrangement 

to give a stable product (Cloos and Christgau, 2002). 

 

According to Spiro (2002) glycopeptide bonds, which are widely distributed among 

glycoproteins, can be arranged in five quite distinct groups including N-linked glycosylation, 

O-linked glycosylation, glypiation (GPI-anchor), C-mannosylation and phosphoglycosylation. 

 

1.3.1 N-linked glycosylation 
 

N-linked glycosylation represents the most widely distributed carbohydrate-peptide bond and 

is the site of attachment for a large variety of oligosaccharides (Spiro, 1973). The 

glycopeptide linkage is established through the cotranslational transfer of preassembled 
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oligosaccharide-complexes to specific Asn residues of proteins. The tripeptide consensus 

sequence Asn-Xaa-Thr/Ser (where Xaa can be any amino acid besides proline) is generally 

required for the reaction (Kornfeld and Kornfeld, 1985; Kasturi et al., 1995). Of all 

glycosylation sequons shared among different proteins it has been estimated that 90% are 

glycosylated (Gavel and von Heijne, 1990). 

Biosynthesis of N-linked glycans begins at the donor molecule that is an activated lipid 

carrier, a dolichylpyrophosphate. Synthesis starts with the addition of an N-acetylglucosamine 

phosphate residue to the dolichyl phosphate, a reaction catalysed by N-Acetylglucosaminyl 

phosphate transferase (GPT; Burda and Aebi, 1999).  

Since the GPT enzyme is sensitive to the antibiotic tunicamycin (Tkacz and Lampen, 1975) 

this drug blocks the assembly of the lipid-linked precursor and thus acts as an inhibitor of the 

whole N-linked glycoprotein biosynthesis pathway. Although tunicamycin can also interfere 

with protein synthesis, or the glycolipid biosynthesis pathway (Guarnaccia et al., 1983; Yusuf 

et al., 1983), it is commonly used in studies of the N-linked glycosylation pathway. 

After initiation of the glycosaccharide synthesis, the ‘core-oligosaccharide’ forming blocks 

consisting of consensus 14-sugar scaffolds are further assembled on the ER-membrane 

bound dolichylpyrophosphate precursor. Synthesis begins on the cytosolic side of the ER 

membrane, but the intermediate 7-sugar glyco-lipid complex becomes than flipped into the 

ER lumen where sugar chains are completed and finally transferred to an asparagine residue 

on a nascent polypeptide chain (Burda and Aebi, 1999). The transfer reaction is carried out by 

the oligosaccharyltransferase.  

The N-linked carbohydrate is the only, besides GPI anchor, that is transferred to the 

polypeptide en block, all other sugar-amino acid linkages are formed by enzymatic transfer of 

an activated monosaccharide directly to the protein (Spiro, 2002). 

Following the co-translational transfer of sugars to the polypeptide, oligosacharides are 

immediately subjected to extensive modifications as the glycoproteins mature and are moved 

through ER via the Golgi complex to their final destinations inside or outside the cell.  

As the reticular pool of sugar modifying enzymes is relatively poor, the ER-residual 

core-glycans are homogenous and relatively simple (Fig. 3). The spectrum of glycoforms 

remains rather uniform until the glycoproteins reach the medial stacks of the Golgi apparatus 

where structural diversification is introduced through a series of nonuniform modifications. 

Assembled glycans are processed through the action of glycosyl-hydrolases and 

glycosyl-transferases to high-mannose, complex, or hybrid-type oligosaccharide structures. 

In mature glycoproteins N-linked glycan moieties are structurally diverse. This significant 

product micro-heterogeneity provides an excellent resource for the functional diversity in 

living organisms. 
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Fig. 3 N-linked glycosylation in endoplasmatic reticulum and Golgi 
 

 

1.3.2 Other glycosylation forms (O-linked glycosylation, glypiation, 

C-mannosylation and phosphoglycosylation) 
 

O-linked glycosylation 

O-linked glycosylation is a complex modification that is abundantly used on nuclear and 

cytoplasmatic proteins by almost all known organisms. In the O-linked glycoproteins, 

oligosaccharides are attached to the hydroxyl group of side chains of serine, threonine or 

hydroxylysine, although other amino acids can be used. O-glycosylation begins 

posttranslationally in the Golgi apparatus with an addition of a single monosaccharide to the 

protein (Van den Steen et al., 1998). Currently there is no O-linked amino acid consensus 

sequence identified, but it is believed that the reaction is dependent on the primary, secondary, 

and tertiary structure of the protein. O-linked glycosylation is a reversible posttranslational 

modification and thus seems to have diverse functional regulatory roles for the respective 

proteins (Vosseller et al., 2002; Zachara and Hart 2002, Hart, 1997, Wells et al., 2001). 
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GPI-anchor 

In glypiation proteins are anchored to the outer leaflet of the plasma membrane through the 

carbohydrate-lipid complex including glycosylphosphatidylinositol (GPI). GPI-anchors are 

biosynthesised in the ER and are widely distributed among biologically important cell surface 

glycoproteins of different species (Doering et al., 1990). GPI-anchored proteins are involved 

in fundamental processes such as signal transduction, cell membrane processing, homeostasis, 

and immune responses, as well as the pathobiology of cancers and infectious diseases 

(Nosjean et al., 1997). 

 

C-mannosylation and phosphoglycosylation 

C-mannosylation is a recently described carbohydrate-protein bond involving the attachment 

of an alpha-mannosyl residue to the C-2 of Trp through a C-C bond (de Beer et al., 1995). In 

phosphoglycosylation the sugar is linked to serine or threonine via a phosphodiester bond 

(Haynes, 1998). 

 

1.3.3 Function of N-linked glycosylation 
 

The diverse complexity of N-linked oligosaccharide structures allows them to play various 

biological roles. Their purposes seem to range from trivial to crucial, depending on the 

glycoconjugate, the oligosaccharide structure and the biological context. 

The single important function of N-linked glycosylation is the promotion of proper folding of 

newly synthesised polypeptides in the ER (Gavel and von Heijne, 1990; Helenius, 1994). 

When glycosylation is inhibited, the most commonly observed effect is generation of 

misfolded, aggregated proteins that fail to reach a functional state and are consequently 

degraded (Gavel and von Heijne, 1990; Helenius, 1994; Varki, 1993). 

N-linked oligosaccharides are large hydrophobic structures, thus, by virtue of their size alone, 

the addition of the glycan moulds to the protein backbone can dramatically alter the structure, 

and consequently the function of the polypeptide architecture to which they are attached. N-

linked glycans can affect protein structure in two ways. First, since the addition of 

carbohydrates occurs cotranslationally to the nascent polypeptide, it can have a great impact 

on the protein folding process. Second, the carbohydrates can stabilise the mature protein 

(Imperiali and O'Connor, 1999). In general, glycoproteins are more stable than their 

corresponding unglycosylated counterparts, even if no major structural changes are associated 

with the glycosylation.  
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Since cells are capable of producing a wide variety of oligosaccharyl structures, sophisticated 

mechanisms exist to ensure that the correct structures are added to the numerous 

glycoproteins that are assembled. The ER contains a high concentration of soluble and 

membrane bound molecular chaperones and folding enzymes controlling the folding process 

of proteins. Two of the chaperones, the lectins calnexin (membrane bound) and calreticulin 

(soluble) bind transiently to almost all newly synthesised unfolded glycoproteins, slowing 

down the rate and thus increasing the efficiency of their folding (Ou et al., 1993; Helenius and 

Aebi, 2001). In some cases inhibition of the initial glycosylation disrupts protein folding to 

such an extent that it induces the ‘unfolded protein response’, a complex process characterised 

by the up-regulation of several chaperones in the endoplasmatic reticulum.  

Although glycosylation enhances proper folding of proteins, it is not necessary for structure 

formation. Other chaperones, such as BiP (Binding protein) can bind to unglycosylated 

proteins controlling their proper folding (Ellgaard et al., 1999; Molinari and Helenius, 2000).  

Another function of N-linked glycosylation is protection from degradation by intracellular 

proteases. Simply because of their size, glycans can shield large regions of protein surfaces, 

providing protease protection for the attached protein. This property of the N-linked glycans 

is well studied in lysosomes. The lysosomal membrane contains an assortment of highly 

glycosylated proteins, among others LAMP and LIMP family members containing up to 20 

N-linked glycans each. These glycans have been shown to shield the underlying Lamp-1 and 

Lamp-2 polypeptides from their proteolytic environment in the lysosome (Kundra and 

Kornfeld, 1999) since their deglycosylation resulted in a rapid degradation. 

Glycosylation might also serve to enhance thermal stability (Olsen et al., 1991) or to 

influence the solubility of proteins as well as affect the intracellular transport and localisation 

of the glycoprotein. In Lutropin receptor, for example, elimination of the glycosylation site 

causes a loss of surface expression (Ji et al., 1990). Also trafficking of ion channels is often 

strongly dependent on glycosylation. For example, it has been reported that N-linked 

glycosylation is required for the cell surface expression of ligand-gated channels including 

ATP purinergic receptors: P2X1 (Rettinger et al., 2000) and P2X2 (Torres et al., 1998). 

 

In the secretory pathway glycans have a common role in promoting protein folding, quality 

control, and certain sorting events at early steps. Later, Golgi enzymes perform complex sugar 

modifications prepare for the spectrum of novel functions that mature proteins display. Once 

expressed in fully mature form on the cell surface N-linked glycans can play a more global 

role, modulating the function of host proteins at the targeted sites. 
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Sugars extending into the extracellular space are large moieties and, like in the cytosol, able 

to provide a ‘fence’ around an individual protein molecule so that interaction with other 

proteins attached to the membrane is hampered. The ‘coating’ of many plasma-membrane 

proteins by oligosaccharides can on the one side protect the polypeptide chain from 

recognition by antibodies, on the other, be involved in recognition events as such 

glycoconjugates can serve as ligands for receptors on other cells or pathogens. It is known 

that certain oligosaccharides act as highly specific receptors for a variety of viruses, bacteria, 

parasites and toxins, and serve as antigens for autoimmune responses (Varki, 1993). They also 

play role in T-cell recognition of antigen presenting cells and in formation of 

‘immunological synapse’ (Rudd et al., 1999). 

 

Since cells are covered with a dense coat of sugars it is postulated that oligosaccharides must 

be critical determinants of cell-cell and cell-matrix interactions, however their involvement in 

these processes is not well documented. In the most cases oligosaccharides seem to play an 

indirect role in cell-cell contacts, directing folding and transport of the functional proteins 

rather than having a direct function in the cellular contact.  

Addition of N-linked sialic acid seems to be particularly important in cell-cell adhesion and 

cell migration (reviewed by Rutishauser, 1996). However, rather O- than N-linked 

glycosylation seems to play a straightforward role in adhesion processes. 

Glycosylation can, also be required for proper function of a protein at the targeted site, such 

as binding to ligands or receptors. For example, mutation of one of the glycosylation sites in 

MCHR1 (Melanin-concentrating hormone receptor) has been shown to significantly lower the 

ligand binding (Saito et al., 2003). 

 

1.4 N-linked glycosylation and ion channels 

 

Ion channels are transmembrane proteins that do not differ in their origin and processing from 

other membrane proteins. Thus, glycosylation has to be considered as an important 

posttranslational modification when studying ion channel function. 

With the increase of our knowledge about ion channels there is an enormous expansion of 

reports describing the importance of glycosylation on channel proteins. It starts with a simple 

fact that differential glycosylation contributes to the diversity of ion channel function.  
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Glycosylation has been shown to modulate the functional properties of many ion channels. 

For example, inhibition of N-linked glycosylation altered the voltage dependence of channel 

gating of some voltage-gated ion channels, such as Kv1.1 and KvLQT/minK K+ (IsK) 

(Freeman et al., 2000; Thornhill et al., 1996) or sodium channels (Zhang et al., 1999). It can 

also modulate open probability or pH sensitivity of channels. The ROMK1 inward rectifier K+ 

channel showed reduced open probability when N-linked glycosylation is inhibited (Schwalbe 

et al., 1995), whereas expression of KvLQT/minK K+ channels in nonglycosylating cells 

affected not only the gating properties but also the pH sensitivity of the channel (Freeman et 

al., 2000). 

However, in most cases glycosylation is playing a more complex role in modulating different 

aspects of ion channel biogenesis, trafficking and/or function.  

So, for example, N-linked glycosylation increases the stability of Shaker potassium channels 

but has little effect on acquisition of the native structure. It has been shown that the rapid 

degradation of nonglycosylated Shaker channels involves cytoplasmatic proteasomes (Khanna 

et al., 2001). N-linked glycosylation resulted, moreover, in faster trafficking of the Shaker 

protein from the endoplasmatic reticulum to the Golgi (de Souza et al., 2002), but no 

information about the effects of N-glycosylation on the electrophysiological properties of 

channels are available. 

Another well-studied example is HERG, a voltage gated potassium channel. It has been 

reported that N-linked glycosylation is required for expression of HERG channels in the cell 

membrane (Petrecca et al., 1999) and plays an important role in HERG channel stability 

(Gong et al., 2002). Mutations affecting glycosylation of HERG channels were also found in 

the patients with LQT syndrome (a HERG associated cardiac disorder) demonstrating a 

physiological significance of the glycosylation process (Satler et al., 1998; Zhou, 1998 B). 

Moreover, a HERG mutant, lacking one of two functional glycosylation sites (N629), failed to 

generate HERG currents when expressed in mammalian cells (Gong et al., 2002). 

 

Those and many other examples suggest that N-linked glycosylation is playing an important 

role in proper functioning of many membrane proteins including ion channels. The diversity 

of glycans attached to ion channels may regulate a variety of cellular activities, beginning 

with modulation of the protein spectrum expressed on the plasma membrane, up to the 

regulation of cell responses to extrinsic stimuli. 
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1.5 Aim of the study 

 

The primary goal of this study was the analysis of Eag1 on the protein level, its expression 

pattern and eventual posttranslational modifications. Since we found that rat Eag1 undergoes 

N-linked glycosylation in brain, a common and powerful modification of plasma membrane 

proteins, the following questions evaluated:  

• does the human Eag1 also undergo N-linked glycosylation 

• what is the function of the N-linked glycosylation of hEag1 channels 

To study this we decided to use two expression models: CHO cells for the biochemical 

characterisation and Xenopus laevis oocytes for the functional analysis. We used both site 

directed mutagenesis and internal block of the glycosylation pathway, as well as different 

biochemical and electrophysiological methods, in order to investigate the N-linked 

glycosylation of hEag1 channels. 

 

The aims of the study were: 

• to identify sites responsible for oligosaccharide attachment 

• to propose a model of N-linked glycosylation of hEag1 channels 

• to study the effects of attached oligosaccharide(s) on the intracellular localisation of hEag1 

• to investigate functional effects of N-linked glycosylation of hEag1 channels. 
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2 MATERIALS AND METHODS 
 

 

2.1 Materials 
 

 

2.1.1 Equipment 
 

Centrifuges XL-90, Beckman 
Optima TLX 120, Beckman 
5415 C, Eppendorf (Table-centrifuge) 
5402, Eppendorf (Cooling-centrifuge) 

Confocal microscope LSM 510 with Axiovert 200, Zeiss 

Developing machine  Curix 60, AGFA 

Fluorescence microscope (Axioskop) Zeiss 

Homogeniser Schütt Labortechnik 

manipulator (stepper motor driven LN SM-1) Luigs & Neumann 

Mini-PROTEAN II gel system  BIO-RAD Laboratories 

patch-clamp amplifier (EPC-9) HEKA Electronic 

Photometer Eppendorf 

pipette puller (HEKA PIP5) HEKA Electronic 

TRIO-Thermoblock™ (PCR) Biometra 

Turbo TEC-10CD amplifier  NPI-Elektronik 

  

  

2.1.2 Chemicals, reagents and material 

 
Acrylamide/Bisacrylamide Solution  
    (30%; 37,5:1) 

BIO-RAD Laboratories 

Agar Gibco/BRL 

Agarose Gibco/BRL 

Ammonium peroxydisulphate Fluka 

Ampuwa™ Fresenius AG 
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		Amersham Biosciences



		Isoamyl alcohol

		Fluka



		ß-Mercaptoethanol

		Sigma



		Paraformaldehyde

		Fluka



		Phenol

		Gibco/BRL



		Photographic Fixer

		Agfa



		Photographic Developer 

		Agfa



		Protein A-Agarose

		Oncogene Research Products



		Protein G/A-Agarose

		Oncogene Research Products



		Sodium Dodecyl Sulfate (SDS)

		Fluka



		N´N´N´N Tetramethylethyldiamine 


    (TEMED) 

		Sigma



		Tris-Base

		Sigma



		Tween 20 


    (Polyoxyethylenesorbitan monolaurate)

		Sigma



		Triton X-100

		Sigma



		Whatman™ filter paper

		Schleicher & Schüll



		X-(-Gal

		BD Biosciences Clontech



		X-(-Gal

		Biomol



		X-Omat™ Blue Films

		Kodak





Chemicals, which are not listed above, were purchased form Merck, Darmstadt.

2.1.3
Antibiotics


		Ampicillin

		Roche



		Cefuroxime/Zinacef750

		Aventis



		Geneticin™ (G418 sulphate)

		Calbiochem



		Kanamycin

		Roche



		Penicillin

		Gibco



		Streptomycin

		Gibco



		Zeocin

		Calbiochem





2.1.4
Enzymes, inhibitors, substrates


		Accutase™

		PAA



		Bovine Serum Albumine (BSA)

		Sigma



		Complete Protease Inhibitor Cocktail Tablets


    (EDTA free)

		Roche



		DNase (RQ1) RNase free

		Promega



		Endoglycosidase H (Endo H)

		Roche 



		Leupeptin

		Sigma



		Pepstatin A

		Sigma



		Peptide N-Glycosidase F (PNGase F)

		Roche



		Phenylmethylsulfonyl fluoride (PMSF)

		Serva



		Proteinase K

		Roche



		Phosphatase, alkaline 

		Promega



		Poly-L-Lysin

		Sigma



		RNasin™ (RNase inhibitor)

		Promega



		T4-DNA-Ligase

		Promega



		T4-RNA-Polymerase

		Promega



		TaqPlus™ Precision DNA Polymerase

		Stratagene



		Tunicamycin

		Sigma





2.1.5
Standards


		RNA Ladder

		Invitrogen



		1 kb DNA Ladder

		Gibco/BRL



		100 bp DNA Ladder

		Gibco/BRL



		Precision Protein Standard ™ Broad Range 


    (Prestained)

		BIO-RAD Laboratories





2.1.6
Kits and ready-to-use reagents


		BCA™ Protein-Assay

		Pierce (Perbio Science)



		DAC-30™

		Eurogentec



		ECL™

		Amersham Biosciences



		EndoFree™

    Endotoxin-free Plasmid Maxi Kit

		Qiagen



		Fugene™

		Roche



		MATCHMAKER™ GAL4 


    Two-Hybrid System 3

		Clontech



		Mycoplasma Plus™ PCR Primer Set

		Stratagene



		NucleoSpin™ Extract 2 in 1

		Macherey-Nagel



		NucleoSpin™ Plasmid

		Macherey-Nagel



		Plasmid Maxi Kit 

		Qiagen



		ProLong Antifade Kit

		Molecular Probes





		ProSTAR™ HF Single-Tube 


    RT-PCR System

		Stratagene



		Qiaex II ™

		Qiagen



		QuickChange™ Site-Directed Mutagenesis Kit

		Qiagen



		RiboGreen™ RNA Quantitation Kit

		Molecular Probes



		StrataPrep™ Total RNA Microprep Kit

		Stratagene



		Total RNA Isolation Reagent

		BIOMOL



		YEASTMAKER™ Transformation System 2 

		BD Biosciences Clontech





2.1.7
Plasmids 


		pSGEM

		Prof. Michael Hollman, Bochum University 



		A vector based on pGEM-3Z vector containing 3’ and 5’ UTR from a Xenopus laevis (-globin gene flanking a polylinker derived from the MCS of pBluescript Vector. Contains a cassette of four restriction sites upstream of the SP6 promoter that can be used for sense template linearisation.






		pTracer

		Invitrogen



		Mammalian expression vector. Encode GFP-Zeocin fusion protein. CMV promoter.






		pCDNA 4 myc/His B+

		Invitrogen



		Mammalian expression vector. Contains human CMV promoter, as well as c-myc epitope and polyhistidine Tag (C-Terminus) and Zeocin resistance gene.






		pACT2

		BD Biosciences Clontech



		Generates fusion of GAL4 activation domain, HA epitope tag and a protein of interest. Harbours Ampicillin resistance and Leu2 nutritional genes for selection in bacteria and yeast, respectively.






		pGBKT7

		BD Biosciences Clontech





Express a fusion protein of the GAL4 DNA-binding domain, c-myc epitope tag and bait protein. Harbours Kanamycin resistance and Trp nutritional genes for selection in bacteria and yeast, respectively.


2.1.8
Synthetic oligonucleotide primers


Synthetic oligonucleotide primers were used for PCR or RT-PCR reactions, sequencing of DNA constructs or introduction of mutations into the plasmid DNA. Primers were synthesised by Metabion (Planegg-Martinsried) in HPLC purity grade. All oligonucleotides are depicted in 5’ to 3’ orientation.


2.1.8.1
Sequencing and PCR primers


		Name

		Sequence

		Direction

		Template



		853

		CCAAGACAATCCGCAACAACA

		forward

		hEag1



		854

		GTGCAAAAAGGCGAGAATGTC

		forward

		hEag1



		855

		CGCATGAACTACCTGAAGACG

		forward

		hEag1



		856

		GCCCAGTCCTGTGCCAATGTT

		forward

		hEag1



		857

		CAAGTGTCCAAGGCTGAGTCG

		forward

		hEag1



		858

		CGTCACCACCACCCCTACCAC

		forward

		hEag1



		859

		CTGAGCATTCCCCAACACAAA

		reverse

		hEag1



		860

		GCACAATGTCCACCAAAAAGA

		reverse

		hEag1



		861

		TCTGTGGATGGGGCGATGTTC

		reverse

		hEag1



		862

		AGGGTGGTCCGGGGGCAAGAT

		reverse

		hEag1



		863

		GTGACGGCAGGGTTGGAGGTA

		reverse

		hEag1



		CMV for

		CGCAAATGGGCGGTAGGCGTG

		forward

		pTracer



		T7

		TAATACGACTCACTATAGGG

		forward

		pCDNA4



		GAL4 AD for

		ATACCACTACAATGGAT

		forward

		pACT2



		5’AD LD for

		CTATTCGATGATGAAGATACCCCACCA

		forward

		pACT2



		Y2H AD rev

		GTTGAAGTGAACTTGCG

		reverse

		pACT2



		3’AD LD rev

		GTGAACTTGCGGGGTTTTTCAGTATCTACGA

		reverse

		pACT2



		

		





2.1.8.2
Oligonucleotides introducing mutation 


Introduced mutation is shown in bold and red.


		Name

		Sequence

		Direction

		Mutation



		1939

		GTTCGGCGGTCCCAGGATACTAATTTTG

		forward

		hEag1 N26Q



		1940

		CAAAATTAGTATCCTGGGACCGCCGAAC

		reverse

		hEag1 N26Q



		1941

		CAGCCATCTTGGTCCCTTATCAGGTCTCC

		forward

		hEag1 N238Q



		1942

		GGAGACCTGATAAGGGACCAAGATGGCTG

		reverse

		hEag1 N238Q



		1944

		GACACCAAGACAATCCGCCAGAACAGC

		forward

		hEag1 N388Q



		1945

		GCTGTTCTGGCGGATTGTCTTGGTGTC

		reverse

		hEag1 N388Q



		1946

		CAGTTTCAGGGGTCTGGCTCAGGGAAG

		forward

		hEag1 N406Q



		1947

		CTTCCCTGAGCCAGACCCCTGAAACTG

		reverse

		hEag1 N406Q



		1948

		CATCTTCGGGCAGGTGACGACTATTTTCC

		forward

		hEag1 N470Q



		1949

		GGAAAATAGTCGTCACCTGCCCGAAGATG

		reverse

		hEag1 N470Q



		1950

		GCATGCCTCCGCCCAGCACAGCCTCG

		forward

		hEag1 N752Q



		1951

		CGAGGCTGTGCTGGGCGGAGGCATGC

		reverse

		hEag1 N752Q



		XhoSTOP

		GACCCTCGAGCTGGCTCCAAAAATGTCTCTCTCTGATTCTGGGG

		reverse

		XhoI restriction site in hEag1 STOP codon 





2.1.9
Antibodies


Primary and secondary antibodies described below were used either for Western blot, immunoprecipitation or immunocytochemistry experiments.  


2.1.9.1
Primary antibodies


		2413x

		Dr. J. Pineda Antikörper servis



		Rabbit polyclonal antibody directed against rat Eag1 antigen (C-terminus). Recognises rat and human Eag1 and Eag2. Used for western blotting, IP and immunofluorescence.






		mAb-33

		Biogenes



		Mouse monoclonal antibody directed against C-terminus of hEag1. Does not cross-react with Eag2. Used for IP and immunofluorescence.






		mAb-62

		Biogenes



		Mouse monoclonal antibody directed against the pore region of hEag1. Does not cross-react with Eag2. Used for IP and immunofluorescence.






		anti-AMPA

		Dr. Maria Rubio, MPI Göttingen



		Rabbit polyclonal antibody. Used for immunoprecipitation.






		anti-calreticulin

		Dr. Majoul Irina, MPI Göttingen



		Rabbit polyclonal antibody. Marker of endoplasmatic reticulum. Used for immunofluorescence.






		anti-Cathepsin D

		Dr. Stefan Höning, Göttingen University



		Rabbit polyclonal antibody. Marker of lysosomes. Used for immunofluorescence.






		anti-GM-130

		Transduction Laboratories



		Mouse monoclonal antibody directed against GM-130. Recognises human, dog, mouse and rat GM-130. Used for immunofluorescence and western-blotting.






		anti-Lamin A/C

		Santa Cruz Biotechnology



		Goat polyclonal antibody. Used for precipitation






		anti-Limp2

		Dr. Stefan Höning, Göttingen University



		Rabbit polyclonal antibody. Marker of lysosomes. Used for immunofluorescence.






		anti-p53

		Dr. Majoul Irina, MPI Göttingen



		(protein 53) Rabbit polyclonal antibody. Marker of endoplasmatic reticulum. Used for immunofluorescence.






		anti-Rab5

		Dr. Majoul Irina, MPI Göttingen



		Rabbit polyclonal antibody. Marker of early endosomes. Used for immunofluorescence.



		anti-Rab7

		Dr. Majoul Irina, MPI Göttingen



		Rabbit polyclonal antibody. Marker of late endosomes. Used for immunofluorescence.



		



		anti-TRAP(

		upstate biotechnology



		Mouse monoclonal antibody directed against human TRAP(. Recognises also TRAP( from CHO cells. Used for immunofluorescence and western blotting.





2.1.9.2
Secondary antibodies


		Name

		



		anti-rabbit IgG HRP conjugate

		Oncogene Research Products



		anti-mouse IgG HRP conjugate

		Ammersham



		anti-mouse IgG Alexa Fluor 488 and 546

		Molecular Probes



		anti-rabbit IgG Alexa 488 Fluor and 546

		Molecular Probes



		anti-goat IgG Alexa Fluor 488 and 546

		Molecular Probes





2.1.10
Organisms and growth media


2.1.10.1
Bacterial strain genotypes


Competent cells from E. coli strains XL1 Blue (Young and Davis, 1983) or ready-to-use competent E. coli cells DH5( (Hanahan, 1983) were used for plasmid transformation. 


		Strain

		Genotype

		



		XL1 Blue

		recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacI q Z •M15 Tn10 (Tet r )]    




		Stratagene



		DH5(

Competent cells

		F´/endA1, hsdR17(rK - ,mK + ), supE44, thi-1, recA1, gyrA(Na1 r ),relA1, D(lacZYA-argF) U169, (j80lacZDM15)

		Invitrogen





2.1.10.2
Bacterial media


Bacterial LB (Lura Broth) Medium was obtained as a ready to use powder mix (Gibco,BRL) and dissolved in the appropriate amount of H2O. Solid media were produced adding agar at a final concentration of 1.5 % (w/v). Agar plates were poured, dried overnight at room temperature and stored at 4ºC.


After autoclavation LB or LB-agar media were supplemented with sterile antibiotics:


Ampicilin 
100 µg/ml


Kanamycin 
50 µg/ml


SOB medium (500 ml)


2
%v/W 
Bacto-Trypton


0,5
%v/W
Yeast-Extract


10
mM
NaCl 


5
mM
KCl 


10
mM
MgCl2 

10
mM
MgSO4
pH 6,8-7,0


Before addition of magnesium salts, media were sterilised by autoclavation. Mg2+ salts were prepared separately, sterile filtered and added to the autoclaved medium.


TB medium (300 ml)


10
mM 
MOPS (free acid)


15
mM
CaCl2  x 2 H2O


230
mM
KCl


55
mM
MnCl2 x 4 H2O


All chemicals besides MnCl2 were resuspended in 80% end volume of H2O and pH was set to 6,7 (with KOH). Afterwards, the appropriate amount of MnCl2 was added, the volume was adjusted and the solution was sterile filtered.


2.1.10.3
Yeast strain genotypes 


		Strain

		Genotype

		Reporter gene 

		Transformation marker 

		Reference



		Y187

		MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112, gal4(, gal80(, cyhr2, LYS:: GAL1aus-HIS3TAT,a- HIS3, MEL1 URA :: GAL1aus-   GAL1TAT,a – lacZ




		lacZ, MEL1

		trp1, leu2

		Harper et al., 1993



		AH109

		MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4(, gal80(, LYS:: GAL1TAT,a- HIS3,MEL1 GAL2aus- GAL2TAT,a- ADE2, URA3:: MEL1aus-   MEL1TAT,a – lacZ

		HIS3, ADE2, lacZ, MEL1

		trp1, leu2

		James et al., 1996; 





2.1.10.4
Yeast media


All yeast media were obtained from Clontech as ready-to-use powder mix and dissolved in the appropriate amount of H2O. If necessary, additional supplements were added.


The following media were used:


YPD
complete culture medium


YPDA
YPD medium supplemented after autoclavation and cooling down to 50°C with sterile filtered adenine to a final concentration of 0,003%.


SD
minimal culture medium; for auxotroph selection SD medium was supplemented with nutrient supplements lacking the appropriate component(s): 


-Leu, 


-Trp, 


-Leu/-Trp (LT)


Additionally, the following agar plates were poured, dried for at least 4h at 30ºC or overnight at room temperature and stored at 4ºC before use:


YPDA-agar
YPD-agar medium; autoclaved and after cooling down to 50°C supplemented with 7,5 ml of 0,2% adenine (final concentration 0,003%). 


SD-agar
supplemented with appropriate amount of DO supplements: 


-Leu, 


-Trp, 


-Leu/-Trp (LT), 


-His/-Leu/-Trp (LTH), 


-Ade/-His/-Leu/-Trp (LTHA)


Adenin stock solution


0,2% v/w in sterile H2O. Sterilised by filtration. Aliquots stored at -20°C


X-(-Gal stock solution
20 mg/ml in dimethyl formamide


3 Aminotiazol(3AT)
10 mM final concentration


2.1.10.5
Eucaryotic cell lines


		CHO-K1

		ATCC

		



		Chinese Hamster Ovary: CHO-K1 cell line was derived as a subclone from the parental CHO cell line initiated from a biopsy of an ovary of an adult Chinese hamster. 






		Lec1

		ATCC

		



		Mutant clonal derivate of CHO clone Pro-5. Lec1 lacks the glycosyltransferase GlcNAc-T1 so that N-linked carbohydrates are blocked at the Man5GlcNAc2Asn intermediate.





2.1.10.6
Eucaryotic cell culture media


		Cell line

		Medium

		Additives

		



		CHO-K1

		Ham's F 12 Medium

		10 % FCS

		Gibco



		Lec1

		MEM Alpha Medium

		10 % FCS

		Gibco





2.1.10.7
Animals


Adult male Wistar-rats (Rattus norvegicus) were used. Rats were killed by decapitation under CO2 anaesthesia and organs were dissected immediately.


Oocytes from adult Xenopus laevis, South African clawed frogs, were used for electrophysiological measurements. Following anaesthesia, a small incision was made, which was closed immediately after removal of oocytes. Frogs were returned to the water directly after surgery.


2.1.11
Sterilisation of solutions and equipment


Heat insensitive solutions were sterilised at 121°C, 105 Pa for 60 min (Yeast culture media for 15 min) in an autoclave (3850EL; Systec GmBH, Labor Systemtechnik, Wettenberg). Heat sensitive solutions were filtered through a disposable sterile filter (0.2 to 0.45 µm pore size). Plastic ware was obtained sterilised. RNase-free solutions were prepared by overnight incubation with 0,1% DEPC and autoclaved as described. RNase-free glassware was baked overnight in an oven at 220°C.


2.2
Methods


2.2.1
Bacteria and yeast culture techniques


Bacterial strains were grown in the described media (see 2.1.10.2) at 37°C. For short-time storage, agar-plates with bacteria were sealed with Parafilm and stored at 4°C. For long time storage plasmid DNA was isolated and retransformation was performed.


Yeast strains were grown in the described media (see 2.1.10.4) at 30°C. For short time storage, streaked yeast plates were sealed with Parafilm and stored at 4°C. If necessary, yeast colonies were re-streaked onto fresh plates every four weeks. For long time storage, 0,5 ml of overnight cultures were mixed with equal volume of 50% glycerol, rapidly frozen in liquid nitrogen and then stored at -80°C.


2.2.1.1
Preparation of Epicurian Coli XL1-Blue competent bacteria


Competent bacteria were produced by modification of cell wall, which facilitates DNA uptake. For this, 250 ml of SOB medium was inoculated with several (3-5) colonies of E.coli strain XL1-Blue (from stock plate) and a culture was grown at 18°C, 200 rpm until OD600= 0,45-0,6 (about 48h). Bacteria were centrifuged for 10 min at 4°C at 2500 x g (swinging bucket). Pellet was resuspended in 80 ml of sterile, ice-cold TB medium and incubated on ice for 10 min. 


The suspension was thereafter centrifuged for 10 min at 4°C, 2500 x g. The pellet of bacteria was resuspended in 20 ml of sterile, ice-cold TB medium and 1,4 ml of DMSO was slowly added to the tube (7% DMSO end-concentration). The mixture was incubated on ice for 10 min, dispensed into 200µl aliquots, shock frozen in liquid nitrogen and stored at -80°C. An aliquot was tested for transformation efficiency (approximately 108 transformants per 1µg of control plasmid DNA).


2.2.1.2
Transformation of competent bacteria


Transformation of competent E.Coli XL1-Blue bacteria was carried out by the heat shock procedure with an efficiency of 106–108 transformants for 1µg of DNA. A 100µl aliquot of competent cells was allowed to thaw on ice and was gently mixed with 1-10 ng of DNA or 5-10µl of a ligation mix. After incubation for 20 min on ice, bacteria were heat-shocked for 1 min at 42°C and chilled for 3 min on ice. Following, 500 µl of LB medium were added and bacteria were allowed to grow for 1 h at 37°C with gentle agitation. Finally, cells were plated onto LB-agar plates containing appropriate antibiotics and grown overnight at 37°C.


2.2.2
Nucleic acid preparation, modification, amplification and analysis


2.2.2.1
Isolation of plasmid DNA


Plasmid DNA, depending on its final purpose, was isolated either in small- or large-scale preparations. The isolated DNA was further used for transfection, sequencing, restriction analysis, PCR or subcloning. 


2.2.2.1.1
Small-scale preparation of plasmid DNA (Mini prep)

MACHEREY-NAGEL NucleoSpin™ Plasmid Kit was used to purify small amounts of plasmid DNA. For this, 5 ml of LB medium containing the appropriate antibiotics were inoculated with a single E.Coli colony and incubated for 10-16 h at 37°C, 225 rpm. Bacterial cultures were centrifuged (6200 x g, 5 min), and the pellet was treated according to the manufacturer’s protocol. DNA was eluted with 50 µl of H2O


2.2.2.1.2
Large-scale preparation of plasmid DNA (Maxi prep)


For the preparation of large-scale bacterial cultures, 5 ml of LB medium containing appropriate antibiotics were inoculated with a single colony and incubated for 6-8 hrs at 37°C, 225 rpm. Thereafter, 100 ml of LB medium with appropriate antibiotic was inoculated with 0,2 ml of this culture and incubated overnight at 37°C with vigorous shaking (225 rpm). The plasmid DNA was isolated with the Plasmid Maxi Kit (Qiagen) according to the user’s manual. To obtain endotoxin-free DNA, necessary for transfection of eucaryotic cells, EndoFree™ Plasmid Maxi Kit (Qiagen) was used. DNA was finally dissolved in 100-500 µl of sterile H2O.


2.2.2.2 Isolation of DNA fragments from agarose gels


For the isolation of DNA fragments from agarose gels the QIAEX-II™ kit (Qiagen) or NucleoSpin™ Extract kit (Macherey-Nagel) were applied. After separation of DNA on 0,7-1,0% agarose gels, the desired DNA band was excised with a razor blade, weighed and treated as described in the user’s manual. Isolated DNA fragments were tested on agarose gels and further used for subcloning.


2.2.2.3
Enzymatic modification of DNA 


2.2.2.3.1
Treatment of the DNA with restriction enzymes


Restriction enzyme digestion was carried out on the double-stranded DNA according to standard protocols (Sambrook et al., 1989). Reactions were usually incubated for 1-3 hours, in some cases also over night, to ensure complete digestion. The optimal temperature for enzyme activity was typically 37°C with exception of the SfiI enzyme that was incubated at 50°C.


2.2.2.3.2
Dephosphorylation of 5' ends of DNA


To prevent the recircularisation of plasmids without insertion of foreign DNA, alkaline phosphatase treatment was performed. Alkaline phosphatase catalyses the hydrolysis of 5'-phosphate residues from DNA. 


The following was mixed in a total volume of 50 µl:


1-5
µg
digested vector DNA, 


5

µl
10 x reaction buffer,


1 

µl 
alkaline phosphatase (1 U) 


The reaction was carried out in two steps: 15 and 45 min (in case of 3’ overhang or blunt ends produced by the specific restriction enzyme) or twice 30 min (5’ overhangs). In both cases, an additional 1µl of the enzyme was added after the first incubation step. Dephosphorylated DNA was purified by phenol/ chloroform extraction and ethanol precipitation, and tested on agarose gels.


2.2.2.3.3
Ligation of DNA fragments


The ligation of DNA inserts into vector DNA was carried out in the following reaction mix, in a total volume of 10 µl: 


25-50
ng 
vector DNA 


50-100
ng 
insert DNA



1
µl 
ligation buffer (10 x) 



1 
µl 
T4 DNA ligase (5 U/µl) 


Sticky-end ligations were usually carried out at 16°C overnight.


2.2.2.4
Isolation of total RNA from tissues and eucaryotic cell lines


For isolation of total RNA either Total RNA Isolation Reagent (Biomol) or StrataPrep™ Total RNA Microprep Kit (Stratagene) were used. Reagents were chosen depending on the sample number and amounts of RNA to be isolated. Purified RNA was stored at -80°C for long or at -20°C for short periods.


2.2.2.4.1
Isolation with Total RNA Isolation Reagent


Total RNA Isolation Reagent was used to isolate higher amounts of RNA from small numbers of samples. 

10-100 mg of tissues or 5-10 x 106 of cultured cells were mixed with 1 ml of RNA reagent and homogenised by using a glass-teflon homogeniser. Following homogenisation, samples were stored for 5 minutes on ice and mixed with 0,2 ml of chloroform. After 15 min centrifugation (4°C, 12.000 x g, fixed angle) the aqueous phase was collected and RNA was precipitated with an equal volume of isopropanol. After two washes with 70% ethanol, the RNA pellet was dried and resuspended in 50-100 µl of DEPC treated H2O.


2.2.2.4.2
Isolation of total RNA with StrataPrep™ Total RNA Microprep Kit


StrataPrep™ Total RNA Microprep Kit was used to isolate small amounts of RNA from high number of eucaryotic cell-culture samples. Less than 5 x 105 cells were scraped, washed with PBS and resuspended in 100 µl of Lysis buffer supplemented with 0,7 µl ß-mercaptoethanol. Total RNA was isolated according to the manufacturer’s instructions and finally eluted with 30 µl of Elution Buffer. 


2.2.2.5
DNase treatment of total RNA


First, total RNA (approximately 50 µg) was treated with RNase-free DNase I according to the manufacturer’s advice. For this, the following reagents were combined, mixed and incubated at 37°C for 30 min:

100 µl 
of total RNA (1 mg/ml)


20 
µl 
10 x DNase I buffer


10 
µl 
DNase I (1 U/ml)


70 
µl 
deionised water


DNaseI treated RNA samples were purified by phenol/chloroform extraction and ethanol precipitation (2.2.2.6). The pellet was lyophilised (speed-vac) and dissolved in 50 µl RNase-free water. 4 µl of the RNA sample was tested on a denaturing agarose gel to verify RNA yield and purity. 


2.2.2.6
Phenol-chloroform extraction and ethanol precipitation


Contaminating proteins were removed from the nucleic acid samples by addition: firstly of an equal volume of phenol-chloroform and secondly chloroform to the nucleic acids solution, each followed by centrifugation (10 min, 10.000 x g) to remove organic phases. Nucleic acids were precipitated with 2,6 volume of absolute ethanol and NaAc (final conc. 0.3 M), and washed with 70% ethanol. The dried pellet was re-dissolved in sterile or RNase free water. 


2.2.2.7
cRNA synthesis


cRNA was synthesised for electrophysiological measurements, which required microinjection of the RNA into Xenopus oocytes for in vivo translation and protein expression. Template DNA used for transcription was subcloned into pSGEM vector (M. Hollman, see 2.1.7). Reaction was performed with the use of T7 RNA polymerase, which enables in vitro synthesis of large amounts of cRNA from linear cDNA templates. T7 RNA polymerase incorporates 5´7MeGpppG (5´ cap analogue) during polymerisation, which strongly increases RNA stability. All reaction steps were performed in RNAse-free environment.


Template cDNA (5 µg) was linearised using SfiI enzyme (1-2 U/µg DNA) in a total volume of 50µl for at least 2 hours at 50°C and linearisation efficiency was tested on agarose gels. Afterwards, the reaction volume was increased to 200 µl and treated with one volume of phenol/chloroform, vortexed and spinned at 14.000 x g for 10 min at 4°C. DNA was precipitated for 10 min at -70°C with 1/10 v/v of 4M LiAc and 2,5 v/v of EtOH and centrifuged (30 min, 14.000 x g, at 4°C). Pellet was washed with ice cold 70% EtOH, dried in a speedvac and resuspended in 60µl of DEPC treated water. 


For cRNA synthesis, the reaction mixture consisted of:


57,8
µl
linear DNA template


20
µl
10x Transcription Buffer 


2,8 
µl 
RNasin (40 U/µl)


2,4 
µl 
CAP (m7G(5’)ppp(5’)G; 5A250 disolved in 20 µl H2O)


5 
µl 
nucleotide mix (10mM ATP, CTP, UTP and 2 mM GTP)


10 
µl 
DTT 100 mM


2 
µl 
T7 Poymerase (19 U/µl)


It was incubated at 37°C for at least 1,5h. 


The template DNA was removed by digestion with 6µl of DNaseI (RQ1 DNase I, 1U/µl) at 37°C for 15 min. The reaction was stopped by adding 70 µl nuclease free water and 30 µl of 2M NaAc pH 6,0 followed by phenol/chloroform extraction and ethanol precipitation (overnight in 4°C). Pellet was resuspended in 200 µl of 0,3 M NaAc and ethanol precipitation was repeated (10 min at -70°C). Finally RNA was collected by centrifugation at 14.000 x g for 30 min at 4°C, the cRNA was resuspended in 20-50 µl nuclease free water and the concentration was determined. The samples were aliquoted and stored at -80°C.

2.2.2.8
Spectrophotometric quantitation and estimation of nucleic acid purity 


The concentration of nucleic acids was determined photometrically by measuring absorption of the samples at 260 nm. The ratio A260/A280 was used to estimate DNA purity. For pure DNA is the A260/A280 ratio about 1.8. 


2.2.2.9
RiboGreen™ assay for estimation of cRNA concentration


The absorbance-based method for measuring RNA concentration has some disadvantages like poor sensitivity (4 µg/ml RNA in solution) or interference of the signal with contaminating components such as nucleotides, proteins and salts in the RNA solution. For the injection of Xenopus laevis oocytes exact quantification is needed, since differences in RNA level can have strong effects on the level of synthesised proteins. Thus, the RNA concentration was estimated using RiboGreen™. The fluorescence of the RiboGreen™ reagent increases more than 1000-fold upon RNA binding and has an emission maximum at ~525 nm. The RiboGreen™ assay is ~1000-fold more sensitive than absorbency measurements at 260 nm.


To obtain a standard curve, dilution series of the ribosomal RNA in 1 x TE buffer were prepared. To obtain reliable results the experimental RNA was prepared in six different dilutions. Samples were mixed with 200-times diluted RiboGreen™ reagent and incubated 5 min at room temperature. Fluorescence was measured in a 96-well plate reader (Wallac Victor; 1 sec; Fluorescein filter: excitation ≈480 nm, emission ≈520 nm).

2.2.2.10
Polymerase chain reaction (PCR)


The polymerase chain reaction (PCR) is a very useful technique that allows production of high yields of specific DNA target sequences (Saiki et al., 1988). 


PCR was used in this work:


· to amplify specific DNA fragments 


· to create appropriate restriction sites at the termini of DNA fragments for cloning into different vectors


· to monitor RNA expression (RT-PCR)


· for in vitro mutagenesis


2.2.2.10.1
PCR amplification of DNA 

PCR protocols were performed in 50 µl. A typical 50 µl reaction mixture consisted of:


10-100 
ng 
plasmid DNA 


10 
pmol 
forward primer


10 
pmol 
reverse primer


1
µl
nucleotide mix (200 µM of each dNTP)


1
µl
PCR buffer with MgCl2 


1 
U 
Taq DNA polymerase 


x
µl
ddH2O


A 5 min incubation step at 95°C, during which the template DNA is denatured was followed by 30-40 cycles of:


30-60 
sec 
95°C 
(denaturing)


30-60 
sec 
48-63°C
(annealing)


30-120
sec 
68-72°C 
(elongation)


The last cycle was followed by an extra elongation step of 5-10 min at 68-72°C, depending on the polymerase.


The annealing temperature is dependent on primer composition, on their Tm (melting temperature) and on their homology with the template. 

2.2.2.10.2
One step RT-PCR


To obtain specific RT-PCR products the Stratagene ProSTAR™ HF Single-Tube RT-PCR kit was employed. The kit contains optimised components that allow both reverse transcription and PCR amplification to take place in what is commonly referred to as a ”one-step” reaction.


The following components were combined for 50µl experimental reaction:


x
µl 
RNase-free water



5
µl
10 x HF RT-PCRbuffer


10
pmol
upstream primer


10
pmol
downstream primer


1
µl
dNTP mix (40 mM)


0,1-1
µg
RNA


1,25
U
MMLV-RT


0,5
µl
TaqPlus Precision DNA polymerase 

Samples were mixed, placed in the thermal cycler and cycled using the following RT-PCR program:


37°C
30 min (reverse transcription)


95°C 
1 min


95°C
30 sec
(denaturation)


63°C
30 sec
(annealing)
  40 cycles


68°C
2 min
(extension)



68°C
10 min


2.2.2.10.3
Site directed in vitro mutagenesis


In vitro mutation of targeted nucleotides allows amino acid exchanges, generation or disruption of restriction enzyme recognition sites or correction of errors introduced by PCR amplification. The PCR based, Quick-Change™ Site-Directed Mutagenesis Kit (Stratagene) was used to create point mutations in the hEag1 cDNA. Pfu polymerase copies the entire plasmid from two complementary primers, both of which contain the desired mutation. The mutation was positioned as close to the middle of the primer as possible, with at least 4 bases of perfectly annealing sequence on both sides. The oligonucleotide primers, each complementary to opposite strands of the vector, are extended during temperature cycling by the DNA polymerase. Their incorporation in the synthesised DNA generates a mutated plasmid. After temperature cycling, the PCR product is treated with DpnI, to digest the methylated non-mutated parental DNA template. The nicked vector DNA carrying the desired mutations was then transformed into E. coli.


		Mutation 

		Forward primer 

		Reverse primer 



		N26Q

		GTTCGGCGGTCCCAGGATACTAATTTTG

		CAAAATTAGTATCCTGGGACCGCCGAAC



		N238Q

		CAGCCATCTTGGTCCCTTATCAGGTCTCC

		GGAGACCTGATAAGGGACCAAGATGGCTG



		N388Q

		GACACCAAGACAATCCGCCAGAACAGC

		GCTGTTCTGGCGGATTGTCTTGGTGTC



		N406Q

		CAGTTTCAGGGGTCTGGCTCAGGGAAG

		CTTCCCTGAGCCAGACCCCTGAAACTG



		N470Q

		CATCTTCGGGCAGGTGACGACTATTTTCC

		GGAAAATAGTCGTCACCTGCCCGAAGATG



		N752Q

		GCATGCCTCCGCCCAGCACAGCCTCG

		CGAGGCTGTGCTGGGCGGAGGCATGC





Table 1
Primers used to generate hEag1 mutants


PCR sample reaction mix:


5 
µl 
PCR Buffer 10x


1
µl
dsDNA template (hEag1 in pTracer, 50 ng/µl)


1 
µl
Primer mix (10 pmol/µl each)


1 
µl 
dNTP mix


41
µl
ddH2O


1 
µl 
Pfu Turbo DNA polymerase (2,5 U/µl)


Each sample was cycled using the following parameters:


95°C
30 sec


95°C
30 sec


55°C
60 sec
16 cycles 


68°C
18 sec


and chilled to 4°C


Methylated, nonmutated parental dsDNA was removed in each amplification reaction mix by 1 h incubation (37°C) with 1 µl of DpnI (10 U/µl). Afterwards, amplification was tested by electrophoresis of 5 µl of the digested PCR reactions on the 0,8%-1% agarose gels. 


For the amplification of the mutated DNA, 2-5 µl of each digested PCR products were transformed into XL1-Blue E.Coli.


2.2.2.11
Agarose gel electrophoresis 


2.2.2.11.1
Agarose gel electrophoresis of DNA


0.5 to 2% (w/v) agarose in 100 ml of TBE buffer was boiled in the microwave and poured into a horizontal gel chamber. Gels were then placed into an electrophoresis chamber filled with TBE buffer. 10-20 µl of DNA samples were mixed with 5 µl of stop mix applied on gel and run at 50-100 V.


TBE buffer (5x)


225
mM
Tris pH 8.3


225
mM
Boric acid


10
mM
EDTA

2.2.2.11.2
Agarose gel electrophoresis of RNA


(Maniatis and Efstratiadis, 1980)


Gel electrophoresis of RNA was performed on denaturing agarose gels, in the presence of 1,9% formaldehyde. 0,5 g of agarose was dissolved in 5 ml of 10 x MOPS/EDTA buffer and 42,4 ml of DEPC water and boiled in the microwave. After cooling to about 50°C, 2,6 ml of formaldehyde (37 %) was added, stirred and poured into a gel chamber. 5 µl of each RNA samples (1 µg/µl) as well as molecular weight markers were mixed with 25 µl of RNA-loading buffer and denatured for 15 min at 65°C. Samples were chilled on ice and mixed with 1 µl of ethidium bromide (1 mg/ml). The gel was run at 60 V for 6-8 hours. 


RNA-loading buffer


750 
µl 
Formamide


150 
µl
MOPS 10x


240
µl
Formaldehyde 37%


100
µl 
Glycerol



3 

µl 
H2O


20

µl
Bromphenolblue


20

µl
Xylencyanol


MOPS/EDTA


200
mM
MOPS


50
mM
NaAc


10
mM
EDTA


pH=7,0


2.2.3
Biochemical methods 


2.2.3.1
Isolation of total proteins from mammalian cells


For preparation of total proteins cells were cultured in 1-5 Petri-dishes (Ø=17 cm) until 80–90% confluency. Cells were washed with PBS, collected with a cell scraper and transferred to separate 50 ml Falcon tubes. After 5 min centrifugation at 1.000 x g, cell pellets were washed with 1 ml of PBS, transferred to Eppendorf cups and centrifuged again. Finally cells were lysed with 0,5-1 ml of Lysis buffer for 20 min in RT and cell debris was removed by 5 min centrifugation at 10.000 x g. Protein content was measured and the supernatant was used as whole cell lysate for western blotting or stored at -20°C.


Lysis buffer


20
mM
Tris pH 7.5


1
mM
EDTA


1
%
SDS


2.2.3.2
Determination of protein concentration 


Protein concentrations were estimated according to the Bicinchoninic Acid method (BCA; Pierce). 2-5 µl of a protein solution of unknown concentration in 100 µl of H2O was mixed with 400 µl of BCA reagent and incubated for 15-20 min at 60°C under vigorous shaking. Absorbance was measured at 595 nm and plotted against a reference curve obtained with known concentrations of BSA.


2.2.3.3
TCA precipitation


The BCA test is compatible with many detergents in concentrations up to 1%, however there are substances including reducing agents that interfere with the BCA assay. To eliminate the interfering soluble substances, a TCA precipitation step was performed prior to the BCA test. For this 1-5 µl of the protein solution, as well as standard and blank were mixed with H2O to a total volume of 500 µl. After addition of 100µl of the sodium deoxycholate reagent and 100 µl of the TCA reagent samples were incubated for 10 min at room temperature and centrifuged for 10 min at 14.000 x g. Following aspiration of the supernatant the pellet was resuspended in 100 µl of H2O, mixed with 100 µl of sodium deoxycholate reagent and 100 µl of the TCA reagent. The precipitation step was repeated. Finally, the protein-containing pellet was dissolved in 50 µl of SDS reagent, and protein concentration was measured with standard BCA method as described (2.2.3.2).


sodium deoxycholate reagent


0,15
%
sodium deoxycholate 


TCA reagent


72
% (w/v)
Trichloroacetic acid


SDS reagent


5
% (w/v)
SDS


0.1
M
NaOH


2.2.3.4
Immunoprecipitation


Immunoprecipitation is a procedure by which peptides or proteins that react specifically with an antibody are separated from solution and can be used for further studies. Immunoprecipitation is based on the binding of immunoglobulins to bacterial protein A or protein G. The immobilisation of Protein A/ Protein G on agarose beads allows pulling down of the bound antibody. When incubated with cell lysate, immobilised antibody forms complexes with an antigen that can be easily isolated by a simple centrifugation step.


For coupling of the antibody to form antibody-conjugated beads 5-10 µg of antibody was incubated overnight with 


25-45
µl
Protein G/A- or Protein A-agarose


10
µl
0,1% BSA


0,5
ml
PBS


Subsequently beads were washed 3x with 1 ml wash buffer (10 min each) and finally pelleted (in a benchtop centrifuge for 1 min at top speed).

Cell lysates were prepared from 1-5 (depending on the purpose) of Ø 16 cm culture-flasks containing confluent cells. Cells were scraped, washed 3x with PBS and lysed with 0,5 ml Nondenaturating lysis buffer for 20-30 min at room temperature. Non-lysed cells were removed by centrifugation (10 min, 14.000 x g) and the final cell lysates were mixed with the prepared antibody conjugated beads and incubated overnight. Afterwards, the protein-antibody-bead complexes were washed 3x with IP-wash buffer. For western blot analysis proteins were removed from beads by addition of 10 µl Laemmli buffer and 10 min incubation at 99°C. For glycosidase treatment, proteins were released from beads by addition of 10 µl of 0,1 % SDS/ 0,1x Methanol and 10 min incubation in 99°C. 


Nondenaturating lysis buffer


1
%
Triton X-100


50
mM
Tris HCl pH 7,4


300
mM
NaCl


5
mM
EDTA


IP-wash buffer


0,1
%
Triton X-100


50
mM
Tris HCl pH 7,4


300
mM
NaCl


5
mM
EDTA


2.2.3.5
Endoglycosidase treatment 


To monitor carbohydrate chain presence and modifications, hEag1 and mutant proteins were treated with different endoglycosidases. For this, cells were grown in three 75 cm2 culture flasks until they reached confluency. Cells were harvested, lysed in Nondenaturating lysis buffer and protein concentration was determined. 9,5 mg of cellular proteins were subjected to a standard immunoprecipitation protocol using 20 µg of mAb-62 antibody. Immunoprecipitated protein-beads were washed and proteins were released from the beads by incubation with 20 µl of 0,1 M 2-Mercaptoethanol/0,1 % SDS (10 min at 99°C). Beads were removed by a brief spinning and protein-containing supernatant used either for Endoglycosidase H (Endo H) or Peptide N Glycosidase F (PNGaseF) treatment.


		Enzyme

		oligosaccharide selectivity

		Monitors



		EndoH

		recognises the core region of oligosaccharide chains on high mannose and hybrid, but no complex oligosaccharides  

		ER to Cis-Golgi



		PNGase F

		liberates nearly all known N-linked oligosaccharides from glycoproteins

		all ER and Golgi





Table 2
Sensitivity of oligosaccharides to different endoglycosidases 



Modified, from Coligan et al., 1995


2.2.3.5.1
PNGaseF treatment


To digest glycoproteins with PNGase F 10µl of immunoprecipitated denatured protein in 0,1 M 2-Mercaptoethanol/0,1 % SDS were incubated overnight in 37°C with:


3
µl
0,5M Tris-HCl pH 8,5 (final concentration 60 mM) 


2
µl
10% Triton X-100 (final concentration 0,8%)



5
µl
H2O


5
µl
Peptide-N-Glycosidase F (substituted with 0,5 M Tris-HCl pH 8,5 in the control reaction)


2.2.3.5.2
Endoglycosidase H treatment


To digest glycoproteins with PNGase F 10 µl of immunoprecipitated denatured protein in 0,1M 2-Mercaptoethanol/0,1% SDS were incubated overnight at 37°C with:


3
µl
0,5 M sodium citrate, pH 5,5 (final concentration 75 mM) 



20
µl
H2O


2
µl
1 % PMSF (final concentration 0,05%)



1
µl
EndoH (substituted with water in the control reaction)


Both reactions were stopped by addition of 6 x Laemmli buffer and products were separated on 7 % SDS-PAGE gels and analysed by immunoblotting.


2.2.3.6
Polyacrylamide gel electrophoresis (SDS-PAGE)


To separate a large range of proteins of varying molecular masses, one dimensional polyacrylamide gel electrophoresis under denaturing conditions (in presence of 0.1 % SDS) was performed. 


Two gels: a ‘stacking gel’ with a low level of cross-linkage and low pH, allowing proteins to enter the gel and collect without smearing, and a ‘resolving gel’ with a higher pH, in which the proteins are separated according to molecular weights, were poured between two glass plates. For an 8 x 10 x 0.1 cm gel the following volumes were used:


10 ml of resolving gel


x
%
Acrylamide solution (7-12%)


1
x
Lower Tris


0,1
%
APS


0,1
%
TEMED


5 ml of stacking gel


4
%
Acrylamide solution


1
x
Upper Tris


0,1
%
APS


0,1
%
TEMED


The resolving gel solution was carefully poured between glass plates, overlayed with isobutanol and allowed to polymerise at room temperature for 30 min. After pouring off the overlaying isobutanol and washing with ddH2O, the stacking gel solution was poured and a comb was inserted. The gel was allowed to polymerise for further 60 min.


Probes were supplemented with Laemmli sample buffer (5x concentrated), boiled at 95°C for 10 min and loaded on the gel. Prestained molecular weight markers were used as standards. Electrophoresis was run at 50-80 mA/40 cm2 gel, typically for 1-3 h.

Lower Tris (4x)


1,5
M
Tris-HCl pH 8,8


0,4
%
SDS


Upper Tris (4x)


0,5
M
Tris-HCl pH 6,8


0,4
% 
SDS


Laemmli sample buffer


625
mM
Tris-HCl pH 6,8


10
%
SDS


16,75
%
(-Mercaptoethanol


52,5
%
Glycerin


0,025
%
Bromphenol blue


Running buffer


192 
mM
glycine


25 
mM
Tris


0,1
%
SDS


2.2.3.7
Commasie brilliant blue staining of proteins in polyacrylamide gels


Gels were stained in Commasie staining solution for 10 min up to 1 h. The background was subsequently reduced by soaking the gel in 10% acetic acid solution and 50% MeOH up to several hours. Finally, gels were soaked in 2% Glycerol, placed in a plastic frame between two cellophane sheets and dried overnight at room temperature.


Commasie staining solution


0,1
%
Commasie Brilliant Blue R


10
%
acetic acid


50
%
Methanol


2.2.3.8
Western blotting and immunological detection of proteins on nitrocellulose filters


2.2.3.8.1
Transfer 


After separation by SDS-PAGE proteins were electrophoretically transferred onto nitrocellulose membranes as described (Towbin et al. 1979). Transfer was carried out in Transfer buffer. For hEag1 the pH of Transfer buffer was adjusted to 10,0 (before addition of SDS and methanol), as the calculated isoelectrical point for Eag is close to the pH of commonly used transfer buffers (pH 8,0), a fact that was preventing transfer of Eag under standard conditions. 


After electrophoresis of proteins on a polyacrylamide gel, the gel and the nitrocellulose membrane Hybond-ECL (Amersham), which was cut to the size of the gel, were equilibrated in Transfer buffer for 10-30 minutes. Four sheets of Whatman™ paper were also cut to size and soaked in Transfer buffer. A transfer ‘sandwich’ (sponge, 2 sheets of paper, running gel, nitrocellulose membrane, 2 sheets of paper, sponge) held together by a plastic cassette, was assembled submerged in transfer buffer to minimise trapping of air bubbles. The cassette was inserted in the buffer tank and transfer was run at 250 mA constant current for 3-4 hours, or at 100 mA over night at 4°C.


Transfer buffer


25
mM
Tris 


192
mM
Glycine


0,1 
%
SDS


10

%
Methanol


2.2.3.8.2
Ponceau staining

Transfer of proteins from SDS-polyacrylamide gels was monitored either by Commasie staining of gels after blotting (see 2.2.3.7) or staining of blot-transfer membranes with Ponceau S solution. 


Following protein transfer, the nitrocellulose membrane was placed in Ponceau S solution for 5 min at room temperature. For de-staining, the membrane was placed in ddH2O until the background appeared white (2-10 min).


Ponceau S solution


2,5
g 
Ponceau S


40
%
Methanol


15
%
Acetic acid (glacial)

2.2.3.8.3
Antibody detection and enhanced chemiluminescent (ECL) assay for protein visualisation

Immobilised proteins were probed with specific mouse monoclonal, or rabbit polyclonal antibodies to identify and quantitate antigens. Specific binding was detected by a HRP (Horseradish-peroxidase) conjugated antibody directed against either mouse or rabbit IgG.

First, all unspecific binding sites were covered with a non-reactive protein. For this, the membrane was incubated with blocking buffer (5% non-fat dry milk in PBS) for at least 30 min. Blocking was followed by incubation with an antibody directed against the antigen of interest (primary antibody) diluted in 0,5% non-fat dry milk/PBS. Incubation was performed for at least 2 hours, or overnight at 4°C. The membrane was washed three times (10 to 15 min each) with PBST and incubated with the appropriate peroxidase-bound secondary antibody for 1-4 hours at room temperature, or overnight at 4°C. To remove the non-specific binding of antibodies, several washing steps with PBST, 10-15 min each, were performed. Finally, the proteins were visualised by chemiluminescence. Detection was performed using the ECL detection system as recommended by the manufacturer. The exposure of autoradiographic films was performed in a dark room using a film cassette to insure a tight fit between membrane and film. Usually, 1 sec up to 30 min exposure was performed. 


PBST


1 x PBS


0,05%(v/v) Tween 20


2.2.3.9
Subcellular fractionation


2.2.3.9.1
Fractionation by differential centrifugation

To analyse the distribution of a protein in different organelles subcellular fractionation by differential centrifugation in a series of spins of increasing centrifugal force was performed. For this, cells were grown in four Petri-dishes (Ø 17 cm) until they reached confluency, washed with 5 ml of PBS and harvested using a cell-scraper. Cells were transferred to a falcon tube and washed twice with PBS. To disrupt the cells, osmotic shock in 1 ml of Hypotonic Homogenisation Buffer supplemented with protease inhibitors (Roche, 1 tab for 10 ml) was used. After incubation on ice for 15 min, cells were additionally homogenised by passing 10 times up and down through a 23 G1 needle (0,6 x 25 mm) and finally sonicated for 5 min on ice. Proteins were stabilised by addition of 2 M saccharose. Unbroken cells were removed by 10 min centrifugation at 100 x g at 4°C and the supernatant was collected. Samples were then subjected to further centrifugation steps performed all at 4°C: 


10 min at 1.000 x g 
(P-1 pellet) 


10 min at 10.000 x g
(P-10 pellet)


10 min at 100.000 x g
(P-100 pellet)


Pellets were resuspended in 40 µl of PBS buffer and protein content was determined. Finally, identical amounts of protein samples were subjected to SDS-PAGE, followed by immunoblotting.


		Pellet

		Content



		P-1

		nuclei, heavy mitochondria, plasma membrane sheets



		P-10

		small mitochondria, lysozymes, peroxisomes, intact Golgi and Golgi membranes



		P-100

		all vesicles from ER, plasma membrane, Golgi, endosomes





Table 3
Distribution of cellular organelles in different centrifugation steps. 



Modified, from Spector et al., 1998


Hypotonic Homogenisation Buffer:


20
mM
Tris/HCl
pH 7,9


2
mM
DTT


10
mM
EDTA


M
PMSF


2.2.3.9.2
Subcellular fractionation by velocity sedimentation on sucrose gradient


A) Preparation of frozen step-gradient tubes:


Eleven sucrose solutions were prepared containing respectively, 12, 14, 16, 18, 20, 22, 26, 30, 34, 38, 42, 46, 50, 54 and 60% (w/v) sucrose. Starting with the 60% sucrose solution, a 200 µl aliquot was loaded onto the bottom of a 4 ml centrifuge tube, the tube was immersed in liquid nitrogen until the solution was frozen, then 200 µl of the next solution was added. The freezing procedure was repeated for all layers. Gradients were stored at -80°C. Four to five hours prior to use, the gradients were transferred to 4°C for slow thawing.


Sucrose solution


x
%
sucrose 


10
mM
HEPES
pH 7,5


1
mM
MgCl2

B)
Fractionation on sucrose gradient

Cells grown in five Petri-dishes (Ø 17 cm) were harvested, washed twice with PBS and collected by centrifugation (5 min at 2.000 x g). The pellet was resuspended in 0,5 ml hypotonic solution containing highly concentrated protease inhibitors (1 tab pro 1 ml) and incubated for 20 min on ice. Cell disruption was checked under the microscope and the whole lysates were loaded carefully onto sucrose-gradients. Tubes were centrifuged for 3 hours at 140-180 x g (swinging bucket) at 4°C in an ultracentrifuge and 18 fractions of 200 µl each were carefully collected. 50 µl aliquots were taken from each fraction, supplemented with Laemmli buffer and analysed by SDS-PAGE and by immunoblotting. 


Golgi proteins are expected in 10-44%, plasma membrane sheets in 37-60%, Golgi in 10-44%, intact nuclei in 60% and nuclear membranes in 10-55% sucrose fractions (Spector et al. 1998).


2.2.4
Eucaryotic cell culture methods


2.2.4.1
Cell culture conditions


CHO cells were grown in F-12 medium supplemented with 10% fetal calf serum. Lec1 cells were grown in MEM Alpha Medium supplemented with 10% fetal calf serum. For culturing cells stably transfected with pTracer and pCDNA4 constructs media were supplemented with Zeocin at 100 µg/ml to maintain selection pressure. The cells were cultivated at 37°C in a humidified atmosphere under 5% CO2 and grown up to about 80% confluency. For cultivation of slowly growing transfected cells or low confluent cell lines a conditioned, sterile-filtered medium was used. 


2.2.4.2
Harvesting eucaryotic cells


The following method is a gentle treatment to remove cells from the substratum while maintaining cellular integrity. First, the exhausted culture medium was removed and cells were washed twice with sterile PBS and incubated in 1 ml of accutase at 37°C until they had detached from the dish. The process was controlled under an inverted microscope. The enzyme was inhibited by addition of growth medium in which the cells were subsequently resuspended by pipetting up and down several times until a single-cell suspension was obtained. Single cells were monitored under the microscope and, when necessary, counted in improved Neubauer chamber and plated in the desired dilution. Splitting was performed 2-3 times a week. 


2.2.4.3
Cryoconservation of eucaryotic cells


Cells were detached from the substrate with accutase, centrifuged (1.200 x g for 2 min at RT) and resuspended in 0,5-2 ml of complete growth medium (1-5 x 106 cells/ml). Cell suspension was gently mixed with an equal volume of freezing medium and aliquoted into storage vials. Vials were placed in an insulated box in a -80 °C freezer overnight. Finally, the vials were stored in liquid nitrogen.


Freezing medium


25
%
FCS


25
% 
DMSO 


in appropriate culture medium (Ham's F12 or Alpha Modified Eagle's Medium)


2.2.4.4
Thawing and revitalising of cryopreserved cells


Cryopreserved cells are fragile and require gentle handling. The cells were quickly thawed in a 37°C water bath after being removed from liquid nitrogen. Then, cells were plated directly into a flask containing pre-warmed complete culture medium. Cells were allowed to attach for 3 hours in the incubator. Thereafter the DMSO-medium was removed by gentle suction and addition of fresh medium containing appropriate antibiotics.


2.2.4.5
Mycoplasma test


Mycoplasma are frequently found contaminants in cell cultures. Contamination with mycoplasma usually does not result in turbid growth within cultures or macroscopic alteration of the cells. However, mycoplasma contamination may cause adverse effects, such as changes in metabolism, growth rate, viability, DNA, RNA and protein synthesis, morphology etc., which lead to unreliable experimental results. Therefore, cell cultures were regularly tested for the presence of mycoplasma using Mycoplasma PlusTM PCR Primer Set (Stratagene) according to the manufacturer’s instructions. 

2.2.4.6
Transfection of mammalian cells


Transfection of CHO and Lec1 cells was accomplished using DAC-30 (Eurogentec) according to the supplier’s instructions. In the later part of the work, DAC-30 was replaced by Fugene (Roche), since this resulted in higher transfection efficiency and became a common transfection reagent in our lab. Cells (2 x 105) were plated out in appropriate growth medium on Ø 10 cm Petri dishes for 16-24 hours. On the day of transfection, culture medium was replaced by 2,5 ml of fresh medium and appropriate DNA mix was prepared in the following order:


DAC-30 mix


10 
µg 
plasmid DNA


25 
µg 
DAC-30


2,5 
ml 
serum-free culture medium


Fugene mix


194 
µl 
serum-free culture medium

6 
µl 
Fugene reagent

4 
µg 
plasmid DNA


DNA mix was incubated 15-30 min in room temperature and poured drop-wise onto cells. In case of transient transfection, cells were used for analysis after about 48 hours. For production of stable cell lines, Zeocin was added after 48 hours to the culture medium (100 µg/ml) for selection. This was carried out continuously to avoid phenotype recovery.


2.2.4.7
Preparation of polylysine-coated tissue culture surfaces


To ensure better attachment of CHO cells to the surface, coverslips used for immunofluorescence microscopy and electrophysiological measurements were covered with poly-L-lysine. 


Prior to coating, fat impurities possibly existing on glass coverslips were removed. For this 100-200 coverslips were incubated for at least 1 hour in 96% EtOH under gentle agitation. Coverslips were washed several times with water, autoclaved and finally placed in sterile poly-L-lysine solution (handled in sterile environment). After 1 h incubation with frequent shaking, coverslips were washed several times with sterile PBS. Coated coverslips were stored at room temperature under sterile conditions for up to several weeks. 


2.2.4.8
Incubation with Tunicamycin


To estimate the optimal working concentration of Tunicamycin, CHO cells were plated on 12-well plates in a density, in which they can reach confluency after 48h (50.000 cells per well). 24 h later the medium was changed for fresh F12 medium containing decreased concentrations of Tunicamycin (10-0,3 µg/ml). As a control, the same cells were incubated with the corresponding amounts of DMSO (solvent). Cells were incubated at 37°C for 24h and survival in Tunicamycin was observed under the microscope. As a working concentration, the highest concentration of Tunicamycin allowing survival of approximately 80% of cells was used (2,5 µg/ml). 


For the internal inhibition of N-linked glycosylation, CHO cells stably transfected with hEag1-pTracer were harvested and plated at the desired dilution. For western blot analysis cells were plated on Ø 17 cm Petri-dishes and incubated for about 24h until they reached 80% confluency. For electrophysiological studies and immunofluorescent localisation cells were plated on coverslips placed in Petri-dishes. Low dilution allowing electrophysiological measurements after more than 48h was chosen. Several hours after attachment of cells, the culture medium was replaced by inhibitor containing medium (2,5 µg/ml Tunicamycin) without antibiotics. In the control incubation, Tunicamycin was substituted by DMSO (vehicle). The inhibitor was allowed to act for 24h under normal cell culture conditions. Afterwards, cells were used for further studies.


2.2.5
Microscopic analysis


2.2.5.1
Immunofluorescent localisation of proteins


Cells were plated on round (Ø 1,5 cm), sterilised, polylysine coated coverslips 2-3 days before staining and grown to about 50% confluency. After removal of the medium cells were washed three times in PBS, fixed in 4% paraformaldehyde (20 min at 4°C) and washed again three times in PBS. Cells were permeabilised for 10 min in 0.1% Triton X-100/PBS and washed three times in PBS (10 min each). Alternatively, cells were fixed with methanol (20 min, -20°C) directly followed by PBS washes. Non-specific antibody binding was blocked by 10 min incubation in 10% BSA/PBS solution. Cells were then incubated with the primary antibody in the appropriate dilution and washed three times for 10 min in PBST. Finally, the appropriate fluorescent-dye labelled secondary antibody in PBS was added to the cells and incubated for 1h in the darkness. After three 10 min washing steps in PBST, nuclei were optionally stained with Hoechst 33342 and coverslips were mounted using the ProLong™ Antifade kit and left at least over night at 4°C. Microscopic analysis was performed using inverted fluorescence microscope or confocal laser scanning microscope.


PBST


1
x
PBS


0,05
% (v/v)
Tween 20


2.2.6
Electrophysiological methods


All electrophysiological measurements were performed in cooperation with Dr. Francisco Monje (MPI Göttingen).


2.2.6.1
Preparation and injection of Xenopus laevis oocytes


Xenopus laevis oocytes contain only very few endogenous voltage-activated channels and are relatively large (about 1 mm in diameter) which makes them a very useful system to study heterologously expressed ion channels.


For oocyte extraction from the frog Xenopus laevis, a small surgical opening was performed under anaesthesia (2.5 g/l of Tricaine). After isolation of oocytes frogs the incision was closed immediately and frogs were returned to water. 


The follicular cell layer was removed form oocytes by 2-3 hours incubation in collagenase solution. After inhibition of the enzymatic reaction by thoroughly washing the oocytes with Barth medium, oocytes in stages V-VI were isolated with fine forceps for cRNA injection. 


Pipettes used for cRNA injection were pulled using a standard pipette puller. Pipettes with an opening of ~10 µm in diameter were polished to obtain a needle-like shape which reduces oocytes damage during injection. Microinjection of cRNA (~50 nl per oocyte) was performed using an automatic injector. Injected oocytes were incubated at 18(C in Barth medium containing penicillin/streptomycin (100 U/ml) and Cefuxorixim/Zinacef750 (4 mg/l) for 3-7 days prior to electrophysiological analysis.


Barth medium


84
mM
NaCl


10
mM
KCl


6.5
mM
Ca(NO3)


0.6
mM
CaCl2 

7.5
mM
Tris-HCl


2.5
mM
NaHCO3
pH 7,4


2.2.6.2
Two-electrode voltage clamp (TEVC)


The TEVC is a method used extensively for the study of functional properties of voltage-gated ion channels expressed in oocytes (Stühmer, 1992). This method allows an accurate measurement of the ionic current through voltage-gated ion channels under adequate control of the membrane potential as well.


When an applied voltage induces opening of channels, the ionic flux tends to alter the membrane potential. Under TEVC control, one intracellular electrode (the voltage electrode) is used for continuous measurement of the actual membrane potential, while the second (the current electrode) is used to pass the current necessary to keep the potential at the desired value (Fig. 4). This is achieved using a feedback circuit, which is the main component of the voltage clamp. The amount of current that passes through the current electrode is the measured parameter. 


[image: image1.png]

Fig. 4
A schematic diagram of the main components of a two-electrode voltage clamp 


The difference in potential between the bath and the potential electrode (left), Vm, is compared to the command potential, Vcomm and determines the amount of current injected into the oocyte through the current electrode (right).


2.2.6.3
TEVC stimulation protocols


The two-electrode voltage clamp pipettes were made from Borosilicate glass capillares, containing a thin internal filament to ensure the complete filling of the electrode, and were filled with 2M KCl (internal solution). The tips of the pipettes were broken before use in order to decrease the electrical resistance to the range of 0.4- 0.7 MΩ. 


From a holding potential of –80 mV standard IV protocols, consisting of discrete depolarising pulses of increasing amplitudes, at increments of 10 or 20 mV, from the holding potential and up to +80 mV were applied (see Fig. 5). The amplitude of the current elicited during each pulse of voltage (test pulse) depends on the number of channels present in the membrane, their open probability, their conductance and the driving force of the permeating ion species. 


[image: image2.png]

Fig. 5
Standard IV protocol.

Starting from the holding potential from - 80 mV, discrete depolarising pulses of variable amplitudes, with increases of 10 or 20 mV, were applied during a variable time.


When channels are open under conditions (particularly hyperpolarising voltage and high extracellular potassium concentrations) that cause inward currents, an instantaneous inward tail current is apparent at the end of each depolarising pulse. The peak amplitude of this tail current is proportional to the open probability of the channels at test pulse potential, since the channels start to deactivate only after the change in potential. Since this inward current is always measured at a constant return (or tail) potential, i.e. at a constant driving force, it can be used to determine the voltage dependence of channel opening (activation curve). The activation curve can be characterised by Boltzman functions of the type: 


Po/Pomax or I/Imax = 1-(Gmax/(1+ exp (V-V1/2)/()) 


V1/2 indicates the potential at which half of the entire population of channels are in the open state. The e-fold slope allows the evaluation of the steepness of the dependence of the open probability on the membrane potential.


Tail currents are also useful to study the kinetics of deactivation. For this, the time curse corresponding to the relaxation of the tail currents is fitted with a single-exponential function using the PulseFit software in order to estimate the time constant of deactivation.


Normal Frog Ringer (NFR) external solution


85
mM
NaCl


30
mM
KCl


1.8
mM
CaCl2

2
mM
MgCl2

10
mM
HEPES 


Internal solution


2
M
KCl


2.2.6.4
Patch clamp measurements of potassium currents from CHO cells


The patch clamp is a voltage clamp in which a determined membrane potential is maintained under a specific area of cell membrane. The flux of transmembrane ionic currents as well as the membrane capacitance can be resolved with great accuracy (Hamill et al. 1981; Marty and Neher 1983).


A patch of membrane is isolated by attaching a clean and smooth tip of a glass pipette on the surface of the cell membrane and obtaining a very tight seal between the pipette and the membrane. The adhesion between the pipette and the membrane can be so good that a tight seal can reach a shunt resistance larger than 10 G(. 


Application of an additional negative pressure pulse (suction) is used to perforate the membrane located under the pipette leading to the whole-cell configuration (Fig. 6). In the whole-cell mode, electrical and chemical communication between the pipette solution and the intracellular medium is established, which allows an accurate control of the membrane potential and the intracellular chemical composition. 


In the experiments described here, the whole-cell configuration of the patch-clamp technique was used, in which channel openings can be induced by varying the membrane potential. In this configuration, the average ionic current flowing through the channels present in the entire cell membrane is recorded. 
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Fig. 6
 Simplified diagram of the patch clamp whole-cell configuration


A)
A clean and tip-polished glass pipette is approached to the cell


B)
The pipette isolates a small area of the cell membrane


C)
Gentle suction allows the formation of a very tight seal between the cell membrane and the walls of the pipette, leading to the cell-attached configuration


D)
Additional suction breaks the isolated area of membrane leading to the whole cell configuration


E)
Schematic diagram of the main components of the patch clamp technique


2.2.6.5
Stimulation-acquisition protocols and data analysis


For patch clamp measurements we used pipettes made of aluminiumsilicate glass capillaries. Pipettes were pulled on a conventional vertical pipette puller and tips were fire-polished under visual control through a light microscope. Resulting pipettes had resistances of 1-3 M( when filled with the intracellular solution. 


In all the experiments, the membrane was kept at a holding potential of -80 mV, where the probability of the hEag1 channels to be in the close state is very high. Standard voltage pulse protocols were applied to elicit and record the ionic currents flowing in response to the activation of the channels. Starting from a holding potential of -80 mV, several depolarising pulses were applied up to +80 mV in increments of 10 or 20 mV (Fig. 6). The duration of these pulses was between 500 and 2000 ms (see time scale in corresponding graphs). 


Currents were further filtered at 1-3 kHz, and digital sampling intervals were 100-200 (s. Series resistance was systematically compensated up to 60%. Leak and capacitative currents were systematically subtracted on-line using a P/n protocol as they essentially depend linearly on the applied potential. Linear leakage currents were estimated at voltage ranges in which the closed-state probability of hEag1 channels was close to 1. Current amplitudes were obtained by averaging the currents recorded from at least 5 different cells, and standard deviation (SD) of the samples used was calculated. In patch clamp experiments, current densities (pA/pF) for each cell were calculated from the steady-state values of the measured peak-current amplitudes divided by the value of cell membrane capacitance (determined by the automatic Cslow compensation).


Internal solution
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mM
KCl


10
mM
HEPES pH 7.2


10
mM
BAPTA


External solution
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KCl
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CaCl2


2
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2.2.7
Yeast Two-Hybrid System (Y2H)


(Fields and Song, 1989)


The Yeast Two-Hybrid System allows the detection of protein-protein interactions in vivo based on the fact that many eucaryotic transcription factors exist as two functionally independent domains, which can be separated without loss of function. Thus, the GAL4 DNA-binding domain (BD) and GAL4 activation domain (AD), which are normally part of the same protein, can be expressed separately fused with bait or pray protein. 


Both fusion-proteins are expressed in the same cell in the case of interactions between bait and pray. Thereby both domains (BD and AD) are brought into close proximity and become active, recognising UAS („upstream activating sequence“) of GAL4-responsive elements and initiating transcription of reporter genes (Fig. 7).


To identify interaction partners of hEag1, MATCHMAKER GAL4 Two-Hybrid System 3 was used. In this system two different S.cerevisiae strains are used: 


· AH109, auxotroph for adenine, histidine, leucine and tryptophan and 


· Y187, auxotroph for leucine and tryptophan. 


Additionally, MEL1 and lacZ reporter genes encode in both species for (- and (-galactosidase, respectively.
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Fig. 7
Yeast Two-Hybrid method 


2.2.7.1
Transformation of S.cerevisiae AH 109


S.cerevisiae AH 109 yeast was transformed with pGBKT7 constructs and transformation was carried out using a modified lithium acetate method (Gietz et al., 1995). For 7 transformations, 1 ml of YPDA medium with 3 colonies of AH 109, was vortexed, transferred to 50 ml of YPDA and incubated overnight at 30ºC (320 rpm). 5 ml of this culture were then diluted 1:10 with YPDA medium (OD600 ~0.4) and incubated for 3 h at 30ºC under vigorous shaking. Cells were collected by centrifugation (500 x g, 5 min), washed with sterile water and centrifuged again. Finally, cell pellet was resuspended in 750µl of freshly prepared TE/LiAc and used as competent cells.


For each transformation the following mix was prepared:


0,1
µg 
DNA


100
µg
DNA carrier (Salmon-sperm DNA)


100
µl
competent AH 109 cells


600
µl
freshly prepared PEG/LiAc 


After 30 min incubation at 30ºC with slow agitation (60 rpm) the yeast suspension was substituted with 70 µl DMSO and gently mixed, followed by 5 min heat-shock at 42ºC in a water bath. After short incubation on ice, cells were pelleted in a picofuge, resuspended in 0,5 ml of TE buffer and plated on SD –Trp selection plates to isolate positive transformants. 


2.2.7.2
Yeast mating


To identify putative hEag1 binding partners the MATCHMAKER™ pretransformed human cDNA library was used. In this system, the library cDNA is subcloned into the pACT2 vector (pray) and transformed into the Y187-MAT( yeast strain. The bait protein (C-terminus of hEag1) was subcloned into the AH109-MATa, a mating partner for the Y187-MAT( strain.


A 50 ml SD/-Trp medium was inoculated with a few colonies of AH 109 hEag1-CT (from SD -Trp plates) and grown overnight in 30(C with agitation (OD(0.8). Cells were pelleted and resuspended in 50 ml of 2 x YPDA-Kanamycine medium. The pretransformed library was thawn on ice directly before use, added to the suspension and agitated slowly in 30(C for 24-28h. Cell culture was washed twice with 50 ml of 2 xY PDA-Kanamycine and cells were resuspended in 10 ml of 0,5 x YPDA-Kanamycine. To select diploids expressing positively interacting proteins, 300 µl aliquots were plated on SD –LTHA plates enriched with X-(-Gal and incubated 12 days in 30(C. Additionally, 100 µl aliquot was used for the control of mating efficiency.


2.2.7.3
(-galactosidase assays


Prior to the (-galactosidase assays diploids were grown for several days on SD -LT selection plates.


2.2.7.3.1
Colony-lift filter assay (Breeden and Nasmyth, 1985) 

To duplicate the colonies, a dry Whatman filter was placed over the surface of the plate containing the colonies to be assayed. The filter was then placed for 10 seconds in liquid nitrogen, thawn at room temperature and placed, colony side up, on another Whatman paper pre-soaked in Z-buffer/X-gal solution and both were incubated at 30°C for up to 8 hours. 


Z buffer


60
mM
Na2HPO4

125
mM
NaH2PO4 x H20


100
mM
KCl


10
mM
MgSO4 x 7 H20


Z buffer/X-gal solution


100
ml
Z buffer


0.27
ml
(-mercaptoethanol


X-gal solution


20
mg/ml
X-gal in DMF


2.2.7.3.2
In-plate assay (Duttweiler, 1996)

Plates containing colonies to be analysed were covered with chloroform and incubated for 5 min at room temperature. Chloroform was removed and plates were dried for 5 min at room temperature. 15 ml of the agarose solution was boiled, cooled to about 40°C and supplemented with 1,5 ml of X-gal solution and poured onto the plate. Plates were incubated at 30°C up to 24h, and the appearance of blue colonies was controlled regularly.


Agarose solution


200
mM
K2HPO4

75
mM
KH2PO4

1
%
Agarose


X-gal solution


20 mg/ml X-gal in DMF


2.2.7.4
Recovery of plasmid DNA from S. cerevisiae

To recover the library plasmid from diploid yeast, 5 ml of SD/-Leu/-Trp medium was inoculated with a single colony selected to be analysed and incubated 48 hours at 30ºC with agitation. Cells were pelleted, washed with 1 ml of 1 x TE buffer and resuspended in 200 µl of the Yeast lysis buffer-1. Suspension was mixed with 100 µl phenol and 100 µl of chloroform:isoamyl alcohol (24:1) and 300 mg of glass beads and shaken strongly for 10 min at RT to break the cells. Afterwards, lysates were centrifuged for 10 min at 4ºC, 14000 x g. The upper phase was collected, supplemented with 5 µl of 7,5 M ammonium acetate, incubated for 60 min at -20ºC and centrifuged (15 min, 4ºC, 14000 x g). The supernatant was subjected to EtOH precipitation and DNA pellet was resuspended in 20 µl of sterile water. 


For amplification, DNA was transformed into competent E.Coli cells. Transformants were selected with medium containing Ampicilin. 


Yeast lysis buffer-1


2
%
Triton X-100, 


1
%
SDS, 


100
mM
NaCl, 


10
mM
Tris-HCl pH 8,0


1
mM
EDTA


2.2.7.5
Isolation of total cellular proteins from S.cerevisiae AH 109


To isolate total cellular proteins from yeast, 6 ml of medium (YPDA for AH109 and SD-Trp for AH109 GAL4-hEag1CT) were inoculated with a single colony and incubated overnight at 30°C (320 rpm). Cells were pelleted (5 min, 500 x g), washed with sterile water and lysed in 60 µl of Yeast lysis buffer-2 for 20 min at room temperature. Non-lysed cells were removed by centrifugation, and lysates were supplemented with Laemmli loading buffer divided into two equal samples and analysed on 9% SDS-PAGE.


Yeast lysis buffer-2


15
mM
TRIS HCl
pH 7,5


1
%
SDS


2.2.8
Computer analysis


DNA and protein sequence analysis and alignment in contigs were done with "LASERGENE" (DNASTAR). For multiple sequence alignments " CustalW" was used (available at http://www2.ebi.ac.uk/clustalw/help.html or at http://dot.imgen.bcm.tmc.edu: 9331/multi-align/multi-align.html). 


Other sequence analysis tools used are available at the ExPASy site: http://www.expasy.ch/ or at the NPSA (network protein sequence analysis) site: http://pbil.ibcp.fr/. For database sequences search, "WU-Blast2" was used, available at the EBI (European Bioinformatics Institute) site: http://www2.ebi.ac.uk/. 


Acquisition and analysis of electrophysilogical data were performed using thePulse+PulseFit (HEKA Elektronik) and IGOR (Wavemetrics) software packages.
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Bromophenolblue Sigma 

Chloroform Sigma 

Collagenase  Worthington Biochemical corporation 

Commasie R250™ Biomol 

Concanavalin A-Agarose Calbiochem 

Dextran sulfate Amersham  

Deoxycholic Acid, Sodium Salt Sigma 

Diethyl pyrocarbonate (DEPC) Sigma 

Dimethylsulfoxide (DMSO) Sigma 

Dithiothreitol (DTT) Sigma 

dNTPs (100 mM) Boehringer  

Ethylenediamine tetraacetic acid (EDTA) Sigma 

Ethidium bromide  Fluka 

Films (X-OMAT Blue XB1) Kodak  

Filter 0,22 µm Milipore 

Formaldehyde Fluka 

Formamide Fluka 

Glass capillaries Hilgenberg  

Hoechst 33342 Hoechst 

Hybond ECL™ Nitrocelulose Membrane Amersham Biosciences 

Isoamyl alcohol Fluka 

ß-Mercaptoethanol Sigma 

Paraformaldehyde Fluka 

Phenol Gibco/BRL 

Photographic Fixer Agfa 

Photographic Developer  Agfa 

Protein A-Agarose Oncogene Research Products 

Protein G/A-Agarose Oncogene Research Products 

Sodium Dodecyl Sulfate (SDS) Fluka 

N´N´N´N Tetramethylethyldiamine  
    (TEMED)  

Sigma 

Tris-Base Sigma 
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Tween 20  
    (Polyoxyethylenesorbitan monolaurate) 

Sigma 

Triton X-100 Sigma 

Whatman™ filter paper Schleicher & Schüll 

X-α-Gal BD Biosciences Clontech 

X-β-Gal Biomol 

X-Omat™ Blue Films Kodak 

 

Chemicals, which are not listed above, were purchased form Merck, Darmstadt. 
 

 

2.1.3 Antibiotics 
 

Ampicillin Roche 

Cefuroxime/Zinacef750 Aventis 

Geneticin™ (G418 sulphate) Calbiochem 

Kanamycin Roche 

Penicillin Gibco 

Streptomycin Gibco 

Zeocin Calbiochem 

 

 

2.1.4 Enzymes, inhibitors, substrates 
 

Accutase™ PAA 

Bovine Serum Albumine (BSA) Sigma 

Complete Protease Inhibitor Cocktail Tablets 
    (EDTA free) 

Roche 

DNase (RQ1) RNase free Promega 

Endoglycosidase H (Endo H) Roche  

Leupeptin Sigma 

Pepstatin A Sigma 

Peptide N-Glycosidase F (PNGase F) Roche 
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Phenylmethylsulfonyl fluoride (PMSF) Serva 

Proteinase K Roche 

Phosphatase, alkaline  Promega 

Poly-L-Lysin Sigma 

RNasin™ (RNase inhibitor) Promega 

T4-DNA-Ligase Promega 

T4-RNA-Polymerase Promega 

TaqPlus™ Precision DNA Polymerase Stratagene 

Tunicamycin Sigma 

 

 

2.1.5 Standards 

 
RNA Ladder Invitrogen 

1 kb DNA Ladder Gibco/BRL 

100 bp DNA Ladder Gibco/BRL 

Precision Protein Standard ™ Broad Range  
    (Prestained) 

BIO-RAD Laboratories 

 

 

2.1.6 Kits and ready-to-use reagents 

 
BCA™ Protein-Assay Pierce (Perbio Science) 

DAC-30™ Eurogentec 

ECL™ Amersham Biosciences 

EndoFree™ 
    Endotoxin-free Plasmid Maxi Kit 

Qiagen 

Fugene™ Roche 

MATCHMAKER™ GAL4  
    Two-Hybrid System 3 

Clontech 

Mycoplasma Plus™ PCR Primer Set Stratagene 

NucleoSpin™ Extract 2 in 1 Macherey-Nagel 

NucleoSpin™ Plasmid Macherey-Nagel 

 

   



Materials and Methods  - 18 - 

Plasmid Maxi Kit  Qiagen 

ProLong Antifade Kit Molecular Probes 

ProSTAR™ HF Single-Tube  
    RT-PCR System 

Stratagene 

Qiaex II ™ Qiagen 

QuickChange™ Site-Directed Mutagenesis Kit Qiagen 

RiboGreen™ RNA Quantitation Kit Molecular Probes 

StrataPrep™ Total RNA Microprep Kit Stratagene 

Total RNA Isolation Reagent BIOMOL 

YEASTMAKER™ Transformation System 2  BD Biosciences Clontech 

 

 

2.1.7 Plasmids  
 

pSGEM Prof. Michael Hollman, Bochum University  

A vector based on pGEM-3Z vector containing 3’ and 5’ UTR from a Xenopus laevis 

β-globin gene flanking a polylinker derived from the MCS of pBluescript Vector. 

Contains a cassette of four restriction sites upstream of the SP6 promoter that can be 

used for sense template linearisation. 

 

pTracer Invitrogen 

Mammalian expression vector. Encode GFP-Zeocin fusion protein. CMV promoter. 

 

pCDNA 4 myc/His B+ Invitrogen 

Mammalian expression vector. Contains human CMV promoter, as well as c-myc 

epitope and polyhistidine Tag (C-Terminus) and Zeocin resistance gene. 

 

pACT2 BD Biosciences Clontech 

Generates fusion of GAL4 activation domain, HA epitope tag and a protein of interest. 

Harbours Ampicillin resistance and Leu2 nutritional genes for selection in bacteria and 

yeast, respectively. 
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pGBKT7 BD Biosciences Clontech 

Express a fusion protein of the GAL4 DNA-binding domain, c-myc epitope tag and bait 

protein. Harbours Kanamycin resistance and Trp nutritional genes for selection in 

bacteria and yeast, respectively. 

 

 

2.1.8 Synthetic oligonucleotide primers 
 

Synthetic oligonucleotide primers were used for PCR or RT-PCR reactions, sequencing of 

DNA constructs or introduction of mutations into the plasmid DNA. Primers were synthesised 

by Metabion (Planegg-Martinsried) in HPLC purity grade. All oligonucleotides are depicted 

in 5’ to 3’ orientation. 

 

2.1.8.1 Sequencing and PCR primers 

 

Name Sequence Direction Template 

853 CCAAGACAATCCGCAACAACA forward hEag1 
854 GTGCAAAAAGGCGAGAATGTC forward hEag1 
855 CGCATGAACTACCTGAAGACG forward hEag1 
856 GCCCAGTCCTGTGCCAATGTT forward hEag1 
857 CAAGTGTCCAAGGCTGAGTCG forward hEag1 
858 CGTCACCACCACCCCTACCAC forward hEag1 
859 CTGAGCATTCCCCAACACAAA reverse hEag1 
860 GCACAATGTCCACCAAAAAGA reverse hEag1 
861 TCTGTGGATGGGGCGATGTTC reverse hEag1 
862 AGGGTGGTCCGGGGGCAAGAT reverse hEag1 
863 GTGACGGCAGGGTTGGAGGTA reverse hEag1 
CMV for CGCAAATGGGCGGTAGGCGTG forward pTracer 
T7 TAATACGACTCACTATAGGG forward pCDNA4 
GAL4 AD for ATACCACTACAATGGAT forward pACT2 
5’AD LD for CTATTCGATGATGAAGATACCCCACCA forward pACT2 
Y2H AD rev GTTGAAGTGAACTTGCG reverse pACT2 
3’AD LD rev GTGAACTTGCGGGGTTTTTCAGTATCTACGA reverse pACT2 

  

 

   



Materials and Methods  - 20 - 

2.1.8.2 Oligonucleotides introducing mutation  

 

Introduced mutation is shown in bold and red. 

Name Sequence Direction Mutation 

1939 GTTCGGCGGTCCCAGGATACTAATTTTG forward hEag1 N26Q 

1940 CAAAATTAGTATCCTGGGACCGCCGAAC reverse hEag1 N26Q 

1941 CAGCCATCTTGGTCCCTTATCAGGTCTCC forward hEag1 N238Q 

1942 GGAGACCTGATAAGGGACCAAGATGGCTG reverse hEag1 N238Q 

1944 GACACCAAGACAATCCGCCAGAACAGC forward hEag1 N388Q 

1945 GCTGTTCTGGCGGATTGTCTTGGTGTC reverse hEag1 N388Q 

1946 CAGTTTCAGGGGTCTGGCTCAGGGAAG forward hEag1 N406Q 

1947 CTTCCCTGAGCCAGACCCCTGAAACTG reverse hEag1 N406Q 

1948 CATCTTCGGGCAGGTGACGACTATTTTCC forward hEag1 N470Q 

1949 GGAAAATAGTCGTCACCTGCCCGAAGATG reverse hEag1 N470Q 

1950 GCATGCCTCCGCCCAGCACAGCCTCG forward hEag1 N752Q 

1951 CGAGGCTGTGCTGGGCGGAGGCATGC reverse hEag1 N752Q 

XhoSTOP GACCCTCGAGCTGGCTCCAAAAATGTCTCTCTCTG
ATTCTGGGG 

reverse XhoI restriction 
site in hEag1 
STOP codon  

 
 
 
2.1.9 Antibodies 
 
Primary and secondary antibodies described below were used either for Western blot, 
immunoprecipitation or immunocytochemistry experiments.   
 
2.1.9.1 Primary antibodies 
 

2413x Dr. J. Pineda Antikörper servis 

Rabbit polyclonal antibody directed against rat Eag1 antigen (C-terminus). Recognises 

rat and human Eag1 and Eag2. Used for western blotting, IP and immunofluorescence. 
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mAb-33 Biogenes 

Mouse monoclonal antibody directed against C-terminus of hEag1. Does not cross-react 

with Eag2. Used for IP and immunofluorescence. 

 

mAb-62 Biogenes 

Mouse monoclonal antibody directed against the pore region of hEag1. Does not cross-

react with Eag2. Used for IP and immunofluorescence. 

 

anti-AMPA Dr. Maria Rubio, MPI Göttingen 

Rabbit polyclonal antibody. Used for immunoprecipitation. 

 

anti-calreticulin Dr. Majoul Irina, MPI Göttingen 

Rabbit polyclonal antibody. Marker of endoplasmatic reticulum. Used for 

immunofluorescence. 

 

anti-Cathepsin D Dr. Stefan Höning, Göttingen University 

Rabbit polyclonal antibody. Marker of lysosomes. Used for immunofluorescence. 

 

anti-GM-130 Transduction Laboratories 

Mouse monoclonal antibody directed against GM-130. Recognises human, dog, mouse 

and rat GM-130. Used for immunofluorescence and western-blotting. 

 

anti-Lamin A/C Santa Cruz Biotechnology 

Goat polyclonal antibody. Used for precipitation 

 

anti-Limp2 Dr. Stefan Höning, Göttingen University 

Rabbit polyclonal antibody. Marker of lysosomes. Used for immunofluorescence. 

 

anti-p53 Dr. Majoul Irina, MPI Göttingen 

(protein 53) Rabbit polyclonal antibody. Marker of endoplasmatic reticulum. Used for 

immunofluorescence. 

 

anti-Rab5 Dr. Majoul Irina, MPI Göttingen 

Rabbit polyclonal antibody. Marker of early endosomes. Used for immunofluorescence. 

 

   



Materials and Methods  - 22 - 

anti-Rab7 Dr. Majoul Irina, MPI Göttingen 

Rabbit polyclonal antibody. Marker of late endosomes. Used for immunofluorescence. 

 

anti-TRAPα upstate biotechnology 

Mouse monoclonal antibody directed against human TRAPα. Recognises also TRAPα 

from CHO cells. Used for immunofluorescence and western blotting. 

 
 
2.1.9.2 Secondary antibodies 
 
Name  

anti-rabbit IgG HRP conjugate Oncogene Research Products 

anti-mouse IgG HRP conjugate Ammersham 

anti-mouse IgG Alexa Fluor 488 and 546 Molecular Probes 

anti-rabbit IgG Alexa 488 Fluor and 546 Molecular Probes 

anti-goat IgG Alexa Fluor 488 and 546 Molecular Probes 

 

 

 

2.1.10 Organisms and growth media 
 

2.1.10.1 Bacterial strain genotypes 

 

Competent cells from E. coli strains XL1 Blue (Young and Davis, 1983) or ready-to-use 

competent E. coli cells DH5α (Hanahan, 1983) were used for plasmid transformation.  

 

Strain Genotype  

XL1 Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 
lac [F´ proAB lacI q Z •M15 Tn10 (Tet r )]     
 

Stratagene 

DH5α 

Competent cells 

F´/endA1, hsdR17(rK - ,mK + ), supE44, thi-1, 
recA1, gyrA(Na1 r ),relA1, D(lacZYA-argF) 
U169, (j80lacZDM15) 

Invitrogen 
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2.1.10.2 Bacterial media 

 

Bacterial LB (Lura Broth) Medium was obtained as a ready to use powder mix (Gibco,BRL) 

and dissolved in the appropriate amount of H2O. Solid media were produced adding agar at a 

final concentration of 1.5 % (w/v). Agar plates were poured, dried overnight at room 

temperature and stored at 4ºC. 

 

After autoclavation LB or LB-agar media were supplemented with sterile antibiotics: 

Ampicilin  100 µg/ml 

Kanamycin  50 µg/ml 

 

SOB medium (500 ml) 

2 %v/W  Bacto-Trypton 

0,5 %v/W Yeast-Extract 

10 mM NaCl  

5 mM KCl  

10 mM MgCl2 

10 mM MgSO4 pH 6,8-7,0 

Before addition of magnesium salts, media were sterilised by autoclavation. Mg2+ salts 

were prepared separately, sterile filtered and added to the autoclaved medium. 

 

TB medium (300 ml) 

10 mM  MOPS (free acid) 

15 mM CaCl2  x 2 H2O 

230 mM KCl 

55 mM MnCl2 x 4 H2O 

All chemicals besides MnCl2 were resuspended in 80% end volume of H2O and pH was 

set to 6,7 (with KOH). Afterwards, the appropriate amount of MnCl2 was added, the 

volume was adjusted and the solution was sterile filtered. 
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2.1.10.3 Yeast strain genotypes  

 

Strain Genotype Reporter 
gene  

Transformation 
marker  

Reference 

Y187 MATa, ura3-52, his3-200, 
ade2-101, lys2-801, trp1-901, 
leu2-3, 112, gal4∆, gal80∆, 
cyhr2, LYS:: GAL1aus-
HIS3TAT,a- HIS3, MEL1 URA 
:: GAL1aus-   GAL1TAT,a – lacZ 
 

lacZ, 
MEL1 

trp1, leu2 Harper et al., 
1993 

AH109 MATa, trp1-901, leu2-3, 112, 
ura3-52, his3-200, gal4∆, 
gal80∆, LYS:: GAL1TAT,a- 
HIS3,MEL1 GAL2aus- 
GAL2TAT,a- ADE2, URA3:: 
MEL1aus-   MEL1TAT,a – lacZ 

HIS3, 
ADE2, 
lacZ, 
MEL1 

trp1, leu2 James et al., 
1996;  

 

 

2.1.10.4 Yeast media 

 

All yeast media were obtained from Clontech as ready-to-use powder mix and dissolved in 

the appropriate amount of H2O. If necessary, additional supplements were added. 

 

The following media were used: 

YPD complete culture medium 

YPDA YPD medium supplemented after autoclavation and cooling down to 

50°C with sterile filtered adenine to a final concentration of 0,003%. 

SD minimal culture medium; for auxotroph selection SD medium was 

supplemented with nutrient supplements lacking the appropriate 

component(s):  

-Leu,  

-Trp,  

-Leu/-Trp (LT) 

 

Additionally, the following agar plates were poured, dried for at least 4h at 30ºC or overnight 

at room temperature and stored at 4ºC before use: 
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YPDA-agar YPD-agar medium; autoclaved and after cooling down to 50°C 

supplemented with 7,5 ml of 0,2% adenine (final concentration 0,003%).  

SD-agar supplemented with appropriate amount of DO supplements:  

-Leu,  

-Trp,  

-Leu/-Trp (LT),  

-His/-Leu/-Trp (LTH),  

-Ade/-His/-Leu/-Trp (LTHA) 

 

Adenin stock solution 

0,2% v/w in sterile H2O. Sterilised by filtration. Aliquots stored at -20°C 

 

X-α-Gal stock solution 20 mg/ml in dimethyl formamide 

 

3 Aminotiazol(3AT) 10 mM final concentration 

 

 

2.1.10.5 Eucaryotic cell lines 

 

CHO-K1 ATCC  

Chinese Hamster Ovary: CHO-K1 cell line was derived as a subclone from the parental 

CHO cell line initiated from a biopsy of an ovary of an adult Chinese hamster.  

 

Lec1 ATCC  

Mutant clonal derivate of CHO clone Pro-5. Lec1 lacks the glycosyltransferase GlcNAc-T1 

so that N-linked carbohydrates are blocked at the Man5GlcNAc2Asn intermediate. 

 

 

2.1.10.6 Eucaryotic cell culture media 

 

Cell line Medium Additives  

CHO-K1 Ham's F 12 Medium 10 % FCS Gibco 

Lec1 MEM Alpha Medium 10 % FCS Gibco 
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2.1.10.7 Animals 

 

Adult male Wistar-rats (Rattus norvegicus) were used. Rats were killed by decapitation under 

CO2 anaesthesia and organs were dissected immediately. 

 

Oocytes from adult Xenopus laevis, South African clawed frogs, were used for 

electrophysiological measurements. Following anaesthesia, a small incision was made, which 

was closed immediately after removal of oocytes. Frogs were returned to the water directly 

after surgery. 

 

 

2.1.11 Sterilisation of solutions and equipment 
 

Heat insensitive solutions were sterilised at 121°C, 105 Pa for 60 min (Yeast culture media 

for 15 min) in an autoclave (3850EL; Systec GmBH, Labor Systemtechnik, Wettenberg). 

Heat sensitive solutions were filtered through a disposable sterile filter (0.2 to 0.45 µm pore 

size). Plastic ware was obtained sterilised. RNase-free solutions were prepared by overnight 

incubation with 0,1% DEPC and autoclaved as described. RNase-free glassware was baked 

overnight in an oven at 220°C. 

 

 

 

 

2.2 Methods 
 

2.2.1 Bacteria and yeast culture techniques 
 

Bacterial strains were grown in the described media (see 2.1.10.2) at 37°C. For short-time 

storage, agar-plates with bacteria were sealed with Parafilm and stored at 4°C. For long time 

storage plasmid DNA was isolated and retransformation was performed. 

Yeast strains were grown in the described media (see 2.1.10.4) at 30°C. For short time 

storage, streaked yeast plates were sealed with Parafilm and stored at 4°C. If necessary, yeast 
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colonies were re-streaked onto fresh plates every four weeks. For long time storage, 0,5 ml of 

overnight cultures were mixed with equal volume of 50% glycerol, rapidly frozen in liquid 

nitrogen and then stored at -80°C. 
 

 

2.2.1.1 Preparation of Epicurian Coli XL1-Blue competent bacteria 

 

Competent bacteria were produced by modification of cell wall, which facilitates DNA 

uptake. For this, 250 ml of SOB medium was inoculated with several (3-5) colonies of E.coli 

strain XL1-Blue (from stock plate) and a culture was grown at 18°C, 200 rpm until 

OD600= 0,45-0,6 (about 48h). Bacteria were centrifuged for 10 min at 4°C at 2500 x g 

(swinging bucket). Pellet was resuspended in 80 ml of sterile, ice-cold TB medium and 

incubated on ice for 10 min.  

The suspension was thereafter centrifuged for 10 min at 4°C, 2500 x g. The pellet of bacteria 

was resuspended in 20 ml of sterile, ice-cold TB medium and 1,4 ml of DMSO was slowly 

added to the tube (7% DMSO end-concentration). The mixture was incubated on ice for 

10 min, dispensed into 200µl aliquots, shock frozen in liquid nitrogen and stored at -80°C. 

An aliquot was tested for transformation efficiency (approximately 108 transformants per 1µg 

of control plasmid DNA). 

 

 

2.2.1.2 Transformation of competent bacteria 

 

Transformation of competent E.Coli XL1-Blue bacteria was carried out by the heat shock 

procedure with an efficiency of 106–108 transformants for 1µg of DNA. A 100µl aliquot of 

competent cells was allowed to thaw on ice and was gently mixed with 1-10 ng of DNA or 

5-10µl of a ligation mix. After incubation for 20 min on ice, bacteria were heat-shocked for 

1 min at 42°C and chilled for 3 min on ice. Following, 500 µl of LB medium were added and 

bacteria were allowed to grow for 1 h at 37°C with gentle agitation. Finally, cells were plated 

onto LB-agar plates containing appropriate antibiotics and grown overnight at 37°C. 
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2.2.2 Nucleic acid preparation, modification, amplification and analysis 
 

 

2.2.2.1 Isolation of plasmid DNA 

 
Plasmid DNA, depending on its final purpose, was isolated either in small- or large-scale 

preparations. The isolated DNA was further used for transfection, sequencing, restriction 

analysis, PCR or subcloning.  

 
2.2.2.1.1 Small-scale preparation of plasmid DNA (Mini prep) 
MACHEREY-NAGEL NucleoSpin™ Plasmid Kit was used to purify small amounts of 
plasmid DNA. For this, 5 ml of LB medium containing the appropriate antibiotics were 
inoculated with a single E.Coli colony and incubated for 10-16 h at 37°C, 225 rpm. Bacterial 
cultures were centrifuged (6200 x g, 5 min), and the pellet was treated according to the 
manufacturer’s protocol. DNA was eluted with 50 µl of H2O 
 
2.2.2.1.2 Large-scale preparation of plasmid DNA (Maxi prep) 
For the preparation of large-scale bacterial cultures, 5 ml of LB medium containing 
appropriate antibiotics were inoculated with a single colony and incubated for 6-8 hrs at 37°C, 
225 rpm. Thereafter, 100 ml of LB medium with appropriate antibiotic was inoculated with 
0,2 ml of this culture and incubated overnight at 37°C with vigorous shaking (225 rpm). The 
plasmid DNA was isolated with the Plasmid Maxi Kit (Qiagen) according to the user’s 
manual. To obtain endotoxin-free DNA, necessary for transfection of eucaryotic cells, 
EndoFree™ Plasmid Maxi Kit (Qiagen) was used. DNA was finally dissolved in 100-500 µl 
of sterile H2O. 
 

 

2.2.2.2 Isolation of DNA fragments from agarose gels 

 

For the isolation of DNA fragments from agarose gels the QIAEX-II™ kit (Qiagen) or 
NucleoSpin™ Extract kit (Macherey-Nagel) were applied. After separation of DNA on 
0,7-1,0% agarose gels, the desired DNA band was excised with a razor blade, weighed and 
treated as described in the user’s manual. Isolated DNA fragments were tested on agarose gels 
and further used for subcloning. 
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2.2.2.3 Enzymatic modification of DNA  

 
2.2.2.3.1 Treatment of the DNA with restriction enzymes 
Restriction enzyme digestion was carried out on the double-stranded DNA according to 
standard protocols (Sambrook et al., 1989). Reactions were usually incubated for 1-3 hours, 
in some cases also over night, to ensure complete digestion. The optimal temperature for 
enzyme activity was typically 37°C with exception of the SfiI enzyme that was incubated at 
50°C. 
 
2.2.2.3.2 Dephosphorylation of 5' ends of DNA 
To prevent the recircularisation of plasmids without insertion of foreign DNA, alkaline 
phosphatase treatment was performed. Alkaline phosphatase catalyses the hydrolysis of 
5'-phosphate residues from DNA.  
 
The following was mixed in a total volume of 50 µl: 

1-5 µg digested vector DNA,  
5  µl 10 x reaction buffer, 
1   µl  alkaline phosphatase (1 U)  
 

The reaction was carried out in two steps: 15 and 45 min (in case of 3’ overhang or blunt ends 
produced by the specific restriction enzyme) or twice 30 min (5’ overhangs). In both cases, an 
additional 1µl of the enzyme was added after the first incubation step. Dephosphorylated 
DNA was purified by phenol/ chloroform extraction and ethanol precipitation, and tested on 
agarose gels. 
 
2.2.2.3.3 Ligation of DNA fragments 
The ligation of DNA inserts into vector DNA was carried out in the following reaction mix, in 
a total volume of 10 µl:  

25-50 ng  vector DNA  
50-100 ng  insert DNA 
 1 µl  ligation buffer (10 x)  
 1  µl  T4 DNA ligase (5 U/µl)  
 

Sticky-end ligations were usually carried out at 16°C overnight. 
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2.2.2.4 Isolation of total RNA from tissues and eucaryotic cell lines 

 

For isolation of total RNA either Total RNA Isolation Reagent (Biomol) or StrataPrep™ 

Total RNA Microprep Kit (Stratagene) were used. Reagents were chosen depending on the 

sample number and amounts of RNA to be isolated. Purified RNA was stored at -80°C for 

long or at -20°C for short periods. 

 

2.2.2.4.1 Isolation with Total RNA Isolation Reagent 

Total RNA Isolation Reagent was used to isolate higher amounts of RNA from small numbers 

of samples.  

10-100 mg of tissues or 5-10 x 106 of cultured cells were mixed with 1 ml of RNA reagent 

and homogenised by using a glass-teflon homogeniser. Following homogenisation, samples 

were stored for 5 minutes on ice and mixed with 0,2 ml of chloroform. After 15 min 

centrifugation (4°C, 12.000 x g, fixed angle) the aqueous phase was collected and RNA was 

precipitated with an equal volume of isopropanol. After two washes with 70% ethanol, the 

RNA pellet was dried and resuspended in 50-100 µl of DEPC treated H2O. 

 

2.2.2.4.2 Isolation of total RNA with StrataPrep™ Total RNA Microprep Kit 

StrataPrep™ Total RNA Microprep Kit was used to isolate small amounts of RNA from high 

number of eucaryotic cell-culture samples. Less than 5 x 105 cells were scraped, washed with 

PBS and resuspended in 100 µl of Lysis buffer supplemented with 0,7 µl ß-mercaptoethanol. 

Total RNA was isolated according to the manufacturer’s instructions and finally eluted with 

30 µl of Elution Buffer.  

 

 

2.2.2.5 DNase treatment of total RNA 

 

First, total RNA (approximately 50 µg) was treated with RNase-free DNase I according to the 

manufacturer’s advice. For this, the following reagents were combined, mixed and incubated 

at 37°C for 30 min: 

100 µl  of total RNA (1 mg/ml) 

20  µl  10 x DNase I buffer 

10  µl  DNase I (1 U/ml) 

70  µl  deionised water 
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DNaseI treated RNA samples were purified by phenol/chloroform extraction and ethanol 

precipitation (2.2.2.6). The pellet was lyophilised (speed-vac) and dissolved in 50 µl RNase-

free water. 4 µl of the RNA sample was tested on a denaturing agarose gel to verify RNA 

yield and purity.  

 

 

2.2.2.6 Phenol-chloroform extraction and ethanol precipitation 

 

Contaminating proteins were removed from the nucleic acid samples by addition: firstly of an 

equal volume of phenol-chloroform and secondly chloroform to the nucleic acids solution, 

each followed by centrifugation (10 min, 10.000 x g) to remove organic phases. Nucleic acids 

were precipitated with 2,6 volume of absolute ethanol and NaAc (final conc. 0.3 M), and 

washed with 70% ethanol. The dried pellet was re-dissolved in sterile or RNase free water.  

 

 

2.2.2.7 cRNA synthesis 

 

cRNA was synthesised for electrophysiological measurements, which required microinjection 

of the RNA into Xenopus oocytes for in vivo translation and protein expression. Template 

DNA used for transcription was subcloned into pSGEM vector (M. Hollman, see 2.1.7). 

Reaction was performed with the use of T7 RNA polymerase, which enables in vitro 

synthesis of large amounts of cRNA from linear cDNA templates. T7 RNA polymerase 

incorporates 5´7MeGpppG (5´ cap analogue) during polymerisation, which strongly increases 

RNA stability. All reaction steps were performed in RNAse-free environment. 

 

Template cDNA (5 µg) was linearised using SfiI enzyme (1-2 U/µg DNA) in a total volume 

of 50µl for at least 2 hours at 50°C and linearisation efficiency was tested on agarose gels. 

Afterwards, the reaction volume was increased to 200 µl and treated with one volume of 

phenol/chloroform, vortexed and spinned at 14.000 x g for 10 min at 4°C. DNA was 

precipitated for 10 min at -70°C with 1/10 v/v of 4M LiAc and 2,5 v/v of EtOH and 

centrifuged (30 min, 14.000 x g, at 4°C). Pellet was washed with ice cold 70% EtOH, dried in 

a speedvac and resuspended in 60µl of DEPC treated water.  
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For cRNA synthesis, the reaction mixture consisted of: 

57,8 µl linear DNA template 

20 µl 10x Transcription Buffer  

2,8  µl  RNasin (40 U/µl) 

2,4  µl  CAP (m7G(5’)ppp(5’)G; 5A250 disolved in 20 µl H2O) 

5  µl  nucleotide mix (10mM ATP, CTP, UTP and 2 mM GTP) 

10  µl  DTT 100 mM 

2  µl  T7 Poymerase (19 U/µl) 

It was incubated at 37°C for at least 1,5h.  

 

The template DNA was removed by digestion with 6µl of DNaseI (RQ1 DNase I, 1U/µl) at 

37°C for 15 min. The reaction was stopped by adding 70 µl nuclease free water and 30 µl of 

2M NaAc pH 6,0 followed by phenol/chloroform extraction and ethanol precipitation 

(overnight in 4°C). Pellet was resuspended in 200 µl of 0,3 M NaAc and ethanol precipitation 

was repeated (10 min at -70°C). Finally RNA was collected by centrifugation at 14.000 x g 

for 30 min at 4°C, the cRNA was resuspended in 20-50 µl nuclease free water and the 

concentration was determined. The samples were aliquoted and stored at -80°C. 

 

 

2.2.2.8 Spectrophotometric quantitation and estimation of nucleic acid purity  

 

The concentration of nucleic acids was determined photometrically by measuring absorption 

of the samples at 260 nm. The ratio A260/A280 was used to estimate DNA purity. For pure 

DNA is the A260/A280 ratio about 1.8.  

 

 

2.2.2.9 RiboGreen™ assay for estimation of cRNA concentration 

 

The absorbance-based method for measuring RNA concentration has some disadvantages like 

poor sensitivity (4 µg/ml RNA in solution) or interference of the signal with contaminating 

components such as nucleotides, proteins and salts in the RNA solution. For the injection of 

Xenopus laevis oocytes exact quantification is needed, since differences in RNA level can 

have strong effects on the level of synthesised proteins. Thus, the RNA concentration was 

estimated using RiboGreen™. The fluorescence of the RiboGreen™ reagent increases more 
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than 1000-fold upon RNA binding and has an emission maximum at ~525 nm. The 

RiboGreen™ assay is ~1000-fold more sensitive than absorbency measurements at 260 nm. 

To obtain a standard curve, dilution series of the ribosomal RNA in 1 x TE buffer were 

prepared. To obtain reliable results the experimental RNA was prepared in six different 

dilutions. Samples were mixed with 200-times diluted RiboGreen™ reagent and incubated 

5 min at room temperature. Fluorescence was measured in a 96-well plate reader (Wallac 

Victor; 1 sec; Fluorescein filter: excitation ≈480 nm, emission ≈520 nm). 

 

 

2.2.2.10 Polymerase chain reaction (PCR) 

 

The polymerase chain reaction (PCR) is a very useful technique that allows production of 

high yields of specific DNA target sequences (Saiki et al., 1988).  

PCR was used in this work: 

• to amplify specific DNA fragments  

• to create appropriate restriction sites at the termini of DNA fragments for cloning into 

different vectors 

• to monitor RNA expression (RT-PCR) 

• for in vitro mutagenesis 

 

2.2.2.10.1 PCR amplification of DNA  

PCR protocols were performed in 50 µl. A typical 50 µl reaction mixture consisted of: 

10-100  ng  plasmid DNA  

10  pmol  forward primer 

10  pmol  reverse primer 

1 µl nucleotide mix (200 µM of each dNTP) 

1 µl PCR buffer with MgCl2  

1  U  Taq DNA polymerase  

x µl ddH2O 

A 5 min incubation step at 95°C, during which the template DNA is denatured was followed 

by 30-40 cycles of: 

30-60  sec  95°C  (denaturing) 
30-60  sec  48-63°C (annealing) 
30-120 sec  68-72°C  (elongation) 
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The last cycle was followed by an extra elongation step of 5-10 min at 68-72°C, depending on 

the polymerase. 

The annealing temperature is dependent on primer composition, on their Tm (melting 

temperature) and on their homology with the template.  

 

2.2.2.10.2 One step RT-PCR 

To obtain specific RT-PCR products the Stratagene ProSTAR™ HF Single-Tube RT-PCR kit 

was employed. The kit contains optimised components that allow both reverse transcription 

and PCR amplification to take place in what is commonly referred to as a ”one-step” reaction. 

 

The following components were combined for 50µl experimental reaction: 

x µl  RNase-free water  

5 µl 10 x HF RT-PCRbuffer 

10 pmol upstream primer 

10 pmol downstream primer 

1 µl dNTP mix (40 mM) 

0,1-1 µg RNA 

1,25 U MMLV-RT 

0,5 µl TaqPlus Precision DNA polymerase  

 

Samples were mixed, placed in the thermal cycler and cycled using the following RT-PCR 

program: 

37°C 30 min (reverse transcription) 

95°C  1 min 

95°C 30 sec (denaturation) 
63°C 30 sec (annealing)   40 cycles 
68°C 2 min (extension)  

68°C 10 min 
 

2.2.2.10.3 Site directed in vitro mutagenesis 

In vitro mutation of targeted nucleotides allows amino acid exchanges, generation or 

disruption of restriction enzyme recognition sites or correction of errors introduced by PCR 

amplification. The PCR based, Quick-Change™ Site-Directed Mutagenesis Kit (Stratagene) 

was used to create point mutations in the hEag1 cDNA. Pfu polymerase copies the entire 
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plasmid from two complementary primers, both of which contain the desired mutation. The 

mutation was positioned as close to the middle of the primer as possible, with at least 4 bases 

of perfectly annealing sequence on both sides. The oligonucleotide primers, each 

complementary to opposite strands of the vector, are extended during temperature cycling by 

the DNA polymerase. Their incorporation in the synthesised DNA generates a mutated 

plasmid. After temperature cycling, the PCR product is treated with DpnI, to digest the 

methylated non-mutated parental DNA template. The nicked vector DNA carrying the desired 

mutations was then transformed into E. coli. 

 

Mutation  Forward primer  Reverse primer  

N26Q GTTCGGCGGTCCCAGGATACTAATTTTG CAAAATTAGTATCCTGGGACCGCCGAAC 

N238Q CAGCCATCTTGGTCCCTTATCAGGTCTCC GGAGACCTGATAAGGGACCAAGATGGCTG 

N388Q GACACCAAGACAATCCGCCAGAACAGC GCTGTTCTGGCGGATTGTCTTGGTGTC 

N406Q CAGTTTCAGGGGTCTGGCTCAGGGAAG CTTCCCTGAGCCAGACCCCTGAAACTG 

N470Q CATCTTCGGGCAGGTGACGACTATTTTCC GGAAAATAGTCGTCACCTGCCCGAAGATG 

N752Q GCATGCCTCCGCCCAGCACAGCCTCG CGAGGCTGTGCTGGGCGGAGGCATGC 

Table 1 Primers used to generate hEag1 mutants 

 

PCR sample reaction mix: 

5  µl  PCR Buffer 10x 

1 µl dsDNA template (hEag1 in pTracer, 50 ng/µl) 

1  µl Primer mix (10 pmol/µl each) 

1  µl  dNTP mix 

41 µl ddH2O 

1  µl  Pfu Turbo DNA polymerase (2,5 U/µl) 

 

Each sample was cycled using the following parameters: 

95°C 30 sec 

95°C 30 sec 
55°C 60 sec 16 cycles  
68°C 18 sec 

and chilled to 4°C 
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Methylated, nonmutated parental dsDNA was removed in each amplification reaction mix by 

1 h incubation (37°C) with 1 µl of DpnI (10 U/µl). Afterwards, amplification was tested by 

electrophoresis of 5 µl of the digested PCR reactions on the 0,8%-1% agarose gels.  

For the amplification of the mutated DNA, 2-5 µl of each digested PCR products were 

transformed into XL1-Blue E.Coli. 

 

 

2.2.2.11 Agarose gel electrophoresis  

 
2.2.2.11.1 Agarose gel electrophoresis of DNA 

0.5 to 2% (w/v) agarose in 100 ml of TBE buffer was boiled in the microwave and poured 

into a horizontal gel chamber. Gels were then placed into an electrophoresis chamber filled 

with TBE buffer. 10-20 µl of DNA samples were mixed with 5 µl of stop mix applied on gel 

and run at 50-100 V. 

 

TBE buffer (5x) 

225 mM Tris pH 8.3 

225 mM Boric acid 

10 mM EDTA 

 

2.2.2.11.2 Agarose gel electrophoresis of RNA 

(Maniatis and Efstratiadis, 1980) 

Gel electrophoresis of RNA was performed on denaturing agarose gels, in the presence of 

1,9% formaldehyde. 0,5 g of agarose was dissolved in 5 ml of 10 x MOPS/EDTA buffer and 

42,4 ml of DEPC water and boiled in the microwave. After cooling to about 50°C, 2,6 ml of 

formaldehyde (37 %) was added, stirred and poured into a gel chamber. 5 µl of each RNA 

samples (1 µg/µl) as well as molecular weight markers were mixed with 25 µl of RNA-

loading buffer and denatured for 15 min at 65°C. Samples were chilled on ice and mixed with 

1 µl of ethidium bromide (1 mg/ml). The gel was run at 60 V for 6-8 hours.  
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RNA-loading buffer 

750  µl  Formamide 

150  µl MOPS 10x 

240 µl Formaldehyde 37% 

100 µl  Glycerol  

3   µl  H2O 

20  µl Bromphenolblue 

20  µl Xylencyanol 

MOPS/EDTA 

200 mM MOPS 

50 mM NaAc 

10 mM EDTA 

pH=7,0 

 

 

2.2.3 Biochemical methods  
 

2.2.3.1 Isolation of total proteins from mammalian cells 

 

For preparation of total proteins cells were cultured in 1-5 Petri-dishes (Ø=17 cm) until 80–

90% confluency. Cells were washed with PBS, collected with a cell scraper and transferred to 

separate 50 ml Falcon tubes. After 5 min centrifugation at 1.000 x g, cell pellets were washed 

with 1 ml of PBS, transferred to Eppendorf cups and centrifuged again. Finally cells were 

lysed with 0,5-1 ml of Lysis buffer for 20 min in RT and cell debris was removed by 5 min 

centrifugation at 10.000 x g. Protein content was measured and the supernatant was used as 

whole cell lysate for western blotting or stored at -20°C. 

 

Lysis buffer 

20 mM Tris pH 7.5 

1 mM EDTA 

1 % SDS 
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2.2.3.2 Determination of protein concentration  

 
Protein concentrations were estimated according to the Bicinchoninic Acid method (BCA; 

Pierce). 2-5 µl of a protein solution of unknown concentration in 100 µl of H2O was mixed 

with 400 µl of BCA reagent and incubated for 15-20 min at 60°C under vigorous shaking. 

Absorbance was measured at 595 nm and plotted against a reference curve obtained with 

known concentrations of BSA. 

 

 

2.2.3.3 TCA precipitation 

 

The BCA test is compatible with many detergents in concentrations up to 1%, however there 

are substances including reducing agents that interfere with the BCA assay. To eliminate the 

interfering soluble substances, a TCA precipitation step was performed prior to the BCA test. 

For this 1-5 µl of the protein solution, as well as standard and blank were mixed with H2O to a 

total volume of 500 µl. After addition of 100µl of the sodium deoxycholate reagent and 100 

µl of the TCA reagent samples were incubated for 10 min at room temperature and 

centrifuged for 10 min at 14.000 x g. Following aspiration of the supernatant the pellet was 

resuspended in 100 µl of H2O, mixed with 100 µl of sodium deoxycholate reagent and 100 µl 

of the TCA reagent. The precipitation step was repeated. Finally, the protein-containing pellet 

was dissolved in 50 µl of SDS reagent, and protein concentration was measured with standard 

BCA method as described (2.2.3.2). 

 

sodium deoxycholate reagent 

0,15 % sodium deoxycholate  

 

TCA reagent 

72 % (w/v) Trichloroacetic acid 

 

SDS reagent 

5 % (w/v) SDS 

0.1 M NaOH 
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2.2.3.4 Immunoprecipitation 

 

Immunoprecipitation is a procedure by which peptides or proteins that react specifically with 

an antibody are separated from solution and can be used for further studies. 

Immunoprecipitation is based on the binding of immunoglobulins to bacterial protein A or 

protein G. The immobilisation of Protein A/ Protein G on agarose beads allows pulling down 

of the bound antibody. When incubated with cell lysate, immobilised antibody forms 

complexes with an antigen that can be easily isolated by a simple centrifugation step. 

 

For coupling of the antibody to form antibody-conjugated beads 5-10 µg of antibody was 

incubated overnight with  

25-45 µl Protein G/A- or Protein A-agarose 

10 µl 0,1% BSA 

0,5 ml PBS 

 

Subsequently beads were washed 3x with 1 ml wash buffer (10 min each) and finally pelleted 

(in a benchtop centrifuge for 1 min at top speed). 

Cell lysates were prepared from 1-5 (depending on the purpose) of Ø 16 cm culture-flasks 

containing confluent cells. Cells were scraped, washed 3x with PBS and lysed with 0,5 ml 

Nondenaturating lysis buffer for 20-30 min at room temperature. Non-lysed cells were 

removed by centrifugation (10 min, 14.000 x g) and the final cell lysates were mixed with the 

prepared antibody conjugated beads and incubated overnight. Afterwards, the protein-

antibody-bead complexes were washed 3x with IP-wash buffer. For western blot analysis 

proteins were removed from beads by addition of 10 µl Laemmli buffer and 10 min incubation 

at 99°C. For glycosidase treatment, proteins were released from beads by addition of 10 µl of 

0,1 % SDS/ 0,1x Methanol and 10 min incubation in 99°C.  

 

Nondenaturating lysis buffer 

1 % Triton X-100 

50 mM Tris HCl pH 7,4 

300 mM NaCl 

5 mM EDTA 
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IP-wash buffer 

0,1 % Triton X-100 

50 mM Tris HCl pH 7,4 

300 mM NaCl 

5 mM EDTA 

 

 

2.2.3.5 Endoglycosidase treatment  

 

To monitor carbohydrate chain presence and modifications, hEag1 and mutant proteins were 

treated with different endoglycosidases. For this, cells were grown in three 75 cm2 culture 

flasks until they reached confluency. Cells were harvested, lysed in Nondenaturating lysis 

buffer and protein concentration was determined. 9,5 mg of cellular proteins were subjected 

to a standard immunoprecipitation protocol using 20 µg of mAb-62 antibody. 

Immunoprecipitated protein-beads were washed and proteins were released from the beads by 

incubation with 20 µl of 0,1 M 2-Mercaptoethanol/0,1 % SDS (10 min at 99°C). Beads were 

removed by a brief spinning and protein-containing supernatant used either for 

Endoglycosidase H (Endo H) or Peptide N Glycosidase F (PNGaseF) treatment. 

 

 

Enzyme oligosaccharide selectivity Monitors 

EndoH recognises the core region of oligosaccharide chains 

on high mannose and hybrid, but no complex 

oligosaccharides   

ER to Cis-Golgi 

PNGase F liberates nearly all known N-linked oligosaccharides 

from glycoproteins 

all ER and Golgi 

 
Table 2 Sensitivity of oligosaccharides to different endoglycosidases  
 Modified, from Coligan et al., 1995 
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2.2.3.5.1 PNGaseF treatment 

To digest glycoproteins with PNGase F 10µl of immunoprecipitated denatured protein in 

0,1 M 2-Mercaptoethanol/0,1 % SDS were incubated overnight in 37°C with: 

 

3 µl 0,5M Tris-HCl pH 8,5 (final concentration 60 mM)  

2 µl 10% Triton X-100 (final concentration 0,8%)  

5 µl H2O 

5 µl Peptide-N-Glycosidase F (substituted with 0,5 M Tris-HCl pH 8,5 in the 

control reaction) 

 

2.2.3.5.2 Endoglycosidase H treatment 

To digest glycoproteins with PNGase F 10 µl of immunoprecipitated denatured protein in 

0,1M 2-Mercaptoethanol/0,1% SDS were incubated overnight at 37°C with: 

 

3 µl 0,5 M sodium citrate, pH 5,5 (final concentration 75 mM)   

20 µl H2O 

2 µl 1 % PMSF (final concentration 0,05%)  

1 µl EndoH (substituted with water in the control reaction) 

 

Both reactions were stopped by addition of 6 x Laemmli buffer and products were separated 

on 7 % SDS-PAGE gels and analysed by immunoblotting. 

 

 

2.2.3.6 Polyacrylamide gel electrophoresis (SDS-PAGE) 

 

To separate a large range of proteins of varying molecular masses, one dimensional 

polyacrylamide gel electrophoresis under denaturing conditions (in presence of 0.1 % SDS) 

was performed.  

Two gels: a ‘stacking gel’ with a low level of cross-linkage and low pH, allowing proteins to 

enter the gel and collect without smearing, and a ‘resolving gel’ with a higher pH, in which 

the proteins are separated according to molecular weights, were poured between two glass 

plates. For an 8 x 10 x 0.1 cm gel the following volumes were used: 
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10 ml of resolving gel 5 ml of stacking gel 
x % Acrylamide solution (7-12%) 4 % Acrylamide solution 
1 x Lower Tris 1 x Upper Tris 
0,1 % APS 0,1 % APS 
0,1 % TEMED 0,1 % TEMED 

 

The resolving gel solution was carefully poured between glass plates, overlayed with 

isobutanol and allowed to polymerise at room temperature for 30 min. After pouring off the 

overlaying isobutanol and washing with ddH2O, the stacking gel solution was poured and 

a comb was inserted. The gel was allowed to polymerise for further 60 min. 

Probes were supplemented with Laemmli sample buffer (5x concentrated), boiled at 95°C 

for 10 min and loaded on the gel. Prestained molecular weight markers were used as 

standards. Electrophoresis was run at 50-80 mA/40 cm2 gel, typically for 1-3 h. 

 

Lower Tris (4x) 

1,5 M Tris-HCl pH 8,8 

0,4 % SDS 

 

Upper Tris (4x) 

0,5 M Tris-HCl pH 6,8 

0,4 %  SDS 

Laemmli sample buffer 

625 mM Tris-HCl pH 6,8 

10 % SDS 

16,75 % β-Mercaptoethanol 

52,5 % Glycerin 

0,025 % Bromphenol blue 

 

Running buffer 

192  mM glycine 

25  mM Tris 

0,1 % SDS 
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2.2.3.7 Commasie brilliant blue staining of proteins in polyacrylamide gels 

 

Gels were stained in Commasie staining solution for 10 min up to 1 h. The background was 

subsequently reduced by soaking the gel in 10% acetic acid solution and 50% MeOH up to 

several hours. Finally, gels were soaked in 2% Glycerol, placed in a plastic frame between 

two cellophane sheets and dried overnight at room temperature. 

 

Commasie staining solution 

0,1 % Commasie Brilliant Blue R 

10 % acetic acid 

50 % Methanol 

 

 

2.2.3.8 Western blotting and immunological detection of proteins on nitrocellulose 

filters 

 

2.2.3.8.1 Transfer  

After separation by SDS-PAGE proteins were electrophoretically transferred onto 

nitrocellulose membranes as described (Towbin et al. 1979). Transfer was carried out in 

Transfer buffer. For hEag1 the pH of Transfer buffer was adjusted to 10,0 (before addition 

of SDS and methanol), as the calculated isoelectrical point for Eag is close to the pH 

of commonly used transfer buffers (pH 8,0), a fact that was preventing transfer of Eag under 

standard conditions.  

After electrophoresis of proteins on a polyacrylamide gel, the gel and the nitrocellulose 

membrane Hybond-ECL (Amersham), which was cut to the size of the gel, were 

equilibrated in Transfer buffer for 10-30 minutes. Four sheets of Whatman™ paper were 

also cut to size and soaked in Transfer buffer. A transfer ‘sandwich’ (sponge, 2 sheets of 

paper, running gel, nitrocellulose membrane, 2 sheets of paper, sponge) held together by a 

plastic cassette, was assembled submerged in transfer buffer to minimise trapping of air 

bubbles. The cassette was inserted in the buffer tank and transfer was run at 250 mA 

constant current for 3-4 hours, or at 100 mA over night at 4°C. 
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Transfer buffer 

25 mM Tris  

192 mM Glycine 

0,1  % SDS 

10  % Methanol 

 

2.2.3.8.2 Ponceau staining 

Transfer of proteins from SDS-polyacrylamide gels was monitored either by Commasie 

staining of gels after blotting (see 2.2.3.7) or staining of blot-transfer membranes with 

Ponceau S solution.  

Following protein transfer, the nitrocellulose membrane was placed in Ponceau S solution 

for 5 min at room temperature. For de-staining, the membrane was placed in ddH2O until the 

background appeared white (2-10 min). 

 

Ponceau S solution 

2,5 g  Ponceau S 

40 % Methanol 

15 % Acetic acid (glacial) 

 

2.2.3.8.3 Antibody detection and enhanced chemiluminescent (ECL) assay for 

protein visualisation 

Immobilised proteins were probed with specific mouse monoclonal, or rabbit polyclonal 

antibodies to identify and quantitate antigens. Specific binding was detected by a HRP 

(Horseradish-peroxidase) conjugated antibody directed against either mouse or rabbit IgG. 

First, all unspecific binding sites were covered with a non-reactive protein. For this, the 

membrane was incubated with blocking buffer (5% non-fat dry milk in PBS) for at least 30 

min. Blocking was followed by incubation with an antibody directed against the antigen of 

interest (primary antibody) diluted in 0,5% non-fat dry milk/PBS. Incubation was performed 

for at least 2 hours, or overnight at 4°C. The membrane was washed three times (10 to 15 

min each) with PBST and incubated with the appropriate peroxidase-bound secondary 

antibody for 1-4 hours at room temperature, or overnight at 4°C. To remove the non-specific 

binding of antibodies, several washing steps with PBST, 10-15 min each, were performed. 

Finally, the proteins were visualised by chemiluminescence. Detection was performed using 
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the ECL detection system as recommended by the manufacturer. The exposure of 

autoradiographic films was performed in a dark room using a film cassette to insure a tight 

fit between membrane and film. Usually, 1 sec up to 30 min exposure was performed.  

 

PBST 

1 x PBS 

0,05%(v/v) Tween 20 

 

 

2.2.3.9 Subcellular fractionation 

 

2.2.3.9.1 Fractionation by differential centrifugation 

To analyse the distribution of a protein in different organelles subcellular fractionation by 

differential centrifugation in a series of spins of increasing centrifugal force was performed. 

For this, cells were grown in four Petri-dishes (Ø 17 cm) until they reached confluency, 

washed with 5 ml of PBS and harvested using a cell-scraper. Cells were transferred to 

a falcon tube and washed twice with PBS. To disrupt the cells, osmotic shock in 1 ml of 

Hypotonic Homogenisation Buffer supplemented with protease inhibitors (Roche, 1 tab for 

10 ml) was used. After incubation on ice for 15 min, cells were additionally homogenised by 

passing 10 times up and down through a 23 G1 needle (0,6 x 25 mm) and finally sonicated 

for 5 min on ice. Proteins were stabilised by addition of 2 M saccharose. Unbroken cells 

were removed by 10 min centrifugation at 100 x g at 4°C and the supernatant was collected. 

Samples were then subjected to further centrifugation steps performed all at 4°C:  

 

10 min at 1.000 x g  (P-1 pellet)  

10 min at 10.000 x g (P-10 pellet) 

10 min at 100.000 x g (P-100 pellet) 

 

Pellets were resuspended in 40 µl of PBS buffer and protein content was determined. 

Finally, identical amounts of protein samples were subjected to SDS-PAGE, followed by 

immunoblotting. 
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Pellet Content 

P-1 nuclei, heavy mitochondria, plasma membrane sheets 

P-10 small mitochondria, lysozymes, peroxisomes, intact Golgi and Golgi membranes

P-100 all vesicles from ER, plasma membrane, Golgi, endosomes 

 
Table 3 Distribution of cellular organelles in different centrifugation steps.  
 Modified, from Spector et al., 1998 
 

Hypotonic Homogenisation Buffer: 

20 mM Tris/HCl pH 7,9 

2 mM DTT 

10 mM EDTA 

M PMSF 

 

2.2.3.9.2 Subcellular fractionation by velocity sedimentation on sucrose gradient 

 

A) Preparation of frozen step-gradient tubes: 

Eleven sucrose solutions were prepared containing respectively, 12, 14, 16, 18, 20, 22, 26, 

30, 34, 38, 42, 46, 50, 54 and 60% (w/v) sucrose. Starting with the 60% sucrose solution, a 

200 µl aliquot was loaded onto the bottom of a 4 ml centrifuge tube, the tube was immersed 

in liquid nitrogen until the solution was frozen, then 200 µl of the next solution was added. 

The freezing procedure was repeated for all layers. Gradients were stored at -80°C. Four to 

five hours prior to use, the gradients were transferred to 4°C for slow thawing. 

 

Sucrose solution 

x % sucrose  

10 mM HEPES pH 7,5 

1 mM MgCl2 

 

B) Fractionation on sucrose gradient 

Cells grown in five Petri-dishes (Ø 17 cm) were harvested, washed twice with PBS and 

collected by centrifugation (5 min at 2.000 x g). The pellet was resuspended in 0,5 ml 

hypotonic solution containing highly concentrated protease inhibitors (1 tab pro 1 ml) and 

incubated for 20 min on ice. Cell disruption was checked under the microscope and the 
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whole lysates were loaded carefully onto sucrose-gradients. Tubes were centrifuged for 

3 hours at 140-180 x g (swinging bucket) at 4°C in an ultracentrifuge and 18 fractions of 

200 µl each were carefully collected. 50 µl aliquots were taken from each fraction, 

supplemented with Laemmli buffer and analysed by SDS-PAGE and by immunoblotting.  

Golgi proteins are expected in 10-44%, plasma membrane sheets in 37-60%, Golgi in 

10-44%, intact nuclei in 60% and nuclear membranes in 10-55% sucrose fractions (Spector 

et al. 1998). 

 

 

2.2.4 Eucaryotic cell culture methods 

 
2.2.4.1 Cell culture conditions 

 

CHO cells were grown in F-12 medium supplemented with 10% fetal calf serum. Lec1 cells 

were grown in MEM Alpha Medium supplemented with 10% fetal calf serum. For culturing 

cells stably transfected with pTracer and pCDNA4 constructs media were supplemented 

with Zeocin at 100 µg/ml to maintain selection pressure. The cells were cultivated at 37°C in 

a humidified atmosphere under 5% CO2 and grown up to about 80% confluency. For 

cultivation of slowly growing transfected cells or low confluent cell lines a conditioned, 

sterile-filtered medium was used.  

 

2.2.4.2 Harvesting eucaryotic cells 

 

The following method is a gentle treatment to remove cells from the substratum while 

maintaining cellular integrity. First, the exhausted culture medium was removed and cells 

were washed twice with sterile PBS and incubated in 1 ml of accutase at 37°C until they had 

detached from the dish. The process was controlled under an inverted microscope. The 

enzyme was inhibited by addition of growth medium in which the cells were subsequently 

resuspended by pipetting up and down several times until a single-cell suspension was 

obtained. Single cells were monitored under the microscope and, when necessary, counted in 

improved Neubauer chamber and plated in the desired dilution. Splitting was performed 

2-3 times a week.  
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2.2.4.3 Cryoconservation of eucaryotic cells 

 

Cells were detached from the substrate with accutase, centrifuged (1.200 x g for 2 min at RT) 

and resuspended in 0,5-2 ml of complete growth medium (1-5 x 106 cells/ml). Cell 

suspension was gently mixed with an equal volume of freezing medium and aliquoted into 

storage vials. Vials were placed in an insulated box in a -80 °C freezer overnight. Finally, 

the vials were stored in liquid nitrogen. 

 

Freezing medium 

25 % FCS 

25 %  DMSO  

in appropriate culture medium (Ham's F12 or Alpha Modified Eagle's Medium) 

 

 

2.2.4.4 Thawing and revitalising of cryopreserved cells 

 

Cryopreserved cells are fragile and require gentle handling. The cells were quickly thawed 

in a 37°C water bath after being removed from liquid nitrogen. Then, cells were plated 

directly into a flask containing pre-warmed complete culture medium. Cells were allowed to 

attach for 3 hours in the incubator. Thereafter the DMSO-medium was removed by gentle 

suction and addition of fresh medium containing appropriate antibiotics. 

 

 

2.2.4.5 Mycoplasma test 

 

Mycoplasma are frequently found contaminants in cell cultures. Contamination with 

mycoplasma usually does not result in turbid growth within cultures or macroscopic 

alteration of the cells. However, mycoplasma contamination may cause adverse effects, such 

as changes in metabolism, growth rate, viability, DNA, RNA and protein synthesis, 

morphology etc., which lead to unreliable experimental results. Therefore, cell cultures were 

regularly tested for the presence of mycoplasma using Mycoplasma PlusTM PCR Primer Set 

(Stratagene) according to the manufacturer’s instructions.  
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2.2.4.6 Transfection of mammalian cells 

 

Transfection of CHO and Lec1 cells was accomplished using DAC-30 (Eurogentec) 

according to the supplier’s instructions. In the later part of the work, DAC-30 was replaced 

by Fugene (Roche), since this resulted in higher transfection efficiency and became a 

common transfection reagent in our lab. Cells (2 x 105) were plated out in appropriate 

growth medium on Ø 10 cm Petri dishes for 16-24 hours. On the day of transfection, culture 

medium was replaced by 2,5 ml of fresh medium and appropriate DNA mix was prepared in 

the following order: 

 

DAC-30 mix 

10  µg  plasmid DNA 

25  µg  DAC-30 

2,5  ml  serum-free culture medium 

 

Fugene mix 

194  µl  serum-free culture medium 

6  µl  Fugene reagent 

4  µg  plasmid DNA 

 

DNA mix was incubated 15-30 min in room temperature and poured drop-wise onto cells. In 

case of transient transfection, cells were used for analysis after about 48 hours. For 

production of stable cell lines, Zeocin was added after 48 hours to the culture medium 

(100 µg/ml) for selection. This was carried out continuously to avoid phenotype recovery. 

 

 

2.2.4.7 Preparation of polylysine-coated tissue culture surfaces 

 

To ensure better attachment of CHO cells to the surface, coverslips used for 

immunofluorescence microscopy and electrophysiological measurements were covered with 

poly-L-lysine.  

Prior to coating, fat impurities possibly existing on glass coverslips were removed. For this 

100-200 coverslips were incubated for at least 1 hour in 96% EtOH under gentle agitation. 
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Coverslips were washed several times with water, autoclaved and finally placed in sterile 

poly-L-lysine solution (handled in sterile environment). After 1 h incubation with frequent 

shaking, coverslips were washed several times with sterile PBS. Coated coverslips were 

stored at room temperature under sterile conditions for up to several weeks.  

 

 

2.2.4.8 Incubation with Tunicamycin 

 

To estimate the optimal working concentration of Tunicamycin, CHO cells were plated on 

12-well plates in a density, in which they can reach confluency after 48h (50.000 cells 

per well). 24 h later the medium was changed for fresh F12 medium containing decreased 

concentrations of Tunicamycin (10-0,3 µg/ml). As a control, the same cells were incubated 

with the corresponding amounts of DMSO (solvent). Cells were incubated at 37°C for 24h 

and survival in Tunicamycin was observed under the microscope. As a working 

concentration, the highest concentration of Tunicamycin allowing survival of approximately 

80% of cells was used (2,5 µg/ml).  

 

For the internal inhibition of N-linked glycosylation, CHO cells stably transfected with 

hEag1-pTracer were harvested and plated at the desired dilution. For western blot analysis 

cells were plated on Ø 17 cm Petri-dishes and incubated for about 24h until they reached 

80% confluency. For electrophysiological studies and immunofluorescent localisation cells 

were plated on coverslips placed in Petri-dishes. Low dilution allowing electrophysiological 

measurements after more than 48h was chosen. Several hours after attachment of cells, the 

culture medium was replaced by inhibitor containing medium (2,5 µg/ml Tunicamycin) 

without antibiotics. In the control incubation, Tunicamycin was substituted by DMSO 

(vehicle). The inhibitor was allowed to act for 24h under normal cell culture conditions. 

Afterwards, cells were used for further studies. 
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2.2.5 Microscopic analysis 
 

2.2.5.1 Immunofluorescent localisation of proteins 

 

Cells were plated on round (Ø 1,5 cm), sterilised, polylysine coated coverslips 2-3 days 

before staining and grown to about 50% confluency. After removal of the medium cells 

were washed three times in PBS, fixed in 4% paraformaldehyde (20 min at 4°C) and washed 

again three times in PBS. Cells were permeabilised for 10 min in 0.1% Triton X-100/PBS 

and washed three times in PBS (10 min each). Alternatively, cells were fixed with methanol 

(20 min, -20°C) directly followed by PBS washes. Non-specific antibody binding was 

blocked by 10 min incubation in 10% BSA/PBS solution. Cells were then incubated with the 

primary antibody in the appropriate dilution and washed three times for 10 min in PBST. 

Finally, the appropriate fluorescent-dye labelled secondary antibody in PBS was added to 

the cells and incubated for 1h in the darkness. After three 10 min washing steps in PBST, 

nuclei were optionally stained with Hoechst 33342 and coverslips were mounted using the 

ProLong™ Antifade kit and left at least over night at 4°C. Microscopic analysis was 

performed using inverted fluorescence microscope or confocal laser scanning microscope. 

 

PBST 

1 x PBS 

0,05 % (v/v) Tween 20 

 

 

 

2.2.6 Electrophysiological methods 
 

All electrophysiological measurements were performed in cooperation with Dr. Francisco 

Monje (MPI Göttingen). 
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2.2.6.1 Preparation and injection of Xenopus laevis oocytes 

 

Xenopus laevis oocytes contain only very few endogenous voltage-activated channels and 

are relatively large (about 1 mm in diameter) which makes them a very useful system to 

study heterologously expressed ion channels. 

For oocyte extraction from the frog Xenopus laevis, a small surgical opening was performed 

under anaesthesia (2.5 g/l of Tricaine). After isolation of oocytes frogs the incision was 

closed immediately and frogs were returned to water.  

The follicular cell layer was removed form oocytes by 2-3 hours incubation in collagenase 

solution. After inhibition of the enzymatic reaction by thoroughly washing the oocytes with 

Barth medium, oocytes in stages V-VI were isolated with fine forceps for cRNA injection.  

 

Pipettes used for cRNA injection were pulled using a standard pipette puller. Pipettes with 

an opening of ~10 µm in diameter were polished to obtain a needle-like shape which reduces 

oocytes damage during injection. Microinjection of cRNA (~50 nl per oocyte) was 

performed using an automatic injector. Injected oocytes were incubated at 18°C in Barth 

medium containing penicillin/streptomycin (100 U/ml) and Cefuxorixim/Zinacef750 

(4 mg/l) for 3-7 days prior to electrophysiological analysis. 

 

Barth medium 

84 mM NaCl 

10 mM KCl 

6.5 mM Ca(NO3) 

0.6 mM CaCl2 

7.5 mM Tris-HCl 

2.5 mM NaHCO3 pH 7,4 

 

 

2.2.6.2 Two-electrode voltage clamp (TEVC) 

 

The TEVC is a method used extensively for the study of functional properties of voltage-

gated ion channels expressed in oocytes (Stühmer, 1992). This method allows an accurate 
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measurement of the ionic current through voltage-gated ion channels under adequate control 

of the membrane potential as well. 

When an applied voltage induces opening of channels, the ionic flux tends to alter the 

membrane potential. Under TEVC control, one intracellular electrode (the voltage electrode) 

is used for continuous measurement of the actual membrane potential, while the second (the 

current electrode) is used to pass the current necessary to keep the potential at the desired 

value (Fig. 4). This is achieved using a feedback circuit, which is the main component of the 

voltage clamp. The amount of current that passes through the current electrode is the 

measured parameter.  

 

 
 

Fig. 4 A schematic diagram of the main components of a two-electrode voltage clamp  
The difference in potential between the bath and the potential electrode (left), Vm, is compared to the command 
potential, Vcomm and determines the amount of current injected into the oocyte through the current electrode 
(right). 
 

 

2.2.6.3 TEVC stimulation protocols 

 

The two-electrode voltage clamp pipettes were made from Borosilicate glass capillares, 

containing a thin internal filament to ensure the complete filling of the electrode, and were 

filled with 2M KCl (internal solution). The tips of the pipettes were broken before use in 

order to decrease the electrical resistance to the range of 0.4- 0.7 MΩ.  

From a holding potential of –80 mV standard IV protocols, consisting of discrete 

depolarising pulses of increasing amplitudes, at increments of 10 or 20 mV, from the 
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holding potential and up to +80 mV were applied (see Fig. 5). The amplitude of the current 

elicited during each pulse of voltage (test pulse) depends on the number of channels present 

in the membrane, their open probability, their conductance and the driving force of the 

permeating ion species.  

 

 
 
Fig. 5 Standard IV protocol.
Starting from the holding potential from - 80 mV, discrete depolarising pulses of variable amplitudes, with 
increases of 10 or 20 mV, were applied during a variable time. 
 

 

When channels are open under conditions (particularly hyperpolarising voltage and high 

extracellular potassium concentrations) that cause inward currents, an instantaneous inward 

tail current is apparent at the end of each depolarising pulse. The peak amplitude of this tail 

current is proportional to the open probability of the channels at test pulse potential, since 

the channels start to deactivate only after the change in potential. Since this inward current is 

always measured at a constant return (or tail) potential, i.e. at a constant driving force, it can 

be used to determine the voltage dependence of channel opening (activation curve). The 

activation curve can be characterised by Boltzman functions of the type:  

Po/Pomax or I/Imax = 1-(Gmax/(1+ exp (V-V1/2)/κ))  

V1/2 indicates the potential at which half of the entire population of channels are in the open 

state. The e-fold slope allows the evaluation of the steepness of the dependence of the open 

probability on the membrane potential. 

 

Tail currents are also useful to study the kinetics of deactivation. For this, the time curse 

corresponding to the relaxation of the tail currents is fitted with a single-exponential 

function using the PulseFit software in order to estimate the time constant of deactivation. 
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Normal Frog Ringer (NFR) external solution 

85 mM NaCl 

30 mM KCl 

1.8 mM CaCl2

2 mM MgCl2

10 mM HEPES  

 

Internal solution 

2 M KCl 

 

 

2.2.6.4 Patch clamp measurements of potassium currents from CHO cells 

 

The patch clamp is a voltage clamp in which a determined membrane potential is maintained 

under a specific area of cell membrane. The flux of transmembrane ionic currents as well as 

the membrane capacitance can be resolved with great accuracy (Hamill et al. 1981; Marty 

and Neher 1983). 

A patch of membrane is isolated by attaching a clean and smooth tip of a glass pipette on the 

surface of the cell membrane and obtaining a very tight seal between the pipette and the 

membrane. The adhesion between the pipette and the membrane can be so good that a tight 

seal can reach a shunt resistance larger than 10 GΩ.  

Application of an additional negative pressure pulse (suction) is used to perforate the 

membrane located under the pipette leading to the whole-cell configuration (Fig. 6). In the 

whole-cell mode, electrical and chemical communication between the pipette solution and 

the intracellular medium is established, which allows an accurate control of the membrane 

potential and the intracellular chemical composition.  

In the experiments described here, the whole-cell configuration of the patch-clamp technique 

was used, in which channel openings can be induced by varying the membrane potential. In 

this configuration, the average ionic current flowing through the channels present in the 

entire cell membrane is recorded.  
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Fig. 6  Simplified diagram of the patch clamp whole-cell configuration 
A) A clean and tip-polished glass pipette is approached to the cell 
B) The pipette isolates a small area of the cell membrane 
C) Gentle suction allows the formation of a very tight seal between the cell membrane and the walls of the 

pipette, leading to the cell-attached configuration 
D) Additional suction breaks the isolated area of membrane leading to the whole cell configuration 
E) Schematic diagram of the main components of the patch clamp technique 
 

 

2.2.6.5 Stimulation-acquisition protocols and data analysis 

 

For patch clamp measurements we used pipettes made of aluminiumsilicate glass capillaries. 

Pipettes were pulled on a conventional vertical pipette puller and tips were fire-polished 

under visual control through a light microscope. Resulting pipettes had resistances of 

1-3 MΩ when filled with the intracellular solution.  

In all the experiments, the membrane was kept at a holding potential of -80 mV, where the 

probability of the hEag1 channels to be in the close state is very high. Standard voltage pulse 

protocols were applied to elicit and record the ionic currents flowing in response to the 

activation of the channels. Starting from a holding potential of -80 mV, several depolarising 

pulses were applied up to +80 mV in increments of 10 or 20 mV (Fig. 6). The duration of 

these pulses was between 500 and 2000 ms (see time scale in corresponding graphs).  
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Currents were further filtered at 1-3 kHz, and digital sampling intervals were 100-200 µs. 

Series resistance was systematically compensated up to 60%. Leak and capacitative currents 

were systematically subtracted on-line using a P/n protocol as they essentially depend 

linearly on the applied potential. Linear leakage currents were estimated at voltage ranges in 

which the closed-state probability of hEag1 channels was close to 1. Current amplitudes 

were obtained by averaging the currents recorded from at least 5 different cells, and standard 

deviation (SD) of the samples used was calculated. In patch clamp experiments, current 

densities (pA/pF) for each cell were calculated from the steady-state values of the measured 

peak-current amplitudes divided by the value of cell membrane capacitance (determined by 

the automatic Cslow compensation). 

 

Internal solution 

130 mM KCl 

10 mM HEPES pH 7.2 

10 mM BAPTA 

 

External solution 

110 mM NaCl 

30 mM KCl 

2 mM CaCl2 

2 mM MgCl2 

10 mM D-glucose 

10 mM HEPES 

 

 

2.2.7 Yeast Two-Hybrid System (Y2H) 
(Fields and Song, 1989) 

 

The Yeast Two-Hybrid System allows the detection of protein-protein interactions in vivo 

based on the fact that many eucaryotic transcription factors exist as two functionally 

independent domains, which can be separated without loss of function. Thus, the GAL4 

DNA-binding domain (BD) and GAL4 activation domain (AD), which are normally part of 

the same protein, can be expressed separately fused with bait or pray protein.  
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Both fusion-proteins are expressed in the same cell in the case of interactions between bait 

and pray. Thereby both domains (BD and AD) are brought into close proximity and become 

active, recognising UAS („upstream activating sequence“) of GAL4-responsive elements 

and initiating transcription of reporter genes (Fig. 7). 

To identify interaction partners of hEag1, MATCHMAKER GAL4 Two-Hybrid System 3 

was used. In this system two different S.cerevisiae strains are used:  

• AH109, auxotroph for adenine, histidine, leucine and tryptophan and  

• Y187, auxotroph for leucine and tryptophan.  

Additionally, MEL1 and lacZ reporter genes encode in both species for α- and 

β-galactosidase, respectively. 

 

 
 

Fig. 7 Yeast Two-Hybrid method  

 

 

2.2.7.1 Transformation of S.cerevisiae AH 109 

  

S.cerevisiae AH 109 yeast was transformed with pGBKT7 constructs and transformation 

was carried out using a modified lithium acetate method (Gietz et al., 1995). For 

7 transformations, 1 ml of YPDA medium with 3 colonies of AH 109, was vortexed, 

transferred to 50 ml of YPDA and incubated overnight at 30ºC (320 rpm). 5 ml of this 

culture were then diluted 1:10 with YPDA medium (OD600 ~0.4) and incubated for 3 h at 30ºC 
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under vigorous shaking. Cells were collected by centrifugation (500 x g, 5 min), washed 

with sterile water and centrifuged again. Finally, cell pellet was resuspended in 750µl of 

freshly prepared TE/LiAc and used as competent cells. 

For each transformation the following mix was prepared: 

0,1 µg  DNA 

100 µg DNA carrier (Salmon-sperm DNA) 

100 µl competent AH 109 cells 

600 µl freshly prepared PEG/LiAc  

After 30 min incubation at 30ºC with slow agitation (60 rpm) the yeast suspension was 

substituted with 70 µl DMSO and gently mixed, followed by 5 min heat-shock at 42ºC in a 

water bath. After short incubation on ice, cells were pelleted in a picofuge, resuspended in 

0,5 ml of TE buffer and plated on SD –Trp selection plates to isolate positive transformants.  

 

 

2.2.7.2 Yeast mating 

 

To identify putative hEag1 binding partners the MATCHMAKER™ pretransformed human 

cDNA library was used. In this system, the library cDNA is subcloned into the pACT2 

vector (pray) and transformed into the Y187-MATα yeast strain. The bait protein (C-

terminus of hEag1) was subcloned into the AH109-MATa, a mating partner for the Y187-

MATα strain. 

 

A 50 ml SD/-Trp medium was inoculated with a few colonies of AH 109 hEag1-CT (from 

SD -Trp plates) and grown overnight in 30°C with agitation (OD≥0.8). Cells were pelleted 

and resuspended in 50 ml of 2 x YPDA-Kanamycine medium. The pretransformed library 

was thawn on ice directly before use, added to the suspension and agitated slowly in 30°C 

for 24-28h. Cell culture was washed twice with 50 ml of 2 xY PDA-Kanamycine and cells 

were resuspended in 10 ml of 0,5 x YPDA-Kanamycine. To select diploids expressing 

positively interacting proteins, 300 µl aliquots were plated on SD –LTHA plates enriched 

with X-α-Gal and incubated 12 days in 30°C. Additionally, 100 µl aliquot was used for the 

control of mating efficiency. 
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2.2.7.3 β-galactosidase assays 

 

Prior to the β-galactosidase assays diploids were grown for several days on SD -LT 

selection plates. 

 

2.2.7.3.1 Colony-lift filter assay (Breeden and Nasmyth, 1985)  
To duplicate the colonies, a dry Whatman filter was placed over the surface of the plate 

containing the colonies to be assayed. The filter was then placed for 10 seconds in liquid 

nitrogen, thawn at room temperature and placed, colony side up, on another Whatman paper 

pre-soaked in Z-buffer/X-gal solution and both were incubated at 30°C for up to 8 hours.  

 

Z buffer 

60 mM Na2HPO4

125 mM NaH2PO4 x H20 

100 mM KCl 

10 mM MgSO4 x 7 H20 

 

Z buffer/X-gal solution 

100 ml Z buffer 

0.27 ml β-mercaptoethanol 

 

X-gal solution 

20 mg/ml X-gal in DMF 

 

 

2.2.7.3.2 In-plate assay (Duttweiler, 1996) 

Plates containing colonies to be analysed were covered with chloroform and incubated for 

5 min at room temperature. Chloroform was removed and plates were dried for 5 min at 

room temperature. 15 ml of the agarose solution was boiled, cooled to about 40°C and 

supplemented with 1,5 ml of X-gal solution and poured onto the plate. Plates were incubated 

at 30°C up to 24h, and the appearance of blue colonies was controlled regularly. 
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Agarose solution 

200 mM K2HPO4

75 mM KH2PO4

1 % Agarose 

 

X-gal solution 

20 mg/ml X-gal in DMF 

 

 

2.2.7.4 Recovery of plasmid DNA from S. cerevisiae 

 

To recover the library plasmid from diploid yeast, 5 ml of SD/-Leu/-Trp medium was 

inoculated with a single colony selected to be analysed and incubated 48 hours at 30ºC with 

agitation. Cells were pelleted, washed with 1 ml of 1 x TE buffer and resuspended in 200 µl 

of the Yeast lysis buffer-1. Suspension was mixed with 100 µl phenol and 100 µl of 

chloroform:isoamyl alcohol (24:1) and 300 mg of glass beads and shaken strongly for 10 

min at RT to break the cells. Afterwards, lysates were centrifuged for 10 min at 4ºC, 

14000 x g. The upper phase was collected, supplemented with 5 µl of 7,5 M ammonium 

acetate, incubated for 60 min at -20ºC and centrifuged (15 min, 4ºC, 14000 x g). The 

supernatant was subjected to EtOH precipitation and DNA pellet was resuspended in 20 µl 

of sterile water.  

For amplification, DNA was transformed into competent E.Coli cells. Transformants were 

selected with medium containing Ampicilin.  

 

Yeast lysis buffer-1 

2 % Triton X-100,  

1 % SDS,  

100 mM NaCl,  

10 mM Tris-HCl pH 8,0 

1 mM EDTA 
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2.2.7.5 Isolation of total cellular proteins from S.cerevisiae AH 109 

 
To isolate total cellular proteins from yeast, 6 ml of medium (YPDA for AH109 and SD-Trp 

for AH109 GAL4-hEag1CT) were inoculated with a single colony and incubated overnight 

at 30°C (320 rpm). Cells were pelleted (5 min, 500 x g), washed with sterile water and lysed 

in 60 µl of Yeast lysis buffer-2 for 20 min at room temperature. Non-lysed cells were 

removed by centrifugation, and lysates were supplemented with Laemmli loading buffer 

divided into two equal samples and analysed on 9% SDS-PAGE. 

 

Yeast lysis buffer-2 

15 mM TRIS HCl pH 7,5 

1 % SDS 

 

 

 

2.2.8 Computer analysis 
 

DNA and protein sequence analysis and alignment in contigs were done with 

"LASERGENE" (DNASTAR). For multiple sequence alignments " CustalW" was used 

(available at http://www2.ebi.ac.uk/clustalw/help.html or at http://dot.imgen.bcm.tmc.edu: 

9331/multi-align/multi-align.html).  

Other sequence analysis tools used are available at the ExPASy site: http://www.expasy.ch/ 

or at the NPSA (network protein sequence analysis) site: http://pbil.ibcp.fr/. For database 

sequences search, "WU-Blast2" was used, available at the EBI (European Bioinformatics 

Institute) site: http://www2.ebi.ac.uk/.  

Acquisition and analysis of electrophysilogical data were performed using thePulse+PulseFit 

(HEKA Elektronik) and IGOR (Wavemetrics) software packages. 

 

   

http://dot.imgen.bcm.tmc/
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3 RESULTS 

 

3.1 Biochemical analysis of Eag1 in rat  

 

3.1.1 Analysis of the Eag1 protein expression pattern  

 

The ether á go-go potassium channel was first identified in the neuromuscular junction of 

Drosophila melanogaster larvae. In mammalian species, Eag1 is mainly expressed in adult 

brain (human, mouse, rat), but its expression was also demonstrated in some other tissues like 

human placenta, human testis (Pardo, unpublished), bovine retina or in myoblasts at the onset 

of fusion. Furthermore Eag1 is commonly found in different tumours and tumour cell lines 

but not in the corresponding healthy tissues. 

In previous reports, expression of Eag1 was analysed on two levels: on the transcriptional 

(mRNA) level, using techniques such as northern blotting, RT-PCR or in situ hybridisation, 

and on functional level, on the basis of electrophysiological data.  

 

3.1.1.1 Distribution of the Eag1 protein in rat organs 

 

The techniques mentioned above gave a good indication about the functional expression of 

Eag1 in different cell-types, but the tissue-specific protein pattern, processing or 

posttranslational modifications remained to be analysed. First, the generation of specific 

antibodies was necessary to approach this topic by western blotting.  

 

During the Ph.D. work, several antibodies were purchased by our group. Among them the 

2413x polyclonal antibody directed against the C-terminus of rat Eag1 was chosen for 

western-blotting. This antibody also recognises the C-terminus of human Eag1. Additionally, 

the 2413x antibody cross-reacts with Eag2, but only when used in high concentrations. More 

recently, two monoclonal antibodies directed against the pore domain (mAb-62) and the 

C-terminus (mAb-33) of hEag1 were also obtained. These antibodies recognise the native 

tetramer structure of Eag1 channels, and thus were very useful for immunoprecipitation and 

cytochemistry, but not for western blotting. 
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To complement the already mentioned results, we investigated the expression pattern of Eag1 

at the protein level by western-blotting experiments with the 2413x polyclonal antibody using 

rat tissues. 

 

Membrane-enriched fractions were isolated from homogenised organs (brain, testis, muscle, 

kidney, lung, liver, eye, tongue, heart, spleen and epididymis) dissected from a 10-week old 

male. Samples were separated by SDS-PAGE (4-15% continuous-gradient) followed by 

western blotting with the 2413x polyclonal antibody. 

As shown in Figure 8 A, the clearest signal was observed, as expected, in brain. A strong 

broad band with an apparent molecular mass of approximately 120-140 kDa was observed, 

which differed slightly from the predicted molecular mass of rat Eag1 (SWISS-PROT, 

Q63472: 108,291 kDa). Moreover, a weak diffuse signal at ca. 250 kDa as well as a clear 

band migrating at >450 kDa were found in the brain lane. Since these signals have about two 

and four times higher molecular masses than the predicted Eag1 band, we believe that they 

represent non-denatured di- and tetramers of the Eag1 protein respectively, although the 

possibility that they represent Eag1-containing complexes cannot be excluded.  

A signal of similar size like in brain was detectable in eye, although the band was not so 

diffuse and migrated at approximately 120-130 kDa (Fig. 8 B). Since expression of Eag1 

transcript in bovine retina has been previously reported (Frings et al., 1998), it is likely that 

this band corresponds to Eag1 protein expressed in rat eye tissue. Please note, that on 

membrane A 150 µg and on membrane B 70 µg of proteins were analysed. Although the 

exposure time of the membrane B was adequately prolonged for compensation, a direct 

comparison of signal intensities is not possible. 

In rat testis, 2413x polyclonal antibody recognised a clear band with an estimated molecular 

weight of ca. 60 kDa, but it was much smaller than the major band observed in brain. This 

band could represent testis specific truncated isoform of Eag1 in rat, since Eag1 expression in 

human testis was observed by real-time PCR (Pardo, unpublished data), but a cross-reactivity 

of the antibody cannot be excluded. The different size of Eag1 in rat testis could be caused by 

a testis-specific splice variant of Eag1 mRNA or a proteolytic posttranslational modification 

of the fully synthesised protein. 

Furthermore, there was a very faint band detectable in lung (55 kDa) as well as a band of 

about 50-55 kDa observed in almost all tissues tested, but the specificity of these signals is 

questionable.  

Placenta, previously reported to express Eag1 mRNA, was not tested in this experiment. 
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Fig. 8 Expression pattern of Eag1 protein in rat tissues 
Western blot analysis of 150 µg per lane of membrane-bound protein fractions isolated from rat brain, testis, 
muscle, kidney, lung and liver (A), and 70 µg per lane of membrane-bound protein fractions from eye, tongue, 
heart, spleen and epididymis (B). Proteins were separated on 4-15% continuous-gradient SDS-PAGE gels and 
immunodetected with the 2413x polyclonal antibody. Note, membrane B was exposed about twice as long to 
compensate differences in protein level. 
Numbers on the left side correspond to molecular weights represented by marker proteins (in kDa). Red arrow 
indicates the expected position of the Eag1 band (108 kDa, based on calculated molecular weight for the rat 
Eag1 protein). 
The anti-Eag1 antibody detected a strong broad band of 120-140 kDa in brain and a band of 120-130 kDa in eye, 
corresponding to a monomer of the Eag1 channel molecule. Additional signals at 240-280 and >400 kDa are 
recognisable in brain that may correspond to nondenatured di- and tetramers. A clear band, migrating at about 60 
kDa, is detectable in testis but the origin of this signal was not further analysed. 
 

 

3.1.1.2 Immunoprecipitation of the Eag1 protein from brain homogenates 

 

In western-blot experiments, the main signal detectable in rat brain differed slightly from the 

calculated molecular mass of rat Eag1 (120-140 kDa instead of 108 kDa). To characterise the 

molecular weight of this brain-specific signal in detail, immunoprecipitation experiments, 

increasing the specificity of Eag1 detection, were carried out from rat brain tissues. Parallel to 

the immunoprecipitates, 25% of the brain homogenate used for IP was separated on the same 

gel.  

As shown in Fig. 9 A, western-blot analysis of the immunoprecipitates from brain 

homogenates (membrane fractions), led to the detection of specific signals only when 

precipitated with anti-Eag1 antibody (protein-A-coupled 2413x polyclonal antibody; 

Eag1 IP).  
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In control precipitations performed with a non-relevant antibody (protein-A-coupled 

anti-AMPA), as well as with Protein-A alone, no corresponding signals were detectable.  

Surprisingly, instead of the intensive single band of about 120-140 kDa detected in the tissue-

western blot experiment (Fig. 8), two clearly distinguishable bands of approximately 115 and 

130 kDa were found in both IP and brain homogenates (Fig. 9). The signals were comparable 

in both cases: the intensity of the 115 kDa signal was slightly higher then the intensity of the 

130 kDa signal. We will refer to these bands as E-115 and E-130, respectively (E stands for 

Eag and the number indicates apparent molecular masses).  

 

 
 
Fig. 9 Expression pattern of the Eag1 protein in rat brain  
Membrane fractions were isolated from rat brain homogenates and proteins were either immunoprecipitated or 
directly separated on 7,5% SDS-PAGE followed by western blotting. Eag1 signals were detected with 2413x 
polyclonal antibody.  
A) Immunoprecipitation from brain homogenates performed using:  

• 2413x polyclonal antibody  (Eag1 IP),  
• anti AMPA polyclonal antibody (AMPA IP) 
• Protein A-Agarose alone  (Prot-A IP) 

B) Control lane containing membrane proteins from rat brain homogenates 
Positions of two bands (E-115 and E-130), corresponding to Eag1 isoforms are indicated by red arrows. 
Additional signals presumably represent the antibody (Ig) and Protein A (PA) are marked with black arrows. 
 

In brain homogenates several additional bands at lower molecular weights, as well as a faint 

signal slightly higher than E-130 were detectable. Although all homogenisation and 

purification steps were performed on ice in the presence of protease inhibitors, we suggest 

proteolytic degradation as a cause of these bands, since corresponding signals were not 

detectable in other experiments. The band at ca. 150 kDa could represent an Eag1-containing 

protein-complex, although unspecific binding of the antibody is another plausible explanation.  
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The bands at 50 and 37 kDa found in the immunoprecipitation presumably represent IgG and 

Protein A, respectively. The strong and weak Ig signals in Eag1 and AMPA lanes are 

probably due to recognition by the secondary antibody. Although equal amounts were used 

for IP, differences in binding can be assumed. Re-probing of the membrane with a specific 

AMPA antibody yielded the expected AMPA signal in the appropriate immunoprecipitate 

(data not shown).  

 

Summarising, in immunoprecipitations of Eag1 from homogenates of rat brain membranes 

two specific bands, E-115 and E-130, appeared on the western blot, which were absent in 

control reactions. The divergence in the signal detection between the tissue-western blots 

(Fig. 8) and the immunoprecipitation-western blots (Fig. 9) can be explained by differences in 

resolution of polyacrylamide gels (7,5% instead of 4-15% continuous gradient SDS-PAGE) as 

well as by differences in total intensity of the observed signals. 

The immunoprecipitation experiments show, that two populations of the Eag1 protein are 

detectable in rat brain, and that both molecular masses seem to be higher than the predicted 

one.  

 

 

3.1.2 Glycosylation of the Eag1 in rat brain 

 

The calculated molecular mass of the unprocessed rat Eag1 is approximately 108 kDa. In 

contrast, in rat brain homogenates and immunoprecipitates, two distinguishable Eag1 

isoforms were detected, with molecular masses estimated to approximately 115 and 130 kDa 

(Fig. 9). The differences between the calculated and detected molecular masses of the rat 

Eag1 protein, as well as the fact that brain Eag1 runs as a broad band in polyacrylamide gel 

(Fig. 8), indicate possible posttranslational modifications occurring on the Eag1 protein. 

To test whether glycosylation, the most common modification of membrane proteins, can 

account for the discrepancies between calculated and apparent molecular weights, an 

enzymatic deglycosylation reaction was performed on the Eag1 protein immunoprecipitated 

from rat brain membranes. Peptide N-glycosidase F (PNGaseF) was chosen as 

endoglycosidase, since this enzyme is known to attack virtually all glycosydic bonds. 
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Eag1 was immunoprecipitated from 500 µg of rat brain homogenates (membrane-bound 

fraction) with 1µg of 2413x bound to Protein A/G-Beads, and treated with PNGaseF 

(as described in 2.2.3.5). As a control an identical sample was incubated in parallel with the 

reaction buffer. Samples were separated on 7,5% SDS-PAGE followed by western-blotting 

and immunoblotted with 2413x polyclonal antibody.  

 

 

 
 
Fig. 10 Deglycosylation of Eag1 from rat brain 
Western blot using polyclonal anti-Eag1 antibody after overnight treatment with (+) or without (-) PNGaseF. 
Positions of the E-115 and E-130 bands are indicated by black arrows. Note the single band at ≈110 kDa in the 
treated sample (E, red arrow) corresponding to unglycosylated Eag1 protein. 
 

 

As shown in Fig. 10, endoglycosidase treatment resulted in a shift of the apparent molecular 

mass of both Eag1 bands (E-130 and E-115), which migrated as a single band of about 110 

kDa (+) after overnight incubation with PNGaseF. The control reactions exclude a 

contribution of intracellular proteases to the reduction in molecular weight, since 2413x 

antibody recognised both E-130 and E-115 bands in the control line. Moreover we didn't 

detect bands of lower molecular weights which would suggest proteolytic degradation. 

Thus, these data strongly suggest that Eag1 protein undergoes N-linked glycosylation in rat 

brain. Two differently glycosylated species represented by E-130 and E-115 bands are 

coexisting in rat brain, in which oligosaccharides contribute with about 5 kDa and 20 kDa to 

the molecular mass of the protein. 
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3.2 Biochemical and functional characterisation of human Eag1 

expressed in heterologous systems  

 

3.2.1 Expression of hEag1 in CHO cells 

 

Since the preliminary aim of this study was to analyse posttranslational modifications of 

human Eag1 protein (hEag1), we further analysed the glycosylation of hEag1 expressed in 

heterologous systems. For that purpose Chinese hamster ovary (CHO) cells were chosen as a 

model, since they do not express large amounts of endogenous potassium channels, thus 

simplifying the biochemical and electrophysiological analysis of the hEag1 channel.  

As source for all further experiments, a cDNA clone containing the complete open reading 

frame of hEag1 corresponding to the splice variant "a" of hEag1 was used. This splice variant 

lacks 81 nucleotides corresponding to amino acids 318-344. The used cDNA clone includes 

as well additional 36 nucleotides upstream from the ATG codon (5' UTR) and 78 nucleotides 

downstream from the stop codon (5' UTR). To simplify the nomenclature, this clone was 

named hEag1 (for the complete hEag1 sequence see NCBI: AJ001366). 

 

hEag1 was cloned into the pTracer vector and stably transfected into CHO cells (Dac-30 

method, see 2.2.4.6), giving rise to the CHOhEag1 cell line. The pTracer vector carries a 

selection marker, a GFP-Zeocin fusion protein, under the control of an independent (SV40) 

promoter. For positive selection of transfectants, clones were selected in medium containing 

100 µg/ml Zeocin, followed by permanent growth in Zeocin-complemented medium. 

Expression of hEag1 in CHO cells was tested by RT-PCR (data not shown) as well as by 

immunoprecipitation and western blotting (Fig. 11).  

 

Consistent with the results from rat brain, polyclonal 2413x antibody detected two clearly 

distinguishable bands of approximately 110 and 130 kDa (E-110 band and E-130 band) on 

western blots. These bands were visible in immunoprecipitations with polyclonal 2413x 

antibody (Fig. 11 A), as well as with monoclonal mAb-62 antibody (Fig. 11 B), although in 

the 2413x IP the intensity of E-130 was slightly lower than the intensity of E-110. 
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Fig. 11 Expression of hEag1 in CHO cells 
CHO-hEag1 cells and nontransfected CHO cells were immunoprecipitated with anti-Eag1 antibodies followed 
by regular western-blotting and immunodetection with 2413x polyclonal antibody. Two bands, with molecular 
weights estimated to 110 and 130 kDa (E-110 and E-130), were detected only in CHOhEag1 cells, while in 
untransfected cells and anti-Lamin A/C precipitates no signal was detectable. 

A) Immunoprecipitation with 2413x antibody and control precipitation with Lamin A/C antibody  
B) Immunoprecipitation with mAb-62 antibody 

 

Also here, molecular masses of the detected bands were slightly higher than the calculated 

molecular mass of hEag1 of 108595.83 Daltons. In the control precipitation with non-relevant 

antibody (anti-Lamin A/C) no adequate signal was observed. Similar, in untransfected CHO 

cells, 2413x polyclonal antibody did not recognised any signal neither in anti-Eag1 nor anti-

Lamin A/C precipitates, which confirmed the specificity of the detected signal. 

 

 

3.2.2 Analysis of hEag1 sensitivity to endoglycosidases  

 

The two-band pattern of hEag1 expressed in CHO cells is very similar to the one obtained 

with rEag1 in brain homogenates. We therefore tested if hEag1 becomes glycosylated also 

during its maturation in CHO cells. To study glycosylation of hEag1 in detail, 

immunoprecipitated protein was treated with two different endoglycosidases: 

Endoglycosidase H (EndoH) and Peptide N-Glycosidase F (PNGaseF). Whereas the PNGaseF 

cleaves almost all known oligosaccharides from the protein, EndoH is able to act only on so-

called ‚core‘ glycoproteins, which are simple, mannose-rich, and usually an endoplasmatic-

reticulum residual form of glycoproteins (see Introduction 1.3.1 and Fig. 12 D).  
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hEag1 was immunoprecipitated from total CHOhEag1 cell lysates using mAb-62 antibody. 

The protein was subsequently released from the Agarose-beads by boiling with SDS/methanol 

solution (0,1% each) and incubated overnight with 5U of either EndoH or PNGaseF. Changes 

in mobility of hEag1 were analysed on 7,5% SDS-PAGE gels. Additionally, control reactions 

with all components except the enzyme were performed to exclude contribution of cellular 

proteases to migration shifts.  

 

Treatment with PNGaseF (Fig. 12 A) affected the electrophoretic migration of hEag1, similar 

to the one observed in rat brain. After PNGaseF digestion, a single band of ≈108 kDa was 

detected (Fig. 12 A, PNGaseF, +). The double-band pattern of native hEag1 was not affected 

in control reactions (Fig. 12 A, PNGaseF, -) which strongly suggests that the observed 

migration shift was not due to the action of intracellular proteases. 

These data strongly support the idea that human Eag1 protein, similar to rat brain Eag1, 

undergoes N-linked glycosylation when expressed in CHO cells. Analogous to the 

observation in rat brain homogenates, there is a strong indication that two glycosylation 

isoforms, contributing with 2-5 and 20-25 kDa to the molecular masses of hEag1 coexist in 

the CHO expression system. 

In contrast, treatment of hEag1 with EndoH, gave rise to a double-band pattern, that differed 

from the one typical for the native hEag1 protein. After incubation with EndoH the lower 

band was migrating at about 108 kDa, rather than 110 kDa observed in the control (Fig 12 B, 

EndoH +). Since EndoH acts only on so-called ‘core-oligosaccharides’ of proteins, this 

indicates that the E-110 band corresponds to a core-glycosylated, mannose-rich hEag1 

glycoprotein.  

Migration of the E-130 band seems not to be significantly influenced by EndoH treatment, 

although a detection of slight shift (≈2 kDa), might be contradictory. Because of the 

resolution limit of the SDS-PAGE, the possible difference in E-130 migration before and after 

EndoH treatment remained unclear. Apart from this, no conversion in apparent molecular 

weight of E-130 to the size of unglycosylated protein was observed after EndoH treatment, 

suggesting that E-130 represents a complex-glycosylated (and thus EndoH resistant), most 

probably post-reticular form of the hEag1 protein. 

The shifts are not likely to be due to a time dependent modification (i.g. degradation) of the 

Eag1 protein due to the preparation, since in the control incubations an identical band pattern, 

like in the IP lane was observed. 
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Fig. 12 Endoglycosidase treatment of hEag1 expressed in CHO cells. 
CHOhEag1 cells were grown to confluence in 150 cm2 culture flasks, scraped, lysed, and the hEag1 protein was 
immunoprecipitated with mAb-62 antibody from total cell lysates. Immunoprecipitates were treated overnight 
with PNGaseF (A) or EndoH (B) followed by regular western-blotting.  
Positions of E-130 and E-110 bands are indicated by black arrows, position of the unglycosylated hEag1 by red 
arrows (E) 
• hEag1 after incubation with (+) and without (-) PNGaseF.  

A single band migrating at the level of predicted molecular mass of hEag1 (≈108 kDa) is detectable after 
PNGaseF treatment. 

• hEag1 after treatment with (+) and without (-) EndoH. 
A shift in migration of the E-110 band to ≈108 kDa is observed after EndoH treatment. Note the putative 
slight shift in migration of E-130 band 

• non-treated immunoprecipitate. 
• schematic representation of endoglycosidase specificity.  

Endo H recognises only mannose rich and hybrid type of oligosaccharide attachments, PNGase F 
recognises also complex-glycosylated proteins  
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These data indicate the existence of two distinct glycosylation isoforms of the hEag1 protein: 

• E-110, which is sensitive to both, PNGaseF and EndoH, and thus is likely to represent a 

mannose-rich, core-glycosylated Eag1 protein  

• E-130, which is sensitive only to PNGaseF but insensitive to EndoH and is therefore 

representing a complex-glycosylated form of the hEag1 protein.  

The putative slight shift in the E-130 band by EndoH treatment could be caused by an 

additional core-glycosylation present on a distinct residue on the complex-glycosylated 

hEag1 protein. 

 

3.2.3 Disruption of the hypothetical glycosylation sites by site directed 

mutagenesis 

 

Considering the increasing amount of experimental data, highlighting the importance 

of N-glycosylation for proper function of membrane proteins, including ion channels 

(see introduction), we decided to study the biochemical and functional effects of 

glycosylation of hEag1 in more detail.  

 

As already mentioned, all known N-linked oligosaccharides are attached to the side chain of 

an asparagine in the consensus sequence Asn-Xaa-Ser/Thr (where Xaa can be any amino acid 

except Pro and Asp). Using computer-based comparative analysis (ScanProsite at ExPASy), 

six putative N-linked glycosylation sites could be identified in the hEag1 sequence (Fig13). 

The six putative glycosylation sites are asparagines (N) located at positions: 26, 238, 388, 

406, 470 and 752. Following an hypothetical structural model, based on the commonly 

accepted model of 6-transmembrane-domain channel, four of the putative glycosylation sites 

would be positioned in the predicted intracellular domains (26, N-terminus and 752, 

C-terminus) or transmembrane regions (238, in S1 and 470, in S6), whereas two of them (388 

and 406) would be located in the extracellular loop between the S5 domain and the P (pore) 

region of hEag1 (Fig. 13 A and B). 

All six predicted N-glycosylation sites (N26, N238, N388, N406, N470 and N752) were 

mutated as described in 2.2.2.10.3. Site-directed mutagenesis was carried out to substitute 

glycosylatable asparagine residues with glutamine residues (Fig. 13). The hEag1-pTracer 

construct served as a template for all six mutant plasmids. Exact sequences of the 

oligonucleotides used in the PCR reaction and the mutation they introduced are listed 
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in the Materials and Methods part (Table 1; 2.2.2.10.3). All created mutants were entirely 

sequenced to exclude any additional mutations in the hEag1 sequence. Nucleic acid 

replacement was followed by stable expression of the hEag1 mutants in CHO cells and their 

biochemical and functional analysis. To minimise effects of the specific integration site, 

polyclonal cell lines were used in all further studies, under the assumption that cells carrying 

the plasmid in several different integration sites were present in the preparation. 

 

 
MTMAGGRRGLVAPQNTFLENIVRRSNDTNFVLGNAQIVDWPIVYSNDGFCKLSGYHRAEVMQKSSTCSFMYGELTDKDTI 80 
EKVRQTFENYEMNSFEILMYKKNRTPVWFFVKIAPIRNEQDKVVLFLCTFSDITAFKQPIEDDSCKGWGKFARLTRALTS 160 
 S1 
SRGVLQQLAPSVQKGENVHKHSRLAEVLQLGSDILPQYKQEAPKTPPHIILHYCVFKTTWDWIILILTFYTAILVPYNVS 240 
 S2 S3 
FKTRQNNVAWLVVDSIVDVIFLVDIVLNFHTTFVGPAGEVISDPKLIRMNYLKTWFVIDLLSCLPYDVINAFENVDEGIS 320 
 S4 S5 
SLFSSLKVVRLLRLGRVARKLDHYIEYGAAVLVLLVCVFGLAAHWMACIWYSIGDYEIFDEDTKTIRNNSWLYQLAMDIG 400 
 P S6 
TPYQFNGSGSGKWEGGPSKNSVYISSLYFTMTSLTSVGFGNIAPSTDIEKIFAVAIMMIGSLLYATIFGNVTTIFQQMYA 480 
NTNRYHEMLNSVRDFLKLYQVPKGLSERVMDYIVSTWSMSRGIDTEKVLQICPKDMRADICVHLNRKVFKEHPAFRLASD 560 
GCLRALAMEFQTVHCAPGDLIYHAGESVDSLCFVVSGSLEVIQDDEVVAILGKGDVFGDVFWKEATLAQSCANVRALTYC 640 
DLHVIKRDALQKVLEFYTAFSHSFSRNLILTYNLRKRIVFRKISDVKREEEERMKRKNEAPLILPPDHPVRRLFQRFRQQ 720 
KEARLAAERGGRDLDDLDVEKGNVLTEHASANHSLVKASVVTVRESPATPVSFQAASTSGVPDHAKLQAPGSECLGPKGG 800 
GGDCAKRKSWARFKDACGKSEDWNKVSKAESMETLPERTKASGEATLKKTDSCDSGITKSDLRLDNVGEARSPQDRSPIL 880 
AEVKHSFYPIPEQTLQATVLEVRHELKEDIKALNAKMTNIEKQLSEILRILTSRRSSQSPQELFEISRPQSPESERDIFG 960 
AS 962 

  A 
 

 

 

 
 

 
Fig. 13 Schematic domain organisation and putative N-glycosylation sites of hEag1  
A) Sequence of the hEag1 protein.  

The six predicted N-linked glycosylation motifs are bold and underlined. Putatively glycosylation sites are 
presented in red. Grey bars correspond to the presumed transmembrane regions S1-S6; empty (white) bar 
represents the putative P region of the hEag1 channel. 

B) Schematic representation of the positions of putative glycosylation sites on the structure model of the 
hEag1 monomer. Blue cylinders represent six transmembrane domains (S1-S6). 
Putatively extracellular glycosylation sites are depicted in red, intracellular or transmembrane sites in 
black. 
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3.2.4 Selection of the mutant phenotypes with enzymatic deglycosylation 

 

To identify asparagine residue(s) participating in attachment of carbohydrate chains to hEag1, 

glycosylation of the generated hEag1 mutants (hEag1-N26Q, -N238Q, -N388Q, -N406Q, 

-N470Q and -N752Q) was examined with endoglycosidase (PNGaseF). For this, stably 

transfected cells expressing the appropriate mutants were lysed, and 9500 µg of total cellular 

proteins were immunoprecipitated with mAb-62-Protein A conjugated beads. The precipitates 

were aliquoted and treated overnight either with (+) or without (-) PNGaseF followed by 

separation on 7,5% SDS-PAGE and regular western-blotting with 2413x polyclonal antibody. 

Comparison of the control samples (Fig. 14) revealed that the migration pattern of the 

hEag1-N26Q, -N238Q, -N470Q and -N752Q mutants was not affected by the mutation, 

showing typical 2-band pattern (110 and 130 kDa) observed for hEag1. Endoglycosidase 

treatment of the four mutant proteins resulted in the conversion of both bands to a single one, 

migrating at ≈108 kDa, as shown for hEag1 (see Fig. 12). The electrophoretic mobility pattern 

of these mutant proteins, identical with the one obtained for hEag1, indicate that those 

mutated asparagine residues (N26, N238, N470 and N752) are not glycosylated in CHO cells 

(Fig. 14). This was an expected result, since these putative glycosylation sites are located in 

the predicted intracellular or transmembrane regions of the hEag1 channel. 

In contrast, the immunodetection pattern of hEag1-N388Q and -N406Q mutants was strongly 

influenced by the mutation.  

Fig. 14 clearly shows that hEag1-N388Q lacks the E-110 band, whereas a single band 

compatible with E-130 is still present. Treatment of hEag1-N388Q with PNGaseF resulted in 

a shift of the E-130 band to lower molecular weights (≈108 kDa), corresponding to 

unglycosylated hEag1 protein. This suggests that this band is of the same origin as the E-130 

band of nonmutated hEag1. 

Moreover, in the hEag1-N406Q mutant a single band migrating at 110 kDa was detectable 

and compatible with the E-110 band. This band was also sensitive to PNGaseF, since a slight 

shift in migration (to ≈108 kDa), similar to the hEag1 E-110 band, was observed after 

endoglycosidase treatment. 

 

In conclusion, out of the six possible glycosylation sites predicted in the hEag1 sequence, 

only two sites (N388 and N406) are glycosylated. 
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Two different carbohydrate attachments are identified for the hEag1 protein.  

• The complex-isoform attached to asparagine in position 406 is EndoH insensitive and 

corresponds to the 130 kDa band on western blots.  

• The core-isoform attached to asparagine 388 is EndoH-sensitive and corresponds to the 

110 kDa band on western blots.  

 

 

 
Fig. 14 Deglycosylation of N-linked carbohydrates in hEag1 mutants 
Mutant proteins (hEag1-N26Q, -N238Q, -N388Q, -N406Q, -N470Q and -N752Q) were immunoprecipitated 
overnight from CHO cell-lysates with mAb-62 antibody. Precipitates were divided into two equal samples and 
treated ON with (+) or without (-) PNGaseF as described in 2.2.3.5.1, followed by regular western-blotting and 
immunodetection with the 2413x polyclonal antibody. Arrows indicate the positions of the wild-type hEag1 
bands that absent in the respective mutants. 
 

 

3.2.5 Generation and biochemical analysis of the double glycosylation 

mutant 

 

Since two asparagine residues on hEag1 were identified to be differentially and independently 

N-glycosylated, a double mutant lacking both glycosylation sites was generated and analysed. 

For this, the hEag1-N406Q-pTracer construct was used to introduce the second (N388Q) 
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mutation using the conditions described above. The generated mutant (hEag1-N388,406Q) 

was entirely sequenced and stably expressed in CHO cells as described for other mutants.  

As shown in Fig. 15 A, after the PNGaseF treatment of the double mutant, performed under 

previously applied standard conditions (overnight at 37°C, without protease inhibitors), no 

band corresponding to the unglycosylated hEag1 was detected with 2413x antibody. 

Similarly, no band corresponding to hEag1 was detected in the control reaction 

(immunoprecipitated N388,406Q mutant protein incubated under the same conditions in 

reaction buffer without endoglycosidase), although a protein of appropriate size (≈108 kDa) 

was found in the untreated immunoprecipitates (Fig. 15 B). However, in both cases bands 

migrating at less than 75 kDa were detectable.  

 

 
 
Fig. 15 Endoglycosidase treatment of N388,406Q double mutant 
A) PNGase F treatment performed in standard conditions (overnight at 37°C without protease inhibitors) 
B) control immunoprecipitation 
C) PNGase F treatment in protease-reduced condition (5h at 37°C with protease inhibitors) 
 
In both cases degradation of the unglycosylated hEag1 was observed after incubation with PNGase F. In the 
control precipitation (B) a band of the expected size is observed. 
 

 

This result suggested a proteolytic degradation of the hEag1-N388,406Q protein. During the 

immunoprecipitation, only a slight degradation was observed, which can be explained by the 

incubation at 4°C. But, since the PNGaseF (or control) treatment was performed at 

physiological temperature (37°C) the complete degradation of the protein must have occurred. 

To avoid proteolytic degradation, PNGaseF treatment in presence of protease inhibitors, and 

with reduced duration (5 hours) was performed. Fig. 15 C shows, that under these conditions, 

a signal of the appropriate size (≈108 kDa) was detectable in the control reaction (identical 
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treatment except the enzyme). In contrast, in the enzyme treated sample, only a very faint 

band was visible. Additionally also in the presence of protease inhibitors a strong, diffuse 

signal lower than 75 kDa was detectable. These data suggest, that besides proteases some 

other factors, can contribute to the degradation of hEag1-N388,406Q. This is not surprising, 

since it is known that glycosylation increases the stability of many membrane proteins. This 

results confirm this since complete loss of glycosylation in N388,406Q mutant leads to 

destabilisation of the hEag1 protein. Thus it can postulated, that N-linked glycosylation 

increases the stability and/or protects the hEag1 protein from degradation. 

 

3.2.6 Model of the N-linked glycosylation of hEag1 potassium channel 

 

Variability in the detection pattern was observed for the hEag1-N388Q mutant in different 

experiments. A single band of about 130 kDa was detected in some tests, for example in the 

western-blot analysis performed to identify active glycosylation site (see Fig. 14, control 

reaction for the PNGaseF digest of the hEag1-N388Q mutant). In contrast, an additional band 

of molecular weight estimated to less than 110 kDa was detectable in other experiments 

(shown in later part of this work). This additional fragment was interpreted to be the fully 

unglycosylated variant of the hEag1 protein.  

 

To match the exact position of the detected bands between all glycosylation mutants, the 

membrane fraction isolated from appropriate cell lines (CHO and CHO expressing: hEag1, 

hEag1-N388Q, -N406Q and -N388,406Q) was analysed on western blots. For this, 50 µg of 

the membrane-bound fraction of proteins (isolated as described in 2.2.3.9.1) were separated 

on 7,5% SDS-PAGE, transferred onto nitrocellulose membrane and immunodetected with the 

2413x antibody.  

 

In wild-type hEag1 transfected cells the 2413x antibody detected the already described two 

bands of 110 and 130 kDa. In hEag1-N406Q expressing cells a single band corresponding to 

the core-glycosylated protein was detectable. In the double mutant (hEag1-N388,406Q) a 

single band of approximately 108 kDa corresponding to the unglycosylated hEag1 protein 

was observed. 
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In the hEag1-N388Q mutant (lacking the site for core-oligosaccharide attachment), the 

reported complex glycosylated 130 kDa band was detected, but an additional band of about 

108 kDa was observed. This fragment migrated at the same level as the band in the double 

(non-glycosylated) mutant, strongly suggesting that the non-glycosylated hEag1 was the 

source for the ≈108 kDa band in the hEag1-N388Q mutant. The presence of the non-

glycosylated form of hEag1 in CHOhEag1-N388Q transfected cells can be caused by an 

inefficient processing of the single glycosylation site on the N388Q mutant protein, probably 

due to the introduced mutation. 

 

 

 
 
Fig. 16 Immunoblot analysis of the membrane fraction matching the hEag1 and N-linked glycosylation 
mutants of hEag1 stably expressed in CHO cells 
CHO cells as well as CHO cells expressing wild-type hEag1 and mutant proteins hEag1-N388Q, -N406Q and -
N388,406Q were collected and disrupted by osmotic pressure and membrane fractions were isolated as described 
in Materials and Methods (2.2.3.9.1, 1.000 x g centrifugation step was directly followed by the 100.000 x g 
centrifugation in order to collect the total membrane bound protein pool). Following standard western-blotting, 
the membrane was probed with the 2413x polyclonal antibody. 
Black arrows indicate positions of the two glycosylated hEag1 forms (E-110 and E130), red arrows represent the 
position of unglycosylated hEag1. 
 

 

Taken together, the following model of hEag1 glycosylation can be proposed (Fig. 17).  

 

There are two putative hEag1-glycosylation isoforms:  

• a core-glycosylated (EndoH sensitive) form corresponding to the E-110 band 

• a complex-glycosylated (EndoH insensitive) form corresponding to the E-130 band. 

 

Additionally, these two isoforms are related to two distinct glycosylation sites at asparagine 

388 and asparagine 406: 

• the Asn 388 is core-glycosylated with small sugar attached, since hEag1 detection pattern 

lacks the E-130 band when the 388 site is displaced 

• in contrast the Asn 406 posses large and complex carbohydrate attachment, as mutation of 

this site eliminate E-130 band from the western blot. 



Results  - 80 - 

 
 
 
Fig. 17 Model of N-linked glycosylation of the hEag1 potassium channel 
Schematic structure of a single hEag1 α-subunit is presented. The six transmembrane domains (S1-S6) are 
shown as blue cylinders, while the P region is presented as a loop between S5 and S6.  
A) Amino acid sequence harbouring the hEag1 glycosylation sites in relation to the region between S5 and 

S6 domains. 
B) Schematic location of the two glycosylation isoforms of hEag1 and mutant proteins (N388Q,N406Q and 

N388,406Q).  
The complex-glycosylated isoform is represented as a large oligosaccharide tree, whereas the core-
glycosylated form is shown as a small sugar structure. Mutations of glycosylation sites are depicted as 
black crosses. For each model, a schematic depiction of the SDS-PAGE migration pattern is presented. In 
the N388Q mutant the dotted line represents the band corresponding to the unglycosylated protein (in 
some cases not detectable). 



Results  - 81 - 

3.2.7 Binding of hEag1-linked oligosaccharides to Concanavalin A 

 

Lectins are proteins that interact with specific terminal sugar residues and are therefore useful 

probes for the study of cell surface carbohydrates (reviewed by Sharon and Lis, 1972). 

Concanavalin A (Con A) isolated from the jack bean (Canavalia envalin) is one of the most 

widely used and best-characterised lectins. Con A has broad applicability primarily because it 

selectively recognizes commonly occurring sugar structures α-D-glucose and α-D-mannose. 

Since a wide variety of the membrane glycoproteins have α-linked glucose or mannose 

residues, these glycoproteins can be detected or purified using Con A. 

In order to investigate the constitution and nature of the oligosaccharides attached to hEag1 

and hEag1-mutant proteins expressed in CHO cells, affinity for Concanavalin A was tested. 

Cell lysates (3000 µg of each: CHO, CHOhEag1, CHOhEag1-N388Q and CHOhEag1-N406Q) 

were incubated overnight with 100 µl of Concanavalin A-Agarose-beads. As a control, an 

immunoprecipitation reaction with 2 µg of mAb-33/62 antibody mix was performed in 

parallel. Pellets were then separated on 7,5% SDS-PAGE gels and probed with polyclonal 

antibody (2413x).  

 

As shown in Figure 18 A in wild-type hEag1 both glycosylation isoforms, the 130 kDa and 

the 110 kDa bands, were detectable after precipitation with Concanavalin A. As expected, 

Con A also pulled down a single fragment of 110 kDa from the N406Q mutant. In contrast, 

no band was detected after the precipitation with Concanavalin A from cells transfected with 

the N388Q mutant protein (Fig. 18 A). The lack of detection in the hEag1-N388Q mutant 

after immunoprecipitation with Con A was reproducible (data not shown).  

Control immunoprecipitations reactions showed similar detection pattern as described, for 

example, in 4.2.6 confirming the presence of hEag1 and mutant proteins in the cell lysates 

(Fig. 18 B). 

These results suggest that N388Q mutant does not contain oligosaccharides that can be 

recognised by Con A, i.e. α-glucose or α-D-mannose, which is not surprising in the case of 

complex-glycosylated proteins. In contrast, the N406Q mutant containing only core-

oligosaccharides is well recognised by Concanavalin A.  

Moreover, in wild-type hEag1 both bands, the 110 kDa (core glycosylated) and the 130 

(complex-glycosylated and unrecognisable by Con A in the N388Q mutant), are recognised 

by the lectin. The former binding is as expected, the latter recognition of the 130 kDa band 
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can be explained by double glycosylation on both sites, whereby the core-glycosylation site 

(N406) binds to Con A. Since the two bands are detected in CHO cells transfected with hEag1 

and precipitated with Con A, both glycosylated isoforms exist together independently. A more 

detailed explanation is found in the discussion.  

 

 

 
Fig. 18 Precipitation of hEag1 and mutant proteins with Concanavalin A 
Proteins were precipitated over night from 3000 µg of total cell lysates (CHO, CHOhEag1, CHOhEag1-N388Q 
and CHOhEag1-N406Q) with 100 µl of Concanavalin A-Agarose (A) as well as with 2 µg of mAb-33/62-
Protein A-Beads (B) as a control. After separation on 7,5% SDS-PAGE and immunodetection with 2413x 
antibody, two bands corresponding to E-130 and E-110 were found in Con A precipitates from hEag1 
transfected cells, as well as a single band (≈110 kDa) in Con A precipitates from N406Q transfected cells. No 
signal was detected in N388Q mutant as well as in untransfected cells. In control immunoprecipitations the 
characteristic detection pattern is observed. 
 
 

3.2.8 Distribution of hEag1 glycosylation isoforms in subcellular 

fractions 

 

To test whether the two hEag1 glycosylation isoforms corresponding to the 110 and 130 kDa 

bands on the western blot are distributed differentially in the cells, and whether the individual 

proteins might behave differently with respect to subcellular distribution, we examined 

distribution of hEag1 in the different cell fractions.  
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3.2.8.1 Fractionation by differential centrifugation 

 

To initially test the distribution of the hEag1 glycosylation isoforms in cell fractions, cells 

were fractionated by differential centrifugation, a method that allows a crude distinction 

between large complexes and cytosolic, nuclear or membrane-bound proteins. 

 

CHO cells expressing hEag1 proteins were lysed and the subcellular fractions were separated 

in three centrifugation steps as described in 2.2.3.9.1. Pellets: P-1 (1.000 x g), P-10 (10.000 x g) 

and P-100 (100.000 x g) were collected, and proteins were separated on 7,5% SDS PAGE gel, 

and detected by immunoblotting with 2413x antibody. As shown in Figure 19, hEag1 

glycosylation isoforms were differentially found in the analysed fractions. Semi-quantitative 

comparison (by densitometry analysis) of the hEag1 arrangement through the three fractions 

is presented in Fig. 19 B. The density of the E-110 band was nearly the same in all three 

fractions, with slight increase in the P-10 fraction. In contrast, the intensity of the E-130 was 

dramatically increased, when comparing P-10 and P100 with P-1.  

Analysis of the percentual contribution of each isoform to the total hEag1 signal in each 

fraction showed that in the P-1 fraction the E-130 represented majority (67 %) of the hEag1 

population. In contrast in P-10 and P-100 fractions the E-130 was the prevailing form, 

contributing with 69,7% and 79,1% to the detected signal respectively. 

 

To monitor the fractionation, marker proteins were detected as well. GM-130, a Golgi 

residual protein, as well as TRAPα, an ER integral membrane protein, fractionated 

as predicted mostly within the P-1 and P-10 fractions and both were only weakly represented 

in P-100 fraction, supposed to contain mainly plasma membrane sheets.  

The intensity of the band corresponding to TRAPα was strong and similar in P-1 and P-10 

fractions, whereas the signal of GM-130 was weaker, and best detectable in P-10 fraction.  

This fact suggests that both glycosylation isoforms of hEag1 are differentially distributed in 

cellular fractions. The E-110, thought to represent core-glycosylated protein, is mainly 

represented in P-1 fraction, in which a strong signal of ER-marker and medium signal of 

Golgi-marker were detectable. This is in agreement with the fact that core-glycosylated 

proteins are typical for ER and early Golgi. 

 

The E-130 band represented the majority of hEag1 signal in the P-10 fraction (containing 

a majority of Golgi-marker and ER-marker), as well as in the P-110 fraction thought 
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to contain a pool of plasma membrane proteins. Unfortunately, we were not successful 

in re-probing of the membrane with plasma-membrane marker thus the colocalisation 

of E-130 in plasma membrane enriched fraction remains to be explored.  

 

 

 
 
Fig. 19 Cell fractionation by differential centrifugation 
A) hEag1 proteins from different fractions, P-1 (pellet after 1.000 x g centrifugation), P- 10 (pellet after 

10.000 x g centrifugation) and P-100 (pellet after 100.000 x g centrifugation) isolated from CHOhEag1 
cells were analysed on western blot with antibodies against Eag1 protein (2413x), Golgi (anti-GM-130) 
and ER (anti-TRAPα).  

B) Densitometric analysis of the detected hEag1 signals. Diagram presents percentual contribution 
of the E-130 and E-110 to the total hEag1 signal in each fraction. 

C) Parallel fractionation performed on untransfected CHO cells. Detection was performed with 2413x anti-
Eag1 polyclonal antibody 

 

3.2.8.2 Fractionation by sucrose gradient 

 

Intracellular fractionation by differential centrifugation allowed only crude distinction 

between compartments such as nuclei, or "membrane" without clear differentiation of 

reticular or Golgi enriched fractions. Therefore the distribution of the hEag1 on sucrose 

gradients was examined. 12-60% sucrose density gradients were prepared as described in 

2.2.3.9.2. CHOhEag1 cells were lysed by osmotic pressure (efficiency was monitored under 

the microscope) and 500 µl of the homogenate was loaded on the top of sucrose gradients and 

centrifuged for 3h at 140-180.000 x g (4°C, swinging bucket).  
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Fig. 20 A shows the distribution of the hEag1 glycosylation isoforms on a 12-60% sucrose 

density gradient. Both hEag1 bands, E-110 and E-130 were detectable in the higher density 

fractions (between 8 and 17) with a maximum in fractions 14 and 15. In fractions 8-10 only 

very faint bands were detectable. The differences in the distribution of two glycosylation 

isoforms through the fractions were also observed, although they were not as dramatic as in 

the previous experiment. In fractions 8-11 as well as 16-17 no significant difference between 

the distribution of the two isoforms was observed. In contrast, in fractions 12-15 the E-110 

band determined the majority of the detected signal. Additionally in fraction 14 and 15 the 

intensity of signal detected at 110 kDa increased dramatically, whereas the signal at 130 kDa 

showed only slight increase. Moreover an additional band of about 108 kDa, interpreted as 

unglycosylated hEag1 protein, was observed in fraction 13-15, showing strongest signal in 

fraction 14.  

 

 
 
Fig. 20 Cell fractionation by 12-60% sucrose gradient 
CHOhEag1 (A) and CHOhEag1-N388,406Q (B) cells were lysed and fractionated on 12-60% sucrose gradients. 
Fractions 1-18 were collected (from top to bottom) and 50µl of each was separated on 7,5% polyacrylamide gel 
(SDS-PAGE), followed by western blotting.  
A) CHOhEag1; immunoblotting with: 
• 2413x polyclonal antibody. Arrows indicate positions of E-130 and E-110 bands, as well as unglycosylated 

hEag1 protein (E) 
• GM-130 antibody 
• Calreticulin antibody (CR) 
B) CHOhEag1-N388,406Q; immunoblotting with 2413x polyclonal antibody 
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Distribution of the glycosylation deficient N388,406Q mutant on a 12-60% sucrose density 

gradient is shown in the Figure 20 B. The unglycosylated hEag1 protein localised as well to 

the high density fractions, but its distribution differed from the two glycosylated isoforms. 

Band of a proper size was detectable in fractions 12-18 with the maximum intensity in 

fraction 16, not in 14-15 as observed for the glycosylated proteins. In fractions 12-14 only a 

faint band was observed. Due to high background, no signal could be detected in fraction 17. 

 

Both, Golgi and reticular proteins were also localised to the high-density fractions. Anti-GM-130 

antibody (Golgi-marker) recognised specific signal in fractions 14-17 with highest intensity in 

fraction 17. Calreticulin antibody (ER-marker) recognised a strong band of the expected size 

only in fraction 14. 

Summarising, the E-110 and E-130 isoforms were differentially distributed also in the sucrose 

gradient fractionation. Both isoforms partially colocalised with Golgi marker (fractions 14 

and 15), and the strongest signal of E-110 colocalised with ER-marker in fraction 14. 

Different, the N388,406Q mutant protein strongly colocalised in Golgi-marker containing 

fractions (fractions 15 and 16), but almost no colocalisation with calreticulin was observed 

(fraction 14).  

 

3.2.9 Effects of the N-linked glycosylation on intracellular distribution 

of hEag1 potassium channels 

 

3.2.9.1 Intracellular localisation of the hEag1 and hEag1 mutant proteins 

(hEag1-N388Q, -N406Q and -N388,406Q) in CHO cells 

 

Glycosylation is known to be determinant for cell surface expression of many proteins, 

including integral membrane proteins such as ion channels (see introduction). To test whether 

glycosylation influences the membrane expression of the hEag1 channel, intracellular 

distribution was studied. Fluorescence microscopy was used to determine the subcellular 

localisation of the wild type and N-linked glycosylation mutants of hEag1 in CHO cells. Cells 

were grown for 24 hours on coverslips and transiently transfected with hEag1 and hEag1 

mutant proteins (hEag1-N388Q, -N406Q and -N388,406Q). pTracer constructs were used in 

order to monitor transfection with GFP-Zeocin marker protein. Cells were fixed with 4% 

PFA, permeabilised with 0,1% Triton X-100 and labelled with either mAb-33 or 2413x 
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anti-hEag1 antibody followed by appropriate fluorescently labelled secondary antibody 

(Alexa-Fluor 546 labelled GaM or GaR). Representative images of several independent 

experiments for mAb-33 and polyclonal 2413x antibody are shown in Fig. 21.  

 

In cells transiently transfected with wild type hEag1 indirect immunofluorescence revealed 

widespread presence of the protein with a patched distribution of the signal throughout the 

cells and their processes. A similar staining pattern was observed in the N388Q mutant.  

Some individual hEag1 and hEag1-N388Q transfected cells showed stronger perinuclear 

staining, although the spread pattern remained mostly unchanged. Our interpretation for this is 

that the concentrated perinuclear detection pattern in these cells was probably due to 

overloading the transport machinery, resulting in protein retention in some intracellular 

compartments. 

 

In contrast, cells transfected with hEag1-N406Q and -N388,406Q mutants displayed an 

immunofluorescence pattern strongly restricted to compact perinuclear structures, presumably 

corresponding to the Golgi cysternae or part of the endoplasmatic reticulum (Fig. 21). In a 

few cells, some diffuse staining besides the perinuclear one could be detected. 

These results indicate that N-linked glycosylation at asparagine 406 is important for transport 

to the plasma membrane and that mutation of this site results in proteins which are retained 

intracellularly. Mutation of the second glycosylation site, asparagine 388, seems to have no 

dramatic effect on protein distribution.  

As already mentioned, there were some deviations in staining pattern observed in hEag1, as 

well as in hEag1-N406Q and hEag1-N388Q transfected cells. Since we used polyclonal cell 

lines, it could be simply due to individual diversity, caused i.e. by different integration sites. 

On the other hand, these observations could be functionally relevant, representing some 

higher regulatory mechanism, where not only a particular glycosylation site, but also the 

relationship between the two glycosylated sites could be relevant for protein trafficking. 
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Fig. 21 Effect of N-linked glycosylation on the subcellular localisation of hEag1 and mutant proteins 
transiently expressed in CHO cells 
CHO cells were grown for 24 hours on cover slips followed by transient transfection with hEag1-pTracer 
construct as well as with the appropriate glycosylation mutants (hEag1-N388Q, -N406Q- and -N388Q/N406Q-
pTracer). After 24 hours cells were fixed with PFA, immunolabelled with mAb-33 antibody followed by 
Alexa546-conjugated secondary antibody (red). Green fluorescence corresponds to endogenous fluorescence of 
the GFP-Zeocin fusion protein, the marker for transfected cells, blue fluorescence corresponds to nuclei staining 
(Hoechst 33342). 
In hEag1 and hEag1-N388Q transfected cells, arrows indicate peripheral, probably plasma membrane 
localisation of hEag1. In hEag1-N406Q and hEag1-N388,406Q transfected cells, arrows indicate perinuclear 
localisation of mutant proteins. 
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3.2.9.2 Characterisation of hEag1 expression in glycosylation deficient cells 

 

Studies of the hEag1-N406Q and -N388,406Q mutants revealed a strong effect of the 

complex-glycosylation on intracellular localisation of hEag1. Nevertheless, since even single 

amino acid exchanges in the native protein sequence could induce misfolding or aggregation 

and thus affect protein sorting and/or function, also unexpected effects of the introduced 

mutation have to be considered. 

To investigate effects of N-linked glycosylation without affecting the native protein sequence 

we used both internal block of N-linked glycosylation with Tunicamycin and a mutant cell 

line lacking parts of the glycosylation machinery. 

 

3.2.9.2.1 Internal block of the N-linked glycosylation of hEag1 in CHO cells with 

Tunicamycin 

 

Tunicamycin is a nucleoside antibiotic from Streptomyces species. It inhibits N-linked 

glycosylation blocking the formation of N-glycosidic protein-carbohydrate linkages in 

eucaryotic cells. The optimal Tunicamycin concentration in our experiments was defined as 

the highest concentration allowing survival of at least 90% of cells after 24 h, as described 

in 2.2.4.8.  

 

To monitor the inhibition of N-linked glycosylation of the hEag1 channel, western blot 

experiments were performed on CHOhEag1 cells as well as untransfected CHO cells as a 

control. Cells were grown on Petri-dishes until they reached about 80% confluency and 

culture medium was then substituted by fresh medium (5 ml/dish, without antibiotic) 

containing either Tunicamycin (2,5 µg/ml) or the vehicle (DMSO) as a control. After 

24 hours, cells were detached, lysed and hEag1 was immunoprecipitated from 5.000 µg of 

cell lysates with mAb-33/62 antibody mix (5 µg each) bound to a Protein G/A-Agarose 

followed by western blot.  

As shown in Figure 22, incubation of the CHOhEag1 cells with Tunicamycin resulted in a 

shift of the hEag1 migration in the SDS-PAGE gel to a position compatible with the 

molecular size of the non-glycosylated protein (about 108 kDa). The control incubation with 

DMSO did not affect the 2-band detection pattern of the protein. No signal was detected in 

untransfected CHO cells. 
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Fig. 22 Western blot of CHOhEag1 cells after internal block of N-linked glycosylation  
Cells (CHOhEag1 and wild-type CHO) were incubated either with Tunicamycin or DMSO (control) followed by 
the immunoprecipitation with mAb-33/62 and regular western blotting.  
After Tunicamycin treatment, a single band of ≈108 kDa, corresponding to unglycosylated hEag1 is detectable. 
In DMSO control sample, a two-band pattern typical for wild-type hEag1 (E-130 and E-110) can be seen. No 
signal is detectable in untransfected cells. 
 

 

Additionally, subcellular localisation of hEag1 in Tunicamycin-treated cells was examined by 

indirect immunofluorescence with mAb-33 antibody. CHOhEag1 cells were plated on cover 

slips and incubated with 2,5 µg/ml Tunicamycin. After 17 hours the cells were fixed with 

PFA and immunolabelled with mAb-33 antibody either directly labelled with Cy3 (data not 

shown) or with mAb-33 followed by fluorescently labelled secondary antibody (Fig 23 A, red 

fluorescence). Green fluorescence resulted from endogenous and independent GFP expression 

(a component of pTracer vector).  

 

As can be seen in Figure 23, staining with mAb-33 antibody revealed a strong rearrangement 

of hEag1 expression after Tunicamycin treatment when compared to DMSO treated cells 

(Fig. 23 B). In Tunicamycin treated cells, hEag1 was detectable only in compact perinuclear 

structures, showing staining pattern similar to the one observed in N406Q and N388,406Q 

mutants. The perinuclear staining was even more pronounced in Tunicamycin treated cells 

than in the glycosylation mutant.  

These results suggest that the strong trafficking impairment observed in Tunicamycin treated 

CHO cells can contribute to the Tunicamycin-mediated block of N-linked glycosylation. The 

more obvious perinuclear localisation of hEag1 in Tunicamycin treated cells could be 

explained by additional effects of this drug on cellular metabolism. 
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Fig. 23 Immunofluorescent localisation of the hEag1 protein in Tunicamycin treated CHO cells. 
CHO-hEag1 cells were grown for 17 h in culture medium enriched either with Tunicamycin (2,5 µg/ml) or with 
DMSO (control). Immunolocalisation was performed on PFA fixed cells, using the mAb-33 antibody detected 
with fluorescently labelled secondary antibody (Alexa Fluor-546, red). Green fluorescence corresponds to the 
GFP selection marker expression showing both cytoplasmatic and nuclear localisation. All images were taken 
using a fluorescence microscope. 
A) Tunicamycin treated CHOhEag1 cells 
B) Control DMSO treatment 
Anti-hEag1 antibody detected compact structures clearly localising to the perinuclear compartment (compare 
with GFP) only in cells incubated with Tunicamycin. Control cells show a diffused distribution pattern typical 
for Eag1. 
 

 

3.3.9.2.2 Expression of hEag1 in glycosylation-deficient Lec1 cells 

 

Lec1 cells are a mutant clonal derivative from the CHO clone Pro-5 (ATCC, Rockville, 

USA). Lec1 cells lack the GlcNAc-T1 glycosyltransferase, so that N-linked carbohydrates are 

blocked at the dolichol carrier, and N-linked glycosylation of the proteins does not occur. 

Lec1 cells were stably transfected with the hEag1-pTracer construct (Lec1hEag1 cell line) 

and expression of hEag1 was tested by western blot.  
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Since Lec1 cells lack the native glycosylation machinery, effects of the mutation of hEag1 

glycosylation sites were expected to be mimicked by the expression of hEag1 in Lec1 cells. 

Indeed, after immunoprecipitation with mAb-33/62 antibody mix (5 µg each) from 5000 µg 

of whole-cell lysates and separation by a 7,5% SDS-PAGE gel, a single band of 

approximately 108 kDa corresponding to the unglycosylated hEag1 protein (Fig. 24) was 

detectable on western blot. No signal was detected in untransfected Lec1 cells. 

 

 

 
 
Fig. 24 Western blot analysis of the hEag1 protein immunoprecipitated from glycosylation deficient 
Lec1hEag1 cells. 
Regular western-blot of Lec1hEag1 and wild-type Lec1 cells immunoprecipitated with mAb-33/62 followed by 
the immunodetection with 2413x polyclonal antibody. A single band of ≈108 kDa (E, red arrow), corresponding 
to the unglycosylated hEag1 protein was detected only in Lec1hEag1 and not in untransfected cells. 
 

 

To test the intracellular localisation of hEag1, permanently transfected Lec1hEag1 were 

plated on covereslips and allowed to attach for 24h, followed by the immunofluorescent 

localisation with mAb-33 antibody directly labelled with Cy3 (red). In these experiments, 

hEag1 was also found to localise in compact perinuclear structures (Fig. 25 A), whereas the 

wide-spread distribution pattern of hEag1 detectable in CHO cells was completely lost, as in 

the Tunicamycine-treated CHOhEag1 or in glycosylation deficient mutants expressed in CHO 

cells. The untransfected Lec1 cells showed no staining with the hEag1 antibody (Fig. 25 B). 

 

Taken together, these results strongly suggest that the effects observed in hEag1 mutants are 

indeed due to the disruption of the glycosylation sites and not to some allosteric effects of the 

introduced mutation. 
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Fig. 25 Immuofluorescent localisation of hEag1 in permanently transfected Lec1 cells 
Indirect immunofluorescence of hEag1 was performed on PFA fixed Lec1 cells using mAb-33-Cy3 antibody. 
Immunolocalisation is merged with internal GFP fluorescence of marker fusion-protein and nuclear staining 
(Hoechst). In the Lec1hEag1 cells (upper panel), mAb-33 anti-hEag1 antibody recognised compact perinuclear 
structures (indicated by arrows). Untransfected Lec1 cells did not stain with mAb-33-Cy3 antibody (upper 
panel). 
A) Lec1-hEag1 cells 
B) Lec1 wild-type cells 
 

 

3.2.9.2.3 Colocalisation of hEag1 and mutant proteins with different intracellular 

markers 

 

To study whether transport-deficient hEag1 glycosylation mutants are either trapped in 

defined transport organelles or are directed to proteolytic degradation, or undergo some other 

management, we analysed the subcellular localisation of glycosylation mutants with respect to 

different organelles. We used single glycosylation-mutants, N388Q and N406Q, in order to 

monitor the contribution of a particular glycosylation site to the intracellular distribution in 

detail. 
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pTracer vector was inconvenient for double immunostaining experiments because it encodes a 

independent GFP-Zeozin fusion protein. Thus hEag1 as well as generated hEag1-

glycosylation mutants were subcloned into the pCDNA4 myc/HIS B+ vector, which generates 

a fusion protein with c-myc tag at the C-terminal end. For this the hEag1 stop codon had to be 

replaced by an appropriate restriction site (XhoI). To ensure a continuous ORF an appropriate 

insert was generated by PCR using CMV forward and the XhoSTOP primer. This insert was 

then subcloned into the pCDNA4 vector by KpnI-XhoI restriction sites.  

 

To ensure proper protein expression and processing, hEag1-pCDNA4 as well as N388Q-

pCDNA4 and N406Q-pCDNA4 clones were stably transfected into CHO cells and analysed 

by immunoprecipitation followed by regular PNGase F treatment and western-blotting. The 

2413x polyclonal antibody detected a similar band pattern as in the previous experiments 

(data not shown), confirming correct expression of hEag1 glycosylation isoforms. The c-myc 

antibody failed to detect the hEag1 protein on western-blots. This can be caused by some 

posttranslational trimming of the fusion protein. 

 

Immunofluorescence studies were performed on PFA (Fig. 26 A-F) or methanol (Fig. 26 G 
and H) fixed CHO cells transiently expressing hEag1 and glycosylation mutants N388Q and 
N406Q. Wild-type hEag1 as well as mutant proteins were detected with mAb-33 followed by 
Cy3 secondary antibody (red) or 2413x polyclonal antibody (for colocalisation with GM-130, 
performed with monoclonal antibody) followed by Alexa Fluor 488 (green) labelled 
secondary antibody. Additionally, major trafficking organelles: endoplasmatic reticulum 

(TRAPα, calreticulin, p53), Golgi (GM-130), early endosomes (Rab5), late endosomes 
(Rab7), and lysosomes (Cathepsin D and Limp2) were labelled with specific antibodies 
followed by Alexa Fluor 488 (green) or by Alexa Fluor 546 (for GM-130 antibody) 
secondary antibodies. Additionally, in almost all experiments besides colocalisation with GM-

130 and TRAPα, nuclei were stained with Hoecht 33342 (not shown). This is probably also 
visible in the green channel, since a green nuclear staining is visible in all mentioned cases. 
 
As shown in Fig. 26, the detection pattern of wild type and mutant proteins was similar to one 
in previous experiments. hEag1 and the N388Q mutant gave a widespread spotted distribution 
pattern, whereas localisation of the N406Q mutant was reduced to perinuclear structures. 
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All three hEag1 forms partly co-localised with endoplasmatic reticulum markers (Fig. 26 A-C), 
what was expected since plasma-membrane proteins are synthesised by ER-resident 
ribosomes. However, co-localisation of the N406Q mutant protein with the endoplasmatic 
reticulum was more prominent, with almost no staining outside the ER. This result suggests 
that the core-glycosylated N406Q mutant protein can be trapped in the endoplasmatic 
reticulum and thus fail to reach the membrane. All three tested proteins only slightly 
co-localised with the Golgi marker, GM-130. Rab5 and Rab7 proteins, supposed to stain early 
and late endosomes, respectively, showed besides the expected signals also a strong nuclear 
staining, (as mentioned, probably due to Hoechst 33342 staining visible in the green-
fluorescence channel). All hEag1 isoforms showed some co-localisation with the Rab7 
antibody, mostly in perinuclear regions, but because of the nuclear staining of Rab7, no 
conclusion on the specificity of the co-localisation can be drawn. 
Similarly, hEag1 and both glycosylation mutants N388Q and N406Q showed only a slight 
co-localisation with the lysosomal markers, Cathepsin D and Limp 2. 
 
 
 
 

 



Results  - 96 - 

 
 



Results  - 97 - 

 

 



Results  - 98 - 
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Fig. 26 Colocalisation of hEag1 and mutant proteins (N388Q and N406Q) with intracellular markers 
CHO cells were transiently transfected with hEag1-, N388Q- and N406Q-pCDNA4. 48 hours after transfection 
cells were fixed with PFA (A-F) or MeOH (G and H), followed by staining with an Eag1 specific antibody 
(mAb-33 or 2413x). To monitor subcellular localisation cells were labelled in parallel with antibodies against: 
A) TRAPα (endoplasmatic reticulum) 
B) Calreticulin (CR; endoplasmatic reticulum) 
C) p53 (protein 53 kDa; endoplasmatic reticulum) 
D) GM-130 (Golgi) 
E) Rab5 (early endosomes) 
F) Rab7 (late endosomes) 
G) Cathepsin D (lysosomes) 
H) Limp2 (lysosomes) 
 

 

Taken together, the above results suggest that the complex glycosylated N388Q-mutant 

behaves similar to the wild-type hEag1 protein showing partial colocalisation with the 

endoplasmatic reticulum as well as slight co-localisation with endosomal and lysosomal 

markers. 

In contrast, the core-glycosylated N406Q mutant seems to be trapped in the endoplasmatic 

reticulum, probably due to the abolished complex glycosylation caused by introduced mutation. 
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3.2.10 Functional characterisation of hEag1 and glycosylation deficient 

hEag1 potassium channels 

 

To study effects of N-linked glycosylation on the functional properties of hEag1 potassium 

channel, both Xenopus laevis oocytes and mammalian cells were chosen as a heterologous 

expression system. The characterisation of the currents from putative glycosylated and 

unglycosylated hEag1 channels was measured using standard electrophysiological techniques. 

 

3.2.10.1 Heterologous expression of the hEag1 and glycosylation mutants in Xenopus 

laevis oocytes 

 

Full-length cDNA of hEag1 and the glycosylation mutants hEag1-N388Q and hEag1-N406Q 

were subcloned into the pSGEM expression vector (single step cloning of BamHI-SmaI insert 

from appropriate pTracer clone) and cRNA was prepared by in vitro transcription (see 

2.2.2.7). Integrity of the synthesised cRNA was tested on agarose gels, and cRNA was finally 

quantified using Ribo Green™ assay. Oocytes were surgically extracted and, after removal of 

the follicular layer, microinjected with 50 nl of the synthesised cRNA. Macroscopic currents 

mediated by hEag1 and mutant channels were measured 3 days after cRNA injection by using 

the Two-Electrodes Voltage Clamp (TEVC) technique. 

Fig. 27 A shows representative current traces recorded from oocytes injected with 50 nl of 

hEag1, hEag1-N388Q and hEag1-N406Q cRNA (350 ng/µl; see 2.2.6.1). Currents were 

obtained in response to 500 ms depolarising pulse to +60 mV from a holding potential of –80 mV. 

All the macroscopic currents obtained from oocytes expressing either hEag1 or mutant 

channels exhibited characteristics similar to those previously described in the literature for the 

hEag1 channels, meaning: voltage-dependence of outward currents with rectification, Cole-

Moore-like effect and absence of inactivation. However, peak current amplitudes were 

significantly smaller when hEag1-N406Q channels were analysed and compared to hEag1 

currents (Fig. 27 A). 
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Fig. 27 Two-electrodes voltage clamp recordings from wild-type and mutant hEag1 channels expressed 
in Xenopus laevis oocytes 
Currents were recorded by two-electrode voltage clamping in response to single 500 ms depolarising pulses from 
–80 to +60 mV (inset).  
A) Representative current traces mediated by hEag1 wild-type channels and glycosylation hEag1 mutants.  
B) Statistical evaluation of the maximum peak current amplitudes obtained from 12 recordings. Mean for 

hEag1 is 29.6 µA for hEag1-N406Q is 4.5 µA and for hEag1-N388Q mutant, 28.6 µA. The standard error 
is represented by bars. 

C) Slowing down of the activation of hEag1-N406Q mutant channels. Current traces (A) were normalised to 
the maximal peak current amplitudes and superimposed for comparison of the activation kinetics. 

D) Statistical evaluation of 20-80% values for the analysed oocytes 
 
 

 

Statistical evaluation of a series of measurements in different oocytes (12 for each: hEag1, 

hEag1-N388Q and hEag1-N406Q) are presented on the Fig 27 B. The average peak current 

amplitudes obtained from hEag1-N406Q channels (4.47 µA) represented about 15% of the 
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maximal peak current mediated by the hEag1 channels (29.56 µA). In contrast recordings of 

the hEag1-N388Q mutant (28.63 µA) resembled those obtained from the wild-type channels. 

Additionally closer inspection of the normalised and superimposed representative current 

traces, shown on the Fig. 27 C, reveals that the time course of the hEag1-N406Q mutant 

current is strongly modified, exhibiting a significant slowing down of the channel activation.  

The changes in the temporal course of the activation process were estimated by measuring the 

time interval, elapsed between 20% and 80% of maximal current amplitude (activation rise 

time 20-80%). As can be seen in Fig. 27 D, the activation of the hEag1-N406Q mutant 

channels was significantly slowed down; the channels needed about 6 fold longer time to 

reach 80% of maximal current amplitude. For the hEag1-N388Q mutant channels only a 

slight slow-down in the activation was observed. 
 
 

3.2.10.2 Voltage dependence of hEag1-N406Q mutant channels 

 

To determine the voltage dependence of activation, 500 ms depolarising voltage-pulses were 

applied from a holding potential of -80 mV to –70 to +80 mV, in 10 mV increments, in 

presence of 30 mM external potassium and with 20 sec intervals.  

At the end of each pulse, peaks of inward (tail) currents were determined at a constant 

hyperpolarising membrane potential of -80 mV. To analyse the voltage dependence of the 

activation, values of the recorded inward peak currents were normalised to the maximum 

amplitude and plotted against the membrane potential of the corresponding 500 ms 

depolarising pulses. Normalised peak current amplitudes were averaged for several episodes 

(n= 5-8).  

 

As shown in Fig. 28, mutation of the N406 glycosylation site induced not only a slowing 

down of the activation kinetics of hEag1 but also influenced the voltage dependence of 

activation. The voltage necessary to reach half of the maximum conductance (V50) was shifted 

about 25 mV towards more depolarising potential when comparing hEag1-N406Q with wild 

type channels. In contrast, no dramatic changes were observed in the voltage dependence of 

hEag1-N388Q mutant channels. Only a slight shift (5 mV) of the equilibrium potential 

towards more depolarising potential was observed, although the statistical significance of the 

shift is not clear. 
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Fig. 28 Voltage dependence of hEag1 and hEag1-N406Q channels activation 
From a holding potential of -80 mV, macroscopic currents were elicited by applying depolarising pulses of 
increasing amplitudes, to the indicated membrane potentials (Vm), followed by a constant hyperpolarising pulse 
to -80 mV. Values for each inward peak current were normalised to the maximal tail current amplitude and 
plotted against the corresponding membrane potential. Note the shift of the hEag1-N406Q activation curve 
(25 mV towards more depolarising potentials) when compared to the wild type channels. 
 

3.2.10.3 Functional characterisation of the glycosylation deficient hEag1 in 

mammalian cells 

 

Besides the analysis in the Xenopus laevis oocytes heterologous expression system, effects of 

the N-linked glycosylation of the hEag1 on the electrophysiological properties of the channel 

were also studied in mammalian cells. Following glycosylation-deficient cells were 

examined:  

• CHOhEag1 after Tunicamycine treatment (2,5 µg/ ml for at least 15 h),  

• CHOhEag1-N388,406Q (glycosylation mutant),  

• Lec1hEag1 (glycosylation deficient),  

• CHOhEag1 cells as a control.  

 

Cells were grown on Ø 1 cm cover-slips at low density to enable single cell measurements. 

The whole-cell configuration of the patch-clamp technique was used, in which channel 

openings can be induced by controlling the membrane potential and the sum of the ionic 

currents corresponding to all channels present on the cell membrane can be recorded. In all 

the experiments, the membrane was kept at a holding potential of –80 mV, where the 

probability of the hEag1 channels to be in a resting state is very high. From a holding potential 

of -80 mV, different voltage protocols, which are schematically depicted in Fig. 29 A (inset), 
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were applied to elicit and record the ionic currents flowing through activated channels. The 

duration of these pulses varied between 500 and 2000 ms (see time scale in corresponding 

graphs). Representative current traces are shown in Fig. 29 A. 

Under these experimental conditions, current densities (pA/pF) were determined for each cell. 

Values were calculated from peak current amplitudes obtained at the steady-state of activation 

in response to a depolarising pulse to +80 mV and divided by the value of cell membrane 

capacitance, which was estimated after automatic Cslow compensation. As can be seen in the 

Fig. 29 B, a dramatic reduction in current density was observed in all cases where 

glycosylation of hEag1 was abolished (either by double mutation, incubation with 

Tunicamycin or expression in Lec1 cells). 

 

Additionally, the dependence of the activation kinetics on membrane potential (Cole-Moore-

like effect) was examined. For this, a depolarising pulse of 1 sec in duration and +80 mV in 

amplitude was delivered after 2 sec hyperpolarisation either to -140 or -60 mV. As can be 

observed in Fig 29, in all the unglycosylated conditions, channels presented a marked slowing 

down of the activation kinetics. Moreover in the hEag1-N388,406Q mutant channels, as well 

as in the hEag1 channels expressed in Lec1 cells, a less pronounced Cole-Moore-like effect is 

seen.  

 

These results are in agreement with those obtained from Xenopus oocytes and indicate that 

N-glycosylation is not only involved in the mechanism of hEag1 channels transport to the cell 

membrane but also participate in the fine modulation of some pivotal biophysical channel 

properties, such as activation kinetics and voltage dependence. Besides, since the N-linked 

glycosylation is associated with attachment of a large and often charged sugar structure, 

which in hEag1 channels is positioned near by the channel pore, the structural presence of 

oligosaccharide could modify functional properties of the channel.  

Moreover, the structural modifications induced by the amino acid substitution itself (in the 

glycosylation deficient mutants), cannot be a source of the observed changes, since similar 

functional effects were observed when wild-type channels were expressed in glycosylation 

deficient cells. 



Results  - 105 - 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 29 Patch clamp recordings from CHO cells expressing non-glycosylated hEag1 channels.  
A) Normalised current amplitudes recorded from: 
• CHOhEag1  
• CHOhEag1-N388,406Q (glycosylation mutant),  
• CHOhEag1 after Tunicamycine treatment (2,5 µg/ml for at least 15h),  
• Lec1hEag1 (CHO-derived glycosylation deficient cell line) 
The Cole-Moore effect was recorded using the protocol shown in inset. Note the strong slow-down in the 
activation kinetics in all three glycosylation deficient cell lines. 
B) Statistical evaluation of the current density for wild type and unglycosylated hEag1 channels. Strong 
reduction of the current density was observed in all three glycosylation deficient cell lines. Currents were 
recorded by depolarisation from a holding potential of –80 mV to + 80 mV 
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3.2.11 Identification of putative hEag1 binding partners by Yeast 

Two-Hybrid System 

 

To identify putative proteins binding to the C-terminus of hEag1 in vivo, MATCHMAKER 

GAL4 Two-Hybrid system 3 was used (Fields and Song, 1989; Chien et al., 1991). This 

system is based on the activation of the four reporter genes when a bait and library proteins 

interact. A bait protein is expressed as a fusion protein to the GAL4 DNA binding domain and 

a library protein is expressed as a fusion protein to the GAL4 DNA activating domain. When 

brought into proximity, the complex binds to the GAL4 upstream activating sequences and 

activates transcription of HIS3, ADE2, lacZ and MEL1 genes.  

ADE2 and HIS3 reporters provide a strong nutritional selection. So only this yeast, in which 

bait and pray proteins interact, are able to grow on adenine and histidine deficient media 

(-L/T/H/A). Additionally, MEL1 and lacZ encode α-galactosidase and β-galactosidase, 

respectively, providing an additional tool for identification of interacting proteins by colour 

selection (positive colonies stain blue with X-gal). 

 

 

3.2.11.1 Cloning of the C-terminus of hEag1 into the pGBKT7 vector 

 

The analysis of the Y2H interactions of membrane proteins is difficult because of their 

hydrophobic nature, thus, only the C-terminus of hEag1 was used to identify interacting 

proteins. A NcoI-BamHI fragment was cut out from the hEag1-pTracer clone and subcloned 

in frame into the pGBKT7 vector, which gave rise to the GAL4-hEag1CT fusion 

construct. 

 

 

3.2.11.2 Expression of the GAL4-hEag1CT fusion protein and transactivation test 

 

The GAL4-hEag1CT fusion construct was transformed into AH-109 yeast as described 

(2.2.7.1) and the expression was monitored by western blot.  

In addition to the GAL4 DNA-binding domain, pGBKT7 vector contains also a c-myc 

epitope, which is located between the GAL4 domain and hEag1-CT in the fusion construct.  
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On western blot both, the anti-Eag1 2413x polyclonal antibody and anti-myc monoclonal 

antibody, recognised strong signals only in AH-109 cells transformed with GAL4-hEag1CT, 

but not in the untransformed yeast (Fig. 30 A). The size of the detected bands was in 

agreement with the calculated molecular weight for the GAL4-hEag1CT fusion protein, 

suggesting that the whole construct was properly expressed in AH-109 yeast and no 

posttranslational trimming or frame-shift occurred.  

 

Moreover, to clarify whether the GAL4-hEag1CT itself has no transactivation properties 

(does not activate reporter genes), a series of controls, testing growth on different nutrient-

deficient media containing additionally X-α-galactose for blue colour selection, were 

performed in yeast.  

 

 

 
 
Fig. 30 Expression of the hEag1-CT bait protein in AH109 yeast 
A) Whole cell lysates from AH109 transformed with pGBKT7-hEag1CT as well as untransformed AH108 

yeast were separated by 7,5% SDS-PAGE and immunobloted with either 2413x polyclonal antibody or 
anti c-Myc antibody. In both cases a strong signal corresponding to GAL4-hEag1CT bait protein was 
observed only in transformed yeast. 

B) Phenotype confirmation of the AH109 and AH109 GAL4-hEag1CT expressing yeast. As expected 
untransformed yeast grows only on complete medium, whereas yeast transformed with the pGBKT7-
hEag1CT construct grows on the tryptophane deficient medium due to the expression vector. 

 

 

Fig. 30 B shows that AH-109 GAL4-hEag1CT transformants grow only on the complete 

YPDA plates and on SD -Trp nutrient-selection plates (due to the pGBKT7 selection marker) 

but not on the other plates, although growth of positive controls was observed. No blue 

colonies were observed on the plates, although α-galactosidase content was confirmed by 

positive controls. Moreover untransfected AH 109 were able to grow only on complete 

medium and did not turn blue by α-galactosidase. 
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This result verified the AH 109 phenotype (Ade, His, Leu and Trp auxotroph) and confirmed 

that the GAL4-hEag1CT fusion protein is not able to activate reporter genes in AH-109 yeast 

nd has no toxic effects on the host strain, thus qualifying for a Two-Hybrid screen. 

 

.2.11.3 Screening of a human brain cDNA library by yeast mating 

ely 

A, encoding putative interaction partners of hEag1, was isolated as 

escribed (2.2.7.4). 

 

.2.11.4 Analysis of the putative interaction partners of hEag1 

H109 pGBKT7 GAL4-hEag1CT was mated with the Y187 pretransformed with 

TD1-1. 

a

 

3

 

To identify proteins interacting with the C-terminus of hEag1 in vivo, the Pretransformed 

Human Brain MATCHMAKER cDNA Library was chosen. The titter of the library was 

calculated to 1,8 x 108 cfu/ml. The library (in Y187 yeast) was screened using large scale 

mating protocols (mating efficiency was estimated to 8%). Diploids containing putativ

interacting proteins were selected on high stringency (SD, -LTHA) X-α-galactose plates.  

In two independent screens, 30 colonies were able to grow on the nutrient-reduced minimal 

medium and demonstrated blue colour due to the galactosidase expression. Phenotypes were 

re-tested on fresh high stringency plates (SD -LTHA) containing X-α-galactose and the 

library-plasmid DN

d

 

3

 

The most common false positives found in Y2H screens include those, which activate reporter 

gene expression either because they are themselves able to induce transcriptional activation, 

or because they interact with the pGBKT7 vector and thus bring binding-domain and 

activation-domain into proximity. For this reason, the specificity of protein interactions was 

re-tested by yeast mating, as shown in Table 2. As a positive control AH109 pretransformed 

with pGBKT7-53, and Y187 pretransformed with pTD1-1 were mated, and as a negative 

control A

p
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Four of the analysed 30 clones (Nr. 6, 9, 22 and 28) did not grow after transfection into the 

fter 7 days n e remaining clones sho bility in 

tio se .  

 

ith: nsformed with: 
est th on -LTHA  

yeast. A one of th 26 library wed autoactivation a

both, nutrient selec n and β-galactosida  assay

Y187  
ransformed wt

A
tra

H109 β-gal t grow

library clone pGBKT7  blue yes 
GAL4-hEag1CT 

library clone pGBKT7 white no 
library clone - white no 
 
Table 4 Expected phenotype of diploides after control matings  

 

 

Analysis of the diploids revealed that only a single clone (Nr. 1) showed strong positive 

interaction with bait protein but not with the expression vector in both nutrient selection 

and β-galactosidase assay.  

Clones Nr. 8 and 15 showed also a positive interaction signals, but they were much weaker 

than the one observed for clone 1 (Fig. 31 A). However, for clones 8 and 15, specificity of the 

control transformations remains questionable and has to be further analysed. 

Moreover, analysis of diploids containing the expression vector and the library clone revealed 

that most of the proteins identified as putative interaction partners were interacting with the 

AL4-binding domain rather than with the bait protein. As shown in the example in Fig 31 C, 

ne contained the almost complete ORF 

f the PIAS1 cDNA (2282 bp), except for the first 93 base pairs. PIAS1 is a nuclear protein. It 

as postulated that PIAS1 can block the DNA binding activity of STAT (transcription factor) 

nd thus can inhibit STAT-mediated gene activation.  

G

most of these "false positives" showed even stronger interaction when coexpressed with the 

vector alone than with the bait protein. 

 

As the clone Nr.1 showed strong positive interaction with hEag1CT only, we considered it as 

putative hEag1 interaction partner. Sequence analysis of the clone identified it as PIAS1 

(protein inhibitor of activated STAT1). The library clo

o

w

a
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 Interactions of the hEag1 C-terminus in Yeast Two-Hybrid system Fig. 
A

31
) Nutrient selection and  
) β-galactosidase assay of the identified putative interaction partners of hEag1. Note that only one clone 

(Nr. 1) shows strong positive signal in both tests. 
) Example of the false positive clone (Nr. 5). Note that this clone shows much stronger blue staining 

in β-galactosidase assay when coexpressed with pGBKT7 then when expressed with bait protein. 

here are several putative domains in the PIAS1 sequence, such as a nuclear receptor box 

onvincing only when they can be confirmed with an 

r in "both directions" i.e. 

after exchange of cloning vectors. 

However, the independent proof of interaction of hEag1 with PIAS1, as well as with proteins 

encoded by cDNA clones Nr. 8 and Nr. 15 remains to be explored. 

B

C

 

 

 

T

(LXXLL), zinc binding motif, acidic domain and serine-threonine rich region (Shuai, 2000), 

but none of them gives a hint to a putative interaction between PIAS1 and hEag1. 

 

Biochemical interactions become c

independent method for example overlay assay or co-precipitation. Moreover, for the Y2H, a 

good control is to test as well whether identified interactions occu
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4 DISCUSSION 

 

 

N-linked glycosylation is a common form of protein processing, which occurs on the integral 

membrane proteins and can profoundly affect protein expression, structure and function. The 

N-linked oligosaccharide is assembled in a series of enzyme-catalysed reactions that start in 

the ER lumen and finish within Golgi membranes. Although N-linked glycosylation is a 

product of template-independent biosynthesis, sophisticated mechanisms exist to ensure that 

the correct structures are assembled.  

 

It has been recognised for some time that glycosylation has great potential for carrying 

biological information. N-linked oligosaccharides are known to affect different physical 

properties of their proteins such as folding, stability, trafficking or assembly, as well as to 

influence functional properties like ligand binding or electrophysiological parameters. 

Although the precise physiological role is known for only a few glycoproteins, it is clear that 

the physiological properties of glycoproteins depend on both, the protein and the carbohydrate 

components.  

 

Voltage gated potassium channels form a large family of membrane spanning proteins, many 

of which undergo N-linked glycosylation. Particular members possess not only very different 

oligosaccharide attachments, but the function of the N-linked sugars differs extremely 

between different channels. 

 

The ether à go-go voltage-dependent potassium channel (Eag1) carries in its sequence as 

many as six putative glycosylation sites. In this work we used site directed mutagenesis and 

enzymatic treatments to study functional effects of N-linked glycosylation of human Eag1 

expressed in heterologous systems. 
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4.1 Expression pattern of Eag1 protein in rat tissues 

 

Voltage-gated ion channels are hallmarks of excitable tissues. Although the expression of ion 

channels in these tissues is known for more than 50 years, only in the last few years have 

evolved an increasing number of reports suggesting functional roles of ion channels in non-

excitable tissues.  

Ether á go-go (Eag1) is mainly expressed in the adult brain (human, mouse, rat). mRNA 

expression was also demonstrated in a few other tissues like human myoblasts and placenta 

(Occhiodoro et al., 1998; Pardo et al., 1999), human testis (Pardo, personal communication) 

or bovine retina (Frings et al., 1998).  

In rat brain Eag1 expression is highest in granular cells of the dentate gyrus, hippocampus 

CA3 pyramidal cells, and in cerebellar granule cells, but it was also found in pituitary 

(Wulfsen et al., 2000) and spiral ligament (Lecain et al., 1999).  

Additionally, Eag1 is expressed in highly proliferating non-excitable tissue, for example in 

human myoblasts at the onset of fusion (Occhiodoro et al., 1998). Cell lines of cancerous 

origin, for example cervical carcinoma (HeLa), particular lines from mammary gland tumours 

(Pardo et al., 1999), neuroblastoma (SH-SY5Y; Pardo et al., 1999, Meyer and Heinemann, 

1999) or melanoma (Meyer et al., 1999; Gavrilova-Ruch et al., 2002) express high levels of 

Eag1. Furthermore, Eag1 is commonly found in different tumours but not in the 

corresponding healthy tissue (Pardo, personal communication). 

 

Western blot analysis of tissue-specific expression of rat Eag1, with polyclonal antibodies 

directed against the C-terminal region of the protein revealed the expected signal in brain, but 

also in other organs: eye and testis. As the apparent molecular weight of the band detectable 

in eye, a part of the central nervous system, was similar to the brain-specific signal (see 3.1.1) 

and Eag1 mRNA was found before in bovine retina, it is very likely that it corresponds to the 

Eag1 protein expression in eye tissue.  

In contrast, the protein detectable in rat testis was much smaller, migrating at about 58 kDa, 

instead of a broad band running at 120-130 kDa or the 2-band pattern detected in brain 

(see 3.1.1.1). The specificity of this signal was not further examined. However, as mentioned 

above, Pardo and colleagues (unpublished information) observed Eag1 expression also in 

human testis by real-time PCR. Thus, it is quite possible, that the polyclonal anti-Eag 

antibody detected a testis-specific isoform of the Eag1 protein. The different size of the band 

detected in rat testis could represent a tissue-specific splice-variant of Eag1 or a posttranslationally 
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modified (for example truncated) protein. In could also be due to degradation, although 

protease inhibitors were included and all steps of the preparation were performed on ice. In 

any case, if specific, the band appears to include the C-terminal part of the Eag1, since the 

antibody used for the western blot analysis recognises this part of the protein. Nevertheless, 

crossreactivity of the antibody has to be considered also. 

In testis the expression of different groups of ion channels, like ligand- and voltge-gated 

calcium channels and potassium channels is well documented. Ion channels were found in 

spermatogenic cells playing a role in different processes such as sperm maturation or 

fertilisation, but also in Leydig or Sertolli cells. 

In the light of this variety the possible expression of an Eag1 protein in testis is not very 

surprising and should be further analysed.  

The calculated molecular weight of a truncated putative channel α-subunit, which could be 

formed by the S5, P, S6 and complete C-terminus of Eag1, is 68 kDa, which is higher than the 

observed signal. The calculated molecular weight of the C-terminal domain of rat Eag1 is 

55 kDa, which is very similar to the apparent size of the signal observed in the western blot. 

Thus the question should be followed whether Eag1 can be functionally expressed in a 

truncated form or as a splice variant in rat testis. 

 

 

4.2 N-linked glycosylation of Eag1 potassium channels 

 

Many different ion channels posses one or more active glycosylation sites. Also voltage gated 

K+ channel α-subunits contain usually at least one consensus N-linked glycosylation site 

within their primary amino acid sequence.  

The accepted model of the voltage gated potassium channel structure postulated by Guy and 

Conti in 1990 (for details see Introduction and Fig. 1) describes six conserved transmembrane 

segments connected by intracellular or extracellular loops and with both the N- and 

C-terminal regions located intracellularly. Recently this model had to be slightly modified 

according to the first crystal data obtained for a six-transmembrane domain voltage-dependent 

potassium channel, KvAP (Jiang et al., 2003). The S3 helix now split into two individual 

helices, and the S4 domain is positioned perpendicularly (not, as believed, parallel) to the 

pore axis. Thus, considering also the analysis of hydrophobicity plots, it is unlikely that 

additional membrane spanning regions would show up, but it cannot be excluded. 
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Sequence analysis of the hEag1 (splice variant a) protein sequence revealed the presence of 

six putative glycosylation sites, at asparagines 26, 238, 388, 406, 470, and 752. A schematic 

location of these amino acids in correlation to the putative domain structure of the hEag1 

potassium channel is presented in Fig. 13. Two of the glycosylation motifs are located in the 

predicted intracellular N- and C-terminal domains, another two in putative transmembrane 

regions, and two in the extracellular loop between the S5 and P domains. Although only two 

of the putative N-glycosylation sites are presumably extracellular, mutational analysis was 

directed to all six sites in order to exclude uncertainties in channel topology.  

 

Putative N-glycosylation sites can be eliminated by single amino acid exchange in the Asn-

Xaa-Ser/Thr consensus sequence. Although elimination of the Ser or Thr residue also 

abolishes the recognition site for the glycosylation machinery, usually the aspareagine as the 

actual N-glycosylation acceptor site is substituted by different amino acids.  

For example Rho and colleagues (2000) chose serine for replacement of the asparagine in the 

analysis of bovine retinal cyclic nucleotide-gated (CNG) ion channel. However, in 

biochemical studies on Shaker potassium channels expressed in Xenopus oocytes (Santacruz-

Toloza et al., 1994), three out of four consensus sites were individually eliminated by 

replacing the asparagine with glutamine. Similarly, Petreca and colleagues eliminated two 

putative glycosylation sites of HERG (human eag-related gene) potassium channel, replacing 

asparagine by glutamine (N598Q and N629Q).  

For the site directed mutagenesis analysis of hEag1, also asparagines were chosen for the 

mutation and substituted with glutamines. Glutamine was used to minimise the influence of 

the amino acid exchange on the biochemical properties of hEag1, since asparagine and 

glutamine have comparable physical and chemical properties, such as weak polar side chains 

with a neutral, relatively unreactive amide group able to make hydrogen bonds of similar pK 

value. 

Biochemical analysis of the hEag1 glycosylation mutants revealed that two of the motifs 

388Asn-Asn-Ser390 and 406Asn-Gly-Ser408 participate in N-linked glycosylation of hEag1 in 

CHO cells (see 3.2.4). Both glycosylation sites are located in the predicted extracellular 

region between S5 and P, according to the Guy and Conti model of voltage gated potassium 

channels. Glycosylation was not detected on sites located in the hypothetical intracellular or 

transmembrane regions, in good agreement with the models of membrane topology (Guy and 

Conti, 1990; Jiang et al., 2003).  
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The two hEag1-glycosylation-motifs are differentially conserved between different channel-

subtypes and different species, as revealed by sequence alignment of different members of the 

eag family (see Fig. 32). The 388Asn-Asn-Ser390 motif was found only in Eag1 channels of 

different mammals, but not in Deag. This sequence is completely conserved in all Eag1 

channels known so far. No other eag family members posses this site. 

The second motif, 406Asn-Gly-Ser408, was in contrast identified in all 15 examined protein-

sequences, although several differences were found. The glycine at the second position in 

Eag1, Erg2 and Elk1 proteins is replaced by threonine in Eag2 by asparagine in Elk3 and by 

serine in almost all proteins except Deag1, chErg1 and hErg3, where a glutamine is found 

instead. Only in Drosophila Eag and Elk3 the third positions consist of threonine.  

 
hEAG1 371 YSIGDYEIFDEDTKTIRNNSWLYQLAMDIGTPYQF---NGSGSGKWEGGPSKNSVYISSLYFTMTSLTSVGFGNIAPSTDIEKI 451 
bEag1 371 YSIGDYEIFDEDTKTIRNNSWLYQLAMDIGTPYQF---NGSGSGKWEGGPSKNSVYISSLYFTMTSLTSVGFGNIAPSTDIEKI 451 
rEag1 371 YSIGDYEIFDEDTKTIRNNSWLYQLALDIGTPYQF---NGSGSGKWEGGPSKNSVYISSLYFTMTSLTSVGFGNIAPSTDIEKI 451 
mEag1 398 YSIGDYEIFDEDTKTIRNNSWLYQLALDIGTPYQF---NGSGSGKWEGGPSKNSVYISSLYFTMTSLTSVGFGNIAPSTDIEKI 478 
DEag 405 -------------------SWLWKLANVTQSPYSYIWSNDTGP-ELVNGPSRKSMYVTALYFTMTCMTSVGFGNVAAETDNEKV 468 
rEag2 368 YSIGDYEVIDEVTNTIQIDSWLYQLALSIGTPYRY---NTS-AGIWEGGPSKDSLYVSSLYFTMTSLTTIGFGNIAPTTDVEKM 447 
hEag2 368 YSIGDYEVIDEVTNTIQIDSWLYQLALSIGTPYRY---NTS-AGIWEGGPSKDSLYVSSLYFTMTSLTTIGFGNIAPTTDVEKM 447 
HERG1 569 YAIGNMEQPHMDSRI----GWLHNLGDQIGKPY-----NSSGLG----GPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKI 639 
rErg1 571 YAIGNMEQPHMDSHI----GWLHNLGDQIGKPY-----NSSGLG----GPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKI 641 
mErg1 571 YAIGNMEQPHMDSHI----GWLHNLGDQIGKPY-----NSSGLG----GPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKI 641 
doErg1 568 YAIGNMEQPHMDSRI----GWLHNLGDQIGKPY-----NSSGLG----GPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKI 638 
raErg1 571 YAIGNMEQPHMDSRI----GWLHNLGDQMGKPY-----NSSGLG----GPSIKDKYVTGLYFTFSSLTSVGFGNVSPNTNSEKI 641 
chErg1 288 --------------------WLDNLGDQIGKRY-----NDSDLSS---GPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKI 343 
hErg2 420 YAIGNVERPYLEHKI----GWLDSLGVQLGKRY-----NGSDPAS---GPSVQDKYVTALYFTFSSLTSVGFGNVSPNTNSEKV 491 
rErg2 420 YAIGNVERPYLEPKI----GWLDSLGAQLGKQY-----NGSDPAS---GPSVQDKYVTALYFTFSSLTSVGFGNVSPNTNSEKV 491 
hERG3 587 --------------------WLDSLGTQIGKRY-----NDSDSSS---GPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKI 642 
hELK1 400 --------------------WLHELGKRLEVPY----VNGS-----VGGPSRRSAYIAALYFTLSSLTSVGFGNVCANTDAEKI 454 
rElk1 401 --------------------WLHELGKRLEEPY----VNGSA-----GGPSRRSAYIAALYFTLSSLTSVGFGNVCANTDAEKI 455 
hElk2 398 --------------------WLQELARRLETPY(+10)NSSG(+19)GGPSLRSAYITSLYFALSSLTSVGFGNVSANTDTEKI 480 
mElk2 398 --------------------WLQELARRLETPY(+10)NSSG(+22)GGPSLRSAYITSLYFALSSLTSVGFGNVSANTDTEKI 483 
mElk2 398 --------------------WLQELARRLETPY(+10)NSSG(+22)GGPSLRSAYITSLYFALSSLTSVGFGNVSANTDTEKI 483 
hElk3 380 ------MEREDNSLLKWEVGWLHELGKRLESPYYG---NNTL-----GGPSIRSAYIAALYFTLSSLTSVGFGNVSANTDAEKI 449 
rElk3 375 YVIG-KMEREDNSLLKWEVGWLHELGKRLESPYYG---NNTL-----GGPSIRSAYIAALYFTLSSLTSVGFGNVSANTDAEKI 449 
mElk3 149 YVIG-KMEREDNSLLKWEVGWLHELGKRLESPYYG---NNTL-----GGPSIRSAYIAALYFTLSSLTSVGFGNVSANTDAEKI 223 

 

Fig. 32 Multiple sequence alignment of selected members of the eag voltage-gated potassium channel 
family 
Amino acid sequences of 24 potassium channels (Eag, Erg and Elk channels) with highest homology to the 
extracellular loop between S5 and S6 (including P region) of hEag1 were identified by BLAST search and 
aligned with CustalW. The following species are included: h-human, b-bovine, r-rat, m-mouse, do-dog, ra-rabbit, 
ch-chicken and D-Drosophila. 
The sequence of the hEag1 protein is shown in bold.  
Homologues of both hEag1 N-glycosylation consensus sites are shown in red and bold. The first glycosylation 
motif is conserved only through the Eag1 family, whereas the second one was found in all analysed sequences. 
An additional glycosylation site found in the Erg family is shown in blue and bold. 
 

The impact of the second amino acid in the N-glycosylation sequon on the efficiency of the 

glycosylation process was analysed by Shakin-Eshleman and colleagues (1996). 20 different 

variants of a model glycoprotein, presenting each of the common amino acids at position X of 

an N-X-S motif were examined using a rabbit reticulocyte translation system and the 

efficiency of core glycosylation was quantified. For this, the density of bands representing 

glycosylated (G) and nonglycosylated (N) proteins were quantified for each variant and 
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glycosylation efficiency was calculated: G/(N+G) x 100%. These studies showed that the 

presence of proline at the position X completely blocks core glycosylation, whereas 

tryptophan, aspartic acid, glutamic acid and leucin are associated with inefficient core 

glycosylation. According to these results, a poor glycosylation of the second motif would be 

expected in chErg1 hErg3 and Deag channels, where aspartic acid is in the second position. 

According to Shakin-Eshleman et al. (1996), is the efficiency of N-linked glycosylation of 

hEag1 on the 388Asn-Asn-Ser390 sequon about 70% and on the 406Asn-Gly-Ser408 sequon about 

90%. All other amino acids found at the second position in the glycosylation motifs of eag 

family members, should have a N-glycosylation efficiency between 70% and 100%. 

In all listed Erg proteins (Erg1, 2 and 3) as well as in Elk2 and Elk3 (but not in Elk1) a 

second, conserved motif (at the position 629-631 in HERG1) is present. This site was 

previously reported to be glycosylated in HERG1 (Petrecca et al., 1999). The valine at 

position X of this sequon is highly conserved and should be glycosylated with 80% efficiency 

according to Shakin-Eshleman studies (1996). 

 

 

4.3 Model for N-linked glycosylation of human ether á go-go 

potassium channel 

 

Glycosylation of voltage-gated ion channels has often been reported. In most cases, one or 

two oligosaccharide attachments are described, which vary in size, composition and location 

on the protein between individual channels and/or different channel families. 

The presence of N-linked oligosaccharides on the protein can be monitored by western-blot, 

where a higher than the predicted molecular weight or a banded pattern are good indications 

for this type of modification. 

For HERG a member of the eag potassium channels family, Zhou and colleagues (1998 A) 

showed, that a two-band migration pattern (155 and 135 kDa) on the western blots can be 

attributed to N-linked glycosylation. N-glycosidase F treatment converted both proteins to 

lower molecular weights, but not into a single band, suggesting, that additional 

posttranslational modifications might occur. The same group later showed (Zhou et al., 1998 B), 

that the upper band is resistant to Endo H digestion, and suggested that the 155-kDa band is 

the complex-glycosylated, mature form of the HERG channel and the 135-kDa band is a core-

glycosylated precursor form of the HERG channel. Site-directed mutagenesis of HERG, done 
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by Petreca and colleagues (1999) revealed presence of two active glycosylation sites (N598 

and N629; compare with Fig. 32). Neither single (N598Q or N629Q) nor double mutant 

proteins were glycosylated in HEK 293 cells, indicating that both sites must be available for 

N-linked glycosylation to occur. In contrast, Gong and colleagues (2002) showed that the 

N629Q HERG mutant protein undergoes core glycosylation in the ER; thus, documenting that 

also a single site can be glycosylated in HERG channels. 

Interestingly, a mutation away from the glycosylation motif was shown to affect N-linked 

glycosylation of HERG. Zhou (1998) demonstrated that the spontaneous mutation Y611H 

(found in a LQT patient) located 13 amino acids upstream (first motif) and 18 amino acids 

downstream (second motif) from the asparagine residues that act as oligosaccharide acceptors, 

completely abolished N-glycosylation of HERG, probably by affecting the structure of the 

protein. 

Also for Shaker, a banded migration pattern was observed in western blots (Santacruz-Toloza 

et al., 1994). Three bands were detected when expressed in insect Sf9 cells, and two bands 

when expressed in Xenopus oocytes. Tunicamycine treatment as well as endoglycosidase 

digestion revealed that both upper bands carry oligosaccharide attachments whereas the lower 

one detected in Sf9 cells represents the non-modified Shaker protein. Santacruz-Toloza and 

colleagues (1994) mutated three out of four consensus sites for N-linked glycosylation in 

Shaker. The two identified N-glycosylated asparagines are located in the first extracellular 

loop between the S1 and S2 domains, whose mutations N259Q and N263Q, only partially 

reduced the molecular weight of the upper band. The resulting protein was still sensitive to 

PNGaseF, demonstrating that one site is sufficient for the N-linked glycosylation (although 

not complete) of Shaker potassium channels. The double mutant contains no N-linked 

oligosaccharide since the migration of this protein is unaltered by treatment with N-

glycosidase F.  

P2X1 receptors carry as many as four glycosylation sites in the external loop, but only Asn300 

acquires complex carbohydrates (Rettinger et al., 2000). In contrast, cyclic nucleotide-gated 

(CNG) ion channels contain only a single active glycosylation site (N327) in the external loop 

between the S5 and P regions (Rho et al., 2000). 

Although N-linked glycosylation is a common modification of plasma-membrane proteins, 

not all ion channels undergo glycosylation. For example, Kv1.6 lacks consensus N-glycosylation 

sites in the predicted extracellular domains (Shi et al., 1999). In accordance with this did 

PNGase digestion of Kv2.1, another member of voltage-gated K+ channels family, not 

change the apparent molecular weight. This suggests, that the single consensus site (between 
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S3 and S4) is not actively glycosylated in rat brain, although other members of the family 

(Kv1.1, Kv1.2 and Kv1.4) can undergo glycosylation (Shi et al., 1999). 

 

In this study immuno-blot analysis of hEag1 revealed that the protein exists in two molecular 

mass species: ≈110 and ≈130 kDa (see Fig. 11), which is compatible to HERG. Both detected 

hEag1 proteins carried N-linked oligosaccharide attachments, as the band were shifted to 

lower molecular weight upon enzymatic deglycosylation with PNGase F (3.2.2).  

Subsequently, only the 110 kDa band was sensitive to Endoglycosidase H treatment, arguing 

for two populations of carbohydrates being attached to hEag1 in CHO cells:  

• the core-oligosaccharide, sensitive to Endo H and represented by the 110 kDa band, and  

• the complex-oligosaccharide, Endo H resistant and corresponding to the 130 kDa band.  

Mutational analysis of the six putative glycosylation sites revealed that two residues, Asn388 

and Asn406 are active acceptors of N-linked oligosaccharides, each of them being responsible 

for one type of oligosaccharide attachment. Asn388 was shown to carry small core-

oligosaccharide only, Asn406 in contrast a large complex-sugar structure. Both glycosylation 

sites of hEag1 are modified independently from each other. Thus, mutation of the Asn388 site 

did not affect glycosylation of the Asn406 site and vice versa.  

Furthermore, the Concanavalin A binding assay (see 3.2.7) showed that both glycosylation 

sites are (at least for some population of channels) occupied concomitantly and that the 

different forms of glycosylated hEag1 are present in cells. Concanavalin A recognises only 

core-oligosaccharides attached to hEag1, since it binds to hEag1-N406Q but not to 

hEag1-N388Q mutant proteins. In non-mutated hEag1, however, two protein populations 

were detected by Concanavalin A (schematically represented in Fig. 33).  

 

 

 
 
Fig. 33 Differential glycosylation of the hEag1 protein in CHO cells according to the Concanavalin A 
detection pattern 
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The first population migrates at level compatible with the core-glycosylated mutant 

(≈110 kDa) and probably represents the newly synthesised, incompletely processed 

glycoprotein. This population is schematically represented in Fig. 33 A. Because of the Endo 

H sensitivity of the E-110 band we assumed that it corresponds to the core-glycosylated 

protein. Because the N388Q mutant lacks the E-110 band, we assumed that the band 

represents the hEag1 protein glycosylated on Asn388. It cannot be excluded that in the non-

mutated protein both glycosylation sites can be occupied by small molecular mass 

carboxyhydrates, resulting in the E-110 band (Fig. 33 A). A core glycosylation on the Asn406 

and a transient core-glycosylated Asn388 could co-exist at least for a short time. On the other 

hand, transient core glycosylation on Asn388 seems to exist only for a very short time, since in 

the N388Q mutant a core glycosylated form of the hEag1 protein was not detectable.  

The calculated molecular mass of the oligosaccharide scaffold directly after transfer onto a 

nascent protein, consisting of two GlcNAc nine mannoses and three glucoses, is only 2.368 Da 

(GlycanMass at the ExPASy). Thus, due to the resolution of the SDS-PAGE gel, the question, 

whether a hEag1 protein with a single or double core-oligosaccharide attachment corresponds 

to the E-110 band, cannot be answered. 

 

The second population recognised by ConA (Fig. 33 B) migrates at higher molecular weights 

(≈130 kDa), at a level compatible with a complex-glycosylated (EndoH insensitive) form of 

hEag1. This population is likely to contain both oligosaccharide attachments: the core-one at 

Asn388, because it is recognised by ConA, and the complex-one at Asn406, because of the high 

molecular weight of the detected band.  

Existence of an additional isoform with only the single, complex-oligosaccharide attachment 

(Fig. 33 C), which is not recognisable by ConA, was not further analysed, but it cannot be 

excluded since in the N388Q mutant complex glycosylation of Asn406 is not affected in a 

detectable manner (see 3.2.4).  

 

Additionally, the isoforms of the hEag1 glycoprotein are differentially sorted into cellular 

fractions as shown by differential centrifugation. In these experiments (3.2.8.1), the E-130 

isoform was predominantly detectable in P-100 and the E-110 isoform in P-1 fractions. This 

was not so significant in fractionation experiments on sucrose gradients, but also here both 

isoforms were differentially distributed through the fractions. The E-110 isoform was 

predominantly found in fractions containing also the reticular marker calreticulin, whereas 

E-130 isoform did not show such a concentrated distribution.  
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The differential distribution could be because both isoforms could have different destiny and 

thus are directed to different cellular compartments. 

 

 

4.4 Effects of N-linked glycosylation on the intracellular 

transport of hEag1 

 

It is generally believed that N-linked glycosylation may influence different stages of protein 

biosynthesis and transport, such as: protein folding and subsequent export from the ER, 

protein stability (mostly by protection from proteolytic degradation) or intracellular 

trafficking. However, the role of carbohydrate moieties varies among different membrane 

proteins, including ion channels and membrane receptors.  

In the MCHR1 receptor, disruption of all three glycosylation sites impaired the expression at 

the cell surface as well as receptor activity (Saito et al., 2003). Patch clamp analysis, surface 

biotinylation, and immunofluorescence microscopy of SUR1 (sulfonylurea receptor), 

coexpressed with Kir6.2, demonstrated a significant decrease of SUR1 surface expression and 

prominent retention within the ER (Conti et al., 2002). For unglycosylated TSHR 

(thyreotropin receptor) inefficient expression on the cell surface was shown by expression in 

glycosylation deficient cell lines (Lec1 and Lec2 CHO mutants) as well as by Tunicamycin 

treatment in CHO cells stably expressing TSHR (He et al., 2002). 

Importance of the N-linked glycosylation for the cell surface expression has also been 

reported for some ligand-gated channels including ATP purinergic receptors P2X1 and P2X2 

(Rettinger et al., 2000; Torres et al., 1998).  

Glycosidase digestion studies and immunocytochemical analysis of ENaC (epithelial sodium 

channel) show that channel subunits are retarded in the ER and pre-Golgi, whereas only a 

small fraction is inserted into the plasma membrane (Dijkink et al., 2002). 

Studies on the Shaker potassium channel revealed that N-linked glycosylation strongly 

increases cell membrane expression of the channel expressed in mammalian cells, although it 

is not absolutely required (Khanna et al., 2001, Moreno et al., 2002, de Souza et al., 2002). 

By confocal microscopy Khanna and colleagues showed that a significant fraction of the 

unglycosylated Shaker mutant-protein (N259Q,N263Q) was retained intracellularly and its 

distribution overlapped with ER markers, although no such overlap was seen for the wild type 

protein when expressed in HEK293T cells. Moreover, cell surface biotinylation experiments 
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showed that expression at the cell surface was significantly higher (≈7-fold) for the 

glycosylated than for the unglycosylated Shaker channel. Additionally, using quantitative 

imaging, de Souza and colleagues (2002) observed, that unglycosylated mutants traffic more 

slowly from the ER to the Golgi than wild type channels, which may contribute to the slower 

delivery of the mutant to the cell surface.  

 

For HERG, a close relative of the hEag1 potassium channel, slightly contradictory reports 

have been presented. Zhou and colleagues (1998 B) showed that mutation Y611H, known to 

affect N-linked glycosylation of HERG, resulted in channel retention in the ER. Additionally 

Petrecca and colleagues (1999) described, that Tunicamycin blocked normal surface 

membrane expression of HERG-GFP fusion protein in HEK293 cells. In contrast, Gong and 

colleagues (2002) presented that N-linked glycosylation is not required for the cell surface 

expression of functional HERG channels (The same group reported also that N629 is not used 

for glycosylation, but mutation of this site (N629Q) affected protein trafficking and caused 

intracellular retention. 

 

hEag1 as a voltage gated potassium channel, is presumed to be a plasma membrane protein. 

In disagreement with this, hEag1 showed diffuse intracellular localisation with no, or very 

slight membrane staining, when expressed in CHO cells. This cannot be simply explained by 

putative processing or transport difficulties due to expression in a heterologous system, since 

similar expression pattern could be observed by other members of our group in native 

hippocampal neurons, as shown in Fig. 34.  

 

 

 

 

 

 

 

 

 
Fig. 34. Expression of hEag1 in hippocampal neurons (Rubio & Sánchez, personal communication) 
Neurons were stained with mAb-62 antibody directed against the pore of hEag1. 
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Detailed analysis of the hEag1 sequence revealed the presence of a reticulum retention signal, 

a RKR (RXR) motif, which was first described in subunits of ATP sensitive potassium 

channels (Zerangue et al., 1999). As described for the K(ATP) channel α- (Kir6.1/2) and β- 

(SUR1) subunits, the RKR signal helps, in most cases, to retain individual subunits and 

incomplete oligomers in the ER until they are masked by oligomeric assembly. A similar 

arginine based motif, RGR, was found also in HERG channels. Here it is believed, that the 

retention signal is masked by the C-terminal region of properly folded HERG channels. When 

the C-terminus is truncated, the RGR signal becomes exposed and causes trafficking 

impairment (Kupershmidt et al., 2002). As already mentioned, also HERG does not show an 

exclusive membrane staining when expressed in mammalian cells (Zhou et al., 1998 B). 

 

Experimental evidence is presented for the influence of N-linked glycosylation on 

intracellular trafficking of hEag1 potassium channels. Expression of hEag1 in glycosylation-

deficient Lec1 cells, or Tunicamycin treatment of CHO cells showed that the unglycosylated 

hEag1 protein localises to complex perinuclear structures. In contrast, wild-type CHO cells 

transfected with hEag1 showed a disperse distribution throughout the whole cell and cell 

processes.  

Immunofluorescence studies on glycosylation deficient mutants with single (N388Q and 

N406Q) or both (N388,406Q) N-glycosylation motifs affected, revealed that proper 

glycosylation at asparagine 406 is necessary for intracellular trafficking of hEag1. Both 

N406Q and N388,406Q mutants showed perinuclear accumulation, similar to the pattern 

observed in glycosylation deficient cells. In contrast, the distribution pattern of the N388Q 

mutant was similar to the one observed with wild-type hEag1, although in some cells an 

increased perinuclear localisation was also detected.  

These results were confirmed by functional characterisation of hEag1 and mutant channels in 

Xenopus oocytes. Mutation at asparagine 406, abolishing the complex glycosylation of hEag1, 

resulted in a dramatic reduction (about 6.5-fold) of the average peak current amplitude in 

comparison to wild-type channels, when equal amounts of RNA were injected. This can be 

explained by several factors: 

• inefficient translation. 

• reduced voltage-sensitivity of the mutant channel 

• altered single channel properties in the N406Q mutant  

• decreased number of channels in the membrane 



Discussion  - 123 - 

N406Q mutant channels indeed showed reduced voltage sensitivity, but the 25 mV difference 

in the activation curve was not large enough to explain observed reduction in current density. 

The possible reduction of the current amplitude due to the 25 mV shift in voltage sensitivity 

would be 20-30% and not, as observed more than 6 fold. 

The hypothesis that the reduced current amplitude of N406Q mutant channels is caused by a 

lower number of channels in the membrane is in agreement with the immunocytochemical 

observations showing that complex glycosylation at asparagine 406 is necessary for the 

normal distribution of hEag1 in CHO cells. Thus, the hypothesis is favoured that the 

trafficking is affected, in explaining the reduced current amplitude of N406Q mutant 

channels. 

Based on colocalisation experiments, where hEag1 and mutants lacking single N-

glycosylation sites (N388Q and N406Q) expressed in CHO cells were co-detected with 

markers for different trafficking organelles, it is suggested that the glycosylation deficient 

mutants accumulates in a part of the endoplasmatic reticulum. The N406Q mutant, lacking the 

site of complex-oligosaccharide attachment, showed increased colocalisation with reticular 

markers (TRAPα, calreticulin).  

Endoplasmatic reticulum provides an environment that is optimised for protein folding and 

maturation, some posttranslational modifications (e.g. N-glycosylation) and oligomeric 

assembly. Additionally it provides so-called ‘quality control systems’, particularly well 

characterised in the case of glycoproteins. Briefly, after the cotranslational oligosaccharide 

transfer, the nascent glycoprotein is bound by chaperones calnexin/calreticulin as well as by 

ERp57 (associated thiol oxidoreductase). The subsequent cycle of unbinding and rebinding to 

these chaperones supports correct folding of glycoproteins. Only properly folded proteins exit 

this cycle and are further exported to the Golgi where the carbohydrates are further trimmed 

and modified, en route to the plasma membrane (Ellgaard et al., 1999; Ellgaard et al., 2003). 

Thus it can be possible that hEag1 lacking the complex-oligosaccharide residue is not 

properly folded and thus not easily exported out of the endoplasmatic reticulum.  

Some of the ER-retained proteins are quite stable and can accumulate in distant regions of the 

ER although prolonged retention of misfolded and incompletely folded proteins leads, in most 

cases, to their degradation in a process called ERAD (endoplasmatic reticulum associated 

degradation (Bonifacino and Weissman 1998). This is linked to the export of proteins to the 

cytosol and proteolytic degradation by the ubiquitin proteasome system.  

The observed perinuclear structure could thus correspond to the distant part of the ER 

accumulating the putatively misfolded non-glycosylated (or not complex-glycosylated) hEag1 



Discussion  - 124 - 

protein. On the other hand it could also represent a place transient localisation of hEag1 on 

the way to proteolytic degradation. 

 

Additional experiments to quantify the arrival of hEag1 and mutant channels to the plasma-

membrane, such as cell surface biotinylation and Proteinase K digestion (data not shown), 

failed. This can be explained by the fact that a significant fraction of hEag1 localises 

intracellularly in CHO cells (see 3.2.9), making the membrane fraction undetectable by 

standard biochemical methods, since it represents only a few percent of the total cellular pool 

of hEag1. Thus, although it is known that at least some of the hEag1 and mutant channels are 

able to reach the plasma membrane (since small hEag1 currents can be measured), a 

quantification of the protein expressed at the cell surface is not possible. 

 

 

4.5 N-linked glycosylation and functional properties of hEag1 

 

Thinking about N-linked glycosylation, one has to imagine the addition of the extensive, 

complex glycan composition to the synthesised protein. Just by its size, the oligosaccharide 

can easily affect structure, transport or biochemical properties, but it can also alter the 

function of plasma membrane proteins, such as receptors or ion channels.  

For receptors, the most common functional effect of N-glycosylation involves ligand binding 

ability, although not all receptors are dependent on saccharide attachment. Hence, for 

example, N-glycosylation of CRFR1 (corticotropin-releasing factor type 1 receptor) is 

essential for ligand binding (Assil et al., 2001). In contrast, for the gonadotropin-releasing 

hormone receptor, glycosylation was described to have no effect on ligand binding (Davidson 

et al., 1995). 

Many voltage-gated ion channels are heavily glycosylated, and the contribution of 

carbohydrates to the molecular weight of the mature protein can reach 15-40%. Thus, 

carbohydrate moieties often significantly contribute to the functional properties of channels. 

The effects of N-glycosylation on ion channel activity vary enormously. For example, it has 

no significant effect on current density or voltage dependence of Shaker (Santacruz-Toloza et 

al., 1994). In contrast, in ROMK1 (inwardly rectifying K+ channel), loss of glycosylation 

produces a great reduction of whole-cell currents, caused by a dramatic decrease in open 

probability (Schwalbe et al., 1995). In Kv1.1 channels, loss of glycosylation gives rise 
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to a shift of the voltage dependence of activation to more positive voltages, and slow down of 

activation kinetics (Thornhill et al., 1996). For IsK channels, besides a similar shift of the 

voltage dependence of the activation and slow down of the activation kinetics, strong effects 

on pH sensitivity were observed, when they co-assembled with unglycosylated minK subunits 

(Freeman et al., 2000). 

 

All these data indicate that N-linked glycosylation may play a pivotal role in the modulation 

of ion channels from different subfamilies.  

In agreement with these observations, the results presented here show that the functional 

properties of hEag1 channels also depend on N-linked glycosylation. The loss of 

glycosylation on Asn406 causes a strong reduction of the hEag1 current density in both 

Xenopus oocytes and in mammalian cells, and identifies trafficking problems as a determinant 

factor (discussed in 4.4).  

Moreover, the complex N-glycosylation on Asn406 may contribute to the modulation of the 

voltage dependence of hEag1 channels. The voltage at the half maximal activation (V1/2) was 

shifted 25 mV towards more positive potentials in N406Q mutant channels in comparison to 

hEag1. Furthermore loss of glycosylation caused by different factors (mutation N406Q, 

N388,406Q, expression in Lec1 cells or Tunicamycin treatment) significantly slowed down 

the kinetics of hEag1 activation. 

 

It is noticeable that the conserved site for complex N-glycosylation (Asn406) is located in the 

outer vestibule of the channel near the P-region. Since the vestibules of ion channels are 

believed to influence the permeation of ions, and the P-region mainly determines the 

characteristics of permeation, glycosylation near the pore mouth can affect the channel 

function by structural interference with the pore region. Additionally, N-linked glycosylation 

can generate surface charge effects as reported for the desialidation (Bennett et al., 1997).  

It is known, that a number of voltage gated Na+ (Bennett 2002) and some K+ channels 

(Thornhill et al., 1996) can bear large amounts of posttranslationally attached carbohydrates 

consisting mostly of the negatively charged sialic acid. Contribution of sialic acid to the 

voltage dependence and channel gating is well explored for voltage gated Na+ channels 

(Bennett et al., 1997; Bennett 2002). It is known that the actual electric field experienced by a 

channel voltage-sensing mechanism is an important component of gating. Fixed negative 

charges on the external membrane surface, which can be provided by the sialic acid 

attachment, can electrostatically reduce the resting transmembrane electric field sensed by 
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gating elements. Thus, for Na+ channels, desialidation causes the channels to activate at 

smaller depolarisations.  

A similar mechanism could also explain the functional effects of N-linked glycosylation 

observed in hEag1 channels. Addition of negatively charged oligosaccharides, such as sialic 

acid, could cause a rearrangement of the net charge detectable by the voltage sensor of hEag1 

and thus modify voltage dependence and kinetics of the current.  

Each cell type expresses its unique panel of potassium channels as homo- and/or as 

heteromultimers, generating a broad molecular and functional diversity of channel population. 

α-subunits assemble early during biosynthesis in the ER giving rise to a basic pool of 

variation. Apart from this, potassium channels can generate additional functional diversity by 

controlling the manner in which the α-subunits can interact with other cellular proteins, such 

as G proteins (Wickman and Clapham 1995) SH3 or PSD-95 (Scannevin et al., 1997). 

Functional diversity can be further increased by interactions with β-subunits modulating 

properties of the ion channels in two ways: modulating cell-surface expression of α-subunits 

(Shi et al., 1996; Nagaya and Papazian 1997), or modulating gating properties of the channel 

(Heinemann et al., 1994; Rettig et al., 1994). Moreover, electrically silent modulatory alpha 

subunits are known to contribute to the molecular and functional diversity of ion channels 

(Hugnot et al., 1996; Castellano et al., 1997; Kerschensteiner et al., 1999). 

Beyond this, channel properties can be also modulated by reversible modifications such as 

phosphorylation/dephosphorylation (Antz et al., 1999). 

 

So far, a few proteins such as hyperkinetic in Drosophila (Wilson et al., 1998), epsin and 

KCR1 in rat (Piros et al., 1999; Hoshi et al., 1998) and calmodulin in hEag1 expressing 

Xenopus oocytes (Schonherr et al., 2000) have been found to interact with Eag1 channels. 

Hyperkinetic dramatically increases the amplitude of DEag currents and also affects gating 

and modulation by progesterone (Wilson et al., 1998). Calmodulin is known to bind to the C-

terminal motif of human ether á go-go potassium channel and to inhibit Eag1 currents in a 

Ca2+ dependent manner (Schonherr et al., 2000). Epsin, a protein involved in endocytosis 

(Chen et al., 1998), was found to interact with C-terminus of hEag1 in overlay assays, but the 

functional implications of its binding still remain unknown (Piros et al., 1999). Similarly, 

KCR1 interacts with the C-terminus of rat Eag1. It is believed to function as a regulatory 

element, although its function is not well understood (Hoshi et al., 1998). 
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As shown, N-linked glycosylation can strongly modify properties of the human ether á go-go 

voltage dependent potassium channel, and thus can represent an additional regulatory 

mechanism controlling channel function, e.g. by fine modulating voltage dependence and 

gating kinetics of the Eag1 channels. 

 

 

4.6 Does N-linked glycosylation affect the stability of hEag1? 

 

Glycosylation is also known to protect proteins from degradation and to increase their 

stability. Good examples for the protective function of N-linked glycosylation are 

oligosaccharides, which protect a subset of lysosomal membrane proteins from proteolytic 

digestion in intact cells (Kundra and Kornfeld, 1999). 

There are several explanations for the way in which N-linked glycosylation can impair protein 

degradation. First, simply by means of their size, large oligosaccharides can cover the protein 

surface, making the recognition sites inaccessible for proteases. Alternatively can calnexin 

and calreticulin, by binding to newly glycosylated proteins in the ER protect them from 

retrotranslocation and proteasomal degradation. Moreover, loss of glycosylation can simply 

cause misfolding and thus produce directing of unglycosylated proteins to proteasomal 

degradation.  

Glycosylation is also known to increase the stability of various ion channels. Khanna and 

colleagues (2001) showed that the unglycosylated Shaker protein is unstable and rapidly 

degraded by cytoplasmatic proteasomes, although no effects on folding and assembly were 

observed. Also unglycosylated HERG channels showed faster turnover rates compared with 

glycosylated channel proteins (Gong et al., 2002).  

Here, several indications supporting the idea that N-linked glycosylation may increase the 

stability of hEag1 are presented: 

• in the N388Q mutant the lower (E-110) band, corresponding to unglycosylated hEag1, 

was frequently missing on western blots 

• the double mutant N388,406Q was very difficult to handle and was frequently missing on 

western-blots 

• detection of the N388,406Q protein after PNGase treatment in standard conditions (37°C, 

overnight, without protease inhibitors) was not possible, although the protein was 

detectable before digestion 
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• detection of a very faint signal elicited by the N388,406Q mutant was possible in 

experiments only by addition of protease inhibitors and shorter incubation time (5 hours) 

resulted in visible signal in the control incubation (without enzyme), but even here only a 

very tiny band was detectable in the enzyme treated sample 

• besides two glycosylated isoforms of wild-type hEag1, the detection of a nascent 

unglycosylated protein was not possible 

 

All these observations suggest that the unglycosylated form of the hEag1 protein is unstable 

and/or very sensitive to proteolytic degradation, although this topic needs to be studied in 

detail.  

 

 

4.7 What is the functional role of N-linked glycosylation 

of Eag1 potassium channels in native cells? 

 

Functional studies of Eag1 potassium channels concentrated on different expression systems, 

but up to now, not much is known about their function in vivo. Nevertheless, there are many 

indications that Eag1 proteins can play an meaningful role in different cellular events. 

Important to mention is the oncogenic potential of Eag1. It was clearly shown, that Eag1 is 

not only expressed in various cell lines of cancerous origin or in tumour tissues, but also 

favours tumour progression when cells transfected with Eag1 were injected into SCID mice 

(Pardo et al., 1999). Furthermore, inhibition of Eag1 expression by antisense nucleotides 

inhibits cell proliferation, indicating a role for Eag1 in tumour progression. This proliferation-

associated function of Eag1 is additionally supported by the fact that high levels of Eag1 

expression were detected in myoblasts directly before fusion (Occhiodoro et al., 1998). 

Moreover the function of Eag1 might be associated with endocytosis (Piros et al., 1999) and 

with the cytoskeleton (Camacho et al., 2000).  

Here it is demonstrated that not only hEag1 expressed in CHO cells, but also rat-brain Eag1 

undergoes N-linked glycosylation. Besides the regulatory and function in trafficking-support 

function, N-linked glycosylation is known to play an important role in tumourigenesis 

(reviewed by Kim et al., 1997 or Orntoft et al., 1999). Changes in glycosylation are more 

likely to interfere with the later events of invasion and metastasis, such as effects on 

interaction with ligands in body fluids or in cell membranes of other cells. Thus a possible 
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role of N-linked glycosylation of Eag1 could be maintaining a non-malignant phenotype or 

regulation of proliferation events in native cells. 

Up to now neither specific blocker of Eag1 potassium channels, nor knock-out mice are 

available for the analysis of the Eag1 function. Thus, currently, only speculation about the 

real role of Eag1 channels and their glycosylation in vivo is possible.  

 

 

4.8 Can hEag1 interact with transcription regulators? 

 

A way to elucidate the function of a protein in vivo is to identify other proteins or 

macromolecules which bind to it. In general, proteins that interact directly with each other can 

be expected to participate in related cellular processes.  

To identify proteins interacting with hEag1, the yeast two-hybrid system, based on 

transcriptional activation of reporter genes (Fields and Song, 1989), was used. In two 

independent screens, a single clone was found, later identified as PIAS1, which putatively 

interacts with the C-terminus of the human ether á go-go. Two other clones showed only very 

weak positive signals, and thus their interaction with hEag1 remains questionable.  

Surprisingly, none of the already reported Eag1 interaction partners (epsin or calmodulin) 

were found in the two-hybrid screens. This can be explained by use of only a part of hEag1, 

and not the entire protein, to identify interactions, although it was shown for epsin to interact 

with the C-terminus of rat Eag1 only (Piros et al., 1999). On the other hand, the Yeast Two-

Hybrid System used is based on interactions between two parts of a transcription factor 

occurring in the cell nucleus. Thus some interactions can be simply overlooked, because of 

the inefficient or even abolished transport of certain proteins to the yeast cell nucleus. During 

the last few years new two-hybrid technologies developed, based on other than direct 

transcriptional activation mechanisms, which enable identification of protein interactions 

within the cytoplasm and/or plasma membrane. One of them is the hSOS/Ras recruitment 

system, which relies on the activation of the Ras signalling pathway to rescue a yeast cdc25 

mutant (Broder et al., 1998). Anther system, a split-ubiquitin system, is not commonly used 

because of its unperfect design (Johnsson and Varshavsky, 1994).  

 

PIAS1 (protein inhibitor of activated Stat1) was first identified in a Y2H screen aimed at the 

identification of potential regulators of Stat1 (reviewed by Shuai, 2000) and shown to inhibit 
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STAT1 binding to its consensus response element, thus inhibiting STAT-mediated gene 

activation. Moreover PIAS proteins have co-regulatory effects on androgen receptor 

transactivation (Tan et al., 2002) and were also shown to induce p53-activated expression, by 

interacting with the tetramerisation and C-terminal regulatory domains of p53 (Megidish et 

al., 2002).  

It might seem surprising that PIAS1, a transcriptional activator, functionally interacts with 

hEag1, an integral membrane protein. However, nuclear localisation of membrane proteins is 

not an extraordinary finding: Nuclear localisation was shown for EGFR (Epidermal growth 

factor receptor), which associates with genes and activates sequence-specific gene expression. 

Recently, nuclear localisation was also reported for a BK channel (calcium- and voltage-

dependent potassium channel; Hentrich, 2003). The C-terminus of BK channels was found in 

the nucleus of transfected cells. Moreover the C-terminus of BK channels interacts with 

BKAP, which is predominantly a nuclear protein, although the function of this interaction is 

unclear. Finally, an artifactual interaction of PIAS1-hEag1 cannot be completely ruled out. 

 

Eag1 seems to influence proliferation and has oncogenic potential (Pardo et al., 1999). It 

would be tempting to speculate that interaction of Eag1 (or its C-terminus) with PIAS1 plays 

a role in the Eag1-related alterations, although it has to be confirmed and characterised in 

detail. The identification of the hypothetical signalling pathway could give new hints about 

the function of Eag1 channels in vivo.   
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