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1. Introduction 

1.1 Mammalian target of rapamycin (mTOR) 
 

mTOR is a serine/threonine kinase which belongs to the 

phosphatidylinositol 3-kinase-related kinase (PIKK) family. It is essential for cell 

growth, proliferation, survival, and development [1-3]. At a molecular level, mTOR 

regulates transcription [2,4], translation [5,6], ribosome biogenesis [7], nutrient 

transport [8], lipid biosynthesis [9], autophagy [10], and actin cytoskeleton 

organization [11]. In humans, mTOR deregulation is implicated in parasitic 

infections [12], fungal infections [13], bacterial infections [14], viral infections [15-

17], autoimmune disorders [2,18,19], tuberous sclerosis [2], diabetes [20,21], 

obesity [22], neurological disorders [23-26], cardiac diseases [27], renal disease 

[28], and various cancers [25,26,29,30]. Previous studies demonstrated that 

stimuli which are required to activate or inhibit downstream effectors of mTOR, 

such as ribosomal protein S6 kinase 1 (S6K1) and eIF4E binding protein 1 (4E-

BP1) fail to change in vitro mTOR kinase activity [31,32]. This inconsistency led 

to the assumption that in vivo mTOR might exist as a complex with one or more 

proteins that are destroyed during isolation of mTOR [32]. Recent literature 

supports the notion that mTOR controls cell growth and survival via an assembly 

of multi-protein signaling complexes [11,32-36]. mTOR exists in two distinct 

complexes defined by regulatory associated proteins of mTOR (raptor) and 

rapamycin insensitive companion of mTOR (rictor) as mTOR complex 1 

(mTORC1) and mTOR complex 2 (mTORC2) respectively (Figure 1.1). These 

interacting proteins act as a scaffold for assembling complex and recruiting 

substrates and regulators [37].  

 

1.2 mTORC1 
 

mTORC1 was the first described TOR complex that is involved in anabolic 

and catabolic processes [38-40]. Seven interacting partners of mTORC1 have 

been described so far: mTOR, raptor, G protein beta subunit-like (GβL), proline 

rich Akt substrate 40 kDa (PRAS40), DEP-domain-containing mTOR-interacting 

protein (deptor), RAS-related C3 botulinum toxin substrate 1 (rac1), and ragulator 
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[32-36]. The cellular localization of mTORC1 is reported to include mitochondria, 

neuronal membranes, the nucleus, endoplasmic reticulum, Golgi apparatus, and 

lysosomes [6]. 

 

mTOR, a catalytic component of mTORC1 and mTORC2, was also named 

as FKBP-rapamycin-associated protein (FRAP), sirolimus effector protein (SEP), 

or rapamycin and FKBP target 1 (RAFT1) [41-43]. mTOR was first identified as 

TOR in Saccharomyces cerevisiae [44,45]. The name changed to mTOR when it 

was discovered that the protein possesses approximately 65% identity in its 

carboxy-terminal (C-terminus) domains and more than 40% homology in overall 

sequence to the TOR1 and TOR2 proteins of budding yeast [46]. TOR1 and 

TOR2 are high molecular weight proteins and are involved in translation [32]. 

TOR is comprised of several domains, seems to be highly conserved from yeast 

to mammalian cells, and shares 95% identity at the amino acid level [47]. mTOR 

itself is composed of 2549 amino acids and has a molecular mass of 

approximately 289 kDa [48]. Structurally, mTOR possesses, at the N-terminus 

region, up to twenty tandem Huntingtin, elongation factor 3, PR65/A, TOR 

(HEAT) repeats and contain approximately 80 amino acids that are arranged in 

two anti-parallel α-helices [38]. HEAT repeats are present in many proteins and 

mediate protein-protein interactions [49]. 

 

The kinase domain of mTOR is present at the C-terminus half and 

possesses sequence similarity with the catalytic domain of phosphatidylinositol 3-

kinase (PI3K) [47]. Immediately upstream of the kinase domain is the FRB 

domain, which is the binding site for FKBP12-rapamycin complex [47]. In 

addition, mTOR contains a relatively large FRAP-ataxia-teleangiectasia  (FAT) 

domain immediately downstream to HEAT repeats [47]. The extreme carboxy-

terminal portion contains a second FAT domain known as FRAP, ATM, TRRAP 

C-terminal (FATC). The FATC domain is essential for the function of mTOR, and 

a single amino acid deletion in the FATC domain is sufficient to inhibit mTOR 

catalytic activity [47]. mTOR has a negative regulatory (NRD) domain between 

the catalytic and FATC domains [47]. NRD possesses two important adjacent 

phosphorylation sites (Thr 2446 and Ser 2448) for Akt mediated activation of 

mTOR [47] (Figure 1.2). 
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Figure 1.1: mTOR signaling network. 
 
mTOR is present in two distinct complexes, mTORC1 and mTORC2. mTORC1, a rapamycin 

sensitive protein complex is composed of mTOR, raptor, GβL (mLST8), PRS40, rac1, and deptor. 

mTORC2, a rapamycin resistant complex is composed of mTOR, rictor, GβL, sin1, protor, rac, 

and deptor. mTORC1 is the key sensor for the availability of growth factors, nutrients, and energy 

required to promote cellular growth under favorable conditions, or catabolic processes during 

stress and hypoxic conditions. mTOR signaling through the PI3K/Akt pathway is modulated by 

mitogenic stimuli from growth factors that bind with the tyrosine kinase receptor. This receptor 

then recruits and phosphorylates the IRS-1 and is followed by subsequent activation of PI3K 

and Akt.  Alternatively, low ATP levels lead to the AMPK-dependent activation of the TSC1/TSC2 

complex to reduce mTORC1 signaling. Nutrient availability is sensed by mTORC1 via rheb 

mediated activation of mTORC1. Active mTORC1 has a number of downstream biological 

functions including transcription, translation via the phosphorylation of downstream targets (4E-

BP1 and S6K1), ribosome biogenesis, and repression of autophagy and metabolism. The 

mTORC1 and S6K1 regulate IRS-1 expression via negative feedback loops. mTORC2 promotes 

cell survival by activating Akt and regulates cytoskeletal dynamics; however, the upstream 

regulators of  mTORC2  are not yet defined. The image above was created using pathway builder 

provided by http://www.proteinlounge.com. The green arrows signify activating connections, 

whereas red lines represent inhibitory inputs. 

 

http://www.proteinlounge.com/
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Raptor, a 149 kDa polypeptide, binds directly to mTOR, and is thought to 

function as a scaffold protein which recruits mTOR substrates [32]. Raptor is an 

essential component of the mTORC1 complex and its knockout in mice is 

embryonically lethal [1,32]. Experimental evidence suggests that raptor is 

required for the proper folding and/or stability of mTOR kinase [32]. Human raptor 

possesses a unique raptor N-conserved (RNC) domain at the N-terminus 

followed by three HEAT repeats and seven tryptophan-aspartate (WD) repeats 

[32]. Thus the domain structure of raptor is consistent with its role as an adaptor 

in mTOR activity [32]. Raptor interaction with mTOR is regulated by the nutrient 

status of the cell. Nutrient starvation leads to a strong interaction between raptor 

and mTOR and thus inhibits the mTOR kinase activity; while a weaker interaction 

was observed between these two proteins after nutrient stimulation which itself 

increases the mTOR kinase activity [32]. Recent studies demonstrate that the 

raptor phosphorylation by AMPK inhibits the mTORC1, while its phosphorylation 

by ERK1/2 modulates mTORC1 activity [50,51]. In 2003, Kim et al, reported GβL 

as an mTORC1 interacting protein and positive regulator of mTORC1 [1,33]. In 

addition GβL interacts with mTORC2, and its presence is essential for rictor-

mTOR interaction [1]. Gene deletion of GβL resulted in the down regulation of 

S6K1 phosphorylation at Thr389, which is a frequently used phospho-site to 

read-out the mTOR kinase activity [33,52,53].  

 

mTOR interacting protein PRAS40, was first characterized by Sancak and 

coworkers in 2007 [35]. mTOR interacts with PRAS40 and phosphorylates it at 

multiple sites [54,55]. The van der Haar group reported that PRAS40 directly 

interacts with the mTOR catalytic domain [56], whereas Sancak and colleagues 

demonstrated that its association with mTOR is via raptor [35]. Several reports 

have implicated PRAS40 as a negative regulator of mTOR that inhibits mTOR 

autophosphorylation and kinase activity toward 4E-BP1, and PRAS40 itself 

[35,57]. Contrary to previous reports, PRS40 is also believed to be a positive 

regulator of mTOR kinase activity [58,59]. Deptor, another mTOR interacting 

protein is a negative regulator of both mTOR complexes [60]. Deptor binds with 

mTOR via its PDZ domain and regulates mTOR functions [60,61]. Deptor loss of 

function results in an increase in cell size and mediates protein synthesis [60,62]. 
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Figure 1.2: mTOR protein and its known interacting partners. 

mTOR protein kinase consists of 2549 amino acids residues and has mutidomain  structure. At its 

N-terminus, it possesses up to 20 tandem HEAT repeats consisting of approximately 80 amino 

acidswhich mediate protein-protein interactions. Adjacent to HEAT repeats mTOR has a relatively 

large FAT domain. FRB domain is present downstream to FAT and provides binding site for 

FKBP12-rapamycin complex. The catalytic domain of mTOR is present at the C-terminus half. 

mTOR also has an NRD domain next to kinase domain and possess important regulatory 

phosphorylation sites. The extreme carboxy-terminal has a second FAT domain, named as FATC, 

which is essential for the mTOR function. It has been proposed that the FAT and FATC domain of 

mTOR interacts to attain a configuration that exposes the catalytic domain.  

 

Ragulator protein was recently identified as a new component of mTORC1 

[36]. Ragulator interacts with Rag proteins and mediates translocation of 

mTORC1 to the lysosomal surface, which is necessary for amino acids to 

activate mTORC1 signaling [36,63]. Rac1 is another, recently known interacting 

protein of mTORC1 which is a member of the Rho family of GTPases, and a 

crucial regulator of both mTORC1 and mTORC2 [34]. Rac1 appears to bind 

directly to mTOR, facilitating localization of both mTORC1 and mTORC2 at 

specific membranes sites, and activates their kinase function. Gene deletion of 

rac1 in primary cells inhibits activation of mTORC1 and mTORC2 signaling 

pathways [34].  
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Most of the mTORC1 components and functions are elucidated by using 

rapamycin, a macrolide molecule which specifically inhibits mTORC1 kinase 

activity [64]. Rapamycin, or sirolimus, was first isolated from the soil bacterium 

Streptomyces hygroscopicus found on Rapa Nui, also known as Easter Island 

[65]. The drug was first named rapamycin for Rapa Nui and was originally 

developed as an antifungal agent. Later, rapamycin’s potent immunosuppressive 

and antiproliferative properties were discovered [19,65-67]. Rapamycin inhibits 

mTORC1 by binding to its intracellular receptor FK506 binding protein 12 

(FKBP12) which interacts directly with the FKBP-rapamycin-binding (FRB) 

domain of mTOR [42,43]. Rapamycin inhibits the response to interleukin 2 (IL-2), 

and blocks the activation of T and B lymphocytes, thereby preventing cell cycle 

progression in G1 phase, and inhibiting cell proliferation [68,69]. At present, 

rapamycin is approved by the US Food and Drug Administration (FDA) as an 

immunosuppressive drug for kidney transplant patients, as cardiology drug to 

inhibit the restenosis after coronary artery stents, and for the treatment of 

advanced renal cell carcinoma [70-72]. 

1.2.1 Regulators of mTORC1 

 

mTORC1 kinase activity i s  regu la ted  v ia  growth factors, nutrients, 

energy, and stress  signals [37]. 

1.2.1.1 Growth factors  

 

mTOR signaling through the PI3K/Akt pathway is modulated by mitogenic 

stimuli from growth factors that bind to certain membrane receptors [2,3,73]. 

These receptors include epidermal growth factor receptor (EGFR), insulin growth 

factor 1 (IGF1), insulin-like growth factor receptor (IGFR), and platelet-derived 

growth factor receptor (PDGFR). The PI3K/Akt pathway can also be initiated by 

insulin via insulin receptor substrate 1 (IRS1) [2,74]. The binding of IGF to its 

tyrosine kinase receptor recruits and phosphorylates the IRS-1, which 

subsequently activates PI3K [75].  PI3K activation leads to the co nve rs ion  of 

phosphatidylinositol-4,5-phosphate (PIP2) to phosphatidylinositol-3,4,5-

phosphate (PIP3), a crucial step negatively regulated by phosphatase and tensin 

homolog (PTEN) [38,76]. PIP3 accumulation recruits Akt to the cell membrane, 

http://www.google.com/url?sa=t&rct=j&q=S.%2Bhygroscopicus&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1057211%2Fpdf%2Fapplmicro00307-0023.pdf&ei=x1DCTo7-DcfssgaN3sHJCw&usg=AFQjCNGyaPPo_5uEROSYoE_rULXRUV9Hbg
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where Akt is directly phosphorylated at Thr308 by phospholipid-dependent kinase 

1 (PDK1), and additionally phosphorylated at Se473 by phospholipid-dependent 

kinase 2 (PDK2) [77-80]. PDK2 has now been identified as mTORC2 [77]. Akt 

phosphorylates mTOR, kinase through the tuberous sclerosis complex (TSC) 

[81]. TSC consists of tuberous sclerosis complex 1 (TSC1, hamartin), and 

tuberous sclerosis complex 2 (TSC2, tuberin) proteins. TSC1 stabilizes TSC2, 

while TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase rheb 

(Ras homolog enriched in brain) [82-85]. GTP-bound rheb potently activates 

mTORC1, which further leads to activation of S6K1 (S6 kinase 1) and 4E-BP1 

(eukaryotic initiation factor binding protein) inhibition, and thereby stimulates cap-

dependent translation [3,86]. Although growth factors augment the mTORC1 

signaling; mTORC1 limits the response to growth factors through a negative 

feedback loop via direct physical interaction with IRS1 [87]. The negative input 

from mTORC1 on the insulin pathway has several clinical implications e.g., the 

failure of rapamycin to inhibit tumor growth might be due to a loss of a negative 

feedback loop which leads to increase PI3K activity [88,89]. Future investigation 

of this regulatory loop may help to understand the molecular mechanisms of 

diabetes.  

1.2.1.2 Nutrients availability  

 

Cells response to nutrient restriction through the induction or repression 

of metabolic pathways [90]. The availability of nutrients such as amino acids 

regulates mTORC1 in a rheb dependent but in a TSC1/TSC2 independent 

manner. The exact mechanisms responsible for amino acid mediated mTORC1 

regulation is not well understood [32,91,92]; However a recent study proposed a 

model where amino acids induce the translocation of mTORC1 to the lysosomal 

surface, and increase the rate of translation via S6 kinase activation and 4E-BP1 

inhibition [6,36]. 
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1.2.1.3 Energy and stress  

 

mTORC1 activity is regulated by cellular energy level and stress signals 

such as hypoxia, genotoxic responses, and redox imbalance [3]. mTORC1 

senses the cellular energy level via  adenosine monophosphate-activated protein 

kinase (AMPK) [93]. Energy depletion activates AMPK, which is likely to mediate 

phosphorylation of TSC2 and leads to a shutdown of mTORC1 signaling possibly 

via rheb inhibition [93,94]. In another model ATP depletion activates AMPK 

mediated phosphorylation of raptor at the Ser722 and Ser792 residues, thereby 

providing a docking site for 14-3-3 protein which inhibits mTOR kinase activity 

[95]. A recent study indicates that inhibitors of mitochondrial respiration arrest 

mTORC1 even in the absence of AMPK, which suggests the existence of 

additional mechanisms of mTORC1 regulation through altered cellular energy 

levels [96].  

 

Hypoxia or low oxygen stress inhibits mTORC1 signaling by REDD1 (regulated 

the development and DNA damage response 1) protein via TSC1-TSC2 

activation [97,98]. Moreover, mTORC1 is responsible for sensing the genotoxic 

stress or DNA damage [99]. p53 is a central coordinator for genotoxic responses 

[100,101]. In response to DNA damage, p53 induces PTEN, TSC2 and REDD1, 

which all act as mTORC1 inhibitors [102,103]. p53 induction in response to 

genotoxic stress, supresses mTORC1 at multiple levels, and thus leads to 

inhibition of translation and transcription [102,103]. The activity of mTORC1 is 

sensitive to cellular redox status [104]. Reducing agents like British anti-lewisite 

(BAL) inhibit mTORC1 via strengthening of raptor to mTOR binding [104]. In 

contrast, oxidizing agents like phenylarsine oxide (PAO) and diamide (DA) 

activate mTORC1 signaling via the TSC-rheb pathway even in the absence of 

nutrient signals [104,105]; however these oxidants have no effect on mTOR-rictor 

interaction [104]. 
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1.2.3 Effectors of mTORC1 

 

mTORC1 is a key protein complex responsible for transmitting 

extracellular and intracellular signals to regulate metabolic processes [6,38]. 

Under nutrient rich conditions mTORC1 increases the rate of translation and 

transcription via two well characterized mTORC1 effectors, S6K1 and 4E-BP1 

[2,6,32]. S6K1 is a mitogen activated serine/threonine protein kinase that is 

required for cell growth [32,53]. Raptor component of mTORC1 binds to the TOR 

signaling (TOS) motif of S6K1, which leads to the mTORC1 mediated S6K1 

phosphorylation at Thr389 [52,53,106]. Following mTORC1 mediated 

phosphorylation, S6K1 is further phosphorylated by PDK1 at Thr229 [5]. The 

active S6K1 phosphorylates S6 protein of the 40S ribosomal subunit which is 

involved in the translation of 5'-terminal tract oligopyrimidine (5´-TOP) mRNAs [5]. 

In addition to S6 protein, S6K1 phosphorylates IRS1, glycogen synthase kinase 3 

(GSK3), translation elongation factor 2 (eEF2), and Bcl-2-associated death 

promoter (Bad) [107]. S6K1 regulates IRS1 via a negative feedback loop as 

S6K1 phosphorylates IRS-1 on Ser302, Ser270, Ser307, Ser636, and Ser1101 

residues [108,109]. S6K1 mediated phosphorylation of IRS1 interfers with its 

interaction with the insulin receptor, thus inhibiting insulin signaling [109,110]. 

This suggests S6K1 as a potential therapeutic target in restoring insulin 

sensitivity [110]. Furthermore, in response to both mitogen and nutrient-derived 

stimuli, S6K1 functions in a positive feedback manner by phosphorylating mTOR 

at Ser-2448 [52]. Julien and Carriere reported that mTORC1 mediated S6K1, 

phosphorylates rictor on Thr1135 and regulates mTORC2 functions, which 

highlight the indirect role of mTORC1 in the regulation of mTORC2 [111]. Recent 

reports have demonstrated that S6K1 is activated by genotoxic stress and 

phosphorylate double minute 2 protein (Mdm2) which results in p53 induction 

[112].  

 

A second major mTORC1 effector is 4E-BP1 which is involved in the 

regulation of cap-dependent mRNA translation [6]. 4E-BP1 acts as a translational 

repressor, it binds and inhibits elF4E which is a member of translation initiation 

complex eIF4F [113]. mTORC1 inhibits 4E-BP1 activity via phosphorylation at 

Thr37 and Thr46, which are required for subsequent 4E-BP1 phosphorylation at 
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Ser65 and Thr70 residues [114,115]. Hyper-phosphorylation of 4E-BP1 

dissociates it from elF4E binding [115]. elF4E is then free to recruit elF4G and 

elF4A to the 5´-mRNA cap site [47]. The elF3, 40S ribosomal subunits and the 

ternary complex (elF2/Met-tRNA/GTP) are also recruited to the 5´-mRNA cap 

which results in the assembly of the translation pre-initiation complex (PIC), and 

activation of cap-dependent translation [47]. 

 

mTORC1 plays an important role in regulating cell mass by inhibiting 

cellular degradation or autophagy [116,117]. Autophagy sequesters degradable 

contents into autophagosomes which are then transported to lysosomes where 

proteases and hydrolases break down the luminal contents and recycle the 

resulting macromolecules [118]. Under nutrient rich conditions, mTORC1 (via 

raptor) binds to the autophagic proteins complex having Unc-51-like kinase 1 

(ULK1), autophagy-related protein 13 (mAtg13), and FAK family kinase-

interacting protein 200 (FIP200). Following the mTORC1 binding to autophagic 

proteins, mTOR kinase phosphorylates ULK1 and mAtg13 [119], which inhibits 

autophagy, and promotes translation [119]. Under nutrient starved conditions, 

dissociation of mTORC1 from the ULK1-mAtg13-FIP200 complex, leads to the 

activation of ULK1. The activated ULK1 phosphorylates mAtg13 and FIP200, and 

thus encourages autophagy [118,119]. 

 

mTORC1 regulates ribosome biogenesis, which is an anabolic process 

and uses a large proportion of cellular energy [5,7,120]. mTORC1 controls  

ribosome biogenesis by affecting the synthesis of ribosomal RNA (rRNA) and 

ribosomal proteins (RPs) [7]. Ribosomal synthesis essentially requires all three 

nuclear RNA polymerases: Pol I for the rRNA synthesis, Pol II for RP genes 

transcription, and Pol III for the synthesis of 5S RNA [7,25]. Pol I requires three 

basal factors for transcription initiation. These are TIFIA  (transcription initiation 

factor IA), TIFIB (transcription initiation factor IB), and UBF (upstream binding 

factor) [121]. mTORC1 inhibition by rapamycin treatment induces Pol II gene 

expression and suppresses the initiation of Pol I and Pol III mediated transcription 

[122]. In addition, rapamycin has a significant effects on the global suppression of 

the majority of RP genes [123].  
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1.3 mTORC2 
 

mTORC2, a rapamycin insensitive complex, is involved in cytoskeletal 

organization, cell proliferation, and cell size regulation [11,124]. The binding 

partners of mTORC2 include: rictor, GβL, mammalian stress-activated protein 

kinase interacting protein (mSIN1), protein observed with rictor 1 (protor-1), 

protein observed with rictor 2 (protor-2), rac1, and deptor [11,33,34,60,125,126]. 

Rictor is an approximately 192 kDa protein, which was identified in mTOR 

immunoprecipitates from HeLa cells. Rictor is present exclusively in mTORC2, its 

association with mTOR is rapamycin insensitive, and it is indispensable for 

mTORC2 activity [1,11,104]. An endogenous equilibrium is proposed to exist 

whereby raptor and rictor compete for mTOR binding [11]. mTORC2 activates 

AKT phosphorylation on Ser473 via rictor and regulates cell survival in TSC2 null 

cells [127]. mSinl, is an interacting partner of mTORC2 that is exclusively present 

in the rictor containing mTOR complexes [128]. mSinl has five spliced variants of 

which three can bind with mTORC2 [129]. Mice with mSinl knockout die at an 

early developmental stage, and knockdown results in a decrease in rictor 

phosphorylation, which disrupts the rictor-mTOR complex [125,130]. Protor-1, 

also known as proline-rich protein 5 (PRR5), binds directly with mTOR, and its 

knockdown inhibits Akt and S6K1 phosphorylation [131,132]. Protor-2 or PRR5L 

(proline-rich protein 5 like protein) is present in mTORC2 while it is absent from 

mTORC1 [57]. Unlike other mTORC2 components, protor-2 is not required for 

mTORC2 kinase function [57].  

1.4 Enhancer of mRNA decapping protein 4 (Edc4) 

 
In eukaryotes, gene expression is controlled at both the mRNA translation 

and degradation levels in the cytoplasm by the regulation of mRNA 5′ N7-methyl-

guanosine (m7GpppN) cap [133]. mRNA cap is pivotal for the nuclear export of 

mRNAs, protects them from exonucleolytic degradation and promotes their 

translation [133-135]. Cap is protected from decapping machinery through its 

interaction with the cytosolic cap binding proteins including eIF4E and eIF4G of 

the eIF4F complex [136]. Translation is down-regulated when elF4E is captured 
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by 4E-BP1, a known downstream effector of mTORC1 signaling [4]. The 

mTORC1 interaction with 4E-BP1 is mediated by raptor and leads to 4E-BP1 

phosphorylation [47]. Hyper-phosphorylation of 4E-BP1 mediates the release of 

eIF4E from 4E-BP1 binding and allows eIF4E to bind with the 5′ mRNA cap. The 

eIF4E binding with mRNA cap blocks the access of decapping complex towards 

5′ mRNA cap and results in the activation of cap-dependent translation 

[114,135,137,138]. In contrast, mRNA decapping machinery removes the 

m7GpppN cap from mRNA and leads to reduced mRNA translation and promotes 

mRNA degradation [139]. The mRNA decapping process is considered to take 

place in the processing bodies (P bodies) [140]. P bodies are the cytosolic self 

assembled aggregations of messenger ribonuclear proteins (mRNPs) involved in 

mRNA turnover, RNA interference (RNAi), miRNA-mediated gene silencing and 

translation repression [139-141]. P bodies are also considered as a potential site 

for the decapping of mRNA since the decapping proteins Dcp1a (enzymes 

mRNA-decapping enzyme 1a), Dcp2 (mRNA-decapping enzyme 2) and 

additional proteins reside in these cytosolic granules [142-144]. In yeast, Dcp2 

directly interacts with Dcp1a and requires the enhancer of mRNA decapping 1-3 

(Edc1-3), LSm1-7, RNA helicase 1, and Pat1 for its catalytic activity [145]. In 

higher eukaryotes, decapping requires an additional protein called the enhancer 

of mRNA decapping 4 (Edc4) (Hedls in humans; VARICOSE in Arabidopsis 

thaliana and Ge-1 in Drosophila melanogaster) which is essential for the in vitro 

catalytic activity of Dcp2 [146-148]. Recently a role for Edc4 was also suggested 

in miRNA mediated translational repression [146,149] (Figure 1.3). Edc4 is a 

important component of P bodies and its knockdown leads to the loss of P bodies 

in human cells and in Drosophila melanogaster [140,146,148]. The localization of 

decapping enzyme complex Dcp1a and Dcp2 in the P bodies is dependent on the 

presence of Edc4, and depletion of the decapping enzyme complex blocks the 

accumulation of Dcp1a and Dcp2 in the P bodies [146].  
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Figure 1.3: 5′ to 3′ eukaryotic mRNA decay.  

In eukaryotes, mRNA decay is initiated by the removal of a 3
′
-poly (A) tail by Ccr4Not 

deadenylases. Following deadenylation, mRNA is degraded in a 5
′
 to 3

′
 decay manner. In the 5

′
 to 

3
′
 decay pathway, the Lsm protein complex associates with the 3

′
 end of the mRNA transcript and 

activates the decapping process by recruiting the Edc4/Dcp1a/Dcp2 complex at the 5` end to 

remove the cap. Removal of the 5` cap allows the exoribonuclease, Xrn1p to degrade mRNA ( the 

image above was created using the pathway builder provided by http://www.proteinlounge.com).  

The inhibition of TOR appears to accelerate the mRNAs turnover by mRNA 

deadenylation dependent decapping pathway [47,150]. Rapamycin mediated 

inhibition of TOR in yeast induced the expression of various decapping proteins 

[150], however the exact role of mTORC1 signaling in the mRNA decay via Edc4 

is not yet clear.   

1.5 Rationale for the proposed research  
 

mTOR is a potent protein kinase involved in various biological processes 

through its interaction with different proteins. The aim of the present study was to 

identify the novel interacting partners of mTORC1 in human cells using an affinity 

purification approach coupled with nano-LC Q-TOF MS/MS analysis. For this 

purpose, we used both endogenous and myc-tag purification strategies. Parallel 

purification of rictor, an essential and exclusive interactor of mTORC2, was 

utilized to ensure the purification of only mTORC1 via raptor. Further studies 

characterized the novel interactor of mTORC1 “the enhancer of mRNA decapping 

protein (Edc4)” as an important protein component of mRNA decapping 

machinery. This study reports a new role of mTORC1 in the mRNA decapping 

process via regulation of Edc4. 

http://www.proteinlounge.com/
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2. Materials and methods 

2.1 Materials  

2.1.1 Cell lines and cell culture media 

 

T lymphocytes (CCRF-CEM) and human embryonic kidney (HEK) 293 

cells were purchased from DSMZ (German collection of microorganisms and cell 

cultures, Braunschweig, Germany); RPMI 1640 and DMEM, Dulbecco’s 

phosphate buffer saline (PBS) and 10% fetal bovine serum (FBS) obtained from 

PAA Laboratories Colbe, Germany; Penicillin and streptomycin were from 

Biochrome, Berlin, Germany. RPMI 1640 without leucine was purchased from 

Sigma-Aldrich, Steinheim, Germany. 

2.1.2 Reagents and miscellaneous materials 

 

Reagents were obtained from the following sources: Lipofectamine LTX, Opti 

MEM, Dynabeads G, TRIzol and 4,6-diamidino-2-phenylindole (DAPI)  were from 

Invitrogen, Darmstadt, Germany. CHAPS buffer was from Applichem, Darmstadt, 

Germany. Triton X-100 lysis buffer was from Cell Signaling Technology, MA, 

USA. Complete protease and phosphatase inhibitors cocktail were from Roche, 

Mannheim, Germany. Rapamycin was from LC Laboratories, MA, USA. 

Dithiothreitol (DTT), trypsin, triflouroacetic acid (TFA), formic acid (FA), acitonitril 

(ACN), ammonium bicarbonate (AMBIC), leucine were from Sigma-Aldrich, 

Steinheim, Germany. Silver nitrate was from Carl Roth, Karlsruhe, Germany, and 

Fluoromount was from DAKO, Hamburg, Germany. Enhanced chemiluminscent 

(ECL) reagent and Amersham Hyperfilms were from GE Healthcare, 

Buckinghamshire, UK. 8 chamber well slides (Lab-Tek™ II; Thermo were from 

Fisher Scientific, Bonn, Germany. PVDF membrane was from Millipore, 

Schwalbach Germany, and myc-tag raptor pRK5 plasmid was gifted by Dr. Doss 

Sarbassove (The University of Texas, USA). If the name of any reagent not listed 

here otherwise referred in the text. 
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2.1.3 Antibodies 

 

Antibodies used for Western blotting (WB), immunoprecipitation (IP) and 

immunofluorescence (IF) are listed in the following table.  

 

Table 2.1: List of antibodies. 

Primary 

Antibody 

Origin Dilution  

WB/IP 

Dilution  

IF 

Provider/ Cat. No. 

Myc-Tag Mouse  1:1000/1:500 - Cell Signaling/2276 

mTOR Rabbit  1:1000 - Cell Signaling/2972 

Edc4 Rabbit  1:2000 1:300 Abcam/ab72408 

Raptor Rabbit  1:1000/1:200 - Millipore/09217  

Raptor Mouse  - 1:300 Millipore/051470  

Rictor   Rabbit  1:5000/1:50 - Bethyl 

lab/A300459A 

Dynamin 2 Rabbit 1:1000  Abcam/ab6102 

hnRNP A2B1 Mouse 1:1000  Abcam/ab6102 

β-tubulin Mouse  1:2000 - Biovendor/RE11251

C100 

Rictor   Rabbit  1:5000  Abcam/ab70374 
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Secondary 

antibody 

Origin Dilution 

WB 

Dilution 

IF 

Company/ Cat. No. 

Anti mouse HRP  Goat 1: 3000  - Bio-Rad/1706516 

Anti rabbit HRP  Goat 1:3000 - Bio-Rad/1706515  

Anti mouse 

Cydye3 

Goat - 1:200 Dianova/115165146 

Anti rabbit AF488 Goat - 1:200 Molecular 

Probes/A11070 

2.1.4 Kits 

 

All the listed kits were used according to the vendor’s instructions. 

Table 2.2: List of the kits.  

Name Company/ Cat. No. Application 

ProtoScript® E6300 cDNA Synthesis Kit 

High speed plasmid maxi kit  Qiagen/12662 Plasmid DNA 

preparation  

High speed plasmid maxi kit  Qiagen/12663 Plasmid DNA 

preparation  

QIAquick gel extraction kit  Qiagen/28704 DNA gel extraction 

Eukayotic mRNA isolation kit Epicentre 

Biotechnologies/MOE5

1010 

Capped mRNA 

isolation 

Co-immunoprecipitation kit Pierce/23620 Immunoprecipitation 
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2.1.5 Softwares 

 

The following scientific software’s were used to accomplish the study. 

Table 2.3: List of scientific softwares. 

Program Use References 

ImageJ 1.43u Densitometric analysis  NIH, MD, USA. 

LabImage 2.7.1 Densitometric analysis  Kapelan GmbH, Leipzig, 

Germany. 

Graphpad Prism 5 Statistical analysis GraphPad Software Inc. 

California, USA. 

WCIF ImageJ  Colocalization analysis NIH, MD, USA. 

Axiovision Colocalization analysis Carl Zeiss, Jena, Germany. 

Zeiss LSM 

4.2.0.121 

Immunofluorescence  MicroImaging GmbH, 

Goettingen, Germany. 

MassLynx version 
4.0 

LC MS/MS data 

 acquisition 

Micromass, Manchester, UK. 
 

Protein Lynx Global 

Server version 2.2 

LC MS/MS data 

 analyzer 

Micromass, Manchester, UK. 

Mascot MS/MS peak lists 

search 

Matrix science, London, UK. 

GeneMania Protein protein 

interaction 

University of Toronto, Canada. 

String Protein protein 

interaction 

EMBL, Heidelberg, Germany. 

Cytoscape Protein protein 

interaction 

NRNB, USA. 

NetPhos 2.0 Server Phospho-sites analysis CBSA, Lyngby, Denmark. 

Phosphosite Plus Phospho-sites analysis Cell Signaling Technology, 

MA, USA. 
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2.1.6 Instruments used in the study  

 

Table 2.4: List of instruments. 

Instruments Product ID/Cat.No. Vendor 

Bio-safety Cabinet Hera safe KS  Heraeus, Osterode, 

Germany. 

 SterilGard 3 Advance Baker comapany, 

Sanford, USA. 

Incubator Cytosperm 2 Heraeus, Osterode, 

Germany. 

 BBD 6220 Heraeus, Osterode, 

Germany. 

 Certomat R Sartorius, Goettingen, 

Germany. 

 Memmert  Memmert, Schwabach, 

Germany. 

 Biometra WT17 Biometra, Goettingen, 

Germany. 

 Rotamax 120 Heidolph Instruments, 

Schwabach, Germany.  

Centrifuges Rotina 380 Hettich,Tuttlingen, 

Germany. 

 Minifuge T Hettich,Tuttlingen, 

Germany. 

 Rotina 35R Hettich, Tuttlingen, 

Germany. 

 5415C Eppendorf, Hamburg, 

Germany. 
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 Abbot 3530 Abbot, Delekenheim, 

Germany. 

 MHK 2 Sarstedt, Numrecht, 

Germany. 

Spectrophotometers EL 808 Biotech instruments, 

Winooski-vermont, USA. 

 DU 7500 Beckman, Krefeld, 

Germany. 

 Gene Quant 2 Pharmacia  Biotech, 

Cambridge, England. 

 KC4 Biotek, Friedrichshall, 

Germany. 

 Nanodrop 2000c Thermo Scientific, RF, 

USA. 

 Agilent 2100 Bioanalyzer   Agilenttechnologies, 

Waldbronn, Germany. 

Power supply Power Pac 300 Bio-Rad, Munich, 

Germany.  

 Power Pac 1000 Bio-Rad, Munich, 

Germany. 

 EPS 500/400 Pharmacia fine 

chemicals, Uppsala, 

Sweden. 

Electrophoresis 

apparatus  

Mini-Protean® III Bio-Rad, Munich, 

Germany. 

 Transblot SD Bio-Rad, Munich, 

Germany. 

Confocal microscope Axiovert 200 M Carl Zeiss, Jena, 
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Germany.  

Inveted microscope Diavert Leitz, Wetzlar, Germany. 

Water bath  1003 GFL, Burgwedel, 

Germany. 

 LS 10 Schutt Labortechnik, 

Goettingen, Germany. 

Mixer  HP0306449 H+P Labottechnik, 

Munich, Germany. 

 Gene 2 Schutt Labortechnik, 

Goettingen, Germany. 

Dynabeads rack MagnaRack 15000 Invitrogen, CA, USA. 

Autoclave Technomara Technomara, Fernwald, 

Germany. 

Ice machine Ice maker Ziegra, Isernhagen, 

Germany. 

Sonicator Bsonifier 250 G.Heinemann, 

Schwabisch Gmud, 

Germany. 

Microwave oven ER 6320 PW Brother International, 

Bad Vilbel, Germany. 

pH meter pH 526 WTW, Weilheim, 

Germany. 

Heated magnetic stirrer iKAMAG RCT IKA-Labortechnik, 

Staufen, Germany. 

Thermomixer  Compact 5436 Eppendorf, 

Hamburg,Germany. 

Balance R180DD1 Sartorious, Goettingen, 
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Germany. 

Freeze drier Alpha 14 LD SciQuip Ltd. Shropshire, 

UK. 

Vacuum drier UNIVAPO 150H UNIEQUIP, Martinsried, 

Germany. 

Gel drier GD583 Bio-Rad, Munich, 

Germany. 

Scanner CanoScan 8400F Canon, Krefeld, 

Germany. 

 FL5100 Fuji, Darien, Japan. 

Gene Pulser Xcell 

electroporation unit 

1652660 Bio-Rad, Munich, 

Germany. 

UV-transilluminator 200x 200 mm Bachofer, Reutlingen, 

Germany. 

Gel documantation unit DVP 1200 SEIKO Precision Inc. 

Japan. 

Real time PCR  Light cycler Roche, Mannheim, 

Germany. 

Thermal Cycler TGradient Biometra, Goettingen, 

Germany. 

 PC9501261 Biometra, Goettingen, 

Germany. 

Mass spectrometer QTOF ultima Global Micromass, Manchester, 

UK. 

2.1.7 Buffers and solutions 

 
Table 2.5: List of chemical solutions 

Reagents Composition 
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CHAPS buffer lacking NaCl  

 

40 mM HEPES [pH 7.4] 

0.3% CHAPS  

EDTA-free protease and phosphatase 

inhibitors 

CHAPS buffer with NaCl  

 

40 mM HEPES [pH 7.4] 

150 mM NaCl 

 0.3% CHAPS 

EDTA-free protease and phosphatase 

inhibitors 

Triton X-100 Lysis buffer 

 

20 M Tris-HCl [pH 7.5] 

150 mM NaCl 

1 mM Na2EDTA 

1 mM EGTA 

1% Triton-100 

2.5 mM sodium pyrophosphate 

1 mM beta-glycerophosphate 

1 mM Na3VO4 

1 µg/ml leupeptin  

EDTA-free protease and phosphatase 

inhibitors per 20 ml 

Electrophoresis buffer (5x) 0.025 M Tris-HCl [pH 8.3] 

0.192 M Glycine 

0.1% SDS  

Laemmli buffer (2x) 0.125 M Tris-HCl [pH 6.8] 

4% SDS  

20% glycerol  

0.2 mM DDT 

0.03 mM bromophenol blue 

Transblot buffer for nitrocellulose 

membrane 

25 mM Tris-HCl [pH 8.3] 

192 mM glycine 

 20% methanol  

Transblot buffer for PVDF 

membrane (semi dry) 

25 mM Tris-HCl [pH 8.3] 

192 mM glycine 
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 10% methanol 

10X Tris buffere saline (TBS) 50 mM Tris-HCl [pH 7.5] 

200 mM NaCl 

1xTBS-T TBS and Tween-20 (0.05%) 

Blocking buffer 5% Milk Powder in TBS-T 

Stripping buffer 50 mM Tris-HCl [pH 7] 

2% SDS 

50 mM DTT 

Trypsin digestion buffer  0.1 µg/µl trypsin  

1 M calcium chloride 

1 M ammonium bicarbonate [pH 7.4] 

Silver staining solutions  

Fixation solution 50% methanol 

12% acetic acid  

Wash solution I 50% ethanol 

Wash solution 2 30% ethanol 

Sensitizing solution 0.8 mM Na2S2O3 in ddH2O 

Silver nitrate solution 0.2% AgNO3  

0.026% formaldehyde in ddH2O 

Developing solution 6% Na2CO3 

0.0185% formaldehyde 

16 μM Na2S2O3 in ddH2O 

Stop solution 50% methanol 

12% acetic acid 

Storage solution 5% acetic acid solution 

 

 



   

28 

2.2 Methods 
 

2.2.1 Cell culture 

 

CCRF-CEM and HEK293 cells were grown in RPMI-1640 and DMEM 

medium supplemented with 10% FCS, 100,000 U/L penicillin and 100 µg/L 

streptomycin under 95% humidity and 5% CO2 conditions at 37°C.  

2.2.2 Cell lysis and endogenous mTORC1 purification 

 

Cells were rinsed with cold PBS and lysed on ice cold CHAPS buffer 

lacking NaCl to isolate mTOR complexes (Peterson et al. 2009). Cell lysates were 

centrifuged at 13000 rpm for 15 minutes at 4°C followed by pre-clearing with 

dynabeads G. Antibodies for immunoprecipitation (IP) and co-immunoprecipitation 

(Co-IP) were added to the lysate and incubated for 30 minutes at 4°C. Dynabeads 

G (40µl) were added to the antibody and lysate mixture, and incubated for 

overnight at 4°C. Immunoprecipitation of specific rictor containing mTORC2 using 

rictor antibody was incorporated as a negative control to validate the purity of 

specific raptor containing mTORC1.  Mock IP or antibody minus control was used 

to exclude false interaction of lysate proteins with the dynabeads. In addition, 

blocking peptide (BP) was synthesized (Seq Laboratories, Goettingen, Germany), 

which represents the epitope of a raptor antibody. BP was incorporated as a 

negative IP control (only for CCRF-CEM cells), to exclude any nonspecific lysate 

protein interaction with the antibody. For the blocking peptide IP control, 30 µg BP 

was added to 3 µg raptor antibody and incubated overnight at 4°C. After 

incubation added the antibody and blocking peptide mixture to the cell lysate and 

dynbeads for overnight incubation at 4°C. Immunoprecipitates were washed once 

with CHAPS buffer lacking NaCl and three times with CHAPS buffer containing 

150 mM NaCl. Washes were saved for parallel runs with IP elute on 

immunoblotting. Samples were eluted in 2X Laemmli buffer at 95°C for 10 minutes 

and resolved on 6% SDS-PAGE. For experiments with cell lysates, Triton X-100 

containing lysis buffer was used. 
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2.2.3 Mammalian cells transfection and myc-tag mTORC1 
purification 

 

CCRF-CEM and HEK293 cells were seeded in 6 well plates for myc-tag 

raptor pRK5 transfection. Lipofectamine LTX and Plus reagent were used 

according to the vendor's recommendations (Invitrogen, Darmstadt, Germany). 

Briefly, 3 µg myc-tag raptor pRK5 plasmid and 3µl Plus reagent were added to 

Opti MEM and incubated for five minutes. 4µl of Lipofectamine LTX was added to 

the mixture and incubated for 30 minutes at room temperature. The mixture was 

added to the cells and incubated at 37°C in a CO2 incubator for 48 hours.  Cells 

were rinsed with cold PBS and lysed on ice cold CHAPS buffer lacking NaCl to 

isolate mTOR containing complexes. Cell lysates were separated from insoluble 

cell debris by centrifugation at 13000 rpm for 15 minutes at 4°C.  A myc-tag Co-IP 

kit was used according to manufacturer’s instructions (Thermo Scientific Pierce, 

Rockford, USA). Briefly, lysates were added to the spin column followed by 

addition of myc-tag monoclonal antibody conjugated beads and incubated 

overnight at 4ºC. Mock IP was run as a negative control. Immunoprecipitates were 

washed once with CHAPS buffer lacking NaCl and three times with CHAPS buffer 

containing NaCl and the washes saved. The samples were eluted with glycine 

buffer (pH 2.8), neutralized by addition of 1 M Tris-HCl (pH 9.5), and processed for 

SDS-PAGE. 

2.2.4 SDS-PAGE and immunoblot analysis 

 

Proteins elutes were resolved on 6% SDS-PAGE and blotted onto PVDF 

membrane (Millipore, Schwalbach Germany) using the semidry Trans-Blot SD cell 

system (Bio-Rad, Munich, Germany) for 30 minutes at 17 Volts in a transfer buffer. 

The membrane was blocked with 5% skimmed milk powder prepared in TBS-T 

buffer for one hour at room temperature and washed three times with TBS-T 

buffer. Primary antibody was added for overnight incubation at 4°C.  After three 

washes with TBS-T, the membrane was incubated in HRP-conjugated secondary 

antibodies for one hour at room temperature and then washed three times in TBS-

T for 10 minutes each. The signals on the blot were detected using enhanced 

chemiluminscent (ECL) reagent (GE Healthcare, Buckinghamshire, UK) and then 
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developed on Amersham Hyperfilm (GE Healthcare, Buckinghamshire, UK). 

Signal intensities for each immunoblot were quantified using the Lab Image 

software version 2.71 (Kapelan, Leipzig, Germany).  

2.2.5 Protein visualization and in-gel digestion of proteins 

 

Following confirmation of mTORC1 specific purification on immunoblotting, 

the remaining IP elutes were run on the 12.5% SDS-PAGE and stained with 

colloidal Coomassie blue (Carl Roth, Karlsruhe, Germany), or silver nitrate as 

previously described [151]. Protein bands from the gel were excised and prepared 

for in-gel digestion as described by (Shevchenko et al. 1996) with some 

modifications. Briefly, excised gel spots were destained with potassium 

ferricynaide (30 mM) and sodium thiosulfate (100 mM). Washed the gel slices with 

ACN (50%) and AMBIC (100 mM) followed by drying in a vacuum centrifuge. The 

dried gel pieces were digested with trypsin digestion buffer for 45 minutes on ice. 

The surplus amount of trypsin solution was replaced by the same volume of 100 

mM AMBIC without trypsin and incubated overnight at 37°C. The peptides were 

extracted with increasing concentrations of ACN and TFA and dried by vacuum 

centrifugation.  

2.2.6 Peptide sequence analysis by nano-LC ESI Q-TOF MS/MS, 
and database search  

 

The peptides were reconstituted in an aqueous solution of 0.1% formic 

acid. For LC-MS/MS analysis, 1μl of the reconstituted peptide sample was 

introduced on to two consecutive C18-reversed phase chromatography columns 

(C18 pepMap100 nano analytical column: 75 µm x 15 cm; 3 µm particle size and 

C18 pepMap: 300 µm x 5 mm; 5 µm particle size, and; LC Packings, Emsdetten, 

Germany) using a CapLC nano-flow auto sampler (Waters, Eschborn, Germany). 

The single sample run time was set for 60 minutes. Protein peptides were 

chromatographically resolved and analyzed on a Q-TOF Ultima Global mass 

spectrometer (Micromass, Manchester, UK) equipped with positive ion mode ESI 

Z-spray source as described elsewhere [152]. The data acquisitions were 

performed using MassLynx (v 4.0) software on a Windows NT PC. The peak lists 

were searched using the online MASCOT (http://www.matrixscience.com) 

http://www.matrixscience.com/
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algorithm against the Swiss-Prot (525997 sequences; 185874894 residues) and 

NCBInr (14269787 sequences; 4888943253 residues) protein databases. The 

data were analyzed against the search parameters to allow with one maximum 

missed cleavage site; MS/MS tolerance of ± 0.5Da; peptide tolerance of ± 0.5Da 

and monoisotopic mass value with unrestricted protein mass and modifications of 

cysteine carboamidomethylation and methionine oxidation, when appropriate. 

Proteins were identified from the database on the basis of at least two or more 

peptides whose ion scores exceeded the threshold, p < 0.05 which indicated the 

95% confidence level for the matched peptides. The LC-MS/MS analysis was 

repeated independently a total of eight times for endogenous mTORC1 

purification and four times for myc -tag mTORC1 purifications. 

2.2.7 Functional annotation and protein-protein interaction 
prediction 

 

Functional annotation to all newly identified proteins was given by 

matching their accession number and obtained amino acid sequences using 

universal protein (UniProt ([153]) and NCBI Kognitor databases [154]. Moreover in 

silico protein-protein interaction prediction was obtained from a web base interface 

GeneMANIA (http://www.genemania.org) which is a biological interaction 

prediction tool [155] used to validate mTORC1 interaction with the newly identified 

proteins.  

2.2.8 Confocal immunofluorescence microscopy 

 

CCRF-CEM cells grown on 8 chamber well slides (Lab-Tek™ II (Thermo 

Scientific Pierce, Rockford, USA) were fixed in freshly prepared 3.7% 

paraformaldehyde for 5 minutes at room temperature. The cells were rinsed and 

permeated with 0.2% Triton X-100 in PBS for 15 minutes.  The cells were 

incubated with 1% BSA in PBS for 30 minutes to block nonspecific binding of 

antibodies. After thorough rinsing in PBS, rabbit anti-Edc4 (1:300) and mouse anti-

raptor (1:300) antibodies were added to the cells, and the mixture incubated 

overnight at 4°C. After washing, the cells were probed with fluorescein labelled 

secondary antibodies, anti-mouse Cydye3 (1:200) and anti-rabbit Alexa Fluor 488 

(1:200) for one hour at room temperature. Nuclei were counter stained with 4,6-

http://www.genemania.org/
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diamidino-2-phenylindole (DAPI) for 10 minutes, mounted with Fluoromount 

(DAKO, Hamburg, Germany) and visualized with a confocal microscope (Axiovert 

200M, Carl Zeiss, Jena, Germany). The DAPI staining in the blue channel  has 

been shown to indicate the outline of the nuclei [156]. The three channel images 

and an overlay image of red and green channels were recorded using the 

Axiovision software (Carl Zeiss, Jena, Germany). Quantitative co-localization 

analysis was carried out using the WCIF Image J software 

(http://www.uhnres.utoronto.ca/facilities/wcif/imagej). 

2.2.9 Leucine and rapamycin treatments 

 

Cells were grown for 24 hours in RPMI-1640 supplemented with 10% FCS. 

The medium was then replaced with RPMI-1640 without leucine for 2 hours and 

then stimulated with 2 mM leucine for 30 minutes [157] or treated with 0.1 µM and 

2.5 µM rapamycin [158] for one hour. Cells were lysed, their contents resolved on 

SDS-PAGE and immunoblotted to observe changes in the expression of Edc4 

after both leucine and rapamycin treatment.  

2.2.10 RNA isolation 

 

Total cellular RNA was isolated using TRIzol method [159]. Briefly, CCRF-

CEM cells were grown, and treated with 0.1 µM, 2.5 µM rapamycin and vehicle 

control (DMSO) for one hour followed by homogenization in TRIzol reagent. RNA 

was extracted using a chloroform/isopropanol precipitation method. The RNA 

concentration was quantified with Agilent 2100 Bioanalyzer (Agilent technologies, 

Waldbronn, Germany). The integrity of the extracted RNA was ascertained by 

electrophoresis on 1.5% agarose gel.  

2.2.11 Capped mRNAs isolation and quantification 

 

Capped mRNAs were isolated from total RNA as described by the vendor 

(Epicentre Biotechnologies, WI, USA). Briefly, 5 µg total RNA was incubated with 

the reaction mixture (RNase-free water, 10X reaction buffer A, riboGuard RNase 

inhibitor, 1 unit of terminator exonuclease) at 30oC for 60 minutes in a 

http://www.uhnres.utoronto.ca/facilities/wcif/imagej
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thermocycler. The reaction was terminated by adding stop solution (EDTA 5 mM). 

Lithium chloride precipitation was performed at -20oC for 30 minutes to enrich 

mRNA and to get rid of EDTA, tRNA, and other small RNA species, followed by 

centrifugation at 14000 rpm for 30 minutes at 4oC. The mRNA pellet was then 

washed with 70% ethanol to remove residual salts. The RNA pellet was 

resuspended in RNase-free water. The successful removal of 18S and 28S rRNA 

from total RNA content was confirmed by 1.5% agarose gel electrophoresis. 

Capped mRNAs were quantified with use of the Agilent 2100 Bioanalyzer (Agilent 

technologies, Waldbronn, Germany).  

2.2.12 Statistical analysis 

 

All experiments in this study were repeated at least four times and results 

are expressed as mean ± SEM with significance measured using the Student’s t-

test (p < 0.05). 
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3.1 Abstract 

 

The mammalian target of rapamycin complex 1 (mTORC1) senses the 

availability of growth factors, nutrients, cellular energy level, and is actively 

involved in cellular transcription and translation processes. The present study was 

undertaken to identify proteins that specifically interact with mTORC1 to enable 

this crucial cell signaling hub to carry out its biological functions. Human T 

lymphocytes (CCRF-CEM) and human embryonic kidney (HEK293) cell lines were 

used to identify new interacting partners of mTORC1. Endogenous mTORC1 

along with its interacting proteins were purified using raptor specific antibodies, 

separated by 1DE, in-gel tryptic digested and identified by nano-LC ESI Q-TOF 

MS/MS analysis. In parallel, CCRF-CEM and HEK-293 cells were transfected with 

myc-tag raptor, myc-tag purified and identified by MS/MS analysis to validate the 

endogenous purification results. A total of 10 novel interacting proteins (hnRNP 

A2/B1, SRSF7, RP-P0, NCL, DNM2, GAPDH, 2-OADH, GLT25D1, PHB2, Edc4) 

were identified in both endogenous and myc-tag mTORC1 purifications. The 

selected proteins (Edc4, DNM2, and hnRNP A2/B1) were further immunoblotted 

with relevant specific antibodies to verify the interaction. These interacting proteins 

may offer new targets for therapeutic interventions in human diseases caused by 

disturbed mTORC1 signaling. 

3.2 Introduction 
 

The mammalian target of rapamycin (mTOR) is a serine threonine kinase 

that belongs to the phosphatidylinositol kinase-related protein kinase (PIKK) family 

which regulates cell growth, cell proliferation and cell survival [88,160]. It was first 

reported as TOR in Saccharomyces cerevisiae and then found in higher 

eukaryotes as the specific target of rapamycin, a macrolide antibiotic produced by 

a soil bacterium Streptomyces hygroscopicus [2,161]. Rapamycin inhibits mTOR 

by binding with its intracellular receptor, FK506 binding protein 12 (FKBP12), and 

interacts directly with the FKBP12-rapamycin binding (FRB) domain of mTOR 

[42,43]. mTOR kinase exists in two distinct multiprotein complexes, mTOR 

complex 1 (mTORC1), and mTOR complex 2 (mTORC2) [11]. Regulatory 
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associated proteins of mTOR (raptor) and rapamycin insensitive companion of 

mTOR (rictor) are mutually exclusive in mTOR complexes [11,32]. mTORC1 is a 

rapamycin sensitive protein complex involved in energy and nutrient sensing, 

translation, transcription, autophagy, and lipid biosynthesis [37,162-164]. mTOR 

kinase in mTORC1 executes a range of biological functions with the help of its 

interacting proteins, which act as a scaffolds for assembling the complex and 

recruiting substrates and regulatory proteins [11,32-36,60]. In this context, it is 

crucial to identify new interacting partners to which mTORC1 might be associated 

in vivo. 

In the present study a total of 10 novel interacting proteins were identified in 

the mTORC1 specific purifications using nano-LC ESI Q-TOF MS/MS analysis. In 

addition Edc4, DNM2, and hnRNP A2/B1 proteins signal were detected by 

immunoblotting in mTORC1 purified elute which confirm the mass spectrometric 

identification of mTORC1 specific purification, Furthermore insilico protein-protein 

interaction tools validate the data. These newly identified interacting partners of 

mTORC1 may help broaden our understanding of mTORC1 signaling in health 

and disease. 

3.3 Results 

3.3.1 Purification of endogenous mTORC1 

The endogenous mTORC1 complex along with its interacting proteins was 

immunopurified from the CCRF-CEM and HEK293 total cell lysates (TCLs) using 

raptor monoclonal antibody. Immunoprecipitated elutes were resolved on SDS-

PAGE and immunoblotted individually with mTOR, raptor and rictor antibodies. In 

parallel rictor IP elute was prepared and processed similarly to check for 

contamination of mTORC2 in raptor IP and vice versa. mTOR signal was detected 

in both the raptor and rictor IP which confirmed the successful co-

immunoprecipitation of mTOR complexes. Immunoblotting with raptor antibody 

detected raptor signal only in the raptor IP elute; whereas, no rictor signal was 

detected in the raptor IP elute, indicating successful mTORC1 specific purification. 

Likewise in the rictor IP elute rictor signal was detected while no raptor signal was 

detected in the rictor IP elute, which confirmed specific mTORC2 purification. 

Mock IP or antibody minus control showed no cross-reactivity of raptor containing 
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mTORC1 with the beads on immunoblot analysis. Raptor signal was not detected 

in either the last wash or in the raptor blocking peptide IP which provided further 

evidence of the specific raptor containing mTORC1 purification. Following 

immunoblotting confirmation of mTORC1 specific purification, the remaining IP 

elutes were resolved on 1-DE and stained with stained with Coomassie blue 

(Appendix Fig. 1A). The entire raptor IP and mock IP lanes from the Coomassie 

stained gel were excised and tryptic digested for protein identification. Proteins 

were identified by nano-LC ESI Q-TOF MS/MS analysis in four independent 

experiments each with CCRF-CEM and HEK293 cells respectively (Fig. 3.1 A & 

B). All proteins identified from the mock IP were considered background 

contaminants and subtracted from the list of proteins identified from the raptor IP 

elution.  

3.3.2 Purification of myc-tag raptor containing mTORC1  

The newly identified proteins of endogenous mTORC1 were further 

confirmed by virtue of the transfecting myc-tag raptor components of mTORC1 in 

HEK293 and CCRF-CEM cells, and the mTORC1 components were 

immunopurified using myc-tag monoclonal antibody conjugated beads. After 

immunoprecipitation, the samples were eluted in gylcine buffer and followed by 

immunoblotting (Fig. 3.2). After immunoblotting the remaining elutes were 

resolved on SDS-PAGE, silver stained and excised for mass spectrometry 

analysis (Appendix Fig. 1B). 
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Figure 3.1: Purification of endogenous mTORC1. 

(A) CCRF-CEM or (B) HEK293 cells were grown for 48 hours in complete medium and lysed in 

0.3% CHAPS buffer as described in methods section. Endogenous mTOR complexes were 

immunopurified from total cell lysates (TCLs) using raptor or rictor antibodies. IP elute were 

resolved on SDS-PAGE and immunobloltting with mTOR antibody. Detection of mTOR signal in 

both the raptor and rictor IP elutes reflected successful co-immunoprecipitation of mTOR 

complexes. Blotting with raptor antibody detected raptor signal in raptor IP elute while it was 

absent from the rictor and mock IP (negative controls) elutes. Rictor signal was not detected in the 

raptor IP, which confirmed the specific purification of mTORC1 and no contamination of mTORC2 

component. Furthermore no raptor signal was detected in the rictor IP elute. Similarly no raptor 

signal was detected in the raptor IP when raptor blocking peptide (BP) and last IP wash was used 

which further validating the purity of mTORC1 specific purification. The remaining elutes were run 

on 12.5% SDS-PAGE and stained with Coomassie blue. Protein bands were excised from the gel 

and tryptic digested for nano-LC ESI Q-TOF MS/MS analysis. All experiments were independently 

repeated four times in each cell line (CCRF-CEM cells: n=4, HEK293 cells: n=4) (IP: 

Immunoprecipitation, WB: Western blot). 
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Figure 3.2: Purification of myc-tag raptor component of mT  mTORC1. 

(A) CCRF-CEM or (B) HEK293 cells were transiently transfected with myc-raptor pRK5 plasmid 

using Lipofactamin LTX reagent. After 48 hours of transfection, cells were lysed and myc-tag 

raptor component of mTORC1 was immunoprecipitated with monoclonal myc-tag antibody 

conjugated beads. IP elutes were resolved on SDS-PAGE and immunblotted with myc-tag 

antibody. Myc-tag raptor signal was detected in the anti myc-tag IP elute while it was missing from 

the mock IP and last IP wash, which confirmed the immunoprecipitation of specific myc-tag raptor 

component of mTORC1. mTOR signal was detected in the anti myc-tag IP elute confirming the co-

immunoprecipitation of mTORC1. The remaining elutes were separated on 1-DE, silver stained, 

and gel bands were excised for nano-LC ESI Q-TOF MS/MS analysis (CCRF-CEM cells: n=2, 

HEK293 cells: n=2) (trans. TCLs: transfected total cell lysates, ft: flow through). 

3.3.3 Identification of novel interacting partner of mTORC1 using 
nano-LC ESI Q-TOF MS/MS. 

Proteins were identified by ESI Q-TOF MS/MS analysis in four independent 

experiments each in CCRF-CEM and HEK293 cells respectively. All the proteins 

identified from the mock IP were considered as background contaminants and 

subtracted from the list of proteins identified from the raptor IP elute. We identified 

total 10 proteins common in both endogenous and myc-tag mTORC1 purifications.  
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Table 3.1: Novel interacting partners of raptor component of mTORC1 
identified using LC ESI Q-TOF MS/MS analysis. 

Accession 
No. 

Protein Name Mass 

(kDa) 

a
Protein Functions  CCRF-CEM HEK-293 

Endogenous 
n=4 

Transfected 
n=2 

Endogenous 
n=4

 
Transfected 

n=2
 

RNA processing 

Q6P2E9 Enhancer of 
mRNA 

decapping 
protein 4 

151.5  mRNA decapping, 
catalyze the 
bridging reaction 
between Dcp1a and 
Dcp2 

√ √ √ √ 

P22626 Heterogeneous 
nuclear 

ribonucleoprotei
ns A2/B1 

37.5 mRNA splicing, 
transport and 
synthesis 

√ √ √ √ 

Q16629 Splicing factor 
arginine/serine 

rich 7 

27.3  Member of 
spliceosome 
complex, involved 
in the mRNA 
processing 

√ √ √ × 

Translation and transcription 

P05388 60S acidic 
ribosomal 
protein P0 

34.2  Translation, 
Ribosome 
biogenesis  

√ √ √ √ 

P19338 Nucleolin 76.5  Translation, 
Ribosome 
biogenesis, RNA 
processing 

√ √ √ √ 

Intracellular trafficking, secretion, and vesicular transport 

P50570 Dynamin 2 98 Endocytosis and 
exocytosis 

√ √ √ √ 

Carbohydrate transport and metabolism 

P04406 Glyceraldehyde
-3-phosphate 

dehydrogenase 

36 Has a key role in 
the energy 
production 

√ √ √ √ 

Q02218 2-Oxoglutarate 
dehydrogenase 
mitochondrial 

115.8  Catalyzes the 
decarboxylation of 
2-oxoglutarate to 
succinyl-CoA 

√ √ √ √ 

PTM, Protein turnover, and chaperones 

Q8NBJ5 Glycosyl 
transferase 25 

domain1 

71.5  Involved in  protein 
gylcosylation 

√ √ √ × 

Q99623 Prohibitin 2 33.2  Regulate cell 
growth and protein 
turnover 

√ √ √ √ 

a 
Protein function were assigned using protein databases [153,154].Proteins peptides were identified by ESI Q-TOF MS/MS 

analysis from the gel of specific mTORC1 purification prepared from CCRF-CEM and HEK293 cells. All experiments of 
endogenous mTORC1 purification were repeated four times in each cell lines (CCRF-CEM cells n=4, HEK293cells n=4). 
Similarly myc-tag purification of mTORC1 was repeated twice (CCRF-CEM cells n=2, HEK293 cells n=2) to ensure the protein 
identification from the endogenous mTORC1 purification. 
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We identified 10 proteins including (hnRNP A2/B1, SRSF7, RP-P0, NCL, 

DNM2, GAPDH, 2-OADH, GLT25D1, PHB2, Edc4) common in both type of 

purification after substracting the protein coming in the mock IP (negative) control 

(Table 3.1) while the spectral information for the newly identified proteins are 

provided in Appendix Table 1. 

3.3.4 Functional annotation of newly identified mTORC1 
interacting proteins 

 

The mTORC1 specific interacting proteins were identified by nano-LC ESI 

Q-TOF MS/MS analysis. The biological functions to the identified proteins were 

assigned using Kognitor and UniProt databases [153,154]. The highest number of 

interacting proteins falls in the category of RNA processing (30%) while least were 

in the vesicular trafficking category (10%) (Fig. 3.3). 

 

 

 

 

 

 

 
 
 

Figure 3.3: Functional annotations of newly identified mTORC1 interacting 

proteins. 

The mTORC1 specific interacting proteins were identified by nano-LC ESI Q-TOF MS/MS 

analysis. The biological functions to the identified proteins were assigned using Kognitor and 

UniProt [153,154] databases. The highest number of interacting proteins falls in the category of 

RNA processing (30%) while least was in the vesicular trafficking category (10%). 

3.3.5 Immunoblot confirmation of Edc4, dynamin 2 and hnRNP 
A2/B1 protein 

 
To validate protein identification on MS/MS, confirmatory immunoblotting 

for selected proteins were employed. We did immunoblotting for raptor, mTOR, 
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mTOR

Edc4

raptor

WB antibody

IP antibody:

mock

IP 

raptor 

TCLs

dynamin 2

rictor

hnRNP A2/B1

Edc4, dynamin 2 and hnRNP A2/B1 protein after IP with raptor antibody. mTOR 

signal was detected which showed successful co-immunoprecipitation of 

mTORC1. Raptor band was detected which reflects immunoprecipitation of 

mTORC1. In addition immunoblotting with rictor antibody detected no signal for 

rictor, which confirmed the mTORC1 specific purification and no contamination of 

mTORC2 component. Furthermore immunoblotting with raptor, mTOR, Edc4, 

dynamin 2 and hnRNP A2/B1 antibodies detected corresponding band for each 

protein, which further confirmed our mass spectrometric identifications (Fig. 3.4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Immunoblot confirmation of Edc4, dynamin 2, and hnRNP A2/B1 

proteins in human T lymphocytes.  

CCRF-CEM cells were lysed in CHAPS buffer and raptor containing component of mTORC1 were 

co-immunoprecipitated from the CCRF-CEM cell lysate using raptor antibody. mTOR signal in 

raptor IP elute reflected successful co-immunoprecipitation of mTORC1, while rictor signal was not 

detected in the raptor IP, which confirmed the specific purification of mTORC1. Detection of Edc4, 

dynamin 2, and hnRNP A2/B1 signal in the raptor IP confirmed the interaction of these proteins 

with raptor component of mTORC1.  

3.3.6 In silico prediction of the mTOR interaction with the newly 
identified partners 

 
LC ESI QTOF MS/MS analysis identified 10 noval interacting proteins 

associated with mTORC1. A web based interface GeneMANIA was used to 
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predict mlolecular interaction which finds association data based on protein and 

genetic interactions, pathways, co-expression, co-localization, protein domain 

similarity, and orthologs [155].  The highlighted nodes represent mTOR or RPTOR 

(raptor) interacting proteins. Among the newly identified proteins  EDC4, NCL, 

DNM2, HNRNPA2B1,OGDH showed direct interaction with mTOR, while SRSF7, 

RPLP0, GAPDH, PHB2 showed indirect interaction with mTOR or RPTOR (Fig. 

3.5). 

Figure 3.5: Biological interaction predictions of mTORC1 interacting 

proteins.  

A total of 10 novel mTORC1 interacting proteins were identified by LC-MS/MS analysis. A web 

based interface GeneMANIA was used to predict molecular interaction [155]. The highlighted 

nodes represent mTOR or RPTOR (raptor) interacting proteins. Among the newly identified 

proteins Edc4, NCL, DNM2, hnRNPA2/B1, and OGDH showed direct interaction with mTOR, while 

SRSF7, RPLP0, GAPDH, and PHB2 showed indirect interaction with mTOR or RPTOR. 

3.4 Discussion 
 

The flow of cellular functions depends largely on signaling pathways that are 

regulated by specific protein-protein interactions [165]. These interactions often 

involve assembly of large protein complexes containing many different protein 

kinases, their substrates, and scaffold proteins [38]. mTOR kinase  form two 

dynamic protein complexes, differ in their composition, regulation and functions 

[11,32]. A growing body of literature has reported new interacting partners of 
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mTORC1 [32,33,35,36,60]. Although recent approaches based on mass 

spectrometry are sufficient to identify interacting partners of multiprotein 

complexes [166]: a frequently encountered problem is caused by the  difficulty 

encountered in obtaining sufficient amounts of highly purified protein complexes. 

The present study employed an endogenous mTORC1 protein purification 

strategy using co-immunoprecipitation which is a rigorous method to validate the 

significance of protein interactions. In parallel, the myc-tag raptor component of 

mTORC1 pRK5 vector expression [32] in T lymphocytes and HEK293 cells was 

used to recover the raptor component of mTORC1 and associated interacting 

partners using affinity column and monoclonal myc-tag antibody conjugated with 

agarose beads. In this method the IP elute was relatively free from myc-tag 

antibody contamination as the agarose beads were covalently linked with myc-tag 

antibody. The specificity of these interactions were ensured by integrating 

appropriate purification controls. The co-purified elutes were resolved on 1-DE 

and the mTORC1 specific purification was confirmed by immunoblotting followed 

by nano-LC ESI Q-TOF MS/MS analysis to identify the proteins. In this study we 

report 10 novel interacting partners of mTORC1 which are involved in important 

cellular functions as revealed by the NCBI Kognitor and UniProt databases 

[153,154]. Moreover the biological interaction prediction tool further [155] indicated 

a potential for interaction of mTORC1 with the newly identified proteins. 

 

In the present study we identified three mRNA processing proteins, 

heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1), splicing factor 

arginine/serine rich 7 (SRSF7) and Edc4 as mTORC1 interacting partners. hnRNP 

A2/B1 is the major protein present in hnRNPs RNA binding complex [167]. hnRNP 

A2/B1 involved in mRNA processing and translation, and shuttles between the 

nucleus and cytoplasm [168]. Specific interactions of mTOR and S6K2 with 

hnRNPs are important in the regulation of cell proliferation [169]. SRSF7 is a 

member of spliceosome complex, involved in the mRNA processing and 

translation [170]. Splicing factor 2 (SF2/ASF) interacts both with the PP2A 

phosphatase and mTOR, and accelerates hyperphosphorylation of the eIF4E-

binding proteins (4E-BPs), thereby blocking 4E-BPs inhibitory activity on 

eukaryotic translation initiation factor 4E (eIF4E)  [171]. Edc4 is an important 
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protein involved in mRNA decapping which is an essential step in the mRNA 

degradation[146]. 

 

Two interacting proteins identified in the category of translation and 

transcription was 60S acidic ribosomal protein P0 (RPP0) and nucleolin (NCL). 

RP-P0 is a multifunctional protein required for efficient protein translation of the 

60S ribosome [172]. Recently the physical interaction of 60S ribosomal proteins 

was demonstrated with mTORC2 [173]. This interaction leads to the activation of 

mTORC2  in Hela cells [173]. mTORC1 has an important role in ribosome 

synthesis [174]. In this context RP-P0 association with mTORC1 could be 

important for ribosome biogenesis. NCL is a 76.6 kDa nucleolar phosphor-protein 

which is involved in ribosome biogenesis, transport, cell proliferation and cell 

growth [175]. Several structural domains in the NCL allow its interaction with 

different proteins [176]. It interacts with the FK506-binding proteins (FKBPs), a 

cellular receptor for rapamycin and regulator of NCL functions [177]. 

Phosphorylation of NCL on the serine and threonine residues is responsible for 

functional input of NCL in various biological processes [175,178] which make it an 

ideal candidate for mTOR interaction. Insulin induces the phosphorylation of 

nucleolin and increases ribosomal RNA transport [178]. mTORC1 is the crucial 

molecule in the regulation of ribosome biogenesis and is also stimulated by insulin 

and amino acids [3].  

 Dynamin 2 (DNM2), a large GTPase associated with vesicular trafficking 

[179] was identified as an interacting partner of mTORC1 [179]. DNM2 interacts 

and co-localizes with various proteins in the endomembrane compartments [180]. 

The localization of mTORC1 in the endoplasmic reticulum and the Golgi 

apparatus, and its role in the membrane trafficking has been demonstrated in both 

yeasts and in Drosophila [181-183]. DNM2 interaction with mTORC1 could help 

mTORC1 translocation into intracellular membrane compartments, where 

mTORC1 regulators reside [184]. 

In the category of carbohydrate transport and metabolism, both 2-

oxoglutarate dehydrogenase (2-OADH) and Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) were identified as interacting partners. 2-OADH is the 
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part of mitochondrial enzyme complex 2-oxoglutarate dehydrogenase complex (2-

ODHC), which catalyzes the decarboxylation of 2-oxoglutarate to succinyl-CoA in 

the tricarboxylic acid (TCA) cycle [185]. 2-OADC interacts with cofactors including 

lipoic acid to regulate cellular metabolism [185]. mTORC1 is implicated in 

glycolytic flux and energy sensing [174]. GAPDH has been considered a glycolytic 

enzyme with a central role in cellular energy production [186]. In addition its role in 

the regulation of the cytoskeleton, transcription, RNA transport, and vesicular 

transport has been previously described [187,188]. GAPDH interaction with rheb 

under glucose starved conditions negatively regulates the mTORC1 signaling, 

thereby allowing mTORC1 to control cell growth at the expense of glucose [189]. 

GAPDH interaction with mTORC1 might directly attenuate rheb access towards 

mTORC1 and thus inhibit mTORC1. 

 

We identified glycosyltransferase 25 family member 1 (GLT25D1) and 

prohibitin 2 (PHB2) as mTOR interacting proteins, involved in the post-translation 

modification, protein turnover, and chepeone functions. mTORC1 regulates 

biological processes by post-translational modification especially phosphorylation 

[162]. Glycosyl transferase is mainly co-localized in the endomembrane 

compartments [190], and glycosylation is important for growth factor activation of 

transmembrane receptors [191]. Recently, the Golgi phosphoprotein-3 (GOLPH3) 

involved in protein glycosylation has been reported to have implications in mTOR 

signaling [192]. PHB2 has a suggested role in the maintenance of mitochondrial 

morphology, and acts as a tumor and transcription repressor to regulate cell 

growth [193-195]. AKT, a positive regulator of cell growth interacts with PHB2 and 

inhibits the PHB2  mediated repression of MyoD expression, and promotes 

muscle differentiation [196].  

 

In general there are three possibilities for mTORC1 interactions with the 

newly identified interacting proteins: (a) these interacting proteins may act as a 

direct substrate of mTORC1 and phosphorylation of such proteins via mTORC1 

could be part of their regulatory mechanism[3], (b) the interacting proteins may 

bind to mTORC1 and enhance or inhibit the mTORC1 kinase activity[33,60], or (c) 

mTORC1 may compete with the inhibitor or activator of these proteins. 
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3.5 Conclusion 
 

In the present study we identified 10 new interacting proteins of mTORC1 

using both endogenous purification and exogenous myc-tag purification strategies. 

Functional understanding of these new interacting proteins may be helpful in 

providing targets for new therapeutic interventions for human diseases in which 

mTORC1 signaling may be perturbed.  
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4.1 Abstract 

 

The mammalian target of rapamycin complex 1 (mTORC1) is a rapamycin 

sensitive complex, and a key player in cellular transcription and translation 

processes.  Decapping of 5′ mRNA cap is an important control point in the mRNA 

turnover. In higher eukaryotes the decapping machinery essentially needs 

enhancer of mRNA decapping protein 4 (Edc4). Previously it has been reported 

that inhibition of mTORC1 increased the expression of enhancer of mRNA 

decapping proteins in yeast; however, no direct evidence exists regarding 

involvement of mTORC1 in the regulation of Edc4. The present study was 

undertaken to characterize the role of mTORC1 in the regulation of its newly 

identified interacting partner, Edc4. mTORC1 interaction with Edc4 was validated 

on immunoblotting in mTORC1 specific purifications prepared from human T 

lymphocytes (CCRF-CEM) and human embryonic kidney (HEK293) cells lysate. 

The interaction Edc4 with mTORC1 was further confirmed using co-

immunoprecipitation, and confocal immunoflourescence analysis. Incubation of 

cells with rapamycin increased the total expression of Edc4 but decreased its 

interaction with mTORC1. In addition rapamycin increased the rate of mRNA 

decapping activity and significantly decreased the amount of total serine 

phosphorylated Edc4 in the cells. The present study has for the first time 

highlighted the role of mTORC1 in mRNA decapping via its interaction with Edc4. 

4.2 Introduction 
 

The mammalian target of rapamycin (mTOR) kinase regulates cell growth, 

cell proliferation and cell survival [3]. mTOR kinase exists in two distinct protein 

complexes, mTOR complex 1 (mTORC1), and mTOR complex 2 (mTORC2) 

[11,197]. mTORC1 or raptor containing mTOR complex, a rapamycin sensitive 

protein complex involved in nutrient and energy sensing, translation and 

transcription [37,162]. mTOR kinase in mTORC1 perform a range of biological 

functions with the help of its interacting partners [11,32-36,60].  In this context, it is 

crucial to identify and characterize the new interacting partners of mTORC1. 
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Capping (5′ N7-methyl-guanosine (m7GpppN)) of mRNA is required for the 

integrity of newly synthesized mRNA [135]. It protects mRNA from exonucleolytic 

degradation and promotes the translation of most cellular mRNAs [139]. mTORC1 

is involved in the cap dependent translation of mRNA and regulates the eIF4E-

binding protein-1 (4E-BP1 ), an inhibitor of eukaryotic initiation factor 4E ( elF4E) 

[6]. eIF4E  is a member of the translation initiation complex eIF4F, protects the 5′ 

mRNA cap from decapping and recruits the translation machinery for efficient 

translation initiation [113]. mRNA decapping is a crucial control of mRNA turnover 

as decapping irreversibly removes the cap and promotes mRNA decay [140]. 

Decapping of mRNA is considered to take place in the processing bodies (P 

bodies), which are the cytosolic self assembled aggregations of messenger 

ribonuclear proteins (mRNPs) involved in mRNA turnover, RNA interference 

(RNAi), miRNA-mediated gene silencing and translation repression [139,141,142]. 

In higher eukaryotes, decapping requires Edc4 for catalytic complex 

formation between Dcp1a and Dcp2, which are two major enzymes of mRNA 

decapping complex [146]. Edc4 was originally identified as the autoantigen in 

Sjogren’s syndrome (a chronic autoimmune disease) patients sera [198]. Recently 

Edc4 was suggested  to be involved in miRNA-mediated translation repression 

[149]. Edc4 is a central component of P bodies and is essential for the integrity of 

P bodies [148]. The localization of decapping protein complex Dcp1a and Dcp2 in 

the P bodies is dependent on the presence of Edc4, as depletion of Edc4 blocks 

the accumulation of decapping enzymes in the P bodies [148,199,200]. mTORC1 

inhibition increases the expression of decapping proteins in yeast [150], however 

no evidence exists regarding involvement of mTORC1 in the regulation of Edc4.  

 

In the present study Edc4 was consistently identified in the mTORC1 

specific purifications. Edc4 interaction with mTORC1 was confirmed by reverse 

co-immunoprecipitation and confocal immunoflourescence analysis. The 

importance of mTORC1 and Edc4 interaction was studied using rapamycin 

treatment and mRNA decapping assay. The study may broaden our 

understanding about the biological functions of mTORC1 signaling. 
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4.3 Results 

4.3.1 Edc4 is an interacting partner of raptor containing 
component of mTORC1 

 

Edc4, a 151.5 kDa protein was identified in the mTORC1 specific 

purification using LC ESI Q-TOF MS/MS analysis. Consistent identification of 

Edc4 in the raptor co-purified elutes from the T lymphocytes and HEK293 

provided the initial evidence of Edc4 interaction with the raptor component of 

mTORC1. The observations were subsequently confirmed by immunoblotting the 

raptor co-purified elute individually with raptor and Edc4 antibody. A positive Edc4 

signal was detected in the raptor specific IP elution, which identified Edc4 as a co-

precipitating protein with the raptor component of mTORC1. Additionally the 

reverse co-immunoprecipitation with Edc4 antibody produced a protein band 

corresponding to raptor which provides additional evidence for their interaction 

(Fig. 4.1A).  

 

To further verify the potential interaction of Edc4 with the raptor component 

of mTORC1, myc-tag raptor pRK5 plasmid was transiently transfected in CCRF-

CEM and HEK293 cells. Myc-tag raptor component of mTORC1 was specifically 

immunopurified with monoclonal myc-tag antibody. The myc-IP and mock IP 

elutes were separated on SDS-PAGE followed by immunoblotting. A strong signal 

of myc-raptor was detected in myc-IP. This confirmed successful transfection of 

myc-raptor pRK5 plasmid and the immunoprecipitation of the myc-raptor 

component of mTORC1. Immunoblotting with Edc4 antibody revealed signal of 

Edc4 in the myc-IP elutes (Fig. 4.1B). Edc4 presence in the endogenous and 

exogenous purification of mTORC1 established Edc4 as a new interacting partner 

of mTORC1. 
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Figure 4.1: Edc4 interacts with mTORC1.  

(A) CCRF-CEM cells were lysed in CHAPS buffer and Edc4 or raptor containing component of 

mTORC1 were co-immunoprecipitated from the CCRF-CEM cell lysate using Edc4 and raptor 

antibody respectively. Immunoblotting with raptor antibody confirmed the immunoprecipitation of 

raptor, while blotting with Edc4 antibody detected corresponding Edc4 signal in the raptor IP elute 

confirming co-precipitation of Edc4 with raptor. Furthermore in the Edc4 IP elute, raptor signal was 

detected, which reflected that Edc4 co-precipitating the raptor and confirming Edc4 interaction with 

raptor component of mTORC1. (B) CCRF-CEM cells and HEK293 cells were transiently 

transfected with myc-tag raptor pRK5 plasmid. After 48 hours of transfection, the cells were lysed 

in CHAPS buffer. Myc-tag raptor component of mTORC1 was specifically immunoprecipitated with 

myc-tag monoclonal antibody conjugated with agarose beads, separated on SDS-PAGE and 

immunblotted. Myc-tag antibody detected myc-tag raptor signal in the anti myc-tag IP elute while it 

was missing from the mock IP, which confirmed the immunoprecipitation of specific myc-tag raptor 

component of mTORC1. In addition, immunblotting with Edc4 detected raptor signal in the myc-tag 

IP elutes prepared from both cell lines that showed substantial association of Edc4 with myc-tag 

raptor component. 

4.3.2 Edc4 interacts with mTORC1 but not with mTORC2  
 

Next we investigated whether Edc4 is associated with only raptor 

containing mTORC1 or interacts with rictor containing mTORC2 as well. mTOR 

complexes from CCRF-CEM cell lysates were immunopurified with raptor and 

rictor antibodies. Raptor and rictor signals in the corresponding IP elutes were 
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confirmed to check the specificity of our purifications. A signal for mTOR was 

found in both raptor and rictor IPs which indicated co-immunoprecipitation of 

mTOR complexes. Immunoblotting with Edc4 specific antibody detected a band 

corresponding to Edc4 in the raptor IP elute; however, no signal for Edc4 was 

detected in the rictor IP elution (Fig. 4.2). This indicated that Edc4 was only 

associated with the raptor containing component of mTORC1 and that it did not 

interact with mTORC2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Edc4 interacts with mTORC1, but not with mTORC2. 

CCRF-CEM cells were lysed in CHAPS buffer and endogenous mTOR complexes were 

immunopurified using raptor and rictor antibodies respectively. The IP elutes were resolved on 

SDS-PAGE and immunoblotting with mTOR antibody which detected corresponding signal in both 

the IPs. In IP elute blotted with anti-raptor antibody, no rictor signal was detected which described 

the specific mTORC1 purification while a strong raptor signal was noticed. In the rictor IP elute no 

raptor signal was detected which reflecting specific mTORC2 purification, while a prominent rictor 

signal was detected. After confirmation of specific mTOR complex purification, immunoblotting with 

Edc4 antibody detected Edc4 signal only in the raptor IP elute while no Edc4 signal was detected 

in the rictor IP elute confirming that Edc4 is only associated with mTORC1 but not with the 

mTORC2.  

4.3.3 Edc4 co-localized with raptor containing mTOR complex 

 

Endogenous and myc-tag purification of mTORC1 and co-

immunoprecipitation assays provided considerable evidence that Edc4 is an 

mTORC1 associated protein. Immunofluorescence analysis of Edc4 (green) and 
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raptor (red) was employed to view the co-localization of Edc4 with raptor 

component of mTORC1. The merged yellow color reflects co-localization of Edc4 

and raptor inside and outside the P bodies (Edc4 is P bodies marker) [200] (Fig. 

4.3). The images were processed to determine the extent of co-localization 

quantitatively using Image J WCIF software. The graphical display as a scatter 

plot of raptor and Edc4 pixels appeared as yellow hues near the centre of the XY 

axis. Statistical correlation using Pearson's method [201,202] for two independent 

experiments showed coefficients of 0,863 and 0.754 respectively which suggested 

a high degree of co-occurrence of the raptor component of mTORC1 and Edc4. 

Similarly the Mander’s overlap coefficients (R) [203] were 0.937 and 0.876 

respectively, indicating a high co-localization pixels representing raptor and Edc4. 

Furthermore the Mander’s co-localization coefficients for channel 1 (M1) were 

0.889 and 0.999 from two consecutive experiments, describing the maximum 

number of raptor pixels co-localized with Edc4. The channel 2 co-localization 

coefficients (M2) were 0.946 and 1.000 respectively which represents the 

contribution of Edc4 channels co-localizing with raptor component of mTORC1 

(Fig. 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

55 

raptor Edc4 DAPI merge zoom scatter plot

5µm 

Figure rp R M1 for raptor M2 for Edc4

A 0.863 0.937 0.889 0.946

B 0.754 0.876 0.999 1.000

B

A

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Edc4 showed high co-localization with raptor component of 

mTORC1. 

CCRF-CEM cells were grown on 8 chamber well slide for 48 hours, fixed, permeabilized. And 

rabbit anti-Edc4 and mouse anti-raptor were added to the permeabilized cells and incubated 

overnight. Fluorescent signals were detected using labelled anti-mouse Cydye3 and anti-rabbit 

Alexa Fluor 488. Raptor and Edc4 (P bodies marker) co-localization in CCRF-CEM cells were 

analyzed using Axiovert 200M confocal microscope and processed with Image J software. Overlay 

images with yellow region showed high co-localization of raptor (red) with Edc4 (green) inside and 

outside the P bodies (arrows indicated P bodies). The scatter plot of the individual pixels was 

obtained from the two source images. The threshold levels of red channel signals on x-axis and 

green channel signals on y-axis determined the overlapping yellow marked region. Quantitative co-

localization by employing statistical Pearson's correlation coefficient (rp (-1 ≤ rp ≤ 1)) measured the 

co-occurrence of the Edc4 and raptor pixels and showed high co-localization pixels between these 

two proteins. Furthermore Mander’s overlap coefficient (R (0 ≤ R ≤ 1)) illustrated increased 

overlapping of Edc4 and raptor while co-localization coefficients M1 and M2 demonstrated 

maximum co-localized pixels of interest of one channel with other channel. At least 30 cells were 

observed per experiment (Scale bars = 5μm) and experiments were repeated five times (two 

experimental replicates A and B are shown).  
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4.3.4 Both leucine starvation and rapamycin treatment enhanced 
total Edc4 protein expression 

 

Both leucine starvation and rapamycin treatment are known to inhibit the 

mTORC1 signaling [32]. In order to check the influence of leucine or rapamycin on 

Edc4 expression, T lymphocytes cells were first leucine starved for two hours and 

then stimulated for 30 minutes with leucine or treated 1 hour with rapamycin. Both 

leucine starvation and rapamycin treatment significantly increased the expression 

of Edc4 as observed by immunoblotting in contrast results with leucine stimulated 

cells or cells grown in complete (regular) medium (Fig. 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Leucine starvation and rapamycin treatment increased the Edc4 

protein expression. 

CCRF-CEM cells were grown in complete RPMI-1640 medium and were leucine starved for two 

hours followed by leucine stimulation (2 mM) for 30 minutes or treated with rapamycin (0.1 µM and 

2.5 µM) for one hour. Immunoblotting with Edc4 antibody detected significant change in the Edc4 

expression in leucine starved and rapamycin treated cells as compared to control (without 

starvation). β tubulin  was used as a loading control. The representative data is mean ± SEM of at 

least five independent experiments and the significance was determined by Student
’
s t-test (*= p < 

0.05). 
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4.3.5 Edc4 and raptor interaction was rapamycin sensitive and 
rapamycin reduced the amount of total serine phosphorylated 
Edc4 

In order to explore the kind of interaction between Edc4 and raptor 

component of mTORC1, T lymphocytes were treated with rapamycin and DMSO 

for one hour. Cells were then lysed with CHAPS buffer followed by mTORC1 

specific purification with raptor antibody. Immunoblotting showed almost equimolar 

amount of raptor immuoprecipitation in rapamycin and DMSO treated samples; 

however, immunblotting with Edc4 antibody detected only a weak Edc4 signal in 

the rapamycin treated samples as compared to DMSO treated samples. This 

suggests that the Edc4 and raptor interaction was decreased by rapamycin 

inhibition of mTORC1 (Fig. 4.5A). We further hypothesized that since mTOR is a 

serine threonine enzyme [38]. It might regulate Edc4 via phosphorylation. To 

understand the involvement of mTORC1 in Edc4 regulation, cells were treated 

with rapamycin and DMSO followed by specific immunoprecipitation of Edc4. The 

Edc4 IP samples were immunoblotted with phosphoserine antibody. Decrease in 

the phosphorylated Edc4 serine was detected in the samples following rapamycin 

treatment (Fig. 4.5B). These results provide the first evidence that mTORC1 

regulation of Edc4 is through phosphorylation of serine sites on Edc4. Moreover 

using phosphosite prediction tool (Net.Phos) [204], Edc4 protein sequence 

analysis revealed 86 serine, 11 threonine and 4 tyrosine phosphorylation sites 

which support our result that Edc4 is a serine rich protein (Fig. 4.6). 
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Figure 4.5: Edc4 and raptor interaction is rapamycin sensitive and 

rapamycin reduce the Edc4 phosphorylation on serine residues. 

(A) CCRF-CEM cells were treated with rapamycin and DMSO for one hour followed by cell lysis in 

CHAPS buffer. Endogenous mTORC1 was specifically immunoprecipitated using raptor antibody 

and resolved on SDS-PAGE. Immunoblotting with raptor antibody showed raptor 

immunoprecipitation in stoichometric ratio in both DMSO and rapamycin treated samples. Further 

blotting with Edc4 antibody revealed decreased in Edc4 signal in the rapamycin treated as 

compared to DMSO (n=4). 

(B) CCRF-CEM cells were treated with rapamycin and DMSO for one hour and then lysed the 

cells. Edc4 was specifically immunoprecipitated using Edc4 antibody and the IP elute was resolved 

on SDS-PAGE. Immunoblot analysis with phosphoserine antibody detected decrease 

phosphorylation signal in the rapamycin treated sample as compared to DMSO while blotting with 

total Edc4 detected almost equal band intensity in both rapamycin and DMSO treated samples. 

The representative data are mean ± SEM of at least four independent experiments and the 

significance was determined by Student
’
s t-test (*= p < 0.05).  

 
 



   

59 

Figure 4.6: Predicted phosphorylation sites in Edc4. 

In silico Edc4 protein sequence analysis revealed Edc4 as highly phosphorylated protein. Total 86 

serine, 11 threonine and 4 tyrosine phosphorylation sites were predicted in Edc4 protein sequence 

where blue, green and red spectral lines represent serine, threonine and tyrosine respectively. 

There are 16 consecutive serine phosphorylation sites near 600 sequence position (NetPhos 2.0 

server [204]). 

4.3.6 Rapamycin enhanced the mRNA decapping activity 

 

After observing the rapamycin induced decrease in Edc4 interaction with 

raptor as well as total serine phosphorylated Edc4, we hypothesized that 

mTORC1 inhibition may lead to increase mRNA decapping activity. To evaluate 

this, T lymphocytes were treated with rapamycin and 5′-capped mRNA was 

specifically isolated and quantified. A significant decrease in the total amount of 5′-

capped mRNA was observed following rapamycin treatment as compared to 

control, indicating that decapping activity was increased as a result of rapamycin 

induced mTORC1 inhibition (Fig. 4.7). 
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Figure 4.7: Rapamycin enhances the mRNA decapping activity. 

CCRF-CEM cells were treated with either rapamycin or vehicle control for one hour and (A) total 

RNA was extracted from the cells by chloroform/isopropanol precipitation method. Capped mRNAs 

were specifically isolated from total RNA using terminator exonuclease and lithium chloride 

precipitation. The removal of 18S and 28S rRNA from 5´-capped mRNA content was confirmed by 

1.5% agarose gel electrophoresis. (B) After confirmation of 5´-capped mRNA purity, the total 5´-

capped mRNA was run on the microchip gel and quantified by Agilent 2100 Bioanalyzer. (C) Bar 

diagram showed representation of five independent experiments (mean ± SEM), while significance 

was determined by Student
’
s t-test (**= p < 0.005).  
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4.4 Discussion 

In an attempt to identify novel interacting partners of mTORC1, we identified 

Edc4 protein as a new interacting partner of mTORC1. Edc4 is an important 

member of the mRNA decapping enzyme complex and has a suggested role in 

miRNA-mediated translational repression [146,149]. Edc4 is an essential 

constituent of P bodies and accelerates the mRNA decay process [148]. In human 

cells Edc4 exists as a multimeric protein having multiple WD40 (Trp-Asp) repeats 

at the N-terminus [148]. These repeats are known as protein-protein interaction 

domain and serve as a scaffold for building protein complexes [92]. In some cases 

they play a role in recruiting phosphorylated proteins to the enzyme active sites 

[205]. The WD-40 repeat domains of raptor and GβL, which are the known 

interacting proteins of mTORC1, are likely to play important role in mTORC1 

functions [32,33]. The existence of WD40 repeats in the Edc4 might be involved in 

its interaction with mTORC1. The C-terminus region of Edc4 is conserved and 

responsible for its localization in the P bodies [200]. Rapamycin, an mTORC1 

specific inhibitor, modulates mRNA turnover by increasing the expression of 

decapping protein in S. Cerevisiae. This reflects the involvement of mTOR 

signaling in mRNA degradation [150]. In the present study, Edc4 was identified in 

the mTORC1 specific endogenous purification as well as in the myc-tag pulldown 

of mTORC1. The Edc4 signal was only detected in mTORC1 purification while it 

was absent from the mTORC2 specific purifications. Therefore, our experimental 

evidence suggests that Edc4 is associated with mTORC1 and might not interact 

with mTORC2 loop of mTOR signaling pathway.  

We further found that the raptor component of mTORC1 co-localized with 

Edc4 in the cytoplasm and in the cytosolic P bodies. In P bodies, mRNAs are 

either degraded, or stored for return to translation [139]. Edc4 is the key 

component of P bodies and is even used as marker for P bodies localization 

[148,200]. A cap binding protein eIF4E and 4E-transporter (4E-T), a negative 

regulator of eIF4E, co-localized in the P bodies [206]. eIF4E is the potential target 

for 4E-BP1 inhibitory action. mTORC1 phosphorylates 4E-BP1, and  prevents 4E-

BP1 eIF4E binding to eIF4E which allows eIF4E to take part in the translation 

initiation process [29]. We hypothesize that the presence of mTORC1 within the P 
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bodies might allow the transition of a stored mRNA to a translationally competent 

state or regulate mRNA decapping by interacting with Edc4 in the P bodies; 

however, this possibility needs further investigation. Quantitative co-localization of 

Edc4 with the raptor component of mTORC1 revealed a significant extent of co-

occurrence between two different fluorescent labels with separate emission 

spectra. This suggests that the co-localized proteins are in very close proximity or 

it might even reside at the same physical location[201]. Co-localization of raptor 

(red pixels) and Edc4 (green pixels) in the scatter plots exhibited high co-

localization between raptor component of mTORC1 and Edc4. 

Furthermore, Pearson's correlation coefficients (rp) were used to measure 

the extent of co-occurrence between two fluorescence channels. Pearson's 

coefficients range from -1 to 1, with a value of -1 indicating a total lack of overlap 

between pixels from the two images, and a value of 1 representing perfect 

correlation [201]. The Pearson's correlation coefficients demonstrated a high co-

localization between Edc4 and raptor counterpart of mTORC1. Mander’s overlap 

coefficients (R) were calculated which is insensitive to fluorochrome concentration 

fluctuations and photobleaching [201]. This coefficient ranges between 0 and 1, 

with 1 being highly co-localized pixels and zero being the least co-localized pixels 

[203]. Mander’s overlap coefficients confirmed a high degree of overlapping pixels 

between Edc4 and raptor protein.  The Mander’s co-localization coefficients for 

channel 1 (M1) and channel 2 (M2) were calculated to describe the contribution of 

both channels in the co-localization. Our results showed a high number of Edc4 

pixels co-localize with raptor inside and outside the P bodies. 

In order to elucidate the mechanism involved in the Edc4 and mTORC1 

interaction, we used leucine, a known stimulator of mTORC1 mediated translation 

[32,90]. Nutrient starvation inhibits the mTOR signaling and causes an increased 

turnover of a subset of mRNA in yeast [150]. Leucine starvation increased mRNA 

and protein expression of transcription factors [207]. In our experiments, leucine 

starvation induced Edc4 expression as compared to leucine stimulated and 

complete medium supplementation. This indicates that regulation of mTORC1 

kinase activity by leucine [32] increased Edc4 expression.  
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To gain further insight into the mTORC1 involvement in the regulation of 

Edc4, rapamycin, a specific inhibitor of mTORC1 was employed. Rapamycin 

treatment, which should mimic the nutrient starved condition, also modulated Edc4 

expression providing convincing evidence of mTORC1 involvement in the 

regulation of Edc4. These observations are in the line with previous studies where 

rapamycin was reported to increase the expression of decapping proteins and 

mRNA turnover [150,208]. We further demonstrated that the mTORC1 inhibition 

induced by rapamycin decreased mTORC1 interactions with Edc4. One possible 

explanation is that interaction of the raptor component of mTORC1 with Edc4 

might be responsible for control of Edc4 activity in the mRNA decapping process. 

This mTORC1 interaction is decreased by rapamycin treatment and thus more 

Edc4 is available to take part in the mRNA decapping process. 

The Edc4 is a phospho-protein with 86 serine, 11 threonine and 4 tyrosine 

predicted phosphorylation sites (NetPhos 2.0 server [204]. In total 29 

phosphorylation sites including 19 phosphoserine, 3 phosphotyrosine, and 7 

phosphothreonine (Phosphosite server [209] of yet unknown functional 

significance have been confirmed by mass spectrometric analysis. The mTOR is a 

well-characterized serine threonine kinase complex while Edc4 is a serine rich 

protein which has a stretch of 16 consecutive serine rich residues [148]. Thus 

Edc4 could be a target for various kinases including mTOR. To establish the 

involvement of mTORC1 in Edc4 regulation, we examined the effect of rapamycin 

treatment on the phosphorylation status of Edc4. A significant decrease was 

observed in total serine phosphorylated Edc4 protein signal after rapamycin 

treatment which indicated mTORC1 kinase role in Edc4 regulation. While 

investigating whether rapamycin had any effect on the total amount of 5´-capped 

mRNA in cell, we observed a substantial decrease in the 5´-capped mRNA 

associated with rapamycin treatment. These findings strongly suggest a regulatory 

role of mTORC1 in the total amount of 5´-capped mRNA in cells as a result of 

decreased cellular mRNA decapping activity. Based on these results, we attempt 

to speculate that mTORC1 interacts with Edc4 to keep its expression on basal 

levels by inactivating Edc4 through serine phosphorylation. We suggest that 

phosphorylated Edc4 would no longer be available for mRNA decapping activity. 

We hypothesize that mTORC1 inhibition by rapamycin results in an increased 
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amount of dephosphorylated Edc4, and consequently higher cellular decapping 

activity and less total 5´-capped mRNA in the cell. Further studies might broaden 

our understanding about the mTORC1 interplay in the mRNA decapping. 

4.5 Conclusion 
 

In the present study Edc4 was identified as new interacting partner of 

mTORC1 using both endogenous purification and exogenous myc-tag purification 

strategies. mTORC1 inhibition by rapamycin, and co-localization analysis provided 

additional evidence for Edc4 and mTORC1 interactions. Modulation of Edc4 

expression and mRNA decapping after rapamycin treatment suggests mTORC1 

involvement in Edc4 regulation. Decreased in the phosphorylation of Edc4 after 

mTORC1 inhibition suggests a role for mTORC1 in the decapping process. These 

findings highlight the role of mTORC1 in the mRNA decapping via its interaction 

with Edc4. Further studies are required to provide a more complete understanding 

of the biological interplay between mTORC1 signaling and the mRNA decapping 

process.  
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5. Fetal calf serum heat inactivation and 
lipopolysaccharide contamination influence the 
human T lymphoblast proteome and 
phosphoproteome  

 

Hazir Rahman1, 2, Muhammad Qasim1,2, Michael Oellerich1, Abdul R Asif1 

 

1. Department of Clinical Chemistry, University Medical Centre, Goettingen, 

Germany. 

2. Department of Microbiology, Kohat University of Science and Technology, 

Kohat, Pakistan. 

 

As a pretext with mTORC1 proteomics in CCRF-CEM cells, this study was 

conducted to investigate the effect of FCS heat inactivation and 

lipopolysaccharide contamination on the proteome and phosphoproteome of 

CCRF-CEM cells. The findings of the present study were published in th journal of  

Proteome Science 2011, 9:71 doi:10.1186/1477-5956-9-71. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

66 

5.1 Abstract  
 

The effects of fetal calf serum (FCS) heat inactivation and bacterial 

lipopolysaccharide (LPS) contamination on cell physiology have been studied, but 

their effect on the proteome of cultured cells has yet to be described. This study 

was undertaken to investigate the effects of heat inactivation of FCS and LPS 

contamination on the human T lymphoblast proteome. Human T lymphoblastic 

leukaemia (CCRF-CEM) cells were grown in FCS, either non-heated, or heat 

inactivated, having low (<1 EU/mL) or regular (<30 EU/mL) LPS concentrations. 

Protein lysates were resolved by 2-DE followed by phospho-specific and silver 

nitrate staining. Differentially regulated spots were identified by nano LC ESI Q-

TOF MS/MS analysis. 

 

A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA) were up-regulated 

when CCRF-CEM cells were grown in media supplemented with heat inactivated 

FCS (HE) as compared to cells grown in media with non-heated FCS (NHE). Six 

proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN) displayed a differential 

phosphorylation pattern between the NHE and HE groups. Compared to the low 

concentration LPS group, regular levels of LPS resulted in the up-regulation of 

three proteins (SYBF, QCR1, and SUCB1). 

 

The present study provides new information regarding the effect of FCS heat 

inactivation and change in FCS-LPS concentration on cellular protein expression, 

and post-translational modification in human T lymphoblasts. Both heat 

inactivation and LPS contamination of FCS were shown to modulate the 

expression and phosphorylation of proteins involved in basic cellular functions, 

such as protein synthesis, cytoskeleton stability, oxidative stress regulation and 

apoptosis. Hence, the study emphasizes the need to consider both heat 

inactivation and LPS contamination of FCS as factors that can influence the T 

lymphoblast proteome.  
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5.2 Introduction 

 

Fetal calf serum (FCS) is a complex nutritional supplement that is routinely 

used in cell culture media [210,211]. Along with the growth factors, FCS contains 

several complement proteins [212-214]. Proteins of the complement system play a 

central role in innate immunity [215] and when present in cell culture media, they 

can influence immunological assays [216,217]. Heat inactivation of serum at 56°C 

for 30 minutes is used to inhibit the haemolytic activity of serum by decreasing the 

titer of heat labile complement proteins [218]. There are conflicting reports 

regarding the significance of FCS heat inactivation before its use in cell culture 

medium. Several studies have reported that heat inactivation of serum modifies 

growth factor content and increases cell proliferation [219,220]. However,  Leshem 

and co-workers reported that heat inactivation of serum did  not influence 

lymphocyte functions at least  in in vitro studies [221]. 

 

Bacterial lipopolysaccharide (LPS) is an inevitable contaminant of serum 

used in cell culture medium. LPS acts via the Toll-like receptor (TLR) complex, 

which transduces the LPS signal across the plasma membrane and triggers 

downstream signaling, leading to the secretion of pro-inflammatory cytokines and 

induction of complement pathways [222-224]. Protein phosphorylation is crucial 

for gene regulation, cell growth and homeostasis [225,226]. LPS influences 

proteins by altering their phosphorylation status through activation of various 

kinases e.g., p70 S6 kinase [4]. The p70 S6 kinase is the downstream effector of 

the mammalian target of rapamycin complex 1 (mTORC1), an important regulator 

of cell growth, proliferation, protein synthesis and cell survival [227,228]. 

Analogous to the effects of FCS heat inactivation, there are contradictory findings 

regarding the effect of LPS concentrations on the physiology of cultured cells. 

Some research groups have reported a direct influence of LPS on cellular 

physiology [229-231], while others have not found any detectable effect on the 

growth of various cell lines including WI-38, 3T3 and CHO even after using LPS 

concentrations up to 100 EU/mL [224,232-234]. The heat inactivation procedure 

itself exerts no deactivating effect on LPS [235]. 
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Cell cultures are routinely used to conduct important biological studies. 

Often, studies have used varying culture conditions with respect to FCS heat 

inactivation, or poorly documented LPS concentrations in cell cultures, while not 

acknowledging their possible effects on the proteome of the cultured cells. The 

present study was designed to determine the effect of FCS heat inactivation and 

the concentration of LPS in serum on cultured human T lymphoblastic leukaemia 

cells employing a proteomic and phosphoproteomic approach.  

5.3 Methods 

5.3.1 Reagents   

 

RPMI-1640, FCS containing LPS concentrations of either <1 EU/mL (<0.1 

to 0.2 ng/mL) or <30 EU/mL (<3 to 6 ng/mL), Dulbecco’s phosphate buffer saline 

(PBS), penicillin and streptomycin were obtained from PAA Laboratories, Colbe, 

Germany. Urea, thiourea, dithiothreitol (DTT), trypsin, triflouroacetic acid (TFA), 

acitonitrile (ACN) and ammonium bicarbonate (AMBIC) were from Sigma-Aldrich, 

Steinheim, Germany. CHAPS buffer was from AppliChem, Darmstadt, Germany, 

and ampholeytes, protein assay reagents, Immobilized pH gradient strips (IPG 

strips) were provided by Bio-Rad, Munich, Germany. Protease and phosphatase 

inhibitor cocktail were from Roche, Mannheim, Germany. Bromophenol blue and 

Tris base were from Carl Roth, Karlsruhe, Germany, and sodium dodecyl sulfate 

(SDS) was from Serva, Heidelberg, Germany. Glycerin, potassium ferricynaide 

and sodium thiosulfate were from Merck, Darmstadt, Germany and formic acid 

from BASF, Ludwigshafen, Germany. Superoxide dismutase 2 (SOD2) antibodies 

was a gift from Dr. Dihazi, UMG, Goettingen, Germany. β-tubulin antibody was 

from BioVendor, Heidelberg, Germany and antibodies to HRP labelled anti-mouse 

secondary antibodies were from Bio-Rad, Munich, Germany.  

5.3.2 Cell cultures  

 
Human T lymphoblastic leukaemia cells (CCRF-CEM) were purchased 

from DSMZ (German collection of microorganisms and cell cultures, 

Braunschweig, Germany). Cells were grown in 75 cm2 culture flasks (Sarstedt, 

Numberecht, Germany) in RPMI-1640 medium containing L-glutamine, 10% FCS, 



   

69 

100,000 U/L penicillin and 100 µg/L streptomycin, in 95% humidity and 5% CO2 

conditions at 37°C.  

5.3.3 Heat inactivation and LPS treatment of cultured cells  

 

FCS was heated at 56°C for 30 minutes before adding it to the RPMI-1640 

medium. CCRF-CEM cells were grown in RPMI-1640 medium supplemented 

either with (a) FCS without heat inactivation and a normal concentration of LPS 

(NHE), (b) FCS with heat inactivation containing a normal concentration of LPS 

(HE), (c) FCS without heat inactivation having a low concentration of LPS (NHL), 

or (d) heated FCS with low concentration of LPS (HL). The cells were adapted in 

RPMI-1640 medium supplemented with four different FCS concentrations for at 

least five passages before starting the first harvest. The cells were grown to a 

density of 0.25 x 106 cells/mL  under recommended conditions i.e., 37°C, 95% 

humidity, 20% O2, 5% CO2 and the medium was changed every second day. All 

experiments were repeated six times. 

5.3.4 Cell lysis and protein estimation 

 

Cells were washed with ice cold PBS and lysed in lysis buffer (7 M urea, 2 

M thiourea, 4%  CHAPS, 2% ampholytes [pH 3-10], 1% DTT, 1% protease 

inhibitor and 1%  phosphatase inhibitor cocktail). Protein concentration was 

measured as described by Bradford (1976) using serum albumin as a standard 

[236]. 

5.3.5 Sample preparation and two-dimensional gel 
electrophoresis (2-DE) 

 

2-DE was performed as described by Gorg et al [237]. Briefly, a 160 µg 

protein sample was diluted in rehydration buffer (7 M urea, 2 M thiourea, 4% 

CHAPS, 0.2 ampholytes [pH 3-10], 0.2% DTT and 0.25% bromophenol blue) were 

applied on immobilized pH gradient strip (IPG strip, 17 cm) with a non-linear pH 

range of 3-10 at room temperature overnight for passive rehydration. Isoelectric 

focusing was performed with a Bio-Rad Protean electrophoresis apparatus set to 

final 32000 Volts hour. The IPG strip was then equilibrated for 20 minutes in 
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equilibration buffer (6 M urea, 30% glycerol, 2% SDS, and 50 mM Tris-HCl [pH 

8.8]) containing DTT (10 g/L) and then subsequently immersed for 20 minutes in 

fresh equilibration buffer containing iodoacetamide (40 g/L). Following 

equilibration, proteins were separated by SDS-PAGE at a constant voltage of 100 

Volts using a 12.5% polyacrylamide separation gel at 4°C [238].  

5.3.6 Phospho-specific staining of 2-DE gels  

 

The gels were fixed twice in solution containing 50% methanol and 10% 

acetic acid for 45 minutes and washed three times in double distilled water for 15 

minutes each. Gels were incubated  in Pro-Q Diamond phospho-stain (Invitrogen, 

Paisley, UK) overnight in the dark at room temperature, destained three times for 

30 minutes in 20% ACN and 50 mM sodium acetate, followed by three washes in 

double distilled water for five minutes each. Gels were scanned using an imaging 

instrument (FLA -5100 Fuji photo film, Dusseldorf, Germany) at a wavelength of 

532 nm.  

5.3.7 Visualization of proteins and densitometric analysis 

 

Proteins were visualized by silver staining, as described by Blum et al 

[239], immersed in a fixative solution (50% methanol and 12% acetic acid) for one 

hour and washed in 50% and 30% ethanol for 20 minutes each. Gels were 

sensitized in 0.02% sodium thiosulfate for 60 seconds and washed three times in 

water. Staining was done in silver solution (0.2% silver nitrate, 0.026% 

formaldehyde) for 20 minutes, followed by three washings in water. All gels were 

developed in a solution containing 6% sodium carbonate, 0.0185% formaldehyde 

and 6% sodium thiosulfate until spots appeared and the reaction was stopped by 

adding the stop solution (50% methanol and 12% acetic acid). Gels were scanned 

(CanoScan 8400F, Canon, Krefeld, Germany) dried (Gel Drier, Bio-Rad, Munich, 

Germany), and subjected to densitometric analysis using the Delta2D software 

version 4.0 (DECODON, Greifswald, Germany). 
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5.3.8 Tryptic digestion 

 

Differentially expressed spots were excised and in-gel digested according 

to the method described by Shevchenko and colleagues [240]. Briefly, sliced gel 

spots were destained with 30 mM potassium ferricyanide and 100 mM sodium 

thiosulfate; followed by washing with 50% ACN and 100 mM AMBIC, which was 

then removed and dried in a vacuum centrifuge (UNIVAPO, uniEquip, Matinsried, 

Germany). The gel pieces were digested with trypsin digestion buffer (0.1 µg/µl 

trypsin, 1 M calcium chloride, and 1 M AMBIC) for 45 minutes on ice and then 

incubated overnight in digestion buffer without trypsin at 37°C. The peptides were 

extracted with increasing concentrations of ACN and TFA in several rounds and 

the extracted peptides were dried by vacuum centrifugation. Peptides were 

reconstituted in 0.1% FA for injection into a nano-flow HPLC. 

5.3.9 Peptide sequence analysis using nano LC ESI Q-TOF MS/M 
and database search 

 

Peptide samples (1µl) were introduced onto two consecutive C18-reversed 

phase chromatography columns (C18 pepMap: 300 µm x 5 mm; 5 µm particle 

size, and C18 pepMap100 nanoanalytical column: 75 µm x 15 cm; 3 µm particle 

size; LC Packings, Germering, Germany) using a nano-flow CapLC autosampler 

(Waters, Eschborn, Germany). Peptides were eluted with an increasing gradient of 

ACN and analyzed on a Q-TOF Ultima Global mass spectrometer (Micromass, 

Manchester, UK) equipped with a nanoflow ESI Z-spray source in the positive ion 

mode, as previously described [241]. The data were analyzed with the MassLynx 

(version 4.0) software. The peaklists were searched using the online MASCOT 

search engine (http://www.matrixscience.com) against the UniProt/SwissProt 

database release 15.15 (515203 entries, 181334896 elements). The data were 

searched against the database with following parameters: trypsin as enzyme for 

digestion; up to a maximum of one missed cleavage site allowed; monoisotopic 

mass value and with unrestricted protein mass; peptide tolerance ± 0.5Da and 

MS/MS tolerance ± 0.5Da. Proteins were identified on the basis of two or more 

http://www.matrixscience.com/
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peptides, whose ions score, exceeded the threshold, p < 0.05 which reflects the 

95% confidence level for the matched peptides.  

5.3.10 SDS-PAGE and Western blotting 

 

Samples were resolved on 12.5% SDS-PAGE and electro-transferred 

using a semi-dry transblot system (SD transblot, Bio-Rad, Munich, Germany) onto 

PVDF membrane (Millipore, Schwalbach, Germany) at 17 Volts in a transfer buffer 

(192 mM glycine, 10% methanol, and 25 mM Tris-HCl [pH 8.3]) for 30 minutes. 

The membrane was blocked with 5% skimmed milk powder prepared in TBS-T 

buffer (50 mM Tris–HCl [pH 7.5], 200 mM NaCl, and 0.05% Tween 20) for one 

hour at room temperature and washed three times with TBS-T buffer. Membrane 

was incubated with Anti-SOD2, or anti-β tubulin antibody prepared in 5% skimmed 

milk powder for overnight at 4°C. After three washes in TBS-T for five minutes 

each, the membrane was incubated in HRP labelled anti-mouse secondary 

antibody for one hour at room temperature. Followed by subsequent washes, the 

signal on the blot was detected using an enhanced chemiluminescent (ECL) 

reagent (GE Healthcare, Munich, Germany) and developed on Amersham 

Hyperfilm (GE Healthcare, Munich, Germany). Signal intensities from each 

immunoblot were quantified using Lab Image software version 2.71 (Kapelan, 

Leipzig, Germany).  

 

5.3.11 Statistical analysis 

 

Densitometric analysis of protein spots from silver and phospho-stained 

gel were performed using Delta2D software. Protein spots, which showed ≥1.5 

fold change in phosphorylation signal and consistently statistically significant (p < 

0.05) using the Student’s t-test in at least six independent 2-DE experiments, were 

selected for in-gel digestion and identified using ESI Q-TOF MS/MS analysis. 

Error bars in results represent mean ± SD. Immunoblot intensities were quantified 

using LabImage software (Kapelan, Leipzig, Germany). Immunoblotting was 

repeated at least three times and results were expressed as mean ± SD with 

significance measured using the Student’s t-test (p < 0.05). 
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5.4 Results  
 

Human T lymphoblastic cells were grown in RPMI-1640 medium 

supplemented either with (a) non-heat inactivated FCS  with normal 

concentrations of LPS (NHE), (b) heat inactivated FCS containing normal 

concentrations of LPS (HE), (c) non-heat inactivated FCS  with low concentrations 

of LPS (NHL), or (d) heat inactivated FCS with low concentrations of LPS (HL). 

The cells were grown for at least five passages, harvested and used for 2-DE. The 

2-DE gels were silver stained followed by phospho specific staining, and 

differentially regulated spots were excised, digested, and identified by nano LC Q-

TOF MS/MS analysis.  

5.4.1 Cells grown in medium with heat inactivated FCS 

 

Initially, we compared human T lymphoblastic cells grown in NHE and HE 

medium.  Four protein spots (numbers 4, 6, 7 and 10 in Table 5.1) were up-

regulated in the HE group. These were identified as eukaryotic translation initiation 

factor 3 subunit M (EIF3M), 26S protease regulatory subunit 7 (PRS7), 

proteasome subunit beta type-4 (PSB4) and alpha-soluble NSF attachment 

protein (SNAPA) respectively. Fig. 5.1A shows a representative silver stained gel 

with these differentially regulated spots marked, while figure 5.1B shows six 

replicates of two regulated spots (spots 8 and 10). Fig. 5.2A &B showed graphical 

display of regulated spots in silver stained gels 

  

Densitometric analysis of phospho-stained gels was performed to check the 

proteins exhibiting significant changes in phosphorylation signals by after heat 

inactivation of FCS. Fig. 5.3 shows a representative phospho-stained gel (Figure 

5.3A) and six replications (Fig. 5.3B) of two differentially phosphorylated proteins 

(TCTP, spot 16) and (ACTB, spot 17).In the HE group, six protein spots 12, 13, 

15, 16, 17 and 18  displayed higher phosphorylation signals, identified as T-

complex protein 1 subunit delta (TCPD), actin aortic smooth muscle (ACTA), 

nascent polypeptide-associated complex subunit alpha (NACA), translationally- 
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controlled tumor protein (TCTP), actin cytoplasmic 1 (ACTB) and methylosome 

subunit pICln (ICLN) respectively (Table 5.2, Fig. 5.4) 
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Figure 5.1: Silver nitrate stained 2-DE gel. 

(A) Proteins (160 µg) were separated in the first dimension using non-linear pH 3-10 gradient IPG 

strips (17cm, Bio-Rad), followed by second dimension on 12.5% SDS-PAGE. Consistently 

regulated spots were excised from silver stained gel after densitometric analysis for identification 

by Q-TOF MS/MS analysis. Spots marked on the gel showed differentially regulated proteins. 

Note: “P” refers to phospho protein spots also shown in figure 5.2  

(B) Two representative differentially regulated 2-DE spots (MOBKL1A, spot 8; SNAPA, spot 10) in 

non-heated FCS with low LPS (NHL) and in heated FCS with normal LPS concentration (HE) 

respectively. The spot IDs correspond to the listing in Table 5.1. The error bars represent mean ± 

SD (*= p < 0.05, **= p < 0.005) of six independent experiments. 
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Figure 5.2: Graphical display of selected proteins significantly regulated in 

CCRF-CEM cells in silver stained 2-DE gel. 

CCRF-CEM cell lysates were resolved on 2-DE and gels were stained with silver nitrate. 

Significantly regulated protein spots by densitometric analysis were identified my Q-TOF MS/MS 

analysis. (A) Bar graphs represent mean spot density for four proteins which were up-regulated in 

HE (heat inactivation with regular LPS) group as compared to NHE (No heat inactivation with 

regular LPS) control group. (B) Three proteins were up-regulated in HE (heat inactivation with 

regular LPS)   as compared to HL (heat inactivation with low LPS) group. Bar charts illustrate 

mean spot density. The error bars represent ± SD (*= p < 0.05, **= p < 0.005) of six independent 

experiments.  
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Figure 5.3: Phospho-specific florescence stained 2-DE. 

(A) Proteins were resolved on 2-DE and gels were stained by Pro-Q Diamond phospho-stain 

(Invitrogen) and then scanned (FLA -5100). The spots showing significant regulation after 

densitometry analysis were marked and identified by Q-TOF MS/MS analysis. 

 (B) Illustration of two representative 2-DE spots (TCTP, spot 16; ACTB; spot 17) in non-heated 

FCS with normal LPS (NHE) and in heated FCS with normal LPS (HE). The error bars represent 

mean ± SD (*= p < 0.05) of six independent experiments. 
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Figure 5.4: Proteins significantly regulated in CCRF-CEM cells in   phospho-

specific stained 2-DE gel.  

CCRF-CEM cell lysates were separated on 2-DE and gels were stained with phospho-specific 

stain. Differentially regulated protein spots by densitometric analysis were identified by Q-TOF 

MS/MS analysis. Bar graphs show mean spot density for four proteins which were up-regulated in 

HE (heat inactivation with regular LPS) group as compared to NHE (No heat inactivation with 

regular LPS) control group. The error bars represent ± SD (*= p < 0.05) of six independent 

experiments.  

5.4.2 Proteins with altered expression as a function of FCS-LPS 
concentrations  

 

We investigated the influence of LPS concentrations on the cell proteome 

by comparing the NHL with NHE groups, one protein, phenylalanyl tRNA 

synthetase beta chain (SYFB, spot 1), was down-regulated. In the HE compared 

to the HL group, three protein spots (spot 1, 2 and 3), identified as SYFB, 

cytochrome b-c1complex subunit 1-mitochondrial (QCR1) and succinyl-CoA ligase 

subunit beta-mitochondrial (SUCB1), were up-regulated (Table 5.1, Fig. 5.2). In 

phospho-stained gels only one protein, alcohol dehydrogenase class-3 (ADHX, 

spot 14), was down-regulated in the HE compared to the HL group (Table 5.2).   
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5.4.3 Proteins regulated by both LPS concentration and heat 
treatment of FCS 

 

The HL group compared to the NHE demonstrated two up-regulated 

proteins (spot 5 and 11) identified as N-acetyl-D-glucosamine kinase (NAGK) and 

Diablo homolog mitochondrial (DBLOH). By comparing the NHL and HE groups, 

one protein (spot 8) Mps one binder kinase activator-like 1A (MOBKL1A) was up-

regulated (Fig. 5.1B), whereas another protein (spot 9) identified as superoxide 

dismutase 2 (SOD2) was down-regulated. Regulation of SOD2 expression was 

further confirmed by immunoblot analysis (Fig. 5.5). The MS/MS spectra for all 

differentially regulated proteins in silver and phospho-stained gels are provided in 

Appendix Table 2 &3.  

 

 

 

 

 

 

 

Figure 5.5: Immunoblot analysis of superoxide dismutase 2 (SOD2) 
expression.  

CCRF-CEM lysate treated with non-heated FCS with low LPS (NHL) and in heated FCS with 

normal LPS (HE), were resolved on 1DE and immunoblotted with antibody against SOD2. 

Densitometric analyses were done using Lab Image version 2.71 software. β-tubulin was used as 

a loading control. The error bars represent mean ± SD (*= p < 0.05) of three independent 

experimen 
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Table 5.1: Differentially regulated proteins by LPS and heat inactivation of 
FCS. 
 

  
 
Spot  
ID 
 

 
Abb. 
 

 
Protein 
name

a
 

 
 

 
Acc. No. 

 
Mass 
(kDa) 

 
Fold  change (Mean ± SD) 

 
HE/NHE 

 
NHL/NHE 

 
HL/NHE 

 
NHL/HE 

 
HL/HE 

  1 
 

SYFB 
 
 
 

Phenylalan
yltRNA 
synthetase 
beta chain 
 

Q9NSD9 66.1 NS *2.35 ↓ (0.019 
± 0.01/ 0.04 ± 

0.02) 

NS NS **2.07 ↓ 
(0.018 ± 
0.007/ 

0.037 ± 
0.008) 

2 
 
 

QCR1 
 
 

Cytochrome 
b-c1 
complex 
subunit 1 
 

P31930 52.6 NS NS NS NS *1.73 ↓ 
(0.042 ± 
0.012/ 

0.074 ± 
0.018) 

3 
 
 

SUCB1 Succinyl-
CoA ligase 
subunit 
beta 

Q9P2R7 
 

50.3 NS NS NS NS *1.50 ↓ (0.55 
± 0.007/ 
0.083 ± 
0.017) 

4 
 
 

EIF3M Eukaryotic 
translation 
initiation 
factor 3 
subunit M 

Q7L2H7 
 

42.5 **1.79 ↑ 
(0.103 ± 
0.013/ 

0.057 ± 
0.011) 

NS NS NS NS 

5 
 
 

NAGK N-acetyl-D-
glucosamin
e kinase 

Q9UJ70 
 

37.3 NS NS *1.60 ↑ 
(0.064 ± 
0.024/ 
0.04 ± 
0.007) 

NS NS 

6 
 

PRS7 26S 
protease 
regulatory 
subunit 7 

P35998 
 

48.6 *1.69 ↑ 
(0.104 ± 
0.018/ 
0.061± 
0.035) 

NS NS NS NS 

7 
 

PSB4 Proteasome 
subunit 
beta type-4 

P28070 
 

29.2 *1.53 ↑ 
(0.087± 
0.022/ 
0.057± 
0.017) 

NS NS NS NS 

8 MOBKL
1A 

Mps one 
binder 
kinase 
activator A1 

Q7L9L4 
 

25.0 NS NS NS **1.85 ↑ 
(0.076 ± 
0.0150/ 
0.04 ± 
0.009) 

NS 

9 SOD2 Superoxide 
dismutase 
[Mn], 
mitochondri
al 

P04179 24.7 NS NS NS *1.68 ↓ 
(0.08 ± 
0.037/ 

0.135 ± 
0.028) 

NS 

10 SNAPA Alpha-
soluble 
NSF 
attachment 
protein 

P54920 
 

33.2 *1.70 ↑ 
(0.068 ± 
0.015/ 

0.04 ± 0.015) 

NS NS NS NS 

11 DBLOH Diablo 
homolog,  
mitochondri
al 

Q9NR28 
 

7.1 NS NS *2.02 ↑ 
(0.074 ± 
0.008/ 

0.033 ± 
0.019) 

NS NS 

Abb: Abbreviation; Acc. No: Accession number; Mass: Molecular mass of the protein observed in a Mascot search 

(www.matrixscience.com);
 a 

Proteins identified by Q-TOF MS/MS analysis and database search against Swissprot; ↑: Up-

regulated, ↓: Down-regulated, NS: Non-significant change; *= p < 0.05, **= p < 0.005.
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Table 5.2: Differentially phosphorylated proteins by LPS and heat inactivation 
of FCS. 
  
 
Spot 
ID 

 
Abb. 

 
Protein 
name

 a
 

 
Acc. 
No. 

 
Mass 
(kDa) 

 
Fold  change

 
(Mean ± SD) 

 
HE/NHE 

 
NHL/NHE 

 
HL/NHE 

 
NHL/HE 

 
HL/HE 

12 
 

TCPD 
 
 
 
 

T-complex 
protein 1 
subunit 
delta 
 
 

P50991 57.8 *1.62 ↑ 
(0.219 ± 

0.047/0.135 
± 0.053) 

NS NS *1.68 ↓ 
(0.130 ± 

0.068/0.219 
± 0.046) 

NS 

13 
 

ACTA 
 
 

Actin, aortic 
smooth 
muscle 
 

P62736 41.9 *1.83 ↑ 
(0.108 ± 

0.036/0.059 
± 0.029) 

NS NS NS NS 

14 ADHX 
 
 

Alcohol 
dehydrogen
ase class-3 
 
 

P11766 39.6 NS NS NS NS *1.75 ↑ 
(0.226 ± 

0.08/0.129 
± 0.046) 

 
15 NACA 

 
 
 
 

Nascent 
polypeptide
-associated 
complex 
subunit 
alpha 
 

Q13765 23.3 *2.60 ↑ 
(0.283 ± 

0.095/0.108 
± 0.031) 

NS NS *1.74 ↓ 
(0.162 ± 

0.044/0.283 
± 0.095) 

NS 

16 TCTP 
 
 
 

Translation
ally-
controlled 
tumor 
protein 
 
 

P13693 19.5 *2.30 ↑ 
(0.073 ± 

0.013/0.031
± 0.015) 

NS NS NS NS 

17 ACTB 
 
 

Actin, 
cytoplasmic 
1 
 

Q96HG
5 
 

41.7 *2.2 0 ↑ 
(0.062 ± 

0.015/0.028 
± 0.009) 

 

NS NS *2.37 ↓ 
(0.018 ± 

0.011/0.043 
± 0.015) 

NS 

18 
 

ICLN 
 
 

Methylosom
e subunit 
pICln 
 

P54105 26.1 *2.08 ↑ 
(0.232 ± 

0.089/0.111 
± 0.081) 

NS NS *1.80 ↓ 
(0.283 ± 

0.117/0.510 
± 0.113) 

NS 

Abb: Abbreviation; Acc. No: Accession number; Mass: Molecular mass of the protein observed in MASCOT search;
 a 

Phospho-

proteins identified by Q-TOF MS/MS analysis and database search against Swissprot; ↑: Up-regulated, ↓: Down-regulated, NS: 

Non-significant change; *= p < 0.05, **= p < 0.005.   
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5.5 Discussion 
 

Cell culture media are supplemented with FCS as a source of growth factors 

necessary for cell survival and cell proliferation [211,242,243]. Besides growth 

factors, FCS also contains complement proteins and growth inhibitory factors 

[212,244]. Heat inactivation of FCS is considered a mandatory step in cell culture 

to inactivate serum inhibitory factors [218,245]; however, such heat treatment has 

no effect on the activity of LPS [235]. Recently E. Manor reported an 

enhancement of cell proliferation by human plasma as compared to human serum 

[246]; however others prefer the use of serum to supplement cell culture medium 

[247,248]. There are at least 18 different factors including 11 chemokines which 

are reported to be more abundant in serum as compared to plasma; these are 

likely to be released by platelets during the coagulation cascade [249]. FCS is 

believed to be more effective in stimulating cell proliferation than human serum 

(HS) or rabbit serum [219,250]. Depending on the cancerous cell type, the LPS 

may have varied effects on cell physiology [230,231,251-253]. The present study 

used a proteomics approach to investigate whether heat treatment and LPS 

concentration exert any detectable changes on the global proteome expression 

and phosphoproteome in cultured human T cells. It is important to stress that we 

examined both heat inactivated and non-heat inactivated FCS each with regular 

and low LPS concentrations. Most commercially available FCS has less than 30 

EU/mL of LPS. To mimic practices commonly used in the laboratories, we used 

regular and low LPS containing FCS. 

5.5.1 Impact of heat inactivation of FCS on protein regulation 

 

In the present study, four proteins displayed increased levels in the heat 

inactivated LPS group, as compared to non-treated group (Table 5.1). EIF3M 

(spot 4), an important regulator  of protein turnover [254] was up-regulated. This 

finding correlates with  a previous study investigating the influence of serum heat 

inactivation on cell protein content in osteoblast progenitor cells [219]. However, 

LPS concentration (NHL compared to NHE) had no significant influence on EIF3M 

expression. Two proteins (PRS7 “spot 6” and PSB4 “spot 7”), which are members 

of a multiprotein complex involved in cellular protein degradation [255] were up-
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regulated by heat inactivation of FCS. The expression of both proteins remained 

unchanged at both low and normal LPS concentrations in FCS. This is in line with 

the previous observation that at least ≥100 ng/mL of LPS was required to 

influence the expression of PRS7 [256]. FCS heat inactivation influenced the 

intensity of the phosphorylation signal of six proteins (TCTP, TCPD, NACA, ACTA, 

ACTB and ICLN). TCTP (spot 16) is a cytoskeletal related protein involved in cell 

growth, survival and protection against various stress conditions [257]. Cells 

grown in heat inactivated FCS supplemented medium showed increased TCTP 

phosphorylation as compared to non-heat inactivated group (Fig. 5.3B). The 

phosphorylation of TCTP is linked to a decrease in microtubule stabilization and 

could potentially affect microtubule dynamics, resulting in compromised structural 

integrity of cells [258]. TCPD protein showed increased phosphorylation in the 

heat inactivated FCS group. TCPD is a member of the chaperone containing T-

complex polypeptide 1 (CCT) that is involved in both protein folding and 

cytoskeleton network regulation [259]. This protein also helps in dopamine 

mediated neuronal apoptosis [260]. Another protein, NACA (spot 15) was up-

regulated in the heat inactivated FCS group. NACA is a transcriptional co-activator 

that modulates c-Jun-mediated transcription [261]. Two cytoskeletal proteins 

ACTA and ACTB (spot 13 and 17 respectively) displayed increase 

phosphorylation signals in the HE group, as compared to NHE group. These 

proteins are ubiquitously expressed in eukaryotic cells, are involved in the 

cytoskeletal architecture of the cell [262], and they are modified by 

phosphorylation during stressful conditions [263]. The ICLN protein (spot 18) 

participates in the regulation of small nuclear ribonucleoproteins, (snRNP) 

biogenesis, and is an essential component of spliceosomes [264]. It showed an 

altered phosphorylation signal in the presence of FCS heat inactivation. 

5.5.2 Impact of LPS contamination in FCS on protein regulation 

Three proteins, SYFB (spot 1 involved in protein biosynthesis [265]). QCR1 

(spot 2, a mitochondrial respiratory chain protein [266] and SUCB1 (spot 3, which 

is the mitochondrial matrix enzyme involved in the ATP synthesis [267] were 

significantly up-regulated when grown in medium containing normal (ie “regular”) 

as compared to low LPS concentrations. This implies that increased LPS 

concentrations may have stimulatory effects on protein synthesis. These findings 
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are consistent with observations made by Hamilton and colleagues, who reported  

increased protein synthesis in murine peritoneal macrophages cultured at 10 

ng/ml LPS concentration [268]. LPS has been reported to induce protein synthesis 

in B lymphocytes [269,270], and enhance T lymphocytes proliferation  [271]  by an 

unknown molecular mechanism.  

 

5.5.3 Protein regulation by combined changes in LPS 
concentrations and heat treatment of FCS  

 

Two proteins, NAGK (spot 5, which converts N-acetylglucosamine into 

GlcNAc 6-phosphate [272]) and DBLOH (spot 11, which is a pro-apoptotic protein 

[273]) were up-regulated in the HL as compared to the NHE group. Cells grown in 

medium containing non-heated FCS with low LPS had significantly increased 

expression of MOBKL1A (spot 8, a cell division associated protein [274]). SOD2 

(spot 9 is a mitochondrial anti-oxidant enzyme essential for cell survival [275]) that 

protects T lymphocytes against free oxygen radicals that are generated in these 

cells to kill microorganisms [276]. In the NHL group SOD2 expression was down-

regulated as compared to HE, both in the 2-DE and immunoblot analysis (Fig. 

5.5). This suggests that commonly used (ie. “regular”) LPS concentrations and 

serum heat inactivation might produce oxidative challenge to the cells. Previous 

reports have also described a similar modulation in the SOD2 expression by LPS 

in human monocytes [277]. Such cellular proteome regulation reflects a survival 

strategy of the cells allowing them to respond to external factors through 

alterations in metabolic activity.  

5.6 Conclusion  
 

These results suggest that the heat inactivation and LPS concentrations in 

FCS are indeed able to alter the expression and phosphorylation of proteins 

involved in important cellular functions of cultured human T cells. The study 

emphasizes the importance of considering the effects of FCS heat treatment, or 

LPS concentrations used in the cell cultures, on phosphorylation and cellular 

proteome of T cells. This work also demonstrates the ability of a proteomic 

approach to demonstrate the complex picture of cellular responses to selected cell 
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culture conditions. The exact mechanism(s) by which serum heat inactivation and 

LPS regulate cellular protein expression and post-translational modification is not 

yet clear and needs further investigation.  
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6. Summary 

The mammalian target of rapamycin (mTOR) is an intracellular protein kinase 

that plays a key role in the control of cell growth, differentiation, cell survival, and 

cell proliferation. In humans, mTOR deregulation is implicated in parasitic, fungal, 

bacterial and viral infections, immune disorders, diabetes, obesity, cardiac 

diseases, renal abnormalities, and various cancers. mTOR was first identified as 

TOR in Saccharomyces cerevisiae. It exists in two structurally and functionally 

distinct complexes, mTOR complex 1 (mTORC1), and mTOR complex 2 

(mTORC2). mTORC1, a rapamycin sensitive protein complex, senses the 

availability of growth factors, nutrients, cellular energy levels, and is actively 

involved in cellular transcription and translation processes. mTORC1 performs a 

range of biological functions with the help of its interacting proteins. These 

interacting proteins act as scaffolds and recruit substrates and regulatory proteins 

required for mTOR kinase function. The present study was undertaken to identify 

novel interacting partners of mTORC1 that specifically interact with mTORC1 to 

enable this crucial cell signaling hub to carry out its biological functions.  

 

Human T cells (CCRF-CEM) and human embryonic kidney (HEK293) cell 

lines were used to identify novel interacting partners of mTORC1. Endogenous 

mTORC1 along with its interacting proteins were purified using raptor monoclonal 

antibodies and immunoblotted to confirm the mTORC1 specific purification. 

Following confirmation of mTORC1 specific purification by immunoblotting, the 

remaining IP elutes were resolved on SDS-PAGE and stained with silver nitrate. 

Protein bands from the gel were excised, processed by in-gel digestion and 

identified by nano-LC ESI Q-TOF MS/MS analysis. The mass spectrometric 

identification of endogenous mTORC1 interacting proteins was further validated 

by expressing the myc-tag raptor pRK5 vector in CCRF-CEM and HEK293 cells. 

Myc-tag raptor component of mTORC1 was isolated by pulled-down from the cell 

lysate using an affinity column and conjugated monoclonal myc-tag antibodies 

using agarose beads. The co-purified elutes were resolved on SDS-PAGE and 

mTORC1 specific purification was first confirmed by immunoblotting, and later 

identified by nano-LC ESI Q-TOF MS/MS analysis. A total of 10 novel interacting 

proteins (hnRNP A2/B1, SRSF7, RP-P0, NCL, DNM2, GAPDH, 2-OADH, 
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GLT25D1, PHB2, Edc4) were identified in both endogenous and myc-tag 

mTORC1 purifications. Functional annotation analysis demonstrated that these 

ten proteins are involved in important biological functions. Three proteins, hnRNP 

A2/B1, SRSF7, and Edc4, are important for mRNA processing while two proteins, 

RP-P0 and NCL, were involved in transcription and translation. One protein, 

DNM2, identified in mTORC1 specific purifications, is associated with intracellular 

trafficking, while two proteins, GAPDH and 2-OADH, are involved in carbohydrate 

metabolism. Moreover, two proteins, GLT25D1 and PHB2, are involved in post-

translation modification, protein turnover and chaperone functions. The mass 

spectrometric identification of Edc4, DNM2, and hnRNP A2/B1 proteins were 

further confirmed by immunoblotting using protein specific antibodies. 

 

Enhancer of mRNA decapping protein 4 (Edc4) was consistently identified as 

a new interacting protein with mTORC1 in both the endogenous and myc-tag 

raptor component of mTORC1. Edc4 has a suggested role in mRNA decapping 

and repression of miRNA mediated translation. The potential interaction of Edc4 

with mTORC1 was further confirmed using reverse co-immunoprecipitation. 

Quantitative co-localization using confocal microscopy demonstrated a high 

degree of pixel overlapping between Edc4 protein with raptor component of 

mTORC1 both inside and outside of P bodies. Incubation of cells under leucine 

starved conditions increased the total expression of Edc4. Leucine is an essential 

amino acid which is a positive regulator of mTORC1 kinase activity, providing 

evidence that mTORC1 may be involved in the regulation of Edc4. Furthermore, 

rapamycin increased total Edc4 protein expression but at the same time 

decreased the Edc4 interaction with mTORC1, further evidence of mTORC1 

involvement in Edc4 regulation. We further examined the effects of rapamycin on 

Edc4 phosphorylation status. Rapamycin treatment resulted in a significant 

decrease in total serine phosphorylated Edc4 protein signal, suggesting the 

involvemnt of mTORC1 kinase activity in the regulation of Edc4. In addition, we 

observed that rapamycin significantly decreased the total 5´-capped mRNA. 

These findings suggest that mTORC1, by interacting with Edc4, inactivates the 

Edc4 through serine phosphorylation, and regulates its expression. This results in 

hyper-phosphorylated Edc4 which is then no longer available for mRNA 

decapping activity. The inhibition of mTORC1 by rapamycin results in an 
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increased amount of dephosphorylated Edc4, and consequently higher cellular 

decapping activity, and less total 5´-capped mRNA in the cell (Fig 6.1). These 

findings provide the first evidence for the pivotal role of mTORC1 in Edc4 

regulation. Further in-depth studies are required to get a complete understanding 

of the biological interplay of mTORC1 signaling in the mRNA decapping process. 

Functional characterization of these novel interacting proteins may be helpful in 

understanding the complexity of the mTORC1 network and may offer new targets 

for therapeutic interventions in human diseases associated with deregulated 

mTORC1 signaling.  
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Figure 6.1: mTORC1 interactomics; mTORC1 interplay in mRNA decapping 

through interaction with Edc4. 

CCRF-CEM or HEK293 cells were grown for 48 hours in complete medium, lysed, and 

endogenous mTOR complexes were immunopurified using raptor or rictor antibodies. In parallel, 

cells were transfected with myc-tagged raptor and purified with myc-tag antibody. After resolving 

the purified elute on 1-DE SDS-PAGE, the integrity of mTOR complexes were checked by 

detecting the mTOR signal in both the raptor and rictor IP elutes. To confirm the absence of 

mTORC2 contamination in the mTORC1 purified material, the elutes were immunoblotted using 

rictor antibody. After confirmation of successful mTORC1 purification, the elutes were separated 

on 1-DE and stained with silver or Coomssie. Whole lane of protein bands from the raptor IP and 

mock IP were excised and tryptic digested for nano-LC ESI Q-TOF MS/MS analysis. The 

schematic diagram (Edc4 box) shows that mTORC1 interacts with Edc4 to keep its expression at 

the basal level by inhibiting Edc4 through serine phosphorylation (black bold arrow). This hyper-

phosphorylated Edc4 is then no longer available for mRNA decapping activity in the mRNA decay 

process. Treatment of cells with rapamycin leads to the inhibition of mTORC1 kinase activity, 

resulting in the Edc4 dephosphorylation. This dephosphorylated Edc4 probably leads to activation 

of the decapping machinery and increased mRNA degradation. 
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8. Appendices 

Appendix Figure 1: SDS-PAGE anlalysis of mTORC1 interacting proteins. 

(A) Endogsnous mTORC1 specific purified elutes were prepared from CCRF-CEM cells lysate 

(as described in mthod section), resolved on SDS-PAGE, and stained with Coomassie blue. Mock 

IP (negative control) sample was also run on the gel. After staining, whole lane of protein bands 

were excised from the gel and tryptic digested for MS/MS analysis. 

(B) Myc-tag mTORC1 specific purified elutes were prepared from HEK293 cells and separated on 

SDS-PAGE. Protein bands were visualized by using silver nitrate staining and tryptic digested for 

MS/MS analysis. 
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Appendix Table 1: List of mTORC1 interacting proteins spectra identified by 

ESI Q-TOF MS/MS analysis.  

a
Mascot score: >42 indicate identity or extensive homology (p < 0.05);

 b
pI: isoelectric pH; 

c
Peptides: number of peptides matched with protein in MS/MS query; MS/MS analysis: sequence 

of protein with identified peptide (bold)  and exemplary MSMS spectra of the peptide with higher 

ion-score.  

 

Protein 

Name 

a
Mascot 

Score 

b
pI 

c
Peptides MS/MS Analysis 

Dynamin 2 

 

52 7.04 

 

6  1 MGNRGMEELI PLVNKLQDAF SSIGQSCHLD LPQIAVVGGQ SAGKSSVLEN  

 51 FVGRDFLPRG SGIVTRRPLI LQLIFSKTEH AEFLHCKSKK FTDFDEVRQE  

 101 IEAETDRVTG TNKGISPVPI NLRVYSPHVL NLTLIDLPGI TKVPVGDQPP  

 151 DIEYQIKDMI LQFISRESSL ILAVTPANMD LANSDALKLA KEVDPQGLRT  

 201 IGVITKLDLM DEGTDARDVL ENKLLPLRRG YIGVVNRSQK DIEGKKDIRA  

 251 ALAAERKFFL SHPAYRHMAD RMGTPHLQKT LNQQLTNHIR ESLPALRSKL  

 301 QSQLLSLEKE VEEYKNFRPD DPTRKTKALL QMVQQFGVDF EKRIEGSGDQ  

 351 VDTLELSGGA RINRIFHERF PFELVKMEFD EKDLRREISY AIKNIHGVRT  

 401 GLFTPDLAFE AIVKKQVVKL KEPCLKCVDL VIQELINTVR QCTSKLSSYP  

 451 RLREETERIV TTYIREREGR TKDQILLLID IEQSYINTNH EDFIGFANAQ  

 501 QRSTQLNKKR AIPNQGEILV IRRGWLTINN ISLMKGGSKE YWFVLTAESL  

 551 SWYKDEEEKE KKYMLPLDNL KIRDVEKGFM SNKHVFAIFN TEQRNVYKDL  

 601RQIELACDSQ EDVDSWKASF LRAGVYPEKD QAENEDGAQE NTFSMDPQLE  

 651 RQVETIRNLV DSYVAIINKS IRDLMPKTIM HLMINNTKAF IHHELLAYLY  

 701 SSADQSSLME ESADQAQRRD DMLRMYHALK EALNIIGDIS TSTVSTPVPP  

 751 PVDDTWLQSA SSHSPTPQRR PVSSIHPPGR PPAVRGPTPG PPLIPVPVGA  

 801 AASFSAPPIP SRPGPQSVFA NSDLFPAPPQ IPSRPVRIPP GIPPGVPSRR  

 851 PPAAPSRPTI IRPAEPSLLD  

 

MS/MS Fragmentation of IPPGIPPGVPSR 

 

Splicing 

factor  

arginine/Seri

ne rich 7 

 

48 11.8

3 

 

3 1 MSRYGRYGGE TKVYVGNLGT GAGKGELERA FSYYGPLRTV WIARNPPGFA 

51 FVEFEDPRDA EDAVRGLDGK VICGSRVRVE LSTGMPRRSR FDRPPARRPF 

101DPNDRCYECGEKGHYAYDCHRYSRRRRSRS RSRSHSRSRG RRYSRSRSRS 

151 RGRRSRSASP RRSRSISLRR SRSASLRRSR SGSIKGSRYF QSPSRSRSRS 

201 RSISRPRSSR SKSRSPSPKR SRSPSGSPRR SASPERMD 

 

MS/MS Fragmentation of SISRPRSSR 
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Glyceraldehy

de-3-

phosphate 

dehydrogena

se 

178 

 

8.57 

 

15 1 MGKVKVGVNG FGRIGRLVTR AAFNSGKVDI VAINDPFIDL NYMVYMFQYD 

51 STHGKFHGTV KAENGKLVIN GNPITIFQER DPSKIKWGDA GAEYVVESTG 

101 VFTTMEKAGA HLQGGAKRVI ISAPSADAPM FVMGVNHEKY DNSLKIISNA 

151 SCTTNCLAPL AKVIHDNFGI VEGLMTTVHA ITATQKTVDG PSGKLWRDGR 

201 GALQNIIPAS TGAAKAVGKV IPELNGKLTG MAFRVPTANV SVVDLTCRLE 

251 KPAKYDDIKK VVKQASEGPL KGILGYTEHQ VVSSDFNSDT HSSTFDAGAG 

301 IALNDHFVKL ISWYDNEFGY SNRVVDLMAH MASKE 

 

MS/MS Fragmentation of IISNASCTTNCLAPLAK 

 

60S acidic 

ribosomal 

protein P0 

 

105 

 

5.71 

 

3 1 MPREDRATWK SNYFLKIIQL LDDYPKCFIV GADNVGSKQM QQIRMSLRGK 

51 AVVLMGKNTM MRKAIRGHLE NNPALEKLLP HIRGNVGFVF TKEDLTEIRD 

101 MLLANKVPAA ARAGAIAPCE VTVPAQNTGL GPEKTSFFQA LGITTKISRG 

151 TIEILSDVQL IKTGDKVGAS EATLLNMLNI SPFSFGLVIQ QVFDNGSIYN 

201 PEVLDITEET LHSRFLEGVR NVASVCLQIG YPTVASVPHS IINGYKRVLA 

251 LSVETDYTFP LAEKVKAFLA DPSAFVAAAP VAAATTAAPA AAAAPAKVEA 

301 KEESEESDED MGFGLFD 

 

MS/MS Fragmentation of TSFFQALGITTK 

 

Nucleolin 133 4.60 

 

8 1 MVKLAKAGKN QGDPKKMAPP PKEVEEDSED EEMSEDEEDD SSGEEVVIPQ 

51 KKGKKAAATS AKKVVVSPTK KVAVATPAKK AAVTPGKKAA ATPAKKTVTP 

101 AKAVTTPGKK GATPGKALVA TPGKKGAAIP AKGAKNGKNA KKEDSDEEED 

151 DDSEEDEEDD EDEDEDEDEI EPAAMKAAAA APASEDEDDE DDEDDEDDDD 

201 DEEDDSEEEA METTPAKGKK AAKVVPVKAK NVAEDEDEEE DDEDEDDDDD 

251 EDDEDDDDED DEEEEEEEEE EPVKEAPGKR KKEMAKQKAA PEAKKQKVEG 

301 TEPTTAFNLF VGNLNFNKSA PELKTGISDV FAKNDLAVVD VRIGMTRKFG 

351 YVDFESAEDL EKALELTGLK VFGNEIKLEK PKGKDSKKER DARTLLAKNL 

401 PYKVTQDELK EVFEDAAEIR LVSKDGKSKG IAYIEFKTEA DAEKTFEEKQ 

451 GTEIDGRSIS LYYTGEKGQN QDYRGGKNST WSGESKTLVL SNLSYSATEE 

501 TLQEVFEKAT FIKVPQNQNG KSKGYAFIEF ASFEDAKEAL NSCNKREIEG 

551 RAIRLELQGP RGSPNARSQP SKTLFVKGLS EDTTEETLKE SFDGSVRARI 

601 VTDRETGSSK GFGFVDFNSE EDAKAAKEAM EDGEIDGNKV TLDWAKPKGE 

651GGFGGRGGGRGGFGGRGGGRGGRGGFGGRGRGGFGGRGGFRGGRGGGGDH 

701 KPQGKKTKFE 

 

MS/MS Fragmentation of  EVFEDAAEIR 

 

Heterogeneo

us nuclear 

ribonucleopro

teins A2/B1 

 

105 8.97 

 

3 1 MEKTLETVPL ERKKREKEQF RKLFIGGLSF ETTEESLRNY YEQWGKLTDC 

51 VVMRDPASKR SRGFGFVTFS SMAEVDAAMA ARPHSIDGRV VEPKRAVARE 

101 ESGKPGAHVT VKKLFVGGIK EDTEEHHLRD YFEEYGKIDT IEIITDRQSG 

151 KKRGFGFVTF DDHDPVDKIV LQKYHTINGH NAEVRKALSR QEMQEVQSSR 

201SGRGGNFGFGDSRGGGGNFGPGPGSNFRGGSDGYGSGRGFGDGYNGYGGG 

251PGGGNFGGSPGYGGGRGGYGGGGPGYGNQGGGYGGGYDNYGGGNYGSGNY 

301NDFGNYNQQP SNYGPMKSGN FGGSRNMGGP YGGGNYGPGG SGGSGGYGGR 

351 SRY 

 

MS/MS Fragmentation of IDTIEIITDR 
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2-

oxoglutarate 

dehydrogena

se 

mitochondrial 

 

120 6.40 

 

6 1 MFHLRTCAAK LRPLTASQTV KTFSQNRPAA ARTFQQIRCY SAPVAAEPFL 

51 SGTSSNYVEE MYCAWLENPK SVHKSWDIFF RNTNAGAPPG TAYQSPLPLS 

101 RGSLAAVAHA QSLVEAQPNV DKLVEDHLAV QSLIRAYQIR GHHVAQLDPL 

151 GILDADLDSS VPADIISSTD KLGFYGLDES DLDKVFHLPT TTFIGGQESA 

201 LPLREIIRRL EMAYCQHIGV EFMFINDLEQ CQWIRQKFET PGIMQFTNEE 

251 KRTLLARLVR STRFEEFLQR KWSSEKRFGL EGCEVLIPAL KTIIDKSSEN 

301 GVDYVIMGMP HRGRLNVLAN VIRKELEQIF CQFDSKLEAA DEGSGDVKYH 

351 LGMYHRRINR VTDRNITLSL VANPSHLEAA DPVVMGKTKA EQFYCGDTEG 

401 KKVMSILLHG DAAFAGQGIV YETFHLSDLP SYTTHGTVHV VVNNQIGFTT 

451 DPRMARSSPY PTDVARVVNA PIFHVNSDDP EAVMYVCKVA AEWRSTFHKD 

501 VVVDLVCYRR NGHNEMDEPM FTQPLMYKQI RKQKPVLQKY AELLVSQGVV 

551 NQPEYEEEIS KYDKICEEAF ARSKDEKILH IKHWLDSPWP GFFTLDGQPR 

601 SMSCPSTGLT EDILTHIGNV ASSVPVENFT IHGGLSRILK TRGEMVKNRT 

651 VDWALAEYMA FGSLLKEGIH IRLSGQDVER GTFSHRHHVL HDQNVDKRTC 

701 IPMNHLWPNQ APYTVCNSSL SEYGVLGFEL GFAMASPNAL VLWEAQFGDF 

751 HNTAQCIIDQ FICPGQAKWV RQNGIVLLLP HGMEGMGPEH SSARPERFLQ 

801 MCNDDPDVLP DLKEANFDIN QLYDCNWVVV NCSTPGNFFH VLRRQILLPF 

851 RKPLIIFTPK SLLRHPEARS SFDEMLPGTH FQRVIPEDGP AAQNPENVKR 

901 LLFCTGKVYY DLTRERKARD MVGQVAITRI EQLSPFPFDL LLKEVQKYPN 

951 AELAWCQEEH KNQGYYDYVK PRLRTTISRA KPVWYAGRDP AAAPATGNKK 

1001 THLTELQRLL DTAFDLDVFK NFS 

 

MS/MS Fragmentation of KPLIIFTPK 

 

Glycosyl 

transferase 

25 domain1 

187 6.85 

 

8 1 MAAAPRAGRR RGQPLLALLL LLLAPLPPGA PPGADAYFPE ERWSPESPLQ 

51 APRVLIALLA RNAAHALPTT LGALERLRHP RERTALWVAT DHNMDNTSTV 

101 LREWLVAVKS LYHSVEWRPA EEPRSYPDEE GPKHWSDSRY EHVMKLRQAA 

151 LKSARDMWAD YILFVDADNL ILNPDTLSLL IAENKTVVAP MLDSRAAYSN 

201 FWCGMTSQGY YKRTPAYIPI RKRDRRGCFA VPMVHSTFLI DLRKAASRNL 

251 AFYPPHPDYT WSFDDIIVFA FSCKQAEVQM YVCNKEEYGF LPVPLRAHST 

301 LQDEAESFMH VQLEVMVKHP PAEPSRFISA PTKTPDKMGF DEVFMINLRR 

351 RQDRRERMLR ALQAQEIECR LVEAVDGKAM NTSQVEALGI QMLPGYRDPY 

401 HGRPLTKGEL GCFLSHYNIW KEVVDRGLQK SLVFEDDLRF EIFFKRRLMN 

451 LMRDVEREGL DWDLIYVGRK RMQVEHPEKA VPRVRNLVEA DYSYWTLAYV 

501 ISLQGARKLL AAEPLSKMLP VDEFLPVMFD KHPVSEYKAH FSLRNLHAFS 

551 VEPLLIYPTH YTGDDGYVSD TETSVVWNNE HVKTDWDRAK SQKMREQQAL 

601 SREAKNSDVL QSPLDSAARD EL 

 

MS/MS Fragmentation of TPAYIPIR 

 

Enhancer of 

mRNA 

52 5.55 

 

3    1 MASCASIDIE DATQHLRDIL KLDRPAGGPS AESPRPSSAY NGDLNGLLVP  

   51 DPLCSGDSTS ANKTGLRTMP PINLQEKQVI CLSGDDSSTC IGILAKEVEI  

   101 VASSDSSISS KARGSNKVKI QPVAKYDWEQ KYYYGNLIAV SNSFLAYAIR  

   151 AANNGSAMVR VISVSTSERT LLKGFTGSVA DLAFAHLNSP QLACLDEAGN  

   201 LFVWRLALVN GKIQEEILVH IRQPEGTPLN HFRRIIWCPF IPEESEDCCE  

   251 ESSPTVALLH EDRAEVWDLD MLRSSHSTWP VDVSQIKQGF IVVKGHSTCL  
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decapping 

protein 4 

   301 SEGALSPDGT VLATASHDGY VKFWQIYIEG QDEPRCLHEW KPHDGRPLSC  

   351 LLFCDNHKKQ DPDVPFWRFL ITGADQNREL KMWCTVSWTC LQTIRFSPDI  

   401 FSSVSVPPSL KVCLDLSAEY LILSDVQRKV LYVMELLQNQ EEGHACFSSI  

   451 SEFLLTHPVL SFGIQVVSRC RLRHTEVLPA EEENDSLGAD GTHGAGAMES  

   501 AAGVLIKLFC VHTKALQDVQ IRFQPQLNPD VVAPLPTHTA HEDFTFGESR  

   551 PELGSEGLGS AAHGSQPDLR RIVELPAPAD FLSLSSETKP KLMTPDAFMT  

   601 PSASLQQITA SPSSSSSGSS SSSSSSSSSL TAVSAMSSTS AVDPSLTRPP  

   651 EELTLSPKLQ LDGSLTMSSS GSLQASPRGL LPGLLPAPAD KLTPKGPGQV  

   701 PTATSALSLE LQEVEPLGLP QASPSRTRSP DVISSASTAL SQDIPEIASE  

   751 ALSRGFGSSA PEGLEPDSMA SAASALHLLS PRPRPGPELG PQLGLDGGPG  

   801 DGDRHNTPSL LEAALTQEAS TPDSQVWPTA PDITRETCST LAESPRNGLQ  

   851 EKHKSLAFHR PPYHLLQQRD SQDASAEQSD HDDEVASLAS ASGGFGTKVP  

   901 APRLPAKDWK TKGSPRTSPK LKRKSKKDDG DAAMGSRLTE HQVAEPPEDW  

   951 PALIWQQQRE LAELRHSQEE LLQRLCTQLE GLQSTVTGHV ERALETRHEQ  

  1001 EQRRLERALA EGQQRGGQLQ EQLTQQLSQA LSSAVAGRLE RSIRDEIKKT  

  1051 VPPCVSRSLE PMAGQLSNSV ATKLTAVEGS MKENISKLLK SKNLTDAIAR  

  1101 AAADTLQGPM QAAYREAFQS VVLPAFEKSC QAMFQQINDS FRLGTQEYLQ  

  1151 QLESHMKSRK AREQEAREPV LAQLRGLVST LQSATEQMAA TVAGSVRAEV  

  1201 QHQLHVAVGS LQESILAQVQ RIVKGEVSVA LKEQQAAVTS SIMQAMRSAA  

  1251 GTPVPSAHLD CQAQQAHILQ LLQQGHLNQA FQQALTAADL NLVLYVCETV  

  1301 DPAQVFGQPP CPLSQPVLLS LIQQLASDLG TRTDLKLSYL EEAVMHLDHS  

  1351 DPITRDHMGS VMAQVRQKLF QFLQAEPHNS LGKAARRLSL MLHGLVTPSL  

  1401 P 

 

MS/MS Fragmentation of VISVSTSER 

 

Prohibitin 2 

 

147 9.83 

 

4 1 MAQNLKDLAG RLPAGPRGMG TALKLLLGAG AVAYGVRESV FTVEGGHRAI 

51 FFNRIGGVQQ DTILAEGLHF RIPWFQYPII YDIRARPRKI SSPTGSKDLQ 

101 MVNISLRVLS RPNAQELPSM YQRLGLDYEE RVLPSIVNEV LKSVVAKFNA 

151 SQLITQRAQV SLLIRRELTE RAKDFSLILD DVAITELSFS REYTAAVEAK 

201 QVAQQEAQRA QFLVEKAKQE QRQKIVQAEG EAEAAKMLGE ALSKNPGYIK 

251 LRKIRAAQNI SKTIATSQNR IYLTADNLVL NLQDESFTRG SDSLIKGKK 

 

MS/MS Fragmentation of FNASQLITQR 
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Appendix Table 2: MS/MS spectral data of differentially regulated proteins 
identified by Q-TOF analysis.  

Spot ID: spot identification number on the 1DE gel; 
a
Abb.: abbreviation for protein name;

 b
Mascot 

score: >42 indicate identity or extensive homology (p < 0.05);
 c

Peptides: number of peptides 

matched with protein in MS/MS query; MS/MS analysis: sequence of protein with identified peptide 

(bold) and exemplary MSMS spectra of the peptide with higher ion-score.  

Spot ID 
a
Abb 

 

b
Mascot 

Score 

c
Peptide

 
MS/MS Analysis 

1 SYFB 195 7 1 MPTVSVKRDL LFQALGRTYT DEEFDELCFE FGLELDEITS EKEIISKE 

51 NVKAAGASDV VLYKIDVPAN RYDLLCLEGL VRGLQVFKER IKAPVYKRVM  

101 PDGKIQKLII TEETAKIRPF AVAAVLRNIK FTKDRYDSFI ELQEKLHQNI  

151 CRKRALVAIG THDLDTLSGP FTYTAKRPSD IKFKPLNKTK EYTACELMNI  

201 YKTDNHLKHY LHIIENKPLY PVIYDSNGVV LSMPPIINGD HSRITVNTRN  

251 IFIECTGTDF TKAKIVLDII VTMFSEYCEN QFTVEAAEVV FPNGKSHTFP  

301 ELAYRKEMVR ADLINKKVGI RETPENLAKL LTRMYLKSEV IGDGNQIEIE  

351 IPPTRADIIH ACDIVEDAAI AYGYNNIQMT LPKTYTIANQ FPLNKLTELL  

401 RHDMAAAGFT EALTFALCSQ EDIADKLGVD ISATKAVHIS NPKTAEFQVA  

451 RTTLLPGLLK TIAANRKMPL PLKLFEISDI VIKDSNTDVG AKNYRHLCAV  

501 YYNKNPGFEI IHGLLDRIMQ LLDVPPGEDK GGYVIKASEG PAFFPGRCAE  

551 IFARGQSVGK LGVLHPDVIT KFELTMPCSS LEINIGPFL 

 

MS/MS Fragmentation of ASEG PAFFPGR 

 

2 QCR1 

 

 

190 14  1 MAASVVCRAA TAGAQVLLRA RRSPALLRTP ALRSTATFAQ ALQFVPETQV  

 51 SLLDNGLRVA SEQSSQPTCT VGVWIDVGSR FETEKNNGAG YFLEHLAFKG  

 101 TKNRPGSALE KEVESMGAHL NAYSTREHTA YYIKALSKDL PKAVELLGDI  

 151 VQNCSLEDSQ IEKERDVILR EMQENDASMR DVVFNYLHAT AFQGTPLAQA  

 201 VEGPSENVRK LSRADLTEYL STHYKAPRMV LAAAGGVEHQ QLLDLAQKHL  

 251 GGIPWTYAED AVPTLTPCRF TGSEIRHRDD ALPFAHVAIA VEGPGWASPD  

 301 NVALQVANAI IGHYDCTYGG GVHLSSPLAS GAVANKLCQS FQTFSICYAE  

 351 TGLLGAHFVC DRMKIDDMMF VLQGQWMRLC TSATESEVAR GKNILRNALV  

401 SHLDGTTPVC EDIGRSLLTY GRRIPLAEWE SRIAEVDASV VREICSKYIY  

451 DQCPAVAGYG PIEQLPDYNR IRSGMFWLRF  

 

MS/MS Fragmentation of LCTSATESEVAR 

 

3 SUCB1 

 

 

192 8  1 MAASMFYGRL VAVATLRNHR PRTAQRAAAQ VLGSSGLFNN HGLQVQQQQQ  

 51 RNLSLHEYMS MELLQEAGVS VPKGYVAKSP DEAYAIAKKL GSKDVVIKAQ  

 101 VLAGGRGKGT FESGLKGGVK IVFSPEEAKA VSSQMIGKKL FTKQTGEKGR  

 151 ICNQVLVCER KYPRREYYFA ITMERSFQGP VLIGSSHGGV NIEDVAAESP  

 201 EAIIKEPIDI EEGIKKEQAL QLAQKMGFPP NIVESAAENM VKLYSLFLKY  

 251 DATMIEINPM VEDSDGAVLC MDAKINFDSN SAYRQKKIFD LQDWTQEDER  

 301 DKDAAKANLN YIGLDGNIGC LVNGAGLAMA TMDIIKLHGG TPANFLDVGG  

 351 GATVHQVTEA FKLITSDKKV LAILVNIFGG IMRCDVIAQG IVMAVKDLEI  

 401 KIPVVVRLQG TRVDDAKALI ADSGLKILAC DDLDEAARMV VKLSEIVTLA  

 451 KQAHVDVKFQ LPI 

 

MS/MS Fragmentation of SPDEAYAIAK 
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4 EIF3M 

 

 

89 3 1 MSVPAFIDIS EEDQAAELRA YLKSKGAEIS EENSEGGLHV DLAQIIEACD  

51 VCLKEDDKDV ESVMNSVVSL LLILEPDKQE ALIESLCEKL VKFREGERPS  

101 LRLQLLSNLF HGMDKNTPVR YTVYCSLIKV AASCGAIQYI PTELDQVRKW  

151 ISDWNLTTEK KHTLLRLLYE ALVDCKKSDA ASKVMVELLG SYTEDNASQA  

201 RVDAHRCIVR ALKDPNAFLF DHLLTLKPVK FLEGELIHDL LTIFVSAKLA  

251 SYVKFYQNNK DFIDSLGLLH EQNMAKMRLL TFMGMAVENK EISFDTMQQE  

301 LQIGADDVEA FVIDAVRTKM VYCKIDQTQR KVVVSHSTHR TFGKQQWQQL  

351 YDTLNAWKQN LNKVKNSLLS LSDT 

 

MS/MS Fragmentation of LLTFMGMAVENK 

 

5 NAGK 

 

 

58 3 1 MAAIYGGVEG GGTRSEVLLV SEDGKILAEA DGLSTNHWLI GTDKCVERIN  

51 EMVNRAKRKA GVDPLVPLRS LGLSLSGGDQ EDAGRILIEE LRDRFPYLSE  

101 SYLITTDAAG SIATATPDGG VVLISGTGSN CRLINPDGSE SGCGGWGHMM  

151 GDEGSAYWIA HQAVKIVFDS IDNLEAAPHD IGYVKQAMFH YFQVPDRLGI  

201 LTHLYRDFDK CRFAGFCRKI AEGAQQGDPL SRYIFRKAGE MLGRHIVAVL  

251 PEIDPVLFQG KIGLPILCVG SVWKSWELLK EGFLLALTQG REIQAQNFFS  

301 SFTLMKLRHS SALGGASLGA RHIGHLLPMD YSANAIAFYS YTFS 

 

MS/MS Fragmentation of SEVLLVSEDGK 

 

6 PRS7 

 

 

115 4   1 MPDYLGADQR KTKEDEKDDK PIRALDEGDI ALLKTYGQST YSRQIKQVED  

  51 DIQQLLKKIN ELTGIKESDT GLAPPALWDL AADKQTLQSE QPLQVARCTK  

  101 IINADSEDPK YIINVKQFAK FVVDLSDQVA PTDIEEGMRV GVDRNKYQIH  

  151 IPLPPKIDPT VTMMQVEEKP DVTYSDVGGC KEQIEKLREV VETPLLHPER  

  201 FVNLGIEPPK GVLLFGPPGT GKTLCARAVA NRTDACFIRV IGSELVQKYV  

  251 GEGARMVREL FEMARTKKAC LIFFDEIDAI GGARFDDGAG GDNEVQRTML  

  301 ELINQLDGFD PRGNIKVLMA TNRPDTLDPA LMRPGRLDRK IEFSLPDLEG  

  351 RTHIFKIHAR SMSVERDIRF ELLARLCPNS TGAEIRSVCT EAGMFAIRAR  

  401 RKIATEKDFL EAVNKVIKSY AKFSATPRYM TYN 

 

  MS/MS Fragmentation of FDDGAGGDNEVQR 
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7 PSB4 

 

180 5  1 MEAFLGSRSG LWAGGPAPGQ FYRIPSTPDS FMDPASALYR GPITRTQNPM  

 51 VTGTSVLGVK FEGGVVIAAD MLGSYGSLAR FRNISRIMRV NNSTMLGASG  

101 DYADFQYLKQ VLGQMVIDEE LLGDGHSYSP RAIHSWLTRA MYSRRSKMNP  

151 LWNTMVIGGY ADGESFLGYV DMLGVAYEAP SLATGYGAYL AQPLLREVLE  

201 KQPVLSQTEA RDLVERCMRV LYYRDARSYN RFQIATVTEK GVEIEGPLST  

251 ETNWDIAHMI SGFE 

 

MS/MS Fragmentation of  TQNPMVTGTSVLGVK 

 

8 

 
 
 
 
 
 
 
 
 
 

MOBKL1A 

 

118 2 1 MSFLFGSRSS KTFKPKKNIP EGSHQYELLK HAEATLGSGN LRMAVMLPEG  

51 EDLNEWVAVN TVDFFNQINM LYGTITDFCT EESCPVMSAG PKYEYHWADG  

101 TNIKKPIKCS APKYIDYLMT WVQDQLDDET LFPSKIGVPF PKNFMSVAKT  

151 ILKRLFRVYA HIYHQHFDPV IQLQEEAHLN TSFKHFIFFV QEFNLIDRRE  

201 LAPLQELIEK LTSKDR 

 

MS/MS Fragmentation of  HAEATLGSGNLR 

 

9 SOD2 

 

126 4 1 MLSRAVCGTS RQLAPALGYL GSRQKHSLPD LPYDYGALEP HINAQIMQLH  

51 HSKHHAAYVN NLNVTEEKYQ EALAKGDVTA QIALQPALKF NGGGHINHSI  

101 FWTNLSPNGG GEPKGELLEA IKRDFGSFDK FKEKLTAASV GVQGSGWGWL  

151 GFNKERGHLQ IAACPNQDPL QGTTGLIPLL GIDVWEHAYY LQYKNVRPDY  

201 LKAIWNVINW ENVTERYMAC KK   

 

MS/MS Fragmentation of GDVTAQIALQPALK  

 

10 SNAPA 

 

44 3 1 MDNSGKEAEA MALLAEAERK VKNSQSFFSG LFGGSSKIEE ACEIYARAAN  

51 MFKMAKNWSA AGNAFCQAAQ LHLQLQSKHD AATCFVDAGN AFKKADPQEA  

101 INCLMRAIEI YTDMGRFTIA AKHHISIAEI YETELVDIEK AIAHYEQSAD  

151 YYKGEESNSS ANKCLLKVAG YAALLEQYQK AIDIYEQVGT NAMDSPLLKY  

201 SAKDYFFKAA LCHFCIDMLN AKLAVQKYEE LFPAFSDSRE CKLMKKLLEA  

251 HEEQNVDSYT ESVKEYDSIS RLDQWLTTML LRIKKTIQGD EEDLR 

 

MS/MS Fragmentation of TIQGDEEDLR 
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Appendix Table 3: MS/MS analysis table for differentially regulated phospho-

proteins identified by Q-TOF analysis. 

 
Spot ID: indicate spot identification number on the 1DE gel; 

a
Abbreviation for protein name;

 

b
Mascot score: >42 indicate identity or extensive homology (p < 0.05);

 c
Peptides: number of 

peptides matched with protein in MS/MS query; MS/MS analysis: sequence of protein with 

identified peptide (bold) and exemplary MSMS spectra of the peptide with higher ion-score.  

 

 
Spot ID 

a
Abb 

 
Mascot 
Score

b
 

Peptides
c 

 
MS/MS Analysis 

12 

 

TCPD 

 

152 6 1 MPENVAPRSG ATAGAAGGRG KGAYQDRDKP AQIRFSNISA AKAVADAIRT  

51 SLGPKGMDKM IQDGKGDVTI TNDGATILKQ MQVLHPAARM LVELSKAQDI  

101 EAGDGTTSVV IIAGSLLDSC TKLLQKGIHP TIISESFQKA LEKGIEILTD  

151 MSRPVELSDR ETLLNSATTS LNSKVVSQYS SLLSPMSVNA VMKVIDPATA  

201 TSVDLRDIKI VKKLGGTIDD CELVEGLVLT QKVSNSGITR VEKAKIGLIQ  

251 FCLSAPKTDM DNQIVVSDYA QMDRVLREER AYILNLVKQI KKTGCNVLLI  

301 QKSILRDALS DLALHFLNKM KIMVIKDIER EDIEFICKTI GTKPVAHIDQ  

351 FTADMLGSAE LAEEVNLNGS GKLLKITGCA SPGKTVTIVV RGSNKLVIEE  

401 AERSIHDALC VIRCLVKKRA LIAGGGAPEI ELALRLTEYS RTLSGMESYC  

451 VRAFADAMEV IPSTLAENAG LNPISTVTEL RNRHAQGEKT AGINVRKGGI  

501 SNILEELVVQ PLLVSVSALT LATETVRSIL KIDDVVNTR  

 

MS/MS Fragmentation of ALIAGGGAPEIELALR 

 

11 DBLOH 

 

52 2   1 MAALKSWLSR SVTSFFRYRQ CLCVPVVANF KKRCFSELIR PWHKTVTIGF  

  51 GVTLCAVPIA QKSEPHSLSS EALMRRAVSL VTDSTSTFLS QTTYALIEAI  

  101 TEYTKAVYTL TSLYRQYTSL LGKMNSEEED EVWQVIIGAR AEMTSKHQEY  

  151 LKLETTWMTA VGLSEMAAEA AYQTGADQAS ITARNHIQLV KLQVEEVHQL  

  201 SRKAETKLAE AQIEELRQKT QEEGEERAES EQEAYLRED 

   

MS/MS Fragmentation of LAEAQIEELR 
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13 ACTA 128 5 1 MCEEEDSTAL VCDNGSGLCK AGFAGDDAPR AVFPSIVGRP RHQGVMVGMG  

51 QKDSYVGDEA QSKRGILTLK YPIEHGIITN WDDMEKIWHH SFYNELRVAP  

101 EEHPTLLTEA PLNPKANREK MTQIMFETFN VPAMYVAIQA VLSLYASGRT  

151 TGIVLDSGDG VTHNVPIYEG YALPHAIMRL DLAGRDLTDY LMKILTERGY  

201 SFVTTAEREI VRDIKEKLCY VALDFENEMA TAASSSSLEK SYELPDGQVI  

251 TIGNERFRCP ETLFQPSFIG MESAGIHETT YNSIMKCDID IRKDLYANNV  

301 LSGGTTMYPG IADRMQKEIT ALAPSTMKIK IIAPPERKYS VWIGGSILAS  

351 LSTFQQMWIS KQEYDEAGPS IVHRKCF 

 

 MS/MS Fragmentation of AGFAGDDAPR 

  

 

14 ADHX 

 

74 4 1 MANEVIKCKA AVAWEAGKPL SIEEIEVAPP KAHEVRIKII ATAVCHTDAY  

51 TLSGADPEGC FPVILGHEGA GIVESVGEGV TKLKAGDTVI PLYIPQCGEC  

101 KFCLNPKTNL CQKIRVTQGK GLMPDGTSRF TCKGKTILHY MGTSTFSEYT  

151 VVADISVAKI DPLAPLDKVC LLGCGISTGY GAAVNTAKLE PGSVCAVFGL  

201 GGVGLAVIMG CKVAGASRII GVDINKDKFA RAKEFGATEC INPQDFSKPI  

251 QEVLIEMTDG GVDYSFECIG NVKVMRAALE ACHKGWGVSV VVGVAASGEE  

301 IATRPFQLVT GRTWKGTAFG GWKSVESVPK LVSEYMSKKI KVDEFVTHNL  

351 SFDEINKAFE LMHSGKSIRT VVKI 

  

MS/MS Fragmentation of IIGVDINKDK 

 

15 NACA 

 

342 4 1 MPGEATETVP ATEQELPQPQ AETGSGTESD SDESVPELEE QDSTQATTQQ  

51 AQLAAAAEID EEPVSKAKQS RSEKKARKAM SKLGLRQVTG VTRVTIRKSK  

101 NILFVITKPD VYKSPASDTY IVFGEAKIED LSQQAQLAAA EKFKVQGEAV  

151 SNIQENTQTP TVQEESEEEE VDETGVEVKD IELVMSQANV SRAKAVRALK  

201 NNSNDIVNAI MELTM  

 

MS/MS Fragmentation of SPASDTYIVFGEAK 



   

121 

 

16 TCTP 

 

103 5 1 MIIYRDLISH DEMFSDIYKI REIADGLCLE VEGKMVSRTE GNIDDSLIGG  

51 NASAEGPEGE GTESTVITGV DIVMNHHLQE TSFTKEAYKK YIKDYMKSIK  

101 GKLEEQRPER VKPFMTGAAE QIKHILANFK NYQFFIGENM NPDGMVALLD  

151 YREDGVTPYM IFFKDGLEME KC 

  

MS/MS Fragmentation of GKLEEQRPER 

  

 

17 ACTB 

 

 

76 5 1 MDDDIAALVV DNGSGMCKAG FAGDDAPRAV FPSIVGRPRH QGVMVGMGQK  

51 DSYVGDEAQS KRGILTLKYP IEHGIVTNWD DMEKIWHHTF YNELRVAPEE  

101 HPVLLTEAPL NPKANREKMT QIMFETFNTP AMYVAIQAVL SLYASGRTTG  

151 IVMDSGDGVT HTVPIYEGYA LPHAILRLDL AGRDLTDYLM KILTERGYSF  

201 TTTAEREIVR DIKEKLCYVA LDFEQEMATA ASSSSLEKSY ELPDGQVITI  

251 GNERFRCPEA LFQPSFLGME SCGIHETTFN SIMKCDVDIR KDLYANTVLS  

301 GGTTMYPGIA DRMQKEITAL APSTMKIKII APPERKYSVW IGGSILASLS  

351 TFQQMWISKQ EYDESGPSIV HRKCF   

 

MS/MS Fragmentation of AGFAGDDAPR 

 

18 ICLN 

 

139 4 1 MSFLKSFPPP GPAEGLLRQQ PDTEAVLNGK GLGTGTLYIA ESRLSWLDGS  

51 GLGFSLEYPT ISLHALSRDR SDCLGEHLYV MVNAKFEEES KEPVADEEEE  

101 DSDDDVEPIT EFRFVPSDKS ALEAMFTAMC ECQALHPDPE DEDSDDYDGE  

151 EYDVEAHEQG QGDIPTFYTY EEGLSHLTAE GQATLERLEG MLSQSVSSQY  

201 NMAGVRTEDS IRDYEDGMEV DTTPTVAGQF EDADVDH  

 

MS/MS Fragmentation of  GLGTGTLYIAESR 
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