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1. General introduction 

 

1.1 Mycophenolic acid 

Mycophenolic acid (MPA) is an active fungal agent derived from Pencillium 

Brevicopactum and related fungi. MPA was discovered in 1893 by an Italian physician, 

Bartolomeo Gosio as an antibiotic against Bacillus anthracis (reviewed in [1]) and was 

named by Alsberg and Black in 1913 [2]. MPA selectively and competitively inhibits 

inosine monophphosphate dehydrogenase (IMPDH), which is a key regulatory 

enzyme in the de novo pathway of purine biosynthesis. IMPDH converts inosine 

monophosphate (IMP) to guanosine monophosphate (GMP), an important 

intermediate in the synthesis of DNA, RNA, proteins, and glycoproteins. Inhibition of 

IMDPH leads to cell cycle arrest in synthesis (S) phase due to the blocking of de novo 

guanosine nucleotide synthesis. MPA exhibits cytotoxic effects on all cell types 

including its main target, lymphocytic cells [3][4,5]. Lymphocytes presumably utilize a 

de novo pathway for purine biosynthesis while non-lymphocytic cells depend only 

partially on this pathway, and can utilize a salvage pathway [4]. In the salvage 

pathway, guanine obtained from the breakdown of nucleic acids is directly converted 

to guanosine monophosphate and used for purine synthesis [6]. Additionally, MPA has 

five fold more potent inhibitory action on IMPDH II, an isoform mainly expressed in B & 

T lymphocytes, than on IMPDH I, which is expressed in all body cells [4]. 

Consequently, the cytostatic effects of MPA on lymphocytes are greater than on other 

cell types, which contributes to the prevention of graft rejection, making MPA an 

especially useful immunosuppressant in transplantation medicine [3,4].  

 

MPA is marketed in two forms: the ester pro-drug mycophenolate mofetil (MMF; 

CellCept, Roche, Grenzach-Wyhlen, Germany) and enteric-coated mycophenolate 

sodium (EC-MPS; myfortic®; Novartis Pharma AG, Basel, Switzerland)  [7]. MMF 

gained approval by the United States Food and Drug Administration (FDA) in 1995 

for the prevention of renal, cardiac, and hepatic allograft rejection [8,9]. MPA is now 

the drug of choice in transplantation medicine for the prevention of acute rejection in 

patients undergoing allogenic renal, cardiac and liver transplantation [4,10]. 

Furthermore, MPA has proved to be effective in the treatment of autoimmune 
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EC-MPS 

AcMPAG 
MPA 7-O-glucoside  

 

6-o-desmethyl MPA 

MMF 

MPA 

MPAG 

disorders of the eyes and skin as well as in Wegener's granulomatosis and lupus 

nephritis [11-14], hypertension [15,16] and neuromuscular autoimmune diseases 

[17,18]. MPA has also been reported to possess anti-viral [19], anti-fungal [20], anti-

bacterial [1], anti-tumor [21], and anti-psoriasis [22,23] activities.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.1: Chemical structure of MMF, EC-MPS, MPA, and their metabolites AcMPAG, MPA 7-
O-glucoside, and 6-o-desmethyl MPA. 

 

 

1.1.1 Metabolism 

 
MMF and EC-MPS is rapidly hydrolyzed by esterases in the gut, blood, liver, 

and kidney [24]. Maximal MPA plasma concentrations (Cmax) are generally reached 

within 1-1.5 hr and 1.5-2.5 hr after oral administration of MMF and EC-MPS 

respectively [7]. EC-MPS is insoluble in the acidic pH of the stomach but highly 

soluble in the neutral pH of the intestine. This effect is responsible for later peak 

concentrations seen after EC-MPS administration when compared to MMF [7,25]. 

Following intravenous administration, MMF is also rapidly hydrolyzed to MPA with 

Cmax achieved within approximately 1.58 hr and with an absorption half life of only a 
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few minutes [26].  The mean bioavailability of MPA is 81%-94% and 72% following 

administration of MMF and EC-MPS respectively [7,27], while the mean 

bioavailability of MPA after oral administration of MMF is estimated to be 94.1% 

relative to the intravenous route [28]. Trough plasma MPA concentrations are in the 

range of 0.3-3.4 mg/L [261]. MPA binds extensively (97-99%) to plasma albumin 

producing free fractions of only <3%. The free fraction of MPA is mainly responsible 

for the pharmacological effects of MPA [7,24,29,30].  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Metabolism of MPA. 

MMF and EC-MPS are hydrolyzed to their active form MPA in the GI tract. MPA then 

absorbed and subsequently glucuronated by UGT to MPAG in the hepatocytes. In addition, other 

metabolites including AcMPAG, MPA 7-O-glucoside, and 6-o-desmethyl MPA are also formed. MPAG 

is largely excreted into urine by hOATs while some is secreted into bile by MRP, where it is then either 

excreted into feces or reconverted to MPA by glucuronidases present in gut bacteria and returned to 

the systemic circulation (enterohepatic recycling). 
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Like many other xenobiotics, MPA undergoes glucuronidation, which is the 

major pathway for phase II metabolism for xenobiotics in humans [36]. MPA is 

conjugated by uridine diphosphate-glucuronosyltransferase (UGT) enzymes to form 

MPA glucuronide (MPAG) in hepatocytes, kidneys and intestinal mucosa [30,31]. 

UGT 1A9, UGT1A7, 1A8 and 1A10 are mainly responsible for MPAG formation [32]. 

Beside MPAG, other minor metabolites of MPA, such as 7-O-glucoside and the 

active acyl glucuronide of MPA (AcMPAG) are formed by UGT2B7 and 

miscellaneous UGTs respectively [32,33]. In addition, an oxidation product 6-O-

desmethyl MPA is formed by cytochrome P-450 (CYP3A4/5) [34]. The chemical 

structures of MPA, its pro-drugs, and metabolites are given in Figure 1.1. 

 

MPAG does not exhibit pharmacological activity but is present in 20 to 100-

fold higher concentrations than MPA in the blood [24] and achieves its Cmax in 1 hr 

after the MPA Cmax [251]. MPAG has a protein binding of 82% and has the capacity 

to interfere with the MPA-albumin binding. MPAG at high concentrations is known to 

displace MPA from its albumin binding sites, thus modulating the free fraction of 

MPA, which is important for the pharmacological activity of MPA [30,35].   

 

AcMPAG, a pharmacologically active metabolite, is believed to be responsible 

for some of the adverse effects of MPA [33,36,37]. Acyl glucuronides are formed by 

esterfication of carboxylic acid with glucuronic acid [36]. Such acyl glucuronides have 

been observed for several clinically useful therapeutic drugs including non steroidal 

anti-inflammatory drugs (NSAIDs) [36]. AcMPAG plasma concentrations are 10-20% 

of MPA concentrations [75,76]. Mean AcMPAG area under curve (AUC), over 12 hr 

is generally 10.3% of simultaneous MPA-AUC [75] and AcMPAG reaches its Cmax in 

1-3 hr following the Cmax of MPA {Schutz, 2000 680 /id}.  

 

MPA is eliminated from the body mainly through the kidneys. 93% of the orally 

administered dose of MMF is excreted in urine and 6% in the feces. MMF is 

predominantly (87%) excreted as MPAG in the urine and a small amount (<1%) as 

MPA. Like MMF, orally administered EC-MPS is also excreted maximally through 

urine, with 60% as MPAG and approximately 3% as MPA 1-7,4,8,9.  
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A proportion of MPAG is secreted into bile through multidrug resistant protein 

(MRP) transporters, specifically MRP2 [41]. MPAG then goes into the intestine where 

gut bacteria deglucuronidate MPAG to reform MPA, which is then reabsorbed back 

into systemic circulation [24,30]. This reabsorption is responsible for a second peak 

of MPA concentration detected in plasma 6 to 12 hr and 6 to 8 hr following oral 

administration of MMF and EC-MPS respectively [45]. This process is known as 

enterohepatic circulation and accounts for 10 to 60% of total MPA exposure 

[24,30,31,42]. The mean elimination half-life of MPA is 13 and 13–17 hr following oral 

administration of MMF and EC-MPS respectively [7,24]. The simplified overview of 

distribution and metabolism of MPA is shown in Figure 1.2. 

 
1.1.2 Cellular and adverse effects of MPA 
 

 
MPA causes the depletion of guanosine triphosphate (GTP) pools, which is 

assumed to be responsible for MPA associated anti-proliferative effects in vitro and in 

vivo [43,44]. Nucleotide inhibition leads to G1 cell cycle arrest and thus inhibits cell 

growth of immune (T and B lymphocytes) and non immune cells (smooth muscle 

cells, enthothelial cells, renal tubular and mesangial cells) in a dose-dependant 

manner [43,44,46-47]. MPA is also a potent anti-inflammatory agent which inhibits 

proliferation of immune cells, inhibits pro-inflammatory cytokines such as tumor 

necrosis factor alpha, interleukin 1 beta, interleukin-17, vascular endothelial growth 

factor alpha (VEGF-α), and blocks the migration of leucocytes to inflammation sites 

[48,49]. MPA has promising effects in reducing myofibroblast infiltration, collagen III 

deposition and inhibition of the proliferation of both immune (lymphocytes) and non 

immune (fibroblasts, vascular smooth muscle and tubular) cells which are involved in 

the development of fibrosis [50-52].  MPA inhibits tumor growth and metastasis 

through G1-S cell cycle arrest, induction of differentiation in a variety of human tumor 

cell lines, induces apoptosis, as well as suppress the glycosylation and expression of 

several adhesion molecules (integrins, ICAM-1, VCAM-1, E-selectin and P-selectin) 

which promote tumor metastasis [21,53-56].   
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Figure 1.3:  Adverse effects of MPA.  

Various proposed mechanisms of MPA associated side effects are highlighted such as (a) alteration in 

gene expression making individuals more susceptible to stress [78], (b) immunosuppression leading to 

opportunistic infections [58], (c) AcMPAG adduct toxicity results in ultrastructural abnormalities, 

metabolic dysfunction, and oxidative damage [58][36]. 

 

MPA is generally a well tolerated immunosuppressive agent and produces 

less nephrotoxicity compared to other immunosuppressives drugs (reviewed in [57]). 

GI toxicity is the common adverse effect of MPA, occurs in 20% of renal patients on 

MMF therapy, and is dose dependant (reviewed in [57]). Symptoms of GI toxicity 

include diarrhea, abdominal pain, nausea, anorexia, vomiting, [58-60], gastritis, 

esophagitis, duodenal ulcers, colonic ulceration [60,61], and small intestinal villous 

atrophy [62,63]. MMF can cause enterocolitis and a Crohn’s disease-like collitis 

syndrome [37,64,65].  

In addition to GI tract symptoms MPA can cause genitourinary symptoms such 

as frequency, urgency, dysuria, sterile pyuria, and hematuria. These symptoms have 
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reen reported to occur during the first year of MPA therapy (reviewed in [2,57]). In 

addition, MPA can also occasionally produce neurologic disturbances such as 

weakness, headache, tinnitus and insomnia (reviewed in [66]). Some cases of 

progressive multifocal leukoencephalopathy (PML) have been reported in patients on 

MMF therapy. These patients developed clinical features such as hemiparesis, 

apathy, confusion, cognitive deficiencies, and ataxia [67,68,68]. The occasional skin 

problems with MPA use include exanthematous eruptions, acne, pedal edema, 

urticaria, dishydrotic eczema, blistering hand dermatitis, and onycholysis (reviewed in 

[57,66]).  

MPA can cause cardio-respiratory toxicity causing dyspnoea, cough, chest 

pain, palpitations, hypertension, acute respiratory failure, pulmonary edema, 

pulmonary fibrosis and pneumonitis [57,69]. Metabolic disturbances are also reported 

in MMF treated patients. Findings in these patients includes hypercholesterolemia, 

hypophosphatemia, hypokalemia, hyperkalemia, hyperglycemia (reviewed in [57,66]). 

There have been reports of mild, dose-related haematologic effects occurring in 5% 

of patients. Findings include anemia, leucopenia, and thrombocytopenia (reviewed in 

[2,57]). Pure red cell aplasia (PRCA) has been observed in some patients treated 

with MPA in combination with other immunosuppressive drugs [70]. An increased 

incidence of infectious complications occurs in 2% of renal and cardiac transplant 

patients and in 5% of hepatic transplant patients treated with MPA (reviewed in [57]). 

Like other immunosuppressive therapies, opportunistic infections occur in up to 40% 

of transplant patients given MMF (reviewed in [66,71]). Several viral, bacterial and 

fungal complications have been observed, including infection with herpes simplex 

virus, herpes zoster virus, human herpes virus type 6,  papillomavirus, aspergillosis, 

encephalitis, streptococcus B septic shock, recurrent E.coli associated epididymitis, 

pediatric disseminated varicella, candidiasis, cryptococcosis, mucormycosis 

pneumocystis carinii pneumonia, and intestinal microsporidosis (Reviewed in 

[3,56,74]).  

Diarrhoea is the most common GI adverse effect caused by MPA but the 

exact mechanism responsible for this have not yet been clearly defined [72]. Several 

mechanisms have been suggested to be responsible for the adverse events 

associated with MPA therapy including direct cytotoxic effects on GI cells, release of 

pro-inflammatory cytokines by AcMPAG [73,74], and formation of AcMPAG protein 
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adducts [75]. Covalent AcMPAG-protein adducts are formed through two pathways; 

transacylation and glycation. Transacylation involves direct bounding of an aglycone 

moiety to the proteins while the glycation mechanism involves intramolecular re-

arrangement resulting in a open-chain conjugate with a free aldehyde group which 

binds with the amino group on various proteins [36,77].  

 

AcMPAG adducts may cause cellular toxicity through a number of proposed 

mechanisms. These adducts may modify protein structure and thus interfere with 

normal cell function, or they may activate the immune system resulting in 

hypersensitivity reactions or autoimmunity. Furthermore, AcMPAG adducts cause 

oxidative stress via glutathione depletion [58][36]. Previously, it was demonstrated 

that AcMPAG forms covalent protein adducts in the kidney, liver and intestine of rats 

treated with MMF [76,77]. The proteins involved are associated with diverse cellular 

functions. Another study revealed that MMF down-regulates mRNA expression of 

polymeric immunoglobulin receptor (resulting in decreased protection against 

invading pathogens and reactive drugs), catalase (cells were more prone to oxidative 

stress), and CCAAT/enhancer-binding proteins (interference with the defence system 

against free radicals) [58,78]. The adverse effects of MPA therapy are summarized in 

Figure 1.3. 

 

1.2 Intestinal epithelial barrier  
 

The mammalian intestine is lined with a single layer of specialized simple 

columnar epithelium that separates the intestinal lumen from the underlying lamina 

propria [79,80]. The intestinal lining consists of proliferative crypts, which contain 

intestinal stem cells, and villi, which contain differentiated specialized cell types such 

as the absorptive enterocytes, mucous-secreting goblet cells, and hormone-secreting 

enteroendocrine cells [81] (reviewed in [82]). In addition, there are Paneth cells which 

are differentiated cells at the bottom of crypts bottom that perform several functions 

including limiting gut microbial populations by secreting defensins, (antimicrobial 

peptides) and protecting the intestinal lining from bacterial toxins [80].  

 

The intestinal epithelium represents the major contact between a person and 

their external environment and covers an extensive surface area of >300 m2 [83]. 



 

14 

Structural components of the intestinal barrier include the unstirred water layer, the 

hydrophobic mucosal surface, the surface mucous coat, epithelial factors (tight 

junctions), and endothelial factors [84]. The intestinal epithelium has two vital 

functions. It selectively filters, allowing the absorption of nutrients, electrolytes, and 

water from the intestinal lumen into the circulation while it serves as a barrier to 

prevent luminal pro-inflammatory factors, luminal pathogens and their antigens or 

toxins from invading the tissues [84-87]. In addition, the stirred water layer plays a  

role in transport of many nutrients and drugs, especially lipid-soluble compounds 

[84]. Mucus from goblet cells provides a protective layer against the physical friction, 

chemical digestion, and adhesion of bacteria. In addition, it also acts as a diffusion 

barrier [84,88]. The hydrophobicity of the mucosal surface acts as an important 

barrier to bacterial and other factors within the gut lumen. Many factors such as 

nonsteroidal anti-inflammatory drugs (NSAIDs), dextran sodium sulfate, 

trinitrobenzenesulfonic acid, lipopolysaccharide (LPS) and ammonium [89] can 

decrease this hydrophobicity.  

 

The epithelial layer constitutes the key component of intestinal barrier. It acts as 

a selectively permeable filter allowing the transport of essential dietary nutrients, 

electrolytes, and water from the intestinal lumen into the circulation [84,90].  In 

addition, the intestinal epithelia controls chloride permeability which is responsible for 

secretion of protective fluids into the intestinal lumen which limits bacterial 

colonization and entry of toxins into the intestinal cells [91]. Another important 

function of the intestinal lining is its secretion of local immunoglobulins such as 

epithelial secretory immunoglobulin-A (IgA) which targets antigens at the mucosal 

surface, and constitutes a humoral component of the mucosal immune system [92-

94].  

Permeability of the intestinal epithelium is regulated via 

transepithelial/transcellular and paracellular pathways. Transcellular transport is an 

active process and involves transport of water, amino acids, electrolytes, short-chain 

fatty acids, and sugars across the plasma membrane by specific ion channels and 

transporters [15,16][95]. Paracellular transport is a passive process which involves 

the movement of solutes and water across the intercellular space and is regulated by 

intercellular complexes. Paracellular transport is determined by molecular size or the 

ionic charge or both and is mainly regulated by tight junctions (TJ) [95,96].   
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1.2.1 Tight junctions  

 

Intestinal epithelial cells are connected to one another by adhesive junctional 

complexes which serve as a physiological and structural paracellular barrier. 

Components that constitute the multimolecular junctional complex include 

desmosomes, adherens junctions, and TJs [97,98]. TJ, the most apical component of 

the junctional complex are generally considered to be the major barrier to the 

passage of molecules between adjacent cells and through the intercellular space. 

The TJ barrier is not absolute but is selectively permeable and is able to discriminate 

between solutes on the basis of size and charge. TJ complex contains more than 

forty proteins, having various functions [99]. The structure of TJ was first described 

with the help of electron microscopy [100]. TJ consist of transmembrane proteins 

(JAMs, occludin and claudins), adaptors (ZO (type 1-3), MAGI (type 1-3), PAR 3/6, 

cingulin, PATJ and MUPP1), regulatory proteins (Rab 13, Rab 3b, G proteins, PKC, 

PP2A and PTEN), and both transcriptional and post-transcriptional regulators 

(symplekin, ZONAB, and huASH1). All these proteins interact with each other to form 

a complex protein network [101,102], responsible for TJ functions including their 

interaction with F-actin [103]. The basic architecture of TJ is shown in Figure 1.4. All 

of the TJ proteins listed above play an important role in the structure and function of 

TJ, but only a brief description of the function of some TJ proteins ( ZO-1, occludin, 

and claudin), which have been extensively studied in the context of TJ disruption 

[104] are described below.  

 

ZO, the first TJ-associated protein to be identified [105], belongs to the 

membrane associated guanylate kinase family (MAGUK) and contains three N-

terminal PDZ repeats, an SH3 domain, and a C-terminal region homologous to 

guanylate kinases [106]. There are different isotypes of ZO including ZO-1, ZO-2 and 

ZO-3 with a variety of cellular functions. ZO-1 is a 210-225 KDa peripheral 

membrane protein and is a major constituent of the cytoplasmic domain of TJ. The C-

terminal domain of ZO-1 interacts with other TJ proteins including claudins [107]. ZO-

1 is also in close association with actin cytoskeleton responsible for linking 

transmembrane proteins of the TJ to the actin cytoskeleton that plays a regulatory 

role in TJ actions. The C-terminal portion of occludin, claudin, ZO-2, and ZO-3 

interact closely with the N-terminus of ZO-1. Additionally, the C-terminal half of ZO-1 
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interacts with F-actin regulating cytoskeleton [107,108]. The expression and 

distribution of ZO proteins are regulated by myosin light chain kinase (MLCK) and 

their alteration can lead to defective function of epithelial barriers [109]. The down-

regulation and redistribution of ZO-1 has been observed in TJ disruption conditions, 

such as those involving cytokines [110,111], ethanol [112] and oxidants [113].  

 

Occludin is a 60 KDa protein and was identified as the first among 

transmembrane TJ proteins in 1993 [114,115]. Occludin is a member of the Marvel 

(MAL-related proteins for vesicle trafficking and membrane link) domain containing 

protein family [116]. Occludin has a tetraspan structure that constitutes its 

extracellular strand within TJ and amino- and carboxy-terminal chains projecting into 

the cytoplasm [117]. The interactions of occludin with various intracellular TJ 

proteins, including ZO-1, ZO-2, and ZO-3 have been well documented [118]. 

Occludin plays an important role in regulating TJ dynamics as demonstrated by the 

fact that its depletion leads to increases in the permeability of larger-sized molecules 

shown in both in vitro and in vivo intestinal models [119]. The down-regulation of 

occludin proteins, associated with increased permeability has been observed in 

several inflammatory bowel diseases such as Crohn's disease, ulcerative colitis, and 

celiac disease [120-122], as well as in animal models of inflammatory bowel disease 

[123,124]. It has been proposed that a decrease in intestinal occludin expression 

may be an important mechanism responsible for increased intestinal epithelial TJ 

permeability. Occludin in epithelial cells is highly phosphorylated on serine and 

threonine residues and its phosphorylation plays a critical role in the regulation of TJ 

integrity. Occludin phosphorylation is regulated by the balance between protein 

kinases (eg. c-Src, PKCζ, and PKCλ/ι,) and protein phosphatases (eg. PP2A, PP1, 

and PTP1B) [125-127]. Occludin has also been reported to be phosphorylated at 

tyrosine which has been proposed to be implicated in disruption of TJs by various 

toxins such as hydrogen peroxide and acetyladehyde [128,129].   

 

Claudins are 20-27 KDa integral membrane TJ proteins that contains four 

hydrophobic transmembrane domains which have a cytoplasmic N terminus, two 

extracellular loops, and a C-terminal cytoplasmic domain. The claudin family is a 

multigene family comprised of at least 24 members [130]. On the basis of their role in 

controlling permeability, claudins has been divided into two sub-categories, 
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paracellular barrier forming claudins and paracellular, ion permeability forming 

claudins. Both are vital for proper and tissue-specific functioning of the TJs; making 

claudins a critical player in regulation of paracellular function [131,132]. The carboxy 

terminus of claudins binds to PDZ domains of proteins including those of the ZO 

proteins [107]. In addition, interaction of claudin-1 with ZO-1 is critical for ZO-1 

integration into epithelial TJs [133]. Claudin isotypes 1 to 5 are present in the 

intestinal cells in various intestinal regions [134,135].  Down-regulation of claudin 1 is 

believed to be linked to the TJ disruption in inflammatory mucosa by Crohn's 

diseaseand ulcerative colitis and is believed to be associated with enhanced 

paracellular permeability [136]. Claudin 4 down-regulation has also been observed in 

collagenous colitis, characterized by barrier defects and associated with reduced net 

Na+ and Cl- absorption [137].  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.4: Intestinal epithelial barrier. 

Schematic diagram of intestinal epithelial cells showing tight junctions (TJ), adherens junctions (AJs), 

desmosomes and gap junctions. The TJs are positioned at the most apical parts of the plasma 

membranes of entrocytes, whereas AJs and desmosomes are present mainly at the basal parts of the 

lateral membranes. TJ and AJ are linked to actin and play an important role in regulation of intestinal 

permeability (Left panel). The molecular components of epithelial tight junctions (TJs) are outlined 

(right panel), and consist of transmembrane proteins (occludin, claudins and JAMs), adaptors (ZO (1-

3), PAR 6, and PATJ), regulatory proteins (Rac, cdc42, RhoA, and PKC), and other associated 

proteins. Occludin, claudins and JAMs are linked to the zona occludens, and they are connected to 

actin forming the main TJ assembly. Adopted from (Aktories K and Barbieri JT 2005, Nat Rev 

Microbiol) [138]. 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Aktories%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Barbieri%20JT%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/15821726
http://www.ncbi.nlm.nih.gov/pubmed/15821726
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          TJ defects have been described in several patho-physiological conditions such 

as brain diseases [139,140], pulmonary inflammation, allergic rhinitis [141], 

obstructive jaundice [142], kidney diseases [143,144], diabetic retinopathy [145], 

cancers [146], blood-borne metastases [140,147] and bowel diseases [148-150]. 

Intestinal epithelial barrier dysfunction is a major factor contributing to the 

predisposition to inflammatory diseases, including food allergy, IBD, and celiac 

disease. The presence of environmental factors in the intestinal lumen and 

inappropriate host immune responses are key determinants of the development of 

IBD [87,148]. In IBD, epithelial barrier function is impaired leading to either diarrhoea 

because of a leaky flux mechanism or translocation of toxins and macromolecules 

into intestinal cells causing associated dysfunction [151]. 

1.2.2 Factors modulating intestinal permeability   

 
Several endogenous molecules such as glucose [153], hormones [154], 

nucleotides [155], and growth factors [156-158] provide physiological modulation of 

TJ permeability. In addition, a growing list of pathological agents has been suggested 

as etiologic factors in several diseases as a result of causing increased mucosal 

permeability [159]. Dietary components are crucial in the regulation of barrier integrity 

(reviewed in [160]). Gliadin, a glycoprotein present in wheat, is the key factor in the 

pathogenesis of celiac disease and is responsible for TJ disruption leading to 

increased permeability [161]. Several dietary components have been found to 

increase TJ permeability including: cayenne pepper (Capsicum frutescens), paprika 

(Capsicum anuum), galangal (Alpinia officinarum), marigold (Tagetes erecta), Acer 

nikoense, and hops (Humulus lupulus) (reviewed in [160]). In contrast, black pepper 

(Piper nigrum), green pepper, nutmeg, bay leaf extracts, linden (Tilia vulgaris), star 

anise (Illicium anisatum), Arenga engleri, and black tea (Camellia sinensis) have 

been found to decrease paracellular flux and increase transepithelial resistance 

(TER) (reviewed in [160]). 

 

Pro-inflammatory cytokines have also been proposed as pathophysiological 

stimuli which trigger several cellular pathways leading to pathological conditions 

including bowel diseases [110,111,162-166]. For example, TNFα modulates epithelial 

barrier properties and has a critical role in IBDs [167] and graft-versus-host disease 

[152]. TNFα up-regulates MLCK which acts as the central player in TNFα induced 
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barrier loss, both in vitro [168] and in vivo [150,169]. Additionally, TNFα has also 

been shown to be involved in the down regulation of apical Na+-H+ exchange, which 

then is linked to the development of diarrhoea [169,170]. Mast cells (MC) have been 

reported to regulate intestinal permeability, as suggested by the fact that their 

degranulation results in blood flow modulation, as well as increased epithelial and 

endothelial permeability, mucosal secretion, gastrointestinal tract motility, 

immunologic reactions, and angiogenesis (reviewed in [84] ). Several physiological 

and pathological conditions have been reported to be associated with MC mediated 

intestinal permeability including food allergy, irritable bowel syndrome, and after 

stressful conditions [171,172]. Intracellular mediators including nitric oxide (NO) 

regulate barrier properties by altering the function of epithelial cells and the GI 

microcirculation [173]. The activity and synthesis of NO is increased by endotoxin 

(LPS), cytokines, and ethanol (EtOH), which results in barrier dysfunction via protein 

oxidation, nitration, S-nitrosylation, cGMP activation, and cellular energy depletion 

(reviewed in [84]). 

 

Epithelial-microbe interactions are responsible for alterations in the structure 

and function of the epithelial barrier, regulation of fluid and electrolyte secretion, and 

modulation of  inflammatory signalling (reviewed in [174]). More than 400 microbial 

species that have a profound impact on gut physiology reside in the gastrointestinal 

lumen [80]. Pathogenic bacteria, such as Escherichia coli, Klebsiella pneumoniae, 

Streptococcus viridans, Clostridium difficile, Bacteroides fragilis, Vibrio cholerae, and 

Helicobacter pylori, as well as viruses and parasites (giardia) can disrupt the 

intestinal barrier (reviewed in [84]). Beneficial bacteria:however, such as 

Lactobacillus brevis maintain TJ and reduce intestinal permeability [175]. 

Psychological stress is another factor responsible for alterations in epithelial barrier 

physiology (reviewed in [84]). Various parts of brain, brain stem, various CNS 

afferents, and the neuro-endocrinal system are proposed to be involved in the stress 

response. During psychological stress corticotrophin-releasing factor (CRF) is 

released, which triggers the enteric nervous system that causes alterations in gut 

motility, exocrine and endocrine functions, and the microcirculation (reviewed in 

[176]). Oxidative stress is caused largely by reactive oxygen (ROS) species such as 

hydrogen peroxide (H2O2), nitric oxide, peroxynitrite and hypochlorous acid which 

disrupt the epithelial and endothelial barrier function by destabilizing TJs [177]. 
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1.2.3 Regulation of TJ structure and function 

 

Regulation of the assembly, disassembly, and maintenance of TJ structure is 

highly dynamic and is influenced by diverse protein-protein interactions that respond 

to both extra-cellular and intra-cellular physiological, pharmacological, and 

pathophysiological stimuli. TJ regulation is controlled by several signalling proteins, 

including tyrosine kinase, Ca+2, phospholipase C (PLC), protein kinase C (PKC), 

calmodulin, mitogen-activated protein kinase (MAPK), MLCK, the Rho family of small 

GTPases, adenosine, 3’,5’-cyclic monophosphate (CAMP), and heterotrimeric G 

proteins [178-182]. Actin has a vital role in the structure and function of TJ. Multiple 

TJ components interact with the actin cytoskeleton and regulate the permeability of 

TJs [183,184]. Reorganization of the actin cytoskeleton as a result of interactions 

between transmembrane proteins and the actomyosin ring [178,183,185,186] and as 

well as the phosphorylation state of TJ proteins are both critically involved in 

alterations in TJ physiology [187,188]. Members of the Rho family GTPase (Rac, 

Rho, and Cdc42) have also been shown to be able to reorganize the actin 

cytoskeleton and modulate TJ physiology [179,189-191]. Changes in the 

phosphorylation status of TJ proteins such as ZO, occludin, E-cadherin, β-catenin, 

and claudins act as a molecular switch that regulates TJ structure and function 

[125,187,188,192,193].  

 

MLC phosphorylation is an  important regulator of barrier function in health 

and disease [194]. Increased MLC phosphorylation leads to the rearrangement of TJ 

proteins (ZO-1, occludin, claudin-1 and claudin-4), disruption of perijunctional F-actin, 

and increases TJ permeability [103,184]. The main pathways associated with MLC 

phosphorylation are controlled either directly by MLCK activity or indirectly by Rho 

kinase mediated inhibition of phosphatase [182]. MLCK mediated MLC 

phosphorylation is sufficient to trigger downstream events necessary for barrier 

regulation and has a central role in many diseases that are characterized by 

intestinal barrier dysfunction (reviewed in [170]). Increased MLCK expression or 

activity has been observed in GI pathology following TNF α [169], interleukin 1β 

[195,196], lipopolysaccharide [197], and ethanol [112,198] exposure. Similar 

increased MLCK activity is observed after exposure to virulence factors associated 

with GI infections with Enteropathogenic Escherichia coli (EPEC) [199,200] and 
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Helicobacter pylori [201,202], as well as parasitic diseases like giardiasis [203]. The 

role of Rho family of small GTPases has been described in the regulation of TJ 

structure and function including the perijunctional actomyosin ring [194,204]. ROCKs 

regulate the phosphorylation of MLC by inactivating MLCP (myosin light chain 

phosphatase), which is involved in decreasing MLC phosphorylation [191]. ROCK 

inhibition causes the redistribution of F-actin structures and modulates TJ 

permeability. In addition, ROCK co-localizes with the ZO-1 and its inhibition prevents 

proper localization of TJ proteins during TJ assembly [204].  

 

PKC is an important member of the serine-threonine kinases family which 

regulate epithelial barrier structure and function. PKC modulates the expression of 

subcellular localization and phosphorylation states of TJ proteins which alters  barrier 

dynamics [206]. PKC proteins are also involved in various signal transduction 

pathways such as the Toll-like receptor 2 (TLR2) pathway. Activation by PKC 

isoforms results in increases in TER and redistribution of ZO-1 (reviewed in [160]). 

PKC also interacts with MLCK. PKC phosphorylates MLCK  which leads to 

decreases in MLC phosphorylation, reduces tension on the perijunctional actomyosin 

ring (PAMR), and increases permeability [207]. The MAPK pathway is a major 

intracellular signalling pathway involved in cell growth, differentiation, and TJ 

regulation [208]. Several growth factors, cytokines, and oxidative stresses are 

involved in the stimulation of the MAPK pathway (reviewed in [160,209]). Members of  

MAPK have been implicated in modulation of TJ structure and function since 

extracellular signal regulated kinases (ERK) interact directly with the C-terminal 

region of occludin to prevent H2O2-induced disruption of TJ [208]. 

 

1.2.4 Caco-2 cells as an in vitro model for intestinal epithelial 

integrity  

A number of both in vitro and in vivo experimental models are being used to 

study the integrity of TJs [210-213][214,215]. Caco-2 is one of the most widely used 

intestine cell models for in vitro studies of intestinal barrier functions [211,216,217], 

intestinal absorption, and toxicity of xenobiotics [216-218]. Caco-2 cells were first 

generated from the differentiated colon adenocarcinoma of a 72-year old patient 
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[219]. Caco-2 cells grown in culture usually reach confluency within 3-6 days, a 

stationary growth phase after 10 days [220], and complete their differentiation within 

20 days [221]. Once differentiated these cells exhibit properties similar to enterocytes 

both structurally, bio-chemically, and functionally including having microvilli, 

intercellular junctions, nutrient transporters, efflux transporters, and enzymes 

(alkaline phosphatase, sucrase isomaltase and aminopeptidase) [222,223]. Caco-2 

cells also express various transport and metabolizing enzymes such as cytochrome 

P450 isoforms and UDP-glucuronosyltransferases, sulfotransferases and 

glutathione-S-transferases [224,225]. Although, most Caco-2 properties resemble 

those of enterocytes, some differ. Caco-2 cells lack the crypt-villus axis (which is 

important for in vivo transport) and mucus producing goblet cells (leading to a lack of 

prominent mucus layers [226-228]).  

Transepithelial electrical resistance (TER) and paracellular permeability to 

tracers molecules are two parameters that are commonly used to investigate the 

integrity and function of the TJ in in vitro models such as Caco-2 monolayers 

[213,229-232]. Usually, TJ barriers limit the ionic diffusion through cell monolayers, 

which creates a potential difference that is measured as transpithelial resistance 

(TER). TER has a direct relationship with TJ integrity. The greater the TER, the more 

intact the TJ [223,233,234]. Paracellular permeability of tracers in cell layers is 

measured by the diffusion rate of such tracers from apical to basal or vice versa. 

Paracellular flux is inversely related to TJ integrity (ie. increased paracellular flux 

suggests TJ disruption [213,233]). A variety of paracellular flux markers are used to 

investigate the effects of physiological and pathological agents on TJ integrity. The 

most frequently used paracellular markers include polyethylene glycols (PEG), 

fuorescein-5 and -6 sulfonic acid [235], inulin [119,236,237], fluorescein 

isothiocyanate dextrans (FITC-dextran), urea, mannitol, L-glucose [119,237], 

raffinose [238], atenolol [239] and lucifer yellow [240]. Size, shape, and charge of the 

solutes used control the permeability properties of any particular paracellular marker 

[233,241].  
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1.3 Rationale for the proposed research  
 

Mycophenolic acid is a frequently used immunosuppressive agent and has a 

wide range of pharmacological actions. The present study was undertaken to identify 

novel molecular targets of MPA using a comprehensive 2-DE based expression 

proteomics approach. Whole cell lysates from HEK-293 cells which had been 

exposed to MPA were resolved by 2-DE, and differentially expressed proteins were 

identified by QTOF MS/MS analysis. In an attempt to examine effects with possible 

clinical relevance on a regulated protein, myosin light chain 2 (MLC2), we 

investigated the effects of MPA on TJ integrity using Caco-2 monolayers as a colonic 

cell culture model. After employing various physiological assays as well as 

immunoblotting and immunoflourescence analyses, we found that exposure to 

therapeutic concentrations of MPA modulated tight junction physiology via MLC2 

phsophorylation. The current study may help to understand the etiology of MPA 

associated adverse intestinal effects. 
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2.1 Abstract 

Mycophenolic acid (MPA) is widely used as a post transplantation medicine to 

prevent acute organ rejection. In the present study we used proteomics approach to 

identify proteome alterations in human embryonic kidney cells (HEK-293) after 

treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total 

protein lysates were prepared, resolved by two dimensional gel electrophoresis and 

differentially expressed proteins were identified by QTOF-MS/MS analysis. 

Expressional regulations of selected proteins were further validated by real time PCR 

and Western blotting. The proliferation assay demonstrated that therapeutic MPA 

concentration causes a dose dependent inhibition of HEK-293 cell proliferation. A 

significant apoptosis was observed after MPA treatment, as revealed by caspase 3 

activity. Proteome analysis showed a total of 12 protein spots exhibiting differential 

expression after incubation with MPA, of which 7 proteins (complement component 1 

Q subcomponent-binding protein, electron transfer flavoprotein subunit beta, 

cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-containing 

protein 12, myosin regulatory light chain 2, and profilin 1) showed significant increase 

in their expression. The expression of 5 proteins (protein SET, stathmin, 40S 

ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-C/E/F/G/I) 

were down-regulated. MPA mainly altered the proteins associated with the 

cytoskeleton (26%), chromatin structure/dynamics (17%) and energy 

production/conversion (17%). Both real time PCR and Western blotting confirmed the 

regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA treatment. 

Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF 

treated rats showed similar increased expression of myosin regulatory light chain 2. 

The emerging use of MPA in diverse pathophysiological conditions demands in-depth 

studies to understand molecular basis of its therapeutic response. The present study 

identifies the myosin regulatory light chain 2 and peroxiredoxin 1 along with 10 other 

proteins showing significant regulation by MPA. Further characterization of these 

proteins may help to understand the diverse cellular effects of MPA in addition to its 

immunosuppressive activity.  
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2.2 Introduction 
 

Mycophenolic acid (MPA) is a frequently used immunosuppressant for the 

prevention of acute rejection in patients undergoing allogenic renal, cardiac, lung, 

and liver transplantations [4,10]. MPA is a selective, reversible and uncompetitive 

inhibitor of inosine monophosphate dehydrogenase (IMPDH), a key regulatory 

enzyme in the de novo pathway of purine synthesis. It exhibits cytotoxic effects on 

most of the cell types, but exerts greater effects on T and B lymphocytes, thus 

preventing solid organ rejection [4]. IMPDH inhibition by clinically relevant 

concentration of MPA results in guanine nucleotide depletion which is associated 

with G1 cell cycle arrest. MPA also triggers apoptosis by up-regulating pro-apoptotic 

proteins (p53, p21 and bax) and down-regulating proteins that are important for cell 

cycle progression, such as bcl-2, survivin p27 and c-myc [242]. IMPDH type II is 

significantly over-expressed in several tumor cells, for this reason IMPDH could be 

considered as a potent target for anti-cancer therapy, as well as immunosuppressive 

chemotherapy [243].  

 

MPA and its metabolites effect most of the cellular functions by influencing 

biological pathways, like apoptosis [244], immune associated signaling [245] and 

general cell signaling pathways involving mitogen-activated protein kinases, 

extracellular-signal regulated kinases, c-Jun N-terminal kinases, p53 and Rho-

associated protein kinase [244,246,247]. Collectively, MPA possesses anti-microbial, 

anti-inflammatory, anti-fibrotic, pro-apoptotic [4], anti-angiogenic, anti-cancerous 

[248] and anti-oxidant activities [249]. Due to MPA diverse therapeutic activities in the 

cell, it is also used for the treatment of dermatological diseases, neuromuscular 

diseases and autoimmune disorders such as lupus [248,250]. Gastrointestinal tract 

(GIT) complications i.e., diarrhoea, nausea, abdominal pain, vomiting, anorexia, 

gastritis, intestinal ulceration and small intestinal villous atrophy are common 

complication for some transplant patients on MPA therapy. Other MPA associated 

adverse effects are anemia, myelosuppression and risk of opportunistic infections 

[251]. The exact molecular mechanism of MPA organ toxicity is unknown, but 

possible mechanisms include direct toxicity by its anti-proliferative effect, 

opportunistic infections due to myelosuppression and toxicity, and acyl MPA 

glucuronide (AcMPAG) proteins adduct formation [36,251]. 
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Here we use HEK-293 cell line to uncover cellular protein response to the 

exposure of clinical dose of MPA. In the present study we used a proteomics based 

approach to resolve proteins of total cell lysates on two dimensional electrophoresis 

(2-DE) gels following treatment with DMSO and MPA. The differentially expressed 

proteins were in-gel tryptic digested and identified by QTOF-MS/MS analysis. 

Several proteins were identified with modified expression in response to MPA 

treatment which might be helpful to broaden our understanding regarding the cellular 

effects of MPA. 

 

2.3 Materials and methods 

 

2.3.1 Reagents 

 

Cell culture media (DMEM and MacCoy´s), fetal calf serum (FCS), phosphate 

buffer saline (PBS), penicillin and streptomycin were purchased from PAA 

Laboratories, Colbe, Germany. Urea, thiourea, dithiothreitol (DTT), trypsin, 

triflouroacetic acid (TFA), sodium carbonate, ammonium bicarbonate, MPA and 

DMSO were purchased from Sigma-Aldrich, Steiheim, Germany. Acetonitril (ACN) 

was obtained from Promochem, Wasel, Germany. CHAPS was obtained from 

AppliChem, Darmstadt, Germany. Ampholytes, protein assay kit and immobilised pH 

gradient strips (IPG strips) were procured from Bio-Rad, Munich, Germany, while 

protease and phosphatase inhibitor cocktails were purchased from Roche, 

Mannheim, Germany. Bromophenol blue and trizma base were obtained from Carl 

Roth, Karlsruhe, Germany. Sodium dodecyl sulfate (SDS) was obtained from Serva, 

Heidelberg, Germany. Glycerin, potassium ferricynaide and sodium thiosulfate were 

purchased from Merck, Darmstadt, Germany and formic acid from BASF, 

Ludwigshafen, Germany.  

 

2.3.2 Cell culture  

 

HEK-293 and HT-29 cell lines were purchased from German collection of 

microorganisms and cell cultures (DSMZ), Braunschweig, Germany. The cells were 
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grown in 75 cm2 culture flasks (Sarstedt, Nuemberecht, Germany) and maintained in 

culture at 37°C in 95% humidity, 20% O2 and 5% CO2.  DMEM and MacCoy’s media 

supplemented with L-glutamine, 10% fetal calf serum, 100 U/mL penicillin, and 0.1 

mg/mL streptomycin was used to grow HEK-293 and HT-29 cells respectively.  

 

2.3.3 Proliferation assay 

 

Briefly, cells were grown in 96 well plates at a density of 3.5 X 104 cells/well at 

least 24 h prior to the start of the experiment. The cells were then incubated with 

DMSO (control) or 0 to 100 µmol/L MPA for a period of 72 hr. After completion of 

incubation, proliferation was determined using ELISA based BrdU cell assay (Roche 

Diagnostics) according to manufacturer’s recommendations. Four independent 

experiments were performed. IC50 values were calculated by a Grafit software 

package, version 5 (Erithacus Software, London, UK).  

 

2.3.4 Sample preparation for proteome analysis 

 

The HEK-293 and HT-29 cells were grown for 24 hr followed by treatment with 

DMSO or MPA (7.5 µmol/L and 10 µmol/L for HEK-293 and HT-29 respectively) for 

72 h. Cells were harvested by scraping and were washed three times with ice cold 

PBS. After washing, cells were pelleted down at 250 x g for 10 min and lysed in a 

buffer containing 7 mol/L urea, 2 mol/L thiourea, 4% w/v CHAPS, 2% ampholyte pH 

3-10 and 1% DTT. The lysates were centrifuged and protein content was measured 

by Bradford assay [252] using Bio-Rad protein reagent (Bio-Rad, Munich, Germany) 

according to manufacturer’s instructions. Sample aliquots were kept at -80°C until 

further use. Protein lysate was prepared from 21 days MMF treated adult female 

Wistar rat’s kidney according to the previously reported protocol [253] and were used 

for Westernblotting. 
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2.3.5 2-DE 

 

The 2-DE was performed as described by Gorg et al 2000 [254] with some 

minor modifications. Protein samples of HEK-293 cell (110 µg) were mixed with 

rehydration buffer (7 mol/L urea, 2 mol/L thiourea, 4% CHAPS, 0.2% ampholyte [pH 

3-10], and 0.2% DTT) containing trace amount of bromophenol blue to a total volume 

of 350 µL. Samples were applied to linear IPG strips [pH 3-10], Bio- Rad) for 1 hr and 

then covered with mineral oil for passive rehydration overnight at room temperature. 

Iso-electric focusing (IEF) was performed in Protean IEF cell (Bio-Rad) with a 

program of 1 h at 100 volts, 1 h at 500 volts, 2 hr at 1000 volts and 8000 volts with a 

total of 32000 volts-hr. For the second dimension electrophoretic separation, focused 

strips were equilibrated for 30 min at room temperature in a buffer containing 50 

mmol/L Tris-HCL [pH 8.8], 6 mol/L urea, 30% v/v glycerol, 2% SDS and 10 g/L DTT 

followed by an identical incubation but replacing DTT with 40 g/L iodoacetamide. The 

proteins in the equilibrated strips were then resolved on the 12.5% SDS-PAGE in a 

Protean II chamber (Bio-Rad) at 100 V /4°C. 

 

2.3.6 Protein visualization, densitometric analysis and in-gel 

digestion 

 

Gels were silver stained as described by Blum et al 1987 [255]. After fixation, 

gels were washed and sensitized. The gels were then incubated in freshly prepared 

silver nitrate solution (0.2% silver nitrate and 0.026% formaldehyde) for 20 min at 

room temperature followed by 3 times washes of 20 sec each in distilled water. Gels 

were placed in developing solution (6% sodium carbonate, 0.018526% formaldehyde 

and 6% sodium thiosulfate) until standard marker stained completely and adequate 

spots were visualized. Gels were scanned with a gel Cano scan 8400 (Canon, 

Tokyo, Japan). Densitrometric analysis was done by using Delta 2D software version 

3.6 (Decodon GmbH, Gerifswald, Germany) [256]. Spot intensities were first 

normalized and the relative intensity of each spot was calculated by dividing the 

intensity of each spot by the sum of all spots intensities on the corresponding gel. 

Fold change, SD and Student’s t test probability were calculated using Microsoft 

excel software. Spots having at least 1.5 fold expressional changes (p < 0.05) were 
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considered statistically significant. Four independent 2-DE experiments were 

performed.  

 

Differentially regulated protein spots were excised from the silver stained gel 

with a clean scalpel blade followed by in-gel digestion according to the method 

adopted and modified from Shevchenko et al [257]. Briefly, the gel pieces were 

washed twice in 100 mmol/L ammonium bicarbonate/acetonitrile (1:1, v/v) initially for 

10 min and then until all visible dye was removed. The gel pieces were dried using 

vacuum centrifuge (UNIVAPO 150 H; uniEquip, Matinsried, Germany) followed by 

reconstitution in the trypsin digestion solution (10 ng/µL in 100 mmol/L ammonium 

bicarbonate) overnight at 37°C. After incubation the supernatant containing digested 

peptides was transferred to a tube and 50 µL of 0.1% TFA was added followed by 

sonication for 30 min. After sonication, the supernatant was pooled with the previous 

one. Two further extractions were collected in the same way using 0.1% TFA in 30% 

and then 60% ACN. The pooled extracts of peptides were dried in vacuum centrifuge 

and reconstituted in 0.1% formic acid. 

 

2.3.7 Q-TOF LC-MS/MS analysis of protein identification 

 

The reconstituted peptide samples (1 μL) were introduced onto µ-precolumnTM 

cartridge (C18 pepMap; 300 µm x 5 mm; 5 µm particle size) and further separated 

through a C18 pepMap 100 nano- SeriesTM (75 µm x 15 cm; 3 µm particle size) 

analytical column (LC Packings, Germering, Germany) using an CapLC autosampler 

(Waters, Eschborn, Germany). The mobile phase consisted of solution A (0.1% 

formic acid prepared in 5% ACN) and solution B (0.1% formic acid prepared in 95% 

ACN). The sample run time was set to 60 min and the flow rate of the pump to 5 

µL/min. The exponential gradient was initiated at 5 min after loading from 10% to 

95% for the period of 50 min. Tip flow rate of 250 nL/min was achieved through a 

flow splitter. The eluted peptides were injected into a Q-TOF Ultima Global 

(Micromass, Manchester, UK) mass spectrometer equipped with a nanoflow ESI Z-

spray source in positive ion mode. Data was acquired by MassLynx (v 4.0) software 

and peak list (pkl file) was generated from acquired MS/MS raw data using 

ProteinLynx Global Server bioinformatics tool (PLGS; v 2.2; Waters, Manchester, 
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U.K.) under the following settings; Electrospray, centroid 80% with minimum peak 

width 4 channel, noise reduction 10%, Savitzky-Golay, MSMS, medium deisotoping 

with 3% threshold, no noise reduction and no smoothing.  

 

The generated pkl files were searched using the online MASCOT 

(http://www.matrixscience.com) algorithm against the SwissProt data base release 

15.5 (515203 sequence entries, 181334896 elements). The search criteria was set 

as follows: enzyme, trypsin; allowance of up to one missed cleavage peptide; mass 

tolerance ±0.5 Da and MS/MS tolerance ±0.5 Da; modifications of cysteine 

carboamidomethylation and methionine oxidation. Proteins were finally identified on 

the basis of two or more peptides, whose ion scores exceeded the threshold, P < 

0.05, which indicated the 95% confidence level for these matched peptides. To 

ensure accurate identification, protein spots were digested from more than two gels 

and analyzed with MS. Proteins were considered as identified if the threshold was 

exceeded and the protein spot possessed the correct molecular weight and pI value 

of the corresponding spot on 2-DE. 

 

2.3.8 Functional classification 

 

Biological function annotations for all of the identified proteins were done by 

KOGnitor (http://www.ncbi.nlm.nih.gov/COG/grace/kognitor.html) [258]. 

 

2.3.9 Western blotting 

 

Proteins were separated on 12.5% SDS-PAGE and blotted onto PVDF 

membrane (ImmobilonP, Millipore) using semidry Trans-Blot® SD cell system (Bio-

Rad, Munich, Germany) for 30 min at 15 V in a blotting buffer (192 mmol/L glycine, 

20% methanol, 25 mmol/L Tris [pH 8.3]). The membranes were blocked with 5% 

(w/v) skimmed milk repared in TBS-T buffer (50 mmol/L Tris–HCl [pH 7.5], 200 

mmol/L NaCl, 0.05% Tween 20) for 1 hr at room temperature and washed twice with 

TBS-T buffer. The membranes were incubated with 1:1000 mouse anti Prdx1 

antibody (Abcam, Cambridge, MA), 1:1000 rabbit anti MLC2 (Cell Signaling 

Technology, Inc., Danvers, MA) and 1:1000 mouse anti beta tubulin (Biovender, 

http://www.matrixscience.com/
http://www.ncbi.nlm.nih.gov/COG/grace/kognitor.html
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Czech Republic) overnight at 4°C, followed by washes with TBS-T buffer. 

Membranes were further incubated with appropriate HRP-conjugated secondary 

antibodies for 1 hr at room temperature. The signals on the blots were detected by 

using ECL system (GE Healthcare) according to manufacturer’s instructions. Signal 

intensities from each Western blot were quantified by using Lab Image software, 

version 2.71 (Leipzig, Germany). β tubulin was used as a loading control and at least 

four independent experiments were performed. 

2.3.10 RNA isolation and cDNA synthesis 

 

RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA) 

according to manufacturer’s recommendations. Briefly, cells were scraped, washed 

and then homogenized in Trizol reagent. RNA was separated by 

chloroform/isopropanol precipitation method. The concentration of RNA was 

determined by the GeneQuant II RNA/DNA calculator (Pharmacia Biotech, Freiburg, 

Germany). The RNA quality was verified at OD260/OD280 nm ratios and subsequent 

electrophoretically on 1% agarose gels using ethidium bromide staining. The cDNAs 

were synthesized from 2 µg total RNA in a 30 µL reaction mix containing 1X reverse 

transcriptase (RT) PCR buffer (10 mmol/L Tris-HCL [pH 8.3], 15 mmol/L KCl, 0.6 

mmol/L MgCl2), 0.5 mmol/L of dNTPs mix, 1 U/µL RNase inhibitor and 13.3 U/µL M-

MLV RT enzyme. The RT reaction was performed in a thermocycler (Biometra, 

Goettingen, Germany) at 42°C for 1 hr. cDNA was stored at -70°C until use. 

 

2.3.11 Real-time PCR 

 

Relative quantitative PCR were carried out using the LightCycler instrument 

(Roche Diagnostic Systems, NJ, USA). The primers for the human Prdx1 (forward 5′-

TGGGGTCTTAAAGGCTGATG-3′ and reverse 5′-TCCCCATGTTTGTCAGTGAA -3′), 

human MLC2 (forward 5′- CAGGAGTTCAAAGAGGCCTTCAAC -3′ and reverse 5′- 

CTGTACAGCTCATCCACTTCCTCA -3′) and elongation factor 2 (forward 5′-

GACATCACCAAGGGTGTGCAG-3′ and reverse 5′-GCGGTCAGCACACTGGCATA-

3) were designed by the Primer3 software (http://frodo.wi.mit.edu) [259]. The total 

volume of 20 µL PCR contained 1 µL of cDNA solution, 2 µL of 10X PCR buffer 

http://frodo.wi.mit.edu/
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(Invitrogen), 2 µL Syber green, 1 µL BSA, 1 µL DMSO, 0.25 µL of each primer 

(Eurofins MWG-Biotech, Ebersberg, Germany), 2.0 mmol/L MgCl2, 0.2 mmol/L 

dNTPs mix and 0.15 U/µL PAN Script DNA polymerase (PAN Biotech, Aidenbach, 

Germany). The amplification conditions for Prdx1 and MLC2 were: initial denaturation 

30 sec at 95°C and repeated cycles of denaturation (95°C for 1 sec), primer 

annealing (55°C for 5 sec), elongation (72°C for 10 sec), and fluorescence reading at 

82 °C. For elongation factor 2 (EF-2) PCR conditions were similar to Prdx1 except for 

primer fluorescence reading which was measured at 88°C.  

 

The relative expression of Prdx1 and MLC2 mRNA in the treated samples 

was determined as a fold increase compared with control samples using the 

comparative threshold cycle (CT) method 2-ΔΔ C
T(ΔΔCT = ΔC target genes − ΔC 

reference gene) [260]. EF-2 was used as the internal control gene. Experiments were 

performed four times. Statistical difference (p value) in mRNA expression level 

between MPA and DMSO samples were calculated using the Mann-Whitney U test. 

The PCR product was run on a 1% ethidium bromide-agarose gel to confirm the 

presence of desired specific amplified product.  

 

2.3.12 Apoptosis assay 

 

The caspase 3 activity was measured using CaspACETM Assay kit (Promega 

Corporation, WI, USA) according to the manufacturer’s protocol. Cells were treated 

with DMSO and MPA for 72 hr, harvested and briefly suspended in lysis buffer. 

Proteins were extracted and quantified by Bradford method [252]. Briefly, 70 μg of 

protein lysate were mixed with reaction mixtures containing colorimetric substrate 

peptides specific for caspase 3 (DEVD-pNA) and then incubated at room 

temperature for overnight. The absorbance of the cleaved p-nitroanilide from the 

substrate DEVD-pNA was measured at 405 nm using EL808 microplate reader (Bio-

Tek instruments, VT, USA). Five independent experiments were performed.  
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2.4 Results 

 
In the present study the alteration in the cellular proteome by the MPA treatment 

was investigated using HEK-293 as cell culture model. Incubation of HEK-293 cells 

with MPA followed a dose dependent inhibition of cell proliferation (Figure 2.1). The 

IC50 concentration (7.5 µmol/L or 2.4 mg/L) of MPA was selected as standard dose 

for further analysis, which is within the therapeutic range (0.3 to 3.4 mg/L) [261]. 

Cells were treated with MPA and DMSO (as vehicle) for 3 days, and total cell lysates 

were prepared. Total protein extracts of MPA and DMSO treated cells were 

separated by 2-DE using pH 3-10 linear IPG strips and visualized by silver stain. The 

protein spots which showed ≥±1.5 fold change (p < 0.05 using Student’s t test) as 

compared to DMSO treated controls were considered as differentially expressed 

proteins. Statistical analysis showed that a total of 12 proteins exhibited significantly 

altered expression due to MPA treatment (Table 2.1). The altered expression pattern 

of the HEK-293 proteins by MPA is shown in Figure 2.2.  

 

Among 12 regulated proteins spot under MPA treatment, 7 proteins were 

significantly up-regulated and 5 proteins showed down-regulated expression. The up-

regulated spots under MPA treatment were identified as complement component 1Q 

subcomponent binding protein (C1q), electron transfer flavoprotein subunit beta, 

cytochrome b-c1 complex subunit, thioredoxin domain-containing protein 12, myosin 

regulatory light chain 2 (MLC2), peroxiredoxin1 (Prdx1) and profilin 1. Five proteins, 

which showed down-regulated expression, were identified as protein SET, stathmin, 

40S ribosomal protein S12, histone H2B type 1-A, and histone H2B type 1-C/E/F/G/I. 

A bar diagram, showing relative abundance (% Vol), SD and statistical significance of 

all the significantly regulated protein is provided as figure 5.1. Figure 2.2 shows an 

exemplary gel of DMSO (vehicle) and MPA with marked regulated proteins. The 

extent of regulation in protein expression with predicted and actual pI, as well as 

molecular masses with their SwissProt accession numbers are provided in Table 2.1 

and MS/MS spectral information is provided in the figure 5.2.  
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Table 2.1. Differentially regulated proteins by MPA in HEK-293 cells identified 
by mass spectrometry  

Spot No Acc Mt/Mo(kDa) Score pIt/ pIo Pep Protein name 
Function 

By KOGnitor NCBI 

 

Expression 

change 

(in folds) 

 

6 Q01105 33.4/37.0 154 

 

4.23/4.14 

 

3 Protein SET 
Replication, 

recombination and repair 
1.86*↓ 

9 

 

Q07021 

 

31.3/31.0 

 

141 

 

4.74/4.5 3 

Complement 

component 1 Q 

subcomponent-

binding protein, 

mitochondrial 

Defense mechanisms 1.58*↑ 

14 P38117 27.8/25.5 181 

 

8.24/9.18 

 

6 

 

Electron transfer 

flavoprotein subunit 

beta 

Energy production and 

conversion 
1.54*↑ 

15 

 

P47985 

 

29.6/25.0 112 8.51/7.081 6 

 

Cytochrome b-c1 

complex subunit 

Rieske, mitochondrial 

 

Energy production and 

conversion 
3.71**↑ 

18 Q06830 22.0/21.0 64 8. 27/8.14 2 Peroxiredoxin-1 

Posttranslational 

modification, protein 

turnover, chaperones 

1.71**↑ 

22 P16949 17.2/15.8 56 

 

5.76/6.32 

 

3 Stathmin 
General function 

prediction only 
1.50**↓ 

23 O95881 19.1/16.0 123 5.24/5.89 4 
Thioredoxin domain-

containing protein 12 

 

Cytoskeleton 

 

1.95*↑ 

24 O14950 19.7/16.0 195 4.71/5.32 4 
Myosin regulatory light 

chain MRLC2 
Cytoskeleton 3.41*↑ 

27 Q96A08 14.1/14.5 51 10.31/7.0 2 Histone H2B type 1-A 
Chromatin structure and 

dynamics 
1.90*↓ 

28 P62807 13.8/14.2 250 10.31/6.51 9 
Histone H2B type 1-

C/E/F/G/I 

Chromatin structure and 

dynamics 
1.58*↓ 

31 P25398 14.5/13.0 89 6.81/7.10 3 
40S ribosomal protein 

S12 

 

Translation, ribosomal 

structure and biogenesis 

2.44*↓ 

 

34 

 

P07737 

 

15.0/13.5 

 

142 

 

8.44/9.07 

 

6 

 

Profilin-1 

 

Cytoskeleton 

 

1.51**↑ 

Acc: Accession number; Mt: theoretical molecular mass; Mo: observed molecular mass; pIt: theoretical 

isoelectric point; pIo: observed isoelectric point; pep: number of peptides sequenced for identification; 

Score: Peptide mass fingerprint probability score as defined by Mascot (www.matrixscience.com). 

Individual ions score >42 indicate identity or extensive homology (p < 0.05); ↓: down-regulated; ↑ up-

regulated; *p < 0.05, **p < 0.005. Molecular function determined from the online protein reference 

database KOGnitor NCBI. (http://www.ncbi.nlm.nih.gov/COG/grace/kognitor.html). 

 

http://www.matrixscience.com/
http://www.ncbi.nlm.nih.gov/COG/grace/kognitor.html
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Figure 2.1: Inhibition of HEK-293 cells proliferation by MPA treatment.  

The cell proliferation was determined after 72 hr of treatment with different doses of MPA (0–100 

µmol/L) using BrdU colorimetric based method. Results are shown as percentage of control (DMSO 

treated) and represent four independent experiments. 

 

 

Figure 2.2: Differential protein expression after incubation of HEK-293 cells with MPA.  

Total protein lysate from DMSO and MPA treated cells was separated by 2-D gel electrophoresis and 

silver stained. Encircled differentially regulated proteins spots were identified using Q-TOF MS/MS 

analysis. The figure shows exemplary 2-DE gels of DMSO and MPA treated HEK-293 cells.   
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Figure 2.3: Functional classification of regulated proteins.   

Biological functions were assigned using online KOGnitor NCBI. 

(http://www.ncbi.nlm.nih.gov/COG/grace/kognitor.html) software.   

 

Functional classification of differentially regulated proteins was done using 

KOGnitor, an online biological function annotation tool [258]. The proteins altered by 

MPA treatment belong to various categories i.e., cytoskeleton (26%), chromatin 

structure/dynamics and energy production/conversion (17% each) (Figure 2.3). Gels 

spot diagram of two selected protein spots (MLC2 and Prdx1) in 4 biological 

replicates are shown in Figure 2.4a 

 

To validate the 2-DE results, the expression of MLC2 and Prdx1 were confirmed 

by Western blotting and real time PCR analysis. Expression of Prdx1 and MLC2 were 

up-regulated at both transcriptional (Figure 2.4b) and protein level (Figure 2.4c). 

Specifically, MPA increased MLC2 protein (Mean fold: +1.78, p < 0.005, n = 4, 

Western blotting) and mRNA expression (Mean fold: +2.25, p < 0.05, n = 4, real time 

PCR). Prdx1 expression was also up-regulated, both at protein level (Mean fold: 

+2.73, p < 0.005, n = 4) and mRNA level (Mean fold: +1.93, p < 0.05, n = 4). To 

check whether over-expression of MLC2 following MPA treatment is only HEK-293 

cells specific, we determined MLC2 expression in total protein lysate prepared from 

kidney of MMF (pro-drug of MPA) treated rats (Figure 2.5a) and MPA treated HT-29 

http://www.ncbi.nlm.nih.gov/COG/grace/kognitor.html
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cells (Figure 2.5b). MLC2 expression was increased both in kidney total protein 

lysate and HT-29 cells by (Mean fold: +2.57, p < 0.005, n = 4) and (Mean fold: +1.95, 

p < 0.005, n = 4) respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Differential expression of Prdx1 and MLC2 by MPA treatment.  

(a) Selected areas in the silver stained gels showing differential expression of Prdx1 and MLC2. Delta 

2D software was used for densitrometric analysis. The quantification of the level of expression (% 

volume) in MPA treated cells and control cells (DMSO) is illustrated as a bar chart with the mean and 

SD of four separate experiments (*p < 0.05). (b) Expression patterns of Prdx1 and MLC2 genes 

determined by real-time PCR. The relative expression of Prdx1 and MLC2 mRNA in the treated 

samples was determined as a fold change compared with control samples using the comparative 

threshold cycle (CT) method (2
-ΔΔC

T) as described in materials and methods part. Results shown are 

representative of four independent experiments. EF-2 was used to normalize the values. The boxes 

represent range in variation statistics and the lines across the boxes represent the medians and the 

whiskers extend to the highest and lowest values. Significance was calculated using the Mann-

Whitney-U test (*p < 0.05) (c) Effect of MPA treatment on Prdx1 and MLC2 protein expression. Protein 

extracts from MPA and DMSO treated cells were Western blotted using specific antibodies against 

Prdx1 and MLC2. Densitometric analysis was done using Lab image version 2.71 software. β tubulin 

signal was used to control the equal protein load. The experiments were repeated four times and error 

bars represent ± SD (**p < 0.005). 
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Figure 2.5: Expression of MLC2 in MMF treated rat kidney lysate and HT-29 cells.  

Protein lysate was prepared and immunoblotted for MLC2 as described in method section. β tubulin 

was used to show equal protein load. Lab image software was used for quantification of protein bands. 

Four independent experiments were performed and results presented as mean ± SD (**p < 0.005). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Measurement of MPA induced caspase-3 activity.  

Cells were treated with MPA and DMSO for 72 hr. Protein extracts from each was measured for 

caspase-3 activity. Five independent experiments were performed and results presented as mean 

absorbance ± SD (**p < 0.005). 
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To demonstrate the effect of MPA on cell apoptosis, caspase-3 activity 

(apoptosis marker) was determined using a commercially available colorimetric 

assay. There was a significant difference in caspase-3 activity between MPA and 

DMSO treatment groups. MPA increased mean absorbance by 2 fold (p < 0.005, 

n = 5) as compared to DMSO treated cells. The results from caspase-3 assay 

revealed that MPA treated cells exhibit more apoptosis than cells treated with DMSO 

alone (Figure 2.6). 

 

2.5 Discussion 

 
We have used a 2-DE and mass spectrometric based proteomics approach to 

develop a better understanding of the influence of MPA therapeutic dose on the 

proteome in HEK-293 cells. HEK-293 cells are widely used cell culture model to 

study the mechanisms of drug action, investigating drug targets and molecular 

aspects of xenobiotic toxicity [262-264]. The regulated proteins are found to be 

involved in diverse functions including apoptosis and cell signaling mechanism. 

Apoptosis assay showed that MPA has a pro-apoptotic role in HEK-293 cell line, a 

property which makes it a drug with potential anti-tumor activities. MLC2 is an 

important myosin regulatory subunit, which regulates smooth muscle and nonmuscle 

cells contractile activity [265]. MLC2 displayed an increased expression by MPA 

treatment. It is already reported that MPA influences the cellular cytoskeletal 

architecture via modulating mesangial actin reorganization by activating actin 

polymerization and inhibiting actin-depolymerization [266,267]. Phosphorylation of 

MLC2 causes significant changes in the physiological dynamics of actin cytoskeleton, 

leading to barrier defects in intestine [184], heart [268] and lungs [269]. However, it 

remains unclear if such cytoskeleton reorganization in different organs may lead to a 

completely different outcome, for example in intestine, diarrhoea is associated with 

MPA therapy in some patients [251]. In the present study, we observed that MLC2 

over-expression is not limited to a specific cell type (i.e. HEK-293) but was 

reproducible in MMF treated rat kidney and in MPA treated HT-29 cells protein 

lysates. 
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We observed an increase Prdx1 expression by MPA treatment, both at gene 

and protein level. Prdx1 is a cytoplasmic stress-inducible anti-oxidant enzyme and a 

major member of peroxiredoxin family [270]. Cells deficient in Prdx1 have increased 

sensitivity to oxidative DNA damage [271]. Prdx1 along with its anti-oxidant activity 

also possesses anti-inflammatory and anti-atherogenic effects [272]. Oxidative stress 

contributes to the pathophysiology of diverse clinical conditions, including ischemia-

reperfusion mediated post transplantation graft injuries [273]. Prdx1 expression was 

also reported to be up-regulated in human gingival fibroblasts by cyclosporine A 

(another commonly used immunosuppressive drug) treatment [274]. MPA has 

previously been reported to diminish oxidative injuries and induce anti-oxidant effects 

by preventing the production of reactive oxygen species [249]. Furthermore, MPA 

exerts lesser oxidative stress in renal transplant patients, as compared to everolimus, 

cyclosporine and other calcineurin inhibitors [275,276].  

 

Prdx1 contribute to the inhibition of tumorigenesis through PTEN/Akt pathway 

[277] and its lower expression in the tumor indicated high tumor proliferation, 

increased metastasis and could be used as cancer biomarker [278]. Prdx1 is also 

involved in ageing process as Prdx1-deficient mice have a shortened lifespan and 

other malignancies [271]. Anti-tumor drugs like histone deacetylase inhibitors 

(HDACIs) activate Prdx1, a tumor suppressor, which leads to apoptosis [279]. 

Previously it was observed that MPA also inhibit histone deacetylases (HDACs) [21]. 

A further investigation is needed to gain a deeper insight into the Prdx1 regulation by 

MPA through HDACs inhibition interaction with Prdx1 and its role in anti-tumor 

activities. 

 

Profilin 1, another cytoskeletal protein was up-regulated by MPA treatment. 

Profilins are widely distributed actin binding proteins [280], involved in actin filament 

dynamics and several signaling pathways [281]. Profilin 1 over-expression has been 

reported to cause cell proliferation inhibition, apoptosis induction and tumor 

suppression [282]. Whether MPA via profilin over-expression exerts extended anti-

proliferative or anti-tumor activities requires further investigation. Stathmin was down 

regulated by MPA. Stathmin is a 19 kDa cytoplasmic protein, which plays an 

important role in the regulation of the microtubule cytoskeleton. Stathmin regulates 

microtubule turnover by promoting microtubules depolymerization and hydrolyze 
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guanosine triphosphate (GTP) from terminal tubulin, preventing polymerization of 

tubulin heterodimers [283]. Previously, our group demonstrated that AcMPAG alters 

tubulin polymerization in a concentration-dependent manner [284]. Furthermore, 

stathmin repression stabilizes microtubules, inhibits angiogenesis [285] and suppress 

tumors [286].  

 

Thioredoxin domain-containing protein 12, also known as endoplasmic reticulum 

resident protein 18 (ERp18) is ubiquitous in mammalian cells and acts as a disulfide 

isomerase in the endoplasmic reticulum (ER). It provides defense against oxidative 

stress, refolds disulfide-containing proteins, and regulates transcription factors [287]. 

ERp18 expressional up-regulation might cause cell adoptivity in response to MPA 

induced ER stress. SET protein was down-expressed by MPA. SET, a major cellular 

serine threonine phosphatase is a potent inhibitor of protein phosphatase 2A (PP2A) 

activity [288] and a negative regulator of histone acetylation [289], thus involved in 

cell growth and signaling cascades [290]. PP2A expression induced by down-

regulation of SET leads to the apoptosis and growth suppression [291],  

 

MPA triggers nuclear stress and causes disruption of the nucleus, leading to the 

activation of p53, which may initiate cell cycle arrest and apoptosis [292]. In the 

present study histone H2B was down-regulated by MPA treatment, which is a major 

component of eukaryotic nucleosome core. Post translational modification such as 

methylation, acetylation, phosphorylation and ubiquitination of histone proteins alter 

transcription, DNA replication, and DNA repair [293,294]. Previous data showed that 

MPA mediated down-regulation of HDAC2 which might relate with potential 

epigenetic regulations [21]. The microrarray analysis of mononuclear cells treated 

with AcMPAG (a metabolite of MPA) showed down-regulation of histones in a 

previous study by our group [295].  

 

MPA affects ribosomal machinery by decreasing intracellular guanine nucleotide 

level, depending on dosage and cell type, resulting in global reduction of RNA 

synthesis [292]. Other studies suggested that guanine nucleotide depletion by 

IMPDH leads to a decrease in pre-ribosomal RNA synthesis, nuclear disruption, and 

p53 activation [296]. Disorganization of nuclear and ribosomal biogenesis is 

suggested to be an effective therapeutic target in cancers [297]. We observed a 
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down-regulation of 40S ribosomal protein S12 by MPA, which might be due to the 

altered ribosome biogenesis. The proapoptotic stimuli including chemotherapeutic 

agents induced a dose-dependent increase in the expression of the cytochrome c 

proteins [298].  

 

In the present study we also observed up-regulation of cytochrome b-c I 

complex by MPA which suggests a possible role of MPA in the regulation of energy 

metabolism. Complement component 1 Q subcomponent-binding protein (C1q), a 

component of complement system involved in the clearance of apoptotic cells was 

up-regulated by MPA. C1q binds to surface blebs of apoptotic cells, which follows 

subsequent phagocytosis [299]. C1q deficiency leads to a significant decline in the 

clearance of apoptotic cells in both C1q- and C4-deficient mice, causing 

glomerulonephritis [300]. MPA causes cellular apoptosis and cells might utilize C1q 

over-expression to clear the apoptotic cells.  

 

2.6 Conclusion  
 

This investigation identifies proteins related to diverse cellular functions which 

altered their expression by MPA treatment; many of which are reported for the first 

time in this context. The expression of Prdx1 (involved in apoptosis) and MLC2 

(protein important for epithelial barrier integrity) were observed to be regulated at 

RNA and protein level. Further investigations of the regulated proteins will provide 

new insights into the cellular pathways influenced by MPA therapy and could help in 

more rational use of MPA in transplantation medicine. 
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3.1 Abstract 

 
Gastrointestinal toxicity is a common adverse effect of mycophenolic acid (MPA) 

treatment in solid organ transplantation patients, through poorly understood 

mechanisms. Phosphorylation of myosin light chain 2 (MLC2) is associated with 

epithelial tight junction modulation which leads to defective epithelial barrier function, 

and has been implicated in gastrointestinal diseases. The aim of this study was to 

investigate whether MPA could induce epithelial barrier permeability via MLC2 

regulation. Human colonic cells (Caco-2) monolayers were exposed to therapeutic 

concentrations of MPA, and MLC2 and myosin light chain kinase (MLCK) expression 

were analysed using PCR and immunoblotting. Permeability was assessed by 

measuring transepithelial resistance (TER) and the flux of paracellular permeability 

marker FITC-dextran across the epithelial monolayers. MPA increased the 

expression of both MLC2 and MLCK at both the transcriptional and translational 

levels. In addition, the amount of phosphorylated MLC2 was increased after MPA 

treatment. Confocal immunofluorescence analysis showed disrupted distribution of 

tight junction proteins (ZO-1 and occludin) after MPA treatment. This MPA mediated 

tight junction disruption was not due to apoptosis or cell death. AcMPAG, a reactive 

metabolite of MPA, also showed similar effects on TER and TJ proteins expression 

and distribution. Additionally ML-7, a specific inhibitor of MLCK was able to reverse 

both the MPA mediated decrease in TER and the increase in FITC-dextran influx, 

suggesting a modulating role of MPA on intestinal epithelial barrier permeability via 

MLCK activity. These results suggest that MPA induced alterations in MLC 

phosphorylation may have a role in the patho-physiology of intestinal epithelial barrier 

disruption and may be responsible for the adverse effects of MPA on the intestine. 
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3.2 Introduction 

 
The tight junctions (TJs) are intercellular, multifunctional complexes present in 

the epithelial and endothelial cells which form the paracellular diffusion barrier 

[97,100]. This barrier contributes to the regulation of epithelial permeability and 

intramembrane diffusion of ions and solutes through the paracellular space [301-

303]. TJs are comprised of transmembrane (occludin, claudins and junctional 

adhesion molecules) and peripheral membrane proteins (zonula occludins [ZO-1], 

membrane-associated guanylate kinase, and the Ras-related protein Rab13). These 

proteins interact with each other to form a complex protein  network [304]. Various 

intestinal and non-intestinal disorders including inflammatory bowel disease, celiac 

disease, and diarrhoeal infections are characterized by barrier dysfunction which is 

thought to play a crucial role in their pathogenesis [303].   

 

Mycophenolic acid (MPA) is the active agent in  the two currently commercially 

available formulations: the MPA ester mycophenolate mofetil (MMF) and the enteric-

coated salt mycophenolate sodium (EC-MS) [7]. After oral ingestion, MPA is liberated 

in the gastrointestinal tract, absorbed and metabolized in the liver to form MPA 

glucuronide (MPAG) and two other metabolites, 7-O-glucoside and acyl glucuronide  

(AcMPAG). AcMPAG is pharmacologically active and believed to be responsible for 

some MPA associated GI tract adverse effects [30]. MPA is an immunosuppressant 

which is frequently used for the prevention of acute transplant rejection. MPA  is also 

used for the treatment of non-transplant, autoimmune, renal, rheumatological, 

gastrointestinal, ophthalmological, dermatological and neurological diseases [250].  

 

Several immunosuppressive drugs including MPA used in solid organ 

transplantation lead  to diarrhoea [305]. Various possible aetiologies of this diarrhoea 

have been described including infectious agents, drug reactions, metabolic 

alterations, and surgical complications. MPA has been claimed to account  for 50% of 

all drug induced post-transplantation diarrhoea [306], while 20% of total MPA 

complications involve the GI  tract [307,308]. GI symptoms similar to those seen with 

Crohn’s disease and enterocolitis are also observed in patients receiving MPA 

therapy [65,309-312]. The underlying mechanisms of MPA  induced GI toxicity 

remain unclear; however, several hypotheses  exist  including direct toxicity  as a 
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result of its anti-proliferative effects, myelosuppression induced opportunistic 

infections, variations in local immune response, and AcMPAG adduct  toxicity 

[36,251,305]. 

 

Several GI associated abnormalities, including inflammatory bowel disease 

(Crohn's disease and ulcerative colitis), and Graft verses host disease are 

characterized by epithelial barrier defects which contribute to increased intestinal 

permeability [313]. The effects of MPA or its metabolites on cell junction biophysical 

properties including paracellular permeability, and the regulation of TJ proteins, 

especially in relation to intestinal barrier defects, have not been well studied.  Studies 

were conducted to explore the molecular effects of MPA and its active AcMPAG 

metabolite on gut integrity via possible effects on TJs. We used Caco-2 cell 

monolayers as in vitro model of intestinal epithelia [314] and incubated them with 

therapeutic concentrations (3.1 mg/L, or 10 µmol/L) of MPA and (10 µmol/L) 

AcMPAG. Trans-epithelial resistance (TER) measurements, paracellular influx 

assays, immunoblotting and immunofluorescence analyses were then conducted to 

evaluate integrity of the TJs complex. We hypothesized that MPA may modulate the 

TJs by altering expression and distribution of crucial TJs proteins. 

  

3.3 Materials and methods 

 

3.3.1 Reagents 

 

Reagents (and their sources) included: agarose (Gibco BRL, Paisley, UK), 

Magnesium chloride (MgCl2), M-MLV RT enzyme and 5X buffer (Invitrogen, 

Karlsruhe, Germany), deoxynucleotide triphosphate (dNTP) (Roche, Mannheim, 

Germany), Ribonuclease (RNAase) inhibitor (Promega, Mannheim, Germany),  MPA, 

fluorescein isocynate-dextran 4 KDa (FD4), 1-5-Iodonaphthalene-1-sulfonyl)-1H-

hexahydro-1,4-diazepine hydrochloride (ML-7) and cytochalasin (CD) (Sigma-Aldrich, 

Mannheim, Germany) and PCR primers (Eurofins, Ebersberg, Germany). AcMPAG 

was a kind gift from Roche (Roche, Mannheim, Germany). 
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3.3.2 Cell culture 

 

The human colon adenocarcinoma cell line (Caco-2) was purchased from 

DSMZ (German collection of microorganisms and cell cultures, Braunschweig, 

Germany). Tissue culture media ingredients were obtained from PAA Laboratories 

(Pasching, Austria). Cells were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) (4.5 g/L glucose) supplemented with 10% heat-inactivated fetal calf serum, 

2 mmol/L glutamine, 50 IU/mL penicillin, 50 mg/mL streptomycin and non-essential 

amino acid supplement (1% v/v) under conditions of 37°C, 5% CO2 and 90% relative 

humidity. The Caco-2 cells were allowed to grow for 21 days of post-confluence to 

form differentiated and polarised monolayer growth [315]. The culture medium was 

changed every second day. 

 

3.3.3 Lactate dehydrogenase (LDH) measurement 

 

 LDH measurements were performed using a commercially available LDH 

measurement kit (Roche, Mannheim, Germany) according to the manufacturer’s 

instructions. This assay is based on the principle that LDH catalyzes the conversion 

of NADH (substrate) to NAD and the rate of this conversion is directly proportional to 

LDH activity. Briefly, cells were incubated in DMSO, 10 µmol/L MPA or 10 µmol/L 

AcMPAG for 72 hr. Following incubation, supernatant medium was collected, 

centrifuged for 5 min at 15,700 x g at 4°C and LDH was measured photometrically 

using a Hitachi analyzer (Roche, Mannheim, Germany). The experiments were 

repeated at least four times and values were represented as mean IU/L ± SEM.  

 

3.3.4 Determination of caspase 3 activity 

 

Cell were treated with DMSO, 10 µmol/L MPA or 10 µmol/L AcMPAG for 72 hr 

and the caspase specific activity was measured using CaspACETM Assay kits 

(Promega, WI, USA) as previously described [316]. Briefly, cell proteins (70 µg) were 

mixed with reaction mixtures containing the colorimetric substrate Ac-DEVD-p-

nitroanaline (Ac-DEVD-pNA). The pNA released from Ac-DEVD-pNA due to caspase 
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activity was measured at a wavelength of 405 nm using a EL808 microplate reader 

(Bio-Tek instruments, VT, USA). Caspase 3 specific activity (CSA) in the cell extract 

was measured using the standard formula (CSA = pmol pNA liberated per hour/ μg 

protein). Five independent experiments were performed and results were expressed 

as mean pmol pNA liberated per hour/ μg protein. 

 

3.3.5 Determination of trans-epithelial resistance (TER) 

  

TER was measured as previously described [317]. Briefly, cells were seeded 

on polyester transwell inserts (6.5 mm diameter, 0.4 µm pore size, 0.33 cm2 growth 

area, Corning Costar Corporation, NY, USA) at 2.0 x 105 cells/well and grown for 21 

days post-confluence. Cells were treated with DMSO, 10 µmol/L MPA, 10 µmol/L 

AcMPAG or CD (10 µmol/L) for 72 hr or pre-treated with ML-7 (10µmol/L) for 1 hr 

followed by 72 hr treatment of MPA (10 µmol/L) after cells developed into a 

differentiated and polarised monolayer. TER was measured using an EVOM 

voltohmmeter with a STX2 electrode (WPI, FL, USA). For epithelial resistance 

measurements, both the apical and basolateral sides of the epithelia were bathed in 

cell culture medium. Resistance (TER) = [RC-RE] X A; where RC is resistance of the 

cells (Ω); RE is resistance of the blank (Ω); and A is surface area of the membrane 

insert (cm2). TER was calculated as Ω.cm2 for at least four consecutive 

measurements.  

 

3.3.6 FITC-dextran paracellular permeability 

 

Epithelial permeability was assessed using a previously reported method 

[318,319]. Briefly, Caco-2 cells were grown into monolayers and treated as described 

above.  Following treatment, cells were rinsed with PBS and incubated in Hank’s 

balanced salt solution containing 1mg/mL FITC-dextran 4 kD (FD4) solution for 2 hr. 

Permeability marker flux was assessed by taking 100 µL from the basolateral 

chamber. Fluorescent signal was measured using a Lambda fluoro 320 fluorescence 

plate reader (MWG Biotech, Ebersberg, Germany) using 492 nm excitation and 520 

nm emission filters. FD4 concentrations were determined using standard curves 
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generated by serial dilution of FD4. Fluxes were calculated using the apparent 

permeability coefficient (Papp) equation: Papp = ΔCA/Δt)*VA]/A*CL, where Papp is the 

apparent permeability (cm/s), ΔCA is the change of FD4 concentration, A is the 

surface area of the membrane (cm2), Δt is the change of time, VA is the volume of the 

abluminal medium, and CL is the initial concentration in the luminal chamber. 

 

3.3.7 RNA isolation, cDNA synthesis and real-time PCR 

 

Total cellular RNA was extracted using the acid guanidinium-phenol-

chloroform method (Trizol reagent; Invitrogen, CA) according to manufacturer’s 

recommendations. Briefly, Caco-2 monolayers were scraped into Trizol reagent, 

homogenized, and RNA was extracted using chloroform/isopropanol precipitation. 

The precipitated RNA was dissolved in sterile water and stored at -80°C until 

analysis. RNA concentration was determined with the GeneQuant II RNA/DNA 

calculator (Pharmacia Biotech, Freiburg, Germany) and quality was verified by 

OD260/OD280 nm ratios and subsequent electrophoresis in 1.5% agarose gels using 

ethidium bromide staining. cDNA was synthesized from 2 µg total RNA in a 30 µL 

reaction mix containing 1x RT-PCR buffer (10 mmol/L Tris-HCL [pH 8.3], 15 mmol/L 

KCl, 0.6 mmol/L MgCl2), 0.5 µmol/L of each dNTP, 1 U/µL RNase inhibitor and 13.3 

U/µL M-MLV RT enzyme. The RT reactions were performed in a thermocycler 

(Biometra, Goettingen, Germany) at 75°C for 5 min, and then 42°C for 1 hr. cDNA 

was stored at -80°C until use. 

Primers for real time PCR were selected using the online Primer 3 software  [320]. 

The primers used in this study were as follows: MLC2 (forward 5′-

CAGGAGTTCAAAGAGGCCTTCAAC-3′, reverse 5′- 

CTGTACAGCTCATCCACTTCCTCA-3′); MLCK (forward 5′-

CAACAGGGTCACCAACCAGC-3′, reverse 5′-GCCTTGCAGGTGTACTTGGC-3′); 

ROCK (forward 5′-GTGAAGGTGATTGGTAGAGGTGC-3′, reverse 5′- 

CCACCAGGCATGTATTCCATCAC-3′) and elongation factor 2 (forward 5′- 

GACATCACCAAGGGTGTGCAG-3′, reverse 5′-GCGGTCAGCACACTGGCATA-3). 

Relative quantitative PCR was carried out using the LightCycler instrument (Roche, 

Manheim, Germany). The total PCR volume of 20 µL contained 1 µL of cDNA 

solution, 2 µL of 10X PCR buffer (Invitrogen, Darmstadt, Germany), 2 µL syber 
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green, 1 µL BSA, 1 µL DMSO, 0.25 µL of each primer (Eurofins MWG-Biotech AG, 

Ebersberg, Germany), 2.0 mmol/L MgCl2, 0.2 mmol/L of each dNTP, and 0.15 U/µL 

PAN Script DNA polymerase (PAN Biotech, Aidenbach, Germany). Amplification 

conditions were set to: MLC2 (initial denaturation 30 sec at 95°C, repeated cycles of 

denaturation at 95°C, for 1 sec, primer annealing at 55°C for 5 sec, elongation at 

72°C for 10 sec, and fluorescence reading at 82°C), MLCK (initial denaturation for 30 

sec at 95°C and repeated cycles of denaturation at 95°C for 1 sec, primer annealing 

at 60°C for 5 sec, elongation at 72°C for 10 sec, and fluorescence reading at 82°C). 

ROCK (initial denaturation for 30 sec at 95°C and repeated cycles of denaturation at 

95°C for 1 sec, primer annealing at 60°C for 5 sec, elongation at 72°C for 10 sec, and 

fluorescence reading at 80°C), elongation factor 2 (EF-2) (initial denaturation for 30 

sec at 95°C, repeated cycles of denaturation at 95°C, for 1 sec, primer annealing 

(55°C, 5 sec), elongation (72°C, 10 sec), and fluorescence reading at 88°C). For 

each sample, real-time PCR reactions were performed in quadruplicate. RNA relative 

expression was calculated as fold change using the comparative threshold cycle (CT) 

method (2-ΔΔ C
T) [260] with EF-2 used as the internal control gene. The relative 

expression of mRNA in the treated samples was determined as a fold increase 

compared with control samples. The PCR product was run on 1.5% agarose gel 

electrophoresis to confirm the specificity of the amplified product. 

 

3.3.8 Immunoblotting 

 

Protein lysates were separated by SDS-PAGE and blotted onto PVDF 

(Immobilon, Millipore, MA, USA) using the Trans-Blot SD cell system (Bio-rad, 

Munich, Germany) for 30 min at 15 V in a blotting buffer (192 mmol/L glycine, 20% 

methanol, and 25 mmol/L tris [pH 8.3]). The membranes were blocked with 5% (w/v) 

milk in TBS-T buffer (50 mmol/L TrisHCl [pH 7.5], 200 mmol/L NaCl, 0.05% Tween 

20) for 1 hr at room temperature followed by washing twice in TBS-T for 5 min.  The 

membranes were  incubated with a 1: 500 dilution of a mouse monoclonal anti-MLC 

antibody (Sigma, Mannheim , Germany), 1: 10000 dilution of mouse monoclonal anti-

MLCK antibody (Sigma, Mannheim , Germany), 1: 1000 rabbit anti-phospho MLC 

antibody (Cell Signaling, Beverly, USA), 1 µg/mL rabbit anti-ZO-1, 0.5 µg/mL mouse 

anti-occludin (Zymed, CA, USA), or 1: 5000 anti-β actin (Sigma, Mannheim, 
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Germany) in 5% BSA in TBS-T overnight at 4°C. Following washing in TBS-T, 

membranes were then incubated with appropriate HRP-conjugated secondary 

antibodies (Bio-rad, Munich, Germany).  The membranes were washed with PBS and 

prepared for enhanced chemiluminescence (GE, Buckinghamshire, UK) according to 

the manufacturer’s instructions. Developed membranes were then exposed to 

hyperfilm-ECL (GE, Buckinghamshire, UK). The films were scanned and protein 

band densities were quantified with the Lab Image software, version 2.71 (Kapelan, 

Leipzig, Germany).  

 

3.3.9 Immunofluorescence microscopy of TJs proteins 

 

Cell monolayers were grown on Lab-Tek™ eight chamber slides (Nunc, 

Naperville, IL, USA) and treated as indicated above. Cells were immunolabelled as 

previously described [321] with some modifications. Briefly, cells were rinsed with 

PBS and fixed in 3.7% formaldehyde at room temperature for 20 min. Cell 

monolayers were then rinsed in PBS and permeabilized in 0.2% Triton X-100 for 7 

min at room temperature. Cells were rinsed in PBS followed by blocking with 1% 

bovine serum albumin (BSA) for 30 min at room temperature. Cells were incubated 

with 3 µg/mL anti-rabbit ZO-1 and 2 µg/mL anti-mouse occludin (Zymed, San 

Francisco, USA) overnight at 4°C. After washing with PBS, cells were incubated with 

anti-rabbit IgG conjugated to Alexa 488 and anti-mouse IgG conjugated to cydye 3 

(Molecular Probes, Eugene, OR, USA) in 1% BSA for 1 hr at room temperature. For 

F actin localization cells were incubated in  0.33 µg/mL of FITC-conjugated phalloidin 

(Sigma-Aldrich, St. Louis, USA) in PBS for 30 min as described previously [322]. 

Cells were also incubated with Hoechst dye (10 µg/mL in PBS) (Molecular Probes, 

Eugene, USA) for 10 minutes to stain nuclei. After washing with PBS, cells were 

mounted using the Dako fluorescence mounting medium (Dako, Carpintera, USA) 

and stored at 4°C in the dark until analyzed. The fluorescence was visualized using 

Axiovert 200M confocal microscope (Carl Zeiss, Jena, Germany). All of the 

fluorescent labelling experiments were repeated four times to ensure reproducibility.  
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3.3.10 Statistics 

 

The data are presented as sample means with error bars indicating the 

standard error of the mean. The p value was calculated using a Student's t test and a 

p value <0.05 was considered statistically significant 

 

3.4 Results 

 

3.4.1 MPA altered TER and TJs permeability in a concentration and 
time dependant manner 

 

In the present study, the effect of MPA on Caco-2 TJ integrity was determined 

by measuring TER and epithelial permeability to the paracellular marker FD4. To 

assess the influence of MPA treatment on TER, cells were incubated with different 

concentrations of MPA (5-100 µmol/L) for up to 72 hr. DMSO did not have any 

significant effect on TER of polarised Caco-2 cell monolayers. Increasing 

concentrations of MPA exhibited concentration- and time-dependant decreases in 

Caco-2 TER (Figure 3.1a). The mean cell monolayer TER decreased from 190.4 to 

181.5, 190.8 to 147.5 and 193.1 to 120.4 Ω.cm2 after 5, 10 and 50 µmol/L MPA 

treatment respectively. The maximal decrease in Caco-2 TER was observed at 100 

µmol/L MPA concentration (86 ± 0.7 Ω.cm2). The decrease in Caco-2 TER increased 

with time between 12 hr and 72 hr (Figure 3.1a).  

Similarly, MPA was associated with a concentration-dependent increase in Caco-2 

paracellular permeability to FD4 (Figure 3.1b). FD4 permeability analysis following 72 

hr MPA treatment showed a concentration-dependant increase in FD4 influx. The 

FD4 influx from the apical to the basolateral chamber was increased 1.5, 2.7, 4.6 and 

7.9 fold after incubation with 5, 10, 50 and 100 µmol/L MPA concentrations 

respectively (Figure 3.1b). 
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Figure 3.1: MPA treatment decreased TER and increased FD4 permeability of Caco-2 cell 

monolayers.    

Caco-2 cells were cultured on filter inserts and grown for 21 days post-confluence to form 

differentiated monolayers. (a) Caco-2 cells were treated with MPA (5-100 µM) for 0-72 hr. MPA 

concentration and time dependent decrease in TER were observed. Graph shows TER (Ω.cm
2
) vs. 

time (hr) with means ± SEM from four independent experiments. (b) Paracellular flux of FD4. Values 

are means of apparent permeability for FD4 (cm/sec) which is the amount of apical FD4 crossing the 

insert membrane per cm
2 
per sec. Bars show SEM and ***=p< 0.0005. 

 

3.4.2 AcMPAG modulation of TER and TJs permeability 

 

To determine whether AcMPAG, a reactive metabolite of MPA, influenced the 

TER and FD4 influx, we incubated Caco-2 cells with AcMPAG (10 µmol/L). A time 

dependant decrease in TER (0 hr: 101.1%, 12 hr: 94.2%, 24 hr: 86.5%, 48 hr: 74.4%, 

72 hr: 67.1% relative to the DMSO control) (Figure 3.2a) was observed after 

incubation with AcMPAG. FD4 influx analysis from apical to basal chamber showed 

that AcMPAG exhibited a mean 2.78 fold increase in FD4 permeability (Figure 3.2b).    
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Figure 3.2: AcMPAG treatment caused a time dependant decrease in TER and increase in FD4 

permeability in Caco-2 cell monolayers. 

Caco-2 cells were grown for 21 days post-confluence and treated with AcMPAG (10 µM) for 72 hr 

following which TER (a) and FD4 influx (b) were  determined. Values are means ± SEM of four 

independent experiments. ***=p< 0.0005.  

 

3.4.3 MPA and AcMPAG mediated increase in permeability was not 
due to cell death/apoptosis 

 

To determine whether MPA or AcMPAG induced decreases in TER and 

increased FD4 permeability were due to TJs regulation and not due to the cell death, 

the LDH release from the treated cells was determined. LDH measurement  has 

previously been used as an indicator  of cell death [112]. Exposure to 10 µmol/L MPA 

and 10 µmol/L AcMPAG for up to 72 hr did not result in any significant increase in 

LDH release from the Caco-2 cells (Figure 3.3a).  Furthermore, caspase 3 activity 

was measured to check the effect of MPA or AcMPAG on cell apoptosis. Neither 10 

µmol/L MPA nor 10 µmol/L AcMPAG exposure for 72 hr caused any significant 

apoptosis as compared to DMSO (vehicle) (Figure 3.3b). These findings suggest that 

the TJs disruption caused by MPA/AcMPAG was not associated with cell death or 

apoptosis. 
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Figure 3.3: Effect of MPA and AcMPAG on apoptosis and cell viability in Caco-2 cells. 

Caco-2 were grown for 21 days post-confluence and treated with MPA or AcMPAG for 72 hr. (a) 

Apoptosis was determined by measuring the caspase-3 activity in cell lysates using CaspACE
TM 

Assay 

kits. Caspase 3 activity is expressed as pmol/hr/µg (b) Cell viability was assessed by measuring the 

lactate dehydrogenase (LDH) release in the culture media. Data represent IU/L LDH released into the 

media. Values are presented as the mean ± SEM; of four independent experiments and the 

significance was determined by Student’s t-test.  

 

3.4.4 MPA and AcMPAG increased the expression of MLC2 and 

MLCK in Caco-2 cells 

 

In a previous study we reported that MPA increased the total MLC2 in HEK-

293 cells [323]. Additionally we observed up-regulation of MLCK and ROCK 

expression by MPA in HEK-293 and HT-29 cells (data not shown). In view of these 

findings, we investigated regulation of MLC2 expression and MLCK in Caco-2 cells. 

MLCK is involved in the regulation of barrier function through the phosphorylation of 

MLC2 in response to diverse stimuli [153,324]. In line with the previous findings 

[323], MPA treatment increased the expression of MLC2 at both the mRNA (1.5 fold 

increase) and protein level (1.47 fold increase) in Caco-2 cells (Figure 3.4a and 

Figure 3.4b). AcMPAG (10 µmol/L) exposure for 72 hr, however, increased MLC2 

protein expression (1.68 fold increase) without any significant change in mRNA 

expression. MLCK expression was also up-regulated by MPA (10 µmol/L) at the 

mRNA (1.9 fold) and protein level (2.1 fold). AcMPAG also increased the expression 

of MLCK at the mRNA (1.3 fold increase) and protein (1.7 fold increase) level. ROCK 

expression was significantly regulated by MPA (1.53 fold increase) while AcMPAG 

had no significant effect (Figure 3.4 a). 
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Figure 3.4: Effect of MPA and AcMPAG on MLC2, MLCK and ROCK expression in Caco-2 cells.  

Caco-2 monolayers (21 days post-confluence) were incubated with DMSO (vehicle), MPA (10 µmol/L) 

or AcMPAG (10 µmol/L) for 72 hr. (a) mRNA expression analysis for MLC2, MLCK and ROCK. Total 

RNA was extracted, reverse transcribed and subjected to real time PCR analysis.  EF-2 was used as 

a house keeping gene and the relative mRNA expression of MLC2, MLCK, and ROCK in the MPA, 

AcMPAG and DMSO (vehicle) treated samples was  determined using the comparative threshold 

cycle (CT) method (2
-ΔΔC

T) as described in material and methods. Data indicate the mean of four 

independent experiments ± SEM. (b) Immunoblot analyses for MLC2 and MLCK. Whole cell lysates 

were resolved on 1DE and immunoblotted using MLC2 and MLCK specific antibodies. β actin was 

used as a control for an equal amount of protein load. Densitrometric analysis was done using the Lab 

image software. The data represent mean relative intensities ± SEM from four independent 

immunoblots. *p< 0.05 and **p< 0.005 significance relative to DMSO.  
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3.4.5 MPA and AcMPAG increased MLC2 phosphorylation in Caco-2 

cells 

MLC phosphorylation has been extensively studied with regard to tight 

junction regulation and has been reported to be required for increased paracellular 

permeability [153,184]. To determine whether MPA and AcMPAG caused any defect 

in the epithelial barrier through phosphorylation of MLC2, we checked the 

phosphorylaton of MLC2 using specific phospho-MLC2 antibody. MPA and AcMPAG 

treatment (10 µmol/L each) for 72 hr increased the expression of phospho-MLC2 by 

2.8 and 2.3 fold respectively (Figure 3.5).  

 

 

 

 

 

 

 

 

 

Figure 3.5: Effect of MPA and AcMPAG on the phosphorylation of MLC2 in Caco-2 cells. 

Caco-2 monolayers (21 days post-confluent) were incubated with either vehicle (DMSO), MPA or 

AcMPAG (10 µmol/L each) for 72 hr. Whole cell lysates were resolved on 1DE and immunoblotting 

was performed using a specific phospho-MLC2 antibody. β actin was used as a loading control for 

equal amount of protein load. Densitrometric analyses were done using the Lab image software. The 

representative data are average of relative intensities ± SEM from four independent immunoblot. 

**=p< 0.005.  

 

3.4.6 MPA and AcMPAG altered TJ proteins expression and 

distribution  

The modulatory effect of MPA on TJs proteins, ZO-1 and occludin was 

investigated by immunofluorescent labelling. Changes in the distribution and 

expression of occludin and ZO-1 can be used as the markers for determination of 

TJs disruption which has been implicated in several GI tract diseases [147,325].  
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Figure 3.6: Effects of MPA and AcMPAG on ZO-1 and occludin distribution. 
 
Caco-2 cells were grown for 21 days post-confluence and treated with DMSO (vehicle), MPA or 

AcMPAG for 72 hr. Cells were fixed, permeated, and stained for ZO-1 and occludin, as described in 

materials and methods section. Figure shows the distribution of ZO-1 and occludin in Caco-2 cells 

exposed to DMSO (vehicle) (a, b, and c), 10 µmol/L MPA (d, e, and f) alone, 10 µmol/L AcMPAG (g, h, 

and i). Cells were doubled stained for ZO-1 (a, d, g) and occludin (b, e, h). An overlay (ZO-1, occludin, 

DAPI) is shown in the right panel (c, f, i). Corresponding proteins were detected with secondary 

antibodies conjugated with either FITC 488 (green; ZO-1) or cydye 3 (red; occludin). DAPI (blue; 

nuclei) was used to stain nuclei. Images were examined using confocal microscopy. Images presented 

are representative images of 5 independent experiments. 

 

Confocal analyses of ZO-1 and occludin distribution showed uniform and continuous 

staining at the plasma membrane in control cells (DMSO) (Fig 3.6 (a-c)). MPA and 

AcMPAG treatment (10 µmol/L) for 72 hr led to redistribution of ZO-1 and occludin 

proteins.  The most prominent features were disappearance of staining at the cellular 

periphery, with aggregation and paracellular openings between the adjacent cells 

(MPA: Figure 3.6 (d-f), AcMPAG: Figure 3.6 (g-i)). These microscopic alterations at 

the apical cellular borders correlated with the amount of increased TJs permeability 

(Figure 3.1 and Figure 3.2) observed.  

g 
h i 
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We further investigated whether MPA or AcMPAG quantitatively altered the 

expression of TJs proteins in Caco-2 cells. Immunoblot analysis showed that 10 

µmol/L of both MPA and AcMPAG decreased the expression of occludin by 2.1 and 

2.7 fold respectively (Figure 3.7). These expressional changes are consistent with 

the immunostaining of occludin protein which also revealed disappearance and 

redistribution of occludin protein from the membranes (Figure 3.6).  

 
 
 
 
 
 

 

 
 
 
Figure 3.7: Effect of MPA and AcMPAG on occludin protein expression in Caco-2 cells. 

Cell were grown to 21 days post-confluency and then treated for 72 hr with DMSO (vehicle), MPA or 

AcMPAG (10 µmol/L each). Whole cell lysates were extracted, separated on 1-DE and occludin 

detected using specific antibody as mentioned in the methods section. Four independent experiments 

were carried out and results represent mean ± SEM. *=P< 0.05, **=P< 0.05. 

 
 

3.4.7 MPA and AcMPAG modulation of Caco-2 F-actin 

 

The perijunctional ring of F-actin is the fundamental unit of the actin 

cytoskeleton that supports the tight junction and thus plays an important role in 

barrier regulation [326]. Structural alterations of the F-actin-based cytoskeleton are 

used to detect changes in actin and tight junctions [327,328].  
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Figure 3.8: MPA and AcMPAG-induced remodelling of the F-actin cytoskeleton. 

Caco-2 cells grown to 21 days post-confluence followed by 72 hr treatment with DMSO (a, b), 10 

µmol/L MPA (c, d) and 10 µmol/L AcMPAG (e, f). Cells were fixed, permeated, and F-actin was 

stained with FITC-phalloidin (red) and nuclei were stained with DAPI (blue), as described in methods 

section. Fluorescence images were obtained using Axiovert 200M confocal microscope. Images are 

representative of 4 independent experiments.  

 

To investigate whether MPA or AcMPAG mediated colonic epithelial barrier 

disruption was associated with structural modulation of the F-actin cytoskeleton, we 

stained Caco-2 cells with FITC-labelled phalloidin, a commonly used fluorescent 

marker for F- actin [322,328]. In the vehicle control (DMSO) cell monolayers, the F-

actin cytoskeleton was uniformly organized as shown in figure 3.8 (a-c). Following 72 

hr exposure to 10 µmol/L of either MPA (Figure 3.8 d-f) or AcMPAG (Figure 3.8 g-i), 

the uniform distribution of actin staining in epithelial cells appeared disrupted and 

was marked by randomly distributed dense patches of staining, which suggest 

disruption of the actin cytoskeleton as a possible mechanism for the alterations in the 

TJs by MPA and AcMPAG.  
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3.4.8 MPA-mediated increase in MLC phosphorylation through 

MLCK 

To analyze for the possible involvement of MLCK in the MPA mediated TJs 

disruption, we determined the effect of MPA on total protein expression of MLC2, 

MLCK, and phospho-expression of MLC2 in the presence of ML-7 (Figure 3.9). ML-7 

acts as a selective antagonist of MLCK by competing for its ATP-binding site and 

reverses the effects of agents involved in TJs disruptions [328].  Previously it was 

reported that ML-7 had  no significant effect on total MLC2 and MLCK expression 

and that ML-7 mainly affects the phosphorylation of MLC2 by decreasing the activity 

of MLCK [112]. In the present study, expressional analysis showed that MPA 

treatment in the presence of ML-7 did not alter total MLC2 and MLCK expression, 

which was observed after MPA treatment alone.  Additionally, we observed that the 

presence of ML-7 in the medium was able to reverse the effect of MPA on MLC2 

phosphorylation (Figure 3.9). To further validate these results, cells were incubated 

with CD which is an actin-disrupting drug that has previously been reported to 

increase MLC2 phosphorylation [329]. Our results also showed that CD increased 

phospho-MLC2 expression; which is consistent with the previous report [329]. 

 

In the present study, expressional analysis showed that MPA treatment in the 

presence of ML-7 did not alter total MLC2 and MLCK expression, which was 

observed after MPA treatment alone.  Additionally, we observed that the presence of 

ML-7 in the medium was able to reverse the effect of MPA on MLC2 phosphorylation 

(Figure 3.9). To further validate these results, cells were incubated with CD which is 

an actin-disrupting drug that has previously been reported to increase MLC2 

phosphorylation [329]. Our results also showed that CD increased phospho-MLC2 

expression; which is consistent with the previous report [329]. 
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Figure 3.9: Effect of ML-7 on MPA-mediated increases in MLC2, MLCK and MLC 

phosphorylation. 

Caco-2 monolayers (21 days post-confluent) were incubated with either vehicle (DMSO), MPA, 

MPA+ML-7, or CD for 72 hr. Total cell proteins were isolated and equal amount of protein was loaded 

resolved on 1DE. Expression was analysed by immunoblot analysis using antibodies against MLC2, 

MLCK and p-MLC2. Beta actin was used as a control for an equal amount of protein load. Bands were 

quantified using the Lab image software. The data represent the mean of 4 independent experiments 

± SEM. *=p< 0.05, **=p< 0.005. 
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3.4.9 MLCK inhibition partially prevented MPA effects on TER and 

permeability 

To investigate whether MPA mediated TJs alteration is through effects on 

MLCK, we pre-treated Caco-2 monolayers with ML-7 for 1 hr and then co-incubated 

them with (10 µmol/L) MPA for the indicated time periods. It was previously reported 

that ML-7 prevents TJs disrupting agent mediated decreases in TER and increases 

the permeability via inhibition of MLCK [153,328]. Co-treatment with ML-7 and MPA 

resulted in a significant higher TER as compared to cells treated with MPA alone. 

Similarly, apical to basal FD4 influx was also reduced in cells co-treated with MPA 

and ML-7 (Figure 3.10). CD was previously reported to decrease TER and increase 

permeability [330]. In the following experiments, similar to MPA, CD treated cells 

showed significant decreases in TER and increases in FD4 influx (Figure 3.10). 

These findings suggest that the MPA-induced increases in Caco-2 TJ permeability 

are at least partly the result of a mechanism closely associated with MLCK 

expression and activity.  

 

 

 

 

Figure3.10: ML-7 co-treatment reversed the effect of MPA on TER and permeability. 

Cells were grown to 21 days post-confluence and incubated with MPA or MPA+ML-7, or CD for 72 hr. 

The effects on (a) TER and (b) FD-4 influx were measured as described in the methods section. ML-7 

a specific MLCK inhibitor prevented both the MPA-mediated increase in FD 4 paracellular diffusion 

and the decreases in TER. Data are the mean ± SEM of at least four independent experiments. **=p< 

0.005, ***=p< 0.0005. 
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3.4.10 Inhibition of MLCK prevented MPA mediated alteration of TJ 

proteins 

We examined the involvement of MLCK in MPA mediated TJs regulation 

using immunofluorescence methods. Previously it was reported that the redistribution 

of TJs proteins by TJs disrupting agents can be reversed by inhibiting MLCK 

[215,331,332]. Immunofluorescence localization of occludin and ZO-1 showed that 

ML-7 could partly prevent  redistribution of ZO-1 and occludin induced by MPA 

exposure (Figure 3.11 d-f)  when compared to cells treated with MPA alone (Figure 

3.11 a-c). 

 

 

Figure 3.11: ML-7 co-treatment reversed the effect of MPA on distribution of TJs proteins. 

Cells following 21 days post-confluency were treated with MPA, and CD or pre-treated with ML-7 

followed by MPA treatment. Cells were labelled with florescent antibodies specific for ZO-1 and 

occludin. Figure shows ZO-1 (a, g, j), occludin (b, h, k) and an overlay of ZO-1 and occludin along with 

DAPI stained nuclei (c, i, l). Four independent experiments were performed.  

 

ML-7 co-treatment induced reassembly of the ZO-1 and occludin at the cellular 

borders with reclosure of the paracellular gaps (Figure 3.11 g-i). The MPA induced 

disruption of TJs proteins distribution was prevented by an MLCK inhibitor (ML-7), 

indicating that the downstream alteration of TJs proteins is dependent on MLCK 
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activation. In contrast, CD, like MPA, disrupts the distribution of ZO-1 and occludin as 

shown by disappearance of these proteins from the paracellular membrane (Figure 

3.11 j-l) 

 

We also performed immunoblot analysis for occludin protein expression. 

Results showed that ML-7 was able to reverse the effect of MPA on occludin 

expression by increasing its expression by 1.92 fold as compared to cells treated with 

MPA alone. CD treatment showed a 3.2 fold decrease in occludin protein as 

compared to DMSO control (Figure 3.12). 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Effect of ML-7 co-treatment with MPA on occludin protein expression in Caco-2 

cells. 

Caco-2 cell monolayers following 21 days post-confluency were incubated with DMSO, MPA (10 

µmol/L), MPA (10 µmol/L) +ML-7 (10 µmol/L) or CD (10 µmol/L) for 72 hr. Protein extracts were 

immunoblotted for occludin and β-actin. Densitrometric measurement was done with the Lab image 

software. Values are means ± SEM (n = 4). 

 

3.5 Discussion 

Intestinal cells form a  crucial physical and functional barrier, which regulates 

the movement of water, electrolytes, nutrients, and xenobiotics [333]. The 

gastrointestinal tract is directly involved in the metabolism and transport of various 

endogenous and exogenous compounds [334]. Several intestinal diseases are 

characterized by barrier dysfunction including inflammatory bowel disease, graft 

versus host disease, and infectious enterocolitis (reviewed in [335]). It has been 

previously reported that epithelial barrier defects lead to increased intestinal 
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permeability and the development of diarrhoea in human patients with bowel 

diseases [336] and in mouse models [337].  

MPA associated gastrointestinal adverse effects are a major concern in 

transplantation medicine  and diarrhoea is the most frequent unwanted clinical 

outcome following treatment with MPA regimes [338]. Previous reports showed that 

MPA is associated with gastrointestinal mucosal injury [60,65,311,339,340]. The 

effect of therapeutic concentrations of MPA on the gastrointestinal epithelial barrier is 

not well described. Diverse physiological and pathophysiological stimuli cause 

intestinal barrier dysfunction, regulated via several pathways such as those involving 

protein kinase C, protein kinase A, MLCK, Rho-kinase, mitogen-activated protein 

kinases, and phosphoinositide 3-kinase. Disturbances in these pathways can all lead 

to the alteration in TJs protein expression and distribution [181,303]. In a previous 

study, we observed a significant increase in the MLC2 expression in HEK-293 cells 

following MPA exposure [323]. MLC2 phosphorylation via MLCK and/or ROCK has 

been implicated in several barrier disorders [329].  

To better understand the possible mechanism of MPA mediated TJs regulation, 

we used Caco-2 monolayers as a colonic model [341]. The present study 

demonstrates for the first time in vitro that MPA, at non-toxic and therapeutic 

concentrations produces a significant modulation of intestinal epithelial barrier 

function in Caco-2 cells. The Caco-2 cell line is widely used as an in vitro intestinal 

barrier cell model, which exhibits a well differentiated brush border, TJs and intestinal 

proteins [341,342]. MPA exposure increased TJs permeability and impaired TJ 

proteins (ZO-1 and occludin) expression and distribution. On the other hand, the 

MPA concentrations used did not cause significant apoptosis or cell death, 

suggesting that the effects of MPA on GI barrier function are the result of a non-

cytotoxic mechanism.  

Previously it was shown that MLCK activity in Caco-2 cells triggers a series of 

molecular processes such as induction of MLC phosphorylation, myosin-Mg2+-

ATPase activation, and perijunctional actin-myosin interaction which are responsible 

for actin filament disruption leading to Caco-2 epithelial barrier opening [328]. Several 

agents increase MLCK mediated MLC2 phosphorylation which disrupts tight junction 

proteins, leading to the increased TJs permeability implicated in barrier associated 
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diseases [184]. We investigated the possible disruptive role of MPA on epithelial 

barrier permeability and attempted to link this effect with MLCK-induced MLC-2 

phosphorylation. 

 

To demonstrate the effect of MPA and one of its active metabolites, AcMPAG, 

on barrier properties of this colonic model, Caco-2 cells were exposed to non-

cytotoxic concentrations of MPA (10 µmol/L) and AcMPAG (10 µmol/L) followed by 

measurements of TER and influx of markers. Determination of TER and influx of 

permeability markers are widely used techniques to assess  the integrity and 

permeability of monolayers [343] because TJs disruption can be reflected by the 

reduction in TER and the increase in influx of permeability markers [335]. 

 

Our data revealed that MPA and AcMPAG increased Caco-2 cell monolayer 

permeability as shown by decreases in TER and increases in FD4 influx (Fig 1).  

These findings are in agreement with another report on the effects of MMF (an ester 

prodrug of MPA) on the barrier function of small bowel and distal colon of Wistar rats 

[344].   

 

TJs proteins, ZO-1, and occludin are protein markers which are widely used to 

investigate TJs integrity [184,345]. These proteins maintain structure and function of 

TJs integrity which are vital for normal intestinal architecture [97,148]. The 

disturbance in the distribution and expression of these proteins has been observed in 

intestinal barrier disorders [150,313]. In the present study, we investigated the effect 

of MPA and AcMPAG on the distribution and expression of ZO-1 and occludin. We 

found that exposure of Caco-2 monolayers (21-days post-confluency) to therapeutic, 

non-cytotoxic concentrations of MPA and AcMPAG for 72 hr led to a decrease in the 

expression of occludin proteins, as evidenced by Western blot analysis (Figure 3.7). 

Under normal conditions ZO-1 and occludin are generally present at the pericellular 

boundary, and distributed homogeneously, presenting a characteristic feature of 

intact TJs structure.  Disruption and redistribution of TJs proteins has been reported 

previously in several studies that suggested that alteration in these proteins can lead 

to hyperpermeability [184,346]. MLCK mediated MLC-2 phosphorylation (involved in 

modulation of ZO-1 and occludin morphologically and biochemically) can induce an 

increase in TJs permeability [184,184].  
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Furthermore, we also demonstrated that MPA and AcMPAG exposure changed 

the distribution of ZO-1 and occludin proteins, as revealed by a discontinuous pattern 

of immunofluorescent staining of these TJs proteins (Figure 3.5). To investigate 

whether MLCK was involved in MPA modulation of TJs, we used a specific MLCK 

inhibitor , ML-7 which is a selective antagonists of MLCK [347]. Previously it was 

reported that inhibition of MLCK mediated MLC phosphorylation by ML-7 can prevent 

or reverse TJs barrier losses induced by several agents such as TNFα, Cytochalasin 

B, and ethanol [112,153,328,348]. To investigate the effect of MPA on MLCK activity, 

we pre-incubated cell monolayers with ML-7 followed by MPA exposure. Results 

showed that ML-7 could at least partially reverse the MPA mediated decrease in TER 

as well as the increase in FD4 influx. Additionally, ML-7 was able to prevent the MPA 

induced redistribution and decrease in expression of ZO-1 and occludin proteins.          

 

Treatment with CD, a known stimulant of MLCK and actin-depolymerising agent 

[329] which was used as positive control for the effects of MPA treatment, also 

showed a decrease in TER and increase in paracellular flux (Figure 3.10). 

Previously, it was reported that CD was able to increase MLCK activity and MLC2 

phosphorylation [329], which our results confirmed. In addition, we found that CD 

was able to alter the expression and distribution of TJs proteins   which is  consistent 

with results of a  previous study of CD treated epithelial cells [349]. These results 

showed that both CD and MPA decreased TER and disrupted the actin cytoskeleton.  

The present study revealed that inhibition of MLCK activity by ML-7 significantly 

prevented the MPA mediated increase in MLC2 phosphorylation with no significant 

effect on total MLCK and MLC2 expression.  

 

MLC2 phosphorylation has a key role in maintaining TJs integrity by regulating 

actomyosin contraction [153]. Several pathways were described previously which 

regulate the phosphorylation of MLC2; among them Rho-kinase and MLCK signalling 

are widely studied in the context of barrier defects [191]. MLCK is involved in the 

regulation of barrier function by phosphorylation of MLC2 in response to diverse 

stimuli [153,324]. ML-7 via MLCK inhibition prevents the disruption of both occludin 

and actin, which demonstrates the importance of MLCK activity in TJs physiology 

[350]. Our results suggest that increases in MLCK might be responsible for the MPA 

induced redistribution of ZO-1 and occludin in Caco-2 monolayers.  
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3.6 Conclusion 
 

The present study indicates that MPA and its active AcMPAG metabolite at 

therapeutic concentrations produce functional alterations in TJs of Caco-2 cells 

resulting in abnormal TJs permeability, and redistribution of TJs proteins including 

disturbance and displacement of F-actin. These data suggest that MPA mediated 

increases in permeability required increased MLCK activity which could be reversed 

by ML-7. While requiring further investigation, MLCK inhibition by ML-7 significantly 

reduced the effect of MPA exposure on TJs disruption, thus suggesting a pivotal role 

of MLCK in regulating TJs barrier properties. These findings provide new insights into 

the mechanism by which therapeutic use of MPA may alter intestinal epithelial barrier 

functions and suggest mechanisms which may be responsible for some of the GI 

adverse effects associated with MPA.   
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4.  Summary  

Mycophenolic acid (MPA) is a potent inhibitor of inosine monophosphate 

dehydrogenase (IMPDH), a key regulator of purine biosynthesis. MPA is frequently 

used as an immunosuppressant drug to prevent acute graft rejection for kidney, liver 

and lung transplantation. The use of MPA is associated with GI toxicity which is a 

problem to the patients, and a challenge for clinicians. The present study was 

undertaken to identify novel molecular targets of MPA using a proteomics approach 

(Figure 4.1). Two dimensional gel electrophoresis (2-DE) and mass spectrometry 

were used to identify proteome alterations in human embryonic cells (HEK-293) 

following exposure to therapeutic concentrations of MPA. Cells were treated for 72 

hours, and total cell lysate was resolved by 2-DE followed by QTOF-MS/MS analysis 

of all identified differentially regulated proteins. A total of 12 proteins were 

differentially regulated in HEK-293 cells following exposure to MPA. Among these, 7 

proteins were up-regulated (complement component 1 Q subcomponent-binding 

protein, electron transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, 

peroxiredoxin 1, thioredoxin domain-containing protein 12, myosin regulatory light 

chain 2, and profilin 1), while 5 proteins were down-regulated (protein SET, stathmin, 

40S ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-

C/E/F/G/I). Functional annotation tool analysis showed that MPA modulated proteins 

were mainly involved in the cytoskeleton (26%), chromatin structure/dynamics (17%), 

and energy production/conversion (17%). Considering both putative functions and 

their clinical significance, peroxiredoxin-1 (Prdx-1) and myosin light chain 2 (MLC2) 

were selected for Western blot and real time PCR analysis. Both proteins showed up-

regulation at mRNA as well as at protein level following MPA exposure.  

 

MLC2 is known to be involved in several functions including tight junctions (TJ) 

regulation. Epithelial barrier disruption by phosphorylation of MLC2 has been 

implicated in several bowel diseases. Since MPA treatment often causes diarrhea 

when used clinically, we hypothesized that MPA regulated epithelial TJ by 

modulation of MLC2. To test this hypothesis, we investigated the effect of MPA on 

the expression of MLC2 in two colonic cell lines, HT-29 and Caco-2. Increased MLC2 

expression was observed in both cell lines following MPA exposure. These findings 

suggest that the increase in MLC2 expression after exposure to MPA is not a cell 

specific effect. Moreover, we observed similar up-regulation of MLC2 expression in 
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whole cell lysates prepared from MMF treated rats, which implies that MPA has 

similar effects both in vitro and in vivo.  

We then used Caco-2 cells grown for 21 days post confluence to develop 

polarize monolayers to conduct physiological, expressional and microscopic analysis 

to establish the possible role of MPA in disruption of TJ (Figure 4.1). MPA exposure 

caused a time and dose dependent decreases in transepithelial resistance (TER), 

and increases in the FITC-dextran 4 KDa (FD4) paracellular influx in these Caco-2 

monolayers. In addition, we found that AcMPAG (a pharmacologically active 

metabolite of MPA) was also able to cause decreases in TER and increases in FD4 

influx. These MPA and AcMPAG mediated increases in permeability were not due to 

cellular toxicity, as shown by the fact that no significant apoptosis or cell death was 

observed. In MPA and AcMPAG treated cells, we also found altered expression and 

distribution of TJ proteins (ZO-1 and occludin).  

Since MLC phosphorylation is a key modulator of TJ disruption; we investigated 

whether MPA also increased MLC2 phosphorylation. Using immunoblot analysis we 

found that MPA significantly increased MLC2 phosphorylation. We then investigated 

whether MPA mediated increases in MLC2 phosphorylation was through effects on 

MLCK. Immunoblot analysis revealed that MPA increased MLCK expression both at 

mRNA and protein levels. To further confirm that MLCK was the key player in MPA 

mediated MLC2 phosphorylation and its associated TJ disruption, we pre-incubated 

cells with ML-7 (a specific MLCK inhibitor), and observed that ML-7 was able to 

partially prevent the MPA mediated increase in MLC2 phosphorylation. Furthermore, 

we found that ML-7 partially reversed MPA mediated decreases in TER, and 

increases in FD4 paracellular influx. ML-7 also prevented the MPA associated 

disruption of the distribution and expression of TJ proteins (Figure 4.2). These 

findings suggest that MPA may regulate TJ function via MLCK-driven MLC2 

phosphorylation. However, these results do not exclude the possibility that other 

pathways may also be involved in MPA induced regulation of TJ function.  

Taking together findings of the present studies showed that therapeutic 

concentrations of MPA can modulate the expression of important proteins which are 

crucial for various cellular functions. MPA may modulate epithelial TJ integrity via 

MLC2 phosphorylation. These findings will be helpful to understand the molecular 

mechanisms of MPA-induced proteome alterations, including proteins that are 
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involved in disruption of TJ. Further studies are needed to clarify the mechanism(s) 

and consequences of MPA mediated disruption of TJs, especially in in vivo models, 

to know whether these TJ barrier changes are responsible for the GI adverse events 

associated with MPA treatment. 

 

 

 

 

Figure 4.1: A proteomic approach for identification of novel MPA molecular targets.  

HEK-293 cells were cultured, treated with MPA, whole cell lysates was resolved using 2-DE, and silver 

stained. Protein spots were densitometrically analysed and differentially expressed proteins were 

subjected to in-gel digestion and identified by QTOF-MS/MS. The up-regulation of MLC2 by MPA was 

further confirmed by immunoblot analysis. The functional involvement of MLC2 in MPA mediated 

barrier defects was determined by physiological assays such as TER and paracellular influx of FITC-

dextran using Caco-2 cells monolayers. In addition, the expression and distribution of TJ proteins (ZO-

1 and occludin) were also investigated using immunoblotting and immunoflurecence microscopy.  
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Figure 4.2: Proposed model of MPA mediated TJ distruption.  

MPA increased MLCK-mediated MLC2 phosphorylation in Caco-2 cell monolayers. MLC2 

phosphorylation altered the expression and distribution of TJ proteins (ZO-1 and occludin) that have 

been identified as a key factor in the development of barrier defects seen in several intestinal 

diseases. MLC2 phosphorylation also alters the distribution of F actin filaments and the associated TJ 

disruption results in decreases in TER and increases in paracellular influx. In the present study we 

observed that MPA disrupted TJ, was associated with increased MLCK expression, and MLC2 

phosphorylation. We therefore propose that MPA associated TJ disturbance is dependant on MLCK-

driven MLC phosphorylation that leads to decreased expression and redistribution of TJ proteins. Pre-

treatment with ML-7 (a specific inhibitor of MLCK) partially prevented the MPA mediated increase in 

MLC2 phosphorylation, disturbance of TJ proteins, and increase in permeability. We hypothesized that 

the observed increase in paracellular permeability following MPA treatment is due to TJ disruption 

caused by MLC2 phosphorylation, which mediates alterations in the expression and distribution of TJ 

proteins.  
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6. Appendix  

 

Figure 5.1: A graphical representation of relative abundance (% volume) of all differentially 

regulated proteins.  

Relative abundance of the proteins differentially expressed in DMSO and MPA treated HEK-293 cells. 

Results shown as mean of four independent experiments (*p < 0.05 or **p < 0.005). 
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                Table 5.1: MS/MS analysis table of all differentially regulated proteins.  

 
Spot no: the spot identification number on 2-DE; Accession no: Swiss-prot protein identification 
number; Sequence coverage: the percentage of the protein's sequence represented by the peptides 
identified by MS/MS; MS/MS analysis: peptides sequences (bold & red) identified for a particular 
protein, including MS/MS queries, and the MS/MS sepectra of an exemplary peptide.  

 
 

 
Spot no. 

 
Accessi
on no. 

 

 
Sequence 
Coverage 

 
Protein name 

 
MS/MS Analysis 

 

6 Q01105 11 Protein SET 1 MAPKRQSPLP PQKKKPRPPP ALGPEETSAS AGLPKKGEKE QQEAIEHIDE 
51 VQNEIDRLNE QASEEILKVE QKYNKLRQPF FQKRSELIAK IPNFWVTTFV 
101 NHPQVSALLG EEDEEALHYL TRVEVTEFED IKSGYRIDFY FDENPYFENK 
151 VLSKEFHLNE SGDPSSKSTE IKWKSGKDLT KRSSQTQNKA SRKRQHEEPE 
201 SFFTWFTDHS DAGADELGEV IKDDIWPNPL QYYLVPDMDD EEGEGEEDDD 
251 DDEEEEGLED IDEEGDEDEG EEDEDDDEGE EGEEDEGEDD 
Start-End  Observed   Mr(expt)   Mr(calc)       Delta     Miss   Sequence 
58 - 68       637.3448  1272.6750  1272.6561     0.0190     0     R.LNEQASEEILK.V 
123 - 132   604.8156  1207.6166  1207.5972     0.0194     0     R.VEVTEFEDIK.S 
155 - 167   482.8923  1445.6551  1445.6423     0.0128     0     K.EFHLNESGDPSSK.S 
MS/MS Fragmentation of VEVTEFEDIK 

 
 
 
 

9 Q07021 
 

9 

 

Complement component 
1 Q subcomponent-

binding protein, 
mitochondrial 

1 MLPLLRCVPR VLGSSVAGLR AAAPASPFRQ LLQPAPRLCT RPFGLLSVRA 
51 GSERRPGLLR PRGPCACGCG CGSLHTDGDK AFVDFLSDEI KEERKIQKHK 
101 TLPKMSGGWE LELNGTEAKL VRKVAGEKIT VTFNINNSIP PTFDGEEEPS 
151 QGQKVEEQEP ELTSTPNFVV EVIKNDDGKK ALVLDCHYPE DEVGQEDEAE 
201 SDIFSIREVS FQSTGESEWK DTNYTLNTDS LDWALYDHLM DFLADRGVDN 
251 TFADELVELS TALEHQEYIT FLEDLKSFVK SQ 
Start -End   Observed    Mr(expt)   Mr(calc)     Delta     Miss Sequence 
105-119       819.3414  1636.6682  1636.7403    -0.0720     0  
K.MSGGWELELNGTEAK.L     208 - 220     757.3118  1512.6090  1512.6732    -0.0642     
0  R.EVSFQSTGESEWK.    
208 - 220     757.3123  1512.6100  1512.6732    -0.0632     0  R.EVSFQSTGESEWK.D 
MS/MS Fragmentation of EVSFQSTGESEWK 

 
 
 
 

14 P38117 22 Electron transfer 
flavoprotein subunit beta 

1 MAELRVLVAV KRVIDYAVKI RVKPDRTGVV TDGVKHSMNP FCEIAVEEAV 
51 RLKEKKLVKE VIAVSCGPAQ CQETIRTALA MGADRGIHVE VPPAEAERLG 
101 PLQVARVLAK LAEKEKVDLV LLGKQAIDDD CNQTGQMTAG FLDWPQGTFA 
151 SQVTLEGDKL KVEREIDGGL ETLRLKLPAV VTADLRLNEP RYATLPNIMK 
201 AKKKKIEVIK PGDLGVDLTS KLSVISVEDP PQRTAGVKVE TTEDLVAKLK 
251 EIGRI 
Start-End  Observed   Mr(expt)   Mr(calc)       Delta     Miss   Sequence 
27 - 35       438.2605   874.5064   874.4760     0.0304     0    R.TGVVTDGVK.H 
77 - 85       461.2477   920.4808   920.4386     0.0423     0    R.TALAMGADR.G   
99 - 106     427.2842   852.5538   852.5181     0.0357     0    R.LGPLQVAR.V 
165 - 174   551.8152  1101.6158  1101.5666   0.0493     0    R.EIDGGLETLR.L 
222 - 233   670.3985  1338.7824  1338.7143   0.0681     0    K.LSVISVEDPPQR.T 
239 - 248   552.8170  1103.6194  1103.5710   0.0484     0    K.VETTEDLVAK.L 
MS/MS Fragmentation of LSVISVEDPPQR 



 

102 

 
 
 
 

15 P47985 
 

16 Cytochrome b-c1 
complex subunit Rieske, 

mitochondrial 

 

1 MLSVASRSGP FAPVLSATSR GVAGALRPLV QATVPATPEQ PVLDLKRPFL 
51 SRESLSGQAV RRPLVASVGL NVPASVCYSH TDIKVPDFSE YRRLEVLDST 
101 KSSRESSEAR KGFSYLVTGV TTVGVAYAAK NAVTQFVSSM SASADVLALA 
151 KIEIKLSDIP EGKNMAFKWR GKPLFVRHRT QKEIEQEAAV ELSQLRDPQH 
201 DLDRVKKPEW VILIGVCTHL GCVPIANAGD FGGYYCPCHG SHYDASGRIR 
251 LGPAPLNLEV PTYEFTSDDM VIVG 
Start-End  Observed    Mr(expt)   Mr(calc)    Delta   Miss    Sequence 
85 - 92      506.7550  1011.4954  1011.4662   0.0293     0      K.VPDFSEYR.R 
93 - 101    530.8184  1059.6222  1059.5924   0.0298     1      R.RLEVLDSTK.S 
94 - 101    452.7524    903.4902   903.4913   -0.0011     0     R.LEVLDSTK.S 
171 - 177  408.7669    815.5192   815.5018    0.0175     0     R.GKPLFVR.H 
183 - 196  807.9452  1613.8758 1613.8260    0.0498     0     K.EIEQEAAVELSQLR.D 
197 - 204  498.2446    994.4746   994.4468    0.0278     0     R.DPQHDLDR.V 
MS/MS Fragmentation of DPQHDLDR 
 

 
 
 
 

18 Q06830 10 Peroxiredoxin-1 1 MSSGNAKIGH PAPNFKATAV MPDGQFKDIS LSDYKGKYVV FFFYPLDFTF 
51 VCPTEIIAFS DRAEEFKKLN CQVIGASVDS HFCHLAWVNT PKKQGGLGPM 
101 NIPLVSDPKR TIAQDYGVLK ADEGISFRGL FIIDDKGILR QITVNDLPVG 
151 RSVDETLRLV QAFQFTDKHG EVCPAGWKPG SDTIKPDVQK SKEYFSKQK 
Start-End  Observed    Mr(expt)   Mr(calc)    Delta   Miss  Sequence 
111 - 120   554.2855  1106.5564  1106.5972   -0.0407   0   R.TIAQDYGVLK.A 
141 - 151   606.3233  1210.6320  1210.6670   -0.0349   0   R.QITVNDLPVGR.S  
MS/MS Fragmentation of TIAQDYGVLK. 
 
 
 

 
 
 
 

22 P16949 18 Stathmin 1 MASSDIQVKE LEKRASGQAF ELILSPRSKE SVPEFPLSPP KKKDLSLEEI 
51 QKKLEAAEER RKSHEAEVLK QLAEKREHEK EVLQKAIEEN NNFSKMAEEK 
101 LTHKMEANKE NREAQMAAKL ERLREKDKHI EEVRKNKESK DPADETEAD 
Start-End  Observed    Mr(expt)   Mr(calc)    Delta     Miss  Sequence 
44 - 52      537.7797   1073.5448  1073.5604    -0.0156   0    K.DLSLEEIQK. 
53 - 60      473.2399    944.4652    944.4927    -0.0274    1    K.KLEAAEER.R   
86 - 95      583.2628  1164.5110  1164.5411     -0.0300   0    K.AIEENNNFSK.M   
MS/MS Fragmentation of AIEENNNFSK 
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23 O95881 13 Thioredoxin domain-
containing protein 12 

1 METRPRLGAT CLLGFSFLLL VISSDGHNGL GKGFGDHIHW RTLEDGKKEA  
51 AASGLPLMVI IHKSWCGACK ALKPKFAEST EISELSHNFV MVNLEDEEEP  
101 KDEDFSPDGG YIPRILFLDP SGKVHPEIIN ENGNPSYKYF YVSAEQVVQG  
151 MKEAQERLTG DAFRKKHLED EL 
Start-End   Observed    Mr(expt)   Mr(calc)     Delta   Miss  Sequence 
115 - 123     495.3159   988.6172   988.5593     0.0579     0    R.ILFLDPSGK.V      
115 - 123     495.3221   988.6296   988.5593     0.0703     0    R.ILFLDPSGK.V 
139 - 152     832.9714  1663.9282  1663.7916   0.1367     0    K.YFYVSAEQVVQGMK.E     
139 - 152     832.9721  1663.9296  1663.7916   0.1381     0    K.YFYVSAEQVVQGMK.E   
MS/MS Fragmentation of YFYVSAEQVVQGMK 

 
 
 
 

24 O14950 23 Myosin regulatory light 
chain MRLC2 

1 MSSKKAKTKT TKKRPQRATS NVFAMFDQSQ IQEFKEAFNM IDQNRDGFID 
51 KEDLHDMLAS LGKNPTDAYL DAMMNEAPGP INFTMFLTMF GEKLNGTDPE 
101 DVIRNAFACF DEEATGTIQE DYLRELLTTM GDRFTDEEVD ELYREAPIDK 
151 KGNFNYIEFT RILKHGAKDK DD 
Start - End  Observed  Mr(expt)   Mr(calc)     Delta     Miss Sequence 
  94 - 104     614.8414  1227.6682  1227.6095   0.0587     0   K.LNGTDPEDVIR.N 
125 - 133     526.2847  1050.5548  1050.5016   0.0533     0   R.ELLTTMGDR.F   
134 - 144     708.3533  1414.6920  1414.6252   0.0668     0   R.FTDEEVDELYR.E 
152 - 161     630.8325  1259.6504  1259.5935   0.0570     0   K.GNFNYIEFTR.I 
MS/MS Fragmentation of LNGTDPEDVIR 
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27 Q96A08 12 Histone H2B type 1-A 1 MPEVSSKGAT ISKKGFKKAV VKTQKKEGKK RKRTRKESYS IYIYKVLKQV 
51 HPDTGISSKA MSIMNSFVTD IFERIASEAS RLAHYSKRST ISSREIQTAV 
101 RLLLPGELAK HAVSEGTKAV TKYTSSK 
Start - End     Observed  Mr(expt)   Mr(calc)     Delta   Miss  Sequence 
    95 - 101     408.7352   815.4558   815.4501    0.0057     0   R.EIQTAVR.L   
  102 - 110     477.3018   952.5890   952.5957   -0.0066     0   R.LLLPGELAK. 
 MS/MS Fragmentation of LLLPGELAK 

 
 
 
 

28 P62807 57 Histone H2B type 1-
C/E/F/G/I 

1 MPEPAKSAPA PKKGSKKAVT KAQKKDGKKR KRSRKESYSV YVYKVLKQVH 
51 PDTGISSKAM GIMNSFVNDI FERIAGEASR LAHYNKRSTI TSREIQTAVR 
101 LLLPGELAKH AVSEGTKAVT KYTSK 
Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 
    36 - 44      569.2944  1136.5742    1136.5390     0.0353     0  K.ESYSVYVYK.V 
    45 - 58      503.6217  1507.8433    1507.8358     0.0074     1  
K.VLKQVHPDTGISSK.A 
    48 - 58      584.8140  1167.6134    1167.5884     0.0250     0  K.QVHPDTGISSK.A 
    59 - 73      888.4241  1774.8336    1774.8018     0.0318     0  
K.AMGIMNSFVNDIFER.I   
    88 - 100    487.9460  1460.8162    1460.7947     0.0215     1  R.STITSREIQTAVR.L 
    94 - 100    408.7277   815.4408     815.4501      -0.0093     0  R.EIQTAVR.L 
   101 - 109   477.2920   952.5694     952.5957      -0.0262     0  R.LLLPGELAK.H 
   101 - 109   477.3095   952.6044     952.5957       0.0088     0  R.LLLPGELAK.H 
   110 - 121   409.8952  1226.6638    1226.6619     0.0019     1  K.HAVSEGTKAVTK.Y 
MS/MS Fragmentation of STITSREIQTAVR 

 
 
 
 

31 P25398 14 40S ribosomal protein 
S12 

1 MAEEGIAAGG VMDVNTALQE VLKTALIHDG LARGIREAAK ALDKRQAHLC 
51 VLASNCDEPM YVKLVEALCA EHQINLIKVD DNKKLGEWVG LCKIDREGKP 
101 RKVVGCSCVV VKDYGKESQA KDVIEEYFKC KK 
Start - End     Observed    Mr(expt)   Mr(calc)       Delta    Miss Sequence 
    24 - 33      533.7745     1065.5344  1065.5931   -0.0586   0    K.TALIHDGLAR.G  ) 
    24 - 33      533.7747     1065.5348  1065.5931   -0.0582   0    K.TALIHDGLAR.G  
    85 - 93      531.2432     1060.4718  1060.5376    0.0657   0    K.LGEWVGLCK.I   
MS/MS Fragmentation of LGEWVGLCK 
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34 P07737 53 Profilin-1 1 MAGWNAYIDN LMADGTCQDA AIVGYKDSPS VWAAVPGKTF VNITPAEVGV 
51 LVGKDRSSFY VNGLTLGGQK CSVIRDSLLQ DGEFSMDLRT KSTGGAPTFN 
101 VTVTKTDKTL VLLMGKEGVH GGLINKKCYE MASHLRRSQY 
Start - End  Observed    Mr(expt)   Mr(calc)      Delta   Miss  Sequence 
   39 - 54      822.4751  1642.9356  1642.9294     0.0062     0  
K.TFVNITPAEVGVLVGK.D   
   76 - 89      813.3810  1624.7474  1624.7403     0.0072     0  R.DSLLQDGEFSMDLR.T   
   92 - 105    690.3588  1378.7030  1378.7093    -0.0062     0  K.STGGAPTFNVTVTK.  
 106 -  116   609.8624  1217.7102  1217.7053     0.0049     1  K.TDKTLVLLMGK.E   
 117 - 127    576.3310  1150.6474  1150.6458     0.0016     1  K.EGVHGGLINKK.C   
 128 -  136   583.7573  1165.5000  1165.5008    -0.0008     0  K.CYEMASHLR.R   
MS/MS Fragmentation of TFVNITPAEVGVLVGK 
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