INAUGURAL-DISSERTATION

JAKOB TRIEBEL 2009

Aus der Abteilung Gastroenterologie und Endokrinologie

(Prof. Dr. med. Dr. h.c. G. Ramadori)

im Zentrum Innere Medizin

der Medizinischen Fakultät der Universität Göttingen

Investigation of prolactin-related vasoinhibin in sera from patients with diabetic retinopathy

INAUGURAL-DISSERTATION

zur Erlangung des Doktorgrades

der Medizinischen Fakultät der Georg-August-Universität zu Göttingen

vorgelegt von

JAKOB TRIEBEL

aus

DUISBURG

Göttingen 2009

Dekan: Prof. Dr. med. C. Frömmel

I.	Berichterstatter:	Prof. Dr. med. M. Hüfner	(Betreuer)
II.	Berichterstatter:	Prof. Dr.med. von Ahsen	(Korreferent)
III.	Berichterstatter:	Prof. Dr.med. von Werder	(Drittreferent)
IV.	Berichterstatter:	Prof. Dr.med., Dr.rer.nat. Crozier	(Promotor-Vertretung)

Tag der mündlichen Prüfung: 11.August 2010

Inhaltsverzeichnis

Zusammenfassung der Publikation	1-15
Literaturverzeichnis	16-19
Abbildung 1	20
Investigation of prolactin-related vasoinhibin	
in sera from patients with diabetic retinopathy	(345-353)

Zusammenfassung der Publikation "Investigation of prolactin-related vasoinhibin in sera from patients with diabetic retinopathy"

Hintergrund

Die diabetische Retinopathie ist eine oft auftretende mikrovaskuläre Komplikation des Diabetes mellitus und gehört zu den häufigsten Ursachen für Erblindung in der Welt (Klein et al. 1984 a, Klein et al. 1984 b). Während frühe, nicht- proliferative Stadien der diabetischen Retinopathie durch Mikroaneurysmen und Hämorrhagien gekennzeichnet sind, ist das Charakteristikum der proliferativen diabetischen Retinopathie die krankhafte Neubildung (Neoangiogenese) von Blutgefäßen in der Retina. Es sind einige mit der proliferativen diabetischen Retinopathie einhergehende Faktoren wie die chronische Hyperglykämie (Klein et al. 1988) gefunden worden, aber die pathophysiologischen Mechanismen, die zur Entwicklung und Progression der Retinopathie führen, werden bisher kaum verstanden (Frank 2004).

Da ein Hauptkriterium der proliferativen Retinopathie definitionsgemäß die Entstehung neuer Blutgefäße, die Neovaskularisation oder Angiogenese ist, wird sie in die Gruppe der angiogenen Erkrankungen eingeordnet. Die Klassifikation der proliferativen diabetischen Retinopathie als Angiogenese-abhängige Erkrankung wurde in den 80er Jahren von dem US-amerikanischen Forscher Judah Folkman vorgenommen. Dieser begründete auch das bis heute weltweit gültige Konzept zum Verständnis der Angiogenese, nach dem die Gefäßneubildung von inhibierenden und stimulierenden Faktoren kontrolliert wird (Folkman und Klagsburn 1987). Seitdem werden kontinuierlich Versuche unternommen, alle die Angiogenese stimulierenden oder inhibierenden Faktoren zu identifizieren und deren Bedeutung in pathophysiologischen Situationen nachzuweisen.

Prolaktin und Prolactin-related Vasoinhibin

Die erste Erwähnung des Prolaktins (PRL) in der Literatur im Zusammenhang mit der diabetischen Retinopathie fand im Jahr 1974 statt. Damals veröffentlichten

Wissenschaftler der University of Newcastle upon Tyne und der Welsh National School of Medicine in der Zeitschrift "Lancet" eine Untersuchung zum Zusammenhang von Serum-Spiegeln des Prolaktins und dem Auftreten von diabetischer Retinopathie: eine pathophysiologische Bedeutung von Prolaktin wurde für unwahrscheinlich gehalten (Hunter et al. 1974, Abbildung 1).

Dann erfolgte jedoch die Entdeckung eines N-terminalen, 16kDa-großen Prolaktin-Fragments 1980 durch Indraneel Mittra vom St Bartholomew's Hospital London bei der Untersuchung von tierischen Hypophysen (Mittra 1980).

Später wurde durch Carmen Clapp (heute am Institut für Neurobiologie in Querétaro, Mexico, tätig) und andere die Charakterisierung der antiangiogenen Eigenschaften des Fragments vorgenommen (Clapp et al. 1993). Durch weiterführende Untersuchungen, d.h. in-vitro-Experimente und in-vivo-Studien mit Nagetieren, konnte demonstriert werden, dass die N-terminalen 14, 15, 16, 17 und 18 kDa großen Fragmente des menschlichen Prolaktins (prolactin-related Vasoinhibin) natürliche Inhibitoren der Neovaskularisation in der Retina und anderen Geweben sind (Corbacho et al. 2002).

Aufgrund ihrer antiangiogenen Eigenschaften wurden die N-terminalen PRL-Fragmente, zusammen mit anderen Peptiden, die vom Wachstumshormon abstammen, von Clapp "Vasoinhibine" genannt, einer Peptid-Familie mit gleichem Namen zugeordnet und als endogene Regulatoren der Angiogenese charakterisiert (Clapp et al. 2006).

Diese Entwicklungen führten zu der Hypothese, dass das prolactin-related Vasoinhibin eine Rolle in der Pathophysiologie der diabetischen Retinopathie beim Menschen spielen könnte (Clapp et al. 2008). Neueste Erkenntnisse weisen daraufhin, dass die Zytokin-ähnlichen Wirkungen der Vasoinhibine bedeutende Faktoren in der Regulation der Angiogenese sind (Clapp et al. 2009). Mittlerweile belegt eine stetig zunehmende Zahl an Studien eine mögliche pathophysiologische Funktion der Vasoinhibine nicht nur in der diabetischen Retinopathie, sondern auch in Tumorerkrankungen (Bentzien et al. 2001), der Präeklampsie (Leanos-Miranda et al.

2008), der Postpartum-Kardiomyopathie (Hilfiker-Kleiner et al. 2007) und der Rheumatoiden Arthritis (Macetola et al. 2006).

Ziel der Untersuchung

Ziel dieser Studie war es, festzustellen, ob Patienten mit Diabetes mellitus und diabetischer Retinopathie eine von der Normalpopulation abweichende Konzentration von prolactin-related Vasoinhibin (PRL-V) im zirkulierenden Blut aufweisen.

Experimentelle Methodik

Generelle technische Aspekte

Zunächst versuchten wir, PRL-V durch Immunpräzipitation und anschließende Western-Blot-Analyse zu detektieren und semiquantitativ zu bestimmen. Die Detektion gelingt jedoch nur selten, trotz dutzender Variationen der Protokolle sowohl für die Immunpräzipitation als auch den Western Blot. Die im Western Blot dargestellten immunoreaktiven Banden für PRL-V sind nicht reproduzierbar, äußerst schwach und somit nicht ausreichend für eine sichere Bestimmung und Quantifizierung von PRL-V mittels optischer Densitometrie.

Deshalb begannen wir, die Western-Blot-Analyse durch die Analytik der Proteinprobe mit einer "lab-on-a-chip"-Technologie zu ersetzen. Mithilfe eines gezielt für die Analytik von PRL-V entwickelten Protokolls, Experimenten mit rekombinantem Prolaktin, Negativ- und Positiv-Kontrollen, gelang es schließlich, das prolactin-related Vasoinhibin zu detektieren und semi-quantitativ zu bestimmen.

Bei dieser Prozedur werden zunächst Protein-Proben, die durch Immunpräzipitation aus dem Serum isoliert werden, auf einen mit Mikrokapillaren ausgestatteten "labon-a-chip"-Chip aufgetragen. Durch elektrokinetische Energie werden die Proteine dann durch die Mikrokapillaren, die sowohl mit Gel als auch mit Farbstoffen gefüllt sind, bewegt. Die Proteine interkalieren während der Migration durch das Gel mit dem Farbstoff und generieren dabei eine Fluoreszenz, die durch einen Laser detektiert wird. Die Menge der Proteine und ihr jeweiliges Molekulargewicht werden durch die Messung der Intensität der Fluoreszenz und ihrer Position in der Kapillare sowie einen Vergleich mit einem Standard bestimmt.

Immunpräzipitation

150μl Serum und 400μl PBS mit Protease-Inhibitoren (Cat. No.: 04693124001, Roche) wurden mit 50μl Protein A-Agarose (Cat. No.: 11134515001, Roche) für 1 Stunde bei 4°C unter Rotation inkubiert. Die Probe wurde für 30 Sekunden mit 3800 g zentrifugiert (Zentrifuge 5415R mit Rotor F45-24-11, Eppendorf, Hamburg, Deutschland) und dem Überstand wurden 15μl des anti-PRL Antikörpers 5602 (Cat. No: CAN-hPRL-4100-12, Diagnostics Biochem Canada, London, Kanada) hinzugefügt. Nach Inkubation für 6 Stunden bei 4°C unter Rotation, wurde die Probe nach Hinzugabe von 50μl Protein G-Agarose (Cat.No.: 11719416001, Roche) für weitere 16 Stunden unter den gleichen Bedingungen inkubiert. Die Probe wurde für 5 Minuten bei 3800 g zentrifugiert und der Überstand wurde verworfen. Das Pellet wurde mit PBS gewaschen und dann in 25μl PBS aufgelöst. Sechs Mikroliter der Lösung wurden mit dem Bioanalyzer 2100 (Agilent Technologies, Waldbronn, Deutschland) analysiert.

Bioanalyzer 2100

Gemäß den Instruktionen des Herstellers für die Benutzung des Protein 80 Kits (Cat. No.: 5067-1515, Agilent Technologies), allerdings mit leichten Modifikationen, wurden 6µl der Probe mit 2µl denaturierender, 3,5 v/v% ß-Mercaptoethanol-haltiger Lösung versetzt. Das die Probe enthaltende Gefäß wurde auf einem Heizblock platziert und für 5 Minuten bei 95°C erhitzt. Sechs Mikroliter der Probe wurden auf den Proteinchip (Cat. No.: 5067-1515, Agilent Technologies) geladen und durch das Gerät analysiert.

Positiv-Kontrollen

Zur Anfertigung von Positiv-Kontrollen verwendeten wir rekombinantes humanes PRL (rhPRL), gewonnen aus Escherichia Coli (Cat. No.: 40-267, NatuTec, Frankfurt,

Deutschland). Fünf Nanogramm rhPRL wurde auf den Proteinchip geladen und analysiert (Abbildung 1A, Seite 346). Die Proteolyse des "full-length" PRL in Nterminale PRL-Fragmente wurde gemäß der Methodik von Piwnica et al. (Piwnica et al. 2004) durchgeführt. Zehn Nanogramm Cathepsin D aus menschlicher Leber (Cat. No.: C869-25UG, Sigma) wurde mit 500ng rhPRL in 100µl Zitrat-Puffer bei pH 3 und 37°C für eine Stunde inkubiert. Die Reaktion wurde beendet, indem 100µl SDS-PAGE Probenpuffer hinzugefügt wurden. Vier Mikroliter der Probe, verdünnt in 8µl Probenpuffer und denaturierender Lösung, wurden mit dem Bioanalyzer 2100 untersucht (Abbildung 1B Seite 346). Die Immunpräzipitation einer Serum-Probe wurde mit einem weiteren monoklonalen Antikörper (SC-80303, Santa Cruz Biotechnologies, Santa Cruz, California, USA), der gegen ein anderes Epitop als der Antikörper MAB 5602 gerichtet ist, durchgeführt.

Negativ-Kontrolle

Als Negativ-Kontrolle, führten wir die Immunpräzipitation mit einem Antikörper durch (mouse MAB 5601, Cat.No.: CAN-hPRL-4100-11, Diagnostics Biochem Canada), dessen Epitop am C-terminalen Ende des Prolaktins liegt. Dieser Antikörper ist spezifisch für ein C-terminales Epitop (Aminosäuren 150-199 des "full-length" PRL) welches nicht auf dem N-terminales 16K PRL Fragment zu finden ist. Daher bindet der Antikörper "full-length" PRL aber keine N-terminalen Fragmente.

Nicht-reduzierende Bedingungen

Die Immunpräzipitation und die darauf folgende Analyse der Probe mit dem Bioanalyzer 2100 wurde unter nicht reduzierenden Bedingungen, d.h. ohne die Zugabe von ß-Mercaptoethanol oder einer anderen reduzierenden Chemikalie, durchgeführt.

Elektro-Chemilumineszenz Immunoassay

Zusätzlich zur Bestimmung des Prolaktins innerhalb des oben beschriebenen Assays, wurde die Konzentration des Prolaktins mit einem kommerziell erhältlichen ElektroChemilumineszenz Immunoassay (ECLIA; Roche Diagnostics, Device: Cobas Modular Analytics E170, Kit: PRL II, Cat. No.: 03203093190) gemessen. Die Sensitivität des Assays betrug 0.047 ng/ml.

Western-Blot-Analyse

Hundert Mikroliter Serum wurde mit 450µl PBS und Protease Inhibitoren (Roche) sowie mit 50µl Protein A-Agarose (Roche) für 1h bei 4°C unter Rotation inkubiert. Die Probe wurde für 20s bei 6000 r.p.m. zentrifugiert und 10µl eines polyklonalen AntihPRL Antikörpers (A0569, DakoCytomation, Carpinteria, CA, USA) wurde hinzugefügt. Nach 3h Rotation bei 4°C wurden 50µl Protein-A Agarose hinzugefügt und die Probe wurde für weitere 12h inkubiert. Nach Zentrifugation (20s bei 3800 g) wurde der Überstand verworfen und das Pellet drei mal mit PBS gewaschen. Das Pellet wurde dann in 30µl ß-Mercaptoethanol enthaltenden SDS-Page Probenpuffer resuspendiert, für 5min gekocht und anschließend zum Abkühlen 5min auf Eis gelagert. Nach erneuter Zentrifugation (20s bei 3800 g) wurde der Überstand einer Elektrophorese auf einem 17% SDS-PAGE Gel unterworfen und anschließend durch einen Elektroblot auf eine PVDF-Membran übertragen. Zur Bestimmung des Molekulargewichtes wurde der amersham low-range molecular weight marker (3500-40 000 kDa, product code: RPN755E) benutzt. Der Transfer wurde halbtrocken mit 0.8 mA/cm² durchgeführt. Die Membran wurde für 12 h mit TBS und einem Trockenmilchgehalt von 8% blockiert. Dann wurde die Membran mit einem weiteren polyklonalen Anti-hPRL Antikörper (Cat.No.: Ab1971, Abcam, Cambridge, MA, USA) in einer 1:500 Verdünnung für 1h bei 37°C und anschließend mit einer 1:1000 Verdünnung eines peroxidase-gekoppelten anti-rabbit Antikörper (Cat.No.: P0399, DakoCytomation) inkubiert. Zur Visualisierung der Immunkomplexe wurden ECL western blotting reagents (GE Healthcare, Freiburg, Germany) benutzt (Abb. 3, S. 348).

Studiendesign und Patienten

Die Fallgruppe bestand aus 21 Patienten mit Diabetes Mellitus und entweder proliferativer (n = 14) oder nicht-proliferativer (n = 7) diabetischer Retinopathie die

jeweils einer entsprechenden Subgruppe zugeordnet wurden. Als Kontrollgruppe dienten 27 Personen ohne einen Diabetes Mellitus in der Vorgeschichte. Die Patienten der Fallgruppe wurden in der Augenklinik der Universität Göttingen rekrutiert. Die ophthalmologische Diagnose wurde durch indirekte Ophthalmoskopie gemäß den Kriterien der Early Treatment Diabetic Retinopathy Study gestellt (Early Treatment Diabetic Retinopathy Study Research Group 1991). Alle Personen der Kontrollgruppe waren ambulante Patienten, die in einer Praxis für Innere Medizin in Bochum rekrutiert wurden. Die Erlaubnis der lokalen Ethik-Kommission sowie eine schriftliche Einverständniserklärung von jedem Teilnehmer wurde eingeholt.

Ausschlusskriterien für Teilnehmer beider Gruppen waren Krankheiten oder die Einnahme von Medikamenten, die den Prolaktin-Spiegel beeinflussen können: Prolaktinom, Schilddrüsenunterfunktion, Chronische Niereninsuffizienz, Läsionen der Brustwand während der letzten 3 Monate vor der Rekrutierung, die Behandlung mit Cimetidin, Cyproheptadin, Monoamino-Oxidase (MAO)-Inhibitoren, Meprobamat, Methyldopa, Metoclopramide, antipsychotischen Medikamenten, Opiaten, Östrogen, Prostaglandin, Reserpin, Sulpirid, trizyklischen Antidepressiva oder Verapamil. Die Blutproben wurden aus der Kubital-Vene zwischen 06:00 und 12:00 Uhr entnommen.

Statistische Analyse

Zur Beschreibung der demographischen und klinischen Charakteristika der Studienpopulation wurden Methoden der deskriptiven Statistik verwendet. Das Alter der Patienten und die Jahre seit Diagnose sind als Mittelwert in Jahren ± Standardabweichung (S.D.) angegeben. Die PRL-Konzentrationen sind als Mittelwert und Standard Error of Mean (S.E.M.) angegeben. Die Signale des PRL-Vasoinhibin sind als Signalstärke, definiert als Höhe des Signals in Fluoreszenz-Einheiten (FU) von den Elektropherogrammen des Bioanalyzer 2100 abgelesen worden. Zum Feststellen signifikanter Unterschiede wurde der Wilcoxon-Mann-Whitney Test angewendet. Unterschiede im Mittelwert mit einem P-Wert von <als 0.05 wurden als statistisch signifikant gewertet. Die statistische Analyse wurde mit der Software Prism 4 (GraphPad Software, La Jolla, CA, USA) durchgeführt.

Ergebnisse

Immunkomplex-Bestandteil-Analyse

Um die Signale der Messung des Immunpräzipitates zu identifizieren bzw. zuzuordnen und deren Charakteristika im Bioanalyzer 2100 zu erkennen, führten wir eine Immunkomplex-Bestandteil-Analyse durch. Dabei zeigte sich, dass die Protein-G Agarose, die Affinitäts-Chromatographie-Matrix, die zur Immunpräzipitation verwendet wurde, keine Signale innerhalb des Detektionsareals verursachte. Die Untersuchung des monoklonalen Maus-Antikörpers (anti-hPRL antibody 5602) unter reduzierenden Bedingungen zeigte die Migration der IgG Leichtketten bei einem Molekulargewicht von 26-28 kDa und eine Migration der schweren Kette bei circa 65 kDa (Abb. 4, Seite 349). Somit konnte keine Interferenz zwischen den Signalen des Antikörpers und denen des Prolaktins festgestellt werden. Rekombinantes menschliches Prolaktin migrierte bei circa 22 kDa (Abb. 1A, Seite 346). Die mit Cathepsin-D gespaltenen Prolaktin-Fragmente migrierten bei 11, 15, 16,5 und 17 kDa (Abb. 1B, Seite 346).

Signal-Identifikation der Immunkomplex-Messung

Eine von Piwnica et al. (Piwnica et al. 2004) durchgeführte Epitop-Untersuchung des monoklonalen Antikörpers 5602 demonstriert, dass dieser Antikörper an die N-terminalen Aminosäuren 1-9 des menschlichen Prolaktins bindet. Δ1-9-hPRL (Prolaktin ohne die n-terminalen Aminosäuren 1-9) wird von dem Antikörper nicht erkannt. Daher ist die Immunpräzipitation unter Verwendung dieses Antikörpers spezifisch für N-terminale-, nicht jedoch für C-terminale Fragmente des Prolaktins. So identifizierten wir die 16-17 kDa-Komponente des Immunkomplexes, in Übereinstimmung mit Positiv- und Negativkontrollen, als N-terminales PRL-V und nicht als ein C-terminales PRL-Fragment (Abb. 1C, Seite 346). In Übereinstimmung mit rekombinantem menschlichen Prolaktin als Positiv-Kontrolle, identifizierten wir das 22 kDa-Signal als "full-length" PRL (Abb. 1C, Seite 346). Eine Western-Blot-Analyse des Immunpräzipitates mit einem polyklonalen Antikörper gegen menschliches

Prolaktin (A0569, DakoCytomation) bestätigte die Identität des 22 kDa-Signals als PRL, zeigte aber keine immunoreaktiven Banden bei 16-17 kDa (Daten nicht präsentiert). Die Immunpräzipitation mit einem anderen monoklonalen Maus-Antikörper (MAB SC 80303), der ein unterschiedliches Epitop auf dem menschlichen Prolaktin erkennt, und die anschließende Messung des Immunpräzipitates gemäß der oben beschriebenen Methode, bestätigte die PRL-V und "full-length" PRL-Signale (Abb. 2A, Seite 347). Dieser Antikörper bindet ein Epitop, welches mit den Aminosäuren 29-151 des Prolaktins korrespondiert. Für die Negativ-Kontrolle führten wir die Immunpräzipitation mit einem monoklonalen Maus-Antikörper gegen hPRL durch, dessen Epitop am C-terminalen Ende des Prolaktins liegt (Ab 5601). Die Untersuchung einer Probe, bei der zuvor mithilfe von zwei verschiedenen monoklonalen Antikörpern mit N-terminalen Epitopen (CAN-hPRL-4100-12, DBC; SC-80303, SCB) PRL-V detektiert wurde, zeigte ein Signal für "full-length" PRL, jedoch kein Signal für PRL-V (Abb. 2B, Seite 347).

Analyse von PRL-V unter nicht-reduzierenden Bedingungen

Die Messung des Immunpräzipitates unter nicht-reduzierenden Bedingungen zeigte im Vergleich mit den Messungen unter reduzierenden Bedingungen ein gleiches Muster (Abb. 2C, Seite 347).

Herstellung von PRL-Fragmenten

Die Inkubation von rhPRL mit Cathepsin D resultierte in einer proteolytischen Spaltung des "full-length" PRL in 11, 15, 16,5 und 17 kDa große PRL-Fragmente (Abb. 1B, Seite 346).

Demographische und Klinische Charakteristika der Studienpopulation

Die Patienten der Fallgruppe hatten ein durchschnittliches Alter von 65,3 \pm 11,8 Jahren. Die mittlere Dauer seit Diagnose des Diabetes Mellitus (Typ I oder Typ II) betrug 19,6 \pm 10.0 Jahre. Zwei Personen der Fallgruppe (10%) hatten Diabetes Mellitus Typ I und 19 (90%) Typ II Diabetes Mellitus. 17 Individuen (80%) wurden mit Insulin behandelt, 4 (20%) mit oralen antidiabetischen Medikamenten. 14 Patienten (66%) hatten eine proliferative diabetische Retinopathie (Abb. 5, Seite 349) und 7 (33%) eine nicht-proliferative diabetische Retinopathie. Das mittlere Alter der Patienten der Kontrollgruppe betrug 54,0 \pm 18,3 Jahre. Die demographischen und klinischen Charakteristika der Studienpopulation sind in der Tabelle 1 (Table 1, Seite 349) zusammengefasst.

Serum PRL-V und 23K PRL Konzentrationen

Die statistische Analyse zeigte, dass die Fallgruppe signifikant niedrigere PRL-V Konzentrationen aufwies als die Kontrollgruppe (P = 0.041). Die Fallgruppe hatte eine mittlere PRL-V Konzentration von 2,39 ± 0.59 FU, während die Kontrollgruppe eine Konzentration von 3,64 ± 0,51 FU aufwies (Abb. 6, Seite 350). Die Subgruppenanalyse zeigte keine signifikanten Unterschiede zwischen den Gruppen. Die Patienten mit proliferativer diabetischer Retinopathie hatten eine mittlere Konzentration von 2,51 ± 0,85 FU und die Patienten mit nicht-proliferativer diabetischer Retinopathie eine mittlere PRL-V Konzentration von 2,15 ± 0,56 FU (Tabelle 2, Seite 350). In Abbildung 7 auf Seite 351 werden repräsentative Elektropherogramme eines Patienten der Kontrollgruppe (Abb. 7A) eines Patienten mit Retinopathia diabetica simplex (Abb. 7B) sowie eines Patienten mit proliferativer diabetischer Retinopathie (Abb. 7C) gezeigt. Der Vergleich der 23K PRL Konzentrationen, die mit dem ECLIA gemessen wurden, zeigte keine signifikanten Unterschiede zwischen den Gruppen. Die Patienten der Fallgruppe hatten eine "full-length" PRL Konzentration von 238,6 ± 19,38 mU/l; die Kontrollgruppe eine Konzentration von 222.1 ± 19.02 mU/l (P = >0.05). Die Subgruppenanalyse der Fallgruppe zeigte, dass die Patienten mit proliferativer Retinopathie eine Konzentration von 233,5 \pm 26,20 mU/l und diejenigen

mit nicht proliferativer Retinopathie eine Konzentration von 248,9 ± 27,49 mU/l aufwiesen (P = >0.05; Tabelle 2, Seite 350). Die Western-Blot-Analyse zeigte reproduzierbare 23K PRL Banden in allen Serumproben, jedoch nur schwache, nichtreproduzierbare Banden bei 16 kDa, die nicht für eine densitometrische Untersuchung geeignet waren (Abb. 3, Seite 348).

Erstmals konnte PRL-V im Serum von 48 männlichen Patienten detektiert werden. Mithilfe einer neuen analytischen Methode, bestehend aus einer Kombination von immunologischen und Mikrochip-basierten Techniken wurde eine semi-quantitative Bestimmung von PRL-V vorgenommen. Die Fall-Gruppe wies signifikant niedrigere prolactin-related Vasoinhibin-Serum-Konzentrationen auf als die Kontroll-Gruppe (p=0.041). Zwischen Patienten mit proliferativer und nicht-proliferativer diabetischer Retinopathie gab es keinen Unterschied.

Diskussion

Es ist ein weithin anerkanntes Model zum Verständnis der Angiogenese, dass die Neovaskularisation in Krankheit und Gesundheit durch pro- und antiangiogene Faktoren kontrolliert wird (Folkman J 1995, Folkman J und Klagsburn M 1987). Während der letzten Jahrzehnte wurden kontinuierlich Versuche unternommen diese identifizieren und deren Relevanz in pathophysiologischen Faktoren zu Zusammenhängen zu erkennen. PRL-V wurde als natürlicher Inhibitor der Angiogenese in der Retina und in anderen Geweben charakterisiert. So zeigte sich, dass PRL-V die VEGF-vermittelte retinale Vasopermeabilität inhibiert und die proangiogenen Effekte des VEGF antagonisiert (Clapp et al. 1993). Sowohl die Angiogenese als auch die erhöhte Vasopermeabilität der retinalen Blutgefäße sind pathologische Prozesse, die während der Entstehung der diabetischen Retinopathie auftreten. In diesem Zusammenhang wird eine Bedeutung von PRL-V in der Pathogenese der diabetischen Retinopathie im Menschen diskutiert (Clapp et al. 2006, Clapp et al. 2008). Die vorliegende Studie unterstützt diese Theorie und zeigt, dass Patienten mit diabetischer Retinopathie, im Vergleich zu gesunden Personen, eine geringere Mengen an PRL-V im zirkulierenden Blut aufweisen. Berücksichtigt man die antiangiogenen Eigenschaften von PRL-V und den inhibierenden Effekt auf die retinale Vasopermeabilität, so kann vermutet werden, dass die erniedrigte Konzentration von PRL-V zur Entwicklung und Progression der diabetischen Retinopathie beitragen könnte.

Unsere Resultate bestärken die Annahme, dass die pathologische Neovaskularisation im Auge von Patienten mit Diabetes Mellitus auf einer systemischen Verschiebung des Gleichgewichts zwischen pro- und antiangiogenen Faktoren zugunsten eines erhöhten angiogenen Potentials beruhen kann.

Mehrere Studien zeigen, dass Patienten mit Diabetes Mellitus höhere Mengen von VEGF im Serum und in der Vitreus-Flüssigkeit haben (Maier et al. 2008). Da PRL-V die VEGF-vermittelte Endothelzellproliferation inhibieren kann (Clapp et al. 1993, Caldwell et al. 2003), könnten die erniedrigten PRL-V Konzentrationen zu einer verminderten VEGF-Inhibition führen, welche zusätzlich zur Entstehung einer proangiogenen Umgebung beiträgt.

Verschiedene biologische Mechanismen, die die erniedrigten Konzentrationen an PRL-V im Serum von Patienten mit diabetischer Retinopathie erklären könnten, sind Bei der Untersuchung von Patientinnen mit Präeklampsie entdeckten denkbar. Leanos-Miranda et al. dass Patienten mit akutem Nierenversagen höhere Konzentrationen von PRL im Urin sowie eine höhere Frequenz für die Ausscheidung von PRL-Fragmenten im Urin aufwiesen als Patienten ohne eingeschränkte Nierenfunktion (Leanos-Miranda et al. 2008). Es ist bekannt, dass Patienten mit Diabetes mellitus einen Nierenschaden, die diabetische Nephropathie, die mit einer Proteinurie einhergeht, entwickeln können. Insofern wäre es denkbar, dass PRL-V bei diabetischer Patienten mit Retinopathie vermehrt renal eliminiert bzw. ausgeschieden wird. Ein bekanntes Phänomen in der Pathophysiologie des Diabetes mellitus ist auch die Glykosylierung von Proteinen im Serum. Da möglicherweise auch Prolaktin durch die chronische Hyperglykämie vermehrt glykosyliert wird und die Glykosylierung die proteolytische Spaltung von Prolaktin in seine Fragmente behindern kann (Ben-Jonathan et al. 2008), könnte hier ebenfalls eine Erklärung für die Ergebnisse der Untersuchung zu finden sein.

Außer einer kleinen Studienpopulation bestehen weitere Einschränkungen dieser Studie. Da die Blutproben der Kubitalvene entnommen wurden, können keine Aussagen über die PRL-V-Verteilung im Auge bzw. in der Okulärflüssigkeit vorgenommen werden. Allerdings ist bekannt, dass aus dem Kreislauf stammendes Prolaktin in das Auge eintreten kann (O'Steen und Sundberg 1982) und dort möglicherweise mit lokal vorhandenen Faktoren interagiert.

Die meisten Informationen über PRL-V stammen aus in-vitro-Studien oder in-vivo-Versuchen mit Nagetieren. Die antiangiogenen Effekte von PRL-V wurden allerdings sowohl für tierisches als auch menschliches Prolaktin nachgewiesen. Darüber hinaus ist die Variabilität der posttranslationalen Modifikationen zwischen diesen Spezies nicht substanziell (Ben-Jonathan et al 2008).

Da die Größenauflösung des Bioanalyzer gemäß der Angaben des Herstellers (Agilent Technologies) 10% beträgt und die Genauigkeit mit einem Variationskoeffizienten von 10% behaftet ist, können wir nicht zwischen 16, 16,5 und 17kDa PRL unterscheiden. Unseres Wissens nach existiert derzeit kein Assay, der zu einer solchen Unterscheidung in der Lage wäre.

Messungen des Immunpräzipitates unter nicht-reduzierenden Bedingungen zeigten ein ähnliches Signalmuster wie die Messungen unter reduzierenden Bedingungen. Mehrere Messungen mit reduzierenden Zusätzen und ohne reduzierende Zusätze (ß-Mercaptoethanol) zeigten, dass der Immunkomplex nicht beeinträchtigt wird. In der Messung mit dem Agilent 2100 Bioanalyzer wurden das Migrationsverhalten des Immunkomplexes nicht verändert. Wir denken, dass gleiche Resultate mit und ohne ß-Mercaptoethanol zeigen, dass durch Zugabe der reduzierenden Substanz keine methodisch bedingten Artefakte entstehen.

Die Western-Blot-Analyse zeigte reproduzierbare 23K-PRL-Banden in allen Proben, aber nur schwache, nicht reproduzierbare Banden bei 16 kDa. Die zwei immunoreaktiven Banden korrelieren mit dem 24 kDa-Band und dem 17 kDa-Band des Markers und entsprechen dem Molekulargewicht des "full-length" PRL und des PRL-V. Zusätzlich zur Bestimmung mit dem Antikörper Ab1971, versuchten wir PRL-V mit dem monoklonalen Antikörper 5602 und dem polyklonalen Antikörper A0569 zu

detektieren. Beide Antikörper erfassten reproduzierbar "full-length" PRL, zeigten jedoch keine immunoreaktiven Banden bei 16 kDa. Der Antikörper Ab1971 war der einzige Antikörper der immunoreaktive Banden bei 16 kDa zeigte. Diese Signale waren jedoch sehr schwach und nicht reproduzierbar und daher für eine quantitative Bestimmung (optische Densitometrie) nicht geeignet. Unseres Wissens nach ist eine reproduzierbare qualitative und quantitative Analyse von PRL-V aus menschlichem Serum durch Immunpräzipitation und anschließenden Western Blot bisher nicht beschrieben worden. Wir vermuten, dass der Grund dafür ist die extrem geringe Menge des Antigens ist. Als Konsequenz multipler Versuche und dutzender Variationen der Protokolle, begannen wir die Immunpräzipitation mit der Laserinduzierten Fluoreszenz Technik anstelle des Western Blot zu kombinieren.

PRL-V wurde mit den schwangerschafts-assoziierten Erkrankungen Präeklampsie und Postpartum-Kardiomyopathie in Verbindung gebracht (Leanos-Miranda et al. 2008, Hilfiker-Kleiner et al. 2007). In unserer Untersuchung war die Detektion von PRL-V aus Serumproben mit Immunpräzipitation und Western Blot entweder erfolglos oder nicht reproduzierbar. In der Studie von Hilfiker-Kleiner et al. (Hilfiker-Kleiner et al. 2007) gelang die Detektion von PRL-V aus Serumproben mithilfe des Western Blots nur aus Proben von stillenden Frauen, die aufgrund der Rolle von Prolaktin während der Milchejektion hohe systemische Prolaktin-Spiegel aufwiesen. In unserer Untersuchung gelang die Detektion von PRL-V in einer Serie von Serumproben, die von männlichen Probanden mit im Normalbereich liegenden Prolaktin-Spiegeln stammen. Deshalb glauben wir, dass die Kombination von Immunpräzipitation und laser-induzierter Fluoreszenz eine neue Technik ist, die zukünftige Forschungen in diesem wichtigen Feld beschleunigen könnte.

In dieser Studie zeigen wir, dass Patienten mit Diabetes mellitus und diabetischer Retinopathie, verglichen zu gesunden Personen, verminderte Spiegel von PRL-V im zirkulierenden Blut aufweisen. Aufgrund der antiangiogenen Wirkungen von prolactin-related Vasoinhibin schlussfolgern wir, dass die erniedrigten Konzentrationen von prolactin-related Vasoinhibin im Serum von Patienten mit Diabetes mellitus zur Entstehung und Progression der diabetischen Retinopathie

beitragen könnten. Die Ergebnisse bestätigen die Annahme, dass die pathologische Neovaskularisation im Auge von Patienten mit Diabetes Mellitus auf einer systemischen Verschiebung des Gleichgewichts von pro- und anti-angiogenen Faktoren zugunsten eines erhöhten angiogenen Potentials beruhen kann.

Literaturverzeichnis

Ben-Jonathan N, LaPensee CR, LaPensee EW (2008): What can we learn from rodents about prolactin in humans? Endocr Rev 29, 1–41

Bentzien F, Struman I, Martini JF, Martial J, Weiner R (2001): Expression of the antiangiogenic factor 16K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1(_/_) mice. Cancer Res <u>61</u>, 7356–7362

Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AEB, Al-Shabrawey M, Platt DH, Caldwell RW (2003): Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev <u>19</u> 442–455

Clapp C, Martial JA, Guzman RC, Rentier-Delrue F, Weiner RI (1993): The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology <u>133</u>, 1292–1299

Clapp C, Aranda J, Gonzalez C, Jeziorsky MC, Martinez de la Escalera G (2006): Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol Metab <u>17</u>, 301-307

Clapp C, Thebault S, Arnold E, Garcia C, Rivera JC, Martinez de la Escalera G (2008): Vasoinhibins: novel inhibitors of ocular angiogenesis. Am J Physiol Endocrinol Metab <u>295</u>, E772-E778 Clapp C, Thebault S, Jeziorsky MC, Martinez De La Escalera G (2009): Peptide hormone regulation of angiogenesis.

Physiol Rev <u>89(4)</u>, 1177-1215

Corbacho AM, Martinez de la Escalera G, Clapp C (2002): Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis.

J Endocrinol <u>173</u>, 219-238

Early Treatment Diabetic Retinopathy Study Research Group (1991): Results from the early treatment diabetic retinopathy study. Ophthalmology <u>98</u> 739–840

Folkman J (1995): Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med <u>1</u> 27–31

Folkmann J und Klagsburn M (1987): Angiogenic Factors. Science <u>325</u>, 442-447

Frank RN (2004): Diabetic Retinopathy. N Engl J Med <u>350</u>, 48-58

Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C et al. (2007): A cathepsin D-cleaved 16 kDa form of prolactin mediates post partum cardiomyopathy. Cell <u>128</u> 589–600 Hunter PR, Anderson J, Lunn TA, Horrobin DF, Boyns AR, Cole EN (1974): Diabetic Retinopathy and Prolactin.

Lancet 1974,1 1237

Klein R, Klein BEK, Moss SE, Davis MD, De Mets DL (1984 a): The Wisconsin Epidemiologic Study of Diabetic Retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol <u>102</u>, 520-526

Klein R, Klein BEK, Moss SE, Davis MD, De Mets DL (1984 b): The Wisconsin Epidemiologic Study of Diabetic Retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years.

Arch Ophthalmol 102, 527-532

Klein R, Klein BEK, Moss SE, Davis MD, De Mets DL (1988): Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA 260, 2864–2871

Leanos-Miranda A, Marquez-Acosta J, Cardenas-Mondragon GM, Chinolla-Arellano ZL, Rivera-Leanos R, Bermejo-Huerta S (2008): Urinary prolactin as a reliable marker for preeclampsia, its severity, and the occurrence of adverse pregnancy outcomes. J Clin Endocrinol Metab <u>93</u>, 2492–2499

Macetola Y, Aguilar MB, Guzman-Morales J, Rivera JC, Zermeno C, Lopez-Barrera F, Nava G, Lavalle C, Martinez de la Escalera G, Clapp C (2006): Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J Cell Sci <u>119</u>, 1790–1800 Maier R, Weger M, Haller-Schober EM, El-Shabrawi Y, Wedrich A, Theisl A, Aigner R, Barth A, Haas A (2008): Multiplex bead analysis of vitreous and serum concentrations of inflammatory and proangiogenic factors in diabetic patients. Mol Vis <u>14</u> 637–643

Mittra I (1980): A novel "cleaved prolactin" in the rat pituitary: Part II. In vivo mammary mitogenic activity of its N-terminal 16K moiety. Biochem Biophys Res Commun <u>95(4)</u>, 1760-1767

O'Steen WK und Sundberg DK (1982): Patterns of radioactivity in the eyes of rats after injections of iodinated prolactin.

Ophthalmic Res 14 54–62

Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, Martial JA, Kelly PA, Goffin V. (2004): Cathepsin D processes human prolactin into multiple 16 K-like N-terminal fragments: study of their antiangiogenetic properties and physiological relevance.

Mol Endocrinol <u>18</u> 2522–2542

DIABETIC RETINOPATHY AND PROLACTIN

SIR,—There is evidence that one or more pituitary hormones may perhaps be involved in the pathogenesis of diabetic retinopathy. Growth hormone seems the most likely candidate. Because of the similarity between some of the actions of growth hormone and some of those of prolactin we have investigated plasma-prolactin levels in 5 patients with severe deteriorating hæmorrhagic diabetic retinopathy. In 4 of these, levels were well within the normal range (8, 11, 19, 19 ng. per ml.). 1 patient had a high level (150 ng. per ml.) but was at the time on methyldopa, a drug which is known to stimulate prolactin secretion. In 10 diabetics without severe retinopathy (8 on insulin, 2 on oral therapy, and none on known prolactin-stimulating drugs) the mean plasma level was 36.6 ng. per ml.).

Prolactin has a plasma half-life of 10-15 minutes and is primarily secreted at night. Our observations on single daytime samples must therefore be interpreted with caution. Nevertheless these preliminary data suggest it is unlikely that prolactin plays a part in the pathogenesis of diabetic retinopathy.

a second s	J. ANDERSON
Medical School, University of Newcastle upon Tyne.	T. A. LUNN D. F. HORROBIN.
Tenovus Institute, Welsh National School of Medicine, Cardiff.	A. R. BOYNS E. N. Cole.

Abbildung 1: Hunter et al. veröffentlichen im Lancet eine Untersuchung zur Diabetischen Retinopathie und Serum-Spiegeln des Prolaktins (Hunter et al. 1974; Reprinted from The Lancet with permission from Elsevier).

CLINICAL STUDY

Investigation of prolactin-related vasoinhibin in sera from patients with diabetic retinopathy

Jakob Triebel, Michael Huefner¹ and Giuliano Ramadori

Department of Gastroenterology and Endocrinology, Center of Internal Medicine, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany and ¹Endokrinologikum Göttingen, Von-Siebold-Straße 3, Göttingen, Germany

(Correspondence should be addressed to J Triebel; Email: jakob.triebel@gmx.de)

Abstract

Objective: In vitro experiments and *in vivo* studies on rodents demonstrate that N-terminal 14, 15, 16, 17, and 18 kDa fragments prolactin-related vasoinhibin (PRL-V) of human PRL are natural inhibitors of neovascularization in the retina and elsewhere. These N-terminal PRL fragments belong to a family of peptides named vasoinhibins, which act as endogenous regulators of angiogenesis and vascular function. These observations led to the hypothesis that PRL-V could play a role in the pathophysiology of diabetic retinopathy in humans. The purpose of this study was to investigate whether patients with diabetes mellitus and diabetic retinopathy have aberrant concentrations of PRL-V in the circulating blood.

Research design: We performed a case–control study and developed a new technique to semiquantitatively determine PRL-V in serum samples from 48 male subjects. The case group consisted of 21 patients with diabetes mellitus and proliferative or non-proliferative diabetic retinopathy. The control group consisted of 27 healthy subjects with no history of diabetes mellitus.

Methods: For the detection of PRL-V, we developed a new analytical method, consisting of immunologic and laser-induced fluorescence techniques.

Results: The case group had significantly lower PRL-V serum concentrations than the control group (P=0.041). There was no significant difference between patients with proliferative and those with non-proliferative diabetic retinopathy.

Conclusion: We conclude that given the antiangiogenic and antivasopermeability actions of PRL-V, the decreased serum levels of PRL-V in patients with diabetes mellitus could contribute to the development and progression of diabetic retinopathy.

European Journal of Endocrinology 161 345-353

Introduction

Diabetic retinopathy is a common microvascular complication in patients with diabetes mellitus. Whereas early, non-proliferative stages of diabetic retinopathy are characterized by microaneurysms, hemorrhages, intraretinal microvascular abnormalities, and other pathological processes, the major characteristic of more advanced proliferative stages is neovascularization in the retina. Despite the identification of associated factors, such as chronic hyperglycemia (1), the underlying pathophysiological mechanisms leading to the development and progression of diabetic retinopathy are not fully understood (2).

Research in this field has revealed that besides its production and systemic release by the pituitary gland, prolactin (PRL) is also locally produced in multiple human tissues such as endothelial cells (3), where it acts as a cytokine (4). Studies revealed that full-length PRL is proteolytically cleaved to various N- and C-terminal fragments (5, 6). Further investigations showed that the N-terminal, in contrast to the C-terminal fragments (7), referred to as PRL-related vasoinhibin (PRL-V), have antiangiogenic properties and belong to a family of antiangiogenic peptides that are also derived from GH and placental lactogen (8, 9). Based upon their functional and structural similarities, these peptides from different sources are classified as vasoinhibins and are characterized as endogenous regulators of angiogenesis and vascular function (10).

In vitro experiments and *in vivo* studies in rodents revealed that PRL-Vs inhibit neovascularization by several mechanisms (11), such as apoptosis-mediated vascular regression, thus being a potent inhibitor of angiogenesis in the retina (12) and elsewhere. In addition, PRL-V can inhibit vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation (8) and VEGF-induced vasopermeability in the retinal vessels of diabetic rats (13), both believed to be important factors in the pathogenesis of diabetic retinopathy. These observations led to the hypothesis that PRL-V could be involved in the development and progression of diabetic retinopathy in humans (10, 11, 14).

We performed a case–control study to investigate whether the serum levels of PRL-V correlate with the presence of diabetic retinopathy. Additionally, we report on the development of a highly sensitive and semi-quantitative method to detect PRL-V in human serum.

Subjects and methods

General technical aspects

For the detection of PRL-V and the systematic screening of the samples, we used a combination of immunologic and laser-induced fluorescence techniques. During this procedure, protein samples obtained by immunoprecipitation are loaded on a commercial, microfluidic based lab-on-a-chip device. Electrokinetic forces move the samples through a network of microchannels containing a gel/dye mixture, which function as a protein separation matrix with a resolution comparable with a 4-20% gradient gel. The dye intercalates directly with the protein SDS-micelles and generates fluorescence, which is detected by a red laser. The amount of the protein is determined by the detection of the intensity of the fluorescence and the corresponding molecular weights are determined by an automated comparison with an internal standard.

Immunoprecipitation

One hundred and fifty microliter serum and 400 µl PBS containing protease inhibitors (Cat. No.: 04693124001, Roche) was incubated with 50 µl protein A-agarose (Cat. No.: 11134515001, Roche) for 1 h at 4 °C under rotation. The sample was centrifuged (centrifuge 5415R with rotor F45-24-11, Eppendorf, Hamburg, Germany) for 30 s at 3800 g and 15 µl mouse MAB 5602 against hPRL (Cat. No.: CAN-hPRL-4100-12, Diagnostics Biochem Canada, London, Canada) was added to the supernatant. After incubation for 6 h at 4 °C under rotation, the sample was incubated with 50 µl protein G-agarose (Cat. No.: 11719416001, Roche) for 16 h under the same conditions. The sample was centrifuged for 5 min at 3800 g and the supernatant was discharged. The pellet was washed with PBS and then resuspended in 25 µl PBS. Six microliter of the suspension was analyzed with the Bioanalyzer 2100 (Agilent Technologies, Waldbronn, Germany).

www.eje-online.org

Bioanalyzer 2100

Adhering to the manufacturer's instructions for the protein 80 kit (Cat. No.: 5067-1515, Agilent Technologies), but with slight modifications, 6 μ l of the sample was combined with 2 μ l denaturation solution from the kit containing 3.5 v/v% β -mercaptoethanol. The vial was placed on a heating block for 5 min at 95 °C. Six microliter of the sample was loaded on the chip (Cat. No. 5067-1515, Agilent Technologies) and underwent analysis by the device.

Figure 1 (A) Positive control. Five nanogram recombinant human PRL (rhPRL). (B) Five hundred nanogram rhPRL was incubated with 10 ng cathepsin D from human liver in 100 μ l citrate-buffer at pH 3 and 37 °C for 1 h. Analysis of 4 μ l diluted in 8 μ l sample buffer shows proteolytic cleavage of full-length PRL into PRL fragments. (C) Analysis of a serum-sample, immunoprecipitated with the anti-hPRL mouse MAB 5602 shows prolactin-related vasoinhibin – and 23 kDa-PRL signals.

Positive controls

For positive controls, we used recombinant human PRL (rhPRL) from Escherichia Coli (Cat. No.: 40-267, NatuTec, Frankfurt, Germany). Five nanogram rhPRL was loaded on the chip and was analyzed by the device (Fig. 1A). Proteolysis of full-length PRL to the N-terminal PRL-fragments was conducted according the method of Piwnica et al. (6). Ten nanogram cathepsin D from human liver (Cat. No.: C869-25UG, Sigma) was incubated with 500 ng rhPRL in 100 μ l citrate-buffer at pH 3 and 37 °C for 1 h. The reaction was terminated by adding 100 µl SDS-PAGE sample buffer. Four microliter diluted in 8 µl sample buffer and denaturation solution underwent analysis with the Bioanalyzer 2100 (Fig. 1B). The immunoprecipitation of a serum sample was also conducted with another mouse MAB, specific to a different epitope on hPRL (SC-80303, Santa Cruz Biotechnologies, Santa Cruz. CA. USA).

Negative control

For the negative control, we conducted the immunoprecipitation with a mouse MAB (Ab 5601) against hPRL with an epitope at the C-terminal end of PRL (Cat. No.: CAN-hPRL-4100-11, Diagnostics Biochem Canada). This antibody is specific to a C-terminal epitope (amino acids 150–199 of full length hPRL), which is not present on the N-terminal 16K PRL fragment. Consequently, the antibody binds to fulllength but not to N-terminal PRL fragments.

Non-reducing conditions

Immunoprecipitation and subsequent analysis of the sample with the Bioanalyzer 2100 under non-reducing conditions were conducted without the addition of β -mercaptoethanol or any other reducing agent (Fig. 2C).

Electro-chemiluminescence immunoassay

In addition to the determination of PRL in our assay, the concentration of full-length PRL was measured with a commercial electro-chemiluminescence immunoassay (ECLIA; Roche Diagnostics, Device: Cobas Modular Analytics E170, kit: PRL II, Cat. No.: 03203093 190). The sensitivity of the assay was 0.047 ng/ml.

Western blot analysis

One hundred microliter of serum was incubated with 450 μ l PBS containing protease inhibitors (Roche) and 50 μ l protein A-agarose (Roche) for 1 h at 4 °C under rotation. The sample was centrifuged for 20 s at 6000 r.p.m. and 10 μ l rabbit polyclonal antibody against human PRL (A0569, DakoCytomation,

Figure 2 (A) Electropherogram of a serum-sample, immunoprecipitated with a different mouse MAB specific to hPRL, SC-80303, confirms prolactin-related vasoinhibin and 23 kDa-PRL signals. (B) Negative control. Analysis of a serum-sample, immunoprecipitated with a mouse MAB, specific to an epitope at the C-terminal end of PRL, Ab 5601, shows a 23 kDa-PRL, but no prolactin-related vasoinhibin signal. (C) Analysis of a serum-sample immunoprecipitated with the antibody 5602 under non-reducing conditions, a similar pattern.

Carpinteria, CA, USA) was added. After 3 h at 4 °C under rotation, 50 µl protein A-agarose was added and the sample was incubated for 12 h. Following centrifugation (20 s at 3800 g), the supernatant was discharged and the pellet was washed thrice in PBS. The pellet was then resuspended in 30 µl SDS-PAGE loading buffer containing β-mercaptoethanol, boiled for

5 min and then left on ice for 5 min to cool down. After centrifugation (20 s at 3800 g), the supernatant was electrophoresed on a 17% SDS-PAGE and an electroblot was performed on a PVDF membrane. The amersham low-range rainbow molecular weight marker (3500-40 000 kDa, product code: RPN755E) has been used to determine the molecular weight. The transfer was conducted semi-dry at 0.8 mA/cm². The membrane was blocked for 12 h with tris buffered saline (TBS) containing 8% dry milk. Next, the membrane was incubated with a 1:500 dilution of another rabbit polyclonal antibody against hPRL (Cat. No.: Ab1971, Abcam, Cambridge, MA, USA) for 1 h at 37 °C and afterwards with a 1:1000 dilution of a peroxidaseconjugated swine anti-rabbit antibody (Cat. No.: P0399, DakoCytomation). ECL western blotting reagents (GE Healthcare, Freiburg, Germany) were used to visualize the immunocomplexes (Fig. 3).

Subjects

The case group consisted of 21 patients with diabetes mellitus with either proliferative (n=14) or nonproliferative (n=7) diabetic retinopathy, assigned to a respective subgroup. For the control group, 27 healthy control subjects with no history of diabetes mellitus were enrolled. Patients of the case group were recruited at the Eye Clinic of the University of Goettingen. Ophthalmologic diagnosis was acquired through indirect ophthalmoscopy according to the criteria of the Early Treatment Diabetic Retinopathy Study (15). All control subjects were ambulant patients, recruited in a practice for internal medicine in Bochum, Germany. Institutional ethics committee approval and written informed consent from all participants were obtained.

Exclusion criteria for all patients were medications and conditions known to increase or decrease PRL levels: a medical history of prolactinoma, hypothyroidism, chronic renal failure, liver cirrhosis, lesions of the chest wall during the last 3 months before recruitment,

Figure 3 Western blot analysis. Immunoprecipitation of serum samples followed by western blot analysis under reducing conditions revealed clear 23 kDa-PRL (23K PRL) but only weak and non-reproducible prolactin-related vasoinhibin (PRL-V) bands. Samples 1–3: serum from patients with proliferative diabetic retinopathy, samples 4–6: samples from healthy controls. MWM, molecular weight marker.

and treatment with cimetidine, cyproheptadine, monoamine oxidase (MAO)-inhibitors, meprobamate, methyldopa, metoclopramide, antipsychotic drugs, opiate, estrogen, prostaglandin, reserpine, sulpiride, tricyclic antidepressants, or verapamil. Blood samples were drawn from the cubital vein between 0600 and 1200 h and underwent screening for full-length PRL and 16K PRL.

Statistical analysis

Descriptive statistics were used to report the demographic and clinical characteristics of the study population. Age and years since diagnosis of the patients is presented as means in years \pm s.p. PRL concentrations are presented as means and their s.E.M. The signals of 16K PRL were read by signal strength, defined as peak height in fluorescence units (FU) shown in the electropherograms of the Bioanalyzer 2100 device. The Wilcoxon–Mann–Whitney test was used to determine significant differences. Differences in means with a *P* value <0.05 were considered statistically significant. Statistical analysis performed by Prism 4 GraphPad Software (GraphPad Software, La Jolla, CA, USA).

Results

Immunocomplex constituent analysis

To identify the signals of the immunoprecipitate measurement and to evaluate the characteristics of each component in the Bioanalyzer 2100, we conducted an immunocomplex constituent analysis. Protein G-agarose, the affinity chromatography matrix used for the immunoprecipitation, was found to cause no peaks within the detection area. Analysis of the mouse MAB (anti-hPRL antibody 5602) under reducing conditions showed migration of the IgG light chains corresponding to a molecular weight of $\sim 26-28$ kDa and the heavy chain at ~ 65 kDa (Fig. 4), thereby not interfering with PRL signals. rhPRL was determined to migrate at ~ 22 kDa (Fig. 1A). Cathepsin D-cleaved PRL-fragments were determined to migrate at 11, 15, 16.5, and 17 kDa (Fig. 1B).

Signal identification of the immunocomplex measurement

Epitope mapping of the MAB 5602 by Piwnica *et al.* (5) demonstrates that this antibody binds to the N-terminal residues 1–9 of human PRL. It does not detect Δ 1-9-hPRL (lacking the nine N-terminal residues). The immunoprecipitation is specific to N-terminal and full-length PRL but not C-terminal fragments. Thus, the 16–17 kDa component of the immunocomplex, consistent with positive and negative

Figure 4 Electropherogram of the immunocomplex constituent analysis. The mouse MAB 5602 and protein-G agarose were analyzed under reducing conditions. The light chains migrate at a molecular weight of $\sim 26-28$ kDa and the heavy chain at ~ 65 kDa. Protein-G agarose causes no peaks.

controls, was identified to represent N-terminal PRL-V and not a C-terminal PRL-fragment (Fig. 1C). In accordance with rhPRL as a positive control, we identified the signal at 22 kDa to represent full-length PRL (Fig. 1C). A western blot analysis of the immunoprecipitates, using a rabbit polyclonal antibody against human PRL (A0569, DakoCytomation), also confirmed the identity of the 22 kDa-peaks but did not show any immunoreactive bands at 16-17 kDa (data not shown). Immunoprecipitation with another mouse MAB (SC-80303), binding to a different epitope on hPRL, and successive measurement of the immunoprecipitate according to the method described above, confirmed PRL-V and full-length PRL signals (Fig. 2A). This antibody binds to an epitope corresponding to amino acids 29-151. For the negative control, the immunoprecipitation was conducted with a mouse MAB against hPRL with an epitope at the C-terminal end of PRL (Ab 5601). Analysis of a sample previously shown to contain PRL-V by immunoprecipitation with two monoclonal antibodies with N-terminal epitopes (CAN-hPRL-4100-12, DBC; SC-80303, SCB) and subsequent analysis with the Bioanalyzer 2100 revealed a 23K PRL but no PRL-V signal (Fig. 2B).

Analysis of PRL-V under non-reducing conditions

Measurement of the immunoprecipitate under nonreducing conditions revealed, compared with analysis under reducing conditions, a similar pattern (Fig. 2C).

Generation of PRL fragments

Incubation of rhPRL with cathepsin D resulted in a proteolytic cleavage of full-length PRL into an 11, 15, 16.5 and 17 kDa PRL fragment (Fig. 1C).

Figure 5 Fluorescein angiography of the retina of a patient from the case group diagnosed with proliferative retinopathy. Neovascularization and leaking vessels are seen around the papilla nervi optici.

Demographic and clinical characteristics of the study population

The patients in the case group had a mean age of 64.3 ± 11.8 years. The mean duration since the diagnosis of diabetes mellitus (Type I or II) was 19.6 ± 10.0 years. Two subjects (10%) in the case group had Type I diabetes mellitus and 19 (90%) Type II diabetes mellitus. A total of 17 individuals (80%) were treated with insulin and 4 (20%) received oral hypoglycemic medication. A total of 14 patients (66%) had proliferative diabetic retinopathy (Fig. 5) and 7 (33%) non-proliferative diabetic retinopathy. The mean

Table 1 Demographic and clinical characteristics of the study population. Data are presented as number of individuals or mean years \pm s.b.

Characteristic	Case group (n=21)	Control group (n=27)
Male sex (n)	21	27
Age (year)	64.3 <u>+</u> 11.6	54.0 <u>+</u> 18.3
Race (n)		
White	20	26
Black	0	1
Asian	1	0
Other	0	0
Diabetes type (n)		
Type I	2	
Type II	19	
Years since diagnosis of DM	19.6±10.0	
Diabetes therapy (n)		
Oral medication	4	
Insulin	17	
Ophthalmologic diagnosis (n)		
RDP	14	
RDS	7	

DM, diabetes mellitus; RDP, retinopathia diabetica proliferans; RDS, retinopathia diabetica simplex.

Figure 6 Serum prolactin-related vasoinhibin concentrations. The bars represent prolactin-related vasoinhibin (PRL-V) signals in fluorescence units (FU), mean \pm s.E.M., disclosed by immuno-precipitation of serum samples and subsequent analysis with the Bioanalyzer 2100. The case group had significantly lower prolactin-related vasoinhibin concentrations than the control group (P=0.041). The case group had a mean prolactin-related vasoinhibin concentration of 2.39 \pm 0.59 FU, whereas the control group had a concentration of 3.64 \pm 0.51 FU.

age of the patients in the control group was 54.0 ± 18.3 years. The demographic and clinical characteristics of the study population are summarized in Table 1.

Serum PRL-V and 23K PRL concentrations

Statistical analysis revealed that the case group had significantly lower PRL-V concentrations than the control group (P=0.041). The case group had a mean PRL-V concentration of 2.39 ± 0.59 FU, whereas the control group had a concentration of 3.64 ± 0.51 FU (Fig. 6, Table 2). Subgroup analysis showed no significant difference between either of the subgroups. Patients with proliferative diabetic retinopathy had a mean PRL-V concentration of 2.51 ± 0.85 FU and patients with non-proliferative diabetic retinopathy a mean PRL-V concentration of 2.15 ± 0.85 FU and patients with non-proliferative diabetic retinopathy a mean PRL-V concentration of 2.15 ± 0.56 FU (Table 2). Figure 7 demonstrates representative electropherograms of a patient of the control group (Fig. 7A), a patient with retinopathia diabetica simplex (Fig. 7B)

and a patient with retinopathia diabetica proliferans (Fig. 7C). Comparison of 23K PRL serum concentrations, measured by ECLIA, revealed no significant difference between either of the groups. The patients of the case group had a full-length PRL concentration of 238.6 ± 19.38 mU/l; analysis of the control group revealed a concentration of $222.1 \pm 19.02 \text{ mU/l}$ (P > 0.05). Subgroup analysis of the case group showed that patients with proliferative diabetic retinopathy had a concentration of 233.5 ± 26.20 mU/l and those with non-proliferative diabetic retinopathy had a concentration of $248.9 \pm 27.49 \text{ mU/l}$ (P>0.05; Table 2). Western blot analysis showed reproducible 23K PRL bands in all serum samples, but only weak, nonreproducible bands at 16 kDa, which were not sufficient for densitometric analysis (Fig. 3).

Discussion

It is a widely accepted model in the understanding of angiogenesis that neovascularization, in health and disease, is controlled by pro- and anti-angiogenic factors (16, 17). There has been an ongoing effort during the last decades to identify these factors and investigate their relevance in pathophysiological conditions (18). PRL-V has been identified as a natural inhibitor of angiogenesis in the retina (12), by inhibiting VEGF-mediated retinal vasopermeability (13) and antagonizing proangiogenic effects of VEGF (8). Angiogenesis and increased vasopermeability of retinal vessels are pathologic processes occurring in diabetic retinopathy. In this context, a role of PRL-V in the pathogenesis of diabetic retinopathy in humans is being discussed (10, 14). The present study supports the theory and provides evidence that patients with diabetic retinopathy have, compared with healthy subjects, lower levels of PRL-V in circulating blood. In view of the fact that PRL-V has antiangiogenic properties and a preventive effect on retinal vasopermeability, the lower concentration of PRL-V could contribute to the development and progression of diabetic retinopathy. Our results corroborate the

Table 2 Serum prolactin concentrations. The values are presented as means \pm s.e.m. Serum prolactin (PRL) concentrations were determined with a commercial electro-chemiluminescence immunoassay. Serum PRL-related vasoinhibin (PRL-V) concentrations were determined by immunoprecipitation of serum samples and subsequent measurement with the Bioanalyzer 2100. Statistical analysis with the Wilcoxon–Mann–Whitney test revealed that the case group had significantly lower prolactin-related vasoinhibin concentrations than the control group (P=0.041).

Variable	Case group (<i>n</i> =21)		Control group (n=27)	P value
Serum prolactin levels				
Serum PRL-V (FU)	2.39 ± 0.59		3.64 ± 0.51	0.041
	Subgroup (RDP)	Subgroup (RDS)		
	(n=14)	(n=7)		
	2.51 ± 0.85	2.15 ± 0.56		>0.05
Serum PRL (mU/I)		238.6±19.38	222.1 ± 19.02	>0.05
	233.5 ± 26.20	248.9±27.49	_	>0.05

RDP, retinopathia diabetica proliferans; RDS, retinopathia diabetica simplex.

Figure 7 Representative electropherograms of a patient of the control group (A) a patient with retinopathia diabetica simplex (B) and a patient with retinopathia diabetica proliferans (C).

assumption that pathological neovascularization in the eyes of patients with diabetes mellitus could be based on a systemic shift in the equilibrium of pro- and antiangiogenic factors in favor of enhanced angiogenic potential.

Several studies show that patients with diabetes mellitus have higher levels of VEGF in serum and vitreous fluid (19). Since PRL-V can inhibit VEGF-stimulated endothelial cell proliferation (8, 20), the lower levels of PRL-V could result in decreased VEGF-inhibition, thereby contributing to a pro-angiogenic environment.

Investigating patients with preeclampsia, Leaños-Miranda *et al.* reported that patients with acute renal failure exhibited higher urinary PRL concentrations and higher urinary frequencies of antiangiogenic PRLfragments than patients without diminished renal function (21). Since impaired renal function is common in patients with diabetes mellitus, increased renal elimination could explain lower systemic concentrations of PRL-V. According to Ben-Jonathan *et al.* glycosylation may alter proteolytic cleavage of PRL (22). This may result in the decreased proteolytic production of PRL-V, and thus enhanced glycosylation due to hyperglycemia could explain decreased levels of PRL-V.

Besides a small study population, there are other limitations to our investigation. Clearly, as the blood samples were collected from the cubital veins, we cannot state any information of PRL-V distribution in the eye, e.g. ocular fluid. Nonetheless, systemic PRL can enter the eye (23) and potentially act in concert with, or in addition to, local factors. Although PRL is expressed by retinal tissues and PRL-V has been detected in the rat retina (24), the origin of ocular PRL could also be systemic. Furthermore, most of the information about PRL-V comes from either in vitro studies or in vivo studies on rodents. However, the antiangiogenic effects of PRL-V have been demonstrated for both rat and human PRL. Moreover, the variability in posttranslational modifications between PRL from these species is not substantial (22).

Since, according to the manufacturer (Agilent Technologies) of the device Agilent 2100 Bioanalyzer, the sizing resolution is 10% and the sizing accuracy has a 10% coefficient of variation, we cannot discriminate between 16, 16.5, and 17 kDa PRL. To our knowledge, there is currently no method or assay available, which is capable of isolating, semi-quantitatively measuring, and discriminating between 16, 16.5, and 17 kDa PRL.

Measurement of the immunoprecipitate under nonreducing conditions revealed, compared with analysis under reducing conditions, a similar pattern (Fig. 2C). Several measurements with and without the reducing agent (β -mercaptoethanol) demonstrate that it does not affect the immunocomplexes. When using the Agilent 2100 Bioanalyzer, the addition of the reducing agent does not change or improve the migration properties. We think that similar results under reducing and nonreducing condition show that the addition of a reducing agent does not introduce laboratory-made artifacts.

The western blot analysis showed reproducible 23K PRL bands in all samples, but only weak, nonreproducible bands at 16 kDa, which were not sufficient for densitometric analysis (Fig. 3). The two immunoreactive bands correlate close to the 24 kDa band and the 17 kDa band of the marker, consistent with fulllength PRL and PRL-V. In addition to Ab1971, we used the MAB mAb 5602 and the polyclonal antibody A0569 in multiple western blots, attempting to detect PRL-V. Both antibodies repeatedly and reproducibly detected full-length PRL but failed to show immunoreactive bands at 16 kDa. Ab1971 was the only antibody showing immunoreactive bands at 16 kDa, but even this signal was not reproducible and therefore not suitable for a quantitative analysis (optical densitometry). A reproducible qualitative and quantitative analysis of PRL-V from human serum by immunoprecipitation and subsequent western blot has not been described to our knowledge. We suspect the major reason for this is the extremely low amount of antigen. We recognized this by unsuccessfully attempting multiple western blots with dozens of variations in order to detect PRL-V, and subsequently started to combine immunoprecipitation with the laser-induced fluorescence technique instead of western blot.

PRL-V has been linked to the pregnancy-associated diseases post partum cardiomyopathy (25) and preeclampsia (21). In our investigation, the detection of PRL-V in serum samples with immunoprecipitation procedures followed by western blot analysis was either unsuccessful or not reproducible. In the study by Hilfiker-Kleiner *et al.* (25), the detection of PRL-V in serum samples by western blot analysis was only successful in samples from lactating women who have, due to its function in milk production and lactation, high systemic PRL levels. In our study, we detected PRL-V in a series of serum samples from male subjects with full-length PRL levels within the normal range. Therefore, we believe that the use of immunoprecipitation in combination with laser induced fluorescence is a new technique, which could facilitate further research in this important field.

This study aimed to show whether PRL-V serum levels correlate with the presence of diabetic retinopathy. In this context, we chose a control group of healthy subjects. A control group of patients with diabetes mellitus but no microvascular complications was considered inferior since a monocausal role of PRL-V in the development and progression of diabetic retinopathy is unlikely. However, since we found decreased levels of PRL-V in patients with diabetic retinopathy, the investigation of PRL-V levels in diabetic patients without microvascular complications is an important question, which requires further research.

In summary, we show that patients with diabetes mellitus and diabetic retinopathy have, compared with healthy subjects, decreased serum levels of PRL-V in systemic blood. In view of the antiangiogenic and antivasopermeability actions of PRL-V, we conclude that the decreased vasoinhibin serum levels could contribute to the development and progression of diabetic retinopathy. Future investigations, disclosing PRL-V levels in patients with diabetes mellitus and no microvascular complications, will help to further evaluate the role of PRL-V in diabetic retinopathy.

Declaration of interest

The authors state that they have no conflict of interest to declare.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Acknowledgements

This study was conducted in cooperation with the Eye Clinic of the University of Göttingen. We gratefully acknowledge our colleague Dr M Tondrow for his expert opinion and support with patient recruitment. We thank PhD J Dudas from our department for excellent technical assistance and D Suan MD for the critical review of the manuscript.

References

- 1 Klein R, Klein BEK, Moss SE, Davis MD & DeMets DL. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. *Journal of the American Medical Association* 1988 **260** 2864–2871.
- 2 Frank RN. Diabetic retinopathy. New England Journal of Medicine 2004 **350** 48–58.
- 3 Clapp C, López-Gómez FJ, Nava G, Corbacho A, Torner L, Macetola Y, Duenas Z, Ochoa A, Noris G, Acosta E, Garay E & Martínez de la Escalera G. Expression of prolactin mRNA and of prolactin-like proteins in endothelial cells: evidence for autocrine effects. *Journal of Endocrinology* 1998 **158** 137–144.
- 4 Ben-Jonathan N, Mershon JL, Allen DL & Steinmetz RW. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. *Endocrine Reviews* 1996 **17** 639–669.
- 5 Sinha YN. Structural variants of prolactin: occurrence and physiological significance. *Endocrine Reviews* 1995 16 354–369.
- 6 Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, Martial JA, Kelly PA & Goffin V. Cathepsin D processes human prolactin into multiple 16 K-like N-terminal fragments: study of their antiangiogenetic properties and physiological relevance. *Molecular Endocrinolgy* 2004 **18** 2522–2542.
- 7 Khurana S, Liby K, Buckley AR & Ben-Jonathan N. Proteolysis of human prolactin: resistance to cathepsin D and formation of a nonangiostatic, C-terminal 16K fragment by thrombin. *Endocrinology* 1999 **140** 4127–4132.
- 8 Clapp C, Martial JA, Guzman RC, Rentier-Delrue F & Weiner RI. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. *Endocrinology* 1993 **133** 1292–1299.
- 9 Struman I, Bentzien F, Lee H, Mainfroid V, D'Angelo G, Goffin V, Weiner RI & Martial JA. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. *PNAS* 1999 **96** 1246–1251.
- 10 Clapp C, Aranda J, Gonzalez C, Jeziorski MC & Martínez de la Escalera G. Vasoinhibins: endogenous regulators of angiogenesis and vascular function. *Trends in Endocrinology and Metabolism* 2006 **17** 301–307.
- 11 Corbacho AM, Martínez de la Escalera G & Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. *Journal of Endocrinology* 2002 **173** 219–238.
- 12 Aranda J, Rivera JC, Jeziorsky MC, Riesgo-Escovar J, Nava G, López-Barrera F, Quiróz-Mercado H, Berger P, Martínez de la Escalera G & Clapp C. Prolactins are natural inhibitors of angiogenesis in the retina. *Investigative Ophthalmology and Visual Science* 2005 **46** 2947–2953.
- 13 Garcia C, Aranda J, Arnold E, Thébault S, Macetola Y, López-Casillas F, Mendoza V, Quiróz-Mercado H, Hernández-Montiel LH, Lin SH, Martínez de la Escalera G & Clapp C. Vasoinhibins prevent

retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation. *Journal of Clinical Investigation* 2008 **118** 2291–2300.

- 14 Clapp C, Thebault S, Arnold E, Garcia C, Rivera JC & Martínez de la Escalera G. Vasoinhibins: novel inhibitors of ocular angiogenesis. *American Journal of Physiology. Endocrinology and Metabolism* 2008 295 E772–E778.
- 15 Early Treatment Diabetic Retinopathy Study Research Group. Results from the early treatment diabetic retinopathy study. *Ophthalmology* 1991 **98** 739–840.
- 16 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. *Nature Medicine* 1995 **1** 27–31.
- 17 Folkman J & Klagsburn M. Angiogenic factors. *Science* 1987 **325** 442–447.
- 18 Nyberg P, Xie L & Kalluri R. Endogenous inhibitors of angiogenesis. *Cancer Research* 2005 **65** 3967–3979.
- 19 Maier R, Weger M, Haller-Schober EM, El-Shabrawi Y, Wedrich A, Theisl A, Aigner R, Barth A & Haas A. Multiplex bead analysis of vitreous and serum concentrations of inflammatory and proangiogenic factors in diabetic patients. *Molecular Vision* 2008 14 637–643.
- 20 Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AEB, Al-Shabrawey M, Platt DH & Caldwell RW. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. *Diabetes/Metabolism Research and Reviews* 2003 **19** 442–455.
- 21 Leanos-Miranda A, Marquez-Acosta J, Cardenas-Mondragon GM, Chinolla-Arellano ZL, Rivera-Leanos R & Bermejo-Huerta S.

Urinary prolactin as a reliable marker for preeclampsia, its severity, and the occurrence of adverse pregnancy outcomes. *Journal of Clinical Endocrinology and Metabolism* 2008 **93** 2492–2499.

- 22 Ben-Jonathan N, LaPensee CR & LaPensee EW. What can we learn from rodents about prolactin in humans? *Endocrine Reviews* 2008 **29** 1–41.
- 23 O'Steen WK & Sundberg DK. Patterns of radioactivity in the eyes of rats after injections of iodinated prolactin. *Ophthalmic Research* 1982 14 54–62.
- 24 Ochoa A, Montes de Oca P, Rivera JC, Duenas Z, Nava G, Martínez de la Escalera G & Clapp C. Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells. *Investigative Ophthalmology and Visual Science* 2001 **42** 1639–1645.
- 25 Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V, Schneider MD, Balligand JL, Desjardins F, Ansari A, Struman I, Nguyen NQN, Zschemisch NH, Klein G, Heusch G, Schulz R, Hilfiker A & Drexler H. A cathepsin D-cleaved 16 kDa form of prolactin mediates *post partum* cardiomyopathy. *Cell* 2007 **128** 589–600.

Received 10 May 2009 Accepted 27 May 2009