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Es gibt Menschen, welche Tatsachen leugnen und das 

Denken nennen. [...] Dann gibt es Menschen, welche die 

Schuld unserer Rationalität geben und verlangen, daß wir 

weniger rational sein sollen. [...] [Erstere] übersehen [...], 

daß die Tatsachenmenschen, [...] der Ingenieur und der 

Handelsmann, gar nicht so sehr rational im Sinn einer 

Präponderanz des Intellektuellen sind, wie sie meinen. [...] 

An sich ist die Tatsache ja überhaupt nicht rational, sie ist 

nur ein Regulativ der Rationalität und gewöhnlich nur als 

Serie für diese wichtig. Und der Ingenieur unterscheidet 

sich oft gerade dadurch vom Theoretiker, daß er das 

Denken an irgend einem Punkt abbrechen läßt und seine 

Konstruktion mit einer Annahme, einem Näherungswert, 

einem Abkürzungsverfahren, das ein Sprung durch das 

Unbeweisbare ist, macht, und dies sich durch den Erfolg 

bestätigen läßt. 

Der deutsche Mensch als Symptom (Robert Musil) 
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1 Introduction 

The study in hand deals with the applied modeling of an industry, namely with the const-

ruction of a behavioral model of the German compound feed industry and its empirical appli-

cation. Commonly, such a project includes a presentation of the favored model and its motiva-

tion and benefits, a justification of theoretical premises and empirical assumptions presuppo-

sed by the model, the choice of a functional specification for the model, an introduction of the 

estimation method, a description of the utilized statistical data, a presentation of the estimati-

on results, a comment on their statistical significance, and, eventually, the derivation of beha-

vioral parameters and their interpretation, sometimes connected with policy recommendati-

ons. Motivation and benefits of an applied model of the compound feed industry are obvious: 

on the one hand, it allows to forecast the economic behavior of compound feed maufacturers 

which is useful for policy evaluation and, on the other hand, it constitutes, as any applied mo-

del, a possibility to test theories and methods. However, this study is discontinued at an early 

stage because of the failure of the project to establish a simultaneously consistent and esti-

mable model: it is not possible to construct a dual behavioral model of the compound feed 

industry which is consistent with economic theory and evident structural assumptions on the 

one hand and estimable with the available statistical data on the other hand. Nevertheless, 

after an extensive discussion of this result in the first part of the study, a second part on the 

theory of flexible functional forms is added. Although considerations on the theory of flexible 

functional forms are superfluous with regard to the original goal of the study because of the 

unsuccessful modeling attempt, results on flexible functional forms which were found before 

it was clear that the modeling would fail will be presented, since these are of significance for 

any applied economic model: it is shown that the local flexibility concept is obsolete in a glo-

bally flexible estimation, and that therefore no estimation result must be rejected because it 

lacks local flexiblity. As a consequence, other important goals like maximal statistical signifi-

cance and a possibly large region where all theoretical consistency properties apply can be 

strived for more successfully.  

1.1 Historical Overview 

At first, a short historical overview will be given which proceeds from the general to the 

particular, i.e. from developments in economic theory over methodical progress in economics 

to models of the compound feed sector.  
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1.1.1 Duality 

One of the most significant developments in neoclassical economic theory is the duality 

concept. From the outset it has been accompanied by the endeavor to create functional forms 

that are both capable of depicting all economically relevant effects and satisfying the require-

ments of economic theory. 

The duality concept, based on the works of R. Roy and Harold Hotteling, was first formu-

lated as a closed formal theory by Ronald W. Shephard in 1953.1 Duality theory has been es-

tablished as a framework both for theoretical considerations and applied model building since 

then, with contributions from numerous authors.2 The basic idea of duality theory is that it is 

possible – and, for several reasons, advantageous3 – to formulate a dual cost function in terms 

of input prices and output quantities4 or a dual profit function in terms of input and output 

prices which is equivalent to the primal representation of a technology in terms of input and 

output quantities.5 As the equivalency relationship suggests, the postulated properties of a 

well-behaved technology correspond to properties of a well-behaved dual cost or profit func-

tion, so that it suffices to choose a functional form for a dual cost or profit function which 

shows these properties to guarantee the existence of a corresponding well-behaved technol-

ogy.6 From a well-behaved cost or profit function there can be derived a complete system of 

demand and marginal cost or demand and supply functions which inherits theoretical consis-

tency from the master function and thus satisfies the requirements postulated in section 1.1.1 

above. 

                                                
1  See ROY 1942, HOTELLING 1932, and SHEPHARD 1953/1981. 

2  See in particular DIEWERT 1982. 

3  For arguments for the superiority of the dual approach see GRINGS 1985: 20; BINSWANGER 1977: 377; DIE-

WERT 1971: 107; and CHAMBERS 1988: 36. 

4 In consumer demand theory it would be income instead of output quantity. 

5  More precisely, the equivalence relationship is restricted to the case of a well-behaved technology. If the 

technology has ill-behaved pieces, these are substituted by a hyperplane. Thus, the duality transformation y-

ields a consistent approximation of the technology. 

6 The same is valid for systems of demand or supply equations derived from well-defined cost or profit functi-

ons. 
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1.1.2 Structural Assumptions 

To empirically apply duality theory, separability assumptions are decisive because they al-

low the viewing of the behavior of economic agents as a multistage optimization process, 

where the single stages can be modeled more or less independently on each other. One should 

think of a separable optimization process of e.g. a cost function as, at a first stage, minimizing 

the cost of producing one unit intermediate output out of a subset of the inputs. Then, at a 

second stage, the indermediate outputs are interpreted as aggregate inputs so that the costs of 

producing one unit aggregate input can be interpreted as marginal costs and consequently as 

the price of the aggregate input. These input aggregates are processed to the ultimate output in 

a cost minimizing way, where the price and the composition of the input aggregates are taken 

as given. The concept of separability was coined independently by Wassilij Leontief and M. 

Sono.7 The transfer of the separability concept to the relation between outputs is due to Robert 

E. Hall and Ulrich Kohli, who introduced the concept of nonjoint production.8 Nonjoint pro-

duction is present if the quantities of other outputs do not appear in the production function of 

one output, i.e. there exist neither synergies nor negative external effects between outputs. 

1.1.3 Flexible Functional Forms 

The insights given by duality theory have considerable implications on empirical analysis, 

since the application of a microeconomic model to real world data requires the assumption of 

a concrete functional form for a cost or profit function. Most "classical" functional forms, like 

the Cobb-Douglas or the CES functional form, and consequently their derived demand and 

supply systems, exhibit all the properties of a well-behaved cost or profit function but suffer 

from limited flexibility, i.e. have too few parameters to make possible an independent repre-

sentation of all economically relevant effects. As an example, the Cobb-Douglas cost functi-

on, as well as the Cobb-Douglas production function, restricts the substitution elasticities 

between all factors and the elasticity of scale and size to unity. In their pioneering works, W. 

Erwin Diewert on the one hand and Laurits R. Christensen, Dale W. Jorgenson and Lawrence 

J. Lau on the other hand developed functional forms which have enough parameters to allow 

each second order effect, e.g. in essentce each substitution elasticity, to assume each possible 

value independent of other parameters: the Transcendental Logarithmic or Translog and the 

                                                
7  See LEONTIEF 1974; SONO 1945; also see BLACKORBY/PRIMONT/RUSSELL 1978. 

8  See KOHLI 1981; also see HALL 1973. 
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Generalized Leontief cost function, respectively.9 Both forms are still most commonly used 

despite the fact that neither the Translog nor the Generalized Leontief can be restricted to en-

tertain all properties of a well-behaved cost function without losing its flexibility. However, 

even the degree of flexibility provided for by the Translog, the Generalized Leontief, and 

similar forms, is criticized for being not great enough: these functional forms are merely sec-

ond order flexible, i.e. allow the level, gradient and Hessian values to attain arbitrary values at 

merely one point, only restricted by economic theory. A more powerful concept of flexibility, 

namely global flexibility, advocates an approximation of the data generating process at all 

points simultaneously. This concept was introduced and operationalized by A. Ronald Gallant 

using a Fourier series expansion and establishing semi-nonparametric estimation techniques, 

i.e. an estimation where the number of parameters is not fixed a priori but rather determined 

during the estimation process relying on statistical criteria.10 

An important step on the way towards flexible functional forms behaving regularly in the 

whole domain is Lau's development of a technique to impose a concavity or convexity con-

straint in terms of the Hessian matrix of the cost or profit function: he shows that the substitu-

tion of the Hessian by its Cholesky decomposition creates the opportunity to guarantee the 

local concavity or convexity of the original function by restricting the magnitude of the Cho-

lesky values.11 Following up, Diewert, jointly with Terence Wales, proposes a Symmetric 

Generalized McFadden cost function, which is, as indicated by its name, a generalization of a 

functional form suggested by Daniel McFadden, who for his part plays an important role in 

the debate about duality.12 The Symmetric Generalized McFadden has the property that a re-

striction for correct curvature using Lau's technique implies global rather than local regularity 

– with respect to curvature: the monotonicity property can still not be accounted for globally. 

In addition, this curvature constraint restricts the local flexibility property of the Symmetric 

Generalized McFadden to one point. The reason that this is possibly the maximum that can be 

achieved with regard to the project of constructing a second order flexible functional form 

which is globally regular is stated by Lau's incompatibility theorem: he proves that, at least 

for linear-in-parameter forms, it is not possible to reach second order flexibility and global 

                                                
9  See DIEWERT 1971; see CHRISTENSEN/JORGENSON/LAU 1973. 

10 See GALLANT 1981 and GALLANT 1982. 

11  See LAU 1978. 

12  See DIEWERT/WALES 1987a; see MCFADDEN 1978. 
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regularity simultaneously.13 A way out is shown by Gallant and Gene H. Golub, who propose 

a procedure to enforce regularity at least for a definite region.14 Finally, this method is opera-

tionalized by William A. Barnett, John Geweke and Michael Wolfe who present a Bayesian 

technique which allows the performing of a semi-nonparametrical estimation with inequality 

constraints. Moreover, they apply this estimation technique to a new functional form which is 

well-suited for economic applications because it is, in contrast to the Fourier series, easy to 

handle and close to a theoretically consistent behavioral function by construction: the Asymp-

totically Ideal Production Model (AIM).15  

1.1.4 The Behavior of the Compound Feed Industry 

Among the studies that perform system estimation for the compound feed sector, the work 

of Ludo Peeters and Yves Surry is especially worth mentioning because, firstly, it is the only 

one to tackle the theoretical foundation of the neglect of the demands for non-component in-

puts, which all other studies also omit to mention and, secondly, a locally flexible functional 

form is applied that satisfies more requirements of economic theory than any other.16 Peeters 

and Surry use a simultaneously separable and nonjoint dual cost function: they claim that the 

separability assumption allows the neglecting of the prices of non-component inputs whereas 

the nonjointness assumption makes it possible to compute how total component demand 

quantities are distributed on the animal-specific compound feeds. Peeters and Surry estimate 

the economic model applying their multi-output extension of the Symmetric Generalized Mc-

Fadden cost function, the concavity restriction implemented by Lau's technique. For an over-

view of studies dealing with the estimation of feed demand elasticities see their 1997 article 

"A Review of the Arts of Estimating Price-Responsiveness of Feed Demand in the European 

Union".17 All previous studies on the demand for feed components suffer from quite rough 

input aggregates caused by the shortness of the available time series and the resulting short-

ness of degrees of freedom. The multiplicity of feed components is reduced to at best five 

                                                
13  See LAU 1986: 1552-1557. 

14  See GALLANT/GOLUB 1984. 

15  See BARNETT/GEWEKE/WOLFE 1991; also see TERRELL 1995. 

16  See PEETERS/SURRY 1993; also see BOYD/BRORSEN 1986, MERGOS/YOTOPOULOS 1988, and SUR-

RY/MOSCHINI 1984. 

17  See PEETERS/SURRY 1997. 
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aggregates like "grains" and "grain substitutes", so that questions of interest for policy evalua-

tion such as for example the magnitude of substitutional relationships between single pro-

ducts, e.g. between soy beans and corn gluten, remain unanswered. 

1.2 Preliminary Programmatic Remarks 

This book has two parts: the first part deals with the construction of a theoretically con-

sistent dual behavioral model of the German compound feed sector, emphasizing separability 

assumptions. This is suggested by the assymetric data availability situation which requires the 

neglection of non-component price and quantity data to allow an estimation of a system of 

derived behavioral equations. However, the analysis yields that, in the current state of affairs, 

a consistent estimation is impossible. In the second part, an overview of the theory of flexible 

functional forms is given, where a new interpretation of the global flexibility concept is pro-

posed. This part is added in spite of the failure in model building: if no both consistent and 

estimable model can be established, an estimation cannot be performed, and thus, it is su-

perfluous to consider functional specifications. But the analysis of the theory of flexible 

forms, which was already undertaken before it became obvious that it would not be finally 

utilizable in this study, yields a methodical progress which is possibly important for applied 

economics in general because it implies a change in the standard specification and estimation 

procedure for applied microeconomic models. 

Since the methodical approach pursued throughout this study is somewhat different from 

both other theoretical treatises and empirical applications in economics, some introductory 

remarks seem to be appropriate. 

1.2.1 Part I: Behavioral Model-Building 

The strict conclusion drawn in this study that an estimation which is consistent with eco-

nomic theory and evident structural assumptions is impossible can generally be objected, as in 

any other study with the same result: it is always possible to lower theoretical demands until 

empirical results can be obtained. Methods reach from maintainance of theoretical premises 

and structural assumptions which are only approximatively true to maintainance of premises 

and assumptions which are obviously wrong but postulated to be of minor significance for the 

sake of obtaining results at all – or problematic premises or assumptions are simply concea-

led. An approach to applied economic models which lowers the theoretic demands for an ap-

plied model as far as required to obtain the desired results whatever theoretical cost occur may 
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be labelled "instrumental": theory is nothing more than an instrument to second the obtainan-

ce of results. The central argument for this approach is that any result is better than no result, 

since one has in any case to deal with the phenomena rather than assuming an indifferent 

position towards – possibly essential – factual questions. This argument is supported by the 

observation that absolute intolerance of theoretical inconsistency renders the establishment of 

empirical hypotheses impossible in virtually any case. 

The opposite approach may be labelled "axiomatic" because it claims that any empirical 

hypothesis which could adequately answer a factual question must be consistently deduced 

from an universal scientific theory, i.e. all the way up from the axioms, only supplemented by 

structural assumptions which are scientifically proven elsewhere. The main arguments are the 

following: first, if strict theoretical consistency is given up, it is not granted that implementing 

some theoretical properties will yield a better prediction, compared to completely ignoring 

theory. A successful prediction without theory or with inconsistent theory may not be used as 

a piece of evidence for an instrumental approach since the reasons for the success is unclear: 

following the axiomatic approach, theory is insignificant if not accounted for as a whole. Se-

condly, theory cannot be tested at all with inconsistent empirical hypotheses, so that the que-

stion if a theory is superior to another, or empirically significant at all, cannot be answered; 

scientific progress loses one of its fundaments.  

All science aims at prediction, and thus, even the axiomatic approach is eventually instru-

mental. The difference merely consists in the idea how to gain empirical knowledge, or in the 

relative importance which is assigned to prediction quantity on the one hand and prediction 

reliability on the other hand. As the arguments show, both approaches are equally essential 

since none of them alone is capable of yielding everything that must be expected from science 

– followed uncompromisingly, both are equally useless. Thus, in scientific practice, most stu-

dies are located somewhere between an instrumental and an axiomatic approach to applied 

modeling. More fundamental scientific disciplines as theoretic physics tend to the axiomatic 

approach. In applied economics, however, the instrumental approach prevails. With regard to 

the important functions of both, it seems fruitful to add a more axiomatic counterpart to the 

current state of research. 

The approach of economic model building followed here, which is claimed to be exempla-

ry for a tendencially axiomatic approach, can be interpreted as an anticipation of the deducti-

onist or falsificationist examination of a scientific theory on an argumentational level. Accor-

ding to the falsificationist theory of a scientific model, a needs-orientated but otherwise un-

founded model is invented and then confronted with empirical data in order to reject it – of 
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course nourished by the hope that all rejection trials will fail.18 In the present model of the 

compound feed firm, as in microeconomic models in general, the falsificationist postulate-

reject/accept algorithm is pre-iterated: before exposing the model to "hard" empirical data 

with statistical means, plausibility considerations are undertaken which are not a priori but 

rather based on "soft" empirical knowledge – general certainties extracted from all kinds of 

sources like former scientific studies and trial-and-error experiences with the object of the 

theory. These plausibility considerations lead to the maintainance (or rejection) of assumpti-

ons on model structure which are supposed to justify the model specification. This amounts to 

a justification of neglecting variables or possible relations between these. The epistemological 

consequences of this paradigmatic method are discussed in section 4.4.1 below.  

The following chapter presents the statistical data that will be analyzed by the model. Usu-

ally located after the exposition of the behavioral model and the estimation procedure, the 

presentation of the availability situation for estimation data is put first because the model 

building chapters explicitly draw upon data availability – just as any researcher actually does 

when generating her or his model. In any case, a posterior presentation of the data would be 

inconsistent since it finally becomes evident that a consistently estimable model cannot be 

established. The order of material in chapter 3 mirrors the falsificationist procedure: a desired 

cost model specification is proposed in section 3.2, where the desirability corresponds to the 

data availability, and then all structural assumptions relevant for the postulated specifications 

are examined in sections 3.3. Finally, in section 3.4, there is a check about how far one can 

get in justifying the desired specification with the maintained structural assumptions. This 

procedure is repeated for the profit function in chapter 4. Since the maintainable assumptions 

do not finally suffice to establish a consistently estimable model, although the model specifi-

cation tries to incorporate the minimal restrictiveness compatible with the goal of the analysis 

and the available data, section 4.3 includes considerations about the implications of model 

failure and the error made if an inconsistent model is estimated. 

1.2.2 Part II: Theory of Flexible Functional Forms 

In the second part of this study, a conceptual analysis of the theory of flexible functional 

forms is conducted. A conceptual analysis consists is the exhaustive explication of all possible 

meanings of a given concept and an examination of its relations to other concepts inside the 

conceptual system, where, finally, the most powerful consistent notion is defined. Conducting 

                                                
18  See POPPER 1961: 40-41. 
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a conceptual analysis with all concepts of a scientific conceptual (sub-)system yields a closed 

set of distinct concepts explaining everything the respective theory claims to explain with a 

minimal number of concepts. This procedure, as in the present case, can well imply the com-

plete rejection of a concept. The method of conceptual analysis is only rudimentarily common 

in economics, and one might think of a textbook when reading chapters 5 and 6. But, where a 

textbook merely uses conceptual analysis to enhance understanding, i.e. as a didactic tool, this 

study is more ambitious. Apart from undeniably trying to present existing knowledge in an 

easily accessible way, it aims at clarification of concepts in order to examine their consistency 

and significance. Given methods and widely used concepts are evaluated with the result that 

one central concept of the theory of flexible functional forms, the concept of local flexibilty, 

is shown to run empty in the modern global flexibility framework. A summary of this result is 

presented as thesis in section 1.3.2 below. 

The rejection of the local flexibility concept has important methodical implications,19 and 

thus the putatively surprising result occurs that conceptual analysis yields methodical pro-

gress. This should be interpreted as an invitation to promote conceptual analysis in econo-

mics. 

To avoid confusion of the argumentation for the superfluence of the local flexiblity criteri-

on – which consistently occurs in chapters 5 and 6 – with the exposition of the theory of fle-

xible functional forms and the deduction of the favoured method, the former is presented in 

the form of a condensed thesis in section 1.3.2 below, while the order of material in chapters 5 

through 7 follows the logic of the latter. 

1.3 Summary of the Results 

1.3.1 A Behavioral Model of the German Compound Feed Industry 

What is frustrating for the applied researcher may be a thrilling result from a theoretical 

perspective, namely the failure of the enterprise to establish a consistent model of an industry 

which is estimable given a certain data availability situation. And this is exactly what happens 

in this study: three cost modeling approaches and two profit function accounts fail to be both 

consistent with economic theory and maintained structural assumptions and estimable with 

regard to the unavailability of sufficient non-component price and quantity data. 

                                                
19  See section 1.3.2 below and chapters 5 and 6. 
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Reflecting the practice of all other available studies on the compound feed sector, a desired 

cost model is presented which allows for complete neglection of non-component data but is 

immediately shown to be much more restrictive than the maintained separability assumptions 

imply. An estimation in spite of this renders depiction of existing effects impossible and is 

thus inadequate both with regard to a test of the empirical hypothesis expressed by the model 

and forecast purposes. Then, two cost models are proposed which account for relationships 

where no separability can be reasonably claimed. The first alternative assumes weak separabi-

lity of non-component demand shares from output quantities, which is arguable. Nevertheless, 

this neither leads to a system of estimable demand and marginal cost equations nor to a sys-

tem of estimable demand and marginal cost share equations because thus maintained structu-

ral assumptions in conjunction imply constant returns to scale for the overall cost function, 

which renders measurement of marginal cost and marginal cost shares by the product price 

impossible. As second alternative, a cost structure which, more realistically, accounts for an 

inseparability of the non-component sector from output quantities, is proposed. While this 

specification is inarguably consistent, it is still not estimable because both the derived demand 

and marginal cost functions and the resepective share equations are not independent on non-

component prices, which are not available. With the profit function approach, the problem is 

more general: both alternatives, which are analogous to the two cost function approaches, are 

not defined since, in the former case, the whole profit function or, in the latter case, the micro-

profit function corresponding to the component combination to compound feed, respectively, 

exhibit constant returns to scale so that the profit maximization problem is unbounded. Thus, 

either progress in consistently modeling the profit maximizing behavior of the compound feed 

industry has to be achieved, or, given that the non-component data availability situation does 

not improve in future, pragmatic cost function approach solutions relying on generated non-

component data or instrumental variables for total non-component cost data must be favored. 

1.3.2 Functional Forms, Flexibility, and Regularity 

The three chapters on flexible functional forms, chapters 5, 6, and 7, include an extensive 

presentation of the theory of flexible functional forms and of commonly used specifications, 

i.e. cover a wide range of known results. Apart from some remarks on these and some episte-

mological conclusions, there is a twofold central result which is new: by means of a concep-

tual analysis20 it is shown that, first, requiring a functional form to be locally flexible is obso-

                                                
20  See section 1.2.2 above. 
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lete if it is estimated semi-nonparametrically, i.e. as a globally flexible functional form with a 

large depth of parameterization determined by the inferential potential of the data, aiming at 

good approximation of the true data-generating process in its whole course. Secondly, it is 

shown that this relaxation, coming into effect in a semi-nonparametric estimation function 

and using a Bayesian estimation technique with an informative prior, allows one to take ac-

count of the theoretical consistency requirement much more successfully than within the local 

flexibility framework. 

The neglectability of the local flexibility criterion in a globally flexible framework follows 

from two arguments in conjunction: First, the local approximation view of flexible functional 

forms runs empty because there is no way to locate the point of approximation in a statistical 

context. The analogy to the approximation of a known algebraic function is not available if 

the approximated structure is merely present through a random sample to which the function 

is fitted in its whole course. Secondly, if it is possible to find a representation of economic 

behavior that goes beyond the limited complexity of a local second order approximation, in-

sertion of variable values into this representation is by far superior with regard to forecast 

precision. Level, first and second order effects only restricted by economic theory by no 

means provide an exhaustive characterization of a technology, as an axiom of the theory of 

locally flexible functional forms claims. It must be concluded that local flexibility is irrelevant 

if the approximation function fits the true function as well as possible at any data point rather 

than locally.  

If it is, according to Lau's incompatibility theorem, impossible to make a locally flexible 

functional form intrinsically consistent with all postulates of economic theory, i.e. a second 

order flexible functional form approximating function value and first and second order deriva-

tives of the underlying function at merely one point, this is all the more so with a globally 

flexible functional form, i.e. with a more complex specification capable of approximating the 

underlying function as a whole. But a Bayesian estimation technique with an informative pri-

or recently proposed by Barnett, Geweke, and Wolfe provides a solution: drawing samples 

from the whole sample, estimation results being theoretically inconsistent inside the defined 

regular region are rejected while all consistent parameter estimates are gathered in a theoreti-

cally consistent posterior distribution from which the final parameter estimates are derived. 

This is, a set of parameters is estimated that incorporates a regular region in the course of the 

function, independently of the estimated functional form being intrinsically regular.  

In contrast to all studies applying this Bayesian technique with an informative prior which 

lament that enlarging the regular region of a globally flexible functional form severely harms 
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the local flexibility property and follow that estimation results must therefore be rejected, this 

study yields the following: a globally flexible parameter estimation with a Bayesian estimati-

on technique with an informative prior yields a parameter set subject to a regular region where 

any violation of the local flexibility condition is caused by the data alone. The only presuppo-

sition for this is that the functional form which is used as estimation function (as opposed to 

the concrete parameterization subject to the implemented regular region obtained in the esti-

mation) satisfies the local flexibility property, i.e. only those consistency properties are incor-

porated by construction or by parametric restrictions that do not a priori restrict the ability of 

the function to depict any theoretically consistent behavior locally. Otherwise, the possibility 

to depict an arbitrary economic behavior would not only be restricted by economic theory, i.e. 

by the regular region, but in addition by the intrinsic incapability of the used functional form.  

This implies that, in a proper globally flexible estimation, the extension of the regular regi-

on is a decision exclusively based on the trade-off between an unlimited forecast region and 

the best available fit. The increasing local flexiblity violations with a growing regular region 

are irrelevant again, and thus, accounting for maintained theory is freed from the burden of 

accounting for local flexibility simultaneously – Lau’s incompatibility theorem is no longer 

effective. 



 

Part I: A Behavioral Model of the German Compound Feed Industry 

 

2 Data 

Since the reason for the ultimate failure of all modeling efforts undertaken in this study lies 

in an insufficient data availability, the data will be presented prior to the models of chapters 3 

and 4. As an estimation is impossible in the current state of affairs, considerations are discon-

tinued after a description of the asymmetric data availability situation to preserve the con-

sistency of the study: on the one hand, there is quite good data on feed components and com-

pound feed, which will be presented to emphasize how regrettable the inavailability of other 

essential data is and, on on the other hand, the desired but inavailable data is discussed. This 

is, the questions of how to appropriately edit the data, which aggregation technique to favor, 

which commodities to aggregate due to which criteria, et c., that is the questions normally 

completing an exposition of the data material, are not treated.  

2.1 Compound Feed and Feed Component Data 

The different livestock categories in the German livestock sector are characterized by a dif-

ferent share of self-produced feed. While pig production and in particular poultry production 

heavily rely on industrially processed feed, the dairy and beef sectors are dominated by feed 

produced on-farm. However, a consideration of on-farm mixers seems to be unreasonable for 

three reasons: first, this would complicate theoretical justification of any feed component de-

mand model because self-produced feeds are highly entangled with all other farm activities; 

two separate behavioral models for industrially supplied compound feed and for on-farm mi-

xers would be required. Secondly, a large portion of self-produced feed, like fodder, corn cob 

mix, et c., is hardly traded so that a significant market, i.e. significant prices usable as exoge-

neous model variables, does not exist. Following from the large absence of a market for feed 

produced on-farm, the few available data is of far inferior quality than the data on the com-

pound feed industry. Thirdly, for the remaining easily tradeable feed components produced 

on-farm, namely grains, feed utilization follows the same ratio as in the compound feed in-

dustry, and thus the error made by transferring evidence gained in the compound feed in-

dustry on on-farm mixers can be estimated as small. Thus, this study is limited to the com-
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pound feed industry's behavior. In the remainder of this section, the data on demand and 

supply quantities of the German compound feed industry and on component and compound 

feed prices will be described. 

2.1.1 Quantity Data 

Data on the produced quantities of compound feeds and the processed quantities of feed 

components in Germany are published at numerous sites.21 All of these publications draw 

upon a common source, namely the data collected by the governments of the German "Bun-

desländer" due to the "Getreide-Meldeverordnung" of June 23th 1976. Legal basis of the "Ge-

treide-Meldeverordnung" is the "Gesetz über die Neuorganisation der Marktordnungsstellen" 

of June 23th 1976, the "Verordnung über Meldepflichten der Getreide-, Stärke- und Futtermit-

telwirtschaft" of June 26th 1978, and some "Verordnung[en] zur Änderung der Getreide-

Meldeverordnung".22 Compound feed producers with an annual production quantity of over 

5,000 t compound feed are, due to § 2 section 1 of the "Getreide-Meldeverordung", obliged to 

report monthly stocks, receipts and items being which are received and dispatched of the fol-

lowing feeds: wheat, rye, barley, oats, maize, triticale (the latter since July 1st 1991), feed 

peas, feed beans, other pulses, unmilled rape seed (the latter since July 1st 1991), sun seed 

(since July 1st 1991), oil cakes, expellers, extraction meal of soy beans, rape seeds, and others, 

respectively, corn gluten feed, milling by-products, manioc products, fish, meat, and blood 

meal, citrus and fruit trester (the latter since July 1st 1991), and molasses and sugar beet shred 

(since July 1st 1991). In addition, produced quantities of  compound feed for horses, calves, 

cattle, pigs, broilers and layers have to be reported. The quantity of purchased additives are 

explicitly excluded from the reporting obligation, where the term "additive" is a subsumtive 

concept for all kinds of feed components of non-agricultural origin including minerals, vita-

mines, preservatives, colorizers, stabilizers, antibiotica, industrially produced amino acids, 

et c. 

The monthly quantity aggregates per "Bundesland" published in the "Statistischer Monats-

bericht des BML" constitute a fantastic data set which is, with regard to proportions and quali-

ty, surely not often encountered for other economic sectors. Nevertheless, some shortcomings 

have to be noted: First, as additives gain more and more importance in compound feed pro-

                                                
21  See e.g. ZMP-Bilanz Getreide und Futtermittel, Mischfutter-Tabellarium, Statistische Monatsberichte des 

BML. 

22  See Bundesgesetzblatt I: 1608, 883, 1408, 1711, and 794. 
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duction, the lack of the processed quantity of additives severely restricts the significance of 

any analysis based on this data set. In particular, consider the increasing significance of syn-

thetic amino acids driving out agricultural high protein components. Secondly, the sum of 

utilized component quantities is smaller than the sum of compound feeds produced, and thus 

one can only guess about the composition of the difference, presumably apart from the additi-

ves including components which correspond to none of the aggregates, shrinkage, and other 

losses. A solution which accounts for the fact that new components constantly enter the reci-

pes and others are dropped consists in the introduction of residual aggregates, e.g. "other natu-

ral components with less than 25% of protein" and "other natural components with more than 

25% of protein". Thirdly, not all reported data is in anc case published. On the one hand, all 

available data on the completely insignificant components feed beans, rape seed and sun seed 

is included, whereas on the other hand the important components oilcakes, expellers, and 

meals of rape seed, soy, and other oil seeds, which are collected separately in three aggregates 

according to the respective plant category, are placed together in one huge aggregate. For e-

xample, in December 1994, not even 1,000 t of unmilled rape seed were processed, whereas 

the utilized quantities of oilcakes, expellers, and meals of soy (152,853 t), rape seed (100,363 

t) and other oil seeds (98,967 t) exceeded the former by the factor one hundred and more.23 

Furthermore, the aggregate of oilcakes, expellers, and meals of other oil seeds includes the 

not even unimportant components palm  and copra/cocos, which could possibly be reported 

separately too. 

Some data which is not included in the "Getreide-Meldeverordnung" can be found in the 

monthly international trade statistics. However, this presupposes, first, that the respective 

component is not produced domestically at all, secondly, that total net imports are utilized as 

feed component, and in fact by the compound feed industry. These conditions are rarely satis-

fied, even approximatively. For certain palm and cocos products it can be assumed that the 

demand is nearly completely due to the compound feed industry, which can also be said of 

synthetic amino acids and some special antibiotica. With other additives like e.g. vitamins it is 

clear that a significant share of net imports flows into human nutrition. The only additive 

which is both included in trade statistics, not produced in Germany, and presumably deman-

ded by the compound feed industry only, is the amino acid lysine.24 Since the market for addi-

                                                
23  See Statistische Monatsberichte des BML. For this study, the latter quantity aggregates are provided by un-

published data base prints of the German ministery of agriculture, fishery and forestery. 

24  See Außenhandel: Fachserie 7, Reihe 2. 



 DATA 16 

tives is rather monopolistic and characterized by an extreme division of labor – some amino 

acids are supplied by not more than one producer in the world –, and since the producers are 

not at all obliged to report their production quantities, it is not possible to construct a repre-

sentative data base for the use of additives in the compound feed industry. 

2.1.2 Price Data 

Information on component prices can be found as cif and fob quotations, stock market quo-

tations, wholesale prices, and producer prices in a number of newspapers and economic and 

agricultural journals. Furthermore, they can be approximated as unit values from the interna-

tional trade statistics. Unit values and cif and fob quotations exhibit the shortcoming of being 

available only for commodities which are internationally traded. In addition, it is questionable 

whether unit values and cif and fob prices of commodities, which international trade is in-

significant compared to domestic trade, correctly reflect domestic prices. Agricultural produ-

cer prices exhibit the complementary shortcoming of existing only for commodities produced 

domestically. Moreover, they differ from the initial cost of raw materials of the compound 

feed enterprizes in different profit margins. Purchasing prices are probably best approximated 

by wholesale prices and quotations at the stock markets, which also refer to wholesale prices. 

Since the products of which the wholesale prices are reported are a subset of the products 

quoted at stock markets, the latter are favored in this study. 

The stock markets of Hamburg, Hannover, Brunswick, Dresden, Halle (Saale), Erfurt, 

Dortmund, Mannheim, and Stuttgart weekly quote prices of numerous agricultural products. 

The broadest range of products is covered at the Hamburg stock market: wheat, rye, barley, 

oats, wheat bran, rye bran, tapioka pellets, dry shred, soy meal, rape meal, palm expellers, 

corn gluten feed, and fish meal. Maize is regularily quoted at the Mannheim stock market 

only, but beyond that, all feed components quoted at all are quoted in Hamburg. The agri-

business newspaper "Ernährungsdienst" publishes all quotations of all German commodity 

stock markets, and the brochure "ZMP-Bilanz Getreide, Ölsaaten, Futtermittel" includes the 

arithmetic means of the weekly quotations of all the German stock markets. The latter can be 

seen as a sufficiently precise proxy for German domestic prices with regard to the require-

ments of this study: intertemporal variations of prices affect the estimation parameters, visible 

in the use of price indices as exogeneous variables, but interregional price level differences 

vanish in index aggregates in any case, which is appropriate under the assumption that spatial 

price patterns are due to transportation cost only so that prices vary approximatively proporti-
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onally everywhere. Hence, the means published by the "Zentralstelle für Markt- und Preisbe-

richterstattung (ZMP)" can be used. 

There is no printed information on prices of any feed additives. A meaningful alternative to 

the prices of different additives would consist of the price of instant mineral feed for on-farm 

mixers which contain all additives demanded by the compound feed industry, though on ave-

rage with an emphasis on minerals and vitamins rather than synthetic amino acids. But these 

prices are not published either. However, prices for most other compound feeds are published. 

The "ZMP" calculates average purchasing prices for farmers on a national level from the local 

price information printed in local agricultural journals. This monthly data is perfectly suited to 

the goals of this analysis and can thus be employed. 

2.1.3 Observation Frequency and Aggregation Compatibility 

It is obvious that monthly data is superior to annual data because of the drastically greater 

number of degrees of freedom. A possible objection is that some econometric problems inc-

rease with the use of monthly data, especially autocorrelation. This can be answered with the 

argument that the additional degrees of freedom overcompensate the econometric data prob-

lems, in particular as effective measures exist against most data problems. Furthermore, the 

possibility to concentrate on a shorter observation period, following from the rich degrees of 

freedom, allows the selection of a particularly well-suited starting point, e.g. a change in the 

"Getreide-Meldeverordnung", in order to minimize data inconsistency problems due to chan-

ging aggregate definitions. A focus on a shorter observation period additionally decreases the 

bias caused by technical change or structural breaks, which can of course be handled econo-

metrically, too. But technical change does, first, not constitute the central interest followed in 

this study, and, secondly, biases the parameters of interest even if part of it is covered by ex-

plicit modeling – even a sophisticated modeling of technical progress and structural breaks 

will not be able to record it completely. Hence, the data is left in the monthly frequency at 

which it is observed. 

Whereas quantity and price data exhibits the same frequency, another aspect of data com-

patibility is more problematic: while most reported prices correspond to equally defined quan-

tity aggregates, namely for feed wheat, barley, rye, oats, maize, tapioka, soy meal, rape meal, 

corn gluten feed and fish meal, this is not always the case. In some cases, it can be presumed 

that a single-feed price is representative of a whole aggregate. It is, for example, likely that 

the price of wheat bran adequately describes the price evolution for all milling by-products, 

and the quantity aggregate of other oil meals, oil cakes, and expellers mainly consists of palm 
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and cocos products so that an arithmetical mean of the prices for these two feed components 

will yield a good proxy for the price of the former. The price of triticale is proportional to the 

feed wheat price, and thus the price of the latter can be assumed as price of triticale without 

further consideration. However, for feed peas, feed beans, rape seed, sun seed, other oilseeds, 

and citrus trester, no quotations are available. Whereas feed beans, rape seed, sun seed, other 

oilseeds, and possibly feed peas can be dropped without consideration for the minor quantita-

tive importance of these, this is not possible with citrus trester. A solution is provided by the 

international trade statistics: citrus trester is generally imported, and it is exclusively deman-

ded by the compound feed industry so that a price can be approximated by unit values 

calculated on the basis of traded quantities and values. 

For the compound feed quantity aggregates according to the "Getreide-Meldeverordnung", 

no correspondingly aggregated price is published. Thus, because of the lack of more detailed 

information on the shares of different compound feeds inside such an aggregate, one com-

pound feed which is believed to be especially signifcant must be selected to serve as represen-

tative for the whole aggregate. 

2.2 Non-Component Data 

It need not be emphasized that there does not exist an analogy with the "Getreide-

Meldeverordnung" for other factors of production demanded by the compound feed industry. 

Of course, the exact quantities of labor, energy, industrial installations et c. are trade secrets, 

apart from the thrifty information which has to be published in the balances of joint-stock 

companies, which, however, most compound feed producers are. The utilization of data 

published in balances is made more difficult by three aspects: first, the data is heterogeneous-

ly composed in different enterprises and highly aggregated with respect to a meaningful use 

as model variables, i.e. of insufficient quality. Secondly, balances are published annually, but 

monthly data would be required, i.e. the data exhibits a frequency which is too low. Thirdly, 

there exist no data aggregates on a national or "Bundesland" level, so that the researcher 

would have to collect the balances of more than 500 compound feed enterprizes or be content 

with an incomplete data set. These difficulties can well be summarized by stating that non-

component quantity data is not available. Price information for aggregate non-component 

inputs is easier to obtain, e.g. as wage index or price indices for energy, industrial installati-

ons, et c. But, since sufficient quantity information is inavailable, these cannot be utilized. 

The consequence of this regrettable situation will become obvious in the remainder of the first 
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part of this study: the available data does not suffice to perform a parameter estimation of 

theoretically consistent models of the behavior of the compound feed industry. 



 

3 A Cost Function Model of the Compound Feed Firm 

In this chapter, a dual cost function model of the compound feed firm is constructed. It will 

allow for quantification of the response of demand for feed components on changes of own- 

and cross-prices, including information about the allocation of feed ingredients on compound 

feeds for different livestock categories and about the composition of livestock-specific com-

pound feeds. Unfortunately, it cannot ultimately be established since it lacks the validity of 

some required structural assumptions.  

The following sections are devoted to the trial to develop a cost model of the compound 

feed firm and thereby of the compound feed sector25 that reconciles three concurring require-

ments:  

1. to be operational with regard to the available data, i.e. sectoral prices and quantities of 

feed components and compound feeds, but no other input data; 

2. to be complex enough to depict all aspects of interest of the compound feed sector’s 

response of component demand and marginal cost behavior, respectively, on input price 

and output quantity changes; and 

3. to be consistent with economic theory and reasonable behavioral assumptions for the 

compound feed firm. 

After a short discussion of general premises of the construction of dual feed models, the opera-

tionality and complexity demand are treated in section 3.2 on the desired model specification, 

and the consistency requirement is the subject of section 3.3. Finally, the efforts to justify the 

desired cost model specification are judged in section 3.4, where, after its unambigious rejec-

tion, alternative specifications are discussed. For an explanation of this somehow unusual pro-

ceeding refer to section 1.2.1. An abstract of the results of the first part of this study, including 

this chapter, is given in section 1.3.1. 

3.1 General Premises of the Construction of Dual Feed Models 

The behavioral models of the compound feed industry developed in chapters 3 and 4 pre-

suppose the truth of the following: 

                                                
25  See section 1.4 above. 
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1. All compound feed producers simultaneously minimize their component cost with re-

spect to actual factor prices and product quantities alone. Besides the crucial importance 

of the cost minimization postulate for the adequacy of a microeconomic cost function 

approach in general, this means that optimization based on expected prices and quantities 

is denied as well as the presence and anticipation of risk and uncertainty and the in-

fluence of non-price and non-quantity data.  

2. All compound feed manufacturers are price takers on the demand and supply side, i.e. 

the factor and product markets are characterized by perfect competition. The economet-

rically estimated parameters of cost function derived demand equal the true parameters 

of the data generating process only if the factor markets are perfectly competitive. 

3. The compound feed manufacturers maximize their profits. This assumption of course 

implies assumption 1., but it is made separately because it is not essential for the demand 

side of the cost model considered in chapter 3, but only for the quantification of marginal 

cost. Together with assumption 2 it is needed to measure marginal cost by observed 

product prices using the rule "price equals marginal cost", which is only valid for profit-

maximizing firms. In contrast, additional revenue maximization which, in conjunction 

with cost minimization constitutes profit maximization, is essential for the profit function 

model unfolded in chapter 4. 

4. It is appropriate to handle the microeconomic behavioral model of an individual com-

pound feed firm as if it were a model of the whole sector, i.e. the complex problem of 

aggregation over firms is neglected. 

5. Technically, the compound feed producers act efficiently, i.e. do not waste factors of 

production. Hence, twice differentiable functions denoting the frontier of the production 

possibility set and its duals adequately describe their behavior, and it is not requisite to 

adopt a frontier modeling approach. 

6. All input and output quantities are perfectly divisible and immediately disposable. 

7. Microeconomic theory is empirically meaningful and all model parameters stay constant 

over time. 

These premises can be justified by the following arguments: 
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Ad 1. Because the compound feed producers generally utilize computer-aided linear pro-

gramming methods to optimize the composition of their products, a simultaneous and 

cost-minimizing calculation can be presupposed without further empirical evidence. To 

examine whether the compound feed producers actually minimize their total cost shall 

not be an object of discussion, since this would go beyond the scope of the work in hand. 

Ad 2. Feed components are definitely homogeneous goods,26 traded globally and in large quan-

tities. The component markets are characterized by a very large number of participants 

on both supply and demand side, the latter not only in compound feed manufacturing, 

but also in on-farm feeding, in food processing, and in direct human consumption. 

Hence, any significant market power of a single compound feed firm as a demander is ex-

tremely unlikely. The supply side looks a little different, because the compound feed 

markets are locally segregated to some extent. But even if a supplier covers the whole 

demand of a region, his possiblity to raise prices before less expensive competitors enter 

his local market is quite restricted: like components, compound feeds are very homoge-

neous goods. In the German compound feed sector, the biggest supplier has less than a 

10% market share, but the plants and the corresponding local markets are spread all over 

the country, and thus the competition situation does not mirror the overall enterprise 

size. 

Ad 3. The profit maximization assumption for the compound feed industry is justified as good 

or bad as for most other competitive industries. Most microeconomic studies cannot 

avoid to make it, and even in much more suspicious cases than the present one it is usu-

ally claimed without comment. 

Ad 4. Although no statement about the extent of the aggregation error is possible here, a sec-

toral model based on behavioral assumptions for individual firms is entertained in the 

study in hand. In the absence of disaggregated data the aggregation error is an inevitable 

factor of uncertainty. 

Ad 5. Inefficencies must be expected in every aspect of compound feed production. But since 

the model focuses on the combination of components to compound feed and tries to ne-

glect non-component activities, the relevance of inefficencies seems to be sufficiently 

                                                
26  See chapter 2.1 for a listing. 
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small: apart from shrinkage, which should be significantly smaller than 2%, a waste of 

components is not very likely. 

Ad 6. This assumption is completely unproblematic as long as component inputs and com-

pound feed outputs alone are considered. However, non-component activities are mostly 

long-run so that models developed which do not abstract from non-component activities 

would require a revision. In any case, divisibility and disposability problems are neglected 

here because they open up a new broad field of problems which lie beyond the scope of 

this study. 

Ad 7. These very basic premises are mentioned to complete the picture but will not be subject 

of discussion. 

3.2 Desired Specification 

The desired specification of the feed cost model presented in this section is basically identi-

cal to the postulated models used in all applied studies at hand which examine the compound 

feed sector and entertain a dual cost function approach.27 The most elaborate example is pro-

vided by Peeters' and Surry’s work on the Belgian compound feed industry.28 This section can 

be seen as a reconstruction of their approach. 

3.2.1 The Component Cost Function 

Since the only available input data for the compound feed sector are quantities and prices of 

feed components rather than information on other inputs,29 the first necessary step in fitting the 

cost model to the available data is to construct a cost function allowing the complete neglec-

tion of non-component input data. This is undertaken in this section. 

To obtain the desired cost structure, let C(w1,w2,y) denote a cost function modeling the 

economic behavior of the compound feed firm where w1 is the vector of component prices, e.g. 

the prices of wheat, barley, soy meal, manioc, et c., w2 is the vector of prices of all other inputs 

like energy, human work force, et c., labelled non-component prices in the following, and y is 

                                                
27  See e.g. BOYD/BRORSEN 1986; MERGOS/YOTOPOULOS 1988 and SURRY/MOSCHINI 1984. 

28  See PEETERS/SURRY 1993. 

29  See chapter 2. 
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the vector of output quantities, i.e. of poultry feed, cattle feed, and the like. Data availability 

precludes the evaluation of w2, and thus a successful analysis requires component demands x1 

derived according to Shephard’s lemma to be independent of w2,30 i.e.  

 ∇ =
w

w w y x w y1

1 2 1 1C , , ,� � � � . 

Assuring this in turn requires the cost function to be of the form 

 C(w1,w2,y) = C1(w1,y) + C2(w2,y): 

it is only possible to obtain component demand equations which are independent of w2 if the 

cost function assummes the above literally additive form, i.e. the macrofunction with the argu-

ments C1 and C2 consists in nothing more than plain addition. 

With regard to theoretical justification by means of separability assumptions,31 it is advisable 

to decompose the postulation of a literally additive cost structure into two steps.32 Additivity is 

in general only justifiable by separability assumptions, and the maximum restrictiveness rea-

chable by appropriate separability assumptions is a CES form, rather than a literally additive 

form.33 Thus, first, consider the general CES form 
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Separability of C is the subject of sections 3.3.1 and 3.3.2 below. From the CES structure, it 

could be secondly argued why this function should simplify to the literally additive form above 

by making substantial substitutability postulates. If the CES substitution parameter !(y) equals 

one, the cost function is linear in the two great aggregates 
~
C1  and 

~
C 2 ; all exponents equal 

unity. This assumption is discussed in section 3.3.3. Multiplication then yields the desired 

structure 

                                                
30  Insufficient data availability is not made explicit by Peeters and Surry as the basic motivation for the follo-

wing modeling efforts. But, as section 3.4 below shows, estimability hinges crucially on this point. 

31  For an introduction to separability and other structural assumptions see CHAMBERS 1988. For an extensive 

formal treatment of separability see BLACKORBY/PRIMONT/RUSSEL 1978.  

32  Peeters and Surry do not decompose the postulation of a literally additive form and try to establish it directly 

by separability assumptions, which is not possible. Their account of justification is discussed in footnotes in 

section 3.3 below. 

33  See BLACKORBY/PRIMONT/RUSSEL 1978. 
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Consider the demand equations for components to see why this cost structure allows the ne-

glection of non-component prices. Application of Shephard’s lemma yields conditional com-

pound demand which is independent of non-component prices:34 
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i.e. the compound demand x derived from C1 equals the compound demand derived from C 

because C2 is a constant of differentiation with respect to w1.  

Partial differentiation of C with respect to output quantities results in marginal cost, the cost 

of producing one additional unit of aggregate output. Since both C1 and C2 contain y, non-

component prices do not vanish in marginal cost. But, because of the literally additive structure 

of the cost function, the partial differential of component cost alone with respect to output 

quantity can be interpreted as that portion of marginal cost that results from buying compo-

nents,35 denoted by z: 

 ∇ =y w y z w yC1 1 1, ,� � � �  

Unfortunately, z cannot be observed. But, making an additional assumption, it is possible to 

obtain a measure for z: in a profit-maximizing industry with perfect competition on both the 

supply and the demand side,36 marginal cost equals price p, which is observable. To evaluate z, 

it is requisite to establish a relationship between marginal compound feed cost and feed price, 

for example 

 z p pi i i iw y w w y1 1 2, , ,� � � �= − ⋅ζ , 

                                                
34  See PEETERS/SURRY 1993: 111-112. 

35  See PEETERS/SURRY 1993: 112. 

36  See assumptions 2. and 3. in section 3.1 above. 
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where zi denotes the marginal component cost for output i and �i is a real number between zero 

and unity denoting the marginal cost share that is caused by purchasing non-component inputs. 

To make z measurable, this share must be assumed to be equal for all compound feeds:37 

 ζ ζi
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Then, marginal component cost can be written as 

 z w y p w w y w yy
1 1 2 1 11, , , ,� � � �� � � �= − = ∇

def!

ζ C . 

Although � obviously depends on all exogeneous variables including w2, z can be obtained 

without knowledge of w2 because the value of � – in contrast to the n values of �i – can be cal-

culated directly as quantity-weighted average compound feed price minus marginal component 

cost, which is equal to average component cost if in addition homogeneity of the component 

combination process, i.e. the dual of component cost, is assumed: 
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Section 3.3.4 below discusses the assumption of equal marginal non-component cost – margi-

nal component cost proportions, whereas the homogeneity claim is the subject of section 3.3.5 

below. 

Up to this point, a cost structure is postulated which yields a system of component demand 

and marginal feed cost equations which is estimable because it is completely independent of the 

unavailable non-component data. Adequacy of this cost structure is claimed referring to three 

structural assumptions, namely separability, equal non-component cost-total cost proportions 

for all compound feeds, and homogeneity of the component combination part of technology. 

3.2.2 The Allocation of Components on Compound Feeds 

The behavioral model of the compound feed firm developed above provides total compo-

nent demand quantities, but it lacks information on how total component demands are allo-

                                                
37  See PEETERS/SURRY 1993: 112. 
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cated to the livestock category-specific compound feeds. This information is of interest for 

policy evaluation since demand and marginal feed cost elasticities by type of livestock are an 

intuitive tool for assessing the consequences of measures in the livestock sector on component 

demand quantities and of measures influencing a component price on marginal feed cost, which 

is an important determinant of feed price and thus influences the livestock sector.  

Isolation of the influence of component prices on component demand with respect to only 

one compound feed yj requires the derived demand for the ith component allocated to the jth 

compound feed xi
j  to be independent of any other compound feed yk: 

 x x yi
j

i
j

jw y w1 1, ,� � 
 �= . 

This, in analogy to the independence of component demand from non-components postulated 

in section 3.2.1 above, is only possible if 

 C , C yj j
j

m
1 1 1 1

1

w y w� � 
 �=
=

∑ , , 

i.e. component costs are consistent with the assumption of compound feed production being 

nonjoint in component quantities,38 discussed in section 3.4.5 below. The nonjoint cost functi-

on implies 
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For C yj j
1 1w ,
 � , i.e. the microfunction depicting the component cost of producing one spe-

cific compound feed, it is adequate to assume homotheticity and constant returns to scale of 

the underlying technology, discussed in section 3.4.6 below, so that it simplifies further: 

 C y y cj j j j
1 1 1 1w w,
 � � �= ⋅ . 

As this formulation makes apparent, in the presence of constant returns to scale in component 

combination unit or average cost equal marginal cost aj:
39 

                                                
38  See PEETERS/SURRY 1993: 112-113. 

39  Of course total cost per unit of yi increases if increasing quantities of other outputs are produced – total cost 

increase, but the quantity of yi remains the same –, and thus unit cost does not equal marginal cost with 

non-zero production of any other output. 
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i.e. the assumptions of nonjointness in component quantities and homotheticity and constant 

returns to scale in component combination allow to establish livestock-category-specific com-

ponent demand functions xi
j , which can be plainly added up to obtain the total component 

demand function xi. 

3.2.3 Technical Progress 

While it is obvious that technical progress primarily affects non-component cost where 

processing, transportation, management, and other progress-sensitive production factors are 

gathered, the pure minimization of component cost also leaves some room for progress, e.g. 

through, first, better programming methods or more sophisticated know-how in animal nutri-

tion; secondly, new or modified components, e.g. synthetic amino acids driving out traditional 

protein carriers; and thirdly, enhanced processing techniques, e.g. toasting soy beans to in-

crease protein digestability and allow a higher share of soy, or new pelleting techniques. The 

lack of better indicators – more exactly the diversity of ways in which technical progress acts 

on compound feed technology, and the incommensurability or insufficient observability of pos-

sible indicators – leads to the simplifying hypothesis that it is only related to time, represented 

by a periodical time index t. Since it is a matter of the choice of a concrete functional form, the 

discussion of the exact way in which t enters the equation is dealt with in chapter 7, where 

specifications for the function to estimate are discussed. For now, it will suffice to state that 

the compound feed manufacturer's cost function assumes the form 

 C , , t C t C tw w y w y w y1 2 1 1 2 2, , , , ,� � � � � �= + . 

Unfortunately but inevitably, the neglection of C2 in the estimation has the result that all tech-

nical progress in the compound feed industry is explained by C1 alone, i.e. it is exclusively at-

tributed to the three kinds of technical progress listed above, be it in fact caused by these or by 

non-component activities. However, according to the results of section 3.2.1 below, this short-
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coming is not relevant if component demand shares are regarded because these are separable 

from non-components. Furthermore, anticipating structural assumption C.12 (constant returns 

to scale in component quantities) set out in section 3.3.5 below, it has to be noted that techni-

cal progress with respect to the component combination cannot increase the “efficiency” of 

component combination since the constant returns to scale hypothesis is trivially true for this 

part of technology, whatever progress is made. Technical progress in component combination 

may only render the production of a unit compound feed cheaper or increase the efficiency of 

animal production, and hence increase the price of the compound feed that can be realized at 

the market. This is visible in the cost function in terms of shifting component proportions ex-

clusively; i.e. Hicks-neutral technical change of the component combination technology is nec-

essarily excluded. To save notation, the time variable is omitted in the remainder of this chap-

ter. 

3.3 Structural Assumptions 

In section 3.2, Peeters' and Surry’s cost model of the compound feed industry is recon-

structed. This section lists all structural assumptions relevant for their model.40 

3.3.1 Weak Separability 

There are three sectors of economic decision making in the compound feed firm that are 

immediately distinguishable: the output sector, i.e. the question of which products are supplied 

at which quantity, the feed component sector, i.e. the question of which components are de-

manded at which ratios to yield the respective product quantities, and the non-component sec-

tor providing the “catalyst” for transforming components into compound feeds, i.e. making 

possible a “reaction” of components to an identical mass of compound feeds without itself en-

tering the product. The non-component sector includes activities like transportation of factors 

and products, stockholding, component and compound feed processing, the actual mixing pro-

cess, marketing, accounting etc. Obviously, separability assumptions between these three sec-

                                                
40  For a presentation of premises which, as opposed to assumptions on the specific structure of economic beha-

vior, constitute prerequisites of dual behavioral models of the compound feed sector in general, refer to sec-

tion 3.1 above. 
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tors are possible both in a cost and profit function context. They are examined in sections 3.3.1 

and 3.3.2 for the cost function and in section 4.3.1 and 4.3.2 for the profit function.  

But one might wonder whether a more fine-grained separable partition is possible, and more 

especially inside the non-component sector that includes such different activities. This would 

generate the prerequisites for an application of the strong separability assumption, which by 

definition requires at least three distinct sectors,41 in order to justify an additive cost structure. 

However, a partition of the non-component sector is contradicted by the following argument: 

the non-component activities are much more entangled than the sectors of the above binary 

partition in inputs. It is not even possible to assign all non-component variables to one econo-

mic decision exclusively; e.g. wage is relevant for each of the activities listed above, and energy 

for many. But mutually exclusive variable sectors constitute a necessary condition for a partiti-

on. In addition, a further partition is not convincing from an epistemological perspective since 

Ockham’s razor dictates the choice of the most simple a priori reasonable hypothesis. 

In general, the assumption of a two stage, separable cost minimization process is used to es-

timate all micro cost functions first, to interpret micro cost as aggregate prices and then esti-

mate the macro cost function relying on these prices. Apart from tractability considerations, 

the possibility to individually model each micro cost function constitutes the main reason for 

such a procedure.42 In this study, the reason is different: only one micro function – the compo-

nent cost function – will be estimated, and the separability assumption will allow inference on 

the behavior of the compound feed firm without taking into account any input variables outside 

the compound aggregate. Consequently, the relations between the mutually exclusive and ex-

haustive sectors w1 including all component prices, w2 denoting all non-component prices, and 

output quantity vector y shall be analyzed with regard to their separability.  

Let the index set I = {1,...,n} of the input price vector w ∈ℜ n  be partitioned into mutually 

exclusive and exhaustive sectors I r of length nr with r = 1,...,Q. With each I r there corre-

sponds a sub-vector of w, namely w r
i i I

w r= ∈� � . Let J = {1,...,m} be the unpartitioned index 

set of output quantities y ∈ℜ m . For the cost function C(w1,w2,y) : ℜ n+m → ℜ , there are the 

following six relations relevant for the weak separability assumption, given the binary partition 

of input prices, i.e. Q = 2. A vanishing differential quotient indicates a separability postulate, 

                                                
41  See BLACKORBY/PRIMONT/RUSSELL 1978: 142-148. 

42  See CHAMBERS 1988: 43-44 
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while a differential quotient being equal to some function gijk(w,y) indicates inseparability, i.e. 

an assumed influence such that the namely differential quotient does not necessarily vanish:43 
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These assumptions can be justified as follows: 

C.1 The relation between any two marginal costs for specific compound feeds depends on 

any component price since components are utilized with different intensity in different 

compound feeds (more than that, this is the difference between different compound 

feed). Thus, a component price change more affects marginal cost of that compound feed 

in which it is more intensively utilized. A vanishing differential quotient only occurs acci-

dentally if two compound feeds contain equal shares of the respective components. 

C.2 To assume weak separability of the output quantities from non-component prices means 

to maintain that, considering all non-component activities like transportation, stockshol-

ding, feed processing, marketing, accounting etc., any non-component price change is ir-

relevant for the relative advantageousness of compound feeds. Behind this hypothesis is 

the claim that it does not matter which compound feed is produced since they are all so-

                                                
43  There is no study on the compound feed sector where separability of a cost or profit function is examined for 

all possible relations. Most authors merely consider one differential equation. See e.g. PEETERS/SURRY 1993 

who argue for C.3 only and leave the opposite direction C.5 and all possible relations including the output 

variables unexamined. 
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me component combination processed identically; the compound feeds only differ with 

respect to their composition. This implies the neglect of differences in processing intensi-

ty, e.g. between pellets and meal, and to reduce changes in relative marginal feed costs to 

component price changes, which is expressed in assumption C.1. The resulting error 

seems small enough to maintain C.2. 

C.3 Compound feed composition does not depend on non-component prices, neither in a 

specific compound feed nor at total. The obvious truth of this assumption is supported 

by the fact that in practice the least-cost component mix is generally calculated using li-

near programming algorithms where component prices and nutritional restrictions consti-

tute the only restrictions.44  

C.4 A change in output of one feed affects component proportions if components are used 

with different intensity in different compound feeds, which is generally the case. Thus, 

paralleling C.1, it would be wrong to assume separability here. 

C.5 Paralleling C.2 and C.3, it is of no consequence if a component price alters with regard 

to the ratio of arbitrary non-component demands since processing, transportation, and 

marketing requirements of components do not differ. The error made by neglecting e.g. 

the need to "toast" soy beans to enhance protein accessability and other component-

specific processing demands seems to be sufficiently small. 

C.6 To assume separability of non-components from output level would mean to deny the 

possibilty of changing factor intensities with increasing firm size.45 But factor substitution 

in the non-component sector constitutes an important source of economies of size in the 

compound feed industry, e.g. the substitution of human working power by technical e-

quipment. Hence, a separability assumption would be phenomenally inadequate. Howe-

ver, it could be argued that economies of size generally reduce to indivisibility problems 

                                                
44  The only exception is an occasional restriction for a minimal share of domestic grains anticipating some 

farmer’s extraeconomic wish to support domestic production although it makes feed more expensive. But 

this constitutes no non-component influence on compound feed composition either. 

45  Since according to C.2 processing technology is indifferent towards compound feeds, it makes no difference 

to analyze the influence of a single output on non-component shares or the influence of the sum of all out-

puts, i.e. firm size measured in output quantity. 
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which are excluded by assumption in microeconomic theory.46 Then, a separable C.6 

could be maintained. But if reality is likely to be imperfect with regard to theory, accoun-

ting for the imperfection is heuristically advisable on the one hand, and provides a means 

to check premises of theory on the other hand: not assuming separability here from the 

outset allows the testing of the adequacy of the separability assumption. 

3.3.2 Strong Separability 

In the binary partition, strong separability is conceptually impossible, but also counting the 

output variable sector leads to three additional equations:47 
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These assumptions can be justified as follows: 

C.7 Both compound feed quantities and feed component prices are weakly separable from 

non-component prices, and this is the necessary condition for both sectors jointly being 

strongly separable from non-component prices. Sufficiency is provided by the catalyst-

view of the compound feed technology where all non-component activities of the com-

pound feed firm treat all components and all compound feeds the same, and supply quan-

tities are strictly proportional to compound demand quantities by nature of technology: 

                                                
46  While obvious in cases from e.g. a processing unit up to indivisibility extremes like the design of a firm 

logo, this thesis can consistently be claimed even for instances which are not that obvious, e.g. where the 

characteristical iso-transport cost circles around a plant can be reconstructed as a result of the impossibility 

to divide the plant until one mini-plant is located at each customer's farm so that transport cost for the pro-

duct would vanish completely. It can be argued analogously on the transport cost of components [conside-

ring the role of transport cost, see section 4.4.3 below]. The only remaining benefit of size would then be the 

realization of better prices, i.e. cheaper purchases and more expensive sales, because of larger batches. But 

this is exogeneous and correspondingly does not mirror in the structure of the cost function. 

47  Strong separability implies weak separability, and thus C.1-C.6 apply in any case. 
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an increase of the price of e.g. energy first causes supply to decrease without affecting 

relative preferability of compound feed according to C.2. Secondly, this leads to a dec-

rease in aggregated component demand which is strictly proportional to the decrease in 

aggregated output quantity – this is the part of the price reaction which is not already 

covered by a weak separability assumption and thus the original object of reasoning with 

regard to C.7. Thirdly, as it is known by C.3, component shares are not affected by this 

decrease of total component demand. 

C.8 Since output quantities alone are inseparable from component prices, which is known by 

C.1, they can not be separable from component prices if they are examined jointly with 

non-component prices, which can be shown by contradiction: cancel down the differenti-

al quotient in C.1 by  ∂ ∂C wlw y, /� �  where l I∈ 2  
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 Now assume C.8 did not hold, i.e. the partial derivative of the differential quotient in C.8 

for some component price would necessarily vanish. Then, both the numerator and the 

denominator of the right hand side of the above equation would be independent of wk by 

assumption. But this would imply that the complete right hand term would vanish for all 

output-i,j, component-k and non-component-l, which contradicts C.1. Consequently, C.8 

is necessarily true by C.1. Summarized in one line: 
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C.9 Equation C.9 together with C.1 and C.2, all vanishing, would imply input-output separa-

bility or a homothetic technology. But this is obviously not the case, as already C.1 re-

veals. The proof is the same as the one given for C.8. 

3.3.3 Unity Value of the CES Substitution Parameter  

The desired cost model postulated in section 3.2 above claims a CES cost structure for the 

compound feed industry rather than a completely general cost function of output quantities and 
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input prices, which can in general be established if certain separability conditions apply. In the 

preceding section, all separability conditions were analyzed which are relevant for the possibil-

ity to write the feed cost function as a CES structure. In section 3.4 below it is examined 

whether this enterprise was successful – with negative result. But for the moment, assume that 

it was, i.e. that a CES feed cost structure were adequate. Then, if the CES substitution pa-

rameter !(y) equals one, the cost function shows a linear relationship between component and 

non-component cost. Due to duality, this implies a Leontief technology characterized by right-

angled isoquants between aggregate components and aggregate non-components.48 That 

means that there is no substitution between these aggregates. And, regarding the physical na-

ture of compound feed processing, this is exactly the case: no device and no managemental 

effort can substitute only the merest portion of any component and vice versa; to obtain one 

metric ton of compound feed, one metric ton of components has to be fed into the production 

process. Thus, the restriction  

C.10 !(y) = 1 

is perfectly justified. 

But, for the aggregate character of the arguments, the interpretation of the Leontief tech-

nology function must not be overdone: fixed proportions between the aggregates do not imply 

fixed proportions between any single disaggregate factors, e.g. a fixed amount of labour or 

energy per unit compound feed. This inference is not possible because the aggregator functions 

do not plainly sum up their elements; both C1(w1,y) and C2(w2,y) are arbitrary functions of 

which only one thing can be said: they are well-behaved cost functions. 

3.3.4 Equal Non-Component Cost – Total Cost Proportions  

The pragmatic postulate that the share of marginal non-component cost ζi is the same for 

every compound feed, i.e. 
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48  See e.g. CHAMBERS 1988: 88-92. 
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is comparably unproblematic.49 Although it may be higher in pelleted feeds than in unprocessed 

meals, higher in concentrate protein feeds for broilers than in pig feed etc., the differences can 

be supposed to be not too significant. This seems the more justified as more expensively proc-

essed feeds commonly contain more expensive components so that the share of marginal non-

component costs remains almost equal even if non-component cost per unit produced rises.50 

3.3.5 Constant Returns to Scale in Component Quantities 

Constant returns to scale in component quantities or homogeneity of degree one of the pri-

mal technology in component composition means that doubling all component quantities dou-

bles the total quantity of compound feed produced, which is trivially true. Consider this 

technological assumption expressed in terms of the transformation function Y: 

C.12 Y Yx y x y1 10 0, ,� � � �= ⇒ =λ λ  ∀ >λ 0 .51 

                                                
49  See PEETERS/SURRY 1993: 112 

50  Peeters and Surry verbally postulate C.11, but in their formal definition they let ζ be the quotient of total 

non-feed cost and total cost rather than the quotient of their marginal counterparts [see PEETERS/SURRY 

1993: 112]. If it is not only a printing error, another severe structural assumption is implied by using the 

average non-component share ζi to measure the share of marginal cost that is caused by buying non-

components: these are equal if and only if the whole component feed technology is characterized by constant 

returns to scale. This is on the one hand, as already stated in section 3.4.1 in the discussion of assumption 

C.6, phenomenally inadequate, and on the other hand it would mean that the optimization rule "price equals 

marginal cost" would not apply so that measurability would fail anyway. Furthermore, Peeters' and Surry's 

definition suggests that ζ is a constant [see PEETERS/SURRY 1993: 112]. Although ζi may be identical for all 

compound feeds at a certain total output level or firm size, respectively, it clearly decreases with rising firm 

size if economies of scale are not denied. Even more obvious, any component price change influences  ζ. 

This is not problematic since, with the formula proposed in section 3.2.1 above, ζ can be calculated for 

every observation. 

51  A definition of a linearly homogeneous technology is easy in terms of sets: a technology is homogeneous of 

degree one if the production possibilities set T can be characterized as follows: T = �7 for all positive � [see 

FÄRE/PRIMONT 1995: 23]. But it becomes odd in terms of real valued functions like the transformation func-

tion above because the general technology then is formulated as implicit function. In the context of dual be-

havioral functions, linear homogeneity in the multi-output case is straightforward again [see section 3.2.5 

below]. 
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It is physically impossible to produce a certain quantity of some compound feed without add-

ing exacly the same quantity of components to the production process, and vice versa. If not, 

components would be wasted, and inefficiency is excluded by assumption.52  

The assumption of constant returns to scale in component quantities may not be confused 

with the assumption of constant returns to scale in the whole compound feed technology; sig-

nificant scale effects must be expected in every other aspect of technology. Furthermore, it is 

important to note that, in the multi-input-multi-output case, a technology homogeneous of 

degree one does not imply homotheticity.53 Otherwise, it would be impossible to maintain C.12 

and C.6 simultaneously. 

3.3.6 Nonjointness in Component Quantities 

Assuming nonjointness in component quantities means that production of single compound 

feed yi may depend on all component quantities, but is claimed to be independent of the pro-

duction quantities of any other compound feed. Put differently: the primal of component cost 

C1, namely the component-to-feed transformation function 0 1 1= Y x y,� �  solved for yi does not 

contain any yj as an argument and simplifies from 

 y Y y y y y yi i i i m= − +
1 1

1 2 1 1x , , ,..., , ,...,� �  ∀ i  

to 

C.13 y Yi i= 1 1x� �  ∀ i . 

This does not imply that the yi are produced in physically separate processes, merely the func-

tional relation is that way.54 Externalities of one compound feed on another with respect to 

component utilization do not exist since neither a compound feed is used as component in the 

production of another, nor does any by-product of one feed enter the production process of 

another or enhance or inhibit it. This is of course not to deny that, in total, there may exist con-

siderable synergies between the products: it is only component cost that is assumed to be non-

joint, not total cost. The claim is that any synergy takes place in the non-component sector, 

                                                
52  See section 1.4 above. 

53  See PRIMONT/FÄRE 1995: 139. 

54  See HALL 1973: 884. 
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e.g. due to joint transportation and marketing, or due to jointly producing different feeds in 

one plant. Thus, the assumption of nonjointness in component quantities is completely in ac-

cord with the technical nature of the production process. 

3.3.7 Homothetic Feed Composition 

In a homothetic technology, the expansion paths are straight lines, i.e. a proportional change 

in output quantities does not alter the cost minimal input ratios. Assuming homothetic feed 

composition, i.e. an assumption of technology, can equivalently be expressed as an assumption 

of the cost function, namely component prices and output quantities being mutually weakly 

separable. Whereas both equation C.1 and equation C.4 do not vanish, i.e. homothetic feed 

composition for the whole cost function cannot be maintained for reasons named in section 

3.4.1 above, the picture changes under the hypothesis of nonjointness in component quantities: 

the single-product cost functions established by nonjointness55 are evidently characterized by 

homotheticity, i.e. 

C.14 
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If a single compound feed is considered, it is irrelevant for its composition if one ton or 1,000 

tons are produced; the recipe is the same for any output quantity. Thus, as this case exampli-

fies, homothetic nonjoint single-output production functions do not imply a homothetic multi-

output technology, even if, according to C.12, this technology is linearly homogeneous.56 

In contrast to C.1 through C.13, assumption C.14 is not implied by the structure of the desi-

red model specification. But since its adequacy is so evident, it can be introduced without harm 

to save estimation parameters. 

                                                
55  See section 3.3.2 above and section 3.4.2 below. 

56  See PRIMONT/FÄRE 1995: 139. 
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3.4 Reconsidering the Model Specification 

3.4.1 Separability 

While the assumption of unity value of the CES substitution parameter is adequate so that, 

given a CES cost function, justification of a literally additive structure of compound feed cost 

is possible, the maintained separability hypotheses do not suffice by far to establish the required 

CES specification: even if all equations C.1 through C.9 could realistically be assumed to va-

nish, i.e. if strong separability of the cost function in the binary and extended partition could be 

maintained, this would not imply an additive structure.57 This result, also utilized in section 

4.3.1 below in the profit function context, is commented on in section 4.1.2. Hence, the desired 

model specification formulated in section 2.1 above is rejected. 

Now, the question arises of how far one can get with the maintained separability assumpti-

ons. Unfortunately, a cost structure equivalent to assumptions C.1 through C.9, namely a func-

tional representation of C.1 through C.9, could not be established. This constitutes a severe 

limitation of the model with respect to the enterprise of formulating an applied model without a 

theoretic gap.58 It was not even possible to actually find a general structure that satisfies all 

nine equations, i.e. to find a non-additive59 structure that at least satisfies the necessary condi-

tion for equivalence. Two alternatives may be considered: first, a structure might be adopted 

that is more restrictive than admissible. This is principally inacceptable since not only existing 

effects cannot be depicted, but moreover the influence of these is burdened onto the remaining 

                                                
57  See FEGER/MÜLLER 1999: 3 and 10-12. See section 4.3.1 below for the opposite case. 

58  Recall the definition of an equivalence relationship: equivalence means mutual implication. This is, a cost 

structure is equivalent with a set of separability assumptions if it not only satisfies all maintained equations, 

but that it is the only one to satisty all equations or to follow from the equations. Satisfying all separability 

equations merely constitutes the necessary condition for equivalence, and if sufficiency cannot be proven 

one can never be sure if another cost structure does not exist satisfying the same separability assumptions – 

which is possibly less restrictive and thus more adequate. 

59  There are additive structures that satisfy the necessary condition for equivalence – for example the desired 

specification introduced in section 3.2 above. But, as FEGER / MÜLLER 1999 unambigiously show, sufficien-

cy for an additive structure is not even provided for by C.1 through C.9 vanishing. Such a result only holds 

for the profit function. Thus, an additive structure of a cost function separable in the binary partition, or 

with no more than three sectors counting input and output variables likewise, respectively, must be comple-

tely disregarded. 



 A COST FUNCTION MODEL OF THE COMPOUND FEED FIRM 40 

effects and biases the respective estimation parameters. The only case where one could even 

think of implying separability in spite of the maintained inseparability is C.6 because inseparabi-

lity of C.6 is arguable from a very strict theoretical perspective.60 An example is given in the 

next paragraph. Secondly, it is always possible to postulate a structure that is less restrictive 

than maintained assumptions would imply. An example of a functional structure that accounts 

for every maintained inseparability and implies separability where it is assumed with the excep-

tion of C.2 and C.7 is presented further below in this section. 

Considering the first strand of argumentation, a cost structure incorporating all maintained 

separability assumptions and leaving all relations unrestricted where inseparability is supposed, 

with the exception of C.6, i.e. satisfying all maintained equations but one, is 

 C , , C C cw w y w y w1 2 1 1 2 2� � � � � �= ** , , .61 

Applying Shepard’s lemma and the chain rule, the derived component demand equations assu-

me the form  
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Hence, component demand is not independent of non-component prices; the second term, i.e. 

the exterior derivative which is the same for all xi, still includes w2. The standard chain rule 

interpretation yields an insight into the nature of the influence: in the first term, a change in a 

component price wi results in a change in component costs C1 where the interaction between 

component prices takes place. Here, the ratios of component demands are determined. In the 

second term, the resulting component costs as a whole affect total cost, i.e. the level of com-

ponent costs, regardless of the component ratios, affects overall feed costs which are only a 

function of aggregate component cost and aggregate non-component cost. This is, the level of 

non-component costs influences component demands – not component mix but component 

demand level. To take it down to the phenomena: if the price of energy or wages rise, this ma-

kes feed processing more expensive: c2 rises. At a second stage, the aggregate ”price“ of feed 

processing has an influence on the demand level of each component (which is the same for all 

                                                
60  See section 3.3.1 above. 

61  The small letter c2 as opposed to the capital letters used for the other cost functions is meant to serve as a 

reminder that the respective function depends on merely one variable or sector of variables, respectively.  



 A COST FUNCTION MODEL OF THE COMPOUND FEED FIRM 41 

components by C.3): fewer components are demanded because it is more expensive to produce 

one unit of compound feed, resulting in a lower total component demand or a smaller firm size 

(since output mix is independent from non-component prices by C.2).62 The amount of firm 

size reduction induced by higher non-component costs is described by C**. This demand level 

effect is erroneously neglected if a literally additive form is assumed. 

An approach that might be considered is the following: whereas single non-component pri-

ces are unavailable, one could argue that estimability of the correct demand equations is alrea-

dy provided for since, rather than non-component prices w2, aggregate non-component cost c2 

as a whole is measurable – and thus all explaining variables of the correct demand equations 

are available. It does not fulfil this hope, although three ways could be proposed.  

First, one could claim that c2 is the difference between total cost and component expenditu-

res. But, on the one hand, total costs are not observable, at least not in the monthly frequen-

cy,63 and, on the other hand, although total primal and total dual costs must be equal, c2 does 

not equal primal non-component cost. Generally, dual micro functions do not necessarily cor-

respond to the respective primal function. This is obvious in the present case since just the 

structure of C** shows that total dual costs are not the plain sum of component cost and non-

component cost, while this is true by definition for the primal cost function. The falsity of this 

hypothesis is additionally suggested by the independence of c2 of y: this is hardly likely to be 

the case for total non-component cost.  

Secondly, one could intend to solve Euler’s Theorem for c2. But Euler's theorem is not ap-

plicable since C is only homogeneous in w rather than in w and y, and it is not even necessarily 

homothetic, so that the generalized Euler theorem could be utilized.64  

Thirdly, the independence of c2 from y suggests that c2 is something like the aggregated pri-

ce of non-components which can be obtained by substracting component cost per ton from 

price that equals marginal cost, particularly as average component cost per ton compound feed 

equal marginal cost because of constant returns to scale and size in component quantities 

                                                
62  The revenue maximizing output combination is exogeneous in a cost function context in any case. However, 

total component demand can be used as a measure for firm size because it is equal to total compound feed 

production, i.e. total output, which is a widely used measure for firm size. 

63  See section 2.2. 

64  See section 3.3.1, however. For the generalized Euler theorem, see CHAMBERS 1988: 39. 



 A COST FUNCTION MODEL OF THE COMPOUND FEED FIRM 42 

(C.12).65 The result corresponds to output units rather than input units, as would be adequate 

for an aggregate non-component price. This objection can be overcome by conceding that, c2 

being independent of y, aggregate non-component price is constant with respect to output 

quantity, and thus it does not matter to which variable it is related. But, and this can not be 

overcome, marginal costs of the compound feed firm are again not the plain sum of the deriva-

tives of C1 and c2 for y: the macro cost function C* aggregates total cost from C1 which can be 

interpreted as component price weighted firm size and from c2, but the aggregation rule can be 

anything, not just plainly adding up C1 and c2. Hence, the project of measuring c2 directly must 

be given up. 

A partial solution – always keeping in mind that C.6 is erroneously forced to vanish in any 

case – can be obtained by considering share equations rather than demand equations. Since the 

exterior derivative is the same for all xi, it cancels itself out when a component demand equati-

on is divided by the sum of all component (!) demand quantities: 
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This is not too surprising since it exactly mirrors what assumption C.3 claims: component rati-

os do not depend on non-component prices. In general, share equations only allow inference 

on component mix, and thus own and cross price responses of component demand obtained by 

share equations must not be over-interpreted in using them to make demand level forecasts. 

They are ceteris paribus-elasticities abstracting from aggregate non-component costs which 

matter for component demand level. Beyond that, they abstract from the influence of ”output 

quantity weighted aggregate component price“ C1 on total cost. However, in the special case 

of compound feed production, demand levels can be calculated if demand shares are known 

because of the equality of total component demand quantity and total output quantity, which is 

exogeneous in a cost function context and thus also known. 

The same problems with regard to measurability of c2 apply to the marginal cost functions  

                                                
65  The independence of c2 from y as such illuminates again how erroneous a vanishing C.6 is: here, dual non-

component cost are a constant with respect to output quantity. 
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Hence, as with the conditional demand equations above, the only possibility – still keeping in 

mind that C.6 erroneously vanishes with this cost function specification – consists in dividing 

through by something that cancels out the exterior derivative. A meaningful divisor is the sum 

of all marginal cost as the results are marginal cost shares of the respective compound feed: 
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The nice side-effect occurs that these equations can be obtained without the assumption of 

equal non-component – component marginal cost shares for all compound feed, because the 

"shares" are marginal cost shares rather than marginal component cost shares. However, the 

decomposition of marginal cost as plain sum of marginal component cost and marginal non-

component cost would be wrong in any case if the present non-additive cost structure is consi-

dered.66  

Up to this point, the project of estimating at least a system of share equations, subject to the 

erroneous C.6 assumption, looks promising. But the constant returns to scale property of the 

cost function has disastrous consequences for measurability: the optimization rule "price equals 

marginal cost" does not apply in this case. Hence, marginal cost cannot be measured by feed 

price,67 and the left hand side of a part of the system equations cannot be evaluated so that the 

system is not estimable.68  

                                                
66  See section 3.3.3 above. 

67  The consideration of homogeneity which lies behind separability in the logical sequence of going through 

all possible structural assumptions is anticipated here in order to motivate postulation of another separable 

cost structure, the second alternative below. A treatment of the homogeneity property can be found in secti-

on 3.4.2 below. 

A similar objection can be raised against the desired specification postulated in section 3.2 above, which has 

however failed already with respect to separability so that this objection could as well be omitted: constant 

returns to scale render measurement of marginal cost by price impossible. But in constrast to the alternative 

considered in this section aiming at an estimation of marginal total cost, the desired specification further 

above yields marginal feed cost equations. These are characterized by constant returns to scale independent-
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A way to escape immeasurability of marginal cost would exist if feed price were not con-

stant, because in this case, marginal cost were measurable as marginal revenue, no matter if 

returns to scale are constant or not. Two hypotheses are available: first, the premise of perfect 

competition, introduced as second general premise in section 3.1, could be given up. But, 

without having obtained a measure of concentration on the feed markets, it seems evident that 

significant market power on the feed markets does not exist. Secondly, a solution could be 

found in an elegant redefinition of the compound feed firm: if transportation activities were 

excluded from the compound feed firm activities, i.e. feeds were sold at the plant rather than 

delivered to the customer, the compound feed producer faced decreasing prices with rising 

distance from his plant. Thus, marginal cost were measurable as variable marginal revenue. 

But, on the one hand, the model were still arguably inconsistent because inseparability of C.6 is 

not accounted for and, on the other hand, one is left with the problem how to model variable 

prices which depend on the location of the single plant from aggregated sector information. 

Such a project is beyond the scope of this study and thus not followed. 

To summarize the first alternative: even if inseparability of C.6 is given up, this neither leads 

to a system of estimable demand and marginal cost equations nor to a system of estimable de-

mand and marginal cost share equations, because maintained structural assumptions in con-

junction with a vanishing C.6 imply constant returns to scale for the overall cost function, 

which renders measurement of marginal cost and marginal cost shares impossible. 

Now, consider the second alternative. A cost structure consistent with all maintained inse-

parable relations, but leaving two equations unrestricted that are supposed to vanish (C.2 and 

C.7) is 

 C , , C C C gw w y w y w y1 2 1 1 2 2� � � � � �� �= * , , , . 

As partial differentiation reveals, this structure accounts for inseparability in C.1, C.4, and C.6, 

i.e. does not imply constant returns to scale of C, and it superfluously accounts for inseparabili-

                                                                                                                                                   

ly of the non-component sector, whereas the marginal cost equations in this section imply constant returns 

to scale only if the non-component sector corresponds to a linearly homogeneous technology too. 

68  At this point, one has to resist the temptation of neglecting the marginal cost equations and estimating a 

system of component demand share equations alone: in the context of a dual cost model, there is no alterna-

tive to considering the complete system of derived equations since both the properties of a well-behaved cost 

function and the maintained structural assumptions imply so many restrictions between any equations that a 

neglection of some equations would inevitably lead to overall inconsistency. 
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ty in C.2 and C.7. Thus, it is admissable in that it does not violate maintained inseparability 

assumptions, i.e. this specification leaves room for any effect which is likely to occur so that 

weak separability provides no reason against it. But it is again no equivalent representation of 

either C.1 through C.9 or of the same list of assumptions but C.2 and C.7 not vanishing.  

With regard to the desired specification postulated in section 2.1 above, this structure is 

much too general: a CES specification merely constitutes a special case of it. That is, if a CES 

cost function is adopted while the above formula is adequate, existing effects are not depicted. 

Oddly enough, the CES structure satisfies all nine equations C.1 through C.9, i.e. necessity of a 

CES structure for equivalence with C.1 through C.9 – in contrast to both specifications propo-

sed in this section! But this is no reason to breathe again and rehabilitate the CES structure: the 

restrictiveness of the CES form, compared with the above structure, is merely more veiled. 

Exploring the premises of an additive structure in the binary partition reveals that, as set out in 

the first paragraph of this section, not even separability of all nine equations would supply the 

sufficient condition to establish a plus sign inside C*.69 This means that, although a CES cost 

structure does not violate any maintained inseparability assumptions – i.e. satisfies the necessa-

ry condition for equivalence –, effects must be expected to exist which are not depicted by the 

CES structure. If one wants to be sure that all effects which are not excluded by C.1 through 

C.9 are depicted, it is unevitable to find the functional structure which follows from C.1 

through C.9 – i.e. the sufficient condition for equivalence. 

The ratio behind this second structure is as follows: as in the preceding example, the sepa-

rable or decentralized decision process consists of a macro cost function, here C*, that aggre-

gates component cost C1 which is an arbitrary function of component prices and output quanti-

ties, optimized separately from anything else, and non-component cost. But in the present case, 

non-component cost C2 is a function of all non-component prices and an aggregate g of output 

quantities, which could reasonably correspond to the plain sum of all compound feed quanti-

ties, i.e. an easy-to-obtain measure for firm size. As suggested by the discussion of C.6 in sec-

tion 3.3.1 above, non-component mix now depends on firm size, which can be checked by de-

riving for a given pair of non-component prices. In addition, this specification gives room for 

scale effects since C2, being an arbitrary function of non-component prices and firm size, can 

be allowed to increase under-proportionally with rising g(y). 

Component demand assumes the form 

                                                
69  See FEGER/MÜLLER 1999: 3 and 10-12. See section 4.3.1 below for the opposite case. 
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and marginal cost can be written as 
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Clearly, one measurability problem with the first alternative regarding non-component cost also 

applies here since the proposed structure is more general than the above one: like c2, non-

component cost C2 cannot be observed. Hence, as both the demand and the marginal cost e-

quations depend on C2, these are inestimable in analogy to the first alternative. In contrast to 

the first alternative however, marginal costs are measurable by product price, since the cost 

structure allows for non-constant returns to scale so that the optimization rule "price equals 

marginal cost" applies. But this generality gain leads to another problem: whereas the compo-

nent demand share equations of the cost structure considered here are equivalent to the ones of 

the first alternative (since the exterior derivative cancels itself out because of its independence 

of w2), marginal cost, this time more complex, cannot be simplified as above by constructing 

share equations: 
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Because y is included both into C1 and C2, the exterior derivatives cannot be singled out of the 

sum, and thus cancellation fails. Hence, the right hand side of the marginal cost share equations 

cannot be made independent of the unavailable non-component price vector w2 or non-

component cost C2, respectively. Consequently, the system of demand share and marginal cost 

share equations cannot be estimated. 

To summarize the second alternative: in contrast to the first alternative, the proposed cost 

structure is theoretically admissable but, just like the former, not estimable – for different rea-

sons: both the derived demand and marginal cost functions and the resepective share equations 
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still depend on non-component prices, which are not available. Thus, the measurability of mar-

ginal cost, gained with the second approach, cannot be utilized. 

3.4.2 Nonjointness, Homotheticity, and Constant Returns to Scale in Components 

Since the maintained separability assumptions do not suffice to establish a cost structure 

that allows neglection of non-component cost, the remaining structural assumptions of con-

stant returns in component quantities (C.12),70 nonjointness in component quantities (C.13), 

and homothetic feed composition (C.14) are virtually useless because they all relate to com-

ponent cost only: they simplify component cost, but do not touch the problems left by the 

preceding section. They will be discussed in spite of this because, in case once sufficient data 

on non-component prices and quantities becomes available, the second above alternative is 

consistently estimable so that the implementation of all maintained assumptions is meaningful. 

Nonjointness in component quantities implies that the multi-output cost function can be 

written as plain sum of all single-output cost functions, where each of these contains the re-

spective output yi alone as an argument rather than the vector of all outputs y.71 Thus, by 

C.13,72 component cost becomes 

 C , C ,yi i
i

m
1 1 1 1

1

w y w� � � �=
=
∑ . 

Homotheticity, in analogy with the introduction of output aggregator g in non-component cost 

C2 in section 3.4.1 above, is equivalent to input-output separability of the cost function. A 

component cost function representing C.14 is 

 C h c1 1 1 1w y y w,� � � � � �= ⋅ .73 

Output quantity still influences total component cost, but not the ratio of any derived compo-

nent demands, since the micro function c1 is independent of output quantity. Substituting for 

Ci
1  in the nonjoint component cost function yields 

                                                
70  The assumption of constant returns to scale was already anticipated in the preceding section because it is 

responsible for the failure of one trial to establish an estimable system of derived equations 

71  See HALL 1973: 884-885; proof ibid: 890. 

72  See section 3.3.3 above. 

73  See CHAMBERS 1988: 69-77. 
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 C , h y ci i i
i

m
1 1 1 1

1

w y w� � � � � �= ⋅
=
∑ . 

Under the hypothesis that the underlying component composition technology is not only ho-

mothetic but additionally shows constant returns to scale and size, hi simplifies to 

 h y yi i i� � = , 

so that component cost assumes the form 

 C , y ci i
i

m
1 1 1 1

1

w y w� � � �= ⋅
=
∑ . 

The component price aggregators ci
1 1w� �  can now be interpreted as a unit cost of yi or, refer-

ring to the two stage minimization view of a separable cost function, as an internal price of yi; 

component costs increase proportionally with increasing output, which is exactly what the hy-

pothesis of constant returns to scale means. 

If the enterprize of neglecting non-component cost due to separability assumptions had suc-

ceeded, it would have been possible to test C.12 through C.14 – given that the data provides 

enough degrees of freedom to do without their implementation – and leave the decision of 

whether the respective assumptions hold to empiry. 



 

4 A Profit Function Model of the Compound Feed Firm 

After the unsuccessful trial, undertaken in the previous chapter, to establish a cost function 

model of the compound feed firm which is simultaneously consistent with economic theory and 

reasonable structural assumptions on the one hand and estimable with regard to the available 

data on the other hand, this chapter considers another approach to depicting its behavior, 

namely a dual profit function. On the one hand, a profit function approach, including the cost 

function as a special case, is superior in general, which is explained in section 4.1.1 below, and, 

on the other hand, some problems responsible for the failure to establish a cost model which is 

theoretically consistent and simultaneously estimable do not apply in the profit function con-

text. The latter are identified in section 4.1.2 below. Section 4.2 examines the structural as-

sumptions relevant for a profit function model of the compound feed firm or industry, respec-

tively. In section 4.3, possible specifications relying on the assumptions maintained in section 

4.2 are discussed with regard to their operationality. Finally, section 4.4 compares the cost 

function and the profit function account to modeling the compound feed sector, starting at a 

digression on the epistemological status of structural assumptions in economic theory in gen-

eral. For an abstract of the results of this chapter and the previous chapter refer to section 

1.3.1 above. 

4.1 Turning from a Cost to a Profit Model 

4.1.1 Relative Advantages of Dual Feed Cost and Profit Models 

All available studies on feed component demand are based on a cost function rather than on 

a profit function approach. This suggests itself because of the common focus on the input side; 

compound feed supply seems to be found relatively uninteresting.74 In addition, a cost function 

approach is more convenient if output quantity data is better than output price data, or if only 

output quantities rather than prices are available. Profit maximization yields optimal input and 

output quantities whereas the cost function assumes the quantities of output produced as 

given. In the single-output case, the decision on the optimal output quantity reduces to the 

                                                
74  See e.g. PEETERS/SURRY 1993, BOYD/BRORSEN 1986, MERGOS/YOTOPOULOS 1988, and SURRY/MOSCHINI 

1984. 



 A PROFIT FUNCTION MODEL OF THE COMPOUND FEED FIRM 51 

choice of the point on the production frontier where marginal revenue or price, respectively, 

equals marginal cost; only the decision on how much single output to produce is not covered 

by the cost function.  

Whereas this does not call for a profit function, the picture changes if multiple outputs are 

present:75 the question of level and shares of output quantities cannot be neglected anymore 

because the choice of the output combination and level determines the adequate point of 

evaluation of the demand function derived from a cost function. Since cost-minimizing demand 

x(w,y) derived by Shephard’s lemma depends on output quantities, forecasts are based on ex-

pectations or scenarios of these quantities, which are only accidentally profit-maximizing. In 

contrast, the profit-maximizing demand x(w,p) derived with Hotelling’s lemma uses output 

prices as exogeneous variables (which are preferable as scenario-tools), and the supply func-

tion y(w,p), also derived applying Hotelling’s lemma, endogeneously provides optimal output 

quantities. Therefore, in a sector where products are sold in a competitive market, a profit 

function approach is appropriate.76  

The difference between cost minimization and profit maximization, which also determines 

optimal output quantities, can be shown by analogy to the Slutsky-decomposition, familiar 

from consumer demand theory. It is possible to decompose the profit-maximizing derived de-

mand response to changes in wi and pk in the following way:77 
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with y* denoting the profit maximizing output vector. The first fraction on the right hand side 

of both equations is the cost-minimizing derived demand response to changes in yk and wi, re-

spectively. The second right hand side fraction in the first equation corresponds to the change 

in profit-maximal output caused by a change in that output’s price. In the second equation, the 

effect of a change of an input price on the demand for an input is decomposed into a direct, 

cost-minimizing factor substitution and an indirect, profit-maximizing output substitution ef-

                                                
75  This is the reason why there is no profit function analogy in the consumer demand context; there, only one 

output is produced: utility. 

76  See FÄRE/PRIMONT 1995: 2. 

77  See CHAMBERS 1988: 275 and 132-134 for the single-product version. 
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fect, where demand decreases via the output-decreasing effect of a rising input price. The for-

mer can be visualized as a substitution effect along an isoquant due to cost minimization, and 

the latter correponds to a movement across isoquants associated with the output change in-

duced by the factor price change. 

In the case of the compound feed industry, it seems reasonable to expect considerable influ-

ence of changes in both input and output prices on the profit-maximizing demand and supply 

vector compared to the results of a cost function model. I.e. the magnitudes of the gradients of 

x(w,y) in y and of y(w,p) in w and p must be expected to differ significantly from zero. In favor 

of a cost function approach it could be objected that the compound feed industry has no lee-

way in revenue maximization at their disposal, because the livestock industry determines the 

quantities traded. While this may be true in the short run, since livestock once set up entertains 

a fixed feed demand for an extremely broad price band, livestock production heavily depends 

on feed prices in the long run. Thus, the question of whose elasticities are greater and who 

influences market prices and quantities for compound feed more, respectively, cannot be an-

swered a priori. Empirical evidence would, of course, require the estimation of a profit func-

tion model and a statistical test of the respective null-hypotheses, and cannot be gained using a 

cost function approach. 

4.1.2 Differences Suggesting a Successful Profit Model 

Three differences between the cost and profit model, relevant with respect to the failure of 

the cost function approach, can be distinguished. Two of them follow from the fact that the 

exogeneous variables of the dual profit function are input and output prices rather than input 

prices and output quantities. 

First, the partial derivatives of the profit function for the output variable yield the condi-

tional supply equations rather than marginal cost. This is promising since one – though incon-

sistent – way of reaching estimability of the cost function model only fails because of problems 

in measuring marginal cost,78 whereas supply quantities are available. Derivation for input 

prices leads to conditional demand equations in both cases, which are however not equiva-

lent.79  

                                                
78  See section 3.4.1 above. 

79  See section 4.1.1 above. 
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Secondly, the dual profit function is linearly homogeneous in all its exogeneous variables, 

whereas the dual cost function is generally inhomogeneous in the output variables or homoge-

neous of degree one in both input prices and output quantities in the case of constant returns to 

scale, i.e. homogeneous of degree two at total, respectively. This lack of linear homogeneity of 

the cost function contradicts the possibility to infer from strong separability to an additive 

structure of the behavioral function, which, as shown elsewhere, exists for the profit function.80 

Furthermore, from the outset it foils the plan to find a simple decomposition of the profit func-

tion by Euler's theorem in order to make aggregate non-component cost measurable on the 

other hand.81 Hence, there is enough incentive to work out a profit function model of the com-

pound feed firm. This is the more indicated since, apart from these chances with respect to the 

concrete problems in modeling compound feed behavior, a profit function approach is gener-

ally superior to a cost function approach.82  

But, as a third major difference to the cost function approach, a new strand of problems 

arises since the profit function is not defined for constant returns to scale; the profit maximiza-

tion problem is unbounded in this case. Thus, since the constant returns to scale hypothesis for 

the component micro function cannot be avoided, the whole profit function project finally fails. 

As in the cost function chapter above, "skipping the wrong way" is not favoured for reasons 

which are explained in the programmatics section 1.3.1 above. 

4.2 Structural Assumptions 

After the extensive discussion of the previous chapter it is of course no longer possible to 

assume an innocent perspective and postulate a desired model specification as was undertaken 

in section 3.2 above before carefully examining the adequacy of relevant structural assumptions 

and the functional representation consequences of these. Hence, one proceeds immediately to 

the list of structural assumptions on the profit function, which in any case look quite similar to 

their cost function analogies. The assumption of equal non-component cost-total cost propor-

tions C��� KDV QR DQDORJ\ LQ WKH SURILW IXQFWLRQ FDVH� DQG WKXV ���� LV RPLWWHG� 

                                                
80  See FEGER/MÜLLER 1999. 

81  See section 3.4.1 above. 

82  See section 4.1.1 above. 
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4.2.1 Weak Separability 

Generally, it cannot be inferred from a separable cost structure to a separable profit structu-

re without further considerations. An example is provided by Feger's and Müller's establish-

ment of a CES profit representation of separability in the binary and extended partition, which 

may not be transferred to the cost function for the different homogeneity properties of the cost 

and profit function.83 Their proof is utilized in section 3.4.1 above and in section 4.3.1 below. 

Hence, the relevant equations have to be examined anew. In analogy with the cost function 

approach, weak separability of the compound feed firm's profit function requires checking the 

following six equations for the mutually exclusive and exhaustive sectors w1 (corresponding to 

index set I1) including all component prices, w2 (corresponding to index set I2) denoting all 

non-component prices, and output price vector p (corresponding to index set J):84 
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These assumptions can be justified as follows: 

Π.1 In analogy to C.1, profit maximizing output mix depends on component prices because 

the compound feeds are generally characterized by different component intensities; the 

                                                
83  See FEGER/MÜLLER 1999. 

84  See section 3.3.1 above. 
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entrepreneur will ceteris paribus always substitute away from the compound feed which 

becomes more expensive due to a rising component price. 

Π.2 In analogy to C.2 and in opposition to Π.1, output mix is independent of changes in non-

component prices because processing is the same for all feeds. 

Π.3 Being identical with the justification of C.3 and paralleling Π.2, it is irrelevant for the 

feed mixer to know about price changes for factors which are not components. 

Π.4 In analogy with C.4 and paralleling Π.1, knowledge about an output price change will 

not alter the least-cost recipe for the livestock category-specific compound feed – com-

pound feed cost and profit is nonjoint in inputs –,85 but through the product-price indu-

ced shift in revenue-maximal product mix the component demand shares shift, too, since 

in different compound feeds components are utilized with different intensity.86 

Π.5 The argument is the same as for C.5: processing technology treats all components the 

same so that a component price change is meaningless. 

Π.6 Paralleling C.6, an increasing compound feed price yielding a shift in product mix and, by 

Hotelling's lemma, c. p. an increasing total output causes factor substitution in the non-

component sector. As in the cost function case, to claim separability here would imply 

the denial of economies of scale: the non-component sector is the only place where these 

can be located, because the component sector is, as assumption Π.12 below states, cha-

racterized by constant returns to scale. 

Thus, it is neither possible to establish a complete weakly separable cost function nor a 

weakly separable profit function for the compound feed firm. In both approaches, the output 

and component sector are mutually inseparable so that they could be united in a single sector 

with all kinds of interactions, i. e there is no separability in the extended partition. For both 

approaches, the component and the non-component sector are mutually weakly separable. 

Hence, both the cost and the production model can be called "separable in the binary partition 

in inputs". 

                                                
85  See section 4.1.4 below. 

86  Note that in a single product firm the homothetic compound feed technology would be equivalent with sepa-

rability of components from ouptut price. 
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4.2.2 Strong Separability 

Now consider the three additional equations constituting strong separability for the profit 

function: 
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These assumptions can be justified as follows: 

Π.7 The necessary condition for Π.7 expressing strong separability is satisfied by Π.2 and 

Π.3. Sufficiency is, as in C.7, again implied by the catalyst character of all non-

component activities. 

Π.8 The argument is the same as for C.8. 

Π.9 The argument is the same as for C.9. 

4.2.3 Unity Value of the CES Substitution Parameter 

If, relying on the separability assumptions maintained above, it were possible to establish a 

CES profit representation, a literally additive profit function would require a unity valued CES 

substitution parameter, too. In this case, the profit function entertains a linear relationship be-

tween component and non-component profit micro-functions. As with the cost function, this 

implies a Leontief technology characterized by right-angled isoquants between aggregate com-

ponents and aggregate non-components or no substitution between these aggregates. There is 

argument in favor of this hypothesis in section 3.3.3 above. Thus,  

Π.10 !(y) = 1 

can be maintained. 
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4.2.4 Nonjointness, Homotheticity, and Constant Returns to Scale in Components 

Since the assumptions of production nonjoint in component quantities, homothetic feed 

composition and constant returns to scale in component quantities all correspond to technolo-

gy rather than dual functions, the argumentation in sections 3.3.5 through 3.3.7 applies without 

limitation in a profit function context. Hence, constant returns to scale in component combina-

tion 

Π.12 Y Yx y x y1 10 0, ,� � � �= ⇒ =λ λ  ∀ >λ 0 , 

nonjointness in component quantities 

Π.13 y Yi i= 1 1x� �  ∀ i , 

and, formulated in terms of the profit function, homothetic feed composition in the single pro-

duct case, which is already established by Π.13, 
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are all valid.87 

4.3 Model Specification 

4.3.1 Separability 

While, given the partition established in section 3.3 above, a CES form cost representation 

would not be established even if all equations C.1 through C.9 could realistically be assumed to 

vanish, i.e. if strong separability of the cost function in the binary and extended partition could 

be maintained,88 the opposite is the case in a profit function framework: It can be shown that a 

profit function which is strongly separable in the binary and extended partition in conjunction, 

i.e. Π.1 through Π.9 vanish, assumes a CES structure.89 Then, by the adequate assumption of 

                                                
87  The ordering number 11 is omitted to ease comparison between cost function and profit function structural 

assumptions. There does not exist a profit function analogy to C.11, and the remaining ordering numbers 

refer to the respective analogy. 

88  See section 3.4.1 above. 

89  See FEGER/MÜLLER 1999. 
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unity value of the CES substitution parameter Π.10, justification of a literally additive structure 

of compound feed profit would be possible. But the preceding section reveals that only some 

separability assumptions can be maintained, whereas elsewhere room has to be left for insepa-

rable behavior. Hence, as with the cost function, the quest for a representation of Π.1 through 

Π.9 or, less demanding, a profit structure that does not violate maintained inseparability, is 

indicated. 

The first observation to be made is that, from the equivalence of vanishing Π.1 through Π.9 

and a CES structure of the profit function, it follows that less than all nine equations vanishing 

render the establishment of an additive profit structure impossible. It seems to be not possible 

to find a genuinly economic argument that makes this result plausible with respect to economic 

intuition. Algebraic intuition can be approached by the hint that the proof heavily relies on the 

symmetry of the separability assumptions and the symmetry of the feed output, non-component 

input, and component input sector with respect to homogeneity of degree one in all variables, 

so that both an incomplete list of separability assumptions and asymmetric homegeneity, e.g. 

with the dual cost function, renders the proof impossible.90 

The analogy of Π.1 through Π.9 and C.1 through C.9 suggests an analogous proceeding: 

since, just as in the cost function case, a profit structure satisfiying all nine equations and thus 

the necessary condition for equivalence could not be found,91 the two profit function relatives 

of the cost structures proposed in section 3.4.1 above are examined. 

The first alternative, as in the cost function case, is more restrictive than admissible since it 

inadequately implies a separable Π.6: 

                                                
90  On the one hand, an algebraic theory like microeconomic theory is not more than a simplifying model based 

on some few axioms, trying to depict an infinitely complex world. On the other hand, like algebra itself, 

such a model leads its own life. For example, it is not possible to make plausible the astonishing properties 

of the number � RU PRVW UHVXOWV RI WKHRUHWLFDO SK\VLFV� &RQVLGHULQJ PLFURHFRQRPLF WKHRU\� DQ H[DPSOH IRU

an unintuitive – though at least not contraintuitive! – result is the proof for the additive structure of a profit 

function which is equivalent with strict separability. If one decides to utilize microeconomic theory, it is e-

ventually not relevant if a proven statement is intuitive or not: a formal proof does not need any intuitive 

support. In addition, an unintuitive result is not alarming in principle: if our intuition would suffice to un-

derstand all phenomena, theory would be superfluous. 

91  As in the cost function case, there is an additive structure that satisfies the necessary condition for equiva-

lence. But, proven in FEGER / MÜLLER 1999, sufficiency for an additive structure requires Π.1 through Π.9 

to vanish, which is not the case, so that additivity is generally rejected. 
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The possibility to interpret π2 as micro cost function c2 is provided for by the duality between 

profit and cost function: if a profit (micro-) function is independent of output price, i.e. an in-

put price sector is weakly separable from p, the resulting input price aggregate can equivalently 

be expressed as profit or cost function or internal price of the aggregate.92 Applying Hotteling's 

lemma and the chain rule, the derived compound feed supply and component demand equati-

ons assume the form  
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Hence, both supply and component demand are, as with the cost function, not independent of 

non-component prices. The interpretation is completely analogous to the cost function case 

and is thus not reiterated.93 

Now, consider the plan to measure c2 as a whole: In analogy to the first trial in the cost 

function context, one could, relying on the primal profit function, claim that c2 is revenue mi-

nus total profit minus component expenditures. But the objections are analogous, too: on the 

one hand, total profit is not observable in the monthly frequency,94 and, on the other hand, the 

correspondence between primal and dual functions is overtaxed here again, which becomes 

obvious in the specific structure of Π** that aggregates "component profit" Π1 and "non-

component price" c2 in an arbitrary, not necessarily additive way.  

In contrast, the second approach to measurability, solving Euler’s Theorem for c2, allows 

one more step than in the cost function context before it fails: Π is a homogeneous function 

and thus allows for the application of Euler's theorem. Set up in terms of prices, Hotteling's 

lemma reveals that the result is exactly the primal profit definition, so that there is nothing gai-

                                                
92  See CHAMBERS 1988: 154. 

93  See section 3.4.1 above. 

94  See chapter 2 above. 
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ned with regard to the first trial. But Π is not only a linearly homogeneous function of (p,w), it 

is also a linearly homogeneous function of Π1 and c2, which are both valid profit functions, and 

thus itself linearly homogeneous functions of their respective variables. Now, by Euler's theo-

rem in its classical version for homogeneity of degree one, 

 c
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This is a progress with regard to the first way because c2 is consistently explained by other 

terms. But these cannot be observed: in the numerator, all terms are known apart from total 

profit, which could substitute Π**. As in the cost function case, there is only firm-specific data 

on total profits, cumbersome to collect and published in yearly frequency by the bigger com-

pound feed producers, rather than monthly sector aggregates. The situation is even more de-

sperate with the denominator: there is no data on the profit change induced by changing non-

component price, and there is no highly correlated instrument available by which monthly data 

could be reasonably simulated. 

The third trial is not profit function-specific, and thus its rejection in section 3.4.1 above 

does not have to be repeated. 

As with the cost function, a partial solution can be obtained by considering share equations: 
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Again, the respective structures are merely expressions of structural assumptions maintained 

above: by Π.3, component ratios do not depend on non-component prices, and, by Π.2, supply 

ratios do not depend on non-component prices, either. The inferential potence of share equati-

ons derived from the profit function has to be judged more critically than in the cost function 
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case: only component mix and supply mix can be forecasted, and level forecasts are rendered 

impossible because, in contrast to the cost function, total production level or firm size is endo-

geneous. This shortcoming is by far compensated for by an advantage with respect to estimabi-

lity: rather than marginal cost, of which measurement depends on the validity of the price-

equals-marginal cost rule, the output share equations show supply quantities on the left hand 

side, which are available. Unfortunately, this promising strand comes to an end at another point 

which is demonstrated in section 4.3.2 below. 

To summarize the first strand of argumentation: up to the current state of affairs, inadequa-

tely giving up inseparability of Π.6 at least helps to establish a system of estimable supply and 

demand share equations. Merely the project to formulate a system of estimable supply and de-

mand equations fails because of the impossibility of evaluating either w2 or c2. 

Now, turn to the second alternative. A profit structure consistent with all maintained insepa-

rable relations, but leaving Π.2 and Π.7 unrestricted in spite of these being supposed to vanish 

is 

 Π Π Π Πw w p w p w p1 2 1 1 2 2, , , ,*, g� � � � � �� �= . 

The decentralized decision process is depicted by a macro profit function Π* which optimizes 

the outcome of two sub-decision processes: component profit function Π1, which determines 

the profit-maximizing component and compound feed combination relying on component and 

compound feed prices exclusively, and non-component profit function Π2, where the optimal 

non-component combination is calculated relying on non-component prices. In contrast to the 

first alternative, Π2 adequately considers an aggregate output price and only ignores the 

question of output mix. Both micro-functions share an influence on firm size, Π1 on a di-

saggregate level and Π2 on an aggregate one. In analogy with the cost function case, this speci-

fication allows for non-constant returns to scale.95 Application of Hotelling's lemma yields 
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95  But see section 4.3.2 below. 
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Clearly, these equations are also inestimable because Π2 is not measurable, just as c2 above is 

not measurable. But, in contrast to the first alternative, constructing share equations does not 

cure the inestimability: whereas the component demand share equations of the profit structure 

considered here are equivalent to the ones of the first alternative (since the exterior derivative 

cancels itself out because of its independence of w2), supply shares continue to depend on im-

measurable terms: 
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To summarize the second alternative: in contrast to the first alternative, the proposed profit 

structure is theoretically admissable, but, in contrast to the former at least in the share equati-

ons case, not estimable: both the derived supply and component demand functions and the 

respective share equations still depend on non-component prices, which are not available. 

4.3.2 Nonjointness, Homotheticity, and Constant Returns to Scale in Components 

As in the cost function case, separability assumptions alone render the estimation of a con-

sistent model, namely the second cost function alternative, impossible because dependence on 

unavailable variables cannot be overcome, and the same is the case for the arguably incon-

sistent demand and marginal cost equations and supply and demand equations of the first cost 

function alternative. However, both the cost and the profit approach, considering separability 

assumptions alone but neglecting C�� RU I��� UHVSHFWLYHO\� OHDYH WKH RSSRUWXQLW\ WR HYDOXDWH

share equations. In both cases the reason why this last hope is also disappointed is the property 

of constant returns to scale. In the cost function chapter, this was anticipated in section 3.4.1 

on separability to provide an additional motivation for the second alternative: it is not exposed 

to the problem caused by the constant returns to scale and fails for separability reasons alone. 

Here, in a profit function framework, the situation is different: Both alternatives, be it in the 

level or share version, are ruled out by constant returns to scale in component quantities, as 

will be shown immediately.  
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First, consider nonjointness in component quantities: the multi-output profit function, more 

precisely the micro function which depends on component quantities, can be written as the 

plain sum of all single-output profit functions, where each of these contains the respective out-

put price pi alone as an argument rather than the vector of all output prices p.96 Thus, by 

Π.13,97 component cost becomes 

 Π Π1 1 1 1

1

w p w, ,� � � �=
=
∑ i i
i

m

p . 

Homotheticity, in analogy with the introduction of output aggregator g in non-component 

profit Π2 in section 4.3.1 above, is equivalent to input-output separability of the profit func-

tion. A component profit function representating Π.14 is 
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Substituting for Π i
1  in the nonjoint component profit function yields 
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Now, the assumption of constant returns to scale in component quantities, Π.14, comes into 

play.98 This inarguable property of the subset of technology depicting the combination of com-

ponents to compound feed implies that Π1 is not well-behaved:99 In contrast to the cost mini-

mization problem (or the revenue maximization problem), the profit maximization problem is 

unbounded for a linearly homogeneous technology, and thus the profit function is not defined 

in this case. To exemplify this result with the decentralized optimization of the compound feed 

                                                
96  See CHAMBERS 1988: 296. 

97  See section 4.2.3. above. 

98  See section 4.2.3 above. 

99  In a separable profit structure, not only the overall optimization function, i.e. the macrofunction, must be 

well-behaved: every microfunction is required to satisfy all properties of a profit function, and a solution to 

the optimization problem must exist. Otherwise, a decentralized optimization would be impossible: if only 

one of the micro- or macrofunctions is ill-behaved or not defined, the whole optimization problem is ill-

behaved or not defined. 
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firm: the decider optimizing Π1, i.e. the "component profit maximizier", is not able to deter-

mine optimal component demand and optimal compound feed production simultaneously be-

cause doubling supply and component demand would always double profit – by definition of 

constant returns to scale.  

A solution can only be obtained if information from outside the constant-returns-to-scale 

micro function enters the optimization procedure: firstly, it obviously suffices if part of the 

optimization problem is exogeneous to the respective micro function – in this case, the micro 

profit function reduces to a cost function where revenue maximizing output quantities are exo-

geneous, or to a revenue function with exogeneous cost minimizing input quantities, respec-

tively. Secondly, the unboundedness is overcome if firm size is fixed, i.e. if a total amount of 

compound feed quantity or a total amount of component demand, respectively, taken as firm 

size measure, is given. But this scenario would always result in a corner solution: the complete 

firm output would consist in the most profitable output with zero quantities of all other out-

puts, which is obviously not the case in reality. The question of how the compound feed firm 

actually manages the profit maximization problem – and no one could seriously deny that it 

does – leads to a third approach. However, this approach is beyond the scope of this study, 

since it includes considerations about the structure of the underlying technology and, as is not 

clear how these should be mirrored in the structure of the profit function, this is therefore 

merely sketched in the outlook section 4.4.3 below. 

4.4 Towards an Application 

Possible routes towards an application of a behavioral model of the compound feed industry 

or towards the development of a both theoretically consistent and simultaneously estimable 

model, respectively, are approached from the bottom: first, the consequences of the failure of 

establishing both consistent and estimable models are analyzed theoretically in section 4.4.1. 

The discussion is meant to provide a general treatment of structural assumptions in the context 

of an axiomatic approach to applied economics. Then, section 4.4.2 gives a final evaluation of 

the developed models, whereas section 4.4.3 concludes the modeling part of this study with a 

discussion of possible ways out. 
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4.4.1 The Epistemological Status of Structural Assumptions 

There are four possible methodical functions that motivate maintaining structural assumpti-

ons, all of which play a role in this study. First, structural assumptions save estimation parame-

ters and thus degrees of freedom, so that statistical significance is enhanced and, at the margin, 

a model is made estimable in spite of scarce data. This is e.g. always true for the separability 

assumption implied by data aggregation. Secondly, some effects (like the allocation of compo-

nents on compound feeds) can only be calculated if a specific functional structure is assumed 

(here outputs being nonjoint in input quantities).100 Thirdly, some models (like the ones in this 

study) cannot be estimated at all without some structural assumptions (here separability) due to 

asymmetric data availability.101 Fourthly, examining the adequacy of a structural assumption 

may be an end in itself in order to gain general knowledge that can be presupposed in future 

studies. Another distinction can be made with regard to the justification of a structural assump-

tion. In some cases, a structural assumption is valid a priori. Consider the following example: 

given that inefficiency can be excluded,102 the assumptions of constant returns to scale in com-

ponent composition and nonjointness in components maintained in the present models are true 

by logical necessity; the constitution of a compound feed as a mixture of components implies 

their validity, and neither is an empirical test required to establish this result, nor can it be sta-

tistically rejected.  

But in most cases, structural assumptions are, like economic theory as a whole and thus all 

deduced hypotheses, of empirical nature. In contrast to conceptually necessary structural as-

sumptions which are true whatever purpose they serve, the methodical function of a structural 

assumption which cannot be validated without empiry – or, formulated properly within the 

deductionist approach, a structural assumption that is falsifiable103 – has important implications 

on its epistemological status.104 In some cases, it is possible to conduct a statistical test on the 

adequacy of the assumption, in other cases not. If a test is successfully passed, the assumption 

                                                
100  See section 3.2.2 above. 

101  See section 3.2.1 above. 

102  See section 3.1 above. 

103  See POPPER 1961: 40-41 

104  For a general treatment of epistemologial aspects of economics and social sciences, respectively, see 

WALLACE 1971. 
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is justified as well as the whole model. Ironically, an assumption thus justified is superfluous if 

the first or third methodical function is the motive; testability indicates that there is no need to 

introduce it. But a statistical test is principally impossible if the model is inestimable without 

the assumption, which would, in case of a successful modeling, e.g. be the case with the sepa-

rability assumptions in this study allowing the neglection of non-component price variables.  

Such assumptions exhibit a queer in-between status: on the one hand, they do not follow 

from economic theory like the homogeneity or curvature property of dual behavioral functions, 

i.e. are not premises of the model that, in conjunction, are the object of the epistemological test 

implied by any application of a theory, and, on the other hand, they are not part of the empiri-

cal hypothesis that is tested with statistical means. They are empirical hypotheses, but stay u-

nexamined. Rather, justification is sought outside the model. In the best case, justification is 

provided by other scientific studies, ideally significantly more than one, that all unambigiously 

support the adequacy of the respective assumption, i.e. that satisfy the fourth methodical func-

tion of maintaining structural assumptions, and there are no arguments against the adequacy of 

maintaining the analogy with the model in question. But in many instances, this justification is 

not available because a test of the respective assumption is generally excluded, if, for example, 

relevant data is never available.105 Then, plausibility considerations and pre-theoretical expe-

rience with the object of the model are commonly drawn upon. Of course, this is neither theory 

proper nor empiry proper.  

The implied epistemological problem is implied by the influential Duhem-Quine-thesis: if a 

hypothesis is rejected, it is impossible to infer which premise is responsible for failure.106 Ac-

cording to this holism of justification, a model can only be rejected as a whole. Thus, if, as in 

the present study, a, strictly speaking, unjustified structural assumption enters the model, 

neither any other empirical hypothesis nor the underlying behavioral theory can in fact be 

tested. It follows that, in order to falsify a hypothesis or a theory, the model must at first be 

made falsifiable by reducing the number of open questions to unity, namely the question of 

whether the theoretically consistent model is capable of fitting the data.107 Since this is impos-

sible in the present study, all possible statistical inferences drawn move on thin epistemological 

ice. 

                                                
105  See above. 

106  See QUINE 1981. 

107  See section 6.2 below for another instance where falsifiability of the maintained hypotheses is considered. 
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The situation that all structural assumptions utilized in a model can be maintained relying on 

other – proper – scientific studies where in doubtlessly analogous cases the respective assump-

tion was empirically accepted, can be expected to be encountered extremely rarely. The practi-

ce, and also the practice of the study at hand, is to be content with less, namely the epistemo-

logically "soft" stage of justification of structural assumptions which correspond to "experien-

ce" with the object of the theory, i.e. pre-theoretical knowledge. In the framework of a scienti-

fic theory like e.g. neoclassical economic theory, any "knowledge" emanating from a source 

different from the respective scientific theory has to be considered non-theoretic or pre-

theoretic, whatever sophistication of the human mind has brought it about, and in whatever 

number of cases it has turned out to fit the phenomena.  

With respect to a proper scientific practice, the classification of information as pre-theoretic 

implies that it is irrelevant. But since this kind of knowledge often proves to be quite close to 

knowledge gained scientifically, such a pragmatic maintainance can be seen as a good proxy. 

Of course, the proxy use of soft knowledge is only justifiable in an applied context where a test 

of an empirical hypothesis is not considered, not to talk of an epistemological test of the under-

lying theory.108 For applied purposes, structural assumptions which are maintained only relying 

on pre-theoretic knowledge can be expected to increase the precision of forecasts and are thus 

adequate since a theory or hypothesis, even if not truly justified, contains information that is, 

on average, more likely to be true than the null hypothesis of white noise, i.e. the absence of 

directed causal relationships which could be detected and modeled for use as a basis for fore-

cast. However, even if a theory is closer to the truth than assuming white noise, the introducti-

on of theory or structural assumptions need not necessarily result in an increasing forecast pre-

cision.109  

Applied economic practice takes even one step more: pre-theoretic knowledge is commonly 

used as a posterior credibility benchmark for statistically accepted models, i.e. somehow rated 

higher than scientific knowledge – because pre-theoretic experience shows that in many cases 

reliability of pre-theoretic knowledge is at least as high as the reliability of scientifically genera-

ted knowledge. One had better refrain from estimating weakly founded models for forecast 

                                                
108  This must not be interchanged with the use of pre-theoretic knowledge in inventing theories or models: the 

genesis of a scientific theory or an empirical hypothesis is not exposed to any criteria; it is only the validity 

of a theory or hypothesis that is the object of epistemological criticism. 

109  See section 6.2.4 below. 
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purposes in order to avoid the hypocritical acceptance of an estimation result which matches 

intuition where a result contradicting intuition would be rejected. If pre-theoretic knowledge is 

rated this highly, which may be perfectly appropriate with regard to the ends pursued, a scienti-

fic study is useles – except maybe to take advantage of scientific devoutness. In contrast, the 

benchmark use of pre-theoretic knowledge during the construction process of a scientific mo-

del, noting the crucial difference between genesis and validity of a theory or hypothesis with 

respect to justification, needs no defense. 

4.4.2 Judging the Developed Feed Cost and Profit Model Pragmatically 

Summing up the problems encountered, it is clear that an epistemological test neither of e-

conomic theory nor of the deduced empirical hypotheseis nor of any structural assumption is 

possible. The only open question is whether an application of one of the inconsistent models 

could be of heuristic benefit. There are three candidates for an application. Consider the follo-

wing table:  

 

Specification Consistency Estimability 

   desired cost model: demand and marginal cost no no+ 

   first cost model: demand and marginal cost no no 

   first cost model: share equations no no+ 

   second cost model: demand and marginal cost yes no 

   second cost model: share equations yes no 

   first profit model: supply and demand no no 

   first profit model: share equations no yes 

   second profit model: supply and demand no no 

   second profit model: share equations no no 

 

The desired cost model specification, proposed in section 3.2 above, is subject to the same 

measurability problem as the first cost function alternative developed in 3.4.1 above: it implies 

constant returns to scale and thus renders marginal cost measurement by the optimization rule 

"price equals marginal cost" impossible. However, and this is denoted by the plus sign, one 
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could of course ignore this insight and make the totally inconsistent desired cost specification a 

stage more inconsistent by taking the measured price as marginal cost. The same could be per-

formed with the share equations of the first cost model, which are equivalent to the share equa-

tions of the desired cost function in any case. I.e. these two "no" judgements corresponding to 

measurability could be turned into a "yes" by making the respective "no" judgement cor-

responding to consistency still more determined. The third candidate for an estimation is the 

first profit function alternative in its share equations variant. It is the only model which can be 

estimated without thereby increasing the degree of inconsistency. However, the consistency 

violation implied by the profit function approach is virtually the same as the violation implied 

by erroneously interpreting price as marginal cost: the unboundedness of the profit maximizati-

on problem in the case of constant returns to scale. 

Even this level of inconsistency can be surpassed: one could consider estimating some selec-

ted equations rather than the complete system of equations derived from the cost or profit 

function, respectively. This suggests itself for the second cost model in its share variant since 

component demand shares are both consistent and estimable, and merely the marginal cost 

share equations are inestimable because they alone depend on the immeasurable non-

component cost. But estimating an incomplete system of derived behavioral functions implies 

that the inter-equation restrictions expressing the properties of a well-behaved cost or profit 

function, respectively, cannot be accounted for. Hence, the inconsistency attacks the properties 

which incorporate economic theory into behavioral functions rather than structural assumpti-

ons of which the validity is generally limited to the respective empirical hypothesis. However, 

the specific situation of the study at hand is different since the above three candidates for in-

consistent estimablity all suffer from an inconsistency that touches economic theory, namely 

the unboundedness of the profit maximization problem implied by constant returns to scale: 

since the constant returns to scale property is a priori valid in the case of component combina-

tion,110 the reason for inconsistency of the three candidates is not conditional to empiry, and 

the result that the profit function is not defined in such a case violates the final justifications of 

economic theory as basically as the estimation of an incomplete system. 

Not even being in the position to estimate a model relying extensively on pre-theoretic pre-

mises without violating both maintained structural assumptions and economic theory, i.e. lea-

ving behind everything that could add structure to "blind" real world data, one must doubt that 

                                                
110  See section 4.4.1 above. 
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an estimation, even given the availability of excellent data, would yield results which could 

justify the efforts to do so. Of course, as section 4.4.1 above concluded, the results of incon-

sistently estimating one of the proposed models are at least likely to lie closer to the truth than 

white noise, but the reference system for our forecasts and assessments is not white noise but 

our pre-theoretic knowledge, our intuition. If this is so, one has to expose oneself to the 

question of whether one would reject a model with contra-intuitive result, and in this case re-

frain from estimation. 

4.4.3 Outlook 

There are two possible strands to escape this extremely uncomfortable result: on the one 

hand, one could try to develop a better model which is capable of yielding consistent estimates, 

given the limited data availability. Directions of further research are proposed immediately. On 

the other hand, one could attempt to overcome the limited data availability. Considerations on 

this topic conclude the model building part of this study. 

Model-building progress could start from the observation that the compound feed firm is 

doubtlessly trying to maximize its profit. Consequently, there must be a clue to get around the 

unboundedness of the component combination micro profit function without finishing up with 

corner solutions.111 If one looks at the phenomena, the question of an optimal firm size is clear-

ly connected with disadvantages of size in the non-component sector. Moreover, it can be 

shown that the cost of transportation plays a prominent role in this question. The output mix 

clearly hinges on the transport situation: depending on the location of the compound feed 

plant, there is a different number of customers with different respective demands for different 

compound feeds inside each iso-transportation cost circle around the plant. The optimal supply 

quantity for each compound feed is – nonjointly – determined as total compound feed demand 

of the livestock producers that are contingently located inside the frontier where marginal cost 

of the compound feed producer equals marginal cost of the cheapest concurrent, where margi-

nal cost is rising proportionally to the distance from the plant. Marginal cost may of course 

vary greatly along this line, depending on where the next concurrent in each direction is loca-

ted.112  

                                                
111  See section 4.3.2 above. 

112  Another possibility to escape a corner solution of the profit maximization problem would be the assumption 

that an advantage in marketing is connected with a multi-feed supply. But the implied hypothesis that custo-
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But how can one express this in a profit function? The classical structural assumptions, the 

relevant ones being listed in section 4.2 above, are not affected by this insight: output mix is 

still weakly separable from non-component prices because a change of the transportation price 

affects all compound feed quantities the same, as argued in section 4.2.1 above, if, in the ab-

sence of a reasonable alternative for all compound feed producers, it is assumed that the pro-

ducers of different livestock categories are evenly distributed. Thus, the weakly separable pro-

fit function specified as second alternative above is correct. But if this structure is correct, the 

component micro profit function is clearly characterized by constant returns to scale and thus 

not defined. As it stands, it must be concluded that there is a factor of production, namely the 

spatial demand quantity distribution around the plant, which plays a crucial role in the determi-

nation of profit maximizing supply, that cannot be depicted in a profit function since it lacks a 

price or a meaningful instrument for a price promising an answer to the question of the density 

of demand for each compound feed in terms of prices. This is either a challenge for new mode-

ling efforts, or the end of the project of depicting the compound feed firm's behavior in utili-

zing a profit function. 

It is obvious that a successful profit function approach accounting for the behavioral deter-

minants of the compound feed industry identified above would increase the problems which 

result from the unavailability of non-component cost data, because a disaggregation of non-

component cost could no longer be avoided. At least for total non-component cost, however, 

one could consider generating monthly data using programming techniques or aggregating it 

pragmatically from diverse non-component information which is available. If it were possible to 

aggregate e.g. indices for wages, energy cost, capital cost, industrial equipment, et c., relying 

on cost shares extracted from the balances of selected compound feed enterprizes, one could 

estimate the consistent cost model developed as a second alternative in section 3.4.1 above, 

using the resulting index as an instrument for C2. Depending on the correlation of such an in-

dex with the true non-component cost, one could probably expect to establish a reasonable 

forecasting tool. 

Another approach which would utilize generated data corresponds to the proposition made 

in section 3.4.1 considering the first cost function alternative: if the compound feed firm was 

                                                                                                                                                   

customers want to buy all animal-specific feeds from one hand and are willing to pay for this is unlikely for 

two reasons: first, many customers, and in particular the significant ones, are specialized on one livestock 

category. Secondly, farmers seem to be quite marketing-resistent: marketing expenditures in the compound 

feed industry are said to be extremely low. 
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defined excluding transportation activities, a variable price depending on the distance from the 

respective plant could be assumed. Such prices would have to be generated out of aggregate 

sectoral data additionally utilizing information about number, size distribution and spatial dist-

ribution of compound feed plants and transportation cost. However, feed quantities would be 

exogeneous in such a cost function model, and the arguable assumption of an inseparable C.6 

would be implied. 

Finally, after the experience gathered in this study, and on the basis of working through o-

ther studies on similar topics, a proposition shall be formulated which goes beyond the specific 

modeling efforts undertaken here: it seems highly desirable to make out a checklist-like presen-

tation of known results about behavioral assumptions and the implied functional structure so 

that the applied researcher is able to properly build models without becoming a methodologist 

himself, which is possibly neither his passion nor his comparative advantage. The published 

material is commonly characterized by a formal level which requires the reader to go deeply 

into mathematical syntax. While this surely enhances understanding, it inhibits a broader distri-

bution of the knowledge. A textbook listing hard and fast rules – which exist! – for standard 

applications would surely be of great benefit for economic practice. 



 

Part II: Functional Forms, Flexibility, and Regularity 

 

5 Theory and Systematics of Flexible Functional Forms 

In spite of the failure of the project to establish a behavioral model of the compound feed 

industry which is consistent with economic theory and evident structural assumptions and at 

the same time estimable on the basis of the available data, the discussion of which constitutes 

the first part of this study, a second part on the theory of flexible functional forms is added. 

While it is superfluous to consider functional specifications with regard to the unsuccessful 

modeling efforts, the analysis of the theory of flexible forms, which was already undertaken 

before it became obvious that it would not be finally utilizable in this study, yields a methodi-

cal progress which is possibly of importance for applied economics in general. It implies a 

change in the standard specification and estimation procedure for applied microeconomic 

models, and this procedure could be utilized in future studies with the same goal as the one in 

hand if the modeling problems can be overcome. 

There are two ways of quantifying economic behavioral models like the ones developed in 

the preceding sections: a normative programming approach simulating the production pro-

cess, or a positive econometric approach measuring the actually observable behavior of mar-

ket participants with statistical methods. In this work the econometric approach is favored 

because there the desired model parameters are derived from empirical data rather than a prio-

ri postulated. 

The first step of the empirical application or validation, respectively, of an economic mo-

del consists of the postulation of a specific functional form for the data generation process. 

Because every dual behavioral function like a cost, revenue, or profit function, corresponds 

with exactly one primal technology, the assumption of a definite cost or profit function com-

prises the decision for a definite structure of the implicit technology. This decision is necessa-

rily connected with restrictions: there is a trade-off between universality with complex func-

tional forms and great demands on the data on the one hand and tractability with simple func-

tional forms and many unwanted restrictions on the other hand. The estimation of e.g. a CES 

production function implies a homogeneous technology with constant elasticities of scale and 

size and constant substitution elasticities in the entire domain, which are furthermore equal 

between all factors. All results of statistical tests are valid only under the assumption that the 
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postulated model is valid; a rejected test for e.g. concavity in a CES-estimation does not ne-

cessarily imply that the examined data is inconsistent with a concave technology – the data 

could simply be inconsistent with the CES specification because the assumption of equal and 

constant substitution elasticities is not supported by the data.113 This reveals how crucially the 

quality of the estimation results depends on the choice of functional form. It is now a question 

of specifying functional forms that (with descending importance)114 

1. can provide information about all economically relevant aspects of the examined pro-

cess and include no, or as few as possible, unwanted a priori restrictions, i.e. are fle-

xible, 

2. are a priori consistent with economic theory to the greatest possible extent, 

3. let flexibility and theoretical consistency apply to as large a domain as possible, 

4. are easy to estimate with common multivariate estimation procedures, or, highly corre-

lated with this requirement, are estimable in a statistical framework that is theoretically 

well-founded, 

5. are parsimonious, i.e. have no more than the minimum number of parameters needed to 

maintain flexiblity, for superfluous parameters increase multicollinearity problems and 

reduce degrees of freedom, 

6. are robust towards changes in variables not accounted for in the model to allow intra-

polation and extrapolation even under uncertain conditions, 

7. and contain parameters that are easy to interpret, i.e. allow the derivation of elasticities 

in a simple way. 

This and the two following chapters give a systematic overview of flexible functional 

forms. The focus will be on the dual profit function because it is the most general dual beha-

vioral function, and because it best meets the needs of the present analysis. In spite of that, 

flexible forms for cost functions are also considered since the cost function approach is the 

most widespread in literature. In addition, this broader view allows one to showcase the gene-

ral character of the presented systematics by comparision on the one hand, and to work out 

specific differences between the approaches and to evaluate them in view of their possible 

applications on the other hand. 

                                                
113  See FUSS/MCFADDEN/MUNDLAK 1978: 223. 

114  See FUSS/MCFADDEN/MUNDLAK 1978: 224 – 225; see LAU 1986: 1520. 
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Rigorously inductive, this chapter starts with fundamental theoretical considerations that 

only become clear if the reader has a vague idea of what a flexible functional form looks like. 

If this is not the case, he should leaf through section 5.2 and have a look at the Generalized 

Quadratic before exposing himself to section 5.1. In addition, it is recommended to take note 

of the programmatic introduction and the abstract of results of the second part of this study 

given in sections 1.2.2 and 1.3.2, respectively, because, with respect to the broadness of the 

material covered in the next three chapters, it is helpful to remain constantly aware of the in-

tention followed throughout the exposition. 

5.1 The Concept of a Flexible Functional Form 

5.1.1 Definition 

A functional form is said to be flexible if its shape is only restricted by the requirements of 

theoretical consistency. I.e. it must be possible to choose a set of function parameters such 

that every derived parameter of interest, for example every elasticity, is capable of assuming 

an arbitrary theoretically consistent value at a certain point in the variable space: limitations 

of the magnitude of parameters or interdependencies between these may only exist subject to 

the known properties of the respective function. In a production economics context this ab-

sence of unwanted a priori restrictions with respect to all desired parameters is illustrated by 

the metaphor of ”providing an exhaustive characterization of all (economically) relevant as-

pects of a technology“. 

The concept of flexibility is commonly associated with a special case of the above general 

definition that is more precisely labelled ”second order flexibility“115 since in most applicati-

ons the parameters of interest are own and cross price elasticities which are descendant from 

the second order derivatives of technology functions or behavioral functions like dual cost or 

profit functions.116 Formally, let F(α;q) be an algebraic form for a real-valued function with 

variables q and a vector of unknown parameters α. This function F shall approximate function 

value, gradient and Hessian F F F, ,′ ′′  of an unknown function 
~
F q� �  at an arbitrary q . Then, 

flexiblity of F implies and is implied by the existence of a solution α q ; , ,F F F′ ′′� �  – the ver-

                                                
115  Sometimes, second order flexibility is labelled "Diewert-flexibility" after the inventor of the first functional 

form to exhibit this property, the Generalized Leontief. 

116  See LAU 1986: 1540 and DIEWERT 1973. 
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tical bars denote the numerical value of the respecive terms, determined at q  – to the follo-

wing set of equations 
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under certain consistency conditions on variables q and possible values F F F, ,′ ′′  that depend 

on which behavioral function F shall represent. If e.g. F is a cost function, the solution is sub-

ject to non-negativity of q ; ,F F ′  and semi-definiteness of ′′F  such that F F= ′q  and 

′′ =F q 0 .117 In other words: for an arbitrary vector of exogeneous variables q , it is possible 

to find a vector α such that the values of the function, its gradient and its Hessian matrix are 

equal to some F F F, ,′ ′′ , where the set of F F F, ,′ ′′  for which this is true includes all possi-

ble theoretically consistent values. Consider the following figure: 

 set of all possible α 

set of all α theoretically consistent for q  set of all α theoretically inconsistent for q  

set of all theoretically inconsistent F F F, ,′ ′′  set of all theoretically consistent F F F, ,′ ′′  

set of all possible F F F, ,′ ′′  (Figure 1) 

The set of all possible F F F, ,′ ′′  – the set where each element of scalar F , vector ′F , and 

matrix ′′F  can assume arbitrary values between minus and plus infinity – is restricted by e-

conomic theory which yields the set of F F F, ,′ ′′  that are consistent with the properties of the 

respective behavioral function, the set B. This restriction implies a corresponding restriction 

of the set of all possible α because some α produce a theoretically inconsistent F F F, ,′ ′′ , 

where the restriction on α is different for every q  since F of course depends on the value of 

the variables. The set of α that satisfies this restriction is labelled A. Flexibility means that for 

                                                
117  See LAU 1986: 1540. 

A 

B 
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any element of B there exists a parameter vector α such that, at q , 

F F F Fα α; , ;q q� � � �= ∇ = ′  and ∇ = ′′2 F Fα ;q� � . I.e. a subset of all possible α surjectively 

maps into the set of theoretically consistent function values.  

Consider the counter-example of a Cobb-Douglas cost function: at any q , the set of α that 

yields consistent F F F, ,′ ′′  is the same – any α whose elements sum up to unity cannot pro-

duce invalid outcomes, and if α fails to satisfy this condition this results in inhomogeneous 

values. But only such F F F, ,′ ′′  can be produced that are consistent with unity elasticities of 

substitution. This subset of all valid F F F, ,′ ′′  is denoted by the shaded area C in the figure 

above, and the mapping relation is exemplified by the longer arrow. The shorter arrow is not 

available with a Cobb-Douglas model; the mapping relation from the set of all admissable α 

to the set of all valid F F F, ,′ ′′  is not surjective, and thus the Cobb-Douglas model is not 

flexible. 

In this framework, a flexible functional form can provide a local second order approxima-

tion of an arbitrary function, either formulated as differential approximation or as Taylor se-

ries or numerical approximation, and hence it is called ”locally flexible“.118 The local appro-

ximation property of flexible functional forms is often referred to as the property constituting 

flexibility, and it is the historical starting point of the theory of flexible functional forms.119 

But the local approximation view of a flexible functional form has shortcomings, as will be-

come apparent in sections 5.1.2 and 5.1.3 below, where a superior alternative notion of a fle-

xible functional form is presented. 

In a straightforward, degrees-of-freedom-saving application of the given concept of second 

order flexibility, each relevant aspect, i.e. each level-, gradient- and second derivative-effect is 

assigned to exactly one parameter which is associated with the respective variables: the level 

parameter standing alone, the gradient parameters associated with the respective first order 

variable, and the – as one might say – Hessian-parameters associated with the second order 

terms, i.e. squared variables or the interaction terms containing two first order variables.120 A 

functional form cannot be second-order-flexible with fewer parameters, and thus the number 

of free parameters provides a necessary condition for flexiblity. For the standard case of a 

                                                
118  See CHAMBERS 1986: 160-168 and FEGER 1995: 138-139. 

119  See DIEWERT 1974: 113. See DIEWERT 1974: 159ff. for tests for flexibility. 

120  Although more than one parameter is involved in the calculation of substitution elasticities, there is one pa-

rameter that plays a more important role than the others. 
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single-product technology with an n-dimensional input vector, a function exhaustively charac-

terizing all of its relevant aspects should contain information about the quantity produced, all 

marginal productivities, and all substitution elasticities. Hence, there is one level effect, n 

gradient effects, and n2 substitution effects. The latter are symmetric so that, beside the main 

diagonal with n elements, only half of the off-diagonal effects are needed, i.e. 1
2 1n n −� � . The 

number of effects an adequate single-output technology function should be capable of depic-

ting independently of each other and without a priori restrictions amounts to a total of  

1
2 1 2n n+ +� �� � , and it follows that a valid flexible functional form must contain at least that 

number of independent parameters.121 In the multiple output case, there are m outputs rather 

than one. Consequently, there are m level effects, m + n gradients and (m + n)2 elements of the 

Hessian so that, minus half of the off-diagonal elements, a total of at least 

1
2

2 3
2m n m n m+ + + +� � � �  independent parameters is required for an "exhaustive characteriza-

tion" of a technology. 

5.1.2 Flexible Functional Forms in Dual Models 

The fact that a flexible functional form is capable of locally approximating any technology 

function and its single valued and invertible transformations up to second order, suggests that 

not only technology functions but also dual behavioral functions like cost and profit functions 

can be approximated. It has indeed been shown that the function value and the first and se-

cond derivatives of a primal function can be approximated as well by the dual representation 

of the same technology.122 Thus, there is no principal argument against flexible cost and profit 

functions. With the exception of the Quadratic,123 the duals of technology functions cannot be 

directly deduced from flexible technology functions conducting a Lagrangian constrained 

optimization. Frequently, flexible cost and profit functions with the same analytical form as of 

technology functions are postulated ad hoc instead.124 The following discussion will show that 

it is in any case superfluous to take a detour over primal functions in designing valid and po-

werful dual flexible functional forms. 

                                                
121  See HANOCH 1975: 398-399. 

122  See BLACKORBY/DIEWERT 1979: 580; proof 588-592. 

123 See LAU 1974: 186 and section 6.2.1 below. 

124  See HASENKAMP 1976: 62. 
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The equivalence of primal and dual representation again leads one to expect the possiblity 

of depicting all economically relevant aspects of a technology directly in terms of dual flexib-

le functions. But a single-product dual cost function has n + 1 variables rather than the n vari-

ables of the production function: in addition to the n factor prices, cost depends on output 

quantity. It seems as if an exhaustive description of all relevant aspects of a cost function 

would require 1
2 3 2n n+ +� �� �  independent parameters rather than 1

2 2 1n n+ +� �� � . The same 

problem arises in the multi-output context, since a technology function has to be solved for 

one product to preserve the analogy whereas a multi-output cost function maps from all out-

put quantities (and input prices) to cost. But this is, as again the equivalence leads one to ex-

pect, not the case: some of the first and second derivatives of the cost function are not inde-

pendent of each other due to the homogeneity property of a well-behaved cost function. Eu-

ler’s theorem yields 

 C
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 (adding-up condition125), 

due to Shephard’s lemma identical with the primal definition of cost, so that either the functi-

on value or one of the first derivatives of the cost function with respect to a factor price can be 

expressed as a linear combination of the remaining terms of the equation. By Euler’s theorem, 

too, the first derivatives with respect to w of the cost function which is homogeneous of de-

gree one are homogeneous of degree zero. Thus, 
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and finally, again due to Euler’s theorem, 
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Hence, further n + m effects can be obtained as linear combinations of the remaining effects. 

Consequently, these n + m + 1 restrictions altogether reduce the number of required indepen-

                                                
125  Applying Shephard’s lemma and dividing by C yields the classic formulation of the adding-up condition 

where expenditure shares of all factors or consumer goods must sum up to unity. This shows that the adding-

up condition must not be seen in distinction to some homogeneity restrictions inside equations, as is common 

in demand analysis, but immediately follows from the homogeneity property too [see e.g. PHLIPS 1982: 34-

40 where such a distinction is already implied by the section headlines]. 
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dent estimation parameters to exactly 1
2

2 3
2m n m n m+ + + +� � � � , i.e. just the number of para-

meters required for the exhaustive representation of a technology.126 

For the dual profit function the argument follows a similar path:127  
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according to Hotelling’s lemma identical with the primal definition of profit as revenue minus 

cost, 
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apply. 

5.1.3 The Local Approximation View 

To talk of ”approximation“ suggests that the concept of a flexible functional form is gene-

rally understood in distinction to an underlying ”true“ data generation process whose functio-

nal form and parameters are principally unknown. The researcher postulates a micro-theoretic 

model and a functional form, and then he evaluates the functional form’s parameters in a sta-

tistical estimation procedure. About the relation between the supposed true function and the 

corresponding flexible estimation function three concurring hypotheses are possible:  

1. The estimation function is a local approximation of the true function. 

The approximation properties of flexible functional forms are only locally valid, i.e. re-

stricted to a single point.128 Thus, it can in no way be claimed that the assumed true function 

is approximated in its totality: value, gradients and Hessian of true and estimated function are 

equal merely at one single point – the point of approximation. Therefore, the estimated para-

                                                
126  See FUSS/MCFADDEN/MUNDLAK 1978: 232. 

127  See CHAMBERS 1988: 170-171 for the single-output case. 

128  See figure 2 below. 
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meters must be interpreted only locally. This considerably restricts the forecasting capabilities 

using these parameters if the variable values in the forecast period are relatively distant from 

the approximation point. In the immediate neighbourhood of the approximation point each 

flexible functional form provides theoretically consistent parameters if the true structure is 

theoretically consistent,129 because the parameters of the approximating function and those of 

the true structure are identical at the approximation point, which is exemplified in figure 2 

below where a known, globally consistent cost structure is locally approximated at two diffe-

rent points P and Q. Since e.g. local concavity is a necessary condition for global concavity, 

i.e. concavity in the entire domain of the estimation function or all possible variable values, 

respectively, at least the necessary condition of the concavity hypothesis for the postulated 

true structure can be tested at the approximation point by means of the concavity of the esti-

mation function – which, of course, must not be intrinsically concave.130 

But which point is the point of approximation, where is it located?131 Rather than approxi-

mating a known algebraic structure at one point as depicted in figure 2, the estimation proce-

dure fits the approximating function to a data sample over a more or less extended range, as 

figure 3 below elucidates. There is no way to infer from the approximation function to the 

location of the approximation point, or, more precisely, in a statistics context where the ap-

proximated structure is intrinsically unknown the concept of an approximation point runs 

empty at all. Consequently, since there is no way to infer from an estimated function to the 

properties of the underlying true structure, if the point where the properties of the approxima-

ting function are known is not the approximation point, the properties of the assumed true 

function remain unknown. From the rejection of the null hypothesis that the approximating 

function shows all properties of a well-behaved cost function, it can be followed that the exa-

mined economic subjects are not cost minimizers – or that the test was not conducted at the 

approximation point. Hence, testing the null hypothesis is useless. 

Commonly, the point of approximation is held to be located at some mean of variables o-

ver all observations.132 However, this view emanates from erroneously interpreting the point 

of approximation and the point of expansion of e.g. a Taylor series as synonyms. All second 

order flexible functional forms can be interpreted as second order differential or Taylor series 

                                                
129  See FUSS/MCFADDEN/MUNDLAK 1978: 233-236; CHAMBERS 1988: 177-180. 

130  See LAU 1978: 418-420. 

131  See MOREY 1986: 227 who raises this question. 

132  See WHITE 1980: 150. For a recent example, see BARNETT/KIROVA/PASUPATHY 1996: 16. 
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approximations,133 where the point of expansion is identical with the point of approximation 

of a known algebraic function. But the point of expansion, which is generally the point where 

all exogeneous variables assume unity value for a standard formulation of a flexible form, 

implies nothing about the approximation properties of the resulting specification with respect 

to a random sample, rather than to a known algebraic structure. Salvanes and Tjøtta prove the 

obvious: the estimated function is invariant with respect to the point of expansion.134 This is, 

the estimation function, transformed to establish another point of expansion, yields the same 

graph because the estimated parameters exactly compensate the transformation, which is ob-

vious because after all the same specification fits the same random sample. However, their 

sorrowful conclusion that second order flexible functional forms do not necessarily perform 

well at the point of approximation, because this point could be located outside the regular 

region, is groundless: there is no such point in an econometric estimation of a flexible functi-

onal form. 

2. The estimation function and the true structure are assumed to be of the same functional 

form but show the desired properties merely locally.135 

This hypothesis accounts for the fact that most common flexible cost functions can either 

not be restricted to a well-behaved cost function without losing their flexiblility or cannot be 

restricted to regularity at all, as will be shown in the next chapter. All flexible functional 

forms can both be understood as a local approximation of an unknown structure or as a postu-

lated functional form of the true structure. The latter is advantageous insofar as regularity can 

be tested at any data point, since the whole function is viewed as an approximation. Therefo-

re, points of interest in the true structure can be examined by testing the respective points in 

the estimation function. But the uncertainty remains whether the estimation function and the-

reby the true structure is still consistent with the properties of a well-behaved cost function if 

the data set does not accidentally equal a data set already examined. This problem could only 

be solved by systematically testing all possible data sets. This procedure, which is hardly ele-

gant, is avoided with the assumption of another hypothesis: 

                                                
133  See section 5.1.1 above. For a description of flexible functional forms as differential approximation or Taylor 

series approximation see CHAMBERS 1986: 162-164. 

134  See SALVANES/TJØTTA 1995. 

135  See MOREY 1986: 222-227. 
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3. The estimation function and the true structure are assumed to be of the same functional 

form and show the desired properties globally.136 

If one suceeds in finding a flexible functional form that can be restricted to global regulari-

ty without losing its flexiblity, i.e. a form which has the advantage that local properties are the 

necessary and sufficient condition for the respective global properties, another possibility ari-

ses: only those functional forms allow one to infer from the estimation function to the true 

stucture and hence allow meaningful tests of significance, because otherwise the model lacks 

theoretical foundation.137 Hence, a serious problem arises for the postulates of economic theo-

ry if a properly specified flexible cost function which is globally well-behaved is not suppor-

ted by the data. An unjustified rejection of the null hypothesis could be caused by missing, 

undersized, badly measured or ill-conditioned data, by a validation method that is 

inappropriate, or by misspecification. Misspecification includes e.g. omission of relevant vari-

ables, a wrong functional form, or wrong modeling assumptions like separability and non-

jointness hypotheses.138 But, if one insists on the model being properly specified and the data 

being sufficient, it can be either followed that, claiming unlimited validity of neoclassical e-

conomic theory, the economic subjects are not cost minimizers or profit maximizers,139 i.e. 

behave irrationally,140 or that, allowing for multiple theories of economic behavior, they act 

rationally according to another rationality concept, i.e. neoclassical economic theory is not 

applicable in that case (or, taking the easy way out, they behave irrationally although there 

may exist other theories of economic rationality that are not considered). 

The last approach of a flexible functional form does not labour under the illusion that the 

true structure of the data generating process can be locally approximated in analogy to the 

                                                
136  See MOREY 1986: 219-222. 

137  See sections 6.2.4 and 6.3 below. 

138  Another possible misspecification could consist of the assumption that a second order flexible functional 

form is flexible enough really to provide an exhaustive characterization of technology [see section 5.1.4 be-

low]. 

139  This conclusion not only assumes a well-behaved true profit or cost structure, it moreover presupposes a 

definite solution of profit or cost optimizing behavior. Thus, an underlying technology with affine pieces and 

the resulting multiple solutions must be excluded to allow a test of theory. 

140  The identification of non-cost-minimizing or non-profit-maximizing behavior with irrationality [see MOREY 

1986: 229] is of course only valid if the respective goal function is postulated. However, the argumentation 

remains the same when other optimization criteria are assumed. These generally imply other specific proper-

ties of the respective behavioral function whose violation must be interpreted as irrationality too. 
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approximation of a known complex algebraic structure with the simpler Taylor series appro-

ximation as suggested in figure 2 – in econometrically validated models the true structure is 

merely present through a random sample of observations, which is depicted in figure 3. Ra-

ther, it promotes a concept of flexibility where the functional form – whose postulation is, in 

any case, an unavoidable component of economic modeling – just has to fit the data to the 

greatest possible extent, subject only to the regularity conditions following from economic 

theory and otherwise independently depicting all economically relevant aspects. The argu-

ment that any flexible functional form can approximate any other flexible functional form and 

any arbitrary data generation process does not suspend the researcher from the issue of redu-

cing the specification error to the greatest possible extent in selecting the most appropriate 

functional form for the entire data. In empirical applications and Monte Carlo simulations this 

has found its manifestation in the different ability of flexible functional forms to fit different 

technologies.141  

                                                
141  See TERRELL 1995: 2 and the literature cited there. 
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5.1.4 Semi-flexibility, Third Order Flexibility, and Global Flexibility 

Pollak and Wales raise another objection to the common notion of flexiblitity, the second 

order flexibility defined above: it is misleading to call a functional form flexible in the second 

order less restrictive than a non-flexible functional form with the same number of independent 

parameters; to neglect e.g. unimportant cross-price effects in favour of own-price effects with 

additional third order parameters can be viewed as a net flexibility gain.142 This objection can 

be divided into two aspects:  

First, one should not overstress the number-of-parameters criterion because not all effects 

are equally important or some effects can well be quantified a priori, respectively. This leads 

to the use of so-called semi-flexible functional forms, where estimation parameters are substi-

tuted by predetermined values under violation of the number-of-parameters criterion: Short-

ness of time series frequently precludes parameter estimation on an empirically interesting 

level of disaggregation due to a lack of degrees of freedom. In semi-flexible versions of se-

cond order flexible functional forms, more fine-grained aggregates can be used by determi-

ning some parameters a priori and estimating the rest. E.g. it is often possible to claim a priori 

with sufficient likelihood that some cross effects vanish – if they are not already zero due to 

separability or nonjointness assumptions, which actually constitute the same means to reduce 

the degrees-of-freedom problem, although in a more systematic and general manner. In the 

theoretically stringent semi-flexibility framework, one has to decide which variable(s) are 

unimportant enough to set the respective parameter column as linearily dependent from the 

other variables' columns. Thus, the researcher is allowed to choose the degree of flexiblity 

regarding feasibility of estimation while maintaining second order flexibility for all variables, 

apart from those intentionally restricted, and regularity conditions implemented in the fully 

flexible relative.143  

Secondly, there are effects which are possibly not accounted for with sufficient ”flexibili-

ty“ regarding the goal of the analysis. This could be the case for price or quantity effects 

constituting the basis of the classic flexibility definition as in the aforementioned example of 

own price effect, which are of greater importance than certain cross price effects on the one 

hand, or for other exogeneous variables like time or seasonal dummies on the other hand. Se-

                                                
142  See POLLAK/WALES 1992: 64. 

143  See DIEWERT/WALES 1988. 
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cond order flexible functional forms yield systems of derived functions with merely one gra-

dient parameter per variable in most instances, which can be seen as rather restrictive. Thus, 

third order effects are a meaningful extension. A particularly evident case in the consumer 

demand context is linearity of Engel curves that is yielded by some flexible functional forms, 

which is theoretically inacceptable.  

These considerations eventually lead to a more general approach to the problem: instead of 

determining and thereby possibly limiting the degree of flexiblity prior to estimation, the 

depth of parameterization can be set depending on the inferential potence of the sample using 

series expansions or higher order flexible functional forms.144 This means that, as opposed to 

parametric estimation where a functional form is specified and an a priori determined number 

of parameters is estimated, a semi-nonparametrical estimation can be performed, where the 

basic functional structure is determined a priori but the decision on the optimal number of 

estimated parameters is left to the data by statistical criteria. Large samples with large expla-

natory power or, put differently, a model specification fitting well, can allow for the estimati-

on of much more meaningful parameters than provided for by standard flexible functional 

forms. Furthermore, undersized samples producing overfitting estimates with a second-order-

flexible specification can be handled in this framework as well, where the methodology then 

competes with the semi-flexibility approach.  

To find the amount of flexibility and the depth of parameterization that are statistically op-

timum, comparison of the statistical fit of different parameterization scenarios using an F-

test145 can be applied.146 The overfitting problem can also be solved by exclusively using glo-

bally regular models: assuming that economic theory does not fail, all of the information con-

tained in the data can be extracted by a sequence of increasingly flexible functions without 

risk, if all possible parameterizations of the model are theoretically consistent; functions thus 

restricted cannot produce oscillating behavior fitting the noise in the data.147 I.e. a regular 

                                                
144  See GALLANT 1981 and BARNETT/GEWEKE/WOLFE 1991. 

145  JENSEN 1997 uses Eastwood’s upward-F-test; see EASTWOOD 1991. 

146  The possible objection that this practice amounts to data mining cannot be raised because, rather than the 

question of which variables are incorporated into the model and which not, it is only the precision of depicti-

on which is determined by the data [see section 6.2 where this point is treated more extensively in a footno-

te]. 

147  See BARNETT/GEWEKE/WOLFE 1991: 6. An estimation function is said to fit the noise in the data if it has so 

many parameters compared to points of observation that the course of the function does not only approxima-

tely depict the true data generating function but also the error terms. If e.g. a linear true data generating pro-
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functional form estimated semi-nonparametrically is capable of extracting the true structure 

depicted in figure 2 above from the sample presented in figure 3.  

With rising depth of parameterization the task of assuring regularity, especially global re-

gularity, becomes more and more intractable with standard methods like parameter restricti-

ons, because gradients and Hessian depend on a rapidly increasing number of parameters,148 

so that recent numerical techniques149 remain as the only possibility to operationalize this ex-

tended notion of flexibility. With this background, one can even think of reviving, even 

though with a global rather than a local notion, the approximation view of flexibility rejected 

in section 5.1.3 above: if one succeeds in guaranteeing global theoretical consistency, the 

estimated function converges to a global, consistent approximation of the data generating pro-

cess if the depth of parameterization approaches infinity; rather than approximating the under-

lying function at one point, it is approximated at any point so that the question of the point of 

approximation becomes obsolete. An infinitely large number of parameters with an infinitely 

high order of effects allows for fitting the sample infinitely flexibly for the whole range of 

observation, and thus such a concept of flexibility may be called ”global flexibility“.150 In 

such a framework, the achieved amount of flexibility is only limited by the data. 

Two related strands to realize global flexibility and to perform a semi-nonparametric esti-

mation, respectively, are available: series expansions and higher order flexibility. Power se-

ries expansions, i.e. sums of power functions or polynoms like the well-known McLaurin se-

ries and Taylor series, provide a means not only to approximate value, gradient, and second 

order derivative of a known complex algebraic structure151 but to approximate a known func-

tion at any point if the series is long enough. The extended flexibility is, of course, also of 

great benefit if the series expansion is utilized to fit samples rather than approximate known 

                                                                                                                                                   

cess generates three points of observation which do, by the random error, not lie on a straight line, a linear 

estimation function with two parameters yields a better result than a quadratic function with three parameters, 

because the latter misinterprets the random error as curvature. 

148  See sections 6.2.1 and 6.2.2 below. 

149  See section 6.2.3 below. 

150  See BARNETT/GEWEKE/WOLFE 1991: 6. 

151  See section 5.1.3 above. 
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functions. Examples of series expansions as globally flexible estimation functions are to be 

found in section 7.1.3 (Fourier series) and in section 7.1.5 (Müntz-Szatz) series.152  

A slightly different concept is the straightforward generalization of the local flexibility 

concept. In perfect analogy with the case of local second order flexibility, local third order 

flexibility of F implies and is implied by the existence of a solution α q ; , , ,F F F F′ ′′ ′′′� �  to 

the set of equations F Fα ;q� � = , ∇ = ′F Fα ;q� � , ∇ = ′′2 F Fα ;q� � , and ∇ = ′′′3F Fα ;q� �  

under some regularity conditions.153 In analogy to a second order function for a single output 

technology, a third order function contains one level effect, n gradient effects, n2 second order 

effects, i.e. the Hessian, and n3 third order effects, i.e. the n Hessians of the n partial first or-

der derivatives constituting a vector of matrices or a cube, respectively. Thus, a third order 

flexible functional form allows for any theoretically possible curvature of the derived demand 

and supply functions (in contrast to curvature of the cost or profit function) at one point. Any 

Hessian is symmetric according to Young’s theorem so that, first, beside the main diagonal 

with n elements, only half of the off-diagonal elements of the second order Hessian are nee-

ded, i.e. 1
2 1n n −� � . Secondly, and in analogy to f fij ji=  for the Hessian, symmetry of the 

third order derivatives implies interchangeability of the indices, i.e. 

f f f f f fijk jik ikj kij kji jki= = = = = . The number of independent elements a locally third order 

flexible functional form must at least contain then amounts to 1
6 1 2 3n n n+ + +� �� �� � . Thus, a 

third-order-flexible functional form has 1
6 1 2n n n+ +� �� �  more independent parameters than a 

second-order-flexible form – a step that may frequently turn out to be too big.  

The semi-flexibility method provides a way to reduce this overflow to a measure that fits 

both the sample size and the model complexity desired.154 But if the data is capable of suppor-

ting the estimation of more parameters, the order of flexiblity can be increased until no im-

provement of statistical significance can be made. With an increasing order of local flexibility 

the function can at any point better and better approximate the unknown, true function that 

generated the sample so that it becomes globally flexible. Thus, an increasing order of local 

flexibility, although not itself meaningful in this context, indicates the increasing ability of the 

function to approximate globally.  However, it has to be noted that the demands on data a-

                                                
152  Beyond that, virtually every locally flexible functional form that is linear in parameters can be seen as second 

order Taylor series expansion [see FEGER 1995: 44 and the literature cited there]. 

153  See section 5.1.1 above. 

154  But see section 6.3 below. 
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mount and quality increase drastically with the order of local flexibility: the number of inde-

pendent parameters included in a functional form locally flexible of order t amounts to 

 
1

1t
n i

i

t

!
+

=
∏ � � , 

and even in a very small model of say n = 4 – the formula is in any case only valid for single 

product technologies – the over-proportional rise of the number of independent parameters 

becomes visible: 5 parameters for t = 1, a first order model, 10 for the well-known second 

order model with t = 2, then 20 for t = 3, then 35, 56, 84 and so on. The over-proportionality 

increases substantially with larger models: for n = 10, the series is 5, 66, 286, 1001, 3003, 

8008 and so on. Facing this, it is not surprising that an empirical application of the higher-

order-flexibility strand of global flexiblity yet remains to be conducted.  

5.2 The General Linear Form and its Derivates 

Now, consider a systematic overview over linear flexible functional forms, which is not 

presented because it would contribute to what shall be shown in this and the next chapter, but 

rather with view on the application of the new methodical results. As it is argued in the first 

paragraphs of chapter 7 below, these results open up the opportunity to select among a lot of 

flexible functional forms much more liberally than previously, so that a systematic of flexible 

functional forms may be of great benefit in future studies utilizing flexible functional forms 

and the methodic progress made here. 

The most common estimation method is the linear regression. A functional form immedia-

tely suited for linear regression has to be linear in its parameters – just like the General Linear 

Form: 

 F fi i
i

n

ϑ ;q q� � � �=
=
∑ϑ

1

 

with fi(q) as known, twice continuously differentiable function of vector q and ϑi as respective 

(estimation) parameters.155 The General Linear Form entertains several advantageous aspects: 

1. With its n estimable parameters it can depict n independent effects156 – and therefore 

any number of effects since there are infinitely many functions fi(q) with an arbitrarily 

high n. 

                                                
155  See FUSS/MCFADDEN/MUNDLAK 1978: 232. 
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2. It is linear in parameters ϑi but not necessarily linear in variables q. 

3. It can approximate any twice continually differentiable function F  *(q) at any point q0, 

i.e. the parameters can be chosen in a way that 
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 Hence, there exists a singular vector ϑ ϑ ϑ' , ...,= 1 n  for which the system of equations 

given as second order flexibility definition in section 5.1 is solvable and for which both 

the value of the function, the gradients, and the Hessian of the General Linear Form e-

qual the respective values of the approximated function at one point; the General Linear 

Form can provide a local second order differential approximation to an arbitrary functi-

on.157 

 

The third property of the General Linear Form is of particular importance in so far as it 

shows the suitability of the General Linear Form for serving as a locally flexible functional 

form: The estimation of level, first order and second order parameters using the General Line-

ar Form supplies parameter values for, as the advocators of second order flexible functional 

forms put it, all relevant effects of a technology – without knowing about the true technology 

function, and independently of the General Linear Form itself representing the true technolo-

gy structure. Since the number of micro functions fi and their respective parameters ϑi is un-

limited, the interpretation of the General Linear Form as a globally flexible functional form is 

possible, too. 

Used as an estimation function, the linearity in parameters and corresponding fi equips the 

General Linear Form with a far more stringent statistical theory than is available for nonlinear 

estimators.158 Even if, as will happen in section 6.2.2, restrictions introduce nonlinearities in 

parameters, these are only slight and leave the superiority of the General Linear Form with 

regard to the operationality of estimation and the theoretical foundation of the estimator alm-

ost unaffected, compared with intrinsically nonlinear flexible functional forms like the 

                                                                                                                                                   
156  See CHAMBERS 1988: 161. 

157 See CHAMBERS 1988: 162. 

158  See section 6.2.3 above. 
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Constant-Difference-of-Elasticities functional form (CDE).159 Therefore, and to keep the sco-

pe of the present study reasonable, the broad field of nonlinear functional forms will not be 

covered.  

5.2.1 Special Cases of the General Linear Form 

The General Linear Form is more general than required in virtually every conceivable ap-

plication, and, therefore, in empirical analysis General Linear Form derivates are utilized 

where the micro functions fi(q) are simplified in a way that they merely depend on a small 

subvector of q. If all fi(q) = qi, the General Linear Form is linear in the exogeneous variables. 

Already microfunctions depending on two exogeneous variables allow a large variety of func-

tional structures capable of describing many relevant aspects of a technology, i. e qualify the 

derivate to locally approximate an arbitrary function up to second order.160 The limitations of 

many such special cases, though severe, do not impair the local flexibility or second order 

approximation property, respectively. Single valued and invertible transformation of the data, 

e.g. taking logarithms of all variables, does not touch flexiblity either.161 

Most linear flexible functional forms belong to the General Linear Form subclass of qua-

dratic functions, because they constitute the least complex functional structure capable of 

providing a second order approximation and the necessary number of independent parameters, 

respectively. That is, most linear flexible functional forms are special cases of the Generalized 

Quadratic162 
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where q is the vector of exogeneous variables and level parameter .0, gradient vector �¶ = [�i] 

and substitution effect matrix - = [3ij] are the estimation parameters with 3ij = 3ji RU - EHLQJ

                                                
159  See JENSEN 1997 for a Monte-Carlo simulation, where a CDE is used to generate the pseudo data and the 

intrinsically linear Almost Ideal Production Model (AIM) as approximation function. 

160  See MCFADDEN 1978a: 273. 

161  See CHAMBERS 1988: 166. 

162  See BLACKORBY/PRIMONT/RUSSELL 1978: 293, 297.  
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symmetric, respectively. By Young’s theorem, the Hessian of any real valued function is 

V\PPHWULF QR PDWWHU ZKDW - LV� VR WKDW - can be set symmetric without loss of generality. 

As shown in section 5.1.4, dual representations can be depicted by flexible functional 

forms as well. So let the cost function formulation of the General Linear Form and the Gene-

ralized Quadratic, respectively, be denoted by  
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where w is the vector of exogeneous input prices, y is the vector of exogeneous output quanti-

ties. Costs are formulated as an argument of some function to allow for transformations like 

taking logarithms. The estimation parameters are level parameter .0, input price gradient pa-

rameter vector �¶ = [�i], output quantity gradient parameter vector �¶ = [�i], square and sym-

metric input substitution effect parameter matrix - = [3ij], square and symmetric output sub-

stitution effect parameter matrix � = [%ij], and not necessarily square and generally non-

symmetric input-output substitution effect parameter matrix , = [�ij]. To present the second 

order parameters in a more intuitive way: 
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In perfect analogy, the Generalized Quadratic Profit Function assumes the form 

 F f f f f f f f fΠ Φ Ψ Θp w p w p p w w p w,� �� � � � � � � � � � � � � � � � � �= + ′ + ′ + ′ + ′ + ′α β γ0

1

2

1

2
 

Finally, consider the Generalized Cubic, as the most general formulation of a third order fle-

xible form may be labelled, in the notation-saving non-specific formulation: 
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5.2.2 Systematics 

The estimation of the parameters of the Generalized Quadratic requires the specification of 

fi, which is generally the same for all qi, at least for each order of effects. This is so not only 

for aesthetic reasons: first, too many different fi increase the computational burden, not that 

much because the variables must be transformed differently, but rather because implementing 

restrictions quickly becomes tedious. Secondly, heterogeneous microfunctions leave the re-

searcher with insolvable difficulties in parameter interpretation, because point elasticities de-

rived from parameters that are descendent from differently structured microfunctions cannot 

be compared so easily: in this case, it is no longer possible to distinguish the role of the exo-

geneous variable from the role of the microfunctional form; the ceteris paribus principle is 

violated since the effect of the data on parameter values is not isolated. If parameter interpre-

tation is planned, this argument excludes heterogeneous microfunctions even if empirical evi-

dence, i.e. statistical criteria, would suggest the superiority of such a specification. However, 

if the goal of the model is to compute forecasts or to test the hypothesis that the maintained 

model is empirically valid, this objection is obsolete.163 Furthermore, note that it is not neces-

sary to find an a priori-argument for differently specified microfunctions: this is an empirical 

question to the same extent as the question of adequate specification in general.  

                                                
163  See section 6.3 for a discussion of the different goals of an economic behavioral model. 
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(Arrows with solid tip indicate a special case, arrows with light tip indicate a logarithmic 

transformation) 

 

The simplest possible case is, of course, all fi(qi) = qi, where the resulting flexible functio-

nal form is called Quadratic. The historically first flexible functional form, the Transcendental 

Logarithmic or Translog, which is still widely in use, is based on microfunctions of the form 

fi(qi) = ln qi. The left hand variable of the Translog is logarithmized too; thus it is sometimes 

referred to as Double Logarithmic, just like the first order special case of it, the Cobb Douglas 

functional form. The second early flexible functional form, the Generalized Leontief, is con-

structed with f q qi i i� � = 1
2  as characteristic microfunction, i.e. for the second order effects; the 

first order fi are linear. For a more intuitive presentation of flexible functional forms with dif-

ferent fi for first and second order effects it is useful to combine fi(qi) and fj(qj) to fij(qi,qj). For 

the Generalized Leontief, fij(qi,qj) then assumes the form q qi j

1
2

1
2 . Without observing anything 

about the specific properties of the functional forms, which is the topic of chapter 6, the dia-

gram above depicts the relations between some flexible functional forms. There are two crite-

ria for their selection: they either are or have been among the most commonly used flexible 

functional forms or, cited despite their empirical insignificance, which is the case with the 

Generalized Miniflex Laurent and the Generalized Quadratic, they constitute systematic 

nodes. Consequently, e.g. the pioneering Fourier transformation, which originated a line of 

research that eventually led to the development of the Almost Ideal Production Model, is not 

included because it has been applied only a couple of times itself and in addition – apart from 

simply being a special case of the General Linear Form – stands outside the presented syste-

matics.164 

                                                
164  See section 7.1.3 for a presentation of the Fourier model. 



 

6 Properties of Flexible Functional Forms 

As already alluded to in sections 5.1.1 and 5.1.2, economic theory makes some require-

ments of functional forms that are supposed to depict economically rational behavior, here of 

dual cost or profit functions. To be a valid or regular economic function, i.e. to be consistent 

with the behavioral postulates of economic theory, a functional form for a dual cost or profit 

function must satisfy all properties of a well-behaved cost or profit function which result from 

the cost minimization or profit maximization hypotheses, respectively.165 Otherwise it has to 

be reckoned on estimated parameters inconsistent with economic theory, i.e. the estimated 

parameters do not match the comparative-static regularities following from economic theory. 

Before the single regularity properties are addressed, some space will be devoted to the 

question of where a function can or should entertain those properties, i.e. the question of the 

domain of applicability, and the question of tractability and theoretical foundation of the esti-

mation procedure. 

6.1 Domain of Applicability and Computational Facility 

The most common notion of the domain of applicability refers to the set of values of the 

independent variables q over which the algebraic functional form satisfies all requirements for 

theoretical consistency, given some parameter vector α.166 One could think of a flexible func-

tion that is globally valid for an arbitrary parameter vector, i.e. that entertains all properties of 

a well-behaved dual cost or profit function over the complete non-negative orthant of the va-

riable space for an arbitrary α. But this is never the case, not even locally, i.e. near a specific 

q . This can be realized by recalling that the class of well-behaved cost or profit functions is 

considerably smaller than the class of real-valued functions. The complex restrictions, compa-

red to the class of real-valued functions, of the class of well-behaved cost or profit functions 

implied by the respective properties of well-behaved cost and profit functions are impossible 

to reach with an unrestricted parameter vector. Thus, the question is what is the set of parame-

ters for the function to be globally valid?167 The ideal is clear: to find a set of possible values 

                                                
165  See FUSS/MCFADDEN/MUNDLAK 1978: 223, or CHAMBERS 1988: 52 and 124, respectively. 

166  See LAU 1986: 1527. 

167  See LAU 1986: 1528. 
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of α that on the one hand leaves the function globally valid but on the other hand does not 

restrict its flexiblity. In other words, the ideal would be a restriction on α that is not so severe 

that it renders the solution of the system of equations in the flexiblity definition of section 

5.1.1 impossible for all theoretically consistent outcomes F F F, ,′ ′′ . Consider the following 

figure 4 depicting the desired state of affairs:168 

 

set of all α inconsistent for q4  set of all possible α 

A = set of all α theoretically  
consistent for all non-negative q 

set of all α inconsistent for q1  

set of all α inconsistent for q2  

set of all α inconsistent for q3  

set of all theoretically inconsistent F F F, ,′ ′′  set of all theoretically consistent F F F, ,′ ′′  

set of all possible F F F, ,′ ′′  (Figure 4) 

 

The set of all F F F, ,′ ′′  consistent with economic theory is independent of α and thus the 

same for all points in the variable space. In opposition,  the implied restriction on the set of all 

possible α depends on the choice of q , exemplified by q1  through q4 . The shaded area A 

refers to the intersection of the theoretically consistent sets of α for all possible q , i.e. the set 

of parameter vectors that produce only theoretically consistent function values, gradients and 

Hessians for arbitrary non-negative q . Hence, if a fully flexible function is globally valid, 

there exists a parameter vector α for any element of the set of theoretically consistent 

F F F, ,′ ′′  such that F F F Fα α; , ;q q� � � �= ∇ = ′  and ∇ = ′′2 F Fα ;q� �  for any non-negative 

q . I.e. a subset of all possible α surjectively maps into the set of theoretically consistent func-

tion values, whatever q  is inserted. Other than for local flexibility, i.  e. for only one specific 

                                                
168  See figure 1 in section 5.1.1 for comparism. 
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q , this is still quite demanding.169  Generally, as it follows from Lau's incompatibility theo-

rem,170 some areas of the set of all consistent F F F, ,′ ′′  cannot be reached from the small 

remainder of the set of possible α that corresponds with the former one. 

But full flexibility in conjunction with theoretical consistency must not generally be given 

up: there is always a subset of all q  that is available in the non-negative orthant for which α 

surjectively maps into the set of consistent F F F, ,′ ′′ , i.e. for a restricted domain of applica-

bility of economic theory. The set of all q  for which it is possible to reach any theoretically 

consistent F F F, ,′ ′′  via some specific α is called a regular region. Two a priori methods to 

explore the regular region of a flexible functional form that is kept fully flexible are available, 

aiming at general knowledge about the behaviour of specific functional forms in specific cir-

cumstances, e.g. in the presence of strong complements.  

Considering the first method, a grid of variable values is examined for a given parameter 

vector, and every theoretically consistent point is marked so that the resulting marked area 

constitutes the regular region. Consistency is examined by explicit solution of the system of 

derived demand and supply equations with pre-specified elasticities for the parameter vector, 

the unique parameter vector that solves the system of equations which enables the function to 

exhibit the pre-specified technology. The respective system of equations becomes insolvable 

with more than second order effects, since economic theory does not provide enough restricti-

ons.171  

The second method does not require an algebraic solution and is based on a Monte-Carlo 

simulation. To avoid explicit solution for α, the parameter vector for the flexible approxima-

tion function is calculated as an arithmetric mean of repeated estimations of data generated by 

a pre-specified technology – of another functional form than the estimation function, which is 

either globally valid like the CES or CDE or which is parameterized in a way that all genera-

ted values are consistent with theory – with prices randomly drawn from a known distributi-

on. Plotting the regular region then follows the same path as with the first method.172 

The domain of applicability sometimes also refers to the set of values of the independent 

variables over which the algebraic functional form is fully flexible (rather than theoretically 

                                                
169  See next paragraph and section 6.3 below. 

170  See LAU 1986: 1552-1557 and section 6.3 below. 

171  See CAVES/CRISTENSEN 1980. 

172  See e.g. WALES 1977, JENSEN 1997, TERRELL 1995, and the literature cited there. 
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consistent), given that the function is globally theoretically consistent, but the reverse mea-

ning introduced above is more common. 

Another important question connected with the application of flexible functional forms is a 

practical one: is it possible to determine the function parameters with reasonable expense? 

The standard econometric procedure, tractable with little methodological and computational 

requirements and available in many easy-to-use computer applications, is least squares esti-

mation. It only works with functional forms linear in parameters, at least after a known trans-

formation, and linear equality restrictions between model parameters. This turns out to be 

quite restrictive, since important requirements of economic theory imply inequality restricti-

ons and/or induce the parameter estimation of an originally linear-in-parameters functional 

form to become a nonlinear optimization problem.173  

Several problems arise: First, the simple least squares procedure can no longer be applied 

and one has to switch to nonlinear optimization algorithms, which are more demanding with 

respect to the technical skills of the user. Second, the risk of non-convergence in the estimati-

on process arises if numerical estimation methods are used. The analytical least squares esti-

mator always has a solution, and linear models almost always converge if estimated using a 

nonlinear estimator. In contrast, the probability of failure for nonlinear models is at least one 

order of magnitude higher than for linear models validated numerically. For this reason, even 

if nonlinearity is inevitable, its degree should be kept at a minimum,174 which provides argu-

ment in favor of staying with intrinsically linear forms even if nonlinear restrictions are pre-

sent. Third, statistical theory for nonlinear estimators is in most instances far less developed 

than for the linear least squares estimator, which is not so much a result of historically diffe-

rent states of research but rather a matter of the nature of nonlinearity. The third point is espe-

cially serious in so far as it already applies if inequality restrictions are transformed into equa-

lity restrictions by the method of squaring introduced in section 6.2.2 below. This method 

allows the use of standard least squares methods to determine parameter estimates, but sta-

tistical theory for least squares estimators is not valid in this case since the underlying 

                                                
173  See section 6.2.2 and 6.2.3 below. 

174  See LAU 1986: 1558-1559. 
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sampling distribution is truncated.175 Fortunately, bootstrapping and Bayesian methods provi-

de a solution.176 

6.2 Regularity of the General Linear Form and its Derivates 

Regularity is not at all assured with the General Linear Form introduced in section 5.2 a-

bove: for the cost function case, it is neither intrinsically homogeneous of degree one nor ne-

cessarily everywhere concave and non-decreasing. It is therefore requisite to a priori structure 

the estimation function according to economic theory as far as possible. To structure the esti-

mation function goes along with its restriction. There are three possible ways of restricting the 

GLF: 

1. The microfunctions fi can be restricted to depend only on a small subvector of w and y 

or p and w, respectively, and fi can be specified, i.e. given a definite form, with a focus 

on the resulting properties. This means to determine a GLF derivate or to specify a new 

flexible functional form, whose properties crucially depend on the properties of the mic-

rofunctions. 

2. GLF derivates, if not yet theoretically consistent, can be further brought into line with 

economic theory by imposing parametrical restrictions: the value certain parameters as-

sume is determined a priori or a linear dependance between certain parameters is postu-

lated.  

3. The Hessian of GLF derivates can be restricted directly (which eventually amounts to a 

–complicated – parametrical restriction and can be seen as a special case of 2.). This can 

be operational since some properties of well-behaved cost functions are immediately 

mirrored in the Hessian of the respective functions. 

With regard to the family tree presented in chapter 3, these three structuring methods can be 

viewed as the starting point for an alternative categorization of flexible functional forms. Ne-

vertheless, different flexible functional forms only serve as examples for the various ways to 

fit functions into economic theory or a concrete microeconomic behavioral model here. 

                                                
175  See BARNETT/GEWEKE/WOLFE 1991: 7. 

176  See section 6.2.3 below; see e.g. JUDGE et al. 1988 for an introduction to bootstrapping and Bayesian me-

thods in econometrics. 
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The properties of a well-behaved cost or profit function turn out to be not easily implemen-

ted simultaneously in flexible functional forms. The properties of non-negativity, continuity, 

and no fixed cost or emanation from the origin raise only minor difficulties, and the same is 

true for the symmetry condition following from differentiability due to Young’s theorem. O-

ther than that, monotonicity, curvature, and linear homogeneity in prices concur, as will soon 

become apparent. 

6.2.1 Homogeneity 

There are two possibilities to implement linear homogeneity: the choice of microfunctions 

which guarantee this property globally from the outset, or the imposition of parametric restric-

tions for functional forms composed of inhomogeneous or not linearily homogeneous micro-

functions. 

By definition, homogeneity of degree one in prices implies  
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for all positive �. From the respective second and third equation, it follows that C DQG I DUH

homogeneous of degree one in prices if each fi is homogeneous of degree one.177 The pionee-

ring Generalized Leontief Cost Function, specified as a single-output function as in the origi-

nal article, provides an example: 
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with 3ij = 3ji and all vi as predetermined constants to be selected by the researcher, commonly 

set equal to the respective cost shares to obtain a weighted average price.178 The first and the 

third summand are linear in w and hence linearly homogeneous. But the second summand is 

also homogeneous of degree one for any values w may assume, because the microfunctions 

w wi j� �
1

2  are linearly homogeneous: 

                                                
177  See CHAMBERS 1988: 56 and NADIRI 1982: 447. 

178  See DIEWERT 1971: 497. 
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A very operational technique of constructing microfunctions homogeneous of degree one is 

their normalization. All second order terms, i.e. all terms that will contain the product of two 

prices, are divided by a definite price called the numéraire. In the most simple case such a 

microfunction looks like 
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with wk as numéraire. This term is clearly homogeneous of degree one: 
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If other reasons lead to specifications which are not intrinsically homogeneous of degree 

one, i.e. normalized second order microfunctions or fractional exponents are not wanted, pa-

rametric restrictions can force linear homogeneity.  

One such reason could be the easy interpretation of the function parameters. In the Trans-

log Cost Function,179 the other important early flexible functional form apart from the Genera-

lized Leontief, the estimated parameters equal the respective elasticities: 

 ln , ln ln ln ln ln ln ln lnC w y w y w w y y w y� � = + ′ + ′ + ′ + ′ + ′α β γ 1
2

1
2

1
2Φ Ψ Θ  

ZKHUH - DQG � DUH V\PPHWULF�180 This is of course the Generealized Quadratic derivate where 

F(C) = ln C and all fi(w) = ln wi and all fi(y) = ln yi. All fi are homogeneous, but the degree of 

homogeneity equals the respective parameter value, i.e. the microfunctions are homogeneous 

of degree �i, �i, 3ij, %ij, or �ij, respectively. According to Euler’s theorem, linear homogeneity 

in w requires the sum of all elasticities with respect to w to equal unity: 
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Since both the second and the third summand contain variables that can assume different va-

lues, the equation can only be restricted to a definite value if they are both restricted to zero. 

This is the case if 

                                                
179  See CHRISTENSEN/JORGENSON/LAU 1973: 39. 

180  The logarithm of a vector may refer to an element-wise application. 
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To restrict the entire equation to unity, the remaining summand has to equal unity:  

 β i∑ = 1.  

Hence, as expected, a total of m + n + 1 restrictions establish linear homogeneity. 

It has to be emphasized that the homogeneity property of dual behavioral functions results 

immediately from the economic rationality postulate and does not imply anything about a 

possible homogeneity property of the underlying primal function, i.e. the technology. Ne-

vertheless, the homogeneity property of a technology, e.g. in the case of constant returns to 

scale in a linearly homogeneous technology, can of course be expressed in terms of dual func-

tions. 

6.2.2 Curvature 

Whereas there is no form for microfunctions that would guarantee the required curvature 

condition for all possible parameter values, a sufficient condition for the General Linear Form 

to be globally concave or convex is the concavity or convexity of all fi with all .i being non-

negative.181 From this, Robert G. Chambers infers that, in order to guarantee regularity of a 

flexible functional form for a dual cost or profit function, it suffices to pick well-behaved cost 

or profit functions, respectively, for all microfunctions.182 Unfortunately, it does not fulfill 

this hope: the condition that all .i be non-negative has in some cases an unwanted side effect 

that will become obvious immediately, examplified with the Generalized Leontief cost functi-

on. 

The Generalized Leontief cost function is globally concave for non-negative parameters 

because all its microfunctions are concave in w: linear functions are affine, i.e. concave and 

convex at the same time, and the second order microfunctions are concave, since their Hessi-

an  
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181  See CHAMBERS 1988: 311. See also MCFADDEN 1978a: 274-275 for a list of convex microfunctions. 

182  See CHAMBERS 1988: 172. 
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is negatively semi-definite for positive wi and wj, which constitutes the necessary and suffi-

cient condition for concavity.183 

Unfortunately, a massive shortcoming is connected with a Generalized Leontief restricted 

to concavity by imposing 3ij � 0: complementarity between factors is ruled out.184 All cross 

price effects �xi/�wj, i.e. the off-diagonal elements in the Hessian above multiplied with their 

respective parameter 3ij, are non-negative for non-negative 3ij; all factors are gross substitutes, 

which considerably restricts the flexibility of the Generalized Leontief. 

Whereas the first order and therefore non-flexible derivate of the Translog, the Cobb-

Douglas Cost Function, can easily be restricted to global concavity by imposing β i ≤∑ 1 – 

which is in any case guaranteed by the homogeneity restriction – this is not so with the Trans-

log itself. Robert G. Chambers tries to establish this result by showing that the second partial 

derivative of a second order microfunction, e.g. 
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cannot be restricted to non-positivity, as would be required for global concavity of this micro-

function and thus of the Translog as a whole: for positive 3ij, ln wi has to be greater or equal 

unity; for negative 3ij smaller than or equal unity, which is only the case if wi is greater or 

smaller than Euler’s number e = 2.7182...185 But this is no valid reason for the Translog to be 

unqualified for curvature restrictions because the natural logarithm is also taken of C. The 

curvature properties of ln C can be destroyed by potentiation with base e, and hence there 

cannot be inferred from the curvature of ln C to the curvature of C.186 The true reason for the 

unrestrictability of the Translog for curvature becomes obvious when taking anti-logs (here 

abstracting from output to save notation, as one might say as unit cost function): 

                                                
183  Edward R. Morey mistakenly claims that the Generalized Leontief cannot be restricted to global concavity 

because its Hessian is still a function of prices, which are subject to change. He infers that concavity at one 

point does not imply concavity at any other point. But, as an examination of the above Hessian reveals, both 

Eigenvalues are non-positive for any positive factor prices so that the Hessian is negatively semi-definite in 

the entire domain. Consequently, as stated, the Generalized Leontief is globally concave for non-negative pa-

rameters [see MOREY 1986: 223]. 

184  See CAVES/CHRISTENSEN 1980: 425. 

185  See CHAMBERS 1988: 179. 

186  See MOREY 1986: 228. 
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First, all terms are connected multiplicatively, and thus the sum-of-concave-functions lemma 

cannot be applied. Secondly, the second order exponents contain exogeneous variables so that 

an adding-up restriction between the 3ij in analogy to the Cobb-Douglas would look different 

for every data point, and a plain restriction of the magnitude of the parameters would not suf-

fice to assure a semi-definite Hessian for all variable values. This means, the Translog can 

only be restricted locally to concavity or convexity. The only possibility to reach global regu-

larity is to set all 3ij to zero,187 but this would mean the degeneration of the Translog to the 

Cobb-Douglas, which is, as already mentioned, not at all flexible. 

The inflexibility drawback of the previously shown ways to restrict for curvature can be 

avoided – or at least relieved – with another method: since the necessary and sufficient condi-

tion for a specific curvature consists in the semi-definiteness of its Hessian – if ∇ 2C w y,� �  is 

negatively semi-definite, C is concave; if ∇ 2Π p w,� �  is positively semi-definite, � LV FRQYH[

–, it is possible to restrict the Hessian directly and thereby the underlying function. 

Whereas the determinant test is useful for small matrices in algebraic formulation as in the 

example above, the most operational way of testing numerical matrices for semi-definiteness 

is the Eigenvalue or spectral decomposition: of all available methods, it requires the fewest 

calculatory steps and is therefore the method of choice in computer programming.188 To check 

for semi-definiteness, it suffices to determine the magnitude of the m + n Eigenvalues. But to 

restrict a matrix for semi-definiteness, one has to constrain the Eigenvectors to orthonormality 

in addition, i.e. to normalize each Eigenvector and to take care that they are all orthogonal to 

each other. Obviously, the Eigenvectors have to be calculated before – and they are a quite 

complicated function of the Hessian, especially for more than two variables, so that this task 

can become very tedious for larger models.189  

For the latter purpose, the Cholesky factorization  

                                                
187  See LAU 1974: 182-183. 

188  See CROUZEIX/FERLAND 1982: 203. 

189  See LAU 1978: 440. 
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of a symmetric real valued matrix A with the unit lower triangular matrix L and the diagonal 

matrix B, containing the Cholesky values, provides an easier solution.190 A is positively semi-

definite if, and only if, all its Cholesky values are non-negative. It is possible to substitute the 

elements of the Cholesky factorization for the Hessian of the estimation function, more preci-

sely to estimate L and B instead of the elements of the original Hessian A (which is necessari-

ly symmetric according to Young’s theorem, and thus the Cholesky factorization always e-

xists). The advantage of the Cholesky factorization is that it contains the same number of e-

lements as the decomposed matrix itself, and that beyond that no restrictions are required. To 

force positive semi-definiteness, the method of squaring can be applied: auxiliary parameters 

are substituted against the Cholesky values in the estimation, which are necessarily positi-

ve:191 

 b b iii ii
* = ∀� �2

               

The only problem connected with the Cholesky factorization lies in the fact that its elements 

are nonlinear functions of the decomposed matrix, and consequently the resulting estimation 

function is nonlinear in parameters. Therefore, linear estimation algorithms are ruled out even 

if the original estimation function is linear in parameters. 

Any flexible functional form can be restricted to convexity or concavity with the above 

method – to local convexity or concavity. The Hessian of most flexible functional forms, for 

example the Translog or the Generalized Leontief, are not structured in a way that the defini-

teness property is invariant towards changes in the exogeneous variables.192 But there are ex-

ceptions: e.g. the Hessian of the Quadratic does not contain exogeneous variables at all, and 

thus a restriction using the Cholesky factorization suffices to impose convexity or concavity 

at all data points. Unfortunately, the Quadratic is disqualified for its incapability of being re-

                                                
190  See LAU 1978. 

191  See LAU 1978: 438. 

192  See JORGENSON/FRAUMENI 1979: 18, and MOREY 1986: 228. 
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restricted for linear homogeneity. Another exception, the Generalized Symmetric McFadden, 

will be discussed in section 7.1.4. 

6.2.3 Monotonicity 

The issue of assuring non-decreasing costs with input prices and output quantities rising 

was neglected until most recent studies,193 and the same is valid for non-increasing profit with 

input prices rising and non-decreasing profit with output prices rising. But it has appeared that 

the monotonicity condition is by no means automatically satisfied with most functional forms, 

and that violations are frequent and empirically meaningful.194  

Since each function with a quadratic specification necessarily has a bliss point, global mo-

notonicity is generally ruled out for all derivates of the General Linear Form with second or-

der terms if flexibility shall be preserved. Of course, it is always possible to force global mo-

notonicity of e.g. the Generalized Leontief by non-negativity constraints: its gradient 
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cannot become negative if βi, all ϕ ij and θ  are bound to non-negativity by the method of squa-

ring presented above.195 Virtually, the maximum of C with respect to all variables is set to 

+∞. But this restriction, including a restriction on global concavity,196 rules out comple-

mentarity between factors and thus severely restricts the flexibility of C. Other flexible func-

tional forms restricted this way show a similar loss in flexiblity. 

To avoid the disturbing choice between inflexible and inconsistent specifications – or at le-

ast to make possible a reasonable compromise – an approach imposing theoretical consistency 

only over the set of variable values where inferences will be drawn was developed recently.197  

The model parameters are restricted in a way that the resulting elasticities meet the reqire-

ments of economic theory for the whole range of variable constellations that are a priori likely 

                                                
193  See BARNETT/GEWEKE/WOLFE 1991, BARNETT/KIROVA/PASUPATHY 1996, TERRELL 1996, and KO-

OP/OSIEWALSKI/STEEL 1994. See also GALLANT/GOLUB 1984. 

194  See BARNETT/KIROVA/PASUPATHY 1996: 2. 

195  See BARNETT/KIROVA/PASUPATHY 1996: 13  and 16-17. 

196  See section 6.2.2 above. 

197  See TERRELL 1996, also see BARNETT/GEWEKE/WOLFE 1991 and KOOP/OSIEWALSKI/STEEL 1994. 
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to occur, i.e. a regular region is created.198 Two problems are connected with such a procedu-

re:  

First, a decision has to be made about the likeliness of the occurrance of many value com-

binations of all exogeneous variables, where it may differ largely how precise and how certain 

such an assumption can be made. A minimum likeliness has to be selected ad hoc to determi-

ne the frontiers of the regular region, i.e. the range of variable constellations where theoretical 

consistency is guaranteed. In other words, there is a lot of contingency involved in a decision 

which on the one hand affects the remaining flexibility of the estimation function and on the 

other hand restricts the range of possible forecast scenarios, i.e. the domain of applicability. In 

addition, for simulation models one has to have an eye on the frontiers of the regular region 

and to find ways to exclude the non-regular region from the paths of simulation.  

Secondly, local restrictions on the parameters are generally inequality restrictions. The me-

thod of squaring is not precise enough to provide implementation of a definite regular region 

and, even more important, standard statistical theory fails to supply a valid foundation of infe-

rences for this kind of restrictions. Few things can be said about the sampling properties of the 

least squares estimator subject to inequality restrictions: the variance of the estimated parame-

ter vector will be smaller than that of the unrestricted counterpart if the prior information ex-

pressed in the restriction is true, but it is always biased.199 This leads to the use of a complete-

ly different econometric framework for inference that integrates the existence of prior infor-

mation from the outset: the Bayesian approach to econometrics.200 The monotonicity and cur-

vature restrictions can then be imposed using informative priors, and elasticities with a prior 

that fails to incorporate those restrictions can serve as a reference point. The methodology can 

be summarized as follows:201 all observations are set up in a system of seemingly unrelated 

regression equations of derived factor demand and marginal cost / product supply equations 

of the respective functional form with additive errors which are assumed to be jointly normal-

ly distributed. Then, the unrestricted prior distributions of the parameters P0(α) and of the 

                                                
198  This approach was preceded by an important study of Gallant and Golub, who imposed regularity on all 

observed data points [see GALLANT/GOLUB 1984]. This, however, does not necessarily suffice if inference 

shall be drawn from other data points. 

199  See GREENE 1993: 253. 

200  For an introduction to Bayesian econometrics see JUDGE / HILL / GRIFFITHS / LÜTKEPOHL / LEE 1988: 117-

156, 275-324, and 806-858. 

201  For an extensive presentation see TERRELL 1996: 183-185. 
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error terms P0(Σ) are specified.202 To implement the consistency restrictions, an informative 

prior distribution is generated using an indicator function h(α) set equal to one if, and only if, 

all regularity conditions hold203 for all exogeneous variables which are elements of the subset 

of positive prices and/or quantities R over which inference will be drawn, i.e. which are 

thought to be likely enough to occur, and set to zero otherwise, i.e. for variable constellations 

outside the regular region: 
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here formulated for the cost function. With this indicator function, the informative prior can 

be defined as 

 P h P1 0α α α� � � � � �= .204 

Thus, zero value is assigned to parameter vectors implying monotonicity or curvature violati-

ons, whereas outside R the parameter vector is left unrestricted. A very large R approaches a 

global restriction on regularity with bad consequences for local flexiblity; a smaller R increa-

ses the forecast and simulation problems just mentioned. The posterior density – and thereby 

the elasticity estimates – are calculated with repeated samples drawn from an unrestricted 

posterior distribution simulated by a Gibbs sampling algorithm. Then, the restricted estimates 

are determined using an accept-reject algorithm with respect to P1(α) for a fine grid over the 

exogeneous variable space which, under mild regularity conditions, converges to the actual 

joint density as the number of samples approaches infinity.205 Monotonicity and curvature 

restrictions are evaluated at each point of the exogeneous variable space, and the respective 

parameter vector is included in the sample if the conditions in question hold at any points in 

the grid which is an element of R, and rejected if violations occur: Violations outside of R are, 

of course, ignored. By construction, the informative prior eliminates the portion of the poste-

rior density inconsistent with theory. But the inconsistent part is not simply sliced away; ra-

                                                
202  See TERRELL 1996: 184. 

203  The regularity conditions apart from curvature and monotonicity are usually satisfied by construction of the 

used functional form or, as in the case of the Translog, easily implemented by parametric restrictions without 

loss of local flexiblity. 

204  See TERRELL 1996: 184. 

205  See CHIB/GREENBERG 1994. 
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ther the entire distribution shifts towards regularity, which indicates the benefits of this me-

thod of imposing theoretical consistency. The decision of how large R is chosen can be sup-

ported by comparing posterior odds for different R and applying Jeffreys’ criteria for conclu-

sive evidence or by comparing the number of rejections and acceptions during the drawing 

process for different R.206 Both ways of evaluating the choice of R at the same time give in-

formation about the flexibility cost of implementing regularity. 

This numerical technique to assure regularity exactly meets the requirements of the global 

approximation concept introduced in section 5.1.3 above. Higher orders of parameters than 

second order render the incorporation of theoretical consistency into flexible functional forms 

impossible, and thus the presented Bayesian technique remains as the only possibility. Of 

course, functional forms thus estimated must be fully flexible and implementation of con-

sistency must be completely left to the accept-reject algorithm, respectively, because the algo-

rithm can reject inconsistent solutions but not accept consistent and flexible solutions that are 

excluded from the outset, since they cannot be depicted by the functional form. Hence, only 

such parametrical restrictions may be introduced to relieve the strain on the estimation proce-

dure that do not at all limit flexibility, e.g. the common homogeneity restrictions. 

6.2.4 Relative Importance of Regularity Conditions 

It is noticeable how naturally the homogeneity, curvature, and monotonicity property were 

and are differently accounted for in empirical studies. However, this is completely groundless: 

none of them is more evident or more meaningful than the others. They all are equally fun-

damental axioms of economic theory, and any failure has the same consequences from a theo-

retical perspective. Theoretical foundation of an economic model requires satisfation of all 

regularity conditions in conjunction.207  

The common neglection of monotonicity seems to be the result of a widespread misin-

terpretation and trivialization of a violation: e.g. for a linear demand function necessarily in-

tersecting the corresponding input price axis and thus producing negative demand quantities 

over a certain price, if it is decreasing as dictated by the curvature condition, a kinked shape is 

assumed where the demand quantities beyond the intersection are set to zero. If input price 

                                                
206  See JEFFREY 1967: 432. 

207  This conclusion, however, is not meant to suggest that cost minimization or profit maximization, respective-

ly, is the only rational decision criterion: other criteria are possible, but any other criterion implies a specific 

set of regularity conditions of the respective behavioral function, for which the above statement applies. 
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exceeds a certain level it is prohibitively high, so it is argued.208 But a negative value of a de-

mand function is different from zero; if one holds that a prohibitively high price is empirically 

evident, the chosen model has to be capable of producing zero or near zero demands over a 

region. The severe consequences of this misinterpretation which go far beyond the single e-

quation’s irregular region may be indicated by the fact that in relations between parameters 

inside and between equations the invalid negative quantities also come into effect and thereby 

cause further irregularities. An example is given below. 

Three reasons seem to have promoted the implementation of homogeneity as a standard 

requirement for any application a long time before the importance of the other aforementioned 

properties was registered. First, homogeneity finds its obvious and significant manifestation 

in the single equation. In contrast, correct curvature of the cost or profit function reduces to 

the correct sign of the own substitution effect of the single demand or supply equation or the 

exclusion of an inverse demand or supply reaction, which is not immediately visible as an 

incorporation of the concavity condition. In systems of equations, curvature becomes more 

complex than homogeneity.  

Secondly, for this reason homogeneity is easier to implement into many real valued functi-

ons even of a higher order. The procedures assuring correct curvature for systems of equati-

ons are much more cumbersome, as the above sections reveal.  

Thirdly, in part as a result of the other two points and in part as a historical contingency, 

the techniques to implement homogeneity are more common in economic literature. Even 

among protagonists of the new efforts to incorporate not only homogeneity and curvature but 

also monotonicity properties in flexible functional forms, it is common to treat the consisten-

cy properties asymmetrically: an arbitrary functional form is transformed into a ”cost functi-

on“, as e.g. Dek Terrell formulates in his recent paper on flexiblity and regularity properties 

of the Asymptotically Ideal Production Model (AIM), if it is made homogeneous of degree 

one; incorporation of curvature and monotonicity then do not affect the label ”cost functi-

on“.209 A stringent phrasing would be either to call a function a ”(valid) cost function“ if, and 

only if, it incorporates all properties of a well-behaved cost function, or – with regard to nu-

merical techniques of assuring regularity posterior to specification of functional form and 

with regard to the fact that virtually no flexible functional form would then deserve this predi-

                                                
208  Beleg?!#  

209  See TERRELL 1995: 2. 
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cate then – to call any function ”cost function“ if it serves as a cost function in an economic 

model, no matter which properties it has. 

This does not, of course, mean that the implementation of some regularity conditions while 

leaving others aside is worthless: a homogeneous model failing to satisfy curvature and mo-

notonicity is likely to yield better forecasts in a heuristic sense than a model which is non-

homogeneous in addition. But this is something other than claiming proper theoretical 

foundation, and furthermore heuristics can as well suffer from the implementation of some 

rather than all theoretic requirements, as the example of a monotonicity violation shows: a 

negative demand quantity which could result from only one badly measured data series for 

only one exogeneous variable causes only one estimation parameter to be ill-conditioned and 

to yield wrong forecasts for only one variable in an unrestricted model. Now, the parametrical 

homogeneity restriction transmits the error on the other parameters of the equation because 

the other summands have to compensate the error of the one, and concavity, adding-up 

(emerging from homogeneity too), and symmetry eventually spread the error over the entire 

system.  The disturbing consequence is that there are two rather than three epistemological stages: 

Apart from models incorporating all regularity conditions in conjunction, which is science 

proper with falsifiable theories, there is the land of floating pragmatism where the amount of 

theory used to supplement economic intuition is of purely heuristic status. It remains ultimate-

ly uncertain whether additional theory yields better forecasts. The latter is a matter of expe-

rience and instinctive feel in combination with empirical long-time evidence – a matter of 

wisdom rather than a matter of knowledge. 

6.3 Trade-Off Between Selection Criteria and Conclusion 

Against the background of the enormous difficulties connected with the practical reconci-

lation of local flexibility, theoretical consistency and domain of applicability demands one 

might well wonder whether the ideal solution of a fully second-order-flexible functional form 

that is globally consistent with economic theory – and, in addition, easy to estimate and safe-

guarded by solid statistical theory – is possible at all. Lawrence Lau proves that at least for 

functional forms linear in parameters, i.e. for functional forms that ideally meet the require-

ment of easy computability, this is not the case: his incompatibility theorem states that there 

can be no linear-in-parameters and parsimonious functional form for a normalized unit cost 
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function210 which can fit arbitrary but theoretically consistent values of a normalized unit cost 

function and its first and second derivatives at any pre-assigned value of the normalized price 

and be itself theoretically consistent for all non-negative normalized prices,211 i.e. which pro-

vides a surjective mapping from the parameter set into the set of theoretically consistent func-

tion values, gradients, and Hessian.212 He concludes that, since one is not likely to give up 

theoretical consistency and flexiblity or even computational facility, the logical area of 

compromise lies in the domain of applicability. This is exactly in conformance with the Baye-

sian method outlined in section 6.2.3 above. An additional argument for being content with a 

restricted domain of applicability is supplied by the fact that the likelihood that the parameter 

values, estimated on the basis of the available observations, remain the same outside the 

neighbourhood of the observations is in any case questionable. Furthermore, the confidence 

band quickly becomes wide so that the extrapolative use of parameter estimates becomes inc-

reasingly risky with rising distance from the observed data. Finally, infinity is a purely theore-

tical concept when it comes to economic data: economic processes always happen inside a 

finite range of variable constellations over extension of which one can reason.213 

Whereas Lau assigns equal weight to local flexibility and theoretical consistency,214 one 

could argue that local flexibility is tendencially more important because the data is primary 

and economic theory is secondary. We had better allow the data to be inconsistent with eco-

nomic theory than previously restrict the possible information we allow the data to give us: 

Our theory of economically rational behavior could be wrong or phenomenologically inade-

quate, respectively, but the data cannot – measurement and specification error excluded –; it is 

our only source of information about the nature we want to describe with our theories. Other 

than reconstructing data information that is not depictable by the restricted estimation functi-

on, we can test consistency with a functional form not restricted for consistency.  

                                                
210  Lau proposes several dimensions of generalization for his theorem which remain to be proved: the number of 

independent variables could be increased, the number of parameters could be increased, and the functional 

form could be linear-in-parameters including monotonic transformations [see LAU 1986: 1557]. Further, he 

states without proof that his theorem equally applies to the dual profit function and dual revenue function 

[see LAU 1986: 1558]. 

211  See LAU 1986: 1552-1557. 

212  See section 6.1 above. 

213  See LAU 1986: 1557. 

214  See LAU 1986: 1557. 
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Implementing consistency can be seen from two completely different aspects. On the one 

hand, if the analysis aims at the extraction of parameters for forecast and simulation use, i.e. 

as applied theory, validity of the theory is generally presupposed, and its implementation is 

led by the hope that this will result in better heuristic quality. In order to increase forecast 

quality, it seems advisable to include all available information – and the assumption that eco-

nomic theory is valid constitutes extremely valuable information about existing relations bet-

ween effects that held in the past and will hold in future. However, a counter example is given 

in section 6.2.4 above. On the other hand, estimating a theoretically consistent model – or 

validating it,215 as parameter estimation is also called characteristically enough – always inc-

ludes an epistemological test: is a statistically significant estimation based on the respective 

theory possible?  

If not, it is questionable whether – in case, of course, we do not prefer to assume that bad 

data or a misspecification caused the failure – economic theory is applicable to the problem in 

hand. If general validity of theory is claimed, and this is the case for neoclassical economic 

theory and scientific theories in general, the excuse of inapplicability is not available, and thus 

the neoclassical researcher is left with the burden of proof that something else has to be bla-

med for the failure of his validation trial; otherwise the theory would be falsified.216 However, 

following from the Duhem-Quine-thesis,217 the only possibility to actually prove that it is not 

the invalidity of economic theory but something else that causes model rejection is to success-

fully estimate an alternative model where the blamed problem is solved. Otherwise, theory is 

neither rejected nor remains unrejected – the model is simply epistemologically meaningless. 

It is questionable if one has to go as far as Barnett, Geweke, and Wolfe, who claim that mo-

dels violating maintained theory are virtually useless in policy applications218 since a heuristic 

forecast quality may still exist.219 But one has to realize that one has completely left the (puta-

                                                
215  The term "validation" implies that after a successful empirical test the examined theory may be seen as 

"true". It would be more precise to label a successfully tested theory "unfalsified" since no test can positively 

prove the validity of a theory but rather can constitute a (further) example where the theory escapes rejection 

[see POPPER 1961 and section 1.2.1 above]. But these epistemological considerations do not touch the above 

argumentation. 

216  See section 4.4.1 for another area where unambigious falsification of theory is made impossible. 

217  See QUINE 1981. 

218  See BARNETT/GEWEKE/WOLFE 1991: 15. 

219  See section 6.1.4 above. 
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tively) safe grounds of neoclassical economic theory, with all bad consequences for argumen-

tation.  

Considering simulation models, the demand is a little higher for a practical reason: global 

consistency for the applied parameter vector (but not for any possible parameter vector) is 

highly desirable for an application of estimated functional forms in simulation models since 

convergence of its optimization algorithm is guaranteed with a globally well-behaved goal 

function. This is especially important if the starting values are relatively distant from the op-

timum. A globally well-behaved optimization problem significiantly reduces the difficulties 

connected with the choice of starting values, i.e. it eliminates the sensitivity of the results to 

starting values because it precludes multiple optima, and it reduces the likelihood of non-

convergence because the optimization algorithm cannot be placed into local irregularities.220 

The picture changes if global flexibility is considered. It provides a conceptual framework 

where both the applied and the epistemological aspect of estimation largely benefit. Given 

that the statistical data is rich enough to allow for the evaluation of a large number of parame-

ters in a globally flexible estimation, a locally flexible function is, of course, quite restrictive: 

it entertains the same degree of complexity as point elasticities, i.e. it depicts level, first, and 

second order effects of the cost or profit function, and that means level and first order effects 

of the derived demand or supply functions. With rising deviation of the demand or supply 

function from linearity or a transformation of linearity, respectively, and with rising distance 

between the the forecast scenario and the point of approximation or the point of elasticity eva-

luation, respectively, the prediction error increases, and a globally flexible estimation makes 

increasingly more sense.221  

                                                
220  These considerations do not apply for simulation models that can be solved analytically: these are in any case 

intrinsically consistent, otherwise an analytical solution would not exist. However, the restrictiveness of glo-

bally regular models has to be taken into account when using analytically solvable models. 

221  Sometimes, point elasticities are, adherent to the local flexibility approach described above, erroneously 

misunderstood as the ultimate scenario tool which has to be favored over insertion of variables into the esti-

mated function. An impressive example is provided by Perroni and Rutherford [see PERRONI/RUTHERFORD 

1995]: with regard to the current practice of using point elasticity estimates taken from the literature to ca-

librate computable equilibrium models, they introduce a procedure to test the property of second order flexib-

le functional forms to preserve local calibration information away from the point for which the elasticities are 

known. Obviously, the elasticity information is only locally valid, and, given no additional information is a-

vailable, the hypothesis that the true function entertains the same elasticity (or the same share or difference of 

elasticities) everywhere is as probable to be true as the hypothesis that a certain second order flexible functi-

onal form is the correct specification with regard to the true data generating process. Additional information 
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The severe restrictions on local flexiblity reported for all common flexible functional forms 

when expanding the regular region with numerical techniques222 are easy to cope with from 

an applied perspective: the lack of local flexibility, i.e. the impossibility of reaching some 

theoretically consistent level, gradient, and Hessian values at one point is of purely academic 

meaning in a globally flexible context. Consequently, the relative importance of local flexibi-

lity and theoretical consistency changes fundamentally for functional forms approaching glo-

bal flexibility, i.e. for series expansions or higher-than-second-order flexible functional forms 

that fit any technology data arbitrarily well with a number of parameters approaching infinity. 

Consistency, even global consistency, then appears to take absolute priority over local flexibi-

lity, whatever local flexibility costs occur. Lau’s incompatibility theorem is no longer effecti-

ve. In addition, the compulsion to set complete columns of parameters linearily dependent to 

retain local flexibility for the remaining variables demanded by the semi-flexibility approach 

ceases to apply: any parameters appearing to contribute to the significance particularly few 

can be set to zero without further considerations. The decision of which parameters to estima-

te and which to neglect, as well as the choice between the series expansion and higher-order-

flexibility approach in general and between functional forms in particular is merely due to 

statistical criteria.223  

The objection that the empirical meaningfulness of such an approach is limited since one is 

not likely to encounter data rich enough to allow for the estimation of that many parameters 

very frequently, and that consequently standard second order flexible forms remain superior, 

can be handled easily: second order flexible functions are generally included as a special case. 

                                                                                                                                                   

could e.g. consist in knowledge about the functional specification from which the elasticities are derived and 

which is accepted in the source study. If this is e.g. a CES, it would of course be of benefit to use a functional 

form for simulation with minimal deviation from the CES hypothesis, but if it is e.g. a Generalized Leontief 

or any other non-CES form, this selection criterion would be wrong. 

222  See TERRELL 1996. 

223  The accusation of data mining misses the point because setting one parameter to zero and introducing another 

due to statistical criteria does not amount to the questionable practice of letting the data decide whether a va-

riable has an influence on the outcome of the equation or not. As in standard second order flexible forms, the 

maintained hypotheses clearly state which variables are relevant. In contrast to second order flexible forms, 

which assign equal weight to each variable, a globally flexible estimation leaves the question of how precise-

ly the influence of each variable can be depicted to the data. In any case there is no approach to formulate an 

a priori hypothesis on this, and thus there is nothing reprehensible about asking the data – just like it is a pro-

per practice to let the estimation parameter values be determined by the data rather than formulating a hypo-

thesis on their magnitude, apart, of course, from parameter restrictions implied by economic theory. 
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If the data is not capable of providing information for more than level, first order and second 

order parameters, the global flexibility approach will favour exactly this depth of parameteri-

zation. But if there is more or less inferential potential, the globally flexible estimation as a 

semi-nonparametric procedure will react while the statical second order flexible functional 

form will withhold information or fail statistically, respectively. 

The epistemological benefit can be seen in the increased likelihood of a consistently mode-

led hypothesis –  and thus the underlying theory – of escaping empirical falsification, since a 

variable depth of parameterization, subject only to consistency restrictions but free from the 

burden of assuring local flexibility, leaves more room to fit the data. Fitting the data arbitrari-

ly well while maintaining theoretical consistency inside the observed region only, or even 

globally, constitutes the ideal of testing theory with statistical means, and each additional pa-

rameter which can be estimated significantly increases the credibility of the specified model 

and the applied theory – functional form as source of specification error is now excluded.224 

From this, it follows that, both from an applied and a theoretical perspective, both with re-

spect to an instrumental and an axiomatic approach to applied science,225 research should 

focus on globally flexible functional forms and semi-nonparametric estimation methods with 

the critical remainder of consistency restrictions that damage flexibility when incorporated 

parametrically implemented not before the estimation procedure. 

                                                
224  A ”wrong“ functional specification merely amounts to a waste of degrees of freedom. Again, this does not 

imply data mining [see previous footnote]. How could the hypothesis that the data fits e.g. a translog specifi-

cation rather than a Generalized Leontief specification be justified a priori? This question remains necessarily 

an empirical one. 

225  See section 1.2.1 for a discussion of the instrumental and the axiomatic approach to applied science. 



 

7 Applying Global Flexibility 

Rather than a reiteration of known results about the properties of common locally flexible 

functional specifications, the goal of the overview given in the first section of this chapter is 

to evaluate the suitability of these to serve as basis for a globally flexible or semi-non-

parametric estimation with a constrained regular region in the sense outlined in the two prece-

ding chapters. Since neither a simulation experiment nor an empirical application is conduc-

ted in the course of this study, the considerations remain speculative and are all exposed to the 

objection of arm-chair science. Correspondingly, this part of the study is rather cursory. Af-

terwards, an outlook will be given which identifies remaining weak spots of the presented 

approach and shows directions of further research, marking the way from a theoretical foun-

dation of the global flexibility approach – which is hopefully provided by the study at hand – 

towards a broadly applicable methodical tool. 

7.1 Selection of Functional Form 

In a semi-nonparametric estimation with a constrained regular region, there is only one 

reason to incorporate theoretical requirements in a functional form: to save degrees of free-

dom and to relieve the accept-reject algorithm from the burden of accounting for them, re-

spectively,226 i.e. the reason to ease estimation.227 If the statistically accepted regular region is 

large enough both from a hypothesis test and a forecast perspective, it is irrelevant if a theo-

retical requirement is accounted for by construction, by parametrical restriction or during the 

estimation process. Thus, the ability of a functional form to allow for the incorporation of 

possibly many properties of a well-behaved cost or profit function while remaining locally 

flexible, having dominated the whole functional form literature since the seventies, loses 

weight as a selection criterion. In turn, another critierion, having stayed in the background 

since then, gains importance: is the data generating process following a quadratic or a log-

                                                
226  See section 6.2.3 above. 

227  Note that an implementation of e.g. homogeneity by parametrical restriction always applies globally. Thus, 

different regular regions imposed during the estimation process do not include properties thus enforced. This 

may have negative implications on estimablity if the respective property is not supported by the data outside 

the regular region. However, there is no way to find this out but an estimation where the respective property 

is implemented not before the estimation process so that it can be included in variations of the regular region. 
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linear course? How far does the approximating function behave like the true structure in a 

purely statistical sense? How well does the function actually approximate the data, theoretical 

properties left aside? This revival of the old question of an adequate specification leaves more 

room for choice between functional forms, since the ability to incorporate theory has led to 

very few functional forms – mostly not more than one – which were considered state of the 

art and thus acceptable as estimation functions. Hence, the following discussion of a small 

selection of functional forms has likewise to account for recent examples and specifications 

that are outdated in the context of second order flexible functional forms for their inferior abi-

lity to incorporate theoretical properties. This is not to imply that the extensive literature on 

regularity of second order functional forms is worthless for the purpose of this study  – the 

opposite is the case: for the gobal flexibility account advocated here, it is of essential signifi-

cance to draw upon knowledge of functional forms that allow a maximum of incorporated 

regularity while remaining fully flexible. 

All functional forms discussed below in a historical order can be found in the systematics 

diagram in section 5.2.2 above. The choice of the functional forms presented here is somew-

hat arbitrary, but tries to emphasize both forms which are or were broadly used in applied 

studies, and/or can be seen as pathbreaking methodical progress. For the notation, please refer 

to section 5.2.1 above. 

7.1.1 Generalized Leontief 

The pioneering Generalized Leontief Cost Function, leading off the extensive literature on 

second order flexible functional forms motivated by the endeavour to make the progresses of 

duality theory empirically utilizable,228 was introduced as 
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with 3ij = 3ji and all vi as predetermined constants to be selected by the researcher.229 Since it 

does not treat input and output variables symmetrically, several multi-output generalizations 

are possible. Consider for example 

                                                
228  See section 1.1.2 and 1.1.3 above. 

229  See DIEWERT 1971: 497. 
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which emphasizes the weighting of the second order terms with the respective other variables, 

here incorporated by an average of these, but simultaneously reveals the ugly asymmetry by 

means of the impossibility of formulating a reasonable weight for the mixed second order 

summand and the neglection of the last term of the original single-product cost function for-

mulation – which is, again not exactly straightforward, a third order term, and it could be mo-

reover argued that the original formulation does not include any proper second order terms 

because of the y weight. Another possibility, aesthetically more convincing, is 
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which assumes an indifference with respect to the question of whether a variable is an input or 

output variable. The �i and �i terms can be dropped because they are equal to the 3ii and %ii 

terms, but this implies that the resulting functional form is no longer second order flexible by 

the number-of-parameters criterion. The Generalized Leontief is linearly homogeneous in 

prices by construction, but curvature and monotonicity can either be implemented locally on-

ly,230 or, if restricted for globally, the second order flexibility property is lost.231 

Similar to the multi-output generalization, the generalization for higher order flexiblity is 

not straightforward. One solution is the Asymptotically Ideal Production Model (AIM), of 

which the Generalized Leontief is the special case where the order of expansion equals one.232 

Another approach would be to continue the construction principle guaranteeing homogeneity 

with microfunctions including more parameters for higher order flexibility. In this case, the 

microfunctions assume the form 

                                                
230  See sections 6.1.1, 6.1.2, and 6.1.3 above. 

231  See LAU 1986: 1531-1539. 

232  See section 7.1.5 below. 
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for third order terms.233 Symmetry of all Hessians by Young's theorem implies that 

ξ ξ ξ ξ ξ ξijk jik ikj kij kji jki= = = = =  does not restrict the generality of the function, and is hence 

assumed.234  

For terms of order t, the microfunctions can be written as 
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where i denotes the multi-index over which summation is performed, and It is the set of t-

tuples I i i it
t= 1 2, ,...,� �  with  i nj ∈ 1,...,� �  and i i it1 2≤ ≤ ≤... . For a comparison of the expan-

sion and the higher order flexibility approach to increasing the depth of parameterization of 

locally flexible functional forms please refer to section 5.1.4. 

Methods of incorporating curvature and monotonicity are uninteresting for a semi-

nonparametric estimation based on the Generalized Leontief since they either work merely 

locally – as opposed to the requirement of implementing them for a regular region –, or, if 

global, destroy the flexibility property of the Generalized Leontief. This means that, in order 

to establish a functional form that satisfies the requirements of a globally flexible estimation, 

a Generalized Leontief which is linearly homogeneous by construction and otherwise un-

restricted is perfectly suitable. This is so because the Generalized Leontief entertains only 

theoretical properties, namely homogeneity, which leave its capability unaffected to depict 

any consistent behavior without a priori restrictions not implied by economic theory – i.e. 

because it is locally flexible. 

7.1.2 Trancendental Logarithmic (Translog) 

The locally flexible functional form following the Generalized Leontief is the Trancenden-

tal Logarithmic or Translog.235 The microfunctions of the Generalized Quadratic are of the 

form fi(qi) = ln qi, and the left hand variable, i.e. cost or profit, is logarithmized, too: 

                                                
233  In contrast to the second order case, a simplifying matrix notation is not available here. 

234  See section 5.1.4 and 5.2.1 above. 

235  See CHRISTENSEN/JORGENSON/LAU 1973: 256. 
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where the ln operator denotes taking logarithms element-ZLVH� DQG ZLWK - DQG � EHLQJ V\m-

PHWULF� 6HWWLQJ -� �� DQG , WR QXOO PDWULFHV UHYHDOV WKDW WKH 7UDQVORJ LV D JHQHUDOL]DWLRQ RI WKH

Cobb-Douglas functional form, which was introduced in 1928,236 and, apart from the Con-

stant Elasticities of Substitution (CES) form,237 which entertains the Cobb-Douglas as limiting 

case, dominated applied economics until the development of the Translog, and is still widely 

in use. The Translog is probably the best investigated second order flexible functional form, 

and surely the one with the most applications. In contrast to the Generalized Leontief, the 

third and higher order extension is straightforward and exhibits the form 
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6 111
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for third order terms.238 Again, symmetry of all Hessians by Young's theorem implies that 

ξ ξ ξ ξ ξ ξijk jik ikj kij kji jki= = = = =  does not restrict the generality of the function and is hence 

assumed.239 Higher order terms assume the form 
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where the notation is the same as with the Generalized Leontief in section 7.1.1 above. 

The theoretical properties of the second order Translog are well-known:240 it is easily re-

strictable for global homogeneity, correct curvature can be implemented only locally if local 

flexibility shall be preserved, and monotonicity, as with all other derivates of the Generalized 

Quadratic, is impossible to maintain globally without losing second order flexibility. For hig-

                                                
236  See COBB/DOUGLAS 1928. 

237  See ARROW/CHENERY/MINHAS/SOLOW 1961. 

238  In contrast to the second order case, matrix notation neither simplifies presentation nor makes the way in 

which the parameters and variables interact more obvious, and is thus omitted. 

239  See section 5.1.4 and 5.2.1 above. 

240  See LAU 1986: 1530-1533, and sections 6.2.1 through 6.2.3 above. 
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her orders, homogeneity can be incorporated in analogy with the second order case without 

flexibility loss, as will be demonstrated with a third order unit cost function to save notation: 
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is globally linearly homogeneous by Euler's theorem if 
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Since both the second and the third summand contain variables that can assume arbitrary va-

lues, the equation can only be restricted to a definite value if they are both restricted to zero. 

This is the case if 
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To restrict the entire equation to unity, the remaining summand has to equal unity:  

 β i∑ = 1.  

The Translog is perfectly suitable as a functional form for a semi-nonparametric estimation 

aiming at global flexibilty because, if merely restricted for global homogeneity, it has only 

theoretical properties which leave its capability to depict any behavior without a priori restric-

tions not implied by economic theory unaffected, i.e. is locally flexible. As the examination of 

the Generalized Leontief above yielded, and as it will reveal below, the same can be said a-

bout other second order flexible functional forms and their extensions to higher degrees of 

flexibility.  

But the Translog entertains two advantages over all other specifications: first, it is extreme-

ly convenient to estimate, and secondly, it is likely to be a particularly good specification for 

economic processes. In addition, the unambigious multiple-output generalization may be seen 

as an advantage. With regard to the first point, all parameters of the Translog are evaluated 

when estimated as a system of n – 1 cost share equations and the logarithmic cost function 

itself, where the form of the share equations, here formulated for the third order unit cost 

function above, is agreeably simple: 
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Considering the appropriacy for depicting economic processes, the Translog can be shown 

to posess a comparably large region of theoretical consistency when restricted for consistency 

for only one point.241 This can be interpreted as the desirable property of being relatively clo-

se to theoretically consistent behavior by construction, i.e. by the way the variables interact in 

this specification prior to any trial to rule out theoretically inconsistent behavior by parametri-

cal restrictions. Empirical evidence supports this mathematical finding: throughout applied 

economic literature, a relative superiority of the Translog with respect to statistical fit can be 

reported, which already occurred with its predecessor, the Cobb-Douglas form. A recent e-

xample is Terrell’s study where he applies a Translog, Generalized Leontief, and Symmetric 

Generalized McFadden cost function to the classical Berndt and Wood data, utilizing exactly 

the technique which is appropriate for the global flexibility concept advocated in this study. 

This result is especially interesting since the Generalized Leontief constitutes the second order 

flexible case of the AIM which is today's state of the art, suggesting that Translog extensions 

to higher order could frequently outdo the AIM too. One is tempted to conclude that the natu-

ral logarithm is closer to the true data generating processes of economic decision making than 

other transformations. In any case, the Translog is a particularly promising candidate for an 

application in a globally flexible estimation. 

The possible objection that the Translog is more restrictive than other second order flexible 

functional forms, since it exhibits constant share elasticities is based on a misconception: all 

alternative candidates have not more than one parameter per effect either, so that their identi-

cal restrictiveness is merely veiled by their "ability" – also being a constraint in fact – to pro-

duce varying elasticities. More flexibilty requires more parameters, as with any other functio-

nal form. In contrast, the iso-elasticity property must be seen as an advantage over other 

forms since it allows an immediate parameter interpretation. However, this advantage is lost 

with higher order specifications because the elasticities then depend on more than one para-

meter. 

                                                
241  See LAU 1986: 1538. Also see CAVES/CHRISTENSEN 1980. 
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7.1.3 Fourier 

The first series expansion to be introduced as an economic functional form is the Fourier 

model.242 Due to the extensive notation which is requisite to formulate a Fourier cost function, 

and anticipating that it is in any case an inappropriate choice to depict cost minimizing beha-

vior, as will become obvious immediately, it shall be refrained from listing it here. As a series 

expansion, the Fourier model is the first specification which allows semi-nonparametric esti-

mation methods and was shown to be capable of a globally flexible estimation.243 In addition, 

the basic principles of the recent techniques of imposing consistency on functional forms du-

ring the estimation process, set out in section 6.2.3 above, have been developed with it.244 

Nevertheless, the Fourier model is not an ideal candidate for approximating economic beha-

vior since it consists of sines and cosines, i.e. is a periodic function which is not exactly close 

to a well-behaved economic function. Thus, it is not surprising that it is difficult to implement 

regularity without thereby restricting the flexibility of the Fourier form in an unacceptable 

manner. In addition, the technical expenditures of estimating its parameters seem to be that 

high that Barnett, Geweke, and Wolfe recommend leaving application of the Fourier model to 

professional econometricians. Both problems are to some extent overcome with the AIM pre-

sented in section 7.1.5 below. 

7.1.4 Symmetric Generalized McFadden 

Since its introduction in 1987, any econometric study of demand or supply behavior rely-

ing on another specification is exposed to the question of why the Symmetric Generalized 

McFadden was not utilized: this functional form is commonly considered state of the art, 

questioned not until the presentation of the AIM and the global flexibility approach, respecti-

vely.245 The single-product cost formulation of the Symmetric Generalized McFadden, a close 

relative of the Generalized Leontief treated in section 7.1.1 above, is 

                                                
242 See GALLANT 1981. 

243  See GALLANT 1982, see section 7.2 below. 

244  See GALLANT/GOLUB 1984. 

245  See section 7.1.5 below. 
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with 3ij = 3ji and all vi as predetermined constants to be selected by the researcher.246 Possible 

multi-output generalizations and higher order extensions are analogous to the Generalized 

Leontief presented in section 7.1.1 above. Like the Generalized Leontief, the Symmetric Ge-

neralized McFadden is linearly homogeneous in prices by construction, and monotonicity can 

either be implemented locally only or, if restricted for globally, the second order flexibility 

property is lost.247 But there is one important difference which provides the reason for the 

common distinction of the Symmetric Generalized McFadden as state of the art: if it is restric-

ted for correct curvature by Lau's technique using the Cholesky decomposition,248 the 

constrained curvature property applies globally. Unfortunately, the second order flexibility 

property is in this case restricted to only one point.249 This drawback, recently reported as 

empirically meaningful against the original expectations,250 and the incapability of incorpora-

ting the global monotonicity property could well constitute the best possible result that can be 

obtained with regard to the project of a globally regular and locally flexible functional form, 

noting that Lau's incompatibility theorem states that this ideal is in any case impossible to 

reach with linear functional forms. 

The results of this study qualify the progress implied by the invention of the Symmetric 

Generalized McFadden. First, noting that theoretical consistency requires all properties to 

apply in conjunction, the ability to incorporate one more regularity property, but still not all, 

is irrelevant from an epistemological perspective. Secondly, in an applied context, it is likely 

that also accounting for curvature increases forecast credibility, but this must not necessarily 

be the case, in particular as the local flexibility property is harmed by this restriction.251 

Thirdly, the Bayesian method of incorporating regularity eliminates the relative attractivity of 

the Generalized Symmetric McFadden since, on the one hand, with this method the expendi-

                                                
246  See DIEWERT/WALES 1987a. 

247  See section 6.1.3 above. 

248  See section 6.1.2 above. 

249  See DIEWERT/WALES 1987a: 54. 

250  See RYAN/MAH 1994. 

251  See section 6.2.4 above. 
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ture of restricting second order flexibility to one data point is way too high compared to the 

advantage of being globally restrictable on curvature and, on the other hand, Lau's technique 

does not yield a globally correct curvature for higher order generalizations of the Symmetric 

Generalized McFadden, because the structure of the Hessian becomes more complex when 

third and higher order effects are considered so that it is not applicable in any case. Neverthe-

less, it is possible that the Symmetric Generalized McFadden, not restricted for correct curva-

ture to preserve full flexibility, turns out to be a good specification to utilize in a globally fle-

xible estimation simply because of the way the variables interact with it, i.e. that it overdoes 

other forms like the Translog or the AIM in a statistical sense, because it is a specification that 

is closer to the true data generating process. 

7.1.5 Asymptotically Ideal Production Model (AIM) 

The decisive step towards a broad applicability of semi-nonparametric methods and the 

progress of Gallant's and Golub's technique to account for theoretical consistency, namely the 

imposition of a regular region using numerical techniques, consists of the introduction of the 

Asymptotically Ideal Production Model, the AIM. It is a behavioral function based on the 

multivariate version of the Müntz-Szatz series expansion.252 The AIM(t), i.e. with a series 

expansion of order t,253 formulated as a single-product, constant returns to scale cost function 

formulation as in the original article,254 assumes the form 

 C y y wi
i I

i
jt

j

t

t

w,� � =
∈ =
∑ ∏ −

ϑ 2

1

2

, 

with the index notation as introduced in section 7.1.1 above. To gain the feeling of its const-

ruction, note that the AIM(1) reduces to the Generalized Leontief, presented in section 7.1.1 

above, and that the AIM(2) constant returns to scale cost function for a single output and, with 

respect to the last formula, for three inputs, can be written as 

                                                
252  See BARNETT/JONAS 1983. 

253  Note the difference between the order of expansion and the order of terms or local flexiblity considered abo-

ve. 

254  See BARNETT/GEWEKE/WOLFE 1991. 
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where the notation approaches step by step the conventions used in this study. Considering 

the indices of the last formulation reveals that the "own-effects" reduce to the respective lo-

wer order effects 
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and can thus be omitted. Global homogeneity of degree one is guaranteed by the exponents 

summing up to unity by construction, and global concavity, as with the Generalized Leontief, 

can be enforced by restricting all parameters to non-negativity, thereby sacrificing local flexi-

bility and disqualifying it for a globally flexible estimation.255  

Terrell performs a simulation study to examine the performance of the AIM where he utili-

zes Bayesian techniques to create a regular region following the Gallant and Golub approach 

of accounting for consistency. It is not surprising that he encounters a superiority of the 

AIM(3) against the AIM(1) or Generalized Leontief and a second order Translog. A more 

important result is that the AIM(3) significantly overcomes the problem of the AIM(1) to de-

pict strong complements. Furthermore, he finds strong evidence that non-negativity con-

straints in order to enforce global concavity render the AIM incapable of approximating most 

of the simulated data, whatever order of expansion is chosen.256 It yet remains to be checked 

whether the superiority of the AIM still exists if compared to a Translog specification with the 

same number of parameters or, in a semi-nonparametrical estimation, with that depth of pa-

                                                
255  See section 6.3 above. 

256  See TERRELL 1995. 
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of parameterization the data is able to support. Barnett, Geweke, and Wolfe suspect that the 

AIM has a particularly large natural regular region,257 but this can well be a consequence of 

the higher degree of flexibilty in general rather than a property of the AIM specification in 

particular as opposed to e.g. the Translog specification: possibly, many regularity violations 

encountered with second order flexible functional forms are a result of their limited flexibilty 

rather than actually caused by the data. These considerations are somehow contradicted by the 

findings of Jensen, who plots regular regions for the AIM using data generated with a CDE 

functional form and, in contrast to Terrell's study, additive errors. He reports the smaller natu-

ral regular regions the higher the order of expansion is, and he observes that statistical fit is 

sometimes better with lower order AIMs.258 However, Jensen, following his project of deter-

mining the natural regular regions of the AIM, does not restrict for consistency, so that his 

recommendation to be careful with higher order AIMs in the presence of noisy data is based 

on a wrong premise: his estimation, if it is misinterpreted as a model for an empirical applica-

tion rather than a test of how large the natural regular regions are, is exposed to the objection 

that it does not account for regularity violations caused by overfitting by imposing regularity 

over a region, which is adequate no matter whether one estimates generated data which is 

known to be consistent but noisy, or real world data of which nothing is known a priori. 

7.2 Outlook 

There are several open questions with the presented approach, most of which can only be 

answered empirically or by performing simulation experiments, respectively. At least one 

question, however, is a purely mathematical one: for the Fourier expansion and the AIM, it is 

already shown that they possess the global flexibility property in the sense that they asympto-

tically can reach any continuous function. This is, however, not a trivial matter where it suffi-

ces to refer to the possibility of adding infinitely many parameters. Instead, this property must 

be verified in four steps: first, a matrix norm must be found to measure the distance between 

the approximated function and the approximation function, i.e. to measure the approximation 

error. In the case of the Fourier model and the AIM, the Sobolev norm was used. Then, it 

must be checked whether the examined functional form is, secondly, continuous, and thirdly, 

dense with respect to the norm. Finally, it has to be shown that the norm is continuous with 

                                                
257 See BARNETT/GEWEKE/WOLFE 1991: 41. 

258 See JENSEN 1997. 
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respect to the estimation method. For the details of this verification procedure see Gallant.259 

This procedure has to be performed for any functional form prior to its use in a globally fle-

xible estimation, that is, with regard to the recommendation of this study to try the Translog, 

in particular for the higher-degree flexible Translog specification. 

With regard to an application of the global flexibility concept, there are four approaches 

which could be considered: first, although there exist two studies on the performance of the 

AIM, neither of these provides the information which is needed to evaluate its suitability for 

the global flexibility approach proposed in this study. Rather, an analysis has to be performed 

which, first, uses consistently generated data with an additive error, like Jensen's study but 

unlike Terrell's, because otherwise, important properties like the behavior with regard to over-

fitting cannot be observed. Secondly, regularity must be enforced for a sufficiently large regi-

on, like Terrell's study but unlike Jensen's, who discontinues his efforts at an early stage be-

cause of local inflexibility. Thirdly, a comparison of different depths of parameterization with 

regard only to statistical criteria has not been performed, i.e. ignoring the share of rejections 

caused by consistency violations in implementing the regular region or the amount of binding 

restrictions, respectively, because it is impossible to find out whether these are caused by an 

inconsistent data generation process or by overfitting the noise in the data and thus irrelevant: 

Superiority in the context of the global flexibility account of this study requires a superior 

statistical fit only.  

Secondly, another fruitful direction of further research would be to conduct a simulation 

experiment similar to the one proposed above with a semi-nonparametric Translog, given that 

it turns out that the Translog is theoretically suitable for a globally flexible estimation accor-

ding to the criteria sketched in the first paragraph of this section. Reasons for a possible supe-

riority of the Translog over the AIM are presented in section 7.1.2 above.  

Thirdly, there is another aspect of the studies on semi-nonparametric estimation of dual 

behavioral functions, i.e. the three studies on the AIM mentioned in section 7.1.5 above, 

which calls for a revision: in all these studies there is discrimination between AIM(1), 

AIM(2), and AIM(3), whereas mixed parameterizations are neglected. As the considerations 

in section 5.1.4 above imply, this is by no means requisite. Instead, a statistically optimal ap-

proximation of the data would allow for an inhomogeneous depth of parameterization which 

is the greater the more an estimation of the respective parameters increases overall statistical 

significance.  

                                                
259  See GALLANT 1982. 
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Fourthly, a positive answer to one of the questions above would, of course, suggest an em-

pirical application of either the AIM or the Translog model or both with the methods outlined 

here. A particularly attractive choice would be the well-known Bernd-Wood data, which was 

already used in a number of comparative analyses of flexible functional forms. Another desi-

rable application would be the compound feed cost model proposed in the outlook of the first 

part of this study, so that the two parts of this study could finally be united into one model. 
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